QST
devoted entirely to
amateur radio

January, 1946
25 cents
35¢ in Canada

In This Issue:
Amateur Duplex Phone on 5.6 Cm.
10-Meter Predictions
Continuous Power on Microwaves
The New F. M. Ratio Detector
RESONANT TRANSFORMERS

This high voltage application involved a minimum size requirement. For maximum compactness, the final transformer produced has a turns ratio of 115/5,800, but a voltage ratio due to resonance of 115/10,000 V.

VARIABLE AC SATURATED INDUCTOR

This inductor is part of a voltage sensitive non-linear network. By adjustment of the inductor with a specific capacitor, peak non-linearity can be adjusted over a substantial range in voltage.

CONDENSER - PULSE WELDING TRANSFORMER

This transformer is designed for a small precise spot welding set. For this type of application, design factors include High Q and maximum surge power transfer. The transformer shown is the equivalent of 100 VA in size, but handles 1,000 VA pulses.

SPECIAL CONTROL TRANSFORMER

In this odd application, the requirements were that the primary current go down with increase in load current. In actual practice, when normal load is placed on the secondary, the primary current drops 50%.

The UTC application engineering section is available for your problem.

United Transformer Corp.

150 Varick Street
New York 13, N.Y.

Export Division: 13 East 40th Street, New York 16, N.Y.
Cables: "Arlab"
NEW CHAPTER...

Amateurs will write the exciting new story of radio communications

The log books are opening up all over the world. Once again the fascinating data on stations heard or worked will be set down by amateur operators as they establish new records in radio communications. The reopened log books mark a new chapter in the development of radio.

Hallicrafters...as prime producers of amateur radio equipment...will play a prominent part in the new chapter. Hallicrafters high frequency transmitters and receivers will provide the instruments that will outline the future development of all radio science...especially in the VHF and UHF fields.

hallicrafters RADIO

THE HALLICRAFTERS CO. MANUFACTURERS OF RADIO AND ELECTRONIC EQUIPMENT CHICAGO 16, U.S.A.
Hallicrafters will shortly have a new home. Big, new headquarters for the further development of high frequency communications equipment are under construction in the heart of Chicago's great West Side industrial section.

Here, under the most advanced conditions, the science of radio will be brought to new heights of perfection by Hallicrafters engineers. In this $600,000 modern plant, the finest of its kind, all operations will be combined under one roof. Straight flow production on one floor will assure constant economy and efficiency.

On this spot Hallicrafters engineers will apply their research techniques to the most extreme problems in FM, television, and high frequency development work. Here "the radio man's radio" will continue to be turned out with strict attention to the maintenance of custom built quality in each unit.

hallicrafters RADIO

THE HALLCRAFTERS CO., MANUFACTURERS OF RADIO AND ELECTRONIC EQUIPMENT, CHICAGO 16, U.S.A.

COPYRIGHT 1945 THE HALLCRAFTERS CO.
It Seems to Us .. 11
QRM — The Electronic Life Saver — Part I
Paul Robbiano, W6PKM 12

Duplex Phone on 5300 Megacycles
Reuben Merchant, W2LFG and A. E. Harrison, W6BMS 19

Christmas, 1944 S/Sgt. R. H. Newkirk, W9BRD 25

A New F.M. Detector Circuit 26

The Half-Rhombic Antenna
Capt. John H. Mullaney, SC, W4HGU 28

A Small Oscilloscope Using the 913 ... E. M. McCormick 32

Extended-Range Television Reception — Part II
Marshall P. Wilder, W2JLK 35

Happenings of the Month 41

The Bright New World — of Sunspots
Commander E. H. Conklin, USNR, W3JUX 43

Foreign Notes .. 47

In QST 25 Years Ago This Month 50

Hints and Kinks
Link Coupled Modulator — V.H.F. Modulator with A2 and A3 51
The World Above 50 Mc. 52

Loran — the Latest in Navigational Aids — Part II
Alexander A. McKenzie, W1BPI 54

How’s DX? .. 58

Listening in on the Stars
Oswald G. Villard, jr., W6QYT, ex-W1DMV 59

The Crystal Ball .. 61

A Radio-Frequency Auto-Resonator
Pfc. John F. Clemens, W9ERN 65

Correspondence from Members 67

Strays .. 70

Operating News .. 71

Station Activities 75

Silent Keys .. 110

Ham-Ads .. 124

QST's Index of Advertisers 126
The initials “CRL” in the Diamond stand for Central Radio Laboratories.

They are an integral part of the Centralab name, and for more than a quarter of a century have represented the utmost in engineering skill and precision... the height of manufacturing perfection.

Both in original equipment and in replacements, the symbol “CRL” is the Mark of Quality.

... Always specify Centralab.
NEW EIMAC 4-250A TETRODE

Heading a parade of sensational new tubes now in production, the Eimac 4-250A Tetrode—introduced several months ago—is already in great demand. It may pay to check these performance characteristics against your own requirements.

As can be seen by the chart above, the new Eimac 4-250A Tetrode will deliver 750 watts output at frequencies up to 70 Mc. with a driving power of only 5 watts. At frequencies up to 40 Mc. an output of 750 watts may be obtained with a driving power of 3.5 watts.

The grid-plate capacitance of 0.12 μF. is extremely low, allowing operation at high frequencies without neutralization. Use of Eimac "X" process control grid reduces both primary and secondary emission which provides utmost stability.

You are invited to supplement the information given here with a technical bulletin on Eimac 4-250A Power Tetrode. It contains an elaboration of the tube's characteristics and constant current curves. Send your name and address and a copy will go to you by return mail.

The Lid's Coming Off...
Watch your favorite trade journals for announcements of other new Eimac tubes to be released this year.

CAUTION! Check serial numbers on Eimac tubes before you buy. Be sure you're getting newest types. Look for latest serial numbers.

FOLLOW THE LEADERS TO

EIMAC TUBES

ETTEL-MCCULLOUGH, INC., 108A San Mateo Avenue, San Bruno, Calif.

Plants located at: San Bruno, California and Salt Lake City, Utah

Export Agents: Frazer & House, 30I Clay St., San Francisco 11, Calif., U. S. A.

TYPE 4-250A—POWER TETRODE
ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament</td>
<td>Thoriated Tungsten</td>
</tr>
<tr>
<td>Voltage</td>
<td>5.0 volts</td>
</tr>
<tr>
<td>Current</td>
<td>14.5 amperes</td>
</tr>
<tr>
<td>Plate Dissipation (Max)</td>
<td>250 watts</td>
</tr>
<tr>
<td>Direct Inter electrode Capacitance (Average)</td>
<td>0.12 μF.</td>
</tr>
<tr>
<td>Grid-Plate</td>
<td>12.7 μF.</td>
</tr>
<tr>
<td>Input</td>
<td>4.5 μF.</td>
</tr>
<tr>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>Transconductance (8m = 80 ma.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eo = 3000 v., Ec2 = 500 v.: 4000 ohms</td>
</tr>
<tr>
<td>Section Communications Managers of the A.R.R.L. Communications Department</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>All amateurs, especially League members, are invited to report station activities each mid-month (16th of the month for the last 30 days) directly to the SCM, the administrative official of ARRL elected by members in each Section whose address is given below. Radio Club reports are also desired by SCMs for inclusion in QST. New ARRL Field Organization appointments, with the exception of SEC, EC, OBS, and DO are not at present being made. See Operating News.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EASTERN PENNSYLVANIA</th>
<th>W8BES</th>
<th>Jerry Mathis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maryland-Delaware-District of Columbia</td>
<td>W1CIZ</td>
<td>Hermann E. Hobbs</td>
</tr>
<tr>
<td>Western New York</td>
<td>W4GMN</td>
<td>Ray Tomlinson</td>
</tr>
<tr>
<td>Western Pennsylvania</td>
<td>W8NCJ</td>
<td>Armand Despotte, R. R. Rosenberg</td>
</tr>
<tr>
<td>NEW ENGLAND</td>
<td>W1GIO</td>
<td>Edmond E. Blake, H</td>
</tr>
<tr>
<td>Delaware</td>
<td>W1IOQ</td>
<td>Herbert S. Brice</td>
</tr>
<tr>
<td>Connecticut</td>
<td>W1ALD</td>
<td>Darrell A. Downard</td>
</tr>
<tr>
<td>Maine</td>
<td>W1AL</td>
<td>Harold C. Bird</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>W1DPNE</td>
<td>Carl F. Wiebe</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>W1PF</td>
<td>Emil Febrer, Jr.</td>
</tr>
<tr>
<td>Vermont</td>
<td>W1NO</td>
<td>Kenneth W. Elmore</td>
</tr>
<tr>
<td>WESTERN NEW YORK</td>
<td>W8EJP</td>
<td>Raymond V. Barnett</td>
</tr>
<tr>
<td>New York</td>
<td>W9VQY</td>
<td>P. H. Schulze</td>
</tr>
<tr>
<td>Western Minnesota</td>
<td>W9YQ</td>
<td>Armond D. Bratlett</td>
</tr>
<tr>
<td>Michigan</td>
<td>W9YR</td>
<td>Millard L. Bender</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>W9ZI</td>
<td>David H. Blake, H</td>
</tr>
<tr>
<td>NORTHWESTERN NEW YORK</td>
<td>W8V</td>
<td>Donald H. DeGraff</td>
</tr>
<tr>
<td>St. Louis</td>
<td>W4GL</td>
<td>Eugene H. Treadaway</td>
</tr>
<tr>
<td>Missouri</td>
<td>W4DL</td>
<td>P. W. Clement</td>
</tr>
<tr>
<td>Illinois</td>
<td>W9YNQ</td>
<td>James G. M. Whitehead</td>
</tr>
<tr>
<td>Iowa</td>
<td>W9R</td>
<td>Robert A. Schmitz</td>
</tr>
<tr>
<td>Indiana</td>
<td>W9V</td>
<td>118 N. Van Buren Ave.</td>
</tr>
<tr>
<td>South Dakota</td>
<td>W9JRL</td>
<td>Burlington Drive</td>
</tr>
<tr>
<td>Nebraska</td>
<td>W6N</td>
<td>608 N. Huron Ave.</td>
</tr>
<tr>
<td>South Dakota</td>
<td>W8JRL</td>
<td>Raymond V. Barnett</td>
</tr>
<tr>
<td>Minnesota</td>
<td>W9VQ</td>
<td>P. H. Schulze</td>
</tr>
<tr>
<td>W6NS</td>
<td>Armond D. Bratlett</td>
<td></td>
</tr>
<tr>
<td>Wisconsin</td>
<td>W9PF</td>
<td>Emil Febrer, Jr.</td>
</tr>
</tbody>
</table>

MICHIGAN	W9C	Louis J. Stein
Western Michigan	W8C	Robert A. Schmitz
New Hampshire	W9N	James G. M. Whitehead
Vermont	W1NO	Kenneth W. Elmore
Eastern New York	W2NL	Ernest E. George
New Jersey	W2CSD	Charles Ham, Jr.
Western Pennsylvania	W8NC	Robert A. Schmitz
Pennsylvania	W3G	118 N. Van Buren Ave.
Ohio	W3F	Burlington Drive
Illinois	W9EI	608 N. Huron Ave.
Indiana	W9YQ	Armond D. Bratlett

ATLANTIC DIVISION

- Eastern Pennsylvania: W8BES, Jerry Mathis
- Maryland-Delaware-District of Columbia: W1CIZ, Hermann E. Hobbs
- Western New York: W4GMN, Ray Tomlinson
- Western Pennsylvania: W8NCJ, Armand Despotte, R. R. Rosenberg
- New York: W1GIO, Edmond E. Blake, H
- Delaware: W1IOQ, Herbert S. Brice
- Connecticut: W1ALD, Darrell A. Downard
- Maine: W1AL, Harold C. Bird
- Massachusetts: W1DPNE, Carl F. Wiebe
- New Hampshire: W1PF, Emil Febrer, Jr.
- Vermont: W1NO, Kenneth W. Elmore

CENTRAL DIVISION

- Western New York: W8EJP, Raymond V. Barnett
- New York: W9VQY, P. H. Schulze
- Western Minnesota: W9YQ, Armond D. Bratlett
- Wisconsin: W9ZI, David H. Blake, H
- Minnesota: W9R, Robert A. Schmitz
- South Dakota: W9JRL, Burlington Drive
- Nebraska: W6N, 608 N. Huron Ave.
- South Dakota: W8JRL, Raymond V. Barnett
- Minnesota: W9VQ, P. H. Schulze
- Wisconsin: W9PF, Emil Febrer, Jr.

DELTA DIVISION

- Michigan: W9C, Louis J. Stein
- Western Michigan: W8C, Robert A. Schmitz
- New Hampshire: W9N, James G. M. Whitehead
- Vermont: W1NO, Kenneth W. Elmore
- Eastern New York: W2NL, Ernest E. George
- New Jersey: W2CSD, Charles Ham, Jr.
- Western Pennsylvania: W8NC, Robert A. Schmitz
- Ohio: W3F, Burlington Drive
- Indiana: W9YQ, Armond D. Bratlett

NEW ENGLAND DIVISION

- Connecticut: W1GIO, Edmond E. Blake, H
- Maine: W9C, Louis J. Stein
- Massachusetts: W8C, Robert A. Schmitz
- New Hampshire: W9N, James G. M. Whitehead
- Vermont: W1NO, Kenneth W. Elmore
- Eastern New York: W2NL, Ernest E. George
- New Jersey: W2CSD, Charles Ham, Jr.
- Western Pennsylvania: W8NC, Robert A. Schmitz
- Ohio: W3F, Burlington Drive
- Indiana: W9YQ, Armond D. Bratlett

PACIFIC DIVISION

- Hawaii: W6LG, Howard S. Simpson
- Nevada: W6UC, N. Arthur Dowle
- California: W61UZ, Earl F. Sanderson
- Oregon: W6R, Horace R. Greer
- Washington: W6RQ, William A. Lacy
- Idaho: W6MD, Vincent N. Feldhausen
- Oregon: W6KAU, George L. Richard
- Nevada: W6AB, Edward H. Horsbeck

WESTERN DIVISION

- North Carolina: W4CTY, R. W. Tidwell
- South Carolina: W4XYG, Walter C. Walker
- Georgia: W4ZAC, Kenneth M. Zinn
- Alabama: W4Q, Victor Drabell
- Florida: W4V, Henry H. Tidwell
- Mississippi: W4C, John A. Harris
- Louisiana: W4T, Everett Mayer
- Arkansas: W4Q, Victor Drabell
- Texas: W4V, Henry H. Tidwell
- Oklahoma: W4C, John A. Harris
- New Mexico: W4T, Everett Mayer

ROCKY MOUNTAIN DIVISION

- Colorado: W4CTY, R. W. Tidwell
- Utah: W4XG, Walter C. Walker
- Arizona: W4Q, Victor Drabell
- California: W4V, Henry H. Tidwell
- Nevada: W4C, John A. Harris
- Texas: W4V, Henry H. Tidwell
- Oklahoma: W4C, John A. Harris
- New Mexico: W4T, Everett Mayer

SOUTHEASTERN DIVISION

- Alabama: W4Q, Victor Drabell
- Florida: W4V, Henry H. Tidwell
- Georgia: W4C, John A. Harris
- Louisiana: W4T, Everett Mayer
- Arkansas: W4Q, Victor Drabell
- Texas: W4V, Henry H. Tidwell
- Oklahoma: W4C, John A. Harris
- New Mexico: W4T, Everett Mayer

SOUTHWESTERN DIVISION

- California: W4Q, Victor Drabell
- Arizona: W4V, Henry H. Tidwell
- New Mexico: W4T, Everett Mayer
- Texas: W4V, Henry H. Tidwell
- Oklahoma: W4C, John A. Harris
- New Mexico: W4T, Everett Mayer

MARITIME DIVISION

- Maritime: VE3DO
- Ontario: VE3IF
- Quebec: VE2CO
- New Brunswick: VE3EA
- Prince Edward Island: VE3ED
- Nova Scotia: VE3E

ONTARIO DIVISION

- Ontario: VE3IF, Wing Commander Donald R. Gunn
- Quebec: VE2CO, Lieutenant G. M. Morris
- New Brunswick: VE3E, C. S. Jamieson
- Prince Edward Island: VE3ED
- Nova Scotia: VE3E

QUEBEC DIVISION

- Ontario: VE3IF, Wing Commander Donald R. Gunn
- Quebec: VE2CO, Lieutenant G. M. Morris
- New Brunswick: VE3E, C. S. Jamieson
- Prince Edward Island: VE3ED
- Nova Scotia: VE3E

MARITIME DIVISION

- Maritime: VE3DO
- Ontario: VE3IF
- Quebec: VE2CO
- New Brunswick: VE3E
- Prince Edward Island: VE3ED
- Nova Scotia: VE3E

Officials appointed to act temporarily in the absence of a regular official.
McELROY SERIES
COMPLETE AUTOMATIC RADIO AND TELEGRAPH TRANSMITTING AND RECEIVING EQUIPMENT

New designs, new features, new low prices. Immediate delivery, in any quantity. Illustrated catalog and technical manuals available in all commonly used languages.

McELROY TAPE PULLING HEAD
TPH-400
Admits tape from any angle from the right; prevents breakage; permits tape to come from any level on receiving table. $45.00

McELROY KEYING HEAD
HEK-400
Complete with built-in polarized relay. Made without a Star Wheel opening in contact case; this assures clean contacts. $240.00

McELROY INK RECORDER
REC-400
Capable of speeds up to 700 words per minute. Tape holder, which is part of equipment, may be attached to right or back of case. $195.00

McELROY PHOTOTUBE KEYER
PTK-400
Delivers a tone code signal to from 1 to 50 headphones for operator training, and runs at low or extremely high speeds. $45.00

McELROY WHEATSTONE CODE TAPE PERFORATOR
PFR-400
Designed to modernize small stations, at sea, ashore or on the air. For 110-120 volts, AC or DC. $95.00

McELROY UNIVERSAL DRIVE
MSD-400
Permits rapid interchangeability of keying head and tape pulling head. Save money on maintenance and spares. $195.00

McELROY RECORDER AMPLIFIER
MRD-400
Designed to drive the Ink Recorder at speeds to 300 words per minute. Cabinet or rack mounting. $195.00

McElroy engineers never copy, never imitate. We create, design, build... we are never satisfied with mediocrity.

McElroy Manufacturing Corporation
82 Brookline Avenue, Boston, Massachusetts
The evolution of electronics will always remain a bright page in the history books of science. And the record has been significantly brilliant during the past four years when improvements and developments were advanced at a faster rate than normal. With the ending of the war, there may be a few who do not feel the urgency to progress at a similar pace... who will be willing to relax the rigid wartime standards. Or there may be those who do not too accurately gauge the temper of the consumer, now in a mood to anticipate only the best from an industry which has accomplished such miracles in the past few years.

Along with many other far-sighted producers, we here at Marion fully intend to maintain our wartime quality pattern, and to cooperate in every known way to provide even better products for a peaceful world. We endorse the postwar standardization program of the Army and Navy Electronics Standards Agency, and will continue to manufacture all Marion electrical indicating instruments in conformity with JAN specifications. Our customers have a right to expect nothing else.

It is important to note that continued adherence to the Electronics Standards Agency program need not result in increased costs, either to the manufacturer or the consumer... while it will definitely result in improved product performance wherever such standardized components are used.

We, the manufacturers, engineers, consumers of electronics, are part of a vital, daring, visionary industry. It is with this realization that we are faced with the responsibility of deciding, at this time, whether we can relax, or whether we shouldn't give as much to a world at peace as we gave to a world at war.

Your comments will be welcomed.
Here are views of the just-completed Collins hangar at the Cedar Rapids Airport, and the company's 18S twin-engined Beechcraft. The installation is dedicated to constant advancement in the design and performance of radio communication and navigation equipment for aviation.

The wing to the right of the hangar contains laboratories for Collins physicists, engineers, technicians and mechanics engaged in specific projects that require much space and the use of the plane.

Customers of Collins equipment are invited to remember that these facilities are available for installation and service. The Cedar Rapids Municipal Airport, with its 5400 ft. runways, will accommodate the largest aircraft. Collins Radio Company, Cedar Rapids, Iowa; 11 West 42nd Street, New York 18, N. Y. In Canada Collins equipment is sold by Collins-Fisher Limited, Montreal.
THE AMERICAN RADIO RELAY LEAGUE, INC.,

is a noncommercial association of radio amateurs, bonded for the promotion of interest in amateur radio communication and experimentation, for the relaying of messages by radio, for the advancement of the radio art and of the public welfare, for the representation of the radio amateur in legislative matters, and for the maintenance of fraternalism and a high standard of conduct.

It is an incorporated association without capital stock, chartered under the laws of Connecticut. Its affairs are governed by a Board of Directors, elected every two years by the general membership. The officers are elected or appointed by the Directors. The League is noncommercial and no one commercially engaged in the manufacture, sale or rental of radio apparatus is eligible to membership on its board.

"Of, by and for the amateur, it numbers within its ranks practically every worth-while amateur in the nation and has a history of glorious achievement as the standard-bearer in amateur affairs.

Inquiries regarding membership are solicited. A bona fide interest in amateur radio is the only essential qualification; ownership of a transmitting station and knowledge of the code are not prerequisite, although full voting membership is granted only to licensed amateurs.

All general correspondence should be addressed to the Secretary at the administrative headquarters at West Hartford, Connecticut.

Past Presidents
Hiram Percy Maxim, W1AW, 1914-1936
Eugene C. Woodruff, W8CME, 1936-1940

Officers
President .. W1KH
Washington, D. C.
Vice-President W6CG
Yuma, Arizona
Secretary W1EH
West Hartford, Connecticut
Communications Manager F. E. Handy, WIBD1
West Hartford, Connecticut
Treasurer W1ER
West Hartford, Connecticut

General Counsel Paul M. Segal
1026 Woodward Building, Washington 5, D. C.

Directors
President
GEORGE W. BAILEY W1KH
1530 P St., N.W., Washington 25, D. C.
Vice-President
CHARLES E. BLALACK W6CG
Box 108, Yuma, Ariz.

Canadian General Manager
ALEX REID Y2RBC
240 Logan Ave., St. Lambert, P. Q.
Alternate: Leonard W. Mitchell VESAZ
785 River Ave., Toronto, Ont.

Atlantic Division
EDWARD G. RASER W3XH
316 Woodward Ave., Trenton 5, N. J.
Alternate: J. Victor Brotherson W8WNN
1745 Ottawa Drive, Erie, Pa.

Central Division
JOHN A. KISNER W3AVH
3462 Edison Rd., Cleveland Heights, Cleveland 21, Ohio
Alternate: Earl S. Nelson W6DS
23651 Hadden Rd., Euclid 17, Ohio

Dakota Division
TOM E. DAVIES W6VVA
915 W. Becker Ave., Willmar, Minn.
Alternate: Harold B. Love W2EZT
Box 426, Mandan, N. D.

Delta Division
GEORGE S. ACTON W3BMM
Plain Dealing, La.
Alternate: Samuel W. Dowell W5ERV
1757 Mildred St., Shreveport 15, La.

Hudson Division
ROBERT ABERIDGE KIRKMAN W2DSY
Wersch Pl., R.B.D. No. 1, Box 61, Long Branch, N. J.
Alternate: George Rulfs, Jr. W2CJV
38 Brookwood Drive, Manhasset, L. I., N. Y.

Midwest Division
FLOYD E. NORWINE, JR. W6EC
7405 Hawatha Ave., Richmond Heights 17, Mo.
Alternate: C. A. Colvin W5YHR
% Omaha & Council Bluffs St., Railway Co.,
Omaha 2, Nebr.

New England Division
PERCY C. NOBLE W1BVR
37 Broad St., Westfield, Mass.
Alternate: Clayton C. Gordon W1HRC
70 Columbia Ave., Warwick, R. I.

Northwestern Division
KARL W. WEINGARTEN W7BG
3210 N. 24th St., Tacoma 7, Wash.
Alternate: R. Rex Roberts W7CPY
110 W. Brennan St., Glendale, Mont.

Pacific Division
J. L. McCargar W5EY
66 Hamilton Pl., Oakland 12, Calif.
Alternate: Elbert J. Amato W1FDBW
1675 Dale Ave., San Jose, Calif.

Rocky Mountain Division
H. L. CAVENESS W4DWH
2201 Vanderbilt Ave., Boulder, N. C.
Alternate: J. Frank Ray W3ZA
Box 707, Buena Vista, Colo.

Southeastern Division
WILLIAM C. SHEPHERD W4ASR
2002 Pennsylvania, Daytona Beach, Fla.
Alternate: William P. Sides W4AUP
1530 P St., N.W., Washington 25, D. C.

Southwestern Division
JOHN E. BICKEL W8othy
1834 E. Whittier Blvd., Whittier, Calif.
Alternate: Eldridge E. Wyatt, Jr. W6ARW
P. O. Box 947, Long Beach, Calif.

West Gulf Division
WAYLAND M. GROVES W5NW
60 Humble Pipe Line Co., Odessa, Texas
Alternate: Jennings H. Patten W5AJ
P. O. Box 448, Chirundu, Panama Canal Zone
"IT SEEMS TO US—"

REBIRTH PAINS

What sport! After all these years of ham-silence the old gang is getting back, and what a struggle it is! Nobody can remember his circuit diagram. The radio stores are mad-houses and on Saturdays you have to stand in line. Everybody's mast is down and you can't buy any decent manila rope. You can spot the houses where amateurs live by observing the rooftop activity, as necks are risked to get that skyhook a foot higher before winter sets in. What fun!

While we're waiting for "80, 40 and 20" to come back to us we're a busy crew, with all these other bands opening at the same time. The new 2-meter band has taken a bit of a beating in the scramble to get going on 10, but actually the two bands make an exceedingly neat combination for "before and after," it seems to us. The never-die 5-meter gang has been delighted to get going on its old frequencies, postponing its reconversion headaches until March. It's 10 that has taken most of the attention, because of the DX it offered. And has it been swell to meet old friends again! We suppose you're in on the fun; if you aren't, you're missing a lot, for actually the band has been performing much better than anybody hoped and the propagation predictions for coming months are even more encouraging. The boys are knocking them off right and left and we expect to hear any minute of the first postwar WAC application.

Well, in the process of tuning up we had a narrow escape from getting bitten by the final tank, just because we'd forgotten our wiring diagram. And suddenly we knew what we wanted to talk about on this page this month. It's safety.

Men, amateur radio has always had its dangerous side. But these old prewar rigs of ours are likely to be particularly poisonous, and we want to urge you to use the greatest care in getting going again. Insulation has deteriorated and war—until finally we had grid mils in the final and amps in the feeders and we were in business again. It was only after we'd worked from EA to K6 that we discovered that one side of the V was down—over in that swampy patch, too, of course. There used to be an old Headquarters smartcrack that there's no antenna so good as a bad rhomboid, provided it's bad enough. Maybe the same thing applies to Vs but we figure we're going to have to fix it. Anyway, we like to think how much better our signal is going to be after we do.

Most fellows will tell you that they found it a bit more rugged to get going again than they had expected. We certainly did. We'd been running a WERS puddle-jumper during the war and since August we'd had it fired up on 112 (If you can fire up anything that pulls only 10 watts). But the matter of 28 Mc called for the big rig that had been sitting idle through the war, and doggone if we could remember which end of it was which. It used to eat out of our hand but now it just stood there blandly smiling out of its motionless meters and defying us to remember which knob was the grid tuning knob and what that extra flipswitch was for. We had to learn all over again the hard way, getting the bugs out of each successive stage, replacing the parts that had gone wrong during the war—until finally we had grid mils in the final and amps in the feeders and we were in business again. It was only after we'd worked from EA to K6 that we discovered that one side of the V was down—over in that swampy patch, too, of course. There used to be an old Headquarters smartcrack that there's no antenna so good as a bad rhomboid, provided it's bad enough. Maybe the same thing applies to Vs but we figure we're going to have to fix it. Anyway, we like to think how much better our signal is going to be after we do.

Well, in the process of tuning up we had a narrow escape from getting bitten by the final tank, just because we'd forgotten our wiring diagram. And suddenly we knew what we wanted to talk about on this page this month. It's safety.

Men, amateur radio has always had its dangerous side. But these old prewar rigs of ours are likely to be particularly poisonous, and we want to urge you to use the greatest care in getting going again. Insulation has deteriorated and war—until finally we had grid mils in the final and amps in the feeders and we were in business again. It was only after we'd worked from EA to K6 that we discovered that one side of the V was down—over in that swampy patch, too, of course. There used to be an old Headquarters smartcrack that there's no antenna so good as a bad rhomboid, provided it's bad enough. Maybe the same thing applies to Vs but we figure we're going to have to fix it. Anyway, we like to think how much better our signal is going to be after we do.

Well, in the process of tuning up we had a narrow escape from getting bitten by the final tank, just because we'd forgotten our wiring diagram. And suddenly we knew what we wanted to talk about on this page this month. It's safety.

Men, amateur radio has always had its dangerous side. But these old prewar rigs of ours are likely to be particularly poisonous, and we want to urge you to use the greatest care in getting going again. Insulation has deteriorated and war—until finally we had grid mils in the final and amps in the feeders and we were in business again. It was only after we'd worked from EA to K6 that we discovered that one side of the V was down—over in that swampy patch, too, of course. There used to be an old Headquarters smartcrack that there's no antenna so good as a bad rhomboid, provided it's bad enough. Maybe the same thing applies to Vs but we figure we're going to have to fix it. Anyway, we like to think how much better our signal is going to be after we do.

Most fellows will tell you that they found it a bit more rugged to get going again than they had expected. We certainly did. We'd been running a WERS puddle-jumper during the war and since August we'd had it fired up on 112 (If you can fire up anything that pulls only 10 watts). But the matter of 28 Mc called for the big rig that had been sitting idle through the war, and doggone if we could remember which end of it was which. It used to eat out of our hand but now it just stood there blandly smiling out of its motionless meters and defying us to remember which knob was the cathode tuning knob and what that extra flipswitch was for. We had to learn all over again the hard way, getting the bugs out of each successive stage, replacing the parts that had gone wrong during the war—until finally we had grid mils in the final and amps in the feeders and we were in business again. It was only after we'd worked from EA to K6 that we discovered that one side of the V was down—over in that swampy patch, too, of course. There used to be an old Headquarters smartcrack that there's no antenna so good as a bad rhomboid, provided it's bad enough. Maybe the same thing applies to Vs but we figure we're going to have to fix it. Anyway, we like to think how much better our signal is going to be after we do.

Well, in the process of tuning up we had a narrow escape from getting bitten by the final tank, just because we'd forgotten our wiring diagram. And suddenly we knew what we wanted to talk about on this page this month. It's safety.

Men, amateur radio has always had its dangerous side. But these old prewar rigs of ours are likely to be particularly poisonous, and we want to urge you to use the greatest care in getting going again. Insulation has deteriorated and war—until finally we had grid mils in the final and amps in the feeders and we were in business again. It was only after we'd worked from EA to K6 that we discovered that one side of the V was down—over in that swampy patch, too, of course. There used to be an old Headquarters smartcrack that there's no antenna so good as a bad rhomboid, provided it's bad enough. Maybe the same thing applies to Vs but we figure we're going to have to fix it. Anyway, we like to think how much better our signal is going to be after we do.

Well, in the process of tuning up we had a narrow escape from getting bitten by the final tank, just because we'd forgotten our wiring diagram. And suddenly we knew what we wanted to talk about on this page this month. It's safety.

Men, amateur radio has always had its dangerous side. But these old prewar rigs of ours are likely to be particularly poisonous, and we want to urge you to use the greatest care in getting going again. Insulation has deteriorated and war—until finally we had grid mils in the final and amps in the feeders and we were in business again. It was only after we'd worked from EA to K6 that we discovered that one side of the V was down—over in that swampy patch, too, of course. There used to be an old Headquarters smartcrack that there's no antenna so good as a bad rhomboid, provided it's bad enough. Maybe the same thing applies to Vs but we figure we're going to have to fix it. Anyway, we like to think how much better our signal is going to be after we do.

Most fellows will tell you that they found it a bit more rugged to get going again than they had expected. We certainly did. We'd been running a WERS puddle-jumper during the war and since August we'd had it fired up on 112 (If you can fire up anything that pulls only 10 watts). But the matter of 28 Mc called for the big rig that had been sitting idle through the war, and doggone if we could remember which end of it was which. It used to eat out of our hand but now it just stood there blandly smiling out of its motionless meters and defying us to remember which knob was the cathode tuning knob and what that extra flipswitch was for. We had to learn all over again the hard way, getting the bugs out of each successive stage, replacing the parts that had gone wrong during the war—until finally we had grid mils in the final and amps in the feeders and we were in business again. It was only after we'd worked from EA to K6 that we discovered that one side of the V was down—over in that swampy patch, too, of course. There used to be an old Headquarters smartcrack that there's no antenna so good as a bad rhomboid, provided it's bad enough. Maybe the same thing applies to Vs but we figure we're going to have to fix it. Anyway, we like to think how much better our signal is going to be after we do.

Well, in the process of tuning up we had a narrow escape from getting bitten by the final tank, just because we'd forgotten our wiring diagram. And suddenly we knew what we wanted to talk about on this page this month. It's safety.

Men, amateur radio has always had its dangerous side. But these old prewar rigs of ours are likely to be particularly poisonous, and we want to urge you to use the greatest care in getting going again. Insulation has deteriorated and war—until finally we had grid mils in the final and amps in the feeders and we were in business again. It was only after we'd worked from EA to K6 that we discovered that one side of the V was down—over in that swampy patch, too, of course. There used to be an old Headquarters smartcrack that there's no antenna so good as a bad rhomboid, provided it's bad enough. Maybe the same thing applies to Vs but we figure we're going to have to fix it. Anyway, we like to think how much better our signal is going to be after we do.
QRM—The Electronic Life Saver
How Enemy Radar was Foiled by Jamming
In Two Parts—Part I
BY PAUL ROBBIANO, W6FKM

Some one has observed that whenever a new weapon of war is developed it is only a matter of time before countermeasures are devised to render it relatively ineffective. So it was with radar in this war. Radar countermeasure work, concentrated at the Radio Research Laboratory at Harvard, has led to the development of equipment which has more immediate application to communication in the microwave field than anything else so far disclosed. Here's a preview of the probable ham microwave gear of the future.

This is the story of radar countermeasures in the war, a tale of the development and use of equipment to search out, jam and deceive the enemy's radar systems. The part of the ham in this vital activity was an essential one, for he brought to the job a know-how and a feel for tubes and circuits which no amount of high-powered graduate study alone could have produced. Since over half of the technical research staff which developed RCM (radar countermeasures) apparatus at Harvard University's Radio Research Laboratory was composed of hams, or ex-hams, it is easy to realize the significant contribution of amateur training to this supersecret war activity. For the past three years the engineers of this laboratory have made Cambridge, Massachusetts, the noisiest city, electronically speaking, in the United States. This electrical plague has dwarfed all previous amateur efforts in the creation of QRM—but for once with a useful end in view.

Before U. S. entry into the war, some attention had been given to radar countermeasures by the Naval Research Laboratory and the Radiation Laboratory at Massachusetts Institute of Technology. By the end of December, 1941, the U. S. Services, aware of the need of a greatly expanded RCM program, formally requested the National Defense Research Committee of the OSRD to undertake a separate project in the field of radar countermeasures. The project was originally assigned to Radiation Laboratory, but shortly afterwards, it was found desirable to move it to an entirely separate laboratory. This led to the founding, early in 1942, of Radio Research Laboratory, an entirely new and separate radar countermeasures laboratory located at Harvard University. Late in 1942 the Radio Research Laboratory was placed under the supervision of the newly formed Division 15 of NDRC.

Chosen to create and direct the organization was Dr. Frederick E. Terman, then head of the Department of Electrical Engineering at Stanford University. Dr. Terman is well known professionally to all radio engineers because of his authorship of radio engineering books, such as "Radio Engineering" and "The Radio Engineers' Handbook," as well as many articles in leading radio engineering periodicals. Not so widely known is the fact that in his early days in

* Radio Research Laboratory, 18 Divinity St., Cambridge, Mass.

The "Mandrel" jamming transmitter, covering 85 to 135 Mc., was one of the first jammers developed at the Radio Research Laboratory to go into mass production. Immediately behind the front panel is the r.f. power amplifier, which uses an 829 tube. The next three sections contain the oscillator, modulator and power supply.

The QST logo is used to indicate a sidebar or note, which is a common feature in amateur radio publications. It is used to highlight special sections or additional information. In this case, there is no specific question or prompt associated with the sidebar.
An amplifier unit using continuously-variable inductance tuning to cover the range from 26 to 105 megacycles. Two HK-257B8s are operated as Class-B amplifiers to deliver a modulated output of 150-200 watts.

radio Dr. Terman was well-known in amateur circles, particularly on the west coast. His amateur activities started back in 1913, and in 1916 he was issued the call 6FT. After the conclusion of the World War in 1919, Dr. Terman was issued the call 6AE, the fifth one issued in the 6th call district after the war, and later he held the call 6XH jointly with Herbert Hoover, Jr., son of the former president. Subsequent demands of his work at Stanford University forced Dr. Terman to give up his amateur activities. Fortunately, however, his contributions to both amateur and professional radio circles have continued both directly and through the medium of his students.

One of the most secret of all the war enterprises, the Laboratory that Dr. Terman had been chosen to direct was responsible for the development of the greater part of all the radar countermeasures equipment used by the U. S. armed forces. Starting with a very small group, Radio Research Laboratory became a vast establishment employing at one time as many as 873 people and having an annual expenditure of $5,000,000. Only about one-fourth of this number were engineers and technicians, to be sure, but an unusually high percentage of machinists and draftsmen and other facilities personnel were provided in order to give each researcher every opportunity to turn out his maximum product. What a ham paradise, with any amount of special tubes and parts and almost unlimited test equipment! But before discussing the technical achievements of this group, let us review the problems with which they were faced.

At the time that Radio Research Laboratory was founded, little or nothing was known about specific details concerning enemy radar equipment. Information on countermeasures which the British had developed to neutralize this equipment was likewise meager. It was mandatory that this situation should be alleviated as soon as possible in order to determine the course that radar countermeasures research and development should follow in the United States. The best solution was to establish close liaison with British circles who had already had operational experience with radio and radar countermeasures. With this in mind, Dr. Terman flew to England in April, 1942, and obtained the vital information which was to determine the immediate future of Radio Research Laboratory's activities.

As a result of RCM liaison with the British, reports from British sources and American observers began to come to the United States concerning German radar equipment. At first the information consisted primarily of that which the British had managed to obtain with their radar search equipment flown by the RAF and by monitoring stations that had been set up along the Northeast and Channel coasts of England. Later this information was supplemented by that obtained from captured enemy equipment. Through this early intelligence work, interested Allied personnel were able to gain an idea of the magnitude of Germany's preparations for a radar war. Continued investigation by Allied scientists revealed that the Germans were equipped with five major types of radar operating at frequencies from 100 to 600 Mc. These were being used for Early Warning (early detection and plotting of planes), Coast Watching (plotting movement of ships at sea), Aircraft Interception, Anti-aircraft Gunfire Control, and Ground Control of Interceptors. Aircraft Interception, or AI radar, was installed in German night fighter planes to enable them to intercept night bombers. Probably the most dangerous of the German radars was the Small Wurzburg set which was used to control anti-aircraft guns. The task facing the Radio Research Laboratory in 1942 was to devise equipment capable of neutralizing all of the known German radar systems plus any that might appear at higher frequencies at later dates.

The Problem

Many new technical problems faced the Radio Research Laboratory in its development of radar countermeasures equipment. Of the three frequency ranges for which equipment was required, only the lowest (up to 200 Mc.) presented problems which could be met with standard tubes and lumped-constant circuits. In the second
range, from 200 to 2000 Mc. it was necessary to use linear tank circuits, coaxial tank circuits, or the newly developed "butterfly" circuit in order to obtain satisfactory performance. Furthermore, there were no really good tubes for operation above about 600 Mc., although there had been a number of experimental developments. For the microwave region above 2000 Mc. it was necessary to develop the use of cavity resonators and wave guides. Although all of these techniques were already known, few of them had ever been exploited from the points of view required in countermeasures equipment, namely, wide-range tunability and the development of large c.w. power outputs. It was also necessary to devise methods of obtaining wide-band modulation. That all of these problems were solved for frequencies up to the microwave region is clearly shown by the success of the many developments actually carried through into Service procurement.

Jamming transmitters were the most obvious need of the RCM program; low frequency ones were needed for operation against known enemy early-warning sets, while jammers in the next range of frequencies were required to counter coast watching, searchlight control, gun-laying, ground-controlled interception, and airborne interception radar. Transmitters for both frequency ranges were to be designed to meet two basic requirements. First of all, each transmitter should have the widest possible tuning range in order that maximum versatility be realized from each piece of equipment, thus reducing the number of transmitters required to cover all enemy radar frequencies. Standardization was also important to expedite mass production of RCM equipment once it was developed. The second basic requirement was that the transmitter have sufficient modulated power output to provide an effective jamming signal while maintaining the important properties of light weight and compactness. Light weight and compactness were important because almost all of the jamming equipment was intended for airborne installations. The problem of realizing the most effective modulation for radar jamming proved to be one whose solution came after much thought and exploitation of techniques previously untried.

To begin with, it was desirable to have each jamming signal cover as wide a bandwidth as possible, something in the order of 5 Mc. If such a bandwidth could be achieved it would mean that each jamming transmitter might conceivably jam several radar stations operating within several megacycles of each other; moreover, relatively few such broad band transmitters would be required if it were desired to jam an entire radar band 50 or more megacycles wide. Such broad-band characteristiccs are readily obtainable by mechanical frequency modulation of the carrier at low sweep rates or by a combination of frequency modulation and sine-wave amplitude modulation; however, these types of modulation did not prove as satisfactory for radar jamming as wide-band amplified noise. Wide-band noise, because of its complex electrical characteristics, is not susceptible to anti-jamming techniques as are the simpler types of modulation. As a result, when a noise-modulated jamming signal of sufficient intensity is tuned to the same frequency as the receiver of a radar system, the effect of the jamming signal is to decrease the signal-to-noise ratio to the point where the desired radar signal is completely buried in the high noise level. On the scope this interference appears in the form of a random "grassy" pattern. This results in the complete masking of the all-important radar "pips." If such thorough jamming occurs in a radar set controlling flak batteries, for instance, it means that unless the weather is clear enough for effective optical ranging, the aiming of the flak guns will border on pure guess work. Such proved to be the case in bombing missions over Germany. The possession of the "Mickey" radar bombing aid, which the Germans never were able to jam, permitted the U. S. Air Forces to bomb through clouds while at the same time their airborne RCM gear was thoroughly jamming German flak-control radar.

Noise modulation for radar jammers was first used by the British, who used a "noisy diode" circuit as a source of noise. Since the initial noise output was so low, an enormous amount of amplification was necessary to obtain a usable amount of noise power. Later investigations carried on at
the Radio Research Laboratory showed that the 931 photo-electric tube was a good source of electronic noise. Because of its very high amplification of electron “shot” effect, made possible by its generous secondary emission characteristics, the 931 had far greater output than the British scheme and proved to be readily adaptable for use in the wide-band modulators used in radar jamming transmitters. More recently, an even better source of noise was found in the 6D4 miniature gas triode working in a magnetic field.

While a great amount of laboratory time was being taken up in the development of transmitters and modulation systems, development of radar receivers was an equally important laboratory activity. Receivers were given high priority from the very beginning since they provided the best means of maintaining a close watch on enemy radar frequencies to check frequency distribution of signals and to detect any new enemy radar frequencies. To carry on such a radar monitoring program effectively, it was necessary to cover frequency ranges from the lowest commonly used in radar work (30 Mc.) to the highest permitted by the state of the art. Effective use of these transmitters and receivers required the development of numerous antenna systems, some having special characteristics such as broadband coverage, vertical, horizontal, or circular polarization, and particular types of pattern. From the receiver and antenna development at Radio Research Laboratory evolved a series of direction-finding (DF’ing) systems operating over a wide range of frequencies. Installed in planes and ships, such systems were responsible for the location and neutralization of numerous dangerous enemy radar-controlled weapons.

Another project involving a considerable amount of laboratory effort was the program undertaken at Radio Research Laboratory to develop “confusion reflectors.” While these were mechanically and electrically simple when compared with the electronic jamming equipment conceived at this laboratory, their effectiveness in jamming enemy radar systems was considered reason enough to devote some 2,000,000 pounds of aluminum foil each month toward their manufacture.

The most widely used of the “confusion reflectors” consisted of simple strips of aluminum foil code-named “window.” Each strip of “window” was about an eighth of an inch wide and was cut to be a half wave-length long for the frequency of the radar band to be jammed. Operationally, packages of “window” were tossed out of Allied bombers as the target area was approached. As each package dropped, it came apart and released thousands of strips of aluminum foil. The ultimate result of dropping thousands of such packages was the forming of clouds of “window” which were capable of reflecting radar echoes. Enemy radar operators were then faced with the problem of distinguishing between clouds of these reflectors and the bombers. This they ultimately were able to accomplish with limited success by judicious use of special anti-jamming devices; however, once the Allies began to make use of “window” in conjunction with large scale use of electronic jamming transmitters, the resulting predicament of enemy radar operators became extremely difficult.

Transmitters

The development of practical radar jamming transmitters for frequencies below 200 Mc. did not present the problems that were to be encountered for the higher-frequency transmitters since a number of tubes were available which had already found use in amateur equipment and had proved satisfactory for frequencies up to 200 Mc. As time went on, double beam-power tetrodes, such as the 829 and 832 series, virtually became the standard for low-power oscillators and amplifiers for frequencies up to 200 Mc. Tuning in this frequency range was generally accomplished by use of the familiar coil and condenser combina-
tion or else by a continuously variable inductance working across tube and circuit capacities. With the latter method of tuning, it was possible to obtain a frequency tuning range of almost 4 to 1 (highest frequency four times the lowest frequency). Electrically, these variable inductances were no more than simple open-wire transmission lines wound on a circular tube of good grade Formica or Micalex, contact being made through the use of silver-plated sliders or rollers.

A good example of equipment utilizing such techniques was the earliest of the jamming transmitters to go into large-scale production, code-named "Mandrel," which covered a frequency range of 85 to 135 Mc. by the use of two plug-in coils. The r.f. section consisted of an 832 push-pull oscillator driving a grid-modulated 829 push-pull r.f. amplifier to approximately 20 watts output. This particular transmitter was designed to jam low-frequency German early warning radar. Variable inductances, or "rollo" coils as they were called, were almost exclusively used in high-power Class B r.f. amplifiers which were developed to amplify the modulated output of "Mandrel" and other low-power jammers operating below 225 Mc. Outputs of over 180 watts were realized in the vicinity of 100 Mc. with efficiencies in the neighborhood of 50%. All of this was accomplished with conventional Eimac 35TG's and Gammatron HK 257B's.

Development of transmitters operating above 200 Mc. proved to be a formidable problem since in 1942 there were very few vacuum tubes capable of operating with good efficiency and output at higher frequencies. In fact, the only tubes that showed immediate promise of being practical for operation above 200 Mc. in the early jamming transmitters were the already available "doorknob" tubes. From these tubes came the oscillator of the "Carpet I" jamming transmitter which tuned as high as 720 Mc. with outputs up to 6 watts. Basically, the oscillator circuit was a simple push-pull t.p.t.g. circuit using open-line tank circuits. The efficiency of this oscillator was greatly enhanced by completely enclosing the oscillator in a shield box to prevent loss of output power through stray radiation from the open lines. (This, incidentally, is an important step which was rarely ever followed in the average pre-war ham rigs on 112 Mc.) The lower frequency limit of the "Carpet I" oscillator was about 470 Mc. This range was obtained merely by the continuous tuning of the plate and grid lines with appropriate antenna tuning adjustments. While this procedure in itself sounds quite simple, there is no way of evaluating the time that was taken in the development of "Carpet I" to make such a relatively simple tuning procedure possible! It is sometimes quite an accomplishment to obtain oscillation at a single high frequency; however, realizing stable oscillation over wide tuning range is a far greater problem, largely because of the trouble caused by "loop resonance" effects taking place on unused portions of the open tuning lines. This trouble was cured by properly designed filament chokes and proper r.f. by-passing, but only after much experimentation. A transmitter of similar design with an output of approximately 20 watts was used to cover the range from 200 to 550 Mc. Like "Carpet I," this transmitter, "Rug," used "doorknob" tubes; however, they were tubes designed for lower-frequency work and were larger with appropriately larger power capabilities.

Following "Carpet I" and "Rug" came the "Carpet III," which was a transmitter designed to jam German flak-control radars operating from 460 to 585 Mc. This transmitter used RCA 8012 tubes for the oscillator and had a nominal output of 20 to 30 watts. Like "Carpet I," this piece of equipment found wide usage in the 8th and 15th U. S. Air Forces during the latter part of the war against Germany.

Early in 1942, research work was started at Radio Research Laboratory on concentric line oscillators which would tune up to 1000 Mc. and higher. This work has continued up to the present time. In March, 1944, the first successful model was being produced commercially for use in a new jamming transmitter capable of tuning well above 1000 Mc. with outputs of about 30 watts. This oscillator made use of a single "lighthouse"
One of several types of tunable magnetrons operating in the 2000-4000 Mc. range, capable of c.w. outputs from 50 to 85 watts. These tubes, or comparable types, may be the amateur transmitting tubes of the future in the superhigh range.

odiode, the 3C22, which had been specially designed by General Electric Company for concentric line oscillators. Electrically, this oscillator was relatively simple, the tuning being accomplished in the cathode and plate circuits; however, the care that had to be taken in the design of the tube contacts and sliding contacts on the tuning plungers more than made up for the electrical simplicity. A later version of this concentric-line oscillator has recently been developed with an improved type of tube, the 2C39, which makes possible greater output at better efficiency. This latest oscillator has a continuous tuning range from 300 to 2700 Mc. Other types of oscillators have also been developed at Radio Research Laboratory which are capable of average outputs greater than one kilowatt at frequencies considerably above 1000 Mc. This was possible through the use of strapped-multi-cavity tunable magnetrons, developed by industrial laboratories under contracts with NDRC, Division 15.

Undoubtedly the most spectacular development to come out of Radio Research Laboratory during its existence came about as a result of British interest in December, 1942, in a superhigh-power radar jamming system. It was thought that such a jammer could be put to good use in Great Britain where it would be installed on the English Northeast Coast, with the sole intention of jamming the airborne radar sets carried by German night fighter planes, which were at that time accounting for many British night bombers. To produce sufficient signal strength for effective jamming over a 200-odd mile path leading into Germany required an enormous amount of power, even though the contemplated antenna system provided a power gain of 180 to 1. About the only tubes that gave any promise of generating the many kilowatts of r.f. that were required at frequencies from 400 to 600 Mc. were the so-called “Resnatron” tubes. Research on this type of tube was originally started at the University of California. When the war came along, the NDRC awarded a contract to Westinghouse Electric Company to carry on further development and eventual manufacture of these tubes. As a result, when British interest was shown in a high-power jammer for operation in the 400- to 600-Mc. region, tubes were ready for trial. The design and development of a suitable oscillator, along with associated equipment which would handle the terrific r.f. power expected, was up to a group of engineers and physicists detailed to work on this project at the Radio Research Laboratory. (With an eye toward the parabolic antenna that was to be used as radiator, this project was code-named “Tubs.”) To begin with, average r.f. power outputs of 30 kilowatts or better were expected! This meant the design of a suitable power supply which would be capable of 100 kilowatts or more. Moreover, the “Resnatron” tubes were to undergo continual pumping in order to maintain their working vacuum, since there was no vacuum sealing in the tubes. The terrific powers involved made a circulatory liquid cooling system mandatory. Forty gallons of water per minute were later found to be necessary. In addition to problems concerning power supplies and vacuum and water-cooling systems, there was the question of coupling kilowatts of r.f. power from the “Resnatron” oscillator to the antenna. After some mishaps, this was successfully accomplished.
using a wave guide as the transmission medium. Since the experimental laboratory oscillator was located in the basement of Radio Research Laboratory, r.f. power was piped up seven stories to a parabolic reflector antenna located on the roof of the laboratory.

In spite of the many initial problems, the "Tuba" boys had their monstrosity generating unheard of high-frequency power by April of 1943. Subsequent tests showed the power output to be consistently around 50 kilowatts into a dummy load over a frequency range of 480 to 600 Mc. The greatest output reached was 87 kilowatts delivered into a dummy water load! At this point it must be stressed that this power is average c.w. power and is not peak pulse power! The modulation consisted of video noise which was obtained by methods previously discussed. While almost all of the generated r.f. power from "Tuba" was successfully piped either into a dummy load or to the antenna, there was usually enough power floating around to cause some amusing incidents. In one case, a visiting engineer was being conducted on a tour of the "Tuba" project when he suddenly found his necktie clip becoming unduly hot. Unfortunately, his tie clip happened to be of such a size as to resonate with the "Resnatron" oscillator frequency. On another occasion while the oscillator was being tuned, a harmless hacksaw hanging on a nearby tool board suddenly came into loop resonance. In a very short time it had melted into uselessness.

The construction of the "Tuba" equipment was carried on under Lend-Lease arrangements initiated by the British. In the early months of 1944, the original "Tuba" project went overseas and was set up on the Northeast coast of England. At the same time a contract was established, under Division 15 of the NDRC, with the Delta Star Electric Co. of Chicago for the construction of two additional units which were delivered to the British late in 1944; however, at that time the German air force was already so depleted that the jamming of German night-fighter radar sets had lost its initial importance.

Although not having had much operational use, the "Resnatron" transmitter should undoubtedly prove to be one of the revolutionary developments of the war, inasmuch as the effective radiated c.w. field strength from the parabolic reflector antenna at Radio Research Laboratory was probably greater than ever realized from any other transmitter at any frequency. Normal r.f. power output varied between 30 and 50 kilowatts when operating into the antenna as load. The gain from the parabolic antenna was about 600 to 1, giving a field strength equivalent to 24,000 kilowatts radiation from a simple half-wave dipole antenna! The oscillator efficiency under such conditions varied between 40 and 80 per cent, depending on the details of modulation.

At present, further "Resnatron" research and development is being carried on at a well-known radio company in the Midwest. Given a little time to iron out some of the early difficulties such as maintenance of vacuum pressure and of transferring generated power more efficiently to the load, there is no telling what the ultimate power output capabilities of the original "Tuba" may become. At least now it can be said that the days of "flea power" above 300 Mc. have ended.

(Part II of this article will appear in an early issue.)

Resnatrons in the high-power "Tuba" jamming transmitter. Developing 85 kilowatts of c.w. power at 400 to 600 megacycles, these tubes are no midgets! The piping in the foreground is part of the water-cooling system.
A NEW TYPE of amateur communication became available with the opening of the superhigh frequencies to amateur use on November 15. Listed as amateur bands are 2300 to 2450, 5250 to 5650, 10,000 to 10,500 and 21,000 to 22,000 megacycles. Before the war these frequencies were seldom talked of in practical terms, but now tubes and equipment are available which make operation possible on these bands. The system described here is one which was put together to show that amateur communication in the microwave region is feasible. Refinements were left out and no attempt was made to construct compact transmitters or receivers. Rather, it was thought that at this time the principal interest is in the application of techniques used in the super-high-frequency ranges.

Two similar stations were built, each having a transmitter and receiver operating continuously so that two-way duplex operation is possible and switching is unnecessary. Highly directive antennas eliminate interference between the transmitter and receiver. Since the two stations were built in approximately the same form a description will be given of only one.

Reflex Klystrons

The heart of both the transmitter and receiver is the Sperry 2K43 reflex klystron. Its frequency range as listed on the characteristics sheet is from 4200 to 5700 megacycles, so it very nicely fits the 5250-5650-Mc. band. Before proceeding further it might be well to include a very brief description of the reflex klystron and its operation.

A reflex klystron is a vacuum tube with the radio frequency circuit built into the tube itself. Three different sections of the tube will be considered separately in order to simplify the discussion of its operation. These sections are an electron gun, a single cavity resonator which is the complete radio-frequency circuit, and a reflector electrode. The arrangement of these parts is shown in Fig. 1.

The electron gun consists of a cathode K, focusing ring G, and the anode plane. The cathode is the source of electrons which are attracted to the anode plane. The anode has an open-grid structure so that a beam of high-speed electrons can continue along the tube and pass through the resonator grids. The focusing ring acts as an electron lens and focuses the beam so that it passes through the anode plane and past the resonator grids.

When the electrons pass the resonator grids their velocity is changed periodically by the radio-frequency voltage between the grids. After going through the grids they continue toward the reflector electrode, some travelling faster than the average and some moving more slowly. The beam is reversed in direction by the reflector, which is given a more negative voltage than the cathode. When the beam returns to the resonator grids it is bunched by the action of the velocity modulation. If the bunches return in phase with the resonator voltage they will build up considerable r.f. power in the cavity, and this power can be withdrawn through the coaxial output line.

Since there is only a single circuit involved in a

* Nassau, N. Y.
** 175 Maple Ave., Rockville Centre, N. Y.
reflex klystron oscillator, the frequency of oscillation will be determined primarily by the tuning of the cavity resonator. However, the phase of the returning bunches is controlled by the beam and reflector voltages. Let us consider a case when the beam voltage is constant and the reflector has a slightly more negative voltage than the cathode. The electrons will almost reach the reflector before being turned back, and will return to the resonator grids several cycles later. The phase of the returned bunches will depend upon the time the electrons spend in the reflection space. The klystron will oscillate if this phase is correct.

If the reflector voltage is now made somewhat more negative, the electrons will be reversed sooner and the bunches might arrive 180° out of phase with the resonator voltage. Oscillation cannot occur under these conditions; in fact, the beam does not even become bunched. When the reflector voltage is made much more negative, the returning bunches may arrive one complete cycle earlier, and the phase will again be correct for oscillation. This behavior explains the appearance of “voltage modes” in the output of a klystron oscillator. This simply means that varying the reflector voltage will produce oscillation at various points, known as the voltage modes, and the output will drop off to zero between these points. The way in which the output varies is shown in Fig. 2.

The same type of curve could be drawn for the beam voltage with the reflector voltage held constant. The beam voltage is the voltage applied to the resonator body, which is positive with respect to the cathode. It can be seen that the klystron is unlike the ordinary oscillator where a continual rise in applied potential causes a constant increase in output.

Another important characteristic of reflex klystrons should be mentioned before giving a description of the system itself. The frequency of oscillation is not determined exclusively by the resonator tuning but also by the beam and reflector voltages. Changing the reflector voltage varies the frequency by as much as one percent. This characteristic is illustrated in Fig. 3 for a single mode, but the effect occurs on all modes.

It can be seen that amplitude modulation of the output would cause a wide frequency variation of several megacycles. The greatest degree of amplitude modulation also is obtained near the edge of oscillation, where the output curve is steep, but this region is rather unstable. However, if frequency modulation is chosen, one can work well away from the points where oscillation drops out and at the same time be in the center of the curve where the amplitude is most nearly constant. The klystron, therefore, lends itself nicely to frequency modulation, but is not very satisfactory for amplitude modulation.

Tuning is accomplished by varying the separation of the resonator grids. This is possible because a flexible diaphragm forms one side of the resonator. As the distance between the grids is increased the capacity between them is decreased and the frequency increases. Screws are built in for making adjustments. For very fine control, which is a convenience rather than a necessity, vernier tuners may be used.

The Transmitter

It might be thought that a transmitter operating at 5300 Mc. would have to be an elaborate affair, but quite the opposite is true. The klystron has all of its tuned circuits built in, in the form of a resonator, so all that is necessary is a power supply, modulator and radiator. If the reflector is modulated, no modulation power is needed because the reflector operates at a negative potential and draws no current.
Two types of modulation have been tried, one at each station. The two methods, shown in Fig. 4, produce the same results and differ only in their methods of isolating the microphone from the high-voltage circuit. In each case an ordinary carbon mike is connected across a small audio transformer with a 1.5-volt battery in series. Method 1 is straightforward and uses a transformer with high-voltage insulation directly in the reflector lead. Method 2, using blocking condensers, was tried to show that transformers with low-voltage insulation might be used. In each case it was found advisable to put a resistor of a few thousand ohms across the secondary of the transformer. This cuts down the audio voltage developed and prevents overmodulation, and at the same time stops noise pick-up in the modulation circuit. With a low impedance in the reflector lead the modulation may be applied anywhere along the reflector line, but if a high impedance is used it may be found necessary to hook in the modulation at the reflector cap. The microphone case should be grounded as a safety precaution.

The transmitting klystron and its blower mounted on the antenna support. The wave-guide starting section is not visible in this photograph, as it is on the other side of the 2-by-4 support.

regulated source of beam voltage and reflector voltage. Smaller power supplies with equally good regulation were used for the receiver klystrons. It is necessary to vary either the beam or the reflector voltage to select the proper voltage mode. The power supply units used at these stations have both voltages variable, but usually the beam is set at a fixed value and the reflector voltage is varied to bring the transmitter into operation.

Power is fed from the klystrons to the parabolic reflectors by means of 1- by 2-inch rectangular wave guide. This size was chosen because it was the smallest available size which would pass 5300 megacycles. The use of wave guides for transmission lines may be new to some readers, but at these frequencies the guide is quite often used in place of coaxial line. A wave guide acts as a high-pass filter and will transmit a signal so long as the wavelength is less than the cut-off wavelength. For the frequencies used in this system any wave guide 1.2 inches or wider is acceptable. The height

Fig. 4 — Modulation circuits are simple, consisting chiefly of a microphone and microphone transformer. Method 2 gives d.c. isolation from the transmitter.
of the wave guide determines the power-carrying capacity of the line and since only low power is used here this dimension is not critical. The signal is introduced by means of a simple wire probe inserted in the wave guide as shown in Fig. 5.

For a short-range system it would be possible to point the wave guide output at the receiver. However, this produces a broad antenna pattern which is not very satisfactory for point-to-point communication. In order to obtain a beam, the wave guide output is placed at the focal point of a 30-inch aluminum parabola. Parabolas of this type have been used extensively during the war and it is hoped that they may be available to amateurs as government surplus. No accurate checks have been made as to the beam pattern obtained but it appears that about a 10-degree beam is produced. This gives considerable gain and at the same time permits contact when the stations are not oriented exactly right.

The Receiver

The receiver works on the heterodyne principle. A signal differing from the received signal by approximately 45 megacycles is generated at the receiving station. These two signals are mixed and the 45-Mc. signal obtained is then fed to a standard frequency-modulation receiver for detection. It does not matter whether the f.m. receiver tunes to the present standard of 45 megacycles or to the future standard around 100 megacycles, as the only difference is in the frequency setting of the local oscillator. The receiver discriminator circuit has been altered slightly so that a simple automatic frequency control can be used to keep the separation between the local oscillator and the received signal constant.

The way the a.f.c. is hooked up is shown in Fig. 6. The reflector supply is tied directly to one cathode of the discriminator while the reflector is tied to the other through an RC filter. Any d.c. voltage which the receiver impresses on the resistances R_1 and R_2 is added to the applied reflector voltage. If the transmitter frequency varies, the difference frequency between the local oscillator and the transmitter is no longer correct and a voltage is immediately developed across resistors R_1 and R_2. This voltage is added to the reflector voltage; if the voltage is negative it will increase the frequency as shown in Fig. 3. Provided the polarity of the cathode connections is correct the local oscillator will be brought back to the proper frequency. Tests have shown that the receiver will keep locked in with a received signal which has drifted as much as 10 megacycles from its original setting. If the polarity of the connections to the cathode is incorrect it will be immediately evident, because the receiver will detune the local oscillator whenever a signal is received. One of the receivers has a three-position switch which will give either polarity or will disconnect the a.f.c. entirely.

W6BMS and W2LGF (holding the microphone) with one of the 5300-megacycle stations hurriedly assembled to open the band on November 15th. The transmitter, with a blower for cooling the klystron, is mounted in front of the upper "dish." The receiver local oscillator and mixer similarly are mounted in front of the lower parabolic reflector.
Fig. 7 — The r.f. mixer circuit, built in a section of 1- by 2-inch wave guide. Local oscillator voltage is injected by means of the probe shown at the top. The 45-Me. i.f. signal is taken from the crystal detector through a coaxial line to the standard f.m. receiver.

Since the cathodes of the discriminator are now at a high potential with respect to ground, certain isolation features have been incorporated. An additional heater transformer has been put in for the discriminator to isolate it from the other heaters in the receiver. The voltage rating of condenser C_1 connected between the windings of the discriminator i.f. has been increased to 1500 volts. Condenser C_2 has been put in the cathode ground return and condenser C_3 installed in the audio lead. R_3 and C_4 keep any of the audio signal from reaching the reflector. The use of the neon tube from the reflector to the reflector supply is common practice when a high impedance is inserted in the reflector lead. In case the reflector should draw current for any reason it prevents excessive voltage from being developed across R_1, R_2 and R_3.

The tuning-eye circuit has been disconnected because the discriminator is now operated considerably above ground. A microammeter inserted in the grid lead of the limiter tube acts as a tuning indicator.

In order to obtain the difference signal between the local oscillator and the received signal, a crystal mixer of the type shown in Fig. 7 is used. This is built in 1- by 2-inch wave guide in much the same form as the transmitter starting section. The open end of the wave guide is located at the focal point of the receiver parabola. The local oscillator signal is fed into the guide by means of a wire probe. Near the closed end of the guide a crystal is inserted. Type 1N23 crystals are used, but other cartridge-type crystals of the 1N series would be satisfactory. The actual mixing occurs in this crystal. The difference signal is fed by means of a coaxial line to the input of the f.m. receiver. This difference signal is approximately 45 megacycles and contains the frequency modulation which is on the carrier of the received signal. From this point on the system is similar in operation to any ordinary f.m. receiver.

The local oscillator is run at about 500 volts and 20 milliamperes and no cooling is necessary.

Operation

One accessory needed with this system is a wavemeter in order to be sure that both the transmitter and the local oscillator are on frequency. Various methods may be used for determining the frequency.
frequency but perhaps the most convenient for this application is the quarter-wave concentric line resonator. This is a wavemeter which uses a cavity with a plunger inserted coaxially in it as shown in Fig. 8.

R.F. is fed through a coupling loop on one side of the cavity while a crystal detector is connected to a coupling loop on the opposite side. A milliammeter is connected across the output of the crystal detector. When the plunger is moved to the position corresponding to the input frequency, r.f. will feed into the output loop and a reading will be obtained on the crystal meter. The trap shown in the top section of the wavemeter stops r.f. leakage along the plunger, which might otherwise act as a coaxial line and conduct the energy out of the cavity.

The wavemeters used in conjunction with the system described are Sperry MK C-27 wavemeters, which use a micrometer screw to move the tuning plunger. The scale of the micrometer is calibrated in terms of frequency. The plunger is moved until a reading is obtained, then the frequency is read from a calibration chart. Difference frequencies can be measured within two megacycles with this type of wavemeter. To use the wavemeter, a quarter-wave probe (length \(\frac{3}{4} \) inch) is attached to the input line of the wavemeter. The probe is held directly in front of the wave guide to measure the local oscillator frequency, but it should be held somewhat farther away to prevent damage to the detector crystal when measuring the frequency of the transmitter because of the higher power.

First contacts were made at 7:46 P.M. on the evening of November 15, 1945. The two stations were set up on roofs with W2LGF operating in Garden City, New York, and W6BMS/2 operating in Great Neck, New York, which is about five miles away. This is almost a line-of-sight path, with the signal cutting through the tree tops. W2LGF operated on a frequency of 5390 megacycles while W6BMS was on 5280 megacycles. Several QSO's have been held since, lasting as long as two hours at a time. During this time the a.f.c. stayed locked in continuously except when tests were made to determine characteristics of the system or when someone stepped in front of a parabola. Quality is as good as is usually obtained with a carbon microphone. A small amount of hum has been noticed on the carriers but this has been traced to vibration caused by the blowers. This can be corrected by mounting the blowers on rubber shock mounts, although the hum is not strong enough to be bothersome.

It should again be pointed out that the equipment was put together in a hurry to open up the 5300-megacycle band. The methods discussed do not represent the ultimate in microwave communication but rather are presented to start the ball rolling on a new phase of amateur radio.

WWV Schedules

Standard-frequency transmissions are made available as a public service by the National Bureau of Standards over its standard-frequency station, WWV, on the following schedules and frequencies:

- **2.5 Mc.** — 7:00 p.m. to 9:00 a.m. EST (0000 to 1400 GMT).
- **5.0 Mc.** — Continuously, day and night.
- **10.0 Mc.** — Continuously, day and night.
- **15.0 Mc.** — Continuously, day and night.

The 10- and 15-Mc. radio frequencies are modulated simultaneously at accurate audio frequencies of 440 and 4000 cycles. 5 Mc. carries both audio frequencies during the daytime but only 440 cycles from 7:00 p.m. to 7:00 a.m., EST, while 2.5 Mc. carries only the 440-cycle modulation. A 0.005-second pulse may be heard as a faint tick every second, except the 59th second of each minute. These pulses may be used for accurate time signals, and their one-second spacing provides an accurate time interval for physical measurements.

The audio frequencies are interrupted precisely on the hour and each five minutes thereafter, resuming after an interval of precisely one minute. This one-minute interval is provided to give the station announcement and to afford an interval for the checking of radio-frequency measurements free from the presence of the audio frequencies. The announcement is the station call (WWV) sent in code, except at the hour and half hour, when it is given by voice.

The accuracy of all the frequencies, radio and audio, as transmitted, is better than a part in 10,000,000. Transmission effects in the medium may result in slight fluctuations in the audio frequencies as received at a particular place; the average frequency received, however, is as accurate as that transmitted. The time interval marked by the pulse every second is accurate to 0.00001 second. The 1-minute, 6-minute and 5-minute intervals, synchronized with the second pulses and marked by the beginning and ending of the periods when the audio frequencies are off, are accurate to a part in 10,000,000.

Of the frequencies mentioned above, the lowest provides service to short distances and the highest to great distances. In general, reliable reception is possible at all times throughout the United States and the North Atlantic Ocean, and fair reception over most of the world.

Information on how to receive and utilize the service is given in the Bureau's Letter Circular, "Methods of Using Standard Frequencies Broadcast by Radio," obtainable on request. The Bureau or special applications of the service. Correspondence should be addressed to the Director, National Bureau of Standards, Washington, D. C.
Christmas, 1944

A heart-warming yarn involving a combination at the Amateur and the Christmas Spirit in far-off Hollandia

BY S/SGT. R. H. NEWKIRK,* W9BRD

In a wartime world the singular and exclusive camaraderie that exists in the hobby of amateur radio results in so many unexpected and coincidental meetings between good friends, who have previously never seen each other, as to make such happenstance fairly commonplace. But I boast a tale in which time, place and circumstance combined to cause a similar occurrence to be most extraordinary.

The Liberty ship El Segundo Ruiz Belvis lay at anchor in the murky waters of Humboldt Bay, New Guinea, on a tepid, tropical night in '44. In the absence of the moon, the Dipper and the Southern Cross scintillated bewitchingly. On the shore, the lights of the army base of Hollandia burned steadily in contrast to the variegated signal blinkers which intermittently pierced the opaque darkness throughout the harbor. The latter were visual communication between ships and shore plus an admixture of ship-to-ship chatter, official and otherwise. There was an underlying tense tinge to the atmosphere and the stillness was broken only by the occasional clank and grate of the steel deck, we were Leyte-bound. Stifled, sweaty and hungry on our two meals per day, we wore out deck after deck of ship gear and the sharp staccato of the Belvis' blinker shutters as the signalman transacted port business with the powerful land station.

This was rendezvous. Our Liberty, with scores of army personnel aboard, had here become a unit in the formation of a huge convoy. Crammed into holds, on hatches and into every available nook and cranny of the steel deck, we were Leyte-bound. Stiffed, sweaty and hungry on our two meals per day, we wore out deck after deck of pinochle cards and read every available piece of literature over and over again. The convoy had no mail for weeks. Men leaned languidly on the rail and thought of home while others dreamed of the same in their cramped quarters. The circumstances certainly made this Yuletide one to be long remembered. Nevertheless, all that would feature this day for us would be a possible piece of priceless turkey added to the usual dehydrated viands. Just another dragging equatorial day to be piled atop hundreds just like it.

It was ten o'clock. I was wide awake; only my eyes were tired. Presently, I found myself distractedly reading the blinkers which poked their focused fingers indiscriminately about the bay. My quarters, in the cab of a 399, were on the port rail among ships and afforded a good view across the water. I became absorbed in various bits of chatter between nearby vessels. It struck me that QRM was quite heavy tonight—a sort of an optical 80 meters. I saw one of the lights sign off with a "73." This was interesting as among the host of merchant marine signalmen, hams are spread pretty thinly. I seized my M-1 torch and focused an insipid beam in the direction of that ship. I sent CQ CQ CQ K. A ham call sign is a cumbersome thing to handle with a blinker. Furthermore, I had no faith in the DX powers of my 3-volt flashlight bulb. I was therefore elated when a bright interrogatory sign beamed forth, aimed obviously in my direction. Contact! True, it was far outside the hambands, but band divisions in the microwave region are indefinite anyway.

I was still dubious as to whether my man was an amateur. Rather than complicate matters immediately, at this speed of 8 words per minute, I began in the language of the layman: HELLO PAL WHERE YOU FROM? K. Back in an agreeably rhythmic style came: R TULSA OKLA NAME IS HAL K. The given name and place struck a subconscious responsive inner chord vaguely. Next, I blinked: GB HAL IM ROD FROM CHGO K. There was a pause. He reoriented his beam to compensate for tidal drift and then startled me with: W9BRD DE W5EGA K.

The night quickly took on an exhilarant aspect as we lapsed into ham vernacular, spiced with many Morse slaps on the back. Hal Franks was no other than an old c.w. crony of mine. We had heckled each other on 80, 40 and 20 a countless number of times in the prewar days. In memory I was hearing again that beautiful swing and rotary. We discovered mutual ham friends and we exchanged much welcome information and recounted bygone days. He was quite amazed to learn that I was behind a mere GI flashlight (with low batteries at that). The QSO continued far into the night—the next and the next.

We seemed destined to rot in our anchorage. The convoy movement was postponed from day to day. However, this Christmas season took on a much different aspect for me as arrangements were made and, at 0900 Christmas Day,

(Concluded on page 102)

January 1946

*AP0 74, c/o PM, San Francisco, Calif.
A New F.M. Detector Circuit

Ratio Detector Makes Limiting Unnecessary in F.M. Receivers

I n the ordinary f.m. discriminator circuit, shown in simplified form in Fig. 1, a properly-centered unmodulated carrier results in the appearance of equal rectified voltages across \(R_1 \) and \(R_2 \). Since these voltages have opposite polarity with respect to the mid-connection between the two resistors the voltage across the output terminals is zero.

When the carrier frequency deviates under modulation the r.f. voltage applied to one diode increases while the voltage applied to the second diode decreases. As an illustration, suppose that the carrier alone develops a d.c. voltage of 10 volts in each load resistor, the voltage in \(R_1 \) being positive and that in \(R_2 \) negative with respect to ground. Then if the carrier deviates in such a way that the voltage applied to diode No. 1 increases and that applied to No. 2 decreases, the rectified voltage in \(R_1 \) may increase to +15 volts while that in \(R_2 \) decreases to −5 volts. The output voltage is now +10 volts, the difference between the two.

Now, to take another case, suppose the carrier strength is such that under no-modulation conditions 20 volts appears across each load resistor. The same frequency deviation as in the first case now will cause the rectified output voltage to rise to +30 volts in \(R_1 \) and to decrease to −10 volts in \(R_2 \). The output voltage is now +20 volts for the same frequency deviation. In other words, the discriminator is sensitive to amplitude changes except when those changes occur exactly at the center of the discriminator characteristic. At that point, of course, the output voltage is zero regardless of the amplitude of the r.f. voltage, within the limits of linearity and balance in the particular set-up.

As is well known, a discriminator will respond quite nicely to an amplitude-modulated carrier when the receiver is detuned so that the carrier is not centered. This characteristic makes it necessary to use limiting ahead of the discriminator in an f.m. receiver, to wash out the amplitude variations which otherwise would appear in the rectified output. If an f.m. detector could be made unresponsive to amplitude changes the full benefits of f.m. reception could be obtained without the necessity for limiting, and the large amount of r.f. and i.f. gain required for good limiter operation would not be needed.

The Ratio Detector

A practical f.m. detector having these characteristics has been developed by the RCA Laboratories, Industry Service Division. It is based on the idea of dividing a fixed d.c. voltage into two parts having a ratio which is equal to the ratio of the amplitudes of the two i.f. voltages that are applied to the separate diodes in the ordinary discriminator circuit. In the examples above, this ratio increased from 1:1 with an unmodulated carrier to 3:1 with frequency deviation in one direction. Note that the ratio was the same in both examples — 15/5 in the first and 30/10 in the second — although the differing amplitudes gave rise to an output signal twice as large in the second case as in the first. If the detector responds only to a change in this ratio, the signal amplitudes may vary over a wide range, in the practical case, without causing a change in the output voltage. In other words, the detector will respond to f.m. but not to a.m.

Fig. 1 — Elementary discriminator circuit.

The operating principles can be explained with the help of Fig. 2, an elementary form of ratio detector. In this circuit a battery supplies the fixed d.c. voltage, \(E \). The polarity of the battery voltage is such that the two diodes are non-conducting in the absence of an i.f. signal. Under these conditions, the two voltages \(E_1 \) and \(E_1 \) will be equal (if the two condensers have equal capacitances) and there will be no difference of potential between points A and B, the latter being a center-tap on the battery.

When i.f. signals of equal amplitudes are applied to the two diodes, current will flow around the loop formed by the battery and the diodes but there will still be no difference of potential between A and B. However, if the i.f. voltage applied to one diode — the upper one, say — is greater than that applied to the lower one, \(E_1 \) will increase and \(E_2 \) will decrease, the ratio of \(E_1 \) to \(E_2 \) becoming the same as the ratio of the two i.f. voltages. But the total voltage, \(E \), is still the same. The situation is quite comparable to that which would exist should two similar rectifier
power supplies be connected in series with a battery as a load; if the primary voltage on either or both is changed the proportion of the total voltage that each supplies changes correspondingly, but the total voltage could not change, assuming that internal resistance of the battery is negligible.

A Practical Circuit

The elementary circuit of Fig. 2 would not be entirely satisfactory for practical work. The diodes do not conduct until the rectified voltage is great enough to overcome the battery voltage, which means that the battery voltage must be very small if the detector is to operate on weak signals. On the other hand, the audio-frequency output is limited to a peak-to-peak amplitude equal to the battery voltage, so that a relatively large fixed d.c. voltage is desirable if strong signals are to be fully utilized. This problem is solved in the practical form of the circuit shown in Fig. 3. The i.f. circuits are those of the familiar discriminator, and the i.f. voltages applied to the two diodes vary as usual with frequency deviation from the center frequency. The rectified output of the diodes is fed in series through a resistor, R_1, causing a d.c. voltage drop which replaces the battery voltage in the elementary circuit of Fig. 2. R_1 is by-passed for audio frequencies by C_1 so that the voltage drop is constant whether or not the i.f. carrier is being modulated. The value of the d.c. voltage developed in R_1 obviously depends upon the carrier strength, so that the voltage will be small if the signal is weak and large if the signal is strong, thus overcoming the objection to the use of a d.c. voltage that is independent of the signal strength. For any given carrier, of course, the voltage is fixed, and the detector works on the ratio principle just as in Fig. 2.

The value of R_1 is somewhat critical if best results are to be secured. If the resistance is too small the detector will be insensitive because the rectified voltage will be small. On the other hand, if the resistance is too large the immunity to amplitude-modulation effects is reduced. A compromise value is indicated under the circuit diagram, although the choice of an exact value should depend upon the results of measurements made on the actual receiver set-up.

It should be noted that since the voltage developed in R_1 is proportional to the carrier amplitude it is possible to use it to provide a.v.c. for the r.f. and i.f. stages in the receiver. It is also of interest to note that a receiver using this type of detector behaves much like an ordinary a.m. receiver in that signals that are not strong enough to give full a.v.c. give less audio output. Further, the side responses that are characteristic of the usual limiter-discriminator combination are much reduced by the ratio detector; this is because the ordinary discriminator is very sensitive to the amplitude changes that occur when the carrier is tuned through the sloping sides of the i.f. resonance curve, while the ratio detector responds only to changes in the ratio of the i.f. voltages applied to the diodes. This ratio peaks on either side of the resonance curve so side responses are still present, but they are smaller than in the case of the limiter-discriminator.

![Fig. 2 — The ratio detector in simplified form.](image)

The ratio detector in simplified form.

![Fig. 3 — Practical circuit of the ratio detector.](image)

Practical circuit of the ratio detector. The i.f. circuit constants will depend on the intermediate frequency and bandwidth in the same way as in conventional discriminator circuits.

$C_1 = 8$ mfd. electrolytic
$C_2, C_3 = 0.004$ µfd.
$C_a = 0.0001$ µfd.
$R_1 = 30,000$ ohms
$R_2 = 1$ meg. volume control

In general, the ratio detector is said to be somewhat harder to adjust than the ordinary discriminator, but the advantages of the circuit would appear to outweigh this disadvantage. The reduction of side responses alone would appear to make it particularly interesting for amateur f.m. work, as the three-spot tuning of the limiter-discriminator arrangement is definitely detrimental to selectivity. In addition, it is certainly not unwelcome news that less instead of more r.f. and i.f. gain is required for good f.m. reception. It is stated that broadcast receivers using this circuit, having one r.f. and only one i.f. stage, are equally as sensitive as more elaborate receivers of conventional design, and frequently give better performance on the weaker signals. All of which sounds as though the circuit is a good bet for amateur f.m. receivers.

Many of the design requirements in f.m. receivers are based on the necessity for eliminating amplitude modulation before the signal is applied to the discriminator. Inherently insensitive to amplitude modulation, the ratio detector promises to effect a marked simplification in f.m. receivers.
The Half-Rhombic Antenna

A Directive System for V.H.F.

BY CAPT. JOHN H. MULLANEY, S.C.*, W4HGU

The first practical form of a half-rhombic antenna was the tilt wire or inverted V-type antenna shown in Fig. 1. Gains comparable to a rhombic of the same dimensions are sometimes obtained, but because of variations in ground resistance with changing weather conditions a low-resistance ground generally is not realized. This, of course, detracts noticeably from the gain of the antenna. Consequently the use of this type of antenna has been discouraged unless the ground resistance for a particular locality is extremely low. Many experiments have been conducted using large ground screens under the antenna, and extending a half-wavelength or so beyond the wire in all directions. This provides a low-resistance ground, but the construction entailed is usually impractical. To alleviate this difficulty, the basic design was modified and a solid conductor or counterpoise was stretched under the antenna as shown in Fig. 2. This provides a good electrical ground of low resistance. A counterpoise in combination with an inverted-V-type antenna is called a half-rhombic antenna.

The triangle of Fig. 3 represents an antenna of the half-rhombic type. The triangular dimensions are mathematically related to the operating frequency and physical height of the antenna support. The height of this support varies inversely with frequency; that is, the lower the operating frequency used, the higher the antenna pole or support must be, while, on the other hand, the higher the frequency, the lower the pole. At frequencies above about 30 megacycles, the required height of the support or antenna pole becomes a practically attainable value so that small poles, masts or trees may be used.

Also, a direct relationship exists between the required length of each leg of the antenna, the height of the upper angle (apex angle) above ground, and the length of the counterpoise. The dotted line represents the height of the triangle. The wire length in wavelengths as indicated on the left leg of the triangle is a measure which may be used for the design of any given half-rhombic. How to convert it to feet will be given later in this article. The tilt angle is of great importance in the design, and must be correct for maximum antenna gain. The counterpoise length is determined by the leg length and the tilt angle.

Pointers on Choosing Size

At any given frequency there are several half-rhombic sizes which may be used. They vary from a minimum at which the beam will work to a size limited only by the height of the antenna pole, the weight of the wire the pole will support, and the amount of wire available. The larger the size for a given frequency, the sharper will be the beam produced, and the greater the gain realized within the beam.

In practice various half-rhombic sizes are identified by referring to the number of full electrical wavelengths in one leg of the antenna at the frequency at which the antenna is being operated. The following formula may be used to convert full wavelengths to feet:

\[
\text{Length of } \lambda = \frac{984}{\text{fMc.}} \text{ ft.}
\]

Generally the smallest size at which a half-rhombic will perform satisfactorily is one having a single full wavelength on a leg, or side, at the average frequency at which it is to be operated.

Fig. 4 shows a half-rhombic antenna design chart. From this chart the triangular dimensions of any half-rhombic antenna may be quickly determined. The tilt angle is plotted against the wire length for one leg measured in wavelengths. For example, let us determine the dimensions of a half-rhombic antenna having 2 wavelengths per leg for 41 Mc.

\[
\text{Length} = \frac{984}{41} = 24 \text{ ft. per } \lambda
\]

Each leg of the antenna would then measure...
24 \times 2 \text{ (for two wavelengths)} \text{ or } 48 \text{ feet. From Fig. 4 the tilt angle, } \phi, \text{ for an antenna with two wavelengths per leg is shown as approximately 49 degrees. Since the tilt angle is exactly half the apex angle, the angle formed by the two legs will be 98 degrees. The correct counterpoise length will be that required to complete the base side of the triangle of Fig. 3.}

Determining Counterpoise Length and Pole Height

To avoid trigonometric functions, the following Table I keys all dimensions of the antenna triangle to the length of a side. Note that each dimension is expressed in wavelengths at the desired frequency. This is readily converted to linear feet by the formula given previously. Using this method, any size half-rhombic antenna may be designed for any frequency by no more than multiplication.

![Diagram of antenna triangle](image)

Table I — Half-Rhombic Design Data

<table>
<thead>
<tr>
<th>(\lambda) per leg</th>
<th>Tilt Angle (\phi) (^\circ)</th>
<th>Pole Height (\text{in } \lambda)</th>
<th>Counterpoise length (\text{in } \lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>0.87</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>49</td>
<td>1.3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>57</td>
<td>1.6</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>62</td>
<td>1.9</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>65</td>
<td>2.1</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>67</td>
<td>2.3</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>68</td>
<td>2.6</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>70</td>
<td>2.7</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>70.5</td>
<td>3.0</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>71</td>
<td>3.3</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>72</td>
<td>3.4</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>73</td>
<td>3.5</td>
<td>23</td>
</tr>
</tbody>
</table>

For example, the half-rhombic antenna using 2 wavelengths on a side at 41 Mc. was found to require 48 feet on a leg. Glancing at Table I, it can be seen that an antenna with two wavelengths on a leg has a tilt angle of 49 degrees, the pole height required is 1.3 wavelengths, and the overall counterpoise length 3 wavelengths. Since the length of a wavelength at 41 megacycles is 24 feet, the height of the pole required will be 24 \times 1.3 = 31.2 feet, and the counterpoise length 24 \times 3 = 72 feet.

Where the size of the antenna will be governed wholly by the height of the supporting pole, tree or mast, quick calculations can be made using the tabular column showing the required pole height so the maximum size antenna (thus the greatest gain) may be designed for the available mast height. For example, a 70-foot tree which appears to offer an excellent half-rhombic antenna support may be available. If the mean operating frequency to be used is 36.4 megacycles, dividing 984 by 36.4 shows a full wavelength to be approximately 27 feet at that frequency. Table I indicates that an antenna having two wavelengths on a leg requires a mast or pole height of 1.3 wavelengths, or 35.1 feet. Since the tree is taller than 35.1 feet, a larger antenna is possible. Therefore the table is re-examined for an antenna having six wavelengths on a leg which, the table indicates, requires a pole height of 2.3 wavelengths or 62.1 feet. Simple multiplication then shows that the antenna will have 162 feet on each leg and 297 feet for its counterpoise. The beam produced by this antenna may be pointed in any direction simply by rotating the antenna around the tree.

Terminating Resistors

The terminating resistor plays a dual function in the operation of a half-rhombic antenna. Upon it depends the unidirectivity of the antenna and the absence of any resonant effect. When a half-rhombic antenna is properly terminated it will offer a constant input impedance. This allows it to be operated over a wide band of frequencies without the necessity for readjusting the coupling at the transmitter.

This resistor should be a non-inductive type and it may have a resistance between 400 and 700 ohms without adversely affecting its terminating properties. It must be rated to handle approximately one-half the transmitter input power to the antenna. When using a half-rhombic for re-
ception only, the resistor power rating is not important. The terminating resistor should be mechanically suitable for outdoor installation. Common practice dictates that it should be placed in a weatherproof box for protection from the elements.

It should be noted that the terminating resistor affects neither the strength of the signal nor the field distribution in the forward direction. Its primary function is to decrease the radiation and reception from the back or reverse direction when it is connected. This power is wasted only in the sense that it is not radiated in the reverse direction, because it would not be radiated in the forward direction with or without a terminating resistor. In other words, the terminating resistor is the factor responsible for making a half-rhombic a unidirectional antenna. In cases where interference is negligible it is possible to remove or short out the terminating resistor and make the antenna bi-directional. Fig. 5 illustrates the principle of the terminating resistor.

Transmission Line

The characteristic impedance of a half-rhombic looking into the sending or input end when properly terminated in a resistance at the far end is of the order of 400 to 500 ohms. The resonance curve of a half-rhombic antenna is quite broad. If the broad frequency characteristic is to be properly utilized, the feeder system used with it must also be broad. The transmission-line impedance should equal the characteristic impedance of the antenna which is 400 to 500 ohms. The proper spacing for a transmission line of this impedance is rather awkward because of the mechanical difficulties involved in construction. Table II shows wire size and spacing for 400-, 500- and 600-ohm lines.

<table>
<thead>
<tr>
<th>Wire Size</th>
<th>Spacing in Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400 ohms</td>
</tr>
<tr>
<td>6</td>
<td>2 1/2</td>
</tr>
<tr>
<td>8</td>
<td>4 1/2</td>
</tr>
<tr>
<td>10</td>
<td>6 1/2</td>
</tr>
<tr>
<td>12</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>

Standard matching stubs can be used to provide an impedance transformation to a more desirable line impedance. Of course this limits the frequency characteristic of the line to that for which the stub is adjusted. If the standard 600-ohm line is used, the small mismatch encountered should not adversely affect the over-all efficiency of the antenna, because the standing-wave ratio is quite low. The primary disadvantage of mismatching any transmission line is the necessity for readjusting the transmitter coupling to the line at certain frequencies to maintain a constant input.

Selecting a V.H.F. Site

Maximum effective range and signal strength are obtained at v.h.f. when two sites are selected between which there is an unobstructed transmission path. At these frequencies radio waves tend to travel in straight lines; thus line-of-sight transmission paths are of major importance because the signal strength attenuates rapidly over paths which have obstructions between the transmitter and receiver. Although the radio waves bend slightly around these obstructions, reliable communication generally is obtained only over line-of-sight paths. This condition is obtained when the transmitter antenna is theoretically within optical range of the receiver antenna.

The curvature of the earth limits the distance over which a line-of-sight path is possible. For example, with both transmitting and receiving antennas located 40 feet above sea level, the maximum distance which can be spanned before the line-of-sight is intercepted by the curvature of the earth is approximately 18 miles. This assumes the altitude of the intervening terrain also to be at sea level. To determine the maximum distance between two radio stations with intervening terrain at sea level, the following formula is used:

$$D = H_T + H_R,$$

where D = distance in miles, H_T = height in feet of transmitting antenna, H_R = height in feet of receiving antenna.

Another factor detrimental to line-of-sight transmission is intervening hills. Intervening hills in a transmission path will reduce the signal.
strength when they obstruct the line of sight. Radio waves bend over these obstructions slightly, but bending is accompanied by a loss in signal strength; the greater the bending, the greater the loss. Certain combinations of communication sites and intervening hills may provide satisfactory signals because of reflections, but this condition is realized only by luck, or by calculation with detailed terrain maps.

As a general procedure, the distance between two stations should be calculated on the basis of a path with no obstacles intervening. Then, within the limit of this distance, the two stations should be sited with a view to obtaining the smallest angle of diffraction over any intervening obstacle. When the sites have been determined, and the equipment set up, a test receiving antenna should be moved to different positions, usually within a radius of a hundred feet or so, until the strongest signal is received. This indicates that a point has been found where the dominant multipath rays are nearest in phase. This point will provide the greatest signal strength and maximum operating efficiency.

If it becomes necessary to operate in an area which is densely wooded, the best location for a site is in a clearing with a radius in the order of ten or twelve wavelengths. When using a half-rhombic antenna it should be placed as close as possible to a point in the clearing farthest from the transmitter or receiving building, and as equidistant as possible from the sides of the clearing. A knowledge of the field pattern of a given half-rhombic is helpful in determining the proper placement.

If a half-rhombic antenna is installed in keeping with the pointers listed above, it is one of the most effective types of beam antennas for the transmission and reception of high-frequency, vertically-polarized signals. The use of this type of antenna will increase the signal strength many times over and above that provided by a simple vertical half-wave dipole at the same average height above ground. Gains as high as 15 db. can be obtained.

Beam Width

The widths of the beams produced by half-rhombic antennas of various sizes are shown in Fig. 6. They represent an average over varying terrain and soil conditions. They are drawn to the half-power point for half-rhombic antennas of various sizes.

Fig. 6 — Approximate beam widths to the half-power point for half-rhombic antenna of various sizes.

The primary reason for conducting these tests was to determine the effects of decreasing the physical height of the antenna. It is possible to operate a compromise half-rhombic antenna and achieve fairly suitable results.

Field-intensity measurements were taken at approximately every 30 degrees; these measurements showed that the beam width of the pattern exceeded 40 degrees in all cases. If successful point-to-point communication is to be maintained relatively free from adjacent sideband and "brute-force" interference within range, the beam width of the antenna must be corrected to within 20 degrees of the operating direction. Under some conditions it is feasible to have a beam width as great as 90 degrees.

It follows that maximum antenna gain will not be realized in a compromise antenna but, on the other hand, the modified half-rhombic continues to retain the ability to accept power on any frequency for which the legs will be resonant and radiate this power in a fairly predictable pattern. It is better to compromise on the height of a half-rhombic rather than the length of its legs. Height has a much smaller effect upon the gain of a half-rhombic antenna than length. Thus, in the design of a modified or compromise half-rhombic antenna the length of each leg should be at least two wavelengths at the lowest operating frequency.

The gain realized with a compromise design is in the vicinity of 10 db.
A Small Oscilloscope Using the 913

Versatile 'Scope Performance With the 1-Inch Tube

BY E. M. Mccormick *

The more meticulous an amateur becomes in the testing of his receiving, audio or transmitting equipment the more apparent becomes the need for an oscilloscope. The prospect of a large expensive 'scope usually discourages the average amateur, and that is why we thought the description of a simple, inexpensive oscilloscope would be of interest to the fraternity. The 'scope to be described is small and uses readily-available parts, and it has many of the features of larger and more expensive units. We used a 1-inch 913 cathode ray tube, but a 2-inch 902 type could be used. The image on the 1-inch tube is satisfactory for most work, and a small magnifying glass can be used if greater detail is desired. The most serious limitation of this small oscilloscope is the frequency range of the amplifiers which, while quite satisfactory for audio work, is not adequate for handling the higher video frequencies. However, when the amplitude of the video frequencies is sufficient, they can be applied directly to the deflection plates, and even an r.f. signal can be observed satisfactorily in this manner.

*3350 Cedar St., Riverside, Calif.

The range of the amplifiers can be extended at the price of reduced gain by following the principles outlined in Noll, "Video-Amplifier Design," QST, Sept., 1944. — Ed.

Too often a 'scope with the 1-inch tube is little better than a toy, but the unit described in this article will do almost everything a large oscilloscope will do except give a big picture.

The Circuit

The circuit is somewhat novel in its absence of transformers other than those used for furnishing heater voltages. As can be seen in Fig. 1, the d.c. is furnished by two 6H6s connected as half-wave voltage doublers. One supplies 300 volts positive for the amplifiers and sweep generator, and the other furnishes 300 volts negative for the cathode ray tube voltage-divider network. Since the current drain is only 2 ma. from the positive and 0.75 ma. from the negative supply, the 6H6s are not overloaded in their use as rectifiers. The combination of R_1 and C_4 contributes additional filtering to the positive supply.

The horizontal sweep generator is a small 1/25-watt neon bulb (General Electric NE-51) used in the conventional saw-tooth oscillator circuit. The frequency is determined by R_{24} plus R_{25} and the shunt capacity selected by S_3. The circuit is shown in Fig. 1. The controls on the front, from left to right, are "SYNC AMPLITUDE," pilot light and "FINE FREQUENCY," and along the side, from back to front, are "FOCUS," "VERTICAL CENTERING," "SYNC-SWEEP" and "VERTICAL GAIN." Note the small neon tube, used for generating the sweep voltages, to the right of the 6SL7. A hood mounts over the 913 and the terminal panel at the rear of the chassis.
Fig. 1 — Wiring diagram of the simple 1-inch oscilloscope.

C1, C9, C10, C13, C14, C15 — 8-µfd. 250-volt electrolytic.
C6, C7, C8, C16, C17 — 0.1-µfd. 600-volt paper.
C11, C12 — 25-µfd. 25-volt electrolytic.
C18 — 0.001-µfd. mica.
C19, C20 — 0.02-µfd. 400-volt paper.
C16 — 0.006-µfd. mica.
C17 — 0.002-µfd. mica.
I1 — 6.3-volt pilot lamp.
R1 — 10,000 ohms.
R18, R22 — 0.2 megohms.
R3, R4 — 0.1 megohm.
R5 — 0.25-megohm variable, "FOCUS" control.
R6 — 50,000 ohms, variable, "INTENSITY" control.
R8, R9 — 0.5 megohms.
R10, R11 — 1.0-megohm variable "HORIZONTAL CENTERING," "VERTICAL CENTERING" and "VERTICAL GAIN" control.
R12, R13 — 2.0 megohms.
R14 — 50,000 ohms.
R15 — 1.0 megohm.
R16, R17 — 0.25 megohm.
R18 — 5000 ohms.
R19 — 3-megohm variable, "HORIZONTAL GAIN" control.
R20, R21 — 3.0 megohms.
R22 — 10.0 megohm variable, "FINE FREQUENCY" control.
R23 — 0.1-megohm variable, "SYNC AMPLITUDE" control.
All fixed resistors are ½-watt carbon.
S1 — S.p.s.t. snap switch mounted on R6.
S2 — Two-pole 5-position rotary, "SYNC-SWEEP."
S3 — Single-pole 5-position rotary, "COARSE FREQUENCY."
T1, T2 — 6.3-volt, 1.0-ampere heater transformer.

is variable between 12 and 700 cycles. Since only about 13 per cent of the condenser charge is used, the linearity of the sweep is fairly good. A synchronizing voltage can be coupled in through C18 and its amplitude adjusted by R23. The "SYNC-SWEEP" switch, S2, allows five different conditions of sweep and synchronization, as follows: (1) external synchronization (2) line synchronization (3) internal synchronization (4) line (sine-wave) sweep and (5) external sweep.

The positive sawtooth from the generator becomes a negative sawtooth after amplification through the horizontal amplifier (one section of a 6SL7), and to make the trace sweep from left to right in the conventional fashion the cathode-ray tube must be turned so that the No. 1 pin is at the bottom, with pins No. 3 and No. 7 horizontal. Used in this manner a waveform will appear in the correct polarity when passed through the vertical amplifier but it will be inverted when applied directly to the vertical plates.

A positive blanking voltage is coupled through C18 to the cathode of the 913 and developed across R5. When other than a negative sawtooth is used for the sweep, as when using Lissajou's figures for making frequency comparisons, it may be necessary to disconnect this blanking circuit by disconnecting one side of C18. The grid of the 913 is brought out to a terminal marked "INT MOD," for use in experiments with intensity modulation.

Construction

The entire unit is built on a 7- by 7- by 2-inch chassis. The ten controls and the pilot light are mounted along the front and sides, and the two heater transformers are mounted on the back. The external connections are brought to nine tip jacks on a polystyrene panel which is also mounted on the back of the chassis (see Fig. 2). Mounting the jacks for connections at the back of the chassis keeps the leads clear of the controls.

The arrangement of the tubes on the chassis can be seen in the photographs. Wiring is conventional, except that leads in the sweep generator, amplifier grid circuits and all heaters should
About the Author

Another new face in the amateur picture will be that of E. M. McCormick, who hopes soon to obtain his amateur license. Breaking into radio via a pair of 30s in a receiver (1935), McCormick took out his Radiotelephone first upon graduation from Kansas State Teachers' College in '41, and joined KOAM, Pittsburg, Kansas. After completing some graduate work, followed by a period as an electronics instructor, he joined the Army (1943) and is now a radar mechanic at March Field.

It is possible to operate this 'scope on the full 600-volt output of the quadrupling power supply by inserting \(R_2 \) at point \(X \) in Fig. 1 and disconnecting \(G_1 \) from \(G_2 \) at point \(Y \). With the increased voltage the image will be brighter and will focus to a finer line. However, the two grounds (\(G_1 \) and \(G_2 \)) will be at different d.c. potentials and the shell of the 913 will be "hot." Signals being amplified will use \(G_1 \) for ground and those being applied directly to the deflection plates will use \(G_2 \). Considerable caution must be exercised to insure proper grounding and to avoid accidental electrical shock under these conditions. The other disadvantages of the higher voltage is that the deflection sensitivity of the 'scope is decreased about 40 per cent.

Fig. 2 — A sketch of the back of the 'scope, showing the arrangement of terminals.

When operating on 300 volts, the direct sensitivity of the vertical plates is 125 volts/inch and 175 volts/inch for the horizontal. Working through the amplifiers at maximum gain, the vertical sensitivity is 0.9 volts/inch and 1.1 volts/inch for the horizontal. The a.c. power consumption of the unit is approximately 20 watts.

A view showing the arrangement of parts underneath the chassis. The controls along the left-hand side, from top to bottom, are "INTENSITY," "HORIZONTAL CENTERING," "COARSE FREQUENCY" and "HORIZONTAL GAIN."
The first part of this article covered the construction of the video, synchronizing, and sweep-generating circuits of a modern high-performance television receiver especially designed for weak-signal reception. In this second part the author discusses a simple method of video circuit design and describes the r.f. and i.f. sections of the receiver.

The video circuits of the receiver already have been described in the preceding section, but before going on to the r.f. and i.f. circuits it may be of interest to discuss the methods used in designing and aligning the video amplifiers in this set.

In general, video amplifiers employ constant-current devices, of which the pentode is an example. A generalized formula for the gain of a pentode when the load resistance is low compared to the plate resistance is the tube transconductance expressed in mhos multiplied by the load resistance in ohms. The transconductance of the 6AC7 is 0.009 mhos. Load resistor values of the order of 1000 to 4000 ohms cover those generally used when the pass band of modern television is amplified. The value of the load resistor should be as high as the total shunt capacitance,

C1 — output capacitance plus input capacitance of the following stage plus stray capacitances — will allow. This capacitance, of the order of 30 µfd., when a 6AC7 couples into a following 6AC7, must be measured since it determines the values of load resistance and peaking coil inductance when a certain pass band is required.

The method for measuring

C1 from the plate of a video stage to ground employing an inductance of known value substituted for the load resistor of the stage in question will be the easiest for most amateurs to use. An inductance of approximately 40 µh. can be made by winding 90 turns of No. 30 enamel wire close-spaced on a one-half inch form. Substitute for the load resistor in the plate of the following stage a non-inductive 100-ohm resistor. A vacuum-tube voltmeter, magic eye, or similar device is connected from the plate of this stage to ground. A signal of such amplitude as not to overload the grid of the second tube or the indicating device is applied to the grid of the first tube. The frequency of the signal is then adjusted until resonance between the known inductance and

C1 is shown by maximum reading on the indicating device. With frequency and inductance known a Type A Lightning Calculator or other LC slide rule will give the capacity,

C1.

Charts A and B, Fig. 8, may be used to design video amplifiers around the values most commonly encountered. For example, should

C1 prove to be 26 µfd. and a pass band of 4.5 Mc. be desired, chart A will indicate the proper value of load resistor as 1360 ohms. From chart B, with

C1 equal to 26 µfd. and a pass band of 4.5 Mc., the peaking coil size will be found to be 21.5 µh.

The value of

C1 is equal to 0.353

C1, or 9.1 µfd.

A practical value for

C1 would be 7 µfd., since the distributed capacitance across a single-layer coil of this inductance value is of the order of 2 µfd.

The gain of this stage is the tube transconductance in mhos ×

Rf. For a 6AC7 the gain is 0.009 × 1360 = 12.2.

The method outlined above is the simplest and most practical form of high-frequency compensation. Other more complicated methods will allow use of a higher value of load resistance and in turn result in more gain per stage. A review of the literature will quickly familiarize one with the other methods and the reasons for employing them.

The r.f.-i.f. chassis, containing both picture and sound i.f. amplifiers. Locations of components is described in the text.
Low-Frequency Compensation

When a video amplifier stage has been corrected for high-frequency response to allow a desired pass band the amplifier must also be corrected to give proper low-frequency operation. In the case of television amplifiers the amplitude response curve must be flat down to 20 cycles per second and should have useful response to as low as 2 cycles per second. This is readily accomplished by using a filter circuit in the plate of each video stage in such a way that as the frequency becomes lower the capacity \(C_I \) of the filter network (see diagram on chart C, Fig. 8) becomes less and less capable of by-passing \(R_I \), so that effectively \(R_I \) becomes a part of \(R_L \). This boosts the output of the amplifier stage at low frequencies. If the values are correctly chosen the loss at low frequencies in the amplifier stage \(C_I R_I \) will be compensated for by the low-boost network \(C_I R_I R_L \). The time constant of \(C_I R_I \) should be chosen to be approximately four times that of \(R_L C_I \). A good value for \(C_I \) is 8 µfd., and for \(R_I \), 8000 ohms. A useful value for \(C_I \) is 0.1 µfd. The value for \(R_I \) will be found by the formula \(R_I C_I = C_I R_L \). The values must be right if perfect correction is to be effected — and it must not be assumed that the values stamped on the condensers or resistors are precisely as represented.

Design values for \(R_I \) will be found in chart C. For example, if the load resistor, \(R_L \), is 1400 ohms, the coupling condenser, \(C_I \), is 0.1 µfd., the plate decoupling filter, \(R_I \), is 8000 ohms, and \(C_I \) is 8 µfd., then the correct grid leak is 112,000 ohms as read from the chart. If \(R_L \) lies between 2000 and 4000 ohms the plate decoupling filter, \(C_I R_I \), should be 4 µfd. and 16,000 ohms.

It should be pointed out that if the cathode is not connected directly to ground it must be bypassed for all frequencies down to 20 c.p.s. This usually requires a condenser of 1000 µfd. Final adjustment for low-frequency response is best made by observing on a cathode-ray oscilloscope the tilt of the top of vertical blanking. Substitute a variable resistor of the order of 1/2 megohm for the grid resistance and adjust until the top of vertical blanking is flat. Remove the variable resistor and substitute a fixed resistor of equal value. During this adjustment the oscilloscope probe should be on the grid being corrected.

It is not always possible to use this type of low-frequency correction. Triodes (with the exception of very high-mu triodes), diodes, or cathode followers are constant voltage devices and must be coupled to the following grid through a large capacitance, such as 1 µfd., and as large a value of grid leak as the tube will allow.

\[\text{Fig. 8 -- Video amplifier design charts. The method of using them is described in the text.} \]
To be conventional, the description of a receiver should confine itself to the circuits and construction. But in this case the antenna is such an important part of the complete system that a few words about its dimensions are in order before going on with the receiver proper.

The rhombic antenna used is 60 feet on a side and has a major angle of 130°, a minor angle of 50°, and is 40 feet above the ground. One corner is supported by the house and the other three by wooden poles 50 feet high. The direction to the Empire State Building was quite accurately determined and the antenna designed and erected accordingly. The end of the rhombic pointing towards the signal source is terminated in a 600-ohm carbon resistor; as a precaution against the weather, a glass tube is slipped over the terminating resistor and the ends filled with sealing wax. A 600-ohm line approximately 90 feet long brings the signal to the side of the house where the r.f. amplifier is located. The spacers for the 600-ohm transmission line may be pieces of glass rod or other suitable insulators. An open transmission line was used because the losses with such a line proved to be much lower than with any of the coaxial or twisted-pair lines available.

The r.f. and i.f. circuits are shown in Fig. 9. The r.f. stage uses a 6AK5, one of the new miniature-type pentodes, with inductive coupling between the transmission line and the grid coil. The latter is adjusted to resonate with the tube and stray capacitances. Cathode-resistor bias is required with this type of tube, and a series dropping resistor of the proper value insures correct voltage on the screen. The plate voltage must not exceed 180 volts. Link coupling between the plate coil and the mixer grid coil via a 600-ohm open line 30 feet long affords a decided advantage in signal to noise ratio because a television receiver itself is a considerable source of interference. This interference results from the steep wave fronts of the sweep oscillators and from unavoidable corona discharge noise in the high-voltage power supply. Although all precautions were taken to minimize these sources of noise, such as ground bonding, corona shields at high-voltage points, and by-passing at various points in power supplies and in sweep circuits, a small amount of electrical disturbance remains, and all efforts to build up the signal should be at a point remote from the receiver proper. If the r.f. stage were located at the terminals of the rhombic further improvement might
result, but this was not practical at the writer's location.

A high-pass filter was inserted as close as possible to the grid of the mixer in the link line. This filter was designed for infinite rejection below 10 Mc, and a rising characteristic leveling off at 40 Mc. The filter (or wave trap) proved desirable in eliminating many signals from powerful transmitters in the 7- to 13-Mc. band, a form of interference which appears as a series of bars in the picture.

Oscillator injection into the grid of the 6AC7 mixer results in excellent conversion. A grounded-plate Hartley oscillator operates at 64 Mc, to beat with the a.m. picture signal at 5.125 Mc, to develop picture i.f. from 8.25 to 12.75 Mc. The same oscillator beats with the f.m. sound carrier at 55.75 Mc, to generate 8.25-Mc. sound i.f. with 75-ke. deviation. Proper oscillator injection will be indicated by -7 volts d.c. at the grid of the mixer. This voltage must be obtained by rectification at the mixer grid. The energy so rectified is stored by the mixer grid condenser and may be measured by an electronic voltmeter such as the Volt-Omhist Jr. It is not necessary that this bias be exactly 7 volts but it should be between 5 and 10 volts, negative with respect to ground. Less injection voltage than the above minimum will result in the mixer's acting more as an r.f. amplifier (in the 8.25- to 12.75-Mc. band) than as an efficient converter.

The picture i.f. transformers were purchased as a kit from the RCA Manufacturing Co., Camden, N. J., and wired to operate with the tubes required by their design. The circuit of the i.f. amplifiers is essentially that of the TRK-120 RCA television receiver. Alignment of these amplifiers is straightforward and is greatly simplified if a frequency-modulated signal generator is used. Such a generator either can be purchased or built of simple components as will be described in the next article of this series. The second detector is phased so that peak blanks are negative as taken out of the plates of the diode and fed into the grid of the cathode-follower output tube. A filter, L9, between the second detector and cathode follower removes any undesired carrier present, passing only the 0- to 4.5-Mc. picture signal. The video signal is then transmitted through a coaxial cable to the video amplifier in the chassis described in Part I.

The sound i.f. is amplified through two stages as shown in Fig. 9, and then fed into a cathode-output stage. From there, the signal goes by a coaxial cable to the auxiliary chassis shown in one of the photographs, where it is built up in a pentode, V36, Fig. 10, to a level for effective limiting in V38 and V38. The latter tube drives the diode discriminator which translates the frequency-modulated signals into audio frequency. The cascade limiter practically eliminates audio ignition noise, which otherwise would be extremely an-

Fig. 10 — Final sound i.f. amplifier, limiters and discriminators.

The limiter-discriminator unit is on a separate small chassis. The power supply furnishes heater and plate voltages to the r.f. section as well.
noying since a six-lane highway passes a short distance from the front door of the house. A separate power supply for this auxiliary unit is included on the same chassis and also feeds power to the r.f. amplifier through a three-wire twisted cable.

Alignment of the sound i.f. amplifier is best achieved by using a test oscillator and output meter as in a.m. alignment procedure. Adjustment of the shape of the discriminator curve can best be made by observation on a cathode-ray oscilloscope when a frequency-modulated signal generator of the proper deviation is applied to the mixer grid.

R.F. Alignment

Experience with this receiver has shown the value of normalizing all currents and voltages of all tubes as specified in the tube handbooks. Do not assume that the heaters are operating at 6.3 volts, because there may be considerable drop in the heater wiring. If all voltages and currents are correct the receiver will be considerably easier to adjust.

Final alignment of the front end of the receiver in the r.f. and mixer stages is best done on the air. However, it will help considerably to make some preliminary adjustments on the bench. A 6j5 separate oscillator adjustable in frequency from 50 to 90 Mc. is a very useful tool to help in this alignment. The mixer grid coil and the plate and grid coils of the r.f. amplifier are tuned with brass slugs. A brass slug just outside the hot end of the coil will lower the inductance of the coil as it is drawn in by the adjusting screw, and the eddy currents flowing in the brass will effectively flatten and widen out the frequency response of the amplifier. The output is coupled in with approximately two turns at the ground end of the coil. Using an indicating device as in the video amplifier alignment procedure, put a 100-ohm noninductive resistor between B+ and the plate of the mixer. Adjust the test oscillator to 53.5 Mc., and then add or subtract turns from the mixer grid coil until resonance is indicated at 53.5 Mc. with the brass slug just coming in. The 64-Mc. oscillator coil should be close enough to the grid coil to develop the - 5 to -10 volts required on the mixer grid as outlined earlier in this article. Sometimes this is easier to achieve by soldering a small wire on a hot point on the oscillator coil and bringing it near another small wire soldered to the mixer grid. These two wires, if insulated, may be twisted together to form a small condenser, as shown at X in Fig. 9. It is wise to adjust the oscillator injection before adjusting for mixer grid resonance. During the adjustment of the mixer grid coil, the plate voltage must be disconnected from the oscillator so that excessive bias will not lower the mixer tube sensitivity below that of the indicating device. During the above adjustments the gain control must be set so that -2 volts bias is present on the mixer grid.

The alignment of the grid coil of the r.f. stage is accomplished in a similar manner. This adjustment is somewhat easier because the complication of the oscillator injection voltage is not present. After the grid circuit is aligned remove the 100-ohm test resistor and disconnect the grid coil at the grid and substitute a 10,000-ohm grid resistor. Inject through a capacitor of a few µfd. approximately 1 to 2 volts from the test oscillator at 53.5 Mc. Trim the plate coil for resonance, as shown by maximum deflection of the indicating device when connected across the two-turn output coil. Remove the 10,000-ohm grid resistor and reconnect the grid coil. A strong indication at the resonant frequency of 53.5 Mc. will be observed with the test oscillator very loosely coupled. And once again resonance should occur with the brass slugs just entering the coils. When the oscillator is shut off the indicating device should show zero output. If it doesn’t, the stage is probably unstable and better shielding and a recheck of voltages and currents is in order.

Constructional Details

The construction of the various units is shown in the photographs. The large chassis contains all the r.f. and i.f. stages except the r.f. amplifier, which is separately mounted in a metal box.

A bottom view of the limiter-discriminator unit.
affixed to the side of the house as previously mentioned. Looking at the top view of the main chassis, the r.f. input terminals and mixer tuning slug are on the left-hand edge near the front. On the front edge of the chassis, from left to right, are the oscillator trimmer condenser, C61, the coaxial Jones connector for the f.m. cathode follower output, two power sockets, the coaxial connector for the video cathode follower output, and the gain control, R135. Starting with the oscillator tube, V23, at the lower left corner of the chassis and going toward the upper left, next in line is the mixer tube, V24, then the mixer output transformer assembly, consisting of two units, P1 and P2, and last V29, the first picture i.f. amplifier.

In the second column the first tube is V27, the second i.f. sound amplifier. Next is the first sound i.f. transformer assembly, then V26, the first i.f. sound amplifier, followed by the second picture i.f. transformer assembly, P1 and P2, and last, the second picture i.f. amplifier tube, V30. In the third line, commencing with the second sound i.f. transformer, L25, in the lower center of the chassis, is the sound i.f. cathode follower, V28. The fourth line starts with the picture cathode follower, V33. The next two sockets are not used, but were originally intended for the sound limiter and discriminator diode. The filament transformer, T8, follows, and last is the third picture i.f. amplifier, V31. Along the right edge of the chassis in order are the picture second detector, V34, the fifth picture i.f. transformer assembly, the fifth picture i.f. amplifier V35, the fourth picture i.f. transformer assembly, the fourth picture i.f. amplifier tube, V32, and the third picture transformer assembly.

In the bottom view of this unit the socket for the oscillator tube, V23, is directly underneath the oscillator trimmer condenser, C61. Between the oscillator and the mixer tube, V26, are the input tuning coils, L12 and L7, and the oscillator tank coil, L10. In the first detector transformer assembly, P1 and P2, the lead from P1 terminal A goes to the right, feeding the grid of V26, the f.m. sound i.f. Directly below P1 and P2 is V29, the first picture i.f. amplifier. The rest of the picture i.f.'s follow around the lower edge and up the right-hand edge of the chassis. The low-pass filter, L9, can be seen leading over to the picture cathode follower, V25. The transformer over V26 is the first sound i.f. transformer assembly; it feeds V27, the second i.f. sound amplifier. The output of V27 goes to the right, feeding the second sound i.f. transformer. Its output goes down to the sound cathode follower, V28, the output of which goes to the sound output terminal through a short length of coaxial cable.

The remainder of the sound channel is on a separate small chassis shown in another photograph. In this unit, the input terminal is on the front edge of the chassis at the left, V35, the third sound i.f. amplifier, feeds T3, the third sound i.f. transformer directly behind it. V37, the first limiter, feeds V38, the second limiter, through an RC network, C116, R175. The output of V38 is fed to V39, the discriminator diode, via T9. The output of V39 at audio frequencies is fed through C118 to the sound output terminal. Pre-emphasis is corrected by C115. The d.c. power supply is conventional. In the bottom view, the socket at the upper left is for the input tube, V35. Transformer T3 is between V38 and V37, with V23 to the right. Above V43 are the terminal of T9. The audio output terminals are directly above V39.

In the photograph of the r.f. amplifier the bakelite "chassis" has been removed from the housing for the purpose of showing its construction. The tuning condenser, C29, for the input circuit is plainly visible. All resistors and by-pass condensers are returned to ground as close to the socket as possible. The input and output coils are shielded from each other by shield cans above the chassis card. The input terminals from the feeders are on the left and right sides of the housing, the two output terminals being side by side. This unit is mounted on the house so that the output terminals are beneath.

The low-pass filter for eliminating i.f. interference is shown in another photograph. The input from the r.f. amplifier goes to the two terminals on the upper edge of the Formica board. L5 (52 µh) is on the right edge of the board and C129 is to the left of L6. L7 (1.69 µh) is on the lower

(Concluded on page 108)
ELECTION RESULTS

With only three ARRL divisions coming down to actual balloting in the autumn elections, the result is two present directors returned to office, and one new director elected.

In the Atlantic Division, Edward G. Raser, W3ZI, of Trenton, replaces Commander Walter Bradley Martin, W3QV, who has been the Atlantic's director since 1936 when the late Dr. Woodruff was elected president. The election was hotly contested, Mr. Raser winning by the small margin of 643 votes to Commander Martin's 601. Mr. Raser, who has served as assistant director of the division and as assistant SCM the last few years, is a communications engineer in the radio division of the New Jersey State Police. On the air since 1912, he is the secretary of the Delaware Valley Radio Assn. and of the Trenton Radio Association and editor of the former's "News."

In the Dakota Division the incumbent director, Tom E. Davis, W9VV A, won handily over his two opponents:

Mr. Davis .. 125 votes
Raymond B. Howe, W9EWN 21 "
Aaron E. Swanberg, W9BHY 92 "

In the Midwest Division the old-time director, Floyd E. Norwine, jr., W9EFC, won easily over Leslie B. Vennard, W9PRJ, 303 votes to 135.

DEATH OF STEDMAN

Last month we reported that Director C. Raymond Stedman, W9CAA, of the Rocky Mountain Division, had been obliged by ill health to transfer his powers to the alternate director, Howard R. Markwell, W9TFP. It is now our unhappy duty to report Ray's passing, in Denver on November 26th, at the age of 39. He had been seriously ill for some months, critically so for some weeks.

He was a widely-known amateur with a flair for organization, continuously active in our circles since 1921, when he received his first amateur license. He was born in Denver in 1906, graduating from North High, at which time he entered the employ of the Mountain States Telephone & Telegraph Company, with whom he was associated until his death — being at that time a telegraph and teletypewriter circuit engineer. He practiced amateur radio throughout his school days, often operating with the lights out when he was supposed to be sleeping. In 1930 he was transferred to Helena, Mont., where he operated under the call W7ASQ until 1936, then returning to Denver. He was a cofounder and past president of the Associated Amateur Radio Operators of Denver and has held most ARRL appointments, being the League director from the Rocky Mountain Division for the past five years, SCM for Colorado from 1925 to 1930, and the former Denver Emergency Coordinator.

He was also a skillful Morse operator. He leaves his wife, four children and his father, who is W9CAB. He will be missed not only by local amateurs but by hams all over the country, for W9CAA is a well-remembered call and amateur radio has lost a valuable friend in his passing.

The administration of the Rocky Mountain is now taken over by Mr. Markwell as acting director for the remainder of the Stedman term. He also is engaged in telephone and teletypewriter work with the Mountain States T&T.

REGISTRATION ELIMINATED

As a wartime safety measure, FCC required the registration of all transmitting apparatus. Its Order 101, in June of 1942, required the persons in possession of any transmitter belonging in a licensed amateur station to apply for a certificate of registration; and its Order 99 was similarly directed at persons in possession of unlicensed transmitters—except manufacturers and dealers, who submitted certain reports to FCC. These orders have served their purpose; the war is over. FCC on November 29th announced the cancellation of both 101 and 99. You no longer have to apply for a certificate of registration on your transmitter. If you have a certificate affixed to your transmitter, as you should, you may now take it off. If you never received your certificate, forget it. Registration, of course, is not licensing. No transmitter may be operated without an FCC license. And FCC Order 96, requiring the registration of diathermy equipment, is still in effect.

MORE OF LICENSEES EXTENDED

Since Pearl Harbor FCC, by means of its Orders 115 and 115-A, has kept alive most amateur operator licenses that were valid on that date,
periodically extending them an additional year. Many of these licenses were thereby due to expire on December 7, 1945. Since the conditions which made the original orders necessary are continuing to exist during the present period of demobilization and readjustment, FCC on November 28th adopted its Order 115-B, which makes a further extension by ordering that:

Every amateur radio operator license which, either by its own terms or as extended by Orders Nos. 115 and 115-A, would expire during the period December 7, 1945, to December 7, 1946, is hereby extended for a period of one year from the date on which it would otherwise expire.

As before, the extension does not apply to a license suspended by FCC or voluntarily surrendered, nor to any licensee who hasn’t complied with Order 75 (fingerprints and proof of citizenship).

Net result of the foregoing is that if you had an operator license at the time of Pearl Harbor or any time since, and nothing has happened to cancel it, it is automatically continued in effect at least until December 7, 1946, or until the further order of the Commission demanding a formal application for renewal. Unfortunately none of this applies to the lads who went into military service early and whose licenses expired before Pearl Harbor. However, there has never been any stoppage in the issuing of operator licenses, the exams are still being given, and a new ticket can be had within a few weeks of passing the test.

Throughout the war, conditions made it difficult for amateur and commercial licensees to make a showing of service or use of their licenses, which was a required condition for renewal; and so FCC by its Order 77 has waived this proof of use. The conditions continuing, the Commission on November 28th adopted its Order 77-E, directing:

That Sections 12.26 and 12.65 of the Rules Governing Amateur Radio Stations and Operators, and Section 13.28 of the Rules Governing Commercial Radio Operators, in so far as the required showing of service or use of license is concerned, be, and they are hereby, suspended until further order of the Commission, but in no event beyond June 30, 1946.

Long before that date, in fact in the very near future, mechanism for dealing with new station licenses and renewals and modifications will be fully operating.

1200-MC. BAND RELOCATED

On November 19th FCC announced several minor modifications of its plan of frequency allocations above 25 Mc., issued last May, one of which affects the amateur 1200-Mc. band. It has now decided that this band will be 1215–1295 Mc. Although not yet put at our disposal up to the moment of writing, it is expected that it will be very shortly. Our neighbors will remain as before: 900–1215 is for navigation aids, and 1295–1375 will be used in this country for television relay.

FURTHER GLOSSARY

Amateurs are apt to think of 3500 kc. as a pretty low frequency, as amateur frequencies go, and therefore to reserve the term “high frequency” for frequences that are very much higher. Actually, there is an accepted international nomenclature for the various ranges of frequencies and it should be a matter of pride with amateurs to use the terms correctly.

Beginning at its low end, the spectrum is divided into very low, low and medium frequencies before it reaches the first range to contain an amateur band. The portions thereafter, in which we are interested, are as follows:

High frequencies are from 3 to 30 Mc. (wavelengths from 100 to 10 meters). Thus all of our DX bands, which we commonly refer to as “80, 40, 20 and 10,” are high frequencies.

Very high frequencies run from 30 to 300 Mc. (wavelengths from 10 meters down to 1 meter) and thus include our bands at 5, 2½ and 1¼ meters.

Ultrahigh frequencies are from 300 to 3000 Mc. (100 to 10 cm.) and embrace our bands in the vicinity of 400, 1200 and 2400 Mc.

MILES JOINS F.C.C.

Comdr. Paul D. Miles, USNR, on November 15th became the head of a newly-created division in the FCC engineering department, known as the Frequency Service Division. An expert on allocations, he will supervise spectrum allocations for FCC and will probably be its representative on ITAC. He is admirably equipped for this work, having been for some years the chief of the Frequency Section of Naval Communications and the Navy’s representative on ITAC, of which committee he was chairman during 1944. Within a few days of assuming his new duties he was off for Bermuda as one of FCC’s representatives at the Anglo-American conference.

1946 will be a busy year in allocation work. FCC’s postponed final proposals for the range below 25 Mc. are expected to be announced in February. About that time it is likely that a preliminary conference of major nations will occur to make plans for a world telecommunication conference. There are some indications that the latter conference will occur in Washington next summer, its decisions to take effect the first of 1947.

STATE GUARD W.E.R.S.

Remember that there were three kinds of WERS stations, one of them State Guard? And

(Concluded on page 114)
The Bright New World—of Sunspots

Wartime Research Uncovers Improved DX Prospects

BY COMMANDER E. H. CONKLIN,* USNR, W3JUX

Far from being neglected during the war in the press of developing offensive and defensive electronic devices, research into ionosphere characteristics was considerably accelerated. The information collected not only explains some of the things that happened during prewar days but promises better long-distance communication, over a longer part of the sunspot cycle, than had previously been thought possible.

Each of us who gets the old receiver down from the attic (lawd help the poor thing if it was in a humid basement) or gets delivery of a shiny new model becomes curious about the present status of radio conditions. Much is being said about radar, sonar, loran, and other electronic developments, but has anybody developed a better ionosphere while amateurs were closed down?

Offhand, one would say that conditions hardly can be improved by the scientists, any more than can the weather—though the newspapers did carry an item a few months ago about dispelling a fog along the California coast. But the scientists have done something for us— they have learned a lot more of world-wide conditions, about which we seem not to have been too wise before the war.

A considerable part of the prewar work on predicting radio conditions was based on measurements made by the National Bureau of Standards in Washington, and by Carnegie Institution stations in Peru (remember Harry Wells at OA4U?) and in Australia (and remember Lloyd Berkner at VK6MO?). The result was an assumption that conditions were much the same throughout the world, except for the normal differences with latitude.

During the war, however, a dozen or more new ionosphere stations have been established, some of them portable so that they could follow our advancing forces closely as they approached Japan. The result of the new observations from a larger number of locations was that geographical differences in conditions were quickly noticed and put to use.

One day last winter the writer called upon an old friend and neighbor from Evanston, Illinois—Lt. Col. Esterly Page who, more than 20 years ago, used to join in a local competition to see who could pile the most kilowatts into a few "fifty watters." Those were the days of pushing signals across the Atlantic and Pacific on 200 meters—one way—by just plain blasting, rather than by making use of the then little-known advantages of higher frequencies. Page's Army work at the time of the visit related to predictions of radio conditions. On the wall of his office in the Pentagon building was just one ionosphere measurement, taken in Hawaii at the bottom of the sunspot cycle in 1944. Instead of showing that frequencies only up to about 6 Mc. would be reflected back downward from the ionosphere, it showed vertical reflections up to 15 megacycles. That would be sufficient for consistent long-distance communication on frequencies almost up to the five-meter band!

Was this some peculiarity, such as the erratic sporadic-\(E\) layer that accounted for prewar summer short skip and 5-meter DX? No, not at all. The measurement itself showed that it was the good old DX contest stand-by, the \(F\) layer. Furthermore, if such conditions could be encountered in Hawaii during the poorest year of the sunspot cycle, what could happen about 1948? Why, possibly 5-meter work from California to Hawaii, or between islands in the Pacific.

*Conklin Radio Co., 6800 Clarendon Road, Bethesda 14, Md.

January 1946
Fig. 2 — World map showing geomagnetic latitude variation, for use in applying predictions of radio conditions.

Fig. 4 — Maximum usable frequencies in the W zone, for 2500-mile hops, predicted for February, 1946.
Fig. 3 — World map showing zones caused by variations in geomagnetic latitudes, covered by separate predictions.

Fig. 5 — Percentage of time for occurrence of relatively intense sporadic-E reflections, predicted for February 1946.
Unexpected DX

The writer was very interested in this phenomenon and in the fact that conditions were found to be rather different in four parts of the surface of the earth. Just before the war, the probability of v.h.f. long-distance reception or communication was again brought to the attention of Navy personnel in a series of articles in a Navy technical bulletin, but there were always communicators who were astounded at some of the things that happened. In Pearl Harbor in September, 1943, Lieut. Tippey said that during the Marcus raid he heard a station in Pearl Harbor on about 75 Mc. Many similar reports were received, some of which could be explained by two-hop transmissions by sporadic-E layer.

This was particularly true in the f.m. band around 30 to 35 Mc., which opened up day after day. In Borneo we listened to transmissions from Iwo Jima for a number of hours every afternoon on the USS Phoenix, and on the way up to Okinawa with the bombardment force, on the USS West Virginia, we were amused by complaints from Ulithi Atoll of our breaking up local harbor communications in this range. The transmitters and receivers on the ships usually were 25-watt Motorola and 2-watt Link sets of the police-car type.

The extent of 35-Mc. long-distance reception at the bottom of the sunspot cycle in the western Pacific is further illustrated by the following experiences. A ship in a sinking condition and without power for the high-frequency radio equipment had to transmit some kind of report and call for help. An f.m. equipment operating on wet batteries was used. A number of ships a thousand miles or so away received the message and took action to relay the request for assistance. Another time, an enemy raid was detected approaching a Pacific atoll. The report was put out on a local f.m. circuit on about 35 Mc., using the same frequency as another harbor circuit a great distance away. Ships in the second harbor received the warning, took it to be a local transmission, and went to "general quarters" to prepare their air defenses.

The writer's interest in the highest usable frequency just after the bottom of the cycle was pursued during the Okinawa invasion by spending a few hours each day checking up on the harmonics that could be heard. It was found that some of the long-distance radio circuits in the western Pacific, at 1200 to 4000 miles, were best handled in daylight on frequencies above 20 megacycles, making the proposed 21-Mc. band look mighty interesting. Frequencies from 20 to 26 Mc. opened up about an hour later than those around 14 Mc. and closed a little earlier, but they were good for about ten to sixteen hours a day in one direction or another. Japanese broadcast station harmonics around 24 to 26 Mc. were perfectly good up to ten o'clock at night at Okinawa, and some signals from Navy transmitters at Guam held up just as long though, as expected, 4000-mile two-hop signals at the same frequency from Hawaii passed out several hours earlier.

So it is little wonder that Ken Bryan, K6MVV, used to put good ten-meter signals into Central America and the western U.S. when no other signals could be heard on the band! Ken has his new transmitter ready to demonstrate this phenomenon again. In a few years, when still higher frequencies should get through consistently, it will be a good bet that he will be able to connect with California on six meters in wintertime, if two-hop sporadic-E skip doesn't make it possible in summer before then.

Predicting Conditions

The present position in the long-term trend of radio conditions can be seen quickly from the curves in Fig. 1. The points on the curve are yearly averages of the critical frequencies for noon and midnight recorded at Washington, D.C. The point for 1945 includes only the first ten months of the year. It will be seen that present conditions are more than a year above the bottom of the cycle, which may be taken as early 1944, eleven years after the last minimum in 1933. Conditions now are comparable to those of 1935; they may be expected to reach a peak about the winter of 1947-48.

The wartime measurements of radio conditions have just recently been released from military security restrictions and can be disclosed. The world-wide measurements indicated that conditions change with latitude and longitude, but these positions are in respect to the magnetic poles of the earth. As a result, conditions in North and South America act as if the real latitude were up to 12 degrees farther north, as shown in Fig. 2. The earth's surface, therefore, can be divided into four zones containing areas that act as though they were farther north, farther south, or normal. These zones are shown in Fig. 3.

In applying the F-layer ionosphere information to communications in any direction from some point on the earth, a chart similar to Fig. 4, for the "W" zone—the Western Hemisphere—is used. These charts change with the season but they are available several months early and can be used to estimate the possibility of one of our bands opening up for consistent two-way communication in any desired direction from any place on the earth. A glance at this chart will explain why contest signals from some continents used to predominate at certain hours of the day. It will also show why the ten-meter band opened up this winter for fairly consistent work south.
BELGIUM

Although still forbidden even to possess a transmitter or transmitting parts, ON amateurs are confident of the eventual restoration of licenses and look forward to greatly increased activity in postwar years. Reseau Belge states government authorities have a high opinion of amateur work, particularly in view of the invaluable services rendered by Belgium amateurs to the nation’s army in 1940 when they were grouped into a special unit for military communications assignments. In addition, many hams participated in later “resistance” movements during occupation years.

L. Richard, ON4UF, is temporarily serving as president of R.B. while ON4AA remains on military duty. “QSO”, the society’s official organ, is issued as often as conditions permit.

COLOMBIA

Renewing activities immediately after war’s end, L.C.R.A. was instrumental in securing complete restoration of amateur frequencies and privileges for HK hams. The society now has well over one hundred members, with more expected.

Officers elected for the new term are: Dr. Fernando Carrizosa Valenzuela, president; H. McCormick, HK3HM, vice-president; Italo Amore, HK3IA, secretary; and Pedro E. Rey, HK3PR, treasurer.

CZECHOSLOVAKIA

A brief note from the Czech society, C.A.V., brings the welcome news that after six years of enemy occupation, OK amateurs are preparing to resume activities. There is yet no official word on government authorization.

FRANCE

R.E.F. believes that, as a result of its renewed contacts with French authorities, all prewar licensed amateurs will soon be reactivated. As a temporary measure, phone operation may not be permitted until the licensee has taken a written examination in voice work. The return of all prewar bands is expected.

“Radio-R.E.F.” has obtained official sanction for publication quarterly, beginning in January.

MEXICO

All amateur bands existing before the war have been restored to XE amateurs, with the exception of certain specific frequencies still occupied by certain government services. Licenses are being renewed, but now requiring proof of ownership of equipment, technical ability and amateur status. According to Secretary Mariano Yustis C., XE1BX, L.M.R.E, is being made responsible to the government for continued progress in amateur technical and operating ability.

NETHERLANDS

We have pleasure in reporting the formation of a new Dutch society, Vereniging voor Experimenteel Radio Onderzoek in Nederland, absorbing the former amateur groups in the Netherlands. The new headquarters may be addressed at Postbox 125, Hilversum, and its secretary is Ph. J. Huis, PA8AD. Application will be made for representation as the Dutch society of the Union. Best of luck, OMs!

NEWFOUNDLAND

On October 15, wartime restrictions were lifted (Concluded on page 108)
The “Little Gem II”

A Combination V.H.F. Wavemeter and Field Strength Indicator

BY BYRON GOODMAN,* W1JX/E

Some years ago W1DF described a simple absorption-type wavemeter 1 that proved so handy around the local hamshacks for spotting r.f. at various frequencies that it quickly acquired the nickname of “The Little Gem.” Recently we tried to extend its range down to the 2-meter band with unsatisfactory results, simply because it had not been intended to go that low and some of the leads were too long, and so a new one was built to take up where the old one left off. A few new ideas were added, and the result is a worthwhile gadget that it seems appropriate to call the “Little Gem II.”

A war-time development that certainly seems destined to find many amateur applications is the Sylvania 1N34 Crystal Diode. This is a germanium crystal rectifier mounted in a package the size of a ½-watt carbon resistor, with pigtail leads at each end. Thus there is no more mounting problem than there is with a ½-watt resistor, except that the manufacturer recommends that the leads be held by long-nosed pliers during soldering, to prevent too much heat from getting to the crystal element. However, slight care in soldering is not much of a price to pay for a rugged rectifier that has better efficiency than a 6H6 or even the 6AL5. If you are already arching one eyebrow at the mention of “crystal detector,” it might be well to point out that this little crystal carries normal ratings of 22.5 ma. average current, 60 ma. peak current and 200 ma. maximum surge current! Surge current refers to transient values and peak current relates to the peak value of an applied a.c. signal. Actually, in the “Little Gem II,” which uses the 1N34 with a 0–1 milliammeter, there is a better chance of burning out the meter than the crystal! The crystal is intended to replace vacuum diodes in video applications, where a high-efficiency diode is necessary, but its small size makes it an excellent substitute for a diode in a compact receiver. It is a natural for our wavemeter job.

The Circuit

An absorption-type wavemeter consists of two parts, the tuned circuit and the indicating device. Since this wavemeter was intended for use between 50 and 250 Mc., the tuned circuit was given major consideration. As shown in Fig. 1, the tuning condenser is a split-stator affair of 25 µfd. each section. It is mounted to give short leads to the coil, and the use of a split-stator condenser results in a low minimum capacity. The indication device includes a pick-up loop loosely coupled to the tuned circuit, the 1N34 crystal and a 0–1 milliammeter. The by-pass condenser, C2, furnishes a short r.f. return to the pick-up loop and avoids any resonances in this circuit within the frequency range of the wavemeter. For field-strength indication, an antenna is connected to one side of the pick-up loop and the wavemeter circuit, L1C1, is detuned, resulting in a non-selective indicator. If at any time the frequency

*A Assistant Technical Editor.
1 "A Sensitive Absorption Wavemeter," QST, July, 1941.
is to be checked when the unit is used as an f.s. indicator, tuning the wavemeter through the transmitter frequency will result in a dip in the current indicated by the milliammeter. A 'phone jack, J1, in series with the meter, allows the gadget to be used for checking modulation quality or carrier hum by plugging in a pair of headphones.

Construction

The wavemeter is built in one of the familiar 3 by 4 by 5-inch metal cabinets. The tuning condenser, C1, is mounted under the top and the shaft comes out through a clearance hole in the side. An aluminum plate, 2½ by 3½ inches, is bolted on the side to back up the calibration scale. Flat-headed screws should be used at the bottom so that the paper of the scale will lie flat on the plate. A National FWG polystyrene terminal strip can be used to mount the two National FWA binding posts used for the coil, L1, although we used a plain strip of ½-inch polystyrene. The 'phone jack, J1, is mounted on the side of the case below the tuning knob, and a fancy handle from the local hardware store can be fastened to the other side of the case.

The meter is mounted on one of the removable sides of the case, and it should be located close to the bottom to allow space for the polystyrene strip that supports the FWA posts for the pick-up loop and antenna. These three posts could be mounted on a FWG strip and a pair of National XP6 buttons, but the polystyrene sheet was on hand and we preferred to mount the posts as shown in the photograph.

Wiring the unit is the essence of simplicity. Two wires dropped down from the two top binding posts to the stator connections of C1 complete the wiring of the tuned circuit. A piece of No. 12 wire is run from the meter up near the side binding posts and forms a tie point for the crystal and C2. Long flexible leads are run from the 'phone jack to the other meter terminal and to one side of the pick-up loop. A jumper from the antenna post to the pick-up loop post and the wiring is completed.

Calibration

The hard work comes in calibrating the unit, unless you are fortunate enough to have access to a v.h.f. signal generator with enough output to give an indication on the meter. Lacking the generator, the next best bet is a crystal-controlled transmitter from which one can pick off r.f. of known frequency.

It is probable, however, that the calibrating will be done with Lecher wires in the majority of cases. With the Lecher wires, one will need a v.h.f. oscillator of a few watts, and this of course can be the regular 144-Mc. transmitter, or an oscillator capable of v.h.f. operation. If the meter is to be calibrated in the vicinity of 145 Mc., turn on the oscillator and attach a two-foot length of stiff wire to the antenna post of the wavemeter. With an oscillator capable of delivering 5 watts or so, a meter reading should be obtained several feet from the oscillator, with no antenna connected to the oscillator. The Lecher wires can then be very loosely coupled to the oscillator, and as the proper shorting points on the Lecher wires are found, a dip will be observed in the wavemeter current. Incidentally, this is the

Fig. 1 — Wiring diagram of the wavemeter and f.s. indicator.

C1 — 25-µfd. per section split-stator variable. (Cardwell ER-25-AD).
C2 — 100-µfd. small mica.
J1 — Closed-circuit telephone jack.
M — 0-1 milliammeter.
L1 — 144 Mc.: 2 turns No. 12 wire, 1½-inch diam., spaced wire diameter, 220 Mc.: hairpin loop of No. 12, 1½-inch long, ¾-inch spacing.
L2 — Hairpin loop of No. 12, 2½-inch long, ¾-inch spacing.

† † "A Lecher Wire System for U.H. Frequency Measurement," QST, October, 1941.
A view of the back of the meter, showing the stiff supporting wire for the crystal and by-pass condenser. most sensitive indication for Lecher wires we have ever seen, and it permits a high degree of accuracy in making the measurements. If now the tuning knob of the wavemeter is rotated, a sharp dip in wavemeter current will be found, and this point should be marked in pencil on the scale and the frequency, as calculated from the Lecher wire distance, should be noted for future calibration. As a double check on the calibration of the wavemeter, remove the antenna and tune the wavemeter for maximum meter reading. The two points should be identical, and if they are not it means the pick-up loop is coupled too closely to the tuned circuit of the wavemeter. You should be able to take this reading several feet from the transmitter.

The transmitter frequency should be varied until six or eight points between 130 and 170 Mc. have been obtained. If one is lucky, several of the frequencies will come out very close to integral numbers and will serve as starting points for the scale calibration. A pair of drafting dividers can be used to divide the spaces between these points, remembering that the divisions representing one- or two-megacycle intervals become greater as the frequency becomes lower, because of the nature of the tuning curve of a straight-line capacity condenser with no shunting capacity. It was found quite easy, however, to ink in a suitable calibration which checked within the accuracy with which the scale could be read. The important thing, of course, is to be able to spot one's frequency close to the band and after that to depend upon something more accurate. One possibility along these lines would be to have a

(Continued on page 104)
LINK COUPLED MODULATOR

MODULATION transformers are scarce and expensive; but speaker output transformers of the universal type are readily available, and at low prices. Many low-power transmitters use filter chokes in the Heising circuit; others use the split primary of a speaker output transformer for a modulation transformer. Both of these systems have the disadvantage of having to use a common power supply for both transmitter and modulator, and permit no adjustment for proper impedance match. Also, push-pull modulator tubes cannot be used. The following scheme is superior in both respects.

Fig. 2 — Universal-type output transformers connected back-to-back to obtain a wide range of impedances.

Use two universal speaker output transformers connected back-to-back, as shown in Fig. 2. By utilizing the voice coil taps, a wide range of impedances can be matched; step-up or step-down, single-ended or push-pull, Class A, AB, or B. Merely determine the impedance transformation ratio for the various voice-coil taps from the data sheet supplied with the transformers. Then, by using the ratios as a step-down from the modulator and as a step-up to the transmitter, a perfect match can be had. As an example: Push-pull Class AB 6V6s are to be used to modulate an 807 running at 400 volts and 60 m.a. The recommended load resistance for 6V6s, Class AB is 8000 ohms. The modulated amplifier represents a load of 400/.06, or 6666 ohms. From the data sheet we find that secondary tap which will match 8000 ohms to, say, a 6 ohm voice coil. Then, all that has to be done is to find from the same data sheet a tap which will match approximately 6666 ohms to a 6-ohm voice coil, the two secondaries are linked together and the job is done with a "link coupled" modulator at a fraction of the cost of a regular modulation transformer. — Harry R. Hyder, W2LIW and Joseph Vitko, ex-W1BEA.

V.H.F. MODULATOR WITH A2 AND A3

The single tube modulator shown in Fig. 2 provides for both voice and tone modulation, with but a single tube. A neon bulb (with resistor removed) is used as a tone generator, for use on the v.h.f. bands, where m.c.w. operation is permitted.

The potentiometer, R_1, serves as a pitch control. Some variation of R_4 and C_2 may also be necessary to get some neon bulbs to oscillate at the frequency desired. Insertion of phones in the monitor jack permits adjustment of the tone and provides a means of monitoring keying as well. — Henry Morris, 483 So. Canyon Blvd., Monrovia, Calif.

Fig. 2 — Single tube v.h.f. modulator for m.c.w. or voice.

C1, C2 — 0.1-µfd. 400-volt paper.
C3 — 5000 ohms.
C4 — 10-µfd. 25-volt electrolytic.
R1 — 0.25-megohm potentiometer.
R3 — 500 ohms.
R4 — 0.5-megohm potentiometer.
R5 — 5000 ohms.
L1 — Modulation choke, 30 hy.
T — Microphone transformer.
N — Neon bulb (resistor removed).
J — Monitor jack, closed-circuit type.
S1 — S.p.s.t. switch.
S2, S3 — S.p.d.t. switch.
CONDUCTED BY E. P. TILTON,* WIHDQ

THE MAGIC date, November 15, 1945, meant many things to many people. To thousands of low-frequency men it meant the first glimpse of a portion of the radio-frequency spectrum which they had never used before — Ten, Five, or Two were better than nothing. To ten-meter men it was a field-day — who could guess what was in store on their band after four years of idleness; four years which included the passing of a sun-spot minimum? To a few five-meter regulars even 3:00 A.M. was none too early to start activity in their beloved stamping ground. To hundreds of occupants of the temporarily reactivated 112-Mc. band it meant pruning coils and inserting filament chokes, in order to get their gear working in the new 144-Mc. band. But to two amateurs, Rube Merchant, W2LGF, and Arthur Harrison, W6BMS, the high spot of F.C.C. Order 130 was that portion dealing with the frequencies between 5250 and 5650 Mc. Yes, that's Mc. — megacycles!

And so we have our first postwar "first" — at 7:46 p.m. on November 15th, W2LGF/2 and W6BMS/2 worked each other on 5280 and 5390 Mc., over a distance of approximately five miles, between two roof-tops in Garden City and Great Neck, L. I., respectively. Communication was on voice, and contact was maintained for more than two hours of continuous duplex operation.

This performance was repeated, for the benefit of several visiting members of the Headquarters staff, on November 24th. All of us were surprised at the simplicity of the gear, which was much more like ham radio than we had anticipated, and delighted with the quality and solidness of the signal. It hardly seemed possible that we were talking on a frequency many times higher than any of us had ever used before for communication.

Reflex Klystrons were used as frequency-modulated oscillators for transmitting, and as local oscillators, a.f.c. controlled, for receiving. Frequency modulation and control were both obtained by variation of the Klystron reflector voltage. Antennas (two at each station) were parabolas, thirty inches in diameter, with the Klystrons mounted on a short section of waveguide which opened toward the center of the "dish." Crystal mixers were used for receiving, and the i.f. was fed, by means of coaxial lines, to a standard f.m. receiver which had been modified to include the a.f.c. circuit. The equipment was well within the capabilities of the more advanced amateur, and its builders, Merchant and Harrison, hope to see it duplicated, and improved upon, in the near future. A complete description of the setup, prepared by Merchant and Harrison in record time, appears elsewhere in this issue.

Operation has not been going on long enough to provide much information on the characteristics of our various new bands. Conditions on 28 Mc. have not been quite up to expectations, though the opening was probably late enough in the season to have passed the peak of conditions for that band. Activity on Five has been at a low ebb in most sections of the country, as might be expected, with Ten being released at the same time. No DX has been observed, at this writing, though it is expected during the middle of the winter season. Operators on Five are urged to get on and make every effort to promote activity — don't be satisfied with just looking over the band. Get on there and make some noise; use c.w., and use it often; arrange schedules with other stations and keep them — it is only by having plenty of signals on there every night that we will be able to make the best use of DX conditions when they do break.

On 144 Mc. the activity is building up toward the level of prewar activity on 112 Mc. Not much has been learned of the comparison between 112 and 144, and operators are asked to observe and report in this connection.

In prewar five-meter work it was noticed that sporadic-E DX usually followed on the heels of...
of a pronounced period of temperature-inversion bending. The October 21st session was no exception, though the sporadic E escaped the notice of the average amateur, as only 112 Mc. was available at that time. The F.M. band was wide open on October 22nd, according to W8UTR, who is located at Corozal, Canal Zone. He heard Boston, Chicago, Denver, and many other unidentified F.M. stations between 1:00 and 4:00 P.M., Canal Zone Time. Denver was heard on the following day. Signals were distorted and seemed to shift frequency at times, probably due to multipath reception or shifting in position of the reflecting layer.

Activity on 112 Mc. reached an unprecedented peak in the Hawaiian Islands, according to Lt. George Barnard, WINSS/K6, who had worked more than 35 stations before Nov. 15th. Several had expressed their interest in maintaining v.h.f. activity even after the reopening of the lower frequency bands. With all the fine locations in the Islands, and with that wonderful Hawaiian climate serving up nice temperature inversions as a regular diet, that shouldn’t be too hard. The Island of Hawaii has two peaks, Mauna Loa and Mauna Kea, over 13,000 feet; Maui has Kolekole Peak, Haleakala Crater, an elevation of 10,000 feet, with a road to the top; and there are numerous spots over 2000 feet on Oahu which are readily accessible by car, where the other islands of the Hawaiian Group are line-of-sight, or nearly so.

Some idea of the degree of tropospheric bending existing in that area may be gained from the fact that the Kaneohe Bay tower, operating near the high edge of the 112-Mc. band, has been heard at Pearl Harbor and at Fort Shafter. You have to know Oahu topography to appreciate that — Kaneohe Bay, on the eastern side of Oahu, is separated from the Honolulu side of the Island by a continuous range of mountains, through which there is no path lower than 1200 feet. The two locations mentioned are close to sea level, on the Honolulu side.

Here is v.h.f. DX which breaks all records, though it would be difficult to verify it. Listening at John Rodgers Airport, Honolulu, W5GSG heard airways communication from Christmas Island on 127 Mc., shortly before the end of the war. This is a distance of approximately 1000 miles!

The widespread temperature inversion which produced such a flurry of 112-Mc. DX on the night of October 21st, is now rather ancient history, but some observations have come in concerning it which have more than passing interest. Dana Griffin, W2AOE, visited W3BJR, Princeton, N. J., on that Sunday afternoon, running into a very interesting session on 112 Mc. as his first contact with amateur radio since 1941. During the afternoon several stations near Little Neck, L. I., were heard at W3BJR, and as darkness came on stations beyond the usual range were heard in all directions, culminating in a contact with W8MAP/1 at New London, Conn. W2AOE then returned to his home at Plainfield, N. J.; and though only an improvised indoor antenna and a 112-Mc. television receiver were available, stations from Philadelphia to New London were heard with good strength. From these observations, Griffin draws some interesting conclusions.

Many of the stations in what are normally considered to be poor locations for v.h.f. work were able to do just as well, or better, than stations more fortunately situated as to altitude. In fact, the high-altitude fellows were at a disadvantage, because their greater local coverage resulted in their experiencing much more QRM. It was also noticed that polarization was relatively unimportant in connection with reception of distant signals. Therefore, why not use a high-gain horizontal antenna for v.h.f. DX? This antenna could be mounted relatively low to the ground, to reduce local pickup, as height above ground would have little or no effect on signals which came in via inversion bending. In addition, the horizontal antenna would have the desirable effect of reducing the strength of the local signals, which would be vertically polarized.

(Mainland hams who attended the postwar hamfest at Honolulu, October 7, 1945. Standing, left to right: Henderson, RT1/C, W6TGA; Ohlemacher, Ens., W8YDM; Freng, RT3/C, W91HO; Sammon, S/Sgt., W8OCE; Mallory, T/S, W1MEP; Kayhart, Lt., W2LFE; Schieferstein, Lt., W8UUX; Nininger, T/Sgt., W9UFQ; Zuckerman, W2LBF; Cole, S/Sgt., SWL; Sulfridge, T/4, W3FRH; Keefs, RT3/C, SWL; Dean, EM3/C, W9CEZ; Wenner, EM2/C, W3YVL; Hessinger, RT1/C, SWL; Field, OPLO; Carlin, T/4, W9ULH; Ryndsk, S/Sgt., W6DRD; Cook, T/Sgt., W11TF; Marek, Lt., OPLO; Herrick, Lt., W7H0J; Barnard, Lt., WINSS; (not pictured) Higginson, T/4, W9JND.)
Loran—the Latest in Navigational Aids

Part II—Ground Station Equipment

BY ALEXANDER A. McKENZIE, * W1BPI

Part I described in a general way the elements of a Loran system. Up to now we have avoided details of the transmitting and receiving equipment and the method of presentation of the Loran signals. This section on the ground station (transmitting and timing) equipment will do little more than describe a series of "black boxes" and their interconnections. The relative complexity of the apparatus and wartime security considerations make a more detailed description undesirable. It is hoped that within a few months most of the Loran equipment information will be unclassified, with details available to the public. At this writing, however, this is the only Radiation Laboratory report on the subject in preparation for any publication.

Station Layout

First, let us consider once again what is required of a transmitting station. A review of Part I shows that apparently the whole duty of the Master transmitting station is to send out a continuous train of signal pulses. This is close to the truth. The duty of the Slave is to maintain synchronism, or keep the station delay at a constant, predetermined value at all times. The station delay is, by definition, the length of time which elapses between receipt of the Master signal at the Slave and the instant the Slave signal comes on the air. Let us assume that our station in the block diagram of Fig. 9 is a Slave station. Neglect the parts in dotted lines for the time being.

The remote signal receiving antenna is placed as far from the shock field of the transmitting antenna as the geometry of the site permits. It may be a Beverage wire, a relatively short vertical wire or a guyed pole. The Master signal is received by the antenna and passed through the receiving antenna coupling unit and low-impedance coaxial line to the attenuator (which in the non-attenuating state furnishes a small amount of amplification), thence to the receiver. The output of the receiver is fed to the timer (heart of the station) and presented as a pip on one viewing 'scope and as a pulse on another which is swept at a faster rate. The proper controls must be manipulated by the operator to arrange the transmitter keying circuits in such a way that the signal emitted from the transmitting antenna and picked up on the local signal antenna shall be delayed exactly the prescribed amount after the signal received from the remote station. Just before the timer sends out the keying signal to the transmitter, it sends out a blanking pulse to the attenuator which shuts off all signals received on the remote signal receiving antenna for longer than the duration of the transmitter's pulse signal. Since this local (Slave) signal is picked up on a very short local signal antenna which is connected to the receiver at a point beyond the attenuator, its amplitude must be controlled to a very small value. The receiver, then, is protected from the strong local signal by the attenuator. Its output is fed to the viewing scopes where the persistence of both the screen and the operator's vision allows a comparison between the Master signal and the local Slave signal.

![Fig. 9 — Block diagram of a typical Slave station installation.]()
Energy from the transmitter passes through a coaxial line to the transmitting antenna coupling unit located at the base of the transmitting antenna, which might be an inverted L, vertical wire or tower of less than a quarter wavelength. Its location, including radial ground system, is as close as possible to the sea and as far as convenient from the receiving antenna.

The transmitter is provided with a combined test 'scope and frequency-checking device. If the station is a Slave at the center of a group of three, the transmitter must do double duty. The companion Master station signal is received, passed through the common attenuator and thence to the other receiver attached to Timer No. 2 (this interconnection and that to the local signal antenna have been omitted to avoid confusion). Timer No. 1 will synchronize with a Master station operating on a pulse rate of, say, $25\frac{3}{4}$ per second. Timer No. 2 will usually synchronize with a Master station operating at $25\frac{3}{4}$ pulses per second. Except for a brief moment every sixteen seconds when the two rates come into coincidence, the transmitter will be acting like two transmitters. There will be a cross-over of the blanking pulses, so that Timer No. 1 has its signal cut off by Timer No. 2 and vice versa, but this effect is not particularly troublesome because of its short duration.

Transmitters

Fig. 10 shows the transmitting equipment in greater detail. Either or both pulser may be used, depending on whether the station is single or double type. It makes no difference to the transmitter whether it is used for Master or Slave operation.

The timer supplies a trigger pip to the input transformer which steps up the voltage and feeds it to the grid of a pulse-forming gas tube. The gas tube circuits produce a keying pulse of definite shape and duration. This is amplified and passed on to the mixer, which in turn actuates the modulator. The modulator keys the oscillator by reducing the cathode voltage. Radio-frequency pulses pass through a low-impedance transmission line to a network which matches the line to the transmitting antenna. This antenna radiates radio-frequency pulses of a form and duration determined by the gas tube and r.f. circuits and occurring as frequently as the triggering pip from the timer.

The transmitter may be adjusted to operate at any frequency between 1700 and 2000 kc. The maximum peak output power of any transmitter under normal single-pulsed operating conditions is approximately 150 kw.; when double-pulsed, 85 kw., but is usually somewhat less. The average power might be in the order of 150 watts. The peak power is a function of average power and the duty cycle. The value of the duty cycle varies inversely with the recurrence interval (time between pulses) and directly with the pulse width. Stated algebraically, where P is peak power, \bar{P} is average power, L is time between pulses (in microseconds) and W is width of each pulse (in microseconds):

$$P = \bar{P} \frac{L}{W}$$

![Fig. 10 — Block diagram of Loran transmitter.](image-url)
Loran transmitting equipment has a peak power output of 150 kW, but because the transmissions are short pulses the average power is only about 150 watts. Present installations are keyed oscillatorA operating in the 1700-2000-kc. range.

Essentially, the transmitter is a self-excited oscillator, cathode-keyed. The amazing thing is that such a simple circuit can be used in such an exacting service. Crystal controlled m.o.p.a. transmitters have been built since the early, hectic days, but there are as yet none in routine operation in the field.

Timers

The timer is the very heart of the Loran system because it initiates the transmitter triggering pulses. If these pulses do not recur accurately and constantly, the signals are meaningless. The low-frequency quartz crystal which sets the pace must hold frequency sufficiently constant so that synchronism with another similarly inspired station can be held with a precision of one microsecond for at least three minutes at a time without adjustment. A watch with the same precision would be no more than one second wrong after running six years.

There are ten separate units which make up a complete timer. Fig. 11 shows the relations among the principal units, omitting such things as power supplies. The attenuator (shown in dashed lines) is a separate assembly, usually mounted in the wall of the shielded room which makes it possible to operate the timer in the same building with the transmitters.

The oscillator unit is equipped with a “phase shifter” which allows whole numbers or fractions of cycles to be added to or subtracted from the oscillator output manually. Manipulation of the phase shifter effectively advances or retards the position in time of the transmitted pulses relative to that of the received pulses. If there is a gradual drift away from the desired position, it is then the duty of the Slave station to correct its crystal frequency so that it exactly matches that of the Master. Within certain operating limits, this correction may be automatically applied by the synchronizer. There is even a buzzer to warn the operator of trouble.

The “central” contains dividing circuits which reduce its crystal oscillator frequency to power-line frequencies. Assuming that 25 cycles per second is the output chosen from among the several available, we can call this output by its reciprocal or time-interval name and say that it is a 40,000-microsecond pulse. In a similar fashion, we can pick off and introduce into our viewing scopes as markers other outputs back down the line, calling these 10-, 100- and 1000-microsecond pulses. The intermediate outputs are also used to trigger delay circuits necessary for maintaining synchronization, as described below.

The twin 'scope presents this information. If we key our transmitter with 40,000-microsecond pulses and sweep the scopes so as to see one pip standing still, we will also see the received signal from the Master station as one pip standing still. All that remains to establish synchronization is to measure off a distance equal to 20,000 microseconds (for reasons to be shown later), measure off an additional bit for our station delay, say 1500 microseconds, and manipulate the phase shifter until our pip stands where a suitable ruler indicates 21,500. This is done with an electronic ruler after the 40,000-microsecond trace has been split into two 20,000-microsecond traces, one above the other as shown in Fig. 12(a). The graduations on the electronic ruler are the markers (10-, 100- and 1000-microsecond pulses) mentioned above. They are not shown in the figure. The reason for having measured off the initial 20,000-microsecond interval above now becomes apparent. It is one portion of the time elapsed between reception of the Master signal and the local (Slave) signal. From here on, however, we shall neglect the 20,000-microsecond portion of time at all scopes (mathematical proof to show that this is possible will not be furnished) and consider only the other portion.
This constitutes the number of microseconds included between the extellation of the upper trace pip to the lower trace and the pip on the lower trace. For instance, instead of thinking of the time between pips in Fig. 12(a) as 21,500 microseconds, we will call it 1500 microseconds. This 1500 microseconds is the Slave station delay which must be maintained at all times.

In order to set the delay exactly, movable pedestals generated with the help of variable delay circuits are imposed upon both traces. Portions of both pedestals can then be magnified by use of fast sweeps. The magnified graduations, or markers, allow the pedestals to be set apart within a fraction of a microsecond of the desired value. The signal pips are magnified at the same time and spread out as pulses. These are displayed on the fast scope. Then, when the traces are collapsed and appear as a single line, with two pulses close together, the phase shifter is moved until the pulses are exactly superimposed. Fig. 12(b) shows the relative positions of the pulses on the fast scope (not superimposed) when synchronism is being maintained. The Master station sees a somewhat similar picture on its timer scopes, except that the relative positions are different. The positions depend upon the distance between the stations plus the station delay held at the Slave. The Master does not normally adjust its phase shifter. If the Master operator notices a discrepancy he may signal the Slave by "blinking" his pulse, making it appear to go off and on about once a second, until the Slave rectifies the error. The navigators' indicator, which is similar to the ground station timer in many ways, will be described in somewhat greater detail in Part III.

It has been mentioned that in order to prevent the local signal from paralyzing the receiver, thereby obscuring the weaker remote signal, an attenuator equipment is inserted between the receiving antenna and the receiver. It is customary to install the timer equipments in a room shielded with hardware cloth. The first stage of the attenuator, enclosed in a metal box, is built into the wall of the shielded room and the other units are fastened close by. Fig. 13 shows the more significant portions and their relations to each other. The remote signal is amplified 6 to 10 db. when the two stages are in the amplifying state. Just before the local transmitter is triggered, however, the timer sends a positive blanking pulse to the bias driver which inverts it and passes it along to the two stages as a strong negative bias pulse of a length determined principally by the timer. The local signal is then attenuated 126 to 134 db.; to such an extent that it must be re-introduced by other means to get sufficient amplitude for monitoring and comparing with the remote signal. Power for the shielded room must be brought in through a transformer equipped with a Faraday shield. Even the introduction of telephone lines without a shielded transformer will destroy the effect of the room.

About the Author

- Recollections of the early days on what are now known as the v.h.f. bands always include the work of Alexander A. McKenzie, W1BPI. His operations from the top of Mount Washington made history during the period from '32 to '36 when W1BPI-WIFEX furnished many a station with their early 5- and 2½-meter DX contacts.
How:

By way of introduction, this is a column that used to chronicle the doings of a particular breed of radio amateur. One of this species could be identified readily by his long ears, his nervousness whenever removed from his natural habitat—a smoke-filled ham shack lined with foreign QSL cards—and a friendliness toward only postmen, QSL Managers and hams who had worked more countries. Many of these fellows were good operators and had plenty savvy about radio, and they were able to do a mighty good job for their countries during the past five or six bad years. How did this species evolve? We really don't know, but a letter found among the effects of old Noxious Q. Nobands after he passed away may throw some light on the subject. The letter is reprinted in its entirety:

November 15, 1945

Dear Noxious,

Remember me? I'm one of the few things men chased back in 1940 that didn't wear nylons. I used to hang out next to high-powered locals and under automobile QRN, and even when I was weak and in bad shape the guys still found me. Some of these Joes went to great lengths to get the nod from me, but they always seemed to consider it worthwhile. These same Joes never forgot me, and they tried to get together and talk about the old days with me even when they knew there was a big job to do before I could come back. The job is done and I'm back today and, mister, you're all through! I won't be seeing you!

Apparantly this is the doll our particular breed put the follow on, and she really had plenty of wolves after her. If she is back, they'll be back, and we'll be trailing close behind. Please let us know what you hear about her.

What:

We want to apologize for not having the place cleaned up a little better, but if you will just step into the shack perhaps Jeeves can find a little something for us to use for a toast to our old girl friend. "Make it the best, Jeeves—nothing is too good for an occasion like this." —— ——

Indications that she is back showed up the first day 28 Mc. was opened to us, with K4RD/K4 and W41EN/K4 active and working. Since then other c.w. stations like GTFF, GFAA, G6DX, G7AL, EI5X, K4HLP, F3C1A, F8USA, D4USB, XE1OM, OK1FE, OQ5AE, FLX (Holland), CXTT (somewhere in Europe) and FPT7A (?) have appeared and are working W's and VE's. The pickings on 'phone are no less fat, where the juicy ones are EA1D, AACS at Madrid airfield, SU1MW, W2NDJ/F, W7HLV/K7, W9LOG/VP4, LX1SI, G6BW, W6PUL/K6, W9GSG/K6, and old reliable K6MVV. OK, OK— so you've worked them all and now have about fifteen countries and want to know where the DX is. Well, if you're so rugged that after four or five years of famine the above lists don't look like a feast, you do the column! —— Undoubtedly by the time this reaches you there will be many more countries represented, but even if there are no additions it is well worth your while to get on ten and warm up the old fist and mike. Conditions are good and the band has the right sound to it.

DXCC:

The decision by the Communications Department to "wipe the slate clean" on the DXCC and start over again, announced last month, sounds to us like a lulu. It means that Johnny Newham starts in on the same footing as D. Xavier Old-timer and still it takes nothing away from the pre-war man's accomplishments. The information on one's pre-war and post-war accomplishments can still be carried on a QSL card, but now Johnny will feel like he has a chance to knock Old-timer's pins out from under him, a rather futile feeling if the old listing were retained. It gives the CD a chance to streamline and strengthen the DXCC rules, an obvious advantage to everyone. There will be some time before the rules can be completed and a new list of countries established, but in the meantime if you work everything you and your neighbor hear you know you won't be left out in the cold. Of the pro-war DX men we've

(Concluded on page 118)
Listening in on the Stars

Doppler Whistles from Meteor Trails

BY OSWALD G. VILLARD, JR., W6QYT, EX-WIDMV

While peaking up that communications receiver for reopening on the DX bands, why not take a little time out to make some observations on an interesting, but little known, phenomenon? Few hams know that meteors can be spotted without leaving the operating room.

Most of us have done a little night star-gazing during our lives, for reasons of romance or profound astronomical speculation, and are consequently familiar with the shooting stars or meteors which flash silently overhead on summer nights like falling Fourth-of-July rockets.

Yet few are aware that it is possible to "hear" these visitors from outer space during the course of their brief plunge through the heavens, and even to estimate their speed without recourse to telescopes, photographic plates, or maps of the solar system.

How is this done, you ask? All that is required is a good short-wave receiver. For it turns out that falling meteors leave trails of ionized gas behind them which affect the propagation of short radio waves. These waves, in fact, are reflected from ionized meteor trails much as they are reflected from the regular layers of the ionosphere. Under certain conditions, when the regular layers are not heavily enough ionized to reflect short-wave signals from one point to another relatively close at hand, sporadic "sky-wave" transmission may still take place over this path because meteor trails are capable of reflecting signals when the regular layers are not. Since the meteor trails are relatively small in size when compared with the whole ionosphere, the amount of reflected energy is usually small and is not readily noticeable in everyday practice. However, when the short-wave listener knows how and where to look, the energy reflected by meteor trails easily can be recognized and identified.

Since a meteor trail is not static, but effectively moves across space with the same velocity as the meteor itself, the signal reflected by the front edge of the trail reaches the listener via a path whose length is rapidly varying. The effect is roughly the same as if the radio transmitter were located on the meteor itself. As a result, the speed of the meteor's travel produces a "Doppler shift" in the frequency of the radio signal just as the motion of an approaching locomotive changes the apparent pitch of its whistle. Now if part of the signal from a fixed transmitter received at a given location consists of energy reflected from a moving meteor trail and part consists of energy reaching the receiver via a path of constant length, the difference in "pitch," or frequency, of the two components will produce a beat note which can be easily detected. The purpose of this article is to outline the conditions under which these Doppler beats can be heard in an ordinary short-wave receiver, and to describe their sound and other characteristics.

Identifying Meteor-Trail Reflections

To hear the Doppler beats which are the radio "sounds" made by meteors in the course of their brief plunges through our atmosphere, it is necessary to find and tune in a powerful short-wave broadcasting station operating on a frequency such that you are within its skip zone. The station should preferably be in the 11-, 15- or 18-megacycle band, and may be anywhere up to several hundred miles away, depending on ionosphere conditions. The main requirement is that you should not be receiving a direct, ionosphere-propagated ray — the signal must be very weak and fading, and may have a characteristic "hollow" sound.

Listen closely to this signal, and if your receiver has an "S" meter keep an eye on the indicated strength. If conditions are right, you will notice from time to time irregular bursts of strength which may send the "S" meter up to fairly high values. These bursts will not last long — perhaps ten or twenty seconds — and the signal will soon fade down to the average low level. Some of the bursts may be quite weak, and may cause only a slight flick of the "S" meter.

At this point it should be noticed that during the first part of these bursts, especially the weaker ones, certain noises are audible on top of the received program. These sounds are short "whistles" super-imposed on the regular modulation. The pitch may be high or low — anything from a low grunt to a high "pweet." The whistles will last only two or three seconds, their duration being usually much less than that of the bursts of signal.

The whistles will, in general, vary in pitch. They may change from a high to a low tone — a sort of "pweeough" — or they may do the reverse. The pitch may even be constant. It will be unusual if any two whistles sound exactly alike.
On some occasions they and the burst may come thick and fast — two or three a minute; on others they may be less frequent. They are usually more noticeable during the early morning and early evening hours when long-distance transmission is best.

An enormous amount of heat and quickly causes the particles to incandescence. The radiation thus given off causes intense ionization along the path followed by the meteor. This ionization rapidly diffuses outward after passage of the particles, thus at first increasing the area of the disturbance, but decreasing its intensity; eventually the ionization is dissipated, the positive and negative ions recombine, and the reflecting region disappears.

The weight of the matter composing the meteor is remarkably small in comparison with the dimensions of the ionized trail left behind after its passage. Considering ionization of an intensity sufficient to reflect a 10-megacycle signal, Pierce estimates that a meteor of average speed and weighing only one-quarter of a gram would be sufficient to ionize a cylinder of the earth's upper atmosphere 1 kilometer in diameter and 100 kilometers long.

Why the Meteors Whistle

Let us consider a radio transmitter and receiver located far enough apart — say 30 to 60 miles — so that direct ground-wave transmission is negligible. The operating frequency is such that the receiver is within the skip zone. Under these conditions, the only energy from the transmitter detectable at the receiver which has been trans-
NOW THAT the gang is back on ten and five perhaps some of you crystal ball operators can disclose some new techniques for those bands.

This month’s list of previews, contributed prior to that bright moment on the morning of Nov. 15th, includes excellent suggestions regarding our normal complement of bands. Furthermore, these layouts will make any shack more efficient and convenient. By coincidence, there are several GIs in the group of winners.

What kind of gear do you see in your crystal ball that would make two, five or ten meters more interesting and productive? Any ideas on rotatable antennas, “hot” receivers and other new devices that you are going to build up so you can make WAS on five, WAC on ten or that ninth state on two meters?

*A. Department Editor.

R8VGW DESCRIBES HIS CONTROL CIRCUITS

MY POST-WAR rig isn’t going to be radically different from the gear we used to dream about. Although the manufacturers have been promising us wonderful and strange new gadgets, I have yet to run into anything startlingly different that could be adapted for ham use although I’ve been working in Army stations for two years, on stuff ranging in size from walkie-talkies to forty-kilowatt radioteletype transmitters. I have a few ideas from these commercial rigs, however, that I want to incorporate in my own station.

First of all, no more haywire! No more headaches such as when a rig develops a bug right in the middle of the Sweepstakes; or just when I’m about to work that 100th country. My rig is going to be built to commercial standards, and it will stay on the air when it’s needed most. It’ll be

![Control circuit diagram](image)

Fig. 1. — Control circuit planned by W8VGW. Switches S1, S2 and S3 are located on the operating desk. S1 is the main operational switch, S2 is the “c.w.-phone” switch and S3 controls the high voltage circuit.

Ry1, Ry2, Ry3 — S.p.s.t. relay.
Ry3 — D.p.s.t. relay.
Ry4 — D.p.s.t. relay. One circuit open — one closed, on operate.

Ry5 — S.p.s.t. time-delay relay.
Ry7 — S.p.s.t. overload relay.
S1, S2, S3 — S.p.s.t. switch.
D1, D2, D3 — Interlock switch.
completely enclosed in a metal cabinet. It will be ventilated, but the screens will be fine enough to keep out those bothersome bugs, the kind that fly. If some night, while dit-happy from too much DX and not enough sleep, I open the rear door to clean the relay contacts, a little interlock switch will remove all voltages, and the next night I'll still be alive to keep a sked with that VK4. If for some reason the plates of the final tubes should decide to blur a nice rosy red color, there will be an overload relay in the plate circuit to handle the situation and keep those precious bottles in their sockets, until the trouble can be located. If my bias rectifier should decide to call it quits, another relay will be right on the job to see that nothing blows up.

I can remember when I had to have three arms in order to switch from transmit to receive, and it took half a day to change the rig from c.w. to 'phone. Those days are gone forever. My new rig will have plenty of relays in the right places, so that all I'll need to run it are three little switches. These will be right on the desk within easy reach; one to turn on the filament; another to switch on the high-voltage (and also to switch the antenna and disconnect the receiver); and a third one to change from c.w. to 'phone. There's no need to learn acrobatics just to run a ham station. The circuit is designed for a rig which gets all filament voltages from separate transformers. It could be adapted to rigs which get some filament voltages from combined plate-filament transformers by putting relays in the B+ returns of such plate-voltage rectifiers and connecting the windings to the output contacts of R_{p}. An added refinement would be to connect relays for switching the antenna from receive to transmit, and for turning off plate voltage on the receiver. The antenna relay would normally connect the antenna to the receiver, and the receiver relay would normally be closed.

The circuit is designed for a rig which gets all filament voltages from separate transformers. It could be adapted to rigs which get some filament voltages from combined plate-filament transformers by putting relays in the B+ returns of such plate-voltage rectifiers and connecting the windings to the output contacts of R_{p}.

CONVERSION EXCITER

I intend to use two oscillators in my v.f.o., one a stable crystal oscillator, the other a v.f.o. tuning the range of 500 to 1500 kc. The two oscillators will feed into a 6SA7 mixer. The sum frequency will be selected by a tank circuit and will drive a 6V6 to complete the unit. See Fig. 2.

By using crystals at 3 Mc., 6.5 Mc., 13.5 Mc., and 20.5 Mc. the complete range may be covered by a simple bandswitch. In order to cover the 28-Mc. band the 6V6 will double from 14 Mc.

JANUARY PRIZE WINNERS

*Contributors to the Crystal Ball Department are awarded monthly prizes consisting of a $25 Victory Bond, first prize; $10 in Victory Stamps, second prize and $5 in Victory Stamps, third prize. One dollar in Victory Stamps is awarded the writer of each of the published letters not receiving a major prize.

The most interesting letters are selected by two members of the Headquarters staff, the conductor of the department and a "guest judge." This month's winners, chosen by John Huntoon, W1LVQ, Assistant Secretary, ARRL, and W2OEN, follow: S/Sgt. Elmer P. Orvis, W3VGW (first prize); CRT Bruce F. Brown, W7JBE (second prize); Cpl. H. W. Propsner, USMC (third prize); Pvt. Leigh Robartes, jr.; Lt. Lewis S. Norman, jr., W7GXR-W7CZG; C. L. Hardwick, OPLO; Harold S. Renne, ex-W8PTS; and Carl Shiffman.*
The advantages of this arrangement? Constant bandspread, ease of calibration of the v.f.o. against broadcast signals, chlirpless keying since the mixer tube may be keyed instead of the v.f.o., and very excellent frequency stability.

Concerning frequency stability, I expect not more than 200 cycles drift from a cold start. This drift will be constant for all bands except 28 Mc. where it will be doubled.

--- Bruce F. Brown, CRT, W7JBE

Fig. 2 — A functional diagram of W7JBE's proposed conversion exciter.

(W7JBE did not say where he is going to obtain the high-capacity variable required to give bandspread from 500 to 1500 kc. and still maintain the high-C oscillator necessary to provide suitable stability. — EDITOR.)

A MARINE HAS THE SITUATION WELL IN HAND

Much Naval communication has helped my ideas on postwar ham gear. Traffic rather than tuning "gizmos" will be my first consideration. A commercially-built receiver will fill the bill with a converter for the v.h.f. bands. A panoramic adapter is a "must"! Nothing will simplify the problem of changing frequency like that c.r. tube with the rippling c.w. sigs coming and going on that panoramic screen. I'll just put the v.f.o. and swing my 500-watter to a reserved seat on 20 meters for my CQ. (Plenty power, eh? Sure — I'm out in the country and there will be those jobs they have on new relays to help a lot on c.w.)

A rotary beam? Yeah! Remote-controlled on top of the silo. We're going to have a "reefer" or cold storage unit so the old ice house can be my new ham shack.

A continuous wire recorder will put out sweet-sounding CQs. An electronic bug with side tone and a keying relay with a dampener box (like those jobs they have on new relays to eliminate fuzzy dots, to eliminate chatter and bounce) will help a lot on c.w.

Voice? Certainly! Compression-modulated, push-pull 2A3s or triode-connected glass 6L6s with a compressor limiter.

A push-button crystal-controlled v.h.f. job in the car and some other devices for comfort and convenience in my ham shack will help.

Ambitious? Sure, but anything's possible. You should see the "hearing-aid" radio I use over here while I dream of fungus- and moisture-proofed postwar rigs while my two-tube capacity-relay mouse trap keeps the rodents out of my chow and my QSTs.

COMPACTNESS AND FLEXIBILITY

I plan to construct an entirely new "base of operations" when I settle down and I want to have everything as compact, clean-cut and interchangeable as possible. Rack and panel construction appeals to me both for my transmitter (and possibly a receiver or two) as well as for my test equipment. When I worked for RCA I had high- and low-voltage output jacks right on my bench. I intend to have a test panel which will include this feature, utilizing one of the tube-tester transformers with multiple secondaries and a rotary selector switch. An a.c. voltmeter will be available for ready use. This will provide a flexible, useful power source for experimental work.

My i.f. system will be built into the rack and will include provision for a dual power source (115 volts a.c. and 6 volts d.c.).

I plan on a 1600-ke. i.f. and as this presents quite a problem on the high frequencies I will include a fixed-tuned converter with 10-Mc. input and the normal 1600-ke. output, furnishing an adaptable arrangements for various v.h.f. and u.h.f. converters.

--- Pvt. Leigh Robartes, Jr. Keeler Field, Miss.

SMALL BUT MIGHTY

W70xx's rig must incorporate (integrally, in one cabinet, 21 X 19 X 14 inches), a 225-watt (input) 'phone-c.w. rig, with self-contained power supply, audio system and bandswitching on the major bands.

Perhaps you think that this rig is beyond the realm of construction. Fear not, for I have templates drawn up for my rig, which is in process of construction, and everything fits nicely. Every circuit is tried and proven. The r.f. section begins with my pet regenerative crystal oscillator, a lightly-loaded 6L6. Only one control is required for tuning and the cathode condenser needs only one setting. Any one of eight crystals is selectable by a switch, the ninth switch station opening the grid for input from an external v.f.o. The driver is an 807, capacity coupled to the 6L6; the tank coil inductance is changed by shorting out turns. The excess of driving power obtainable offsets the slight loss due to an inefficient tank circuit. The final is an 813. Three tank coils are used, one for 80 and 40, the second for 20 and 15, and the third for 10. The bandswitch shorts turns to obtain proper tank inductance.

The audio system? A 6SK7 feeds a 6N7 which feeds two push-pull 6C5s, driving Class AB2 6L6s. The only transformer is the modulation transformer. The 6L6s are Class B cathode-
follower coupled. The 813 is cathode-modulated. I have never used any other type of modulation, and the results have far exceeded my expectations. Two power supplies—one for the 813, 807, and the 6L6s in the audio, and one, well-regulated, for low voltage. (I like to keep the oscillator voltage independent of the p.a. supply.) I plan to run the 813 at 1500 volts, the 807 at about 600, the 6L6 audios at 350-450.

The rig fits nicely in the cabinet. The audio system is built up vertically on the left side of the cabinet, and uses about three inches of the horizontally-exposed frontage. The left end of the cabinet can be removed, exposing the “below-decks” wiring. The panel controls? Audio gain, crystal switch, oscillator tank coil switch, a Velvet Vernier for oscillator tuning, doubler bandswitch, doubler tank, final bandswitch, final tank, filament switch, h.v. switch, oscillator switch, ‘phone-c.w. switch, a.c. switch, and a meter switch plus a ‘phone jack and a key jack.

Probably the niftiest rig you’ve ever heard, what?

— Lt. Lewis S. Norman, jr., W7GXR-W7CZG

OUTPUT AT 10-KC. INTERVALS FROM A ONE-CRYSTAL EXCITER

One device that is growing more distinct in my crystal ball is a crystal-controlled exciter, using only one crystal, yet having output on any one of the 10-kc. intervals throughout the bands. Such a v.f.o. exciter could be a stable crystal controlling a 10-kc. multivibrator stage followed by successive selector stages at 10-kc. intervals, from 3.5 to 54 Mc. By suitable design, intervals of 20 or 40 kc. could be available above 54 Mc.

The major problem is not in the design of such a device but how to accomplish it, with a minimum of tubes and components, in a ham workshop! (Especially that 10- or 20-kc. selectivity—Editor.) Any ideas?

C. L. Hardwick, OPLO, Fort Wayne, Indiana

A POSTWAR SHOP AND SHACK LAYOUT

None of this junk-box haywire stuff for me after the war! My rig will be neat and professional-looking, but it will definitely be home-made, so I can include various tricks and gadgets not included in store-bought equipment.

The major portion of my rig will be located in the attic and operated by remote control, including band-switching. In my “shack,” which will be a small room on the main floor of my house, will be a small console with various controls for band-switching, changing frequency, and provisions for using either a mike or bug.

For the 10- and perhaps the 5-meter band, I will have a selenium-driven, rotary beam antenna, with a dial to indicate the direction of transmission at all times. I will also have a large map on the wall in front of the console, with proper markings so that I can determine at all times the exact region over which I am spraying the signal. Plate supply for the final stage will be continuously variable to provide smooth control over transmitter output. My “shop” will be located in the attic (which will be insulated!) and experiments in the higher frequency bands will be conducted from there.

Such a set-up will require lots of work and planning to put in operation, but will be well worth the effort.

— Harold S. Renne, ex-W2PTS

A UNIQUE GENERAL COVERAGE RECEIVER

I have been planning my new receiver and have determined that it must have general coverage from 550 kc. to 450 Mc. as well as bandspread for the ham bands. In order to simplify the job I plan to build a common audio amplifier and power supply and to switch in either one of two r.f. sections, as shown in Fig. 3.

Fig. 3 — Block diagram of a proposed general coverage receiver layout. Plug-in coils will provide wide frequency coverage without complicated switching, and with high efficiency. This arrangement should prove interesting to beginners due to its flexibility and low cost through the dual use made of some components and to the “add-on” features.

An acorn superregenerative job will cover 30 to 450 Mc. with plug-in coils. Suitable antennas will be provided for the various bands.

The second r.f. section (also a plug-in coil arrangement) includes the range from 550 kc. to 30 Mc.

By careful placement of components and with adequate shielding, I can build the entire receiver on a 10 x 12 x 3 inch chassis.

— Carl Shiffman, 80 Hazleton St., Mattapan 26, Mass.
A Radio-Frequency Auto-Resonator
Automatic Remote Tuning for the Transmitter

BY PFC. JOHN F. CLEMENS,* W9ERN

HEREIN is proposed a method of remote control of an amplifier, the system requiring only one control wire. It may be applied to either a push-pull or single-ended stage and requires a minimum of equipment.

First of all, the amplifier must have gang-tuned plate and grid circuits if link coupling to the exciter stage is desired. This requirement is easily met by utilizing tuning condensers of the same plate shape in both plate and grid tank circuits. Since plate and grid impedances are of the same general magnitude and most tank circuits will be designed for a Q of about 12, tracking usually will be obtained with plate and grid tuning condensers of the same capacity.

Next, the tuning condensers must be actuated by a motor. A phonograph motor of the 1720 r.p.m. variety should serve the purpose well and provide adequate torque through a suitable speed-reduction unit. A satisfactory system should result using a 1720 r.p.m. motor with a ¼-inch shaft driving a 3-inch dia-drive pulley which, in turn, drives a 3/4-inch shaft belted to a 3-inch pulley on the tuning-condenser shaft. This combination results in a speed-reduction ratio of 144 to 1 and produces a condenser-shaft speed of approximately 0.2 r.p.s.

* 612 College Highway, Evansville, Ind.

While the idea of remote control of a transmitter is not new, the system described here is of more than ordinary interest because it requires only a single wire. It includes an ingenious scheme for automatic tuning of amplifier stages.

The "Wobbulator"

This same motor drives the "wobbulator" condenser which is the heart of the system. This condenser is in parallel with the main tuning condenser and consists of a cross-shaped rotor with crossarms about 3 inches long and ½ inch wide. Only one rotor should be required and it might well be cut from thin sheet aluminum to reduce its inertia. The two stator plates are isosceles right triangles of aluminum of a size to fit approximately in the space between adjacent rotor arms. The condenser rotor is driven by an insulated shaft coupled directly to the motor shaft and therefore the condenser is tuned at 1720 r.p.m. Because of the four-bladed rotor, it is apparent that the condenser capacity is varied from maximum to minimum four times per motor revolution, 6880 r.p.m., or 114 r.p.s. The capacitance of this "wobbulator" may be quite small.

Fig. 1 — Circuit diagram of the automatic amplifier remote resonator.
C1 — Plate tank condenser.
C2 — 0.001 mfd.
C3, C4, C5, C6 — 0.1 mfd.
R1 — 1000 ohms, approx.
R2, R3 — 10,000 ohms.
R4, R5 — 0.1 megohm.
R6 — 5000 ohms.
T — Audio Transformer.
Ry1, Ry2 — Relays (see text).
and a method of sliding the rotor on its insulating shaft should be provided to vary the spacing between the rotor and the two stator plates. Two or three micromicrofarads should be about the right variation in capacitance.

Principle of Operation

The diagram of Fig. 1 shows the complete system and the operation is explained as follows. When the push button, S1, which is located at the operating position, is depressed, L1 of RY1 is energized opening the short circuit across R1. R1 prevents off-resonance plate current from exceeding safe limits and provides a coupling impedance to be explained later. The motor also starts, since RY2 is normally in the "pull-in" position. The motor drives the main tuning condenser, C1, until the plate current begins to drop as resonance is approached. A typical graph of plate current vs. tank-condenser capacitance is shown in the drawing of Fig. 2.

Consider the instant that the tuning condenser is passing the region AB on the curve of Fig. 2. Since the tuning-condenser speed is very small compared to the "wobbulator" speed we can consider the plate current as fixed so far as variations caused by the main tuning condenser are concerned. The plate current now is modulated by the capacitance variations caused by the "wobbulator." Since the "wobbulator" varies at 114 c.p.s., a 114-c.p.s. variation occurs in Ia. This varying Ia causes a 114-c.p.s. voltage to appear across R1 and this voltage is applied to the bandpass filter. But the bandpass filter is tuned to 228 c.p.s. and therefore blocks out the 114-c.p.s. note. Actually a simple RC Wein bridge or Hetrofil will suffice for the bandpass filter since transmission tuned circuits is normally in the "pull-in" position. The motor drives the main tuning condenser, C1, until the plate current begins to drop as resonance is approached. A typical graph of plate current vs. tank-condenser capacitance is shown in the drawing of Fig. 2.

Consider the instant that the tuning condenser is passing the region AB on the curve of Fig. 2. Since the tuning-condenser speed is very small compared to the "wobbulator" speed we can consider the plate current as fixed so far as variations caused by the main tuning condenser are concerned. The plate current now is modulated by the capacitance variations caused by the "wobbulator." Since the "wobbulator" varies at 114 c.p.s., a 114-c.p.s. variation occurs in Ia. This varying Ia causes a 114-c.p.s. voltage to appear across R1 and this voltage is applied to the bandpass filter. But the bandpass filter is tuned to 228 c.p.s. and therefore blocks out the 114-c.p.s. note. Actually a simple RC Wein bridge or Hetrofil will suffice for the bandpass filter since all we need is discrimination against 114 c.p.s.

Since no voltage appears at the output of the bandpass filter the motor continues to run and turns the tuning condenser to the region of CD on the graph, or resonance.

Consider again that the tuning condenser stops in this region. The "wobbulator" still turns at 114 c.p.s. but now an important change has taken place in the plate-current variations. In passing from D to C, the Ia goes through a complete maximum-minimum cycle. This means that the Ia variations are now twice the frequency of the "wobbulator" capacity variations and as a result a 228-c.p.s. note appears across R1. This note is passed by the bandpass filter and rectified by the diode section of the 6SQ7. The resulting d.c. is filtered and applied as negative bias to the grid of the triode section of the 6SQ7 causing its plate current to drop and RY2 to drop out. Thus RY2 stops the motor and energizes R2 of RY1, RY1 shorts R1, restoring full input to the amplifier. Since the motor has stopped, generation of the 228-c.p.s. signal ceases and RY2 will pull in again after the d.c. bias has bleed off. But contacts 3 and 4 of RY1 have opened the motor circuit so that the motor cannot start again until the push-button S1 is again depressed.

Complete 360-degree rotation of the tuning condenser is necessary and usually is the rule with transmitting tuning condensers. Inertia of the system should be kept as low as possible so that the motor will stop "dead" when power is removed. A magnetic brake may be incorporated if necessary. The final tank will be somewhat detuned depending upon the position of the "wobbulator" rotor when it stops, but this detuning should be negligible since the Ia variations caused by the "wobbulator" may be of the order of 1 per cent or so of the average plate current. A stage of amplification for the 228-c.p.s. signal before rectification will make possible extremely small values of Ia variation. The system must not be made too sensitive since the distorted wave-shape of the Ia variation may contain a second harmonic component even in the AB region. Thesensitivity control in the 6SQ7 cathode varies the no-signal bias. RY1 is a locking relay which locks in either position and has separate actuating coils. It is a standard item manufactured by Potter and Brumfield Co. RY2 is a common garden-variety of sensitive relay with a 1000-ohm coil. Since a connection to the 115-volt circuit will be necessary at the remote-amplifier position for filament heating, a single wire may be run from the push-button to the amplifier, utilizing the filament-supply connection as the other side of the remote-control circuit.

In operation the exciter is tuned to the desired frequency, the push-button momentarily depressed and the final plate voltage applied. The final amplifier resonates itself with the exciter and is ready for operation or another frequency shift.

Western Electric's portable Beachmaster announcing system generates a sound level of speech of 116 db. above standard reference level at a distance of 30 feet from the loudspeaker. When the microphone is talked into in a normal voice, the amplifier delivers 250 watts, the major portion of the energy being radiated in a 50-degree cone. Sounds as though it might get out a little better than we've been doing on two meters recently.
The September issue of QST has just today come to my attention. It happens that recently I have given some thought to the subject of KBW’s editorial on the newcomers, although when I first started thinking about it the emphasis was not on the newcomers, but on unorganized amateurs in general.

One of his questions was, “What are we going to do to get the radio-trained veterans of the armed forces into amateur radio?” There are two phases to this problem that may be successfully exploited. One centers around organizing these fellows while they are still in the service; the other is concerned with organizing them after they have become civilians again.

Late in September, when the 20-meter bootleggers got going, it occurred to several of us that we should immediately organize the amateurs of Guam for the benefit of all concerned. Exchange of information, unity and therefore strength of purpose, and emphasis upon good behavior and preparation for authorized operation and preventing bootlegging bypressure of amateur public opinion were some of the advantages to be realized. And they are being realized.

Through mimeographed notices and by announcements over the local Armed Forces Radio Station, WXII, which has been extremely cooperative in broadcasting for us, we invited all those interested in amateur radio to meet in the Twentieth Air Force War Room. There have been several such meetings now, and they have served to get the ball rolling. It is evident from attendance at these meetings, running about 125 each, that there are on Guam at least 300 and possibly as many as 500 men, representing all the services, anxious to take an active part in amateur radio activities now while overseas.

The surprising thing to me is that about half of these fellows are newcomers to the amateur ranks, ranging from the greenest to those whose service training has prepared them to take the exam immediately. The green ones are generally those who have had an interest but not the opportunity to develop it. Some newcomers are practiced operators who need instruction in theory. We plan to accommodate them all.

Five chapters of the Twentieth Air Force Amateur Radio Association, sponsored by the Communications Section, are being formed on Guam by organizations related in a military fashion to the Twentieth Air Force. At least six other major groups are also organizing, and a few of these are expected to be chapters of the Association too. Our meetings are always open to everyone. All this is serving to prepare the old-timers and the neophytes alike for resumption of legitimate overseas amateur activities. Our headquarters chapter has acquired two quonset huts for operation rooms, shop, code practice room, library and administrative office, two 10 kw. power units for our own independent supply, 15- and 50-watt transmitters for crystal controlled operation on 2½ meters, receivers, automatic tape sending machines, and this is only the beginning. We shall present instruction in theory and code, and shall transmit on 2½ meters for code practice three hours a day for an hour at a time.

What I have just described could be repeated in countless places overseas, by any ambitious hams who have ham interest at heart. With the let-down following hostilities, all civilians again. All old-timers and the neophytes alike for resumption of legitimate overseas amateur activities. Our headquarters chapter has acquired two quonset huts for operation rooms, shop, code practice room, library and administrative office, two 10 kw. power units for our own independent supply, 15- and 50-watt transmitters for crystal controlled operation on 2½ meters, receivers, automatic tape sending machines, and this is only the beginning. We shall present instruction in theory and code, and shall transmit on 2½ meters for code practice three hours a day for an hour at a time.

What I have just described could be repeated in countless places overseas, by any ambitious hams who have ham interest at heart. With the let-down following hostilities, all civilians again. All old-timers and the neophytes alike for resumption of legitimate overseas amateur activities. Our headquarters chapter has acquired two quonset huts for operation rooms, shop, code practice room, library and administrative office, two 10 kw. power units for our own independent supply, 15- and 50-watt transmitters for crystal controlled operation on 2½ meters, receivers, automatic tape sending machines, and this is only the beginning. We shall present instruction in theory and code, and shall transmit on 2½ meters for code practice three hours a day for an hour at a time.

What I have just described could be repeated in countless places overseas, by any ambitious hams who have ham interest at heart. With the let-down following hostilities, all civilians again. All old-timers and the neophytes alike for resumption of legitimate overseas amateur activities. Our headquarters chapter has acquired two quonset huts for operation rooms, shop, code practice room, library and administrative office, two 10 kw. power units for our own independent supply, 15- and 50-watt transmitters for crystal controlled operation on 2½ meters, receivers, automatic tape sending machines, and this is only the beginning. We shall present instruction in theory and code, and shall transmit on 2½ meters for code practice three hours a day for an hour at a time.

What I have just described could be repeated in countless places overseas, by any ambitious hams who have ham interest at heart. With the let-down following hostilities, all civilians again. All old-timers and the neophytes alike for resumption of legitimate overseas amateur activities. Our headquarters chapter has acquired two quonset huts for operation rooms, shop, code practice room, library and administrative office, two 10 kw. power units for our own independent supply, 15- and 50-watt transmitters for crystal controlled operation on 2½ meters, receivers, automatic tape sending machines, and this is only the beginning. We shall present instruction in theory and code, and shall transmit on 2½ meters for code practice three hours a day for an hour at a time.

What I have just described could be repeated in countless places overseas, by any ambitious hams who have ham interest at heart. With the let-down following hostilities, all civilians again. All old-timers and the neophytes alike for resumption of legitimate overseas amateur activities. Our headquarters chapter has acquired two quonset huts for operation rooms, shop, code practice room, library and administrative office, two 10 kw. power units for our own independent supply, 15- and 50-watt transmitters for crystal controlled operation on 2½ meters, receivers, automatic tape sending machines, and this is only the beginning. We shall present instruction in theory and code, and shall transmit on 2½ meters for code practice three hours a day for an hour at a time.
HAMS IN OWI

Editor, QST:

Considering myself sufficiently recovered from my recent strenuous activities, I thought you might like to hear about them.

I am employed by the OWI as an operator and technician, serving in the China Theater. In the midst of a very important mission, the Nips capitulated; I was therefore ordered to Chihkiang from my setup in Yanling, to handle all press reciting from the preliminary surrender negotiations. These negotiations were attended by a large number of correspondents. The whole deal, setting up the BC-610 transmitter and the operating, was done by yours truly, all alone. I sent manually one day down there for twenty-one hours straight. From Chihkiang, I was ordered to Nanking for the final unconditional surrender. I finally managed to get transportation, practically occupying a C.46 with all the equipment I had along. We circled Chihkiang for a half hour getting altitude!

These negotiations were attended by a large number of correspondents. The whole deal, setting up the BC-610 transmitter and the operating, was done by yours truly, all alone. I finally got going in the Nanking Hotel, guarded by the few Chinese commandos who managed to get there for our protection. There were seventy thousand Japs in Nanking!

The big show is over now, but my fist is somewhat tired. I handled all the press and there was plenty. I have a drawerful of it as souvenirs all cleared to Chungking for retransmission Stateide and elsewhere.

I thought you might like to know about this because it was done by one ham, all alone. I don't care about the credit myself, but I think amateur radio should take credit for it. I received an Army commendation for the work at Chihkiang and another "possible" is in the offing for my work here, from theater headquarters.

Arriving at Nanking four hours later, you can imagine my surprise when we landed and were surrounded by armed equipment I had along. We circled Chihkiang for a half hour getting altitude!

Our power is derived from a 50-kw. diesel plant with a 25-kw. gasoline plant as standby. Also occupying the same site and using the same 192-foot vertical radiator is AFRS radio station WVTM. We operate on a frequency of 710 kc. and WVTM on 1500. Incidentally, the first KZFM transmitter, which we operated in Manila was the first American broadcast station in the area since the Jap occupation and the present KZFM is the only non-army broadcast station to be heard in the Islands at the present time.

I have been a member of the League ever since I have been an amateur. I am anxiously awaiting the day when we can all get back on the air and renew our friendships of the past. Amateur radio has always been to me a bond of good fellowship as well as an educational pastime. Hoping to see you on the air soon — perhaps from here in the Philippines — I remain as ever an ardent amateur.

— John H. Thatcher, W7AAJ

REFUGE IN SM

Editor, QST:

It was really long ago when I had my last QSOs with the W boys over there. And during this time quite a lot of things have happened under the Heavyl. Anyway, I think that I have the reasons to congratulate you for the victory of the democracies.

As you may already have discovered, I am a former Estonian ham, EI2L, and left Estonia in summer, 1942, and tried to get over to Sweden. Sorry enough I didn't succeed on my first trials and had to stay in Finland where I did some radio operating for our underground movement. But the Nazis did succeed and thanks to some guys I would like to meet in the dark I had to spend 5 months in a prison camp.

In September, 1944, I came over to Sweden and have borne my title of political refugee already over a year. I got a job at John Lagercrantz', SM5SV, who is the representative of Hammarsjö, Hallcrafters, National and a lot of others. I work as a radioengineer and have lot of fun with police f.m. sets. With me here in Sweden are ESSC, ESSD, ESS6, ESSB and maybe some more kids, whose calls I don't remember.

During the first occupation were deported to the east ESSC, ESSD, ESSF, ESS4, ESS, ESSB, ESSF, ESS4 and several others. ESSD has closed his eyes forever. We haven't had any contact with ESS now and don't know what the other fellows are doing. Please, if possible, QSO my vy best 73s to W2AVO, W2GRG, W1KQY, W9EMB, K4FCV and K7EMV. Those are the ones I remember just for the QSL book and QSL cards. Yes, 73s to WSTBY, too — I met him here in Sweden. Well, this seems to be all for this time. Many thanks for your excellent Handbook and QSTs, which did help us in our work during the darkest hopeless days. My best wishes to you and every U.S. ham.

— Uno Villmo, es-ESS6

RADATION RANGE

Editor, QST:

"It Seems to Me," that K.B.W. didn't give the whole truth in his inventory of effective bandwidths editorial. We still need more frequencies on 20 and 40 meters than on 80 meters to accommodate a given number of amateur "channels" due to the difference in radiation range between high and low frequencies.

The 50-meter band can accommodate many more amateurs for average conditions than can the same band width on 20 or 40 because an amateur on 80 meters can, most of the time, share his frequency with several other amateurs in remote parts of the country and not even be aware of the fact.

FCC takes into consideration radiation range when assigning commercial frequencies, and on the broadcast band there are stations on the same frequency with no ill effects except in rare cases where the b.c. receiver is located in an exceptionally good locality for reception.

Fred R. Plainger, W7BNR/K7
Here in Sweden the government took our transmitters at the beginning of the war but we have been promised that amateur radio will be free as before the war. Our radio regulations were almost exactly copied from your FCC regulations. The date when the "boom is off" is October, 1945. I am intending to build a transmitter with 50 watts output. It is almost impossible to get xtal here in Sweden, so I have to use an e.c. oscillator, driving a pair of 6L6GX, the tube of which is manufactured by Swedish factories.

— Hans Haglund

CAPTURED GEAR

Editor, QST:

I just wanted to let you know that in reading W5JSU's letter, "The Challenge Above 200 Mc." in the July QST, his comments are my sentiments also. And that T/Sgt. Russel McChes, W5RMU, and I have picked up some very good captured German equipment while we were in our travels. We hope to put some of it on the bands when we get on again. Some of the equipment came from radar and electronic devices, and some of it goes down to the 1000-Mc. bands. The tubes that they use are quite strange to me, though we have been able to get most of them to operate and have sent some home.

I was wondering if someone can't write up a couple of articles describing some of these German sets and maybe doing some research with it. We have a large supply of all sorts of tubes and parts from a complete band switching and m.o.p.a. transmitter to a 1.5 kw. r.f. amp section. Well I guess we will have to wait till we can get back to our old shack and start fooling around our findings so, 73 for now and CUL OMs.

— Sgt. R. R. Schellenbach, W6TX

W4YPJ

Tokyo, Japan

Editor, QST:

I'm now located in Tokyo living in true "fat-cat" style in one of Japan's best hotels — the Dai-Ichi in downtown Tokyo. The 68th AACS Gp. has its Hq, just across the street from the emperor's palace. Plenty of hams are up here: the 68th Gp. is commanded by a ham, Col. Guy H. Rockey, W3HU. Maj. Ralph W. Kiser, W4YPJ, Maj. Glenn D. Montgomery, ex-W6XEG, Maj. R. G. Martin, all hams, are members of Col. Rockey's staff. W/O Palmer at our AACS station WUQP at Asuga airfield and Maj. J. F. Wingler, W8OSL, are two old timers with us. We can practically have a hamfest in our own Hq. There are many more hams here in Japan and throughout the Pacific and all of them have done an excellent job for the AACS.

Our immediate problem is to set us up a ham station here in Tokyo. The Signal Section of GHQ does not have any information on the subject. We thought that when the FCC does let hams come back on the air the ARRL could put a little pressure on top-side Washington to let us have a station. Information on ham activities is very limited over here. It would be quite a thrill for us to talk to the states after all the time spent on the islands and I imagine the boys there would like to hear a Tokyo "Victory" QSL card. Mail is so bad that our QSTs are very old when we get them.

My hotel is just across the street from Radio Tokyo and I went over and had a look around the other night. It is quite a fancy set-up with plenty of studios that look as nice as those in the States. They have a network of stations on regular broadcast frequencies and also several short-wave channels. Our Tokyo Armed Forces Radio Station is also located in the same building.

— Major Ralph W. Kiser W4YPJ
"A lot of traffic will drive an operator to desperate action," wrote W9KZD in a letter accompanying the photograph of his hand-made bug. This key, built in Burma by motor-pool friends of W9KZD incorporates a lot of otherwise useless bits of junk into a genuine "splatter-gun." The source of the material is as follows:

A - Armor plate from Jap tank, B - Rocker arm from Jap hand key, C - Brass welding rod, GI, D - Binding post from Jap telephone switchboard, E - Piece of a Jap Zero's wing, F - Nail, GI, G - Brass parachute buckle, GI, H - Spring from a Jap rifle ammunition clip, I - Piece of a C-Ration can, GI, J - Contacts from Jap relay, K - Bearing from Jap hand key, L - Piece of Jap bakelite coil form, M - Piece of Jap artillery shell. Coil springs, not shown, were made from strands of steel field telephone wire.

A new development in radio-telephony was demonstrated by the Federal Telecommunication Laboratories. The development, known as Pulse Time Modulation, produces a system whereby twenty-four or more conversations can be carried on the same radio frequency simultaneously without interference with each other.

The PTM demonstration was conducted from the I.T. and T. Building in New York, from which the PTM transmissions were beamed to a repeater station at Telegraph Hill, northwest of Red Bank, N. J. From there the signals were beamed to a second repeater station at the new Federal laboratories at Nutley, N. J., and thence back to the top floor of the building in New York. Federal engineers stated the circuit could be 8,000 miles long, or more, and still maintain the same quality of transmission. Repeater stations are required at intervals of approximately 30 miles along the 1300-Mc. circuit.

The PTM system "chops" the conversation up into small bits and fits them back together again at the point of reception. The pulses are so rapid and the bits of conversation fitted so compactly in time intervals that when they are filtered at the receiving end and each conversation is re-integrated, the human ear is incapable of detecting the process. A faithful reproduction of each of the twenty-four speakers' voices is produced, each one being selected automatically for the receiving station individually called. The key to the filtering process is the Cyclophon tube, developed by the Federal Telecommunication Laboratories. The audible results which PTM presents to the ear are comparable with visual effects which the motion picture presents to the eye. Although the screen in a motion picture theater is completely dark much of the time that a film is being shown, the eye is not quick enough to detect the dark intervals. The effect of PTM on the ear is reported to be as flawless as the effect presented to the eye by the modern movie.

The National Association of Broadcasters announces that the Broadcast Engineering Conferences will be resumed, with the 1946 meeting to be held at Ohio State University in Columbus during the week of March 18th-23rd. This is a continuation of the annual conferences held from 1938 to 1942. The conferences will again be held annually, and the place of meeting will alternate between the campus of Ohio State University and that of the University of Illinois. Emphasis in the program for the forthcoming meeting will be placed on the impact of developments since 1942 on operating problems in broadcast engineering, including FM and television. Further information can be had from the director, Dr. W. L. Everitt, University of Illinois, Urbana, Ill.

Bill Dufendach of Kokomo, Ind., compiled these informative solutions to one phase of a ham's life:

If she wants a date - meter.
If she wants a call - receiver.
If she wants an escort - conductor.
If you think she's picking your pocket - detector.
If she goes up in the air - condenser.
If she is slow of apprehension - accelerator.
If she wants chocolates - feeder.
If she is a poor cook - discharger.
If she eats too much - reducer.
If she is wrong - rectifier.
If she fumes and sputters - insulator.
If her way of thinking is not yours - corrector.
If she wants to be a humorist - eliminator.

Bill Dufendach of Kokomo, Ind., compiled these informative solutions to one phase of a ham's life:

If she wants a date - can you resistor?
Happy New Year. 1945 proved a milestone in amateur radio. World War II moved to a swift climax; our frequencies were opened ahead of anything known at the end of World War I. The year ends on a rising tide of FCC orders and amateur operating on several bands. 1946 should prove a year that offers twelve full months of opportunity for amateurs. We look forward to (1) the opening of more amateur frequency bands to our normal uses, (2) ARRL operating announcements and activities, and (3) progress of the ARRL Emergency Corps, in its mission of setting up provisions for emergency radio service, at many points. This promises to be the most important postwar amateur-organized activity. Is your station aligned with the Corps?

Get Acquainted with Your EC. If you know the Emergency Coordinator for your community or Section, ask him about the plans for offering an amateur radio emergency service to the area, projected tests and drills, his planning group, possible use of h.f. and v.h.f. stations, and the like. He should be able to tell you about progress on liaison with civic or other local officials, prospect of early amateur meetings, progress of amateur station and operator registrations in the ARRL Emergency Corps, and so on. Ask him for one of the new AEC application forms for indicating your facilities and interest in joining the Emergency Corps.

In the event that you do not know how to get in touch with the EC, drop a line to the SCM whose address you will note on page 8, this QST. If you know definitely that no EC has been appointed drop the SCM a line anyway, telling about your locality, its past and future likelihood of natural disaster or other contingency developing to require communications. Suggest names and radio facilities to help him (or his representative, the Section Emergency Coordinator) in recommending a man with judgment, time, and initiative, who will inspire the confidence of amateurs and community or other agencies served, alike, in organizing a strong successful local chapter of ARRL's Emergency Corps.

28 Mc., For DX, RCC, and Traffic. As the band most adaptable to several kinds of amateur interest of those presently opened for amateur occupancy by the FCC, the 28-29.7-Mc. band at

this writing is already on its way to a very full use by all classes of operating amateurs. The band is full of surprises. Contacts are surprisingly good. There's pleasure in them, whether for DX, rag-chewing or traffic handling. Results are predictable or the band may turn up the unexpected. See “How's DX,” resumed elsewhere in this issue, for the detailed account of band doings to date, and the best suggested times for long distance use of the band for the weeks immediately in the future. The tremendous potentialities of a small rig, and low power, on this band, make it a “must” for every amateur. We'll see all of you there, sooner or later.

Temporarily 28 Mc. has to substitute for the lower frequency amateur bands, where we need night and day communicating ability for Section-wide and larger emergency-area coverage, and other uses. While not the optimum band for all purposes, choice of time-for-distance, and greater use of relaying to get messages back to stations within our skip zone that we cannot ourselves hear, will add measurably to what can be accomplished on special jobs.

Traffic Prospect. SCMs are to start listing summaries at the end of their station activities in QST of all ham traffic handled by stations of their Section. Even a single message sent or received through your station deserves a report of station activity to the SCM. He will be glad to have a report of your results, all station activity, and any traffic. Give him a postal card on the 16th, covering the preceding 30 days. This will give him your information for his news and aid the Section standing.

Uncle Sam has recognized the training and morale building possibilities of GI-amateur work in ETO (see editorial December QST) by setting up a limited licensing arrangement for GIs. This permits message communications, under certain limitations, between four-letter “X” stations in that one theater. Few X-stations have thus far been reported just subsequent to Thanksgiving but we hope to see more developments in this direction, even if time, frequency and power limits continue to apply. Remember the days of traffic skeds with KAs, KSs, NYs, etc.? The opportunity for training and morale-building traffic handling over amateur circuits is as attractive as ever it was. The shipping and mail delays, uncertainties and bottlenecks that frustrate the G.I., his unaccountably long separation from home,
can all be broken by the G.I. ham himself and willing amateur traffic workers here at home. But it is up to the military to broaden G.I.-amateur authorizations and issue more of them to permit communication with continental U.S.A. and between theaters on satisfactory frequencies, if we are to more fully realize these possibilities. This is a top value job that amateur radio can and should be performing. Action by the military is required.

Speaking of traffic, W9EKK is believed to have sent the first traffic (Omaha to Lincoln, Nebraska) September 14th on 112 Mc. See Nebraska report, November QST. Here's a poser for operators who took part in or observed our amateur-radio reopening. Following our reactivation what amateur stations were first to handle record traffic on the other amateur bands? On 144 Mc.? On 56 Mc.? On 28 Mc.? Tell us about it, and let's see who was the first to use the bands these ways, just as a matter of editorial and historical interest. Oh, yes, who has a regular traffic sked on 28 Mc. or other bands? Tell us or your SCM about it. 'Tis Operating News.

About Reactivation of ARRL Appointments.

All ARRL appointments except EC and Emergency Corps posts were suspended following Pearl Harbor. The CD looks forward to lifting the suspension of normal activities under these appointments, as soon as the return of more amateur frequencies, and reports via SCMs indicate sufficient readiness and interest to permit formal organization activities on a broad or national scale. The OBS appointees have already been restored to a normal status in order that they might transmit FCC and other information to amateurs. The function of ARRL Official Observers is to make helpful warning advice available to all amateurs. Data on their availability and equipment for currently used bands are being surveyed at this writing. It is expected that a selective restoration of the appointments of all OOs that can assist other hams by their operation, will be made at an early date.

ORS, OPS, RM, and PAM appointees. You are requested to drop a card to your SCM indicating the status of your stations. If not operating currently, please indicate when you will have completed rebuilding operations that may be in progress or when you expect to resume. If now active, indicate frequency used, days of operation and any other pertinent data. With the mid-January reports, Section Communications Managers are asked to indicate the number of ORS and OPS heard from in this manner. This is in effect a "roll call." The result will determine whether plans for a selective or a broad resumption of activities, or changes in the set up for these appointees will be in order. How many ORS/OPS are at old home addresses? How many are operating now? How many awaiting the green light from FCC on the lower-frequency amateur bands before starting amateur station operation?

Operating News Items. In the next few pages this department presents the currently available reports of national or general interest that concern amateur operating. Your assistance is requested in sending to QST information on operating events, activities, stories, briefs, oddities, etc., that may come to your attention in the course of your amateur operating. These may concern 'phone or c.w., high or low amateur frequency bands, DX, traffic or rag-chewing activity, fixed, portable or mobile operating, normal or emergency work, good or bad technique. Any and all articles pertinent to amateur radio operating will be welcomed and given consideration for appropriate use. There's plenty of action in progress in the amateur bands today. National highlights, exemplary operating, good procedure, public or private service performed by amateur radio, all can be discussed in these columns. Keep the operating news items rolling our way, please. We'll try to give you as well balanced a presentation of all that's doing as possible through 1946!

F. E. H.

WI1AW Operating Schedule

Bullets

Official ARRL Bulletins containing latest FCC information relating to amateur operation and reactivation, and other bulletins on matters of general amateur interest are transmitted on regular schedules, as follows:

Frequencies: 3555, 7145, 14,280, 28,245 and 56,666 kc.

Times: 8:00, 9:00 and 10:00 p.m. EST, Monday through Friday.

Starting on the hour, simultaneous c.w. transmissions are made at 15 w.p.m. Telegraph transmission is followed by voice transmission on each of the above frequencies, except that 28,245-kc. transmissions are not made when the band is not open.

Radio Code Course

A University Extension course in radio code will start January 23rd under the auspices of the Massachusetts Department of Education. Classes are to be held in the Girl's Latin School at Boston Teachers College, from 7:15 to 9:15 p.m., Wednesdays and Fridays. Sylvester J. Connolly, WI1MD, is instructor for the sixteen-session course, which is designed for those wishing to prepare for amateur operator license examinations, for Short Wave Listeners who wish to learn the code, and for those who already know the code but need a refresher. No previous knowledge of code is required. Basic instruction will be in code reception, although instruction in sending and proper operating procedures is included.
New Article Contest

In previous issues of QST we have invited contributions of "Ham Yarns"—stories of unusual happenings in ham operating. These were based on prewar contacts. Now that we are back on the air our interest is centered on what is taking place in present-day amateur radio. We are discontinuing the Ham Yarn type of article and instead inviting articles of general interest on postwar activities.

The best articles will be used in QST, one each month, and the writers may choose one of the useful prizes listed below. All articles should contain approximately 500 words.

There is an almost limitless variety of subjects. Perhaps you would like to write on Emergency Corps planning work and drills; "Phone or c.w. operating procedures; working on radio club committees; organizing or running a radio club; the most interesting band (h.f., v.h.f., s.h.f., or what have you); code proficiency techniques; traffic work; DX activities; getting the most out of ham radio; or some other subject that rings the bell with you. Articles will be judged on originality and value to the whole ham fraternity.

Each month we will print the most interesting and valuable article. Please mark your contribution "for the CD Contest."

Prize winners may select a bound Handbook, QST binder and League Emblem, log books, or any other combination of ARRL supplies of equivalent value. Send as many entries as you wish. Try your luck!

Meet the SCMs

Much of the credit for the reappearance of Southern Texas in the Amateur Activities column belongs to J. B. Rives, W5JC, a well-liked fellow with a practical slant on things, who recently was elected to the SCM post for his section. Born in San Angelo, Texas on May 14, 1908, Mr. Rives completed his education at St. Mary's University, San Antonio. After a three-year interest in amateur radio he obtained his license in 1923 and was issued 5JC, now W5JC. Evidence of his ability as an operator is shown by the fact that he has won several DX Contest prizes and in 1935 walked off with first prize in the Radio Lab Contest. A real high-power fan, "phone and c.w., W5JC is well known for his DX to the Byrd Expeditions at the South Pole and to Southern American hams. Previous to his present occupation as associate course chairman of the radio code and communications division, San Antonio Aviation Cadet Center—Ground School, he was employed as monitoring officer of the Radio Intelligence Division, FCC; did radio sales work for Strass-Frank Company of San Antonio; and for a number of years conducted his own radio service shop. Much commercial radio experience was gained by his work in the San Antonio Police Radio Department and at broadcast stations KABC and KMAM. A past-president of the San Antonio Radio Club, he has been very active in the association's convention and hamfest activities. Some well-known ham stations have been built by him, the most notable being W6HDK, a de luxe prewar kw. outfit in San Antonio. W5JC now has a rotary beam on a telephone pole and separate ham shack underneath. Amateur radio is his only hobby; for recreation he indulges in bowling, fishing, and golf. Jim is doing a fine job as SCM and deserves all the cooperation the Southern Texas gang can give him.

PRESS SCHEDULES

The following list of press schedules has been compiled for code practice purposes. As these schedules are subject to change without our knowledge, we would appreciate knowing of any changes in the time or rate of speed of these transmissions or any additional stations transmitting code so that we may revise our list from time to time. The contents of these messages must not be divulged to anyone other than the addressee. PLEASE DO NOT USE THESE TRANSMISSIONS FOR ANYTHING BUT CODE PRACTICE.

<table>
<thead>
<tr>
<th>Time</th>
<th>Time</th>
<th>Call</th>
<th>Frequency (kc.)</th>
<th>Origin</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>7:00 P.M.</td>
<td>WQQ2</td>
<td>5,270</td>
<td>New York</td>
<td>35</td>
</tr>
<tr>
<td>0000</td>
<td>7:00 P.M.</td>
<td>WJS</td>
<td>15,700</td>
<td>New York</td>
<td>35</td>
</tr>
<tr>
<td>0000</td>
<td>7:00 P.M.</td>
<td>WX6</td>
<td>7,750</td>
<td>New York</td>
<td>35</td>
</tr>
<tr>
<td>0000</td>
<td>7:00 P.M.</td>
<td>WQQ2</td>
<td>5,270</td>
<td>New York</td>
<td>35</td>
</tr>
<tr>
<td>0030</td>
<td>7:30 P.M.</td>
<td>WBG3</td>
<td>7,340</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0030</td>
<td>7:30 P.M.</td>
<td>WBG7</td>
<td>7,630</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0030</td>
<td>7:30 P.M.</td>
<td>WJ2</td>
<td>7,340</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0100</td>
<td>8:00 P.M.</td>
<td>WJ2</td>
<td>7,340</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0100</td>
<td>8:00 P.M.</td>
<td>WHI</td>
<td>7,355</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0100</td>
<td>8:00 P.M.</td>
<td>WHL</td>
<td>10,750</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0100</td>
<td>8:00 P.M.</td>
<td>WCO</td>
<td>6,450</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0100</td>
<td>8:00 P.M.</td>
<td>WGEX</td>
<td>7,200</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0100</td>
<td>8:00 P.M.</td>
<td>WLLL</td>
<td>6,370</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0100</td>
<td>8:00 P.M.</td>
<td>WUX</td>
<td>5,385</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0100</td>
<td>8:00 P.M.</td>
<td>WLLL</td>
<td>6,370</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0100</td>
<td>8:00 P.M.</td>
<td>WCO</td>
<td>6,450</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0100</td>
<td>8:00 P.M.</td>
<td>WGEX</td>
<td>7,200</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0100</td>
<td>8:00 P.M.</td>
<td>WHL</td>
<td>10,750</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0100</td>
<td>8:00 P.M.</td>
<td>WHI</td>
<td>7,355</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0100</td>
<td>8:00 P.M.</td>
<td>WCO</td>
<td>6,450</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0100</td>
<td>8:00 P.M.</td>
<td>WGEX</td>
<td>7,200</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0100</td>
<td>8:00 P.M.</td>
<td>WHL</td>
<td>10,750</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0100</td>
<td>8:00 P.M.</td>
<td>WHI</td>
<td>7,355</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0100</td>
<td>8:00 P.M.</td>
<td>WCO</td>
<td>6,450</td>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>0100</td>
<td>8:00 P.M.</td>
<td>WGEX</td>
<td>7,200</td>
<td>New York</td>
<td>30</td>
</tr>
</tbody>
</table>

January 1946
112-Mc. QSO Parties

The first Connecticut QSO Party since Pearl Harbor, and one of the first postwar QSO-fests of which we have heard, was held on 112 Mc., September 15 and 16, 1945. Approximately 132 stations participated! Two points were allowed for each contact and one point for each station heard. The main idea was to see how many different towns worked. W11ND, operating portable at Prospect, Conn., made a score of 3885, based on 50 contacts, 5 heard, and 37 different towns. W11J, Madison, Conn., was second with 1650 points; W1MVH, New Haven, third; and W1BW, Branford; W1MRP, Westport; and W1ASO, Stratford, next in order. Many stations in New York, New Jersey, Massachusetts and Rhode Island took part, with all call areas except the 4th represented as portable first district participants. Connecticut SCM Fraser, W1KQY, was sponsor of the Party. It was a huge success!

In a successful attempt to stir up 112-Mc. activity, the San Antonio (Texas) Radio Club held a two-months contest on that band from September 15 to November 15, 1945. Those who participated had the time of their postwar lives excelling the rag each night. Those who could not participate because of having no rigs, chewed their fingernails to bits and started hurried projects to get something on the air for the next get-together. The club plans another QSO Party for after the holidays.

Among those entering the first SARC contest, with a vengeance were W9WON, W9PEC, W3ESP, W5EELM, W5JLY, and W5BUV. Prizes were awarded to these contestants for such factors as lowest power, longest distance and most contacts.

28 Mc.

Are you enjoying some of those nice 28-Mc. contacts that are so plentiful these days? It always was a freaky band, but when it is open, boy there is plenty to work! At this writing, with no bands of lower frequency yet available, 28 Mc. seems to be "all things to all men." The DX is starting to roll through again on both 'phone and c.w. The swings of some of the old DX-fists are sweet music to the ear. The band excels for rag-chewing, if you can beat OM Skip to the punch and get your dope across before he takes over!

We'll never forget that first postwar week end on 28 Mc.; it was the thrill of our first QSO all over again. Probably the greatest number of contacts on those first two days were between the fifth and fourth districts and W1-2-3. Man, how those 5s were knocking them off!! Did you notice the prevalence of stations in Dallas, Texas? Hi. Those Dallas boys really had things under control.

It's fun to shut off the transmitter once in a while and just listen to the band. That takes power, but you soon know what's going on. There must have been plenty of frantic and hasty building when the announcement of the 28-Mc. opening arrived. Witness the number of lads testing their modulation ... and the chirpy c.w. notes. But by and large signals were surprisingly good after a long shut-down and a sudden return to the air.

Yes, it's all things to all men. You can contact around the U. S. or go after foreign-DX when the band is dead, and you can get in your local rag-chews when the band goes dead. We'd like to see more of that in the late evening, or at any time the band is dead. Just because you don't hear any signals, don't be discouraged. Try a CQ; maybe everybody is waiting for the other guy to call. Although we haven't heard any traffic being handled as yet, we imagine the traffic men will be plying their trade one of these days.

When conditions are right, 28 Mc. is a low-power man's paradise. Fellows with 25 watts or less can tear a terrific hole in the band when it's hot. So why not throw together a simple rig? We have heard a number of c.w. CQs labeled "fone or c.w.,” but the beat oscillators must be rusty at some of the shacks. Before the war there were a good number of 'phone-c.w. contacts. It would be more interesting for all if the 'phone-c.w. habit were resumed. It may be our receiving antenna (yeah, we're one of the guys who hastily fastened a short hunk of wire to the receiver and threw the other end on the floor!) but we can't distinguish the voice on some of the weak 'phone carriers. When conditions are poor, more contacts would result if more of the gang would key their carriers. And we're not trying to make c.w. men out of 'phone men, or vice versa, either; we're just trying to be practical. See you on 28 Mc.!
ATLANTIC DIVISION

EASTERN PENNSYLVANIA — SCM, Jerry Mathis, W3BES — 3GRF is back from Tokyo, where he flew in with the first “Radio Tokyo,” and says that some of the DX operated by the building group in that city is darn good. DHJ raised a X4 for his first postwar QSO on 10 meters. 3HDF has a kw. on 10-meter “phone. 3AOJ is back on 10-meter c.w.; 3AVG is racing K4KD for a 10-meter W25. 3EVT, world famous DX man from Virginia, now is located in Landisville. SEU is ready to go in League activities. 3IKW is home on leave. SIRS is home from Valley Forge Hospital and is well on the road to recovery. The West Phila. Radio Assn. bought a receiver and will go on the medium frequencies as well as 2 meters. 3HRD reports that the new 2-meter band is working out better than 2½ meters. SMW has signed up for the Army of Occupation in Germany. 3LN will fly in with an 855A at 1 kw. 3K5T is teaching school again upon release from the Army. W6 League members kindly submit recommendations for various appointments, particularly EC and OBS? Will prospective GOs please get their measuring equipment in gear and send in descriptions so that efficient Observers can be appointed? 737 Jerry.

MARYLAND-DELAWARE-DISTRICT OF COLUMBIA — SCM, Hermann E. Holbs, W3CIZ — EKZ recently returned from Europe and is a civilian again. He writes that while he was overseas he met ON4UX 11IN/3 who states that thirty-one hams, inhabitants of the 2½-meter band from Baltimore and Washington, attended a hamfest at the Hotel Park Plaza in Baltimore on Nov. 9th. The meeting was arranged by 11IN/3, CRB, and 9CWS/3. Another dinner meeting of the Baltimore Amateur Radio Society will be held in January. Contact 11IN/3 for details. DKT was on 28 Mc. Nov. 15th with a new rotary beam. 11IN/3 has a new 144-Mc. superhet and 144-Mc. transmitter. 9CWS/3 is rebuilding. FAM works Wilmington, Del. and Washington, D. C. on 2¾ meters. EMQ has a new Abbott TR-4 revamped for 144 Mc. PV recently made an excursion to Western Pennsylvania with his 2½-meter mobile outfit and picked up twenty-five WERS hams among them SBWP. The Washington Radio Club holds its code classes on Saturday mornings and its meetings on the second and fourth Saturdays of each month. ZD passed through the District of Columbia on his way to Mexico. 73.

SOUTHERN NEW JERSEY — SCM, Ray Tomlinson, W3GCU — Amt. SCM. Ed G. Raser, W3ZI. Regional EC: ASQ; EC for Somerville and Somerset County, ABS; EC for Mt. Holly, Medford, Hainesport, and Pemberton, JN2Q. ASQ reports that the WKPK network of WERS held its final test drill on Nov. 12th. This being the grand finale of the War Emergency Radio Service, the radio side and our entire personnel wish to thank the officials of the township, the Hamilton Twp. police organisation and the entire personnel for the whole-hearted cooperation extended by them during the entire existence of the WKPK network. We remind OBS that it will be necessary for all appointees to submit as soon as possible a new schedule of frequencies, 85K, the schedule for the present Fort-y-foot tower, of course. FTS has a Mima rotating mechanism for his 28-Mc. beam. COO and IDY are pumping out r.f. on ten. AFH is lining up power equipment and shining up the beam, and ASQ is oiling up his steering-wheel rotator. DEA says he will look around on that band, too. GCU is gathering up the necessary digits to solder together a rotor crusher for ten; Ray also is getting set to hike up a new antenna for 50-54 and 144. JNO fired up his big new rotator. Twinkle Tom is looking for appointments for official broadcast work on 144, 28, and 50 Mc. Anyone interested in receiving official news first hand please contact this office, QTH in front of QST. GQX is grinding his 112-Mc. rig down for 144. ATF has reported back to work for New Jersey Bell Telephone Co. after returning from the So. Pacific. DE5A paid a visit to the western section of the country and acquired an XYL. ARN received his discharge from the Navy and has taken up residence in Franklin Park. GCU and FDC recently erected a very fine antenna at the shack of GQX where everyone enjoyed themselves studying the “innards” of a newly-acquired Junior Volt-Omhr. ASQ has revamped his TR-4 for 144 Mc. AID has accepted a position as design engineer for Aeromatic Radio Mfg. Co., Mineola, L. I. EED, with the merchant marine, was last heard from in Hawaii. Jimmy Hassal is back in our ranks, having received his discharge from Uncle Sam’s Air Arm. GBL and RHL have been shifted to the merchant marine and is working for HW at Princeton Labs. HW has a brand-new Premax 40-foot vertical parked on his roof. We record with deep regret the passing of Maj. Henry Seudder, Washington, D.C., who lost his life in a plane crash near Manila, P. I. He was a former student of ZI and one-time communications officer of the 119th Observation Squadron at Newark Airport. The Oct. meeting of the SJRA was held in club headquarters at 513 Cooper St., Camden; it was reported that some very interesting speakers have been lined up for future meetings. IAS and FTQ report a code class in progress with FB results, but more applicants are needed to carry on. FTQ is at Millville Power House. BUF is building a 2½-meter for 14 Mc. FDF is getting set to go on 28 Mc. Air was last heard of in the Naval Labs at Washington, D. C. 73. Ray.

WESTERN PENNSYLVANIA — SCM, R. R. Rosenberg, W8NCJ — The need for Emergency Coordinators is very urgent at this time and it is suggested that former EKZ write to the SCM for renewal of their appointment. The following EC appointments have been made or renewed recently: NDE, AOE, TOJ, and GU. GU is active on 2½ meters and has erected a quarter-wave ground-plane antenna for 25 Mc. OAJ and TVA have been used as a relay from the Signal Corps, TVQ from the Air Corps, and 9CWS/3 from the Navy. TTD is teaching high school general science at Grandy, Mo. TTN has been released from a hospital in the Philippines. TWA returned to the States after several years in Brazil and is at Shepard Field, Tex. OUS and VIN are awaiting discharges. UHO, now in England, is learning to run the mill. NUH writes that PDP is building up his rig. TW1 has married a hometown girl. HKU has moved to Bradford. AOE reports the following Mercer County amateurs active on 2½ meters: VI, OAJ, GRA, QCN, MWV, GEG, WDC, VUR, KIV, YNL, 1K1/T/8, AOS, and SFG. 1K1/T/8 is reported to be working sensational DX on 24 meters. KCV is stationed with the USSC in Honshu, Japan. UVD has his five-watter ready to go on the low frequency bands as soon as the go-ahead signal is given. The Mercer County Radio Assn. has twenty-six active members. The following officers have been elected: Sec. TTD, vice-pres.; VUR, secy.-tres. AOE, EC for Mercer County, reports that all members of the 2½-meter group in that locality have expressed willingness to continue in the emergency set-up and will be at least six at the monthly meeting of the Mercer Radio Assn. of Erie's new club rooms in the City Hall Annex Building have been completely redecorated. The Assn. has assumed complete responsibility of the emergency communication set-up for Erie with EC GU in charge. Very 73. Ray.

CENTRAL DIVISION

INDIANA — SCM, Herbert S. Brier, W9EGQ — ILL is on Ambachta in the Aleutians, building a rig and aombofo aimed at Indiana. EHT is back in Terre Haute. MBH has 700 watts on 28 Mc. PGY has an 807 on the 144-Mc. band. DLI and RHL got on 112 Mc. a few days before the band was shifted. DHJ worked SCVQ on 112 Mc. with 12 watts input. HDI heard, and was heard by the Milwaukee station on 14 Mc. PQV is building a 250-watt converter. FDS built a 12-tube a.c./d.c. receiver. SNF is on the island of Kwajalein, and is radio operator on one of the main control circuits. TTY is in New Orleans with the FCC, ONZ and SVI are homing in, waiting for appointments for official broadcast work on 144, 28, and 50 Mc. Anyone interested in receiving official news first hand please contact this office, QTH in front of QST. GQX is grinding his 112-Mc. rig down for 144. ATF has reported back to

January 1946
watt transmitter. UMK is home from the AAF restig. NLS will be home from Manila in time for Christmas. CWY is back after several years in Italy. CWO has a crystal-controlled w.h.f. transmitter. ABB is back with the Indiana State Police, 73, Herb.

KENTUCKY — SCM, Darrell A. Downard, W9ARU — CNE, BAZ, and GOM didn't lose any time getting on 28 Mc. ARU has the "Apartment House Blues." Marion E. Taylor is back from a 1-year prison stay after four years' imprisonment. OEE, in the merchant marine, manages to make quarterly meetings at the ARTS, 51EZ/9's basement takes on the appearance of a radio warehouse. Now that WRE6 doesn't keep the local gang busy they should have time to report to the SCM. This also applies to the gang in other parts of the State.

MICHIGAN — SCM, Harold C. Bird, WD8P — 8UVU reports he has worked 42 stations so far, including State Police. is back after several years in Italy. CWO has a crystal-watt transmitter. UMK is home from the AAF resting. Another gang, will have to report to the SCM. This also applies to the gang in other parts of the State.

8NRS reports he has worked 32 stations so far, including S8UK and 8UVU. He is getting good signals and the best of QRM free. 8UVU is working with 4-element horizontal beam. SWIK, Pontine, is doing a fine job working the entire metropolitan area. 8UGH, had his first contact on 'phone over a friend's portable-mobile rig. East Leroy, is home from the Navy and has his operator license. 9HSQ reports that the gang in U.P. is doing a fine job working the entire metropolitan area. 8UGH is busy getting out correspondence for the DARA. 8BU is going strong as president of the DARA. 8MQG is working on public relations stuff with a very nice write-up for the papers. 8PDB is tied up with his police work. 8FQW is getting his rig together to get on 10 meters with 3 kw. I would like to know how many are in favor having only one class of license. At this time you should give some thought as to power. Let's have activity reports from you fellows who are active in W28 dimensions. Let's have activity reports from you fellows who are active.

NEW YORK CITY AND LONG ISLAND — SCM, Charles Ham, Jr., W2IDW — After a very promising start on 112 Mc., the Long Island Emergency Net found that the shift to 144 created quite a problem. On November 19th, the first night of the new operation, QRM was noticeably absent. 2FI was outstanding on crystal control and acting as net control. Approximately 22 reported in. Drills will continue Mondays at 9 p.m. on 144 Mc., with ECs appointing a county control station each week or permanently. The present lower frequencies will be utilized for direct county control contacts. 73, Herb. HUDSON DIVISION

NEW YORK CITY AND LONG ISLAND — SCM, Charles Ham, Jr., W2IDW — After a very promising start on 112 Mc., the Long Island Emergency Net found that the shift to 144 created quite a problem. On November 19th, the first night of the new operation, QRM was noticeably absent. 2FI was outstanding on crystal control and acting as net control. Approximately 22 reported in. Drills will continue Mondays at 9 p.m. on 144 Mc., with ECs appointing a county control station each week or permanently. The present lower frequencies will be utilized for direct county control contacts. 73, Herb.
KI6 and W2k/K6 on Saturday p.m. on 4-element beam. IAG now is on 10 meters. KOK dusted off the beam on 10 and is very active. LKC has a new rig and beam on the air. There's much activity on North Shore. BEZ blew a power transformer. The N.Y.C. WEBS operators had a luncheon on November 26th. CMU was high in the QSO Party on Nov. 11-12 with 2301 points. The Evening Session of the College of the City of New York has reorganized and meets Fridays at 9 p.m. in Room 150 Main.

MIDWEST DIVISION

OWL — SCM. Leslie B. Vennard, W9PBQ — UFL reports a club meeting to help all members to get acquainted and to understand the new rules and regulations. LDI is new EC in Keokuk. 5TYN, of Dallas, Tex., has moved to Davenport. AQJ, lack home from the Army, attended a meeting of fifty hams in Moline. BYT, ABF, and DIB visited AHP and admired his towers and sky wire. LAC, new president of the Burlington Radio Club, is very busy on 10 meters. CTQ is back from the Navy and has moved to Kansas City. QVA fell and broke his leg, but will continue code classes. ALO, ESF, DVP, NLA, OMF, and WMP have been discharged and are back home. GWG, WN1, BZ7, and PFR have been having real DX and fun on 112 Mc. but 146 Mc. is not so good. His only hope is to have a new rig and hopes to take his Class C license soon. EX-SF, BPT, and George Dunbar (LSPH) were in New York buying radio parts. TD and KAT have bought new receivers. JGT, JQD, DSV, and UXZ have returned home from the Army and are going to be busy on 10 meters. CTQ is back from the Navy and has been flying the “hump” and now is stationed in California. LAC, new president of the Burlington Radio Club, is very busy on 10 meters. CTQ is back from the Navy and has been flying the “hump” and now is stationed in California.

NEW ENGLAND DIVISION

CONNECTICUT — SCM, Edmund R. Frazer, WIKQY

GB News: Flight Officer Vincent Esposito (LSPH), S/Sgt. MEM, MRR, merchant marine, and Capt. NAM, Signal Corps, all discharged, met at "GB" recently. NAM is working for Tel. Co. in New Haven. ILG applied for membership. CBT is teaching music in Bridgeport. RT2C Jim Wix, TGC, and AAL, merchant marine, are back home. GWD is working at the Institute of Technology in Chicago. GWD and GVR are back home. GVR and JTF are going to be busy on 10 meters. CTQ is back from the Navy and has been flying the “hump” and now is stationed in California. LAC, new president of the Burlington Radio Club, is very busy on 10 meters. CTQ is back from the Navy and has been flying the “hump” and now is stationed in California.

MIDWEST DIVISION

IOWA — SCM. Leslie B. Vennard, W9PBQ — UFL reports a club meeting to help all members to get acquainted and to understand the new rules and regulations. LDI is new EC in Keokuk. 5TYN, of Dallas, Tex., has moved to Davenport. AQJ, lack home from the Army, attended a meeting of fifty hams in Moline. BYT, ABF, and DIB visited AHP and admired his towers and sky wire. LAC, new president of the Burlington Radio Club, is very busy on 10 meters. CTQ is back from the Navy and has moved to Kansas City. QVA fell and broke his leg, but will continue code classes. ALO, ESF, DVP, NLA, OMF, and WMP have been discharged and are back home. GWG, WN1, BZ7, and PFR have been having real DX and fun on 112 Mc. but 146 Mc. is not so good. His only hope is to have a new rig and hopes to take his Class C license soon. EX-SF, BPT, and George Dunbar (LSPH) were in New York buying radio parts. TD and KAT have bought new receivers. JGT, JQD, DSV, and UXZ have returned home from the Army and are going to be busy on 10 meters. CTQ is back from the Navy and has been flying the “hump” and now is stationed in California. LAC, new president of the Burlington Radio Club, is very busy on 10 meters. CTQ is back from the Navy and has been flying the “hump” and now is stationed in California.

NEW ENGLAND DIVISION

CONNECTICUT — SCM, Edmund R. Frazer, WIKQY

GB News: Flight Officer Vincent Esposito (LSPH), S/Sgt. MEM, MRR, merchant marine, and Capt. NAM, Signal Corps, all discharged, met at "GB" recently. NAM is working for Tel. Co. in New Haven. ILG applied for membership. CBT is teaching music in Bridgeport. RT2C Jim Wix, TGC, and AAL, merchant marine, are back home. GWD is working at the Institute of Technology in Chicago. GWD and GVR are back home. GVR and JTF are going to be busy on 10 meters. CTQ is back from the Navy and has been flying the “hump” and now is stationed in California. LAC, new president of the Burlington Radio Club, is very busy on 10 meters. CTQ is back from the Navy and has been flying the “hump” and now is stationed in California.

MIDWEST DIVISION

IOWA — SCM. Leslie B. Vennard, W9PBQ — UFL reports a club meeting to help all members to get acquainted and to understand the new rules and regulations. LDI is new EC in Keokuk. 5TYN, of Dallas, Tex., has moved to Davenport. AQJ, lack home from the Army, attended a meeting of fifty hams in Moline. BYT, ABF, and DIB visited AHP and admired his towers and sky wire. LAC, new president of the Burlington Radio Club, is very busy on 10 meters. CTQ is back from the Navy and has moved to Kansas City. QVA fell and broke his leg, but will continue code classes. ALO, ESF, DVP, NLA, OMF, and WMP have been discharged and are back home. GWG, WN1, BZ7, and PFR have been having real DX and fun on 112 Mc. but 146 Mc. is not so good. His only hope is to have a new rig and hopes to take his Class C license soon. EX-SF, BPT, and George Dunbar (LSPH) were in New York buying radio parts. TD and KAT have bought new receivers. JGT, JQD, DSV, and UXZ have returned home from the Army and are going to be busy on 10 meters. CTQ is back from the Navy and has been flying the “hump” and now is stationed in California. LAC, new president of the Burlington Radio Club, is very busy on 10 meters. CTQ is back from the Navy and has been flying the “hump” and now is stationed in California.
vice-pres.; MQH, secy.; IZB, treas. IIL has a new baby girl. KCP is in China. 5JED is at Squantom Naval Base. 50XS, who has been at M.I.T., has returned to Texas to become a civilian. CGM is a Lie. commdt. in the Navy. The South Shore Amateur Radio Club held its regular meeting with the following present: AKY, VX3, LGR, LVR, EMN, IS, ALP, JXU, HX2, JXZ, JOB, MMU, KJD, IXKN, FWS, CCI, DDO, MD, EUW, LFDP, DJP, 5JED, the Mugford twins, R. Ingis., and Byers. JBY is home again. KBN wrote on Nov. 9th where he saw many of the Rhode Island over again, Your SCM attended the hamfest at Groton, CT. A New England, Inc., AQ, 54 Kelly Ave., E. Providence, was reorganized Nov. 9th and the following officers were elected: SCM, Mrs. Dorothy W. Evans, W1HRC - The Associated Radio Amateurs of Southern AKA, pres.; Bert Savage, vice-pres.; George Hunter, treas.; HCE were elected to the Board of Directors. CMX, the 112 Mc. station on, with a QSO with CYT. K7ENU, Al’s wife, is operating, and MCF, a Jap prisoner since Wake, is home. FJX is touring Panama on a motorcycle. LXS is with the Army of Occupation in Japan. Dick Atwood reports for the Worcester gang, who are marking time during the transition from WERS to ham activity. In this connection, I have named BVE as Section Coordinator, to have charge of all Emergency Coordinators. Where practicable, ECs will be named to cover the same community territory previously covered by WERS. 144 Mc. will be used in each individual community, with low frequency stations enlisted to work between communities over greater distances. They will tie in with the section net. Nominations for Emergency Coordinators are in order, and recommendations should be sent direct to BVR, Percy C. Noble, 37 Broad St., Boston. Under this set-up, each community has its own EC. BSR and Cutler Lamont are conducting classes each Friday night for members of the Springfield WERS group who want to get ham tickets. Ike has been using a Discone antenna on 112 Mc. and reports excellent results. How about getting those EC nominations in to BVR and some reports of activity to me by the 15th of each month? 73.

NEW HAMPSHIRE — SCM, Mrs. Dorothy W. Evans, W1HRC — The Associated Radio Amateurs of Southern AKA, pres.; Bert Savage, vice-pres.; George Hunter, treas.; MQH, secy.; IZB, treas. IIL has a new baby girl. KCP is in China. 5JED is at Squantom Naval Base. 50XS, who has been at M.I.T., has returned to Texas to become a civilian. CGM is a Lie. commdt. in the Navy. The South Shore Amateur Radio Club held its regular meeting with the following present: AKY, VX3, LGR, LVR, EMN, IS, ALP, JXU, HX2, JXZ, JOB, MMU, KJD, IXKN, FWS, CCI, DDO, MD, EUW, LFDP, DJP, 5JED, the Mugford twins, R. Ingis., and Byers. JBY is home again. KBN wrote on Nov. 9th where he saw many of the Rhode Island over again, Your SCM attended the hamfest at Groton, CT. A New England, Inc., AQ, 54 Kelly Ave., E. Providence, was reorganized Nov. 9th and the following officers were elected: SCM, Mrs. Dorothy W. Evans, W1HRC - The Associated Radio Amateurs of Southern AKA, pres.; Bert Savage, vice-pres.; George Hunter, treas.; HCE were elected to the Board of Directors. CMX, the 112 Mc. station on, with a QSO with CYT. K7ENU, Al’s wife, is operating, and MCF, a Jap prisoner since Wake, is home. FJX is touring Panama on a motorcycle. LXS is with the Army of Occupation in Japan. Dick Atwood reports for the Worcester gang, who are marking time during the transition from WERS to ham activity. In this connection, I have named BVE as Section Coordinator, to have charge of all Emergency Coordinators. Where practicable, ECs will be named to cover the same community territory previously covered by WERS. 144 Mc. will be used in each individual community, with low frequency stations enlisted to work between communities over greater distances. They will tie in with the section net. Nominations for Emergency Coordinators are in order, and recommendations should be sent direct to BVR, Percy C. Noble, 37 Broad St., Boston. Under this set-up, each community has its own EC. BSR and Cutler Lamont are conducting classes each Friday night for members of the Springfield WERS group who want to get ham tickets. Ike has been using a Discone antenna on 112 Mc. and reports excellent results. How about getting those EC nominations in to BVR and some reports of activity to me by the 15th of each month? 73.

RHODE ISLAND — SCM, Clayton C. Gordon, W1HRC — The Associated Radio Amateurs of Southern New England, Inc., AQ, 54 Kelly Ave., E. Providence, was reorganized Nov. 9th and the following officers were elected: AEA, pres.; Bert Savage, vice-pres.; George Hunter, treas.; IOL, secy. TVA Club meets every Friday evening. The Providence Radio Association has experienced a huge growth in size and activity since V-J Day. Attendance averages thirty-five per meeting. Special talks are given from time to time by members and visitors from Fall River, etc. Several of the regular meetings have included the giving of door prizes. The 112 Mc. gang organized a hamfest at Oates Tavern on Nov. 3rd with prizes, including a most sought-after turkey, for names and XYLs. It was well-attended by the local gang and as well as visitors from Fall River, etc. The following day, the 112-Mc. band was chocked with amateurs rehashing the time over again. Your SCM attended the hamfest at Groton, CT. A New England, Inc., AQ, 54 Kelly Ave., E. Providence, was reorganized Nov. 9th and the following officers were elected: SCM, Mrs. Dorothy W. Evans, W1HRC - The Associated Radio Amateurs of Southern AKA, pres.; Bert Savage, vice-pres.; George Hunter, treas.; HCE were elected to the Board of Directors. CMX, the 112 Mc. station on, with a QSO with CYT. K7ENU, Al’s wife, is operating, and MCF, a Jap prisoner since Wake, is home. FJX is touring Panama on a motorcycle. LXS is with the Army of Occupation in Japan. Dick Atwood reports for the Worcester gang, who are marking time during the transition from WERS to ham activity. In this connection, I have named BVE as Section Coordinator, to have charge of all Emergency Coordinators. Where practicable, ECs will be named to cover the same community territory previously covered by WERS. 144 Mc. will be used in each individual community, with low frequency stations enlisted to work between communities over greater distances. They will tie in with the section net. Nominations for Emergency Coordinators are in order, and recommendations should be sent direct to BVR, Percy C. Noble, 37 Broad St., Boston. Under this set-up, each community has its own EC. BSR and Cutler Lamont are conducting classes each Friday night for members of the Springfield WERS group who want to get ham tickets. Ike has been using a Discone antenna on 112 Mc. and reports excellent results. How about getting those EC nominations in to BVR and some reports of activity to me by the 15th of each month? 73.

OREGON — SCM, Carl Austin, W7GNI - HAL, of Portland, reports that at least ten of the gang were on ten for the opening, and that HRV is said to have worked all districts. UTHN has assumed publication again with an FB October issue. MQ reports that the Pendleton Radio Club has had some fine QSOs on 112 Mc. by BCE, HWY, ILA, and himself. Among those waiting or rebuilding are: KR, BDN, BKR, AGQ, FPT, and IP. BM and BUS are awaiting discharge. IDL, GLF, and OP have returned to Klamath Falls. K7DHS is back home after five and one-half years of radio work in Alaska. Early in 1940 Al went to Nome as operator and technician. He became SNC of the Alaska net, with a fine bunch of northern gangers. Though it is not practicable for his use if three of the bands was necessary. After three and a half years at Nome, he was sent to the Alentians, then was one of the first twenty men discharged. Al was the third 112 Mc. station out, with a QSO with CVY. K7ENU, Al’s XYL, has been busy with the two small harmonics. It is rumored that FRO, of Ashland, bet $500 bucks that amateurs would never get over the air again. CJN claims a cut for prompting the bet. HHR is back in, with her rig overhauled, screened, and even with interlocking switches. Returning Oregon hams, please report. Thanks. 73.

WASHINGTON — SCM, O. U. Tatro, W7FWD — K7NF held a farewell-to-WERS party at the home of Miriam Brown (LSPH), radio aide, with the operators of the following units present: K7NFV-1, 3, 7, 13, 16, 17, and 18. Hams present were: DPU, IZG, DYD, JBH, UX, UXQ, IQG, APR, CQA, ATN, IT, OTN, FWR, and FWD. The Tacoma Radio Club opened activity with a meeting in the Winthrop Hotel to listen to the 8 a.m. discours on 2½-meter activity in Southern California. There were thirty-five present. The Yakima Amateur Radio Club elected the following: FCZ, pres.; LYB, secy.; and RKO and HCE were elected to the Board of Directors. CMX, State EC, and the local CAA office staff turned out for the meeting. EPT and K7EUW/7 located on Green Mountain Nov. 11 with a TR-4, 1½ meter vertical, extended double Zepp and a 4-element beam of the Yagi type and made the following contacts on 2½ meters: CMX; GKY; AIU, Olympia; AEA, Tacoma; 3GQM/7; 8SSQ/7; 6RST/7; BRENTON; HOL; 90A/7; IV: IA; BDS; SSWH/7; GU; 9PQW/7; Seattle; EOP, Angle Lake; JBB, Mt. Vernon; EHQ, Shellicoon. Anyone who heard EPT on that date and did not make contact, please advise G. T. Williams, P.O. 1729, Stn A, Bremerton, Wash. AWX finds his mobile 112 Mc. antenna adjustment critical in transmission. ITR is ready to provide the air portion of any air-ground v.h.f. experiments. 41HO/7 wants to get acquainted with the gang and is looking for usable parts. His QTH is West. 2½ waves in phase, DSZ as "1". EHQ six elements and IMB four elements. LD has been transferred to this area from Alaska. HJM survived the blow at Okinawa and took time out from radio to help electricians restore wire service. ILC, now in Southeastern Washington, plans to go full speed ahead and get a contact home from his shore leaves. Capt. GMM has returned to the States. HUK is in Northern Italy. AIU, CMX, FWD and GKY, and HPJ are on 2 meters. 73. Tate.

(Continued on page 80)
Merry Christmas
and
Happy New Year
from
National Company

which includes

C. L. Gagnebin W1ATD Barton Mitchener W1GNV
T. P. Leonard W1AUJ Roger Seemons W1SD
James Ciarlone W1BHW John Weatherly W9EQM
Ralph Dennis W1CJ Herman Bradley W1BAQ
Calvin Hadlock W1CTW Harvey Poore W1DKM
Seth Card W1DRO John Bartlett W1EU
Don Hinds W1FRZ William Osborne W1EXR
Robert Murray W1FSN Alfred Zerega W1JMK
David Smith W1HOH Robert Williams W1JOX
John Baxter W1HRK Clyde Tillotson W5JVI
Vincent Messina W1HRW Victor Penney W1MTO
Jack Ivers W1HSV Edmund Ogden, Jr. W1MTO
Harold Gould W1KWV Norman Soper W7JZ
Richard Gentry W1LEN F. Lopez W1KPB
S. W. Bateman W1RX L. Green W1LML
Harry Harris W8WVM K. Nagle W1JGD
George R. Ringland W1BYZ F. Nault W1MKC
William S. Doyle W1TV A. McHenry W1AIH
Paul Silbert W1AGE Harry Gardner W1EHT

John Prusak (Amateur License—No Call Letters)

★ For seven years it was our custom each year to buy National Tuberculosis Society Christmas Seals and have QST stick one on this page in each copy of the January issue. But this year, as in the past two years, it seems impractical to get girl to stick on 60,000 stamps. We are making our contribution in the same amount as if we had bought the Christmas Seals, and the printed reproduction above is a symbol of the stamp we wish were there.
With a Mallory Portable Battery Charger it's a cinch to charge batteries in vehicles, laboratories or stations. Just plug the DC cord into the convenient dash receptacle and plug the AC cord into the nearest outlet—that's all there is to it!

TYPE 107
The jumbo job for quicker charging. Initial charging rate: 10 amperes tapering to 7 amperes as the battery builds up. Size: 9¾" high, 6¼" wide, 5¾" deep. Weight, only 11 pounds.

TYPE 5535 B
Mallory's medium-sized charger. Type 5535 B, has an initial charging rate of 6 amperes, tapering to 4 as the battery builds up. Size: 7¾" high, 4½" wide, 4½" deep. Weight: 5¾ pounds.

TYPE 3C
Mallory's Type 3C Battery Booster is the smallest of the family, with a charging rate of 4 amperes initial, tapering to 2 amperes. Size: 6" high, 3½" wide, 3½" deep. Weight: 4½ pounds.

Mallory Battery Chargers are available from your authorized Mallory Distributor. See him for details about the complete Mallory line.

(Continued from page 79)

PACIFIC DIVISION

**CALIFORNIA — SCM, Earl F. Sanderson, SJWUZ — RM: LLJW. QG is out of the Army and his new QTH is San Mateo. PEA is reconvivializing to civilian life. Lt. Comdr. ABE, USNR, is stationed in Oakland. M2Q is in Missouri. QLO is on his way back from Pacific and soon will become a civilian. C5 is moving to his new QTH. MUC has joined the Elmac gang and his new QTH is Redwood City. Among those on ten during the opening days were: CHE, RRR, SC, JDC, GYO, and OKC. That unexpected day found many of us in new QTHs dusting off chassis and condensers, deep in the heart of a rebuilding job. How about some dope on what you are doing and the DX you are working, fellows? 73, Sandy.

**EAST BAY — SCM, Horace G. Greer, W6TI, - EC, QDQ; EC v.h.f., FKQ; AEC, EC v.h.f., OJU; OQ v.h.f., ZM. On Nov. Ist a reorganization meeting of the Oakland Radio Club was held in the Civilian Defense Control Room. The club expects to meet the first and third Thursdays of each month with a $2.50 initiation fee and dues of 50 cents per month. Although the War Emergency Radio Service is through, most of the members plan on going into other emergency nets as they are organized. We must have a strong group and a strong DX for any necessity that may arise. The East Bay Section meetings will be resumed as soon as we get more bands back. Please get the news on your rigs so we may pass along the information. Have you any good ideas? If so, let's have them. In one week just before the 10-meter band opened I received one hundred telephone calls on while now and what's cooking. ZM likes his new e.c.o. 73. "TF."

ROANOKE DIVISION

**VIRGINIA — SCM, Walter G. Walker, W3AKN — The following stations have been copied by the SCM since the 10-meter band opened: MT, IAG, GGP, PK, BER, HQT, EAI, of the Norfolk, Portsmouth, Newport News area. AJA is putting up a Johnson Q for 10 meters and re-vamping his transmitter with the Signal Shifter as a driver. AKN is building up a ten-meter rig. GSV advertised his radio equipment for sale or swap for an airplane. ICF bought a bed at Yorktown, Va., and will be on the air on 10 meters about January, 1946. IEX, Navy, has returned from the Southwest Pacific and is located temporarily in California. BTY Navy, is stationed at Newport News Shipyard awaiting completion of a new aircraft carrier. He is building a ten-meter transmitter. IF has deserted the u.h.f. bands for 10 meters. The W6 stations have been heard working or calling him. Now that the lower frequency bands are being opened your SCM has hopes of receiving news for this column. Please let's hear from all of you. 73. Walt.

ROCKY MOUNTAIN DIVISION

**COLORADO — SCM, C. Raymond Stedman, W9ACA, on Nov. 26th. EHC reports his wife should be ready for her ticket soon after Jan. 1, 1946. His son is looking forward to being a W5 instead of a W6; as he expects to be with CAAuth. JRN is in Norfolk, Va., and has an XYL and as soon as junior gets here, which will be in the spring, Jim will start making plans for his discharge. ZER is on 10 meters and he has a good-sized family started. No. 1 is a little girl eleven months old and she should have a brother sometime in the spring. UPT was transferred to Ft. Huachanas, Ariz., after three years at Douglas Army Air Field. TFP has taken over the duties of director. 3JIN/9, WYX, QYT, VGC, and JBI are ready to shoot on 2 Mc. and as soon as the tops of the mountains are cleared of snow and the roads are open several others will be ready to go back in the high country to try for DX records, we hope. BVZ spent the winter cruising up and down the east coast of China and expects to be back in Denver in February, 73. HPH.

**UTAH—WYOMING — SCM, Victor Drabble, W6LLH — 6STB has returned from his RlD job in the Hawaiian Islands and is attending B.Y.U. in Provo. He has built an
Face the Facts:

You Must Train Now to Step Ahead of Competition Into a Good-Paying Job in Radio-Electronics — or be left behind because you lack the understanding of new electronic techniques.

CREI home-study courses are for professional radio-men only and this CREI message is for those who are not afraid to face the facts! You are facing a completely new era in the radio-electronics world. The war-restricted curtains of secrecy have been pulled aside, revealing each day momentous, revolutionary applications of new radio-electronic principles and theories, and their complicated circuits, equipment, individual parts, etc.

No matter what your past radio-electronics experience has been, no matter what your training, you must keep pace with the new developments if you expect to get ahead in this new world of radio-electronics — or even maintain your present position in the field.

How much do you know about U.H.F. Circuits, Cavity Resonators, Wave Guides, Klystrons, Magnetrons and other tubes? All these revolve largely around U.H.F. applications. And here is where CREI training can help you. In our proved home-study course, you learn not only how... but why!

Let CREI train you now to trade that “screwdriver” for a slide rule. Do something about increasing your technical ability and advance to the better-paying radio jobs that offer security and opportunity. The facts are in the free booklet. Send for it today.

WRITE FOR FREE 36-PAGE BOOKLET

If you have had professional or amateur radio experience and want to make more money — let us prove to you we have something you need to qualify for a better radio job. To help us intelligently answer your inquiry — please state briefly your background of experience, education and present position.

CAPITOL RADIO ENGINEERING INSTITUTE

HOME-STUDY COURSES IN PRACTICAL RADIO-ELECTRONICS
ENGINEERING FOR PROFESSIONAL SELF-IMPROVEMENT

Dept. Q-1, 3224—16th Street, N. W., Washington 10, D. C.

Contractor to U. S. Navy—U. S. Coast Guard—Canadian Broadcasting Corp.
Producers of Well-trained Technical Radiomen for Industry

MEMBER: NATIONAL COUNCIL OF TECHNICAL SCHOOLS
HQ-129-X
HAS ALL THIS
AT LOW COST!

Send card for technical details.

THE HAMMARLUND MFG. CO., INC., 460 W. 34TH ST., NEW YORK 1, N.Y.
MANUFACTURERS OF PRECISION COMMUNICATIONS EQUIPMENT
Full range .54 to 31 M.C. accurately calibrated.

Band spread has four calibrated ham bands and one arbitrary scale.

Variable selectivity crystal filter (a Hammarlund patent) for phone as well as code reception

Low drift beat oscillator for receiving code and locating stations.

Antenna compensator to provide the maximum image rejection and high sensitivity.

Voltage regulation reduces effects of line voltage fluctuation.

Compensated oscillator reduces drift during warm up.

Automatic noise limiter. New series circuit reduces many types of interference.

Adjustable S-meter for reporting signal strength.

Earphone jack cuts out speaker when phones are used.

Send-Receive switch.

Three "IF" amplifier stages.

Two audio stages with improved tone quality and ample volume.

Eleven tubes including voltage regulator and rectifier.

Streamlined appearance finished in attractive two-tone gray.

Amateur net price $129.00 less speaker. Subject to change without notice.

10" P.M. dynamic speaker in cabinet to match, $10.50 net.

Dimensions overall, 13" deep, 19½" wide, 11" high, weight HQ-129-X receiver only — 52 lbs. net.
FB 10-meter 'phone rig; it is a 6L6-807 and is modulated by a 6SJ7-6J5 into a pair of 6V6s, power about 25 watts. 6QAA, Salt Lake City, reports FB success on the new 144-148-Mc. band. He works Provo hams and says 6MAY and 6STD can verify it. (He loads his gear in the trusty old auto and drives to Provo.) SPLR is teaching radio to the Bushnell Hospital patients at Brigham City. SPLR is building a 144-148-Mc. rig in the glove compartment of his car. 9NFQ is making numerous contacts on the 10-meter band, 4NIV/6NPU will be on the 10-meter band soon. R6VQ is out of Halid and is getting his gear together. The Ogden Amateur Operators' Club has drawn up a new constitution and by-laws. Membership of the club is growing since the opening of the bands. The Club recently spent an interesting evening at the airport watching the radio-sound experts at work. 6SYD is new OBS for North Utah. 73. Vic.

SOUTHEASTERN DIVISION

LABAMA — SCM, Lawrence J. Smyth, W4GBV — DGS writes that BOU/8SBQ is back at Fort Belvoir with permanent duty for the fourth time during the war. EBM is being moved from Randy, Ceylon to Singapore. EOX and DGS have had a lot of fun with an HV6S with 35 watts input since the band was opened. DGS called a CQ the other night on 2½ meters and who should come back but GFW. RUV and HPIJ have a 2½-meter rig, one in Washington. DLF is on 2½ meters in Washington. GFW is out of the Navy, and has acquired an XYL. GPW is president of the Washington Radio Club and his XYL is secretary. DBZ, who was promoted to Lt. comdr., is out of the Navy. EOX has been moved from the Bureau of Ships in Washington to the Navy Radio and Sound Lab at San Diego. CNY, formerly of WAPI in Birmingham, is working on merchant ship radio for Raytheon Co. DGS had over 100 W4 hams drop by for visits during the period of the war, including K. B. Warner, of ARRL. GWH, who now is a married man, is stationed at Norfolk. AUP is going strong on ten with 15 watts. 73. Murf.

EASTERN FLORIDA — SCM, Robert A. Murphy, W4IP — CEG reports from Luzon, P.I., and says 8UYC and 8VXH are with him. EEP has rel!nlisted in the Signal Corps for another three years and will he at Ft. Monmouth for awhile. IP jr. has changed from airplanes to seagoing vessels and is on the USS Simonds, WXHR. The following have been selected for Official Broadcast Station appointments: BYF, ACZ, and PB. I would appreciate hearing from anyone interested in this or other appointments. We want to do all we can to build up a real Florida net, especially a hurricane net. Let me have comments from you fellows. HDB and AYV are getting together in Umatilla in 2½-meter work and are tempted to go on 10 meters. BYF is changing over to 144 Mc. VV is very consistent on 10 meters along with FVW. ECV is in his glory on 10 meters. IP has some new QSL cards to send to fellows he worked on 112 Mc. and wants to hear from you. DZH is in Balboa for PAA. CNZ teaches l!izht operators in Miami for PAA. IEV is doing nicely on 10 meters since it opened up. Questions are coming in by the dozen and you can get answers by listening to broadcasts from W1AW on 3555, 7145, 14280, and 28245. Try it and see how well you can keep up with the news. Hope you fellows all have a very pleasant holiday season. Let me hear from you about your activities on the ham bands. 73. Merf.

WESTERN FLORIDA — SCM, Lt. Edward J. Collins, W4MS — BKQ lost a 35TG before the rig was on the air. DAO is having the RME-69 tuned up by UW. DXZ is building a new tower for the rotary beam and is on the market for a new receiver. E2Q is considering a ground plane antenna for 28 Mc. and is moving his 112 Mc. gear to 144 Mc. QX is replacing some of his masonite panels with metal ones. UW is putting on low power and will have a big rig perking later. E2T is believed to be the first Pensacola station on 28 Mc. ECT is dusting things off. FJR has been copying IA W. VR is getting his rig in shape. AXF has been prodding the OM to get her rig going on 28 Mc. JV has rented an FB location for nothing but radio. HJA is looking for a receiver for 28 Mc. FVW and DXQ are await­ ing the opening of 7 Mc. MS has the old rig in a new cabinet. BRK is having trouble with an 807. We hear the 6s working AUP, UW and E2T are working on a b.o. station deal. ABV is back from the wars and working in Pennsylvania. The filament transformer in MS's rig is a Thordarson and has been in use 24 years. ACB is scrambling around to get his gear perking.

(Continued from page 81)
Be on the lookout for Type AX2 when it shows up on your distributor's counter. It's new and a worthy successor to the long line of quality crystals supplied by Bliley to the amateur fraternity over the past 15 years.

There's a huge background of creative experience and advanced engineering packed into this little unit. It represents a long and intimate acquaintance with the needs of amateur radio, translated into the requirements of today.

Bliley crystal unit Type AX2 has been designed specifically for amateur frequencies in the 80—40—20 meter bands. Your Bliley distributor will have complete engineering and design data.

This new BLILEY crystal type AX2, will be available soon.

Keep in touch with your BLILEY distributor.
NOW—a really high-powered
RADIO
ENGINEERING
LIBRARY

especially selected by radio specialists of
McGraw-Hill publications
to give most complete, dependable coverage
of facts needed by all whose fields are
grounded on radio fundamentals
available at a special price and terms

These books cover circuit phenomena, tube theory, networks, measurements, and other subjects—giving specialized treat­ments of all fields of practical design and application. They are books of recognized position in the literature—books you will refer to and be referred to often. If you are a practical des­igner, researcher or engineer in any field based on radio, you want these books for the help they give in hundreds of problems throughout the whole field of radio engineering.

5 volumes, 3559 pages, 2558 Illustrations
Eastman's FUNDAMENTALS OF VACUUM TUBES, 2nd edition
Terman's RADIO ENGINEERING, 2nd edition
Hvttin's COMMUNICATION ENGINEERING, 2nd edition
Hund's HIGH FREQUENCY MEASUREMENTS
Henney's RADIO ENGINEERING HANDBOOK, 3rd edition

10 DAYS' FREE EXAMINATION
SPECIAL LOW PRICE
EASY TERMS

Special price under this offer less than books bought separately. Add these standard works to your library now; pay small monthly install­ments, while you use the books.

— SEND THIS EXAMINATION COUPON —

McGraw-Hill Book Co., 330 W. 42 Street, N. Y. 18

Send me Radio Engineering Library for 10 days' examination on approval. In 10 days I will send $3.00 plus few cents postage, and $3.00 monthly till $24.00 is paid, or return books unpaid. (We pay postage on orders accompanied by remittance of first installment.)

Name ________________________________
Address ________________________________
City and State __________________________
Position ______________________________
Company ______________________________

NOTE:
The library comprises a se­lection of books culled from leading McGraw-Hill pub­lications in the radio field.

(Continued from page 84)
Would appreciate hearing from all of you fellows about the 16th of each month. The gang is thinking about a real old­time Western Florida hamfest so let's hear from you when you want it. 5MJX, 71QJ, and 9M6I are racing to get on ten. 73. Eddie.

SOUTHWESTERN DIVISION
LO S ANGELES — SCM, H. F. Wood, W6QYV — How about sending information on your activities and on nets formed? Some new OBS and EC appointments have been made but there are a number of spots not yet covered by ECs. If you are able to take on the job of organizing a net in your community, please get in touch with me. I believe that the work that was done in developing and training personnel for WERS work will be of great help in forming new set-ups and it is suggested that you keep your group intact, if possible, to bring to the 1962 summer meetings. I was carrying on under this plan and Fred Stapp reports that Inglewood is doing the same. Equipment is being converted for use on the 144 Mc. band and is working out well, Stu Walsley, seey. of the Inglewood Club, reports that the club meets each Friday. Large increases in membership of these clubs have been reported. The Glendale Club has been reac­tivated and meets the first and third Wednesdays at 8:00 p.m. the first month at Spar Heights Club House. Temporary offices are: MQA, prea.; MMF, secy.; and TUT, trea. EQM is serving well in getting the club under way again. Plans are being made for the next convention for the Southern area. New officers of the Inglewood Club are: QJR, prea.; MEO, vice­prea.; EKM, rec. secy.; RNN, cor. secy.; Harry Min­tum, trea.; and QX1, agt. at arms. Quite a gang have gath­ered in the El Monte area and those present at the first meeting, held at the home of OCSB/6, were: 6JF/6, 1CS, VON, OQB, AAN, SYG, 85EIN/6, 9IKZ/SSU, UIO, and SCQ. ON has been appointed OBS for the San Dimas area. EQM has been appointed EC for the City of Los Angeles to head the radio communications division of the Citizens' Emergency Corps. KEI and GZZ have been appointed OBS for the Valley section and the Los Angeles area, respectively. AEI, SSU, TQJ, QYV, and MPJ have their new rigs at the testing stage. A Happy and Prosperous New Year to all of you. Please get reports in so all can know what we are doing here in Southern California. CUL. Ted.

ARIZONA — SCM, Douglas Aikens, W6RWW — The 25 Club of the Tucson Short Wave Association, with OZM, RNB, SDF, TJC, TCO, RMB, OWX, TXM, GS, JHF, 9DZA, and SWEC in attendance, held a meeting recently and a good time was reported. Plans are under way to or­ganize a State ham convention to be held about April of next year. MLL is in Tombstone taking chlorine treatments. UNN has been dabbling with 2½-meter stuff. Fellows, please drop a post card and let us know where you are and what's doing. 73. Doug.

SAN DIEGO — SCM, Ralph H. Culbertson, W6CHY — Asst. SCM, Gordon W. Brown, W6APG. QEZ has returned home with his new XYL. APG is operating on the new 2-meter band; he has his 10-meter mobile ready to go in the testing stage, A Happy and Prosperous New Year to all of you. Please get reports in so all can know what we are doing here in Southern California. CUL. Ted.

WEST GULF DIVISION
NORTHERN TEXAS — SCM, Jack T. Moore, W6ALA — DLF has opened a radio shop in Dallas. CQJ is operating on the 144 Mc. band and the rig is in La Jolla. APG, QEZ, DUP, and CHV have been copying W1A on 11745 kc. A real old-timer! QEZ has returned home with his new XYL. APG is operating on the new 2-meter band; he has his 10-meter mobile ready to go in the testing stage, A Happy and Prosperous New Year to all of you. Please get reports in so all can know what we are doing here in Southern California. CUL. Ted.

(Continued on page 80)
Six Important Facts About RK-4D32 and RK-4D22

1. Over 100 watt output at 600 plate volts.
2. Low driving power requirements less than 1.25 watts required for full output.
3. High efficiency due to beam tetrode construction.
4. Full efficiency and no neutralization up to 60 megacycles.
5. Ruggedized construction for mobile and aircraft service.
6. 125 watts of undistorted audio output can readily be obtained from a pair.

Of special interest is Raytheon's newest cathode type beam amplifier. Capable of delivering 100 watts output with only 600 volts on the plate, this product of Raytheon research is of ruggedized construction designed particularly for ham use. It offers particular advantages for making a low powered, low cost, 100 watt band switch transmitter.

This new beam tetrode typifies Raytheon advanced engineering and precision manufacture. For any other tube application you may have, there is a Raytheon tube engineered to do that job, give you continuing satisfaction.

RATINGS

FILAMENT RATINGS
RK-4D32 6.3 volts at 3.75 amps.
RK-4D22 25.2 volts at .8 amps or
 12.6 volts at 1.6 amps.

MAXIMUM RATINGS CLASS C TELEGRAPHY
D.C. Plate Voltage 750 volts
D.C. Grid Voltage -200 volts
D.C. Screen Voltage 350 volts
Plate Dissipation 50 watts
Screen Dissipation 12 watts

RAYTHEON
MANUFACTURING COMPANY

Excellence in Electronics
POWER TUBE DIVISION
WALTHAM, MASSACHUSETTS
COPYRIGHT 1945 RAYTHEON MANUFACTURING COMPANY
NOTHER IMPORTANT
ROM MAGUIRE

MAGUIRE INDUSTRIES, INC.
ANNOUNCES THE FORMATION OF ITS NEW
ELECTRONIC DISTRIBUTOR
and
INDUSTRIAL SALES DEPARTMENT
THIS NEW DEPARTMENT WILL ASSUME ALL
MERCHANDISING
SALES
and
CUSTOMER RELATION
DUTIES AND RESPONSIBILITIES ESSENTIAL IN
MARKETING THE COMBINED PRODUCTS OF THE
THORDARSON DIVISION
MEISSNER DIVISION
RADIART CORPORATION

ELECTRONIC DISTRIBUTOR AND
INDUSTRIAL SALES DEPARTMENT
THESE SUPERIOR PRODUCTS NOW AVAILABLE FROM A SINGLE SOURCE

TRANSFORMERS
Precision engineered and quality built transformers for all requirements—replacement, communications, sound amplifier, industrial, experimental and amateur.

TRU-FIDELITY AMPLIFIERS
In new, modern designs featuring advanced tone compensation, conservative ratings, ample ventilation, low hum level, multiple input channels and maximum flexibility of controls.

COMPONENTS
Precision-built components including antenna, R.F. and oscillator coils; standard, plastic and Ferro-craft transformers; windings, coils, chokes and accessories.

SERVICE INSTRUMENTS
Meissner Analyst—operates by "signal tracing" method, fastest and most reliable—furnished complete. Signal Calibrator—a portable self-contained unit.

VIBRATORS
Radiart Correct Replacement Vibrators are individually engineered to meet exactly the physical as well as the electrical requirements of each application.

RUST-PROOF AERIALS
A complete line of newly designed aerials to fit all cars; 3 and 4 section models—cowl, fender and under hood types... all made of finest materials.

SEE FOR YOURSELF!

MAGUIRE INDUSTRIES, INC.
936 NORTH MICHIGAN AVENUE, CHICAGO 11, ILLINOIS
Books that tell you how

...and WHY
IN PLAIN, EASY TO UNDERSTAND ENGLISH

1. Introduction to Practical Radio

By D. J. Tucker

Teaches all basic principles with the clarity and thoroughness needed for complete mastery of these essentials. Explains all the necessary mathematics at the points where it is used. Shown in hundreds of examples, how to apply theory in the construction and operation of radio parts and circuits and in the solution of typical radio problems. Written by the chief engineer of WRR, KVP, KVP, Dallas, and owner of the famous ham station W5VU. Large print. Many illustrations. $3.00

FREE EXAMINATION COPIES

The Macmillan Company, 60 Fifth Ave., N.Y. 11

Please fill my order for the books checked by number below, with the understanding that my bill will be cancelled if I return them within 7 days.

Signed

Address

(Continued from page 88)
Amateurs buy plenty of these mercury-vapor rectifiers—and for a good reason. In dollar-value the GL-866-A/866 stands alone. A pair will deliver 3,180 volts at 0.5 ampere (full-wave rectified d-c)! Usually that's more than enough for your transmitter.

The GL-866-A/866 is sturdily built. Also, an edgewise-wound ribbon filament provides a large emission reserve, which contributes importantly to the tube's long life.

Check with your ham friends as to the all-around staunch performance of Type GL-866-A/866. Condensed ratings are given at the right. Your nearest G-E distributor will supply you with further information, or write direct to: Electronics Department, General Electric Company, Schenectady 5, New York.

Characteristics of Type GL-866-A/866

- Cathode type: filamentary
- Cathode voltage: 2.5 v
- Cathode current: 5 amp
- Peak voltage drop, typical: 15 v
- Max anode voltage, peak inverse: 10,000 v
- Max anode current, 1 amp instantaneous
- Max anode current, 0.25 amp average

Electronic Tubes of All Types for the Radio Amateur

General Electric
AT LAST!!

A Complete, Practical Handbook of Present-day TELEVISION

Now, the tremendous opportunities in the field of television are brought within your reach—by means of this crystal-clear book. Written in plain English, concise and up to the minute it means television easy to understand. There is no mathematics to confuse you and make explanations difficult to follow. Hundreds of vivid illustrations bring every fact and point right before your eyes. You'll be amazed at how simple television can become with

TELEVISION SIMPLIFIED

by MILTON S. KIVER

Associate Instructor in radio, U.S. Army Air Forces. Formerly Instructor in radio, Illinois Institute of Technology.

This brand-new, authoritative handbook not only contains all the information you need for success in television, but covers the trouble shooting and repair of radio sets. Beginning with a clear, overall picture of the entire field, it breaks down the television receiver into its component parts and circuits. It analyzes them, step by step, showing how they are formed, the roles they play, and their operating characteristics.

BRIEF OUTLINE OF CONTENTS

The Television Field; Ultra-high Frequency Waves and the Television Antenna; Wide-band Tuning Circuits, Radio-frequency Amplifiers; The High-frequency Oscillator, Mixer and Intermediate Frequency Detectors and Automatic Volume-control Circuits; Video Amplifiers; Direct-current Reiteration; Cathode-ray Tubes; Synchronizing Circuit Fundamentals; Deflecting Systems; Typical Television Receivers—Analyses and Alignment; Color Television; Frequency Modulation; Servicing Television Receivers; Glossary of Television Terms.

EXAMINE THIS BOOK FREE

Let this great book prepare you to take advantage of the brilliant opportunities the television offers. Send for it NOW!

--- MAIL THIS COUPON ---

D. VAN NOSTRAND COMPANY, INC.
250 Fourth Avenue, New York 3, New York

Please send me "Television Simplified." Within 10 days I will either return the book or send you $4.75, plus a few cents postage. (If you enclose check or money order for $4.75 with this coupon we will pay the postage. Same return privilege, and refund is guaranteed.)

Name

Address

City .. State

O. S. T. — Jan. 45

92

(Continued from page 90)

ent: 1EY, 1GL, 1LP, 1JG, 1ND, 4BB, 4WE, 4ANO, 5DT, 1LD, 1MI, 1BE, 1FT, 5AHR, 1MV, 5OZ3, 1EL, 3AML, A. O. Cassity, G. O. Lafleur, E. Pelcher, H. Burrote, T. Meal, P. Bourque, R. Bourque, R. Rayworth, and E. Koulinski. At the present time the club membership is thirty-six but it is expected that total club membership will reach forty-five by the next meeting. 1KS writes in renewal of his OPS, OBS, and ODF appointments and offers to take any other appointments or jobs. He also is interested in again becoming a member of the AEC. KJ, who sends the following items, is planning on 357s modulated by 81s. GW has a new rig full of 6L6s and 807s. GW's rig with T125s in the final, modulated with T140s. AP, out of the Navy, has a shiny 813. AF, discharged from RCAF, is starting radio servicing business in Summerside. CO is building new rig. FR is working in New Brunswick.

ONTARIO DIVISION

ONTARIO — SCM, Donald R. Gunn, VE9EF — The following report was sent in by 3AZ: 3EF, our SCM, has retired to the Reserve RCAF after having attained the rank of wing commander and having been deputy director of signals communication for the RCAF. He is living in Oakville and has returned to the staff of the Ontario Hospital at New Toronto. These reports, which 3AZ undertook while 3EF was on active service, will henceforth be written by the SCM. Before closing this phase of amateur radio, however, your editor wishes to take this opportunity to thank all who were kind enough to send in news items from all parts of the world during the past six years. Without your assistance the VE3 column would not have been possible. All Canadian amateurs are happy to learn they can pursue their hobby once more and there is much activity these days getting receivers and transmitters to "perk" again. C U on the air soon.

QUEBEC DIVISION

QUEBEC — SCM, L. G. Morris, VE2CO — 2GK, 2FK, and 2OG were logged on Nov. 15th operating 28-Mc. "phone. 2OD crashed the front page of that day's Montreal Herald with a feature picture of his big rack and panel job. Welcome home, 2CD and 2FT. These chaps, both RCAF officers, were POWS for several years, CO being captured in Java and JT in Singapore. 2AB has been appointed vice-president of the Provincial Transportation and Communications Board of Quebec. Two Montreal district associations are active — Le Cercle Canadien-Francais de la T.S.F. and the South Shore Amateur Radio Club. The Montreal Amateur Radio Club will be going again soon. Lt. Col. 2LE has been engaged for some months in the study of principles and applications of radar and storm detection at NDHQ, Ottawa. 1KG and 3AXX are instructors at the Montreal Technical School where they have formed a club made up of some forty-five students interested in becoming hams. Let's have news from these clubs and OM's. You can reach your SCM by calling DEX 5511.

VANALTA DIVISION

ALBERTA — SCM, C. S. Jamieson, VE4GE — We are indebted to 4LG for the report this month. The Edmonton boys are getting some much-needed code practice copying WIAW's official broadcast. The NARC held a well-attended meeting in October. The GUM's circular letter came up for discussion and a suitable reply was framed. 4HM is very busy digging up parts of his rig, and has rebuilt his frequency meter. 4ATI, who was s/sgt. with RCCS overseas, is back again and working for N.A.R. 4ATJ returned from overseas and was purring like a cat at the pole-raising. We recently saw 4JL hauling quantities of antenna wire out of 4BW's joint. 4JP breezed into Edmonton for a short visit. He has his rig under renovation, his receiver in Calgary and has returned to the staff of the Ontario Hospital at New Toronto. These reports, which 3AZ undertook, will henceforth be written by the SCM. Before closing this phase of amateur radio, however, your editor wishes to take this opportunity to thank all who were kind enough to send in news items from all parts of the world during the past six years. Without your assistance the VE3 column would not have been possible. All Canadian amateurs are happy to learn they can pursue their hobby once more and there is much activity these days getting receivers and transmitters to "perk" again. C U on the air soon.

(Concluded on page 96)
No relationship could be closer than that existing between veteran amateurs and The Astatic Corporation. Evidence of this relationship is found in the continued demand for Astatic Model D-104 Microphones, originated away back in 1933 and still, today, a favorite with many hams. With the gradual lifting of restrictions and a revival of amateur activities, Astatic looks forward to again serving this important field of radio. Microphones and Phonograph Pickups, long restricted to military use, are once more available, along with new and improved products being engineered and added from time to time to the Astatic line.
3D23

This is the tube you hams have been seeking to install in your postwar transmitters

A remarkable new TETRODE for fixed or mobile operation

- Filament Voltage: 6.3 AC or DC Volts
- Filament Current: 3.0 Amperes
- Amplification Factor: 65
- Mutual Conductance: 2,750
- Plate Dissipation: 35 Watts
- Medium 4 Pin Ceramic Base
- Maximum Power Output: 130 Watts
- Approx. Driving Power: 4.5 Watts

Inter-Electrode Capacities
- Input to Plate: .2 MMFD
- Input, 6.5 MMFD: Output, 1.8 MMFD

Licensed under R. C. A. Patents

Catalog Sheet and Tubes Now Ready for Distribution

Lewis at Los Gatos
Manufacturers of all types of transmitting tubes—35 Watt West Coast type to 35 Kilowatt external anode, multi-grid tubes. A new member of the Aireon family.

Lewis Electronics, Los Gatos, Calif.
SUBSIDIARY OF Aireon MANUFACTURING CORPORATION
All P. M. Models of Aireon Cinaudagraph Speakers use Alnico 5, the miracle metal that gives you 4 times the performance without size or weight increase. No amateur set-up is complete without at least one—write for information, today.
at Vernon. 4BW took a plane trip down East to do some buying and promises plenty of new gear soon. He will make his postwar debut with a pair of 807s in final, in parallel. 4BV showed some home movies at the recent Club meeting. 4ATH lamented the fact that he has no antenna up yet. 4VJ, on the sick list, is showing genuine interest in his postwar debut with a pair of 807s and is back home. 4ARC moved to Champion to operate a general repair shop. 4DYY got a letter from 4GD advising him to be a good BCL and listen for news on the reactivation of ham radio! 4EYV reports that ham activity is booming in Calgary again. 4SW is ironing out of Norm's equipment. 4IN, an officer in the RCAF, was stationed in Calgary until recently. He now is at Clinton, Ont., on a special course and says he will not let the old “Haywire Net” down. 4AJH and 4APA were ready to throw the switch on Nov. 15th. 4EY has the rig all set to go on ten meters. Cpl. 4ANS is stationed in Edmonton. 4EA is struggling with a new rig for 10-meter work. He has his receiver pretty well ironed out now.

BRITISH COLUMBIA - SCM, C. O. L. Sawyer, VE6DD - The following news was sent in by 5DY: The Victoria Short Wave Club is again active and on Nov. 19th the following officers were elected: 5CH, pres.; 5HR, vice-pres.; 5DY, secy.; E. Lindley, treas.; 5CB, 5EC, 5AAZ, sub 5IE, directors. Shortly after this meeting the executive committee got together to lay plans for resumption of the usual activities. These include classes for beginners in both code and theory, reconstruction and operation of the club station, 5EZ, and the completion of the club house. Plans were made for the raising of extra funds for this latter purpose. The annual meeting followed a dinner at the Stratheana Hotel, at which forty-one attended, including: 4FM, 4MN, 5AAZ, 5ABU, 5ACE, 5ADB, 5ADY, 5AEF, 5AFY, 5AGN, 5AIK, 5CH, 5DY, 5EC, 5GM, 5HR, 5IL, 5M, 5OS, 5PD, 5PX, 5RM, 5ST, ex-5CO and ex-5SIE. A number of the Victoria gang are going to town on 28 Mc., including 5AAZ, 5CB, 5HR, and 5M, and two jr. YL operators! Notes from 5ZM: The SARL, of the Victoria gang are going to town on 28 Mc., including 5AAZ, 5ABU, 5ACE, 5ADB, 5ADY, 5AEF, 5AFY, 5AGN, 5AIK, 5CH, 5DY, 5EC, 5GM, 5HR, 5IL, 5M, 5OS, 5PD, 5PX, 5RM, 5ST, ex-5CO and ex-5SIE. A number of the Victoria gang are going to town on 28 Mc., including 5AAZ, 5CB, 5HR, and 5M, and the following are known to be planning to use that band: 5EC, 5CH, 5SW. 5OR, recently in the RAF in S.E. Asia, is believed to be en route home. 5EP, taken prisoner of war at Hong Kong, will be released from military hospital immediately. 5EP and 5QH are on the way home from their station in Australia with an Army Signals unit. New settlers in this section include 5AVU, 4KP, 4MN, 4FM, ex-4IC, 4BI, 4ASD, 4AGQ, 4ZC, and 4XY.

PRAIRIE DIVISION

MANITOBA - SCM, A. W. Morley, VE4AAW - First to report being back on is our great DX land. 4RO is struggling hard to get down to 10 meters. 4QG has been transferred to Regina. 4ABW is out of the RCAF, and we understand he is getting ready to go back to Sask. 4NN has got married and ducked out of the Peg. 4BL is at home in the YXL. 4EO's XYL still chalks up her contacts. Oxidized silver is probably acting as a rectifier.

Are you hearing a miscellaneous jumble of untrouble signals in the 28-Me. band? If so, look to your antenna change-over relay and clean up its contacts. Oxidized silver is probably acting as a rectifier.
CRYSTAL PRODUCTS, INC.
1519 McGee, Kansas City, Mo.

Send me ____________ Quartz Crystal Amateur Kits as advertised, Postpaid.

□ Cash Enclosed. □ C. O. D.

NAME __

ADDRESS ..

CITY ____________________________ STATE ____________

USE THIS ORDER-BLANK TODAY
For Your Amateur X-Tal Kits!

COMPLETE ONLY $100 POSTPAID

QUALITY GUARANTEED by a Company that has made more than two million crystals for the Armed Forces.

Each Kit Contains:

3 CRYSTAL BLANKS
These crystals are approximately 50 to 100 kc. below fundamental frequency of 7,000 kc., but can be ground to 7,000 kc. or over (with enclosed abrasive) to any desired frequency within the amateur band. The fundamental frequency can be doubled and redoubled to become operative at 14 mc. or 28 mc. or up.

2 HOLDERS
Complete with both regular electrodes and springs.

2 ADDITIONAL SETS of ELECTRODES

1 BAG ABRASIVE
for grinding crystals to desired frequency together with folder of instructions for most efficient method of grinding crystals.

Additional crystals, holders and electrodes may be secured.

Special Prices to Jobbers

Main Office: KANSAS CITY, MO.

Crystal PRODUCTS COMPANY

Canadian Distributors:
MEASUREMENT ENGINEERING
104 Lombard St.
Toronto 1, Canada

97
Vertical Antennas

Give Better Reception

Premax Vertical Antennas are available in steel, monel, aluminum and stainless steel... the tested and tried designs that were so successful in the services of the army and navy. See your jobber... or write for complete information on the type of antenna you require.

Premax Products
Division Chisholm-Ryder Co., Inc.
4615 Highland Avenue Niagara Falls, N. Y.

 bleeder resistors have opened up. The thing can be positively lethal. You're contemptuously familiar with it because you built it but the chances are that you've forgotten some of its connections and in any event you can't trust the condition of components after four years of idleness. Before the war we had lost some brilliant amateurs through electrocution and a considerable number had had horrible injuries. Most of us counted ourselves fortunate because we could remember by what narrow margins we had escaped similar fates. In 1939 QST formulated safety codes both for operation and for apparatus construction, and you may remember that we gave them much publicity at that time. You need to review them now like you never read anything before, because it may mean your life. Of several articles in 1939 issues the most important are in March and April, to which we particularly refer you. Your own actions as the operator of the equipment are the most important thing. You can take care of yourself if you will learn the ABCs of how to Always Be Careful. Some of the recommendations of the March, 1939, article are summarized in the box in this article. The most important one is the first one. You may remember our prewar slogan, "Switch to Safety." You do remember the old saw about the only good Indian... Well, the only safe transmitter is a dead transmitter. There's no reason why you should ever trust any transmitter, even a new one, while you fiddle with its innards, changing coils or tuning up, protected from sudden death only by thin insulation and imagination. To entrust your life to a prewar transmitter is worse folly. Before you touch anything behind the panel, kill the whole rig. Yes, even the filaments, because if there's power anywhere on the set there's a good chance for trouble: something might fall on the key, or a relay become closed by the slamming of a distant door, or a component might choose that moment to break down, and where would you be? The only safe way is to pull the big switch - and then press the key a few times in case the bleeders have let go just then. Don't worry about tube life - yours is more important. Stay alive, OM; amateur radio needs you. Review those 1939 articles. Study your rig and develop your own precautionary practices. Make it a habit to Switch to Safety.

Strays

Two years ago I cut down ARRL's Radio Fundamentals to fit MCM Ring Book KO-11. In this way it lies flat and I can also use it with its standard 6 x 9½-inch sheets, plain, ruled and cross section. I also cut down part of the 1943 Handbook to the same size so that I have the references to the Handbook right with the same subject in the Fundamentals. — James Underhill
Out of the SMOKE—into your SET!

THE research and skills that went into the development of the “super-small” vacuum tube, that became the heart of the famous proximity fuze radio transceiver, didn’t stop there. Out of that experience has come a tube that will last hundreds of hours... a tube that makes possible rugged pocket radios... miniature walkie-talkie sets... one that will save you space and weight—in the shack, working portable and working mobile.

SYLVANIA ELECTRIC
Emporium, Pa.

MAKERS OF RADIO TUBES; CATHODE RAY TUBES; ELECTRONIC DEVICES; FLUORESCENT LAMPS, FIXTURES, WIRING DEVICES; ELECTRIC LIGHT BULBS

USE THE

Coaxial Dipole
MODEL 105

FOR BEST RESULTS

Here's the vertically polarized antenna that gives you everything you need for convenience and efficiency in fixed and mobile installations.

• LOAD MATCHING . . . for 50 to 55 ohm solid-dielectric co-ax cables or bead-supported lines (also usable with 72 ohm lines)
• CONTINUOUSLY ADJUSTABLE . . . upper ¼ wavelength element slides in 4-jaw chuck; knurled nut locks whip at exact adjustment for best operation.
• LOW LOSSES . . . polyethylene insulation for minimum dielectric loss.
• EASY INSTALLATION . . . antenna base screws onto standard ¾" pipe thread; junction box fits 49194 receptacle; bumper mount available.
• DURABLE CONSTRUCTION . . . tubes, pipes, and fittings are brass with chromium, rhodium, and silver plating to prevent corrosion and ensure high conductivity; spring-steel whip can flex repeatedly without damage.
• LOW COST . . . only $12.50 net F.O.B: Boston.

This remarkable new antenna is sold only thru the RADIO SHACK. Order today—immediate delivery.

Write for FREE 108 PG. CATALOG on all ham gear

"The RADIO SHACK
167 WASHINGTON ST.
BOSTON, MASS., U.S.A."
RIGHT NOW you can get your

hallicraffers Sky Champion

SPECIAL
Midget Variable Air
Trimmers Popular APC
style; screw-driver adjustment; ceramic insulation.

<table>
<thead>
<tr>
<th>Mmfd.</th>
<th>Net each</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>19c</td>
</tr>
<tr>
<td>25</td>
<td>24c</td>
</tr>
<tr>
<td>35</td>
<td>29c</td>
</tr>
<tr>
<td>50</td>
<td>36c</td>
</tr>
<tr>
<td>75</td>
<td>44c</td>
</tr>
<tr>
<td>100</td>
<td>50c</td>
</tr>
<tr>
<td>140</td>
<td>59c</td>
</tr>
</tbody>
</table>

Please include 10c for packing and mailing.

S-20R $60.00 COMPLETE

With new bands continually opening up — and government restrictions on hams going by the board — you'll want one of these new Hallicrafters receivers. At a price within easy reach the Sky Champion embodies latest design features for efficiency and smooth reception, making every moment of its use a thrilling experience. Order today — immediate delivery.

also PROMPT DELIVERY on
NATIONAL • HAMMARLUND • ECHOPHONE
and the entire HALLICRAFTERS line

Write for FREE 108 PG. CATALOG of all ham gear

The RADIO SHACK
167 WASHINGTON ST.
BOSTON, MASS.. U.S.A.
NOW AMATEURS CAN USE THE HAR-CAM FM POLICE TRANSMITTER

The F.C.C. announcement that the 28.95-29.7 megacycle band is available for amateur use with FM transmitters makes the HAR-CAM FM Police Transmitter the amateur's best bet. Now ready for shipment with AC or DC power supply.

For complete information write for Bulletin H-36 today.

HARVEY RADIO LABORATORIES, INC.
451 CONCORD AVENUE
CAMBRIDGE 38, MASSACHUSETTS

Christmas, 1944

(Continued from page 28)

my friend, Wilbur Kuure, W9YNY, and I debarked unsteadily down the ladder and made our way across an undulating swell to the Liberty ship Chittenden. There, we met Lt. Hal Franks, W5EGA, personally, for the first time. We all agreed that it was quite a small and bizarre world that December 25th.

Verbal reminiscences cluttered the air within W5EGA's exceedingly neat cabin for several hours. Shelves in his quarters were lined with excellent reading material including many late QSTs. Compared to our situation aboard the Belvis, Kuure and I thought this a bit of heaven.

We were thoroughly acquainted by the time we appeared in the officers' mess. As the cuisine took shape before us and disappeared into our eager gullets, my army pal and I felt somewhat sorry for our less fortunate buddies on the home ship. But such is life. We had, in nautical terms, a "Little Roundhouse," consisting of a generous helping of everything on the menu. We swept our plates clean to Hal's amusement. I remember, most distinctly, the dessert of apple pie and ice cream.

Nightfall found Kuure and me "back to earth" on the Belvis after a most delightful Christmas Day. According to plan, we blinked a "goodnight and thank you" to W5EGA through the twilight. That was our last QSO of that series. Not long after that we weighed anchor and headed for our next stop on the long road back home. Our holiday was over, a new year had begun and there was still a war to be won.

Television Reception

(Continued from page 40)

take edge. The output terminals extend from the lower edge of the board. These terminals have tube-base pins soldered to them to push into the input terminals of the tuner chassis.

This completes the description of the receiver. The third part of this article will discuss the results that have been obtained over the transmission path described in Part I. In order to present a comprehensive picture, the observations begun last summer will be continued through the winter and early spring so that the part played by atmospheric bending can be evaluated before the data are published. At that time, also, it is expected that information will be available on changing the r.f. circuits to the new channel allocation to become effective during the early part of 1946.

Strays

W6PCA suggests that Nov. 15, 1945 should be called VA-Day!
1915. World's first vacuum tube repeater, produced by Western Electric, made transcontinental telephone calls possible.

1919. Among the earliest P.A. amplifiers were these made by Western Electric and used at Victory Way Celebration in New York City after World War I.

1922. First amplifier used generally in commercial broadcasting. Many of these 8-type amplifiers are still in use.

1931. Negative feedback principle introduced by Western Electric in telephone amplifiers, since applied to broadcasting and public address equipment.

1936. One of the twenty 1000-watt amplifiers used in the world's largest commercial public address system at Roosevelt Raceway on Long Island.

1937. 120-121 type Western Electric amplifiers for use in the finest audio systems for AM and FM transmission.

1942. New and improved battle announcing system amplifiers of the type that helped save the crippled carrier Franklin.

1944. 250-watt beachmaster amplifiers, used by the Navy to direct landings on Saipan, Iwo Jima, and Okinawa.

AMPLIFIER HISTORY...Made by Western Electric

For more than 30 years, Western Electric has made amplifier history. The skill and ability that time alone can bring, plus experience gained producing highly specialized sound equipment for war, mean continued leadership for Western Electric in the years ahead.

Buy Victory Bonds and hold them!
Our many years of experience in manufacturing and our intimate knowledge of Transformer requirements in the field, is your assurance that Hudson American Transformers and Reactors will give you the utmost in reliability and economy of operation.

Write for catalog 1045
Hudson American Corporation
A subsidiary of Reeves-Ely Laboratories, Inc.
25 W. 43rd Street, New York 18, N.Y.

NOW IN STOCK AT ALL LEADING RADIO DISTRIBUTORS
CODE PRACTICE

Oscillatones
with Adjustable Resonator

For Greater VOLUME and Better TONE!

Adjustable Resonator optionally increases volume five times. Tone frequency variable from 600 to 1500 cycles. Volume control from 0 to FULL ON. "FM" cycles. Volume control from 0 to FULL ON. "FM" cycles. Volume control from 0 to FULL ON. "FM" cycles. Volume control from 0 to FULL ON. "FM" cycles. Volume control from 0 to FULL ON. "FM" cycles. Volume control from 0 to FULL ON. "FM" cycles. Volume control from 0 to FULL ON. "FM" cycles. Volume control from 0 to FULL ON. "FM" cycles. Volume control from 0 to FULL ON. "FM" cycles. Volume control from 0 to FULL ON. "FM" cycles. Volume control from 0 to FULL ON. "FM" cycles. Volume control from 0 to FULL ON. "FM" cycles. Volume control from 0 to FULL ON. "FM" cycles. Volume control from 0 to FULL ON. "FM"

412 South Green St
Chicago 7, Illinois

Sunspots
(Continued from page 46)

but for somewhat marginal east-west work in the northern U.S.

Finally, there is an unrelated bit of information given in Fig. 5. This shows the share of the time that sporadic-E "short skip" communication might happen at much higher frequencies such as on five and ten meters when the F layer is not good enough. It indicates that at the latitude of Washington, D.C., it is more likely to happen in the late morning than in the evening, during February, 1946. It also suggests that regular schedules in a southward direction, particularly during the eight hours centered on midday, and to Alaska, Greenland and Iceland during the night, are most likely to produce five-meter contacts outside of the U.S., during the month. This pattern changes monthly, so the chart will be of particular interest to those who enjoy "skip" in the v.h.f. bands. Another prediction gives the intensity of the sporadic-E reflections, but the picture is not much different from Fig. 5. For February, 1946, it simply indicates that in the hundred-percent latitudes and times shown in Fig. 5, half of the time sporadic-E reflections will support communications below 25 Mc., and the other half above. Weaker reflections are predicted where the percentage figure is lower.

If amateurs show an interest in making use of radio predictions, no doubt some means will be found to make the information available at least a month in advance of the date covered by the predictions.

1 Discussions are now under way between Bousteads and A.R.R.L.'s technical staff to determine the best method, in the light of new knowledge, of resuming the forecasts which were featured in prewar QST. — Editor.

The Little Gem
(Continued from page 50)

second coil, across which is soldered a fixed condenser, which could be substituted for L1. With a 10- or 20-µfd. fixed condenser across the coil one would obtain considerable bandspread and be able to spot himself within the 144-Mc. band with considerable accuracy.

In connection with the constancy of calibration when removing a self-supported coil such as is used here, we point out that two small eyelets were soldered to the leads of the coil where they go in the binding posts. These serve as stops and insure that the coil is always replaced in exactly the same position, and it was found that with care the coil could be removed and replaced without noticeably disturbing the calibration.

For field work where a short length of wire is not suitable for a pick-up antenna, a pieces of brass rod that would just fit in the hole in the FWA binding post (0.01-inch diameter) was soldered into the end of a telescoping automobile antenna. The adjustable-length antenna can then be held in the binding post.

(Continued on page 108)
ORDER YOUR NEW
Communications Receiver
NOW from ALLIED
For Earliest Delivery

Available on Time-Payments
Trade-ins Accepted
BE ONE OF THE FIRST to own and
enjoy one of these celebrated receivers.
All models cover amateur, short-wave,
and broadcast bands. War-proved features.
plus latest engineering developments.
Allied is a leader in the distribution of
communications receivers. Orders are filled
in turn. Place your order now.

HALLCRAFTERS SX-28A
550 kc. to 42 Mc. continuous in 6 bands. Accurately
calibrated tuning dial. Separate calibrated bandspread
dial. Two r.f. stages. Lamb type 3 stage adjustable
noise limiter. 6 position i.f. and crystal filter selectivity
switch. Oscillator temperature compensated.
Net...$223
PM23 Speaker, net..$15.00

NATIONAL NC-2-40C
490 kc. to 30 Mc. range in 6 bands. Accurate single
dial control. Temperature compensation. Automatic
voltage stabilization. Adjustable series-valve-noise
limiter. Flexible crystal filter. Phonograph or high level
microphone pick-up jack. Net..................................$225
Speaker in matching cabinet, net......................$15.00

HAMMARLUND HQ-129X
Full range .54 to 31 Mc. accurately calibrated. 4 cali-
brated Ham bands and 1 arbitrary scale. Variable selec-
tivity crystal filter. Low drift beat oscillator for code
and locating stations. Antenna compensator. Voltage
regulation. Compensated oscillator to reduce drift dur-
ing warm-up. Automatic noise limiter.
Net..$129
Speaker, net..$10.50

OTHER well-known receivers such as:

Hallcrafters SX-25 $94.50
Hallcrafters S-20R $60.00
Hallcrafters S-39 $110.00
Hallcrafters S-36A $145.00
PM23 Speaker $15.00
Echophone EC-1A $29.50

ALLIED RADIO
Everything in Radio & Electronics
833 W. Jackson Blvd. • Chicago, Ill.
This is our first crack at a column we think you will like. Because it is the first, we are devoting the entire page to it. And a good thing, too, considering the subject matter. Which will be ham gear, what goes into it by way of brains and parts, and sometimes about the people behind it.

Occasionally, we may inject general and specific thoughts on the ham world as they occur and as we think they may be of interest to you. Which means that you ought to stop in or drop us a card to tell us what you think of this new feature, to appear in QST each month. Please do.

As suggested above, the subject matter of this month's "Ham Gear" is a tough one to try to compact into even a full page. It takes Hallicrafters 34 pages of instruction manual to tell about the SX-28A—and no padding, either. (No pun intended.)

The reasons are fairly obvious, especially if you do some counting, as we have. It takes 29 different manufacturers, including Hallicrafters and other well known ham gear names, to produce and put together the 279 parts that go into this postwar version of the Super Skyrider—not counting the sheet metal or screws. If you started out to build one yourself, and you had all the parts laid out on your bench ... well, then you might as well go into business with us. It's obviously a lot of value.

Standard literature that we have available for the asking gives most of the important features of the SX-28A, and we'll be glad to send it to you. You'll see from it that not only will you have a splendid communications receiver but you'll also own the hottest b.c.l. job on the block when you own this. What we'd like to go into here, because we think you'd like us to, is some of the detail.

Let's just take the SX-28A crystal filter circuit, for a look at something really slick. That's what Bill Halligan shows—and thanks to Bill Halligan (who, himself, would make an interesting column some time) for letting us reproduce it here.

The crystal filter and holder are wired directly into the receiver, instead of plugging in as before. This eliminates the socket capacity and losses. It also prevents polarity change which would occur if the crystal were improperly inserted in the circuit. The size of the crystal allows the BROAD CRYSTAL position to tune as broadly as possible.

In positions 1, 2, 3 the crystal is short circuited. In position 4 the short across the crystal is opened and the iron core in the secondary of the transformer is adjusted for Broad Crystal Action and at this point is accurately tuned to the crystal frequency. Due to the close coupling of the secondary to the crystal, the sharply rising resonance curve of the crystal causes, in contrast, a sharply falling resonance curve in the secondary. The combined action of these two characteristics results in a relatively broad resonance curve for the CRYSTAL BROAD selectivity setting. In the MEDIUM CRYSTAL position, C20 is adjusted for selectivity midway between the BROAD and CRYSTAL SHARP settings.

In position 6, or CRYSTAL SHARP, the trimmer C20 is adjusted for the sharpest, crystal action. Under this condition, the secondary is slightly detuned from the resonant crystal frequency, so that its resonance curve is not greatly affected by the crystal but still coupled tightly enough so that it can transfer energy to the crystal circuit. When this point is reached it is indicated by a rise in the output. Two such points of increased output will normally occur—one for each adjustment of the secondary on either side of the resonant frequency of the crystal.

There's more to tell—about single signal operation and selectivity—but where's the space? Drop us a line if you want more dope on the SX-28A, or the Hallicrafters or our catalog. And tell us how you like "HAM GEAR" as a column idea.
FILTER CONDENSERS

Fully guaranteed at rated voltages

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Working Voltage</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mfd.</td>
<td>1500 V. D.C.</td>
<td>2½</td>
</tr>
<tr>
<td>1½ mfd.</td>
<td>1500 V. D.C.</td>
<td>3½</td>
</tr>
<tr>
<td>2½ mfd.</td>
<td>1500 V. D.C.</td>
<td>4</td>
</tr>
<tr>
<td>3½ mfd.</td>
<td>1500 V. D.C.</td>
<td>5</td>
</tr>
<tr>
<td>4½ mfd.</td>
<td>1500 V. D.C.</td>
<td>6</td>
</tr>
<tr>
<td>5½ mfd.</td>
<td>1500 V. D.C.</td>
<td>7</td>
</tr>
<tr>
<td>6½ mfd.</td>
<td>1500 V. D.C.</td>
<td>8</td>
</tr>
<tr>
<td>7½ mfd.</td>
<td>1500 V. D.C.</td>
<td>9</td>
</tr>
<tr>
<td>8½ mfd.</td>
<td>1500 V. D.C.</td>
<td>10</td>
</tr>
<tr>
<td>10 mfd.</td>
<td>1500 V. D.C.</td>
<td>12</td>
</tr>
<tr>
<td>12½ mfd.</td>
<td>1500 V. D.C.</td>
<td>15</td>
</tr>
<tr>
<td>15½ mfd.</td>
<td>1500 V. D.C.</td>
<td>17½</td>
</tr>
<tr>
<td>20 mfd.</td>
<td>1500 V. D.C.</td>
<td>20</td>
</tr>
<tr>
<td>25 mfd.</td>
<td>1500 V. D.C.</td>
<td>25</td>
</tr>
<tr>
<td>30 mfd.</td>
<td>1500 V. D.C.</td>
<td>30</td>
</tr>
<tr>
<td>35 mfd.</td>
<td>1500 V. D.C.</td>
<td>35</td>
</tr>
<tr>
<td>40 mfd.</td>
<td>1500 V. D.C.</td>
<td>40</td>
</tr>
<tr>
<td>45 mfd.</td>
<td>1500 V. D.C.</td>
<td>45</td>
</tr>
<tr>
<td>50 mfd.</td>
<td>1500 V. D.C.</td>
<td>50</td>
</tr>
<tr>
<td>55 mfd.</td>
<td>1500 V. D.C.</td>
<td>55</td>
</tr>
<tr>
<td>60 mfd.</td>
<td>1500 V. D.C.</td>
<td>60</td>
</tr>
<tr>
<td>65 mfd.</td>
<td>1500 V. D.C.</td>
<td>65</td>
</tr>
<tr>
<td>70 mfd.</td>
<td>1500 V. D.C.</td>
<td>70</td>
</tr>
<tr>
<td>75 mfd.</td>
<td>1500 V. D.C.</td>
<td>75</td>
</tr>
<tr>
<td>80 mfd.</td>
<td>1500 V. D.C.</td>
<td>80</td>
</tr>
<tr>
<td>85 mfd.</td>
<td>1500 V. D.C.</td>
<td>85</td>
</tr>
<tr>
<td>90 mfd.</td>
<td>1500 V. D.C.</td>
<td>90</td>
</tr>
<tr>
<td>95 mfd.</td>
<td>1500 V. D.C.</td>
<td>95</td>
</tr>
<tr>
<td>100 mfd.</td>
<td>1500 V. D.C.</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1¼</td>
<td>4 oz.</td>
</tr>
<tr>
<td>1½</td>
<td>3 lbs.</td>
</tr>
<tr>
<td>1¾</td>
<td>1 lb, 10 oz.</td>
</tr>
<tr>
<td>2</td>
<td>1 lb.</td>
</tr>
<tr>
<td>2½</td>
<td>2½ lbs.</td>
</tr>
<tr>
<td>3</td>
<td>6 oz.</td>
</tr>
<tr>
<td>3½</td>
<td>5 lbs.</td>
</tr>
<tr>
<td>4</td>
<td>5 lbs.</td>
</tr>
<tr>
<td>4½</td>
<td>2½ lbs.</td>
</tr>
<tr>
<td>5</td>
<td>6 oz.</td>
</tr>
<tr>
<td>6</td>
<td>7 lbs.</td>
</tr>
<tr>
<td>6½</td>
<td>7 lbs.</td>
</tr>
<tr>
<td>7</td>
<td>10 oz.</td>
</tr>
<tr>
<td>8</td>
<td>14 oz.</td>
</tr>
<tr>
<td>10</td>
<td>14 oz.</td>
</tr>
</tbody>
</table>

Special Porcelain Insulators

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Working Voltage</th>
<th>Height</th>
<th>Width</th>
<th>Depth</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mfd.</td>
<td>1500 V. D.C.</td>
<td>3¼</td>
<td>4½</td>
<td>1½</td>
<td>3 lbs, 8 oz.</td>
</tr>
<tr>
<td>15 mfd.</td>
<td>1500 V. D.C.</td>
<td>4¼</td>
<td>5</td>
<td>1½</td>
<td>5 lbs.</td>
</tr>
<tr>
<td>20 mfd.</td>
<td>1500 V. D.C.</td>
<td>5½</td>
<td>6½</td>
<td>1½</td>
<td>7 lbs, 4 oz.</td>
</tr>
</tbody>
</table>

HALLICRAFTERS

- **SX-28A** Super Skyrider with crystal, less speaker. $223.00
- **S-20R** Sky Champion with built-in speaker. 60.00
- **S-22R** Skyrider Marine with built-in speaker. 74.50
- **S-25** Super Defiant with crystal, less speaker. 94.50
- **S-39** Sky Ranger portable, AC/DC and battery. 110.00
- **SX-36** FM/AM receiver. 415.00
- **S-37** V.H.F. FM/AM receiver. 591.75
- **PA-23** 10" PM speaker in cabinet for use with SX-25, SX-28A. 15.00

THORDARSON TRANSFORMER

- T-4556 or T-92821 leads out of side, 776 V. C.T. at 200 MA. 115 V, 60 Cycle 6.3 V. C.T. at 5A, 3 V, at 30 amp. 9 lbs. $5.29
- T-13C30 BH, 150 MA. 200 ohm 1600 V. Insulation 2½ lbs. 1.41
- T-4557 or T-74C29 leads out of side, 13H, 150 MA. 200 ohm 2000 V. Insulation 5½ lbs. 2.82

Bargain on Micro-Ammeters!

4½" sq. 0-200 Micro-ammeter. $7.50
4½" sq. 100-0-100 Micro-ammeter $7.50

These sturdy, beautifully made items are in fairly limited quantity. Order immediately!
The Green Vitrohm Enamel used in the manufacture of all Ward Leonard Vitrohm Resistors and Rheostats is an exclusive development of Ward Leonard Laboratories — the result of more than 50 years of intensive research in resistor enamels.

Pick the Resistor with the Green Vitrohm Enamel and you pick the best. Now available at your Radio and Electronic Parts distributor.

Write for your free copy of our Radio and Electronic Resistor Catalog.

WARD LEONARD ELECTRIC CO.
Radio and Electronic Distributor Division
53 WEST JACKSON BLVD., CHICAGO, ILL.

RADIO
RADIO Technician and Radio Communications courses.
Register now for new classes starting first Monday of each month. Day and Evening Classes.
AMERICAN RADIO INSTITUTE
101 West 63d St. New York 23, N. Y.
Approved under GI Bill of Rights

IN A CLASS BY ITSELF! . . .
GENUINE EASY-WORKING "ORIGINAL"
VIBROPLEX
Reg. Trade Marks: Vibroplex, Lighting Bug, Bug
CRHMIUM FINISHED
BASE
PATENTED JEWEL MOVEMENT

Deluxe Model
America's finest radio key — the deluxe performer that sets new standards of sending excellence and operating ease. The jewels used in Deluxe Vibroplex keys are the same as those placed in the finest made watches and precision instruments, providing watch-like precision, feather-touch action, lifetime service and ease of operation unapproachable by any other key. Chromium finished base. Bright machined parts. Colorful red switch knob, finger and thumb piece. DIE CUT contacts and main spring. 3/16th contacts. Circuit closer, cord and wedge. Deluxe finish also available in “Lighting Bug” and “Blue Racer” models. Order NOW! Money order or registered mail. FREE catalog.

THE VIBROPLEX CO., Inc.
833 Broadway
New York 3, N. Y.

The Little Gem
(Continued from page 104)

For low-frequency field-strength work, it may become necessary to replace the hairpin loop by a coil of several turns, to build up the reactance in this circuit and increase the sensitivity of the instrument at the longer wavelengths. It will depend largely on the power available and the gain of the antenna being checked, so no fixed rules can be given.

A refinement that was left off this version of the “Little Gem” is the meter-shunting switch used to prevent meter burnout. If desired, a good place for it would be on the side of the case on which the handle is mounted. We left it off because we had no need for it at the present time, but if one is working with a multi-stage transmitter where several different frequencies are floating around it would be a useful addition to the instrument because it reduces the sensitivity.

Regardless of how simple or elaborate you make your version of the meter, we feel certain you will be pleasantly surprised at its sensitivity and more than pleased with its usefulness.

Foreign Notes
(Continued from page 47)

and all VO amateurs who had renewed their licenses each year were permitted to return to the air immediately. All amateur frequencies are available.

SWITZERLAND

U.S.K.A. reports that at war’s end the Swiss government promptly reissued amateur licenses to prewar holders, opening the amateur bands at 56, 112 and 224 Mc., of which the last two are entirely new assignments. Then, on November 26th, all restrictions were lifted and amateurs permitted to work on all prewar frequencies! Throughout the period of emergency, Swiss hams were mobilized into a signal corps under command of HB9T.

The item in “Good News” of November QST prematurely reported HB opening of the 80-meter band; actually, this was a special temporary authorization for designated stations transmitting for a test in which many hams participated.

MISCELLANY

Ing. Sergio I. Clark, CM8CK, is Minister of Communications for the Cuban government. . . According to T12RA, hams in Nicaragua are planning to form a national amateur society. . . An article in the “Nippon Times” reports the desire of J hams to revive their society and return to the air! . . . Many non-European national societies are concerned about the existence of broadcast stations in the old 40-meter band — a matter which, of course, cannot be remedied until the band is restored to amateur operation in the majority of countries.
Left: Radio Modulator BC-423. High frequency signal generator operating from 195 to 205 mc., modulated at approximately 5000 cycles. Ruggedly built in steel case. Designed so that it can be re-adapted to many applications. Can be used as high frequency receiver, transceiver or frequency meter. Good for lab demonstrations requiring low power, ultra high frequency generator. Can be converted to 2½ or 1½ meter receiver.

Right: Frequency Meter BC-438. Ultra-high frequency signal generator operating from 195 to 205 mc. with crystal calibration. Aluminum chassis in steel case. Removable nickel plated 19" telescopic antenna. Use as high frequency receiver or transmitter. Can be converted to cover any frequency range. Takes dry batteries for portable use. Precision tuning control make it ideal for “on the nose” ECO transmitter control unit.
CLEAN ACCURATE HOLES

cut in radio chassis

Greenlee Punches make this tough job easy. No reaming, filing or tedious drilling. Tool has three parts: punch cuts through chassis, die supports metal to prevent distortion, cap screw is turned with wrench to cut holes. Sizes for holes ¾" to 3¾". Ask your radio supply or electrical jobber or write for prices. Greenlee Tool Co., 1869 Columbia Ave., Rockford, Illinois.

WRITE FOR FREE FOLDER

Adson RADIO CO.
Dept. O -- 221 FULTON ST. N.Y. N.Y.
EVERYTHING FOR AMATEURS AND SERVICEMEN
COMPLETE LINE OF ELECTRONIC EQUIPMENT

Founded in 1909

RADIO TELEPHONY
RADIO TELEGRAPHY
ANNOUNCING
Courses ranging in length from 3 to 9 months. Dormitory accommodations on campus for men and women students. Advanced students eligible for practical training at KPAC. 1 Kv broadcast station owned and operated by Port Arthur College. New students accepted each month during year. If interested, write for details.

PORT ARTHUR COLLEGE
PORT ARTHUR TEXAS

25 Years Ago
(Continued from page 50)

being interchanged with Canada but volunteers are needed for new trunklines to join with the Canadian routes.

A. L. Groves, reporting "Experiments with Single-Layer Coils," finds them not only superior to honeycombs at short waves but advantageous at long waves as well. It is his opinion that it is not so much the form of the winding of the new concentrated coils that makes them appear efficient as it is their freedom from switches and dead-end losses. John H. Miller reports "Some Interesting Receiving Equipment" in which leads to all the components are brought to a panel and connected by means of flexible leads and plug connectors. There is a loss of perhaps 15% but the set possesses extreme convenience for experimenting. C. W. Eliason, Jr., finds "QRM and QRN Reduction" in receiving combinations involving two aerials. "The Possibilities of Loop Transmission" are reported by an unnamed author, giving us some conception of the values of received energy dealt with in this work. Huddy of III outlines a simple a.c.w. power supply for tube transmission making use of the invaluable Ford coil. Francis F. Hamilton, W2J, director of the Central Division, gives his views on "The Sacredness of Amateur Radio" and points with pride at the record of the amateur in World War I. DeForest announces nightly news broadcasts from New York on 1650-meter radiophone.

Silent Keys

It is with deep regret that we record the passing of these amateurs:

W1MDL, RT 1/c Raymond A. Grenier, Rochester, N. H.

W6PZB, Lt. Marshall Lansing, Mesa, Calif.

W7AGP, Vance Prewitt, Astoria, Oregon.

W8PYS, Capt. Patrick Cavanagh, SC, Detroit, Mich.

W9EYB, Dana W. Heckart, USCG, Mission, S. Dak.

W9JNY, Lyle C. Burton, Buffalo, Kans.

VK3OW, F/O Gordon L. Templeton, RAAF, Coleraine, Victoria, Australia.
Clocks with tiny crystal hearts that beat 100,000 times a second

Crystal hearts beat time in Bell Telephone Laboratories, and serve as standards in its electronics research. Four crystal clocks, without pendulums or escapements, throb their cycles without varying by as much as a second a year.

Precise time measurements may seem a far cry from Bell System telephone research, but time is a measure of frequency, and frequency is the foundation of modern communication, whether transmission is by land lines, cable, or radio.

These clocks are electronic devices developed by Bell Laboratories, and refined over years of research. Their energy is supplied through vacuum tubes, but the accurate timing, the controlling heart of the clock, is provided by a quartz crystal plate about the size of a postage stamp.

These plates vibrate 100,000 times a second, but their contraction and expansion is less than a hundred-thousandth of an inch. They are in sealed boxes to avoid their variation in atmospheric pressure, and temperatures are controlled to a limit as small as a hundredth of a degree.

Bell Laboratories was one of the first to explore the possibilities of quartz in electrical communication, and its researches over many years enabled it to meet the need for precise crystals when war came. The same character of research is helping to bring ever better and more economical telephone service to the American people.
WITH victory achieved the signal has flashed that will start amateur radio on the greatest boom in its history! And again leading the parade with complete stocks of all standard lines of radio parts — plus the equipment, resources and technical staff to help you with the new war-born developments — CONCORD RADIO is again ready to serve you with the same friendly, personal interest which has made us the amateur's dependable source of radio parts and electronic equipment for 25 years. Here you have immediate access to vast stocks and to wide selections. Your every requirement, request and problem is handled by a staff of seasoned technical experts who know amateur radio — many of them hams themselves. We invite you to avail yourself of CONCORD'S dependable service.

Complete Catalog FREE
In addition to all standard brands of quality items, this Catalog and Buying Guide contains items not available at any price during the war, it offers many new post-war developments, it shows the last word in modern radio parts and electronic equipment. Many of the recent advances in the science of radio communication are included. You'll find this Catalog a priceless reference guide and a valuable addition to your library. Mail the coupon below for a copy. It's absolutely FREE.

TO OUR FRIENDS OVERSEAS: We are prepared and eager to resume the pleasant relations we enjoyed before the war. A complete and efficient export department is at your service.
Due to design characteristics and close control of manufacturing processes, Burlington instruments embody the following advantages:

PERMANENCE OF CALIBRATION ... All DC instruments employ Alnico magnets which are known to be more highly resistant to shock, heat, vibration, and stray fields than any other magnetic material.

FREEDOM FROM STICKING ... Clearances for all moving parts are such that the results of entrance of small particles as encountered in field service are reduced to a minimum.

STABILITY OF OPERATION ... All instruments are "NORMALIZED" after assembly to eliminate "zero shift" and other calibration errors due to ageing.

Exceptionally high torque to weight ratio of control springs to moving element insures minimum error under conditions of shock, vibration, and other rough usage.

Alignment of jewels and magnet core piece is such that the center lines of these parts coincide within plus or minus .002". The design of the brass movement frame and components is such that mechanical tolerances are reduced to a minimum in assembly. As a result, jewel and pivot wear is uniform which reduces "frictional torque" of the moving coil.

All series resistors and coils are heat treated and impregnated after wrapping to insure stability and long life.

All ranges AC & DC are available in 2½", 3½" and 4½" sizes, both square and round, flush mounting.

Engineering service furnished for specialized applications.

No obligation. Write today for further information.

BURLINGTON INSTRUMENT CO.
800 Fourth Street • Burlington, Iowa
25 OSCILLATORS

- Each unit includes two separate Pierce oscillators and these have an auxiliary counter. Original application was for checking the difference between the frequencies of a standard crystal and one being produced. This unit includes power supply, one 0–1 mil meter for activity and another meter used as a counter meter. Original cost $100.00 each.

- Can be easily modified for Ham transmitter driver for two frequencies. Sale price $25.00 per set. 10 meter predicted crystals in FT243 holders $2.75 each.

HATCHER & FISK, INC.
125 Kansas Avenue, Topeka, Kans.

COMMERCIAL RADIO INSTITUTE
A RADIO TRAINING CENTER FOR 24 YEARS
Resident Courses Only • Broadcast, Service, Aeronautical, Television, and Marine telegraphy classes now forming for mid-year term Feb. 1. Literature upon request. Veteran training.

Phone, Wire or Write
WHOLESALE
Radio-Electronic Parts
Tubes, Sets and Equipment

R. G. SCELÌ & CO.
317 Asylum St. Hartford, Conn.
Telephone 2-1144

Happenings of the Month
(Continued from page 48)
that the latter used some frequencies in our 3500 band? Although everything else in WERS has been washed out, FCC, by means of its Order 127-A on October 31st, extended the life of State Guard WERS until July 1st next, at the request of the War Department, to permit the continuation of training until the National Guard is reactivated. They use only the frequencies 3655 and 3825 kc., A-3 only, and not over 5 watts output.

KUDOS TO BUDLONG
Lt. Comdr. Arthur L. Budlong, assistant secretary of the League, recently on leave of absence from the Coast Guard to represent ARRL at the Rio conference, has been made an honorary member of LABRE, the Brazilian amateur society. The story is well told in the following letter from Colonel Kruel, LABRE’s president, as translated by W1JLK:

LIGA DE AMADORES BRASILEIROS DE RADIO EMISSAO
Rio, 23 October, 1945

Most Illustrious Sir
A. L. Budlong
38 LaSalle Road
West Hartford, Conn., U. S. A.

Dear Mr. Budlong:

I take the greatest of pride in communicating to you the advice that the Deliberative Council of this body, considering the brilliant attainments of yourself in defense of the interests of amateur radio in connection with the Third Inter-American Conference on Radio Communications, resolved, as an exceptional tribute from Brazilian radio amateurs, to grant to you the title of Honorary Member of the Brazilian League of Transmitting Amateurs.

I congratulate myself, together with all Brazilian amateurs, on having the honor of including your name among those of our social group, and I seize this opportunity to present to you assurances of my highest consideration.

Attentively,
Rio Grandino Kruel, PY1AR
President

NOTICE TO MEMBERS DISCHARGED FROM THE MILITARY SERVICES

The requirement of continuous membership in the League for eligibility to ARRL offices has been waived for members serving in the uniform of the United States. See particulars on page 39 of QST for July last. Those desirous of taking advantage of this arrangement are asked to claim the right when renewing membership, stating the beginning and ending dates for their military service.

ARE YOU LICENSED?

- When joining the League or renewing your membership, it is important that you show whether you have an amateur license, either station or operator. Please state your call and/or the class of operator license held, that we may verify your classification.
Still your best choice for V-H-F

- Pre-war pioneers, the HY75, HY114B, and HY615 offered new conceptions of low-cost efficiency on the very high frequencies. Radio amateurs, who did so much to open up these frequencies, piled up innumerable long distance transmitting and receiving records with the tubes. The HY75 and HY615 powered wartime WERS nets of amateurs almost exclusively.
- A.R.R.L. and Radio handbooks have always been lavish in using the HY75, HY114B, and HY615 in equipment they described. The Abbott TR-4 transmitter-receiver contributed much to the fame of the HY75 and HY615. Maximum ratings up to 300 mc. (efficient circuit design permits even higher frequencies) spell continued popularity on the new "ham" bands.
- Popularity of this famous trio has not been confined to amateur circles. In all important war laboratories, the tubes were widely used. During many invasion thrusts in the Pacific, the HY75 and HY615 gave the Navy dependable intership communications. The HY75 design led to the Hytron 2C26A — r.f. pulse output tube of IFF (identification friend or foe), standard Army and Navy equipment for planes in combat areas. Developed from the HY615, the Hytron E114B was in practically every British vehicular transmitter. The HY114B found its place in radar test equipment.
- Wherever real power output from small triodes is required on v-h-f, the HY75, HY114B, and HY615 still are your best choice. They fill a gap between "acorns" and miniatures which have limited power capabilities and larger triodes which cost much more. Brief data can give but a thumbnail sketch. You can best appreciate their superiority by putting the HY75, HY114B, and HY615 to work in your sockets.

HYTRON V-H-F TRIODES

The HY75, HY114B, and HY615 are v-h-f triodes particularly suited as r.f. oscillator-amplifiers and as high sensitivity superregenerative detectors for fixed, mobile, or portable receivers, transmitters, transceivers, or transmitter-receivers. All three tubes feature short connection leads, low interelectrode capacitances, plate and grid connections to twin top caps, convenient octal bases, and a maximum operating frequency of 300 mc. for full plate input. Note in the HY75: low-loss jawa insulation, rigidly supporting—for maximum resistance to shock and vibration—the graphite anode, vertical-bar grid, and instant-heating helically-coiled filament. The tiny HY114B and HY615 are capable respectively of 1.4 and 4 watts Class C output. The 1.4-volt filament of the HY115 makes it ideal for battery-operated portables.

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>HY75</th>
<th>HY114B</th>
<th>HY615</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament Potential (volts)</td>
<td>6.3</td>
<td>1.4</td>
<td>6.3</td>
</tr>
<tr>
<td>Filament Current (amps.)</td>
<td>2.6</td>
<td>0.155</td>
<td>0.175</td>
</tr>
<tr>
<td>Type of Filament</td>
<td>Thos. Oxide Cath.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plate Potential (max. volts)</td>
<td>450</td>
<td>180</td>
<td>300</td>
</tr>
<tr>
<td>Plate Current (max. ma.)</td>
<td>80</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>Plate Dissipation (max. watts)</td>
<td>1.8</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Grid-to-Plate Cap. (mmfd.)</td>
<td>3.8</td>
<td>1.3</td>
<td>1.6</td>
</tr>
<tr>
<td>Grid-to-Cathode Cap. (mmfd.)</td>
<td>1.6</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>Plate-to-Cathode Cap. (mmfd.)</td>
<td>0.6</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>Max. Operating Frequency (mc.)</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Maximum Height (inches)</td>
<td>3½</td>
<td>2½</td>
<td>2½</td>
</tr>
<tr>
<td>Maximum Diameter (inches)</td>
<td>1½</td>
<td>1½</td>
<td>1½</td>
</tr>
<tr>
<td>Class C Power Output (watts)</td>
<td>21</td>
<td>1.4</td>
<td>4</td>
</tr>
</tbody>
</table>

HYTRON V-H-F TRIODES

HYTRON RADIO AND ELECTRONICS CORP.

MAIN OFFICE: SALEM, MASSACHUSETTS
For dependable, trouble-free service in test sets, instruments, and similar electronic applications, use Electrox Rectifiers, made by one of the oldest manufacturers of dry disk rectifiers. Finest quality, full and half wave low capacity copper oxide rectifier units; each unit inspected, tested, guaranteed right. Ask your parts supplier for Electrox Rectifiers. If he cannot yet supply, send us his name and ask for descriptive Bulletin 446.

ELECTROX SCHAUER MACHINE CO.
2049 Reading Rd. Cincinnati 2, Ohio

TRANSMITTING TUBES RECTIFIERS
CATHODE RAY TUBES

We have been appointed a sales agent by Defense Supply Corporation of Government surplus tubes and rectifiers. All are first grade Government tested and inspected tubes — not rejects.

The following types are immediately available:

- 826 (HF Triode) Cathode Ray Tubes 5API
- VT 187A (HF Triode) SBF4
- 304 Tri 872A M. V Rectifier 3API
- Many Other Types

Trade discounts to dealers on standard packages • Write for prices

LEWIS ELECTRONICS 16 Lyndon Avenue Los Gatos, California

Above 50 Mc.
(Continued from page 85)

Your conductor is inclined to favor this idea. We are having our first experience in working from a location where the normal working radius is less than 100 miles, our prewar location having been just about the ideal in v.h.f. spots. At our West Hartford QTH, which is the same hill where Ross Hull did his famous five-meter DX work back in 1934 and 1935, we are finding that our horizontal antenna occasionally pulls in signals from up Boston way, some 100 miles distant, slightly better than does the vertical. Though the difference is very slight, the reduction in strength of the vertically-polarized Hartford stations, which are all pure line-of-sight, is very helpful. The horizontal antenna, especially if it is a high-gain long-wire or parasitic array, is a very useful adjunct to any v.h.f. station. We do not feel however that there is any basis for recommending the abandonment of vertical polarization, as so many of our western friends would have us do. We are completely open-minded however — we've made many tests, and we plan many more — and we're willing to be shown. But don't try to sell us horizontal polarization on the strength of what happened when you changed over from a vertical dipole to a 4-element horizontal array!

New Record for 5250 Mc.

• Not being satisfied with the 5-mile microwave wave reported herewith, W2LGF decided to see what could be done at greater distances. Using the equipment described below, W2LGF/2 at Nassau, N. Y., worked W7FOF/2 at East Windham, N. Y., on December 2nd. The distance covered was 31 miles. Both rigs were operated from gas-engine generators. Low-powered 2-meter gear was taken along on the trip, but contact could not be made on that band!

Strays

Below are the amateur calls held by some of the New York ABC engineers.

W2KJG — Pat Simpson
W1ACQ — John O'Neil
W2BUY — Bill Simpson
W2HIK — Bert O'Leary
W2LJC — Bill Teitz
W2CHK — Gil McDonald
W2OMT — Jim Cooke
W2ESP — Maurice Kamke (WJZ)
W2IP — Harold Campbell
W21GB — Bob Massell
W1KZ — Al Bradley
W2AMS — Henry Tregar (WJZ)
W2AEB — Irv Grabo
W2ZA/W3JA — George Milne
HARRISON HAS IT!

ALL STANDARD LINES

As one of the World's leading Amateur supply houses, we feel it our pleasant responsibility to maintain a most complete stock of all Receivers, Transmitters, accessories, parts, and associated equipment. We are factory authorized Distributors for the top quality manufacturers and we have been diligently restocking our warehouse with their newest, improved, post-war products.

Visit our stores, or send us your order for everything you need. We promise you fresh, clean material — quicker — at the lowest current prices — and, above all, our sincere desire to be of friendly, helpful service.

HAMMARLUND SUPER-PRO

The dependable 200 series, improved, and part of our war products. We have been diligently associated equipment. We are factory authorized Distributors for the top quality manufacturers and we have been diligently restocking our warehouse with their newest, improved, post-war products.

73, de Bill Harrison, W2AVA

HALLICRAFTERS

S-20R Sky Champion
S-22R Skyrider Marine
S-25 Super Defiant
S-36A FM/AM 27.8 to 143 Mc
S-37 FM/AM 130 to 210 Mc
S-39 Portable
HT-9 100 Watt CW/Phone Xmitter
EC-1A Echophone

SHUR 2-METER BEAM

Two element, fully adjustable 144 to 148 Mc. Light weight and durable. Complete with all fittings, 6-foot pole and instructions.

Single element dipole, complete as above...

SHUR ANTENNA MOUNT

A most versatile mounting bracket and support for 1/4" dia. pole. Adjustable to rooftop, side or wall. Cast aluminum...

DYNAMOTORS... for that mobile rig!

6 or 12 volts DC input. Output 500 Watts DC at 160 ma continuous operation, 224 ma intermittent duty. Dependably made for military use. Ball bearings — light efficiency. Internal hash filter for UHF — moisture proofed — fully shielded. 3" dia. 11" long. with mounting plate. Brand new, with spare set of brushes...

HAM HEADQUARTERS

Since... 1925!

HARRISON RADIO CORPORATION

12 WEST BROADWAY • NEW YORK CITY 7

BARCLAY 7-9854

JAMAICA BRANCH — 172-31 Hillside Ave. — REPUBLIC 9-4102

117
How's DX?
(Continued from page 58)

mentioned the plan to, not a single one has anything but enthusiasm for the idea.

Predictions:

If you have read the magazines or newspapers at all during the past few years, you will realize that science has in store for us a brave new shiny plastic air-conditioned atomic world, in which we can sit back in our automatically-conforming plastic easy chairs and have most everything done for us by pushing a plastic button or interrupting a plastic beam of light. All this we are willing to accept but, horror of horrors, they plan to work our DX for us too! Well, almost. Seriously, the work of the Interservice Radio Propagation Laboratory of the Bureau of Standards during the past years has led to the ability to predict with considerable accuracy the times that various frequencies will be usable over practically any path in the world. These predictions, based on past experience and modifying factors like geography and the sun-spot cycle, work out well even for such seemingly erratic bands as 28-30 Mc. We hope to carry these predictions each month, as a service to QST readers, although we must confess there is considerable temptation to use them for our own selfish ends! The predictions in this issue are courtesy of Lt. Comdr. A. L. Budlong, USCG, W1JFN, ARRL Asst. Secretary on leave of absence, who has access to the information and kindly whipped it into amateur-band shape.

The predictions tabulated below for the month of January, 1946 include only certain representative paths and of course indicate trends only. For example, in many cases it is stated that the maximum usable frequency does not come up to 28 Mc., but obviously there will be many opportunities for amateur communication over these paths, the chances being better as the m.u.f. approaches 28 Mc. In the not-too-distant future we hope to publish enough information to allow amateurs to work out the m.u.f.'s over any route they may be interested in, but for the time being we can only present a few representative paths. Where no maximum usable frequency is shown, it means the 28-Mc. band is open during the period shown — where a m.u.f. is shown and a single time, it indicates the time that m.u.f. is reached. Incidentally, these predictions indicate that 28 Mc. will not be quite as good during January as it was in November and December.

<table>
<thead>
<tr>
<th>Path</th>
<th>Max. Usable Freq.</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Mc.)</td>
<td>(GCT)</td>
</tr>
<tr>
<td>Washington — S. F.</td>
<td>27 Mc.</td>
<td>1800-2200</td>
</tr>
<tr>
<td>Washington — Paris</td>
<td>25.1</td>
<td>1500</td>
</tr>
<tr>
<td>Washington — Manila</td>
<td>20</td>
<td>2200</td>
</tr>
<tr>
<td>Washington — Sidney</td>
<td>23</td>
<td>2300</td>
</tr>
<tr>
<td>S. F. — Rio</td>
<td>1900-2300</td>
<td></td>
</tr>
<tr>
<td>S. F. — Paris</td>
<td>18.7</td>
<td>1800</td>
</tr>
<tr>
<td>S. F. — Manila</td>
<td>20.9</td>
<td>2400</td>
</tr>
<tr>
<td>S. F. — Sidney</td>
<td>24</td>
<td>2400</td>
</tr>
<tr>
<td>S. F. — San Juan, P. R.</td>
<td>1900-2100</td>
<td></td>
</tr>
<tr>
<td>N. Y. — San Juan, P. R.</td>
<td>23.4</td>
<td>1800</td>
</tr>
</tbody>
</table>

— W1JFN
"MUSTS"
FOR EVERY HAM'S BOOKSHELF

"The All-Purpose Volume
On Radio"

The Radio Amateur's Handbook

Text, data book, operating manual—it is all these and more. As a text it is probably more used in radio schools and colleges than any other single volume. As a practical constructional handbook, it stands in a class alone. As an operating manual, it provides information available from no comparable source.

The latest Edition of THE RADIO AMATEUR'S HANDBOOK is the largest ever published. It includes a comprehensive chapter dealing with War Emergency Radio Service plus other new material—all added without sacrificing the essential information in previous editions which made the HANDBOOK the world's most valuable and widely-used radio book. The theory and design sections cover every subject encountered in practical radio communication, sectionalized by topics with abundant cross-referencing and fully indexed.

$1.50 Elsewhere $1.00 in Continental U.S.A. $2.00 Buckram Edition

A Course in Radio Fundamentals

By GEORGE GRAMMER

The objective in preparing this course was to accent those principles most frequently applied in actual radio communication. "A Course in Radio Fundamentals" is a study guide, examination book and laboratory manual. Its text is based on the "Radio Amateur's Handbook." As a text, this book greatly smooths the way for the student of the technicalities of radio. It contains interesting study assignments, experiments and examination questions for either class or individual instruction. It describes in detail 40 experiments with simple apparatus giving a complete practical knowledge of radio theory and design. Price 50c

Learning the Radiotelegraph Code

By JOHN HUNTOON

This booklet is designed to train students to handle code skillfully and with precision. Employing a novel system of code-learning based on the accepted method of sound conception, it is particularly excellent for the student who does not have the continuous help of an experienced operator or access to a code machine. It is similarly helpful home-study material for members of code classes. Adequate practice material is included for classwork as well as for home-study. There are also helpful data on high-speed operation, typewriter copy, general operating information—and an entire chapter on tone sources for code practice, including the description of a complete code instruction table with practice oscillator. Price 25c

The A.R.R.L. Antenna Book

By GEORGE GRAMMER and BYRON GOODMAN

A comprehensive manual of antenna design and construction. Sixteen chapters, profusely illustrated. Both the theory and the practice of all types of antennas used by the amateur from simple doublets to multi-element rotaries, including long wires, rhomboids, vees, phased systems, u.h.f. systems, etc. Feed systems and their adjustment. Construction of masts, lines and rotating mechanisms. The most comprehensive and reliable information ever published on the subject. Over 100 pages. Price 50c

AMERICAN RADIO RELAY LEAGUE, INC., West Hartford 7, Conn., U.S.A.
substantially constant in length, whatever their lengths may happen to be. The average strength of the scatter signals is also approximately constant, since the signals consist of components returned from many irregularities at different distances. These components may fade individually; however, since they are many in number the net effect is a somewhat wavering signal whose average strength is roughly constant.

At this point let us suppose that a meteorite arrives at the ionosphere oriented in such a direction that it is headed straight for both the transmitter and receiver. If the particle is a large one the ionization in its trail will be intense enough to reflect a radio signal of the frequency under consideration, even when that ionization has diffused over an area large enough to send back a considerable amount of energy from the transmitter to the receiver.

To the scatter signal at the receiver, then, is added a signal of varying path length reflected from the meteor trail. Each time this path length changes by one wavelength at the frequency of operation the phase of the two signals at the receiver will have changed through 360 degrees, and the amplitude of the resultant will have gone from complete addition to complete cancellation and back again, or through some equivalent change depending on their relative phases at the start of the cycle. So far as a receiver can tell, this change in the effective amplitude of the resultant signal is the same as a modulation on the original scatter signal.

An average speed for meteors during the course of their plunge is 40 kilometers per second, which is 40,000 ÷ 20, or 2000 wavelengths per second at 20 meters. Because each half wavelength of meteor travel represents one full wavelength of path-length change for the reflected signal, a meteor moving at 2000 wavelengths per second will cause 4000 complete cancellations and additions per second of the two signal components at the receiver; in other words, the resultant signal will be modulated at 4000 cycles per second. This is the Doppler tone which is heard.

In actual practice, the pitch of the tone may vary all the way from a very low value to something of the order of 4000 cycles. It is known that meteors enter the earth's atmosphere (or more strictly speaking, ionosphere) along more or less random paths. If the path of the meteor is at right angles to a line drawn from the meteor to the transmitter and receiver, no tone can result because there is no change in the length of the path followed by the energy reflected from the meteor trail. However, if there is a component of velocity either toward or away from the transmitter and receiver, a tone will result. Consideration of the various geometrical possibilities will show that the tone can be either steady or varying in pitch, depending on the actual path of the meteor.

(Continued on page 188)
NEW ENGINEERING • NEW DESIGN
NEW RANGES • 50 RANGES

Voltage: 5 D.C. 0-10-50-250-500-1000 at 2500 ohms per volt.
5 A.C. 0-10-50-250-500-1000 at 1000 ohms per volt.
Current: 4 A.C. 0-5-1-5-10 amp. 6 D.C. 0-50 microamperes—
0-1-10-50-250 milliamperes—0-10 amperes.
4 Resistance 0-4000-40,000 ohms—4-40 megohms.
6 Decibel 10 to +15, +29, +43, +49, +55.
Output Condenser in series with A.C. volt ranges.

Model 2405 is similar but has D.C. volts
Ranges at 5000 ohms per volt.
Write for complete description

Ham Headquarters for Equipment and Information

15 Years of Service
to HAMS throughout the U. S. and Canada.

Complete Line
of nationally famous Radio & Electronic Parts and Equipment.

Thousands of Items
in stock right now...comprising every well-known brand of Component Parts and Equipment.

FREE WRITE TODAY for our current bulletins about extraordinary values in surplus Radio and Electronic Component Parts and Equipment.

Radio Product Sales Company
238 West 15th Street
Los Angeles 15, California
Are We Right?

You should have at least two of them—one for your complete 1945 file of copies, and one for each 1946 issue as published.

With each Binder is furnished a sheet of gold and black gummed labels for years 1926 through 1946. The proper one can be cut from the sheet and pasted in the space provided for it on the back of the binder.

Price $1.50 postpaid
Available only in United States and Possessions

THE AMERICAN RADIO RELAY LEAGUE
West Hartford, Conn.

(Continued from page 180)

The number of powerful short-wave broadcasters has greatly multiplied during the war and has made easier the job of selecting the proper conditions to "hear" the meteors. In Cambridge, Mass., the effect is particularly noticeable on stations in the New York City area broadcasting to Europe. Hearing the Doppler tones is greatly simplified if the receiver is equipped with a good a.v.c. circuit, which prevents overload during the bursts of signal caused by reflections from the meteor trails.

This method of detecting meteors is, in effect, a practical example of the principle of radar. Instead of microwaves, ordinary short waves are used, and instead of aircraft, meteor trails are detected. But the principle is much the same.

Knowing the pitch of the Doppler tone and the radio frequency used, one can calculate the component of the meteors' speed in the direction of the transmitter and receiver. However, since the exact path followed by the meteor is seldom known, its true speed cannot be measured in this way. But by listening over a long period of time and noting the pitch of the highest tone heard, a good estimate can be made of the speed at which meteors travel.

"Abnormal Ionization in the E Region of the Ionosphere."

2 J. A. Pierce, Physical Review, Vol. 59, April (1941)
"A Note on Ionization by Meteors."

3 Chamanlal and Venkataraman, Electrotechnics (Bangalore, India), Vol. 14, pp. 28-40, November (1941), "Whistling Meteors — A Doppler Effect Produced by Meteors Entering the Ionosphere."

Strays

A long awaited piece of much needed equipment has arrived if we are to believe the wording of an advertisement clipped from the Washington Star and forwarded by W9NDX/3. This startling "For Sale" announcement reads as follows:

"Transformer — GE; converting from 110-volt d.c. to 110-volt a.c.; power, 350 watts. Phone Columbia —.""W8CDX recommends that W8CDX might be able to use such a device in connection with a further investigation of Bismarck, his electronic dog.

WANTED

RADIO ENGINEERS for Design and Development of home radio receivers. Can use men with experience in design laboratories on communications and entertainment receiving sets.

Call or write Mr. Frank A. Hinners
Vice President in Charge of Engineering
Alr King Products Co., Inc., 1523 63rd St., Brooklyn, N. Y.
I am delivering the following models:

National HRO Sr. $197.70
National NC-240C complete with speaker 240.00
National One-Ten 56.10
Hammarlund HQ-129X complete with speaker 139.50
Hammarlund Super Pro 330.00
Hallicrafters EC1A 29.50
Hallicrafters S20R 60.00
Hallicrafters S22R 74.50
Hallicrafters S39 110.00
Hallicrafters SX-25 94.50
Hallicrafters SX-28A 223.00
Hallicrafters S36A 415.00
Hallicrafters PM23 speaker 15.00
RME-45 complete with speaker 166.00

I specialize in the wholesaling of amateur receivers and transmitters. Demand for some models exceeds supply. If I can't make immediate delivery, you can reserve the model you want for preferred delivery. This assures you of earlier delivery with no obligation on your part. You can trade in your receiver. You can buy on 6% terms financed by me. I will help you get the best receiver or transmitter for your use and will see that you are satisfied. Mail, phone, or wire your orders. Your inquiries invited.

W9ARA

HENRY RADIO SHOPS
Butler, Missouri

WORLD'S LARGEST DISTRIBUTOR OF SHORT WAVE RECEIVERS

RCA INSTITUTES, INC.
Offer thorough training courses in all technical phases of
RADIO and TELEVISION

WEekly Rates
VETERANS: RCA Institutes is approved
DAYS-EVENINGS
under G. I. Bill of Rights
For Free Catalog write Dept. ST-46
RCA INSTITUTES, INC.
A Radio Corporation of America Service
75 Varick Street, New York 13, N.Y.

RADIO COURSES
- RADIO OPERATING
- RADIO SERVICING
- CODE
- ELECTRONICS
- REFRIGERATION SERVICING
- PERSONAL COUNSELING SERVICES
Write for Latest Trade & Technical Catalog
Y.M.C.A. TRADE & TECHNICAL SCHOOLS
4 W. 64th Street
New York City

TRYLON BEAM ANTENNA SUPPORTS
Also Rhombic, Doublet, Flat Top, Vee, and Dipole Antenna Systems, Ladder Towers, etc.

TRYLON TOWER & ANTENNA DIVISION, Wind Turbine Company, West Chester, Penna.

Electricity

FOR RADIO AND ELECTRONIC APPLICATIONS

Onan Electric Generating Plants supply electric service for electronic applications and general uses, mobile, or stationary. Driven by Onan-built, 4-cycle gasoline engines, they are of single-unit, compact design and sturdy construction.

D. W. ONAN & SONS
2632 Royalton Ave., Minneapolis 5

TRYLON TOWER & ANTENNA DIVISION, Wind Turbine Company, WEST CHESTER, PENNA.
HAM-ADS

1. Advertising shall pertain to radio and shall be of such nature that it is not detrimental to radio or ham operators; and
2. No pages of any character will be accepted, nor can any special typographical arrangement, such as all or part capitalization, be made to tend one advertisement stand out from the others.

3. The HAM-Ad rate is 30¢ per word, except as noted in paragraph (1) below. (Minimum order is 25¢.)

4. Circulation is 35,000 copies, distributed as follows: 10,000 copies airmailed to 25 Northern and Southern states; 25,000 copies distributed in 300 radio exchanges in the Central States, and circulated through the HAM-ADS Readers' Association, Inc.

5. ,• Closing date for HAM-Ads is the 25th of the second month preceding publication date.

6. A special rate of 7¢ per word will apply to advertising written especially for the HAM-Ads. There is no pro-rata discount on this special rate.

7. Reimbursement is in full to accompany copy. No cash or checks will be accepted. Send remittance with copy.

8. All advertisements must state the name and address be printed plainly.

9. Having made no investigations of the advertisers in the classified columns, the publishers of QST are unable to vouch for their integrity or for the grade or character of the products or services advertised.

QUARTZ — Direct importers from Brazil of best quality pure quartz suitable for making piezo-electric crystals.

WANTED: Army Surplus Transistor, 500 volt., 200 ma. good condition into ready cash which may be applied towards new and better equipment. Leo W9QFO offers you the best cash prices for communications receivers and test equipment. Write today for catalog. Whole- sale Radio Laboratories, 744 W. Broadway, Council Bluffs, Iowa.

CRYSTALS available — all types, including 100 kc., 405 kc. and 100 kc. broadcast and aircraft given prompt attention. Speci- fication and tolerances. One or one million. Refinishing and repair- solutions and tolerances. One or one million. Refinishing and repair-
solutions and tolerances. One or one million. Refinishing and repair-
solutions and tolerances. One or one million. Refinishing and repair-

RADIO tests — Pre-examination tests for radio operators.

Also books for home study. Write for free circulars.

Radio Laboratories, 744 W. Broadway, Council Bluffs, Iowa.

ALASKAN hams: Here is a source of supply closer to home. Stocking leading brands of ham gear, communication receivers, parts, accessories, engine generators. Save time and money.

Robert's Radio Supply, Alaska, jobbers. P.O. Box 1835, Anchorage, Alaska.

GOVERNMENT surplus, steel tower, with insulated cable, base plate, 2100 Ma. Tower only, 2½ meter. A.C. supply or D.C. for passing amateur radio examinations. Home study and re-

Sells 8 RCA 829 tubes. Unused. W9JZU, Hoedle, Box 22, Parson's, Kansas.

HERE’S the tube you’ve been waiting for. High frequency operation, $299. For the purpose of building up our mailing list, we send this tube to the first 200 names on this list. We will then pay you $5 if you order your right away. We will also include, without charge, one porcelain coil form. Send your order to The Adams Company. 1210 Farnam St., Omaha 2, Nebraska.

FOR sale: RME-99 receivers, 450 watt transmitter, 5-band, complete including Oscillograph, mikes, 2 receivers, 1 RME complete with generator A-1. Bargain at $120.00; NC-2-40C coming soon. Conklin Radio, Bede, Md.

SPECIAL buy: new transmitting tubes 815, $3.25; 802, $2.35; 827, $5.90; 828, $9.25; 805, $6.00. New material at $10.00 each. Geophysical Service, Inc., 1914 North Harvard, Dallas 1, Texas.

CRYSTAL controlled exciters, HY75 output, 616 modulator, - on filled, 4 tubes.

TONE CONTROLLERS & FILTERS - Direct from manufacturers, bulk lot. Make reasonable offer. Westmore, W2LVJJJ, 319 Parkville Ave., Brooklyn, N. Y.

FOR sale or trade: pair T-59's and Power transformer, T-6878, 1000 watt. Complete including Oscillograph, 2 racks, 42" x 72" split-stator, 7500 volt variable. Aerovox Hydral and Dublifier Dykanol, 2 4 and 6 tubes, 2000 volt filters. See this lot in person. List on request. Want Ham Call: W7GAM. Money kilowatt plate transformer. Ed Schmidneile, WYFV, 2110 West 35th St., Chicago 9, Ill.

GENEMOTORS, Ener; 24 volt input, 525 volt output. Slightly used in excellent condition. $20.00. Conklin Radio, Bayonne, N. J.

RECEIVERS: SX-28A, $232; SX-25, $94.50; RME-45, $166.00; HQ-129X, $120.00; NC-2-40C soon coming. Conklin Radio, Bede, Md.

FOR sale: new transmitting tubes 815, $3.25; 802, $2.35; 827, $5.90; 828, $9.25; 805, $6.00. New material at $10.00 each. Geophysical Service, Inc., 1914 North Harvard, Dallas 1, Texas.

CRYSTAL controlled exciters, HY75 output, 616 modulator, - on filled, 4 tubes.

HAM-ADS \NEW ITEMS TO BE ANNOUNCED IN APRIL ISSUE. \FOR sale: 2 tubes, unused. W9QFO, Bede, Md.

PARSONS, Kansas.

SPECIAL buy: new transmitting tubes 815, $3.25; 802, $2.35; 827, $5.90; 828, $9.25; 805, $6.00. New material at $10.00 each. Geophysical Service, Inc., 1914 North Harvard, Dallas 1, Texas.

CRYSTAL controlled exciters, HY75 output, 616 modulator, - on filled, 4 tubes.

TONE CONTROLLERS & FILTERS - Direct from manufacturers, bulk lot. Make reasonable offer. Westmore, W2LVJJJ, 319 Parkville Ave., Brooklyn, N. Y.

FOR sale or trade: pair T-59's and Power transformer, T-6878, 1000 watt. Complete including Oscillograph, 2 racks, 42" x 72" split-stator, 7500 volt variable. Aerovox Hydral and Dublifier Dykanol, 2 4 and 6 tubes, 2000 volt filters. See this lot in person. List on request. Want Ham Call: W7GAM. Money kilowatt plate transformer. Ed Schmidneile, WYFV, 2110 West 35th St., Chicago 9, Ill.

GENEMOTORS, Ener; 24 volt input, 525 volt output. Slightly used in excellent condition. $20.00. Conklin Radio, Bayonne, N. J.

RECEIVERS: SX-28A, $232; SX-25, $94.50; RME-45, $166.00; HQ-129X, $120.00; NC-2-40C soon coming. Conklin Radio, Bede, Md.

FOR sale: new transmitting tubes 815, $3.25; 802, $2.35; 827, $5.90; 828, $9.25; 805, $6.00. New material at $10.00 each. Geophysical Service, Inc., 1914 North Harvard, Dallas 1, Texas.

CRYSTAL controlled exciters, HY75 output, 616 modulator, - on filled, 4 tubes.

TONE CONTROLLERS & FILTERS - Direct from manufacturers, bulk lot. Make reasonable offer. Westmore, W2LVJJJ, 319 Parkville Ave., Brooklyn, N. Y.

FOR sale or trade: pair T-59's and Power transformer, T-6878, 1000 watt. Complete including Oscillograph, 2 racks, 42" x 72" split-stator, 7500 volt variable. Aerovox Hydral and Dublifier Dykanol, 2 4 and 6 tubes, 2000 volt filters. See this lot in person. List on request. Want Ham Call: W7GAM. Money kilowatt plate transformer. Ed Schmidneile, WYFV, 2110 West 35th St., Chicago 9, Ill.

GENEMOTORS, Ener; 24 volt input, 525 volt output. Slightly used in excellent condition. $20.00. Conklin Radio, Bayonne, N. J.

RECEIVERS: SX-28A, $232; SX-25, $94.50; RME-45, $166.00; HQ-129X, $120.00; NC-2-40C soon coming. Conklin Radio, Bede, Md.

FOR sale: new transmitting tubes 815, $3.25; 802, $2.35; 827, $5.90; 828, $9.25; 805, $6.00. New material at $10.00 each. Geophysical Service, Inc., 1914 North Harvard, Dallas 1, Texas.

CRYSTAL controlled exciters, HY75 output, 616 modulator, - on filled, 4 tubes.

TONE CONTROLLERS & FILTERS - Direct from manufacturers, bulk lot. Make reasonable offer. Westmore, W2LVJJJ, 319 Parkville Ave., Brooklyn, N. Y.
ECHOPHONE MODEL EC-1A

A real communications receiver at a sensationally low price

Nearer and nearer to reality comes Hogarth's dream of a real communications receiver at a sensationally low price. Now available—or very soon—the 1946 Echophone, Model EC-1A, a 6-tube AC/DC communications receiver of outstanding value. With electrical bandspread throughout its frequency range of .55 to 30 megacycles, BFO for CW reception, and a new automatic noise limiter to suppress interference from automobile ignition, etc., the EC-1A provides genuine communications receiver performance in the lowest price range. Standard 115-volt AC or DC operation; also available for 200 to 250-volt operation.

ECHOPHONE DIVISION • THE HALICRAFTERS CO. • 2611 INDIANA AVENUE • CHICAGO 16, U. S. A.
THE NO. 36011
Snap-Lock Plate Cap
For Mobile, Industrial and other applications where lighter than normal grip with multiple finger 360° low resistance contact is required, the new No. 36011, "Designed for Application" Plate Cap is now available. Contact self-locking when cap is pressed into position. Insulated snap button at top releases contact grip for easy removal without damage to tube. Molded black bakelite, to fit all tubes with 9/16" diameter contact ferrule.
This is an era of scientific progress. Radio performance which satisfied the amateur operator of 1941 is not going to satisfy him now—and it need not! RME is in tune with the times! While building new and better communications equipment for the exacting demands of war, RME has at the same time perfected even finer equipment for the amateur. Let's examine a few...

THE NEW RME 45

1. The new RME-45 is so engineered that it delivers peak performance on ALL frequencies—from 550 to 33,000 KC.
2. New in the radio field—and a most welcome addition—is the VHF-152 converter.
3. For the ham with wings, RME has carefully designed a practical, feather weight and highly efficient receiver transmitter.
4. And the DB-20 is now one of the most well-known units in existence.

With RME equipment, the amateur can be confident that he possesses the most carefully designed, painstakingly built, and most brilliant performing equipment modern science and pride in manufacture can produce.

THE VHF-152 CONVERTER

For exceptional performance on 28 to 30 MC, 20 to 54 MC and the new 144 to 148 MC bands. With the VHF-152, you can work these frequencies through the double detection method—with economy!

THE DB-20 PRESELECTOR

20 to 25 db gain achieved throughout tuning range of 550 to 33,000 KC. Two highly efficient RF stages provide very high signal to noise ratio.

THE RME SPEAKER

THE AT-12

A RECEIVER-TRANSMITTER FOR THE PRIVATE PILOT

(Normal ten mile range)
Receiver Specifications:
180 to 480 KC—For Range Station.
550 to 1500 KC—For Broadcast Stations.
278 KC—For Tower Frequency Position.

Power from small dry cells for both units. Optional equipment, 6 and 19 volt input with external power supply.*

*LITERATURE ON REQUEST

Since 1933

FINE COMMUNICATIONS EQUIPMENT
RADIO MFG. ENGINEERS, INC.
Phinix City, ALABAMA
U.S.A.
This new Folded Unipole Antenna for commercial use weighs only 13 pounds. Its "Slide Trombone" calibration eliminates old-fashioned pruning. Comparative tests show it out-performs other antennas at several times the price.

HIGH GAIN DIRECTIVE ANTENNAS

for Amateur Use

In vital military and emergency communications all over the world, the name ANDREW means sound engineering plus skill and ingenuity in meeting specific antenna design problems.

NOW FOR AMATEURS

This engineering skill and know-how with commercial antennas is being applied to the production of ham antennas, including both vertically polarized directive arrays and horizontally polarized rotatable systems.

Andrew Co. pioneered in the development of HF antennas, coaxial transmission lines and accessories.

Andrew Co. specializes in the solution of antenna problems—in the designing, engineering and building of antenna equipment.

ANDREW CO.
363 EAST 75TH STREET
CHICAGO 19, ILLINOIS

Type 737 7/4" diameter soft temper copper coaxial cable. Hundreds of miles of this Andrew cable are now in use with police and military transmitters.
Your old friend, the HRO, has seen active service all over the world with the armed forces of the United States and our allies. Much has been learned, and the HRO has emerged from its trial by fire an even better receiver than the superb receiver you knew before the War.

The HRO-5TA (table model) and the HRO-5RA (rack mounting) are new receivers incorporating design improvements based on field reports from all over the world. They are superb performers of extreme reliability.

The new National catalogue lists the new HRO-5A receivers and their accessories. Ask your dealer for a copy.

NATIONAL COMPANY, INC.
MALDEN, MASSACHUSETTS, U.S.A.
THE RCA-815 Push-Pull Beam Power Tube, originally developed for the amateur, was extensively employed in wartime mobile and aircraft transmitter designs because of its high power sensitivity, high efficiency, and low plate-voltage requirements.

Now the 815 is again ready to do service in the amateur high-frequency bands.

Priced at only $4.50, it is the answer to a low-cost CW rig that can be operated from a simple power supply using receiver-type rectifier tubes, and can be driven to full output directly from a doubler stage.

Used as a plate-modulated r-f power amplifier, the 815 will deliver approximately 30 watts output at 144-148 Mc with only 360 volts on the plates and less than 0.5-watt tube drive!

The beam-power principle of the 815 accounts for its high efficiency and unusual economy on all bands from 2 to 20 meters. Good reason why you will want to use it.

See your local Amateur Tube Distributor.

Your UHF receiver will gain more from Acorns

THE FOOUNTAINEHEAD OF MODERN TUBE DEVELOPMENT IS RCA

TUBE DIVISION

RADIO CORPORATION of AMERICA

HARRISON, N. J.