In January 188, with the onslaught of cold weather in North Carolina-and a formreal, 2-inch snow: probably the worst time for the erection of any antenna, I finally overcame inertia and constructed a 700 -foot mini beiverage, after nearly two years of living here in North Carolina.

We are fortunate to have a 50-acre wooded plot of land immediately behind (northeast of) our home in Grifton. It shields my DX workings from much of the usual powerline noise, as my 75-foot longwire is sited parallel. to the rear property line, on an axis of $135 / 315^{\circ}$.
Unfortunately, as an affirmation of Murphy's Law, it was discovered that the longwire has a deep nuil (about 20 dB) toward about 45°, and Europe. That such an electrically-short (at MN) wire could develope such a null was a reminder that a short beverage could be a very interesting project.
In summer of 1983, while still in Okinawa, I erected what I dubbed OKİE: (oh-KKE-bee), a 1,000-foot Okinawa beverage. Actually: : I laid it on the ground, with an orientation of 15/195 ${ }^{\circ}$, and terminated it toward Taiwan. I took no notes nor tapes of this event, but I remember the gain that it exhibited, especially of the Fu Hising ("Reconstruction") B.C. stations in Taiwan on 1512 kHz . These wero usually rather weak, but on this occasion wore armchair copy with highschool basoball playoffs. being broadcast at the time.
This next effort, ENCEBE, was to be at least reasonably well documented.
My advice to whomever has considered the construction of a beverage antenna: Don't consider it, DO it. I had long contemplated the widerbrush in the forest next to our humble hovel, weighed the difficulties of erecting a beverage through it, and talked myself out of 1t. I had, however, gathered together the materials for a beverage, against the day that I might encounter optimal conditions.

Came a four-day weekend, and the snow (naturally), 'but-what the hay-I'Il do it anyway.

$$
\therefore
$$

\because
Construction took three hours, and was a oneman evolution. I suspended a 1 1,000-foot spool of \#2L AWG, plastic-insulated wire-on a 3 -foot length of plastio clothesline between two convenient supports, such that the spool playod out wire smoothly in the direction that the wire was being suspended. I fed the wire out through a steol pulley suspended from the eaves of our house: To the ent of the wire, I attached a

3/8-inch steel hook as a messenger (to provide weight for toss. ing the wire over tree branches, and an aperature for snagging the wire with a gin pole). Tossing the hook-weighted wire over tree branches in a straight line from the rear of our house, and grabbing the hook manually, or with the gin pole (when the hook came to rest suspended from a tree branch too high to reach by hand), I pulled the wire out toward 45° until I reached the limit of extension of the antenna, in this case, the edge of the forest that faces a street on its northeast perimetar. At that point, I terminated the far end of the wire tomporarily on a ground rod, then roturned to the spool end of the wire, and cut it long enough to wrap back on itself on the pulley, and then passed it through a window to the DX den. No especial care was taken to insulate' the wire, as it was already plastic insulated. As the antenna is temporary, the probability of 'abrasion of the insulation by tree branches and by bushes wasn't considered. Since the:wire wasn't too long, I was able to sight in on biur. garage during the entire evolution. As constructed, the ground termination consists of three Radio Shack ground rods driven into the earth in a straight line at five-foot intervals.
The antenna averages close to 9 feet above ground. That and a wire gauge of \#24 AWG indicates a charaptertitic impedance of 600-700 ohms. Since the ground resistance of the three rodn' as measured back through the wire with respect to receiver ground (which is tied to the Town of Orifton water system) averages 650 ohms, I terminated the wire directly to the rods without an intervening terminator resistor. True, the $\mathrm{Y}-\mathrm{f}$ resistamce of the rods is likely higher, so, additional rods are implied.
ENCEBE was erected mostly to give me first-hand experience with a beverage antenna. Being comparatively short for $\mathrm{H}-\mathrm{W}$ frequencies, it wasn't expected to perform as a Ionger antenna; nonetheless, the results were interesting and enlightening enough to justify the perhaps 5 hours total time expended in gathering materials for, and erecting the beverage.
OBSERVATİONS In general, as expected, ENCEBE shows a sensible gain at around 45° azimuth, as referenced to recoptivity at right angles to the wire ($135 / 315^{\circ}$). There is a sizeable rear lobe (around 225°), Indicating the possibility of improving the match of the termination to the beverage wire. There are some deep nulis also-especially at an azimuth of 130°, wherein two graveyarders in New Bern practically disappear.
However, it is the skywave performance of ENCEBE that is the most remarkable. Understand that the accompanying graph depicts the 0° elevation receptivity pattern, 1.e. toward the horizon. But, at some elevation toward an azimuth of 46°, ENCEBE has a 'very pronounced lobe-meaning that skywaves (which approach the

148-2-3

'oarth at a slant) arriving from 46° east of north, are captured with considerabla gain.
In comparing, the gain of ENCEBE to that of py Space Magnet SM-2; it was found that the two are very similar, such that I used the SM-2 as a reference for establishing approximate signal intensities from the stations listed in the graph, without using corrective factors. In order to set up the reference (el), the SM-2 was carofully tuned for maximim'at each frequency, and then Iturned until a peak was found on the station indicated. I avoided frequencies on which there were two signals of nearly equal intensity.

The headings of the graph, aside from callsign, location, and frequency, are azi, or the azimuth from which the signal arrives;el, or the output of the SM-2 as registered on the carrier metor of my R-3901/URR, in' $\mathrm{dB}_{3} \mathrm{e}_{\mathrm{B}}$, or the output of ENCEBE 1ikewise registered; $l_{--e_{B} \text {; or the numerical value of the }}$ SM-2 output minus the ENCEBE output. * in the e_{B} column indicates that the station in question was so weakened that the value of ' e_{B} is influenced by interfering signals; and is higher than is the true value of the station's signal.

Note that two measurements were made of WELS-1010 Kinston, one on R-390人 band $500-1000 \mathrm{kHz}$, and one on R-390人 band 1000-2000 d d Hz .

Finally, a list of line items and corresponding comments are to be found after the graph.
I hope that this will pique your interest in ereoting your own beverage. I know it was well worth my time and effort, and I will seize the next opportunity to erect a longer one.

ENCEBE receptivity (groundwave)						
540	WETC	303				
550	WDLV	265	60	55*	-5	Ne Pine
0	WLE.	293	67.	63	-4	ne Ral
590	WatM	312	. 82	81	-1	NC Wils
600	wsus	290	65	60*	-5	Ne Winston-Sa
620	WONC	240	72	69	-3	NC Durh
O	WMID	200	70	51*	-19	NC Wilmington
0	WFNC	255	76	52*	-24	NC Fayettev
680	WPTF	293	77	73	-4	NC Raleig
0	weac	222	65	60	-5	NC Rosehtil
730	WFMC	272	79	73	-6	Nc Goldsb
740	WMBL	138	68	63		wc Morchead ${ }^{\text {a }}$
250	whua	297	63	58	-5	NC New Hope
760	WCPs	352	75			NC Tarboro

70	WIWL\|	258	63	58*	-5	NC. Rockingham
780..	wero	267	80	63.	-17	NC Dunn
.790...	WTAR	. 21.	70	68	-2	VA Norfolk
810.	WCEC.	339	72	70	-2	. NC Rocky Mount
820	WRFA	212	55.	44	-11.	FL Largo
850	WKIX	293	71	64*	-7	NC. Ralegh
880	WRR2	242	71	68	-3	NC Clinton.
8.10	WHNC	321	63	58	-5	NC. Henderson
9 c .	WIAM	44	77	73	-4	NC Williamston
910	WLAS	180	76	68	-8	NC Jacksonville
930	WRRF	61	82	82	\bigcirc	NC Washington
960.	WFTC	229	85	83	-2	NC Kinston
970.	WRCS	16.	63	63	0	NC Ahoskie
980.	WAAV.	205	.68	62.	-6	NC. Leland.
990	WBTE.	-32	70	. 68	-2	NC Windson_
1010.	WELS	-229...	. 83	81.	-2	NC, Kıiston.
1010	WELS	229	BldB	79	-3	NC Kinston
1040	wSaH	290	50	36*	-14	NC Lewisvill
1050	WCMS	29	61	61	0	VA Norfolk
1070	WNCT	13	83	80	-3	NC Greenville
1090	WBZB	283	64	55.	-9	Ne Selma
1110	WBT	269	53	46**	-7	NC Charlotte
1130	WPYB	270	60	52	-8	NC Benson
1480	WRVA	358	61	57	-4	VA Richmond
1150	Wabr	272	75	69	-7	NC Goldsboro
1160	WVRU	249	56	49	-7	NC Red Spings
1170	WCLN	242	62	58	-4	NC Clinton
1230	WISP	229	79	73	-6	NC Kinston
1240	WJNC	180	63	59**	-4	NC Jacksonville
1250	WGHB	330	75	75.	0	NC Farmville
1260	WZBO	44	59	62	-3	NC Edenton
1270	WMPM	280	68	59*	-9	NC Smithfield
1280	WVAL	01	68	69	-5	NC Scotland Neck
1290	WJCV	180	65	60	-5	NC Jacksonville
1300	WSSG	272	69	55	-14	NC Goldsboro
1310	WGH	24°	65	61	-4	VA Nouport News
1320	WWGN	61	74	71	-3	NC Washington
1330	WCPQ	138	63	43*	-20	NC Havelock/Ch. Point
1350	WLLY	312	68	57	-11	NC Wilson
1360	WCHL	294	60	51	-9	NC Chapel Hill
1370	WUN	272	62	55*	-7	NC. Lillington
1380	WSFL	130	71	57	-14	NC New Bern
1390	WEED	335	68	61	-7	NC Rocky Mount
1410	WSRC	240.	61	54	-7	NC. Durham
. 1420	wnot	312.	69	56	-13	NC...Wilson
1430	WD	251	67	61	-6	NC. Mount olive
1450	WNOS	130	70	51*	-19	NC. New Bem
1460	WAKS	283	62	51	-11	NC Fuquay-Varina
1470	WPNC	49	62	60	-2	NC Plumouth

some, notes on reception with ENCEBE (all daytime except *)

kHz call comments
550 WGAI Elizabeth City, NC is only about 6 dB over WVOC Columbia, SC, on SM-2, but is alone on ENCEBE.
630 WMFD Wilmington, NC: 70 dB on SM-2, disappears on ENCEBI leaving a weak WMAL, Washington, DC.
640 WFNC .Fayetteville, NC: 76 dB on SM-2. Much weaker (5 2dB. on ENCEBE, with much interference in evidence.
660 WESC Greenville, SC, weak, but on top on SM-2. On ENCEI is buried under a medium strength skywave signal from WNBC, New York.
710 WEGG Rose Hill, NC: 65 dB on SHA -2, a semilocal. 60 dB on ENCEBE, and WOR, New York clearly audible beneath on skywave.
850 WKIX Raleigh: 71 dB on SM-2, a semilocal, with very slight WNIS, Newport News QRM. On ENCEBE WNIS is almost equal to WKIX.
880 WRRZ Clinton, NC: 71 dB on SM-2. 68 dB on ENCEBE, and WCBS, New York clearly audible beneath on skywave
1240 WGBB* Freeport, NY: is a regular here at night on ENCEBI Not audible on SM-2.
1240 WSNJ* Bridgeton, NJ: another one logged on ENCEBE. 1270 WMPM Smithfield, NC: 68dB on SM-2, with WTJZ, Newport News weak beneath. On ENCEBE, WTJZ is nearly equa: to WMPM.
1330 WCPQ Havelock/wCAS Cherry Point, NC: 63 dB on SM-2. . Gone entirely on ENCEBE, with WLAT, Conway, SC; and WESR, Onley-Onancock, VA, taking its place.
1340 WMD Atlantic City, NJ: Frequently audible at night on ENCEBE, but also audible at times as late as 1100 , and as early as 1300 EST , at near midday
1400 WOND* Pleasantoille, NJ is another frequent visitor at night on ENCEBE.
I450 WNOS New Bern, NC: 70 dB on SM-2, a semilocal. Much weaker, and equal to WLPM, Suffolk, VA; on ENCEBE 1490 WLOJ New Bern, NC: 70 dB on SM-2, also a semilocal. Disappears completely on ENCEBE, to be replaced b: W?MT, Rocky Mount, NC, and other uniDs.
1600 WLNG Sag Harbor, Long Island: Another frequent visitor here at sunrise and sunset.

