QST
DEVOTED EXCLUSIVELY TO
AMATEUR RADIO
Published by the American Radio Relay League
OFFICIAL ARRL STATION

ANTENNA NUMBER
MAY 1923

The Main "Guy"

20¢
Mutual Conductance
The Correct Rating for Vacuum Tubes

Gas Engines are rated by their horse-power—Electric Generators are rated by their watt or kilowatt output—Marsa Lamps are rated by their candle-power. All of these factors actually express the efficiency of the article for the purpose intended.

In the past vacuum tubes have been known merely as Detectors and Amplifiers. These terms indicated only the use for which the tube was designed, but in no way expressed its efficiency for either of these purposes. Though little known to the general public, there is a factor—MUTUAL CONDUCTANCE—which adequately and accurately expresses the efficiency of vacuum tubes. The new Cunningham C-301 A has the highest value of mutual conductance ever obtained in a receiving tube, and it is this factor that is responsible for its superior operation in an Amplifier.

Write for Bulletin 1-0 explaining the uses and advantages of the term Mutual Conductance as the correct rating for Vacuum Tubes

Cunningham C-301 A Improved Amplifier Now $6.50
Filament Current 1/2 Amp. Mutual Conductance—500 micromhos at 100 volts plate and 6 volts neg. grid potential

Patent Notice: Cunningham tubes are covered by patents dated 11-7-05, 1-15-07, 2-15-08, and others issued and pending. Licensed for amateur, experimental and entertainment use in radio communication. Any other use will be an infringement.

Home Office
210 First Street
San Francisco, Calif.

Eastern Representative:
154 West Lake Street
Chicago, Illinois

For the assistance of the public, in obtaining true musical quality and actual reproduction in broadcast reception, this company will, from time to time, issue Service Bulletins explaining in a clear and simple manner the most important technical features that must be observed in the selection and operation of radio apparatus.
IT IS but natural that Kennedy Receiving Sets are found in the finest homes. The same appreciation of artistry that is responsible for beautiful home surroundings sees in a Kennedy a fitting example of craftsmanship that belongs with the finest.

Again—the clarity of reception, freedom from extraneous noises, and greater elimination of interference made possible by a Kennedy appeals to the true lover of music and the finer things of life. The long range places the music of the continent within your reach.

And last—the owner of a Kennedy knows that others will admire it. Its possession reflects good taste and judgment.

Arrange with your local dealer for demonstration, or write us direct for descriptive literature.

THE COLIN B. KENNEDY COMPANY
SAINT LOUIS
SAN FRANCISCO
Here's the
Comparison
of Fine
Adjustment Control
Range of
FIL-KO-STAT
With Rheostats
and Other Filament
Controls. Clearly
Indicating How
FIL-KO-STAT
Exceeds, and Showing
Wherein It Permits
Perfect and Gradual
Current Increase
With Infinite
Adjustments.

FIL-KO-STAT Best
Filament Control

—a step forward in Radio. Not an adaptation of some old
method of current control. Not a rheostat. A FILAMENT
CONTROL, distinctly designed to utilize the great tuning posi-
tibilities of the vacuum tube itself. FIL-KO-STAT regulates
FILAMENT HEAT. Gives absolute control of ELECTRONIC
FLOW, consequently permits FINEST TUNING POSSIBLE.
Perfect, gradual increase of filament heat assures longer life
to tubes. Fine adjustment of fractional currents makes it
ideal for Dry Cell tubes. Infinitesimal control of electronic
flow gives a corresponding fine adjustment so very essential
in DX tuning.

Say “FIL-KO-STAT” to your dealer today. If he has none in
stock send his name and your remittance direct to

Pat. Applied For.
ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
<table>
<thead>
<tr>
<th>Division</th>
<th>City</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLANTIC DIVISION</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. David's, Pa.</td>
<td>Washington</td>
</tr>
<tr>
<td></td>
<td>Parks Hts. & Bancroft Ave.</td>
<td>Baltimore</td>
</tr>
<tr>
<td></td>
<td>Red Bank</td>
<td>Collinswood</td>
</tr>
<tr>
<td></td>
<td>New York City</td>
<td>Syracuse</td>
</tr>
<tr>
<td></td>
<td>Pennsylvania</td>
<td>Crafton</td>
</tr>
<tr>
<td></td>
<td>Chicago, Ill.</td>
<td>Detroit</td>
</tr>
<tr>
<td></td>
<td>St. Mary's</td>
<td>La Crosse</td>
</tr>
<tr>
<td></td>
<td>Seymour</td>
<td>Middlebury</td>
</tr>
<tr>
<td></td>
<td>Louisville</td>
<td>(a J. Lorimer Buzzell-Lorimer Co.)</td>
</tr>
<tr>
<td></td>
<td>Sioux Falls S. D.</td>
<td>Minneapolis</td>
</tr>
<tr>
<td></td>
<td>Minneapolis</td>
<td>Elk Point</td>
</tr>
<tr>
<td></td>
<td>Little Rock, Ark.</td>
<td>University, Miss.</td>
</tr>
<tr>
<td></td>
<td>Yuma</td>
<td>Wind Rock</td>
</tr>
<tr>
<td></td>
<td>Palmetto, Ga.</td>
<td>Woodruff</td>
</tr>
<tr>
<td></td>
<td>Auburn</td>
<td>Atlanta</td>
</tr>
<tr>
<td>CENTRAL DIVISION</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>University, Miss.</td>
<td>(a J. Lorimer Buzzell-Lorimer Co.)</td>
</tr>
<tr>
<td></td>
<td>Iowa</td>
<td>Lawrence</td>
</tr>
<tr>
<td></td>
<td>Indiana</td>
<td>(a J. Lorimer Buzzell-Lorimer Co.)</td>
</tr>
<tr>
<td></td>
<td>North Dakota</td>
<td>(a J. Lorimer Buzzell-Lorimer Co.)</td>
</tr>
<tr>
<td>Dakota Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70 V St. N. W.</td>
<td>St. David's, Pa.</td>
</tr>
<tr>
<td></td>
<td>219 E. 71st St.</td>
<td>New York City</td>
</tr>
<tr>
<td></td>
<td>428 Brownell St.</td>
<td>Pennsylvania</td>
</tr>
<tr>
<td></td>
<td>2985 E. Kingston St.</td>
<td>Crafton</td>
</tr>
<tr>
<td>Delta Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>137 Hill Ave.</td>
<td>Chicago, Ill.</td>
</tr>
<tr>
<td></td>
<td>106 S. Ash St.</td>
<td>Detroit</td>
</tr>
<tr>
<td>East Gulf Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1601 W. 16th St.</td>
<td>Houston</td>
</tr>
<tr>
<td></td>
<td>1496 E. 11th St.</td>
<td>Washington</td>
</tr>
<tr>
<td>Midwest Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>221 W. Main St.</td>
<td>Chicago, Ill.</td>
</tr>
<tr>
<td>Northwestern Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>417 Bannock St.</td>
<td>Seattle</td>
</tr>
<tr>
<td>Pacific Division</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3219 North 24th St.</td>
<td>San Francisco</td>
</tr>
</tbody>
</table>

DIRECTORY (Incomplete) OF THE PERSONNEL OF THE OPERATING DEPARTMENT, A.R.R.L.

<table>
<thead>
<tr>
<th>State</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. D. M. Dist. of Col.</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Alabama</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Georgia</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Idaho</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Illinois</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Indiana</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Kansas</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Massachusetts</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Michigan</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Minnesota</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Missour i</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Missouri</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Nebraska</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Nevada</td>
<td></td>
</tr>
<tr>
<td>A. D. M. New Jersey</td>
<td></td>
</tr>
<tr>
<td>A. D. M. New Mexico</td>
<td></td>
</tr>
<tr>
<td>A. D. M. North Dakota</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Ohio</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Oregon</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>A. D. M. South Dakota</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Texas</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Utah</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Vermont</td>
<td></td>
</tr>
<tr>
<td>A. D. M. Wisconsin</td>
<td></td>
</tr>
</tbody>
</table>

Manager

<table>
<thead>
<tr>
<th>City</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Manager
"He who lightly promises, is sure to keep but little faith" — Lao Tzu

Wink knowingly at him who would sell you something just as good as a Grebe Receiver

Doctor Mu.

A. H. GREBE & CO., Inc.
Richmond Hill, N.Y.
Western Branch
451 East 3rd Street, Los Angeles, Cal.

Write for Missions of Dr. Mu.
<table>
<thead>
<tr>
<th>Topic</th>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Losses of 200-Meter Antennas</td>
<td>Stuart Ballantine</td>
<td>7</td>
</tr>
<tr>
<td>Topics in Brief</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>The Second National Radio Conference</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Multiple-Tuned Antennas</td>
<td>Young, Newell, Smeby</td>
<td>15</td>
</tr>
<tr>
<td>Receiving Loop Design</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>How to Measure Antenna Resistance and Capacity</td>
<td>Albert F. Murray</td>
<td>18</td>
</tr>
<tr>
<td>The Perfect Aerial</td>
<td>M. Adaire Garmhausen</td>
<td>23</td>
</tr>
<tr>
<td>Some Tests of Amateur Antenna Insulators</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>General Antenna References</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>What I Found Out About Sending Aerials</td>
<td>John L. Reinartz</td>
<td>30</td>
</tr>
<tr>
<td>How Long Shall We Make Our Antennas</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>The Murphys Build a Mast</td>
<td>F. M. J. Murphy</td>
<td>34</td>
</tr>
<tr>
<td>The Antenna Circuit</td>
<td>Parker Wiggin</td>
<td>36</td>
</tr>
<tr>
<td>Loops for Sending</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>From Antenna to Ground</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Notes on the Resistance of Receiving Antenna</td>
<td>John C. Warner</td>
<td>43</td>
</tr>
<tr>
<td>What Antenna Wire?</td>
<td>C. P. Sweeney</td>
<td>45</td>
</tr>
<tr>
<td>Your Station According to Underwriters</td>
<td>White, Walls</td>
<td>46</td>
</tr>
<tr>
<td>Laboratory Oscillators</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>Wouldn't This Make an "Ampere-Hound" Sad?</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>Amateur Radio Again Proves Its Worth</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Editorials</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>The Operating Department</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>The Junior Operator</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>"Strays"</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>New Apparatus</td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>Who's Who in Amateur Wireless</td>
<td>P. E. Wiggin, Wm. D. Wood</td>
<td>71</td>
</tr>
<tr>
<td>Radio Communications by the Amateurs</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>Calls Heard—Including the Short-Wave Tests</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Classified Advertisements</td>
<td></td>
<td>132</td>
</tr>
<tr>
<td>QST's Directory of Advertisers</td>
<td></td>
<td>135</td>
</tr>
</tbody>
</table>

THE AMERICAN RADIO RELAY LEAGUE

The American Radio Relay League, Inc., is a national non-commercial association of radio amateurs, bonded for the more effective relaying of friendly messages between their stations, for legislative protection, for orderly operating, and for the practical improvement of short-wave two-way radiotelegraphic communication.

It is an incorporated association without capital stock, chartered under the laws of Connecticut. Its affairs are governed by a board of seventeen Directors, elected every two years by the general membership. The officers, in turn, are elected by the Directors from their number. The League is non-commercial and no one commercially engaged in the manufacture, sale or rental of radio apparatus is eligible to membership on its Board.

"Of, by and for the amateur," it numbers within its ranks practically every worth-while amateur in America and has a history of glorious achievement as the standard bearer in amateur affairs.

Inquiries regarding membership are solicited. Ownership of a transmitting station, while very desirable, is not a prerequisite to membership; a bona-fide interest in amateur radio is the only essential. Correspondence should be addressed to the Secretary.

OFFICERS

President
HIRAM PERCY MAXIM
Hartford, Conn.

Vice President
CHAS. H. STEWART
St. David's, Pa.

Traffic Manager
F. H. SCHNELL
1045 Main St.
Hartford, Conn.

Canadian General Manager
W. C. C. DUNCAN
150 Ellisworth Ave.
Toronto, Ontario

Treasurer
A. A. HEBERT
Nutley, N. J.

Secretary
K. B. WARNER
Hartford, Conn.

DIRECTORS

H. M. ANTHONY
Muncie, Ind.

C. F. DARR
Detroit, Mich.

W. C. C. DUNCAN
Toronto, Ontario

A. A. HEBERT
Nutley, N. J.

S. M. MATHES
Bremerton, Wash.

S. KRUSE
Hartford, Conn.

M. B. WEST
Chicago, Ill.

ADVISORY TECHNICAL COMMITTEE

C. S. BALLANTINE
WM. C. BALLARD, Jr.
LEBOY M. E. CLAUSING
FRANK CONRAD
LEO C. YOUNG

MINTON CRONKHITE
J. H. DELLINGER
C. L. FARRAND
PAUL F. GODLEY
P. C. BLAKE
MELVILLE EASTHAM

L. A. HAZELTINE
C. D. TUSKA
R. H. G. MATTHEWS
GERALD M. BEST
S. KRUSE
D. G. McCAA

Address General Correspondence to Executive Headquarters, Hartford, Conn.
The Losses of 200-Meter Antennas
By Stuart Ballantine*

My recent book, Radio Telephony for Amateurs, contains a discussion of short wave antennas which, although received with much interest, does not do justice to this important subject. Accordingly when asked to contribute to the antenna number of QST I was glad of the opportunity to supplement this discussion. In the following article I shall undertake a calculation of everything about the antenna that may be usefully calculated. The exact calculation of the radiation and the losses in the earth will be left for a later paper, however.

Classification of Antenna Losses

The reader is undoubtedly familiar with the customary separation of the total antenna losses into radiation, dielectric losses, earthing losses, and losses in the insulators, the antenna wires and other nearby metallic objects. No radio book is considered complete without this analysis. It will be advisable to see if it is possible to define these various subdivisions so unmistakably that there will be no future chance of any misunderstanding.

In Fig. 1A I have shown the flow of power from an antenna which is assumed to be erected over a perfectly conducting earth. This representation is on the basis

*Radio Frequency Laboratories, Inc., Boonton, N. J.
of the Poynting idea and Maxwell's second expression for the distribution of the electro-kinetic energy, in terms of the magnetic force and induction. The sphere S at the base represents the source of power and the energy diverges from it and not from the antenna wires.

Conductor Resistance. The energy does not flow away from the wires but into them. By summing up this flow of energy into the wires we can find the total amount that goes into the wires and is lost as heat. We are justified in calling this loss the conductor resistance loss.

Dielectric and Induction (Eddy Current) Losses. Metal masts, wires, and roofs are also sinks of power, whether they are in the neighborhood of the antenna as in M_1, Fig. 1A or far away as M_2, Fig. 1A. Any receiving station is a power-sink of the second sort (M_2). Obviously the expression "losses in imperfect dielectrics or conductors in the field of the antenna" is of no use to us for the field of the antenna is without limit and we have information about only a very small part of the field.

Earth Resistance Losses. The same remark applies to the expression "earth resistance." The earth under an actual antenna is not perfectly conducting as at Fig. 1A but has resistance, and there must be a constant flow of power into it from the source S and the waves in the air as shown at Fig. 1B. This takes place everywhere, not only at the antenna. Of course, we will be justified in calling the loss in the earth at E, Fig. 1B, underneath the antenna, "earth resistance loss" but what shall we call the loss in the earth further out at F?

Radiation Resistance. Radiation resistance is ordinarily defined as "the quantity which, multiplied by the square of the antenna current, gives the total power radiated from the antenna." Now in the case of the perfectly conducting earth of Fig. 1A this was very nice; the amount of power radiated could be calculated as the total power flow outward thru a spherical surface surrounding the antenna. (Even this was not correct if there were any "energy sinks" like M_1 and M_2). But for the practical case of Fig. 1B where the earth is not perfectly conducting the entire concept of "radiation resistance" becomes of less importance as an index of the power reaching the receiving station. To see this let us for a moment agree with the quasilogic of regarding all losses within a wave length of the antenna as "antenna losses" and all losses more than a wave length away as "radiation losses." On this basis radiation is the energy that flows out thru the sphere shown by the dotted line in Fig. 1B. Then the losses in a tree within a wave length of the antenna are "antenna losses" but the losses in another tree outside the dotted line are "radiation losses"!!!

In view of these considerations I am inclined to argue that the popular respect for "radiation resistance" is very much misplaced and that more attention should be paid to the correct law of attenuation of electric force with distance. I have succeeded in extending the mathematical theory to practical forms of antennas and

![Image of graph and table]

Table 1—Wire Conductivities

<table>
<thead>
<tr>
<th>Material</th>
<th>Conductivity compared with Conductivity annealed in Mhos/cm.</th>
<th>Conductivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft-drawn copper</td>
<td>5.71×10^6</td>
<td>$38%$</td>
</tr>
<tr>
<td>Hard-drawn copper</td>
<td>5.57×10^6</td>
<td>$96%$</td>
</tr>
<tr>
<td>Hard-drawn aluminum</td>
<td>3.54×10^6</td>
<td>$61%$</td>
</tr>
<tr>
<td>Phosphor bronze</td>
<td>2.03×10^6</td>
<td>$39%$</td>
</tr>
<tr>
<td>Galvanized iron</td>
<td>0.96×10^6</td>
<td>$16%$</td>
</tr>
</tbody>
</table>

High Frequency Resistance of the Wires. The discussion will be confined to 4 materials, copper, aluminum, phosphor bronze, and galvanized iron. Their conductivities are as follows:

Data on the h.f. resistance of round wires have been collected at the Radio Frequency Laboratory at Boonton, N. J. At the frequencies we are considering, that is 1,500,000 cycles (200 meters), 99% of the cur-
rent is carried, in the case of copper, by a surface layer .009" thick, and the most economical way to use the copper is as a strip .02" thick and perhaps .05" wide. Such a conductor might be useful in constructing an exceptionally good antenna after the reduction of other losses had made it worth while to reduce the conductor resistance. The properties of the materials at 200 meters are shown in the curves of Fig. 2.

Increase of Resistance Because of the Radial Currents. All along the antenna, current is flowing to the surface of the wire and leaving as capacity current thru the ether. See Fig. 3. Thus there is a radial flow in addition to the lengthwise flow and this should be taken into account, but for the materials under discussion the penetration is so small that the radial resistance is negligible.

Effect of Parallel Wires—the "Proximity Effect." The current in a single round wire ends to distribute symmetrically, but if other conductors are present and carrying currents of the same frequency (whether they are part of the antenna or not) the distribution is not symmetrical and the resistance is still further increased. When two wires are parallel in an antenna the current concentrates on the sides furthest from each other. The effect may be serious in a bunched downlead or a stranded cable such as 7 strands of No. 22 B.&S.

| Table 2—Percentage Increase Due to the "Proximity Effect" of Two Parallel No. 10 Copper Wires. |
|---------------------------------|----------------|--------------|
| Spacing | Increase over that of one wire | 10% |
| 3 feet | negligible | 17.0% |
| 1 in. | 0.5% | 16.5% |
| 1/2 in. | 4.0% | 15.0% |
| 1/4 in. | 6.0% | 15.0% |

This table shows that the proximity effect is negligible for the spacings used in flat tops and in cage downleads. The resistance is not much improved by putting the wires farther than 1 inch apart. The table also shows the very bad effect of a bunched downlead.

The Edge Effect. Up to this point we have been considering the effect of non-uniform distribution of the current in a wire. We now come to the effect of uneven division of the current between several wires. In the cage arrangement the current divides equally between wires provided that the cage is far from anything. When the wires are arranged in a plane (flat top) the current crowds to the outer wires with the result that the resistance is a trifle higher. This is the "edge effect." I do not think that the mathematical details are of any interest but shall be glad to give the formulae to anyone who will communicate with me privately. The effect is shown in Table 3.

| Table 3—Percent Excess of Current in the Outer Wires of the Specimen Antenna Described at the Start of This Paper |
|----------------|----------------|----------------|
| Wire sizes B.&S. gage | Excess | Dividing factor N |
| 10 | 17.0% | 3.970 |
| 12 | 16.5% | 3.975 |
| 14 | 15.0% | 3.980 |
| 18 | 15.0% | 3.990 |

Note: \(N = \frac{(1 + R)^2}{1 + R} \)

While the excess of current is 16% the increased resistance amounts to only 1%.

Cage Versus Flat Construction. The advantage of cage construction over flat construction can be estimated for our particular specimen antenna (wires 3 feet apart) by comparing the figures (i.e., factor \(N \)) in the last column of Table 3 with the figure 4. In this case the resistance of a four-wire cage would be less than 1% lower than that of a four-wire flat-top. The comparison becomes a little more sensible in the case of a downlead where the wires are close together. If the downlead wires were No. 14 and separated 2 inches the advantage of the cage construction would be about 3% as far as resistance is concerned. Observable differences between cage and flat-tops are probably due to the differences in their capacities and their surrounding fields. (The difference in the field is that the field of each wire does not influence the other wires so much; hence the inductance of the downlead is less than if bunched and a little less than if flat.—Tech. Ed.)

Effect of Current Distribution Along the Antenna. We now have an idea of the high frequency resistance of a four-wire antenna taking into account (1) the unequal distribution of current among the wires; (2) the proximity effect; (3) the skin effect. In calculating the last we found that (4) the radial resistance was negligible. It remains to correct our results for the un-even distribution of current along the wire. When oscillating at its fundamental the current distribution of the antenna is very nearly sinusoidal as in Fig. 4A and when oscillating far above...
the fundamental the distribution is very nearly linear as in Fig. 46. We can calculate the effect of this distribution upon the total resistance and find that when working at the fundamental the antenna resistance is \(\frac{1}{2} \) that calculated above, and when working far above the fundamental

![Fig. 4. Current distribution in an antenna. A, when oscillating at fundamental frequency; B, when considerably above the fundamental frequency.](image)

the resistance is \(\frac{1}{2} \) of that calculated. (It is evident that the resistance of the antenna will depend on the point at which the e.m.f. is applied. An antenna which has a resistance of one ohm at the base may have a resistance of 4 ohms at a point half way up and still behave the same way when the same amount of power is introduced.)

Finishing the Calculations on Resistance of Wires. It will be assumed that the antenna is to be operated at the fundamental. The correction factor will then be \(\frac{1}{2} \).

Table 4—Total Conductor Resistance of the Specimen Antenna, described at the First of This Article.

<table>
<thead>
<tr>
<th>Wire size B.S.</th>
<th>Copper Phosphor</th>
<th>Galvanized</th>
<th>Aluminum</th>
<th>bronze</th>
<th>iron</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>.265</td>
<td>.327</td>
<td>.450</td>
<td>3.45</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>.287</td>
<td>.430</td>
<td>.583</td>
<td>4.38</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>.380</td>
<td>.510</td>
<td>.595</td>
<td>5.58</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>.690</td>
<td>.885</td>
<td>1.200</td>
<td>9.05</td>
<td></td>
</tr>
</tbody>
</table>

Note:—7-strand-22 is about equal to No. 12 solid for copper and bronze. Galvanized iron is bad at 200 meters but for a zinc layer of .02" will still be as good as bronze. A copper-clad wire with a copper coating .01" thick will be as good as solid copper and stronger besides. However, there is no doubt at all about No. 10 or No. 12 solid hard-drawn copper; it has the mechanical strength and will make a very satisfactory antenna.

Effects of Corrosion. A corroded wire consists of a solid copper core with a thin coating of poor conductivity. If the thickness of the wire and the coating are known the current distribution can be calculated from the conductivity of the two materials. I made a diligent search of the literature for information regarding the resistivity of corrosion-coating but without any success. Messrs. Reinartz and Kruse then measured some samples of copper wire that had become oxidized in a non-smoky atmosphere. (Hartford and S. Manchester, Conn.) (There are omitted here, for lack of space, Mr. Ballantine’s calculations on these wires.) The resistance of a layer of corrosion .001" thick on a No. 18 wire turned out to be .037 ohm for the whole antenna. This leaves unexplained the miscellaneous reports that improvement was made by simply substituting new wire for old in an antenna. These cases were probably due to another kind of corrosion entirely, that due to acid, sulphurous fumes, or smoke. We must not overlook the possibility that a particular kind of corrosion might raise the antenna resistance as much as 1.5 to 15 ohms. Soot would not account for it; even a heavy layer of it would be comparatively innocuous. More experimental data are required. In the meantime the use of a proper protective material such as enamel or tin plating may be resorted to in smoky environs. In the case of aluminum it is fortunate that the corrosion is of such a nature that it soon ceases.

Metal Plated Wires. It has often been stated that the high frequency current is bound to travel in the surface, no matter how poor a conductor the surface layer may be. The current will not forsake a core of high conductivity to travel on a surface of low conductivity. An interest-

![Fig. 5. Showing current distribution in a No. 18 B.S. copper wire with a nickel-plated surface.](image)
material is lowered, reaches a maximum, and then slowly rises to the resistance of the core material as the coating is made still poorer. Consequently if a radio conductor must be coated it should be with a material whose conductivity is much more or much less than that of the core. In the case of tin-plated wire the increase of resistance for a coating like that of Fig. 5 would be 3% and for the usual thin coating of about .0002" would be only about 1/4%. (Note.—However, there has been some trouble with “tinned” wire that was really covered with lead and with lead-and-tin alloy.—Tech. Ed.)

Strength of Wires. The average strength and densities of the 4 materials are as follows:

<table>
<thead>
<tr>
<th>Material</th>
<th>Strength (pounds per square inch)</th>
<th>Density (grams per cubic cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft-drawn copper</td>
<td>34,000</td>
<td>3.9</td>
</tr>
<tr>
<td>Hard-drawn copper</td>
<td>50,000</td>
<td>3.9</td>
</tr>
<tr>
<td>Hard-drawn Aluminum</td>
<td>30,000</td>
<td>2.7</td>
</tr>
<tr>
<td>Phosphor bronze</td>
<td>90,000</td>
<td>8.8</td>
</tr>
<tr>
<td>Galvanized Iron</td>
<td>50,000</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Aluminum, while a weak metal, is light and so may be thought of as stronger than copper.

Sleet Formation. The behaviour of wires in sleety weather depends on their ability to adjust themselves to temperature changes of the air. The material having the least heat capacity will be least subject to sleet formation. The heat capacity of copper and bronze is 1.133 calories per degree per cubic centimeter while that of aluminum is 9.826, only 73% as great.

General Regarding Aluminum. The properties of copper wire are generally known, those of aluminum wires are not current in radio literature but may be found in the “Standard Handbook for Electrical Engineers,” 4th edition, p. 78, section 4 (McGraw-Hill, 1915); and in Perrine’s “Conductor’s for Electrical Distribution,” p. 15, (Van Nostrand, 1903.)

A good grade of aluminum is permissible, providing that proper care is taken in joining it to other metals. The rapid corrosion of a joint between aluminum and copper may rapidly increase the resistance and in time open the joint. This once the aluminum should be used for the entire antenna right down to the station window so that the connection with the copper can be inspected and cleaned from time to time. (Note—“A good grade of aluminum” is an important phrase. Poor aluminum wire whose impurities caused it to corrode and to become brittle was widely sold ten years ago and gave aluminum the bad name that GOOD aluminum does not deserve.—Tech. Ed.)

Topics in Brief

In this issue of QST, our antenna number, we are endeavoring to present as much information and data on ariels and related matters as we can make room for. As a result our usual departments either have been omitted entirely or have been scaled down to a minimum; they will be resumed next month as usual. As a further result, there are many topics which we cannot present in any form this month. Detailed reports from the British and French transatlantic committees have now been received, and Mr. Coursey has sent us an interesting description of 5WS, illustrated with photographs and hook-ups, and this we will present as early as possible. With the same idea in mind we hope we may be pardoned for treating with great brevity the following items, which are of high amateur interest but for which our Antenna Number plans do not permit greater space.

Canadian Relay Fail—The first attempt at a trans-Canadian relay, undertaken on March 24, 25 and 26, was a complete failure because of freak atmospheric conditions, accompanied by aurora. Signals were not heard from greater than daylight distances. Canadian General Manager Duncan has arranged for a repetition of the tests on April 13, 14 and 15, and success is expected.

A two-way relay across the greater part of the continent was successfully put over an All-Canadian route on Feb. 20th when 5GO, Vancouver, B. C., started a message to Toronto which was relayed via 4BV in Loreburn, Sask., and 3NF in Ft. William, Ont., to 3DE in Toronto, and the answer returned to Vancouver in a total elapsed time of one hour and ten minutes. Most of the time was consumed at the Toronto end. FB, OM.

Short Wave Tests—The short-wave QO Party was a decided success and the large volume of logs received attest a spontaneous and whole-hearted interest. Surprising distances on surprisingly-low waves were recorded. The short waves are the coming thing. Some of the reception is reported in “Calls Heard” this month, which see.

New England Convention—The M.I.T. Radio Society was host to the New England amateurs in their annual session at Cambridge on March 31st. Several hundred amateurs were present and attended an A.R.R.L. traffic session in the afternoon and a humdinger of a banquet in the beautiful Walker Memorial that night. Plans were made for reorganization of the New England Executive Radio Council, a matter so important that we will pass it until we can treat it adequately.
Amateurs Serve in Emergency—Amateur stations had another opportunity to demonstrate their value to the community when on March 12th a terrific storm destroyed all wire communication in the upper Mississippi Valley. The C.G.W. railroad in particular was without means of learning conditions on various parts of their lines nor what had happened to certain trains. Broadcasting stations failed in their attempt to connect and obtain information.

Broadcasting stations failed in their attempt to connect and obtain information.

The Second National Radio Conference

About this writing there is many an editorial typewriter clicking out an account of the doings at the Department of Commerce's Second Telephony Conference, which was held in Washington from March 20th to 21th at the call of Secretary Hoover to consider what could be done from an administrative point of view to lessen the amount of interference in radio broadcasting. Our space in this issue of QST is so limited that at best we can but summarize the recommendations of the conference. We can say, however, that we feel that from the standpoint of the broadcast interests and fans great progress was made and a really admirable broadcast system arranged for pen to some of the other services. It did. Very briefly summarized, the conference recommended the abandonment of the 450-meter ship wave during evening hours, the abandonment of the contemplated amateur extension to 275 meters, and the institution of broadcasting from 222 meters to 345 meters, with the “government reserve”.

9ZN, Chicago, was called upon and jumped right into the job, calling up every possible amateur station in the storm area and obtaining reports, which were phoned to the general manager of the C.G.W. By this service the trains were located and complete reports obtained on conditions, which was of great assistance to the railroad. Among the stations assisting 9ZN in this work were 9APW, 9ATA, 9ZAA, 9BHD, and 9ALG.
above 600 meters opened up to take care of some of the displaced services, particularly the shipping formerly operating on 450 meters. It was recommended that broadcast stations be divided into two classes, “A” stations of high grade, considerable power, and continuous service, to operate in the band between 286 and 545 meters, and “B” stations, of restricted range and ability, between 222 and 286 meters, the assignment of wave lengths to be staggered geographically to minimize interference. For high-grade Class A broadcasting an exclusive wave length between 286 and 545 meters would be assigned, not to a particular station, but to a geographical area, and all Class A stations in that territory would use that wave length, dividing the operating hours. It is possible to provide 56 such non-interfering phone channels, so that if this plan be realized it would be possible for a good receiver to pick up any desired territory by tuning to the wave length assigned thereto, and to pass in turn to any other section of the country without interference and with a reasonable hope of successful reception.

There are many difficulties in the immediate application of this plan, and in order to develop a systematic assignment without hardship to existing stations the Department of Commerce proposes to establish temporary classifications similar to those now in effect, but with expanded wave length assignments; actions not being required to change from their present assigned wave, however, unless they so elect. It is hoped that thereby the stations will come into accord with the new plan without hardship, obtaining the benefit of lessenened interference by accepting the offer of a new wave length.

As to the ham allocations, the spirit of the day was cooperation and the amateur co-operated. Last year’s recommendations of an amateur extension to 275 meters were abandoned, and under the new plan general amateurs are given from 150 to 200 meters, and special amateurs from 200 to 222 meters, with a limited number of “extraspecials” on some quiet wave below 256 meters for use in the difficult Rocky Mountain region for the benefit of trans-continental relay work. Sparks are tentatively assigned the band 176 to 200 meters, and only straight C.W. can work between 200 and 222, but no other sub-divisions were made: However, the Department has invited the A.R.R.L. to study the situation and make recommendations for the subdivision of the amateur band by types of transmitters if desirable, and this is under way at this writing. Herefore we amateurs have been assigned definite wave lengths, generally 200 meters and occasionally with one or more specified additional waves such as 175 or 150 meters. Under the new plan we would be permitted to operate anywhere within the amateur band. We will have more to say about this soon.

Personnel

Recommended Wave Allocations

The allocations of the Conference which are of interest to our readers are given below:

<table>
<thead>
<tr>
<th>Band</th>
<th>Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 130 m.</td>
<td>Reserved (See Note 1.)</td>
</tr>
<tr>
<td>130-143 m.</td>
<td>Government, C.W., exclusive.</td>
</tr>
<tr>
<td>143-150 m.</td>
<td>Government, C.W., exclusive.</td>
</tr>
<tr>
<td>150-176 m.</td>
<td>Amateur, C.W., ICW, Ph., exclusive.</td>
</tr>
<tr>
<td>176-200 m.</td>
<td>Amateur, C.W., ICW, Ph., exclusive.</td>
</tr>
<tr>
<td>200-222 m.</td>
<td>Special amateur, and technical and training schools, C.W., exclusive.</td>
</tr>
<tr>
<td>222-231 m.</td>
<td>Aircraft, C.W., ICW, Ph., non-exclusive.</td>
</tr>
<tr>
<td>222-286 m.</td>
<td>Class B broadcasting, Ph., non-exclusive. (See Note 2.)</td>
</tr>
<tr>
<td>286-288 m.</td>
<td>Reserved.</td>
</tr>
<tr>
<td>288-300 m.</td>
<td>Class A broadcasting, Ph., exclusive. (See Note 3.)</td>
</tr>
<tr>
<td>300 meters</td>
<td>Marine, C.W., ICW Spk., non-exclusive. (See Note 4.)</td>
</tr>
<tr>
<td>300-450 m.</td>
<td>Special Broadcasting, Ph., exclusive. (See Note 3.)</td>
</tr>
<tr>
<td>450 meters</td>
<td>Marine, C.W., ICW, Spk., exclusive. (See Note 5.)</td>
</tr>
<tr>
<td>545-600 m.</td>
<td>Class A broadcasting, Ph., exclusive. (See Note 3.)</td>
</tr>
<tr>
<td>600-674 m.</td>
<td>Marine and aircraft, C.W., ICW, Spk., exclusive.</td>
</tr>
<tr>
<td>674 meters</td>
<td>Marine and aircraft, C.W., ICW, Spk., exclusive.</td>
</tr>
<tr>
<td>674-800 m.</td>
<td>Marine and aircraft, C.W., ICW, Spk., exclusive.</td>
</tr>
<tr>
<td>800 meters</td>
<td>Radio compass, C.W., ICW, Spk., exclusive.</td>
</tr>
</tbody>
</table>
Note 1.—Available for special licensing by the Department of Commerce.

Note 2.—Not more than six CW amateur stations to be licensed to use wave lengths below 286 meters for communication across natural barriers.

Note 3.—A class A broadcasting station is a station of sufficient power to serve an extensive territory. Fifty territorial wave frequencies approximately 10 kc/s apart are to be assigned by the Department of Commerce to local areas throughout the United States without duplication. The ten such areas within each of five national zones are to have wave frequencies separated by approximately 50 kc/s.

Note 4.—The 300 and 600 meter waves are to be assigned for calling and distress purposes, with a minimum of traffic.

Note 5.—Mobile service on the 450 meter wave is to be stopped between 7 and 11 P.M. local standard time, and to be transferred in so far and as soon as practicable, to wave lengths above 600 meters.

Resolutions

Some of the more interesting and important resolutions adopted by the Conference are reported below:

That in assigning a wave band of 10,000 cycles to each Class A broadcasting station they be distributed over five zones throughout the country such that no stations in adjacent zones are closer together in frequency than 20 kilocycles, and that within each zone there be ten stations separated by 50 kilocycles.

That only one wave frequency be assigned to a Class A broadcasting station, which should transmit exclusively on the wave frequency designated and reserved exclusively for that station.

That every broadcasting station should be equipped with apparatus such as a tuned circuit coupled to the antenna and containing an indicating instrument or the equivalent for the purpose of maintaining the operating wave frequency within 2 kilocycles of the assigned wave frequency.

That the Department of Commerce establish qualifications for Class A broadcasting stations, including a general minimum and locally suitable maximum power and a quality of program that will warrant assignment of a territorial wave frequency to each particular station, and that the qualifications be similar to those required of the present Class B broadcasting stations.

That the Department of Commerce in its discretion assign Class B broadcasting station licenses in which wave frequencies shall be specified and in which the power ratio between the Class A and B stations shall be at least 2 in so far as in practical for a given locality.

That reading of telegrams or letters by broadcasting stations be not construed as point to point communication so long as the signer is not addressed in person and so long as the text matter is of general interest.

That the Department of Commerce be requested to insist upon the suppression of harmonic and other parasitic radiation from all radio stations, as for example, by requiring the installation, if necessary, of coupled circuit transmitters at the earliest feasible date.

That spark transmitting apparatus be replaced as rapidly as practicable by apparatus which will produce a minimum of interference.

That the amateur organizations of the United States study the time requirements of the broadcasting of religious services on Sunday and by mutual arrangement with the broadcasters determine upon silent periods which will make possible the reception of such religious services in any given locality.

That, in the judgment of the Second National Radio Conference, the prevention of “wilful or malicious interference,” as provided for by Section 5 of the Act of August 13, 1912, and the minimization of interference, as provided for by Article 8 of the International Convention, require that the Department of Commerce shall, in its discretion, withhold or rescind station licenses to transmit on specified wave frequencies at certain times, and on definite powers, and with certain types of transmitters and when, in the judgment of the Department of Commerce such interference would result or does result; and that it is the clear and manifest intent of Section 1 through 4, and Regulations 10, 12 and 18 of Section 4 of the said Act to give the Department of Commerce such authority

Our Antenna Number

—An Appreciation—

This antenna number of QST is the work of many A.R.R.L. members. To all of them, whether authors of these articles or workers in laboratory and station, we give our hearty thanks.

With hardly more than a single exception textbooks have treated the short-wave antenna very slightly; therefore this number of QST is presented as giving, directly or by reference, the best material on this subject. If any of our readers find themselves able to amend or improve upon this material, their writings will be welcome—even tho they have allowed them to lag past so many announcements of this Antenna Number.

The Technical Editor.
to withhold or rescind licenses which such interference will result or does result; and that the Second National Radio Conference believes that a decision by the Courts validating the above views will be greatly in the public interest; and that the Second National Radio Conference expresses its willingness to advise and assist the Department of Commerce in the support of the above resolutions in the event of litigation.

That the Second National Radio Conference desires to emphasize the limited facilities available for radio broadcasting, and the uneconomic and tentative basis of present-day broadcasting, and that the Conference urges the consolidation in each locality of those desiring the establishment or maintenance of broadcasting and those interested in broadcasting in that locality; to the end that broadcasting conducted in each neighborhood by such a local association will receive public support and be handled in an economic and permanent fashion.

[At this writing we have hardly got used to some of the new ideas introduced by the Conference. From the standpoint of the broadcasters it's FB but from that of the amateur—? It seems somebody else has their eye on the waves below 150 meters and we did not succeed in our effort to secure an amateur band around 100 meters, altho it is to be expected that amateur experimental licenses to operate anywhere below 150 meters can be obtained as here-tofore. Nor can we count our waves in the neighborhood of 222 meters as worth much with nearby broadcasting on that wave. The majority sentiment on the Conference was to fix up the broadcasting business so it could succeed, and tribute was exacted from the government services, the amateur, the commercial, and even perhaps the facilities safeguarding life at sea, to make that possible. We'll have more to say after our Board of Direction has chewed over the matter.]

K.B.W.

Multiple-Tuned Antennas

A good ground connection is most important in building a good antenna, but some stations are located on the roofs of buildings or over high-resistance soil so that a low-resistance ground cannot be obtained. In such a case great improvement can often be made by combining several ground connections with a long antenna top to form an Alexanderson multiple-tuned antenna.

MULTIPLE TUNING THE LONG LOW ANTENNA

By L. C. Young, NSF-NOF

The multiple tuned antenna is especially suitable where only a long low antenna can be used as the loss of height can be compensated for by use of the increased radiation due to multiple tuning. The scheme is to use a number of own-leads (from two to six) all tuned alike and each one operating with a portion of the top, exactly as if the antenna were independent T type antennas with short tops. (See Fig. 1). Accordingly the wave length of an antenna may be reduced by multiple tuning so that a very long antenna can be operated at 200 meters.

Then two down-leads were added, one at each end, converting it into a three-lead multiple tuned antenna. During the tests reception was accomplished on an antenna several wave lengths distant from the

![Diagram](image)

FIG. 1—HOW THE MULTIPLE-TUNED ANTENNA OPERATES

Note: Sections A-B, B-C, C-D are equal, the leads are connected at the centers of these sections.

The following comparisons were made with a flat top antenna having a natural period of 415 meters. This antenna was first operated as a single T antenna and then two down-leads were added, one at each end, converting it into a three-lead multiple tuned antenna. During the tests reception was accomplished on an antenna several wave lengths distant from the transmitter. The received signals were measured with a rectifying tube and a galvanometer. This receiving set was first calibrated by operating the simple T an-
tenna with one ampere, then two amperes, three amperes, etc. To operate the antenna, when multiple tuned, on the same wave length it was necessary to use considerable loading. This reduced the radiation efficiency over that which would have been obtained when operating multiple tuned at a shorter wave. Nevertheless the comparison was in favor of the multiple-tuned antenna.

Comparison of Single and Multiple-Tuned Antennas

Input to tube plates 400 watts.
Wavelength 400 meters.

<table>
<thead>
<tr>
<th></th>
<th>Single tuned</th>
<th>Total</th>
<th>3-lead T tuned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amperes per downlead</td>
<td>3.2</td>
<td>4.5</td>
<td>9.6</td>
</tr>
<tr>
<td>Total Amperes</td>
<td>4.5</td>
<td>5.64</td>
<td>34.72</td>
</tr>
</tbody>
</table>

The deflection of 34.72 could also be produced with the single-tuned antenna by increasing the antenna current to 9.6 amperes but this took 1600 watts to the tube plates or 4 times as much power as with the multiple-tuned antenna.

One thing has to be remembered, the three down-leads must be adjusted so that they are operating exactly in phase. This condition is shown by the appearance of the same current in all three down leads.

In designing the loading inductance to be put in the down-lead of a multiple-tuned antenna, one has to remember that each lead is handling only a portion of the antenna ton. (See Fig. 1). Thus if we have an antenna top with a capacity of .0015 microfarads and use three down leads, including one to the set, each lead will be working with an antenna top having a capacity of .0005. Each inductance is required to tune only one-third of the flat top.

It is necessary to allow for very close plate and grid coupling because the resistance of the multiple antenna "looked into the feed down-lead" is very much higher than that of a plain antenna. If each section of the antenna had a resistance of 10 ohms, then the apparent feed resistance would be 30 ohms or the sum of the three sections. However the sections radiate in parallel, hence the ground resistance will be only one-third and we have greatly reduced the worst resistance in the antenna.

Figures 2A and 2B make some suggestions for practical 200 meter multiple-tuned antennas. The one in Figure 2B is especially recommended for erection on a long roof that is covered with tin or copper. Such a location is practically worthless for an ordinary antenna.

THE MULTIPLE-TUNED ROOF ANTENNA AT 1YK

By H. H. Newell, 1YK

THE antenna system at 1YK had to be constructed above a grounded copper roof. When worked as a plain L antenna (as shown in Fig. 3A) this thing had a natural wave length of nearly 300 meters. Taken all around it was very poor for 200 meter work. It was accordingly converted into a two-lead multiple-tuned antenna as shown in Figure 3B. This sort of a multiple-tuned antenna operates as two L antennas in parallel, each down-lead handling one-half of the antenna current.

The sending set uses two 50-watt tubes with 1000 volts direct current plate supply. The circuit is an ordinary Hartley. The helix has 55 turns of No. 14 A.W.G. (B&S) wire on a frame 4 1/2" in diameter and 8" long. Twelve turns are used between the antenna and ground, ten between the filament and grid, and thirty-two between the filament and plate. The filament clip is four turns from the ground toward the antenna. All of this is left the same for multiple tuning or plain L operation but for the latter a .0003 microfarad condenser is put in series with the antenna lead. This arrangement (which was obtained with some difficulty) permits quick changes from the L to the multiple-tuned if someone with a good heavy overcoat stays on the cold roof to connect the second down-lead at the distant end. The loading coil on the roof is wound of 20 turns of No. 14 A.W.G.
(B&S) on a slotted hard rubber frame 5” in diameter and 10” long protected by a weatherproof box. All turns are in at 220 meters.

The adjustment of the multiple-tuned antenna is quite a job. Generally too many turns in the load coil means small current in it and too few turns the reverse. The currents should be equal. The first hundred years are the hardest.

Audibility measurements were made at various stations which did not use regeneration but used the shunt-telephone method of measuring the strength of I.C.W. signals from 1YK.

Comparison of Received Signals

<table>
<thead>
<tr>
<th>Observers</th>
<th>Audibility</th>
<th>L Antenna</th>
<th>Multiple-tuned Antenna</th>
</tr>
</thead>
<tbody>
<tr>
<td>1XZ</td>
<td>70</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>Mr. Haigis</td>
<td>80 (8 tests)</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>(Shrewsbury, Mass.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1CMK (Mt. Holyoke, Mass.)—No meter available but signals much more intense on multiple tuned.

Note: The set as operated at full power with the same input throughout all of these tests.

It is doubtful if those owning a very good simple antenna should try multiple tuning. However, in cases like ours where a simple antenna cannot possibly give results, multiple tuning may be used to secure them.

Curiously enough the utility of the antenna for reception was very little affected by the change from the L to the multiple-tuned form.

WORKING DOWN TO 100 METERS BY MULTIPLE TUNING

By Lynne C. Smeby, 9AUL

A PLAIN antenna suitable for 200 meter work can be very nicely worked down to 100 meters by use of multiple tuning.

At 9AUL the cage-type L antenna was 45 feet long and 60 feet high. The counterpoise was a fan 45 feet long and 120 feet wide. No ground connection was used.

First the antenna was tuned as a simple L and on 200 meters an antenna current of 3 amperes obtained. Then a second down lead was installed at the far end with an inductance of about the same size as the one on the set. Before any results at all were obtained it was found necessary to adjust the two coils so that the current in the two down leads was exactly the same. The wave length was then 100 meters, the current in each down lead 2 amperes, making a total of 4 amperes. There was no trouble whatever in making the tubes oscillate at 100 meters (not even when using a UV-204).

RECEIVING LOOP DESIGN

From Stuart Ballantine’s “Radio Telephony for Amateurs.”

Receiving Loops for Wave Lengths from 180 to 400 Meters

<table>
<thead>
<tr>
<th>Side of square loop</th>
<th>Turns</th>
<th>Relative received voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 feet</td>
<td>1</td>
<td>19.8</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>9.3</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>4.8</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>3.1</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>1.0</td>
</tr>
<tr>
<td>2½</td>
<td>10</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The loops are to be used with a .0006 microfarad (max) variable condenser in shunt and are to be wound with No. 18 lamp cord with the turns spaced 2 inches. Copper strip ½ inch by .005 or .001 inches is very good. See also “Principles Underlying Radio Communication,” available from the Government Printing Office.
How to Measure Antenna Resistance and Capacity

By Albert F. Murray*

Why is it so desirable to know the resistance of your radiating circuit at different wave lengths? Because you cannot determine either your power output or transmitter efficiency unless you know R_α, the total antenna resistance. Only by examining a curve (such as shown in Fig. 1) of R_α vs. wavelength for an antenna system, can the ground resistance, dielectric loss (losses due to guy wires and nearby absorbers) be estimated. The question "How good is my antenna?" can then be answered. If it is a receiving antenna and the minimum resistance is more than 25 ohms, a redesigned aerial system will probably give you louder signals. All these points are fully discussed in radio books and magazines but the authors do not tell just how to measure the antenna resistance.

Method

Three points must be observed in order to measure the resistance of your antenna accurately. They are: (1) A METHOD that gives accurate results. (2) Suitable INSTRUCTIONS. (3) Skillful MANIPULATION.

The method which I have found most satisfactory is called the Substitution Method. The idea of this method is that it is hard to measure directly the capacity and resistance of the antenna itself but it is not very hard to make up a "dummy antenna" that will have the same capacity and resistance as the real antenna. In other words the substitution method does not try to measure the antenna at all, but substitutes a "dummy antenna" which is made up of things that are easily measured or else are known to begin with. It is well known that an antenna has distributed capacitance, resistance and inductance. The "Phantom" Antenna, as the circuit which is substituted for the real antenna is called, has its capacity and resistance adjusted so that if you connected it to your transmitter in place of your antenna and ground, neither your wave length nor your antenna current would be changed.

[The substitution method can be understood from Figure 2. The antenna "A"

![Fig. 2](image_url)

may be looked at as being a condenser. Because it is not a very good condenser but has a lot of resistance it will have to be shown as at "B"—a condenser and a resistance. Now in Fig. 3 if we throw the switch S to the right we have the antenna (which is a condenser) connected across the helix. That gives a tuned circuit. Let up suppose that this tuned circuit has a wave length of 200 meters. If we then throw the switch to the left we have still another tuned circuit and by adjusting C_2 we can tune this new circuit to 200 meters. It is easy to see that when we have done this the capacity of C_2 is equal to the "equivalent capacity" of the antenna at 200 meters. All that remains is to adjust the resistance R until the dummy current (shown by A_1) is equal to the antenna current when the switch is the other way. When we have this adjustment the condenser C_2 shows the "equivalent capacity" of the antenna, and the resistance R shows the antenna resistance. This is only the general outline—several things have to be watched; these are explained in the article. —Ed.]

Arrangement of Apparatus

A source of undamped oscillations is needed, so use your C.W. transmitting set, with either D.C. or A.C. plate supply. Use all the power you have up to 50 watts. See Fig. 3. A single 5-watt tube often is not powerful enough to give accurate results. Leave the helix in the antenna circuit and make up a temporary helix L_1 with more turns so that your transmitter, working as a driver, will oscillate from the natural wave length of your antenna, to four times this wave length. The modified Hartley-circuit driver shown in Fig. 3 is good, but use the circuit with which you are most familiar. Put an antenna am-
meter A1 in series with the variable condenser C1. Shunt the meter with a short length of No. 14 copper wire, since the current is likely to be more than five times the usual antenna current. Keep all this equipment six to ten feet from the apparatus shown on the left in Fig. 3. Run the antenna lead directly to the porcelain base.

3. A LOW-LOSS VARIABLE CONDENSER. (Note—This is C1; anything will answer for C1). First choice: General Radio Type 239-J Variable Condenser, with vernier, .002 MF. maximum. See Fig. 5. Effective resistance of this type is one half of that shown in Appendix 2 for Type 247, so low that it may be neglected. Second choice: Type 247-C, .001 MF. condenser, with vernier. The resistance of this type of condenser, while much lower than the average of its class should be subtracted from the total measured resistance, as explained in Appendix 2. The experimenter is warned that if other makes of variable condensers of unknown resistance are substituted, the true resistance of the antenna cannot be ascertained.

4. A WAVE METER. First choice: A Kolster Decrometer, range 75-3300 M. Second choice: Type 174 General Radio Co. Wavemeter, range 150-3000 M. Third...

Procedure

Check your connections and arrangement with Fig. 3. Throw S.P. D.T. switch S to the right, and add turns enough in the helix L, to load the antenna to about twice its fundamental. Start your driver and tune it to the antenna by means of C,. Have the small coupling coil only close enough to the driver to get a small deflection on the antenna galvanometer, T.

Now, loosen the coupling and adjust the driver for good current thru A, by varying plate and grid coupling only. Use the least possible grid coupling, to reduce harmonics. Carefully re-tune the driver to the antenna, and move coupling coil so as to get ½ to ¾ full scale deflection on T, then open switch S while you watch closely the ammeter, A,. A slight change in its reading may be permitted, when using this Substitution Method (that is one of its advantages), because, when the phantom antenna is substituted, the amount of this reaction will be the same. However, check often to see that you are getting a reaction on the oscillator not greater than, say, .1 amp. change in 2 amps. To reduce reaction, decrease the coupling to the driver circuit; this unfortunately reduces the reading of T, which should be above 20 divisions to read accurately. A way around this difficulty is to use a more powerful driver.

To proceed, assuming zero or only slight reaction, insert about 20 ohms in the decade resistance box R and throw switch S to the left. Always insert sufficient resistance in R to prevent burning out the thermogalvanometer T, BEFORE moving the switch to the left. Tune for maximum current in meter T, by adjusting the low-loss condenser C,. Then leave C, at this setting and vary decade resistance R until T reads the same as when the antenna was in the circuit. (Re-tune the phantom circuit slightly, if necessary). Also make sure that the current thru A, in the driver circuit is exactly the same with the switch S in either position. If the current in A, does not remain steady, use more L and less C in the driver circuit. Of course, the plate and filament sources must be constant in voltage, whether A.C. or D.C. With S thrown to either the right or left bring the wavemeter near the oscillator (driver) coil and measure the wave length, using the reaction on the oscillating current meter A, as an indicator of resonance. Record wave length, decade resistance setting R,, and the reading of the phantom circuit condenser C,.

Precautions

Let me again emphasize the imperative need of painstaking and accurate TUNING. Each time make sure that you are on the top of the resonance peak.

To check measurement: Repeat above with three different values of antenna current, obtained by varying the distance between the coupling coil and the source. (While a measurement is in progress, this coupling of course should not be changed). If the three results vary by more than .2 ohms in 10 ohms (2%), look for and eliminate any or all of the following sources of error:

(A) Inaccurate tuning.
(B) Too much reaction.
(C) Magnetic coupling between helix and driver—use greater separation between L, and L; rotate either L, or L, to obtain zero mutual.
(D) Electrostatic coupling—move driver farther away from phantom circuit. Place a grounded static shield between driver and coupling coil.
(E) Momentary variations in driver output—provide steadier filament and plate sources, or wait until line voltage is steady.

Plotting the Resistance Curve

Having measured one point and made sure that everything is working well one is now ready to proceed rapidly. Measure R, as described above, for, say every 10 meters, from as near the fundamental as
you can, adjustments get more difficult here and more capacity is needed in the phantom antenna) to about 4 times the fundamental. As soon as you get each point plot it on the resistance-vs.-wave length curve (Fig. 1) on a piece of cross section paper; then if a point is far off the curve you can at once re-measure.

Nearby absorbers, such as guy wires, metal towers, etc., may cause peculiar variation in the smooth curve; but many of the irregularities attributed to such things are due to errors in measurements.

After you have plotted your resistance-wave length curve, you can analyze it and determine your dielectric losses also your combined ground and conductor losses, as shown in Figure 7. In the chapter on antenna capacity the equivalent tapacity of the antenna at any wave length, (the capacity, which connected to the antenna inductance L, will give the same wave length that is given by the antenna similarly connected), is given by the capacity setting of the phantom antenna condenser. The low-loss condenser C₂ should therefore be calibrated. The Type 247-C and -E mounted condensers mentioned above have a scale directly calibrated in MMF, accuracy 3%. A knowledge of your equivalent antenna capacity allows you to design loading coils for receivers, etc. It is not the same as the D.C. capacity of the antenna. An equivalent capacity-wave length curve for a typical amateur antenna is shown in Fig. 1.

Antennas in Dr. G. W. Pierce’s "Electrical Oscillations," you can easily take from the curves shown, the various values of radiation resistance calculated for an antenna having the same dimensions as yours. The resulting curve of radiation resistance vs. wavelength should, of course, lie beneath your curve of total resistance. If it does—line, you have checked the theory! If it does not—well, maybe those calculations were not for just your kind of aerial, and maybe your resistance measurements were slightly off. The resistance Rₓ is that of the antenna and ground, exclusive of the helix.

Accuracy

The method outlined, with proper instruments and manipulation will give, I believe, the greatest accuracy obtainable. In measuring the resistance of an 80 foot vertical cage antenna at Crutt Laboratory, Harvard University, I was able to repeat resistance measurements to within 0.1 ohms on three consecutive days. It will be, however, a great help to the amateur using C.W. to know approximately what resistance his set is working into, even if it is not more accurate than 1 ohm in 15 ohms or 6.7%.

Antenna Capacity

The equivalent capacity of the antenna at any wave length, (the capacity, which connected to the antenna inductance L, will give the same wave length that is given by the antenna similarly connected), is given by the capacity setting of the phantom antenna condenser. The low-loss condenser C₂ should therefore be calibrated. The Type 247-C and -E mounted condensers mentioned above have a scale directly calibrated in MMF, accuracy 3%. A knowledge of your equivalent antenna capacity allows you to design loading coils for receivers, etc. It is not the same as the D.C. capacity of the antenna. An equivalent capacity-wave length curve for a typical amateur antenna is shown in Fig. 1.

APPENDIX 1

The curve Rₓ is not strictly correct as we have drawn it. So far it has been assumed that all of the resistance in the dummy circuit is in the decade resistance R. This is not entirely correct—the low-loss condenser C₂, even though it is much better than most variable condensers still has some resistance and, if one wishes to be accurate, this resistance should be added to the reading of R for each point along the Rₓ curve of Figure 1. This will raise the curve a trifle.

Ordinarily this business of correcting the curve is quite a job but the author has been

![Alignment Chart giving Resistance of General Radio Co Type 247 Condenser](attachment:alignment_chart.png)

Fig. 8
worked out especially for this article a chart, Fig. 8, by which the resistances of General Radio Type 247 variable condensers can be read off without any equipment but a ruler. The chart is based on bridge measurements at audio frequency. Such calculations are simple as there is a straight-line relation between condenser resistance at audio and at radio frequencies. The power factor remains constant.

The resistance of two condensers in parallel \(R_p \) can be obtained from the chart easily if one of the condensers is set at maximum while the other varies.

\[
R_p = R_1 \left(\frac{C_2}{C_1} \right)
\]

Where

- \(R_1 \) = resistance in ohms shown by the chart for the condenser \(C_1 \) (which is set at maximum)
- \(C_a \) = \(C_1 + C_2 \) total capacity of the two condensers as they are set (found by reading the condenser scales)
- \(C_2 \) = the capacity of the condenser which is set at maximum.

APENDIX 2

The Resistance Variation Method

The Technical Editor of QST has pointed out to the writer the fact that the average amateur may not have the instruments necessary for the Substitution Method. Therefore the fairly accurate Resistance-Variation method will be described. This simpler, but less accurate, method does not require a low-loss variable condenser. The connections are made as in Figure 9.

The thermo-galvanometer is the same sort of an instrument as before, the resistance \(R \) may be a decade resistance or simply a ten-foot length of No. 30 B.S. gauge resistance wire with a sliding contact, such as a clip. If a powerful driver (over 20 watts) is used a less sensitive instrument may be used at \(T \). Keep the driver at least ten feet from the helix and insert the small coupling coil in series with the ground side of the oscillating circuit.

PROCEDURE: Start the driver, short the resistance \(R \) with the switch \(S \), and tune the driver to the antenna which has been set to the desired wave length by moving the helix clip. Then vary the coupling between the small coupling coil and the helix until the meter \(T \) gives a half-scale deflection. Before starting to measure, test the set for reaction of the antenna on the driver by suddenly opening \(S \). If the driver current as shown by \(A_1 \) changes, the coupling between the helix and the small coil must be loosened or the power of the driver increased until there is absolutely no reaction indicated by the meter \(A_1 \).

When reaction has been done away with, insert resistance by opening \(S \) and moving the slider on the resistance wire (or turning the dials of the decade box if one is used) until \(T \) shows that half as much current is flowing in the antenna. Now the antenna circuit must have twice as much resistance as before and the series resistance must be equal to the antenna resistance.

Remember that if the meter \(T \) reads current (ammeter or milli-ammeter) decrease deflection to \(\frac{1}{4} \); if it reads current squared (Thermo-galvanometer) decrease deflection to \(\frac{1}{4} \). Look out for this. The resistance curve obtained by this method is for the entire radiating system, i.e., antenna, helix, and ground, just as usually used.

APPENDIX 3

When a resistance curve has been drawn as at \(R_5 \) in Fig. 1 or curve \(A \) in Fig. 7, it is possible to tell something about the antenna even before the curve is analyzed. If the curve goes up very steeply to the right, the antenna has high dielectric losses—look around for masts, houses, and trees that are too close to the antenna. For a down-lead that hugs the house wall or for bad lead-in bushings and antenna insulators. If the lowest part of the curve is not below 5 ohms the antenna has probably a good deal of ground resistance. If the curve has "humps" (and you are dead sure they are not mistakes in measurement) there are resonant circuits in the neighborhood. This does no great harm unless the humps are on your working wave; if that is the case they must be eliminated. Screw down the key and start out with a wavemeter to find the guterpipe, 110 volt line, tin roof, or wire fence that shows radio energy at this wave length. After that, use your ingenuity to de-tune the absorbing circuit by the use of radio chokes, condensers, and ground connections.

To find out definitely what ails the antenna the \(R_5 \) curve should be broken up into its separate parts as shown in Fig. 7. The curve \(R_5 \) must be measured up far enough (4 times the fundamental) so that it has become a straight line. A ruler is laid along the straight part of the curve...
and a line drawn back as shown in Fig. 7 (dotted line). This dotted line crossed the resistance scale at 2 ohms—this antenna has a low ground resistance. Now if we start at the O point and draw a straight line B parallel to the dotted line and the straight part of A, we will have a line showing the Dielectric Loss resistance in the surrounding houses, masts, etc. Also we can start where the dotted line crosses the resistance scale and draw a line off horizontally to show that the ground-and-wire resistance is the same for all wave lengths. (Not strictly correct; line really slopes a trifle as shown as C). Finally we can subtract curves B and C from curve A and get a fourth curve, D, which gives an approximation of the Radiation Resistance.

The best sending antenna is one in which both B and C are low while D is fairly high. —Tech. Ed.)

APPENDIX 4

See also the following references:
"Electrical Oscillations," G. W. Pierce.
Also the following Bureau of Standards (Radio) publications:
Circular 74, "Radio Instruments and Measurements."

The Perfect Aerial
By M. Adaire Garmhausen, 3BCK

This is a very technical article. It is so technical that anyone with less than three degrees shouldn't even read the title. It is the result of two long weeks of spare time research, and so I feel perfectly fitted to discourse intelligently upon the subject of aerials.

The first point to be made is selectivity. If you wish to get the very best results you must be sure that your aerial is super-selective. A number of experiments have proved that the most selective wire available is the No. 0000 B&S, but as this is a trifle awkward to handle, the average amateur will have to use whatever he can get, and add artificial selectivity. This is comparatively easy if you have on hand a little savoir faire. In buying your wire ask to see all the kinds in stock, and examine them closely—under a microscope if possible. Bend them, twist them, burn them with a lighted match, break off bits of them, rub them with a bit of ice. On the strength of these experiments you can select the one you like best, and thereby add selectivity.

Before constructing the aerial itself, rub the wire with 3-in-1 oil. The instructions which come with each bottle of this oil, say that if a drop of it is put on a crystal detector the crystal becomes more sensitive. This principle was extended to include aerials. I found that although it did not increase sensitivity to any great extent, it caused the signals to slide in easier, and kept them from getting wet in bad weather. If the wire is well oiled the first time it will not have to be done again for several years.

The next subject in this connection is insulators, and I cannot be too emphatic in insisting that they be multi-tuned. Without tuned insulators the aerial loses a good bit of its selectivity, but with them multi-tuned its efficiency increases almost 100%. A good insulator of this type is the ordinary building brick, but as one eminent Kansas authority prefers bottle necks, we will devote the space to them. Bottle necks are excellent insulators, provided the bottle contained the real stuff. Those which have contained White Mule or Gentle Annie absolutely will not give the same results. The best way to obtain these bottles is to write to your Senator, telling him just what you want them for, and he will understand and be glad to send you any number of them free of charge or in exchange for a few cigarette coupons.

As long as our wire is super-selective and our insulators multi-tuned, the shape of the aerial makes very little difference. Here is a field for the amateur to show his individuality. By building a frame work for support all sorts of figures or pic-
tures could be formed—stars, pretzels, animals, or even call letters.

The ground system should be regenerative if possible but this is not imperative, provided it is properly heterodyned. Be sure to select a ground system that will not squiak or hiss. The best results are obtained if the ground lead be connected directly to a large pond of still water—the larger the better—but failing this, a large brook or small river will do very well. A number of amateurs will not know how to solder a wire on to a lake, but this is a technical article and you cannot expect to understand everything you read in technical articles.

The business of connecting the aerial to the receiver is comparatively simple. It is an accepted fact that if the positive side of the aerial be connected to the binding post marked “ground,” interference will be greatly reduced. The positive side of an aerial is the side you are positive is the negative. The negative, or wattless current side, is then connected to the depolarize of the storage battery thru the wave streamer. If WD11 tubes are used, this lead will have to be connected in shunt with the logarithmic decrement as no storage battery is necessary. The results are practically the same.

Dr. Einstein and I have worked out formulae covering each of these principles, but as they are very complicated, and only twelve of us scientists understand them, there is no use setting them down here. This aerial is strongly recommended to all those striving for maximum efficiency, and anyone wishing to try it out can be assured of my willing assistance.

Some Tests of Amateur Antenna Insulators

Because C.W. sets do not need the same sort of insulation that used to be satisfactory for spark work and also because no one seemed to know what insulators are good for C.W. work, these tests were made.

The work itself was done by Messrs. L. C. Young, John Reinhart, H. F. Mason, and S. Kruse.

Method of Testing

The insulators were bought in batches, 6 of each kind, excepting only Nos. 4 and 5, which were presented by the makers. Three of each batch were sent to one test station (M) and the other three of the same batch to another test station (W), the two

(Continued on page 26)

<p>| Table 1—Description of the Insulators |</p>
<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wet process brown glazed porcelain strain “egg” made by Locke for Westinghouse. Length about 3½”, fairly fine grain.</td>
</tr>
<tr>
<td>2</td>
<td>Same as 1 but 7” long.</td>
</tr>
<tr>
<td>3</td>
<td>Greenish glazed egg—very poor—dry process. Same size as 1. Maker not known.</td>
</tr>
<tr>
<td>4</td>
<td>Short (5”) wet process porcelain rod, maroon glaze, all but one end. Excellently vitrified body. Ohio Brass Co. (Continued)</td>
</tr>
<tr>
<td>5</td>
<td>Same as 4 except 10” long.</td>
</tr>
<tr>
<td>6</td>
<td>Same as 5 but both ends unglazed. Parker & Son.</td>
</tr>
<tr>
<td>7</td>
<td>Dry process porcelain, black glazed except in suspension holes. Fleron.</td>
</tr>
<tr>
<td>9</td>
<td>Same as 7 except for shape. Fleron.</td>
</tr>
<tr>
<td>10</td>
<td>Plain 110-v. unglazed wiring cleat. Dry process.</td>
</tr>
<tr>
<td>11</td>
<td>Heavy glazed cleat—large “bald” area. Probably dry process.</td>
</tr>
<tr>
<td>12</td>
<td>Medium glazed cleat—large “bald” area. Dry process.</td>
</tr>
<tr>
<td>13</td>
<td>White porcelain, badly glazed.</td>
</tr>
<tr>
<td>14</td>
<td>Same as 13 except brown glaze. Parker & Son.</td>
</tr>
<tr>
<td>15</td>
<td>Imitation Electrode—maker not known.</td>
</tr>
<tr>
<td>16</td>
<td>Black asphaltic composition—Woolworth’s.</td>
</tr>
<tr>
<td>17</td>
<td>Pure Hard Rubber. Maker not known.</td>
</tr>
<tr>
<td>18</td>
<td>Imitation Electrode. Maker not known.</td>
</tr>
<tr>
<td>19</td>
<td>10” “Electrose” corrugated rod. Shell lac-mica composition.</td>
</tr>
<tr>
<td>20</td>
<td>Black composition, imitation of No. 19, maker unknown.</td>
</tr>
<tr>
<td>21</td>
<td>10” Formica Bar, 2” x ½” section.</td>
</tr>
<tr>
<td>22</td>
<td>Same as 21 but 30” long.</td>
</tr>
</tbody>
</table>

Note:—In the photographs the “A” following the number shows the original insulator; “B” the result of mechanical tests; and “C” the result of electrical tests.
stations using their own methods and not comparing notes until afterward. The results compare very well, which gives one confidence that the tests really indicate the goodness of the insulators.

Important Note—The same number refers to the same type of insulator in every figure, picture, and table in this article.

Work at Test Station “W”

All tests made at 1,500,000 cycles (200 meters). The insulators were connected between a very small one-wire antenna (capacity 35 micro-microfarads) and ground. See Fig. 1. The ammeter was connected to show input to both the insulator and the antenna. Each test was started at low voltage and the power increased until something happened or the limit of the test set was reached. As soon as each test was done the flashover voltage at the power used was measured by means of the calibrated hall spark gap SG.

<table>
<thead>
<tr>
<th>Insulator Type</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (1st sample)</td>
<td>Starts brushing at 3.5 amps. and 25,000 volts. Raised power to 3.8 amps. and 29,000 volts. Brushing fairly strong but did not break down. Using corona shield. No brush or break at full power, 3.5 amps., 28,000 volts. No heating at all. Using No. 14 wires thru hole, starts brushing at 2.3 amps., 17,000 volts. Using ¼" rods thru holes flashes over at 3.2 amps., 26,250 volts.</td>
</tr>
<tr>
<td>3 (2nd sample)</td>
<td>Using No. 14 wires thru holes. Broke down at 2.1 amps. and gap-flashover distance of 3.5 mm. or about 13,000 volts.</td>
</tr>
<tr>
<td>4 (1st sample)</td>
<td>Ammeter reading 2.5 amps. At 17,000 volts brushing into insulator begins; flashes over at 20,000 volts and burns a conducting streak along one side.</td>
</tr>
<tr>
<td>4 (2nd sample)</td>
<td>Using corona shield; flashes at 26,000 volts.</td>
</tr>
<tr>
<td>5 (1st sample)</td>
<td>Using ¼" rod thru hole. Ammeter 2.5, voltage about 26,000. Brushes slightly into insulator. No heating after several minutes.</td>
</tr>
<tr>
<td>5 (2nd sample)</td>
<td>Using ¼" rod thru hole and corona shield as shown in photo. No brushing or heating at all with 28,200 volts.</td>
</tr>
<tr>
<td>7 (1st sample)</td>
<td>Flashes over at 2.5 amps. and 14,300 volts.</td>
</tr>
<tr>
<td>7 (2nd sample)</td>
<td>Ammeter reading 2.5, voltage 13,800. Flashes outside.</td>
</tr>
<tr>
<td>8 (1st sample)</td>
<td>Ammeter reading 2.5, voltage 21,500. Brushed into insulator and burned within a few seconds.</td>
</tr>
</tbody>
</table>
Using ¼" tubing thru holes. Ammeter 3.5, voltage 27,500. No breakdown, flashover, or heating during 5 minutes.

Insulator exploded with a loud report after one second. Ammeter 2.2, voltage 17,400. Melted in two after 2 minutes at 2.5 amps. Ran 3 minutes at 3 amps. and heated but did not break or flash. Voltage 27,500.

Ran 5 minutes without break or flash and only slight warmth. 3.5 amps. voltage 27,500.

Ammeter reading 3.7, voltage 29,000. No brushing when ¼" rods used thru holes, but when No. 14 wires used brushing began at 2.5 amps. (about 22,000) and charred a small part of the Bakelite which increased the brushing so that in a few seconds the entire insulator flashed from end to end and formed a conducting path.

Tests at Station “M”

In the tests at this station the insulators were divided into 3 groups, one of each kind going into each group. The first group was tested as received, first dry and then under a spray, using the apparatus of Fig. 2 and keeping the voltage fixed at about 4,000 with a frequency of 1,500,-000 cycles per second (200 meters). The second group was soaked in water for 24 hours and then run thru the same tests as the first group. The third group was soaked in a solution of eosin, a dye that penetrates wherever water will go. This group was then used for strength tests and those that did not pull in two were broken up with a hammer. It was then possible to see the pink dye marks that betrayed the porous places in the insulators. Notice that the porous ones were the ones that gave poor electrical tests.

Conclusions of Mr. Young, of Station “W”

The two insulators that seemed to stand up best were Nos. 7 and 5. Neither of them broke down on full power nor did they heat up. No. 5 is the best mechanically. No. 8 showed up well but is a little small. Of the composition insulators the only one that appears satisfactory is No. 19, which heats only a little on heavy load and does not break down. No. 1 held up wonderfully but is a little short. The Formica insulators are OK as long as they are worked well under the brushing point, but once a brush starts they are gone.

One precaution must be taken with all the insulators and that is NOT to use small wires thru the holes in the insulator but to use quarter-inch rods or else quarter-inch tubing with the wire run thru it.

When any considerable amount of power is used it is very much worth while to use a corona shield such as has been left on one of the long insulators tested. This should of course be on the “hot” end of the string of insulators, the end next the antenna. It is always best to use several insulators in series to reduce the capacity thru the string. The units too should be fastened together with quarter-inch stock, either by using U-shaped pieces of tubing thru the ends of the insulators and running wire thru them, or else by the use of some sort of clevis.
Tests on the First Group of Insulators (tested as received) at Station "M"

Preliminary Test on Porcelain Eggs.—Several porcelain eggs that had laid in the snow during the winter were tested first. They all broke down within 4 minutes apiece—arcs bored thru the inside of the material. The energy consumed was about 50 watts average. Tests were then made with a single egg used as in Fig. 3A and then as in Fig. 3B. The losses when used as at A were about 1/2 as great. Tests were then made with two eggs in series. When they were connected with wire they consumed 1 watt when dry and 5 watts when wet but when connected with rope they consumed 19 watts when dry and 24 watts when wet. All this was with the insulators used as in Fig. 3A. Now they were turned as in Fig. 3B and the losses went to 30 watts when dry and 47 watts when wet.

<table>
<thead>
<tr>
<th>Type</th>
<th>Number</th>
<th>Loss</th>
<th>Loss</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>50</td>
<td>5</td>
<td>Did not dry but broke down in 5 minutes.</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>75</td>
<td>21</td>
<td>Got very hot but tube set not powerful enuf to break down.</td>
</tr>
<tr>
<td>3</td>
<td>70</td>
<td>50</td>
<td>21</td>
<td>Dried off but was getting very hot.</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>10</td>
<td>21</td>
<td>Dried off in 3 mins.—no brush.</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>5</td>
<td>21</td>
<td>Dried off in 30 seconds—no brush.</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>5</td>
<td>21</td>
<td>Exactly the same as No. 5.</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>3</td>
<td>21</td>
<td>Started to dry off but a red thru and cracked.</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>10</td>
<td>21</td>
<td>Dried off several times without harm.</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>13</td>
<td>21</td>
<td>Dried off but became very hot and started to arc into the high voltage end.</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>17</td>
<td>21</td>
<td>Started to dry but broke down in one min. Several did this.</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>22</td>
<td>21</td>
<td>Cleared itself OK but very hot.</td>
</tr>
<tr>
<td>12</td>
<td>30</td>
<td>26</td>
<td>21</td>
<td>Cleared itself OK.</td>
</tr>
</tbody>
</table>

Tests on the Second Group of Insulators

The second group of insulators that had been soaked in water did not develop anything new—the insulators in Group 1 that had been poor were still poorer and the good ones were not harmed by the water.

Dye Tests on the Third Group of Insulators

<table>
<thead>
<tr>
<th>Type</th>
<th>Mechanical strength (Pounds)</th>
<th>Remarks on dye and mechanical strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1500 (as at Fig. 3A)</td>
<td>Dye soaked in at the white "tests" for penetration at any point.</td>
</tr>
<tr>
<td>2</td>
<td>Too large—over 3000</td>
<td>Same as 1.</td>
</tr>
<tr>
<td>3</td>
<td>1500 (as at Fig. 3A)</td>
<td>Dye soaked in thru cracks in the eye for over half an inch.</td>
</tr>
<tr>
<td>4</td>
<td>Over 3000—no break</td>
<td>No penetration at any point.</td>
</tr>
<tr>
<td>5</td>
<td>Over 3000—no break</td>
<td>No penetration at any point.</td>
</tr>
</tbody>
</table>
6 Not on hand at the time of this test; hence not logged.
7 120 pounds Eye pulled off, some pink in.
8 400 pounds Eye pulled off, dye penetrated 3/8".
9 200 pounds Broke in eye—very badly colored.
10 75 pounds Pink clear thru—mere sponge.
11 600 Broke thru eye, dyed for about 1/8".
12 300 Broke thru eye, dyed clear thru.
13 240 Dye in for 1/4".
14 Not tested at all as white one was so poor.
15 200 Hook pulled out—dye in about 3/8".
16 300 Hook opened—no dye soaked in at all.
17 600 Eye pulled off—no dye absorption at all.
18 900 Eye straightened and insulator part ed—its proportioning is the only good thing about it. No mechanical damage and when broken with hammer no electrical damage.
19 3500 and no break
20 Not on hand as these were all burned up in the electrical tests.
21 & 22 Too poor electrically to excuse any other tests.

Conclusions from the Work at Station "M"

The best sending insulator was No. 5 very closely followed by No. 6. The other good ones were Nos. 7, 4, and 8. None of the composition insulators were nearly as good as porcelain but the best of them was genuine Electrose. Imitation Electrose was very poor. The little No. 16 insulator (purchased at a 10¢ store) held up wonderfully but was not strong mechanically. It should be f.b. for receiving antennas, tho.

The best receiving insulators were Nos. 16, 17, 8, and 19.
The rest of the insulators tested were good for nothing.

Use of porcelain eggs in the guys.

The special test on porcelain eggs showed that they can be used as tension insulators (See Fig. 3) with great improvement in insulation and are still plenty strong enough. This refers to really good eggs such as the Locke-Westinghouse type, not to the sort shown at 8. Strings of eggs should be connected with wire—NOT WITH ROPE.

The importance of GOOD glazing and GOOD porcelain is greater than was thought. Rods 5, 6, and 4 were so close-grained and well vitrified that the dye did not soak in at all, even where there was no glazing.

Thick insulators are all poor—the right shape is the “long and skinny.” The big eggs were much poorer than the little ones.

General Antenna References

QST, February, page 59.

Bureau of Standards Circular 74, “Radio Instruments and Measurements.”

“Principles Underlying Radio Communication”—(SCR-40)—to be obtained from Superintendent of Documents, Government Printing Office, Washington, for $1.00 in cash or money order.

“Concerning Cages,” Sumner B. Young, QST, October, 1920, page 12.

Good Stations

2RK, Brooklyn, New York, QST, February, 1921, page 42.

“5ZA gets Hoover Cup for 1921,” QST, July, 1922, page 23.
What I Found Out About Sending Aerials
By John L. Reinartz, 1QP.

In most cases the erection of an aerial means only the erection of some type in popular use in the home town. Having a desire to find out just how much there is to the report that the cage is the best type, I tried out 26 different aerials. The results were worth the work.

A single wire antenna was used as a base and all others compared with it. This antenna is shown in the figure. All the other antennas were tested at the same wave length (230 meters) and not a thing about the grounding system or the antenna downlead was changed until the antenna-top-tests were over. The input to the sending tube was kept constant, 60 mils at 800 volts, and it is safe to assume that the efficiency did not change. To keep from moving the antenna clips on the helix (and changing the current distribution) it was necessary to adjust the wave by cutting successive pieces off the free end of the antenna top, the antenna being let down for each “pruning” until the wave dropped to 130 meters.

With all of these precautions it seems fair to say that the current thru the antenna ammeter was a good test of the various antenna tops.

Here then are the results of one month’s work. (This took teamwork; Mrs. Q P provided it.—Ed.)

By the end of Table 2 we are back to a flat-top again, only now the flat-top uses cages instead of single wires.

And here is what I now think about aerials.

1—The D.C. resistance plays a small part.
2—The H.F. resistance plays a greater part.
3—The flat-top is the best form to use.
4—The cage is of use where the available space permits no flat-top. The cage does little except reduce inductance and skin effect; the flat-top is much better for increasing the antenna capacity.

Table 1—Tests of Flat-Tops

<table>
<thead>
<tr>
<th>No. of Wires</th>
<th>Width of Antenna Top</th>
<th>Amperes at B</th>
<th>Amperes at C</th>
<th>Amperes at A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, No. 6 Solid Bare</td>
<td>8 ft.</td>
<td>16 ft.</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>20 No. 21, paper, bunched in cable</td>
<td>8 ft.</td>
<td>16 ft.</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8 ft.</td>
<td>16 ft.</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8 ft.</td>
<td>16 ft.</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>8 ft.</td>
<td>16 ft.</td>
<td>3.6</td>
<td></td>
</tr>
</tbody>
</table>

The test antenna at 1XT-1QP

Table 2—Tests of Cage Tops

<table>
<thead>
<tr>
<th>No. of Wires per Cage</th>
<th>No. of Cages</th>
<th>Size of Cage</th>
<th>Spacing of Cages</th>
<th>Amperes at A</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>12"</td>
<td>8"</td>
<td>16"</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>24"</td>
<td>8"</td>
<td>16"</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>30"</td>
<td>8"</td>
<td>16"</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>60"</td>
<td>8"</td>
<td>16"</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>30"</td>
<td>8"</td>
<td>16"</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>12"</td>
<td>8"</td>
<td>4"</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>12"</td>
<td>4"</td>
<td>8"</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>12"</td>
<td>4"</td>
<td>4"</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>12"</td>
<td>4"</td>
<td>4"</td>
</tr>
</tbody>
</table>
Table 3—Antenna Lead Test

<table>
<thead>
<tr>
<th>Downlead</th>
<th>Current at A</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 wires bunched</td>
<td>3.1</td>
</tr>
<tr>
<td>6 wires in tapered cage</td>
<td>3.72</td>
</tr>
<tr>
<td>12" at top</td>
<td></td>
</tr>
<tr>
<td>9" at A</td>
<td></td>
</tr>
</tbody>
</table>

Table 4—Ground Lead Test

<table>
<thead>
<tr>
<th>Ground Lead</th>
<th>Current at A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable of 20 No. 21 paper covered</td>
<td>3.72</td>
</tr>
<tr>
<td>6 wires in tapered cage</td>
<td>4.47</td>
</tr>
<tr>
<td>9" at A</td>
<td></td>
</tr>
<tr>
<td>12" at Ground</td>
<td></td>
</tr>
</tbody>
</table>

How Long Shall We Make Our Antennas?

The answer to the question “How large shall we make our antennas?” is, of course, “As large as possible for best transmission.” The next question is “How large can we make them? Can we make them so large that we are working on the fundamental or even below it?” That is the question discussed in the articles below.

Operate at the Fundamental

In favor of operating right at the fundamental wave of the antenna we quote from Stuart Ballantine’s “Radio Telephony for Amateurs” as follows (1st Edition, p. 67.): “Best Operating Wavelength in Transmitting—The resistance which represents the useful loss from an antenna by radiation (that is, the radiation resistance—Ed.) varies inversely as the square of the wavelength and directly as the effective height. In a well designed antenna the undesirable losses remain practically constant from the fundamental wavelength to a wavelength two or three times this and the ratio of useful loss (radiation) to the total power supplied is greatest at the fundamental wave length. Hence this is the wavelength at which best radiation takes place and should be selected for transmitting. It will usually be necessary to insert in the antenna a... coil for the purpose of coupling (to the sending set—Ed.)...but this should be kept as small as possible and its effect in raising the wavelength above the fundamental may be compensated for by inserting a series condenser having low losses. The fundamental wavelength is not the wavelength at which maximum antenna current will be secured.
but at which maximum \(I'R_{\text{eff}} \) is obtained. The operator is therefore warned not to be deceived by the antenna ammeter reading—this tells only part of the story."

A Method of Determining the Best Wave For an Antenna

By Ross Guin, Pre-war S2O

The duty of an antenna is to radiate energy into space. We cannot expect an antenna to radiate all the energy that is supplied to it; there are bound to be losses of various sorts—ground resistance, dielectric losses, etc. Now as a rule we are able to supply to the antenna about the same power at any wave we may happen to use. (We are speaking of amateur conditions only.) It follows then that if the input to the antenna is the same at different waves and the efficiency is not the same we are vitally interested in antenna efficiency as that is what determines our output.

Efficiency is usually defined as the ratio of the power gotten out of a device to the power put into it—or, more simply, as the percentage of the input that can be gotten out.

Before applying this to an antenna let us define a few terms. The "effective resistance" of an antenna is the resistance that we usually measure. It is defined as:

\[
R_{\text{eff}} = \frac{\text{watts put into the antenna}}{(\text{antenna amperes})^2}
\]

"Radiation resistance" is defined as:

\[
R_{\text{rad}} = \frac{\text{watts from the antenna to the ether}}{(\text{antenna amperes})^2}
\]

Let us review: if we multiply both \(R_{\text{eff}} \) and \(R_{\text{rad}} \) by \(I' \) we will get respectively the power into the antenna and the power out of the antenna. Quite obviously the difference is left in the antenna and goes to make up the various losses—heating the wires, the nearby walls, the ground connection, etc.

Figure 2 Radiation Resistance Curves for Reading Radiation Resistance Offhand

(From Pierce's "Electrical Oscillations and Electric Waves.")
Now we started by saying that the power to the antenna is about the same at all waves so that the efficiency of the antenna is a measure of the goodness of the whole station. As we said the efficiency of a device is the output over the input; this means that the efficiency of an antenna is:

\[
\text{Antenna efficiency} = \frac{\text{watts radiated}}{\text{watts put into antenna}} = \frac{R_{\text{rad}} (1) \times R_{\text{rad}}}{R_{\text{ret}} (1) \times R_{\text{ret}}}
\]

It is easy to see that the greater we get \(R_{\text{rad}}\) in proportion to \(R_{\text{ret}}\) the better will be the performance of the antenna. The popular belief is that it is best to work the antenna at the fundamental where the radiation resistance is greatest. This is probably correct for the case of the ideal antenna in which the resistance curve has no humps due to resonance with nearby wires or tinwork and the losses due to dielectrics and eddy currents are low. Practically, however, this does not always hold true and the only way to make sure of the best wave for a particular antenna is to make measurements. A simple graphical method is here suggested. It is to be considered only an approximation but is worth the trouble required to carry it through.

The first step necessary is to make a resistance curve for the antenna. Circular 74 of the Bureau of Standards describes the standard method of doing this. (See also in this issue the article "How to Measure Antenna resistance and Capacity."—Tech. Ed.)

Supposing that we get a curve like that shown in Figure 1A. We can see that this curve either has some mistakes in it or else shows resonance with something else nearby. If we are able to make sure that the curve is correct, that there is really something resonant nearby, but we either cannot find the resonant object or else cannot remove it, we are entirely in the air as to the best wave. We know the total resistance but cannot in the ordinary way (described in the article, "How to Measure Antenna Resistance") find out what the radiation resistance is. The best thing is to turn to calculations that were made for an ideal antenna having the dimensions of the antenna we are using. In Figure 2 (taken from Prof. G. W. Pierce's "Electric Oscillations and Electric Waves") we have curves from which radiation resistances can be taken rather easily and with as great accuracy as by any available method. For the particular antenna of Figure 1 the curve of radiation resistance comes out as shown at B.

Now we have curves for the input and the output; we are ready to find out the efficiency at different waves. The easiest way is to plot point-by-point an efficiency curve such as that shown at C, Fig. 1. The points are gotten by referring to A and B for the same wavelengths and dividing the value of B by the value of A.

Curve C will look nice to the average man as it can be seen that there is quite a nice wide region where the efficiency is about the same—if one happens to guess badly the result will not be disastrous. One thing that stands out very prominently is that the best point is not the one where the resistance is lowest and the antenna current biggest. There is a strange fascination about seeing the antenna ammeter flop clear over but there are hundreds of amateurs who will tell you that they do better work on a shorter wave with less current.

The writer has had some opportunity to check the above experimentally and now feels perfectly safe in saying to the amateur: "Stay away from the point of minimum resistance with its misleading antenna amperes." Work well down toward the fundamental but first make sure by the above method just where the best wavelength really is.

The Best Operating Wave

From a conversation with Dr. A. N. Goldsmith.

The fundamental is probably a point of excessive radiation resistance. For 100 meters (330 feet) a vertical antenna would have a length of approximately 70 feet. For a 50 meter fundamental the antenna would be about 36 feet high. Actually an antenna like that shown in Fig. 3 should be O.K.

In reply to a statement to the effect that amateur experience seemed to show that the "excessive" radiation obtained at the fundamental was desirable and that best ranges seemed to be obtained there or near there, Dr. Goldsmith gave the following explanation:

The distance effect of a station is proportional to the meter-amperes (the product of the effective height in meters times the antenna current in amperes). The effective height does not change very much with the wavelength while the current in the antenna will go down markedly near the fundamental. It therefore may be more desirable to operate at a wave length 1.5 to 2 times the fundamental, or, conversely, to make the antenna shorter and load it.
From making masts that used to fall down I have come to ones that have to be taken down. Last autumn one of the guy anchors pulled out and my 110 foot mast stood all night without a support on the west side; not straight, but it stood.

I wanted to be prepared for a break in the guy wires, so I sunk the foundation pit good and deep. When I got down where I couldn't throw the dirt out without most of it sliding back down my neck, I rigged up a tackle and bucket. Mrs. SML acted as the engineer and dump superintendent. I had to lay off when it was down to 2 feet, as she threatened to go away and leave me down in the hole without a chance of getting out.

![Figure 1](image1.png)

Figure 1 shows how the first section was raised in place. Visitors flock to a radio station when it is in operation, but during the construction period they are conspicuously absent. I took this well known phenomenon into account in arranging the hoisting party, which consisted of Mr. and Mrs. F. M. J. Murphy. A crow-bar raised one end of the heavy 10"x10"x40' timber until Mrs. SML could slip a block under and I could get another "bite." By this preliminary raising it was possible to use a much shorter horse to support the hoisting cable. Once the lower mast section was in the hole alongside a short 10"x10"x12' timber it was kept standing upright by filling the hole with concrete and rocks.

In a week the concrete had set and I had gotten rested up. Another 12-foot stick was set on top of the first short one, and clamped to the lower mast section with U-bolts as shown in Figure 2. Then an oak piece 8"x8"x40' was placed on this second short piece, using the 40-foot stick already in place as a boom. This second 40-footer was raised without assistance, one half of the crew having mutinied and deserted with the remark that dishwashing was preferable to radio.

Four deadmen were set in the ground 100 feet out from the base of the mast, and the mast was guyed to them with %" messenger cable broken at 40-foot intervals with wooden trolley insulators. Figure 3 shows that these anchors were calculated to hang on for a while—and also shows the advantage of living near the railroad tracks.

Using three sets of guys is the best possible way to get experience in masts. You'll be as busy setting them up as the kid in the bowling alley. Use four sets of guys and a fifth guy at the mast top straight away from the direction of the aerial—that's the idea. It is a good idea to fasten a couple of extra guys to the top, and one at each joint because some day you may come out and find one of the regular ones has resigned.

Nothing smaller than 1½" pipe is worth using in a mast and even this is good only for the top section. Screw couplings are condemned—use a sleeve of pipe large enough to slip tightly over the joint and fasten it in place with %" thru bolts. If the size reduces at the joints put the upper one down inside the lower one and fasten with thru bolts.

For my pipe topmast I used a 20' length of 2" and a 20' length of 1½" galvanized steel pipe. A secure support for the topmast was provided by bolting to the top of the wooden mainmast a steel plate to which had been welded a split shaft coupling. The pipe was hoisted up thru this coupling as shown in Figure 2, guys being fitted into the joints as they came above the clamp. The hoisting hook was caught in
the lower end of the pipe and wired into place. To couple on another section of pipe the clamp at the top of the wooden mast was tightened, the rope slacked off and the pulley lowered to pick up the new section.

Almost all of this work was done with practically no assistance. This was not so bad at first but after the pipe was up a ways and there were 12 wires to look after I was a busy guy. The distance around the anchor posts was 700 feet; a well-worn path could be seen when all was done. Every few feet a fellow has to take a chase up and down the mast and in passing the couplings thru the clamp there is need for more hoisting power at the base while your attention is concentrated at the top. The gang came over and helped for a few hours, each man holding a wire in the regulation way so

often described in QST. This was better, but if you try it, be careful—especially if one of 'em is a guy you once sold a crumby storage battery to.

For the guys on the pipe topmast 3 strands of No. 14 double galvanized telephone wire were used. Steel is stronger but more brittle and inclined to go away and leave the mast all by itself. Strain insulators may be ordinary porcelain knobs, of which 200 cost 8ML just $2.

But it does not pay to save on the guy wire—or on the joints to the insulators; make the twist 10" or a foot long.

Raising an aerial of any size on a pretentious pole requires a vocabulary. There seems to be a natural born tendency for the spreader or top hoop, to commit polygamy with all the guys it meets on the way up. Then a lot of height is lost because of the string of insulators that must intervene between the aerial and hoist rope. By making up a trussed spreader and raising it to the mast head as suggested in Figure 4, a lot of eloquence is conserved, and an otherwise ordinary aerial may be expanded at the top into a large cone with increased efficiency. Note the strain guy down the center of the cage. This takes the pull off the hoop.

The down-lead cage was made small in size to concentrate the capacity at the top. Hoops of No. 10 hard drawn copper were used, spaced, 6 feet apart. The top was assembled first, then a 10 foot hoop and a 6½" hoop were soldered in position as shown in Figures 4 and 5, this being done with the whole hanging vertically.

The counterpoise is a big radial affair covering ¾ of a circle. It is 15 feet off the ground, has a rim of ¾" steel messenger cable and a filling of 40 wires each 90 feet long. They are bunched more closely under the antenna where the electrostatic field is densest. The radial wires were tightened by leaning a ladder against the messenger cable rim and then pulling by hand on the radial wire. Once the wire snapped and the messenger cable, freed suddenly of the strain, became a greatly amplified slingshot. The flight lasted, 7 seconds; with a pair of shingle wings I could have stayed up longer.
The present layout will work on 200 meters with 5 turns 7" in diameter between antenna and counterpoise. It has worked on 130, 140, 160, and 170 meters with ease and good radiation.

(This is the antenna system that put such excellent signals across in the T.A. tests with only a pair of "fifty watters." 8ML has been heard in all states so often that we suspect F. J. M. has lost count. In addition it has been heard in a whole flock of European and American countries. An antenna pays.—Ed.)

References

9AUU’s Tower, QST, October, 1922, page 64.

The Antenna Circuit

By Parker Wiggin, 8ZD

The purpose of the following discussion is to point out in an elementary way the properties of antennas and the way they influence efficient design.

Purpose

The purpose of the antenna is to transfer energy from an oscillating circuit to a medium (the ether) in which it will travel to great distances in the form of electromagnetic waves.

Types of Antennas

Antennas are constructed in three important shapes:

1. The open type or elevated antenna that everyone is familiar with.
2. The loop type in which one or more turns of wire are wound on a frame which may or may not be able to rotate.
3. The condenser type in which two conducting surfaces (of wire mesh, usually) are supported parallel and not far apart.

The open antenna is usually used for sending; the loop is used for receiving only and the condenser type is very little known.

Radiation Efficiency

The three antennas differ in their ability to radiate, that is to transfer energy to the ether. This ability is generally expressed as "radiation resistance." The reason for speaking of it in this fashion is as follows. When current goes thru an ordinary resistance (made of German silver for instance) some energy is used up in the resistance and shows up as heat. By experiment it has been found that the number of watts used up in the resistance may be found by multiplying the resistance by the square of the current thru it. For instance if we have 5 amperes going thru a 12 ohm resistance the watts consumed in that resistance will be

\[\text{Watts used up} = (12)(5)^2 = 300 \text{ watts} \]

If we know how many watts go into the resistance and how much current flows thru it we can also calculate the resistance that must be in the circuit. Taking the same example again, we know that 300 watts are being used up and that 5 amperes are flowing; then the resistance must be

\[\text{Resistance} = \frac{300}{(5)^2} = 12 \text{ (1)} \]

Now in the case of the antenna we have a current flowing in the antenna and energy is used up by ordinary resistances that we can measure. But some of the energy is not used up in the antenna; it is radiated, and we think of this as being used up by the "etheric resistance" or the "radiation
resistance." We write an equation much like Equation 1—
\[
\text{Radiation resistance} = \frac{\text{watts radiated}}{(\text{antenna current})^2}
\] (2)

Radiation Resistance for Various Types of Antennas

The radiation resistance for an open antenna is
\[
R_{\text{rad}} = (39.7 - \frac{\lambda}{F})^2 \text{ H}
\] (3)

Where \(H\) is the effective height of the antenna in meters
\(\lambda\) is the working wave in meters
\(F\) is a "form factor" that depends on the distribution of the current in the antenna.

The radiation resistance of a loop is
\[
R_{\text{rad}} = (13.3 - \frac{\lambda}{N^2})\text{ H}
\] (4)

Where \(A\) is the length of one side of the square coil in meters
\(\lambda\) is the working wave in meters
\(N\) is the number of turns on the loop.

While the first of these formulas is not very useful for getting at the value of the radiation resistances as it uses the "form factor" (which we generally do not know), still it is useful to compare the loop with the antenna. It can be seen that the radiation from the open antenna is inversely proportional to the square of the wavelength while that from the loop is inversely proportional to the fourth power of the wavelength. This means that that loop will be a very poor radiator except at very short waves; for ordinary waves it is good for receiving only.

The Reason for Antenna Tops and the Form Factor

The earliest form of elevated antenna was the single vertical wire; the next was the vertical "harp." The few vertical antennas now in use have the wires arranged in cage form. In a vertical antenna the current distribution is as shown in Fig. 1, approximately sinusoidal. This means that the upper part is not radiating much as there is little current present. To improve current distribution it is customary to add a top to the antenna and make an inverted "L" or else a "T" of it. The current distribution then becomes like Figure 2. Because these shifts in current distribution must be allowed for in calculations we have the "form factor" that appeared in Equation 3. Radiation from the flat-top itself is small.

Cage Construction

The wires of a vertical antenna, a T antenna, and L, or almost any other type may be arranged around a circle in "cage" fashion. This cage becomes the equivalent of a single wire of great size and consequently the concentration of the electrical field about it is enormously reduced. This brings with it a great reduction in the inductance of the arrangement. For that reason it is desirable to make the lead-down in cage form. Incidentally (and only if it is vertical and well away from other things) the cage construction results in even current distribution between the wires of which it is made. This results in a slight reduction in resistance. (In the antenna top the advantage of cage construction is doubtful.—Tech. Ed.)

Loading Coils and Series Condensers

The purpose of a loading coil is to enable an antenna to work above its fundamental wavelength. This cannot be carried further than perhaps three times the fundamental wavelength without a very severe loss in range.

If it is necessary to work down near the fundamental or below it one has to bring the wavelength down by using a series condenser; the British call it a "shortening condenser." This too can be done only within certain limits—it is not practical to reduce the wavelength below 7/10 of the fundamental. The reason for this can be seen from Figs. 1 and 3. In Fig. 1 we have an antenna oscillating at the fundamental; the wavelength is 4 times the length of the wire. If now we put in a series condenser and make it smaller and smaller we will finally cut the antenna loose from the earth entirely and it will operate as in Fig. 3 at half the wavelength that we had before. This is very...
nice except that one would now have to put the coupling coil at A and it is not convenient to build a station half way up the pole. Whether a series condenser should be used or the size of the antenna decreased to fit a particular wavelength can only be determined by experiment or by careful consideration of the factors of radiation resistance, form factor, and losses.

Counterpoises

The purpose of the counterpoise is to reduce the ground losses by substitution of a more efficient system than the ordinary conducting ground. The counterpoise may be looked at as a screen that is to catch all the flux from the antenna and prevent it from touching the earth. In that case the counterpoise should extend out at least one-fourth wavelength in all directions. However, in practice a much smaller counterpoise proves just as satisfactory, which leads to the idea that it may act mainly as a device to spread the flux returning to the base of the antenna from the ground. This is shown in Fig. 4, which represents a T antenna with a counterpoise. The dotted lines show roughly the distribution of the flux. Part of the flux goes from the antenna directly to the counterpoise thru the capacity between these two things (see C, in Fig. 5), part goes from the antenna to the earth thru the capacity of the antenna to the earth (C, in Fig. 5), and all of the flux returns to the base of the antenna by way of the counterpoise-earth capacity (C2 in Fig. 5). The counterpoise is of varying utility, depending on the ground in the neighborhood of the antenna. When the ground is very good its resistance will probably not be improved by using a counterpoise. The test for improvement is to see which combination gives the best signals at a distant receiving station on the same night. Tests made at 200 meters on different nights mean nothing at all.

Loops for Sending

Quoting from a paper by Dr. J. H. Dellinger of the Radio Section, Bureau of Standards, "In general the effectiveness of a coil aerial (loop) approaches that of an antenna only when the size of the former approaches that of an antenna." However, the loop has advantages in convenience and because it can be used to direct the transmitted energy or to reduce interference when used for receiving.

Converting an Antenna Into a Loop

An ordinary antenna can be converted into a loop in the fashion shown in Fig. 1A. It will usually operate at a higher wave than it did as an antenna. The condenser must be very good as it must stand a high voltage and not show too high losses. This stunt should not be confused with the one of working the antenna multiple-tuned with two downleads as shown for the antenna at 1YK in the article on Multiple-Tuned Antennas. That stunt causes the antenna to operate at a lower wave. Usually the range of such a large single-turn loop is not as great as that of the antenna from which it is made but in some locations it may be better. From various experimenters we learn that for best range the condenser and the coupling coil should be opposite each other as Figs. 1A and 1B, not next to each other as in Fig. 1C. For best transmission the end with the coupling coil should be pointed in the direction of the receiving station.

Indoor Sending Loops

A sending loop with more than a very few turns is not efficient, hence indoor loops are generally good for very short waves only. A good deal of information on indoor sending loops is given by the article "Loop Transmission," by Leon W. Bishop, page 7 of QST for January, 1923. The loop described in that paper has done consistent 70-mile work when used at 1XP with a small tube sending set.
Circuits

Some circuits that have done good work on small sending loops are shown in Fig. 2.

Resistance

In loop work—especially sending—it is very important to keep the resistance very low. Use plenty of copper in the winding, space the turns far apart (using not over 3 of them), and use a mica condenser or else a hard rubber-insulated variable condenser. In one case the current in a loop was increased from .6 amperes to 2.5 amperes by removing a winding made of No. 14 B.&S. copper wire and rewinding with copper strip two inches wide. The insulation of the winding is important—use as few insulators as possible—and the loop-frame should be made with as little material as possible. Especially must the frame be kept away from the winding to prevent dielectric losses. For the same reason the loop should be kept clear of the walls, floor and ceiling. In the case of the loop mentioned above the current dropped one half when the loop was brought within a foot of a brick house wall.

The Lowell-Willoughby Loop

Altho the Lowell-Willoughby loop was originally designed for submarines it is useful to amateurs living in apartment houses that do NOT have metal roofs.

In Fig. 3A the loop is seen as applied to a submarine. The hull acts as the lower part of the single turn and the largest currents are thru it. The small currents and high voltages are in the upper part of the loop where they can be insulated. In Figure 3B is shown the way the Willoughby-Lowell loop can be used in an apartment house. Such a loop was operated at the home of Mr. J. A. Willoughby at Washington, D. C. The range obtained with this loop was considerably better than with the T antenna arrangement shown in Fig. 3C.

References (Loop Transmission)

NEXT MONTH we will resume our usual variety of articles and items—we have some good ones waiting.
From Antenna to Ground

Outdoor Lead-in Insulation

Be sure that none of the precious watts in the antenna circuit go to ground through a leaky lead-in support or lighting switch before they reach the antenna. At old 9LQ and 9DM in the same town the strength of received signals and also the transmitting antenna current was almost doubled by swinging the lead-in clear of all insulating supports, and by cooking the marble base of the lighting switch in paraffin. At still another station the antenna current practically disappeared every time a rain began. The trouble was finally cured by building a little dog all around wire is a good heavy soft galvanized telephone wire.

Joints. Don't make short hard twists in joining guys to each other or to the insulators and the pole—not unless you want to put up another pole right away. Make a long “Western Union splice”—ten inches at least. Any wire man will show you how—it gives him a chance to show off.

Insulators. Porcelain knobs and eggs are O.K. for breaking up the guy wires; the bigger they are the worse they are because that means they have a bigger capacity. Use the smallest that will stand the strain.

Guy Wires

This squib has 34 authors; there is no theory in it; it is an experience meeting purely.

Material. Hard steel galvanized wire is beautifully strong but the stuff is brittle and unreliable. Bronze is O.K. but expensive and mean to handle. The best house over the lightning switch so as to keep rain off of the bakelite switch base. Lightning switches and safety gaps can now be bought mounted on porcelain insulators. These are very good if the insulators are long and thin, but ordinary bus-bar support insulators are not very good for this purpose.

The right way to do it is to break up the guys into sections that are all the same length. Then if they do resonate they will put ONE hump on your wave instead of 47 of them. Make the sections short—the shorter the better. There is going to be 50 meter transmission pretty soon and you will spoil your chances with great long lengths of guy wire that have only one insulator at each end.

Guy Anchors. Down at the guy anchors, run all the wires together and put a string of at least 3 porcelain eggs between the guys and the anchor. Use one string and not one for each guy. The idea is to decrease the capacity to ground thru the
insulators—they are punk condensers. This sounds funny but in one antenna it decreased the resistance about 2 ohms.

How Many Guy Wires. For once everybody agrees—the fewer the better. No wait—here's a minority report from 8ML that says use 4 sets PLUS a top back-guy.

Where Shall We Put the Guy Wires? Again everybody agrees—keep them away from the antenna and the space under it. Here are some methods suggested—keep the top guys ten feet down from the top of the mast and use a single back guy to take the pull of the antenna; put a cross-arm at the top of the mast and hang the antenna clear of the guys; make the mast high enough and keep it far enough from the station so that you can let the antenna sag clear of the mast and guys.

Concerning Antenna and Ground Leads

John C. Strobel's article in May, 1921, QST proved pretty conclusively that a bunched downlead from the antenna is debunque. He proved that while a spread-out antenna lead does not improve the resistance it does reduce the inductance and let one use a bigger antenna top so that the antenna has more effective height. Putting it another way—one can get the effect of a higher antenna by using a longer top and then spreading out the lead-in into a cage. 6 inches is a nice size; a larger one has too much capacity to ground. It can be 3 feet across where it hits the top, tho.

Kewpie sez that he can't see any sense in using caged antenna leads and then sticking to a solid ground lead. Neither can we; if the ground or C.P. lead is more than a yard long, cage it too.

One of the Arizona gang forgot the trifling detail of signing a letter that calls attention to a waste of steam that a lot of fellows are getting up because it worries them to cage the lead, spread out the top and then bunch the wires for 6 inches where the top and the lead join. Arizona sez that this is harmless because caging the wires does not do much for the resistance anyway. Correct; you took the words out of our mouth.

Small receiving antennas win by a landslide. They are easier to put up, collect less static and tune better. You won't hear Mr. Ether-Buster as loud but you will get a decent chance to hear the 5-watter on the opposite coast. Approved sizes (from the experiences of our gang) appear to be—height 30 feet and length 60 feet. For B.C. work the length may be run up to 100 feet, but keep the height down.

Receiving grounds are worth worrying about. There is no rule except that the ground must be near the set. Try all the grounds in sight; one will prove to be a LOT better. Sometimes a two-wire receiving c.p. has helped. A water-pipe ground is often N.G.—who started this water-pipe ground business anyway?

Receiving insulators should be replaced every year. They don't work so well after the soil gets an inch thick.

Wire for receiving antennas is worth worrying about. A lot of the gang have found stranded wire to be strictly N. G. after the soft-coal furnaces have been working on it for one week. The best yet is No. 12 enamelled solid copper. It is good and it stays good.

Series condensers are N.G. if they warm up. Most of the variables are strictly terrible for use in sending antennas. Use a condenser made of mica, a hard-rubber insulated V.C., or one with good glass in it. The glass is a makeshift but does not cost as many $$ $$ $$ as the mica does. For the love of Mike lay off anything that is insulated with "moulded mud" or that has little bakelite bushings.

Indoor sending antennas have been getting polished up again since this 100 meter thing started. Kewpie has been doing some pretty good work with a Tesla Coll operated on a 50-watt tube at about 160 meters. It works best when worked just below the brushing point. By hanging the secondary up horizontally a directive effect can be gotten. This is the same as General Squier's "resonance wave coil."

3EM has been doing 15 miles with a "condenser" antenna inside of a victrola booth in a music store; just two 6-foot squares of copper screen, one under the rug and one hung from the ceiling by four insulators. Current .5 amps.

Speaking of 100 meters we have heard a lot of fellows beautifully on 100 meters and less when the main wave was around 200. But it is not a good idea to try working a 400 meter antenna on a harmonic—the darn thing might get absentminded and start working at 400 and that would be all wrong.

Speaking of 400 meters have you noticed that every A.C. tube set in the universe seems to have a beautiful hump at double the wave! C'mon, gang, lay off the A.C. plate stuff—even if you don't believe that a 400 meter hump does any harm it is still nice not to raise "so much hell" on 200.

Indoor antennas again. Hey! One of the Canadian members just rises to remark that at 100 meters it is worth while to think of the Hertzian oscillator again and can the troublesome ground connection. *Por que no?* ...How would it be to stretch out a straight wire with a coupling coil right in the center and try some 50-meter work? It has been done by several labs. Here recently and offers relief from the
problem of "How do I get down with a ground lead 9 stories long?"

Antenna on houses need not be so rotten. Forget to remember to use a ground and use a c.p. that is way up in the air. To get the idea take a look at the descriptions of 18KQ, 2AHO, 6ZA, in the list on page 21 of March QST. And also remember old 2PM that used to be read at Denver on a crystal—he was on a 9 story apartment house. Moral—don't try to use a 9-story ground lead; use a nice large c.p. hung out in the middle of the street.

Concerning punk dielectrics under the antenna. 3ZA sez that one can find bum dielectrics that are absorbing energy by looking for them with a wavemeter that has a detector and phones connected. If the old apple tree emits a buzz when tested this way it must come out—no matter what the family sez. This is a spark test—someone use it with C.W. and a chopper?

Rusty old wires. Will someone PLEASE settle this fuss about dirty antennas? First someone up in New England replaces the old wire with nice shiny wire and gets an whole flock of new amperes and then 6ZZ comes along and sez that he has tried it a lot of times and the "old crusty wire is just as good as the new."

Perfect insulators. Someone blew in here the other day and sez he had discovered the perfect insulator at last—it was made out of sulphur and had no losses at all in any sort of weather. Only one trouble; if there happens to be the least brush discharge the darn things take fire—and then they smell like hell!

Concerning the size of the Antenna Top. A list of stations too long to mention have been getting improved results by "banning" the little cage antenna top and putting in its place a pair of cages, a single big cage (ten feet or so across), or else a good wide flat-top. These stations seem without exception to be in places where the space under the antenna swarms with trees, houses, etc. This seems plausible; when we have a punk ground we do not try to connect to it at a single point but cover a large area with a big c.p. Why not act the same way when an antenna has to connect with a chunk of second-grade air that swarms with bum dielectrics? Next!

Trees and houses near the antenna. If you are not sure that trees and houses near an antenna are "bad medicine" send 5¢ to the Upt. of Documents, Govt. Printing Office, Washington, D.C., and ask him to send you Scientific Paper of the Bureau of Stds. No. 259. It is called "Effect of Imperfect Dielectrics in the Field of Antennas." There is no theory at all in this paper but a lot of cold fact. It will help your station to reach out.

Receiving on a buried wire. 3HS at Washington, D. C. has been doing some very fine work in receiving on a length of wire buried in the back yard. The set is down within two feet of the ground, the ground leads are less than 3 feet long, and there is no antenna in sight. It never stops because of static.

Does a ground connection go stale? One of the Texas gang claims that every so often he has to put in a new ground connection 'coz the old one has got tired and quit. After a rest it is O.K. agn.

The ammeter is a liar. 9MC reminds us that you can't tell whether a ground has been made better by watching the ammeter. His big buried wire fan does not give much more antenna current than does a flock of pipes driven in the ground but the range is many times better.

Tin roofs. The gang does not seem to have the same experience with tin roofs. Sometimes grounding them raises the antenna current, sometimes it lowers the meter reading. The only way to see if things have gotten better is to try it on the other fellow a ways off. And try it on the same night—not on two different nights.

Antenna Upkeep. There is all kinds of evidence in the antenna-symposium letters that shows that antennas go dead after a while. The insulators accumulates a layer of dirt and soot and soak up water. The wire itself becomes coated with oxide and sulphite, in other words corrodes, and its resistance increases. The result is the well-known decrease in antenna current.

Now the funny part is that when the owner takes down an old antenna and replaces it with a new one of a different type, nine times out of ten he will give the credit for the better performance to the new type of antenna rather than to the new wire and insulators.

Moral: Don't be too sure that your antenna works well because it is different than your last one. Maybe it works well just because it is new.

Receiving loops. For short wave receiving a loop is supposed to be poor. It is not too poor, tho, as about half of the DX stations in Washington, D. C., are receiving 6th and 7th district stations nightly on loops with detector and one stage audio—no r.f.a. at all. For detailed dope see "The loop receiver at 3ZY" in April, 1922, QST. See also 3LB's station description in April, 1922, QST. Bu. Standards publication No. C.R. 124 U. "Wavelength Ranges for 4-Ft. Square Coils with Various Turns and Tuning Capacities," (Radio No. 780) will also help.

The main reason why results are never obtained when a series condenser is used
is because it is difficult to secure a good condenser that will stand C.W. without absorbing all of the power that we try to put thru it.

Lead-Ins. There is more to a good lead-in than simply providing enough insulation so that it does not flash-over. The insulator should be absolutely waterproof, should have low losses; in other words should be made of the very best material and have not very much of that. This does not mean that the lead-in insulator is to be small, it means that there must be a small amount of material well located. There is not, as far as we know, a satisfactory amateur lead-in bushing on the market now. About the best thing we can do now is to bring the leads thru the center of a window-pane. The figure below shows other suggested arrangements.

If the lead-in insulator can be put thru a thin piece of material rather than thru a wall, the losses will be very much less.

Mr. D. W. Richardson, formerly of 3XM, tells of a case where a lead-in passing thru a very good insulator in a brick wall added 4 ohms to the antenna system. Mr. M. B. West in one case found that the removal of a very large composition lead-in insulator decreased the antenna capacity by 10%. At WWV a 20% increase in antenna current was obtained by taking out a very good electrose bushing and running the lead thru the center of a window-pane.

Notes on the Resistance of Receiving Antennas

By John C. Warner *

Much has been written on the reduction of the resistance of sending antennas, but the receiving antenna has been given much less attention. The reason is that any improvement in the sending antenna gives a definite increase in the antenna current while the advantage of low resistance receiving antenna is somewhat obscure.

The majority of antennas that are used only for receiving consist of a single wire with a mediocre ground connection. It is not hard to see why such antennas are used; most tuners today are regenerative, either tuned plate or feedback. The popular idea of such a circuit is that regeneration introduces energy into the grid circuit which produces the effect of a negative resistance; further that the total effective resistance on the grid circuit can in this way be reduced indefinitely until the tube goes into oscillation. Experimental proof on this point is incomplete and not at all conclusive. Ballantine maintains that even with maximum regeneration the signal strength is proportional to the current in the antenna, which is of course inversely proportional to the antenna resistance. On the other hand many well known engineers support the statement that (at least within wide limits) an increase in regeneration will completely compensate for an increase in the antenna resistance.

However, even if we can compensate for the antenna resistance by regenerating into it, it is highly objectional to allow a receiving set to radiate energy from the antenna, either continuously—as when receiving C.W.—or intermittently during the process of tuning into modulating C.W. For this reason present development is coming to be along the line of circuits which do not regenerate into the antenna, either by reason of not regenerating at all or else by regenerating into an intermediate tuned circuit which is in no way coupled to the antenna. Thus, regardless of whether a low resistance is of vital importance when used with the usual broadcast receiver, there are sufficient reasons for seriously considering the reduction of antenna resistance for other types of sets today and for nearly all sets in the future. Attempting to increase the signal strength in spite of the antenna resistance by making the antenna higher is not satisfactory. The mechanical structure required for a high antenna is difficult, the ratio of signal strength to static is not as good as on a low antenna, and finally a high antenna is less selective than a low one. The only means of increasing the antenna current is to decrease the antenna resistance.

The resistance of a receiving antenna may be considered as having three com-
ponents: radiation resistance, resistance of conductors, and resistance due to losses in the dielectric of the antenna (including the earth underneath it). The dielectric loss component is by far the largest of the three and at the same time is the only one which can be reduced to any great extent.

A series of experiments was made at the U. S. Bureau of Standards from which conclusions may be drawn as to the proper method of reducing antenna resistance. These experiments were made on what is known as a two-plate condenser and tuner. The plates consisted of two pieces of copper screening 45 to 180 centimeters in width and from 180 to 400 centimeters in length, mounted one over the other and not grounded. The upper plate corresponded to the usual overhead antenna and the lower plate to the usual ground or counterpoise. Resistance measurements showed that when sufficient precautions were taken to keep all solid dielectric out of the field of the antenna, the resistance fell to a very low value, in some cases to less than 1/2 of one ohm at 200 meters. The introduction of solid objects such as boards between the two plates increased the resistance to as much as double the original value. It was found necessary to make the lower plate considerably larger than the upper in order to screen the upper plate from the ground and to prevent the losses which would otherwise result from ground current. Measurements of received signal strength were made, comparing the signal of the condenser antenna with that gotten from two small loops, one having two turns 90 centimeters by 125 centimeters and the other seven turns 80 centimeters square. Tests were made only on a non-regenerative detector with I.C.W. signals. Below 300 meters the two-plate antennas gave far greater signal strength than the loop, in some cases as much as 10 to 1. Above 300 meters the difference was less and at 1000 meters the two-plate antenna was quite ineffective.

Two conclusions may be drawn from these tests: first, the two-plate condenser antenna is worthy of serious study and more experimental investigations in short wave receiving (and why not transmitting? — Ed). Second the method of reducing the resistance of the two-plate antennas might well be applied to elevated antennas with equal success. Practically this means to make the antenna of the ordinary cage type, not too far off the ground, and then to use a counterpoise extending far out in all directions from the antenna. The counterpoise must be very well insulated with as few insulators as possible and must have enough wire to keep stray fields from the antenna direct to the ground. The entire arrangement should be placed as far as possible from trees and buildings. The best dimensions can be determined only by trial and the general procedure outlined should make possible much lower antenna resistances than ever found in the haphazard constructions so widely used at present.

STATEMENT OF THE OWNERSHIP, MANAGE­MENT, CIRCULATION, ETC., REQUIRED BY THE ACT OF CONGRESS OF AUGUST 24, 1912.

Of QST, published monthly at Hartford, Conn., for April 1, 1933.

County of Hartford
State of Connecticut

Before me a Notary Public in and for the State and county aforesaid personally appeared K. B. Warner, who, having been duly sworn according to law, deposes and says that he is the business manager of QST and that the following is, to the best of his knowledge and belief, a true statement of the ownership, management (and if a daily paper, the circulation, etc., of the aforesaid publication for the date shown in the above caption, required by the Act of August 24, 1912, embodied in section 443, Postal Laws and Regulations, printed on the reverse of this form, to wit:

1. That the names and addresses of the publisher, editor, managing editor, and business managers are: Publisher, The American Radio Relay League, Inc., Hartford, Conn.; Editor, Kenneth B. Warner, Hartford, Conn.; Assistant Editor, Business Manager, Kenneth B. Warner, Hartford, Conn.

2. That the owners are: (Give names and addresses of the individual owners, or, if a corporation, give its name and the names and addresses of stockholders owning or holding 1 per cent, or more of the total amount of stock). The American Radio Relay League, Inc., an association without capital stock, incorporated under the laws of the State of Connecticut. President, Hiram Percy Maxim, Hartford, Conn.; vice-president, Chas. H. Stewart, St. David's Pk.; treasurer, A. A. Helfert, Nutley, N. J.; traffic manager, F. E. Schnell, Hartford, Conn.; secretary, K. B. Warner, Hartford, Conn.

3. That the known bondholders, mortgagees, and other security holders owning or holding 1 per cent, or more of total amount of bonds, mortgages, or other securities are: (If they are none, so state.) None.

4. That the two paragraphs next above, in so far as the names of the owners, stockholders, and security holders, if any, contain not only the list of stockholders and security holders as they appear on the books of the company, but also, in cases where the stockholder or security holder appeared upon the books of the company as trustee or in any other fiduciary relation, the name of the person or corporation for whom such trustee acted, are correct and complete; also that the said two paragraphs contain statements embracing all facts and belief as to the circumstances and conditions under which the stockholders and security holders who do not appear upon the books of the company as trustees, hold stock and securities in a capacity other than that of a bona fide owner; and this affidavit has no reason to believe that any other person, association, or corporation has or holds any direct or indirect interest in the said stock, bonds, or other securities than as so stated by him.

5. That the average number of copies of each issue this publication sold or distributed, through the mails or otherwise, to paid subscribers during the six months preceding the date shown above is: 35,000....(This information is required from daily publications only.)

Sworn to and subscribed before me this 26th day of March, 1933.

K. B. Warner.

F. L. Pratt, Notary Public
(My commission expires February 1, 1924.)
What Antenna Wire?

By C. P. Sweeny, 5KM

Stranded Wire

Stranded wire of any kind has higher resistance than solid wire when worked at radio frequencies. The wire rapidly gets very much worse when it corrodes. Solid wires are cheaper, easier to handle, stronger, and have lower resistance. (Note—This applies to stranded bronze, copper, and aluminum, whether as a 7-strand cable or in the shape of some of the fancy braids now sold.—Ed.)

Litzendraht

The only stranded wire that has lower resistance than solid wire is the so-called “litzendraht” made of many strands of fine enameled or silk-covered wire braided together. Experience shows that at 200 meters these strands must be so fine (at the most No. 38 B.&S.) that it is almost impossible to make up a length without broken or “crossed” strands which will run the resistance away above what is expected. It does not matter, tho—“litz” is impractical stuff to put out of doors anyway.

Bronze

Bronze is stronger than plain copper and not so much subject to the effects of corrosion as copper. However, I want to call the attention of the reader to the fact that an alloy always has a resistance higher than that of the poorest conductor used in the alloy. The conductivity of the alloy antenna wires is low as compared to copper, ¼ to ½ as much. In addition the bronzes are very hard to handle and solder.

Copper, Copper-Clad Steel, and Aluminum

This brings us down to the solid wires (not stranded) with a choice of copper, either hard or soft drawn, copper-clad steel, and aluminum. Any one of them is preferable to the other wires above.

Copper-clad wire has about the same resistance as solid copper. (This statement does not include the cheap electro-plated “coppered wire.”—Ed.)

Aluminum can be compared with copper as follows. For the same direct current resistance aluminum has a cross section of about 1.59 times as great as copper. Because it is well known that high frequency currents travel on and near the surface of the wire and because the aluminum wire has a larger surface it would appear that it should offer a lower high-frequency resistance than the smaller copper wire. However, the larger skin of the aluminum wire is an aluminum skin and has about 1.59 times as much resistance for the same area so that in reality the h.f. resistance, like the D.C. resistance, will be nearly the same for a copper and an aluminum wire that has 1.59 times as large a cross section. In other words—for either antenna or direct current work an aluminum wire is equal to a smaller copper one 4 sizes up in the B.&S. gage.

Weight and Strength

Aluminum has (for the same conductivity) about 1.3 times the strength and a little less than ½ the weight of copper wire. Consequently the strain on the towers is less, altho part of this is made up for by the greater effect of the wind on the larger aluminum wire.

Copper-clad wire is quite a lot stronger than either aluminum or hard-drawn copper, and hard-drawn copper is somewhat better than soft-drawn copper.

Bronze is the strongest of all, but the reasons for throwing it out have already been mentioned.

Pliability

Soft drawn copper is the most pliable of all and stays so, but it is not very strong. Hard drawn copper, hard-drawn aluminum, and copper-clad steel are all only moderately pliable and must not be kinked. Hard drawn copper becomes brittle with age; aluminum does not do this because after the first coating of oxide, it does not corrode further. (This seems a bit doubtful. Copper and aluminum both become quite brittle when not subject to corrosion, perhaps for the same reason that “vibration fatigue” causes machine and bridge parts to crystalize and break.—Ed.)

Corrosion

Copper, copper-clad, and bronze wires soon acquire a green or black coating that serves as a protection against further corrosion and does not increase the h.f. resistance very much. Aluminum is not attacked after the first thin film is formed; hence maintains its conductivity.

All rules fail where there are chemical or soft-coal fumes; corrosion will then go deeper, probably less in the aluminum than with other materials.

enameled copper does not corrode until the enamel comes off. (Several stations in soft-coal regions are getting good results with No. 12 enameled copper wire. Both the Belden Mfg. Co. and the Acme Wire Co. make enameled antenna wires.)

Sleet

The oxide coating on an aluminum wire is slightly greasy and sleet will not adhere to it as easily as to copper. I do not say that sleet will not stick to aluminum, but only that it will not stick as readily.
Joints

Joints in copper and copper-clad steel offer no difficulty if ordinary care is taken not to nick or kink the wire. Between aluminum wires I have found the McIntyre sleeve to make a good joint. Trouble was found in making a connection to the lightning switch. I get a very good connection at this point by using a large McIntyre sleeve and joining with it the extension antenna wires to a short piece of heavy copper wire which was then connected to the switch. (This is unusual; power companies have found that they cannot use copper McIntyres on aluminum lines because of corrosion and must use aluminum sleeves. It would be better to make the antenna so that there would not be any joints at all in it. This is perfectly easy to do.—Tech. Ed.)

Price

Copper-clad is the cheapest, bronze the dearest and between them lie copper and aluminum. Some may think the price of aluminum is more than that of copper. Aluminum does cost more per pound than copper but you get more than twice as many feet of aluminum per pound. Therefore the aluminum will be cheaper. However, for the small amateur antenna the price of either will not be a factor.

(Thanks are due various correspondents, especially the Copper Clad Steel Co., the Bureau of Standards, and Messrs. Frank Conrad and W. F. Grimes for the information on copper-clad and litz wires, which information has been used partly within the article and also in the shape of editorial notes.—Tech. Ed.)

Your Station According to Underwriters

A t one time private radio stations labored under an oppressive National Electrical Code that required protection out of all proportion to the dangers of such stations. This code in recent times became intolerable and after a series of conferences in which R. H. G. Mathews represented the A.R.R.L. there were drawn up "Tentative Regulations of the National Board of Fire Underwriters." These were issued in pamphlet form in May, 1922, and while they are not officially in force are nevertheless universally recognized by all insurance companies to the complete exclusion of the old requirements. This new code is an entirely reasonable one and adjusts the protection to the station.

The regulations have back of them the authority of the National Board of Fire Underwriters and it is foolishness to install a station that does not comply with them in every respect; not only does this invite fire but it is very likely to cancel your fire insurance if a fire does occur. The comparatively slight expenditure required to meet the Underwriter's requirements is therefore money very well spent.

A copy of the "Tentative Regulations of the National Board of Fire Underwriters for Radio Signaling Apparatus" may be secured free of charge by writing to the Underwriter's Laboratories, National Board of Fire Underwriters, 109 Leonard Street, New York City. The rules should be followed to the letter, not only as regards the antenna and ground lead but also as regards the station wiring, which must be in complete accord with the National Electrical Code.

Approved Apparatus

Unapproved apparatus absolutely should not be used; it will have the same effect in cancelling insurance as will ignoring the rules completely.

Excepting only that no lead-in bushing has been approved, the Underwriters now list as approved almost anything that is required to make a radio station safe. This is not an entirely satisfactory state of affairs as it is extremely hard to get a lead-in tube that satisfies the requirements unless one lives in a large city. It is hoped that approved tubes will make their appearance soon. In the meantime we can follow a letter by Mr. Dana Pierce of the Underwriters' Laboratories in which he says, "It has not appeared to us at all necessary to approve special lead-in tubes for such service, as any substantial porcelain tube or tube of good non-combustible insulating material is acceptable." The dimensions of the tube must, of course, be in accordance with requirements.

A list of radio appliances approved by the Underwriters' Laboratories up to February 7th is as follows:—

Brach Vacuum Radio Protector.

Type 210. L. S. Brach Mfg. Co., Vacuum Type 223.

Branston, Inc., Chas. A., Buffalo, N. Y. Branston vacuum tube lightning arrestors R-61.

S.P.D.T. radio antenna grounding switches, Cat. No. 887, 888, 889, 890.

Dubuque Condenser & Radio Corporation, New York, N. Y.

"Ducon" radio appliance.
Laboratory Oscillators

A Short-wave Oscillator
By Elliott White, 1YB

The handiest oscillator I have found for general testing, measurements, and calibration is shown in Figure 1. The circuit explains itself. L,M,N,C, is the tuned circuit. The main inductance L is made of 20 turns of No. 16 D.C.C. wire wound on a 3 1/2-inch tube. The winding is tapped at the tenth turn. With this coil the set will oscillate over a range of 50 to 375 meters. Other ranges may be secured by substituting other coils. The two exploring coils M and N are made of four turns of No. 18 annunciator wire with 16-inch leads which are solidly tapped together. C, is a variable condenser of .001 microfarad maximum capacity; C, is a fixed mica condenser of .0003 microfarad capacity. The values of C, and C, are not very critical; they may be paper telephone condensers of 0.5 microfarad capacity. K is the usual grid leak; it may have a value of 50,000 ohms. R is an iron-core choke coil whose exact value is not at all important, provided that its resistance is between 500 and 1,000 ohms. The use of the milliammeter, V, will be explained later.

To measure the wave length of an unknown circuit the entire rig is set up as shown, with N loosely coupled to the wave-meter WM, and M loosely coupled to the unknown circuit X which is to be measured. The switch S should be closed. First set the condenser C, of the oscillator very slowly and watch the needle of the milliammeter closely. When the oscillator comes into tune with the circuit, X, some power will be taken from the oscillator by X and the input to the tube will rise suddenly, that is to say there will be a quick jump of the needle of the meter. The setting where this jump happens should be found very carefully, and if there is any doubt the adjustment should be repeated.
with loose coupling between M and X. Now leave both X and C alone, and turn the wavemeter condenser until the needle jumps again. The wavemeter is now in tune with the oscillator and as the oscillator is in tune with X this of course means that WM and X are on the same wave. The reading is quite exact. It is perfectly obvious that X may be another wave meter, a receiving set, or an antenna circuit. In any case it is a quite simple rapid process to make a series of wave length readings for different adjustments of X.

If X is an oscillating receiver or another laboratory oscillator, measurements may be made a different way. The switch S is opened and the condenser C, is slowly turned while listening to the note in the headset P. When the oscillator comes into tune with the set being tested, the beat note will go down to zero. On either side of the correct adjustment the note in the phones will go up rapidly. Anyone that has ever listened to C.W. signals will understand this at once.

The device is very sharp in its indication and much easier to handle than the conventional buzzer-and-crystal wavemeter. The long leads on the exploring coils save a lot of trouble in getting proper coupling. There are many uses to which the set can be put, such as in the construction of receivers for various wave lengths, adjustment of r.f. transformers, adjustment of a super-heterodyne, getting fundamental wave lengths of coils and antennas, measuring inductance, capacitance, and resistance, and studying the various wave lengths to which the component parts of even a simple receiving set respond at one setting (a chance for a lot of interesting results here that have been overlooked) and finally the oscillator may be used as a separate heterodyne.

For rough work the oscillator itself may be calibrated in wave lengths by the method first described. This calibration should not be depended on too much, however, as it will change somewhat with variations in the filament current and the plate voltage and also may change materially if a different tube is put into the socket.

The use of the voltmeter as a milliammeter is a trick worth knowing. For wave meter work it is not especially necessary to know just what plate current is flowing as long as the changes can be noticed but for other work the use of the voltmeter as a milliammeter is a very helpful kink. The voltage scale may be translated into milliamperes by dividing the full-scale reading of the instrument by the (measured) resistance of the instrument and then multiplying by 1000. For instance, my instrument has a 0-10 scale and a resistance of 290 ohms. Then divided by 290 gives .05 amperes as the current required to give a full-scale reading and when this is multiplied by 1000 we get 50 milliamperes. In other words it takes 50 milliamperes to make the instrument show a reading of 10 volts, so that each volt on the scale represents a current of 5 milliamperes. Thus the instrument stands at 7 for the normal plate current of a five-watt tube and at less than 1 for the normal grid current of the same tube. It can accordingly be used also for the adjustment of a small C.W. transmitter.

A 100 to 3000 Meter Oscillator

By H. J. Walls, WWV

Excerpted from a Bureau of Standards bulletin entitled "A Low-power Electron Tube Generating Set for Laboratory Use, Frequency range 100 to 3000 Kilocycles per Second."

This low-power electron tube set utilizes a 5-watt power tube. The set is capable of supplying about 250 milliamperes of radio-frequency current to a low-resistance tuned circuit at any frequency within its range.

The circuit is shown in Figure 2. Inductor A is used when it is desired to obtain frequencies from 3,000 to 630 kilocycles (100 to 475 meters) and inductor B is used when frequencies from 1,000 to 100 kilocycles (300 to 3000 meters) are desired. The small coil A consists of 24 turns of No. 18 B. & S, gage D.C.C. wire wound on a tube 3/4 inches in diameter and about 2 1/2 inches long. The space occupied by the winding is about 1 1/4 inches.

Junior Electrical Engineer, Radio Section, Bureau of Standards.
Taps are brought out from the 6th, 12th, and 17th turns and are staggered somewhat so there will be no danger of the clip touching. The taps are made by twisting a two-inch loop of wire. After the winding is completed the insulation is removed from the wire which forms the loop and it is then firmly twisted together and soldered. The taps are made by twisting a two-inch loop of wire. After the winding is completed the insulation is removed from the wire which forms the loop and it is then firmly twisted together and soldered.

Wouldn't This Make an "Ampere-Hound" Sad?

This is the antenna transfer switch at the famous POZ, Nauen, Germany.

The interest centers in the antenna ammeters. The one to the right has a 0-300 scale which suffices for low power. That to the left goes from 300-1500. The operator is tuning up hence the reading at the moment a miserable 650 amps.

Nauen is getting a new set with which they hope to get a decent antenna current. International Newsreel photo.

would be desirable to place the completed coils in a warm oven for a few hours and then to give them a coat of good insulating varnish (not shellac) to exclude moisture. The coupling coil consists of 2 or 3 turns of wire (about No. 16 or 18 B. & S. D.C.C.) about 4 inches in diameter. It is arranged so that the wave meter may be readily coupled to it for measuring the frequency of the circuit. This coil may be dispensed with if desired.

Condenser C₁ is a variable air condenser which has a maximum capacity of .001 microfarad. Condenser C₂ is a paper condenser having a capacity of 1 microfarad. It is used to by-pass the radio frequency around the high voltage supply. The radio frequency choke coil consists of about 100 turns of No. 25 B. & S. gage D.C.C. wire wound in a single layer on a 4-inch tube. Its purpose is to prevent any radio frequency current from flowing into the high voltage supply. A variable resistance capable of carrying 50 milliamperes (grid leak resistances of the type sold for 250-watt tubes are suggested.—Ed.) is inserted in series with the high voltage supply. This resistance should have a value of about 10,000 ohms and be variable. It is used to vary the plate voltage supply and consequently the radio-frequency current in the oscillatory circuit.

The apparatus should be wired up with wire not smaller than No. 18 B. & S. gage, encased in varnished cambric tubing ("spaghetti"). Lamp-cord with a clip securely soldered to one end is very convenient in making the connections to the inductors.

It will be found that the maximum current will be obtained when the condenser C₁ is set at full scale. In view of this fact it is well so to adjust the inductor.
clips that the desired frequency (wave length) is obtained when the capacity of this condenser is near maximum. It will also be found difficult to obtain as great a current on the lower frequencies (longer wave-lengths).

If the generating set is to be used for precise work such as wave meter standardization by signals of known wave length it is desirable to surround it completely with fine mesh screening which is grounded. It would also be well to ground the circuit at some low potential point as for example the negative side of the filament. In order to get very close adjustment, a stick about 4 feet long may be fastened to the knob of the condenser C, and adjustments made by means of this stick.

The filament current for the tube may be A.C. supplied by a small transformer with a tap in the center of the secondary winding or by a storage battery. (Our experience has been that the voltage of commercial lines is far too unsteady for such work."

The plate current may be supplied by a small generator or by small block "B" batteries. This generating set has been operated on voltages as low as 80. A higher voltage is preferable, however.

The meter should have a range of 0.500 milliamperes (one half ampere). It is very desirable to have this meter in the circuit as it indicates when radio frequency energy is being generated.

Amateur Radio
Again Proves Its Worth

An amateur operator in Cleveland standing by his apparatus through which he had just received a call for assistance—

A small power boat, sheathed in ice and carrying coast guardsmen and a doctor heading out to sea in the teeth of a forty mile gale—

This was the scene enacted in Cleveland, Ohio on March 28th when amateur radio performed an invaluable assistance in help to secure medical attention for Harry Holzworth as he tossed in a fever of tonsilitis and near-pneumonia in his bed on a waterworks crib, five miles out in Lake Erie beyond Cleveland harbor.

A spark coil transmitter had been installed on the crib with the amateur call SAJO. It was operated by Mr. Keller, one of the attendants, and was frequently used to communicate with shore. 8AUV in Cleveland was listening in between six and seven one evening when he heard the call for assistance from the crib station. He answered and received a message to the effect that one of the three men, marooned out there five miles from land, was sick and needed medical attention. 8AUV delivered the message to the city waterworks commissioner, just as thousands of messages are delivered daily by members of the A.R.R.L. Preparations were commenced to make a trip to the crib and bring the sick man ashore. At one o'clock 8CUR and 8AUV received another message that the condition of the sick man was rapidly becoming worse and that a doctor was required immediately.

A few minutes after this message was delivered, the coast guard power boat left the harbor, and passing the breakwater, headed into the open sea. After what seemed to be hours, the lifeboat neared the crib; but on account of the heavy seas, it was impossible to effect a landing. There was only one recourse. The power boat circled the crib about a dozen times while the doctor shouted advice to the other two men on the crib. In this way the doctor learned the condition of the man who was ill and shouted back instructions for proper treatment. The men on the power boat saw that there was nothing else that they could do, so they headed again for the harbor. The gale was increasing and the little craft barely escaped destruction in returning.

Immediately preparations were started to send a larger tugboat to the aid of the stricken man; but the storm increased to such an extent that it was useless to try to make a landing at the crib. All through the day the crib was in constant communication with land by means of amateur radio and words of encouragement were sent to the men on the crib and the sick man's family was always informed of conditions on the crib. At five thirty in the evening the storm abated somewhat and the tugboat was able to go out and make a landing at the crib, whereupon the sick man was rescued.

So it is that amateur radio has again proven its worth. At a time and in a place where there was no other means of communication, the ever watchful radio amateur on the job to handle the messages which probably meant the saving of a human life.

Long live amateur radio!

-H.F.M.
EDITORIALS
de AMERICAN RADIO RELAY LEAGUE

How Cum?

Lately some of the w.k. proprietors of rock-crushers, gravel-grinders and ether-busters (or whatever other titles big watt-eating spark sets may have) have been breaking into print in defense of spark transmission. We're mighty sorry to see this. We think the dead past ought to be permitted to bury its dead spark sets. It is perfectly true that it is legal to own and operate a spark transmitter, but it is also legal to use a decrement of 0.2 which everybody knows is more than we really can afford in these days of ether congestion.

We don't want to be misunderstood; QST is not in favor of prohibiting the spark by law—not yet. We do not believe in prohibition. There are many amateurs without the financial means to change over on sudden notice to tube sets, and to forbid sparks would be to exclude them from the rights and privileges of amateur radio. We do discourage spark transmission, but the A.R.R.L. has opposed the attempts occasionally made to outlaw the spark by those folks who would benefit commercially by such a change.

Yet the spark must go, and there is no use blinking at that fact. It simply cuts entirely too big a swath thru the ether. Its present-day boosters claim that that it is a most effective relay transmitter. By a strange anomalism this is true—in fact, it is too darned effective. Think back a little over a year ago, fellows, when everything was spark except a few hardy pioneers who were breaking into C.W. There were but these few C.W. stations to be found on a tuner and the C.W. crew had a great time of it—no QRM, long jumps, everybody happy. With the spark, however, things were well nigh intolerable. It got so that there were so many of us, using big sparks, that only the very few with extra punch could get messages thru the QRM. And so the big bunch of us switched to C.W., where the inherent sharpness of the wave has permitted us to continue to enjoy our radio altho our number grows daily. With our abandonment of spark, the few remaining spark-hounds are having as much sport as the original C.W. pathfinders. There're alone in their glory, 16,000 other amateurs have changed to C.W., and of course their sparks are effective. Where they hadn't a ghost of a show thru regular amateur activity, they are succeeding immensely today when most of the bunch have had consideration for the rest of the world and changed to tubes. But suppose the rest of us were back on spark—then where would the "effectiveness" go?

Dr. Goldsmith recently likened C.W. to a motorcycle, narrow and speedy, darting thru the traffic right to its destination, while he compared the spark with a big lumbering street-car, which not content with its already huge dimensions had equipped itself with vast wings extending out a block on each side, and then ploughed up the street bowling over people into the gutters, mowing down autos and buildings, and leaving death and destruction in its wake as the toll for occupying an unnecessarily broad channel. The doctor hit the nail on the head—the spark eats up too many cycles to be tolerated much longer.

Consider the C.W. set, quiet, less expensive for the same reliable range, capable of reaching untold distances, letting the neighbors exist in peace whether they be listeners or fellow amateurs, and making it possible for hundreds of stations to work where one spark formerly stood. Our spark friends cite the fact that C.W. stations are constantly heard calling CQ in an effort to establish communication. The answer is that C.W. is still young and our tuners are hardly yet properly arranged to take the fullest advantage of it, nor have we become acquainted with all the benefits of working on schedule, in which C.W. particularly shines. The difficulty of hooking up in C.W. work is a tribute to the sharpness of the method—the sharper the wave the harder it will be. But do we for that reason want to go back to spark? A thousand noes! Of course a spark signal gets thru—it forces its way willy-nilly onto thousands of tuners where it is an unwelcome guest, just to be sure of attracting the attention of the single operator it wants.

After all that is what is going to kill the spark—it's selfish. And so, we think, is the operator who sticks to that method of transmission.
UNDER the title “Anti-Amateur Ordinances” we had some things to say last month calculated to help in those unfortunate communities where ill-advised movements are undertaken to label amateur radio stations as “nuisances” and prohibit their operation in favor of broadcast reception.

Recently several additional bits of helpful information have come to light—things which we here put forth for the help of any amateurs in such cities. At the Radio Telephony Conference in Washington in late March Secretary Hoover said: “The Government owns the ether.” This is very significant. If our federal government owns the ether, no one else has the authority to make regulations for its use; no municipality has the power to limit or expand any privilege granted under a federal license except in the matter of police regulations to control things strictly of local concern. Under the constitution of our country matters of interstate aspect are subject to the federal government alone, and that the Department of Commerce so believes is attested by the following extract from a letter written by the Bureau of Navigation recently to an A.R.R.L. member in a Kansas town:

“The federal laws give to the Secretary of Commerce control over radio transmitting stations carrying on interstate communication or which would cause interference with interstate communication, and the city authorities cannot make regulations governing matters over which the U. S. Government has control.”

Now do you remember the “anti-amateur” ordinance actually enacted at Atchison, Kansas—the ordinance which was said to prohibit amateur transmission within the city limits, and which was used in certain quarters as an argument for such attempts in other cities? Here is what Mr. Orlin A. Weede, City Attorney of Atchison, writes us under date of March 30th:

“The Atchison radio ordinance does not prohibit the operation of licensed amateur telegraph transmitting stations. In the first place, a city ordinance cannot supersede a federal statute; and, secondly, the ordinance itself as enacted by the Atchison City Commissioners does not apply to some.”

So that’s that. Our members are requested to give wide dissemination to these significant aspects of the amateur-novice problem, and to act promptly and vigorously along the lines suggested in our previous editorial, if ever such a movement is started in the community in which they reside.

Ouch!

We amateurs have had many things blamed upon us but nothing quite so funny as came the way of Canadian General Manager Duncan during the ill-starred Trans-Canadian Relay of late March. We’ve been accused of causing all the funny noises that broadcast listeners hear in their phones, from static to leaky arc-light circuits, from howling amplifiers to noisy B batteries. But we are used to that—those are tangible things, definite, capable of examination and correction. When something happens like befell Mr. Duncan we don’t know quite what to do.

The thing that squashed the first attempt of the Canadians to relay from coast to coast was a peculiar atmospheric condition that put a blanket on reception and made it impossible to get any signals from greater distance than in daytime—aurora phenomena, in other words. As a result, of course, there was no DX broadcast reception. In Toronto some of the B.C.L.’s heard that the amateurs were trying to run a test, and when they found the air so dead they promptly rang up Director Duncan and threatened to have all sorts of dire things done to him if he didn’t instruct the Canadian amateurs to turn on the phone sigs and stop hogging the air for their own uses.

Hellup! But you’ve got the wrong number, operator—give old Dame Nature a buzz.
8ZD holds the greatest honor the Operating Department can bestow upon any amateur station. This honor was rightfully gained because 8ZD has established a record of handling 2855 messages in one month—something no one ever dreamed of even in this modern day. Six operators pounded the key in turn with the result that 8ZD was on the air practically every hour of the day and night.

Much credit is due F.B. Westervelt, "WX", and we hope this may be some remuneration for the twenty pounds of flesh he lost in being the most consistent operator.

Official A.R.R.L. Amateur Broadcasting Stations

Feeling the need for a definite means of distributing up-to-the-minute news regarding tests, etc., the Operating Department is selecting about 125 of our best amateur transmitters who will broadcast these news items. All Official A.R.R.L. Broadcasting stations will broadcast every Saturday and Sunday at 12:01 A.M. local standard time. These stations will cover the entire country—so if you want to keep posted on what is going on in amateur circles listen in at the appointed time.

Message Traffic Report By Divisions.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic</td>
<td>234</td>
<td>35156</td>
<td>26</td>
<td>5185</td>
<td>260</td>
<td>33841</td>
</tr>
<tr>
<td>Central</td>
<td>236</td>
<td>37143</td>
<td>47</td>
<td>5165</td>
<td>283</td>
<td>42283</td>
</tr>
<tr>
<td>Dakota</td>
<td>79</td>
<td>7804</td>
<td>12</td>
<td>427</td>
<td>35</td>
<td>4801</td>
</tr>
<tr>
<td>East Gulf</td>
<td>40</td>
<td>3505</td>
<td>7</td>
<td>1001</td>
<td>47</td>
<td>4504</td>
</tr>
<tr>
<td>Midwest</td>
<td>96</td>
<td>15831</td>
<td>19</td>
<td>4966</td>
<td>115</td>
<td>20797</td>
</tr>
<tr>
<td>New England</td>
<td>109</td>
<td>17917</td>
<td>9</td>
<td>424</td>
<td>118</td>
<td>18341</td>
</tr>
<tr>
<td>Northwestern</td>
<td>50</td>
<td>3426</td>
<td>6</td>
<td>145</td>
<td>56</td>
<td>3572</td>
</tr>
<tr>
<td>Ontario</td>
<td>37</td>
<td>2114</td>
<td>—</td>
<td>—</td>
<td>37</td>
<td>2141</td>
</tr>
<tr>
<td>Pacific</td>
<td>56</td>
<td>4506</td>
<td>11</td>
<td>628</td>
<td>67</td>
<td>5134</td>
</tr>
<tr>
<td>Roanoke</td>
<td>48</td>
<td>4991</td>
<td>4</td>
<td>421</td>
<td>52</td>
<td>5412</td>
</tr>
<tr>
<td>Rocky Mountain</td>
<td>28</td>
<td>3792</td>
<td>4</td>
<td>158</td>
<td>32</td>
<td>3950</td>
</tr>
<tr>
<td>Vancouver</td>
<td>9</td>
<td>454</td>
<td>—</td>
<td>—</td>
<td>9</td>
<td>454</td>
</tr>
<tr>
<td>West Gulf</td>
<td>48</td>
<td>6454</td>
<td>5</td>
<td>252</td>
<td>53</td>
<td>6706</td>
</tr>
<tr>
<td>Winnipeg</td>
<td>7</td>
<td>341</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>349</td>
</tr>
<tr>
<td>Total</td>
<td>1071</td>
<td>143319</td>
<td>151</td>
<td>16781</td>
<td>1222</td>
<td>160100</td>
</tr>
</tbody>
</table>

C.W. Messages, 143319—89 %.
Spark Messages, 16781—11 %.

Two new appointments were made during the month. Bird B. Bliss, Jr. (7ZN) 417 Bannock St., Boise, Idaho, takes over the management of the Northwestern Division while B. W. Cochran (4EB) Palmetto, Ga., becomes manager of the East Gulf Division. Both men were selected by a majority vote, cast by A.R.R.L. Members in the respective divisions. Let us forget; we urge the cooperation of every man in lending his best efforts towards the promotion of affairs under his new manager.

In the desire to conserve space because of this splendid antenna number of QST, brass pounders having at least 300 messages to their credit were not listed individually. There were so many of them that only those having not less than 400 could be listed.

Official A.R.R.L. Amateur Broadcasting Stations

Feeling the need for a definite means of distributing up-to-the-minute news regarding tests, etc., the Operating Department is selecting about 125 of our best amateur transmitters who will broadcast these news items. All Official A.R.R.L. Broadcasting stations will broadcast every Saturday and Sunday at 12:01 A.M. local standard time. These stations will cover the entire country—so if you want to keep posted on what is going on in amateur circles listen in at the appointed time.

first broadcast will start about May 19th-20th.—200 meters.

TRAFFIC REPORTS FROM A.R.R.L. OFFICIAL RELAY STATIONS

CENTRAL DIVISION—C.W.: (Ohio) 8GZ, 1870; SJL, 1068; 8GFT, 827; 8BRO, 848; 8CWL, 730; 8DOH, 675; 8BD0, 570; SFT, 463; 8ANB, 481; 8BO, 410; 8BR, 363; 8BR, 362; 8CIZ, 350; 8AJX, 344; 8GK, 281; 8CW, 282; 8AIK, 241; 8FL, 317; 8SM, 310; 8CGX, 258; 8CKV, 244; 8BBQ, 240; 8BYN, 237; 8BB, 232; 8CYU, 189; 8EB, 186; 8RX, 183; 8AIK, 182; 8BXH, 180; 8BBW, 164; 8TJ, 147; 8BFQ, 142; 8DAG, 137; 8CWC, 127;

FIRST BROADCAST WILL START ABOUT MAY 19TH-20TH.—200 METERS.
BRASS FOUNDERS' LEAGUE

<table>
<thead>
<tr>
<th>Call</th>
<th>Mag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8ZD</td>
<td>2365</td>
</tr>
<tr>
<td>3XM</td>
<td>2146</td>
</tr>
<tr>
<td>9AO</td>
<td>2075</td>
</tr>
<tr>
<td>3SO</td>
<td>2076</td>
</tr>
<tr>
<td>8GZ</td>
<td>1570</td>
</tr>
<tr>
<td>1BAN</td>
<td>1227</td>
</tr>
<tr>
<td>5KP</td>
<td>1184</td>
</tr>
<tr>
<td>1CPN</td>
<td>1124</td>
</tr>
<tr>
<td>9AAW</td>
<td>1086</td>
</tr>
<tr>
<td>8IJ</td>
<td>965</td>
</tr>
<tr>
<td>1BYN</td>
<td>1011</td>
</tr>
<tr>
<td>6ZB</td>
<td>871</td>
</tr>
<tr>
<td>8BMN</td>
<td>571</td>
</tr>
<tr>
<td>1MY</td>
<td>585</td>
</tr>
<tr>
<td>8CYT</td>
<td>857</td>
</tr>
<tr>
<td>8BEN</td>
<td>843</td>
</tr>
<tr>
<td>8CEJ</td>
<td>843</td>
</tr>
<tr>
<td>8VOM</td>
<td>785</td>
</tr>
<tr>
<td>3SU</td>
<td>780</td>
</tr>
<tr>
<td>8CWP</td>
<td>780</td>
</tr>
<tr>
<td>2CPK</td>
<td>757</td>
</tr>
<tr>
<td>8AVD</td>
<td>756</td>
</tr>
<tr>
<td>9EFC</td>
<td>755</td>
</tr>
<tr>
<td>3ADX</td>
<td>754</td>
</tr>
<tr>
<td>8BJS</td>
<td>708</td>
</tr>
<tr>
<td>8OEI</td>
<td>701</td>
</tr>
<tr>
<td>90X</td>
<td>678</td>
</tr>
<tr>
<td>8BHN</td>
<td>661</td>
</tr>
<tr>
<td>1BOQ</td>
<td>651</td>
</tr>
<tr>
<td>8AUE</td>
<td>631</td>
</tr>
<tr>
<td>9MC</td>
<td>616</td>
</tr>
<tr>
<td>3APR</td>
<td>590</td>
</tr>
<tr>
<td>8BDO</td>
<td>570</td>
</tr>
<tr>
<td>8SBO</td>
<td>530</td>
</tr>
<tr>
<td>Spark</td>
<td>539</td>
</tr>
</tbody>
</table>

SPARK AND C.W.

<table>
<thead>
<tr>
<th>Call</th>
<th>Mag.</th>
</tr>
</thead>
</table>
| 8SK | 5; 8BOG, 5. Wisconsin; 9AZA, 57; 9CM, 305; 9AZN, 248; 9CZY, 207; 9DIO, 102; 9FEV, 147; 9K67, 114; 9K68, 113; 9K69, 112; 9K70, 111; 9K71, 110; 9K72, 109; 9K73, 108; 9K74, 107; 9K75, 106; 9K76, 105; 9K77, 104; 9K78, 103; 9K79, 102; 9K80, 101; 9K81, 100; 9K82, 99; 9K83, 98; 9K84, 97; 9K85, 96; 9K86, 95; 9K87, 94; 9K88, 93; 9K89, 92; 9K90, 91; 9K91, 90; 9K92, 89; 9K93, 88; 9K94, 87; 9K95, 86; 9K96, 85; 9K97, 84; 9K98, 83; 9K99, 82; 9K100, 81; 9K101, 80; 9K102, 79; 9K103, 78; 9K104, 77; 9K105, 76; 9K106, 75; 9K107, 74; 9K108, 73; 9K109, 72; 9K110, 71; 9K111, 70; 9K112, 69; 9K113, 68; 9K114, 67; 9K115, 66; 9K116, 65; 9K117, 64; 9K118, 63; 9K119, 62; 9K120, 61; 9K121, 60; 9K122, 59; 9K123, 58; 9K124, 57; 9K125, 56; 9K126, 55; 9K127, 54; 9K128, 53; 9K129, 52; 9K130, 51; 9K131, 50; 9K132, 49; 9K133, 48; 9K134, 47; 9K135, 46; 9K136, 45; 9K137, 44; 9K138, 43; 9K139, 42; 9K140, 41; 9K141, 40; 9K142, 39; 9K143, 38; 9K144, 37; 9K145, 36; 9K146, 35; 9K147, 34; 9K148, 33; 9K149, 32; 9K150, 31; 9K151, 30; 9K152, 29; 9K153, 28; 9K154, 27; 9K155, 26; 9K156, 25; 9K157, 24; 9K158, 23; 9K159, 22; 9K160, 21; 9K161, 20; 9K162, 19; 9K163, 18; 9K164, 17; 9K165, 16; 9K166, 15; 9K167, 14; 9K168, 13; 9K169, 12; 9K170, 11; 9K171, 10; 9K172, 9; 9K173, 8; 9K174, 7; 9K175, 6; 9K176, 5; 9K177, 4; 9K178, 3; 9K179, 2; 9K180, 1; 9K181, 0.

(*:* Spark and C.W.; **:* Spark)
sAVD, superintendent of the 11th New York District comes through with a report of 126 messages from that district alone. Can we imagine fellows, what our total would be if we could all report, like that?

EASTERN PENNA: Reports came through in fine shape this month with a few missing from City Managers. Individual activities were not mentioned in the summaries of the reports. A careful message total was lined up which proves that all stations were active.

Dist. No. 3: This last month after a long silence and is sure bating a high average for this month. He peeled off a 100 in one night, and has produced over 600 this month. K2CBW, S2DH, and 1CMF. 1ARK was out last month, having had a felion on his key hand. 2AWE drags (on traffic in daylight). 3JBT and 8BLU are doing great DX work. Chester is coming to the front with 8BSF, 3ADQ, and 8HP all reporting good traffic totals.

Dist. No. 4: 3SB will blossom forth with a WONDER set and hold up a record for Reading. 8AIQ reports this month for the first time. 3CIA reports this month for the first time. 3IYT makes his initial report handling Lancaster traffic. 2AJO was reported in the Canal Zone on 10 watts, 5SCA has worked every district but the sixth. 3CCU is now going to radio station S2D. The total number of messages handled for this month by handling 1,250. SAGO so far is the 11th New York of a well-known amateur in the person of Samuel Woodworth, 2AWP, of Syracuse, New York, to succeed Mr. Benzee who retired on January 1, 1923, and the report he injects into the fellows, what our total would be if we could all report, like that?

EASTERN PENNA: Reports came through in fine shape this month with a few missing from City Managers. Individual activities were not mentioned in the summaries of the reports. A careful message total was lined up which proves that all stations were active.

Dist. No. 3: This last month after a long silence and is sure bating a high average for this month. He peeled off a 100 in one night, and has produced over 600 this month. K2CBW, S2DH, and 1CMF. 1ARK was out last month, having had a felion on his key hand. 2AWE drags (on traffic in daylight). 3JBT and 8BLU are doing great DX work. Chester is coming to the front with 8BSF, 3ADQ, and 8HP all reporting good traffic totals.

Dist. No. 4: 3SB will blossom forth with a WONDER set and hold up a record for Reading. 8AIQ reports this month for the first time. 3CIA reports this month for the first time. 3IYT makes his initial report handling Lancaster traffic. 2AJO was reported in the Canal Zone on 10 watts, 5SCA has worked every district but the sixth. 3CCU is now going to radio station S2D. The total number of messages handled for this month by handling 1,250. SAGO so far is the 11th New York of a well-known amateur in the person of Samuel Woodworth, 2AWP, of Syracuse, New York, to succeed Mr. Benzee who retired on January 1, 1923, and the report he injects into the fellows, what our total would be if we could all report, like that?

EASTERN PENNA: Reports came through in fine shape this month with a few missing from City Managers. Individual activities were not mentioned in the summaries of the reports. A careful message total was lined up which proves that all stations were active.

Dist. No. 3: This last month after a long silence and is sure bating a high average for this month. He peeled off a 100 in one night, and has produced over 600 this month. K2CBW, S2DH, and 1CMF. 1ARK was out last month, having had a felion on his key hand. 2AWE drags (on traffic in daylight). 3JBT and 8BLU are doing great DX work. Chester is coming to the front with 8BSF, 3ADQ, and 8HP all reporting good traffic totals.

Dist. No. 4: 3SB will blossom forth with a WONDER set and hold up a record for Reading. 8AIQ reports this month for the first time. 3CIA reports this month for the first time. 3IYT makes his initial report handling Lancaster traffic. 2AJO was reported in the Canal Zone on 10 watts, 5SCA has worked every district but the sixth. 3CCU is now going to radio station S2D. The total number of messages handled for this month by handling 1,250. SAGO so far is the 11th New York of a well-known amateur in the person of Samuel Woodworth, 2AWP, of Syracuse, New York, to succeed Mr. Benzee who retired on January 1, 1923, and the report he injects into the fellows, what our total would be if we could all report, like that?

EASTERN PENNA: Reports came through in fine shape this month with a few missing from City Managers. Individual activities were not mentioned in the summaries of the reports. A careful message total was lined up which proves that all stations were active.

Dist. No. 3: This last month after a long silence and is sure bating a high average for this month. He peeled off a 100 in one night, and has produced over 600 this month. K2CBW, S2DH, and 1CMF. 1ARK was out last month, having had a felion on his key hand. 2AWE drags (on traffic in daylight). 3JBT and 8BLU are doing great DX work. Chester is coming to the front with 8BSF, 3ADQ, and 8HP all reporting good traffic totals.

Dist. No. 4: 3SB will blossom forth with a WONDER set and hold up a record for Reading. 8AIQ reports this month for the first time. 3CIA reports this month for the first time. 3IYT makes his initial report handling Lancaster traffic. 2AJO was reported in the Canal Zone on 10 watts, 5SCA has worked every district but the sixth. 3CCU is now going to radio station S2D. The total number of messages handled for this month by handling 1,250. SAGO so far is the 11th New York of a well-known amateur in the person of Samuel Woodworth, 2AWP, of Syracuse, New York, to succeed Mr. Benzee who retired on January 1, 1923, and the report he injects into the fellows, what our total would be if we could all report, like that?

EASTERN PENNA: Reports came through in fine shape this month with a few missing from City Managers. Individual activities were not mentioned in the summaries of the reports. A careful message total was lined up which proves that all stations were active.

Dist. No. 3: This last month after a long silence and is sure bating a high average for this month. He peeled off a 100 in one night, and has produced over 600 this month. K2CBW, S2DH, and 1CMF. 1ARK was out last month, having had a felion on his key hand. 2AWE drags (on traffic in daylight). 3JBT and 8BLU are doing great DX work. Chester is coming to the front with 8BSF, 3ADQ, and 8HP all reporting good traffic totals.

Dist. No. 4: 3SB will blossom forth with a WONDER set and hold up a record for Reading. 8AIQ reports this month for the first time. 3CIA reports this month for the first time. 3IYT makes his initial report handling Lancaster traffic. 2AJO was reported in the Canal Zone on 10 watts, 5SCA has worked every district but the sixth. 3CCU is now going to radio station S2D. The total number of messages handled for this month by handling 1,250. SAGO so far is the 11th New York of a well-known amateur in the person of Samuel Woodworth, 2AWP, of Syracuse, New York, to succeed Mr. Benzee who retired on January 1, 1923, and the report he injects into the fellows, what our total would be if we could all report, like that?

EASTERN PENNA: Reports came through in fine shape this month with a few missing from City Managers. Individual activities were not mentioned in the summaries of the reports. A careful message total was lined up which proves that all stations were active.

Dist. No. 3: This last month after a long silence and is sure bating a high average for this month. He peeled off a 100 in one night, and has produced over 600 this month. K2CBW, S2DH, and 1CMF. 1ARK was out last month, having had a felion on his key hand. 2AWE drags (on traffic in daylight). 3JBT and 8BLU are doing great DX work. Chester is coming to the front with 8BSF, 3ADQ, and 8HP all reporting good traffic totals.

Dist. No. 4: 3SB will blossom forth with a WONDER set and hold up a record for Reading. 8AIQ reports this month for the first time. 3CIA reports this month for the first time. 3IYT makes his initial report handling Lancaster traffic. 2AJO was reported in the Canal Zone on 10 watts, 5SCA has worked every district but the sixth. 3CCU is now going to radio station S2D. The total number of messages handled for this month by handling 1,250. SAGO so far is the 11th New York of a well-known amateur in the person of Samuel Woodworth, 2AWP, of Syracuse, New York, to succeed Mr. Benzee who retired on January 1, 1923, and the report he injects into the fellows, what our total would be if we could all report, like that?

EASTERN PENNA: Reports came through in fine shape this month with a few missing from City Managers. Individual activities were not mentioned in the summaries of the reports. A careful message total was lined up which proves that all stations were active.

Dist. No. 3: This last month after a long silence and is sure bating a high average for this month. He peeled off a 100 in one night, and has produced over 600 this month. K2CBW, S2DH, and 1CMF. 1ARK was out last month, having had a felion on his key hand. 2AWE drags (on traffic in daylight). 3JBT and 8BLU are doing great DX work. Chester is coming to the front with 8BSF, 3ADQ, and 8HP all reporting good traffic totals.

Dist. No. 4: 3SB will blossom forth with a WONDER set and hold up a record for Reading. 8AIQ reports this month for the first time. 3CIA reports this month for the first time. 3IYT makes his initial report handling Lancaster traffic. 2AJO was reported in the Canal Zone on 10 watts, 5SCA has worked every district but the sixth. 3CCU is now going to radio station S2D. The total number of messages handled for this month by handling 1,250. SAGO so far is the 11th New York of a well-known amateur in the person of Samuel Woodworth, 2AWP, of Syracuse, New York, to succeed Mr. Benzee who retired on January 1, 1923, and the report he injects into the fellows, what our total would be if we could all report, like that?
changed over to chemical rectified A.C. and says that this kind of power supply is the "berries" for raising them quick. DFJ is still hard at work but is unable to make a large report. SEW is still working the old rock crusher in spite of the fact that he swore off two months ago. He notices that Cramp operates on his own station on Friday and Saturday mornings and spends Sunday morning at 88RL on C.W. One station had 50-watt operation and seems to be getting out fairly well but on account of heavy school operation is not consistent. 88RL is using C.W. entirely and has a report of 89. This month MacClenney, Haeberl and Cramp are operating mostly over week-end periods. 8AI0 is still turning in a consistent report which goes to show that his station is one of the best in the district. Signals from 8AI0 have been reported a great number of times all up and down the Pacific Coast during the past month. 8WR is still building the 200-watt C.W. set. 8V can't be heard except by considerable traffic in Butler in spite of the fact that he goes to school all during the week in Pittsburgh. 8VQ fell down this month but their station being changed over to the C.W. which goes as far but don't seem to raise as many as the L.C.W. 8AI0 has been having considerable traffic in his section by handing 88R during the past month. 8CNH is doing his best this month with a report of 701. We'll bet that he certainly did get a lot of orders this month out of a pile like that. 8AI0 is fully expected to report a considerable traffic in Buffalo. Traffic is local at present. 8AS has taken good care of traffic in his section by handing 88R during the past month. 8CNH expects to get this kind of power supply is the "berries" for raising them quick. DFB is still hard at work all the Cleveland stations lined up for business. 8CZQ has received more cards from the 6th and 7th districts than any other except the 8th and 9th. 8CANX has nearly doubled his message total has been piled up for last month's total. 8DAG now operates regular relay work. 8CTY and 8BNE are the Akron active stations doing relay work. 8CFD and 8BEZ are the Akron active stations doing relay work. 8CZQ has done regular work. 8ABE is temporarily out of commission during the past month. 8BEJ is another spark station doing excellent work. 8CXX also has nearly doubled his message handling since changing from spark to C.W. 8DFO is reaching out in fine shape especially to the east. 8SCY is another of those that fall back on the old spark and is using both C.W. and Spark and doing fine work. 8BDZ is using C.W. entirely now and has been operating a spark to keep things going.

MICHIGAN: There is very little activity in this state. Practically all the traffic is handled by 88BS and 8AI0. Traffic could have been greater had 8AI0 been here but the old cruster could not be helped as he has evening employment which takes away from his radio operating during the day.

MARYLAND: There is little activity in this state with the exception of Baltimore going strong as usual. Owings Mills is one of the best stations with the B.C.L.'s. The early morning traffic has been completely discontinued, however, and the other stations still persist in doing O.W. before 7:30 P.M. It makes it hard for the regular to crawl from under the blame. The following stations making the best showing are: 8WP, 8FQ, and 8EG, although 8MF will follow close next month. Two more stations may be added to the list next month in 8BGC and 8SX, a 10 and 20-watt C.W. set, respectively. 8XX will undoubtedly increase power in a short time as this is a promising station.

CENTRAL DIVISION

R. H. G. Mathews, Mgr.

A bigger message total has been piled up for March than even the record breaking one of February. Illinois is running Ohio a close race, but Ohio has 8AI0 to help her along. 8AI0 is doing her state in the lead. The Division Manager is getting wonderful cooperation from all the stations, especially the intelligent D.F.J, and has reports. The same cooperation is being given them by the district superintendents, city managers, and relay stations.

Dist. No. 1: 8SA is not satisfied with his 10-watt set for it has reached only to the 3 Pacific Coast states, Hawaii, and 2400 miles east of New York City. D. W. Pinkerton, 8OK, has been appointed Toledo City Manager and has lost no time in getting hold of radio affairs there. 8BEJ, spark station, has been checked by the radio inspector. When next 8BEJ gets on the air he will blossom forth with a C.W. 8BZQ sends a card in a fine way. 8AI0, 8AI0, has been asked for an appointment but faithfully sends in his reports.

Dist. No. 2. Mr. Red. Gehardt, 8BGE, Norwalk, Ohio, has been appointed superintendent of district No. 2. SJJ, one of the state's stars was off the air one week out of the four on account of sickness. He says he hasn't much time for radio because of his school studies, but he managed to handle his 1068 in three weeks in March.

Dist. No. 3. This district is coming along in fine shape. Akron city manager, Warden, continues to do a good job. Signal from 8AI0 have been reported a great number of times all up and down the Pacific Coast during the past month. 8XCW is doing his usual COll•

Dist. No. 4. 8BEN heads the list in this district. 8AI0 is using C.W. entirely now and has thereby increased his message total. 8SXP is reaching out in fine shape especially to the east. 8SCY is another of those that fall back on the old spark and is using both C.W. and Spark and doing fine work. 8CZQ is doing fine work for the amount of time he can devote to radio. 8SNR is another spark station doing excellent work. 8CXX has nearly doubled his message handling since changing from spark to C.W. 8BDO found a nice surprise on us by turning in nearly 600 messages. He operates all night on Saturday nights and has regular output. Our district No. 4 is showing a gradual increase in traffic.

Dist. No. 5: 8AIX has managed to get into the 300 circle in spite of his heavy school work. 8SCY holds his state championship for this month. 8BYN was off the air and reporting with transformer trouble. 8AIR and 8SWP are stepping out lively and handling the messages by wholesale, 8DFO made an excellent start and is increasing every month.

Dist. No. 6. 8CXX is doing his usual consistent work. 8ABE is temporarily out of commission because a young tornado completely wrecked a garage which supported one of his 40 foot masts. 8ORC is stepping out in fine shape.
ILLINOIS: Dist. No. 1. Heading the list with four 300 hitters; two spark, 9NQ and 9DAY; and two C.W. 9DKV and 9YKJ, is the March reportátion is most gushing. 9TV has worked every district as well as twice with 9XAD.

Dist. No. 2. Not to be outdone this district has 9ACR, 9ACW, 9AHQ, and 9AMG; three C.W.'s 9CTF, 9AJH, and 9BJT. 9AJH regrets that he is only on the air week-ends.

Dist. No. 3. The leader and all-star of the district is 9AKU. Headed by the district superintendent, 9MC, with 916, the third district comes through with seven brass polishers; 9ARJ, 9AOV, 9ATY, 9AUP, 9AQL, and 9AQQ. The man of the B.C.L. 9AQW is a little discouraged and is now using C.W. exclusively.

Dist. No. 4. 9DQU romps through with 564 this month. 9DQU was reported 2400 miles of New York City. 9CZL using the Wisconsin tube has worked 1BE and 3AB. Arrivals are down at 9ASK and 9BIL from the severe storm of March 11th.

Dist. No. 5. 9DZG, 9DLR, and 9AUS are all working 1000 miles on a single 5-watter. 9AUS has worked 700, a DX of 1500 miles. 9COW on 15 watts does 1500. 9AMS and 9PE with 50-watters are working both coasts with ease.

Dist. No. 6. There is a 5-watter here in the person of 9DVV. 9CER is in an ideal location if he desires traffic. He has it between Ch1cago and Terre Haute. He says 16 stations, 29 messages per station. of them 300 hitters, gives him 24% real hands in the district. 9MC has discarded spark and is now using C.W. exclusively.

DISTRICT No. 3. Spring fever seems to have increased the number of stations in this state, traffic went on in good shape and showed a substantial increase over that of last month; with 9AZA as the star performer with 572 messages. The Wisconsin Cup was thereby awarded to K. C. Mass, (9AZA) Whitewater. Wisc. For one month.

WISCONSIN: Despite the fact that the recent storms raised particular Cain with the majority of stations in this state, traffic went on in good shape and showed a substantial increase over that of last month; with 9AZA as the star performer with 572 messages. The Wisconsin Cup was thereby awarded to K. C. Mass, (9AZA) Whitewater. Wisc. For one month.

The stations that are consistent relay men are: 9ATU, 9CZF, 9CJM, 9AFK, 9AAM, 9DID, 9DMG, 9DXT, 9FL, 9OH, 9CRA, 9QDA, 9GQH, and 9ID. The majority of the stations in the past have had curtailed activities until antenna systems can be overhauled and fixed over.

The stations doing good work are: 9AZU, 9CHE, 9KAR, 9CHK, is long needed station at Madison 9BGE also of Madison and 9AJA (ex-9KX). 9ALG relayed two important messages concerning the illness of a U. of W. Professor and another in locating a lost locomotive during the storm period. Other storm relays were also handled by 9AZA and 9CHK.

Dist. No. 3. Spring fever seems to have interfered quite seriously with traffic in this district. The superintendent claims he can’t figure out any other reason. Lawrence College at Appleton now have 20-watt C.W. and seven. 9BHQ is assisting them. Wire service in the eastern part of the state has not been dependable lately. This was found out by inquiry and by the quality of the short waves. Snow has shut down and considerable damage here 9CZY and his 5-watters are the stars again this month. 9BHQ is changing to 50 watts. 9AMQ’s masts are down and 9QJO’s sockets are empty. 9BPH is tired. HU

Dist. No. 4. 9EIL are the only stations outside the city. The station 9EIL is most prominent work in this district. 9EIL is becoming known as the Master Oscillator City as most of the stations are following the example of the assistant division managers in the large city. Not to mention that 92Y was down for a considerable time this month due to damage by the storms in this city.

Dist. No. 5. R. J. Kruzel complains that the small amount of traffic handled is due to the fact that things are swinging too much to the E. P. side even good DX stations turning to B.G.L. He also complains that it is impossible to get a good DX period between 11 P.M. and 6 A.M. generally midnight without incurring the wrath of the B.G.L.s The B.G.L.s have even gone so far as to destroy antenna systems of one man in Duluth and threats are a common thing in the City of Superior.

SOUTHERN INDIANA: Dist. No. 2. Miller has sent in quite a good message total despite the small number of stations and he deserves to be congratulated. He is running 9BOP on a new station now in operation. 9AUU is back on the job. Traffic is going regularly through South Bend, 9CBI, and 9DGE is handing the most. 9BBI will be on the job with 50 watts. 9CQZ has moved. 9DGX is another good station this month.

SOUTHERN INDIANA: Dist. No. 1. 9BHK is still high man in Southern Indiana with 887. He has gone over 300 for three months straight on four different DX stations and on C.W. and will continue to do good work as long as the tubes last. 9DBS and 9ARR are the only stations in this section. The 9AKU on spark is the only active station in Seymour and when he is on 9DYU and 9AMO at Columbus he has DX stations with 9RX. The recent high winds brought down the aerial at 9CBE and the tower at 9ASJ.

Dist. No. 3. Mr. KrieIl the newly appointed district superintendent of Dist. No. 3, is doing fine along fine and has uncovered several stations in Terre Haute. A daylight route is in working order from Indianapolis to Greensburg (9YJ) and Terre Haute. 9AJQ and 9NH are the stations in Terre Haute. 9GW, 9BRJ, 9UJ, 9QH, and 9HVP are doing fine work in Indiana.
May, 1923 Q S T

EAST GULF DIVISION
B. W. Cochran, Mgr.

It is very gratifying to be able to report a new record for the division. The 4600 messages were handled this month. The large number of excellent stations doing more and better work than ever before has made all the stations with the division managers of the division have made this record possible. Some F.B. gang.

FLORIDA: Traffic is flowing in and out of the state with ease. With more active stations than ever before and each station handling a larger volume of work, the established new records for the state. We are now ready for real summer work.

Dist. No. 1. 4FS leads the state in both messages handled and in $X. With 50-watts O.W. and L.C.W., he has been reported in Calif. 17 times in one month. He works 101 and "H"X" Miami as his best gateway, and also has 425 messages in a Canal Zone, and has schedules with 1BAF, 4CG, 4IZ, and a daylight schedule with 1MT. 4HZ has had trouble with his power tube and is temporarily using spark with which he is doing consistent DX work. 1ZC is doing splendid work.

Dist. No. 2. This district is up by 4JZ, 4EN, with 17; 4FU, with 10; 4CW, with 4; 4FD, with 2; 4FC, with 1. It is expected that 4SH will handle the work in St. Augustine.

Dist. No. 3. 4BC has the best and most consistent spark in the state. 4BC to 4FD and 40N is a dependable relay route and handles much traffic. 4BC is consistently QSA at 40I.

Dist. No. 4. 4AGJ has also handled quite a bit and with 100 watts is reaching out all over the country.

Dist. No. 5. 4AZS has handled a lot of traffic and leads the state in messages handled. 4AGJ has also handled quite a bit and with 100 watts is reaching out all over the country.

Dist. No. 6. 4EN is doing exceptionally good work. 4EN is consistently QSA at 40I.

Dist. No. 7. 4AZS has handled a lot of traffic and leads the state in messages handled. 4AGJ has also handled quite a bit and with 100 watts is reaching out all over the country.

Dist. No. 8. 4EN is doing exceptionally good work. 4EN is consistently QSA at 40I.

The Assistant division manager is grateful to all district superintendents and city managers for their splendid co-operation and promptness in reporting.

SOUTH CAROLINA: in Greenville, 4EP, 4KI, and 4JK put the traffic through with 4JZ leading the state in messages handled. Lightning, entering via the power line, converted 4JS into junk and did much damage to the premises. With the true amateur spirit he soon regained another set and is handling traffic as usual. 4FQ has been the most active station in Spartanburg. 4LA will soon be on the air with 100 watts and 4E and 4D are new stations and are ready to help with the traffic.

ALABAMA: A number of stations are handling traffic but only a few have made a report.

Dist. No. 1. 4AS has handled a lot of traffic and leads the state in messages handled. 4AGJ has also handled quite a bit and with 100 watts is reaching out all over the country.

Dist. No. 2. 4AZS has handled a lot of traffic and leads the state in messages handled. 4AGJ has also handled quite a bit and with 100 watts is reaching out all over the country.

Dist. No. 3. 4AS has handled a lot of traffic and leads the state in messages handled. 4AGJ has also handled quite a bit and with 100 watts is reaching out all over the country.

Dist. No. 4. 4EN is doing exceptionally good work. 4EN is consistently QSA at 40I.

Dist. No. 5. 4AZS has handled a lot of traffic and leads the state in messages handled. 4AGJ has also handled quite a bit and with 100 watts is reaching out all over the country.
da traffic. 4GN reports working nearly everybody he hears and has 2 reports from California this month. Macon has several good stations, 4GB, 4B, and 4W, all working really well and last got the 10-watter going F.B. 4BY, 4EL, and 4GE at Savannah are handling traffic with 42L, radius of about 10 miles, out of Savannah. A number of messages handled. He has early morning schedules in several directions.

ATLANTA: The quiet period from 8:00 to 9:30 P.M. is being fully observed due to the efforts of the Atlanta Radio Club, and the co-operation of the local broadcasting stations has been thus secured. H.Y.A leads in messages handled but 4HW and 4MB pushed him for first honors. On Spark, 4DF is the leading station with 4HS and 4MY not far behind. We are sorry to lose 4HX and 4GK who joined the Navy. 4CG now has 100 watts and is batting them out in great style. In the coming months, the leaders will have to cope with 4CY, 4EQ, 4BG, and 4ME who have each handled a big batch of messages. 4EH and 4BI handle a good share of the traffic and are regularly heard on the west coast. The secretary of the local club, 4KU found time to oil up the old key and grind out a nice lot as did 4GZ. Other stations handling traffic are 4EZ, 4DL, 4DN, and 4AZ. 4D0, 4DG, and 4D1 are all supporting him. McDaniel of Columbia has been out of commission for some time and has not handled any messages. 4BZ1 has been quite "short" and 4AZ is still F.B. with a little more tendency on the part of the broadcasting stations to co-operate, thanks to Moore. 9CTY is continuing to do good work. The Mayor has promised to recommend to the City Council that the old fashioned arc lights be replaced by incandescent lights. We hope with Sue, Joe that are QRM will be a thing of the past.

NEW ENGLAND DIVISION

K. A. Cantin, Acting Mgr.

HAWAIIAN DIVISION

Hawaii broke all records this month and the total of "ONE" message is the report that I have the honor to transmit. It shows that Hawaii is trying to keep this division going and the above number of messages is handled is proof to some extent that Hawaii has still QSO. The messages were received, signal C.W.

Two new licensed stations (G.W.) have been added to our total here and they are burning midnight oil in the effort to reach and work the coast. It is now up to the stations on the mainland to listen for Hawaii, as we have very little trouble in the reception of signals from the coast, but have difficulty in raising 'em.

Kindly make a mention that "Hu" is used for Hawaii for Honolulu. But all Hawaii coast stations hear us say QRA is "Hu" it will signify that the station is located in Honolulu.

MIDWEST DIVISION

G. S. Turner, Mgr.

DNGWAY, GIVE US ROOM!!! We're headin' straight for the top and don't give some of these other stations a run for your life. I'm not Manager of the 'ol midwest.

"Read Em and Wesp" was OK once, but now no. Now it's "Okay, Get Out and Go Away Back and Sit Down." Here's how:

9AOJ, 1948 on Spark
Missouri, 9582 alone
Midwest Division, 32972

MISSOURI: 9CVQ, 9FQG, and 9AOJ have done very good work this month. 9CBE, 9EKY, and 9EFK are going great. We still have room for more official stations and you fellows who are spasmodically hearing us and show us your QSL cards that your name should be placed along side the other honor stations. 9DR in addition to his job for Kansas has handled 100 messages in one month. Mgr. of Kansas City has just recently been appointed Division publicity manager. 9AUK is busy as a shapeless spider is busy with work and traffic and with tears in his eyes. 9DWK reports that he has had bad luck, losing his masts in a recent storm. 9DIX is going great. He is after everyone to do their bit. Scheoening is a hard worker, universally liked and they are all supporting him. McDaniel of Columbia is back on the job and putting the routes in excellent condition. 9BNM, 9BFA, and 9COVO deserve much credit for their splendid work. 9BNM on spark handled 871 (Smatter you C.W., stations?) Then along comes another spark station and handles 731. (F.B. relay.) 9DGG, Mgr. of C.W., station with a comparatively small total of 538. (How come?) The DS of Western Missouri reports 9CHJ very well handled and has pointed him CM. Three stations in Sedalia handled a total of 1281 messages this month. 9DAE is F.B. relay. 9EL, 9FV, and 9GK is still F.B. with a little more tendency on the part of the broadcasting stations to co-operate, thanks to Moore. 9CTY is continuing to do good work. The Mayor has promised to recommend to the City Council that the old fashioned arc lights be replaced by incandescent lights. We hope with Sue, Joe that are QRM will be a thing of the past.

KANSAS: 9DTA as usual wins honors in Kansas for the largest message total. The month has not blown down very many of our secrets from the looks of it. The accounts are still over the 3500 mark and have fond hopes of raising our ante a thousand next month. Five Kansas stations pounded out more than 300-net this month; namely, 9CLW, 9CAE, 9CS, 9AOG, and 9DIA. 9BABY has been moving and his station has been out of commission, but 9BZ1 and 9BBZ are both going to bat out 100 or better next month. A new station at Tonka, 9BHJ, has opened up with a 6-watt set and threatens to break all records. On the coast, Kansas City on 9CJE and 9BHI are getting in the game and handling traffic. 9COS handled the most messages in his division and has heard 700 miles off England with his 5-watter. Other stations deserving special mention are 9CFI, 9CCV, 9CKM, and 9EBC.

NEW ENGLAND DIVISION

I. Vermilya, Mgr.

MAINE: While there are no members of the
Brass Pounders League in this state, still there are plenty in the totals, and old Maine has come ahead wonderfully. We extend hearty thanks to Edward Meshane, of B.P.L. VERNON: Vermont is going better, but we still need a much bigger total to keep this state up to the others. Come on, Eaton, let's see you put 'em in high.

MASSACHUSETTS: We boast six members of the Brass Pounders League here, and consider that a very good record. It sure helps to bring the messages up. In the order of their traffic, these men are as follows: IBAN-1227 messages; 1BYN-1011 messages; 1CJR-442 messages; 1OPL-420 messages; 1BVH-342 messages.

RHODE ISLAND: Even little Rhode Island can show five members belonging to the B. P. L. They are as follows: 1CBP-448; 1BBV-382; 1II-324; 1GV-604; 1BOQ-904. For its size, Rhode Island's work is something to be proud of.

CONNECTICUT: Eight members of this famous stay-up-all-night Brass Pounders League claim Connecticut as their residence. They did as follows: 1MY-655 BQQ-861; 1CJZ-226; 1BFE-388; 1WC-325; 1IV-806; 1FY-395; 1TL-302. We have reason to believe that the leaders of this state are well liked and likewise well followed. The DM wishes to thank all the ORs men as well as the ADMs of the division. 117 stations reported in this district including 108 CW stations and 8 spark stations. Poor old sparks are beginning to lose ground.

We enclose a picture of Mrs. Helen R. Xavier, who has just been appointed executive to the New England division manager. Mrs. Xavier is a member of the League and very much interested in all matters of the gang. She intends shortly to run a station of her own as she dislikes being a member of the League and very much interested in all matters of the gang. She intends shortly to run a station of her own as she dislikes being.

Miss Helen Daniels has been appointed executive assistant division manager for the Western Massachusetts, reporting out Mr. A. S. McLean.

NORTHWESTERN DIVISION
B. B. Bliss, Jr. Mgr.

MONTANA: The effects of the spring QRN are being felt over the state and have made inroads on the message report. It is a peculiar thing that the stations in Montana are unable to work with one another, but can reach the east with ease a much longer distance. It was attempted to set a daylight route in the state and it was requested that everyone send the DM a report that there is absolutely nothing doing. And from observances from the ADM's stations, 7YL, it has been found impossible to raise Montana stations in daylight while eastern stations to be those in Kansas were worked with ease (????? why?)? The Revised Pacific Plan is in operation at practically all the stations in the state, and for the most part seems to be serving its purpose admirably, with the exception of a few B.C.L.s who think that the amateurs hours should be from 5:59 to 6:01 A.M. on the 25th of February. The quiet rule seems beneficial both ways as it gives the DX listening ham a chance to hear some exceptional DX. (When the B.C.L.s and not squealing on every wave length in the deck and a few poor ones or bad measure) Boxeman, there is a new station on the air THS who has been a second op, at the station of the ADM. He is using a 5-watter going and is ready to handle traffic. The state is all C.W. but for the exception of 7EX, who is on the fence with both spark and C.W.

IDAHO: Dist. No. 1, Old 7JD from Webel is installing the old spark and a new C.W. set of 10 watts up in Moscow. 7ZM will be back with 70 watts. 7CF continues to work Ns' record station. He has his new flock of tubes warming up.

Dist. No. 2. Nampa has three active stations and is prepared to handle traffic in all directions. 7CG and 7LN are handling the bulk of the traffic. 7IO is on with 70 watts and promises to have 20 soon. 7LN has worked SBBO in Watertown, N. Y. and is heard throughout the East.

Dist. No. 4. The set at 7YA has finally been finished and is kicking out five good amps. 7TH and 7ZN continue to hold down their end of the traffic line. All stations in Boise are making some wonderful records, all being heard throughout the east and 7ZN being heard at a distance of 4700 miles west. 7WS will be on with 10 watts.

OREGON: The reorganization work is still going on and no new appointments have been issued. Things are pretty well straightened out now thorough and everybody will probably be F.B. by next month. The bulk of the traffic seems to be going through 7LR and 7NA. 7LR had the bad luck to have his 50-watter go west (didn't get big enough DX another way), and had to resort to the spark to clear his hook. 7LR will be on again with 100 watts. 7TQ is heard nightly and seems to be getting out as an old C.W. 7VL, 7VF and 7TO are also on regularly and seem to be keeping the old box clear.

WASHINGTON: Conditions over the state remained practically unchanged since last month. A substantial increase in the traffic handled is noted and the percentage of traffic per station is going up. There is a general trend toward C.W. and there. 7SFF and 7RP are the only stations in this district at present. 7GP is down on 160 and reports QRN nil on that wave, but that it is getting stronger. 7IF and 7NN are both installing higher powered sets and expect to increase their QSO. Dist. No. 5. 7TQF and 7GP are the only stations in this district at present. 7GP is down on 160 and reports QRN nil on that wave, but that it is getting stronger. 7IF and 7NN are both installing higher powered sets and expect to increase their QSO.

Dist. No. 5. 7BQJ is still doing the bulk of the DX here assisted by 7AIC and 7AVJ. They all find it easier to get the messages on the hook than to get them off. BQJ has joined the owls and is now putting up a new antenna so that he can radiate a few more watts.

Dist. No. 6. 7QIE, the DS is on the job but
finds that the ORS do not take the trouble to mail them their cards. TWX and 75A are still holding deposits. 8EM, 8XM, and 8ERU are on in the evenings and doing good work.

Dist. No. 7. TABB, the new appointed DS is right on the job. Work there is doing exceptionally good work with stations in the eastern part of the U.S. 7TH has opened up with 100-watts of C.W. and if it works like the old spark, it will upset the old star station. In Seattle, 7JG is handling the bulk of the traffic with 7ADP. 7DU, 7KF, and several others helping. Seattle will continue to work the West Coast with little loss of equipment.

Dist. No. 8. 7CD and 7AIY are on with the old reliable spark and getting along in good shape. 7JS has moved trouble getting his five watter to work.

Dist. No. 9. 7AYI and 7NE are the only stations in this district. Present the stations in Wenatchee are forced to stand by from 6:00 to 10:00 because of radio broadcast listeners.

Dist. No. 10. Several good stations are in this district but owing to poor cooperation with the acting DS, 7GE, only one report.

Dist. No. 11. Traffic in this district has grown rapidly, particularly with the east and north and south. The traffic in several of the stations here rather hard as they are going to school and that requires that they QRD have early.

ONTARIO DIVISION

A. H. K. Russell,Mgr.

"Over the top again" has been the motto of the Ontario Division for the past month. Despite some very bad weather for radio work the traffic report for the month has beaten all previous records. Certain fellows, the next objective is 2600 mess. Ontario Division for the past month. Despite some very bad weather for radio work the traffic report has not had as much chance as usual to get some green, while the West is on and when he gets going and will be too late with the motor-generator for this summer months.

The Central Ontario district is top dog this month, but of all the stations here, the one deserving most credit is 3XX. He is on with his old 3-watt coil on one 5-watter and for traffic handling works rings round a good many of the gang. 38Q is also doing very fine work. Also STL. Hamilton has at last opened up to traffic in 30Y's a newcomer to the game, but a very good "comer." He runs on 300 watts with Toronto and Kitchener.

The Toronto crowd are all busy with 10-watt sets showing the 50s where they get off.

The Eastern district is short and snappy, as Dorothy only reports two stations had handled any traffic, both Kinston. The DM hears from Wake or Cornwall who is putting in 10 watts.

PACIFIC DIVISION

J. Vance Wise,Mgr.

The Division Manager has been completely out of commission for some time, much of which was spent in the hospital, which accounts for the smallness of this report.

ARIZONA: E. A. Nelson, 6BBH, has been appointed city manager of Phoenix. A new station that will be of big help is 6CJ. 6BSQ handles Texas and California traffic maintaining schedules with 5AJN and 5ZJ. 6CA and 5M are also doing very fine work with stations in various parts of the country. More traffic would have been handled last month but for the fact that a great deal of time was spent experimenting with various types of receivers. To date, there has been but little QRN and traffic moves regularly thru 6OD, 6ZB, 6ZH, and 6XB who QSR easily.

CALIFORNIA: 6TV is doing very fine work in 6EF. 6EC has a new 20-watt set which will be another good DX station. 6BVJ has just installed a new station in the 8th district easily. 6BN has reached the 1st district—150 watts. 6FM is off the air for a time 6KA continues to hang up new records and managed to get 4.5 amps, out of a 5-watt tube before it blew. 6MF has 50 watts will be heard by the time this in print. 6UP has junked the space for C.W. and 6OD is trying to prove to himself that he can get better DX out of an amplifier tube than he got with the old spark. As a starter, 6VF has reached the assistant post with his 50-watt. 6RW, 6CU, and 6BOY are doing good work on C.W. 6BQG is back again ready for business after all.

ROANOKE DIVISION

W. T. Gravel,Mgr.

Traffic has been hanging up very well during the past month. High honors go to 10-watt station in a rather poor location, and with only one man on the key.

8AUE C.W. 631

PORTO RICO: QRN is beginning to be felt and that the heavy artillery will soon "burst" loose in this latitude. Direct communication was established between 401 and Hartford headquarters, also between 401 and Division Headquarters.

VA: We are afraid that 3JE will be too late with the motor-generator for this season's operation, but with effort Porto Rico may be able to keep in touch with the states during the summer months.

WEST VIRGINIA: 8DBB makes his bow with 100 watts and covers the country. 5ATC and 6CQ are placing Parsons in on the map. F.R. B. is carrying on very interesting experiments on short waves using a 5-watt tube and 3-foot loop. With this he has covered 25 miles. 8DBA is busy getting the hams and novices together.

VIRGINIA: A.M. Wohlford is very enthusiastic over his "gang" and comes with a fine report as usual. SATS is going strong. 3IV, 8HNS, and 3JN are new stations wakening up. 3MK is installing a high powered set. 3BV is active in Portsmouth. 3CB is working mostly in daytime, with regular schedules.

Dist. No. 2. 3BMN, 3AUU, 3AOT, 3SG, 3BCH and 3TJ are all doing good work. 3XAL (ex 3B1J) 3AHN, 3CEL, 3BVL and 3MO (with his clothes line) are holding up their end in great shape.

Dist. No. 3. 3BVF is trying to prove to himself extending con solidation with 3ZP will continue to make things hum.

Dist. No. 4. 3BTV is temporally out, while 3BUY, 3BOF, 3CDY, and 8APW are accidents for that section.

Dist. No. 5. 3AW is changing from 200 to 100 with MG.

DIST. No. 6. There is great improvement with 3BU, 3CBZ, and 3BFE now on the air. 3VV and 3BLH are both working.

Dist. No. 7. 3ANF, 3ZAA, 3YK, and 3XZ are holding down the job.

Dist. No. 8. 3APR is a star and he never sleeps. 3BY, 3EF, 3CA, 3VC, and 3BCX are all active.

May, 1923
to make things interesting. 4LJ and 4NV are doing fine in Watson. 4GC and 4DG are handling traffic at Greensboro. 4K and 4MV are passing a few. If there is a man in the Division who has any station trouble and who keeps us posted up, especially daylight operation. It is great!

ROCKY MOUNTAIN DIVISION

N. E. Hood, Mgr.

C.W. 539 Mgs.

59A, 9AMB Hathaways, 9AMB Denver, Colorado

Spark 57 Mgs.

Young University 6APL Provo, Utah

COLORADO: 9AMB again takes the box seat. He works 9BCH on schedule. New stations in Colorado enable quick delivery of messages now. New 9QRA, 9AMB, 9026 East 19th Ave., Denver, Colo. 9DTM reports no work through broadcasting. Now on 166 meters with 5 amps. 9BUN is still at its 10 watts. 9BJL gets real DX including Hawaii. 9CAA had been on only a half month and is QSA both coasts. 9DTH QSA up and over both coasts on 10 watts and wants to know what is the matter with the English receivers. 9BXA is rebuilding antenna as he has lost his antenna only 15 feet high and gets 800 miles. 9FP is pounding away. 9BYO works on schedule with 5 watts and 75-foot mast. 9BTO is rebuilding. 9EKH says he is on account of love! (Don't quite understand OM, is rebuilding his station into another rock crusher, goes through cutting capers. 9CL has left in his wake. 9TF on 118 in two weeks. Ill0 watts here soon. 9UG with some more tubes. 9AK and 9AW get a few through. 6ZM reports the big set not in operation soon. 9BUH operates both Park and Hawaii. Our star traffic handling station of the month is 9BTH. Both 9CF and 9BTH are QSA both masts. 6TTF is building a new 150-watt set and gets excellent results. 6JA is busy at Utah "U" but managed to get a few through. 6VM reports the big set not quite completed, although on the air some, but will soon have the 500 watts going. 6ZT pushed through 118 in two weeks. 100 watts here soon. 6ZV and 6BLH sent in no reports. (What'samat­ter, men, like to hear a little traffic or not?) McGowen, Assistant Radio Inspector 6th dist. visited Salt Lake on his inspection tour on March 10, 11, and 12, and many local men passed their test for amateur first and grade license. All ORSs reported in district No. 1 except 6ATV. Please keep up, as we are glad to hear from you.

VANCOUVER DIVISION

J. T. North, Mgr.

VANCOUVER: 6CN is now on with a 100-watt set and is doing more work than ever. 5AC is building his station into another rock crusher. 6GO and 5AK are handling traffic, and 5AX is doing occasional work. 5BM has also come back with some more tubes. 4OL in Edmonton is very QSA in Vancouver.

WEST GULF DIVISION

F. M. Corlett, Mgr.

Official relay station appointments were issued to the following: 6OU, 5JZ, 5DE, 5EA, 5VO, 5YE, 5BN, 5AX, and 5AJL. Our star traffic handling station of the month is 5JEK, and 5EM on the job a big part of the time. Fine business, glad to see Salt Lake doing so well. Some of the newer stations on the Island are 6AH, 6AGL, 5ADY, and 6AV. 5IM and 5IV are also A.R.K. stations. Houston has 26 A.R.K. relay stations and 6 of them hold official relay station appointments.
IN order to see why some forms of transmitting antenna are more desirable than others, let us see briefly what features are necessary in the design of a good antenna. The one thing that we are aiming for is that our antenna will have as good radiating qualities as possible. It must be efficient in transforming the current we put into it from our transmitting set into electromagnetic waves.

Consider for a few moments a single vertical wire, grounded at its lower end, as a basis for discussion. It has inductance and each portion, each foot of the wire, has a capacity to ground; this capacity being large at the lower end of the wire and decreasing towards the top as the distance between the portions of the wire and the ground becomes greater. If we connect a transmitter to the bottom end of the wire and introduce a radio frequency current in it, the current will flow by capacity paths through the air from the wire to the ground. As stated previously, the capacity of a piece of the wire one foot long is much greater near the bottom or end nearest the ground than at the upper end. Consequently, the greater part of the current will leave the antenna and go to the ground before it reaches the top of the antenna at all. What current does reach the top of the antenna will build up to a high potential because the resistance of its only path to ground through the air is so high. This condition of maximum current at the base of the antenna and maximum voltage at the high end influences the design of the antenna considerably. This distribution of current and voltage exists when the simple vertical antenna is oscillating at its fundamental wavelength. The actual length of the wire will be equal to one quarter of the length of the radiated wave because a complete wave or cycle is made up of four recurrences of the voltage and current relations mentioned above. If it is desired that the antenna have a fundamental wavelength of 200 meters, its height will have to be one fourth of this, or 163 feet. It is practically impossible for the amateur to easily erect an antenna of such a height, but changing the form of the antenna as explained later on will permit a much lower one to still have the 200 meter fundamental.

So far we have been talking about a single vertical wire. If we have two vertical wires a foot apart the capacity to ground of the combination is increased owing to the additional surface. The inductance is decreased because the current is divided between the two wires, and using the law for calculating the total inductance of two inductances in parallel, the inductance of the combination will be one fourth that of the single wire. The result is that the increase in capacity is offset by the decrease in inductance; therefore the product of L and C, which determines the wavelength, remains practically the same.

The above holds good as long as the wires are vertical, but once we lessen the height and bend over the upper ends of the wires as in the inverted L type, the capacity is increased and this increase is not nearly offset by the lowering of the inductance occasioned by spacing the wires. The result is, then, that the wavelength of most forms of amateur antennas is more nearly six times the length from the ground to the far end, rather than four times it, as it is in the case of the single vertical wire.

Turning to a consideration of the many different types in antennas—T, inverted L fan, cage, slanting fan, and all the rest—they are only expedients adapting local conditions to the theoretical requirements of building an antenna with its capacity as high in the air as possible and having as little inductance and capacity in the lead up to the top as possible.

The antenna must have a great effective height. However, the effective height is a term that has no fixed relationship to
the actual height of the antenna above the ground in feet. Masts, trees, buildings, lightning rods, metal stacks, and wires of any kind in the vicinity of the antenna all tend to influence the effective height. To illustrate: An antenna erected on the top of a ten-story building may have a height above ground of several hundreds of feet, but on account of its proximity to other objects, its effective height may amount to no more than that of an antenna fifty feet high if erected in an open field. In order that the antenna have a great effective height it is necessary that it be kept as far away from all surrounding objects as possible.

This isolation of the antenna is necessary for another reason. The antenna and ground act as the plates of a large condenser and any poor dielectric such as buildings, trees, masts, etc., between these plates will absorb energy. As an extreme case imagine a condenser in your set with tree leaves and watersoaked wood between the plates for insulation. That is the identical thing that we have to deal with in selecting a location for our antenna.

Any wires or metal objects in the vicinity of the antenna will not only tend to lower the effective height, but they also are detrimental from another standpoint. Steel buildings, metal stacks, and wires all have a natural period of oscillation of their own, depending upon their size. If it should accidentally happen that you try to operate your transmitter near the natural wavelength of a nearby mass of metal or wire, that object will absorb an unusually large amount of power. This will be shown by a large amount of antenna current at the transmitter on certain wavelengths. In some cases it is possible to remedy the difficulties by going out with a wavemeter and a pair of phones and picking up the re-radiation from these wires, and then connecting inductances and capacities to them in such a way as to shift the natural period of the object out of the way.

If circumstances do not permit the erection of two high masts with a small T between them, the next best thing to do is to get at least one end of the antenna as high as possible. This should be the end farthest from the transmitting set. It is not good practice to make a T antenna unless both ends of the T can be made nearly the same height.

The Junior Operator will have to display his ingenuity and resourcefulness in providing the supports for his antenna, because the widely varying and adverse conditions that exist in the modern backyard do not permit the prescription of a definite set of rules for erecting the masts. We will accordingly take up the actual construction of the antenna.

The number of wires that the antenna should have seems to be more a matter of individual preference than anything else. It usually lies between four and ten for transmitting antennas. The lead-in should have the same number of wires as the upper part of the antenna, even if it is a cage. The best all-around kind of wire to use is No. 14 semi-hard copper wire.

The construction of the antenna itself may conveniently be divided into two separate and distinct parts, that of the flat-top or upper portion, and the lead-in. The upper portion may be built in either the cage or sausage type, or the so-called flat-top type. In spite of terrible arguments on the merits of each, there is really no appreciable difference, electrically, between the two types, when used as the upper end of the radiating system. The cage antenna is, nevertheless, easier to handle when in the air.

The diameter of cage antennas averages probably around three feet. Some amateurs taper the upper cage from one foot at the end nearest the lead-in to ten or twelve feet at the far end with good results. Materials and objects for use as the spreaders of the cage include about everything under the sun. Heavy wire hoops, barrel hoops, bicycle wheel rims, toy wagon wheels, regular wagon wheels and piepans with the centers cut out are all pressed into service to hold the wires the proper distance apart. Probably the best type of spreader that can easily be made is of the three or four "cross-stick" type. It can be made in any size and consists of three or four sticks, nailed together at their midlength and with a saw slot cut in each end of each stick to take the antenna wires. If the spreaders are large it will be well to connect a wire around the rim between each antenna wire. This binding wire should also be fastened to the ends of the cross-sticks and soldered to the antenna wires. It is customary to space the spreaders at least every twenty feet in large cages. In very small cage antennas, the spacing may be four to eight feet as necessary.

If the top portion of the antenna is to be of the flat-top type, some other things will have to be considered. A light strong straight-grained stick of wood makes the best spreader. The spreader need not be large in cross section; a spreader 20 feet long need not be over two and one half inches in diameter at the center, tapering to three fourths of an inch in diameter at the ends. A queer thing that reflects upon the radio bug is that one can nearly always tell the number of years that a fellow has been interested in radio by the length of the spreader in his antenna. Just like telling the age of a horse by

May, 1923
his teeth. Newcomers in the game invariably put up spreaders a few feet long while the old timers frequently put up spreaders twenty and twenty-five feet long. There is a length of spreader that will be the best for any particular case. If the spreader is too long, it will have to be specially guyed to prevent lashing about in the wind. If the top portion of the antenna is of the T type, the spreaders should both be the same length, and from ten to twenty feet long, depending somewhat upon the number of wires in the antenna. If one end of the top portion is higher than the other end, and the antenna is of the inverted L type, the spreader at the far end should be about eighteen feet long and the one at the end nearest the lead-in may be smaller, even down to three feet in length. Small pipes are also sometimes used, but once bent by the wind, they will not straighten of their own accord.

No matter what kind of a form the top part of the antenna has, the lead up to it should always be in the form of a small cage, from three to ten inches in diameter. Again, the spreaders may be of anything that suggests itself. The best looking ones are made of rings cut out of sheet metal or wood. If of wood, they may be rings turned on a lathe with a groove in the periphery. Slots can be cut for the antenna wires, an then a binding wire can be run in the groove and solder to all of the antenna wires. If of metal, the spreaders can have a hole in the edge near each antenna wire, and a short length of wire can be twisted through this hole and twisted and soldered to the antenna wire.

The best way to begin the actual construction of the antenna is to find out the exact length between insulators that the finished product is to be. There is only one way in which this can be done. Take a piece of wire or rope and put an insulator in each end just as if it were a single wire antenna. Hoist this up between the masts and vary the length between insulators until the correct length is obtained. Do not do this without first attaching a rope to pull it down with, or you will never be able to get it down. Another wire can be attached to this wire as a mock lead-in and the Junior Operator can stand off and form a mental picture of the finished antenna. He can see just how far the antenna will swing from all guy wires, trees, etc., in the vicinity and possibly a better arrangement of the antenna and lead-in will suggest itself. In this way the exact length of the antenna and lead-in are measured.

This done, the next requirement is an open space where the antenna can be built. The lengths of antenna wire are measured off approximately, leaving them plenty long enough, and one end of the antenna is built complete first. The best arrangement is to run the antenna wires through holes in the spreaders right up to the vertex of the bridle. In other words, let the bridle be formed of the antenna wires themselves. The insulators should be connected in series at the juncture of the bridle and the halyard or hoisting rope. If the insulators are subjected to a severe electrical strain, it will be the one nearest the antenna that will suffer. It is accordingly of no benefit to put an additional small insulator at each antenna wire on the antenna side of the spreader. Use glazed porcelain insulators through out, as you cannot afford to waste many watts in a poor insulator. A good assortment of small ½ or ¾ inch galvanized iron shackles and thimbles is always handy when neatness in the construction is desired.

Another point that should be kept in mind is that the finished antenna will be no stronger mechanically than its weakest point. Think of the unusual strain that is placed on the antenna when it is covered with heavy ice in the winter time. Pick out the weakest point and strengthen it to stand all conditions.

Upon finishing one end of the antenna, fasten that end solidly to something about three or four feet high. Go to the other end, thread the two outside wires through the spreaders and pull them taut and to the proper length, as measured by the wire that was used to gage the distance between the tops of the masts. Be sure that the spreaders lie at exact right angles to the antenna wires. When this is done, the other intermediate wires may be secured temporarily in place, and by pulling the whole antenna taut, about three feet above the ground, the length of the intermediate wires can be adjusted until they are all of the correct length, when upon they can be permanently secured and soldered.

In the case of a cage, the best method of construction is a trifle different. One end is finished first, as before, and the end spreader is permanently put in place. That end is then fastened to something solid as before. Going to the other end, the wires are then pulled all to an even length, a little longer than the finished antenna will be. This length will be taken up when we insert in place the other end spreader, which should be done next. The antenna may now be stretched taut and the space between the end spreaders measured off into equal parts and the intermediate spreaders fastened into place and all binding wires put on and joints soldered. The antenna proper can then be laid aside and
the cage lead-in constructed in much the same manner as described above.

Joining the lead-in and the top part of the antenna is usually a proceeding that requires a little thought as to the best method. The joint must be good mechanically, in order not to break under constant swaying by the wind, and it must be good electrically. By keeping both of these requirements in mind, a good connection can be made.

Just a word about halyards. Half inch manila or hemp rope is usually used in the average antenna of the amateur. It should be tarred, with compounds marketed for that purpose, and rolled in sawdust to remove excess tar. This will greatly lengthen the life of the rope by preventing it from rotting and will lessen the tendency to contract in wet weather.

With the antenna system completed, the Junior Operator may hoist the antenna to the masthead and if he has done a good job and been careful, it will be an exact fit. Every six months or so it is a good thing to lower the antenna, clean the insulators and renew any parts that are showing wear.

A fellow with a good antenna always has an advantage over the one that builds this necessary part of his station in a haywire manner. In the case of the former, any error in result is directly contributed to the set itself, or freak conditions. He can test circuits and compare results with the confidence that the part of his installation outside of the radio room is performing its work in a silent and efficient manner.

The Operating Department

(Concluded from page 62)

NORTHERN TEXAS: Dallas, Greenville, and Commerce seem to be about the "crop" for district No. 1. Hurrah for Dallas—Get ahead of Fort Worth this month—but listen, here's the dope, Fort Worth either failed to report or some of Dallas bunch made away with the report. The DM hasn't quite doped it out yet, but believes there was some underground work going on somewhere for that Fort Worth bunch was going too strong to stop right off about like this. Maybe the Hired Hand at WHAP had something to do with it. Anyway traffic is moving through Dallas in all directions with little or no delay. HX lost his mast during a high wind, and had all the neighbors trying to hold down the guy anchors to save the thing. But even with the help of "Daddy" Blaylock, (Mayor pro tem, and our next Mayor after April 3rd) the blooming masts insisted upon tearing down a few fences within the block. Mayor; don't use two-footers peg fashion for guy anchors on healthy mastas normally in Texas during the March winds. DS Arthur West sends his resignation this month due to lack of sufficient time on account of some newspaper work. (We wish you well O.M.) An opening for an appointment as DS, Applications are in order—DS E. L. Martin, 5TH, Wichita Falls. DS district No. 3 is right on time with his report which states everything picking up, even to QRN. Wichita Falls stations are doing good work. 6UN, Ralph Parker is using 30 watts instead of 300 watts as appeared in a previous report. 5EL, Randall Cranfield, is getting 2TC amps on a 6-watt set and working first district stations direct.

The Operating Department

(Concluded from page 62)

NORTHERN TEXAS: Dallas, Greenville, and Commerce seem to be about the "crop" for district No. 1. Hurrah for Dallas—Get ahead of Fort Worth this month—but listen, here's the dope, Fort Worth either failed to report or some of Dallas bunch made away with the report. The DM hasn't quite doped it out yet, but believes there was some underground work going on somewhere for that Fort Worth bunch was going too strong to stop right off about like this. Maybe the Hired Hand at WHAP had something to do with it. Anyway traffic is moving through Dallas in all directions with little or no delay. HX lost his mast during a high wind, and had all the neighbors trying to hold down the guy anchors to save the thing. But even with the help of "Daddy" Blaylock, (Mayor pro tem, and our next Mayor after April 3rd) the blooming masts insisted upon tearing down a few fences within the block. Mayor; don't use two-footers peg fashion for guy anchors on healthy masstas normally in Texas during the March winds. DS Arthur West sends his resignation this month due to lack of sufficient time on account of some newspaper work. (We wish you well O.M.) An opening for an appointment as DS, Applications are in order—DS E. L. Martin, 5TH, Wichita Falls. DS district No. 3 is right on time with his report which states everything picking up, even to QRN. Wichita Falls stations are doing good work. 6UN, Ralph Parker is using 30 watts instead of 300 watts as appeared in a previous report. 5EL, Randall Cranfield, is getting 2TC amps on a 6-watt set and working first district stations direct.

(P.B.) 6GY a 20-watter, wouldn't commence for awhile but is "percolating" now and handling quite a bit of message traffic. 5HQ thought he would quit the game for the Y.L.s—don't know the details, but he's getting his station going again. (?) If the wind ever lets up 5UO has a new mast all ready to stand on end. 5OK with a new C.W. is working circles around the old rock crusher he used to have. DS C. B. Baxter, and ramrod of 5XAJ at Dublin, seems to be the main traffic mover out this way. 6NS is running him a close second and his 20-watt CW. signals have been reported 1275 miles west of California. 5QT on 6 watts reported 1880 miles over land. 5QT is now located at Stephenville, Texas. 5XAJ on 25 watts was reported nearly 4,000 miles from Dublin and on same power has worked many times over 1500 miles on voice, also to Canada and Mexico City on voice. No report from district No. 2, but three live stations reported direct to the ADM, 5AJT, 5DX, and 5LM. (Glad to hear from you fellows in district No 2—ADM.) Out in the Panhandle country 5ZK is passing those friendly messages to some amateur to another or his friend's messages to some other amateur friend, and seems to have the whole district to himself. We have a new A.R.R.L. station at Childress, Texas, 5ACC.

OKLAHOMA: 5KE, 5XT, and 5ZT are handling the bulk of the messages. 5ZAV is still having generator trouble. 5ZG, while on a few hours, moved a bunch of 10. Oklahoma University station is responsible for three of relay stations being inactive this season; 5ZZ, 5LO and 5ZQ. Traffic in and out of Muskogee is being handled by 5BM, who is QSO all coasts and Canada. 5SAQ is changing to C. W. The district around Tulsa has several good stations now, 5GA, 5GJ, 5SR, and 5SG, all getting out and doing good work. 5SR's call has been changed to 6HM. 5A is a new A.R.R.L. station owned by Eugene M. Link at Fort Sill and will be a help to district No. 4.

NEW MEXICO: Old reliable, 5ZA, merely reports traffic moving OK. I don't know but what that tells the tale just as well.

WINNIPEG DIVISION

P. Socolofsky, Mgr.

This division is on the boom, that's all there is to it. The amateur radio "fit" is hitting all our cities. We have a complete staff of good reliable men in the Operating Department. Let us see if they can prove themselves by pinching the reports out of the ORSs. How about the seven stations, can we get some help?

9HX, the star station of the division, is on doing very fine work and is open for traffic from 10 P.M. until 1 A.M. week nights, and 10:00 to 2 A.M. on Sundays. 4TH carries away the division prize with 109 messages, and is the best station in Moose Jaw. 1AO has a splendid 16-watt C.W. (Yanks please QSL, QRA is Moose Jaw.)

Saskatoon is well represented by 4FN's fifty-watt.

WINNIPEG: 4OK, A. J. Simpson, is the new DS. 4CN is shooting traffic right along with one fifty-watter. 4CS is still on spark and V5Ring 2GC miles O.H. S6HA has charged him with 10 watts. 4ST and 4CH are 5-watters.

There seems to be considerable trouble between the B.C.L. 's and the hams of Winnipeg. How about the Radio Club? Can't an agreement be made?

Daylight routes are working out fine. This division is bombarded with heavy QRN and blizzards.
Say, you fellows that are having trouble getting your inverted dupes to work; look over your circuits again, as we’re getting a dozen bouquets a day about that circuit.

What’s the use of having D.C. on your plates when you throw in a key click that immediately becomes known by the listeners for miles around? Truly this is getting serious so, won’t someone write a nice article on “Key Clicks, Their Causes and Cure?”

French 8AB has been heard by 8CF of Ann Arbor, Mich., during the month of March. According to 8CF he was doing the famous act of “CQ-ing.” Has anyone further west heard French 8AB’s sigs?

1ALI would like to have someone explain to him in simple language why sparks jump to his nose every time he talks into his microphone.

9DYV has a 1-KW spark set but no meters to tune it with. To tune the set he holds his fingers across the antenna and ground and then presses the key. He then picks himself up and measures the distance it threw him. This distance in feet is directly proportional to the transmitting range, hence the set must be in tune.

From the same source comes the information to all hams that 2300 volts A.C. is not adapted for use on the plate of a five watt tube.

Famous Words
1913—“How do I come in?”
1923—“Please send me a card.”

“LQ” wants to know if anyone knows of a freight agent that can haul about three tons of descriptions of bum “supers” out into the Sahara Desert.

In a short wave honeycomb set, don’t bunch all six leads from the coils and bring them through one hole in the panel and then wonder why the set doesn’t work. Separate each lead as far as possible where it goes through the panel and you’ll hear more sigs.

“Jake” Bolles, A.R.R.L. publicity man, holds the chess championship of the A.R.R.L. He has defeated Reinartz, Schnell and other famous players and will meet all comers any time and any place, by radio. (Please send slow).

The Committee on Application of Radio to Moving Trains of the Association of Railway Electrical Engineers desires to communicate with anyone who can give information regarding actual experiments in radio reception or transmission to or from a moving train. Kindly communicate with M. P. S. Westcott, Ass’t Car-Lighting Eng’r, C. M. & S. P. Ry. Co., West Milwaukee Shops, Milwaukee, Wis.

“For Sale—Radio with aerial, 3,000 ohms, $12.00”—Calgary Morning Albertan.

We thought the article about the radio waves washing the insulation off an antenna was the best yet, but here’s a better one:

Scene: A radio store; with radio expert (?) in background. Enter a radio fan.

Fan: “Could you tell me why I hear a lot on one night, and hardly anything the next night?”

Radio Exp: “Surely, you have a powerful receiving set near you which draws in all the radio waves around it, and then you get them after it uses them.”

Twas ever thus, that the innocent fan should be the victim for the ignorant expert.

3CDQ (OW) says that winding banked coils has improved her vocabulary considerably.

Why can we do things to a C.W. transmitter which lower the antenna current and then when you ask the other fellow QRM he comes back with “Vy much more QSA nw, OM?”
New Apparatus

This department is not conducted for the purpose of according free publicity to advertisers. It stands on its own bottom. Its purpose is to give QST readers accurate information on new products. Apparatus described here must be sufficiently interesting to give its description and interest to our readers. The contents of this department will be selected each month from the most interesting material at hand.

The Cutler-Hammer Mfg. Co., has just brought out a potentiometer for radio work that matches their rheostats and is a rugged and well built piece of apparatus.

The Cutler-Hammer Mfg. Co., has just brought out a potentiometer for radio work that matches their rheostats and is a rugged and well built piece of apparatus.

This potentiometer is of the revolving drum type and the resistance unit has a resistance of 300 ohms. The resistance wire is clamped between two insulated caps which hold the wire firmly in a horizontal position. The broad, flat contact on the tightly clamped resistance unit insures that the wire will not be damaged or displaced under constant usage. The instrument is designed for panel mounting and is provided with three binding posts to facilitate wiring.

The need for a non-inductive potentiometer and variable resistance has at last been met by the Allen-Bradley Company. The Bradleyometer is just the thing for the far end of a Beverage wire or for use in some of the latest "inverse duplex" circuits where a resistance of non-inductive type is required.

The Bradleyometer uses the same principle of compression resistance (carbon pile) that is used in the Bradleystat and is put out by the same company. Two columns of discs are assembled in the porcelain container, each column with a separate pressure plug extending through the top cover plate. The pressure knob rotates through 180 degrees and thru a special shaped cam which applies pressure to one column in one direction of rotation and to the other column in the other direction. As pressure is applied to one of the columns the pressure is released on the other.

The resistance of a column of the discs varies with the pressure, so that the action of the Bradleyometer is to decrease the resistance on one column and at the same time increase the resistance on the other. The total resistance between the outside terminals remains constant while the center connection may be shifted with respect to the resistance between it and the outside terminals.

The Bradleyometer accomplishes the full range in resistance balancing with 180 degrees rotation of the knob. It is made in resistances of either 200 or 400 ohms between outside terminals.

In these days of trans-continental and international amateur radio, the "Mac-Ra-
dio" Thermometer, made by the McCallum Appliance Co., of Silver City, New Mexico, is a handy thing to have around the station. It consists of a celluloid card approximately three inches square, with a dial of the same material mounted on its center. By means of appropriate wording on both the dial and card the time in hours and minutes at any point in the world corresponding to our local time may be read directly by rotating the dial. Its chief use among the amateur fraternity will be in the conversion of local standard time to G.M.T. and vice versa. It will leave no room for argument on that subject and will save a lot of time and worry on the part of our DX men.

The Hoyt Peep-Hole meter has recently been put on the market by the Burton-Rogers Company. It meets the need for a low priced meter of reasonable accuracy for use in the filament circuits of receiving tubes. It can be mounted directly on the receiving panel in place of the peep-hole ordinarily used—hence its name. Any one who has ever had the experience of chewing a hole for a large meter out of a piece of bakelite, using a file and a drill, will be glad to hear that the Hoyt meter fits into a hole approximately seven-eighths of an inch in diameter. The meter is nickel plated, and the accompanying cut shows its actual size. Hoyt Peep-Hole meters are made to read either voltage or current. The voltmeter may be obtained with a scale of 0-6 or 0-10 volts while the ammeter is made to read 0-8 or 0-1.2 amperes. Multipliers may be obtained which when used with the 0-10 voltmeter allow voltages up to 30, 50 or 100 volts to be read. All styles operate on either AC or DC.

Any group of lead or Edison cells equivalent to 22 to 100 volts can be charged in series at the same time. The charging rate is regulated by an ordinary tungsten lamp screwed into the socket on the top of the rectifier. A 60-watt lamp meets the usual requirement. The battery must be disconnected from the set before charging, as the D.C. circuits are not insulated from the A.C. end of the rectifier. An extension cord and plug makes connection to 110 V. A.C. line, and two clips with their polarities marked are used to connect to the battery terminals.

The TB charger is moderately priced. It weighs four pounds and occupies an overall space of five by five by three inches.
Wm. D. Wood, 9BD, (Canadian) is well known throughout the west as being responsible for the ear-rending, synchronous thunder-factory that used to radiate “power” from Vancouver, B. C. But that is not all; he has spent six of his twenty summers with “cans” clamped on his head.

He fell into the radio game while attending the Tech High at Oakland, Calif. here he operated 6KL for two winters. During the summer of 1920 he took a composite spark set to his home at the Barron Hotel at Vancouver, B. C., and proceeded to spread the call of 5BR (Can.) over the map. The station lasted only six weeks but he relates that it was worth all the trouble it caused him and the rest of the family, because it attracted the attention of the QST Factory to the fact that there (Concluded on page 74)

PARKER E. WIGGIN

Among the most prominent radio amateurs in the east is Parker E. Wiggin, 8ZD of Pittsburg.

Mr. Wiggin spent the early part of his life in Kansas. After graduating from the Kansas City High School, he entered the University of Kansas where he completed a course in Electrical Engineering. He became interested in radio as an amateur in 1907 and has kept step with its development ever since. As an active amateur in Kansas, he was one of the organizers of the old Missouri Valley Radio Association.

Entering the army on April 9, 1917, he served for eighteen months in the radio research section of the United States Signal Corps under Major Armstrong. At the signing of the armistice he entered the University of Toulouse at Toulouse, France, (Continued on page 74)
Amateur Sigs. Recorded on Tape

S. S. Verity
Off Cape of Good Dope
March 22, 1923

Editor, QST:

I and the 2nd op. on this tub have been messing with a tape recorder and have got it going good now. We went down last nite on 200 and I thot the gang might be interested in the sigs we copied there.

This is with one tube and the beauty of it is that the recording is automatic and shows EXACTLY WHAT WAS SENT.

Yours when you catch me,

S. O. Long.

QST Stays!

Dallas, Tex.

Dear Eddy:

Most folks—ordinary folks, that is—have a Designing Doctor and a Patient Preacher to whom they confide their personal joys and sorrows. The radio amateur adds a third court of appeals and pours out his scientific soul to the Energetic Editor of QST.

Just to show you how far a fellow will go when there’s nobody to stop him, let me tell you a dark secret. We work for a railroad. It is up to the minute, with all latest appliance, gear shifts ‘n everything and has its strikes and riots and wrecks (some of ’em barely will stay on the rails!) and, of course, its regular, absolutely-necessary, once-in-so-often salary-cuts and force-reductions.

That brings us down to the point in question. It’s about these cuts in salary and their effect upon us. We were not immune or anything like that, so whenever the grim reaper rope, we had to kick in with a goshamighty generous chunk of our monthly recompense, just like all the other poor chaps in the office, to keep the poor old iron horse from starving to death—so they said! Well, we stopped the milkman, then the iceman; then, sometime later, we cut out the extension telephone set (why is a telephone, anyway?) and thought seriously of calling out the reserves and having the light meter read, with the honest intention of paying our last electric bill for some time to come. It was getting that bad.

However, before it got that far we suddenly remembered that we were subscriber to half a dozen magazines, and of course the local newspapers. Well, from now on one local was going to have to cover the field. But there were the magazines. We simply couldn’t afford ’em. But watch ones? All of ’em. The pretty girl pictures on the covers weren’t buying us a thing and were actually making us homesick to see a real, unpainted, sweet, old-fashioned, sensible girl like our mother was when she was young. (Where are they now, Eddy?) So the magazines must go. And then came the tug of war or twanging of the heart strings, or whatever else you might want to call it, as we struggled to get rid of the periodicals with the least sacrifice.

Our beloved little QST was listed among the unfortunate. Parting with QST, we knew, would be like—well, it wouldn’t be like anything but just that. Nothing else could be quite so violent a misery. So we decided to think twice.

Now, dear Eddy, we have thought twice. We have come to the solemn decision that before we will allow our radio intellect to lapse into a state of insensibility we will dispense with our morning paper! Can you grasp the import of that. old dear—such a magnificent demonstration of loyalty? You’ve doubtless been hauled to the office in a street car full of condensed humanity, and have observed, insofar as such a situation will permit, that here and there in the jam (we almost said “jelly!”) some cheerful bird is careening over the shoulder of some other fellow, scanning the morning’s news. Ever see that? Well, we are going to do that from now on, until such a time as the high cost of living con-
descends to the level of railroad salaries—and once a month, as heretofore, our flat-footed postman will grin and hand us the lil’ ol’ QST, and we will rush indoors to flip down across the bed or somewhere—anywhere—happy-hearted, care-free, proud to look the whole world in the face and say, “I’m still with the gang!” 73 to the ‘force’ and very best for yourself.

Respectfully,
“Texas.”

Bonehead Operating
Princeton University,
Princeton, N. J.

Dear Eddy:

There are two bonehead plays regarding traffic that I would like to raise a howl about.

Howl Nr. 1. Many of the relay stations commit the following crime. If they miss a word or two of a message, instead of coming back and giving you a plain “ND pse QTA so and so,” they say, “R R Pse QTA so and so.” Now what in the hexx does that “RR” stand for? It is very confusing when a station is fading to hear him come back and say R when he means ND, to say the least. His “R” probably means, “I am still with you, old dear, but owing to unforeseen difficulties I missed a few words. Won’t you do me the kind- ness to retransmit them?” Old timers never do it, but five different hams have set me wild with that stuff in one night. If you mean “ND,” say so and don’t give the other chap the apoplexy with an ambiguous “R R.”

Howl Nr. 2. This is the old howl regarding crazy routing of traffic. The first indications of insanity the other night appeared when a bird in western New York gave me five messages for Ohio, thereby adding some 600 miles to the path. I gave them to Ohio and got worse in return. An 8 in Ohio gave me a message for Alberta, Canada. It was signed by a 6 in California! Sort of a private transcon, I guess! The last one was the worst of all. A “one” in Connecticut gave me a message for Connecticut! I asked him “hw cum” and he sez, “Yes !!”

Why not start a department for bonehead plays in QST? 73’s.—“J” of 3XM.

Brittle Stuff

Somewhere or Other

Dear Ed:

The millennium is here—for me at least. I’ll let you in on the dope.

Last night I wuz out with a friend and in the course of the evening we stopped at his place of emplomeint. While there I chanced across fourteen back ishoos ov QST, all strangers to me—think ov it—14 ishoos. U know how tha fellos say they enjoiv receiving their monthly copy; well, picture sum one fourteen times as happy,—can you ‘majin? Say O.M. at that minut if my inward jo cud have ben expressed in radiated amps, they’d have herd me couth of Cape Horn (allow 5 miles for exaggeration). Why I could have walked out a 3rd story window and made a sukses of it, I waz that boyant!

Sum neglectful sometime-amateur had left them in a bunch of stock sold to this furm. I know that man; he’s slowed up considerable tho—he’s speed kop on our lokal forse).

On parting last nite I informed the good samertan (my friend) that he wud not see me for sum time as I wud he sojournin in Paradise for an indef’nit period, and that it wuz his fault ‘cause he donated the whole wurks to me.

I have ben a subscriber to your magazine fur almost a year and that is wat I think of your produkt. Those two top vest buttons that just snapped off are over there in the corner—more wurk for the wife.

No kidding tho—QST is some magazine. Well, kind reeder I’ll brake off now. Pse excuse QRM.
(QRC seventh heaven).

Stop, Look, Listen!

Fort Worth, Tex.

Mr. Editor:—

I am handing you the following in the hope that you will publish it, and that it will help to wake my fellow amateurs to the fact that here is one more way to advertise our league. Thanks.

Sa fellers, why have we all been putting A...R.R.L. in little letters down in one corner of our cards. I for one have lit upon a bright idea. In the future all my cards will be headed “AMERICAN RADIO RELAY LEAGUE, STATION 5DI,” with the accent on the first part, in large letters at the top. Don’t you think this will help to give our league more prominence among the novices and non-members, than the small insignificant abbreviation at the bottom of our cards? Nobody but we hams know what it means. Think it over, fellows, and then let’s all have it put at the top in a way that even the most uninformed will know that we are members of the only real honest to goodness radio organization that exists.

Yours very truly,
T. S. Depew, 5DI.

We Have With Us—

Editor, QST:

Don’t you sometimes wish that you could know the originators of the Atrocities that
tear holes in the Protesting Ether. Well here are just a few that you will all know.

Oswald resides in the brownstone front. He is a Delicate Child who subsides on cigarettes and sympathy. Oswald is a Leaky Condenser. His Capacity for study is about .000003 micromicrofarads. Oswald's Equipment was Purchased Complete. The only Reason that he didn't build it was because he did not Understand the Use of a screwdriver. His one distinction is that he can Transmit. The revised Code suits his tastes and sounds like a union suit going thru an electric wringer. His dots are long and his dashes snappy.

Budwin Blinkum's set was designed by a Bollermaker with Ideas on Interior Decoration. The Cabinet is Related to the Kitchen Variety and the Dials were copied from Steam Gauges. It is a set of Generous Proportions. His transmitting coil was taken from one of Henry Ford's offsprings and sounds like Harry Lauder with a cold.

Ethelbert-the-Static-Buster has a C.W. set that is a Humdinger—at the Transmitting End. The set is a Fine one but the antenna that it has to Oscillate is the Bunk. In the least breeze it swings like a Cow-puncher's Partner in a Quadrille. To the Guy with the Phones on it sounds like a Grand Opera Company practicing the Scales.

H. Gilbert Lawrence Smythe-Jones is the radio Prodigy. About the time that Marconi found that he could Do Things with a Spark coil and was being interviewed by the Reporters, H. Gilbert got the Idea too. Marconi had him Beat To It since he had a Pull with the Higher Ups. If there is anything that you don't want to know ask H. Gilbert about it. Ask him how to figure Capacity and you will get a Free Discussion beginning with Dielectric Phenomena and the Probability of Life on Mars, proceeding with Patagonia and the Corporeal Theory and ending with a casual request to Return Tomorrow; he has forgotten the Formula at the Present.

“Tag” and “Zippy” have a secret Code. What they Say no one knows and that Includes “Tag” and “Zippy.” It's a pity too, for both of them can Pound the Brass at Ten Per in a way that doesn't Require a course in Greek Grammar to Read.

“Sparks” is the Real Radio Man. He is the Guy that has the set that you can hear the Ops at Catalina Island Swapping Gum with. He has a Wave Meter that never saw as high as Two Hundred and Two. “Sparks” is the guy that helps you put up that new Antenna and the one that Stands By while you call Hortense on the Phone and ask her to take in a Movie. He amits that He Doesn't Know Nothin’ but you can Bet your Oscillating Circuit that the Information he has is Accessible.

“May his Tribe Increase.” Selah!

Yours sincerely,
Chas. K. Fulghum.

WM. D. WOOD

(Concluded from page 71)

were transmitting stations in Western Canada.

Upon finishing school in California and returning to Vancouver he was successful in obtaining a Canadian experimental license and was assigned the call letters 9BD. The station, which was described in the April, 1922, QST was one of the west coast's real HE spark stations, and did some mighty fine work. But how he ran that awful spark set in the Barron Hotel and got away with it, we don't know, unless it was because his father ran the hotel.

Mr. Wood has always taken a keen interest in various amateur radio activities. Despite his quiet and studious make-up he has multitudes of friends through the radio fraternity. He was until lately Manager of the Vancouver Division of our A.R.R.L. and president of the British Columbia Radio Association. He has filled these offices very capably and stands out foremost in the organization of the British Columbian amateurs.

At present he is attending college in Seattle, Wash., but he still finds time to attend club meetings once in a while or stand a watch at one of the stations.

With the coming of summer, 9BD is planning a good C.W. set in anticipation of being on the air again with the rest of the gang.

P. E. WIGGIN

(Continued from page 71)

where after five months he passed the examinations for an E.E. Degree. He later studied radio engineering at the Sorbonne University, Paris. On his return to this country Mr. Wiggin entered the employ of the Westinghouse Electric and Manufacturing Company as radio engineer. His work here dealt largely with the designing of commercial and broadcasting equipment.

Mr. Wiggin is a member of the A.I.E.E., I.R.E., A.S.M.E., A.R.R.L., and the Radio Engineering Society of Pittsburg. As a radio amateur he holds the position of District Superintendent of Pennsylvania District No. 9 of our A.R.R.L. From his station, 8ZD, he bats out a husky bunch of traffic every month.

He loves a radio argument better than food or sleep which we kinda suspected, considering that red mop o' his. His favorite subject is antennas. Those who attended the national convention at Chicago
On account of the vast quantity of calls reported we must ask your co-operation in the following or calls can not be published.

1. List the calls on a separate sheet of paper—do not embody them in a letter.
2. Arrange by districts from 1 to 9, and alphabetically thru each district; and run them across the page, not down a column.
3. Put parentheses around calls of stations also worked.
4. Omit initial or other unauthorized calls.
5. In order to distinguish between spark and C.W. stations, list C.W. stations from 1 to 9 in the usual manner, and then make a second paragraph in identical form listing the spark stations.

BANG!!—and the reports echoed from coast to coast. The CQ Party held by the Canadian A.R.R.L. on March 24th and 25th was a great success, fellows. The gang is absolutely "nuts" about short waves. We have actually made use of the waves below 200 meters.

The first night of the tests was a very poor night for radio in the eastern half of the country and 200 meters signals did not carry well; but there is every reason to believe that the 100 and 150 meter waves would be necessary before any definite results could be announced.

All of the calls heard during the CQ Party were copied between 1 to 9 in the usual manner, and then noted from the following typical logs of stations heard:

Calls Heard

HEARD DURING MARCH

<table>
<thead>
<tr>
<th>Calls Heard During March</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unless Otherwise Specified</td>
</tr>
</tbody>
</table>

On account of the vast quantity of calls reported we must ask your co-operation in the following or calls can not be published.

1. List the calls on a separate sheet of paper—do not embody them in a letter.
2. Arrange by districts from 1 to 9, and alphabetically thru each district; and run them across the page, not down a column.
3. Put parentheses around calls of stations also worked.
4. Omit initial or other unauthorized calls.
5. In order to distinguish between spark and C.W. stations, list C.W. stations from 1 to 9 in the usual manner, and then make a second paragraph in identical form listing the spark stations.

BANG!!—and the reports echoed from coast to coast. The CQ Party held by the Canadian A.R.R.L. on March 24th and 25th was a great success, fellows. The gang is absolutely "nuts" about short waves. We have actually made use of the waves below 200 meters.

The first night of the tests was a very poor night for radio in the eastern half of the country and 200 meters signals did not carry well; but there is every reason to believe that the 100 and 150 meter waves would be necessary before any definite results could be announced.

All of the calls heard during the CQ Party were copied between 1 to 9 in the usual manner, and then noted from the following typical logs of stations heard:

Calls Heard During March

Unless Otherwise Specified

<table>
<thead>
<tr>
<th>Calls Heard During March</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unless Otherwise Specified</td>
</tr>
</tbody>
</table>

On account of the vast quantity of calls reported we must ask your co-operation in the following or calls can not be published.

1. List the calls on a separate sheet of paper—do not embody them in a letter.
2. Arrange by districts from 1 to 9, and alphabetically thru each district; and run them across the page, not down a column.
3. Put parentheses around calls of stations also worked.
4. Omit initial or other unauthorized calls.
5. In order to distinguish between spark and C.W. stations, list C.W. stations from 1 to 9 in the usual manner, and then make a second paragraph in identical form listing the spark stations.

BANG!!—and the reports echoed from coast to coast. The CQ Party held by the Canadian A.R.R.L. on March 24th and 25th was a great success, fellows. The gang is absolutely "nuts" about short waves. We have actually made use of the waves below 200 meters.

The first night of the tests was a very poor night for radio in the eastern half of the country and 200 meters signals did not carry well; but there is every reason to believe that the 100 and 150 meter waves would be necessary before any definite results could be announced.

All of the calls heard during the CQ Party were copied between 1 to 9 in the usual manner, and then noted from the following typical logs of stations heard:

Calls Heard During March

Unless Otherwise Specified

<table>
<thead>
<tr>
<th>Calls Heard During March</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unless Otherwise Specified</td>
</tr>
</tbody>
</table>

On account of the vast quantity of calls reported we must ask your co-operation in the following or calls can not be published.

1. List the calls on a separate sheet of paper—do not embody them in a letter.
2. Arrange by districts from 1 to 9, and alphabetically thru each district; and run them across the page, not down a column.
3. Put parentheses around calls of stations also worked.
4. Omit initial or other unauthorized calls.
5. In order to distinguish between spark and C.W. stations, list C.W. stations from 1 to 9 in the usual manner, and then make a second paragraph in identical form listing the spark stations.

BANG!!—and the reports echoed from coast to coast. The CQ Party held by the Canadian A.R.R.L. on March 24th and 25th was a great success, fellows. The gang is absolutely "nuts" about short waves. We have actually made use of the waves below 200 meters.

The first night of the tests was a very poor night for radio in the eastern half of the country and 200 meters signals did not carry well; but there is every reason to believe that the 100 and 150 meter waves would be necessary before any definite results could be announced.

All of the calls heard during the CQ Party were copied between 1 to 9 in the usual manner, and then noted from the following typical logs of stations heard:

Calls Heard During March

Unless Otherwise Specified

<table>
<thead>
<tr>
<th>Calls Heard During March</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unless Otherwise Specified</td>
</tr>
</tbody>
</table>

On account of the vast quantity of calls reported we must ask your co-operation in the following or calls can not be published.

1. List the calls on a separate sheet of paper—do not embody them in a letter.
2. Arrange by districts from 1 to 9, and alphabetically thru each district; and run them across the page, not down a column.
3. Put parentheses around calls of stations also worked.
4. Omit initial or other unauthorized calls.
5. In order to distinguish between spark and C.W. stations, list C.W. stations from 1 to 9 in the usual manner, and then make a second paragraph in identical form listing the spark stations.

BANG!!—and the reports echoed from coast to coast. The CQ Party held by the Canadian A.R.R.L. on March 24th and 25th was a great success, fellows. The gang is absolutely "nuts" about short waves. We have actually made use of the waves below 200 meters.

The first night of the tests was a very poor night for radio in the eastern half of the country and 200 meters signals did not carry well; but there is every reason to believe that the 100 and 150 meter waves would be necessary before any definite results could be announced.

All of the calls heard during the CQ Party were copied between 1 to 9 in the usual manner, and then noted from the following typical logs of stations heard:

Calls Heard During March

Unless Otherwise Specified

<table>
<thead>
<tr>
<th>Calls Heard During March</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unless Otherwise Specified</td>
</tr>
</tbody>
</table>

On account of the vast quantity of calls reported we must ask your co-operation in the following or calls can not be published.

1. List the calls on a separate sheet of paper—do not embody them in a letter.
2. Arrange by districts from 1 to 9, and alphabetically thru each district; and run them across the page, not down a column.
3. Put parentheses around calls of stations also worked.
4. Omit initial or other unauthorized calls.
5. In order to distinguish between spark and C.W. stations, list C.W. stations from 1 to 9 in the usual manner, and then make a second paragraph in identical form listing the spark stations.

BANG!!—and the reports echoed from coast to coast. The CQ Party held by the Canadian A.R.R.L. on March 24th and 25th was a great success, fellows. The gang is absolutely "nuts" about short waves. We have actually made use of the waves below 200 meters.

The first night of the tests was a very poor night for radio in the eastern half of the country and 200 meters signals did not carry well; but there is every reason to believe that the 100 and 150 meter waves would be necessary before any definite results could be announced.

All of the calls heard during the CQ Party were copied between 1 to 9 in the usual manner, and then noted from the following typical logs of stations heard:

Calls Heard During March

Unless Otherwise Specified

<table>
<thead>
<tr>
<th>Calls Heard During March</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unless Otherwise Specified</td>
</tr>
</tbody>
</table>
Some Effects of the Distributed Capacity Between Inductance Coils and The Ground

A coil of wire wound in any of the familiar forms called "inductance coils"—beinhs in an electric circuit primarily as an inductance. The potentials of the different parts of the coil are, however, different from each other and from the potential of the ground. For this reason the coil also behaves to a certain extent as an electric condenser, or rather a system of condensers. These capacity effects of inductance coils are particularly important at the high frequencies employed in radio communication of capacity effects in inductance coils, and careful studies of these effects, both theoretical and experimental, have been made at the Bureau of Standards. An interesting result which has been found is that one effect seems to depend primarily

On account of the importance of the information in radio concerning efficacy in inductance coils, careful studies of these effects, both theoretical and experimental, have been made at the Bureau of Standards. An interesting result which has been found is that one effect seems to depend primarily

Some Effects of the Distributed Capacity Between Inductance Coils and The Ground

A coil of wire wound in any of the familiar forms called "inductance coils"—beinhs in an electric circuit primarily as an inductance. The potentials of the different parts of the coil are, however, different from each other and from the potential of the ground. For this reason the coil also behaves to a certain extent as an electric condenser, or rather a system of condensers. These capacity effects of inductance coils are particularly important at the high frequencies employed in radio communication of capacity effects in inductance coils, and careful studies of these effects, both theoretical and experimental, have been made at the Bureau of Standards. An interesting result which has been found is that one effect seems to depend primarily
on the capacity of the coil to ground. This effect is observed when two condensers in series are connected across the terminals of the inductance coil, and the common terminal of the two condensers is grounded. If the inductance coil possesses capacity to ground, the familiar criterion for resonance in the system, computed from the known values of the capacities of the two condensers, will not obtain.

If both condensers are variable, and the system is adjusted for resonance by successively assigning arbitrary values for the setting of one condenser, and then tuning with the other condenser, it would be expected from elementary considerations, neglecting the effects of distributed capacity, that the successive resonance values of the capacity of the two condensers in series, determined as the product of their capacities divided by their sum, would be constant. On account of the distributed capacities, this simple relation does not hold. It is found, however, that under the conditions above mentioned, with the common terminal grounded, the capacity of the two condensers in series determined as the product of their capacities divided by their sum, is linearly related to the reciprocal of the sum of their capacities. This relation has been verified both mathematically and experimentally.

The condensers used in making accurate radio measurements are provided with metal shields and one terminal is connected to the shield. The shield is usually grounded. If two shielded condensers are connected in series so that a grounded common connection is made to the two terminals which are connected to the shield, and if the unshielded terminals are connected to an inductance coil, the relation above mentioned will obtain. This relation is therefore particularly useful in making accurate radio measurements.

The results of both the mathematical and experimental investigations of this property of inductance coils are given in a publication of the Bureau which has just appeared, Scientific Paper No. 427, "Some Effects of the Distributed Capacity between Inductance Coils and the Ground," by Gregory Breit. Copies may be purchased for 5 cents from the Superintendent of Documents, Government Printing Office, Washington, D. C.

A Thermo Battery
For WD-11's

A NOVELTY in the source of filament current for small dry-cell operated tubes is presented by HECT. The materials required are: 40 pieces of No. 14 copper wire each six inches long, and 40 pieces of No. 14 Advance resistance wire each six inches long. Two wooden rings having an inside diameter of six inches and an outside diameter of eight inches are also necessary. With pliers, tightly twist together about one inch of the ends of wires of different materials, continuing until all the wires are used; but do not twist together the ends of the last two wires as they are the terminals of the thermo-battery. The wires are then clamped between the wooden rings as shown in the sketch, taking care that the junctions do not touch each other. The inner circle of junctions may now be heated by placing over a gas burner or an electric heating element, or, if you live near the North Pole, you can cool the outer junctions instead. The two terminal wires may now be connected across the filament of the receiving tube, and as long as the heat (or cold) is steadily applied, the direct current produced will light the tube nicely. C. E. D.

33-PLATE VARIABLE CONDENSER

Exactly as per cut. Mailed anywhere in the U. S. A. Any quantity, $1.70 each. Postage extra.

With knob and pointer $1.85 each, postage extra.

NE PAGE McKENNY CO.
ARMOUR BUILDING
SEATTLE, WASH.

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
The New
Burgess Radio Atlas
Of the World

Through the air comes a signal! Who's calling? Where is he located? Can you mentally put your finger on the spot?
The new Burgess Radio Atlas lists every broadcasting station in the world and contains three big double page maps, 13x16 inches in size, showing—(1) The United States. (2) Canada. (3) The World.

10c Brings It

Send us ten cents and your dealer's name and we will send you this big 16-page atlas containing the three big maps showing by red dots the location of all towns with broadcasting stations. Contains two lists of all stations, alphabetically and by towns, together with wave length and names of owners. Maps show time divisions and radio districts. All new countries correctly shown and named. Single page map shows U. S. Army and Navy Stations, also Relay System of Radio Stations. Many other descriptive facts and data too numerous to mention.
Every radio operator needs one of these Burgess complete Atlases. First edition is limited. Send your order today and don’t fail to mention your dealer’s name.

BURGESS BATTERY COMPANY
Dept. 61
Madison, Wis.
In Canada: BURGESS BATTERIES, Ltd.
Winnipeg, Toronto, Montreal

"ASK ANY RADIO ENGINEER"

BURGESS
RADIO BATTERIES

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
MARLE

AUDIO FREQUENCY

TYPE A4
RATIO 3 3/8 to 1
LIST PRICE $3.75
BLACK TERMINAL BOARD

RADIO FREQUENCY

TYPE R1
LIST PRICE, $4.00

AUDIO FREQUENCY

TYPE A6
RATIO 5 to 1
LIST PRICE, $4.25
RED TERMINAL BOARD

TRANSFORMERS
SUPERIOR QUALITY TRANSFORMERS USED AND RECOMMENDED BY LEADING REPUTABLE MANUFACTURERS OF RADIO APPARATUS

MANUFACTURED BY
MARLE ENGINEERING CO., Orange, N. J.

“REGAL” RHEOSTAT
Has full exposed resistance wire giving fine sensitive adjustment. 6 Ohms resistance—2.2 Amperes. Better than a vernier rheostat. $1.00

FOR FINE RESULTS USE REGAL RADIO PRODUCTS
Vario-Coupler, Variometer, Potentiometer, Power Rheostats, Tube Sockets, Switch Levers, Condensers, Knobs, Dials, etc. Ask for our catalog No. 31.

“REGAL” INDUCTANCE SWITCH
A 15 point Inductance Switch complete in one unit. No more difficult soldering—no more drilling holes in panels for switch points. Biggest hit in radio. $2.00
The American Specialty Co.
BRIDGEPORT, CONN.
The Height of Efficiency
Crosley Model X Price $55

Clearly, distinctly, as though given in the same room, messages from W.L.W. Broadcasting Station, Crosley Mfg. Co., Cincinnati are heard in all parts of America if a Crosley Model X—a four tube radio frequency set—is used. This remarkable instrument, very easy to tune, simple and beautiful in construction, has repeatedly brought in messages over 4900 miles away.

Other Crosley Models, like the Model VIII, three tube set—price $48, and the Model VI, two tube set—price $28, have given exceptional results to thousands of satisfied users everywhere.

Write For Catalog Showing Complete Crosley Line

For Sale by Best Dealers Everywhere

Besides a complete assortment of receivers, Crosley manufactures parts for replacement or home construction.

Jobbers and Dealers Will be Interested in the Crosley Proposition.

New York Office, C. B. Cooper, 1803 Tribune Bldg., 154 Nassau St.
Boston Office, B. H. Smith, 929 Blue Hill Ave., Dorchester
Chicago Office, 1311 Steger Bldg., 28 E. Jackson Blvd.
R. A. Stemm, Mgr.

CROSLEY MANUFACTURING COMPANY
518 ALFRED ST., CINCINNATI, O.
Three Beautiful Cabinet Models
The Last Word In Crosley Efficiency

CROSLEY MODEL XV
(Above)

The receiving apparatus in this model is the same as that in our cabinet model XX. The cabinet contains no place for the batteries, however, placed on a mahogany table or stand, it forms an attractive piece of furniture. Price without tubes, batteries or phones $70.00

CROSLEY MODEL XX
(Below)

This attractive model is our Model X built into a highly polished mahogany cabinet. A hinged lid, when raised allows the operator access to every part of the receiving apparatus. A sliding board under the receiving apparatus forms a desk for the operator when desired. The lower compartment is made to take care of the batteries and the middle compartment contains a loud speaker which makes it possible for music, speeches, etc. to be heard clearly by every one in the room. As a beautiful piece of furniture, this model is an addition to any room. Price without tubes, batteries or phones $100.00

CROSLEY MODEL XXV
(Below)

We can conscientiously recommend this console model as the most beautiful and efficient model offered today. The receiving apparatus contains the same units as our model X though differently arranged. The cabinet, of mahogany, exceptionally well finished, is arranged to take the model B-3 Magnavox and also contains space for "A" battery, "B" battery and battery charger if desired. Guaranteed to bring in broadcasting stations 1000 miles or more distant so that they may be clearly heard all over the room. Price without tubes, batteries or phones $150.00

CROSLEY
Better—Cost Less
RADIO

CROSLEY MANUFACTURING CO.
518 ALFRED ST.,
CINCINNATI, O.
Pleasant Evenings in Camp
With a Crosley Portable

No matter how far into the wilds you go on your vacation, you can keep in intimate touch with the outside world and enjoy its pleasures in the evening.

Crosley Portable Radio Outfits have made this possible. Absolutely complete in their compact cases, they may be easily carried and quickly set up.

After a hard day's motoring, fishing or canoeing what a pleasure to get out the old pipe, sit before the camp fire and listen to music, plays and innumerable other interesting things. Get a Crosley Portable and take it with you on your vacation. It will afford you the least expensive pleasure you have ever enjoyed.

Crosley Model VI Portable
Consists of detector and one stage of tuned radio frequency amplification. Compact compartments are built into this set for batteries, phones, etc. Thousands of users have testified as to its satisfactory performance.
Price, without tubes, batteries or phones $40.00

Crosley Model VIII Portable
Consists of one stage of tuned radio frequency amplification, detector and one stage of audio frequency amplification. This set has the same general construction as Model VI Portable, but performs even more efficiently.
Price, without tubes, batteries or phones $60.00

Free Catalog on Request

CROSLEY MANUFACTURING CO.
518 ALFRED ST.,
CINCINNATI, O.
Crosley Radio Parts
Guaranteed to Perform Satisfactorily

In addition to the great number of radio receivers that we manufacture, we make a complete line of parts for those who wish to build their own outfits or make repairs no matter what the make of their instrument. These units are the same as those used in our various radio outfits and have therefore been tested in innumerable instances and proven to be of exceptional worth.

The Crosley Rheostat permits extraordinarily accurate and delicate variations of the filament current. With it the best possible results are achieved from expensive vacuum tubes.

The Crosley Variable Condenser has become exceedingly popular because of its exceptional performance. By using it louder signals are obtained and there is less internal resistance and no body capacity effect.

The Crosley Vario-Coupler efficiently couples any two circuits. The rotor is a varnished wooden ball, the leads of which are brought out by means of flexible conductors. This insures noiseless contacts.

Crosley Cabinets of beautiful finish may be had in various sizes.

Free Catalog on Request

CROSLEY
Better—Cost Less
RADIO

CROSLEY MANUFACTURING CO.
518 ALFRED ST., CINCINNATI, O.
Crosley Radio Parts

Popularity Proves Their Worth

The fact that innumerable favorable comments are received daily from people everywhere who have used Crosley parts with entire satisfaction leads us to believe that you too will find that they will fill your every requirement.

The Crosley V-T Socket has been pronounced by many radio engineers as the best socket on the market. Its popularity is based chiefly on its high quality, efficiency, service and practical unbreakability combined with its very low cost.

The Crosley Radio Frequency Amplifying Tuner consists of an inductance coil and a Crosley book type variable condenser. It can be tuned to any wave length between 200 and 600 meters. When used with non-regenerative sets it will increase the range many times.

The Crosley Sheltran is a completely shielded transformer. Embodied in it are all the characteristics so essential to obtain maximum amplification from the modern vacuum tubes used in radio work. Tests have proven the design to be correct to insure maximum efficiency.

For Sale By Good Dealers Everywhere.

CROSLEY V-T SOCKET
Made of porcelain for base or panel mounting.
Price 40¢

CROSLEY AMPLIFYING TUNER
Price $4.00

CROSLEY SHELTRAN TRANSFORMER
Price $4.00

CROSLEY MANUFACTURING CO.
518 ALFRED ST.,
CINCINNATI, O.
TAKE the world with you this summer wherever you go. On your automobile and yachting trips, to your camp, or your cottage at the shore or in the mountains. An Atwater Kent radio set will bring you music, reports, time signals, baseball scores—the world’s news.

Atwater Kent products sell on appearance.
ATWATER KENT sets and parts are ideal for summer use due to their compact and rugged construction and the fact that they are moisture-proof. They are made mostly of condensite with all metal parts thoroughly water-proofed.

You will find ATWATER KENT radio equipment ideal for summer use.

They stay sold on quality of performance.

The complete set, consisting of Type 11 Tuner, one stage of Radio Frequency Amplification and Detector 2-stage Audio Frequency Amplifier.

ATWATER KENT MANUFACTURING COMPANY

4945 STENTON AVE. Radio Dept. PHILADELPHIA, PA.
Can be used with 6-volt or WD 11 detector tubes, two amplifying bulbs or one 5-Watt power tube.

The difference between a jumbled mass of signals coming from everywhere and the "sharply-tuned" concerts received clearly and distinctly from far-away stations depends largely upon the careful adjustment of your detector filament current.

Henceforth, sharp tuning has only been partially obtained thru skillful "hairbreadth" manipulations of the filament rheostat. But with these much-sought-for results can be secured by anyone. Just "twirl the knob"—a full turn produces a finer adjustment than a "hairbreadth" turn on any other.

Economical—next—small—compact. No carbon to break or change resistance. Unqualifiedly guaranteed. Popularly priced—$1.25.

If the Best is none too good for the set you are building or have bought, see the Autostat at any good radio or electrical dealer today. Or write direct for Free Bulletin which shows why the Autostat is radio's Best Rheostat.

DEALERS -- JOBBERS Write or wire for Radio's most attractive merchandising proposition.

THE AUTOMATIC ELECTRICAL DEVICES CO.
127 West Third St.
CINCINNATI, OHIO

Enjoyable concerts and maximum receiving range are obtained only when your battery is fully charged.

THE HOMCHARGER charges your "A" or "B" battery OVER NIGHT for a nickel without removing it from your living room. Operates silently—charging rate governed automatically. No fuss—no trouble—no dirt—requires no watching.

The HOMCHARGER is the ONLY battery charger combining all of these necessary features. SELF-POLARIZING—FIVE to EIGHT-AMPERE charging rate—UNDER WRITERS' APPROVAL—beautifully finished in mahogany and old gold—UNQUALIFIEDLY GUARANTEED. Over 100,000 now in use.

The minute you buy a radio set you need a Homcharger—at it then. All good radio and electrical dealers sell it complete with ammeter, etc., for $18.50, $25.00 in Canada.

Write for FREE circular showing why the HOMCHARGER is the BEST battery charger at any price.

MOTORISTS — THE HOMCHARGER will also charge your AUTO Battery.

THE AUTOMATIC ELECTRICAL DEVICES CO.
127 West Third St.
CINCINNATI, OHIO

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
GIBLIN-REMLER COILS

Maximum Inductance
Minimum Distributed Capacity for a given number of turns

Reducing Interference to a Minimum

The special form of winding used in the Giblin-Remler Coil results in maximum inductance, minimum distributed capacity and minimum high frequency resistance for a given number of turns of wire. These are the three features essential in obtaining the highest degree of selectivity.

A sharply tuned circuit is one that has an extremely low resistance to a current of the particular frequency to which it is tuned, and a high resistance to currents of all other frequency. In any receiver circuit there are two kinds of resistance—one, the straight high frequency of the coil, and the other, the resistance caused by the impedance of the coil and the condenser used with it. The first remains fairly constant over a small range of wave lengths. The second resistance is zero at one particular wave length and increases as the wave length varies in either direction; hence, it is easily seen that when the inductance of the coil is extremely high in proportion to the high-frequency resistance, which is the case in the GIBLIN-REMLER COIL, the circuit in which it is used may be made to have practically no resistance to signals on one particular wave length, and yet have a proportionally high resistance to signals on all other wave lengths. This condition, which is always obtained in circuits using the GIBLIN-REMLER COIL results in a SHARPLY TUNED CIRCUIT, that is, one giving MAXIMUM SIGNAL STRENGTH on the desired wave length, with a MINIMUM OF INTERFERENCE from signals on any other wave length.

Write for Bulletin Q giving complete information, table of constants and prices on Giblin-Remler Coils.

REMLER RADIO MFG. COMPANY

FACTORY AND HOME OFFICE
248 FIRST STREET,
SAN FRANCISCO, CAL.

EASTERN SALES OFFICE
154 W. LAKE STREET
CHICAGO, ILL.
Better Results With Less Parts

The W. C. 5

is a 4 tube set. One stage of tuned radio frequency amplification is employed ahead of the detector to make it supersensitive. Two powerful stages of audio frequency are used to bring up the volume of signal strength. Simplicity of construction and the elimination of unnecessary parts make this set easy to operate and effective for receiving from long distances without high or expensive antenna.

1,000 to 2,000 MILES On Loud Speaker

The WC-5 will receive signals from stations within a radius of from 1,000 to 2,000 miles. Here is what one WC-5 owner says:

"On several occasions two different stations in Los Angeles have come in clear and strong over the loud speaker on my WC-5 set. I consider this to be remarkable when you consider that the powerful Drake Hotel station was broadcasting."

D. R. Davies, Chief Engineer, J. L. Case T. M. Co., Racine, Wis.

The WC-5 tunes wonderfully sharp on all popular telephone broadcasting wave lengths.

Price $80.00

Wave length 160 to 750 meters

Efficient construction, fewer parts and quantity production enable us to sell this high quality set at a remarkably low price. The WC-5 is made from the best materials. The panel is solid bakelite—the case natural mahoganey.

Write us for complete description of the WC-5. See it at your dealers or at one of the distributors below:

WESTERN COIL & ELECTRICAL CO. 301—5th St., Racine, Wisconsin

The Frost Jac-Box is a real convenience

EVery owner of a radio receiving set sees at a glance how useful the new Frost Jac-Box will prove.

Four sets of Frost Fones — or three sets and a loud speaker — may be used at one time with this handy Jac-Box. Loud speaker may be tuned without disconnecting head-fones. Thousands have been sold, with never a dissatisfied purchaser.

Like all Frost Radio apparatus the Frost Jac-Box is a Quality Product offered at a quantity production price. Sold alone, or with cord and plug, or with cord only, for sets equipped with binding posts instead of jacks.

The Jac-Box is made of oak, piano-polished. Has Formica panels, felt base, triple nickel plated brass parts, hand buffed. Series connected. No. 501, complete: $3.00. With cord, No. 502, $2.50. Jac-Box only, No. 503. $2.25.

FROST-RADIO

Western Motor Supply, Minneapolis, Minn. Funnston Electric Co., Kansas City, Mo. Continental Radio Co., 150 North Wells St., Chicago, Illinois

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
New Paragon
Stage Control Switch

Plugs and jacks are now obsolete. The new Paragon Stage Control Switch combines the functions of three multi-circuit jacks and the telephone plug. It controls, automatically and progressively, all the filament circuits, plate battery circuits and input and output circuits of the detector-two-stage amplifier.

Switching from stage to stage is instantaneous, positive, noiseless. This switch may also be used for an unlimited combination of vacuum tube circuits. 2½ inches in diameter, 3/4 inch in thickness. No. 90. Price $3.00.

Wiring Diagram Sent on Request

Upon request we will be glad to send you our new Bulletin No. 108. It contains a wiring diagram, showing the method of connection when this new Paragon Switch is employed for control of detector and two-stage amplifier.

ADAMS-MORGAN CO., 4 Alvin Ave., Upper Montclair, N. J.

PARAGON
RADIO PRODUCTS
Branston Lateral Wound
Honeycomb Coils

Manufactured Under DeForest Patents

The finished product resulting from many years' experience in coil winding. The most efficient and practical radio inductance ever designed. Sold unmounted or mounted with Branston Standard Mountings.

PRICE LIST

<table>
<thead>
<tr>
<th>Turns</th>
<th>Unmounted</th>
<th>Mounted</th>
</tr>
</thead>
<tbody>
<tr>
<td>L25</td>
<td>$.50</td>
<td>$1.40</td>
</tr>
<tr>
<td>L35</td>
<td>.50</td>
<td>1.40</td>
</tr>
<tr>
<td>L50</td>
<td>.60</td>
<td>1.50</td>
</tr>
<tr>
<td>L75</td>
<td>.60</td>
<td>1.50</td>
</tr>
<tr>
<td>L100</td>
<td>.65</td>
<td>1.70</td>
</tr>
<tr>
<td>L150</td>
<td>.70</td>
<td>1.75</td>
</tr>
<tr>
<td>L200</td>
<td>.75</td>
<td>1.80</td>
</tr>
<tr>
<td>L250</td>
<td>.80</td>
<td>1.85</td>
</tr>
<tr>
<td>L300</td>
<td>.85</td>
<td>1.90</td>
</tr>
<tr>
<td>L400</td>
<td>.90</td>
<td>1.95</td>
</tr>
<tr>
<td>L500</td>
<td>1.00</td>
<td>2.20</td>
</tr>
<tr>
<td>L600</td>
<td>1.15</td>
<td>2.35</td>
</tr>
<tr>
<td>L750</td>
<td>1.35</td>
<td>2.60</td>
</tr>
<tr>
<td>L1000</td>
<td>1.60</td>
<td>2.85</td>
</tr>
<tr>
<td>L1250</td>
<td>2.00</td>
<td>3.30</td>
</tr>
<tr>
<td>L1500</td>
<td>2.50</td>
<td>3.85</td>
</tr>
</tbody>
</table>

3 Coil Bakelite Adjustable Mounting $ 5
2 Coil Adjustable Mounting $ 3.50
Single Coil Mounts 50¢

Order through your dealer or write direct for complete catalog showing Branston "Standard" Radio Accessories.

CHAS A. BRANSTON, Inc.,
815 MAIN STREET,
BUFFALO, NEW YORK
In Canada, Chas. A. Branston, Limited, Toronto, Ontario

"These phones sure have a mellow tone"

You CAN Get BASCO Phones Despite Demand

NO need for accepting substitutes. Every possible measure is being taken by the manufacturers of BASCO Phones to keep up to the demand—and it's being done without slighting mechanical exactness. Close inspection guards BASCO Phone quality irrespective of demand. BASCO quality—keen sensitiveness — deep, natural-tone pitch — lightweight — head comfort—these features should direct your choice in selecting BASCO Phones for allround satisfaction.

See BASCO Phones and other units of the complete BASCO Radio Line. If your dealer can't supply you, write us direct.

$6.00 2000 Ohm
$7.50 3000 Ohm

Jobbers and Dealers! Write for attractive advertising proposition and name of our nearest local factory representative.

Briggs & Stratton Co.
Milwaukee, Wisconsin

Showing one phone
Mr. RAY-O-LITE says:

Make Sets Portable With

Dry "A" Battery

Miles from care and worry—close to nature—still within earshot of the whole nation. Truly a wonderful development is the dry battery tube and the compact dry battery. With this combination most any set is made portable. A 4-pound dry cell replaces a 40-pound storage battery.

Take your set with you this summer. The Ray-O-Vac Book "How to Get the Most Out of Radio" tells how to make your set portable.

Also tells how Ray-O-Vac 2-cell "A" Batteries are good for 200 hours of use, how they make reception clearer and cost less to operate than storage batteries. Send now for the Ray-O-Vac booklet.

Ask your dealer for the new Ray-O-Vac "A" Battery

French Battery & Carbon Company

Madison, Wisconsin

Atlanta Dallas Denver Chicago New York

Minneapolis Kansas City

RAY-O-VAC

The Battery that Completes Radio
SELECTIVITY AT LAST!
The UNIVERNIER provides ultra-fine vernier adjustment for ordinary Variable Condensers, Variometers, Varicouplers, Potentiometers, Rheostats and Tickler Coils.

EASY TO INSTALL
The UNIVERNIER takes the place of the ordinary knob, and is applied in a few minutes without disturbing the set.

DISTINCTIVE
The UNIVERNIER will add to the appearance of any radio set. It is an instrument of precision and has that appearance. It consists of a well-designed knob inside of which is a simple mechanism so arranged that the knob rotates nearly 12 times to one revolution of the shaft. By pressing lightly towards the panel, it functions as an ordinary knob, thus combining vernier and coarse adjustment in a single unit. DX results are surprising!

THE UNIVERNIER $1.00
360 degree finely graduated silver plated dial for use with UNIVERNIER 25c extra—Complete, $1.25

At your dealers or direct on receipt of the above amount.

#251 for 1/4 inch shaft
#188 for 5/8 inch shaft

DEALERS AND JOBBER
WRITE FOR DISCOUNTS

WALBERT MANUFACTURING CO.
929 Wrightwood Ave., Chicago, Ill.

READ WHY YOU SHOULD USE
UNION RADIO TIP JACKS
(Pat. Applied For)
25c A PAIR

Here's the Radio device that you have been waiting for. These Tip Jacks assure quick connection and a positive contact. They replace unsatisfactory binding posts. Soldering lug incorporated but use optional.

FOR ASSURED RESULTS
you should “try out” Union Radio Tip Jacks. Variable Condensers, Rheostats, Vacuum Tube Sockets, and Condensite Dials.

Union Radio Apparatus and Accessories are sold by most good dealers. If you can't obtain them from your local store mail your order to us. Write for a copy of our Catalogue D Radio Apparatus.

WHOLESALERS AND RETAILERS:
Write for our liberal proposition. Dealers Catalogue D and Price List, also samples sent on request.

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
Westinghouse Type PX-2--PX-3
Portable Radio Instruments

These portable instruments are particularly useful for temporary service such as testing. They are also used where it is not convenient or desirable to mount instruments permanently on panels.

They have the same movements as our Types BX and CX panel-mounting instruments, and are enclosed in dust, moisture and acid-proof cases.—Folder 4471-A tells all about them.

Westinghouse Electric & Manufacturing Co.
Newark Works, Newark, N. J.
Mu-Rad R-F Amplifying Transformers

200-600 Meters Air Core

Part of the Celebrated Mu-Rad Receivers

The heart of the great sensitivity of Mu-Rad Sets, a marvel of a marvelous science, is the Mu-Rad Transformer. No loss by capacity effect. No eddy current or iron losses. A type for every stage. Ask your dealer.

Dealers Profit
When Mu-Rad Apparatus Builds Confidence of Customers in Their Stores

Three Types
Type T-11 for the first stage $6.00
Type T-11A for the second stage $6.50
Type T-11B for the third stage $7.00

Write NOW for Proposition

Mu-Rad Laboratories, Inc.
804 Fifth Ave. Asbury Park, New Jersey
EVERY radio amateur knows how disastrous battery noises are to clear receiving. You can avoid this annoying interference by getting the battery that insures a steady flow of filament current. That battery is the Exide Radio Battery.

This specially designed radio battery does its work uncomplainingly, and never requires much attention. The rasping, snarling noises often caused by fluctuating current in ordinary batteries do not exist in the Exide Battery. It delivers uniform filament current for every type of vacuum tube. You can count on the Exide for dependable, long-lasting service.

Exide Batteries are used in a majority of the government and commercial wireless stations and in every industry where a battery’s response to the call of duty must not fail.

Any dealer in radio equipment will sell you an Exide Radio Battery, or you can get one at the nearest Exide Service Station.

THE ELECTRIC STORAGE BATTERY CO.

Service Stations Everywhere
Branches in Seventeen Cities
"B" Battery with Panel Control

Storage Batteries

designed for

RADIO

KICO Storage "B" batteries are used by thousands of amateurs who understand radio and consequently buy nothing but the most efficient equipment.

A FEW REASONS

2. They eliminate noises caused from "B's" that are rapidly deteriorating.
3. The switch control allows single cell variations from 12 volts up. (A critical plate adjustment is essential on your detector bulb for C.W. and Radiophone reception.)
4. Rechargeable from your 110 Volt A.C. line in connection with the rectifier supplied with each battery.
5. Will last from three to six months on a single charge while in the detector plate circuit.
6. NOT an experiment. All batteries sold with the privilege of receiving your money back if unsatisfactory within a 90 day trial.
7. Next, Efficient and Compact.

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Voltage</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 cell</td>
<td>22 volts</td>
<td>$6.50</td>
</tr>
<tr>
<td>24 cell</td>
<td>32 volts</td>
<td>$8.00</td>
</tr>
<tr>
<td>36 cell</td>
<td>48 volts</td>
<td>$10.00</td>
</tr>
<tr>
<td>50 cell</td>
<td>68 volts</td>
<td>$12.00</td>
</tr>
<tr>
<td>75 cell</td>
<td>100 volts</td>
<td>$18.00</td>
</tr>
<tr>
<td>100 cell</td>
<td>150 volts</td>
<td>$21.00</td>
</tr>
</tbody>
</table>

F.O.B. Buffalo, N.Y.

Literature gladly furnished

We distribute KING Chargers

KIMLEY ELECTRIC CO.
1355 Fillmore Ave., Buffalo, N.Y.

Sterling

RADIO DEVICES

Include

- Portable Rectifiers
- Filament Meters
- Filament Rheostats
- Twelve Point Rotary Switches
- Audio and Radio Amplifying Transformers
- Pocket Voltmeters

Use as Many Sterling Radio Devices as You Can to Complete Your Set and Be Assured of Successful Receiving.

Every device bearing the Sterling trade name means as much to the radio fan as Sterling does on silver. Guaranteed to make good or we do.

The Sterling Mfg. Co.
2845 Prospect Ave., Cleveland, Ohio

The most dependable source of supply.

Every instrument carefully calibrated and not tuned up to read high

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 33 0-3v</td>
<td>$1.25</td>
</tr>
<tr>
<td>No. 34 0-6v</td>
<td>1.25</td>
</tr>
<tr>
<td>No. 54A 0-10v</td>
<td>1.75</td>
</tr>
<tr>
<td>No. 34B 0-30v</td>
<td>2.25</td>
</tr>
<tr>
<td>No. 34C 0-50v</td>
<td>2.75</td>
</tr>
</tbody>
</table>

Trade Discounts on Applications

POCKET VOLTMETERS

Always mention QST when writing to advertisers
Is your battery always fully charged and fit?

Is it always toned up for best results, whenever friends happen in—throughout every concert?

Keep it at full strength and prolong its life—the simple, easy, inexpensive Tungar way.

Tungar—the go-between from house-lighting circuit to storage battery—attaches wherever there is a lamp or convenience outlet.

You don't have to move the battery. Just connect Tungar, and leave it—any time, day or night.

Tungar is certain, clean, quiet. No moving parts to get out of order or make noise.

Good for the auto battery too—the same Tungar.

See one at any good electrical store, or write for literature. Address Section Q5.

Merchandise Department
General Electric Company
Bridgeport, Conn.

Tungar Battery Charger. Operates on Alternating Current.
2 Ampere Outfits—$18.00
5 Ampere Outfits—$28.00
(Prices east of the Rockies)

Special attachment for charging 12 or 24 cell
"B" Storage Battery—$3.00
—fits either size Tungar.
Here's a new one
for getting DX —

Everybody is talking about how those UV 201 A tubes reach out like the long arm of the law. Little Omega Durham has tried 'em, too, and is right on the job with a super-extra High Resistance.

No. 201 A—2 to 10 meg
Special for UV 201 A Tubes

It's just as accurate and as easily handled as the other DURHAMS. And it sure puts a lot of space between the D and the X. Little Omega guarantees satisfaction.

Price 75¢ at your dealers

DURHAM & CO.
Radio Engineers
1936 Market St., Philadelphia

DURHAM Variable
High Resistance
No. 100, 1,000 to 100,000 ohms for resistance coupling, etc.
No. 101, 100,000 ohms to 5 meg for general tube use. — They fit Dubilier Grid Condenser Clips

6OE KGO 6XR

I Ship All Over the United States
“Everything Worth While In Radio”

AT THE RADIO STORE
OF
PAUL FRANKLIN JOHNSON

560-562 East Colorado Street, Pasadena, California
THE RADIO SET OF THE FUTURE

It cannot be foretold what combination of units will be used, or the circuits that may be employed in the Receiver of tomorrow. It is obvious, however, that today's conventional set will soon be considered crude and antiquated.

Little prescience is required to realize that the panel of insulating material, with its shielded background, is doomed to obsolescence. The use of a great mass of expensive insulating material to provide for "live shafts" was merely a temporary expedient. Progressive practice has eliminated the electrical difficulties connected with live shafts and also obviated the necessity for massive insulation.

Carrying primary leads to the panel, and the drilling of numerous holes for a switch, will cease because of the waste such labor entails. To make the tap-switch an integral part of the instrument is the expedient thing to do.

Knobs add nothing to the appearance of a panel, and will in time become a relic of bygone days. The concave dial and bar control, giving ease of adjustment without cramping the hand, is far more sensible and attractive.

EISEMANN PARTS AND PANELS

- Permit changing circuits and re-location of parts on panel, all units being interchangeable.
- Make unnecessary the use of shielding—the metal panel itself accomplishing this purpose.
- Eliminate mounting of tap-switches and soldering of primary leads.
- Give the many advantages of concave dials—a natural position of the hand in tuning, added attractiveness in appearance and ease in packing for transportation.

Write for descriptive literature.

EISEMANN MAGNETO CORPORATION
William N. Shaw, President
DETROIT
BROOKLYN, N. Y.
CHICAGO
When WDAP CHICAGO Talked to S.S. BERENGARIA

"ALL-AMERICAN" AMPLIFYING TRANSFORMERS

R-10—Radio Frequency (150-500 meters) $4.50 R-13—Audio Frequency (Ratio 10 to 1) $4.75
R-18—Audio Frequency (Ratio 3 to 1) $4.50 R-21—Audio Frequency (Ratio 6 to 1) $4.75

Sent for our circular — "Cascading of Amplification". Also our Free Book of Radio Hookups.

200 N. Jefferson St., Chicago, Ill.

THE "WAVE TRAP"—The Missing Link in Radio

Get that elusive DX station thru heavy QRM. With the "WAVE TRAP" you can do it and greatly increase your range.

It is installed in a minute by changing only one connection and is indispensable on any receiving set, with any type of antenna. It is mounted on a Formica panel in a handsome mahogany finished cabinet 6x5x5, and is a high-grade instrument throughout.

Manufactured by

J. THOMAS RHAMSTINE*

2162 E. Larned Street, Detroit, Mich.

*Maker of Radio Products

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
"they last longer"

For Storage Battery Tubes use EVEREADY Storage "A" Batteries

For Dry Cell Tubes use EVEREADY Dry Cell Radio "A" Batteries

For All Vacuum Tubes use EVEREADY "B" Batteries

NATIONAL CARBON COMPANY, Inc.
Long Island City, N.Y.
Atlanta Chicago Cleveland Kansas City San Francisco

Insist on Eveready—Accept no Substitute

E VEREADY Radio Batteries
—they last longer
Built First to Last

This little beauty was approved by our engineers only when convinced that they had produced the one socket that combines all the essential features of a good socket.

1. Positive Cotogrip Contacts.
2. Hard Rubber Insulation.
3. Rugged Construction.
5. Concealed Mounting.

It is impossible to show the unique mechanical action of Cotogrip contacts in a photograph. It is different from any other socket you have ever seen. This socket will interest you in every way.

You ought to have one.

Ask Your Dealer

COTO-COIL CO. PROVIDENCE
PACIFIC COAST BRANCH, 329 UNION BLDG., LOS ANGELES.

How to make the NEW GRIMES DUPLEX SET

is told complete in our new Loose-leaf catalog. Circuit diagram, list of material needed, etc.

Build this receiver now and work right thru summer static.

Send 10c for your catalog today. It lists all the new apparatus. New inserts keeping it up-to-date, supplied free of charge.

LYNN RADIO CO.
Sixth Floor Consumers Building
220 So. State Street, Chicago, Illinois

RADIO TRANSFORMERS

REAL MERIT is what you expect and what you receive when you use STANDARD Radio Transformers.

PERFECTLY SHIELDED by virtue of the design MAXIMUM AMPLIFICATION by proper impedance.

Silicon steel cores, insulation test on coils 1500 volts. Bakelite Terminal Board.

Type M—Ratio 9 to 1 $5.00
Type MR—Ratio 4 to 1 $4.50
Type FL—Filament Heating $8.00

Discount 10% for cash with order

Designed by Radio engineers, a quality name in Radio.

THE STANDARD TRANSFORMER COMPANY WARREN, OHIO.

Always mention QST when writing to advertisers.
Standard of the World for professional and amateur use

DICTOGRAPH
Radio HEADSETS

We believe the Dictograph Radio Headset is the best in the world at any price. Thousands of letters from enthusiastic users in all parts of the world substantiate this belief. Read a few:

U. S. Marine Corp, $12
Kila Island, N. Y.

"The undersigned has for the past sixteen years been an amateur, commercial, and government operator, and has used every known make of radio receiver on the market. On April 21st one of your Type R-1 3000 ohm receivers was purchased and it can be safely said without dispute that they are absolutely the best radio receivers on the market today; bar none."

C. H. West, U. S. P. H. S.

Laporte, Ind.

"I wish to compliment you on the 3000 ohm Headset you now have on the market retailing at $12.00 (now $8.00). I have been experimenting with the radio game for the past ten years in my experience I have tried out 15 different headsets, including the --- which I purchased for $16.00. I at last have found the ideal phone where tone quality excels, and harshness is eliminated, and I cannot express myself in words as to the wonderful results I have obtained."

J. T. Bachman.

Madison, South Dakota.

"We are using a Dictograph Headset, also Dictograph Loud Speaker. Both are O.K. In fact I would not trade my headset for any other I have ever listened through."

Dan C. Coutts, Radio Operator.

Havana, Cuba.

"In my long distance receiving set have four pairs of Phones, a 3000 ohm French make, two Pairs of ---- and a pair of your Dictograph 3000 ohm and I assure you that none of the others afford me the service I get from the Dictograph. The Dictograph gives me a truer clear tone than all the others combined. I use them in extremely long distance work (phones). I hear Chicago, Schenectady, Iowa and Prisco most every night with our detector and two steps of amplification using the standard regenerative honey comb set."

David E. Masula.

Made by the makers of the world standard Dictograph Products—the marvelous "Acousticon" for the Deaf, the famous Detective Dictograph, the Dictograph System of Interior Telephones and the Dictograph Radio Loud Speakers for the Home.

Type R-1, 3000 ohms.

Go to your dealer's today and listen in with Dictographs. You cannot fail to be impressed by their superiority. Buy two or three sets and let your family and friends enjoy the broadcasting.

The new Dictograph Radio Loud Speaker is a revelation. Its Adjustable Air Gap permits perfect tuning under varying conditions and insures reception of excellence here-tofore unattained.

Always insist on Dictograph Products. They are fully guaranteed. If your dealer cannot supply you, write to us.

DICTOGRAPH PRODUCTS CORPORATION
Suite 1304, 220 W. 42nd Street, New York City
Branches in all principal cities

DEALERS: Order through your jobber or write direct for names of authorized distributors.
TELOS
VARIO-TRANSFORMERS
give selectivity and amplification as shown by this curve taken from the MELCO SUPREME RECEIVER

The base of the curve is magnified to permit comparison with two steps untuned R.F. No need for vario-couplers, tuning condensers or untuned R.F. transformers.

Write for **FREE** booklet
by Lester L. Jones
Formerly Expert Radio Aid U.S.N.
on TUNED RADIO AMPLIFICATION.

DANZIGER-JONES Inc.
143A Prince St., New York

for **C. W. Transmitters**-
A special offer from “Chi-Rad” of Willard Miniature 8-Volt Threaded Insulation Storage Batteries.

For pure D.C. for C.W. Transmitters we recommend these batteries in preference to a generator. Batteries eliminate filter system and give all-around better results.

Special time limited price offer reduces cost of a complete set of batteries approximately equal to cost of generator. Batteries are brand new, dry until ready to charge.

In lots of 40 (320 volts) **$400** (Better price on larger quantities).

Only a limited quantity ... order today!

Chicago Radio Apparatus Co.
407 S. Dearborn St. Chicago

BRACH
VACUUM
 RADIO PROTECTOR

ASK YOUR
INSURANCE AGENT

Approved By
National Board
Fire Underwriters

The Choice of the Foremost
Engineers for over 17 Years

SOLDERALL
The Only Convenient Metal Solder.
Every Electrical Connection
Needs SOLDERALL
For Perfect Reception

L.S. BRACH MFG. CO.
NEWARK, N. J.
If---

You are using the new tube, UV-201A, you are a customer for a General Radio Co.'s 20 Ohm type 214 Rheostat.

It is a convenient, practical instrument, equally well adapted for experimental service and permanent installations. No unpleasant noises in the phones when you rotate the contact arm of a Type 214.

For UV-201A tubes 20 Ohms
For UV-199 tubes 50 Ohms

Price $2.25

For lasting satisfaction use a General Radio type 214, 400 Ohm, Potentiometer. Get your gas detector or that sensitive kink by fine adjustment of plate potential.

Type 214, 400 Ohm, Potentiometers, control regeneration in your radio frequency amplifier by a positive grid bias.

Price complete, (Specify whether for use in back of or in front of panel) $3.00.

For full description of these and other pieces of high-grade radio apparatus, write for free copy of Bulletin 912Q.

GENERAL RADIO CO.
Manufacturers of Radio and Electrical Laboratory Apparatus
Massachusetts Avenue and Windsor Street

ALWAYS MENTION Q.S.T. WHEN WRITING TO ADVERTISERS
Kellogg Radio Equipment for Better Results

A better product of unusually fine workmanship

No sliding contacts

Nothing to wear

Will not produce tube noises

High induction and low distributed capacity

The No. 502 Diamond wound coil increases the wave length from 500 to 2500 meters

No. 501—Varicoupler $6.00. With No. 502 Coil as shown above $12.00

KELLOGG SWITCHBOARD & SUPPLY CO., CHICAGO

The AMSCO COMPENSATING CONDENSER

is a special 3-electrode condenser for balancing the grid charge on the amplifying tubes. Stops all local oscillations without detuning the amplifier. Shielded against hand capacity disturbance.

A postcard will bring our literature illustrating and describing our entire line.

AMSCO PRODUCTS, INC.
Successors to MORTIMER RADIO CORP.
ADVANCE METAL STAMP CO.
FAIRBANKS BUILDING
Broome & Lafayette Sts., New York City

What a clear tone

The announcer's voice is distinct, the music as clear as a bell because his radio outfit is equipped with the

Stromberg-Carlson Radio Headset

Comfortable, quickly adjustable to any size head. Fitted cord permits use by two observers. Backed by 8 years experience in the manufacture of radio apparatus and 28 years in high grade telephone equipment.

Order Stromberg-Carlson apparatus through your electrical dealer or write for free bulletin No. 1029-Q.

Stromberg-Carlson Telephone Mfg. Co.
Rochester, N. Y.
Steady, Full-powered Batteries

EVERY radio set has its own peculiarities—little niceties of adjustment at which best results are obtained. Battery voltage and amperage must be just so. And once adjusted, current must have sustained evenness and steadiness.

Get good batteries. They're the most satisfactory and economical in the end. Westinghouse Radio Storage Batteries will settle the problem practically for good. They last indefinitely and are easily and repeatedly rechargeable. Built by Westinghouse—you know they're RIGHT.

Westinghouse "A" Batteries are carefully constructed, full-capacity, slow-discharge, long-life batteries. Made in 4, 6 and 8-volt sizes with 8, 9 and 12 plates per cell, to meet various filament-battery requirements.

Westinghouse "B" Batteries. The Westinghouse 22-M G-2 (22 volts) is a marvel for steady, noiseless, full-powered service. Glass case; visible interior; sealed-in tops. Larger types, too; also 2-volt single cells for "C" batteries.

At radio dealers and Westinghouse Battery Service Stations everywhere. Write for illustrated folder, "Westinghouse Radio Storage Batteries."

WESTINGHOUSE UNION BATTERY CO. Swissvale, Pa.

WESTINGHOUSE
RADIO "A," "B" and "C"
BATTERIES

ALWAYS MENTION Q S T WHEN WRITING TO ADVERTISERS
FRESHMAN PRODUCTS—ACCURATE AND DEPENDABLE

VARIABLE RESISTANCE LEAK

With .00025 mfd. MICON Condenser Combined $1 Without Condenser 75c

Unbroken range—Zero to 5 Megohms—Clarifies signals, lowers filament current, increases battery life, eliminates hissing.

"MICON"
Tested Mica CONDENSERS

Assure absolute noiselessness—clarity of tone—accuracy—constant fixed capacity.

ANTENELLA

No antenna or aerial needed. Eliminates all the inconveniences in radio, operates from any light socket. Price only $2.00.

At your dealer's—otherwise send purchase price and you will be supplied postpaid.

CHAS. FRESHMAN CO., Inc.
106 SEVENTH AVE., NEW YORK

Price

Size	Price
.00025 | .35
.0005 | .35
.001 | .40
.002 | .60
.0025 | .50
.005 | .75
.006 | 1.00
'01 | 1.50

Freshman products are standard and can be used with practically any circuit.

In Any or All Stages of audio frequency amplification

The AMERTRAN

can and should be used. It is made in only one type and one ratio. Its flat-top amplification curve precludes the possibility of distortion on the part of the transformer when used in any or all stages. It will give the same clear-toned distortionless amplification with all tubes which are approximately alike in A.C. Impedance and Amplification Factor, such as WD-11

UV-201 UV-201-A
C-301 C-301-A

its amplification in one stage is 36.6; two stages 1490.

American Transformer Company

Designers and builders of radio transformers for over 20 years.

176 Emmet St., Newark, N. J.

PANEL SERVICE

We offer to the amateur and dealer

REAL PANEL SERVICE

Our panels are cut to your order. Only genuine Condensite and Formica used.

1/8” per square inch $0.02
3/16” per square inch .02½
1/4” per square inch .03

We also carry a complete line of radio essentials. Dealers will find it profitable to have our latest price list and discount sheet.

PITTSBURGH RADIO AND APPLIANCE CO., Inc.
“Pittsburgh’s Radio Shop”
Desk B
112 Diamond St., Pittsburgh, Pa.

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
HERE'S A PAIR OF WINNERS

THE WIMCO CONDENSER
Made to meet a demand for quality — highest efficiency, 3 plate, 23 plate and 43 plate sizes.
Very low resistance and very low zero capacity. The phase angle does not depart from 90° sufficiently far to be detectable. Highly recommended for the fine tuning necessary in amateur apparatus.

THE CARCO COUPLER
Just the thing for the popular receiving set. Bakelite tube and rotor, silk covered wire, perfect contacts. Designed and developed by an amateur for the amateur.
Guaranteed to produce superior results. Range 150 to 700 meters. Not just "a coupler" but the real coupler — peer of all, the Carco.

We invite Dealer and Jobber inquiries.
Send for literature and prices on the WIMCO SOCKET FOR WD-11 TUBES

THE WIRELESS MANUFACTURING CO.
CANTON, OHIO

Manufacturers—Distributors
Science again has come to the aid of the radio fan. Here is a wonderful little instrument that tells you the exact range of your set and instantly indicates the distance of every call that comes in.

Mc Neary

RADIO SCALOMETER
& OFFICIAL RADIO MAP

Isn't it thrilling to hear a human voice hundreds of miles away? But how much more thrilling it is to know the exact distance the voice traveled in reaching you.

The Mc Neary Scalometer will tell you instantly. All you have to do is to place the Scalometer on the official radio map which comes with every scalometer. You look for the station—takes but a second—and there you have it—printed in legible type: the exact distance in miles.

No more guess work necessary! Keep the Mc Neary Scalometer handy and you'll always have a valuable friend to tell you quickly—correctly the distance of every call you receive.

The Mc Neary Scalometer is a wonderful, precise instrument in a beautifully finished aluminum case. See it today!

See this SCALOMETER at any radio shop
IF YOUR DEALER CANNOT SUPPLY YOU
SEND ONE DOLLAR TO

EMBLEM MANUFACTURING CORP.
259 MIDDLE CITY BLDG., PHILADELPHIA, PA.

Tuska Radio—
First to reach across the sea

A Tuska set was used by the amateur officially credited with first receiving British amateurs in the trans-Atlantic tests. Station 1RU, Hartford, Conn. received a British operator on a Tuska as reported on page 15, February issue of this magazine.

And in France, Leon Deloy with a Tuska using only one stage of audio frequency amplification heard a number of American stations.

Yea, truly, she's "some set." Will do anything any other set will do, and a whole lot more besides.

Perhaps you'd like to see a catalog showing all the models we build. Write for Catalog No. 18-A.

The C. D. Tuska Co.,
Hartford, Conn.

TUSKA RADIO

How Many Amperes Are You Radiating?

A Roller-Smith type TAW Thermal Ammeter will tell you accurately and it will continue doing so. These little 3½ instruments have demonstrated their reliability in the Government service. You can't make a mistake when you use them.

Bulletin No. AG-10 is yours for the asking. Send for it. This Bulletin also describes a most complete line of ammeters and voltmeters for all radio work.

ROLLER-SMITH COMPANY
16 PARK PLACE, NEW YORK

Offices in principal cities in U. S. and Canada
A Real Musical Instrument

Actual Re-PRODUCTION of the artist's music, as broadcasted, is at last attained in the Atlas Amplitone Loud Speaker, without blast or distortion. The artist's personality breathes again in the full, natural, vibrant tones of the Amplitone Re-PRODUCTION. Musical critics and radio fans, who have heard the Amplitone, agree that, at last, the musical superiority of even the finest phonographs has been surpassed. Embodies exclusive acoustic principles including the marvelous double diaphragm.

Atlas AMPLITONE LOUD SPEAKER

Amplitone Unit

The Atlas Amplitone Unit, (without base or horn), with Grafonola Attachment, for use with your own horn or base or to convert any phonograph (except the Brunswick) into a loud speaker, (with attachment.)

$13.50

Write for Amplitone Booklet

Write for illustrated booklet and the name of your nearest Amplitone dealer. No other loud-speaker can take the place of the Amplitone.

Multiple Electric Products Co., Inc.

11 Orange Street Newark, N. J.
Federal Standard
RADIO HEAD SETS

For durable efficiency, clearness and wide distance-range Federal Standard Head Sets have no superiors.

Made of specially treated steel with permanent magnets, scientific wiring and adjustment, and precision machining of metal parts, these Head Sets have achieved a well deserved universal recognition and endorsement by Radio experts.

To secure professional efficiency from your receiver insist on having Federal Standard Head Sets; Federal Standard is the product of over twenty years' experience in the manufacture of communication apparatus.

Ask you dealer for Federal Standard Head Sets. If out of stock he can get them from me nearest office. Accept no substitute.

Federal makes a complete line of Standard Radio apparatus—all reasonably priced. Write for latest catalog.

Federal Telephone and Telegraph Co.
BUFFALO, N. Y.
Federal

Is A Large User

of Formica

THE Federal Telephone and Telegraph Company of Buffalo is a large factor in the radio industry and has an excellent reputation for the quality of its product.

It is a very extensive user of Formica insulation not only in the complete sets which it produces but in the radio parts, variometers, variocouplers, head sets of which it is a large manufacturer.

A list of the users of Formica reads like a directory of the leading independent radio manufacturers. So many of the best informed radio men in America cannot be mistaken in their opinion that Formica is most uniform, the best looking, and the most efficient radio insulation.

Dealers and amateurs can safely follow these great concerns in selling or using Formica. Formica dealers can supply you promptly with panels in all standard sizes. They can also supply special sizes when you want them.

THE FORMICA INSULATION COMPANY

4620 SPRING GROVE AVENUE, CINCINNATI, OHIO

SALES OFFICES

60 Church St., New York, N.Y.
422 First Ave., Pittsburgh, Pa.
1042 Granite Bldg., Rochester, N.Y.
415 Ohio Bldg., Toledo, Ohio
1210 Arch St., Philadelphia, Pa.
1819 Lyndale Ave., S. Minne., Minn.
Sheldon Bldg., San Francisco, Calif.
Whitney Central Bldg., New Orleans

414 Finance Bldg., Cleveland, Ohio
9 S. Clinton St., Chicago, Ill.
313 Title Bldg., Baltimore, Md.
47 King St., Toronto, Ontario

FORMICA

Made from Anhydrous Redmanol Resins

SHEETS TUBES RODS

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
Holtzer-Cabot
No. 2 Universal

The Latest Achievement in Radio Head Sets

After exhaustive experiments and actual manufacturing experiences we have produced a receiver which, for tone quality, has no equal.

It is tested, not by "listening-in," but by a specially designed scientific instrument which gives its true tone quality by actual sound measurement.

Our new head bands are covered with flexible rubber, making them comfortable and sanitary.

Weight, only twelve ounces

Price $12.00.

The Holtzer-Cabot Electric Co.
Boston and Chicago
The Receiver that Satisfies

Telmaco

Type B-R Receiver

fully meets the requirements of the discriminating purchaser because of the following features:

EFFICIENCY OF OPERATION: Securing volume, distance (1,500 miles with single tube is not unusual), selectivity. Broadcasting stations one-half mile distant are tuned out by a slight turn of condenser dial.

EASE OF OPERATION enabling the novice to secure satisfactory results.

HIGHEST QUALITY OF WORKMANSHIP AND MATERIALS.

PRICE within the reach of everybody.

Specifications:
Panel—Formica, grained and machine engraved. Vario-Coupler—Telmaco special silk wound with loading inductance. Condenser—Special, 13-plate with Bakelite base. Rheostat—Single knob control. Socket—Highly nickelled shell, Bakelite base. Dials—are polished, presenting pleasing contrast with dull panel. Telmaco Adjustable Vernier Handle—secures extremely fine tuning and entirely eliminates body capacity effects. Workmanship—manufactured according to Telmaco's rigid specifications. This Guarantees Your Satisfaction. Either 6 volt or 1/2 volt tube may be used.

Price $25
The ultimate in value

TELMACO Type B-A Two Stage A. F. Amplifier

Matches the above in size and construction. The greatest Amplifier value on the market. Price $20.00.

RADIO DIVISION
TELEPHONE MAINTENANCE CO.
20 S. Wells Street, Dept. D
Chicago, Illinois
Radio Operators Are Needed!

The growing demand for trained Radio men in all branches of the Radio field is creating many attractive vacancies at sea and ashore for the wideawake man who will study Radio now.

Would you like to step into an attractive position with unlimited opportunity for advancement in a rapidly expanding profession?

Would you like fascinating work, a splendid salary and a chance to travel and see the world?

OUR COMMERCIAL RADIO COURSE COVERS AND DEMONSTRATES ALL THE LATEST AND MOST IMPORTANT DEVELOPMENTS IN RADIO,—SPARK, ARC AND VACUUM TUBE SYSTEMS.

The Eastern Radio Institute is the oldest, largest and best equipped radio school in New England.

REMEMBER—OUR ORGANIZATION WITH YEARS OF PHENOMENAL EXPERIENCE AND SUCCESS IS BEHIND EVERY STUDENT WHO ENROLLS! COMPLETE INFORMATION FOR THE ASKING.

EASTERN RADIO INSTITUTE 899 Boylston Street, Boston, Mass.
One of these panels fits your set

YESTERDAY you would have had to wait while the size was cut from sheet stock. Today you can get the panel you need immediately. Celoron Radio Panels come in standard sizes, one of which will be right for any set you may build.

Each Celoron Panel is already cut and wrapped ready for you to take home. Full instructions for working and finishing are on the glassine paper around every panel.

The sizes have been selected only after careful study of present-day needs. Your dealer should be able to supply you with any of the following sizes:

1. \(6 \times 7 \times \frac{1}{8}\)
2. \(7 \times 9 \times \frac{1}{8}\)
3. \(7 \times 12 \times \frac{1}{8}\)
4. \(7 \times 18 \times \frac{7}{8}\)
5. \(9 \times 14 \times \frac{7}{8}\)
6. \(7 \times 21 \times \frac{3}{16}\)
7. \(12 \times 14 \times \frac{3}{16}\)

Also comes in sheets and can be cut in special sizes when desired.

Condensite Celoron, the material used for these panels, has high insulating qualities, high dielectric strength, and low dielectric losses. It is used by many of the leading manufacturers of radio equipment. It is easily machined and can be sawed, drilled, turned, or milled.

Send for free booklet

We have prepared an attractive booklet, "Tuning in on a New World," which tells more about Celoron and gives lists of leading broadcasting stations in the United States and Canada, symbols used in reading radio diagrams, and several highly efficient radio hook-ups. This instructive booklet will be of use to every radio fan and will be sent to you free of charge upon request. Write today.

Diamond State Fibre Company

BRIDGEPORT (near Philadelphia) PENNSYLVANIA

In Canada: Diamond State Fibre Co., of Canada Limited, 245 Carlaw Ave., Toronto

To radio dealers: Celoron Radio Panels cut in standard sizes offer an exceptional opportunity for quick sales and substantial profit. Write for special dealer price list showing standard assortments.

CONDENSITE CELORON STANDARD RADIO PANEL
“ESCO” BATTERY CHARGERS

To meet an insistent demand for
RUGGED-RELIABLE
NEVER-FAILING
MOTOR-GENERATORS
For charging Batteries
Used in Wireless Operation
We have developed a complete line of
MANY SIZES.
With or Without panel Boards.
“ESCO” QUALITY thruout. You KNOW what THAT means.
Ask for Bulletin 242.

ELECTRIC SPECIALTY COMPANY
225 SOUTH STREET
STAMFORD,
CONN., U.S.A.

Pioneers in developing
Quality Wireless Apparatus

Delicate Soldering

THE POST SOLDERING IRON
Platinum Heating Unit—Interchangeable Tips—Universal Current
(Large & Small)

$6

ONE-HALF ACTUAL SIZE

POST ELECTRIC COMPANY
(Section Five) 30 E. 42nd St., New York

A THOUSAND CRYSTALS IN ONE

Don’t knock the crystal set because it is hard to adjust. Place a SILVERTONE crystal in your detector and ENJOY RADIO.

California Radio Supplies Co.
2513 Elsinore St., Los Angeles, Calif.

FRANKLIN SOCKET

For W-D-11—DRY Cell Tube
Holds tube firmly. Makes Perfect Contact

PRICE $0.50

We also make an Adapter that fits Standard Sockets, Price $1.00. Dealers Write for Discounts.

FRANKLIN RADIO MFG. CO.
711 Penn Avenue,
Wilkinsburg, Pa

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
This one tube receiver is astounding the radio world with its wonderful achievements. Stations more than 1000 miles away are being regularly copied on this set. In comparison to its price, there is no receiver on the market today to equal it in performance.

Because of its size and price the Ace Model V is a great summer seller.

Licensed under Armstrong U. S. Patent No. 1,113, 149.

Live Jobbers and Dealers are eagerly taking advantage of the sales this instrument and the rest of the Precision instruments and parts bring them.

Free Catalog on Request

THE PRECISION EQUIPMENT CO.
Powel Crosley Jr. President
518 GILBERT AVE.
CINCINNATI, O.
QUALITY AND EFFICIENCY

The "POSACO" condenser has made for itself an enviable reputation. It is a real instrument. The single knob controlled vernier is an absolute necessity for efficient tuning in radio frequency, super-regenerative and regenerative circuits. The regular variable is unexcelled for use in circuits which do not require a vernier adjustment.

MATERIALS used in the manufacture of these instruments are the finest obtainable.

WORKMANSHIP, the best.

Each instrument is tested before leaving our factory.

GUARANTEED to give satisfaction and to be free from any defect in materials or workmanship.

If your dealer or jobber cannot supply you, send us your order direct, together with his name and address.

REGULAR

A-1 Capacity .001 Mfd. $4.50
A-2 " .0005 " 4.00
A-3 " .00025 " 3.50
A-4 " .000125 " 3.00

Manufactured by

THE C. D. POTTER CO.

STAMFORD, CONN., U. S. A.

Price $1.00

Complete—practical. Price $1.00 (Worth $5.00). Sent on five days trial.

REM. AT OUR RISK, CASH, M.O. OR CHECK.

A. J. M. COMPANY (Radio Dept.), Box 247, Troy, N. Y.

Dealers write for special money making proposition.

HYGRADE SPECIALS

200 ft. 7 Strand 222 Copper aerial wire $1.25
Morse Eureka Test Clips, per dozen 50
Skinderviken Transmitter Buttons 95
2763 Eveready 22½ Volt Variable B. Batt. 1.25
2766 Eveready 22½ Volt Variable B. Batt. 2.25
2767 Eveready 45 Volt Variable B. Batt. 4.25
2000 Ohm Murdock 256 Head Sets 4.49
3000 Ohm Murdock 256 Head Sets 4.88
Federal or Brandes 2200 Ohm Head Sets 6.50
Dictograph 3000 Ohm Head Sets 8.98
Fada or Framingham Rheostats 85
Acme Amplifying Transformers (New Type) 4.25
Acme R.F. Transformers, Type R-2 4.25
4 Volt Marko Storage Batteries 8.95
6 Volt Marko Storage Batteries 8.95

SOUTHERN RADIO CORPORATION

Radio Engineers and Jobbers

908 Realty Building, Charlotte, N. C.

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
In the recent Trans-Atlantic Tests four out of five who succeeded used ACME.

In the recent Trans-Atlantic Tests between amateurs in the United States and Europe conducted by the American Radio Relay League, December 11th to December 30th, out of a group of thirty-two successful amateurs, twenty-six use Acme Apparatus. It is fitting that such is the case. For Acme has always kept in close touch with the development of amateur radio, and seeing the advent of C.W., was the first manufacturer to have apparatus available in the transition from Spark to Continuous Wave Transmission.

Amateurs desiring to enter the next series of tests or those who have entered previous ones without success, are welcome to write to this company, explaining their intentions or difficulties in detail. Our engineering department will be glad to aid them in any way possible. The coupon below is for the convenience of those who desire to familiarize themselves with the newest Acme Transmitting Apparatus. The Acme Apparatus Co., Cambridge, Mass., Branches, New York, Cleveland, Chicago, Kansas City, San Francisco.

ACME APPARATUS COMPANY
Cambridge, Mass.

Gentlemen:—Kindly send me your latest catalog of:

☐ Transmitting Apparatus
☐ Receiving Apparatus
☐ Booklet on Amplification without Distortion (Enclose 10¢)

Name

Street

City

State

ACME for transmission
ATTENTION AMATEURS!

We have a complete stock of the old line Radio Companies’ experimental and measuring instruments and C.W. parts.

We specialize in the famous Grebe Receivers and Amplifiers, renowned for their sensitivity and selectivity.

Immediate Shipment

PHILADELPHIA WIRELESS SALES CORPORATION
Affiliated with Philadelphia School of Wireless Telegraphy
1533 PINE STREET,
PHILADELPHIA

"ILLINOIS" THE RELIABLE
CONDENSER THAT IS MADE RIGHT AND STAYS RIGHT

<table>
<thead>
<tr>
<th>Size</th>
<th>Panel</th>
<th>Cased</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>$7.00</td>
<td>$8.50</td>
</tr>
<tr>
<td>43</td>
<td>3.50</td>
<td>4.75</td>
</tr>
<tr>
<td>23</td>
<td>2.75</td>
<td>4.00</td>
</tr>
<tr>
<td>13</td>
<td>2.25</td>
<td>3.50</td>
</tr>
</tbody>
</table>

Vernier with single movable plate applied to 18, 22 or 48 plates, $2.00 extra. Send for Bull tin.

G. F. JOHNSON, 625 Black Avenue, SPRINGFIELD, ILL.

Flewelling Circuit

A continuously variable grid leak over a wide range of resistance is the most essential and critical instrument required in this circuit. The BUNNELL VARIABLE GRID LEAK with a range of 1/8 to 6 megohms fills the bill. Furnished with or without jammed metal cover and screws for mounting Sample by mail. With Cover $1.00.

Super-Sensitiveness!
The crystal is the "bull's-eye" of your crystal receiving set. Unless it is supersensitive you are wasting time and entertainment and cannot "hit" the combination for best results. Insist upon the genuine original Arlington Tested "NAA" Detector mineral.

They are carefully selected from bulk stock, individually tested and guaranteed super-sensitive. Galena, Goldite or Silicon, price for crystal, 25¢. Same mounted in brass cup, 40¢. Obtainable at your dealers or sent direct (post-paid) on receipt of price.

The Newman-Stern
Newman-Stern Building, Cleveland

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
Appearance as a Mark of Quality

The excellent appearance of Condensite molded phenol resin is but one of its many unique advantages.

Its clean, sharp lines, smooth, glossy surface, and lasting color have made possible the manufacture of complete units, pleasing in appearance, compact in design, and superior in performance. And then it is a permanent material, one which cannot warp, is non-absorbent, resists high temperatures, does not fade, and it never loses its high dielectric strength. These properties are found in both molded and laminated phenol-resin products—obtainable only under the trade marks, Bakelite-Condensite-Redmanol.

BAKELITE CORPORATION

Address the Divisions

Bakelite, Condensite, and Redmanol are the trademark names for the phenolic resin materials manufactured by the several Divisions of the Bakelite Corporation. Each Division maintains a research laboratory which will gladly cooperate with manufacturers in the working out of new applications.
Quality Apparatus
We stock all makes and types of complete Radio sets and parts

Acme Apparatus Co.
Adams Morgan Co.
Andrea, A. D.
A. & P. Radio Supplies Co.
Baldwin, Nathanial
Brach, L. S. Mfg. Co.
Brandes, C. Inc.
Bunnell, J. H.
Clapp-Eastham Co.
Corwin, A. H. & Co.
DeForest Radio T. & T. Co.
Dictograph Products Corporation
Dubilier Condenser Co.
Eby Mfg. Co.
Federal T. & T. Co.
Firth, John & Co.
Freed-Eisemann Co.
Frost, Herbert H.
General Radio Co.
Kennedy, Colin B.
Murdock, Wm. J. Co.
Radio Distributing Co.
Radio Corp. of America
Remler Mfg. Co.
Riley-Klotz Mfg. Co.
Sleepy Radio Co.
Western Elec. Co.
Wireless Press, Inc.

Delivery same day order received

Pioneers in the Radio Field
Send 10¢ for Latest Catalog.

ROSE RADIO AND ELECTRICAL SUPPLIES
129 Camp St., New Orleans, La.

PRICES SLASHED!
BUY HERE FOR MUCH LESS
ALL MERCHANDISE SOLD ON A "MONEY BACK" BASIS

FONES
$6.00 Manhattan 2000 Ohm Fones $3.68
12.00 Nathaniel Baldwin Type C Double 5.35
6.00 Nathaniel Baldwin Type C Single 3.95
9.00 Trimm 3000 Ohm Fones 5.95

TUBES
U.V.200—List $5.00 $3.85
U.V.201—List $6.50 $4.45
U.V.201A 5.80
Improved Detector Tubes 2.45
Mercury 1½ Volt 6.50

MISCELLANEOUS
$45.00 Magnavox Loud Speaker Type R3 $26.95
25.00 Atlas Loud Speaker 19.95
.90 Dials 2 and 3 inch23
1.10 Dayton Rheostats79
7.50 Moulded Dayton Variocouplers . 4.95
7.25 Moulded Dayton Variometers . 4.75
1.00 Erla Sockets49
1.00 Dayton Dials45
Switch Levers 50¢ Value (adjustable Radius) .25
Mounted Hot Spot Crystals 35¢ value .. .20
$2.00 Grewol Enclosed Crystal Detector 1.55
$25.00 6 volt 100 ampere hour batteries . 12.95
A Two Year Guarantee With Every Battery Sold
"If It's in Radio We Have It."
We Guarantee All Merchandise Purchased From Us.
Mail Orders Receive Prompt Attention

FEDERAL SALES COMPANY
MASONIC TEMPLE, CHICAGO, ILLINOIS

O-B Radio Company.
Distributors for
Colin B. Kennedy Co.
Horne Receiving Sets
Remler Accessories
Horne Accessories
Cunningham Tubes

If your dealer can't supply you, write to us direct for any standard Radio material.

O-B Radio Company
Flatiron Hotel Bldg., 1730 St. Mary's Ave.
Omaha, Nebr.
WHERE radio apparatus, like a professional entertainer, must meet the test of satisfying really discriminating people, a Magnavox Reproducer and Power Amplifier (as shown above) are certain to be installed.

Magnavox R-3 Reproducer and 2-stage Power Amplifier $90.00.

R-2 Magnavox Reproducer with 18-inch horn: the utmost in amplifying power. $60.00.

R-3 Magnavox Reproducer with 14-inch horn $35.00.

Model C Magnavox Power Amplifier
AC-2-C 2-stage $55.00.
AC-3-C 3-stage 75.00.

Magnavox Products can be had of good dealers everywhere. Write for booklet.

The Magnavox Co., Oakland, California
New York Office: 370 Seventh Avenue

MAGNAVOX PRODUCTS
No Radio Receiving Set is complete without them
CHELSEA CONDENSERS

No. 3

PRICES

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Table .001 mf.</td>
<td>$5.00</td>
</tr>
<tr>
<td>2</td>
<td>Table .005 mf.</td>
<td>$4.50</td>
</tr>
<tr>
<td>3</td>
<td>Panel .001 mf. with dial</td>
<td>4.75</td>
</tr>
<tr>
<td>4</td>
<td>Panel .001 mf. without dial</td>
<td>4.35</td>
</tr>
<tr>
<td>5</td>
<td>Panel .005 mf. with dial</td>
<td>4.25</td>
</tr>
<tr>
<td>6</td>
<td>Panel .005 mf. without dial</td>
<td>3.85</td>
</tr>
<tr>
<td>7</td>
<td>Panel vernier with dial</td>
<td>2.90</td>
</tr>
<tr>
<td>8</td>
<td>Panel vernier without dial</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td>Table .001 mf. with vernier</td>
<td>6.75</td>
</tr>
<tr>
<td></td>
<td>Table .001 mf. with vernier</td>
<td>6.50</td>
</tr>
</tbody>
</table>

Genuine Bakelite Construction
The best and most complete line of condensers in existence.
Write for our catalog No. 7.

CHELSEA RADIO CO.
156 FIFTH STREET
CHELSEA, MASS.

LOUD SPEAKER FOR ANY CRYSTAL SET

By using the STEINMETZ amplifier you can fill the whole room with music and can increase your range up to 1000 miles. $5.50, remit by check or money order.

<table>
<thead>
<tr>
<th>Specials for limited time only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radioiron UV200 Detector tube</td>
</tr>
<tr>
<td>Amplifying tubes</td>
</tr>
<tr>
<td>1½ volt dry cell tubes</td>
</tr>
<tr>
<td>Sockets for standard tubes</td>
</tr>
<tr>
<td>1½ volt dry cell tubes 50c</td>
</tr>
<tr>
<td>500 ohm phones</td>
</tr>
<tr>
<td>SUPERIOR crystal sets 3.90</td>
</tr>
<tr>
<td>Eveready 22½ volt "B" batteries</td>
</tr>
<tr>
<td>Rheostats 50c, Vac. Tube detector sets $5.50, Amplifier sets $3.50</td>
</tr>
</tbody>
</table>

This and must accompany order
Complete instructive catalog 5c at your dealers or STEINMETZ WIRELESS MFG. CO.
5205 Penn. Avenue, Pittsburgh, Pa.

CONVERT YOUR CRYSTAL SET

Into Tube Set at Small Cost

You can now enjoy wider range, greater volume of sound and purer tone and do away with feeling ground for a sensitive spot. Prices $2.00.

Welsh PEANUT Detector Tube
W.T. 501

Can be used on three dry cells or one regular dry cell battery. Includes all tubes, consequently does not use up batteries as fast. Nickel-plated socket, moulded base, double-tube contact, etc. $2.00 extra. Adapter for standard V.T. Socket.

If not at your dealer's, send us his name and address and we'll see that you are supplied. Include 10¢ for registration.

RADIO RESEARCH GUILD
30 Clinton St.
Newark, N. J.

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
Are Your B Batteries Depleted?

B Battery depletion is often the answer to the question:

"What's wrong with my reception?"

A Weston Filament Voltmeter is the only positive source of information that a B Battery is so depleted it should be discarded.

Also needed to prolong tube life. Indicates undervoltage which causes tungsten filaments to become brittle and break. Shows over-voltage which shortens tube life—often causing premature burnouts. Permits rapid duplication of results.

The Weston is the “lifetime” Voltmeter with high resistance and absolute dependability.

WESTON ELECTRICAL INSTRUMENT CO.
158 Weston Avenue
Newark, N. J.

Electrical Indicating Instrument Authorities since 1888

Elwood Electric Co., Inc.
Bridgeport, Conn., U.S.A.
Manufacturer of
Radio and Telephone Equipment

FOR SALE
CW-936 Sub Chaser Telephone Transmitting and Receiving Set including:—Remote Control System, Power Amplifier, Loud Speakers, Tubes, Spare Microphone, etc. Can be tuned down to 200 meters.

KLEIN’S
RADIO AND ELECTRIC SUPPLY CO.
34 PARK PLACE AND
48 FULTON STREET
NEW YORK

RUSONITE

CRYSTAL RECTIFIER
MULTIPOINT
(Patent Pending)
A synthetic CRYSTAL DETECTOR,
sensitive over its entire surface
Eliminates all detector trouble. Extraordinary
clearness and volume. Endorsed by radio experts
and press. Sold in Sealed Packages on y. Join the
ever increasing Rusonite fans.

Price, mounted
Sensitivity guaranteed
RUSONITE CATWHISKER
14 Karat Gold Multiple Contact, Super-sensitive

Order from your dealer or direct from us.
RUSONITE PRODUCTS CORP.
15 Park Row, N. Y.

ALWAYS MENTION O.S.T. WHEN WRITING TO ADVERTISERS.
CLASSIFIED ADVERTISEMENTS

Six cents per word per insertion, in advance. Name and address must be counted. Each initial counts as one word. Copy must be received by the 10th of month for succeeding month's issue.

PURE NICKEL WIRE FOR EDISON B BATTERY CONNECTORS 1 1/2 FOOT, HARD RUBBER SEPARATED DOWN 50% CENT TEST TUBES FIFTY CENTS DOZEN. 8 M., CLEVELAND.

100 WATT CW FOR SALE Hartley circuit AC plate and filament supply, Radio Corp. parts, 3 meters, bake-lite panel, heerd in 5 countries using one UV-205 $92. 160, W. Brackett, 838 Middle St., Bath, Maine.

RUBBER STAMP with large call letters 50c; Radiogram and Relay Radiogram blanks 25c per hundred. Post Card 60c hundred. Send us your orders. Carolina Printing & Stamp Co., Wilmington, North Carolina.

TO DECREASE our stock, we offer UV-200, $4.15; UV-201, $3.55; Burgess “B” $3.00 size at $2.00; R-2 Magnavox, $29.50; R-2 Magnavox, $50.00; UV-200. $25.00 for cabinet and detector in 7x12 cabinet, $27.50. Money refunded if not satisfied. Chesaning Elec. Co., Chesaning, Mich.

MUST SELL Regenerative Receiver, mahogany finished cabinet. Contains detector and three stage amplification with tubes. Dictograph phones. Baldwin Magnavox. $50.00; UV-R-2 $40.00. Wakefield Radiator, 201-A, $7.75; Detector and two step audio amplifier for $20.00. Van Wert, Ohio.

FOR SALE: Generators Electric Dynamotors 1.120 Va. Ave. S. W., Washington, D. C. 3BSB.

WANTED: Good Experimental Receiving Apparatus. Wendell Fletcher, Santa Barbara, Calif.

FOR SALE: $125.00 gear adjusted eight point Hybrid sink gap, $65.00. Thor O.T. $5.00-First class condition—Hardly used. E. H. Giddings, Lanark, Ill.

BATTERIES: Edison Storage “B” Battery Elements, 5c per pair; 18 will make one 22.5 volt battery. Gilman’s Battery Shop, Chase St., Chelsea, Mass.

BATTERY—OUT-Tubes repaired. The following makes only $1. for Phonographs, etc. also, A.P. Detectors, $3.00. Amplifiers, $3.50. Also W.D.-11 $4.00 new price. Tubes promptly returned. Parcel post C.O.D. E. Gillmore, 46 Thomas St., Newark, N. J.

FOR SALE: Regenerative receiver and one step in oak cabinet complete with tubes, batteries and phonos. All new parts, $70. S. Goldsmith, 323 Richard St., Dayton, Ohio.

RADIO REPAIRING—anything but tubes. Send us your apparatus that won’t work. We’ll make it work and send it back in better condition. A. J. Hanks, Port Arthur, Texas.

FACTORY BUILT Universal Regenerative Receiver and two stage amplifier. Similar to Kennedy Universal. Worth $300. Sell for $80. Detector-Two Stage amplifier, $20. Factory-built Deluxe two stage amplifier, $25. Crosley Tuner and Detector, $5; Crosley Two Stage Amplifier, $3; Large Hatfield Cabinet. Contains detector and three stages amplification, $50; Federal Receiver, Type RA. and DA, slightly used, $65.00. F. Covey, 1100 N. 12th Ave., Junction Shop, St. Paul’s School, Concord, N. H.

QSL—Send stamp for sample cards. Donald Detwiler, 1120 61st Ave., S. St. Paul, Minn.

WANTED: Parts to build 10 to 50 watt radio phones. Box 244, Cleburne, Texas.

FOR SALE: Acme 150 Watt filament transformer, $13; Detector and two step amplifier, $20. Paragon R.A. 10 watt transmitter, Under $10. Write to W. C. Haigh, 58 Newfield St., East Orange, N. J.

BARGAIN: Slightly used Paragon receiver with detector two step. Power amplifier; two phonos; loud speaker; two new, hundred-ampere storage batteries; aerial; vacuum tubes; etc. Cost $250. Sell $160. Hear California with it. Francis Hall, St. Paul’s School, Concord, N. H.

EDISON ELEMENTS for storage B batteries, six to ten cents per pair postpaid, depending entirely upon quality at full capacity elements. A. J. Haaks, 608 Montgomery St., Jersey City, N. J.

MAKE OFFER, one complete 50 watt CW Trans.
miter including tube and rectifier, has good DX record, A. N. Hubner, 414 Herman St., Cincinnati, O.

EDGEWISE WOUND COPPER Ribbon 5/8" x 1/4" x 3/4" also 9/16" for Oscillation Transformers 16 and 17\r\nper turn any number of turns in one piece. Flat Ribbon 5/8 foot. George Schulz, Cabinet Makers, N.Y.

CROCKER-WHEELER generators 1500 volt 500 watt with 50 volt 7.5 amp. exciter. Ball bearings 140 segmented parts sold separately. Write immediately. Kimley Equipment Mfg. Co., 290 Winslow Ave., Buffalo, N. Y.

CW AND RADIOPHONISTS: Our new converters will satisfy your need for a more economical and re-liable plate supply. Output seven hundred to two thousand volts at .4 amperes D.C. No generator armatures to burn out. Synchronized motors and other parts sold separately. Write immediately. Kimley Equipment Mfg. Co., 290 Winslow Ave., Buffalo, N. Y. Attention L. W. Kimley.

FOR SALE: Bargain, DX receiver consisting of one\nstep detector, three step audio 150-25000\nmeters. Price $50. Louis Kreig, 26 Kent Street, Gloversville, N. Y.

TRANSFORMER AND REACTANCE, five K.W., 500\ncycles, Wireless Specialty Co., also duplex relay trans-\nfers panel for same. Excellent condition. One hun-\ndred dollars prepaid. Kubiae, 54 Bryant St., Cradock, Va.

CALLS HEARD CARDS for DX reports. Call in color. $0.80 hundred up. Sell: regenerative receiver with detector, $32.50. 9AVO, 746 South Armstrong, Kokomo, Ind.

BARGAINS: New Kennedy Type 281 Short Wave Re-\ceiver with two step amplifier $130.00; 5/8 K.W. Thor-\ndarson transformer $12.00; Benwood Rotary Quenched\nGap $15.00; Robbins-Meyers 1/10 H.P. motor $10.00. Howard W. Lurch, 245 West Ave., Lockport, N. Y.

2CYU-QRA—Floyd J. Mann, 327 Fourth Ave., New York City. Bad location. All cards answered.

FOR SALE: Ten watt CW and fone transmitter. F.F\nRectifier, Cheap, write. Harley McClain, Millersburg, Ohio.

EXCEPTIONAL BARGAIN: Roller-Smith voltmeters\nreading both alternating and direct current. Two\nsections $1.00 each. Mail orders to Mac Ilvins, 353 West 115th Street, New York.

10 Clapp-Eastham H.R. Detectors, $34.00; 8 Clapp-
Eastham H.Z. 2 Stage Amplifiers, $34.00; 5 Omni-\ngle Detectors, $25.00 each. All new Immediate Shipment. Mayport Radio Co., Mayport, Pa.

TYPE R Thordarson Kilowatt transformer, $150.00;\nKilowatt Thordarson oil Condenser, $7.00; 1/4 horse\nWestinghouse synchronous motor, $10.00; Rotary\ngap enclosed, $5.00; Radio Corporation 750 Watt,\n1500 volt power transformer almost new, $27.00. How-
ward Miller, 6318 N. Park Ave., Philadelphia, Pa.

FOR SALE: Complete Station, write for list. Also\nmotor generator sets. Write for list, S. F. North-
cott, 1204 N. Birney St., Bay City, Mich.

FOR SALE: 1PA, George Nothnagle, 176 Waldemere Ave., Bridgeport, Conn. Old 1CJA has been cancelled. Please correct your call hook.

WANTED: Half Kilowatt spark transformer, 9DQU,\n1538 N. Edward, Decatur, Ill.

FOR SALE: Canadian 3OH's 10 watt C.W. trans-\mitter. DX—31 states worked.

FOR SALE: New Grebe CR 9 Receiver 30% off low-\ning the price to $91.00. Sent C.O.D.—Radio 9EER.

FOR SALE: Amrad regenerative tuner, beauty, $20.00;\nAcme 200 watt 750v. trans., 10v., filament windings. Center taps, $15.00; Jewell 0-3 meter, ther-\nmostat, couple, slightly used $10.00. R. Oppenheim Sta.\n"E", Arlington, Md.

FOR SALE: Complete Station, write for list. Also\nmotor generator sets. Write for list, S. F. North-
cott, 1204 N. Birney St., Bay City, Mich.

FOR SALE: 1PA, George Nothnagle, 176 Waldemere Ave., Bridgeport, Conn. Old 1CJA has been cancelled. Please correct your call hook.

WANTED: Half Kilowatt spark transformer, 9DQU,\n1538 N. Edward, Decatur, Ill.

FOR SALE: Canadian 3OH's 10 watt C.W. trans-\mitter. DX—31 states worked.

FOR SALE: New Grebe CR 9 Receiver 30% off low-\ning the price to $91.00. Sent C.O.D.—Radio 9EER.

FOR SALE: Amrad regenerative tuner, beauty, $20.00;\nAcme 200 watt 750v. trans., 10v., filament windings. Center taps, $15.00; Jewell 0-3 meter, ther-\nmostat, couple, slightly used $10.00. R. Oppenheim Sta.\n"E", Arlington, Md.

FOR SALE: Complete Station, write for list. Also\nmotor generator sets. Write for list, S. F. North-
cott, 1204 N. Birney St., Bay City, Mich.

FOR SALE: 1PA, George Nothnagle, 176 Waldemere Ave., Bridgeport, Conn. Old 1CJA has been cancelled. Please correct your call hook.

WANTED: Half Kilowatt spark transformer, 9DQU,\n1538 N. Edward, Decatur, Ill.

FOR SALE: Canadian 3OH's 10 watt C.W. trans-\mitter. DX—31 states worked.

FOR SALE: New Grebe CR 9 Receiver 30% off low-\ning the price to $91.00. Sent C.O.D.—Radio 9EER.

FOR SALE: Amrad regenerative tuner, beauty, $20.00;\nAcme 200 watt 750v. trans., 10v., filament windings. Center taps, $15.00; Jewell 0-3 meter, ther-\nmostat, couple, slightly used $10.00. R. Oppenheim Sta.\n"E", Arlington, Md.
SACRIFICE—Unused CR4 for $98.50, unused RORN Radio Frequency Amplifier, $40.50, slightly used CR5, $62.50. Accessories for above 25% off. Money back guarantee. $25 in on this chance to get a high class set at the right price. John Richards, Carrollton, Ohio.

TRANSMITTER-CW-938 Navy Sub Chaser Sending and Receiving Set made by Western Electric Company. Here's your one or straight two-channel, or special watt tubes for sending; detector; two audio; three step amplifier; horn; generator and switchboard. New. Bargain $250.00. No tubes, DX Voice 75, CW 600 miles. H. B. Scott, R. R. No. 2, Dayton, Ohio.

GREBE CR3, two step amplifier, with tubes $65.00. BABV, 607 East First, Hutchinson, Kansas.

FOR SALE: eight unused British Army receiving tubes, $3.75 each. Send C.O.D. Write for particulars. J. G. Shaw, 14 Madison, Hamilton, Canada.

FOR SALE: Paragon RA6, $25; Homcharger, open type, $10; Panel, etc. Guaranteed. QRA of 9KN, Horace Wahl, Victor, Iowa.

FOR SALE--$75 f.o.b. Donald Tucker, Greencastle, Indiana, R. 8.

A RECOGNIZED RADIO ENGINEER who is a college man, has been associated with the radio industry for 10 yrs. is a competent research and radio sales engineer, has knowledge of electrical engineering, has designed and constructed commercial and radio broadcasting stations, desires a position with a reliable firm. Address, N. E. Wunderlich, 4333 N. Sawyer Ave., Chicago, Ill.

AMATEURS: Are you troubled with noise in your receiving set due to loose connections on your storage battery? If so don't a set of Sure-Grip connectors. They are non-corrosive, easily attached and make a contact that will not jar loose. Price 25 cents each prepaid. Maud, 1578b Beacon St., Brookline, Mass.

NEW JEWELL Voltmeter 0-500 DC, $12.75. 2AJC.

FOR SALE—$24.00 Edison 22 volt storage B battery. I will furnish you with 30 famous chrome nickel plates, 15 containers, separators, wire, etc., nothing to buy extra. Complete with all instructions for assembling, charging, etc. Prepaid for $3.15. All orders shipped same day received. H. B. Smith, Jr., 51 Washington Ave., Danbury, Conn.

WANTED Half Kilowatt spark transformer. 9DQU, 1538 N. Edward, Decatur, Illinois.

CAN. 4BV is P. Socolofsky, Loreburn, Sask. Pre QSL OM only few states left.

SELL: Paragon RA6, $25; Homcharger, open type, $10; together $30. Fred Timper, 3238 Steuben Ave, Bronx, N. Y. C.

FOR SALE—Slightly used vario-coupler, two vario-meter and condenser tuner and Detector including tubes. Price $10.00. Complete with all instructions for assembling, charging, etc. Prepaid for $10.00. Shipping $4.00. A. Obenland, Pomeroy, Ohio.

PARAGON 2-5-V Radio Phone transmitter for only $40. The Radio Club, 17 Union Ave., Irvington, N. J.

FOR SALE: $24.00 Edison 22 volt storage battery. D. H. Smith, Jr., 51 Washington Ave., Danbury, Conn.

FOR SALE: Battery UNITS one positive and one negative plate for 10c. 18 sets will make a 24 volt battery. Wilkinsburg Wireless Shop, 711 Penn. Ave., Wilkinsburg, Pa.

QRA—1AYE. Stuart Williams, Glastonbury, Conn.

NOW IT IS EASY TO DELIVER THAT MESSAGE!

Here is something that has been needed for long time—a message delivery card. Eliminates fusing with envelopes, stamps, folded message blanks, and saves expense. Printed on government 16 postal cards, ready to be filled out and dropped in a mailbox without extra postage. A.R.R.L. traffic regulations require official relay stations to forward by mail, direct to addressee, messages originating on amateur station by radio within 48 hours after receipt. Here is the easy way to do it. Excellent, too, for local delivery. 100 cards at 75¢, 101-200 cards at 70¢, 201-500 cards at 65¢. A. L. W. enclosed for postage. A.R.R.L. Relay Stations allowed to use message delivery cards.

INVENTORS: Protect your invention through A. M. Wilson, Inc., Washington, D. C. Over 25 years of efficient, expert and confidential service in Electrical, Chemical, and Mechanical fields. Our latest illustrated Patent Book, giving much necessary and very useful information which every inventor should know, will be sent free upon request. Prompt and careful attention. Highest references. Moderate fees. Send sketch or mod: for our careful opinion and pre-
QST's Index of Advertisers

In This Issue

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.R.R.L. RadioGram Cards</td>
<td>134</td>
</tr>
<tr>
<td>Acme Apparatus Co., The</td>
<td>125</td>
</tr>
<tr>
<td>Adams-Moran Co., The</td>
<td>98</td>
</tr>
<tr>
<td>A. J. M. Co.</td>
<td>124</td>
</tr>
<tr>
<td>Alden Mfg. Co., The</td>
<td>110</td>
</tr>
<tr>
<td>Allen-Bradley Co., The</td>
<td>116</td>
</tr>
<tr>
<td>American Radio & Research Corp.</td>
<td>112</td>
</tr>
<tr>
<td>American Specialty Co., The</td>
<td>116</td>
</tr>
<tr>
<td>American Transformer Co., The</td>
<td>118</td>
</tr>
<tr>
<td>Ameco Products, Inc.</td>
<td>110</td>
</tr>
<tr>
<td>Atlwater-Kent Mfg. Co.</td>
<td>88-89</td>
</tr>
<tr>
<td>Automatic Electrical Devices Co.</td>
<td>90</td>
</tr>
<tr>
<td>Bakelite Corp.</td>
<td>127</td>
</tr>
<tr>
<td>Brach Mfg. Co., L. S.</td>
<td>106</td>
</tr>
<tr>
<td>Branson, Chas.</td>
<td>94</td>
</tr>
<tr>
<td>Briggs & Stratton Co.</td>
<td>126</td>
</tr>
<tr>
<td>Bunnell & Co. J. H.</td>
<td></td>
</tr>
<tr>
<td>Burness Battery Co.</td>
<td></td>
</tr>
<tr>
<td>California Radio Supplies Co.</td>
<td>122</td>
</tr>
<tr>
<td>Chelsea Radio Co.</td>
<td>120</td>
</tr>
<tr>
<td>Chicago Radio Apparatus Co.</td>
<td>108</td>
</tr>
<tr>
<td>Classified Advertisements</td>
<td>122-123-134</td>
</tr>
<tr>
<td>Connecticut Telephone & Electric Co.</td>
<td>106</td>
</tr>
<tr>
<td>Coto-Company</td>
<td>125</td>
</tr>
<tr>
<td>Cummings, W. O.</td>
<td></td>
</tr>
<tr>
<td>Danziger-Jones, Inc.</td>
<td>108</td>
</tr>
<tr>
<td>Diamond State Fibre Co.</td>
<td>121</td>
</tr>
<tr>
<td>Ditzler Products Corp.</td>
<td>107</td>
</tr>
<tr>
<td>Doubleday-Hill Electric Co.</td>
<td>120</td>
</tr>
<tr>
<td>Durham & Co.</td>
<td>102</td>
</tr>
<tr>
<td>Eastern Radio Institute</td>
<td>120</td>
</tr>
<tr>
<td>Eisemann Magneto Corp.</td>
<td>108</td>
</tr>
<tr>
<td>Electric Motor Inc. Engineering Co., The</td>
<td>120</td>
</tr>
<tr>
<td>Electric Specialty Co., Inc.</td>
<td>122</td>
</tr>
<tr>
<td>Electric Storage Battery Co., The</td>
<td>99</td>
</tr>
<tr>
<td>Elwood Electric Co., The</td>
<td>120</td>
</tr>
<tr>
<td>Emblem Mfg. Corp.</td>
<td>114</td>
</tr>
<tr>
<td>Esquire Electric Co., The</td>
<td>120</td>
</tr>
<tr>
<td>Ewer Electric Co.</td>
<td>126</td>
</tr>
<tr>
<td>Federal Sales Co.</td>
<td>128</td>
</tr>
<tr>
<td>Federal Telephone & Telegraph</td>
<td>116</td>
</tr>
<tr>
<td>Fernhend Electric Co.</td>
<td>104</td>
</tr>
<tr>
<td>Formica Insulation Co., The</td>
<td>117</td>
</tr>
<tr>
<td>Frank Mfg. Co., The</td>
<td>116</td>
</tr>
<tr>
<td>Franklin Radio Mfg.</td>
<td>122</td>
</tr>
<tr>
<td>French Battery & Carbon Co.</td>
<td>95</td>
</tr>
<tr>
<td>French Mfg. Co., M.</td>
<td>129</td>
</tr>
<tr>
<td>Freshman & Co., E. D.</td>
<td>112</td>
</tr>
<tr>
<td>Frost, Herbert H.</td>
<td>92</td>
</tr>
<tr>
<td>General Electric Co.</td>
<td>101</td>
</tr>
<tr>
<td>General Radio Co.</td>
<td>109</td>
</tr>
<tr>
<td>Grebe & Co., A. H.</td>
<td>4</td>
</tr>
<tr>
<td>Higby-Assey Co., The</td>
<td>116</td>
</tr>
<tr>
<td>Holter-Cabot Electric Co., The</td>
<td>118</td>
</tr>
<tr>
<td>Hygrade Elec. Novelty Co.</td>
<td>124</td>
</tr>
<tr>
<td>Johnson, G. F.</td>
<td>126</td>
</tr>
<tr>
<td>Kellogg Switchboard & Supply Co.</td>
<td>110</td>
</tr>
<tr>
<td>Kennedy Co., Colin B. The</td>
<td>11</td>
</tr>
<tr>
<td>Kinley Electric Co.</td>
<td>100</td>
</tr>
<tr>
<td>Klein's Radio & Electric Supply Co.</td>
<td>131</td>
</tr>
<tr>
<td>Lyon Radio Co.</td>
<td>106</td>
</tr>
<tr>
<td>Magnavox Co., Inc.</td>
<td>129</td>
</tr>
<tr>
<td>Marie Engineering Co.</td>
<td>122</td>
</tr>
<tr>
<td>Metal Arts Co.</td>
<td>118</td>
</tr>
<tr>
<td>Multiple Electric Products Co., Inc.</td>
<td>115</td>
</tr>
<tr>
<td>N-A-D Laboratories, Inc.</td>
<td>104</td>
</tr>
<tr>
<td>Newman-Stern Co., The</td>
<td>125</td>
</tr>
<tr>
<td>Novo Mfg. Co.</td>
<td>128</td>
</tr>
<tr>
<td>O-B Radio Co.</td>
<td>123</td>
</tr>
<tr>
<td>Philadelphia Wireless Sales Corp.</td>
<td>126</td>
</tr>
<tr>
<td>Pittsburgh Radio & Appliance Co., Inc.</td>
<td>112</td>
</tr>
<tr>
<td>Potter Co., The C. D.</td>
<td>124</td>
</tr>
<tr>
<td>Precision Equipment Co., The</td>
<td>123</td>
</tr>
<tr>
<td>Radio Products Corp.</td>
<td>118</td>
</tr>
<tr>
<td>Radio Research Guild</td>
<td>92-98</td>
</tr>
<tr>
<td>Radio Specialty Co.</td>
<td>107</td>
</tr>
<tr>
<td>Radio Store of Paul F. Johnson</td>
<td>102</td>
</tr>
<tr>
<td>Radio Stores Corp.</td>
<td>118</td>
</tr>
<tr>
<td>Relia Sales Corporation</td>
<td>104</td>
</tr>
<tr>
<td>Rauland Mfg. Co.</td>
<td>94</td>
</tr>
<tr>
<td>Remler Radio Mfg. Co.</td>
<td>131</td>
</tr>
<tr>
<td>Reynolds Radio Co., Inc.</td>
<td>118</td>
</tr>
<tr>
<td>Rhomstine, J. Thos.</td>
<td>114</td>
</tr>
<tr>
<td>Roller-Smith Co.</td>
<td>114</td>
</tr>
<tr>
<td>Rose Radio & Electric Supplies</td>
<td>138</td>
</tr>
<tr>
<td>Russonite Products Corp.</td>
<td>131</td>
</tr>
<tr>
<td>Southern Radio Corporation</td>
<td>124</td>
</tr>
<tr>
<td>Standard Transformer Co., The</td>
<td>106</td>
</tr>
<tr>
<td>Steinmetz Wireless Mfg. Co.</td>
<td>130</td>
</tr>
<tr>
<td>Sterling Mfg. Co., The</td>
<td>100</td>
</tr>
<tr>
<td>Stromberg-Carlson Telephone Mfg. Co.</td>
<td>110</td>
</tr>
<tr>
<td>Telephone Maintenance Co.</td>
<td>119</td>
</tr>
<tr>
<td>Tuska Co., The C. D.</td>
<td>114</td>
</tr>
<tr>
<td>Union Radio Corp.</td>
<td>96</td>
</tr>
<tr>
<td>Walbert Mfg. Co.</td>
<td>96</td>
</tr>
<tr>
<td>Western Electric & Electrical Co.</td>
<td>114</td>
</tr>
<tr>
<td>Westinghouse Union Battery Co.</td>
<td>111</td>
</tr>
<tr>
<td>Weston Electrical Instrument Co.</td>
<td>113</td>
</tr>
<tr>
<td>Willis Switch & Instrument Co.</td>
<td>123</td>
</tr>
<tr>
<td>Wireless Mfg. Co.</td>
<td>118</td>
</tr>
</tbody>
</table>

Always Mention QST When Writing to Advertisers

Always mention QST when writing to advertisers.
From Cuba to Canada with the Bradley Stat

The Bradleyometer is a perfect potentiometer for critical radio circuits. It is made in 200-ohm and 400-ohm sizes and gives precise voltage control without steps or noise.

The Bradleyadapter is a high-grade adapter for WD-11 tubes and will fit every standard radio socket. The contacts are silver plated.

The best reply to your letter of the 26th is the enclosed map which shows the marvelous possibilities of my set. I attribute this strongly to the Bradleystats used for sharp tuning. It is absolutely necessary to have quick and fine adjustments without unnecessary tube noises.

I have used almost all rheostats, but I can honestly say I would use no other make than the Bradleystat. I copy outside stations while local ones are transmitting. I feel that my Bradleystats are responsible for most of it.

I am so thoroughly satisfied with my Bradleystats that I will gladly recommend them in any way.

Yours truly,

Louis J. Gallo

February 4th, 1923.

Send for Latest Bulletins on Perfect Radio Products

Allen-Bradley Co.
Electric Controlling Apparatus
277 Greenfield Avenue
Milwaukee, Wis.
The Secret of a Successful Set

Is as much a matter of buying the best units, as of the proper wiring of your circuit.

Knowing that quality of materials and character of workmanship have as much to do with the effectiveness of an instrument as the excellence of its design—

We not only maintain one of the most complete Radio Research Laboratories in the country, but require our production department to follow the same specifications, work to the same standards, and meet the same exacting requirements as govern our engineers in their development work.

So, in considering Connecticut Radio, if you find some slight difference between its cost and that of the ordinary kind, just remember that there are all kinds of a difference in the results it gives.

For instance in the Connecticut Variable Condenser

You find these advantages

- Compactness
- Long scale (250° against 180°)
- Low losses—less waste of signal energy—due to small quantity and high quality of insulating material
- Slight capacity change with a given dial movement
- No rubbing contact from shaft to bearing
- No balance required to make it stay put
- No short circuits—impervious to jars or rough handling
- Perfectly shielded from outside fields—absence of body capacity when tuning
- Resistance—0.2 ohm

<table>
<thead>
<tr>
<th>Portable Type J-107</th>
<th>$6.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel Type J-108</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

And in the Connecticut Transformer

The following superiorities

- Highest grade silicon steel core (such as used on largest power transformers) to secure efficiency
- Designed to match and give the best results with amplifier tubes; windings impregnated to keep out moisture, have a turns ratio of 4.25 to 1. Carefully shielded to prevent stray fields
- Convenient terminals, well spaced, mounted on CETEC insulating materials
- Low losses, due to carefully tested windings and best grade of materials
- Perfect balance between input and output circuits

| Audio Frequency Type J-121 | $5.00 |

If your dealer cannot supply you, write direct. Booklets on request.
These 1-Stage Amplifiers, Radio and Audio, were designed for AMRAD Receivers, but they are applicable to any standard equipment or to the receiver you have built yourself. Use these perfectly balanced Units, encased in solid mahogany cabinets, and settle once and for all your amplification problem.

For 2-stages, specify Amrad Radio Frequency Amplifier 3071 or Audio Amplifier 2776.

If your desire to build your own Amplifier, the Parts used in the AMRAD Units are available—Parts that are the result of years of research and development in our own laboratories, and represent the best money can buy.

These Parts, which are one of the basic reasons for AMRAD efficiency in amplification, include the Amrad Ampliformer and Radiformer—two amplifying transformers in a class by themselves as repeated comparative reports have proved; the Amrad Midget Potentiometer—the very latest in control devices for radio frequency circuits; and the Amrad Filament Rheostat.

AMERICAN RADIO AND RESEARCH CORPORATION
205 College Ave., Medford Hillside, Mass.
New York District Office
13 Park Row
Chicago District Office
218 South State Stree