BEE-C Loop Amplifier Card

Original design: Dallas Lankford - 15 NOV 1991 Article \& modified version: Mark Connelly - 04 fes 1992

The BFE-C (Balanoed Front-End Card, model C) is a "WNIION DX Labs" implementation of Dallas Lankford's Balanced Cascode Loop Amplifier. His design is under further testing and refinement: he expects to publish a comprehensive article on it in the not-too-distant future. Dallas's design differs slightly from BFE-C in minor ways that will be mentioned subsequently. In terms of electrical characteristics, both can be treated as the same entity. The design is an inprovement on the Kolb-Sanserino amplifier long used in Radio West's loops as well as (in modified form) in the RIL-1 Remotely-Tuned Loop (BFE-A, BFE-B cards). Dallas maintains that the balanced configuration of the output transistors (Q3 and Q4) of the new design inproves noise figure; using FET's $^{\prime}$ in the output stage, rather than a bipolar transistor gives enhanced strong-signal performance (i. e. reduced spurious responses).

This article will not go into an in-depth design review: that will be left for Dallas's forthooming article. Rather, the essential construction details will be supplied, so DXers can do testing of their own.

Figure 1 is the BFE-C schematic, Figure 2 is its assembly (component layout) drawing, and Table 1 is the parts list. For best results, Q1 should be matched to Q2; also, Q3 should be matched to Q4. Figure 3 shows the test circuit for measuring the voltage used to ascertain a matched condition. Two transistors producing voltage readings within 38 or better can be considered to be matched. For the purpose of getting two matched pairs of MPF102's, you should have a dozen or so transistors available.

Variations to the BEE-C design

Dallas Lankford suggests using an Amidon ferrite bead (part number $\mathrm{FB}-101-64$) on the drain lead of Q 1 and one on the drain lead of Q2 rather than using low-value chokes L3 and LA. The 100 uf input inductors L and L 2 , meant to reduce sensitivity above 9 Miz , can be removed if the loop amplifier is to be used with a shortwave, rather than with a medium wave, loop. R3 and R4 may each be reduced to 2.2 K or to an even lower value. This will reduce gain, thereby reducing spurious responses that can occur in urban areas with large air-core loops. With lowergain ferrite loops, it is unlikely that overloading would be much of a problem except in the worst "transmitter alley" locations like the New Jersey Meadowlands. Dallas has recommended that larger loops be tapped down part way on the coil - again to inprove dynamic range and to reduce intermodulation distortion "spurs" in strong-signal areas. He also mentioned problems with Mouser inductors opening up (a problem I've seldom encountered); he winds homebrew 100 ull inductors using 39 turns of $/ 26$ wire on an Amidon FT-50-82 toroidal core. He niso honebrews the output balun transformer (12 trifilar turns 122 on Amidon FT-82-43, or 33 trifilar turns $\mathbf{1 2 6}$ on Amidon FT-82-61). There's no paranetric advantage to one approach (e. g. honebrew) over the other (e. g. using the Mini-circuits T4-6T).

FIGURE : BFE.C. BALANCSD FRONT - END CARS SCHGMATIC

FIGUKE 2

BFI-C Loop Aip. Updater - Iark Coanelly - Ol MAR 1992

A couple of changes to the BPL-C article: PIrst, there's a correction to the orleatation of transforser Tl as shova on the Bft-C asseably dravigg. I had put il onto the card correctiy vhen I did iy testiag, but Its position on the draviag was accidentally reversed. diso, as a result of urban testiag, I've set resistors is and $\mathbf{1 4}$ to 2.21 k , it rather than t.75k. Yor these changes, please refer to the iodified draviag belov. 23 and If should also be chaged on the scheatic and parts list.

Table 1: (A1) BEE-C balanced front-end cand parts IIst, Vendor codes:

Note: Q1 and Q2 should be matched. Q3 and Q4 should be matched. FET-matching method is given in the article's text and in Figure 3.

Tests versus the BEE-A

[Refer to the article "The RII-1 Remotely-Tuned Loop" M. Connelly - JUL 1991]

The BFE-C amplifier card was swapped into my hanebrew RII-1 loop in place of the BFE-A. A ferrite loop head was used. BFE-C sensitivity was comparable to (consistently within 3 dB of) that of the BFE-A card across the medium-wave band. BFE-C's strongsignal handling was a bit better and its noise floor seemed lower. Tests were done with each front-end amplifier's output routed directly to the receiver and then with each amplifier's output passed through the BEA-C broadband anplifier for additional gain. Although differences weren't dranatic, I'd recommend that DXers building the RIU-1 should use the BFE-C in place of the BFE-A.

