SPECIAL OFFER...

A Year's Membership ONLY $3.00
A Year's Subscription to "The Radio Amateur's Handbook"

DURING JULY AND AUGUST ONLY

Take advantage, NOW, of this exceptional opportunity.
Sometimes, even the most careful amateur is tempted to "economize" on his equipment—and often to his sorrow. For experience has definitely proved that results in radio cannot be superior to the parts used in construction.

Since the early pioneer days, "Hammarlund" has meant QUALITY! But it has never meant high price.

Bear that in mind when next you need condensers, coils, transformers, chokes, shields and sockets.

At the right are illustrated two exceptional new Hammarlund Chokes. A midget R.F. Choke, wound on Isolantite core. Inductance 2.1 mh. D. C. resistance 35 ohms. Distributed capacity 1 mmf. And a heavy duty Transmitter Choke which has more than 500,000 ohms of impedance at the 20, 40, 80 and 160 meter amateur bands. Isolantite core. Inductance 2.5 mh. D. C. resistance 8 ohms. Distributed capacity less than 1.5 mmf.

Mail Coupon for Details

Hammarlund Manufacturing Co.
424-438 W. 33rd St., New York

Check here for General Catalog "34" of condensers and other precision radio equipment. Check here for booklet describing the famous COMET "PRO" 8 to 250 meter Superheterodyne Receiver.

Name: ..
Address: ..

Say You Saw It in QST — It Identifies You and Helps QST
It takes **GOOD INSTRUMENTS** to Chase the Bugs Out!!

WHEN your last stage won't shut up with the key open; when parasitics heat your coils but leave the ether un-ruffled; when you can't load the buffer with link coupling; when the single-wire feeder blossoms out with standing waves; when you run into any of the ills that keep you from going WAC ... you need good instruments ... and you can't begin to tell where your trouble lies without them.

It isn't enough to buy an instrument of the proper size and rating. There are as many ways of making an instrument as there are of hooking up an oscillator. The main parts of an instrument are few, but to make them properly, and to assemble them to give high accuracy ... and to retain it ... requires skilled engineering and painstaking manufacture.

Since 1888, Westinghouse engineers have been designing instruments, and they have put their whole bag of tricks in the MX and NX line ... certainly as high a grade of instruments in their size as was ever offered.

A new folder, F. 8338, takes an NX instrument all apart—shows how it operates and why. Every individual piece that makes up the instrument is illustrated and its purpose and method of manufacture are given. In addition, the usual forms of construction are described. You'll find complete and precise information in this new folder.

SEND FOR INFORMATION

Westinghouse Electric & Manufacturing Company
Dept. 132, Room 2-N East Pittsburgh, Pa.

Gentlemen: Please send the booklets checked below:
F. 8338—What's Behind the Dial
Catalog 43-140—Types MX and NX Instruments
Catalog 43-341—Type NX Universal Rectox Instruments
Catalog 43-342—Type NX Multi-Range R. F. Ammeter

Name
Address ...
City ... T 85059
State ... Call. QST 7-34

2 say You saw it in QST — it identifies you and helps QST
devoted entirely to
AMATEUR RADIO
It Is the Radio Amateur’s Number One Piece of Equipment—order your copy today

the eleventh edition

RADIO AMATEUR’S HANDBOOK

The new eleventh edition of the Radio Amateur’s Handbook is a complete revision and enlargement from the previous edition. It is the standard of the world as the textbook of Amateur Radio. Its 260 pages and 224 illustrations are a complete education in the technique and practices which have been developed through the years—right up to now.

THE MOST COMPLETE BOOK ON AMATEUR RADIO EVER PRINTED

Price

$1

postpaid anywhere
(In buckram binding, $2)

THE AMERICAN RADIO RELAY LEAGUE, INC.
West Hartford, Connecticut
Section Communications Managers of the A.R.R.L. Communications Department

All appointments in the League's field organization are made by the proper S.C.M., elected by members in each Section. Mail your S.C.M. (on the 16th of each month) a postal covering your radio activities for the previous 30 days. Tell him your DX, plans for experimenting, results in 'phone and traffic. He is interested, whether you are an A.R.R.L. member or get your QST at the newsstands; he wants a report from every active ham. If interested and qualified for O.R.S., O.P.S., or other appointments he can tell you about them, too.

ATLANTIC DIVISION

24 South Fairview Ave. Highland Park, N. J.
Edward L. Hudson 1422 2nd Ave. Upper Darby, Del.
Geary Riggio 713 Hicks Ave. Laurel, Del.

CENTRAL DIVISION

6618 West 34th St. Berwyn, Ill.
Fred J. Hinds 911 Relser St. Indianapolis, Ind.
Carl L. Blum P. O. Box 159 Louisville, Ky.
Harry A. Tammouds 2973 West 83rd St. Cleveland, Ohio
Har. R. Becker 2530 N. 34th St. Milwaukee, Wis.

DAKOTA DIVISION

1022 11th St. S. Fargo, N. D.
Fred J. Wells 601 S. Grand Ave. St. Paul, Minn.
Mike G. Simonds 2200 Fanquiser St. St. Charles, Ill.
Robert C. Harasberger 4901 W. Bluff St. Rockford, Il.

DELTA DIVISION

2918 West 19th St. Chicago, Ill.
H. E. Velte 1024 Allen Ave. Shreveport, La.
W. G. W. Allen P. O. Box 69 Jackson, Miss.
F. R. Purdy P. O. Box 173 Lulingport, Miss.

HUDSON DIVISION

1080 Helderberg Ave. Schenectady, N. Y.
Robert E. Haight 7822 10th Ave. New York, N. Y.
Robert Maloney 315 Watson Ave. Perth Amboy, N. J.

MIDWEST DIVISION

210 Exchange St. Keokuk, Iowa
E. F. Alberts 305 Western Ave. Topeka, Kansas
O. J. Speeter 300 Sixth St. Monett, Mo.
C. R. Eaddy Green St. Clarks, Ky.

NEW ENGLAND DIVISION

Box 301 Ketchikan, Alaska
Richard J. Fox P. O. Box 1271 Boise, Idaho
Monet C. Wallace Box 828 Yakima, Wash.

PACIFIC DIVISION

21st Infantry Brigade Schofield Barracks, Oahu, Hawaii
Lee L. Ramsey 1151 Buena Vista Ave. Reno, Nevada
Howell C. Brown 120 N. El Molino Ave. Pasadena, California
Barton A. Wood 1821 Chestnut St. Campbell, California
P. W. Danna 141 Aton Ave. Berkeley, California

ROCKY MOUNTAIN DIVISION

4835 N. Amherst St. Bend, Oregon
Stanley J. Beldivey Route 7, Box 87 Yakima, Wash.

SOUTHEASTERN DIVISION

2817 Montrose Ave. Barnwell, S. C.
S. C. H. Hoffmann, Jr. 100 20th St. Jacksonville, Fla.

SOUTHWESTERN DIVISION

4176 Gaylord St. Denver, Colo.
Arvy W. Clark 200 So. 9th West Salt Lake City, Utah

WESTERN DIVISION

1066 Waverly St. Port Angeles, Wash.
L. L. Ellwood 4524 College St. Tarrant, Tex.
Ray Ackinson 1517 East Brainerd St. Jacksonvllle, Fla.

WILDERNESS DIVISION

50 Muscoke Ave. Atlanta, Ga.
George A. Love 1133 Amarillo St. Abilene, Tex.

WIND TUNNEL DIVISION

576 S. 11th St. San Antonio, Tex.
Carter L. Simpson 7010 So. 4th St. Forth Worth, Tex.

NEW ENGLAND DIVISION

6726 Ave. Denver, Colo.
Edward H. Collins 407 South Gibrart Rd. Albuquerque, N. M.

MARCHITATIVE DIVISION

69 Dublin St. Halfax, N. S.
A. M. Crowell 4 Shorncliffe Ave. Toronto, Ont.

ONTARIO DIVISION

4 Shorncliffe Ave. S. B. Trainer, Jr. Toronto, Ont.

QUEBECK DIVISION

245 Edelion Ave. J. A. Robertson, P. Q.

VANALTA DIVISION

4111 Avene, N. W. Calgary, Alta.
F. Smaller, Jr. 1724 Gravelly St. Vancouver, B. C.

PRAIRIE DIVISION

Reg. Strong 711 Ashburn St. Winnipeg, Man.

REG. STRONG 3900 McDill Field, Fla.
The American Radio Relay League

DIRECTORS

President
HIRAM PERCY MAXIM. W1AW
Box 216, Hartford, Conn.

Vice-President
CHARLES H. STEWART. W3ZS
St. David's, Pa.

Canadian General Manager
ALEX. KEID. VE2BE
100 Logan Ave., St. Lambert, P. Q.

Atlantic Division
EUGENE C. WOODRUFF. W8CMX

Central Division
LOREN G. WINDOM. W8GZ-W8ZG
1375 Franklin Ave., Columbus, Ohio

Dakota Division
CARL L. JABS. W9BVH
1512 James St., St. Paul, Minn.

Delta Division
M. M. HILL. W5EB
P. O. Box 274, Natchitoches, La.

Hudson Division
BERNARD J. FULD. W2BEG
280 Broadway, New York City

Midwest Division
H. W. KERR. W9DZ-W9GP
Little Sioux, Iowa

New England Division
G. W. BAILEY. W1KH
74 Webster Road, Weston, Mass.

Northwesterns Division
RALPH J. GIBBONS. W7KV-W7BIX
134 N. E. 25th Ave., Portland, Ore.

Pacific Division
S. G. CULVER. W6AN
2502 Russell St., Berkeley, Calif.

Roanoke Division
H. L. CAVENESS. W4DW
State College Station, Raleigh, N. C.

Rocky Mountain Division
RUSSELL J. ANDREWS. W9AAB
1801 S. Lafayette St., Denver, Colo.

Southeastern Division
J. C. HAGLER, JR. W4SS
2424 McDowell St., Augusta, Ga.

West Gulf Division
FRANK M. CORLETT. W5ZC
2515 Catherine St., Dallas, Tex.

The American Radio Relay League, Inc., is a non-commercial association of radio amateurs, bonded for the promotion of interest in amateur radio communication and experimentation, for the relaying of messages by radio, for the advancement of the radio art and of the public welfare, for the representation of the radio amateur in legislative matters, and for the maintenance of fraternalism and a high standard of conduct.

It is an incorporated association without capital stock, chartered under the laws of Connecticut. Its affairs are governed by a Board of Directors, elected every two years by the general membership. The officers are elected or appointed by the Directors. The League is non-commercial and no one commercially engaged in the manufacture, sale or rental of radio apparatus is eligible to membership on its board.

"Of, by and for the amateur," it numbers within its ranks practically every worth-while amateur in the world and has a history of glorious achievement as the standard-bearer in amateur affairs.

Inquiries regarding membership are solicited. A bona fide interest in amateur radio is the only essential qualification; ownership of a transmitting station and knowledge of the code are not prerequisite. Correspondence should be addressed to the Secretary.

OFFICERS

President HIRAM PERCY MAXIM, W1AW
Hartford, Connecticut

Vice-President CHARLES H. STEWART, W3ZS
St. David's, Pennsylvania

Secretary KENNETH B. WARNER, W1EH
West Hartford, Connecticut

Treasurer ARTHUR A. HEBERT, W1ES
West Hartford, Connecticut

Communications Mgr. ... F. EDWARD HANDY, W1BDI
West Hartford, Connecticut

General Counsel PAUL M. SEGAL, W3EEA
1010 Shoreham Building, Washington, D. C.

Address all general correspondence to the executive headquarters at West Hartford, Connecticut
THE amateur regulations require that the code examination for a Class-C license be given by a licensed operator of appropriate grade and that the written part of the examination be filled out in the presence of a witness. Generally it is convenient amongst amateurs to combine the functions of code examiner and witness in the person of a licensed amateur operator of Class B or higher. On the application form, statements must be sworn to before a notary that the applicant actually passed the code test and that he answered the written questions without assistance of any kind.

We heard recently of the case of an amateur operator who acted as witness for eight acquaintances who were taking the examination. On some of the questions, all eight turned in identical answers. Fortunately for the causes of law and order and poetic justice, the answers were uniformly wrong and all the candidates failed the examination. But under such circumstances it should not seem like too much preaching for QST to moralize on this theme a moment.

You should not perjure yourself to get your friends through the examination. The oath should mean something. It is foolish to run the risk of losing your own amateur privilege. You should help to keep amateur radio a clean game. Regardless of friendship, it is better for amateur radio that those who are unqualified be kept out—until they do qualify.

EVERY amateur probably noticed that the A.R.R.L. Board of Directors at its recent meeting ordered that work commence at once on plans to increase the frequency allocations of amateurs at the next world-wide conference—to be held in Cairo in 1937. It is time to get busy, for we shall have lengthy and careful planning to do, both at home and abroad. It will be a tough job, for we shall be confronted by all of the hostility of commercials and foreign governments. Yet there is room available for our pressing needs: if the commercials made a quarter as advantageous use of their space as we do ours, there would be room to spare for everyone. We repeat the public notice that we have already served—for the whole world might as well know it now as later—that the amateur has to have more space in the spectrum, particularly in the region of 7 megacycles.

PERIODICALLY some of us get concerned over the possibility that the growth in the number of radio amateurs is bringing so many new and unskillful operators onto the air that it is getting too tough for the rest of us. We can think up splendid ideas for good operating practice, for cooperative methods that accomplish this or that, for new apparatus that by improved performance makes another accomplishment possible despite QRM. The seasoned amateur can readily adopt these suggestions and is generally prepared to do so. But then it is pointed out that the success of most of these projects depends upon their widespread adoption and that they are of little avail if our bands are crowded with the activities of men young in amateur radio, not yet skilled in operation, not yet possessed of a fine sense of cooperation and amateur ethics, and possessing only beginners' equipment.

The answer frequently proposed is that beginners without previous experience be restricted to a certain portion of the amateur spectrum during a probationary period of, say, a year. During that time they would learn what it is all about, they would acquire skill and, more important, a realization of our interdependence when we work in common bands. Then when they entered the regular amateur bands everyone would be much happier and the general tone of amateur radio would be that of a superior social structure in which the opportunity for the sway of intelligence and cooperation would create greatly improved conditions. In several countries just such a rule applies, at the request of the local amateurs. We would like to get some discussion in QST on this suggestion. What do you think about it, OM? Do you believe any restrictions should be placed upon inexperienced beginners? If so, for how long, where, what?

TIME was when amateur radio in summer was as dead as a burnt-out ’10. In the long-wave days, and particularly before the advent of continuous waves, King Static held undisputed sway from May until September. The September issues of QST used to be called Fall reopening numbers and contained stirring appeals to rebuild stations and get ready for a new winter season’s activity.

How different it is to-day! High frequencies make us nearly independent of atmospheric conditions and the “summer slump” in amateur radio
radio is a thing of the dead past. This is particularly advantageous to the fellow in school. Winter with him is the time he can least afford to devote to radio. One of last year's new amateurs recently expressed it thus to us: "I haven't been able to do much with my set this winter, since study takes up most of my evenings, but it won't be long until summer, now, and then—oh boy!—I'll bet I'm operating it every night."

Few things so well illustrate our progress of the past ten years as the attainment of year-around ability to communicate. What we old timers would have given to be able to talk twenty miles through mid-summer QRN!

If we still have a seasonal manifestation in amateur radio it is in ultra-high-frequency operation with portables. It is admittedly too tough to climb mountains or grain elevators during raging blizzards unless there is an emergency on. Five-meter DX work is still distinctly a summer activity. But—well, this is summer, isn't it?

K. B. W.

Massachusetts State Convention
(New England Division)
July 28th at Provincetown, Mass.

A MAMMOTH program is being sponsored by the Provincetown Radio Club for July 28th during the Naval Fleet visit at Provincetown, Mass. Besides the convention routine there will be inspection of 35 ships in the harbor, ultra-high-frequency work from Pilgrim Monument, navy band concert, baseball games, boat races, etc. The town officials are giving their full cooperation to the radio club, and it will be open house during the day. There will be special transportation rates by rail or water for that day. The fee including dinner is $1.75 at door; $1.50 reserved; groups of 5 reserved $1.25. Further information and reservation may be made to T. L. Chase, Sec'y, Provincetown Radio Club, Provincetown, Mass.

The Iowa State Convention
(Midwest Division)

APRIL 20th-21st will be considered history making dates in the annals of Iowa Conventions, the Des Moines Radio Amateurs Association of Des Moines getting much satisfaction by outdoing all previous conventions in the Midwest Division. With the largest registered attendance ever recorded and a program replete with interesting lectures, the delegates soon realized they were to get their money's worth.

With the welcoming address of Hon. Clyde L. Herring, governor of Iowa, Chairman Sadilek immediately opened the convention for the lectures. H. F. Gulliver (W9HMI) discussed the various steps in converting sodium potassium tartrate crystals into microphones and demonstrated several types. John Lewis, research engineer, Parrot Film Co., talked on speech scrambling equipment; Dr. E. B. Kurtz, of Iowa State University, on Television and some of its problems. Arthur Collins of Collins Radio Co., an old-time amateur, spoke on speech equipment followed by Boyd Phelps on receiving and transmitting antennas with further demonstration of ultra-high-frequency equipment.

The Naval Reserve was well represented by Lt. (j.g.) C. H. Morgan and Mr. R. H. Miller of the General Electric Co. entertained the guests at the banquet with motion picture demonstration.

The exhibitors' display proved an attraction well worth the efforts of those who participated. The Friday night open forum was the high light of the convention where League policies were thoroughly discussed. One of the stunts at the banquet was an address by Mr. H. P. Maxim, president of the A.R.R.L., over long distance from his home in Hartford. "Andy" Woolfries, announcer at WOI, proved himself an ideal toastmaster. The big "swap fest" and "auction," trips to points of interest in the city, prize contests and the distribution of the many worthwhile prizes made the delegates feel they had made no mistake in attending the convention.

The thanks of the convention goes to the convention committee consisting of F. J. Sadilek, chairman, E. A. Pedersen, F. P. Williams, E. F. Brown, L. S. Gordon and J. M. Dean, for their hard work in staging this successful convention.

—F. J. S. + A. J. H.

28-Mc. Tests

THE Metropolitan Amateur Radio Association of Melrose, Mass., is sponsoring a 28-mc. test to be held on the last two Sundays in July and the first Sunday in August.

Points will be earned by the following table:

- 1 point for each station heard
- 2 points for each W or VE station worked
- 3 points for any foreign station worked
- If 'phone was used for contacts the "contact" points may be doubled.

Multiply the resulting score by the total number of W and VE districts worked. Certificates will be awarded winning stations reporting in each W and VE district, or foreign country. A special certificate will be awarded the station making the highest score.

Any clubs with members interested in this work should get in touch with the secretary of the Melrose club. Reports may also be sent A.R.R.L.

8 QST for
Automatic DX Relay Work for the Ham

Details of the Necessary Equipment and Technique: Some Proposed Lay-Outs for International Round-Table Nets and Globe-Circling Relays

By D. A. Griffin, W2AOE*

ONCE upon a time— all amateurs were on 200 meters, more or less. Everyone knew everyone else, traffic handling and DX (that would be laughable to brag about today) were the only interests. In those days the primary worry was whether or not the signal would be picked up even a few miles away. Continued effort to increase the transmitter range was unquestionably a powerful incentive to "keep at it." Then came the development of tube transmitters, short waves, and multi-stage receivers. The present picture is unquestionably far better than that of the "good old days," so far as equipment is concerned. At the same time it is futile to deny that there is need for further progress and advancement of technique.

Little Willie's experiences tell the story. Following the Handbook's instructions, he builds a rig, works 70 countries, collects a WAC certificate, and then writes to Headquarters to find out what he can do next. Willie is like Alexander the Great, sighing for more worlds to conquer. In plain English, he is stumped, and cannot find a worthwhile outlet for his efforts. There are thousands in Willie's predicament on the air. Just listen in on 'phone or c.w. and you will hear great numbers of them. They are the boys that say "Ur sigs QSA 5 R7 wx fair QRU-SK," and then proceed to repeat the performance over and over again.

It would be foolish to say that further technical progress is impossible. We are undoubtedly going to have better transmitters and receivers as time goes on. The question is what next, after everyone's signal is R9 everywhere. Contact between two stations, even though at opposite ends of the earth, has lost its thrill for many. Fortunately, an entirely new and revolutionary type communication awaits our development. The writer feels privileged in presenting to the fraternity the material to follow. It is the work of a small group of amateurs chiefly in the Hudson Division covering a two-year period. It is time-tried and tested and should certainly revolutionize our conception of amateur radio as a communications medium and provide us with a galaxy of new thrills and records to establish.

First, let's light up the old corncob, or what have you, and sit back and permit our imaginations to have free rein for a moment or two. Can you imagine W1MK's official broadcast being transmitted simultaneously by stations in all our 48 states, with the tape-machine at Hartford controlling all of the stations' transmissions? Wouldn't you like to control a transmitter 200 miles away and have that station return to you a reply from one still further away that you cannot hear, doing it automatically? Wouldn't it be a thrill to send out a signal on 14 mc. and hear it coming back to you via a round-the-world relay on 7-mc. meters in one-seventh of a second? How about an all-continent QSO, with any one of the six transmitters controlling the other five? All of these dreams and countless other combinations for both telegraph and telephone can be realized. Several already have been proven possible by actual test. The rest await the construction of properly located stations on a worldwide basis.

How this can be accomplished is the obvious
question, and the answer is simple—the use of 56 mc. for remote control. While ultra-high-frequency communication is fascinating in itself, the range is decidedly limited. However, it can be utilized for remote-control work in a very simple fashion, to produce the startling results outlined above. The first two stations to set up a satisfactory circuit of this sort were, I believe, W2TP and W2JN. With W2TP operating on 14-mc., easily work duplex on 56-mc. The 56-mc. circuit serves both as a keying circuit and as a telephone line at the same time. Just imagine similar set-ups in operation all over the country. What a time they can have setting up all sorts of combinations!

Let's look into a little more complicated circuit. Suppose W1MK is sending out the regular weekly broadcast. W2CUZ, with an S.S. superhet on 3.5 mc. can easily pick up a perfect signal from W1MK and send the audio beat-note to W2AG over the 56-mc. channel. Just as in the case of W2CUZ's own ICW, W1MK will then key W2AG's 3.5-mc. transmitter automatically. Of course, it is just as easy to retransmit the signal on other bands.

Now assume that we have a similar two-station combination on the west coast with W6XYZ on 56 mc. controlling W6ZXY on 3.5 mc. W6XZY can pick up W2CUZ through W2AG and feed the signal into his 56-mc. transmitter, which controls W6ZXY on 3.5 mc. Now W2CUX will have control of both W2AG and W6XYZ. What a CQ that ought to make!

On the other hand, W6XYZ can pick up a station in Hawaii, for example, and send it to W2CUZ through W6ZXY when Hawaii is inaudible on the east coast. But enough, before you and the writer both go off the deep end.

This same procedure is used by W2TP and W2JN for 'phone work. Obviously, no relays are necessary, but the requirements, so far as the 56-mc. channel is concerned, are much more rigid than they are for telegraph. An RB signal with excellent quality is absolutely essential for good

operators engaged in re-broadcast work of this nature should remember that the regulations require the signing of the station call at least every 15 minutes and at the end of each transmission. Practical experience in automatic relaying will doubtless disclose some procedure which will enable all stations participating to break away and sign their own calls at pre-arranged periods or on receipt of some special signal.—Editor

The "duets" indicated comprise two ham stations, each fitted with 7 or 14-mc. equipment in addition to 56-mc. gear and mixer apparatus.
retransmission. Weak signals of mediocre quality will not do, as the quality becomes progressively worse as the signal is put through a receiver and another series of audio stages in the low-frequency transmitter. Here again, good operating practice is necessary, and again the duplex 56-mc. circuit provides "land-line service" to make it possible. The 14-mc. carrier at W2TP is cut off at the end of each transmission. "Carrier, please," says Atwater in Montclair, and "Musty" throws the switch in Leonia when the DX station stands by. The stuff is there, fellows, round-the-world relays and all. Let us see what is necessary to secure these results and then go to it.

THE 56-MC. CONTROL PANEL AT W2CUZ
On the left is the 56-mc. receiver. Immediately to the right is a simple mixer. Pre-amplifier, tone generator, faders etc. are in the aluminum box. The key controls W2AG in the set-up of Fig. 1. The microphone provides the "talk back" as described in the text.

THE OPERATING TABLE AT W2AG
The low-frequency receiver is at the left, 56-mc. receiver at the right. The mixer is located on the lower shelf.

W2JN, showing the mixer, transmitter remote-control keys and 56-mc. receiver. W2JN on 56 mc. is regularly retransmitted by W2TP on 14 mc.

The first requirement is a complete installation of 56-mc. gear in your own and your "partner's" stations. A multitude of five-meter circuits have already been described in QST, and further enlargement on this subject is unnecessary. As pointed out above, loud signals that will completely suppress the rush of super-regeneration in the 56-mc. receiver are essential for 'phone work. It is advisable to err on the side of too much power rather than too little. Naturally, the c.w. man does not have to install a microphone. However, it will speed up operation immensely if the circuit between the two local stations can be used as a telephone line as well as for keying purposes. If both stations are listening to the distant station, errors in copy can be cross-checked and the proper "fill" secured.

Many amateurs can secure help from local 56-mc. enthusiasts in getting started with the least amount of trouble. They will undoubtedly be glad to help, as it will enable the 56-mc. bug to work DX stations using his 56-mc. ICW signal. Another advantage not pointed out previously is the fact that if the 56-mc. station is located at a fair distance it can be used as a remote receiving point if local QRM is breaking things up. This is a distinct advantage if the high-powered ether buster around the corner opens up on your pet band. You can laugh at the QRM because it will not exist five or ten miles away at the receiving point. And is it a pleasure? Just try it.

It certainly would be advisable to get acquainted with straight 56-mc. transmission and reception for a few days before going into the heart of the system—the mixer circuits. Of course, the low-frequency transmitter will put a harmonic
into the 56-mc. band that will block the "rush" in the same manner as an incoming signal. It is evident that the other fellow's 56-mc. transmitter cannot be located at that frequency, but must be set at a frequency that is free from harmonic trouble on the receiver. Your own 56-mc. transmitter must then be set on a frequency far enough from your partner's so that duplex work is possible. At the same time, the frequency you select for your 56-mc. transmitter must be at a "harmonic free point" on his receiver if he is also using a low-frequency transmitter. With a powerful low-frequency transmitter located in the same room, the 56-mc. receiver may be entirely blocked. Care in the placement of the receiver and its antenna in relation to the transmitter will help to correct this trouble if it is encountered. At the start, a number of minor difficulties will probably be encountered. These can be readily overcome with a little practice.

Now for the mixer and relay circuits. The various photographs show these units in various types of construction. While the design and appearance varies considerably, as the photographs indicate, basically they are very similar so far as the circuit is concerned. The writer takes the liberty of describing his own unit because it is home-grown and therefore a familiar article. It will do all the necessary tricks and then some. Less complicated outfits can be easily constructed to do the job, but naturally the flexibility is somewhat limited. The mixer is necessary because the loud-speaker to microphone method of retransmission has proved, to say the least, unsatisfactory. Feed-back difficulties are always encountered, together with other annoying noises. The degree of control in securing the correct amount of signal is also limited.

Referring to the diagram, we find a pre-amplifier stage for use with a double-button microphone. This is unnecessary if a single-button microphone is used. It is included in this case because the output level of the double-button microphone is down considerably. This stage is placed before the volume control or fader system so that the microphone level will approach that of the detector tubes in the receiver, at the point of volume control. Jack \(J_1 \) is used for the microphone and \(J_2 \) to measure its current. Jacks \(J_3 \) and \(J_4 \) are connected to the two tube-to-line transformers. Only one of these tube-to-line circuits is necessary, but two of them make it possible to fade in two receivers together with the talk back circuit at the same time. It is essential that jacks be placed in the detector plate circuit of both the 56-mc. and the low-frequency receivers, so that either may be connected at will to the mixer by means of patch cords. The patch cords are made of short two-wire cable with a 'phone plug at each end.

Multiple jacks in the detector circuits are advantageous. A split pair of 'phones (one 'phone from each receiver) can then be plugged in to both sets so that the 56-mc. signal will be heard in one ear and the low-frequency signal in the other. At the same time, it is possible to retransmit the signals via the mixer.

To return to the diagram once more, we note that the three output windings of the transformers \(T_2, T_3, T_4 \) are in series, each working into its own volume control. Potentiometers are shown for the sake of convenience. They will work satisfactorily and are cheaper than the "T pads" which might be employed by those who desire the last word in efficiency and quality. The potentiometers connect to the 500-ohm transformer, or can, if economy is necessary, connect directly to output jack \(J_5 \). The 500-ohm line from this point connects to the 500-ohm winding of the input transformer to the main speech amplifier. This amplifier is used to modulate the 56-mc. transmitter only, where telegraph is to be employed. Where both 56-mc. and low-frequency

FIG. 4—COMPLETE CIRCUIT OF W2AOE'S MIXER

\(T_1 \) —Double-button mike-to-grid transformer.
\(T_2, T_3, T_4 \) —Tube-to-200-ohm line transformers.
\(T_5, T_6, T_7, T_8 \) —200-ohm-to-grid transformer.
\(T_9 \) —Push-pull input transformer.
\(C_1 \) —2 pfd. fixed condensers.
\(C_2 \) —0.1 pfd. fixed condensers.
\(R_1 \) —2500 ohm, 1-watt resistors.
\(R_2 \) —10,000-ohm potentiometer.
\(1 \) or 2 ma. relay.
'phone is used, it will be necessary to provide means for shifting its output so that either transmitter may be modulated.

The next step is the keying or relay circuit. If an ICW signal or the break note of a c.w. signal is fed from either receiver into \(J_1 \), and the fader control is open, the signal will be amplified by the 56 audio stage and the voltage will be impressed on the grid of the second 56 tube. This second stage is used as a rectifier and its adjustment is important. Fixed battery bias is essential as we are interested in securing the greatest plate current change for a given change in grid voltage. Automatic bias tends to hold the plate current at a fixed level and, for this reason, is unsatisfactory. With a fixed bias of 7½ volts, the plate voltage on the rectifier tube is adjusted so that the plate current flowing is just below that necessary to operate the relay.

Last, but not least, is the audio oscillator or howler tube. This tube is connected in a simple circuit furnished with output and keying jacks. For ICW, the key is plugged into \(J_3 \). A patch cord connects \(J_2 \) to \(J_3 \) or \(J_5 \) so that the audio oscillator output is fed into the amplifier, the volume being controlled by the fader. Thus tone modulation can be fed into the 56-me. transmitter at any desired level.

The mixer, then, can be looked upon as a distributing system with a number of different functions. All controls are on one convenient panel. The manipulation of a patch cord or two and the proper setting of the faders make extremely rapid changes possible. A tone generator, a remote keying circuit, local voice transmission, and retransmission of both voice and telegraph simultaneously can all be obtained with a twist of the wrist. Proper operation of the unit can naturally be acquired only by practice.

In conclusion, it might be well to point out that a general adoption of the relay system described above will require cooperation between local amateurs to a degree unnecessary heretofore. To date, most amateur accomplishments have been individualistic in nature. It is obvious that a high order of cooperation will give us increased flexibility and greater enjoyment as is the case with other cooperative efforts. Such cooperation and an increased amount of inter-band QSO’s will do much to restore contact between amateurs with different interests and different viewpoints working on our widely separated bands.

Strays

With reference to the use of a home-made grid choke in the 830 amplifier described in May QST, W4AKJ writes that he has cured similar cases of parasitic oscillation by putting another choke in series with the grid choke, thereby detuning the low-frequency circuit. Any sort of choke seems to work, provided there is enough inductance to avoid resonance between grid and plate circuits.

Suggested "Q" sig for those QSO’s in which you have to quit suddenly to get to work on time — QQQ. Meaning — "Must QRT immediately, will explain in next QSO or on QSL." W4MS is the author.
On Sunday May 13, 1934, due to the good organization work of D. B. Whittemore, W2CUZ, the long talked of Five-Meter Relay between Boston and New York City took place. Such a relay had been the dream of 56-mc. men for the past two years. Two previous attempts had been made which failed.

W2GEC was on the New York City end, with W2AG located up the river at Yonkers for the first hop. It fell to the lot of W2CTF to make a long trek of 125 miles up state to the Catskill Mountains (Haines Falls, N. Y.) for a portable location from which they hoped to make the contact direct to Wilbraham Mountain, about ten miles east of Springfield, where W1HMO (formerly W1AWW) has had a permanent location doing five-meter work exclusively and continuously for the past two and one-half years.

Shortly after 10:00 a.m. W1HMO called W2CTF in the Catskills — and W2CTF came back! What a thrill! Stations in the First and Second licensing areas were QSO over one of the longest hops of the route. After the usual greetings, W2CTF put the signals of W1HMO through to W2AG at Yonkers, who in turn put them through to W2GEC at New York City. This double re-transmission of W1HMO to W2GEC with a total distance of around 200 miles is an indication of what may become every-day occurrences, and incidentally hangs up a record for the present time as far as W1HMO is concerned. The next hop was from Mount Wilbraham (W1HMO) to Mount Wachusetts where W1AHX was located with his portable outfit, and able to contact Boston stations with ease. Messages were sent each way over the route and made excellent time. A queer condition prevailed between Mount Wilbraham and Mount Wachusetts. W1AHX at Mount Wachusetts could hear W1HMO at Mount Wilbraham very nicely, but W1HMO at Mount Wilbraham could not hear W1AHX, while W1DE located on High Ridge, some 20 miles northwest of W1HMO, with an elevation slightly better, was able to receive W1AHX, but could not contact him. Consequently, messages going west were obliged to travel farther than those going east. W1DE saved the day and the relay by being on the job and acting as receiving station for W1HMO.

An interesting report was turned in by W1HDQ who was located for the day on Mount Ascutney, near Windsor, Vt. He was able to hear, and understand fully both W2CTF and W1HMO, and the airline distance was well over 125 miles.

The time elapsed in the relaying of the messages was less than one hour — from 2:21 to 3:12 p.m. EDST, May 13th. Portable, W2CTF, was located 85 miles from Mount Wilbraham, using 8½ watts input from a 165 v. dynamotor, on his 112 A's. He was 90 miles airline from

(Continued on page 79)

THE 80-FOOT TOWER AT W1HMO
The station is on the second floor, elevation 900 feet, antenna at the top.

THE OPERATING POSITION AND CONTROLS
Jacks and patch cords make it possible to connect any receiver to any transmitter at W1HMO.

*349 Worthington St., Springfield, Mass.
A Vacuum-Tube Type Modulation Meter

By E. and C. Seiler, W8PK*

THE ideal tool to check percentage modulation and find out whether or not a radio frequency modulated wave is distorted is the cathode ray oscilloscope. The apparatus to be described, which is of the vacuum-tube voltmeter type and resembles the General Radio modulation meter, is the next best tool with which to check percentage modulation. This apparatus may be constructed by consulting the old junk pile and referring to the wiring diagram of Fig. 2.

PRINCIPLE OF OPERATION

If a symmetrically modulated radio-frequency wave is introduced into the full wave rectifier of Fig. 2, the average amplitude for complete, partial, or no modulation remains constant. Therefore, the rectified voltage across the 2500-ohm load resistance of the full wave rectifier, if measured with a high-resistance direct current meter, would always be the average voltage, equal to \(E_1 \) of Fig. 1-A—the reason being that the average amplitude of the carrier is constant under the conditions of complete, partial, or no modulation.

If a voltage \(E_2 \) were now connected in parallel with \(E_1 \) and made equal to \(E_1 \) and the direct current voltmeter connected into the circuit as shown in Fig. 1-B, the meter would read zero. If in place of the direct current voltmeter we now connect a unidirectional peak voltmeter this meter will still register zero on no modulation. However, if modulation is applied, the instantaneous voltage across the 2500-ohm resistance will vary over one cycle from the value \(E_1 \) to \((E_1 + E_2) \), then to \((E_1 - E_2) \), as indicated in Fig. 1-A. During the positive part of the modulation cycle the peak voltage, which will be measured by the unidirectional peak voltmeter, will be equal to the algebraic sum of the battery voltage \(E_2 \) and the peak voltage \((E_1 + E_2) \). Since \(E_2 \) was made equal to \(E_1 \), we have \((E_1 + E_2) - E_2 = E_2 \). Similarly, during the negative part of the cycle the peak voltage across the resistance is \((E_1 - E_2) \); and if the connections to the unidirectional peak voltmeter are reversed the voltage measured by the unidirectional peak voltmeter will again be \(E_2 \), since in this case (adding algebraically) we have \((E_1 - E_2) - E_2 = -E_2 \). In other words, the meter can measure the actual positive or negative peaks of modulation.

CONSTRUCTION AND OPERATION

\(L_1 \) and \(L_2 \) are r.f. chokes wound on a spool as shown in Fig. 3. In winding these chokes use No. 22 cotton-covered wire and wind the layers on smoothly placing a strip of waxed paper between each layer. Wind on enough layers so that the spool is within one-eighth inch of being full. RFC is a choke of 600 turns of No. 28 silk-covered or enameled wire wound on a spool having the same dimensions. This choke can be scramble wound.

In laying out the equipment divide the box into two compartments. Line the inside of the box with tin or copper. Referring to Fig. 2, place all the equipment shown to the left of the dotted line in one compartment and the remaining equipment in the second compartment. The purpose of this arrangement is to isolate the r.f. from the rectified r.f. circuits.

After the equipment is assembled and wired it is ready for test. Connect 110 volts a.c. to the transformer, 90 volts d.c. to the 5000-ohm potentiometer binding posts, and the microammeter across the meter binding posts.

Turn the single-pole switch so that the half-wave rectifier is shorted out of the circuit. The

*Box 114, E. Bloomfield, N. Y.

July, 1934
the potentiometer arm towards the negative terminal so that the microammeter needle shows a deflection. If this deflection is on the scale the d.p.d.t. switch is in position to measure “Up” modulation. If the needle kicks off scale, however, the d.p.d.t. switch is in position to read “Down” modulation.

Knowing which position is for “Up” and which for “Down” measurements, set the d.p.d.t. switch in the “Up” position and turn the potentiometer arm still in the “Out” position, couple the pick up coil to the tank of the final stage—or whatever stage you wish to check—and adjust the coupling so that meter indicates exactly 100 scale divisions. Modulate the transmitter, and if the meter needle remains stationary there is no carrier shift. If the meter needle moves to 110 there is a 10% shift. Likewise, if the meter needle moves to 150 there is a 50% shift.

This meter may be used, in conjunction with a volume indicator or vacuum-tube voltmeter and an audio oscillator, for determining the modulation characteristic of any transmitter. By varying the input voltage at 1000 cycles to the speech equipment in steps of 2db, the “Up” and “Down” percentages may be read and a curve plotted on semi-logarithmic paper of db input vs. % modulation. For excellent transmission this curve should be a straight line. A typical modulation characteristic is shown in Fig. 4.
If the audio oscillator is of the variable type, a complete overall audio-frequency characteristic can be obtained by applying a series of tones to the audio equipment at a constant voltage, as indicated by a v.t. voltmeter or v.i., and measuring the percent "Up" and "Down" modulation. Using 1000 cycles as the reference, proceed as follows to obtain a db vs. frequency curve such as shown in Fig. 5:

1. Obtain data shown in first four columns of Table I.

2. Convert the average "Up-Down" percent values in the fourth column to "db difference from 1000 cycles," either by direct calculation as shown in the sample problem or by consulting a table of db values corresponding to ratios of voltages as calculated from values in fourth column.

3. If the values in the fourth column are less than the reference values, the sign preceding the values in the db column will be negative. If the values in the fourth column are greater than the reference values the sign preceding the values in the db column will be positive.

4. Plot a curve from values in the first and fifth columns.

If the resultant curve is flat from 250 to 3000 cycles the quality will be good for voice. If it is flat from 100 to 500 cycles the quality will be as good as that of a great many broadcast stations. If it is flat from 30 to 10,000 cycles the quality will be excellent for voice or music.

If the frequency characteristic curve is nearly flat from 30 to 10,000 cycles and if the modulation characteristic is a straight line, the transmitter may be considered truly modern.

FURTHER SUGGESTIONS AND PROOF OF PERFORMANCE

A better working model of this meter may be made by using two of the new Type 25Z5 rectifiers, one as a straight full-wave rectifier in place of the 80 and the second as a half-wave rectifier, both plates tied together, in place of the 27. If these tubes are used with the heaters connected in series, a current limiting resistor of 200 ohms will be required if the heaters are to operate directly from the 110 volts a.c. circuit.

The unidirectional peak voltmeter—which consists of the half-wave rectifier, the 100-µfd. condenser, the 500,000-ohm resistor and the 0-200 microammeter—will only function properly provided a good 1-µfd. condenser with practically no leakage is used. Inferior condensers will not do because the operation of this peak meter depends upon the charging of the condenser to a value equal to the peak voltage, then discharging through a high resistance which in this case is 500,000 ohms. If a condenser has appreciable leakage the discharge will divide between the leakage resistance and the 500,000-ohm resistance, and a false reading will obtain since the microammeter would then read only the discharging current through one path.

Bear in mind also that a low-value resistance, say 100,000 ohms, cannot be used because this would tend to knock the peaks down in the same manner that a bleeder resistance knocks the peak voltage down on any rectifier system.

In making measurements, the "Up" readings may differ appreciably from the "Down" readings. This may be due to a lopsided input wave shape. To check for lopsided wave shape of the modulating signal, reverse the leads from the audio oscillator and compare "Up" and "Down" readings with those taken before the leads were reversed. Record also the readings on the v.i. before and after reversal. Analysis of these data will indicate whether or not the audio signal is distorted. If the wave shape is sym-
What the League Is Doing
League Activities, Washington Notes, Board Actions—For Your Information

We broke a few records around here to get you fellows the minutes of the Board meeting in the June QST. *QST* was already on the press when the Board met, and the only place we had a chance of meeting it with the story of the Board meeting was in the bindery. Working day and night the first few days after the meeting, we got our story ready, Roddy drove it to the printer's in New Hampshire, the printer set it up overnight, printed it the next day as an extra "form," and it was just in time to get bound into the issue a week after the Board went home.

Financial Statement

The League had an excellent first quarter in 1934. Members will be pleased to see this evidence of the sound financial condition of their organization. By instructions of the Board, the operating statement is here published for your information:

STATEMENT OF REVENUE AND EXPENSES FOR THE THREE MONTHS ENDED MARCH 31, 1934

<table>
<thead>
<tr>
<th>REVENUE</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advertising sales, QST</td>
<td>12,395.32</td>
</tr>
<tr>
<td>Newdealer sales, QST</td>
<td>12,476.01</td>
</tr>
<tr>
<td>Handbook sales</td>
<td>15,149.83</td>
</tr>
<tr>
<td>Booklet sales</td>
<td>3,423.23</td>
</tr>
<tr>
<td>Membership dues</td>
<td>14,129.05</td>
</tr>
<tr>
<td>Membership supplies sales</td>
<td>2,674.40</td>
</tr>
<tr>
<td>Interest earned</td>
<td>700.84</td>
</tr>
<tr>
<td>Cash discounts earned</td>
<td>252.20</td>
</tr>
<tr>
<td>Bad debts recovered</td>
<td>151.14</td>
</tr>
</tbody>
</table>

$61,851.22

Deduct

<table>
<thead>
<tr>
<th>Items</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Returns and allowances</td>
<td>2,041.32</td>
</tr>
<tr>
<td>Exchange and collection charges</td>
<td>15.19</td>
</tr>
<tr>
<td>Cash discounts on sales</td>
<td>316.04</td>
</tr>
<tr>
<td>Increase of provision for newsstand returns of QST</td>
<td>273.87</td>
</tr>
</tbody>
</table>

$58,304.80

<table>
<thead>
<tr>
<th>EXPENSES</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publication expenses, QST</td>
<td>11,870.48</td>
</tr>
<tr>
<td>Publication expenses, Handbook</td>
<td>8,519.07</td>
</tr>
<tr>
<td>Publication expenses, Booklets</td>
<td>1,023.31</td>
</tr>
<tr>
<td>Membership supplies expenses</td>
<td>1,440.71</td>
</tr>
<tr>
<td>Salaries</td>
<td>16,757.52</td>
</tr>
<tr>
<td>QST forwarding expenses</td>
<td>617.74</td>
</tr>
<tr>
<td>Telephone and telegraph</td>
<td>530.72</td>
</tr>
<tr>
<td>Postage</td>
<td>1,527.89</td>
</tr>
<tr>
<td>Office supplies and general expenses</td>
<td>3,008.56</td>
</tr>
<tr>
<td>Rent, light and heat</td>
<td>826.97</td>
</tr>
<tr>
<td>Traveling expenses</td>
<td>1,022.18</td>
</tr>
<tr>
<td>Depreciation of fixed assets</td>
<td>230.82</td>
</tr>
<tr>
<td>Communications Dept. field expenses</td>
<td>222.99</td>
</tr>
<tr>
<td>Headquarters station expenses</td>
<td>66.91</td>
</tr>
<tr>
<td>Federal tax on checks drawn</td>
<td>6.44</td>
</tr>
</tbody>
</table>

$47,479.31

Net Gain from Operations... $10,832.49

New Privileges

The several requests that the Board of Directors made of the Federal Radio Commission have been transmitted to Washington by A.R.R.L. headquarters. At this writing there has been insufficient time to secure action on any of them, but we can report that they are all under consideration and that there is excellent likelihood of their adoption. The Commission seems favorably inclined towards the proposal to permit the use of the "N" prefix by members of the N.C.R. We may hope to possess very soon not only the right to engage in ultra-high-frequency work on frequencies above 112 mc. but also to be permitted mobile operation on 56 mc. and above. Maybe you don't believe that will be fun! Yes, if this proposal is approved we shall have the right to put 5-meter phones in our automobiles and chew the rag with the fellows in each town we drive through. Log-keeping is going to be simplified and rationalized. The Commission is sympathetic towards our need to have Class-A ('phone) examinations held in additional cities visited by the inspectors in the normal course of their duties (over and above the 34 regular examining points). The trouble has been lack of money; the Commission has operated this year on about half of its average previous budget. We believe that some way will be found to provide additional Class-A examinations soon.

Rumors

1. That A.R.R.L. and R.C.A. have a deal on with F.R.C. to permit 5-meter operation without licenses. The law requires both a station and an operator license. The A.R.R.L. Board of Directors is unanimously on record not only as wanting licenses but as demanding knowledge of the code before securing a license to operate on any amateur frequency. See minutes in June *QST*, page VII.

2. That A.R.R.L. has requested F.R.C. to require 'phone stations to limit their emissions to a width of 3000 cycles. No such request was made or is under consideration. The Board instructed *QST* to endeavor to cook up dope on low-pass filters to limit 'phone modulations frequencies to about 3000 cycles. The idea is that if 'phone stations would do this, interference in the 'phone sub-bands would be greatly reduced without affecting the intelligibility of communications. But no regulation is being sought. See minutes, page V.
As we write, it is generally believed in Washington that before Congress adjoins it will adopt new legislation creating a Federal Communications Commission, and that that new commission will actually be in existence by early July. The new commission would have jurisdiction over telephone and telegraph and cable, as well as radio. It would take over intact the existing F.R.C. organization except the present commissioners themselves, and would continue radio administration under the existing regulations. Unified control of communications is a prime aim of the administration, but no threat to amateur radio is visible in the proposed arrangement at this time.

The Madrid Telecommunications Convention is now being made effective in the United States. Perhaps the process by which this is done is of interest. On May 1st the Senate gave its consent to ratification. About May 15th the President signed a document constituting ratification by the United States. But the ratification is not effective until it is deposited in the archives of the Spanish government. A certified copy of the ratification by the President, with appropriate instructions, was transmitted to the American embassy at Madrid. When that certified copy is actually deposited with the Spanish government, the convention becomes binding upon the United States. The embassy, therefore, will cable to Washington when the deposit is made, whereupon the President will proclaim the effectiveness of the treaty. It is expected that this will take place about June 10th, before this issue of QST appears. The convention of course applies only internationally and only with other countries that have also ratified it.

Get down your copy of the F.R.C. Rules and Regulations and note the following amendment to our Rule 371 which the Commission made on May 9th: "371. Amateur stations shall not be used for broadcasting any form of entertainment, nor for the simultaneous retransmission by automatic means of programs or signals emanating from any class of station other than amateur." This amendment really came about because it was discovered that some amateur "phone stations were retransmitting the programs of broadcasting stations; and although other stations may not so rebroadcast, there was a loophole in our regulations that did not forbid it. Note that this change has no effect upon the retransmission of other amateur signals. Automatic relaying is a coming thing in amateur radio, particularly in the ultra-high frequencies—see the articles in this issue.

How long may a portable station be operated at one location? The rules forbid notifying portable operation for periods of longer than thirty days in advance, but how many successive notices for one location will be accepted? The inspectors have been instructed to accept without question notices of portable operation at the same address covering a period up to three successive months. If they receive further notice for operation at the same address, the Commission then investigates to determine why modification has not been applied for, as there is generally something irregular in such cases. Many amateurs who attend college have wondered how they could operate a portable station there over as long a period as the school year, and why they could not get a second station license. Their proper procedure is to apply for modification of their home station license to relocate the station at the school address, operating there during the nine months of the school year. Then during the summer vacation they may operate as a portable, even including fixed operation at their home address for a period up to three months. Separate station licenses are not necessary for a station at school.

Last year the League asked the Department of State to endeavor to conclude arrangements with a number of countries to permit the handling of the so-called "unimportant" third-party messages by amateur radio. Progress is slowly being made. Canada has agreed to a renewal of the existing arrangement, and diplomatic notes to that effect are now in process of being exchanged. The Mexican government would "view with great satisfaction" the conclusion of such an agreement with the United States, but the same is prohibited by the present Mexican laws; the authorities are therefore considering amending the laws to make possible the acceptance of the U. S. proposal. The Irish Free State has "tabled the motion." China has refused. Great Britain has not been heard from, but our sister society there, the Radio Society of Great Britain, has recommended to the government that it decline, since the B.S.G.B. has no interest in message traffic and doesn't see why we have! Negotiations with Cuba were delayed during the recent civil trouble there but have now gone forward. The Union of South Africa is not favorably inclined and cannot see that such privilege would be of any real benefit to the amateur. Other countries with whom the arrangement is under negotiation are Argentina, Australia, Bermuda, Brazil, British India, Chile, New Zealand, Peru, Spain and Straits Settlements. Amateur societies in all these countries have been requested by A.R.R.L. to assist in the endeavor.

July, 1934
The Commission has recently ruled that if an amateur changes the location of his fixed station and applies for modification of the license to the new address, he may at once engage in portable operation at the new address, under the procedure governing portable operation, for a period of sixty days, unless the license sooner expires. However, he may not operate as a fixed amateur station at the new location until the modified license has been received from the Commission—he must notify the inspector of his portable operation in instalments of not over thirty days at a time, sign the portable symbol, etc. . . . A Class-C licensee moving into one of the 125-mile circles will not be required to take the Class-B operator examination as a precedent to obtaining a modified station license.

When will elections be held for alternate directors? It is provided in the amendment adopted by the Board at its annual meeting that “an alternate director shall be elected at the same time as the director is elected.” There will, therefore, be elections for seven alternate directors this coming autumn, and in the remaining divisions at the 1935 elections. The elections this year are in the Central, Hudson, New England, Northwestern, Roanoke, Rocky Mountain and West Gulf divisions. It is time to start thinking about alternate directors in those divisions.

The Constitution & By-Laws of A.R.R.L. have been reprinted to show all amendments to date, particularly including those made at the last meeting of the Board. A copy is available to any member upon request. It wouldn’t hurt to be a little more familiar with the constitution of your organization. Half the things you hear about aren’t even possible under our rules.

Herbert L. Pettey is secretary of the Federal Radio Commission. He catches more flx than any other radio person except the secretary of the League. Many an amateur complains that he got a notice from Mr. Pettey saying so and so, and he wants to know “who this bird is.” It is the rule in commissions such as F.R.C. that all of the official letters are signed by the secretary, regardless of who wrote them. In other words, that signature is really the style under which the Commission does business, and when you get a letter signed Pettey it doesn’t mean that Mr. Pettey has a personal grudge against you, or that he personally knows anything about the matter—it is simply an official communication from that august body which is the Commission.

More next month.

A Vacuum-Tube Type Modulation Meter (Continued from page 17)

metrical at the audio input but not at the modulation meter, the audio- or radio-frequency amplifiers may be at fault.

A meter using the 80 and 27 tubes was compared with a Type 49-A RCA—Victor cathode-ray modulation indicator. With one operator at the 49-A and another at the modulation meter, simultaneous readings were recorded. These readings checked within ten percent.

If the modulation meter is to be used to monitor the transmitter under operation with voice modulation, keep in mind that the needle of the micrometer cannot follow the voice peaks. A comparison of the modulation meter was made with the 49-A cathode ray meter while viewing voice. When 100% peaks were being registered on the 49-A, the needle on the modulation meter would only flick to around 75%, although on music the needle rides to a higher value for the reason that the peaks are more sustained than with voice modulation.

<table>
<thead>
<tr>
<th>Freq. in Cycles per Second</th>
<th>Percent Modulation</th>
<th>% Average</th>
<th>db Diff. from 1000 cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Up</td>
<td>Down</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>48</td>
<td>52</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td>200</td>
<td>44</td>
<td>46</td>
<td>45</td>
</tr>
<tr>
<td>500</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>4000</td>
<td>54</td>
<td>56</td>
<td>55</td>
</tr>
</tbody>
</table>

Sample problem:

\[\text{db difference} = 20 \log \frac{7}{5} \]

\[\text{db} = 20 \log \frac{50}{31} = 4.1 \]

\[\text{Ratio} = \frac{50}{31} = 1.6 \]

From db tables this corresponds to 4.1 db.

Who has the longest transmitting antenna? Here’s one claim for the title—W3AAF has one 540 feet long. Any bigger ones?

Inquiries occasionally come in about the code-practice phonograph records which some years ago were quite popular for self-instruction in receiving. The RCA-Victor Company advises that these are still available. The complete set consists of six ten-inch double-face records, an instruction booklet and a special container. They may be procured through any Victor record dealer.
More Activity Needed—First Transatlantic Report in Years

W
ORK on the "10-meter" band has been going on apace for the past six weeks, building up more stations and better contacts until latter May and mid-June finds the band "ripe" as far as everyday, general contacts are concerned. Each year with the coming of warm weather and attendant DX and local work on the 14-mc. band has awakened that tireless group of experimenters who ply their QSO's on 28 mc. This band has been one of our most eccentric stamping grounds but, during the past five years, summer months have always brought forth contacts on this band.

Last summer the Experimenters' Section of QST compiled reports and a weekly bulletin was sent to active amateurs operating on ten meters, styled the Temegang. In this way all interested knew of conditions at different localities much quicker than monthly bulletins or QST could reach them. Week-end tests were also sponsored.

Perhaps the most accurate way to see conditions as they stand at the moment is to note reports of stations who are active and what they have reported in the past month.

W1CKF in Middle Haddam, Conn., has spent many hours on 28 mc., using both 'phone and c.w., as reported in QST. Nothing special was done in way of contacts until middle May. Since that time weekly reports have been received, each more enthusiastic than the former. Since the first of June VE4, VE5 and W4, 6, 7, 8 and 9 districts have been heard. Contacts have been made with W4 and W9. W1CCX reports W4MR, W4BFH, W4AJO and several W1's in an hour's listening on June 3d. W1ZB heard W4BFH, W4AJY, W4AJX and worked W4MR on the same day. W1CUN of Bethlehem, N. H. (in White Mountains), has done much work on 28 mc. Since May 27th QSO's have been had with W9GFZ, W2DAR, W3UX, W4MR, W8DJJ, W8LX, W8RX, W9FFQ, W9NY, W9BQM and VE4OB. Other stations heard include W2TP, W3BBB, W4AJX, W8DVX, W9DII and the two police 'phones around 9 meters, W4XK and W4XR. W1CUN's outfit consists of a pair of '45's as a 'rnt oscillator and 'phone has been used with another '45 as a modulator!

Recent reports have not been received from the 2d and 3d districts, but from the above it will be noted that stations are active in these districts.

The only report from the 4th comes from W4TZ who has contacted the west coast by a QSO with W6GM on May 27th. Other QSO's have been had with W3JN, W2TP, W2BBD, W4AJX, W9GFZ and W9DZK. Hunter says that he hears Central American stations every day, and believes that active stations in South America would break through just as well. Here are some harmonics copied on 28 mc. at W4TZ: W1ZD, W1BES, W1DHE, W1HP, W1HTA, W1LZ, W2TP, W2AZ, W2CU, W2CA, W2UK, W2GOX, W2AMP, W2EY, W3BPH, W3AN, W3BBB, W3COP, W3CUN, W5ABL, W5NW, W5AQ, W5CDH, W6QD, W8BT, W8HYZ, W8CRA, W8CCW, W8ZY, W8DHC, W8DPO, W9ROL, LU4DQ, K5AF, NY2AB, HC1CW, HC1FG, HC5ZA, VE2FQ and VP5PZ.

W5BD reported QSO W6CAL during March and heard W6MHG and W6MX. No recent reports have been received from this station.

W9GFZ reports hearing many stations in the past two weeks, including W3CIC, W7VY, W5AFV, W5BQ, W8ILA, W8EFP, W3ANH, W3BPH, W2CGX, W9RHK, W1DNL, W3CUN and W3CET. The stations worked include W4TZ, W1CUN, W3UX, W2CRT, and W2TP. W9ELQ reports hearing W1CKF and says that W9ELQ will be on every Sunday morning. A note quoted in part from W9DZK says, "For the past week 28 mc. sure has been FB here. Have heard W2TP, W9EKU, W9NY, W3AXU, W9PVC, W4TZ and numerous harmonics from 14. Have heard other 28-mc. stations, but failed to get the..."
calls. I've been keeping a sked with W4TZ for the past four nights, and we have been QSO as late as 9:30 p.m. EST with sigs R4 or better at each end. . . . All's wrong with '28' now is lack of stations there. Wish the gang would go getting there."

That last sentiment seems to be echoed in every report we have seen. Apparently the band has opened up a month earlier this year than last and with a great deal more enthusiasm.

W9NY of Milwaukee, Wisc., reports hearing W8HEQ, W9AUH, W9HUI, W9PTU, W9BPL, W3CPX, W2CVR, W2AND, W1DOX, W2CDA, W2CTO, W1CUN, W5DVS and W3BBB. W2TP, W2CRT and W3AUX have been worked.

XIAY, B. J. Kroger of old 3APV fame in '24 writes from Xxtacuahuitl, Mexico, that he's back on the air on 28 mc. He mentions some times he will transmit on Sundays: 11:15 to 11:30 a.m., 11:45 to noon, 12:15 to 12:30 p.m. and 12:45 to 1 p.m. Listening will be done between transmitting schedules and times given are CST.

VE3YY reports hearing W9LL, W8RT, W4MR and W2AOL.

Topping these reports comes a note from OK1AW saying that contacts were had with G2FN, PAAOPX, F8OZ, ON4GN, G5OJ and G5FV on May 22d. A daily schedule is kept after 1700 GT and Saturdays between 1230 and 1800 GT. The frequency used is 28190 kc. On June 1st a radiogram was relayed from OK1AW via W1GCX which said that W2ZJ was heard by OK1AW at 6:15 p.m. on June 1st. This is the first transatlantic reception on 28 mc. that we have heard of in two years! The summer is still young.

Week-ends seem to be the popular times for contact as well as the two hours before darkness every evening. Practically all of the stations mentioned have used less than 50 watts. Receivers used are in most cases of the simpler variety. Report all activity to ARRL Eq. for inclusion in bulletins and mention in QST.

—C. C. R.

Strays

The turns of transmitting coils wound with No. 14 or larger wire can be spaced quite easily by using a section from one of the old inside spring antennas, if one which fits tightly on the coil form is available. It will slide along as the regular winding is put on, will hold tight enough to give good spacing, and will unscrew or pull off easily after the coil is completed. The spacing coil should have about the same number of turns as the coil to be wound.

—W3AAJ

Sponge earphone cushions are just the thing for the fellow who wears glasses. If regular cushions are unobtainable, rubber sponges with holes in them will make a good substitute.

—W3EDG

A new "solution" for shining up copper tubing is suggested by W8LLI. It consists of a cup of vinegar with three tablespoonfuls of salt. Rub the tubing with the mixture, rinse, and dry; W8LLI guarantees that a fine lustre will result.

On April 9th, W6DCP, K6TJP, K6EWQ and K7CHP got together for a four-way DX roundtable QSO which lasted an hour and ten minutes. The distance around the triangle is approximately 10,000 miles. FB, OM's!

We learn that a certain third district station recently spent a "profitable" afternoon attempting to get a transmitter going on 10 meters. A Type 10 lasted but a few minutes, followed immediately by a pair of 81's. Thinking a larger tube would stand the gaff, a 203-A was put in the circuit, along with the spare pair of 81's. With the first punch of the key the 203-A smacked against the plate and the second pair of 81's went west! At least one W3 is going to stick to the lower frequencies!

At the Hudson Division Convention W2AKF and W2AIS drew a great deal of attention by their demonstration of the Ultra-Midget (described in June QST). It was difficult to convince most of the fellows that the power supply was not hidden under the table!

—W2CPG
A Modern Transportable Station

A Design in Which Compactness and Light Weight Are Attained Without Sacrifice in Performance

By Harvel Baker, W7ALH*

EVERY fellow has his own ideas about the design and construction of portable stations. Some persons aim toward extreme compactness at a sacrifice of power and operating convenience. Many portable stations that possess a reasonable amount of power output are equipped with battery receivers that employ antiquated circuits. This type station, which is usually in addition to a better-equipped home station, has its uses, of course, but the disadvantages are far too numerous.

Of course there is the opposite extreme—"portable" stations in two or three separate units, the whole making a clumsy affair that is really neither portable nor practical. The station described here was designed to be entirely practical—for the average ham of average means. It is not elaborate, yet has all the essential features of a good, low-powered modern station.

The entire equipment is a.c. operated. The receiver uses a tuned radio-frequency stage and gives ample output for speaker operation. The transmitter is capable of 30 watts output on 3.5 megacycles and may be operated on any of the four most-used amateur bands. The entire outfit weighs less than 40 pounds and may be carried as

FIG. 1—CIRCUIT OF THE TRANSMITTER AND POWER SUPPLY UNITS. ALTHOUGH THE ELECTRON-COUPLED OSCILLATOR CONNECTION IS SHOWN, THE OSCILLATOR IS ALSO ADAPTED TO TRITET CRYSTAL CONTROL AS SHOWN IN NOV., 1933, QST.

L1, L2, L4 and L5 are as specified for the Universal Exciter Units, Nov., 1933, QST. L4 is wound to suit the antenna system used.

L3—Parasitic suppressor choke, 20 turns of 1/4-inch diameter.

C1—500-µfd. receiving type variable.

C2—250-µfd. mica grid condenser.

C3—100-µfd. midget variable.

C4—100-µfd. mica coupling condenser.

C5 and C6—0.005-µfd. mica r.f. bypass condensers.

C7—50-µfd. midget neutralizing condenser.

C8—100-µfd. variable (500-µfd. split and double spaced).

C9—350-µfd. variable.

C10—0.006-µfd. mica by-pass (1000-volt or higher).

C11—1-µfd. click-filter condenser.

C12—8-µfd. 450-volt electrolytics.

R1—20,000-ohm 4-watt.

R2—40,000-ohm 2-watt.

R3—12,000-ohm 10-watt wire-wound.

R4—20-ohm center-tapped.

R5—0-1000-ohm variable click-filter resistor.

J1 and J2—Plate-current jacks.

J3—Amplifier grid-current jack.

Jacks used with a 0-150 d.c. milliammeter equipped with plug and cord, plug sleeve connected to positive meter terminal.

RFC1—2.5-mh. r.f. chokes.

RFC2—6-mh. broadcast-band type r.f. chokes (click filter).

T—Power transformer, plate winding 450 volts each side of center tap, 150 ma. filament windings, 2.5 volts at 5.5 amp. and 5 volts at 3 amp.

CH1—30-henry receiver power-pack type chokes (see text).

*Farm Bureau News, Oak Harbor, Wash.
easily as an ordinary suitcase. It gives creditable performance in practically any location where 110 volts a.c. is available, and may be set up and ready to go on the air within a few minutes. The station is inexpensive, uses the latest circuits and tubes. While it is a portable, it is plenty good for the home station as well.

In designing the station, compactness, light weight, economy, operating convenience, high-quality signals and sufficient output for all ordinary purposes were considered. The idea of a battery receiver was at once discarded as a much more efficient circuit with plenty of output is possible with the new a.c. tubes. The circuit selected employs a 58 tuned r.f., a 58 detector and a 56 audio impedance coupled to the detector. The receiver closely follows the one described in January, 1933, QST, and in the current Handbook, to which the reader is referred for the actual circuit details.

The second unit—the receiver power pack and speaker—fits in the carrying case to the left of the receiver. A midget power transformer with

![Illustrating the sectional-type assembly and how the units may be slipped out of the carrying case. The receiver power pack and speaker unit is the one atop the case. The transmitter is at the left, with its power pack to its right. The receiver, an electrical duplicate of the January, 1933, QST 'Autodyne,' is at the extreme right.](image)

The transmitter unit presented more of a problem. In view of economy and efficiency with the latest circuit, the transmitter was designed to use either an electron-coupled or crystal-control tri-tet oscillator with a Type 59 tube, capacity coupled to a pair of 46's operated in parallel with the split-stator final tuning condenser as described in January, 1934, QST. Type 46 tubes are low-priced, give reasonable output on low voltage and make a simple keying arrangement possible.

The stability when the electron-coupled arrangement is used is comparable to that with crystal control. There was apparently no loss in efficiency in crowding the transmitter parts together.

Power for the transmitter is furnished by a standard 450-volt power transformer with filament windings for both the transmitter and the Type 83 rectifier. Using condenser input, fairly good regulation is obtained with an output of 525 volts at 100 ma. The cost of the power pack, using new parts throughout, was less than five dollars. The filter uses four electrolytic condensers, two connected in series before the choke and two in series after the choke. The choke is a double 30-henry receiver type with the sections connected in parallel. Pure d.c. signals are obtained with this power pack.

In placement of parts, the transmitter with its power pack are put in the lower two compartments and the receiver with its power pack fill the upper two. The power packs are placed in opposite ends, so their weight tends to balance the carrying case.

The carrying case is made of three-ply veneer and is braced throughout with small iron angles. This gives a light yet strong carrying case that will stand many a bump. Dimensions of the different units are: Receiver, 12 inches long by 6 inches high by 6 1/2 inches deep (overall); receiver power pack, 6 inches long by 6 1/2 inches high by 6 1/4 inches deep; transmitter, 13 inches long by 6 inches high by 7 inches deep; transmitter power pack, 6 inches long by 7 inches deep by 6 1/2 inches high. The overall inside dimensions of the carrying case are 18 1/4 inches long by 7 inches deep by 13 1/4 inches high. The weight of the complete station, ready to carry, is 38 pounds—not much weight considering the contents. By having the station built in small convenient units, the component parts may be slipped out of

(Continued on page 80)
A Relay Rack for Two Dollars

By J. M. Carstarphen, Jr., W4CCH*

The advantages of the relay rack for transmitter construction are universally acknowledged, but from the amateur's standpoint the manufactured article has two serious drawbacks—cost and weight. It is not difficult, however, to build a lightweight rack which offers the benefits of ready access to apparatus and economy of floor space occupied by the transmitter. The cost, too, can be low—the rack described here costs but two dollars, within a few cents, including such outside labor as had to be performed on the metal parts.

The general construction of the rack is shown in Fig. 1. The uprights and top and bottom crosspieces are made of 1- by 3-inch clear pine. In picking out the wood it is advisable to go to the lumber yard yourself and make sure that the pieces are straight. The uprights can be made any height suitable for the transmitter to be placed on the rack; in my case the rack is 4 feet 2 inches high. The total width is 20 inches, leaving an 18-inch space between the insides of the uprights, and permitting the use of a 19-inch panel.

Special brackets support the baseboards holding the various r.f. and power-supply units. These brackets are made of strap iron, wide enough to give solid support to the baseboards, and twisted at one end for fastening to the wooden uprights. Fig. 2 shows the construction quite clearly. The brackets, if not too long, will support an r.f. unit easily with no additional bracing. The brackets holding the power-supply shelves had best be given additional support by an extra brace of the type also shown in Fig. 2. In making the shelf brackets, those intended for the right-hand side of the rack (from the front) should be twisted to the right; those for the left-hand side should be twisted in the other direction. This brings the supporting surface to the inside so that a shelf cut to fit between the uprights (approximately 18 inches) will have plenty of surface to rest upon.

The mounting feet are made from heavy galvanized sheet iron as shown in the lower drawing of Fig. 2. No. 18 or 20 gauge is recommended, although the feet for the rack at W4CCH were made from No. 22 gauge and support quite satisfactorily the complete transmitter, including power supplies weighing approximately 70 pounds.

(Continued on page 70)
Typical Technical Questions Answered

Circuit Values for License Manual 'Phone—1750-kc. Coils and Modulator for 100-Watt Three-Tube Transmitter—High-Frequency Band Coils for "Low Cost" 1750-kc. 'Phone-C.W. Set

WE HAVE received numerous requests for a list of suitable circuit values for the diagram of the complete 'phone transmitter shown in The Radio Amateur's License Manual and reproduced in Fig. 1. For those who wish to construct such a 'phone transmitter the following circuit values are suggested:

OSCILLATOR
- Grid leak—5000 ohms 2-watt.
- Screen voltage dropping resistor—50,000-ohm 5-watt.
- Plate tuning condenser—250-µfd. receiving type.
- Oscillator-buffer coupling condenser—100-µfd., mica receiving type.
- Plate voltage dropping resistor—3000-ohm 5-watt.

BUFFER AMPLIFIER
- Grid leak—5000-ohm 5-watt.
- Neutralizing condenser—25-µfd. double-spaced.
- Plate tank condenser—100-µfd. total (200-µfd. per section).
- Buffer-Final Amplifier coupling condensers—100-µfd. each, mica receiving.

FINAL AMPLIFIER
- Neutralizing condensers—25-µfd. double-spaced.
- Grid leak—5000-ohm 5-watt.
- Plate tank condenser—100-µfd. total (200-µfd. per section).
- Plate by-pass condenser—0.001-µfd. mica receiving.

27 SPEECH AMPLIFIER
- Microphone transformer—single-button type.
- Gain control—500,000-ohm potentiometer.
- Cathode resistor—4000-ohm 1-watt.
- Cathode by-pass condenser—4-µfd.
- Plate circuit by-pass condenser—2-µfd.
- Speech amplifier-driver coupling transformer—1-to-2 ratio (step-up) interstage, push-pull secondary.

CLASS-A DRIVER
- Grid suppressor resistors—100-ohm 1-watt.
- Cathode resistor—550-ohm 2-watt.
- Cathode by-pass condenser—4-µfd.

CLASS-B MODULATOR
- Class-B input transformer—Thordarson T-5100, Kenyon BMI, Collins 719 or equivalent.
- Class-B output transformer—Thordarson T-6425, Kenyon BM0, Collins 780 or equivalent.

POWER SUPPLY
- Input choke—Swinging type, rated at 10 to 12 hys. at 250 ma.
- Smoothing choke—20-µfd. 250-ma.
- Filter condensers—Each 4-µfd. 1000-volt.
- Bleeder resistance—25,000-ohm (tapped every 2500 ohms) 50-watt.
- Plate transformer—400 ma., 600 to 700 volts each side of center tap.
- Filament transformer—Rectifier, 2½-volt 10-amp.; F1, 7½-volt 8-amp.; F2, 2½-volt 7½-amp.

GENERAL
- All r.f. chokes—Receiving type Hammarlund, National Type 100 or equivalent.
- All grid circuit by-pass condensers—0.001-µfd. mica receiving.
- All plate circuit by-pass condensers except final amplifier—0.002-µfd. mica receiving.
- Final amp. plate by-pass condenser—0.001-µfd. 5000-volt mica.
- All filament by-pass condensers—0.001-µfd. mica receiving.

COIL SPECIFICATIONS
For the 1800- and 3900-kc. 'phone bands, the oscillator tank coils may consist of 25, and 10 turns, respectively, of No. 14 d.c.c. wire 2½ inches diameter. These coils should be tapped at approximately one-third of the total number of turns from the plate ends. For 14-mc. operation a 7-mc. crystal must be used and the frequency doubled in the buffer stage. The 7-mc. oscillator coil may consist of 5 turns of No. 14 d.c.c. wire 2 inches in diameter or 4 turns 2½ inches in diameter. For the 1750-kc. 'phone band, the buffer tank coil should consist of 53 turns of No. 14 d.c.c. wire 2½ inches in diameter; for the 3900-kc. 'phone band, 29 turns of No. 12 wire 2½ inches in diameter, turns spaced the diameter of the wire; and for the 14-mc. 'phone band, 5 turns of No. 12 wire 2 inches in diameter, turns spaced the diameter of the wire.

For the output amplifier tank coil, 53 turns No. 14 d.c.c. wire 2½ inches in diameter or 50 turns No. 10 d.c.c. wire 3 inches in diameter may be used for the 1800-kc. 'phone band; 24 turns of ¼ inch copper tubing 4 inches in diameter with ½ inch spacing between turns, or 29 turns of...
FIG. 1—DIAGRAM OF 'PHONE TRANSMITTER SHOWN IN THE RADIO AMATEUR'S LICENSE MANUAL

No. 12 wire 2½ inches in diameter, turns spaced the diameter of the wire, for the 3900-kr. 'phone band; and 5 turns ¼ inch copper tubing 3 inches in diameter with ½ inch spacing between turns, or 5 turns No. 12 wire 2 inches in diameter, turns spaced the diameter of the wire, for the 14-mc. 'phone band.

The antenna tuning condensers should have a maximum capacity of 250 to 500 µfd. The dimensions of the antenna coupling coils will, of course, depend upon the type and size of antenna used.

* * *

Many also are interested in 1750-kr. operation of the 100-watt 3-tube transmitters described in QST for November, 1931 and February, 1934, and also in recent editions of the Handbook. For either version, an oscillator tank coil consisting of 25 turns No. 14 d.c. wire 2½ inches in diameter, or 35 turns 2 inches in diameter, should be satisfactory. Also, in either case the buffer tank coil may consist of 55 turns No. 14 d.c.c. wire 2 inches in diameter tapped at approximately 20 turns from the lower end of the coil, or 40 turns 2½ inches in diameter tapped at 15 turns from the lower end. For the older version of this transmitter, which uses a 250-µfd. single stator condenser in the output amplifier tank circuit, the 1750-kr. coil may consist of 20 turns of ¼-inch copper tubing 6 inches in diameter; or if this is deemed too cumbersome, a coil consisting of 45 turns of No. 12 wire 2½ inches in diameter, with turns spaced the diameter of the wire, will be satisfactory. Either of these coils should be tapped at approximately one-third to one-half the total number of turns from the lower end. A copper tubing output tank coil for the 1750-kr. band for the improved version of this transmitter, the description of which appeared in QST for February, would be entirely too bulky to handle conveniently. One made of 50 turns of No. 12 wire 3 inches in diameter should be satisfactory.

For those who are looking for a proper modulator for these transmitters, the one described in QST for January and in the Handbook on page 124 should be just the thing.

* * *

Many of those who built the "Low-Cost 1750-Kc. 'Phone-C.W. Transmitter" described in QST for July and August, 1932 (which issues are now out of print), desire coil specifications for 'phone or c.w. operation in other bands. Suitable coil dimensions for operation in the other bands are as follows:

(Continued on page 68)
ANY amateurs have achieved prominence in professional radio, but few as spectacularly as Elizabeth M. Zandonini, W3CDQ, radio aide at the Bureau of Standards in Washington. Her first interest in radio was during her third year at high school; during the summer months of 1917 she attended the National Radio Institute and secured her commercial ticket. Later, she taught at the school, and during 1919-20 was radio instructor (Women’s Radio Corps) at Camp Meade and Fort McHenry. In 1921 she joined the Bureau of Standards. Her work there is to assist in maintaining the primary frequency standard, prepare the I.R.E. Proceedings reference lists, translate technical articles and letters (an accomplished linguist, she is fluent in Spanish, German, French and Italian), and handle many miscellaneous public contact jobs. On a trip abroad in 1926 and again in 1928 she cemented many friendships made over the air. Yes, EMZ’s a real ham, and she’s no more proud of that than we are!

CLYDE DE VINNA began pounding brass on the railroad when he was 14—a good many years ago—and he’s still pounding it in places far away and near. His early ham experience was about 1908; then the U. S. Navy with spark gaps and Leyden jars from 1909 to 1913; eventually the Benwood rotary and United Wireless “coffins” until the neighbors objected and he closed the station. Years later, on a motion picture trip to Tahiti, he struck up a friendship with F3OCB (“BAM” in the old days) and discovered that with a couple of insignificant bottles he was chewing the fat with hams all over the world. The bug bit again—hard—and W6OJ came into being. It’s been active, either in Hollywood or following De Vinna on one of his motion picture expeditions, ever since. He’s chief cinematographer for M-G-M, as you probably know—among his triumphs are “White Shadows of the South Seas,” “Trader Horn,” and “Eskimo.” Where he will head next, he doesn’t know, but wherever it may be the little old portable will follow as a boon companion, as ever.

FRANK M. CORLETT, W5ZC, director of the West Gulf Division, is the senior member of the A.R.R.L. Board of Directors. He was first elected in 1917, and is the only director the West Gulf Division has ever had. His amateur career started back before the first radio law. From 1913 to 1925 he was president of the Dallas Radio Club, of which he was one of the founders. He served the A.R.R.L. as division manager from 1920 to 1926, in addition to the directorship. To add to the family laurels, Mrs. Corlett, having lived patiently with a ham husband since 1921, (Continued on page 86)
Ham Radio in Japan
The Description of a Typical Station, J2HZ

By W. S. Upson*

A JAPANESE amateur station is, perhaps, one of the very hardest to describe, since the home, the conditions surrounding the station, and the materials themselves are different to any we come in contact with on this side of the Pacific. However, at the request of several of the Yokohama Amateurs, I'll try to describe Mr. Oshima's set and the description is likely to run into other things than radio.

Japan is, perhaps, the most mountainous country in the world and Yokohama is one of the hilliest cities in the world—as anyone who has walked into the outlying sections can tell you. Any amateur knows that this brings about a condition very unfavorable to radio transmission and reception. To most of us, obstacles of this nature would be overcome by the use of brute force. In Japan, though, all hams are limited to an input of ten watts and brute force is "out" from the start.

Oshima is located in one of the most hilly portions of Yokohama. From his home can be seen nearly the whole of Yokohama and part of the great Tokio Bay. His home is nearly on the top of a hill with an opening between two hills, which seems to give his signals a straight sweep out to sea and beyond to our United States.

Now, try to picture a Japanese home. Nearly all Japanese homes are solidly built of wood. Not the squared beams and finished T and G of our homes but the solid branches of trees for beams. Finished wood is used, however, for door and window sashes. Doors and windows all slide in grooves and are constructed like our own windows except that paper is used for panes rather than glass. Usually three sides of a room are constructed of these sliding doors or windows. Thus, in warm weather, the house can be opened, permitting whatever breeze there is to sweep through it. Even the poorest Japanese homes have a garden and all homes are surrounded by a fence or hedge with a gate. All homes have a little alcove in which the shoes are removed before the house is entered. The floors are all highly polished by the feet or stockings of the inmates and are made, usually, of a dark hard wood similar to Philippine mahogany.

One enters Oshima's outer gate of unpainted wood, and passes through to the "shoe-off place." His mother, a very tiny, sweet little lady, kneels just inside the entrance door to welcome the guests as they enter. The guests bow to the floor and follow Oshima to his radio-room in the back of the house. Now, many of the Japanese homes do not have chairs of any kind. A Japanese man or woman is far more comfortable sitting on a cushion on the floor than on a chair. Oshima's radio-room is fitted out with operating table and chairs, however, and looks like any other ham shack except for the sliding paper window. Before one has a chance to look at a set or the equipment Oshima's mother enters with a tray of cakes and the customary tea for the visitors.

Now for the sets. The receiver is the conventional tuned radio-frequency set, using one stage of tuned radio frequency, detector and two audio stages. It is mounted in an aluminum case that would make a professional green with envy. It is highly polished and needs but a glance to show the care and workmanship that has gone into the set. How would you like to sit in your shack at two or three in the afternoon and hear signals from England, the United States, the Philippines, not to mention China and Guam. That is what I heard on the afternoon of the last visit with Mr. Oshima. Not only that, but with a short, snappy, fast call on the bug, he landed W6CXW in Long Beach and was given a signal report of R7 QSA5. How do you like those apples? And by the way, it happened on the forty-meter band. One thing to be remembered is that there is very little QRM in comparison to what we find in our country. As a matter of fact, Japanese amateurs complain more of interference from the Philippines than from
their own stations. This because all Japanese stations are pure d.c. The receiver is no different from thousands of others you have seen except—each part shows the care and patience of the builder. No part was installed until it was tested and experiments proved it to be worthy. Even after installation in the set, each part was tested and proved again and again until the set reached its maximum efficiency. That is the reason for Japanese DX as far as reception is concerned.

The transmitter is a fit running mate for the receiver. It consists of crystal stage, buffer, intermediate stage and the output stage. Japanese tubes are used throughout, of course. I wish that you could see that crystal stage. Precision is the keynote. One gathers the impression that the finest of micrometers and calipers were used in its construction. You all know more about the circuit than I do so I'll not go into that. The transmitter proper is placed on a shelf over the receiver and all switches are mounted on the table at the right hand of the operator. The leads from switches to set are run up the wall in parallel lines and are, of course, mounted on insulators which are polished, giving the lines the finished appearance of the rest of the equipment. Each unit is separate and can be put in or out at the operator's will.

The last stage is a Japanese fifty-watt tube but input is carefully limited to the ten watts permitted by law.

Oshima's DX seems to be unlimited. I wonder how many of you remember a cover that appeared on QST, way back about 1922 or possibly before? It showed an American amateur with QSL cards from all the world, some on the walls, some on the floor, while he stands with a handful just received. Oshima's shack reminds one of that picture. Finland, South Africa, England, Germany, France, Poland, Sweden, Chican, the Philippines, Guam, America, both North and South, Cuba, Porto Rico and others make up the list. And here is the joke. He is not a DX hound in any sense of the word. He much prefers to chew the rag and is a member of the Rag-Chewers Club as well as being a WAC.

The antenna would probably be heartily laughed at in the States but it seems to do the work. It is a single wire and a very light wire at that. Hi-pressure antennas do not seem to be very popular in Japan. The simple antenna and ground are used in ninety-nine percent of the stations and seem to function perfectly.

It is a shame that I am unable to give you a more technical layout of Mr. Oshima's installa-

A Modern Transportable Station
(Continued from page 34)

...the case for inspection or trouble-shooting; just the receiver or just the transmitter portion may be carried alone; or the parts may be taken out and arranged on the operating table to suit one's taste. The units are made as adaptable as possible so that other power packs may be used with the receiver or vice versa, and other power may be substituted for the transmitter power pack if necessary.

Anyone who has tuned transmitters using neutralized final stages will encounter little difficulty in tuning this transmitter. The only meter normally used is a small milliammeter in the grid circuit of the final stage. The grid current furnishes a sensitive indication of neutralization, and runs around 20 ma. when the transmitter is operating properly.

Many types of antennas have been tried with the portable station, the one found most useful for portable use being an arrangement using a 65-foot antenna with a 32½-foot "counterpoise." Although this is not as effective as a larger antenna, it gives satisfactory results on both 80 and 40 meters. Parallel tuning is used on 80 meters, where the antenna system is tuned as though it were a pair of Zepp feeders. A neon bulb on the counterpoise, where the voltage is sufficiently high to give an indication, helps materially in tuning up and checking the output. When the proper amount of coupling is found between the antenna coil and tank coil, the antenna tuning...
The Incandescent Lamp as a Resistor

F. Hamburger, Jr., W3AMM*

Incandescent lamps are exceedingly useful in all types of electrical experiments. They are not only useful because they may be used as pilot lamps to indicate when power is on or off, but they fill an ever-present need in the form of resistors for many purposes.

In order that they may be used intelligently as resistors, we must bear in mind the fact that the material of which the lamp filament is made, either tungsten or carbon, has a marked variation of resistance with change in temperature. This fact is well known and has been made use of since the tungsten and carbon filaments behave quite differently with temperature changes. We shall concern ourselves here only with the tungsten-filament lamps, since these are more readily available than the carbon filament lamps. The accompanying curve, Fig. 1, gives the temperature-resistance variation in terms of the voltage drop across the lamp and the current flowing through it. These curves are extremely helpful in selecting the proper size lamp for a given purpose.

The curves given are for a standard make of tungsten gas-filled lamp with a voltage rating of 120 volts and must be used in connection with this type of lamp. The performance of lamps of other voltages or of other than standard quality will deviate appreciably from the curves here given.

Several examples of the method of using these curves may be helpful:

Example No. 1. — Let us assume that we have a 120-volt supply and that we desire to supply a circuit with 0.65 ampere at 50 volts. Obviously we need a resistor which will drop the voltage 70 volts at 0.65 ampere. On the curve we move up the vertical 0.65 ampere line to the curve which most nearly crosses this line at 70 volts. In this case we see that it is the curve for a 100-watt lamp crossing the given current at 67.5 volts, which will be sufficiently accurate for most purposes. If more accurate control is needed, we note the following:

2. The term "standard" refers to the better-known makes of lamps that are marked in small sizes for twenty cents — the cheaper or ten-cent lamps now available deviate from the curves given.

At 70 volts a 75-watt lamp takes 0.475 ampere, a 15-watt lamp takes 0.088 ampere, thus we can connect a 75-watt lamp in parallel with two 15-watt lamps and we will have a voltage drop of 70 volts with a current of 0.475 plus twice 0.088 or 0.651 ampere.

Example No. 2. — A circuit requires 1 ampere at 18 volts. If this is to be supplied from a 120-volt line, a voltage drop of 102 volts at 1 ampere is needed. At 102 volts we note that a 150-watt lamp takes 1.157 amperes and hence is not satisfactory. A 100-watt lamp however takes 0.77 ampere at 102 volts and a 15-watt lamp takes 0.11 ampere at 102 volts, hence one 100-watt lamp in parallel with two 15-watt lamps will take 0.77 plus twice 0.11 or 0.99 ampere and will be satisfactory.

Example No. 3. — A circuit requires 0.11 ampere at 45 volts. On a 120-volt circuit the voltage must therefore be dropped 75 volts. No single lamp quite satisfies this requirement, but we note that at 0.11 ampere a 25 watt lamp has a voltage drop of 38 volts. Therefore, two 25-watt lamps in series will meet the requirement, giving a voltage drop of 76 volts at 0.11 ampere.

These examples should indicate the general method of selecting lamps as resistors for particular problems. Needless to say, the lamps should serve in a great many instances and should be particularly helpful to the electrical experimenter.

* Instructor, School of Engineering, Johns Hopkins University, Baltimore, Maryland.
A 14-Mc. Rotary Beam Antenna for Transmitting and Receiving

An Effective Way of Increasing Transmitted and Received Signal Strength

By John P. Shanklin, W3CIJ*

ALTHOUGH the general idea of directional antennas for both transmitting and receiving has attracted the interest of most of us at one time or another, the very nature of a fixed type directional system, concentrating its energy along one path toward a limited group of possible receivers, runs contrary to the amateur's natural desire to communicate with anybody in almost any direction. The fixed type of directional antenna system is, therefore, of limited use in amateur work. While it may be of great advantage for communication in the particular direction toward which it points, it is a decided handicap to communication in every other direction.

What we want, then, for our work is a directive system that can be pointed in any direction. The only alternative to this would be a number of separate systems, one for each direction in which we might have occasion to work—which, of course, is completely "out" for most of us. But the antenna system of adjustable directivity is not. In fact, the rotary 14-mc. directional antenna system that has been in use at W3CIJ for some time has shown the idea to be entirely practicable and, by the excellent results it has given with a 50-watt 'phone-c.w. rig, has demonstrated that such a system is more than worth the expense and work required to construct it and get it into operation.

For instance, on three typical nights when, with a good non-directional antenna, only occasional VKs were heard and these were mostly unreadable, using the beam for both transmitting and receiving seven out of eight VKs heard were worked. Five reported the 'phone readable and one QSO was entirely on 'phone. With the beam swung around to point on Europe, several good 'phone QSO's have been had with stations there, and the ease with which they have been worked has given me the idea of going after a 'phone W.A.U. as soon as time permits.

The many requests for descriptions of the system that have been received from fellows contacted while using it show that it has widespread interest among hams.
As shown by the accompanying diagrams, there are six essential elements. First there is a pair of half-wave radiators, separated a half-wave and excited in phase. These are backed up by a pair of reflectors spaced a quarter-wave behind the antennas and a half-wave from each other. Finally, there is a pair of directors in front, the latter being spaced three-eighths-wave from the radiators and one-half-wave from each other. The direction of transmission is, of course, along a line at right angles to the plane of the radiators and from the reflectors toward the directors. The dimensional arrangement of these elements is shown in the upper part of Fig. 1. The spacings between the elements are shown in wavelength fractions and in actual dimensions for a frequency of 14,200 kc. (wave-length, 21.13 meters), the center of the 14-mc. amateur band.

The lower portion of Fig. 1, the side view, shows the lengths of the respective elements for this frequency. These were calculated on the following basis: Antenna (radiator), 95 per cent of a half-wave in length; reflectors, 98 per cent of a half-wave in length; and directors, 87 per cent of a half-wave in length. The "tuning" was done entirely with a yard-stick when the beam was put up. The experimental check with instruments, made after the power was turned on, showed that nothing needed to be changed.

Fig. 2 shows the method of feeding the antennas, the feeders being connected to the lower ends of the radiators in Zepp fashion. Transposition of the feed line half way between the two radiators, as shown, is necessary to excite the two antennas in phase. As is also shown in this figure, the feeders are extended a quarter-wave from one of the antennas, this quarter-wave section being shorted at its outer end. This extension is used as a folded half-wave antenna serving as a linear-impedance matching transformer to which the transmission line is coupled, as illustrated. It acts very much the same as a double-typed antenna using the "Y" feed method—except that the quarter-wave section does not radiate. The transmission line used has a characteristic impedance of 520 ohms (No. 12 wire spaced 3 inches or No. 10 wire spaced 4 inches). When tapped on 3 feet 7 inches from the jumper, the whole system puts the same load on the transmitter as a 520-ohm resistance dummy load. With a 600-ohm line (No. 12 wire spaced 6 inches or No. 10 wire spaced 10 inches) the transmission line would be tapped on 4 feet 2 inches from the jumper. The 520-ohm line used here is 650 feet long.

Fig. 3 and the photograph show the complete assembly of the beam, while Fig. 4 illustrates the construction of the main girder and the end supports which carry the elements. The transmission line connections, although not shown in Fig. 3, are as previously described in connection with Fig. 1.

A good husky wooden pole of about 50-foot height carries the whole load. This is set in concrete, to insure its remaining rigidly vertical. Pine flooring and plaster lath are the materials for the main girder and end supports. The exception is the pole, which is of small diameter, measuring 50 feet in height.
from which the main girder and end supports are made, the cost of the wood being about $15 and the whole works weighing only about 300 pounds. The tongue and groove were removed from the 1-inch by 3-inch pieces of flooring to make the 3-inch pieces, and those serving as the 1-inch by 2-inch pieces were cut down further to the latter dimension. This type of construction has been found satisfactory, although undoubtedly variations from it would serve also. With the woodworking painted black, using roof and bridge paint, the structure has a striking appearance perched on its 60-foot hill.

With the bearing block on top and the collar at the bottom properly fitted, the beam is readily turned in any direction in a few minutes by means of a couple of rope stays. Once set at the desired position, pointed to dump the signals into the part of the world of interest at the moment, the ropes are pegged down to keep the beam from turning with the wind. To keep the feeders from becoming tangled up when the beam is turned, the line from the shack is anchored to the pole below the lower bearing point and flexible jumpers of sufficient length are connected between the line terminals and the quarter-wave coupling section of the beam. A pulley and weight arrangement keeps the line running to the shack taut under varying conditions of weather and temperature. Although rotating the antenna through 180° puts some kinks in the jumpers, operation does not seem to be affected to any noticeable extent.

The other end of the transmission line is coupled either to the transmitter or receiver. The coupling to the transmitter is as conventionally used for any two-wire line (See the Handbook). For coupling to the FBXA receiver, a one-to-one transformer is used with 8 turns on each winding, both on the same 1-inch diameter form. The turns are spaced slightly, but the two coils are coupled together closely for best results, small-size wire being used to minimize capacity coupling to the line. Since the antenna is directional for receiving along the same line that it is directive for transmission, the system works both ways on the same QSO with equal effectiveness. The results in reception are balm to interference-harassed ears, both QRN and QRM being considerably minimized by the directivity. Off-beam signals leak through, but are weakened 3 to 5 points on the R scale. The beam action seems to be equally good over the whole 14-mc. band.

PERFORMANCE, MEASURED AND PRACTICAL

Fig. 5 shows the calculated horizontal field pattern (A) and the measured field pattern (B) of the beam. The intensity meter used in getting the experimental curve consisted of a Type 33 tube used as a diode rectifier, with both grids and the plate tied together, a 0-1 milliammeter connected in the output circuit giving the indications. Before taking the measurements it was calibrated on 60-cycle a.c. In taking the measurements the intensity meter was set up 10 wave lengths from the beam and the beam was then revolved through 180°, measurements being taken at a sufficient number of settings. The dotted portion of curve "B" is approximate, the reading being too small in this region to be determined accurately.

Theoretically the beam should boost the signal approximately 6 db over a non-directional antenna or, in other words, should give a power increase of 4 times—which means that the 50 watts here is effectively made equal to some several hundred watts with a nondirectional antenna. My calculations give the maximum concentration of radiation in the vertical plane to be between 20° and 40° above the horizontal, with

(Continued on page 68)
W6ITH, Berkeley, California

DR. REGINALD TIBBETTS, owner of W6ITH, is chief engineer of the San Francisco-Oakland Bay Bridge Construction Radio-telephone System. This net of stations is being used for communication on frequencies on both sides of the 56-mc. band during the three-year construction period. Naturally, since Tibbetts works so much near 5 meters, he has a good five- and ten-meter outfit in addition to the larger transmitter for 3.9- and 1.8-mc. 'phone.

The photo shows the larger transmitter as well as the “five and ten” mounted in the relay rack. This relay rack holds four receivers covering all wavelengths from two to eleven meters, monitoring speakers, patching panel and several power supplies besides the “five and ten” transmitter. The speech amplifier for the other transmitter is also mounted in the ultra-h.f. rack.

The large transmitter has a 47-crystal oscillator, 841 buffer-doubler, 800 amplifier and a pair of 203-A’s in the final modulated amplifier. The speech end starts with a Western Electric moving-coil microphone, a 77 and a 76 in the pre-amplifier, a 56 into a 53 into a pair of 2A3’s in the speech amplifier, and a pair of 203-A’s in Class B in the modulator.

The operating desk across the room is not shown, but on it is a Patterson PR-10 Receiver and the transmitter controls. All switching is done by means of push-buttons. Voice relays are used for fast break-in operation.

Although “ITH” is well along in the sixth district calls, Tibbetts operated 6PD back in 1926 and has held W6XT for some time.

W9FAV, Oshkosh, Wisconsin

ERWIN RASMUSSEN, of 52 Eveline Street, Oshkosh, who owns W9FAV, writes that Oshkosh is a peculiar city as far as ham radio is concerned. Of the three active hams in the town, the youngest in point of service has been going for 13 years, and one fellow who expects to get on the air soon started in the game in 1909! W9FAV is therefore no newcomer, although his present call was obtained in 1930. He broke in back in 1917, ordering some parts from the once-famous Wm. B. Duck catalog. With radio activity stopped during the war, it was 1920 before a whole station was put on the air, using the call 9BCH. 9BCH was one of the first 200-meter stations to be reported by 6ZAC in Hawaii and was also heard by WNP.

The outfit now in use is shown in the accompanying photograph. The transmitter consists of a 47-crystal oscillator, 10 doubler and 203-A final amplifier, following one of the popular QST circuits. Input usually runs 300 watts on 3.5 mc., 350 watts on 7 mc. and 250 watts on 14 mc., the 203-A being used as a doubler on the latter band. The antenna is an 80-meter Zepp, with a switching arrangement which cuts it in half for operation on 40 and 20. The receiver is a tuned r.f. job similar to the one described in January, 1933, QST, and an electron-coupled frequency meter, not visible in the

July, 1934
photo, uses a circuit given in the same issue. A 100-kc. electron-coupled oscillator, checked against WWV, is used for calibrating.

Up to the present time forty countries in all continents have been worked. Rasmussen has held O.R.S. appointments at various times and also was city manager under the old system.

W2ESK

W2ESK, New York City

W2ESK, the station of the Harlem Radio Club, is located in the 135th Street Branch Y.M.C.A., New York. The accompanying view shows the operating table and one of the transmitting units. A second transmitter, for 160-meter 'phone, is also owned by the club, but unfortunately could not be included in the photograph.

The rack at the right contains two separate crystal-controlled transmitters, one for 3.5 mc. and the other for 7 mc. The 3.5-mc. set uses a 47 oscillator, 46 buffer and 10 amplifier, and works into a half-wave antenna which is fed through twisted-pair feeders 100 feet long. The 7-mc. output consists of a 47 oscillator, 46 doubler, 46 buffer, and a 10 amplifier. A separate half-wave antenna is used for this transmitter, also fed through twisted pair feeders. Power supplies for both these transmitters are contained in the rack.

The 1.75-mc. 'phone transmitter uses a 45 Hartley oscillator, a pair of 46's in parallel as buffers; and a pair of 10's in push-pull in the final stage. Speech equipment includes two voltage-amplifier stages using 27's, a driver stage with a 46, and two 46's in the Class-B modulator. The antenna for this transmitter is 246 feet long, fed at the center with twisted-pair feeders 200 feet long. The unusual length of the feeders is accounted for by the fact that this particular antenna is fastened to the highest point on the tower on top of the 16-story Y.M.C.A. building.

In addition to these sets, the club also has a portable designed for operation in the 7- and 14-mc. bands, using a pair of 30's in parallel with 180 volts on the plates. In the same carrying case is a receiver using a 32 detector and 33 amplifier.

The apparatus on the operating table includes an SW-3 receiver, transmitter control panel, keys, microphone, and loud speaker.

The club recently held a highly successful amateur radio exhibition at the Y.M.C.A., and has handled a considerable number of messages for people in the vicinity. Courses in code and radio are conducted by the club at the Y.M.C.A.

W8WT, Detroit, Michigan

The year 1931 marked the entry of Lester Jeffrey, 5435 Bewick Avenue, Detroit, into the ranks of transmitting amateurs, under the call W8WT. A period of experimenting with various sorts of transmitters has resulted in the rack-and-panel rig shown in the photograph, a crystal-controlled job operating on 7 mc.

The r.f. part of the transmitter is in the upper region of the rack, and consists of a 47 oscillator, 46 doubler, and a pair of 46's in push-pull in the last stage. The power supplies are located in the lower part of the rack. The frequency used for the most part is 7008 kc. W8WT's antenna is a half-wave Hertz with 45-foot feeders.

The receiver is a home-made tuned r.f. job using 24 r.f., 24 detector, and 27 audio. The small box to the left of the receiver contains a monitor with a 99 tube.

Harndom

(Continued from page 88)

in 1931 started the Wives and Mothers of Radio Amateurs Club, of which she is still president. Frank is automatic chief of the Western Union telegraph offices in Dallas—good training for any official of the American Radio Relay League.
Plate Modulation With Tapped Choke

An interesting suggestion in connection with Heising modulation is offered in the following letter from D. T. Broadhead, WSCXI, of Jamestown, N. Y. It may prove of value to "phone men using Class-A modulators, especially when confronted with Class-C amplifier plate-voltage problems such as WSCXI describes.

"I have worked out a modification of the conventional Heising modulation circuit which I believe will be helpful to many who are using this system.

"The idea is simply to convert or build a choke to act as an auto transformer by taking out a tap for the modulator plate at a point 30% to 50% down from the end of the coil, as shown in Fig. 1. The proper location of the tap (in turns from the plate-supply end of the choke) may be found as follows: Tap turns = Modulator plate swing volts (peak) total plate voltage

"The modulator plate swing can be found from the load line plotted on the familiar plate-current plate-voltage curves for the tube in use, using the formula:

\[\text{Plate swing volts} = \frac{E_{\text{max}} - E_{\text{min}}}{2} \]

"If the maximum undistorted output of the modulator at the operating voltage and current have been ascertained, then the plate current to the final r.f. amplifier is simply:

\[\text{Watts (audio)} \times 2 \]

plate voltage

"Several advantages result from the use of this method. It eliminates nuisance of the dropping resistor, which wastes from 35% to 50% of the d.c. power supplied to the modulated amplifier; the drain on the high voltage plate supply is reduced; and finally, it permits the operation of high-voltage low-current tubes such as the 852 at full voltage.

"The modulator here is an 851, which at 2500 volts and 240 ma. has an output of 165 watts audio power. The plate swing is 1375 volts, hardly enough to operate a pair of 852's at good efficiency, and requiring a plate current of 240 ma., using the dropping resistor method. Now with 2300 volts audio swing the 852's may be operated at full voltage and only require about 140 mls for the same carrier. The total plate current requirement has been reduced from 480 to 380 ma., making the use of an 866 bridge rectifier practical.

"It is usually preferable to allow the carrier power to be a little more than twice the audio output, then if the gain is held below the point where the modulator kicks up there is little danger of overmodulation, provided the r.f. amplifier is properly excited."

FIG. 1—THE CHOKE, L, IS TAPPED TO WORK AS AN AUTO-TRANSFORMER SO THAT BOTH MODULATOR AND MODULATED AMPLIFIER CAN OPERATE AT THE SAME D.C. PLATE VOLTAGE
Transformerless A.C.-Operated Microphone Amplifier

The speech-amplifier circuit of Fig. 2 is contributed by K. E. Schonert, W9HQD, engineer at WEBQ, Harrisburg, Ill. It is used for remote pickup work, where a compact and humless microphone amplifier is especially desirable.

Inspection of Fig. 2 will show that plate power is obtained from the 110-volt line through a 25Z5 rectifier used in the voltage-doubling circuit. The tubes used in the audio amplifier are 43’s, the first having its control grid and screen connected together to give the effect of a high-µ triode, the second being used as an ordinary pentode amplifier. Resistance coupling is used between the two stages. The double-button carbon microphone gets its current from the rectifier-filter through the potentiometer R2. This potentiometer, incidentally, should be capable of carrying the current for the two microphone buttons, which will run between 15 and 50 milliamperes per button, depending upon the manufacturer. A fairly low current would seem to be desirable from the standpoint of load on the rectifier tube.

The output transformer design will depend upon the service for which the amplifier is intended. It may be a tube-to-line transformer for remote work, or may be a speaker output transformer if the amplifier is intended for use as a small public-address outfit. Speaker field connections can be taken off as indicated in the latter case, a high-resistance field winding being required. If the amplifier is to be used in the station and further speech stages are contemplated, the output transformer characteristics will depend upon the input requirements of the following stage.

The Twisted-Pair-Feeder Transmitting Antenna for Receiving

The following might be of interest to those amateurs who use a low-impedance twisted-pair line for the transmitting antenna, and who would like to use this antenna for reception without the customary changeover switch or relay.

A piece of tinfoil or leadfoil about six inches long is wrapped around the lead-in, as shown in Fig. 3, and the antenna post of the receiver connected to it. The ground post of the receiver is connected to ground. The antenna now works as a "T" type for receiving because of the relatively high capacity between the lead-in wires but is unaffected for transmitting. The receiver antenna coupling coil or condenser, together with this coupling device, comprises a balanced high-impedance circuit bridging the low-impedance feeder, and does not absorb a measurable amount of power.

Two equal small capacities of about 30 µfd. could be used, but most hams probably will want to use tinfoil or leadfoil because it costs nothing.

On Transmitter "C" Bias Supplies

In connection with using "B" eliminators for biasing r.f. amplifiers which draw grid current, the following letter from I. L. Brown, W8VJ-W8IDE, of Clifton Springs, N. Y., offers a scheme for overcoming to a large extent the voltage variation which occurs when several stages are biased from the same source:

QST for
"After reading the article on bias in March QST, I have the following suggestions to make. In experimenting with bias supplies I found, as stated in the article, that with an ordinary eliminator I might as well have a plain resistor—I had a sweet time getting the proper voltages to the various stages.

"As I wanted to ‘burn’ the transformer anyway why not go at it right? I dug up a 160-watt power transformer of three-hundred volts, a couple of hefty chokes and a three-anode electrolytic filter condenser. A single 80 served as a rectifier, though it has long ago been replaced by an 89. The bleeder resistor? There, fellers, is the catch—three thousand ohms. Figure it out, for yourself—the darned thing passes a hundred mils.

"But how sweet that made the bias proposition! With my 203-A’s in push-pull taking 25 mils in the grids the bias remained quite stable. The single 211 driving them gets 15 mils and the 47 doubler, although it will operate successfully at 180, is given the full 300 volts to keep it from burning up when out of resonance. As a result the grid current to this tube is negligible.

"Consulting the table in Fig. 4 you will see that there is so little change in the voltage that it does not seriously affect the operation, and it works very well for a multistage transmitter.

"Here is the one point I want to especially bring out. When the ‘B’ batteries begin to get old and the bias has to be raised to keep the tubes at cut-off, and then when the set has been run an hour you find the output down to fifty percent because the bias has built up; then, by crackle, I’m here to tell you I wouldn’t put anything other than my rectified bias on my multistage transmitter. Even when the batteries are new and a heap of grid current is passing the voltage will be found to be above rating when the key is pressed; i.e. the regulation is none too good."

The Absorption Condenser Microphone

A modified version of the absorption condenser microphone, in which the inherent stability of the electron-coupled oscillator is utilized, is shown in Fig. 5. This circuit was adopted in an effort to eliminate the critical tuning and unstable operation of most types of absorption circuits, and meets the requirements admirably.

Little need be said about the circuit components. The condenser microphone capacity CM is in the control grid circuit, while the plate circuit is tuned slightly off resonance. When a sound wave strikes the microphone diaphragm the fluctuating capacity of CM causes the radio frequency of the control circuit to vary at the applied audio frequency, and this in turn produces corresponding audio frequency variations of the plate current by reason of the fluctuating resonance point. The output equals or exceeds that of a double-button microphone.

Either an a.c. or d.c. filament type tube may be used, and well-filtered r.a.c. is thoroughly satisfactory as the plate supply. A frequency in the vicinity of 6000 kc. is used to avoid heterodyning with transmitter frequencies or incoming signals. I am unable to say how nearly linear the plate-current curve is, but the quality obtainable sounds excellent, while the ease and stability of operation is a relief after experiencing the annoyances associated with other types.

Cecil Lynch, W6BJE

"As the circuit components are chosen otherwise outside an amateur band should be chosen to avoid heterodyning, W6BJE uses 6000 kc. The inductance of the coils L1 and L2 will depend upon the frequency chosen.

CM—Condenser microphone head.
C1—250 µfd.
C2—0.001 µfd.
C3—100 µfd.
C4—50 µfd. midget variable.
R1—50,000 ohms.
R2—10,000 ohms.
T—Tube-to-line output transformer, input impedance 18,000 ohms.

FIG. 5—THE CONDENSER MICROPHONE VARIES THE OSCILLATOR FREQUENCY, CAUSING AUDIO-FREQUENCY VARIATIONS IN PLATE CURRENT."

Strays

QRR
Pity the ham
From eve ’til dawn
Calling CQ
With the juice not on!
— W9IYA

Epitaph for an SWL
Here lies our pride, old Joe DX,
Whose fame we knew so well,
Who always rose at peep of dawn
And worked VU, VK, ZL . . .
His tales, we were supposed to think,
Were really for belief;
But oh! to hear the line he slung
Did always cause us grief.
— W2EJF

July, 1934 39
28 MC:

With the 14-mc. band doing some surprising DX flipflops in May, it is not surprising that reports of 28-mc. work are encouraging. It seems to be axiomatic that good conditions on 14 mc. mean good conditions on 28 mc., and a cessation of magnetic activity during middle May produced some pleasing results for the boys who were on the job on both bands. In the United States, W9GFZ worked W2GOQ, May 20th, with QSA4-15 reports. W9GJS worked W2DTB and WlCKF. WlCKF heard six C.W. stations on the 20th, and five 'phones—a banner day. A W7 on C.W. and a W8 in Cincinnati were among the haul. Several other reports of unusual reception on this band have been received, including harmonics from several DX stations. Commercial stations in South America and Europe around 25 mc. have been hanging through loudly here at all times of the day and night.

In short, there's renewed interest in the 28-mc. region, and plenty of reason for it. In addition to the stations mentioned in the foregoing, WKUN, W2IN, W2TP, W4AEJ, W4BIK, W4BQI, W4AT and W4TZ are active and searching for DX contacts from 8 to 10 or 11 p.m. E.S.T. every night. Others scour the band during daylight hours over the week-ends. A group in Springfield, Mass., are regularly on with fairly powerful 'phone rigs—write W1ZB for schedules. Q2OA and OK1AW are still faithfully active. Take a whirl on the band one of these nights. You're likely to be surprised.

If you haven't the time for consistent listening, pick a time when the 14-mc. band is hot. When signals come through on that band until midnight with good strength, as they have been lately, 28 mc. can be counted upon to throw good signals some surprising distances around this old world.

QSL:

A new QSL address for Hungary, sponsored by the National Union of the Hungarian Shortwave Amateurs: VIII, Matyas-tér 6, Budapest, Hungary.

The new address of the Polski Zwiazek Krotkoalowcow is Warszawa, Nowy Swiat 31, Poland.

The QSL address of the Japanese Amateur Radio League is now P. O. Box 377, Tokyo, Japan.

The new address of the C.B.S.K.W. (Central Bureau of the Society of the Friends of Radio) is Moscow, Karuminiska pl. 2/5, U.S.S.R. This is the QSL bureau for all Russian and Siberian stations.

R. Bruce, VK5BJ, has resigned as the W.I.A.'s QSL Officer for Australia, and the position is now occupied by George Luxon, VK5RX. Cards can be sent either to 8 Brook St., West Mitcham,
Contest:

A unique international language contest in which 1000 francs are being offered as prizes is being sponsored by D. Jaime Mas, EA6AB, author of "Radio Vademecum," and originator of the QXX code system. The contest consists of translating a passage written in this code. Six prizes are being offered for the best translations, respectively of 500, 250, 100, and three of 50 francs each. The text and the rules of the contest follow:

"YC DSTNZ FRM ISL RDFIII IN DNG SPWK AT DWN. CPTN DCDHI RQT HLPO FRM ANTR NVGO BY FLGS AL BY TILGRO. LTNXI NBD? Y. 2 AMTRS LNQVIS RQT SCCRO FRM YC. 1 RCVQI STTN YC: LITTD N. LNTT W. 2Z AMTR EMBKQII RPDY IN ANTR LITTL YC THT RNTQLI. TMPT MKQI T LITTL YC ALMT SNK; BT ALIS SIVQUS: CPTN, HLPLUS, ANMLS; BT YC LQII AFT SHRT TM.

"TRMHA TRNLO: NW ANTRS WRRXIS: 1Z LCTXS, THN DCDXIS. HPHA WN SMT. NTXFXA WTN FWS DYS? Y. NTFXXE VY RPDY AFT DY FR CL AL NTFXXI FRY BLVQA ENCN DFCTS BT NW SYHA THT T CH HI DLGZ, FCLZ. BLVHA THT EMPLXXI MC BY MNY AMTRS IN CMMTOS, CRDS, LTTS, HPHA THT ATR INCRXI VCBL IN BNFO ALL AMTRS. END.

"Rules governing the contest:

1. Papers may be presented either typewritten or in ink, but in the latter case must be very clearly written.
2. The translation of the text may be carried out in Spanish, French or English.
3. The closing date for this competition will be August 31, 1934, but competitors are requested to send in their solutions early so that the judges may proceed with the classification in order to be able to publish results as soon after the closing date as possible.
4. The translations should be submitted on plain sheets of paper, octavo size (14 x 20 cm. or 5½ x 7½ in.), and these should not bear any indication as to the name or address of the sender, but merely a "nom-de-plume" or other pseudonym. The competitor's name and address should be written on a separate sheet of paper and enclosed in a sealed envelope bearing the same "nom-de-plume" or pseudonym on the outside.

5. Competitors are requested to reply to the following questions:
 (a) Now that you have studied the rules governing the QXX code, what is your opinion of same?

 J3CX, THE STATION OF M. KOHNO, KITO AINO MACHI HICHIJO, KYOTO
 A 4-stage c.c. transmitter ending in a 211D, modulated by another 211-D with two-stage speech amplifier.

 (b) Are you in favor of the use of this code when the usual abbreviations are insufficient to express our thoughts?

6. The prizes above mentioned will be awarded to the six translations which, in the opinion of the judges, are considered the best. The judges' decision will be final.

7. Any unforeseen difficulty which may arise will be settled by the judges.

8. The judges will be: Mr. John D. Steel, ex-wireless operator of the British Royal Air Force; M. Andre Planes-Py, author of several works on radio, and operator of radio station F8EI and Sr. D. Juan Catala, Spanish National school master and operator of radio station EA6AI.

9. The results of the contest will be published in the technical press for the information of all interested.

10. Solutions should be sent addressed to the Secretary, International Radio Contest, Calle Jose Villalonga, n. 1, Palma de Mallorca, Spain.

Next Month:

We will present a review of the amateur regulations in more than a dozen of the principal nations of the world. This compilation will be of unusual value and interest to all internationally-minded amateurs.

Strays

The budding 2-fer-a-nickel radio store on our block has put on the market a piece of radio apparatus that will revolutionize the radio game because it is—"a new and unique variocoupler in which the stator rotates and the rotor remains stationary."

—QST, July, 1933
High-Speed Operation
By E. A. Hubbell, W9ERU*

Much has been said in QST columns relative to accuracy in operation, and no one will argue that this requirement is not paramount in radio transmission. A word or two on speed may be in order, also. In 1929-31, I scheduled "GL" (George Kimmel, W3CXL-WLM Washington), in my opinion one of the best ops and certainly one of the fastest. "GL" could copy on the mill some 50 w.p.m., and no one could send a readable code on a bug at this speed long enough to lose George. To improve our schedule Kimmel undertook to raise my speed, by the simple process of sending faster than I could copy (which didn't take much) until I broke for too many repeats. If I could get one message all OK, the next was sure to follow at a faster clip, until I missed too much, whereupon "GL" calmed down a bit. Some six months or so of six day a week schedule keeping, and I could hang onto 30 words a minute with fair accuracy. Of course, "GL" could copy anything I could turn out that resembled Continental, and for over 18 months our schedule was certainly a pleasure to both parties.

Kimmel and myself had plans for an operators' club similar to the present "AI Operators' Club" sponsored by A.R.R.L. but confined to good operators of high speed, with the primary object to increase the code speed in general use by amateurs. QRM would be greatly lessened and operation made more enjoyable if the average code speed could be raised, say, 50 or 100%. That doesn't mean that all of us must become "Chain-Lightning Hills." If we could raise the usual 15 w.p.m. to 20 or 25 w.p.m. more QSOs of the same number of words might result, in less actual time on the air.

Increase in speed comes from a studied attempt to improve it. Turn loose a raw radio school graduate capable of taking twenty-five per from an omnigraph (yes, they can do it) on the 3500-kc. band. He will fold up like a can do it) on the 3500-kc. band. He will fold up like a

Alaskan Mountain Climbers

WICVF BT 7 will be used by operator David Putnam while in Alaska with the "Mount Chirillon Expedition." This party, composed of Harvard and Dartmouth College men, will attempt to climb Mount Chirillon. Some geology work will also be done, and not the least of the aims of the trip is to try some 50-mc. work in the mountainous area around the base of the peak. This work will be done primarily to relay traffic to and from the climbers daily. A transmitter working on the 7- and 3.5-mc. bands will be also in operation at the base camp. This set-up will be used primarily to relay traffic to and from the party. Amateurs within range are requested to keep an ear out for WICVF BT 7 and assist in moving traffic whenever possible. Operations should be under way when this issue leaves the press. Portable call WICVF BT 7 will be used for all work.

A second expedition, the "Mount Foraker Expedition, Alaska, 1934," is leaving Cambridge, Mass., June 17th to attempt the ascent of Mount Foraker, sister peak to Mount McKinley and second highest peak in the Alaskan range. This party will take along a small transmitter working in the 3.5-mc. band. Call letters are not yet known.

Pioneer Memorial Flight

A flight to honor the pioneers of aviation, the Wright brothers, is scheduled to start from the Miami (Fla.) municipal airport about July 1st. A Bellanca plane will be used for the flight, which will visit 31 foreign countries. Radio equipment operating on 8800 kc. will be used. Cooperation of radio amateurs has been requested. Starting about July
from WTMK on regular Official Broadcast schedule just as soon as available.

O.R.S. QSO Party Scores — April, 1934

From all reports the April get together resulted in a profitable period of real operating for all Official Relay Station appointees. Such opportunities for A.R.R.L.-O.R.S. come quarterly and attendance of the 1000 or more key stations is always excellent. Opportunity for testing station performance is combined with exchange of traffic, making of new friendships and "skeds" and enjoyment in work with skilled operators.

W9AUIH (KY.) worked 122 stations in 43 different A.R.R.L. Sections, hearing 43 O.R.S. in addition to those worked. His score (23,263 points) led the country by a small margin, W9DU (Ill.) made 22,832 points with 118 O.R.S. QSOs in 41 Sections, and 70 other O.R.S. heard! Third highest honors go to W1DMD (New Hampshire) who earned 11,890 points (82 QSOs in 29 Sections and 72 others heard.) The usual list of ten highest scorers follows:

W9AUH 23,263
W9DU 22,832
W1DMD 11,890
W9KJY 11,439
W4NC (W4OG opr.) 11,190
W9KJY 11,439
W9IU 22,632
W2CAZ (E.N.Y.) 258
W3GY (Va.) 765
W2DC (E.N.Y.) 322

O.P.S. QSO Score

Official Phone Station appointees likewise reported that over three times the interest and participation shown in the initial first activity was evident in the April 21-22 period of operation. This resulted in scores several times as great and in fullest enjoyment and success of both 30- and 160-meter band operation by A.R.R.L.-O.P.S.

Three Virginia O.P.S. hold the honors for their Section by taking the first three places, but many other Sections won honors by placing stations in the "high ten." scores as follows:

W3CY (Va.) 785 (12 QSOs in 9 Sec., 10 Hrd.)
W9XW (Va.) 680 (12 QSOs in 7 Sec., 3 Hrd.)
W9XW (Va.) 510 (15, 6, 5)
W8CAZ (E.N.Y.) 235 (7, 5, 6)
W9KJY 11,439

The Neosho Valley Amateur Radio Club (Emporia, Kansas) each month awards an A.R.R.L. membership to the individual member who has performed an outstanding service to the club. Through contacts and special publicity cordial relations with BCLs are maintained. Feature stories on amateur radio have been prepared and run in the Emporia Gazette. Also the club is starting a series of advertisements (two each week for six weeks) of an educational nature along the lines of "explaining and selling." Interference difficulties, Secretary Trimble, W9MPT-MPW can furnish details.

1.75-Mc. Code Practice

W2FHY, Ocean Gate, N. J., announces a change in schedule of sending code practice. Transmissions are now on 1.75-kc., as follows: Tuesday 8 a.m., Thursday 4 to 5 p.m., Saturday 11 a.m. to 12 noon. All times are EDST. Four stations of the Unics. (N. Y.) Amateur Radio Club transmit code lessons between 1800-1900 kc. from 10 to 11 p.m. on Mon., Tues., Wed., Fri.

O.B.S.

The following is a supplement to the list of A.R.R.L. Official Broadcasting Stations in September QST (page 44):

W1BZO, W2BZB, W5CRS, W6FYW, W8TH, W7AGQ, W8EWP, W8WE.

14-mc. DX Work

Did you ever sally forth into the 20-meter regions for a Sunday afternoon of DX, and run into trouble due to 'phone QRM on your signals? Ho, has received occasional complaints from 14-mc. 'phone operators of c.w. interference—sud from o.w. telegraph DX men of 'phone QRM. The remedy? When you work c.w. DX please tune carefully into either the 10,000-14,160-kc., or the 14,820-14,400-kc. parts of the band.

Avoid the ham 'phone allocation 14,160-14,230 kcs and your c.w. DX will not be subject to complaints of 'phone QRM.

14-mc. c.w. operators—don't just "tune to the center" of the band (which creates QRM for others, and insures your own signal of getting similar QRM from 'phones). Check operation carefully with a frequency meter, or listen on your superhet and determine 'phone band limits. Adjust your set to the high and low frequency 14-mc. band edges, and you will get optimum DX results.

O.R.S.: The next 1934 QSO Contest will be held July 21st-22nd. Only O.R.S. may take part in these "doings" and complete details with the full report on our last activities will reach all O.R.S. appointees with the regular A.R.R.L. bulletin in mid-July. But mark your calendar and plan to be on hand for some good operating. Test station equipment, make new O.R.S. friendships, further high standards in contacting and DX work between O.R.S. and O.P.S.

O.P.S.: 48 new and additional Official Phone Station appointments have been made recently, with only four cancellations in the same period. Additional applications are still under consideration by S.C.M.s, appointments being made when the station signal and operating standards have met the test applied by the 'Phone Activities Manager.

Every O.R.S. is invited to try to work every other O.P.S. in the July Party. A portion of the time has been set aside to try some 'phone-c.w. QSOs with O.R.S. who have their quarterly activities at the same time and suitable scoring credits will be given for such work. Full details will be included in the July 'phone bulletin from A.R.R.L. Headquarters. Mark your calendar (July 21st-22nd) and be on hand for some good operating. Test station equipment, make new O.P.S., friendships, further high standards in constructive voice operation. Watch the scores mount too, due to the larger number of O.P.S. now active!

To the roster of O.P.S. (page 47, April QST) add: W1AYG W1BDN W1BVP W1DMP W1DFP W1FPEQ W1ZK W2AMB W2BRI W2CAZ W2DC W2GH W3AEZ W3ATB W3AVB W3DFX W3ZF W3DNP W3GDF W3DG W3GQ W3AXX W3QMT W3DQO W3EY V3FVC W3HN B W3YK W3IP W3AUQ W9AB W9CBW W9CD W9DLC W9EQX W9EL W9GQ W9HHQ W9IK W9KF W9LQ W9N W9NT W9T W9WY.

To Prospective O.S. or O.P.S.: A.R.R.L. field organization appointments are made by A.R.R.L. Section Communications Managers. There are basically two types of appointments—one primarily for c.w. telegraph stations—one especially for voice operated, or 'phone amateur stations.

O.R.S.: The next 1934 QSO Contest will be held July 21st-22nd. Only O.R.S. may take part in these "doings" and complete details with the full report on our last activities will reach all O.R.S. appointees with the regular A.R.R.L. bulletin in mid-July. But mark your calendar and plan to be on hand for some good operating. Test station equipment, make new O.P.S. friendships, further high standards in constructive voice operation. Watch the scores mount too, due to the larger number of O.P.S. now active!

O.R.S.: The next 1934 QSO Contest will be held July 21st-22nd. Only O.R.S. may take part in these "doings" and complete details with the full report on our last activities will reach all O.R.S. appointees with the regular A.R.R.L. bulletin in mid-July. But mark your calendar and plan to be on hand for some good operating. Test station equipment, make new O.P.S. friendships, further high standards in constructive voice operation. Watch the scores mount too, due to the larger number of O.P.S. now active!

To the roster of O.P.S. (page 47, April QST) add: W1AYG W1BDN W1BVP W1DMP W1DFP W1FPEQ W1ZK W2AMB W2BRI W2CAZ W2DC W2GH W3AEZ W3ATB W3AVB W3DFX W3ZF W3DNP W3GDF W3DG W3GQ W3AXX W3QMT W3DQO W3EY V3FVC W3HN B W3YK W3IP W3AUQ W9AB W9CBW W9CD W9DLC W9EQX W9EL W9GQ W9HHQ W9IK W9KF W9LQ W9N W9NT W9T W9WY.

To Prospective O.S. or O.P.S.: A.R.R.L. field organization appointments are made by A.R.R.L. Section Communications Managers. There are basically two types of appointments—one primarily for c.w. telegraph stations—one especially for voice operated, or 'phone amateur stations.

O.B.S.

The following is a supplement to the list of A.R.R.L. Official Broadcasting Stations in September QST (page 44):

W1BZO, W2BZB, W5CRS, W6FYW, W8TH, W7AGQ, W8EWP, W8WE.

July, 1934 43
A.R.R.L. Traffic Routes

We are listing here only routes and schedules which are reliable and in operation as this issue goes to press. Other reliable routes appeared on page 62, June QST. Make use of these traffic chains and trunk lines.

West Coast 1760-kc. Channel: The following California stations, operating on 3700-3800 kc., are in daily contact (12:30/1:00 a.m. Pacific time): - W6EF (San Francisco), W6FBW (San Jose), W6HLM (Oakland), W6JGA (Los Angeles), W6ZJ (Alhambra), W6ZRS (San Fernando). Each station works "BK in" and clears traffic via schedule with W6GXM.

East Coast 1760-kc. Channel: From 6:00 to 7:30 a.m. Pacific time on Monday, Wednesday and Friday, W6RH, San Francisco, contacts the following California cities on 3690 kc.: - Fort Bragg (W6JNC), Fresno (W6HC), Dinuba (W6KPI), San Jose (W6HZ), Paso Robles (W6FYW), W7DHK, Bandon, Oregon, etc. are also scheduled.

Trans-Pacific traffic is routed via W6FYW.

W6GXM offers Trans-Pacific service: W6GXM, Los Angeles, will QSP traffic for KA, K6 and UT, via regular and reliable schedules with K6AQU (Pt. Kamehameha), K6EWW (Schofield Barracks) and KAI1NA (Honagapo). He covers the 7-mc. band at 3:00 a.m. PST, daily, for calls from anyone who has traffic of a rush nature for either California or Trans-Pacific points. Traffic may also be mailed to W6GXM for QSP, or may be routed through any reliable stations that connect with him. W6JNT, Frederon, N. C., maintains daily schedules with W6GXM.

W6TDL gives reliable Trans-Pacific service: W6TDL, Los Angeles, has long been one of the best clearing points for Trans-Pacific traffic. At present he has daily schedules with K6EWQ, KA1HR and OM2AA. He also schedules W6BMC (Bard, Calif.), who clears eastern traffic through W6ESA (Denver) to W6KQ (Kansas City), who maintains a distributing system around central-U. S. and to the east coast. W6QI's schedule line-up: W6QI, Seattle, Wash., is well fixed to handle traffic for almost any point. His schedules include K6EWQ, KAI1CM, K7CAN (Tyee, Alaska), W6FRR (Salt Lake City), W6IQS (Ft. Smith), Mich., and W9QGQ (Aurora, Colo.), all daily. W6QI connects by land 'phone with W7APS (Seattle), who has a 5-mc. hook-up of local cities, and who connects through W7WY (Vancouver, Wash.) to Oregon, etc., etc.

Coast to coast trunk line: W1UEW (Hartford, Conn.), W7JTT (Seattle, Wash.), W6GXM (Los Angeles). Also via W7JTT-W6HPG (Chicago)/W9LEZ (Davenport, Iowa); W9GJQ (Aurora, Colo.), to Oakland, San Francisco, Los Angeles, etc.

Seattle, W7QI, to Hartford, Conn., trunk: W7Q1 (Seattle) - W6QI (Ft. Smith, Mich.) - WIMK (Hartford). Also, W7QI-W6FRN (6-LC, Utah) - W6GJQ (Colo.) - W7JTT (Fredonin, N. Y.) - W1UEW (Hartford), and W6GJQ-W6HPG (Chicago) - W7JTT-W7UE.

W6QI's schedules: Of interest to those wishing to know how to route traffic for Hawaii will be this list of schedules maintained by K6EQW, Schofield Barracks: - W3CXL (Washington, D. C.), W6O (Pt. San Houston, Texas), W6AZU (Long Beach, Cal.), W6ETL (Los Angeles), W6GXM (Los Angeles), W6ZG (San Francisco), W7QI (Seattle, Wash.), KA1HR (P. L.) and OM2AA (Guam), all daily.

W6BHF collects 1.7-mc. 'phone traffic: W6BHF, San Diego, stands by on 1.7-mc. 'phone daily, except Sunday, from noon to 12:30 p.m. Pacific time for outgoing traffic. W6BHF moves all traffic thus collected via schedule with W6FQU, who is tied into the A.R.R.L. national trunk line system. W7Virginia Net: The following stations are members of the now famous "one spot" W7 Virginia, Net, operating daily, except Sunday, at 6:30 p.m. EST and at 11:30 a.m. EST on Sunday. All are crystal-controlled on 3700 kc.:- W6ERK, W6FD, W6KQ, W6EL, W6ED, W6GQ, W6GJQ, W6KUK, W6KDP, W6DMF. All these are O.R.S. and A.A.R.S. New members of this net are W6LJX and W8MAO. Incoming and outgoing traffic moves rapidly and reliably via outside schedules maintained by members of the net.

Information will be appreciated on any reliable traffic

Practical Use of U.H.F.

By M. R. Gutman - W2VL*

ULTRA-HIGH FREQUENCIES have passed the novelty stage. We can now stop to consider just when we can use them for and how well they are suited for our purpose. An example of how the 56-mc. band is used for traffic at W2VL may help to illustrate its possibilities.

W83EH in Chicago, Ill., called W2VL on 7 mc., and asked W2VL to take a message to Brooklyn and get an answer back by telephone. Since Brooklyn is a toll call from Lynbrook, L. I., and the operator had no telephone available, the message could not be delivered by telephone. However, in the New York area the 56-mc. band is usually active. It was certain that some Brooklyn station would be on the air. W83EH was asked to QRX, and a shift was made to 56 mc. where a "CC Brooklyn" brought W3GTVH into the picture. W3GTVH was able to deliver the message back to W83EH about two minutes. This was passed on to W83EH in Chicago. Until 56 mc. came into use, messages of this type were very difficult to deliver because of skip, etc.

Due to the lower power that will work on the higher frequencies, excellent portable transmitters can be built with­

out much cost. These can be used in times of emergencies because the antenna systems on 56 and 28 me. are extremely simple. The writer strongly recommends that nets be formed to handle traffic for almost any point. In times of emergency these will function without trouble.

In the Long Island area 56 mc. has been used by the various clubs to begin to get in contact. Arrangements have been made for inter-club hamfests and other affairs solely on this band. Now all of the radio clubs on the Island have active 56-mc. outfits.

It is the writer's opinion that 28 mc. will be even better for local 'phone work than 56 mc. The super-regenerative receiver at W2VL has been put on 28 mc. by merely doubling the diameter of the coils and using the same number of turns.

Duplex modulated oscillators similar to 56-mc. design are used. Since the present position of the sun does not permit successful prevent DX on these two bands at the present time, let's make them work overtime on local functions. Our apparatus and knowledge will increase and may lead to greater DX on these bands.

* 17 Devon Street, Lynbrook, L. I., N. Y.
W9USA

W9USA went on the air at the Radio Amateur Exhibit, World's Fair, Chicago, on May 19th. The first station worked was W1FNW, Springfield, Mass., on 7 mc. The W9USA transmitter in the Court of the Hall of Science went into operation May 20th. A special QST card is being prepared for the Court station, which will be in charge of W9AIO. All amateurs are cordially invited to visit W9USA while in Chicago. However, no amateur radio operator may operate any W9USA transmitter without his operator's license being on his person! This is important!! If you wish to operate W9USA, be sure to bring your license or the pleasure will not be yours.

W7AYV

W9USA, be sure to bring your license or the pleasure will not be yours.

W2AYJ

You wish to operate W9USA while in Chicago. However, no amateur radio operator may operate any W9USA transmitter without his operator's license being on his person! This is important!! If you wish to operate W9USA, be sure to bring your license or the pleasure will not be yours.

W2EKM

A radiogram received via G5QY and W1BKJ advises that they will send postage to cover mailing (about 25c). He will also record any DX 'phone stations under the same conditions they will get in touch with him and arrange schedules. Mr. Wiseman may be reached in care of G5QY, Sec'y, 124 Reynolds St., Elmira, N. Y.

W2ERQ

In messages and letters requiring a reply be sure to give your complete address! In station-to-station message exchanges complete addresses in the signature may not be necessary—but, of course, the old rule about "complete addresses" of addressees must always be followed to alleviate necessity for SVC messages requesting "Pse GBAI!"

W2GXM

50-mc. amateurs, attention!! Stand by on July 14th and 15th for 50-mc. stations on Mount Hood, Mount McLoughlin, Three Sisters Mountain, Council Crest and Saddle Mountain, all in Oregon and above 6000 feet in altitude.

W2G5J

On November 30, 32, W2EJ, Providence, and W1AMD and W1A2D, Pawtucket, R. I. were QSO W2GXL, Commander Hawks, on 56 mc. At the time of contact W2GXL was enroute from New York to Boston, and as W1A2D put it, "The Sky Chief wasn't exactly wasting time going places." The reports were R9 all around.

W9AFR

Coming Meetings

Emiria (N.Y.) Hamfest, July 1st, auspices Emiria Radio Amateur Association. Details from Grant B. Meeker, Sec'y, 624 Reynolds St., Elmira, N. Y.

W9IYA

W9MAZ

Give Complete Address!

In messages and letters requiring a reply be sure to give your complete address! Call letters only are not enough. The person you are writing may not have an up-to-date call book with your correct address. It is especially important for amateurs to give their complete addresses when writing manufacturers and publishers, many of whom do not possess call books. In station-to-station message exchanges complete addresses in the signature may not be necessary—but, of course, the old rule about "complete addresses" of addressees must always be followed to alleviate necessity for SVC messages requesting "Pse GBAI!"

W9KJY

July, 1934
Improving Local Radio Conditions

By W9AIO, W9BVY, W9BYA, W9EQG, W9FKC, W9KB and W9MDO

Forty-five thousand amateurs can't be wrong—but plenty are. With the prevalent congestion on all bands, reception in the Chicago area, due to improperly adjusted transmitters, has been pathetic. Personal complaints to the offending stations brought little improvement, and frequently engendered antagonism. Many stations continued to offend, knowingly or otherwise, because of a lack of willingness of other amateurs to complain.

These intolerable conditions, with lack of cooperation, prompted the formation of a group whose purpose it was to clean up the situation. This group, a committee appointed by the South Town Amateur Radio Association, was composed of men whose unselfish interest in amateur radio was unquestioned. Its first move was to publicize offenders. To remove personalities, complaint slips were circulated among the members. These signed complaints, upon return to the committee, were openly read at subsequent meetings omitting the name of the complainant. In addition, the committee sent a letter to the offender a draft of which accompanies this article.

A good percentage of the local offenders went to work and favorable results were immediate. It is felt that the efforts of similar cooperative groups will avert the necessity for a general house cleaning from Washington and help amateurs to mend improper conditions before they get into difficulties with the F.R.C. or receive F.R.C. monitoring station discrepancy reports. The motto of our committee is, "Not fewer, but better signals!"

The comments of representatives of the F.R.C. on the enforcement of amateur regulations may be of interest. One official said, in substance: "Policing the air is an immense task and requires much time but there can be no doubt about final results. Eventual monitoring station check up on all amateur signals, as some are now being checked, will result in the inevitable downfall of those who continue to disregard the regulations." Another encouraged the plan of the South Town Amateur Radio Association, adding, "In order that those amateurs complying with... regulations may not be penalized as a body for the errors of comparatively few, it is believed that when these few... fail to rectify errors after courteous notification, they should be reported to the Commission...

SOUTH TOWN AMATEUR RADIO ASSOCIATION MEMORANDUM OF VIOLATION

This form must be signed and complete data given. Name of person mailing report will be held strictly confidential. Form can be mailed or given to W9--; W9--; etc.

SOUTH TOWN AMATEUR RADIO ASSOCIATION COMMITTEE ON VIOLATION

Chicago, Illinois

Dear O.M.: Our attention has been called by a fellow amateur to the faulty operation of your station. The committee has reason to believe that this is a matter of utmost importance, not only to you as an individual, but to all amateurs. We are including below a copy of this complaint:

We know that no amateur station is wilfully operated illegally. From our self-preservation as amateurs we suggest that you remedy the existing condition. Should you have difficulty, any member of the committee will be glad to help you.

Sincerely and 73,

Committee—W9AIO, W9BVY, W9BYA, W9EQG, W9FKC, W9KB and W9MDO.

Briefs

In May, 1934, W6CUN and W6QD celebrated the first anniversary of combining their stations. Looking back over the log for the year they found over 1800 DX contacts in 62 countries—including 51 times WAC, seven of them in less than 24 hours—and 208 AFR—where their goal has been DX rag chewing, rather than the mere DX itself!

When W3BWT is mentioned the first thing which comes to mind is "reliable traffic work." In two hours and fifteen minutes of schedule he recently handled 72 messages—his record!

On January 12th the following stations participated in a seven-way QSO: W1ERB, W1BLV, W1DEQ, W1ERQ, W1FCR, W28II and W2ENZ. The QSO was in progress from 1:00 to 3:30 p.m. on 3.5 mc. c.w.

On February 9th the Western Union Telegraph Co. at Elkins, West Virginia experienced wire failures; traffic was routed via amateur radio to Columbus, Ohio, where it was turned back to the W. U. service provided by W8KN, a member of the A.A.R.S., contacting the Army radio station at Columbus and arranging for a schedule with the Fifth Corps Area N.C.S., WLH-WWSZ. Sixteen messages were handled between these stations during several hours interruption of the land wire service.

S. N. D. Lorenzo, Radio Operator on the S.S. Pan Bolivar, WDEK, tells of the exasperated commercial operator, who, having long suffered trying to copy something reputed to be "Morse code," asked the Lid, "What's the idea of using a snowshoe on your left foot when you've got the key screwed to the ceiling?"

K after CQ: Attention is called again to the fact that while AR is appropriate at the end of messages and calls to stations (where contact has not yet been effected), that CQ's should conclude with K (not AR).

Results 1750-Kc. Tests

The trans-Atlantic tests on 1750 kc. held each weekend from the first of the year were brought to a close on March 18th. These tests, published in W2BR, were conducted by British amateurs using W/VE amateurs, were arranged by G5UM, Manager 1.7 mc. RSGB Contact Bureau, and W1DBM. The results of the complete series of tests have just been received from G5UM via W1DBM. Several successful contacts were made as follows: W1DBM and G5WU had four QSO's on Feb. 3rd, 4th, March 3rd and 17th. W1CEV had two QSO's with G5WU on March 3rd and 17th. W1BR and W1GK had two QSO's with G5WU and G5WU worked March 17th. W1DBM was heard at least once by each of the following: G5IN, G5FI, G5YJ, G5BK, G5UM, G5JF, G2YI and BR5727. BR5727 also heard the following phones: W1W, W3BU, W2BE, W3ERU and W3CIG (some doubt about the calls). G5WU heard W1CCJ, W1ATE, W1AGB (?), W2DVY, W8BFN (twice), W1GK and W1MV. G5FI heard W1ATE, W1AGB (?), W2DVY, W8BFN and phone W2CBT. G5UM heard W1BCH (twice) and W8BFN. G5YJ heard W1CEV (?). BR5727 heard W1AXA. G5WU received a report from VE1AO, G5DI, G5WU, G5YJ, G5YI and G5RX, who cooperated in the tests, are members of the RSGB official 1.7-mc. experimental group 10A. Other British amateurs cooperating were G6PJ, G6WQ and G6QP. No British amateur is permitted to use more than 10 watts input owing to possible interference with Mobile Marine Services which share the 1.7-mc. band in Europe. In view of this fact G5WU's work in making seven QSOs with the United States on 1.7 mc. is a decided achievement. And to the U. S. hams who got across, very FBI. Here's to more 1.7-mc. trans-Atlantic work in the winter of 1934-35!
It isn’t that we hold anything against the changing times—Heaven forbid!—but it just is that some of these changes seem so stupid. For example, three amateurs of ’22 used to tune in on a commercial station and copy it in their heads, and they could do 40 or better. That, you understand, was just the routine of learning to be a good ham. In other words, code ability was telling wiser heads how to improve their modulation.

—Lud Smith, WE6JM

(From “QSA5.” Marin Radio Amateurs)

W0PGS’ first QSO on 14 mc. (with W8HJW) was also W0HWW’s first 14-mc. QSO!

ATLANTIC DIVISION

EASTERN PENNSYLVANIA—SCM, Jack Wagon-seller, W3G—RMs 3MC and 3ALX. 3BY-5S4, 3AKK-505, 3CB-142 and 2ADM-78 make BPL 3DMG-185 reports via radio, 3BW-2 is rebuilding 3.5-mc. rig. 3MC-8 is operating at Fort Slocum. 3WQ-150, 3CB-117, and CTA-57. 3APB originated 253 at open house day at U of P. 3AKK-505, our VJ-ORS, got Class A ticket. 3RDP-6, 3BNX-13 and 3DMF-12 report for first time. 3SOH-13 is recuperating from sickness. 3FIA-130 was at Allentown Hamfest. 3CL-142 scheduled from 3GZ while on active NCR duty. 3ECM is setting over auto accident. Painters took feeders of 3DYY-3 while painting house. 3AKG-83 has 841 peaking FB. 3DIG-45 says gang is organizing Susquehanna Valley Radio Club. 3ASSW-8 wants help in locating 3HTT, LTN. SJTP-238 is QRL YLs. 3FO-53 is rebuilding. 3AKX-1 is working DX in great shape. 3LUJ-5 sends first report. SBHK-20 had a fine time at ORS Party. 3AWX-241 is taking up flying. SGPS-48 joined A.A.R.S. 3IDJ-130 is rebuilding with ’04A in final. The Rochester gang is doing lot of work on 56 mc. 3BGN is building Tri-Tet. New calls: 3LYW, LUF, LVZ, KWM, LWD. 3IMR has Tri-Tet crystal job. 3OGS-51 wants schedules with Buffalio and Jamestown. 3LUJ-5 is working shift work nights. 3AG has R9 reports from all continents except Asia.

CENTRAL DIVISION

ILLINOIS—SCM, Fred J. Hinds, W9WR, 9WAPY—RMs, 9AND and 9ERU. Ex-K7HV is now 9RQZ. 9HPG-575 is A.A.R.S. 9EAL and 9LPI are both rushing for DX. July, 1934

47
same YL! Pair of '45s at 9OVY-1. 9CIA-46 handles DX trafic. 9COW says no OPS heard on 14 me. in OPS party. arrived safely at 9LIV. Housecleaning at 9FTX-3. 9A VB-6 new Gross c.c. rig. 9PQM-5 has given up 'phone and gone 11p. 70 hams "ttended Podunk Shack Hamfest. 9 PNE-3: mys, lo CW forever. 9MKK-188 says A.A.R.S. keeps his score works fine DX. 9CZL is the only ham in town. 9BRX will says two more YLs joined the A.A.R.S. 9LIV and OIU 9LNI-7 is working on Ilea-power rig with c.c. 9BDO-137 216 and IVF are Alternate S.N.C. A.A.R.S. 9MJE SW3. 9KLG has 825 in final. 9JHY-27 is giving CW a 713, DOU-703, MLH-545, HKC-503, HTJM-280, NN-241l, A.A.R.S. is good practice. 9GKC-104 wants more radio whirl. 9PQL is looking for few sevens. 9AUT-23 is looking unly locals on 28 me. 9PTW-2 sends first report. W9ILH-:m1 takes trafic honors. 9HAX-118 is to do c.c. 9OMW- LMQQ-3 has a 2nd harmonic hertz. 9LSZ-20 has a pair 276's on Ohio River crunp. Out-town business breaks states that 19th district ollice will be located Tenth Floor, 9EAX-125 repurt. W0OX-155, AYH-3, ELL-21. Hamfest at Grand Rapids was a Wow-175 attending. D.A.R.A. Annual tipring Hamfest brought out over 450 stations. 8GFC-57 reports for first time. SGDR-46 says, "We'll never start a separate Section I Youze guys didn't even mention us in the Bull." SHP reports Wayne University on 7, W1bl 1000-1200 hertz with SLGA on 1.75 me. 8SEQQ says, "The beer—I mean the Grand Rapids Hamfest was FB." SCUX has a 263-ft. kepp for high angle radiation. 8MV will handle schedule with 8SEP-53 wants Old OJ. 9DPL raised N. Y. 9FTX got a job in Ky. 9KDG is planning on new rig. 9QQ-1 raised ZL and VK. 9MFW joined up CCC. 9PSB is on 3.5 me. 9CTT-35 is handling traffic again. 9FQ will be on soon. 9EJD-13 is back on 3.5 me. 9MQQ-3 has a 2nd harmonic hertz. 9LZ-201 has a pair of 966. 9BRT uses low power. 9AKJ -3 is on 7 me. 91lAZ-88 is laying foundation for 1KW out-fit1. 9MWR-53 CCQ. 9PSB is on 3.5 me. 9CTT-35 is handling traffic for OX. 9EPT got...
Cleveland Heights Radio Club meets every Wednesday at 8FFK-422. SJO-721 works A.A.R.S. schedules. Dist. No. 8; 5DQR-113, MJS-7 wants some. Antenna coupler at 3BKE-24, RM 5PY-27 reports by message. Dist. No. 4; 5WE renews ORS. 5PO-11 announces all-Ohio Portable tests and contest. A.A.R.S. at 5HII-14. 5IET-105 is new reporter. RM 5SUW-426 says we need schedules. No. 2; 5MDF-284 will send us hard-wired mender. 5EJ-41 reports Navy Net active. Dist. No. 5; 5BOE Friends League. 5BMK-2 will graduate. 5KLP-5 has a job! RM 5FGV-15 works plenty DX. 5AMF-25 schedules NF and GNO. 5LGL-58 wants dops on early morning. Dist. No. 7; RM 5QSO-23 says Lancaster and Columbus gang starts 50-mc. tests. 5OJZ graduates with high honors. F.B. report from 5JFZ-29. Officers of Toledo Radio Club: 5JQJ, Pres.; 5SFSN, Vice-Pres.; 5SATN, Secy.; Stage Rows, Trens. Ralph Kuchenmuster, Egt. at Arma. 5BAH-34 will be on 1.7-mc. 'phone soon. 5VP is organizing State Net for all Route Managers. 5PO is arranging portable tests for the state. "Cooperation" is the Ohio word to lead us to the top. Let's go, gang. ESN-18, AQ-16, ELB-7, CMY-2. NIDNU-9 and ETM-59 want schedules. NOLT-7 improved. SIET-106 is new reporter. RM 5SUW-428 says we need several more such applications, fellows. 5SRB had 4 flats on way from SMRA meeting. 5JQA is using "Collins" coupler. 5EBA worked Japan long way around. 5IDF has MOPA. 5ANU predicts "the future will be all ELF." 9GVL-31 has 3.5-ke. A.A.R.S. schedules. Dist. SBOF joins League. SBMK-2 will graduate. SKLP-5 has 9HSK-320 is still leading state. 9ATO-148 deserves a job! RM 5SUW-428 says we need several more such applications, fellows. 5SRB had 4 flats on way from SMRA meeting. 5JQA is using "Collins" coupler. 5EBA worked Japan long way around. 5IDF has MOPA. 5ANU predicts "the future will be all ELF." 9GVL-31 han...
NEW YORK CITY AND LONG ISLAND—SOM, Ed. L. Bannach, W2AZV—2GDG-F and JP-106 are out for ORS. 2ACG says crystal filters work FB. 2BEF worked a ‘G.’ 2BS-4 is heard by V7AK7. 2BB-5 is on 14 mc. 2BSU puts brass on B.S.S. 2CGQ-39 reports for Kingston boys, 2BNR is on 7.2 kc. 2CC-14 schedules DX. 2CCS-15 uses stead, L. I. 2CB-17 can be heard from Louisville, Ky. at Iona Island. 2GFD reports for Kingston boys, 2BNR is on 7.2 kc. 2CD-4 is on 3.5 and 1.7 mc. 2CDO-252 20Q-65 handled entire correspondence between a couple is.

EBT-3 inspected RCA Rocky Point transmitter thru 2FSD: Congrats on that new YL op. 2EMK joins CCC 2ENY, ENG, FAM are heard at Troy. 2DYC-6 tries for a friend. 2EVE-3 was heard by VS7 AK. 2BR-5 is on 14 mc. 2GQ-10 has receiver trouble. 2CCD-17 has several 1KW users. 2CCQ-20 has good schrrlule with Omaha. 9BQR-15 is building highpower c.c. rig. 9DQ-10 was building Universal testing meter 9PRI is new Lenora ham. 9BUY-10 is building lowpower rig. 9ATN has ‘52 final. 9HLD worked 56 mc. 9BQR-15 is building highpower c.c. rig. 9HKF is out of 10 mc. 9DQ-10 has good schedules. 9FWW-15 uses 59 Tri-Tet and 10 amp. 9LBA-80 is on 14 mc. 9RMH and RLX are new hams in Elgin, Tyro, Independence, Parsons, Bartlet and Caney met with PB DX Club at Coffeyville, May 1st. Good program, prizes and eats enjoyed by all.

Bills are due, 2QJF-272 is doing twenty mile marathon swim at local pool. 2QJF-272 is doing twenty mile marathon swim at local pool. 2QJF-272 is doing twenty mile marathon swim at local pool.
ham. 1D11H-41 is increasing power 1BJ-13 is looking for schedules. 1BTA-12 is on 7 and 14 mc. 1RJP-12 works all bands. 1CZ-6 is moving to Brunswick. 1BNX-6 good on 14 mc. 1EVE-94 worked 1RIP-74 and received reply in half hour. 1CDX-28 schedules LAC3. 1APX is home again. There are now about fifteen 56-mc. stations in and near Portland. 1FA, EWN, CHF, TE, BNG, CRP, AHY, PP and DVP are the most active. 1XR at Mt. Washington has been reported by many of these. There is also 56-mc. activity in Keenebuck, Biddeford, Old Orchard, Kittery and Livermore Falls. The Keenebuck gang are putting up one of their famous hamfests on June 30th. Don’t miss it, good food, good speakers and good prices.

Subscriptions: $1.00; place, Narrangassett House, Kennebunk, 6:00 p.m. EDST. W1CHF-103, OR-65, GKC-64, AQL-9, EZR-4, HUX-1, EF-109.

EASTERN MASSACHUSETTS—SCM, Joseph A. Mullen, W1ASH—1DPE reports collision in gas buggy with heavy damage to starboard side. 1BAG-50 is QRL on 56 mc. 1KHer-84 is actually losing weight due to heavy climbs the White Mts. each Sunday afternoon. Look for 1BZ to work.

The convention got prizes! 1BVP-501 is putting over one of their famous hamfests on June 30th. The SCM acquired a YF on June 21st. 1CFG of WFEA had ORS transferred to N. H. from Maine.

Bill Page, W1ATF—1AZV was a winner at N. E. Convention. 1AAT-156, AAV-91 and 1GE-250 have some new equipment. The following are the N. H. mc. phone, but BCLs did not enjoy the QRM. 1BZ0-145 assembled at the hotel. 1FFZ-13 keeps schedules with 1P0A018-13. 1GAE is moving to Brunswick. 1BNX-6 is QRL canny. 1BFR-52 is proud operator of hundred-watt commercial ‘phone and c.w. station. 1JMW-73 received the QST.

470 and ASY-21 joined A.A.R.S. 1FEAX-30 has antenna on 56 mc.

 Gothamizing House, 6:00 p.m. EDST. W1CHF-103, OR-65, GKC-64, AQL-9, EZR-4, HUX-1, EF-109.

The St. Paul’s School Radio Club, the Dartmouth Radio Club, and the Twin State Radio Club. The St. Paul’s School Radio Club transmitter has become prominent this summer each Sunday p.m. (weather permitting) with 56 mc. power. 1CFG of WFEA had ORS transferred to N. H. from Maine. W1FCI-71, IP-4.

Rhode Island—SCM, Albert J. King, W7ABZ—7BLN-99 and ABZ-11 are on 14 mc. 7BMF-27 is on 14 mc. 7CHT-10 rebuilt. 7DMT-97 worked K7DJA-19, EGC-31, CHF-48, PQ-77, BOE-60.

Northwestern Division

Alaska—SCM, Richard J. Fox, K7TQP—7DEV-1 has new station license. 7EZ uses Collins 30 to drive pair of 532s. 7PRG visited 7BNW-18. 7BND is attending school at Burbank, Wash. 7BQF is new Cape Decoton ham. 7FF is QRL canny. 7BRB-52 is proud operator of hundred-watt commercial ‘phone and c.w. station. 7ANQ-73 returned from vacation trip. 7AB returned from trip to states. 7VH-93 has F77 receiver. 7COK is on again. 7AC came on for first time in over a year and handled 130 messages! 7CS2 has c.o. working on 14 mc. 7FQ worked 1MK on 3.5 mc. 7BNA-19, EGC-31, CHF-48, PQ-77, BOE-60.

DAB—SCM, Don Derrichull, W7ATY—New Mildian scintuous! 7EYV-200-10 uses 3005 kw. 7C7HT-9 rebuilt. 7DMP-17 is active in A.R.S. 7BAU-98 likes A.R.S. contests. 7NH-9 reports new schedules. 7C7FX is on 14 mc. ‘phone. 7BLT has new brussette in Missouri. 7AO is chasing "bugs" at experimental farm. 7AOT-120 is becoming aQSL master. 7AYV-48 is home again. There are now about fifteen 56-mc. stations in and near Portland. 7CNR is handling the Big Time at Portland.

56-mc. activity in Kennebunk, Biddeford, Old Orchard, Kittery and Livermore Falls. The Keenebuck gang are putting up one of their famous hamfests on June 30th. Don’t miss it, good food, good speakers and good prices.

Subscriptions: $1.00; place, Narrangassett House, Kennebunk, 6:00 p.m. EDST. W1CHF-103, OR-65, GKC-64, AQL-9, EZR-4, HUX-1, EF-109.
HAWAII—SCM, A. O. Adams, K6EWW—The OARC is going strong. 6EWW-8100, new SCM, would appreciate full cooperation. 6AGI, GQF, and JRN are on 1.7-me. phone. 6JFT-403 and FAB-41 are awaiting new ticket. 6AJA is visiting coast, to be followed by CQG-20. 6EJOS is to work at KKH. 6FUL has been working on transmitter for yacht Hakoi. 6KPB uses low power. 6GZI schedules IQD and EQW. 6KGAU-257, ECX-122, GZI-131, 6CQ-14, CBX-10, EGB-7, EDX-5.

NEVADA—SCM, Kaelin L. Ramsey, W6EAD—6AJP-78 is fixing quarters for Reno NCR unit. 6GXX-1215 rebuilding transmitter. 6FHI-199 made good score in ORS Contest. 6BYR is rebuilding phone using relay rack. 6HIC QG-50-90 is scheduling an ORS drive. 6FUC has new super-het. 6WAAA-33, UO-27, GIC-2.

LOS ANGELES—Acting SCM, Howell C. Brown, W6BPU—Fine report this month, gang! Thanks for your help. Six SCM for WL: 6GXM-7920, 6GD-1185, HZT-894, 6AGI-695, GQF-32Q, 6EM-164. Congrats. 6BQG-2 received QSL card from VK after wait. two years! Clubs—Six Federation Clubs report traffic for members, and Long Beach Section Club Banner from Bell, which loses for first time! Whittier plans low-power contest. QRL-B6KY-1, DZI, GWX-2: business. 6EUV-16, FGT-42, FXL, IZF: school, 6EIK-44: beauty shop. Rebuilding: 6ALR-9, 6AZU, EKV: 14-me. ‘phone. 6EYX, COP, IKW: CW 15. 6EM: c.w.: 6HLF-7. AGJ, JZE, JTF, KXB: MOPA, 6MJ: 3.8-me. ‘phone. Portables: 6CYC-20 at Riverside, EZF-197, IAR: 6EOK: ox. 6DOK worked KE on 14 me. at 11:30 p.m. PST. 6FYT made WAC in 46 minutes. 6ERT-14 worked VKS at 7:30 p.m. on 14. 6DJW-15, EJW-14: work trans-pacific. 6JVI KAO, brothers, work plenty. Experimenting: 6CV-10: Tri-Tet. New equipment: 6GEX-9 temp. control, IDZ: c.c. 6EAK: K1k., KEI-9: condenser mike. U. S. R.: 6HD-100, CQG-90-87. 6AJV-19. A. L.: 6JYX-19. 6JF: Worldwide. New ORS: 6KHY-11, IJX-3, ERT, New QRA: 7AHAJ-188 and AYJ-72 at 3079 Walnut, Riverside, 6CA is building house. 6SVZ and AJF have been ill, but both better now. FB, 6HFL-7 has BC trouble. 6ERT took OBS test where he is to show procedure of calling W6XZ and worked him next night! Report but no traffic—6ANN, AXQ, BZX, CAE, CLY, COP, DZJ, FXL, FGG, GVI, IZP, JOJ, JTF, MA, TH, WJF. New hams: 6KGO Burbank, KRO.
on 'phone. 9PGS-5 is building MOPA. 9GLI-77 is building MOPA. 9FMS is an antenna. 9PMS is a Radiotelephone. First. 9MLU-10 passed Radiotelephone. Second. 9LQU passed Radiotelephone. QST.

The Pueblo crowd have a real club, known as the San Isabel endorsement. The R.F.A.R.C. is building 56-mc. transmitters. 9RX is busy at KFXJ. 9MXJ moved to Loma.

4APJ (with CCC) will move to Livingston. 4BZG is in the contest. 4RJA-247 has been taking some gang made more than one third of the total score in the recent A.A.R.S. Contest. 4BLL is QRL Mobile Club transmitter. 4BOU-184 reports that Tuscaloosa has high-power 'phone. W4CJG-107, DD-19.

AZ is on three times a day. 4BZX has big time on 1.7 mc. 4CQQ is now on 3.9-mc. 4BQM-15 wants schedule with ham in Pottstown, Pa. 4CLP keeps things going in Perry. 4AXP-4 is building 7-mc. rig. 4QR-48 looks at all 3-mc. DX is good. 4AA has had transmitter trouble. 5BKH. SZD-251 join the Abilene Club. 5BKH-86 joins Abilene Club. 5DDW-8 and COA apply for ORS. 5DDW-8 has MOPA. 5CRP is campaigning for Director. "YF" 5OOC is on the band.

5CXS has been ill; glad you're better, Billie. 5BZT and CMS are rebuilding. 5BAY has new portable. 5AU is on 14 mc., 5QA, DST, BNS, DYU, DKF, AZB, BXY, BST are active in Abilene Club. 5SP-14 wants more QRP. 5BHL has new 5WS-35 reports. 5GAA has gone to Iowa for the summer to do hotel work. 5AS is in Washington, D. C., playing golf. 5GZ and CT are on the 16th of each month. 5BQZ-159, ASQ-102, 5MN-589 reports coming in with code exams. 5PV-23 is building new receivers. 5BH-81 wants reliable schedules with WA. 5OU and KA work at same Radio Store. 5OF and KA are on air at Lubbock with 6DGT as partner. 5CH-41, CJU-10, DXA-1.

OKLAHOMA—SCM, Carter J. Simpson, W6CZ—New traffic reporting stations for the year. 5WS-1405, 5QS-127 are on the band.

WESTERN FLORIDA—SCM, Ray Atkinson, W4NN—4AJK-74 is a Tampa's star traffic man. 4BOT and BN are rebuilding c.c. rigs. 4BNE-10 is trying to work all KE6 and K7's. 4FF-12 is on 10 mc. 4MKJ has 56-mc. Transceiver. 5AOD is on air at Lubbock with 6DGT as partner. 5CH-41, CJU-10, DXA-1.

SOUTHERN TEXAS—SCM, D. H. Calk, W6BHO—The Gulf Coast Storm Net has issued a call for new members. Anyone living along the Gulf Coast who wishes to join should communicate with W6BHO, Chairman, or the Galveston Amateur Radio Club, 5DIG, the Galveston Amateur Radio Club, has been rebuilt. 5CDD has 48s in final. 5DSR is rebuiding to c.c. 5QF and BZQ are on 7 mc. 5ASB is rebuilding receiver. 5BB-29 will be visiting in Maine for the next three or four months. 5VY is in Washington, D. C., playing golf. 5GZ and CT moved transmitter out to KA's new shack. 5OV and KA were used at the "Power Show" at the U. of Texas. 5DDG uses 0DA in final. 5BH and KA work at same Radio Store. 5GBA-302 reports handling traffic for West Texas Chamber of Commerce Convention. 5MN-589 reports that when total gets over 500 it's almost too much for one man station. 5PF uses MOPA with PP '45s in both stages. 5CWW-22 wants summer schedules to handle west-bound traffic from 9USA. 5BVX has five transmitters on as many bands. 5LPX-2 is on 1.7-mc. 'phone and 7-mc. 5BAY is active on 'phone. 5ADO-15 worked all five traffic schedules for the summer. 5BRC moved to Jackson- ville. 5BVX is building 1.7-mc. 'phone. 5DXS has
QST 54—October 1934

VANALTA DIVISION

ALBERTA—SCM, J. Smalley, Jr., VE6CD—4QX-26, AP-32, and KG-30 are new ORS. 4LX-31 gets nice total. The gang at Rockyford had a young hamfest and worked the SCM via 4LA's 3.9-mc. 'phone. Those heard from: 4DQ, IAI, LR, RN, IE, LM, LT, FB, BK, and several others. SCM has over 50 subscribers. 4GM is working his station. 4GP can QSO anything but 4VE's. 4JF is on 7 and 14 mc. 4NB is settling down in Kingman. 4BO-5 is on 7 and 14 mc. 4LG-2 is a new call. 4VW will have a Collins in the fall. 4HM-2 worked some amateurs on 14 mc. 4IVQ's '38 in the German tongue. 4EA has an 800. 4EQ likes 14-mc. 'phone. 4FL worked K8 and X1 on 14-mc. 'phone. 4GD-31 worked K6 on 3.9-mc. 'phone. 4VZ is on 9 and 14 mc. 4BG-7 likes 7-mc. 'phone. 4LH has a powerful signal. VE2BR-25, BU-28, CA-3, GA-5.

VANALTA DIVISION

NEW MEXICO—SCM, Dan W. De Lay, W3DU—5DSW build 66-mc rig. SCM has two Jr. op. 5A4J, and 5AX and took vacation in Calif. 5HZ moved to Colorado. 5ZM-280, DLG-38, 5UI-13, 5DFY-AAX-AOP-4, AOE-2.

ONTARIO DIVISION

NOVA SCOTIA—SCM, A. M. Crowell, VE1DQ—1GL-47 piles up nice total on 3760 kc. 1EX-7 lined up local gang to work "SU" on Sunday a.m. 1AG-2 has broken his leg with flu. 1UP changed to 14 mc and hooked DMBAR. 1CY and DS are taking E. E. course at U. of N. 1BA is rebuilding for all bands. 1UP has FB note. 1GF is on 3.5 mc. 1FFV is building SCM has new Tr. op. 1AA-4 moved to Colorado. 1ZM-280, DLG-38, BNT-14, DUI-13, DZY-AAX-AOP-4, AOE-2.

ONTARIO DIVISION

ONTARIO—SCM, S. B. Trainer, Jr., VE3GT—3JT-515 makes BPL and leads Section. 3DW-12 enjoys RMNites. 3NJ and QL are out on again. 3JP, VP, VG, and DJ are QRRL school. 38Z visited JV and worked five countries in 30 minutes. 3MB-33 along with 3A and XL visited BC on his rig. 3AG has been testing receivers on 56 mc. 39AL-31 has been yodelling to him. 3VL statements are sent newsy reports. 3LJ moved to Kapuskasing. 340-112 keeps noon schedules. The Toronto Centennial Radio Council will look after Centennial amateurs throughout the summer. 38G-2 is Chairman, 3JT Sect. Press, 3GT-31 Communications Manager, and 3GR-2 Publicity Manager. 3P and PT are on 7 mc. 3JI-65, RK-64, LI-4, and MX-75ottie active in Ottawa. 3GO-112 keeps noon schedules. 3LM-70 broke his traffic record. 3NB is heard on 3885 kc. 3WK-64 plugs along. 3WX-192 finds the gang solid behind the A.A.R.L. If any W/VE stations hear Toronto station sending "CQ TFC," please give them a call. Much Centennial traffic is expected. 3RX, NO-40, WX, GT, JT, and QK enjoyed the last ORS party. 3ULY is on 28 mc.

PRAIRIE DIVISION

MANITOBA—SCM, Rez. Strong, VE4GC—St. James has formed a Radio Amateurs Club. 4LB schedules DK and GH. 4BG is rebuilding. 4DJ works 7-mc. DX. 4DT is putting in 250-watt 'phone. 4FT is experimenting with 50-watters. 4GQ and EX have good results on 14-mc. 'phone. 4HJ has a Tri-Tet. 4IU is chasing DX. 4LJ works 7-mc. 4NF left 1.75 mc. for 14 mc. 4NM and DF use tets on 7 mc. 4NW, LH, and RO work in their special. 4NK is now 4AG. 4LW is still around. 4AV-1 is on every Sunday. 4LB schedules the Sunday schedule: VE2FQ to VE4BF, VE4GR-58 to VE6AC. 4FJ has nice layout. 4GQ has a new rig (I think it's a Ford A). 4KY says May QST is a "Pippin." 4BR gets a.c. reports. 4PP would appreciate some local QSOs. The P. I. 10s of 4CV certainly push through. Your SCM appreciates all letters received. 4KN is working away from home. 4QX-4 reports lots of QSOs during daytime. 4GR is working at P.A. 4NL is with Forestry station. 4AV-1 is on every Sunday. 4NS plans new rig. 4QX, QM and BX are doing nicely. 4ND likes handling traffic. 4OC is on the job. 4EH likes 'phone QSOs. 4GA is the liveliest of our bunch. 4EU visited Regions. 4EL-16 had visits from EU, CV, FY, EB, OO, and KH. 4CE is back on the air. 4EU will be at home to QST this summer. 4GQ has restricted operating hours. 4ER put up 3.5-mc. antenna. 4QN works 3.5 mc. 4TV, TJ and SS are new receivers. 4AC, LN, NK are active at Brandon. 4IT has FB receiver. D.R.P. Coates gave an interesting talk on spark days at the M.W.E.A. VE4MY-65, DU-65, DZ-41, AG-39, MY-36, LH-30.

SASKATCHEWAN—SCM, W. Skaife, VE4EL—Coast to coast schedule: VE2FQ to VE4BF, VE4GR-58 to VE6AC. 4FJ has nice layout. 4GQ has a new rig (I think it's a Ford A). 4KY says May QST is a "Pippin." 4BR gets a.c. reports. 4PP would appreciate some local QOS. The P. I. 10s of 4CV certainly push through. Your SCM appreciates all letters received. 4KN is working away from home. 4QX-4 reports lots of QSOs during daytime. 4GR is working at P.A. 4NL is with Forestry station. 4AV-1 is on every Sunday. 4NS plans new rig. 4QX, QM and BX are doing nicely. 4ND likes handling traffic. 4OC is on the job. 4EH likes 'phone QSOs. 4GA is the liveliest of our bunch. 4EU visited Regions. 4EL-16 had visits from EU, CV, FY, EB, OO, and KH. 4CE is back on the air. 4EU will be at home to QST this summer. 4GQ has restricted operating hours. 4ER put up 3.5-mc. antenna. 4QN works 3.5 mc. 4TV, TJ and SS are new receivers. 4AC, LN, NK are active at Brandon. 4IT has FB receiver. D.R.P. Coates gave an interesting talk on spark days at the M.W.E.A. VE4MY-65, DU-65, DZ-41, AG-39, MY-36, LH-30.

QUEBEC DIVISION

QUEBEC—SCM, Joe Robertson, VE2GA—Thanks for your support, gang. Please help me by sending in your reports regularly. 2AP is busy with "SKYWIRE." 2HK-346 makes BPL for second month in succession. 2BE attended Directors' Annual Meeting at Hartford. 2AX will be family vacation this year. 2TA is in print. 2CT's engagement is announced. Congrats to both. 2ST worked first Irishman on March 17th. HI 2EE-12 and GO-2 are going strong at new QHA's. Neighbors moved to 2ST's hamo and took over. 2AGC has been active. 2GD-27 is a great help to SCM. Newly letter from 2AO, and old-timer. 2BG-3 has cleaned up shack. 2EL is experimenting with 56 mc.

2CO-11 has new mast and antenna. 2EK applies for OPS. 2CQ-14 is new ORS. 2IP has Tri-Tet working FB. 2HQ puts out a powerful signal. VE2DR-25, BU-28, CA-3, GA-5.

CAMERON MARITIME DIVISION

NOVA SCOTIA—SCM, A. M. Crowell, VE1DQ—1GL-47 piles up nice total on 3760 kc. 1EX-7 lined up local gang to work "SU" on Sunday a.m. 1AG-2 has broken his leg with flu. 1UP changed to 14 mc and hooked DMBAR. 1CY and DS are taking E. E. course at U. of N. 1BA is rebuilding for all bands. 1UP has FB note. 1GF is on 3.5 mc. 1FFV is building SCM has new Tr. op. 1AA-4 moved to Colorado. 1ZM-280, DLG-38, BNT-14, DUI-13, DZY-AAX-AOP-4, AOE-2.

CAMERON MARITIME DIVISION

July, 1934

55
Call Thieves

Beverly Hills, Calif.

Editor, QST:

In these days of ever-increasing numbers of amateur stations, there is a menace to the rights and privileges of an amateur operator that seems to be increasing in like proportion—the prevalent practice of "pirating" of amateur station calls. I was thus put on the "spot" recently, and anyone who has had his license similarly jeopardized knows exactly how I feel.

Unfortunately, there is a "laissez faire" attitude or else the feeling among amateurs that it would not be sporting to turn in such an offender. That both such attitudes are wrong is plainly shown by the fact that this matter of "pirating" vitally concerns us all.

When one call becomes too hot to use longer, the pirate merely chooses another call that sounds good or that he thinks isn't being worked over-time and continues merrily to CQ and wobble from one band to another. He doesn't care what call he takes, what his signals sound like, or what his frequency is. And that call he chooses, dear friend, might just as well be yours.

Personally, I fail to see any difference between stealing someone's call, thereby placing the owner's license in danger of cancellation, and forging a check to someone else's name. I had just as soon turn in one as the other.

It behooves us to stick together. When we hear of some pirating going on, follow it up, turn the culprit in and put him on the same spot that he otherwise would have us on.

J. E. Ruggles, W6IH

Efficiency Plus

Editor, QST:

If we were to believe all the efficiency-minded authors of late with their new antennas, feeders, circuits, tubes and gadgets, each giving 20% or 30% increased efficiency, we should have reached at least 200% or 300% by now! And all the DX (really the basic reason for all this fuss) that has been done to date must have been handicapped by an efficiency of surely not over—10%.

How's to move the shack to a new location about 100 yards offshore, erect at least one antenna for each band (recently read that a doublet type was so simple to put up that was really the best thing to do!!!), cover them with umbrellas so the insulators won't leak, put plenty of grease on them so the sigs will have an easy time sliding off, install an air-conditioning plant to supply the apparatus with dry, cool air (no more defunct audio transformers), pipe in 1000-cycle juice (who likes 60 or less?), silver plate the coils and condensers, replace the r.f. chokes with resistors . . . and plenty of other things anyone can think of.

To be consistent only an oscillator must be used. Any m.o.p.a. would be out of the question for over-all efficiency. But then who cares about over-all efficiency? All the average efficiency bug wants is to put 999 watts into the antenna with 1 kw. input (to the last stage). Of course, you may have to use a water-cooled tube as a driver, but that's only an incident. And the poor, mishandled 852. Why doesn't someone kind enough pick on the old faithful 199 (UV)? With the base removed, a highly efficient circuit, and a fire hose directed point blank at the tip, someone should be able to obtain at least ¾ kw. of certified r.f.!

... And Zepp feeders like we ole timers used? Omyomy. The sigs wouldn't leave the front porch with such a hopeless antique system. We should give ourselves up unless we use a super impedance matched triplet with zippers at each end, or else man-made (to say nothing about Phords) static will pollute the sigs and bring in bum r.a.c. reports. Somehow, I feel like tuning up the ole spark set, adding a few turns to the OT and pouring some fresh oil in the condenser. . . .

W2BRB

P. S. Don't take yourselves too seriously!

Harmonics

4101 Illinois Ave., N. W., Washington, D. C.

Editor, QST:

. . . Because of recent transmitter rebuilding I have had plenty of time in which to listen to commercials, especially in the 36- and 46-meter mobile bands. Several times I had heard some very "uncommercial" fists and notes, but paid very little attention to them. . . . One night I heard a fist that sounded familiar, so I started investigating. I found this ham to have about fifteen harmonics between 35 and 50 meters, but still this did not cause me any great worry as he
Generally it is the easy things we do not like to do. We will put all kinds of time, effort, and money into the construction of a high grade phone transmitter and then balk at the construction and use of a simple monitor. Certainly anyone listening on the 75 meter phone band at present will find ample proof of the need for their more general use. If some of the stations operating in this band at present would listen to their own signals, they would do some revamping in a hurry.

The overall characteristic of the audio channel in our own transmitter is nothing to brag about, but we really do think that it is sufficiently above the average to warrant us saying a word or two in favor of monitoring. At present the best phone amateurs are striving to avoid over-modulation and to improve the general efficiency of the RF end of their transmitters by the use of an oscilloscope or other suitable equipment. I think we owe much to Jim Lamb for this general house-cleaning.

An oscilloscope, as ordinarily used, however, is not an indicator of the quality of modulation. Neither is a loud speaker hooked across the input to the modulator stage. An effective "audio quality" monitor is neither expensive nor complicated. As most of you fellows already know, a three- or four-turn untuned pickup coil, an audio rectifier, and a pair of phones is all that is required. The rectifier can be a copper-oxide unit of the instrument type, or a 27 tube used as a diode detector. The circuit is not critical, and the best equipment to use is whatever you find in the junk-box.

If you are using a linear for the final stage, don't couple the monitor to the modulated stage, but couple it very loosely to the final tank circuit, just the same as you would if the final stage were the more conventional Class C.

What about it, some of you fellows? How about listening to your own signals for a few minutes tonight? Maybe you will find something to be proud of, and then again maybe not. There really are plenty of both kinds on the air right now.

One thing more. A number of amateurs have written to us asking if we made neutralizing condensers for use with the RCA-800 and RK-18. At the time some of their letters were received we had no such condenser, because, frankly, we did not think anybody would want to buy one. It is the kind of thing that any amateur can make out of scrap parts. However, we have since designed a neutralizing condenser for this service. After seeing it you may decide to build one like it yourself. Maybe you will buy it to save yourself the trouble. We hope so. But take a look at it. Your dealer will be glad to show it to you.

JAMES MILLEN
These are the transceivers that were the sensation of the recent Hudson Division convention.

Really Portable Transceivers

with battery space in same case

This feature will be appreciated by anyone doing serious 5 meter work in the field.

SOLD AT PRICES YOU WOULD LIKE TO PAY

BUT NOT BUILT DOWN TO THOSE PRICES

NATICO transceivers can be supplied in three models, all of which have the same outward appearance.

Type TR-1: Battery Model $10.95

(less tubes and batteries)

This NATICO 5 meter transceiver is strictly portable, allowing two way communication even when being carried. This is accomplished by the fact that the two dry cells and 90 to 135 volt B battery are self contained in the one case.

TUBES REQUIRED: One 30 and One 33

Type TR-2: Mobile Model $11.95

(less tubes, battery or eliminator)

Specially designed for automobile use or wherever a 6 volt battery is available. The case has sufficient space to hold the 135 to 180 volts of B battery or a 6 volt B Eliminator which eliminates the necessity of all B batteries.

TUBES REQUIRED: One 76 and One 41

Type TR-3: A.C. Model $16.95

(including power supply, less tubes)

Here you have a portable A.C. transceiver which includes power supply in the same case (size only 6¼" x 7½" x 12½"). It can be operated anywhere that 110 volt A.C. is available.

TUBES REQUIRED: One 76, One 41 and One 80

ACCESSORIES:

Matched Tube Kits for —

TR-1 ... $1.95

TR-2 ... 1.75

TR-3 ... 2.15

6 VOLT B Eliminator for TR-2 11.50

Hygrade very high gain hand mike with battery switch, special 5.50

Natico’s Exclusive Distributors:

GROSS RADIO INC.

51 VESEY ST. NEW YORK CITY

was only two blocks away. After listening a little further I logged twenty-eight harmonics of W9— Not so hot. After two weeks... I have heard harmonics of all W and VE districts, some being much louder than the fundamental signal and all louder than R7. This includes many 75-meter 'phones. And the strangest part is that they seem to group in the mobile bands. The hottest one, though, occurred one night when WCC told a ship to QSY as W8—’s harmonic was so strong he could not get him through it!

When things get that bad it is time something is done. Certainly these harmonics are reducing the strength of the desired signal, so why put up with them? Why not get to work and clear up those extra signals and save yourself from a run-in with the commercials — and at the same time give your sigs that little extra “sock” so you can work those elusive J’s and AC’s?

Walter C. Kimball, W3CWE

7000 Kc. or 7000—7300 Kc.?

Dear Eddie:

My subject of complaint is conditions on the 7-mc. band.

... All amateurs want more territory in this band, but the majority of us use but half of it — the low-frequency end.

Most hams seem to think everyone tunes from low-frequency to high, “so-o-o” they all pile up at the low end in hopes that they will be heard first. This condition has become so bad that to have a decent QSO with any one at that end is almost impossible. An s.s. receiver would help — But!

My transmitter is on 7250, and in several months I have been QRM’d but three or four times. I seem to be all by myself down there. The 7300 end just peters out, while the 7000 end is plenty sharp.

Why cry for more when we don’t use what we have?

— V. K. Hatfield, W6BXR

Oh, How They Wiggle!

2904 No. Robinson St., Oklahoma City, Okla.

Editor, QST:

You may not believe it. I didn’t and still don’t! However put this in your pipe and smoke it:

Recently built a tri-tet at W5APG — usual 59 oscillator, 59 doubler-buffer and 10 amplifier. Nothing wrong about that. But the foolish tri-tet insisted on oscillating without any plate supply. This is quite common in long-wave receiving sets, but I have never seen a high-freq. oscillator perk up so freely. Am quite sure most any kind of rock for a crystal would give results.

However, that is not the worst of it. Page Ripley, quick! One evening I had been playing...
The **GROSS C C TRANSMITTER** — OUTPUT 25-30 WATTS

The **"CW-25"** transmitter kit due to its low cost makes it possible for anyone to own a modern crystal controlled station. A schematic hook-up and parts layout sheet as well as tuning instructions are furnished, thus enabling the most inexperienced operator to wire and put the set on the air, for real results. The **"CW-25"** is supplied with a shrivel finished sturdy metal chassis as all parts are mounted, making the wiring and components dustproof. A plug-in crystal holder is furnished with the kit. Only one milliammeter is required for tuning the transmitter and each stage is provided with a jack for this purpose. The **"CW-25"** uses one '47 as crystal oscillator, one '46 as buffer or doubler. Additional coils 5c each. Complete kit, less tubes and crystal.

The **"EAGLE"** Three-Tube Short Wave Receiver

"Band Spread" over any portion of the tuning range — only finest material used throughout. Employs the most improved crystal oscillator with the usual inexpensive meters. 2" mounting hole, flange 15 V. AC, 10 V. DC, Price each: $1.30.

CARDWELL

and

HAMMARLUND

Complete stock for immediate delivery

RAYTHEON RK-20

The New RF Pentode Power Amplifier Tube.
(see page 14 June QST)
$15.00

SPECIAL TUBES!!

CARBON PLATE 203-A **$8.75**

EXTRA SPECIAL!!

866 tubes that carry our full guarantee — ISOLANTITE top — Heavy duty rectifiers.
$1.45

GUARANTEED TUBES

240 2T 200 ma. **$1.59**

59% **$1.00**

885 or 871 Isolantite top **$1.40**

83% 47% 44% **$1.10**

81% **$0.90**

3/4, 1/2 watt Neon Bulbs
$0.35

MIDGET DOUBLE SPACED NEUTRALIZING CONDENSERS

35 mfd. — a real buy.
$0.32

Pilot 5-23 100 mfd. condensers
$0.30

CLASS B TRANSF. — 19 TUBES per pr.

$3.00

AUDIO TRANSFORMERS with Microphone Windings for (8 meters)

$1.10

CASED CONDENSERS

6 MFD 700 VOLT **$0.59**

GROSS SPECIAL CASED 600 volts each side of C.T. 200 MA

2 1/2 V. 10 amps, 3 V. 3 amps.
$3.39

Cased Combination Filament Transformer

2 1/2 V. C.T. 10 amps for 866'a
16 V. C.T., 7 ampers for 59's or 52's
10,000 volts input
$3.24

High Quality Cased Cond.

2 1/2 v. 100 ma. 100 ma. 150 ma.
2 1/2 v. 1000 ma.
2 1/2 v. 10000 ma.
$5.95

Hard Drawn Tinned Copper Antenna Wire

No. 12 (any length) per 100 ft.
$0.35

No. 14 (any length) per 100 ft.
$0.35

No. 20 (any length) per 100 ft.
$0.35

NEW!!

GROSS C C MILLIAMMETERS and VOLTMETERS

White or Brown Bakelite Ins.
$0.35

35,000 ohms
$2.00

2,000 volts insulation
$1.05

GROSS RADIO, INC.

51 VESEY STREET

NEW YORK CITY

Say You Saw It in QST — It Identifies You and Helps QST:

Need a Transformer?
—choose from over 130 Transmitter Types

including

Plate Transformers
Chokes
Class B Audios
Class A Audios
Class C Modulation

Filament Transformers
Input Audios
Line Coupling Audios
Mixer Transformers
Output Transformers

Get complete data on these new Transformers

T-6406 — is a 380 m.a. in-put choke for use in 1-kw. power supplies. 19 h. at no d.c. and 10.4 h. at rated current. 5000 V. insulation. Weight 16 lbs. List $12.00, net $7.20.

T-6315 — 280 m.a. input choke for use in NEW 800 TUBE plate supplies. 19 h. at no d.c. and 12.35 h. at rated current. 5000 V. insulation. Weight 10 lbs. List $9.50, net $5.10.

T-6285 — Provides 1 k.w. Input for 851’s or 849’s. Actual D.C. rating out of filter 3000 V. at 380 m.a. New “air-cooled” construction. Weight 70 lbs. List $65.00, net $39.00.

T-6411 — Designed specially to supply plate of NEW 800 TUBES. D. C. rating 1250 or 1000 V. at 280 m.a. May also be used with 203’s, 211’s, 845’s, RK18, and similar types. Weight 30 lbs. List $23.00, net $13.80.

T-6423 Class B audio output transformer for NEW TYPE 800, RK18, and 830B type tubes. Carries full plate current of Class C stage. Weight 17 lbs. List $16.00, net $9.60.

Whether you believe it or not . . . (I will make affidavit to the phenomenon) a moral can be drawn from my tale (or is it a moral?). Any little crystal in a tri-tet oscillator is quite a wriggly critter!

— K. M. Ehret, W5APG

Wired Wireless?

858 Alma Avenue, Oakland, Calif.

Editor, QST:

Here is an idea for local communication when one tires of QRM. Wired-wireless fitted for the ham.

Simply substitute the 110-volt lines for the antenna as shown on diagram and tell your friends about it. With low power, you can work all over a local area and have QRM-less contacts. Since you are not on the air but merely using lines you don’t need calls, * frequency stability, high power or superhet receivers. But don’t let any of the energy get on the air. That can be worked by using low power.

I haven’t tried this scheme yet but intend to when I get time. I have several friends building up around with the rig for quite a time and everything was well warmed up. . . . I was QSO some station that heterodyned with my own signal, with the result that Mr. Tri-tet oscillating without plate juice was rather annoying to copy through. So we proceeded to cut off the filament supply to the whole transmitter, including the 59 oscillator. The heterodyne was still there! In disgust I copied through it for about five minutes and then finally reached over and touched the crystal holder. The signals ceased. . . . Being wholly skeptical I fired up the rig again and put her through the paces with the same result. Believe it or not — Perpetual Motion! I am quite sure that the heater of a 59 cannot possibly remain warm enough for emission for the period of time the heater current was cut off. Have not been able to repeat the performance to date, but recent experiments have been perfunctory, and the rig has not been warmed up like it was at the time. . . .
HALF THE WORK IN BUILDING
Any Transmitter or Receiver IS SAVED IF

SOMEONE else does all the cutting, laying out, drilling and finishing the panel for you. General Radio’s new unit panels are supplied completely finished ready to use. House your experimental set in decent surroundings — make the breadboard layout look and work like a finished job.

Completely interchangeable, all parts in the G-R Unit Panel may be used over and over again — and a single panel will accommodate anything from a one-tube blooper to a ten-tube super.

All panels complete with mounting plates, blank hole fillers, spacers and other gadgets to make the work even easier for you.

Prices? You'll be pleasantly surprised. For example, a 7 x 19 inch panel for $4.00 — a 12 x 19 inch panel for $6.00.

For complete information, dimensions, layout, and description of other G-R Unit Panel parts and prices write for Bulletins 934-935 Q6.

CANDLER STUDENTS NEVER FLUNK. Send us what ticket you're preparing for and we'll show you how easy it is to get.

CANDLER SYSTEM CO.
Dept. Q-7 6343 S. Kedzie Avenue, Chicago

TRANSEIVERS

6-Volt. $17.95
1.68
2-Volt. $18.75
2.04
Pickard type
antenna.......... $2.25
5-10 meter phone transmitters are now available, operating from either 6 volts DC or 110 volts AC and ranging in output from 3-8 watts. Built standard or to your own specifications.

A new Power Amplifier built to follow the Harvey Tritet or similar exciter unit and employing the new RK-20 tube designed for suppressor grid modulation. Requires less than one watt audio power for 100% modulation. Complete with tested RK-20 tube and coils for one band but less modulator $59.50

All prices are net F.O.B. Brookline and are subject to change without notice. Write for literature on the above apparatus.

HARVEY RADIO LABORATORIES
12 Boylston Street Brookline, Mass.
RCA FULL RANGE TEST OSCILLATOR

Type TMV-97-B

DIRECTIONS DIAL, FULLY ADJUSTABLE OUTPUT, FIVE POUNDS WITH BATTERIES

Specifications

CIRCUIT — A tuned grid, plate modulated circuit is used which gives good stability over a wide range of voltage and climatic conditions. The output is modulated approximately 50% at 400 cycles.

ACCESSORY ADAPTOR eliminates modulation. Oscillator may then be used as heterodyning oscillator for S-W superheterodyne receivers or to adapt standard broadcast receivers for amateur use.

RCA RADIO TUBES — TWO RCA-30s are used, one as an R.F. oscillator and one as an A.F. modulator.

BATTERIES — One 22½ volt "B" and one 4½ volt "C." Batteries not supplied.

SIZE — Height 8½ inches (including raised handle), Width 9¾ inches, Depth 4½ inches.

WEIGHT — 5 lbs. including batteries.

FREQUENCY RANGE — 90 KC to 25,000 KC by eight overlapping steps.

OUTPUT — Adjustable to any level.

CALIBRATION — The dial is calibrated directly in frequency which is accurate to 3%. Individual calibration may be obtained for $5 additional.

CASE — The entire oscillator is enclosed in a black wrinkle-finished aluminum case.

RCA WORLD WIDE ANTENNA SYSTEM

Specially designed for all-wave receivers. Double doublet antenna gives greatly increased signal strength. Scientific transmission line and impedance matching transformer reduce noise to a minimum. Recommend it to your broadcast listener friends. List price $7, plus installation.

Order from your distributor or write

RCA Parts Division

RCA VICTOR CO., INC.
CAMDEN, N. J.

* Editor's Note.—Schemes of this sort offer an opportunity for some interesting experimentation, but caution must be used in applying them. If there is any radiation from the power lines the transmitter is capable of causing interference to other services and therefore must be licensed and the transmissions confined to an amateur band. There is also the question of whether or not the use of power or other lines for these purposes is legally possible; in many localities only approved appliances can be connected to the power lines.

14 Wallace Avenue, Bellmore, N. Y.

Editor, QST:

As an aid to beginners studying the code I propose the use of two very low-power low-frequency oscillators (say 100-300 kc.) coupled via the lighting circuit. The use of two such oscillators in place of the common buzzer and key at each end has obvious advantages. First, an actual c.w. signal is used, necessitating the use of all the adjustments to be made in actual com-
"Have 5 Bliley Crystals . . . giving very satisfactory results"

Type BC3 mounted crystals in the 1.7, 3.5, and 7.0 Mc bands having a precision of .03% supplied within 25Kc or any frequency from distributor's stock, $4.95, to exact specified Kc at slight additional cost. Bliley Crystals are sold by all progressive distributors of amateur equipment. If our distributor doesn't have your choice in stock, he can get it for you quickly; order from him.

"Perfect," "Most Satisfactory," "Sure Can Take It," "Giving Excellent Service," "Naturally Turn to Bliley for Crystals," are but a few of the many expressions of praise for Bliley 40-Meter Mounted Crystals received from amateurs all over the world.

Because 40-meter crystals must be finished with greater care and precision, these testimonials are tributes to Bliley skill and craftsmanship.

More and more amateurs are turning to Bliley 40-Meter Mounted Crystals for high power output. And remember, when you choose Bliley your transmitter is locked on the exact selected frequency. Bliley Piezo-Electric Co., 208 Union Station Bldg., Erie, Pa.

See Our Display at the 1934 World's Fair Radio Amateur Exhibit

"If You Do Get 'A Break' . . . Are You Qualified for It?"

The radio situation is brighter today than in many years . . . opportunities are opening for ambitious, well trained radiomen. If YOU had a chance to step into a big job today . . . could you make "a go" of it?

Technical training is more important than ever. Success depends on adequate training, and there is no reason why you should sacrifice your radio future when CREI makes it so easy to obtain this needed training! Let us explain!

Write for Our New Complimentary 40-Page Booklet
With pictures and full details of our courses and laboratories.

CAPITOL RADIO ENGINEERING INSTITUTE
14th and Park Road, Washington, D. C.
Dept. QS-7

Good power supplies are required with Class B audio. Write for catalog Bulletin DL48-13.

UNIT OF RAYTHEON MANUFACTURING COMPANY

Say You Saw It in QST—It Identifies You and Helps QST

63
Nothin' wrong with this boy.
If you ask us he's a tough hombre . . . he ought to be . . . for he was Baptized with Fire at 2700 degrees and he's vibration proof, heat proof and moisture proof.

On that next replacement job try a CENTRALAB FIXED RESISTOR and note the difference. Good business too . . . for the customer won't be coming back with a squawk.

At your jobber . . .

Central Radio Laboratories
MILWAUKEE, WIS.

Centralab RESISTORS

What Is an A-1 Operator?

The A-1 Operator Club was organized by A.R.R.L. in May 1933 to promote and encourage a high calibre of operating in the amateur bands. In choosing operators for the "A-1 Operator Club" the following points are considered by members. (1) General keying. Well formed characters and good spacing will be considered before "speed." Similarly, good voice operating technique, clearness, brevity, cooperation with other operators, careful choice of words, etc., may be used as criteria in nominating 'phone operators. (Special extra credit may be given for use of standard word-lists in identifying calls and unusual expressions.) (2) Procedure. Use of correct procedure is a natural qualification. This applies to both general operating and message handling. (Procedure as recommended by A.R.R.L. is a good standard.) Long CQs, unnecessary testing, long calls without signing, too much repetition when not requested, and all other such poor practice, are grounds for disqualification. (3) Copying ability. This to be judged by proficiency in copying through QRM, QRN and other difficulties, and accuracy of copy, as well as by ability to copy at fast speeds. (4) Judgment and courtesy. The "CUL 73" type operator can never make the grade. An operator should be courteous and willing to consider the other fellow's viewpoint. He should QRS or QSZ, without "crabbing" when requested. He should embrace every opportunity to assist beginners, and to help them along through some of the more trying experiences of operating. He should never knowingly QRM another station, but should cooperate as much as possible with stations working on his frequency. He should not decry "lid" operating, but should assist the newer operators and offer friendly, courteous advice as to how they might improve their operation. The matter of "good notes," "sharp" signals, lack of frequency "walibulation," good quality (phone), use of sound technical arrangement and proper adjustment, while not directly points of operating ability, are certainly concerned directly with courtesy and judgment and as such these things must be weighed under (4).

To A-1 Operators:—In considering candidates for nomination to the "club" it is suggested that each of the four qualifications outlined above be carefully considered, each counting a possible 25 points (of 100 total). No operator nominated shall have a rating of less than 20 of any one qualification.

Regarding disqualification. After an operator has been nominated if exception shall be taken, or complaint made of faults in his operating work, copy of such complaint shall be sent to him in order that he may profit from constructive suggestions, or explain the circumstances. In the event of a sufficient number of objections to a nomination or lacking a satisfactory explanation, the call may be added to a "disqualified" list or record at Headquarters.
Write your radio letters on League stationery—it identifies you. Lithographed on 8½ x 11 heavy bond paper. Postpaid. 100 sheets, 50¢; 250 sheets, $1.00; 500 sheets, $1.75.

Neatest, simplest way to deliver a message to a near-by town. On U. S. stamped postals 2c each. On plain cards (for Canada, etc.) 1c each postpaid.

THE AMERICAN RADIO RELAY LEAGUE—WEST HARTFORD, CONN.
THE IMPROVED CATHODE-RAY OSCILLOSCOPE
Linear sweep model for broadcast stations and advanced amateurs, physics labs, etc.

This instrument embodies all features ordinarily contained in only the highest priced Cathode Ray equipment

- Controlled linear sweep 0–150,000 C.P.S.
- Controlled external sweep.
- Free, locking device for sweep frequency.
- Picture centering adjustments.
- Wide range focus adjustments.
- Complete component shielding.
- Unit is self contained and includes batteries and 110V–60 cycle power supply.
- The current model of the oscilloscope is adaptable for standard relay-track mounting at no extra charge.

COMPLETELY EQUIPPED READY TO USE
F.O.B. Newark—$85.00

Conforming with our policy of the best apparatus for the least money, we are now able to supply a tailor-made 50-watter with newest type construction

Graphite Anode --- Your choice of 211, 203-A or 845 $8.75

TUBES - Depression Type - to fit the depression pocketbook. These tubes are first class products and carry our absolute guarantee for 90 days.

- 203A $1.15
- 210 – 15W $1.25
- 211 $1.50
- 866 HD $1.90
- 281 $1.25
- 875 Mercury........... $1.35
- 203A $8.75

FILTER CONDENSER SPECIAL
Dubiller 902 – 6 mfd – 700V ... $25.00

The revolutionary HAIGS DUPLEX 5-METER TRANSCEIVER $17.40

We now carry in stock a full line of threaded bakelite tubing

FILAMENT TRANSFORMER — 2 windings — 2 7/8 V @ 3 A — 7 1/2 V @ 3 Amp. $1.45

PLATE TRANSFORMER — two 7/4 and two 7/8 volt fil. windings — 750–750–160 mil $3.50

DUPLEX POWER SUPPLY
1100 v. 250 ma. and 550 v. 250 ma.

Uses four 83's in a bridge rectifier — completely filtered in both voltage legs.

$35.00

These units can be had on special order in any size mounting or form

We are specializing in transmitter construction to customers' orders and specification. Write for quotation on your favorite transmitter.

Special code classes for beginners. No charge. Telephone for appointment.

KALTMAN & ROMANDER
62 Court St.
Newark, N. J.

Silent Keys

It is with deep regret that we record the passing of these amateurs:

William J. Butler, W1DYX, Brockton, Mass.
J. M. Crump, W4ZN, Winston-Salem, N. C.
W. H. Dinger, W4AEQ, Miami Shores, Fla.
Edward W. Gnakow, W9LSA, Genoa, Ill.
Donald V. Hogan, W6DET, Berkeley, Calif.
R. W. Mintrom, ZL3AW, Christchurch, N. Z.
Harvey T. Moore, W1EZT, Alstead, N. H.
Frank C. Nicsky, W2PTR, Jamaica, L. I.
J. L. Stauff, OA1B, Negritos, Peru
C. A. Rose, W9NYU, Oak Park, Ill.
Raymond C. Sellers, W9DZM, Sycamore, Ill.
Frank D. Smith, W3TM, Norfolk, Va.
Kenneth V. White, W1BOK, Rockland, Me.
Edward Wolverton, ex-W9DQV, Grand Junction, Colo.

In Memoriam:

Wallace Purinton Jr., W9CZT, Danville, Ill. Born July 17, 1911—Died July 18, 1933

Far through the still, cold blackness of the night,
Ten times an hundred miles of vale and peak,
I heard his voice—the voice of those who speak
With hand on clicking key, and put to flight
Traveling near and far with speed of light
Din eerie whispers. Now my friend I seek
On ether lanes no more—in accents meek
I ask a blessing on his soul tonight.
I never saw his face in life, nor heard
His voice, nor felt his hand clasped tight in mine;
Fate kept us far apart, yet friends may laugh
At space, even at death; free as a bird
He seeks whate'er he will, held by no line—
"My Unseen Friend"—God bless this cenotaph!
—Duane Magill, W9DQD, Grand Junction, Colo.

Strays

In taking a civil service examination recently, W2DLK had this question popped at him: "Who licenses amateur radio operators?" No trouble about answering that one!
HINTS AND KINKS FOR THE RADIO AMATEUR

(No. 10 in the A.R.R.L. series entitled The Radio Amateur’s Library)

Amateurs are noted for their ingenuity in overcoming by clever means the minor obstacles they meet in their pursuit of their chosen hobby. An amateur must be resourceful and a good tinkerer. He must be able to make a small amount of money do a great deal for him. He must frequently be able to utilize the contents of the junk box and constant.

PRICING

80 pages in attractive paper covers. 50 (no stamps, please), postpaid anywhere.

AMERICAN RADIO RELAY LEAGUE, INC., WEST HARTFORD, CONN.

PYRANOL FILLED TRANSMITTING CONDENSERS

2000 VOLTS

- PYRANOL IMPREGNATED
- LOW COST
- HIGH EFFICIENCY
- NON-INFLAMMABLE
- HIGH DIELECTRIC STRENGTH

$2.50

AND CONSTANT

A unit of this type can be operated continuously at voltages and ambient temperatures which are destructive to condensers using ordinary impregnators.

Baldwin Type C. Phones......$2.50

Mail orders filled—Send Postage—Prompt Service.

THE RADIO SHACK

46 Brattle St.

BOSTON, MASS.

THE NEW WING TRANSCEIVER

An improved 5-meter transceiver with higher output and higher efficiency. Antenna coil mounted on porcelain standoffs which are brought through to front of case. New type insulation strip for coils with connections for either A.C. or D.C. operation. Isolating coupling on knob to eliminate hand capacity. New dial plate. Full-size Lynch transformers. Unit construction, all parts mounted on front panel, which can be removed by unscrewing four thumb screws. We invite your comparison of details both electrically and mechanically with any other transceiver and believe you will be sold with the ‘‘Wing.’

CHAUNCEY WING’S SONS

GREENFIELD, MASS.

LEARN RADIO

New Classes Now Forming! Send for 40-page catalog, explains fully. 185 licensed graduates placed in past 2½ years in broadcasting, shipping, police radio, aviation, etc. We teach all branches. Oldest, largest and best equipped school in New England. Equipped with Western Electric sound and broadcasting equipment and RCA marine transmitter. Course prepares for United States Government telegraph or telephone license.

MASS. RADIO SCHOOL, 18 Boylston Street, BOSTON

NO ADJECTIVES!

In the NEW Ross Jupiter, we offer not more claims, but actual performance that will surprise you. Designed exclusively for amateur use. Try one in your own shack. If it is not all you expect—and more—you can return it in 5 days.

A. H. ROSS & CO.

$69.50

Kearny Ave. and Waverly Rd., GLENSIDE, Penna.

Kindly send folder and details of your test-for-yourself plan on the NEW Ross Jupiter Amateur 4-Band Receiver.

Name..

Street...

City..

State...

Say You Saw It in QST — It Identifies You and Helps QST 67
A Modern Transportable Station

(Continued from page 80)

condenser may be turned through resonance without causing oscillation in the final stage. Other antenna systems tried with the transmitter were a 132-foot radiator with Zepp feeders and a Marconi system.

The portable had a chance to prove its mettle shortly after it was built when it was taken on a trip of 200 miles during one of the worst flood seasons in Washington since 1917. The portable received no small amount of bumps and jars, made part of the journey lying on its back in a baggage rack and near the end of the trip had to be carried over a swollen river via a half-washed-out railroad trestle. But the station was ready to go upon reaching the destination and regular schedules were worked.

A Rotary Beam Antenna

(Continued from page 84)

considerable radiation as low as 10°. However, since the antenna is on a sharp 60-foot knoll the concentration of radiation at low angles is probably somewhat greater.

As an illustration of direct comparison of the beam and an ordinary non-directional antenna in actual communication, one evening W5AOT was contacted while the beam was aimed at Europe, nearly in the opposite direction. Switching over to a non-directional antenna he reported the signals R3 while they were only R3 to R4 from the back of the beam. Several days later, in a subsequent QSO, with the beam pointed west, he gave reports of R9-plus on the beam and only R3 to R4 on the same non-directional antenna as had been used in the previous test. The later QSO was made under poor 14-mc. conditions, providing a striking example of the gain of the beam over the ordinary type antenna under such conditions as are commonly experienced on this band.

All that now remains is to make the rotation of the beam more convenient. Some day I’m going to install ropes and pulleys down the hill at the shack—and turn the beam with a crank, right from the operating position.

Typical Technical Questions Answered

(Continued from page 87)

3500-KC. BAND

L₁—10 turns tapped at 3 turns from the grid end for filament and 5 turns from the plate end for excitation.

L₂—14 turns tapped at 9th turn from plate end for neutralization and 5th turn for excitation.

L₄—14 turns tapped at the center.

7000-KC. BAND

L₁—5 turns tapped at the 2nd turn from the grid end for filament and at one turn from the plate end for excitation.
In the January, 1920, issue of QST there appeared an editorial requesting suggestions for the design of an A.R.R.L. emblem—a device whereby every amateur could know his brother amateur when they met, an insignia he could wear proudly wherever he went. There was need for such a device. The post-war boom of amateur radio brought thousands of new amateurs on the air, many of whom were neighbors but did not know each other. In the July, 1920, issue the design was announced—the familiar diamond that greets you at the top of this page—adopted by the Board of Directors at its annual meeting. It met with universal acceptance and use. For fourteen years it has been the unchallenged emblem of amateur radio, found wherever amateurs gathered, a symbol of the traditional greatness of that thing which we call Amateur Spirit—treasured, revered, idealized.

DO YOU WEAR THE A.R.R.L. EMBLEM?

The League Emblem, in heavy rolled gold and black enamel, is available in either pin or button type.

There are three special colors for Communications Department appointees.

- Red background for the SCM
- Green background for the RM

AMERICAN RADIO RELAY LEAGUE, WEST HARTFORD, CONNECTICUT

LOW RANGE FUSES

- Lithofuses for Instrumental Amps: 1/100, 1/32, 1/16 to 200 cc, 1/16, 1/8, 1/4, 1/8, 1/32, 1/64, 1/1000, 1/2500, 1/10,000 volt ranges
- Lithofuses 1000, 5000, 10,000 volt ranges in 1/8, 1/4, 1/4, 1/32, 1/64, 1/1000, 1/2500, 1/10,000 volt ranges
- Lithofuses $100 Protection Guaranty. Get New Cat. F. LITTLEFUSE LABS. 4599 Ravenswood Ave., Chicago

SANGAMO ACCURATE CONDENSERS

Available in 5000 volt construction for use in short-wave transmitters

Write for catalog sheet

PORT ARTHUR COLLEGE

PORT ARTHUR, TEXAS

Say You Saw It in QST — It Identifies You and Helps QST
To OUR READERS who are not A.R.R.L. Members

You should become a member of the League! That you are interested in amateur radio is shown by your reading of QST. From it you have gained a knowledge of the nature of the League and what it does, and you have read its purposes as set forth on the page opposite the editorial page of this issue. We should like to have you become a full-fledged member and add your strength to ours in the things we are undertaking for Amateur Radio. You will have QST delivered at your door each month. A convenient application form is printed below—clip it out and mail it today.

A bona fide interest in amateur radio is the only essential qualification for membership

AMERICAN RADIO RELAY LEAGUE
West Hartford, Conn., U.S.A.

I hereby apply for membership in the American Radio Relay League, and enclose $2.50 ($3.00 outside of the United States and its Possessions, and Canada) in payment of one year's dues, $1.25 of which is for a subscription to QST for the same period. Please begin my subscription with the issue. Mail my Certificate of Membership and send QST to the following name and address.

Do you know a friend who is also interested in Amateur Radio, whose name you might give us so we may send him a sample copy of QST?

A Relay Rack for Two Dollars

(Continued from page 25)

plenty hard after being heated, and is hard to handle without an electric drill. This job, including the cost of the material, came to ninety-five cents. The mounting feet were cut out of regular stock and bent by a tinner, working from a paper pattern so that he had no difficulty in making both the same size. This item amounted to fifty cents. The 1 x 3's came to forty-five cents, and a few cents more covered the necessary wood screws. If you like, the rack can be given a coat of black enamel to improve its appearance.

The photograph shows a view of the rack with the baseboards in place, but without a panel. Careful inspection will show the copper strips which run up the inner sides of the rack to serve as a common ground connection for all units. The shelf brackets are bonded to these strips. In addition, a 110-volt fuse block is fastened to the lower wooden crosspiece, and the a.c. line runs from it, up one side of the rack in the rear, with sockets under the various shelves for convenient connections to transformers.

Various inexpensive materials can be used for panels. Mine is made of Presdwood, a wood-pulp board which can be obtained from most dealers and works nicely, and can be made moisture proof by putting on several coats of Duco or similar clear varnish. A sheet of this material measuring 4 by 6 feet can be bought for two or three dollars, one sheet making panels for two good-sized racks. Get together with another ham and split the cost.

A rack of this sort is ideal for the ham who finds pleasure in making changes in circuits and trying out new ideas. The messiness of separate breadboards scattered around the room on tables is avoided, while at the same time there is none of the reaching around corners so bothersome with “four-poster” frames of the same dimensions.
LOG BOOKS

Bound with heavy paper covers. 8½ x 10¾.
Contains 39 log pages, and same number of blank pages for miscellaneous notes. Also list of Q sigs, message number sheet and sheet of cross-section paper. 40c each or 3 for $1.00. Postpaid.

Most convenient form. Designed by the Communications Department of the A.R.R.L. Well printed on good bond paper. Size 8½ x 7¼. Put up in pads of 100 sheets. One pad postpaid for 35c or 5 pads for $1.00.

THE AMERICAN RADIO RELAY LEAGUE—WEST HARTFORD, CONN.

GULF RADIO SCHOOL
Radiotelegraphy
Radio Servicing
Radiotelephony
SECOND PORT
1007 Carondelet Street
U.S.A. NEW ORLEANS, LA.

PANELS—BAKELITE—RUBBER—ALUMINUM
All Sizes Cut to Order BAKELITE TUBING & RODS
Drilling, Engraving & Special Work
ALUMINUM CANS—Stock sizes, Special sizes, made to order.
ALUMINUM CHASSIS—Threaded brass studs for 6/32 screws.
Length from ¼” to 6”—price 5c to 30c.

MESSAGE BLANKS

Most convenient form. Designed by the Communications Department of the A.R.R.L. Well printed on good bond paper. Size 8½ x 7¼. Put up in pads of 100 sheets. One pad postpaid for 35c or 5 pads for $1.00.

HATS!
CAST ALUMINUM AND BRONZE
FOR HIGH Q
56-60 MEGACYCLE TRANSMITTERS

AVAILABLE FOR IMMEDIATE DELIVERY

CHAunceY WING’S SONS
GREENFIELD, MASS.

A Good Crystal
—is the best investment you can make for your transmitter

PRECISION CRYSTALS are manufactured for those who want the best. For the past five years these crystals have been recognized as a quality product. By insuring care in their manufacture — always striving to turn out the best — a crystal we could be proud of — we have earned a reputation which is our best advertisement.

PRECISION CRYSTALS are X cut, one inch square, from the finest grade of Brazilian quartz, and scientifically ground for maximum power output. Only after they have undergone a most rigid test and check up to the requirements of an A-1 crystal are they sent out to you with our guarantee of the finest obtainable.

If you want greater power from your oscillator, better efficiency and a more steady frequency use PRECISION CRYSTALS. You can depend on them.

PRECISION PIEZO SERVICE
427 ASIA STREET
BATON ROUGE, LOUISIANA

PRECISION PIEZO SERVICE

A HOLDER with each crystal purchased

Precise of crystals ground to your specified frequency in the amateur bands accurate to 0.1%. Calibration accuracy 0.01%. 1750 & 3500 kc. bands.......... $4.50 each 7500 kc. band 5.50 Bakelite, plug-in holder 1.50 (Holder with each crystal purchased)

<table>
<thead>
<tr>
<th>Holder with each crystal purchased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prices of crystals ground to your specified frequency in the amateur bands accurate to 0.1% Calibration accuracy 0.01%.</td>
</tr>
<tr>
<td>1750 & 3500 kc. bands........... $4.50 each</td>
</tr>
<tr>
<td>7500 kc. band.................. 5.50 Bakelite, plug-in holder 1.50</td>
</tr>
<tr>
<td>(Holder with each crystal purchased)</td>
</tr>
<tr>
<td>Jacks to plug holder into15 pair</td>
</tr>
</tbody>
</table>

Say You Saw It in QST — It Identifies You and Helps QST 71
First Boston-New York 56-Mc. Relay

(Continued from page 11)

W2AG. The message from Boston (North Wal­tham, W1DEK) covered 268 miles in six jumps, W1DEK, W1AHX, W1DWE, W1HMO, W2CTF, W2AG, W2GEC. The dispatch for Boston travelled the same route and W1AHX sent it to W1SL via W1COX in Lowell.

The Third 56-mc. Field Day of New England and Hudson Division groups interested in this band was held on Sunday, May 27th, and was the occasion of another successful relay. The route: W1BPI (Mt. Washington, N. H.) — W1HQD (Mt. Monadnock, Jaffrey, N. H.) — W1DE (High Ridge, Whatley, Mass.) — W1HMO (Mt. William, Mass.) — W1HNZ (Mt. Everett, Mass.) — W2XER (Catskill Mt., N. Y.) — W2AG (Yonkers, N. Y.) and W2GEC (N. Y. C.).

Also it is believed that W1HQD (with WIFME assisting) worked the most stations and DX in the field on this occasion; 25 of the 45 stations called were worked in 8½ hours of continuous operating. W1FEM Meriden, Conn. at 95 miles, and W1BPI at Mt. Washington, N. H., 110 miles, were the most distant. Others worked were: W1HMO, W1DEK, W1BWJ, W1FEM, W1OFF, W1AKS, W1DWE, W1GJZ, W1BQK, W1GCY, W1ELP, W1BEF, W1AFF, W1AC, W1HOY, W1BHJ, W1DMD, W1FX, W1BPI, W1FEM, W2FUU/1, W2HBW/1. Three antennas were used at W1HQD, a vertical "Pick­ard" for both transmission and reception, a horizontal "Pickard," and a four-foot loop for reception, each of these bringing in a different group of stations. A pair of 12A's with 19 modula­tor and 31 driver were used.

These successful relays on 56-mc. are in their way likely to be as epoch marking as was the W1AW-W9AWM-W6ZAC relay of years ago. With sufficient 56-mc. activity there is nothing to prevent planning of relays between Boston, New York, and Chicago — and eventually perhaps a transcon. This ought to be an interesting summer of 56-mc. work and progress.
Here lies Archibald Wudbe Ham,
Who met his sad fate in the license exam.
The guy with the weejuns at the right of the picket
If consulted by Arch would've got him his ticket.

THE RADIO AMATEUR'S LICENSE MANUAL

25c, postpaid, no stamps, please

A necessity for the beginner — equally indispensable for the already licensed amateur. Going after your first ham "ticket"? You need the manual for its instructions on where to apply, how to go about it in the right way — and, most important of all, for the nearly 200 typical license exam questions and answers. Already got a license? The manual is still necessary — for its dope on renewal and modification procedure, the Class A exam (with questions and answers), portable procedure, etc.
All the dope on every phase of amateur licensing procedure, and, of course, the complete text of the new regulations and pertinent extracts from the basic radio law.
Get a copy of "The Radio Amateur's License Manual" and be sure to get your ticket.

(No. 9 in the series entitled The Radio Amateur's Library)

THE AMERICAN RADIO RELAY LEAGUE, WEST HARTFORD, CONN.

THE INSTRUCTOGRAPH
(Code Teacher)
The Scientific, easy and quick way to learn the code. Send a post card today for literature. Machines, types and complete instructions for sale or rent. Terms as low as $2.00 per month. Rental may be applied on purchase price if desired. Rent for a month. If the instructograph meets every requirement, buy it. If not, send it back.

INSTRUCTOGRAPH CO., 912 Lakeside Place, Chicago

BIRNBACH
Highest grade, highly-glazed porcelain standoffs with nickel-plated brass hardware. All standard types, including FEED-THRU models for panel mounting (plain or jack).
Write for Bulletin Q-7.

BIRNBACH RADIO CO., Inc.
145 Hudson St.
New York City

STILL

Another Reason Why

THE TRIMM FEATHERWEIGHT phones are accepted as best on the market. All Featherweight double headsets are now equipped with a specially developed moisture proof cord, giving unparalleled durability and service.

DX more efficiently with Trimm Featherweight phones.

Buy from your local dealer

TRIMM RADIO MFG. CO.
1528 Armitage Avenue
Chicago, Illinois

SCHWARTZ OFFERS

National Cathode Ray Oscilloscope, less tubes. $17.70
RCA-de Forest Cathode-ray tubes: types 900 @ $18; 905 @ $40; 904 @ $50.
Haigis type AM Transmitter-Receiver, portable $17.40
Trimm featherweight phones. $5.88
RK-18 @ $10.95; RCA-de Forest 800 @ $10; Sylvania $30 @ $3.75.
I.C.A. one-tube short wave receiver kit, complete with cabinet, tube and batteries $6.65
Atlas wire wound tubular resistors, 10 watt, 5 to 25 M ohms, each 15c; 20 watt, each 20c.
We stock a complete line of: Centralab, Electrad, Stancor, Aerovox, Acme-Delta, Triplet meters, Weston, Universal tubes, RCA-de Forest, National, I.C.A., Yaesu, RCRA, Marconi, R.C.A., Marconi, R.C.B., Collins, Cardwell and many other lines. Write for quotations. 20% with order, balance C.O.D. Postage extra. Remit by M.O.

M. SCHWARTZ & SON
710-12 Broadway
Schenectady, N. Y.

BUILD YOUR OWN!

with the new SHURE MODEL 40K CONDENSER MICROPHONE KIT with FACTORY-ASSEMBLED HEAD

Includes regular Model 40 Broadcast-type Condenser Microphone Head, fully factory-assembled and tested, and all essential parts for the construction of a high-quality two-stage head amplifier. List price $42 (subject to equal discount). Ask your jobber.

SHURE BROTHERS COMPANY
Microphone Headquarters
215 West Huron Street
CHICAGO

Say You Saw It in QST — It Identifies You and Helps QST
HAM-ADS

(1) Advertising shall pertain to radio and shall be of nature subject to radio amateur or experimenters in their pursuit of the art.

(2) No display of any character will be accepted, nor can any other such typographical arrangement, as well as any part excepting from such display, be made.

(3) The Ham-Ad rate is 15¢ per word, except as noted in paragraphs (4) below.

(4) Remittance in full must accompany copy. No cash or credit will be allowed.

(5) Closing date for Ham-Ads is the 19th of the second month preceding the date of publication.

(6) A special rate of 75¢ per word will be applied to advertising which is obviously non-commercial in nature and is placed and signed by a member of the American Radio Relay League. Thus, advertising of both the surplus equipment and apparatus offered for exchange or advertising inquiries for special equipment of a member of the American Radio Relay League takes the rate. An attempt to deal in apparatus in quantity for profit, even if by an individual, is commercial and takes the 15¢ rate. Provisions of paragraphs (1), (2), (3), and (6) apply to all advertising in this column regardless of which rate may apply.

Having made no investigation of the advertisers in the classified columns, the publishers of QST are unable to vouch for their integrity or for the grade or character of the products advertised.

MICROPHONE and meter repairs. Low prices. Quick service. B.Origami, 401 Silver Grove, Chicago, Ill.

SWAP, complete electrical, radio and business courses for station equipment. Make offer. W9LVs.

NEW PATTERN'S latest receiving equipment. Send for literature. VTE fifty watters, guaranteed $1.75. New! 51 Baytheon RK-25 $15.00. Franklin Transformers. See June Hamad. Quality equipment and apparatus for amateur use. Transmitter'". L. L. Marine & Electric (W2GQT-W2GRQ) 160-18 Jamaica Avenue, Jamaica, N. Y.

TRADE 2--211Ds for receiver or transmitting equipment. W2CIZ.

LIFETIME microphones, America's outstanding values. Model 6 double button. List $10.00. "Ham" price $2.25. Complete catalog free. W5E9, 1617 Coney, Toledo, Ohio.

SWAP, complete electrical, radio and business courses for station equipment. Make offer. WULV.

The 10-2112s for receiver or transmitting equipment. What have you? W9RY, High School, East Peoria, I11.

QST: $1.40, blanks from the saw $25, mounting instructions $2.50, plug-in sockets, $2.50. Wm. Thurm, W8VW, 421 Davis Ave., Cheviot, Ohio.

QST: 12-2500 volt dynamator for-circular-plate 20-4 or other medium power equipment, W9NHW, Anamoose, N. Dak.

QLSs and SWLs. 200 for $1. Cards with personality plus. W24B8, for samples. QSLs, Lifetime mikes, $500000. W5E9, 1627 Coney, Toledo, Ohio.

QSLs by Malacso. None better. Get free samples. Malacso, 1512 Eastar Parkway, Brooklyn, N. Y.

1000 watt transformer, 2000-2500-3000 each side. C.L., 100 watts. W81FR, 811 Temple Ave., 2nd floor, 7th, Philadelphia transformer 2½ volt 10 amp. and 10 volt 7 amp. $3.50.

1500 and 110 volt 60 cycle a.c. generator, 6 volt field, $15 or 7 Harold Long, 912 Indiana Ave., LaPorte, Ind.

CLASS B transformers—Universal for two or four 46s. 210s, 800s, RK18s, etc., $1.75 pair. 70 watts of audio from 46s.

Write for details and complete transformer catalog. Pay the postage, W5AL, Douglas, Mich.

QSLs: Guaranteed excellent oscillators, 160 or 80 meters, your approximate frequency $1.35 postpaid. Crystal Mark M. Silvered electrodes, plugs into G.R. or tube socket mountings, $3.00. W6FZQ, Box 1804, Phoenix, Ariz.

NEW OPPORTUNITY for amateurs, experimenters. We buy, exchange, sell or trade equipment of standard make. Write us for trade in all kinds. Transmitters before buying. Our stock largest in middle west national, Hammond, Billie, Beede, Westinghouse, etc. Walter Ash Radio Co., 1311 Pine, St. Louis, Mo.

QST's, complete from Number One. L.R.E. 1928 to 1934. All perfect. Send for list of others. W9GY, Worcester, Mass.

1 N stock—shipped prepaid: Patterson PR-10s, $70.25, pre­

TRADE 2--211Ds for receiver or transmitting equipment. W2CIZ.

WANT xtal 160 meter phone transmitter. Trade. W2CIU.

1000 hour guarantee—s60s, $1.49; s65s, $1.45. Transformers. Howard Radio, 314 Pine Ave., Chicago.

QLSs! Bright! Attractive! Investigate! W6FZQ, Box 1804, Phoenix, Ariz.

QLSs, 75¢ a 100, two colors. W9DGH, 1816 5th Ave., Minneapolis, Minn.

GUARANTEED xtal s 1, W9EGK.

PATTERSON'S latest receiving equipment. Send for free literature. VTE fifty watters, guaranteed $1.75. New! 51 Baytheon RK-25 $15.00. Franklin Transformers. See June Hamad. Quality equipment and apparatus for amateur use. Transmitter". L. L. Marine & Electric (W2GQT-W2GRQ) 160-18 Jamaica Avenue, Jamaica, N. Y.

QSLs and SWLs. 200 for $1. Cards with personality plus. W24B8, for samples. QSLs, Lifetime mikes, $500000. W5E9, 1627 Coney, Toledo, Ohio.

QSLs by Malacso. None better. Get free samples. Malacso, 1512 Eastar Parkway, Brooklyn, N. Y.

1000 watt transformer, 2000-2500-3000 each side. C.L., 100 watts. W81FR, 811 Temple Ave., 2nd floor, 7th, Philadelphia transformer 2½ volt 10 amp. and 10 volt 7 amp. $3.50.

W2CGA.

1500 and 110 volt 60 cycle a.c. generator, 6 volt field, $15 or 7 Harold Long, 912 Indiana Ave., LaPorte, Ind.

CLASS B transformers—Universal for two or four 46s. 210s, 800s, RK18s, etc., $1.75 pair. 70 watts of audio from 46s.

Write for details and complete transformer catalog. Pay the postage, W5AL, Douglas, Mich.

QSLs: Guaranteed excellent oscillators, 160 or 80 meters, your approximate frequency $1.35 postpaid. Crystal Mark M. Silvered electrodes, plugs into G.R. or tube socket mountings, $3.00. W6FZQ, Box 1804, Phoenix, Ariz.

NEW OPPORTUNITY for amateurs, experimenters. We buy, exchange, sell or trade equipment of standard make. Write us for trade in all kinds. Transmitters before buying. Our stock largest in middle west national, Hammond, Billie, Beede, Westinghouse, etc. Walter Ash Radio Co., 1311 Pine, St. Louis, Mo.

QST's, complete from Number One. L.R.E. 1928 to 1934. All perfect. Send for list of others. W9GY, Worcester, Mass.

No Amateur Can Afford to Miss a Single Issue of This Publication!

The Aerovox Research Worker

\[50c \]
Per Year—(12 issues)

THIS engineering bulletin is replete with genuine information ... useful facts and figures ... something you can really apply ... it's the medium through which first-hand, authoritative, practical data on condensers and resistors, circuits and practices, are made available to radio engineers, laboratorv workers, experimenters, amateurs, service men and others. No puff stuff ... No publicity ... No generalities ... No fillers ... No wasted space ... Just a solid mass of condensed, concise, carefully selected and thoroughly edited data ... the cream of the crop of advanced radio information!

Send for a Free Sample Copy or Mail This Coupon with 50c for a One Year Subscription

AEROVOX CORPORATION
73 Washington Street, Brooklyn, N. Y., U. S. A.

\[\square \] Kindly enter my name on the Research Worker mailing list for one year beginning with the next issue for which I am enclosing $....

\[\square \] Send me a FREE Sample Copy of the Research Worker.

\[\square \] Send me the latest 1934 Catalog of Aerovox Products.

Name... (PLEASE PRINT)

Address... City... State...

Radio Operating
Radio Servicing—
Prepare for the new Government Radio Operating license examinations; Radio Operator, Marine and Broadcasting. Also Radio Amateur Telegraph and Telephone, Resident courses. Write for Booklet

NEW YORK YMCA SCHOOLS
4 West 63rd Street, New York City

Radio Operating
Radio Servicing—
Prepare for the new Government Radio Operating license examinations; Radio Operator, Marine and Broadcasting. Also Radio Amateur Telegraph and Telephone, Resident courses. Write for Booklet

NEW YORK YMCA SCHOOLS
4 West 63rd Street, New York City

CQ—AMATEURS of the West

Just off the Press, send for your copy

1934 CATALOG

All Nationally advertised parts for Transmitting and Receiving
Lowest Prices

RADIO SUPPLY CO.
H. A. DEMAREST, President
912—14 So. Broadway Los Angeles, Calif.
(W6FBI, located in Building)

Radio Operating
Radio Servicing—
Prepare for the new Government Radio Operating license examinations; Radio Operator, Marine and Broadcasting. Also Radio Amateur Telegraph and Telephone, Resident courses. Write for Booklet

NEW YORK YMCA SCHOOLS
4 West 63rd Street, New York City

CQ—AMATEURS of the West

Just off the Press, send for your copy

1934 CATALOG

All Nationally advertised parts for Transmitting and Receiving
Lowest Prices

RADIO SUPPLY CO.
H. A. DEMAREST, President
912—14 So. Broadway Los Angeles, Calif.
(W6FBI, located in Building)

Radio Operating
Radio Servicing—
Prepare for the new Government Radio Operating license examinations; Radio Operator, Marine and Broadcasting. Also Radio Amateur Telegraph and Telephone, Resident courses. Write for Booklet

NEW YORK YMCA SCHOOLS
4 West 63rd Street, New York City

Radio Operating
Radio Servicing—
Prepare for the new Government Radio Operating license examinations; Radio Operator, Marine and Broadcasting. Also Radio Amateur Telegraph and Telephone, Resident courses. Write for Booklet

NEW YORK YMCA SCHOOLS
4 West 63rd Street, New York City

CQ—AMATEURS of the West

Just off the Press, send for your copy

1934 CATALOG

All Nationally advertised parts for Transmitting and Receiving
Lowest Prices

RADIO SUPPLY CO.
H. A. DEMAREST, President
912—14 So. Broadway Los Angeles, Calif.
(W6FBI, located in Building)

Radio Operating
Radio Servicing—
Prepare for the new Government Radio Operating license examinations; Radio Operator, Marine and Broadcasting. Also Radio Amateur Telegraph and Telephone, Resident courses. Write for Booklet

NEW YORK YMCA SCHOOLS
4 West 63rd Street, New York City

QST

Oscillating Crystals

"SUPERIOR BY COMPARISON"

All "Scientific Radio Service Crystals" are accurately ground to an accuracy better than .006, on equipment tested regularly by the U. S. Bureau of Standards standard frequency signals.

BROADCAST and COMMERCIAL BANDS

Mounted in our Standard Holder and ground to our usual high degree of accuracy $35.00 each. Mounted in our NEW Isolantite Monel Metal Crystal Holder $45.00 (adjustable air gap). Prices for other Frequency Bands quoted upon application.

AMATEUR BAND

Ground to within FIVE Kilo-cycles of your specified frequency in either 80 or 160 meter bands $15.00 each. Accurate calibration with each crystal.

Free! Send for New Illustrated Folder—Free!

PROMPT SHIPMENTS ASSURED

Scientific Radio Service

"The Crystal Specialists" Since 1925

124 Jackson Ave., University Park, Hyattsville, Maryland Dept. Q-7

No Amateur Can Afford to Miss a Single Issue of This Publication!

The Aerovox Research Worker

\[50c \]
Per Year—(12 issues)

THIS engineering bulletin is replete with genuine information ... useful facts and figures ... something you can really apply ... it's the medium through which first-hand, authoritative, practical data on condensers and resistors, circuits and practices, are made available to radio engineers, laboratorv workers, experimenters, amateurs, service men and others. No puff stuff ... No publicity ... No generalities ... No fillers ... No wasted space ... Just a solid mass of condensed, concise, carefully selected and thoroughly edited data ... the cream of the crop of advanced radio information!

Send for a Free Sample Copy or Mail This Coupon with 50c for a One Year Subscription

AEROVOX CORPORATION
73 Washington Street, Brooklyn, N. Y., U. S. A.

\[\square \] Kindly enter my name on the Research Worker mailing list for one year beginning with the next issue for which I am enclosing $....

\[\square \] Send me a FREE Sample Copy of the Research Worker.

\[\square \] Send me the latest 1934 Catalog of Aerovox Products.

Name... (PLEASE PRINT)

Address... City... State...

Radio Operating
Radio Servicing—
Prepare for the new Government Radio Operating license examinations; Radio Operator, Marine and Broadcasting. Also Radio Amateur Telegraph and Telephone, Resident courses. Write for Booklet

NEW YORK YMCA SCHOOLS
4 West 63rd Street, New York City

CQ—AMATEURS of the West

Just off the Press, send for your copy

1934 CATALOG

All Nationally advertised parts for Transmitting and Receiving
Lowest Prices

RADIO SUPPLY CO.
H. A. DEMAREST, President
912—14 So. Broadway Los Angeles, Calif.
(W6FBI, located in Building)

Radio Operating
Radio Servicing—
Prepare for the new Government Radio Operating license examinations; Radio Operator, Marine and Broadcasting. Also Radio Amateur Telegraph and Telephone, Resident courses. Write for Booklet

NEW YORK YMCA SCHOOLS
4 West 63rd Street, New York City

QST

Oscillating Crystals

"SUPERIOR BY COMPARISON"

All "Scientific Radio Service Crystals" are accurately ground to an accuracy better than .006, on equipment tested regularly by the U. S. Bureau of Standards standard frequency signals.

BROADCAST and COMMERCIAL BANDS

Mounted in our Standard Holder and ground to our usual high degree of accuracy $35.00 each. Mounted in our NEW Isolantite Monel Metal Crystal Holder $45.00 (adjustable air gap). Prices for other Frequency Bands quoted upon application.

AMATEUR BAND

Ground to within FIVE Kilo-cycles of your specified frequency in either 80 or 160 meter bands $15.00 each. Accurate calibration with each crystal.

Free! Send for New Illustrated Folder—Free!

PROMPT SHIPMENTS ASSURED

Scientific Radio Service

"The Crystal Specialists" Since 1925

124 Jackson Ave., University Park, Hyattsville, Maryland Dept. Q-7

No Amateur Can Afford to Miss a Single Issue of This Publication!

The Aerovox Research Worker

\[50c \]
Per Year—(12 issues)

THIS engineering bulletin is replete with genuine information ... useful facts and figures ... something you can really apply ... it's the medium through which first-hand, authoritative, practical data on condensers and resistors, circuits and practices, are made available to radio engineers, laboratorv workers, experimenters, amateurs, service men and others. No puff stuff ... No publicity ... No generalities ... No fillers ... No wasted space ... Just a solid mass of condensed, concise, carefully selected and thoroughly edited data ... the cream of the crop of advanced radio information!

Send for a Free Sample Copy or Mail This Coupon with 50c for a One Year Subscription

AEROVOX CORPORATION
73 Washington Street, Brooklyn, N. Y., U. S. A.

\[\square \] Kindly enter my name on the Research Worker mailing list for one year beginning with the next issue for which I am enclosing $....

\[\square \] Send me a FREE Sample Copy of the Research Worker.

\[\square \] Send me the latest 1934 Catalog of Aerovox Products.

Name... (PLEASE PRINT)

Address... City... State...

Radio Operating
Radio Servicing—
Prepare for the new Government Radio Operating license examinations; Radio Operator, Marine and Broadcasting. Also Radio Amateur Telegraph and Telephone, Resident courses. Write for Booklet

NEW YORK YMCA SCHOOLS
4 West 63rd Street, New York City
Your Nearest Dealer

Your nearest dealer is entitled to your patronage. You can trust him. He is equipped with a knowledge and understanding of amateur radio. He is your logical and safe source of advice and counsel on what equipment to patronize the dealer nearest you—

<table>
<thead>
<tr>
<th>Location</th>
<th>Company Name</th>
<th>Address</th>
<th>Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allentown, Pennsylvania</td>
<td>Your nearest dealer is entitled to your patronage. You can trust him. He is equipped with a knowledge and understanding of amateur radio. He is your logical and safe source of advice and counsel on what equipment to patronize the dealer nearest you—</td>
<td>Radio Electric Service Co. 1024 Hamilton Street</td>
<td>Complete stocks transmitting equipment</td>
</tr>
<tr>
<td>Baltimore, Maryland</td>
<td>Radio Electric Service Co.</td>
<td>303 W. Baltimore Street</td>
<td>Everything for the amateur</td>
</tr>
<tr>
<td>Boston, Massachusetts</td>
<td>Nutter & Cross, Inc.</td>
<td>99A Milk Street</td>
<td>All OM, OW, and YL welcome — W1HRF</td>
</tr>
<tr>
<td>Brockton, Massachusetts</td>
<td>Ware Radio Supply Company</td>
<td>913 Centre Street</td>
<td>Everything in parts. Comet Pro in stock with crystal filter</td>
</tr>
<tr>
<td>Buffalo, New York</td>
<td>Dymac Radio</td>
<td>359 Capen Blvd. — Tel. Univ. 9380</td>
<td>Complete stock Amateur Parts — Standard Discounts — W8AWK</td>
</tr>
<tr>
<td>Buffalo, New York</td>
<td>Kronson Service Company</td>
<td>143 East Genesee Street</td>
<td>Western New York’s largest wholesale distributors — W8EHF</td>
</tr>
<tr>
<td>Charlotte, Michigan</td>
<td>General Engineering Corporation</td>
<td></td>
<td>Everything for the Transmitting Station</td>
</tr>
<tr>
<td>Chicago, Illinois</td>
<td>Mid-West Radio Mart</td>
<td>520 S. State Street</td>
<td>All standard lines carried in stock</td>
</tr>
<tr>
<td>Cleveland, Ohio</td>
<td>Northern Ohio Laboratories</td>
<td>2073 West 85 Street</td>
<td>Wholesale Distr. for National, Hammarlund, Thordarson, Cardwell</td>
</tr>
<tr>
<td>Cleveland, Ohio</td>
<td>Radio Servicemen’s Supply Co.</td>
<td>206 Prospect Street</td>
<td>Wholesale Distributors catering to Amateurs, Dealers, Servicemen</td>
</tr>
<tr>
<td>Denver, Colorado</td>
<td>Inter-State Radio & Supply Co.</td>
<td>1639 Tremont Place</td>
<td>Amateur Radio Headquarters in the Rocky Mountain Region</td>
</tr>
<tr>
<td>Detroit, Michigan</td>
<td>Equipment Sales Co.</td>
<td>14036 Woodward Avenue, Highland Park</td>
<td>A complete stock of amateur, shortwave and service parts</td>
</tr>
<tr>
<td>Detroit, Michigan</td>
<td>Radio Specialties Company</td>
<td>171 E. Jefferson Avenue</td>
<td>Hom Supplies — National & Hammarlund Sets and Parts</td>
</tr>
<tr>
<td>Erie, Pennsylvania</td>
<td>Jordan Radio Laboratory</td>
<td>1019 East Fifth Street</td>
<td>Amateur, service parts, including Bliley, National, Raytheon. W8CXG</td>
</tr>
<tr>
<td>Hartford, Connecticut</td>
<td>Radio Inspection Service Company</td>
<td>227 Asylum Street</td>
<td>Yes, we’ll take your old set in trade</td>
</tr>
<tr>
<td>Houston, Texas</td>
<td>Strauss-Frank Company</td>
<td></td>
<td>Distributors for nationally advertised amateur products RCA-DeForest transmitting tubes</td>
</tr>
<tr>
<td>Kansas City, Missouri</td>
<td>Burstein-Applebee Company</td>
<td>1012-14 McGee Street</td>
<td>“Specialists” in supplies for the Amateur and Serviceman</td>
</tr>
<tr>
<td>Kansas City, Missouri</td>
<td>Radio Laboratories</td>
<td>1515 Grand Avenue</td>
<td>Amateur Headquarters — Complete Stock — Quality Parts</td>
</tr>
<tr>
<td>Los Angeles, California</td>
<td>Radio Manufacturers Supply Co., Inc.</td>
<td>1000 S. Broadway</td>
<td>Amateur Headquarters of the Pacific Coast</td>
</tr>
<tr>
<td>Manchester, New Hampshire</td>
<td>Radio Service Lab. of N. H.</td>
<td>1008 Elm Street — Tel. 218-W</td>
<td>Branches — Portland, Me. and Barre, Vt.</td>
</tr>
</tbody>
</table>

This advertisement is paid for by the firms listed above. Qualified dealers
Is Your Best Friend

you should buy. His stock is complete. He can supply your needs without delay. His prices are fair and consistent with the high quality of the goods he carries. He is responsible to you and interested in you.

You can have confidence in him

<table>
<thead>
<tr>
<th>Location</th>
<th>Company Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILWAUKEE, WISCONSIN</td>
<td>Radio Parts Company, Inc.</td>
</tr>
<tr>
<td></td>
<td>339 West State Street</td>
</tr>
<tr>
<td></td>
<td>Complete stock Nationally Known products</td>
</tr>
<tr>
<td>NEWARK, NEW JERSEY</td>
<td>Kaltman & Romander</td>
</tr>
<tr>
<td></td>
<td>62 Court Street</td>
</tr>
<tr>
<td></td>
<td>Drop in for an over-counter QSO</td>
</tr>
<tr>
<td>PHILADELPHIA, PENNSYLVANIA</td>
<td>Freeland Radio Supply Co.</td>
</tr>
<tr>
<td></td>
<td>5 N. 7th Street</td>
</tr>
<tr>
<td></td>
<td>"If it's radio we have it"</td>
</tr>
<tr>
<td>PHILADELPHIA, PENNSYLVANIA</td>
<td>Radio Electric Service Co., Inc.</td>
</tr>
<tr>
<td></td>
<td>N. E. Cor. Seventh & Arch Sts.</td>
</tr>
<tr>
<td></td>
<td>All nationally advertised lines in stock</td>
</tr>
<tr>
<td>PHILADELPHIA, PENNSYLVANIA</td>
<td>Eugene G. Wile</td>
</tr>
<tr>
<td></td>
<td>10 S. Tenth Street</td>
</tr>
<tr>
<td></td>
<td>Complete Stock of Quality Merchandise</td>
</tr>
<tr>
<td>PITTSBURGH, PENNSYLVANIA</td>
<td>Cameradio Company</td>
</tr>
<tr>
<td></td>
<td>603 Grant Street</td>
</tr>
<tr>
<td></td>
<td>Tri-State "Ham" Headquarters</td>
</tr>
<tr>
<td></td>
<td>Standard Apparatus Standard Discounts</td>
</tr>
<tr>
<td>PROVIDENCE, RHODE ISLAND</td>
<td>W. H. Edwards & Company</td>
</tr>
<tr>
<td></td>
<td>32 Broadway, Room 23</td>
</tr>
<tr>
<td></td>
<td>Amateur Equipment — National, Hammarlund, RCA Tubes</td>
</tr>
<tr>
<td>ST. LOUIS, MISSOURI</td>
<td>Walter Ashe Radio Company</td>
</tr>
<tr>
<td></td>
<td>1100 Pine Street</td>
</tr>
<tr>
<td></td>
<td>W9FIS in charge of the oldest and largest parts store in St. Louis</td>
</tr>
<tr>
<td>ST. PAUL, MINNESOTA</td>
<td>Lew Bonn Company</td>
</tr>
<tr>
<td></td>
<td>2484 University Avenue</td>
</tr>
<tr>
<td></td>
<td>Rex L. Munger, W9LIP, Sales Engineer</td>
</tr>
<tr>
<td></td>
<td>Radio Wholesaler Complete Stock</td>
</tr>
<tr>
<td>SAN ANTONIO, TEXAS</td>
<td>Straus-Frank Company</td>
</tr>
<tr>
<td></td>
<td>Distributors for nationally advertised amateur products</td>
</tr>
<tr>
<td></td>
<td>RCA-DeForest transmitting tubes</td>
</tr>
<tr>
<td>SAN FRANCISCO, CALIFORNIA</td>
<td>Offenbach Electric Company, Ltd.</td>
</tr>
<tr>
<td></td>
<td>1452 Market Street</td>
</tr>
<tr>
<td></td>
<td>"The House of a Million Radio Parts"</td>
</tr>
<tr>
<td>SHANGHAI, CHINA</td>
<td>Amateur's Home, Ltd.</td>
</tr>
<tr>
<td></td>
<td>323 Kiangse Road</td>
</tr>
<tr>
<td></td>
<td>Radio Manufacturer, Wholesaler and Retailer</td>
</tr>
<tr>
<td>SPRINGFIELD, MASSACHUSETTS</td>
<td>T. F. Cushing</td>
</tr>
<tr>
<td></td>
<td>349 Worthington Street</td>
</tr>
<tr>
<td></td>
<td>An amateur, endeavoring to sell good parts</td>
</tr>
<tr>
<td>SYRACUSE, NEW YORK</td>
<td>Roy C. Stage, W81GF</td>
</tr>
<tr>
<td></td>
<td>Complete stock of standard Ham & BCL parts</td>
</tr>
<tr>
<td></td>
<td>Standard Discounts, Free technical service</td>
</tr>
<tr>
<td>TORONTO, CANADA</td>
<td>A & A Radio Service Supply</td>
</tr>
<tr>
<td></td>
<td>101 Queen Street, West</td>
</tr>
<tr>
<td></td>
<td>We specialize in service Try it</td>
</tr>
<tr>
<td>TORONTO, CANADA</td>
<td>Wholesale Radio Company, Limited</td>
</tr>
<tr>
<td></td>
<td>355 Danforth Avenue</td>
</tr>
<tr>
<td></td>
<td>Canada's largest Amateur Supply House</td>
</tr>
<tr>
<td>TRENTON, NEW JERSEY</td>
<td>American Radio Co.</td>
</tr>
<tr>
<td></td>
<td>5 N. Broad Street</td>
</tr>
<tr>
<td></td>
<td>Central Jersey's leading radio parts store</td>
</tr>
<tr>
<td>WASHINGTON, D. C.</td>
<td>George's Radio Co.</td>
</tr>
<tr>
<td></td>
<td>816 F Street, N.W.</td>
</tr>
<tr>
<td></td>
<td>Washington's largest distributor of radio parts</td>
</tr>
<tr>
<td>WILMINGTON, DELAWARE</td>
<td>Wilmington Electric Specialty Co., Inc.</td>
</tr>
<tr>
<td></td>
<td>405 Delaware Avenue</td>
</tr>
<tr>
<td></td>
<td>Amateur headquarters — Collins, Hammarlund, National, etc.</td>
</tr>
<tr>
<td>ZANESVILLE, OHIO</td>
<td>Thompson Battery & Radio Service</td>
</tr>
<tr>
<td></td>
<td>128 Main Street</td>
</tr>
<tr>
<td></td>
<td>Distributor radio equipment for amateurs and servicemen</td>
</tr>
</tbody>
</table>
You Are Protected When You Buy From QST Advertisers

"Advertising for QST is accepted only from firms who, in the publisher's opinion, are of established integrity and whose products secure the approval of the technical staff of the American Radio Relay League."

Quoted from QST's advertising rate card.

Every conceivable need of a radio amateur can be supplied by the advertisers in QST. And you will know the product has the approval of the League's technical staff.

For Your Convenience
QST'S INDEX OF ADVERTISERS IN THIS ISSUE

<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerovox Corporation</td>
<td>75</td>
</tr>
<tr>
<td>A.R.R.L. Application Blank</td>
<td>70</td>
</tr>
<tr>
<td>Emblem</td>
<td>69</td>
</tr>
<tr>
<td>Handbook</td>
<td>4</td>
</tr>
<tr>
<td>Hints and Kinks</td>
<td>67</td>
</tr>
<tr>
<td>License Manual</td>
<td>73</td>
</tr>
<tr>
<td>Special Offer</td>
<td>Cov. 2</td>
</tr>
<tr>
<td>Supplies</td>
<td>65,71</td>
</tr>
<tr>
<td>Birnbach Electric Co.</td>
<td>73</td>
</tr>
<tr>
<td>Billey Piezo-Electric Co.</td>
<td>63</td>
</tr>
<tr>
<td>Cameradio Company</td>
<td>65</td>
</tr>
<tr>
<td>Candler System Co.</td>
<td>61</td>
</tr>
<tr>
<td>Capitol Radio Eng. Inst.</td>
<td>63</td>
</tr>
<tr>
<td>Cardwell Mfg. Corp., Allen D.</td>
<td>79</td>
</tr>
<tr>
<td>Central Radio Labs.</td>
<td>64</td>
</tr>
<tr>
<td>Collins Radio Company</td>
<td>80</td>
</tr>
<tr>
<td>Cornell-Dubilier Corp.</td>
<td>72</td>
</tr>
<tr>
<td>Delta Mfg. Company</td>
<td>63</td>
</tr>
<tr>
<td>Electrad, Inc.</td>
<td>72</td>
</tr>
<tr>
<td>General Radio Company</td>
<td>61</td>
</tr>
<tr>
<td>Gross Radio Company</td>
<td>58,59</td>
</tr>
<tr>
<td>Gulf Radio School</td>
<td>71</td>
</tr>
<tr>
<td>Haigis Labs.</td>
<td>68</td>
</tr>
<tr>
<td>Hammarlund Mfg. Co.</td>
<td>7</td>
</tr>
<tr>
<td>Harvey Radio Labs.</td>
<td>61</td>
</tr>
<tr>
<td>Heintz & Kaufman, Ltd.</td>
<td>55</td>
</tr>
<tr>
<td>Instructograph Company</td>
<td>73</td>
</tr>
<tr>
<td>Kaltman and Romander</td>
<td>66</td>
</tr>
<tr>
<td>Littelfuse Labs.</td>
<td>69</td>
</tr>
<tr>
<td>Mass. Radio School</td>
<td>67</td>
</tr>
<tr>
<td>National Company</td>
<td>57, Cov. 3</td>
</tr>
<tr>
<td>New York Y.M.C.A. Schools</td>
<td>75</td>
</tr>
<tr>
<td>Port Arthur College</td>
<td>69</td>
</tr>
<tr>
<td>Precision Piezo Service</td>
<td>71</td>
</tr>
<tr>
<td>RCA Institutes, Inc.</td>
<td>65</td>
</tr>
<tr>
<td>RCA Radiotron Company, Inc.</td>
<td>Cov. 4</td>
</tr>
<tr>
<td>RCA Victor Company, Inc.</td>
<td>62</td>
</tr>
<tr>
<td>Radio Shack</td>
<td>67</td>
</tr>
<tr>
<td>Radio Supply Co.</td>
<td>75</td>
</tr>
<tr>
<td>Ross & Co., A. H.</td>
<td>67</td>
</tr>
<tr>
<td>Sangamo Electric Co.</td>
<td>69</td>
</tr>
<tr>
<td>Schwartz & Son, Maurice</td>
<td>73</td>
</tr>
<tr>
<td>Scientific Radio Service</td>
<td>75</td>
</tr>
<tr>
<td>Sears, Roebuck and Co.</td>
<td>72</td>
</tr>
<tr>
<td>Shure Brothers Co.</td>
<td>66,73</td>
</tr>
<tr>
<td>Teleplex Company</td>
<td>65</td>
</tr>
<tr>
<td>Thorodarson Elec. & Mfg. Co.</td>
<td>60</td>
</tr>
<tr>
<td>Trimm Radio Mfg. Co.</td>
<td>73</td>
</tr>
<tr>
<td>United Radio Mfg. Co.</td>
<td>71</td>
</tr>
<tr>
<td>Westinghouse Elec. & Mfg. Co.</td>
<td>2</td>
</tr>
<tr>
<td>Wing's Sons, Chauncey</td>
<td>67,71</td>
</tr>
</tbody>
</table>

Say You Saw It in QST — It Identifies You and Helps QST
The Clean Cut Performance of the thoroughbred hunter is taken for granted by the horseman. So is the Clean Cut Performance, Durability and Precision of Cardwell Condensers taken for granted by those who know that The Cardwell Condenser represents the ultimate in engineering accomplishment.

There is a Cardwell for every tube and purpose. Let us tell you how Cardwells can increase the efficiency of your own equipment.

CARDWELL "STANDARD" MODELS FOR RECEIVERS
and MEDIUM POWER TRANSmitters
CARDWELL MIDWAY "FEATHERWEIGHT" CONDENSERS,
RECEIVING and TRANSMITTING
CARDWELL 16-B TRANSMITTING CONDENSERS
FOR LARGER TRANSMITTERS
CARDWELL HIGH VOLTAGE CONDENSERS
FOR COMMERCIAL RADIO-TELEGRAPH and
BROADCASTING STATIONS
CARDWELL S-2244 OIL DIELECTRIC FIXED CONDENSERS
FOR HIGH FREQUENCY FURNACES
and Tube Bombarders

The ALLEN D. CARDWELL MFG. CORP'N.
83 Prospect Street, Brooklyn, N. Y.

"THE STANDARD OF COMPARISON"
IT'S A HIT!

The Collins 30FXB is the new model embodying the latest refinements and developments of the past six months. This transmitter meets all the requirements of a modern installation — plenty of power, high fidelity, and multiband operation without neutralization adjustment. Installation is simplicity itself — merely connect antenna, power, key and microphone, and you are "on the air."

COMpletely Self-Contained

TECHNICAL DATA

POWER OUTPUT — 100 watts nominal rating (303A).

FREQUENCY RANGE — 1500 to 15,000 kc. (standard). New Isolantite coil forms are used.

FREQUENCY CONTROL — Crystal oscillator with isolation of oscillator from amplifier by a buffer stage.

POWER SUPPLIES — 1000 and 1250 volts at 400 MA DC for modulators and power amplifier. 400 volts DC for crystal and buffer.

MODULATOR — Two 830B or 203A tubes are used in Class B.

FIXED NEUTRALIZATION — All neutralization adjustments in the 30FXB Transmitter are fixed at the factory so that the user does not have to do any balancing of the various circuits. Shifting from one band to another is merely a matter of changing the plug-in coils and setting the dials to the calibrated position.

SPEECH AMPLIFIER — The 7C Speech Amplifier designed primarily for use with a crystal microphone is furnished as an integral part of the 30FXB Transmitter.

Thus, no external apparatus, except the microphone and telegraph key, is required and the installation is neat, self-contained and compact.

ANTENNA TUNING — The 2C pi Section Antenna Matching Network is furnished as standard equipment. This provision makes it possible to connect the 30FXB to any available antenna and to accomplish efficient energy transfer with proper attenuation of harmonics.

DIMENSIONS — 60" high, 20½" wide, 20" deep.

SURPRISINGLY LOW PRICED. WRITE FOR FULL INFORMATION

Collins Radio Company

CEDAR RAPIDS IOWA, U.S.A.

New York Office—136 Liberty Street, N. Y. C.
equipment may well be of the transceiver type (see below), but a permanent installation should employ a more pretentious crystal control rig. The SEU Condensers (4), originally designed for the National 5-meter Superhet, have proved very suitable for oscillator, doubler or final stages. Their companion unit, the XR-1 Coil Form (2) adds plug-in flexibility with the high efficiency of R-39 insulation. For single band operation the Steatite-mounted XR-9 Inductor (7) is compact and inexpensive, and may be adjusted by varying turn-spacing. Chokes are important at any frequency, but at 56 m.c. nothing less than an R-100 (11) is practical.

The National Line of 56 m.c. gear is complete, even to midget dials (9) and interruption-frequency oscillator coils (8) for super-regenerators. Look them over at your dealer’s.

The best materials are none too good for 56 m.c. operation, for the available power is low, and losses are necessarily high. National has developed special products for this difficult service and we feel that the advantages derived from their use will more than justify the small investment required.

The widely used Pickard Antenna, for example, requires the use of an efficient R.F. transformer for coupling the feeders to the antenna. The TRP coupling unit (1) was designed for this express purpose. The feeders should be spaced well away from the vertical radiator, and convenience as well as efficiency indicate the use of AA-1 Victron Transposition Blocks (6) or the smaller Steatite AA-2 Block (5) Steatite Dielectrics are recommended for supporting the system, in preference to the felt hat illustrated on the cover of June QST. For portable use, the transmitting
RCA-203A/503A is a three-electrode transmitting tube designed for use as oscillator, r-f power amplifier, or Class B modulator. It is capable of giving high power output with relatively low plate voltages. As a class C r-f power amplifier, the RCA-203A/503A is capable of 130 watts output under maximum rated conditions of operation.

RCA-211/511 is a three-electrode, general purpose transmitting tube. It may be used as oscillator, r-f amplifier, or Class B modulator. Capable of high output with relatively low plate voltages, the RCA-211/511 as a plate modulated r-f power amplifier (Class C) will provide approximately 100 watts under typical conditions of operation.

RCA-845/545 is a three-electrode tube for use as modulator or an a-f power amplifier. The RCA-845/545 is not recommended for r-f applications. As an a-f power amplifier and modulator (Class A), the RCA-845/545 is capable of 24 watts undistorted power output.

Constantly improved over the years, the RCA-203A/503A, 211/511 and 845/545 have graphite anodes and a rugged mechanical structure. Ever popular with the amateur, they represent a vast improvement over the original designs. The net price is $17.50 for the RCA-203A/503A and RCA-211/511, $20.00 for the RCA-845/545 at your RCA deForest Distributor.