by steve hedonald ve7st

Since the photograph of my large alr-core loop flrst appeared on the front cover of the LOWDOWN (FEB/87), I have responded to over seventy requests for information regarding tis construction. Today, over a year and a half later, hardly a week goes by without additional requests - evidently there is much Interest in tW recelving antennas and loops in particular..

Hy initial Interest in constructing the loop was necessitated by the purchase of an R71A recelver followed by the rather mediocre LW reception I was achleving using a long (150^{\prime} '), high (50^{\prime} ') coaxial fed 'sloper' antenna. Llving in a typical nolsy (radio-wise) suburban city-sized lot, i found that all but the strongest of LW signals were obscured by power-line nolse, TV blrdles and nearby IIght-dimmer hash plus goodness knows what alse! Reading everything I could find about loops and corresponding with loop users convinced me to try one for myself. It was falrly evident from my research that the loop had to be smoothly rotatable in both azimuth and altitude (tllt) if maximum beneflt was to be reallzed. The abllity to smoothly swing the loop in elevation as well as azimuth allows for a virtual complete "nulling" of any strong pest signals or, more importantly at this locatlon, to null out offending nolse sources. All the designs that 1 could find looked rather fllmsy and shaky and most of these were for smaller slize loops. A trip to the local hardware store convinced me that everything I needed for a smoothly operating design was readily avallable using PVC plumbIng hardware.

The LW loop conslsts of 13 turns of /18-20 plastic covered stranded copper wire. This amounts to approximately 208' of wire. The 13 turn loop Is resonated (tuned) with a 3 -section minlature BCB variable capacitor (total range is $\mathbf{2 0 - 1 0 0 0 p F}$), removed from an old transistor radio. With a standard 2-section BCB varlable (about 700pF), the LW loop tunes from approximately $200-700 \mathrm{kHz}$; with the 3 -section variable, tuning drops to approximately 170 kHz . The M (ECB) loop conslsts of 7 turns (approxImately 115^{\prime} of wire) and a single-section 365 pF varlable. Thls arrangement tunes from approximately $700-$ 1700 kHz . To cover the bottom end of the band, a small fixed capacitor (100$\mathbf{2 0 0 p F}$) can be paralleled with the main tunling capacitor using an 'In-out'. switching arrangement. Basically it is a 'cut and try' situation - try what you have for a tuning capacl tor then add or remove turns.

The pick-up loop consists of 1 turn of the same type of wire used in the maln loop; it is spaced $5^{\prime \prime}$ Inside the main loop. The pick-up loop is fed with about 10^{\prime} of 52 ohm (RG58) coaxial cable at polnt "X" where the loop is terminated with 2 brass pins. Electrically, the loop looks like this:

Loop purists might argue that thls coaxial-fed IInk arrangement does not allow perfect electrical 'balancing' of the loop: I must say that I am unable to detect any 'skewing' of the loop pattern as both front and backslde nulls appear to be of equal depth. If you wanted to get real fussy, a balanced preamp using dual FETs or dual-gate HOSFETs at unlty gain could be employed to obtaln a perfect electrical balance.

ERAME CONSTRUCTION
Construction is straightforward and not diffleult. If you are lacking the skills or the tools then perhaps you have a friend or nelghbour that can lend a hand; another sure source of halp is the local high school Woodworking shop. The 4 crossarms on the loop frame are made from $3 / 4^{\prime \prime}$ plywood, $1-3 / 4^{\prime \prime}$ wide by $60^{\prime \prime}$ In length. Any $3 / 4^{\prime \prime}$ stock such as PIne or Cedar w1ll work equally well but it must be stralght. Anything thicker than $3 / 4^{\prime \prime}$ wIll make the frame too heavy while anything thinner results in sag - $3 / 4^{\prime \prime}$ seems Just right! The arms are Joined by cutting 'half-lap' Joints $17 \frac{1}{\prime \prime}$ ' In from each end as shown In FIG. 1. These were cut on a table saw by clamplng all harms together and cutting 4 laps at a tlme. You can also cut these by hand using a small saw and a chisel. With careful layout they will be Just as accurate as the table $s a w$ method. The arms are glued and screwed together with one $/ 8 \times 1 \frac{1}{\prime \prime}^{\prime \prime}$ wood serew at each lap Joint.

FIG. 1

The plexi guldes are short strips of $1 / 8^{\prime \prime}$ thick plexiglass that act as lignment guldas for the maln winding; these can also be made from thin wood uch as a 'Popsickle' stlck. There are probably dozens of things that could be readily used as quides but stay away from using matal. I originally drilled a serias of holes $\left(3 / 32^{\prime \prime} \mathrm{drlli}\right)$ on $5 / 32^{\prime \prime}$ centers as shown, then sanded (using a disc sander) the top portlon of the holes away, leaving a serles of grooves long which the wires can be gulded. A flle or electric hand sander will give you the same results only slower; 8 guldes are required. These were fastened to the ends of the 4 crossarms by cutting a groove (same thlckness as the gulde) in the crossarm ands and gluing Into place. Again a table saw was used but this could also be done carefully by hand. Another method is to simply fagten the guldes with small screws and some glue to the side of the crossarm ends which should work equally well. If you do this, make them wider than $5 / 8^{\prime \prime}$.

AZ/EL CONSTRUCTION

The maln frame is tilted and rotated by an azimuth/elevation system constructed of standard 1t " PVC plpe. This IIghtwelght material allows everything to glide and tilt very smoothly and, if constructed properly, adjustments In azImuth or elevation of as little as $\mathbf{t}^{\prime \prime}$ are easily made.

Two $1 \frac{1}{\prime \prime}$ " 'T' fittings along with their plpe adapters are required (part 13, 14) and 3 'end caps' are required (part /1, $/ 2$ and one for the floor stand). The end caps ($/ 1, / 2$) are centered on the Inside centers of the crossarms and are fastened with 2 short "lat-head sheet metal screws in each end cap. The $1 \frac{1}{6}$ " tubing ($/ 7,18$) is glued into the main ' T ' $(/ 3)$ using standard PVC cement but not glued into the end caps thus allowing the system to swing in elevation. Parts $/ 7$ and $/ 8$ are approximately $10^{\prime \prime}$ long but you.should cut and size your own system; these should fit snuggly and press 'outwards' against the crossarms. Part I5 is a short plece of $1 \frac{1}{6}$ "tubing approximately $1 \frac{1}{\prime \prime}$ long In order to extend the maln loop frame forward of the floor stand frame and to keep the wires from rubbing agalnst the stand when the loop is In an untilted (vertical) position. Thls should not be glued Into the maln ' T ' (/3) thus allowing you to remove the loop frame for transport or to 'plug-in' a loop for another band. Part 16 is for swinging the loop in azimuth without having to grab hold of the frame. It is $22^{\prime \prime}$ long and glued Into the ' T ' (/4); do not glue part /6 If you desire to dismantle the loop for transport. Part I9, the maln pivot pipe, is $35^{\prime \prime \prime}$ long and is glued Into the 'T' (/4); the bottom end of the plvot plpe sits Inside another end cap fastened to the floor stand frame.

FLOOR STAND

The floor stand is straightforward and its solld construction providess a very stable footing for the large loop. Standard 2×4 stock is used for parts 'A' and 'B', each $24^{\prime \prime}$ long. The center pleces (C) are 2 pleces of 2×4 glued and screwed together (each plece is 14 y ' long). These are fastened to ' A ' and ' B ' by gluIng and screwing at point ' D ' on both ends. The vertical wall pleces ('E' and 'F') are made of $\mathbf{3 / 4 \prime \prime}$ Pine but any stralght dry stock is fine. ' E ' and ' F ' are both $4^{\prime \prime} \times 21^{\prime \prime}$ In size. The top 'bushing' Is also 3/4" Pine or plywood; it is $4^{\prime \prime} \times 4{ }^{\prime \prime}$ but the latter measurement will depend on the final width of your ' C ' pleces. Cut a hole (sabre saw, scroll saw, coping saw, hole saw etc) in the center of the bushing the same size as the plpe. The fit should be snug with no flop; wax the

$$
489-2-2
$$

edges of the hole with an old candle and the entire loop will rotate like it has Teflon bearlings! The bushing is glued and screwed to the top ends of ' E ' and ' F '. The bottom end of the plvot pipe (/I) sits Inside an end cap which has been centered and screwed to the top surface of ' C '. Rub some wax on the Inside of the end cap before final assembly. FInlsh off the floor stand by screwing 4 large rubber equipment feet to the undersides of ' A ' and ' B '.

USING THE LOOP

After reading and researching loop designs, I was rather skeptical about some of the clalms made by loop users. Thls loop really opened my eyes! Inltial trlals on local groundwave powerhouses (CJOR-600kHz $6 C B U-690 \mathrm{kHz}$) revealed that thelr very strong signals (s $9+50 \mathrm{db}$ on the R71A S meter) could be COMPLETELY nulled so that no trace of carrler could be detected! Skywave propagated signals also showed deep nulls but not as pronounced as the groundwave signals; directional bearings can easlly be obtalned. European carrlers on the BCB showed a pronounced null at 30 degrees; In short, the loop quickly made me bellever!

If your location is a quiet one, unlike my 33° wide urban lot, simply use the loop to peak weak slgnals or to null 'pests'. Maximum signal plckup is off the ends of the loop, Just the opposite of a ferrlte bar type loop. When a signal is nulled, the handle (part /6) will be allgned on the bearing to the station. This holds true only if the loop is not tilted; to get accurate bearings, keep the loop frame vertical. If nolse is your problem, use the loop to null the nolse source. You should find that almost all, If not all, local nolse can be eliminated by carefully adjusting the position of the loop. Each few db of nolse ellminated will reveal another layer of previously hidden signals. The first night I fired-up the loop the LW band sounded like 20 m CW on a Saturday afternoon!

To null nolse (or a signal), leave the loop untilted and rotate in azimuth slowly untll the target is nulled. Slowly elevate the loop a few degrees and again slowly rotate to re-null. Repeat this procedure a fow times, making very small adjustments each time; eventually you wlll reach the bottom of the null which will be very sharp and very deep. Further adjustments In the same pattern wlll result in 'passing through' the null. Try experimenting on local groundwave BCB carrlers to get the feel of the loop's sharp nulling capabllity. Loop tuning is falrly sharp and the main tuning capacl tor will require re-peaking every 20 kHz or so. Results

The LW loop resulted In a dramatic increase in recalve capabilities. The flrst eleven nights of Ilstening provided 151 new beacons logged. - most of them completely undetectable on my 50^{\prime} sloper. Some of my flrst season catches were:

417	HHG	HUNTINGTON, IN
417	EOG	GREENSBORO, AL
407	SWA	SWAN ISLAND, HONDURAS
396	ZBB	S BIMINI, BAHAHAS
396	PH	INUKJUAK, QUEBEC
392	ML	CHARLEVOIX, QUEBEC
391	DDP	SAN JUAN, PR
387	SPP	SAN ANDRES IS, COLOMBIA
378	UX	HALL BEACH, NHT.

367	HA	HAO ATOLL, FR POL
353	HPH	HcGre gor Pt, HI
352	RG	RARATONGA, COOK IS
340	VL	OSTROV SHUMSHU, SIBERIA
323	UT	CALCASIEU PASS, LA
316	MAN	MAJURO, MARSHALL IS
315	HO	HIHFO, WALLIS-FUTUMA
290	NN	NANDI, FIJI
216	CL8	WILAINGTON, NC

One other thing I was told about loops is that they would not work inside my stucco house, supposedly because of the wire mesh screening beneath the stucco! I have bullt 3 loops and all have worked equally well. For curlosities sake, a smaller version (2^{\prime} diameter) using scaled-down dimensions was constructed for the BCB; the deep nulling capabillties and directional characterlstics were Identical to the large loop. Slgnal plckup on the smaller loop was reduced by several db but was still deemed satisfactory; even using the small loop was a great Improvement over the outside sloper. If you don't have the room for a great Improvement over the outside sloper, If you don't have the room for a
large loop I can highly recommend a 2 or 3 footer for the band of your cholce, scaled down from the large loop.

