T25-1-1
Fillic Digection fining: A Practicel Aprroach on the BCP with an ilgorithr for Menual or Computer Evaluction.
Copvrighted by Deve Fischer, Ph.Dx, P. O. Box 6256, Lincoln, Nebr. 685 J
The BCB presents DXers with numerous opportunities to pinpoint distant trarswitters by using loop antennas to take locel azimuth bearings of such stations wher the signal is placed in the loop pattern nill. In generel, to uniouely pinpoint a distant station requires obsarvations (bearings taken with a loop antenna) from three distinct points on the Earth's surface not lying on a cormon great circle peth. However, on the $B C B$, considering propegstion conditions and other factors, the number of observations in practice can be reduced to two. For example, if a Midwestern DXer takes a baering on a station and obtuins a reeding of 135° (or 315° since the loop is assumed ambiguous and thus symuetrical in patte:n resporse) and en Eactern DXer tckes a bearing on the same station and finds the angle to be 175° (or 335°), then the signal is more likely to be coming fron the Caribbean area (determined by the bearinge of 135° and 175°) for the other location of the station is in the Indien Ocean several hundred miles southwest of Feith, Australia and there appears to be nothing but water in that vicinity. But the deduction is based upon a more significant fact, viz., that one oan most likely discount signals from that distance in most (but not all!) cases.

Accurscy of bearing is of the greatest importance and here lies the essential difficulty for the BCB DXer. Bearings taken with most locp antenras are subject to arrors and limited in accuracy by null width and the compass used (on the loop) to read the bearing. Accurecy required in the azimuth bearing is most dependent upon the distance between the trensmitter and the DXers' receivers and the seperation between the DXers' locations. As a rule of thumb, bearings must be accurate to within 1° or less to locate with reasoneble accuracy stations more distent than 500 miles. Such accuracy is asking a great deal of a loop antenna! Accuracy to within 1° is the best thet can be expected from e given collection of DXers using loop entennes whose patterns are not skewed or rotated-i.e., petterns whose nulls appeer at right ansles to the loop plane and are symmetrical in their respunse. However, it is more likely that most loops have some null skewing due to numerous causes (these causes have been and continiae to be discussed at length by the DXing fraternity) so that accurecy of beering is not sufficient, in general, to allow a single pair of DXers to accurately pinpoint a distant station. This difficulty can only be overcome by the efforts of gore than two DXers working together and calculating from enong ell possible peirs of these DXers the distance from each DXer to the distant station. With this concerted effort and the information it gives, an erea on the Earth's surface can be isolated in which the station can be correctly assumed therein. The geographical distribution of these DXers is significant (i.e., the distance between any pair of DXers) since the more videly separated they are, the more likely the results with be accurate.

So allow the reading of azimuth bearings with a loop antenna, perhaps the simplest and most convenient way to accomplish this is to add a compass ($0-360^{\circ}$) at the base of the vertical mast holding the loop. Drilling a hole near the bottom end of the verticel mest just above the compass face will allow pointer to be inserted in the mast for reading the beering off the compaes. The pointer is most conveniently set in the mest somevhat perpendicular to the loop plene. The compess should be nade with erect care and should be of sufficient diameter ($\mathbf{1 2}^{\prime \prime}$ einimum) to sllow marks to indicete each degree from 0 thru 359 (clockwise) and the pointer should be very rigid and not "thicker" than the merkings used to show degrees on the compass.

A few suggestions on setting up ("calibrating") such a loop: It is not likely that the pointer is exactly perpendicular to the loop plane and even if it wert, null skewing vill "rotate" the plane again. Also, to use a magnetic corpass to line up 0° (on the loop compass) with the North Pole (irue Nozth) will not suffice. The only effective way to approach the degree of accuracy desired is to celibrate the azimisth bearings of all your locel stations and numerous seni-locals (it is assumed that the correct bearings of these stations are know--See Footnoto) by roteting the bese compass so that when the null is placed on the know stetion at the known bearing, the pointer indicates the correct angle on the loop compass. Wot all stations will "line uz", but by knowing beerings of numerous stations throughout the BCP, re-calibration an te meac at varions frequencies acress the BCB.

Consider now the elgorithm that can be used to calculate the distance from each: DMer to the distant station. This algorithm is designed to allow only the use of the sine and cosine trignometric functions and is derived from the funjamentel identities of the general spherical triangle. (Another approach which offers some advantages but involves edditional trignometric functions can easily be derived from Mapier's inalogies). Thus, let F be the far or distant station to be located, 11 denotes the location of one DXer end H2 the location of the second DXer. The great circle distarce between H 1 and H 2 will be denoted by DX. The great circle bearing (azimuth angle) of H 2 as measured at H 1 will be denoted by B1 and, similarly, the great circle bearing
(azimuth angle) of H 1 as measured at H 2 will be denoted by B2. It is assumed that B1, B2, and DX are known quantities-see Footnote). For the record, azimuth bearings are taken with the following conventions: $0^{\circ}=$ Trie North, $90^{\circ}=$ East, $180^{\circ}=$ South, 270° - West and 360° is equivalent to 0°. Thus, azimuth engles are measured clockwise from True iorth.

Let I1 denote the bearing (in degrees) of F as measured at H ; D2 denotes the bearing (in degrees) of F as measured at H2; DX1 denotes the distence (to be calculeted) between H 1 and F and $\mathrm{DX2}$ denotes the distance (to be calculated) between H 2 arid F.

Angles 11 end $A 2$ of spherical triangle $\mathrm{H} 1, \mathrm{H}, \mathrm{F}$ are calculated from the pairs of bearings (B1, D1) and (B2, D2) respectively. Choose 11 .so that 51 is the larger of the vertex angles at E 1 and H 2 .
Location H1-
Location $\mathrm{H} 2=$
$\Delta 1$ … $\quad A 2=\quad D X=\quad$ miles $\quad D=D X / 69.052=\ldots \quad G=90-D=\ldots$ $E=90-\mathrm{A} 1=\quad \quad \mathrm{F}=\mathbf{9 0 - A 2 =}$
$\sin (D)=$ \qquad $\sin (\mathrm{E})=$ \qquad $\sin (F)=$
\qquad $\sin (G)=$ \qquad
$X=(\sin (\Lambda 1))(\sin (A 2))(\sin (G))-(\sin (E))(\sin ())=$
\qquad .
$Y=\cos ^{-1}(X)=\operatorname{Arccos}(X)=\quad T=(\sin (D)) /(\sin (Y))=$
$W=(T)(\sin (A 1))=\quad V=(T)(\sin (A 2))=$
$R=\sin ^{-1}(V)=\operatorname{Arcsin}(V)=$
DX1 $=(69.052)(R)=\quad$ statute niles
$P=\sin ^{-1}(W)=\operatorname{Arcsin}(W)=$
\qquad -
(The included FForTahN IV program is not being inciut in the article beas the extremely small number of members in IRCA who would have knowledge of same; anyone interested may drop a pc for photostat of program)
For the reader wishing to "practice" a few calculations, the following table is solf-explenatory:

${ }^{\text {A1 }}$	${ }^{\text {A2 }}$	DX	DX1	D M 2
67	84	244.0	498.33	461.06
131	41	244.0	1112.48	1285.46
131	45	244.0	2187.11	2353.65
134	45	244.0	4635.36	4806.42
135	45	244.0	6132.75	6132.95

