The RTL-2 Remotely-Tuned Loop

Mark Connelly - WAllon - 23 AUG 1993

The RTL-2 is a remotely-tunable balanced loop antenna system with improved performance over the previously-released RTL-1 and RTL-IA. The RTL-2 amplifier box accommodates Quantum and Palomar loop heads as well as home-brew ferrite or air-core heads fitted with the necessary stereo phone plug. The RTL-2's remote-tuning capability is compatible with control by the DCP-1 Dual Controller / Phaser and by the MWT-3 Regenerative Preselector. The controller couples DC power to the RF (coaxial) line and provides varactor and relay control voltages. The loop head / loop amplifier assembly may be placed a considerable distance (e. g. $100 \mathrm{ft} . / 30 \mathrm{~m}$.) from the controller / receiver "shack" position with little degradation of performance. The RTL-2 can also be used for remotely-tuned whip / wire operation.

The major work of the RTL-2 is done by three subassembly cards MI (the VRLY-A Varactor \& Relay Card). A1 (the BFE-C Balanced front-end card), and A2 (the BUF-A (or BUF-B) output buffer amplifier). This modularity of design allows the builder to try out other subassemblies for improvements to performance at a later time without having to rebuild the entire RTL-2 box. Customizations could be done for even better dynamic range or higher sensitivity or lower power consumption.

The frequency range covered by a given medium wave loop head can be extended downwards by enabling the relay KI on the MI (VRLY-A) card. This parallels the main varactor with an additional varactor shunted by a 270 pF fixed capacitor. The normal varactor capacitance range is approximately 50 to 440 pF ; with the shunt pulled in, a second range of about 370 to 1150 pF becomes available. As varactor diodes have a lower (maximum $\mathrm{C} /$ minimum C) ratio than air variable capacitors have, use of the relay is sometimes necessary for full medium wave band coverage. The relay control voltage at $\mathrm{J} 2-\mathrm{B}$ is typically 0 VDC (ground or open) for high-band / open-contacts and +12 VDC for low- band / closedcontacts. Varactor tuning voltage, supplied from a low to medium impedance source to J2-A, should be 0 VDC for maximum capacitance (minimum frequency) and about +9.1 VDC for minimum capacitance (maximum frequency). Controllers such as MWT-3 and DCP-1 supply these voltages.

Because a remotely-sited loop is generally set up in one position and not constantly moved about for nulling, head tiltability (and critical balancing of the front-end card) is not nearly as important as on an inshack loop. Tilting and rotating of Quantum and Palomar heads is, of course, possible; mobility of larger heads (e. g. air-core) is left up to the ingenuity of the builder.

An obvious question, at this point, would be "How can I null anything with a remotely-sited loop?" Short of employing tilting and rotating servo-motors (a project not for the faint of heart), nulls are most readily obtained by phasing the remote loop against a varactor-tuned whip or against a second remote loop. The ideal set-up would be two remote loops at right angles and a remote whip. The DXer could then pick the pair of remote antennae that would throw the stiffest null on the "pest" station (or noise) while simultaneously passing the greatest amount of desired DX station signal.

Remote loop versus remote whip phasing is done here regularly; it works quite well, providing a nulling scheme better suited to DXing from "field" sites (beaches, piers, etc.) than longwires that can get in the way of vehicular and pedestrian traffic. My standard beach DX set-up is a Sony ICF2010 or Realistic DX440 receiver connected to the DCP-1 Dual Controller / Phaser running one RTL-2 with a Quantum loop head and another RTL-2 with a whip of approximately 3 ft . height. The resultant cardioid pattern works well for nulling stations to the west, thereby improving Trans-Atlantic (TA) reception from the east. One RTL-2 box sits on the roof of the car, the other on the hood.

A two-loop phasing scheme can generate a cardioid pattern, as well. One loop should be aligned 45 degrees clockwise of the axis of interest and the other loop should be aligned 45 degrees counterclockwise of this axis. For example, if two Quantum-head-equipped RTL-2's are being used to null stations to the west and receive stations from the east, a perpendicular line (direction of maximum pickup) off the first Quantum head would be on the $45 / 225$ degree (NE/SW) bearing and the perpendicular line from the other head would be on the $135 / 315$ degree (SE/NW) bearing. If two loops not separated by a substantial distance are to be phased, there should be at least a 45 degree absolute angle between the two. Otherwise, stations from all directions tend to null together during the phasing process. Two-whip phasing at medium-wave requires at least a $100-\mathrm{ft} . / 30-\mathrm{m}$. separation between the whips. Also, it helps if
a bearing line from one whip to the other extends towards the station to be nulled or towards the DX to be received.

RTL-2 Control Usage

Although the RTL-2 is a remotely-controlled antenna system in most respects, three switches reside on the RTL-2 box. These controls are, in typical circumstances, rarely adjusted from the operator's "normal" set-ups. If necessary, the RTL-2 box could be overhauled for completely automated operation; of course this would require a considerable increase in the complexity of both the RTL-2 and the controller unit. This article does not address that scenario.

SI (Whip Bandswitch): This switch selects one of three frequency ranges for Whip / Wire operation by selecting an inductor to place in parallel with the capacitance developed by the VRLY-A card. Bands covered are Longwave ($130-475 \mathrm{kHz}$), Medium Wave ($475-1720 \mathrm{kHz}$), and Tropical Bands ($1720-$ 5500 kHz). These ranges are approximate; use of short whips (e. g. less than $1 \mathrm{~m} . / 3.3 \mathrm{ft}$.) will increase the high-frequency end of each range above that stated. Each range is divided into two sub-ranges controlled by the relay on the VRLY-A card: LW-low $=130-220$, LW-high $=220-475 ;$ MW-low $=475$ -830 , MW-high $=830-1720 ;$ TB-low $=1720-2700$, TB-high $=2700-5500($ up to $\sim 7500 \mathrm{kHz}$ w/ short whips). It should be noted that, with S 2 in the Loop mode, a Quantum head will tune about $450-850 \mathrm{kHz}$ (low-band) and 750 kHz to 2000 kHz (high band), again depending upon the relay setting. Physical orientation of SI: TB $=\mathrm{up}, \mathrm{LW}=$ center, $\mathrm{MW}=$ down.

S2 (Function Switch): This switch selects one of the two operating modes: Loop or Whip / Wire. In the Loop mode, a loop head coil is plugged into RTL-2 JI. The signal across the tank circuit formed by this coil and the varactors on the VRLY-A card is amplified by the AI (BFE-C) card in a balanced-in / unbalanced- out configuration. The BFE-C's output is given a further boost by the T1 transformer / A2 (BUF-A or BUF-B) buffer amplifier card combination. In the Whip / Wire mode, a whip or wire antenna installed at J4 is coupled to a tank circuit comprised of the VRLY-A card varactors and an inductor selected by bandswitch SI. The signal thus developed is amplified by the AI and A2 cards in an unbalanced in / out configuration. Physical orientation of S2: Loop $=$ up, Whip $/$ Wire $=$ down.

S3 (Q Switch): This switch selects Normal Q or Low Q. Normal Q is generally used because it provides the best sensitivity and selectivity. Low Q may be usable in some phasing applications to ensure more thorough nulling of a "pest" station's sidebands as well as its carrier. Physical orientation of S3: Normal $\mathrm{Q}=$ up, Low $\mathrm{Q}=$ down.

For simplicity, the attenuation pot. of the older RTL-1 / RTL-1A designs was deleted. Those living in urban areas may find that installing a similar potentiometer between J 4 and CI may help to prevent overloading when longer wires are being used.

Building the RTL-2 Remotely-Tuned Loop

The documentation (schematics, assembly drawings, parts lists, hole lists, etc.) serves as the starting point. The following procedure should serve as an outline for the builder.

1. Gather all necessary parts (see parts lists to follow). Prepare work area with appropriate tools.
2. Drill out chassis box, in accordance with Table 1.
3. Assemble each of the circuit card subassemblies - these are:

* VRLY-A Varactor \& Relay Card (Fig's 3 \& 4; Table 3)
* BFE-C Balanced Front End Card (Fig's 5 \& 6; Table 4)
* BUF-A or BUF-B Buffer Amplifier Card (Fig's 8-11; Tables 5 \& 6)

4. Mount each of the circuit cards at the hole locations noted in Table 1.
5. Install jacks, pots, and switches. Solder inductors onto SI per Figure 1 and Table 8.
6. Install wiring and other components per Figures I \& 2 and Tables I, 2, 7, \& 8. Place labels near controls and jacks.
7. Connect controller (e. g. MWT-3 or DCP-1) to the RTL-2: control cable to $\mathrm{J} 2, \mathrm{RF} /$ power cable to J 3 . Connect DC power to the controller and connect the controller's RF output to the receiver.
8. Install Quantum, Palomar, or home-brew loop head at RTL-2 JI, or a whip or wire to J4. The RTL-2 may now be tested and operated.

Table 1: RTL-2 hole-drilling lis

$\mathrm{X}=$ Horizontal distance, in inches, from the vertical centerline (VCL) on the side observed. Negative values of X are left of VCL, positive values of X are right of VCL.
$Y=$ Vertical distance, in inches, from the bottom horizontal edge of the side observed
$\mathrm{D}=$ Hole diameter in inches.
Hole loci are first marked on the box with a scriber and are then drilled with a . 125° bit. Subsequently, as required, the boles are enlarged to the proper size by using progressively larger bits up to that corresponding to the final desired diameter
Chassis Box $=$ Mouser 537-TF-779 (metal): $5^{\circ} \times 4^{*} \times 33^{*}$

NOTE: Use holes 8 a \& 9 a if using the BUF-A card as the output amplifier; use holes 8 b \& 9 b if using the BUF-B card instead.

RIGHT SIDE

Hole \#	Comp. Desig.	Description	X	Y	D
-	--		---	\cdots	037
1	12	Control Cable-stereo phone jk	-1.125	0.625	0.375
2	G2	internal ground lug hardware .	0.0	1.25	0.125
3	J3	RF out / DC in - BNC jack	0.0	0.5	0.375

Table 2: "upper level" parts list
*: Note follows parts list.
Vendor codes for this and subsequent parts lists:

$$
\left.\begin{array}{ll}
\text { DC = DC Electronics } & \begin{array}{l}
\text { P. O. Box 3203 }
\end{array} \\
& \text { Scottsdale, AZ 85271 } \\
\text { Tel. 1-800-467-7736 }
\end{array}\right\}
$$

Schematic = Figures $\mathbf{1}$ \& 2.

tem	Designator	Description/Value	Vendor	Vendor Stock \#	QTY
1		chasis bor			
2	Al	chassis box 5X4X3	MOU	537-TF-779	1
$3 *$	A2	BFE-C front-end		(see Table 4)	1
4	M1			(see Table 5)	1
		VRLY-A var/relay		(see Table 3)	1
5	Cl	capacitor, 43 pF	MOU	2 ICB043	1
6	C2,5	capacitor, 10 uF	MOU	581-10K35	2
7	C3,6	capacitor, 0.001uF	MOU	539-CK05102K	2
8	C4	capacitor, 0.1 uF	MOU	539-CK05104K	1
9	DSI	NE-2 neon bulb	MOU	36NE002	1
10	J1,2	stereo phone jack	MOU	10PJ080	2
11	J3,4	BNC jack	MOU	523-31-221	2
12	LI	inductor, 1.5 mH	MOU	434-1120-153K	1
13	$L 2$	inductor, 82 uH	MOU	43LR825	1
14	13	inductor, 6.8 uH	MOU	43LR686	1

R1,2	resistor, 270 ohm	MOU	29SJ250-270	2
R3,4	resistor, 15 K	MOU	29SJ250-15K	2
RS	resistor, 470 ohm	MOU	29SJ250-470	1
RFC1,2	inductor, 4.7 mH	MOU	$434-1120-473 \mathrm{~K}$	2
RFC3	inductor, 2.2 mH	MOU	434-05-2225	1
S1	switch, SPDT, on/off/on	MOU	10TA535	1
S2	switch, DPDT, on/on	MOU	10TA560	1
S3	switch, SPDT, on/on	MOU	10TA530	1
T1	RF transformer, 1:36	MCL	T36-1-X65	1

* Item 7: BUF-B (Table 6) may be used in place of BUF-A

Misc. items: hook-up wire, buss wire, solder, labels "AS REQUIRED
Table 3: (MI) VRLY-A Varactor \& Relay Card parts list. See Table 2 for vendor codes
Schematic $=$ Figure $3 /$ Assembly $=$ Figure 4.

$\begin{aligned} & \text { Item } \\ & =\pi== \end{aligned}$	Designator 	Description/Value	Vendor =	Vendor Stock \#	$\begin{aligned} & \text { QTY } \\ & =\underline{=} \end{aligned}$
1	-	perfboard:1.4*X1.4"	RS	276-1396 (cut)	1
2	C1,2,4	capacitor, 0.1 uF	MOU	$539-\mathrm{CK} 05104 \mathrm{~K}$	3
3	C3	capacitor, 270 pF	MOU	232-1900-270	1
4*	DI, 2	varactor, MVAM109	DC	MVAMIO9	2
5	D3	zener, IN4733 (5.1V)	RS	276-565	1
6	H1, 2, 3,4	screw, 4-40 X 25^{*}	MOU	572-01880	4
7	H1, 2, 3, 4	spacer, 4-40 \times. 5^{\prime}	MOU	534-1450C	4
8	H1,2	split lockwasher,\#4	MOU	572-00649	2
9	H3,4	solder lug, \#4	MOU	534-7311	2
10	Kı	relay (5V DIP SPST)	MOU	433-D31A311	1
11	(for K1)	DIP socket, 14 pin	RS	276-1999	1
12	P1-6	flea-clip/. 042^{*} hole	MOU	574-T42-1/100	
13	RI	resistor, IK	RS	271-1321	
14	R2	resistor, 270 ohm	MOU	29SJ250-270	1
15	RFCl 2	inductor, 4.7 mH	MOU	434-1120-473K	2

+ buss wire, solder - as required
* Item 4: Motorola MVAM108 or Siemens BB112 may be substituted directly. NTE618 may be substituted if the maximum control voltage is raised from +9.1 VDC to approximately +11 VDC.

Table 4: (A1) BFE-C Balanced front-end Card parts list. See Table 2 for vendor codes.
Schematic $=$ Figure $5 /$ Assembly $=$ Figure 6.

Item ="==	Designator	Description/Value	Vendor	Vendor Stock \#	$\begin{aligned} & \text { QTY } \\ & \hline= \end{aligned}$
1	BD	perfboard:1.9*X1.4*	RS	276-1396 (cut)	1
2	C1,2,3,4	capacitor, 0.1 uF	MOU	539-CK05104K	4
3	H1, 2,3,4	screw, 4-40 X.25"	MOU	572-01880	4
4	H1, 2, 3,4	spacer, 4-40 X $5{ }^{\text {" }}$	MOU	534-1450C	4
5	H1,2,3	split lockwasher,\#4	MOU	572-00649	3
6	H4	solder lug, \#4	MOU	534-7311	1
7	LI, 2	inductor, 100 uH	MOU	43LSI04	2
8	L3.4	inductor, 1 uH	MOU	43LS106	2
9	P1-P19	flea-clip..042"hole	MOU	574-T42-1/100	19
10	Q1,2,3,4*	FET, MPF102	RS	276-2062	4
11	RI	resistor, 1 K	RS	271-1321	1
12	R2	resistor, 47 ohm	MOU	29SJ500-47	1
13	R3,4,5,6	resistor, $2.21 \mathrm{~K}, 1 \%$	DK	2.21 KX	2
14	TI	balun transformer	MCL	T4-6T-X65	1

+ buss wire, solder - as required
- Item I0: Q1 should be matched to Q2; Q3 should be matched to Q4. See Figure 7.

Table 5: (A2) BUF-A Buffer Amplifier card parts list. Vendor codes per Table 2. Schematic $=$ Figure $8 /$ Assembly $=$ Figure 9 .

$\begin{aligned} & \text { Item } \\ & = \pm= \end{aligned}$	Designator	Description/Value	Vendor \qquad	Vendor Stock *	QTY
1	BD	perfboard:1.2*X2.0*	RS	276-1396 (cut)	
2	CI	capacitor, 0.01 uF	MOU	$539-C K 05103 \mathrm{~K}$	1
3	C2	capacitor, 10 uF tant	MOU	581-10K35	1
4	C3	capacitor, 0.001 uF	MOU	$539-\mathrm{CK} 05102 \mathrm{~K}$	1
5	C4.5	capacitor, 0.1 uF	MOU	$539-\mathrm{CK} 05104 \mathrm{~K}$	2
6	H1,2	screw, 4-40 X $25{ }^{\prime \prime}$	MOU	572-01880	2
7	H1,2	spacer, 4-40 $\times 5^{\prime \prime}$	MOU	$534-1450 \mathrm{C}$	2
8	H1,2	solder lug. \#4	MOU	$534-7311$	2
9	P1-7	flea-clip/.042"hole	MOU	574-T42-1/100	7
10	R1,2	resistor, 680 K	MOU	271-680K	2
11	R3	resistor, 100 ohm	MOU	271-100	1
12	R4,5	resistor, 4.7 ohm	MOU	295-4.7	2
13	TI	RF transformer, 4:1	MCL	T4-6T-X65	
14	U1	buffer amplifier IC	GER	(National)LH0033C	C 1

Table 6: (A2) BUF-B Buffer Amplifier card parts list. Vendor codes per Table 2.
BUF-B may be substituted for BUF-A for more gain at rural locations.
Schematic $=$ Figure $10 /$ Assembly $=$ Figure 11 .

Item	Designator	Description/Value	Vendor =	Vendor Stock \#	QTY
1	BD	perfboard:1.4*X2.4*	RS	276-1396 (cut)	1
2	C1,5,9	capacitor, 0.01 uF	MOU	539-CK05103K	3
3	C2,3,4,7,8	capacitor, 0.1 uF	MOU	$539-\mathrm{CK} 05104 \mathrm{~K}$	5
4	C6,10	capacitor, 10 uF tant	MOU	581-10K35	2

A132-5-3

5	H1,2	screw, 4-40 $\times 25^{\text {a }}$	MOU	572-01880
6	H1,2	spacer, 4-40 $\times 5^{-}$	MOU	534-1450C
7	H1,2	solder lug. 44	MOU	534-7311
8	PI-9	flea-clip $1042{ }^{\text {\% hole }}$	MOU	574-T42-1/100
$9 *$	Q1	MOSFET, NTE 222	MOU	526-NTE222
10	Q2	NPN, 2N5109	MOU	511-2N5109
11	RI	resistor, 330K	MOU	29SJ250-330K
12	R2	resistor, 51 ohm	MOU	29SJ500-51
13	R3,8	resistor, 270 ohm	MOU	29SJ250-270
14	R4	resistor, 100 K	RS	271-1347
15	RS	resistor, 47K	RS	271-1342
16	R6	resistor, 680 ohm	RS	271-021
17	R7	resistor, 1K	RS	271-1321
18	R9,11,12	resistor, 4.7 ohm	MOU	295-4.7
19	R10	resistor, 39 ohm	MOU	29SJ500-39
20	RFCl	inductor, 2.2 mH	MOU	434-05-222J
21	TI	RF transformer, 4:1	MCL	T4-6T-X65

+ buss wire, solder - as required
- Item 9-3N201, 40673, or NTE454 may be substituted (Q1).

Table 7: small hardware parts list, comprised of tables 7A - 7D. See Table 2 for vendor codes.
Note: Mounting hardware is supplied with the following components: $\mathrm{J} 1, \mathrm{~J} 2, \mathrm{J3}, \mathrm{~J} 4, \mathrm{~S} 1, \mathrm{~S} 2, \mathrm{~S} 3$.
** Table 7A = M1 mounting hardware (excluding Table 3 items) ***
$\stackrel{\text { Item }}{=-}$

Description/Value	Vendor
$=====$	
screw, 4-40 X.25*	MOU
split lockwasher, 4.	MOU

Vendor Stock \#	QTY
572-01880	4
572-00649	4

** Table 7B = A1 mounting hardware (excluding Table 4 items) **

Item	Designator	Description/Value	Vendor = =
1	.	screw, 4-40 X. $25{ }^{\text {c }}$	MOU
2	-	split lockwasher, 4	MOU

$\substack{\text { Vendor Stock \# } \\ =====-0}$	QTY
$572-01880$	
$572-00649$	4

** Table 7C = A2 mounting hardware (excluding Table $5 / 6$ items) ***

Item	Designator	Description/Value	Vendor	Vendor Stock "	QTY
1		screw, 4-40 X.25*	MOU	572-01880	2
2		split lockwasher, ${ }^{\text {H }} 4$	MOU	572-00649	2

** Table 7D = grounding hardware ***

$\begin{aligned} & \text { Item } \\ & ==== \end{aligned}$	Designator	Description/Value	Vendor =an	Vendor Stock \#	$\stackrel{\text { QTY }}{\underline{=}}$
1	G1,G2	screw, 4-40 X.375*	MOU	572-01881	2
2	GI.G2	solder lug. \#4	MOU	$534-7311$	2
3	G1,G2	hex nut, 4-40	MOU	572-00484	2

See Table I for M1, AI, A2, GI, G2 locations.
Locate screw heads \& lockwashers for MI, AI, \& A2 on exterior surface of the chassis box.
Locate G1 \& G2 screw heads on exterior surface of chassis box and locate G1 \& G2 lugs and nuts inside the box.

Table 8: wiring / component connections
Notes:

1. Wire types: $\mathrm{D}=$ direct connection using component's own lead

> I = insulated wire, approx. \#22 AWG
$\mathrm{B}=$ bare solid (buss) wire
2. Lengths specified are the maximum amount typically required; in actual practice, use the shortest length possible to minimize stray coupling.
3. J1-C and J2-C (of Figure 1) are tied to chassis ground via direct mechanical connection. On JI and J2, the following convention applies to the mating of stereo beadphone plugs to these jacks:
$A=$ tip of plug
$B=$ center section of plug
$\mathrm{C}=$ remaining (base) section of plug (= ground)
IINSIDE BOX

A132-5-4
FIGURE 6: RTL-2 REMOTELY - TUNED LOOP (ASSEMBLY: BFE-C BALANCED FRONT-END CARD)

FIGURE 10: RTL-2 REMOTELY - TUNED LOOP (SCHEMATIC: BUF-B BUFFER AMPLIFIER CARD) BUF-B may be used instead of BUF-A for more galn at rural locations.

FIGURE 8: RTL-2 REMOTELY - TUNED LOOP (SCHEMATIC: BUFA BUFFER AMPLIFIER CARD)

FIGURE 9: RTL-2 REMOTELY-TUNED LOOP (ASSEMBLY: BUF-A BUFFER AMPLIFIER CARD)

FIGURE 11: RTL-2 REMOTELY-TUNED LOOP (ASSEMBLY: BUFB BUFFER AMPLIFIER CARD) BUF-B may be used instead of BUF-A for more gain at rural locations.

FIGURE 2: RTL-2 REMOTELY - TUNED LOOP (SCHEMATIC: OUTPUT SECTION)

- BUF-B (FIG. 10) may be substituted
for BUF-A for use as the A2 amplifier.

BUF-B (FIG. 10) may be substitutad
for BUF-A for use as the A2 amplifier.

FIGURE 5: RTL-2 REMOTELY - TUNED LOOP
(SCHEMATIC: BFE-C BALANCED FRONT-END CARD)
WA1ion DX Labe version of Dallas Lankford loop amplifiar

NOTES

$\Delta=R 3$, R4 can be increased to 4.75 K , 1\% for higher gain.

* - 01 should be matched to 02, $\mathrm{O3}$, Should be matched to $\mathrm{O4}$. 7.

I = Reduce value of Li, L2 (a. 2 to 22μ h/f or replace by Jumpers (zhorts)

FIGURE,3: RTL-2 REMOTELY-TUNED LOOP (SCHEMATIC: VRLY-A VARACTOR / RELAY CARD)

FIGURE 4: RTL-2 REMOTELY - TUNED LOOP (ASSEMBLY: VRLY-A VARACTOR / RELAY CARD)

Notan

- Long lead side of vertically-mounted component
- Buss wirs on solder alide of board
- Buss wirs on component side of board
"Flea clip" terminal pin
OPEN SIDE

