FOR HIPERM ALLOY TRANSFORMERS

The UTC Hiperm alloy audio transformers are specifically designed for portable and compact service. While light in weight and small in dimensions, neither-dependability nor fidelity has been sacrificed. The frequency characteristic of the Hiperm alloy audio units is uniform from 30 to 20,000 cycles. These units are similar in general design and characteristics to the famous Linear Standard audio Series.

UTC Hiperm Alloy Transformers Feature

- True Hum Balancing Coil Structure
- Balanced Variable Impedance Line
- Reversible Mounting
- Alloy Shields
- Multiple Coil, Semi-Toroidal Coil Structure
- High Fidelity

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Application</th>
<th>Primary Impedance</th>
<th>Secondary Impedance</th>
<th>± 1 db</th>
<th>Max. Level</th>
<th>DC in primary</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA-100</td>
<td>Low impedance mike, pickup, or multiple line to grid</td>
<td>50, 125, 200, 250, 333, 500 ohms</td>
<td>60,000 ohms in two sections</td>
<td>+22 DB</td>
<td>5 MA</td>
<td>16.25</td>
<td></td>
</tr>
<tr>
<td>HA-100K</td>
<td>Same as above but with tri-alloy internal shield to effect very low hum pickup.</td>
<td>50, 125, 200, 250, 333, 500 ohms</td>
<td>120,000 ohms over 30-20,000 all in two sections</td>
<td>+22 DB</td>
<td>5 MA</td>
<td>20.90</td>
<td></td>
</tr>
<tr>
<td>HA-101</td>
<td>Low impedance mike, pickup, or multiple line to push-pull grids.</td>
<td>50, 125, 200, 250, 333, 500 ohms</td>
<td>60,000 ohms in two sections</td>
<td>+22 DB</td>
<td>5 MA</td>
<td>16.25</td>
<td></td>
</tr>
<tr>
<td>HA-101X</td>
<td>Same as above but with tri-alloy internal shield to effect very low hum pickup.</td>
<td>50, 125, 200, 250, 333, 500 ohms</td>
<td>120,000 ohms over 30-20,000 all in two sections</td>
<td>+22 DB</td>
<td>5 MA</td>
<td>23.20</td>
<td></td>
</tr>
<tr>
<td>HA-108</td>
<td>Mixing, low impedance mike, pickup or multiple line.</td>
<td>50, 125, 200, 250, 333, 500 ohms</td>
<td>60,000 ohms in two sections</td>
<td>+22 DB</td>
<td>5 MA</td>
<td>16.25</td>
<td></td>
</tr>
<tr>
<td>HA-106</td>
<td>Single plate to push-pull grids</td>
<td>8,000 to 15,000 ohms</td>
<td>135,000 ohms</td>
<td>+22 DB</td>
<td>5 MA</td>
<td>16.25</td>
<td></td>
</tr>
<tr>
<td>HA-113</td>
<td>Single plate to multiple line.</td>
<td>8,000 to 15,000 ohms</td>
<td>50, 125, 200, 250, 333, 500 ohms</td>
<td>+22 DB</td>
<td>1 MA</td>
<td>15.65</td>
<td></td>
</tr>
<tr>
<td>HA-134</td>
<td>Push-pull BP's or ZA3's to line.</td>
<td>8,000 to 15,000 ohms</td>
<td>30, 20, 15, 10, 5, 2.5, 1.2</td>
<td>+32 DB</td>
<td>5 MA</td>
<td>17.40</td>
<td></td>
</tr>
<tr>
<td>HA-135</td>
<td>Push-pull 2A3's to voice coil.</td>
<td>8,000 to 15,000 ohms</td>
<td>30, 20, 15, 10, 5, 2.5, 1.2</td>
<td>+32 DB</td>
<td>5 MA</td>
<td>16.25</td>
<td></td>
</tr>
</tbody>
</table>

The above listing includes only a few of the many Hiperm Alloy Transformers available. Write for catalog.

United Transformer Corp.

150 Varick Street, New York 13, N.Y.
Export Division: 13 East 40th Street, New York 16, N.Y. Cables: "AMTRAN"
Get the most out of your transmitter with the foremost crystals—tops in "techniquality" for over 15 years.

In type AX2 plated crystals Bliley craftsmen have chalked up another "first" in creative engineering.

Designed specifically for the 80-40-20 meter bands, type AX2 plated crystals boast a long list of technical accomplishments, most important of which are better grid current stability over a wide temperature range, plus, improved frequency stability under high drive conditions.

For better transmitter performance, you'll want to know more about Bliley Type AX2 plated crystals. Ask your Bliley distributor for Bulletin 30.
Thousands of Marion Glass-to-Metal Truly Hermetically Sealed Electrical Indicating Instruments are now out in the field. Where are they going? Who's using them? And for what purposes? The scores are coming in ... and here's one we thought you might be interested in.

Illustrated is the Reiner Model 333 Volt-Ammeter, developed by the Reiner Electronics Co. of New York. It's a new, versatile piece of equipment for laboratories, schools, repair shops, amateur radio operators, experimenters, etc. One unit can serve 20, or more, different instruments. Used exclusively in the DC Model 333 and the combination AC-DC Model 334 are Marion Glass-to-Metal Hermetically Sealed Instruments.

More and more manufacturers are switching to Marion "hermetics". It makes sense to specify these instruments—whether you're a manufacturer, consumer or dealer. All Marion "hermetics" incorporate the new "Bulldozer" moving system, and are built in conformity with JAN standards ... they're dust-proof and moisture-proof ... they're economical and they last longer ... they're available with interchangeable round or square colored flanges at no extra cost ... and they're 100% guaranteed. Write for 12-page booklet.

Marion Glass-to-Metal Truly Hermetically Sealed
2½" and 3½" Electrical Indicating Instruments

MARION ELECTRICAL INSTRUMENT CO.
MANCHESTER, NEW HAMPSHIRE

IN CANADA: THE ASTRAL ELECTRIC COMPANY, SCARBORO BLUFFS, ONTARIO
It Seems to Us .. 11
High Power in Two Stages Donald Mix, WITS 13
Ten-Meter Observations 17
Miniature Tubes in a Six-Meter Converter
Richard W. Houghton, WINKE 18
June 22nd-23rd — Tenth ARRL Field Day! 22
Silent Keys ... 23
Looking Over the Postwar Receivers
The Hammarlund HQ-129-X 24
Happenings of the Month 26
In QST 25 Years Ago This Month 30
A Mobile Rig for 50 and 28 Mc. ... 31
Edward T. Tilton, W1IDQ

Long-Wire Antennas Walter van B. Roberts, W3CHQ 36
A Field-Intensity Meter for V.H.F.
D. C. Summerford, W9AYII 38

ARRL QSL Bureau 40
Getting Started on 420 Mc. W. F. Hoisington, W1LAS/2 42

Technical Topics
Standardized Component Values 46
Frequency-Shift Keying 46
“No Neutralization Required” 48

Making the Most of It Eugene A. Hubbell, W9ERU 49

How’s DX? ... 51

ARRL Code-Proficiency Program F. E. Handy, W1BDI 53

Long Leads Aren’t Necessary
George W. Shuart, W2AMN 55

The World Above 50 Mc. 58

I.F. Amplifiers in Television Receivers
Marvin H. Kronenberg, W21JU 62

Hints and Kinks 66

Foreign Notes 68

How Much Inductance? George H. Floyd, W6OJK/2 69

Correspondence from Members 70

Operating News 72

Station Activities 82

Book Reviews 146

WWV ... 152
The Model S-38 meets the demand for a truly competent communications receiver in the low price field. Styled in the post-war Hallicrafters pattern and incorporating many of the features found in more expensive models, the S-38 offers performance and appearance far above anything heretofore available in its class. Four tuning bands, CW pitch control adjustable from the front panel, automatic noise limiter, self-contained PM, dynamic speaker and "Airodized" steel grille, all mark the S-38 as the new leader among inexpensive communications receivers.

Features

1. Overall frequency range—540 kilocycles to 32 megacycles in 4 bands.
 - Band 1—540 to 1650 kc.
 - Band 2—1650 to 5400 kc.
 - Band 3—5 to 14.5 Mc.
 - Band 4—14.5 to 32 Mc.

2. Main tuning dial accurately calibrated.
4. Beat frequency oscillator, pitch adjustable from front panel.
5. AM/CW switch. Also turns on automatic volume control in AM position.
7. Automatic noise limiter.
8. Maximum audio output—1.6 watts.
9. Internal PM dynamic speaker mounted in top.
10. Controls arranged for maximum ease of operation.
11. 105-125 volt AC/DC operation. Resistor line cord for 210-250 volt operation available.
12. Speaker/phones switch.

Controls: Speaker/phones, AM/CW, Noise Limiter, Tuning, CW Pitch, Band Selector, Volume, Band Spread, Receive/Standby.

External Connections: Antenna terminals for doublet or single wire antenna. Ground terminal. Tip jacks for headphones.

Physical Characteristics: Housed in a sturdy steel cabinet. Speaker grille in top is of airodized steel. Chassis cadmium plated.

Six Tubes:
- 1-12SA7 converter;
- 1-12SK7 1F amplifier;
- 1-12SQ7 second detector, AVC, first audio amplifier;
- 1-12SQ7 beat frequency oscillator, automatic noise limiter;
- 1-35L6GT second audio amplifier;
- 1-35Z5GT rectifier.

Operating Data: The Model S-38 is designed to operate on 105-125 volts AC or DC. A special external resistance line cord can be supplied for operation on 210 to 250 volts AC or DC. Power consumption on 115 volts is 29 watts.
TO ALL AMATEURS:

The Model S-38 described on the opposite page and the Model S-40 previously announced are among the first of a long line of new and exciting pieces of communications equipment that will be coming forth from Hallicrafters radio laboratories. Compact in size, moderate as to price the Model S-38 is nevertheless expensively and beautifully engineered and it is a prime example of the kind of workmanship that will keep Hallicrafters pre-eminent in the amateur field.

The two planks in the platform that will continue to uphold the great Hallicrafters tradition are: 1. The conception, design and engineering of all receivers and transmitters to meet the most exacting standards of amateur radio. 2. The custom-built reproduction of these units in quantities large enough to assure economical distribution and a real saving to the ultimate user — the ham. Where others could only dream about or build by hand expensive equipment, Hallicrafters by virtue of 20 years' experience in the field and a severe adherence to the likes and dislikes of the amateur, can continue to bring into the market place the finest equipment available at the lowest possible price.

For Hallicrafters the introduction of the S-38 and the S-40 is only a beginning — the beginning of a new phase of development that will see more and more models available with the latest improvements. Working side by side with the ham for the extension of the whole science of communications, Hallicrafters will continue to deserve the reputation as builders of "the radio man's radio".

Sincerely

Bill Halligan

WWZE
Radio Club reports are also desired by SCMs for inclusion in QST. All ARRL Field Organization appointments are now available to League members. These include OKS, OES, OPS, O0, and OBS. Also, where vacancies exist SCMs desire reports directly to the SCM, the administrative ARRL official elected by members in each Section.

Section Communications Managers of the A.R.R.L. Communications Department

Reports Invited. All amateurs, especially League members, are invited to report station activities on the first of each month (for preceding month) direct to the SCM, the administrative ARRL official elected by members in each Section. Radio Club reports are also desired by SCMs for inclusion in QST. All ARRL Field Organization appointments are now available to League members. These include OKS, OES, OPS, O0, and OBS. Also, where vacancies exist SCMs desire reports directly to the SCM, the administrative ARRL official elected by members in each Section.
NEW...
HANDY...
QUICK...
ACCURATE...

RESISTANCE RANGES RIGHT AT YOUR FINGERTIPS
EASY TO TELL AT A GLANCE!

HERE'S SOMETHING NEW—The RESIST-O-GUIDE, a practical aid in resistor range identification for every Radio Serviceman, Ham, Electrical Designer and Electronic Engineer.

To use the pocket size RESIST-O-GUIDE simply turn its three wheels to correspond with the color code on any composition-type resistor—the standard RMA range is automatically and accurately indicated. Readings are direct...no cumbersome calculations! Or, turn the wheels to indicate any desired standard range, and you are immediately shown the correct color coding.

The RESIST-O-GUIDE is convenient and accurate—and varnished for durability. To get the RESIST-O-GUIDE contact your IRC distributor—it's not sold elsewhere.

THE
Resist-O-Guide
10¢ at all IRC Distributors

INTERNATIONAL RESISTANCE CO.
401 N. BROAD ST., PHILADELPHIA 8, PA.
Canadian Licensee: International Resistance Co., Ltd., Toronto
For Use in Transmission of High Frequencies

- Amphenol Twinax and Conax RG cables, produced to standards that surpass the high Army-Navy specifications for critical wartime uses, are ideal for the myriad of peacetime applications in all phases of the rapidly expanding electronic industries. Rigid laboratory tests and notarized affidavits on every shipment give final assurance of extra quality and dependability.

- Amphenol special low-loss V.H.F. connectors are available in a complete line for all practical applications of RG cables and other uses. Mechanically efficient and electrically correct, these easily assembled connectors and adapters provide the utmost efficiency in circuits in which they are used.

AMPHENOL ASSEMBLY SERVICE

An important part of Amphenol service to users of cables and connectors is a complete Assembly Service. Rigid specifications and performance requirements, plus thorough scientific testing of each part and process, ensures users of satisfactory service. For cables, connectors and complete assembly service, look to the world's largest producer - Amphenol.

AMERICAN PHENOLIC CORPORATION
CHICAGO 50, ILLINOIS
IN CANADA
AMPHENOL LIMITED • TORONTO

COAXIAL CABLES AND CONNECTORS • INDUSTRIAL CONNECTORS, FITTINGS AND CONDUIT • ANTENNAS • RADIO COMPONENTS • PLASTICS FOR ELECTRONICS
Amateurs buy plenty of these mercury-vapor rectifiers—and for a good reason. In dollar-value the GL-866-A/866 stands alone. A pair will deliver 3,180 volts at 0.5 ampere (full-wave rectified d-c)! Usually that's more than enough for your transmitter.

The GL-866-A/866 is sturdily built. Also, an edgewise-wound ribbon filament provides a large emission reserve, which contributes importantly to the tube's long life.

Check with your ham friends as to the all-around staunch performance of Type GL-866-A/866. Condensed ratings are given at the right. Your nearest G-E distributor will supply you with further information, or write direct to: Electronics Department, General Electric Company, Schenectady 5, New York.

CHARACTERISTICS of Type GL-866-A/866

- Cathode type: filamentary
- Cathode voltage: 2.5 v
- Cathode current: 5 amp
- Peak voltage drop: 15 v, typical
- Max anode voltage: 10,000 v peak inverse
- Max anode current: 1 amp instantaneous
- Max anode current: 0.25 amp average
THE AMERICAN RADIO RELAY LEAGUE, INC.,

is a noncommercial association of radio amateurs, bonded for the promotion of interest in amateur radio communication and experimentation, for the relaying of messages by radio, for the advancement of the radio art and of the public welfare, for the representation of the radio amateur in legislative matters, and for the maintenance of fraternalism and a high standard of conduct.

It is an incorporated association without capital stock, chartered under the laws of Connecticut. Its affairs are governed by a Board of Directors, elected every two years by the general membership. The officers are elected or appointed by the Directors. The League is noncommercial and no one commercially engaged in the manufacture, sale or rental of radio apparatus is eligible to membership on its board.

"Of, by and for the amateur," it numbers within its ranks practically every worth-while amateur in the nation and has a history of glorious achievement as the standard-bearer in amateur affairs.

Inquiries regarding membership are solicited. A bona fide interest in amateur radio is the only essential qualification; ownership of a transmitting station and knowledge of the code are not prerequisite, although full voting membership is granted only to licensed amateurs.

All general correspondence should be addressed to the Secretary at the administrative headquarters at West Hartford, Connecticut.

Past Presidents
HIRAM PERCY MAXIM, W1AW, 1914-1936
EUGENE C. WOODRUFF, W8CMP, 1936-1940

Officers
President: GEORGE W. BAILEY, W1KH Washington, D. C.
Vice-President
Secretary: KENNETH B. WARNER, W1EH West Hartford, Connecticut
Communications Manager: F. E. HANDY, W1BDI West Hartford, Connecticut
Treasurer: DAVID H. HOUGHTON West Hartford, Connecticut
General Counsel: PAUL M. SEGAL 1026 Woodward Building, Washington 5, D. C.

Directors
President
GEORGE W. BAILEY, W1KH
1530 P St., N.W., Washington 25, D. C.
Vice-President

Canadian General Manager
ALEX REID, VE2BE
240 Logan Ave., St. Leonard, P. Q.
Alternate: Leonard W. Mitchell, VE3AZ
78 King Edward Ave., Toronto, Ont.

Atlantic Division
EDWARD G. RAPER, W3EI
315 Regalwood Ave., Trenton S., N. J.
Alternate: J. Victor Hackett, W8UIHN
1743 Ottawa Drive, Erie, Pa.

Central Division
JOHN A. KIENER, W5AVH
4462 Edmond Rd., Cleveland Heights, Cleveland 21, Ohio
Alternate: Earl S. Nelson, W6DSH
22501 Haidden Rd., Bedford, Ohio

Duluth Division
TOM E. DAVIS, W9VVA
916 Mahler Ave., Willmar, Minn.
Alternate: Harold B. Love, W9ZRT
Box 426, Mandan, N. D.

Delta Division
GEORGE S. ACTON, W5BMM
Pine Dealing, La.
Alternate:

Hudson Division
ROBERT ACKERHOLD KIRKMAN, W2DSY
Weshek Pl., R.F.D. No. 1, Box 61, Long Branch, N. J.
Alternate: George Ruffe, W2CJY
30 Brookwood Drive, Manchester, L. I., N. Y.

Midwest Division
FLOYD E. NORWINE, JR., W9FEC
7408 Harrison Ave., Richmond Heights 17, Mo.
Alternate: C. A. Colvin, W9HR
1055 North Euclid Ave., Chicago, Ill.

New England Division
PERCY C. NOBLE, W1BVR
3r Broad St., Westfield, Mass.
Alternate: Clayton C. Gordon, W1HRRC
70 Columbia Ave., Warwick, R. I.

Northwestern Division
KARL W. WEINGARTEN, VE7BG
3219 N. 24th St., Tacoma 7, Wash.
Alternate: R. Rex Roberts, W7CPY
110 W. Brennan St., Glenview, Mont.

Pacific Division
J. L. McCARDO, W6EY
60 Hamilton Pl., Oakland 12, Calif.
Alternate: Elliot J. Amantes, W6FWB
1675 Dale Ave., San Jose, Calif.

Roanoke Division
H. L. CAVENESS, W4DWH
2607 Vanderbilt Ave., Raleigh, N. C.
Alternate: J. Frank Key, W3ZA
110 W. Becker Ave., Willmar, Minn.

Rocky Mountain Division
HOWARD R. MARKWELL, W9TAP
305 Monroe St., Denver 6, Colo.

Southeastern Division
WILLIAM C. SHELTON, W4ASR
527 Revilo Blvd., Daytona Beach, Fla.
Alternate: William P. Sides, W4AUP
Fleming Road, Montgomery, Ala.

Southwestern Division
JOHN E. BICKEL, W8KQY
1834 E. MacArthur Ave., Whittier, Calif.
Alternate: Eddridge E. Wyatt, jr., W6ARW
P. O. Box 5907, Long Beach 3, Calif.

West Gulf Division
WAYLAND M. GROVES, W5NW
54 Humble Pipe Line Co., Odessa, Texas
Alternate: Jennifer E. Puston, W5AJ
P. O. Box 849, Currida, Panama Canal Zone
AN IDEA AND A PROPOSAL

Highway engineers are expecting unprecedented automobile traffic as soon as more cars are available, and are planning superhighways, cloverleafs, by-passes and whatnot to deal with it. If the interference we amateurs are experiencing in our first few months back on the air is any indication of what is in store for us after parts become freely available for station construction and after the rest of the Gls return and get housed, we'll have to do something about our problem, too. It's fierce already and it's going to be worse. We have an idea that we think may help, and we want to outline it to you and see what you think of it. In essence it is the old idea that it would be helpful if all the parties to a QSO were on the same frequency, but we have some new variations on the theme. Our twin problems are to reduce interference and to assure easier and more reliable QSOs, and we believe our idea would help in both respects. While we shall describe it in terms of c.w., it seems to us that it is equally applicable to 'phone.

We believe everybody will admit that if two amateur stations in QSO use the same frequency, they make the most efficient use of amateur facilities. They occupy only one frequency, and they employ it continuously, and that discourages others from intentionally using the same spot and so reduces interference somewhat; and if another amateur wants either station when they finish, he knows where they both are. If you are tempted to think that two frequencies used half the time are just the same thing, consider the number of times you have opened up on what seemed a likely spot, only to find another station come back to his correspondent about the time you got well started. If the channel were occupied the whole time (or if you'd listened long enough) you'd never make that mistake. But as it is, you ask for repeats or have your man stand by until the channel is clear, and frequently you spend most of your QSO time doing only that, so time is wasted and the contact spoiled and much extra QRM created. If each pair of stations used a single common frequency, most of those things wouldn't occur.

So we think, as a beginning point, that in the days to come it is going to be absolutely essential for the well-equipped amateur station to be able to move practically instantly, and with high precision, to any spot in an amateur band. That means a high-quality variable-frequency oscillator, it means the elimination of every possible adjustment in the intermediate stages of the transmitter, and it means arrangements for the automatic or very-rapid adjustment of the final and the antenna loading. We have some technical ideas along that line that are under exploration in the ARRL laboratory right now, and which offer the promise that ultimately all of us can have transmitters of that nature. Meanwhile all of us with v.f.o.s can approximate that performance within a portion of a band, even though we have to return to reach some other part of the band.

Now supposing we all had such quickly-variable transmitters, how could we employ them to better ourselves? Let's first examine how we get together in contacts. Some QSOs are by appointment — schedules between two or more stations on a predetermined frequency, or trunklines or nets opening on schedule on a spot frequency. Those cases take care of themselves. The rest of us — and that means most of us — make our contacts either by CQing or by answering CQs. As some experienced amateurs know, both CQing and answering are arts in which success comes only to those with skill and judgment: knowing where to call, when, and for how long. Many amateurs call too long, or call with predestined futility, and so needless QRM is caused. Of the many who answer, only one is chosen; and the others butterfly their way to a new CQer to repeat the performance. And so the night is full of calls on unwise frequencies, and of futile responses, and there is much interference that would never exist if we had a better system. That's where our suggestion comes in, and here is how it would work:

A station about to call CQ looks over the band and carefully selects a spot where he would like to work somebody. He chooses the spot in terms of the prevailing interference pattern, with the thought of receiving on that frequency. He spots his v.f.o. on that frequency and calls CQ. The bandcombers looking for a contact then move their transmitters near him
— but not on him — and answer. He chooses one of them and replies. The chosen one on his next transmission then moves on to the CQer's own frequency for the rest of the contact. Immediately all the advantages we have visualized are in full operation.

At this point a bunch of you lads are going to say that this is old stuff for v.f.o. men, that it has been v.f.o. technique for years to move to the caller's frequency, and that it looks to you as though QST were just discovering there was such a thing. But read the preceding paragraph again and note that we are proposing that it become standard practice to do the deed in two steps, the first one close to but not "on," the second one dead on the nose.

Now let's break down this study a bit and see why we propose it this way. The answers to a CQ should not be made on the CQer's exact frequency. Much grief has been caused by that practice, particularly in DX contests. Nobody can read anything. But suppose we stay near to him but not on him. Immediately there are two sides, and two little bands, and the six or eight repliers that could be expected under good conditions will naturally be spread out so that, except by misadventure, they can all be read. We'd suggest, for example, that answers to CQs be made within 5 kc. of the caller's frequency but not closer than 1 kc. Another reason beside unintelligibility for making answers a little off the frequency is that otherwise the CQer would have to wait until the longest-winded answerer finishes before the frequency would be free for his QSO with the selected one — whereas if they are spread out he can pick his man, break him, and get going immediately, perhaps while the windy ones are still calling him too long. This system is designed to save time.

It may suggest itself to you that for the QSO itself the CQer should move on to the frequency of the station he selects. But no, for many reasons. The listening gang would not hear who had been chosen and couldn't be expected just to sit silently listening on their own frequencies in hopes. And the answerer's initial frequency hasn't been carefully chosen and may be in use; the only frequency desirable for the contact, by our first defining of the problem, is the one selected by the CQer himself before he called. So the chosen one, on his next transmission, moves on to the CQer's exact frequency, and away they go with one channel occupied solidly by them but only one.

If we had the foregoing as our operating technique, CQs would be much briefer, for one could repeat as necessary in the knowledge that as the gang moved in they would be within beat note. The CQer could even be broken in the act of calling. Answers would be much briefer, too, since they would be inter-cepted almost at once. It wouldn't be like answering now away from the frequency and wondering how long it will take the guy to get to your spot or whether he ever will. He would get you and select you right away or not at all, so there would be no sense in a long answer. QSO could be established in a matter of seconds. Then as the one selected moved to the CQer's frequency, the rest of the gang would drift away to another part of the band with minimum time lost on that fruitless attempt, and only one frequency would be in use for both sides of the continuing QSO. Calling QRM and working QRM would both be minimized.

Well, palpitating world, there it is. What do you fellows think of it? Want to get out your nutpicks and take it apart? Or do you want to try it first?

WHO'S ON 11?

While the radio art and the practices of amateurs have always changed rapidly, the speed with which they can make a bum out of us on this page still amazes us. Here last month we wrote an exuberant little piece to express our delight over the speed with which our gang had occupied the new 11-meter band, and our further delight with the good performance of the band. With the same speed, the gang moved out in a week or two, so that before the ink was dry on last month's editorial there apparently wasn't a cockeyed soul left on the band. We've listened a total of many hours in recent weeks and heard nothing but W images and foreign commercials; and we've called CQ-11 until we were out of spit and nary an answer.

So we'll start all over. What's the matter, fellows? Not enough answers per call? It's a good little band, with performance frequently better than 10, and diathermy QRM isn't at all bad. And we can use both A2 and duplex 'phone. Let's get in there and give it a whirl! Receiver won't tune down there? It takes only a little capacity loading to shove you to 11. Or if your receiver is of the popular two-dial type, set your band-selection dial at exactly 28 Mc. and get a few calibration points from WWV on your tuning dial — seventh harmonics of your 50-meter calibration. Band limits are 27.185 to 27.455. The diathermy is supposed to be on the center frequency of 27.32 but it ain't — most of it is in the 10-meter band. A month ago we called on foreign amateurs to search on 11 for us; they should be listening now. Both the fun of pioneering a new band and the rewards of greater reliability await those who will now fire up on 11. CU there!
High Power in Two Stages

A Crystal-Oscillator Beam-Tetrode-Amplifier Transmitter for Four Bands

BY DONALD MIX, • WITS

* Assistant Technical Editor.

New high-power beam tetrodes requiring only a few watts of driving power offer a solution to the ham who wants a lot of power in a small package. This two-stage transmitter will handle a power input of 600 to 800 watts and yet it occupies less than a cubic foot of space.

If postwar low-frequency ham transmitters are going to look different than those in general use prior to the shutdown, it is almost certain that most of the changes will be brought about through the use of tubes with more than three elements. Although, admittedly, pentodes and beam tetrodes introduce some problems which are not encountered with triodes, it is impossible to ignore the fact that their low driving-power requirements offer certain advantages which cannot be realized without them. These advantages become more apparent when one attempts to lay out a high-power transmitter for several bands. For a final amplifier which will handle a half kw. or more, there may be more than a ten-to-one difference between the power required to drive a stage using one or two multi-element tubes and that needed to accomplish the same job with triodes.

A bandswitching exciter which must deliver 100 watts or so on several bands is a formidable project to contemplate when compared with one which need produce only 10 watts to put the same final-stage power into the antenna. Another problem which has always been with us, but the seriousness of which has been fully appreciated only recently because of our confinement to the 28-Mc. band, is that of eliminating radiation at frequencies lower than the desired operating frequency — frequencies which are generated in the exciter and which find their way into the antenna. A considerable reduction in power in the exciter stages will go a long way toward decreasing unnecessary QRM in amateur bands in which the transmitter is not supposed to be operating — not to mention the reduction in the quantity of green tickets issued by the FCC, which has been altogether too high since the reopening of the 10-meter band.

The rig shown in the photographs has only two stages, with not over 5 watts required on the grid of the final amplifier for efficient operation, yet it has a power-handling capability of 600 watts — or more, with a small amount of forced-
Circuit diagram of the two-stage high-power transmitter.

Fig. 1

C1 - 100-µfd. mica
C2 - 100-µfd. variable (National ST-100)
C3 - 50-µfd. per section, 0.171-
inch plate spacing (Millen 14050)
C4, C5, C6, C0 - 0.01-µfd. paper
C7 - 0.0015-µfd. mica
C8 - 50-µfd. mica, 5000 volts
C9 - 0.001-µfd. mica, 5000 volts
C10 - 0.001-µfd. mica, 10,000 volts
C11 - Vacuum padding capacitor, 25 µfd., 16,000 volts
R1 - 220 ohms, 1 watt
R2 - 470 ohms, 1⁄2 watt
R3 - 750 ohms
R4 - 10,000 ohms
R5 - 5000 ohms
R6 - 2200 ohms
R7 - 3500 ohms
R8 - 4700 ohms, 10 watts
R9, R10 - 50 inches No. 22 copper wire wound on small-dia. form.
RFC1 - 2.5-mh. r.f. choke
RFC2 - Hammarlund CH-500 r.f. choke
L1 - 3.5-Mc. crystals - 22 turns No. 22 d.s.c., 1-inch dia., closewound
L2 - 3.5-Mc. crystals - 20 turns No. 22 d.s.c., 1-inch dia., closewound
L3 - 7-Mc. crystals - 9 turns No. 22 d.s.c., 1⁄2-inch dia., closewound
L4 - 7-Mc. crystals - 14 turns No. 22 d.s.c., 1-inch dia., closewound
L5 - 14-Mc. crystals - 6 turns No. 22 d.s.c., 1⁄4-inch dia., 1⁄2-inch long
L6 - 25 µfd., 16,000 volts
La - B & W TVH series coils.

Air cooling of the tube seals. The circuit diagram shown in Fig. 1 hardly could be simpler. A 6L6 Tri-tet crystal oscillator drives the 4-250A final amplifier directly, either at the crystal fundamental frequency or at the second harmonic, so that the transmitter will cover two bands with a single crystal of proper frequency without doubling in the output stage. Through the use of plug-in coils and a selection of crystals, the transmitter may be used in all bands between 3.5 Mc. and 28 Mc. inclusive.

Any one of four crystals may be selected by S1, although more crystal positions may be added if desired. Parallel plate feed is used in both stages, to permit grounding the rotors of the tank condensers, and to remove d.c. from the output tank coil so that it may be changed without potential danger to the operator. RFC1 in the output plate circuit completes a d.c. short-circuit across the sections of C12, confining the plate voltage to the tube side of C12, C3, R3, R5, R7, and R9 are metering resistors across which the milliammeter may be switched by S2 to read combined oscillator plate and screen current, amplifier grid current, amplifier screen current or amplifier cathode current. Since it was not considered desirable to switch the meter to a lead operating at a voltage which may be 2000 or more, it is necessary to subtract grid and screen currents from the cathode-current reading to obtain the value of plate current. R7 has sufficient resistance, compared to that of the 0-50 milliammeter, to have negligible effect upon its reading. The resistances of the other shunts, which are made from copper wire, are adjusted to give a scale multiplier of 10, making the full-scale reading 50 ma. Fig. 1 shows both stages keyed simultaneously in the cathode leads. If it is desired, however, the final stage alone may be keyed by connecting the oscillator cathode return to ground, the key remaining in the lead between the 5-volt filament center-tap and ground.

A separate supply delivering between 350 and 400 volts at 100 ma. is required for the oscillator. Voltage for the oscillator screen is reduced to about 175 volts by the dropping resistor, Ra. Voltage supply for the screen of a high-power beam tube presents somewhat of a problem. While the screen might be operated from a 500-volt supply which could be used also for the oscillator section with suitable voltage-reducing resistors, a well-regulated source for the 4-250A screen does not work out so well. Screen current varies widely with excitation, biasing voltage, and loading, and it can easily run up to values which greatly exceed the dissipation rating during the process of tuning and adjusting. While such a system might be satisfactory in a transmitter operating at a fixed frequency, it is not too good when used in a ham-band transmitter where the frequency is.
changed often, necessitating frequent retuning.

Although a fair amount of power is wasted, a series dropping resistor from the plate supply seems to be the best method of supplying screen voltage. Not only does this system automatically keep the screen dissipation within reasonable limits, but the dropping resistor, or a voltage divider which wastes even more power, is required if the amplifier is to be plate-screen modulated without a special modulation transformer. This system also guarantees the simultaneous application of plate and screen voltages which reduces wear and tear on the screen. For a 2000-volt supply, the resistor should be a 15,000-ohm 200-watt unit. Since considerable heat is generated by the dropping resistor, it should not be placed under the r.f. chassis but external to it — possibly in the power-supply unit.

The transmitter is built on a 10x17x3-inch chassis with a 10 ½-inch standard rack panel. The mechanical arrangement shown in the photographs should be followed as closely as possible, since upon the placement of parts may depend the stability of the amplifier. The oscillator-circuit components are grouped at the left-hand end of the chassis. The Millen crystal sockets are lined up with their centers 1 ½ inches in from the rear edge of the chassis in the left-hand corner. The sockets for the 6L6 and the plug-in cathode coil, L1, are in line with their centers, 3 ½ inches from the back edge of the chassis, while the oscillator plate coil is in line with the 6L6, 6 inches from the rear edge of the chassis and 3 ½ inches from the left-hand end. The crystal switch is placed near the 6L6 socket and set at an angle with respect to the edges of the chassis. It is controlled by a knob at the center by means of a long ¼-inch shaft, which runs diagonally across the chassis, and a Millen 59005 all-metal flexible shaft coupling of the "universal joint" type.

The socket for the 4-250A is centered 7 ¾ inches from the left-hand end of the chassis and 3 inches from the rear edge. It is spaced 1 ½ inch below the chassis on metal pillars so that the base of the tube is shielded from the plate. A spring contact is fastened to the socket so that the metal ring around the base of the tube will be grounded when the tube is inserted in the socket. The amplifier plate-tank condenser is placed with its shaft 5 ½ inches in from the right-hand edge of the chassis, while the coil-base assembly is elevated on 3-inch cone insulators centered 2 ½ inches from the edge. The clips for the padding condenser, C13, required for the 3.5- and 7-Mc. bands, are mounted on top of the condenser on 1-inch tubular spacers. A pair of long 6-32 mounting screws, substituted for two of the stator-assembly screws, passing through the spacers, serve to make the connection between the stators of C3 and the terminals of C12. The Hammarlund CH-500 r.f. choke, RFC2, is mounted alongside the tank condenser, near the center, with the plate blocking condenser, C12, fastened to the top. High power sometimes shows up deficiencies which are not noticed when operating at low power. In this instance chokes which had been used previously with apparent success at lower power, burned up at 14 or 28 Mc. with higher power when the indication of loss became visible. The Hammarlund CH-500 was the only choke of several tried which stood up satisfactorily on all bands.

Plate voltage is fed from a Millen safety ter-
minal in the rear edge of the chassis to the bottom end of the r.f. choke through a Millen 32101 steatite bushing. The hole for the safety terminal should have a clearance of about 7/16 inch around the part which goes through the chassis, to decrease the danger of a voltage break-down at this point. The link output terminals are in the right-rear corner, insulated from the chassis on a National FWG polystyrene terminal strip.

Underneath, at the amplifier end of the chassis, are the metering switch, S2, and the 6.3-volt filament transformer. Because none of the available filament transformers for the 4-250A would fit under the chassis, a transformer was not included in the unit. Since this filament requires 14.5 amperes at 5.5-5.25 volts, the transformer should be located as close to the transmitter chassis as convenient and the leads run with wire not smaller than No. 10. Before operating the transmitter, it is important to check the filament voltage to make sure that it is within the required limits.

It should be mentioned here that there is a reason for specifying mica condensers for C9 and C11. Paper condensers at both points proved to be unsatisfactory under test. It was found that it was impossible to prevent self-oscillation in the output stage under certain conditions until the paper condensers were replaced by mica units.

On the panel, the milliammeter is placed to balance the amplifier tuning dial, the meter-switch knob to balance that of the oscillator tuning condenser, while the crystal switch is at the center, near the bottom edge. Along the rear edge of the chassis, from left to right, as viewed from the rear, are a terminal strip for making connections to the oscillator supply, the amplifier screen-voltage dropping resistor and to the biasing-voltage source, if one is used, the key jack, filament terminals for the 4-250A including a center-tap connection, a safety terminal for the high-voltage connection and a male plug for the 115-volt line to the 6.3-volt filament transformer.

The cathode coils (L1) are wound on Millen octal-base shielded forms without tuning slugs. A change in cathode coils is required only with a change in the band in which the crystal lies. The coil for use with 3.5-Mc. crystals requires an additional 100-µfd. mica condenser, Cx, connected across the winding as shown in the dotted lines in Fig. 1. This condenser is placed inside the plug-in shield along with the 3.5-Mc. coil. The 100-µfd. capacitor, C1, which is connected permanently in the circuit, is sufficient for use with 7- and 14-Mc. crystals. Since larger coils are desirable for the plate circuit of the oscillator, the coils for L2 are wound on 1-inch diameter forms enclosed in National type PB-10 plug-in shield cans. The shield should be grounded to the chassis through one of the available pins in the base.

External connections to the unit are indicated in Fig. 1. If both stages are to be keyed as shown, no fixed bias is necessary and all that is required is a grid leak of 5000-ohm 5-watt size, connected across the biasing terminals. This biasing system will serve also in case only the amplifier is to be keyed. Keying of the oscillator alone is not recommended because of the effects of soaring screen voltage mentioned previously, which makes it impossible to cut off plate and screen currents without exceeding the normal operating bias. For this reason, it is highly advisable to use an overload relay in the plate-supply circuit of the amplifier, to protect the tube in case the oscillator fails to function.

After the proper coils for the desired band have been plugged in and the crystal switch turned to select the proper crystal, the key may be closed with the low-voltage supply turned on, but with the high-voltage supply turned off. The combined oscillator plate and screen current at
resonance should be between 35 and 75 ma., depending upon the crystal frequency and whether or not the oscillator is doubling frequency. If the oscillator is operating at the crystal fundamental frequency, oscillation will cease abruptly when the plate tank circuit is tuned to the high-capacitance side of resonance. For reliable operation this circuit should be tuned slightly to the low-capacitance side of resonance — never to the high-capacitance side. When doubling frequency this characteristic disappears so that the plate circuit may be tuned to exact resonance where maximum output should occur.

Tuning the oscillator plate circuit to resonance should result in a grid-current reading when the meter is switched to the second meter-switch position. The reading will vary between 30 or 35 ma. and 40 ma. or more, depending upon the frequency and whether the oscillator is doubling frequency or working “straight through.” The potential of the high-voltage supply should be reduced during preliminary adjustments. If no other means of reducing the voltage is available, a 200-watt 115-volt lamp may be connected in series with the primary winding of the high-voltage transformer. The plate circuit of the amplifier should be tuned to resonance first with the antenna link swung out to the minimum-coupling position. The output tank circuit of the amplifier may be coupled through the link coil, either directly to a properly-terminated low-impedance transmission line, or through an antenna tuner to any type of antenna system. With the antenna system connected and the link swung in for maximum coupling, the plate current should increase when the antenna system is tuned through resonance. Every adjustment of the coupling or tuning of the antenna system should always be followed by a readjustment of the tuning of the amplifier tank circuit for resonance. As the loading is increased the plate current at resonance will increase. The loading may be carried up to the point where the plate current (cathode current, minus grid and screen currents) is 300 ma. at 2000 volts. If a small blower is used to force air through the shell at the base of the tube, plate voltage may be increased to 3000 volts, since the tank condenser has sufficient spacing for plate-screen modulation at this voltage. With normal operating conditions under load at 2000 volts, 300 ma., the screen current should not be over 100 ma. Under these conditions the screen voltage should be between 400 and 500 volts.

Once the oscillator plate and amplifier screen by-pass condensers and the amplifier r.f. choke had been changed as described previously, the amplifier settled down to an entirely stable condition. No difficulty was experienced with parasitic oscillations of any type and there was no tendency toward self-oscillation, even at 28 Mc. with the excitation removed and the bias reduced in an attempt to make the stage oscillate. A pair of 150-watt lamps connected in parallel as a dummy load looked like photofloods with the input running about 600 watts.

Ten-Meter Observations

Organization of the 28-Mc. observing program announced last month now is getting under way, and the Bureau of Standards is in the process of preparing log forms and similar material. Those who intend to participate are invited to write to the Bureau expressing their interest. Until regular forms are available, copies of log entries containing the type of data wanted, as outlined in May *QST*, will serve. Logs and communications should be addressed to the Radio Section, National Bureau of Standards, Washington 25, D.C.

In amplification of the collection and reporting of data, Dr. Dellinger writes: “Although it is recognized that few amateurs will be able to adopt the rigorous schedules necessary for a statistical analysis of data on a monthly basis, it is believed that schedules covering the same period each day for as many days as possible during a given month would be desirable. As pointed out previously, a report of complete failure to make any distant contacts for an entire schedule period on any one day would be just as important as a report of successful contacts. Only supposedly sky-wave contacts should be reported.

“If it is desired tentatively that each amateur choose to operate regularly in accordance with one or more of the three following plans, in order of importance as follows:

1. Regular schedules with other chosen amateurs.
2. Random contacts with as many different amateurs in an area as possible during a regularly-observed period each day.
3. Random observations with a receiver only on the same basis as (2) above.

Plan 3 would be open to enthusiasts who do not have transmitters.

“Although it is expected and desired that most of the amateurs who participate will choose the daytime and early evening hours when contacts will be most probable, it is hoped that a few venturesome persons will try a tedious night vigil on the chance of obtaining long-distance contacts via sporadic-E, which should occasionally be possible on northern latitudes, especially during the summer.

“We would like to keep all log sheets submitted. Therefore, participants should submit copies if they wish to retain their original log sheets.”

Let’s keep the dope rolling in to the Bureau!

Miniature Tubes in a Six-Meter Converter

A Simple Two-Tube Unit With 10.5-Mc. Output

BY RICHARD W. HOUGHTON, * WINKE

It is possible that more fellows might be tempted to try the new 50-54-Mc. band if they realized that the receiver end, at least, can be handled quite simply and inexpensively — provided a good low-frequency receiver is at hand. It requires nothing more than a converter, the output of which may be fed into the antenna terminals of the already-available communications receiver. In such a unit, the essentials are an oscillator and mixer; a radio-frequency stage may be added if somewhat better sensitivity is desired, but it should not be necessary if the object is simply to hear most of the signals on the band. The intermediate frequency chosen should be within the high-performance range of the available receiver, and the RMA approved value, 10.7 Mc., is a logical choice as a starting point.

Although designed for use with an HRO, which the author had available, the 6-meter converter to be described can be easily adapted for use with any communications receiver. To reduce initial expense and to make best use of available equipment, power for the unit is taken directly from the receiver itself. The additional filament- and plate-power requirements are small and should not overload the average receiver power supply.

It’s neither difficult nor expensive to get a good receiving system working on the 50-54-Mc. band if you already have an ordinary communications receiver. Here’s a converter design that takes advantage of some of the newer types of tubes that are particularly useful at v.h.f.

To secure maximum performance with minimum tube complement it was believed that the new miniature high-frequency tubes would be ideal. The 6AK5, a high-transconductance pentode, is used as the mixer, and a 6C4 works well as a tuned-plate grid-tickler oscillator.

As shown in the schematic diagram, Fig. 1, the oscillator voltage is injected at the screen grid of the mixer tube. The coupling condenser, Cg, has sufficient capacitance to act as the 6AK5 screen by-pass condenser as well. The grid tank circuit, comprised of L2 in parallel with C1, C2, and C6, resonates over the operating frequency range, 49.5 to 54.8 megacycles. C6 is ganged with the oscillator tuning condenser, C6.

The oscillator operates over a range 10.5 Mc. higher than that of the mixer, and the mixer plate circuit is tuned to this intermediate fre-
Fig. 1 — Circuit diagram of the 50-Mc. converter.

C1 — 15-µfd. fixed, ceramic, zero temp.-coeff. (Erie NPOA).
C2, C3; — 2-6-µfd. ceramic trimmer (Centralab 820-A).
C4 — 12-µfd. fixed, ceramic, zero temp.-coeff. (Erie NPOA).
C5 — 9-µfd. variable (National UMA-10 with 1 stator plate removed).
C6, C7, C8; 100-µfd. mica or ceramic.
C10, C12 — 50-µfd. mica or ceramic.

C11 — 35-µfd. fixed, ceramic, zero temp.-coeff. (Erie NPOA).
L1 — 6.3-volt pilot lamp.
L4 to L5, inc. — See Fig. 2.
R1 — 6800 ohms, ½ watt.
R2 — 1.5 megohms, ½ watt.
R3 — 0.47 megohm, ½ watt.
R4 — 0.1 megohm, ½ watt.
R5 — 25,000 ohms, ½ watt.
R6 — 10,000 ohms, 1 watt.
S1 — 4-pole double-throw switch, preferably with ceramic wafers (Oak type HC).
S2 — S.p.s.t. toggle.

The so-called 'beats' were combinations of the converter and receiver local-oscillator harmonics. Starting with the converter in use both low-frequency antenna terminals are switched to ground, thus minimizing direct receiver pick-up at the intermediate frequency. Single-wire or doublet antennas may be used at either high- or low-frequency inputs.

When operating the receiver over its normal frequency range, the converter filaments may be turned off by means of switch S2. This function also could be accomplished by means of an additional wafer on S1.

A four-prong-to-four-prong adapter, of the sort used for making tube substitutions, is used on the power cord to enable both it and the receiver cord to be plugged into the HRO power pack simultaneously. With receivers having integral power packs a different arrangement would be required, one possibility being to use a similar plug adapter under one of the power tubes in the receiver, picking up the "B" voltage at the screen-grid pin.

Mechanical Details

The tube-and-condenser assembly is mounted on a 3-inch-wide subchassis which is secured by four screws to the main chassis as shown in one of the photographs. Tabs bent up at each end of the bottom provide a mounting for the tuning

June 1946 19
condensers. Forty-five degree inclination of the tubes keeps them easily accessible should it be necessary to change them and at the same time brings the wiring within easy reach of a soldering iron—a feature frequently neglected in high-frequency equipment. The r.f. and oscillator coils are mounted on the main chassis as close as possible to their respective condensers and tubes. Tank leads are accordingly kept quite short and direct. The i.f. coil and condenser are likewise mounted on the chassis, in a position opposite the 6AK5 so that the plate lead crosses the condenser shaft at a right angle. All tuning slugs are accessible from the bottom of the unit.

Ceramic trimmer condensers are mounted on top of the tuning condensers, with the respective stator terminals soldered together. The trimmer- and air-condenser rotors are connected together by a short piece of bus wire. The tuning condensers are ganged by means of three insulated shaft couplings and two short lengths of bakelite rod.

Both low- and high-frequency antenna terminals are located at the back of the chassis. Short pieces of flexible lead should be provided for grounding one terminal, if the use of a single-ended antenna is contemplated. The i.f. output terminal strip is mounted on 3/4-inch spacers in such a position that short leads may be used to connect to the HRO antenna terminals. A knurled nut should be used on one of the mounting screws so that the receiver ground bus may be permanently connected to the converter.

The antenna switch, S1, is mounted on a bracket under the main chassis in such a position that short lengths of twisted-pair may be used to connect to the i.f. link and output terminals. A coupling and short length of brass shaft may be used to control the switch from the front panel.

Construction of the coils is shown in Fig. 2.

Alignment Procedure

Test equipment useful in alignment includes an absorption-type wavemeter calibrated from 49 to 65 Mc., and a high-impedance d.c. volt-
meter such as the RCA Junior Volt-Ohmyst (a 0-100 microammeter with a 200,000-ohm series resistor may be used as an effective substitute).

As a rough preliminary adjustment, set trimmers C_2 and C_5 at approximately one-half full capacitance. The tuning slugs may be set as follows, assuming that the National type XR-50 coil forms and slugs with 1½-inch shafts are used:

<table>
<thead>
<tr>
<th>Coil</th>
<th>Slug-Shaft Protrusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_4</td>
<td>7/16 inch</td>
</tr>
<tr>
<td>L_3</td>
<td>13/16 inch</td>
</tr>
<tr>
<td>L_5</td>
<td>3/8 inch</td>
</tr>
</tbody>
</table>

The step-by-step alignment procedure is then as follows:

1. Set the dial near the high-capacitance end of the range and measure the oscillator frequency by adjusting the loosely-coupled wavemeter for a dip in grid voltage, as indicated by the high-impedance voltmeter connected between the chassis and Pin No. 6 on the 6C4. Adjust the slug in L_4 until this frequency is approximately 60.5 Mc.

2. Set the dial near the low-capacitance end and adjust C_6 until the oscillator frequency is approximately 64.5 Mc.

3. Repeat steps 1 and 2 until the proper range, 60.5 to 64.5 Mc., is covered over the desired number of dial divisions for good bandspread without requiring retuning at either end.

4. Couple the converter to the antenna terminals of the receiver by means of a short twisted or coaxial transmission line. Set the receiver at approximately 10.5 Mc., leaving S_1 in its h.f. position. Adjust the slug in L_5 for maximum noise. If a noise peak cannot be observed readily, a man-made static generator such as a fluorescent lamp in the vicinity should help materially.

5. Set the dial at the low-frequency end of the band and adjust the slug in L_2 for a noise peak.

6. Reset the dial at the high-frequency end and adjust C_2 for maximum noise.

7. Repeat steps 5 and 6 until the noise level is fairly constant throughout the band. If necessary, the plates of C_2 and C_5 may be bent slightly to improve tracking.

The background noise should be reduced noticeably if either L_2 or L_4 is short-circuited.

The converter is now ready for operation, and in the case of the HRO should be directly coupled to the receiver by means of short lengths of bus wire. The slug in L_5 may be reset again for peak noise at 10.5 Mc. The dial may be directly calibrated against crystal-controlled signals on the band or against a one-megacycle crystal standard, if available.

For those interested in performance, the signal-to-noise ratio was measured with the converter connected to a standard HRO. A 10-dB change in audio output was observed between on-off, using 1000-cycle audio at 30 per cent modulation, with an input level considerably less than 1 microvolt. This is of the same order of magnitude as that to be expected of the receiver itself when operated at 10.5 Mc. One microvolt input, as specified above, delivered well over one watt of readable audio output. The image ratio of this receiving system speaks for itself when a comparison is made of r.f. and i.f. frequencies.

Last, but far from least, we come to the crucial point — the number of hard-earned dollars necessary. A rapid survey of current catalogs would seem to indicate that twenty dollars should cover everything from tubes to cabinet.
June 22nd-23rd—Tenth ARRL Field Day!

Annual Dates Set for Testing Self-Powered Emergency Rigs Afield—
Emergency Corps, Club and Individual Participation Scheduled—
Separate Score Listing for Groups or Persons Using
Only V.H.F.—U.H.F.—S.H.F.

Emergency Coordinators and their groups, also radio clubs, are invited to arrange special Field Day activities. Every amateur is invited to take part, whether in group plans or individually. There is no activity to compare with an ARRL Field Day. Dedicated to advancement of emergency-readiness of the amateur service, it offers opportunity for testing equipment, perfecting operating techniques, and reviewing message procedure. Liberal dividends in radio result, and fun and fellowship are guaranteed, with the outings normally planned throughout the nation.

Testing of self-powered amateur stations in actual operation is the top aim of the FD. Join a group or get up a group to get maximum fun and profit from the occasion. Send a postal for the ARRL Emergency Corps membership application unless an ARRL Coordinator already knows your equipment and readiness to assist in emergencies or emergency radio tests.

No amateur station should be regarded as complete without some measure of self-powered equipment. To be prepared for communications emergencies requires advance readiness. The operator must have the equipment, know how to set up quickly for efficient operation, know how to handle messages (order of parts, check, receipting responsibility, record of handling data), know how to tune up workable ready-cut antennas in new locations, how to make the most of low power, and many other things. Operator experience is as essential as the equipment.

Operation: The aim for each field-portable is to work as many other amateur stations as possible (either home or afield) in the time allotted. Report your FD location and circumstances by radio message to ARRL. Advance entry is not required. All participating will use the call (c.w.) CQ FD or (phone) CALLING ANY FIELD DAY STATION. Mobile work does not count. It is a test of portables. Manufactured contacts with any station or stations of members of the same field group in the contest do not count. Any or all amateur frequency bands may be used.

Portable stations operated in the field (away from "home" address) are eligible to submit field scores. Only portable setups may be listed with FD classification. Individuals or groups under one call must be "in the same locality," "in one group or building or field," constituting a single FCC-notified location. To have points count, all station control points at a FD station must be within 500 horizontal feet of some given point.

The Operating Period: Operating time for the FD shown in logs must be between Saturday, June 22nd, 4 p.m., your LOCAL TIME and Sunday, June 23rd, 6 p.m., your local time.

FD Scoring: Each nonportable amateur station worked counts one point toward the score. Portable-to-portable contacts will count two points.

1 To comply with FCC regulations for portable station operation, licensees must make advance notification of the location in which the portable will be operated, for work either above or below 25 Mc., to the Inspector-in-Charge of the district representing the original licensing area, and also a second notice to the Inspector-in-Charge of the one of the 23 U. S. FCC Districts (see ARRL License Manual list) in which the operation will take place. Then in "FD" operation it is necessary to use proper station identification (DN 1-2 etc.) after the "notified" identifying station call.

2 10 points will be deducted from the possible 25 for incorrect check, failure to show full handling data, improper order of sending preamble, or other defects or variance from standard ARRL procedure. Word count for correct checking is explained in the present and prevwin copies of Operating an Amateur Radio Station, copies on request to ARRL members.

HOME STATIONS

- Home stations are invited to list all their contacts with FD stations in the above period, sending these in for a separate score listing—to show what they can do—and to encourage the cause of amateur preparedness even if they are personally unable to join a FD group as yet. Home-station scores will be the number of FD portables worked plus points for FD messages handled (1 ea. rec'd if copy mailed Hq.) (2 for relays; 1 when rec'd, 1 when sent forward). Stations claimed must be listed with the time worked, and message credits must be substantiated by copies of the messages, with full handling data.

22 QST for
copy is submitted with claimed score. FD Messages to Hq. all will include the following data: number of operators, location, conditions, power. One additional point (also before multiplier) may be claimed for radio handling of each FD message of another group if copy showing full handling data is submitted with station list and claimed score (½ point for receiving and ½ point for radio relay transmission).

Multipliers: Score may be multiplied by 2 if *either* the receiver or transmitter is independent of mains or commercial power source, by 3 if *both* transmitter and receiver are supplied from an independent local source or sources. The following additional score multiplier is determined by the power input to the final stage (plate voltage times plate current):

(a) Up to and including 30 watts — multiply score by 3.

(b) Over 30, and up to 100 watts — multiply score by 2.

(c) Over 100 watts — multiply score by 1.

Entries for stations located in the Northwestern, Pacific, Rocky Mountain, Southwestern and West Gulf Divisions may have the score computed as above described multiplied by a final multiplier of 1.5 to assist in equalizing contact opportunity for Field Day setups in the less-populous areas.

V.H.F.-Only Score Listings: To give recognition to work accomplished using only v.h.f.-u.h.f.-s.h.f. bands, any such scores will be grouped under a special appropriate heading. If a reporting station uses equipment on bands above 50 Mc. and likewise reports points for work on lower frequencies, its scoring will be given in QST with similarly-reported AEC, Club and individual scores, not in this special listing. Contacts cannot count for both a v.h.f. and a v.h.f.-h.f. listing. This new score grouping is designed to lend point to the participation of v.h.f. Emergency Corps networks that may wish to arrange special activities or simulated tests on these dates.

Reporting: Score claims must be shown as the sum of points for each setup. A station-worked list for each band must show contact times for each contact. A statement covering on-off times for bands and transmitters is required. State the maximum number of transmitting units in simultaneous operation at any time. Attach copies of all messages for which any credit is expected, just as handled and with time and stations indicated. Note the source(s) of plate and filament power, along with the "watts input" for each rig. All reports to count must be mailed on or before July 11, 1946, to constitute an entry.

In the event of any doubtful points the interpretation and evaluation by the rules committee on the matter in question will be final. For the purpose of QST listings, groupings of participating stations will be based on the maximum number of simultaneously-operated transmitters used at any time in the contest period by any entrant. All units or setups constituting a score group are placed under the call and control of one licensee who has made the required advance notification meeting FCC requirements and who is responsible for accuracy of all logs and records.

Design your station equipment, especially exciters and receivers, for portability, for connection to battery or emergency supply quickly if power fails and necessity arises. Don’t deny yourself the ability and pleasure to set up in any location when radio links to agencies served by amateurs in the public interest may be needed. Surprisingly efficient and useful equipment may be operated from vibrator-type, generator and battery power supplies. Gas-electric emergency power units for 300 watts or more are not as expensive as they used to be.

The only purpose of the scoring system is to make it interesting to see how our work measures up with others who go afield. Group-planned Field Days are interesting, constructive, and good fun. If you cannot be with a group, aim to check in for a few contacts with an individual setup. Prove emergency readiness on these dates by participation! Here’s luck, and we’re looking for your report.

— F. E. H.

Silent Keys

It is with deep regret that we record the passing of these amateurs:

W1AQA, Wm. J. Brown, jr., Boston, Mass.
W1EMH, Lt. Fred L. Lamb, USNR, Waban, Mass.
W1LMN, Warren O. Richardson, Waltham, Mass.
W2HFB, Wm. H. Zilliox, Hillside, New Jersey.
Ex-4DO, 4SW, Dr. M. M. Burns, Pelham, Ga.
W5DXG, Lt. Guy M. Brown, jr., USNR, Vicksburg, Miss.
W5GB, Harry F. James, Gage, Okla.
W6SF, Carl Schneider, Stockton, Calif.
W8DES, Fred Bubb, Palm Springs, Calif.
W9CTS, R. G. Carpenter, Alton, Ill.
W9RCA, Robert B. Angell, East Dubuque, Ill.
KA1BB, Newland and Barry Baldwin, Manila, P. I.
The new HQ-129-X receiver might almost be the 1946 city cousin of the HQ-120-X, since a very strong family resemblance shows through the sophisticated styling of the 129. The controls are arranged in exactly the same way on the panel of the 129 as they were on the 120, but the knobs, panel and case of the 129 show the modern trend toward conservative streamlining. The circuit has been handled in much the same way — there is a strong family likeness, but the circuit of the 129 has been improved and modernized wherever practicable.

Front-panel controls on the receiver are Crystal Selectivity, Crystal Phasing, Send-Receive, Sensitivity (r.f. and i.f. gain), Main Tuning, Antenna Compensator (antenna-circuit trimmer), Band Switch, Bandspread Tuning, Audio Gain (and a.c. switch), Noise Limiter on-off switch, Manual-VC-AVC-BFO switch, Beat Oscillator tuning, and headphone jack. A signal-strength meter is also included which, according to the instruction book, is calibrated in units from 1 to 9 in 6-db. steps. The production S-meter setting is 50-microvolts input for a reading of 9 on the meter, but this can be adjusted by the operator to suit his particular taste in meter calibration.

The R.F. Section

The “front end” of the HQ-129-X uses a 6SS7 r.f. amplifier and a 6K8 converter. The 6SS7 is a single-ended version of the 6S7, and has a low-drain heater and a slightly higher mutual conductance than the 6K7 and similar super-control r.f. pentodes. Both automatic and manual gain are applied to the r.f. stage but, in the interests of stability, the gain of the 6K8 is not varied. For further stabilization, the voltage to the oscillator portion of the 6K8 is fed from a VR-105 regulator tube.

During the past five years you may have had a few idle moments to dream about the shiny chromium communications receivers of the promised brave new plastic world, and with this issue we inaugurate a series of descriptions of these receivers. We plan to point out the pertinent and new mechanical and electrical features of each receiver, as gleaned from a study of the sample, but we will avoid passing any opinion on the equipment because it is so much a matter of individual preference and demands.

The tuning range of the receiver, 0.54 to 31.0 Mc., is broken down into six bands, and the band switch has no limit stop on it, a convenience if one wants to take a short-cut from Jack Benny to the 10-meter band or vice versa. The bandspread dial, calibrated directly for the 3.5-, 7-, 14- and 28-Me. amateur bands, is used by setting the main tuning dial to the high-frequency end of the bandspread range, under which condition the bandspread frequencies can be read directly. Both dials have their scales spread over 310 degrees, and eight revolutions of the tuning knobs are required for this rotation. The bandspread is the usual electrical type that uses a small bandspread condenser in parallel with the main tuning condenser, although it is made elaborate in this case by breaking down the bandspread condenser into three sections, so that various sections or combinations of them can be used on the different amateur bands. In this way the L-to-C ratio can be made closer to the optimum value for each band.

A bottom view of the receiver shows the band-changing switch and the r.f.-coil assembly. Heavy wheels on the tuning-knob shafts are used for "smooth" tuning.
The I.F. Amplifier

The i.f. amplifier is unconventional when compared to those of most communications receivers in that it uses three i.f. stages instead of the usual two. The amplifier consists of three stages of 6SS7s, with the crystal filter between the first and second i.f.-amplifier tubes. The gain per stage is purposely made low, by tapping down the grids on the secondaries of the transformers and using degeneration, since three stages of high-gain amplification are not needed, but the additional tuned circuits give an overall selectivity characteristic with steeper sides than is obtained with only two stages. An additional advantage of an amplifier of this type is that the detuning of the i.f. amplifier with changes in gain — by manual adjustment or a.v.c. — is negligible. This is not the case with an amplifier running with high gain per stage, since changes in the mutual conductance of the tubes, with changes in gain, reflect different input capacities across the secondaries of the transformers and consequently detune the circuits. This can become quite objectionable if the effect is marked and a signal is fading over a wide range, and the apparent effect is one of detuning with changes in signal strength. The crystal filter appears to be the same as that used in the HQ-120-X; a six-position switch gives six degrees of selectivity, ranging from good broadcast-quality bandwidth with the crystal switched out, through three crystal positions useful for 'phone reception to two positions for single-signal c.w. reception. Both automatic and manual gain are applied to the first and second i.f.-amplifier stages — the third stage operates at fixed gain. One section of a 6H6 is used for the second detector and a.v.c. source, and the other section is used in a noise-limiter circuit. The b.f.o., a 6SJ7 in the usual electron-coupled oscillator circuit, is capacity coupled from the plate of the oscillator to the second-detector plate.

The noise-limiter circuit, shown in Fig. 1, is a new variation of the series type of limiter, and it has the important feature that it automatically accommodates itself to the carrier level. A negative voltage proportional to the carrier level is applied to the cathode of the limiter diode through a filter network \(R_4C_a \) and \(R_4 \). Modulation changes will not affect this voltage because of the long time constant of \(R_4C_a \), but slow changes in carrier level caused by fading or tuning in another signal will be readily transmitted. Half of the voltage developed at \(C_2 \) is applied to the plate of the diode through the voltage divider \(R_1R_3 \). Thus the anode is normally only half as negative (with respect to ground) as the cathode — in other words, it is positive — and the diode will conduct. Normal audio voltage developed across \(R_3 \), which is part of the detector diode load, will cause a change in the current through the limiter diode and hence a change in the voltage across \(R_4 \), and thus any normal modulation will be transmitted without appreciable distortion. However, if a pulse of noise comes along that rises above twice the normal carrier level, or even if the carrier is modulated over 100 per cent, the anode of the limiter will be negative with respect to the cathode, and the diode will not conduct as

![Fig. 1 — Noise-limiter circuit of the HQ-129-X.](image)

\[
\begin{align*}
C_1, C_2 & = 100 \mu\text{fd.} \\
C_a & = 0.05 \mu\text{fd.} \\
R_1, R_4 & = 0.27 \text{ megohm.} \\
R_3 & = 1.0 \text{ megohm.} \\
R_4 & = 0.82 \text{ megohm.}
\end{align*}
\]

(Concluded on page 108)

RENEWAL APPLICATIONS NOT WANTED — STATION LICENSES AGAIN EXTENDED

We have been wondering what the schedule would be for filing renewal applications. And everybody was keenly cognizant that the six months' reinstatement of our station licenses was due to expire May 15th. FCC settled both matters for us on April 17th when it directed in its Order 130-F that amateur station licenses that were validated for six months by either of its November orders be extended for the duration of the term of the operator license held by the licensee of the station. Operator licenses themselves have been extended so that none expires before December 8th of this year. The new FCC order extends the term of the station license to coincide with the term of the operator license. It accomplishes that by amending the first ordering clause of Orders 130 and 130-A to read as follows:

(1) Each amateur radio station license which was valid at any time during the period December 7, 1941, to September 15, 1942, and which has not heretofore been revoked, is hereby validated for the term, as extended, of the amateur radio operator license held by the licensee of the station.

Now we have a schedule for the simultaneous expiration of both station and operator licenses. We need not apply for renewal of either (or modification of the station license; see item in this column on "New Portable-Status Rules") until the expiration date approaches. Moreover, FCC does not want us to file renewal applications now. This latest development therefore washes out the suggestion in our last issue that amateurs apply soon for renewal from those areas where calls are due to be changed upon renewal. FCC asks us who are already licensed to sit tight and let them devote their limited facilities to new applicants who do not yet possess licenses.

Let us now see when renewal applications should be filed. Your station license expires when your operator license does, so get out your operator ticket and look at its date of issuance. You can see your schedule from the following analysis which we have made of the effect of the various FCC orders in the 115 series extending operator licenses:

If your operator license was issued between Dec. 7, 1938, and Dec. 7, 1939, and was first due to expire between Dec. 8, 1941, and Dec. 7, 1942, it has been extended exactly 5 years.

If your operator license was issued between Dec. 7, 1939, and Dec. 7, 1940, and was first due to expire between Dec. 8, 1942, and Dec. 7, 1943, it has been extended exactly 4 years.

If your operator license was issued between Dec. 7, 1940, and Dec. 7, 1941, and was first due to expire between Dec. 8, 1943, and Dec. 7, 1944, it has been extended exactly 3 years.

If your operator license was issued between Dec. 7, 1941, and Dec. 7, 1942, and was first due to expire between Dec. 8, 1944, and Dec. 7, 1945, it has been extended exactly 2 years.

If your operator license was issued between Dec. 7, 1942, and Dec. 7, 1943, and was first due to expire between Dec. 8, 1945, and Dec. 7, 1946, it has been extended exactly 1 year.

If your operator license was issued between Dec. 7, 1943, and Dec. 7, 1944, and was first due to expire between Dec. 8, 1946, and Dec. 7, 1947, it has not been extended.

Thus it will be seen that all operator licenses in the above categories are now going to expire on some date between Dec. 8, 1946, and Dec. 7, 1947; and, if you also have a station license issued before September 15, 1942, it is going to expire on that same date. That date is the anniversary of your date of issuance. Ascertain that date in your own case and write it down some place where you won't overlook it. It is the last date on which you may file a renewal application. Under the new FCC rules you may do so any time during the preceding 120 days. You get the amateur application form from your district inspector, attach your old license or licenses, and mail direct to FCC in Washington. It is not expected that any proof of use of licenses will be required in these first postwar renewal applications.

NEW PORTABLE-STATUS RULES

FCC on April 10th issued its Order 132, making important changes in the rules for both "fixed-portable" and truly portable operation.

Notice of portable operation (including "fixed-portable") has not heretofore been required above 25 Mc. Portable operation has caused some interference to other services that cannot be traced because of the lack of notices. Consequently FCC temporarily suspended the waiver of such notices, in § 12.92, and now all portable operation, both above and below 25 Mc., must be reported in advance to the inspector in whose district it will occur. Mobile operation above 25 Mc. is unaffected and still permitted with notice.

So many amateurs are now operating "fixed-
<table>
<thead>
<tr>
<th>District</th>
<th>Territory</th>
<th>Address, Radio Inspector-in-Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 2</td>
<td>The counties of Albany, Bronx, Columbia, Delaware, Dutchess, Greene, Kings, Nassau, New York, Orange, Putnam, Queens, Rensselaer, Richmond, Rockland, Schenectady, Suffolk, Sullivan, Ulster and Westchester of the State of New York; and the counties of Bergen, Essex, Hudson, Hunterdon, Mercer, Middlesex, Monmouth, Morris, Passaic, Somerset, Sussex, Union and Warren of the State of New Jersey.</td>
<td>748 Federal Bldg., 641 Washington St., New York, N. Y.</td>
</tr>
<tr>
<td>No. 4</td>
<td>The State of Maryland; the Districts of Columbia; the counties of Arlington, Clark, Fairfax, Fauquier, Frederick, Loudoun, Page, Prince William, Rappahannock, Shenandoah and Warren of the State of Virginia; and the counties of Kent and Sussex of the State of Delaware.</td>
<td>508 Old Town Bank Bldg., Baltimore, Md.</td>
</tr>
<tr>
<td>No. 5</td>
<td>The State of Virginia except that part lying in District 4, and the State of North Carolina except that part lying in District 8.</td>
<td>402 New Post Office Bldg., Norfolk, Va.</td>
</tr>
<tr>
<td>No. 6</td>
<td>The States of Georgia, South Carolina, and Tennessee; and the counties of Ashe, Avery, Buncombe, Burke, Caldwell, Cherokee, Clay, Cleveland, Graham, Haywood, Henderson, Jackson, McDowell, Macon, Madison, Mitchell, Polk, Rutherford, Swain, Transylvania, Watauga and Yancey of the State of North Carolina; and the State of Alabama except that part lying in District 8.</td>
<td>411 Federal Annex, Atlanta, Ga.</td>
</tr>
<tr>
<td>No. 7</td>
<td>The State of Florida, except that part lying in District 8.</td>
<td>312 Federal Bldg., Miami, Fla.</td>
</tr>
<tr>
<td>No. 8</td>
<td>The States of Arkansas, Louisiana and Mississippi; and the city of Texarkana in the State of Texas; the counties of El Paso, Hidalgo, Hud-son, Webb, Zapata and Zavala in the State of Texas; and the State of Alabama.</td>
<td>400 Audubon Bldg., New Orleans, La.</td>
</tr>
<tr>
<td>No. 9</td>
<td>The counties of Aransas, Brazoria, Brooks, Calhoun, Cameron, Chambers, Fort Bend, Galveston, Goliad, Harris, Hidalgo, Jefferson, Jim Wells, Kenedy, Kleberg, Matagorda, Nueces, Refugio, San Patricio, Victoria, Wharton and Willacy of the State of Texas.</td>
<td>404 Post Office Bldg., Galveston, Tex.</td>
</tr>
<tr>
<td>No. 10</td>
<td>The State of Texas except that part lying in District 9 and in the city of Texarkana; and the States of Oklahoma and New Mexico.</td>
<td>500 U. S. Terminal Annex Bldg., Dallas, Tex.</td>
</tr>
<tr>
<td>No. 11</td>
<td>The State of Arizona; the county of Clark in the State of Nevada; and the counties of Imperial, Inyo, Kern, Los Angeles, Orange, Riverside, San Bernardino, San Diego, San Luis Obispo, Santa Barbara and Ventura of the State of California.</td>
<td>839 U. S. Post Office & Courthouse Bldg., Los Angeles, Calif.</td>
</tr>
<tr>
<td>No. 12</td>
<td>The State of California except that part lying in District 11; the State of Nevada except the county of Clark.</td>
<td>322 Customhouse, San Francisco, Calif.</td>
</tr>
<tr>
<td>No. 13</td>
<td>The State of Oregon; and the State of Idaho except that part lying in District 14; and the counties of Washtucnan, Cowlitz, Clark, Skamania and Klickitat of the State of Washington.</td>
<td>803 Terminal Sales Bldg., 1220 S. W. Morrison St., Portland, Ore.</td>
</tr>
<tr>
<td>No. 14</td>
<td>The State of Montana; the State of Washington except that part lying in District 13; and the counties of Benewah, Bonner, Boundary, Clearwater, Idaho, Kootenai, Lewis, Nez Perce and Shoshone of the State of Idaho.</td>
<td>808 Federal Office Building, Seattle, Wash.</td>
</tr>
<tr>
<td>No. 15</td>
<td>The States of Colorado, Utah and Wyoming.</td>
<td>504 Customhouse, Denver, Colo.</td>
</tr>
<tr>
<td>No. 16</td>
<td>The States of North Dakota, South Dakota and Minnesota; the counties of Alger, Barras, Chipewa, Delta, Dickinson, Gogebia, Houghton, Iron, Keweenaw, Luce, Mackinac, Marquette, Menominee, Ontonagon and Schoolcraft of the State of Michigan; and the State of Wisconsin except that part lying in District 18.</td>
<td>208 Uptown P. O. & Federal Courts Bldg., St. Paul, Minn.</td>
</tr>
<tr>
<td>No. 17</td>
<td>The States of Nebraska, Kansas and Missouri; and the State of Iowa except that part lying in District 18.</td>
<td>809 U. S. Courthouse, Kansas City, Mo.</td>
</tr>
<tr>
<td>No. 18</td>
<td>The States of Indiana and Illinois; the counties of Allamakee, Buchanan, Cedar, Clayton, Clinton, Delaware, Des Moines, Dubuque, Fayette, Henry, Jackson, Johnson, Jones, Lee, Linn, Louisa, Muscatine, Scott, Washington and Winneshiek of the State of Iowa; the counties of Columbia, Crawford, Dane, Dodge, Grant, Green, Iowa, Jefferson, Kenosha, Lafayette, Milwaukee, Ozaukee, Racine, Richland, Rock, Sauk, Walworth, Washington and Waukesha of the State of Wisconsin.</td>
<td>246 U. S. Courthouse Bldg., Chicago, Ill.</td>
</tr>
<tr>
<td>No. 19</td>
<td>The State of Michigan except that part lying in District 16; the States of Ohio, Kentucky and West Virginia.</td>
<td>1029 New Federal Bldg., Detroit, Mich.</td>
</tr>
<tr>
<td>No. 20</td>
<td>The State of New York except that part lying in District 2; and the State of Pennsylvania except that part lying in District 3.</td>
<td>328 Federal Building, Buffalo, N. Y.</td>
</tr>
<tr>
<td>No. 21</td>
<td>The Territory of Hawaii, Guam, Wake, Midway, Am. Samoa.</td>
<td>609 Stangenwald Bldg., Honolulu, T.H.</td>
</tr>
<tr>
<td>No. 22</td>
<td>Puerto Rico and the Virgin Isds.</td>
<td>322 Federal Bldg., San Juan, P. R.</td>
</tr>
<tr>
<td>No. 23</td>
<td>The Territory of Alaska.</td>
<td>7 Shattuck Bldg., Juneau.</td>
</tr>
</tbody>
</table>
portable" after several changes of address that FCC mail to amateurs (including citations) isn't being delivered, and consequently § 12.93(a) has been temporarily suspended and a new procedure substituted. Our old rule required notice every 30 days, with not over four such notices permitted unless modification was applied for. FCC wants to concentrate on the issuance of new licenses and is not yet in position to entertain applications for modification from amateurs who want to escape signing the portable indication. We have our licenses, and FCC has just extended their validity, while we meanwhile operate under simplified "fixed-portable" requirements: one notice (stating name, call, and station location) must be sent the inspector in charge of the district where the amateur was when licensed, and one notice to the inspector of the district where the amateur is now located (if that be a different inspection district). One such set of notices is good for all time, if one stays at that address. One may move again and send another set of notices for each such move. Modification applications are not wanted. The requirement applies to all frequency bands.

Amateurs still operating at the licensed address have nothing to file except when they engage in true portable operation.

When operating "fixed-portable" or portable or mobile, the portable indicator to be signed by c.w. or stated in words by voice must be in terms of the new call areas—which have been in effect since October 24th. The call itself, however, is that which FCC has assigned you, and it must be so signed—even though you have a new amateur next door signing the new call-area digit; he too is signing what FCC assigns him. Digits in calls will get changed only as FCC issues new or renewed licenses.

It is important to send your notices to the right inspectors. FCC inspection districts frequently split states into counties. The required notice for portable operation must be sent the inspector whose district includes the county in question. On page 27 we give you both the text of the new FCC order and an up-to-date listing of the FCC districts.

ORDER NO. 132

At a session of the Federal Communications Commission held at its office in Washington, D. C., on the 10th day of April, 1946,

WHEREAS, the large number of new and renewal amateur station and operator license applications recently filed with the Commission has made their prompt processing difficult; and

WHEREAS, many amateur station licensees have changed their station locations since the issuance of their station licenses and now operate from new fixed locations, making it difficult for the Commission to communicate with them;

WHEREAS, the provisions of § 12.92 of the Commission's Rules exempt all amateurs who operate portable stations on frequencies above 25 Mc. from the requirements of prior notice to the district inspector where operation is intended; and

WHEREAS, the provisions of § 12.93(a) of the Commission's Rules are not presently adequate to regulate the operation of non-portable amateur radio stations at permanent locations other than those specified in the station license;

IT IS ORDERED THAT

1. The provision in § 12.92 of the Commission's Rules exempting amateur radio station licensees who operate portable stations on frequencies above 25 Mc. from the requirements of prior notice to the district inspector where operation is intended is suspended until further order of the Commission. On and after the date of this order, the operation of portable stations on frequencies above 25 Mc. shall be subject to the same requirements of prior notice as are specified for the operation of portable stations on frequencies below 25 Mc. in § 12.92.

2. The provisions of § 12.93(a) of the Commission's Rules regarding the operation of non-portable stations which have been moved from one permanent location to another not specified in the station license are suspended until further order of the Commission.

3. The license of an amateur radio station may, on and after the date of this order, commence operation at a permanent location other than that specified in the station license if advance written notice is given to the inspector in charge of the district for which the station license was issued, and to the inspector in charge of the district in which the operation (on frequencies below or above 25 Mc.) is intended of the following particulars: the station call, the name of the licensee, and the proposed station location.

4. The license of an amateur radio station, who is now operating at a permanent location other than that specified in the station license may continue such operation if, within thirty days of the date of this order, written notice is given to the inspector in charge of the district for which the station license was issued, and to the inspector in charge of the district in which the station is being operated (on frequencies below or above 25 Mc.) of the following particulars: the station call, the name of the licensee, and the proposed station location.

5. The operator of an amateur radio station located at a permanent location other than that specified in the station license shall follow the calling procedure referred to in § 12.93(b).

This Order shall become effective immediately.

A.C.S. NEEDS HAMS

A lot of GIs separating from the Army and Navy these days, officers and enlisted men alike, are not finding civilian life as they thought it would be. Once the first thrill of being "free" wears off, and they have to settle down to this business of making a living, they find the going plenty rough—so much so that they're drifting back into the services, little by little.

It goes without saying that former ACS men who reenlist are finding the way back to their old jobs, especially those who were hams, or who became hams as a result of their ACS connections. ACS is partial to hams. The big brass in ACS are mostly hams and you know what that means. In almost any outfit you will find hams all around you performing their interesting jobs in a way that reflects their ham careers. During free time they're busy building and operating their own rigs. They are encouraged to do this and helped in many ways. At many ACS installations, both here and overseas, there are group rigs on the air at which any ham in the outfit can pound brass for the asking.

ACS has been going to bat for the hams ever since it was organized. They're not going to stop now. They need men, skilled men, and they need them badly. They'll get them, all right, one way or another, but they want hams. They are especially interested in former ACS men and other ham discharges. So if you're getting disgusted

* ACS (Air Communications Service) was formerly AACS (Army Airways Communications System).
with conditions in civilian life, and find yourself occasionally longing for the days when everything was furnished by your Uncle Sam, give ACS some thought.

Here's the procedure. If you're a dischargee you have your choice of services when you reenlist. If you choose the Air Forces, and have previously served with the ACS, it's a cinch that your experience will put you back in the same outfit. If you weren't with ACS, drop a line to the ACS recruiting officer, Langley Field, Va., state your qualifications and experience, and say that you want in. Although ACS can't guarantee that you'll wind up there, they'll do their best to get you, and your chances are very good.

In any event, the ACS man will be glad to furnish you with all the facts and figures. What can you lose by dropping him a line?

WHAT BANDS AVAILABLE?
Below is a summary of the U.S. amateur bands on which operation is permitted as of May 15th. Future changes will be announced by WIAW broadcasts. Figures are megacycles. A0 means an unmodulated carrier, A1 means c.w. telegraphy, A2 is m.c.w., A3 is a.m. 'phone, A4 is facsimile, A5 is television; FM means frequency modulation, both 'phone and telegraphy.

3.500- 4.0 - A1
3.900- 4.0 - A3, Class A only
27.185- 27.455 - A0, A1, A2, A3, A4, FM
29.0 - 29.7 - A3
29.0 - 29.7 - FM
50.0 - 54.0 - A1, A2, A3, A4
52.5 - 54.0 - FM (is only)
144.0 - 148.0 - A1, A2, A3, A4, FM; except band
144.0 - 146.5 - within 50 mi. of Washington, Seattle and Honolulu.
235 - 240 - A1, A2, A3, A4, FM
420 - 430 - A1, A2, A3, A4, A5, FM
1,215 - 1,295
2,800 - 2,450
3,250 - 1,605
10,000 - 10,500
21,000 - 28,000
Above 30,000

* Peak antenna power must not exceed 50 watts.

STAFF NOTES
New names in the QST masthead include that of Harold M. McKean, WlCEG, as assistant to the editor. Mac took up amateur radio in 1928 at a tender age and did notable work with a pair of push-pull '10s. He has been a newspaperman for many years, coming to us from the advertising department of the New Britain Herald. During the war he served as an RT1e in the Coast Guard, graduating at the top of his class as an advanced radio technician and later planning courses and acting as head radar-laboratory instructor at the USCG Radio Engineering & Maintenance School at Groton, Conn.

Another new face is that of Richard M. Smith, W2FTX/1, from Flushing, N. Y., now a technical assistant in our Technical Department.

Graduated from Pennsylvania State College in 1937, he served during the war as senior instruction-book editor for Hazeltine Laboratories, builders of secret war-time electronic gear. He has been an active ham since 1933, working most bands on both 'phone and c.w., and is interested mainly in low-powered stations.

A. David Middelton, W2OEN/1, has been transferred from the Editorial Department to the Technical Department as a technical assistant and will devote his talents largely to the design and construction of apparatus for the Handbook.

John T. Rameika, WlJJR of Hartford, is the new senior operator at WIAW. Active for many years and possessed of a clean fist, John holds not only Class A but commercial first-class telephone and second-class telegraph licenses. If amateur radio weren't his first love, he would still be a mechanical-department foreman, his skill as a mechanic showing in the admirable construction of his home station.

The "reconversion" of the headquarters office establishment is now practically complete and we are set for lots of hard work. There are over fifty of us now. Come in and see us if you get down to New England this summer on your vacation!
I's a warm June, 1921, and anticipation of summer's QRN is not pleasant. But are we going to QRT for the season as in past years? No! We've got "high-pitched" c.w. now and the optimists in our ranks are prophesying year-round traffic handling for our nets. In announcing ARRL's summertime Static-Puncturing Contest, QST for the month says, "The main idea is to settle once and for all, the question whether or not c.w. will come through when the spark falls down."

Receivers for c.w. have been our problem; they have not, in fact, kept abreast of the development of our new c.w. transmitters. John L. Reinartz, lQP, comes up with "A Receiving Tuner for C.W." in a timely lead technical article. His single-bulb receiver, with a range of 150 to 450 meters, oscillates nicely at any wavelength to which the grid circuit is tuned. The aerial circuit and coupling never need be adjusted. You just start the receiver oscillating, vary the secondary, and you will hear c.w. stations as you pass their waves. You can stop without effort on any of them, or switch almost instantly back and forth from one to the other, and find them always in the same spot on the dial, without any hand-capacity effect.

The Old Man lets off steam again! He complains of "Rotten Nerves." Says converting to c.w. has him worn all to a frazzle, and for all his effort he can't get over a lone amp in the antenna. "Wonders never cease—in radio!" QST has learned of a newly-developed filamentless-type Amrad tube that oscillates, rectifies and amplifies. Reputedly, it is filled with either neon or helium, and has been successfully demonstrated. We can't wait for more dope! ... H. E. Bussey, 4AI, authors "A Radiophone Employing A.C. and a Chemical Rectifier," a description of his new rig employing a pair of 50 watts with a.c. on the filaments and a 24-jar chemical rectifier for plate supply. He has worked 700 miles on c.w. and 350 miles with modulation. ... "The Ideal Relay Spark Station," in two parts, by R. C. Denny, 6CS, wins second prize in QST's contest for practical suggestions for spark sets.

Complete returns are in on the Washington's Birthday Relay. Over 7240 amateurs reported! First-prize winners are Leander L. Hoyt and S. D. Browning, Hayward, Calif. The relay message: "May the spirit of Washington be our guide in all our national aspirations and may the current year mark the return of tranquility, stability, confidence and progress throughout entire world."

Who is this J. DeWitt of Nashville, Tenn., 37th-place winner of a pair of Brownlee Phones?

Every day sees new records set! 2BK has been heard by 6KA, who in turn has been heard by 8AGK. 6ZA has been copied by 6EJ. 31IJ has been heard 200 miles west of the Azores. Despite QRM and QRN, last month's traffic soared to 10,352 messages. IIIAA is first again with 457.

Outstanding stations described this month are Frank M. Murphy's 8ML, Cleveland, Lawrence Mott's 8XAD, Catalina Island, Calif., and John L. Reinartz's lQP, South Manchester, Conn. Clifford J. Goette and S. Kruse are saluted in QST's "Who's Who in Amateur Wireless" section.

Dr. J. H. Delligner, Chief of the Radio Laboratory, Bureau of Standards, Department of Commerce, outlines his department's activities in the development and control of the radio art. He thanks amateurs for their cooperation and decries the limited budget upon which his forces must operate. Editorially, QST hits at budget pruners who would hinder the work of the Department. ARRL's Board of Directors will be asked to take up the matter at its next meeting.

The First ARRL National Convention and Radio Show is announced for Chicago in late summer. A bang-up five-day program is promised. There'll be plenty of hotel accommodations but make your reservation now, OM.

Perusing the ads, we just can't resist this new gear for our station: Radisco's Vario-Coupler at $7.50, with every part accurate to .002 of an inch; Brandos Matched Tone Headsets that overcome the stress of weather and other conditions; an Acme 1½-Henry Choke for ironing out pulsations.

So it's always the other fellow's transmitter that drifts, and not your receiver, eh? Well, for an object lesson on drifting, put your receiver on WWV's 5000 kc. and watch WWV drift some!

W4ERI does not hold the record for a high bounce with his round-trip-to-the-moon radar signal. It appears that the world's record bounce (reported in IRE Proceedings, October, 1929, p. 1750) was made by European radio men who received authentic echoes of their signals 4-minutes-and-20-seconds after their transmission. That figures out about 22 million miles one way.
A Mobile Rig for 50 and 28 Mc.

Featuring Quick-Heating Filaments and Push-to-Talk Operation

BY EDWARD P. TILTON,* WHDQ

Spring is the mobile season, and mobile work on 6 and 10 meters is expected to reach an all-time high this year. Here is a neat little two-band rig which can be fitted into any car. Its quick-heating filament-type tubes reduce over-all battery drain, and operation is controlled entirely by the push-to-talk switch on the microphone.

When he decides to try mobile operation the enthusiast must choose between two techniques. If he has a small truck, a station wagon, or a jalopy, he may load it up with extra batteries, install a heavy-duty generator, or even take along a gas-engine-driven a.c. generator, in order to put a husky signal on the air. If, on the other hand, he is a one-car man with a family, it is usually a matter of designing his mobile rig so that it will run satisfactorily on the regular car battery, and be unobtrusive physically, so as not to interfere with the use of the car for its intended purpose, the transporting of family and friends.

In addition to economy of operation and neatness of appearance, we wanted our mobile job to include push-to-talk operation, for convenience and safety. It had to be of rugged construction, so that it would be ready to go at any time, and, since we once again are permitted mobile operation on 28 Mc., we wanted to be able to work on that band as well as 50 Mc., with a minimum of effort involved in changing from one band to the other.

Economy of operation, from the standpoint of

*V.H.F. Editor.

The 6- and 10-meter mobile unit installed in the author's car. The small aluminum box mounted at the right of the unit houses the antenna change-over relay. Genemotor and starting relays are mounted under the hood.

June 1946
Fig. 1—Wiring diagram of the mobile rig for 6 and 10 meters.

C1 — 100-µfd. midget, screwdriver-adjustment type
(Hammarlund APC-100).
C2, Cs — 100-µfd. midget, shaft type (Hammarlund HF-100).
C5 — 0.001-µfd. mica.
C6, C7, C8, C11, C12, C13 — 500-µfd. midget, mica.
C10 — 100-µfd. midget, mica.
Rt — 82,000 ohms, 1 watt.
R4, R6 — 100 ohms, 1/2 watt.
R8, R9 — 100 ohms, 1/2 watt.
R7, R10 — 100 ohms, 1/2 watt.
R11 — 0.5-megohm potentiometer.
RFC — 2.5-mh. r.f. choke, National R-100.
J1 — Socket on power cable, 5 prong.
J2 — Double-button microphone jack. If T-17-B microphone is used, a special jack designed for this

microphone must be obtained.

Jx — Coaxial fitting (Amphenol 83-1R. Matching plug
is 83-ISP). P1 — Power plug on transmitter chassis.
S1, S2 — S.p.s.t. snap switch.
S3 — 2-section 5-position wafer-type switch.
T1 — Single-button microphone transformer.
T2 — Driver transformer (Stanco 4-4752).
T3 — Modulation transformer (UTC S-15).
L4, L5 — 7 turns each, No. 20 d.c.c., 9/16-inch long on
1-inch dia. form, windings interwound.
L6 — 10 turns No. 12 enam., closewound on 1-inch dia.
form.
L7 — 6 turns No. 12 enam., 1/4-inch long, 1/2-inch inside
dia., self-supporting.
L8 — 28 Mc.: 10 turns No. 12 enam., 1/4-inch long, 1-
inch inside dia., self-supporting.
50 Mc.: 5 turns No. 12 enam., 1-inch long, 1-inch
inside dia., self-supporting.
Lx — 3 turns on 1/4-inch polystyrene rod — See text and
detail photo.

During the roughest going, the meter (a Marion
0-10 ma. sealed unit) is back-of-panel mounted,
with a sheet of lucite serving as a protecting win-
dow. Mounting the meter back from the panel also
provides an easy means of illuminating the meter
face, dial lights being mounted at either side of the
meter.

To facilitate quick band changing without
cumbersome switching arrangements, the circuits
are laid out so that it is merely necessary to
change the crystal and the final plate coil, L6, and
retune the plate condensers, C5, C9, and C4, in
going from one band to the other. The cathode
tuning-condenser setting is uncritical, and may

be left near maximum capacity for both bands.
The oscillator and multiplier plate-tuning con-
densers are large enough so that the circuits may
be tuned to both bands with the one coil in each
place.

With the use of two relays, complete push-to-
talk operation is possible. The first relay starts
the generator and applies the filament voltage,
the second handling the switching of the antenna
from receiver to transmitter. When filament and
plate voltages are applied simultaneously as they
are in this unit, a motor-generator power supply
is preferable to the vibrator type, because the
voltage builds up gradually with the former, not

32

QST for
reaching maximum until the filaments of the tubes are close to full operating temperature. With the filament-type tubes there is no necessity for preliminary switching. The operator simply grasps the microphone and thereby goes on the air — an important factor in keeping the driving of the car a moderately-safe proposition.

Circuit Considerations

The crystal oscillator is a Tri-tet, modified for filament-type tubes. In place of the usual tuned circuit in the cathode lead, interwound coils are inserted in the oscillator filament leads, one of the coils being tuned with a screwdriver-adjustment trimmer mounted on the chassis near the oscillator tube. The setting of this adjustment is not at all critical — it is set near maximum capacity and left at the same position for all crystals. The oscillator doubles in its plate circuit at all times, the crystals used for 50-Mc. operation being in the range between 8334 and 9000 kc., while 7-Mc. crystals are used for 28-Mc. output. The stage following the oscillator is operated, as a doubler for 28 Mc., and as a tripler for 50 Mc. At first this gives the impression of being a dubious approach, for it would appear that there would tend to be a lack of excitation for the higher frequency. Actually, it turns out that there is more excitation on 50 than on 28 Mc., because the tuned circuits are operated with quite high C at the lower frequency. The 2E30 is a very effective frequency multiplier, and there is adequate excitation on both bands, with both 2E30s running well below their rated input. Screen voltage to the exciter stages and plate voltage on the Class-A driver is maintained at 150 volts by means of a voltage regulator tube, in this case a new miniature OA2. It is similar in characteristics to the VR-150, and was selected in preference to the VR-150 merely because of its smaller size.

The Audio System

Three 2E30s, one as a Class-A driver and a pair as Class-AB modulators, supply the audio for modulating the 2E25. It will be noted that all three tubes are triode connected, the plate and screen being tied together at the socket. Operation of the tubes as triodes resulted in appreciably-better quality than the pentode connection, though there was more than adequate audio supplied by either hook-up. Full modulation at normal speech levels is obtained with the gain control somewhat less than full on, and the voice quality is reported as considerably better than that normally expected of a carbon microphone. Tests with an oscilloscope and an audio oscillator indicate very satisfactory fidelity in the speech-frequency range.

Bias is obtained from a 30-volt hearing-aid battery, upon which an operation was performed to give it a tap at 15 volts. The cardboard case

To permit variation in antenna coupling, the output coupling coil, L_a, is mounted so that it may be moved in and out of the plate coil by means of a front-panel control. The coupling coil is wound on a piece of 3/4-inch diameter polystyrene rod, into which is inserted a 1/4-inch rod of the same material, which extends through the panel. A shaft-locking panel bushing (Bud PB-532 bushing, Millen 10061 shaft lock) allows the coupling to first be set at the proper point by the "push-pull" method, and then locked in place by tightening the nut on the shaft lock. This nut may be set "finger-tight," allowing the coupling to be adjusted, yet holding it with sufficient firmness to prevent its being jarred out of position.

June 1946
was slit open with a sharp knife, and a tap soldered at the midpoint (this type of battery is made up of two 15-volt assemblies connected in series). A lead was then brought up to the unused terminal in the three-pin socket on top of the battery.

The microphone used is an Army T-17-B, now available on the surplus market. It has a button assembly similar to the newer telephone units, and is equipped with a convenient and rugged push-to-talk switch. Any similarly-equipped single-button microphone may, of course, be used.

Metering of the plate current in the oscillator, multiplier, final, and modulator stages, as well as the grid current in the final, is accomplished by means of a 10-ma. meter which is switched into the various circuits. Small 100-ohm resistors are connected across each set of switch points, and those in the plate circuits are wound with shunts to increase the meter range by a factor of ten. These shunts are scramble-wound of No. 30 enameled wire, using a piece approximately 7-foot long. The simplest way of making the shunts come out just right is to wind on an excess of wire, and then reduce the length until the multiplication of the meter scale is correct.

Adjustment and Testing

Except for the speech stages, the rig may be tested using 6.3 volts a.c. on the filaments and an a.c. power supply. Modulation must be tested using a storage battery, as the polarity of the filament voltage affects the bias conditions, and a.c. on the audio-stage filaments produces a heavy hum. The power supply used should put out not more than about 200 volts, in order that no harm be done to any of the tubes during the initial testing.

Set S_1 to the “on” position, leaving S_2 “off.” With the meter switch in position “A” apply plate voltage and note the meter reading, which is the oscillator plate current. This will be about 20 ma., dipping slightly at resonance as C_2 is adjusted. Switch S_2 to position “B” and adjust the multiplier tuning condenser C_3. Plate current to this stage should be about the same as that to the oscillator. The dip at resonance may not be as pronounced, so the final-stage grid current (position “C,” 10-ma. scale) is the best indication of proper tuning of the preceding stages. Final grid current should be about 4 ma., dropping to about 3 ma. when final-stage plate voltage is applied (by closing S_2), and a load coupled to the plate circuit. Final plate current, position “D,” should
The plate circuit of the final stage is the only r.f. circuit above the chassis. The three tubes at the left are the driver and audio stages, with the oscillator and multiplier tubes directly in back of the meter. The tube to the right of the modulation transformer is the OA2 voltage regulator. Chassis size is 7 x 13 x 2 inches.

...drop to 10 ma. or less when the plate circuit is resonated with no load. If all is well up to this point, higher voltage may be applied. The average mobile plate supply delivers around 275 volts at the load this unit puts on it, so we made our final tests at about this figure. With an antenna or dummy load, the final plate current should load up to 60 ma. or so, though this loading will not be obtained with a lamp connected across Lg. In order to light a 25-watt bulb appreciably, five or six turns of pick-up coil will be needed, providing a fairly-bright indication.

Modulator plate current, position "E," will run around 20 ma. with no speech, swinging up to 40 ma. or so for full modulation. Much higher peaks, up to 80 ma. or higher, can be reached at full gain setting, but this will result in over-modulation. It is well to measure the Class-A driver plate current also, though no metering position is provided. This should be around 10 ma.

In putting the rig on the air there is little danger of ending up on a wrong frequency, since the final circuit will not tune to wrong harmonics if the constants given are followed closely. It is possible, however, to obtain grid current on out-of-band frequencies, so it is a good idea to check the frequency of each stage with an absorption-type wavemeter, when the stage is placed in operation. It is advisable to record the setting of the various controls at which best operation results; then in changing bands it is merely necessary to swap the crystals around, change the output coil, set the dials to the predetermined points and secure them in place with the small locks provided.

The octal socket used for the crystal provides a convenient storage place for the crystal not in use. To have the plate coil for the other band always ready for use, a stand-off insulator fitted with a G. R. socket was mounted on the rear wall of the cabinet. Other refinements we expect to add, on the basis of our brief operating experience with the rig, include a calibration of all controls, mounted in permanent form on the underside of the cabinet cover, and also some means of clamping the cover down tightly in place. At present it gives forth an annoying rattle in rough going.

Performance on the two bands is similar, an input of about 18 watts being realized with a 300-volt plate supply. The rig has been used successfully with a plate voltage of around 225 and an input of 6 to 8 watts. Actually, in most mobile work, the lower power works out just about as well, and the saving in battery drain is considerable. If higher power is desired, an input of 30 watts or more can be run to the final, by supplying that stage from a separate power source capable of delivering 400 volts d.c. This sort of arrangement is rather rough on the battery, and something special in the way of battery and generator equipment is in order, if use of this amount of power is contemplated as the regular thing.

Installation in the Car

Suitable change-over relays for coaxial feeders are still on the list of things to come, so we had to do the next best thing and make our own. The net result is not a coaxial-line relay, by any means, but it serves the purpose, and the transfer of energy to the antenna seems to be about the same when the relay is used as when the feeder is connected directly to the transmitter. An ordinary 6-volt a.p.d.t. relay, having low-loss insulation and fairly-wide contact spacing, was installed in a handmade aluminum box, on the sides of which are three Amphenol coaxial fittings for the cables to the antenna, receiver, and transmitter. The relay case is grounded and only the inner conductors are switched.

A headlight relay is used to handle the job of starting the generator. These relays can be purchased at any auto-accessory store at low cost.

(Continued on page 110)
Long-Wire Antennas
A Physical Picture of Rhombics and Vs
BY WALTER VAN B. ROBERTS,* W3CHO

The complete analysis of the operation of long-wire antennas usually involves rather complicated mathematics, so it is interesting that some of the main results of such an analysis can be obtained in a relatively easy and simple manner which has the incidental advantage of providing a physical picture of their operation.

The present treatment starts with a simple long wire terminated nonreflectively so that purely traveling waves slide along it. These are waves of current, but they travel at the same speed along the wire as do radio waves in space so that both kinds of waves can be represented in the same way on a diagram.

Fig. 1 shows a long wire in free space set at an angle \(\theta\) with respect to the direction in which transmission is desired. The diagram is in the nature of an instantaneous photograph showing current waves \(W\) along the wire and three sample radio waves, \(W_1, W_2,\) and \(W_3\), which have been radiated from points 1, 2 and 8 on the wire and are on their way to the desired receiving point. All the various waves add up at the receiving location to produce a resultant field, but they must be added vectorially because they are not all in the same phase when they arrive. By drawing a line \(PQ\) across the waves it can be seen, for example, that \(W_3\) is a little out of phase with \(W_1\).

Fig. 2 shows how to find the vector sum, \(S\), of the nine waves emitted from the nine points marked 1 to 9 on the wire. First a vector marked \(W_1\) is laid off to represent wave \(W_1\), then at the end of \(W_1\) we draw a vector \(W_2\) with just enough change of direction to correspond to the phase difference between \(W_1\) and \(W_2\). This process is continued until all the waves have been represented. The sum of all the vectors is the line from the starting point to the head of the last vector and is marked \(S\). (If we had divided the wire up into a great many points instead of just nine, Fig. 2 would have looked like part of a smooth circle.)

It will be seen from Fig. 2 that \(S\) would be slightly greater if we had left off the ninth little vector. In other words, the wire is too long to produce the maximum signal possible in the desired direction. On the other hand, if the wire had been cut off at, say point 7, the sum \(S\) would again be less than the maximum possible. But it will also be noticed that the wire can be considerably longer or shorter than the optimum length without very much reduction in \(S\), which fact accounts for the wide frequency range of operation of rhombics, for example.

Fig. 2 shows that the maximum value of \(S\) occurs when the waves from the two ends of the wire are 180 degrees out of phase. This happens when the wire is a half-wave longer than its projection along the line to the receiver so that

* There are a few simple trig formulas and vector diagrams here, but don’t let them frighten you. Essentially, the article is an easily-followed exposition of the principles underlying long-wire antennas. It will help you to visualize and understand what goes on, and why, in rhombics and Vs.

*155 Hodge Road, Princeton, N. J.

1 Exactly the same condition determines the best length of a microwave horn for a given flare angle; also the diameter of the first Fresnel zone in wave propagation studies.
we have the equation \(L = \frac{\lambda}{2} + L \cos \theta \) to tell us

the optimum length of wire for a given value of \(\theta \). This equation may be rewritten thus

\[
L = \frac{\lambda/2}{1 - \cos \theta} \tag{1}
\]

We have now developed a formula giving the best length of wire to use for a given angle \(\theta \), but what is the best value of \(\theta \) to use? A plausible argument to determine this is as follows: Let us suppose that the wire is always divided into the same large number of parts so that the radiation from each part is represented by the individual vectors of a diagram such as Fig. 2. Obviously, the longer each vector is the greater \(S \) will be, assuming that the total wire length is always made to satisfy Equation 1. Now the radiation from each part of the wire in the desired direction is proportional to the length of the part multiplied by the sine of \(\theta \). Hence the field at the receiver will depend on \(L \sin \theta \). Putting in the value of \(L \) given by Equation 1, the field is therefore determined by the quantity \(\frac{\sin \theta}{1 - \cos \theta} \). It turns out that this quantity does not have a maximum value for any value of \(\theta \) but continues getting bigger the smaller \(\theta \) is made. Hence all we can say is that \(\theta \) should be made as small as possible considering that \(L \) becomes very large as \(\theta \) is made very small, which fact puts practical limits on the reduction of \(\theta \).

Ground Reflection

But in all the foregoing we have been talking about a wire in free space, which is not the usual condition. Usually the wire is stretched horizontally over ground. If the ground acts as a good reflector its action is to reinforce the radiation along a certain elevation angle which depends on the antenna height. This elevation angle will be figured later but for the present we will simply assume that there is such an angle and call it \(\Delta \). Referring to Fig. 1 again and considering it as a plan view of the antenna, we will now figure out all over again what is the best length of wire — but this time we want to know the best length for sending signals not directly toward the receiver but at an angle \(\Delta \) above this line. Radiation is reinforced at this vertical angle in any case so we might as well design the antenna to work best in this direction.

The recalculation happens to be very simple because Equation 1 tells us the optimum length in terms of the angle between the wire and the desired direction of transmission, so all we have to do is to consider the \(\theta \) in Equation 1 as being replaced by the angle between the wire and a line elevated by the angle \(\Delta \) above the direction to the receiver. By reference to the formulas of spherical trigonometry it will be found that the cosine of this new angle is simply the product \(\cos \theta \cos \Delta \), where \(\theta \) has the same meaning as in the previous discussion; that is, it is the horizontal angle between the wire and the direct line to the receiver. Hence Equation 1 becomes

\[
L = \frac{\lambda/2}{1 - \cos \theta \cos \Delta} \tag{2}
\]

Again we have found how to make the length optimum for a given value of \(\theta \) but do not know what is the best value of \(\theta \). To find out, we apply the same argument as before and this time find that the field at the elevation angle \(\Delta \) is proportional to

\[
\frac{\sin \theta}{1 - \cos \theta \cos \Delta}
\]

This time there is a best value for \(\theta \), namely \(\theta = \Delta \). (3)

Equations 2 and 3 give definite values to \(L \) and \(\theta \) which result in radiating the maximum possible signal at elevation angle \(\Delta \). All we need now is to know how high the wire should be so that reflection from the ground will reinforce signals transmitted at the elevation angle \(\Delta \).

Each of the individual waves from the wire is reflected from ground exactly like the waves from an ordinary dipole, so that the angle of reinforcement of radiation from the long wire will be the familiar angle that applies to horizontal dipoles. For the sake of completeness the derivation of this angle is shown in Fig. 3. The object is to find the elevation angle at which the direct and reflected rays are in phase. One way to do this is to know that horizontally-polarized waves are reversed in phase by reflection and then find what angle makes the path of the reflected ray a half-wave longer than that of the direct ray. The other way is to replace the earth by the image of the dipole, which is of opposite polarity to the dipole, and find what angle makes the path from the image a half-wave longer than that from the dipole. Either method gives the result:

\[
H = \frac{\lambda}{4 \sin \Delta} \tag{4}
\]
This last equation supplies the finishing touch to the design of a long-wire antenna to give maximum signal at a given elevation angle. The equations may be rearranged in various ways by substituting values from one into another. For example, if we want to find best values of \(L, H \) and \(\theta \) for transmission at a desired elevation angle \(\Delta \), the equations are more convenient thus:

\[
H = \frac{\lambda}{4 \sin \Delta} \quad (5)
\]

\[
L = \frac{\lambda}{2 \sin^2 \Delta} \quad (6)
\]

\[
\theta = \Delta \quad (7)
\]

has the sum \(S \) twice as large as that from the single wire. If we now add two more wires, \(C \) and \(D \), together with a two-wire line for feed and a terminating resistor \(R \) connecting the far ends of both sides, the result is the complete rhombic of Fig. 7.

There is one more thing we can deduce without much trouble, namely the power gain of the \(V \) and the rhombic as compared to the single wire of Fig. 1. When we add another wire to form a \(V \) the impedance presented to the source is doubled since the two wires are in effect fed in series, so that twice as much power is required to produce a given current in the two wires as in one alone. But the field at the receiving point also is doubled, and doubling the field is equivalent to quadrupling the power. Thus the \(V \) has a power gain of 2 over the single wire. Now adding elements \(B \) and \(C \) to the \(V \) to form a rhombic does not change the input impedance because there is no reflected wave, so the doubling of the receiver field that is thus produced is equivalent to quadrupling the power without any increase in actual input. Thus the rhombic has a power gain of 4 over the \(V \). These results might be stated as follows: Each wire added to the single wire of Fig. 1 gives a power gain of 2.

Power Gain

Calculating the gain of a rhombic compared to a half-wave dipole is beyond the scope of the present qualitative sort of treatment, but an approximate value can be obtained from the known input resistance of the rhombic, which, when properly terminated and designed for maximum performance, is about 720 ohms. (Not that

\[
\text{not that the last two digits are significant, but 720 is just ten times the input resistance of a half-wave dipole, making it a convenient figure to use.) If then we assume that the impedance of the rhom-}
\]

\[
\text{QST for}
\]
bic is ten times that of a dipole, it will require
ten times the power input to produce the same
current in the rhombic as in a dipole. But the
current in the rhombic is much more effective
than the same current in a dipole. We can figure
the relative fields set up in the desired direction
by the same current in the two antennas by
figuring their effective lengths, the term "effective
length" being here defined as the length of wire
that would be required to produce the observed
signal at the receiver if the current were uniform
and of the same phase throughout the wire, and
the wire were crosswise to the line to the receiver.
In the case of the half-wave dipole the current is
in the same phase all along the wire but it is not
of uniform strength, so that the effective length
is \(\frac{\lambda}{\pi} \). In the long-wire traveling-wave antenna the
current is approximately uniform\(^2\) but the varying
phase of the waves received from different parts of the wire makes the resultant (see Fig. 2)
only the diameter of a circle instead of the
numerical sum of all the vectors, which is a semi­
circumference. In other words, phase differences
reduce the effective length by the factor \(\frac{2}{\pi} \). Also,
the long wire is not crosswise to the emitted beam
so its effective length is further reduced by the
factor \(\sin A \) where \(A \) is the angle between the beam and the wire. Thus the effective length
is \(\frac{2}{\pi} L \sin A \). But we can use Equations 5, 6 and 7
to get rid of \(L \), whence effective length is
\[\frac{\lambda \cdot \sin A}{\pi \sin^2 A} \]
In the rhombic the effective length is four times
this value because there are four wires "pulling
together" so that the effective length of the rhombic is
\[\frac{4 \sin A}{\sin^2 A} \]
times that of a half-wave dipole and hence the
fields produced by the same current are in that
proportion. The ratio of the powers, being the
square of the ratio of the fields, is
\[\frac{16 \sin^2 A}{\sin^4 A} \]
But remembering that it takes ten times as much
power to get the same current into the rhombic
as into the dipole, the actual power gain is
\[\frac{\sin^2 A}{\sin^4 A} \]
The angle \(A \) can be eliminated from
this expression since we found previously that
\[\cos A = \cos \theta \cos A \]
and by Equations 5, 6 and 7,
this gives us
\[\cos A = \cos^2 \Delta \text{ or } \sin^2 A = 1 - \cos^2 \Delta \]
\[= (1 - \cos^2 \Delta) (1 + \cos^2 \Delta) = \sin^2 (2 - \sin^2 \Delta). \]
Thus, finally, the power gain is
\[\frac{3.2}{\sin^2 \Delta} - 1.6 \]
To see how this checks up assume \(\Delta = 14.2^\circ \),
which makes \(\sin \Delta = \frac{\lambda}{\pi} \). Then the gain is (3.2 \times 16) - 1.6 or about 50, which is about 17 db. This
value checks very closely with the value given
by A. E. Harper of the Bell Telephone Labora­
tories.\(^3\)
The present discussion is not intended to be
used as the basis for the design of actual antennas
or even for the calculation of their performance,
because it only treats the case of the design for
maximum possible output. In practice the dimen­
sions can be economized considerably with very
little loss in performance. For instance, in a
detailed treatment of the rhombic\(^4\) it is shown
that there are even some advantages in reducing
the lengths of the sides to 74% of the value given
by equations 5, 6 and 7, the values of \(\theta \) and \(H \)
being unchanged from those given by the equa­
tions. The objective here is to give a physical
picture of the operation of long wires and the
relationship between different long-wire antennas
so that more detailed treatments may be read
with better understanding. The method em­
ployed may also be extended to determine the
directions of other "lobes" of radiation from the
long wire.

One final note: if the equations of this article
are compared with equations in other treatments
of rhombics a certain confusion may arise with
respect to the angle \(\theta \). Other treatments usually
deal with an angle which they call the "tilt
angle" and which is 90 degrees minus \(\theta \). Of
course it makes no difference which angle is used
so long as we know what we are talking about,
but the angle \(\theta \) seemed the more natural one to
use in the present derivations.

\(^2\) The assumption has been made throughout this treatment
that the current strength is uniform all along the wires. Obviously this cannot be true or else the entire
input power would be delivered to the terminating resistor.
However, the assumption appears close enough to the truth
to permit reasoning to conclusions that are sufficiently
accurate for the present purposes.

\(^3\) Equation 19, page 59, *Rhombic Antenna Design*, by
York.

\(^4\) Bruce, Beck and Lowry, "Horizontal Rhombic Anten­
A Field-Intensity Meter for V.H.F.

Construction of a Simple Instrument for Checking Antenna Adjustments

BY D. C. SUMMERFORD,* W9AYH

It is much more difficult to adjust a v.h.f. transmitter and antenna system by conventional methods than a similar system on the lower amateur frequencies. For maximum performance, the system should be adjusted under actual radiating conditions. This may be done by having another ham make readings on the "S" meter of a communications receiver, or by using a field-intensity meter. In general, the use of the field-intensity meter is more satisfactory, especially when work is being done on directional antennas.

The simple, yet sensitive set shown in the photographs was built by the author for some experimental work. The circuit, shown in Fig. 1, makes use of a 955 acorn triode biased to near cut-off and operated at low plate voltage. A typical calibration curve made with a v.h.f. signal generator is shown in Fig. 2.

Construction

Physically, the meter is small. Exclusive of antenna and insulator, it is 4 inches wide by 4 inches deep by 8 inches high. The front panel was made from ¼-inch aluminum for rigidity, while the case is made of sheet aluminum with the seams soldered. Steel flanges are riveted inside the case to take the flister-head panel screws. By removing the four front-panel screws, the instrument may be removed from the case for battery replacement and changing coils without breaking connections.

* Asst. Tech. Director, WHAS, Louisville 2, Ky.

Fig. 1 — Circuit diagram of the v.h.f. field-strength meter.

Construction

- Proper adjustment for maximum antenna and transmitter performance, not always an easy job at the lower frequencies, becomes increasingly difficult at the higher frequencies. Small changes in physical values cause relatively enormous changes in performance and the reliability of the more commonly-used methods of adjustment is reduced. At high frequencies, a field-strength meter of the type described in this article becomes almost indispensable.
the meter, of course, are mounted on the front panel. Behind these is another larger subpanel which serves as a support for the three flashlight cells which make up the 4½-volt battery. They are held in place by an aluminum clamping strip fastened to aluminum angle pieces by machine screws and thumb nuts. The telescopic half-wave antenna plugs into a Johnson jack-top feed-through insulator as shown in Fig. 3. The assembly screw of the insulator, in turn, makes contact with the series coupling condenser through a spring contact. A socket was mounted in the bottom of the cabinet so that the unit could be used on a standard camera tripod.

Adjustment

As with most v.h.f. equipment, coil dimensions and frequency range are determined largely by the arrangement of parts. In this particular model, the top frequency is around 225 megacycles with practically no coil. The coil shown in the photograph (right) tunes to around 100 Mc. Approximate dimensions for the 144-Mc. band are given under Fig. 1.

After the unit has been finished, the potentiometer, R_1, should be turned to the left as far as possible. This puts a 1½-volt bias on the tube. Then the off-on switch, S_1, should be turned on. After waiting about 30 seconds, the potentiometer should be turned clockwise with a screwdriver until the meter reads 10 per cent of full scale (in this instrument, 5 microamperes). Then the exciter stages of the transmitter should be turned on and the f.s. meter tuned until a sharp rise in deflection is obtained. If necessary, the coil may be squeezed or expanded, or the number of turns may be altered to hit the desired frequency. When the coil has been trimmed properly the antenna length and the capacitance of the coupling condenser, C_2, should be adjusted for maximum deflection. The coupling-condenser adjustment is not critical. Those adjustments should serve to increase the sensitivity. Making the antenna less than one-half wavelength long may be advantageous when working close to the antenna or with high power. However, changing the antenna length will have some effect upon the tuning range.

This particular instrument has not been calibrated in absolute values of field intensity, i.e., in microvolts per meter, and in ordinary ham use such a calibration is not needed. However, to give an idea of the sensitivity, it was used with a relay broadcast transmitter having an output of about 100 watts on 156.75 megacycles. The transmitter is well shielded and uses a long coaxial line to the antenna. In the same room as the transmitter, the meter read from a low value to hard against the pin as it was passed through standing waves in the room. Outside, in the clear, it was possible to get full-scale deflection two blocks from the antenna.

Making Measurements

Normally, the meter is set up for vertical polarization. If the transmitting antenna is horizontal, a horizontal antenna should be used on the meter. This may be provided by bending the antenna rod just above the insulator, or by using a right-angle adapter coupling. Of course, perhaps the simplest thing to do is to tilt the meter until the antenna is horizontal.

The r.f. circuit components are arranged in a compact group on the polystyrene subpanel at the top. The antenna makes contact with the terminal of the trimmer-type coupling condenser.
In making measurements, the instrument should be set up a few wavelengths from the antenna, as much as possible in the clear, on a rigid support. In adjusting an antenna and transmitter for maximum radiation, the instrument should be left fixed at one spot, since a movement of a foot or so when working at two meters will cause wide variations in readings. The effect of the observer's body and passing vehicles should be noted, since violent fluctuations in the meter reading may be caused by reflections from near-by objects.

The only expensive item is the microammeter. Any meter with a scale of from 10 microamperes to 1 milliampere may be used, but of course the sensitivity is dependent upon a low-current meter. The total cost of this instrument was $25.00 and 25 hours work. Using standard components and cabinets, any amateur should be able to duplicate it in a much shorter time.

About the Author

• D. C. Summerford, W9AYH, learned the code at Alabama Polytechnic Institute and obtained W4FN after the DX bug hit him. Licensed W9AYH in '31, Summerford reported great enjoyment on 20-'phone in the pre-Class-A days. W9AYH is a member of the RCC, holds a Code Proficiency Award for 35 w.p.m. and a WAC certificate. A member of the IRE, Summerford is on the RTPB panel studying broadcast facsimile and on the FCC Industry Committee working out f.m. propagation tests.

A.R.L. QSL BUREAU

For the convenience of American and Canadian amateurs, the League maintains a QSL-card distributing system which operates through volunteer “District QSL Managers” in each call area. To secure such foreign cards as may be received for you, send your district manager a standard No. 10 stamped, self-addressed envelope. If you have reason to expect a considerable number of cards, put on an extra stamp so that it has a total of six-cents postage. Your own name and address go in the customary place on the face, and your station call should be printed prominently in the upper left-hand corner. If you have held other calls in previous years, submit an envelope for each such call to the proper manager — there are many thousands of uncalled-for cards in the files. All incoming cards are routed by Hq. to the home district of the call shown in the address. Therefore, cards for portable operation in other districts should be obtained from the home-district manager. Amateurs in the new W9 area should send envelopes to the W9 Manager until their calls are actually modified to carry the zero designator. VE6-7-8 amateurs should keep envelopes on file for their former calls.

(See the “Foreign Notes” section of May QST for the method of handling outgoing cards from W-K-VE amateurs to foreign countries.)

W1 — Jules T. Steiger, W1BGY, 231 Meadow St., Williamstown, Mass.
W2 — Henry W. Yahnel, W2SN, Lake Ave., Helmetta, N. J.
W3 — Maurice W. Downs, W3WU, 1311 Sheridan St., N. W., Washington 11, D. C.
W5 — L. W. May, Jr., W5AJG, 9428 Hibbert St., Dallas 18, Texas.
W6 — Horace R. Greer, W6TI, 414 Fairmount Ave., Oakland, Calif.
W7 — Frank E. Pratt, W7DXZ, 5023 So. Ferry St., Tacoma, Wash.
W8 — Fred W. Allen, W8GER, 1959 Riverside Drive, Dayton 5, Ohio.
W9 — F. Claude Moore, W9HNL, 1024 Henrietta St., Pekin, Ill.
W9 (as established) — Alva A. Smith, W9DMA, 238 East Main St., Caledonia, Minn.
VE1 — VE1FQ will resume service soon.
VE2 — C. W. Skarstedt, VE2DR, 3821 Girouard Ave., Montreal 28, P. Q.
VE3 — W. Bert Knowles, VE3QB, Lanark, Ont.
VE4 — c/o ARRL.
VE5 — H. R. Hough, VE5HR, 1785 Emerson St., Victoria, B. C.
K7 — J. W. McKinley, K7GSC, Box 1533, Juneau, Alaska.

About the Author

× D. C. Summerford, W9AYH, learned the code at Alabama Polytechnic Institute and obtained W4FN after the DX bug hit him.Licensed W9AYH in '31, Summerford reported great enjoyment on 20-‘phone in the pre-Class-A days. W9AYH is a member of the RCC, holds a Code Proficiency Award for 35 w.p.m. and a WAC certificate. A member of the IRE, Summerford is on the RTPB panel studying broadcast facsimile and on the FCC Industry Committee working out f.m. propagation tests.
Getting Started on 420 Mc.

Transmitter and Receiver Technique for a New U.H.F. Band

BY W. F. HOISINGTON,* WILAS/2

One sure-fire way of getting some activity on a new band is to build two complete stations and loan one of them out to your friends. These rigs demonstrate that the generating of a husky signal in the new 420-Mc. band need not be too complicated or expensive for the average u.h.f. enthusiast.

Some preliminary thinking about the new 420-Mc. band, the first one-third of which was made available on March 1st, produced the following conclusions:

1) While the old reliable 955 acorn, in the more or less standard superregenerative circuit, would take care of our early receiving requirements, something with more power would have to be used for transmitting if satisfactory coverage was to result.

2) Two complete stations would have to be assembled, if two-way communication was to be carried on without delay.

3) At least one of the stations should be made portable, and capable of being operated from 6 volts d.c., as work from hilltops might be necessary to cover any appreciable distance at first.

4) The equipment should be as simple as possible, using available components and sure-fire circuits, in order to encourage others to come on the band.

5) If we don't use the band, someone else will!

The Transmitters

The transmitting oscillator being the most difficult part of a station for this band, it was tackled first. The ferreting out of surplus parts and tubes during the past two years now showed beneficial results, because two RCA 8012s were reposing in the "tube department" of the shack. These tubes are rated at 22-watts output on 500 Mc., so they should be OK on 420!

The Handbook was not much help here, since only receiving-tube circuits are shown. There are certain facts regarding u.h.f. oscillators that are not usually found in books. These have to do mainly with the amount of r.f. voltage to allow on the cathode circuit, its phasing (instantaneous potential with respect to the grid and plate), proper amount and phasing of grid excitation, and a not-too-great radiating configuration.

By using the 8012 in a half-wave line, as shown in Fig. 1, instead of a quarter-wave line, the hot end of the line (in this case the middle) is placed inside the tube itself. This procedure is possible, of course, only with tubes having two leads for both grid and plate. Such an arrangement leaves as much as two inches of tubing outside of the tube itself, at 425 Mc., provided that the grid is "unloaded" somewhat from the plate tank. This is done by using a variable trimmer for the grid condenser, the capacity of which may be as low as 10 or 15 µfd., when the oscillator is running properly.

The d.c. connection to the grid is brought out through the inside of the grid rod, thus removing...

* U.H.F. Resonator Co., Gulon Rd., Rye, N.Y.
the necessity for an r.f. choke, and also unloading the grid resistor from the r.f. plate tank. The filament voltage is likewise brought through the center of the cathode line, in order to be able to treat the cathode circuit as a single rod.

The r.f. voltage on the cathode is taken care of in two ways; first, by a carefully-tuned cathode line, and second, by a phasing and feed-back stub. No filament chokes are needed with this arrangement. The cathode line is tuned by \(C_6 \) (Fig. 1), with clips between the grid and cathode lines. The phasing and feed-back stub, see schematic diagram and photo, is cut to length and positioned with respect to the plate for maximum excitation. Both an r.f. output indicator (a 15-watt lamp will do) and a grid-current meter should be used while making this adjustment, as maximum grid current does not necessarily mean maximum output.

Both rigs were tuned up using 6-element arrays similar to the one shown in the photograph of one of the complete stations. A flashlight bulb mounted in the center of a half-wave dipole at a distance of six to eight feet was used as an output indicator. This is a necessary check, as it is possible to lose most of the r.f. on the way up to the antenna. The antenna line originally used was \(1 \frac{1}{2} \)-inch spaced feeder shown in the photograph, but this has since been replaced with 300-ohm Twin-Lead, for maximum convenience.

In order to make it a simple matter to make changes in any part of the two stations, they were made up of small units, interconnected with cables. In addition to the transmitter-oscillator these units include a modulator, two power supplies, receiver, receiver control panel and receiver audio system.

Modulation can be supplied in almost any way which provides a suitable amount of audio power. In the station which was designed for a.c. operation we used a pair of 6A3s in push-pull, with a high-gain speech amplifier. The rig for field work uses two 6L6s in parallel, with a 6C5 speech amplifier. The field rig is equipped with a.c. supplies, but the over-all drain is low enough so that it can be operated from a battery and a generator or Vibrapack if desired.
for use in a superhet. The unit may, in fact, be tuned up using the 5000-ohm resistor and about 100 volts on the plate, with a 2-volt 60-ma. pilot light for a load in place of the antenna. When the oscillator runs smoothly with little variation in output over the whole tuning range, satisfactory superregenerative operation is assured when the 1-megohm resistor is substituted. If a squeal is heard as the regeneration control is advanced, the value of the grid resistor or condenser should be reduced. Too low a value of grid condenser will result in loss of superregeneration, which will in turn require reduced antenna coupling.

The receiver unit has a three-wire cable and a four-prong plug, so that conversion to a local oscillator merely requires changing the resistor and plugging the cable into a suitable power supply, instead of plugging into the receiver control panel shown in Fig. 2(B). This panel arrangement is useful around a v.h.f. station, and is self-explanatory to anyone who has worked with superregenerative receivers. C₄ helps to control the quench frequency, R₄ by-passes the regeneration control, and R₅ is the dropping and filter resistor for the B₊ lead. The power plug goes into any power supply in the shack or car, and the audio output to any of several audio amplifiers. Receiver audio systems in both stations use a 605 and a 6L6.

Another small panel serves as a send-receive control, switching the B₊ to receiver and transmitter. Antenna switches are mounted on a polystyrene panel, pending the acquisition of suitable relays.

Antenna coupling to the receiver is critical, and must be quite loose. There is considerable difference between 420 and 144 Mc, in this respect, as the receiver oscillation is much weaker at the higher frequency, and coupling must be correspondingly loose. Another trouble which is magnified on the higher frequency is the instability of the receiver and transmitter resulting from movement of the feeder system in the wind when long outdoor feedlines are used. Both of these troubles indicate that much-improved performance would be obtainable if a superhet were used for reception. As the detector can be changed to a local oscillator by merely changing the grid resistor, we may try the superhet idea.

Results to Date

The first on-the-air tests were made between W1LAS/2 and W21XV, both of Rye, N. Y., over a 1½-mile path. Signals were S9-plus at this distance, as they were later when tried over a similar distance between W1HDQ and ARRL Headquarters. Using the six-element arrays on both units, the beam patterns were quite sharp, the signal dropping to zero at 25 to 30 degrees either side of the maximum point. The rigs were also tried over the indirect 5-mile path between W1HDQ and W2OEN/1, but without success in the limited time available.

The best DX worked with the rigs to date is 17 miles, covered recently when one of the stations was taken to WSWSGC/2 at Flushing, N. Y. The 6-element arrays were installed out-of-doors, the one at Rye being mounted on a 15-foot pole outside the window and the one at Flushing about 8 feet above the roof of a 4-story apartment house, both using the 300-ohm Twin-Lead as a feeder system.

Contact was established in a few minutes at the first try and reports were S7 in one direction and S9 in the other, one of the power supplies delivering only 250 volts compared to 350 from the other. Orientation of the arrays had to be substantially correct, as the beams were very sharp in both the horizontal and vertical plane.

Right now we are waiting for other recruits on the band, and wondering how things will be when we have hundreds of stations there as we now have on 144 Mc. The new band is much wider than either the 144- or 235-Mc. bands, and it is not completely beyond the range of carefully-designed equipment of the conventional sort. War-time experiments indicate that there are interesting propagation characteristics awaiting us there. All we need now is activity!
Although the use of preferred numbers for values of small components such as resistors and condensers was not a wartime development, the war did bring about standardization throughout the radio and electronics industry on those values. The system is based on the logical idea that the permissible tolerances in values are what count.

Starting with 1 (or 10, 100 or any decimal multiple) values increase logarithmically so that each higher value represents a constant percentage increase over the value immediately below it. In practice, the values are rounded off to two significant figures, this order of accuracy being enough to give a complete range of the smallest tolerance (5%) ordinarily required.

A summary of values from 10 to 100 is given in Table I. Larger values are found by multiplying by 10 or any multiple of 10, smaller values by dividing by 10 and its multiples.

Many of our old friends such as 25, 50 and other "even" values, do not appear in this table. However, such values in themselves usually have no particular significance; they are simply convenient numbers to remember. The advantages of the standard system are so obvious that we intend in the future to use it in QST. Where no tolerance is specified it is to be understood that the largest tolerance available in that value is to be used; where two or three tolerances are available and a small tolerance is required, it will be specified. For example, if a 47,000-ohm resistor is called for, the tolerance is understood to be 20% unless otherwise specified. On the other hand, the 36 value appears only in the 5% column, so it would be understood that a 3600-ohm unit would have 5% tolerance.

Values for the capacitances of small mica condensers follow a similar table, although in this case the values listed under 5% tolerance also can be obtained with 2% tolerance.

If circuit values specified in future QST diagrams look odd compared to past practices, remember that there is a logical basis for them. To most amateurs, however, they will simply represent the continuation of a system with which they became thoroughly familiar during the war.

--- G. G.

Frequency-Shift Keying

Just before the lid began to be lifted on wartime radio developments the grapevine had it that there was a new system of code transmission that made 100 watts equal to 10 kilowatts. It wasn't an idle rumor. The joker — there always has to be one! — is that the system is one peculiarly suited to commercial transmission and, as it looks to us, equally peculiarly unsuited to amateur work.

By now, if you've listened at all on 7 or 14 Mc., you've heard it on the air. On an ordinary receiver the signals don't sound a bit stronger than they would with the same power and regular keying — the only difference is that there is a backwave a kilocycle or two away, just as strong as the main wave. The listener has a hard job deciding which is which, in fact, because neither wave spells out regular code. These transmissions are used with radio printers, which have a special code of their own.

It's essentially a case of the now-familiar story of f.m. versus a.m. in signal-to-noise ratio. Above a certain level of carrier strength, f.m. suppresses noise to such an extent that a large improvement
in signal-to-noise ratio can be obtained. Under certain conditions, frequency-shift telegraphy will give an improvement in signal-to-noise ratio of as much as 20 db, which is where the 100-times-power comparison comes in. This is an important consideration in teleprinter operation, because noise will cause erratic operation. The same amount of it, though, would not bother an operator doing normal copying by ear. Insofar as amateur operation is concerned, it appears to be simply a matter of improving a signal-to-noise ratio that already is high enough to be quite satisfactory.

But that isn't the whole story by any means. Printer circuits, being automatic in operation, require a channel not only wide enough to take care of the keying modulation but also to allow for instability in both transmitter and receiver. In turn, this means that there is a definite lower limit to usable receiver selectivity. Those of us who make use of our crystal filters are accustomed to a very much higher order of selectivity than can be used in commercial circuits. And since high selectivity brings with it a reduction in noise, we already have at our disposal a means for getting at least the equivalent of the gain claimed for "f.s.k." Furthermore, it helps where we want it the most—when the signal is weak; in that case it will bring out the ones that get lost in receiver hiss with normal i.f. selectivity. It is well known that f.m. works in the opposite way; down to the "threshold" level it gives a better signal-to-noise ratio than a.m., but below the threshold a.m. is better.

Frequency-shift keying is like regular f.m. in that the improvement in signal-to-noise ratio arises wholly as a result of the receiving method used. F.s.k. transmitters by themselves are no more useful in reducing noise than f.m. transmitters alone. Consequently, the receiver must be capable of utilizing the system before any benefits are available. In the systems currently used, the process of translating the signal into usable code symbols is carried out in a "converter" unit which works out of an ordinary a.m. communications receiver. A representative block diagram is shown in Fig. 1. The incoming signal is detected in the communications receiver, using regular beat-note reception, with the beat-frequency oscillator adjusted to give different tones on the mark and space signals. In the Press Wireless system, for example, where the frequency shift is 600 cycles, the beat oscillator is set so that one tone comes out to be, say, 2250 cycles and the other 2850 cycles. The difference between these figures represents the total frequency swing, in f.m. terminology. The frequency deviation is therefore 300 cycles on either side of an assumed "carrier" frequency of 2550 cycles. The receiver output is fed through a band-pass filter to eliminate noise and interference components outside the limits of the frequency swing, and thence into a limiter, just as in regular f.m. practice. The amplitude-limited signal then goes to a discriminator which, in the block diagram of Fig. 1, consists of separate tone filters and rectifiers for each of the two tones with the detector outputs combined "back-to-back." This gives a keyed d.c. output which actuates a keyer unit, the latter then operating the printer or, with an auxiliary a.f. oscillator, a headset.

It is to be observed that this is an f.m. system in which the carrier is an audio frequency and the modulation is the keying envelope. It can only produce a keyed d.c. output. This is fine for automatic reception, but the only way to get aural signals is to key an audio tone, and since that tone is entirely independent of the frequency of the incoming signal, there is no way to get the aural selectivity that is so useful in amateur communication. The lack of aural selectivity might not be serious if every transmitter had a clear channel, but we can't visualize that condition as existing in any busy ham band! And, like regular f.m., the system is vulnerable to interference from other transmitters, including both a.m. and f.m., which may operate within the receiver pass-band, except in the special case of one operating on the same carrier frequency and weaker than the desired signal. In our c.w. work we don't usually worry much about interference that is weaker than the signal we want.

The proponents of f.s.k. for amateur work are usually intrigued by the fact that the transmitter is on continuously and, since the keying simply shifts the frequency back and forth, it should therefore be possible to key a high-power rig without key clicks. On the basis of the sidebands set up by equivalent keying waveforms in the two systems, this is a fallacious argument because sidebands in f.m. cover a larger frequency range than in a.m. Practically, there may be something to be said for frequency-shift keying in that it may be easier to shape the keying waveform so that the transients that produce clicks are eliminated. There is a real advantage to f.s.k. in another respect, too; where interference to b.c. reception is the result of rectification of the signal simply because the receiver is in a strong field, f.s.k. will be much less annoying than ordinary keying. In such cases am-

![Fig. 1 — Block diagram of representative receiving system for frequency-shift keying.](image-url)
plitude keying causes the received program level to “jump up and down” with keying, but with f.s.k. the level will change only when the transmitter is turned on and off.

During the war OWI used f.s.k. as a means of simultaneous transmission of Morse code and broadcasting on the same carrier, a stunt which is perfectly feasible with a small frequency shift (400 cycles was employed in the OWI transmitters). Whether or not this scheme has any possibilities in amateur work remains to be determined. At first thought it would seem to have little application in two-way communication except on those bands where the carrier can be left on continuously.

For whatever benefits f.s.k. may have to offer in ham communication, the price is pretty steep: twice as many signals per transmission as with ordinary keying. If we all used it, the effective width of our c.w. bands would be halved even if we could still use the receiver selectivity we now take as a matter of course. But that can’t be done; the actual ratio, both circuit and aural selectivity considered, appears to be more like 5 to 1.

This conclusion is reached solely on the basis of what is already known about the two systems. Amateur experiment with f.s.k. is not precluded under the present regulations; the new 27-Mc. assignment is open to f.s.k. along with the part of the 28-Mc. band above 28.95 Mc. and the part of the 50-Mc. band above 52.5 Mc. There is thus plenty of opportunity to try out the system, and if this preliminary diagnosis is wrong experiment should show it.

So far, it seems as though wartime developments in communication systems have effected improvements useful only for the special requirements of military and commercial communications — and only at the expense of ever-wider channels per transmitter. In the end, the wider channels may actually save spectrum space by speeding up traffic to a greater extent than they use up kilocycles; that is, the number of “kilo-cycle-hours” may be reduced by the new methods as compared to the old. Unfortunately, saving time in that sense is not an important factor in reducing congestion in the amateur bands; time saved in one QSO is simply time available for another, so the total interference is not affected appreciably. Our situation is such that any new system that effects an improvement by widening the frequency band occupied by a given type of emission wants to be approached with extreme caution. Developments in the other direction would be welcomed with open arms — but so far none have been disclosed.

— G. G.

“No Neutralization Required”

Many amateurs have been disappointed in the performance of a new rig using one or more beam tetrodes because of oscillations that occur under certain tuning and operating conditions. The advertisements for the tubes lead one to believe that no neutralization will be needed, the amateur in the next block has a transmitter using the same type of tube without neutralization, but our rig persists in “taking off!” when the fixed bias is decreased or the grid (or plate) circuit is detuned, and the first conclusion is that the new gear is the home of some malevolent jinni. Sometimes the trouble appears when the tetrode is used in an amplifier with the keyed stage ahead of it, and sometimes it shows up under modulation peaks. The troubles usually stem from a lack of understanding of the conditions under which the “no neutralization required” statement holds true.

Any experienced amateur knows the test of a stable triode amplifier. A neutralized triode amplifier can be completely unloaded in the grid and plate circuits, the fixed grid bias reduced until the plate power input is the normal dissipation rating of the tube — or tubes, in the case of a push-pull amplifier — and the grid and plate circuits can be tuned in any combination without any oscillation or even a flicker in the plate current. Such tests just aren’t made with a tetrode amplifier, although a good one will pass the test if the bias is kept reasonably high and the grid circuit is loaded by the driver stage.

The sources of feedback in an amplifier using a tetrode are the grid-plate capacity, inductive coupling between grid and plate coils, and inductance in the screen lead. Most rigs are designed with shielding adequate to eliminate the inductive (and external capacitative) coupling between grid and plate circuits, and a good mica screen by-pass condenser with short leads will usually bring the screen down to ground at normal communications frequencies, although in the v.h.f. range it is often necessary to series resonate the screen circuit. However, the grid-plate capacity is built into the tube, and the set constructor must either neutralize this capacity if it is too large or operate the amplifier under conditions for which the capacity is not too large.

That the grid-plate capacity of a tetrode may be too large may come as a surprise to those who consider all multigrid tubes to have negligible grid-plate capacity. In any amplifier with tuned-grid and tuned-plate circuits, the expression for the maximum grid-plate capacity that can be tolerated without oscillation under any tuning condition is

\[\frac{1}{2} \pi \sqrt{\frac{C_{gp}}{C_{pl}}} \]

1 Eitel-McCullough, Inc., “Application Notes on 4-125A.”
Making the Most of It

Planning the Radio Shack for Appearance and Convenience

BY EUGENE A. HUBBELL,* W9ERU

Not every ham has the chance to build his own shack (known as "home" to the wife and parasites), but when he does he wants to make the most of the opportunity. Here are a few suggestions and experiences gained from doing such a job a short time ago.

The location of the prospective home will be the first consideration. For the most of us, this will be a compromise depending upon one's finances, work, transportation, friends, etc., with the ham angle being a very acute wedge of the pie. In my opinion, the newer subdivisions offer the best locations because of fewer neighbors, less interference (electrical equipment is newer, less automobile traffic), more chance for antenna experiments in the vacant lots, and the fact that one's amateur activities will be well established when newer homes are built. In other words, a BCL can only blame himself if he moves in alongside a kilowatt 'phone. Also, a subdivision is usually considered to increase in value as homes are regularly being built and the district becomes more settled. I have also noticed that, in general, the higher sections of the city are more desirable from a residence standpoint, and these high spots offer better antenna locations. Needless to say, highways and through streets carrying large amounts of traffic should be avoided. The dead-end street looks good to me.

Restrictions on the land govern the location of the house to some extent, and as the wife will usually register more than a little dismay at the antenna supports being placed in the front yard, the more back yard the better. In my case, the agreement was reached between my wife and me that the antenna must be confined to the rear of the house, but there I was free to put in what I wanted. Since power poles present a much better appearance than lattice towers, and require no guy wires, negotiations were opened with a friend on the local power company staff, and a pair of discarded cedar poles about sixty feet long were obtained.

A ground system is essential to any properly installed radio station, so a little thought should be given this before work is actually started. In my case, a couple of hundred feet of one-inch wide copper ribbon was obtained, and one strap was put in lengthwise and two crosswise in the excavation, with the ends being brought up to the top of the foundation, and outside of the foundation. These ends provide places to tie on any additional ground network which may be put in later. Straps should be soldered on inside the foundation and brought up for connection in the radio room and to the work bench. A network of heavy copper wire could be used equally well, if no ribbon is available. After the house is built, all pipes and metal work can be bonded together and connected to the same ground strap.

Most small-home plans used today provide for a play room in the basement, but if no provision is made for one, it can easily be arranged for the contractor to build in one. Care should be taken to moisture-proof the walls as thoroughly as possible, and the inside of the room should be finished in whatever material will best resist dampness. If room is available on the floors above ground level, the dampness question will be more easily solved. In my case, the downstairs provided a room intended originally for a bedroom, and measuring about twelve feet square, with windows to the side and rear. In other cases an upstairs bedroom can be used — until one's family pushes the hamshack out. A sunparlor, if adequately protected against cold weather, makes a very good shack.

The interior of the radio room will present a much better appearance from the amateur viewpoint if the walls are finished in something besides rough plaster or ordinary wall paper. There is an exception to the wall paper angle, however, since there is available a wood-grain wall paper which can be used to simulate a paneled wood appearance. Celotex, wall board, and plywood paneling can also be used. I chose the latter, lightly stained and varnished. The Celotex offers the advantage of sound deadening, but has the disadvantage of rubbing off quite easily, unless painted — and does it soak up paint! The ceiling can very well be plastered and painted a light color for reflected lighting.

* 2511 Burrmont Road, Rockford, Ill.
A small wood molding run around the upper wall surface to join the walls to the ceiling offers a good place to hide receiving antenna leads, control wires, speaker leads, etc., especially if a gap of a quarter inch is left between molding and ceiling. Even if the molding is tightly placed against the ceiling, small metal clips of the type used to hold extension cords on top of baseboards can be used to good advantage. Joints between panels, if plywood, Celotex, or wall board is used, must be covered with molding also, the back of which could be hollowed out to take wires, provided the molding were removable. Removable baseboards would also allow a place for running control wires, and another idea would be to have plugs made for insertion in the flooring, say the width of a floor board, and three inches long, planed smooth on all edges and screwed in place. With the screws recessed and plugged with plastic wood, the floor can be sanded smooth and finished so that the floor blocks will not show. They can be dug out, however, when necessary to connect leads, the leads passing over the basement ceiling. This idea isn't successful if the radio room is on the second floor.

Built-in shelves and cupboards would be very handy in a shack, and every effort should be made to provide room for QSTs, catalogs, old logs and many other items which clutter up an operating desk. Large panels of Celotex can be screwed to the wall (assuming the room is not finished in Celotex) to take maps and QSL cards. An extra wide door served me very well when I discovered that my new operating desk had a minimum dimension of 30½ inches. Linoleum on the floor would give an opportunity for insertion of an ARRL diamond in the center, and commercial cut-outs of compass directions are available. Linoleum must be waxed and polished for wear and appearance, however, and shoes and furniture leave marks hard to polish out.

The electrical installation would probably give the amateur his best chance to improve the radio room, as compared to the average house wiring job. In my case, a Cutler-Hammer overload-breaker center provided circuit control for four 15-, one 24- and one 35-ampere circuits. The last two provided for three-wire services and, since I did not plan to use an electric stove, the 35-ampere circuit went to the ham shack, by way of three No. 8 wires. A pair of twist-lock receptacles provide two 110-volt circuits, one on each side of the line, while 220 volts is available from the hot wires in each of these two circuits. The twist-lock receptacles have plugs which are inserted and then rotated a portion of a turn to prevent their working out with heavy cables attached — and perhaps interrupting a QSO. Ordinary home outlets provide connection for receiver supply, desk lamp, electric clock and other equipment requiring a small amount of current. A single extension cord comes from the nearest outlet to a five-gang outlet box located high up inside the knee hole of the desk, making it unnecessary to run a number of cords from desk to wall. A store-type indirect lighting fixture using a 200-watt bulb gives adequate light for everything except reading.

The ground strap mentioned earlier comes up through a wall slot just above the baseboard and across the floor to the base of the transmitter rack, and continues across the floor under the rug to the operating desk for a ground on the receiver and variable-frequency oscillator.

Receiving antennas for the broadcast receivers in the house can be installed in the walls when the house is being built, and come out at the special antenna outlet plates available. This will make it unnecessary to run any wires outside except the regular transmitting antenna. Connections to the transmitting antenna come through the wall by way of navy-type Pyrex bowls and heavy brass rods. The 1½-inch holes for the rods were bored through with an extension bit, and I hope you are luckier than I on was this — I hit a stud edge on, and had to bore through four extra inches of wood and plenty of nails.

Trimming for the radio room can include aluminum venetian blinds instead of curtains and, if your pocketbook can stand it, chrome-steel furniture. Strip carpeting can be used instead of a full-sized rug — probably you won't be shifting your furniture every few days as your wife does.

Put down on paper every possible improvement you can figure on before you ever start to build and discuss them with your contractor.

* Everyone of us dreams of an ideal location for ham radio — and hopes some day to find it and build a house on it. If the happy time ever comes, it's well to be prepared with plans for something more than the spots where the antenna masts are to be located. Here are some helpful pointers.

(Concluded on page 116)
How's DX?

How:

Do you want to know how to work DX? Then take a tip from the fishermen. Did you ever stop to think how closely parallel the two sports of fishing and chasing DX are? The dawn and dusk periods usually pay off the best, good technique generally means more than fancy equipment, and the pretty gadgets in the stores always have great appeal — often more for the fisherman/DXer than for the fish/DX. The fisherman has his pet pool with a large fish in it that someday he's going to land, and the DXer has a prize DX station all spotted that some day he's going to land.

So what's the moral? Well, you know about the barefoot boy and his worms and bent pin — in DX there's always the little guy with the 807 who sneaks one away from you. And how do you work DX? Just like fishing — be there at the right time when he's biting and get him first!

What:

Now that we have two bands to scout, things are looking up. A few brave souls have ventured to 80 for fun and found it there. Conditions have been good, and stuff manages to get across the Pacific and down to South America. It's too bad that the ZLs aren't allowed to work us yet, because they're being heard in the Middle West — W9VFO logged ZL4GA, ZL4CK, ZL2HQ and ZL2MR one early yawning — and W6QZG listening down in Brazil heard W4HRO, W4TM, W6AM and W6ITH on 75 'phone. W6AM tells us that W6ITH was using four rhombics in push-pull parallel, a very nice array if one has the necessary two counties to put it in! — — — W3ROX worked KZ5AA (3860), and KZ5AB and XE1A were heard at W5YU. W3OP worked HH5PA with 10-watts input, and heard VO2KJ, and W1EIH worked W1NPC/VO (3790) — — — Another good one is VP3DA (3670) who is quite active and who heard all W except W7 very shortly after the band was opened. QSL him via W2MQB: — — — K7s are fairly scarce on 10, but there seems to be plenty of them on 80, according to long lists sent in by WTRT, and 80 is also a good spot for some of those new VE7s and 8s.

The fancy band, 28 Mc., hasn't let down its faithful followers, if the juicy morsels some of them have come up with is any indication. Take, for example, the five continents worked in six hours by W1BPX: VU2AA (28,050), PK4DA (28,250), CN8BD (28,200), PY2KT and PA0MU. But no Ws! Other stuff, on other days, included VQ4AA (28,000), VQ6MI (28,070), VQ2PL (28,180), KAIJM (28,085), W9ZIL/K7 (28,000) on Attu, and W6PUZ/Tinian (28,025) worked the long way round at 8 A.M., EST — — — W2LR1/KB6 says CR9AG (28,190) on c.w. is looking for Wa. It goes without saying that they will be happy to look for him — — — W2LMO worked W9YN/KB6 (28,650 f) and heard ZD4AC (28,700) — — — W8BKP hasn't let any moss grow on his skywires, and adds the following frequencies for the wolves to patrol: XACP (28,090) in Sardinia, ZP2AC (28,400 f), ZX4AM (28,150), VS7CX (28,000), VU3LR (28,080), AC4YN (28,040 f and c.w.), VK7CW (28,000) and EQ3W (28,060 f) — — — W6PBV came up with OA4AD (28,030), W9NWM/Majuro (28,030) in the Marshalls and KZ5AW (28,060). Bob had V5SAV/VP8 (28,050) all spotted, but recently the VE has been signing "/Marine" so it doesn't look too good for that VP8 contact — — — W1HKK has been keeping his mike warm, and with good results, like EP1C (28,530), OQSAE (28,400), VQ4ERR (28,320), TG6PB (28,840), W8QEN/CT2 (28,050) and K7GMN (28,390) — — — W6OKK knocked off a flock of Europeans and VKs and KAs, and even snuck into the 11-meter band to grab W6RJG/J9 on Carlson Island in the Marshalls and W6SMF/K7 — — — W1CH added VU7BR (28,160) and ZC6NX (28,100) to his long list of scalps — — — VE1ME/5 — VE5, that is — worked W8WEU/KB6 (28,035), KAIAZ (28,055) and W9IL/K7 (28,070), and W2FQS adds PY5AG (28,050), OA4R (28,150), HH5PA (28,110), CX1FY

June 1946 51
(28,050), OQSBQ (28,005), F3DI (28,000), F8WX (28,000) and ON4B (28,070). Cliff also worked HZ3FI (28,100), who says QSL via RSGB, but he’s holding his breath and keeping his fingers crossed on that one. - - - - - - W2KIK/5 knocked off W5SIR/VP9 (28,700), VK7CM (28,550), VP3LF (28,250), and heard VP9F (28,150), VP6RB (28,250) and WSBWP/W9 (28,800) on Kwajalein - - - - - - W6ITH, the guy with the push-pull parallel rhombics, has some nice stuff, including W4GFK/J9 (28,640) at famed Bikini Atoll, W8WSY/ZC3 (28,140) — he’s on the VR3 Christmas Island and is signing the wrong call — W6QJW/KL7 (28,650) at Shemya, W8CJR/XUS (28,720), KAIAN (28,330), ZL4BN (28,500), W1MUX/9 (28,640) on Eniwetok, W9QMD/KJ6 (28,090) and TG9FG (28,160) - - - - - - W2MPA is beginning to find it hard to find new ones, but added XACR (28,100) and XABY (28,300) in Greece, W7GXR/KB6 (28,150), F3LG (28,100), PAQJM (28,250), VP6YB (28,100), CSZ (28,100) in Portugal, W3FJW/CT2 (28,500), H9J (28,200), OZP7H (28,300), and W5DCE/J (28,300). In the heard department: ZB1A (28,100), LI3AD (28,000 e.w.) in Libya, W3ELL/J (28,500) in Iwo and W2JB/J (28,100).

Where:

Good old Jeeves took pity on us after last month and got the address of PJX3 (28,000), now that it’s being given out so freely: Box 81, Curacao, N.W.I. - - - - - - But we must rely on W4BYF for such as FMSAC (28,015), P.O. Box 260, Fort de France, Martinique; VQ6LM (28,050) via RSGB, and G4AB/J (28,000), Sig. Officer, RAF Sta., Elmas, CMF, Sardinia - - - - - - From W6ITH we get XE1KE (28,240), B. J. Kroger, Azteca Motion Picture Studios, Mexico City, a very familiar name to the 28-Mc. men of the middle ‘30s who knew him then as X1AY; and W1HKK gives us EP1C as Mr. Russell Houseworth, c/o TWA, Aberdeen, Iran - - - - - - W3HAE/J requests QSL to his home address at 1433 Armistead Bridge Road, Norfolk, Va. - - - - - - W1BPX gives us VU7BR, S.T. J. Brown, c/o Anglo Persian Oil Co., Bahrain Island, Persian Gulf; VU2AA, c/o 166 Piccadilly, London, England, and KAIJM (28,050), Lt. Jim Moulton, 13th Air Force, APO 719, c/o Postmaster, San Francisco.

Who:

W7EYS is in a swell position to get in on the 28-Mc. schedule program for the BuStan, as outlined last month and elaborated this month elsewhere in QST, having jumped the gun with a traffic sked with W6QKB/KB6 from mid-February to April 20th, when QKB left for the States. Incidentally, QKB had worked 65 countries before he left - - - - - - Speaking of countries worked, a favorite pastime in DX circles since W1MO raised 8AB, W8SBKP has 45 on 'phone and an additional 30 on c.w. for a total' of 75, W1BPX is up to 69, W1CIH had 56 in early April, and LU7AZ is somewhere over the half-century mark - - - - - - VS2AK will be back on in July, with a rhombic at the States, and will be glad to hear from any of the Ws he worked before he lost his home, gear, records and four years of freedom. You can reach him by addressing your letter to T. A. Dineen, c/o General Electric Co., Singapore - - - - - - W2NLW is back from Saipan, and his new Call Book is helping him to QSL to 500 contacts he made during his two months of operation on the island. His address is 3204 Kingsbridge Ave., New York 63, N. Y. - - - - - - W9VWL says that ON4PA in a letter sends greetings from ON to all Ws. One reason the ONs are a little slow getting back on is that most of them destroyed their transmitters rather than to let them fall into the hands of the Germans - - - - - - And W9VND passes along the story of YU7LX, who used to handle the QSLs in YU. LX was caught as a radio operator behind the Nazi lines, and as a result was shoved around in about ten different concentration camps. At the last camp, in Italy, he was in pretty dire straights, but he remembered an old buddy of his with connections in Italy, so he wrote to HB6CE in Zurich, told him of his plight, and could OCE help him out? Franz — remember HB6CE? — got hold of a business mate in Italy close to the concentration camp, and between the two and a bit of skullduggery they managed to get food, clothing and money to YU7LX as well as news to and from home. That’s ham spirit, of course, but wouldn’t anyone do it? Perhaps, but possibly not if their living essentials were rationed as strictly as they were in Switzerland during the war! HB9AG did much the same thing, by answering a plea for help from an SWL in Holland and helping out with food, clothing and money via the Red Cross - - - - - - W5CXS doesn’t even try to figure out the 10-meter band any more. He worked three VEs at midnight, including VK6RU, and the Ws were still coming through at 2 A.M. On a strictly daylight band! - - - - - - W6UUQ/3, ex-XU3OF, ex-KA1BZ, ex-W5JVQ, doesn’t let his 35 watts give him an inferiority complex. Some new stuff there includes EI6G (28,020), HC1JW (28,050 f.), SVI8C (28,100) and ZS2CB (28,220) - - - - - - G6QX says they renumbered the houses on his road during the blitz and he came up with No. 73. Personally, we think Bob and W1EMH, who also grabbed off a “73” street number, should get together on a small pamphlet telling us dumb ones who for and how many drinks one buys for that kind of fortuity - - - - - - K6TZZ is pretty much convinced that a lot of guys don’t know about the QSL Manager system. Bob has QSLed all of his contacts via the Managers, but says on repeat QSOs some of the guys squawk for cards, indicat-

(Concluded on page 118)
ARRL Code-Proficiency Program

Qualifying Transmissions from W1AW—June 18th and July 19th
Tape Sending from W1AW to Aid Your Copying Ability

BY F. E. HANDY,* W1BDI

Scores of letters and cards have asked the resumption of ARRL's Code-Proficiency Program. Clearance of military use of W1AW frequencies was first necessary to permit more operation than three hours per night before we could expand schedules to give it to you. Such was the urgency of amateur requests that on getting the awaited FCC authorization we broke an item on Practice Schedules into Operating News of last QST. Here are the full details of the Code-Proficiency Program, speeds covered, objectives, awards, and the schedules of the first qualifying runs. Every amateur who hasn't already received a certification from ARRL at the top award-speed is cordially invited to participate. We amateurs always have maintained an eager pride in our code ability. In the war years some of us permitted it to slip back from the top. A good many hams can follow the general idea of a contact "by ear" but when pressed to write it down as in real communications (record) work they muff the copy. The W1AW program invites every man to prove himself as a proficient operator, and sets up a progressive system of awards for step-by-step gains in COPYING PROFICIENCE.

Progress in proficiency in code reception is shown after the initial test and certificate award, by a separate dated and initialed Endorsement Certification to be added in a space provided. Silver Endorsement Stickers (a distinctive design for each speed) will be issued for progress from any lower speed to 20, 25, 30 or 35 w.p.m. All amateur operators may try for the progressive endorsements!

On May 1st we resumed the ARRL Code-Proficiency Program. This plan is designed to enable every radio amateur to check his code proficiency, to better that code proficiency, and to receive a certification of his receiving code speed, with a further award for every improvement that the certificate recipient can demonstrate up to a top of 35 w.p.m.!

This program is a whale of a lot of fun. The League will give a certificate to any licensed radio amateur who demonstrates that he can copy perfectly by ear for at least one minute, plain-language Continental code at 15, 20, 25, 30 or 35 w.p.m.!

One of these Proficiency Certificates may be awarded to you, try for it, by copying W1AW at 10:00 P.M. EDT (8:00 P.M. CST) June 18th or July 19th. If you can take 15 w.p.m. by ear and prove it, this handsome lithographed certificate is yours! If you can do 20, 25, 30 or 35 w.p.m. your certificate will so state! Every amateur operator licensee is eligible.

35 words per minute, all copy to be of special monthly transmissions to be scheduled from your ARRL station, W1AW.

There are two objectives: (1) To copy by ear, write down by pencil and paper, or better yet, write on a "mill" what is sent, to qualify for a certificate and rating on the best one can now do.
(2) To put in a few minutes a day operating our station at the best speeds we can, also listening and copying PX and practice transmissions to train our powers of coordination, in order to win from the League the conspicuous endorsement that will be awarded to go on that first Proficiency Certificate whenever we can boost our speed honestly another 5-w.p.m.!

W1AW Practice Transmissions

W1AW will transmit practice material as follows: Time: 10:00 P.M. EDT (8:00 P.M. CST) June 18th or July 19th. If you can take 15 w.p.m. by ear and prove it, this handsome lithographed certificate is yours! If you can do 20, 25, 30 or 35 w.p.m. your certificate will so state! Every amateur operator licensee is eligible.

35 words per minute, all copy to be of special monthly transmissions to be scheduled from your ARRL station, W1AW.

There are two objectives: (1) To copy by ear, write down by pencil and paper, or better yet, write on a "mill" what is sent, to qualify for a certificate and rating on the best one can now do.
(2) To put in a few minutes a day operating our station at the best speeds we can, also listening and copying PX and practice transmissions to train our powers of coordination, in order to win from the League the conspicuous endorsement that will be awarded to go on that first Proficiency Certificate whenever we can boost our speed honestly another 5-w.p.m.!

W1AW Practice Transmissions

W1AW will transmit practice material as follows: Time: 10:00 P.M. EDT (8:00 P.M. CST) June 18th or July 19th. If you can take 15 w.p.m. by ear and prove it, this handsome lithographed certificate is yours! If you can do 20, 25, 30 or 35 w.p.m. your certificate will so state! Every amateur operator licensee is eligible.

35 words per minute, all copy to be of special monthly transmissions to be scheduled from your ARRL station, W1AW.

There are two objectives: (1) To copy by ear, write down by pencil and paper, or better yet, write on a "mill" what is sent, to qualify for a certificate and rating on the best one can now do.
(2) To put in a few minutes a day operating our station at the best speeds we can, also listening and copying PX and practice transmissions to train our powers of coordination, in order to win from the League the conspicuous endorsement that will be awarded to go on that first Proficiency Certificate whenever we can boost our speed honestly another 5-w.p.m.!

W1AW Practice Transmissions

W1AW will transmit practice material as follows: Time: 10:00 P.M. EDT (8:00 P.M. CST) June 18th or July 19th. If you can take 15 w.p.m. by ear and prove it, this handsome lithographed certificate is yours! If you can do 20, 25, 30 or 35 w.p.m. your certificate will so state! Every amateur operator licensee is eligible.

35 words per minute, all copy to be of special monthly transmissions to be scheduled from your ARRL station, W1AW.

There are two objectives: (1) To copy by ear, write down by pencil and paper, or better yet, write on a "mill" what is sent, to qualify for a certificate and rating on the best one can now do.
(2) To put in a few minutes a day operating our station at the best speeds we can, also listening and copying PX and practice transmissions to train our powers of coordination, in order to win from the League the conspicuous endorsement that will be awarded to go on that first Proficiency Certificate whenever we can boost our speed honestly another 5-w.p.m.!
device to the new speed. Look for the QST call on any of the frequencies indicated, Monday through Friday, at 10:00 P.M. EDT, (9:00 P.M. EST, 8:00 P.M. CST, 7:00 P.M. MST, 6:00 P.M. PST.) Write down all you can copy at any of the speeds used.

For practice we likewise recommend that interested amateurs copy the ARRL Official Bulletins, which are sent on all the above mentioned frequencies, on the following schedule, Monday through Friday.

<table>
<thead>
<tr>
<th>Starting Times (P.M.)</th>
<th>Speeds (W.P.M.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDST</td>
<td></td>
</tr>
<tr>
<td>8:00</td>
<td>25 w.p.m. and repeated at 15 w.p.m.</td>
</tr>
<tr>
<td>11:30</td>
<td>15 w.p.m. and repeated at 15 w.p.m.</td>
</tr>
<tr>
<td>CDST</td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td></td>
</tr>
<tr>
<td>6:00</td>
<td></td>
</tr>
<tr>
<td>MDST</td>
<td></td>
</tr>
<tr>
<td>5:00</td>
<td></td>
</tr>
<tr>
<td>PDST</td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td></td>
</tr>
</tbody>
</table>

The midevening practice material is not read on voice since it is simply for practice and any recipient can tell how much he is getting just by looking at his paper. Practice texts on certain nights can be checked from QST as explained under “Sending Practice” in this article. The Official Bulletins are repeated on ‘phone immediately after the conclusion of the radiotelegraph schedule and can be used for a check, if desired.

June 18th and July 19th — WlAW Proficiency-Certificate-Award Runs

At the usual practice time (10:00 P.M. EDT) on the above dates, WlAW will follow a five- to ten-minute explanatory “QST” message, by a special transmission, at consecutively-increasing speeds, through the usual ranges, for all interested amateurs to copy. This text, received successfully by ear at the highest speed you can copy, should be sent in to ARRL for checking. In all cases send your original copy. Attach a statement to your copy certifying over your signature that the copy submitted is direct copy, made from reception of WlAW by ear, without any kind of assistance, personal or mechanical. After time for checking papers has elapsed you may expect to receive acknowledgment, direct from the League, and if you qualified on a test date and transmission, also your certificate, or the appropriate endorsement sticker. Our limited personnel will be unable to do extensive checking and corresponding. No copies of the official texts will be given out, and no copies submitted will be returned. Decisions and awards will be final and must be accepted as such. There will always be another test period coming up, to redemonstrate higher code proficiency!

A word of caution: Send in your original paper! In the past, more individuals have failed because of attempting to recopy than the average amateur would suspect. To insure some measure of overcoming fading or QRM and QRN, we suggest that on the important dates, amateurs may use “split-headphone” reception (one ‘phone on each of two receivers set on different WlAW frequencies) to minimize reception difficulties.

A complete record is kept at Headquarters showing every certificate award and endorsement issued, and we know that every real ham will want to get his Code Proficiency Certificate just as soon as possible.

It is one thing to be able to hear some signals coming in and get the gist of the information conveyed. It is quite another to write down ACCURATELY all that is sent! One cannot consider himself an operator in the truest sense until he can transcribe accurately. Sending well is an art that the writer considers even more difficult, especially if this hand transmission is to be maintained at an even tempo for any considerable period.

Sending Practice

Practice makes perfect. A few minutes each day in emulating tape sending (by hand) and in reception of code that is moving along just a little above the speed one can copy comfortably, with full accuracy, will pay big dividends in a very short time. Operating and more operating is recommended. Experience counts.

To permit direct comparison of one’s fist and tape sending, QST will list in advance the text to be used for practice on two of the five weekly practice runs. The following tabulation indicates material to be used in the program. To get sending help hook up your own key and buzzer or audio oscillator, turn to the QST material, tune in WlAW, and attempt to send right in step with the tape signals. Adjust your spacing in the manner the received signal indicates necessary for improvement.

<table>
<thead>
<tr>
<th>Date</th>
<th>Subject of Practice Text From April QST</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 29</td>
<td>The Postwar Naval Reserve, p. 54.</td>
</tr>
<tr>
<td>May 31</td>
<td>The World Above 50 Mc., p. 60.</td>
</tr>
<tr>
<td>June 4</td>
<td>The Circular Band Theorem, p. 65.</td>
</tr>
<tr>
<td>June 6</td>
<td>Technical Topics, p. 67.</td>
</tr>
<tr>
<td>June 10</td>
<td>Listening Post in the Philippines, p. 70.</td>
</tr>
<tr>
<td>June 12</td>
<td>Stabilising the 144-Mc. Transmitter, p. 24.</td>
</tr>
<tr>
<td>June 18</td>
<td>Qualifying Run, 10:00 P.M. EDT.</td>
</tr>
<tr>
<td>June 27</td>
<td>Oscillators and Amplifiers at 1000 Mc., p. 34.</td>
</tr>
</tbody>
</table>

Amateur message handling and transcription is highly recommended as an aid to becoming a good operator. If you have at all neglected your c.w., start your code ability on the upgrade from where it is. Regardless of where we start, it is nothing to be ashamed of. Everybody will be doing it! The first ARRL certificate may be obtained at a 15-w.p.m. aural receiving ability. This is only a couple of w.p.m. above the skill required in initial license-qualification tests.

The new FCC regulations require that for renewal of operator license “proof of use” must be made by listing QSOs with three other amateur stations in the last six months of the license term and that these contacts must be by

(Concluded on page 118)
Long Leads Aren’t Necessary
Concentrating Tank Elements to Balk Parasitics

BY GEORGE W. SHUART, * W2AMN

Quite frequently of late we have observed raw a.c. and r.a.c. signals on the 80-meter band, and an effort to copy some of them led to the discovery that many were back waves—that is, radiations when the key was open. Much of this trouble can be traced to the use of high-sensitivity tetrodes such as the 807, 813, TB-35 and similar types.

While these tubes are said to need no neutralizing, in the majority of cases that is true only when the tube and circuit shielding is practically perfect. When there is little shielding, and coupling can exist between the input and output circuits through the fields surrounding the plate and grid tanks, you’re headed for trouble. If the amplifier uses fixed bias and the driver or a still earlier stage is keyed, you are likely to have not only a “key-up carrier” but gosh knows what else when the key is down. If such an amplifier is modulated, you may have a series of “outlaws” that are likely to get you into trouble either with the neighbors or the local RI. Although the amplifier may appear to behave normally, actually you may have other carriers on different frequencies during modulation, especially on modulation peaks when the plate voltage is doubled during the positive half of the audio cycle. To locate such an enemy you have to double the normal plate voltage and search the entire spectrum, but most of us have no facilities for such an investigation.

Parasitic v.h.f. and u.h.f. oscillations in a high-frequency amplifier not only are quite common but are very difficult to pin down. If we consider the elements in the amplifier circuit we find that we have not just one but several possible resonant circuits all in one physical set-up. Many of us are beginning to find out that a great deal of b.c. interference, as well as spurious radiations and harmonics, can be eliminated if care is exercised in the design of our equipment. The first rule, of course, is to make every effort to have all the inductance in one unit and all the capacitance in the other. In the ideal tank circuit there would be little danger of multiple resonance.

Suppose we have a “glitch” circuit resonating at 200 Mc. in the plate, and another of similar characteristics in the grid side of an amplifier employing high-gain tubes—particularly those which operate efficiently at frequencies as high as 200 Mc. That situation is perfect for putting out one carrier at 3.5 Mc. (or 28 Mc., if that’s your band) and another at 200 Mc. The RI’s temperature goes up because you’re “off frequency” and your neighbor blows his top because that 200-Mc. signal is splattering, over-modulated, frequency-

While leads in themselves may do no particular harm at the operating frequency, when the latter is in the ordinary h.f. region, they may be the means of forming secondary resonant circuits that encourage parasitic oscillations. With some care in layout, plus a willingness to depart from conventional panel-chassis construction, the parasitic circuits can be broken up. Here are some suggestions.

June 1946 55
About the Author

For many years, George W. Shuart devoted his time to writing radio articles for beginners, and as a result of his efforts many a present-day radio amateur was started off in America's No. 1 hobby. He has been signing W2AMN since 1928, through an amateur radio career that has embraced DXing, rag-chewing, experimenting, and v.h.f. and u.h.f. activity. When it comes to the serious business of making a living, you will find the author happily engaged, mixing vocation with avocation, as Advertising & Sales Promotion Mgr. of the Hammarlund Mfg. Co., Inc., N. Y. C.

modulated, and what not, and crashes right through his midget b.c. set — through the better ones, too, in many cases.

How do we eliminate the trouble? We wish we had a sure-fire answer to that question but there is none. The best rule to follow is: Use complete shielding; get all your L and C where they belong; and neutralize the amplifier if there is the slightest sign of reaction on the grid current when the unloaded plate circuit, with its B+ lead disconnected, is tuned through resonance.

The amplifier shown in the photographs, while not going to extremes, illustrates the points covered in this discussion. The plate tank coil mounts right on the capacitor and at the same time makes contact to the stator sections through heavy but short connecting bars and pillars. A large bar or strap joins the two mounting points of each stator to reduce the inductance of the leads. The success of this method is proved by the fact that a large coil is necessary and the plates of the variable capacitor are meshed well over one inch on 28 Mc. — and the capacitor is plenty large for 80-meter operation. The result is an efficient circuit that is extremely easy to load. This permits loose coupling to the antenna circuit, which goes a long way toward reducing harmonic transfer and radiation. The output link coil is mounted on one of the horizontal tie-bars of the condenser for convenience and compactness, using a length of half-inch polystyrene rod as a rotatable support.

A piece of sheet aluminum 8 inches wide by 10 inches long was bent as shown in the photographs to form a mounting platform for the TB-35 tubes and at the same time to form a baffle shield between the plate and grid circuits. The baffle also serves to mount the grid tank with its variable link coupling. This arrangement, while not affording complete shielding, works out quite advantageously in that it provides for just about everything. Further shielding can be secured by using a larger piece of aluminum and making still another bend to form a top shield over the grid circuit. A rear side-plate can then be fitted to the main baffle and the front panel will serve to enclose the entire grid circuit. However, with the shield arrangement shown in the photographs there was every indication that the amplifier was performing perfectly when it was neutralized.

Neutralizing presented quite a problem. The intention, at first, was to build a small capacitor arrangement such as has been described in previous issues of QST (wires extending alongside the plates of the tubes) but finally the condensers were "manufactured" by using the capacitance between the

Using a pair of TB-35 tubes, this amplifier is mounted on and entirely supported by the plate tank condenser. The bent-aluminum "chassis," fastened rigidly to the tank-condenser tie-bars, provides a baffle shield between the grid and plate circuits as well as a mechanical mounting for the tubes and parts. The width is such that there is room for a compact exciter on the same relay-rack panel that supports the amplifier.
wires of a short length of 300-ohm Twin-Lead. One wire connects to the grid of one tube and the other goes to the plate of the second. Simply by cutting 'V' notches in the open end of one wire (starting near the very end) the amount of capacitance can be reduced in small steps until exact neutralization takes place. The usual procedure of observing the effect on the grid current when the plate circuit is tuned through resonance will prove entirely satisfactory, but don't forget to disconnect the B+ lead from the power supply.

How does the amplifier work? With 1250 volts on the plate and a plate current of 200 ma., it works smoothly with no serious harmonics and no spurious oscillations. The RI is happy and our neighbor is listening to his favorite programs. A total grid current of 10 ma. for the two tubes, through the 20,000-ohm grid leak specified in Fig. 1, provides ample drive for 'phone as well as c.w.; increasing the grid current causes no corresponding increase in either power output or efficiency. Although we have not given it a really good work-out below 30 Mc., it proved as equally efficient on the 3.5-Mc. band as on 28 Mc., and therefore should work well on 7, 14 and 21 Mc.

The Twin-Lead "neutralizing condensers" cross from grid terminals on the tube sockets to the tank-condenser stators, as shown in this bottom view. The neutralizing adjustment is simple — and permanent.
W e’re off! For some time after the 50-Mc. band was released for amateur occupancy, some of us were wondering if there were any v.h.f. enthusiasts left in the United States. On the night of March 1st we seemed to get off to a good start, in New England at least, with quite a few stations in the Boston area and in the vicinity of Hartford giving the band a work-out. Within a few days, however, 6 became as quiet as 5 had been before it, and the opening of the 80-meter band on April 1st seemed to supply the finishing touch.

But the prospect of the month of May with its promise of skip-DX to come, this year on a new frequency, apparently did the trick, for in late April the number of signals on the band began to increase, and by the time the first DX opening rolled around there was enough activity to make things interesting for all concerned. What was probably the first two-way contact involving skip on the 50-Mc. band (and still the best DX reported, to date) was made on April 23rd at 10:43 P.M., between W1LSN, Exeter, N. H., and W9DWU, Minneapolis, Minnesota. Other DX heard and worked on this first night has been reported as follows:

- W1LSN, Exeter, N. H. heard W9s DZM, QIN, DWU, NFM, ZHB; heard W8LSZN.
- W1LLL, Hartford, Conn., worked W9s DZM, QIN, DWU, NFM, ZHB; heard W9DWU.
- W1AEP, Springfield, Mass., worked W9s NFM, ZHB; heard W9DWU.
- W1HDQ, West Hartford, Conn., worked W9s DWU, ZHB; heard W9NFM.
- W8CLS/1, Waltham, Mass., worked W9s ZHB, DWU; heard W2JCR, W9s NFM, DZM, QIN.
- W1FJN, Scituate, Mass., worked W9s DWU, DZM.
- W2FID, Montrose, N. Y., worked W9QIN; heard W9s DZM, DWU.
- W9DWU, Minneapolis, Minn., worked W1s LSN, EKT, IN, FJN, KSA, LLL, HDQ, W2MEU, W8CLS/1; heard W1HEXP.

The above represents reports received by mail or over the air. Actually, of course, it is only part of the story. It was a strange night, in several ways. Just about every sort of propagation known to v.h.f. veterans was in evidence in the course of the evening. Following the time-honored cus-

V.H.F. Editor.
from early evening until around 9 P.M., when the typical auroral distortion was noted on 'phone signals, the stations using voice were quite readable, though fading more rapidly than would be expected of sporadic-E signals. Almost no directionality was discernible on normally-sharp directive arrays, though a slight increase in signal strength was obtained by aiming the beam north. It seemed more as if the signals were raining down from overhead, and such they may well have been, for there was a mild display of aurora over the entire sky. Another way in which conditions varied from what is commonly expected of aurora was in the small area over which a signal could be heard at any one time. Normally in work by means of auroral reflection, signals are heard across most of the area between two communicating stations, with little or no skip zone involved, whereas these signals were coming through at high signal levels only in little patches at a time. An example of this was noted in a three-way QSO between W8CLS/1, Waltham, Mass., W9ZHB, Zearing, Ill., and your conductor at West Hartford. At first W9ZHB was pinning the meter at Waltham and was running only S1-S2 at West Hartford. Suddenly he plummeted almost to the noise level at W8CLS/1, rising at the same time to 20 db. over S9 at W1HDQ, remaining near that level for a half hour or more. At times his signal was stronger than any but the most powerful locals. Several reported W9ZHB and W9NFM as the strongest skip signals ever heard on any band above 14 Mc.

The strangeness of the band that night was complicated by the existence of a strong temperature inversion in W1. Signals from the Boston area were extremely strong in West Hartford, strong enough, in fact, to draw your conductor away from the six-meter band to work some 100-mile DX on 144. Signals from all over Eastern New England were very strong on 144 Mc., and about 15 stations over 75 miles distant were worked in a period around 10:30. Hearing the third harmonic of W1LL calling W6DWU brought us back to 50 Mc. in a hurry around midnight!

Characteristics of the skip signals seemed to indicate that propagation on 50 Mc. may be quite different from that experienced on the old five-meter band, seeming more like ten meters than five, though it may turn out that the difference is the result of our being near the peak of a sunspot cycle, rather than to any great difference in the propagation characteristics of the two bands. Men with long v.h.f. experience will recall that auroral DX on 56 Mc., with its distinguishing characteristic of being workable only on c.w., was a relatively new phenomenon. Back in 1935 and '36 voice contacts were made on 56 Mc. which we know now were the result of aurora. We didn’t pay much attention to how the signals came through in those days — DX was DX and that was all that mattered. We worked it, and didn’t care much how it all happened. Obviously, more observing and reporting is needed. Let us know what you hear and work, gang!

While we’re chasing the DX on 50 Mc., we should bear in mind that the old assignment is still in use in many other countries. Canada and Australia are the only other countries thus far using the new band. Though most of the real advances in v.h.f. technique have come about in recent years, it is well to remember that 5-meter signals crossed the Atlantic in both directions on several occasions in the years before the European war eliminated the possibility of two-way work. With Canada, Australia, and the United States on 50 Mc., and Great Britain, the Union of South Africa, and other countries of the British Empire operating on 58.5-60 Mc., we have an unparalleled opportunity for transoceanic DX.

G6CL (of RSGB) reports that there is considerable interest in five-meter work in the British Isles. On April 11th there were several contacts made over distances in excess of 100 miles on 58.5 Mc. A number of Gs would like to keep skeds with interested Ws in the hope of effecting two-way contact across the Atlantic by means of v.h.f. In this connection, we suggest that the English operators watch the 28-Mc. band for evidence of short skip in the United States. At the height of such periods it is almost certain that 10-meter short skip would get across the Atlantic, and if it does then 50-Mc. signals might well do likewise. On our side, we should tune the 56-60-Mc. range, especially that portion above 58.5 Mc., whenever
things get really hot on 6. The new assignments make it possible for us to listen for transoceanic DX at both ends of the path, with no worries about local QRM blotting out a weak signal.

Fig. 1 — Detail of the ends of each of the parasitic elements, showing the slotted sleeve which provides a means of adjusting the length. Parasitic elements are of % inch tubing. The inserts are of the same material six-inches long, with a slot % inch wide sawed lengthwise to provide a spring fit.

There is some interest in several South American countries, too. Remember that most of them have the full 50-60 Mc. Watch the old five-meter band, gang — there may be a new v.h.f. DX record waiting for you! Right now is not too soon to be on the lookout, though June and July will provide the maximum probability of international DX.

A Four-Element Array for 50 Mc.

When the v.h.f. enthusiast decides to go in for directive arrays he plunges into a series of charts, graphs and tables which leave him completely confused. Most of the directive-antenna data is written in terms of low-frequency requirements, where the problems are quite different from those facing the 50-Mc. worker. The net result is that he decides on an array of 2, 3 or 4 elements, depending upon the space available and the leniency of his landlord. He cuts his elements by some magic formula, sets the spacing to some other figure, and hopes for the best. Even this procedure is usually productive of increased coverage, for almost anything in the way of a parasitic array is apt to be better than a simple dipole. But we all know that beam characteristics vary widely; we must select the type of array best suited to the sort of work we intend to do, if we are to achieve outstanding results.

If we were building an array for 14 Mc. we would place compactness and high front-to-back ratio at the top of our list of requirements. The fact that the close-spaced array which provides these also has a very limited frequency response would be unimportant. High front-to-back ratio may or may not be important on 28 Mc.; we might be willing to sacrifice it for high forward gain and broad response. Front-to-back ratio is almost completely unimportant; in fact, we want some pick-up off the back, in order to make the most of the somewhat limited occupancy of the band.

To facilitate checking the merits of various reflector and director spacings from 0.1 to 0.5 wavelength, a 14-foot frame was made up, with provision for mounting the elements in any position with respect to one another. Parasitic elements were made adjustable in length as well as spacing, the method of adjustment being shown in Fig. 1. Elements are % inch duralumin tubing, with slotted extensions (see Fig. 1) of the same material in each end.

Length and spacing of the reflector were found to be relatively uncritical, any spacing between 0.15 and 0.25 wavelength giving approximately the same gain, if the reflector length was adjusted slightly as the spacing was changed. Reflector spacing was set at 0.2 wavelength and the length adjusted for maximum forward gain.

Next, one director was added, at the customary spacing of 0.1 wavelength, and its length adjusted for maximum forward gain. It was then moved out to 0.2 wavelength and the adjustment for gain repeated. At this point there was an increase of more than 10 per cent in field strength over the maximum obtained with close spacing. At 0.25 wavelength the same reading could be obtained by shortening the director slightly. Moving the director out to 0.3 wavelength resulted in a 3 per cent drop in reading, despite retuning, and there was a further drop of about the same amount when the spacing was increased to 0.4 wavelength. Even here, the gain was still somewhat more than that obtained with close spacing, and the element length was considerably less critical, indicating broader frequency response.

As maximum forward gain could be obtained at 0.2 wavelength, the first director was fastened in place at this spacing and a second adjustable director added. The same tuning process was followed through with this element, maximum gain resulting when it was spaced at 0.25 wavelength ahead of the first director. The length of the reflector and original director were readjusted for possible interlocking effects. The final element lengths turned out to be about 5 per cent longer than the driven element for the reflector, 5 per cent shorter for the first director, and 6 per cent shorter for the second director.

To recheck on the above spacing, which is at variance with much published data, the assembly was broken down and reassembled with conventional close spacing for a 4-element array. Feedline impedance was changed so as to provide a good transfer of energy with both spacings, and the close-spaced system was tuned carefully for maximum forward gain. At no time was it possible to obtain as high a reading with the close-spaced system as resulted from the use of the 0.2-0.2-0.25-wavelength arrangement arrived at experimentally. The field-strength indication with four elements close spaced was, in fact, slightly less than that obtained with three elements using 0.2-wavelength spacing, which occupied the same space physically! Just why this is so we would not venture to say, but we do know that similar results have been obtained by a num-

60 QST for
number of experimentally-inclined v.h.f. workers operating under similar conditions. Brown's data shows that the pattern, in the plane of the elements, is sharpened when the spacing is increased; perhaps the apparent increase in field strength with wide spacing results from less energy loss in the vicinity of the antenna, due to lessened radiation toward the ground. For the moment, we were primarily concerned with getting a good 50-Mc. array up in time for the opening of the DX season — later on we hope to carry the project further and find the answers to the questions that are invariably asked whenever an array appears which utilizes other than the "standard" 0.1-wave spacing.

How Shall We Feed It?

The selection of the best method of feeding his parasitic array is also apt to confuse the prospective builder. We've always been a bit dubious of the delta system — that fanned-out area looks like a bad source of unwanted line radiation, and it is cumbersome mechanically. The parallel-pipe "Q" section is probably somewhat more efficient, but it is difficult to handle mechanically, and it is not too good for matching the low center impedances encountered in multi-element arrays. The concentric-line "Q" section, commonly used for parasitic arrays, may have high losses, its correct length is a question, and it may well result in unbalance.

The folded dipole looked like the best bet for this application, so we decided to try it, as it seemed to have several advantages over other methods. First, it is a broad-band device. It was for the purpose of covering the wide frequency ranges encountered in television service that the folded dipole was first employed. Second, by matching the line directly at the radiator, it holds down line radiation (the weakness of the delta system) and eliminates the use of tuned stubs. Third, it is a flexible device which permits the matching of the driven element in a parasitic array to a wide variety of line impedances.

By making the driven section of the folded dipole smaller than the parallel section, an additional impedance set-up may be obtained beyond the 4-to-1 ratio normally obtained with the folded dipole. We tried 3-to-1 and 4-to-1 conductor ratios, the latter, shown in Fig. 2, giving the lower standing-wave ratio with the 4-element system. A dipole having 3-to-1 ratio worked out nicely with a 3-element 0.2-wavelength spaced array, but the change to 4-to-1 ratio was necessary when the fourth element was added. The array was fed with a 300-ohm line. In the tests with close spacing, a 72-ohm feeder was substituted for the 300-ohm line, maintaining a low standing-wave ratio for both wide and close spacing.

Performance

With the array mounted atop a 32-foot steel tower, as shown in the accompanying photograph, tests have been run with numerous stations over distances up to 100 miles. As might be expected, from the method of tuning employed (concentrating on forward gain, with no reference to attenuation off the back) the front-to-back ratio is relatively low, being only about 10 db. Forward gain, in measurements involving reception of WSCL5/1, Waltham, Mass., nearly 100 miles distant, is in excess of 10 db. over a simple folded dipole of about the same height. Attenuation off the sides is high, a signal which is S8 on the meter of our NHU dropping completely out of audibility when the antenna is rotated 75 degrees either way from the maximum direction.

Frequency response is broad enough to permit operation over the active portion of the band, from 50 to 52 Mc., and it has even been used for f.m. work on 52.6, though directivity and gain drop off and standing-wave ratio increases above 51 Mc. The antenna was tuned up on 50.5 Mc., and the dimensions shown in Fig. 2 are for that frequency.

Since the opening of the 56-Mc. band on Nov. 15th, and on 50 Mc. since March 1st, we have maintained regular schedules with WSCL5/1 at Waltham, Mass. Prior to the erection of the new horizontal array, our contacts had been extremely rough going. Signal strengths, even on nights when there was appreciable inversion bending, were seldom above S6, and there were many nights when there simply was no signal at all. With the new array, and a 3-element horizontal at WSCL5/1, contacts have been made nightly on schedule for more than three weeks, and signals have run as high as 20 db. over S9 on peak at the Waltham end, and 10 db. over at West Hartford. Average signal on the poorest night to date was above S6, with only brief fades into the noise. Intelligibility of voice signals has been practically 100 per cent, whereas c.w. was neces-

(Continued on page 120)
I.F. Amplifiers in Television Receivers

Practical Design of Wide-Band Coupling Circuits

BY MARVIN H. KRONENBERG,* W2IJJ

For satisfactory reproduction at the receiver of present-day television broadcast transmissions it is necessary to employ amplifying circuits capable of passing frequency bands of from 2.5 to 4 Mc. in width. Since the superheterodyne type of receiver has met with the greatest popularity in this field the problem of broad-band i.f. amplifier design becomes most important. As a result of bandwidth and certain other requirements, individual stage gain is low and circuits must be adjusted to a great degree of accuracy. In order to illustrate the problem more clearly, it is well to review briefly present-day practice in television receivers.

In modern television superhets the picture-signal i.f. consists of a 4-Mc.-wide amplifier tuned so that it responds to frequencies extending from about 8.75 Mc. to 13 Mc. A separate i.f. amplifier tuned to 8.24 Mc. is used to select the sound transmission. Traps tuned to 8.25 Mc. are usually incorporated in the picture i.f. amplifier to eliminate sound interference with the picture. A factor affecting shape of the i.f. response curve is the method of transmission. In order to utilize the radio-frequency channels economically, a form of single-sideband transmission is used. One sideband is partially rejected at the transmitter, so that double-sideband transmission takes place only for the lower modulation-frequency components. As will be shown, the i.f. amplifier response curve must be designed so that all modulation frequencies will be restored to provide flat response over the entire band.

In Fig. 1, we have what might be considered an ideal selectivity curve of a television i.f. amplifier. Two important points on the curve should be noted. First, the response at the sound frequency is very poor. In practice, the amplifier is designed so that its response at 8.25 Mc. is at least 40 db. below that at the mid-frequency level. Second, the picture frequency (12.75 Mc.) is located at the middle of the sloping portion of the curve (the point of 50 per cent response). This adjustment is very important so that the lower modulation frequencies will be restored in amplitude equal to that of higher-frequency components. The reason for this is that the receiver actually will respond to double-sideband transmission of modulation frequencies occurring only between points A and B, Fig. 1. The total response in this region is equal to the sum of the individual sidebands and, if the picture carrier is located at the point of 50-per-cent response, sideband components displaced symmetrically about the carrier in this region always will add up to the same amplitude as a single sideband located in the region B-C.

From this the importance of accurate adjustment of the shape of the amplifier-response curve can be seen. Also, in the case of the superheterodyne receiver, variation of the local oscillator will, in effect, shift the position of the i.f. curve in the r.f. spectrum. Therefore, the oscillator must be tuned correctly so that the picture and sound carrier will fall on the 12.75- and 8.25-Mc. points.

Another requirement of the circuit couplings not ordinarily met with in communication receivers is that of adequate phase response. It is well known that in an electrical circuit containing reactive components, phase shift is a function of frequency. This variation is complicated where many stages and coupled circuits are used. Unfortunately, poor phase response (that is, when the shift does not vary linearly with frequency) will cause distortion of the received picture. However, by using simple and symmetrical coupling between stages, proper amplitude response is usually accompanied by adequate phase shift characteristics. This is particularly important to the experimenter who is limited in test equipment.

*84-12 126th St., Kew Gardens, New York.

QST for
Band-Pass Coupling

Many types of band-pass circuits are possible in the i.f. amplifier. The usual networks are based on either "coupled-circuit" or wave-filter theory. Since the conventional coupled circuits are quite simple to adjust and understand, they will be considered in this discussion.

In order to predict the action of a band-pass-coupled circuit, two important effects must be considered, first the bandwidth, and then the shape of the selectivity curve. It is well known that when two resonant circuits are coupled, the width of the response curve will increase as the coefficient of coupling is increased. The coefficient of coupling, \(K \), is used to describe the degree of coupling used between the resonant circuits. Mathematically (in the case of inductive coupling) it is the ratio of the mutual-coupling inductance to the square root of the individual circuit inductances.

\[
K = \frac{L_m}{\sqrt{L_p L_s}}
\]

where

- \(L_m \) = common coupling inductance
- \(L_p \) = primary inductance
- \(L_s \) = secondary inductance

The coefficient of coupling in the radio-frequency transformer depends upon the geometry of the transformer; that is, the proximity of the coils to each other, coil diameters, coil lengths, etc. When a common coupling impedance, such as an inductance, is used to connect two resonant circuits, Fig. 2-B, then the expression for coefficient of coupling becomes:

\[
K = \frac{L_m}{\sqrt{(L_p + L_m)(L_s + L_m)}}
\]

Equation (2) differs from Equation (1) in that the coupling-coil \(L_m \) must be considered also as part of the primary and secondary resonant circuits.

Now remembering that the bandwidth is a function of the coefficient of coupling, it is useful to know just how these quantities are related. Fortunately in over-coupled (band-pass) circuits simplification of equations may be made to yield the approximate relation:

\[
K = \frac{\Delta F}{F}
\]

where

- \(\Delta F \) = width of pass-band
- \(F \) = mid-frequency of pass-band

With the bandwidth thus determined, the shape of the response curve can then be predicted by recalling an effect peculiar to closely-coupled resonant circuits. It is well known that as the degree of coupling is increased until the peak amplitude of the response curve ceases to become greater, the condition called "critical coupling" is obtained. At this point, the impedance coupled by one resonant circuit into the other becomes equal to the series impedance of the resonant circuit and the condition for maximum transfer of energy is reached. This condition, known as critical coupling, \(K_c \), is important as a reference point in the determination of the shape factor, \(n \), of the circuit. Increasing the coupling beyond this point eventually will cause a double-humped curve to appear, and so the shape factor, \(n \), in an over-coupled circuit can be written as

\[
n = \frac{K}{K_c}
\]

or the ratio of the actual coefficient of coupling to the coefficient of critical coupling. Actually the coefficient of critical coupling for any set of coils is determined by the \(Q \) of each individual coil; that is,

\[
K_c = \frac{1}{\sqrt{Q_p Q_s}}
\]

In Fig. 3 a set of curves for various shape factors, \(n \), is given. In practice, for wide band-pass circuits, it is found that a value of \(n \) of 1.5 or 2 is quite satisfactory.

In the design of a particular amplifier, adjustment for proper bandwidth is accomplished, therefore, by changing the degree of coupling, \(K \), until the desired bandwidth is obtained. The relation easily is seen by referring to Fig. 3. Then, to obtain the desired shape factor, \(n \), the value, \(K_c \), coefficient of critical coupling, must be adjusted to obtain the desired ratio \(K/K_c \). Since \(K_c \) is a function of the individual circuit \(Q \)s this value may be varied by the simple expedient of hanging damping resistors across the coils. In practice the damping usually is applied to the secondary coil. Fortunately, when heavy damping is used it is possible to predict the value of damping resistor by means of a very simple (but approximate) relation

\[
R_d = \frac{1}{2\pi \Delta FC_s}
\]

where \(C_s \) = capacity in shunt with secondary. This relation will be useful in design of the heav-
ily-damped over-coupled circuits such as described below. It is interesting to note that R_d in Eq. (6) is determined only by the bandwidth and the circuit tuning capacitance. Because the gain of the amplifier is limited by this resistor, it easily can be seen why amplification must be sacrificed for broad-band response, and also why it is important to minimize the tuning capacity in order to realize maximum available gain. (R_d varies inversely with C_s).

Practical Broad-Band Amplifiers

A simple i.f. system consisting of two stages of amplification with a bandwidth equal to 2.5 Mc. is shown in Fig. 4. Such an amplifier would be suitable in television receivers where low definition (equivalent to about 200 lines) is used. In this typical circuit the desired amount of coupling easily is obtained by mutually-coupled coils. Where greater degrees of coupling are necessary, as in an amplifier 4 Mc. wide, it is often difficult to obtain sufficient coupling in this manner. Also, capacitance coupling between the closely coupled coils often produces unexpected results. Fig. 5 shows the construction of a typical transformer.

Another method of inductive coupling, which is theoretically equivalent to the magnetically-coupled r.f. transformer, uses a common inductance as the coupling element. A broad-band amplifier (4.5 Mc.) using this system is shown in Fig. 6. The design of this amplifier was carried out with the aid of the formulas given above. In addition, calculation of the primary and secondary inductances should be carried out on the basis of resonating them with the tuning capacitance at a frequency higher than the mid-band frequency, say F_2 (Fig. 1), at the extreme high-frequency edge of the pass-band. This will compensate for the fact that the coupling inductance is in series with the primary or secondary coil, tending to reduce the resonant frequency. Therefore,

$$L_p = \frac{1}{4\pi^2 F_2^2 C_p} \quad L_s = \frac{1}{4\pi^2 F_2^2 C_s}$$

In order to realize the maximum possible gain, it is good practice in tuning to vary the coil inductance with iron-core slugs, and resonate with the inherent circuit capacitance (tube, wiring, etc.). This assures that the tuning capacitance is kept at a minimum.

In addition to the components used to provide proper band-pass it is also necessary to provide for adequate rejection of the sound-carrier frequency. This is accomplished in the amplifiers described by use of parallel-resonant circuits tuned to the sound frequency (8.25 Mc.). In the case of the 2.5-Mc. amplifier these traps act to absorb energy from the coupling system. The traps in the 4.5-Mc. amplifier are placed in series with the cathodes to cause degeneration and loss in gain at the resonant frequency (8.25 Mc.). No particular advantage of one trap over the other is indicated and it is left up to the experimenter as to which is most convenient. However, it should be pointed out that degenerative traps lose their effectiveness in a.v.c. stages when a strong control voltage is applied to the grid.

Another important factor in the design of efficient broad-band amplifiers is the selection of suitable tubes. Broad-band amplification is obtained at the expense of gain, so it is important to select a tube of high amplification factor. Also, tube input and output capacitances must be low since this is a limiting factor on gain. A figure of merit relating these quantities is commonly used to describe the usefulness of tubes in wide-band amplifiers. The figure of merit, m, is expressed as the ratio of the tube g_m (pentodes) to the sum of its input and output capacitances. Tubes such as the 1852 and 1853, designed specifically for wide-band service, have a comparatively-high figure of merit, but there is no doubt that newer types, particularly in the miniature-tube categories, eventually will become popular.

Measurements

When using the coupling systems described, adjustment of the amplifier can be made with a few simple measurements. It is necessary first to determine as accurately as possible the shunting circuit capacitances, as a result of tube input and output capacitance, wiring, tube socket, etc.
There are a few methods of doing this. One method found quite simple and satisfactory is to use the inherent shunting capacitances of the circuit to resonate with a coil of known inductance. This is done by setting up test equipment as shown in Fig. 7. As the signal generator is tuned, a sudden rise in output will occur at the frequency F, at which L, the known inductance, resonates with the unknown shunt capacitance. The capacitance then is found from the relation

$$C_t = \frac{1}{4\pi^2 F^2 L}$$

To find the capacitance of wiring and construction it then is only necessary to subtract from the total value, C_t, the rated tube capacities as listed in any tube handbook. Methods in measurement of other values, such as K, n, and gain, may be found in standard texts.

All too often the gain and response curves of the amplifier are quite different than expected. For example, the response curve may contain one or more extreme amplitude peaks located at various points in the band. This usually is an indication (assuming that circuits have been tuned properly) that there is a tendency toward regeneration in the amplifier. This condition is quite serious since it upsets the amplitude-response characteristic and leads to other effects which tend to impair the quality of the received picture. It can be ascertained whether or not there is any regeneration by recording the response curve of individual stages of the amplifier and then drawing an over-all curve based on the fact that the over-all response is the product of the individual stage responses. This over-all curve should be similar in shape to that of the actual response over the complete amplifier. If regeneration is present it usually can be eliminated by resorting to the orthodox remedies, such as decoupling networks, filament chokes, short leads, correct by-passing, etc. Finally, the response curve may be affected by stray couplings such as excessive capacitance between two magnetically-coupled coils. This effect, caused by the complex nature of coupling (inductive and capacitive) may be minimized by proper connections to the transformer (note Fig. 5).

In the design and adjustment of amplifiers such as those described, it is desirable to have a well-calibrated (both for frequency and output) signal generator, a v.t. voltmeter capable of high-frequency operation, an impedance bridge and the usual d.c. voltmeters and milliammeters. Although this basic test equipment is considered a "must" for the experimenter in his work with broad-band radio-frequency amplifiers, it should be remembered that the i.f. amplifier is the "heart" of the television receiver and its adjustment has a great effect upon picture quality. Therefore, the more serious experimenters, particularly those who will be concerned with the servicing of television receivers, would do well to make use of more advanced equipment such as the oscilloscope, wide-band sweep oscillators, and the television-image (monoscope) and synchronizing signal generator.

W9WZH and W9YCI first QSOed in 1936. Nine years later they resumed their rag chew, this time in person, under operating conditions that would make 75-meter QRM seem tame. W9WZH, a dentist, was pulling W9YCI's teeth at Wakeman General Hospital, Camp Atterbury, Ind.

June 1946
DIRECT-COUPLED AUDIO AMPLIFIER

Fig. 1 shows a direct-coupled audio amplifier that I found simple to construct. It has a flat response from 30 to about 8000 cycles with about a 3- or 4-watt undistorted output. It is excellent for phonograph reproduction. However, with a 6S7J ahead of the 6F5, it will make a good microphone amplifier, with a performance exceeding that of many other low-power jobs I have seen.

—H. B. Ford, 343 Woodland Ave., Lexington, Ky.

![Fig. 1 — Direct-coupled amplifier requiring a minimum of parts.](image)

- C1, C2, C3 - 8 µfd.
- R1 - 0.5 megohm, variable.
- R2 - 15,000 ohms.
- R4 - 0.5 megohm.
- X - 2500-ohm speaker field, or 2500-ohm 10-watt resistor.
- T - Output transformer, plate to voice coil.

TWO KINKS FOR SEAGOING HAMS

Some typewriters have the shift-key lock on the right side. This is sometimes unhandy when copying c.w. as one always has to keep unstitching. To cure this I hang a small weight from the lever handle over the side of the mill desk. The weight is just heavy enough to keep it from locking the shift.

Most all seagoing ops have the problem of mopping up the surplus battery solution which gathers on the tops of storage batteries after charging. A neat and handy method is to use a small medicine dropper. It will clear up all the solution quickly and easily, and is cheap, to boot. — Jack C. Nelson, W8FU.

IMPROVED CONDENSER CHECKER

I built the condenser checker shown in Hints and Kinks in September, 1945. However, it was impossible to get the shadow to close properly if hooked up as shown in the diagram. By changing the B-plus lead from the plate to the target, this checker worked properly.

Incidentally, using a 6U5 with about 320 volts on the plate, the value of R1 necessary to close the shadow is approximately 30,000 ohms. — J. H. Heuer, Chicago, Ill.

THE TEN-DOLLAR WONDER

It was great to be back on the air again, but with the choice of only a few prewar crystals I often felt the lack of a v.f.o.

But where was I going to scare up half-a-hundred bucks for a commercially-built unit? QRM grew worse so the time came to analyze the contents of the junk box. It revealed some midget variable condensers, tube bases — and best of all, a 70L7GT and a 6G6G. Some old aluminum-base 16-inch transcriptions supplied stock for the chassis. (All there is to cleaning them is to dip them in very hot water and then peel off the acetate coating with a knife, starting at the edge.)

It was thought that by using a transformerless power supply, fair regulation might be obtained without the use of voltage regulators. This proved true in spite of line voltage changes from 95 to 115. This arrangement also simplified the power-
Rear view of the v.f.o. shows its compact arrangement. The coils are mounted on the rear of the chassis which must be kept clear of other units when in use.

supply problem from the standpoint of economy, stability and size. The whole unit measures 6 by 6 by 3 inches.

The 75-ohm resistor, Rs, and the 150-ma. bulb were added to protect the rectifier section of the 70L7GT because high current is encountered in charging the filter. C10 is required to reduce hum and should not be omitted. (See Fig. 2.)

No screen-dropping resistors are required and no cathode bias resistor is used for the 70L7GT because it gets sufficient bias from the grid leak. The two coils are mounted at the back of the chassis so that there is no chance for them to be warmed by the tubes. The oscillator coil is un shielded. The unit sits on a wooden desk and no metal comes near the back of it.

With the condenser combination as shown it is just possible to cover the entire 100-meter band. The 6G6G is an excellent oscillator and runs cool. The 70L7GT doubles to 80 meters with over a watt output, sufficient to take the place of a crystal. I connected it to the grid of the regular 6L6 oscillator at terminal A, through R4 without even a ground return, and with an un shielded three-foot lead at that. The 6L6 stage then quadruples to “20” as if it were a Tri-tet.

We thought this design too good to keep to ourselves, after news of this compact and stable v.f.o. was received with unusual enthusiasm by others to whom we described its features. The cost of this unit was in the neighborhood of ten dollars. I like that neighborhood. — Don Langbell, VE4ANQ.

BIAS-SUPPLY TIME-DELAY CIRCUITS

REGARDING the 117Z6 trick in the April, 1946, "H & K" — I found that substituting a 5Z4 for a 5U4G in the bias supply of my transmitter (using bias interlock) gave me 30-seconds protective delay in case the regular time-delay relay failed.

The up-to-temperature time of heater-type rectifiers is increased by poor regulation of the heater supply but the tubes furnish the same emission when hot. Heaters have low resistance when cold and heat more slowly in a constant-current circuit.

A 25Z5, with its heater in series with a 350-ohm resistor, will take 40 seconds to reach 90 per cent emission. I use an 8-µfd.-condenser input and run 60 ma. through the relay. It'll work every time and the tube will last much longer than a 117-volt type. — H. H. Cross, LSPH, Boston, Mass.
ARGENTINA

The Radio Club Argentino has completed a full year of its “school of telecommunications,” promoting communications engineering knowledge. More than 800 persons applied for entrance, but accommodations were available for only 175 students. Approximately 95 per cent passed the course. We can expect the LU signals to be bigger, better and more frequent now!

BELGIUM

Probably the best news of the month is that the two Belgian amateur societies, one French- and the other Flemish-speaking, are merging into one group to be called the U.B.A. Full agreement has been reached, and there remains only the administrative and legal formalities of consolidation.

ON hams are, as most of you know, open on 28 and 50 Mc., and expect the early return of additional bands in line with the pattern set by Allied nations. Licenses will be restored to prewar holders.

CUBA

At recent elections, the Radio Club de Cuba formed the following governing board: James D. Bourne, CM2AZ, president; Gustave Rodriguez, CM2GR, vice-president; Eduardo Oliva Radelat, CO2WL, secretary; and Julio Rodriguez Forns, CO2DT, treasurer.

DENMARK

Another country has encountered difficulty in the use of the 80-meter band. Remember that Newfoundland withdrew the band from its amateurs because of interference to Allied military services? In Denmark, eager amateurs (or perhaps some unlicensed persons) had been transmitting on 80 unlawfully, with the result that the P.T.T. issued a stern warning against continued operation on said channels. E.D.R. joined in the warning, pointing out that such activity could only prove harmful to good relations between itself and the government.

FRANCE

Amateurs who had been operating ‘phone only in France, prewar, got a jolt with the publication of regulations governing a reopened amateur radio: only the licenses of radiotelegraphers were validated, and all future applicants must exhibit an official radiotelegrapher’s certificate.

The new authorization is for 100 watts on 28-30 and 58.5-60 Mc., and 50 watts on 14-14.4 Mc.!

ITALY

After the liberation, A.R.I. was reorganized. While the administrative personnel continued headquarters in Milan, local sections were formed in the principal cities. Contact between such local sections and the society headquarters is maintained through delegates elected by the sections.

Application has been made to AMG for the official opening of amateur radio so that Italian hams will no longer be classified as “pirates.” IIIMB, the Rome-section delegate, points out that many Italian QSLs doubtless went astray during the war period, and amateurs who have not received confirmation of earlier contacts should apply once again via A.R.I. (see May QST).

VENEZUELA

For the 1946-47 term, the Radio Club Venezolano has elected the following officers: G. V.
How Much Inductance?

A Simple Method for Measuring Unknown Filter Chokes

BY GEORGE H. FLOYD,* W6OJK/2

BUILDING that new rig would be an easier job if we had remembered to mark all of our old parts before throwing them in the junk box. Not being blessed with such foresight-edness, the writer found himself in such a fix—owning four large chokes but not knowing their inductances or current ratings. Being unwilling to trade them to the unsuspecting ham in the next block, he decided to measure the inductances of the chokes — and found it an easy job.

All that is required is an a.c. milliammeter and an a.c. voltmeter; or, if an a.c. milliammeter is not available, the shack volt-ohmmeter can do the job alone if it reads a.c. voltages. However, if the a.c. milliammeter is available, the measurement can be made more accurately than with the volt-ohmmeter.

A.C. Milliammeter

Fig. 1 - Using an a.c. milliammeter to measure current for determining inductance.

The test circuit using the milliammeter (Method I) is shown in Fig. 1. It will first be necessary to measure the d.c. resistance of the unknown choke, as the value of this resistance will be needed in the calculations. Then connect the choke as shown in Fig. 1. It will not be necessary to drop the line voltage to a low value unless you are uncertain as to what the unknown may be (perhaps a condenser?). As a matter of fact, it is desirable to use full line voltage so that the current will be high enough to give appreciable milliammeter deflection.

With the circuit connected as shown, read the current through the milliammeter and measure the line voltage. The table shows the current to be expected with chokes of various inductances, so that you can estimate the inductance and provide an a.c. milliammeter of suitable range. The inductance of the choke may then be computed from these two formulas:

If d.c. resistance of choke is less than 100 ohms:

\[
\text{inductance of choke} = \frac{\text{line voltage} \times 1000}{377 \times \text{current in milliamperes}}
\]

(This formula assumes use of a 60-cycle line. If a 25-cycle line is used, substitute 157 for 377 in the formula.)

If d.c. resistance of choke is greater than 100 ohms:

First solve for \(X\) in this formula

\[
X^2 = \frac{(1,000,000) \times (\text{line voltage})^2}{(\text{current in milliamperes})^2} - (\text{choke resistance in ohms})^2
\]

Then, using the value of \(X\) (not \(X^2\)) just found,

\[
\text{inductance of choke} = \frac{X}{377}
\]

(Use 1.57 instead of 377 if a 25-cycle a.c. line is used.)

If an a.c. milliammeter is not available but you are able to read a.c. voltage with a volt-ohmmeter, the circuit shown in Fig. 2 (Method II) may be used.

The trick in this case is to use an a.c. voltmeter to measure the voltage across the 100-ohm resistor and thus determine the a.c. current. Compute the inductance with these formulas:

If d.c. resistance of choke is less than 100 ohms:

\[
\text{inductance of choke} = \frac{\text{voltage across choke}}{(3.77) \times (\text{voltage across 100-ohm resistor})}
\]

Concluded on page 158.

*1100 S. Country Club Drive, Schenectady 8, N. Y.

June 1946 69
Correspondence From Members

The Publishers of QST assume no responsibility for statements made herein by correspondents.

CIRCULAR BANDS

Editor, QST:
I have just read the article on "circular bands" and I believe the only thing needed to make the program complete would be my theorem on vertical modulation, where the wave just presses forward and takes up no lateral area. Using this theory, we could modulate toward the center of the band rather than sideway toward the edges, and we could include ever so many more 'phone stations. What do you think?

— George W. Shuart, W$AMN

Editor, QST:
I wish to report on how I adapted my rig to use the new system (circular band theorem) and it is so simple one wonders how it was overlooked for such a long period. This applies to v.f.o.s only!

1. Modify the v.f.o. so as to get 100-per-cent bandspread.
2. Remove the stop-pin from the tuning condenser.
3. Purchase a good 360-degree dial.
4. Install the 360-degree dial.

Presto — a concentric or circular band!

— R. M. Sexton, W$BEK

LICENSE CREDITS

Avon Park, Florida

Editor, QST:
I have just finished reading a letter in April QST by W$IXK, and I cannot agree with his suggestion that credit toward the amateur license examination be granted certain persons. The present-day examination is not difficult if one will diligently apply himself to passing. He will pass if interested enough. If a person thinks he has enough technical knowledge or code speed to become an amateur radio operator let him prove it by passing the required examination. Let's keep ham radio on an equal basis.

— C. S. Bryant, W$FQZ

BOUQUET FOR OOS

616 Greene St., Augusta, Ga.

Editor, QST:
This morning I received an ARRL Official Observer card from you stating that I had been reported from Davidson, N. C., as having a harmonic near 7.5 Mc. I immediately called W$IEB, a local ham, and had him give me a call on the air. I told him of the report and he checked my second harmonic. It was S9 at a distance of two miles! I signed up, I held my breath and gave W$IEB the call on sked. The results? My second harmonic is gone and the ol' sigdummy antennas and fouled up the ether by signing silly actions. Let those who showed their stupidity by not using dummy antennas and fouled up the ether by signing silly names hang their heads in shame.

— Frank Courtney, W$FDX

“A UNIQUE COUPLING”

Blue Bell P.O., Ambler, Pa.

Editor, QST:
Maybe I’m thick, but isn’t there something missing from “A Unique Coupling,” page 144, QST for April? A photograph is mentioned, which doesn’t appear, and I can’t dope out how the idea works at all.

— Jack Morgan, W$QP

JUMPING THE GUN

Editor, QST:
Just want to register my feeling of disappointment and disgust with the flagrant disregard of the regulations exhibited by some amateurs prior to the official opening of the 75-80-meter band. It is almost incomprehensible that any of the boys and girls who have the intelligence necessary to become licensed amateurs would so flagrantly violate the honor of our fraternity. Surely these wanton violators were in the minority, and I have confidence that the great majority of our members did not partake.

— W$BPS

... The “preview” opening of the band was shameful. Our fine record of the past years can be nullified by such actions. Let those who showed their stupidity by not using dummy antennas and fouled up the ether by signing silly names hang their heads in shame.

— W$BPS

... It seems to us of the Elgin (III.) Amateur Radio Society that those who took part in the display might well commit to memory the “Amateur’s Code,” especially Part 1 entitled, “The Amateur is Gentlemally.”

— WBVJ, WFFYF, W$BM12

... Damn the louses who beat the gun on 3.5 Mc. Sunday night! — GS13. ... I am not a ham, but as you make fun of us and call us SWLs I can say I feel proud to be an SWL, and would never think of doing a trick like that. I hope they catch every one and take their licenses away.

— E. G. Riggle

... Suggest withholding the actual date and time of opening of additional bands until the hour is passed.
After all, what does one day more or less mean when we have so much time before us? Yes, and so much to lose by thoughtlessly becoming illegal operators. — Chicago Area Radio Club Council. — Perhaps it will be us out of a number of new channels we might have got, or maybe it will help us get a number of new regulations I am sure every ham would love to have! The most heartening thing I can think of would be the FCC using the information to bring an untold number of licenses. No kidding, fellows — it is the dirtiest, rottenest thing that has ever happened. — W5YU.

After listening to a headedless few break every rule in the book, I want to say that deliberate out-of-band operation and signing of fraudulent calls is not funny and may interfere with other services; and the disregard for the rules of the game by a few is costly to the good standing of the vast majority of amateurs who stick by the rules. — W9FX. — We do not think of this as the real amateur behavior but that it must be charged to a few beginners who may not be familiar with the amateur's code of ethics. — Dade Radio Club, (Miami). I hope it doesn't get the ham fraternity as a whole into trouble. Some people have no patience. — E. W. Stagay.

For that very desperate unpatriotic violation of the opening hour of 80, I would not object one bit if FCC put the lid on all of amateur radio for three months, or more. It certainly was disgraceful and needs some very plain, blunt and ugly kind of treatment. If only the guilty ones could be banned from the air. — WUZU. — I personally cannot understand how a supposedly grown, mature individual could willfully commit all of those violations and knowingly jeopardize the future of all of American amateur radio. Possibly one of the most disgraceful violations in QST and the tougher you get, the better; all of us are behind you. — W6SYN. — I was pretty disgusted. — VE9AL. — I express the sentiments of every ham in Minneapolis and St. Paul that I've talked to since the disgraceful demoralization of all amateur radio for 80 meters and 40. — W3VQG.

For that very gross violation of an otherwise perfectly reasonable order, I want to say that I was ashamed to be an amateur. — W5RDI. — The operation of this station docs not in any way differ from hundreds of other American stations throughout the occupied areas. They are filling a gap no other Army activity can meet. — W4AIV.

As for the slowness in getting back all of our old 20-meter and 80-meter bands, some of these guys have to be rapped on the noggin before they understand that the Army and Navy are using these bands — not the commercials. True, they are a little slow in coming back, but when you sit back and think that just one short year ago that same Army and Navy were in the thick of it, I wouldn't begrudge the slowness. Our bands are being used to facilitate the movement of American personnel from this area. But not before it has made a name for itself, furthered American relations, and handled a vast amount of traffic to and from the GCs in this area. Many a homesick soldier has talked directly to his father, mother, brother or friend thousands of miles from the Burma jungles, and believe me, the Army has no form of morale uplift to compare with these direct contacts. I have seen soldiers enter "the attack" as a premeditated game, to talk to a brother or sister in Hawaii, Japan or the ETO, and upon hearing their voice cry for half an hour unable to talk to them. But believe me, that release of pent-up emotion is something to behold, and I am proud to say I was able to help, small as my part may have been. And the operation of this station does not in any way differ from hundreds of other American stations throughout the occupied areas. They are filling a gap no other Army activity can meet.

During the few closing weeks of this adventure it is impossible for me to contact all of our new-found friends and say goodbye to them, but I would appreciate it if QST would insert one line wishing them the best of luck and thanking them for all their help. My home address is 711 Forrest Ave., W., East Point, Ga.

Carlton H. Marsh, W1YA, ex-W6ASA

HAM FREQUENCIES

15 Wilkinson St., Worcester, Mass

If W7GRL doesn't like the ultrahighs, that's his privilege. But we still have plenty of lads in these crowded eastern cities who couldn't be sold on anything lower than 144 Mc. Of course, you can't blame a fellow out there in the wide open spaces for not liking the ultrahighs; one could probably call CQ until he was blue in the face without even a little automobile ignition as a come-back. I believe the trend is referring to tables in most of the war years, when we were permitted limited activity on the ultrahigh frequencies and I think we were very fortunate in being allowed a variation of hamming even though it did come under the title of "WERS." Naturally, QST wasn't trying to plug the lower frequencies while they weren't available to us. However, as more of these old bands are released, I think we will begin to notice the old QST of four years back.

As for the slowness in getting back all of our old 20-40- and 80-meter bands, some of these guys have to be rapped on the noggin before they understand that the Army and Navy are using these bands — not the commercials. True, they are a little slow in coming back, but when you sit back and think that just one short year ago that same Army and Navy were in the thick of it, I wouldn't begrudge the slowness. Our bands are being used to facilitate occupation difficulties and I for one am patient enough to just keep waiting until a suitable arrangement might be reached by which we can get our bands back. I'd hate to think that my anxiety caused another complete shutdown of ham stations in twenty years or less. — Al Kujampa, W1KJO

(Continued on page 184)
"Harmonic" Precautions Necessary. In March QST (page 80) we advised about possible spurious 14-Mc. radiation from 28-Mc. transmitters. One isn’t safe from FCC citation for 14- or 21-Mc. out-of-band energy radiated from frequency-multiplying stages in error unless he has checked by all means and reduced or eliminated such spurious emissions in accordance with good engineering practice.

An additional note of warning is now required. On the Monday morning on which we write this copy we have two lists of amateurs logged all over the country, and all identified as second harmonics of 80-meter 3625-4000-kc. signals. Certain Airways stations also report fairly-strong 5602.5- and 5612.5-kc. interfering signals from several stations having what looks like the third harmonic of 1812.5- to 2000-kc. amateur crystals which double to “80.” Signals strong enough to break up airline traffic at several hundred miles are a bad business!

The handwriting is clear. We must check our stuff before we switch to operation, and as soon as we are on the air we must ask several fellow amateurs to make a listening check of our signals to make sure we aren’t alive with spurious radiations and improperly-strong harmonics. The latter complaint is common, to judge from the lists of off-frequency calls received. Reducing the plate voltage, cutting the bias, using suppressors (see page 19, July, 1937, QST) or absorbing circuits in the antenna, all the logical steps can be taken, once trouble is in sight.

It must be remembered that during World War II the Radio Intelligence Division of the FCC expanded tremendously, both in equipment and personnel. It is necessary in resuming our war-suspended amateur radio to assimilate some four years or so of progress in a short time. With the present efficient million-dollar monitoring facility actively on the job, it is a plain invitation to heavy citation-trouble to ignore making a close check of the transmitter before starting the band-warming! A word to the wise . . .

Calls Not Transferable. A station call for an amateur station practically becomes the owner’s identity. As such it is a precious possession. The person to whom a call is assigned is responsible for compliance with FCC regulations. He must have a care for the ability and responsibility of any amateur operator permitted to operate, even for a short period, while visiting his station. Since Sec. 12.27 of the regulations makes it possible for a person holding an amateur operator license to operate to the extent provided by the privileges for which his license is endorsed, the first duty of a station owner on receiving a request of a visitor to operate his station is to check the identification and license presented.

The holder of a station license cannot loan his call, and of course is most ardent to prosecute anyone who borrows it without the asking! Calls are not transferable. A case was recently brought to our attention where a lad with operator license but no station license attempted to “borrow” the call of another local amateur by asking if he might use it! It should be noted that it is not playing the game straight to attempt a temporary transfer of equipment, or other subversive means, to get hold of another man’s identity to put an amateur station in operation. No responsible amateur should be party to such a deal. The FCC is now issuing amateur station licenses to ASPIs and there is no excuse for any illegitimate operation of any nature.

To V.F.O. Users. In the hands of skillful operators who observe the Golden Rule, the e.c.o. or "signal shifter" can be used for highly-efficient communication. Most important is (1) the intelligent timing of calls, and (2) transmission when the frequency is clear, things mentioned in our seven points for getting results, noted in this department for April.

Good v.f.o. operators use extreme care and patience. They tune up at the low-power frequency-control level, with the final OFF. They await that favorable moment when a contact has ended and it is legitimate to go after the distant amateur on his own frequency . . . after VX, after his QRZ, after his CQ de — K, after he calls an amateur ending his call with AR (showing contact has not yet been established)!

Operators of DX stations often answer v.f.o. calls of stations near but not exactly on their frequency, just to discourage improper use of v.f.o.s. After all, the best DX stations can usually choose which of a dozen calls will be answered. Local amateurs have been heard, after shifting exactly to a DX frequency, talking to each other and bemoaning the fact that they can’t hook the station. Why shift to a station’s frequency and

72 QST for
continue to call him after he is in communication with someone? Why, after working the rare station, continue on the same frequency? Why not give someone else a break? Good results are obtained from calls close to a station's frequency which do not compete with QRM from competing calls. In traffic or DX work after contact is established with the v.f.o. it is efficient to work exactly on spot frequency. In that way two stations working together keep their channel reasonably clear and don't bother any one else. (It is when several pairs of stations on different frequencies do not work back and forth in exact unison that QRM pops up during QSOs. Of course we don’t all have a v.f.o., and this is not to be construed as being for or against — we want to keep out of that argument.)

This discussion of v.f.o. operating characteristics is a call for fair play resulting from a discussion that waxed hot in the Glendale Amateur Radio Club on the subject. It is believed that 75 per cent of the offending operators who are careless in tuning and thoughtless in calling or working with v.f.o.s do not realize the trouble they cause others, or how their calls are dragged in the dirt in club post-mortem discussions! The v.f.o. can pick those holes in the band without being obnoxious if it is handled correctly. It is probably here to stay. A suggestion to all and sundry v.f.o. users: Before calling ask yourself, "Is the frequency clear? Is the operator I want listening or sending now? Will my transmission interfere with a QSO in progress? Is my call timed right?" Amateur radio is a sporting game. Play it fairly.

The New ARRL Word List. For several years there has been a growing acceptance of the ARRL Word List, derived as a result of study in the OPS group before World War II. New FCC regulations effective April first were detailed in May QST. One of the sections of the regs invalidated our old ARRL List in part. FCC now prohibits the use of names of countries, states or cities as phonetics when an amateur exercises the option of using such words to insure full understanding, as in identifying his call. The FCC provisions required immediate consideration and restudy of the subject of phonetics as used in amateur radio.

As a service to all amateurs, the ARRL Phonetic Alphabet has been revised to eliminate large-city names. Each word has been considered for its contribution to intelligibility. The committee taking this subject under consideration examined words endorsed by independent communications organizations as suited to phonetic use. "Zero" was dropped in view of the new amateur licensing area of that digit. To insure that no amateur would be cited because at some remote spot on earth a city with one of the alphabet-names exists, we had FCC review the new ARRL standard list. The following Word List is presented for your convenience and has been declared in compliance with the new amateur-service FCC regulations:

ADAM	JOHN	ROBERT
BAKER	KING	SUSAN
CHARLIE	LEWIS	THOMAS
DAVID	MARY	UNION
EDWARD	NANCY	VICTOR
FRANK	OTTO	WILLIAM
GEORGE	PETER	X-RAY
HENRY	QUEEN	YOUNG
IDA		ZEBRA

The use of "original" phonetic equivalents is still possible for amateurs, insofar as their choices agree with the FCC rules. Unfortunately, the postal guide contains thousands of city names so one can hardly choose any old word without the possibility of conflict. Since letters to ARRL often refer to original choices as facetious and "childish," most good operators have turned to standard lists. In work on the above list attempt was made to avoid facetious words as well as to avoid change in words not in conflict with the new regulation. Where words have been retained it was with knowledge of the reluctance of some amateurs to change from satisfactory words in the old ARRL list.

Some amateurs were inclined to protest the FCC action as an infringement on freedom of speech. ARRL would certainly concur in an objection if the matter of use of a list was not left optional, on an if-and-as-required basis. However, FCC is not requiring us to use a list it prescribes. Some amateurs thought FCC intended the CQB list to be used, but there was no basis for that idea. Some names in that list are single syllables, low in intelligibility. Some may be cities. As we see the whole matter, the FCC is responsible for radio regulation in the public interest. It establishes uniform methods of giving calls and identifying stations to insure orderly operation and positive station identification by its monitoring stations and others. These things are as reasonable and necessary as traffic regulation for automobiles in our cities, sometimes minor nuisances to us individually but all in the public interest.

The use of one standard list within a service is a good thing since it aids quick general understanding. FCC is not promulgating a list, but ARRL, as a service to amateurs, has acted quickly to make an FCC-acceptable standard list available for any amateur purpose. The new ARRL standard phonetic list has been printed on small cards and distributed to all affiliated clubs. If you are a member of an affiliated group ask the secretary for one of these convenient cards, first in a series of Communications Department Operating Aids to be made available to such clubs — or ask us for one.

— F. E. H.
DXCC CERTIFICATE AWARDS

The ARRL DX Century Club Award, as originally conceived, provided the serious DX worker with the opportunity to obtain formal recognition of his efforts. A handsome certificate (our handsomest, some folks say!) was designed and offered to any individual who could prove, by irrefutable written evidence, that his station had been in two-way amateur radio contact with one hundred or more different countries. In line with standing Communications Department policy, our intention was to treat the DXCC Certificate Award like any other operating award, WAS for instance, and when an amateur obtained his certificate that would be his ultimate recognition. The DXCC certificate states only that much and does not credit DX worked above 100 countries. However, as in so many other phases of amateur endeavor, the competitive spirit crept in and a running contest developed among dyed-in-the-wool DX men. Countries worked totals were published from month to month to indicate total countries worked by holders of the CC award, and those aspirants to the award who had 75 or more countries confirmed. This listing became most popular. As might be expected, the majority of those amateurs credited with more than 100 countries were DX men of long standing and many years of experience in working rare and elusive countries.

Postwar plans for the DX Century Club were outlined broadly in December, 1945, QST, and discussed in subsequent issues by W1JPE in “How’s DX?” The subject has been given much thought at Hq. and opinions from amateurs in the field carefully considered. The main concern, as we see it, in setting up the postwar CC is to allow each and every amateur with DX interests, particularly newcomers, to compete on an equal footing. To have continued the old DXCC listings would have limited competition to a relatively-few old-timers who would have remained at the head of the list. The fair-minded DX man agrees that all amateurs should start from scratch, to equalize opportunity. The plans in December QST, therefore, will be followed in general as outlined.

There are, of course, many amateurs who are not interested in the competitive aspects of DX and who have striven for many years to work 100 countries only to obtain the coveted DXCC certificate award. For these individuals all previous announcements have been carefully re-studied. ARRL now announces a new more-liberal policy, in connection with the issuance of DXCC awards. This means in short that no amateur who at any time has worked DX is denied the opportunity to present it toward a DXCC certificate award at any time he wishes.

While the listings of DXCC prewar totals will no longer appear in QST, and while no postwar contacts will count toward increasing over-100 prewar totals, the basic award for 100 countries worked will still be available to all amateurs, whether contacts were made during the prewar or postwar periods. In the case of amateurs having fewer than 100 countries before the war, contacts with additional countries worked postwar may be counted toward a DXCC certificate, provided that such countries are included in the prewar ARRL Countries List, that geographical locations of stations worked correspond to countries in the prewar list, and that the prewar rules are followed.

The ARRL DX Century Club Award for confirmed contacts with 100 different countries is thus available as follows:

1. To any radio amateur who worked 100 countries before the war, and who submits satisfactory confirmations to ARRL in accordance with prewar DXCC rules.

2. To any radio amateur who worked fewer than 100 countries before the war, and who works sufficient additional countries after the war to bring his total to 100, and submits satisfactory confirmations to ARRL, provided that all postwar contacts must be based on the prewar DXCC rules, countries-list, and the same geographical locations as before the war.

3. Under the postwar DXCC rules (yet to be announced), to any radio amateur who works 100 countries after the war, and who submits satisfactory confirmations to ARRL.

Under (1) and (2) above, confirmations should not be submitted until the applicant can provide proof of contact with a total of 100 countries. Applications accompanied by fewer than the necessary 100 confirmations will not be processed or recorded, except in cases where the applicant already is credited on our prewar records with a total less than 100 and sends the remaining necessary confirmations. Please separate prewar cards, and indicate by a written list of countries during what period contacts were made, so your postwar work may be recorded in the event you wish to compete in the new listings at some later date.
INSTRUCTION IN RADIO CODE AND THEORY

Many ARRL-affiliated clubs conduct classes in radiotelegraph code and theory. In most cases instruction is designed to aid beginners and newly-licensed operators, as well as more advanced amateurs. The clubs listed below invite any interested individual to take advantage of their training programs. The listing indicates whether instruction is given in code, theory, or both. Full information regarding extent of the courses, meeting place, and dates and times, is available from the club secretaries. Correspondence from other affiliated clubs initiating such programs is invited for future listings.

<table>
<thead>
<tr>
<th>City</th>
<th>Club</th>
<th>Instruction In</th>
<th>Club Secretary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Code</td>
<td>Theory</td>
</tr>
<tr>
<td>Akron, Ohio</td>
<td>Buckeye Short Wave Radio Club</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Billings, Montana</td>
<td>Southern Montana Amateur Radio Association</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bloomfield, New Jersey</td>
<td>Bloomfield Radio Club</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bronx, New York</td>
<td>Bronx Radio Club</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Burlington, Iowa</td>
<td>Iowa-Illinois Amateur Radio Club</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Butte, Montana</td>
<td>Butte Amateur Radio Club</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Chicago, Illinois</td>
<td>Hamfester Radio Club, Inc.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicago, Illinois</td>
<td>Lane Tech. Radio Club</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Elizabeth, New Jersey</td>
<td>Union County Amateur Radio Association</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Enid, Oklahoma</td>
<td>Enid Amateur Radio Club</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Framingham, Massachussetts</td>
<td>Framingham Radio Club</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Garrett, Indiana</td>
<td>Northeastern Indiana Radio Club</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hamilton, Ontario</td>
<td>The Hamilton Amateur Radio Club</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Joliet, Illinois</td>
<td>La Crosse Radio Club, Inc.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Milwaukee, Wisconsin</td>
<td>The Milwaukee Radio Amateurs' Club, Inc.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Montgomery, Alabama</td>
<td>Montgomery Amateur Radio Club</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Moose Jaw, Sask.</td>
<td>Moose Jaw Amateur Radio Club</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>New Haven, Connectic</td>
<td>New Haven Amateur Radio Association</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Norfolk, Virginia</td>
<td>Norfolk Radio Club</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pendleton, Oregon</td>
<td>Pendleton Amateur Radio Club</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Quincy, Massachusetts</td>
<td>The South Shore Amateur Radio Club</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Reading, Pennsylvania</td>
<td>Reading Radio Club</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Savannah, Georgia</td>
<td>Amateur Radio Club of Savannah</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Schenectady, New York</td>
<td>Schenectady Amateur Radio Association</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sheridan, Wyoming</td>
<td>Sheridan Amateur Radio League</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>South Ozone Park, L., N. Y.</td>
<td>Sunrise Radio Club</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Wallingford, Massachussetts</td>
<td>Waltham Amateur Radio Club</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>West Lafayette, Indiana</td>
<td>Waltham Amateur Radio Association</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Wichita, Kansas</td>
<td>Wichita Amateur Radio Club</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

June 1946 75
HAMMING IN NORTH CHINA

The Marines are the boys who represent Uncle Sam in North China. Through their signal officers they arranged with the Chinese Government to assign a block of calls (XUIYA to XUIYZ) to be used by "hams in the service" in the area. Calls have been issued on application to those who hold a valid U. S. license. The following calls are now in force: Tientsin — XUIYA YG YM YN YU YW YX YY YZ. Tsingtao — XUIYQ YJ YO YQ. Peiping — XUIYK. Tangku — XUIYV.

The last-mentioned call, XUIYV, was assigned to me upon my special request, it being as near as I could get to W3QV. My experiences in getting on the air are probably representative of the rest of the gang out here. Around the first of February I started looking around for the nuts and bolts to make a ham rig. A BC610, which had been through the mill and was rather the worse for tear, rather than wear, looked like the best solution for a transmitter, and an RBG (HQ-120) receiver seemed best for my use.

Getting the transmitter on 28 Mc. was the problem. It was designed with an 8000-ke. cabinet and certain parts were either broken or missing. How to make the conversion with the least amount of labor and at the same time drive the 250TH reasonably well? It was found that one power transformer had a bad secondary, and filament windings were required in addition to those available. There were no spares, so two receiving-set power transformers (primaries in parallel, secondaries in series) made up the power for the exciter unit, 6J5-6V6-6V6-807. To get away from capacity effects in the BC610 driver stage, the plate circuit of the 807s was raised above the chassis. The grid circuit of the 807s is not tuned, but a piece of coax was made from some wire shield, the wire looped for two turns and soldered back on the shield, the other end wired directly (through .002 µfd.) to the grids, the shield being grounded close to the grids. A bracket for holding the adjustable coupling turns in place was necessary, as coupling was critical. A bit of antenna wire and a few condenser-plate spacers did the trick. A number of 7-Mc. crystals were available so no crystal grinding was necessary. At first the exciter was inside the BC610, but the problem of tuning, changing crystals, etc., made it necessary to mount it on the side of the transmitter.

The question of location for operating was next considered. If I was going to spend any time operating, it had to be close to my office. It is plenty cold up here, and the wind blows like I have never seen it blow before. One of the mobile communication vans (type MBL) seemed to be the ideal solution to both office space and ham shack. I now practically live in the van, and am right on the job, so it all works very well.

The antenna was another problem. In my anxiety to get going, I hooked a pair of feeders onto an old Jap doublet. It was 110 feet in the air, and the flat top was about 150-foot long. The result of the first testing was a call from W8UIY /KA1, who said (and did my heart beat!), "UR RST 599-plus." And I continued to get excellent reports from all over the Pacific. However, I wasn't satisfied. I heard the boys working the States from Iwo Jima and Manila. I remembered how hard it was to work XU, VU, and such places from Eastern U. S. A. Again I started dreaming. I had made up my mind before leaving home that I was going to work back to the States, and more particularly to W3. A couple of 60-foot poles right near the van looked very nice, but there was not enough room in the right direction for a "Vee." Next day at noon I checked the true north. The poles used to support a broadside put it between ten and fifteen degrees from the North Pole. The distance between the poles indicated I could use a little more wire than a Lazy II. A six-element Sterba, fed off one corner, seemed like a good bet and eliminated a matching stub. So we put the thing up. That was February 15th. I hadn't heard even a W6 as yet.

Up early the next morning. This thing has got to work, I thought, because I'll have to send my wife a message on this, our twentieth wedding anniversary. Success! I worked two W6s and a W7. In the next few days I was working them all over the West Coast. The boys ganged up on me. I could hear five or six calling me at the same time. It was DX contests, RMNITE, Sweepstakes, WAC, etc., all wrapped up into one!

Well, one morning I was on at daylight. Suddenly the W6s went out like a light, and who was there all by himself, and calling me, but W3DGM, no QRM, no noise, no nothin'. Just like any other ole contest! "Gi' me a number just to make

QST for
it official,” says he. (XU1YV had run into the ARRL Band-Warming Party. — Ed.) It was the biggest kick I had experienced in radio since I heard NAA’s time-tick on a crystal detector in 1915! There is a big antenna-building program under way in North China. You are going to hear a lot more XU1 stations before long!

Commander Brad Martin, USNR, W8QV/XU1YV
O-in-C, Naval Communications, Tientsin Area.

WIAW OPERATING SCHEDULE

Official ARRL Bulletins containing latest FCC information relating to amateur operation and reactivation, and other bulletins on matters of general amateur interest are transmitted on regular schedules, as follows:

Frequencies: 3888, 7148, 14,280, 29,180, and 52,000 kc. (3888 'phone)
Times: 8:00 and 11:30 P.M. EDST, Monday through Friday, on the above frequencies. Bulletins are followed by voice transmissions at 15 w.p.m. to facilitate code practice.

Starting at the times indicated, bulletins are transmitted by telegraph simultaneously on all frequencies. Bulletins are sent at 25 w.p.m. and repeated at 15 w.p.m. to notify and reactivation, and other bulletins on matters of general amateur interest are transmitted on regular schedules, as follows:

Code-Proficiency Program: Practice transmissions at five speeds, 15 through 35 w.p.m., are made Monday through Friday, on the above listed frequencies, starting at 10:00 P.M. EDST (0200 GCT, Tuesday through Saturday). Approximately ten minutes practice is given at each speed. First certificate-qualification run is scheduled for Tuesday, June 18.

General Operation: W1AW engages in two-way work with amateurs as follows, Monday through Friday, at all times EDST:

- 3:00-4:00 P.M. — 29,150 kc. (voice)
- 4:00-4:30 P.M. — 28,060 kc.
- 6:30-7:00 P.M. — 3825 kc. (voice)
- 7:00-8:00 P.M. — 3825 kc.

BRIEF

Diary of W8VWG, Saturday, February 2, 1946:

(1) New antenna, erected just a week before, blew down. (2) Blew up tubes in transmitter trying to fire it up. (3) Smashed up car going to town to pick up new tube. (4) Power supply caught fire after getting rig and antenna back in shape, requiring a bucket of water. To top all this off, after the transmitter was put back on the air, the first contact ended abruptly when the junior op fell down the basement stairs. — “The Listening Post,” Queen City Emergency Net.

SIMULATED-EMERGENCY TEST

In connection with a Red Cross Disaster Preparedness Planning Group in York, Pennsylvania, a Simulated-Emergency Communications Test was held March 13th under the auspices of the York Amateur Radio Club and ARRL Emergency Coordinator Paul Stumpf, W3AQN. The test was witnessed by Mayor Snyder; city councilmen; Mrs. Minnie P. Hatton, Executive Director, York County Chapter, ARC; Mr. K. L. Cox, General Chairman, Disaster Committee, ARC; Mr. Charles Weaver, First Aid Committee, ARC; and Miss Abbie Whidden, Eastern Area, ARC. Miss Whidden stated, “I was very favorably impressed with this test and the fine work done by the local radio club. As a Field Representative in our Nursing Service, I was called to Kentucky a few months ago to help in the flooded area, and I know that much time could have been saved if we had had a similar setup operating at the scene of this disaster . . . this type of work would be very valuable in any community, should disaster strike.”

Amateurs participating were W3AQN, W3BKB, W3BRY, W3ATX/3, W3IPE, W3IQA, W3EDO, W8SCQJ/3, W3HWN, W3CDY, W3DEI, W3BTP, and W3HIE. The Control Station W3AQN was operated by EC Stumpf, and Robert Turkington, W3BIL, YARC president. With one exception, all operation was on the 144-Mc. band. The location of each station was indicated at the control point by a system of colored pins on a large map of the city. When stations moved to new locations, the pins were changed, blue pins indicating fixed stations, red designating portable stands. A stand-by 300-watt 110-volt a.c. gas-driven generator was kept in readiness in the event of power failure during the test.

The Lancaster (Pa.) Radio Club supported the demonstration by setting up a mobile unit at the Lancaster Red Cross Chapter, relaying traffic to W3BKB, York, via W3DEI in Lancaster. W3BTP, Marietta, Pa., cooperated by furnishing reports on the river stages of the Susquehanna. W3CDY, Harrisburg, Pa., handled traffic for the Harrisburg Red Cross, W3HWN, Mechanicsburg, Pa., acted as relay between York and Harrisburg. W3BRY handled traffic to Harrisburg via 28 Mc. Two mobile units were used to cover an area of 22 square miles and aided greatly in relay and delivery of traffic.

Simulated disaster messages were handled for various Red Cross Committees: Survey, Transportation, Registration, Rescue, Shelter, and Volunteer Special Service. Each message was marked “test message” and messages for points in the local area requested a reply as to time of delivery. Handling time was good in practically every instance. Plans for the future call for more mobile units to speed up delivery.

June 1946
OLD TIMERS CLUB
—
FORMERLY 20-YEAR CLUB

ARRL's 20-Year Club has a new name — the Old Timers Club. We want to hear from all members of the 20-Year Club who are still active. Old members need only to send a postal giving their present call, and date of first amateur license. We will list them on the Old Timers Club roster, and send them one of the new membership certificates now being printed.

The Old Timers Club is open to anyone who holds an amateur call at the present time, and who held a master license (operator or station) 20-or-more years ago. This is the same requirement that applied to the 20-Year Club. An announcement in October, 1944, QST erroneously stated that an amateur license must have been held for at least twenty consecutive years. It is only necessary that you held an amateur ticket 20-or-more years ago, and are today the holder of an amateur call. Lapses in activity during the intervening years are permitted.

If you can qualify as an "Old Timer," send us a brief chronology of your ham career, being sure to indicate the date of your first amateur license, and your present call. If the evidence submitted proves you eligible for the "Old Timers Club," you will be added to the roster and will receive a membership certificate. Address all correspondence to the Communications Department.

GUAM RADIO AMATEURS LEAGUE

Charles E. Hunt, formerly of the 20th Air Force and now at Tuckahoe, N. Y., sends a list of GRAL members and information on the status of activities on the date he left Guam (Feb. 10, 1946). W9WUG/KB6 is the center of administration for all amateur activity. There were 20 active stations in operation in February, 14 using 100 to 500 watts, and 8 with 2-100 watts input, all on 28 Mc. Net control station was W6EKE/KB6, 29,200 kc. All stations are connected by a v.h.f. network using f.m.

The GRAL roster includes:

W1MAQ NFB W2AYN IMJ QPJ EQT MQF MVQ NLU WSAIM DLJ EQJ IDW JVR W4DNU EGF PKU GJA WSAOP EHI GAB GBA GVR JMM JPO W6EKE FJW IGJ MJG MLR OZP POM PPK EQB NFH BZC TQZ W?FXC HLA IAG IYO JCU WSDBT HDM MST OK QCO QDD KTB TXW TXN UEH UMI WUW W9ARG BAI BBQ DIZ EDS EZZ JBX JGO JPO JMG LEI LFI LRE PDE QCI QLO EQM RTV RTZ RYU RSK WUG WFW ZE0 ZXH QZK W4DRK W6QKB W8WUB.

BRIEF

W9FLD, Sullivan, Missouri, and OA4AK, Lima, Peru, are keeping regular schedules on 28 Mc. They have had 34 contacts and made a single schedule in over two-and-one-half months. OA4AK operates on 28,420 kc. with 40 to 50 watts input. W9FLD runs 250 watts. Both stations use four-element beams. The schedule is at 12:30 p.m. PST, three days per week. Chalk up another for 28-Mc. reliability.

DX ON 80!

On April 9th, Benton White, W4PL, Shepherd, Tennessee, took time out from some nice DX traffic work to write us the following:

"Not even Ripley is going to believe this one, but I am running a daily traffic schedule direct with Wake Island on 80 meters! A week ago today, about daylight, I was listening around and heard a station with a call a yard long trying for a W6. (K7HNG/KO6, and how would you like to have that one in an SS?) I thought it was one of those April Fool calls, but kept listening. He hooked his man (W6DDO), and said he was on Wake Island, and how about taking a little traffic from him?

"Maybe you have heard the tale of the lad up for stealing some hams. . . . Claimed he took 'em for a joke. . . . How far from the smoke house was he when the officer caught him? . . . About a mile and a half. . . . 'That's carrying a joke too far,' sez his Honor, 'Thirty days.' So when this K7 ham began to give messages with instructions to send them WU night letter clear across to N. Y. C., I think if this is a joke, it's being carried pretty far.

"When he signed I called him, and it was just as simple as that. He is a Pan-Am Airways operator, and has special permission to work 80-meter traffic on account of very poor communication facilities at Wake Island. Of course it can't last, but while it does we are giving a message action; from two-thirds across the Pacific almost to the Atlantic Seaboard in one hop on 80 meters! From now on I believe in fairies, ghosts, and just lemme hear the fish tale I won't believe."

"OPERATING NEWS" INVITATION

The Communications Department is always interested in hearing about what you are doing in amateur operating. The Operating News columns are devoted to passing along to you items on every phase of operating interest. Send us information on operating events and activities, stories, briefs, oddities. All articles and items will be welcomed and will receive consideration for appropriate use. If something occurs in your operating that seems worthy of note, let us pass it along to the gang.

In addition to the general run of Operating News, the Communications Department conducts a continuing Article Contest. The author of each article used in the ARRL amateur publications (except QST) for 1946 and publications will receive a $5 in Victory Stamps, and $5 in ARRL supplies or publications (except QST). Contributions for this contest must be on a subject of interest to radio amateurs, and the length must be not over 500 words. Entries are judged on originality and value to the fraternity. Send as many contributions as you like. Write on any topic in the field of ham operating or organization. For contest consideration be sure to mark your article "for the CD Contest."
We are often asked why we do not use "super duper" tubes like the 1852 in the input stages of National receivers. Amateurs tell us that they have substituted tubes of high mutual conductance for the tubes of our choice, and that it has resulted in increased sensitivity. This is undoubtedly true. The reason why we still stick to tubes like the 6SK7 for RF stages involves the whole subject of signal-to-noise ratio as well as sensitivity. We have discussed this before on this page but the subject is important enough to warrant taking another look at it.

Sensitivity is defined as the input signal required to produce an output of .05 watt at the speaker terminals when the carrier is modulated 30%. This definition does not say anything about noise, which makes it very misleading when applied to high gain communication receivers. A high gain receiver with a low-Q input circuit may generate enough noise to produce .05 watt at the speaker without any signal at all, so that by definition it has infinite sensitivity. Actually, the useful sensitivity of such a job would be pretty terrible, because only a strong signal could override all that noise. On the other hand, a really high quality receiver with a low noise level would have much less sensitivity, if sensitivity is based on gain only.

Signal-to-noise ratio is as important a factor as sensitivity. To be readable, the signal must be stronger than the noise. For easy copying, it should be a lot stronger. This requires that noise be kept down at the same time that the gain is raised. This really taxes the skill of the radio engineer.

An important factor in signal-to-noise ratio is the input circuit. A high-Q circuit here will produce less noise for a given signal. For instance, thermal agitation is a major source of noise, and the noise voltage from this cause is inversely proportional to the square root of the Q of the circuit. As regards amplifying the signal, we do not need to tell readers of this page why high-Q helps.

The Q of the input circuit depends on everything in the circuit and this means tubes as well as coils and condensers. At high frequencies, the grid circuit of a vacuum tube absorbs power even though the grid has a negative bias. With a Type 57 pentode, this is equivalent to a resistance of about 23,000 ohms when operating at 30 Mc. and is down to about 2100 ohms at 100 Mc. This resistance is inversely proportional to mutual conductance, other things being equal, so that good Q pretty much requires a low mutual conductance. (Incidentally, this input resistance explains why parallel operation of tubes does not improve RF stage gain.)

In addition to degrading signal-to-noise ratio, a low-Q input circuit has other objections. Images are worse, for instance.

National receivers have ample gain to work right down to the noise level. This is all the gain that can be used. If more were needed, there are better ways of getting it than by spoiling the input circuit.

Jack Ivers

Yes, we made a mistake here in April. Images are separated from the carrier frequency by twice the receiver IF frequency. Sorry.
MEET THE SCM

One of our most energetic and efficient leaders is the featured SCM, Thomas M. Moss, W4HYW, who recently was elected to lead the Georgia Section following his release from the AAF after a four-years' tour of duty. Moss was a student of the Fixed Station Operator School, Signal Corps School, Fort Monmouth, New Jersey, from February to July, 1942; chief operator of the War Department station attached to the Eleventh Air Force in the Aleutians from August, 1942, to March, 1944; operator of the Army Airways Communications System station (point-to-point net) during March, 1944; monitor of the 54th AACS group from March to June, 1945; and "trick" chief of the AACS air-to-ground station at MacDill Field, Florida, until October, 1945.

In addition to his amateur license, which was issued on February 21, 1941, W4HYW also holds a restricted-radiotelephone operator permit. "Tom" has attained a receiving speed of 50 w.p.m. and is capable of copying 45 w.p.m. on a typewriter.

His station, which is located in the backyard, includes transmitting equipment consisting of 6F6G crystal, HY69 P.A. with 60-watts input, p.p. 6L6Gs Class AB, 6J5 Driver, 6SJ7 S.A., double-button carbon mike. Reception is provided by a Hallicrafters S-20R. His transmitting frequencies range from 80 to 6 meters, although he most often is found on 217/20,040 kc.

W4HYW is an associate member of the Institute of Radio Engineers, a member of the Veteran Wireless Operator’s Association, and a member of the Atlanta Radio Club.

Photography ranks second to amateur radio as a hobby and "Tom" actively engages in bowling and tennis when time permits.

Among the appointments held by SCM Moss are those of Official Observer, Official Broadcasting Station, and Acting Emergency Coordinator. He is eager to make ARRL appointments and invites correspondence from qualified members under his jurisdiction. Moss is extremely interested in building a first-class organization in his Section and under his able direction Georgia should become one of the foremost Sections in the country.

BRIEF

Amateur D2 calls are being issued to Service personnel in British-occupied Germany. Members of the Royal Canadian Air Force’s 8402 Air Disarmament Wing have formed the “8402 Wing Radio Club” with about ten members. The club's station is set up in the attic of a house in Oldenburg. At 84 Group (RAF) Headquarters at Celle, Germany, two other Canadian amateurs are on the air signing D2PF and D2HH.

ELECTION NOTICE

To all ARRL Members residing in the Sections listed below:

You are hereby notified that an election for Section Communications Manager is about to be held in your respective Sections. This notice supersedes previous notices. Nominating petitions are solicited. The signatures of five or more ARRL full members of the Section concerned, in good standing, are required on each petition. No member shall sign more than one petition.

Each candidate for Section Communications Manager must have been a licensed amateur for at least two years and similarly a full member of the League for at least one continuous year immediately prior to his nomination.

Petitions must be in West Hartford, Conn., on or before noon on the closing dates specified. In cases where no valid nominating petitions were received in response to previous notices, the closing dates are set ahead to the dates given herewith. The complete name, address, and station call of the candidate should be included with the petition.

The following nomination form is suggested:

Communications Manager, ARRL
38 La Salle Road, West Hartford, Conn.

We, the undersigned full members of the ____________________________ ARRL Section of the ____________________________ Division hereby nominate ____________________________ as candidate for Section Communications Manager for this Section for the next two-year term of office.

Elections will take place immediately after the closing dates specified for receipt of nominating petitions. The ballots mailed from Headquarters to full members will be in alphabetical sequence the names of all eligible candidates.

You are urged to take the initiative and file nominating petitions immediately. This is your opportunity to put the man of your choice in office.

— F. Z. Handy, Communications Manager

ELECTION RESULTS

Valid petitions nominating a single candidate as Section Manager were filed in a number of Sections, as provided in our Constitution and By-Laws, electing the following officials, the term of office starting on the date given.

Alabama Lawrence J. Smyth, W4GBY Jan. 15, 1946
San Francisco Samuel C. Van Liew, W6CFV Feb. 15, 1946
Connecticut Edmund E. Fischer, W1KQY Feb. 15, 1946
Santa Clara Valley Boy E. Plakham, W6BPT Feb. 15, 1946
New Hampshire John H. Stoughton, WLAXL Apr. 1, 1946
Sacramento Valley John R. Kinney, W6MGC Apr. 1, 1946
Arizona Gladam C. Elliott, W6MML Apr. 15, 1946
Louisiana W. J. Wilkinson, Jr., W9DWW Apr. 15, 1946
Indiana Ted X. Clifton, W9SWH Apr. 15, 1946
Virginia Gerald Benedict, W1NDL Apr. 15, 1946
Colorado Glen Bond, W9QYT Apr. 17, 1946
Missouri Letha A. Dangerfield, W9OUD Apr. 17, 1946
Less QRM---Phone or CW

When the bands are active it only takes one minute to find that you need Hammarlund's patented variable crystal filter to have a successful QSO—either phone or CW.

Look to the future! When the number of Hams doubles or trebles you will need the crystal filter that weeds-out the QRM . . . If you can't hear 'em, you can't work 'em!

Price (SP-400-X) $342.00 Including Speaker
REPORT YOUR ACTIVITIES

- All operating amateurs are invited to report to the SCM on the first of each month, covering station activities for the preceding month. Radio Club news is also desired by SCMs for inclusion in these columns. The addresses of all SCMs will be found on page 6.

ARRL members are invited by SCMs to make application for the following appointments: ORS, OES, OPS, OO, and Local Emergency. Instructions to handle important SEC and EC posts. The SCM would also like to hear of your interest in RM or PAM appointments.

Send all inquiries and applications to the SCM for your ARRL Section.

ATLANTIC DIVISION

EASTERN PENNSYLVANIA — SCM, Jerry Mathis, W3BES — 3TA is reorganizing the Susquehanna Emergency net with the opening of the 3.9-Mc. 'phone band. 3CQN sends in a fine report of the York Amateur Radio Club’s test with the Red Cross. They simulated incidents and handled the communication. Those listed as participating are 3BBK, BBV, I7E, KBW, I0F, EDO, HWN, CDF, BTH, BIE, AQN, 8CJU, and 8AFX. Most of the operating was on 144 Mc. but 28 Mc. was used a bit. The test was observed by the mayor of York, committeemen, and officials of the Red Cross. OBS will be reinstalled with the receipt of the second activities report. 8EJ is all set to become a W3 and sends in his No. 1 report. 3UX hooks Zepp feeders to a tin roof and excites same. 3HRE, WERS radio aide of Easton, is moving out of state and may be back to Buffalo. We will miss him for his excellent emergency work. 3ITZ has a new 28-Mc. 8JK beam. There certainly must be some traffic handling going on. How about reporting it for QST. Just write to your SCM for reporting cards.

Traffic: W3BES 2, 73, Jerry

MARYLAND-DELAWARE-DISTRICT OF COLUMBIA — SCM, Herman E. Hobbs, W3C12 — GEB expects to be back on the air as soon as he gets his business arrangements in working order. Meanwhile, he keeps his radio knowledge in shape teaching in the Department of Education, Eastern High School, of the City School System. ECP is back in civvies and has just finished a fine survey of the area. 3AQN sends reports are OSC and OSS. The Red Cross is ready with appointments: ORS, OES, OPS, 00, OBS. Leaders are needed in several Sections to handle important SEC and EC posts. The SCM would also like to hear of your interest in RM or PAM appointments.

Traffic: W3BES 2, 73, Jerry

CONTINUED ON PAGE 84
For linear variation of light output with current

SYLVANIA GLOW MODULATOR TUBES

Sylvania's Glow Modulator Tube R1130B (1B59) is designed for practically any application requiring essentially linear relationship between current and light output.

In this crater-type tube, a high ionization density is obtained. In addition, discharge is viewed in depth. These two factors provide high actinic efficiency.

Electrical Ratings:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
<td>140 volts max.</td>
</tr>
<tr>
<td>Operating Current</td>
<td>5-35 ma.</td>
</tr>
<tr>
<td>Starting Voltage</td>
<td>225 volts max.</td>
</tr>
<tr>
<td>Modulating Frequency Range</td>
<td>15-15,000 c.p.s.</td>
</tr>
<tr>
<td>Useful Light Range</td>
<td>3500-6500 Angstroms</td>
</tr>
<tr>
<td>Filament Voltage</td>
<td>None: Cold Cathode</td>
</tr>
</tbody>
</table>

Applications

Sylvania Glow Modulator Tubes have found their chief use in facsimile recording. A photograph is placed on a revolving cylinder. A pinpoint of light is reflected back from photograph to a photoelectric cell, which generates current in accordance with light variations.

Current passes into a radio transmitter or telephone circuit. At receiving end, the Glow Modulator Tube emits light of an intensity that varies with the current. Light is focused on sensitized paper or negative on a revolving cylinder. As cylinder turns, original photo is reproduced.

Glow Modulator Tubes are also used in recording sound on film, and their characteristics suggest many other applications.

Correspondence is invited concerning projected uses of these tubes.

SYLVANIA ELECTRIC

Electronics Division . . . 500 Fifth Avenue, New York 18, N. Y.

MAKERS OF ELECTRONIC DEVICES; RADIO TUBES; CATHODE RAY TUBES; FLUORESCENT LAMPS, FIXTURES, WIRING DEVICES; ELECTRIC LIGHT BULBS
(Continued from page 88)

final stage. OJL desires to hear from amateurs interested in the Coast Guard Auxiliary. NOR discussed arrangements for establishing 144-Mc. tie-in with CU and INBV. The first W3 call believe issued in this section was W3KKEW, of Meadville, formerly 9LIZ. The other active station in Meadville at present is MIE. New officers of the Youngstown ARC reported on a new location. BOU, president, announced QST is going strong on 3.5 Mc. and says it's good to talk to the boys again. SJUQ has purchased a 32-acre farm and will have his rig there. At present he is working 3.5 Mc. with emergency rig with nice signal. 9ONX is going strong on both 28 and 3.5 Mc. and is holding schedules with SSHI, formerly of East Lansing, now in Ottawa. The Oakland County Radio Club held its second postwar meeting on April 1st. The newly-elected secretary and treasurer had to resign for business reasons and Richard Knight was elected to fill the vacancy. After the business meeting a buffet luncheon was served by the entertainment committee. Edward Gocha and Tennis Windy were scheduled to be presented on a permanent QTH. He is dickering for a War surplus transmitter. ZRT got his new HT4B a few days ago, but so far the rig seems to prefer the audio equipment to the transmitter. ZRT got his new HT4B a few days ago, but so far the rig seems to prefer the audio equipment to the transmitter.

DAKOTA DIVISION

NORTH DAKOTA — SCM, Raymond V. Barnett, W9EVP - RBS is back in Bismarck, drafting for the Reclamation Department, and is having fun on 28-Mc. as a permanent QTH. He is dickering for a War surplus transmitter. ZRT got his new HT4B a few days ago, but so far the rig seems to prefer the audio equipment to the transmitter.

SOUTHERN MINNESOTA — SCM, Vernon G. Pribyl, W9OMC — WQF rebuilt a 112-Mc. transceiver, was on 144 Mc. Saturday, and was on 3.9-Mc. 'phone while running 30 watts input. OAJ and IYQ are working f.m. 'phone. CJS is the only kw. station in the country. GBZ is active on 3.5 Mc. GBZ and KWA were logged on 3.5 Mc. The evening the band was opened up, AOE would like Pgb. area amateurs interested in traffic work and former AARS net members to contact him. JLI, EC for Lawrence County, wants to hear from v.h.f. amateurs desiring to become associated with their local AEC net. The Mercer County Radio Assn. has filed application for membership in the Pittsburgh Area Radio Clubs Council. The Pittsburgh Area Radio Clubs Council will hold a hamfest on Aug. 4th at Spradding Oaks, South Park, Pittsburgh.

CENTRAL DIVISION

INDIANA — SCM, Herbert S. Brier, W9EQG — EBG is assembling a modulator and speaker amplifier for his 35Ts. RHL and DLI took one on 3.5 Mc. and thanked each other for being on 144 Mc. DLI and JZA have three-element beam and MVZ, RHL, and EBG have four-element beam. UNW is on fifty-five coax. Fort Wayne.'HER in twenty-seven. ENB is on 3.5 Mc, with ten-year-old e.c.o. looking for traffic. QO has room for only a 40 Zep, but works on 3.5 Mc. HUV has a "secret" DX antenna under construction. On 28 Mc. FJI is on 3.5 Mc. and EGV kept his word and was on the air the minute it was legal on 3.5 Mc. ABB moved to Hobart and is using p.p. 35Ts. HDB has tried several beams, but his "J" outperforms them all on 144 Mc. PQL uses a folded doublet and p.p. 65sa with 550 watt plates on the 144 Mc. Eighty got home from Kwajalein on a Friday, rebuilt a 112-Mc. transceiver, was on 144 Mc. Saturday, and was on 3.9-Mc. 'phone at 2:00 a.m. Monday. MJH bought a 400-volt, 150­

Not all bootlegging in Kentucky is confined to mountain licker. Is AZY on 28 Mc.1 Cond. 9ALD is back after three years in jail prison camps. OIC has f.m. transmitter on 28 Mc. 4KO already is 4EI0/A. YQG still is QO8/KU.

SOUTHERN MINNESOTA-SOM, Vernon G. Pribyl, W9OMC — WQF rebuilt a 112-Mc. transceiver, was on 144 Mc. Saturday, and was on 3.9-Mc. 'phone at 2:00 a.m. Monday. MJH bought a 400-volt, 150­

The SC is anxious to hear from former ORS and OPS appointees. Is a 50-Mc. possible? BAZ has a supply of frequency crystals for emergency net. Write him. SKF and O9X are in the area and are being appointed OPS and will handle official broadcasts. All appointments are available. If interested, ask the SCM for information. Please send news to me at once.

SOUTHERN MINNESOTA — SCM, Vernon G. Pribyl, W9OMC — WQF rebuilt a 112-Mc. transceiver, was on 144 Mc. Saturday, and was on 3.9-Mc. 'phone at 2:00 a.m. Monday. MJH bought a 400-volt, 150­

Michigan - SCM, Harold C. Bird, W8DPE — SONK reports the Motor City Radio Club now holds meetings the first and third Fridays of each month at its club rooms on Galley Road, between Warren and Ann Arbor Trail, Dearborn. S8WF reports plenty of good luck on 28 Mc. A lawyer has O9X's QSTM 10-meter net and will hold his place in May. George is renewing his OBS and OPS appointments. SPDJ says things are going OK with him and he will look for us on QM1. SWYT has just been issued a call and wants for him on 3.5 Mc. SRJC is going strong on 3.5 Mc. and says it's good to talk to the boys again. SJUQ has purchased a 32-acre farm and will have his rig there. At present he is working 3.5 Mc. with emergency rig with nice signal. 9ONX is going strong on both 28 and 3.5 Mc. and is holding schedules with S8HF, formerly of East Lansing, now in Ottawa. The Oakland County Radio Club held its second postwar meeting on April 1st. The newly-elected secretary and treasurer had to resign for business reasons and Richard Knight was elected to fill the vacancy. After the business meeting a buffet luncheon was served by the entertainment committee. Edward Gocha and Tennis Windy were scheduled to be presented on a permanent QTH. He is dickering for a War surplus transmitter. ZRT got his new HT4B a few days ago, but so far the rig seems to prefer the audio equipment to the transmitter.
NOTE TO DESIGN ENGINEERS—With all the advantages of the Lewis AT-257 (4E27) — enormous power gain, great circuit flexibility—the new AT-257C has a "plus" factor you will be interested in. The addition of Zirconium coating to the anode has enabled Lewis Electronics to reannounce this versatile 75 watt beam pentode in the 125 watt class.

By nearly doubling the plate dissipation of the 4E27, the usefulness of this already popular tube is further extended. May we recommend that you consider the use of the Lewis AT-257C in fixed or mobile radio equipment you are now designing? A note to Lewis Electronics, Los Gatos, California, will bring further particulars.

Filament Voltage 5 Volts
Filament Current 7.5 Amps.
Plate Dissipation 125 Watts
Jumbo 7-pin Metal Sleeve Bayonet

Lewis Electronics at Los Gatos, California, is prepared to build transmitting, rectifying, industrial or special purpose vacuum tubes to your specifications.
(Continued from page 84)

starting new rig. JDC’s XYL, is infected with the bug. We will be listening for her call in the near future. HTX has growing pains in the rig section. GWA is just about to blanket his view of all kinds of new equipment. IVY is constructing new e.c.o. and p.p. RCI39 final with his eye on 3.5 Mc and 7 Mc. JIC has new antenna for 28 Mc. with one going up soon on 3.5 Mc. 3889 kc. to be exact. HYS is in the middle of a designing a mobile S18 rig for the old Ford. CQF and CUB are here in the middle of a new project and were heard here on 144 Mc. KSI was heard working K6 recently. DXJ has the 807 going in good shape on 28 Mc. JAP was up recently for a one-day visit and shopping trip. GQG is going to town in big way on 28 Mc.

LOUISIANA — SCM, Eugene H. Treadaway, WS2DR

— GQX deserves the credit for writing this month’s report. After hearing some very bad BCI trouble ILM is now at ease. SCM is showing all of us how to go about grinding the one-buck crystals up to 7 Mc. His 28-Mc. rig is working out good. IAO was heard working 28 Mc. Pop Thomas is pounding brass on 3.5 Mc. UK has a new beam. EYR is using a kw. on 1280 kc. under call of WDSF. IDD has just acquired an HR0 SR. The FB signal heard nightly on 28 Mc. + Pulafat tag is QJ. Karl is new vice-president of Delta Radio Club. HOU and HHT are working DX on new 29-Mc. beams. KTB is doing OK with a T40 on 28-Mc. phone. Ex-SNAO is now 5KTG. BUK has 50 watts on 28 and 3.5 Mc. but is having antenna trouble. JPI is recruiting operators for the Louisiana CAP net. GQX is anxious to hear from Oregon. SCM would like to hear from the Flat Rock Junior High School National and State College Radio School and present address is 6319 Vermillion Blvd., New Orleans. 3FPA is building a FB rig. HRRD is weeping over the loss of “walking Charlie.” (A portable antenna.) ADV/5 is really getting out on 28 Mc. EYR/8 is working phone and has on 28 Mc. CQG. HJC is rebuilding speech amplifier. EDY works 28-Mc. phone with signal. IXL has gotten on 28 Mc. with a big bang. GHF and GWZ have been working a lot on 28-Mc. phone and are getting set for 3.5 Mc. KTO, thanks to HAO, has a nice 28 Mc. QJO, ex-41FE, has a brand-new receiver. FXX is sweating out 7 Mc. BI is on 3.5 Mc. and BN is rebuilding.

HIVISION DUV

NEW YORK CITY AND LONG ISLAND — SCM, Charles Ham, Jr., W2KDC — Old reliable Brooklyn and Suffolk are right on the job. OHE reports over thirty stations now organized, regular meetings are held the 4th Friday of every month at the Willoughby House Settlement in downtown Brooklyn. Three nets, the Red, the White, and the Blue comprise the net, each striving for superiority in activity. Also the “Flatbush Floggers” with ten stations are competing with the well-organized Termite League. DIO is firmly settled in the cellar. FCH’s DX-3 is doing nicely; as

(Continued on page 85)
It's Collins!
It's new!
It's ready!

... the Collins 30K—a NEW transmitter for amateur radio—thoroughly engineered for the continuous exacting requirements of "ham" operation. Check this partial list of features against your desires:

5 band operation • 500 watts input on CW • 375 watts input on Phone • Push-to-talk • Clean, sharp keying • Speech clipper • Bandswitching • Fully metered break-in operation • Vfo controlled

The high efficiency of the 30K assures a strong signal. In addition, the speech clipper circuit assists in maintaining a high modulation level, with no danger of overmodulation. Speech clipping also improves intelligibility. Brass pounders will proudly note the clean keying at any speed.

The exciter unit, built into a receiver type cabinet, may be placed on the operating desk. A highly accurate and stable variable frequency oscillator, the product of years of research and manufacturing experience, is calibrated directly in frequency. The frequency can be varied considerably without retuning the final.

The attractive appearance of this up-to-the-minute transmitter will improve any "shack." Its smooth, easy operation will please you.

- Write today for complete details. Collins Radio Company, Cedar Rapids, Iowa; 11 West 42nd Street, New York 18, N. Y.

FOR RESULTS IN AMATEUR RADIO, GET...
NEW ENGLAND DIVISION

CONNECTICUT — SCM, Edmund R. Fraser, W1RKO (Norwalk ARA). Please note that ARRL affiliation and reports club membership has passed the twenty-five mark. Plans are completed for Field Day, 41V/VI/1 now is NXX with new HQ-129-X to celebrate the occasion. ATH reports increase in the number of QSL slips being mailed out. This report inaugurates the Eastern Mass. Amateur Radio Assn. Field Day activity. YUB is a new member. How about some traffic reports? Art.

NEW ENGLAND DIVISION

CONNECTICUT — SCM, Edmund R. Fraser, W1RKO (Norwalk ARA). Please note that ARRL affiliation and reports club membership has passed the twenty-five mark. Plans are completed for Field Day, 41V/VI/1 now is NXX with new HQ-129-X to celebrate the occasion. ATH reports increase in the number of QSL slips being mailed out. This report inaugurates the Eastern Mass. Amateur Radio Assn. Field Day activity. YUB is a new member. How about some traffic reports? Art.

NEW ENGLAND DIVISION

CONNECTICUT — SCM, Edmund R. Fraser, W1RKO (Norwalk ARA). Please note that ARRL affiliation and reports club membership has passed the twenty-five mark. Plans are completed for Field Day, 41V/VI/1 now is NXX with new HQ-129-X to celebrate the occasion. ATH reports increase in the number of QSL slips being mailed out. This report inaugurates the Eastern Mass. Amateur Radio Assn. Field Day activity. YUB is a new member. How about some traffic reports? Art.

NEW ENGLAND DIVISION

CONNECTICUT — SCM, Edmund R. Fraser, W1RKO (Norwalk ARA). Please note that ARRL affiliation and reports club membership has passed the twenty-five mark. Plans are completed for Field Day, 41V/VI/1 now is NXX with new HQ-129-X to celebrate the occasion. ATH reports increase in the number of QSL slips being mailed out. This report inaugurates the Eastern Mass. Amateur Radio Assn. Field Day activity. YUB is a new member. How about some traffic reports? Art.

NEW ENGLAND DIVISION

CONNECTICUT — SCM, Edmund R. Fraser, W1RKO (Norwalk ARA). Please note that ARRL affiliation and reports club membership has passed the twenty-five mark. Plans are completed for Field Day, 41V/VI/1 now is NXX with new HQ-129-X to celebrate the occasion. ATH reports increase in the number of QSL slips being mailed out. This report inaugurates the Eastern Mass. Amateur Radio Assn. Field Day activity. YUB is a new member. How about some traffic reports? Art.

NEW ENGLAND DIVISION

CONNECTICUT — SCM, Edmund R. Fraser, W1RKO (Norwalk ARA). Please note that ARRL affiliation and reports club membership has passed the twenty-five mark. Plans are completed for Field Day, 41V/VI/1 now is NXX with new HQ-129-X to celebrate the occasion. ATH reports increase in the number of QSL slips being mailed out. This report inaugurates the Eastern Mass. Amateur Radio Assn. Field Day activity. YUB is a new member. How about some traffic reports? Art.

NEW ENGLAND DIVISION

CONNECTICUT — SCM, Edmund R. Fraser, W1RKO (Norwalk ARA). Please note that ARRL affiliation and reports club membership has passed the twenty-five mark. Plans are completed for Field Day, 41V/VI/1 now is NXX with new HQ-129-X to celebrate the occasion. ATH reports increase in the number of QSL slips being mailed out. This report inaugurates the Eastern Mass. Amateur Radio Assn. Field Day activity. YUB is a new member. How about some traffic reports? Art.

NEW ENGLAND DIVISION

CONNECTICUT — SCM, Edmund R. Fraser, W1RKO (Norwalk ARA). Please note that ARRL affiliation and reports club membership has passed the twenty-five mark. Plans are completed for Field Day, 41V/VI/1 now is NXX with new HQ-129-X to celebrate the occasion. ATH reports increase in the number of QSL slips being mailed out. This report inaugurates the Eastern Mass. Amateur Radio Assn. Field Day activity. YUB is a new member. How about some traffic reports? Art.
Yes, or alike as two telephone handsets made by the same process. Yet, pins or handsets — no two could ever be made exactly alike. Dimensions, weight, performance — all vary every time due to variables in manufacture. How can these variables be controlled?

Back in 1924, Bell Laboratories' mathematicians and engineers teamed up to find out, forming the first group of quality-control specialists in history. They invented the now familiar Quality Control Chart, designed inspection tables for scientific sampling. They discovered that test data mathematically charted in the light of probability theory were talking a language that could be read for the benefit of all industry.

Western Electric, manufacturing branch of the Bell System, applied the new science to its large-scale production. In war, it was used by industrial and government agencies of the United Nations in establishing and maintaining standards for military matériel. A Quality Assurance Department, a novelty back in the nineteen-twenties, has come to be indispensable to almost every important manufacturer.

Scientific quality control is one of the many ideas of Bell Laboratories that have born fruit in the Bell System. The application of mathematics to production is helping good management all over the industrial world — and furthers the cause of good telephone service.
Long famous for dependability and long life, Mallory vibrators had been regarded for years as just about perfect for ordinary domestic and police service. But military applications posed special problems. Under conditions of heat, or at high altitude, the expanded internal air escaped. When cold, or under high atmospheric pressure, air re-entered the vibrator. As a result, corrosion and humidity sometimes damaged the vibrator mechanism—ionization breakdowns sometimes occurred.

The answer to this problem was—and is—the Mallory Hermetically Sealed Vibrator. Tested for leakage under 20 lbs. of applied air pressure, this Mallory vibrator is permanently air tight. The hermetic seal keeps in the natural air pressure, keeps out moisture and fumes. Yet this revolutionary improvement costs very little more. For normal applications, the standard bake-lite-based Mallory vibrator is available. But for all regular replacement applications, hermetically sealed vibrators are definitely indicated.

For all regular replacement applications, follow the recommendations given in the Mallory Replacement Vibrator Guide. When special operating conditions are involved, do not hesitate to write direct to the factory for special help.

P. R. MALLORY & CO., Inc., INDIANAPOULIS 6, INDIANA

(Continued from page 88)
That The Astatic Corporation is the world's largest producer of Crystal Phonograph Pickup Cartridges is, in itself, actual testimony of their outstanding service and high operating efficiency. That they are preferred and used by a majority of the leading manufacturers of electrical phonographs and automatic record changers, is convincing evidence of their expert engineering and construction. Astatic Crystal Cartridges are manufactured to meet today's exacting standards of performance and are individually tested and approved for output voltage and frequency response before being released for shipment. Astatic Cartridges are extensively used in an ever-growing field of new product applications, as well as for replacement purposes or the improvement of existing equipment.

Astatic Crystal Devices manufactured under Brush Development Co. patents

THE Astatic CORPORATION
CONNEAUT, OHIO

IN CANADA: CANADIAN ASTATIC LTD., TORONTO, ONTARIO
VARIABLE CONDENSERS
FOR EVERY STAGE OF THE TRANSMITTER

For many years Johnson variable condensers have been the choice of hams who demand the highest quality and latest in condenser design. From oscillator through final amplifier Johnson condensers give outstanding performance and help put your rig "out front."

Shown here are but a few models of the popular line of Johnson condensers, incorporating the most recent advancements of Johnson engineering.

Type C... Single and dual models designed for high power applications. Plate spacing .125-.500

Type D... Single and dual models for high power, smaller than type C. Plate spacing .080-.250

Type E... Single and dual models for medium and low power. Plate spacing .045-.125

Type H... Minimum of weight and size. Medium and low power. Single and dual models. Plate spacing .030-.080

Johnson condensers, inductors, insulators, plugs, jacks, "Q" antennas and ham hardware items are stocked by leading radio-electronic parts jobbers. Watch for new Johnson ham gear to be announced soon; it will be tops.

Write for catalog 968L.

JOHNSON
a famous name in Radio

E. F. Johnson Co. Waseca, Minn.
This standardized Hytron-production tester is composed of three units: preheater, characteristics tester, noise tester. To permit a better view of the equipment, only one of three operators is shown.

Again Hytron’s long experience

Gives you the best...

For your protection Hytron tubes are quadruple-checked. On the production floor, each tube is first tested for significant characteristics. In the central inspection department, a random sampling is next taken for statistical control of the production testing—to assure quality within acceptance limits. Failure at this point demands 100% retest.

Daily a smaller random sampling is subjected to a searching design check of characteristics such as inter-electrode capacitances, grid emission, and transconductance cutoff. These characteristics can be controlled by the smaller sampling, and their testing requires laboratory precision. Simultaneously production tests are again repeated for further statistical control. Again failure to meet acceptance limits demands 100% retest—even for design characteristics not production-tested.

Finally each tube is once more short-tested and mechanically inspected just before packing. This painstaking quadruple-checking ensures that specification failures of tubes actually shipped will be a practically irreducible minimum. When you buy a Hytron tube, you can be certain that every ounce of Hytron know-how on quality control—reinforced by wartime experience—has been in there punching to give you only the best.

How the Hytron 12SK7GT is quality checked

<table>
<thead>
<tr>
<th>Test</th>
<th>100% Production Test</th>
<th>Central Inspection Sampling</th>
<th>Quality Laboratory Sampling</th>
<th>100% Test at Packing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shunt</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Base shell connection</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Heater current</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Plate current</td>
<td></td>
<td>x</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Screen current</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Grid current</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Transconductance</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Suppressors and anodes</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Emitters</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Heater-cathode leakage</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Life</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Transconductance cutoff</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vibration resistance</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Insulation resistance</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Input capacitance</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Output capacitance</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Grid-plate capacitance</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Grid emission</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Insulation (basing cement)</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Life</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Overall length</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mechanics</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

*Mechanical tests are covered by a multipage specification. Typical inspection is conducted visually and/or by gauges for the following pin tolerances, plating, getter flaps, diameter, base-bulb alignment, base base pins, glass defects, and rigidity of internal elements, bases, and base pins.

For your protection Hytron tubes are quadruple-checked. On the production floor, each tube is first tested for significant characteristics. In the central inspection department, a random sampling is next taken for statistical control of the production testing—to assure quality within acceptance limits. Failure at this point demands 100% retest.

Daily a smaller random sampling is subjected to a searching design check of characteristics such as inter-electrode capacitances, grid emission, and transconductance cutoff. These characteristics can be controlled by the smaller sampling, and their testing requires laboratory precision. Simultaneously production tests are again repeated for further statistical control. Again failure to meet acceptance limits demands 100% retest—even for design characteristics not production-tested.

Finally each tube is once more short-tested and mechanically inspected just before packing. This painstaking quadruple-checking ensures that specification failures of tubes actually shipped will be a practically irreducible minimum. When you buy a Hytron tube, you can be certain that every ounce of Hytron know-how on quality control—reinforced by wartime experience—has been in there punching to give you only the best.

Oldest manufacturer specializing in radio receiving tubes

Hytron
Radio and Electronics Corp.
Main Office: Salem, Massachusetts
All products of the Thordarson and Meissner Divisions of Maguire Industries, Inc., and the Radiart Corporation are sold from a single source by a single sales force. Located strategically throughout the country, these men are trained to give competent sales-engineering advice and to render reliable, speedy service. For complete information, write to the address below... today.

Thordarson Transformers are precision-built for all requirements... replacement, communications, sound amplifier, industrial, experimental and amateur.

Thordarson Tru-Fidelity Amplifiers feature advanced tone compensation, conservative ratings, ample ventilation, low hum level, multiple input channels and maximum flexibility of controls.
Meissner Components, all high quality, include antenna, R. F. and oscillator coils; standard, plastic and Ferro-cort transformers; windings, coils, chokes and accessories. Meissner Service Instruments include the famous Meissner Analyst, a complete servicing instrument and the Meissner Signal Calibrator...a portable, self-contained unit for accurate and instant checking.

Radiant Vibrators are individually engineered, exact duplicate vibrators. Designed for long life, minimum R. F. interference, low noise level and proper starting. Radiant Power Packs are designed to provide efficient, economical and dependable plate power for operating all types of portable equipment where AC power is unavailable. Radiant Rust-Proof Aerials are newly designed to fit all cars; cowl, hood and under hood types. Made of finest materials with many exclusive features.

Maguire Industries, Inc.
35 North Michigan Avenue, Chicago 11, Illinois
"Post-War" Is Now Here!
You Must Act Fast
To Step Ahead of Competition

CREI Technical Home Study Training
Equips You to Step Ahead of Competition into a Better Radio Engineering Job!

These "tools" are the symbol of the trained engineer. Knowing how to use and apply them as a radio engineer is an important part of the training you enjoy as a CREI student and an indication that you are equipped for a better-paying job, and secure future in the many branches of radio-electronics.

In our practical radio-electronics engineering course, you learn not only how but why! Your ability to solve tough problems on paper, and then follow up with the necessary mechanical work is that born of knowledge, confidence in your ability to get and hold the new, better paying jobs that are available to good, well-trained technical radiomen today ... and offering secure careers and happiness for the future!

"I have been helped by the course for beyond my expectation, and the lessons have been particularly timely for me."

-K. M. Hollingsworth, General Electric Co.

WRITE FOR FREE BOOKLET

Tell Us About Yourself, so we can intelligently plan a course best suited for your needs. Write us now and let us prove to you we have something you need to qualify for a better radio job. To help us intelligently answer your inquiry—please state briefly your background of experience, education and present position.

CAPITOL RADIO ENGINEERING INSTITUTE
E. H. Rietzke, President
Dept. G-6, 16th and Park Road, Washington 10, D. C.

Branch Offices:
New York (7), 170 Broadway
Chicago (2), 30 N. LaSalle Street
San Diego (1), 316 C Street
San Francisco (2), 760 Market Street

Members National Home Study Council, National Council of Technical Schools

(Continued from page 98)
Navy and is on the air using 250-THs at 1 kw. input and has three tube converters for 144 Mc. QTH is 250THs at 1 kw. and worked WAC in ten hours. 1W/6 is on 3.5-Mc. c.w. RX keeps traffic schedule with KA3GBB. Traffic: W6R 209, JSB 76, TBK 38, CEF 4, PVV 2, WIVW/6 1, 73, Pinky.

EAST BAY - SCM, Horace R. Greer, W7TI - Section EC, EE, RM, ZM; EC, QDE; EC v.h.f.; FQK; Asst. EC v.h.f., OJU; OO v.h.f., ZM; OO, IT1; OBS, TT, IDY, ZM, ITH. Please note new reporting dates. Effective at once you will make reports covering the first to the last day of each month inclusive. This means that you will have to mail your reports to me as soon after the first as possible, as my reports will have to be mailed by the seventh of each month. Please get them to me not later than the fourth of each month in order to give me time to compile the information. IDY reports that his official broadcasts are being received with good reports all over. IT1 is working all the DX that he hears and that is plenty. On March 29th, when the ZLs first went on the air, Reg worked six on 28-Mc. 'phone. Seemed like old times with the opening of the 3.5-Mc. band. Many of the local gang could be heard on both c.w. and 'phone really going to town. CAN reports that he is very active on the m. Martin lines and would like to make some 56-Mc. schedules and tests with some of the gang. His QRA is J. W. Clark, 70 Hoffman Ave. EE is building a new rig with a pair of Eimac 4-250As in final. GIK's new radio room looks FB, TI bought new Hallcrafters HT-4E all-band transmitter from TT and DUB. CDC is building all-band transmitter with 812As in final. EJA worked Wake Island the first night on 3.5-Mc. c.w. The BAERO held a very successful Field Day for the last 125- to 1295-Mc. band with good results. KME is building rig to use a pair of 35 Mc. c.w. and a large group turned out, some traveling many miles to make local contacts on all our bands. Even an airplane was pressed into service for u.h.f. contacts and some records may have been equalled or bettered. SEND IN THAT STAMPED SELF-ADDRESSED ENVELOPE WITH YOUR CALL IN UPPER RIGHT-BORDER CORNER. YOU MAY HAVE SOME QSL CARDS HERE AT THE WS QSL BUREAU. Traffic: W76R, W736T.

SACRAMENTO VALLEY - SCM, John R. Kinney, W6MGC - The Sacramento Amateur Radio Club held its second meeting April 17th in the Clune Memorial Club House in Sacramento. EWB and OJX had the honor of installing the new officers for the coming term. They are as follows: GZ1, pres.; AK, vice-pres.; MGC, secy.; AP, treas.; and EJC, sergeant at arms. Sixty-nine members were present. The SARO now boasts a membership of 107 with more expected to join. SEND IN THOSE POST-WAR BULLETIN INCLUDES [Paragraph continues on page 98]
Accurate Long Range Navigation...anytime...in all weather

With Sperry Loran the navigator has at hand a quick and accurate means of determining a ship's position at any time, in all kinds of weather. This system involves the reception of accurately timed radio pulses from shore-based transmitting stations.

The difference in time of arrival of signals from a pair of transmitting stations is measured and the time difference is then used to determine, from special charts or tables, a line-of-position on the earth's surface. Fixes by crossing two lines of position are obtainable at distances from shore stations up to 1400 miles at night, 700 miles in daytime.

A Time Difference Meter (see illustration above) greatly simplifies the operator's work and prevents errors in readings.

Sperry Loran is backed by a worldwide service organization and meets the usual high standards of test and performance of all Sperry products.

*The Time Difference Meter, giving position references directly, is a Sperry exclusive.
Essential for development, experimental and servicing work in connection with FM applications, IF amplifier alignment and in other uses where a sweep deviation is needed in the frequency range of 100 kc to 20 mc.

SPECIFICATIONS

1. Linear frequency sweep deviation adjustable from zero to 900 kc peak to peak.
2. Vernier frequency control of 100 kc allows zero beat calibration of main tuning dial for vernier frequency deviations about main dial frequency setting.
3. Stable r-f gain control independent of frequency.
4. Five-step attenuator of r-f output giving overall voltage range of 1 microvolt to .1 volt when used in conjunction with the gain control.
5. Output impedance, 1 ohm to 2500 ohms.
6. Phone jack for aural monitoring of zero beat calibration of main tuning dial.
7. Panel jack to feed linear sweep voltage to x-axis amplifier of oscilloscope, thus synchronizing the frequency linear sweep of the generator with the spot trace on the scope screen.
8. Voltage regulated supply for internal oscillators. Careful oscillator design to minimize drift.
9. Size, 7" wide, 9½" high, 10½" deep. Weight, 18 pounds.

Write for free bulletin number H-40

ROCKY MOUNTAIN DIVISION

**UTAH-WYOMING — SCM, Victor Drabble, W6TLH — 6SID, EC for Logan and Cache Valley, submits the following report from his area: 6MAV, 6SID, and G7AR are active on 28 Mc. from their home stations. 6RIM in on 3770 kc at his QTH. More hams at the USAC are: 9FVO/6, Smithfield; 9YVH/6, 6ULV, and Grant Hoffman, operator license only. 6SID and 6MAV bold down the 144-Mc. band at Logan, Utah. They took their Class C exams on March 26th. 6DTB is working a lot of DX with his 300-watt rig and a three-element beam. 6TMK, the radio club at the USAC, is on the 3.9-Mc., 'phone band with 375 watts. 6SID is on 28 Mc. with 40 watts into an 815 and a three-element beam. 6FYR broke his foot and is getting around with a plaster cast. He is using the clothesline for an antenna. 6H1V/6 has a time getting out with his little 40-watt 'phone rig. The "California" kilowatts blot him out on the 3.5-Mc. His Band Warming Contest came out well; he worked 4IHV/6, Smithfield, Utah, and 6SID is on the 3.9-Mc. 'phone band with 375 watts, 6SID is on 28 Mc. with 40 watts into an 815 and a three-element beam. He made fifty-nine contacts on three continents in one day. 6FYR broke his foot and is getting around with a plaster cast. He is using the clothesline for an antenna. 4H1V/6 has a time getting out with his little 40-watt 'phone rig. The "California" kilowatts blot him out on the 3.5-Mc. His Band Warming Contest came out well; he worked 4IHV/6, Smithfield, Utah, and 6SID is on the 3.9-Mc. 'phone band with 375 watts, 6SID is on 28 Mc. with 40 watts into an 815 and a three-element beam. 6TMK, the radio club at the USAC, is on the 3.9-Mc., 'phone band with 375 watts. 6SID is on 28 Mc. with 40 watts into an 815 and a three-element beam. 6TMK, the radio club at the USAC, is on the 3.9-Mc., 'phone band with 375 watts. 6SID is on 28 Mc. with 40 watts into an 815 and a three-element beam.

SOUTHEASTERN DIVISION

ALABAMA — SCM, Lawrence J. Smyth, W4GBV — GVP reports for the Anniston boys and states that GYD and BIY are on 28-Mc. c.w. BCU is on 28 and 3.9 Mc. running around 800 watts. GVP is running 175 watts on 28 Mc. His Band Warming Contest came out well; he worked Argentina, Peru, and Hawaii. AUP installed a pair of 812s and is on 3.9 Mc. EW is making many DX contacts with his new beam installation. The Montgomery Radio Club is using moving pictures to teach theory to the boys going up for examination. The Mobile Club has started anew and we hope to hear from them soon. Would like to hear from anyone interested in OBS appointment. 73, Larry.

EASTERN FLORIDA — SCM, Robert B. Murphy, W4IP — Get yourselves lined up now for the Emergency Net. The Dade Radio Club is sponsoring a WAS contest starting May 1st and ending July 31st, is canvassing the membership for 100 per cent affiliation with the ARRL, and is promoting up-and-coming new men. GNZ, the old c.w. man, won a mile at the April meeting. FJC reports Jacksonville has organized a club which will be known as the "JARS" and will meet the first Tuesday of each month. FPO is prea.; 2Z7/4, vice-pres.; AKH, activities mgr.; HWA, secy.; FRP, treas.; FWZ, AWE, and 9LZ/4, executive committee. AKH will handle reports to the SCM.

(Continued from page 96)
THE FAMOUS
Bass Reflex

REPRODUCERS IN NEW, BETTER-THAN-EVER DESIGNS

True high-fidelity reproducers with the famous and exclusive Jensen Bass Reflex principle of design are now available in improved postwar cabinets. Jensen Bass Reflex reproducers give crisp, extended range reproduction...no backside radiation...full bass with no boom.

Bass Reflex Reproducers are widely used in broadcast monitoring and in recording work. They are ideal for ham shack use and are in much demand for phonographs, FM reception, and general sound reinforcement applications.

Jensen Bass Reflex Reproducers are available in sizes for 8-inch, 12-inch and 15-inch loud speakers and are designed for floor or wall installation. The 15-inch cabinet is designed for both Type J and Type H Jensen Coaxial Speakers and for single-radiator 15-inch speakers.

Write for complete literature.

* Trade Mark Registered

Jensen SPEAKERS WITH ALNICO 5

JENSEN RADIO MANUFACTURING COMPANY
6611 SOUTH LARAMIE AVENUE • CHICAGO 38, ILLINOIS

In Canada: Copper Wire Products, Ltd., 137 Oxford St., Guelph, Ontario

Specialists in Design and Manufacture of Fine Acoustic Equipment
How about a EC for that district? HUY has passed his Class A exam. EY1 is having a lot of fun on 28 Mc. AFO has written in for emergency net set-up. VPSM, at Kingston, writes he still is waiting for their imported equipment to be released by the government. D. E. Yong at the PAA station in Piarco, ZQC, writes a very interesting account of the hams in the Caribbean. CNZ was in Piarco as code instructor for PAA training twenty-five English operators. EPI is a mechanic at Piarco. KG is operator at Atchinson. FQZ is operator at St. Lucia. KG and FQZ are twin brothers and radio operators for PAA. "DY" at ZQC works HWO regularly on the circuits with WMDUT. The operator in charge of ZQC is VIPATF, and "BG" is VIPATY. HXX is very active on 28 Mc. 1E is trying to get some peanut power on 28 Mc. The first message-handling report was received from BYF with a nice report of 22 out as OBS and 7 received. GVC, our SEC, reports: BGL QSOs VKs 011 25 watts 28 Mc, and QN worked St. Pete; IIX has twenty-seven "furriners" to his credit. HGO is a close second, 8QFN now is 1V. QN is lining up as 00. GIY is getting ready for OES. Let's have reports on the first of the month. 73. Merf.

WESTERN FLORIDA — SCM, Edward J. Collins, W4MS — BKQ schedules FASNF so Syd can talk to his YL in Panama. 31HC/4 is proud papa of a YL. DAO is the big dog, man with his four-element beam. QK and VR are set for 3.7 Mc. EGN has been fighting bugs in the rig. HIZ has an FB four-element beam. EQR has a 230TH in the final. 4JV really pounds out FB with his 8JK beam. AXF is happy over the opening of 3.7 Mc. LT works into Pensy on ground wave regularly. HNX/4 is warming 3.0 Mc, back. UW sounds FB on 28-Mc. 'phone. 7QJ/4 has 15 watts on 3.9 Mc. ECT and FJR should be doing big things on 3.9 Mc. 8JA is putting out a nice signal on 28-Mc. 4JV is enjoying 28 Mc. MS needs Europe and Asia for a postwar WAC. FIE is dusting rig off for 3.9 Mc. 2LQP/4 needs plate transformer to get on the air. KB says it will take a little time to rebuild his rig on 3.9 Mc. DXZ is having receiver trouble. 30MN/4 has his gear. 73.

GEORGIA — SCM, Thomas M. Moss, W4HYW — The Atlanta Radio Club adopted a new constitution and elected the following new officers: FKN, pres.; BOI, v.p.; IEO, secy.; HZG, treas.; HAH, activities mgr. Meetings are held the first Thursday of each month at 8 p.m. at 211 Decatur Street. Welcome back to civilian life and ham radio to: BVK and AJ (Valdosta); DXI and GTS (Atlanta); FKN (Chattanooga); HZG (Statesboro); HAH (Bremen); FQZ (Athens); HPR (Marietta); GFF (Pitts); and CMA (Hapeville). Service men and women stationed in this section are cordially invited to participate in our activities. EV is a major in the Signal Corps. GJM is now a K4. GLB was a visitor at FID and says he and DIA are rebuilding at Albany. HWS acquired an OM and now housework and a job with the Navy is limiting her time for ham radio. The Amateur Radio Club of Savannah will hold its hamfest on July 21st. New OBS: EWY. FWD is continuing as OBS. More Official Observers are needed. New OO (Class I): EYW. Applications for OBS and OBS appointment are now being accepted. Would like to hear from prewar appointees. OBS renewal: MA. The Emergency Corps needs many Full and Supporting Member stations. County Coordinators also are needed. New ECs: BOL (Bleckley), BTB (Haralson), and FGU (Clarke). The post of Section Emergency Coordinator is open. Your EC inquiries are invited. Best of luck in the June Field Day and hope to see you at Savannah. 73. Tom.

WEST INDIES — Acting SCM, Everett Mayer, K4KD — K4LW, K4EFG, and W2OJV/K4 (ex-K4EMG) are active in Ponce on 28-Mc. 'phone. K4HAK is at Chanute Field, Ill., signing portable 9 on 28-Mc. W4BZA/K4 had rig on 3.9-Mc. 'phone. Bill worked EA and LU on 28-Mc. 'phone. W4FPE/K4, busy on v.f.o., worked LU on 28-Mc. 'phone. W3HUN/K4 worked HK on 28-Mc. 'phone. W4DX is trying to work the old home town, Athens, Ga. W4GJM/K4's latest DX is HK. W4FQH/K4, W4AAO/K4, W4FAY/K4, and W5EVN/K4 are active on 28-Mc. 'phone. W6PQE/K4 has new three-element beam. W4DDY/K4 is on c.w. with QRP. W4GJM/K4 gave a picnic for the P.R. gang on March 17th. Contact SCM for details on CD appointments. Prewar OBS should forward reports and send in certificates for endorsement if continuance of appointment is desired. 73. Merf.
SAVE CONSTRUCTION HOURS
BE SURE AS YOU BUILD

The Simpson Model 240 was introduced in 1939. In the two short years before "Hams" went off the air, this remarkable general service instrument built itself such a reputation that the demand for it has never ceased. During the war it was supplied to the Services in limited quantities. It has undergone steady improvement as the result of test and research. Now we can offer it to you again, a vastly better instrument than before—and it was always a sensational instrument.

Completely self-contained, needing no external multipliers, with a sensitivity of 1000 ohms per volt and a maximum voltage of 3000 volts A.C. or D.C., it has all the variety of useful ranges needed to do an all-around job for you.

The 3-inch meter has a scale over \(\frac{1}{2} \) greater than before, offers greater accuracy in reading. The whole chassis is encased in heavy molded bakelite. All components and the sub-panel are mounted directly on the bakelite panel for easy servicing and greater sturdiness. All figures are engraved and filled with white enamel for greater legibility and wearing qualities.

Shock-proof, it has the famous Simpson movement with bridge-type construction and soft iron pole pieces, resistors in matched pairs to provide greatest possible accuracy for all ranges. It is furnished with test leads whose wire covering is capable of withstanding 3000 volts. Alligator clips have safety rubber guards.

Here is the instrument that will get you on the air and keep you there, helping you to build soundly and to trouble-shoot speedily and surely.

The New Simpson Model 240—
The "Hammerer"—1946 version of the first self-contained pocket portable instrument built expressly to check high voltage and all component parts of transmitters and receivers.

<table>
<thead>
<tr>
<th>RANGES</th>
<th>VOLTS A.C.</th>
<th>0-15</th>
<th>0-150</th>
<th>0-750</th>
<th>0-3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLTS</td>
<td>D.C.</td>
<td>0-75</td>
<td>0-300</td>
<td>0-750</td>
<td>0-3000</td>
</tr>
<tr>
<td>MILLIAMPERES</td>
<td>D.C.</td>
<td>0-15</td>
<td>0-75</td>
<td>0-300</td>
<td>0-750</td>
</tr>
</tbody>
</table>

| MILLIAMPERES | 0-3,000 (center scale 30) | 0-300,000 (center scale 3,000) |

Price, complete with test leads...$26.50

Ask Your Jobber
IT'S READY FOR YOU NOW
THE NEW CARDWELL V.H.F.
OSCILLATOR KIT

Here it is...precision engineered with a new technique...simple...effective...with revolutionary stability for 140-450 M.C. bands.

This is traditional Cardwell quality. Make no mistake about that. It is ideally suited as a local oscillator for super-heterodyne receivers, as a plate modulated oscillator for low power transmitter or transceiver, driver unit for amplifier tube in higher powered transmitter, V.H.F. signal generator, etc., etc.

It took a little time to catch up with the demand on this hot little V.H.F. Oscillator kit. Perhaps you were disappointed before. Now you can get one.

SEE YOUR DEALER TODAY
Cardwell Catalog No. 46, FREE, upon request

THE ALLEN D. CARDWELL
MANUFACTURING CORP.
MAIN OFFICE & FACTORY
97 WHITING STREET, PLAINVILLE, CONN.
Easiest-Low Cost Way for

½ KW to 1 KW

A single T-125 or T-200 operating at 2000 volts with only 15 watts drive gives you a fine performing, economical 500 watt phone or CW Rig. With 2000 volts, your associate equipment costs are lower—less space is required—and efficiency is high on all frequencies from 10 meters through 80 meters.

If you want a Power-house Kilowatt, use T-123's or T-200's in push-pull. They take the KW easily at 2000 volts with low drive and high efficiency. You'll save money, space and get better results.

Modulate your high-power Rig with 203Z's or 805's. They are designed for Class B audio work and prove it by their fine operation.

Of course, you will use the famous Taylor 866A rectifiers in your power supplies.

For More Output at Lower Voltages Use TAYLOR TUBES

Remember

"MORE WATTS PER DOLLAR"

Taylor HEAVY CUSTOM BUILT DUTY Tubes

TAYLOR TUBES INC., 2312-18 WABANSIA AVE., CHICAGO 47, ILL.
WEST GULF DIVISION

NORTHERN TEXAS — SCM, Jack T. Moore, W5ALA — EZP reports that the only news from KRLD is that AJG has a new YL jr. operator. TW reports visits from NW and FPB while FPB was in Dallas taking Class A exam. BNQ had to take his beam down from the top of his house because his XYL was afraid that a high wind would come along and the house would take off like a helicopter. HCH sold his rig and is building a new one. Bob sends the following news on the Ft. Worth gang; SH has a new HT-9 transmitter and is looking for SU1MW; AL is running low power on 28 Mc; AAE has his buffer working on 28 Mc, and will soon increase power; KVA is the latest call issued. BSY has been appointed EC for Denton. The Dallas Amateur Radio Club had a barbecue at HIP's ranch at Celina on April 6th. The SCM regrets to report the passing away of AJG's father, 73. Jack.

SOUTHERN TEXAS — SCM, James B. Rives, W5JFC — HJF has a new 60-foot pole for the antennas on his half-kw. 2.9-Mc. phone rig. RHM joined the Caterpillar Club when he had to bail out of a C-45 over Tennessee. GGU has a new rig on 28 Mc; LQU is active on 3.5 Mc at New Braunfels. JKC is rebuilding with a pair of 811As. TY and UH are busy installing a new 20-kw, broadcast station in San Antonio. KTL has moved to Texas from the second district and is active on 28 and 3.9 Mc. EVK is attending a communications equipment school at Scott Field, Ill. TM, DJJ, and 3IVT/5 are active on 3.5 Mc, in Galveston. ZQ is constructing a new exciter unit. EBP and FNY are on 3.9-Mc., 'phone on San Antonio. FNH is working some nice DX from Kerrville. 73, Jim.

NEW MEXICO — SCM, J. G. Hancock, W5KJP — DER, 9BEZ, and 9DER have the finest signals heard so far on 3.9-Mc., 'phone. Not many c.w. men are heard from New Mexico yet. 3JSD (ex-5GGX), FAG, and a few others have been heard on 3.5 Mc. HJF is having difficulty getting out with the powerful little 28-watt DER loaned him while remodeling HJF's main rig, but he has a signal on 3.5-Mc. c.w. and 3.9- and 28-Mc. 'phone. IND is building flood controls at Orange, Tex., and plans to go on 3.5-Mc. c.w. as soon as he gets his new duplex apartments finished. 3IRM, former jr. operator at ND, is now the first lieutenant in the Air Corps but expects to be back at his old job in Washington shortly. You are reminded of the change in reporting dates to the SCM.

Try to get that card in to me by the first of the month instead of the sixteenth as formerly. Hope to see all of you on 3.5 and 3.9 Mc. 73, Jake.

CANADA

MARITIME DIVISION

MARITIME — SCM, A. M. Crowell, VE1DQ — CW gives us some good dope from the P.E.I. gang. CO, on 28 Mc, is clipping off the DX with RS29 final, and has a pair of 812s ready. CW, also on 28 Mc, has 80 watts into an 807. BD will use a pair of T40s. EV, Moncton, has been heard in Summerside by CO. DB recently had a nice chat with WESW, formerly VE1CZ. Recently heard on the new-opened 3.5-Mc., land: LZ, DW, IO, KU, PU, GP, IM, BC, and GC — all good signals. Say, gang, please help swell our reports by sending in YOUR doings on the FIRST of each month. Remember the new date. Club secretaries, please note. 73, Art.

QUEBEC DIVISION

QUEBEC — SCM, L. G. Morris, VE2CO — The MARC had a record of over 200 at its March meeting to hear Comdr. J. J. Kingan speak on “Wartime Radio Developments and Their Effect on Amateur Radio.” The Club's membership is 140, including 114 licensed hams, the largest total since its inception. AR returned from overseas with the rank of major and is back in civilian life. W2KVE visited Montreal while on discharge leave and rag-chewed with KH and CO. IC has moved to Mont Laurier. DR has resumed his old position as QSL Manager. JD and LV did some shopping in New York. FK has rebuilt and is running a half-kw. DU is living in Bordeaux. Additions to the gang on 28 Mc. are AL, AL, BR, HR, JL, WF, BV, PD, RD and SM. (Continued on page 108)
Every day hams are stopping in at the three Newark stores — and are discovering that Newark is not only in a class all by itself as a source for radio gear, but is also a mighty friendly place to obtain information. You are bound to bump into fellow brethren of the air waves at Newark with interests similar to your own. If it’s code you want to learn, for instance, we’ll probably be able to find an o.m. to help you out.

And now a word to new hams. Confused about ticket requirements, which band to select, what equipment to buy? Our hams behind the counters have all faced the same problems themselves, and will be pleased to be at your service. Indeed they like to talk about the gear they sell, and will gladly discuss the story behind the latest gear.

And now for a quick switch to S-meters — one of the most discussed features of communications receivers today. Some are “scotch” while others read S7 on “background noise.” Although erroneous, some people judge a receiver’s sensitivity by the deflection of the S-meter needle.

Recently, many amateurs have found that their S-meters read low on ten meters, but have a satisfactory reading on the other bands. That does indicate less signal getting into the I.F. amplifier either because of insufficient RF amplification or a poor antenna system. In most cases, however, just poor RF gain or low sensitivity on the higher frequencies is the main factor.

Because varying installations do affect overall readings of the S-meter, Hammarlund has provided a compensating adjustment on all of their communications receivers. For example, the S-meter is adjusted at the factory to read S9 on a 50 microvolt signal at the antenna terminals. With a good set that is a Q5-S9 signal in any man’s language!

If the operator feels that a lower reading should be obtained on a signal of given level because of gain in a directive antenna system, he can adjust the control to bring the reading down to the S number he feels is in line with the reports he has been accustomed to making. On the other hand, a poor antenna system may cause readings to be low. In that case, he can raise the readings by simply making proper adjustment.

The Hammarlund meter is calibrated in 9 steps of 6 DB each. An S8 signal, for example, is just twice as strong as an S7 signal. The sensitivity of the meter itself is relatively uniform up to S9, but at that point its sensitivity begins to fall off very rapidly.

If this were not an especially designed meter, signals much over S9 would hold the needle against the pin and no visual difference could be ascertained. By special design, Hammarlund engineers were able to obtain relatively high readings on moderately strong signals and still provide some indication of strength of signals in the order of several hundred microvolts, which ordinarily would provide full scale reading.

While no attempt was made to calibrate the area between S9 and full scale reading, the operator can easily determine differences in strength of signals, although they may be in the order of 500 to several thousand microvolts.

And that just about does it for this issue. We’ll be back again at the same old stand, however, and don’t forget our invitation to drop in at Newark with your problems.
These are exciting days in amateur radio... and you can bet that Newark is right up on its toes in having all the latest HAM GEAR.

HAMMARLUND
Series 400
"Super-Pro"

Designed for the man who prefers the best. Tuning range .54-30 mc. Has high image rejection, high sensitivity, low noise level. Complete shielding right up to the antenna terminals. Meets every need of the most critical professional or amateur operator.

HAMMARLUND HQ-129-X
11 Tube Receiver
We are now delivering this sensational new set. Tuning range .54-31 mc. in 6 bands. Adjustable S-Meter, calibrated 1 to 9 in steps of approximately 6 DB. Variable selectivity crystal filter. Many exclusive patented features. Come in... see and hear this great receiver.
Complete with tubes and built-in power supply... $129.50

LIBERAL TRADE-IN ALLOWANCES

RME-45
Features Cal-O-Matic two speed tuning, calibrated bandspread. Delivers peak performance from 550 Kc. to 33,000 Kc. Has DB signal level meter, five position Xtal filter, automatic noise suppression. Also stable, variable pitch beat oscillator, and many other features. A prime favorite with phone as well as CW operators.
YOUR COST... $186

NATIONAL NC-46
10 Tube Receiver
Fine performer at a moderate price. Excellent sensitivity throughout range of 550 Kc. to 30 mc. Circuit features amplified, delayed A/C, series valve noise limiter with automatic threshold control, CW oscillator. Also separate RF and AF gain controls. Push-pull output provides 3 watts, and AC/DC power supply is self-contained.

Just Released! NEW HALLICRAFTERS RECEIVER
MODEL S-58 • 6 TUBES
Announcing a low cost receiver with features every ham wants! Frequency range 540 Kc. to 52.4 mc. in 4 bands. Beat frequency oscillator, pitch adjustable from front panel. Maximum audio output—1.6 watts. 117 AC/DC operation. A smartly styled set. Complete with tubes, self-contained PM dynamic speaker.
FILTER CONDENSERS

Fully guaranteed at rated voltages

<table>
<thead>
<tr>
<th>CAP.</th>
<th>WORKING VOLTS D.C.</th>
<th>H</th>
<th>W</th>
<th>D</th>
<th>YOUR COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1500</td>
<td>2-3/16</td>
<td>1¾</td>
<td>1"</td>
<td>$0.79</td>
</tr>
<tr>
<td>4</td>
<td>3000</td>
<td>3¾</td>
<td>1¾</td>
<td>3-5/16</td>
<td>3.75</td>
</tr>
<tr>
<td>8</td>
<td>2000</td>
<td>4½</td>
<td>3¾</td>
<td>2½</td>
<td>2.75</td>
</tr>
<tr>
<td>.15</td>
<td>4000</td>
<td>2%</td>
<td>1¾</td>
<td>1</td>
<td>.89</td>
</tr>
<tr>
<td>.25</td>
<td>2000</td>
<td>3¾</td>
<td>1¾</td>
<td>1</td>
<td>.69</td>
</tr>
<tr>
<td>1.5</td>
<td>1000</td>
<td>2%</td>
<td>1¾</td>
<td>1</td>
<td>.59</td>
</tr>
<tr>
<td>10</td>
<td>3000</td>
<td>4¾</td>
<td>3¾</td>
<td>¾</td>
<td>4.75</td>
</tr>
<tr>
<td>13</td>
<td>1000</td>
<td>3¾</td>
<td>3½</td>
<td>1¼</td>
<td>2.25</td>
</tr>
<tr>
<td>15</td>
<td>3000</td>
<td>4¾</td>
<td>4¾</td>
<td>2¾</td>
<td>3.25</td>
</tr>
<tr>
<td>8</td>
<td>3000</td>
<td>7¾</td>
<td>5¼</td>
<td>1¾</td>
<td>1.80</td>
</tr>
<tr>
<td>2+4</td>
<td>600</td>
<td>4½</td>
<td>2½</td>
<td>¾</td>
<td>1.75</td>
</tr>
<tr>
<td>5-5-15</td>
<td>1000</td>
<td>4½</td>
<td>3½</td>
<td>¾</td>
<td></td>
</tr>
</tbody>
</table>

EASY TERMS

★ Send name and address for monthly Bargain Sheets and big, new catalog.
XTALS • XTALS • XTALS

Mounted Low-Drift
3.5 M.C. and 7.0 M.C.
XTALS

± 5KC your specified frequency anywhere in 3.5 and 7.0 MC bands. Fits octal socket — has stainless steel electrodes — moisture resistant phenolic case and neoprene gasket seal.

Send cash or money order. No C.O.D. accepted.

$1.50 EACH

Postpaid in U. S. A.

COMMERCIAL EQUIPMENT CO.
1416-18 McGee St., Kansas City 6, Mo.

XTALS • XTALS • XTALS

(Continued from page 104)

VANALTA DIVISION

ALBERTA — SCM, C. S. Jamieson, VE4GE — 6EB, ex-4AE, runs 40 watts to 807 final on 3.5 and 3.5 Mc. While in Edmonton 6YD worked several of the 28-Mc. gang from 6LQ's shack. 6WS, ex-4AB, is running T40s in final with about 200 watts input. 6AE, ex-4AE, keeps 28 Mc. hot. 6SZ is building a big rig. 6FP, ex-4AES, is heard on 3.9-Mc. 'phone. 60A has a 100-watt 'phone rig on 3.9 Mc. 6M7, ex-5M7, was one of the first 3.9-Mc. 'phones on, on April 1st. 6MO puts an FD 'phone signal into Edmonton. 6AL, ex-4ALO, will be heard on 3.9-Mc. 'phone. 6FK put out a nice signal with that 185-watt rig. 6AW built a new rig for 4AOZ. AW also built a rig for 6SW. 6EL, ex-4ANQ, 6SA, and 6SW have organized a radio club in Camrose. 6XE has cathode-modulated 807s on 28 Mc. 6AC gets out FB on 3.9 Mc. using bed-spring for antenna. Frank Gue's new call is 6FF. 6DR is back on 3.9 Mc. 'phone. 6DD built a new shack. 6SR, ex-4AEP, runs 250 watts to a pair of T40s. Ex-4APA now is 6MP, ex-4AHZ is 6HJ, ex-4B in 6DD, 4ACR is 4AC, ex-5AET is VE7GW. 6LA gets reports from Australia on 28 Mc. 6FN has 7FG, ex-4EET, have nightly schedule on 3.5 Mc. c.w. 6JP is back on. Ghost Pine Creek is represented by 6HN. 6FA recently completed a battery-operated rig and receiver for 6CE, ex-5CE, who is blind. 6BY, ex-4ADD, is working on new rig which will use 829 final. 73, VE6Q.

PRAIRIE DIVISION

MANITOBA — SCM, A. W. Morley, VE4AM — 3.5 Mc. opened with a bang. 'Phone stations active are QV, AC, ABY, IF, AF, and JN. CW has HD, IH, SO, NO, RO, DF, and AM. Twenty-six hours before the deadline someone was heard to remark, "Gosh, QRM already." AA1 has his new rig ready to go but helping others seems to keep Alec off. With rearranging of call areas no one knows who's who. RB is active at Killarney. ADO is on at Deloraine with a pair of 6V6s. II is looking for a receiver. JN, at Waskada, has a new Hallicrafters. AM/ JM spent a week getting RB locally and finally quit blaming it on the sky-hook and started rebuilding. The XYL has the 'phone bug so it looks like the OM might forsake c.w. to keep peace in the family. How about your traffic reports? 73. Art.

Postwar Receivers

(Continued from page 95)

long as the condition exists. A switch not shown in the diagram short-circuits the limiter diode when not in use.

Audio Amplifier

The audio output from the second detector goes to a conventional audio gain control which controls the signal fed to the first audio stage. This audio stage is one section of a 6SN7 twin triode, and the other half of this tube is used as a d.c. amplifier for the meter. A 6V6 audio output amplifier is used to give 3-watts output, and the headphone jack is connected across the 6-ohm output coil of the output transformer. Plugging in the headphones disconnects the speaker. A 5U4G is used in the power supply. — B. G.

SWITCH TO SAFETY!
HAVE you ever heard a sound system with such natural tone, such emotional quality, such "presence" that you didn't know instantly that a sound system was in action? It's pretty safe to say you never have. But now you can!

Revolutionary advances born of wartime research have resulted in a new Western Electric loudspeaker that reproduces speech and music with unsurpassed fidelity.

You'll find it hard to believe you are listening to reproduced sound rather than the original. That is why this new Western Electric loudspeaker is destined to open a new era in all fields of sound reproduction.
FOR OUTSTANDING PERFORMANCE—
CHOOSE C.T.C.

"Mathematically Dimensioned"
CRYSTALS

You get low drift and high activity in every C.T.C. Crystal—thanks to "mathematical dimensioning," the C.T.C. discovery for predetermining the crystal dimensions which consistently yield excellent performance. Yet this is but one of 21 vital checks and tests that go into the painstaking development of each and every C.T.C. Crystal to protect and insure its quality.

C.T.C. Crystals come in two types of holders—"C" to fit octal sockets and HPB to fit 5- or 6-prong sockets, for amateur frequencies in the 20, 40 and 80 meter band. Kilocycle spreads include — 20 meter band—14,000–14,750 kc; 40 meter band—7000–7300 kc; 80 meter band—3500–4000 kc.

Write for
C.T.C. Crystal Bulletin today

Mobile Coverage

At this writing the rig has been installed in the car only about a week, and as 50 Mc. is the writer's main interest in life, only that band has been tried under mobile conditions. The receiver in use at present is a simple two-tube superregen, formerly used on 112 and 144 Mc. Even with this unsatisfactory receiving arrangement some mighty nice contacts have been made. The reliability of the coverage we've obtained has been something of a surprise when we recall the difficulties we used to have with our first mobile rigs back in the early '30s, and our more recent experiences on 112 and 144 Mc. Almost everyone on 6 meters these days has a good antenna, a highly-sensitive receiver, and a fairly-powerful transmitter. The coverage of the average station is vastly improved over the old days when receiving-tube rigs and superregenerative receivers were standard practice for home-station use. The great improvement in fixed-station technique makes for much greater range with the mobile job, and we've found that contacts are quite solid up to distances of thirty miles or more, even in hilly New England.

Our last experience with 28-Mc. mobile was back in 1937, but even then we found it not too difficult to raise a W5 or W6 with our mobile rig on Ten. With the coming of the summer period, DX opportunities are fading on 10, but there is enough activity on that band to make things mighty interesting for the mobile enthusiast. The summer short-skip contacts should be made easily with this mobile job, and next fall we hope to knock off some real DX with the little rig. In the meantime, work with the locals will help to keep interest going on the band.
Dear Sir:

Just a few lines to let you know how much I really appreciate the RME 45 I recently purchased. It was just a month ago yesterday that it arrived. I must say it is beyond my expectations. I have logged amateur stations on all continents, except Australia, during the times that I have been permitted to listen in. Only this evening I was able to pull in some real DX, namely, EPIC, Iran; HZ2YY, Hedjaz (Arabia); and TF1AM, Iceland; and, of course, South American stations. All these referred to were on 20 meters CW. And it really does a beautiful job on 10 meters, where some real DX has also been received.

Selectivity, sensitivity, stability, with a plus sign after each, are all to be found in the RME 45. QRM has not presented much of a problem, due to the very efficient crystal filter. Boy, it really works, and how!

It is with much anticipation that I look forward to many happy hours twirling the dial of my RME. Truly, I can say with others, it is without comparison. I believe it can only be excelled by another RME.

Vy 73's,

Wilbur E. Righter, W3FSE

P.O. Box 2127
Cristobal, Canal Zone
Jan. 8th, 1946

Radio Mfg. Engineers, Inc.
Peoria 6, Illinois, U.S.A.

Dear Sir:

I have an RME 69 now. The moisture got the rest in seven years or less in the same time I have had three other Commercial receivers and they went in about two years or less — so it is hats off to RME.

Hoping to place my order for the RME 45 after having the latest data from you, I remain,

Nicholas L. Poppelreiter, EX-K5AD
AARON LIPPMAN HAS
IN STOCK at all Times
RADIO PARTS and
ELECTRONIC COMPONENTS
produced by the leading manufac-
turer's in America today; namely
CARDWELL
HAMMARLUND
I.R.C.
KENYON
P.R. MALLORY
MILLEN
AND OTHERS
Quantities are still limited in many items
but we will endeavor to fulfill as many
orders as we receive, promptly.
Here are just a few values!
SIGNAL CORPS KEY..............J-38
3/8" Contact; shorting arm; bevel-eled bakelite base; rugged construction. Special................. $1.95

HIGH FREQUENCY COAXIAL CABLE
Reg. Price 19¢
NEW Low PRICE 12¢
per ft.
TYPE RG8U — 51 Ohms will handle
1.5 Kilowatts extremely low loss. 2.5 DB
per 100 ft. @ 100 MCS.
RG22U at 95 Ohms
2 conductor balanced coaxial line—
extcellent for Tele-
vision.
New Low Price 15¢
per ft. Price 11¢
per ft.
RG58U — 53.5 Ohms
excellent for receiver lead in.
RG7U at 97.5 Ohms.
Special Value in
OIL FILLED TRANSMITTING CONDENSER
Type TJL 6060—6MFDS, 600 Volts
Special Price $1.45

We are Radio Parts Jobbers of all standard
nationally known brands of merchandise es-
pecially adapted to “Hams” and Shortwave
listeners. We welcome your mail order trade.
PUT YOUR NAME ON OUR MAILING LIST
Send your name and address on post card and
receive all our announcements of special bar-
gains and available new items from time to time.
AARON LIPPMAN
and COMPANY
246 Central Ave. Newark 4, N. J.
Mitchell 2-3065-6-7

Technical Topics
(Continued from page 48)
conditions is given by
\[
\frac{2 \left(1 + \frac{R_p}{R_L}\right)}{2\pi f \mu R_g} = \left(1 + \frac{R_p}{R_g}\right) \left(1 + \frac{R_g}{R_L}\right)
\]
(1)

where \(R_p\) = tube plate resistance
\(R_L\) = shunt resistive component of plate
\(f\) = frequency
\(\mu\) = amplification factor of tube
\(R_g\) = shunt resistive component of grid
circuit

The equation shows, as one might expect, that
increasing the voltage gain of the stage by in-
creasing the load resistance, \(R_L\), reduces the al-
lowable grid-plate capacity or, stated another
way, that increasing the load resistance — reduc-
ing the coupling to the load — increases the tend-
ency for self-oscillation with any given value of
grid-plate capacity. This is common in many
tetrode amplifiers that are stable if loaded heav-
ily enough but which oscillate when the load is
removed.

Increasing any of the terms in the denominator
will also reduce the allowable grid-plate capacity,
which is another way of saying that, for any
given grid-plate capacity, increasing any of the
terms in the denominator will increase the prob-
ability of oscillation. Thus a higher operating
frequency, lower fixed bias on the tetrode (re-
sulting in higher \(\mu\)) or lighter grid loading can
bring about oscillations through grid-plate ca-
pacity.

Substituting some typical values in (1) will
give a better idea of the magnitude of values un-
der discussion. For example, taking \(R_p = 0.1\)
megohm, \(R_L = 3000\) ohms, \(\mu = 300, R_g = 5000\)
ohms, and \(C_{dp} = 0.2\ \mu F\), and solving for the
frequency \(f\), we find that oscillations could occur
at 35 Mc. Of course, these oscillations might not
show up because of cathode-lead inductance
introducing degeneration and consequently modi-
fying the above result, but it does demonstrate
that the 0.2-\(\mu F\) value of grid-plate capacity, a
typical one for beam tetrodes, is far from
negligible.

It takes very little work to show why normally
the grid and plate circuits cannot be unloaded
simultaneously. Unloading the plate circuit with
the above conditions might send the plate load
up to 50,000 ohms and, keeping the other values
the same, would give a frequency of about 3.2
Mc. above which the amplifier could be unstable.

It takes very little work to show why normally
the grid and plate circuits cannot be unloaded
simultaneously. Unloading the plate circuit with
the above conditions might send the plate load
up to 50,000 ohms and, keeping the other values
the same, would give a frequency of about 3.2
Mc. above which the amplifier could be unstable.

\(2\) Mauronm'sc£, "Tuned-Grid Tuned-Plate Oscillator," Communications, August, 1940.
United Announces
The Greatest Development
In Graphite Anode Tubes!

Forecasting Higher Input and Efficiency Ratings

It is the consensus of opinion among electronic engineers, as a result of war experience, that graphite is superior to metal for internal anode tubes because of unsurpassed thermal and non-warping properties.

Heretofore, the enormous heat dissipating capacity of graphite anodes has been impeded by the use of free getters which deposited heavily on the bulb and tube elements.

The development of the Isolated Getter Trap by United has finally eliminated this long standing barrier to the full utilization of the superior features of graphite.

Gas content of these new United graphite anode tubes average lower than that of any metal anode tubes of comparable size, and no gas can be liberated even on severe overloads.

Available now with this new construction are types: HV-18, KU-23, 849, 838, 204A, 949A, 949H, V-70-D, 812H, and all of the diathermy types.

Order direct or from your Electronic Parts Jobber

United Electronics Co.
Newark, 2 New Jersey

Transmitting Tubes Exclusively Since 1934
You don't need to let shortages keep you off the air...you can get all sorts of radio gear at the Radio Shack...our large stocks include plenty of regular items and lots of selected "surplus" bargains...we can't list 'em all, so no matter what you want, come in and see us...or check up by phone. Remember, it's Radio Shack for Reliable Service.

Ready to Use!

ON 10, 20, 40, & 80 METERS
HALLCRAFTERS BC-610 XMTR
450 watts CW — 325 watts phone
No Modification
No Conversion
ONLY $535.00 COMPLETE with speech amplifier, tubes, coils.
Factory-tested and ready to go.

ANTENNA TUNING UNIT AT-3 shown in place on transmitter; tunes any single-wire antenna; continuously adjustable. Net Price $74.50.

TIME PAYMENTS

You can buy these units on these easy terms.
BC-610 Xmr alone $178.50 down.
BC-610 Xmr, with AT-3 Tuner $203.50 down; balance (including small service fee) in equal monthly payments over one year.

80 METER XMTR — 25 WATTS
BC-223-A for phone, CW, or ICW
Here's a real bargain you can use either as a regular xmr or as an exciter; 5-tubes include 801 osc, 801 PA, 46 speech amp, and two 46's class B mod; panel switch selects MOPA or any of four crystal frequencies; small enough for mobile or marine use; simple modification required for 80-meter operation; for use with external 500 volt dynamotor (not included); variometer tuning unit; plate and r-f meters. Net Price (complete with tubes) $37.50.

PANADAPTOR...lets you SEE where you're working! Panoramic reception — the modern operating technique — is yours with this PANADAPTOR added to your receiver; helps locate those "hard-to-find" signals; lets you watch a 200 kc section of the band wherever you choose; revolutionizes and simplifies your receiving and transmitting practices: furnished complete with ten tubes and full operating instructions. In stock for immediate delivery at only $99.75.
HIGH FREQUENCY SUPERHET

For that "super" sensitivity you want in the high-frequency bands, you'll want this 15-tube superhet. It's the famous radar-type BC-406 receiver easily adaptable to amateur use as described by Henry Geist, W3A0H, in February CQ. Designed for "super" service and using all super-quality components, this outfit lets you have the benefits of a superhet for high-frequency use at very low cost. Complete BC-406 superhet, including broadband IF's, power-supply with 4-section filter, and 15 tubes including 5 acorns... net price $27.50 plus $1.50 packing charge.

And all these Standard Receivers!

NATIONAL
- NC-240-C $225.00
- NC-46 ac/dc — to be announced
- HAMMARLUND
 - HQ-129-X complete $139.50
 - Super-Pro — to be announced
- R. M. E.
 - RME-45 complete $186.00

HALLICRAFTERS
- S-22R Skyrider Marine $74.50
- S-36A VHF FM-AM with speaker $32.00
- S-38 .. $39.50
- S-39 Sky Ranger $110.00
- S-40 Complete $79.50
- S-41G Complete $33.50
- SX-2 Super Defiant $109.50
- SX-28A Super Skyrider $238.00

All prices net FOB Boston

ABBOTT TR-4
The best-known rig for 2-meter use; immediate delivery from the Radio Shack.
Net price $43.00
Kit of tubes $8.30

108 PAGE CATALOG FREE ON REQUEST

STANCO TRANSFORMERS AND CHOKE

1. Filter choke — 20 henry, 75 ma, 650 ohms — $1.60
2. Filter choke — 4 henry, 80 ma, 150 ohms — $1.06
3. Input filter — 8.8 henry, 500 ma, 50 ohms (7500 volt test).............................. 8.90
4. Audio input transformer 200 or 400 ohm line to 80,000 ohm (grid); hum-bucking type, with static shield........ 4.25
5. Audio output or modulator — for low-power modulation or transceiver use; matches single 6K6, 6G6, 6V6, or 6F6 to 6 ohm spkr or monitor load........ 2.95
6. Pwr trans — Pri 115 v 60 cycles 250 va; sec 550 v 450 ma; delivers 450 ma at 500 vdc with bridge rectifier.......... 6.90
7. Fil & plate trans — pri 115 v 60 cycles; sec 600 v CT 70 ma; 13.1 v 5a; 5v 2a; 5v 3a; 5v 6a.......................... 6.90
8. Audio modulation trans — for PP parallel 6L6 Class AB (3500 ohms) 100 ma into parallel 807 Class C at 210 ma r-f load (2000 ohms).......................... 5.95

COAXIAL DIPOLE
Ideal for 144-148 mc work; matches 50-55 ohm lines; continuously adjustable; weather-resisting construction.
$12.50 net

THE RADIO SHACK
167 WASHINGTON ST.,
BOSTON, MASS., U.S.A.
Yes, Drake irons are right for radio. And these sturdy irons have proved their dependability and worth in use on countless other jobs, too, for over 25 years. That's why we say—whatever your needs, you are certain to find a Drake iron that fills the bill exactly!

600-10—the Drake No. 600-10 is ideal for those all-important connections when rewiring your rig. Get back on the air fast. Make good dependable connections with this 100 watt 3/8" tip.

400—the Drake No. 400 is the perfect iron for work in small places. Only 9 inches long, it is especially designed for tight corners and delicate connections. 60 watt, 1/8" tip.

Ask your nearest supplier or write for the name of the distributor nearest you ... and give yourself the advantages of these superior irons.

DRAKE ELECTRIC WORKS, INC.
3656 LINCOLN AVE. CHICAGO 13, ILL

—B. G.

Making the Most of It
(Continued from page 80)

before you build, or you may find that your ideas cost more money than you can afford. A few ideas built into the radio shack will probably improve convenience and comfort in operating, and efficiency as well, more than anything that can be added later, and they'll cost far less. For instance, my receiving antenna leads are nearly invisible, since they run along the ceiling molding. The power terminals provide ample capacity for any rig I will ever want to operate. The appearance is usually a source of favorable comment from visitors. The built-in shelves accommodate my QST's to perfection. And numerous other satisfactions occur from the fact that my ham radio room was built for the job.

The value of \(R_g \) is the parallel sum of several resistances in the grid circuit. The coil losses and dielectric losses in the tube and circuit are present all of the time, but \(R_g \) will be high if the circuit and tube are good. When the tube is drawing grid current, the grid loads the circuit in the same way that a diode rectifier does, and the plate resistance of the driver stage also shunts the circuit. If the tetrode is not biased to cut-off — or to a point where the \(\mu \) is very low — and there is no excitation, the grid circuit must be loaded in some manner if the value of \(R_g \) is to be kept low enough to avoid oscillation. A fixed resistor could be shunted across the grid circuit, but its value would have to be low and it would consume a large percentage of the power from the driver stage, reducing the economy of driving power that is one of the features of tetrodes. Consider, however, the choice of driver tube and its operation. In a c.w. transmitter keyed ahead of the driver stage and with the driver stage biased beyond cut-off, the driver stage introduces negligible resistance across its plate circuit (the tetrode's grid circuit) under key-up conditions, and hence the conditions are more favorable for oscillation. By reducing the bias on the driver stage or, better yet, by using a zero-bias triode, without excitation the driver tube will act as a low-resistance diode across the circuit and hold down the \(R_g \) to a very low value. With the key down, the plate of the driver stage and the grid current drawn by the tetrode combine to load the circuit. In a 'phone transmitter, with a modulated tetrode, the driver tube should be one that loads the grid circuit heavily, for the reasons given above.

The use of link coupling to the grid circuit of a tetrode has practically no advantages, except possibly in the case of a string of tetrode doubler stages where oscillation is no problem. For straight-through operation, however, heavy coupling is not always readily obtainable and consequently the grid-circuit loading with link coupling may not be heavy enough to prevent oscillation under all practical conditions.
Panoramic Radio Corp.
242 West 56th Street
New York 19, N.Y.

Attention: Mr. Bernard Schlessel

Gentlemen:

It is seldom that I have purchased a piece of radio equipment and found it far superior to my expectations, but the Panadapter that I purchased from the Radio Shack in Boston about two weeks ago has certainly out-performed anything I had hoped for.

I have used the Panadapter primarily as a monitor for the 10 meter band in conjunction with an NC 900 Receiver, and I find it priceless for band coverage between transmissions. Today I discovered I was paying no attention whatsoever to the receiver dial but was controlling my receiver entirely from the scope screen where I could see the field both sides of the frequency to which I was tuned.

This is a fine unit and I know you will sell a great many of them.

Yours very truly,

S. Willard Bridges

Panoramic Reception

"Blind" operation is now a thing of the past . . . as outdated as the kerosene lamp for illuminating your home. Some radio amateurs may continue to "rough" it without a PANADAPTOR . . . but all modern shacks will have it.

PANADAPTOR is the "EYE" of your rig. It lets you SEE holes in busy bands, SEE the signal characteristics of your own and other stations, SEE short calls. It shows you 200 kc of any band instantly, helps you locate your sked and avoid annoying QRM. PANADAPTOR makes radio more fun for you, by making operation of your station more efficient . . . smoother . . . easier. You owe it to yourself to see the PANADAPTOR — now on display at leading radio jobbers.

Exclusive Canadian Representative: CANADIAN MARCONI, Ltd.

PANADAPTOR, featuring PANORAMIC RECEPTION, is the exclusive and original design of PANORAMIC RADIO CORPORATION
§12.136. LOGS. Each licensee of an amateur station shall keep an accurate log of station operation, including the following:

(a) The date and time of each transmission. (The date need only be entered once for each day's operation. The expression "time of each transmission means the time of making a call and need not be repeated during the sequence of communication which immediately follows; however, an entry shall be made in the log when signing off so as to show the period during which communication was carried on.)

(b) The signature of each licensed operator who manipulates the key of a radiotelegraph transmitter or the signature of each licensed operator who operates a transmitter of any other type and the name of any person not holding an amateur operator license who transmits by voice over a radio-telephone transmitter. The signature of the operator need only be entered once in the log. In those cases when all transmission are made by or under the supervision of the signatory operator, provided a statement to that effect also is entered. The signature of any other operator who operated the station shall be entered in the proper space for that operator's transmission.

(c) Call of the station called. (This entry need not be repeated for calls made to the same station during any sequence of communication provided the time of signing off is given.)

(d) The input power to the oscillator, or to the final amplifier stage where an oscillator-amplifier transmitter is employed. (This need be entered only once, provided the input power is not changed.)

(e) The frequency used. (This information need be entered only once in the log for all transmission until there is a change in frequency to another amateur band.)

(f) The type of emission used. (This need be entered only once until there is a change in the type of emission.)

(g) The location of the station (or the approximate geographical location of a mobile station) at the time of each transmission. (This need be entered only once provided the location of the station is not changed. However, suitable entry shall be made in the log upon changing the location. Where operating at other than a fixed location, the type and identity of the vehicle or other mobile unit in which the station is operated shall be shown.)

(h) The message traffic handled. (If record communications are handled in regular message form, a copy of each message sent and received shall be entered in the log or retained on file at the station for at least 1 year.)

Convenient—Complete

THE ARRL LOG BOOKS

Regular Log, 8½ x 11
35¢ each, 3 for $1.00

Mini-Log, 4 x 6¼
25¢ each

American RADIO RELAY LEAGUE
WEST HARTFORD, CONN., U.S.A.

How's DX

(Continued from page 85)

ing that they don't have their self-addressed stamped envelopes in the right places. The smart lads have been getting good service, because no QSL Manager wants to keep the cards around, what with the housing shortage and all.

Predictions:

If you have a predilection for predictions, this paragraph is your personal palanquin to pertinent prophecy. But if you want to work a lot of DX on 10 in June, you can expect to dig for it and hard. The charts show that the East Coast can get down to South America with some consistency and the West Coast shouldn't have any trouble with ZLs and VKs, but the rest is going to be fairly spotty. There will be a lot of North-South work in Africa and the Pacific Islands.

Where no maximum usable frequency is shown it means the 28-Mc. band should be open during the period — a single time indicates when the corresponding m.u.f. is reached.

<table>
<thead>
<tr>
<th>Path</th>
<th>Max. Usable Freq. (Mc.)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington — S. F.</td>
<td>26</td>
<td>0130</td>
</tr>
<tr>
<td>Washington — Rio</td>
<td>24</td>
<td>1630-2200</td>
</tr>
<tr>
<td>Washington — Paris</td>
<td>22.6</td>
<td>0130</td>
</tr>
<tr>
<td>Washington — Manila</td>
<td>27</td>
<td>0100</td>
</tr>
<tr>
<td>Washington — Sydney</td>
<td>24.5</td>
<td>1730</td>
</tr>
<tr>
<td>Washington — Johannesburg</td>
<td>27</td>
<td>2200</td>
</tr>
<tr>
<td>S. F. — Rio</td>
<td>27</td>
<td>2300</td>
</tr>
<tr>
<td>S. F. — Paris</td>
<td>21</td>
<td>2300</td>
</tr>
<tr>
<td>S. F. — Manila</td>
<td>26.5</td>
<td>0600</td>
</tr>
<tr>
<td>S. F. — Sydney</td>
<td>2030-0030</td>
<td></td>
</tr>
<tr>
<td>S. F. — San Juan, P. R.</td>
<td>27</td>
<td>0100</td>
</tr>
<tr>
<td>N. Y. — San Juan, P. R.</td>
<td>22</td>
<td>1800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2330</td>
</tr>
</tbody>
</table>

— W1JPE

Code Proficiency

(Continued from page 84)

c.w. telegraphy. Even though this section is temporarily suspended, all amateurs want to keep at top proficiency and be ready for any test. This program is ideal for the purpose.

There's opportunity for you in the ARRL Code-Proficiency Program. The handsome certificate award has been designed to recognize your ability in this particular. Every amateur is invited to qualify for this certification in the basic art of the amateur. Start listening to the practice runs at any time, establish regular practice periods, operate all you can. Be ready for the first postwar qualifying runs, and send us your best copy of same for check so we can prepare your certificate award or endorsement!
JOE MACJERK'S STICKING HIS FINGERS IN HOT TELEVISION SETS AGAIN!

LAST TIME THE BOSS SPOKE HE'D CUT JOE'S SALARY AND BUY "RADIO MAINTENANCE" FOR HIM!

Please send me
RADIO MAINTENANCE
☐ For 1 year 2.00
☐ For 2 years 3.00

NAME ____________________________
OCCUPATION ____________________________
ADDRESS ____________________________
CITY ____________________________ STATE __________

☐ CHECK ENCLOSED
☐ BILL ME LATER

*NOTE: By enclosing payment, thus eliminating billing expense
WE WILL ADD ONE ISSUE FREE!
The advance type "400" relay is designed for switching any antenna open-wire transmission line, as well as for RF and high voltage switching applications. Ideal for multi-antenna installations where several transmission lines must be changed. The "400" is a double-pole double-throw relay. Contacts are ¼" pure silver and rated at 10 amperes at 110 v.a.c. Base and crossarm are Steatite. Standard coil voltage is 110 v.a.c. but other voltage coils, both a.c. and d.c., are available.

Amateur Net Price $5.40
(At Your Jobber)
Catalog of complete line of relays sent, free upon request.

Have Skill, Accuracy
Be a "key" man. Learn how to send and receive messages in code by telegraph and radio. Commerce needs thousands of men.

NEW 144-Mc. RECORDS!
The opening of the 80-meter band April 1st made a big hole in the 2-meter activity for a while, but it is coming back gradually. Conditions during the month of April were not conducive to long-haul work, for the most part, and were something of a let-down for some of the gang, after the early-spring temperature inversions of March. On March 29th, one of the best nights to date on 144 Mc., many contacts beyond 100 miles were made along the Atlantic Seaboard, a number of them being over distances beyond the 120-mile record set on March 17th by W3HWN and W3GMY.

Best DX reported was a contact between W1LAS/2, Rye N. Y., and W11VA, Fall River, Mass., a distance of 145 miles; W1DP, also of

Who's on 6 Meters?
We've received numerous requests for information on the activity on 6. Until recently, we've just not had anything to pass on, but things are looking up, and more fellows are coming on every day. Here are a few active stations and frequencies. How about adding yours?

W1AZ, Springfield, Mass., 50.1
W1AEP, Springfield, Mass., 50.09
W1AKD, Dorchester, Mass., 50.01
W1CLS/1, Waltham, Mass., 50.04
W1LLL, Hartford, Conn., 50.92
W1JJK, Tolland, Conn., 51.57
W1JE/1 (mobile), 51.68
W1CGY, Athol, Mass., 52.35
W9UNS, Marshall, Ind., 52.8
W8DDO, Detroit, Mich., 52.0
W8LZJ, Detroit, Mich., 50.08
W9YWU, Topeka, Kansas, 50.4
W9TCV, Topeka, Kansas, 50.2
W1KIC, Wethersfield, Conn., 50.86
W1NKZ, Glastonbury, Conn., 50.9
W1HDQ, West Hartford, Conn., 50.015
W1HDQ/1 (mobile) 50.34
W8SUL, Toledo, Ohio, 51.35
W8JLQ, Toledo, Ohio, 50.4
W9OVX, San Francisco, Calif., 50.2
W9QAT, Tucson, Ariz., 50.1
W8AZ/8 (mobile) 51.8
W8NKJ, Detroit, Mich., 50.68
W1AW, Newton, Conn., 52.000
Minute-men (Boston area), 51.00

120
Crystal kits #1 and #2 with blanks in 7MC Range were greeted enthusiastically. Some of you suggested kits without blanks, and Crystalab was quick to see the merit of this idea. Blanks are available, 5 to a card, for operation in any band from 2 to 80 meters, and any frequency from 3.5 MC to 8.22 MC.

Crystalab

TRADE MARK REG. U. S. PAT. OFF.

Presents

Crystal Kits without blanks...

Crystal kits #1 and #2 with blanks in 7MC Range were greeted enthusiastically. Some of you suggested kits without blanks, and Crystalab was quick to see the merit of this idea. Blanks are available, 5 to a card, for operation in any band from 2 to 80 meters, and any frequency from 3.5 MC to 8.22 MC.

MAKE YOUR OWN SELECTOR SWITCH

With this Crystalab Kit, and easily obtainable standard parts, you can make a Selector Switch, like the one illustrated, which will accommodate 10 CRL-16 crystals, to give your rig the utmost flexibility for shifting frequency.

CRYSTAL KIT #3

5 Holders CRL-16.
3 Complete sets: springs, electrodes, covers, gaskets, screws.
1 Lintless cloth for drying.
1 Package fine abrasive for finishing.
1 Package medium abrasive for rough lapping.
1 Lapping Button
1 Lapping Plate
1 Blueprint of Selector Switch
1 Set Photographs of Selector Switch
1 Illustrated Instruction Book.

See your Local Radio Dealer

CRYSTAL RESEARCH LABORATORIES

INCORPORATED
LABORATORIES AND MAIN OFFICE: 25 ALFTY STREET, HARTFORD 3, CONN.
New York Office: 15 E 26th Street. New York 10, N. Y. Phone MU 5-2552

121
This new Temco 75/100 watt phone and cw transmitter with multi-frequency VFO and crystal control is causing a sensation, for here at last is the complete rig that puts everything at your fingertips.

It's a typical Temco masterpiece that leads the field in operational simplicity — maximum frequency flexibility and superlative craftsmanship. It covers all 5 amateur bands from 3.5 to 28 megacycles and doesn't require any external equipment to obtain the frequency flexibility needed as greater channel congestion occurs.

All tuning adjustments are at the front and within short reach. Band switching or changing from VFO to crystal control is accomplished with ease. When using crystal control (The 75 GA accommodates two crystal holders) the transmitter becomes a one-dial unit. For telegraph operation, break-in by the grid block method is employed to assure clear-cut, clickless keying. On phone a high impedance crystal or dynamic mike is used and a built-in relay transfers antenna from transmitter to receiver.

The 75 GA is compact yet every component is very accessible for easy servicing and it is as excellent in its engineering design as it is handsome in appearance and construction. The only accessories needed to go on the air are mike, key and antenna.

A most striking feature of the 75 GA is the fact that it is also the exciter unit for a 500 watt output power amplifier. Never before has a complete transmitter been so engineered that it can be utilized in its entirety as an integral unit of an enlarged rig. This means that your initial investment in the 75 GA is good forever and represents a substantial saving when stepping up to higher power. Once and for all, Temco engineers have designed equipment that practically eliminates the factor of obsolescence.

In addition, amateurs who want to convert their present rigs to take in all bands up to 28 megacycles and enjoy the full advantages of frequency flexibility can obtain the VFO and frequency multiplier stages of the 75 GA as a separate unit — complete with its own power supply. This is the heart of the transmitter and is easily one of the best signal shifters ever built. Get the facts today from your dealer or write directly to Temco for full information.
Everything for the Veteran and the Beginner!
Includes Latest Communications Receivers

Here's your latest, most complete Buying Guide for everything in radio! Includes newest receivers, Ham gear, code apparatus, parts, kits, tubes, tools, books, test instruments, public address and other equipment. Over 10,000 items available from the largest and most complete stocks under one roof. Nationally known makes. Finest values. Fast, efficient service from one reliable central source. Our experienced staff of licensed radio amateurs is glad to help you.

Free... Send for it today

Communications Equipment
Now from ALLIED Time-Payments • Trade-ins Accepted

Other Models

- Hallicrafters S-38 $39.50
- Hallicrafters S-49 $39.50
- SM-49 External "G" 15.00
- RME-64 96.70
- RME DB-20 59.20
- RME VHF-152 Converter 58.00
- National NC-46 97.50
- Speaker for NC-46 94.50
- Hallicrafters SX-26 129.00
- Hammarlund HQ-120X 186.00
- RME-40 197.70
- Hallicrafters 46 99.75
- Hallicrafters SX-25 129.00
- Hallicrafters HT-37 179.50
- Transmitter 100-TTH 250.00

Net, F.O.B. Chicago
Prices Subject to Possible Change

ALLIED RADIO CORP., D. L. Warner W91BC
833 W. Jackson Blvd., Dept. 27-PF-6
Chicago 7, Illinois

☐ Enter order for Model.
☐ Enclosed $ Full Payment ☐ Part Payment (Balance C.O.D.)
☐ Send literature on Receivers and Time Payment Plan.
☐ Send FREE new 1946 Allied Catalog.
☐ Send special Amateur bulletins on Surplus Equipment.

Name ...
Address ...
City ... Zone ... State ...

123
New ULTRA COMPACT HIGH-Q AIR CAPACITOR

Of unusually high-Q, extraordinary mechanical and electrical stability, easy of adjustment, small in size and useful to beyond 200 megacycles for transmitting or tuning, this new air-dielectric capacitor is now available.

Produced at the famous Philips works in Holland, it is brought to American amateurs and experimenters through SILVER jobbers.

Less than one-half inch in diameter, less than 1.714" in length, SILVER Model 619 capacitor provides 1 to 30 mfd. with air and high quality ceramic insulation. Rotor and stator are one piece, low inductance, multiple aluminum cups. Rotor matching with stator gives a linear capacitance range of 37 mfd., over three full revolutions. Adjustment is permanent by virtue of retaining spring; vibration does not affect capacitance since a long rotor bearing sleeve closely clears a matching central ceramic insulator.

Model 619 capacitors have two solder terminals, so that they may be mounted directly by connecting leads, though each is supplied with a low-loss phenolic mounting plate.

Price 30c. each, at your favorite jobber.

OVER 35 YEARS OF RADIO ENGINEERING ACHIEVEMENT

M Murdo Silver Company

1240 MAIN ST., HARTFORD 3, CONNECTICUT

PRE-EXAM TESTS

For Commercial Radio Operator

FCC LICENSE EXAMINATIONS

Don’t Take A Chance!

Avoid Failure On FCC Commercial Radio Operator License Examinations

Use NILSON’S COMPLETE PRE-EXAMINATION TESTS AND COACHING SERVICE

Enables You To

REHEARSE the FCC license examinations • PRACTICE the procedure • PRACTICE the multiple-choice examination methods used by FCC • CHECK your knowledge • LOCATE your weak points • CORRECT your weak points before taking the actual examination

Prepared by Arthur R. Nilson, Famous Co-Author of Nilson and Hornung’s Radio Questions and Answers.

Use Coupon or write for Descriptive Folder

No obligation—no salesman

CLEVELAND INSTITUTE OF RADIO ELECTRONICS

Successors to Nilson Radio School, founded 1939
Smith Practical Radio Institute, founded 1934
QT-6 TERMINAL TOWER, CLEVELAND 13, OHIO
Approved for Veteran Training under G I Bill of Rights

CLEVELAND INSTITUTE OF RADIO ELECTRONICS

QT-6 Terminal Tower, Cleveland 13, Ohio

Gentlemen: Please send information about Pre-Exam Tests.

Name: ... Address: ...

City: ... Zone: ... State: ...

(Continued from page 180)

Fall River, was worked later, and W1BJE/1 mobile in Fall River was heard. On this same day W2GGW/2 at Amagansett, near the eastern end of Long Island, heard W2MMY, Bronx, N. Y., working W20JD/2 who was operating a walkie-talkie rig at Orchard Beach, also in the Bronx. Both ends of this QSO were heard at Amagansett, a distance of 95 miles. Not bad for fleabag power! W2GGW/2 worked W2IH, Astoria, N. Y., about the same distance, with 8 watts at one end and 25 at the other.

Another good night was March 22nd, when W2KNA, Farmingdale, Long Island, worked W1LPO, Newport, R. I., more than 135 miles, a new record for a week! That sort of thing is bound to happen often from here on. The temperature-inversion season has hardly more than started, and anyone who sets a new record can count on having it broken before it has stood long enough to get into QST’s “records” box. The peak should come in August and September — we will be very much surprised if someone doesn’t work 300 miles or more on 2 meters before next fall! Watch that band closely when DX comes through. We all have a weakness for working the loud ones, but we should dig down for the weak ones, too — there may be some choice DX lurking under those loud signals from 100 miles or so away!

On both coasts there is interest in a try for a real record. From San Francisco, W6OVK writes that he will be in a position to run some tests from Mt. Shasta during July and August, with W60IN or other interested parties. Write him at 65 Market St., Rm. 909, marking the envelope “personal.” W6TYP, also of San Francisco, has a neat little pack set with a 6-element Yagi antenna. He has used this rig with fine results on Copernicus Peak, Mt. Diablo, Mt. Tamalpais, and other high points. He will be operating from the summit of Mt. Shasta (14,191 feet) during July 27th and 28th and would like to line up some cooperation at various distant points.

At Mechanicsburg, Penna., W3HWN now has 300-watts input to a pair of HR-54s on 145 Mc. With this crystal-controlled rig, a hot superhet receiver, and a fine 16-element beam, Paul should be right up at the top whenever conditions break long enough to get into QST’s “records” box. The temperature-inversion season has hardly more than started, and anyone who sets a new record is bound to happen often from here on. The peak should come in August and September — we will be very much surprised if someone doesn’t work 300 miles or more on 2 meters before next fall! Watch that band closely when DX comes through. We all have a weakness for working the loud ones, but we should dig down for the weak ones, too — there may be some choice DX lurking under those loud signals from 100 miles or so away!

A number of fellows have arranged for the use of high elevations for more-or-less permanent stations. At North Castle, N. Y., W1LAS/2 has installed gear for 144 and 420 Mc. in a 30-foot tower atop an 820-foot elevation. He will be glad to keep schedules for work on either frequency.

Some of the gang around Washington are wondering why there is not more activity in the outlying districts around the Nation’s Capitol. W2NVY/3 writes that while there is quite a bit doing in the district itself, nothing is heard from Annapolis and other localities which should be easy going from Washington. According to
A Harvey Special!

Navy Model RBL Receiver

Especially suitable for long wave c.w. or phone reception.
Ideal for 200-400 kc airport tower use.

- Input plug for battery operation
- Logging dial, reads 1 part in 1000
- Two-stage r.f., impedance coupled
- Two-stage audio, 600-ohm output
- Lo-pass, Hi-pass filters in audio
- Audio output limiter stage
- 115 volt, 50/60 cycle power supply built in

SPARE PARTS INCLUDED—Parts are packed in steel chest with hasp, measuring 18" x 15½" x 12¼". 157 individually wrapped spares are included. Six 6SK7, two each 5Y3G, 6H6, 6K6GT, 6SG7 tubes plus full set in receiver. Replacement power and output transformers, choke, switches, resistors, capacitors, plugs, jacks, hardware, audio filters, r.f. transformers, fuses, dial lights, sockets, wrenches. (Spare parts chest, not illustrated, is included.)

Harvey's Special Price $59.50

Harvey Radio Company Inc.
103 West 43rd St., New York 18, N.Y.

Telephone: LOngacre 3-1800
Ward Leonard’s got ‘em

That’s good news for the amateur. You have learned to depend upon Ward Leonard Resistors, Relays and Rheostats. Now that they are again available you naturally want to use them for new equipment and replacements. Send for Catalog.

WARD LEONARD
RELAYS • RESISTORS • RHEOSTATS

Electric Control Devices Since 1892
WARD LEONARD ELECTRIC COMPANY
Radio and Electronic Distributor Division
53B WEST JACKSON BLVD. CHICAGO, ILLINOIS

WAR SURPLUS!!!

R. F.
TRANSMITTING
CHOKES

6 mhy–500 ma
Excellent for multiband amateur operation. Same as pictured but less metal base. Ceramic insulator topped for 6–32 screw.

50¢ Each Postpaid in U. S. A.
Postage Extra, Elsewhere

JOBBERS: Write for Quantity Price

COTO-COIL COMPANY, INC.
65 Pavilion Ave., Providence 5, R. I.

First Amateur Work on 2300 Mc.

While most of us were battling the QRM on 80 or working DX on 10, two fellows were getting set for work on the new 2300-Mc. microwave band. On the morning of April 29th, at 10:44 A.M., W6OJK/2 and W9WHM/2 made what is believed to be the first two-way contact on this frequency, over a distance of 7/10 of a mile. Both rigs were transceivers using 2C10 "lighthouse" tubes, running at around five-watts input. Power output was of the order of 50 to 100 milliwatts. W6OJK/2 used an electric heater as a reflector, while W9WHM/2 had a 65-inch copper-screen parabola. Signals were S7 in one direction, S9 in the other. Even the heater reflector was extremely sharp, movement in any direction of even an inch or so producing a noticeable change in the level of the received signal. The frequency used was 2410 Mc.

The most powerful electronic transmitting tube commercially available, a 200-kw. bottle used by the U. S. Government for overseas broadcasts, weighs 80 pounds as compared to the smallest, a 0.7-ounce hearing-aid tube, according to Science News Letter.
The famous Eimac 35TG VHF tube with its low inter-electrode capacitances, its logical terminal arrangement, its lack of internal hardware, is further improved. It now has a non-emitting grid, an improved filament, and a cooler operating plate. These improved elements, the result of wartime developments in manufacturing technique, are being incorporated in many Eimac tubes and are consistently resulting in vastly increased life.

The 35TG is a power triode of wide applicability. For instance, when used as a Class-C amplifier, it will give excellent performance due to its stability and low driving-power requirements. A pair of 35TG's, with 2000 volts on the plates, will handle 500 watts input with only 26 watts driving power.

Whatever rig you're planning, there are Eimac tubes for the job. It will pay you to keep informed about Eimac. See your dealer today, or write direct for full technical information.
Foreign Notes

(Continued from page 68)

Mancera, president; M. R. Bolafios, YV5AE, vice-president; A. M. Crespo, YV5ABY, foreign secretary; and J. M. L. Garcia, treasurer.

While all bands are open at present, new regulations are under consideration which may affect the 80-meter amateur assignment. Government support is expected for the proposed amateur band at 21 Mc.

MISCELLANY

Netherlands amateurs receive a 100-kwh. ration every sixty days in addition to their normal allotment of electricity. . . . Like several other countries, South Africa is not yet in a position to grant transmitting licenses to newcomers. . . . New regulations in Colombia provide that only citizens may obtain licenses, whereas previously some foreigners were on the air by virtue of a license issued to one of their house servants! . . . If you hear any four-letter JB calls, they belong to members of the British forces in Germany. Most of them are using D2 calls, however. . . . We understand the Bahamas authorities are reopening amateur stations above 28 Mc.

ATTENTION — CPL. H. W. PROPSNER, USMC. The Victory Stamps awarded you for your Crystal Ball contribution are waiting at ARRL HQ. Please send us your correct mailing address.

A writer to ARRL's Technical Information Service asks if the Armed Forces have as yet released data on the secret circuits for "Contra-polar Frequencies" that were hinted in *QST* for March, 1944. This part of the spectrum is below 0 c.p.s., where frequencies are measured in "negacycles," resistors run frosty cool and electrons flow from positive to negative. Our correspondent has been patiently waiting all this time!

Wait 'til he hits the "circular band theorem!"

Spots before our eyes? . . . or maybe it was Saturday night's party that caused us to read, in our favorite Sunday morning paper, King Features Syndicate's science writer's so-simple proof that sunspots emit radio waves.

Here's his story (italics ours): "The emission of radio waves from sunspots has received striking confirmation through recent discoveries. During sunspot activity, when a radar set with a powerful aerial was turned toward the sun, a hissing noise was heard. When the receiver was turned off, the hissing ceased. Utilizing this knowledge, science can obtain by periodic testa early warning of radio fadeouts and magnetic storms."
HARRISON HAS IT!

HSS

Stromberg-Carlson DYNAMOTORS
Compact, well-constructed unit, excellent for mobile
radio, amplifiers, etc. Ball bearings, good efficiency.
Made for military use.
OUTPUT - Voltage at 600 M.A.S.
12 16.8 680 210
6 16.2 605 205
12 8.1 485 170
12 6.7 425 150
3¾" dia. x 6½" long, 6 lb, 12 oz., with mounting plate. Brand New. HSS SPECIAL.... $8.95

Beachcomber
POWER AMPLIFIER
250 Watts Class B - 6 ohm load. Delivers 1500
Volts DC at 320 MA and 300 Volts DC at 150 MA.
10 and 6.3 Volts AC. On heavy chassis 12½" x 19". Has
internal fan to cool tubes. Excellent for P.A. booster,
motorola, or power supply. Guaranteed OK. Retail
$13.25

HSS TUNES
Raytheon RK-63. Regular price $25.00. Special $18.85.
RK-38 - $9.95.

HSS HANDSETS
Latest, improved type, 200 ohm single button mike, high
impedance plug. With push-talk switch, cable, and
plug. HSS Special.... $4.45

ROTARY COAXIAL COUPLING
Having trouble coupling to your rotary beam? Feed it
through this constant-impedance slipring coupling.
Marine for Signal Corps by Lapp Insulator Com-
pany, one of the best antenna system manufacturers.
Surge impedance of 52 ohms will match most coaxial
cables.
Has 1¾" dia. finely machined from brass. Copper
coated 3¾" dia. x 5½" long. Outputs at top and bottom take standard AN coaxial
plug (or may be connected permanently).

HSS..... $21.50

HSS HANDSETS
Latest, improved type, 200 ohm single button mike, high
impedance plug. With push-talk switch, cable, and
plug. HSS Special.... $4.45

BLOWERS
Having trouble coupling to your rotary beam? Feed it
through this constant-impedance slipring coupling.
Marine for Signal Corps by Lapp Insulator Com-
pany, one of the best antenna system manufacturers.
Surge impedance of 52 ohms will match most coaxial
cables.
Has 1¾" dia. finely machined from brass. Copper
coated 3¾" dia. x 5½" long. Outputs at top and bottom take standard AN coaxial
plug (or may be connected permanently).

HSS..... $21.50

* HSS SPECIALS *
- A POSTCARD will put your name on our mailing list.
- SPECIALS includes HSS bargains, and details of how you may obtain
- a copy of our new 800-page Buyers' Guide. Please send for
- today!

Signal Corps Radio TABLES
Just the things for your shack. Used in SCR-299 mobile
radio trucks. Rigged up with the latest, high-grade plastic
insulators, gleaming copper oz bound with metal edge; two
lamps; two keys; power distribution and fuse boxes; shell; shelf;
drawer; speaker; phonojack switching panel; wiring roadway
with receptacles; shock mounts (many unneeded); type-
written description... Brand New. Wide, 22" long, 20"
high. Good condition.

Take your pick:
MC-314-A (3 dipole, 4 beam... $35.00
MC-269-A (same, but with 3 AC 0-150 Volt
line voltage meter and additional lamp)... $35.00
For shipment, via Express - add $2.50 for preparation.

FILTER CHOICES
10 Henry; 260 Ma.
General Electric. Metal
cased, potted, ceramic
standard insulators. 3¾" x
3½" x 3½" - $3.25
3¾" dia. x 6½" long, 6 lb, 12 oz., with mounting plate. Brand New. HSS SPECIAL.... $9.75

Harrison Select Surplus
Your assurance of quality, guaranteed, surplus
material at exceptionally low prices - top value always!
Come in and browse through our large, entirely
separate HSS Department (Harrison Select
Surplus).

HARRISON HAS IT!

ALL STANDARD LINES

NEW SKY CHAMPION
By special chartered cargo plane, we obtained our initial
stock of the new Hallicrafters SCR-45 Sky Champion re-
cently delivered! They’re going fast so rush in your
order now. Complete. $79.50

TEST EQUIPMENT
Shipments are getting bigger and better! Send us your
order now for quickest delivery.
Dumont - GE - Hickok
Precision - RCA - RCA - Stahl - Cross
Simpson - Supreme - Triplott - Weston.

TWIN RIBBON CABLE
Amphenol’s sensational new product line. In stock
in 75, 125 and 300 ohm surge impedence. Per
foot. 3¢

PLASTICS PLIERS
New SPECO all plastic long nose pliers. Light. Strong, very handy.

> CQ - L. I. HAMS! <

Our Jamaica Branch is the most handy place on the Island
to get your Ham and Service material. Right at the head
in Hillside Ave. Complete stocks - plus direct lines to make out N. Y. store and warehouse stocks immediately
available. Drop in - often!

BOAT OWNERS!
Immediate delivery of tallip
Model MRT-40 Marine
Telephone 3 Watt
carrier output. 6 channel
selector switch. Push-talk
handset. For
 Ham gear! Visit our stores today, for
everything you want (items in this ad, or
service.

STEEL ??
It’s scarce, but we’ve just
received shipment of sev-
eral truckloads! Chassis -
boxes - brackets - etc.,
all sizes. Far and wide.

10\ DIPOLE
Made by S.C. Lab. Light-
weight, all aluminum adjus-
table elements and mounting
pole. Machined center
coupling insulator. Good
value for the money.
Complete, with

PREMAX Antennae and
elements in stock.

We are
FACTORY AUTHORIZED DISTRIBUTORS
for the top quality manufacturers and we now have
in stock lots more new, latest improved production
Ham gear! Visit our stores today, for everything you
need. We promise you fresh, clean material -
quicker - at the lowest current prices - and, above
all, our sincere desire to be of friendly, helpful
service.

MAIL ORDERS? - Certainly! Just list everything
you want (items in this ad, or any ad, magazine or
catalog) and include deposit.

35¢ de

Bill Harrison, W2AVA
Headphones Sharpen Dull Signals

Year after year MURDOCK Headphones maintain their leadership as the preferred listening ears for thousands of Hams all over the world.

Try MURDOCK Headphones—NOW. Prove to yourself how much better they are over your present phones. You'll like their light weight, exacting tolerances, strong, constant adjustments, and "hairline" sensitivity. Our war-sharpened manufacturing techniques have been translated into improved reception . . . clearer performance . . . lifetime service.

Signals are clearer, sharper, and steadier. The friendly exchange of messages with world-wide friends takes on new sparkle. You'll enjoy long listening hours in complete comfort!

No wonder men in radio put their confidence in MURDOCK Headphones . . . they keep you right on the "beam!"

---JOBBERS---
Get in touch with us by phone, wire, or letter for full details. Some territory still open.

If Your Dealer Cannot Supply You, Write to Us for Catalog

WM. J. MURDOCK CO.
215 Carter St., Chelsea 50, Mass.
THE EXTENSIVE FACILITIES AND EXPERT PERSONNEL OF NEW YORK'S MOST PROGRESSIVE RADIO SUPPLY HOUSE TERMINAL HAS IT!

OUR TREMENDOUS STOCK MEANS FASTER SERVICE

MAIL & PHONE ORDERS PROMPTLY FILLED

SHOP WITH CONFIDENCE

Terminal has kept its lead in New York by maintaining a complete stock of quality radio parts and equipment. Fair prices and friendly service assure you of the BEST VALUES at TERMINAL!

Visit our "SPECIALS" Department Countless values of selected quality parts and equipment at unbelievably low prices!

TERMINAL RADIO CORP.
85 CORTLANDT STREET, NEW YORK 7, N. Y.
PHONE WORTH 2-4415
How Much Inductance?

(Continued from page 60)

If d.c. resistance of choke is greater than 100 ohms:

First solve for \(X \) in this formula

\[
X^2 = \frac{(10,000) \times (\text{voltage across choke})^2}{\left(\text{voltage across 100-ohm resistor}\right)^2 - (\text{resistance of choke in ohms})^2}.
\]

Then, using the value of \(X \) just found,

\[
\text{inductance of choke} = \frac{X}{377} \text{ (in henrys)}
\]

(Use 157 for 25-cycle line.)

The table shows just what to expect with various values of inductance, assuming that the 115-volt a.c. line is used directly and that it is a 60-cycle line.

One word of caution about these measurements. The value of inductance of a smoothing choke, measured as explained, will be accurate within 10 per cent. However, if the unknown choke happens to be a swinging choke, the value of inductance measured will be the no-load inductance. In other words, a choke which has a rated inductance of 5 to 20 henrys, for example, may measure 25 henrys. The measured value of inductance should be reduced by about 20 per cent to get the actual maximum inductance rating (reducing 25 henrys by 20 per cent gives 20 henrys in the example above). The best way to determine if the choke in question is a swinging or smoothing type is to examine the core to determine if the choke has an air gap. If there is no air gap you may be sure that it is a swinging choke, but if there is an air gap, even if it is only the width of a few QST pages, you may be fairly sure that it is a smoothing choke.

Now that the resistance and inductance of the choke are known, the current rating may be approximately determined by weighing the choke and taking its measurements, and then comparing these to the weights and sizes of advertised chokes. For a given size, resistance and inductance, the current ratings should correspond by a fairly-close degree to those of other chokes made by various manufacturers.

At any rate, after deciding what the choke should handle, you can try it out. If it gets too hot to hold your hand on, it is carrying too much current, so perhaps you should try to trade it off to one of the low-power bugs!
A crystal calibrated to .01% of marked frequency with dependable performance mounted in slender upright space saving holder either in 153 AC for regular 5 prong socket or 162 PM for octal socket. Frequency range 3500 to 4000 KC or 7000 to 8000 KC.

Our experienced engineers are designing more modern models for all bands. For information and prices on all types of crystals, contact your distributor or Crystal Products direct.

Crystal Products Company
Main Office 1519 McGee Street
Phone: Victor 1686
Kansas City 8, Missouri
Cast Aluminum, letters and borders raised and satin finished. Background, baked crackle enamel. Black is standard, — red, gray or blue 40¢ extra.

CAST ALUMINUM
CALL LETTER PLATES
MADE TO ORDER—YOUR OWN LETTERS

Complete Radio Training!
Prepare now to accept a responsible position in Commercial Radio. New developments will demand technicians with thorough basic training, plus a knowledge of new techniques discovered during the war. Training open to high school graduates or those with high school equivalency. Courses 6 to 18 months' duration in RADIO AND ELECTRONICS, Approved Veteran training in Radio. Write for particulars.

Complete Radio Training
Dept. TN
Valparaiso, Ind.

W8PTF
For Your Car—Type A-18
Cast with brackets for auto mounting and two 6-32 x 1/4” threaded studs for panel mounting.

For Panel Mounting—Type A-19—Same as above, but without auto brackets. Equipped with studs for panel mounting.

Dimensions 2 3/4” x 8 1/4”
Either Type

$2.50
Add 20¢ for Packing and Postage

W8ENH
Lapel Buttons—Type A-26
Letters are raised, sharp and clear, and are highly polished.

75¢ Add 10c for Packing and Postage

Correspondence from Members
(Continued from page 71)

Editor, QST:
I notice considerable correspondence with the general theme that QST is getting too highbrow — and who likes u.h.f. anyhow? This bothers me a bit, because to me it seems obvious that the only way that frequencies available to hams now, or those available before the war for that matter, can be stretched to accommodate all the hams in the game a few years hence will be by going to u.h.f. for short-haul work. As anyone who was interested in ham radio before the war will observe this does require a bit more theory than we got by with before the war.

I'd like to point out that the Handbook provides a plentiful source of information on the present state of the practical art of radio for all frequencies. Besides, one can still watch over someone else's shoulder for a while to get started, just as so many of us did in the beginning. For the more advanced ham who perhaps got a dose of theory during the war and would like to play along that line a bit there is another book which is useful. While I own no stock in the publishing firm of McGraw-Hill, I would very earnestly recommend Terman's Radio Engineers' Handbook to the ham who sometimes would like to dig a bit more into the theory than the necessarily-limited thickness of the Handbook allows. For six bucks you can get in convenient form all the theory which normally one would have to sink twenty-five dollars for into half a dozen texts.

Keep up the articles on u.h.f. and advanced stuff — and who is going to be on 420 Mc. for me to work this summer? Let's see, my 636 puts out half a watt, but Terman's says on page 320 I can get 13 db. gain out of a corner reflector 20 times the power. Why, that's 10 watts in the antenna to work DX and no transmission line for losses! Bet I can beat that 60-mile record with my $1.75 worth of transmitter tube. Be you in the middle of the band in July.

—Larry Haupt, WENSX

WHO WAS FIRST?
4 Winfield Dr., East Bierley, Bradford, Yorkshire, England

Editor, QST:
Thank you for keeping our old friend QST coming over here so nicely during the hard years.

In reading QST for December, 1945, I note that "25 Years Ago This Month" treats the accomplishment of my old friend, George Benzie, and his amateur colleague, James M. Miller, with the same skepticism that prevailed in 1920, when they reported reception at Peterculter in Aberdeenshire, Scotland, of the radiophone signals of 2QR, Keyport, N.J.

I've long since lost track of George, but let's get together and put him in his honoured place as the first amateur to hear another amateur on 'phone, too across the "ditch."

It was on Oct. 6, 1920, that Benzie, while listening on 200 meters with his two-valve receiver using loose coupling, perfectly and distinctly heard 2QR playing a record of Harry Lauder's "Roamin' in the Goblin!"

He and Miller couldn't believe it and they wrote to Hugh and Harold Robinson, operators of 2QR. They, too, practically astounded and dared not tell the world until it had been confirmed on schedule. The performance was repeated on Nov. 16, 17 and 19, 1920. On this second attempt at reception here, little acknowledgment was obtained, but they did receive 3 phonograph records by radiophone on 200 meters, along with Robinson's calling them, saying he had tried 1000 meters at afternoon and arranging a schedule "for tomorrow and Saturday" on 300 meters. They also heard the call 2QF repeated again and again.

There can be no doubt about it; the tests were authentic and confirmed, and I still disagree with the findings of the special committee of the Radio Club of America. Never be the "first." It's too early.

— Percival Denison, GB8OK (ex-G8KD, DHX)

[Editor's Note: Old-timers will recall the "Who was first?" issue revived by Mr. Denison's letter. For the infor- (Continued on page 156)
As the electronic art added sound to the movies, so Panadaptor adds sight to amateur radio—full vision of a band 200 kc wide, showing every signal within that range simultaneously. It eliminates "fishing"...it reveals short calls...holes in busy bands, you can also use it as a percentage modulation indicator or to study signal characteristics of your own and other stations. Used in conjunction with any good communications receiver it opens a whole new method of operating to you. Until you have tried this new method you can't really appreciate what it will do for your station...no matter which phase of amateur radio is your specialty. So why don't you drop in to our store and try it...see how it pulls signals in through all the noise of a busy industrial district...even on 10 meters.

HARVEY HAS IT ALL!

Of course, Harvey has all the other things you need...receivers...exciter units...transmitting tubes...parts...and whether you can come in, or order by mail, you'll find the same friendly service, the same large stocks at your command. Couple this with Harvey's prices and rapid service and you'll agree, that for the radio amateur, the best place is...

HARVEY RADIO COMPANY INC.

103 West 43rd St., New York 18, N. Y.
Factory alignment and repair for Halli-crafters, National, RME, Howard. We check sensitivity, signal to noise ratio, and selectivity, with laboratory standard test equipment, to insure maximum performance. Prompt service on alignment and repairs.

Factory Service Division
Communication Measurements Laboratory
120 Greenwich St. New York 6

RADIO

RADIO Technician and Radio Communications courses. Register now for new classes starting first Monday of each month. Day and Evening Classes.

AMERICAN RADIO INSTITUTE
101 West 63rd St. New York 23, N. Y.
Approved under GI Bill of Rights

AMATEUR GEAR

HATRY & YOUNG

8 Connecticut and Massachusetts Ham Stores

Hartford C Stamford
New Haven O New London
Bridgeport N Waterbury

BOSTON—MASS.—LAWRENCE

The ELECT in Electronics

Again at your SERVICE
For more and better DX

CML SERVICE LABORATORY
dedicated to the
ALIGNMENT & REPAIR of
COMMUNICATIONS RECEIVERS

VFO TECHNIQUE

12 Prescott St., Wellesley Hills, Mass.
Editor, QST:

Fell out the wrong side of the bed this A.M.; hence the following verbal spanning to the few hams who unthinkingly cause a great deal of unnecessary QRM by zero-beating the v.f.o. to the frequency of a choice bit of DX calling CQ. I don't believe the results of this practice justify the annoyance caused to other hams trying to work the same station. This is particularly bad in a metropolitan area such as Boston where there are probably half a hundred hams within ground wave distance of each other, all trying to work DX on a Sunday when the 10-meter band is hot.

Last Sunday I was QRMed several times in this manner. After calling a DX station, using a reasonably short call, I would stand by only to find one of my brothers still calling him on his own frequency. Net result: even if I looked him I'd have no way of finding it out with the channel all fouled up. If brother ham would take my advice he would get a few kc. one side or another of the operating frequency (preferably on a clear channel) if he is convinced that this is the best way of working DX. Incidentally, I use v.f.o. myself.

I am also of the opinion that only a minority of amateurs are seriously interested in cavity resonators, klystrons, microwave technique, etc. I do believe that these articles have a definite value, but should be mailed on request after a sufficient number have been printed they could be bound into a booklet entitled "Microwaves," and offered for sale to cover costs, etc.

-- Charles H. Nichols, Jr., W1MRK

"PETER EASY ABLE"

c/o Postmaster, Seattle, Washington
Editor, QST:

Now that the war is over, perhaps something can be said concerning an unpublicized outfit in the Army Communications Service of the Signal Corps. Thousands of men and officers under the Plant Engineering Agency (PEA) have been quietly installing fixed station radio equipment in all four corners of the world under the most severe climatic conditions known. The primary job of PEA has been the engineering, installation and major maintenance of radio equipment for the Army Airways Communications System (AACS).

Incidentally, hams contributed much to the success of the organization in the field. Without the persistent efforts and skill of the men concerned, vital air communications would have been near impossible. These highly-skilled men, in the form of teams, performed an invaluable service. These were the men who dug pole holes in solid rock and ice in the frozen wastes of Alaska and Greenland; built antenna fields that had to withstand wind velocities over 100 m.p.h. in the blistery Aleutians; strung control cable lines over swamps in the South Pacific; improvised everywhere when no supplies were available; built radio ranges to guide the Air Forces to their destinations safely, etc. Hats off to another group of fellows who did so much with so little.

-- H. A. Knapp, W1LOI
M. J. Krasnican, W8MAX
J. E. Gider, W4GMB

(Continued on page 149)
Available for the **FIRST**
Time at Your Jobber's

The new Z5 unit, when used in our simple circuit, is no more critical than an ordinary 40 or 80 meter crystal. High power output without damage to crystals is now possible with the new P R Super 10 meter crystal. P R Super 10 meter crystals, with a temperature coefficient less than 2 cycles per M. C. per degree centigrade, are now available at your favorite jobber's.

P R crystals can "take it" and really "put out." Every P R crystal is **unconditionally guaranteed.** See your jobber today — ask him for a copy of the descriptive booklet on P R 10 meter crystals.
HEADQUARTERS FOR
Equipment and Information

SPECIALS

- Low loss Antenna Change Over Relay 6U.D.C. ... $1.75
- D.P.D.T. .. $1.90
- 3C/24G Tubes .. $0.99
- 8 MFD-600V Oil Filled Round Can any Mounting .. $1.50
- 2 MFD-2000V CD ... $3.50
- Ceramic Caps for 807-866 etc. Each ... $0.19

MAIL ORDERS PROMPTLY FILLED

Amateurs to Serve You
(20% Must Accompany All C.O.D Orders)

Write to Dept. QST
W6SCQ • W6UXN • W6NAT • W6SSU

FOR YOUR NEW RIG

We Have a Good Stock
of All Standard Lines

SUPER BUY

For 19 Meter F.M. Mobile Operator 8C 1335 COMPLETE
TRANSMITTER and RECEIVER from 27.5-38.5 MC
READY TO GO with 3 Crystals for FH. Portion of
10 Meters and Share T178 Hand Set ... $53.00

Mail Orders Promptly Filled

238 WEST 15TH STREET
LOS ANGELES 15, CALIFORNIA
Prospect 7471

Radio Product Sales Company

for professional results with your rig

TURNER

99 and 999

Dynamic Microphones

These rugged Turner dynamics are built to deliver clear and crisp under the most difficult operating conditions. Withstand severe climate and temperature changes. Adjustable saddle fits any standard stand. Semi- or non-directional operation. Specified by leading manufacturers, widely used by broadcast studios and large city police departments. Gunmetal finish. Model 999 has same professional appearance as Model 99 with additional Balanced Line features for more critical applications. Both available in 30-50, 200, 500 ohms, or high impedance. Range 40-9,000 cycles. Level -52DB.

ASK YOUR DEALER
OR WRITE

THE TURNER COMPANY
517 17th Street N.E.
CEDAR RAPIDS, IOWA

TURNER

Pioneers in the communications field

Turner Microphones

Crystals licensed under patents of the Brush Development Co.
The 1946 Handbook

The latest edition of The Radio Amateur's Handbook is postwar in content, containing 688 pages of the kind of material which has made The Handbook world famous. With the suddenness of peace it meant much redoing of the Handbook but this was done. Retained is the highly successful treatment of fundamentals which was an innovation of the 1942 edition. Stripped to essentials, the theory and design sections cover every subject encountered in practical radio communication, sectionalized by topics with abundant cross-referencing and fully indexed. An ideal reference work, this Edition also contains all the constructional information on tested and proved gear which has always been the outstanding feature of the HANDBOOK.

POSTPAID IN
CONTINENTAL U.S.A. $1

$1.50 ELSEWHERE
BUCKRAM BOUND $2

AMERICAN RADIO RELAY LEAGUE

WEST HARTFORD 7
CONNECTICUT
The "BUG" trade mark identifies the genuine Vibroplex.

Accept No Substitute

THE VIBROPLEX CO., INC.
833 Broadway
New York, 3, N.Y.

140

(Continued from page 140)

ONE-SIXTY

Editor, QST:

The published letter of Glen Dallas, WSSRS, in the March issue was to some and should be enlightening to all amateurs. Our 160-meter band seems to have been out aside and as Glen stated, the usual anti-160-meter-band propaganda has cropped up to take its place. In fact not so long ago you referred to 80 meters as the mother band. It would appear that the writer had not known or forgotten that back in the days of the loose coupler, spark coil, etc., we used to park anywhere that seemed convenient until a license became a must and then around 200 meters was the spot until the 160-meter band took over.

It is my conviction that some commercials are desirous of devoting the 160-meter band and are subtly working toward that end, and undoubtedly there are members of the ARRL who are not adverse to this loss. It is the time-worn tactics of those who desire to take something over or make a change, to divide and conquer. Take a little good advice, boys, and do not be divided. The 160-meter band is and was the true mother band and you may take my word for it that when a mother is lost the children suffer.

— Gordon Taylor, WILAX

[Everson's Note: FCC proposes to assign the 160-meter band principally to government-operated radio navigation devices (loran), not to "commercial" in the usual sense of that term.]

GOOD 'PHONE OPERATING

Editor, QST:

Here are three cheers for WE6RY of Refugio, Texas! This very fine and gracious operator has been living up to the true spirit of ham radio by devoting many hours on Saturdays working "underprivileged" stations.

He apparently starts by listening at the low-frequency end of the 10-meter band, calling "CQ" to those stations who have been unable to work out of their district. He comes back, in turn, to one after the other, giving them honest reports and always encouragement. The remarkable thing about this phone operator is that he never seems to repeat himself in subject matter and is able to be snappy without being brusque.

To stations in crowded areas who find it difficult to break through traffic, QRN and local QRM, W6EYV's friendly practice deserves commendation. To him and to other operators who may be using their excellent signals and locations in this way—"thanks a lot!"

— Lenore K. Conn, W2NAZ

HANDS ACROSS THE SEA

Marshallton, Delaware

Editor, QST:

I wonder if amateurs in this country fully realize the conditions endured by our foreign amateur friends? With necessities very scarce, life is a struggle for each day's existence; little things like soap, tinned meat, razor blades, tea, clothes, and the like are to them really luxuries of the first order. I suggest that each amateur get his DX cards out of the moth balls and write to his foreign friends. Many of them have lost their homes and are out of the country; they are strangers in a strange land. The value of foreign contacts is tremendous, not only for QSOs but also for strengthening international friendship. Perhaps our foreign friends are not our friends alone, but also of other countries, particularly their own. This is the true spirit of ham radio.

— C. D. Justis, WJYVS

(Continued on page 148)
Transmitter kits are almost impossible to get, but Leo, W9GFQ, now offers amateurs the new WRL Globe-Trotter, destined to become one of the most popular kits on the market. The WRL Globe-Trotter is capable of 25 Watts input on phone on all bands from 3500 KC through 28 Megacycles. Incorporates the proven Tritet oscillator using a 40 meter X—Tal and providing sufficient drive at 10 meters for the 807 final. Helsing choke modulation is incorporated with excellent results and good tonal quality. Look this over! It has everything! Three bands are all pre-tuned and available at the turn of a switch, 10, 20, and 80 meters. Metering is provided for both oscillator and final stages. The transmitter uses two power supplies, one furnishing power to the 807 final and modulator tubes, and the other supplying the speech, amplifier and oscillator stage. Tube Line Up: RF—6L6 GCB, 807 final amplifier: Audio—6SJ7, 6N7, 2-6V6, Rectifiers, 2-5U4G.

Complete kit including all parts, chassis, pan- el, streamlined cabinet, line tubes, coils and meters.

Cat. No. 70-300

$59.95

Complete kit including 8 tubes...

Cat. No. 70-314

$5.95

Complete kit of 8 Tubes

Cat. No. 70-315

$70.00

Coils per set (any band)

Cat. No. 70-316

$2.95

Set of coils (any band)

Cat. No. 70-317

$2.95

Crystal-40-80 Meters Mix.

Cat. No. 70-318

$2.65

Quality Crystal Mike and Stand

Cat. No. 70-319

$9.45

$85.00

Including steel case, Speaker furnished at small added cost.

Cat. No. 35-61.

Giant Radio Reference Map with time and amateur zones, standard and short wave stations, and other valuable information. Printed in colors. Size 3¼X4¼.

Only 1Sc

Write for our latest flyer of radio parts. FREE!

Transmitter kits are a must have for any amateur in the market. The WRL Globe-Trotter is capable of 25 Watts input on phone on all bands from 3500 KC through 28 Megacycles. Incorporates the proven Tritet oscillator using a 40 meter X—Tal and providing sufficient drive at 10 meters for the 807 final. Helsing choke modulation is incorporated with excellent results and good tonal quality. Look this over! It has everything! Three bands are all pre-tuned and available at the turn of a switch, 10, 20, and 80 meters. Metering is provided for both oscillator and final stages. The transmitter uses two power supplies, one furnishing power to the 807 final and modulator tubes, and the other supplying the speech, amplifier and oscillator stage. Tube Line Up: RF—6L6 GCB, 807 final amplifier: Audio—6SJ7, 6N7, 2-6V6, Rectifiers, 2-5U4G.

Here is one of the hottest war-surplus receivers that will be available, 9 tubes, 2 tuned RF stages, 3 stages of IF amplification, Frequency range, 200 to 500 kilocycles; ½ to 18 MC in four bands. Covers weather and aircraft bands, and all ham bands except 10 meters. Ask about our special converter for 10 meter operation.

BC-610 (Hollcrofters HT-4E) TRANSMITTERS

Counterpart of the famous SCR-299, 25 Watts input on CW, 50 watts input on phone; 3 sets of coils. Range of 1½ to 18 Meg. Completely reconditioned, Cat. No. 70-202, $520.00—New Cat. No. 70-202, $760.00. Reconditioned or new sets converted to 10 meters, $25 extra.

Giant Radio Reference Map with time and amateur zones, standard and short wave stations, and other valuable information. Printed in colors. Size 3½X4½ feet................................. Only 15c

Write for our latest flyer of radio parts. FREE!
YOUNG ELECTRICAL ENGINEER

Electrical engineer—young graduate wanted by a large manufacturer in electronics field. Manufacturing experience not necessary as applicant will be taught on the job. This is a permanent position in product design and test, with increasing responsibilities and pay. Reply by letter, giving background, to BOX 149, QST, WEST HARTFORD, CONN.

CONNECTICUT HAM HEADQUARTERS

Complete stocks of nationally known amateur gear — radio electronic parts — tubes — sets and equipment.

Wholesale Only

R. G. SCELI & CO.

Pete DePasquale, W1GUC
Roger Amundson, W1HYF
George Loppe, W1WW
Ray Watson, W1NHH
Porter Nos, W1WW
Emile Johnson, W1FSY
Art Lindeman, W9FZI
John Yacovelli, W1IKB

317 Asylum St.
Hartford 3, Conn.
Tel. 2-1144

84 Elm St.
Bridgewater, Conn.
Tel. 63-1811

ASK FOR OUR BARGAIN BULLETIN

CORRECTION

3640 Hartford Pl., N.W., Washington, D. C.

Editor, QST:

I have just finished reading a very interesting article on "QRM — The Electronic Life Saver," in the February issue of QST.

On page 31, last paragraph, and continued with names on page 32, there is a misleading statement. Lieutenant Van Orstrand and Picotte and CRE Callahan participated in the Amchitka work, but the Kuriles work was done after Picotte and Callahan had gone to the Central Pacific. Lieutenant Fay was in Adak (Aleutians) while the work was going on over in Amchitka, but he also went to the Central Pacific before the Kuriles’ bombardments. These three officers were very active in RCM in the Central Pacific. Lieutenant Van Orstrand stayed in the North Pacific for slightly over a year and was engaged in RCM activities in the Kuriles during the first six months of Naval bombardment of those islands.

While the slight inaccuracy occurring in your story seems of little consequence, there are always a few people who feel that when names are given the publication should take the necessary precautions to give the proper credits and to avoid omissions.

R. C. Sergeant, W60BG, ex-K60BG

TALE OF LX

Apartment 5, 206 Spruce, Coffeyville, Kansas

Editor, QST:

Rummaging through ex-W9MWM’s file of QST, I found the following item (March, 1940, QST): “At the annual meeting of Reuse Luxembourgeois, F. Scholtes, LX1OB, was elected president . . .”

Now you would think this only a minor item: but I was chief engineer of “Radio Luxembourg” (150 kw., 232 kc.) for FWD-SHAEF from the recapture of the station in September, 1944, until I left for the U. S. in January, 1945. Ferd Scholtes was my chief Luxembourg engineer!!! But in all the time I was at Radio Lux, running it and a 7 kw. short-wave rig, I never knew that Scholtes was a ham! I should have known something was up when, during the famed Battle of The Bulge, when I took Radio Lux off the air, my assistant (W9UYA) and I found a wonderful little ham transmitter, built of the best American parts, tucked lovingly in a corner of the transmitter building. We left the transmitter in its place, and after Radio Lux was once more on the air the little ham job disappeared, I suppose to Scholtes’ home, where I hope someday he gets it back on the air.

Incidentally, Scholtes was imprisoned by the Germans because he refused to run Radio Luxembourg’s transmitter for them. During most of the war he worked in an electrical shop, until we came and reinstalled him at the transmitter.

— Don V. R. Drenner, ex-W7FHZ

CALL CHANGES

5015 South Baldwin, Los Angeles 37, Calif.

Editor, QST:

Due to the new licensing setup, many of us are losing old and cherished calls. May I suggest that as soon as we find our old call reassigned to another station, we write to the new operator and give him a brief history of ourselves and our activities prior to the war. In some cases where the old call is being dropped entirely, it may be wise to write both to the old call area and the new call area that supersedes the old call. Surely they will contact someone that will recognize the old call and may desire to get in touch with the former operator.

— Milton J. Molloy, W2GRH
Engineered to Meet Modern Demands

The Schematic Diagram at the right shows the fundamental circuits of this Unit — straightforward — properly applied — to obtain the best operation. Added is the distinguishing feature of MOTOR TUNING for the tuning adjustments of the final stage and loading to the antenna — another EXCLUSIVE for the GATES 250 C. Also, there are but TWO controls for the entire tuning procedure, for simplicity. These are only a few of its outstanding superiorities in engineering design.

WRITE FOR COMPLETE SPECIFICATIONS

New York Office: 9th Floor • 40 Exchange Place

Gates
Radio Co.
Quincy, Illinois

Exclusive Manufacturers of Radio Transmitting Equipment...since 1922
Do business with the biggest and one of the best in the field. Enter your orders for the following:

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skyriders Jr., S41</td>
<td>$33.50</td>
</tr>
<tr>
<td>Hallicrafters S38</td>
<td>$39.50</td>
</tr>
<tr>
<td>Hallicrafters SX-25</td>
<td>$94.50</td>
</tr>
<tr>
<td>Hallicrafters SX-28A</td>
<td>$233.00</td>
</tr>
<tr>
<td>Hallicrafters S36A</td>
<td>$297.50</td>
</tr>
<tr>
<td>Hallicrafters S37</td>
<td>$591.75</td>
</tr>
<tr>
<td>National N-2-40C</td>
<td>$225.00</td>
</tr>
<tr>
<td>National One-Ten</td>
<td>$66.10</td>
</tr>
<tr>
<td>National HRO Sr</td>
<td>$197.70</td>
</tr>
<tr>
<td>RME-45</td>
<td>$186.00</td>
</tr>
<tr>
<td>Hammarlund HQ129X</td>
<td>$129.00</td>
</tr>
<tr>
<td>Hammarlund SP-400-SX Super Pro complete</td>
<td>$342.00</td>
</tr>
<tr>
<td>Hammarlund SP-400-X Super Pro complete</td>
<td>$342.00</td>
</tr>
<tr>
<td>Harvey 100 transmitter</td>
<td>$383.00</td>
</tr>
<tr>
<td>Temco 72 100GA transmitter</td>
<td>$493.00</td>
</tr>
<tr>
<td>HT-9 transmitter</td>
<td>$230.00</td>
</tr>
</tbody>
</table>

Some models are available for immediate shipment. As more and more receivers become available Bob Henry will be able to serve you better and better. By dealing with the world’s largest distributor of short wave receivers you are assured of the fastest delivery possible and the best of service.

Enter your reservation now. You can trade in your present receiver. You can order on our 6% terms. You can depend on Bob Henry also for a wide assortment and the best values in crystals, transmitting tubes, microphones, test equipment, etc. Your inquiries welcomed.

Condenser Products Company

1375 NORTH BRANCH STREET
CHICAGO 22, ILLINOIS
FOUR BANDS IN FOUR SECONDS!
TWO ADJACENT FREQUENCIES IN EACH BAND!

Plus
400 WATTS
ANTENNA POWER!

with the
WILCOX TYPE
99A TRANSMITTER

A commercial equipment for the amateur who desires the ultimate in a four-band transmitter for use on any frequency between 2 Mc and 144 Mc.

Four fixed-frequency R.F. Units, each with a dual crystal plus a telephone-type dialing system, gives you your instantaneous choice of four bands, with both phone and C.W. on each.

Single 250TL final on medium frequency and Push Pull 4-125A's on VHF.

Complete remote control facilities are included, so that you may select any function, including channel selection, start and stop, etc., by an ordinary telephone dial.

Truly a deluxe transmitter for the discriminating amateur who wants the maximum in operating satisfaction from his hobby.

Complete engineering and installation service, including antenna systems, is available to you, to insure that you will realize the maximum benefit from this fine equipment.

Price: Approximately $3900.00, depending upon frequencies chosen.
Delivery: 30 days.
Complete data available on request.

Wilcox 99A Transmitter with 4 R.F. Units.

Interior View Removable R.F. Unit.

WILCOX ELECTRIC COMPANY, INC.
Manufacturers of Radio Equipment
Fourteenth and Chestnut
Kansas City, Mo.
WALTER ASHE, RFD1, CO.
1125 PINE STREET ST. LOUIS 1, MO

QRM. Packal?e has elements; hor. sup. member; delta or gain over insulators, no adjustments of any kind! Just attach 2-inch line

GUION ROAD, RYE, N. Y. Telephone

WALTER ASHE RADIO CO.
1125 PINE STREET ST. LOUIS 1, MO

RCA INSTITUTES, INC.
Offer thorough training courses in all technical phases of RADIO and TELEVISION

WEEKLY RATES: DAVES — EVENINGS
VETERANS: RCA Institutes is approved under G. I. Bill of Rights For Free Catalog write Dept. ST-46

RCA INSTITUTES, INC.
A Radio Corporation of America Service
75 Varick Street, New York 13, N. Y.

Ted McElroy
World's Largest Manufacturer of Wireless Telegraphic Apparatus
COMPLETE CENTRAL OFFICE EQUIPMENT
McElroy Manufacturing Corp.
82 Brookline Avenue • Boston, Massachusetts

High Forward Gain, Wide-Spaced, 4-Element, All-Aluminum

10 METER BEAM
Weights only 13 lbs! Puts terrific sig. where you want it. No insulators, no adjustments of any kind! Just attach 3-inch line or twin 300 ohm line and use! Easily supported and rotated with a 1½ inch round wood pole. Up to ten times power gain over ¾ wave ant. Cuts down ignition and other QRM. Package has elements; lor, sup. member; delta or folded dipole term, panel; all hardware; complete instructions and clear print. Amateur net price $3.00.

U.H.F. RESONATOR CO.
GUION ROAD, RYE, N. Y. • Telephone Rye 2030

BOOK REVIEWS

From the preface we learn that "the material contained in this book has been used for some time in the training of Navy men and women as radio operators." The book shows considerable care in the arrangement and presentation of the sixteen chapters, particularly the early ones on the nature of electricity, batteries, circuits, magnetism and motors. Each chapter is headed by key statements outlining the chapter, many illustrations are included, and there is a review test at the end of each chapter. Each chapter also includes several "demonstrations," or experiments, to help in illustrating the principles introduced in the chapter. An unusual feature at the end of each chapter is the list of motion pictures and slide films covering the subject of the chapter. To further aid the student, many of the illustrations are photographs of actual components, so that the reader has a mental picture of the physical form of things like resistors, capacitors and inductors from the first time he reads about them. The beginner should be able to learn a great deal if he follows the text carefully.

As in many books of this type, there are things to criticize. A purist would take issue with the representations of radio waves in Fig. 183, because the sine waves start at maximum instead of zero and somewhere an amplitude-modulated carrier acquires modulation at twice the modulation frequency and also gathers itself considerable f.m. in the process. This may be the result of the author's habit of not neutralizing his triode amplifiers, since in Fig. 370 and again in Fig. 385, a neutralizing condenser is shown incorrectly connected in the circuit, and it might prove rather confusing to the tyro. However, with someone to point out the few confusing points here and there, or in a corrected second edition, the beginner will find this a book that is easy to follow and understand.

This book is apparently intended for private or public agencies contemplating the use of a two-way radio system. Its twenty chapters cover the entire useful radio spectrum from low-frequency induction systems to the use of microwaves by railroads. Police, public transportation, personal and aeronautical applications are all discussed in more or less detail. Typical systems are described in each class, and in many cases initial cost and upkeep expense evaluations are made. Licensing and other legal requirements for station construction and operation are mentioned. The book is generously illustrated with photographs of various installations, and pictures and schematic diagrams of equipment. There doesn't seem to be too much of interest for the average amateur in this book, although the experimenter interested in commercial tube line-ups of mobile equipment will find a number of interesting circuit details of a.m. and f.m. transmitters and receivers, along with scattered design and constructional ideas.

Inside the Vacuum Tube, by John F. Rider; published by John F. Rider, N. Y. 407 pages, 6 x 8½; illustrated. Price, $4.50.

It is quite possible that there are people who could read Mr. Rider's latest book and then say they didn't have a very clear picture of how a vacuum tube works, but it hardly seems probable. Certainly such people have no business being interested in radio. The book does not pretend to be the last word in vacuum-tube theory, but the reader will find in its fifteen chapters an interesting physical picture of what goes on inside the various types of tubes. The accent is on a visualisation of the workings of electrons

(Continued on page 180)
Due to design characteristics and close control of manufacturing processes, Burlington instruments embody the following advantages:

PERMANENCE OF CALIBRATION • • • All DC instruments employ Alnico magnets which are known to be more highly resistant to shock, heat, vibration, and stray fields than any other magnetic material.

FREEDOM FROM STICKING • • • Clearances for all moving parts are such that the results of entrance of small particles as encountered in field service are reduced to a minimum.

STABILITY OF OPERATION • • • All instruments are "NORMALIZED" after assembly to eliminate "zero shift" and other calibration errors due to ageing.

Exceptionally high torque to weight ratio of control springs to moving element insures minimum error under conditions of shock, vibration, and other rough usage.

Alignment of jewels and magnet core piece is such that the center lines of these parts coincide within plus or minus .002". The design of the brass movement frame and components is such that mechanical tolerances are reduced to a minimum in assembly. As a result, jewel and pivot wear is uniform which reduces "frictional torque" of the moving coil.

All series resistors and coils are heat treated and impregnated after wrapping to insure stability and long life.

All ranges AC & DC are available in 2½", 3½" and 4½" sizes, both square and round, flush mounting.

Engineering service furnished for specialized applications.
No obligation. • Write today for further information.

BURLINGTON INSTRUMENT CO.
807 Fourth Street • Burlington, Iowa
LONG SCALE, WIDE RANGE
VOLT-OHM-MILLIAMMETER

DOUBLE SENSITIVITY
D.C. VOLT RANGES
0-1.25-5-25-125-500-2500 Volts,
at 20,000 ohms per volt for greater ac-
curacy on Television and other high
resistance D.C. circuits.
0-2.5-5-25-125-500-2500 Volts,
at 10,000 ohms per volt.
A.C. VOLT RANGES
0-2.5-5-25-125-500-2500 Volts,
at 10,000 ohms per volt.
OHM-MEGOHMS
0-600 ohms (25 ohms center scale)
0-50,000 ohms (300 ohms center scale)
0-10 megohms (60,000 ohms center scale)
DIRECT READING OUTPUT LEVEL
DECIBEL RANGES
-30 to +3, +15, +29, +43, +55, +69
DB
TEMPERATURE COMPENSATED
CIRCUIT FOR ALL CURRENT
RANGES D.C. MICROAMPERES
0-50 Microamperes, at 250 M.V.
D.C. MILLIAMPERES
0-1-10-100-1000 Milliamperes, at 250
M.V.
D.C. AMPERES
0-10 Ampere,s, at 250 M.V.
OUTPUT READINGS
Condenser in series with A.C. Volts for
output readings.
ATTRACTIVE COMPACT CASE
Size: 3 1/2" x 5 1/4" x 6". A readily port-
able, completely insulated, black
molded case with strap handle. A
suitable black leather carrying case
(No. 629) also available, with strap
handle.
LONG 5" SCALE ARC
For greater reading accuracy the
Triplett RED dot lifetime guar-
anteed meter.
SIMPLIFIED SWITCHING
CIRCUIT
Greater ease in changing ranges.

Write for descriptive folder giving full
technical details

Precision first . . . to last

- 625-N -

ELECTRICAL INSTRUMENT CO., BLUFFTON, OHIO

A Buy-word for Excellence

40 YEARS

DEPENDABILITY

Special-purpose transmitting antennas
designed for volume production to your
own specifications. Collapsible—sec-
tional—direction finding—radar and
coaxial type. All
sizes, lengths and
materials. Consult us
on your needs.

L. S. BRACH MFG. CORP.
200 CENTRAL AVENUE NEWARK, N. J.
WORLD'S OLDEST AND LARGEST MANUFACTURERS OF RADIO ANTENNAS AND ACCESSORIES.
"EYES FOR YOUR RECEIVER"
WITH THE PANADAPTOR
Immediate delivery on this nationally advertised "ham's right arm". You can see up to 200 kc. of the band at once. Read Panoramic's full page ad in this issue and call Sun Radio. Comes ready to operate. One year guarantee. net $99.75

HALLCRAFTERS S-40, FIRST IN PERFORMANCE, PRICE, STYLE
Permeability tuned "micro-set" type RF coils. 540 kc to 42 mc continuous in 4 bands. 3 position tone control. High signal to noise ratio. Inertia flywheel tuning. ANL. net $79.50 (Approx.)

"EVERY HAM NEEDS A MILLEN 50 WATT EXCITER"
Use it either as a low power xmt or as an exciter for high power stages. Unless otherwise requested, comes less tubes but with coils for 10 meter operation and 40 meter crystal, to quadruple down to 10. net $37.50

NEW CARDWELL UHF "BUTTERFLY" CONDENSERS
Pictured is type PL-6113. Range: 14-11 mmf. Perfect electrical symmetry and low distributed inductance. The only variable for use on the ultra highs. Type PL-6076 covers 6-3.5 mmf. PL-6113 — $2.40 net PL-6076 — $1.62

Sun Radio has a complete stock of RCA batteries and B&W products.

Do you need record cleaners, playbacks, blanks, or PA equipment? Call Sun Radio.

Detailed Technical Data For All Items Sent On Request.

FREE OFFER
Condensed chart of Graphical Symbols for Electronic Diagrams as standardized by the RMA (includes those until recently kept secret). Just ask for it. Address Dept. ER-6.

"I may be just a part of a shack, but I'm tired of repeating the words of some stranger a thousand miles away. Now I'm going to speak for myself.

"You've been letting us go to pot, O.M. Receiver out of alignment. Rig components need replacement. Switches shot. No meters. Brother, your rig is a mess, whether you know it or not.

"Look. Do us both a favor. Drop a card to Sun Radio. There must be something on Sun's half million feet of shelves to make us work better: parts, equipment, tools, accessories. Now that we're back on the air, let's really go to town. Call Sun Radio now, and get exactly what you need — the FIRST time."

In writing, please mention this ad.

Note our ONE and ONLY address.

SUN RADIO & ELECTRONICS CO., INC.
122-124 DUANE ST. NEW YORK 7, N.Y. • Barlcay 7-1840

149
A 2 METER
COAXIAL VERTICAL
RADIATOR FOR
EITHER MOBILE OR
FIXED STATION USE
FOR $11.75 NET
F.O.B. OAKLAND

Both the ¼ in. Radiator and Skirt are adjustable for frequencies from 144 to 148 mc. Fitted with an amphenol 83-IJ connector, to take a 72 ohm line coaxial cable.

W. D. BRILL CO.
198 Tenth St. • Oakland 7, California
W6KLO W6SSN W6FIX

HAM SPECIALS
WHILE THEY LAST — REAL BARGAINS!!!

ALL STANDARD BRANDS
Futuny Guaranteed at Rated Voltages

1 mfd. 3600 v. OIL Sq. Can Condensers $3.25
1 mfd. 1000 v. OIL Sq. Can Condensers 3.35
10 mfd. 2500 v. OIL Sq. Can Condensers 6.75
2 mfd. 1500 v. OIL Sq. Can Condensers 3.15
10 mfd. 600 v. OIL Sq. Can Condensers 3.95
10 h. 230 ma. 1500 v. Insulation Chokes 2.95

IN STOCK!!! Hammiltun & National Receivers, chiefs of Power Tubes, MILLIEN RADY ART — AEROVOX Parts. Write for our latest list of Specials.

CHIEF ELECTRONICS
"Mid-Hudson Valley's Only Distributor"
104 MAIN ST. W2APJ POUGHKEEPSIE, N. Y.

ELECTRICITY
FOR RADIO AND ELECTRONIC
APPLICATIONS

ONAN ELECTRIC GENERATING PLANTS
supply electric service for electronics applications and general uses, mobile or stationary. Driven by Onan 4-cycle gasoline engines, they are of single-unit, compact design and sturdy construction.

65 basic models ranging in capacity from 350 to 35,000 watts. Standard A.C. models, 115 volt, 60-cycle, single-phase. Standard D.C. models, 6 to 115 volts. Special voltages to 560 A.C. and 6 to 600 volts D.C. 5 kW to 35 kW units available in 3-phase. High frequencies to 500 cycles. Combination A.C.-D.C. types. Write for detailed literature or engineering assistance.

D. W. ONAN & SONS
2637 Royalton Ave.
MInneapolis 5, Minn.

(Continued from page 146)
in the tube and in external circuits. The actual mathematics used is introduced so painlessly, that in many cases the reader who finds any math at all "too technical," will understand all that is taking place before he realizes that a slight touch of simple arithmetic has been added. The various graphs of tube characteristics are described, but the reader is led by the hand so carefully there is little chance for him to be frightened by the curves.

It would appear that Mr. Rider has done everything possible to make the book easy reading for the man interested in a lucid nontechnical description of vacuum-tube operation. In many cases illustrations are repeated on following pages so the reader won't have to thumb back and look for the necessary pictures. The first four chapters, dealing with electrons, electrostatic fields, emission and ionization, are illustrated with cartoons that depict the electrons as friendly little guys either helping or punching each other, almost like everyday people. The rest of the book is profusely illustrated with line drawings that are never unnecessarily complicated. One is taken through elementary diode and triode theory to tetrodes, pentodes and cathode followers, and voltage and power amplification are both treated. There is a chapter on miscellaneous tubes that covers cathode-ray tubes, acorn tubes, gas-filled tubes and photoelectric cells, just to complete the picture. New radio amateurs, anxious to learn about transmitter operation, might be disappointed in the omission of a discussion of Class-B and Class-C amplifiers, but this hardly detracts from the value of the book, since the reader who has finished "Inside the Vacuum Tube" is in an excellent position to go on to a more advanced book for further information.

One feature of the book, the "anaglyphs" that give a stereoscopic picture when viewed through spectacles that are included with the book, was quite unusual, but there are only three such illustrations and there could be many more. But this is hardly a shortcoming of a book that should be very educational and interesting to anyone who wants a physical picture of how a vacuum tube works.

— B. G.

Wanted: a “handle” exterminator. For our money, that’s the most distasteful word in all the language of amateur radio.

Corporal Walter G. Egan, W2OKW, is an electroencephalographic technician in the Army Medical Corps and gives us some interesting information on their work in recording the electrical activity of the brain. This technique is mainly an additional diagnostic measure in epilepsy, brain lesions, tumors, etc. The amplitude of the brain wave at the scalp is of the order of 20 to 50 microvolts, and the frequencies vary between 1 and 40 c.p.s., normally lying in the range 8.5 to 12 c.p.s. Ten wires are fastened to the patient’s head with collodion, eight on top and one on each ear. The patient is put in a shielded room and his wires are connected through a shielded cable with four independent amplifiers in a recording room, where oscillographic records on a moving strip of paper are made simultaneously from four areas of the brain. The amplifiers are 5-stage audio affairs with 4-µfd. coupling condensers between stages, ending in push-pull 6L6s.

In making the zero in the calls of WØ stations, FCC requires five dashes, will not permit the use of the single long dash.
The initials "CRL" in the diamond represent the research-laboratory and technical manufacturing facilities of Centralab... a name outstanding for quality, precision and new developments in the field of radio and electronics.

Always Specify Centralab.

Send for Catalog No. 25.
ANNOUNCES THE NEW CODE PRACTICE

OSCILLATONES

with Adjustable Resonator

for Greater Volume

ADJUSTABLE RESONATOR

Better Tone

MS '710, less resonator and less built-in key. Amateur net price $9.90
MS 710R, with resonator but less built-in key. Amateur net price $10.90
MS 710P, with built-in key but less resonator. Amateur net price $11.50
MS 710PR, DeLuxe Master Oscillatone with resonator and built-in key. Amateur net price $13.00

Adjustable Resonator (optional) increases volume five times. Tone frequency variable from 600 to 1500 cycles. Volume control from 0 to FULL ON. "PM" DYNAMIC speaker may be disconnected during headphone operation. Up to 300 headphones may be used. Has phone jack for headphones. Optional built-in key. 110 V. AC or DC. Uses a 117N7GT tube. Gray crackle finish.

NOW IN STOCK AT ALL LEADING RADIO DISTRIBUTORS

TELEGRAPH Apparatus Co.
412 South Green St.
Chicago 7, Illinois

TRANSMITTING TUBES RECTIFIERS
CATHODE RAY TUBES

We have been appointed a sales agent by Defense Supply Corporation of Government surplus tubes and rectifiers. All are first grade Government tested—not rejects.

The following types are immediately available:

826 (HF Triode) 5AP1
VT 127A (HF Triode) 304 TL
872A M. V. Rectifier 3AP1

We extend discounts to dealers on standard packages. Write for prices.

LEWIS ELECTRONICS 16 Lyndon Avenue Los Gatos, California

Here's a New POWER CUTTER KIT with a cutting range of 5/8" to 2 1/2"...

Only $7.85 Complete

Two Bruno Adjustable Hole Cutters in one convenient kit. High speed steel blades cut clean, fast holes in metal, wood, plastics. Quickly adjustable and easily sharpened. Designed by tool engineers to operate efficiently in bench drill, drill press or portable drill. Ask your jobber, or write Dept.

POWER CUTTER KIT CONTAINS

Size 1. Pipe Size 1. Expansion Price
3/8" to 1/2" $5.00
3/8" to 1 1/2" $10.00
1 1/2" to 2 1/2" $15.00
2 1/2" to 3" $20.00

970 KIT Free trade list prices $18.50

T.A.C.

ANNOUNCES THE NEW CODE PRACTICE

OSCILLATONES

with Adjustable Resonator

THERE'S A NEW POWER CUTTER KIT with a cutting range of 5/8" to 2 1/2"...

Only $7.85 Complete

Two Bruno Adjustable Hole Cutters in one convenient kit. High speed steel blades cut clean, fast holes in metal, wood, plastics. Quickly adjustable and easily sharpened. Designed by tool engineers to operate efficiently in bench drill, drill press or portable drill. Ask your jobber, or write Dept.

POWER CUTTER KIT CONTAINS

Size 1. Pipe Size 1. Expansion Price
3/8" to 1/2" $5.00
3/8" to 1 1/2" $10.00
1 1/2" to 2 1/2" $15.00
2 1/2" to 3" $20.00

970 KIT Free trade list prices $18.50

WWV Schedules

STANDARD-FREQUENCY transmissions are made available as a public service by the National Bureau of Standards over its standard-frequency station, WWV, on the following schedules and frequencies:

2.5 Mc. — 7:00 p.m. to 9:00 a.m. EST (0000 to 1400 GMT).
5.0 Mc. — Continuously, day and night.
10.0 Mc. — Continuously, day and night.
15.0 Mc. — Continuously, day and night.

The 10- and 15-Mc. radio frequencies are modulated simultaneously at accurate audio frequencies of 440 and 4000 cycles. 5 Mc. carries both audio frequencies during the daytime but only 440 cycles from 7:00 p.m. to 7:00 a.m., EST, while 2.5 Mc. carries only the 440-cycle modulation. A 0.005-second pulse may be heard as a faint tick every second, except the 59th second of each minute. These pulses may be used for accurate time signals, and their one-second spacing provides an accurate time interval for physical measurements.

The audio frequencies are interrupted precisely on the hour and each five minutes thereafter, resuming after an interval of precisely one minute. This one-minute interval is provided to give Eastern Standard Time in telegraphic code and to afford an interval for the checking of radio-frequency measurements free from the presence of the audio frequencies. Ionospheric disturbance warnings applicable to the North Atlantic path are given at 20 and 50 minutes past each hour. If a disturbance is in progress or is anticipated within 24 hours, the time announcement is followed by 6 Ws; if conditions are quiet or normal, the time announcement is followed by 8 Ns. The announcement of the station’s services and of the station’s call (WWV) is given by voice at the hour and half hour.

The accuracy of all the frequencies, radio and audio, as transmitted, is better than a part in 10,000,000. Transmission effects in the medium may result in slight fluctuations in the audio frequencies as received at a particular place; the average frequency received, however, is as accurate as that transmitted. The time interval marked by the pulse every second is accurate to 0.00001 second. The 1-minute, 4-minute and 5-minute intervals, synchronized with the second pulses and marked by the beginning and ending of the periods when the audio frequencies are off, are accurate to a part in 10,000,000. The beginnings of the periods when the audio frequencies are off are synchronized with the basic time service of the U. S. Naval Observatory that they mark accurately the hour and the successive 5-minute periods.

Of the frequencies mentioned above, the lowest provides service to short distances and the highest to great distances. In general, reliable reception is possible at all times throughout the United States and the North Atlantic Ocean, and fair reception over most of the world.
R. C. & L. F. HALL, INC.

THE HAM SHACK

1015-17 Caroline Street • Houston 2, Texas

Telephone C-9737

Our stock is at a new all time high although some items are still relatively scarce. We are delivering many communications receivers to those who have placed a $5 deposit with us. Your attention is called particularly to the Hallicrafters S-38; the Robson-Burgess V-O-M at $18.75 and the splendid value in the crystal control, 8 channel, Aircraft Transmitter T-67-ARC/3, 100-156 mc, and our splendid stock of amateur components.

TRANSFORMERS

The following lines of transformers are now in stock:

- Peerless
- Stancor
- Ihermador
- Thordarson

SPECIALS

UHF-Aircraft transmitter, T-67-ARC/3, 8 channel, $47.50

PREMIUM PANEL METERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RME-45</td>
<td>4 channel with self-contained speaker</td>
<td>$47.50</td>
</tr>
<tr>
<td>RME-84</td>
<td>8 channel with self-contained speaker</td>
<td>$57.50</td>
</tr>
<tr>
<td>VHF-152</td>
<td>152 channel with self-contained converter</td>
<td>$57.50</td>
</tr>
</tbody>
</table>

COILS

- **SIMPSON PANEL METERS**
 - **Square or Round Cases** — DC Milliammeters, DC Volt Meters, AC Volt Meters
 - **DC MILLIAMMETERS**
 - 2" Range: 0-50: $14.34
 - 3" Range: 0-100: $18.80
 - 4" Range: 0-200: $16.50
 - **DC VOLTMETERS**
 - 4" Range: 0-50: $8.17
 - **AC VOLTMETERS**
 - Model 57: Range 0-10: $5.14
 - Model 57: Range 0-150: $6.24

CRYSTALS

- **Bud**
 - 50 Meter: $2.50
 - 40 Meter: $2.80

TEST EQUIPMENT IN STOCK

- Silver “Vomac” $59.85
- Monitor “Crystalizer” Signal Generator $57.50
- Robson-Burgess V-O-M M-1-1000 $30.60

ACROSS THE OPERATING TABLE

- A complete line of Bud and Barker & Williamson coils.
- A postal card will place you on our mailing list to receive our amateur bulletin.
COILS THAT CAN TAKE IT—
AND DISH IT OUT!

FOR POWERS UP TO 500 WATTS

B & W Series 3400 Air Wound Inductor Coils are identical to those supplied by B & W to the Armed Forces for combat duty. They’re plenty tough . . . and they’ll give you the utmost in electrical dependability and flexibility.

Each coil has an individual internal rotary link, adjustable over 360°. This permits precise impedance matching up to 600 ohms, thus providing flexibility far in excess of any installation requirements.

WRITE FOR THE NEW
B & W CATALOG

BARKER & WILLIAMSON
235 FAIRFIELD AVENUE • UPPER DARBY, PENNA.

RG-8/U FLEXIBLE COAXIAL CABLE
at a War-Surplus Price

Solid Polyethylene .285" O.D.
Copper Conductor 7 strands of 21 gauge
Black Vinyl .405" O.D.
Copper Braid

U. S. Signal Corps excess inventories of RG-8/U flexible coaxial cable have been released for civilian sale at a new low price. This is your opportunity to acquire a stock of coaxial cable at rock bottom cost.

RG-8/U is the most completely practical cable for feeding receiving and transmitting antennas for all frequencies up to 250 mc, and also can be used up to 3,000 mc and down to dc. Easily installed because of its flexibility, it is excellent for high-fidelity telephone transmission lines and unsurpassed for feeding FM speakers at long distances from the amplifier and at low impedance levels.

Its shielding, if used as a ground lead, prevents electrical noise pickup, and its low attenuation results in maximum power transmission. The Armed Forces used RG-8/U Coaxial Cable for all-weather outdoor and indoor transmission lines, test cables, and antenna phasing lines.

The solid polyethylene dielectric is absolutely impervious to moisture. Lines do not have to be pressureized, as in the case of beaded-dielectric cables. The solid dielectric and absolute uniformity of construction eliminates reflections caused by discontinuity of dielectric, and enables engineers to figure on lumped constants.

Nominal impedance is 52 ohms. Nominal capacity per foot is 28 mmf. Maximum attenuation is .027 db per foot at 100 mc and .25 db at 3,000 mc. Maximum operating voltage is 4,000 volts rms. Average power rating is 480 watts at 200 mc and 90 watts at 3,000 mc.

Your local dealer has RG-8/U coaxial cable in stock or can get prompt delivery from

BELMONT RADIO CORPORATION
3633 S. RACINE AVE. • CHICAGO 9, ILLINOIS
AGENTS FOR THE WAR ASSETS ADMINISTRATION
UNDER CONTRACT SIA-3-5
SUN RADIO — The Home Of Nationally Known Radio Parts

WAR SURPLUS EQUIPMENT — At A Fraction of Their Original Government Cost!

- CLARASTAT - HALLCRAFTERS - HAMMARlund - INSULINE - JENSEN - MEISSNER - R.C.A. - HYTRON

F.M. TRANSMITTER & RECEIVER BC-683 & BC-684

These units are only slightly used and are guaranteed in perfect condition. The BC-683 Receiver operates on less than 1 microvolt, complete with 9 tubes, 10 push buttons, squelch circuit. The BC-684 Transmitter provides 15-watt output, 10 channel push button crystal control employing NON-LINIER MODULATING COIL, complete with 8 tubes. These units tune from 27 to 38.9 mc. These units come complete with tubes less power supplies and crystals. Excellent 10 meter band for "Ham" use.

YOUR COST: $69.95*

RADAR RECEIVER BC-1068A

These units are all slightly used and guaranteed in excellent condition. It is a "Hot" receiver for the "Ham" and the short wave experimenter covering the 174 to 210 mc television band. Has individually slug tuned antenna, R.F., Detector and Oscillator circuits resulting in maximum sensitivity, contains 3 R.F. and 5 I.F. stages, detector and video amplifier. Complete with 110 volt AC power supply and tubes.

Original Gov't cost $625

YOUR COST: $39.95*

WAVEMETER INTERCONNECTION UNIT BC-1073A

These units are only slightly used and are guaranteed in good condition. They contain a high quality resonant cavity wavemeter, oscillator, heterodyne amplifier, electric tuning eye, complete with 19 tubes, 110 volt AC power supply. The unit tunes from 150 to 210 megacycles.

YOUR COST: $24.95*

DYNAMOTOR POWER SUPPLY PE-103

These units are brand new in the original cartons, operate from either 6 volts or 12 volts and deliver 800 volts DC at 160 milliamps; mounted on box with circuit breakers, relays, interference filter and complete with cables.

Original Gov't cost $300

YOUR COST: $39.95*

Limited Quantities! First come, first served, Order Now!

OTHER SPECIALS

- Octal Molded Bakelite Sockets...
- Each Crystal Microphone complete...
- with Lead Stand...
- Jackson 85 Watt Soldering Iron...
- Accutone Transistor Soldering Iron...
- Bat-Handed Toggle Switch...
- N.P.T....
- Replacement Antenna Lugs...
- Phono Cord...
- Microphone Cables...
- Transistor Cables...
- Complete Male and Female Plated Pointer Knobs...
- Radio Fm...
- Double Insulated Alignment Screws...
- Metal Binding Posts...

* Net F.O.B. Washington, D.C. — 25% Deposit Must Accompany All C.O.D. Orders

UN RADIO OF WASHINGTON, D.C.

938 F STREET, N.W., WASH. 4, D.C.
HAM-ADS

(1) Advertising shall pertain to radio and shall be of such nature that it is not contrary to the purposes and intentions of the association.

(2) A character shall be accepted, nor can any such typographical arrangement, such as all or part capitals, be accepted which would tend to make an advertisement stand out from the rest.

(3) The Ham-Ad rate is 50c per word, except as noted in paragraph 4 below.

(4) Remittance in full must accompany copy. No cash or other compensations will be accepted.

(5) Closing date for Ham-Ads is the 25th of the second month preceding publication dates.

(6) A special rate of 7c per word will apply to advertising with the purpose of selling or exchanging ham or related equipment and the entire quantity of the item is available.

(7) Because error is more easily avoided, it is requested that signatures and addresses be printed plainly.

Having made no investigation of the advertisers in the classified columns, the publication cannot in any way be held responsible for the integrity of the goods or character of the products or services advertised.

QUARTZ - Direct importers from Brazil of best quality pure quartz crystals. Write today for free catalog. Quartz, Woodside, Calif.

ROTOBEAMS, RMR-44A, New National and Hammarlund receivers. Conklin Radio, Bethel, N. Y.

IN stock: HT4 BC-610 transmitters reconditioned and converted for 78 mc operation by Hallicrafters with tubes, speech amplifier, coils for any three bands, $33.50. Henry Radio, Butler, Mo., and Los Angeles, Calif.

CASH for 500 to 5000 wave and cw qrm, 80, 40 and 20 meters. R. Whittaker, 541 Brier Cliff Road, Pittsburgh 21, Penna.

WANTED: antique radio material, old books, magazines, for ham collection. Have some old duplicated Hamers will exchange for your items. Answer all letters. Write: Corp, W6LTM, Box 131X, Wrightwood, Calif.

WANTED: ultra high frequency, 1/2 casing, 50 mc. Will pay high prices. Y. M. Bay, 1437 S. Main, San Diego, Calif.

HALLICRAFTERS S-29 portable or S-31 tuner AM/FM wanted. Have almost new S-35A for sale. A. C. Brooks, RFZ Z's Brown's Station, St. Louis, Mo.

SELL new HRO components, coils, 100 kc. 30 mc., 10 xtal filters, 3 meters, 4 and power trans., clock, vibrations, vibrators, dials, condensers. Norton, 7700 Ridge Blvd., Brooklyn 9, N. Y.

FOR SALE: 200 watt power supply, $100. All components new, unused. Complete with all parts. $100 on good order. Wanted: new or almost new S-20R or SX-25 or whatever have Bill Valentine, care Station KQAK, Gallup, New Mexico.

QST: offer 60 gc each, October 1940, June, September, 1943, August, September, 1944. Write Earl, KASJ, South Carolina.

FOR SALE: 100 TS tubes, 100 watt plate dissipation, 200 mc. 1 vol. 60 and 150 amp 60 cycle transformers. Metters, Weston 301, Series 4; a.c. and d.c. dials; 150 av. milliamperes, d.c. 24" x 28," Marlin, 1-0 milliamperes, d.c. 24" x 28," W6LTM, 1-0 milliamperes, d.c. 24" x 28," W8BDD, 3-0 milliamperes, d.c. 24" x 28," W2XATF, 5-0 milliamperes, d.c. 24" x 28," W7FW, 30-0 milliamperes, d.c. 24" x 28," W6LTM.

WANTED: 1000 1-0 and 5-0 milliamperes. W6LTM, Box 19, Amsterdam, N. Y.

Panel meter, 30-0 milliamperes, d.c. 24" x 28," W6LTM.

RPM RANGE: transmitters, receivers, transmitting tubes, condensers, $125.00 postpaid. Immediate delivery. Kenyon, 7200 Ridge Blvd., Brooklyn 9, N. Y.

OSCISLOSCOPES: 5' Army surplus, SCR268 Western Electric manufacture. Complete with all tubes. Special offer, $14.25 plus $13.00 postpaid and shipping charges. Special unit, $35.00 min. to 300 max. per section. Heavy silver plated rotors and shield, all parts new, in original box, complete. $20.00 shipped. J. L. Wright, 701 E. 35th St., Chicago 16, Ill.

CASH for 350 to 500-watt phone and cw xmtr, 80, 40 and 20 meters. W6LTM.

FOR SALE: 3000 ancient ham gear, communication receivers, large bands. Price, $180. Also sell RME-99 complete with built-in power supply. Complete with tubes. $150. White Sound Service, 151 West 63rd St., N. Y. C.

ALASKAN hams: Here is a source of supply closer to home. Stocking all the leading brands of ham gear, communication receivers, parts accessories, engine speeds, parts, transmitters, money. Robie's Radio Supply, Alaska jobbers. P.O. Box 1355, Anchorage, Alaska.

ALASKAN hams: Here is a source of supply closer to home. Stocking all the leading brands of ham gear, communication receivers, parts accessories, engine speeds, parts, transmitters, money. Robie's Radio Supply, Alaska jobbers. P.O. Box 1355, Anchorage, Alaska.

ALASKAN hams: Here is a source of supply closer to home. Stocking all the leading brands of ham gear, communication receivers, parts accessories, engine speeds, parts, transmitters, money. Robie's Radio Supply, Alaska jobbers. P.O. Box 1355, Anchorage, Alaska.

ALASKAN hams: Here is a source of supply closer to home. Stocking all the leading brands of ham gear, communication receivers, parts accessories, engine speeds, parts, transmitters, money. Robie's Radio Supply, Alaska jobbers. P.O. Box 1355, Anchorage, Alaska.

ALASKAN hams: Here is a source of supply closer to home. Stocking all the leading brands of ham gear, communication receivers, parts accessories, engine speeds, parts, transmitters, money. Robie's Radio Supply, Alaska jobbers. P.O. Box 1355, Anchorage, Alaska.

NORTHWEST hams: We have excellent surplus equipment. Sherman tank, transmitters/receivers, S-29 Collins Autotune transmitters, BC-942, BC-910, similar to HT4, frequency meters. Get a copy of our mailing list. Range Electric 224 Norfolk, Ironwood, Michigan.

ONE complete course radio, television and marine radio, plus technical books for sale, reasonable. Write Benasens, 1840 West 49th St., 3500 20th St., Chicago 11, Ill.

SELL, going to higher power so offer 0.5-807 ten meter tubes. High quality tubes and coils and meters, $12.00. R. C. Bell, Inc., Ft. Lauderdale, Fla.

SELL rack-mounted HRO complete with six coil units, General Electric. Price, $180. Also sell RME-99 complete with built-in power supply, 80, 40 and 20 meters. W6LTM.

SOLD: 600 tubes, 80, 40, 20, and 15 meters. W6LTM.

SOLD: 250 tubes, 80, 40, 20, and 15 meters. W6LTM.

SOLD: 1000 tubes, 80, 40, 20, and 15 meters. W6LTM.

SOLD: 500 tubes, 80, 40, 20, and 15 meters. W6LTM.

SOLD: 250 tubes, 80, 40, 20, and 15 meters. W6LTM.

SOLD: 1000 tubes, 80, 40, 20, and 15 meters. W6LTM.

SOLD: 500 tubes, 80, 40, 20, and 15 meters. W6LTM.

SOLD: 250 tubes, 80, 40, 20, and 15 meters. W6LTM.

SOLD: 1000 tubes, 80, 40, 20, and 15 meters. W6LTM.

SOLD: 500 tubes, 80, 40, 20, and 15 meters. W6LTM.

SOLD: 250 tubes, 80, 40, 20, and 15 meters. W6LTM.

SOLD: 1000 tubes, 80, 40, 20, and 15 meters. W6LTM.

SOLD: 500 tubes, 80, 40, 20, and 15 meters. W6LTM.
OSLA. the way you want them.

Cabinet outfit. Capt. S. C. Macy, Eupedon Farm, OV:jfl~H~i~h:~1ef~~l~~~;i_o Ma. $45. E. Erickson, WP NLM,
buffer, National exciter-speech amplifier, complete with Ham 10-
SALE: Par-Metal broadcast Type Crack ant. $35. G. Hausske, W9OLE, 1650 N. Long, Chicago,
33-17 84th, Jackson Heights, L. I., N. Y.

LYN, 11, N. Y.

WANTED: Meissner signal shifter, state condition coils and price.
WANTED: Hi:hMEower 'phone transmitter or parts. Sell or trade
WANTED: A National 200 communications receiver. Art Stockell-
10,000 ohm. $13. G. Hausske, W9OLE, 1650 N. Long, Chicago,

SALES tubes. Maire offer for lot or individually. Walter Miller, Apt.

Small compact unit. Louis Bloch. 15705 So. Moreland, Cleveland,
80~METER transmitter,
instructoph with 14 tapes, SWJ plus power pack, 200-300 kc,
small, metered. Steel cabinet, dolly, antenna tuning panel, relays remotely
controlled. Complete with tubes. $40. Also Stancil 53B speech amplifier.
$100. Dr. J. M. Blaylock. 15705 So. Moreland, Cleveland,

$75

fnent stock in USA. Write for list and state needs. Prompt ship-

HUNGRY for a good old-fashioned Starved Rock Radio Club
Hamfest! Come to Camr, KI-Shau-Wau near Starved Rock State

a. Standard Edition$1.00**
b. Special Defense Edition................ $1.00

Building an Amateur Radio-telephone

in stock. Order from Fritz. QSL-SWLs.

Get em now! Fritz, 1213 Briargate, Joliet, Illinois.

IMEEDiATE shipment transmitting variable condensers, 3500
space. High quality signal receiver, station length 1/2 x 4
Split plate 50 use at each, $1.49. $490. 500 use at each, $4.75.
Single condenser 50 use at each, $1.75. We probably have the most complete
ham stock in USA. Write for list and price. From Fritz. QSL-SWLs.

GREAT MISSION. The Radio Amateur's License Manual ...

$2.50 per year•

A Course in Radio Fundamentals. . Out of print

* In the United States and Possessions - other Countries
$1.00 per year.

**Paid in Continental U.S.A.

The AMERICAN RADIO RELAY LEAGUE, INC.
West Hartford 7, Connecticut

- $1.50. postpaid. elsewhere

RADIO COURSES

RADIO OPERATING • RADIO SERVICING • ELECTRONICS

- REFRIGERATION SERVICING

Y.M.C.A. TRADE & TECHNICAL PROGRAMS
W. 4th St., West Hartford, New York City
"Designed for Application." Extremely compact. Case size is only 1 ½" x 1 ½" x 1/4". Uses bevel gears. Mounts on adjustable "standoff rods," single hole panel bushing or tapped holes in frame. Ideal for operating switches, potentiometers, etc., that must be located, for short leads, in remote parts of chassis.

The No. 10012
RIGHT ANGLE DRIVE

JAMES MILLEN MFG. CO., INC.
MAIN OFFICE AND FACTORY
MALDEN MASSACHUSETTS

Index to Advertisers

Page

Advance Electric & Relay 130
Aireen Electric Company 131
Allied Radio Corporation 122
American Phenolic Corporation 128
American Radio Institute 136
Arco Co., Walter ... 137
Astatic Corporation, The 91
Barker & Williamson .. 154
Bell Telephone Laboratories 154
Bennett Radio Corporation 154
Billey Electric Company 1
Brach Mfg. Co., L. S. .. 145
Brill Co., W. D. ... 150
Bruno Tools .. 159
Burgess Battery Co. .. 100
Burlingame Instrument Co. 110
Bursten-Applebee Co. 140
Cambridge Thermionic Co. 110
Candler System Co. .. 100
Capital Radio Eng. Institute 90
Curtis Motor Company 128
Centralab .. 151
Chief Electronics .. 150
Cleveland Inst. of Radio Electronics 124
Collins Radio Company 87
Commercial Equipment Co. 108
Commercial Radio Institute 140
Communication Measurements Laboratories 135
Conditioner Products Company 144
Coco-Coll Co., Inc. ... 130
Crystal Products Co. .. 133
Crystal Research Labs 123
Drake Electric Company 116
Eitel-McCullough, Inc. 127
Electrical Reactance Corporation 132
Gates Radio Company 144
General Electric Company 9
Hall, R. C. & L. C. .. 153
Hallcrafters Company, The 81
Hammond Mfg. Co., Inc., The 81
Harrison Radio Company 81
Harvey Radio Company 125
Harvey Radio Laboratories 98
Harry & Young .. 143
Henry Radio Shop ... 144
Hancock Elec. & Radio Corporation 92
International Resistance Company 7
Jensen Radio Mfg. Co. 99
Johnson Co., E. F. .. 92
Ken-Rad ... 150
Kwikheat Soldering Irons 128
Lewis Electronics ... 152
Lippman & Co., Aaron 110
Maguire Industries .. 94
Mallory & Co., P. R. .. 90
Marion Electrical Inst. Co. 135
McKee Mfg. Co. ... 145
McMurdo Silver Co. 124
Milen Mfg. Co., James 138
Murdock Co., William J. 130
National Co., Inc. .. 70
Newark Electric Co. ... 105
New York YMCA Trade & Tech. School 157
Ohmite Mfg. Co. .. 104
Ohan & Sons, D. W. .. 160
Panoramic Radio Corporation 117
Perkin Radio Co. ... 137
Port Arthur College .. 134
Radio Maintenance Magazine 119
Radio Mfg. Engineers 111
Radio Products Sales 111
Radio Shack, The ... 113
RCA Institutes, Inc. ... 87
RCA Tube Department 100
Scoli & Co., R. G. ... 142
Simpson Electric Co. 142
Spenzy Gyroscope Co. 97
Standard Radio & Elec. Products Co. 131
Sun Radio & Electronics Co. 139
Sun Radio Co. of Washington 155
Sylvania Elec. Products Inc. 139
Taylor Tubes Co. .. 104
Telegraph Apparatus Co. 152
Terminal Radio Co. ... 122
Transmitter Mfg. Co. 122
Tree Tool Works ... 122
Triplette, Elec. Instrument Co. 148
Turner Co., The ... 127
UHF Resonator Co. ... 146
United Electronics .. 141
United Transformer Corp. 146
Valparaiso Tech. Institute 134
Vibroplex Co., The .. 140
Ward Leonard Electric Co. 126
Western Electric Co. .. 142
Wilcox Electric Co. .. 145
World Radio Laboratories 141
CONSTANTLY IMPROVED -
BUT NO YEARLY MODELS

In the RME 45 you will now find:

1 **Two Speed Tuning.** A dual drive mechanism is now provided, in line with the calibrated bandspread scale, which gives rapid tuning to cover the band, slow tuning to locate that station. Smooth, effortless, single dial control, calibration on five amateur bands, plenty of spread and real efficiency.

2 **Voltage Regulation.** Incorporated as an added feature, the RME 45 is now equipped with a VR-150 regulator tube to further reduce any drift to an absolute minimum and to stabilize the overall performance of an already fine instrument. You will like this addition.

3 **Improved Noise Limiter.** To make operation in a noisy location more enjoyable, a series noise limiter with an ON-OFF switch is being built into the RME 45. It works exceptionally well on all types of interference and goes after the spark-plug type with a vengeance.

Now more than ever, you MUST hear the RME 45 perform!

Specification Sheet on Request

RADIO MFG. ENGINEERS, INC.
Peoria, Illinois U.S.A.
HE friend in Moscow you’ve never seen will query you on behalf of his group, “Are American receivers as efficient as we hear? How is DX on the various bands?” His signal, travelling thousands of miles, will be clearer because of the Ken-Rad all-metal tubes you’re using. War-tested, the Ken-Rad features of compactness, short lead lengths, and self-shielding design now are available to improve your rig’s performance. Type 6SK7—popular high-gain receiving tube—is one of many efficient, stable types about which your Ken-Rad distributor or dealer gladly will give you complete information.

Characteristics of Type 6SK7

- **Heater voltage**: 6.3 v
- **Max screen voltage**: 100 v
- **Heater current**: 0.3 amp
- **Amplification factor**: 1,600
- **Max plate voltage**: 250 v
- **Transconductance**: 2,000 mhos

KEN-RAD

Division of General Electric Company

OWENSBORO, KENTUCKY

Make the nearest Ken-Rad distributor or dealer your preferred source for amateur tubes.
NEW IF TRANSFORMERS

These new IF transformers are designed to meet the highest standards of performance in high frequency FM and AM. All operate at 10.7 Mc., making them ideal for the new FM band. Iron core tuning is employed and the tuning does not affect the bandwidth of 100 Kc. for the IFN or 150 Kc. for the IFM.

The discriminator output is linear over the full 150 Kc. output and remains symmetrical regardless of the position of the tuning cores.

Insulation is polystyrene for low losses. Mechanical construction is simple, compact and rugged. The transformer is 1½ inches square and stands 3½ inches above the chassis.

NATIONAL COMPANY, INC., MALDEN, MASS.
Now — Operate These Class B Modulators at Zero Bias and Get Greater Output With Low Driving Power

The new ICAS zero bias operating conditions for ratings given the RCA 809 and 811 transmitting triodes make them more than ever preferred types for Class B Modulator service. Under these new conditions, a pair of 809’s will deliver 120 watts at a plate voltage of 700 with 3.4 watts grid drive — enough audio power to plate-modulate a quarter kilowatt. A pair of 811’s will deliver 210 watts at a plate voltage of 1250 with 3.4 watts grid drive — enough audio power to plate-modulate a half kilowatt. Higher plate voltages together with battery bias will give even greater output.

The RCA 809 and 811 are also favorites in the amateur field as Class C amplifiers and frequency doublers. They can be operated at full ratings as high as 60 megacycles.

For further details on these triodes, see your local RCA Tube Distributor or write RCA, Commercial Engineering Department, Section A-21F, Harrison, N. J.

THE FOUNTAINHEAD OF MODERN TUBE DEVELOPMENT IS RCA

TUBE DEPARTMENT

RADIO CORPORATION of AMERICA

HARRISON, N. J.