165-4-1

COMPUTER-AIDED ANTENNA TUNER DESIGN

Mark Connelly -- WAl ION DX Labs -- 31 DEC 1984

Numerous passive and active receiving-antenna tuners have have been developed recently: most embody the idea of simplicity and ease of construction. Yaesu, MPJ, McKay-Dymek, and Grove have all offered such devices commercially to shortwave and medium-wave DX enthusiasts. A common practice is to use one tuning capacitor (often the common 18 to 365 pF air-variable) and numerous inexpensive molded inductors generally mounted on a ganged rotary switch which selects the various tuning ranges. The use of inductive-dividers allows the impedance-transfer from
high (at the tank circuit) to low/medium (at the tuner's output).

Although higher Q and greater output may sometimes be obtained with a tuner using hand-wound coils (having link windings and tapped main windings) and using two or more variable capacitors (e. g. Bob Foxworth's excellent passive tuner of early '79s vintage), experience has shown that even the best passive tuner cannot match the Q and gain of an active, regenerative tuning unit.

Aside from specialised cases demanding super Q and gain, there is a considerable need for moderate Q tuners having the benefits of low cost, simplicity of construction, and ease of operation.

The urban DYer, for instance, has a great difficulty with spurious responses (resulting from the poor strong-signal handling characteristics of many of today's receivers) when any wire more than a few feet in length is connected to the antenna jack. "Spurs" noted may be caused by AM, FM, \& TV stations as well as by local utility, amateur, \& CB transmitters. Even in rural locations, some receivers may generate images \& spurs (chiefly because of overloading by potent international shortwave broadcast stations RTTY/FAX/CW utility stations).

A tuner (preselector) goes a long way to eliminate these problems. "De facto" gain is accomplished even with a somewhatflossy, loosely-coupled passive tuner at urban sites because considerably-longer aerials may be used before spurious signals become a problem. With an active tuner of relatively simple design, aerials as short as car whips can provide worthwhile DX: this is an important consideration for the space-limited DYer in the city.

Two basic designs were chosen to be modelled for computeranalysis - one passive and one active. The passive design is represented by the schematic of Figure 1 .

Figure 1

The coils shown (coupling, Lain, Leap) are actually coilgroups mounted on a rotary switch. Figure 2 illustrates this idea.
INPUT FREQUENCY - RANGE SWITCH

Experimentation has shown that good passive-tuner results are obtained with a wide variety of input antenna lengths and output load impedances if the coupling inductor (for loosely coupling inductivelyreactive antennae) is approximately 3.5 to 5 times the value of the main inductor and if the main inductor is about 5 to 8 times the value of the tap (output) inductor. Increasing these ratios results in greater signal loss (although, perhaps, higher Q) whereas decreasing the ratios reduces the varieties of input output impedances with which the tuner will work.

The coupling capacitor chosen (for loosely coupling capacitivelyreactive antennae) should be about 78 to 288 of the maximum value of the tuning capacitor. 47 pF is a good overall coupling-capacit choice to be used with a 10 to 365 pF tuning cap., you might go a bit lower for active tuner applications (e. g. 33 pF) and a bit higher (e. g. 62 pF) for longwave ($F<5$ ge kHz) passive tuners.

Figure 3 illustrates the active tuner circuit being considered for computer-aided design. Note that the tap inductor group plays is input, rather than an output, role (no separate "Lcoupling" group

The TUNER program - how it works:

In modelling the circuits of Figures $1 \& 3$, several assumptions were made:

1. We know the overall frequency range desired.
2. We know the minimum maximum capacitance value of the variable capacitor to be used.
3. Entry of stray capacitance should be possible. (This is a ballpark figure entered to account for capacitance from tankhigh to chassis ground caused by component layout wiring.)
4. We know the value of the input coupling capacitor (typically 128 of the tuning cap.'s maximum value).
5. Inductors chosen by the program should be standard-value components (e. g. $16 \mathrm{uH}, 22 \mathrm{uH}$). Coupling inductors are to be approximately 4 times the values of the corresponding the values of the corresponding tap inductors.
6. Frequency-ranges should overlap slightly from one coil-switch position to the next even with worst-case input \& output loading conditions. Nevertheless, the program should endeavour to use the fewest number of inductors and coil-switch positions required to make a working tuner design.
7. Desired output should be written to a text file on disk; such a file could be edited with suitable word-processing software (e. g. EDT), merged with other files, printed to paper or CRT, etc. [For those without this file-management facility, minor modification of the program will enable direct output to a lineprinter].
8. Desired output should display all input parameters (1, 2, 3, \& 4 above) and the output of inductor values chosen for active \& passive models (accompanied by full frequency-range data for L-coupling \& C-coupling).
9. Minimum maximum tuning capacitance should be adjusted somewhat (a) to allow for slight movement of the capacitor beyond the rated end-or-range frequency position, and
(b) to compensate for variations in actual tuning capacitor values from their published specifications.
The program s formula calculates a useful range of
($(365-10) * g .1)+19$, or 45.5 pF minimum to $\left(365^{*} \mathrm{~g} .8\right)=292 \mathrm{pP}$ maximum for the standard 10 to 365 pF variable capacitor. Such adjustment reduces the likelihood of gaps between tuning ranges.
10. Worst-case minimum frequencies are those made the highest by the characteristics of the input output impedances; worstcase maximum frequencies are those made the lowest by the characteristics of the input output impedance.

Simple circuit math shows that, in the passive tuner case: Worst-case min. freq. (L-coupled) occurs with a low-z (approx. shorted) input output.
Worst-case min. freq. (C-coupled) occurs with a high-z (approx. open) input \& a low-2 (approx. shorted) output. Worst-case max. freq. (L-coupled) occurs with a high-z
(approx. open) input output.
Worst-case max. freq. (C-coupled) occurs with a low-2 (approx. shorted) input \& a high-z (approx. open) output.

For active tuners, output impedance is not an important frequency-range-determining consideration because of the buffering provided by the FET-input amplifier circuit. Input (antenna) loading sets the worst-case conditions for the active tuner:

Worst-case min. freq. (L-coupled) occurs with a low-z (approx. shorted) input.
Worst-case min. freq. (C-coupled) occurs with a high-z (approx. open) input.
Worst-case max. freq. (L-coupled) occurs with a high-z
(approx. open) input.
Worst-case max. freq. (C-coupled) occurs with a low-z
(approx. shorted) input.
11. The program should be written in a manner that, upon examining the remarks in the listing, circuit-math formulae s design considerations used should be evident to anyone who has even a relatively-limited electronics background.

Program Listing

The following program is written in DEC PDP-11 BASIC-PLOS-2 V2.1-00.

(begin listing)

1 PRINT\PRINT "TUNER.B2S"\PRINT"Receiving Tuner Design Aid"
2 PRINT "WAlTON DX Labs / Software Division / 31 DEC 1984* ${ }^{\prime}$ PRINT
3 DIM V(12), L(12) , F (4), C(4)
$4 \mathrm{~K}=159154.94 \backslash$ REM ($1000000 /(2 * \mathrm{PI})$)
$5 \mathrm{U} 2 \$ \mathbf{N " F}^{\circ}$

12 REM ** STANDARD INDUCTOR VALUES **
$13 V(1)=1.2$
$14 \mathrm{~V}(2)=1.5$
$15 \mathrm{~V}(3)=1.8$
$16 V(4)=2.2$
$17 V(5)=2.7$
$18 \mathrm{~V}(6)=3.3$
$19 \vee(7)=3.9$
$28 \mathrm{~V}(8)=4.7$
$21 V(9)=5.6$
$22 \mathrm{~V}(18)=6.8$
$23 \mathrm{~V}(11)=8.2$
$24 \mathrm{~V}(12)=10$
26 PRINT\INPUT "DATA OUTPUT PILE NAME ";S $\$$
27 OPEN S\$ FOR OUTPUT AS PILE il
$28 \mathrm{D} \$ \mathrm{~m}^{\mathrm{F}} \mathrm{A}$ "
$29 \mathrm{~J}=13 \backslash \mathrm{M}=6 \backslash \mathrm{~T}=6 \backslash \mathrm{Z}=6$
36 IF' $\mathrm{D} \$=^{*} \mathrm{P}^{*}$ THEN PRINT $11,02 \$ \backslash \mathrm{GO}$ TO 50
32 INPUT "Minimum frequency, $k H z$ ", AMIN
33 INPUT "Maximum frequency, kHz"; FMAX
35 INPUT " (40 pF typical) Stray C, pF", CS
37 INPOT "Input coupling capacitor, ${ }^{2}{ }^{*}$;CC
38 CSH=CC+CS \backslash REM shunt-C for C-coupling
39 INPOT "Minimum value of tuning capacitor, pP";CMIN
46 INPOT "Maximum value of tuning capacitor, PF", CMAX
41 REM +++ Practical min. Ctune will be set to CMIN+(G.1*(CMAX-CMIN)) +++
42 CMIN2 $=$ MIN $+\left(8.1^{*}(\right.$ MAX $\left.-C M I N)\right)$
$43 \mathrm{REM}+++\quad$ Use 88% of maximum tuning capacitance $44 \mathrm{REM}+++\quad$ to account for component variation.
45 CHA $2=8.8$ *MAX
$46 \mathrm{C}(4)=$ CHIN $2+$ CS \backslash REM min. equiv. C
$47 \mathrm{C}(2)=$ CHIN $2+$ CSS \backslash REM min. equiv. C with shorted input (L-coupling)
$48 \mathrm{C}(1)=$ CHA $2+$ CS \backslash REM max. equiv. C with shorted input (C-coupling) $49 \mathrm{C}(3)=\mathrm{C}(1) \backslash$ REM (C-coupling)
59 GOSUB $19 \theta g \backslash R B M$ get next L value
55 GOSUB $1959 \backslash$ REM calculate frequencies
57 IF $\mathrm{Z}=\mathrm{g}$ AND $\mathrm{P}(3)$ <PAIN THEN 58
59 IF $2=8$ THEN GOSOB $3006 \backslash$ GO TO 5
$61 \mathrm{Z}=\mathrm{g} \backslash \mathrm{Al}=\mathrm{F}(2) \backslash A 3=\mathrm{F}(4) \backslash \mathrm{GOSUB} 2 \mathrm{ggg}$
62 IF $P(2)$ PPMAX THEN 5 gB


```
2810 IF T=g THEN GOSUB 180日
2020 T=1
2030 GOSUB 1508
2640 X=L\GOSUB 23g日
2650 U$=U1$
```



```
2070 U$=0$+01$+U1$+".
2989 X=L2\GOSUB 23ge
2990 U$=0$$+01$+* .
2095 IF D$="A" THEN 2130
2188 X=L3\GOSUB 230B
2119 0$=U$+01$
2120 PRINT t18 USING US, L;F(1);"-";F(2);P(3);"-";P(4);L2;L3\GO TO 2200
2130 PRINT is USING US, L;F(1);"-";P(2);F(3);"-"; ;P(4);L2
220日 RETURN
```



```
2378 RETURN
```



```
3020 z=z+1
3040 IP J<11 THEN J=J+2\GO TO 3100
3060 J=J-10\M=M+1
3190 RETURN
10080 END
(end of program listing)
```

Sample Output File Print－Outs

This is data filez LWCOILS．TXT
 （ 149 to 568 kHz ）

The following calculations are based upon： Tuning $\mathrm{C}=16$ to 365 pF
Coupling $\mathrm{C}=62 \mathrm{pF}{ }^{6}=\mathrm{Stray} \mathrm{C}=40 \mathrm{pF}$
Active Configuration

| Main L
 uH | Preq．Range，
 （C coupling） | Preq．Range，
 （L coupling） | Tap L |
| :---: | :---: | :---: | :---: | :---: |

Passive Configuration

$\begin{gathered} \text { Main L } \\ \text { uH } \end{gathered}$	Freq．Range，$k H z$ （C coupling）		Preq．Range，kHz （L coupling）			$\underset{\text { Tap }}{ }$	Coupling uH
5696	116.7	159.9	138.5	－	210.0	1806	
3380	152.1	208.2	179.8	－	273.5	1898 560	22008 12008
1889	295.9	282.0	239.2	－	378.3	338	12868 6890
$\begin{array}{r} 1098 \\ 560 \end{array}$	276.2 369.1	378.3 585.5	388.8	－	496.9	188	3986 3989
$\begin{aligned} & 568 \\ & 338 \end{aligned}$	369.1 488.8	585.5 658.5	412.7 537.6	－	664.9	108	2289
33b	488.8	658.5	537.6	－	864.9	56	1298

This is data file: MWCOILS.TXT (475 to 1986 kHz)

The following calculations are based upon:
Tuning $\mathrm{C}=10$ to 365 pF
Coupling $C=56 \mathrm{pF} *$ Stray $\mathrm{C}=40 \mathrm{pF}$
Active Configuration

Main L uH	Freq. Range, kHz (C coupling)		Freq. Range, kHz (L coupling)			$\underset{\text { Tap } L}{ }$
398	403.8 -	618.5	442.3		795.6	68
188	594.3 -	910.4	651.1		1171.1	33
82	888.5 -	1348.8	964.6	-	1735.2	15
39	1276.8 -	1955.8	1398.7		2516.6	6.8

Passive Configuration

This is data file: TBCOILS.TXT
(1575 to 6300 kHz)
The following calculations are based upon:
Tuning $C=18$ to 365 pF
Coupling $\mathrm{C}=47 \mathrm{pF} *$ Stray $\mathrm{C}=48 \mathrm{pP}$
Active Configuration

Passive Configuration

Main L uH	Freq. Range, kHz (C coupling)		Preq. Range, kHz (L coupling)			Tap L uH	Coupling L uH
39	1398.7	2021.1	1563.8	-	2516.8	6.8	156
22	1862.3	2691.0	2082.1	-	3349.9	3.9	82
12	2521.5	3643.6	2819.1		4535.8	2.2	47
6.8	3349.6	4848.2	3745.8		6025.5	1.2	27
3.3	4888.3	6948.1	5375.9		8649.5	8.56	12

[^0]
[^0]:

