The DCP-1 Dual Controller / Phaser
for remotely-tuned active antennae Mark Connelly - HA1ION - 30 JUL 1991

The DCP-1 Dual Controller / Phaser is designed to tune two varactor-tuned remote active antennae independently and, if desired, combine the signals from each antenna so that phase cancellation of a dominant station or noise source may be effected. As in the case of two-wire phasing units such as the MWDX-4 (see mY 1985 article, available as NRC / IRCA reprints), the goal of such cancellation is the reception of electrical noise). Because the phase between the two antennae on the signal to be nulled can be adjusted to 180 degrees (at on the signal to be nulled can be adjusted to 180 degrees (at phase and amplitude relationships, nuliing of a dominant "pest" need not cause nulling of desired (subdominant) signals. Nulling both pests and $D X$ does sometimes occur - this will be discussed later.

DCP-1 controls and jacks are compatible with the two remotely-tuned antenna systems that I have recently documented: the RTL-1 Remotely-Tuned Loop and the RTU-1/MFJ 1024 RemotelyTuned Active Whip. Two cables connect the DCP-1 to each active antenna ($4 \mathrm{DCP}-1$-to- antenna cables total). One of these two cables per antenna is the coaxial line which transfers DC power (+12 V nominal) to the antenna and RF output from it. The other cable nominars varactor and bandswitch-relay control voltage to the antenna.

DCP-1 Inputs / Outputs
J1: transfers DC power to, and RF from, active Antenna J2: transfers DC power to, and RF from, active Antenna 2 J3: transfers varactor and relay control to active Ant. . 1
J4: transfers varactor and relay control to active Ant. . 2 J5: input for local ground
J6: transfers R from the $D C P-1$ to the receiver
J7: input for DC power source (+12 volts)

DCP-1 Controls
R1: adjusts amplitude of signal from active Antenna :1 R2: adjusts amplitude of signal from active Antenna $\mathbf{\#}_{2}$ R3: adjusts the varactor voltage that tunes Antenna \#1 $^{\text {I }}$ R4: adjusts the varactor voltage that tunes Antenna $\mathbf{\#}_{2}$
R5: adjusts the output level of the DCP-1
S1: controls the relays in Antenna 1 and Antenna $\$ 2$ that select low-band or high-band frequency range
2: turns DC power to the DCP-1 unit on or off
83: selects Antenna $\$ 1$ output, Antenna $\$ 2$ output, or one of the two null modes (a or b) that combine the Antenna $\$ 1$ and Antenna $\$ 2$ outputs
84: turns the DCP-1's output amplifier on (for extra gain when needed) or off

A $11-4-2$

```
FIGURE 2
            TAI PHASE - REVERSING
                            TRANSFORMER CARD SURASSEMELY
(FOR PARTS LIST, SEE TAELE 3.)
(
* "flea clip" traminal pin
```

Weing the DCP-1
Refer to Figure 1 and to the block diagram in the appendix.

Preliminary set-up

Connect Antenna to JI (RF/DC) and to J3 (control). local ground, if desired, to J5) and to 34 (control). Connect Conneot DC power (+12 y) , Connect the receiver to J6. cotinterclockwise (CCW) (maximum resigtince, and R5 fully Ignore, for the moment, the settings of ${ }^{\text {g }}$ arm to ground). Set 82 to Power On (up) and set 84 to Amplifier Off (down).

Tunc Antenna 51

Set 83 to "1". Adjust R3 for a peak signal on the desired frequency. If a well-defined peak does not occur, or if it is at the CCW or CW end of R3's adjustment range, change the sotting of si (the band-select switch) and then re-adjust R3

Tune Antenna $: 2$
(Note: Antenna 12 must be tuning-range compatible with Antenna il as there is only one band-select gwitch (si).] frequency. ${ }^{2 \prime}$. Adjust $R 4$ for a peak signal on the desired

Phasing with the DCP-1 (Introduction / General Discussion)

Phasing methods are not "cast in concrete"; numerous working strategies exist. When the dominant station to be nulled is approximately equal in strength with 83 :on " 1 " straightforward. When a substantiaic differencs is relatively station (or noise) strength exists between the two "pest" methods of nulling become more variedeen the two antennae, a DXer gains experience using the DCP-i forfice it to say, as correct strategy to set up a given null fill phasing, the The goal here is to balance the dominant signal ampapparent. contributions from each antenns and to signal amplitude phase shift to cancel the dominant signse wher a phasing a bit tricky is that any change in phase (doneme detuning one of the antenna's varactors) also changes by amplitude from that antenna Sometimes just adjusting will simultaneousir set the phase and the amplitude to thing wil simultaneousif set the phase and the amplitude to the
correct values to establish a null. More often, the interplay of level pot settings and tuning-voltage pot settings is required to create a null.

Another issue that must be considered is collateral nulling of DX along with "pests". The likelihood of this occurring is much less if an active loop is phased against an active whip than if two whips or two loops are phased. Useful nulls - those that remove pests without killing DX as well - have been obtained using two loops when the loops have been spaced at least $6.6 \mathrm{ft} . /$ 2 m apart and oriented at right angles to each other. For two whip phasing, or for two loop phasing where the two loops are oriented similarly, my experience has been that useful nulls only occur when there is a substantial distance (at least $33 \mathrm{ft} . /$ 10 m - or better yet, upwards of 66 ft .120 m) between the two antennae. Furthermore, results are best when a line drawn through the two antennae extends either to the station to be nulled or to the target area of wanted $D X$. If the line passing through the two antennae is close to perpendicular to the bearings to both the "pest" and the $D X$, useful nulls are likely to be elusite.

Active phasing of longwires may be implemented in rural areas for high-sensitivity receiving. Using the RTL-1 or RTU-1 equipped MFJ 1024 as longwire tuner-amplifiers is not advised where strong local broadcast stations are present. In the future, higher-dynamic-range remotely-tunable longwire preamplifiers will be designed for better performance in that application. of course, remotely-tuned longwire vs remotely-tuned whip (or loop) phasing possibilities also exist. provided that the longwire tuner can operate without objectionable spur-creating overload.

Phasing with the DCP-1 (8ample Phasing strategy)

1. First perform the "Tune Antenna 1" and "Tune Antenna $\mathbf{1 "}^{\prime \prime}$ procedures given previously.
2. Set R1 and R2 about "one hour" (~ 30 degrees) clockwise from the counterclockwise stop. Then, compare the level of the station (or noise) to be nulled with 83 on "1" (Antenna il) and on "2" (Antenna 2).

3A. If the difference is "silght" (e. g. less than 6 dB), do not bother adjusting R1 or R2 at this time.
3B. If one of the antennae is giving a much stronger signal than the other, adjust its amplitude pot (R1 for Antenna 1 or R2 for Antenna 2) to obtain nearly-equal levels with $s 3$ on "1", then on "2". Actual use here indicates that adjusting so you have the "stronger" antenna's level about 3 dB above the level of the "weaker" antenna helps set up a null more quickly.
4. Switch 83 between "NULL-a" and "NULL-b". One of these positions usually gives more "pest" signal reduction. That is the position to use.
5. Adjust R3 (Antenna 11 tune) to deepen the null. If no such deepening occurs, set 53 to "1", re-adjust R3 for a peak, and then return 83 to the null position selected in step 4.
6. Adjust R4 (Antenna 22 tune) to deepen the null. If no such deepening occurs, set 83 to "2", re-adjust $R 4$ for a peak, and then return 83 to the null position selected in step 4
7. Adjust the level pot (R1 or R2) that had been used in step 3B. If neither pot had been used, start with R1. Adjust for a null. Do the same with the other level pot.

All - $4-3$

8. By this time, in most cases, a definite null should be established. Keep interactively adjusting the level pot (R1 or R2) and the tuning pot (R3 or R4) that have the most effect until an adequate null (permitting subdominant signal reception) has been established.
9. If the desired $D X$ station (left after nulling) is too weak, switch in the DCP-1's amplifier by setting 84 to Amp. On (up). Amplifier overloading can be managed by adjusting R5.

If the null is too "narrow-banded" (not nulling both sidebands of an AM signal as well as the carrier), get the Q-spoiling switches on the two active antennas to "LOW $Q^{\prime \prime}$ instead of "Normal Q ".

To gain experience in using the DCP-1 to phase two remotelytuned antennae, practice on daytime MH broadcast signals, especially those having a subdominant that, before null attempts, 11230 1240 1340 1400 1450, 1490 in Horth A arica) are usuali prime candidates phasing thip aignals at night is
 es and rapid changes in occur.

DCP-1 Construction Dats


```
Table 1: DCP-1_hole=dri11ing_1igt
```

```
Table 1: DCP-1_hole=dri11ing_1igt
```

```
Table 1: DCP-1_hole=dri11ing_1igt
```

$x=$ Horizontal distance, in inches, from the vertical centerline (vCL) on the side observed. Negative values of X are left of VCL, positive values of X are right of VCL
$I=$ Vertical distance, in inches, from the bottom horizontal edge of the side observed
$D=$ Hole diameter in inches.
Hole loci are first marked on the box with a scriber and are then drilled with a $.125^{\prime \prime}$ bit. subsequently, as required, the holes are enlarged to the proper size by using progressively larger bits up to that corresponding to the final desired diameter,

HETT SIDE
Box $=7^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}$

Hole	Comp. Desig.	Description	X	\mathbf{Y}	D
1	J3	Ant. 1 control-stereo phonejack	-1.25	1.75	
2	J1	Ant. $1 \mathrm{RF} / \mathrm{DC}$ - BNC jack	-1.25	0.5	0.3
3	61	GND H/W - internal lug	0.0	1.125	0.125
4	J5	GND In - black banana jack	0.0	0.5	0.3125
5	34	Ant. 2 control-stereo phonejack	1.25	1.75	0.375
6	$J 2$	Ant. 2 RF / DC - BNC jack	1.25	0.5	0.375

TOP 8IDE

(Table 1 - cont.)

R3	Line 1 tune pot. - shaft	-1.0	3.75	0.375
R4	Line 2 tune pot. -shaft	-1.0	1.25	0.375
TA1	PhaseRev. TransformerCard-H/W1	-0.5	2.5	0.125
TA1	PhaseRev. TransformerCard-H/W2	0.3	2.5	0.125
81	Band select switch - shaft	0.5	4.0	0.25
81	Band select switch - tab	0.5	3.75	0.144
82	Power switch - shaft	0.5	1.0	0.25
82	Power switch - tab	0.5	0.75	0.144
84	Amplifier switch - shaft	2.0	4.0	0.25
84	Amplifier switch - tab	2.0	3.75	0.144
83	Mode switch - shaft	2.0	2.5	0.375
83	Mode switch - tab	2.5	2.5	0.144
R5	Output Level pot. - tab	1.6875	1.0	0.144
R5	Output Level pot. - shaft	2.0	1.0	0.3125

RIGHT SIDE

Hole	$\begin{aligned} & \text { Comp. } \\ & \text { Desig. } \end{aligned}$	Description	X	I	D
1	J7	B+ In - phono jack	0.0	1.75	0.25
2	G3	GND H/W - internal lug	0.0	1.125	0.125
3	$J 6$	RF Out - BNC jack	0.0	0.5	0.375
4	A1	Broadband Amp. Card - H/H 3	0.875	1.625	0.125
5	A1	Broadband Amp. Card - H/W 1	0.875	0.625	0.125
6	A1	Broadband Amp. Card - H/W 4	1.875	1.625	0.125
7	A1	Broadband Amp. Card - H/W 2	1.875	0.625	0.125

Table 2: DCP-1 "upper level" parts 1ist
Vendor codes for this and other parts lists

MCL	= Mini-Circuits	/ P. O. Box 350166 / Brooklyn, NY 11235-0003
MOU	. Mouser slectronics	/ 11433 Woodside Ave. / Santee, CA 92071 /Tel. 1-800-346-6873

RS = Radio shack / Many locations worldwide

A11-4-4
(Table 2 - cont.)

Misc. items: hook-up wire, buss wire, solder, labels "As REQUIRED" $+++$
$+++$
Table 3: TA1 phase-reversal transformer card / parts list Vendor codes per Table 2.

Misc. items: buss wire, solder "as REQUIRED"

$++$

APPENDIX BLOCK DIAGRAM OF A DCP-I BASED LOOP - VS. -WHIP PHASING SYSTEM

