The "Bevmatcher" Broadband Antenna Matching and Combining Unit Mark Connelly - WA1ION - 15 JAN 1991

This artiole presents a flexible solution to coupling Beverage and random-length longwire and vertical antennae to 50-ohm coaxial feedline suitable to transport a low-noise signal from a remote location to the receiving position. Several issues are involved: these must be discussed at the outset.

1. Inability to keep correct antenna orientation if the antenna is extended to reach the receiving "shack"

A Beverage or other wire antenna laid out for a particular directional characteristic may only be feasible at a site not immediately adjacent to the receiving position. It is necessary to "capture" signals as if the receiver was "out in the field" at the end of the properly-aimed antenna.
2. Excessive manmade RF noise in the immediate vicinity of the receiving position.

Noise from TV's, machines, fluorescent lights, oomputers, power lines, etc. obliterate serious DX signals in the area near the receiver. A remote antenna at a quieter nearby site is mandated. Active remote antennae may be overloaded by strong local stations, so a passive fix is required. Again, a means of delivering a true noisefree replica of the signal "in the field" at the base of the antenna to the operating position is needed. should be minimized. Luckily, even 100° (30 m .) of RG-58 type coax. has relatively little loss below 5 MHz . Cable shielding must be effective and ground loops are to be avoided if noise is to be held at bay and if RF "leakage" (that could compromise direotivity) is to be "plusged".
3. Wire antennae seldom provide a proper 50 ohm match: simply connecting a run of coax. to a remote wire antenna simply connecting a run

A Beverage characteristically has an impedance of 500 to 900 ohms over a fairly wide bandwidth. DXers such as Nick Hall-Patch have constructed toroidal-transformer assemblies that take advantage of this faot by using a fixed ratio of transformation (e. s. 12:1) and ground isolation to get ubstantially better RF energy transfer to the $50-\mathrm{phm}$ feedline. Separating transformer primary ground from transformer secondary ground reduces noise as long as a decent earth ground can be provided at the field site at which the antenna-to-cable interface box is located. Tests by Pat Martin indicate that the matching/ isolation transformer idea works quite well. The subject has also been covered by the 1988 \& 1989 . Fine Tuning "Proceedings". It can be seen from the foregoing discussions that the problem of efficiently transferring, by passive means, the output of a remotely-aited wire antenna to a receiving position has been attacked and partially overcome. I say "partialiy" because of the Beverage-specifio nature of the best-known current solution. Palomar Engineers had at one time advertised a passive remote whip thät was effioiently broadband-coupled to a coaxial feedline by means of a matching-transformer scheme. It is doubtful that such an antenna could deliver much output on medium-wave and longwave, but shortwave performance on "big signal" bands like 49 meters was probably adequate. I've set about to assemble a unit that can match a wide variety of remote wire antennae to 50 -ohm line without the need of aotive devices (that can overload) and tank circuits (that are narrowband and must be "tweaked"). Nick

Hall-Patch's transformer box served as the starting point: I tossed one together and found that it even helped with wires of shorter-than-Beverage length, in some cases. Not being a big fan of homebrew transformers or induotors (at work we never use them), I did subsequent testg with some commerciallyavailable matching transformers of differing impedance-
transformation ratios. These models are made by Mini-Circuits (Brooklyn, NY). Experimenting with $16: 1,9: 1,4: 1$ and $1: 1$ ratio units, I found out that different vire antennae coupled most efficiently to my 50-ohm receiver input differently, in terms of the transformation ratio best suited to the job. This is to be expeoted. Therefore, a broadband matching box offering geveral ratios would geem to be a worthwhile DX tool - able to interface with a greater variety of wires than the singletransformer unit. Such a matching unit has potential to be a remote-site coupler and also an in-shack optimizer for wires coming right in the window.

Some time back, I experimented with a "combiner" box a sort of poor man's (or - more accurately - lazy man's) phasing unit. The concept of the combiner was to take two wires, or two ends of the same longwire looped horizontally or vertically and connect them to the reoeiver and ground in six different configurations meant to establish different direotivities. Table 1 illustrates these configurations:

Table 1: Tro Wire Connection Combinations

Set-up \#
1
2
3
4
5
6

Antenna 1 to:
receiver
o connection
receiver
ground
no connection
receiver
ground
receiver
receiver
balun primary-A balun primary-B
[balun primary centertap to ground;
secondary to receiver and receiver ground]
Results both at home and at DXpedition sites were
encouraging. Nulls of pests (allowing choioe foreign DX to slide through) sometimes occurred, even with two ends of the same wire looped around the yard. Of course, phasing provides nulls more often and more controllably, but "combining" has operating gimplicity as an advantage: less time tweaking, more time DXing. Time, especially on DXpeditions, is a valuable commodity.

A decision was made to put the combiner and the switchable-impedance-transformers into a single unit, dubbed the Bevmatcher impedance-transformers into a single unit, dubbed the Bevmatcher. This allows added flexibility in either in-shack or field-remo
coupler applications. Impedance transformations of $16: 1$ (800 coupler applications. Impedance transformations of $16: 1$ (800
ohms antenna to 50 ohms receiver), $4: 1$ (200 ohms to 50) and hms antenna to 50 ohms receiver), $4: 1$ (200 ohms to 50), and 1:1 are geleotable; in addition, by reversing the transformers, $1: 4$ (12.5 ohms to 50), and $1: 16$ (3.1 ohms to 50) ratios may be obtained. These low-ohms ratios may be useful in coupling short untuned loops to a 50 ohm system. Use of the balun in the combiner section allows use of balanced antenna systems such as V -beams and rhombics (as well as large wire loops).

In addition to the combiner and impedance-transformation sections, a third seotion was added to the Bevmatcher box: a resistive matching pad that oan be switched in or out. The purpose of the pad is to improve the VSWR (voltage standing wave ratio) on the coaxial transmission line. Reducing VSWR equates to improving the impedance match: the result is an improvement in the shielding ability of the coax. cable. If shielding is good, near-field noise and direotivity-spoiling leakage of broadcast signals into the feedilne center conductor will be minimized. The resistance values chosen cause a 4.2 dB

A98-4-2
reduction in signal levelsif the pad is switched in. In lowsignal areas (the "boondocks"), it is generally wise to leave the pad switched out: every microvolt of signal counts,
especially if the receiver is insensitive and a high-gain preamplifier (MWT-1, MWT-2, or similar) is not available to place ahead of the receiver input. In reasonable-signal-level conditions (characteristio of night-time), using the -4.2 dB pad may help retain directivity and noise-immunity: the penalty to system gain may be a lesser evil than a noise or interference increase. The pad assures that the maximum VSWR will be 2.2:1 (even if the antenna represents a virtual open or short). Such pads are often used in VHF, UHF, and miorowave applications where keeping mismatches "localized" is of considerable benefit in preserving the shielded nature of coaxial cables.

Bevmatcher Assembly \& Technical Data

The construction-related documentation is as follows

```
Figures 1 & 2: schematio
Figure 3: TA1 transformer card assembly
Figure 4: TA2 transformer card assembly
Table 2: hole-drilling list
```

Tables 3-6: parts lists

Brief Symopsin of Control Usare

S1: If a good low-resistance earth ground (separate from receiver ground) is available at the location of the Bevmatcher box, noise may be reduced by setting Si to Float. This separates the grounds. If such a ground is unavailable, set Si to Common.

S2: The setting of this switch depends on whether a single wire is being input to the unit, or two wires. With two wires, optimized reception is based upon the ability to reject noise and interfering stations (more than merely presenting the hish andieter reading on desired stetions) Refor to the sehematio (Figure 1) and Table 1 for additional information.

S3: This switch selects the impedance transformation ratio. Beverages and longwires generally transfer maximum signal when the 16:1 or $4: 1$ ratio is chosen. Som wires may work best with espeoially if shorter than quarter-wavelenth, may perform better with one of the "step up" ratios ($1: 4$ or $1: 16$) than with $16: 1,4: 1$, or $1: 1$.

S4: This selects Matching Pad In or Out. Using this -4.2 dB pad, as mentioned previously, reduces VSWR (possibly improving integrity of cable shielding and, thereby, noise-rejection and throughput. In many cases, direotivity and noiserrejection are not influenced by the pad; therefore, delivering maximum signal is the preferable situation.

conclusion
The Bevmatcher is a useful accessory for the DXer inclined toward antenna experimentation. In some cases, it may result in soward antenna experimentation. In some cases, it may result in stations being heard that would otherwise be missed unit will generally do more). For a fairly lowloop or phasins unit will generally do more). For a fairly low-

Table 2 : Bevmatcher hole-drililing Iist
Mouser $537-T F-779\left(5^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}\right)$
$X=$ Horizontal distance, in inches, from the vertical centerline (VCL) on the side observed. Negative values of X are left of VCL, positive values of X are right of VCL.
$Y=$ Vertical distance, in inches, from the bottom horizontal edge of the side observed.
$D=$ Hole diameter in inches.
Hole looi are first marked on the box with a soriber and are then drilled with a. $125^{\prime \prime}$ bit. Subsequently, as required, the holes are enlarged to the proper size by using progressively larger bits up to that corresponding to the final desired diameter.

LEFT SIDE

Hole \#	Comp. Desig.	Description	X	Y	D
$\mathbf{1}$	J1	Ant. \#1 In-red banana jack	-0.75	0.5	0.3125
2	G1	GND H/W - internal lug	0.0	2.0	0.125
3	J3	GND In - black banana Jack	0.0	0.5	0.3125
4	J2	Ant. \#2 In-red banana Jack	0.75	0.5	0.3125

TQPSIDE

Hole \#	Comp. Desig.	Description	X	\mathbf{Y}	D
1	S1	Ground mode switch			
2	S1	Ground mode switch - tab	-1.875	3.0	0.144
3	TA1	Balun card - H/W 2 - shaft	-1.875	2.75	0.25
4	TA1	Balun card - H/W 1	-1.25	0. 7	0.125
5	S2	Input combiner switoh -s		0.7	0.125
6	S2	Input combiner switch -	75	2.75	0.375
7	S3	Impedance switoh - tab	0.375 0.375	2.75	0.144
8	S3	Impedance switch - shaft	0.375 0.875	2.75 2.75	0.144 0.375
9 10	TA2	Imped. transformer card H/W4	0.875 0.5	2.75 1.5	0.375 0.125
10	TA2	Imped. transformer card H/W3	0.5	1.5 0.7	0.125 0.125
12	TA2	Imped. transformer card H/W2	1.7	1.5	0.125
13	S4	Matohing pad switoh - tab W1	1.7	0.7	0.125
14	S4	Matching pad switch - shaft	1.875 1.875	3.0	0.144
++					
RIGHT SIDE					
Hole *	Comp. Denig.	Description	X	\mathbf{Y}	D
1	G2	GND H/N - internal lug RF out - BNC jack	$-1.0-0-$ $-\overline{1.25}$ 0.0 1.25 0.0 0.5		
2	J4				0.125

Table 3: "upper level" parts 1ist
Vendor codes:
$\begin{aligned} \text { RS } & =\text { Radio Shack / Many locations worīdwide } \\ \text { MOU } & =\text { Mouser Eleotronics } / 11433 \text { Woodside Ave } \\ & \text { / Santee, CA } 92071\end{aligned}$
/ Brooklyn, NY 11235-0003

