First Review in Europe
THE NEW MINI-MOBILE FROM KENWOOD

- REVIEW—THE FRG9600 SCANNER HF CONVERSION
- HOW TO INSTALL AN INVISIBLE AERIAL

50MHz SPECIAL
HOW TO GET STARTED
WHAT TO EXPECT
2m to 6m TRANSVERTER REVIEW
GETTING SIX OUT OF CBS
R. WITHERS COMMUNICATIONS LTD
Manufacturers, importers and suppliers of world famous communications products
584 HAGLEY ROAD WEST OLDUBURY, WARLEY, BIRMINGHAM B68 OBS
021-421 8201/2, CELLNET 0860 323056, PRESTEL MBX 214218216 FAX 0215614074

RWC STOCKTAKING SALE
We’ve been told we have too much stock! So for ONE MONTH ONLY we are offering Hi-Tech Radios at the UK’s lowest prices! CALL IF THE RADIO YOU WANT IS NOT ON THIS LIST!

- **HANDHELD TRANSCIEVERS** we offer more to choose from...

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>KENPRO</td>
<td>KT2000EE</td>
<td>2MTR 5W LCD H/H</td>
<td>£199.00</td>
</tr>
<tr>
<td>KENPRO</td>
<td>KT4000EE</td>
<td>70CM 2W H/H</td>
<td>£199.00</td>
</tr>
<tr>
<td>CTE</td>
<td>1600 2MTR</td>
<td>3W (SAME AS IC2E)</td>
<td>£165.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>MICRO 2E</td>
<td>2MTR 2.5W EXT RX</td>
<td>£229.00</td>
</tr>
<tr>
<td>ICOM</td>
<td>IC26E 25W</td>
<td>MOBILE EXT RX</td>
<td>£349.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT209R</td>
<td>2MTR FNB3 NICAD</td>
<td>£229.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT290R</td>
<td>MK1 2MTR M/MODE</td>
<td>£319.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT290R</td>
<td>MK1 C/W NICADS</td>
<td>£339.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT290R</td>
<td>MK2 2MTR M/MODE</td>
<td>£399.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT690R</td>
<td>MK1 6MTR M/MODE</td>
<td>£799.00</td>
</tr>
<tr>
<td>YAESU</td>
<td>FT690R</td>
<td>MK1 c/W NICADS</td>
<td>£799.00</td>
</tr>
</tbody>
</table>

NEW YAESU • FT211E, FT757GX MK2, • FT23R/FT73R/FT27R subject to availability, price depending on version/nicad/charger. Several extended and special versions available. Please telephone and discuss your requirements.

- **SCANNING RECEIVERS** we offer the largest Range and options.

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>YAESU</td>
<td>FRG9600 MK1 60-905 MHz</td>
<td>£459.00 P/P £10.00</td>
<td></td>
</tr>
<tr>
<td>YAESU</td>
<td>FRG9600 MK2 60-950 MHz</td>
<td>£499.00</td>
<td></td>
</tr>
<tr>
<td>YAESU</td>
<td>FRG9600 MK3 100KHz-950 MHz</td>
<td>£625.00</td>
<td></td>
</tr>
<tr>
<td>YAESU</td>
<td>FRG9600 MK3 PACKAGE: MK3 Receiver, ICOM AH7000 Super Discone Antenna, PA4C AC Adapter, 1/2 size G5RV. Complete H/F-UHF Broadcast/Amateur/FMR Receiving Station £725.00 inc carriage. Options: PAL Video Unit £27.50, BBC CONTROLLER PROG. £49.50 inc post. SAE or phone for more details. ICOM ICR7000E 25-1300MHZ SPECIAL PRICE £862.50 CARR £10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEARCAT • The world’s best known scanners, direct from the distributors. Bearcat Scanners are value for money and the most popular.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UBC100XL</td>
<td>LB/AIR BAND VHF/UHF handheld</td>
<td>£229.00 POST FREE</td>
<td></td>
</tr>
<tr>
<td>UBC175XL</td>
<td>as above, desk-top FREE DISCONE</td>
<td>£209.00 POST FREE</td>
<td></td>
</tr>
<tr>
<td>DX1000</td>
<td>SHORT WAVE RECEIVER sorry SOLD OUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDK</td>
<td>AIR BAND SYNTHESIZED H/H 118-136 MHZ</td>
<td>£139.00 Post £3.00</td>
<td></td>
</tr>
<tr>
<td>FDK</td>
<td>VHF-FM SYNTH. H/H 139-174 MHZ</td>
<td>£145.00 Post £3.00</td>
<td></td>
</tr>
<tr>
<td>REGENCY</td>
<td>HX850 AM/FM VHF/UHF H/H SCANNER</td>
<td>£235.00</td>
<td></td>
</tr>
</tbody>
</table>

WE STOCK ALL CURRENTLY AVAILABLE MAKES OF SCANNING RECEIVERS.

- **SPECIAL MOBILE ANTENNA OFFER** Sun KG309SE2 5/8 Ant c/w Moulded SO239 Lead and guttermount assy. £20.00 INC POST.

IMPORTANT. Please confirm your order before sending payment as we do not wish you to be disappointed if the model you require is sold out or the price has gone up! Special offers are subject to availability, we DO NOT advertise products or models that are NOT normal stock items. The above offers will be sold on a first come first served basis. Please DO NOT DELAY, as with previous offers we always get hundreds of enquiries when the offers are SOLD OUT! Instant credit available Subject to Status.

Mail order welcome, you may order by Access, Visa, Diners Club, Amex. or CWO for immediate despatch. Please call further details or brochures. Prices variable and are subject to change without prior notice.

ALL PRICES CORRECT AT TIME OF GOING TO PRESS. E OE.

Tel: 021 421 8201 (24hr answerphone)
Telex: 334303 G TXAGWM
REGULAR COLUMNS

LETTERS......................................10
Eradicating racism on the air

RADIO TODAY.................................19
Up to date news on the radio scene

RADIO TOMORROW............................27
Here today, there tomorrow — we tell our readers where to go!

LISTENING ON.................................44
More snippets from the short wave spectrum

PRACTICALITIES..............................54

CONSTRUCTION

50MHz — HAM INTERNATIONAL CONVERSION........36
How to persuade a CB rig on to the new band

INVISIBLE AERIAL..........................50
If they can’t see it, it isn’t there

FEATURES

50MHz — GETTING STARTED..................30
What to expect, how to get going, and ways to test the water

REVIEWS

50MHz — MICROWAVE MODULES TRANSVERTER........12
The Microwave Modules approach to six

FRG9600 HF UPGRADE REVIEW................17
The Yaesu super-scanner goes HF

KENWOOD TM-221E..........................22
We have the first review in Europe

STAR CMOS KEYER..........................48
Dot the ‘i’s and dash the ‘t’s electronically

HRT SUBSCRIPTIONS.........................9
NEXT MONTH.................................56
FREE READERS’ ADS........................57
CLASSIFIED.................................63
EMPORIUM GUIDE..........................64
Thanet Electronics is dead
LONGLIVE
ICOM (UK) LTD.

As from the 16th March 1987 Thanet Electronics Ltd have been trading under the new banner of ICOM (UK) LTD.

Nothing else has changed, still top quality ICOM equipment and service from one of the UK's leading Amateur radio importers.

To celebrate our name change we are offering to those persons who selected the following badge numbers at NEC this year a gift from the ICOM range. To claim your prize just send your winning badge to ICOM (UK) LTD and we will send you the fantastic ICOM Micro 2. 2 metre handportable. Naturally this does exclude those persons who already claimed their prize at the N.E.C. The numbers are 1271, 275, 13200.

This Summer ICOM (UK) LTD will be one of the sponsors for Richard Branson's Transatlantic Balloon Challenge. They will be using ICOM communication equipment.

IC-275E/475E 25 Watt 2 metre/70 cm Multimode Transceivers.

Tech Talk from ICOM: THE EXCITEMENT OF SATELLITE COMMUNICATIONS

An ever increasing number of radio amateurs are joining the excitement of Phase I/1 - type satellite communications. This new medium combines the communications range of the 20 and 80 metre bands with the line-of-sight reliability of 2 metres. Its equivalent to a totally new band, and a vast technical background is not necessary for enjoying the action.

ICOM is able to help you enjoy the fascinating new capabilities of OSCAR and future amateur satellites. Its all mode 2 metre and 70cm base transceivers bring the operating conveniences of low band units to the VHF and UHF amateur bands. They can be used for local FM operations via repeaters or for SSB/CW communications via Phase I/1 satellites. The IC-1271/1275 all mode 2cm transceiver is in a class of its own, providing mode L satellite uplink capability. (Mode L: 1.299MHz uplink: 436 downlink) (Mode U: 435 uplink: 145 downlink)

Satellite relayed signals are somewhat weak in nature and the IC-275E's low noise high sensitivity receiver gives the highest performance for hearing everyone regardless of their uplink performance. The noise blanker prevents pulse type electrical interference from masking desired DX signals. The selectable AGC can follow fast fades associated with spin modulation. There are also the 99 mode memories which can be used for intermixed FM repeater and SSB/CW operators. When the IC-275E is equipped with the optional mast mounted AG25 GaAsFET pre-amp, it becomes a satellite operations dream come true.

ICOM's IC-475E 70cms transceiver has a continuously front panel adjustable power output to allow for daily signal variations. This overcomes the practice of overloading a satellite on-board receiver. The IC-475E also includes 99 all mode memories for the ultimate in operation flexibility.

Using the ICOM CT-15 satellite communications interface these base stations will track together via the ICOM CI-V system. If you are interested in joining today's most exciting era of amateur communications, i.e. OSCAR and future Phase I/1 satellites, ICOM is the logical choice for top performance equipment.

ICOM 70cm Promotion

Due to our new range of equipment we are able to offer the following equipment only while stocks last.

ICOM IC-471E 25 watt Multimode Base Station £550.00
ICOM IC-471H 75 watt Multimode Base Station £759.00
ICOM IC-47E 25 watt FM Mobile £349.00
ICOM IC-U12 12 Channel 450-460 MHz Handportable, uses existing ICOM handheld accessories. Details on how to get onto 70cms provided. Supplied as radio body only £115.00
THE HOTTEST ITEMS
THIS SUMMER

VHF/UHF FM Handportables
If you want a handheld with exceptional features, quality built to last and a wide variety of interchangeable accessories, take a look at the ICOM range of FM transceivers. All ICOM handportables come with a nicad battery pack, AC wall charger, flexible antenna and wrist strap.

Micro 2E/4E
These new micro-sized 2 metre and 70 centimetre handportables give the performance and reliability you've come to expect from ICOM. Measuring only 148 x 50 x 30, the Micro fits in your pocket as easily as a cassette tape. The Micro 2E/4E features an up-down tuning system for quick frequency adjustments, 10 programmable memories, a top panel LCD readout, up to 2.5 watts of output (optional).

IC-2E 2 metre Thumbwheel Handportable
This popular handheld from ICOM is still available. For those amateurs who require a straightforward and effective FM transceiver, the IC-2E takes some beating. Frequency selection is by means of thumbwheel switches (with 5KHz up switch) simplex or duplex facility. Power output is 1.5 watts or low 150 milliwatts (2.5 watts possible with BP5A battery pack).

IC-02E/04E 2 metre and 70cm Keypad Handportable
These direct entry CPU controlled handhelds utilise a 16 button keypad allowing easy access to frequencies, memories and scan functions. Ten memories store frequency and offset, these handhelds have an LCD readout and power output is 2.5 watts or low 0.5 watt. 5 watts is possible with the IC-BP7 battery pack or external 13.8v DC.

IC-12E 23cm Handportable
Similar in design and style to the 02E/04E this 1296Mhz handheld utilises ICOM's experience in GHZ technology gained by the excellent IC-1271E base station. Power output is 1 watt from the standard BP3 nicad pack, external 13.8v DC powering is available to the top panel jack. With the growing number of repeaters on 23cm, the IC-12E makes it an ideal band for rag chew contacts.

ALSO AVAILABLE FOR ICOM HANDPORTABLES ARE A LARGE RANGE OF OPTIONAL EXTRAS INCLUDING A VARIETY OF RECHARGEABLE NICAD POWER PACKS, DRY CELL BATTERY PACKS, DESK CHARGERS, HEADSET AND BOOM MIC, LEATHERETTE CASES AND MOBILE MOUNTING BRACKETS.

Telephone us free-of-charge on:
HELPLINE 0800-521145.

This is strictly a helpline for obtaining information about or ordering ICOM equipment. We regret this service cannot be used by dealers or for repair enquires and parts orders. Thank you.

Datapost
ICOM (UK) LIMITED
Dept HRT, Sea Street, Herne Bay, Kent CT6 8LD.
Tel: 0227 363859.

HAM RADIO TODAY JULY 1987
MET ANTENNAS ARE STILL MANUFACTURED TO THE SAME HIGH N.B.S. STANDARD

<table>
<thead>
<tr>
<th>CODE</th>
<th>MODEL</th>
<th>GAIN</th>
<th>COST Inc.</th>
<th>VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>70cms</td>
<td>432-5B</td>
<td>5 Ele</td>
<td>9.2 dBd</td>
<td>£19.49</td>
</tr>
<tr>
<td>432-17T</td>
<td>5 Ele</td>
<td>14.2 dBd</td>
<td>£40.84</td>
<td>A</td>
</tr>
<tr>
<td>ATV</td>
<td>17 Ele crossed</td>
<td>13.4 dBd</td>
<td>£56.55</td>
<td>A</td>
</tr>
<tr>
<td>432-17T</td>
<td>17 Ele long</td>
<td>15.0 dBd</td>
<td>£45.08</td>
<td>A</td>
</tr>
<tr>
<td>2M</td>
<td>144-5</td>
<td>5 Ele</td>
<td>9.2 dBd</td>
<td>£22.48</td>
</tr>
<tr>
<td>144-7T</td>
<td>7 Ele</td>
<td>10.0 dBd</td>
<td>£27.77</td>
<td>A</td>
</tr>
<tr>
<td>144-1T</td>
<td>8 Ele long</td>
<td>11.0 dBd</td>
<td>£35.95</td>
<td>A</td>
</tr>
<tr>
<td>144-17T</td>
<td>14 Ele</td>
<td>13.0 dBd</td>
<td>£53.72</td>
<td>A</td>
</tr>
<tr>
<td>144-17T</td>
<td>19 Ele</td>
<td>14.2 dBd</td>
<td>£64.26</td>
<td>A</td>
</tr>
<tr>
<td>144-17T</td>
<td>6 Ele crossed</td>
<td>10.2 dBd</td>
<td>£45.71</td>
<td>A</td>
</tr>
<tr>
<td>144-GP</td>
<td>6 Ele crossed</td>
<td>10.2 dBd</td>
<td>£45.71</td>
<td>A</td>
</tr>
<tr>
<td>4M</td>
<td>70/3</td>
<td>3 Ele</td>
<td>7.1 dBd</td>
<td>£34.64</td>
</tr>
<tr>
<td>70/5</td>
<td>5 Ele</td>
<td>9.2 dBd</td>
<td>£52.60</td>
<td>C</td>
</tr>
</tbody>
</table>

POWER SPLITTERS

<table>
<thead>
<tr>
<th>CODE</th>
<th>MODEL</th>
<th>GAIN</th>
<th>COST Inc.</th>
<th>VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>70cms</td>
<td>2 way</td>
<td></td>
<td>£23.46</td>
<td>B</td>
</tr>
<tr>
<td>2M</td>
<td>2 way</td>
<td></td>
<td>£27.60</td>
<td>B</td>
</tr>
<tr>
<td>4M</td>
<td>2 way</td>
<td></td>
<td>£30.60</td>
<td>B</td>
</tr>
</tbody>
</table>

NON METALLIC MAST

<table>
<thead>
<tr>
<th>CODE</th>
<th>MODEL</th>
<th>GAIN</th>
<th>COST Inc.</th>
<th>VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.P.M. 1.5 M (1 1/2" dia.)</td>
<td>With Fixing Clamp</td>
<td></td>
<td>£19.75</td>
<td>B</td>
</tr>
<tr>
<td>R.P.M. 3 M (2" dia.)</td>
<td>With Joiner and Resin</td>
<td></td>
<td>£39.50</td>
<td>B</td>
</tr>
<tr>
<td>R.P.M. 5 M (2 1/2" dia.)</td>
<td>With Fixing Clamp</td>
<td></td>
<td>£22.25</td>
<td>B</td>
</tr>
<tr>
<td>R.P.M. 3 M (2" dia.)</td>
<td>With Joiner and Resin</td>
<td></td>
<td>£44.50</td>
<td>A</td>
</tr>
</tbody>
</table>

CAPACITORS

<table>
<thead>
<tr>
<th>CODE</th>
<th>MODEL</th>
<th>GAIN</th>
<th>COST Inc.</th>
<th>VAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP-25S</td>
<td>S GANG</td>
<td>250 pfd</td>
<td>£15.50</td>
<td></td>
</tr>
<tr>
<td>CAP-30T T GANG</td>
<td>250 pfd</td>
<td></td>
<td>£16.95</td>
<td></td>
</tr>
<tr>
<td>CAP-10S S GANG</td>
<td>500 pfd</td>
<td></td>
<td>£21.95</td>
<td></td>
</tr>
<tr>
<td>CAP-25D</td>
<td>50s pfd</td>
<td></td>
<td>£16.95</td>
<td></td>
</tr>
<tr>
<td>CAP-31S</td>
<td>S GANG</td>
<td>500 pfd</td>
<td>£17.95</td>
<td></td>
</tr>
<tr>
<td>CAP-31T</td>
<td>T GANG</td>
<td>250 pfd</td>
<td>£22.95</td>
<td></td>
</tr>
<tr>
<td>CAP-12S S GANG</td>
<td>1200 pfd</td>
<td></td>
<td>£25.95</td>
<td></td>
</tr>
<tr>
<td>H TYPE ROLLER COASTER</td>
<td>2.00 p.p.</td>
<td></td>
<td>£22.95</td>
<td></td>
</tr>
<tr>
<td>H TYPE BALUNS</td>
<td></td>
<td></td>
<td>£15.50</td>
<td></td>
</tr>
<tr>
<td>AERIAL KIT</td>
<td>1.00 p.p.</td>
<td></td>
<td>£5.30</td>
<td></td>
</tr>
<tr>
<td>Clip-on Spacers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURNS COUNTER</td>
<td>1.00 p.p.</td>
<td></td>
<td>£22.95</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL FEATURES OF CAP CO Capacitors

- Renowned SPC transmatch circuit
- CAP CO innovative modular design eliminates stray inductance
- Unique built-in lightning protection
- Roller Coaster inductor - infinitely variable
- Balun built in 1Kw 4 to 1
- Transmitter switch. THRO ATU or DIRECT to antenna
- Solid traditional precision radio engineering - Lifetime Investment
- Superb ultra compact cabinet design
- Superb finish and looks compatible with most rigs
- Will tune any Transmitter/Aerial combination to optimum
- Solid Die Cast cabinets
- ATU used very low loss ceramic silver-plated capacitors
- All other metal work machine quality brass
- Totally insulated - a must when carrying very high voltages
- Endplates made of epoxy random wave glass
- Capacitor plates stamped from N54 alloy sheet
- Unsurpassable transmission strength and clarity
- Solid, traditional precision radio engineering - Lifetime Investment
- Superb ultra compact cabinet design
- Superb finish and looks compatible with most rigs
- Will tune any Transmitter/Aerial combination to optimum
- Solid Die Cast cabinets
- ATU used very low loss ceramic silver-plated capacitors
- All other metal work machine quality brass
- Totally insulated - a must when carrying very high voltages

CAP CO ELECTRONICS LTD

63 Halfcroat, Birch Green
Skelmersdale, Lancs
WN6 6GB
Tel:0695 27948

SHOP OPENING TIMES

Mon. - 9.30am - 3.30pm.
Tues.-Fri. - 9.30am - 9.30pm.
Sat. - 9.30am - 3.30pm.
EVENING BY APPOINTMENT

HAM RADIO TODAY JULY 1987
COMPACT LATTICE TOWERS—SLIMLINE TUBULAR MASTS

Telescopc—Tiltover, Fixed—Mobile from 3M to 60M.

Over 50 Models, suitable for a wide range of civil and military applications such as:

- Radio Communications
- Amateur Radio
- CCTV and Surveillance
- Meteorological Monitoring
- Aero & Marine Nav Aids
- Flood Lighting etc.

Prop: RT & VEL Wagstaffe. Technical Adviser: John Armstrong

HAM RADIO TODAY JULY 1987
FABULOUS SONY AIR-7 MONITOR
AM 150kHz-2194kHz AM 108-136MHz WFM 76-108MHz NFM 144-174MHz
The new Sony Air 7 is a superb new monitor featuring features so far unmatched in a single hand-held monitor by any other manufacturer. Its frequency coverage makes it ideal for amateur, public service or marine hand monitoring, plus normal domestic use. High sensitivity, this receiver does everything you could ever desire in one package. The AM and FM broadcast can be tuned in with the air band or PC1512 colour tuning. Frequency is selected by knob entry or electronic tuning and there is provision for disabling the broadcast. All memories are pre-set for each of the 360 memory channels in total. These are split into 30 bands of 12 channels each. Frequency scanning is provided in the bands 118-180MHz, either full scan or memory scanning is possible at a fixed rate. Additional delays may be programmed into each memory channel, certain stations only may be scanned and any channel can be designated the 'priority' channel. Memory capabilities include 140 memories, memory battery, carbon steel strap etc. Options available - rechargeable batteries (price £19.95), mains PSU (price £39.95). £194.00

THE COMPLETE VHF/UHF FREQUENCY GUIDE
26MHz-2.25GHz!
* MARINE CHANNELS
* CIVIL & MILITARY AIR
* POLICE, FIRE, AMBULANCE
* SPACE VEHICLES
* HAM RADIO REPEATERS
* UHF TV CHANNELS
* FULL DUPLEX DETAILS
* PMR
* RADIOPHONES
The book that every VHF/UHF listener should have beside him! Don't waste time hunting around in the dark. This guide will take you quickly and efficiently to the frequencies that interest you. Everything is listed including: MARINE, CIVIL & MILITARY AIR, POLICE, FIRE, AMBULANCE, SPACE VEHICLES, AMATEUR RADIO REPEATERS, FULL DUPLEX FREQUENCY INFORMATION, PMR CHANNELS, RADIOPHONES, CELLULAR RADIO etc. Now that's value for money! Beware the expensive American imports. This is designed for the UK listener. Order your copy today.

STOP PRESS!
4TH EDITION UK CONFIDENTIAL FREQUENCY LIST
The new 1987 edition of this well respected publication. Much expanded and completely updated. It guides you through the complete spectrum 1.6-2.25GHz. Listings include shipping, aircraft, military, RTTY news and embassy, FAX broadcasts, AM broadcast etc.

ATTENTION!!!
FT101ZD OWNERS
This compact FM has been specially developed for your FT-101D utilising the latest chip technology and design techniques. Now making it possible to use 10M and 2M FM with a suitable transverter. No holes to drill — directly replaces the old A.M. board without degrading the performance of any other mode. Price is ONLY £75 + p&p. Or your old AM board in PX for JUST £70 + p&p. Or we'll fit the unit for you in our workshop's for a small charge. Please specify channel spacing, type of appropriate filtering, 10 or 25kHz. Comes complete with fitting instructions and takes less than 10 mins to install. We also specialise in conversions and modifications to most HF equipment. Technical queries welcome. Specialists in design of broadcast and community radio equipment to specification. Wide range of antennas, PSU's, vast stock of secondhand VHF/HF amateur equipment available.

For further details or advice contact us now!!!
68 GORRINGE PARK AVENUE, MITCHAM, SURREY.
Contact G4VWR 01-640 1904
SOUTH LONDON'S ONLY EMPORIUM OPEN UNTIL 8pm MONDAY TO SATURDAY

FREE DELIVERY

DMP4 Printer 15" £1025.00
DMP3 Printer 12" £835.00
PC1512 Colour Double Disc £1835.00
PC1512 Mono Double Disc £1625.00
PCW8256 Complete Word Processor £458.00
PC1512 Mono Double Disc £1029.00
PC1512 Colour Double Disc £1225.00
PC1512 12" DMP Printer £194.00
PC1512 15" DMP Printer £395.00
ALL ACCESSORIES AVAILABLE (prices incl. VAT)

FABULOUS SONY AIR-7 MONITOR
AM 150kHz-2194kHz AM 108-136MHz WFM 76-108MHz NFM 144-174MHz

NEW! from Cirkit
SUMMER 1987 ELECTRONIC CONSTRUCTORS CATALOGUE

GET READY FOR THE SUNSPOT-CYCLE
SPECTRUM COMMUNICATIONS
MANUFACTURERS OF RADIO EQUIPMENT AND KITS

NEW PRODUCT

FOUNDATION TRANSMITTER, ideal for the newly licensed amateur. 2 meter FM, crystal controlled unit with 6 crystal positions, nominal output 750mW. Complete system comprises RF generator FTX201 with 504 crystal, £31. Frequency modulator board FM1000T £4.00, and Transmit Switching board TS25 £3.75.

CB TO 150 FM CONVERSION BOARDS: The first commercially available, suits all UK FM CB rigs to give 28.01 to 29.70MHz. Sizes vary 63x40x13mm. Bold and aligned board SC9 £18. Order your rig and we’ll fit it. £25 inc. return P&P for mobiles. £31 inc. for base rigs.

MULTIMODE CB CONVERSIONS, send your 120 channel rig and we’ll convert it to give 28.01 to 29.70MHz in straight sequences without gaps. Cotl 1200DX, Cobra 148, Hy Gain 5, Multimode 2, Major M300, TriStar 747 & 777, Super Star 386, Concord, £62 inc. return P&P. Jumbo or Cotl Excalibur 1200. £80 Channel rig such as Starker 9 or Major M586 are modified to give 28.31 to 29.70MHz in straight sequence without gaps. £45.00 inc. return P&P. 200 Channel in 4 bands of 50 are converted to give 28.00 to 30.00MHz or 28.00 to 29.70MHz as required. Super Hy Gain 5, Lafayette 1800, Super Star 2000 £45.50 inc. return P&P. Super Star 2000-5400 £70. Cotl 1600, 4440CH £85.00.

RECEIVE PREAMPS 2. 4, 6 or 10 metre, RF & DC switched. 0-2dB variable gain, low noise. 100W handling. Types RP2S, RP4S, RP6S, RP1OS. Also masthead version DC fed. Types RP2SM, RP4SM, RP6SM, PCB kit £12, PCB built and tested £18.75.

RECEIVE CONVERTERS 2. 4 or 6 Metre aerial input with 10 metre IF or 4, 6, 10 or 20 metre aerial input with 2 metre IF, 26dB gain, low noise with OSC output. Types RC2-10, RC4-10, RC6-10, RC8-2, RCI0-2, RC20-2, PCB kit £24.50, Boxed kit £29.25 Boxed built and tested £41.00.

TRANSCEIVE CONVERTER, single board version of receive & transmit converters, 500mW output, with repeater shift facility. Types TRC2-10, TRC4-10, TRC6-10, PCB kit £39, PCB built and tested £54.00, Boxed kit £54, Boxed built and tested £83.25.

TRANSMIT AMPLIFIER unswitched, suitable for Transmit Converters, Transcieve Converters and MEON. 500mW in, 20W mm output. Types TA2U2, TA4U2, TA6U2, PCB Kit £8.50, PCB built £9.50.

FREQUENCY MODEM adds FM to synthesised rigs with 455KHz IF. Type FM 455. 5.40CH £70. Colt 1600, 4.40CH. £65.50.

TVI FILTERS, Welz, Bencher, Mirage amps. Type TVI filters, Welz, Bencher, Mirage amps.

Stalker 9 or Major M588 are modified to give 28.31 to 29.70MHz in straight sequence etc.. £82 inc return P&P. Jumbo or Colt Excalibur 1200, £85. 80 Channel rigs such as Lafayette 1800, Super Star 2000-5400 £70. Cotl 1600, 4440CH £85.00.

Send your rig and we’ll fit it. £28. inc return P&P for mobiles £31 inc. for base rigs.

CB TO 10 FM CONVERSION BOARD: The first commercially available, suits all UK FM CB rigs to give 28.01 to 29.70MHz. Sizes vary 63x40x13mm. Bold and aligned board SC9 £18. Order your rig and we’ll fit it. £25 inc. return P&P for mobiles. £31 inc. for base rigs.

MULTIMODE CB CONVERSIONS, send your 120 channel rig and we’ll convert it to give 28.01 to 29.70MHz in straight sequences without gaps. Cotl 1200DX, Cobra 148, Hy Gain 5, Multimode 2, Major M300, TriStar 747 & 777, Super Star 386, Concord, £62 inc. return P&P. Jumbo or Cotl Excalibur 1200. £80 Channel rig such as Starker 9 or Major M586 are modified to give 28.31 to 29.70MHz in straight sequence without gaps. £45.00 inc. return P&P. 200 Channel in 4 bands of 50 are converted to give 28.00 to 30.00MHz or 28.00 to 29.70MHz as required. Super Hy Gain 5, Lafayette 1800, Super Star 2000 £45.50 inc. return P&P. Super Star 2000-5400 £70. Cotl 1600, 4440CH £85.00.

SQLICHED rig when noise is high. Allows reception between noise and transmit. £53.00.

PCB kit £40.50, PCB built & tested £48.75. Boxed kit £45.00. boxed, built and tested £24.50, Boxed kit £29.25 Boxed built and tested £41.

FREQUENCY MODULATOR adds FM to receivers with 455KHz IF, suits R600, R1000. PCB Kit £8.50. PCB built £9.50.

FREQUENCY MODULATOR adds FM to synthesised rigs or rigs with clarifier. Type FRG7000. Type FD455, PCB kit £5.50, PCB built £7.50.

FREQUENCY MODULATOR adds FM to synthesised rigs or rigs with clarifier. Type FM1000, PCB kit £3.00, PCB built £4.00.

RECEIVE PREAMPS 2. 4, 6 or 10 metre aerial input with 10 metre IF or 4, 6, 10 or 20 metre aerial input with 2 metre IF, 26dB gain, low noise with OSC output. Types RC2-10, RC4-10, RC6-10, RC8-2, RCI0-2, RC20-2, pcb kit £24.50, Boxed kit £29.25 Boxed built and tested £41.

TRANSCEIVE CONVERTER, single board version of receive & transmit converters, 500mW output, with repeater shift facility. Types TRC2-10, TRC4-10, TRC6-10, PCB kit £39, PCB built and tested £54.00, Boxed kit £54, Boxed built and tested £83.25.

TRANSMIT AMPLIFIER unswitched, suitable for Transmit Converters, Transcieve Converters and MEON. 500mW in, 20W mm output. Types TA2U2, TA4U2, TA6U2, PCB kit £40.50, PCB built & tested £48.75. Boxed kit £45.00, boxed, built and tested £24.50.

RECEIVE PREAMPS 2, 4, 6 or 10 metre, RF & DC switched, 0-2dB variable gain, low noise, 100W handling. Types RP2S, RP4S, RP6S, RP10S. Also masthead version DC fed. Types RP2SM, RP4SM, RP6SM, PCB kit £12, PCB built and tested £18.75. Boxed kit £26.25, Boxed built and tested £27.00.

NOISE SQUELCH adds FM when noise is high. Allows reception between noise bursts. Type NS1000, PCB kit £7.25, PCB built £10.25.

VAT & P&P PRICES
Delivery within 14 days subject to availability. 24 hr answering.

UNIT 86, MARABOUT INDUSTRIAL ESTATE, DORCHESTER, DORSET. TEL: 0305 62250

HAM RADIO TODAY JULY 1987

WISH YOU WERE BETTER INFORMED?

£17.30 for 12 issues U.K.
£21.00 for 12 issues Overseas Surface Mail
£48.00 for 12 issues Overseas Airmail

Send this form with your remittance to:
INFONET LTD., Times House, 179 The Marlowes, Hemel Hempstead, Herts. HP1 1BB.
LETTERS

Racism on the Radio

Dear HRT, I constantly read and hear comments from Licencsees about people who use CB (the childrens' box) and their supposed lack of intelligence (in some cases true) and the banal conversations that take place on this particular part of the radio spectrum. But what about other frequencies? 144/6 MHz for a start.

I was listening to the local net on 144.800 last night (26/4/87) when I heard some of the locals discussing a boxing match that had been screened the previous night. The bout was between an Irishman and a Columbian, and quite a bout it was too, with the Columbian winning by a knock out in the 13th round after being floored himself a good few times in the previous rounds.

During the conversation one amateur chipped in with “what annoyed me was the use of the head by the Nig-Nog’‘. Had I not been putting my young son to bed at the time, I may have gone back with the comment “what annoyed me was the use of the word Nig-Nog”.

I am a Jamaican who has lived in this country for the past 28 years and from time to time I am subjected to this kind of talk, but before anyone says that I have a chip on my shoulder about being black let me assure them that I do have a sense of humour and as far as comments go I can sort out the wheat from the chaff. Some comments made are of a jocular nature and taken as such but others are full of malice.

This is not the first time that I have heard this kind of patter on the local net, nor is the vitriol spouted by others full of malice.

The Department of Trade and Industry recommends that such incidents should be reported to the Radio Communication Division, DTI, Waterloo Bridge House, Waterloo Road, London, SE1 8UA together with time, frequency and callsign details so that the matter can be investigated by the RIS.

We would be interested to hear the outcome of such investigations, and would recommend that other operators steer clear of stations who express such views — they are not fit to hold a licence.

Beware of the bogus ‘BZQ’

Dear HRT, May I please ask the assistance, of your excellent magazine, in advertising the fact that as far as I can ascertain my callsign — G2BZQ — is currently being pirated on 80 meters CW, by someone signing G2BZQ/QRP, and my usual name abbreviation ‘Rich’. There is reason to believe that it is using other bands.

She should be easy to identify, as the fake, because:
1. I never sign call sign G2BZQ/QRP. I only use G2BZQ.
2. I only operate, for some hours, up to 6 am local time.
3. For many months I have only used 80 metres CW in connection with antenna research projects.

May I suggest, to the person concerned, that he/she uses the vacant callsign — G9ABF/QLF! Thank you, in advance, for your assistance.

Richard Q. Marris G2BZQ.

How do I get started?

Dear HRT, Could you please help me, as a novice or less to the hobby, I would like some help. I have a Grundig Satellite 2000 which I was given. Could you please advise me as to the tpe of aerial to use for SW listening or any improvements I can make. I realize that the set will have its limits but any improvement will help.

G. Hume, Chobham.

We usually get quite a number of similar letters here at the HRT offices so hopefully we can help quite a few beginners at the same time.

Generally speaking, the best advice for anyone who is just getting into the hobby is not to rush out and spend a fortune on expensive equipment but to start exploring the short wave bands with fairly cheap gear in the first instance. If the radio you are using has an aerial connection then it is a fairly simple matter — just erect as long a piece of wire as high as you can and hook it up to the set. Signal strength will be further improved if you install an earth, and the safest way to do this is to drive an earthing stake such as a length of pipe three or four feet long.
into the ground and connect this to the earth terminal on the back of the set. Note that this earth connection should not be confused with the normal mains electricity earth wire in a mains plug — the mains plug should be left as it is. This will give the best chance of picking up weaker (and therefore usually more interesting) stations.

Once this system has been used for a while it may be worth considering adding an aerial tuning unit (ATU) to the station — essentially this device goes between the aerial and the receiver so that the Rx 'sees' less of the wave band at the same time that wdy weak stations are not so easily blotted out by the very strong ones; a number of ATUs are on the market, some are in kit form and make an excellent project. The other advice we would give is to visit your local radio club, quite often there is a wealth of information on tap from experienced enthusiasts who are only too happy to help.

Sub-Standard service?
Dear HRT, I feel I must write to you in response to the letter of J C Bolton G4XPP in my May edition. Maybe he and many others would like to know that in July 1980 I purchased a C58 Standard 2 metre multimode rig. At 2030 hrs on the evening I acquired it, it worked lovely. The next morning it did not work. I took the thing back to Waterloo, Liverpool from where it was purchased, I hasten to add, for cash. Six months later I got the C58 back from Communique of Purley, Surrey after getting my local Consumer Protection people in on it (it cost me £25.00). I have written and phoned the agents for Standard quite recently (Nov. 86). I have even sent them a cheque for the items I requested, ie a mike for the C58 also a DC power cord c/w plug, so far I have not heard a word from the agents, neither has my cheque been cashed, so that's OK by me.

In November of 1986 my C58 was sent to the Standard agents in Edgware Road, London for some kind of repair to the CPU. Whilst the C58 will out perform any other rig in its class by a hell of a long way I do feel the Standard Corporation of Japan should look for another agent in the UK. I actually wrote to the Standard Corp. in Japan. My letter was returned "UNKNOWN IN TOKYO", how are you on that. It is now April 23rd 1987 and my C58 is still away under repair — since the middle of November 1986. My comments are, a damn good rig, second to none, ruined by the service facilities offered in the UK, or should I say lack of service facilities here. Anyone contemplating buying a Standard rig please think again.

Dennis Fennash, GW4 FLZ.

RSGB gets a gold star
Dear HRT, My compliments to the RSGB re: morse tests, as they took a lot of stick last year. I took a test at Wigston Magna on Saturday 28th February. My pass result arrived from RSGB HQ on the following Thursday 5th March, complete with an A licence application form. Unfortunately RALU took 12 days to cash my cheque and send me my licence and that was in the slack period between RAE results.

Alan Sammons, GOHBC.

Since it has been such a topic of discussion, it would be interesting to hear how other people have fared since the RSGB have taken over the UK morse test. Do those in sparsely populated areas get an adequate service? And if so perhaps the RSGB could take over from the RALU as well?

Right name, wrong call
Dear HRT, For the past week I have met the postman every morning expecting to receive a cheque for authors' fees — no luck. I have also been checking the bank account of that very worthy fund "keep G4RPS in cigars" expecting a donation — no luck.

It is with regret therefore that I must inform you that the article (excellent though it is) "A Piece of the Past" published in HRT May 1987 was not written by G4RPS as published.

Dick Wander, G4RPS.

Oops! In the May '87 edition of 'HRT', we featured an article by Tim Wander on the renovation and construction of a 1920's crystal set. Unfortunately however we got the call sign wrong. Tim's call is G6GOX, not to be confused with G4RPS which belongs to his dad. Sorry about the muddle — at least we got the right family!!

Dear HRT, I read with great interest the article on QRP, and also the letters in response in the May issue.

I am a 'SWL' and have heard many signals from over 190 countries on HF. I see no challenge in hearing a 500w beam signal, especially when one has to contend with the QRM generated by these signals.

What infuriates me is the way unnecessary power is being fed into inefficient feeder/aerial systems for the sake of convenience. For example, a 1/4 wave vertical with four 1/4 wave radials fed with 15m of UR67 will radiate only half of the power sent to it! And if RG58 is used only a quarter! On the other hand twin open wire feeder and a well placed dipole will radiate 99% of the power sent to it.

I wonder if Mr Wilson has checked his ERP recently.
M. Probert, Basingstoke.
Spruced up to look for the new series of MM units.

One approach to 50MHz working is to use an existing transceiver plus a transverter. Chris Lorek, G4HCL, examines the microwave Modules unit as a possible solution.

Over the years they have introduced many new products, often they are just taken for granted which I feel is a pity, as I believe the MMT50/144 is the current leader in state-of-the-art 50MHz transverter technology. Two models are produced, using input frequency bands of 10m or 2m. As many amateurs, especially Class B licensees encouraged by the coming of 50MHz to all UK amateurs, will have 2m equipment available in the form of an FT290 or whatever, the 2m input version was the unit thought to be of greatest interest to readers, and hence was the model chosen for review.

Early MM transverters appeared in a featureless black diecast box, but a radical departure took place with their current 2m transverter by the introduction of a smart sectioned case made from alloy panels. As the accompanying photograph shows, this has also been employed for their 6m offering, hence giving a functional front panel with all connections at the rear in contrast with previous units.

Overview
The transverter operates from a nominal 13.8V DC supply, drawing a maximum of 4 amps. 20W pep maximum output is specified from a 2m input drive level of 150mW —
15W, an LED bargraph indicating the relative output power. The unit is supplied factory adjusted for a 10W drive level, however an internal sensitivity control accessible from the rear panel allows the user to adjust this to suit their specific needs. A higher power transceiver may of course be used with an appropriate external attenuator. RF sensing of the driver transmit power is employed giving automatic changeover, a front panel mounted control gives adjustment of the 'hang' time before switching back to receive mode, and 'hard' PTT switching may also be used.

Three RF connectors are fitted to the rear panel, these connect to the 6m aerial, the transceiver, and also give provision for an independent receive input facility when using an external linear amplifier or suchlike. RF ALC (Automatic Level Control) gives a degree of protection against overdriving and SWR protection is incorporated to protect the expensive RF power transistors against aerial system faults. DC power with negative earth is supplied to a 5 pin DIN socket also on the rear panel, this may be between 12V and 14.5V but the manufacturers give dire warnings against exceeding this voltage.

A well written manual is supplied with the transverter, giving simple operating instructions, user recommendations such as coax type, effect of aerial VSWR etc, a technical description, block diagram and comprehensive full circuit diagrams. Two matching PL259 RF plugs, a locking metal DC connector, and a spare 5A fuse are also supplied.

First Impressions

I have used (and come across many more) of the older MM transverters, thousands of which are still in use today, showing their popularity and reliability! Some are now getting a little long in the tooth, but did of course represent good performance in their time. On closely examining the MMT50/144 both physically and studying the circuit diagram, I have to say 'They've got it right'. Maybe I should add 'Again', but let's not be too generous! The PA transistors are rated at over double the claimed output to ensure good linearity, the receive circuity uses the latest in strong signal active...
PCBs are attached to a sturdy extruded aluminium case cum heatsink.

technology and the appearance of the unit gives it a 'professional' look rather than something the amateur has knocked up himself in a diecast box, tempting him to hide it away on a top shelf or behind other equipment.

On the Air

The transverter was coupled to my FT107M/FTV107R system with its 6m and 2m outputs, coax switches being used to quickly switch between the 6m output and the 2m output/transverter combination for comparison purposes. A variety of aerials ranging from a wire dipole to a four ele tower-mounted rotatable beam were used.

I first tested for 2m leakage as this is often a very annoying factor when operating in a strong signal area of the driving transceiver's band with local 2m stations coming through on the tunable IF even though you're switched onto 23cm or whatever. By using well screened coax (I used double screened in my inter-unit wiring) this can often be improved, but transverter signal leakage can sometimes make you think you're hearing a rare station when they're operating on a completely different band. One amateur was proudly boasting of the weak FM Russian stations he was hearing on 145.6MHz using his homebrew 2m/10m converter, until it turned out that they were using 10m!

By tuning to the local 2m repeater (a 59+++ signal) and switching in the MM transverter, not even a heterodyne was noted on SSB. Aerial resonance would play a part here, but even so the unit passed this test with flying colours. Confident that I could reasonably believe what I was hearing, I set out in search of signals. The only beacon audible at my QTH was GB3NQH, coming through weakly but at a consistent strength. Switching between the MM unit and my FTV107R showed very little difference, however band noise is the major limiting factor on 50MHz rather than ultimate front end sensitivity, and I felt no need whatsoever for a pre-amplifier.

Likewise, off-air signal reports from stations contacted showed no difference in transmission quality being noted between the two, indicating that the transverter was operating in a linear fashion without undue 'spreading'. I tested the RF sensing before using the hard switched PTT facility and this operated very well without reports of the first syllable of words being lost. I didn't like the repetitive soft clicking of its relays though, although this is purely a personal aversion (I usually find it annoying to use VOX as well). The hang time adjustment on the front panel was a great benefit in this respect as this allows the operator to set the 'hang' period to suit the style of operation. The dedicated operator would normally hard wire the PTT through if his driver transceiver had this facility available.

Due to the level of 6m activity not exactly being what anyone would call 'high' at the moment, I could not tell what the strong signal handling was like, except to say that no problems whatsoever were encountered, the laboratory signal generators had to perform this job! When connecting the aerial, the receiver background noise increased but the S-meter only hovered around the S1 mark, showing there was no excessive gain present in the transverter that could markedly degrade...
the overall system dynamic range. In long ragchews, the case temperature remained cool, and the signal did not noticeably degrade in quality from any linearity change with temperature. No reduction of power output was noted even after long operating periods, and I could not detect any frequency drift.

Circuitry

The receive signals are passed through a five-pole low pass filter, followed by a three-pole high pass filter, to the receive RF amplifier. This employs the novel principle of using paralleled J-FETs to increase the overall transconductance and hence give an improved dynamic range. A broadband transformer follows, then into a bandpass filter common to the Tx path, and into a balanced J-FET mixer. A further broadband transformer couples the output to the 144MHz IF bandpass filter, then through a large-signal bipolar post amplifier and onto the relay, attenuator, and output socket.

On transmit, the signal passes through the input attenuator and relay to the variable sensitivity potentiometer, followed by the ALC controlled diode attenuator. The transmit mixer again uses a pair of balanced J-FETs, the resultant 50MHz output being passed via a three-section low pass filter to a bipolar broadband amplifier. The common bandpass filter comes next, followed by further amplification, filtering, and final amplification which is performed by a pair of 2N6082 bipolars operating push-pull in class B. These use a clever feedback technique to further improve their linearity. Another five-pole low pass filter precedes the output detector and aerial connection, the detector feeding both the ALC circuitry and the LED RF output display.

Mixer injection is obtained from a 94MHz crystal controlled Colpitts oscillator operated in common base with a stabilised voltage supply. This drives a two transistor feedback buffer amplifier followed by a five-pole low pass filter to generate a clean injection signal for the transmit and receive mixers.

A very neat internal construction method is used, as shown by the internal photograph, a roller tinned PCB with ground plane helping to
LABORATORY RESULTS

All measurements taken at 50.25/144.25MHz with 13.8V DC supply unless otherwise stated.

Receive section

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion Gain</td>
<td>6.5dB</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>5.2MHz to -3dB points</td>
</tr>
<tr>
<td>1dB Compression Point</td>
<td>Greater than 700mV (+10dBm)</td>
</tr>
<tr>
<td>144MHz Rejection</td>
<td>72dB</td>
</tr>
<tr>
<td>Other Spurious Responses</td>
<td>43.75MHz -49dB</td>
</tr>
<tr>
<td></td>
<td>All others 25MHz -500MHz less than -70dB</td>
</tr>
</tbody>
</table>

Transmit section

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Output Power</td>
<td>14.7W constant carrier, 19.8W pep SSB.</td>
</tr>
<tr>
<td>RF Sensing Level</td>
<td>2mW</td>
</tr>
<tr>
<td>Input Drive Power For Full Output</td>
<td>Min 126mW Max 19.5W</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>4.1MHz to -3dB points.</td>
</tr>
<tr>
<td>Harmonic Levels</td>
<td>2nd -69dBc 3rd -49dBc 4th -71dBc 5th -57dBc</td>
</tr>
<tr>
<td>144MHz Leakage</td>
<td>-59dBc</td>
</tr>
<tr>
<td>Input VSWR</td>
<td>Less than 1.2:1</td>
</tr>
<tr>
<td>Hang Time Adjustment</td>
<td>0-1.6 secs.</td>
</tr>
<tr>
<td>Frequency Accuracy</td>
<td>Within 100Hz</td>
</tr>
</tbody>
</table>

give good reliability and circuit stability. A 15V Zener diode follows the 5 amp fuse to afford protection from excessive voltage supply.

Laboratory Tests

The receive path gain and bandwidth were measured first; these showed a sensible 6.5dB gain with a well shaped bandpass response. The 144MHz rejection was very good, as found in the on-air tests. I could not measure the dynamic range of the receive path, as it was perfectly linear right up the point of RF sensing, ie when I thought I was transmitting into it! This is extremely good and shows how careful design work has paid off. A few minutes with a calculator showed the frequencies of possible spurious receive responses, the only one of note was -49dB down at 43.75MHz (twice 94MHz minus 144.25MHz) which is near to the designed bandpass at 50MHz.

On transmit, the output was very clean with a rapid falloff of high order IMD products, more akin to that observed from high performance valve amplifiers. The ALC circuitry maintained this linearity well under conditions of excessive drive, but also limited the maximum constant carrier output to a dB or so below the maximum pep level. The ALC was incidentally very accurately set as supplied to the specified 20W. When tested over the 50-53MHz range, little change was observed, but with slight degradation in linearity at 54MHz where the transverter gain had also fallen off somewhat. The accompanying spectrum analyser photo shows the gain flatness under non-limiting conditions, note the maximum output being controlled by the ALC is very flat in level. The harmonics were well suppressed, the 2nd harmonic falling in Broadcast Band II was well down but I would still be tempted to place a simple coax stub filter in line with the aerial feed to suppress this even further in use.

In all, a very good RF performance indeed, I was particularly impressed with the receive side which shows the type of performance one can get if you really put your mind to it.

Summing up

A lot of though and design effort must have gone into this transverter, and it appears to have paid off very well indeed. Rather than say it is over-engineered for the current level of UK activity on 6m, I would say it has been designed with the future in mind, for the ultimate in cost-effective performance. The on-air performance when using this unit will almost certainly be limited by the driver transceiver rather than any limitations in the transverter itself. I'll go one further (sorry mulek) and say that in my opinion this is the highest performance and highest quality 50MHz transverter that I've seen. I hope MM keep up the good work (no, they're not paying me), let's have a matching 70cm design from you soon!

My thanks go to Microwave Modules, Aintree, Liverpool, for the supply of the review transverter.
If you are considering purchasing an FRG9600 with the HF conversion option produced by R. Withers Communications, I would advise you to read the previous reviews by Tony Bailey, G3WPO. Tony's articles reviewed the FRG9600 in its basic form as a VHF — UHF scanning receiver in some detail and will be useful background to this review which deals solely with the HF option. The reviews appear in the Oct 85 and Dec 86 issue of HRT and will give all readers an excellent insight into this VHF/UHF scanning receiver. After taking these reviews into consideration it would be prudent for all would be purchasers to read the spec sheet issue by R Withers on his conversion. The basic conversion gives the owner the additional frequency coverage of 100kHz to 60MHz by adding a simple HF up-converter.

The up converter

The up converter PCB is very neat and small. It measures approximately 20mm by 45mm and is mounted inside the FRG9600 adjacent to the SO239 aerial socket (see photo). The PCB contains 11 capacitors, three resistors, a crystal, one transistor and a balanced mixer package and it feeds into a small relay operated by the miniature toggle switch on the back panel. The relay provides switching between the SO239 and N type aerial connectors. The converter, which has an IF output of 100MHz, has no gain and at first instance this may seem a little odd. It is however, becoming very popular in commercial fields to use receivers with little or no RF gain in the front end as high performance can be achieved by using a selective front end and relying on a good aerial installation. This is a very sensible practice as it affords the user a high degree of immunity to crossmod and inter modulation products when used in areas of high field strength. The up converter employs a double balanced ring mixer which gives good dynamic range and therefore helps to give good selectivity.

How it works

By using an IF of 100MHz the receiver is tuned from 100MHz to 160MHz to achieve coverage of 000kHz to 60MHz. When the converter is switched into circuit the first '1' of the display is suppressed in the Withers conversion. Using the up converter and listening on the shortwave bands is very easy; the receiver should be in the normal VHF receive mode to start the operation — let us assume that you wish to receive the Radio Four transmitter on 200kHz. Simply programme in the frequency 100.200 via the key pad and then select the up-converter by means of the toggle switch on the back panel. The converter is automatically brought into circuit and the first digit disappears leaving the display showing 00.200 for 200kHz. In the same manner, if you wish to listen on 3.720MHz, dial 103.720 and switch the toggle. The ‘1’ disappears leaving 03.720 showing and the receiver is tuned to 3.720MHz.

Ray Withers recommends the use of dipoles or other resonant aerials for every band to be used. Although this is good practice it will probably be impossible for the average user to string up several aerials, so perhaps a more practical solution would be to use a long wire with a small ATU to resonate the antenna. This will certainly give improved results over random pieces of wire. By careful use of a resonant aerial and the receivers attenuator, excellent results can be achieved. Spurious responses and wide band noise can occur if the aerial impedance is high. Careful use of an ATU and the attenuator in the receiver will help to minimise these effects.

Performance

Taking into account that this is not a dedicated shortwave receiver but a VHF/UHF unit with an add-on converter, the FRG9600 performed very well both in the lab and when receiving signals 'off air'. Whilst using random pieces of wire good results were achieved and the addition of a simple ATU gave very acceptable results, probably on a par with an average general coverage receiver. One thing that should be kept in mind is that this conversion is designed to give general coverage performance and not to act as a

Front view of the FRG9600.

First and foremost the FRG9600 is a VHF/UHF scanner, but if you fancy testing the water on HF the latest Withers modification could be the answer. Mick Senior, G4EFO investigates.
'state of the art' DX chaser on twenty metres. I cannot over emphasise that the use of an ATU or resonant aerial makes all the difference. It is worth spending half an hour putting together a simple variable L/C circuit for this purpose.

The receiver sensitivity as measured in the lab gave the following result. The signal levels listed were the levels required to give a S9 indication on the receiver sent for evaluation. Although the figures for the medium and long wave may appear to be high they are not alarming and the receiver performs perfectly well when used with the correct antenna. The built in attenuator on the front panel alters the signal level by about 12dB. This is very useful in some cases to get rid of the internal 'birdies' of the FRG9600.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>3CMHz</td>
<td>2.5uV</td>
</tr>
<tr>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>10</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>10.0</td>
</tr>
<tr>
<td>200kHz</td>
<td>600.0</td>
</tr>
</tbody>
</table>

Assessment

My only criticisms of the unit have already been covered by Tony, G3WPO and concern the few birdies which appear, making the scanner stop at random places, although annoying they did not distract from my enjoyment of this receiver. One other slight problem is the squelch setting on AM. If you forget and have the squelch set as used on a conventional FM system the received audio takes on a strange 'Norman Collier' quality with the exclusion of modulation peaks and speech sibilants which presumably vanish down the sides of a top cut filter.

When used as a general coverage receiver the FRG9600 and converter gives good results on the shortwave broadcast bands. Whilst listening on the 49 meter band, (around 6MHz) the usual stations were very strong and Radio Luxembourg, Netherlands, Budapest and Moscow plus many others were received without problems. Listening on the eighty metre amateur band also gave resolvable results. Several 'G' stations were heard and a few PA's although no DX was received. In all honesty it was not expected — but the hope was there!

In the accompanying leaflet produced by R Withers, the company does state that due to the frequency translation method used and the limitations of the IF/AGC circuits, some unwanted signals can be expected. It is refreshing to see that a company is being straightforward with its customers and conveying the facts rather than making exaggerated claims which are impossible to achieve. If, as suggested earlier, you read the accompanying leaflet the user should be in no doubt as to the limitations of the system. The company states that the gain is 2 uV FM @ 12dB SINAD on the LF/HF bands, 'but is somewhat less for AM'. This seems a strange claim to make as most LF and HF broadcast stations use amplitude modulation. The company also state that gain is somewhat less below 1.6 MHz. Perhaps it is, but as a user I have found that it is a good general coverage receiver giving the owner continuous coverage from 100kHz to 950MHz on AM, FM Upper and Lower sidebands with scanning facilities. Now at £625 (plus £5 p & p) what other receiver can give those facilities? To my mind, having read the spec sheet and being aware of the limitations it is a very good buy. Existing owners can also have their receivers modified, if you have already had the earlier expansion to 950MHz fitted then adding HF will cost £99 inc. carriage. Unmodified units of the original specification will cost £129.50 but this price includes extending the receiver coverage up to 950MHz as well as the HF mod.

We would like to thank R. Withers Communications of Birmingham for the review sample.

Part of the Withers mod', the switch selectable up-converter board — the frequency display leading digit is also blanked when in HF mode.
Ultra Light Telescopic Masts

A new range of telescopic masts, made from advanced carbon/glass composite material which is widely used in aerospace components is offered by Antenna Technologies. Up to 12 metres (40ft) in height, these masts are much lighter than metal masts so that they can be easily carried by one person, yet they are tough enough for military use.

The design has evolved from the need to have reliable, simple and light masts that can be deployed quickly by any non skilled personnel. The 12 metre mast column for example weighs less than 8½ kilograms (19 pounds), and retracts to 1½ metres whilst the eight and six metre versions are even lighter. Composite material construction also offers other benefits such as resistance to corrosion and icing, and long maintenance free life.

The masts are raised by extending the tube sections manually and locking them in position with quick lock/release collars, thus avoiding the use of pneumatic seals or compressors. Any height up to the fully extended height can be chosen and the mast will not rotate when deployed. Vehicle mounting brackets are available, and standard masts are supplied in a canvas carrying case complete with stays and stakes. Applications include masts for tactical and emergency communications antennas, and environmental monitoring.

Antenna Technologies, Horace Road, Kingston Upon Thames, Surrey KT1 2SN, tel: 01-546 7808.

Low Down On Lowe

If you'd like to meet the designer of the HFL25, your opportunity will come on the 17th June; and you could also meet Lowe's technical director, John Wilson, G3PCY.

Both John and another John, John Thorpe who designed the HFL25, will be addressing the assembled throngs at a Lowe Electronics radio evening, in the Charlton Arms Hotel, Church Street, Wellington, Telford, there will be a talk-in on S22 from 7 pm, and the evening proper kicks off at 7.30.

Besides the talks, you'll have the opportunity of seeing the all-British HFL25 receiver and the latest models from Kenwood (nee Trio).

A cup of coffee and a biscuit will be available free of charge to the first 50 people to arrive.

AMRAC Up!

Membership of AMRAC, the national amateur radio and computer club has increased tenfold in the 12 months to May, 1987 and currently stands at just over 800.

The club produces a bi-monthly newsletter AMRAC-USER which covers all forms of computer communications, with heavy emphasis currently being given to packet radio. Membership is £8 (UK) per annum and further details may be obtained by sending an SAE to the secretary, Phil Bridges, G6DLJ, c/o AMRAC, PO. Box 39, Hythe, Hants, SO4 6WY.

Peter Pennington, G4EGQ, was recently awarded a life membership of the SE Kent (YMCA) ARC in recognition of his help in getting over 200 people up and down the country through the RA£. Pete, a modest man, spends his spare time helping others, both inside and outside the amateur world.
SSTV on a Spectrum

Following on from successes with RTTY and CW programs, John Pearson, G1FTU, has developed a program for SSTV Tx and Rx. The program allows the Spectrum computer to both transmit and receive slow scan TV pictures, and it is compatible with the old black and white and the newer colour hardware such as the SCI.

8 second SSTV received from the USA via HF.

John says that the receive system developed for the G1FTU SSTV Tx/Rx is brand new and was developed with performance on both HF and VHF in mind. The program has adaptive fly-wheel-type sync to prevent picture tearing, combined with a noise rejection system that can allow several corrupted frames to combine to produce an enhanced picture.

The received picture neatly fills the screen, and the program features a new linearity system to produce good results on both photos and text displays. Smooth shading is used, and the user has fine control over the contrast and brightness of the incoming picture via 'live' controls and on-screen displays.

The program can receive 8, 16 and 32 seconds per frame black and white SSTV, and also 24, 48 and 96 second colour SSTV, which is displayed in black and white. Other receive features include up to 5 frame stores (plus the screen itself) which can be saved or printed out. Facilities have been included for graphics printers and alternative storage devices. The program also has variable input sensitivity and many other detail features for convenience and special effects.

In transmit mode the program can send both text and Spectrum graphic screens, in black and white or colour SSTV. All of the Spectrum colours and grey levels are used to the full. Modes available are 8, 16 and 32 second frames for black and white, and 24, 48 and 96 second frames for colour. Both line sequential and frame sequential colour transmissions can be made. Text transmissions can be made in all modes. There are 9 text memories which may be edited before or during transmissions. There is also a personalised CQ memory and a special grey scale and colour bars facility. All text memories are on view at once in a neat ‘window’ type display.

The program costs £12 in the UK, £13 from Europe and £14 elsewhere. The microdrive version is £2 extra, and the Opus disc version £4 extra. The price includes a comprehensive instruction booklet and a second cassette with 20 minutes of sample SSTV audio and a selection of quality screens as examples for transmission. Further details are available from Pearsons Computing, 42 Chesterfield Road, Barlborough, Chesterfield, Derbyshire. Tel 0246 810652.

Tom Douglas, G3BA, is presented with an illuminated scroll to commemorate his 50 years association with radio, for much of which he has been involved with the Midland Amateur Radio Society, whose president, Stuart Laing G8ODT (left) made the presentation. Photo: Tim Jebbett, GOGPZ.

No News Is Good News?

There has been no news yet about the government's response to the publication of a report recommending 'selling' the radio spectrum to users (HRT).

The Minister of State for Industry and Information, Geoffrey Pattie, made some of the usual noises about 'still appraising the full implications ...' of the report, which hopefully means that it will be consigned to the dustbin of history. However, some sources suggest that if re-elected, the government will go ahead with this scheme which will make the UK the first country in the world to auction off bits of the radio spectrum.

The report, 'De-regulation of the Radio Spectrum in the UK', is published by the DTI for HMSO and costs £9.50; it was written by CSP International.

Yet Another Award!

Haywards Heath College ARS has instigated the West Sussex Award, for no particular reason except, maybe, the fun of it all.

There are two classes to the award, called, with stunning originality, class I and class II. To gain class I you must work or hear at least 20 West Sussex stations with at least two in each of the seven district councils’ areas.

For class II, you must gain 25 points for working or hearing West Sussex stations, points being accumulated as follows: 5 for GIVIC, the club’s call sign; 5 points for GB4HHC or BG8HHC (but you can’t have both together); 3 for any present or past member of the society, inside or outside the county; and 1 for any other fixed West Sussex station.

To claim your award, send £1 sterling plus two 1st class stamps (or two IRCs) to C Hinton, GITCH, HHCARS, Haywards Heath College, Harlands Road, Haywards Heath, W. Sussex RH16 1LT. You will need to send the relevant details from your log book, signed either by two other hams or by your local friendly club officer. The award itself is an attractive map on a pale green card, showing district and parish boundaries of the county.

please mention HRT when replying to advertisements.

HAM RADIO TODAY JULY 1987
VHF From Anything

Cap. Co Electronics Ltd says that its new range of VHF aerial tuning units are so adaptable that you can tune any HF dipole, long wire, vee beam, 5SRV, rhombic, inverted vee, existing VHF beam or vertical antenna, RAYNET VHF! The main limitation is that it cannot be used on trapped dipoles or trapped HF beams.

Cap. Co's press release says that during testing, they tuned up their bench soldering iron and got a QSO with Wigan — a distance of nine miles away — with a signal report of 5 by 5 from 5 watts! They say they also managed to feed a rear windsceen heater element, a normal car radio antenna and an aluminium patio window frame, which worked "as an incredible quad aerial"! So, the press release goes on to say, prospective purchasers should be able to press the nearest fence, metal window or balcony into use, if there is no other way of putting up an aerial.

Cap.Co says that the performance of its ATU is due to the use of a pi-network circuit, and that this also has the effect of reducing TVI due to the attenuation of unwanted harmonics in the output signal.

The VHF unit, designated the SPC-100, is available now and costs £59.95 inc VAT plus £3 p&p from Cap.Co Electronics Ltd, 63 Hallcroft, Birch Green, Skelmesthorpe, Lancs WN8 6QJ, tel 0695 27948.

For the future, there are two Cap.Co products due for imminent launch which will be of interest to RAYNET readers. The first is a microprocessor controlled ATU, which will automatically tune antenna loads of under an ohm to several thousand ohms over 1 to 30MHz, and handle up to 25kW of RF! The unit will retail for about £400, or slightly under the Icom ATU — but Cap.Co says that its ATU will have superior specs.

The other product is a loop antenna for 160, 80 and 40 metres. Described by Cap.Co's Tony Johnston as the "ultimate tribander", it will offer very good directivity with very low noise. What's more, it will be small enough to be mounted on a piece of nylon or timber, and will not require planning permission. Tony says that the antenna 'defies normal aerial technology'! The antenna will cost about £200 to £300 and will be available shortly. We here at HRT will be making sure we get our hands on the first review sample!

RAYNET Shortage

Surrey RAYNET desperately needs to recruit additional members, as it is presently understrength by about 20 people. Surrey RAYNET will be attending the following public events in and around the county, and the people on the stand will be very pleased to talk to any interested amateurs:
- Shamley Green Fete, Shamley Green (27th June);
- Netherne Hospital Fete, Coulsden (also 27th June);
- St John Ambulance Fete, Haslemere (18th July); and
- Guildford Town Show, Stoke Park, Guildford (5th and 6th September).

St. John's Centennial

1987 is the Centenary Year of St John Ambulance Brigade. The highlight of the year will be the staging of The Great St John Party taking place in Hyde Park on 20th June. This will be quite a spectacular occasion as many thousands of St John members and friends will be attending.

As part of the celebrations The Grafton Amateur Radio Society, based in North London, will be running a Special Event Station from Hyde Park. The station, callsign G4SA, will be primarily working on the HF bands — SSB and hopefully RTTY. VHF operation on 144MHz should also be possible.

Grafton will start G4SA1 at 1700 on Thursday 18th June and end at 1700 Saturday 20th June. Continuous working throughout this period is planned, subject to available operators.

If your Nevada RC26 roller-coaster coil is missing a turns counter, then you need look no further than the Nevada TC48 turns counter pictured here. Priced at £12.95, the 48-turn counter is available from Telecoms, 189 London Road, North End, Portsmouth, Hants PO2 9AE, tel 0705 698113. Telecoms say that they are on the lookout for any new ideas and products and would be happy to hear from budding inventors. But do they know what they are letting themselves in for?

DX Expedition to Eire

A group of amateurs from the BBC amateur radio group (Caversham) and the Newbury and District Amateur Radio Society will be activating several rare squares in the south-west of Eire this summer.

From July 17th to July 31st, activity will be from UL (IO41), UM (IO42) and VM (IO52) squares. Operating times are not specified as this will depend on finding suitable sites.

From August 1st to August 10th, activity will be continuous (subject to the availability of operators) from a coastal site 140ft above sea level in VL (IO51) square. This will include further than the Nevada TC48 turns counter pictured here. Priced at £12.95, the 48-turn counter is available from Telecoms, 189 London Road, North End, Portsmouth, Hants PO2 9AE, tel 0705 698113. Telecoms say that they are on the lookout for any new ideas and products and would be happy to hear from budding inventors. But do they know what they are letting themselves in for?

If you are an interested amateur, you should contact the club sec.

Kanga Products thought that the "Yellow Sheet" circulated amongst radio clubs in the USA was such a good idea, that they decided to start up one over here and send it to all the clubs they could find in the radius of 50 miles from Dover. The cost of advertising in the sheet is small, just 50p per item up to a maximum of £2.00 for ten items (but it's still not as cheap as a free readers' ad in HRT!).

If your club is in the area and not receiving the ad sheet, then check that the club sec isn't hogging it! If this isn't the case, then contact Kanga Products, 3 Cornish Road, Folkestone, Kent CT19 4AU, telephone 0303 76171. Please mention HRT when replying to advertisements.
First UK review - the KENWOOD TM221E

At this year's NEC exhibition, Kenwood revealed their new baby for 2m FM mobile, the TM221E together with the promise of a matching TM-421E 70cm unit and (wait for it) a handset controller to link the two together giving full duplex and even cross-band repeater operation! So new that the displayed unit was for demonstration only to whet amateur's appetites, but the HRT team were fortunate in leaving with the first UK review sample to test for our readers.

Features
I'm often impressed with how tiny the Japanese are making their sets, particularly handhelds and this 45W set is no exception measuring a very small 138mm(W) x 38mm(H) x 193mm(D). It offers coverage of 144 - 146MHz in user-selectable 5, 10, 12.5, 15, 20 or 25kHz steps, with the usual 600kHz repeater shift facility and an auto toneburst. A one-push 'listen on input' facility allows you to quickly check whether you're in simplex range before a QSY attempt is made. The transmitter also has a nominal 5W low power facility for local working.

Up to fourteen memory locations are available, numbered 0-9 and A-D, storing frequency, repeater shift, and toneburst on/off; memory channels C and D may be used for odd Tx/Rx frequency shifts if required. Channels may be scanned for activity by a single button push when in memory mode, the scan stopping on a busy channel for five seconds before continuing. Any of the channels may be locked out from the scan mode if required, whilst still allowing manual selection. In 'VFO' mode, a programmable band scan is available, memory channels A and B storing the lower and upper frequency limits in this case. The scan initiates in the last selected direction of frequency shift, halting again for five seconds when an active channel is found.

Scanning
In all cases, the scan may be halted by pressing any of the set's buttons, apart from the power controls, but including the mic PTT. A priority alert may also be initiated by a further single-button push, regardless of whether the set is monitoring a single frequency or merrily scanning away. Here, memory channel 1 is sampled every five seconds and the set gives a double bleep from the speaker when this channel is active. A flat piano style key array is used to select the majority of the above functions.

The main tuning knob controls the frequency when in memory mode, and memory channel when in memory mode, the VFO/M button toggling between the two. The main...
control knob is supplemented by Up/Down buttons fitted to the microphone. Further rotary knobs control receiver volume and squelch, and small push buttons above these select high/low transmit power and overall On/Off. A MHz button is fitted to allow selection of the desired MHz segment using the main knob or Up/Down buttons.

An Amber LCD gives an indication of operational frequency, memory channel and status, priority selection, busy, on air, toneburst on/off, offset selected, reverse repeater mode, and a bargraph type S/RF indication, the latter giving a transmit modulation indication when using low power. A small top-mounted speaker is used on receive and an extension speaker lead may be plugged into the rear panel if required. Also on the rear panel are flying leads for aerial and DC power connections.

Remote Control
Even though the set itself is very compact, it may be mounted remotely and out of sight if required. All of the rig's functions apart from DC power and RF output selection may be controlled from an optional RC-10 handset, this looking very similar to a cellular telephone handset. In use, it may be placed in an easily visible position, such as on the flat upper portion of the dash-board where the set itself could not be mounted due to depth restrictions. When used with the 221s 70cm partner, the TM-421E, the RC-10 can control both sets, allowing full cross-band duplex as well as an in-car repeater facility. Both of these will be available in the UK in the near future and we will be featuring a review of the complete system in a forthcoming issue. This certainly appears to be a novel alternative to dual band mobile rigs for the future!

First Impressions
Yet again the Japanese are going smaller and smaller in size, but at the same time offering more for your money such as high power and improved receiver performance. I was glad to see that a substantial heatsink has been used, often the temptation with small sets is to skimp on this, the result being overheated PA's when used for long transmit cycles. This leads to power 'slumping' on long overs, eventually followed by the untimely demise of the expensive PA module itself. The transceiver's height is complemented by the availability of the remote controller handset, allowing it's positioning in otherwise impossible places, with the set safely bolted in out of sight.

I was surprised to see no facility for the Kenwood DCL (Digital Channel Link) option, the forthcoming TW4100E dual band mobile has this so the system has not been discontinued. I really feel it won't catch on. This leads to power 'slumping' on long overs, eventually followed by the untimely demise of the expensive PA module itself. The transceiver's height is complemented by the availability of the remote controller handset, allowing it's positioning in otherwise impossible places, with the set safely bolted in out of sight.

I was surprised to see no facility for the Kenwood DCL (Digital Channel Link) option, the forthcoming TW4100E dual band mobile has this so the system has not been discontinued. I really feel it won't catch on. This leads to power 'slumping' on long overs, eventually followed by the untimely demise of the expensive PA module itself. The transceiver's height is complemented by the availability of the remote controller handset, allowing it's positioning in otherwise impossible places, with the set safely bolted in out of sight.

I was surprised to see no facility for the Kenwood DCL (Digital Channel Link) option, the forthcoming TW4100E dual band mobile has this so the system has not been discontinued. I really feel it won't catch on. This leads to power 'slumping' on long overs, eventually followed by the untimely demise of the expensive PA module itself. The transceiver's height is complemented by the availability of the remote controller handset, allowing it's positioning in otherwise impossible places, with the set safely bolted in out of sight.

With the set positioned in the clear, I mainly found the small volume and toneburst off completely, each amateur having their own operating preferences. I liked the use of flying leads for the rear RF and DC power connections, these are more expensive for the manufacturer to incorporate than chassis-mounted.
sockets, but they provide far greater flexibility to the user in terms of the rig’s mounting position.

Insides

The diecast chassis houses most of the analogue RF and audio circuitry on a motherboard PCB with accompanying sub-boards, the separate diecast rear heatsink has the transmitter power amplifier circuitry sunk into it. A metal front panel, with its plastic outer trim, plugs into the main transceiver unit and houses the digital control circuitry, display, and user controls. All three sections are tightly screwed together to form a solid set that should stand up well to the vibrations and knocks encountered in mobile use.

On receive a dual conversion superheterodyne is used with intermediate frequencies of 10.70MHz and 455kHz. A PIN diode switch passes receive signals through the GaAsFET front end, into a three stage Toko cavity filter and on to the receive mixer. First IF filtering is performed by two monolithic dual crystal filters, followed by mixing to 455kHz; further amplification and demodulation being handled by a 7761 IF subsystem IC, with a CFU455F filter to give further adjacent channel selectivity.

On transmit a directly-modulated final frequency VCO (Voltage Controlled Oscillator) is used, the output being amplified and passed to the rear panel circuitry where an M57726 block PA module and discrete low pass filter are used to achieve the final 45W output. The VCO is controlled by an M54959 synthesiser IC which is under serial control from the front-panel mounted uPD751069 microprocessor. The usual lithium battery backup is employed, being sandwiched between two boards in the control unit.

Laboratory Tests

The receiver sensitivity showed a quite reasonable figure of 0.14µV, if it was more sensitive you’d be likely to have problems with externally generated noise in the average mobile installation. The adjacent channel selectivity, particularly at 12.5kHz spacing, was impressive and would allow useful performance with both 12.5kHz and 25kHz channelling depending on which part of the country you are in, as well as which part of the band in congested areas. The 3rd order IMD rejection (where two signals combine to produce further unwanted interfering signals in the receiver), was also good considering the impressive front end sensitivity, likewise the blocking rejection where adjacent strong signals cause the wanted signal to disappear into the noise.

This good performance would suggest quite reasonable results would be obtained if used as a base station with a large aerial as well as for its intended primary use as a mobile. The squelch had a useful dynamic range — helpful in this application, which is more than can be said for the S-meter which showed the usual lack of dynamic range often found in FM only rigs.

On transmit the output was extremely clean in terms of unwanted harmonic content, and the deviation was correctly set at just under the recommended 5kHz maximum, hence not causing more problems than necessary to users 12.5kHz away. The low power facility was accurately set, and was very stable with voltage and frequency variations.

Summary

The technical performance of the set is excellent, especially considering its size and current selling price of £334. I found some of the controls difficult to use by ‘feel’ when mobile, but one must appreciate that the available front panel space does place certain limits here. Overall, I thought it was a marvellous set and I look forward to trying the add-on RC-10 system controller which I feel will extend its versatility greatly.

My thanks go to Lowe Electronics Ltd. for the loan of the review set.
Laboratory Results
- TM-211E
Receiver

Sensitivity
- 0.141uV pd for 12dB SINAD (across 144-146 MHz)

Squelch Sensitivity
- Threshold: 0.065uV pd (2.5dB SINAD)
- Maximum: 0.622uV pd (30dB SINAD)

Adjacent Channel Selectivity: Measured as increase in level of interfering signal, modulated with 400Hz at 30% system deviation, above 12dB SINAD ref. level to cause 6dB degradation of 12dB SINAD on-channel signal.

<table>
<thead>
<tr>
<th>Separation</th>
<th>Rejection</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12.5kHz</td>
<td>47.5dB</td>
</tr>
<tr>
<td>-12.5</td>
<td>54.0</td>
</tr>
<tr>
<td>+25</td>
<td>73.0</td>
</tr>
<tr>
<td>-25</td>
<td>74.5</td>
</tr>
</tbody>
</table>

Image Rejection: Increase in level of signal at -32.6kHz to give identical 12dB SINAD signals: 83.0dB

Blocking: Increase over 12dB SINAD level of signal 1MHz away to cause 6dB degradation in 12dB SINAD on-channel signal.

<table>
<thead>
<tr>
<th>Spacing</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>+100kHz</td>
<td>88.0dB</td>
</tr>
<tr>
<td>-100kHz</td>
<td>87.5</td>
</tr>
<tr>
<td>+1MHz</td>
<td>103</td>
</tr>
<tr>
<td>-1</td>
<td>104</td>
</tr>
<tr>
<td>+10</td>
<td>104</td>
</tr>
<tr>
<td>-10</td>
<td>104</td>
</tr>
</tbody>
</table>

Intermodulation Rejection: Increase in level over 12dB SINAD level of two interfering signals giving identical 12dB SINAD on-channel 3rd order intermodulation product:

<table>
<thead>
<tr>
<th>Spacing</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5/25kHz</td>
<td>54.5dB</td>
</tr>
<tr>
<td>25/50kHz</td>
<td>75.0dB</td>
</tr>
<tr>
<td>50/100kHz</td>
<td>75.0dB</td>
</tr>
</tbody>
</table>

Maximum Audio Output: Measured at 1kHz on the onset of clipping

<table>
<thead>
<tr>
<th>Load</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>3ohm</td>
<td>3.55W RMS</td>
</tr>
<tr>
<td>8</td>
<td>2.25</td>
</tr>
<tr>
<td>15</td>
<td>1.35</td>
</tr>
</tbody>
</table>

S-Meter Linearity

S1	0.219uV pd	-12.0dB
S3	0.358	-7.8
S5	0.508	-4.7
S7	0.661	-2.4
S9	0.872	0dB ref
S9+	1.18	+2.6
S9++	1.68	+5.4

Transmitter

TX Power and Current Consumption

<table>
<thead>
<tr>
<th>Freq</th>
<th>10.8V Supply</th>
<th>13.8V Supply</th>
<th>15.6V Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>144MHz</td>
<td>31.8W/6.12A</td>
<td>46.0W/7.08A</td>
<td>49.0W/7.11A</td>
</tr>
<tr>
<td>145</td>
<td>31.6W/6.10A</td>
<td>45.9W/7.05A</td>
<td>48.7W/7.09A</td>
</tr>
<tr>
<td>146</td>
<td>31.6W/6.08A</td>
<td>45.8W/7.05A</td>
<td>48.6W/7.09A</td>
</tr>
</tbody>
</table>

Low power in all cases well regulated at 4.90W/2.60A

Peak Deviation: 4.49kHz

Harmonics/Spurii

- 2nd Harmonic: -86dBc
- 3rd Harmonic: -92dBc
- 4th Harmonic: -98dBc
- All other harmonics less than -100dBc
- Spurii at +/-10.7MHz -84dBc

‘Flying lead’ connections for power and antenna can aid installation.
1 Jun
Welwyn/Hatfield ARC: Radio control demonstration.
Rhy DARC: Activity night.
Burnham Beeches RC: Natter night with film on Airport Control.
Stourbridge DARS: Night on the air.
Sutton & Cheam RS: Natter night.
Todmorden DARS: Treasure hunt for G4HYY Trophy.

2 Jun
Dartford Heath DFC: Pre-hunt meeting, Horse & Groom, Leyton Cross Rd.
Loughborough DARC: Night on the air.
Fylde ARS: Talk 'Computing'.
Warrington ARC: Morse receiver MkII, Bill Green GBHLZ.
Chichester DARC: Goodwood evening meeting.
Wakefield DRS: Demo — Electronic Mail by G4BLT.

3 Jun
Cheshunt DARC: NFD preview and discussion.
Rolls Royce ARC: Talk 'Scopes and Amateur Radio' by Ron G3YEE.
Sutton & Cheam RS: Committee meeting.
SE Kent YMCA ARC: Natter night.

4 Jun
Reading DARC: Away leg of quiz v Maidenhead club.
Salop ARS: Natter night.
North Wakefield RC: Talk 'Semiconductors' by G3JMS.
Vale of Evesham RAC: 2m Foxhunt.
Pontefract DARS: Discussion on present and future club equipment.
Mid Sussex ARS: Informal evening.
Yeovil ARC: Talk 'How to use a Smith Chart' by G3MYM.
Bredhurst RTS: NFD planning.
E Kent RS: Talk 'Two metre DX' by Ken Willis G3VR.

5 Jun
Coventry ARS: Morse tuition & night on the air.
Matlby ARTS: Club quiz, first round.
Matlby ARS: Activity night on air.
Harrow RS: Activity night.

6 Jun
National Field Day.
Cheshunt DARC: NFD at Cheshunt lakes.
Loughton DARS: Aylmers Farm Field Weekend, special event station GB2LRS. Sutton & Cheam RS; NFD at Courtlands Farm, Banstead.
Bredhurst RTS: NFD at County Showground, Detling.

7 Jun
National Field Day.
Dartford Heath DFC: Club hunt, 2.30 pm, Dartford Heath.
Cheshunt DARC: NFD at Cheshunt lakes.
Loughton DARS: 2nd day of GB2LRS special event.
Spalding DARS: Annual Spalding Mobile Rally. To be held at Springfields Gardens, Spalding from 10 am to 5 pm Details from Dennis G4OO on 077 586 382.

8 Jun
Atherstone ARC: Talk 'Satellites' by Adrian Chamberlain G4RDA.

9 Jun
Keighley ARS: Informal meeting.
Loughborough DARC: DF event No. 3.
Reading DARC: VHF NFD discussion.
Stourbridge DARS: Night on the air.
Chester DARS: Treasure Hunt — 7 pm start from Chester Rugby Club.
Dorking DRS: Informal evening.
Wakefield DRS: DR contest.
Warrington ARC: RSGB film 'Electromagnetic Waves and Thin Film cct'.
Verulam ARC: Activity evening.

10 Jun
Cheshunt DARC: Natter night.
Stockport RS: NFD post mortem.
Trowbridge DARC: Junk sale.
Bath DARC: Computer night.
SE Kent YMCA ARC: Treasure hunt led by G4EGQ.

11 Jun
Salop ARS: Calibration night.
North Wakefield RC: Night on the air.
Yeovil ARC: Talk 'Decibels' by G3MYM.
Northampton RC: Bring & Buy.
Pontefract DARS: Talk 'History of Amateur Radio' by Ray Price G3VID.
Mid Sussex ARS: Talk 'Packet Radio'.
Southgate ARC: Talk 'History of Morse' by Tony Smith G4FAI.
Bredhurst RTS: Talk 'Big Antennas Around the World' by Al Slater G3FXB.

12 Jun
Wimbledon DARS: Talk 'Making light bulbs' by Ray Nicholson G4SQG.
Coventry ARS: Night on the air — out portable.
Itchen Valley RC: Talk 'The History of PCBs' by Mike G6LMK.
Matlby ARTS: Natter night.
Matlby ARC. Talk 'TV Troubleshooting' by G1CAQ.
Harro RS: Talk 'Microwave Modules Products and Meteosat' by Mike Senior G4EFO.

15 Jun
Rhy DARC: Slide show 'Your shacks' by Alan GW4HDR.
Stourbridge ARS: Talk 'Fifty years of AM radio' by Alec G3GF.
Burnham Beeches RC: Visit to Gatwick Airport Control Centre.
Todmorden DARS: Children in Need — discussion night.

16 Jun
Loughborough DARC: Magazine review and technical chat.
Midland ARS: Talk 'Foxhunting tips’ by Chris,
16 Jun G8FTU and Barry, G8DEJ.
Chester DARS: Surplus equipment sale.
Wakefield DRS: 2m QRP contest discussion.
Warrington ARC: Barbeque, hosted by Debby & Mike Mansfield.
17 Jun Cheshunt DARC: Portable on Baas Hill Common.
Stockport RS: Informal natter night.
Yeovil ARC: Talk 'How to make tuned circuits' by G3MYM.
Hastings ERC: Visit to Dungeness power station.
18 Jun Salop ARS: Night on the air.
North Wakefield RC: Spen Valley junk sale.
Northampton RC: Mobile DF contest.
Vale of Evesham RAC: Informal meeting.
Gardeners Arms, Charlton.
Pontefract DARS: RAYNET practice.
Mid Sussex ARS: Club's 21st Anniversary at the Windmills, Clayton.
Bredhurst RTS: Construction & Natter night.
20 Jun All Asia 48 hour contest.
Mid Sussex ARS: Burgess hill town festival.
21 Jun Denby Dale Radio Rally, at Shelley High School
on the B6116 near Shiremanthorpe. Talk-in SU22, SU22 and 10m FM. Doors open 11.00 am.
Further details from: Gerald Edinburgh on Huddersfield 602905.
Wakefield DRS: 2m QRP Contest.
22 Jun Sutton & Cheam RS: Two metre foxhunt.
Atherstone ARC: Club night & night on the air.
23 Jun Loughborough DARC: Portable evening.
Reading DARC: Talk 'HF linear amplifiers' by Peter Chadwick, G3RZP.
Chester DARS: Barbecue — bring your own steaks etc.
Dorking DRS: Activity evening on 2m & 70cm SSB.
Wakefield DRS: Talk 'RNARS & RSARS' by G5VRY.
Warwick: Open forum.
Verulam ARC: Talk 'PO Box 88, Moscow' by A Slater G3FXB.
24 Jun Cheshunt DARC: Natter night.
Stockport RS: Talk 'Behind the controls'.
Chiltern ARC: G5RV.
Trowbridge DARC: Natter night.
Bath DARC: Planning for Longleat.
SE Kent YMCA ARC: Talk 'Solving TVI Problems' by G4HKE.
North Wakefield RC: Talk 'Land mobile radio' by G3SEY.
Yeovil ARC: Natter night.
Pontefract DARS: Informal evening.
Mid Sussex ARS: Talk.
Southgate ARC: Informal evening.
Bredhurst RTS: Talk & demo 'Compact disc players'.
26 Jun Wimbledon DARS: Talk 'Making Light Bulbs' by Ray G4SOG.
Coventry ARS: Surplus equipment sale.
Itchen Valley RC: Talk: 'The Radio Investigation
16 Jun G8FTU and Barry, G8DEJ.
Chester DARS: Surplus equipment sale.
Wakefield DRS: 2m QRP contest discussion.
Warrington ARC: Barbeque, hosted by Debby & Mike Mansfield.
17 Jun Cheshunt DARC: Portable on Baas Hill Common.
Stockport RS: Informal natter night.
Yeovil ARC: Talk 'How to make tuned circuits' by G3MYM.
Hastings ERC: Visit to Dungeness power station.
18 Jun Salop ARS: Night on the air.
North Wakefield RC: Spen Valley junk sale.
Northampton RC: Mobile DF contest.
Vale of Evesham RAC: Informal meeting.
Gardeners Arms, Charlton.
Pontefract DARS: RAYNET practice.
Mid Sussex ARS: Club's 21st Anniversary at the Windmills, Clayton.
Bredhurst RTS: Construction & Natter night.
20 Jun All Asia 48 hour contest.
Mid Sussex ARS: Burgess hill town festival.
21 Jun Denby Dale Radio Rally, at Shelley High School
on the B6116 near Shiremanthorpe. Talk-in SU22, SU22 and 10m FM. Doors open 11.00 am.
Further details from: Gerald Edinburgh on Huddersfield 602905.
Wakefield DRS: 2m QRP Contest.
22 Jun Sutton & Cheam RS: Two metre foxhunt.
Atherstone ARC: Club night & night on the air.
23 Jun Loughborough DARC: Portable evening.
Reading DARC: Talk 'HF linear amplifiers' by Peter Chadwick, G3RZP.
Chester DARS: Barbecue — bring your own steaks etc.
Dorking DRS: Activity evening on 2m & 70cm SSB.
Wakefield DRS: Talk 'RNARS & RSARS' by G5VRY.
Warwick: Open forum.
Verulam ARC: Talk 'PO Box 88, Moscow' by A Slater G3FXB.
24 Jun Cheshunt DARC: Natter night.
Stockport RS: Talk 'Behind the controls'.
Chiltern ARC: G5RV.
Trowbridge DARC: Natter night.
Bath DARC: Planning for Longleat.
SE Kent YMCA ARC: Talk 'Solving TVI Problems' by G4HKE.
North Wakefield RC: Talk 'Land mobile radio' by G3SEY.
Yeovil ARC: Natter night.
Pontefract DARS: Informal evening.
Mid Sussex ARS: Talk.
Southgate ARC: Informal evening.
Bredhurst RTS: Talk & demo 'Compact disc players'.
26 Jun Wimbledon DARS: Talk 'Making Light Bulbs' by Ray G4SOG.
Coventry ARS: Surplus equipment sale.
Itchen Valley RC: Talk: 'The Radio Investigation
14 Jul Keighley ARS: Informal meeting.
 Bury RS: Surplus equipment sale.
 Chester DARS: Talk 'Computer Interfaces' by Derek G4UXD and Roger G8GWX.
 Dorking DRS: Informal meeting.
 Warrington ARC: Talk 'Language Laboratories' by Paul Forster GOCBN.
 Wakefield DRS: Debate.
15 Jul Hastings ERC: Talk 'Operating Rayleigh'.
16 Jul North Wakefield RC: Barbecue and fox hunt.
 Vale of Evesham RAC: Informal meeting.
 Gardeners Arms, Charlton.
 Mid Sussex ARS: Informal evening.
 Bredhurst RTS: Construction & natter night.
17 Jul Coventry ARS: Night on the air.
 Maltby ARC: Home projects night.
 Sutton & Cheam RS: Talk 'Wire antennas for DX bands' by Geoff G4FKA.
18 Jul Bredhurst RTS: Special event station GB4PB.
19 Jul McMichael Rally at the Haymill Centre near Slough. Doors open 10.30 (10.15 for disabled).
 many traders, car boot sale, mini fairground.
 ATV and special event station GB4MR (on air 18th & 19th).
20 Jul Rhyl DARC: Members night — funny QSOs.
 Welwyn/Hatfield ARC: Fox hunt.
 Burnham Beeches RC: Radio control demonstration.
 Stourbridge ARS: Talk by John G4CVU.
 Todmorden DARS: Natter night.
21 Jul Midland ARS: Treasure Hunt.
 Chester DARS: Talk 'Receivers — Part 2' by Dennis G3EZV.
 Wakefield DRS: Annual Open Pitch & Putt, Holmfield Park.
22 Jul Trowbridge DARC: Natter night.
 Bath DARC: HF night on the air.
23 Jul North Wakefield RC: Talk 'Satellite TV' by Rob G4APV.
24 Jul Maltby ARC: Amateur radio open forum.
25 Jul Warrington ARC: 'Find the buffet' (I) hosted by Mike Mansfield G6AWD.
26 Jul Wakefield DRS: Installing club HF beam.
27 Jul North Wakefield RC: Monthly meeting.
 Bredhurst RTS: Construction & natter night.
28 Jul Rhyl DARC: Members night.
 Maltby ARS: Natter night.
 Maltby ARC: Junk sale.
29 Jul Midland ARS: Treasure Hunt.
 Chester DARS: Talk 'Receivers — Part 2' by Dennis G3EZV.
 Wakefield DRS: Annual Open Pitch & Putt, Holmfield Park.
 Trowbridge DARC: Natter night.
 Bath DARC: HF night on the air.
 North Wakefield RC: Talk 'Satellite TV' by Rob G4APV.
 Maltby ARC: Amateur radio open forum.
 Warrington ARC: 'Find the buffet' (I) hosted by Mike Mansfield G6AWD.
 Wakefield DRS: Installing club HF beam.
 North Wakefield RC: Monthly meeting.
 Bredhurst RTS: Construction & natter night.
 Rhyl DARC: Members night.
 Maltby ARS: Natter night.
 Maltby ARC: Junk sale.

From Woodworker, Britain's leading woodworking magazine...

make your home more secure: doors, windows, alarms, fire precautions and child proofing— it's all in this invaluable do-it-yourself manual.

At your newsagent NOW! or order direct for £1.50 + 50p p&p from Infonet, 10-13 Times House, 179 The Marlowes, Hemel Hempstead, Herts. HP1 1BB.
At the time of writing, activity on 6m is exciting but at a low level when compared to 2m as only Class A amateurs have access to the band combined with location and ERP restrictions. This of course is part of the ongoing experiment to see if we can 'fit in' with other services, notably Band I TV, also using the band in Europe. The RSGB statements of 'wait till 1st Feb 1987, when more hopeful news should appear' unfortunately didn't seem to come to fruition when the Great Day came. However John Butcher MP, Parliamentary Under Secretary of State for Industry, recently gave hope to Class B's by hinting that all amateurs would have access to both the 50MHz and 70MHz bands in the future. There is also hope that 6m will be increased to cover 50-52MHz. There are still unknown facts about propagation on these bands where amateurs could perform a valuable service, so do you fancy exploring an exciting new mechanism behind these events, suggestions include multiple hop Sporadic-E or some unknown ducting effect where the signals travel in an E-layer duct linking two areas. Propagation time-measurement, leading to a better understanding of the effect, is just one area where amateurs can contribute to world science, hence showing our worth and in fact justifying our continued existence. It also has the magical attraction of wondering whether the reply to your CQ call will come from London or New York.

Meteor scatter communication, where meteor trails are used to reflect radio signals, is again far better on 6m than 2m with burst lengths lasting far longer to permit more effective QSO's. Monitoring one of these beacons shown in Table 1 will give you a demonstration of this, resulting in rapid bursts of enhanced signals during meteor showers. In the past, some have been so long as to permit good meteor scatter reception of full-colour slow scan pictures transmitted on 6m, so you don't need to be an expert in fast CW or use sophisticated gear to obtain meteor scatter contacts.

Auroral propagation with its characteristic electric-shaver raspingness is often evident as well, in fact just a week after the band was opened to all Class A's a phenomenal aurora occurred, which allowed communication with virtually every country in Europe with access to the band.

Activity

The current band is 500kHz wide, Fig. 1 shows the recommended bandplan which gives you an idea of where to start looking for activity. The majority of contacts presently take place using SSB, with calls initiated on 50.200MHz combined with a QSY up or down follow-

Following the success of the 50MHz experiment, the band is now going to be widened and opened up to class Bs. More bandwidth means more interest, so Chris Lorek G4HCL shows us how to get started on Six.
ing establishment of a contact. There are also various pockets of FM activity around the country, using 50.45 and 50.475MHz, some of these are local nets using modified surplus equipment obtained at economical prices (I've seen 49MHz 40 channel synthesised Midland sets sold new at a rally stand for £1 a time). If 50-52MHz is allocated to all UK amateurs, it may seem sensible to follow a similar bandplan to that used on 2m, with room for all tastes and activities.

If some of this has inspired you to start up on the band, then read on and see how simple it is to do so.

Getting Goi g

There are several ways to get equipped, namely:
1) Transverting from existing gear,
2) Home built equipment,
3) Modification of surplus gear, and
4) Commercial 50MHz transceivers.

Transverting or using a receive converter with an existing 2m or 10m set is by far the easiest way of starting up on the band. For those who want a transverter, the Microwave Modules Unit (transverting from 2m to 6m) is reviewed elsewhere in this issue and a matching 10m-6m model is also available, both are currently priced at £289.80.

However before a large financial outlay, you may wish to have a listen around using a converter in line with an existing receiver. You'll find that many 6m operators may also be listening for replies on the established crossband frequency of 28.885MHz, so you don't necessarily need 6m transmit capability to get a contact to start with! Microwave Modules produce the MMC 50/28 6m-10m converter (see photo) for £37.95, or if you're a dab hand with a soldering iron you may care to build your own. Jack Hum, G5UM describes a 'build-it-from-scratch' converter in HRT July 84 that would suit the amateur with some constructional experience. If you'd like printed circuit pattern details or indeed a full kit then HRT Feb 87 featured a converter project from 6m to 2m or 10m, available for just under £30 from Cirkit Holdings, although this does not include case or connectors.

Jack G5UM also described a homebrew crystal-controlled valve transmitter in HRT Nov 85, and for those fortunate enough to have a suitably equipped junk box, this may get you going on CW at very little cost as well as providing an element of nostalgia. Alternatively Tony Bailey G3WPO described a 0.5W/1W solid state transverter in HRT Feb 87 with circuit board patterns which is also available as a kit from Cirkit for £58 plus the cost of case etc. A matching PA to give 15W pep was described by Tony in HRT Mar 86, and in HRT Sept 86 I showed how to modify a low cost surplus amplifier to boost this to around 50W pep. I make no apologies for mentioning HRT so much, as there have been far more constructional articles for 50MHz equipment here than in any other UK amateur magazine!

If you have an old CB multimode rig lying around, you may like to read Roger Alban GW3SPA's article in this issue on converting some models to 50MHz multimode, which could provide a useful stand-alone rig that doesn't tie up an existing transceiver, allowing you to monitor 6m and put out the occasional call whilst primarily operating on another band. These sets are often available from the second hand ad pages, often comically as a swap request for a 2m or HF multimode, but occasionally offered at sensible prices.

In the Oct and Nov 86 issues of HRT, Ted Neil GW3ARP describes a VFO modification to use with ex-commercial two-way radio equipment operating on 4m and 6m. Although no retuning information is given for the equipment, this may be performed by amateurs with some experience, and if there is sufficient demand the editor may even be persuaded to publish a constructional article on 6m conversions! Due to forthcoming DTI regulations, by 1990 there is likely to be a flood of suitable PMR gear on the amateur market. Some G-Band Pye Westminsters operating on 40-50MHz FM have already appeared, and several are in fact already in use on 6m.

If you want a stand-alone rig for the band but soldering irons and trimming tools are not for you, then several black-boxes are of course available. The Icom IC505 and Yaesu FT690R (reviewed in HRT May 85) offer versatile use as a base station, mobile, and shoulder-strap portable and recently the FT690R MkII has been introduced offering a higher claimed performance over its
predecessor. For more dedicated users, the Icom IC551 gives a base station facility, and the Kenwood TR9300 offers mobile or base station operation. The multi-band Yaesu FT726R may be fitted with a 6m plug-in module, as you can the range of Yaesu FTV107R and FTV901R transverter frames. Due to variations in the Yen exchange rate, current prices of Japanese equipment have not been quoted as these will undoubtedly have changed when this appears in print!

Power restrictions on the band have limited the availability of amplifiers, but if you feel you’d like more power output for base station use, BNOS currently manufacture power amplifiers for 6m, operating from a 13.8V supply. With 3W or 10W input, 50W maximum output is claimed from the LP50-3-50 and LP50-10-50, both at £152.17, and their LPM50-10-100 claims 100W maximum output with 10W drive at £204.35. Microwave Modules also have an amplifier in the pipeline, and if the power restrictions are lifted in the future, Heatherlite have plans for a 4CX350A 400W amplifier switchable for both 4m and 6m!

Aerials

6m aerials, being three times the wavelength of 2m, are of course three times the size! But don’t let this put you off, as signals on 6m do get that bit further with a given ERP (Effective Radiated Power). In my opinion, it is certainly worthwhile getting at least a modest beam up if you already have a rotator in use for other bands. If not, then a simple dipole can still get you out nicely but you could suffer from greater QRN generated from thermostats, computers, TV timebases and the like. For this reason a very high receive sensitivity is not often required, as when tuning around you’ll frequently hear background noise present similar to that experienced on the upper HF bands. Masthead preamps and indeed any in-line preamps fitted to linear amplifiers will often not be required unless you have a very deaf receiver.

To improve your receive signals therefore, a beam is required rather than anything else at your end, remembering of course to try and place it above the level of surrounding electrical interference! All operation at present is horizontally polarised, with an ERP limit of 20dBW pep SSB and 14dBW carrier (dBW being the power in dB above 1W). In simple terms, you add your aerial gain in dB to your transmitter output in dBW, remembering to subtract the feeder loss again in dB. For instance, a transmitter of 13dBW (20W) pep feeding into a 7dB gain aerial will give 20dBW with a slight margin in hand due to feeder loss, typically around a dB.

There are many manufacturers offering aerials for the band, the photo shows a three element beam from MET, designed to specifications of the US National Bureau of Standards (NBS), offering a claimed 7.1dBd, with 2 ele and 5 ele versions also available. It is shown mounted on my tower below a 9 ele beam for 2m for comparison purposes, showing that a 6m yagi isn’t anywhere near the size of an HF monstrosity! I must say that it was hurriedly put together to photograph for this article, taking only 40 mins to assemble and erect, yet guessing at the gamma match positioning resulted in an SWR of less than 1.2:1 over the band with good reports received — I was impressed.

Another British manufacturer, Jaybeam, who have been producing aerials for many years, currently offer a 4 ele yagi for 6m, together with a very interesting dual-band trapped 4 ele beam operating on both 4m and 6m, with respective claimed gains of 7dBd and 6dBd. This could offer a very inconspicuous array for the two bands if released to all amateurs.

Cue Dee also manufacture a dual-band yagi, using 11 elements of which five are used on 6m and six used on 4m, the elements being interlaced on a common boom, with 6dBd again claimed on both bands. Tonna produce a 5 ele yagi which has been popular with UK amateurs and claims a gain of just under 8dBd.

Sandpiper Communications in South Wales make a range of 2, 3, 4, 5 and 6 ele yagis, together with dual band 4m/6m and 6m/10m yagis, and cross-polarised 6m/2m yagis, (ie horizontal on 6m, vertical on 2m), as well as offering to produce custom-built aerials to the user’s individual requirements. The Altron AQ620 compact 2, 3, and 4 ele HF yagi, reviewed in HRT Apr 87, offers 6m capability as well as 10m, 15m and 20m, and Altron have also recently introduced a 3 ele dedicated 6m beam onto the market. If you fancy building an aerial yourself, or modifying an old Band I TV yagi, then Mick Senior G4EFO’s article in HRT Aug 86 gives you all the details.

Feeder loss on 6m is nowhere near as high as that experienced on 2m or 70cm, and you can safely get away with using UR87 and still achieve good performance. Unless you have a horrendously long cable run there is no need to use H100 or
the various types of Heliax coax.
So there we are, plenty to choose from. I have mentioned the claimed gain in each case rather than actual gain, as this would normally be used to determine the maximum transmitter output power you could run. It is interesting to note that in an independent survey at Annaboda in Sweden, not one manufacturer's gain claim was substantiated, in fact one very popular make was the one found to have the highest difference between claimed and actual gain!

Second Harmonics
As a final note, remember that the second harmonic of 50MHz falls right in the middle of Broadcast Band II, in a section presently occupied by certain non-broadcasts that we shouldn't listen to. To save embarrassment or a knock on the door from either a neighbour or RIS officer, make sure that you take steps to keep its level as low as possible. HRT reviews of commercial equipment for the band have always stressed this, and BNOS produce an in-line bandpass filter for the purpose. As an alternative, a simple quarter wave coax stub filter as shown in Fig. 2 will give a useful attenuation of 100MHz and is simple to construct.
So have fun, let's hope 6m comes available to all very shortly, and of course, good DX!

Although no longer available from new, the Mutek 2m to 6m transverter can be found on the secondhand market.

<table>
<thead>
<tr>
<th>FREQ</th>
<th>CALL</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.005</td>
<td>ZS1SIX</td>
<td>CAPE PROVINCE</td>
</tr>
<tr>
<td>50.020</td>
<td>GB3SIX</td>
<td>IO73TJ</td>
</tr>
<tr>
<td>50.050</td>
<td>GB3NHQ</td>
<td>IO91VQ</td>
</tr>
<tr>
<td>50.055</td>
<td>LA</td>
<td>OSLO</td>
</tr>
<tr>
<td>50.060</td>
<td>GB3RMK</td>
<td>IO77UO</td>
</tr>
<tr>
<td>50.070</td>
<td>W2CAP/B</td>
<td>CAPE COD. MASS</td>
</tr>
</tbody>
</table>

Table 1 50MHz beacons.
HOKUSHIN aerials.

BASE STATION AERIALS

HFV...20 to 10 metre vertical, no radials required when ground mounted...£33.39 inc vat, carriage £7.00.
HFVR...Radial kit for use with HFV when mounted on chimney or cable end...£24.81 inc vat, carriage £7.00.
GPV...Two metre base station colinear, 6.5 dB gain, 3.1 metres high...£24.82 inc vat, carriage £7.00.
GPV5....as above but 5 section colinear, 7.8 dB gain, 4.45 metres high...£21.97 inc vat, carriage £7.00.
GPV7...Seventy centimetre triple 5/8 base station colinear, 6.9 dB gain...£45.98 inc vat, carriage £7.00.
GPV7B...Dual band (144/430 MHz) base station aerial...£45.68 inc vat, carriage £7.00.

MOBILE AERIALS

AE...Two metres 5/8 whip, 3.4 dB gain, foldover base £14.55 inc vat, carriage £2.00.
AM...Two metres 7/8 whip, 4.9 dB gain, foldover base £25.33 inc vat, carriage £2.00.
OSCAR850...Seventy centimetre triple 5/8 whip, 8.3 dB gain...£27.75 inc vat, carriage £2.00.
OSCAR720...Dual band (144/430 MHz) whip...£24.66 inc vat, carriage £2.00.
NB770...144/430 MHz diplexer for use with OSCAR720...£18.02 inc vat, carriage £1.50.
G4S...Gutter mount (requires RO4M cable assembly)...£25.56 inc vat, carriage £1.25.
NO4M...Cable assembly for G4S base, complete with S0239 and PL259 plug...£4.95 inc vat, carriage £1.00.
13B...Car wing mount with S0239 top and bottom...£15.75 inc vat, carriage £1.00.
BTM...Car boot mount including cable and PL259...£15.40 inc vat, carriage £1.50.
MAGB00...High quality mag mount with cable and strong protective cover to prevent paintwork damage...£25.90 inc vat, carriage £2.00.

data equipment

CD600...RTTY, CW, ASCII, TOR, AMTOR decoder, output for UHF television, monitor and printer; can also be used as Morse tutor...£215.14 inc VAT, carriage £7.00.
CD800...A higher specification RTTY, CW, ASCII, TOR and AMTOR decoder complete with liquid crystal dot matrix display, variable RTTY shift, normal/reverse mode switch, outputs for TV, monitor and printer and can also be used as Morse tutor...£287.77 inc VAT, carriage £2.00.
CD860...Similar in specification to the CD870 but without the built-in dot matrix display...£88.74 inc VAT, carriage £2.00.

DAIWA meters

CN410M...Frequency range 3.5 to 15 MHz, forward power switchable 15/150 Watts, reflected 15/150 Watts, 50239 connectors.
CN460M...Frequency range 140 to 450 MHz, forward power switchable 15/5 Watts, reflected 15/5 Watts, 50239 connectors.
NB446 with remote head...Frequency range 900 to 1300 MHz, forward power switchable 5/20 Watts, reflected 1.6/6.8 Watts, N type connectors.
NB480P...Switchable meter reading (average, normal PEP and hold PEP) and provision for optional remote head (96V), frequency range 1.8 to 150 MHz, forward power switchable 15/150/1500 Watts, 50239 connectors.
C665V...Remote head, frequency range 140/525 MHz, max 300 Watts, N type connectors.
B600...Extension cable for U6611, approx 20 metres long...£81.76 inc VAT, carriage £2.50.

KEYS & keyers.

TX3...Morse practice oscillator...£13.66 inc VAT, carriage £1.50.
PX708...Straight key...£21.92 inc VAT, carriage £2.50.
PX708...Deluxe version on heavy base...£43.50 inc VAT, carriage £3.00.
PX704...Square paddle...£20.26 inc VAT, carriage £1.50.
RX160...Electronic keyer with built-in side tone, solid state or relay keying...£133.75 inc VAT, carriage £3.00.
NX1084...Electronic keyer with 1024 bit memory...£241.98 inc VAT, carriage £3.50.
DXE10...Daiwa electronic keyer, requires paddle...£73.86 inc VAT, carriage £2.50.

By1...Black base...£67.42 inc VAT, carriage £2.50.
BP21...Chrome base...£78.97 inc VAT, carriage £2.50.
BY2...Gold plated base...£141.75 inc VAT, carriage £2.50.

BENCHER keys...£87.42 inc VAT, carriage £3.00.

DX210...Daiwa electronic keyer, requires paddle...£73.98 inc VAT, carriage £2.50.

LowE ELECTRONICS LTD.

Chesterfield Road, Matlock, Derbyshire DE4 5LE

Telephone 0629 2817, 2430, 4057, 4995. Send £1 for complete mail order catalogue.
Telephone 0629 2817, 2430, 4057, 4995.

LOWE ELECTRONICS LTD.

telephone 0223 311230.

the shop manager is Tony, G4NBS,

In Cambridge, telephone 0325 486121

the address, 56 North Road, Darlington,

In the North East, telephone 041-945 2626.

the address, 4 5 Queen Margaret Road,

In Glasgow, telephone the shop manager.

hours vary and are timed to suit local needs. For exact details please
to Friday and from 9.00 am to 5.00 pm on Saturday. Shop lunch
Lowe ilectroole Shops are open from 9.00 am to 5.30 pm, Tuesday

The TR711111 can be set to .can between user programmed limits or around
the user defined limits of frequency scan.

ALERT frequency, memories 7 and 8 relate to DCL and memory 0 programs
transferring the memory information to vfo. Memory channel one is also the
selected frequency step).

The transceiver has two V7'0's and 10 memory channels. Memory
information on frequency, mode and also the step rate to be set when
is

Easily transferred to either vfo. Each memory holds information on frequency, mode and also the step rate to be set when
The RC PACK consists of an 8 bit CPU with its own ROM and RAM and with your own computer acting as a dumb terminal many
A front panel knob allows the listener to quickly step up or down in either 5, 12.5 or 25 kHz steps from the frequency initially chosen.

The AR2002 has a front panel LED bar “5” meter.
There is a front panel 3.5 mm jack socket for headphone use.
A socket for the optional RS232 interface (RC PACK) is provided on the rear panel.
The RC PACK consists of an 8 bit CPU with its own ROM and RAM and with your own computer acting as a dumb terminal many
All additional operating facilities become available. Of course, if you want
to write your own programs using the RC PACK as an interface then
the sky’s the limit”

LOWE SHOPS.

In Glasgow, the shop manager is Sim, GM3SAN,
the address, 4 5 Queen Margaret Road,
off Queen Margaret Drive, Glasgow,
telephone 041-945 8645.

In the North East, the shop manager is Hank, GNASM,
the address, 56 North Road, Darlington,
telephone 0325 486121.

In Cambridge, the shop manager is Tony, G4NBS,
the address, 162 High Street, Chesterton, Cambridge,
telephone 0223 311230.

In Cardiff, the shop manager is Carl, GWOCAB,
the address, c/o South Wales Carpets, Clifton Street, Cardiff,
telephone 0222 464154.

In London, the shop manager is Andy, G0DHQ,
the address, 223/225 Field End Road, Eastcote, Middlesex,
telephone 01-429 3256.

In Bournemouth, the shop manager is Colin, G3XAS,
the address, 27 Gillam Road, Northbourne, Bournemouth,
telephone 0202 577690.

Although not a shop, there is on the South Coast a source of good
advice and equipment, John, G0TJO. His address is Abbotsley, 14
Grovelands Road, Hailsham, East Sussex. An evening or weekend
call will you put in touch with him. His telephone number 0323
8384577.

Lowe Electronics Shops are open from 9.00 am to 5.30 pm, Tuesday
to Friday and from 9.00 am to 5.00 pm on Saturday. Shop lunch
Lowe ilectroole Shops are open from 9.00 am to 5.30 pm, Tuesday

AR2002 Receiver . . . £648.50 inc VAT, carriage £7.00

lowe electronics ltd.

Chesterfield Road, Matlock, Derbyshire DE4 5LE
Telephone 0329 2817, 2430, 4057, 4995.

(send £1 for complete mail order catalogue.
Getting onto 50MHz with the Ham International series of multimode transceivers.

Fig. 1 Block diagram of the Ham International series of multimode transceivers.

With the six metre band being expanded and opened up to all licence holders, Roger Alban, GW3SPA, offers a timely conversion project for the Ham International CB range.

Getting onto Six

Most six metre designs which have appeared to date require the use of the main station transceiver and a transverter to be able to operate. The disadvantages of this approach is that it ties up the main rig and also involves a great deal of fiddling with connecting cables etc. The idea with this project was to follow the previous method used for ten metre conversions and have a stand alone multimode rig dedicated for use on six metres which would continuously monitor the band for openings.

In the author’s early ten metre design, an EPROM was inserted between the channel switch output logic lines and the programmable logic inputs to the divide by N register in the PLL chip (see Fig. 1) to adjust the logic values to put the set on ten metres by using a 20.555MHz band crystal pulled down to 20.5525MHz. Let us suppose that we now require the set to operate on six metres. In the ten metre conversion the final transmit frequency was obtained by subtracting 10.695MHz from the output frequency of the band pass filter formed by T2 and T3. If we now arrange that the output from the transmitter mixer should be the sum of the band pass filter frequency added to 10.695MHz, the resulting transmit frequency will be 40.295MHz + 10.695MHz = 50.99MHz. Therefore, by careful selection of the value of N, it is possible to retune the set to operate on six metres. This all sounds fairly straightforward at first but there are two main problems, one simple, and one difficult to resolve.

Let us deal first with the simple problem. In the original design the manufacturer resolved the problem of inverted sidebands (generated by the mixing process) by the simple expedient of swapping the front panel labels over! The mixing process taking place in the six metre conversion does not result in such an inversion, therefore the front panel labels must be changed to reflect this.

A very serious problem was dis-
covered when the set was on transmit. An examination carried out using a spectrum analyser (Fig. 3) revealed a large number of unwanted spurious signals which were only a few dBs below the wanted transmit frequency. The second problem stemmed from the fact that the band crystal oscillator frequency of 20.5525MHz caused mixing products which fell within the passband opened up to cover 50MHz to 52MHz and use by class B licence holders will be permitted in addition to relaxation of power restrictions.

When converting any CB set to operate on new frequencies, it is worthwhile to standardise on the relationship between channel number and operating frequency. The author has decided to adopt a design where channel 1 low band corresponds to an operating frequency of 50.00MHz, and channel 11 mid band corresponds to 50.50MHz. To change the operating frequency of the set it will be necessary to install an EPROM between the channel switch and the program lines of the PLL chip so as to adjust the logic values for the desired values of N.

Let us assume that the set is to operate on 50.00MHz on channel 1 low band. From Fig. 1 the output frequency from the band pass filter formed by T2 and T3 will be: 50.00 - 10.695 = 39.305MHz. The VCO will be operating on a frequency of 39.305MHz minus the new value of the band crystal oscillator which is 21.2525MHz that is 18.0525MHz. The value of the frequency Fin being injected into the programmable divide by N register will be 21.2525 - 18.0525 = 3.2MHz, so the value of N will be 3.2MHz / 10kHz = 320. In a similar manner the divide by N values for the other operating frequencies can be calculated and stored as data inside an EPROM to appear on the output data lines when the appropriate address logic is applied.

EPROM Circuit

Before commencing the modi-

of the band pass filter T2/T3, resulting in a variety of spurious signals being amplified by the subsequent transmitter stages on ten metres and also six metres. The same cure was adopted as in the 'Ham International Update' for Ten where, by simply shifting the band crystal oscillator to 21.2525MHz, the spurs were moved outside the passbands. This is the solution adopted for the six metre conversion described here. It must be said that there still remains one 'sprog', but as this was measured as being better than 50dB below carrier level, it was considered acceptable. Fig. 4 shows the revised frequency spectrum when using a 21.2525MHz crystal with the set tuned to channel 1 using a new EPROM.

The PLL Modification

The DTI released the 50.0 to 50.5MHz band to UK class A licensees on the 1st February 1986. However the band will shortly be

![Fig. 2 Mixing process in the Ham International rigs. 2(a) Sideband generation method showing the sideband inversion in the standard rig (2b) and non-inversion when modified for 50MHz operation (2c).](image)

![Fig. 3 Original output spectrum using the standard crystal pulled down from 20.555MHz to 20.5525MHz.](image)

![Fig. 4 Spectrum created by using a 21.2525MHz crystal.](image)
The circuitry surrounding the EPROM is shown in Fig. 5. The program lines from the channel select switch (P5 to P1) are connected to the 2716 address lines A0 through to A5 and 4k7 pull down resistors are connected to these so that they are maintained at logic 0 (zero volts) when the channel switch has no output on any of the program lines. Address lines A6, A7, and A8 are connected to the band switch so as to alter the input address of the 2716 for each individual band. The unused address lines A9 and A10 are grounded to ensure that they remain at logic level 0.

The parallel data output lines from the 2716 (00 to 07) are fed directly to the input programme lines of the PLL chip as shown. In the unmodified set programme lines P7 and P8 are connected to the supply rail of the set. For our purposes it will be necessary to cut the PCB track to programme line P7, and connect pin 8 of the PLL chip directly to 07, from the 2716 (00 to 07) are fed directly to the input programme lines of the PLL chip as shown. In the unmodified set programme lines P7 and P8 are connected to the supply rail of the set. For our purposes it will be necessary to cut the PCB track to programme line P7, and connect pin 8 of the PLL chip directly to 07, from the 2716 EPROM.

The 2716 is fed from a stabilised 5 volt supply produced by a TIP 3055 acting as the pass transistor and a 5.6 volt zener diode. The pass transistor is attached to the side of the rig and insulated from the chassis with a mica washer so that the case of the rig acts as a heatsink. The stabilised 5 volt supply is fed to the centre wiper of the band and channel select switches. Previously these two switches were fed from the 5.6 volt supply to the PLL chip, so these wires will have to be located and disconnected before rewiring. The 2716 EPROM contains 2k of memory which is more than adequate to supply the various logic values required to generate the operating frequencies which we require.

The EPROM circuit is built on Veroboard following the component layout shown in Fig. 6 and the cable connections to the channel and band switches are made with ribbon cable, a right angle bracket being used to attach the board to the side of the rig. It is wise to fit the EPROM after all the soldering has been completed and a thorough voltage check has been carried out to ensure that there are no crossed wires and the voltage regulator is working correctly. The required address and data contents of the EPROM is shown in Table 1, the information has been displayed in hexadecimal form for convenience.

Adjusting the Band Crystal Oscillator

It will be necessary to change the frequency of the band crystal oscillator to 21.2525MHz as described earlier for this conversion. The three existing band crystals should first be unsoldered from the PCB in all cases.

PTBM121D4X board

With sets containing the PTBM-121D4X PCB the band crystal oscillator is contained on a separate PCB which is attached to the side of the case using an L-shaped bracket. Terminals 4, 5 and 6 are connected via the band switch to the collector of Q30, via terminal 13 on the main PCB. Q30 is a 5.6V Automatic Voltage Regulator (AVR) which is switched, via the band switch, to select the required band crystal.

In the six metre modification only one band crystal will be required, so the wires connecting terminals 4, 5 and 6 to the band switch can be removed and the 21.2525MHz crystal can be soldered into the crystal position X1. Terminal 4 can now be connected directly to terminal 13 on the main PCB.

PTSY016A0X board

In the other models, the band crystal oscillator circuitry is mounted on the same board as the PLL chip and VCO circuitry, this PCB can be found just behind the front panel. If
you own a set with the PLL PCB numbered PTSY016A0X, the band crystal is selected by connecting terminal D via the band switch to either terminals L, M, or H. The existing wires from terminals L, M, H and D must be removed and terminal D connected direct to terminal L. Solder the 21.2525MHz crystal onto the PLL PCB in crystal position X2.

PTOS006A0X board

If you own a set with the PLL PCB numbered PTOS006A0X, or a Multimode II or Jumbo set, the required band crystal is selected by connecting terminal 4 on the same PCB via the band switch to either terminals 5, 6 or 7, the old wiring having been removed from the set. Connect terminal 4 direct to terminal 5.

The band crystal oscillator operates on half the frequency of the other models so the crystals will be half the value of the other band crystals. For the six metre modification you will require a 10.62625MHz crystal which should be installed in the X2 position. Also, remove the wires from the terminals 1, 2 and 3 which are connected via the band switch to terminal 1 which is the set earth. These wires select the appropriate crystal trimming capacitor for fine tuning to the correct frequency. When ordering the new crystal, the specification required will be 10.62625MHz, fundamental mode with about 28pF load and a tolerance of +/− 20ppm at 25°C.

In these models the oscillator frequency is doubled by the tuned circuit T1, the secondary being indirectly connected to the input of the mixer circuit formed by part of IC2. To adjust the crystal frequency a digital frequency counter and an oscilloscope is required.

Logic Modification

Before you adjust the crystal oscillator, you will need to make one modification. In the standard set, the frequency of the oscillator is altered by adjusting the small trimming capacitor which is in series with each crystal. The cold end of the three trimmers are connected together and coupled to earth via a single common trimmer which has a switching transistor connected in parallel, on USB, AM, and FM, this transistor conducts — shorting out the common trimming capacitor. On LSB the transistor is turned off and the frequency of all three crystals can be lowered by adjusting the common trimming capacitor. It was mentioned earlier that because we are now adding 10.695MHz in the transmitter mixer, we do not experience inversion of the side bands so for the six metre modification it will be necessary to increase the frequency of the band crystal oscillator by 1.5kHz on LSB. Therefore, the logical level being fed to the switching transistor needs to be inverted.

PTOS110A0X board

With models containing the PTBM121D4AX PCB (which also use the separate band crystal oscillator board PTOS110A0X) the switching transistor is Q2 which conducts on LSB. It will be necessary to invert the action of the switching transistor Q2 by adding an inverting transistor to the PTOS110A0X PCB. The original switching circuit is shown in Fig. 7a and this can be modified using a BC108 transistor inserted between terminal 3 and the base of Q2 as shown in Fig. 7b. With the set switched to LSB and a digital frequency counter connected to test point TP3 (near IC2) adjust CT5 for a frequency reading of 21.2525MHz then re-check the LSB setting and adjust CT5 if necessary. Remember that the front panel LSB position is actually USB for the six metre conversion and the lettering should be changed.

PTSY016A0X board

If your set contains the PTSY016A0X PCB, then you will still have to invert the switching logic; the original circuit for the band crystal oscillator is shown in Fig. 8a.

The logic can be inverted by soldering in a BC108 transistor between the input terminal marked BL and the base of Q5 (the switching transistor) as shown in Fig. 8b.

PToo006A0X board

If you own a set containing PToo006A0X PCB, the logic level is inverted using a BC108 inserted between the input terminal marked L and the base of the switching transistor Q5 as shown in Fig. 9a. Fig. 9a shows the original circuit.

The additional logic inverting circuitry can be constructed above the component side of the PCB. The test point for measuring the crystal oscillator frequency varies from one model to another; it is TP3 for the PTBM059C0X and the PTBM121D4AX and TP1 for the PTBM-125A4X board. To peak the crystal oscillator output simply connect the oscilloscope to the appropriately test point and adjust T1 for maximum reading. Re-check the crystal oscillator frequency and re-adjust the trimmer capacitors if necessary.
VCO Tuning

The next stage of the modification is to tune the VCO so that the phase lock loop will 'lock'. This is done by monitoring the DC voltage feeding the VCO capacitance diode. Ham International have provided a test point for this; on the PTBM-121D4X PCB it is TP1, TP2 on the PTBMO59C0X PCB and TP3 on the PTBM125A4X PCB. Connect the 'scope to the test point (which can be found adjacent to the VCO tuning 'block' near the front left hand component side of the PCB) and set the Y amplifier to 1 volt per division with the trace at the bottom of the display graticule.

With the set on channel 1 low band, adjust the VCO core (with the correct trim tool) until a reading of approximately 4.0 volts is obtained. Now tune the set to channel 11 mid band and observe the VCO voltage, it should be about 2 volts. The VCO voltage will decrease as the channel number is increased between channel 1 low band and channel 11 mid band. Ensure that the VCO voltage does not drop to zero or reach 5.6 volts, the value of the supply voltage feeding the PLL chip. The loop should now be locked. If for some reason you cannot obtain lock, it is worth checking to see that you have the correct logic value on the programme lines feeding the PLL chip.

Ten Metre Tuning

At this stage it is worth making sure that the modification has been successful so far. No alteration has been made to the transmitter circuitry so it should be possible to tune the transmitter up onto ten metres to check it out. Fig. 10 gives the values of the various operating frequencies for each channel, together with the corresponding frequency on ten and six metres. Channel 1 low band, should be on 28.91MHz and channel 11 will be on 29.11MHz.

The transmitter can be quickly tuned to ten metres; with an SWR meter and 50 ohm dummy load connected to the aerial socket, key the transmitter on channel 26 low band using AM or FM and adjust L11, L12, L13, and L14 for maximum power.

With the set tuned to channel 1 low band, adjust T3 and T5 for maximum power, then switch to channel 11 mid band and adjust T2 and T4 to obtain maximum output. Repeat this procedure until there is no further improvement. If you have tuned the transmitter correctly, you should now find that the power will not vary by more than about 3dB over the selected frequency range between channel 1 low band and channel 11 mid band. Now T2 and T3 will not have to be re-tuned when the set is re-adjusted to operate on six metres, and it also shows that the modification is working so far.

The transmitter tuning procedure given is intended for rigs with PCBs PTBM059C0X and PTBM121D4X. For sets with a main PCB number PTBM125A4X (eg a Lafayette 1800 or Colt 1600DX) you will find that the two band pass filters comprise of T1 & T2, and T3 & T4. Adjust T2 and T4 on channel 1 low band, and T1 and T3 on channel 11 mid band. The remaining tuned circuits (T5, L13, L15, and L16) should be tuned for maximum output on channel 26 low band. The transmitter section of the set should now be fully tuned on ten metres.

6m Mods — rewinding T4

The band pass filter located on the output side of the transmitter mixer consists of two separate tuned circuits T4 and T5 coupled by a small value capacitor, the two coils are wound on Toko 10K coil formers with the terminal connections as illustrated in Fig. 11a. The coil former bobbin is shown in Fig. 11b, and consists of three separate areas. You may find that some bobbins will contain four separate areas, in which case, ignore the winding area at the top of the bobbin. T4 was unsoldered and removed from the PCB, the screen cover was removed revealing the coil former by a plastic pot core which acts as a spacer between the metal screen and the coil former.

For 6m use the internal 82pF capacitor must be removed and replaced by a 40p component. Referring to Fig. 12, L1 will consist of three turns, L2 will be one turn and L3 is not required. To wind the new value of T4, either completely strip the windings from the original or start with a new coil former. Using 36swg wire, start by winding L2. The winding starts on terminal 1, wind one turn clockwise onto the middle section of the coil former and terminate the winding on terminal 2. Next wind L1, which starts on terminal 2; wind 3 turns clockwise onto the top section of the coil former and terminate the winding on terminal 3. Remember when re-assembling the screen a plastic shaped pot core is used as a spacer between the coil former and the screen can.

Fig. 7 PTOS110A0X PCB before (a) and after (b) modification.

Fig. 8 PTOS110A0X PCB with modification.

Fig. 9 PTOS006A0X PCB before (a) and after (b) modification.

please mention HRT when replying to advertisements.
Rewinding T5

The new T5 can be wound using a similar approach, note that the original coil former of T5 is surrounded by a ferrite pot core. The value of the internal capacitor in T5 will become 40pF, L1 will consist of two turns, L2 will be one turn and L3 should have two turns.

Proceed as follows:— using 36swg wire, start winding L3 from terminal 4; 2 turns are wound clockwise on to the bottom section of the coil former and the winding is terminated on terminal 5. Next wind L2, starting on terminal 1; 1 turn is wound clockwise onto the centre section of the coil former and is terminated on terminal 2. Finally, wind L1 starting on terminal 2, winding 2 turns clockwise onto the top section of the coil former and terminating the winding on terminal 3. When reassembling the screen can, do not forget to replace the ferrite pot core.

When the coil former has been re-soldered back onto the PCB, a 38pF capacitor can be added to the track side of the PCB (across terminals 1 and 3) to replace the original internal 82pF capacitor.

Rewinding T6

The next stage of the modification is to rewind T6, Fig. 13. A 47pF capacitor (C49) is soldered to the PCB and this must first be replaced with a 27pF component. The new value of L1 will consist of four turns, and L2 will consist of one turn. However, if you decide to modify the original coil, then you can carefully remove 3 turns from the top of L1 and 1 turn from the top of L2 instead of completely rewinding it. Note that the varnish which covers the coil winding is not heat resistant, and so will not need to be scrapped away before the wire is soldered.

Transmitter Modification

The next stage of the conversion is to tune the transmitter driver and power amplifier stages. The driver stage is tuned and matched to the power amplifier by a Tee network consisting of C54, C55 and L8. For the set to operate on six metres it will be necessary to change the value of these three components. C54 is an 82pF capacitor which was changed for a 33pF, C55 a 220pF capacitor is replaced by a 100pF capacitor and L8 (originally 3.5 turns) has one turn removed. The output of the power amplifier is matched to the 50 ohm load by an L network which consists of three coils L12, L13, and L14 plus capacitors C56, C57, C58, and C59. L12 (4.5 turns) has one turn removed. L13, consisting of four self supporting turns needs to be rewound with only two turns. L14 (2.5 turns) wound on a 6mm diameter coil former, must have one turn removed.

Capacitor C56 (150pF) will need to be replaced with an 82pF component; C52 (560pF) should be replaced by a 270pF; C58 (470pF) needs to be replaced by a 220pF and finally replace C59 (270pF) with a 100pF capacitor. You may also find a capacitor placed in parallel with L13 which should be replaced by a 22pF component. In some sets you will find a self supporting coil and a 150pF capacitor soldered to the aerial socket, in the six metre design, this low pass filter will need to be removed and the aerial socket connected directly to the PCB.

Transmitter Tuning

The transmitter stages of the set can now be tuned for maximum output power. First we need to tune T4 and T5 which forms the band pass filter on the output side of the transmitter mixer circuit. With a dummy load and SWR meter connected to the aerial socket, adjust the tuning core of T5 on channel 1 low band for maximum output then switch to channel 1 mid band and adjust T4 for maximum power. Repeat this exercise several times until no further adjustment of the tuning cores is required. Remember that you do not have to adjust the tuning cores of the band pass filter formed by T2 and T3.

Next, switch the set to channel 26 low band, the set should now be operating on 50.25MHz, the middle of the amateur six metre band. Now adjust the tuning cores of T6, L8, L12, and L14 for maximum power. You may find it necessary to adjust the value of L13 by increasing the spacing between the turns using a trimming tool. Re-check the output power between channel 1 low band and channel 11 mid band. The output power level should be reasonably constant between 50.00MHz and 50.50MHz. If not, then you will have to re-tune the band pass filter formed by T4 and T5.

The author used a Bird Thruline Wattmeter and recorded an output power of 1.6 watts. If you should find that your output is below 1 watt, then it is possible to increase the output power by making an adjustment to the transmitter mixer tuning. Remove L3 (a coil wound on a resistor) and replace it with a coil consisting of 20 turns close-wound using 36swg enameled wire, secure the turns with nail varnish. A 100k, ¼ watt resistor will make a suitable former. We will also need to change the value of C37 to a 45pF capacitor and C38 to a 33pF capacitor which will increase the gain of the transmitter mixer circuit and hopefully should have increased the drive to the power amplifier stage and consequently the output power.

You may have been a little confused to find that the tuning coils numbered in your set does not correspond with the numbers given by the author above. The reason for this is that the author’s set, a Ham International Highgain V contains a main PCB numbered PTBM121D4X which is also similar in component
Receiver Tuning

The receiver front end consists of three tuned circuits, T9, T10, and T11, numbered T7, T8, and T9 in sets with a PTBM125A4X PCB. An investigation of T9 in the authors set revealed that the coil former contained two windings L1 (10 turns) and L2 (3 turns), both covered by a ferrite pot core. For six metre use L1 will need to be five turns and L2, two turns.

The coil former can be rewound, or a surplus Toko 10k coil former obtained from a scrap CB set. Using 36swg enamelled wire L2 starts on terminal 4 and two turns are wound clockwise onto the bottom section of the coil former with the winding terminated on terminal 3. Next wind L1 starting on terminal 1, three turns are wound clockwise onto the middle section of the coil former followed by two turns wound clockwise onto the top section, the winding is terminated on terminal 3. When reassembling, remember to insert the ferrite pot core before replacing the screen can.

Rewinding T10

T10 should be unsoldered from the PCB and the screen can carefully removed to reveal a plastic spacer. These are three separate windings L1, L2, and L3 as illustrated in Fig.12, but note that the latter is not used so it can simply be removed. The internal 85pF capacitor should also be discarded at this stage. To wind the new coil, either use a Toko 10k series former or the original component (with the old windings removed of course!) and proceed as

Fig. 10 Various operating frequencies for each channel selected

please mention HRT when replying to advertisements.

HAM RADIO TODAY JULY 1987
two turns, clockwise onto the top section of the coil former, terminating on terminal 3. Add a further one turn clockwise onto the top section of the coil former and replace the screen can. Solder the coil back into the PCB of the set and solder a 39pF capacitor across terminals 1 and 3 on the track side of the PCB. All that remains to do now, is to tune up the receiver front end.

After the rewind, place the plastic spacing piece over the top of the coil former and then replace the screen can and solder the coil back onto the PCB. Finally, a new tuning capacitor of 39pF can be soldered between terminals 1 and 3 on the track side of the PCB.

Rewinding T11

T11 is removed from the PCB and the screen can carefully removed to reveal a ferrite pot core covering the windings. Remove this core, discard the internal capacitor and the existing windings before proceeding.

The first winding to be wound is L2 (see Fig. 13a). This winding starts on terminal 5, and one turn of 36swg wire is wound clockwise onto the bottom section of the coil former with the winding terminated on terminal 4. Finally wind L1, starting on terminal 1, winding two turns of 36swg wire clockwise onto the middle section of the coil former and adding a further one turn clockwise onto the top section of the coil former, terminating on terminal 3. After the winding has been completed, place the ferrite pot core over the top of the coil former and replace the screen can. Solder the coil back into the PCB of the set and solder a

<table>
<thead>
<tr>
<th>Channel</th>
<th>Low Band Address</th>
<th>Data</th>
<th>Mid Band Address</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>07 F4 00</td>
<td>B F18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>07 E3 F0</td>
<td>B E17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>07 D3 E0</td>
<td>B D16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>07 B3 D0</td>
<td>B B15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>07 A3 C0</td>
<td>B A14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>07 B3 A0</td>
<td>B 913</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>07 B3 A0</td>
<td>B B12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>07 B3 00</td>
<td>B 611</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>07 04 00</td>
<td>B 40F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>07 03 00</td>
<td>B 30E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 The Eprom memory address/data codes required to blow your own Eprom

follows. Start by winding L2 beginning from terminal 1 with two clockwise turns wound onto the middle section of the former, finishing up on terminal 2. Next wind L1 beginning from terminal 2, winding two turns, clockwise onto the top section of the former and terminating the wire on terminal 3.
Although by the time this is read it will already be half-way through the year, my new copy of the "World Radio TV Handbook", 1987 edition, has recently arrived on my desk. This annual publication is a must for anyone interested in DXing on the broadcast bands, or just in listening to specific stations.

The WRTH

The "World Radio TV Handbook" (or WRTH as it is more usually called) contains almost 600 pages of all sorts of information on radio and television stations around the world, including their operating times and frequencies, some details of their programmes, their management personnel, their publications, QSLing policy and much more besides. There are several pages of introduction in English, French, Spanish and German, the rest of the book being solely in English. There are articles on predicted solar activity in 1987, details of international broadcasting organisations and religious broadcasting organisations and lists of the estimated number of radio and television receivers in each country. There is also an article on propagation by George Jacobs, WJ3ASK, a retired Voice of America engineer and propagation expert.

The major part of the book, though, is taken up by a country-by-country listing of all known radio stations (and a smaller section, with less detail, is a country-by-country listing of television stations). Taking a country at random, the Seychelles, we see that the local time is GMT+4 hours, the languages used there are Creole, English and French, the electric current is AC 50Hz, 230 volts, and that there are two radio stations, "Radio Television Seychelles" and the "Far East Broadcasting Association" (FEBA).

The WRTH — a must for all keen broadcast listeners.
For each of these stations their address is given, their telephone number and cable and telex information. The names of their directors, chief engineers are also given, in addition to the frequencies used, the times of broadcasts, all the languages used (FEBA uses 22 languages including such well-known tongues as Oromo, Tigrinya and Telugu), the powers of the transmitters and even the geographical co-ordinates of the transmitter sites.

A useful aid in identifying radio stations is that the actual words used in the station identification are sometimes in many languages. For example, if you think you might have logged the Somali Broadcasting Service, with a weak signal and over-ridden with QRM, it is useful to know that their station identification is "Halkan wa Radio Muqdishu" in Somali, or "Huna Mogadishu idha'atu-l-gumhuriya . . ." Bearing in mind that some countries have a multiplicity of radio stations (there are 426 commercial stations listed in the USA and the entry for Brazil lists no fewer than 1156!) it is not surprising that the WRTH cannot give as much detail for every station in the book. However, almost any station you are likely to hear on short wave, medium wave, or long wave is listed by frequency, and the address is given for all of them.

At the back of the book are separate frequency listings, giving the power of each transmitter (where known) of long and medium wave stations in Europe/Africa/Middle East, East Asia/Pacific, North America, Central and South America, and finally a world-wide frequency listing for all known short wave stations. Since most international broadcast stations change their frequencies four times a year (some more frequently, others less so) most of this listing above 6MHz can be taken only as a very approximate guide of what is on any specific frequency, but where it is extremely useful is on those frequencies around 3.2 and 4.7MHz, the so-called tropical bands, where stations are generally broadcasting for internal audiences and where most stations use the same frequency for many years.

Finally, there is a section reviewing some of the new receivers currently on the market, an article about the work of the BBC Monitoring Service and an article about some of the world's clandestine radio stations.

The WRTH is up-dated and thoroughly revised every year. However, by the time it is published it is always at least a little out-of-date in as much as stations do change frequency very often. Having said that, the WRTH is probably the best guide anyone could wish for to what is on the short wave bands, anywhere. Anyone at all interested in this aspect of the hobby should get a copy, though probably only the real enthusiasts would buy one every year. For the average radio amateur or SWL perhaps one every two or three years would be more like it. For the really keen SWL, who has to know the complete Turkish-language schedule of Radio Budapest, the WRTH does, however, publish a series of up-dates in the form of the WRTH Newsletter.

One station that just got into this year's WRTH, though its entry states that it was under construction at the time of editing, is WCSN, with studios in Boston, Massachusetts, and a single 500kW transmitter at Scotts Corner, Maine, in the USA.

WCSN — a new service

WCSN in fact only started regular programmes on 1st April this year. The station is operated by the Christian Science Monitor organisation which, despite the name, is basically a news organisation, publishing the highly influential Christian Science Monitor newspaper. They pride themselves on being a completely independent and objective organisation and that their news programmes are totally un-biased. When I heard them, a few days after the start of regular programmes, they were putting out an enormous signal on 15270kHz at 1600-1800 GMT, and asking for reception reports to be sent to "World Service of the Christian Science Monitor", PO Box 860, Boston, MA 02123.
USA. They also announced further transmission times as 2000-2200 on 9465kHz and 0000-0200 on 7365kHz, though this may well not be the complete schedule. Apart from the news on the hour, which did indeed seem to be very detailed and objective, I heard a mailbag-type programme, in which they acknowledged letters from listeners and answered queries about their organisation. As I understand it, this organisation also now owns radio station KYOI, which is on Saipan island in the western Pacific. At present KYOI broadcasts rock music for young Japanese listeners, though it seems possible that it may also start to carry “World Service of the Christian Science Monitor” programmes at a later date. Meanwhile, however, a recent report on Radio Sweden International’s “Sweden Calling DXers” programme said that KYOI was broadcasting at 0200-0800 GMT on 17775kHz and at 0800-1700 GMT on 11900kHz.

Re-vamp for BBC World Service

Most listeners to the BBC World Service in England tune in on 648kHz medium wave. This comes from a 500kW transmitter at Orford Ness in Suffolk, on the east coast of England, and is intended primarily for listeners in Belgium, Holland, northern France and north-west Germany – although once when on a motoring holiday in Europe I listened to this transmitter with excellent reception even in the middle of the day almost as far east as the East German border, and a long way south in Germany. A note in the May edition of the BBC’s “London Calling” publication says that as from May 9th there will be a far smoother blend of programmes from BBC World Service to BBC French and German and “English-by-Radio” lessons on this frequency.

The new service is called simply “BBC 648” and will be from 0300-0600, 1030-1100 and 1615-1900 GMT. BBC French, German and English-by-Radio programmes have always been carried on 648kHz, so what the new “BBC 648” service is, remains to be seen as I write this just before Easter. At times other than those above, normal BBC World Service programmes will be carried as at present. This transmitter is on the air twenty-four hours per day.

BBC World Service listeners have been deprived of their feedback programme since “Letterbox” was taken off the air, amid many complaints from loyal listeners, a year or two ago. Also in May though, a new programme called “Write On” and presented by Paddy Feeny will be introduced. It is intended to give listeners a chance to air their views on BBC World Service programmes — a sort of world wide “Points of
The BBC is planning some changes for its 648kHz service.

View". The producers are inviting listeners to write in with their comments, and to give their phone number, so that the listeners themselves can then be interviewed on the air by the programme-makers. It sounds quite a novel idea and I look forward to hearing how it develops.

The programme can be heard at 2315 GMT Wednesdays, with repeat broadcasts at 1445 GMT on Thursdays and at 0730 GMT on Fridays. All these programmes can be heard on 648kHz, with the two repeat airings also on the long-time BBC favourite frequencies of 5975, 9410, 12095 and 15070kHz, as well as a number of others.

WARC 'intruder' resolution

Listeners to Radio Netherlands' "Media Metwork" programme, as well as Radio Sweden International's "Sweden Calling DXers" and other DX programmes, can't have failed to have notice that there has recently been another WARC, or World Administrative Radio Conference, taking place in Geneva. For the radio amateur, perhaps the most welcome resolution has been that the IARU, the International Amateur Radio Union, has persuaded delegates to prohibit broadcasting in the 40 metre amateur band, between 7000 and 7100kHz. What effect this will have on the many broadcasters who are intruders into this band remains to be seen, but at least it is a most welcome step in the right direction.

AM to be phased out

In order to reduce the terrible congestion in the broadcast bands (which, incidentally, is at its worst when, like now, we are at the bottom of the sunspot cycle and stations have all crammed into the 31, 41 and 49 metre-bands) ordinary double sideband AM transmissions are to cease before the year 2016. Instead, SSB transmissions will become the norm for broadcast stations as well as amateurs on the short wave bands. The change-over will be done gradually, with stations reducing the level of carrier by first 6dB and later 12dB. I would guess that initially stations using several frequencies simultaneously will put out one frequency in SSB, while the others remain in the AM mode, until listeners get used to resolving the new form of transmission. Some stations, such as Radio Austria International and Radio Sweden International have already experimented with SSB transmissions within the broadcast bands (as opposed to SSB "feeders" used for getting signals to relay stations, which Radio Moscow and the BBC have been using for many years) and several other stations are expected to follow suit in the near future.

It does not compute!

One subject that was apparently much discussed at the WARC conference in Geneva was the idea of using a computer to allocate frequencies to broadcast stations, which they would then be obliged to use, instead of the free-for-all that exists at present. It seems that there are just too many transmissions for the available number of frequencies, assuming 5kHz spacing, and so the idea was not a great success; the computer would allocate your station a time-slot for a specified language, but would refuse to allocate you a frequency if there were not enough to go round. Another problem was that the computer worked on an hour-by-hour basis. This is fine if your station's transmissions are an hour or less in duration, but for those stations which broadcast for many hours at a time in one language — or like the BBC World Service and Radio Moscow World Service on the air twenty-four hours a day — it is clearly unacceptable to expect listeners to re-tune their receivers every hour on the hour just because the WARC computer says its time for a move!

So, after much argument, a compromise was reached, and that is that everything should continue as it is at present until about 1992, when there would be another WARC conference. Meanwhile, the boffins were going to go away and improve the computer programme, to take into account transmissions of greater than one hour duration and the problem of no frequencies at all being allocated for certain transmissions. Then the computer would be tried on part of the short wave spectrum, to see if it works in practice, while the remainder of the spectrum was allocated as at present.

I can hardly wait until the 1990's to see if the Geneva computer really helps with the overcrowding on the short wave broadcast bands. By the time it comes into effect, though, we will be on the crest of the sunspot cycle and overcrowding will not be the great problem it is at present!
STAR CMOS KEYER

STAR-MASTERKEY. CMOS MEMORY KEYER

MEMORY LOADING SPEED WEIGHT
LOAD 1 2 3 4 5 6 7 8
SEND

TUNE OFF MON

Initial Setting Up

On obtaining one of these keyers, the first thing to do is flush the memories of any odd characters which may be stored in them. After this has been done, reset the speed control to the normal setting and press the desired memory button. Memory scanning will start at once, so start keying your message straight away or you will lose space. In the LOAD position morse input is not transmitted while the memory is loaded.

If you complete your message before the LED goes out, wait until it does before moving on to the next memory. I was rather dubious about not knowing exactly when the memory would be filled, until it had, but after practicing with it for a while I soon got used to it. After loading the memories as necessary do not forget to put the toggle switch in the SEND position before selecting memories again, or the contents will be lost. Sounds obvious? Yours truly erased messages more times than he cares to remember initially.

In the SEND position any keyed morse will be transmitted and memories can be transmitted simply by pressing the appropriate red button. Memory transmission can be halted at any time by momentarily pressing the paddle. To give an example of what can be stored in the memories, the following were programmed by myself while testing the keyer.

(1) CQ CQ CQ CQ DE G3ZPF G3ZPF G3ZPF AR K
(2) NAME DAVID DAVID QTH NR DUDLEY NR DUDLEY
(3) RIG TS930 TS930 ES ANT INV VEE INV VEE APEX 30 FEET
(5) TEST TEST DE G3ZPF G3ZPF

There are a few home-grown alternatives to imported electronic morse keyers — Dave Reynolds, G3ZPF, takes the Dewsbury memory keyer for a test run.

which proved popular from the moment it was introduced. It was inevitable that a memory version would follow, and recently I was asked to put it through its paces for ‘Ham Radio Today’.

The unit comes in packaging which should survive the rigours of the postal system with ease, and first impressions on opening it were how smart it looked in its black and gold livery. The appearance of a fairly simple case has been improved dramatically by the addition of a screen printed front plate. An A5 handbook is supplied with the unit which gives operating instructions in some details, but does not (unfortunately — Ed.) include a circuit diagram.

The keyer retains all of the features of the basic Masterkey and adds no less than eight memories, each of which can store about 50 characters. The precise number of characters which can be stored will depend on the message as the length of morse characters varies, but the quoted figure seems a realistic estimate.

The unit measures 153mm wide x 78mm high x 197mm deep, and is supplied with four AA batteries already fitted. Sidetone is variable in both pitch and amplitude, and the keyer will operate rigs with either direct or grid block keying which makes it suitable for either solid state rigs such as the TS930, or valve rigs like the Yaesu FT101ZD. As supplied the speed range is from 7 to 42 words per minute (wpm).

In these days of oriental domination of the Amateur market it is rare to see a British made unit which competes not only in performance but also in appearance and price too. Some months ago, Tony Dewsbury started making the ‘Star Masterkey’...
G3ZPF TEST TEST TEST DE G3ZPF TEST

The reason for putting the 'test' message in memory 5 is that with the auto character space switched on, memories 1 and 5 will repeat endlessly until the paddle is pressed momentarily. Auto character spacing is selected by the toggle switch to the left of the speed control.

In Use

One of the first things I discovered when trying out the keyer was how rusty I had become as I now exclusively use a straight key. Consequently a good deal of time was spent off-air getting used to it before venturing on to the bands. It keyed my TS930 and TS520 perfectly, and seriously tempted me to give up using a straight key for good. The only problems with sending were all due to myself, and I can thoroughly recommend this unit to anyone looking for a memory keyer, especially as it is only about 50% of the price of many comparable imported units.

The only criticism I have to make is that it would have been nice to have had a pause facility on memories, to allow insertion of RST into messages for instance, and to have been able to 'chain' memories together for longer messages, but having said that I've yet to come across a keyer that does, apart from microprocessor based devices.

Comments

This model does not supersede the original keyer, which continues to be produced at £54.70. Those readers requiring the extra facilities of the CMOS Memory Keyer will need to find £95.00 incl. with p&p for both devices being £3 extra. You will also need a paddle unit to go with these keyers, and a variety can be obtained, varying from £17 to about £120 (!!).

I would like to thank Dewsbury Electronics of Stourbridge, for supplying the review unit.
The AOG aerial was a well-known type in pre-war days, and is almost as common in 1987, though perhaps a bit less understood and blessed with a different name, 'AOG' in fact stands for 'Act of God' and sums the type up admirably. 'Best Bent Wire' was another name, often used for checking one's morse keying too; Random Length Wire would serve well enough, but we draw the line at calling it, as so many do, a Long Wire. Properly, a wire used as an aerial is a long wire if it is more than a half-wave long; thus it is right to call a 66-foot long wire if you are talking about 14MHz operation, but not if you are discussing 1.8, 3.5, or 7MHz. This can lead to such a question in the club Quiz as to 'When is a 66' long wire not a long wire?'

A typical AOG aerial

Clearly, if you have an AOG aerial situation, you are in fact 'making the best of a bad job' and that approach guides your whole thinking. For example I have a garden rather less than 26' x 20' plus an embargo on aerials. Thus, my AOG is totally conditioned by that and the fact that my shack happens to be in the small bedroom, which in this house is at the back. Clearly, my AOG requires a second AOG — it must become invisible!

The next design parameter was defined by the presence of a reel of 28 swg wire in the junk box, along with a reel of garden string and some drawing pins. Thus, the aerial took shape; from the standoff insulator terminal on the ATU, straight up to the ceiling where it is retained by a drawing pin, along the room to the window (supported by another pin) through the wooden window frame on the 'local' net, where most people are 15-25 miles away, I seem to have the biggest signal.

How to feed an AOG

In order to feed an AOG, you need an ATU, and an earth. My ATU has been feeding numerous versions of the AOG, from various homes, for some thirty years. More of this ATU in a moment. On the earth side, I have driven a spike into the ground, but radiating from the top of the spike there are around thirty radial wires, each buried about two inches below the surface for the sake of the mower blades. In addition, there is one insulated counterpoise wire which runs along the floor, under carpets, bent to fit the space — out of the shack, along the landing, round a bedroom, and so forth. Heaven knows how long it actually is. At the shack end it is connected to the earth terminal of the ATU. The outside earth is brought up to the shack by using the braiding from an old length of coaxial cable which had weathered beyond further service as coax; with the braid and the inner joined at each end to give a low-resistance connection.

Don't forget that the earth lead has finite length, and so in this case it forms part of the overall aerial system. Thus, if you are on the first floor and thinking of operating on say ten metres, you may find that the earth lead length is a quarter-wave or multiples thereof long, in which case you get awful RF problems. An RF burn off the mike case is painful, and forces you to solve the problem; either by 'tuning' the offending lead to be series resonant, or by simply changing the length, or by adding a quarter-wave counterpoise under the carpet, rather similar to the random
one just described above. Be quite clear though — the more time and energy you spend on the earthing arrangements, the better the aerial will perform, and that goes for any aerial fed against earth, Marconi-fashion.

The tuning unit
When it comes to these feeder-less systems, you want the ATU to be as flexible as possible; while commercial 'anything-to-anything' systems may work on one band or another, they probably won't play on all bands, or even the ones you want. Thus, one must make one's own. First, find a suitable case. Minffordd at Festiniog is one possibility, or you can bend one up yourself, using the vice, a couple of bits of wood, a hammer, and some nuts and bolts, or self-tapping screws. For the coil, you go to the local garden and DIY shop, and look at the PVC pipe they insist on selling as guttering downspout when it is obviously coil former!

Now wind some wire onto it. If you have a grid dip oscillator (GDO), the easy way is to tack it across the tuning capacitor to be used in the ATU, and then 'dip' the tuned circuit to satisfy yourself it will cover the 160x1.5 = about 240pF, or 15pF on 28MHz. It isn't over critical though; on Ten stray capacitance plus the residual capacity at minimum will probably swamp your target, while on Top Band you might be scratching for a big enough value with adequate spacing between rotor and stator vanes. Which leads us neatly to the question of plate spacing! Obviously, if the aerial is not connected and 400W of RF are poked into the input, there is no loading, lots of volts, and almost certainly a strong smell of ozone will ensue. On the other hand, with a low-impedance aerial connected across the coil (say, 50 ohms) so that the loaded 'Q' is down to about 4 as we want it, then the voltage across the coil at resonance will be that much less — and if we tune up on very low power first, that means we can reduce plate spacings.

To remind you of RAE and all that, at resonance $f = \frac{1}{2\pi LC}$ and $Z = \frac{V}{I}$, both for a perfect tuned circuit. The practical tuned circuit has resistance so I increases from zero and Z reduces from infinity. What it boils down to in practice is that you'll have to do a bit of 'bodging' on Ten because the capacitor won't be small enough and you'll possibly have to scratch for a big enough plate spacing and maximum capacity on Top Band. As for the other bands you can probably get away with what you have. For example, on Top Band where my aerial is low impedance, I have 'got away' with a capacitor of the sort that appeared in AM/FM radios of the valve era and 100 watts peak output, provided that I tune up at ten watts or less; but more recently a nice wide-spaced unit came into my hands at a club junk sale; it goes up to Eighty nicely, but for Top Band I still had to 'bodge' by shunting the variable with a fixed mica capacitor and sticking to lower power. Of course, I could have added a few turns to the coil, had I thought of it at the time. . . .
Now we come to the series capacitor. Two points arise here. Firstly, we have to mount it so it is isolated from earth. Secondly, we want a lot of 'puffs.' My solution at the time was to use a two-gang 500pF broadcast capacitor salvaged from an old pre-War superhet radio. Were I doing it again, I would use the three-gang 500pF which is lying in the junkbox, hoarded for such an occasion. For the aerial terminal, I used a ceramic feedthrough insulator originally designed for feeding an aerial through a window. If I hadn't got that, I would probably end up with a disc of SRBF or glass-fibre PCB material with a bit of studding and nuts each side, mounted in a decent-sized hole in the metal front panel.

We will have a coaxial socket going off to the transmitter side and the earth line is terminated in a solder tag which goes nicely under a panel fixing screw. Finally, a bandswitch. Mine was a three-wafer ceramic switch, with nine ways on each wafer, of the old-fashioned 'standard' Yaxley size. If you bear in mind the need for low power in tune-up, you can get away with a smaller size, but never ever, 'hot switch' an ATU bandswitch. For one thing it will not do the switch any good, and for another the sudden change of loading on the transmitter will surprise the PA valves, or wreck the PA transistors; either is expensive!

Most people can accommodate dipoles for 14/21/28MHz around the place, so the ATU isn't normally used on those bands. If that is the case, then you won't use all nine ways, in which case you could add a couple of coaxial sockets, and use them to switch straight through, so you can keep both the AOG and the dipoles available at the flip of a switch. My own version contains a dummy load too. Thus mine goes; coaxial 1, coaxial 2, dummy load, AOG 160, AOG 80, AOG 40 as you go round the switch, plus some spare positions. A short flex lead terminating in a croc-clip and long enough to reach any turn on the coil comes off the last wafer position and is 'stowed' tidily; this is used for setting-up.

The circuit

Now look at Fig. 1, VC1 is the tuning capacitor, VC2 acts as a...
Mounting of VC2 involves insulating both sides from earth. To achieve this, my own method was to make a perspex 'foot' for the capacitor, with deep counterbores for each fixing screw joining perspex to capacitor. The perspex was then screwed in the same manner to the mounting bracket, and the bracket in turn to the back of the front panel. Where the splice came through the front panel, the panel hole was given a big enough hole to handsomely clear the spindles all round. For the knob, use one without a grubscrew, such as you'd get from an old AC/DC domestic set or a TV. I have had an RF arc between my finger and the grubscrew while tuning, before I went for the right type!

Setting up
Imagine we are looking at eighty metres. Firstly tune up the rig into a dummy load; back off the drive to a mere whiff, and switch to receive. Connect the ATU, rotate S1 to the croc-clip lead position. Join VC2 and the aerial to the top of the coil and tune VC1 and VC2 for a 'peak' in receive bearing in mind that they interact. Turn the transmitter on at low power and using an SWR meter tune for zero return. Do not touch transmitter tuning at all during this. Once you have found this setting, see whether the ATU tuning is 'flat' enough for both VC1 and VC2. Turn to full power and look for distress signals. There should be none. Now wire the settings from the switches to the coil properly, disconnect the croc-clip leads and repeat the test to insure that all is well. Then start again for the next band.

If you can't find the peak either on receive or transmit, you will probably find yourself either 'wanting more C' or the converse; if you seem to need more capacitance at VC1, add more turns to the coil, or vice versa. (Yes, that's right — think it out for a tick!). Check that the capacity of VC1 at midband looks about right by eye; try tapping the aerial down the coil then try tapping VC2 down the coil until you are happy. Don't forget: 1. To go to receive before you move clips or solder connections and 2. To give the PA plenty of rest, 6146s in a fanned rig can run for 30 seconds or more at low power, then allow a minute or so for cooling. I have found that I can adjust the settings for 160/80/40/20 from scratch in about thirty minutes or less using this method. I have always had an end-fed at every QTH no matter what other aerials have been in use and this ATU design and tune-up procedure has loaded everything offered to it over somewhat in excess of thirty years.

In use on the bands, either tune up on low power, or alternatively note all the settings; then when you QSY from 80 to 20 for instance, you just pre-set the ATU control if you are still on receive, and switch to send for a touching-up operation only.

COMPUTERS AND RADIO

** Improve computer decoding of RTTY, CW & SSTV signals

The use of suitable audio filters and constant level amplifiers is guaranteed to improve the ability of your computer to decode audio signals. The following range is suitable for use with such audio programmes

<table>
<thead>
<tr>
<th>Filter</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTTY only (loumber but fully built & tested)</td>
<td>£6.00</td>
</tr>
<tr>
<td>CW only (loumber but fully built & tested)</td>
<td>£7.00</td>
</tr>
<tr>
<td>RTTY/CW (boxed, fitted with jack socket)</td>
<td>£11.50</td>
</tr>
<tr>
<td>RTTY/CW (elipto with tuning LED)</td>
<td>£13.50</td>
</tr>
<tr>
<td>RTTY super: This unit has an adjustable constant level output; No need for constant adjustment of volume control</td>
<td>£19.00</td>
</tr>
<tr>
<td>SSTV supplied boxed, with jack socket connections & constant level output</td>
<td>£18.00</td>
</tr>
<tr>
<td>CONSTANT LEVEL AMPLIFIER</td>
<td>£30.00</td>
</tr>
</tbody>
</table>

When ordering above units, please state software supplier! This will enable us to post you fitting kit!

TERMINAL UNITS

<table>
<thead>
<tr>
<th>UNIT</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECEIVE ONLY (RTTY/CW)</td>
<td>£45.00</td>
</tr>
<tr>
<td>TRANSCIENCE (RTTY/CW)</td>
<td>£75.00</td>
</tr>
</tbody>
</table>

The above units provide Audio, TTL and OCL outputs on Rx. The output level is constant and full output is achieved with inputs between 10mV and 5v of audio. The transcience version is TTL driven and the output level is adjustable.

SPECTRUM TRANSCEIVE

The TX-3 RTTY/CW/ASCII TRANSCEIVE program is now available for the Spectrum. It has all the facilities of the BBC and CBM64 versions and will operate with an interface or T.U.

Forget what you thought you knew about Spectrum direct decode systems. This one will transceive 300 baud RTTY or ASCII at 170Hz shift with only a simple interface. Its performance and facilities outclass other software by a large margin yet it is very easy to use. Some of the features are: Split-screen type-ahead operation, receive screen unwrap, 24 large memories, clock, review store, callsign capture, RTTY auto CR/LF, CW software filtering and much, much more.

The program comes with an adapter board which plugs into the Spectrum expansion port and accepts the interface or T.U. It will work with any 48/128k Spectrum, including the +2. Tape + adapter £35. Users of the CW OSO program can upgrade for £25. BBC and CBM64 program £20 tape, £22 disc.

TIF1 INTERFACE has computer noise reduction, RX filters, TX outputs for MIC, PTT and KEY. Perfect for our TX-3 and RX-4 programs. Kit £15 (assembled PCB + cables & connectors), ready-made boxed with all connections £25 (state rig).

SPECTRUM RX-4 RECEIVE

We now have a version of this amazing program using the adapter board mentioned above. This enables better reception of RTTY/CW/SSTV and AMTOR with any 48/128k Spectrum, including the +2. Uses TIF1 (see above) for all modes or a T.U. for RTTY and CW. Tape + adapter £40. Existing RX-4 users can upgrade for £21. RX-4 is also available for BBC, CBM64 and VIC20 £25 tape, £27 disc (not VIC20). The BBC RX-4 is now completely compatible with the Master Series. Master users may exchange their programs free of charge.

We also have superb BBC, CBM64, Spectrum, VIC20, Electron programs for Morse Tutor £6. Locator £7. Logbook £8 and RAE Maths £9 as well as a great UK/Europe and World Map and Locator for BBC/Electron £10. Any BBC or CBM64 program also on disc at £2 extra.

Prices include VAT and 1st Class Mail Inland, airmail overseas, normally by return. Eire, C.I. BFPO deduct 13%.

technical software (HRT)

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.B.E.L.P</td>
<td>New Road Complex, New Road, Kildare, County Kildare, D13 TAL</td>
</tr>
<tr>
<td>J.P. ELECTRONICS LTD</td>
<td>New Road Complex, New Road, Kildare, County Kildare, D13 TAL</td>
</tr>
</tbody>
</table>

Call us (0533) 653752

For further details of these and our other products send a S.A.E or see earlier advertisements in this issue.
Involvement in amateur radio must be one of the best ways to learn about electronics and radio communications. Despite the fact that it is usually not possible for the average amateur to build all his or her own equipment, a great deal can be learnt by tackling smaller projects.

Ian Poole, G3YWX, assesses some new ideas for some old problems — and points out a new danger to amateurs as well.

Examples of suitable projects appear quite frequently in HRT. Some of these can be built from scratch by buying all the components, making the printed circuit boards or using pin boards and then bashing the metal. However, if kits are available they can be much easier to build, avoiding the mess of making the PCBs, the hassle of finding all the right components and the time taken in doing the metal work. Either way, construction not only teaches electronics but also gives a lot of satisfaction when one says "I built it!".

In addition to actually building equipment there is a lot to be learnt from setting a station up and maintaining it. Although it might just be possible to have little or no technical involvement in putting a station together this is not usually the case. Most amateurs spend a lot of time thinking about the best rig to buy, looking into the type of aerial which will give the best results in the space and generally figuring out all the details of the system.

Then, after all the parts have arrived, the station has to be set up. Everything from making up cables to erecting aerials has to be done. All of this requires more expertise than people might think. All of this is part of self-training in the field of radio communications and this is one reason why many radio companies prefer to employ radio amateurs.

Now to move on to some practical ideas...

Hi-fi interference and toroids

Toroids can be surprisingly useful in many applications. For example they are often seen being used in the output filters of QRP transmitters. However, they find many uses in RF chokes in a whole variety of applications and they can often provide a solution where other forms of choke do not work.

One area in which toroidal chokes can be particularly effective is in treating hi-fi interference. It often happens that RF, particularly from HF transmitters, can be picked up on long speaker leads and presented to the output of the audio amplifier. Sometimes this RF can be rectified directly by the output transistors, but more often than not the RF is carried along the negative feedback network to earlier stages of the amplifier. Here the circuitry is much more sensitive to RF, and even small amounts of pickup will produce nasty noises in the output.

One remedy is to place a small capacitor across the output of the amplifier to bypass the RF to ground. Another solution which is often more effective is to use a toroidal choke. This can easily be made by taking a suitable ferrite ring...
from the junk box and winding the speaker lead four or five times round it. The number of turns will not usually be critical and will usually be limited by the number of times the speaker lead can be passed through the ring.

This method will often cure the problem without the need for modifying the amplifier, and so avoid you making void any warranty. Also you will not arouse the enduring displeasure of a neighbour when he sees you attacking the new hi-fi system with a soldering iron.

Voltage regulators

The need arises quite often for a simple regulator circuit in one form or another. Although one was outlined in the Practicalities which appeared in the Dec 86 issue of HRT, it is sometimes necessary to have a slightly more sophisticated one. It is often useful to have one which provides better regulation, has a sense circuit, and one which can be adjusted to give exactly the correct voltage. The simple emitter follower circuit which was described before had no adjustment and the output voltage depended entirely upon the zener diode.

The circuit which is shown in Figure 3 is only slightly more complicated and its operation is still quite simple. Q1 forms the series pass transistor which is controlled to give the correct output voltage. It is driven by Q2 which acts as a differential amplifier which senses the voltage at point A and compares it with the zener diode voltage. If the voltage at point A is greater than the zener voltage plus the turn on voltage of the transistor then it will cause more current to flow through Q2 pulling the base voltage of Q1 down. This in turn will reduce the output voltage and hence the voltage at A. Similarly if the voltage at A is too low then the output voltage will be raised. This means that the circuit will always try to correct itself if any changes take place. As the gain around the feedback loop is fairly high it means that the amount of regulation will also be fairly high.

For optimum results the value of the zener voltage should be about half the required output voltage and the source impedance of the potential divider should not be too high. A suitable value for a 12 volt supply might be around 1k although this is not critical. The resistor R1 is included to provide sufficient current at all times for the zener diode to operate correctly. Its value should be calculated to give a current flow of between five and ten milliamps for most applications.

Unknown danger

We must all be aware of the more obvious dangers associated with operating and running radio equipment. For example, can anyone out there not know that high voltages, and in particular AC mains voltages are potentially lethal? This is not to minimise the dangers, indeed electrocution continues to claim many lives every year, but the risks are well known. However, relatively few are aware of the risks associated with components containing beryllium oxide.

This substance has excellent heat conductance properties and good electrical insulation. Because of this, it is used in many RF power transistors where large amounts of heat have to be conducted away from a relatively small area. However, it is a hazardous substance and prolonged exposure can cause lung disease, skin disease and nervous disorders. It is unlikely that occasional contact will cause any ill effects, the problems listed being caused in industrial processes where exposure has been over a period of years. All the same, sensible precautions should be taken.

The beryllium oxide, which is a fine white powder, is normally contained by the power transistor's encapsulation, so the first precaution is to avoid breaking the seal of power devices. Normal handling and soldering are perfectly safe, but excessive heat or force should be avoided. If the case is punctured, and any beryllium oxide does escape, be careful not to get it on your skin or to inhale it. If you do get it on the skin, then wash it off as soon as you can. If it gets into a cut or graze, wash very thoroughly, and treat by normal first aid; get it inspected by a doctor to check that it will heal properly. You should also see the doctor if you inhale any of the substance, and we would suggest going along to the casualty department of the local hospital without too much delay.

Trees as aerial towers

Unfortunately there are very few of us who have such a large expanse of land that we are able to choose exactly what aerials we would like with no consideration for size, looks and so forth.
For most of us aerial design is a matter of fitting the proverbial quart into a pint sized pot — or worse. As well as space there are other points to consider too, visual impact and what the spouse will say being major factors! Therefore wire aerials attached to various anchorages such as the chimney or another suitable part of the house and suitably located trees are the norm for most of us.

The use of trees is fine in many circumstances. However, radio amateurs being what they are will try to get the aerial anchorage as high as possible in the tree, and trees being what they are will bend in the wind and more so higher up. So a suitable method of overcoming the movement of the tree and keeping the aerial taut has to be found.

One suitable method is shown in Figure 4. In this system a weight is used instead of a fixed anchor at the end of the line; provided that the pulley causes no undue friction the tension in the aerial will be equal to the weight. Therefore regardless of the movement of the tree the aerial will always have the same degree of sag.

When choosing the weight it should be made heavy enough to keep the aerial taut but not so heavy that the aerial is placed under undue strain with the possibility of failure. In addition, when choosing the point in the tree to anchor the pulley it should be ensured that it is suitably free from nearby branches or other obstacles which may foul the system.

70MHz — THE FORGOTTEN BAND

Class B licensees will soon have access to this unique UK allocation. We show you how to get started for a minimum of outlay using a variety of ex-PMR gear.

PROFESSIONAL VS. AMATEUR

Just how big a gap is there between 'our' equipment and 'their' stuff? We look at one of the Eddystone receivers to see how ham gear measures up.
FOR SALE

FT290R Sommerkamp all mode transceiver as new, boxed, little used with instruction manual, ni-cads, case, charger H98CV. £200. Tel: 061 681 2141.

SONY ICF2001 receiver 150KHz-30MHz, AM/SSB 76-108MHz FM, scan, direct entry, memories etc, little use, £145. C. Hughes, 6 Woodpecker Close, Sundorne Meadows, Shrewsbury SY1 4UB. 0743 241194 after 1900 hrs.

VINTAGE radios and Hi-Fi, also quantity of test equipment plus hundreds of magazines going back to the 1920's. Tel: 01 462 4614 for lists, anytime.

DELTA 1 934 transceiver, pre-amp beam, colinear, excellent condition, little used, £397. Tel: 083 787 338. (Devon)

TEN FM converted CB JWR M2 same board as Icom and DNT/LL, good working order, superb audio, £25 or might PX for Trio 2300 plus cash, WHY? (2m/70cms) Have Rigonda Boholbi radiogas chassis for components, any offers? Tamworth (0827) 58004.

SONY AIR-7 receiver, bought from Sony, with mains PSU, £170. Tono 550 RTTY, CW terminal unit, £180. Tel: (0772) 704009 evenings.

FT290R, FP80A PSU, FL2010 Lin, £335. FT790R, £225. SMC HS-8400 scanner, £120.

FT708R 70cms h/held, £175. Eddystone 8400RX, £60. R1155 RX + PSU, £45. W+D ATV TX 10 watt, £50. Dragon 32 computer + RTTY terminal, £100. V reg Garelli moped, £65. Tasco 60mm telescope, £35. Brian, 0278 685206 (Somerset).

ORGAN generator PCB 8” x 4” 96 note 5 footages covering 150KHz-30MHz, full digital readout and includes USB/LSB narrow and wide AM plus VHF/FM 88-108MHz, 240V AC or internal batteries, bargain, £120.

PANASONIC RF3000 receiver covering 150KHz-30MHz, full digital readout and includes USB/LSB narrow and wide AM plus VHF/FM 88-108MHz, 240V AC or internal batteries, bargain, £120. Call Colin, Melton Mowbray 64287.

FT980. All band transceiver, mint condition with manual, £900. Tel: East Grinstead 312374.

MONITORSCOPE Yaesu Y0301 for sale, Excellent condition, boxed, instruction manual — need cash for rotator, £200 onto Tel: Cairnryan 202, after 6 pm. E. Gaston.

MARINE receiver 1.6 to 3.8MHz, 600KHz to 1600KHz, 150KHz to 425 KHz. All transistors, 24V operation, £30. Valves, EL95, 5763, 12AT7, 12AX7, EF80, EF91, QV03/12, ECL86, QVV03/10, £280. QV08-100B, many others, half price. KW2000E manual £25. Transformer, new, 1250-0-1250 1000-1-1000 300mA, offers? Tel: 0268 792079.

BROTHER M-1109 DMP(NL0) with RS232 and Centronics interfaces, boxed with manual, only 5 months used £180 ono. Tektronix T-392A oscilloscope, 35MHz dual trace with manual, £180 ono. Tektronix 1A2 plug-in unit in vgc. £60. Tel: 01 6669 after 6 pm, ask for Denny.

T154 Sale or exchange for useful ham gear. G4POE QTHR Tel: Leek 381308. SHACK clearance. VHF aircraft converter, intercom, B&D drill, PSU 3-9v 400mA, Sony stereo mic plus 8 mono asst, microphone, £50. R1155 Jayswitch, £45. Tel: Seon Smythe 0436 71181.

FOR SALE scanner, £120. VINTAGE radios and Hi-Fi, also quantity of test equipment plus hundreds of magazines going back to the 1920's. Tel: 01 462 4614 for lists, anytime.

DELTA 1 934 transceiver, pre-amp beam, colinear, excellent condition, little used, £397. Tel: 083 787 338. (Devon)

TEN FM converted CB JWR M2 same board as Icom and DNT/LL, good working order, superb audio, £25 or might PX for Trio 2300 plus cash, WHY? (2m/70cms) Have Rigonda Boholbi radiogas chassis for components, any offers? Tamworth (0827) 58004.

SONY AIR-7 receiver, bought from Sony, with mains PSU, £170. Tono 550 RTTY, CW terminal unit, £180. Tel: (0772) 704009 evenings.

FT290R, FP80A PSU, FL2010 Lin, £335. FT790R, £225. SMC HS-8400 scanner, £120.
display applications, contrast, brightness, v hold, h/hold, controls, £50.00, cash sale, buyer collects.
Tel: 0245 356531.

Panasonic RF3100 receiver covering 150KHz-30MHz, full digital readout and includes USB/LSB narrow and wide AM plus VHF/ FM 88-108MHz, 240V AC or internal batteries, bargain, £120. Call Colin, Melton Mowbray 64287.

Marine receiver 1.6 to 3.8MHz. 600KHz to 1600KHz, 150Khz to 425KHz. All transistor, 24V operation, £30. Valves, EL95, 5763, 12AX7, 12AX7, EF80, EF91, QV03/12, ECL86, QV03/10, £280, QV08/100B, many others, half price. KW2000E manual £2.50. Transformer, new, 1250-0.1250 and 1000-0.1000 m/µ, offers? 0268 792079.

Receiver, NRD-525 with matching speaker, NVA-88, £95.00. Could deliver, Midlands. 0604 719707.

Blackstar Spectrum 48K, basic to machine code compiler, much more cost £24.95, new, will accept £10. Also Speech for Spectrum 48K, no hardware needed, program on cassette for £3.95. Howard Jones, 120 Kingfisher Way, Upton, Wirral L49 4PS.

Commodore 16 computer, books, tapes, data cassette, good condition, had very little use, £40. Would exchange for Search SR9 on 2m or air band or a similar monitor receiver. Phone Deside 816435, anytime.

Tri receiver, £30. Heathkit scanner 50MHz-500MHz, £90. D. Paine, 8 Bramble St, Burnley.

TS530S HF transceiver CW filter fitted with AT230, excellent cond, £595. FT770 160m and FM fitted also FC707, FU707-DM, FP707, prefer no split, £585. FT208R handheld with charger and case, £180. Call Ian on Horsham 0403 68765.

Novex 12/500G video monitor, 250V AC 50Hz 35W with composite video input design for data display applications, contrast, brightness, v hold, h/hold, controls, £50.00, cash sale, buyer collects.
Tel: 0245 356531.
prices, final clearance. Wanted AR88D for spares. A. E. Jeffrey, 42 Dennis Road, Padstow, Cornwall PL288DF. YAMAHA PF15 electronic piano, mint condition, rarely used, original price £1000 will sell for £500. Garo, 01 4939350.

FOR sale Philips D2999 world radio, 16:2999 MHz L/M W/M, FM, digital readout, keyboard or manual tuning, clock, batt, or mains, mint, boxed with manuals, £160.00. 091 5267902.

TEKTRONIX 547 50 MHz oscilloscope 1AE dual trace plug-in unit, 14A quad trace plug-in units, + manuals, leads and trolley, all calibrated and in G.W.O., £300.00. O1 4710669, after 6pm, ask for Danny.

FOR sale R1155N £25 R1155E £25 Bendix RA1 £20 BC 3411 £30 PCC2 £10 Grundig satellite £40 everyone must go need space or will be scrapped, prefer buyer to check and collect. Thomson, 0450 75089, southern Scotland.

KENWOOD R200 communications receiver V.H.F. fitted £400.00. Medway (0634) 41911.

FOR sale. Icom ICR7000 communication receiver covering 25 MHZ to 2GHZ complete with remote control immaculate condition £750 insurance and gar included. John G4YDM QTH: 091 4162506.

COMMTEL 444 base ant, 32ft vertical, never used still in boxes £40 ono K40 mobile ant, 1 year old £12, H.F. 2W dummy load. Halifax (0422) 53320, after 6pm weekdays.

DATONG D70 more tutor. Also a good old fashioned up and down horse key in working order (0206) 394336 (Essex).

FOR sale H.F. transceiver FT707, with powerpack FP707, antenna tuner FC707 and YM36 microphone, £450.00. Ask for Kevin Belfast 641048.

100 watt two metre M.M. linear 13.5 volt no RX preamp type 144/100 £95. Wireless circuit of complete PSV type 1310S. York (0904) 768545.

TOWER self standing lattice 40ft, £200.00. Contact B.J. Amateur Radio Society, Brunel University, Uxbridge, Middlesex UB8 3PH.

UHER 4000 reporter professional tape recorder in de-lux case with spare microphones nicad battery and charger was almost £700 would take £400 or exchange for YAESU FT101ZD with ATU if possible—Michael York (0904) 300883.

YAESU FT101 2DMK3 fitted with fan boxed with manual £450. YAESU FTV 901 transverter fitted 2M module boxed with manual £125, 01 394 1465 (Ewell) G6ZPS.

RA17 MKII, good condition, manual, spare valves, £125, KW2000A PSV spare P.A. valves, manual, £100. Tewkesbury (0684) 293639.

YAESU FT779OR 70CM multimode with nicads charger etc, £280 ono, six metre S.E.L.E. tena yagi £30, practical wireless six pack transverter in case, works well, £35, G3LOL. Nailsworth. GLOS - 0453 83 3411.

RECEIVER Howe5 RCDX 20M SW makers PCB in case with tuning capacitors etc £21 ono. Tony (0372) (Epoms) 26016.

YAESU FT29OR, complete with nicads and charger 2W amp £280, 0582 660788.

YAESU FT72OR fitted 144, 50 MHz also CW filter and MD-1 base mc, exp, £775, 60ft telescopic tuner base mounted, £200, 2m, with scooter, £50, 10m rise £15. Lee G4RKV 0227 360841 (not QTHR) buyer collects or pays carriage.

2 meter linear 20 to 30 watts O/P for 2 to 3 L/P solid state £35 N.O., 16 ele two tonne 2 meter aerial £18 N.O.; Eddystone 730/4 gen cov RX in good condition £85. Mark O1 847 3122.

BELCOM linear 2 handbook, circuit diagram, frequency modification ie: change channel selection from 144.6 to £144.350 to cover from 144.170 to 144.210 on BFO boxed, £2.50 £5.00 Pye PF1 pocketphones circuit diagrams alignment info £1.50. Co. Durham 701429.

HAM RADIO TODAY JULY 1987 please mention HRT when replying to advertisements.
YAESU FTDX500 80m-10m high power transceiver CW/SSB filter fan new PA valves including external VFO external speaker G.W.O. £220 ono. 0375 678833, Arthur, G4KQ, Essex.

YAESU FRT 7700 SWL ATU VGC £30 YAESU FFS filter £5 balloon not used £4. (0634) 404096.

COLOUR monitor “System Alpmer” 14" £115 ono LDF450A new £35 Tandy TRC1001 CB hand held nicads charger microphone rubber duck £65 rotel RVC230 CB £30 Ham International 4200 bass microphone £15, buyer collects. Poole (0202) 601214, after 6pm.

SCANNER SX200N 26-85MHz 1 year old £170 recovene aerial to match £20 will consider PX with 2m SSB transceiver. £200 0452 807910, after 10pm.

HEAVY duty free standing 24" lattice tower in two sections, £65. DNT 40FM converted to 10m, £25. SMC 10m whip and gutter mount, £15. J-beam 10XY 2m, vgc. £25. Wanted PSU for codar ATS – 04538 814, after 6pm.

TSB20 H.F. TCVR with DC converter, CW filter and desk microphone, £395 ono. Cardiff (0222) 627151, weekends or evenings. GW8OKR QTHR.

40 ft triangular steel mast in two 20ft sections + 40 ft walk around at top, very good condition, never used, £150, drawing on request. Hungarton 310, G2DGA.

ICOM 701 with matching 20 AMP power supply and speaker desk microphone and keyboard, £525. 0782 313448.

SWEDISH Ericsson automatic telephone exchange 24"x12"x12" wall mount on 10 lines 2 wire system multiple facilities ideal hotel/company complete with manual was £800 wanted good scanner - H.F. - RX or Ham equipment G6KAR. 0204 432186.

HEATHKIT Microprocessor trainer ET3400 plus EE3401 learning program, £300 would sell, exchange or part exchange for quality tranceiver or amateur gear. 0304 282 2843, evenings. SAIT V.H.F. marine tranceiver 156/162 MHz 25 watts F.M., as new, with case and circuit diagram, no front panel hence £60. C.T.V.R. 40 46.0-46.39 MHz 5 watt F.M. tranceiver, change xtal for 50 MHz, £60. Watford 24752.

FREE aerial for 70cm if you purchase my MM 432/60 70CM linear. 10W in 50W out, new, unused, £100. G3MEW. 24 Ascot Road, Copnor, Portsmouth, Hants – 0705 820316.

TONO Theta 350 communications commander (dedicated RTTYASCII) CW terminal. RTTY 45-300 BAUD auto CW 170/425/850 Hz shift VHF and composem external output printer interface perfect £120. 0284 704152 (Bury St Edmunds), after 5.30pm and weekends.

YAESU CPU2500DR plus £250 F.M trans, trio/Kenwood UFO120, also vic20 computer for my own “Dinky” “Spot On” “Corgi” equip vgc. Weymouth 0305 813202.

ICOM IC-R71/E superior grade general coverage receiver £1,000 0544 287600, Extensive technical data. may be interested in any condition used mainly SWL, asking £225.00.

SONY ICF7600D portable shortwave radio 153kHz-30MHz AM/FM/SSB/CW 10 memories with all manuals, accessories, etc, unwanted gift, all boxed, as new, £99. Blackburn, Lancs (0254) 28969.

MORSE test, moving to use as new in mint condition. £900. G6KAR. 0204 43958.

YAESU FTDX500 FL2100Z linear with two new spare valves, buyer to collect. realistic offers please as sale prompted by O.A.P. brought. Allen G3DRN QTHR – 01 947 3914.

FT77 with FM £400 or exchange for FT1012D with FM plus cash adjustment. G4JW. Southsea (0723) 366350.

EDDYSTONE 1830/1 professional HF/WH receiver civil aviation spec. 10/CA.10696. British MPT spec. for Marine reserve receiver. 120 kHz-31 MHz 9 bands CW plinth speaker, A.T.U. extensive technical library, £650 or exchange quality open reel tape deck. Langport 250235.

WANTED good scanner – 313448. Hungarton 310, G2DGA.

LATTICE tower in two sections, 750057, anytime before or value AMP. Could deliver. 04538 4514, after 6pm.

revcone aerial to match £20. Geoff GOGIL – 0344 52601.

HEATHKIT HWY DRP rig £35. GW3YGM – 0437 4015, evenings.

TELEKRONIX 547, 50MHz Oscilloscope, 1A2 dual trace plug-in unit, 1A4 quad trace plug-in unit, plus manuals, leads and trolley, all calibrated and in good working order £300 ono. Tel: 01-471-0669, after 6pm, ask for Danny.

FOR sale Philips D2999 world radio, 1.6 2999 MHz, L/W, top, £40; Grundig Sattelit, £20; BC348Q, £30; PCR3, £5; 1.6 2999 MHz, L/W, etc, unwanted gift, all boxed, as new, £55, IC202S SSB/CW 2m portable, original packing, £95 ono. 0739 771153.

OSMOTIC Receiver adapted to mains 240V operation £25. Geoff GOGIL – 0344 52601.

GREAT value AMP. Could deliver. 04538 4514, after 6pm.

YAESU FT1012D, £150, evenings.

FOR sale Philips D2999 world radio, 1.6 2999 MHz, L/W, etc, unwanted gift, all boxed, as new, £55, IC202S SSB/CW 2m portable, original packing, £95 ono. 0739 771153.

GREAT value AMP. Could deliver. 04538 4514, after 6pm.

HEATHKIT HWY DRP rig £35. GW3YGM – 0437 4015, evenings.

FT77 with FM £400 or exchange for FT1012D with FM plus cash adjustment. G4JW. Southsea (0723) 366350.

WANTED good scanner – 313448. Hungarton 310, G2DGA.

LATTICE tower in two sections, 750057, anytime before or value AMP. Could deliver. 04538 4514, after 6pm.

revcone aerial to match £20. Geoff GOGIL – 0344 52601.

HEATHKIT HWY DRP rig £35. GW3YGM – 0437 4015, evenings.

TELEKRONIX 547, 50MHz Oscilloscope, 1A2 dual trace plug-in unit, 1A4 quad trace plug-in unit, plus manuals, leads and trolley, all calibrated and in good working order £300 ono. Tel: 01-471-0669, after 6pm, ask for Danny.

FOR sale Philips D2999 world radio, 1.6 2999 MHz, L/W, top, £40; Grundig Sattelit, £20; BC348Q, £30; PCR3, £5; 1.6 2999 MHz, L/W, etc, unwanted gift, all boxed, as new, £55, IC202S SSB/CW 2m portable, original packing, £95 ono. 0739 771153.

GREAT value AMP. Could deliver. 04538 4514, after 6pm.

YAESU FT1012D, £150, evenings.

FOR sale Philips D2999 world radio, 1.6 2999 MHz, L/W, top, £40; Grundig Sattelit, £20; BC348Q, £30; PCR3, £5; 1.6 2999 MHz, L/W, etc, unwanted gift, all boxed, as new, £55, IC202S SSB/CW 2m portable, original packing, £95 ono. 0739 771153.

GREAT value AMP. Could deliver. 04538 4514, after 6pm.

YAESU FT1012D, £150, evenings.

FOR sale Philips D2999 world radio, 1.6 2999 MHz, L/W, top, £40; Grundig Sattelit, £20; BC348Q, £30; PCR3, £5; 1.6 2999 MHz, L/W, etc, unwanted gift, all boxed, as new, £55, IC202S SSB/CW 2m portable, original packing, £95 ono. 0739 771153.

GREAT value AMP. Could deliver. 04538 4514, after 6pm.

YAESU FT1012D, £150, evenings.

FOR sale Philips D2999 world radio, 1.6 2999 MHz, L/W, top, £40; Grundig Sattelit, £20; BC348Q, £30; PCR3, £5; 1.6 2999 MHz, L/W, etc, unwanted gift, all boxed, as new, £55, IC202S SSB/CW 2m portable, original packing, £95 ono. 0739 771153.
SALE valves, boxed, unused 50L6GT, 35L6GT, 2525GT, 3525GT, 3425GT, 2524GT, 125J7GT, 12J7GT, 120GT, 1250GT, 65K7GT, 607GT, 6507GT, 6A7GT, 6L7G, 6F96. Many others, all at low prices. Final clearance. Wanted AR88D for spares. - A. E. Jeffrey, 42 Dennis Road, Padstow, Cornwall PL288DF.

FOR sale FT290R, boxed Nicads case, communiqué SWR/FWR meter, both mint condition, £250; Philips BW monitor model LDH2123, new unused, £100. -Tel: Sheffield 0742 583799, after 6pm.

YAESU FT101E G3LL FM (worth £70). New valves, mint condition, fan mic speech, £450. - Tel: Basildon 565 836. QUAD FM3 stereo tuner, quad control unit, 33 quad, 300 stereo amplifier, £170. - Tel: Basildon 565 836.

APPLE II Europlus, two disk drives, monitor, printer, 80 column card, grapple, ramex, microsoft card, tabs, Apple clock, centronics printer card, parallel interface, superterminal, plus lots and lots of software, sell or swap for wide range Scanner. - Vicki. 982 8661 ex 302.

HONEYWELL 132 column. 150 CPS 2532, Dot Matrix printer, £125. IC: Termprinter, 118 column RS232, £65. Scott DC300A cartridges, £15. AMD9511 Arithmetic processors, £95. Wanted counter plug-in adapter HP10536A, converters HP5254B, HP4525B. £7742 51409, after 7pm.

AMSTRAD 464. 666C computer with colour monitor plus Boss Joy stick, around £50. £75.

WANTED manual for YAESU FT1020D buy or photocopy your price paid. - Pat 0322 559711.

WANTED “Carrying Handle” for Barlow - Wardley receiver XCR30 Mark 2. I have broken mine. - Alan Edwards, 32 Heldhaw Road, Bury St Edmunds, Suffolk. IP32 7ES. Tel: (0284) 60984.

WANTED hardware and software for Apple II plus computer to receive RTTY. Also interface etc for the Apple to link to Prestel via Prism 1000 model. Also good compatible printer, letter quality type. - Tel: John (Abberline) (0224) 589440.

WANTED Cybernet “export” service manual by Lou Franklin. Also detailed information on how to convert Ham Multimode 2 to 10m or anybody locally who could do this for me. - Tel: 0603 614772, 27 Marion Road, Norwich NR1 4BN.

WANTED YAESU FT77G5X plus FT757HD PSU. Rig must TX on 11 metre band. Will consider mint Belcom LS102 with 26 to 30 MHz cover. Must be able to part exchange. Ham International Multimode 3 mint with UK40 Factory Board. - Tel: Steve on 0446 710149.

WANTED urgently, mobile HF transceiver, all bands ATU, mobile HF whips. - Tel: 0753 283043, after 6pm only.

WANTED Collins TCS12, TX and RX PSU and any other accessories, good price paid. - Tel: Tim, 01-530 5937.

WANTED HF transceiver, possibly TS520, FT707, FT101 or similar. Must be excellent working order with decent ATF etc. Will pay cash or possible exchange for my FT290R with 25watt Linear and PSU. 8GWSK. Portsmouth 0706 672804 (collect 40 mile radius).

WANTED manuals for Samwell Hutton Wobulator type 78. Bradley electronic Testimeter CT471. GIFEX 15 Woodland Grove, Mansfield Woodhouse, Notts NG19BZ 0623 641709.

WANTED 19 set control box, variometer and other accessories WHY? (restoration project). Also R210 power supply units. 01-300 1894 evenings, weekends.

BECOM LS202E handheld wanted will exchange YAESU FT208R handheld 2½w output can be turned up to approx 4½-5w output want plans circuit diagrams for valve VHF/UHF Linear. - Tel: Co Durham 701429.

WANTED YAESU 7700 or Trio 2000 for SWL. 01-556 5131 anytime.

WANTED oldish HF transmitter or transceiver in good working condition with CW and perhaps AM or SSB. - Tel: (0425) 54371.
EXCHANGE

EXCHANGE: ICOMIC210 FM base station, ¼-tow removable PSU for mobile use, ¼ over ¼ colliion. For FT707, FT77 or Similar MF multiband transceiver. Tel: (0952) 607542 after 6pm.

EXCHANGE: ST5MC Ritty terminal unit for a Stornoch channel synthesised radiophone. Tel: 021 788 8447.

EXCHANGE: SEM 100w Linear/pre-amp and micro professor computer. 64K compatible Apple II plus with PSU manuals. For ICOM 402 70CMS SSB rig or linear, for 70CMS to 2 meter transvertor please ring Alan, Kings Lynn 829075.

EXCHANGE: Ham International Concorde MK2 converts easily to ten metres, three bands, box etc. G.W.O for Atari 1050 disc drive with software also Skywood HF receiver, £50. Tel: 031 663 2460.

EXCHANGE: all or part of my Apple 11/E software collection, mainly printer, graphics utilities eg. Printship, newrooms, fontrix, sideways etc. Valued over £200 for 100w 2 metre Linear. D. J. Bull G6LPH. 103 Hawthorn Hill, Middle Wallop, Nr Stockbridge, Hants, 5020 8NG.

EXCHANGE: industrial video Grundig SRU0404 not VHS or Betamax working good for parts band 1 and 3 tuners plus VHF with pre amps and lots of electronic goodies swap for 200MHz and freq counter or good signal generator or 15MV scope buyer must collect for details ring Andy. 061-775 5207.

EXCHANGE: Datong horse tutor plus Trio 9R-59DS general coverage receiver for ATU to suit KW200B will consider home brew. Tom 0289 89348 ask for Tom. HAVE: Sommerkamp FT290 Nicads charger and case ¾ x whip Gamma twin 13 element Tonna Toyo SWR meter would consider suitable 934MHz equipment Cybernet Delta 1 NRP and any accessories. Also have FRG-7 Trio 9R59DS. Phone Ian 0676 40744, after 6pm weekdays anytime Saturday.

US Army signal corps frequency meter 125KC - 20MC type BC221AA original box with power supply space crystals also calibration chart swap for good ATU suitable for SWL - Tom 01-803 3844 (London). 3pm-7pm.

EXCHANGE: Viewdata Prestel terminal, with BT approved, 7" green screen, removable keypad, built in auto-dialler, printer interfaced, computer interfaced, modifiable to use a RS232 terminal, can be used as a computer monitor, key operated on/off switch, Prestels mailbox, made at Brighton by STC Novatel. Coat £150. I want VHF Scanning receiver, or 2 meter rig. Brian, Brighton 5599373.

EXCHANGE: Sony 7600D, in excellent condition for Trio 600 YAESU FR67 or R1155 with PSU please ring John. Tel: 0670 87561 or write John Taylor, 8 Kenmore Road. Swarland, Northumberland. EXCHANGE: Tono Theta 350 communications computer (dedicated RTTY/ASCII/CW terminal) with auto CW, 45300 baud RTTY, 170/425/850Hz shift, VHF and composite output, printer interface, for Commodore 64 computer plus recorder. Tel: 0284 704152 (Bury St Edmunds) after 5.30pm and weekends.

EXCHANGE: 48K Spectrum with micro drive and interface 1 with all leads books and two games, cassettes all boxed. For either an FP707, TV707DM, FC707, FFR707 or an F707W with modules. Contact Mr J. D. Bolton, 10 Bonness Road, Conisiton Park Estate, Timperley, Cheshire WA15 7YA.

FT707 (QRO), IC260 A or E, IC255E, FT707, FFR707 Tx/Ar do you have any of the above in perfect condition. Please contact Mark, GTHR G4RG6. Tel: Medway (0634) 5682. Must be reasonably new.

EXCHANGE: Sommerkamp FT290 nicads charger and case ¾ x whip gamma twin 13 element toonna toyo SWR meter would consider suitable 934MHz equipment Cybernet Delta 1 NRP and any accessories also have FRG-7 trio 9R59DS. Ian, 0676 40744, after 6pm weekdays, anytime Saturday.

EXCHANGE: YEASU 280R with Mutex and mains power and charger, for Yeas 707 with mains PSU or YEASU 77 with PSU. L HARE GOFYK 4 Mount Park Road, Scarborough, Nth Yorks YO12-5HD. Tel: 373655.

WANTED: FRG9600 AR2002 Regency MX-8000. I have to exchange C64 computer 151125 printer Sony ICF7600. Lynx computer WHY. - 0622 850240, Mon - Fri before 7pm only.

EXCHANGE: viewdata prestel terminal with BT approved 7" green screen, removable keypad, built in auto-dialler, printer interfaced, computer interfaced, modifiable to use a RS232 terminal, can be used as a computer monitor, key operated on/off switch, Prestels mailbox, made at Brighton by STC Novatel. Coat £150. I want VHF Scanning receiver, or 2 meter rig. Brian, Brighton 5599373.

EXCHANGE: Sony 7600D in excellent condition for trio 600 YAESU FR67 or R1155 with PSU please ring John. Tel: 0670 87561 or write John Taylor, 8 Kenmore Road. Swarland, Northumberland.

EXCHANGE: Tono Theta 350 communications computer (dedicated RTTY/ASCII/CW terminal) with auto CW, 45300 baud RTTY, 170/425/850Hz shift, VHF and composite output, printer interface, for Commodore 64 computer plus recorder. Tel: 0284 704152 (Bury St Edmunds) after 5.30pm and weekends.

EXCHANGE: 48K Spectrum with micro drive and interface 1 with all leads books and two games, cassettes all boxed. For either an FP707, TV707DM, FC707, FFR707 or an F707W with modules. Contact Mr J. D. Bolton, 10 Bonness Road, Conisiton Park Estate, Timperley, Cheshire WA15 7YA.

FT707 (QRO), IC260 A or E, IC255E, FT707, FFR707 Tx/Ar do you have any of the above in perfect condition. Please contact Mark, GTHR G4RG6. Tel: Medway (0634) 5682. Must be reasonably new.

EXCHANGE: Sommerkamp FT290 nicads charger and case ¾ x whip gamma twin 13 element toonna toyo SWR meter would consider suitable 934MHz equipment Cybernet Delta 1 NRP and any accessories also have FRG-7 trio 9R59DS. Ian, 0676 40744, after 6pm weekdays, anytime Saturday.

EXCHANGE: YEASU 280R with Mutex and mains power and charger, for Yeas 707 with mains PSU or YEASU 77 with PSU. L HARE GOFYK 4 Mount Park Road, Scarborough, Nth Yorks YO12-5HD. Tel: 373655.

WANTED: FRG9600 AR2002 Regency MX-8000. I have to exchange C64 computer 151125 printer Sony ICF7600. Lynx computer WHY. - 0622 850240, Mon - Fri before 7pm only.

EXCHANGE: viewdata prestel terminal with BT approved 7" green screen, removable keypad, built in auto-dialler, printer interfaced, computer interfaced, modifiable to use a RS232 terminal, can be used as a computer monitor, key operated on/off switch, Prestels mailbox, made at Brighton by STC Novatel. Coat £150. I want VHF Scanning receiver, or 2 meter rig. Brian, Brighton 5599373.

EXCHANGE: Sony 7600D in excellent condition for trio 600 YAESU FR67 or R1155 with PSU. John, 0676 87561, or write John Taylor, 8 Kenmore Road, Sarland, Northumberland.

EXCHANGE: Tono Theta 350, communications computer (dedicated RTTY/ASCII/CW terminal) with auto CW, 45300 baud RTTY, 170/425/850Hz shift, VHF and composite output, printer interface, for Commodore 64 computer plus recorder. Tel: 0284 704152, after 5.30pm and weekends.

EXCHANGE: 48 Spectrum with micro drive and interface 1 with all leads books and two games, cassettes all boxed. For either an FP707, TV707DM, FC707, FFR707 or an F707W with modules. Contact via QTHR.

EXCHANGE: Yeasu, 280R with Mutex and mains power and charger. For Yeas 707 with mains P.S.U or Yeas 77 with P.S.U. L HARE GOFYK. Scarborough 373655.

SWAP Selmer treble bass 50 amplifier with Reverb Selmer 18" speaker cabinet Fender strat copy guitar sure Mike boom stand for HF transceiver or 2 meter rig WHY. Tel: York 782554.

It's easy to complain about advertisements. But which ones?

Every week millions of advertisements appear in print, on TV or on the cinema. Most of them comply with the rules contained in the British Code of Advertising Practice. But some of them break the rules and warrant your complaints.

If you're not sure about which ones they are, however, drop us a line and we'll send you an abridged copy of the Advertising Code. Then if an advertisement bothers you, you'll be justified in bringing us a complaint.

The Advertising Standards Authority.

If an advertisement is wrong, we're here to put it right.

ASA Ltd Dept 2 Brook House, Tornerrign Place, London WC1E 7HN

This space is donated in the interests of high standards of advertising.
COMPUTER SUPPLIES

DISKS
- 3.5" DS unbranded: £1.26
- 5.25" Memorex branded SS/DD: £0.74
- 5.25" 96 tpi DS, unbranded, labels etc: £0.43
- SEE 10 storage box 5.25" or 3.5": £1.85

RIBBONS
- Imagewriter: £2.65
- Citizen 120D: £3.50
- Epson MX/RX/FX80: £2.60
- Epson MX/RX/FX100: £3.10

Please add 15% VAT, carriage free.

SERVICE MANUALS

CARDS, STICKERS

EVERY PUBLISHED SERVICE SHEET FROM THE 30s TO DATE. WORLDS LARGEST SELECTION OF SERVICE MANUALS. TAPE RECORDERS, TV, VIDEO, TXS. £5.00 + P&P.

CARDS, STICKERS

QSL CARDS. GLOSS OR TINTED CARDS SAE FOR SAMPLES TO TWROG PRESS, DEPT. HRT, PENYBON, GEILLYDAN, BLAENAU FLESTLING, GWITHLLLAN 44.

QSL CARDS. - TRY ME FOR QUALITY AND PRICE SAE FOR SAMPLES A.W. BALEY (G3YNI), BRANDENPOW PRESS, WICK LANE, LYMPHAM, SOMERSET.

USED AMATEUR EQUIPMENT?

BUY, SELL & EXCHANGE!

SELLING? I PAY THE BEST POSSIBLE PRICES FOR YOUR CLEAN USED EQUIPMENT!

BUYING? I HAVE THE BEST SELECTION OF TOP QUALITY USED EQUIPMENT AVAILABLE!

For the Deal You've been looking for, Phone Dave. G4TNY.
On 04024 57722 or 0836 201530 9am to 7pm, Monday to Saturday. Or send SAE for lists.

G4TNY AMATEUR RADIO
132 Albany Road, Hornchurch, Essex RM12 4AQ

TEST EQUIPMENT

CAVITY WAVEMETERS AS REVIEW IN FEB H.R.T. 144 MHz to 2500 MHz, and 430 MHz to 2500 MHz. 10 GHz. WAVEMETER KITS ELECTRONIC WEATHER STATIONS. SOLID STATE BASED MOVING KEYS. S.A.E. FOR MORE INFORMATION TO: PAUL SERGENT G4 ONF 6 GURNEY CLOSE COSTESSEY, NORWICH NR5 0HB (0603) 747782

RTTY

RTTY - AMTOR - AX25 PROGRAMS AND INTERFACES FOR DRAGON & TRS 80 C PROGRAMS FROM £10.50. FULL AX25 PACKET SYSTEM ONLY £99.00

EQUIPMENT

NEXT DEADLINE 1ST JULY SEPTEMBER ISSUE.

SERVICES

RADIO AMATEUR LICENCE

Start training now - No previous knowledge required. Study for 3-6 months. Post Coupon now for free brochure - without obligation:

Radio & Telecommunications Correspondence School, 12 Moor View Drive, Teignmouth, Devon.
Tel: 06267 - 79398.

(HRT/6)

NAME: ..
ADDRESS: ..
POST CODE: ..

23CM KITS

Camtech Electronics

23cm's Receiver: Ever wished you had a 23cm receiver for NBFM, a converter for SSB and a 2 meter monitor receiver? Now you can have all three on a single PCB with our high performance 23cm's receiver, as featured in March/April H R T kit £69 + £2 p&p.

23cm's Preamp: This is a low noise two stage bipolar preamp with added feature of having a tunable image filter designed on PCB. Covers 1200-1350MHz. Gain 14dB typ. Ideal for ATV or NBFM. Kit £22.50 + £1 p&p.

23cm's 3dB combiner/power splitter: PCB £7.50 + 50p p&p.

All kits are available built to order. P.O.A. Delivery is usually from stock or within 28 days.

Camtech Electronics, 8 Wortham Place
Haverhill, Suffolk CB9 0HP
Tel: 0440-62779

SERVICE MANUALS

TISHR 76 CHURCH ST. LARKHALL. LANARKS ML9 1HE

Every published service sheet from the 30s to date. World's largest selection of service manuals. Audio, tape, video, TV, CB. £5.00 for full colour service manual. £0.00 for monochrome service manual. £0.50 for TV Video repair manuals. £0.50 for T.V. Technical Books. FREE review service sheet price list. Enquired large SAE.

CARDS, STICKERS

OSL CARDS. Gloss or tinted cards. SAE for samples to TWROG PRESS, DEPT. HRT, PENYBON, GEILLYDAN, BLAENAU FLESTLING, GWYNN LL41 4EP.

QSL CARDS. - Gloss or tinted cards SAE for samples to TWROG Press, Dept. HRT, PENYBON, GEILLYDAN, BLAENAU FLESTLING, GWYNLL LAN 44. EP.

QSL CARDS. - Try me for quality and price S.A.E. for samples. A.W. BAILEY (G3YNI), BRANDONPOW PRESS, WICK LANE, LYMPHAM, SOMERSET.

01-437 0699 = RESULTS

RTTY

RTTY - AMTOR - AX25 Programs and Interfaces for Dragon & TRS 80 C Programs from £10.50. Interfaces from £16.75. Full AX25 Packet system only £99.00.

PNP COMMUNICATIONS
The Old Boatyard, Robinson Road, NEWHAVEN, East Sussex BN9 9BL
Telephone (0273) 514781
FOR SALE

IAMBIC MORSE KEYER WITH TWIN PADDLE

Electronic keyer with built-in twin paddle unit. Can be used as iambic keyer or as single paddle keyer. Extremely quiet screened reed relays keying circuit.

Runs from 12v D.C. supply or 240v mains P.S.U. available. Size - 100mm.(W) x 155mm.(D) x 55mm.(H). Inc. paddles. Ready built units have 100 hour test soil for reliability. Kits have ALL components supplied and paddle unit pre-assembled. Ready built keyer £49.90. 240v P.S.U. £7.50. Kit version £34.90. Prices are inclusive of all charges. Prompt despatch on all units.

TARGA ELECTRONICS
3 Raven Avenue, Tilbeff, Derbyshire, DE5 5NR.

A. C. ELECTRONIC SERVICES
17 Appleton Grove, Leeds LS9 9EN
Tel:0532 490646

SHACK CLEARANCE VHF & HF gear P/Supplies, accessories. All must go quickly. 01-429 0381 (Eve) 01-864 6561 (Day).

HOLIDAYS

HOLIDAY CHALETS
£16.50 per Chalet/Week
Peaceful elevated OTH Central Touring
OMNI-XLing, T5850s
RACAL HWH. G0AT5.

CRYSTALS

QUARTZ CRYSTALS
Same Day Service
Any frequency from 2MHz — 55MHz
McKnight Crystals, Amateur Radio Division, Amateur P.O., Hardley Industrial Estate, Hythe, Southampton
SO4 6ZY

CREDIT CARD SALES
HOTLINE: 0703 848961

SOFTWARE

Learn Morse the Easy Way with a ZX Morse Tutor

This unit comes complete with a Morse keyer interface and Software to connect up to a ZX Spectrum computer. Unit can be used on its own.

Price only £14.95

P. GOODRUM
9 RYSTON CLOSE
DOWNHAM MARKET
NORFOLK PE39 9BD
Tel: 0366 388615

PACKET RADIO SOFTWARE

GSSS0V SOFTWARE

G4BMK
A2XSS Packaged kit
DRAGON 32/64 and TANDY color
A breakthrough in Packet Radio-A2XSS stand alone software in ROM cartridge. Please call or write for details. £199.95 DRAGON 32/64 £179.95 TANDY colour £199.95.

RIGS AND TWIGS

DELUXE WALKIE TALKIES 49 MHz, long range, £24.99/pair (normally £31.49). Satisfaction or refund 48 hrs. Barnsley, Yorkshire.

WANTED

NEC CO - R700 6-band communication receiver. State condition and price to 066284-2556, or George GM4DKL QTHR.

01-437 0699 = RESULTS

HEALTHKIT U.K. spares and service centre. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredenbury, Tenbury, Glos. Tel 0684 73127.

CLASSIFIED COUPON

HAM RADIO TODAY, CLASSIFIED ADVERTISEMENT DEPT, NO 1 GOLDEN SQUARE, LONDON W1R 3AB

PLEASE DEBIT MY ACCESS/BARCLAYCARD NO.

FOR SALE SOFTWARE WANTED

FOR SALE

AERIALS

MAST

£11.00 Wind-up. Tell over mobile and static.

SOFTWARE

INSTANT SERIAL PORT INTERFACE £160 complete for our economy model. 25p to 40p. VHF & UHF. We can supply suitable enterprizes.

PACKET RADIO SOFTWARE

G4BMK
A2XSS Packaged kit
DRAGON 32/64 and TANDY color
A breakthrough in Packet Radio-A2XSS stand alone software in ROM cartridge. Please call or write for details. £199.95 DRAGON 32/64 £179.95 TANDY colour £199.95.

RIGS AND TWIGS

DELUXE WALKIE TALKIES 49 MHz, long range, £24.99/pair (normally £31.49). Satisfaction or refund 48 hrs. Barnsley, Yorkshire.

WANTED

NEC CO - R700 6-band communication receiver. State condition and price to 066284-2556, or George GM4DKL QTHR.

01-437 0699 = RESULTS

HEALTHKIT U.K. spares and service centre. CEDAR ELECTRONICS, Unit 12, Station Drive, Bredenbury, Tenbury, Glos. Tel 0684 73127.
Buy, sell or exchange your gear through our free service to readers.

1. These advertisements are offered as a free service to readers who are not engaged in buying or selling the same equipment or services on a commercial basis. Readers who are should contact our advertising department who will be pleased to help.
2. Advertisements will be inserted as and when space becomes available.
3. The insertion of advertisements will be on a first come, first served basis, subject to condition 2. As a result, it will not be possible to guarantee the insertion of a particular advertisement into any particular magazine.
4. Readers should either write out their advertisement in BLOCK CAPITALS or type it. The first word will appear in bold.
5. The magazine cannot accept any responsibility for printers' errors in the advertisements. However, we will do our best to ensure that legibly written advertisements are reproduced correctly. In the event of a gross error, at the Editor's discretion, a corrected version of the advertisement will be printed (at the advertiser's request) in the earliest issue in which space is available.
6. The magazine reserves the right to refuse to accept or to delete sections of advertisements where this is judged necessary. Illegal CB equipment is not acceptable unless specified as suitable for conversion to amateur or legal CB frequencies.
7. The magazine reserves the right to refuse to accept or to delete sections of advertisements where this is judged necessary. Illegal CB equipment is not acceptable unless specified as suitable for conversion to amateur or legal CB frequencies.
8. Advertisements are accepted in good faith; however, the publisher cannot be held responsible for any untruths or misrepresentations in the advertisement, nor for the activities of advertisers or respondents.
9. Advertisers must fill in their names, addresses and (if available) telephone number in the space provided, and sign the form to indicate acceptance of these conditions (forms returned without a signature will not be used).
10. All that is to be reproduced in the advertisement should be entered into the space provided on the form printed in the magazine. A photocopy is only accepted if accompanied by the corner of this page. All advertisements must give either a telephone number or address for respondents to contact or both — these must be included in the advertisement.
11. Advertisements must be 40 words or less in length including the address or phone number information. Telephone numbers normally count as two words, exchange or exchange code plus number.

conditions, the advertiser undertakes to indemnify the publisher against any legal action arising out of the contents of the advertisement.
7. The magazine reserves the right to refuse to accept or to delete sections of advertisements where this is judged necessary. Illegal CB equipment is not acceptable unless specified as suitable for conversion to amateur or legal CB frequencies.
8. Advertisements are accepted in good faith; however, the publisher cannot be held responsible for any untruths or misrepresentations in the advertisement, nor for the activities of advertisers or respondents.
9. Advertisers must fill in their names, addresses and (if available) telephone number in the space provided, and sign the form to indicate acceptance of these conditions (forms returned without a signature will not be used).
10. All that is to be reproduced in the advertisement should be entered into the space provided on the form printed in the magazine. A photocopy is only accepted if accompanied by the corner of this page. All advertisements must give either a telephone number or address for respondents to contact or both — these must be included in the advertisement.
11. Advertisements must be 40 words or less in length including the address or phone number information. Telephone numbers normally count as two words, exchange or exchange code plus number.

conditions, the advertiser undertakes to indemnify the publisher against any legal action arising out of the contents of the advertisement.
7. The magazine reserves the right to refuse to accept or to delete sections of advertisements where this is judged necessary. Illegal CB equipment is not acceptable unless specified as suitable for conversion to amateur or legal CB frequencies.
8. Advertisements are accepted in good faith; however, the publisher cannot be held responsible for any untruths or misrepresentations in the advertisement, nor for the activities of advertisers or respondents.
9. Advertisers must fill in their names, addresses and (if available) telephone number in the space provided, and sign the form to indicate acceptance of these conditions (forms returned without a signature will not be used).
10. All that is to be reproduced in the advertisement should be entered into the space provided on the form printed in the magazine. A photocopy is only accepted if accompanied by the corner of this page. All advertisements must give either a telephone number or address for respondents to contact or both — these must be included in the advertisement.
11. Advertisements must be 40 words or less in length including the address or phone number information. Telephone numbers normally count as two words, exchange or exchange code plus number.

Name ..
Address ..

ENTER YOUR ADVERTISEMENT HERE:

I accept the conditions above.
Signature ..

Send this form to: Free Readers Ads, Ham Radio Today, l Golden Square, London, W1R 3AB

please mention HRT when replying to advertisements.

HAM RADIO TODAY JULY 1987
INTEREST FREE FINANCE
Yes, you can spread the cost of your new rig over 6, 9 or 12 months and ARROW pays the interest charges for you. Three schemes: 20% deposit, balance over 6 monthly payments.
50% deposit, balance over 9 monthly payments.
25% deposit, balance over 12 monthly payments.
And remember, you pay no more than the normal RR price!!
Just call us and we will send agreement for your new gear same day!!!

ARROW are franchised dealers for TRIO/KENWOOD CORP. PRODUCTS. & guarantee the availability of spare parts & technical back-up service during the life of any equipment purchased through the authorised TRIO/KENWOOD dealership.

“Benchies” Paddles stocked and “Vibroplex” key or paddle at the ARROW shops.

New AR2002 Receiver 25/1500MHz incl. MMB £229.00, ICF751A £229.00, IC270E £79.00, 214V £79.00.

WELZ full range stocked
TET BEAMS Still available

The Cost Cutters
SOME OF OUR PRICES ARE SO LOW WE DARE NOT QUOTE THEM - CALL IN NOW!

FT23R YAESU'S SUPER MINI 2FM HANDY £229.00
FT2500 MK II NEW YAESU 25W VERSION INCL. MMB £479.00
TM 20A 25W £269.00
IC 3200D DUAL BANDER BARGAIN £499.00

TM 20A 25W £269.00

All mail orders to ARROW ELECTRONICS LTD
5 The Street, Hatfield Peverel, Chelmsford, Essex

Hatfield Peverel showrooms which are just off the A12 trunk road, are open 9-5pm Mon, Tues, Weds, Fri, Sat. Closed all day Thursdays. Approach by road via M25 & A12. By rail to BR Hatfield Peverel (3 mins from shop). We will taxi you back to rail station with heavy equipment. Buses from Chelmsford and Colchester pass the door. Free parking in our own car park. Local repeater GB3DA RS.

Scottish customers welcome at ARROW ELECTRONICS (SCOTLAND) Glasgow. Tel:041-339 8445 ask for Jim. Parking free outside the shop which is near the Clyde Tunnel and Kelvin Museum.

In Leicester area Tel:0858 62827 you will find Alan G4TZY who will be pleased to assist you. Alan lives at 32 Fairway, Market Harborough, Leics. but please telephone first.

In Manchester Jim Cook, 106 Wirral Drive, Winstanley Wigan, WN3 6LD. Tel: 0942 214969

In N. Wales area John Lewis GW8UZL waits to talk to you in English or Welsh! John is an expert on Satellite work. Tel:0248 714857. 14 Carr-y-gad Llanfair-p-pg Anglesey N Wales.
FOR THE CONNOISSEUR WHO KNOWS WHAT HE'S BEEN WAITING FOR, MICROWAVE MODULES ARE PLEASED TO ANNOUNCE THIS ADDITION TO THEIR PRODUCT RANGE. BUILT ON A NEW EXTRUDED ALUMINIUM CHASSIS AND RATED AT A FULL 20 WATTS OUTPUT THIS IS THE NEWEST ADDITION TO A RANGE OF ALREADY SUPERB PRODUCTS. OUR 50MHZ MULTIMODE TRANSVERTER OFFERS THE FOLLOWING FEATURES.

- 20 WATTS OUTPUT POWER
- 144 OR 28 MHZ INPUT I.F. RANGE
- FULL 50-54 MHZ OUTPUT
- 150mW - 15 WATTS INPUT POWER
- ALC RANGE 20dB
- NOISE FIGURE BETTER THAN 3.8dB
- FM SSB FSK AM CAPABILITY
- SO 239 50 OHM INPUT & OUTPUT CONNECTORS

We know that our new product specifications are really impressive. Those customers who already own the 144/28R Transverter will appreciate these comments. Those of you who don't and would like to own the best for 50MHz please phone the factory and ask for a spec sheet. Club secretaries - we will be pleased to visit your club and give a presentation relating to our range of amateur products as well as a demonstration of the METEOSAT weather system. Bookings are available for the latter part of '87. Please phone Mick on 0403-730767 for details.

MICROWAVE MODULES LTD
50 MHZ TRANSVERTERS

MICROWAVE MODULES 50 MHZ
NOW WITH A CHOICE OF 144 MHZ OR 28 MHZ IF's

£289.80 inc VAT

FOR THE CONNOISSEUR WHO KNOWS WHAT HE'S BEEN WAITING FOR, MICROWAVE MODULES ARE PLEASED TO ANNOUNCE THIS ADDITION TO THEIR PRODUCT RANGE. BUILT ON A NEW EXTRUDED ALUMINIUM CHASSIS AND RATED AT A FULL 20 WATTS OUTPUT THIS IS THE NEWEST ADDITION TO A RANGE OF ALREADY SUPERB PRODUCTS. OUR 50MHZ MULTIMODE TRANSVERTER OFFERS THE FOLLOWING FEATURES.

- 20 WATTS OUTPUT POWER
- 144 OR 28 MHZ INPUT I.F. RANGE
- FULL 50-54 MHZ OUTPUT
- 150mW - 15 WATTS INPUT POWER
- ALC RANGE 20dB
- NOISE FIGURE BETTER THAN 3.8dB
- FM SSB FSK AM CAPABILITY
- SO 239 50 OHM INPUT & OUTPUT CONNECTORS

We know that our new product specifications are really impressive. Those customers who already own the 144/28R Transverter will appreciate these comments. Those of you who don't and would like to own the best for 50MHz please phone the factory and ask for a spec sheet. Club secretaries - we will be pleased to visit your club and give a presentation relating to our range of amateur products as well as a demonstration of the METEOSAT weather system. Bookings are available for the latter part of '87. Please phone Mick on 0403-730767 for details.

DURING THIS YEAR OUR TEAM WILL BE FOR MORE CLUB LECTURES. TO BE SURE THAT WE DO NOT MISS YOURS PLEASE RING MICK, G4EFO, ON 0403-730767.