ATTENTION TO THE AMATEURS

AMATEUR RADIO

December 1923

The Boiled Owl

Published by
American Radio Relay League

QST

Devoted Entirely to
AMATEUR
RADIO

"The Boiled Owl"

December 1923

20¢
RADIO TUBES
The Heart of your Receiving Set

In the case of all living things the heart is the most vital organ. Weaken, injure or destroy the heart and life is accordingly weakened, endangered or destroyed.

In a radio receiving set the tube is analogous to the heart. Remove it entirely and the set will cease to function. Use an inferior tube and the results will be inefficient and generally not pleasing to listen to.

In living things a perfect heart does not always insure a healthy body, but on the other hand it is indispensable. The same is true of the radio receiving set. It may be perfect in every detail but unless the best tubes are used the results will not be perfect.

Cunningham Radio Tubes were developed in the great Research Laboratories of the General Electric Co., and are now being made in that company's modern and mammoth factories under the supervision of highly skilled engineers.

Better tubes are not attainable. There is a model specially adapted to every set, every circuit and every socket used today. Every radio dealer can supply you with Cunningham tubes. Buy them for replacements. Insist that they be included when purchasing a new set and you will know that your receiving set has a perfect heart.

The care and operation of each model of receiving Tube is fully explained in our new 40-page "Radio Tube Data Book." Copies may be obtained by sending ten cents to our San Francisco Office.

Cunningham tubes are covered by patents dated 11-7-05, 1-15-07, 2-18-08, and others issued and pending. Licensed for amateur, experimental and entertainment use in radio communication. Any other use will be an infringement.

Patent Notice
Cunningham Radio Tubes

Home Office: 182 Second St. 154 West Lake Street 30 Church Street
San Francisco, Calif. Chicago, Illinois New York City, N. Y.
An Oscillation Transformer

for the modern tube transmitter

This neat and compact unit, sturdily built, was developed for use in any tube transmitter using Meissner, Hartley, Colpitts or other circuit when used singly or with two or three coupled together as the circuit may require. This unit has a very low resistance and is designed to withstand the potentials developed in circuits utilizing Radiotron power tubes.

The transformer consists of 25 turns of .06" x .5" copper strip, nickel-plated, with edges rounded, mounted on a polished black wooden base, and four binding posts for making connections. To three of these are secured flexible conductors, each equipped with a convenient clip for selecting tap points on the copper strip.

Dimensions overall: 7 3/8" x 6 1/2" x 9 3/4"

$11.00
The skyscraper "B" Battery is here!

New—this upright Eveready "B" Battery for cabinet or table where space is limited

Here is a new "B" Battery that stands on practically the same size base as the smallest Eveready "B" Battery, but towers above it in height and capacity. It is twice as high, and will last you more than twice as long.

And you pay only 50 cents more for the added capacity.

For portable sets, where smallest size and light weight are essential, the familiar favorite Eveready No. 763 is supreme at $1.75. But where weight is not so important as space, buy the more than double service of the new upright No. 764 at $2.25.

Fifteen vigorous cells give 22½ volts. Two Fahnestock Spring Clip terminals.

For compact capacity, buy the new Eveready No. 764.

Manufactured and guaranteed by

NATIONAL CARBON COMPANY, Inc., New York, N. Y.
<table>
<thead>
<tr>
<th>Division</th>
<th>Manager</th>
<th>Address</th>
<th>City, State</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLANTIC DIVISION</td>
<td>C. H. Stewart</td>
<td>70 V St., N. W.</td>
<td>St. David's, Pa.</td>
</tr>
<tr>
<td></td>
<td>H. J. Wadsworth</td>
<td>Chapel Gate Lane, Ten Hills, Baltimore</td>
<td>Red Bank</td>
</tr>
<tr>
<td></td>
<td>Geo. L. Deichmann, Jr.</td>
<td>White Street</td>
<td>Litchfieldwood</td>
</tr>
<tr>
<td></td>
<td>R. S. Johnson</td>
<td>140 Washington St.</td>
<td>New York City</td>
</tr>
<tr>
<td></td>
<td>H. F. James</td>
<td>219 E. 1st St.</td>
<td>Syracuse</td>
</tr>
<tr>
<td></td>
<td>Dr. E. A. Cyriax</td>
<td>425 Brownell St.</td>
<td>Philadelphia</td>
</tr>
<tr>
<td></td>
<td>S. Woodworth</td>
<td>2085 E. Kingstown St.</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td></td>
<td>Juan B. E. Kauf</td>
<td>6106 Liberty Ave.</td>
<td>Wilmington</td>
</tr>
<tr>
<td></td>
<td>P. E. Wixgin</td>
<td>856 Washington St.</td>
<td>Chicago, Ill.</td>
</tr>
<tr>
<td></td>
<td>H. L. Hayton</td>
<td>392 S. Michigan Ave.</td>
<td>Detroit</td>
</tr>
<tr>
<td></td>
<td>CENTRAL DIVISION</td>
<td>177 Hill Ave., Highland Pk.,</td>
<td>Linton</td>
</tr>
<tr>
<td></td>
<td>R. H. G. Mathews</td>
<td>780 Weadock Ave.</td>
<td>Philadelphia</td>
</tr>
<tr>
<td></td>
<td>A.D.M. East.</td>
<td>61 E. Seminary St.</td>
<td>Hoopston</td>
</tr>
<tr>
<td></td>
<td>Manager</td>
<td>c/o Segelke & Kohlhaus Mfg. Co., La Crosse</td>
<td>Ann Arbor</td>
</tr>
<tr>
<td></td>
<td>A.D.M. No.</td>
<td>1222 Washasaw Ave.</td>
<td>Seymour</td>
</tr>
<tr>
<td></td>
<td>Manager</td>
<td>c/o Seymour Elec. Co.</td>
<td>Louisville</td>
</tr>
<tr>
<td></td>
<td>A.D.M. So.</td>
<td>1101 E. Broadway</td>
<td>Sioux Falls, S. D.</td>
</tr>
<tr>
<td></td>
<td>Manager</td>
<td></td>
<td>Minneapolis</td>
</tr>
<tr>
<td></td>
<td>A.D.M. Ohio</td>
<td></td>
<td>Pierre</td>
</tr>
<tr>
<td></td>
<td>A.D.M. West.</td>
<td></td>
<td>Devils Lake</td>
</tr>
<tr>
<td></td>
<td>Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.D.M. Louisiana</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.D.M. Mississippi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.D.M. Tennessee</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.D.M. Arkansas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEST GULF DIVISION</td>
<td>W. L. Rodgers</td>
<td>60 E. Park Lane</td>
<td>Atlanta, Ga.</td>
</tr>
<tr>
<td></td>
<td>L. C. Hutchinson</td>
<td>1300 Buncombe St.</td>
<td>Greenville, S. Carolina</td>
</tr>
<tr>
<td></td>
<td>Dr. L. M. Hunter</td>
<td>106 W. 3rd St.</td>
<td>Sheffield</td>
</tr>
<tr>
<td></td>
<td>H. L. Reid</td>
<td>200 E. 9th St.</td>
<td>Little Rock</td>
</tr>
<tr>
<td></td>
<td>C. E. Wells</td>
<td>390 W. Union Tel. Co.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V. C. McElvaine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. E. Hight</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. E. Clark</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L. I. Rexach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EAST GULF DIVISION</td>
<td>W. W. Rodgers</td>
<td>1106 Union Ave.</td>
<td>Memphis, Tenn.</td>
</tr>
<tr>
<td></td>
<td>W. L. Kennon</td>
<td>415 University Post Office</td>
<td>Piquaquine</td>
</tr>
<tr>
<td></td>
<td>W. C. Hutchinson</td>
<td></td>
<td>Mississippi</td>
</tr>
<tr>
<td></td>
<td>Dr. L. M. Hunter</td>
<td>1074 Main St.</td>
<td>Wrightsville</td>
</tr>
<tr>
<td></td>
<td>H. L. Reid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIDDLE DIVISION</td>
<td>G. S. Turner</td>
<td>1123 West 52nd St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr. C. L. Klenk</td>
<td>450 Metropolitan Hldg.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. G. O'Rourke</td>
<td>3064 South 32nd St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. L. Loendorf</td>
<td>116 Highland Ave.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L. J. Simms</td>
<td>218 S. Sagewick Ave.</td>
<td></td>
</tr>
<tr>
<td>NEW ENGLAND DIVISION</td>
<td>L. Vermaiy</td>
<td>19 N. Water St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. R. Funcher</td>
<td>86 Franklin St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R. H. Stevens</td>
<td>118 Brook St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R. P. Slayton</td>
<td>71 N. 2nd St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L. Hilton</td>
<td>20 Wood St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. S. McLean</td>
<td>555 Armory St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. H. Chase</td>
<td>39 Chester Ave.</td>
<td></td>
</tr>
<tr>
<td>ROCKY MOUNTAIN DIVISION</td>
<td>A. E. E. West</td>
<td>2106 E. 24th St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. E. Cutting</td>
<td>423-14th Ave.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>K. W. Weingarten</td>
<td>1033 Willamette St.</td>
<td></td>
</tr>
<tr>
<td>PACIFIC DIVISION</td>
<td>J. V. Wise</td>
<td>Box 175</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. L. Gooding</td>
<td>211 West St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. M. Lewis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. C. Garrette</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROANOAKE DIVISION</td>
<td>W. T. Gravely</td>
<td>864 Main St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. L. Book</td>
<td>Main St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. N. Bouldford</td>
<td>118 Cambridge Ave.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T. M. Simpson</td>
<td>Peoples Natl. Bank</td>
<td></td>
</tr>
<tr>
<td>ROCKY MOUNTAIN DIVISION</td>
<td>N. R. Hood</td>
<td>1022 S. Ash St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H. C. Wilson</td>
<td>c/o Deseret Newa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. L. Turre</td>
<td>c/o Filasimson Hospital</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. Mitchell</td>
<td>Box 575</td>
<td></td>
</tr>
<tr>
<td>WEST GULF DIVISION</td>
<td>F. M. Garlett</td>
<td>2515 Catherine St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Louis Farenji</td>
<td>Box 451</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. E. Whartenby</td>
<td>211 News Building</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R. L. Chlinskales</td>
<td>c/o F. A. Hardy & Co.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. A. Sahn</td>
<td>Box 589</td>
<td></td>
</tr>
<tr>
<td>HAWAIIAN DIVISION</td>
<td>K. A. Cantin</td>
<td>1059 Waioliki St.</td>
<td></td>
</tr>
<tr>
<td>MARITIME DIVISION</td>
<td>A. K. Mathews</td>
<td>1059 Waioliki St.</td>
<td></td>
</tr>
<tr>
<td>ONTARIO DIVISION</td>
<td>J. A. Ober</td>
<td>438 Queen St.</td>
<td></td>
</tr>
<tr>
<td>QUEBEC DIVISION</td>
<td>J. V. Argyle</td>
<td>438 Queen St.</td>
<td></td>
</tr>
<tr>
<td>VANCOUVER DIVISION</td>
<td>C. H. Langford</td>
<td>438 Queen St.</td>
<td></td>
</tr>
<tr>
<td>WINNIPEG DIVISION</td>
<td>E. B. Brickett</td>
<td>438 Queen St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. L. Maynard</td>
<td>600 Athabaska St., E.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. G. Patterson</td>
<td>612 Beraford Ave.</td>
<td></td>
</tr>
</tbody>
</table>

ARE YOU A MEMBER OF OUR A.R.R.L.?
The coming of a friend from a far-off land—is this not true joy?

—Confucius

Talking with a friend in a far-off land is also true delight when one uses a Grebe "13."

—Doctor Wu

COPYING THE "BOWDOIN" WITH THE GREBE "13"

Major Lawrence Mott, GXAD-6ZW, Avalon, Cal., needs no introduction to the amateur fraternity. We congratulate Major Mott upon his success in copying the "Bowdoin" for two hours. That his should be the first U. S. Pacific Coast Station to hear the MacMillan ship for so long a period is fitting testimony of the Major's ability as an operator and of the excellence of his equipment.

We are pleased to learn that the Grebe "13" was the Receiver used by Major Mott.

Write us.

A. H. GREBE & CO., Inc.
79 Van Wyck Blvd., Richmond Hill, N. Y.
Western Branch, 451 West 3rd St., Los Angeles, Cal.

License under Armstrong
U. S. Patent No. 1,113,119
Editorials
The Fourth Transatlantic Tests 7
Tuned Radio Frequency Amplification 9
My Impressions of American Amateur Radio 12
The International Intermediate 17
Dixie Invites You 18
Transpacific Report 21
Louis W. Richwein—An Obituary 21
The Land of Blue Lightning Porter T. Bennett 22
9BP Still Chief Contact With MacMillan 23
The Other Side of the Argument S. W. Place 25
The San Francisco Convention 26
Here's a Chance to Win a Storage Battery 26
A New Non-Oscillating Detector 27
Notice 27
The Grebe CR-13 28
Financial Statement 29
Edison Storage "B" Batteries F. M. J. Murphy 30
"Wha' Power Have You?" S. Kruse 35
Short Wave Tuner Design Harold L. Olesen 37
The Tantalum High-Voltage Rectifier 40
Some British Amateur Receiving Apparatus 44
Miles Per Watt S. Kruse 46
Jes' Reminiscing "R.B." 47
Amateur Radio Stations—
Canadians 9BP, 2BN, 3XN-9CF, 4BV, 1AR 49
International Amateur Radio 52
The Junior Operator 54
"Strays" 58
Radio Communications by the Amateurs 63
"HAM-ADS" 130
QRA Section 134
QST's Directory of Advertisers 135

Q.S.T is published monthly by The American Radio Relay League, Inc., at Hartford, Conn. Kenneth B. Warner (Secretary, A.R.R.L.), Editor and Business Manager.

Copyrighted, 1923, by the American Radio Relay League, Inc.
Title registered at United States Patent Office.

THE AMERICAN RADIO RELAY LEAGUE, Inc.
HARTFORD, CONN.
The American Radio Relay League, Inc., is a national non-commercial association of radio amateurs, bonded for the more effective relaying of friendly messages between their stations, for legislative protection, for orderly operating, and for the practical improvement of short-wave two-way radio telegraphic communication.

It is an incorporated association without capital stock, chartered under the laws of Connecticut. Its affairs are governed by a board of seventeen Directors, elected every two years by the general membership. The officers, in turn, are elected by the Directors from their number. The League is non-commercial and no one commercially engaged in the manufacture, sale or rental of radio apparatus is eligible to membership on its Board.

"Of, by and for the amateur," it numbers within its ranks practically every worth-while amateur in America and has a history of glorious achievement as the standard bearer in amateur affairs.

Inquiries regarding membership are solicited. Ownership of a transmitting station, while very desirable, is not a prerequisite to membership; a bona-fide interest in amateur radio is the only essential. Correspondence should be addressed to the Secretary.

OFFICERS

President
HIRAM PERCY MAXIM
Hartford, Conn.

Vice President
CHAS. H. STEWART
St. David's, Pa.

Traffic Manager
F. H. SCHNELL
1045 Main St.
Hartford, Conn.

Canadian General Manager
A. H. K. RUSSELL
234 Westmount Drive
Toronto, Ont.

Treasurer
A. A. HEBERT
So. Manchester, Conn.

Secretary
K. B. WARNER
Hartford, Conn.

DIRECTORS

H. M. ANTHONY
Muncie, Ind.

C. E. DARR
Detroit, Mich.

A. A. HEBERT
So. Manchester, Conn.

S. KRUSE
Hartford, Conn.

H. P. MAXIM
Hartford, Conn.

A. H. K. RUSSELL
Toronto, Ont.

F. H. SCHNELL
Hartford, Conn.

C. A. SERVICE, JR.
So. Manchester, Conn.

K. W. WEINGARTEN
Tacoma, Wash.

K. B. WARNER
Hartford, Conn.

M. B. WEST
Lima, Ohio.

ADVISORY TECHNICAL COMMITTEE

C. S. BALLANTINE
WM. C. BALLARD, Jr.
LERoy M. K. CLAUSING
FRANK CONRAD
LEO C. YOUNG

MINTON CRONKHITE
J. H. DELLINGER
C. L. FARRAND
PAUL F. GODLEY
F. C. BLAKE
MELVILLE EASTHAM

J. A. HAZELTINE
C. D. TUSKA
R. H. G. MATTHEWS
GERALD M. HEDT
S. KRUSE
D. G. McCaA

Address General Correspondence to Executive Headquarters, Hartford, Conn.
Be a Sport!

ELSEWHERE in this issue our Traffic Manager announces the plans for the Fourth Transatlantic Tests, which start on December 21st and run until January 10th. Except for attempts at two-way communication at the conclusion of the tests, North American amateurs do not transmit in these tests—we have proved to everybody's satisfaction that our signals get over. Instead, we are concentrating on reception and our European cousins are doing the transmitting. We have not yet heard foreign amateurs with enough consistency to lead to two-way contact—that is why we are having these one-way tests this year.

We did not make good in the tests last winter. A very few of us, by virtue of pure good luck, heard a European signal or two thru the merciless interference caused by the morons in our midst. We want no morons this year. (Quick, T.O.M., the Wouff-Hong!) We want quiet air. We're already used to the idea of quiet hours thru part of the evening, and it should not be difficult to restrain the itch to pound brass for a few hours during these tests. Every American amateur must blush with shame at the recollection of the conduct of our fraternity in the last tests, when the ether was blue with signals from our own fellows, including many of our prominent stations. The prestige of American amateur radio is at stake in these tests, and we must not fail again.

We are very much exercised over the situation, and we want to say frankly that we will regard it as much worse than mere bad form and as positively dishonorable for any amateur acquainted with the facts to transmit during the listening periods under any provocation other than that of an emergency. These tests are an international sporting event, and the whole world is invited to participate—but in listening, not in sending. We shall never be able to dwell again upon our wonderful spirit of co-operation if we duplicate this year our actions of last December. Do we get the idea across?—these are listening tests and any amateur who opens up his transmitter, of whatever power, between 0100 and 0600 Greenwich Time between December 22d and January 10th will simply be "smearing" the chances of everybody else in the whole country to copy Europe. Do you remember French 8AB at the convention, and his enthusiasm to connect with us?—let us not disappoint him!

Nor have we done everything necessary when each reader of these lines resolves to keep his own transmitter quiet during the tests. There are others: the fellows who are not League members, the chaps who miss this issue of QST, the youngsters just starting in the transmitting game. Unfortunately these classes are usually the least experienced of operators, the kind who will merely increase power and try again when they get no answer to their CQ during the tests. We must tell them about the tests and enlist their co-operation. They will be
fair, we know, when they learn what is on foot and how much is at stake. Every amateur who reads this editorial is earnestly asked to consider himself a committee to spread the request for quiet air on 200 to every other amateur in his vicinity, via club meetings, letters, conversations, and announcements. We must not defeat ourselves again.

There are some thousands of dollars worth of handsome prizes donated by our friendly manufacturers as awards for successful performance in the tests. And don’t forget that QST is still offering as a trophy a genuine brown derby to the first North American amateur to establish definite two-way communication with a European amateur. But we want to say, right here that no prizes, nor the derby in particular, will be awarded to any amateur who transmits during the listening periods, however fine his accomplishment otherwise.

We don’t know anybody who isn’t interested in fishing for Europe, but if you happen not to be, for goodness’ sake be a sport and lay off your key for these few hours per night so that the rest of us may have a chance. It ought to be easy; we know, from last year’s experience, that we can hear Europe when our own gang is QRT.

Attention! Right-dress! Front! Attention to orders: No transmission during the listening hours. Outfit dismissed—each man to go out and do his darndest to put over this job to the glory of Amateur Radio and the credit of our A.R.R.L.!

Some Changes

With this issue we are changing the location of our editorial page to the front of the magazine where we have felt for some time it should be located. We hope everybody likes it here, where it will serve the better to present important amateur topics for consideration. Incidentally it saves the Technical Editor a lot of worry in figuring out what article ought to run on the first page!

But there are still more important changes in QST’s make-up this month—the Operating Department reports and our “Calls Heard” section are being printed on a separate form which is bound into the magazine as usual in the case of copies going to all the members of the League, but is omitted from the newsstand edition. This change results in a saving in expense which enables us to print eight more pages of informative articles than otherwise would be the case, and these eight pages appear in every copy. As A.R.R.L. members know, our League derives from QST the bulk of its revenue with which it carries on its activities, which are a heavy load—so much so that we are unable to present more articles by the simple process of printing more pages; unfortunately our printer insists upon being paid for this work. For a long time there has been a heavy premium on every inch of “white space” in QST, and we have been sad over the wonderful array of interesting material our space limitations have kept us from presenting. At our last editorial conference the thought occurred that the Operating Department news and “Calls Heard” are of interest only to our membership, roughly half our circulation, and that if they could be omitted from the other half of the edition there would be a saving sufficient to add several more pages of articles to both editions. We are trying it this month as an experiment, and if it works out satisfactorily it will be continued permanently. Thus our members get everything that QST gave them before, and more; and our non-membership readers, whose support via the newsstands has been so helpful to QST’s success, will find everything that previously interested them—and eight pages more of the same!

The “O.D.” and “Calls Heard” appear slightly out of their normal positions in the membership edition, and the pages have Roman numerals. We hope that if we have “newsstand readers” who are interested in these sections, they will embrace the opportunity presented on another page of this issue and become members of our A.R.R.L.

And now, bunch, what do you think of the new idea?

“R. O. W. H.”

Four new initials now take their important place in the life of the radio amateur, standing for the Royal Order of the Wouff-Hong. Is there any amateur who does not know by now what the R.O.W.H. is? It is a fraternity, a “lodge” of one degree, strictly of and for the good ham, be he A.R.R.L. member or not. Originally conceived by the amateurs of the Flint
Church Services

We are talking quite a lot in this issue's editorials about quiet hours, but there is yet another angle of the subject which we must lay before you. The Department of Commerce has written us about the protection of church services. The present regulations require of us amateurs a silent period beginning at 8 P.M., our local time, and this does not protect the evening church services which almost always begin at an earlier hour, often at 7 P.M.

Regardless of how any of us may feel as individuals about the subject of broadcast church services, this thing demands and rates our respect. There are many people who think most intensely about the question, and the man who voices opposition in a subject of this sort almost always gets licked. It is therefore up to us to give it serious thought.

The regulations of the Bureau of Navigation are subject to change without notice, and it would be easy for the Bureau to require silence during church services by a mere change in the regulations. It is difficult to work out, however, because of time divisions and the uncertainty from whence the various receptions are occurring, and so before attempting to amend the regulations the Bureau brings the subject to the attention of the A.R.R.L. They say: "There are so many people who are for many reasons unable to attend church and who get a great deal of pleasure by listening to the church services by radio that the Bureau feels that the amateurs should respect this service to the extent of observing the silent periods necessary to enable those who unfortunately can not attend the churches personally to be able to listen uninterrupted to the broadcast service."

The Bureau is right, fellows. Not only is it the part of discretion, but the special nature of the service demands our respect to the extent that each of us investigate broadcast reception of church services in our neighborhood and observe a silent period at all times when transmitting would interfere with them. Your A.R.R.L. Headquarters so recommends to you.

The Fourth Transatlantic Tests

By F. H. Schnell, Traffic Manager

Last year we defeated ourselves in the reception of European amateur signals because some of us couldn't keep our fingers off the keys of our transmitters during the reception periods. We defeated ourselves in establishing two-way Trans-Atlantic Amateur Communication. Will there be some among us this year who will ignore our appeal for quiet air and again ruin our chances to establish two-way communication? We hope not.

Our chances appear to be ever so much better this year for several reasons. First, we are not licensed to transmit during the "Quiet Hours"—8:00 to 10:30 P.M. Second, we hope to have the entire air quiet because there is no schedule of transmission by American or Canadian amateurs until after January 11, 1924. Third, to make it worth your while to keep your own transmitter silent, the many manufacturers, jobbers, and dealers of the country have donated prizes (value $3500.00) to be awarded for the best reception records. Read on and learn why it is worth real money to you to throw your key away during the tests. Right here we want to make it clear that any amateur using his transmitter during any period of the scheduled hours of the tests will be disqualified for prize competition regardless of how many signals he
hears. The prize list includes a complete tube transmitter using four 50-watters, donated by A. H. Grebe & Company, which was described in October QST on page 28.

Look it over and see if this alone wouldn't make you disconnect all power lines to your transmitter during the tests! The only exception to this is where an amateur is called upon to use his transmitter in case of emergency. When in doubt—stay off the key!

Space in this little magazine is precious, we must get down to the necessary details, which follow:

AMERICAN AND CANADIAN AMATEURS ARE NOT SCHEDULED TO TRANSMIT DURING THE TESTS, FROM DECEMBER 21, 1923, TO JANUARY 10, 1924. PLEASE LET US HAVE ABSOLUTELY QUIET AIR IN EVERY QUARTER OF THE NORTH AMERICAN CONTINENT BETWEEN THE HOURS OF 0100 AND 0600 G.M.T. Particularly do we point out that those little 5-watters in remote corners cause considerable QRM when all other transmitters are quiet.

On each night of the tests there will be an European free-for-all period (0100 to 0300 G.M.T.) during which time both French and British amateurs will transmit on wave-lengths between 180 and 220 meters, with 200 meters the objective. (Please note—European amateurs only are to transmit.) The remaining three hours (0300 to 0600 G.M.T.) will be given over to individual transmissions by French and British amateurs on alternate nights. Each transmitter will be assigned a different code word for each night—the code word will not be same for more than one night, but may be used in the free-for-all on the succeeding night. Transmission will be in the following form:

ARRL ARRL ARRL DE
8ZZ 8ZZ 8ZZ
TARIK TARIK TARIK, etc.

European Transmission Schedules

EUROPEAN FREE-FOR-ALL—FROM 0100 TO 0300 G.M.T., DECEMBER 22, 1923, TO JANUARY 10, 1924, INCLUSIVE.

FRENCH INDIVIDUAL TRANSMISSIONS—FROM 0300 TO 0600 G.M.T., DECEMBER 22, 24, 26, 28, 30, JANUARY 1, 3, 5, 7, 9, INCLUSIVE.

BRITISH INDIVIDUAL TRANSMISSIONS—FROM 0300 TO 0600 G.M.T., DECEMBER 23, 25, 27, 29, 31, JANUARY 1, 3, 5, 7, 9, INCLUSIVE.

Attempts at two-way Transatlantic amateur communication are open to all amateurs of every country on January 11, 1924. Who will be the first to connect up and win Warner's brown derby which he offered some months ago for this feat? Any American or Canadian amateur may win this lid, and it isn't a quiet lid either!

From reading the above you will see that the tests are scheduled to run in Greenwich Mean Time (G.M.T.) which, for the first night, for example, converted to E.S.T., is from 8:00 P.M. of December 21st to 1:00 A.M. of December 22nd; C.S.T., 7:00 P.M. to Mid-night of December 21st; M.S.T., 6:00 P.M. to 11:00 P.M. of December 21st; P.S.T., 5:00 P.M. to 10:00 P.M. of December 21st. Don't let your clock fool you. If you are in doubt, write A.R.R.L. Headquarters for information before the tests start.

The Secretary Wins Another Trophy

As the result of a wager with Mr. W. Witt Burnham, British 2FQ of London, that at least ten American amateurs would hear European amateur signals in the 1922 Transatlantic Tests, our Secretary-Editor has received the handsome English walking stick here shown. It is a beautiful stick, with gold end and a gold band on which is engraved: “To K. B. Warner, from W. W. Burnham, Transatlantic Test Bet, December 1922.”

This stick is a fitting companion-piece for the famous Transatlantic Hat, which it will be remembered was also won from Mr. Burnham. Just watch the Ed's smoke at future conventions!

This year we've offered to bet 2FQ a pair of green suspenders on anything he wants to name, including the establishment of two-way communication across the Atlantic. First thing you know we'll be all dressed up.

K. B. Warner, from W. W. Burnham, Transatlantic Test Bet, December 1922.
Reporting Your Reception

When you hear a signal which you believe is being sent by some European amateur, LOG EVERYTHING YOU HEAR. After the end of the tests each day, send your report to A.R.R.L. Headquarters either by paid letter or special delivery letter, giving as much detailed information as you can. We cannot accept guesses, we must have facts—KEEP AN ACCURATE LOG and specify the time you use. If it is G.M.T., say so; if E.S.T., say so.

Beginning December 26th and continuing every third day thereafter, at 2100 G.M.T. (4:00 P.M., E.S.T.) WII on 13,000 meters will transmit the code word which you be-

Prizes and How to Win Them

The Grebe Transmitter is to be awarded to the contestant who, at the end of the tests, has to his credit the greatest grand total of station miles of reception (the sum of the mileages of all the receptions) of bona-fide European amateur signals. Each station heard shall be counted but once during any one transmission period (0100 to 0600 G.M.T.) and when a code word is transmitted the code word must be copied and submitted for verification. At least one French and one British amateur station must be logged with code word verified, to quality for this prize. The contestant winning this prize is not eligible for any other prize.

In each of the following groups there will be at least five (5) places. This is based on the sum total of about $3500.00 worth of prizes, less the value of the Grebe Transmitter. In the event that more prizes are offered, the number of places in each of the following groups will be increased accordingly, or the value of prizes in each group will be increased proportionately.

In the event that a contestant qualifies in more than one group, he may have his choice of any prize in any event in which he has qualified but he shall receive only one prize in each group. It is to be understood that this is purely a sporting event and there is no excuse for anybody to be unreasonable and expect to grab everything in sight. One prize only to each winner.

The value of prizes in each of the groups is approximately the same in dollars and cents, and the apportionment by places is approximately the same. For example, first place in any one of the five groups will entitle the winner to apparatus valued at about $200.00; second place, about $120.00; third place, about $75.00; fourth place, about $45.00; fifth place, about $20.00. Of course these amounts are subject to change depending on the value of prizes received between now and the time the tests end. This merely gives you an idea that there are going to be at least 26 prizes, the smallest of which will be in the neighborhood of $20.00 worth of apparatus.

For the purpose of identifying the different contests, they will be known by groups.

GROUP "A"—The reception of a bona-fide European amateur signal over the greatest distance from the transmitter, at any time during the tests.

GROUP "B"—The reception of the greatest total of station miles of bona-fide French amateur signals on any one date (0100 to 0600 G.M.T.)

GROUP "C"—The reception of the greatest total of station miles of bona-fide British amateur signals on any one date (0100 to 0600 G.M.T.)

GROUP "D"—The reception of the greatest grand total of station miles of bona-fide French amateur signals during the entire tests.

GROUP "E"—The reception of the greatest grand total of station miles of bona-fide British amateur signals during the entire tests.

(It must be remembered that there are second, third, fourth and fifth places in each of the above groups.)

There will be a committee of judges, which will be named in next issue of QST, to make the awards, and the prizes by groups will also be listed. The main thing for you to think about now is to get as many European signals as you can and think about the prizes later.

We feel the necessity of having a few simple rules which you are to follow if you want to qualify in the prize contest. Of course, the most important of all is that you furnish the judges with accurate copies of your complete logs and stand ready to furnish any further information requested by them. Date, time, code word, call and wave length of the station heard are very important.

Final log must be received at A.R.R.L. Headquarters not later than January 25, 1924. All mileage shall be computed by the judges in Great Circle distances from the transmitter to the receiver.

Please indicate in what group you are competing.

The judges' decisions shall be final.

There's the dope, gang; go to it, and may you have the best of luck!

Entries for the 1923 Department of Commerce Trophy donated by Secretary Herbert Hoover, must be filed at A.R.R.L. Headquarters by February 1, 1924. See complete details in November QST, page 25, and start plans for your entry.
December, 1923

Tuned Radio Frequency Amplification

By A. L. Budlong*

In theory a tuned radio-frequency amplifier is fine; it should greatly increase one’s receiving range and a single stage is (on paper) perhaps as effective as three stages of untuned transformer-coupled radio amplification.

Why isn’t it in universal use? That’s Mr. Budlong’s story and we will let him tell it.

Please notice that this paper does not pretend to discuss the effect of stabilizing the radio amplifier with the Hazeltine “neutrodon” condenser, Therefore the article is not one that condemns all radio amplifiers and all their descendants: it simply points out in clean-cut fashion that the theoretically beautiful tuned R. F. amplifier needs much taming before it will jump from tune to tune in the nimble fashion that the commercial and amateur code man demands. Perhaps the neutrodyne arrangement for preventing the R. F. tubes from oscillating will help, but how does one successfully “neutrodyne” the last R. F. tube when it is working into an oscillating C. W. detector? The only way out seems to be to drop the oscillating (autodyne) detector and use a separate heterodyne. Such a set is not cheap, simple, or easy to handle—Tech. Ed.

The following dissertation on tuned radio frequency is based on results garnered from two years’ experimenting with this branch of the art, and efforts have been made to treat the subject fairly from every standpoint, the writer telling the actual results obtained rather than the results he wanted to see obtained. Many circuits and variations were tried, most of them being built again several months after the first trial in order to compare the first circuit with some later development. Every effort has been made to discount enthusiasm and imagination when it came to comparing signal strengths, and while accurate measuring instruments were not available it is thought that the resulting opinions are as unprejudiced and unbiased as possible.

Needless to say, the subject of tuned R.F. amplification can not be completely covered in an article of this nature, even though the author were in a position to essay such a task—which he is not; nor is it possible to list all the results obtained from personal experimentation. Correspondence on phases of the subject not treated in these pages, or on some subject which is treated but which the reader may not agree to, is solicited.

The Tuner Impedance

The tuned impedance as a method of coupling in radio frequency amplifiers consists of a tuned auto-transformer in the output circuit of each amplifier tube, this transformer usually taking the form of a variometer, or tapped coil shunted by a variable condenser. The main obstacle to successful operation with maximum results is the tendency of the amplifier to oscillate, since the transformer constitutes a tuned plate circuit in the amplifier tube system. It is claimed that the neutrodyne system overcomes this hindrance, thereby making considerably greater amplification possible. Previous issues of QST are referred to for information on this latter system, as it will not be discussed here. A tuned R.F. one-stage amplifier, of the type to be discussed in this article, is shown in Fig. 1.

Advantage of Tuned R. F.

Theoretically, tuned impedance coupling permits greater amplification at a given wave length, due to the comparatively high peak value obtained with an amplifier tuned to one wave length, or within a narrow band of waves, compared to the much lower curve necessitated by a transformer covering a band from 200 to 500 meters, for instance. Unfortunately, it is practically impossible to realize this theoretically greater amplification on account of oscillation in the amplifier, so our main advantage loses much of its force as an argument.

Disadvantage of Tuned R. F.

The disadvantages are many. Perhaps one of the greatest is the multiplicity of controls necessary beyond one stage of amplification. Each stage of amplification means at least one added control, and usually means two; in addition, of course.

*1727 First St., N.W., Washington, D.C.

See “Tuned Radio-Frequency Amplification with Neutralization of Capacity Coupling” in QST for April, 1923; also “Notes on the Neutrodyne” in QST for June, 1923. Both of these issues can be obtained from our Circulation Dept. at the usual rate.
to the regular tuning apparatus. Mounting several variometers or condensers on one shaft has been suggested as a remedy, but does not entirely solve the problem, since individual control is necessary for realization of best results. Oscillation as resonance is approached has been mentioned, but does not entirely solve the problem. A further statement will bring down much criticism, for it has been frequently stated, even by those who have employed several stages, that a tuned radio stage is decidedly worth additional amplification by regeneration. Extensive experiments and innumerable trials have convinced me that, within practical limits at least, there is no combination of circuits which will give this desired result.

Vibrato in the Detector Circuit. Case 1: It must be remembered that any oscillation which may occur is not confined to one part of the circuit. Let us consider our amplifier in Figure 2. When our tuned impedance approaches resonance the amplifier tube starts oscillating, and this results in the whole system being subject to those oscillations, and that includes the detector circuit. The plate variometer has not been observed to have any effect whatever under these conditions.

Case 2: The suggestion is immediately made that we keep the radio amplifier tube from oscillating and then go ahead with our detector regeneration. Sounds good, but doesn't work out. The following attempt at an explanation is given: Suppose, after getting the impedance

Tuned R.F. at 200 Meters

In my opinion, this is absolutely a waste of tubes and equipment. I know that this statement will bring down much criticism, for it has been frequently stated, even by prominent amateur experimenters, that one stage of tuned R.F. is decidedly worth while on 200 meters. I thought so myself when I first tried it out, but I think if the experimenter will, after the first effects have worn off, carefully compare the results obtained from a regenerative set with those from a one step tuned R.F. outfit, checking one against the other on a given signal under varying conditions, he will be convinced that the radio frequency outfit does not give any noticeable added signal strength.*

Tuned R.F. at 360-500 Meters

Much better results than at 200 meters, but value doubtful unless two or more stages are employed. When this is done, however, the set gets into the laboratory class, as it is no longer a quickly and simply tuned apparatus.

Radio vs. Audio

The statement is often made that one stage of radio amplification at ham or phone wave lengths is equal to or better than one of audio. No statement could be further from the truth. One radio at 200 meters gives absolutely no appreciable gain in signal strength, and so far as has been determined by hours of experimentation, does not bring in any of the weak signals that the regenerative set fails to get. At 360 meters, one tuned radio stage when carefully adjusted will result in a slight, but noticeable increase; but this increase does not begin to compare with the amplification obtained with one step of audio.

Our conclusions on this matter are, then: Never waste a tube on one step of tuned R.F. at 200 meters or under. Put it into audio. At 360 meters, or over, you might put in one step of tuned radio amplification if you have an extra tube lying around doing nothing, but even here don't sacrifice audio for radio.

Regeneration in the Detector Circuit

The thought occurred to me early in my experiments with tuned amplifiers, and no doubt has occurred to many, that after putting in, say, one step of tuned radio amplification, it is still entirely possible to put a variometer or tickler in the plate circuit of the detector, as in Fig. 2, and get additional amplification by regeneration. Excessive experiments and innumerable trials have convinced me that, within practical limits at least, there is no combination of circuits which will give this desired result.

*Mr. Budding probably is speaking of a tuned R.F. set in which a separate heterodyne is used to secure the beat note from a C.W. signal. For spark and C.W., this separate heterodyne is not needed; it is simply a question of comparing the amplifications obtained with a step of tuned R.F. as against the amplification obtained by using a tickler or variometer in the plate of the detector; in other words, we are then comparing regeneration with one stage of tuned R.F.
meter, or you can turn the R.F. tube up to within a shade of oscillation and then advance your detector variometer or tickler the remaining shade, but the point of oscillation seems to be fixed, as does the ultimate signal strength possible of attainment, and puts a very effective damper on "regeneration" schemes in conjunction with the tuned amplifier.

Using the Impedance as a Tickler
This comes under the same class as the above paragraphs on additional regeneration. For all practical purposes the tube is going to oscillate at a given point, and no combination of tickler and tuned impedance will result in greater signal strength than if merely one of the methods were used. If you use both, you can only use each to half its former extent. A variation of the tickler-impedance is that in which the tickler is made to "buck" the circuit, so that the tendency of the system to oscillate is repressed, instead of being aided. This works out all right in that oscillation is stopped, but the signals also go out with the oscillation. You then have either to pull the tickler back until the signals come in again, by which time you are getting near oscillation, or else you make up the loss by regenerating in the plate circuit of the detector, but here you find that you are simply up against the same old "regeneration" problem as previously described, and no combination of adjustments at the hands of the author resulted in increased signals over a simple tuned impedance, and this was no better, as has been mentioned, than an ordinary regenerative circuit.

Exception to above: For the sake of emphasis, the above statements that no combination of regeneration in conjunction with the tuned impedance were successful, were made very sweeping. However, it is possible, by using the "zero beat" principle, to realize slightly increased amplification, but this system is so unstable in operation that it is practically out of the question for the average operator. Since its operation is identical with that of a two-stage tuned R.F. set, we will discuss it later under that head.

"Lossera"
One of the first problems taken up in conjunction with tuned impedance amplifiers was that of the so-called losser, which usually takes either as a potentiometer ("stabilizer") across the "A" battery for varying the grid potential, or a series resistance of the order of 300 ohms in the grid circuit, for introducing losses in the grid circuit sufficient to stop oscillations. It was found that turning down the filament of the R.F. tube to a point where oscillation ceased was entirely satisfactory as a method of oscillation control, and gave the same results, as far as signal strength was concerned, as did either of the "losser". Turning down the filament of the tube, while it will accomplish the desired result, becomes tedious if individual control for both tubes in a two-step amplifier is used, but it is not recommended that one master rheostat be used for both tubes because individual control is necessary for maximum results. It has been stated that, when using R.F. transformers, it is only necessary to have the "losser", or whatever method of oscillation control is used, attached to the first tube in the amplifier bank, as the other tubes will take care of themselves. This may work for transformer circuits, where the inductance and capacity in the circuit are more or less fixed, but in the tuned impedance, where you are varying both the input and output impedance values for every change in wave length, it will not, and individual control of each tube becomes a necessity.

How to Tune the Impedance
For those who are determined to try a tuned impedance the following pointers on operation may be useful. The writer has observed several times that many experimenters in using, for simplicity sake, a one-step tuned R.F. set, will turn the R.F. tube up to full brilliancy, and then go ahead and turn up the impedance variometer, or condenser, until oscillation starts, imagining that they are then operating their set in the proper fashion. This is not so. Most tubes, and particularly the new 201-A, will start oscillating some time before the correct impedance value is reached. Let us consider Figure 3. Here is shown the curve of amplification of a tuned impedance amplifier at the wave length of 300 meters. Now, as we turn the impedance variometer, or condenser, up toward that peak we will find, if the tube was turned on all the way, that oscillation will start perhaps somewhere in the neighborhood of "X". Don't start an argument on the shape of the curve, or the point where oscillation starts, as it is drawn only to illustrate a point. Anyway, our tube starts oscillating at "X" and, while we
hear signals in the detector tube, we are not getting the full value of amplification or anywhere near it. The only way to realize as much as possible from a tuned R.F. amplifier is to keep oscillation down until the correct impedance value "M" is reached. This is found as follows: It will be observed that as the R.F. tube is turned down, the band through which oscillation occurs as the impedance is varied, narrows down very rapidly. By carefully lowering the filament temperature we eventually find a point where the tube will oscillate through but one or two degrees of scale on the impedance dial. This point represents the value "M" which we are after. Now, when you have found the correct impedance value for the particular station you are working, turn down your tube until it is on the verge of oscillation, for phone, or for C.W., just over into oscillation and you will be getting the "regenerative amplification" mentioned by Ballantine in his chapter on this type of amplifier.

If you simply turn your tube all the way up, and then go ahead and tune your impedance until oscillation starts, you might as well junk the outfit, as you aren't getting even the little gain possible under most efficient management. To get that gain, you have to resort to the more tedious method of keeping the tube low until you find the impedance value for the particular wave you are working on, and this means taking more time.

Two Steps of Tuned R.F.

For those desiring the last word in critical instability in a radio set, the two-step tuned R.F. amplifier is recommended very heartily. We previously remarked that a one-step tuned R.F. amplifier is positively a waste of equipment on 200 meters, and gives only a barely perceptible increase in signs on 300-500 meters. Let us now consider the two-step.

The operation of two steps of tuned impedance is very similar to the operation of one step with a variometer in the plate of the detector; which means that it is a tricky proposition. This operation will be discussed further on. First, let us consider what results we get out of the set. The results of considerable experimenting have proven quite conclusively to me that, generally speaking, the two-step tuned impedance is a waste of equipment for 200 meters just as was the one-step. For phone wave lengths, the two-step gives a noticeable increase in signal strength, but the physical difficulties connected with operation are such I do not believe the average experimenter will have one chance in a hundred of ever finding a very weak station with the outfit, and the ones that aren't weak can be picked up with a regenerative set just about as satisfactorily and much more quickly. Let us consider the two-step shown in Fig. 4 and go about tuning the brute for a certain wave length.

Method 1. First, set the tuning inductance "A" at or near the desired wave length, which is, let us assume, 300 meters. If this is calibrated—and it ought to be—so much the better. Now set your first tuned impedance "C" also at 300, but turn this first tube's rheostat well down below the oscillation point, or even turn it out altogether. Now turn up your second amplifier tube and tune with the first and second impedances, using "C" as a "secondary" and "E" as the oscillation control, until you have located your signal, which we will say is a phone. Now you can turn down your second amplifier tube "D" and proceed to find the true resonance point for the second impedance "E", as explained previously for the operation of a one-step amplifier. Having done this, tune your tuning inductance "A" until the signals comes in the strongest. The frequency of the heterodyned carrier wave will not change noticeably during this latter operation, merely the signal strength varying. After the correct value of "A" is found, turn up your first amplifier tubes as much as you can without losing the signal, retuning all circuits for finer adjustment.

Having got your signals, go carefully about your business, and if you have luck you may succeed, within ten or fifteen minutes, in getting all three circuits exactly in resonance, still having the tubes turned up fairly well, but having no oscillation. This is similar to making use of the familiar "zero beat" tuning method ordinarily em-
ployed in three-circuit tuners. Obviously, if we can do this, we can turn each amplifier tube up a little more, thereby realizing greater amplification, but not being troubled with oscillation.

Of course this doesn't work as easily as it sounds. I have succeeded in accomplishing the above operation once or twice—mostly by luck. If we have the tubes turned up far enough to do any good, the set is so extremely unstable that it is almost impossible to maintain this desired non-oscillating resonant condition, if we by some chance happen to get it. A swinging antenna is enough to cause the system to spill over, and variations of the "A" battery current, the slightest body capacity, etc., will usually spoil the works. It takes some time to get the desired effect, and then when you get it—or if you get it—you can't keep it. The set is very sharp under the above conditions, too, and very often, after patiently getting all circuits in resonance, we find that we are no longer tuned to our desired signal, and if we try to tune it in by the fractional variation of any of the tuning elements, we spoil the balance and start oscillating again.

Of course you can work your amplifier and not be bothered particularly by oscillation if you keep the tubes turned well down in the process, but then you aren't getting any amplification either, to speak of, so what good is your amplifier doing you?

Method 2. A second method of tuning is that of tuning each stage successively by plugging in the phones, first into the plate of the first amplifier tube, then into the detector, it being unnecessary to plug into the second stage. To do this it is necessary to insert jacks as indicated in Figure 5. The jack in the first tube will cause no appreciable loss. Plug into your first tube, pick up the desired signal by operating the set as a regenerative set, and then locate the correct impedance value as previously described. Then go down to your detector circuit, turn your second amplifier tube on—but not too high—and tune your second impedance until you get the best signal in the phones. Then try for the zero beat method again.

Method 3. Method 2 is probably the easiest to employ, but there is still another way that can be worked. In this case, turn all tubes fairly well up. Then set your antenna tuning inductance somewhere near the desired wave, and then start with one impedance—it doesn't matter which—at the extreme low value, and start with the other at the extreme high value, and turn one down and the other up toward the desired resonant point. Here, as before, you will encounter oscillation before you reach the impedance value, but having started the set oscillating, try and pick up the signal and land on the "all-resonant" point again, as previously described. You probably won't do it, but it's an absorbing way to take up an afternoon that would otherwise be dull.

The possibilities of picking up a very weak signal under the above conditions are left to the reader's imagination.

Conclusions

From the rather strung-out mass of language above, we can draw the following conclusions:

One step. No good for 200 meters. For phone waves, value extremely doubtful, as only very slight amplification is obtained, and this only when set is operated at maximum efficiency, necessitating several additional operations and taking additional time.

Two steps. Would probably give slight amplification on 200 meters and considerable on 360-500 if we could operate the set, but operation so critical under maximum amplification conditions as to be almost impossible. Very unstable, and difficult to pick up weak signals, which are the ones we are after. By the time conditions are altered so as to render the amplifier stable enough to operate conveniently, we have lost most of our amplification at 400 meters, and practically all of it at 200, and in addition the set has too many controls for the quick tuning necessary for relay work.

Moral

If you want anything better than a regenerative set, build a superheterodyne!

Editor's Note: This article was written before the appearance of the Grebe CR-13 and should not be taken as condemning that set. At this writing we have just received a "13" for test. As yet we know little about its performance.
My Impressions of American Amateur Radio

By Leon Deloy, French 8AB

American Amateur Radio has been honored and very pleasantly surprised by a month's visit from Mr. Deloy, the leading French amateur, well known to our readers from his "Letters From France" in our columns. Mr. Deloy came over expressly to study the methods of American amateurs, in order that his station, the first in France to be heard here, may be the first actually to work with us from Europe. While here he visited many of our better-known stations and attended our Second National Convention, where he had the distinction of being the first foreign visitor at an American convention and was initiated as the first foreign member of the R.O.W.H. In this all-too-brief article he tells us of his American impressions.—Editor.

I t is a "Letter from America" I write this time instead of a "Letter from France!" What a great feeling to be back in this country which I left four years ago!

Taking part in this Second National American Radio Relay League Convention was a wonderful experience and certainly worth every one of the five thousand odd miles I had to travel to come from Nice to Chicago. I will never forget the wonderful reception that was given me everywhere, at the Convention, at the A.R.R.L. Headquarters, and in every amateur station I visited. I always looked upon every American Amateur as a personal friend and I was exceedingly glad to have this opportunity of meeting many such friends and shaking hands with amateurs of every District and Canada.

I am awfully proud to be the first European amateur to have come to one of your conventions and to have been able to deliver to you verbally a message of warm greetings in the name of all French Amateurs. My coming over has given you one proof more of the very keen interest your French comrades take in your work. You may rest assured that we will spare no effort to establish two-way communication with you. Remember what we did during the last Transatlantic Tests with a very short preparation, practically no previous experience in short wave work, and under the handicap of distance and France's southerly and inland position. I have no doubt that we will do far better during the coming winter. I know of several one kilowatt stations being built by some of the best French amateurs for the sole purpose of communication with you; I would be extremely surprised if two-way communication was not established very soon. Let us all look forward to that epoch-making day with confidence and let us make every effort in our power to hasten its coming. It will be more than a radio achievement; it will be one more tie of friendship between the two great nations which have been brought so close together by the late war.

I have been asked to state in these notes "very frankly" what I think of "amateurism in this country." The complete description of my impressions since my arrival here would take a great many pages and I know far too well how precious QST's space is to attempt anything of the kind; so I will make this brief.

The enthusiasm and co-operation I have
noticed everywhere seem to me one of the main reasons for the wonderful achievements of the American amateurs; the same spirit is developing very fast in France and I think it can be considered as an excellent omen for the future. I also noticed that the average amateur in this country is much younger than in France.

From a technical point of view the main difference between your stations and ours (outside of their number and average power, both of which are much greater here than at home) is the business-like way in which they are built here. Your principal aim seems to be traffic handling while our only aim is experimenting (no traffic handling allowed in France!) Consequently your transmitters are often remote-controlled and installed in a separate room from the receivers, while our transmitters are, in every French station I know, right under the eyes and hands of the operator, which naturally is the best location from an experimental point of view.

To me it seems a pity that you still have sparks going (no sparks allowed in France). On the other hand, it is very interesting to watch the efforts you are making to go to pure C.W. In France the air is comparatively free on amateur waves (except for arc and spark harmonics and QRM!!!) and nobody is opposed to A.C.C.W.

About your receivers many of the remarks I made regarding your transmitters hold good. They too are made for traffic handling and that means that most of the manufacturers have sacrificed to a certain extent sensitivity to ease of adjustment. Our receivers are most of the time "spread all over the table" and we very often use tuned radio-frequency amplification; all this means difficulties in adjustment and less reliability, but I think we very nearly get the maximum sensitivity possible out of our sets and most of us like far better to experiment with new hookups whenever we please than to sit night after night in front of the same nicely finished cabinet. Naturally it would not be so if we wanted to handle a great many messages. When aims are different the means employed have to be different too. As we have so many adjustments to make in our receivers we usually save some by using no filament rheostats and any plate tension between 40 and 100 volts. The French receiving tube of the usual hard type will work very well with a two-cell storage battery connected direct to the filament and anything between 40 and 100 volts on the plate; it will work equally well as a detector or amplifier and so far I have never found a foreign tube to give better results.

Before ending this "letter" to my numerous American friends I want to thank them once more for the wonderful reception they have given me, and I take this opportunity of saying to those who have taken particular pains to make my visit to this country pleasant, that they have been highly successful in doing so and that I will never forget their kindness to me.

NM nw gdbi all and long live the A.R.R.L.!

The International Intermediate

—An Important A.R.R.L. Announcement—

ID you ever hear U. S. 1AW call Canadian 9AL and instead of separating the calls with "de" (known as the intermediate or interval sign), use "as" instead? And did you hear 9AL answering, use "fm"? Probably you did and maybe you have heard Canadian stations working among themselves using "as" while U. S. stations use "de". Works fine, doesn't it—so long as you keep those arbitrary intermediates in mind—which you don't because the Canadians often use "Can" in front of their calls when signing off, just to make sure the rest of the world won't make a mistake and log them for a British, American, Cuban or Australian station. When we made this arrangement with the Canadian amateurs, across-the-border traffic was "sitting pretty" and it worked out more or less satisfactorily but we didn't take into consideration that across-the-water work was at the threshold of amateur radio and before long we would be QSO and logging our British, French, Mexican, Cuban and Australasian confreres and getting an extra couple of tubes handy to copy South Africa, Japan and the Argentine. This is materializing faster than we realize and with it comes the necessity of correctly identifying the calls we hear, especially since no international amateur call letter arrangement is in force like the commercial calls and different countries are assigning their amateurs similar calls.

The present Canadian-U.S. arrangement was OK in theory but if extended in practice to include other countries it would mean the assignment of various arbitrary intermediates of all kinds and conditions and a card index file to keep them straight and decode
future requirements for several years or until such time as the next International Radiotelegraphic Convention meets and assigns a better scheme on the basis of the present commercial assignment of calls.

In considering the plan in its final form, it should be remembered that it doesn’t comply with all the above exactly but aims to come as near as possible. With that in mind, let us get down to business.

Replacing the present arbitrary intermediates used between Canadian and U.S. amateurs with the initials of the respective countries, we find it quite easy to identify each, provided they are arranged correctly so that the initial of the country called comes first and initial of the calling country second. For purposes of illustration, assume the initial “c” is assigned to Canada, “u” to the United States. Canadian 9AL now calls U.S. 1AW in the regular way but instead of separating the calls with “fm”, he uses “uc”, meaning 1AW (u) is being called by 9AL (c). In other words, “1AW 1AW 1AW uc 9AL 9AL 9AL.”

When 1AW answers 9AL he turns the intermediate around to indicate in the same manner as above what nationality is called and by whom called. In illustration, “9AL 9AL 9AL cu 1AW 1AW 1AW k”. It works out beautifully and requires little effort to remember, since in almost every case the initials are those of the two countries, except where two countries of the same initial have amateurs; in this case it has been necessary to assign an arbitrary initial to one but you will notice that with one exception these arbitrary initials are phonetically suggestive of the country, which makes it that much easier. They are as follows:

A—Australia
C—Canada
F—France
G—Great Britain
I—Italy
M—Mexico
N—Netherlands
O—South Africa (the exception)
P—Portugal
Q—Cuba (phonetic)
R—Argentina (phonetic)
S—Spain
U—United States
Z—New Zealand

This leaves twelve letters still unassigned for future developments and as the call arises they will be allotted and the proper publicity given.

Note another point: when calling an amateur of your own country use the initial of that country, once only, as the intermediate, since you will have a habit of travelling over international boundaries and oceans and things and even tho you want the fellow in the next block, a station three countries off may hear and like to know who you are.
That is, if Canadian 1AR calls Canadian 3BP he says "3BP 3BP 3BP c 1AR 1AR 1AR," and the same intermediate is used in answering. Someone suggested this intermediate initial be repeated twice, as "cc," for the sake of greater accuracy but it seems unnecessary, as the whole series will probably be repeated several times.

Now a word as to the legality. The last International Radiotelegraphic Convention, known as the London Convention, did not provide for amateurs and we therefore have our being through our respective governments who license us, generally in accordance with their own radio regulations, which latter are generally in accord with the London Convention articles. Each government, therefore, is the one to smile and give its blessing and while the plan is not strictly according to regulations, nevertheless it has been unofficially in operation in a modified form between Canadian and United States amateurs for several years without government protest and since it would amount to an agreement between amateurs only, for the betterment of their operating conditions without in the least affecting commercial, military or broadcast interests or causing confusion in calling, we do not look for objection from that quarter. Several governments have unofficially indicated approval and since it is a matter involving a slight technicality, we see no necessity for official action, unless specifically requested to do so.

The one exception is in the case of British amateurs; their government has unfortunately raised technical objections, stating the only acceptable plan would be for them to prefix their assigned call letters with the initial of their country, retaining the "de" as at present. For example, in calling British amateurs, the first plan will hold, but the British amateur answering, will prefix both calls with the country's initial, instead of using the initials as the intermediate sign. For example, if British 2SH calls French 8AB, he would send "F8AB F8AB F8AB de G2SH G2SH G2SH k." As this is the only exception to the general plan, it is hoped the British Post Office may be induced to change at a later date.

Amateurs reading of this plan for the first time will probably light on several objections, and therefore, to forestall doubt or dissatisfaction where it may exist, they will be answered before asked.

(1) Some countries will have same initial. As explained previously in case of such conflict, an arbitrary initial will have to be assigned but every effort will be made to do so phonetically.

(2) Not enough initials for all countries in the world. Quite true but neither does every country boast an amateur and with twelve initials left, the supply will last for five years or so, before which the International Radiotelegraphic Convention will have met, and probably considered the international assignment of amateur calls itself.

(3) Incorrect logging of the intermediate initials may result from QRZ or QRM signals. Yes, but when calling foreign amateurs or those over long distances, the call sequence will be repeated more than usual, giving the logger several chances.

A word about the plan that ran second to this and its objections. Several endorsements of the plan to be used by the British amateurs were received, but careful analysis brought out the following disadvantages:

(a) The prefixing of a call with an initial (FSAB G2SH) would not be permitted by several governments, as the calls are assigned originally by the government and no change thereto may be made by the amateurs.

(b) Some government services have already been assigned calls commencing with a letter, followed by a numeral and one or more letters, so that conflict would certainly result, should the amateurs use this system generally.

(c) It increases the length of call undesirably. 25% in the case three letter calls, 33 1/3% with two letter calls.

(3) Unless calls are sent very carefully and received quite clearly, the prefixed initial may be transposed by the logger as constituting the last letter of the call. (FSAB may be logged 8ABF).

As we said somewhere before, the first plan is not absolutely watertight but it was the one which received the united support of international amateurs over the other plans, and the main need right now is to get started—quickly—before the Transatlantics and other tests. The Traffic Manager has approved and endorsed the scheme. Midnight, December 15th, 1923, is the date it goes in effect; get set, OM, read this again to make sure you understand it perfectly, tell the rest of the gang, and—let's go!

--C.A.S.
EVEN lively Atlanta will receive some new sensations on December 27th, 28th and 29th. That’s when the Fourth Radio District and the East Gulf Division of A.R.R.L. hold their first independent convention and initiation to the Royal Order of the Wouff Hong.

“Beat the National Convention” has been set up as a slogan and the Fourth District has been humming with activity—this will certainly be a lively convention. The “Welcome Everybody” sign is out for all A.R.R.L. men of every district and division, and the homes of Atlanta amateurs will take care of those who can’t stand the hotel bills.

The Program

December 27th:
Forenoon—Registration at the Hotel Ansley, Atlanta. Rooms reserved for delegates at the following rates: single with bath, $2.50; four in the same room, $1.00 each. Tickets for the entire convention, including all trips, meetings, stunts and convention badge, $5.00.
2:00 P.M.—Trip to amateur stations and also to the great Confederate memorial which is being carved on the face of Stone Mountain, the world’s largest rock.
7:00 P.M.—Banquet, district roll call, and formal opening of convention, with short talks by leading delegates.
11:45 P.M.—Parody on Broadcasting—sent by Atlanta Journal station WSB, working as Atlanta Radio Club Station “IOU.”

December 28th:
10:00 A.M.—Technical Meeting.
2:30 P.M.—Trip to amateur stations and to 5-kilowatt Signal Corps tube station WVR, largest Army station.
7:45 P.M.—“Good of Amateur Radio” meeting; discussion of plans for the future.
9:30 P.M.—Amateur radio and athletic contests for the apparatus prizes.

December 29th:
10:00 A.M.—Technical Meeting.
2:30 P.M.—Second amateur meeting; plans for next year’s convention and vote on next convention city.
7:30 P.M.—Drawing of the stunt-night prizes, followed by Wouff Hong initiation.

Speakers

The following speakers have been invited and almost all of them have already promised positively to come:
W. D. Terrell, Chief Supervisor of Radio, Dept. of Commerce.
Captain Van Nostrand, Supervisor, 4th Radio District.
C. M. Jansky, Jr., Technical Advisor, A.R.R.L.
John L. Reinartz, the tuner man.
H. L. Wills.
H. E. Bussey, Atlanta office, General Electric Co.
E. E. Bucher, Sales Mgr., R.C.A.

Doesn’t that sound good? And think!—this is the very time when most of us are sick of the sight of snow and weary of being frost-bitten—wouldn’t it be fine to skip out, to go to Atlanta where weather and welcome are warm? Come on, gang!!

Trans-Pacific Report

Word from Mr. K. P. Frederick of Radio Journal states that the first cable report from Australia contains information that signals are coming thru fine with KA as the strongest. 6XAD-6ZW reports hearing what he believes to be a signal from Australian 5GM or 3GM. Word has been received that 6CEU, Hawaii, has been heard in Australia. A second cable said, “Big list over weather better.” No further reports received at this writing.

Louis W. Richwein

All amateur radio mourns the passing of Louis W. Richwein, Federal Radio Inspector, who died at Seattle, Washington, October 5th. Mr. Richwein was a true friend of the amateur and for many years operated 3XX in Baltimore, Md., where he formerly lived. He served in the Navy during the war and it was there that he contracted tuberculosis, which caused his death. In June of 1923 he went to Seattle from the Third District as Assistant Radio Inspector and on July 3d he was promoted to Radio Inspector by the Secretary of Commerce. He loved his work and gave his life to the radio art. Interment took place at Baltimore, his home town.
"LO":
Here it is, OM. The idea hit me last night while listening in. Nary a spark did I hear, and I thought how good it would be to hear one closing down with the power still on and the note descending on the "dah-de-dah." But all I could hear was signals that stopped with a sudden abruptness that left something lacking. C.W. is better than sparks and I like it better, but the ringing of the cow-bells sounds sweet to a farmer still.

To him who is hoary and white, contentment and satisfaction are given if he may sit and doze while recalling childhood's memories and the echoes of halcyon days that are gone. But with these things there also come silent heartaches, for who does not retain a deep and abiding love and an empty place in his heart for something that is forever gone; who does not long for the old familiar sounds of a child's laugh, the tinkle of ice in a julep glass, the call of "Swing your partners?" And of the older radio men amongst us many yearn for that sweetest sound of the olden days, the musicale of the sparks. Beginning with a rumbling basso, their voices came with rapidly increasing volume and ever rising inflection to high clear notes like those of silver bells. Alas, those days have gone! No more do clear notes come winging thru the ether at eventide and at midnight, telling us that some brother is searching for communion with another soul—a friend whom he has never seen but whom he knows well. No more do we hear those beautiful tones that sounded like organ pipes playing softly in a great cathedral, from the deep booming bass to the shrill flutelike staccato—no more do we hear the faint sounds as of cold winter winds coming over vast distances of bleak rock and sand and sea, carrying ghost voices and the sounds of dying men on sinking ships. No more is the robin-trill of the synchronous spark—gone, gone. Ah! what would we not give to have one night of the past back again. Would that we could light the magic bottles, call back time, or go into the spirit land, and for a space of just a few minutes hear that mellow music again!

But time has flown and we sit and listen to what is left, noises like an army of skeletons on the march with a discordant and worn-out flare of music at the head. Listen! "Doy-dit-doy-dit-doy-dit-doy-dit-doy-dit-doy, spit spit spit, splat, splat, spaat, plaat, spiaat, blaaaaa-ah, wonk wonk, dit oink, wheeeeneeeneeh, spink, spink, tickety tickety, tickety, tickety, asshppaaaaah, fry, fry, gobble, obble, obble, and thru the whole the monotonous wavering drone.
whoooouuuuuuhnnnghnnnnnhnnhn of a generator.

High pressure efficiency, the mushrooming of the listening-in fields, has caused these peaked and strident noises, and perhaps from an economic and operating standpoint it is well. But esthetically speaking, this is the death dirge of our blessed music; we must say "Jazz," in its filthy way, has also submerged our blessed sparks.

Epiologue

In my dreams I saw a distant and terrible land, filled with mighty roaring. As I approached great lightnings leaped, burst and wheeled like Medusa's Snakes. I trembled but my soul was filled with joy, for behold, they were giant wheels with knobs of azure fire on their peripheries, rotaries piled higher than the volcanic mountains about them, whirling and spinning 'til misty blurs were seen instead of spokes and faces. The mighty roaring discharges caused the red bellings of the nearby volcanoes to pale.

A great dark figure approaches—I know him for the genie of this land. He salaams; "Oh, Sir, thou beholdest Shauwe, ruler of this land and keeper of the Ancient Wouff-Hong. It is given to thee this day to take that which thou desirest. Speak that thy servant may do thy bidding."

A great longing filled my soul for all that was contained in that valley but I knew that only one thing would be allowed me, so I pointed to the wheel nearest me and made known that I would take it. The genie moved his jewelled hand and in my arms I found the snarling, spitting fiery thing. I loved the touch of it and pressed it to my breast. I felt the pricking sting of its flames in my face, I had a fulfillment of my heart's desire, for my beloved spark was burning its way into my soul to stay there forever.

The genie was gone, black clouds rushed overhead with heavy thunders, a heavy hot wind sprang up, lightning flared blue at the rotaries. Then came sheets of rain and tons of rocks thundered down the mountains. I could still feel the pricking flames in my face when there was an intense flash that blinded me and threw me to the earth. In the midst of this pandemonium a woman's voice screamed shrilly and I awoke. I was lying on the floor, in my arms I held tightly a great fern, my face buried in the sharp fronds. Rain poured in at the open window and my wife was pounding me with both fists trying to make me come out of the trance and quit acting like a fool.

9BP Still Chief Contact With MacMillan

For the information of those who are not acquainted with the story, Dr. Donald B. MacMillan, the famous Arctic explorer, is now in the far north with a crew of eight men on the 89-ft. auxiliary schooner "Bowdoin." They are frozen in for the winter at Refuge Harbor, Greenland, 11 degrees from the Pole. The vessel is equipped with radio and the operator, Donald Mix, is an amateur sent along on the expedition by the A.R.R.L. "Bowdoin" is the "Bowdoin's" radio call. WNP's communication has been entirely via amateurs of the U.S. and Canada, and Capt. MacMillan's news stories appearing in the press thru the North American Newspaper Alliance have all been handled via amateur stations of the A.R.R.L. The following brief article is a report of October communication with WNP.—Editor.

THE month of October saw no important change in the contact with WNP. That means that Jack Barnsley, Canadian 9BP, of Prince Rupert, British Columbia, continues to be the only reliable clearing-house for traffic to and from the "Bowdoin," an honor he has enjoyed ever since he first connected with WNP on Sept. 7th. Many messages have been handled in both directions, some of them long and difficult, and several press stories received. The crew of the "Bowdoin" have been in touch with their families and friends with much the same facility as if there were a Western Union office at Refuge Harbor. They have heard a little broadcasting but almost no news by that source, but hot news and the World Series scores have got to them via 9BP. Barnsley has done a wonderful work, and A.R.R.L. Headquarters is not the only place where it is appreciated, as is shown by a message WNP sent him on Oct. 24th:

Aux Schooner Bowdoin Oct 24

J Barnsley Rdo 9BP
Prince Rupert BC

Accept sincerest thanks from myself and party for your interest in our expedition and for your very valuable help in transmitting messages. Your loyalty will not be forgotten upon our return from the Arctic.

Donald MacMillan

The "Bowdoin" is now frozen solidly in the ice for ten months, the temperature is 15° below zero, and there is heavy snow. The sun has not been seen since Oct. 25th. All the crew are well and happy, and enjoying their adventures. Draw just a little upon your imagination, reader: doesn't radio mean something real to that party? And if you have an amateur station you have a good chance of talking to them this winter!

The table in this article records all reports of WNP received for October. A few
stations thru the center of the country have heard her, but the only reliable copying has been on the West Coast and the only actual contact reported is via 9BP, except for a brief moment with 9EBT. We don't know how to account for this condition but it surely exists. It hasn't been all roses even for the West Coast, either. There have been periods of a week or more when nothing was heard of WNP, only to learn when she and 9BP connected again that both had been on watch every night and that Mix had heard 9BP calling him each night but had been unable to make his own signals heard. Perhaps the magnetic pole is having some effect on communication; possibly it is aurora. It all adds to the fascination of the project and as the winter wears on we shall learn more about it. All persons hearing WNP are requested to send particulars to A.R.R.L. Headquarters.

—K.B.W.

Log of A.R.R.L. Stations with WNP
(Local Standard Times)

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Station</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept. 20</td>
<td>Early</td>
<td>J. N. Smith, Mile 7, Alaska</td>
<td>Copied WNP an hr wkg 9BP, QSA, some QSS.</td>
</tr>
<tr>
<td>" 21</td>
<td>Early</td>
<td>7DG, Cordova, Alaska</td>
<td>Hrd WNP on det.; no particulars.</td>
</tr>
<tr>
<td>Oct. 2</td>
<td>Early</td>
<td>9BP, Prince Rupert, B. C.</td>
<td>Wkd WNP; took 146 wds N.A.N.A. press and 2 msgs; sent 1 msg.</td>
</tr>
<tr>
<td>" 4</td>
<td>Early</td>
<td>9BP, Prince Rupert, B. C.</td>
<td>Wkd WNP; took 6 msgs.</td>
</tr>
<tr>
<td>" 1</td>
<td>2:06 a.m.</td>
<td>9DBK, Minot, N. D.</td>
<td>Copied WNP one hr wkg 9BP; very QSA.</td>
</tr>
<tr>
<td>" 4</td>
<td>7:30 p.m.</td>
<td>Can. 3WG, Guelph, Ont.</td>
<td>Hrd WNP QRK.</td>
</tr>
<tr>
<td>" 4</td>
<td>7:30 p.m.</td>
<td>9DBE, Evanston, Ill.</td>
<td>Hrd WNP cgl CQ.</td>
</tr>
<tr>
<td>" 10</td>
<td>9BP, Prince Rupert, B. C.</td>
<td>Wkd WNP; sent him 7 msgs without repeat; took 1.</td>
<td></td>
</tr>
<tr>
<td>" 12</td>
<td>Early</td>
<td>9BP, Prince Rupert, B. C.</td>
<td>Wkd WNP; WNP started press but QSSed out.</td>
</tr>
<tr>
<td>" 12:13 a.m.</td>
<td>6XAO, Piedmont, Calif.</td>
<td>Hrd WNP fairly consistently several nites.</td>
<td></td>
</tr>
<tr>
<td>" 20</td>
<td>2:15 p.m.</td>
<td>9CLQ, DesMoines, Ia.</td>
<td>Hrd WNP cgl 9BP vy QRK.</td>
</tr>
<tr>
<td>" 20?</td>
<td>Unstated</td>
<td>1YB, Hanover, N. H.</td>
<td>Hrd WNP sining off QRF.</td>
</tr>
<tr>
<td>" 22</td>
<td>Early</td>
<td>9BP, Prince Rupert, B. C.</td>
<td>Cld WNP; hrd him reply but unreadable.</td>
</tr>
<tr>
<td>" 25</td>
<td>Early</td>
<td>9EBT, Fargo, N. D.</td>
<td>Wkd WNP; took 200 wds N.A.N.A. press and 1 msg; sent 3 msgs.</td>
</tr>
<tr>
<td>" 25</td>
<td>Early</td>
<td>9BP, Prince Rupert, B. C.</td>
<td>Wkd WNP; took 1 msg; then apparently lost him.</td>
</tr>
<tr>
<td>" 25</td>
<td>1:15 a.m.</td>
<td>6XAD, Avalon, Calif.</td>
<td>Wkd WNP QRK; took 2 msgs; gave him news for ½ hrs OK.</td>
</tr>
<tr>
<td>" 30</td>
<td>Early</td>
<td>9BP, Prince Rupert, B. C.</td>
<td>Copied WNP two hrs wkg 9BP. QSA but QSS.</td>
</tr>
<tr>
<td>" 30</td>
<td>4:10 a.m.</td>
<td>9DSW, Fairmont, Minn.</td>
<td>Wkd WNP; sent 8 long msgs and news; took 3 msgs and 500 wds N.A. N.A. press.</td>
</tr>
<tr>
<td>" 30</td>
<td>5:14 a.m.</td>
<td>3BAU, Glenside, Pa.</td>
<td>Copied WNP two hrs QSA wkg 9BP. Reports hrg WNP cgl 5MK QSA but QSS; hrd agn at 6:08 a.m.</td>
</tr>
</tbody>
</table>
The Other Side of the Argument

By S. W. Place*

In the August issue of QST, on page 36, there appears an article "Hard Rubber in Radio Instruments," in which the advantages of hard rubber are presented. Here we have the other side of the argument, the case for the family of products that the scientist describes as "Laminated Phenolic Condensation Products," but which we know better under the names of Condensite Celoron, Formica Micarta and Bakelite-Dillecto. Read the two articles together and decide which product suits your particular job.

There are properties which an insulating material for radio must have, for without these properties its efficient service will be short-lived.

In some respects Hard Rubber and one or two other materials are splendid for insulation. They have the necessary dielectric strength, and are impervious to moisture; but insulating materials for radio must have no tendency to warp when exposed to heat or unusual cold. Neither should they be so brittle as to be likely to crack or split in the process of machining.

Think what it means to a man who has invested his money in a radio set to find that the warping of the panel has thrown his dials out of alignment, interfered with their easy rolling movement, and disrupted the working adjustments of his set. Consider the advisability of using a panel board that has all the necessary properties and which will not warp!

Laminated Phenolic Condensation products are known under various trade names as "Condensite Celoron," "Bakelite Dillecto," "Bakelite Micarta," "Formica," etc. These phenolic products are built up of a laminated structure consisting of paper or thin sheets of fibre especially treated with the phenolic gum. Twenty-five or thirty of these sheets may be required to make an ordinary radio panel. The sheets are placed in a heavy hydraulic press, between polished plates, and subjected to a pressure of almost one ton per square inch. At the same time, steam, circulating around the plates, heats the gum causing it to soften and flow, after which it hardens forming a solid sheet.

Laminated phenolic products are tough and hard, have high dielectric strength, fine appearance, are chemically inert, insoluble and infusible. Unlike hard rubber, it is practically unbreakable even when dropped on a stone floor. It is easily drilled, tapped, turned, sawed, or milled. It can in fact be worked in any manner that metal can. It is not affected by sunlight and it will always keep its original high finish. No degree of heat or cold it is likely to encounter will cause it to warp or crack.

The importance of this last named feature alone can hardly be over-estimated. The ultimate buyer cannot get satisfactory service from a set in which the panel or mounts have warped. No matter how perfect the outfit may be in every other respect, this one fault is enough to condemn it and the firm that makes it in the eyes of the amateur.

Laminated phenolic products are the leaders in the line of radio insulation. The following tests will be of interest to the radio amateur as they establish without doubt the superiority of this class of material.

<table>
<thead>
<tr>
<th>CONDENSITE CELORON — GRADE 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave Length (Meters)</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>373</td>
</tr>
<tr>
<td>1,295</td>
</tr>
<tr>
<td>3,067</td>
</tr>
</tbody>
</table>

Here are some additional dielectric tests made by the Electric Testing Laboratories of New York City:

<table>
<thead>
<tr>
<th>Material Test and Color</th>
<th>Dielectric Strength (at 60 Cycles) Blunt Needle Point under Oil. Increase of Voltage about 3,000 per Second.</th>
<th>Average Thickness in mils.</th>
<th>Average Breakdown Volts per mil.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 10 Black</td>
<td>206.</td>
<td>17.5</td>
<td>905</td>
</tr>
</tbody>
</table>

Average surface resistivity 2,000 to 4,000 times 10^9 ohms per square centimeter at 25% humidity.

Average volume resistivity 6,000 to 9,000 times 10^9 ohms per cubic centimeter.

Mechanical Properties

Specific data relative to the mechanical qualities of Condensite Celoron is given in the following tables. These tests are the average of many. They are not merely the most favorable. We prefer to follow this conservative practice rather than cite highest tests only.

*Radio Engineer, Diamond State Fibre Co.
<table>
<thead>
<tr>
<th>Tested for</th>
<th>Laminae Vertical lbs. per sq. in.</th>
<th>Laminae Horizontal lbs. per sq. in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Strength</td>
<td>7,000 to 9,000</td>
<td>10,000 to 13,000</td>
</tr>
<tr>
<td>Compressive</td>
<td>27,000</td>
<td>44,000</td>
</tr>
<tr>
<td>Transverse</td>
<td>18,900</td>
<td>19,000</td>
</tr>
<tr>
<td>Modulus of</td>
<td>1,450,000 aver.</td>
<td></td>
</tr>
<tr>
<td>Elasticity</td>
<td>of ten readings</td>
<td></td>
</tr>
</tbody>
</table>

Weight: .054 lbs. per cubic inch—20 cubic inches to the pound.
Coefficient of expansion: .00002 per degree F.
Brinnell hardness: 30 to 40.
Specific gravity: 1.4.

The San Francisco Convention

The Fourth Annual Sixth District Convention, held at California Hall, San Francisco, October 13, was one of the liveliest held in some time. The attendance was somewhat below that expected—but it didn’t matter, there was plenty of enthusiasm.

Messages from President H. P. Maxim and Supervisor Dillon were read and the convention formally opened with our good friend McGown, 6ZE, in the chair.

The chairman’s opening talk on amateur radio struck the keynote and from that time on discussion was eager and active.

Previsou to the convention there had been a considerable amount of correspondence between Traffic Manager Schnell, Director Babcock and Division Manager Wise regarding the advisability of partitioning California into a number of sections with an Asst. Division Manager in charge of each. In the absence of Mr. Wise, Director Babcock explained the plan, which was approved by the meeting, the division lines being at once established and the A.D.M.’s chosen. Details will appear in the Traffic Department report for December and January. An excellent change! California is a mighty large state.

A.R.R.L. broadcasting stations were then taken up and motions carried recommending that all these stations send at 7:00 and 10:30 on Wednesdays in addition to the Saturday schedule, also that the Bay Counties A.D.M. appoint a local B.C. station for national and local news.

Transpacific work came up next and a committee picked the following stations to act as west-coast terminals in forthcoming two-way tests with Australia—6PL, 6ALK, 6KA, 6CMR, 6CGW, 6BVG, 6AWT, 6ARB, 6ZH, 6CHL, 6NX, 6AUU.

Next the Pacific plan was modified by removing the 15-minute limitation on conversations and by opening the hour between 6:30 and 7:30 to both local and DX work.

A committee was appointed to consider the possibilities as to a west-coast office of the League. This committee recommended that the matter be referred to the Board of Direction in the form of a resolution which they had drawn up. After some discussion this report was approved for forwarding to the Board of Direction.

A number of new members were taken into the League during the convention and interest in all matters concerning the League ran high.

Santa Barbara was chosen as next year’s convention city, a vote of thanks extended to Chairman McGown, and the convention adjourned at 5:30 P.M.

S.K.

Here’s A Chance To Win A Storage Battery

Mr. Harry Morrell of 1GKY, New Haven, Conn., is offering a 300-ampere-hour 6-volt Edison A battery in a development contest, to be staged by members of the A.R.R.L. between now and June 1st, 1924, for the best single aid to Amateur Radio Operation which is submitted to the Board of Judges between no wand the closing date. The device must be of a kind that will be helpful in amateur radio operation; there is no other limit on it.

It is not absolutely necessary for the man who wins this prize formally to have entered himself, nor yet to have been entered by another person. However, Hartford is in one corner of the country; we can not possibly know even a small fraction of the radio developments that are going on; therefore enter your favorite man when he has accomplished something that you think “rates” the prize. It need not necessarily be apparatus any radio development may be just as good.

The award of the prize will be made by the following judges in accordance with the best of their own estimate of its value: K. B. Warner, Secretary, A.R.R.L., F. H. Schnell, Traffic Manager, A.R.R.L., S Kruse, Technical Editor, QST.

Remember, entries must be in before June 1st, 1924; they must be addressed to the Headquarters of the League at 1045 Main Street, Hartford, Conn., and each entry must be distinctly marked “MORRELL PRIZE.” Put this on the letter, not on the envelope.

Erratum: November QST, p. 54. The first line of the last paragraph on the page should read, “In the parallel supply method of a radio”
A New Non-Oscillating Detector

In a paper to be published soon in the proceedings of the Institute of Radio Engineers there is described a new detector tube devised by Harold P. Donle.*

The construction of the tube and the usual method of using it is shown in Figure 1. Current from the A battery passes thru the filament rheostat R, then thru the filament (shown dotted) and the heater-wire H (wrapped around the outside of the tube) to the other terminal of the battery. The purpose of this heater is to keep the tube warm enough so that it will be filled with sodium vapor, a slight amount of metallic sodium having been placed in the tube at the time of the exhaust. C is a "collector" which takes the place of the usual grid. Because C is rather large and very close to the filament the "collector current" (equivalent to the ordinary grid current) is quite large and the input impedance is low. To keep the collector current within reasonable values a "neutralizing voltage" is supplied from a slider running on the potentiometer P.

The plate (anode) circuit impedance is normal and the tube will work into the usual phones or amplifiers. The collector circuit will not work well with the usual tuner, as the input impedance is very low and a secondary circuit adapted to operation at low voltage with larger currents must be used. This calls for a relatively large condenser across a low resistance coil with a few turns, the number of which is adjustable.

The tube does not oscillate, nor is it an amplifier tube; altho it has three electrodes it acts differently from the normal tube and can be used for detection only. When so used a sustained radio frequency impulse causes the plate current to drop in proportion to the applied voltage. This is markedly different from the standard tubes in which the response is in proportion to the square of the applied voltage. Thus it seems that the tube will not give tremendous signals from a loud station but will respond well to very weak signals—tending to equalize the signal strengths of various stations more than is the case with standard tubes.

The plate voltage and the filament current are not critical. The position of the grid-potentiometer slider must be adjusted with some care but this is not a "tricky" adjustment since the tube has no tendency to begin oscillating.

For spark, phone or I.C.W. reception the new tube would seem to have desirable characteristics; the C.W. operator will think twice before adopting a non-oscillating detector with the attendant complication of a separate heterodyne. However, it will be well to consider such a change in neighborhoods where there is interference on 200 meters between oscillating receivers operating on the same wave.

-S.K.

NOTICE

All amateurs hearing or working WNP are hereby instructed to keep the texts of messages to themselves and to deliver messages to the addressee only. Furthermore, amateurs are instructed to pass out no information to anybody without authority from the A.R.R.L. Instructions for handling traffic with WNP appeared in July QST. If you don't know how to handle WNP messages, refer to that issue. Don't take a chance of handing out information that may become public property—read the U.S. Radio Communication Laws.

F. H. Schnell, Traffic Manager.

*Chief Engineer, Conn. Tel. & Elec. Co., Meriden, Ct.
The Grebe CR-13

It is a happy feeling to have a radio manufacturer, after all these years of broadcast-receiver building, bring out a set especially for the amateur. Such a tuner is the Grebe CR-13, which is now exciting wide interest in amateur circles. The Grebe CR-13 is not based on a new circuit, but on the development of a well-known one for a particular purpose. Referring to Figs. 1 and 2 we see that the system consists of a single stage of tuned radio-frequency amplification feeding a non-regenerative detector. To the left of the dotted line we have an ordinary single-circuit tuner, consisting of a condenser VC in series with a variometer $Var-1$. The antenna circuit does not go thru the entire winding but only thru one stator coil and one rotor coil— in other words, thru half the winding of the variometer. This loosens the coupling to the antenna somewhat and in addition causes the size of the antenna to have less effect on the tuning. The only inductance which is quite loosely coupled to the detector grid circuit and is not tuned at all—in fact, is deliberately made with such a low inductance that it cannot get into tune with any incoming signal.

The tuning range of the device is from 80 to 300 meters, a range that is not especially changed by the antenna used as this can be compensated for by setting the unusual thing so far is the resistance RC which is increased to prevent oscillations when receiving spark or phone.

The output of the R.F. tube passes thru the plate inductance which is coupled to the detector-tuning variometer $Var-2$.

The difference between this radio amplifier and the tuned amplifiers we have been accustomed to lies mainly in this plate condenser VC. Favorably reports have been received but no tests have yet been made by the writer.

Those interested in trying a “home-brewed” tuner of this type will appreciate the following dimensions. First variometer, wound with No. 14 D.C.C. wire, 19 turns in each half of the stator and rotor or a total of 76 turns for the variometer. The plate coil PI of the R.F. tube consists of 15 turns of No. 26 silk-covered wire on a tube 4½ inches in diameter, this tube placed over the stator of the grid variometer, $Var-2$, but with rather loose coupling. The grid variometer, $Var-2$, is wound with large cotton-covered wire, about No. 18, using 23 turns per half of the stator and rotor, thus giving a total of 92 turns for the entire variometer. The condenser VC may be something less than .00025 μF.

There are several possible ways of start-
ing to tune, hence detailed advice is needless. It is well, however, to make sure that the grid leak has the right value and to become familiar with the use of the rheostat RC. This rheostat, by the way, should have several hundred ohms resistance and had better be non-inductive. Some potentiometers will do very well.

The “13” shows the usual beautiful Grebe workmanship together with some special refinements. Of these we especially appreciate the wave length scale on the second variometer dial and the double rheostats which will work with any tube now available.

—S.K.

Financial Statement

In accordance with instructions of the Board of Direction the following statement of revenue and expenses of the A.R.R.L. for the quarter ending July 31, 1923, is presented for the information of the membership.

K. B. Warner, Secretary.

Condensed Statement of Revenue and Expenses, May 1, July 31, 1923

<table>
<thead>
<tr>
<th>REVENUE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Advertising sales</td>
<td>$14,656.34</td>
</tr>
<tr>
<td>Newsdealer sales</td>
<td>8,663.82</td>
</tr>
<tr>
<td>Dues and subscriptions</td>
<td>3,668.99</td>
</tr>
<tr>
<td>Back numbers, etc.</td>
<td>261.03</td>
</tr>
<tr>
<td>Emblems</td>
<td>366.00</td>
</tr>
<tr>
<td>Interest on bank deposits</td>
<td>65.52</td>
</tr>
<tr>
<td>Bad debts recovered</td>
<td>103.47</td>
</tr>
</tbody>
</table>

Deductions

<table>
<thead>
<tr>
<th>Deductions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Returns and allowances</td>
<td>$2,625.95</td>
</tr>
<tr>
<td>Exchange and collection charges</td>
<td>5.94</td>
</tr>
<tr>
<td>Discount 2% for cash</td>
<td>213.78</td>
</tr>
</tbody>
</table>

Total Revenue | $27,785.17

<table>
<thead>
<tr>
<th>EXPENSES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication expense</td>
<td>$11,614.10</td>
</tr>
<tr>
<td>Salaries and commissions</td>
<td>9,912.73</td>
</tr>
<tr>
<td>Forwarding expense</td>
<td>571.26</td>
</tr>
<tr>
<td>Telegraph, telephone and postage</td>
<td>660.25</td>
</tr>
<tr>
<td>Office supplies and general expense</td>
<td>2,226.83</td>
</tr>
<tr>
<td>Rent, light and heat</td>
<td>508.08</td>
</tr>
<tr>
<td>Traveling expenses</td>
<td>495.61</td>
</tr>
<tr>
<td>Depreciation of furniture and equipment</td>
<td>96.02</td>
</tr>
<tr>
<td>Bad debts written off</td>
<td>435.30</td>
</tr>
<tr>
<td>Public stenographers at meetings</td>
<td>286.25</td>
</tr>
<tr>
<td>Operating Department field expenses</td>
<td>434.81</td>
</tr>
<tr>
<td>Publicity Department field expenses</td>
<td>148.57</td>
</tr>
<tr>
<td>Legal expenses in Bergman law suit</td>
<td>500.00</td>
</tr>
</tbody>
</table>

Total Expenses | $24,939.50

Net loss from operations | $2,950.31
Edison Storage "B" Batteries

By F. M. J. Murphy, 8ML

A WAY back in '98 Tom Edison must have had a vision of some thousands of us on our weekly battery picking expedition, for it was then that he started on his work that resulted in the invention of the Edison Storage Battery. It was eight years after this that the Edison was perfected to a point which satisfied its inventor. When we consider the average life of the usual type of storage battery with which we are all familiar, and then discover that some of these Edisons have been in service for ten to fifteen years, we can see what painstaking care was expended in their conception.

Inside the Battery

Those of us who have one of these Edison cells, have wondered what's in those little nickel plated steel pockets. Must be diamonds, considering how they snap off the small drills with which we seek to penetrate them. The thin flat element is the negative, made in two halves from perforated high-carbon steel strip, and as the halves are clamped together in an hydraulic press to form a pocket, the black iron oxide, which is the active material, is forced in under heavy pressure. The end of the pocket is then turned in and sealed.

The container for the positive element is spirally wound from a narrower high-carbon steel strip, then packed under a ton pressure with over 900 layers of alternating nickel hydrate and nickel flake. This flake is so light that a bushel weighs but four and one-half pounds.

In charging the battery, the current passing from the nickel hydrate element to the iron oxide element causes the oxygen in the iron oxide to pass over and attack the nickel hydrate and form nickel peroxide, which has a very high resistance. By alternating this high resistance active material and nickel flake a low resistance path for the current is provided. The tendency for the hydrate to swell on charge is restrained by steel rings forced down over the tube.

In the final makeup of the battery the positives and negatives are mounted in nickel plated steel grids under a pressure of 40 to 120 tons.

The container, which is welded on, is of corrugated nickel plated steel with insulating bushings in the top.

The 21% solution of caustic potash, which constitutes the electrolyte, contains a small percentage of lithium hydrate, which must have been added for some good reason, as it is an expensive salt. The solution is furnished in welded air-tight steel containers and has a gravity of from 1215 to 1225. Renewal is necessary only every 300 cycles of charge and discharge, or not oftener than every two or three years, when the density falls to around 1175. In renewing the solution the cell is first fully discharged to release the energy in the elements and prevent heating, the solution changed and cell recharged. If left in the open air the oxygen of the air combines with the active material and discharges the stored energy.

A dead short on an Edison does not even give it a pain. It has a higher resistance than the lead-acid battery—one of the reasons it cannot be used as a starting battery in an automobile—which limits the short circuit current to a reasonable value. If you forget to charge an Edison it waits patiently until you need it again, even though the period of inactivity be years. When it is left in fully charged condition 10 to 15% of the charge disappears in the first few days, after which the loss is imperceptible. This is a good argument for giving the battery a frequent boost, then immediately using the energy you put into it.

Charging the battery in the reverse direction has no effect other than running up the light bill. Inspecting the interior through the filler hole by the light of a match invariably gives a conclusive demonstration of the affinity of oxygen and hydrogen gas. It is not dangerous to touch the positive pole of the battery simply because it has a red ring around its base. The addition of acid to the battery will ruin its future prospects not to mention the carpet. It lasts so long you forget in what year you bought it. No gas mask need be worn on approaching a battery on charge. If it falls off the table or down the cellar steps, nothing but its feelings are hurt. The Edison Storage Battery Company thinks so much of its product that it will allow 25% of the purchase price on the return of an Edison battery in any condition. That explains in part why it is so hard to pick up old Edison cells.

What's It to Us?

All this sounds fine, it sounds so fine that you are beginning to wonder when the joker is going to be sprung. But there isn't any joker, the things are not only good as "A" batteries, they are good as receiving and sending "B" batteries too—provided you are willing to make a "B" battery from the parts of an old 6-volt battery.
Scouting

In scouting around for an old Edison battery to break up as material for a "B" battery it is well not to appear too prosperous. Don a pair of horn-rimmed specs, slouch hat, and baggy trousers, if you are not already addicted to such attire. Try the junk yards, garages, electrical vehicle and truck manufacturers, and the service stations—also the old lady on the hill whose electric car has gotten too rusty to appear on the street. In any one of these places put someone under obligations to you by bailing 'em out when they are pinched for speeding, lending 'em a $10 and forgetting about it, or marrying the eldest daughter who is approaching the hopeless age. Any of these privations is worth while if you can get your hands on a couple of cells. When anyone makes you a suspiciously good price for an Edison look first at the bottom to see if acid has eaten any holes in it. When you have a battery that is apparently OK enquire as to the type number. If it is a B1, it has a single positive with 15 elements, and 2 negatives with 16 elements each. The positives are ¼" in diameter, 4½" long; the negatives 2¼" long, ½" thick, ½" wide. A B4 has 4 positive, 5 negative plates. An A-type cell has the same size positives, but twice as many in a plate as in the B; the negative plates have 24 elements each, ⅓" x ¾" x 3½". G-type Edisons have the same length positives, but they are ½" in diameter. The negatives are thinner than those in an A cell, and not corrugated. The G-type cells are adapted for higher discharge rates, hence are especially good for a transmitting battery. A G6 cell contains 300 positives and 240 negatives.

Everlasting "B" Batteries

Now that we have got all thru dissecting the Edison battery and telling you that it can't be hurt except with an axe you have naturally thought—"Wouldn't it be great if I could use a flock of little Edison Bats for my receiving battery and charge them about once in a flock of months—come to think of it, why can't I make a bunch of those things—another idea, why can't I make a still bigger bunch of them to supply plate power to my sending set and have a real C.W. set?"

Fine! That's just what we are going to tell you how to do.

For the detector battery a pair of B or G type elements will give as good service as any of the heavier elements. For the usual one or two-step amplifier, 2 B negatives, one on each side of a positive, or 2 G positives and a negative (Fig. 1), make a cell of ample capacity. The proper charging rate is around .2 amp. Equally good for the amplifier or 5 and 10-watt transmitting set is a pair of A type elements in ¼" x 6" test tube. 2 G positives with a negative on
each side of them can be crowded in the same size and make an even better combination. 3 G positives with a negative on each side of them in a 1"x6" test tube (Fig. 2) beats 'em all, and has capacity enough to work two to four 50-watt sending tubes. If too many elements are crowded in a small test tube the solution will boil during the operation of the cell due to the restricted opening obstructing the escape of gas.

Battery Jars

Our battery jars are going to be ordinary glass chemist's test tubes—the little round-bottomed fellows—and the size will depend on your elements; do your own guessing after you are ready to assemble and get the local druggist to order them. Assemble the tubes in wooden rack—Fig. 3 tells the story.

Opening the Can

If the cells about to be dismantled contain solution, don't dump it until ready to proceed, then thoroughly discharge the cell as mentioned before, previous to opening up. A hack saw cut about ½" below the top is the easiest way to operate. Do not leave the plates in water too long while washing off the potash, or rusting will set in. Center punch where the holes are to be drilled, the elements being left in the grids for this operation, as it's a ticklish job drilling round positives singly. If they have been separated, hammer a piece of ½" rod flat into a soft board as a sort of bed for holding the positives. If the elements have been pretty well dried out, soaking them in water will rust them.

Connections

Connections to the little pockets and tubes (each of them is going to be a baby storage battery plate) is made by passing a piece of pure nickel wire thru the end of the element and crimping it in place.

Drilling the elements is about the worst part of the job of assembling an Edison B. The hole should be small, about ½" from the end. A ¼" drill makes the best sized hole, but has more snap in it than 40 degrees below zero. A size or so larger drill will stand the gaff a lot better. Don't but new drills but run in and see Three-Ball Cohen; he has any number of stubs at a few cents each. And let just enough of the drill project from the chuck to penetrate the element. If using a hand drill arrange a rigid support for it along the lines of a drill press, and a mechanism to feed the work upward towards the drill.

Only painstaking care insures a quiet battery. After running through the hole, pull on the wire, give it three or four twists, squeeze against the sides of the element with a good big pair of pliers, pull again and add a few more twists. A ¼" to ½" twist is enough. Small element cells can be connected by one piece of wire, while soldering is necessary in multiple element cells. Place a piece of paper under the joint while soldering to prevent anything dripping into the cells. Do not solder the wire to the elements; it introduces a couple which will eat away the joint.

Pure nickel wire makes the best connectors; size 20 B&S soft drawn, 3½-plus pure nickel. An alloy nickel will show black at the negative and shortly corrode and break off.

Separators

Stick to the materials in the original cell in selecting the separators. Celluloid will gum up the whole works and the atmosphere as well. Wood rots in potash. Perforated hard rubber sheet is the choice, cut in strips the length of the positives and a little narrower than the inside diameter of the tube. In the multiple-element cells the hard rubber rods used as separators in the large cells may be cut in pieces and placed crosswise of the elements, which are bound together with rubber bands. These different constructions are indicated in the sketches.

Before filling the cells test out each one with a finger or a lamp to check insulation of separators.

Fill the cells with solution a good ¾" above the positives, keeping the rubber separators below the top of the solution. It may be necessary to bend the separators by immersing them in hot water and laying across a couple of sticks, and weight them in the middle, leaving in position till cold. Before charging add at least ¼" of white neutral mineral oil similar to Nujol, although a cheaper grade is equally satisfactory. Yellow paraffin oil becomes dirty in a short time. A friend tried castor oil on the advice of the drug clerk. After a few hours charging he dug out 78 cakes of soap from his 100-volt battery; probably castile soap.

For the solution, standard Edison electrolyte is undoubtedly the best. Pure caustic potash in distilled water, gravity 1.215 to 1225, is in line, and lye is last and least. A battery with lye solution will often drop its charge in a moment's time. It's a surefire prevaricator. Read the gravity after solution is cold or you will have creeping salts.

An "A" Edison cell has 120 pairs of elements, and a charging rate of 30 amperes, which figures out .25 amps per pair of elements, the proper charging rate for your B. If you have no meter, a lively bubbling will indicate the proper rate, but boiling of the solution or overheating is to be avoided. Raise the charging rate where more than a pair of elements per cell is employed. Charging for a couple of hours will not put much energy in the battery. Give it a full meal. Seven hours is the
standard charging time. The charge-discharge curve will enable you to estimate the probable voltage of your battery, and the number of cells you can charge from the available charging equipment. A battery for a receiving set will give a higher voltage under load than will the same battery used on a transmitter, because of the lighter drain. 78 cells will give an average of 100 volts on a receiver, while on a transmitter it is better to provide 80 cells or more for each 100 volts desired. Elements which have been exposed to the air for some time will not reach their full capacity again until charged and discharged a number of times. The harder the battery is worked the greater its capacity.

The Rack

A receiving "B" Edison can be made up in a very compact frame, occupying but little more table space than the block dry battery. A 100-volt 78-cell frame is sketched (See Fig. 3 again). 1½" spacing center to center is ample if the tube lips are not too broad, otherwise 1¾" spacing is advisable. The tube shelves may be of soft wood to reduce sweat radiation losses while boring. If an ordinary bit is used either grind the entering screw to a smooth point, or drill a ⅛" hole to start, if a one-piece shelf is desired. A Forstner bit will cut through without a split. The shelves should then be stained and immersed in hot paraffin, but not long enough to warp them.

For transmitting batteries using 1" tubes, 1¼" spacing is ample. The upper shelf should be heavier, as well as the ends.

Charging

If you have got along this far without considering the charging problem, time's called. The simplest and worst way to make the bubbles rise is to hook her to an electrolytic wreck-ti-fier. The sketch, Fig. 5, tells the story. If the dishpan doesn't keep her cool, sink it in the bath tub, in which case you will be out of luck Saturday nights.

Vibrating rectifiers are now provided with B-battery charging attachments. A battery with too high a voltage to be charged all at one time may be charged in sections if you are not pressed for time, or a series-parallel switch connected to throw the divisions in parallel for charging, and in series for use on the set; that is, if the charger has ample capacity to deliver the current. Any rectifier deliver-

1 Mr. Murphy suggests that in Fig. 3 the middle shelf should be dropped about 1½" from the top of the two tubes. This lengthens the leakage path between cells and causes them to hold a charge much longer. Since the tubes then cannot hang by their flanges it will be necessary to put another board without holes, under the lower shelf shown in the figure, on which the bottoms of the tubes can rest.—Tech. Ed.
The real care-free rectifier is the Tungar—one with a high voltage transformer provided with a tap switch, Fig. 6, enabling the entire battery to be tackled in one bite, and the charging rate varied as desired. A 100-volt battery requires from 120 to 130 volts to soak up .2 to .3 amps. This is the limit for a single Tungar bulb; above 140 to 150 volts it actuates blue streaks, and if run awhile in that state of eruption becomes hard and it takes a kick of the last tap on the transformer to start it off, and will no longer function on small charging rates. For higher voltages than 125, additional tubes may be placed in series. It is better, however, to make use of a series-parallel switch, Fig. 7, and work the tube to capacity at around 75 volts. The Tungar is very efficient when worked at high voltage, as the tube resistance then more nearly approaches the battery resistance.

A point to be remembered in charging a high-capacity high-voltage storage battery is that the charging voltage may go off. Place a small fuse of a capacity but slighted above the charging rate, and several inches long, in series with the battery. Because this was overlooked 8ACR regards with sorrow the blackened ruins of a transformer, two 6-amp. Tungars with huge dimples marring their robustity, and a Weston Ammeter with a fused shunt and little else.* Such a battery is capable of an immense rush of power. An Edison battery will not take a slow charge, not even if you leave it on for months and months. Make the water bubble, but not boil.\footnote{And that's a good place to say that the leads to the sending set had better be fused too; use the very smallest fuse that will do the work. A strip of tinfoil six inches long and very narrow will do. Also, don't get careless about opening the plate switch before touching the set. A 1,000-volt storage battery may not hum as loudly as a 2-K.W. generator but it hits twenty times as hard!—Tech. Ed.}

Transmitting "B" Batteries

The real solution of the amateur's transmitting problem is the high voltage transmitting battery. With the filter described on page 29 of QST for July, 1923,* there will be no keying clicks. The absence of blinking lights, buzzing, whining, vibrating generators, A.C. growls on the air, commutator ripples, filter troubles, borax puddles in the room below, poor power from low line voltage, and a whole raft of other pests, will follow the adoption of the storage "B". Absence makes the heart grow fonder; you'll like the "B" the better the longer you use it.

Where the drain is heavy, the send-receive switch may be coupled mechanically to the series-parallel charging switch, so that in the receiving position the transmitting battery is on charge. This cells for a shielding of the rectifier and wiring. For straight C.W., the keying relay is placed in the battery lead, shunted with a tap switch. Thus a battery to operate a Western Electric Loud Speaker at a constant 120 volts should have from 150 to 175 volts of "B" battery provided, and an additional separate detector battery, of about 20 cells, also equipped with a tap switch. The detector battery will hold up from six to eight months and the amplifier section from three weeks to a month if used nightly.

End Cells

A rheostat is almost universally employed in series with the "A" battery to hold the current constant on the tube filament. The drop in voltage as the battery discharges is but a small amount per cell, and is readily taken care of. On a battery of 50 or more cells this voltage drop is much more noticeable, and frequent charging is necessary to keep it constant. The solution is to provide half as many cells again as needed to produce the desired voltage, and cut in additional cells as the voltage drops, in 5 or 10-volt steps, with a tap switch. Thus a battery to operate a Western Electric Loud Speaker at a constant 120 volts should have from 150 to 175 volts of "B" battery provided, and an additional separate detector battery, of about 20 cells, also equipped with a tap switch. The detector battery will hold up from six to eight months and the amplifier section from three weeks to a month if used nightly.

The Edison battery offers us a helping hand in attaining station perfection, reduces interference with the pleasurable operation of our sets, and, not less praiseworthy, cuts the interference which the operation of our transmitters often causes.

\footnote{Can be obtained from the QST Circulation Dept. at the regular price.}

* Transmitter 242-8, San Francisco. A beautiful installation of storage B batteries at SBHQ.
“What Power Have You?
Unscrambling The Power Rating of Your Set
By S. Kruse, Technical Editor

We are constantly receiving letters that say “I am using 5 watts and putting 1.5 amperes into the antenna.” But I’m not only using one 5-watt tube!!

Of course, you are using the thing that the manufacturer calls a “5-watt tube” but you do not understand his method of rating it. You see, the manufacturer once upon a time put a tube on test and discovered that if it was run with low plate voltage and with everything out of adjustment it was still possible to get 5 watts output, so he said to himself, “Let’s call this thing a 5-watt tube; then no one can possibly kick on the rating.” That was an unlucky day for the radio fraternity, for it started an endless series of misunderstandings.

The Power You Are Really Using

The average amateur tube station is using from 5 to 12 times the power that one would think, if one judged by the tube ratings. This may sound like a tall statement—possibly you will not want to believe it—but it is not hard to prove and I shall give examples a bit later. They are genuine examples too, and every one of these stations is operating today with very little change in adjustments.

How Not to Rate a C.W. Station

At station A there are two “quarter-kilowatt” tubes. The owner of the station is more or less of a dumb-bell and has his set so badly out of adjustment that only about a quarter of the plate power ever gets to the antenna. He knows that this set ought to put 500 watts into the antenna—with the plates of the tubes perfectly cool; and we remember with especial glee a set that used six “5-watt” tubes and put exactly 390 watts into the antenna. The owner of this layout had been telling us what wonderful work he was doing with “a dinky little 50 watts.” Wonder how he accounted for the wild dive all the lights in the place took every time the “dinky 30-watt” load came on? As a matter of fact the set drew 480 watts in the plate circuit and the primary of the plate transformer took 580 watts off the 110-volt line. But the tube plates were just a dull red.

Evidently our method of tube rating means exactly nothing—we had better forget all about what the labels on the boxes say and measure what is actually going into the set.

How to Rate a Tube Station

We just spoke of station B at which 4 tubes were operating nicely. Let’s see if we can figure out how to rate it. It takes 500 watts to feed the plates, the plates use up 200 watts in. As a result the plates are white hot and about ready to collapse—yet he is operating to the best of his understanding of the tube rating.

At station B there is a quartet of “50-watt” tubes. This chap at B is quite a keen radio man and knows how to adjust a tube set—in fact this one is so well adjusted that only 1/5 of the plate power is wasted in the tubes and 4/5 goes to the antenna. He isn’t forcing the tubes; they are running at 1000 volts with a plate current of 150 mls each—600 watts total input. Of this 600 watts he is putting 4/5 or 480 watts into the antenna and leaving 120 watts on the plates of the 4 tubes, 30 watts on each plate.

A Crazy Combination

Now look at the two. Station A is burning up a pair of “quarter-kilowatt” tubes in a wild effort to put the rated power into the antenna. Station B is putting a half kilowatt into the antenna with four “50-watt” tubes without even making the plates glow. Something is dead wrong with a method of tube rating that will call one set a “500-watt set” when its utmost efforts barely equal the rating while at the same time a “200-watt set” is able to turn out 480 watts easily and 600 watts by hurrying up a little.

This same inconsistency runs all the way thru tube operation—we have seen alleged “10-watt” sets that were putting 80 watts into the antenna with the plates of the tubes perfectly cool; and we remember with especial glee a set that used six “5-watt” tubes and put exactly 390 watts into the antenna. The owner of this layout had been telling us what wonderful work he was doing with “a dinky little 30 watts.” Wonder how he accounted for the wild dive all the lights in the place took every time the “dinky 30-watt” load came on? As a matter of fact the set drew 480 watts in the plate circuit and the primary of the plate transformer took 580 watts off the 110-volt line. But the tube plates were just a dull red.

Evidently our method of tube rating means exactly nothing—we had better forget all about what the labels on the boxes say and measure what is actually going into the set.

How to Rate a Tube Station

We just spoke of station B at which 4 tubes were operating nicely. Let’s see if we can figure out how to rate it. It takes 500 watts to feed the plates, the plates use up 200 watts in. As a result the plates are white hot and about ready to collapse—yet he is operating to the best of his understanding of the tube rating.

At station B there is a quartet of “50-watt” tubes. This chap at B is quite a keen radio man and knows how to adjust a tube set—in fact this one is so well adjusted that only 1/5 of the plate power is wasted in the tubes and 4/5 goes to the antenna. He isn’t forcing the tubes; they are running at 1000 volts with a plate current of 150 mls each—600 watts total input. Of this 600 watts he is putting 4/5 or 480 watts into the antenna and leaving 120 watts on the plates of the 4 tubes, 30 watts on each plate.
station A that we talked of before. Very well then, is it a 600-watt station or a 480-watt station? In other words, shall we talk about the input to the set or the input to the antenna? In America we have always rated spark sets by the input to the step-up transformer and we do not see why it isn’t a perfectly good idea to use that scheme here; if the plate voltmeter reading times the plate milliammeter reading is 600 then it’s a 600-watt set. There are other reasons for this—it is too hard to measure the output of a set—you have to know the antenna resistance.

How to Rate the Tubes Themselves

Now are these tubes 50-watt tubes or are they 120-watt tubes? The labels on the boxes say they are 50-watters but we find we can run them according to directions and get 120 watts out of them.

What’s the matter with the method of rating? What shall we do about it? Well, let’s see. Is there any sense in rating a tube according to output? There is not, and we’ll prove it. Suppose we take a Western Electric “VT-2” and put on it the normal voltage of 350 and allow the normal plate current of 10 mils to flow. Now we will adjust the thing very badly and light the filament. When we start reading the meters we find that we have 14 watts going in (40 mils at 350 volts) and 3.5 watts coming out while 10.5 stay in the tube and make the plate dull red. Now we will adjust the circuit a little more carefully and get out 5 watts, while the input rises a little, to perhaps 15 watts. The efficiency is now 83% instead of 25%. Then we will readjust again and finally manage to get the tube to operating at 75% efficiency and by raising the plate voltage a little we get 40 watts into the tube and 30 out of it. Now what is the tube rating—3.5 watts, 5 watts, or 20 watts? Everything seems to have shifted around except one thing—did you notice that on each of these adjustments the plate was dull red and that we left 10 watts in it to make it have that dull red color?

A Correct Tube Rating at Last

Long ago makers of tubes discovered that the real way to rate tubes was to state how much power may be wasted in the plate without burning it up. According to this method our VT-2 would be a tube with a “safe plate dissipation of 10 watts.” It would not matter what voltage you used—that rule would still hold. The only other thing the maker of the tube would have to tell us would be the highest safe plate voltage—the highest voltage that could be used without breaking down the tube seal or the vacuum. With that information our label would read—

Vacuum Tube—Mfd. by the Oscillator Co. Type XXX Inspected October 1, 1923 Filament volts—6 Filament amperes—2 Safe plate dissipation—15 watts Maximum safe plate voltage---500 Do not exceed safe plate voltage as tube seal will be damaged and life of tube shortened.

Why Ratings Have Not Been Changed

Winsor McCay used to say that the biggest power on earth was habit—it is easier to get a nation to go to war than to persuade it to change a yardstick or a pound into something sensible like a meter or a kilogram. And that’s why we stick to the American method of tube ratings—we know they don’t mean anything, that they are misleading, but we are used to them.

Summary

The way to rate a tube station is NOT by what the labels on the tube boxes say but by the actual input to the plates of the tubes—almost all tube stations use 10 or 12 times the power that is stated by the tube ratings. The way to rate tubes is not by the power put into them, nor by the power they happen to give out on a particular adjustment, but by the power that it is safe to waste in them—the so-called “maximum safe plate dissipation.”
Short Wave Tuner Design

By K. E. Hassel, 9ZN*

Common sense and tuner design seem to be strangers these days, so there's need for a sermon like this one, with the text, "Put not your faith in new and peculiar circuits but use all your ability to make a fine job of some standard circuit, for in that way real results are obtained."—Tech. Editor.

How many times have you visited a radio amateur whose set consisted of bell wire wound on Quaker Oats boxes scattered over the table and wondered why he was getting better results than other fellows using expensive sets in fancy cabinets? There is a reason for such things; the builder of the "haywire" set had unconsciously eliminated a good many losses. It is not the purpose of this article to give instructions for building; all that is sufficient and more is of no value—of less than no value, for loud signals deafen the ears to weaker signals.

Many amateurs when conducting experiments toward building a better tuner make this mistake: a certain feature is theoretically better one of two ways but on trying it both ways the experimenter does not hear any difference, so he builds it in the conventional way—which is probably the easiest way.

A SIMPLE TUNER POSSESSING GREAT SELECTIVITY

Built in accordance with the principle of this article by our Department Editor, this tuner has held its own against the competition of the best in present-day short-wave tuners.

For tuning range from 95 to 250 meters:
- Primary coil—5 turns of No. 16 D.C.C. wire wound to diameter of 3 inches and made self supporting by binding with thread. No tuning in this circuit.
- Secondary coil—23 turns of No. 16 D.C.C. wire wound on UNTREATED PAPER tube 4⅛ inches in diameter.
- Tickler coil—11½ turns of No. 28 D.C.C. wire wound on paper tube 3 inches in diameter.
- Variable condenser—All extra plates removed from rotor so that tuner just reaches wave wanted when the condenser is turned to 180 degrees. Note how remaining 5 plates are cut.

The ear is a very poor instrument for comparing two sounds; it will not notice small differences, yet small differences are important. Suppose we make a change that eliminates 3% of the losses; it is impossible to notice the change by listening with the headset, but if we make ten such changes we will have eliminated nearly 30% of the losses and the difference can be very easily heard. But we must depend on the laboratory and not the ear when doing development work.

*Chicago Radio Laboratory.
The "Best Circuit"

Much has been said and written about the super-regenerative, super-heterodyne, the "straight" radio frequency amplifier and the modifications of the latter, but I believe you will find that the amateurs who are doing the real consistent long-distance reception and traffic handling are those using a good regenerative receiver with not more than one stage of audio amplification.

If selectivity is required, as is the case in most localities, it is advisable to use a coupled circuit rather than a single circuit. While the single circuit is sufficiently selective for C.W. reception it will not tune out interference from sparks, nearby broadcasting stations, induction, and the like.

Variometer or Variable Condenser?

We have two methods of tuning the secondary circuit, one using inductance only (variometer) and the other using both inductance and capacity (coil and variable condenser). It will be necessary to choose between these two when starting out to build our receiver. The decision is to a great extent made for us when we know the wave-length range that the tuner is to cover. If it is only desired to cover the range from 175 to 225 meters there is much in favor of the inductance-tuned secondary. On the other hand, if we desire to build a receiver that will cover all wave lengths between 75 and 275 meters, the capacity-tuned secondary is preferable.

We all know that the audion is a voltage-operated device and the higher the voltage we impress on the grid, the louder the signal. When we connect a condenser across the secondary coil (even if it is a perfect condenser with no losses) the voltage across the coil will be lowered; therefore it would seem that an inductance-tuned secondary should give the best results. But this is not true in the ordinary variometer-tuned receiver, which is inferior to a good capacity-tuned set. The losses due to the distributed capacity of the variometer are greater than the losses in a good variable condenser and more than make up for the decrease of voltage caused by the condenser.

It is easy to show that the ordinary variometer has fairly high distributed capacity. If we arrange a circuit as shown in Fig. 1a, meter A will read a trifle higher than meter B. Now if we do the same thing with a variometer as at Fig. 1b there will be a large difference between the meter readings, A being much higher. This can be explained as follows: the high distributed capacity of the variometer acts like a condenser across the variometer and there is a local current flowing around in this circuit in addition to the current flowing in the main circuit. This additional current does nothing useful but represents a loss of energy.

How to Use the Variometer

If we make the variometer small the losses in it will also be small and our overall efficiency will be high. However, this limits our wave-length range unless we add a tapped secondary, which again introduces needless losses.

We should make our secondary tuning inductance a straight coil with a tapping variometer in one end (Fig. 2). This vari-
meter should be just large enough to cover the waves desired. (Why do most amateurs insist on variometers that go up to 600 meters?—Tech. Ed.) This variometer is made by winding a few turns of wire on a tube smaller than the inside of the secondary coil. This variometer coil should be placed in the grid end of the secondary and a non-metallic shaft used. A fairly hard wood boiled in beeswax is excellent for the purpose. The exact number of turns of wire to be used can easily be determined by experiment. It is not advisable to use a ball-shaped tickler to secure closer coupling as this has a tendency to increase the capacity.

How to Make Good Coils

Careful laboratory measurements show that ordinary paper or cardboard tube, (providing it is dry) is far superior to the more expensive materials found in commercial receivers. The paper tube can easily be dried in the oven and then made permanently waterproof by dipping in some lacquer which is suited to radio coils. Such lacquer, on the market under various trade names, is very little different from what is commonly known as “aeroplane dope.” (Celluloid dissolved in acetone is good.—Tech. Ed.) When this lacquer dries a very thin layer of the material (similar to celluloid) is left on the surface and this renders the tube waterproof. It is advisable to use about No. 14 wire and this wire should be wound with a slightly greater spacing than the insulation ordinarily gives. The high-frequency resistance of the coil goes down as the spacing of the turns increases but little advantage is gained by spacing the turns more than one half the diameter of the wire. *Solid wire should be used in preference to stranded wire.*

What Makes a Variable Condenser Good

If our range of wave lengths to be covered is more than 50 meters it is better to make a capacity-tuned receiver (Fig. 3). It is extremely important that we use a condenser with very low losses and with a low zero capacity. There are some condensers on the market that fulfill these requirements, but the average condenser employs insulating materials which are very good from a pure insulating standpoint but very poor from the standpoint of dielectric losses. The fact that a condenser (either variable or fixed) will stand 1,000 volts without a breakdown or apparent leakage has no bearing upon the dielectric losses in this condenser at radio frequencies. Very often one of these condensers, when used in a sending circuit, will develop so much heat as to melt or char the insulating material.

It is very desirable to have the movable plates of the condenser cut in such shape that the capacity change at the lower end of the scale is very gradual. If the condenser is not so built it will be necessary to remove the movable plates and cut them in one of the ways shown in Fig. 4.

The capacity of the condenser depends on the wave length range to be covered. (About .00025 for amateur waves, .0005 for broadcasts, is enough.—Tech. Ed.)

By all means put a geared or friction vernier attachment on the condenser instead of using an additional vernier condenser in which the losses will be almost as high as in the main condenser. There are a number of vernier attachments; choose one that gives very fine adjustment.

Capacity Effects

It will be a great aid in eliminating body-capacity effects if we use a condenser that has metal end plates which are connected to the rotor, which is grounded by connecting to the filament side of the secondary.
The Antenna Circuit
It is advisable to couple the antenna to the low voltage (filament) end of the secondary coil. The exact number of turns will vary somewhat with the antenna and this can best be determined by a little experimenting. For broadcast reception, where there is plenty of time to tune, maximum signal strength will be obtained by using fairly loose coupling and tuning the antenna to resonance; for amateur work, where the wave length is being changed constantly, it is almost necessary to use closer coupling and to leave the antenna untuned.

Ticklers
The tickler coil method of regeneration seems to be preferable, especially for C.W. reception. The tickler usually consists of a small ball or short tube rotating inside one end of the secondary coil, preferably the low-voltage (filament) end, so as to have little tuning effect. For the same reason the tickler should be rather small in diameter. The size of the tube and the coil and the number of turns can be determined very easily by experiment—the better the secondary circuit the less tickler will be needed. No. 22 D.C.G. wire will be satisfactory as the resistance and distributed capacity are not of vital importance here.

The Audio Amplifier
For broadcast reception all the usual precautions must be taken and a multi-stage amplifier built with an eye to freedom from distortion. However, in building an amplifier for code work a high-ratio amplifying transformer should be used as this will give greater amplification and distortion is more beneficial than detrimental. A transformer with a very decided amplification peak near 1000 cycles (see Fig. 5) will amplify our signals to a much greater extent than it will low-pitched interfering static, strays, and the very undesirable 60-cycle hum caused by the use of A.C. on the plates of tube transmitters. Thus the interference usually will not be amplified very strongly but the note of the received signal can be adjusted to come right on the peak of the amplification curve at 1000 cycles.

The Tantalum High-Voltage Rectifier

A New Chemical Rectifier
By Harold L. Olesen, 9CSR

Probably the most difficult unit for the transmitting amateur to obtain is a good source of high voltage direct current.

The available sources may be divided into three classes:
1. Battery
2. Motor-generator sets
3. A.C. rectifiers.

The first class is the best but obviously out of consideration due to high cost.

The second class is expensive, requires a filter to give pure D.C., and does not yield to expansion. That is, if the amateur starts with five-watt tubes and purchases a motor generator set to meet the requirements of voltage and current for the five-watt tube, the motor generator set will be too small
for the fifty-watt tube that may come later. Conversely the motor generator set for the fifty is too large for the five.

The third class, which is the most common, can be divided into three types:

(a) Vacuum tubes (Kenotrons, "S" Tubes, mercury arc, etc.)
(b) Synchronous
(c) Chemical

The first type requires a filter to give pure direct current; there is a drop of from forty to several hundred volts through the device; the tubes have some definite useful life; and they are subject to breakage. For small loads at low voltages (less than 200 M.A. at 700 V.) this is a very satisfactory source of direct current, since the pulsating current delivered by the tubes is easily filtered. However, when higher voltages and heavier currents are desired, this source becomes very expensive.

The Synchronous rectifier requires a synchronous motor that stays synchronized. The commutator must be protected from arcs—especially when high voltages are used. This makes filtering impossible except when the circuit of 6ZB (QST, Aug. 1923, p. 25) is used, when the efficiency becomes extremely low.

Type (c) can now be divided into two parts:

1. The aluminum rectifier
2. The tantalum rectifier.

The aluminum rectifier with its arcing and creeping solution is familiar to most amateurs. With great care and much patience this rectifier can be made to operate satisfactorily for a short time at a reasonable cost. It requires almost constant attention, however, and deteriorates rapidly whether used or not, so that, from the standpoint of upkeep, it is an undesirable unit.

The tantalum rectifier is a new device that is now available for amateur and experimental use. It is a chemical rectifier, similar in action to the aluminum, of long life at a low initial cost, with extremely low upkeep, and requiring no attention, that produces an easily filterable pulsating current. It is a rectifier that is foolproof, that can be used continuously or intermittently for long periods of time without attention. The cost of upkeep is negligible and far less than the upkeep for any other source of high voltage.

The tantalum rectifier for high voltage rectification, like the aluminum, is made up of a number of cells. Each cell consists of a container, an electrolyte, an oil film, a lead electrode, and a tantalum electrode.

![Fig. 1—The Tantalum Rectifier](image)

30 cells assembled in a tray. Filter choke and condensers in the rear.

The electrolyte is a solution of pure sulphuric acid, gravity 1260. This gravity is taken since it is a standard commercial gravity at storage battery stations and because it will not freeze readily. Incidentally the resistance of sulphuric acid is lowest
at this gravity. The container should be filled two-thirds full of acid. To this add from five to ten cubic centimeters of a solution made by dissolving forty grams of ferrous sulphate in two hundred cubic centimeters of distilled water.

Best results will be obtained with the iron by first building the rectifier and connecting it up as in Figure 2a or 2b with no iron in the cells. Use a resistance load made up of lamps connected in series. Increase the transformer voltage until light sparking appears in the cells. Read current and voltage delivered by the rectifier. Shut off and add a small amount of the ferrous sulphate solution to each cell (under the oil). Turn on the transformer and allow it to run for a short time before again reading current and voltage. As the iron is added the current and voltage of the load will increase to a maximum beyond which no further effect will be caused by the iron. The allowable impressed voltage per cell will decrease from some value around seventy-five volts per cell to about forty volts as the iron is increased. Continue adding iron until the best results are obtained; that is, highest D.C. volts for the desired direct current with the lowest impressed A.C.

Pour over the electrolyte a quarter inch film of some such oil as Sinclair Medium automobile oil. The function of the oil is threefold; first, to prevent evaporation when not in use; second, to prevent a spark at the surface of the electrolyte from igniting the gases given off; and third, to prevent the escape of sulphuric acid gas when the cell is overloaded. The oil does not enter into the chemical action of the cell.

The lead electrode it made of pure lead stock and the tantalum electrode is pure metallic tantalum rolled as thin as possible to reduce cost. The elements available (see Figure 5) are so constructed that the lead rod may be placed in one jar and the tantalum plate in the next. The element then becomes self supporting and the construction of the rectifier is simplified. Rectification takes place on the surface of the tantalum plate, and this electrode is the positive pole of the cell. The odd electrodes for the end cells may be made by cutting one element in two.

Each cell will stand an impressed A.C. of 40 to 75 volts, depending on the amount of iron used, and will deliver as high as two amperes for short periods without overheating. These cells should not warm up appreciably when delivering two hundred and fifty milliamperes continuously.

The life of the cells is unlimited since the electrolyte does not attack either electrode and the solution does not deteriorate whether in use or idle. Tantalum is one of the most chemically-resistant metals known. When in use the chemical action of the cell is such that water is decomposed. Hence after some period, such as a thousand hours, more distilled water should be added to each cell to maintain the level of the solution. It is unnecessary to add more acid or more iron. The gases are given off at the electrodes and escape at the surface of the electrolyte causing the oil to foam. To allow space enough for the oil to foam, the jars are filled only two thirds full.

These cells require no forming. The initial experimental work done while experimenting with the iron forms the cells for all time.

Unlike the aluminum cells these cells
should spark when in use, and the impressed voltage per cell should be increased until a medium degree of sparking occurs. Arcing between the tantalum plate and the solution should be avoided as the arc eats into the plate and prevents rectification. Sparking does not injure the plate.

The Filter

By the use of a filter, pure direct current can be obtained readily from the pulsating current delivered from this rectifier when half or whole wave rectification is used. The Brute Force Filter as described in QST (Aug., 1923) is simple and satisfactory.

THE OSCILLOGRAMS

To show the electrical action taking place photographs were taken on an oscillograph of the currents passing in various parts of the circuits.

Full-Wave Rectifier

Curves were first taken with the circuit shown in Figure 2a but with the filter completely removed. The curve at the top, Fig. 3a., shows the voltage impressed, while the curve of Fig. 3b shows the current thru the load (oscillograph element No. 2). When this load consists of resistance only, the rectified current does not cross the zero axis, which indicates that rectification is perfect. (Take special note that “perfect rectification” is by no means the same thing as D.C. output. It is perfectly possible to have perfect rectification and yet have on the station’s wave a savage 120-cycle growl. That’s what most of us have too.—Tech. Ed.) When an inductance or a capacity is added to the circuit the current line crosses the zero line on the downward swings as shown in Fig. 3b. Note, however, the extremely small amount of leakage. (We doubt if there is any leakage at all. Perhaps this reverse current is simply a discharge from the filter into the capacity of the rectifier. That would not be lost but would be returned on the next quarter cycle.—Tech. Ed.) The varying height of the two pulses delivered by the rectifier is due to a see-saw action between the two sets of cells. For one period the one set would carry the heavier load and then the reverse would take place. The total current delivered remained the same, however. Replacing the filter in Figure 2a caused the delivered pulses to be so smoothed out that they took the form shown in Fig. 3c. This curve was taken by oscillograph element No. 2. The purity of the D.C. is indicated by the smooth curve.

Half-Wave Rectifier

Figure 3d shows what takes place when one string of rectifier jars is disconnected, making Fig. 2a become Fig. 2b, but without any change in the filter. The D.C. obtained, Fig. 3e, is better than that used by 99% of the amateurs. (Amen!! —Tech. Ed.) It can be made as perfect as Fig. 3c by readjusting the value of the condenser C, in the filter.

Summary of Data

Two rectifiers were made up utilizing double and single wave rectification. These rectifiers were designed to give 250 M.A. at approximately 700 V., D.C. The following data are given:

Half Wave.

Cells—made up as described—30 used.
Circuit—Figure 2b
C,.—8 microfarads
C,.—4 microfarads
L.—9000 turns No. 22 enamel-covered wire on core, Figure 4.
Transformer primary, 110 V., 60 cycles
Transformer secondary, 1400 V.
DC—250 M.A. at 700 V.

Whole Wave.

Cells—made up as described—60 used.
Circuit—Figure 2a

---Read that again—no one appears to be making the least effort to filter the ordinary full-wave rectifier properly, yet Mr. Olesen shows that it is perfectly possible to obtain beautiful D.C. from a half-wave rectifier, a much more difficult thing. Isn’t it about time for us to stop dodging the filter problem?—Tech. Ed.
Some British Amateur Receiving Apparatus

By H. Chadwick, British 2WT

SINCE the first Transatlantic Tests British amateurs have paid a great deal of attention to short-wave reception, and later, have utilized the 200-meter wave a good deal for transmission. The remarkable success achieved last winter in reception of American amateurs in Europe, which by the way speaks wonders for the great efficiency of American transmitters, will probably have aroused interest in the methods adopted for short-wave reception on this side.

The super-regenerator, dual amplification, double reaction, and similar circuits, freak and otherwise, have been very little used for U.S. reception. All the groundwork has been accomplished on standard gear. The sole purpose of the aforementioned novelties seems to be to reduce the number of valves required to produce a given result under specified conditions. In England it is quite common to find as many as six valves operating in cascade, and this at first was deemed necessary to receive U.S. stations. Possibly overcomplication resulting from unmanageable radio-frequency amplification was responsible for our failure in first attempts. Gradually, however, the gear was simplified, until rock-bottom simplicity was attained and used with wonderful success. This is the single-valve set, and without regeneration of any kind, using an oscillator for C.W., the Atlantic has been spanned in the early hours last winter. Regeneration of course is preferable, but its use is barred on English soil, for, the popular with the user, the said user becomes very unpopular with his radio neighbors. Nearly every little back street can boast an aerial of sorts, and the auto-dyne set is efficiently capable of reproducing
a fine imitation of warbling canaries on all outfits within half a mile or so. If selectivity is also required, the usual loose-coupled circuit is used. I may here mention that in most cases experimental work has been carried out with the apparatus in small separate components spread over a table top with all wiring visible.

Now to build up the set into a real sound proposition capable of intercepting received frequency by the condenser C_1. This coil may be a honeycomb but for the short waves a single-layer or variometer is preferable. If a single-layer coil is used it should be tapped out to a stud switch. A convenient size is 4” long by 2” diam., wound with No. 24 S.W.G. insulated wire, tapped to a 6-stud switch. With $C_1 .00025$ mfd., this should tune from about 100 to 450 meters. C_3 is an ordinary grid condenser.

stuff on reasonable occasions with a moderate degree of certainty, radio-frequency amplification must be employed. The original R.F. amplifier used here for short waves employed tuned transformers. The diagram of Fig. 1 indicates the method of wiring up. The only items of note are the transformer windings, which are wound in a narrow slot about $\frac{3}{8}$” wide and $\frac{1}{4}$” deep in an ebonite former about 2½” diameter. About 30 or 40 turns of No. 40 S.W.G. insulated wire are put on for the primary, a layer of paper for protection, and then the same number of turns on top for the secondary; the exact number of turns is found by experiment. The primary is tuned by a shunt condenser and the secondary is tuned automatically with the primary owing to tight coupling. Some experimenters have used as many as six stages of R.F. amplification of this type but great difficulty is experienced in accurately tuning more than two stages. For ordinary work I do not advise the use of too much R.F. and one stage is certainly enough to bring in average DX stations and is quite enough to look after when searching for calls.

Probably the most popular type R.F. coupling now in use is a modification generally known as “tuned anode,” as shown in Fig. 2. The coil L_1 is connected between the anode of the first tube and the positive of the B battery, and is tuned to the received frequency by the condenser C_2. This coil may be a honeycomb but for the short waves a single-layer or variometer is preferable. If a single-layer coil is used it should be tapped out to a stud switch. A convenient size is 4” long by 2” diam., wound with No. 24 S.W.G. insulated wire, tapped to a 6-stud switch. With $C_2 .00025$ mfd., this should tune from about 100 to 450 meters. C_3 is an ordinary grid condenser.

The station of the author, British 2WT. This station has copied 1ASF, 1AJP, 2XM, 1AWF, 1CNF, 1AZW, 1XZ, 1YK, 1ANA, 1BDI, 1BRO, 1CMK, 1BET, 1OR, 12E, 1BCF, 1BCG, 1BDS, 1BL, 1BFT, 1CBA, 2NZ, 2ZS, 2ZK, 2BML, 2FP, 2CBW, 2AWF, 2AWL, 2MU, 2CQZ, 2GK, 2LO, 2EL, 2CXL, 2CPD, 3BOB, 3ZW, 3HG, 3CC, 3XM, 3ZY, 3HK, 3BHA, 4BX, 4FT, 4ZC, 8ASF, 8BJV, 8AQO, 8BFM, 8BJC.

FIG. 2

The writer has intercepted about fifty U.S. stations using the 3-tube circuit shown.
Miles Per Watt
An Argument For The Small Set and For Intelligence
In Place of Brute Force; Also a New Efficiency Contest
By S. Kruse, Technical Editor

For the past six months there has been an increasing stream of letters from owners of small stations protesting that it is unfair to compare their work with that of the wealthy station-owner who has anything from a quartet of 50-watt tubes to a trio of 250-watt tubes. Here is a suggested remedy.

We like to pretend that we are making steady progress in this radio game, but in the business of comparing station records we are not nearly as well off as we were some years ago. In the days when everyone had a spark set we knew what power we were using; most of us knew pretty accurately and the rest had some sort of information. When a record was made we could tell how many miles-per-watt it amounted to. The man that covered 1000 miles with 250 watts had something to be proud of; that was 4 miles per watt. But there was nothing to make a noise about when some big “thunder factory” covered 1500 miles by burning 1500 watts, that was only 1 mile per watt. This system gave everyone the same chance, in fact it gave the little fellow slightly better chances for if two sets are equally good the one with twice as much power will not work twice as far.

Our first tube men were all mixed up as to the amount of power they were using; in fact there are men today who talk about a “50-watt tube set” when they are really burning 250 watts and ought to rate the thing as a quarter-kilowatt set.

There is no excuse for this—it is perfectly easy to determine the input of a tube set, it is just as easy as it was to determine the input of a spark set; also it will be good for the souls of a lot of us to discover that our wonderful efficiency isn't nearly as wonderful as we have thought.

Let's find out what input wattage our sets are taking by the only sensible method, measuring it, and then let's play fair with the other fellow by talking miles-per-watt.

Fair Play

In the automobile game it is admitted that you can drive a Fierce-Harrow further than a Phord before either of them starts to fall apart. But the Phord has a come-back—it goes further in miles-per-gallon. It's a perfectly good advantage; the thing is more economical, it is a more efficient transportation machine, it hauls more people-miles with a gallon of gas than the Fierce-Harrow does. It's the same way with the radio set; doesn't more credit belong to the man who hauls signals 50 miles per watt than to the one who has to use greater power to haul them only 25 miles per watt? What if man number two does have a stable full of “quarter-kilowatt” tubes and a young central station full of transformers and rectifiers, what if his brute power does let him cover 4000 miles, isn't he still inferior to the other man who handled his power correctly and went twice as far per watt? Give the man with the radio fillyer a square deal—let him play the game on even terms—and your ether-buster will have to be improved a great deal to show up as well as the little “pickle bottle set.”

Measuring the Power You Really Use

This mill has just hammered out another “equi” on the business of rating tubes and tube sets, so we will not go into details on that. However, it seems worth while to explain how to measure the power to a tube set. We have said that you can't measure it by reading the tube labels—any more than you can tell how many people there will be in a street car just because it happens to have seats for 54. Here are your methods:

1. With the set in normal adjustment, hold the key down and read the plate voltmeter and the plate milliammeter. Supposing the readings are 700 volts and 50 milliamperes, the input is (700) x (50/1000) or 35 watts. This is about what the average “5-watt” set takes.

2. If you have no plate voltmeter use the above scheme with a home-made plate voltmeter.

3. If you have neither a plate voltmeter nor a plate milliammeter then it isn't quite so simple but we can still get a fair idea. First turn off all the lights, flatirons, fans, and other current-consuming devices in the house. Make sure of it by watching the house watthour-meter for several minutes. Now plug an extension cord into a socket near the meter and put into the socket a lamp of known wattage. They are all labeled and it is best to use a new lamp of a size larger than 25 watts. Hold the lamp up in front of the meter and, by turning the socket-key on and off, “baby” the meter-disc around until the mark is at the front. Now turn the lamp on for exactly one minute and count the turns the meter-disc makes. If you used a 100-watt light and...
the disc made 20 turns you know that 20
turns per minute means 100 watts load.
40 turns per minute means 200 watts load,
5 turns per minute means 25 watts load
and so on. Now let's get at the set. First
start up the filaments and the rectifier with
the positive lead of the high voltage supply
disconnected from the tubes and count the
turns of the meter-disc for one minute.
Say it makes 31 turns. Now connect to the
plates and count turns for another minute.
This time the disc turns say 65
times. The
plate load made the disc turn 65 -
which
is 84
additional
and the
added load
accordingly
(34 x (100/20) or 170 watts.
Now we are not real sure that all this
additional load went to the plate; some of
it probably stayed in the rectifier and the
transformer, but as they are part of the
set and should be reasonably efficient it
isn't so very unfair to charge the whole
business to the plates as input.
4. With a motor-generator Method 3 is
no good; sometimes the plate load hardly
increases the input at all. The only way is
Methods 1. However, the owner of
a M.G. set is usually prosperous enough
to own meters.

The Acid Test
The real test of a set isn't "How far have
you reached?" but "How far do you work
consistently?" and the best way of de-
terminating the consistent range of a set is
daylight work. The Technical Editor would
like to publish some records along this line
-.. Let us know what work you have done in
watts-per-mile. We will prefer daylight
work because that's a thing most of us
don't know much about, but night records
are interesting too. Any work done within
30 minutes of sunrise or sunset will be
counted as night work—don't try to slip
over some work at half-past-sunrise as day-
light work: you could never do it at noon.

Send in Your Records.
Just the same we are also interested in
records and would like to hear about them.
In either case, daylight or dark, here's the
information which we need for printing in
QST:
1. Station call.
2. Address (make it complete.)
3. Station owner.
4. Operator on duty when work was done.
5. Date or dates on which work was done.
6. Station or stations worked (calls and
locations) (Note:-Worked, not Heard At).
7. Exact time (standard) when work be-
gan and ended.
8. Log of traffic handled (must be com-
plete enough to show the nature of
the work carried on; it really should
give complete text of the conversa-
tions).
9. Watts input to the tube-plates.
10. What instruments were used to mea-
sure the input (give complete name-
plates of each).
11. What wave length the work was done
on.
12. What tubes you were using (give com-
plete information).
We must have all the above information,
and it will facilitate our work a great deal
if you will give us the dope in the order
mentioned above with the identifying num-
bers in the margin opposite each statement.
Support this with all possible logs, letters
from the station at the other end, etc.
Mail to the Technical Editor marked "Sta-
tion Efficiency Contest."

Jes' Reminiscing
An Old Ham Talks Over His Experiences Back In The Spark Days
By "R. B."

W

H

EN I first moved into the city
I greatly disappointed the family
by dragging home an incipient
antenna pole. Disgusted with
lights that ducked and spluttered,
and weird noises at night, they had hoped
I had given up this radio stuff.
However, once a radio bug always a radio
bug, and a day later I had hoisted 63 feet
of insecurity into the air. That night we
were visited by a gale and the next morn-
ing I woke to find the result of my work
lying inside an ex-hotbed. This time my
father declared vociferously that this radio
business must stop. Nevertheless, inside
of a week my receiver was going and the
spark set was under way.
variable condenser he gingerly pressed a key on the back of the table. There was a tremendous meter on the wall, with a scale of 0-7 amperes—it was the size of a snare drum.

That dawgone meter went up—past 2 amperes, past 3 ampas, past—why the darn thing went to six amps without the little 5-watt tube even getting excited. The boss of the works explained that he had hooked the meter from G.E.—it was really a hot-wire voltmeter and the scale of 7 amperes really was equal to about 7/10 of one ampere. I felt better—it was a crime to have a liar like that hanging on the wall to delude strangers.

He said his name was Charley Evans, and he would be glad to have me come around some time and see him working DX around the city. I moved on.

The next amateur I visited was a relief. Warren Chambers was his name; he had a very nice ½-kilowatt spark set which he had worked 8ZL and 8ZW and his receiver boasted a WSA 2-step amplifier. He said he had brought it out of the Navy; ditto the mica condensers, but he was rather reluctant about admitting that the VT-2 tubes had also been paid for by the Navy. He was a very interesting fellow and we had a mighty nice time chewing over wartime affairs.

Others I saw too. They were an amicable bunch and used to spend the evenings at each others stations, chewing the rag and the weed.

Some of the gang were over at Estabrook's shack one night. We had been looking over the description of 8ZR in a QST and Warren spoke the "sense of the meeting" when he said "Fellows, why in blazes don't we get together and build a whale of a set??"... --"Well, we were "QRK very but not sure of your call" and the third was an ad for a patent fone jack that was obviously no good.

We cursed the mall till Evans again rose above the noise with a demand for aid with his superheterodyne receiver. Three of us carried the mammoth over where he could reach the antenna switch and then sat around waiting for results. Evans said it would work as soon as he got the 6th, 11th and 14th tubes to stop squealing.

Estabrook sneaked out into the hall about this time; a moment later Evans flung the fones on the table and howled "She WORKS!!!!, there's 1AFV way back east in Salem, Mass." And for a fact—you could hear the little high-pitched "dit-dah-dah-dah dit-dah dit-dit-dah dit-dit-dit-dah" percolating from the Baldies—by the gods you could hear it all over the room!! We nearly tore the roof off and Evans pointed to the C.W.set. For once in its life the thing oscillated and a whole amp and a half went up the antenna. Evans started calling 1AFV 1AFV 1AFV 1AFV 1AFV and so on for about ten minutes. He sined off at least twenty times and then slammed over the switch and listened.

May I be everlasting QRM'd if that sweet high tone didn't come back!! We goggled at each other while Evans scribbled away radiating joy and triumph. We spark hounds meekly stole to the operating table and looked over Evan's shoulder to see what he was scribbling—"GE GE you QRZ but readable FB FB wonderful wonderful work work".

Well, we enjoyed a first-class thrill while we worked him for half an hour and finally when we had shot messages clear across without repeats and said GN and CUL and detected 1AFV on the back and turned the tubes off—Estabrook came in quietly from the hall, carrying the test buzzer behind him.

Evans stormed home to write all the radio big-bugs to tell them about this achievement. He departed with his head in the clouds but we did manage to find out where he had heard 1AFV before he tore down the stairs.

When the C.W. engineer was gone Estabrook dragged out the test buzzer and explained. We wanted to murder him at first but wound up by laughing ourselves into exhaustion and deciding that Evans was a simple sort of egg to fall for this stuff—

(Concluded on page 67)
Some Prominent Canadian Stations

9BP, PRINCE RUPERT, B. C.

Everyone will recall 9BP as being the station that has maintained regular working schedules with WNP for the past two months while the "Bowdoin" lies frozen in the ice, 2000 miles to the northwest of Prince Rupert. To better fix 9BP's location in your mind, Prince Rupert is the western terminus of the Canadian National Railways and is situated on the coast 500 miles north of Vancouver, B. C.

Jack Barnsley, the owner and operator, reservedly assures us that 9BP is not a wonder station. It's many good DX records speak for themselves, however. The best transmission, prior to working WNP, was to Canadian 3NI, Ft. Williams, Ont. Mr. Barnsley also has a card from Ithaca, N. Y., reporting his signals and has worked stations as far south as 6ZH, near the Mexican border. 9BP has been the western terminus for several all-Canadian trans-continental relay tests and it was on one of these occasions that a message was sent from Prince Rupert at midnight and an answer received back from Toronto in six minutes! Being the only relay station for many hundreds of miles around, 9BP is due to become a strong link in future relay routes to Alaska.

The transmitter will be recognized as being a duplicate of 6ZAC's old transmitter that was described in the May, 1922, issue of Radio. Two 50-watt tubes are used in a full-wave rectification circuit with 1500 volts on the plates. The reversed feedback circuit is used instead of the Hartley circuit employed in 6ZAC's transmitter. The present antenna current is only three amperes but efforts are be-
ing made, from time to time, to increase this value.

The receiver at 9BP is a Paragon RA-10 regenerative tuner with a Paragon DA two-stage audio amplifier.

There is nothing unusual about the antenna. It is of the conventional inverted-L type consisting of a cage 75 feet long and 63 feet high for the top part, with a lead-in 45 feet long. A counterpoise of 12 wires 85 feet long and fanned somewhat is located directly beneath the antenna.

For some years Jack Barnsley has been more or less connected with radio. He was first bitten by the bug in 1910 and now laughingly relates how his first set consisted of a bit of haywire, a homemade coil and detector, and a telephone receiver borrowed from one of Mr. Bell's telephones. It was in 1914 that he started out as a commercial operator and worked on all of the coasting steamers operated by the Union Steamship Co. of B. C., Ltd. He then made several trips across the Pacific, joined the Royal Air Force during the war, and finally returned to Prince Rupert where he is now agent for the Union Steamship Co.

In recognition of his splendid accomplishment of being the only amateur station to successfully communicate with WNP after a long period of silence, he was presented by the Chicago Radio Laboratory with a complete Zenith receiving set, which he prizes highly.

2BN, MONTREAL, QUE.

Canadian 2BN is another station whose signals are consistently heard over the greater part of the United States and Canada. The operator is Mr. J. L. Miller, who has had considerable experience as a commercial operator and handles traffic in good style.

There are two transmitters and two receivers at this station. In the upper left-hand corner of the photo is the transmitter that utilizes one 40-watt (input) French tube, arranged in bread-board fashion. 1500 volts of chemically rectified current is supplied the plate circuit of this transmitter. The note is smoothed somewhat by a 5-microfarad condenser across the line although it is not pure D.C. Although this set has only been in a short time it has been heard at points 1500 miles dis-

Canadian 2BN

stant on several occasions.

The other transmitter, shown on the left of the table in the picture, is a Westinghouse TF set using four 5-watt tubes for C.W.; or, two as oscillators and two as modulators for phone. The antenna current is 3.4 amperes on C.W. This transmitter is the one mostly used and has been heard in all districts of the United States and Canada. Plate current is furnished through a Kenotron rectifier system which may be seen just to the right of the TF transmitter in the picture.

On the table to the right of the picture is a Reimartz receiver and next to it a single-circuit receiver with a stage of audio amplification. A Magnavox power amplifier and loud speaker may be seen above this.

There is nothing unusual about the antenna system at 2BN for it is of the conventional flat-top inverted-L type, 65 feet high and 75 feet long with a counterpoise suspended beneath it.

3XN—9CF, LONDON, ONT.

The first C.W. set at 3XN-9CF used two 5-watt tubes with 10 volts on the filament, 1000 volts on the plate and 4.9 amperes in the antenna. This transmitter lasted one month! The present set uses two 50-watt tubes in a Hartley circuit, with 2000 volts of chemically rectified 25-cycle juice on the plates. The antenna
current is 4 amperes with 200 mils on the plates. The best transmissions have been made to France, Porto Rico, Hawaii, and the S. S. China when 1100 miles west of San Francisco.

The receiver is a Reinartz set with three stages of audio amplification. One stage, of course, is sufficient for most work.

Turning to the radiation system, the antenna is an inverted L, 60 feet long and 55 and 40 feet high at the ends. It consists of two 4-inch cages with six wires in each cage. A network of wires, fifty by twenty feet, and fifteen feet high forms the counterpoise.

Mr. C. H. Langford, the owner of the station, is prominent in Canadian amateur radio. He is City Manager for the A.R. R.L., Government Radio Inspector, and also sells radio apparatus. He is always willing to check any station's wave length the Government has furnished him with a good wavemeter for this work.

1AR, DARTMOUTH, N. S.

Clear across the continent from 9BP is station 1AR; another of Canada's better amateur stations. 1AR is situated at Dartmouth, 100 miles east of the eastern tip of Maine, near Halifax. Mr. Joseph Fassett, who runs the station, has long been in the radio game and still refers occasionally, with a smile, to the magnetic detectors and other crude apparatus used in the early days.

It was a great surprise to learn that his transmitter employs only four 5-watt tubes. The familiar Hartley circuit is used and most of the parts are homemade, including the transformers, grid leaks, tuning inductances, blocking condensers, and filter chokes. An electrolytic rectifier of 20 one-quart jars supplies current to a filter consisting of a 50-henry choke with a 4-microfarad condenser across the rectifier side of the supply and a 2-microfarad condenser across the supply next the plates.

The receiver is a three tube regenerative set using "peanut tubes" run from dry batteries and performs very satisfactorily.

The antenna system consists of a flat-top 55 feet high at the far end and 25 feet high at the lead-in end. This flat top is 100 feet long and 12 feet wide. The counterpoise is 100 feet long, 15 feet high and is also 12 feet wide, located directly under the antenna. Both the antenna and counterpoise are carried directly to the walls of the house where the set is located and thus there is practically no lead-in. Because of the high antenna capacity the normal current in it is around six amperes.

Mr. Fassett now has a 500-watt tube and in a very short time expects to have it on the air and receive signal report cards from the greater part of the world. He tells us that his station is not much for looks, but we know from the way he comes in that it is built with the idea of getting results; and it sure does!

(Concluded on page 62)
HERE we have a country about the same size as Britain, with a population of over a million, not counting a few Maoris, who are as white as the rest of us in everything except complexion. If the snout of New Zealand were tied to the door knob of the QST factory, its tail would be getting very damp in the Gulf of Mexico. But we are not quite so uncivilized as some of you think—very few of us use our wigwams now! In the cities are to be found ice cream sodas, trams (trolley cars), lifts (elevators), traffic cops, bad whisky, central heating, and lots of other things dear to the American heart. However, the Editor wants me to tell you what's doing on the ether hereabouts, so here goes.

Ship operators tell us that conditions for reception out here are better than anywhere else in the world. Such stations as LX at Bordeaux, POZ at Nauen, UFT at Sainte Assise, IDO at Rome, and the big American stations, are easily readable on one valve. I have copied a lot of the lower-powered European arcs, such as HB, OHD, BUC, OSM, GBL, FUT, LP, ICI, etc., using a detector and two-step, with a separate heterodyne for the fainter stations. On 800 meters spark my best records are HKH and NPM in Hawaii, JOC at Otchishi, and KPH and KFS at San Francisco, but others have heard coast stations working a lot farther away than these. Mr. Steel, of the government radio station VLB, at Awarua, has easily the best sheaf of DX records. Using a single valve he has heard 600-meter spark stations in U.S.A., Canada, Japan, India, South Africa, and Egypt, in fact all over the deck. Besides logging many of you Yank amateurs on C.W. he has heard the voice of Mr. Leonard at 9KP, and also music from the New York broadcasting station WHAZ.

Amateurs Getting Louder and Louder
As regards you amateurs—well, your sigs seem to keep getting louder and louder, although I don't think anyone has been quite as noisy as 6KA and 6JD during the recent tests. It's a treat to hear the QRM among the Yanks some nights. Our hats are off to you fellows, and it is our ambition to push our signals over to you some day, although it will be a much harder job for us than for you, owing to inferior conditions for reception in U.S.A. We hope, however, soon to be QSO Honolulu, which would pave the way for a real 'round-the-world amateur relay!

Here in N.Z. we are restricted to only fifty watts input, and we work from 140 meters to 180 meters. So far there are about fifteen of us transmitting, but many more sets are in course of construction. Owing to the Post & Telegraph Department being a government monopoly, we are not permitted to handle traffic for third parties, like you folks, as this might entail beating the government for the nine-pence it would have cost the sender had the message been sent by ordinary telegraph. Consequently our work consists solely of yarning among ourselves or conducting tests. Those of us with phone sets use them to work throughout New Zealand, and we have no difficulty in working the Australian amateurs on key under average conditions, and on really good nights we can work two-way voice tests. The distances vary from 1200 to 1500 miles. My speech has been picked up in New South Wales, Victoria, and Tasmania, and the C.W. has been copied in Samoa, 2000 miles, with about 1.7 amperes in the aerial. This is half way to Honolulu, so we're getting on!

Over in Australia the amateurs mostly work around 400 meters, but probably later on they will join us on the shorter waves. Those near the government radio stations are restricted to ten watts input, but at greater distances from such stations they can use up to a kilowatt if they like. I don't think any very powerful sets have been constructed yet—the largest I know of is that of Mr. Macleuran, 2CM, Sydney, 100 watts, which nearly raises the roof over here. He at any rate should be QRK in
Honolulu. I believe that Mr. Howden, 3BQ, Melbourne, has invested in a 500-watt tube with which he means to have a shot at the Pacific Coast some time.

World's Record Broken

On their ten watts input some of the Australians come in surprisingly QSA over here, so loudly in fact that it occurred to me that it would be possible to receive them on much lower power. Accordingly I got into touch with Mr. Jack Davis, 2DS, Sydney, whose ten-watt ether-buster provides us with some of the loudest signals that we receive from Australia. After several nights we have what we claim to be a real world's record for low power valve transmission, namely:

1200 MILES ON LESS THAN ONE WATT C.W.!

A few extracts from the tail end of my log of the night of Aug. 17th tell the story. Mr. Davis had just succeeded in getting speech and key over to me with 1.4 watts input to his set, using twenty milliamperes at seventy volts on the plate of his single five-watt (input rating) B.T.H. transmitting valve.

4AA to 2DS: QRP to one watt and ask a question.

2DS to 4AA: WI go as low as I can. QRP now. See.

(Called up again and asked on key)

What is ur power?

4AA to 2DS: My power input forty five watts. Wat's urs?

2DS to 4AA: LESS THAN ONE WATT!

At this stage Mr. Davis was using only sixty-five volts on the plate. The receiver here employed two stages of tuned high-frequency amplification and a two-step audio. The aerial was a seventy-foot twin cage.

To return to American amateur sigs. I have put in only one whole night listening on 200 meters for you chaps, since sending in my last list of calls to QST. This was Monday, September 10th (Sunday with you) and proved to be rather a "freak" night, as Eastern stations came in as loud as the 6's, of whom, curiously enough, only three were logged. 78 calls were heard, coming from 27 different transmitters, every district being represented except the third. The QRM among you fellows was so bad that it was only possible to log the louder ones, otherwise many a five-watter might have been heard by someone in N.Z. that night. As the evening advanced it was interesting to notice first one district fade out and then another, as daylight swept over the continent, until at last the 6's fizzled out just after midnight our time.

I daresay you would like to know what are the loudest and most consistent stations. This is a hard question to answer, as not only does signal strength vary greatly from night to night, but with a tricky receiver like mine, one is never quite certain that one is exactly tuned to the incoming signal. The single-valve boys should be able to give you a better idea. However, for steadiness, strength, the amount of traffic handled, and in fact for everything except the style of his sendin, I should hand the biscuit to Mr. Duncan, of 6ARB. Close to him come 6AWT, 6BQJ, 6BVG, 6BVS, 6CGW, 6CMR, 6CFZ, 92T.

Loop Receiver Picks Up U. S. Hams

One staticy night last week Mr. Orbell, of 3AA, Christchurch, decided to have a shot at the Yanks with his four-foot loop. No trouble was experienced in logging several! This achievement he reported to me by radiophone the same night. Much incensed at Mr. Orbell having got in on this stunt ahead of me, I dug up an old two-foot loop, put five turns on it, and extracted 6ARB out of the ether at once. Next night was also noisy, and on a larger loop several of the louder stations were more readable on the loop than on the 70-foot outside aerial. Mr. Orbell's receiver and mine consisted of only two H.F., detector, and two L.F. valves, so the credit lies with the boys who pushed out the good sigs. I found that it made no difference to signal strength whether the outside aerial was earthed, insulated from ground, or tuned to 200 meters, so I reckoned that the loop was doing the trick all right. All this should give you some idea of the strength of some of the signals. Were I to tell you how many hundred feet from our loud speak~rs we have heard your signals on good nights, you would just laugh at me! Of course it is not every night that we get you well. Sometimes we get a week or more of fierce static through which it is quite impossible to read calls, let alone messages, although we can generally hear the signals squeaking away merrily behind all the racket.

How You Can Get Across

Now here's a tip for those hams who have not yet landed a QSL card from Australia—when you are working late on a Saturday night send your call signs slowly and clearly. The reason for this is that Saturday night with you means Sunday with us, which is our favorite evening for indulging in a little quiet Yank Logging, and you must remember that some of us are no great shakes at receiving fast code, especially if it is badly spaced or out of time. Then there are others of you who are good operators, but who use two-way keys, or some similar abomination, and who send their dots like a burst of machine-gun fire. This style of sending is OK close at hand but N.G. at a distance—1BRO please note! My list of Yanks heard during the last

(Concluded on page 69)
Prolonging the Life of the Tube

The filament inside of the vacuum tube is one of the most delicate and precious parts of the transmitting set. Having as it does, only so many hours to live, everything should be done to make its living easier. There are several ways in which this may be effected and the more important methods will be explained here.

It has been found that the life of a filament will be considerably lengthened if it is heated by A.C. instead of D.C. For this reason the filaments of the transmitting tubes in amateur stations almost invariably are heated either by a step-down transformer or by equipping the plate transformer with a special winding.

To increase the filament voltage beyond its rated value means an early death to the tube without any material increase in output. A filament voltmeter should be in view of the operator at all times showing the exact terminal voltage of the tube. If it be of the tungsten filament variety, operation at 0.5 or 0.6 of the normal filament voltage should double the life of the tube.

The simplest way of obtaining the correct adjustment of the filament is to connect a rheostat in series with it. The rheostat should be made of quite large wire as the currents to be carried are usually fairly heavy. It should be located in the circuit as shown in Fig. 4. Another good arrangement is to connect the rheostat in series with the primary of the filament transformer, although a different size of rheostat will be required. As another alternative, four or five taps may be taken from the primary of the filament heating transformer and connected to a switch for adjusting the filament in steps of 1/10 volt or less.

With tubes of fifty watts and larger the life may be considerably lengthened by turning the filament on and off gradually instead of applying the current all at once. This can be done very conveniently by connecting a fixed resistance in series with the filament, in addition to the regular rheostat, that will at first allow it to burn at half brilliancy. This resistance can be shorted by two of the contacts on the send-receive switch when it is in the transmitting position.

To conserve the life of the filament, it must be heated uniformly throughout its entire length. This ordinarily would present no difficulties, but in a vacuum tube there is current flowing from the plate to filament and between the filament and grid which must be considered, independent of the regular filament heating current. This additional current flow is almost evenly distributed over the filament; that is, an equal part flows to each part of the filament. Now in order to remove this current from the filament without causing more current to flow in one part of it than in another it would be necessary to attach a heavy lead to each part of the filament. This is obviously impossible as we can only connect an external circuit to the filament at its ends. In a receiving set that is what is done; the negative terminal of the B battery and the grid return wire are almost always connected to one of the filament terminals. This causes a crowding of current in the filament at the end next to this terminal, which, although it causes no harm in a receiving tube because the current is so small, is a thing to be considered when planning a transmitting set. The effect is, of course, to overheat that part of the filament where the current is greatest, causing it to burn out at that point long before it should.

When supplying the filament of a transmitting tube with A.C. and the plate circuit with D.C., another undesirable thing
will happen if the negative side of the high voltage supply and the grid return wire are connected directly to one of the filament terminals. There will be, as explained above, a crowding of current in the part of the filament next this terminal, but in addition the alternating filament-heating current in this part of the filament will alternately aid and oppose the plate and grid currents. As a result the plate and grid currents will be modulated or varied. This must be provided to accomplish this same thing.

The simplest method is shown in Fig. 1-A. A resistance is connected across the filament and the midpoint of this resistance is connected to the grid return wire and the negative terminal of the high voltage supply. The resistance should be large enough so as not to draw much current from the source of filament current but not large enough to hinder the passage of the high-voltage current to any noticeable extent. Figure 1-B shows another way of doing this same thing; this time being done by connecting the grid return and negative high voltage wires to the midpoint of the transformer winding that supplies the filament with heating current.

Both methods have their disadvantages. You will recall that the plate current is a steady D.C. with a radio frequency current superimposed on it, while the grid current may be either a radio frequency alternating current or a direct current pulsating at a radio frequency. It is not desirable to deliberately insert a resistance in the plate and grid circuits as in Fig. 1-A: neither is it desirable to let radio frequency current enter the transformer as in Fig. 1-B, for punctured insulation in the windings is a likely result of this practice. Figure 1-C overcomes both of these difficulties. Here by-pass condensers detour the radio frequency energy around the halves of the filament transformer winding while the direct current passes through the winding without any trouble. The by-pass condensers may be anywhere from .002 microfarad capacity upwards. The by-pass condensers should be located as near to the tube sockets as possible so the paths for radio frequency current will be short and direct. The above method is the one most commonly used to obtain the “center tap” on the filament.

Meters

The number of meters on a C.W. set is usually governed by the size of the builder’s pocketbook. If only one meter can be afforded it should by all means be a filament voltmeter. It is a good investment and will save you the price of a tube later. The relative values of antenna current can always be obtained by rigging up an improvised hot-wire meter or by shunting a small flashlight lamp across a few feet of the antenna lead, hence an antenna ammeter is not an absolute necessity at the outset.

The antenna ammeter is next in importance, however, to the filament voltmeter. Contrary to common opinion, the antenna ammeter does not show the actual radiation; neither does it show conclusively how the signals are reaching out. Its only uses are to tell whether the set is working normally or not and to indicate improve-

The Center Filament Tap

An almost ideal remedy for the two troubles mentioned above would be to connect the negative plate supply terminal and the grid return wire to the midpoint of the filament. This would cause the plate and grid currents arriving on the two halves of the filament to become balanced so the alternating filament current would no longer modulate it. The crowding of current at any one point on the filament would also be much less.

Vacuum tubes are not made with a tap brought out from the center point of their filament, however, so some external means...
ments in adjustment. It is true that an increased antenna current usually means greater radiation, but only where the wavelength, the antenna system, and the location of the meter remain the same.

A milliammeter in the plate circuit is very useful, although not a necessity as the plate current can be roughly estimated by noticing the heat of the plate. If the plate of the tube is no more than a dull red, speaking of a tungsten filament tube, the normal plate current is not being exceeded much. On the other hand, if the plate is a bright red bordering on white heat, the plate current is far greater than it ought to be and the trouble should be remedied at once. The real value of a plate circuit milliammeter is in adjusting the set for only the best insulating material obtainable should be used. Glass, porcelain, good hard-rubber, and wood boiled in paraffin are all satisfactory. To further cut down the leakage through the insulation the conductor should touch the insulating material only where absolutely necessary. For this reason an inductance wound on a skeleton framework is much superior to one wound on a piece of tubing or other solid mass of material. In all cases, no matter whether the inductance be of spiral or helical form, the turns should be spaced a distance equal to the diameter of the conductor. If the conductor is a strip of metal, space the turns a distance equal to the width of the strip.

No doubt the best cheaply-made induct-

the highest efficiency. This means that the set should be adjusted so the greatest possible power (watts) in the antenna will be obtained with the least power being taken from the supply. As the antenna ammeter and plate milliammeter usually will show relatively when this condition is obtained, these meters come in very handy when making adjustment.

Other meters, such as a voltmeter for measuring the plate voltage and a milliammeter for grid current, are handy but by no means essential. They are classed as luxuries by the average amateur.

Inductances

Inductances for the radio frequency circuits of tube transmitters are either of spiral or helical form. Spiral inductances usually take the shape of a piece of copper or brass ribbon wound in slots on a spider-web like form while the latter may be anything from a layer of cotton covered wire on a cardboard tube to a winding of copper tubing or edgewise wound strip on a special framework as a form.

Some of the radio frequency current, in flowing through transmitting inductances, is bound to be lost by leakage through the insulation. To cut this loss to a minimum, the kind made by winding common antenna wire, No. 14 bare copper, on a cardboard tube such as a Quaker Oats box, spacing the wire by winding a layer of string along with it. The wire can be pinched up with a pair of pliers at every turn so that clips can be readily attached. Such an inductance is almost ideal for use with one 5-watt tube. Furthermore, the loss through the dry cardboard insulation is slight because heavy currents are not being dealt with. For larger sets, an inductance of copper or brass strip is customary, wound on a slotted frame work.

Self Rectified Sets

Although pure continuous wave transmitters require a source of steady D.C. from which to supply the plate circuit, it is possible to use vacuum tubes for transmission directly from an alternating current supply without any separate rectifier and filter. The note given out by such a set is not so pleasing to the ear as that from a D.C.-operated tube but is widely used because of its simplicity and convenience.

In the September issue of QST, in this department, it was shown how the plate current in a vacuum tube will flow from...
the plate to the filament but will not flow from the filament to the plate. From this it can be seen how, if an alternating current be supplied the plate circuit, only the halves of the cycle where the current flows from the plate to filament will be used and converted into oscillating radio-frequency energy. This is shown graphically in Fig. 2. The A.C. supply is shown at D. Only the positive halves pass through the tube and are shown at E in the form of radio frequency oscillations. The other halves of the cycle are suppressed and do no useful work. This method is commonly called half-wave self-rectification because one half of the wave is used and the tube, in suppressing one half of the cycle, really is changing A.C. to pulsating D.C.; and then it changes the pulsating D.C. to radio frequency oscillating energy, all in one process. Thus no external rectifier is necessary as the tube automatically rectifies the supply. A set of this type differs from one using D.C. supply only in the nature of the current supplied the plate as the wiring is exactly the same.

There is a further modification of the self-rectification principle that is used in many stations. It is possible, by using two tubes and a plate transformer with two windings, to supply alternate halves of the A.C. wave to alternate tubes and then feed the output of the two tubes into a common oscillating circuit. In other words the tubes are connected "back to back." Fig. 4 is a diagram of such an arrangement. It is here shown in connection with the reversed feedback circuit but can be easily changed for use with any other circuit. The output of this set would appear as at G in Fig. 3; both halves of the A.C. wave being used. This is called full-wave self-rectification.

Figs. 2 and 3 will show that the output of a half-wave self-rectified set consists of groups of oscillations occurring every 1/60th of a second. It is therefore a 60-cycle note. The output of a full-wave self-rectified set consists of a group of oscillations every 1/120th of a second, thereby making it a 120 cycle note, even though the A.C. supplying the set is at 60 cycles. This is a point that is often not clearly understood.

Location of Key

In order to send out telegraphic signals from a tube transmitter a key is connected in the circuit so as to start and stop the oscillations. The requirements to be met are: that the sparking at the contacts must not be excessive, that there be no voltage surges caused and no key clicks radiated, that the signals be clean-cut and not blurred, and that the wave not change. So far no means of keying has been found that will fulfill all of these conditions simultaneously.*

Below are given some of the methods in use today. To find the best method for your particular case our suggestion is that you try all of them. In each case, arrange the circuit so the lever of the key will be at ground potential; that is, so there will be no voltage between the key lever and the ground. Sparking at the contacts of the key may be lessened by connecting a resistance and a condenser in series around the key. If the sparking takes the form of a snappy, crackling spack, there is too much condenser and not enough resistance; if it is more of an arc, insert more condenser or lessen the resistance. Values of 100 ohms and .01 microfarad are all right for a first trial.

With a self-rectified set, the position of the key shown in Fig. 4 is good; or, it may be connected in series with the primary winding of the plate transformer if separate plate and filament transformers are used. Where the plate supply is D.C. the key can be connected, on small sets, directly in series with the negative lead of the plate supply, with a resistance and condenser around the key to lessen sparking as shown above. Another way is to connect the key in series with the grid leak. On larger sets a one-microfarad condenser can be connected in the grid lead next to the grid and the key connected around it. This is in addition to the regular grid condenser and leak. Where the key opens the grid leak circuit or disconnects the grid from the rest of the set, the negative charge piles up on the grid until the plate current is reduced to nearly zero and the tube stops oscillating.

Tubes in Parallel

If one tube is to be used in parallel with another, it is best to get the set working properly with one tube, and then add the other. When both tubes are working to capacity, the antenna current should be

*(Concluded on page 58)
At the last meeting of our Board of Direction, Karl W. Weingarten, 7BG of Tacoma and A.R.R.L. A.D.M. for Washington, was appointed Director from the Northwestern Division. At the request of the Board the Executive Council of the 7th took a test vote of the amateurs in the Northwestern and 7BG was a big favorite, whereupon the Council recommended his appointment. Thus the Northwestern again has a representative on the Board, filling a vacancy caused by the resignation of Lt. Comdr. Stanley M. Mathes, late of TOE but now aboard the S. S. "Shawmut" off the East Coast.

At the same Board meeting the new Canadian General Manager, A. H. K. Russell, 9AL, was appointed to the Board vice W. C. C. Duncan, resigned.

Russell and Weingarten are fine men, well qualified to represent the membership in their territories, and big assets to the Board in the determination of A.R.R.L. policies.

Good Insulation for Your Lightning Switch

In the sketch, A is the asbestos composition base of a standard lightning switch. The parts have been removed and the three holes in the base reamed out with a large plumber's reamer until a conical hole is formed that will fit the olive bottles as shown. The bulge at the bottom of the bottles hold them in place. The blades and switch contacts are then bolted to wooden plugs that are made to fit tightly into the tops of the bottles. The Underwriters require that the break distance between the blades be at least four inches and the blade should measure at least ¾ by ⅛ inch in cross section. All current-carrying parts should be at least five inches from the building.

S T A T I O N K I N K S

A Vibration Proof Mounting

Here's a good method of mounting a motor-generator suggested by IAFN. The plan calls for an oblong wooden frame to hold the motor generator in place, with an inflated Ford inner tube for it to rest on. The sketch shows how it is made.

Good Insulation for Your Lightning Switch

In the sketch, A is the asbestos composition base of a standard lightning switch. The parts have been removed and the three holes in the base reamed out with a large plumber's reamer until a conical hole is formed that will fit the olive bottles as shown. The bulge at the bottom of the bottles hold them in place. The blades and switch contacts are then bolted to wooden plugs that are made to fit tightly into the tops of the bottles. The Underwriters require that the break distance between the blades be at least four inches and the blade should measure at least ¾ by ⅛ inch in cross section. All current-carrying parts should be at least five inches from the building.

STATION KINKS

A Vibration Proof Mounting

Here's a good method of mounting a motor-generator suggested by IAFN. The plan calls for an oblong wooden frame to hold the motor generator in place, with an inflated Ford inner tube for it to rest on. The sketch shows how it is made.

Good Insulation for Your Lightning Switch

In the sketch, A is the asbestos composition base of a standard lightning switch. The parts have been removed and the three holes in the base reamed out with a large plumber's reamer until a conical hole is formed that will fit the olive bottles as shown. The bulge at the bottom of the bottles hold them in place. The blades and switch contacts are then bolted to wooden plugs that are made to fit tightly into the tops of the bottles. The Underwriters require that the break distance between the blades be at least four inches and the blade should measure at least ¾ by ⅛ inch in cross section. All current-carrying parts should be at least five inches from the building.

STATION KINKS

A Vibration Proof Mounting

Here's a good method of mounting a motor-generator suggested by IAFN. The plan calls for an oblong wooden frame to hold the motor generator in place, with an inflated Ford inner tube for it to rest on. The sketch shows how it is made.

Good Insulation for Your Lightning Switch

In the sketch, A is the asbestos composition base of a standard lightning switch. The parts have been removed and the three holes in the base reamed out with a large plumber's reamer until a conical hole is formed that will fit the olive bottles as shown. The bulge at the bottom of the bottles hold them in place. The blades and switch contacts are then bolted to wooden plugs that are made to fit tightly into the tops of the bottles. The Underwriters require that the break distance between the blades be at least four inches and the blade should measure at least ¾ by ⅛ inch in cross section. All current-carrying parts should be at least five inches from the building.

STATION KINKS

A Vibration Proof Mounting

Here's a good method of mounting a motor-generator suggested by IAFN. The plan calls for an oblong wooden frame to hold the motor generator in place, with an inflated Ford inner tube for it to rest on. The sketch shows how it is made.

Good Insulation for Your Lightning Switch

In the sketch, A is the asbestos composition base of a standard lightning switch. The parts have been removed and the three holes in the base reamed out with a large plumber's reamer until a conical hole is formed that will fit the olive bottles as shown. The bulge at the bottom of the bottles hold them in place. The blades and switch contacts are then bolted to wooden plugs that are made to fit tightly into the tops of the bottles. The Underwriters require that the break distance between the blades be at least four inches and the blade should measure at least ¾ by ⅛ inch in cross section. All current-carrying parts should be at least five inches from the building.

STATION KINKS

A Vibration Proof Mounting

Here's a good method of mounting a motor-generator suggested by IAFN. The plan calls for an oblong wooden frame to hold the motor generator in place, with an inflated Ford inner tube for it to rest on. The sketch shows how it is made.

Good Insulation for Your Lightning Switch

In the sketch, A is the asbestos composition base of a standard lightning switch. The parts have been removed and the three holes in the base reamed out with a large plumber's reamer until a conical hole is formed that will fit the olive bottles as shown. The bulge at the bottom of the bottles hold them in place. The blades and switch contacts are then bolted to wooden plugs that are made to fit tightly into the tops of the bottles. The Underwriters require that the break distance between the blades be at least four inches and the blade should measure at least ¾ by ⅛ inch in cross section. All current-carrying parts should be at least five inches from the building.

STATION KINKS

A Vibration Proof Mounting

Here's a good method of mounting a motor-generator suggested by IAFN. The plan calls for an oblong wooden frame to hold the motor generator in place, with an inflated Ford inner tube for it to rest on. The sketch shows how it is made.
A good 0-25 milliampere D.C. meter can be made by removing the shunt from a Weston 0-100 milliammeter. Then divide the scale reading by four to get the new reading.

The Eternal Battle

High note vs. Low note.
Synk' vs. Non-synk.
Spark vs. C.W.
D.C.C.W. vs. A.C.C.W.
B.C. vs. Ham Radio.
More Regs. vs. Fewer Regs.
Single Circuit Tuners vs. 3-circuit Tuners.
Kilocycles vs. Wave-length.
Radio Frequency Amplification vs. Regenerative Sets.

Where! Oh, Where!

1KX runs a five-watt tube in parallel with a fifty-watter and gets away with it.

There are two kinds of C.W. sets; good sets, and haywire sets. Which is yours? Good one are neatly wired and always work; haywire sets work part of the time and require constant tinkering. The difference is a matter of workmanship.

One of the Washington, D.C., gangs has a receiver so sensitive that every dot when heard in the phones sounds like this: “Pr-r-r-r-r-r-r,” as the signal goes around the world seven times in a second!

Some good records in transcontinental work are being made. On Sept. 23d a message was relayed from 6BVG to IBCF through 9ZT and an answer relayed back to 0BVG in a little over 9 minutes. F.B., OM.

M. B. West, designer of the transmitter on WNP, has left the employ of the Chicago Radio Laboratory and is now engaged in business in his home town of Lima, Ohio.

Johnny Clayton, 5ZL, the first radio man in Little Rock and a charter member of the A.R.R.L., had a narrow escape on Aug. 17th while at sea as operator on the S. S. Coldbrook. He was standing on the deck talking to a seaman when a wave washed the seaman overboard and knocked Clayton against the rail, breaking his arm and causing other injuries. He is now back in Little Rock but expects to go to sea again soon.

WWV

The gang razzed us for fair when WWV did not transmit the amateur schedule on Oct. 8th. Sorry, fellows, but it was due to a mix-up in interpreting schedules. We all agree that these standard waves mean as much to us as time signals do to a navigator and are doing all we can to have them continued.

Wouldn't it be wonderful if 9DGV didn't ride a kiddie car when sending those official A.R.R.L. broadcasts on Saturday and Sunday nights?

—Kickbacks.

The City Manager of Lima, Ohio, James Lisk, 902 S. Elizabeth St., Lima, is confined to his bed but is on the job regularly with a ten-watt set. He would appreciate a line from the gang.

A. H. Babcock, California Director of the League, served as chief of the radio end of the Lick eclipse observation expedition on the occasion of the recent eclipse of the sun.

Good phones have more to do with good DX reception than most hams imagine.

H. L. Owens, 9EL, just wants to notify the gang that he's just got a new J.O. out there who is going to make a good brass pounder in a few years.

Many of the gang are at sea as to what is a proper filter for a motor-generator. Prof. Dellenbaugh, to whom we are indebted for the excellent filter article in the July and August, 1923, issue of QST,* tells us that the “brute force” filter in Fig. 21 on page 24 of the August QST is just the thing for the job. In this case a single tuned traps is next to useless, as a whole family of frequencies are present.

The Horne Verni-Tuner is a piece of apparatus that will come in handy around any station. It consists of a coil with a variable condenser of .00025 microfarad capacity mounted inside of it with a separate fixed coil coupled to the main coil. Its many uses in receiving circuits or as a wave trap will at once be apparent. The Horne Electric and Mfg. Co., of Jersey City, N. J., are the manufacturers.

The Globe Combination Jack Binding Post is an ingenious variation of the usual type of binding posts. In appearance it is like a small drill chuck with a polished nickel finish. Connections are made by plugging straight in, similar to a telephone jack, and made permanent by a slight twist of the knurled cap. The Globe Phone Mfg. Co., at Reading, Mass., will gladly supply additional information.

Were you ever at a radio banquet where some of the hams didn't unknowingly put sugar in their bouillion cups and then complain of bum coffee?

Some of us spit on the cat to raise the DX. TBJ sez its sure luck if you eat onions for DX lunch. Puts lots more kick in your sigs.

*Can be obtained from the QST Circulation Dept. at the regular price.
Regarding the care of electrolytic rectifiers, 8BT0 uses nursing bottles for his rectifier. Anything more appropriate?

Did'dja ever hear of the ham that went to a bakery and asked for bakelite? Neither did we.

Canadian 2BN says, "Every card I get has scrawled across the bottom 'what does N.D.G. mean?,' then a 'hi'. Well, it means Notre Dame de Grace, which is a suburb of Montreal. Now then, I feel better."

9AZG is wondering how the B.C.L.'s expected the No. 38 wire, which he found draped and twined abundantly around his antenna and counterpoise, to carry the current from his set without fusing.

The German scientist who claims he can cure paralysis by auto suggestion might try his ability on some of our fifty-watt bottles that have become afflicted with this malady.

Quaker Oats used to be the main article of food in a radio family. Since the advent of the pickle bottle insulator and the olive bottle lightning switch, pickles and olives rank the highest.

You fellows that are worrying about a series condenser might try pasting tinfoil on each side of the window to your shack, connecting the outside coating to the antenna and they inside coating to your set. Saves a lead-in bushing, too.

A method of modulation used quite extensively abroad is to use the plate to filament resistance of the modulator tube as the grid leak of the oscillator tube. A receiving amplifying tube will modulate several five watters OK by this method. Don't forget to let QST's experimenter section have a report of your results.

Why not bring taps out on the secondary of amplifying transformers so that high and low ratios can be obtained without having to buy several transformers?

A Westinghouse RC tuner may be immensely improved in the following manner. Disconnect the antenna and ground from the regular posts first; then wind a single turn of heavy insulated wire around the outside winding of the variometer and connect the antenna and ground to this single turn. The set will now be highly selective and really makes a good ham tuner.

Anyone using mercury arcs for rectification of plate supply? What is your opinion of them? Aren't they worth passing along the dope for the benefit of the rest of the gang if you are using one in your own station?

The Theory and Operation of Reflex Circuits is the subject of a booklet just issued by the Wireless Shop, 1260 West Second St., Los Angeles, Calif. It describes in detail the construction of six different sets, including the neutrodyne, and is a real aid to users of these types of receivers.

The Bradley leak

The Allen-Bradley Co., of Milwaukee, Wisconsin, manufacturers of the Universal Bradleystat and Bradleyometer, have added another item to their line of graphite disc radio products. The new device is an adjustable grid leak known as the Bradley leak which was developed to meet the demand for a high-grade dependable grid leak. It is similar in external appearance to the Universal Bradleystat, and can be adjusted between the limits of 250,000 and 10,000,000 ohms, or, as usually stated, between 1/4 megohm and 10 megohms, by turning the knob. Intermediate values of resistance can be quickly and accurately obtained at any time. The base of the Bradley leak is recessed to receive a .00025 microfarad fixed condenser, which is furnished as an extra attachment if desired.

A very useful accessory just put on the market by the Illinois Radio Co., of Springfield, Ill., is a shockproof mounting for a tube socket made of pure gum rubber. It is not merely a pad or washer but is made so the tube socket floats on the rubber cushion, entirely preventing mechanical vibrations from reaching the tube.

Mr. H. N. Umbarger, 65 North Diamond St., Mansfield, Ohio, has been appointed by the Ohio Brass Co. as their factory distributor for their radio insulators described in the May, 1923, QST. All inquiries that would ordinarily go to the Ohio Brass Co. should be sent to him.

How to Get Transformer Steel Cheap

We now answer a question that is often asked. Climb into your old clothes and flivver and make for the junkyard. Eleven
times out of ten, you’ll see tons of old transformer cores lying around that can be had “all-you-can-carry” for 50¢. If there is no junkyard in your town, try the electric light company’s shops, entering by the back way. They’ll most likely have some old burned out instrument transformers that you can easily build over into a good C.W. transformer with the help of Mr. Babcock’s article in the December 1922 issue of QST, page 14: “Notes on the Design of Small C.W. Transformers.” If you get the core material at a junk yard, take it to a tin-smith who has a foot or power shears and if he does not let you cut the pieces of core material to the required size yourself he certainly cannot have the nerve to charge you over a dollar for doing the job for you.

9AOG has dropped his wave down to about 170 and stays there all the time—even for calling. Of course this raises none of the “boots” that work on 230 meters but it does get the experienced fellows that have found out how good the short waves are. 9AOG seldom is left without someone to work and always the work proceeds with no QRN, no QSS, and much less QRM. That last is something to worry about in a Kansas summer.

Quinby of Omaha sez that the waves from these southwestern fives ought to make long jumps; why not, when they have a chance to brace their feet against the Rockies?

In reply to a request for information made by one of our members, the Department of Commerce advises that a holder of a commercial first-class license will, if he so desires, be issued an amateur extra-first-grade license as a renewal without re-examination, provided that he has operated his station continuously during the two years previous to the expiration of his license.

5ADV blew his three five-watt tubes just before the Daylight Transcons, but that did not prevent him from putting two UV201-As in the sockets and working 300 miles to New Orleans in daylight with .5 amperes in the antenna.

8CPY-SDKC wishes to get the opinion of the gang as to whether they would be interested in a book illustrating possibly a thousand of the best amateur stations in the country. How much co-operation could be expected from the leading amateurs by way of photos and descriptions of stations? This is not something for someone else to do, but if there is a demand for such a book to be published, 8CPY is willing to do the hard work. It all depends upon your getting in touch with 8CPY immediately. Address Jas. A. Wilson, 318 N. Church St., Kalamazoo, Michigan.

Those who have antennas full of ohms will do well to procure a Reid-Hight (4KU-4BQ) Limburger Cheese Insulator. This particular insulator, a sample of which was presented to FS at the convention, has strength—oh, my gawd, it has! It darn near jumped thru the suit case on the way home and the Pullman conductor threatened to put the owner of the skunk off the train if he could get a gas mask to wear while he made an inspection of the car. Whew!!!!

A small neon tube consuming about .1 watt is just the thing for a wavemeter indicator or as a radiation indicator for your transmitting set. For use as the latter, it should be connected in series with an inductance and condenser tuned to the transmitted wave located near the transmitter within constant view of the operator. The neon tube may be taken from an Airco Ignition Gage, or a Westinghouse Spark-C; both devices using a neon tube for testing automobile ignition systems, and costing in the neighborhood of $1.50. Such a radiation indicator is a handy addition to the equipment of any amateur station as any unevenness in the antenna current or fluctuation of the transmitted wave immediately manifests itself to the operator by a flickering of the light of the neon tube. The neon tube is nothing more than a small glass tube with an electrode sealed in each end, filled with neon gas, which glows when a radio frequency current passes through the tube.

My Rotary

(With apologies to the writer of "The Rosary".)

The hours I spent with thee, dear spark,
Brought many DX cards to me
And many a trick you turned when all was dark:
My Rotary!
Each hour a call, my old non-sink,
From Coast to Coast a fading song you’ve sung.
And when we managed East and West to link,
A DX record hung.
Oh, midnight oil and toil and dripping sweat,
Oh, barren gain and bitter loss;
The “bottle workers” soon forget you were the first,
The continent to cross.

Submitted with misgivings, by C. S.
INTERNATIONAL AMATEUR RADIO
(Concluded from page 50)

six weeks appears in the “Calls Heard” section of this issue. I would greatly appreciate cards from anyone who can confirm my receptions of their signals, especially from those using low power.

We hear rumors of another Trans-Pacific Test. Well, we’re ready when you are. This time a few of our wonder fellows with pure D.C. notes like 5ZAK, 6RM, 6ARB, and 3ZT might try to push a little speech over. I don’t say we’ll get it but we’ll try.

The British Wireless Relay League, an independent association of radio amateurs corresponding to our A.R.R.L., was recently absorbed by the Radio Society of Great Britain, a technical body, and became known as the Transmitters and Relay Section of the Radio Society of Great Britain. The position of the amateur in Britain has been in some danger for some months past and it is believed that this union will greatly strengthen the prestige of amateur radio in England. The Transmitters and Relay Section is now busy on plans for the coming transatlantic tests and is making preliminary range tests for the purpose of selecting the stations to do the transmitting during the final tests in December.

THE JUNIOR OPERATOR
(Concluded from page 54)

1.4 times the current with one tube. One might think that the antenna current would be doubled, but such is not the case. However the power in the antenna is doubled when the current is 1.4 times what it was before, and that is what we are after.

Failure to obtain this increase when adding the second tube may be due to several causes. If the characteristics of the tubes are widely different, as they sometimes are, it will be difficult to realize full benefit of parallel operation. The wires leading to the grids of the tubes, and sometimes the plate also, must be of the same length; or, small radio frequency choke-coils may be connected next the grid terminal of each socket, as shown in Fig. 50. Each of these coils should consist of about ten turns of wire wound on a tube one inch in diameter. By carefully adjusting the length of the wires leading to the grid terminals, or by adding the small choke coils, it is practically always possible to make the tubes pull together and put their combined output into the antenna, provided the plate transformer is large enough to hold up its voltage under the increased current consumption of two tubes.

AMATEUR RADIO STATIONS
(Concluded from page 48)

4BV, Loreburn, Sask.

4BV is not on the air at present but will be remembered by hundreds of amateurs as one of the first successful Canadian amateur stations in the West. It was in December of 1920 that the “Yankee Rock Crusher” first pounded in on a famous old style audion tube at this station. The first attempt to transmit was made shortly afterwards with a Ford coil. Gradually the set was added to until in its final form it consisted of a single circuit tuner and two stages of audio amplification. A C.W. set was installed and enlarged upon until the capacity of the plate generator was reached at three 5-watt tubes.

The transmitter, as operated all of last year, used three 5-watt tubes in a reversed feedback circuit with a maximum antenna current of 2.8 amperes when the batteries that furnished the power supply were on charge. The normal working antenna current was about 1.5 amperes. Power was supplied by a 32-volt Fairbanks-Morse farm lighting plant. The antenna system was a four-wire inverted L, seventy feet high at each end. A nine-wire circular counterpoise was used.

4BV holds some good records. The first cards and letters came from the U.S., then old 6ZAC reported signals QSA in Honolulu. A little later 4BV was the only Canadian station to be reported as heard by Mr. Steel at Invercargill, New Zealand. This latter distance is about 8500 miles. At the time 4BV was closed its DX record represented 6 provinces, 36 states, and a number of ships at Sea. 4BV’s piping signals were constantly reported up and down the east and west coast throughout the radio season.

HOW DO YOU LIKE THE AMOUNT OF GOOD DOPE IN THIS ISSUE, FELLOWS?
Message Delivery.

Editor, QST:

Just a little squawk prompted by the most emphatic howl of OM Hatry, 5XV, regarding the non-delivery of messages. I certainly agree that it is a dish-customizing experience to promise a citizen message sender that his message will be delivered, and then to have the guy on the relaying end fall down. I am in receipt of a kick from Dr. Klenk, A.D.M. of Missouri in regard to sloppy relaying and failure of messages to get through wherein he proposes a system of relaying back an acknowledging message to the station of origin. I hardly think this is workable, unless hams were operating under navy discipline and could be sent to jail for failure to comply with the regulations.

However, some one else may have a better scheme of checking up on it. To get started it seems that there are about six main causes why we are up against the non-delivery problem something like this:

1. The message falls into the hands of some fellow who has no sense of responsibility and the message hangs on his hook a week, or perhaps dies there. This kind of a fellow is often so careless that he loses a message in the waste basket which was received OK and had a chance of getting out.

2. The writer of the message had zero ideas in his think tank when the notion struck him to send a message by radio and couldn't concoct a message that had sense. This sort of thing ought to be nabbed by the originating operator. It would be FB if every ham would censor messages before accepting them. This sort of message falls victim to the kind of operator described in the paragraph above.

3. The writer of the message had zero ideas in his think tank when the notion struck him to send a message by radio and couldn't concoct a message that had sense. This sort of thing ought to be nabbed by the originating operator. It would be FB if every ham would censor messages before accepting them. This sort of message falls victim to the kind of operator described in the paragraph above.

4. The message reaches its destination but the local fellow is too lazy or indifferent to attempt delivery. This is of course similar to the condition stated in paragraph one but is unpardonable.

A lot of rubber stamp messages get flagged out by this kind of operator.

5. The message gets lost between stations usually due to carelessness in assuming that the receiving operator has given a proper OK, often due to QRM or QRN, and instead of asking for a QTA of the QSL, the operator gives an SK and starts to work someone else, when a minute's listening might reveal the receiving operator calling his head off for a QTA of perhaps one word, which would perhaps hold up the whole message, and it would, if the operator stuck to commercial rules.

6. Finally the message gets so badly garbled in relaying that the address and sometimes the whole message is so badly chewed up that the relaying can go no further and the message cannot be delivered to the proper party.

Right here let me take a large swat at the amateur who addresses a message to a station merely by the call. Why isn't it plain to a ham that with continual reissuance of calls and call books that the only proper way to give the relayers a fair show is to give also the name and address of the addressee?

Now that I have this off my chest I'm going to QRX. Let's have some real suggestions from the gang as to methods to eliminate these things that reflect on every one of us in the minds of the public!

L. B. Laizure, 9RR,
Div. Pub. Mgr. Midwest Division

The "Ham" Spirit

Mr. H. P. Maxim,
President, A.R.R.L.

Brooklyn, N. Y.

Dear Sir:

Just a few lines to let you know how your members are working for the uplift of amateur radio. I recently came across an article in the Radio World, and it said "Amateur Hears France Daily."

I wrote to this fellow and asked if it would be possible to get the hookup of the set, never expecting to hear from him. A few days later, to my complete surprise, I received a neat, hand drawn copy of the hookup, together with a letter telling me the different parts to use and at the end of the letter was "If any more information is needed, just write, Radioly, E. Laufer, "AQP."
So knowing what A.R.R.L. meant by reading QST, I thought it is my duty to give him all the credit afforded him by writing you this personal letter.

—John Timmons.

By Way of Explanation

Melbourne, Australia.

Editor, QST:

I enclose the copy of a letter to Radio Journal re the early report of the Transpacific Tests printed in your paper. I wish to point out that I wrote the original letter to Mr. R. J. Portis and it was his reply which started us off on the tests. Will you kindly make this clear in the U.S.A.

Yours Faithfully,

H. Kingsley Love.

Chairman, T-P Test Committee,
Wireless Institute of Australia.

Melbourne, Australia.

The Editor, Radio Journal,
Los Angeles, Calif.

Dear Sir:

I have just received an advanced copy of the story of the Transpacific Tests printed in QST, which was sent to Mr. Malone of the Commonwealth Radio Department. I am very sorry indeed to note that this magazine states that Mr. Portis conceived the idea of the Transpacific Tests. I wish to emphatically deny this statement, and to point out that the Tests were conceived and put into operation by myself alone, Mr. Portis very willingly undertaking to organize the American end. I do not wish to appear selfish from this point, but I will not stand by and see my work pirated by anyone.

I would ask you to protect me at your end in this matter. I am sending a copy of this letter to QST.

Yours Faithfully,

H. Kingsley Love.

Try It

Marquette, Mich.

Editor, QST:

The articles in the August QST on "nodal points" and "antennas" are the best dope I have seen in a long time and if the amateurs will follow the advice given they will surely get out with their sets. The nodal point article set me to thinking. I knew the nodal point in my set was two turns above the filament tap, and I had often wondered about how much energy I was losing on that account. I had about concluded that I would let it stay as it was until I read the article about nodal points and that started me to thinking again. Why not put a tuned radio choke in each lead of the filament transformer primary? I tried it first in the "live" side of the 110 volt supply with no results. Then in the grounded lead and— it worked!

The tuned radio choke was 16 turns of No. 18 d.c.e. wire on a three-inch tube with a .001 microfarad variable condenser connected across it. To be more exact, this was my wave-trap, built for my receiver, in a new hole. The transmitter uses four five watt tubes with plate current furnished by a motor-generator set.

Without the tuned radio frequency choke coil the input to the plates (plate voltage multiplied by plate current) was 210 watts. An antenna current of 1.8 represented 81 watts in the antenna. When the tuned radio choke was inserted in the circuit as shown, the antenna current went up to 2.0 amperes, which represents 100 watts in the antenna. That makes a nice little contribution of 19 watts in the antenna that were previously going to waste; and no need to monkey with the antenna or counterpoise either.

—R. S. Rose, 9DRR.

Resonance Wave Coils

New York City, N. Y.

Editor, QST:

The article on resonance wave coils in the August QST has been read with interest, and remarks carefully noted regarding the work that has been conducted on this type of coil.

The writer conducted a series of tests during the early part of 1916 on resonance coils to ascertain their properties.

Enclosed is a photograph of such a resonance coil used in September, 1916, for short-wave reception. The circuits you describe were used with the exception of the rejector circuit. However, later on, during 1921 this circuit was also utilized and very good results obtained, particularly for the elimination of interfering signals.

You will also note that radio frequency amplification was utilized. One of the great difficulties encountered was to make the
natural period of the coil equal to the frequency of the incoming signal. However, when an efficient resonance coil is obtained, some remarkable results can be accomplished. It is possible to make several resonance coils of small physical dimensions and connect them to a set for efficient reception of signals of different frequencies.

Halliwill Electric Co., Inc.
Samuel Cohen, Chief Engr.

Fine Business
Wichita, Kansas.

Editor, QST:
Since the quiet hours have been in effect, I have been called up by BCL’s here time and time again, asking who the fellow is who is sending and busting up the air. I have gone to my set and listened on these occasions but could not hear any amateurs, except 6’s, and I knew they were not causing any interference in this town.

Last night I was roused again and accosted with this query. It was late and I was sleepy but I wanted to see what was wrong over at friend BCL’s place; or whether he was just plain crazy. Upon arriving I was escorted into his radio corner and asked to listen in. His set was a famous home-made single circuit tuner and as I tuned around with it, battling for dear life to separate the stations, I ran onto a dear old spark. It sounded just like the old days. He was sending a QST message from a ship about an approaching storm. When he signed off I found that he was a ship a good ways out in the Atlantic. I then stuck to the helm for over an hour and called out the call letters of the ships as I copied them while the owner of the set stood by and looked them up in the call book. Fifteen turned out to be ships listed on the east coast, twenty in the Gulf region, and three on the West Coast.

He asked me what he should do. I told him that unless he could get Uncle Sam to make the ships quit using radio he was out of luck. I also asked him to come over to my station and I would show him a set that was selective. He agreed to the latter and came over early the next evening. We listened till late and did not hear even one ship. Needless to say, I gave him the circuit for the set and sent him home happy.

L. J. Simms,
A.D.M. for Kansas.

JES’ REMINISCING
(Concluded from page 48)

all right in theory but otherwise dumb. So we skinned out of the cellar window and went home with our hearts full of joy and our coat collars full of falling snow.

This thing should have ended there and we would have been happier if it had. But one night about a week later Evans walks in and nonchalantly tosses us a smudged postal card. “Here’s the card that Estey promised us,” he says.

By ginger it was!! A perfectly good typewritten card with “1AFV” printed on it in blue ink. It was dated from 2 Mt. Vernon Street, Salem, Mass., and said “Great pleasure and surprise to work you tonight, especially as it was only 7 P.M. eastern time.”

Well we were down and out; we were off a lee shore with our bearings lost and drifting. It was an awful kick-back after we thought we had buncoed Evans to find that he actually had been working across the continent. Estabrook had nothing to say, even such DX was no compensation for his big joke gone wrong.

We tried to hide our consternation before Evans but I saw him look at us rather queerly. Maybe he was a dumb egg but he was a lucky one. Finally we said GN to the worker of the super-het (which had refused to work since the night of the
great event) and wandered over to Ford's shack to talk it over. I sat down on Ford's spare chair—the soap-box one—and tried to figure it out. Idly fingering the postcard from Massachusetts, I rubbed the postmark aimlessly; it smudged. I examined it closely; the postmark had been made with a pencil. Evans isn't such a dumb egg; he's a smart amateur.

Charges Radio and Auto Batteries at Home Over Night for a Nickel

For a friend who owns a radio set or auto, what would be more appropriate than a gift which would eliminate the inconvenience and expense of taking his battery to a service station every time it requires recharging? The

GOLD SEAL HOMCHARGER

is such a gift, appropriately dressed up in a beautiful package. It charges any Auto, Radio or "B" storage battery in the quickest, simplest and most efficient manner possible. Connects to any lamp socket—operates silently—requires no watching. Fully automatic in operation—absolutely safe. Beautifully finished in mahogany and gold. Unqualifiedly guaranteed. Over 125,000 already in use.

At all good dealers, $18.50 complete; $25.00 in Canada—no extras to buy.

FREE: Ask your dealer or write direct for free copy of Homcharger list of broadcasting stations and GOLD SEAL bulletin.

Insist on the GOLD SEAL

It's your guarantee against substitution and appears on name-plate and package. No other charger is just as good.

A New Discovery!

EXTREME SUPER-REGENERATION is obtained without noises through FRESHMAN Variable Resistance Leaks by connecting between plate and Grid of the tube as disclosed by the sensational New Kaufman Circuit No. 2

Only the Knob Shows on the panel

BASE TYPE

Absolutely No Pencil Markings

FRESHMAN Resistance Leaks are especially built for use as tuning instruments. Construction is such that they will withstand unusual usage. FRESHMAN Leaks give an unbroken range of 180 degrees from 0 to 10 megohms. Absolutely guaranteed. Enables you to get stations you never heard before.

Either Type Complete with either .00025 or .0005 $1.00 mfd. Mica Condenser.......... .75¢ Without Condenser.................................. .75¢ At your dealers—otherwise send purchase price and you will be supplied postpaid.

Ask your dealer or write direct for free diagram showing how you can convert your single tube circuit into the new sensational Kaufman Circuit No. 2.

Chas. Freshman Co., Inc. Radio Condenser Products

106 SEVENTH AVE., NEW YORK

THE SCREWDRIVER THAT HOLDS THE SCREW

As Good as a Third Hand in Assembling anything from a Watch to an Automobile

$1.00 postpaid

Appeals Especially to Radio amateurs and professionals.

THE COBURN TOOL CO., 114a Bedford St., Boston
Concerning

BURGESS

RADIO BATTERIES

The unique position of esteem and confidence occupied by Burgess Radio Batteries is a natural development of the conservative policy which has characterized the manufacture, advertising and sale of Burgess products.

It will be of interest to the thinking battery buyer to know that a Burgess product is neither advertised nor sold until its merit has been proven, not only by our own rigid tests, but also those of the foremost radio engineers, manufacturers and experimenters in the country.

Through friendly criticism and suggestions, together with extensive research and engineering by the C.F. Burgess Laboratories, the efficiency of Burgess Batteries has increased to a degree which we believe is not equalled elsewhere.

"ASK ANY RADIO ENGINEER"

BURGESS BATTERY COMPANY

ENGINEERS - DRY BATTERIES - MANUFACTURERS
FLASHLIGHT - RADIO - IGNITION - TELEPHONE

GENERAL SALES OFFICE: HARRIS TRUST BLDG., CHICAGO
LABORATORIES AND WORKS: MADISON, WISCONSIN

BRANCHES

NEW YORK BOSTON KANSAS CITY MINNEAPOLIS
WASHINGTON PITTSBURGH ST. LOUIS NEW ORLEANS

IN CANADA

PLANTS NIAGARA FALLS AND WINNIPEG
BRANCHES: TORONTO - MONTREAL - ST. JOHN

ALWAYS MENTION Q.S.T WHEN WRITING TO ADVERTISERS
THE quaint old villages and towns of long ago, when each community was a world unto itself, the Town Crier played an important part in the affairs of the day. With clanging bell and stentorian voice, he broadcast the news, perhaps weeks old, that occasionally drifted in from outside places. Today news from all parts is immediately available at your fireside. No matter how isolated your abode, Radio binds you to civilization. By a turn of the dial, the happenings, entertainments and amusements of the world are yours to command.

The Crosley Manufacturing Co. has done much towards bringing this new wonder within the reach of all and has made Radio a living, tangible thing—something to use in daily life, in business or pleasure. Popularity priced, these famous receivers give perfect performance. Unsolicited letters are received daily from owners telling of satisfaction and new distance records. Everyday tests prove to us that Crosley instruments are the most simple and efficient Radio receivers ever offered to the public, regardless of cost.

For Sale By Good Dealers Everywhere

CROSLEY MODEL X-J $65
A 4 tube radio frequency set combining one stage of Tuned Radio Frequency Amplification, a Detector, and two stages of Audio Frequency Amplification. A jack to plug in on three tubes for head phones, the four tubes being otherwise connected in loud speaker, new Crosley Multistat, universal rheostats for all makes of tubes for dry cells or storage batteries, new condenser with molded plates, filament switch and other refinements add to its performance and beauty.

Write for complete catalog. This fully describes the Crosley line of Radio parts and receivers which range in price from a 2 tube set at $30 to the new beautiful Consolette Model at $140.

CROSLEY MANUFACTURING CO.
1218 Alfred Street, Cincinnati, O.

CROSLEY Better-Cost Less Radio Products
Crosley Radio Parts and Sets

Popularity Proves Their Worth

The fact that innumerable favorable comments are received daily from people everywhere who have used Crosley parts and sets with entire satisfaction leads us to believe that you too will find that they will fill your every requirement.

This Model contains the stage of tuned radio frequency amplification brought to 100% perfection by the Crosley Company. For its price and size, it gives surprising results in long range reception. Hundreds of testimonials have paid tribute to its efficiency.

The Crosley Sheltran is a completely shielded transformer. Embodied in it are all the characteristics so essential to obtain maximum amplification from the modern vacuum tubes used in radio work. Tests have proven the design to be correct to insure maximum efficiency.

The Crosley Radio Frequency Amplifying Tuner consists of an inductance coil and a Crosley book type variable condenser. It can be tuned to any wave length between 200 and 600 meters. When used with non-regenerative sets it will increase the range many times.

CROSLEY MANUFACTURING COMPANY

1218 ALFRED STREET, CINCINNATI, O.

Crosley Sheltran Transformer
Price$4.00

Crosley Amplifying Tuner
Price$4.00

For Sale By
Good Dealers
Everywhere

List prices on our
equipment west of
the Rockies 10% higher. Add duty in Canada.

CROSLEY
Better-Cost Less
Radio Products
Pleasant Evenings Visiting
With a Crosley Portable

No matter how far into the wilds you may be touring or at whose home you may be visiting you can keep in intimate touch with the outside world and enjoy its pleasures in the evening. Crosley Portable Radio Outfits have made this possible. Being absolutely complete in their compact cases, they are easily carried and quickly set up.

After the routine happenings of the day, motoring, visiting or what not, it is pleasant to sit down in the warmth and glow of a fireside and listen to music, plays and the innumerable other interesting things that are being broadcasted.

Get a Crosley Portable and take it with you on your trips or your visits to friends. It will afford you the least expensive pleasure you have ever enjoyed.

CROSLEY Model VI Portable
(Above)

Consists of detector and one stage of tuned radio frequency amplification. Compact compartments are built into this set for batteries, phones, etc. Thousands of users have testified as to its satisfactory performance.

Price, without tubes, batteries or phones, $40

CROSLEY Model VIII Portable
(At Right)

Consists of one stage of tuned radio frequency amplification detector and one stage of audio frequency amplification. This set has the same general construction as Model VI Portable, but performs even more efficiently.

Price, without tubes, batteries or phones...$60.00

Free Catalog on Request

CROSLEY
Better-Cost Less
Radio Products

CROSLEY MANUFACTURING COMPANY
Powel Crosley, Jr., President

1218 ALFRED STREET, CINCINNATI, O.

List prices on our equipment west of the Rockies 10% higher. Add duty in Canada.

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
Three Beautiful Cabinet Models

The Last Word in Crosley Efficiency

CROSLEY Model XV
(At Left)
The receiving apparatus in this model is the same as that in our cabinet Model XX. The cabinet contains no place for the batteries, however, placed on a mahogany table or stand, it forms an attractive piece of furniture.
Price, without tubes, batteries or phones...........$70.00

CROSLEY Model XX
(At Right)
This attractive model is our model X built into a highly polished mahogany cabinet. A hinged lid, when raised allows the operator access to every part of the receiving apparatus. A sliding board under the receiving apparatus forms a desk for the operator when desired. The lower compartment is made to take care of the batteries and the middle compartment contains a loud speaker which makes it possible for music, speeches, etc. to be heard clearly by everyone in the room. As a beautiful piece of furniture, this model is an addition to any room.
Price, without tubes, batteries or phones...........$100.00

CROSLEY Model XXV
(Below)
We can conscientiously recommend this console model as the most beautiful and efficient model offered today. The receiving apparatus contains the same units as our Model X though differently arranged. The cabinet, of mahogany, exceptionally well finished, is arranged to take the model R-3 Magnavox and also contains space for "A" battery, "B" battery and battery charger if desired. Guaranteed to bring in broadcasting stations 1000 miles or more distant so that they may be clearly heard all over the room.
Price, without tubes, batteries or phones...........$150.00

Crosley Manufacturing Company

Write for Catalog
Make Him Smile on Christmas Morn

ACE TYPE V

Armstrong Regenerative Receiver

Licensed under Armstrong U.S. Patent No. 1,113,149

This set sells for $20.00. It's low cost together with efficiency and simplicity makes the great demand for it increase daily.

A long range Armstrong receiver. Stations from coast to coast can be heard distinctly.

An Ace Two-step Amplifier in connection with this set at $20 makes use of loud speaker practical. Has Crosley Multistat, which permits use of any make tube.

Then there is the Ace 3B an Armstrong Regenerative Radio Receiver which combines detector and two stages of Audio frequency amplification. This set sells for $50.00. Prices do not include batteries or tubes.

The Precision Equipment Company

Powel Crosley, Jr., President

1218 Vandalia Ave., Cincinnati, O.
MAKE him happy — give him a real gift that will be enjoyed by both young and old — give him an Ace Radio Set.

The new Ace Type 3C Consolette shown in the lower right corner is a comparatively new addition to the Ace Family. It has beautiful solid mahogany, wax finished cabinet and greatly adds to the appearance of the finest home.

This set consists of a regenerative tuner, detector and two stages of amplification, with built in loud speaker. The tuning circuit is licensed under the Armstrong U. S. Patent No. 1,113,149 and due to the particular method of winding Crosley coils it is exceptionally selective. Has sufficient room inside cabinet for dry batteries, making a complete self-contained long range receiving outfit. Has phone jack for tuning with head phones. Crosley multistat; filament switch; Crosley moulded condenser, beautifully engraved formica panel. Uses all kinds of tubes. Price $125.00. With stand, as shown at the right, $150.00. Prices do not include batteries or tubes.

Let an Ace Radio Set bring happiness to someone on Christmas morning.

If your dealer cannot supply you order direct mentioning his name.

The Precision Equipment Company
Powel Crosley, Jr., President
1218 Vandalia Ave., Cincinnati, O.
Enthusiastic Approval of National Scope

Stamps the New Remler Variometer as the Most Highly Efficient Radio Item on the Market

TYPE 500
WITH CLOSED ROTOR $7.50

WITH INTERNAL PIGTAIL CONNECTIONS

Wave Length Range 180 to 570 Meters Positively Guaranteed

Seldom, if ever, has there been more genuine enthusiasm shown over any radio apparatus as has been demonstrated by everyone who has examined and placed in operation this new and improved Remler Variometer.

Its low minimum and high maximum wave length—the greatest ever obtained in a variometer and the wave length variation is exactly proportional to the reading of the dial scale. When used with any variocoupler it will cover the entire range of amateur and broadcast wave length. A wave length range of 180 to at least 570 meters is guaranteed when used with a Remler vario-coupler. Pigtailed connections are used between stator and rotor resulting in perfect contact and quiet operation. All metal parts are buffed and nicked; green silk wire is used on both stator and rotor. The general appearance and quality of the bakelite molding is the best obtainable, making it a leader in appearance as well as performance.

If your dealer cannot supply you, send the attached coupon direct to us with express or postal money order.

REMLER RADIO MFG. CO.,
182 Second Street, San Francisco, Calif.

Gentlemen:

Please send me by return parcel post one new and improved Remler Variometer Type 500 for which I enclose seven dollars and fifty cents ($7.50). If for any reason whatsoever I am not satisfied with this Variometer, I can return it to you express collect and you will refund my seven dollars and fifty cents in full.

Name ...
Address ...

Home Office:
182 Second St. 30 Church St.
San Francisco New York City

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
How Lively Is Your "B" Battery?

THIS IS NUMBER THREE OF A SERIES

Some people buy Eveready "B" Batteries oftener than other people. This is because each fan has different tastes and desires in radio receiving. Those that demand maximum volume—and to get it use many tubes, forcing them to the limit with high voltages on the plates—are eager and frequent buyers of these batteries.

Others renew them less often. They are the ones that are content with smaller volume and employ fewer tubes at lower plate voltages.

Furthermore, every radio fan, regardless of the tubes he uses, has his own ideas as to when it is time to strengthen the signals with fresh "B" Batteries. Some will long enjoy concerts that others would not consider loud enough. Just what is "too weak" is purely a matter of personal opinion.

These, then, are the things that determine how long you use your "B" Batteries—

1. The number and kind of tubes. The more tubes you use and the greater their power, the more current flows from the "B" Battery and the shorter is its life.

2. The "B" Battery voltage. The higher it is, the more current flows from the battery.

3. The amount of negative grid bias ("C" Battery voltage) on amplifiers. The greater the bias, the smaller the "B" Battery current.

4. The life put into the battery in the first place by the manufacturer, and the freshness of the battery when you buy it.

5. The signal strength you wish. The smaller the volume of sound you can enjoy, the longer you can use your "B" Batteries.

The life of any "B" Battery you can buy is affected by the above factors. Subsequent advertisements will set forth each factor in detail.

Eveready "B" Batteries predominate. There is more life in them—they last longer! Blocks of large cells, packed with energy, made especially for radio use, delivered fresh to your dealer, give you the most power for your money—power you can use loudly and swiftly, or softly and slowly, as you wish—Eveready for Everybody.

"the life of your radio"

The Metal Case Eveready "B" Battery, No. 766. The popular 22½-volt Battery in a new handsome, durable, waterproof metal case. At all dealers, $3.00.

Eveready "B" Battery No. 767. Contains 30 large size cells, as used in the popular No. 766. Voltage, 45. Made especially for sets using detector and one or more stage of amplification. The most economical "B" Battery where 45 volts are required. At all dealers, $5.50.

Eveready Radio Battery No. 771. The Eveready "Three." The ideal "C" Battery. Voltage, 4½—three terminals permitting the use of 1½, 3, or 4½ volts. The correct use of this battery greatly prolongs the life of the "B" Battery. At all dealers, 70 cents.

Manufactured and guaranteed by
NATIONAL CARBON COMPANY, Inc.
Long Island City, N. Y.

EVEREADY Radio Batteries
—they last longer

Note: This is Number 3 of a series of informative advertisements, printed to enable users to know how to get the most out of their receivers and batteries. If you have any battery problem, write to G. C. Furness, Manager Radio Division, National Carbon Company, Inc., 124 Thompson Avenue, Long Island City, N. Y. Write for special booklets on "A," "B," and "C" Batteries.

ALWAYS MENTION Q S T WHEN WRITING TO ADVERTISERS 75
Singers, bands, orchestras, speakers, organists, humorists—an unlimited host of performers are yours to command when you own a Tuska Radio. A simple adjustment of dials, and you can choose between them. Dozens of programs are in the air. Your Tuska will bring in whichever entertainer pleases you best and shut out all others.

Tuska owners are not obliged to tinker incessantly and add devices to correct construction faults. Their pleasure is unmarred by troubles. Every Tuska set is finished with exacting care by painstaking New England workmen—the best that live.

Then it is examined and tested on distant signals by inspectors who are keenly critical. Both manufacturing and testing are under the personal direction of C. D. Tuska, a pioneer radio engineer.

For a dozen years before general radio broadcasting began, Tuska-made instruments were famous among radio experimenters for skillful design, superb workmanship and high efficiency. In the past two years, the demand for Tuska Radio has grown enormously. Each set in this increased production of today is as perfectly built as the finest Tuska instrument ever made—and yet, the prices are remarkably moderate for high-grade radio receivers.

Ask any first-class radio store to show you one of the models of Tuska Radio, priced $35.00 upward.

The C. D. TUSKA CO., Hartford, Conn.

Ogden, Utah receives Troy, N. Y.
"In one evening, using Tuska 225 with one amplifier only, I received 16 stations, including San Francisco, Calgary, Alberta; and Troy, N. Y. Conditions were not abnormal, and the same stations were received again last night.

W. D. Garner."
The Grid Leak is Important!

The following table gives the approximate values of grid leak resistance recommended by vacuum tube manufacturers:

<table>
<thead>
<tr>
<th>Tube Model</th>
<th>Recommended Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audion (DeForest) DV-6</td>
<td>2 Megohms</td>
</tr>
<tr>
<td>C-200</td>
<td>2 Megohms</td>
</tr>
<tr>
<td>C-201</td>
<td>2 to 5 Megohms</td>
</tr>
<tr>
<td>UV-100</td>
<td>2 to 5 Megohms</td>
</tr>
<tr>
<td>UV-200</td>
<td>2 Megohms</td>
</tr>
<tr>
<td>UV-201-A</td>
<td>2 Megohms</td>
</tr>
<tr>
<td>WD-11</td>
<td>3 Megohms, or more</td>
</tr>
<tr>
<td>WD-12</td>
<td>3 Megohms, or more</td>
</tr>
<tr>
<td>WD-13</td>
<td>3 Megohms, or more</td>
</tr>
</tbody>
</table>

Install the Bradley leak and work your tubes at highest efficiency.

The Dawn of Better Radio

Long distance records in radio reception depend upon the precise adjustment of several elements in the radio set. Too often, the correct adjustment of grid leak resistance is considered of minor importance and frequently it is much too high or too low for the best operation of the detector tube.

The new Bradley leak adds the final touch of perfection to the radio set. When substituted for the ordinary grid leak, it enables you to get the precise value of grid leak resistance which your detector tube requires. Any resistance between 1/4 and 10 megohms is obtained without noise, steps or jumps by merely turning the Bradley leak knob.

The volume of the detector increases gradually as the proper amount of grid leak resistance is approached, and if the Bradley leak knob is turned too far, the volume again diminishes. Nothing could be simpler. Try it on your radio set, tonight.

The Allen-Bradley Co. has built graphite disc rheostats for over twenty years.

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
The Dependable Voltmeter that is made by Specialists

NEW!

DOUBLE Range Portable VOLTMETER

All the science and skill of the World’s foremost authorities are represented in this new voltmeter. A high resistance instrument, especially designed for accurately measuring filament, plate and grid voltages. Ranges 150 and 7½ volts. May be mounted on panel, if desired. You need one of these instruments to constantly indicate the state of your batteries, eliminate noise, lengthen the life of your tubes and accelerate exact tuning.

Write today for full information concerning this and other Weston indicating instruments for Radio use, also the new Weston instantly interchangeable telephone plug.

WESTON ELECTRICAL INSTRUMENT CO., 158 Weston Ave., Newark, N. J.

Branch Offices in All Principal Cities

WESTON

STANDARD - The World Over

SEXTON CONDENSERS

Double Knob Vernier

Also Made in Balanced Types with Half-Capacity Switch
Write for literature and name of nearest distributor.

The Hartford Instrument Co., 308 Pearl St., Hartford, Conn.
IN THE previous Trans-Atlantic tests between amateurs in the United States and Europe, conducted by the American Radio Relay League, December 11th to 30th, four out of five who succeeded used Acme Transmitting Apparatus.

One of the successful contestants was Mr. Charles G. Benzing (Radio 3FS) of Philadelphia. Writing under date of March 16th he says: “My transmitter consists of 100 watts CW using rectified A.C. of 1500 volts, supplied by an Acme 500 watt power transformer and a 150 Acme filament heating transformer. I am very much pleased with the Performance of Acme Transformers and would recommend them to any one for either transmitting or receiving circuits.”

Amateurs desiring to enter the next series of tests or those who have entered previous ones without success, are welcome to write to this company, explaining their intentions or difficulties in detail. Our engineering department will be glad to aid them in any way possible. The coupon below is for the convenience of those who desire to familiarize themselves with the newest Acme Transmitting Apparatus. The Acme Apparatus Company, Dept. 33, Cambridge, Mass., Branches, New York, Cleveland, Chicago, Kansas City, San Francisco.

ACME APPARATUS COMPANY
Dept. 33, Cambridge, Mass.

Gentlemen: Kindly send me your latest catalog of:
[] Transmitting Apparatus.
[] Receiving Apparatus.
[] Booklet on Amplification without Distortion. (Enclose 10c)

Name: __________________________
Street: __________________________
City: ___________________________ State: __________________________
To Our Readers Who Are Not A.R.R.L. Members

Wouldn't you like to become a member of the American Radio Relay League? We need you in this big organization of radio amateurs, the only national amateur association that does things. From your reading of QST you have gained a knowledge of the nature of the League and what it does, and you have read of its purposes as set forth on page 6 of every issue. We would like to have you become a full-fledged member and add your strength to ours in the things we are undertaking for Amateur Radio, and incidentally you will have QST delivered at your door each month. A convenient application form is printed below—clip it out and mail it today.

American Radio Relay League,
Hartford, Conn.

Being genuinely interested in Amateur Radio, I hereby apply for membership in the American Radio Relay League, and enclose $2.00 in payment for one year's dues. This entitles me to receive QST for the same period. Please begin my subscription with the __________ issue. Mail my Certificate of Membership and send QST to the following address.

Station call, if any
Grade operator's license, if any
Radio Clubs of which a member
Do you know a friend who is also interested in Amateur Radio, whose name you might give us so we may write to him too about the League?

Thanks.

“LISTEN IN” WITH COMFORT AND INCREASED PLEASURE

BY USING
PHONEPADS

They prevent irritating pressure of hard head-phones against the ears. Soft, resilient, cool cushions of sheep's wool on tanned skin, with nickedled metal backs which tightly fit all head-phones. They conserve volume, audibility, and tone. 60¢ a pair. If your dealer cannot supply you, send us money order. No delivery charge.

STANDARD PRODUCTS CORP.
Salem, Massachusetts, U. S. A.
Add one or more stages of Radio Freq. amplification to your present set—be it home-built or manufactured. Complete, with socket, rheostat and variotransformer, $15.00 at dealers, or postpaid.

Limited edition of "Radio Frequency Amplification with the Ballantine Variotransformer"—a 25-page booklet—mailed free on request.

BOONTON RUBBER MFG. CO.
Pioneers in Making Radio Parts of Bakelite.
124 Fanny Road
Boontoon, N. J., U.S.A.
YOUR "B" BATTERY!
Test it with a

Hoyt Pocket Meter

$2.50

(Packed in a Christmas Box)

Range: 0-50 volts
In addition HOYT builds a complete line of meters for receiving work:
PEEP-HOLE—Specially designed to fit in the peep-hole on the panel—will protect your tubes—no guess work. Built as a volt-meter or ammeter.

RADIO ROTARY—a general testing volt-ammeter of exclusive design.
SWITCHBOARD METERS—A complete line ranging in diameter from 2½" to 8".

BURTON - ROGERS CO.,
Sales Department For
HOYT ELECTRICAL INSTRUMENTS
26 Brighton Avenue, Boston, Mass.

extreme selectivity—
A single tuning adjustment—assuring the greatest degree of program selectivity enabling one to tune in desired stations and enjoy their broadcasting without the slightest sign of interference by other stations, is one of the features of

MELCO-SUPREME
The Tuned Radio Frequency Amplifying Receiver that also

1. Operates with merely a 10 FT. WIRE—not even a ground
2. Offers exceptional CLARITY without the slightest loss of tone quality.
3. Affords real LONG DISTANCE by covering all Broadcasting ranges from 180 to 610 Meters.

We also manufacture a complete line of standard parts under the Amaco Brand. Write for our complete descriptive literature.

A M S C O P R O D U C T S, I N C.
Broome & Lafayette Streets, Dept. Q New York

PRICE ONLY $140
Complete knock-down parts for Melco-Supreme including drilled engraved balelite panel and solid mahogany withinet.
Price $90

A LONG AND SKINNY INSULATOR 18 INCHES BETWEEN WIRE HOLES

Highly vitrified high tension white glazed porcelain, strength 1500 lbs.
In Lots of Six or More ONE DOLLAR EACH
9DNH SURE FIRE RADIO LABORATORY Express C.O.D.
MACOMB, ILL.

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
Get the Maximum Out of Your Receiving Set

BY USING

CHELSEA VARIOMETERS AND VARIOCOUPLERS

YOUR Set will tune sharper, thereby eliminating troublesome interference and will bring in stations you have never heard before.

ALL insulation is moulded bakelite. Great wavelength range—100-600 metres. No sliding contacts, therefore no objectionable noises. May be used for table or panel mounting. Variometer contains a built-in Vernier, an exclusive Chelsea feature.

Variocoupler contains individual birthing posts for all taps.
Complete with Chelsea grade 3 1/4-inch dials.

Prices, $8.00

OTHER QUALITY CHELSEA RADIO EQUIPMENT:

<table>
<thead>
<tr>
<th>Item</th>
<th>Price Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable Cond's with Vernier</td>
<td>$4.25 to $6.75</td>
</tr>
<tr>
<td>Rheostats</td>
<td>$1.00 and $1.40</td>
</tr>
<tr>
<td>Variable Condensers</td>
<td>2.50 to 3.00</td>
</tr>
<tr>
<td>Tube Sockets</td>
<td>.50</td>
</tr>
<tr>
<td>Audio Transformers</td>
<td>3.75 and 4.50</td>
</tr>
<tr>
<td>Dials</td>
<td>40, 45, .50</td>
</tr>
</tbody>
</table>

Write for our large catalogue, No. 4, which illustrates and describes the complete line of Chelsea Receiving Sets and Parts.

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
The Most Practical Set For Low Wave Specialists

Are you having trouble getting short wave signals? The WC-5-SW shown above picks up signals on wave lengths from 90 to 380 meters sharp and clear. It is built by and for short wave specialists. The price is $85.00.

WC-5-SW
Built especially for Transmitting Amateurs

The WC-5-SW is a 4 tube set. One stage of tuned Radio Frequency amplification is employed ahead of the detector to make it supersensitive. Two stages of audio frequency are used to bring up the signal strength. Uses any type of tubes. Gives perfect control of audibility. Detector rectifies only. Uses antenna compensating condenser. Only two control adjustments. Pure negative biasing on all tubes, thus marked saving B Battery current. Tuned Radio Frequency sharpest known and most selective principle ever adopted. Plate potential non-critical. Mono-block tube socket. No grid plate leads on audio amplifiers. Audio amplification absolutely necessary when using low efficiency receiving antenna, i.e., underground or indoor. Mahogany cabinet, piano rub finish. Rabitted-in panel. Split lid cover.

Write for complete description and illustrated folder on this practical set for low wave specialists. All transmitting amateurs will be interested in this literature.

OTT RADIO, INC.
224 Main St., La Crosse, Wis.

The Valley Type ABC Charger

The one charger which recharges all radio storage batteries. It's the Valley Type ABC Battery Charger made to charge

- 2-volt Peanut Tube Batteries
- 6-volt A Batteries
- 12-volt Batteries
- 1 to 4 B Batteries

Bakelite panel, glass top. Made so that it fits in with your radio equipment. In fact, it harmonizes with any receiving set.

Plugs into regular electric light socket. Takes about a dime's worth of current for an average charge.

A lot of people were disappointed last year because we could not make enough Valley Chargers. We are making more this year, but with the improvements, they are in greater demand. Don't miss out. At all good radio dealers.

VALLEY ELECTRIC CO.
3157 S. Kingshighway, St. Louis, Mo.
Every operator knows that extremely high losses are introduced by using solid dielectric condensers in the transmitting circuit. These losses increase tremendously on short wavelengths and make really efficient transmission at 200 meters or lower almost impossible.

Cardwell variable, air transmitting condensers have negligible losses even at amateur wavelengths. The dielectric is air with the insulation practically outside the electrostatic field. Furthermore, the amount of surface contact between the insulated stator and the support has been reduced to the smallest possible area.

These condensers will operate in any transmitting circuit in which the voltage across the condenser does not exceed 8,000. The maximum capacity of Type 147-B is .00045 Mf. There are 22 rotor plates (grounded to the frame) and 21 stator plates. Clearance between plates is .023 inches. The rotor, in addition to its ample bearing contact with the frame, is connected by pig tail. End stops are provided. Calibration for capacity is practically straight line with a minimum of 27 Mmf. (not Mf.) The overall length from panel to end of the condenser is 6.25 inches with an overall diameter (plates in or out) of 4.0 inches.

For sharp tuning, low losses and consequent long distance range, Cardwell condensers offer the only practicable air type condenser for transmitting purposes. Dead end losses involved in coil tuning can be avoided by the use of the Cardwell variable, rotor-grounded transmitting condenser.

Type 147-B $15.00
Used By Many Broadcast And Amateur Station Operators

ALLEN D. CARDWELL
Manufacturing Corporation
Brooklyn, New York
The ORIGINAL BALDWIN radio phone stands without an equal in the world. It is manufactured under the personal supervision of the inventor, Nathaniel Baldwin, in his own factory.

It will improve the reception of any radio set. If your dealer cannot supply you with the ORIGINAL BALDWIN, ask him to get a set for you—or write direct to the nearest point listed below, for descriptive circular and price lists.

NATHANIEL BALDWIN, Inc.
SALT LAKE CITY, UTAH

NEW YORK—99 Chambers St.
CHICAGO—1437 Michigan Ave.
KANSAS CITY—Chamber Building

EACO ALKALINE STORAGE "B" BATTERY
(24 Cell Size)

Absolutely noiseless. Cannot be damaged by overcharge or short circuit. Container is glass, constructed to nest neatly.

A winner for DX work

Price $6.00

F.O.B. Shipping Point

Discount to Dealers

ECONOMIC APPLIANCE COMPANY
Irwin, Penna.

Get a U. S. Government Commercial License

The radio profession pays well. Amateur experimenters are in great demand. Your present knowledge will shorten your course with us. Commercialize your amateur experience. Special amateur stations with wave power privileges demand extra first grade amateur licenses which require 20 words code speed and definite knowledge of tube circuits. There is a great shortage of commercial operators. Wages are rising; some companies are paying as high as $140.00 a month. Sail on American ships to all parts of the world. Positions guaranteed. Through our favorable connections with operating companies as well as our continued success in training operators we are now supplying about 90% of the ship operators sailing from Boston.

G. R. Entwistle, Radio Director

Mass. Radio & Telegraph School, Inc.
Tel.—Beach 7168
Boston, Mass.
Your Kellogg Radio Christmas

Here is a way to get a wonderful receiver of Kellogg parts that most radio fans will tell you, are the most reliable, durable and efficient on the market. In several million families this year, each of us will be racking our brains to think of some Xmas present to please each member of the family.

Forget all this trouble and work, and plan a radio Christmas. Ask the boy or dad to make up a list of reliable parts for a simple set; then each one buy one part for someone in the family, and you will have a receiving set that will bring Christmas carols, and the world to your fireside, if you have efficient Kellogg parts carefully put together.

Such assembling is an easy matter with Kellogg radio equipment. There are thousands of circuits, some very efficient, both as to distance and selectivity, that require only a condenser, coupler (or variometer), tube socket, fixed condenser, grid leak, tube, dials, and a few other inexpensive parts. You don't need to buy an expensive cabinet to have a good radio set.

If your dealer does not handle Kellogg, send us his address. We will send you our helpful and valuable radio hand book. Start today on your Christmas receiving set, and make every member of the household happy.

KELLOGG SWITCHBOARD & SUPPLY COMPANY
CHICAGO, ILLINOIS
Built for Distance

Mu-Rad R-F Amplifying Transformers

200-600 Meters Air Core

Developed by Mu-Rad engineers, after tireless research, to contribute to the remarkable distance capacity of Mu-Rad Receivers. YOU can have these same transformers for your set. Entirely eliminates iron, capacity and eddy current losses. Any Mu-Rad dealer will demonstrate the advantages of Mu-Rad R.F. Transformers.

Write today for folder!

DEALERS:

Our dealer cooperative policy is progressive business - building. Write for details NOW.

For UV-199 Tubes
Use Type T-11 for the First Stage.
Type T-11A for the Second Stage.
Type T-11B for the Third Stage.

For UV-201A or WD-11 Tubes
Use Type T-11C in all stages with damping coil.

Send 10c for R-F circuit diagrams and treatise on Mu-Rad R-F Amplification

Mu-Rad Laboratories, Inc.
804 Fifth Ave. Asbury Park, New Jersey
Radio, like many other lines of industry, is influenced by propaganda. There have been the advocates of a high ratio of turns in amplifying transformers and the advocates of a low ratio. Unfortunately for radio most of the arguments have been based on individual opinions instead of engineering design. Even manufacturers have shifted according to the dictates of local popular opinion.

The General Radio Co. was the first company to supply commercially a closed core amplifying transformer. It was a pioneer in advocating the use of a shell core. With a decade of research behind it, the General Radio Co. offers an audio frequency amplifying transformer embodying the best in construction and which will give the maximum of amplification possible without distortion. It is an engineering designed transformer and not one built on a popular whim.

<table>
<thead>
<tr>
<th>Product Specification</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Turns ratio</td>
<td>3.7:1</td>
</tr>
<tr>
<td>Impedance ratio</td>
<td>10:1</td>
</tr>
<tr>
<td>Price, Completely Mounted</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

Send for Educational Folder "Quality Amplification"

GENERAL RADIO CO.
11 WINDSOR STREET
CAMBRIDGE 39, MASSACHUSETTS
A. R. R. L. Station
Electric Specialty Co.,
Stamford, Conn.

Gentlemen:—

It has been sometime since I have written you, but want to let you know that the 500 Watt, 1000 Volt Motor-Generator Set of your make, I bought one year ago, has given perfect service. Have gotten all districts—Mexico, Cuba and Canada with it. People marvel at the quality of modulation. All say I sound like a broadcasting station.

I work New York City often, also Oil City, Louisiana. All report that I sound like I am using battery for plate, instead of Generator.

Thought that I would let you know of the success of this outfit, as I believe in letting the manufacturer know of the fine points as well as the poor ones.

Yours Very Truly

J. E. Phillips

Sept. 29, 1923.
For Superior Performance

The genuine Kennedy parts which are now available to the amateur and experimenter assure the same superior performance as those that have made Kennedy radio equipment nationally famous. Each part has been designed by the Kennedy Engineering Staff—and, as each part is made in the Kennedy factories under strict supervision and inspection, every detail is electrically and mechanically accurate.

The use of genuine Kennedy parts is a guarantee of superior performance! Insist on them—if your dealer cannot supply you, write us, giving his name.

THE COLIN B. KENNEDY COMPANY
SAINT LOUIS SAN FRANCISCO

Variomixer—Black Bakelite shells. 180° variation. Primary taps connected through inside of tube. Pigtailed connections. Without knob or dial.............$1.00

Variometer—Black moulded Bakelite shell and rotor. Minute clearance. Pigtailed connections. Table or panel mounting. Without knob or dial.$8.00

Balanced Condenser—0.0005 mfd. Rugged construction. Perfect balance. Adjustable tension on end thrust ball bearing. Pigtailed connection. Without knob or dial.$8.00

Head Phones—Extremely sensitive on weak signals. No rattle or blare on loud signals. Light, comfortable 3600 ohms.......$2.00

Vernier Condenser—Two plates. Pigtailed connection. Has sub-panel and small Kennedy Bakelite knob with white arrow.$1.50

Pigtail connections. Without knob or dial.$1.50

Dial—100 division. 3 inch. Black oxidized metal finish with silver etched figures. Kennedy type fluted Bakelite knob.........$5.75

Load Speaker—Faithful reproduction. Adjustable damping of diaphragm. Polished nickel base and trimmings. 10-inch bell or horn...........$36.00

Rheostat—Suitable for all new type tubes—dry cell or storage battery. Bakelite shell. Positive contact. Has Kennedy Bakelite knob with white arrow.......$1.10

THE ROYALTY OF RADIO

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
ELECTRAD PRODUCTS

$2

Socket 50c

Write for FREE Cockaday Reflex Diode Circuit.

The NEW DIODE

A revelation for all reflex work. Replaces the crystal and overcomes all former difficulties of reflex circuits. Requires no adjustments for change of wave lengths. Gives you the clear reproductions of a crystal with the sturdiness and reliability of a tube. No "B" batteries required. Operates on less than ½ ampere from single dry cell. Easily adapted to Erla and all other circuits.

75c

The NEW VARIOHM

The LEAD-IN

Fits right under closed window. Can be bent into any shape to fit ledges. Covered with fire-proof insulating material which prevents grounding of circuits on wet window sills. Takes the place of unguaranteed porcelain tubes and holes in the window seal. Always presents a neat appearance.

40c

All products at your dealers, otherwise send purchase price and you will be supplied postpaid.

ELECTRAD, Inc.

428-G Broadway

New York

When Other Types Are Useless

“The Voice of the Nation”

When interference, strays, static, etc., make other types of reception utterly useless the RADIODYNE picks up broadcast programs clear and distinct.

Stations within a radius of 2000 miles can be picked up on the loud speaker; any wavelength from 200 to 700 meters.

Price $150.00

For use in apartments, boats, automobiles, railroad trains, etc., the RADIODYNE is enjoyable where other types of receiving sets would not be practical.

The RADIODYNE is operated by simply grounding to a water pipe or radiator, and throwing a few feet of wire on the floor. No outside antenna, or loops are necessary.

TO THE A.R.R.L.

We appreciate your efforts in boosting W. C. sets and are always pleased to furnish full information about them to members who have not yet had the opportunity to operate a W. C. S. We want every member to know the merits of this efficient outfit. If you are interested we will gladly send you a complete description of the W. C. S together with information as to where you can see one in operation.

Just drop us a line and we will see that your inquiry gets prompt attention.

WESTERN COIL AND ELECTRICAL CO.

305 Fifth St., Racine, Wis.

ALWAYS MENTION Q.S.T WHEN WRITING TO ADVERTISERS
Inductance Switch
Price $1.50

Detector Amplifier Switch
Price $1.50

Single Pole Double Throw Switch
Price $1.25

Double Filament Control Jack
Price $1.25

Grid Leak
Price $1.50

Double Circuit Jack
Price $1.00

Open Circuit
Price 70 cents

Single Filament Control Jack
Price $1.00

JOSEPH W. JONES
One of America’s leading inventors, and who has been granted over 300 patents. Inventor of the method now used for making Disc Phonograph records. Inventor of the pioneer Speedometer and the Best, The Jones. Inventor of the Jones Victometer, or Aeroplane Tachometer, used by the U. S. Army and Navy. Inventor of the Jones Motrola, which eliminates the need of phonograph winding. Inventor of the Jones Electric Drill.

Inventor of these IMPROVED ANTI-CAPACITY Radio Jacks and Switches To Save Your Time and Money

HERE is a line of radio jacks and switches radically different in design and construction from any similar product. They are not telephone fittings modified for radio use, but are designed especially to meet the exacting requirements of the radio enthusiast who knows what he wants. They save drilling and soldering—give you better results by eliminating capacity effects—give you a neater set, because they eliminate contact points on front of panel—they save your time, temper and money. Most radio dealers have these little round jacks and switches with the red button. If yours hasn’t, send us his name and ask for folder describing the entire line.

Agents in 26 Principal Cities

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
A folder free for the Juniors

Many people write to little Omega Durham wanting to know just how he improves reception. So he's prepared a folder. And you'll want a copy. It tells why your grid leak should be variable—and suggests other uses for variable high resistance. Your copy is FREE. We'll mail one to all A.R.R.L. Juniors—but it's quicker to get the DURHAM Variables folder from your dealers.

The No. 201-A Special
This DURHAM unit is specially adapted to UV201-A, C301 and WD12 tubes—they work best with a variable grid leak of from 2 to 10 megs.

The handy DURHAM base—30c

TRADE MARK
AUDIOPHONE
REG. U. S. PAT. OFFICE

QUALITY
of Reproduction
is the first consideration
in a loud speaker.
You have a radio set to hear music and speech—why connect a loud speaker with volume alone as a best virtue when you can get real quality and ample volume with an AUDIOPHONE?
No battery required for field excitation. Audiophone Sr. Price $32.50
Audiophone Jr. Price 22.50
THE BRISTOL COMPANY
WATERBURY, CONN.

A FISCHER Product
Even the Experts Look No Further --- They Know
This 180° Multi-Coupler is splendidly built, Bankwound, with a wave length of 800 Meters, 5 Soldered Leads, Bankwound Stator on genuine Bakelite Tubing, Kiln Dried Rotor, Fahnstock Spring clip Connections, Aluminum Mounting Base, Non-conductive Adhesive.
20 Diagrams $4.50 Free with Each
For sale at your dealer's—otherwise send the $4.50 directly to the Manufacturer and you will be supplied postpaid.

G. H. FISCHER & CO.
123 LIBERTY ST., NEW YORK CITY

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
JUST PLUG IT IN,

IT FITS A STANDARD SOCKET

An Adapter for UV-199 and C-299 Radiotrons which supplies the required resistance

It is no longer necessary to use an extra resistance coil, in series with low resistance rheostats—and the substitution of a high resistance rheostat is a needless expense.

The change to UV-199 and C-299 tubes may be made by simply connecting to a filament battery of proper voltage and inserting this combination Resistance-Adapter.

CONSTRUCTION DETAILS

(1) Contact at tube terminals is positive. Steel spring supplements tension of phosphor bronze contacts.

(2) Design of Spring and method of mounting contacts gives low distributed capacity.

(3) First quality insulation, moulded in one piece, reduces leakage to a minimum.

(4) Resistance element (18 ohms) is counter-sunk in a deep groove, assuring thorough protection from mechanical injury.

(5) Projecting knurled edge simplifies insertion and removal of Adapter.

(6) Like all other Eisemann Products, this unit will be found to be thoroughly efficient and high grade.

Ask Your Dealer For It

Price, $1.25

EISEMANN MAGNETO CORPORATION

William N. Shaw, President

BROOKLYN, N. Y.

Detroit Chicago San Francisco
Know More About Radio

Do you know radio fairly well? Take the advanced home study course that experienced amateurs and advanced radio students have been clamoring for.

Learn the details of C.W., I.C.W., and telephone and radio measurements. Learn to make fine adjustments. Understand radio constants. Make clear and simple the intricacies of tube transmitters and complicated receivers. This course offers the expert instruction for which the Institute is famous. The school is conducted by the Radio Corporation of America, the world’s greatest radio organization, and has already graduated over 6,000 students, with commercial license certificates. The advanced course is as well planned as the

COMPLETE COURSE for BEGINNERS

From the beginning of electricity to operation of commercial equipment of the latest type, the Complete Home Study Course prepares the beginner for a position as radio operator—and a bright future in radio. Write for more information.

Radio Institute of America
(Formerly Marconi Institute)
Established 1909.
324 A Broadway New York City

Indicate by a cross (x) the course you are interested in:

RADIO INSTITUTE OF AMERICA,
324 A Broadway, New York City.
Please send me full information about your
COMPLETE RADIO COURSE [x]
ADVANCED RADIO COURSE [x]

Name ...
Address

JEWELL LIGHTNING ARRESTER

APPROVED BY UNDERWRITERS

The latest regulations of the National Board of Fire Underwriters call for a lightning arrester on every building having an outside aerial.

The Jewell Arrester has passed all the Underwriter’s tests and carries their approval.

The case is made of porcelain with a brown finish that harmonizes with interior woodwork. The price is right.

PRICE $1.10

ORDER FROM DEALER

JEWELL ELECTRICAL INSTRUMENT CO.
1650 Walnut St., Chicago

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
Will your battery stay for the concert?

THERE is nothing more exasperating than a battery that "signs off" just when you are enjoying a splendid radio concert.

A good A battery should supply uniform filament current during a long period of discharge. Frequent recharging and replacements take all the fun out of radio receiving.

When you hook up your set to an Exide A Battery you'll appreciate what ungrudging battery service means. You'll be impressed time and again with the value of its ample capacity-rating and the smooth, unvarying flow of current that it delivers to your tubes.

Features you will appreciate

From its heavy, well-made plates to its convenient terminal binding posts, every detail of the Exide's construction is designed to help you get better reception. Vent plugs that may be inserted or removed by a single twist of the wrist make it an easy matter to add water or test the battery. A deep sediment space in the bottom of each cell eliminates danger of internal short circuits or reduced life. Wood separators of the same fine quality that are found in the Exide automobile batteries insulate the plates from one another and also contribute to the battery's long life. A stout detachable handle across the top of the battery makes it extremely easy to carry.

Two low-voltage A batteries

The Exide line has been extended to include two low-voltage A batteries, consisting of one and two cells. They are designed specifically for WD-11 and UV-199 vacuum tubes, and are right in line with recent developments in radio receiving.

The two-volt Exide A Battery will heat the filament of a quarter-ampere tube for approximately 96 hours. The four-volt Exide A Battery will heat the filament of a 60 milli-ampere tube for 200 hours.

Exide B Battery

Current from the new Exide B Battery is full-powered and noiseless. It is free from fluctuations that cause hissing and cracking sounds in your phones. When you tune in distant stations you know that your satisfaction will not be marred by imitation static that sounds as though a heavy electrical storm were in progress.

You don't have to put up with a battery that discharges quickly. Go to any radio dealer or Exide Service Station and ask for Exide A and B Batteries.

If your dealer cannot supply you with free booklets describing the complete Exide line of radio batteries, write to us.
Federal Radio Head Sets have built a world wide reputation

Federal Head Sets are known the world over for their sturdy, dependable efficiency. Their wonderful performance has been a big factor in building for Federal an enviable reputation.

For the radio enthusiast Federal builds more than 130 Radio units and a comprehensive line of receiving sets, all unconditionally guaranteed.

Federal Radio Equipment
Federal Telephone and Telegraph Company

FACTORY: Buffalo, N. Y.
Boston New York Philadelphia Chicago San Francisco Pittsburgh
Bridgeburg, Canada London, England

ARMORCLAD FOR YOUR PROTECTION

On the regulation of grid and plate circuit voltage depends the operation of a vacuum tube as detector, radio or audio frequency amplifier. This regulation is critical for greatest efficiency and for the best results should be obtained while the tube is in operation through the use of a voltage regulator or potentiometer.

THE MAR-CO 600 OHM ARMORCLAD POTENTIOMETER

is altogether reliable for the purpose. It has a nichrome resistance unit so tightly wound that the turns cannot move under the action of the contact arm. Panel mounting requires only one drilled hole and the instrument is furnished with Bakelite Knob and Pointer and handsome polished nickel finish.

LIST PRICE $2.00
MARTIN-COPELAND COMPANY
Providence, R. I., U. S. A.
Build Your Radio Set
Coto Compact and Portable

Thousands upon thousands of radio listeners have learned the past summer that the static scare is a bugaboo. They listened in and enjoyed radio nearly every summer night.

Build your set now for portability. Make it an all the year set with Coto Compact parts.

Demand Coto!
Get Coto!

Size only
$\frac{3}{4} \times \frac{3}{4} \times 3\frac{3}{4}$

New Coto Compact Moulded Bakelite Variometer

Notice the Honeycomb wound stator. By this means a range of 200 to 600 meters is obtained in unusually small space. Here is a Variometer positive in action. Pigtail connection to rotor prevents clicking contacts. Mounts either on panel or base. Once you handle it you will take it home. Type 8000. $5.00.

JOBBERS! DEALERS!
The radio parts business is the foundation of your success. Coto offers you salability and reliability. Write for descriptions and price lists.

COTO-COIL CO.,
87 Willard Ave.,
Providence, R. I.

Pacific Coast Branch
350 Union League Bldg., Los Angeles

Northwestern Branch
Geo. F. Darling, 705 Plymouth Bldg., Minneapolis

Southeastern Branch
C. F. Atkinson, Atlanta Trust Co. Bldg., Atlanta

New Coto Compact Moulded Variocoupler
Companion piece of the Variometer. Size only $\frac{3}{4} \times 5 \times 3\frac{3}{4}$ inches. Range 200 to 600 meters. Base or panel mount. Type 9000. $3.50

The Original Honeycomb Wound Coils
Popular low priced favorites of the amateur and experimenter. Maintained at a standard of excellence second to none. Sold mounted or unmounted.

Coto Tapped Radio Frequency Transformer
Efficiently covers the whole broadcasting range because it is TAPPED. Just turn the switch. Type 9000. $7.50

Coto Compact Air Condenser with Vernier
Only 2.5 inches square. Rotor plates soldered to shaft. Stator plates soldered at three points. .0006 Mfd. $5. .001 Mfd. $6.

ALWAYS MENTION Q.S.T. WHEN WRITING TO ADVERTISERS
HEAR THEM ALL CLEARLY WITH A PREMIER “HEGEHOG” Trade Mark

Audio Transformer

Little but mighty—a wizard for volume and tone quality. Look at the cut. It shows the “HEGEHOG” one half actual size. “Small,” you say. Yes, but inside this “Little Wonder” you will find more efficiency, more reproduction volume, and less distortion than found in any other Transformer regardless of size, price, or design. The secret is in its patented construction. It is shielded 100% against foreign noises. Fully guaranteed. Ratios 1 to 3, 1 to 4, 1 to 5, $3.50; 1 to 10, $4.50. You’ll want them in your next “hook-up,” so get all the facts NOW. Our Free Bulletin No. 91 gives them fully. Send for it.

A Super Vernier Rheostat $3.00

100% EFFICIENCY FROM YOUR TUBES WITH A PREMIER MICROSTAT Trade Mark

There is no substitute for the Premier “MICROSTAT”—no other instrument that gives such perfect control of the current delivered to the filament of radio tubes. New principle—two windings parallel—one 6 ohm—other 40 ohm. Absolutely noiseless. Infinite control—handles any tube—Cap. 3 Amp. Bakelite moulded—silver etched dial. Do not install a rheostat until you know all about the “MICROSTAT.” Our Bulletin No. 91 explains it in detail. Send for it. It’s FREE. Ask for and insist on “HEGEHOG” and “MICROSTAT” at your dealers.

Chelten Electric Company
PHILADELPHIA

Distributing Jobbers Catalogue for 1923-1924 is now ready Amateurs Catalogue mailed on request

H. N. SHEBLE CO.
4859 STENTON AVE., PHILADELPHIA

100 ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
RADION Panels

Absolutely guarantee you the lowest phase angle difference, the lowest dielectric constant, the highest resistivity, and supreme moisture.

Eighteen stock sizes in black and mahogany.

Eighteen stock sizes

<table>
<thead>
<tr>
<th>Size</th>
<th>Size</th>
<th>Size</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 x 7</td>
<td>9 x 14</td>
<td>7 x 24</td>
<td>7 x 18</td>
</tr>
<tr>
<td>6 x 21</td>
<td>12 x 21</td>
<td>10 x 12</td>
<td>7 x 48</td>
</tr>
<tr>
<td>7 x 12</td>
<td>6 x 10.5</td>
<td>14 x 18</td>
<td>12 x 14</td>
</tr>
<tr>
<td>7 x 21</td>
<td>7 x 9</td>
<td>6 x 14</td>
<td>20 x 24</td>
</tr>
<tr>
<td></td>
<td>7 x 14</td>
<td></td>
<td>7 x 10</td>
</tr>
</tbody>
</table>

These leading manufacturers of CONDENSERS adopted RADION ENDS

Elgin Tool Works Inc. Pacent Electric Co.
Freed Eiseman Radio Corp.
General Radio Co.

because RADION is the best possible insulation against current losses in high frequency reception.

AMERICAN HARD RUBBER COMPANY
11 MERCER STREET, NEW YORK
Trinidad Government Pleased With KICO Efficiency

"We are ordering this battery on behalf of the Trinidad Government whose wireless officer was impressed with the efficiency of the Kico battery we are using with our receiving set." The above extract is only one of the many endorsements we are receiving of Kico Batteries. Alkaline type, won't sulphate or buckle. Life unlimited. Not harmed by short circuiting, overcharging, idleness. Panel switches give single cell variations. Recharge from any 110-volt A.C. line with small home rectifier. Charge lasts 3 to 6 months in detector plate circuit.

GUARANTEE
Your money back on any KICO Battery if not satisfied within 30 days' trial. Write for full information on "A" and "B" Batteries.

KIMLEY ELECTRIC COMPANY, Inc.
2665 Main Street
Buffalo, N. Y.

KICO Storage "B" Batteries—long service, low cost

100 Volt Panel Type

UNIVERSAL VARIOMETER
SPLIT WINDINGS
The instrument you will NEVER DISCARD, for its uses are without number. LIST $7.00

L & K moulded HARD RUBBER variometers and variocouplers are made in seven styles, an instrument for every use.

Descriptive Folder on Request
LANGBEIN & KAUFMAN
654 Grand Ave., New Haven, Conn.
Announcing a

New Paragon Receiver
—the Ideal Family Christmas Gift

What could be a more wonderful Christmas gift than a radio receiving set that you know is the best money can buy? Think of the pleasure it will bring to every member of the family, young and old. Think of the happiness it will mean to you every night of the year.

PARAGON Radio Receivers are famous as the three circuit pioneers which have proved their superiority by eight years of practical operation.

The newest PARAGON, pictured above, is the last word in sensitivity and selectivity. The superiority of this type over all other classes of receiving equipment has been thoroughly proved by the long list of distance records which it holds. Included in these records are the reception of the first transcontinental amateur message, the reception of the first trans-Atlantic message, and the unbroken communication which it has maintained with the McMillan Expedition frozen in above the Arctic Circle.

The operation of the new PARAGON receiver is so materially simplified that even in the hands of a novice it equals in every way the performance of the older type in the hands of an expert.

All cabinet work is of mahogany with a brown mahogany finish. All metal parts showing, inside as well as outside of the cabinet are nickel plated. 98% of the wiring is invisible. The whole outfit is compact, neat, solidly built, and finely finished. It is the ideal Radio receiver and the ideal holiday gift.

An illustrated catalog of Paragon Radio Products is yours for the asking.

Dealers: We believe in the proper distribution of Paragon Radio Products. Our Exclusive Distributors are particularly interested in territorially protected dealers, who will concentrate, solicit and serve the consumer in the sale of Paragon Radio Receivers. If interested, write us for details.

ADAMS-MORGAN CO., 4 Alvin Avenue, Upper Montclair, N. J.

PARAGON
RADIO PRODUCTS

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
GENUINE

JEFFERSONS

The Standard Audio Frequency Transformers

No matter what circuit you wish to complete, there is a JEFFERSON Audio Frequency Amplifier which will insure 100% Amplification, the elimination of distortion and the quiet easy tuning so eagerly sought after.

FIVE JEFFERSON TYPES
to choose from—manufactured by the pioneers in the audio frequency transformer field. Right from the start put Jeffersons in your set—don’t experiment — expert Radio Engineers, after careful and exhaustive tests have found them perfect in every detail of construction.

DESCRIPTIVE BULLETIN sent free and our Engineering Department will be glad to make recommendations as to the proper transformer to be used in any circuit.

425 S. Green Street
Chicago

U.S. TOOL CONDENSERS

Precisely Lathed Shafts
Insure Exact Alignment

The bearings, where continued use first tests the quality of a condenser, in U.S. Tool Condensers are machined as carefully as the parts of the finest precision instruments. The main rotor shaft fits its bearings with just a micrometer determined space between to give smooth, frictionless turning, but without enough space to allow side or end play. Consequently wear is reduced to insignificance. Another reason why all U.S. Tool Condensers are so unconditionally guaranteed.

Write for booklet and the name of your nearest dealer.

U. S. TOOL COMPANY INC.
112 Mechanic St.
Newark, N. J.

Hunt's Universal Hair-Line
Radio Tuning Device

Overcomes Body Capacity
Gives micrometric adjustment outside the field of inductivity

Tested and approved by amateurs and experts. Enables you to tune distant stations easier and more clearly, simple as A B C. Installed from outside, no dismantling of your set necessary. Audibility made more natural or less distorted by the fine adjustments obtained. One Hunt’s Device handles all dials on set or several sets. Costs only one dollar on guarantee of money refunded if not satisfied. Ask your dealer or direct from Hunt Co., 483 Shrine Bldg., Memphis, Tenn.
If You Use the New Tubes You Certainly Need This C-H Switch

There is No Filament Glare to Remind You When the Current is ON — The Little Nickeled Button Takes Its Place

There is no easier, safer way to protect any tubes than by placing a C-H Radio Switch directly in the “A” battery circuit. Then you can always be certain, when you push in the sparkling nickel button, that the current is completely off throughout the set.

But with the new tubes, this little convenience becomes a necessity. There is no filament glare to remind you, and unless a C-H Radio Switch button projects to say, “I’m On, don’t forget me,” you may easily do so at the cost of tubes and batteries.

See your dealer today. Have him show you the Radio Switch in the orange and blue box — and look for the C-H trade mark. Then you can be sure that it has the famous C-H wiping knife-blade contact that cleans itself and holds a perfect connection so as not to introduce microphonic noises when used in the most delicate circuits. It only takes a few minutes to install on any panel and adds hours of pleasure. If your dealer is not yet stocked, send 60c plus 10c for packing and you will be supplied promptly.

THE CUTLER-HAMMER MFG. CO.
Member Radio Section, Associated Manufacturers of Electrical Supplies
MILWAUKEE, WISCONSIN

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
A.R.R.L. Members -- What about your friends?

You must have a friend or two who ought to be members of our A.R.R.L., but aren't. Will you give us their names, so that we may write to them and tell them about the League and bring them in with the rest of us? The A.R.R.L. needs every eligible radio enthusiast within its ranks, and you will be doing your part to help bring this about by recommending some friends to us. Many thanks.

American Radio Relay League, Hartford, Conn.

I wish to propose

Mr. of

Mr. of Street & No. Place State

for membership in the A.R.R.L. I believe they would make good members. Please tell them the story.

1923

EXPERIMENTAL WIRELESS

The new British paper.
Full of first class
Experimental articles by the best writers.

Strikes a new note among British wireless papers; it is of experimental interest from cover to cover. The contributors include the best transmitters and experimenters in Great Britain, and in other European Countries. Gives all the new methods, circuits, and inventions. Every U. S. A. experimenter should read it. Correspondence invited from members of the A.R.R.L., Inc.

Monthly. Single copies 30 cents
Per Year $3.50

Percival Marshall & Co.

66 Farringdon St., LONDON, Eng.
Better Batteries—Better Radio Reception

Every radio fan knows the importance of sustained battery voltage in a radio receiving set. A sudden drop in filament voltage, for example, is exasperating. Right here the name Westinghouse becomes significant. As in automobile batteries, Westinghouse Radio Batteries are the finest Westinghouse can build. The new Crystal Case types are especially efficient. Even-powered, slow-discharging, you'll quickly note their superiority for fine tuning, signal holding and sound volume. So economical too! They last indefinitely and are easily recharged at a few cents' cost.

Crystal Case "A" Batteries—One-piece glass case with solid glass cell partitions and plate rests. Visible interior. 2, 4 and 6-volt sizes. Crystal Case "B" Batteries—The 22-MG-2 (22 volts) is a wonder for steady, noiseless, full-powered service. Rechargeable, of course. Larger types, too. Also "C" batteries in 6-volt units.

WESTINGHOUSE UNION BATTERY CO.
Swissvale, Pa.

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
Heath's Radiant Condensers

HEATH Radiant Condensers will tune as perfectly years later as they do the day you install them. The plates, (which in other condensers buckle and get out of alignment) in Radiant Condensers are permanently FLAT by a patented process. They are pressed into absolute flatness and then tempered, so that they can never lose that flatness! Look for the Radiant trade-mark, impressed on every rotary plate of Heath's Radiant Condensers.

Vernier, Geared Like a Watch
Adjusting knob geared to vernier plate so that an ordinary turn is reduced to micrometer fineness. Positive, accurate, durable. No play. Separate tension adjustment.

LIST PRICES
VERNIER TYPE
18 Plate including 2 1/2" dial and knob.. $5.00
25 Plate including 2 1/2" dial and knob.. $5.50
45 Plate including 2 1/2" dial and knob.. $6.50

American Transformer Company
Designers and builders of radio transformers for over 22 years.
176 Emmet St., Newark, N. J.

Where ignorance is bliss 'tis folly to be wise
but that is no excuse for not using the acknowledged best audio transformer—

The AMERICAN AUDIO TRANSFORMER acknowledged by professional radio engineers to be the STANDARD OF EXCELLENCE for audio amplification. The reason for this is apparent in the Amplification Chart shown in our Circular No. 1005.

Price $7
Ask your electrical dealer, or send carriage charges collect. (Wt. 1 lb.)
Turn ratio 5:1. Amplification ratio, 30-40 times audibility in the flat part of the curve.

American Transformer Company
Designers and builders of radio transformers for over 22 years.
176 Emmet St., Newark, N. J.

American Transformer Company

“Where ignorance is bliss 'tis folly to be wise”

F'ERBEND TRADE MARK
The Original Wave Filter
Eliminates interfering stations. Improves the selectivity of the set. Eliminates local broadcasting. Selects between conflicting stations. Simplifies tuning. Often increases signal strength. Reduces howling and squealing. The WAVE TRAP is mounted on a Formica panel in a beautiful mahogany finished cabinet 6x5x6, and is a high grade instrument throughout enhancing the appearance of the most expensive sets.

F'ERBEND ELECTRIC CO.
230 SOUTH WATER ST.
CHICAGO

Always mention QST when writing to advertisers
Micados are specified by
the principal manufactur­
ers, among whom are:

Adams-Morgan Co.
P. A. D. Andrews, Inc.
Bissell Engineering Co.
Bristol Co.
Central Radio Laboratory
Clapp Eastham Co.
Crosley Mfr. Co.
Cutting and Washington
Radio Corp.
Durham & Co.
Eagle Radio Co.
Freed-Eisemann Radio
Corporation
Garod Corporation
Independent Wireless Tel.
Co.
Michigan Radio Corp.
Midwest Radio Co.
O. & T. Electric Corp.
Operadio Corp.
Planestahl Radio Serv. Co.
Radio Distributing Co.
Sec.-Tron Radio Co.
Signal Elec. Co.
Sleeper Radio Corp.
Telephone Maintenance Co.
J. S. Timmons
Ware Radio Corp.
Western Gold & Elec. Co.
Westinghouse Elec. & Mfg.
Co.
Whiteland Mfg. Co.
Wireless Improvement Co.
Chicago Radio Laboratories

The BIGGEST LITTLE THING in radio

Here is the Dubilier Micadon, Type 601, full size.

It is the standard fixed condenser of radio—
adopted by foremost manufacturers of
radio sets and accessories and by discrimi­
minating amateurs because it is permanent
in capacity.

Made in many styles and capacities for any

circuit.

Price 35 cents up.

Your dealer will tell you more

DUBILIER CONDENSER AND RADIO CORP.
48-50 West Fourth Street,
New York

DUBILIER DEVICES
Quality Apparatus

We stock all makes and types of complete Radio sets and parts

Acme Apparatus Co.
Adams Morgan Co.
Andrea, F. A. D.
A. & P. Radio Supplies Co.
Baldwin, Nathaniel
Brach, L. S. Mfg. Co.
Brandes, C. Inc.
Bunnell, J. H.
Clapp-Eastham Co.
Corwin, A. H. & Co.
DeForest Radio T. & T. Co.
Dictograph Products Corporation
Dubilier Condenser Co.
Eby Mfg. Co.
Federal T. & T. Co.
Firth, John & Co.
Freed-Eisemann Co.
Frost, Herbert H.
General Radio Co.
Kennedy, Colin B.
Murdock, Wm. J. Co.
Radio Distributing Co.
Radio Corp. of America
Remler Mfg. Co.
Riley-Klotz Mfg. Co.
Sleepers Radio Co.
Western Elec. Co.
Wireless Press, Inc.

Delivery same day order received

Pioneers in the Radio Field
Send 10¢ for Latest Catalog

ROSE RADIO AND ELECTRICAL SUPPLIES
129 Camp Street, New Orleans, La.

Stromberg-Carlson Head Set Coils are wound a layer at a time with a wrapping of tough insulating material between layers. This high grade construction is revealed by sawing through a section of a coil taken from the—

Stromberg-Carlson
HEAD SET

It's the only head set construction which will stand up under the high plate voltages now prevalent for loud speaker hook-ups. Therefore, it's the only head set construction which ensures permanent sensitivity. It's a construction which is an exclusive feature of Stromberg-Carlson Head Sets.

Ask your Dealer
STROMBERG-CARLSON TELEPHONE MFG. CO.
ROCHESTER, N. Y.

FANSTEEL
Balkite

PATENTS Applied for
Battery Charger

A new battery charger for Radio "A" batteries, entirely noiseless, and indestructible. Has no moving parts, requires no attention, and cannot get out of order. Can be used while the radio set is in operation. A simple, positive, economical battery charger for home use. Write for folder giving full description.

Dept. Q3 - Fansteel Products Co., Inc.
North Chicago, Illinois

$2.50

REPUBLIC
AUDIO
Frequency Transformer
(Fully Guaranteed)
Order Direct from
FLINT
RADIO CO.
1758 Wilson Av.
Chicago, Ill.
The size you want—
the insulation you need

You don't need to wait while your panel is cut to order when you get ready to build your radio set. Just go to your dealer and ask for a Celoron Radio Panel. He will give you, without a moment's delay, the exact size you want. And—what is more important—you get the proper insulation for successful results in radio receiving.

Celoron is recognized by radio experts as the best material for insulation purposes. Its high dielectric strength makes it the ideal panel material.

Used by leading manufacturers

Many of the leading manufacturers of radio equipment use Celoron in making their standard parts. It is approved by the U. S. Navy Department Bureau of Engineering and the U. S. Signal Corps.

Celoron Radio Panels come ready-cut in eight standard sizes, selected to meet the needs of the set-builder. Each panel is neatly wrapped in glassine paper to protect the handsome surface.

Celoron panels are readily worked with ordinary tools at home. They are easy to machine, saw, drill, and tap.

Ask a radio dealer for one of the following standard sizes:

1: 6 x 7 x 1/8
2: 7 x 9 x 1/8
3: 7 x 12 x 1/8
4: 7 x 14 x 3/16
5: 7 x 18 x 3/16
6: 7 x 21 x 3/16
7: 7 x 24 x 3/16
8: 7 x 26 x 3/16
9: 12 x 18 x 3/16

We also furnish Celoron in full size sheets and in tubes, and can cut panels in special sizes when desired. If your dealer hasn't yet stocked Celoron panels, ask him to order for you, or write direct to us, indicating by number the size you want.

Send for free booklet

“Tuning in on a New World” is the title of a booklet we have prepared especially for the radio fan. It contains a list of the leading broadcasting stations in the United States and Canada, an explanation of symbols used in radio diagrams, and several popular radio hook-ups. This booklet will be sent without charge, on request.

To radio dealers: Write for special dealer price list showing standard assortments

Diamond State Fibre Company

BRIDGEPORT (near Philadelphia) PENNSYLVANIA

BRANCH FACTORIES AND WAREHOUSES
BOSTON CHICAGO SAN FRANCISCO

Offices in Principal Cities

In Canada: Diamond State Fibre Company of Canada, Limited, 245 Carlaw Ave., Toronto

Condensite
Celoron
Standard Radio Panel

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
Moon "Satterlee Antennaless" Radio will produce wonderful results simply connected to a waterpipe. No antenna, loop or indoor wire is necessary. Stations within a conservative 1000 mile radius are regularly received with a non power loudspeaker on this set.

It is the ideal set for use in apartments, automobiles, yachts or railroad trains where an antenna is not practical. Extremely sensitive, unusually selective, yet simple to operate.

Write today for our folder "California or Newark"

MOON RADIO CORP.
501 Steinway Ave.
Long Island City, New York

In Canada, Continental Equipment Co., Ltd.
New Birks Bldg., Montreal, Quebec

Attention, Fans
Quality Radio Supplies
We stock all makes of sets and accessories

DeForest Paragon
Grebe Radio Corp.
Kennedy Western Elec.

Experimenters Information Service
Super Hetrodyne Parts

Mail Order Exclusively
Send for Catalog

Blomeley Radio
68 Columbia Heights,
Brooklyn, New York
Magnavox brings you the Voice of all Christmastide

The Art of Radio Reproduction is enjoyed by every Magnavox owner. Despite the ever-increasing quality and variety of Broadcast Programs, many a receiving set gathers dust unlaunched because of insufficient sensitivity or an unsatisfactory "loudspeaker."

Every Magnavox owner is a master of the art of radio reproduction—the results obtained by the use of Magnavox Reproducers and Power Amplifiers cannot be equalled with apparatus constructed in the ordinary way.

The special attention of dry battery receiving set owners is called to the new Magnavox Reproducer M1, illustrated above.

<table>
<thead>
<tr>
<th>Magnavox Reproducers</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2 with 18-inch horn</td>
<td>$60.00</td>
</tr>
<tr>
<td>R3 with 14-inch horn</td>
<td>35.00</td>
</tr>
<tr>
<td>M1 for dry battery</td>
<td>35.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Combination Sets</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1-R Reproducer and 1-stage Amplifier</td>
<td>$59.00</td>
</tr>
<tr>
<td>A2-R same with 2-stage</td>
<td>85.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power Amplifiers</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1-One-stage</td>
<td>$27.50</td>
</tr>
<tr>
<td>AC-2-C-Two-stage</td>
<td>55.00</td>
</tr>
<tr>
<td>AC-3-C-Three-stage</td>
<td>75.00</td>
</tr>
</tbody>
</table>

Magnavox Products can be had of good dealers everywhere.

THE MAGNAVOX CO.
Oakland, Cal.
New York Office: 370 Seventh Avenue
Perkins Electric Limited; Toronto, Montreal, Winnipeg, Canadian Distributors

MAGNAVOX PRODUCTS
There is a Magnavox for every receiving set
The Scientific Headset to be the greatest value on the market. Try it for five days. If not satisfactory send it back and your money will be refunded immediately. Circular on request. Dealers wanted.

THE SCIENTIFIC ELECTRIC WORKS
98 Brookline Ave. BOSTON, MASS.

WE REPAIR THE FOLLOWING
RADIO TUBES
and Guarantee Them

<table>
<thead>
<tr>
<th>Tube</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>WD-11</td>
<td>$3.50</td>
</tr>
<tr>
<td>WD-12</td>
<td>3.50</td>
</tr>
<tr>
<td>UV-200</td>
<td>2.75</td>
</tr>
<tr>
<td>UV-201</td>
<td>5.00</td>
</tr>
<tr>
<td>C-300</td>
<td>2.75</td>
</tr>
<tr>
<td>C-301</td>
<td>3.00</td>
</tr>
<tr>
<td>DV-6</td>
<td>3.00</td>
</tr>
<tr>
<td>UV-199</td>
<td>3.50</td>
</tr>
<tr>
<td>C-299</td>
<td>3.50</td>
</tr>
<tr>
<td>UV-201A</td>
<td>3.50</td>
</tr>
<tr>
<td>C-301A</td>
<td>4.00</td>
</tr>
<tr>
<td>UV-202</td>
<td>4.00</td>
</tr>
<tr>
<td>C-302</td>
<td>4.00</td>
</tr>
<tr>
<td>UV-199A</td>
<td>3.50</td>
</tr>
</tbody>
</table>

Mail Orders solicited and promptly attended to. Dealers and Agents write for Special Discount

H. & H. RADIO CO.
P. O. BOX 22-W
CLINTON HILL STA., NEWARK, N. J.

W O C — Tresco

Licensed Under Arm strong U.S. Patent No. 1,118,149

Tresco
DAVENPORT, IOWA

NESCO

Complete line Radio Corporation Products, and popular parts for amateurs. Mail orders given special attention. Complete consultation at your service for the asking. In emergency telegraph or call 3ZW, W. A. Parks.

National Electrical Supply Co.
1330 New York Avenue, Washington, D.C.

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
The Colin B. Kennedy Co., internationally renowned for their QUALITY RECEIVING SETS, are equipping all their sets with Thordarson super-transformers.

The Zenith Radio Corporation, manufacturers of LONG DISTANCE RADIO RECEIVERS, famous for the Berengaria record and their accomplishments on the S. S. Bowdoin at the North Pole, also have adopted Thordarson super-transformers as standard equipment.
For All Temporary Hook-ups
UNION RADIO

TIP JACKS

Cost Only 25c a Pair

They give you quick, positive connections for all hook-ups—when you are building your own set or are experimenting with new circuits.

They can be attached to all standard thicknesses of panels. The bushing is 1/4" in diameter and fits a 3/16" hole. Will grip all wires from 24 B & S gauge up to antenna wire, battery leads, loading coils and vacuum tube lugs.

No parts to chip, lose or deteriorate. All parts heavily nickelized.

Other Guaranteed Parts

Dial adjusters for minute variations in capacities of variable condensers. Price 60c.

Variable Condensers. Famous for performance. Without dials, 3 Plate—$1.00; 18 Plate—$2.00; 25 Plate—$2.50.

Tube sockets of molded condensers highly polished. Phosphor Bronze contact springs. Reinforced bayonet slot prevents breakage. Accommodates all standard tubes. Price 75c.

Should your favorite Radio Store not carry Union Radio Tip Jacks and Guaranteed Parts send your order direct to us, also write for your copy of "The Union Radio Catalog "D".

Retailers and Wholesalers

Samples of our guaranteed, reasonably priced "Quality Products" sent on request. Our terms and trade discounts are liberal. Write for our proposition.

UNION-RADIO CORPORATION
200 Mt. Pleasant Avenue, Newark, N. J.
New York Office—116 West 32nd Street

80% of demonstrations result in sales for MU-RAD dealers.

When a complete check on the radio sales of one Chicago store reveals that Mu-Rad Receivers are sold in eight out of ten competitive demonstrations, there must be a reason.

There is! Mu-Rad is easy to operate, uses an inside 2-ft. loop aerial, and is highly selective. Mu-Rad is guaranteed to receive at least 1000 miles.

Dealers: Write for MU-RAD proposition. Inquiries are solicited from responsible dealers only. In order to help us weed out curiosity seekers, please use your business stationery in requesting this information.

We also carry a complete stock of

WESTERN ELECTRIC CO.
GENERAL RADIO CO.

parts. Write for details and discounts.

Chicago Radio Apparatus Co.

Jobbers of Good Radio Merchandise
General Offices: 401 S. Dearborn Street, Chicago

MARLE TRANSFORMERS

Audio Frequency
Radio Frequency

Superior Quality
Reasonably Priced

Ask Your Dealer
Manufactured by
Marle Engineering
Co.
Orange, N. J.

Style W Radio Key

A speed key designed for radio transmission and with which cramp is unknown.

Other types carried in stock.

Sample by mail, $4.00
Send Stamp for catalog No. 45-Q

J. H. Bunnell & Co.
32 Park Pl., N. Y. C.
It's a wise son—

say what if we get bad for Christmas

we're all cooked up you know

what's in trouble now

ah! it's here he comes now

we got it now will have pop happy with a

Tungar for his battery then we can use it for the radio battery

IT CHARGES THE BATTERY OVER NIGHT

"Tungar—for your Christmas cheer
makes a perfect radio year"
and keeps the auto battery fit

Few Christmas gifts are so universally useful throughout the year as Tungar—the simple little instrument that charges your radio or your auto storage battery from the electric light circuit.

Owners of the finest high power radio sets are depending upon the storage battery for clearest near and far reception, and depending upon Tungar to keep the battery fully charged at "concert pitch".

You attach Tungar wherever there is a lamp or a convenience outlet. Turn it on and leave it, any hour, day or night.

Operation cost low. No moving parts to get out of order.

For years motor car owners have used Tungar for charging their automobile batteries. See it at any good electrical shop, or write for literature. Address Section Q 12.

Merchandise Department
General Electric Company
Bridgeport, Connecticut

Tungar Battery Charger. Operates on Alternating Current.

(Prices east of the Rockies)
2 Ampere Outfits Complete $18.00
5 Ampere Complete $28.00
Special attachment for charging 12 or 24 cell "B" Storage Battery- $3.00
Special attachment for charging 2 or 4 volt "A" Storage Battery $1.25
Both attachments fit either Tungar

Charge 'em at Home, with

Tungar BATTERY CHARGER

A GENERAL ELECTRIC PRODUCT

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
PORTABLE RECTIFIER

To keep pace with the advance of the radio industry Sterling has strived to keep a pace or two ahead of the line of march. Therefore, the improvement of its Rectifier.

The adoption of the 5 ampere maximum charging rate has been attended by a reduction in the number of contacts to but one, allowing simplicity and ease of adjustment. Special wear-resisting carbons of large cross section area prevent "freezing" and sticking. Quietness and almost total absence of sparking. Can be connected to battery without regard to polarity. Tapering charge prevents overheating, excessive gassing, etc. Connect to any 110 volt A.C. house-lighting circuit.

Price (50 & 60 cycle, 6 or 12 volt) $16.00
Price (125 cycle, 6 volt) 18.50
Add $1.00 west of Rocky Mts.

STERLING "B" BATTERY CHARGING ATTACHMENT

Consists of lamp receptacle and Sterling .5 ampere meter neatly mounted in small hardwood cabinet, including plugs, terminals, clips, etc. Price $5.00.

THE STERLING MANUFACTURING COMPANY
2831 Prospect Ave. Cleveland, Ohio

EDSON
Tone Tested
Radio Headsets

$3

THE lowest-priced first quality headset on the market today. Compare with headsets costing twice our price. Return ours if not satisfied. Our written guarantee protects you. Send $3 by registered mail or money order. Buy direct of us and save the difference. We ship, postage prepaid, same day order is received. Ask for our

Free Catalog of Radio Parts
EDSON RADIO SALES CO.
9 Elmwood Providence, R. I.

Loud $1 Speaker

$1

Radio Adapter

Hear all broadcasting through phonograph. Make your own horn. Attach B-F Phonadapter to YOUR phonograph. All can hear. Entire family, neighbors, guests can hear opera, lectures, latest news, with this adapter. Stretches over receiver of any standard type head-set and attaches to tone-arm of ANY phonograph. Made of soft, pure gum rubber. Quickly attached and removed. Thousands in use. Will not amplify or distort. For single receiver $1
For pair of receivers (more than twice the volume) $1.50
Go to your dealer. If he cannot supply you send money order, check or currency at our risk. Prompt delivery—postpaid. Also send us name of favorite radio dealer.

The Beckley Ralston Company
1607 So. Michigan Ave., Chicago, Ill.

CATALOG
E19-112 PAGES FREE

EVERYTHING IN RADIO
One of the largest complete stocks in the world. 40 diagrams of latest Hookups.

DEALERS ALL OVER THE U.S.
Making big profits handling our supplies. 24-hour service. Goods shipped same day order received.

American RADIO Mfg. Co.

WHOLESALE RADIO DISTRIBUTORS
Dept. "T" 107 E. 13th St. Kansas City, Mo.
Magnavox and BAKELITE

The insulation parts of Magnavox Radio are of Bakelite laminated sheets and rods.

The use of Bakelite laminated material for making radio parts assures uniformly fine results under any climatic or temperature conditions. Unaffected by heat or cold, of great mechanical and dielectric strength, and non-absorbent, it is the ideal material for radio insulation.

The careful manufacturer and designer of radio apparatus chooses Bakelite because of his confidence that wherever and whenever it is used in the future it will maintain the same resistivity which figured in his design calculations.

You will enjoy reading our Booklet C. Send us your name and address and a copy will go forward by return mail.

BAKELITE CORPORATION

Address the Divisions

General Bakelite Company
8 West 40th St., New York

Condensite Company of America
Bloomfield, New Jersey

Redmanol Chemical Products Co.
636 W. 22nd St., Chicago

BAKELITE Condensite
REDMANOL
are the registered Trade Marks for the Phenol Resin Products manufactured under patents owned by BAKELITE CORPORATION

THE MATERIAL OF A THOUSAND USES

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
The Coil Does It—Nothing Like It!

CONSTRUCTED with Helical windings in both primary and secondary Coils (an exclusive feature) the Samson Transformer has proven its superiority under actual operating conditions. In a nutshell—

a—The Effect of Distributed Capacity Reduced to a Minimum.
b—Resistance Reduced to a Minimum
c—The effect of Current Leakage between Adjacent Wires Reduced to a Minimum.
d—Clearer Reception—No Howling.

Note the Coil pictured above; wires are in layers at right angles to the core. Write for detailed story of the advantages of this Exclusive Samson Patent. Free Chart No. 24 of Tests will be included.

The next time at your dealers, examine Radio's newest achievement; risk about Samson Transformers.

SAMSON ELECTRIC COMPANY, Canton, Mass.

Ratio
6 to 1

At Dealers $7.00

SALES OFFICES
Boston, New York, Philadelphia, Pittsburgh, Atlanta, Chicago, Cleveland, Detroit, Indianapolis, St. Louis, Minneapolis, San Francisco, Los Angeles, Seattle, Portland, Montreal and Toronto.

PANEL SERVICE

We offer to the amateur and dealer

REAL PANEL SERVICE

Our panels are cut to your order. Only genuine Condensite and Formica used.

1/8” per square inch $0.02
3/16” per square inch $0.02½
1/4” per square inch .03

We also carry a complete line of radio essentials. Dealers will find it profitable to have our latest price list and discount sheet.

PITTSBURGH RADIO AND APPLIANCE CO., Inc.
Desk B
"Pittsburgh's Radio Shop"
112 Diamond St., Pittsburgh, Pa.

RADIO "B" BATTERY

DIRECT Greatest radio B battery on market. Absolutely fresh, full voltage, seamless cells, none less—all bring 20 Amps. of Power—Cores Louder and STRONGER! Must correctly—full number of voltage taps—all work any tube in normal speaker. Real service GUARANTEED. Sold direct from our factories to you at lowest prices. Shipped prepaid to your door. ORDER TODAY. Send money orders, check or pay C. O. D. Order By Number

No. 222—2 1/2 volt variable—regularly $2.25—our price $1.95
No. 224—2 1/2 volt variable—regularly $3.00—our price $2.65
No. 226—4 volt—9 taps—regularly $6.00—our price $4.95

AYRES BATTERY CORPORATION, Cincinnati, Ohio

We Repair All Standard Makes of Tubes Including

W.D.11 or W.D.12 $3.50
U.V.200 or C.300 2.75
U.V.201 or C.301 3.00
U.V.201A or C.301A 3.50
U.V.199 or C.299 $3.50
U.V.202 or C.302 3.50
New 1 1/2 Volt Tubes 4.00

All tubes guaranteed to do the work.

RADIO TUBE EXCHANGE
200 BROADWAY, DEPT. 4, NEW YORK CITY
All Mail Orders Given Prompt Attention
Orders sent Parcel Post (C.O.D.)

We Repair All Standard Makes of Tubes Including

W.D.11 or W.D.12 $3.50
U.V.200 or C.300 2.75
U.V.201 or C.301 3.00
U.V.201A or C.301A 3.50
U.V.199 or C.299 $3.50
U.V.202 or C.302 3.50
New 1 1/2 Volt Tubes 4.00

All tubes guaranteed to do the work.

RADIO TUBE EXCHANGE
200 BROADWAY, DEPT. 4, NEW YORK CITY
All Mail Orders Given Prompt Attention
Orders sent Parcel Post (C.O.D.)

We Repair All Standard Makes of Tubes Including

W.D.11 or W.D.12 $3.50
U.V.200 or C.300 2.75
U.V.201 or C.301 3.00
U.V.201A or C.301A 3.50
U.V.199 or C.299 $3.50
U.V.202 or C.302 3.50
New 1 1/2 Volt Tubes 4.00

All tubes guaranteed to do the work.

RADIO TUBE EXCHANGE
200 BROADWAY, DEPT. 4, NEW YORK CITY
All Mail Orders Given Prompt Attention
Orders sent Parcel Post (C.O.D.)

We Repair All Standard Makes of Tubes Including

W.D.11 or W.D.12 $3.50
U.V.200 or C.300 2.75
U.V.201 or C.301 3.00
U.V.201A or C.301A 3.50
U.V.199 or C.299 $3.50
U.V.202 or C.302 3.50
New 1 1/2 Volt Tubes 4.00

All tubes guaranteed to do the work.

RADIO TUBE EXCHANGE
200 BROADWAY, DEPT. 4, NEW YORK CITY
All Mail Orders Given Prompt Attention
Orders sent Parcel Post (C.O.D.)
C. W. Amateurs!

New GREBE-"13" Tunes to 80 Meters

Special wave length range of 80-300 meters.

Employs a perfect combination of Regeneration with tuned Radio Frequency Amplification.

Complete, self contained Receiver in attractively finished walnut cabinet, with binding post at rear for battery connections.

Grebe Tapered Grip Dials provides "hairs breadth" adjustment.

The workmanship for which the Grebe Co. is famous is well exemplified in the Grebe "13".

A Stabilizer provides absolute control of Regeneration.

Dealers! Don't forget that the C.W. Amateurs are still with us. The Grebe "B" is going fast with the pioneers in the field. Get in on this fast selling equipment and make your sales show profits.

CONTINENTAL RADIO and ELECTRIC CORPN.

6 AND 15 WARREN STREET - - - NEW YORK, U.S.A.
HERE IT IS! Advance C.W. Rectifier

Rectifies A.C. at 500 to 3000 volts to D.C. for the plates of the transmitting tubes, (when using filter).

Gives High Efficiency

This rectifier has been developed to meet the demand of the amateur for a machine which will rectify alternating current to direct current for the plates of the transmitting tubes, when used with a filter. Where alternating current is used, this will improve the efficiency of the set. This rectifier assures a higher voltage than can be secured with a motor generator, the loss being negligible. It is much easier to read through static and interference. The first stations to be heard in Australia from West Coast used this rectifier. The best known amateurs in U. S. A. use this rectifier to excellent advantage.

SPECIFICATIONS

The moulded bakelite bushings (3) overlap in the center, the aluminum brush arm support and the brush holders. Nickel-plated brush holders (6) with adjustable gauge brushes (2) which may be shifted to the proper none spark position by handle (1).

The motors used are Westinghouse Electric & Mfg. Co. and will give perfect service for years. These rectifiers are guaranteed for a period of one year. And will give service and satisfaction.

Price complete with motor $40.00

Rectifying wheel with complete brush assembly and mounting ring to fit your motor $15.00

ADVANCE ELECTRIC COMPANY

1260 WEST SECOND STREET, LOS ANGELES, CALIF.

SIMPLEX

Alkaline Storage B Batteries are of artistic and substantial construction. They are not injured by standing idle, short circuit, or overcharging and will give years of service.

18 Cell 24 Volt $6.00
36 Cell 45 Volt 9.90
60 Cell 75 Volt 12.50

We can furnish complete parts if you wish to build your own battery.

Send for descriptive literature.

Entire satisfaction guaranteed or money refunded.

SIMPLEX MFG. CO., WILKINSBURG, PA.
Letters from Users Requested

The remarkable reproductions of Atlas Loud Speakers makes every owner enthusiastic. "Musical experts," writes a man in St. Paul, "have pronounced it the cleanest reproduction they have ever heard." What results have you accomplished with your Atlas Loud Speaker? Write us about them—TODAY.

FOR Christmas give the radio enthusiast his fondest expectation—a perfect radio re-producer, the Atlas Loud Speaker. Natural reproduction, identical with the original in the broadcasting studio. The patented "double diaphragm" responds uniformly to the full range of sound intensities. Adjustable to each individual set and receiving conditions. The Atlas Loud Speaker is a gift to an entire home. Hear the Atlas Loud Speaker at your dealer's.

LIST PRICE $25

Write for Booklet "D"
Contains helpful information

The Marconi Wireless Telegraph Company
Montreal, Canada
of Canada, Ltd.,

Multiple Electric Products Co. Inc

ORANGE ST. RADIO DIVISION, NEWARK N. J.
Modern Replacement
for Fixed and
Variable Condensers

GREWOL Vari-Grid

Used as a 11 or 23 Plate Vernier Condenser as well as a variable grid control.

The capacity of the grid of your tube must be varied to secure maximum efficiency, distance, clearness and sharp tuning. This is the purpose of the Grewoi Vari-Grid.

Equipped with grid leak, removable when Vari-Grid is used as vernier condenser in other circuits than the grid. Costs less! One hole to drill 1¾” in diameter, an efficient quality instrument. Write for descriptive booklet. $2.25.

AT YOUR DEALER’S

or sent direct upon receipt of

Write for folder

RANDEL
WIRELESS CO.
12 Central Ave., Newark, N. J.

Here are a few of the items we are selling off at greatly reduced prices. Send for complete list of bargains.

<table>
<thead>
<tr>
<th>Type</th>
<th>Regular Sale</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acmefone Receiver with detector two-step amplifier and loudspeaker. Can be made regenerative at small cost...</td>
<td>$80.00</td>
<td>$30.00</td>
</tr>
<tr>
<td>HZ Clapp-Eastham Amplifier</td>
<td>35.00</td>
<td>15.00</td>
</tr>
<tr>
<td>JM-3 6-tube Radio Frequency Detector-Amplifier</td>
<td>95.00</td>
<td>30.00</td>
</tr>
<tr>
<td>JM-6 6-tube Radio Frequency Detector-Amplifier</td>
<td>130.00</td>
<td>40.00</td>
</tr>
<tr>
<td>RF DX Tuner for above radio frequency sets...</td>
<td>35.00</td>
<td>10.00</td>
</tr>
<tr>
<td>No. 8 Federal Detector-Amplifier</td>
<td>52.00</td>
<td>20.00</td>
</tr>
<tr>
<td>No. 9 Federal Two-step Amplifier</td>
<td>58.00</td>
<td>25.00</td>
</tr>
<tr>
<td>20-A Firco Detector</td>
<td>27.00</td>
<td>8.00</td>
</tr>
<tr>
<td>No. 521 Kennedy Two-step Amplifier</td>
<td>55.00</td>
<td>40.00</td>
</tr>
<tr>
<td>No. 220 Kennedy Intermediate Receiver</td>
<td>125.00</td>
<td>75.00</td>
</tr>
<tr>
<td>No. 525 Kennedy Two-step Amplifier</td>
<td>85.00</td>
<td>65.00</td>
</tr>
<tr>
<td>No. 330 Remler Detector Panel</td>
<td>8.50</td>
<td>6.50</td>
</tr>
<tr>
<td>No. 331 Remler Amplifying Panel (without transformer)</td>
<td>6.00</td>
<td>5.00</td>
</tr>
<tr>
<td>No. 502 Remler Variometer Panel</td>
<td>10.50</td>
<td>8.00</td>
</tr>
<tr>
<td>No. 505 Remler Varicoupler Panel</td>
<td>12.00</td>
<td>10.00</td>
</tr>
<tr>
<td>CR-7 Grebe Long Wave Receiver (Slightly used)</td>
<td>210.00</td>
<td>140.00</td>
</tr>
</tbody>
</table>

THE RADIO STORE
562 East Colorado St.
Pasadena, Calif.

At rock-bottom prices you get the efficiency of sets costing three times as much. Users tell us that Miraco Radio frequency receivers pick up stations from coast to coast. Operate either on dry cells or storage battery. Solid mahogany cabinets—finest workmanship throughout. Order direct or send for bulletin.

One tube outfit.................. $18.50
Two tube outfit................. 29.50
Four tube outfit................. 54.50

DEALERS—AGENTS:—Write for proposition quickly—it’s a winner.

THE MIDWEST RADIO COMPANY
822 Main Street, Cincinnati, Ohio.

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
YOU CANNOT EQUAL THE SELECTIVITY OBTAINABLE WITH

CURKOIDS

THE SUPREME INDUCTANCE.

IF YOU USE ANY OTHER FORM OF TUNING ELEMENT

For real DX work, this precision tuning element is without competitor. CURKOID superiority is founded on simple scientific principles. They give greater selectivity because:

1. THEY HAVE THE LOWEST DISTRIBUTIVE CAPACITY OF ANY KNOWN FORM OF INDUCTANCE

CURKOIDs are wound in the form of the curtate epitrochoid—the circle with the constantly shifting center. Adjacent turns touch each other at only one point, that of intersection. There is a separation of many turns before one entirely parallels another. Other forms of special inductances usually have alternate turns parallel throughout.

2. THEY HAVE THE MOST CONCENTRATED MAGNETIC FIELD

The low distributive capacity of CURKOIDs is not obtained at the expense of an inefficient magnetic field. It is a highly concentrated field, which permits of extremely loose coupling without loss of signal strength. With them, you can tune out local C.W. without difficulty and pick up stations from record distances.

3. THEY HAVE THE LOWEST HIGH FREQUENCY RESISTANCE

Resistance losses are not only direct waste of energy but they broaden tuning. CURKOIDs give a greater value of inductance for a given length of wire than any other form of coil. The CURKOID DUAL AND TRIPLE COUPLERS are precision instruments. One division of the dial scale represents only one four hundredth of an inch movement of the coils. You can obtain precisely the degree of regeneration desired and, by movement of the primary coil, you can log stations as rapidly as you can write. The primary coil moves over a space of four inches, and the tickler coil five inches.

CURKOID PRICES

<table>
<thead>
<tr>
<th>Radio Frequency Coupler</th>
<th>$2.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triple Coupler</td>
<td>$7.50</td>
</tr>
<tr>
<td>Dual Coupler</td>
<td>$4.50</td>
</tr>
<tr>
<td>20 K inductance</td>
<td>$1.40</td>
</tr>
<tr>
<td>25 K</td>
<td>$1.50</td>
</tr>
<tr>
<td>35 K</td>
<td>$1.50</td>
</tr>
<tr>
<td>50 K</td>
<td>$1.60</td>
</tr>
<tr>
<td>75 K</td>
<td>$1.65</td>
</tr>
<tr>
<td>100 K</td>
<td>$1.70</td>
</tr>
</tbody>
</table>

(Made up to size 1500 K)

THE CURKOID RADIO FREQUENCY UNIT

is the first completely adaptable r.f. unit developed. The coupling between primary and secondary is adjustable by a micrometer control. The ratio between the two is also adjustable to suit your tube and circuits by the use of interchangeable CURKOID inductances. In connection with efficient variable condensers the Curkoid Unit may be used for tuned radio frequency, as well as untuned.

Send ten cents for the booklet which tells you how to make simple single, two and three circuit receiving sets regenerative and non-regenerative, Reinartz, Cockaday, super-regenerative and reflex sets, including full construction data.

RIEGER RESEARCH CORPORATION, 118 West 44th St., N. Y.

ALWAYS MENTION Q.S.T WHEN WRITING TO ADVERTISERS
RADIO CABSINETES

29 Different stock sizes, and shapes ranging in height from 6” to 8” and in width from 6” to 30”.

Rich Mahogany Finished
Highest grade Cabinet work
Made complete or knocked down. Write for illustrated folder and prices.

This table is especially designed for radio. The compartment is 12” high with two doors opening full length. The table top is 20” wide x 36” long, and the height is 30”.

The legs are 1½” square brass capped with casters.

A durable piece of high class furniture $22

“Signal” Radio Table

20 x 36 in.
Height 30 in.

“Build Your Own”
With “RAUCO” Parts!
If you need small radio parts in a rush, “RAUCO” will supply them cheaper, better and quicker than any one. Be sure to get our great 68-page catalog, over 500 different parts, 300 illustrations. This catalog contains 75 Vacuum Tube Hook-Ups, all values being shown. Due to great cost, catalog sent only upon receipt of 10c, stamps or coin.

Radio Specialty Co., Ltd., 104 Park Place, New York

Write for Special Price List on TRANSMITTING APPARATUS

Send 10c for copy of new 48-page RADIO CATALOG

CHICAGO SALVAGE STOCK STORE
509 S. State St., Dept. 212, CHICAGO, ILL.
TUSKA 220 TUNER

THE FAVORITE OF AMATEURS

No tuner has ever been placed on the market that has been so popular with novices or experienced amateurs as the TUSKA 220 TUNER. Made by a house that has enjoyed the confidence of the radio world it is an expert and conscientious production.

The Type 220 is a complete regenerative tuning system. It has two distinct circuits; one with a range of from 150 to 385 meters, the other from 375 to 800 meters. The tuning units are: a primary series condenser, a secondary tuning condenser, plate variometer for regeneration, coupling control and wave change switch. Designed to cover its full wave lengths range with maximum efficiency. There are no dead end or capacity losses because of the wave change switch.

The apparatus is mounted in a fine mahogany cabinet 20x6x7 inches; the panel is Formica, machine engraved; high grade knobs and dials.

Due to a big merchandising deal Stern & Co., Inc., are able to offer TUSKA 220 TUNERS at a price that places them within the range of every pocketbook. SHIPPED, (WHILE THEY LAST) BY PARCEL POST OR EXPRESS, INSURED, PREPAID TO ANY POINT IN THE UNITED STATES, ON RECEIPT OF POST-OFFICE OR EXPRESS MONEY ORDER OR CERTIFIED CHECK FOR $21.50

Master BALDWIN Phones

We are offering Master BALDWIN Headsets and Single Units, with cords, the product of the H. G. Saal Co., Chicago, made under the Nathaniel Baldwin Patents and fully guaranteed as to material and workmanship at prices never before equalled. Just what every amateur needs.

HEADSETS, List Price $12.00, by Parcel Post, Prepaid Anywhere in the United States $7.90
SINGLE UNITS, List Price $6.00, with cord, by Prepaid Parcel Post anywhere in the United States $3.95

BIG MONEY-SAVING COMBINATION OFFER!

We will ship, on receipt of Express or Post-Office Money Order, certified check or Cashier's Draft, by Parcels Post, or Express, Prepaid, to any point in the United States—

ONE TUSKA 220 TUNER
ONE MASTER BALDWIN HEADSET

Both for $28.50

Look Us Up
In
Dun
Or
Bradstreet

S T E R N
& CO. INC.
HARTFORD, CONN.

Largest
Radio
Distributors
In

Southern New England

ALWAYS MENTION Q S T WHEN WRITING TO ADVERTISERS
"Red-Heads" are guaranteed radio phones. You run no risk when you buy them. Money back if after 7 days' trial, you're not satisfied that they're the best receivers on the market at the price. Why not act right now and get a pair? It'll mean getting the maximum from broadcasting from the day you put them into use.

These remarkable head-sets are made by The Newman-Stern Co., one of the pioneer radio manufacturing houses in America.

JUST OUT
The new 1924 "Red-Head" Jr.

$6.50 $5.00 PER PAIR Complete

This is the standard 3,000 ohm "Red-Head." The 1924 Model F has eleven most of the quality features of the standard Model F here described. The resistance is 2,000 ohms per set instead of 3,000 ohms. A remarkable value.

"Red-Heads" sent prepaid on receipt of price if you are unable to get them at your dealer's.

THE NEWMAN-STERN COMPANY
Dept. QS
Newman-Stern Bldg. Cleveland

14K. Gold Supernensitive
RUSONITE CATWHISKER, Price Permanent. Will not Oxidize 25c

RUSONITE REFLEX CRYSTAL
Manufactured Expressly for Reflex Circuits. Will Stand Up Under Heavy Plate Voltage.

Order from your dealer or direct from
RUSONITE PRODUCTS CORP.
15 Park Row, New York City

GENUINE OHIO BRASS CO.
INSULATORS
DIRECT FACTORY DISTRIBUTOR
Jobbers and Dealers Write. Retail orders handled when no dealer in territory. 5" Size 75c

H. N. UMBARGER
65 N. Diamond St., Mansfield, Ohio

RADIO PANELS
Cut exactly to size and a guaranteed 12 hour shipment. 1/4" thick 31/4" per square inch. 1/8" thick. 31/4" thick. 31/8" thick. The resistance is 2,000 ohms per set instead of 3,000 ohms. A remarkable value.

RADIO INSTRUMENT & PANEL CO., 564 W. Monroe St., Chicago, Ill.

"WARRANTED"
Audio Transformer

MTD. $2.00 UNMTD. $1.45

10 Days Money Back Guarantee
Dealers Write

C. C. ENDLY
22 Sturges Ave.
MANSFIELD, O.

"RED-HEAD" RADIO RECEIVERS

"Red-Heads" are guaranteed radio phones. You run no risk when you buy them. Money back if after 7 days' trial, you're not satisfied that they're the best receivers on the market at the price. Why not act right now and get a pair? It'll mean getting the maximum from broadcasting from the day you put them into use.

These remarkable head-sets are made by The Newman-Stern Co., one of the pioneer radio manufacturing houses in America.

JUST OUT
The new 1924 "Red-Head" Jr.

$6.50 $5.00 PER PAIR Complete

This is the standard 3,000 ohm "Red-Head." The 1924 Model F has eleven most of the quality features of the standard Model F here described. The resistance is 2,000 ohms per set instead of 3,000 ohms. A remarkable value.

"Red-Heads" sent prepaid on receipt of price if you are unable to get them at your dealer's.

THE NEWMAN-STERN COMPANY
Dept. QS
Newman-Stern Bldg. Cleveland

14K. Gold Supernensitive
RUSONITE CATWHISKER, Price Permanent. Will not Oxidize 25c

RUSONITE REFLEX CRYSTAL
Manufactured Expressly for Reflex Circuits. Will Stand Up Under Heavy Plate Voltage.

Order from your dealer or direct from
RUSONITE PRODUCTS CORP.
15 Park Row, New York City

GENUINE OHIO BRASS CO.
INSULATORS
DIRECT FACTORY DISTRIBUTOR
Jobbers and Dealers Write. Retail orders handled when no dealer in territory. 5" Size 75c

H. N. UMBARGER
65 N. Diamond St., Mansfield, Ohio

RADIO PANELS
Cut exactly to size and a guaranteed 12 hour shipment. 1/4" thick 31/4" per square inch. 1/8" thick. 31/4" thick. 31/8" thick. The resistance is 2,000 ohms per set instead of 3,000 ohms. A remarkable value.

RADIO INSTRUMENT & PANEL CO., 564 W. Monroe St., Chicago, Ill.

"WARRANTED"
Audio Transformer

MTD. $2.00 UNMTD. $1.45

10 Days Money Back Guarantee
Dealers Write

C. C. ENDLY
22 Sturges Ave.
MANSFIELD, O.

"RED-HEAD" RADIO RECEIVERS

"Red-Heads" are guaranteed radio phones. You run no risk when you buy them. Money back if after 7 days' trial, you're not satisfied that they're the best receivers on the market at the price. Why not act right now and get a pair? It'll mean getting the maximum from broadcasting from the day you put them into use.

These remarkable head-sets are made by The Newman-Stern Co., one of the pioneer radio manufacturing houses in America.

JUST OUT
The new 1924 "Red-Head" Jr.

$6.50 $5.00 PER PAIR Complete

This is the standard 3,000 ohm "Red-Head." The 1924 Model F has eleven most of the quality features of the standard Model F here described. The resistance is 2,000 ohms per set instead of 3,000 ohms. A remarkable value.

"Red-Heads" sent prepaid on receipt of price if you are unable to get them at your dealer's.

THE NEWMAN-STERN COMPANY
Dept. QS
Newman-Stern Bldg. Cleveland

14K. Gold Supernensitive
RUSONITE CATWHISKER, Price Permanent. Will not Oxidize 25c

RUSONITE REFLEX CRYSTAL
Manufactured Expressly for Reflex Circuits. Will Stand Up Under Heavy Plate Voltage.

Order from your dealer or direct from
RUSONITE PRODUCTS CORP.
15 Park Row, New York City

GENUINE OHIO BRASS CO.
INSULATORS
DIRECT FACTORY DISTRIBUTOR
Jobbers and Dealers Write. Retail orders handled when no dealer in territory. 5" Size 75c

H. N. UMBARGER
65 N. Diamond St., Mansfield, Ohio

RADIO PANELS
Cut exactly to size and a guaranteed 12 hour shipment. 1/4" thick 31/4" per square inch. 1/8" thick. 31/4" thick. 31/8" thick. The resistance is 2,000 ohms per set instead of 3,000 ohms. A remarkable value.

RADIO INSTRUMENT & PANEL CO., 564 W. Monroe St., Chicago, Ill.

"WARRANTED"
Audio Transformer

MTD. $2.00 UNMTD. $1.45

10 Days Money Back Guarantee
Dealers Write

C. C. ENDLY
22 Sturges Ave.
MANSFIELD, O.
Progressive Radio Dealers in all parts of the country realize the importance of handling strictly high grade radio materials and apparatus. This organization wholesales exclusively—they represent only the leading radio equipment manufacturers—their products are guaranteed—they are, therefore, a dependable source of supply, and the type of jobber you should tie up with for your requirements.

Your customers will be better satisfied—your prestige will be constantly strengthened if you are able to carry ample stocks of the right kind of radio supplies at all times.

Tieing up with Hommel Service will absolutely assure these results.

Catalogue 236 will be sent promptly to dealers.

AMATEURS—Tell us what you are interested in—send us the name of your dealer and we will see that you are supplied promptly.
HAM ADS

Six cents per word per insertion in advance. Name and address must be counted. Each initial counts as one word. Copy must be received by the 1st of month for succeeding months' issue. NOTE NEW CLOSING DATE.

WHY USE YOUR SET FOR A MORGUE? GET AN EDUCATION WITH FACTS FOR YEAR. RARELY ASSEMBLED, FUSED OAK COVERED CABINET, LARGEST SIZED ELEMENTS WIRED SOLID, PURE HICKORY WOODEN SEPARATORS, PURE STEEL TUBES, WHITE SEALING OIL INSTRUCTIONS, $15.00. WILLARD COLLOID CHARGER, $2.00. TUBE CAR 36 CUB. INCHES, COST $12.00. COMPLETE SINGLE PLATE 50c, ANNEALED GLASS TEST TUBES, 5/8"x6" 50c. LARGEST SIZE TYPE A EDISON ELEMENTS 6¢ PAIR, DRILLED AND CUT IN UNITS 74, WIRED AND SHAPED TO 10c, HICAPACITY UNIT READY TO WIRE 13¢. COMPLETE SINGLE PARTS FOR HICAPACITY CELL 22¢, WIRED AND ASSEMBLED 25¢. TYPE G ELEMENTS 5¢ PAIR, 2 POSITIVES 1 NEGATIVE 6¢. HICAPACITY CELL PARTS 20¢, WIRED AND ASSEMBLED 25¢. INCLUDING SOLUTION, GREAT FOR HAM WIRELESS AMPLIFIER, ELECTRODYNES. SAMPLE A OR Q TYPE CELL 99¢ PURE SIZE 20 SOFT DRAWN NICKLE WIRE FOR ELECTRODYNES 1 1/2 FOOT, PERFORATED HARD RUBBER SEPARATORS 5¢, CAN EDISON SOLUTION FOR 100 VOLTS $1.50, DRY SOLUTION 75¢, B. PER CUB. INCH, EVERYTHING SEND BY TELEGR. FROM COUNTERPOISE TO ANTENNA. EASE THE CANS OFF THE EARS AND GET ONE OF OUR LARGE SIZED TYPE A EDISON TUBES AT $1 PREPAID. AMPLITONE $2.10; BURGESSES $2.50; GEBHARDT $2.50; FRESH $3.00 Burgess $4.50; PAULS $4.50; WD-11 $5.50; Northern Electric peanut tube $5.50. CHEMICALLY PURE SHEET ALUMINUM, 90% PER SQ. FOOT. SHEET LEAD 30¢ PER LB. SHOOTS $1.75. OUR BEST INSULATED ANTENNA IN TOWN. FORMICA TUBING FOR INDUCTANCES, 5" INSIDE DIAMETER, $3.95. HARWICK DIRECT FROM FACTORY, WALL PRICE $2.50 EACH. JUST OFF THE PRESS, RADIO SERVICE CALL BOOKS 50¢ POSTAGE 10¢. TRANSFORMER CORE CUT TO YOUR SIZE, GIVE US MEASUREMENTS AND LET US QUOTE.

OHIO BRASS INSULATORS, 10" LENGTH $1.75 EACH 5" LENGTH 75c. BETTER THAN THE REST. ORDER NOW! AND HAVE THE BEST INSULATED ANTENNA IN TOWN. FORMICA TUBING FOR INDUCTANCES, 5" INSIDE DIAMETER, PER FOOT 5¢ 50¢ IN HEADLESS. LESS THAN FOOT ADD 10% BOTH SIZES 1/8TH WALL ELECTRODE LEAD INSULATORS 1/8 BRASS AND ROG MID-115 MEASURES THE ART an WALL PRICE $2.50 EACH. JUST OFF THE PRESS, RADIO SERVICE CALL BOOKS 50¢ POSTAGE 10¢. TRANSFORMER CORE CUT TO YOUR SIZE, GIVE US MEASUREMENTS AND LET US QUOTE.

CHEMICALLY PURE SHEET ALUMINUM, 90% PER SQUARE FOOT. SHEET LEAD 30¢ PER LB. SHOOTS $1.75. OUR BEST INSULATED ANTENNA IN TOWN. FORMICA TUBING FOR INDUCTANCES, 5" INSIDE DIAMETER, $3.95. HARWICK DIRECT FROM FACTORY, WALL PRICE $2.50 EACH. JUST OFF THE PRESS, RADIO SERVICE CALL BOOKS 50¢ POSTAGE 10¢. TRANSFORMER CORE CUT TO YOUR SIZE, GIVE US MEASUREMENTS AND LET US QUOTE.

CROCKER-WHEELER Generator Half-Kilowatt 1500 V. O. C. Full-Style, bar conform to wire 11¢, HICAPACITY CELL PARTS 20¢, WIRED AND ASSEMBLED 25¢, INCLUDING SOLUTION, GREAT FOR HAM WIRELESS AMPLIFIER, ELECTRODYNES. SAMPLE A OR Q TYPE CELL 99¢ PURE SIZE 20 SOFT DRAWN NICKLE WIRE FOR ELECTRODYNES 1 1/2 FOOT, PERFORATED HARD RUBBER SEPARATORS 5¢, CAN EDISON SOLUTION FOR 100 VOLTS $1.50, DRY SOLUTION 75¢, B. PER CUB. INCH, EVERYTHING SEND BY TELEGR. FROM COUNTERPOISE TO ANTENNA. EASE THE CANS OFF THE EARS AND GET ONE OF OUR LARGE SIZED TYPE A EDISON TUBES AT $1 PREPAID. AMPLITONE $2.10; BURGESSES $2.50; GEBHARDT $2.50; FRESH $3.00 Burgess $4.50; PAULS $4.50; WD-11 $5.50; Northern Electric peanut tube $5.50. CHEMICALLY PURE SHEET ALUMINUM, 90% PER SQ. FOOT. SHEET LEAD 30¢ PER LB. SHOOTS $1.75. OUR BEST INSULATED ANTENNA IN TOWN. FORMICA TUBING FOR INDUCTANCES, 5" INSIDE DIAMETER, $3.95. HARWICK DIRECT FROM FACTORY, WALL PRICE $2.50 EACH. JUST OFF THE PRESS, RADIO SERVICE CALL BOOKS 50¢ POSTAGE 10¢. TRANSFORMER CORE CUT TO YOUR SIZE, GIVE US MEASUREMENTS AND LET US QUOTE.

EFFICIENT RADIO SETS explains how to make and operate efficient sets for receiving wireless broad-casting; New Illustrated Copyrighted Book 25¢. A. R. Collins Co., 197 Fulton, Brooklyn, N. Y.

FOR SALE: Hall relay and recorder complete. Cost $75 will take $25 quick sale. Edward Cooper, Jr., Bramwell, West Va.

WSAW FOR SALE 20 watt fone, C.W., DX 2300 miles, sell for $85. Send for photo and description, its a rare bargain. Act now. Curtice & McElwee, Inc., Canandaigua, N. Y.

250 PRINTED 3 1/2x5 1/2 cards $2.00. J. H. Cooper, Greenfield, Mass.

BROADCASTING STATION complete For Sale: Station known as WIL located in Washington, D. C. This station has no introduction, its performances for the last two years speak for the set. This station will be in operation until it is sold. For particulars write to the Continental Electric Supply, 808 Ninth St. N.W., Washington, D. C.

NEW FIRTH famous five tube "Vetaphone" receiver, comprising tuner, two steps radio, detector, two steps audio, and built-in loud-speaker. Cost $250.00. Sell for $95. Brand new. N.B. Tube unused, $46.00. Palmer Craig, 2401 Glenmore Ave., Cincinnati, Ohio.

FOR SALE: 2AUZ's 100 watt C.W. set complete—2 W.E. tubes, changer, transformer, etc. Won second prize in Second District Convention. Price $180.00 Photo on request.

EXCHANGE 10-Watt C.W. and phone for Western Electric power amplifier and horn tubes. Box 781, Dennison, Ohio.

FOR SALE: Paragon 10 Watt C.W. and Phone without receiver, 9" tubes, etc., cabinet very little. Cost $70. Make offer. 5JB, Hot Springs, Ark.

ATTENTION all Hams who DESIRE SPEED. A brother in Virginia by using his home-made broadcast receiver Speed from 15 to 30 words in One Evening. Ask us for copy of his letter and get the facts as told by himself. Dodge Radio ShortCut, Dept. SC, Mamaroneck, N. Y.

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS

COPPER BRAID—best conductor known for RF circuits. Surfaces is what counts. Many mechanical advantages over solid wire ribbon or tubing. CW inductances, loops, OT's, pig-tails, leads, ins. Twenty sizes. No. 16 for wiring receivers, fifteen feet for 50¢. 9C7P.

QRA Can. 30M is W. E. Eldert, 60 Fifth Ave., St. Thomas, Ontario. Will appreciate and answer all cards.

"WARRANTED" C.W. TRANSFORMERS new and ten day's money back guaranteed. 900 watt or plate transformers taps 500, 1000, 1500, 3000 volts unmounted $13.00. 200 watt, high voltage 550, 700, 750 volts, filaments transformers, 150 watt volts 8, 10, 12 volts unmounted, $10.00. 50 watt high voltage 275 filament voltages 8, 10, unmounted $7.00. Filament transformers, 150 watt voltages 8, 10, 12, $7.00. 50 watt, M.A., 1½ Henry-unmounted, $3.00. Order direct from this ad. Dealers write. C. C. Endly, 22 Sturges Ave., Mansfield, Ohio.

FOR SALE: 9AHQ 1 KW Sink Spark $60, 10 watt mounted C.W. $65. Write 4 dope. 9AHQ, Mendota, Ill.

FOR SALE: 10 point aluminum Benwood gap with extra rotor $12.00, Heavy Copper Ribbon O.T. $5.00. Wanted—1 KW type "R" Thordarson. Send description. George B. Faunce, 30 Caloris Ave., Millville, N. J.

FOR SALE: 3 pr. head phones, Books on wireless, one large and one small Westinghouse sectegon Battery Charger, Magnavox. (Set of Marconi Wireless telegraphy double face records—9 in set.) Omni-graph, lot Radio Magazines, Radio wet battery, also lot of parts and supplies. Lock Box 708, Calumet, Iowa.

Radio. We are temporarily overstocked on following prices. Baldwin headset $9.25, Unit also lot of parts and supplies. Lock Box 708, Calufield, Ohio.

WANTED: All A.R.R.L. members to know that we have a complete stock of radio parts and give mail orders special attention. Write, phone or wire. E. E. McCoog Mfg. Co., Radio Division, K.F.J.L., Ottumwa, Iowa.

ALUMINUM SHEET ⅛" thick. The real stuff $1.30 square foot. Send money order to E. E. HARRISON, Livingston Hall, Columbia University, New York City, N. Y. $100 buys Paragon RA-10, DA-2, Philco A battery, four B batteries, three tubes, rectifier, aerial wire, hand-held phone and envelopes. Hinds & Edgerton, Argus, Greenfield, Ill. Ad will appear but once.

GREBE DIAMs, 4" type, yes, the real thing, $1.50; Baldwin Phones (C) R. Kline $10.50; Singles $5.25; DeForest Vernier Condensers .0015 $12.00—.001 $11.00; UV-199-WD11-WD12-UV-201A-$8.55; King Amplitone Horns $7.00; Pathe Moulded Varicoupler $3.75; Era Reflex Transformers $4.75; Samson Transformers $6.50; Pathe Diams, similar to Grebe, 4"—$1.25; 3"—$1.00; Rhetisal Dial 2.80; Thordarson Transformers, 3-1 $3.50; 6-1 $4.15; Federal-65 $6.75; Acme Radio or Audio $4.25; Murdock Transformer 2000 $2.75; 3000 $4.25; All-Wave Couplers $6.50; Push-Pull Transformers $12.50 set; Foda Triple Sockets $2.75; Brandes Superiors $5.75; Every- thing brand new. Postpaid on set or anything in the radio line. Hendrick Radio Equipment, 85 West 181 Street, New York City.

FOR SALE: Jewell 0-5 thermo- ammeter, $9.00; Single circuit tuner, $15.00. Two bakelite sockets, one large and one, 500 volts, $3.00 each. McTighe Storage B's, $2.50 each. Three variable condensers, cheap. A. Henglebrok, 624 Monroe, Newport, Ky.

HAMS: Get our samples and prices on printed Call Cards, Letterheads and Envelopes. Hinds & Edgerton, Radio Printers, 19 S. Wells St., Chicago, Ill.

SELL VERY CHEAP: Three Bradleystats, three RCA sockets, New five watters $5.50, both RCA and Navy RCA rheostat, RCA ten fifteen condensers, Atwater-Kent varicounters Dictograph loud speaker, also quantity defunct five watters and receivers. B. L. Himnant, 4NT, Wilson, N. C.

OMNIGRAPH FOR SALE: Five dial, first class receiver, twelve dollars. Donald Houghton 120½ Chestnut St., Abilene, Texas.

EDISON ELEMENTS for storage B batteries, six to ten watts per tube, $1.25 each. Prefer postpaid, depending entirely upon quantity ordered. I handle only strictly first grade full capacity elements. A. J. Hanks, 107 Highland Ave., Jersey City, N. J.

SELL: 8 Stud Super-Benwood, Glass insulated electrodes $8; ½ KW Thordarson $6. Both good as new. 2BW.

8KG's 10 watt tone heard in London, England, (verified) and 31 states since June. Ask 20M, 5AMF, 2CAK, 8DAT and many others how they like the circuit. Oh yes, Thordarson Special Transformer—handles one bottle, $5.00. J. Wm. Kidd, 404 Lafayette St., Niles, Ohio.

OMNIGRAPH FOR SALE: 350 volt Westinghouse dynamotors for 10 or 27.5 volt battery. Complete with field exciters. Inductances —Bakelite construction—beveled copper ribbon 19" diam. 60 or 14 turns. 7½" diam. 30 turns. $7.50 each. Henry M. Adair, 501 East 34 St., New York City.

PROTECT YOUR APPARATUS with small fuse wire in dangerous places. Eighth, quarter, half, three-quarter, one-ampere and larger sizes, three feet for two bits. 9C7P.
STATION CALL LETTERS IN COLOR AND DESCRIPTION OF STATION

30 Waite St., Norwich, N. Y.

FOR SALE: Everready 6 V. generator for battery charger $10. Gasoline soldering torch $3, both per-
and other supplies on hand. Prices reasonable. Write
Crafton, Penna.

ON OHIO AND WAGNER 60 cycle 110 V. synchronous
motors $16. Attachments to make synchronous rectifiers for C.W. transmission $12.00. Acme plate trans-
transformers, 1 kw High K. $40.00 All for $39.00 R.A.C. LIST for stamp. All prepaid. Stamps accepted. Kladag
Radio Laboratories, Kent, Ohio.

WANTED Parts for 100 watt. 9DLT.

MAGNAVOX R3 OR M1. Latest nationally adver-
tised transmitters. List $35. Introductory $25. The
factory sealed carton is your guarantee. Radio Cen-
tral, Dept. Q, Abilene, Kansas.

FIFTY ASSORTED FLAT HEAD solid brass machine screws, nuts, washers, copper lugs, 50c. Eight
initial binding posts, set 60c. Twelve niched binding posts, 50c. All for $2.50 R.A.C. LIST for stamp.

FOR SALE: Hairdressing set includes Barber Klik, $1.80, and other supplies on hand. Prices reasonable. Write
Kimley Electric Company, Inc., 2865 Main St., Buffalo,
New York.

CALLS HEARD POSTAL CARDS (for DX reports).
Station Call letters in color and description of station
printed or hand painted 30c each. Use rubber stamps,
station letterheads, envelopes, message cards, blanks, etc. Printed by BAVO, Members
A.R.R.L., printed for samples. "Used Everywhere—Go Everywhere." Radio Print Shop, Box 552,
Kokomo, Indiana.

GENERATOR—100 W. 350 V. complete with belt and pulleys. $20. 9DLT.

TELEGRAPH—Morse and Wireless—taught at home in half usual time and at trifling cost. Omni-
ograph Automatic Transmitter will send, on Sender or Receiver, at any speed. Insanely rapid speed expert operator would, Adopted by U. S. Govt.
and used by leading Universities, Colleges, Technical and

TELEGRAPHY— Morse and Wireless—taught at home in half usual time and at trifling cost. Omni-
ograph Automatic Transmitter will send, on Sender or Receiver, at any speed. Insanely rapid speed expert operator would, Adopted by U. S. Govt.
and used by leading Universities, Colleges, Technical and

FOR SALE: Ten 100 AC with antenna, counter-
poise and one tube $50. Three circuit receiver $15.
Detector 2 stage $20. 1000 ohm phones $3.00. Yale
100 audiper hour battery $15. Two B batteries $3.50.
One Radiotron detector tube and two amplifiers $15.
One RF Battery Charger $12.00. Chelsea 2 plate conden-
sors and dial $7.50. All for $18.00 Charles
M. Nash, Opr. S.S. Munhalbro, Portland, Me. Radio
1CRO.

TELEGRAPHY-Morse and Wireless—taught at home in half usual time and at trifling cost. Omni-
ograph Automatic Transmitter will send, on Sender or Receiver, at any speed. Insanely rapid speed expert operator would, Adopted by U. S. Govt.
and used by leading Universities, Colleges, Technical and

FOR SALE: Ten 100 AC with antenna, counter-
poise and one tube $50. Three circuit receiver $15.
Detector 2 stage $20. 1000 ohm phones $3.00. Yale
100 audiper hour battery $15. Two B batteries $3.50.
One Radiotron detector tube and two amplifiers $15.
One RF Battery Charger $12.00. Chelsea 2 plate conden-
sors and dial $7.50. All for $18.00 Charles
M. Nash, Opr. S.S. Munhalbro, Portland, Me. Radio
1CRO.

FOR SALE: Honeycomb receiving set thirteen coils
150 to 250000 meters. DeForest geared triple coil
movable condenser. G. M. Nelson, 56 Pennsylvania, Binghamton, N. Y.

FOR SALE: Varimetre Regenerative Receiver $25.
Detector and two step $25. All guaranteed.
SIL 41 Beattie Ave., Lockport, N. Y.

FOR SALE: Cash: Power Transformer 600-1200-
1800 volts, $12.50. Thermo-couple Jewell Ammeter 0-5, never used. $9.50. 3600 R.P.M. Induction
Motor, 434 W. 63rd St., Cleveland, Ohio.

MAGNETITE CONDENSER—Can be adjusted from
.006 to .000 F. M.F.D. Formica base and cover,
Consists of tubes and Mica thin plates. $5.00 each. For
transmitting or receiving, .75c postpaid. Radio
Frequency Transformers—Type S, Range 150 to 450
meters. $5.00 each, Range 1, Range 2, etc. $7.00 meter and 2$2 postpaid either type. Nelson Radio Laboratories,
1773 Carlyn Road, Cleveland, Ohio.

SELL: 4 tube Neutrodyne $60. H. C. tuner and detector with 4 coils. Radio apparatus built to order.
C. F. C. Gideon, 1534 Clifton St., Washington
D. C.

MASTER RADIO CODE in 15 Minutes; Quality for
Exam. 3 hours best record on our students. To hesitate over
Code kills Speed. To master Code our ways kills
Hesitation. Receiving records 100 Licensed Students
One Dime. Code Instructions that Instruct only
$2.00. Dodge Radio Shortcut, Dept. SC, Mamaroneck,
N. Y.

FOR SALE: Crocker-Wheeler 1/2 KW 500 cycle
motor-generator $85; 1/2 KW 500 cycle alternator $40;
Telefunken 500 watt tubes $90; IP 500 receiver Navy
$18.00; 8 line P. A. $250; 500 watt extra $25.00;
$2500 watt transmitter $10; Weston switchboard wattmeter
$12. J. Edw. Page, Cazenovia, N. Y.

A REAL WAVE TRAP at last for your $7.50. Other
specials this month, one step amplifiers $5, 4 tube
$75. Jack and other standard parts. Sent Parcel Post C.O.D.
Twenty-four hour service.
Giillmore's Radio Shop, 48 Thomas St., Newark, N. J.

FOR SALE: 2 Magnetic modulators UT1367, $12.00 ea.;
One 1500 watt transformers $25.00; 1500 watt
 transformers $25.00; 2 grid leks
UP1718, $1.00 each; 6 porcelain sockets UT541, $2.00
each, 3 50 watt tubes used very little, $20.00 each; Faradon fixed variable condenser UCI105, $3.75
each; 3 Faradon fixed condensers UCI104, $1.75 each;
Acme special filtration transformer $15.00; 2 Set of 5
110 volt 60 cycle secondary 10 and 12 center tap,
$30.00; 5 filter condensers 1 Mfd. $7.50 each; A.C.
Voltmeter-0-15 V, $6.00; Weston Milliampere
0-500, $6.00; Weston Ammeter 0-3A, $6.00
D.C. Voltmeter 0-500 V, $12.00; Jewell Thermocouple
0-100 A, $10.50; Electric Specialty D.C. generator
1000 V, 1000 watt with field rheostat, $100.00;
Wheeler 500 V generator 250 watt with field rheostat,
$15.00; DeForest 15 panel unit set 2 step, $50.00,
3HB.

SELL: Detector, two step in cabinet, $10; Trans-
formers, Acme A2, $3.00, A3, $5.00; UV1714 $4.00;
Coefix $2.00; Sacagawea WD12A $8.00; 200V $3.20;
201s $4.00; AP $5.00; Rhee's 50¢; Fones, Baldwin $7.00; WE $7.00; Stromberg $3.50; Condens-
ers Ag 802 $7.25; Ag 2747 $5.00; 500 volt transformer
UC848; 2 plate $20.00; 43 $7.50; Potentiometers, Fada, Paragon, etc 50¢; 2R 536 $1.00; WD12 sockets
360 DeForest 3 coil gem mount $5.00; 0.2/250 0.5.
RF meter $8.00; 0-300 Jewell Milliammeter $4.50;
Acme choke $2.50; Atwater-Kent Coupler $2.50
Sensit of each all guaranteed as new. Harold Quick,
8COI, Syracuse.

STOP CORROSION: Seven strand ENAMELLED copper
airper wire $1.25 hundred ft. postpaid. Eugene

FOR SALE: DeForest Midget Radiophone Trans-
mitter $45. Radiodo Variocoupler $3.50. G. Robin-
son, 1942 Washington Blvd., Chicago, Ill.

TRANSMITTERS AND RECEIVERS overhauled, re-
paired, rebuilt and made to "percolate." Any circuit,
Twelve years' service experience. swift date.

TRADE—Receiving apparatus for five or fifty watt
transmitting apparatus. Can use meters, inductance, transformers, and tubes. What do you want? We
have a large stock. Radio Shop.

DO YOU KNOW that Mix has ZENITH at WNP?
Are you going to THE same advantage in your DX
this winter? Write us about special offer to Hams,
clubs, schools, colleges, etc. Cannot get ZENITH, free. We also have a complete
line of standard transmitting and receiving apparatus
for a few dollars. ZENITH has been great for 2 or 3 five watters. If you have any special
needs we are the ones to consult. Radio Central
Supply, 3143 W. 63rd St., Chicago, Ill.

SOLD: 3 circuit detector, one Audio receiver. 9AHO, 509 E. Maple St., Fairbury, Ill.

MAKING YOUR OWN. Grebe CR5 inductances for sale, wound with 20/38 litz, very neat, taps soldered, complete ready to attach to your variometer, $3.90. Grebe CR5 coils wound to order by expert. Money promptly returned if you’re not satisfied. E. Rosewater (formerly Chief, Winding Dept., A. H. Grebe & Co.), 8514 106 St., Richmond Hill, L. I.

A BARGAIN—Complete ten watt C.W. transmitter with S tubes and Mershon condenser; includes tubes, two meters, separate filament, and plate transformers. Fifty dollars. 9EEJ.

1000 VOLT ½ KW Esco gen. for $55. Shoved BUE to New Zealand. Guaranteed. Like new. N. Schafer, 32 Broadway, Lancaster, N. Y.

FOR SALE: Omniphraph No. 2. $16.00. F. F. Chargor, $7.50. Write Fred Smith, Menden, Iowa.

FOR SALE: DeForest 3 Stage Oufit, Transformer coupled, 3 Jacks and Honeycomb coil in 2 Cabinets with covers. Like new, $25.00, less tubes. Geo. Schuls, Calumet, Mich.

WESTERN ELECTRIC No. 216A bulb—new $8.50; Moordhead Amplifier bulb—new $6.00; Murad Type T.P.A. r.f. transformer—new $4.00; Holt Crystal Receiver—new $5.00; Brand new lineman’s straps with traps—$5.00. D. O. Shepard, Plantsville, Conn.

GENERATOR—3 H PS500 V shunt wound, speed only 1100 RPM. Get 1000 V from it and handles heavy load. Perfect condition. 9DLT.

FOR SALE: Paragon RRA10 D2Z $90, 10R $25; Honeycomb with 2 stops with coils $90; Grimes inverse Duplex $60; Sets built to order and repaired. Smith, 191 Alexander, Upper Montclair, N. J.

SACRIFICE sale of Radio Parts, 23 plate condenser $1.50, VERNIER $2.50; 45 plate $1.75, VERNIER $2.95. General Purpose Photoflood $9.60. Guaranteed Plates $2.90. Crosby “Ace” Type V with tube, batteries, phones, complete serial $29.75. List price $35.00. Satisfaction or money refunded. Dept. C, Spies Radio, 1118 N. Negley Ave., Pittsburgh, Penna.

EXCESS APPARATUS for sale, including a REAL Amateur Single Circuit with Detector, One Step, and Cabinet. A1 Condition. Write for list O.M. Ralph Speight, 1720 Third Ave. North, Minneapolis, Minnesota.

FOR SALE: Paragon RA-10, DA-2 Detector Amplifier. Western Electric Amplifier and Horn. 40% off. List. 100 watt Western Electric transmitting set with high voltage and filament transformer and tubes $125. All cash. Western Electric VT-1 $6.00. New Fifty Watt Genera Electric tubes $25. Each. New $250 watters $50. 9DXN.

LOWEST PRICES on all Radio Sets and Parts. Write us first. Radio Electric, 729 Linderman Ct., Kansas, Wis.

BULB RECTIFIERS, for any voltage; half and full wave types, made to order. Standard type, for “A” and “B” Batteries, up to 100 volts and variable cur rent. New Edison types are available in quantities. New Edison Cells, 37.5, 75, and 125 Amape Hours, $2.50, $3.25, $4.00 per cell. Your opportunity to get excellent quality, general and everlast play battery at ¾ price. Only a few on hand. A. R. Spartana, 615 N. Washington St., Baltimore, Md.

REINARTZ coils $1. 3 spider webs, 150 to 800 meters $2. Used apparatus bought and sold. Wan don DeForest transmitter sale, built for ZAII, tuner, RCA parts. Radio 8CMU, Lakeview, Ohio.

15 WATTER for sale complete, tubes, sockets, voltmeter, Thermocoupled ammeter, inducances, Century buzzer, rheostats, grid condenser and leak, switches, Mounting on Formica panel, and wired, $40.00 SWY.

FOR SALE: 10 watt CW and SWR receiver used last season at SRN. Everything complete with tubes and accesories. 2404 Univ. Ave., Austin, Texas.

FOR SALE: 3 Cotocoi Radio Transformers, cost $5.50, sell $3.50; 2 Erla Radio Transformers, cost $2 each, sell $1 each. Prepaid on 3 or all. Geo. Schulz, Calumet, Mich.

BARGAINS: Ferbend Wave Traps $5.00; Connecticut JR07 Condensers $5.00; Wireless keys $1.25. All new. Postpaid. Van Blaricom, Helena, Montana.

FOR SALE: Brand new 750 watt C.W transformer RCA UP1016 $31. Regenerative receiver consisting of 2 Atwater-keen variomters, coupled, 2 variable condensers, detectors and two step, all in cabinet for $60. W. Vollkommer, 48 Windsor PI., Brooklyn, N. Y.

1ZE’s Reinartz Tuner with tubes $50.00.

A.R.R.L. MEMBERS AND AMATEUR CLUBS AT TENTION! HERE IS AN UNUSUAL OPPORTUNITY. Am compelled to dispose immediately of my brand-new Collins B. Kennedy (latest type) Universal Receiver No. 110 (180-28500 meters), and their No. 525 Amplifier. In original packing cases and A1 condition. Price $300, for quick sale H. H. Wilkins, 611 West 34th St., New York City.

COMPLETE 20 watt Radiophone less generator $100.00 General Electric Motor Generator, 400 watt, 500 volt, $100. 120 watt spark set $15.00. Both make offers. The Wireless Shop, Punxsutawney, Penna.

FOR SALE: Eight genuine VT-11 Signal Corps Vacuum tubes. Here’s your only chance to get these tubes $5.00 a piece. All money orders returned if not satisfactory. The Wireless Shop, Punxsutawney, Penna.

FOR SALE: General Electric motor-generator, 500 volts, brand new, $47.50; Jewell 0-500 voltmeter, $10.00; Jewell 0-3 thermo-couple radiometer, $3.00; RCA small grid leak, 75e; RCA UC1014 Condenser, each $2.00. Write for list. Lee Wong, Jamestown, N. Dak.

EDISON ELEMENTS for storage “B” batteries. The real kind that are dependable. Type A elements 6¢ per pair. Type G 3¢ per pair. Heavy glass flat bottom containers 3¢ each. 16”x4” containers are not ordinary test tubes. Perforated hard rubber separators 1¢ each. Pure nickel wire for foot. 5 lb. can electrolyte $1.50. Complete cell using 3 positive and 2 negative Type G plates $15.00. 500 volt battery using 3 positive and 2 negative Type G plates complete with rack and electrolyte $75.00. Other high capacity combinations. All material guaranteed first grade. J. Zied, 530 Callow hill St., Phila., Pa.

A NINE CIRCUIT Combination Primary Condenser Switch added to your receiver will give it extreme high sensitivity, greater wave length range and better control. Inexpensively and easily built by Blue Prints. 50¢ per set or 3 for $1.00. Sell two and get your own free. A. Franklin Starbuck, (6CIY), 569 Franklin St., Whittier, Calif.

ALWAYS MENTION QST WHEN WRITING TO ADVERTISERS
FOR SALE: 6 Meyers Audion High Mu and Recepto-
colies, cost $3.50, sell $2.25. Postage 10¢ each. Prepared
on 3 or more. Geo. Schulz, Calumet, Mich.

FOR SALE: Complete parts for 20 watter. Also
Kennedy 281 receiver. 9DLT.

BARGAINS: 1 UP1016 RCA CW power transformer
for 50 watts, nearly new, $25.00. 2 UV217 Ken-
tonics, used about 10 hours, $18.00 each, R-2 Mag-
navox $45.00. Arthur Walser, Chesaning, Mich.

30 Henry chokes, capacity .75 amperes, $15. 3PW

RADIO CALL CARDS printed TO ORDER. Red call,
black printing. 100, $1.75; 200, $2.75; prepaid. Color
changes 35¢ extra. Government postals 1¢ each extra
card. LETTERHEADS 8½x11½ AND ENVELOPES, 100
EACH, $2.25; 200 EACH $3.50. R. R.

used on cards or stationery if requested by members.
Send TODAY. Department 19-C. Radio Printers,

FOR SALE TEN WATTER FOR SALE: 1--1./ard in 38

FOR SALE: Complete sets. Two sales weekly pays $120 profit. No

FOR SALE: 6 Meyers Audion High Mu and Recepto-
colies, cost $3.50, sell $2.25. Postage 10¢ each. Prepared
on 3 or more. Geo. Schulz, Calumet, Mich.

FOR SALE: Complete parts for 20 watter. Also
Kennedy 281 receiver. 9DLT.

BARGAINS: 1 UP1016 RCA CW power transformer
for 50 watts, nearly new, $25.00. 2 UV217 Ken-
tonics, used about 10 hours, $18.00 each, R-2 Mag-
navox $45.00. Arthur Walser, Chesaning, Mich.

30 Henry chokes, capacity .75 amperes, $15. 3PW

RADIO CALL CARDS printed TO ORDER. Red call,
black printing. 100, $1.75; 200, $2.75; prepaid. Color
changes 35¢ extra. Government postals 1¢ each extra
card. LETTERHEADS 8½x11½ AND ENVELOPES, 100
EACH, $2.25; 200 EACH $3.50. R. R.

used on cards or stationery if requested by members.
Send TODAY. Department 19-C. Radio Printers,

FOR SALE TEN WATTER FOR SALE: 1--1./ard in 38

FOR SALE: Complete sets. Two sales weekly pays $120 profit. No

FOR SALE: 6 Meyers Audion High Mu and Recepto-
colies, cost $3.50, sell $2.25. Postage 10¢ each. Prepared
on 3 or more. Geo. Schulz, Calumet, Mich.

FOR SALE: Complete parts for 20 watter. Also
Kennedy 281 receiver. 9DLT.

BARGAINS: 1 UP1016 RCA CW power transformer
for 50 watts, nearly new, $25.00. 2 UV217 Ken-
tonics, used about 10 hours, $18.00 each, R-2 Mag-
navox $45.00. Arthur Walser, Chesaning, Mich.

30 Henry chokes, capacity .75 amperes, $15. 3PW

RADIO CALL CARDS printed TO ORDER. Red call,
black printing. 100, $1.75; 200, $2.75; prepaid. Color
changes 35¢ extra. Government postals 1¢ each extra
card. LETTERHEADS 8½x11½ AND ENVELOPES, 100
EACH, $2.25; 200 EACH $3.50. R. R.

used on cards or stationery if requested by members.
Send TODAY. Department 19-C. Radio Printers,

FOR SALE TEN WATTER FOR SALE: 1--1./ard in 38

FOR SALE: Complete sets. Two sales weekly pays $120 profit. No

FOR SALE: 6 Meyers Audion High Mu and Recepto-
colies, cost $3.50, sell $2.25. Postage 10¢ each. Prepared
on 3 or more. Geo. Schulz, Calumet, Mich.

FOR SALE: Complete parts for 20 watter. Also
Kennedy 281 receiver. 9DLT.

BARGAINS: 1 UP1016 RCA CW power transformer
for 50 watts, nearly new, $25.00. 2 UV217 Ken-
tonics, used about 10 hours, $18.00 each, R-2 Mag-
navox $45.00. Arthur Walser, Chesaning, Mich.

30 Henry chokes, capacity .75 amperes, $15. 3PW

RADIO CALL CARDS printed TO ORDER. Red call,
black printing. 100, $1.75; 200, $2.75; prepaid. Color
changes 35¢ extra. Government postals 1¢ each extra
card. LETTERHEADS 8½x11½ AND ENVELOPES, 100
EACH, $2.25; 200 EACH $3.50. R. R.

used on cards or stationery if requested by members.
Send TODAY. Department 19-C. Radio Printers,

FOR SALE TEN WATTER FOR SALE: 1--1./ard in 38

FOR SALE: Complete sets. Two sales weekly pays $120 profit. No

FOR SALE: 6 Meyers Audion High Mu and Recepto-
colies, cost $3.50, sell $2.25. Postage 10¢ each. Prepared
on 3 or more. Geo. Schulz, Calumet, Mich.

FOR SALE: Complete parts for 20 watter. Also
Kennedy 281 receiver. 9DLT.

BARGAINS: 1 UP1016 RCA CW power transformer
for 50 watts, nearly new, $25.00. 2 UV217 Ken-
tonics, used about 10 hours, $18.00 each, R-2 Mag-
navox $45.00. Arthur Walser, Chesaning, Mich.

30 Henry chokes, capacity .75 amperes, $15. 3PW

RADIO CALL CARDS printed TO ORDER. Red call,
black printing. 100, $1.75; 200, $2.75; prepaid. Color
changes 35¢ extra. Government postals 1¢ each extra
card. LETTERHEADS 8½x11½ AND ENVELOPES, 100
EACH, $2.25; 200 EACH $3.50. R. R.

used on cards or stationery if requested by members.
Send TODAY. Department 19-C. Radio Printers,
QST’s Index of Advertisers

In This Issue

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acme Apparatus Co., The</td>
<td>79</td>
</tr>
<tr>
<td>Advance Elec. Co.</td>
<td>102</td>
</tr>
<tr>
<td>Aiken Mfg. Co.</td>
<td>211</td>
</tr>
<tr>
<td>American Hard Rubber Co.</td>
<td>101</td>
</tr>
<tr>
<td>American Radio Mfg. Co.</td>
<td>118</td>
</tr>
<tr>
<td>American Radio & Research Corp.</td>
<td>4th Cover</td>
</tr>
<tr>
<td>American Transformer Co., The</td>
<td>108</td>
</tr>
<tr>
<td>Amico Products, Inc.</td>
<td>82</td>
</tr>
<tr>
<td>A.I.R.L. Application Blank</td>
<td>50</td>
</tr>
<tr>
<td>Automatic Electrical Devices Co., The</td>
<td>56</td>
</tr>
<tr>
<td>Ayres Battery Corp.</td>
<td>120</td>
</tr>
<tr>
<td>Bakelite Corporation</td>
<td></td>
</tr>
<tr>
<td>Baldwin, Inc. Nathaniel</td>
<td>86</td>
</tr>
<tr>
<td>Belder, R. C.</td>
<td>56</td>
</tr>
<tr>
<td>Beckley-Kaiston Co.</td>
<td>18</td>
</tr>
<tr>
<td>Blomley Radio</td>
<td>112</td>
</tr>
<tr>
<td>Brown, Chief Engineer Co.</td>
<td></td>
</tr>
<tr>
<td>Hoorton Rubber Mfg. Co.</td>
<td>71</td>
</tr>
<tr>
<td>Bramson & Co., Chas. A</td>
<td>102</td>
</tr>
<tr>
<td>Bristol Co., The</td>
<td>94</td>
</tr>
<tr>
<td>Bunnell & Co., J. H.</td>
<td>118</td>
</tr>
<tr>
<td>Burdick Battery Co.</td>
<td>67</td>
</tr>
<tr>
<td>Burton-Rosser Co.</td>
<td>82</td>
</tr>
<tr>
<td>Cardwell Mfg. Corp., Allen D.</td>
<td>85</td>
</tr>
<tr>
<td>Chelten Elec. Co.</td>
<td>108</td>
</tr>
<tr>
<td>Chicago Radio Apparatus Co.</td>
<td>124</td>
</tr>
<tr>
<td>Chicago Salvage Stock Store</td>
<td>126</td>
</tr>
<tr>
<td>Classified Advertisements. 150, 151, 152, 153</td>
<td></td>
</tr>
<tr>
<td>Cohuna Tool Co., The</td>
<td>66</td>
</tr>
<tr>
<td>Connecticut Telephone & Electric Co. 3rd Cover</td>
<td></td>
</tr>
<tr>
<td>Continental Radio & Electric Corp.</td>
<td>121</td>
</tr>
<tr>
<td>Crosley Mfg. Co.</td>
<td>99</td>
</tr>
<tr>
<td>Cunningham, E. T., Inc.</td>
<td>109</td>
</tr>
<tr>
<td>Cutler-Hammer Mfg. Co.</td>
<td>105</td>
</tr>
<tr>
<td>Diamond State Fibre Co.</td>
<td>111</td>
</tr>
<tr>
<td>Dubiler Condenser & Radio Corp.</td>
<td>109</td>
</tr>
<tr>
<td>Durham & Co.</td>
<td>94</td>
</tr>
<tr>
<td>Economic Appliance Co.</td>
<td>86</td>
</tr>
<tr>
<td>Edson Radio Sales Co.</td>
<td>118</td>
</tr>
<tr>
<td>Edson Radios Inc.</td>
<td>92</td>
</tr>
<tr>
<td>Electrad, Inc.</td>
<td>92</td>
</tr>
<tr>
<td>Electric Specialty Co.</td>
<td>90</td>
</tr>
<tr>
<td>Endly, C. C.</td>
<td>128</td>
</tr>
<tr>
<td>“Experimental Wireless”</td>
<td>105</td>
</tr>
<tr>
<td>Fansteel Products Co., Inc.</td>
<td>110</td>
</tr>
<tr>
<td>Federal Tel.& Tel. Co.</td>
<td>98</td>
</tr>
<tr>
<td>Fender Electric Co.</td>
<td>108</td>
</tr>
<tr>
<td>Fisher Co., G. H.</td>
<td>94</td>
</tr>
<tr>
<td>Flint Radio Co.</td>
<td>110</td>
</tr>
<tr>
<td>Freshman Co., Inc., Charles</td>
<td>68</td>
</tr>
<tr>
<td>Frost, Herbert H.</td>
<td>98</td>
</tr>
<tr>
<td>General Elec. Co.</td>
<td>117</td>
</tr>
<tr>
<td>General Radio Co.</td>
<td>89</td>
</tr>
<tr>
<td>Grebe & Co., A. H.</td>
<td>2</td>
</tr>
<tr>
<td>H & H Radio Co.</td>
<td>114</td>
</tr>
<tr>
<td>Hartford Instrument Co., The</td>
<td>78</td>
</tr>
<tr>
<td>Hommel Co., Ludwig</td>
<td>129</td>
</tr>
<tr>
<td>Horne Elec. & Mfg. Co.</td>
<td>108</td>
</tr>
<tr>
<td>Hunt Co.</td>
<td>104</td>
</tr>
<tr>
<td>Hygrade Elec. Novelty Co.</td>
<td>122</td>
</tr>
<tr>
<td>International Correspondence Schools</td>
<td>123</td>
</tr>
<tr>
<td>Jefferson Elec. Mfg. Co.</td>
<td>104</td>
</tr>
<tr>
<td>Jewell Elec. Instr. Co.</td>
<td>96</td>
</tr>
<tr>
<td>Kullogg Switchboard & Supply Co.</td>
<td>87</td>
</tr>
<tr>
<td>Krafton Co., Coll & Sign Co.</td>
<td>29</td>
</tr>
<tr>
<td>Klaus Radio & Elec. Co.</td>
<td>102</td>
</tr>
<tr>
<td>Kimley Electric Co.</td>
<td>102</td>
</tr>
<tr>
<td>Langbein & Kaufman</td>
<td>102</td>
</tr>
<tr>
<td>Magnavox Co., Inc.</td>
<td>118</td>
</tr>
<tr>
<td>Marie Engineering Co.</td>
<td>116</td>
</tr>
<tr>
<td>Martin Audio Co.</td>
<td>78</td>
</tr>
<tr>
<td>Mass., Radio & Elekgraph School</td>
<td>86</td>
</tr>
<tr>
<td>Midwest Radio Co.</td>
<td>124</td>
</tr>
<tr>
<td>Moen Radi Corp.</td>
<td>112</td>
</tr>
<tr>
<td>Mu-Rad Laboratories, Inc.</td>
<td>88</td>
</tr>
<tr>
<td>Multiple Electric Products Co., Inc.</td>
<td>123</td>
</tr>
<tr>
<td>Murdoch, William J.</td>
<td>88</td>
</tr>
<tr>
<td>Murphy, F. M. J.</td>
<td>128</td>
</tr>
<tr>
<td>National Carbon Co., Inc.</td>
<td>2. 75</td>
</tr>
<tr>
<td>National Chelsea Radio Corp.</td>
<td>88</td>
</tr>
<tr>
<td>National Elec Supply Co., The</td>
<td>114</td>
</tr>
<tr>
<td>Newman-Stern Co., The</td>
<td>123</td>
</tr>
<tr>
<td>O. & T. Electric Corp.</td>
<td>128</td>
</tr>
<tr>
<td>Ott Radio, Inc.</td>
<td>84</td>
</tr>
<tr>
<td>Personal Service Purchasing Bureau</td>
<td>128</td>
</tr>
<tr>
<td>Pittsburgh Radio & Appliance Co., Inc.</td>
<td>128</td>
</tr>
<tr>
<td>Precision Equipment Co., The</td>
<td>72, 73</td>
</tr>
<tr>
<td>Premier Elec. Co.</td>
<td>100</td>
</tr>
<tr>
<td>Premier Elec. Co.</td>
<td>100</td>
</tr>
<tr>
<td>QRA Section</td>
<td>128</td>
</tr>
<tr>
<td>Radio Corp. of America</td>
<td>1</td>
</tr>
<tr>
<td>Radio Improvement Co., Inc.</td>
<td>93</td>
</tr>
<tr>
<td>Radio Institute of America</td>
<td>96</td>
</tr>
<tr>
<td>Radio Instrument & panel Co.</td>
<td>128</td>
</tr>
<tr>
<td>Radio Specialty Co., Inc.</td>
<td>126</td>
</tr>
<tr>
<td>Radio Store of Paul F. Johnson</td>
<td>124</td>
</tr>
<tr>
<td>Radio Tube Exchange</td>
<td>120</td>
</tr>
<tr>
<td>Randel Wireless Co.</td>
<td>124</td>
</tr>
<tr>
<td>Rainland Mfg. Co.</td>
<td>90</td>
</tr>
<tr>
<td>Remier Radio Mfg. Co.</td>
<td>74</td>
</tr>
<tr>
<td>Ringel Research Elec. Co.</td>
<td>76</td>
</tr>
<tr>
<td>Riego Mfg. Co., The</td>
<td>90</td>
</tr>
<tr>
<td>Roller-Smith Co.</td>
<td>106</td>
</tr>
<tr>
<td>Rose Radio & Elec. Supplies</td>
<td>124</td>
</tr>
<tr>
<td>Rusonite Products Corp.</td>
<td>124</td>
</tr>
<tr>
<td>Samson Elec. Co.</td>
<td>120</td>
</tr>
<tr>
<td>Scientific Elec. Works</td>
<td>114</td>
</tr>
<tr>
<td>Signal Elec. Mfg. Co.</td>
<td>126</td>
</tr>
<tr>
<td>Simplex Mfg. Co.</td>
<td>122</td>
</tr>
<tr>
<td>Standard Products Corp.</td>
<td>128</td>
</tr>
<tr>
<td>Sterling Mfg. Co., The</td>
<td>118</td>
</tr>
<tr>
<td>Stern & Co., Inc.</td>
<td>127</td>
</tr>
<tr>
<td>Stromberg-Carlson Telephone Mfg. Co.</td>
<td>110</td>
</tr>
<tr>
<td>Sure Fire Radio Laboratory</td>
<td>82</td>
</tr>
<tr>
<td>Thordarson Elec. Mfg. Co.</td>
<td>115</td>
</tr>
<tr>
<td>Tresco</td>
<td>114</td>
</tr>
<tr>
<td>Tuska Co., The C. D.</td>
<td>76</td>
</tr>
<tr>
<td>Umbarger, H. N.</td>
<td>128</td>
</tr>
<tr>
<td>Union Radio Corp.</td>
<td>116</td>
</tr>
<tr>
<td>U. S. Tool Co.</td>
<td>104</td>
</tr>
<tr>
<td>Valley Elec. Co.</td>
<td>84</td>
</tr>
<tr>
<td>Western Coll & Electrical Co.</td>
<td>92</td>
</tr>
<tr>
<td>Westinghouse Union Battery Co.</td>
<td>107</td>
</tr>
<tr>
<td>Weston Electrical Instrument Co.</td>
<td>78</td>
</tr>
</tbody>
</table>

Always mention QST when writing to advertisers.
Why cripple your radio set with poor filament control?

EVERY seaman knows that a binocular cannot bring in distance clearly unless focused with extreme care. It is the last fractional turn of the adjusting screw, perhaps the width of a hair, that brings the distant object within the range of clear vision. The slightest turn, either way, makes a blurred, distorted image.

The same is true of radio sets. The finest detector tube cannot bring in distance clearly without ultra-fine filament control. The Universal Bradleystat performs this delicate operation with utmost precision. The gradual adjustment of the Bradleystat knob brings in distant stations without noise or distortion. Every fine radio set deserves a Bradleystat. Are you getting the best out of your set, today? Try a Universal Bradleystat.

Allen-Bradley Co.
377 Greenfield Ave., Milwaukee, Wis.

I would like to know more about the Bradleystat and why it improves radio reception.

Name

Address
A New Era in Radio

That, in the fullest sense of the word, is what the SODION TUBE means to everybody who owns or expects to own a receiving set.

Based on an entirely new principle—utilizing the highly valuable and peculiar properties of the sodium ion

The Sodion Tube

(Sodium - Ion)

is many times more sensitive and produces far stronger signals than any detector yet developed. Due to the fact that it cannot be made to oscillate, it not only eliminates any semblance of whistles or beat-note howls in your own reception, but does not interfere with the reception of others.

At a meeting of the Institute of Radio Engineers where this tube was being demonstrated, a prominent Scientist and Radio Engineer in contrasting this with the action of the ordinary detector, dubbed it "THE GOLDEN RULE TUBE"

Stable and uniform in operation. Runs for hours without adjustment. Has no grid. No grid leak or grid condenser are required.
Crystal tone reception. Unusually sensitive to weak signals. Operates on dry cells or storage batteries.

Bulletin A-100 describing this tube upon request.
AMRAD

The IDEAL FILTER

Operation of radio transmitters on AC current supply has been retarded by lack of an effective filter which would render inaudible the disagreeable AC hum.

As every amateur knows, a successful filter requires choke coils and a high value of capacity. Paper Condensers have heretofore been the only suitable capacities available, but these have been costly, not only because of their high first cost, but also because of their susceptibility to puncture, which renders them permanently useless.

The MERSHON ELECTROLYTIC CONDENSER meets the filter problem admirably. High capacity—compact— economical. The first cost is the last cost. Although abnormal voltage will break it down, this Condenser can be rehabilitated by re-forming the anode.

Order from your Dealer or send your remittance direct to us, and we will ship promptly.

COMBINED WITH AMRAD "S" TUBES

Illustrated below is an ideal filter (with "S" Tubes) consisting of two M.E. CONDENSERS across the DC source, a double 1½ henry choke, and 2 M.E. CONDENSERS as a bypass. This arrangement renders the AC hum inaudible at stations only one mile away and projects the voice as free from distortion as can be obtained from the best and most expensive motor generator set.

Write for Bulletin J-2

AMERICAN RADIO AND RESEARCH CORPORATION

205 College Ave., Medford Hillside, Mass.

AMRAD Dealers in Principal Cities
Honesty, fellows, it is a tiresome job to be continually warning you about this business of using wave-lengths above 200 meters or a general amateur license and transmitting during “quiet hours.” In every circular letter and every broadcast, we have cautioned you about these very things. You know that you are not licensed to transmit during “quiet hours” and you know a general amateur license doesn’t specify wave-lengths above 200 meters. Why do you continue to violate these regulations? Don’t you care whether you lose your license or not?

Even tho it is tiresome, it is our duty to warn you and we like to see some results of our efforts. Your station is NOT licensed to transmit between the hours of 8:00 and 10:30 P.M., nor on Sunday mornings during local church services. The band of wave-lengths which you may use is specified on your license.

We have noticed that the most flagrant violators are those fellows who start blasting away about 10:25 P.M., with a 5 minute “CQ,” and we venture a guess that it will be this same “CQ Hound” who gets caught first. We feel that the Department of Commerce has been very reasonable toward us and that we all have had sufficient time to adjust ourselves to the new regulations. If your license is suspended for any violation, we know we have warned you many times and you needn’t come to the A.R.R.L. with a long tale of woe about how Willie Jones changed your wave-length or how little sister changed your clock. The A.R.R.L. stands for the radio laws of the United States and Canada. So that’s that! It is now up to YOU, fellow amateur.

Probably by the time this issue reaches you the new O.R.S. certificates will be in the mail to those stations which comply with the requirements. In the future, to obtain an O.R.S. certificate the station must show that the wave length complies with the law and that strict observance of the quiet hours is enforced. No station which uses an illegal wave-length or which transmits during the quiet hours can become an O.R.S. The new O.R.S. certificate will be an honor medal among radio amateurs that will be evidence of observance of law. It will mean that such station takes pride in the dispatch of messages within the prescribed time or that the messages will be mailed to their destinations without further delay. We’re going to correct this business of non-delivery. It may take some time, and we’ll correct it just as the “rubber stamp message” business was corrected.

Late news comes to us that Alaska has been opened UP for traffic. We have a letter from 7ABB who has worked 7AHB in Anchorage, Alaska. Also 7MN, in Ketchikan, Alaska, is QSO 7ABB. This paves the way for a dandy relay—Porto Rico to Alaska. If further information proves the possibility of such a thing, get ready for the “Alaskan-Porto Rican Relay” probably some time in February. We’ll have some real fun with a relay of that kind and we might even push it up to WNP and back. Keep it in mind, gang!

At the request of the Australian Radio Relay League, twelve of the most powerful stations on the Pacific Coast have been appointed terminal stations for Australian traffic. Until such time as two-way communication is established it has been proposed that these stations broadcast messages for Australia. The stations were selected by the San Francisco Radio Club convention and are as follows: 6AUU, 6ZH, 6CHL, 6NX, 6CMR, 6ALK, 6PL, 6KA, 6CGW, 6BVG, 6AWT, and 6ARB. Australian traffic may be sent to any one of the above stations and an earnest effort will be made to transmit it to Australia.

ADDITIONS AND CORRECTIONS IN OCTOBER DIRECTORY

WINNIPEG DIVISION

Manitoba and Saskatchewan.

Saskatchewan

A.D.M.—E. L. Maynard, Morse

C.M.—W. B. Pottle, 1114 Willow Ave., MOOSE JAW, 4AO

C.M.—W. L. Pottle, 1114 Willow Ave., Morse, 4AO

C.M.—G. Stevenson, 600 Queen St., SASKATOON, 4FN

C.M.—Geo. Shadlock, 2079 Rae St., REGINA, 4BR

O.R.S.—4AO, 4FN, 4AJ, 4ER, 9BX, 4BB

Manitoba

A.D.M.—S. G. Patterson, 612 Beresford Ave., Winnipeg, 4DY

D.S.—A. J. R. Simpson, 408 McGill St., Winnipeg, 4DK

O.R.S.—4CN, 4DE

MICHIGAN: Transfer Kalamazoo county from Dist. No. 2 to Dist. No. 3. Dist. No. 1: O.R.S. 8CE should read 8CF. New O.R.S. 8VT, 8BB, 8DLM, 8AIH, 8BLX, Dist. No. 2: New O.R.S. 8DW, 8DFE, Dist. No. 3: D.S. J. Wilson, 318 N. Church St., Kalamazoo.

ILLINOIS: Dist. No. 1: Delete 9YM. New O.R.S. 9CL, 9AB, Dist. No. 2: New O.R.S. 9TW, 9TC, 9CTK, 9DBW, 9DDJ, 9BHH, Dist. No. 4: C. M. DANVILLE—J. Fairhall, Main & Gilbert Sts., IL. Change M. W. Chaney to read C. Tanner, 36 E. Green St., Champaign.

QST FOR DECEMBER, 1923
9CLW, 9CAO, 9DHB, 9DLM. Dist. No. 2; Change D.S. to read Merwin read Schuyler.

9BGH. Dist. No. 1: Change D.S. to read Ed.

St. New O.R.S. 6VD, 6CMR, 6CBB. Dist. No. 3; Duchense should read Duchesne.

O.R.S. 9CLW, 9CAO, 9DHB. Dist. No. 4; Cancel C.M. Paul Lovet R.I. Jersey

9A VU. Delete O.R.S. 9FV, 90CJ.

C.M. KANSAS CITY to read William Hinton.

O.R.S.--1AIQ, lARY Lewis, 812 E. Rutledge St., Yates Center, 9CCS.

D.S.-J. T. Eaton, Rutland, Vt. lCJH.

Dist. No. 2: Counties: Addison, Orange, Rutland, Windsor, Bennington and Windham.

D.S.-J. J. Eaton, Rutland, Vt. 1CJH.

O.R.S. 1CJH.

NEBRASKA: Dist. No. 1: County Sarpy should read Sarpy. Dist. No. 2; County Delih should read Keith, and county Seward should read Seward.

DISTRICT OF COLUMBIA: New O.R.S. 8EM.

NEW JERSEY: Dist. No. 1; New O.R.S. 2CSA. Dist. No. 2; Change address for C.M. to Columbus Ave. WEST NEW YORK. Dist. No. 1; Change D.S. to L. R. Shropshire. New O.R.S. 2CP, 2BIR. Delete O.R.S. 2BLR. Dist. No. 3; Add C.M. O. W. Lummis, 2824 Kansas Ave., NW, Washington, D.C. Dist. No. 8; Delete 3ACQ. New O.R.S. 3BEW.

EASTERN NEW YORK: Dist. No. 2; Change C.M. NEW YORK to R.M. ANDREW R. L. M. to read Harold Sack; 170 West 73rd St., York City, 2CHK. Change C.M. NEW YORK (East Bronx Dist.) to read F. H. Marcond, 180 W. 17th St., New York City (West Bronx Dist.) Howard Cervantes, 2405 Webster Ave., Bronx, 2ACT. New O.R.S. 2AG, 2BE, 2CLE.

NEW MEXICO: Dist. No. 1; Change address for C.M. to Columbus Ave. New O.R.S. 8OKN. Dist. No. 9; Add D.S. N. S. Sherman, 413 Sherman St., Watertown, N. Y. 8EBJ.

NEW YORK: Dist. No. 16; Change D.S. to read A. R. Dean, Olean, 8AXN. New O.R.S. 8DPA.

PENNSYLVANIA: Dist. No. 1; Delete O.R.S. 3UD, and 3OE. 3EB should read 8HD. New O.R.S. 3GC, 3HH, 3AEW. Dist. No. 8; O.R.S. 3HH should read SHE.

DIST. No. 4; O.R.S. 4AUY should be 8AUV. New O.R.S. 3QT, 3BDL.

DIST. No. 6; County Branford should be Bradford.

DIST. No. 8; New O.R.S. 3SBW.

DIST. No. 10; Delete county Washington.

DIST. No. 10; County Dickerson should read Dickenson.

Address for (EA) should be 545 Main St., name A. S. Clark.

WEST VIRGINIA: Dist. No. 1; New O.R.S. 8BSQ.

OKLAHOMA DIST. No. 2; County Muskogee should read Muskogee. Add O.R.S. 5GA.

NORTHERN TEXAS: Dist. No. 1; O.R.E. 5EC should read 8TC. Dist. No. 2; Cancel O.R.S. 5GA.

NORTHERN TEXAS: Dist. No. 1; O.R.S. should read 8TC. Dist. No. 2; Cancel O.R.S. 5GA.

SOUTHERN TEXAS: A.D.M. should read E. A. Saxon, 5669 New Braunfield, Dist. No. 8.

H. S. Sherman, 413 Sherman St., Watertown, N. Y. 8EBJ. Dist. No. 6; Delete county Albany.

DIST. No. 9; Delete county Smyth. Dist. No. 10; add county Smyth.

DIST. No. 9; County Smyth. Dist. No. 7; Delete county Craig. Dist. No. 9; Delete county Amherst.

DIST. No. 10; Name is L. R. Shrop.

DIST. No. 8; Name Is L. R. Shrop.

DIST. No. 9; County Washmg.

DIST. No. 10; County Dickerson should read Dickenson.

DIST. No. 1; Name is L. R. Shrop.

DIST. No. 1; Name is L. R. Shrop.
MARYLAND—Very little A.R.R.L. traffic is going out of Maryland. 3APT handled 53 in two weeks, and this is due to the inactivity of the district. 3APT maintains his schedule with 3JJ, 4PT, and 84J with equal regularity. 3JW is moving his station to the new location. 3WF, 3LG, 3PH, 3DQ, 3BF, and 3EM have been heard at their new location during the inactivity period of the DX season. It is easily desired that the DX men about town will pay more attention to reporting traffic in the future. 3GBK in shape for good DX work now. He is moving to 1507 Edmondson Ave. Some of the old standbys as BUC, M5F and 3TE are missed. 3BCK is getting fixed up for the winter. The winter conditions east and west during the past period with little DX activity has been dropped. 8ABS is on the air with 20 watts using rectified A.C. and A.G.C.W. A new fan antenna has been installed. All the traffic on 8AS is on five watts and ten watts. 8BSJ is about to close down and the second operator, Tormay Brown, has left. 3BTP, and 3DQ, 3EM have been heard moving to 1507 Edmondson Ave. 3BNU in shape for good DX work now. He is moving to 1507 Edmondson Ave. 3CQX and 3BBV are reporting strong. The DX season is growing and traffic shows some increase. 9ABC has increased and works the coast better results as is shown by the traffic report. Some of the old standbys as 3BUC, M5F and 3TE are missed. 9BHA has not been operating lately due to lack of power supply. 8BYI has been confined to Johnstown on account of other work. He is getting his own set is completed. 9AGT added another 5 watts set. He is working on C.W. 9ARL is working on C.W. now. 9BUH has 10-watt set. 9DBP is out after prospects and has unearthered a new station 9BTM for A.R.R.L. relaying. 9AWU is proud of working 1A6E on 10 watts, a new station. WNP. 9BYE has changed from A.C. to D.C. 9BGI is building a shack, and talks of a better aerial system. 9BQG is on with 5 watts A.C. 9BCH is working on C.W. now. 9AGT added another 5 making 15 watts. He will be the connecting link between eastern and western Wisconsin, day and night. 9GXS is installing a sink rectifier and a 250-watt tube.

SOUTHERN INDIANA—Except for the Indiana stations and 9BBK, southern Indiana is dead.

ILLINOIS—Dist. No. 1: 9BHU has a sink rectifier and is going good. 9CFK is working 1J with a 10-watt set. 9DFK is out after prospects and has unearthed a new station 9BTM for A.R.R.L. relaying. 9AWU is proud of working 1A6E on 10 watts. WNP. 9BYE has changed from A.C. to D.C. 9BGI is building a shack, and talks of a better aerial system. 9BQG is stronger on C.W. than his spark. He was the last real active spark in the district. 9FH built lattice mast, will be the connecting link between eastern and western Wisconsin, day and night. 9GXS is installing a sink rectifier and a 250-watt tube.
has a new lot of ops. for relief. Put up an 80-ft. stack and installed a 456 ohm line at 9DQ and 9ASD all brushing the cob webs off their inductances. 9AQR and 9ASD are going into partnership on a new layout. 9BHV has 50 watts on 15 meters and is reactivating his 9BT which is opening up with 10W. 9CZL is high man on messages, working 3 sevens and one six during the last week with a good load.

Dist. No. 5: OM Hicks is working against difficulties as before but has lined up two new O.H. and C.W. stations on the wire.

Dist. No. 6: 9AKU bought a new car and got a new girl and it's getting too cold to snuggle up with his O.R.S; in 9AYX and 9CIZ for winter traffic during the worst month of the year. 9AIB has just in- stalled 100 watts and is going great. 9AOF is quite a bunch of new stations are rectifying A.O. Operation hours at 9YB are, 12 to 2 A.M. and 4:30 to 6:00 P.M., call C.S.T., The operating force at 9YB is: Fri. night L. W. Franklin, Senior operator Mon. E. J. Raifernberger

Thu. P. E. Phippen

Wed. E. E. Pippen

Tue. P. E. Harmegale

Extra H. H. Webb

DAKOTA DIVISION

N. H. Jensen, Mgr.

The campaign for more care in the delivery of messages is winning. Most of the fellows are realizing the necessity of delivering laying messages promptly. A few stations continue to violate the quiet hour regulations. What's the idea fellows! Do you want your licenses revoked?

MINNESOTA—Traffic reports are not so big this month, but amateur radio seems to be on a better receiving equipment.

Dist. No. 1: 9BAV has installed a 50-watt transmitter. The stations on the Range are doing fine with new ones coming into commission all the time. 9BBO and 9CBO have started again with its new station and stayed on for a little over a week when the high voltage generator blew up. Four 50 tubes were used during that time and all U.S. and Canadian districts were worked with ease. 8BVY and 9CDR are combining their efforts. Both of these stations are somewhat handicapped in their northern route to Canada because they have to communicate direct.

Dist. No. 2: Things are opening up in great strength, baking with the early hours of tube current and 43W reports he is still busy with other stations having a 5-watter in order to hold up to last year's record. 9DKD lost his license handled 164 messages. 9MM works most of the hours from 6 P.M. to 8 P.M. and 12 volts filament current and twelve hundred watt and a new Reinartz receiver. 9BIT is on the air this month at a new location in Eau Claire. 8BDR is nearby, QRV. SDBO says QRM at night but other promises to be on most every day. 8BXA is on the air regularly again. 8BBI and 8VT at Royal Oak, one or the other promises to be on most every day. 8CZZ is all set with a 50-watt outfit and is getting good DX with 8BDR is nearby, QRV. SDBO says QRM at night but other promises to be on most every day. 8BXA is on the air regularly again. 8BBI and 8VT at Royal Oak, one or the other promises to be on most every day. 8CZZ is all set with a 50-watt outfit and is getting good DX with 10 watts on 15 meters. 8DGE are all attending the U. of M. and haven't much time for traffic. 8ZG is now on with master oscillator and super-heterodyne, both of which are working OK. 9RMX and 9APE have aerials on same mast. Hi. 9AWS lost his license and now has the 9AWW by the Kentucky gang this month in getting away to a flying start, our state should be among the top states this month and 9DX leads the state this month with 9APS second.

OHIO—Dist. No. 2: 8IJ takes the lead this month. 8AY has a new station which is doing good DX with 10 watts. 8YAE is still off the air getting his 100 watts ready for the winter. 8AA (C.W.) is on the job and complains of no traffic coming his way. 8CQ is on the air again. 8BXX is still short of tubes but borrowed a 5-watter in order to turn in a report. 8CQ has just rectified his finances damaged by the National convention, but will lie on the job in the near future.

Dist. No. 4: 8CE is booming as usual. 9DRR is steady at the key. He is using the IDH circuit in coupled form with very good results. 8CQI is busy logging tubes, and 8GNI is working to get his new station. 8CQI is working to get his new station. 8CQI and 8GNI are working to get their new stations. 8CE is on the air again. 8BXX is still short of tubes but borrowed a 5-watter in order to turn in a report. 8CQ has just rectified his finances damaged by the National convention, but will lie on the job in the near future.

Dist. No. 5: 8CQI and 8GNI are working to get their new stations. 8CE is on the air again. 8BXX is still short of tubes but borrowed a 5-watter in order to turn in a report. 8CQ has just rectified his finances damaged by the National convention, but will lie on the job in the near future.

NORTHERN INDIANA—Dist. No. 2: 9DYT seems to be the star station. Using 5 watts he handled 71 messages. 9BON has a new 90-foot wooden mast which will give his 50-watter a better chance. A new station appears in the state. 9BMP is on with 82 messages. Business keeps 9UH and 9GK off the air most of the time and neither will be able to hold up with their traffic.

Dist. No. 2: With the addition of 9DKB, the traffic increased somewhat. His total being 75. 9AQR is doing good work although handicapped by a lack of time. Several new stations are reported to be about to open, among them being 9DM, 9AFM and 9DUM.

SOUTH DAKOTA—Third Annual South Dakota Radio Convention at Sioux Falls on December 27 and 28. Big attendance and a good time. Convention and dinner.

Dist. No. 1: 9DKQ is moving to a new location. 9BG is doing very good work. 9BDH fills in for the eastern division this month. Traffic seems to continue to do good work, and also does 9BF with his spark.

Dist. No. 2: 9CGA is getting better results since he raised his poles. 9AGL is now a new 9BRI spends most of his time with football.

QST FOR DECEMBER, 1923
9AYZ works both coasts easily. 9CJS is doing very good work and is on regularly.

DELTA DIVISION
W. W. Rodgers, Mgr.

With winter almost at hand, there has come a general awakening of hams in the Delta and the outlook is most encouraging. Here and there, we see some hope in and around as the season passes. Now for the reports.

ARKANSAS—Dist. No. 1: D.S. Daly reports very little of the attention of five members can be reached and none of these men promise any help this year. (Come on, you fellows, C.W. and D.S. and D.M. and D.S. do anything unless you help—D.M.)

Dist. No. 2: D.S. Woodruff has returned from commercial work and has his report in on time. 5AEK of Ft. Smith, the D.M.'s outfit, has just put under the supervision of Mr. Claude D. Hutcheson.

TENNESSEE—Dist. No. 1: MISSING!! (What's the matter. Cowards?? Watch these reports in this district. Some good traffic stuff gone to 5AIE at Maryville. These stations promise to go to school. 5TJV is operating but no traffic report in on time. (Watch your steps, Officers."

Dist. No. 2: All present, 5WO, C.M. of Knoxville, reports 5EK is out of working commission—no tubes. 5AEK has gone to school. 6UV is operating but no traffic handled. 5EV is a new one at Knoxville. Sutton is an ex-op, at 5RZ in Memphis, the D.M.'s outfit. We are very glad to have news from 5AOK in this district for the month of November. Guess his position, Cowlesa?? Watch these reports in this district. 5AAG is being married, and swears he will never pound brass again. (Watch for the appointment of his stand-by."

LOUISIANA—Dist. No. 1: 5WG is the only active station in this district. 5EB, 5AIP, and 5ABX have joined the League. (We certainly welcome you fellows, 5ABX promises to be on shorty with 100 watts.)

Dist. No. 2: No report from C.M. Webb of Baton Rouge. (How come??—A.D.M.) 5GI is very active with 15 watts and handles 17 states with the bottles and in QRN season, too. 5GI, 5UK, and 5UA are the steady ones in New Orleans. 5SC says he is in and will use 80 watts. 5UK employs three regular operators and he has his stand-by. 5EL returned to the states from a tour thru Europe. (But he saw some phoney sets over there—D.M.) 5SCF says he is in and will use 120 watts. 5K6 reports the static still very bad in the state, but abating somewhat.

All Official Relay Station appointments will be cancelled shortly. Officers are reorganizing the system, so if you are an O.R.S. and are told to surrender your certificate, don't get sore—all others will be cancelled at the same time.

EAST GULF DIVISION
H. L. Reid, Mgr.

'ALABAMA—Dist. No. 1: 5AGJ and 5AMH were leading stations. Things have not opened up much in this district for the month of November. Guess some of the men will get their reports in thru the 31st. 5AIP has returned from Montgomery handling 260 messages: 5APJ, 150 and 5ABT, 110.

Dist. No. 2: S.F. Bennett seems to be getting good results with the M.C.H. bunch. He is offering a prize for the best report from any station in his district for the month of November. Guess a lot of fellows will get their reports in thru the 31st. 215 messages were handled this month with five stations reporting. 5AG leads the list with 78.

MISSOURI—This state has been recently put under the supervision of Mr. Claude E. Wells, who is now acting in the capacity of A.D.M. The O.R.S. in this state have been straightened out as yet. 5IK is the only active station in Greenville. 4KE has a little luck in building his transmitter but hopes to be on in a few weeks. 4PV is on the air as soon as the football season is over as he is the star player for the Greenville High School. 5LIF is the only active station here. James Rutledge has been appointed D.S. of Dist. No. 1, and 4EH at Spartanburg has been appointed Supt. of Dist. No. 2.

FLORIDA—Dist. No. 1: Jacksonville boasts five active DX stations, three of which are traffic handlers. 5WR, C.M. of Jacksonville, reports the best season in history and his efforts are showing results. He is to be commended on his splendid work and with the new DX station, which he has kindly agreed to turn over a section to the A.R.R.L. with a regular A.R.R.L. heading. 4FS, 4PL, and 4ER are the consistent traffic handlers while 4FX and 4IU have stations, have started out with splendid DX. St. Augustine has again established itself as an important relay point reuling our DX.

Dist. No. 2: Tampa is the center of activity in this district. 41Z, 40H, and 4PB all have good message reports this season. 41Z handles 90 messages at 20 watts. 41Z is on the job as usual and his consistency makes St. Petersburg an important relay point.

Dist. No. 3: 4DL is on the job and has handled traffic with several Florida stations this season. 4DJ has a new antenna, be hopes to get out a little better. He handled quite a gang of messages while 4FY and 4IU have started out with splendid DX. 4PB is on the air lately on account of business pressure on 100 watts. 4VI is on the air again and is doing some nice work, handling a quintet of operators including 6HL from Chattanooga, along with the two Rumbles. 4PB is the old 4YA station is now on and is doing some nice work, handling a quintet of operators including 6HL from Chattanoor, along with the two Rumbles. At 4KU a system has been started whereby messages like "tnx fr crd" are taken and handled using a little hard counterpoint and is putting 4.0 amps into the system. He rates DX but no traffic.

GEORGIA—L. Hight, A.D.M., reports that he is getting his station in shape and will be in a better position to make a report next month. In Atlanta 4GF leads the city for this year's report. The Morse machines handled 150 messages. 4GQ and 4RH are the most consistent workers, excepting the above two. 4AO, 42A, 4GS, 4GQ, and 4RH are the top ten stations. 5K3 has kindly agreed to turn over a section of her Morse machine to 4FS, the G.M., has his men lined up for message reports. 4PF has just started up with 100 watts. 4FS is the old 4YA station is now on and is doing some nice work, handling a quintet of operators including 6HL from Chattanooga, along with the two Rumbles. At 4KU a system has been started whereby messages like "tnx fr crd" are taken and handled using a little hard counterpoint and is putting 4.0 amps into the system. He rates DX but no traffic.

MISSOURI—This state has been recently put under the supervision of Mr. Claude E. Wells, who is now acting in the capacity of A.D.M. The O.R.S. in this state have been straightened out as yet. 5IK is the only active station in Greenville. 4KE has a little luck in building his transmitter but hopes to be on in a few weeks. 4PV is on the air as soon as the football season is over as he is the star player for the Greenville High School. 5LIF is the only active station here. James Rutledge has been appointed D.S. of Dist. No. 1, and 4EH at Spartanburg has been appointed Supt. of Dist. No. 2.

ATLANTIC DIVISION
W. W. Rodgers, Mgr.

ATTENTION ALL MEN OF THE TRAFFIC DEPARTMENT!!! Read this report. It gives facts. Each state included. Learn what a live gang we have down here in the Midwest Division. For instance:

MISSOURI—The Radio Sewing Circle and Radio Gang we have down here in the Midwest Division. Learn what a live gang we have down here in the Midwest Division. For instance:

KANSAS—A True Story of the A.D.M. and a B.L.

NEBRASKA—Unless you Live in Nebraska—DO NOT READ.

ATTENTION ALL MEN OF THE TRAFFIC DEPARTMENT!! Read this report. It gives facts. Each state included. Learn what a live gang we have down here in the Midwest Division. For instance:

MISSOURI—The Radio Sewing Circle and Radio Gang we have down here in the Midwest Division. Learn what a live gang we have down here in the Midwest Division. For instance:

KANSAS—A True Story of the A.D.M. and a B.L.

NEBRASKA—Unless you Live in Nebraska—DO NOT READ.

ATTENTION ALL MEN OF THE TRAFFIC DEPARTMENT!! Read this report. It gives facts. Each state included. Learn what a live gang we have down here in the Midwest Division. For instance:

MISSOURI—The Radio Sewing Circle and Radio Gang we have down here in the Midwest Division. Learn what a live gang we have down here in the Midwest Division. For instance:

KANSAS—A True Story of the A.D.M. and a B.L.

NEBRASKA—Unless you Live in Nebraska—DO NOT READ.
conditions in St. Louis are much improved and all the fellows seem to be cooperating. At Joplin conditions are not so good, and the report seems entirely in the hands of the local C.M., 9GHz. The C.M. adds that their radio club is quite active but due to the fact that they have admitted OWs to the club, they are not able to control the fellows and will really run things and settle the real purposes of the club. (How is that, gang? That's a new one on us.)

9JF is a new comer and is FB. All men please note the A.D.M.'s new address—D. E. Watts, Ames, Iowa. 9SS has changed with a 200-watter, 9HK is still going great. We have received signals from 7WM on October 7th at 9:45 P.M. He reports 7WM signals as steady and readable. He also heard 6BCC calling 6PL for a small amount of your time to ask if you do it? I'd appreciate it very much if you would put me wise. I am sincere in my wish to see Nebraska do well by giving me facts as to why she is now at the bottom of the list. Thanks.

NEW ENGLAND DIVISION
I. Vermilye, Mgr.

MAINE—L. B. Hilton submits a very good report for the state of Maine. 1KX apparently is the leader here with 192 messages, which is a new record. Between stations are handling traffic and there are promises of fine work for the coming winter.

NEW HAMPSHIRE—Bernard E. Stevens, WM, has been appointed A.D.M. for the state of New Hampshire. 1CQJ will be on the air every day around 1:30 P.M. and Sunday afternoons. 1AEQ is doing a good job and will greatly help out the northern part of the state. 1BNK has a new 50-watt transmitter. 1ATJ will be on every night. 1YB will probably be New Hampshire's star station.

VERMONT—1ARY seems to be the only station on the job. He is working a 50-watt with D.C. on the plate. He complains that it is impossible to get messages now that the rubber stamps are expired.

RHODE ISLAND—Dist. No. 1: D.S. F. S. Huddy reports that there is nothing of great importance taking place except that the boys have turned in very good message reports. 1AWE, 1OJ are ready to take traffic for Pawtucket. 1CM is getting lined up with his new 50-watt and will greatly help out the northern part of the state. The question is, when do the operators at this station sleep.

DISTRICT REPORTS

CONNECTICUT—1BYV is the only station in operation at present. 1ANX has a 100-watt outfit all built, but will not be in operation until he has a new aerial and counterpoise system installed here.

ST FOR DECEMBER, 1923
Q S T FOR DECEMBER, 1923

Hey, uxy! A.R.R.L. Headquarters gang on the air! Some one of the following stations is on the job every night for traffic to A.R.R.L. headquarters. Do not forget your call when you are on the air! 1C5P—195 meters; Operators C. A. Service (GS), A. A. Hebert (AH), G. H. Pinney (GP), 1DH—300 meters; Operators, H. E. Bailey (BP), and S. Kruse (LQ), 10A—176 meters; same ops as 1HX, 1BHW—200 meters; Operators K. B. Wagner (KQ), and B. L. Phillips (BP), 10GR—197 meters; Operator H. P. Maxfield (HP), and others listed take a run now and then. 1MO—every night. Same ops as at 1BHW. 1MASSACHUSETTS—1QPN has been working overtime and heads the list for the New England Division. This station handled 2058 messages. We look for more from 1QPN and the whole division. His transmitter is just getting ready for a C.W. equipment. 1LT in Lowell, has just opened up with 15 watts and is on the air daily. His reports are coming in on time. 1AV, E. L. Wagner, has just completed a tour of the whole 7th district with 20 watts. 1TT, 1QJ, and 1AKK are on the air much and consequently has little traffic to handle. 1AC7 is also off again. 1AJV and 1AJY are on again. 1AK, and 1BOM seem to headed for District No. 8. 1KC and 1BOM seem to head this district with 92 messages handled. 1AN handled 4 messages. 1CIT handled 26 messages.

Dist. No. 1: Bailey says there is little activity in his district. Only two consistent stations, 7TF and 7AGP are heard on the air. The reason is, it requires good work. 7ZL takes the box seat for the state this month, and has been getting new A.R.R.L. members. We heard 7FJ, W. R. Bond in the 8th district with 20 watts. 7TT, 7QJ, and 7AKK say they will put the northwest on the map this winter.

Dist. No. 2: Several new stations are opening up in the southern part of Idaho. In Boise we have 7TM, 7QJ, and 7AKK acting into the 7th district with 10 watts and is working east like 100. 7OB has begun his traffic handling for the first time, and 7F2X is warming up his C.W. set and is getting ready. The gang will be glad to have of the famous 7aA opening up for the winter with a powerful C.W. set. 7ZL comes through with a wonderful report. 7QJ, 7ZL, 7TQ, 7JQ, 7AO, 7TQ, and 7LN in Nampa have been reaching out, both east and north.

Dist. No. 3: Nearly all stations are on the job and the activities have taken a swing towards the regular routine. Some new stations are coming in and with the present regulars on the coast, a QSR in any direction is easy. One new appointment has been made, that goes to TAK, E. L. Wagner at Toppenish, who will act as Superintendent for Dist. No. 3.

Dist. No. 5: The only station reporting is 7GP, who, as usual, cops the box seat with 506 messages. GP has a famous 7TA opening up for the winter with a powerful C.W. set. 7VJ and 7AO are on again.

Dist. No. 6: TLX deserves special mention for pulling off unheard of DX with one 5-watt battery. He works into Florida, Ontario, Ohio and all points on the scene. 7AO was into the box seat, 7TLX and 7AO has been pressed to rely on the 20-watt.

Dist. No. 8: A new D.S. has been appointed.

Dist. No. 9: The 7OQ is heard on the air much and consequently has little traffic to report.

NORTHWESTERN DIVISION

Glen E. West, Mgr.

The work of reorganizing the Northwestern Division is now practically complete and the old gang in this Northwestern neck of the woods is hiring for the winter work. The old gang, but system and order are gradually growing out of the chaos. Too much credit can not be given to the A.D.M.s for they have worked their beads off to install a new spirit of cooperation which has been shown by every man in the division. Many thanks, O.M! Traffic is moving through this division in gobs now. Many of our best stations are QSO with the 8th and 9th districts.

Our supervisor of radio, Mr. O. R. Redfern, has just completed a tour of the whole 7th district. He held exams and addressed public meetings in practically every town in the district. Several of our new men are now the proud possessors of extra-first-grade amateur tickets. A number of your old gang have stepped up and another 7th D.M. has been appointed, Mr. Redfern in his address boosted amateur receiving. We are glad to know that such friendly relations exist between the hams of the 7th and 8th districts.

The following new appointments have been made: Leslie Crouther, 7A5J; formerly for 7ZL, has been appointed for Dist. No. 4. Mr. Crouther is an old timer and we can depend on his reports being in on time. TAR, E. L. Wagner, has been appointed to Dist. 30, on behalf of New Lon- don. O.R.S. certificates were issued during the month to: 7TG, 7JE, 7TO, 7RS, 7AS, 7BB, 7GR, 7JL, 7IN, 7JQ, 7BE, 7AGP, 7GP, 7VJ, 7AO, and 7JQ. 7AGP, 7GP, 7VJ, 7AO, and 7JQ have been working strong into wee hours at Corvalis. 7TF is now in the city with 7QJ and 7SO. A new station is found in 7EQ from Dayton who is using the calling "five". 7GO is on the air now.

Dist. No. 3: No stations reporting except 7SN who will be on soon.

Dist. No. 4: 7TO, and 7JW have new "sticks" for the winter season. 7AS is working well in the 8th district with 20 watts. 7TT, 7QJ, and 7AKK say they will put the northwest on the map this winter.
reorganization on a large plan has taken place. A number of amateurs in California seemed to feel that they were being neglected in the Operating Department reports. Perhaps it was true that the traffic between amateurs was not outstanding, but if so, there wasn't a sufficient number of amateurs from the southern part of the state to elect the A.D.M. whose districts were in that area, as California. It seemed advisable to divide the state into two or perhaps three sections, allowing each section to elect its own A.D.M. With the wise cooperation of the locals and the encouragement given by the Operating Department, it is expected that the reorganization will be made effective very shortly.

PACIFIC DIVISION

J. V. Wise, Mgr.

There is a good report for this month, even though it is rather brief. Lester Picker, 6ZH, has had the misfortune to lose the use of his right arm in an auto accident. It will be several weeks before he can 'get back in business. 6ZJ has been appointed to the San Francisco Radio Club and Mr. A. H. Babcock, our director, the scheme was proposed at the recent San Francisco convention to provide a large cage for the entertainment of the participants. During the convention the elections for Central California were held (there are three sections, Southern and Northern California, and a third section for the two areas not in the state). The results of the elections were: Mr. B. A. Coles, (62AH) 16 Ellwood Ave., Los Gatos, was elected A.D.M. of Central California, comprising districts 2, 3, and 4. Mr. M. McCreary, 62J 628 W. 49th St., Los Angeles, was elected A.D.M. of Southern California comprising districts 1, 2, and 3. Northern California, comprising districts 7 and 8, was divided and the last reports were incomplete. Perhaps it was felt that they were being neglected in the Operating Department reports. Perhaps it was the result of the recent wind storm, and 6EX lost his entire outfit. Reports are rather slow and are not turned in their reports which doesn't speak very well for the certificate holders. To one and all let's have more cooperation.

WEST VIRGINIA—A.D.M. Bock states that his station 3CM was a failure, but he got a new receiver and is ready for traffic as is 3BCH. He should have all straight C.W. some day if he can. 3SSD is testing 9CAA and 9AAU for equipment. 3BIS has been granted C.W. 6BVG in the early evening as being heard in the calf 6ZAG and will be in operation with C.W. soon. 3AHE will be on the air soon. 3MO seems to be doing well but his signals are weak. There is a fertile field in this district, which only needs a little pep. 3AJG says he will be back with us and get his organization in good shape, later. HBHS and 3HKX are on the lower waves, and 3AB is all set with 100 watts and waiting for M.G. to arrive. 3AHE will be on the air soon. 3CE is making nicely with a good bunch of stations working. We expect a C.M. for Richmond in the near future. 3VO is leaving the 3rd district, which is due to be in print. We hope he will soon return. 3MO is heard some. 3JY has handled some traffic at last, which is FB. 3BYL is on, but not reporting. 3SBF is 0-0-0. 3AL is not working. He should have all straight C.W. some day if he holds out. 3ABS has just completed his new transmitter and is ready to go. 3WJ is increasing his power to two 50-watters. 6HD is increasing his power to two 50-watters. 6HC, the last remaining spark, has been granted the call 6ZAG and will be in operation with C.W. 6XMF is a new 5-watter just opened up with two 5-watters. 6BII is working out a schedule with 6CIL or 6CIS. 6BIII is a most consistent operator heard on the air. 6WJ with 250 watts is too much of a good thing. 6AME has been experimenting—making a lot of noise at'. 6A01 must be experimenting on short waves also.

VIKING—A.D.M. states that the best and most consistent stations around the Bay Reports are rather slow, but 6CKC, 6CLZ, and 6AOR were on the job with tubes. 6BUY lost his nice mast in the recent wind storm, and 6FX lost his entire outfit during the fire at Berkeley. P. W. Dan (6ZX) called 6GBC, with his 100-watt is keeping the air boiling. 6AK has been overhauled and boasts a new shack and all the fixes. 6FW, ex-6ZX, the third of the old time YLs on the air again by the time this is in print.

6LU and 6BUA are back again with C.W. and phone. Perhaps they are rebuilding with a new operator. 6AHE has changed his QRA and will be off the air for a short time. A good route east is vital for him. 6AV is in the air. ARIZONA—Things are rounding into shape gradually. 6GS is installing C.W. Jack Paddon, formerly of Connecticut, will be on the air with C.W.

NEVADA—6AJR will be back on the air shortly. His set is being overhauled completely.

ROANOKE DIVISION

W. T. Gravely, Mgr.

A little slowing up has been noted during the past few weeks and traffic has taken a slump but, in the face of these facts, the division has splended organization and will perform worthily during the coming months. Evidently a number of O.R.S. are not turning in their reports which doesn't speak well for these certificate holders. To one and all let's have more cooperation.

WEST VIRGINIA—A.D.M. Bock states that his station 3CM was a failure, but he got a new receiver and is ready for traffic as is 3BCH. He should have all straight C.W. some day if he holds out. 3ABS has just completed his new transmitter and is ready to go. 3WJ is increasing his power to two 50-watters. 6HD is increasing his power to two 50-watters. 6HC, the last remaining spark, has been granted the call 6ZAG and will be in operation with C.W. soon. 3AHE will be on the air soon. 3MO seems to be doing well but his signals are weak. There is a fertile field in this district, which only needs a little pep. 3AJG says he will be back with us and get his organization in good shape, later. HBHS and 3HKX are on the lower waves, and 3AB is all set with 100 watts and waiting for M.G. to arrive. 3AHE will be on the air soon. 3CE is making nicely with a good bunch of stations working. We expect a C.M. for Richmond in the near future. 3VO is leaving the 3rd district, which is due to be in print. We hope he will soon return. 3MO is heard some. 3JY has handled some traffic at last, which is FB. 3BYL is on, but not reporting. 3SBF is 0-0-0. 3AL is not working. He should have all straight C.W. some day if he holds out. 3ABS has just completed his new transmitter and is ready to go. 3WJ is increasing his power to two 50-watters. 6HD is increasing his power to two 50-watters. 6HC, the last remaining spark, has been granted the call 6ZAG and will be in operation with C.W. 6XMF is a new 5-watter just opened up with two 5-watters. 6BII is working out a schedule with 6CIL or 6CIS. 6BIII is a most consistent operator heard on the air. 6WJ with 250 watts is too much of a good thing. 6AME has been experimenting—making a lot of noise at'. 6A01 must be experimenting on short waves also.

VIKING—A.D.M. states that the best and most consistent stations around the Bay Reports are rather slow, but 6CKC, 6CLZ, and 6AOR were on the job with tubes. 6BUY lost his nice mast in the recent wind storm, and 6FX lost his entire outfit during the fire at Berkeley. P. W. Dan (6ZX) called 6GBC, with his 100-watt is keeping the air boiling. 6AK has been overhauled and boasts a new shack and all the fixes. 6FW, ex-6ZX, the third of the old time YLs on the air again by the time this is in print.

6LU and 6BUA are back again with C.W. and phone. Perhaps they are rebuilding with a new operator. 6AHE has changed his QRA and will be off the air for a short time. A good route east is vital for him. 6AV is in the air. ARIZONA—Things are rounding into shape gradually. 6GS is installing C.W. Jack Paddon, formerly of Connecticut, will be on the air with C.W.

NEVADA—6AJR will be back on the air shortly. His set is being overhauled completely.
Salem bunch has been inactive for some time. Mr. Hallock has a good 20-watt set and is going strong. 4EN is back in the air with 20 watts.

Dist. No. 2: Under the leadership of T. A. Freck, is showing great improvement. With 200 watts, 4EC can be heard rattling them off at high speed. In this district please cooperate with Mr. Freck.

Dist. No. 4: Wilmington, as usual, is right on the job. Smith is going after things and his station is now giving 4FTZ. Also, he has been operating at 4FT. 4PT is on almost every evening from 5 to 8 o'clock and from 10:30 to 11:00. It is aiming for the coast 'most any old time and shows his signals all over creation. His daylight transcon perfor­mance is on a grand basis.

In conclusion, the manager has said all he could. He has faithfully coordinated all reports and promises, and the results, you have read in the foregoing. Pull your part of the load, and there will be a different story.

ROCKY MOUNTAIN DIVISION

N. R. Hood, Mgr.

9AMB

Hathaways

C.W.

Denver, Colo.

COLORADO—Denver

Dist. No. 3: Manager Hathaway takes the box seat for most messages handled. The D.M. will have to get a rubber stamp made for him if some other ham does not read in the foregoing. Pull your part of the load, and there will be a different story.

WEST GULF DIVISION

A. M. Corbett, Mgr.

NORTHERN TEXAS—Dist. No. 1: Greenville: 56GN has made great improvement. 56DW has been on Thursday and Friday nights with 71, 5AGQ third with 47 and 5AL just tells the story. St. Louis Springs: 56JH nil, 10-watt coming. Grand Saline: 5AH, Mgr., QSR here. Denton: 56NW reports 71 and going OK. 5NYX has been repaired. Terrell: 5UD is on Friday and Saturday nights. 4FF is a 15-watt bottle works Hawaii, Cuba, Canada and all U.S. districts except first and third, Denison: 5AMB and 5BC are passing 'em along at this point.

Dist. No. 2: Waxahachie: 5AJT is now C.W. 5FT and 5QT are also active. 3stations is a new A.R.R.L. relay station. 5AFH heads the list with 50. 5UVY is ready for traffic now. West: 5SD has been on every night, 5GW with 40 and 5CV reports 14. Tyler: 5PH is doing the trick here. Jacksonville: 5FC earns the honors for the division, having relayed 186 messages. West: 6DF still has the Wheelock doches; 5ADV was on only 11 days on account of trouble. He has a new 65 footer up now and 5OA. Holland: 5AWM handled 47 on C.W. and fine.

Dist. No. 3: Wichita Falls: 5UO, with a 50-watt, seems to be holding the fort. 5ZU has been QRW, YL's. Orange: 6AMA is still an experimental test. Orange: 6AMA is still an experimental test.

Dist. No. 4: Grandbury: 5NS is rebuilding. Abilene: 5EZ is a new A.R.R.L. station.

DISTRICT NO. 4

New Reinartz tuner has been installed in the air soon. In the meantime let the D.M. know that 5ZG-5YV has turned "jelly-bean" but surely it can't be so, he reports 26 but admits he has been QRW, YL's. Also: 3 stations is a new A.R.R.L. station. 5AVU, 5BKA, 5COW, 5DPM, 5ERK, 5DTH, and 5XQ. Some cancellations will be made.

ST FOR DECEMBER 1923

WYOMING—Wyoming now only has four sta­tions being built and we hope to hear them on the air soon. In conclusion, the manager has said all he could. He has faithfully coordinated all reports and promises, and the results, you have read in the foregoing. Pull your part of the load, and there will be a different story.
OKLAHOMA—Dist. No. 1: Enid is represented by seven real relay stations. 6JE leading this month with 120 messages handled and 5ANC right close to him with 119. 6PA was third with 62. 5AE reports 89 received and 41 sent. It is doing work all districts and Canada on 15 watts. He hasn’t worked Hawaii or Australia yet, but can hear QSL going out from both countries. His new QRA, 228½ W. 10th St. 5AGN is a new A.R.R.L. station. 5AGV reports 159 messages and worked 120 stations. He is putting in work in the mountainous districts including Canada the night of October 21st.

Ontario, Dist. No. 2: Tulsa; This place seems to thrive on “Martial Law.” 5GA reports 37 and his signals were heard in London, England. 5XF, 5SG and 5QI all report traffic moving OK. 5ABL is a new A.R.R.L. station for this point. He has 50 watts and is sending every Saturday night messages and is sending again and reports 87.

Dist. No. 3: Ada; 5AFU passed 21 along their way as says business is going to pick up from now on.

Dist. No. 4: Altus; 5AHD is the relay station for this point. Reports 30 received and 41 sent. Pt. Sill; 6IA handled 4. He is 127 meters, 2.5amps., and wants you fellows to get a good receiver so you can hear him. Norman; 5VG is being taken. Reports 126 received and 55 sent in November. Chickasha; 5ANY, LeRoy Scott, 427 N. 9th St. is a new A.R.R.L. station for this point. Reports 153 received and 86 sent. Muskogee; 5BM is working again and reports 37.

HAWAIIAN DIVISION
K. A. Kantin, Mgr.

Dist. “A”—Honolulu: With DX conditions improving with the coming winter weather, Hawaii is ready to do her share in breaking DX records. 6ASR, after having his 20-watt C.W. set reported heard 200 miles east of Yokohama, is now installing 80 watts. 6CCG whose signals have been logged by numerous 6th and 7th district amateurs, has joined forces with C. J. Dow, of 6ZAUF fame, and is ready to do his share of DX traffic. 6CMH is still off the air due to the reconfiguring of his C.W. set. 6TO continues to be unsuccessful in starting a station.

Dist. “B”—Hawaii: 6CEU, the star station of this division is doing excellent work with his 20-watt. He is QSO with 6th, 7th, and 9th district stations and is working out DX record for Hawaii when he worked 8BEZ with 15 watts. Mix of WNP reports 6CEU’s signals QSA while working 6AKE.

MARITIME DIVISION
W. C. Borrett, Mgr.

In Nova Scotia A.R.R.L. is coming fast and we now have several first class relay stations in operation in the Maritime provinces. We can cooperate favorably with any in Canada. We do considerable listening in as well as sending and we look with great pleasure upon the logs of some of our operators, especially those that think they should reach us. Another point that we want to bring to the front is our geographical position. We often get messages which say it is a long way to the heads of the same stations to Upper Canada. The star station is 1AR. He has been heard as far south as New York City and is sending every Saturday night messages for England and is being received almost regularly by English Tunes of Tommykay on pencil. Some DX for regular traffic. 1AR has recently increased his power from 20 watts to 500 watts and we would not be surprised to hear of one of his signals hitting him in the back of the neck after traveling around the globe. Pacific coast stations dicker your heads. Hi. Last year’s star station is at present temporarily off the air. We refer to 1BG, 5th St., 5AR was reported at Berkeley, Calif. and also off the English coast.

IDD is still pounding away at the keep handling traffic which many months years through Maritime stations of the U.S.A. District No. 1. He has worked quite a few Upper Canadians. He created quite a stir when he worked DX on October 31st by copying the full address and text of a message sent by U.S.A. 6BSS at Monterey, California to U.S.A. 6BSS at Vallejo, Calif. It was sent to the U.S.A. He is president of the Halifax Wireless Association and has donated a room and site for a club transmitter which is now being built. Many young A.R.R.L. stations are developing by 1AI who is also going to build a C.W set to replace his famous spark set. 1EJ and 1DJ each station is doing good work. If you fellows have sent in reports to the D.S., let me know about it and things will be changed.

ONTARIO DIVISION
C. H. Lanzford, Mgr.

It seems that Western Ontario is leading in activity at present. Certainly it isen its reports. The Aurora has hit the more northern cities very hard and made it impossible to get out Trans-Canada tests on the way and some real relay team will be doing business soon. Ontario has as many stations working at present as she ever had this time last year. Tests, etc., and important Yank broadcasts will be different—covering Canadian news, tests, etc., and important Yank broadcasting.

EASTERN ONTARIO—The entire report is Nil. (What’s the matter 8E8?) Ditto from Niagara D.S. If you fellows have sent in reports, D.S., let me know about it and things will be changed.

CENTRAL ONTARIO—3CO reports all fellows coming back strong and with higher power. (FB) 3HT is working on 5 watts. 9AL working on amateur station. 9BY reports 210 cards that will be sent to him during this season. 6BCL at Monterey, California to U.S.A.

QUEBEC DIVISION
J. V. Argyle, Mgr.

Traffic has kept fairly lively, there being many amateurs with good keenness behind them than ever before. 3BN leads both in traffic and DX. He uses four UV 202’s and has been reporting all stations, which are in DX. DX people are eager to overtake his records. 2AM, 2BG, 2BE, and 2CG being hot on his heels. 2CG is working the East end of the Labrador Coast. 2BG is reaching out in old time style and says he has heard a rumor to the effect that C.P.R. is putting out a new liner in order to carry the huge number of cards that will be sent to him during this season. 9DN has been appointed an O.R.S. 21C has aerial trouble; getting more mops but less cards. 2AM put over a new Trans-Canada report having got

(QST for December, 1923)
OPERATING DEPARTMENT
(Concluded from Page X)

A mag. over to the Pacific coast and a relay back in 32 minutes. This is splendid and shows that the cooperation between divisions is excellent. We could hear more Canuck 4s we could put over much faster relay work.

VANCOUVER DIVISION
A. J. Ober, Mgr.

The situation in the Vancouver Division has cleared up. Some time ago the former manager, Mr. North, resigned, and no one was appointed to fill his place, with the result that no reports of activities in the district has been the Division getting credit for its good work.

This month a vote was called by the C.G.M. from the Division, the result being that the mail vote put in 4DQ, the former D.S. of Alberta, who has now taken over the reins and will lead the division on to new triumphs in Trans-Canada work.

9BP is doing great work in Prince Rupert, having been in touch with WNP several times, and winning the Zenith Receiver prize for the best QRM, 9BX and 4CB have their aerials down, and promising to be a great asset this year. 4DQ stalling around to keep his fist off his spark set.

Several stations from the Division got in on the air with 5 watts. 4AO will be in the division and allotment of call sequences. 9BX and 4CB have their aerials down, and 4GR's aerial mast right side up. No report from southern Saskatchewan...

WINNIPEG DIVISION
J. E. Brickett, Mgr.

The Prince Albert gang are having the time of their lives trying to keep 4GR's aerial mast right side up. No report from southern Saskatchewan...

The situation in the Vancouver Division has cleared up. Some time ago the former manager, Mr. North, resigned, and no one was appointed to fill his place, with the result that no reports of activities were supplied. This was the Division getting credit for its good work. This month a vote was called by the C.G.M. from the Division, the result being that the mail vote put in 4DQ, the former D.S. of Alberta, who has now taken over the reins and will lead the division on to new triumphs in Trans-Canada work.

9BP is doing great work in Prince Rupert, having been in touch with WNP several times, and winning the Zenith Receiver prize for the best QRM. The former manairer, uhould quickly get the 600 word press message. The Vancouver gang and 6CT are rolling right along. Several stations from the division got in on the impromptu Trans-Canada that was pulled off early in the north.