devoted entirely to amateur radio
WITH important E-V developments such as the Mechanaphase® Principle, the Differential Principle, the Aconstalloy Diaphragm... ELECTRO-VOICE brings you the widest selection of quality microphones, for both general and specific applications. In the complete E-V line of unidirectional, bi-directional, and non-directional types, you can easily find exactly the right microphone to give you the sound pick-up and reproduction you want. A few models are shown here. ELECTRO-VOICE engineers are glad to help you on any special problems. Send now for new E-V Catalog No. 101.
TYPE GL-805 is tailor-made for Class B modulator use—therefore the most popular ham tube for this service. First off, you get high power output at relatively low plate voltages and with a low drive (see ratings).

Second, grid-bias requirements are small—zero for many Class B conditions. If the plate voltage applied is 1,250 v, the GL-805 needs no grid bias, while output easily will modulate a 600- or 700-watt carrier.

Ideal as a Class B modulator, the tube also makes a first-rate Class C r-f amplifier, operating up to 10 meters at full ratings, and well beyond the limits of the 6-meter band at reduced ratings.

General Electric builds the GL-805 to quality standards that assure value-plus service. There is no better ham "buy"—no tube, either, whose day-in, day-out fine performance contributes more to your rig's smooth operation!

See your nearest G-E tube distributor for price and further details. Or write Electronics Department, General Electric Company, Schenectady 5, N.Y.

ולת HOUSE
LARRY SAYS...

"A pair of GL-805's, operating under zero-bias conditions, will modulate readily the push-pull GL-813 final described in Vol. 1, No. 1 of G.E.'s "Ham News". Read "Ham News" regularly! Your distributor has it for you, free."

Copyright 1946 by General Electric Company

<table>
<thead>
<tr>
<th>Rating (CCS)</th>
<th>Class B A-F service (two tubes)</th>
<th>Class C R-F service, telephony</th>
<th>Class C R-F service, telegraphy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament voltage</td>
<td>10 v</td>
<td>10 v</td>
<td>10 v</td>
</tr>
<tr>
<td>Filament current</td>
<td>3.25 amp</td>
<td>3.25 amp</td>
<td>3.25 amp</td>
</tr>
<tr>
<td>Max plate voltage</td>
<td>1,500 v</td>
<td>1,250 v</td>
<td>1,500 v</td>
</tr>
<tr>
<td>Max plate current</td>
<td>210 ma (per tube)</td>
<td>175 ma</td>
<td>210 ma</td>
</tr>
<tr>
<td>Max plate input</td>
<td>315 w (per tube)</td>
<td>220 w</td>
<td>315 w</td>
</tr>
<tr>
<td>Max plate dissipation</td>
<td>125 w (per tube)</td>
<td>85 w</td>
<td>125 w</td>
</tr>
<tr>
<td>Driving power (approx), typical operation</td>
<td>7 w</td>
<td>16 w</td>
<td>8.5 w</td>
</tr>
<tr>
<td>Plate power output, typical operation</td>
<td>370 w</td>
<td>140 w</td>
<td>215 w</td>
</tr>
</tbody>
</table>

ELECTRONIC TUBES OF ALL TYPES FOR THE RADIO AMATEUR

GENERAL ELECTRIC
The Collins 32V is the last word in compact, efficient, and versatile transmitters for amateur radio. It is small enough to set right on your operating desk. It is light enough to take anywhere—all you need to put it on the air are a 115 volt a-c power source, key or microphone, and an antenna. The 32V has more desirable features per cubic inch than any previous equipment.

For instance, compare these features with your desires: 150 watts input on CW, 120 watts on phone, v.f.o. control, band-switching, direct frequency reading dial, push to talk, clean keying, 6 bands. A pi network is included for output coupling—and it’s easy to use. One control tunes the final and another control loads it into the antenna.

The v.f.o. is so accurate you’ll be using it to calibrate your receiver. It’s permeability tuned, and can be set to within 500 cycles on the 80 meter band. The overall accuracy and stability are within one dial division.

Be one of the first to own this brand new job. You’ll be proud of its excellent performance and attractive appearance. Let us send you an illustrated bulletin with complete details.

$475.00 with tubes.

FOR RESULTS IN AMATEUR RADIO, IT'S...

COLLINS RADIO COMPANY, CEDAR RAPIDS, IOWA
11 West 42nd Street, New York 18, N. Y.

458 South Spring Street, Los Angeles 13, California
"It Seems to Us . . ." 11
Keeping Your Harmonics at Home George Grammer, W1DF 13
Silent Keys .. 19
A Three-Band Utility Transmitter J. H. DuBois, W3BXE 20
Let's Not Overmodulate — It Isn't Necessary! John W. Smith, W9UCM, and N. H. Hale, W9JII 23
WWV ... 26
Narrow-Band F.M. with Crystal Control George W. Shuart, W2AMN 27
ARRL's 13th Sweepstakes F. E. Handy, W1BDI 30
Foreign Notes 32
The VT-127-A in Amateur Transmitters Gomer L. Davies, ex-W8AFW 33
Happenings of the Month 38
In QST 25 Years Ago This Month 40
Postwar DX, Where Is Thy Ring? Ned Jacoby, ex-W8KPB 42
A High-Gain Two-Meter Rotary Beam James A. Kmosko, W2NLY 45
Correspondence from Members 48
How's DX? ... 51
An Unusual Rectifier Circuit Commander E. E. Comstock, USCG, W1NVH 56
The World Above 50 Mc. 58
Hints and Kinks 64
Operating News 66
Station Activities 74
Maritime Division ARRL Convention 116
ARRL QSL Bureau 126
"THE FIRST REAL POSTWAR RECEIVER I'VE SEEN........"

Here come advance reports on HALLICRAFTERS SX-42

"The Model SX-42 is the first real postwar receiver I've seen." That's a convincing piece of testimony. Out of the hundreds of postwar promises about new and better receivers, the Model SX-42 meets all demands for a new and improved kind of radio. Although no models are yet available for public distribution advance models of the SX-42 are undergoing intense testing right now. All who have handled this remarkable piece of equipment have been impelled to remark on one or more of its features.

The "42-file" at Hallicrafters is fast growing with testimonials and here are a few extracts of particular interest to hams:

"Signal to noise ratio unbelievable ...", "...its frequency coverage from 540 kc to 110 Mc is amazing ...", "...its beautiful appearance is revolutionary in ham radio, I like its functional and practical design ...", "...on all bands I've heard stations I never heard before ...", "I found the crystal action superb for cutting through QRM ...", "...the calibrated 6 meter band opens up new DX possibilities with coming sun spot activities ...", "I like the features of both AM and FM on 10 meters ...", "Your new easy-on-the-eye green dial color is certainly appreciated after several hours on the air ..."

That's just a hint of what's to come. Watch for the SX-42, wait for the SX-42 ... the radio man's radio ... the radio that's remembered by the veteran ... preferred by the amateur ...
Atlantic Division

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Pennsylvania</td>
<td>W3BES</td>
<td>Jerry Mathis</td>
</tr>
<tr>
<td>Maryland-Delaware-District of Columbia</td>
<td>W3CIZ</td>
<td>Hermann E. Hobbs</td>
</tr>
<tr>
<td>Southern New Jersey</td>
<td>W2GCU</td>
<td>Ray Toplinshaw</td>
</tr>
<tr>
<td>Western New York</td>
<td>W3CJ</td>
<td>Charles L. Chero</td>
</tr>
<tr>
<td>Western Pennsylvania</td>
<td>W3CJ</td>
<td>R. R. Rosenberg</td>
</tr>
</tbody>
</table>

Central Division

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illinois</td>
<td>W8AXD</td>
<td>Wesley E. Marriott</td>
</tr>
<tr>
<td>Indiana</td>
<td>W9SWH</td>
<td>Ted K. Cifton</td>
</tr>
<tr>
<td>Kentucky</td>
<td>W9IDP</td>
<td>Joseph F. Seidler</td>
</tr>
<tr>
<td>Michigan</td>
<td>W8PNS</td>
<td>Harold C. Bird</td>
</tr>
<tr>
<td>Missouri*</td>
<td>W9LRT</td>
<td>William D. Montgomery</td>
</tr>
<tr>
<td>Nebraska*</td>
<td>W9LRT</td>
<td>C. C. Richelle</td>
</tr>
</tbody>
</table>

DAKOTA DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Dakota</td>
<td>W0YUEP</td>
<td>Raymond V. Barnett</td>
</tr>
<tr>
<td>South Dakota</td>
<td>W0YDZ</td>
<td>P. H. Schulte</td>
</tr>
<tr>
<td>Northern Minnesota</td>
<td>W0YMC</td>
<td>Armond D. Stratford</td>
</tr>
<tr>
<td>Southern Minnesota</td>
<td>W0YMC</td>
<td>Vernor G. Fribiy</td>
</tr>
</tbody>
</table>

DELTA DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arkansas</td>
<td>W4C</td>
<td>Marshall R. James</td>
</tr>
<tr>
<td>Louisiana</td>
<td>W5HJ</td>
<td>W. J. Williamson, Jr.</td>
</tr>
<tr>
<td>Mississippi</td>
<td>W5AV</td>
<td>P. W. Clement</td>
</tr>
<tr>
<td>Missouri</td>
<td>W5FS</td>
<td>James W. Wilson</td>
</tr>
</tbody>
</table>

DIXIE DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>North New York</td>
<td>W4HJ</td>
<td>Charles H. Oldham</td>
</tr>
<tr>
<td>Southern New Jersey</td>
<td>W4HJ</td>
<td>John J. Vitale</td>
</tr>
</tbody>
</table>

NEW ENGLAND DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecticut</td>
<td>W1QYO</td>
<td>Edmund R. Fletcher, Jr.</td>
</tr>
<tr>
<td>Maine</td>
<td>W1AOG</td>
<td>G. C. Brown</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>W1AZW</td>
<td>Frank G. Rick, Jr.</td>
</tr>
<tr>
<td>Vermont</td>
<td>W1HRC</td>
<td>Clayton C. Gordon</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>W1LND</td>
<td>Gerald Benedict</td>
</tr>
</tbody>
</table>

ROCKY MOUNTAIN DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado</td>
<td>W7CBE</td>
<td>Augustus G. Hiebert</td>
</tr>
<tr>
<td>Utah</td>
<td>W7TUI</td>
<td>Alan K. Ross</td>
</tr>
<tr>
<td>Washington*</td>
<td>W7BEQ</td>
<td>Albert Beck</td>
</tr>
</tbody>
</table>

Pacific Division

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaii</td>
<td>W4HJ</td>
<td>John Souza</td>
</tr>
<tr>
<td>Nevada</td>
<td>W4HJ</td>
<td>N. Arthur Soile</td>
</tr>
<tr>
<td>Santa Clara Valley</td>
<td>W4BPT</td>
<td>Roy E. Funkham</td>
</tr>
<tr>
<td>East Bay</td>
<td>W4C1</td>
<td>Horace R. Greer</td>
</tr>
<tr>
<td>San Francisco</td>
<td>W4CVP</td>
<td>C. V. C. Van Liew</td>
</tr>
<tr>
<td>Sacramento Valley</td>
<td>W4CVP</td>
<td>John E. Wilson</td>
</tr>
<tr>
<td>California</td>
<td>W4CVP</td>
<td>George L. Rickard</td>
</tr>
<tr>
<td>Idaho</td>
<td>W4CVP</td>
<td>James F. Walfelder</td>
</tr>
</tbody>
</table>

SOUTHWESTERN DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Carolina</td>
<td>W4CBB</td>
<td>W. J. Worthing</td>
</tr>
<tr>
<td>Arizona</td>
<td>W4CBB</td>
<td>Ted Pergo</td>
</tr>
<tr>
<td>California</td>
<td>W4CBB</td>
<td>Walter R. Bullington</td>
</tr>
<tr>
<td>Nevada</td>
<td>W4CBB</td>
<td>Donald B. Morris</td>
</tr>
</tbody>
</table>

SOUTHEASTERN DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>W4GHP</td>
<td>Lawrence J. Smyth</td>
</tr>
<tr>
<td>Georgia</td>
<td>W4HJ</td>
<td>Robert R. Murphy</td>
</tr>
<tr>
<td>West Indies (Cuba)</td>
<td>W4HJ</td>
<td>L. T. Comdr. Edward J. Collins</td>
</tr>
<tr>
<td>Puerto Rico-Virgin Islands</td>
<td>W4HJ</td>
<td>Thomas M. Moss</td>
</tr>
</tbody>
</table>

MARITIME DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maine</td>
<td>W4SQO</td>
<td>Everett Mayer</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>W4SQO</td>
<td>P. O. Box 1051</td>
</tr>
</tbody>
</table>

MARITIME DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Texas</td>
<td>W5ALA</td>
<td>Ben W. Otsenick</td>
</tr>
<tr>
<td>Texas</td>
<td>W5AYL</td>
<td>Glenwood C. Elliott</td>
</tr>
<tr>
<td>San Diego</td>
<td>W6CHV</td>
<td>Ralph H. Calburnton</td>
</tr>
</tbody>
</table>

WEST GULF DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Louisiana</td>
<td>W5AC</td>
<td>Jack T. Maus</td>
</tr>
<tr>
<td>Mississippi</td>
<td>W5IC</td>
<td>Ed Oldfield</td>
</tr>
<tr>
<td>Missouri</td>
<td>W5IF</td>
<td>James B. Rives</td>
</tr>
<tr>
<td>New Mexico</td>
<td>W6IC</td>
<td>J. N. Hancock</td>
</tr>
</tbody>
</table>

MARITIME DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maritime</td>
<td>W6IDQ</td>
<td>A. M. Crowell</td>
</tr>
<tr>
<td>Florida</td>
<td>W6IDQ</td>
<td></td>
</tr>
</tbody>
</table>

MARITIME DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontario</td>
<td>W6JEU</td>
<td>David S. Hutchinson</td>
</tr>
<tr>
<td>Quebec</td>
<td>W6JEU</td>
<td></td>
</tr>
</tbody>
</table>

QUEBEC DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Hampshire</td>
<td>W6JEU</td>
<td>Gordon P. J. Franchon</td>
</tr>
<tr>
<td>Quebec</td>
<td>W6JEU</td>
<td></td>
</tr>
</tbody>
</table>

VANALATA DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Territories</td>
<td>W6JEU</td>
<td>Gordon P. J. Franchon</td>
</tr>
<tr>
<td>Southern Territories</td>
<td>W6JEU</td>
<td></td>
</tr>
</tbody>
</table>

WESTERN DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>W6C1</td>
<td>Robert B. Murphy</td>
</tr>
<tr>
<td>Idaho</td>
<td>W6C1</td>
<td>L. T. Comdr. Edward J. Collins</td>
</tr>
<tr>
<td>Nevada</td>
<td>W6C1</td>
<td>Thomas M. Moss</td>
</tr>
<tr>
<td>Utah</td>
<td>W6C1</td>
<td>Everett Mayer</td>
</tr>
</tbody>
</table>

WESTERN DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska</td>
<td>W7CBB</td>
<td>Donald B. Morris</td>
</tr>
<tr>
<td>Montana</td>
<td>W7CBB</td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>W7CBB</td>
<td></td>
</tr>
<tr>
<td>Washington*</td>
<td>W7CBB</td>
<td></td>
</tr>
</tbody>
</table>

ROCKY MOUNTAIN DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado</td>
<td>W7CBB</td>
<td>Donald B. Morris</td>
</tr>
<tr>
<td>Utah</td>
<td>W7CBB</td>
<td></td>
</tr>
<tr>
<td>Wyoming</td>
<td>W7CBB</td>
<td></td>
</tr>
</tbody>
</table>

EASTERN DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maryland</td>
<td>W3C1</td>
<td>James W. Watkins</td>
</tr>
<tr>
<td>Delaware</td>
<td>W3C1</td>
<td>Armond D. Stratford</td>
</tr>
<tr>
<td>New Jersey</td>
<td>W3C1</td>
<td>Vernor G. Fribiy</td>
</tr>
</tbody>
</table>

EASTERN DIVISION

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massachusetts</td>
<td>W1AOG</td>
<td>Edmund R. Fraser, Jr.</td>
</tr>
<tr>
<td>Connecticut</td>
<td>W1QYO</td>
<td>Edmund R. Fraser, Jr.</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>W1LND</td>
<td>Gerald Benedict</td>
</tr>
<tr>
<td>Vermont</td>
<td>W1LND</td>
<td>Gerriet Benedict</td>
</tr>
</tbody>
</table>

MICHIGAN

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michigan</td>
<td>W8LRT</td>
<td>William D. Montgomery</td>
</tr>
<tr>
<td>Indiana</td>
<td>W9LRT</td>
<td>C. C. Richelle</td>
</tr>
</tbody>
</table>

MINNESOTA

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wisconsin*</td>
<td>W9LRT</td>
<td>William D. Montgomery</td>
</tr>
<tr>
<td>Minnesota*</td>
<td>W9LRT</td>
<td>C. C. Richelle</td>
</tr>
</tbody>
</table>

MISSOURI

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illinois</td>
<td>W3C1</td>
<td>James W. Watkins</td>
</tr>
<tr>
<td>Indiana</td>
<td>W9LRT</td>
<td>Vernor G. Fribiy</td>
</tr>
</tbody>
</table>

MONTANA

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montana</td>
<td>W9LRT</td>
<td>William D. Montgomery</td>
</tr>
<tr>
<td>Idaho</td>
<td>W9LRT</td>
<td>C. C. Richelle</td>
</tr>
</tbody>
</table>

WASHINGTON

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washington*</td>
<td>W9LRT</td>
<td>William D. Montgomery</td>
</tr>
<tr>
<td>Oregon</td>
<td>W9LRT</td>
<td>C. C. Richelle</td>
</tr>
</tbody>
</table>

WISCONSIN

<table>
<thead>
<tr>
<th>State</th>
<th>Callsign</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wisconsin*</td>
<td>W9LRT</td>
<td>William D. Montgomery</td>
</tr>
<tr>
<td>Minnesota*</td>
<td>W9LRT</td>
<td>C. C. Richelle</td>
</tr>
</tbody>
</table>

Officials appointed to act temporarily in the absence of a regular official.
Your rig can be "as big as a house" or "as small as an ice cube". But depend on it, you can always be certain to find the exact C-D capacitor you need to fit into your circuit. Any size, any type—C-D's are all packed to the hilt with long-lasting oomph and extra value in every feature. Even a pin-money budget can work wonders. Save time hunting for questionable capacitors. Ask for C-D and you'll know that you're right on the beam.

SEND FOR FREE CATALOG—Complete data on the most widely endorsed capacitors in radio. Write today for Catalog No. 195A to: Cornell-Dubilier Electric Corporation, South Plainfield, N. J. Other large plants in New Bedford, Worcester, Brookline, Mass.; and Providence, R. I.

TYPE KR DRY ELECTROLYTICS—These single-hole mounting units are compact electrolytic capacitors available in single, dual and triple sections with color coded leads. Suitable for above-panel or sub-panel mounting.

TYPE TLA DYKANOL CAPACITORS—Ideal for high voltage filter applications. Convenient mounting and terminal arrangement makes this unit a good-looking and effective component for any rig. Available in all popular capacities at ratings of 600, 1000 and 1500 volts.

CORNELL-DUBILIER world's largest manufacturer of CAPACITORS

MICA • DYKANOL • ELECTROLYTIC • PAPER
This is the story of a D-104 Astatic Crystal Microphone. Its number is 120117, which may enable you to check its date of manufacture.

This microphone was first used as a P.A. microphone with a travelling territory dance band in New England—really grueling service. Some 10 to 15 years ago, it was used by a station of the undersigned, and has been used in recording and amateur service ever since. It has been subjected to countless portable and mobile expeditions ... carried on countless portable and mobile expeditions since it has been used by the undersigned, and has been used in recording and amateur service ever since. It has been used by a station of the undersigned, and has been used in recording and amateur service ever since. It has been subjected to additional rough treatment. At least four or five years ago, it was shipped between Massachusetts and Florida. During the summer months, it was stored in a garage, with heat and cold, where it was naturally subjected to extreme temperatures, with the result that it has been used early years in Florida, where the heat and cold, and humidity are known to damage many crystal microphones.

This microphone has never required service or attention of any kind. But none can compare with the D-104 in speech quality, especially when used in any of the radio frequencies.

CONFIRMING Astatic's claims for the dependability of its products is the word of Ansel E. Gridley (WINWE/4, ex-W4GJO) of Orlando, Fl., in an unsolicited but greatly appreciated letter of commendation concerning Astatic's original Model D-104 Crystal Microphone. Mr. Gridley writes, in part: "This microphone was first used as a P.A. microphone with a travelling dance band, but was taken over by the undersigned some ten to twelve years ago and has been used in recording and amateur service ever since. It has been carried on portable and mobile expeditions ... never required service or attention. Functions as smoothly today as when it was new. I have received more dollar for dollar value from the D-104 Microphone than from any electronic component ever purchased." Thank you, Mr. Gridley.
The many AISiMag insulators in the average rig must meet several different insulation requirements. For that reason, AISiMag insulators are made of many different technical ceramic compositions. All these compositions are sold under the trade name AISiMag. Each one has definite electrical and mechanical properties which have been carefully determined. The new Property Chart gives the properties of the more frequently used AISiMag compositions. A copy will be sent you free on request.

- All AISiMag technical ceramics are custom made. Sales are made only to manufacturers or to supply houses. No sales can be made direct to hams. However, the Research Division of American Lava Corporation welcomes suggestions or criticisms and is always on the alert for suggestions for improvements in AISiMag products.

Address requests for Property Chart to:

AMERICAN LAVA CORPORATION
946 KRUESI BLDG., CHATTANOOGA 5, TENNESSEE
44TH YEAR OF CERAMIC LEADERSHIP

The new AISiMag Property Chart is conveniently designed so that it can be tacked on the wall, placed under your desk glass or placed in your regular business file. It is easy to read and makes it easy to find exactly the AISiMag composition which is best suited for each of your electronic or electrical applications.
THE AMERICAN RADIO RELAY LEAGUE, INC.,

is a noncommercial association of radio amateurs, bonded for the promotion of interest in amateur radio communication and experimentation, for the relaying of messages by radio, for the advancement of the radio art and of the public welfare, for the representation of the radio amateur in legislative matters, and for the maintenance of fraternalism and a high standard of conduct.

It is an incorporated association without capital stock, chartered under the laws of Connecticut. Its affairs are governed by a Board of Directors, elected every two years by the general membership. The officers are elected or appointed by the Directors. The League is noncommercial and no one commercially engaged in the manufacture, sale or rental of radio apparatus is eligible to membership on its board.

"Of, by and for the amateur," it numbers within its ranks practically every worthwhile amateur in the nation and has a history of glorious achievement as the standard-bearer in amateur affairs.

Inquiries regarding membership are solicited. A bona fide interest in amateur radio is the only essential qualification; ownership of a transmitting station and knowledge of the code are not prerequisites, although full voting membership is granted only to licensed amateurs.

All general correspondence should be addressed to the Secretary at the administrative headquarters at West Hartford, Connecticut.

Past Presidents
Hiram Percy Maxim, W1AW, 1914–1936
Eugene C. Woodruff, W8CMR, 1936–1940

Officers
President George W. Bailey, W2KH Washington, D. C.
Vice-President J. Lincoln McCargar, W6EY
Oakland, California
Secretary Kenneth B. Warner, W1EH West Hartford, Connecticut
Communications Manager F. E. Handy, W1BDI West Hartford, Connecticut
Treasurer David H. Houghton West Hartford, Connecticut

General Counsel Paul M. Segal
1026 Woodward Building, Washington 5, D. C.

Directors
President
GEORGE W. BAILEY, W2KH
1530 F St., N. W., Washington 25, D. C.

Vice-President
J. LINCOLN MCCargar, W6EY
66 Hamilton Place, Oakland 12, Calif.

Canadian General Manager
ALEX REID, W9ERB
240 Lewis Ave., Lambert, P. Q.
Alternate: Leonard W. Mitchell, VE3AZ 75 Bagian Ave., Toronto, Ont.

Atlantic Division
EDWARD G. KANE, W221
315 Beechwood Ave., Trenton 8, N. J.
Alternate: J. Victor Brotherson, W3HHR
1745 Ottawa Drive, Erie, Pa.

Central Division
JOHN A. KIENER, W8AVTH
2462 Edison Rd., Cleveland Heights, Cleveland 21, Ohio
Alternate: Karl A. Nelson, W8DS 22,561 Hadden Rd., East 17, Ohio

Dakota Division
TOM E. DAVIES, WDSW
605 W. Becker Ave., Willmar, Minn.
Alternate: Harold B. Love, W9ERT
Box 230, M. Minn., N. D.

Delta Division
GEORGE S. ACTON, W8MM
Plain Dealing, La.
Alternate: Eugene H. Broadaway, W6KDR
P. O. Box 41, La Place, La.

Hudson Division
ROBERT AKERIDGE KIRKMAN, W2DSY
Address correspondence to the Acting Director:
GEOGE RULLER, JR. W2CJY
38 Brookwood Drive, Manhasset, L. I., N. Y.

Midwest Division
FLOYD E. NORWINE, JR., W8EEC
7405 Hilawatha Ave., Richmond Heights 17, Mo.
Alternate: C. A. Colvin, W9THR
Omaha & Council Bluffs R. R. Co., Omaha 2, Neb.

New England Division
PERCY C. NOBLE, W1BVR
27 Brackett St., Westfield, Mass.
Alternate: Clifton C. Gorden, W1HRC
76 Columbia Ave., Warwick, R. I.

Northwestern Division
KARL W. WEINSGARNEN, W6DG
3219 N. 24th St., Tacoma 7, Wash.
Alternate: Rex Roberts, W7CPY
110 W. Brennan St., Glendale, Mont.

Pacific Division
J. L. MCCargar, W6EY
66 Hamilton Pl., Oakland 12, Calif.
Alternate: Albert J. Amarante, W6FBW
1675 Dale Ave., San Jose, Calif.

Rocky Mountain Division
H. L. CAVENESS, W4GDW
2907 Vanderhoit Ave., Kansas City, Mo.
Alternate: J. Frank Key, W3ZA
Box 757, Buena Vista, Colo.

Southern Division
WILLIAM C. SHELTON, W4AHR
327 Revilo Blvd., Dayton, Ohio
Alternate: William F. Sides, W4UP
Pleasant Road, Montgomery, Ala.

Southwestern Division
JOHN E. HUNDE, W5BEK
1834 E. Whittier Blvd., Whittier, Calif.
Alternate: Horace E. Pratt, W6ARW
P. O. Box 59, Long Beach 9, Calif.

West Gulf Division
WAYLAND M. GROVES, W5WV
1555 Humble Pipe Line Co., Odessa, Texas
Alternate: Jennings B. Brown, W5AJ
P. O. Box 548, Curundu, Panama Canal Zone
ON REPORTING

Many years before the war the League launched the RST system of signal reporting. It is now the world-wide standard method of exchanging data on the quality of the signals and the goodness of the contact. In this system a report of three digits is given in telegraph work, of two in telephone work. For either c.w. or 'phone, the first digit is the readability (R) on a scale of 1 to 5, with precisely the same meanings as the QRK1-to-QRK5 scale of the International Radio Regulations; and the second digit is the signal strength (S) with the same 1-to-9 strength scale that we have used so many years. This is all there is for voice work but for c.w. there is a third digit to indicate the tone (T) on a 1-to-9 scale. Thus a c.w. report of “RST488” (or just “488”) means readable with practically no difficulty, strong signals, good d.c. note with just a trace of ripple. And so on for the whole range of possibilities.

This scheme has been publicized in amateur literature everywhere. In c.w. work it is well-nigh universal and it seems to be applied with reasonable uniformity and “honesty.” But in 'phone operation there are so many confusing variations, misunderstandings and abuses that we think the subject deserves some examination. Mind if we number a few points to keep them separated?

1) If you feel that you like to use c.w. abbreviations in 'phone work, the report of signal strength should be given as an S number, not an R number. In the amateur world, R is for readability — for these many years back. Your receiver has an S-meter, not an R-meter. An extremely strong signal is S9, not R9. Too many of you old-timers have elephant memories that go back to the old Eccles R scale of years ago. The newcomers hear you and follow you, so that we have a whole crop of R strength reports that cause distressing conflict with the thesis of R-for-readability. Please say S.

2) But we'd like to say that, for our money, it is not pleasant to hear purely-c.w. abbreviations used in 'phone operation. With the most flexible means of communication in the world at our disposal, the human voice, we believe in saying it with words.” Let us illustrate with an example. To our mind it is much more logical to say, “Readability 4, strength 9” than it is to pronounce the abbreviations “QRK4, S9” (and an awful lot better than saying “Q4 and R9”!). Or, if you care to go all out for saying it with words, why not just tell your correspondent station that his signals are extremely strong and readable with practically no difficulty?

3) The report of readability, to mean anything, must be carefully arrived at by an actual comparison of the goodness of reception with the scale on which the other fellow relies for information. And flattery must be left out of it, both because the man at the other end seeks data of technical value to him and because he will gauge his transmitting to what you say of your reception. The scale seems to deserve repeating and new emphasis:

1 — Unreadable
2 — Barely readable, occasional words distinguishable
3 — Readable with considerable difficulty
4 — Readable with practically no difficulty
5 — Perfectly readable

You can see that you ought either to know the scale by heart or have a copy constantly before you. You must actually consider the received signal and grade it. The other morning an Australian 'phone station in the course of one sentence raised us to a magnificent glow and then threw the reversing switch. What he said, in effect, was, “You have a grand signal, Q5 and R9, but I can't understand a word you say because of bad interference.” Well, maybe we were S9. But we were certainly not Readability 5. We were Readability 1 — which is to say, unreadable. It was obvious that this lad didn't understand the readability scale at all. It is perfectly possible to have a 1-9 signal in interference, just as the converse 5-2 signal may exist under favorable conditions. We don't think he just reached for a number he thought we'd like. We think he somehow thought the “Q” part of his report also had something to do with strength. He wouldn't have said perfectly-readable-but-I-can't-read-anything if he had stopped to think what his abbreviations meant.
He couldn't have said it if he'd "said it with words." Let's remember what those scales mean!

We plead for a little more knowledge of the scales, a little more care and understanding in their application, a little more uniformity in their rendering.

BAD SIGNALS

That war hurt us. If we were to judge solely by the quality of the W signals on the air today, we'd say that we have been set back technically at least fifteen years. We're trying to figure it out, and we suppose it comes about because we're so hungry to operate that we go on with an insufficient signal rather than take the time first to get out all the termites. Maybe shortcomings have something to do with it. And probably the current emphasis on VFOs and break-in has considerable of the responsibility.

At any rate, the average quality of our signals is certainly not very good. We were listening rather critically to 80-meter c.w. signals the other evening and it struck us that if T9X is our standard, a good half of them won't stand even casual examination; and we estimated that not more than one in ten had crystal stability and purity. On 14-Mc. c.w., one really has to hunt to find a signal one would say was of true crystal characteristics. Most telegraph signals do some yooping under keying or display some of the impurities that come from dynamic instability; and there are some frightful keyclicks to be heard. Many 'phone signals have overmodulation splatter or take too much spectrum space through wobbulation. Harmonics are rampant.

Definitely our signals aren't of as good average quality as before the war. Almost every one of us has a lot of "inside work" to do to make up for the haste with which we got going. Now is the season for that, OM. It's something each amateur must do for himself. We urge you to monitor your signal and study its deficiencies. Solicit critical reports (and give them). Find out where the trouble lies and remedy it. Do the necessary redesigning and rebuilding. Have pride in the quality of your signal—to the other fellow, that signal is you. Don't be content with anything less than practical perfection.

If each of us will adopt this critical attitude toward our own emissions, in two months we can remake the American ham ether. Do your part?

TEN-METER OBSERVATIONS

Under the above heading we had items in our May and June issues outlining an amateur observing program on propagation conditions in the 10-meter band, on behalf of the Bureau of Standards. We invited participation, explained the simple requirements, and said that the Bureau was preparing log forms and data sheets for those who responded.

To date, just eighteen amateurs have volunteered out of all our thousands, and two of those were foreigners. We are letting the Bureau down rather badly, fellows. It deserves much better of us. We ought to feel ashamed. You are all aware of the marvelous strides that were made during the war in prediction work. That activity centered at the Bureau and it continues, because man's knowledge is still incomplete. We amateurs ourselves benefit from this program and should be willing to help in it. It is one of the few opportunities we ever get to participate in scientific work. We are not asked to make complicated and dreary observations but chiefly just to report what results we experience in our attempts at 10-meter contacts, particularly on schedules—and our failures as well as our successes. We can still have the full enjoyment of operating.

If we may moralize a moment: The security of amateur radio rests upon its value to the nation. We have a good record but we must keep it fresh. We should embrace opportunities to do useful work in repayment for our privileges. In the present case, where volume of observations is needed, the quantity and variety of amateur reports would permit us to be particularly helpful, and at small effort to ourselves individually.

If you operate on 10 or 11, drop a card or note to the Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C., saying that you want to take part in the NBS-ARRL 28-Mc. Band Observing Project. Page 35 of May QST and page 17 of June give the story.

Strays

W5GUZ is back on the air after 3½ years as a Jap POW and 8 months in Army hospitals. He reports that W9VTH, USN, and KAIAT, USA, died in Jap prison camps. W7AYV, USN, and W5GUZ took over the Jap radio station, JAW, near Tsuruga, Japan, during the interim of August 29—September 9, 1945, before the Yanks landed at Yokohama. They did this unarmed and in the company of ex-W6IJJ, USN, one Marine, and a Navy radio operator. San Francisco was worked and relief food obtained by plane. They then ran a sked with the POW camp in Osaka, Yokohama and 1st Army Hq.

QST for
Keeping Your Harmonics at Home

A Discussion of the Factors in Harmonic Generation and Radiation

BY GEORGE GRAMMER,* WIDF

For a time after the opening of the 80-meter band it began to look as though the ham that didn’t have a harmonic report from the FCC was just waiting his turn like the ten little Indians in the nursery jingle. Certainly there was a lot of activity on 40! But some good will come of it if the situation focuses attention on the unnecessary radiations that plague our own operation as well as that of other services.

ACTUAL

Fig. 1—The tube amplifier and its generator equivalent.

EQUIVALENT

For years we have had a collection of nostrums for harmonic radiation, some of which seem to have acquired acceptance chiefly by repetition. For example: “Push-pull amplifiers have no even harmonics.” Lots of hams believe it, although that particular theory was exploded by Uncle Jimmy way back in the early 30s — and despite the fact that users of push-pull amplifiers stand high in the list of ticket collectors. There are others, too, likewise based on a sound-enough idea, but with no data to prove whether or not they are effective. Among these are such things as reducing excitation to make the amplifier output “purer” and the use of high-C tank circuits for the same purpose. The whole subject seems to be enveloped in a vagueness that doesn’t offer much help to the chap who’s in trouble and wants to know how to get out.

A couple of things at least are clear: (1) Any power amplifier operated at reasonable efficiency — that is, beyond Class A conditions — will generate harmonics of appreciable amplitude. (2) On high frequencies an extremely small amount of radiated energy can put down a good readable signal hundreds and sometimes thousands of miles away. (3) Radiation can take place directly from transmitter tank circuits and wiring. (4) Or it can take place from the antenna. So the question of eliminating harmonic radiation is really three questions: How can the amount of harmonic generated by the transmitter be reduced? How can radiation from the transmitter itself be prevented? How can harmonics be kept from getting into the antenna system?

Excitation vs. Harmonics

We have a means of getting at the answer to the first question by considering power-tube operation from the “equivalent generator” standpoint. The tube is replaced by a generator, G, having the same internal resistance, r_p, as the tube (see Fig. 1) and working into a load having the same characteristics as the plate tank circuit. (For the moment this load is assumed to be a resistance, because its characteristics do not actually matter in what follows immediately.) The advantage of the equivalent-generator method is that the circuit operation can be analyzed purely on an a.c. basis, using ordinary a.c. circuit theory.

When a power tube is adjusted for optimum operation, the plate current flows in pulses that are approximately the shape of a section of a sine wave. The “operating angle,” or proportion of the r.f. cycle during which plate current flows, usually is between 120 degrees and 180 degrees; that is, between one-third and one-half cycle.

The smaller the angle the higher the efficiency, provided other operating conditions are adjusted to match. The plate-current wave shapes for the 120-degree and 180-degree cases are shown in Fig. 2. Although these drawings represent the way in which the d.c. plate current varies, with the base line in each case representing zero current, on the equivalent-generator basis we consider them as representing complete a.c. waves, ignoring the fact that there is d.c. present. In other words, the equivalent generator is putting a distorted a.c. wave into the load.

*Technical Editor, QST.
The relative second-harmonic content of the two waveshapes shown will give us some idea of the improvement to be expected by reducing excitation, since the 120-degree case represents high-efficiency Class C operation and the 180-degree case Class B. In terms of the peak-to-peak amplitude, A, of the wave, the two cases compare as follows:

<table>
<thead>
<tr>
<th></th>
<th>120 degrees</th>
<th>180 degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude of fundamental component</td>
<td>0.40</td>
<td>0.50</td>
</tr>
<tr>
<td>Amplitude of second-harmonic component</td>
<td>0.28</td>
<td>0.21</td>
</tr>
<tr>
<td>Ratio of second harmonic to fundamental</td>
<td>0.70</td>
<td>0.42</td>
</tr>
</tbody>
</table>

For a tube driven to the same peak plate current in either case, the second-harmonic content will be reduced by a factor of 0.21/0.28, or 0.75, by using an operating angle of 180 degrees instead of 120 degrees. This does not represent much improvement, although it should be observed that since the fundamental component is larger with 180-degree excitation, a somewhat better picture is obtained on the basis of the individual harmonic/fundamental ratios.

Comparison on the basis of the same peak plate current probably is not entirely legitimate, because with 180-degree excitation the average plate current (the value read by the plate milliammeter) increases 46 per cent over the 120-degree case. The probability is, therefore, that the tube or tubes would be overloaded. If the comparison is made on the basis of the same average plate current, the second harmonic with 180-degree excitation will have only 53 per cent of the amplitude of the same harmonic with 120-degree excitation. However, the fundamental component also is smaller — slightly under 70 per cent of the 120-degree figure. Perhaps the fairest basis of comparison — although it may not represent what can be done with a given tube or tubes in view of plate-dissipation limitations — is the same fundamental component in both cases; on this basis, the second harmonic with 180-degree excitation will have 62 per cent of the value it has with an operating angle of 120 degrees.

Whatever the means of comparison, the reduction in second harmonic appears to be only of the order of 4 to 6 db., or about one point in the S scale. The normal fading in sky-wave transmission would make it hard to tell that any improvement had been made. Reducing excitation does not appear to be the solution to the harmonic problem — not unless the reduction is so drastic that Class A operation is approached. Few hams would be willing to sacrifice tube capacity to that extent. Besides which, Class C operation is a necessity if the amplifier is to be plate-modulated.

Tank Q and L/C Ratio

If the tube worked into a resistance load such as the equivalent circuit shown in Fig. 1, the picture would be pretty discouraging because the second-harmonic component of the plate current is only 3 db. below the fundamental component. However, the actual load is a tuned circuit that is resistive only at resonance. It can be represented as in Fig. 3, where the resistance R is understood to be the "coupled-in" resistance; in other words, the parallel-resistance equivalent of the power-absorbing capabilities of the actual load (which may be the antenna system) at resonance. As is usual in such cases, it is assumed that the parallel impedance of the tank circuit alone is so high that practically all of the power delivered by the generator is absorbed in R — that is, the losses in the coil and condenser by themselves are negligible. Since R is, for the moment, assumed to absorb power only at the fundamental frequency, it does not exist at the harmonic frequencies. For the harmonics we have only the reactances of the coil L and condenser C in parallel.

Now since the amplitude of the second-harmonic component in the alternating plate current ("line" current) is fixed by the operating conditions that determine the shape of the plate-current pulse, it is clear that no variations in tank-circuit Q or L/C ratio can affect the second-harmonic amplitude so long as the same plate-current waveshape is maintained. Then since the harmonic component must flow through the tank circuit and will have the same amplitude regardless of Q, it is obvious that there will be no "suppression" of harmonics by high-Q or high-U tank circuits.

At the fundamental frequency the reactances of the tank coil and condenser are equal. At the second harmonic the condenser reactance is halved and the coil reactance is doubled. Because of this, the second-harmonic current in the condenser will be four times as large as the second-harmonic current in the coil. However, the two currents are 180 degrees out of phase, which causes the condenser current to have a value

1 Formulas for calculating these values are given in *Reference Data for Radio Engineers*, published by Federal Telephone & Radio Corp., 67 Broad St., N.Y.C.
equal to \(\frac{3}{4} \) the second-harmonic line current and the coil current to be \(\frac{1}{2} \) the line current. With 120-degree excitation, where the second-harmonic component of line current is 0.7 times the fundamental component, the second-harmonic current in the coil is consequently equal to \(\frac{3}{4} \times 0.7 \), or approximately \(\frac{1}{4} \) of the fundamental component of line current. This ratio will hold regardless of \(L/C \) ratio, since the ratio of the coil and condenser reactances always must be constant.

The benefits of high-\(Q \) tank circuits lie not in suppression of harmonics but in the fact that they build up the fundamental component of line current. If the operating \(Q \) is 10, for example, the fundamental current in either the coil or condenser will be 10 times the fundamental component of line current. This means that the ratio of fundamental to second-harmonic current in the tank coil will be 40, since the second-harmonic current is equal to \(\frac{1}{4} \) the fundamental current in the line. The ratio increases in direct proportion to the \(Q \). In circuits using inductive coupling to the load the current in the coil is the important thing because this current provides the means for magnetic coupling.

Fig. 4 is a general type of circuit having inductive coupling to a load resistance, \(R \), which is assumed to have the same resistance at all frequencies. With the available power output and load resistance fixed at definite values, the desired power will be obtained at a definite value of voltage across \(R \). Now the voltage induced in \(L_2 \) is proportional to the primary current, the frequency, and the coupling between \(L_1 \) and \(L_2 \); consequently, the higher the primary current the looser the coupling may be to obtain the necessary voltage across \(R \). Hence high \(Q \), by raising the fundamental component of primary current, permits looser coupling between the two coils for the same power delivered to the load. But since the value of second-harmonic current is not affected by the tank-circuit \(Q \), the second-harmonic voltage induced in \(L_2 \) is reduced by the looser coupling. Looser coupling is, in fact, the whole secret, and high \(Q \) is beneficial simply because it makes loose coupling practicable.

Even so, it does not pay to go to extremes. Doubling the \(Q \) and readjusting the coupling would reduce the second-harmonic voltage induced in the secondary circuit by a factor of 2, which is about an "S" point. But doubling the \(C/L \) ratio cannot be done many times without running into unworkable values of inductance and capacitance, which in practice would defeat the purpose because the tank current would become so high that tank losses no longer would be negligible — meaning that the actual \(Q \) would not increase with the \(C/L \) ratio. The optimum appears to be a \(Q \) between 10 and 20.

Fig. 4 probably represents the worst possible case. With a 40-to-1 ratio of fundamental to second-harmonic current in the tank coil, the harmonic in the load would be 28 db. below the fundamental, while raising the \(Q \) to 20 would drop the harmonic down to 32 db. However, there are few, if any, practical applications where the load resistance would be the same at all frequencies. The circuit of Fig. 4 is equivalent to a tank circuit coupled to a flat line at the fundamental frequency, but at the second harmonic the load may be anything from a short-circuit to an open-circuit, depending upon the electrical length of the line and the characteristics of the antenna in which it is terminated. Where the line is matched to the antenna the termination is more likely than not to represent a short-circuit for the second harmonic, with the result that the radiated harmonic power is negligible compared to the fundamental.

![Fig. 4 — A simple type of output circuit. In practice, \(R \) usually is replaced by a nonresonant transmission line that simulates a pure resistance at the fundamental frequency.](image)

However, it is an easy matter to improve the situation to the point where there is a large factor of safety by using two tank circuits, as in the common form of link-coupled antenna tuner shown in Fig. 5. Because of the resonant rise in voltage in the tuned secondary circuit, \(L_2C_2 \), the voltage developed across the load will be greater than the voltage applied to the load in Fig. 4 by a factor equal to the \(Q \) of the secondary circuit. Thus if the secondary circuit \(Q \) is 10, the voltage will be ten times as great as with a nonresonant coupling coil. This means that, for the same voltage across the load, the coupling between \(L_1L_2 \) need be only one-tenth as great for the same power transfer as between \(L_1L_2 \) in Fig. 4. (The link between the two circuits, incidentally, is simply a convenient means for providing mutual inductance between the coils.) Consequently, the second-harmonic voltage induced in \(L_2 \) will be reduced by a factor of 5, as compared with the conditions existing in Fig. 4. This alone would give an additional improvement in the fundamental/harmonic ratio of 14 db., but the actual situation is more favorable because again the load is not likely to have the right value for maximum power transfer at both the fundamental and harmonic. On the whole, it is reasonable to...
expect that the fundamental/harmonic ratio through a system such as is shown in Fig. 5 should be of the order of 50 db. in practice. Even at the maximum power authorized for amateur stations the second-harmonic power in the antenna should be but a small fraction of a watt.

Nevertheless, the fact is that stations using just those coupling systems, particularly the type in Fig. 4, do get tickets for harmonic radiation. Part of the reason is that those who get cited have harmonics falling outside an amateur band where they stand out like the well-known sore thumb even though the harmonic power radiated undoubtedly is quite small. But in many cases the ratio between harmonic and fundamental is not anything like the ratios arrived at by the reasoning above. If the harmonic is not getting into the antenna through magnetic coupling there is only one thing left — capacity coupling.

Coupling Through Stray Capacity

As an example, consider the arrangement shown in Fig. 6-A. Here a half-wave antenna is centered by a transmission line which — although no attempt has been made to show it pictorially — is assumed to be matched to the impedance at the center of the antenna. The line gets power from the transmitter tank through the usual small coupling coil such as a variable link. The possibility that any appreciable second-harmonic power could get into the antenna through magnetic coupling and ordinary transmission-line operation is rather remote, as we have seen. But there is capacitance between the tank and coupling coils, as indicated in Fig. 6-B, and r.f. current can flow through this capacitance from the tank to the line. There is no particular reason why this current should know that it is supposed to behave itself on a transmission line; in fact, there is every reason why it should not. With magnetic coupling the voltages at the ends of the coil are opposite in phase with respect to the two sides of the line, hence the currents flow in opposite directions in the two wires. But the voltage across the stray capacitance is in practically the same phase all across the secondary coil, with the result that current flows in the same direction in both sides of the line. The line, in other words, is simply two conductors in parallel for the harmonic, and the currents arrive at the center of the antenna in phase. Since each side of the antenna is a half-wavelength long at the second harmonic, the whole system simply acts as a full-wave antenna fed at the center by a single-wire transmission line; the only difference is the purely mechanical one that the line and antenna sections are separate wires. Of course, the "line" radiates, too, since the usual cancellation does not exist. If the line happens to be near a multiple of a half-wavelength long at the harmonic, conditions are almost ideal for absorbing and radiating a great deal of the harmonic power in the tank, because under such conditions a very small coupling capacitance will suffice for maximum power transfer.

Similar conditions can exist in almost every type of antenna-feeder system just so long as there is stray capacitance between coupling coils. Installing a separate antenna tuner such as is suggested in Fig. 5 will improve things to the extent that it cuts down the stray capacitance because there are two coupling points instead of one. In itself this is quite advantageous, particularly with the loose coupling that reasonably high-Q circuits make possible, because loose coupling between coils reduces the stray capacitance. Also, since in transmitters high Q is achieved by reducing the L/C ratio, the harmonic voltage developed across the tank coil also is reduced, the amplitude of the harmonic current being independent of the L/C ratio. But there is nevertheless still a possibility that a great deal more harmonic will get through than should.

The real answer, obviously, is to eliminate the stray capacitance. A time-honored device is the Faraday shield — and there is nothing better. But such shields are not only rather difficult to make but cumbersome to install and use, particularly with plug-in coils. There is a simple dodge that works almost as well as the shield, doing the job by reducing the effect of the capacitance, although not eliminating the capacitance itself.

Of the total harmonic voltage coupled from the tank, the greater proportion appears between the coupling coil and ground (that is, the cathode return on the amplifier), and only a small part appears across the stray capacitance when power is being transferred. But if the coupling coil is brought to ground potential there will be no harmonic voltage between the coil and ground and all of it will appear across the stray capacitance. In effect, this short-circuits the harmonic.
Fig. 7 — Grounding the coupling coil to reduce the effect of stray capacitance by short-circuiting the harmonic voltage in the link and antenna circuits.

at the point where it is coupled to the antenna system. It is impossible, of course, to connect every part of the coupling coil to ground, but the equivalent effect can very nearly be realized by making a single connection to any part of the coil. To maintain the symmetry of the system at the fundamental frequency, probably the most desirable point to ground is the center of the coil, as in Fig. 7-A. Combined with coupling to the “cold” point on the tank, this should pretty effectively eliminate coupling through stray capacitance. The ground connection should be to the transmitter chassis and should be short; if the lead has appreciable reactance at the harmonic frequency it will not be a short-circuit at all.

It would be hard to overemphasize the importance of coupling through stray capacitance as a factor in harmonic radiation. We recently had occasion to look into two cases of excessive harmonics, and in both instances eliminating the effects of stray capacitance reduced the harmonic to the point where it was not appreciably stronger with the antenna on than it was with the antenna system completely disconnected. The remaining radiation, in other words, was practically entirely from the final tank circuit itself, a condition that can be cured only by proper shielding. The two transmitters concerned were widely different, one being a low-power outfit with a single-ended final tank circuit and the other a moderately high-power push-pull amplifier. In the latter case the second-harmonic signal was of good “local” strength at a distance of about two miles; grounding the antenna coupling coil reduced it to the point where it was not more than 50 per cent readable, with no difference in strength whether the antenna was on or off.

When a link-coupled antenna tuner is used between the final tank and the feeders, it is advisable also to ground the center of the coil in the antenna tuner, assuming that a balanced feeder system is used, as indicated in Fig. 7-B. A short lead is called for here also. Note that the link coil at the amplifier tank also is grounded; this is the really important ground. As suggested in the diagram, the side of the link farthest from the cold end of the tank should be connected to ground because that is the “hottest” end of the link (especially when the link is wound over the tank) and therefore the place where the stray capacitance voltage needs to be short-circuited.

Incidentally, it should be rather obvious that the way really to ask for harmonic trouble is to use direct coupling between the tank and feeders. Low-pass filters such as the pi-section coupler don’t have a chance to work when the harmonic currents flow through both sides in the same direction. And direct coupling is practically synonymous with maximum coupling for harmonics as compared to the coupling through stray capacitance.

Push-Pull

The old saw that “even harmonics cancel out in push-pull amplifiers” is one of those dangerous half-truths that generate a false sense of security. It is true in a push-pull audio amplifier. In a push-pull Class-C r.f. amplifier the cancellation may or may not be effective.

Let’s take the case of two tubes in push-pull from the equivalent-generator standpoint. For a 120-degree plate-current pulse the amplitudes and phases of the fundamental and second-harmonic components are approximately as shown in Fig. 8. This picture is for one tube only. Since the grids of the two tubes are excited 180 degrees out of phase there is a difference of one-half cycle (at the fundamental frequency) in the operating conditions of the two tubes. In other words, if one tube is operating at Point A in Fig. 8, then the other tube is simultaneously operating at Point B. The fundamental compo-
ponents in the output are 180 degrees out of phase, which means that the two tubes are supplying current to the tank circuit in series. However, the phase difference in the second-harmonic component is 360 degrees, which means that the second-harmonic currents are in phase at the ends of the tank circuit. These instantaneous conditions are perhaps made a little clearer by Fig. 9, which shows the instantaneous polarities at the grid and plate corresponding to A and B in Fig. 8. The resulting current flow is shown by the solid arrows for the fundamental component and by dotted arrows for the second-harmonic component. Since the latter currents are flowing in opposite directions through the two halves of the tank coil their magnetic fields tend to cancel out. However, true cancellation does not occur unless there is 100-per-cent coupling between the two halves of the coil. No r.f. coil has anything like that coupling, with the result that although the fields may practically cancel near the center of the coil there is little if any cancellation near the ends. Nevertheless, with a symmetrical circuit and a coupling coil inserted at the center so that it has equal coupling to the two halves of the coil, very little second-harmonic voltage will be induced in the output circuit by magnetic means.

However, Fig. 9 is not a practicable amplifier circuit for radio frequencies. Probably the most common type of tank circuit is that shown in Fig. 10-A, using a split-stator condenser with the rotor grounded. The other type, less commonly used nowadays, has the center of the coil grounded and the condenser rotor floating. From the harmonic standpoint there is considerable difference between the two. In Fig. 10-A the harmonic currents cannot flow from each tube through the halves of the coupling coil to ground because there is an r.f. choke in the return lead. Consequently, practically the entire second-harmonic component is carried to ground through the two condenser sections. However, the harmonic voltages developed across the condenser-section reactances appear at the ends of the tank coil, and since no current flows in the coil the same voltages (they are identical in amplitude and phase) appear at every part of the coil, including the center-tap. Insofar as second-harmonic coupling through stray capacitance is concerned, it makes no difference whether the coupling coil is at the center of the tank coil or not. The center of the coil is just as hot as the ends at the second harmonic. But since there is no second-harmonic current in the coil there is no possibility of magnetic coupling to the output circuit. With a good Faraday screen between the two coils this circuit will have practically zero even-harmonic output.

In Fig. 10-B, the second-harmonic current components flow through the two halves of the coil just as in Fig. 9. In this case the voltage at the center of the coil is zero, so coupling through stray capacitance to the coupling coil at this point is minimized—but it should never be assumed that it is negligible. A coupling coil concentric with and close to the tank coil can have enough capacitance to the tank to transfer considerable harmonic energy to the antenna. Grounding the coupling coil or the installation of a screen is just as advisable as in the case of Fig. 10-A. In this circuit magnetic coupling of the even harmonics is eliminated to the extent that the coil and circuit as a whole are balanced. With reasonable care it should be quite small.

With care taken to eliminate stray capacitance, the circuit at A has a slight edge on B. Without such care, A is far more likely to put out a strong second harmonic than B, but both can be troublesome.

Other Circuits

The push-pull discussion should make it plain that because a circuit behaves one way at the fundamental frequency, there is no guarantee that it will do the same at harmonics. In a single-ended amplifier with plate neutralization using a grounded split-stator condenser, for instance, there is a voltage node at the center of the tank coil at the fundamental frequency. But a little study of the circuit will show that there is no node at that point for the second harmonic; there is a node, but it appears near the end of the tank.
coil farthest from the tube. On the other hand, if the center of the coil rather than the rotor of the condenser is grounded, there is a node at the coil center — but the second-harmonic voltage across each half of the coil is almost four times as large as the voltage across the whole coil in the grounded-condenser circuit. However, in this case the harmonic currents in the two halves flow in opposite directions through the coil, just as in the push-pull case, so magnetic coupling is decreased. There is no such thing as complete cancellation because the two currents in the two halves of the coil are not exactly in phase, in addition to the fact that the coupling between the coil sections is rather loose.

Other Harmonics

Although not negligible, harmonics higher than the second are less likely to be bad offenders. The amplitude of the third harmonic with 120-degree excitation, for example, is only 20 per cent of the fundamental-component amplitude, and as we continue up the harmonic scale the amplitudes decrease rapidly. Also, the tank reactances decrease in proportion, so the harmonic voltages appearing across the tank coil drop off with considerably greater rapidity than the harmonic components themselves. Both things are favorable to reduction of harmonic transfer either magnetically or through stray capacitance.

However, it would be dangerous to neglect them. To offset the assets of smaller current and lower voltage, there is a greater likelihood of unsuspected resonances in the antenna-feeder system that may result in efficient radiation of the small amount of power available. This is one reason why the ground leads to coupling coils and links should be as short as possible. In addition, push-pull amplifiers may get into difficulties with some antenna systems because the third and other odd harmonics flow through the tank circuit in the same way as the fundamental component. This is favorable to magnetic coupling — and unfortunately most antenna systems in which the impedances are matched at the fundamental frequency also are fairly closely matched at odd-harmonic frequencies. The additional selectivity provided by a tuned antenna coupler of reasonably high Q is the best solution.

To sum up:
1) Don’t take it for granted that you have no appreciable harmonic radiation; the chances are that you have. Radiation from a tank coil alone can bring in a ticket when propagation conditions are right.
2) Don’t worry about excessive grid drive. A Class C amplifier can’t be operate without strong harmonics, and within the Class C range, there isn’t much that can be done to reduce them.
3) Use a tank Q of 10 or more, but don’t carry the reduction of L/C ratio to the point where the loaded tank starts to run hot.
4) Use an antenna tuner having at least the same Q as the final tank and tune the whole system “on the nose” — in other words, with the loosest coupling that transfers the power to the antenna.
5) Use a Faraday screen between the final tank and the coupling coil, if possible. If it’s out of the question for constructional reasons, ground the coupling coil to the final chassis by a short lead, and ground the center of the antenna-tuner coil to the same side of the link. See Fig. 7.
6) After you’ve done these things (they should be done in any case) get a nearby ham friend to listen for your harmonics, up to the limit of his receiver’s frequency range. In the case of each one heard, check by removing the feeders from the vicinity of the transmitter to see if the radiation is from the transmitter itself. If the transmitter is radiating a strong harmonic some shielding is in order.
7) Before you decide that all this is too much trouble, remember that it’s your record in the FCC files that gets the black mark when the pink QSL starts on its way.

Silent Keys

It is with deep regret that we record the passing of these amateurs:
W2OC, ex-W2CMO, John G. Campbell, Brooklyn, N. Y.
W2PMR, Bernard J. Yaskell, jr., Belleville, N. J.
W4COY, Toland A. Gunter, McBee, S. C.
W5IQU, Gordon Anderson, New Braunfels, Texas
W5KFT, Guy R. Coleman, SM1e, USNR, West Point, Miss.
W5WBW, Albert Farrenkopf, Detroit, Mich.
W5QMR, Zeh Bouck, Livingstonville, N. Y.
W9AML, Herbert Hildebrandt, Bloomington, Ill.
W9FOT, Wells C. Chapin, University City, Mo.
W9GJT, Lyle P. Mason, Bloomington, Ill.
W9VT, D. A. Seivilig, USN, Willmar, Minn.
KAIAT, Joseph M. Molitor, USA, Clark Field, P. I.
A Three-Band Utility Transmitter

A General-Purpose Rig for Home or Emergency

BY J. H. DuBois, * W3BXE

How many times would an auxiliary transmitter have been useful as an emergency rig, Field Day transmitter, or at the home station as an exciter to try out that new final and still deliver enough power to stay on the air while rebuilding? In the event of failure of the regular transmitter, it would always be available to keep a schedule, finish a contest or help another amateur over that period of accumulating parts for the “new rig.” The transmitter to be described was designed for these purposes and is simple, dependable, and self-contained with the exception of an antenna coupler, since it was considered desirable to terminate the amplifier with a link winding as a universal means of coupling to another unit. An additional terminal, connected to the output tank-condenser stator, may be brought out if capacity-coupling to a single-ended amplifier is contemplated.

The Circuit

The circuit, shown in Fig. 1, uses a 6F6 or 6V6 VFO driving an 807 operating as a straight amplifier or doubler. Plug-in coils are used throughout, the oscillator grid and plate coils being housed in removable 2-inch diameter shield cans. A reliable make of tuning condenser with a long bearing, or preferably a double bearing, should be used at C1, and reasonably low-loss insulation throughout the entire transmitter is desirable from an efficiency and reliability standpoint. The oscillator grid coils are arranged so that a series condenser, C1, is used for 7- and 14-Mc. bands. On 3.5 Mc., the condenser is shorted and the oscillator covers the entire c.w. portion of the band. If it is desired to cover the complete ‘phone band of 3850 to 4000 kc., the value of C2 should be reduced slightly together with an increase in the number of turns in L1. A 6V6 was substituted for the original 6F6, with an increase of output and no noticeable loss in stability. Probably this is possible because the oscillator plate is always tuned to the second harmonic of the grid circuit and results in a minimum of reaction through the tube. Conventional cathode keying is used.

A switch, S1, is provided for cutting the cathode circuit of the 807 while retuning, and the meter is connected in series with it, placing both at ground potential. The grid and plate circuits of the 807 are sufficiently isolated so that no

- Here is a neat little transmitter that will do yeoman duty as the regular station rig, emergency or Field Day transmitter, or experimental exciter unit. Its excellent design and construction make it worthy of duplication by beginner and old-timer alike.

A three-band utility transmitter, using a 6V6 VFO driving an 807 amplifier. The VFO grid and plate coils are inside the shield cans on the right. A jack for the key leads is on the right-hand side of the chassis.

QST for
Wiring diagram of the utility transmitter.

C2 = 100-µfd. zero-temp.-coefficient mica.
C5, C15 = 150-µfd. variable.
C6 = 500-µfd. zero-temp.-coefficient mica.
C7, C14 = 270-µfd. 600-volt mica.
C8, C9, C11, C12, C13, C14 = 0.01-µfd. 600-volt paper.
C10, C16 = 50-µfd. variable.
C17 = 0.005-µfd. 1000-volt mica.
C18, C19, C20, C21, C22 = 40-µfd. 450-volt.
R1, R6, R9, R10, R11, R12 = 0.1 megohm, 1 watt.
R2, R3, R4, R7, R8 = 100 ohms, 1 watt.
R13 = 2750 ohms, 10 watts.
R14 = 10,000 ohms, 50 watts.
R15 = 1 ohm, 10 watts.
R16 = 25,000 ohms, 10 watts.
R17 = 1000 ohms, 1 watt.
L1 = 1.75 Mc., 25 turns No. 22 enam., closewound.
B = 3.5 Mc., 10 turns No. 22 enam., closewound.
Winding length approx. 1½ inches (jumper from Pins 1 to 4).
L2 = 1.5 Mc., 40 turns No. 22 enam., closewound.
B = 7 Mc., 17 turns No. 22 enam., closewound.
Winding length approx. ½ inch.
L3 = 3.5 Mc., 35 turns No. 18 bus., closewound.
B = 7 Mc., 16 turns No. 18 bus. winding length 1½ inches.
C = 14 Mc., 9½ turns No. 18 bus. winding length 1½ inches.
L4 = 6 turns No. 22 enam., interwound at low end.
B = 4 turns No. 22 enam., interwound at low end.
C = 3 turns No. 22 enam., interwound at low end.
All coils wound on 1½-inch diameter forms.
L5 = 5-henry 150-ma. choke.
J1 = Open-circuit jack.
MA = 0–150 d.c. milliammeter.
RFC1, RFC2 = 2.5-mh. r.f. choke.
S1 = S.p.s.t. switch.
S2 = D.p.s.t. switch.
T1 = 600–0–600 v., 200 ma.; 5 v.; 2.5 v.; 6.3 v.

between 230 and 250 volts respectively, under unloaded and loaded conditions, depending on the frequency of operation. The resistors, R2, R3, R4, and R5 are 100 ohms each and are only for ease in checking currents without opening the wiring, by shunting a milliammeter across them.

In order to conserve space, a single transformer is used for supplying all voltages. The two rows of filter capacitors require less space than two 20-µfd. 900-volt condensers. The high-voltage transformer also supplies the oscillator, and plenty of filter should be used. Since 700 volts is just above the rating of most electrolytics, two are used in series in each case. Of course, a separate low-voltage supply may be used if space is available. The bias voltage is obtained from a 2N2/879 and is held constant by a VR-105. If a separate low-voltage supply is used, then a 6X5 may be substituted, but in our case the ratings of a 6X5 would have been exceeded. The
2X2/879 will deliver 7.5 ma., enough to ignite the voltage regulator and supply the normal leakage current of the filter capacitors. Condenser input was originally tried on the bias rectifier but the surge proved a little too much for the 2X2/879, so the filter was changed to resistor input by wiring C31 in parallel with C32. The 40 µfd. in C32 alone, is more than enough for this section of the power supply, and the drop through the rectifier and resistor brings the voltage far below the 450-volt rating of the condenser. A 5U4G is used as the high-voltage rectifier and has proven satisfactory, although a 5R4GY may be substituted if preferred. Care must be taken to connect the filter capacitors with their polarities as shown, which places high voltage on four of the housings. Cardboard tubes, commercially available for this purpose, were cemented to the capacitors to prevent accidental shock to the operator. Insulated plate caps on the 807 and 2X2/879 are also used, leaving the amplifier plate coil the only exposed component with high voltage on it.

Construction

The unit is built on a 10 × 12 × 3-inch chassis, with the r.f. section along the front edge. A little thought given to the placement and orientation of sockets will help considerably in maintaining short leads and eliminating unwanted couplings between circuits. Reading from right to left across the front apron are the oscillator grid tuning condenser, oscillator plate tuning condenser, 807 cathode meter, 807 cathode switch and 807 plate tuning condenser. The key jack is on the right-hand apron and the output link terminals on the left. The a.c. cord emerges from the rear apron below the transformer, with the line switch near the rear of the left-hand apron.

Along the rear edge are the power transformer, 5U4G, choke, oscillator plate VR-150 and input and output filter condensers. The central line of components comprises the 2X2/879, bias filter, bias regulator, oscillator tube and oscillator-screen VR-150. All filter condensers are mounted on insulating washers.

There is nothing critical about the construction of the coils, and the coil data is given in Fig. 1. It will be noticed that the socket connections for L4U4 will accommodate manufactured-type miniature coils (B & W Jr.). The plate lead for the 807 plate coil is connected to the top of the winding and is disconnected from the tube each time bands are changed. A convenient method is to solder a long piece of bus to Pin 2 of the coil form and run it up along the inside of the form. When the winding is finished, anchor it to the bus and leave enough to form a loop, to which the plate lead may be soldered.

To complete the unit a base plate is screwed to the bottom, removing any "weave" in the chassis and also serving as a shield. No change in oscillator frequency was noticed by this addition, and the base plate also serves as a place to mount sponge rubber feet if desired. Even though there was no drift over two operating periods, one of

(Continued on page 124)
Let's Not Overmodulate—It Isn't Necessary!

Speech Clipping and Filtering for More Effective Communication

BY JOHN W. SMITH,* WØUCM, AND N. H. HALE,* WØJIH

* Collins Radio Co., Cedar Rapids, Iowa.

The clipper is an instantaneous device. It is inoperative until the audio voltage reaches a predetermined level, then chops off everything above that level. As soon as the signal voltage drops below this limit the clipper ceases to operate. Such a device introduces a considerable amount of distortion, but the distortion is introduced at a point where the objectionable high-frequency harmonics can be controlled and not allowed to appear in the sidebands.

With average modulation of 30 per cent, the sideband power is down about 10.5 db. from the 100-per-cent level. If we should attenuate the voice peaks 10.5 db. and increase the over-all amplifier gain by the same amount, the lower-level voice components would be better utilized and the average modulation would approach 100 per cent.

In tests conducted for the purpose of determining the effects of harmonic distortion upon the intelligibility of speech, it has been established that the vowel sounds contain the major portion of speech power, yet contribute very little to intelligibility. Consonant sounds (t, k, s, p, v, b, etc.) carry little power but are the principal means of conveying intelligence. Therefore it should be possible to change or distort the waveform of the vowel sounds (the voice peaks) without adversely affecting intelligibility.

Extensive tests to determine the degree to which voice peaks can be distorted without adversely affecting intelligibility show that 6 db. of peak clipping is barely noticeable, 12 db. is not objectionable, and 24 db. of clipping can be tolerated. By the use of this system, and with an over-all increase in amplifier gain, (1) the effective power in the consonant sounds (low level...
components) is increased, (2) the mean audio power is increased, (3) the average modulation level is increased, (4) intelligibility is aided in QRN and QRM, and (5) the carrier is utilized to the maximum.

Circuit Considerations

There are several methods of accomplishing peak clipping. An audio filter should be used in conjunction with a clipper to suppress high harmonics created by the clipping action and thus maintain a narrow bandwidth. The filter introduces problems of its own, but if clipping is done at a low level the filter components will be small and relatively inexpensive.

Fig. 1 shows the schematic of a simple peak clipper for use in a low-level Class A audio amplifier. R_1 and R_2 are each equal in value to the normal cathode bias resistance for the particular tube. Potentiometers are used to vary the diode bias according to the signal amplitude at which clipping is desired. The 0.1-megohm resistor provides a high circuit impedance which is desirable with the shunt-type clipper shown in Fig. 1.

It can be argued that shunt clippers will not positively prevent overmodulation because the diode impedance does not drop to zero during conduction. However, in a circuit having an impedance of the order of 0.1 megohm, the somewhat-less-than-1000 ohms shown by the (7H6 is for all practical purposes a short-circuit. Fig. 2-A is a photograph of the output oscilloscope pattern of a normal modulator, and Fig. 2-B shows the output of the same modulator employing 10.4 db. of peak clipping using a shunt-type circuit. Fig. 2-B shows clearly that there would be no overmodulation if the amplifier gain following the clipper were set for 100-per-cent modulation.

Any audio-level indicating device or average-level compression will necessarily precede the clipper, since the peak level is constant following the clipper.

In designing Class B modulator stages, it must be kept in mind that the waveshape shown in Fig. 2-B represents considerably more power for the same peak value than that of the sine wave of Fig. 2-A. The ratio of r.m.s.-to-peak of Fig. 2-B is 0.9, which is considerably better than the 0.707 of the sine wave.

A Practical Clipper-Filter Circuit

The Collins 30K transmitter for amateurs employs peak clipping successfully, using the circuit of Fig. 3. The low-pass filter following the 6H6 clipper prevents high audio harmonics from modulating the carrier and causing unnecessarily wide signals. Thus a high audio level is achieved without overmodulation, and the signal is narrow.

The bias for the clipper is obtained from the 6SN7 cathode resistors. Clipping begins at an audio level of about three volts. The amount of clipping is determined by the voltage available at R_1. Some method of checking modulation is necessary in order to adjust the gain following the 6H6. R_2 is set for 100-per-cent modulation with R_1 advanced about half way. R_2 should preferably have a screwdriver adjustment so that it will not be disturbed after it is set. R_1 will then regulate the amount of clipping.

The filter cut-off frequency is 4000 c.p.s. Fig. 4 shows the amplifier response with the filter in action. The choke used must maintain its inductance over the audio-frequency range. Some chokes lose their performance at higher audio frequencies, due to capacity between turns, etc. A good textbook on filters will enable the designer to use other circuits for his particular application. The filter used in the 30K has a characteristic impedance of 0.1 megohm, which is a good practical value.
The cut-off frequency should be 3500 to 4000 c.p.s. Higher frequencies make for broad signals and contribute nothing to communication. If you want your rig to have broadcast quality, by all means design it to have wide frequency response — up to 20,000 c.p.s. maybe. Check it in your laboratory and be proud of it. But don't put it on the air. Use a filter. A signal that is 40 kc. wide covers up seven or eight other stations that someone wants to hear.

Filter Considerations

Two common types of "pi" filters are shown in Fig. 5, together with their attenuation characteristics. Fig. 5-A shows the prototype and Fig. 5-B the composite or m-derived filter. The m-derived filter with a value of 0.6 for "$m" will have a constant impedance over the voice-frequency range, and several sections can be used in tandem without mismatch. The different sections can be assigned various frequencies of high or "infinite" attenuation, and a really formidable filter will result. Terminating half-sections are utilized in a complete filter design, but for amateur use a simple filter will usually suffice. The total attenuation of the filter in decibels is, of course, the sum of the attenuations in all sections. The equation for attenuation assumes that there is no dissipation in the filter. The fact that there is a small amount of power dissipated in the filter need not bother you.

Clipper Results

Experiments were conducted at the Collins Radio Company to observe the results of using peak clipping. A listening test was very revealing, using about a dozen persons selected at random for subjects. A transmitter was used which had a clipper built into the audio system, and it was tuned to frequencies in extremely poor parts of the spectrum. The noisiest frequencies possible were selected.

The listeners were provided with headphones, and a receiver was tuned to the transmitter. As a series of nonrelated words was transmitted, they wrote down what they heard, or thought they heard. With the clipper circuit inoperative, the percentage of errors was staggering. But when the clipper was used (and the over-all gain increased the same amount as was clipped) the listeners heard almost every word correctly.

The engineering model of the 30K was used to check the benefits of peak clipping on amateur bands. Results were extremely gratifying. Many transmissions that normally would have been lost in QRM and QRN were solid when the clipper was employed. Listeners reported a tremendous increase in audio with no observable broadening of the signal.

Other Considerations

Since the effective microphone sensitivity is extremely high in a clipper amplifier, a noisy operating location should be avoided. Close-talking microphones and noise-canceling microphones are helpful if the noise cannot be avoided. An alternative is to reduce the gain preceding the clipper and talk loudly.
The thought will occur that receivers can use clippers. Transmitters can utilize clipping to put more power in the sidebands and thus compete with atmospheric static or QRM. However, a receiver would be impartial; peak clipping there would benefit all signals, with special advantage for none. Experiments have confirmed this reasoning.

When a clipper is used in a transmitter, care should be taken to avoid phase shift, which occurs especially in transformers. Phase shift can tilt the clipped wave and cause overmodulation. By using an oscilloscope, phase shift can be detected. A variable-frequency audio oscillator is necessary if thorough checking is to be accomplished.

Attenuation of the low frequencies (below 150 or 200 c.p.s.) is desirable in communication equipment. A simple RC filter will be satisfactory. A rising frequency response will result, and low frequencies will not be bothersome.

Conclusions

A peak clipper followed by a filter will have the following advantages:
1) Raise the audio level
2) Prevent overmodulation
3) Maintain a narrow signal
4) Conform with FCC requirements

Thus by using this system, amateurs can have high average modulation and still conform to FCC rules and regulations. The signal will be narrow. All these things are desirable, but many hams have disregarded the ethics of good hamming in their determination to be heard.

The clipper must be followed by a filter if the signal is to be kept clean and narrow. (A filter should be used anyhow if maximum use of the crowded amateur bands is to be achieved.)

Because the consonant sounds are effectively amplified more than vowels, intelligibility is improved when reception is hampered by static or when frequencies are congested. The advantages of clipping rise in proportion to the interference.

This system has been proved. It is within the reach of everyone. The circuit presented can be followed with excellent results.

Acknowledgment

The clipper circuit of the Collins 30K transmitter was originally developed by P. G. Wulfberg for use in airborne transmitters. W. B. Bruene designed the 30K and supplied test results.

Strays

The Somerset Hills Radio Club will hold a hamfest November 14, 1946, at the Valley Inn, Springfield Avenue, Stirling, N. J. Registration, $2.50. Dancing, prizes, buffet supper and entertainment are on the program.

WWV Schedules

Standard-frequency transmissions are made available as a public service by the National Bureau of Standards over its standard-frequency station, WWV, on the following schedules and frequencies:

2.5 Mc.—7 a.m. to 9 a.m. EST (0000 to 1400 GCT).
5.0 Mc.—Continuously, day and night.
10.0 Mc.—Continuously, day and night.
15.0 Mc.—Continuously, day and night.

The 10- and 15-Mc. radio frequencies are modulated simultaneously at accurate audio frequencies of 440 and 4000 cycles. Five Mc. carries both frequencies during the daytime but only 440 cycles from 7:00 p.m. to 7:00 a.m. EST, while 2.5 Mc. carries only the 440-cycle modulation. A 0.005-second pulse may be heard as a faint tick every second, except the 59th second of each minute. These pulses may be used for accurate time signals, and their one-second spacing provides an accurate time interval for physical measurements.

The audio frequencies are interrupted precisely on the hour and each five minutes thereafter, resuming after an interval of precisely one minute. This one-minute interval is provided to give Eastern Standard Time in telegraphic code and to afford an interval for the checking of radio-frequency measurements free from the presence of the audio frequencies. Ionospheric disturbance warnings applicable to the North Atlantic path are given at 20 and 50 minutes past each hour. If a disturbance is in progress or is anticipated within 24 hours, the time announcement is followed by 0 Ws; if conditions are quiet or normal, the time announcement is followed by 8 Ns. The announcement of the station's services and of the station's call (WWV) is given by voice at the hour and half hour.

The accuracy of all the frequencies, radio and audio, as transmitted, is better than a part in 10,000,000. Transmission effects in the medium may result in slight fluctuations in the audio frequencies as received at a particular place; the average frequency received, however, is as accurate as that transmitted. The time interval marked by the pulse every second is accurate to 0.00001 second. The 1-minute, 4-minute and 5-minute intervals, synchronized with the second pulses and marked by the beginning and ending of the periods when the audio frequencies are off, are accurate to a part in 10,000,000. The beginnings of the periods when the audio frequencies are off are so synchronized with the basic time service of the U. S. Naval Observatory that they mark accurately the hour and the successive 5-minute periods.

Of the frequencies mentioned above, the lowest provides service to short distances and the highest to great distances. In general, reliable reception is possible at all times throughout the United States and the North Atlantic Ocean, and fair reception over most of the world.
Narrow-Band F.M. with Crystal Control
A Reactance-Modulator Crystal-Oscillator Unit
BY GEORGE W. SHUART,* W2AMN

Narrow-band f.m., we believe, is destined to become an important factor in ham radio, as it already has in commercial radio services. True, you always get some "bitter with the better," but in narrow-band f.m. there is every sign that there is going to be plenty of better and not too much bitter. It eliminates the high-power — and therefore expensive — audio equipment needed for amplitude modulation, and will reduce certain types of interference to broadcast reception — and no one will deny that the latter has been a sore spot in ham radio for a long time.

Narrow-band f.m. is just like any other type of f.m. except in the extent of the swing. How wide and how narrow are two burning questions. Also, what about noise? All these questions are going to be answered by the type of receiver we are going to use. Simply stated, all f.m. can be converted into a.m. by riding up and down the side of the selectivity curve of the receiver. Fortunately, n.f.m. (let's call it that, it's much easier), can be made to swing back and forth across either side of the selectivity curve of a communications receiver, and since most of these curves have a linear portion some 2 or 3 kc. wide there is ample bandwidth for good reception.

To see how this works refer to Fig. 1, which represents a typical selectivity curve. Axis A represents the center of the curve, and starting at about 6 db. down the curve becomes straight out to about 4 kc. This means that our point of tuning for narrow-band f.m. should come at axis B. As the frequency shifts back and forth, the amplitude will vary and thus we have converted to a.m.

Considering Fig. 1, when the receiver is tuned to a signal on the high-frequency side it is true that it will also simultaneously respond to a signal on the low-frequency side. It will also respond to the same signal with the receiver tuned to either side of the resonance curve; in other words, each signal can be tuned in at two spots. The interference is doubled, therefore, even though the n.f.m. transmitter takes no more channel space than an a.m. transmitter. The situation is comparable to that in c.w. reception

*Hammarlund Mfg. Co., N. Y.
with a regenerative receiver or with a straight super when the b.f.o. is tuned to the center frequency of the i.f. response curve; in either case there are two tuning spots where the same beat tone can be secured. Of course, just as in c.w. reception, if there is QRM at one spot it is often possible to tune to the other side and avoid it — which does not, however, dodge the fact that it is an inherently less-selective method of reception.

Another disadvantage is that, because it is necessary to detune the receiver to get any detection at all, the a.v.c. system is working with a relatively weak carrier. Consequently, the gain of the receiver stays high and a great deal of noise rides in as compared to the case where the carrier is tuned on the nose, for a.m. reception. With conventional receivers we can knock out a lot of the noise with a correctly-designed audio limiter. The type that bites into the audio and causes distortion will reduce noise the most. Since we have to tune to axis B, Fig. 1, to get least distortion, we can see immediately that the frequency stability of both the receiver and the transmitter is extremely important — a very little drift or detuning will ruin the quality. For this we believe that crystal-controlled oscillators are essential in n.f.m. with this type of reception. If the foregoing seems discouraging, it is because the accent has been placed on the disadvantages of makeshift f.m. reception, rather than on the advantages of f.m. transmission. The latter seems obvious. Of course, improvement in receiver design will make all the difference in the world. Those receivers having wide-band crystal filters will do very well because the phasing notch

Fig. 2 — Circuit diagram of the experimental narrow-band modulator unit with crystal-controlled oscillator.

- C1, C3, C4, C5 = 3-µfd. 50-volt electrolytic.
- C6, C9, C10, C13 = 0.001-µfd. mica.
- C5 = 50-µfd. variable.
- C8 = 20-µfd. 450-volt electrolytic.
- C11 = 10-µfd. 450-volt electrolytic.
- R1 = 5 megohms, 1/2 watt.
- R2 = 1000 ohms, 1/2 watt.
- R3 = 0.47 megohm, 1/2 watt.
- R4 = 22,000 ohms, 1/2 watt.
- R5 = 0.22 megohm, 1/2 watt.
- R6 = 1-megohm volume control.
- R7 = 1500 ohms, 1/2 watt.
- R8 = 0.1 megohm, 1/2 watt.
- R9 = 0.5 megohm, 1/2 watt.
- R10 = 390 ohms, 1/2 watt.
- R11 = 0.1 megohm, 1 watt.
- R12 = 4700 ohms, 1 watt.
- R13 = 470 ohms, 1/2 watt.
- R14 = 22,000 ohms, 1 watt.
- R15 = 10,000 ohms, 25 watts.
- L1 = 56 turns No. 26 enameled, 1/4-inch diam., 1 5/8 inches long. Link, 3 turns.
- L2 = 15 henrys, 70 ma.
- J1 = Microphone-cable socket.
- RFC = 2.5-mh. r.f. choke.
- S1, S2 = S.p.s.t. toggle.
- T1 = Receiver-type power transformer; 250 to 300 volts at 70 ma.
This view of the bottom shows that wiring presents no special problems. The encased unit at the top is the filter choke. The oscillator modulator is built on an aluminum chassis formed by bending an 8 x 13½-inch sheet in the form of a U with 3-inch sides. A 0-100 milliammeter is connected to the flexible leads running out of the picture to the right. The twisted pair at the top is the r.f. output link.

This can be moved to the unused side of the resonance curve, and thus reduce a lot of interference and noise.

Crystal-Controlled Oscillator-Modulator

In the circuit diagram of Fig. 2, the crystal frequency is varied at an audio-frequency rate by a reactance modulator; in effect, the modulator operates like a variable inductance connected across the crystal and thus varies its operating frequency at an audio-frequency rate. The extent of the frequency variation—that is, the frequency deviation—is relatively small, but is ample for narrow-band f.m. at 28 Mc. With a 3.5-Mc. AT-cut crystal the frequency can be varied over a range of approximately 400 cycles, or a total swing at 28 Mc. of 3200 cycles.

The circuit values are rather critical and it is advised that they be strictly adhered to unless you want to do a lot of experimenting. The critical adjustment factor is really the setting of the plate tank condenser in the oscillator circuit. The curve in Fig. 3 shows that the plate current at first drops slowly as resonance is approached from the high-frequency side and then increases very rapidly just before the crystal ceases to oscillate. Best results are obtained with the tank adjusted to point A, which is just on the high-frequency side of the minimum plate-current point and on the long sloping part of the curve. With the adjustment farther along the curve on the steep side a wider swing can be obtained but operation is not as stable and on some audio peaks the crystal may be knocked out of oscillation. In any event, with the circuit values and the system shown in Fig. 2, the swing will be in excess of that required by the average receiver.

It is desirable to build the oscillator and reactance modulator in one unit having its own power supply, as in the case of the experimental unit shown in the photographs. The n.f.m. r.f. output can be link-coupled to practically any transmitter having a 3.5-Mc. crystal oscillator. Coupling through a link wound around the present crystal-oscillator plate tank coil is suggested. The speech amplifier in the unit pictured has plenty of gain for a crystal microphone, with a 6S7 input stage followed by a 6C5 which in turn drives the 6F6 reactance modulator.

Aside from the normal precautions in wiring r.f. and audio circuits, no special ones need be observed in building a unit similar to this. Long leads between the reactance modulator and the crystal are not likely to be a cause of instability.

Strays

WØRQS, who writes the ads for PR Precision Crystals, sez bizzness-is booming, thanks to QST ads. And no small wonder! To date W2AJO, W4BYY, W4HZK/4, W9BLE, and Pete Poppas of Rochester, Minn., have written us about the PR ad in July QST. It reads, "Z-5 ... ten-meter crystal ... will drive 807 to fuel output." (Italics ours.) Sure is a hot item for the shack these cool days!
ARRL's 13th Sweepstakes

Nov. 16th-18th, 23rd-25th — Awards to Section¹ Leaders — C.W. and 'Phone Certificate in Each Club — Gavel to Winning Club — Use Any Ham Band(s) and 'Phone or C.W.

BY F. E. HANDY, * W1BDI

<table>
<thead>
<tr>
<th>CONTEST PERIODS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
</tr>
<tr>
<td>EST</td>
</tr>
<tr>
<td>CST</td>
</tr>
<tr>
<td>MST</td>
</tr>
<tr>
<td>PST</td>
</tr>
</tbody>
</table>

The aim of this contest is to work as many stations as possible. The points from such work will be multiplied by the number of different ARRL Sections worked, with at least a complete one-way exchange, during the contest. All essential contest information is sent in the form of a standard preamble, with city-and-state shortened to the giving of only the name of the ARRL Section. Exchanges are for the record sent to Hq.

The “SS” builds operating keenness. The order of work follows the order of message parts. New station records are invariably made in each “SS.” It’s operating fun and a builder of operator confidence and ability. “SS” telegraphing operators contact and compete with other telegraphing operators. 'Phone hams compete with other 'phone hams. Paper work is completed as the contest progresses, with nothing to do at the end but to total and summarize points and send them in. Mimeographed contest forms will be sent gratis to anyone who requests them by radiogram or card. Use of our sheets is not required nor is advance entry necessary. The purpose of the suggested form is to help participants keep uniform logs. Follow the form arrangement shown with this announcement, or ask us for our prepared form.

The contest provides for 40 hours total operating in the two contest periods. You can operate “solid” for one 33-hr. week end (with 7 hours to go) if you wish. Cross-examination of logs makes it possible to check operating time. Every licensed amateur in any field-organization Section² is urged and invited to take part. The general c.w. call is CQ SS CQ SS CQ SS de W... W... W..., though sometimes a single snappy CQ SS has been known to net a row of successful exchanges. Use any authorized amateur frequency bands.

Medallion Awards

The League is providing new, distinctive medallions for this year’s “SS” winners, the two in each Section to go to the c.w. and radiotelephone winners. Additional certificates will recognize competitive effort in clubs, where three or more club members submit properly-identified logs connecting their work with a particular club. At least three stations must compete and report, to rate either a club-'phone or a club-c.w. “SS” certificate. The sum of all club-member scores (‘phone and c.w.) for which logs are submitted will count toward a club gavel award to the nation’s leading club in the “SS.” Through Section awards, operators compete under equal DX conditions and oppor-

HOW TO SCORE

All contacts count:

One point for each QSO when “receipt” is completed for an exchange one way.

Two points for each QSO when the required information is exchanged both ways.

For final score: Multiply totaled points by the number of different ARRL Sections worked, that is, the number in which at least one bona fide “SS” point or exchange has been made.

Multiply this by 1.25 if you used 100-watts-or-less transmitter input at all times.

³ Communications Manager, ARRL.
¹ Including Puerto Rico, Hawaii, Alaska, P. I.
² See list of Sections in the ARRL field organization, page 6, QST.
³ There is no point in working the same station more than once in the contest periods if two points have been earned by an exchange. If but one point is made the first time, you can add a point by working this station again for exchange in the opposite direction. Underline all such exchange entries in your “list,” identify them by showing parenthetically the call of the correspondent station. Leave right or left report columns blank so that other pairs of exchanges completed in one contact are side by side.

30 QST for
EXPLAINING CONTEST EXCHANGES

<table>
<thead>
<tr>
<th>Send Like Standard</th>
<th>NR</th>
<th>Call</th>
<th>CK</th>
<th>Place</th>
<th>Time</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the "SS"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exchanges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purpose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The QSO NR tells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>how you are</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>doing; aids HQ,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>checking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

More Rules

1) Information in contest exchanges must be sent in the order indicated, that of the ARRL message preamble. Incomplete exchanges or wrong order of sending justifies disqualification.

2) Entries should be (a) in the low-power class, or (b) high-power class. Any work on high power places all of one's score in the high-power class. Logs must show the power used for each QSO or for groups of QSOs.

3) Reports must show operating time for each period spent on the air in the "SS," and the total of such operating time.

4) Logs must be marked for "phone" or "CW" entry, grouping all work by either method together as one score.

5) All work must fall in the contest periods.

6) Award-committee decisions shall be accepted as final.

7) Reports from all stations must be postmarked no later than December 9, 1946, to be considered for awards.

(Concluded on page 189)

STATION W.—SUMMARY OF EXCHANGES, THIRTEENTH A.R.R.L.
ALL-SECTION SWEEPSTAKES

<table>
<thead>
<tr>
<th>Freq. Sent (Mc.)</th>
<th>Time On or Off Air</th>
<th>SENT (1 point)</th>
<th>Time Date (Nov.)</th>
<th>RECEIVED (1 point)</th>
<th>Time Date (Nov.)</th>
<th>Number of Each</th>
<th>Number of Each New Section as Worked</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>On 6:10 P.M.</td>
<td>1 W1AW 579 Conn. 6:15 P.M. 16</td>
<td>2 W1TD Conn. 589 6:18 P.M. 16</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"</td>
<td>2 W4S Conn. 6:25 P.M. 16</td>
<td>7 W1HY Conn. 479 6:30 P.M. 16</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>On 7 A.M.</td>
<td>1 W1FD Conn. 10:15 P.M. 17</td>
<td>2 W7BY Conn. 589 W. N. Y. 10:24 P.M. 17</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Off 3:00 A.M.</td>
<td>1 W1LA Conn. 12:30 A.M. 17</td>
<td>2 W2XY Conn. 479 Ill. 12:15 A.M. 17</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>On 30 min.</td>
<td>1 W1FG Conn. 12:45 A.M. 15</td>
<td>1 W1NC Conn. 479 S. Minn. 1:35 A.M. 18</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Total Operating Time: 13 h. 10 m. 3.5, 7 and 14 Mc. used. 8 Sec., 21 Pts. 85 Watts Input Power

Number and names of operators having a share in above work

Claimed score: 21 points x 8 Sections = 168 x 1.25 (85 watts input) = 210.

I hereby state that in this contest I have not operated my transmitter outside any of the frequency bands specified on my station license, and also that the score and points set forth in the above summary are correct and true.

Signature
Address

Tube line-up

Number different stations worked
ARGENTINA

In the first such instance on record, Arnold Proner, W2OMU, has been granted authority by the Argentine government to operate with the portable designator /LU while his ship, the SS Winthrop Victory, is in the port of Buenos Aires. Needless to say, the Radio Club Argentino arranged the matter. Proner must, of course, comply with all local regulations governing amateur stations.

Several Latin American countries have, from time to time in the past, granted licenses for special temporary permission to resident aliens. A great deal of what we hear on the air these days involving a portable designator plus a foreign prefix is "unofficial," of course. But now Argentina has taken this step, Colombia has proposed to IARU that reciprocal licensing arrangements should exist between countries, Cuba already licenses amateurs visiting from nations who grant reciprocal privileges, Canada and the United States may soon effect such an arrangement—and some day an amateur license may be valid throughout most or all of the world.

WAC CERTIFICATES

The International Amateur Radio Union is again issuing the coveted Worked All Continents award to licensed amateurs who submit confirmations of two-way communication with an amateur station in each of the six continental areas of the world.

The required areas are North America, South America, Africa, Europe (including European Russia), Asia (including Asiatic Russia), and Oceania (Australia, New Zealand, the Philippine Islands, the Netherlands East Indies, and most of the Pacific islands). Many questions arise because of the operation of amateur stations by occupation forces, particularly in the Pacific islands. It may be said that only the main Japanese chain of home islands lies in the continent of Asia; all outlying islands are counted as Oceania. The Headquarters would be glad to answer inquiries about specific islands.

Under the rules of the Union governing the issuance of WAC certificates, the applicant must be a member of the national amateur society of the country in which he normally resides. No fee is required from such applicants. Persons residing in a country not represented in IARU must pay a fee of 50 cents to the Headquarters before a certificate can be granted.

Applications should be sent to the headquarters of the national amateur society; if there is none, they may be sent to Union headquarters, care of ARRL. Two types of certificates are available: the regular award, and a special one for telephony. In addition, there is a 28-Mc. endorsement available if an applicant submits cards showing that all contacts took place on that band.

FAR EAST

As a result of discussions between the R.S.G.B. and its members in India, it is planned to form a Radio Society of India, operating through branch managers, one in each of the larger cities. J. McIntosh, YU2LJ, Assam, is organizing the society in the north, and J. S. Nicholson, VU2JP, Trivandrum, in the south.

Licenses are again being granted in Malaya, with general provisions for 30 watts and as much as 100 watts available on special permission. The 100-meter band is available, shared, plus the 10- and 5-meter bands. C.w. or 'phone may be used.

British army personnel in Japan expect to obtain licenses soon, with J4 calls. The J9 calls apparently will be for U.S. service men.

(Conclusion on page 196)
The VT-127-A in Amateur Transmitters

Practical Operating Data for 144 Mc. and Lower Frequencies

BY GOMER L. DAVIES, * EX-W8AFW

During the war, large quantities of tubes known as VT-127-As were required for use in connection with early radar equipment. The rapid development of better and better radars has made these early equipments obsolete and they, along with the tubes in them, have been turned over to the War Assets Administration by the Army for disposal as surplus. At the request of the WAA, we have made a study to determine just how these tubes could be used by amateurs, and some interesting results have been obtained.

In common with all other radar transmitting tubes, the VT-127-A was especially designed for pulse operation. It was therefore endowed by its designer with a very husky filament and with terminal insulation to permit operation at very high plate voltages. The tube, accordingly, should be capable of taking a terrific beating electrically, as compared with many other tubes.

Because pulse operation permits, in a properly-designed tube, the application of extremely high voltages to the plate, electron transit time is quite appreciably reduced and the tube can be operated at much higher frequencies under these conditions than under continuous-duty conditions. Consequently, most radar tubes cannot be operated under continuous-duty conditions except at frequencies much lower than their normal radar applications.

The original application of the VT-127-A called for operation at approximately 205 Mc. It is possible to use the tube as a Class C amplifier in continuous duty at this frequency, but neutralization becomes quite ticklish and the plate tank circuit almost disappears into the tube, so that reasonable efficiencies are rather difficult to obtain. In the 144-148-Mc. band, however, quite decent efficiencies are obtainable, and a pair of these tubes in a Class C amplifier is perfectly capable of putting 100 watts into an antenna system without the use of excessive plate voltages, necessitating expensive power-supply equipment. This amount of power at about 146 Mc., together with a reasonably-directive antenna system, will establish fairly-high field intensities over rather long distances, particularly if the transmitter can be located at some altitude.

The appearance of the tube is shown in the photograph, and outline dimensions are given in Fig. 1. The plate leads are at the top of the bulb, the grid leads below them, and the filament terminals extend through the bottom in the form of two stiff wire leads approximately $\frac{3}{16}$ inch in diameter. Special mounting blocks or other contact arrangements must be used for these filament leads, but this should not present an insuperable problem to most amateurs. Fig. 2 shows a drawing of the filament support and connection blocks which were used in the radar transmitter designed for use of the VT-127-A. If this

* P.O. Box 71, College Park, Md.

**Large quantities of the VT-127-A were made during the war for now-obsolete radar equipment, and the tube is plentiful as surplus. Little, if any, information has been available on its performance in c.w. transmitters as contrasted to the pulsed oscillators for which it was designed. Here's some authentic dope on what the tube can do and how to use it.
particular mounting block is beyond the scope of your shop facilities, you will undoubtedly think of a half dozen other methods of connecting to the filament leads and supporting the tube. The only thing that need be remembered in this connection is that the filament current is fairly heavy and the contact design should be adequate to carry this current.

Operating at 144 Mc.

Table I shows a typical set of operating conditions for continuous-duty operation in the 144-148-Mc. band. These latter data were obtained with a push-pull neutralized amplifier of conventional design. The power output given does not represent tube output, as is common in such tabulations of calculated operating conditions, but actually represents useful power delivered to a load and thus takes into account losses in the tank circuit and some transmission-line losses. In order successfully to use the tube as an amplifier it was necessary also to determine suitable driving means, and it was found that one VT-127-A will operate very nicely as a doubler to drive two of them in a final amplifier. If high-level modulation is desired, the tube may also be used as a Class B audio-frequency amplifier, two of them operating in this fashion being able to modulate two VT-127-A Class C amplifiers. Grid modulation is also reasonably satisfactory.

Fig. 3 is the circuit diagram of the doubler and amplifier, while various views of the experimental units are given in the photographs. The stages preceding the doubler are not shown because techniques for obtaining the 8 to 15 watts necessary to drive the doubler are well known to amateurs. Presumably, of course, a crystal oscillator and suitable doubler stages would be used. A tube such as the 807 would provide adequate excitation for the VT-127-A doubler.

It is vitally important that the neutralizing-condenser leads be made as nearly zero in length as possible. Consequently, the adjustable elements of these capacitors are mounted directly on the high-potential ends of the plate-tank conductors, as shown in the top view of the amplifier unit. The neutralizing condensers are coaxial capacitors, dimensional details being given in Fig. 4. In order to hold the inner conductor concentric with the outer shell and to increase the flash-over voltage, the polystyrene sleeve indi-
One VT-127-A as a doubler provides sufficient drive for the pair in push-pull. The small variable condenser connected to one side of the plate tank is used to balance the tube capacitance and thereby maintain symmetry in the tank circuit.

cated was used. This eliminates the necessity for rigid and accurately-aligned supports for the inner movable elements of the condensers. The plate-tank conductors are ¾-inch copper tubing 16 inches long. The tuning condenser is a miniature dual-section unit having a maximum capacity of 15 µfd, per section. It is mounted 2¾ inches from the high-potential end of the plate tank circuit. No choke or by-pass condenser is used in the high-voltage plate-supply lead, because careful attention to symmetry is far more effective at these frequencies than any chokes or by-passes ever built. The high voltage lead naturally must be disposed physically so that it does not pick up energy from the r.f. circuits. This may be done in several ways: (1) by keeping it in the center plane of the amplifier unit; (2) by keeping it close to the chassis; or (3) by running it inside a copper tube or shielding braid which is carefully grounded.

The bottom view of the amplifier unit shows the grid tank circuit and grid connections of the neutralizing condensers. It will be noted that these connections are made from wide copper strips to reduce the inductance as much as possible. The tuning condenser is the same type as the one used for plate tuning, and is mounted 2¾ inches from the high-potential end of the tank circuit. For the experimental work which is being carried on the tank circuit was made longer than actually necessary, and its length is adjusted by the short-circuit shown to resonate it properly. The actual length used is 5¾ inches, and it is unnecessary to make the circuit longer than this. Conductors used in the grid tank circuit are ¾-inch copper tubing, spaced 1¾ inches. If the conductor size or spacing is changed, it will be necessary to change the length of the tank.

For satisfactory operation, the filaments must be as near r.f. ground potential as possible. It was found that this could be achieved to a sufficient degree by grounding one of the filament support blocks of each tube to a wide metal sheet.
passing under the chassis. This sheet extends across the upper end of the chassis in the bottom view.

The extra grid and plate connections on the tube are very tempting as neutralizing-condenser connections, because they would provide a very handy mechanical separation of tank circuits and neutralizing condensers. Such an arrangement does not behave properly, however, and any attempt to put the neutralizing condensers on the side of the tube opposite to the side on which the tank circuits are located makes it impossible to tune the grid circuit, and also reduces very materially the excitation voltages which can be developed on the grids.

In the adjustment of the amplifier, the excitation is first applied without any plate voltage on the amplifier and the grid circuit tuned for maximum grid current. Initial neutralizing adjustments are made by swinging the plate tuning condenser through resonance and adjusting the neutralizing condensers until the effect on the grid current is minimum. It will probably be impossible to eliminate entirely the variation of grid current as the plate tuning is swung through resonance. Final adjustment of neutralizing condensers is made by applying a relatively low voltage to the plates and making final "touch-up" adjustments so that plate-current minimum and grid-current maximum occur at exactly the same setting of the plate tuning condenser. Neutralizing adjustments must be carefully made, because incorrect adjustments may result in severe oscillation at settings of the grid or plate tuning condensers quite different from the resonance setting. This condition may also occur when the neutralizing condenser leads are not returned to the grid and plate circuits at points as close to the tube terminals as is practically possible. It is for this reason that the neutralizing-condenser connections are made directly to the grid terminals of the tube. Even a half inch of lead common to the neutralizing-condenser circuit and the grid tank circuit may be very detrimental to proper neutralization. If the circuit is properly laid out and adjustments are carefully made, neutralization will be as effective as at lower frequencies.

Doubling Frequency

The doubler is quite conventional, using a coil and condenser for input tuning, as shown in the bottom view of that unit, and a transmission line tank for the output tuning as shown in the top view. The grid coil is composed of three turns of No. 14 wire, 1 1/2 inches in diameter, with a spacing of 1/2 inch between turns. The tuning condenser has a maximum capacity of 8 µfd. The plate tank circuit is 7 1/2 inches long and is made up of copper tubing 3/4 inch in diameter, spaced 2 1/4 inches apart. The tuning condenser is the same as is used in the amplifier unit and has a maximum capacitance of 15 µfd. per section.

Bottom view of the amplifier chassis. Note the arrangement of the tank and neutralizing leads to the grid. The leads are made of copper ribbon to reduce inductance.
In order to balance the doubler plate line to the r.f. potential, a variable condenser having a maximum capacitance of 50 µµfd. is connected at the high-potential end of the line opposite the tube.

The power required to drive the doubler is approximately 8 watts. Excitation power for the final varies, of course, with operating conditions, and ranges from 15 to 25 watts. Power gain in the final amplifier is approximately 10 insofar as the tubes themselves are concerned, although it may be as low as 4 or 5 from driver output to useful load because of circuit losses added to the tube losses. Actual tube efficiencies in the final amplifier are in the vicinity of 60 per cent, as indicated by measurements made with a crude optical pyrometer to determine the plate dissipation, calibration of the pyrometer being made by applying plate power to the tubes in a nonoscillating condition. This method is not too accurate, however, because the distribution of heat on the plate is different when the tubes are operating under r.f. conditions than when they are operating under static conditions. It is rather difficult, therefore, to compare plate temperatures under the two operating conditions.

Audio- and Low-Frequency Operation

Fig. 5 shows the grid and plate constant-current characteristics for use in calculating tube performance. These characteristics were used to calculate the audio-amplifier operating conditions listed in Table II. Two VT-127-As operating under such conditions will furnish power for plate-modulating the final amplifier.

Table II

<table>
<thead>
<tr>
<th>VT-127-A Audio-Amplifier Operating Conditions — Two VT-127-As in Push-Pull, Class B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Impedance</td>
</tr>
<tr>
<td>Equivalent Plate-to-Plate Impedance</td>
</tr>
<tr>
<td>D.C. Plate Voltage</td>
</tr>
<tr>
<td>D.C. Plate Current</td>
</tr>
<tr>
<td>D.C. Grid Bias</td>
</tr>
<tr>
<td>D.C. Grid Current</td>
</tr>
<tr>
<td>Power Output</td>
</tr>
<tr>
<td>Grid Driving Power</td>
</tr>
</tbody>
</table>

Fig. 6 — Grid-bias modulation characteristic of the 144-Mc. amplifier under typical operating conditions. The square root of the output power is proportional to either r.f. tank voltage or current, thus perfectly linear operation would be indicated by a straight-line characteristic.

Previous described. The amplifier may also be grid-modulated, Fig. 6 showing the square root of the power output against grid-bias voltage. This shows that reasonably good grid modulation can be obtained with a carrier output of 25 watts. Modulating power required is approximately 3 watts under these conditions.

Of course, the VT-127-A may be used in a similar manner in any lower-frequency amateur

(Concluded on page 18)
INTERNATIONAL CONFERENCES — BUDLONG TO MOSCOW

Giving expression to the wishes of 30-odd nations, the United States has issued invitations to a plenipotentiary world telecommunications conference to be held in the United States next year, to revise both the Madrid convention and the Cairo regulations. The most probable site is Chicago. The tentative opening date is April 15th. The conference is expected to last many months, perhaps eight or nine.

Meanwhile a preliminary conference of the five great powers—China, France, Great Britain, U.S.S.R. and U.S.A.—convened in Moscow on September 28th. The United States sent a delegation of 14 persons plus a secretariat of 7, accompanied by 5 “industry representatives” who are spokesmen for various civilian enterprises in this country. Included in the latter is our own senior assistant secretary, Arthur L. Budlong, W1JFN, representing ARRL. The conference is expected to last about a month. Its purpose is to seek a preliminary understanding and exchange of views between the major nations, prefatory to the world conference, since many changes are contemplated in the international organization of telecommunications. There will also be an exchange of views on allocation matters, and much about the outlook for the coming world conference may be visible from this preliminary one—which was the main reason why ARRL thought it wise to have representation, even though the Moscow meeting does not possess the power to make final decisions. In a later issue we’ll give you a report of the outcome.

ELECTION RESULTS

Apparently there is going to be spirited voting for director and alternate in most of our divisions where elections are being held this year. In only a few cases did the Executive Committee find a single candidate to declare elected without balloting by the membership.

The only such case concerning a director was in the New England Division where the incumbent, Percy O. Noble, W1BVR, was the only eligible candidate. He has been declared reelected for the 1947-48 term. W1AVJ was also nominated but was found ineligible for want of continuous membership.

In the Southwestern, W6ANN and W6RBH were nominated but the former was ineligible for want of continuous membership in the League and the latter OM, Arthur Schifferman of Glendale, was declared elected.

A report of the balloting for the other offices will appear in our January issue.

HUDSON DIRECTORSHIP

Director Robert A. Kirkman, W2DSY, of the Hudson Division, after six years in office has found that the press of personal affairs makes necessary his withdrawal from active participation in League affairs. He has turned over his powers and authorities to his alternate, George Rulffs, jr., W2CJY, who will be acting director for the remainder of the year. This exchange of positions will be further reflected in the fact that in this autumn’s elections Mr. Rulffs will be a candidate for director, Mr. Kirkman for alternate.

MICROWAVE CHANGE

In this column in the September issue we told of a change expected in our 5250-Mc. allocation which would narrow that band and shift its location slightly, and compensate us by creating an additional band in the 3000-Mc. region. FCC has now taken care of the matter with its Order 130-I, which recapitulates all presently-authorized amateur frequencies except our 5250-5650 Mc. assignment, making instead assignments to amateurs at 3300-3500 Mc. and 5650-5850 Mc. As with the other microwave bands, A6, A1, A2, A3, A4, A5, f.m. or pulse emission may be used. The order was effective September 10th.

RENEWALS & MODIFICATIONS

The FCC amateur licensing unit is now up to date in its handling of amateur applications and is eager to have all amateurs eligible for renewal or desiring to submit applications for modification because of change of address or call area make filings immediately, while the extra staff is available to handle the load.
Amateurs whose licenses show date of issuance between December 7th and 31st in the years 1938 to 1943, inclusive, or any day in the months of January and February from 1939 to 1944, inclusive, are now eligible to apply for renewals. Note that renewals applied for now (and up to December 31, 1946) do not require proof of use; this portion of the application form may be disregarded. Amateurs located at addresses other than those specified in their licenses, or in locations where the station call is due to be changed because of changes in the call areas, should also apply for modification, regardless of date of expiration.

If you fit any of the above classes, send now to the proper district office of the Commission for Form 610, fill it out, attach your old licenses, and get it into the Commission at Washington, D. C. Prompt action now will avoid delay later.

ELECTION NOTICE

To All Members of the American Radio Relay League Residing in the Dominion of Canada:

You are hereby notified that, in accordance with a resolution of the ARRL Board of Directors, a special election is about to be held in the Dominion of Canada to elect both a member of the ARRL Board of Directors (in the office of Canadian General Manager) and an alternate thereto, for the unexpired remainder of the 1946-1947 term and for the following 1948-1949 term of two years. Your attention is invited to §1 of Article IV of the constitution, providing for the government of ARRL by a board of directors; §2 of Article IV, and By-Law 12, defining their eligibility; By-Laws 13 to 24, outlining the process for the nomination and election of directors and their alternates; and By-Laws 28 to 30, dealing particularly with Canada. Copy of the Constitution & By-Laws will be mailed any member upon request.

Voting will take place between January 1st and February 20, 1947, on ballots that will be mailed from the Headquarters office in the first week of January. The ballots will list, in one column, the names of all eligible candidates nominated for Canadian General Manager and, in another column, all those similarly named for the office of alternate thereto. Each member will indicate his choice for each office.

Nomination is by petition. Nominating petitions are hereby solicited. Ten or more Canadian members of the League may join in nominating any eligible Canadian member as a candidate for Canadian General Manager or as a candidate for alternate thereto. No person may simultaneously be a candidate for both offices. Inasmuch as all the powers of the director are transferred to the alternate in the event of the director's death or inability to perform his duties, it is of as great importance to name a candidate for alternate as it is for director. The following form is suggested:

Election Committee

The American Radio Relay League

West Hartford 7, Conn.

We, the undersigned Canadian members of the ARRL, hereby nominate

... as a candidate for Canadian General Manager; and we also nominate

... as a candidate for Alternate Canadian General Manager; for the remainder of the 1946-1947 term and for the full 1948-1949 term.

(Signatures and addresses)

The signers must be League members in good standing. The nominee must have been both a member of the League and a licensed radio amateur operator for a continuous term of at least four years immediately preceding receipt by the Secretary of his petition of nomination, except that a lapse of not to exceed ninety days in the renewal of the operator's license and a lapse of not to exceed thirty days in the renewal of membership in the League, at any expiration of either during the four-year period, will not disqualify the candidate; provided, that if a candidate's membership has been interrupted by reason of service in the armed forces of Canada or the United States, he shall not be deemed to be disqualified so far as concerns continuity of membership if he has, since May 7, 1943, renewed his ARRL membership within ninety days of discharge from the military service. He must be without commercial radio connections: he may not be commercially engaged in the manufacture, selling or renting of radio apparatus normally capable of being used in radio communication or experimentation, nor commercially engaged in the publication of radio literature intended, in whole or part, for consumption by licensed radio amateurs. Further details concerning eligibility are given in By-Law 12. His complete name and address should be stated. The same requirements obtain for alternate as for director. All such petitions must be filed at the headquarters office of the League in West Hartford, Conn., by noon EST of the 20th day of December, 1946. There is no limit to the number of petitions that may be filed on behalf of a given candidate but no member shall append his signature to more than one petition for the office of director and one petition...

November 1946 39
for the office of alternate. To be valid, a petition must have the signature of at least ten members in good standing; that is to say, ten or more members must join in executing a single document; a candidate is not nominated by one petition bearing six valid signatures and another bearing four. Petitioners are urged to have an ample number of signatures, since nominators are frequently found not to be members in good standing. It is not necessary that a petition name candidates both for director and for alternate but members are urged to interest themselves equally in the two offices.

Classification of Canadian members into Full Members and Associates is still in process, occurring at time of renewal throughout the coming year. Members possessing certificates of Full Membership, and members not yet classified and holding valid old-style membership certificates, may nominate candidates, or may stand as candidates if otherwise eligible. But members holding certificates of Associate Membership are not eligible to either function.

The present Canadian General Manager is Alexander Reid, VE2BE; the Alternate Canadian General Manager is Leonard W. Mitchell, VE3AZ.

This election constitutes an important part of the machinery of self-government of ARRL, providing the constitutional opportunity for Canadian members to put the management of their affairs in the hands of representatives of their own choosing. Canadian members are urged to take the initiative and file nominating petitions immediately.

For the Board of Directors:

K. B. WARNER,
Secretary

October 1, 1946

NOTICE TO MEMBERS DISCHARGED FROM THE MILITARY SERVICES

The requirement of continuous membership in the League for eligibility to ARRL offices has been waived for members serving in the uniform of the United States or Canada. See particulars on page 27 of QST for July last. Those desirous of taking advantage of this arrangement are required to claim the right when renewing membership, stating the beginning and ending dates of their military service.

ARE YOU LICENSED?

* When joining the League or renewing your membership, it is important that you show whether you have an amateur license, either station or operator. Please state your call and/or the class of operator license held, that we may verify your classification.

DX QSLs

“Claim your old QSL cards now or never,” says page 31 of July QST, because all prewar cards not applied for by next January 1st will be disposed of at that time, by order of the ARRL Board of Directors.

If you did any hamming prewar, some of those DX cards may be for you! Look up the July article and submit the required self-addressed stamped envelope to your QSL Manager now.
November 1946

our variometer-tuned receivers operative as low as 150 meters, in his article "Increasing the Tuning Range of Regenerators." Ellery W. "A-P" Stone writes of "Short Wave H. F. Amplification," and describes the sure-fire receiver circuit he mentioned at the Chicago convention. The first r.f. tube is made to do double duty in one version, also acting as an audio amplifier. C. F. Butcher, 5AL, tells how to loop-modulate c.w. transmitters: H. H. Beverage, 2BML, shows the way to lower antenna resistance through "Improving the C. W. Ground System"; and W. C. White's paper on "Some Operating Notes on the Larger Sizes of Transmitting Tubes," presented at a recent meeting of the Radio Club of America, is reprinted for the edification of the high-power c.w. group. New apparatus descriptions include the Tuska Tuner and the Vocaloud 'speaker. J. V. Pursell, of 3ZF and lCAR, rounds out the technical section with his "Theory of Freak Transmission," which sets us right on present-day propagation thinking.

The static season has passed and c.w. is helping traffic totals soar to new heights. Decker, 2UJ, White Plains, leads with 491 messages. Vermilya has his old Grebe "sink" hack, and reports 201. Division reports are growing — Alaska reports 6 ARRL members now as against 1 six months ago. Traffic Manager F. H. Schnell also is conducting QST's "With the Affiliated Clubs" department, and this month's section shows lots of activity around the country. Outstanding emergency work is reported during the recent New Mexico flood, with credit to 5FY, 5FZ and 5ZJ.

Letters to the editor this month favor simplified receiver tuners and graded amateur licenses, suggest new means for r.f. amplification, and protest transformer (high-powered) hams. Strays tell us the White Plains, N. Y., gang are using call plates on their cars that match the license plates. . . . Speculation is rife as to the brand of tonic or hair restorer used by J. O. of 2ZL, to produce the luxurious sward he is wearing in the photograph on the cover of the Radio Corp.'s catalog. . . . A suggestion is made by 3VR that when vacuum tubes are mounted horizontally from a panel, the ends be dipped in lamp coloring to reduce glare. . . . Wouldn't it be wonderful if we could all hear as much on one tube as 1TS does!

Advertising Manager Adams will have a difficult time explaining why the Rose Radio Supply half-page ad was published upside down — or was it done deliberately to arrest our attention? The General Radio Co. promises 20 miles per watt on c.w. to those using their components.

W6HJG worked W1ADM for the second time in May, 1946, twenty years after their first QSO, which took place in June, 1926!

Would the 10,000-volt 100-ma. final stage at W3IIN/3 be called a "killerwatt" rig?

Ex-DX Hound

Oh, the night was dark and hazy when the ham went DX-crazy.

As he heard the signal "DX3IB!"

Indistinctly he could hear him, for the QRM was near him,

And the signal was so poor in RST.

Disillusionment was bitter when he turned to his transmitter —

Not a meter moved when he depressed the key.

He madly flipped the switches, turned dials with frantic twitches —

Oh, there never was a sufferer than he.

Out upon the working table spread he tubes and coils and cable.

Mixed with solder, blood and sweat and toil and tears.

When the rig had been dissected, double-checked and reconnected,

Then at last an r.f. signal met his ears.

Still possessed with DX fever, back he turned to his receiver.

Weak with fear that he had lost the station now;

As his hopes were surely falling, once again he heard him calling;

"3IB didowdidowdit dowdidow."

In his heart was wistful wishing as his ECO went swishing,

And he parked upon the DX frequency.

As his trembling fingers pressed upon the key.

"31B didowdidowdit dowdidow."

In a state of wild elation then he listened as the station,

Through the QRM, said plainly, "QLS." —

But it left him quite suspended, for to whom that was intended.

Was the all-important thing he couldn't tell.

Called he now the station madly, eagerly at first — then sad;

But he heard that DX signal nevermore.

Ever hopeful — faith undaunted — for the QSL he wanted.

Every day he met the postman at the door.

But his mood was not elation when at last the confirmation

Out upon the working table spread he tubes and coils and cable.

Mixed with solder, blood and sweat and toil and tears.

When the rig had been dissected, double-checked and reconnected,

Then at last an r.f. signal met his ears.

Sadder now — his favor broken by the FCC's blue token —

Still he operated with everlasting hope.

But, although his calls are many and his QSOs are plenty,

They are always strictly local in their scope.

— Joanna and John Brawley, W6WJ and W9GYZ

SWITCH TO SAFETY!
Postwar DX, Where Is Thy Ring?

A Californian Fantasy

BY NED JACOBY,* EX-W8KPB

SINCE MY release from the Army Air Forces after nearly six years of duty I have read a great deal about the readjustment problems of the veteran but I have yet to read about those of the radio amateur and, particularly, of the DX man. Having weathered the war with nothing worse than several harrowing experiences caused by contact with unknown amounts of Chinese plum brandy and orange champagne, I really have nothing to kick about, mind you; it's just that events of the past few days have shaken me a little and I'd like to pass them on so that other postwar "innocents" may profit from my ordeal.

After living like a mole for seven years and spending an inhuman amount of time running up 124 countries and 39 zones from Cleveland, Ohio, 1940 found me taking my physical examination for the Air Corps Cadets with no serious defects other than a deep groove across my skull, caused by "featherweight" headsets, and a pair of ears slightly cauliflowered and prone to vibrate like tuning forks every time an auto went down the street. "Merely an acute case of ignition-noise anticipation," said Army authorities, and with that I was snatched into a life in which, except for forcibly mooching the key now and then from our air-crew radio operator, DX and the familiar trampled ground of 20 meters vanished for many years.

Then, suddenly, I awoke to find myself established in Southern California, a copy of QST opened in front of me to "How's DX?" and a decided itching sensation in the almost vanished callous on my old key finger. The thought of how I was going to knock those Asians dead from the West Coast was almost too much for me, and I sneered serenely to myself as I visualized the havoc I was about to wreak on the Los Angeles DX crew. Naturally I had heard those fantastic rumors about California Kilowatts but really, I told myself, one has to discount a lot of things one hears. Besides, I had once known a ham in Cleveland who had a kilowatt and his signal strength scared DX so badly they never had the nerve to come back to him. I'll murder 'em out here, I thought, visualizing my prewar 100-TH exciting my prewar Hertz until the very ether shook.

At any rate, preparation for my debut into West Coast DX circles found me walking down a boulevard in West Los Angeles, accompanied by De Jones, an old friend of mine who had already received his new W6 call. Mind you, since 1940 I had been as cut off from developments in radio as VR6AY — maybe more! Jones, whose face was prematurely lined and whose hands shook noticeably (the war, I thought naively) was leading me to my first postwar radio shop where, after looking over available equipment I was going to lay my plan of action for the rebirth of W8KPB on the Golden Coast of the Pacific. An old hand at haunting the bins of dusty resistors and SW-3s that passed for radio shops at home before the war, I had pathetically-unfounded feeling of confidence as Jones and I passed several hopped-up Model As parked along the curb and entered the polished doors from which I was shortly to emerge a broken man.

Like the low end of 40 on the first night of the DX contest, what happened from that point on is not too clear to me yet. My friend, Jones, was snatched from my side and I was sucked into the vortex of a mob scene resembling something out of Cecil B. DeMille's best efforts in "Sign of the Cross." On all sides of me were thin, tanned, intense individuals mumbling what seemed to be football signals to a man in a white smock on the other side of a counter. With the exception of that man the oldest actor in the scene was at least twelve years old. I watched uncomprehendingly, a youth approximately four feet high leaped to the counter, deposited a roll of bills the diameter of a beer barrel and staggered out of the door carrying a huge box on his back labeled cryptically, 750T. At first I imagined that he had just purchased a crated jeep, but a second glance revealed Eimac's trade-mark and I gathered that I was standing at a sales counter for radio tubes.

And I realized this none too soon, for suddenly the white smock was in front of me. A taut hush

*I Box 351, Laguna Beach, Calif.
fell upon the crowd and all eyes turned coldly toward my quaking form. They could recognize a tourist when they saw one.

"Yeah?" said the white smock, "What ya want?"

"Well," I said timidly, "I had a 210 buffer before the war and . . ."

OUT WALKED A LITTLE FELLOW WITH SOMETHING CALLED A 750-T

With that a hoarse chorus of disparaging jeers went up from the mob and I felt myself lifted by many hands and hurled bodily through the air.

Upon landing and cutting my engines I found myself in another room. Except for a soft crackling noise all was silence. Before me at a long table sat at least ten people, clad mainly in sandals, hand-stitched sport shirts and pastel-colored slacks, hunched intently over a number of giant metal cabinets bristling with meters and chromium knobs. Silently I crept up behind one of the friendlier-looking of these individuals and stole a closer look at the strange instrument he was manipulating. At first I had an uncomfortable sensation that I was witnessing a combat dive in a U-boat, but when signals recognizable as c.w. began to come from a 'speaker, I realized that I was in familiar territory at last. This was a receiver demonstration room!

"Where's the volume control on that thing, Mac?" I asked. "Gee, I had an old FB7-A that could really drag them in and it only had one knob . . ."

"Quiet!" he snapped and, sure enough, through the Los Angeles QRN came a weak and tantalizing "CQ DX." By maneuvering several gear handles labeled in Arabic my tutor suddenly brought the signal up to a pitch that made my inlays rattle like a Vibroplex. The signal signed VS4JH.

"Boy! And S9!" I said. "S4 on the meter," said my tutor with a distinct air of toleration and superiority.

Then a strange thing happened. As VS4JH continued his CQ, weird swooping sounds reminding me somewhat of a low-level Kamikaze attack began to come from the 'speaker. By some coincidence these peculiar signals all stopped directly on VS4JH until finally it was hard to tell whether we were listening to Borneo or Kirsten Flagstad singing "The Ride of the Valkyrie."

Before I could inquire about this queer phenomenon the floor began to tremble and a low whirring sound, like a helicopter in flight, filled the room.

"What's that, an earthquake?" I whispered nervously to my new-found comrade. He favored me with a look of pity and amazement.

"Rotaries," he said starkly.

"I was a member in Cleveland myself," I began confidentially, "but I never knew that out here they . . ."

"Look out the window, stupid," he rasped and turned back to his wrestling with the receiver controls.

As I obediently gazed out of the window my first sensation was one of pure scenic pleasure. The view was unobstructed toward the distant Hollywood and Beverly Hills areas. Then I began to notice a horrifying thing. Like a vista of Dutch windmills, extending as far as the eye dared to reach, were myriad weird devices perched on top of telephone poles and, as they all ceased revolving and came to rest pointing in the general direction of Borneo, the ghastly realization burst upon me.

"Good Lord, man," I said excitedly, "We've got to get some word to VS4JH before he finishes that CQ. If he doesn't take his headset off when he signs over he'll be electrocuted by remote control!"

But at this moment I was approached by another figure in a white smock who had evidently been waiting until he could catch me in a vulnerable position.

"I see you're looking over one of our new postwar models," he said craftily, "What do you think of that supersonic stream-flow cabinet? This one only has thirty-six tubes and twenty-three knobs, you know, but by merely browbeating your family into taking a five-months' indoctrination course at the receiver factory they can eventually learn to use this model for ordinary broadcast reception, not to mention f.m. Its handsome Shocking Pink and Dirty Brown crackle finish will grace any living room, and you'll find it'll make the OW welcome your hobby at last."

As he paused for breath I tried to argue that the only place I could escape from the OW was a back-room shack and that the prospect of sweating over AC4YN in the parlor while listening to her relatives was a pleasure that I would pay good money not to experience. Nevertheless I found that the salesman had stuffed a catalogue into my shirt and moved on unperturbed to another prospect.

Fortunately, my friend Jones, seeing that I was about to collapse, rushed up and practically carried me out to the street.

"That's enough for today," Jones said. "You've got to take this readjustment business pretty slowly at first. Now just relax and tell me what you thought about it while I'm helping you back to the car."

November 1946
"Well," I stammered, "I really didn't get a chance to do much looking around at anything but the receiver situation and it sort of has me worried. With one of those gadgets, provided he doesn't catch his hand in the control gears, any guy can hear everything there is to hear. That's sure going to make DX competition rough, I guess."

"... and I saw some little fellow walking out with something called a 750-T," I added thoughtfully.

"Yeah, sure," said Jones, "a 750-T makes a good buffer."

"Well, anyway," I said, trying to conclude on a note of optimism, "I guess that even with those hot receivers the boys still have to build their transmitters and maybe lack of parts will keep quite a few people off of 20 meters for a month or two until I can work a VE or maybe K6."

On the page below me sat a well-groomed and earphoned youth of about fourteen, reclining modestly behind some fifty-buck modernistic plastic table. The surrounding room was done tastefully by a Park Avenue decorator and, nestling behind a Park Avenue decorator and, nestling modestly behind some fifty-buck drapes, were several QSLs (DX, of course) pinned neatly onto wallpaper which had cunning pictures of ships and airplanes printed on it. When, like the docile reader of advertisements that I am, I allowed myself to look at what was on the table.

There, reposing on its glittering black surface, stood two little boxes side by side. They were each of the size and shape of a portable b.c.l. set suitable for taking to the beach on Sundays. Beside one box a key peered out timidly at me and, as I grasped the implications of this entire photograph, I let my numbed eyes wander to the legend below. In what follows immediately hereafter I cannot quote but can only attempt to convey the impression I received as I scanned the printed lines.

For approximately one hundred dollars I could have this entire real-life radio station complete with receiver, transmitter and a genuine radio-operator's table that has an actual 'phone jack built right into the front edge. Also I would receive a key, antenna wire and insulators, plus many more useful and necessary features.

Anybody who can handle a pair of pliers, I was assured, can have this little station operating within two hours after its arrival. Then, as a dutiful afterthought, I was told that I would have to get something called a "radio license" before I could get on the air legally.

Whether a set of cards to qualify the lucky purchaser for the DX Century Club is included in the "additional items" I cannot recollect but I think that the cards plus a live, genuine operator to save the client the bother of actual QSOs would be an excellent idea.

At the time, however, I was in no mood for such constructive criticism. As a matter of fact, upon finishing my perusal of the page I experienced an acute sensation of vertigo and fell switching to the pavement. Whistling VFO noises mingled in my head with a noise like the thumping of a 4400-volt transformer, and I seemed to see a Daliesque scene in which my wife was band-switching my new receiver from a QSO by FR8VX to the frequency of "Information Please" while, in the background, my four-year-old son was busy assembling his 1-kw. "Beginner's Model" radio station that we had purchased for his birthday at Sears, Roebuck & Co. Then a Sterba curtain fell before my eyes and all went black.

It is now two weeks since that fateful day at the radio shop and, thanks to my Blue Cross policy, I am recovering rapidly at the local hospital. I have had time to do a bit of thinking, lying here, and many old DX friends have dropped in to correct my warped impression of the existing DX situation. I think that it is quite clear now and I feel completely readjusted. The peaceful war days are finally behind me and I am ready to take my place at the top end of 20. Let the chips fall where they may.

First, however, I am going to take my Master's degree in electronics at Cal Tech and then, with that basic preparation, proceed to follow one of two plans that are currently in vogue in California. The first is one that I like because of its relative reliability. It entails the organizing of an expedition of Commando-trained amateurs and traveling directly to the country you wish to work for, let us say, your Number 146. Upon arrival at the shack of the DX victim a 1-kw. portable rig is coupled direct to his receiving antenna and, if lack of QRM permits a QSO, you are in an ideal position to get an immediate QSL confirmation.

This plan, though assuring you of reasonably consistent results, strikes me as being a bit unsporting and extravagant. Therefore, I have decided on Plan Two, inasmuch as I can be satisfied with but one or two DX QSOs a day. I have taken a first option on a section of land in the High Sierras (the peak of Mt. Whitney by an odd coincidence) where I'm told that an ultra-conservative kilowatt using push-pull 2000-Ts feeding into a little stacked-rhombic rotatable array ought to get results late at night during the week-days. That's all I want anyway. I'm not the greedy sort.
A High-Gain Two-Meter Rotary Beam

Six-Element Broadside Parasitic Array with Coax Feed

BY JAMES A. KMASOKO,* W2NLY

Here's a compact lightweight 144-Mc. directive array that has given excellent results at W2NLY. Designed for work with 50-ohm coaxial line, it includes folded dipoles and appropriate linear matching transformers.

A very poor two-meter location brought about the development of this beam antenna. Extensive tests have shown a forward gain of approximately 12 db., or a power gain of 16, with a front-to-back ratio of 36 db.

In contemplating a design for this antenna a number of factors had to be taken into consideration. First and most important was good forward gain, to provide a greater sock than the average two-meter rotary. Also, in order to minimize QRM from other stations, and to limit radiation in undesired directions, a good front-to-back ratio was considered desirable. The third consideration was physical size. It could not be too bulky and it should not offer too much wind resistance, because it would have to be located above a ten-meter rotary which was already forty-five feet above the ground on a self-supporting wood-frame tower.

In attempting to achieve the first objective of high forward gain, it was realized that a low angle of radiation and good horizontal directivity would be important contributing factors. Therefore the author finally decided to base the design on that of two three-element parasitic beams fed in phase, as it was evident that a close-spaced vertically-polarized beam would provide a low angle of radiation; and feeding two such antennas, spaced ½ wavelength apart, in phase, would sharpen up the horizontal directivity and provide a greater forward gain.

Tests run on a single three-element beam proved it to have a front-to-back ratio of approximately 26 db. It was later found that by stacking two such antennas an increase of better than 10 db. (or a total of 36 db.) in front-to-back ratio was obtained, thus realizing the second consideration.

An antenna of this design was found to be small enough in physical size to offer very little inconvenience in mounting.

It was decided to make one-half of the array first; that is, a three-element parasitic beam by itself. Because we intended to stack two such antennas, the terminating impedance of one would have to be twice that of the line impedance at the point of feed — or 104 ohms, in order to use 52-ohm coaxial cable for the transmission.
line. To arrive at an impedance close to this value, it was decided that a four-wire folded dipole would be used with one director spaced 0.10 wavelength and one reflector spaced 0.15 wavelength. The parasitic elements were made so that they could be adjusted plus or minus 10 per cent of their calculated physical length.

Using the formula above, a figure of 175 ohms was obtained for the characteristic impedance of the transformer. Since we were feeding in the center, or one-quarter wavelength away from each dipole, it was possible to combine both transformers into a single 175-ohm line a half wavelength long. We had our choice of using ¾-inch o.d. copper tubing with ⅜-inch center-to-center spacing, or ⅜-inch tubing with ⅛-inch spacing center to center. Since we had ¾-inch tubing on hand it was decided to use it and make four spacers (see Fig. 2) to keep the line conductors uniformly separated.

Matching Line to Antenna

Another array identical to the one just described was built. Now we had two parasitic beams which we were going to space one-half wavelength apart and feed in phase at the center. The impedance of each unit was assumed to be 300 ohms at the dipoles (see Fig. 1, points A-A) and the line impedance one-quarter wavelength away was 52 ohms (points C-C). It was therefore necessary to design a transformer to match the folded dipoles (300 ohms each) to the 52-ohm line impedance.

The formula is the well-known one for a “Q” matching section, or

$$Z_o = \sqrt{Z_1 \cdot Z_2}$$

where Z_1 = line characteristic impedance

Z_2 = antenna input impedance

Z_o = transformer characteristic impedance

It must be remembered that the transformer input impedance at the point of feed must be twice that of the line (or 104 ohms) so that when both transformers are connected together at points C-C they will present an impedance to the line of one-half their individual input impedances.

Tests were then made by substituting a single dipole for the beam and measuring the field strength with the same power input. The results proved the beam to be superior by better
The beam was now put back on the test pole, and with the same input the front-to-back ratio was checked and found to be 30 db. With the antenna turned away from the field-strength meter the reflectors were readjusted for minimum indication on the meter. The final-amplifier tuning and input power were checked but found to be unchanged. Then the antenna was beamed again at the meter and the reading checked; it was found to have increased very slightly. The front-to-back ratio was now 36 db. Resonance was once again checked and then the coax line was disconnected at the transmitter; the final-amplifier tuning was rechecked and resonance was found to be at the same spot on the dial as when the feed line was connected, indicating a resistive load to the transmitter.

A final measurement was made on the beam before mounting it on top of the tower. The sharpness was checked and found to be 10 degrees between the maximum- and half-power points on each side, or a total beam width of 20 degrees.

That the original objectives have been satisfactorily fulfilled is evidenced by the fact that in the six weeks the beam has been in operation over 148 contacts have been made with 92 different stations, 60 per cent of them over 25 miles distant. On the one occasion during this period when the writer happened to be operating during an inversion-bending opening, W3HWN — over 140 miles away — was worked with a 30-microvolt signal report.

About the Author

- James A. Kmosko, W2NLY, has been partaking of his share of DX and v.h.f. experimentation ever since being licensed in 1939. An associate member of the IRE, Jim holds Class A amateur and radiotelephone first-class operator tickets. He was associated with the Western Electric Co. for five years as a radio technician, supervisor and field technician on broadcast, u.h.f., v.h.f., radar and pulse equipment. Currently, he is engaged as a laboratory supervisor in the development of radar for the USN.

Strays

"As a Filipino guerrilla leader, financier, and internal spy, I was caught and tortured almost to death by the Japs in 1943. I escaped from prison in 1944, after more than a year of horrible living and suffering, to my unit in the mountains. I managed, through my intelligence officers, to obtain from my home in Manila my 1941 edition of The Radio Amateur's Handbook, which I used to good advantage in building and repairing our receiver and transmitter. A U.S. Army hand-operated generator, brought over secretly from Australia by submarine, was used for power. These made it possible for our unit to contact Mindoro, Leyte, and other Guerrilla units on Luzon.

"We were able to print a daily War Bulletin based on information received from KGEI, San Francisco, and General MacArthur’s "Voice of Freedom." Copies were distributed throughout Manila and to our 13 regiments scattered over the province of Cavite. This was all done under trying conditions and under the very nose of the Japs. . . . Thanks to The Radio Amateur’s Handbook and more power to ARRL."

— Mamerto M. Buenafe, Lieut. Col., Philippine Guerrillas
On the night of the Perseid meteors, I tried listening for the Doppler-effect howls in the manner set forth by W6QYT in QST. Picking the short-wave broadcast carriers in the New York area which were well inside skip distance from me (75 miles or so) and some of which were, conveniently, unmodulated at the time, I was rewarded for a while with sundry yelps, chirps and grunts, with the S-meter of the superregen to see if anything was cooking. No locals were noted, so I cranked her up and started fishing for DX (and some corroborating evidence). Bursting with activity, I was quite astounded to note that distinct bursts of 144-Mc. 'phone came in from time to time, tapering off in intensity in a generally logarithmic manner. I made a guess that maybe meteors were responsible and set up the SX-25 alongside the v.h.f. job to see if there was any noticeable correspondence between the two effects. And there was!

I found that, at almost every 144-Mc. dial setting, bursts of 144-Mc. signals were invariably accompanied by a major burst on the SX-25 (up to 89 or more). Now I have been at this game long enough to know that one can hear all sorts of "signals" in the superregen hiss after tuning around a dead band long enough, so I tried to get away from the possibility as follows: I turned off the SX-25 speaker and set so I couldn't see the S-meter. Then, every time I heard a 144-Mc. burst, I would spin about and sure enough, the S-meter was just starting to sag after a healthy rise! Next, I tried the effect of antenna polarization by reaching out the window just starting to sag after a healthy rise! Next, I tried the effect of antenna polarization by reaching out the window. I found that with vertical polarization, the 144-Mc. bursts were strongest when the meteors howled and that horizontal polarization, the "grunt" type of meteor howl gave the strongest 144-Mc. effect. Please note that when I speak of the pitch of the note, I refer to the sound in the SX-25; no Doppler howls were heard on 144 Mc.

And there you are. If this observation can be relied upon, it means that 144-Mc. signals can be refracted by the stronger meteor trails. But before I would accept this conclusion, I would like to see some corroborating evidence. I hope that you have some.

Gordon R. Abell, Jr., W12XK

ONE-SIXTY, ET CETERA
28 Vivian Street, Ahmek, Michigan

Editor, QST:

Judging from the correspondence page of September QST it appears that old "one-sixty dobbil" is back with us again. Your editorial in the same issue clear that up to my entire satisfaction. As for Blane's letter — I operated for over 4 years on 80 c.w. with input of 1 to 6 watts and worked coast to coast plus 4 to 5 hours of local rag-chewing each day. I had a beautiful time. Now I'm interested in phone. Holding a Class C ticket. I've gone to 10 — and it's a good band for my money. About 160 meters? I didn't need it before the war. I don't now.

The Hq. staff have been telling us time and again, giving us the straight dope. Since December I've listened to some real calamity howling on the air — "The staff is lying." "Mark my words and remember old W9 — told you: 'We'll never get 80 again...'." (Later it was 40 and 20 and now it's 160.)

Through it all I've seen ARRL tend to its knitting and gets us all or parts of most of the bands in question, just as prophesied by the ARRL! I've seen the Armed Forces listening with respect to our case as presented by Hq. I have seen the day come when a petition by the Board to FCC is tantamount to a new and favorable allocation, regulation, or what have you.

Obviously, in a case like that, we can't go drunk with power and ask for the moon. We need a sane level-headed Board and staff, and I maintain that we already have them. The ham deserves a lot. I believe the Board and Hq. are doing a beautiful job of getting it for him.

— Henry L. Luoma, WBYFT, ex-WB5QBY

THE ENDLESS QUESTION

Editor, QST:

I have just read with interest the article captioned "George's" on page 39 of the September issue of your swell magazine. I noted your mention of Charles Ellert, W3LO... Charlie, as you know, was Inspector of the 3rd District, at Fort McHenry here, for many years. Many a ham passed through his office, on his way to a ticket. Yet Charlie was never known to "throw his weight around." On Saturday afternoons you could always find him at one of the local ham radio shops chowing the fat with the boys, always ready and willing to give freely of his vast store of technical knowledge. When the war came along, Charlie was called to Washington to do an important and confidential job. I happen to know that he did it with his usual flair for doing things well.

Charlie is one of those grand guys who has been one of ham radio's most loyal friends at court. What do you say we give him a hand?

— Morris S. Kaufman, WA1UG

AN ORCHID FOR W3LO

3454 University, Baltimore, Md.

Editor, QST:

I have just read with interest the article captioned "George's" on page 39 of the September issue of your swell magazine. I noted your mention of Charles Ellert, W3LO... Charlie, as you know, was Chief of the 3rd District, at Fort McHenry here, for many years. Many a ham passed through his office, on his way to a ticket. Yet Charlie was never known to "throw his weight around." On Saturday afternoons you could always find him at one of the local ham radio shops chowing the fat with the boys, always ready and willing to give freely of his vast store of technical knowledge. When the war came along, Charlie was called to Washington to do an important and confidential job. I happen to know that he did it with his usual flair for doing things well.

Charlie is one of those grand guys who has been one of ham radio's most loyal friends at court. What do you say we give him a hand?

— Morris S. Kaufman, WA1UG

THE ENDLESS QUESTION

10,052 Sheldon Drive, St. Louis, Mo.

Editor, QST:

"rasberries" to W9DUD for his belief that amateurs should be limited in power to 100 watts input to the final...
... He states that without ham operators, communications and radar during the war would have never succeeded.
It is my understanding that power considerably in excess of 100 watts was used in numerous instances during the war for communications and radar. Who would be the better qualified to handle such equipment — the amateur having had experience with transmitters using inputs up to 1 kw. to the final, or the same who had never dabbled with anything stronger than 100 watts?

Mr. Chapin also says the average ham cannot afford over 100 watts. This is a bit of understatement as the majority...
Editor, QST:

Rather than tuck W9DDU’s letter in September QST away in a back corner with the whimsical comment “the endless question,” the ARRL had better come out of its lethargy and realize that the question of limiting amateur power input cannot and must not be dealt with in such an apathetic fashion.

Let’s not fool ourselves into believing the amateur frequencies are a magnanimous grant, set aside for amateur use in a perfunctory fashion.

The reason for our existence today is the military value of a reservoir of trained operators and technicians — the recent unpleasantness proved that without doubt. Comes the next phase, or unpleasantness No. 3.

I propose the ARRL take immediate steps to weigh amateur opinion on this question.

— Jack Najork, W8NH

[Editor’s Note: The League’s Board of Directors, which establishes ARRL policy in such matters, has in the past indicated satisfaction with the present 1000-watt limit. ARRL HQ, has no voice in the matter. Amateurs interested in effecting any change should communicate with their division directors.]

CHANNEL UTILIZATION

2839 Seminary Ave., Oakland, Calif.

Editor, QST:

In view of the tremendous increase in amateur activity since the end of the war, our bands will become increasingly crowded and every effort should be made to use the best use of our frequencies. I realize that you may conduct a poll on this subject.

I propose the ARRL take immediate steps to weigh amateur opinion on this question.

— Bert Brown, WS8FS

QSL CARDS

10 S. New Jersey Ave., Atlantic City, N.J.

Editor, QST:

I have sent reports to stations, mostly in the U.S., and out of three hundred reports sent I have received 49 QSL cards. Is this fair? Give us a break, too. We also like QSL cards.

— Stanley Schwartz, SWL

OPERATING PRACTICES

Washington, Michigan

Editor, QST:

Regard correspondence from members of the fraternity on operating, some of the boys are a little drastic in their views of the many operating faults. Perhaps it appears at first that such stern measures should be taken; but to me, after a good many years of operating an amateur station, the education of the new member in operating procedure takes time and a great deal of experience on his own part.

When we were in our youth, the tendency was to work as many stations as possible and gather as many cards as we could. Isn’t it possible that those just starting want to put a bunch of QSOs under their belt like we did? We also run into the fella that has a new ark or new antenna and is anxious to get reports from several different points to gauge its efficiency. Then there is the one who is striving for WAS and trying to work as many states as possible. There are many reasons for the short and hurried QSO.

Usual QSO procedures will wear off in time as it has among the old-timers. I still like to hunt states, countries and DX but the quick QSO has attained a sort of emptiness, either.

November 1946
as though nothing was gained. I now value the rag-chew above other QSOs and hunt for the folks that has something in common with me to chew the old sock about.

There will always be the young squirt, the old-timer, et al. That makes ham radio. Let's let come 'what comes naturally.'

3331 Oakland Ave., Minneapolis 7, Minn.
Editor, QST:

I strongly disagree with J. H. Pau, W4WRA, that the new, inexperienced op should be restricted to frequencies above 30 Mc. If those of poor operating ability are unable to contact more proficient operators they're not going to get much worthwhile experience. It's standard procedure to transmit at the same speed as the station being worked. The experienced op who refuses to answer a call at a slower speed than his original CQ or won't come down to the other man's handle, or "sine" as it was called in Canada and the United States, the major countries of the world, particularly Latin America, there is no way to pass on the information to be garnered from a QSO, ranking, perhaps, with the vital facts about QSL. However most operators stop giving out dope after this point, a deplorable condition that cannot be desired too vociferously if amateur radio is to survive. It is with the knowledge that something must be done, and done quickly, that the Rapp Plan is promulgated at this time. The Rapp Plan can save ham radio for the hams!

Briefly, the Plan consists of a code group or "HAH-WEHIS" reports sent immediately after the signal report (RST) and the location (QTH). An example HAHWEHS report would be "LARS 55 6—1 180 BWN BLK 76—42—6060." This brief bit indicates to the receiving operator that the man at the other end is called "Lars" by his friends, that he is 55 years old, stands 6 feet 1 inch tall, weighs 180 pounds, has brown eyes and black hair, and that his social security number is 76—42—0600. The HAHWEHS system derives its name, of course, from the first letters of each of these gems of information (Handle-Age-Height-Eyes-Hair-Social Security) and makes it easy to remember the sequence. I urge its immediate adoption, or amateur radio is doomed!

Laron E. Rapp, WlOU

As a suggestion for a single word name for the sake of brevity, I have utilized a system popular with the late FDR — that is, a word made up of the first letters of the full name. Applied to us, the plural word would be AROS (pronounced "arrows") for Amateur Radio Operators. If that name doesn't suit you, might I suggest SWAYBACK, the full meaning of which is, "Short-Wave Amateur Yarnspinners' Brotherhood And Celebrated Kegtilters." Or if people ask if you are a SWELL, tell them, "That's right — I am a Short-Wave Emitter Legally Licensed." Maybe you will be a DRIP (Department of Radio's Immortal Prefectors). Or rather be called a "ham" I would stick out my chest with pride on being called a LOISUE, which may mean I belong to the League Of Ultra-Short-wave Experimenters.

Edward Eppenbrecht, WSOA 1

INTERNATIONAL REGULATIONS, PHONE-C.W.

P.O. Box 1001, San Juan 5, P.R.
Editor, QST:

Possibly it is too early to be giving much serious consideration to plans for an international radio conference [See Nov's: We started in 1944], but there is a problem that will take considerable thought beforehand if anything approaching a satisfactory agreement is to be reached. I refer to the indiscriminate radiophone operation by foreign stations in the American amateur c.w. allocations.

Although the use of c.w. is legal in the U.S. phone bands, the great majority of code stations do not take advantage of that fact, but stay in the exclusive c.w. portion. On the other hand, foreign "phone" stations operate "phone" stations exclusively in the American c.w. portion and indiscriminately from one end to the other. At the moment it is next to impossible to have a code contact that is not interfered with by foreign "phone" stations.

R. W. Mayer, KP4KD

(Editor's Note: In a considerable number of countries in the world, particularly Latin America, there is very small use of c.w. and almost all activity is "phone," so that such countries are commonly unwilling to record any of the exclusive portions of bands as exclusively c.w. Further, outside of Canada and the United States, the major countries of the world are opposed to making any division of bands as between "phone" and c.w. Interested readers are referred to... (Continued on page 118)
How's DX?

How:

Last month we sounded off at some length on certain operating practices and, since QST hasn't been out long enough for the squawks about "Hey, don't fill up our column with that stuff—we wanna read about DX!" to show up, we'll take a chance on one more small outburst. This time it's a minor point, but someone might have a good idea about it, so we're putting it up to the gang.

It strikes this self-styled brass-pounder that our operating is pretty indefinite when it comes to the use of "AR," "K" and "SK." For example, the book says we should put "K" after our call letters when sending "CQ" and of course after our call when we are in contact with a station. As a result, when you tune in on a station and hear, for example, just "ZD7A K," you can't tell if he is working someone or just finishing a CQ. Yes, we know, you'd call him anyway, but that's what we're trying to get away from! Likewise, in the business of finishing a QSO, both stations end up with "SK" after their calls—which isn't the book way to use SK, incidentally—and if the DX station signs off that way first, the poor signing-off W gets snowed under, if he wasn't already during his regular transmissions, by some of the omnipresent DX hogs. What we need is a sign-off signal meaning "I'm through with you and I intend to listen for someone else—don't bother to come back," in a polite way, of course.

We contend, therefore, that our standard operating procedure needs a little revising in the light of present plenty-QSOs-per-hour technique, such as shows up in contests and during the busy hours. [Are there any busy hours?—Jeeves.] Personally, we think the old business of using "AR" after a CQ or any call where you weren't yet QSO was a good system, and "K" could be reserved for "Go ahead" during actual contacts, but what to do about the end of a chat to eliminate any possible confusion—and, incidentally, to postpone the "climbing-on" process for as long as possible—has, to coin a phrase, got us stumped. Is it worth thinking about?

What:

The members of the 3-F club (Faithful Followers of Forty) are finding their allegiance rewarded these days. For instance, W1JLJ snatched for himself FA8XE (7145), HASF (7120), D2DDX (7140), FJAS (7100), KH6AO (7195), HB1CE (7155), HB9GA (7145) and T4MAR (7145), while W3KNN, ex-W2BZB, grabbed HC1PC (7280), VP5AD (7150) and VE8MU (7175)——W9NCS added XE1QS (7110), E0N (7150), CM6AH (7145) and W6YZK/KK6 (7195), and heard ZK1AA (7135), while W4BRR snuck in HRIAT (7055), G3AGC (7080) on the Isle of Man, HC2CV (7140 T6), and W5JWN/KL7 (7170), and heard J2AAF (7170), ZK1AB (7250) and VP2AP (7140 T9c).——W2BO worked J2AAF (7160) and KA1ABR (7170), which is mighty fine DX.——W2BRC uses an attic antenna "to keep the r.f. concentrated" from his 35 watts, but managed ZL2GO (7185), VO4F (7300), VO1S (7240) and G2BTO (7240), a high-power merchant who runs 7 watts to a 6L6 ECO.——W8QVA worked ZL2GO and heard J2AUW (7185).

In the 3-T department (Timely Tips on Ten), we have several worthwhile contributions. Take W9KOK as a forinstance, who is up to 56 on ten, with such gems as ZB2A (28,060), J9AAE (28,400), VQ2PL (28,115), VQ2FR (28,260), VQ4ERR (28,320), VQ4ASC (28,240), OQ5BL (28,500), ZEIJB (28,240), CN5BA (28,130), I1KY (28,370), VP1AP (28,130), HR1MB (28,400) and ZPSGN (28,225).——Then there's W2KIK with W1SB (28,350), CB1AH (28,240), VO3TOM (28,140), VP3LF (28,300), OA4AK (28,470) and ZC6FP (28,080), worked and XZ2AB (28,280), and VS9AP (28,330) heard.——W1EE heard VU2PK (28,400) with a good 'phone signal at 1300 GCT, and W1KKS has spotted FM8AC (28,050), HH2BL November 1946 51
(28,000), D2AG (28,025), KP4AK (28,225) and KZ5AB (28,075) on c.w.; - - - - - - W5LDH, way down yonder in New Orleans, has been busy with HK3DD (28,100), VP4TK (28,040), T12AV (28,300), LUSEE (28,040), VP9F (28,290), PY2QK (28,420) and TG9FG (28,160), all via the chin route; - - - - - W6HG says to look for W4FGW/J2 (28,600) and W9EUG/J2 (28,700) around 0200 GCT.

Now that all of the very clever headings have been used up, we will dive into the talk of twenty. 50 YN. As we piece the story together, with the kind help of W6KIP, W6SAI, W6VFR and VE7ZM, that notable group and W6GRL, W6LEE, W6ITA and W6NRQ were in on the grab during August. W6GRL kept a regular sked with Reg Fox, and the cards will come through him. The Tibetan station was running 20 watts at the time, although there is a BC-610 over there waiting for a gas-driven generator. If anyone has a spare, we suggest he shoot it along, so that everyone can get a crack at a 600-watt AC4l. W6SAI and W6VFR used i;igl-section WSJK antennas to turn the trick. We had the time wrong last month - it was around 1500 to 1630 GCT; - - - - VE7ZM is bound and determined to put VE7 on the map, in a DX way, and has a new QTH with a acres of ground, which should be enough room for his rhombics. He is up to 88, postwar, 124 all-time; - - - - W2HHF, working under difficulties with only a simple doublet and 250 feet of feeders, shows that he has what it takes by latching on to VP2AT (14,100), FASRA (14,090), XACP (14,100) in Sarclina, L21XX (14,060), LX1AX (14,150 T8), VO4CRB (14,010), OEXIBC (14,125), ZP8CN (14,040), FT4AC (14,170 T5), SV1AZ (14,050), OY3G (14,085), EQ4DC (14,110 T5), GC8MF (14,070), ET3Y (14,135), ZC4NX (14,085), EK1AZ (14,135), W2IEV/C1 (14,155), J7AA (14,145) in Eritrea, OH8AA (14,040), and J9AAH (14,120), with VS9AN (14,150), FK80SL (14,155), MX1DF (14,160), YI2BA (14,085), TA1DB (14,080), ZCIAR (14,080), VR5BY (14,015), XABU (14,075 T7) in Rhodes, YN1MH (14,075 T7) and VSIQ8 (14,085) - - - - W1JYII snuck in the back door and told Jeeves that he had worked LA3GA (14,065), OX1AA (14,000), PZ1FM (14,140), YVIAD (14,070) and 11IR (14,045) and had been hearing ZD8A (14,060).
CNSMZ (14,110) and FMSAC (14,090) · · · W4BRB would like to get the (~TH of OT3AB from anyone who has it. In return, he'll be glad to tell you how he worked SVL6C (14,075), YRSX (14,085), W6VKV/I6 (14,110), KL7AD (14,125), VP3JM (14,070), OQ5BY (14,135), VK7DH (14,135), ELSB (14,125), and VS1BX (14,085), a fair trade · · · · · · The 807 final at VE7CE accounted for W6VDG/KW6 (14,175) and ZK1AB (14,010), and W1GKM got OQSJF (14,190) · · · · · · W2RDK, ex-W5JSJU, has been improving his luck lately, and some of the better ones were CX4CZ (14,075), UA9KH (14,470) · · · · · · yeah, that's right — HBIAW (14,090) during Swiss Field Day, ON4PZ (14,090), and OK1FF (14,085) · · · · · · W4JXM, ex-W5AWX, skeds KAI1AW (14,150, 14,190), but manages some other stuff occasionally, like VK9AZ (14,070), VQ5AE (14,095), VU2AA (14,040), CX9AG (14,075), and XUSKR (14,070).

In the 'phone Dept., as a starter, W1GKK has CNSAD (14,200), F7AA (14,320), G6IA (14,305) on the Isle of Man, HC2GS (14,320), J2AAB (14,350), OX1WB (14,350), TG9RC (14,315), VP5RS (14,200), VO6R (14,200), YV5AG (14,300), and PA0IDW (14,320) · · · · · · W6RIR knocked off WS1BE/T5 (14,270), J9AAB (14,305), W8SIR/VPO (14,315), KAI1SC (14,315), and J9ACE (14,250), while W2MPA got his usual jackpot with CISU (14,150), CNSMA (14,320), J9LG (14,310), KAI1CB (14,150), J2J6B (14,250), KG6AA (14,220), ON4OU (14,330), PK3RS (14,110), PZ1UD (14,305), W8CJR/XU (14,180), YNIRA (14,305), PZ1G (14,350), W8CHT/J7 (14,230) and XU1YY (14,270) worked, and VS1GA (14,330), VS2BF (14,140), ET1YJ (14,310), PK3SR/CR10 (14,345) in Timor and W6ONT/KW6 (14,250) heard · · · · · · At W6ITH a check of the log reveals imch luminaries as W9CAC/TF (14,290), HC2QD (14,040), F8AH (14,180), GM8NW (14,180), OZJ3 (14,045), PA0MZ (14,125), ZS2CF (14,200), PY9AT (14,100), and XABZ (14,160). On ten he found HPIA (29,200), OQSJF (28,300), GM8MN (28,150) and HK4CO (28,000).

Where:

Everyone has a right to be wrong, but sometimes Jeeves thinks we abuse the privilege. Like last month, when we said KS4AA wasn't licensed by the FCC. That was a prize bull, for fair, because he is licensed and his name is James Patterson and we hope he isn't sore at us because we would like to work him, too, someday. Yep, we'd rather be right than play the piano · · · · · · W6.1M says B1ZD (14,085) was in the Indian Ocean, bound for Bombay, when he worked him. Did we ever tell you the story of the Bombay Tennis Club? · · · · · · We're trying to get the story on those Russian prefixes, but so far all we know is what G6WY had in his column, that UA is Russian, UB is Ukraine, and UC is White Russian. Ham got that from UA5KAE · · · · · · The printer dropped the tail of the “Q” in EQ4IDC last month, in case you didn't know that his cards go to W9RRT · · · · · · WSPQQ will be glad to QSP cards for TRIP, who is now an instructor at West Virginia U. Send your cards to A. H. Hix, 47 College Park, W. Va. Univ., Morgantown, W. Va. All contacts will be acknowledged. PQQ will also QSP cards for CP1AP and OQ5BJ, and he says cards for V07P should

W7EYS in Bellingham, Wash., has been doing right well by DX. The present station uses an IRO and DB-20 preselector, with W7IIJZ's IRO borrowed for monitoring the Dreamboat flight. The box to the right of the receiver is for filament and power controls and relay switching of the antennas, and to the right of this is the crystal standard. One bug keys the VFO and the other is used for primary keying of the final, depending on what kind of work is being done.

The transmitter is located behind the operating position, but the meters are watched in a mirror on top of the glove. The rig uses a Meissner Signal Shifter into an 807 buffer/doubler, which drives a pair of 4-250As. Grid modulation is used on 'phone.

Bob has several antennas. On 10, eight half-waves are stacked 2 over 2 over 2 over 2. There are two 4-element collinear antennas for Europe-ZL and S.A.-Asia on 11 Mc, and a 11 Mc, 3-element rotary for general coverage. The shack is only 7 by 11, which makes W7EYS a "compact kilowatt."
The second semiannual ham-fest on Okinawa was held September 1st, with nine of the twelve active hams present. From left to right, in the front row: I9AND, W3GZT/9, I9ABF, I9AEE and W4FN/7. In the back row, likewise: WINDA/9, I9AG, I9ACE and W5KDA/9-I9AAK. Three-letter J9 calls are obtained by request, otherwise the fellows use their W calls with the /J9 suffix.

Who?

W6LYQ grabbed G6IA on the Isle of Man for his 100th postwar. You should be hearing a signal from China one of these days. W6GRL, who had been working AC4YN and AC3SS before he left, is now in Nanjing setting up a transmitter for the "Voice of China," the Chinese Ministry of Information station. Hughes Aircraft built the transmitter, and Doc and Dave Evans both had a finger in it. It is a powerful brute, but if Doc finds time for any hamming it will be with an HT-4 and a rhombic. Dunno the call, but it might be XU6GRL. W6IIBD will hold down the fort at W6GRL in Doc's absence.

According to W7GVF/KG6 (14,105), W7GXR/KG6 has 88 countries from Guam. NVF got 34 in six continents during his first 15 days on the air. K6CGK took advantage...
of the good conditions and worked 52 British stations in three weeks, in addition to many other Europeans. He says working Europeans on the bug is something he will never get tired of, even if he had the chance! W5CX5, the five-element beam man, worked nine Gs, an EI and an ON4 in one day on 10, in case you were wondering if his beam works. This with 125 watts didn't mention what part of the band they were using. It looks like the only ARRL Directors who go in for DX are from the Atlantic Division [Hey, careful, boss, or you'll be out of a job -- Jeeves]. First we had W3QV working from China as XU1Y, and now the present director, W2ZL, ex-W3ZL, sends in a long list of the stuff he has been knocking off and admits he is as hard hit by the bug as the next fellow. Good stuff, says we, as we list his W5JIM/CI, W6VQG/KW6, W8IAJ/KK6, W9DPS/CT2, D4ANR and VE5AY, with a lot more stuff heard. W6- UWQ, ex-W9CSB, thinks it's nice living in W6-land but tough to be located within 800 feet of the other end. Cliff says he really appreciates the spirit of cooperation shown by the Ws in Ethiopia. -- W5ACL tells us about the original ET3Y, Jim Cheeks, who is no longer there but is planning to return next year. W7ONG verbatim: "About two weeks ago I erected a screwy wire about 100 feet long and spent my time getting S6 from the East Coast. Natch, I was preparing to dissemble it, when on September 6 I worked CR9AN, CR9AG and VS1BX. My frequency was 14,110, I was running 100 watts, and the whole band was calling them. Counted 23 stations buzzing VS1BX when I finished with him. Haven't returned the rig since!" Fine, fine, but what was the exact length of the wire? -- CR9AG has 71 countries so far. Here's one for the DX: W7ONG is plenty active in Nevada on 7, 14 and 28 Mc. His latest are W3GZT/J9, HA5X and VP8LK. Some Queer Things Happened, or Am I Getting DX-Happy?

The scene is the 14-Mc. band, the time early evening. The action is continuous.

Act I

Act II

El3A QSO W5. W5 proposes to switch to phone but gives wrong frequency. El3A can't find W5 on phone, says return to c.w. El3A finds W5. Tells W5 he made a mistake. El3A can't find W5 on c.w., finds W5. Is told of wrong phone frequency. Tells W5 to tune in something. W5 tunes in. W5 is waiting and that city lights will be turned off in about 10 minutes so "73 on 5k.

Act III (On El3A's frequency.)

1st unidentified signal -- "The lights went out." 2nd u.s. -- "What lights?" 1st u.s. -- "The city lights." 2nd -- "What city lights?" 1st -- "His city lights." 2nd -- "Who turned them out?" 1st -- "Moses, I guess." Then silence except for the moans of the band-edge QRM.

FINIS

(Author's note: See what I mean?)

Personally, we're convinced, eh, Jeeves?

--- W1DX

November 1946
An Unusual Rectifier Circuit

Multiple Voltages Using Two Transformers and a Common Rectifier

BY COMMANDER E. E. COMSTOCK, * USCG, WINVH

The rectifier circuit to be described was originated at WINVH and used successfully for nearly two years prior to the war. Other amateurs who have seen and used it have been so enthusiastic that it is presented here for general circulation.

The most interesting of the new circuit's many advantages and possibilities is that it offers the amateur a chance to obtain a selection of more-desirable voltages with the power-supply equipment already at hand. No longer need he be stuck with, for example, 1750 volts, when a full 2000 volts is desired. In such a case it is only necessary to add a relatively inexpensive transformer to make up the voltage deficit. The same circuit also provides for easy selection of several reduced voltages by steps, for use while tuning the transmitter and communicating over short distances.

The complete circuit is a combination of the conventional full-wave center-tap rectifier circuit and another one which at first appears unorthodox. It is shown later in Fig. 3, being first developed by stages for easier understanding.

In order to establish symbols and to facilitate explanation, the part of the circuit which is the conventional rectifier circuit is reproduced here in Fig. 1. A technical description of its operation can be found in The Radio Amateur's Handbook as well as numerous other radio texts.

The part of the circuit which appears to be unorthodox is shown in Fig. 2. Don't worry, it works! In fact, it is frequently employed with tube rectifiers. The symbols are the same as in Fig. 1 except that the high-voltage transformer is marked T4. T2 and T3 must be separate filament windings because the entire secondary voltage of T4 is between them.

It can be seen upon examination that this circuit is simply an inversion of the more-conventional one of Fig. 1. It can be used alone and possesses a number of advantages over the standard one, such as:

a) It reduces hazards because the plate caps on such rectifier tubes as 866s and 872s can be at or near ground potential. The number of exposed high-tension leads is minimized.

b) Ripple voltage in the output has always been found to be less. If T2 and T3 are not center-tapped, experimentally connect the secondary of T4 to either side of these individual windings for least ripple voltage. However, the difference in ripple is not important in ordinary use.

c) There is less trouble from r.f. getting into the power supply. This is because the high-potential leads of transformer T4 are bypassed to ground for r.f. by the secondary-to-primary capacitance of the windings of T3 and T2. Also, the plates of V1 and V2 are at or near ground potential.

d) It permits cheaper grounded-anode cooling methods for heavy-duty rectifiers.

A brief technical analysis of the circuit is made easy simply by following the paths of the electrons through the various elements. Referring to Fig. 2, note the positive and negative signs shown at the terminals of the secondary of T4. These are given for a particular instant (or half cycle) when the upper half of T4 is operating so as to impress a negative potential upon the cathode of V1. You must

* % District Coast Guard Officer, 12th Naval District, San Francisco, Calif.
then agree that the center-tap of this winding is positive at this same instant. Since electrons can flow through V_1 only in one direction — that is, from filament to the plate — the supply of electrons from the negative potential readily flows across the tube to the plate, which is positive because it is connected to the positive end of the half-winding (center-tap) via the load resistor, R_1. It should also be observed that the lower half of the secondary of T_4 cannot function at this time because the plate of V_2 is negative with respect to its cathode through the load.

The final circuit is developed by combining Figs. 1 and 2 as shown in Fig. 3. For all practical purposes we have merely added another transformer, T_4, to the old rectifier (not counting extra filament windings). Because the lower-voltage transformer usually has poorer insulation, it is advantageous to place it in the T_1 position where it can be kept close to ground potential.

The following statements hold true:

a) The total output voltage is the sum of the voltages separately obtainable from T_1 and T_4 if these transformers are connected in phase to the power line. This can be experimentally determined by transposing the primary leads to the power line to obtain the greater output voltage.

b) The total output voltage is the difference between the voltages separately obtainable from T_1 and T_4 if the transformers are connected out of phase to the power line.

c) When the system is operating as in (b) there is no undue loss of efficiency because only the resultant voltage and not each of the canceling voltages is rectified.

d) The polarity of the d.c. voltage delivered to the load R_1 will always be the same regardless of the transformer switch connections. In other words the positive output lead will never shift position.

e) The total output voltage is only the voltage obtainable from T_1 alone if the primary of T_4 is opened.

f) The total output voltage is only the voltage obtainable from T_4 alone if the primary of T_1 is opened.

g) The secondary of the "dead" transformer in (e) and (f) acts as an additional smoothing choke and as part of the filter circuit.

The switches shown in Fig. 3 provide the four different output voltages mentioned in (a), (b), (d), and (e) above. It goes without saying that all components must be designed for the power and insulation requirements of the circuit involved.

Never trust this power supply any more than any of the others, since the possible potential across some of its components is equal to plus or minus death!

Figure 2 — "Inverted" center-tap rectifier. Except for the rectifier connections the circuit is otherwise the same as Fig. 1. Separate filament transformers, T_2 and T_4, are required for the two rectifier tubes.

Figure 3 — The new circuit combines Figs. 2 and 3 to make four different output voltages available, depending upon whether each transformer is used alone or whether the two are used together aiding or opposing. The d.p.d.t. switch, S_3, reverses the line connections to the primary of one transformer to reverse its secondary phase with respect to the other. Filter constants are the same as for conventional power supplies of the same voltage and current ratings.

November 1946
A few operators who worked on 6 during the summer months switched back to 28 Mc. as soon as that band showed signs of coming to life in early fall. To them there seemed to be no point in attempting to carry on on 50 Mc., for they "knew" (from past experience on a different band, at a different point in the sunspot cycle!) that the DX season is all over by the first week in August. Those who stayed with the v.h.f. bands were well repaid, for September turned out to be one of the most interesting months yet experienced. A prolonged session of aurora, which wiped out communication on the low-frequency bands, brought in new states for many, and frequent temperature inversions resulted in numerous fine contacts. Occasional bursts of sporadic-E skip came in unexpectedly, and enabled at least two more workers to complete the conquest of all call areas on 50 Mc.

One of these was W1LLL, of Hartford, Conn., known the country over as the fellow who never misses a v.h.f. DX opportunity. Since he worked W60VK and W5JGV/7 in July, Brownie has been scouring the band for a W5, the only call area needed to complete his Grand Slam. No one was more surprised than he when W5FRD, Fort Worth, Texas, broke through at 12:40 A.M. on Sept. 29th, calling CQ. The long vigil paid off, and W1LLL has the well-deserved honor of being the first W1 ever to work all U. S. call areas on a v.h.f. band.

This contact came as the climax of an evening which was packed with everything that can happen on 6. A pronounced temperature inversion had been in evidence for several evenings, permitting contacts the length of the Atlantic Seaboard from Maine to Washington, D. C., and this undoubtedly helped to stretch W5FRD's coverage out to nearly 1500 miles, unusually long for a single-hop opening. A fine flurry of aurora DX earlier in the evening made possible a number of contacts between stations in W1, 2, 3 and 8. This was the chance that W8SLU, Auburn Heights, Mich., had been looking for, and he got W1PFF, Waltham, Mass., for his first W1 and WACA. This is believed to be the first 50-Mc. WACA from W8, though some may have gone unreported.

The night of September 28th and the morning of the 29th were the occasion of record-breaking DX on 144 Mc. also. Your conductor arrived home from a fishing trip (who picks the dates for those things!) at midnight, just in time to hear Brownie work that W5, and then we turned to 144 Mc. and found it full of wild tales of the evening's DX. At this writing we do not have full confirmation, but we understand that W2PCQ/1, operating from Mt. Greylock, in the northwest corner of Massachusetts, worked W3LN, Lancaster, Pa., W4CDG/3, Towson, Md., and W9STX/3, of Washington, D. C., this last one exceeding the current record by a goodly margin. W1MNF, East Orleans, Mass., on the elbow of Cape Cod, was heard gloating over the W3s he worked, but, with deadline staring us in the face, we do not have details as to just who was worked. Any W3 is plenty good DX from W1MNF, however!

The tendency to work 6 by the calendar is bad at any time, for a large measure of the satisfaction to be derived from v.h.f. activity lies in daily work within a radius of 300 miles or so, but it is particularly unfortunate at this point in a sunspot cycle, when our first real opportunity for international DX is just appearing over the horizon.

We went through a sunspot peak in the middle 30s, but the state of the v.h.f. art was such that the possibility of DX communication went almost unrecognized. Now we have a new band six
megacycles lower in frequency, well inside the predicted ceiling for F_2 reflections; we have equipment which permits us to work with extremely low signal levels, making it possible to copy signals which were far below the threshold of our 1935 receivers; we have stabilized transmitters and high-gain antennas; and, perhaps most important of all, we have a world-wide awakening to the possibility of international v.h.f. work. Surely these factors should be enough to keep interest in 50-Mc. work alive throughout the year in this country!

And what are the possibilities? The always-conservative information supplied by the Bureau of Standards forecasts maximum usable frequencies as high as 62 Mc. during the month of November in some parts of the world. Unfortunately, the highest m.u.f. is in prospect for points approximately 2500 miles apart on either side of Latitude 20 degrees south, in the Western Hemisphere, will have an m.u.f. well above 50 Mc. The California-Florida hop is within the realm of possibility, although the predicted m.u.f. for November is about 44 Mc. At other points in the country the m.u.f. will be up around 37 Mc. There will undoubtedly be some further rise in these figures before the slump which comes in the spring. It should be borne in mind that these figures are well on the conservative side, as was demonstrated last winter, when the predictions showed that 28 Mc. would not be open for Europe except for a very short period. Ten-meter men need not be reminded that their band was loaded with Gs, D4s, and other European stations a considerable number of days either side of the predicted period.

In addition to the chances for international DX, the fall season also affords opportunities for work by means of aurora reflection. Late August and September provided the best examples of this little-understood phenomenon yet experienced on 6. As has been pointed out in these pages before, the character of aurora reflection changes markedly with the sunspot cycle, and we are now passing through our first experience with aurora effect in a sunspot maximum. As stable signals and superhet reception are necessary for communication by this medium, it went unrecognized until about 1938, when advanced techniques first began to be used to any considerable degree in v.h.f. work.

In 1940 and '41, when the aurora effect was known well enough to most v.h.f. men so that they were able to recognize and make full use of it, we were in a sunspot minimum. In those years, the visible aurora appeared in the form of a vertical curtain in the northern sky, and 56-Mc. signals were bounced off it in fine style. In the sunspot maximum now approaching, the aurora is spread more generally over the whole sky, and aiming north with the directional array is not always productive of a signal increase. V.h.f. men who worked aurora DX in prewar days remember the broad buzz-saw signals which rendered anything but keyed carrier unintelligible. This effect is present during current aurora sessions, but to a lesser degree, and occasionally voice modulation is readable. C.w. still remains the preferred medium, however, and any operator who has the urge to make full use of the 50-Mc. band should make provision for changing to c.w. easily. The aurora effect often slips in and out rapidly, leaving no time for rebuilding the rig in order to get it on c.w.

The magnetic storm which wiped out almost all low-frequency communication during the last week of September was a boon to 50-Mc. men, affording a fine opportunity for work over the intermediate distances between the 200-mile range normally covered by extended-local work and the 500-mile minimum which is characteristic of the summer's sporadic-E skip. One night's work netted contacts with New Jersey, Pennsylvania, Maryland, Delaware, Ohio, Michigan, Illinois and South Dakota for several WIs. A great many more could have been worked if stations had been active in the right places. October and November should produce even better sessions. Let's not sell 6 short, just because the calendar says that summer is over!

International Notes

That international interest in v.h.f. work is at an all-time high is evidenced by reports received, within the past month, from Canada, England, Belgium, France, Italy, Czechoslovakia, Chile, and New Zealand. Attending the Maritime District Convention at Halifax, Nova Scotia, in early September, we found considerable interest in 50 Mc. To be sure, most of the gear in use was reminiscent of our early efforts on 56 Mc., but the interest is there, and several of the VEIs are working on equipment which will permit full utilization of the band. One such is VEIQZ, who has a crystal-controlled rig with an 829 in the final, a hot acorn converter, and is now building a 3-element rotary beam. He is determined to make the first VE1-W contact on 50 Mc., so watch 50.1 and 50.6 for VEIQZ.

Who’s Where on 6

<table>
<thead>
<tr>
<th>Call</th>
<th>City, State</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIBNS</td>
<td>Framingham, Mass.</td>
</tr>
<tr>
<td>W1CAU</td>
<td>Lynn, Mass.</td>
</tr>
<tr>
<td>W1DBM</td>
<td>South Norwalk, Conn.</td>
</tr>
<tr>
<td>W1LIB</td>
<td>Bloomfield, Conn.</td>
</tr>
<tr>
<td>W1QUN</td>
<td>Portland, Maine</td>
</tr>
<tr>
<td>W1RX</td>
<td>Reading, Mass.</td>
</tr>
<tr>
<td>W2MBS/1</td>
<td>Fairhaven, Mass.</td>
</tr>
<tr>
<td>W2MDV</td>
<td>Searsdale, N.Y.</td>
</tr>
<tr>
<td>W2ZS</td>
<td>Greensville, Tenn.</td>
</tr>
<tr>
<td>W3FIC</td>
<td>Hubbard, Ohio</td>
</tr>
<tr>
<td>W3FFP</td>
<td>Wilmette, Ill.</td>
</tr>
<tr>
<td>W1KTP/0</td>
<td>Prosper Heights, Ill.</td>
</tr>
<tr>
<td>VE1QZ</td>
<td>Hallfax, N.S.</td>
</tr>
</tbody>
</table>

November 1946

59
This square-corner reflector array is used on 50 Mc. by W9QCY, Fort Wayne, Indiana. It rotates 360 degrees, and may be tilted up or down about 5 degrees.

Activity in the vicinity of Winnipeg has reached the point where the QRM from modulated oscillators and superregenerative receivers is limiting the results that anyone can obtain, according to VE4DG. Here, and at other points in Canada where there is appreciable activity on 50 Mc., there is agitation for stabilization regulations similar to those in effect in the United States. Actually there is little justification for such archaic technique, for similar gear will produce just as good results on 144 Mc., and with smaller antenna sizes. Only hindrance to the more advanced workers results from the use of oscillator-and-rushbox technique on 50 Mc. Such a change might well be achieved on a voluntary basis, however, as evidenced by the high state of the art in Great Britain, where there is still no legal barrier to the use of modulated-oscillator rigs. The Gs are confined to 1.5 Mc., however, and such a narrow band practically precludes the possibility of using anything but sharp-signal technique. Australia, on the other hand, has the 50-Mc. band, and our reports from “Down Under” indicate that crystal-controlled rigs and superhet receivers are almost standard equipment there, despite the lack of any legal requirements as to the nature of the transmitted signal.

Aurora effect was noted by G5BY on August 22nd, the occasion of one of the best sessions ever experienced for work with stations on the Continent. Starting at 1700 GCT I1FA was worked, followed at 1800 by F8RSN, in Southern France. These two signals came in from the normal southeast direction, but at 2200 the band filled up with Swiss and Italian signals, these peaking with the beam aimed northeast, and exhibiting the rapid flutter and low intelligibility which are characteristic of aurora-reflected signals. Between 2000 and 2130 the following were worked in rapid succession: HB9CD (the first HB-G QSO on 5 meters, apparently), HB9J, I1IRA, HB9BZ, I1TH, I1KS, and I1MH. Two other Italian stations were heard, and a Swedish station and Czech stations were reported heard by other Gs.

From the v.h.f. department of the Short Wave Magazine (British) we learn that at least 13 OKs are active on 5, including IAA, IAK, 1AW, IJM, 1KA, I1L, 1LX, 1MP, 1WY, 1ZV, 2MA, 2MV, 20A. OK1AW and OK2MA have worked a distance of 195 miles, and OK1AA-OK1AW over 175 miles. When working portable the letter X is added to the call of the station so operating. The Short Wave Magazine also contains a report from PA9AD, who says that there is considerable 5-meter activity in the vicinity of The Hague. A total of 130 Gs are listed as active on 5, indicating that a considerably higher percentage of their amateurs are engaging in work on that band than we Ws can boast on 50 Mc.

G5BY never fails to monitor the 50-Mc. band during 58-Mc. openings, having a separate receiver and a 4-element beam for that purpose. He actually listens on 50 during “long calls” by various Europeans on 58, but to date he has heard nothing but commercial harmonics, mostly of European origin. A few American-type calls have been heard, with transmissions in English. On Sept. 1st, at 1503, “QTC de KOE,” followed by messages in plain English, was heard on 50.5 Mc.

August 22nd was a big day for the Italian stations. Using a crystal-controlled transmitter of 20 watts output, I1KS, Florence, Italy, worked G2XC, G5BC, G5BY, G5LL, G5MA and G5TX. 11IH, using a 30-watt ECO-controlled rig, contacted G2XC, G2DMZ, G4OS, G5BY, G5LK, G5MA, G6LK and G6MR. I1WW, operating portable 12 miles south of Florence with a simple 807 Hartley oscillator and m.c.w., worked G5TX. Many other Gs were heard by I1KS and I1MH, most of them with extremely strong signals. Short skip was present on 28 Mc. at this time, with signals coming in until well after midnight, Italian time. It’s a good thing that the Europeans don’t know that the DX season ends in July!
From Czecho-slovakia comes information that the OKs are now licensed for operation in the following v.h.f. bands: 56-60 Mc., 112-118 Mc., 224-230 Mc., and 408-420 Mc., as well as all the lower-frequency bands. OK1MC, in a 14-Mc. QSO with W1AW, reports frequent DX reception on 56 Mc., with good signals from F and G stations. OK1AA and OK2MV have been heard in England, and considerable international work on 5 is anticipated.

Upward of 25 QSOs with English stations have been made since May 1st by F3JB, Bandai; France, and OK1FF has also been contacted. Transmissions are directed toward the United States, and F3JB would like to arrange tests with interested amateurs in this country.

While working W1DX on 14 Mc., ON4IF mentioned that he was using an 815 rig also employed in 5-meter work. His operation had been confined to local work, but DX contacts were anticipated, as other European countries have been heard in Belgium.

Among the best spots for v.h.f. DX, if activity can be stimulated there, are the various Latin-American countries. The fine signals from many South American stations on 28 Mc., during the summer months, when the band appeared dead for other localities, are some indication of the high m.u.f. which may be expected in that part of the world. From Santiago, Chile, CESFY (W9QPN in this country) writes that he expects to be on during October, if not before. There is the little matter of the license, which authorizes only "10, 20, 40 y 80 metros," but Ken believes that this can be taken care of.

Until recently only Canada, Australia, and the United States have been operating on 50 Mc., all other countries holding to the 56-60 Mc. assignment, or using the narrow slice from 58.5 to 60 Mc. Now we can add New Zealand to the 50-Mc. column, the ZLs having switched from the 5-meter assignment in late summer.

Around the Country on 6

If anyone in W1, W2, or W3 has not worked all New England states, it's no fault of WS8CIR/1. Ed has taken his mobile job and 3-element collapsible array to Mt. Agamenticus in Maine, Hogback Mountain in Vermont, Mt. Monadnock in New Hampshire, and Woonsocket Hill in Rhode Island to provide contacts with those hard-to-get states on 50 Mc. For many who otherwise never would have been able to work anyone there, resident activity is low in each of these states, and nonexistent in Vermont. Maine contacts may be provided soon by W1OUN and W1DEO, both of Portland, who have been working each other locally for some time.

Every so often someone "discovers" 6! Such was the case recently with W2MDW, Scarsdale, N. Y. With low power, and 500-watt competition from W2PTL in the same building, 10 proved a waste of time. Revamping the rig to an 807 doubling in the final, W2MDW has been enjoying himself on 6, as there is no high-powered competition, and even the lowest-powered rig will provide nice contacts over a considerable local range. Yet only a handful of stations operate on 6 in many large cities which would provide room for scores of stations of this sort.

How about more f.m. on 6? Tests have shown that narrow-band f.m. is receivable on communications receivers of the conventional sort; thus it is no more wasteful of space than an amplitude-modulated signal. Of course, to realize the full advantages of f.m., it should be received on equipment designed for this service; but, in the absence of such receivers, narrow-band f.m. still has many advantages, not the least of which is the freedom from broadcast interference resulting from its use. The principal factor now working against the greater use of f.m. on 50 Mc. is the allocation by which it is confined to the high end of the band, where activity is at present nonexistent. W3CPG/2, and others, suggest that narrow-band f.m. be allowed all through the band, with wide-band f.m. continuing in the present assignment. How about some discussion?

One of the best ways to promote activity in the off-season is by the organization of relay routes. Attempting to get messages off keeps stations on the air, and such networks are mighty handy to have around in case of natural disaster. When the day-and-night reliability and freedom from QRM which are characteristic of 50 Mc. make it an ideal band for emergency traffic. One of our objectives in prewar days was a transcontinental network of 50-Mc. stations. This aim might well be revived on 50 Mc. A start along this line has been made by the Eager Beaver V.H.F. Net, whose members are working to maintain regular activity on 50 Mc. in Kansas, Missouri, and adjacent states. A message to your conductor in West Hartford, originated by W8JCO, Fort Riley, Kansas, came all the way on 50 Mc., the route being something like this: W8JCO, W9YUQ, Manhattan, Kans., W9ZJB, Gashland, Mo., W9NFM, Solon, Iowa, W9PK, Downers Grove, Ill., W8GQV, Kalamazoo, Mich., WSSLU, Auburn Heights, Mich., W2BYM, Lakehurst,
V.H.F. MARATHON

Calls Contacts Through August States Worked

90 M. 144 M. 285 M. Score 60 M. 144 M.

WLAEP 37 1 47 395 14 4

W1BCT* 40 1 395 630 7

W1CQV 27 6 4 205 15

W1DLX 46 215 5

W1EHR 38 185 4

W1FNN 44 1 4 205 14

W1HDDQ 94 117 1372 24 7

W1KLF 53 308 2

W1LUG 58 2 331 23

W1LMu 127 480 3

W1MHS* 122 395 2

W1PFJ 112 395 23

W2AMJ 85 28 690 23

W2AVF* 130 395 3

W2BQE 60 395 17

W2BYM 107 135 892 23

W2COT 14 31 135 3

W2DKA 175 5 757 7

W2JWO* 174 1058 9

W2LXO 224 6 220 5

W2PWP 69 15 630 17 2

W3GQY 301 2 626 4

W3HMG 6 44 348 3 2

W3HKB 15 122 222 4

W3ICT* 58 272 4

W3KCV 28 40 449 7 5

W3KHF* 38 390 4

W3KIN* 122 1014 7

W3KIE 91 390 3

W3LAN* 118 630 5 2

W3RUE 24 13 377 13 1

W1GDDQ/7* 9 120 722 6 5

W4HIV 32 54 75

W4ANN 61 288 11

W5BGW 28 9 2

W5QJ* 9 215 1054 1

W6QVI 38 390 4

W6QG 41 284 8

W6RVL* 100 104 730 4 1

W6WCT* 45 355 5

W72LLM/6 33 205 3

W7KAD 50 1245 19

W7QAP 31 395 11

W8NEJ 18 6 105 7 1

W8SKEE 7 2 1

W8ZAR 18 5 105 5

W8ZAU 8 84 2

W8ZUM 18 110 10 6

W9QOD 28 228 8

W9RBP 46 435 15

W9RHS 16 215 11

W9ZTW 61 729 20

W0ZHD 98 395 28

* Includes portable or mobile work.

1 Not eligible for award.

W3JWO winner for August with 298 points.

W9ZHB and W0ZJB got together via the aurora route on Sept. 18th. W9PK has worked the Solon, Iowa, boys, and has heard W0CHI, a distance of well over 300 miles. Jack reports that the Iowa stations are louder than the Michigan stations, though the latter are considerably nearer.

Out in Arizona, W7QAP and W7KAD (W5JGV/7) have finally made the grade, the first contact being made on the evening of Sept. 23rd. The distance is just about the same as that between Tucson and Phoenix, the path worked so successfully in prewar days by W6QLX and W6OVK. The terrain between Tucson and Douglas is even more rugged, and the bridging of this gap can be considered a major accomplishment.

Some 200-mile work is being done along the California coast, long the scene of nice hauls on 144 Mc., but seldom exploited on 50. W9LLM/6 has worked three Santa Barbara stations, W6TMI, W6AMD and W6PPF.

W9IZQ, Wauwatosa, Wis., takes issue with us on the use of Scotch Tape on the coils of our mobile receiver described in QST for September. George relates that some leakage troubles have been experienced with this type of insulation in high-humidity climates. A layer of polystyrene tape would provide much better insulation, at a slight loss of convenience.

Fall DX on 144 Mc.

The month of September was productive of the best temperature-inversion bending yet experienced on 144 Mc. On the night of the 7th, W8YIO/4, operating from Skyland on the Skyline Drive in Virginia, worked W2JWO, Patchogue, Long Island, a hop slightly longer than the W3HWN-W1KOE record. The presence of a temperature inversion, plus the high altitude of W8YIO/4 made the 2-meter band sound like 20 on a Sunday afternoon. Signals from 200–300 miles were booming in like locals, and 5 states were worked, the list including W1OUB/3 and W3LN, Lancaster, Pa., W3LCT/3, Gap Hill, Pa., W4CDG/3, Towson, Md., W3BKB, York, Pa., W2HWX, Little Silver, N. J., W2SKH, Pennington, N. J., W2BV, Minotola, N. J., W2PFQ, Merchantsville, N. J., W3BTP, Marietta, Pa., W3GQS, Feasterville, Pa., W9TBB/4, Arlington, Va., and W9STX/3, Washington, D. C. The addition of Virginia gives W2JWO a total of 10 states worked on 144 Mc., believed to be the greatest number ever worked on any v.h.f. band above 60 Mc. W2PQ/1 nearly equaled this total in two nights' work from Mt. Greylock on the 27th and 28th.

The story is going around that various W2s and W3s have worked a station in Georgia, but no details which can be confirmed have yet been received. With loud signals from as far south as Washington, it is believed that only lack of ac-
tivity in the right places below that point has prevented the covering of much greater distances. In any event, we’d like more dope on this Georgia story!

Some nice hauls are being covered on 144 Mc. in the vicinity of the Great Lakes. Using the crystal-controlled 815 rig he described in September QST, WSNBV worked W1MG/H and WSYNT, in Dearborn, Mich., and WSUMT, Highland, Mich., on the night of Sept. 19th. These contacts are over Lake Erie, about 175 miles.

September 14th and 15th brought 89 signals from the stations in the Detroit area at WSUKS, Cleveland, Ohio. W2RPO (ex-WSNOR) Buffalo, New York, was also heard. Helen Harris of WSUKS lists 12 new stations on 2. In the vicinity of Cleveland and Toledo. She reports that the Toledo gang are trying horizontal polarization, and most stations are getting on with crystal control. Crystal-controlled stations include W9s DVI, FSS, LBJ, ML, YGM, VVVY, UMI, OJJF, YGG, YDT, WJC and UKS.

In the San Francisco Bay area, quite a few stations are able to work out consistently to distances of 100 miles or more, despite mountainous terrain. When W6OVK moved down to Redwood City he was sure that he was going to be out of touch with the gang, but crystal control, superhet receivers, and high-gain antennas are turning the trick. Jim works several stations in Sacramento regularly, including W6BVK, 92 miles, and W6PIV and W6RK at 87 miles. These stations have good strong signals at any time, with very little fading, but W6LSX at Watsonville is more variable. W6WA1, at Forestville, near Santa Rosa, is also a regular, and W6OVK (at sea level) is able to act as go-between with LSX and WAI, who are separated by about 130 miles, with the Coast Range intervening almost all the way. Higher gain in the antenna is the universal aim, and W6TCP is leading the parade with 8 half-waves in phase with directors, backed up by a wire-screen reflector. W90AW/6 and W6QR have crystal-controlled rigs in their cars, and have very consistent coverage all through the Bay Area. W6NJJ made the first home-station contact with W6WA1, who is 50 miles north of San Francisco.

The 12 half-waves in phase, vertical, and 10 half-waves in phase, horizontal, with a reflector of chicken wire in between — the beam to end all beams at W3KTE, Lancaster, Pa. — has been paying off. From his low location, John could not even hear York, 24 miles away, with a dipole antenna. Since the erection of the big array, 21 W2s, at distances up to more than 200 miles, have been heard with good signal strength. W2s ER, JWO, OJR, and LDQ are extremely strong. John has had no luck with the horizontal side of the array as yet, and asks for some other horizontally-polarized stations with whom to make tests.

Anyone looking for low-cost tubes for 144 and 235 Mc, should not overlook the 7193, used extensively in various v.h.f. applications during the war. It has an element structure similar to the 6J5, but with plate and grid caps on the top of the envelope. W5IHT/6 says that the 7193 works well in conventional circuits, at frequencies up to 800 Mc.

420-Mc. Records Going Up!

Just too late for inclusion in the last issue, we received word of a new 420-Mc. record. On August 25th, W6PSQ/6, operating from Park Ridge Lookout in the Grant National Park, contacted W6FZA/6 on Mt. Frazier, near Bakersfield, a distance of 140 miles. Equipment at W6PSQ/6 was a push-pull oscillator using 446-A lighthouse tubes, modulated with a 6L6, a rig supplied by W6VQB, the former record holder. The receiver was also a 446-A, operating as a superregenerative detector. The antenna was a 16-element array. W6FZA/6 used a single large lighthouse tube in a linear-oscillator circuit similar to that described by W1DBM in November, 1945, QST. The receiver was a 955 scar, tuned by a 100-mfd. condenser at the end of a 1/4-inch line of No. 8 wire. The antenna was 8 half-waves in phase, backed up by a 3 x 4-foot copper-screen reflector.

W6VQB/6 was on Mt. Diablo during the work-out, and was hearing W6PSQ/6 over the 190-mile path, but contact could not be established two-way on 420 Mc. The competition is keen, and the 140-mile record is not expected to stand very long. The behavior of the 420-Mc. band seems to be much like 144 Mc. in that strong signals are exchanged over short hauls where high hills intervene, W6VQB reporting work over (or around) a 500-foot hill in the Bay area.

Another 420-Mc. contact well beyond 100 miles is reported by W6WSQ. Operating from Mt. Wilson on September 29th, he contacted W6IBS/6 at Point Loma, a distance of 118 miles. As the report came by telegraph no details of the equipment used are available at this writing.

Reception of the signal from Hauppauge, L.I., by W1BBM at North Harwick, Mass., reported in September QST, has been repeated frequently throughout the summer and early fall. W1BBM feels certain that he could have worked into New York on 420 Mc. at these times, but he has never heard a signal out on the Cape, other than the 438-Mc. signal from Long Island, 170 miles distant! He is going to 1250 Mc. now, and hopes to get some cooperation on that band. Any takers?

Getting things started on 235 or 420 Mc. can best be accomplished by getting interested parties together on an operating schedule. W2BAV (ex-WILAS/2) has been operating on 235 Mc. at 8 P.M., and on 420 Mc. at 9 P.M. each Wednesday.

(Concluded on page 189)
CONNECTOR FOR TWIN-LEAD

The small FT-243 crystal holders that are available in the present surplus market make neat and inexpensive plugs for use with almost any small-diameter two-wire cable, such as the 75-, 150- and 300-ohm Twin-Lead, as shown in Fig. 1. The holders fit the new ceramic crystal sockets, and make convenient connectors for coupling links and antenna input connections.

—James A. Gundry, W8KNP, ex-KA1AA.

AUTOMATIC BREAK-IN CIRCUIT

With the automatic break-in circuit shown in Fig. 2 the transmitter is turned on with the first dot or dash, and is automatically turned off a predetermined interval (usually one-third to one second) after the operator stops keying. Between “on” and “off,” the rig may be keyed as usual, provided that at no time is there an interval between keying characters of more than the length of time required for the automatic “off” action to take place. Thus the need for a stand-by switch is eliminated, permitting fast, efficient operation with the key as the only operating control.

The circuit has two divisions, \(V_1 \) which fully charges condenser \(C \) each time the key is closed, and \(V_2 \), which has an s.p.s.t. relay (contacts normally closed) for switching the whole rig on and off in its plate circuit, and a time-delay circuit in its grid return.

Under “key up” conditions, \(V_1 \) is cut off, as its cathode circuit is open, and \(V_2 \) is conducting, holding contacts \(A \) and \(B \) of the sensitive relay open. When the key is closed for the first time, \(V_1 \) conducts, and its plate current, flowing through the potentiometer, increases the bias on \(V_2 \) beyond cut-off, causing the relay to close the circuit between \(A \) and \(B \). The condenser \(C \), in the meantime, has charged fully, acting as a holding bias to keep \(V_2 \) cut off. When the key is next opened, \(C \) starts to discharge through the potentiometer, but because the time constant of the circuit is long, it cannot discharge fast enough to permit \(V_2 \) to become conductive before the next keyed character comes along to charge it up again. Thus, the circuit between \(A \) and \(B \) remains closed as long as dots and dashes are coming along at the usual keying rate. Once the key is left open long enough for \(C \) to discharge, however, the circuit opens, taking the transmitter off the air. The time delay used may be adjusted to suit the operator’s individual keying speed by means of the potentiometer.

The relay may be used to close the circuits of a number of other relays, thus permitting complete station control from the key. If the delay obtained is too long or too short, try replacing the condenser \(C \) with another of the same value. Sometimes the actual capacitance may not be that shown on the label, and in one instance I found one, with the correct label and size, that gave a delay of fourteen seconds, while most condensers tried gave a two- or three-second delay at the maximum.

I suggest that the transmitter power-supply circuit be examined to insure that the automatic break-in circuit cannot turn off the same power supply that furnishes its plate voltage! If desired, a switch may be connected across the relay contacts to disable the automatic break-in circuit when you are asked to QRS when the delay circuit has been adjusted for fast keying. —Henry L. Cox, Jr., WSUPS/3
SURE-FIRE SAFETY PRECAUTION

For the expenditure of a couple of dollars for a relay and a switch, and a few hours labor, the safety system described below was installed at W8ICO. No longer is it necessary to worry about getting a serious and perhaps fatal shock when changing plug-in coils in the final amplifier.

A double-pole double-throw relay is used in the circuit shown in Fig. 3. The relay is one commonly used for antenna switching, with ceramic insulation and sufficient spacing between contacts to withstand the full plate-supply voltage. One set of relay contacts immediately grounds the B+ voltage when the transmitter switch is turned off, and the other set energizes a green panel light, signifying that it is safe to touch the final tank coil. This safety signal will not operate until the B+ is actually grounded, thus if the relay fails to operate, the green light will not come on, and the operator knows that danger is present. The red panel light is turned on whenever the transmitter switch is turned on.

Because relays sometimes do not throw as they should, it is possible that the path to ground from B+ may (instantaneously) be through the pilot light and the filament winding. For this reason, a filament winding separate from any tube circuit is advised. Two resistors, connected as shown in the diagram, prevent surges from blowing the bulbs. Good insulation should be used on the lead from the relay to the green lamp to eliminate the possibility of a short to ground, which would cause the green signal to light. The key to the system: If the red light is on, stay away! If the green light is on, it is safe to touch the final tank coil. If neither light is on, or if both lights are on, something is haywire, and it will pay to ground the tank before touching it. A simple safety precaution such as this will save quite a few gray hairs, and might save your life!

COUPLING 500-Ohm 'PHONES TO THE RECEIVER

With tube-to-500-ohm-line transformers still scarce, many amateurs are faced with the problem of using 500-ohm 'phones with their receivers without burning out the output tube, its plate by-pass condenser, the output transformer, or all three, because of high peak voltages developed as a result of operating the tube with improper load on the voice-coil winding.

Operating the output tube as a cathode follower, as shown in Fig. 4, solves all of these problems with the additional advantage of producing excellent frequency response and very low distortion. By the addition of a double-pole double-throw toggle switch as shown, and a little rewiring of the components that are already in the receiver, proper operating conditions under both 'phone and 'speaker loads can be achieved.

Robert O. Potter, VE3TO.

Strays

"In my rounds of the MDs I ran across one whose specialty was radiology, and his name, believe it or not, was Sender!" — W3QP.

Eleven-meter DX man, of course.

Cliff Arkett, popular comedian on the daytime network radio program "Glamour Manor," in real life is G. W. Richert, W8SGP.

November 1946
Sweepstakes Contest. The most outstanding news this month is announcement of the first postwar ARRL Sweepstakes. See page 30 for complete details. Once more the bands will ring with "CQ SS" and the echoes will come back in the form of QSOs galore. Former participants in these annual affairs need no introduction to the "SS." Newcomers have a treat than you ever dreamed possible. It's your operating ability that makes it possible. Former participants will find contacts more plentiful and easier to make than you ever dreamed possible. It's the opportunity you have been awaiting to give your station a real test. You'll be surprised at the lift your operating ability will get from the experience. If you're working for the Worked All States award, here's your chance to snap some rare ones.

Harmonics. We've been including in our W1UE operating efforts a "Harmonic Notification Service." This service has been confined to harmonics from 80-meter band signals falling outside the 7-Mc. limits. It's an interesting activity and quite worth while, if the gratitude expressed by those notified is any indication. Here's how we work it. One receiver is tuned to the 7-Mc. region, a second to 3.5-4 Mc. When a signal is heard below 7150 or above 7300 kc., the VFO (isolated from antenna!) is tuned to zero beat and subharmonics are still being observed in the 7-Mc. signal is a harmonic. Contact is then established on 3.5 and the sad news passed along.

Occasionally the offender cannot be heard on 3.5. This sometimes means that skip conditions are at work, but often we are picking up radiations from a 7-Mc. stage of a 14-Mc. transmitter instead of a harmonic from 3.5. Over-the-air notification then becomes difficult, usually impossible due to the differences in 7- and 14-Mc. propagation conditions. It is unnecessary to use two receivers for this notification service. It is, of course, more convenient, especially when your "correspondent" starts to make adjustments and tests to eliminate the harmonic.

While we're on the subject of harmonics, we must remind all operators that both harmonics and subharmonics are still being observed in worrisome numbers. Official Observers are on the job, sending postal notifications, but there is no guarantee your first notice will come from an OO rather than FCC! It is urged that all amateurs make every possible check at their stations, and test with other stations, to insure that spurious signals are kept at an absolute minimum. Investigation now may save the embarrassment of an official notice of violation later.

Rotten Signals. You have no doubt read the article "Unstable Signals," by Don Mix in August QST. If not, read it now. We don't know what has happened to the old time "pride of signal." There never was a time when all c.w. signals were T9X and free from chirp, but we do recall the day when "rotten signals" stood out among the good like a sore thumb. Today the good stand out among the poor. "That's funny," a chap remarked recently when we gave him T7. "I have been getting T9 from everybody." We came back and told him, "It may be a case of even your best friend not telling you." Suppose that could be the answer to some of the weird signals on the air today? Let's adopt a more realistic attitude when reporting "tone." If it's T5, say so. If there is evidence of a chirp, add a "C" to the numeral in the report (T9C., etc.). Tell him if he has clicks, or if you notice a lag in his keying. You want the straight facts yourself, so give the other fellow an equal break. True enough, we should all check our signals in our own shacks, but there is a possibility some of the lads are not aware of how their radiation sounds to us. Reserve those T9X reports for those with the ultimate in quality.

Brass Pounders' League. "Hall of Fame" for the traffic-handler is the Brass Pounders' League. There is indication this month that the traditional BPL-box soon will be with us again. Message pushers are back in the swing, traffic routes, nets, and trunk lines are shaping up rapidly. W7FST, Utah-Wyoming Section, sets the pace with a BPL total for the month of August — 823, handled mostly by voice on 14, 3.85, and 28 Mc., with stations in Japan, E.I., Guam, South Africa, England, Germany, and Australia. W7MAE, W1AW, and W1BDI are recent BPLers on "deliveries." A message total of 500 or more, or 100 deliveries plus extra delivery credits will place you in line for BPL listing. In determining your monthly total count one point for each time a message is handled by radio; one if originated and sent forward by radio, one if received by radio and delivered, or two if received by radio and sent forward by radio). In addition, an extra credit
of one point for each delivery made by mail, telephone, in person, by messenger or external means other than use of radio is also allowed. This extra credit is not allowed for a message received for yourself or party on the immediate premises. Count only one (received by radio and delivered) in such cases. The Brass Pounders' League listing is open to all operators who qualify for this monthly "honor roll."

-On Giving Signal Reports. A high standard of honesty and accuracy in giving signal reports is desired by all amateurs. A printed list giving the R-S-T definitions (Readability 1-5, Strength 1-9, Tone 1-9) is mailed each ARRL member with his membership card or certificate. It is suggested that such lists be posted in every operating position, and consulted during QSOs, in order to insure accurate, instead of loose usages of these definitions that mean so much to operating amateurs. Let's hear more Strength-3 and Strength-5 signal reports when the signals really are "weak signals" or "fairly good signals!"

"Strength 9" by definition means "extremely strong signals." All this talk about so many db. over S9 and past S9 is termed a lot of hooey to many of the folks who write us — at least until some absolute station standard is developed that makes a true calibration of an S-meter possible! We wonder why so many voice operators who can "say it with words" don't give their reports in modern terms instead of using telegraph QSA-lingo. If you use the readability-strength definitions at least be accurate in using them. For example, say "readability five, strength eight" (or whatever it should be). It's an idea.

- On Q Code Use. Concerning the above, W2NYC says "readability ... strength ... " is much more appropriate, dignified, and sounds better than any Q Code. He suggests also a worldwide campaign to inform people to use Q Code correctly, where necessary to use it. It is safest to consult an up-to-date list of Q Code to be correct and to avoid positive confusion. W2NYC says further, "Six years after the change you would think people would know the difference between QRK and QSA. And that QRA is now the name of station, so that what we want is QTH, referring to the location."

- How Is Your DX Factor? A new unit for evaluation of DX might be of some general interest, W9YXW suggests. He would propose that the mileage divided by power input (watts) be defined as the DX Factor. Presumably this numerical rating for each QSO would be added up for a rating on the communication accomplished by the day, month or year. As proposed the factor wouldn't accredit the gain of rotary beams, the reliability of communications, what messages or intelligence were exchanged, or be affected by the number of amateurs or activity at the distant spot. However, in the face of high-power competition and extensive interference such as are present in our bright postwar DX world, we fancy there still should be interest and profit in making some miles-per-watt comparisons.

WØZNN has devised a world-coverage radio map that is independent of political boundaries or call prefixes. The world is projected into seventy-two equal surface areas which represents good logic in showing coverage of global areas. An area as large as a small postage stamp represents about 2.7-million square miles. New ways of crediting radio results always appeal to us, so we have been particularly interested in comment from leading DX men on this map system. It would be nice (from our standpoint) not to have decisions dependent on the geographical and political boundaries that determine "countries" but which change arbitrarily from time to time! Would a new yardstick be welcome for DXCC?

Five of eighteen leading DX men have responded initially to a request for opinions. Their comment seems to be sharply and equally divided. For example, W1CH and W7VY are enthusiastic on the basis of the logic in the system. But W6GRL and W8BKP cite reasons why such an area system is not a true DX test. (The earth is 5¼ water, with perhaps unfair stress on ship or skeds with a favored few; credit for large areas of America or Europe may be got by one contact though there are many states or countries; at the very Poles one could get 12 areas at a whack; prefixes and countries are greater numerically so more interesting.) W0YXO takes a middle position and likes the map as "another system," but is strongly opposed to dropping our country counting for DXCC. There is more romance in thinking in terms of countries with different tongues, peoples and customs, than there is in talking latitude and longitude. We therefore think that all amateurs want to continue to think of their DX in terms of countries. From the over-all fairness standpoint, present information would indicate that there isn't any important difference in the order of listings. Of course exceptions may turn up, but look at the country-area record of those five: W6GRL 160-56, W7VY 117-52, W8BKP 79-42, W9YXO 75-36, W1CH 70-29. Of course it wouldn't be a Century Club if the DXCC Award required just 45 or 50 world-coverage map areas. What do you think?

-BRIEF

W1KKS, upon completion of his cruise as radio operator with the MacMillan Arctic Expedition, reports a July traffic total of 506 for the Schooner Bowdoin, KLPO.
BRIEFS

The following two items are from the Cuyahoga Radio Association's CRA Bulletin:

"Amateur Radio proved its usefulness in an emergency recently when W8CZA of Massillon, Ohio, while traveling near Vermilion, Ohio, came upon the scene of a serious highway accident. Having portable ham gear in his car, W8CZA hooked up with W8DJJ in Huron, Ohio, who in turn called the State Police. Police and ambulances were dispatched and those seriously hurt were cared for. One victim, pinned under his car, was saved because of early arrival of a doctor."

"Lieut. Colonel G. Stone, Civil Air Patrol, sends an acknowledgment of services rendered for two missing Army Fliers: Lt. W8.JVN. Another example of the value of mobile units, W8JNF, W6BF, W6LEX, W8COG, Stand-by stations, W8OZJ, W8DS, W8RHF, W8JVN."

W2OAB, operating at Pearl Harbor, arranged a 28 Mc. phone schedule with W3PK/3, Norfolk, Va., through which several lads stationed at P.H. were able to talk direct with their families by radio. The W2OAB-W3PK contacts clicked for 18 days out of 24 during March, with consecutive QSOs from March 1st to 10th. The average length of contacts was forty-five minutes, with some lasting as long as an hour and fifteen minutes.

W1AW conducts practice transmissions nightly, Monday through Friday, 10:00 p.m. EST, at speeds of 15, 20, 25, 30, and 35 w.p.m. on 3555, 7145, 14,150, 28,060, and 52,000 kc. Once each month a special transmission is made to enable you to qualify for a Code Proficiency certificate or endorsement sticker indicating progress above your first certified speed.

The next qualifying run will be on November 16th. The text transmitted on that date, received successfully by ear at the highest speed you can copy, should be sent to ARRL for checking. To avoid errors in recopying, send your original copy. Attach a statement certifying over your signature that the copy submitted is direct copy, made from reception of W1AW by ear, without any kind of assistance, personal or mechanical. If you qualify, you will receive your certificate, or appropriate endorsement sticker for certificate you already hold. Those who qualified in the past should submit copy only if speed is higher than indicated on certificate or endorsement sticker.

QST lists in advance the text to be used on several of the CP schedules. This makes it possible to check your own copy. It also provides a means of obtaining sending practice since it permits direct comparison of one's first tape sending. To get sending help hook up your own key and buzzer and attempt to send right in step with the tape transmissions. Adjust your spacing in the manner indicated as necessary for self-improvement.

BRIEFS

In September QST we asked who were the oldest and youngest active hams. The oldest so far heard from is Ed Kingsland, W8NA, who has just entered his 82nd year. He has been active almost continuously for the past twenty years, on phone and c.w. W2AA is 76, VE2BN 72. Among the "youngsters," H. T. Brown, W4JWJ, writes that he is 14 years old and active on 3.5 and 7 Mc. It is reported that W8Y1IG also is 14. W1OFY advises that he is 15 years of age. Is there an active ham older than 82, or younger than 14?

KZ5AB is on the air at Fort Clayton, C. Z. Operation has been mostly on 28,080 kc., with some contacts on 3.5 Mc. The station consists of an HT4 transmitter and SX-28 receiver.
XACAXADK, CASERTA, ITALY

The following brief history of operations in Caserta, Italy, is reported by Signal Corps Lieutenants Harold Riedl, W9VWP/XACA, and John Burgio, W2JRP/XADK. Many 28- and 14-Mc. operators will recall contacts with XACA and XADK.

It all started when we landed in Italy in January, '46, and were told by the military authorities that amateur operation was permitted on the 28-Mc. band. We found an oldGI f.m. receiver in a salvage yard. After burning the midnight oil for a couple of nights, W9VWP finally got the thing to receive We while W2JRP worked on the antenna and transmitter. Not long after, we liberated our first good receiver, an HQ-120. From then on our receiver problems were over for good. On 28 Mc. we used a small home-made transmitter using 807s with between 80 and 75 watt input.

We had a grand time working the boys on 28 Mc. up to the end of April, when the band closed for transmission to the States. We then sweated out the opening of the 14-Mc. band. It was a glorious day when the authorities approved our operation on that band.

A good 14-Mc. antenna then became a problem. We had been using a W8JK four-and-eight-section beam on 28 Mc. and decided to stick with it on 14 Mc. since it would give us considerable gain and yet be broad enough to cover the states east of the Mississippi. A fifty-foot steel tower was erected in the back yard of our signal company. Broadside from the tower to the building gave us the desired great-circle path back home. Between the tower and the building we hung an eight-element W8JK with tuned feeders. Placing our 50-foot steel tower in a vertical position was quite a job. Italian laborers helped in pulling on and holding the guy-wires as we pulled the tower up through a group of trees.

From March 1st to April 15th, W2JRP was on detached service in Athens, Greece, as Radio Officer with the AMFOGE (Allied Mission For the Observation of Greek Elections) and operated XACR jointly with W7IGK from that location. Our only regret was that we were there while a severe magnetic storm raged and for 10 days we heard practically nothing to the west of Athens.

We wish to express our sincere thanks to the many stations that have handled traffic for us. In many cases important messages were cleared faster than ever thought possible through the best commercial channels in the States. We hope it will be possible to confirm all QSOs upon our return to the U.S.

BRIEFS

Low power is ineffective, you say? W4HYB, Pensacola, Florida, indicates the contrary in a recent letter from which we quote: "In April when 3.5 Mc. opened, I began operation once again with as much haywire as a ham can have and still operate. Since I sold most of my gear to the Government, I didn't have anything left but some spare parts. This is the story of those spare parts and a few extra dollars. The transmitter is a 6L6G oscillator, with an 80 for power supply. Receiver is a homemade two-tube regenerative, using a 1Q5 and a 1N5. The antenna is a quarter-wave Zepp. With this layout I have worked 24 states, coast to coast, plus Canada. That's what 20 watts did for me in twenty-five days on one frequency (3883) in the 3.5-Mc. band."

HB9BG, visiting in Cleveland, Ohio, held an hour-and-a-quarter QSO with his YL in Lucerne, Switzerland, over W8RDZ's 14-Mc. phone.

W5LDH, New Orleans, tells of an experiment in "triplex" phone on 11 meters by W5KXU, W5LAE and himself. Station 1 listened to Station 2, Station 2 listened to Station 3, and Station 3 to Station 1. Each participant piped one other station through. The only difficulty encountered was from feed-back. W5LDH reports that observers said it sounded worse than 14 Mc. on a Saturday night.
Building Friendships on the Air
By George L. Downs, * W5CS/1

Friendships grow out of acquaintances. Acquaintances begin with contacts. Trouble is, so much time often elapses between contacts that each person forgets the other and introductions have to be made all over again.

Contrast this with what happens when you visit a doctor you have visited before. You are flattered and pleased to find that he remembers all about you, your case history and your complaints. Yet this doctor has hundreds of patients and has seen you but once. How does he do it? Simple! While you were sitting in the waiting room, an attendant took your name, removed your card from a file and the doctor had just finished reviewing it when you walked in.

Picture a ham contact working that way. You hear a station calling you; you check your card and pleased to find that he remembers all about you, your case history and your complaints. Trouble is, so many hams are lost without their card-file "memories." Try this plan. It pays off in lots of satisfaction for little effort.

BRIEFS

Slogan for every amateur before communications emergencies develop: "It Can Happen Here!" Take a lesson from the words of SCM Hutchinson, VE3DU, Ontario Section. "The tornado at Windsor has awakened in the Ontario boys a sense of the need of having emergency equipment... The Windsor gang had no emergency equipment on hand when the disaster struck... VE3AHJ lost everything he owned... The old 'It Can't Happen Here' complex got a rather bad jolt once more... We are building up the AEC throughout the Section..."

Every active amateur should join the ARRL Emergency Corps and help to prepare his community for any emergency.

While operating as D4ACT, in Darmstadt, Germany, W1MBR enjoyed contacts, many lasting over an hour, with his family in Maine through W1LLN and W1FBJ of Portland.

Communication facilities for reporting progress of the Marin Annual Dipsea Race held September 8th were furnished by the Marin Radio Amateurs, Mill Valley, Calif. Mobile 'phone units on 3.86 Mc. were used. W6AOF handled the first post at the top of the 400 steps, W6GPB Post 2 at the half-way mark on the course, W6OEL Post 3 at White's Dairy, and W6DNY was at the finish line. W6KNZ and W6VEJ assisted on the trail in spotting the runners. Reports went through in good shape and officials were highly pleased with the operation.

* 72 Watson Road, Belmont, Mass.

PRIZE-ARTICLE CONTEST

* Mr. George L. Downs, W5CS/1, is a winner in the CD Article Contest with his article on "Building Friendships on the Air."

The Communications Department conducts a continuing Article Contest in which the author of each article used is awarded a $10 prize, consisting of $5 in Victory Stamps and $5 in ARRL supplies or publications (except QST). Contributions may be on any subject of interest to amateur radio operators. Articles are selected on originality and value to the fraternity.

Give this contest a try. You are not limited; make your contribution on any topic relative to ham operating or organization. Entries should be not over 500 words long. Please mark your contribution "For the CD Contest."

BUILDING FRIENDSHIPS ON THE AIR

By George L. Downs, * W5CS/1

Friendships grow out of acquaintances. Acquaintances begin with contacts. Trouble is, so much time often elapses between contacts that each person forgets the other and introductions have to be made all over again.

Contrast this with what happens when you visit a doctor you have visited before. You are flattered and pleased to find that he remembers all about you, your case history and your complaints. Yet this doctor has hundreds of patients and has seen you but once. How does he do it? Simple! While you were sitting in the waiting room, an attendant took your name, removed your card from a file and the doctor had just finished reviewing it when you walked in.

Picture a ham contact working that way. You hear a station calling you; you check your card file. Sure enough, you have worked him before, six years ago. Quick reference to his cards gives you his name (John Jones) and address. You noted he had a new jr. op at that time. Reference to your log by date of QSO shows he had a T7 signal before — now it's T9X.

So, when he signs you come right back and call him by name. You are glad to work him again, you mention the previous QSO and wonder what he has done to improve his rig (the note is better), and you guess the jr. op must be getting pretty husky by now — maybe he has had another since then.

Brother, Johnny is going to be one more pleased ham and will warm right up to the subject. You have immediately taken the QSO out of the “Took fer call — ur sigs RST 549x — WX clr — wart om?” class, and taken a big step toward making a friend of John. And you'll get lots of satisfaction out of your QSO.

This satisfaction can be yours for little effort. Here's how:

1) At any stationers get a few hundred 3 x 5 index cards, a set of blank index tabs, and a cardboard file tray to fit the cards.
2) Prepare one tab for each W district, another for each foreign country usually worked.
3) Each time you work a station, take a blank card, enter the call in the upper left hand corner, note name, address, and date of QSO. Record comments as desired.
4) File card behind proper tab in the file drawer.
5) As soon as your file is sizeable, check for the station you are working at the beginning of each QSO. Repeats will soon begin to show up. Quick reference to the log fills in any missing information about previous QSOs and you are ready to begin talking where you left off last time.
6) Date each new entry on a card and return it to its place after the QSO. As your file grows you will rearrange and add to the index tabs from time to time to keep card filing (and finding) easy.

There is plenty of precedent for this sort of system. Doctors, engineers, even men of genius are lost without their card-file "memories." Try this plan. It pays off in lots of satisfaction for little effort.

* 72 Watson Road, Belmont, Mass.
UNLICENSED STATION LOCATED

An unlicensed radio station at Richmond, Calif., was located and closed by FCC on August 27th. The illegal station was operated by Robert Lee Eldridge, who was masquerading as an amateur on 144 Mc., under the self-assigned call W6ATQ. Eldridge admitted that he had been operating without a license for five months. The station was located by bearings and field measurements taken by an FCC mobile unit. A continuing effort is being made to track down other unlicensed stations. Conviction of illegal operating carries a maximum penalty of a $10,000 fine, or two years in prison, or both.

BRIEFS

Amateur radio reporting of the Pikes Peak (Colorado) Auto Races held on Labor Day was highly successful. W0WYX at the starting point, W0DDF midway, and W0QYT at the fourteen-mile point, all 28-Mc. mobile, reported progress of the racing cars passing their stations. The record for the eighteen-mile course was 15 minutes, 8 seconds.

Clara Dishong, W6TDL, in February started daily schedules on 28-Mc. ‘phone with W6PKP/KG6 on Guam. These contacts, maintained solely for handling GI traffic, continued throughout May. In this period 146 messages were handled. When W6PKP was not on, W9YM would take over and handle traffic through the Guam 5-meter net. Other stations cooperating were W9ZEO/KB6 and W6OKB/KG6. W6TDL’s last contact with Guam was on June 5th, when she received six messages from W8EL/KG6 (W6PKP’s successor), making a total of 152 messages handled. All but 71 were delivered by or received at W6TDL by long distance telephone, mail, or telegraph. The 71 were both received and relayed by radio.

An example of the worthwhile traffic handled is a message originated by W6MWO, Beverly Hills, relayed via W6TDL to W6PKP/KG6, and thence to Japan. This message was from an anxious family concerned with the well being of a son who had been reported dying from typhus. In Japan, the message reached the soldier and he was permitted to telephone home from General MacArthur’s headquarters with the welcome news that he was in good health. As a memento of her good work, W6TDL has an honorary membership card in the 314th Bomb Wing Chapter, Guam Radio Relay League, presented to her as the first woman member.

W3QP has resumed schedules (14 Mc.) with VK6MO, the Carnegie Institute Magnetic Observatory, Watheroo, Australia. He hopes also to resume soon with OA4U, the Carnegie Observatory, Huancayo, Peru. W3QP has maintained communication with VK6MO and OA4U for some 15 years, handling Carnegie Department of Terrestrial Magnetism traffic on regular schedules almost without a break up to the start of the war.
MEET THE SCMs

North Dakota's energetic SCM is Raymond V. Barnett, W9EVP. Entering this "vale of tears" in Pawnee, Missouri, on November 20, 1905, Ray has led a versatile life, working at farming, structural-steel construction, power-shovel operating, broadcast operating, and two-and-one-half years as monitoring officer with the RID of FCC. At present he is employed by the Meyer Broadcasting Company as radio operator.

After three years in high school he took a correspondence course from National Radio Institute, Washington, D.C., from which he received his diploma. The ham ticket and call W9EVP came in 1938, following a seventeen-year interest in amateur radio. Ray obtained his Class A ticket in 1940. He holds a Code Proficiency award and RCC certificate. During the war he was active in the WBRS Club at Bismarck.

The rig, located in the basement in winter and the garage in summer, includes a composite rack-and-panel transmitter working all bands, 3.5 through 28 Mc. Tube line-up is 6V6-807-HY30Zs. Receiver is an S20R. A 144-Mc. mobile transmitter-receiver, run from a Vibrapack, takes care of portable and emergency operations.

As a secondary hobby, Ray goes in for catfish fishing in the "Big Muddy." A family man, he writes, "I have four children, ranging in age from ten to two years, and what with building a home and making a living, there is little time left. I would rather build, repair, and experiment with radio than eat." In spite of limited time, Ray is conducting the SCM affairs in an exemplary manner, and North Dakota's hams will find him always willing to cooperate in every way possible.

BRIEFS

The Muskegon (Michigan) Area Amateur Radio Council provided communications for a meeting of the "Dawn Patrol," an aeronautical society, held at the county airport on August 25th. A mobile station installed in a jeep reported the plane numbers and pilots' names and addresses as they landed, to speed up registration of nearly 200 ships. The following amateurs participated: W8TPB, UCG, NWU, MRL, MRK, and NZU.

The Racine Megacycle Club operated a station during the Wisconsin State American Legion Convention, held in Racine, August 1st to 5th. Operating under the call W9PWJ, equipment was set up in a tent at the Boy Scout Service Camp, on a hill alongside Lake Michigan and opposite the hall in downtown Racine where the convention was held.

W9PWJ worked mostly on 14 and 7 Mc., with a 50-watt transmitter, HQ-129X receiver, and 3.5-Mc. half-wave antenna. Seventy-five messages of greeting were sent to Legion posts in 25 states, and a number of replies received. Amateurs participating were W8SZL (ARRL EC), W9CFP (club president), W0PPP, BVG, KZU, PPH, OXD, HIM, IIFL, KZJ, APB, YPB, ORV, RFW, R1W, and W8WEP. Amateur radio received quite a boost from Legion officials, and the Racine gang were complimented highly on their efforts.

The North Shore Radio Club, Oshawa, Ontario, provided communication during the air show held in that city June 30th-July 1st. A high-frequency link from radio truck to tower was used to cover several of the events. A 3.5-Mc. net was set up to handle weather reports and to pass information about incoming and outgoing aircraft. With the mobile set-up, on various events, output of the receiver was fed into an audio amplifier and rebroadcast to the spectators through the local p.a. The truck (a 3/4-ton Jeep) played a useful part when a plane crashed far out on the field. A call for a doctor was made by radio, and much time was saved in getting him to the scene of the accident. Among other uses made of the mobile unit, two glider pilots were interviewed at the spot where they landed, with rebroadcast over the p.a. system. VE3CAR, Toronto, acted as control of the 3.5-Mc. net, which endeavored to cover cities which had planes at the meet.

Club participation in the event was led by Doug Hinton, VE3AZG, and George Blanchett, VE3BAD. Others taking part included VE3AFI, AGT, QQ, QU, QN, B1B, ADD, AZS, ARI, AZV, AXM, Z7, AKB, ABV, AIIJ, ACC, Al Brown, and Tom Crooks.
Judging by the size of the roster of active RCC members, rag-chewing is still one of the most popular of amateur activities. The list which follows contains the calls of all old members who have notified us that they are active, and the calls of those initiated in the postwar period.

How to get in:

1. "Chew the rag" with a member of the club for at least a solid half-hour. This doesn't mean a half-hour spent in trying to get a message over through bad QRM or QRN, but a solid half-hour of conversation or message-handling.

2. Report the conversation by card to the Rag Chewers' Club, ARRL, West Hartford, Conn., and ask the member station you talked to to do the same, indicating time when both reports are received you will be sent a membership certificate entitling you to all the privileges of a Rag Chaver.

We have on hand hundreds of nominations and applications which do not "match up." Remember that it is necessary for both the applicant and the club member worked to submit confirmations of the "chew." If you work an RCC member for the required thirty minutes, and after a reasonable time do not receive your membership certificate, you will usually find that either you failed to notify Hq. of the contact, or the member-station forgot to send the confirmation. You must report the QSO.

Club members are urged to sign "RCC" after their calls so that those wishing to join may identify them. If you like to use your amateur station to make and maintain real friendships, if you are a skeptic in the "hello-goodbye" brand of contacts, you will want to get into the Rag Chewers' Club.

CALENDAR OF A.R.R.L. ACTIVITIES

Nov. 16th: CP Qualifying Run.
Nov. 16th-18th and 23rd-25th: Sweepstakes Contest.
Dec. 15th: CP Qualifying Run.
Jan. 14th: CP Qualifying Run.
Jan. 16th: CP Qualifying Run.
Feb. 13th: CP Qualifying Run.
Feb. 14th-17th: DX Competition (c.w.)
Feb. 21st-24th: DX Competition
Mar. 1st-Dec. 31st: WAS Competition
Nov. 16th: CP Qualifying Run.
Mar. 21st-24th: DX Competition ('phone).

During a QSO between W1010, Providence, R.I., and W1OKX, New Haven, Conn., it was discovered that both work for the same railroad (NYNH&H), both are towers, and both live on Pine Street!
• All operating amateurs are invited to report to the SCM on the first of each month, covering station activities for the preceding month. Radio Club News is always open for SCM's for inclusion in these columns. The addresses of all SCMs will be found on page 6.

ATLANTIC DIVISION

EASTERN PENNSYLVANIA — SCM, Jerry Mathis, W3BES — 3KMW is going out strong for traffic and is interested in lining up schedules for 7 or 3.5 Mc. 3SQV says the 'phone stations are covering up his VK9SMC schedules on 144 Mc. 3QSU is on 144 Mc. 'phone. 3QWV has daily traffic schedules with 2FCJ, 3BET reports a lot of G.I. traffic on 14-Mc. 'phone. 3AIV renewed his ORS appointments. A letter from the Reading Radio Club has been received from the former ORS. 3KBN's Field Faro is in 1, Souderstown, Pa., is back home from the Marine Corps and would like to contact any amateur in his vicinity who will give him details on getting into ham radio. 3F1L is out of the Navy and is on 3060 kc. looking for the old gang. 3SSU now is on with 4B5; his first contact was 3AVK, who is ex-5AVK. 3GHD visited the VEIs and stopped by for a session with 1JPE in Hartford. 3SXE also will visit Headquarters and show them his Brand of Field Day transmitter. 3DOM joined the Army Sept. 18th. 3HMO is interested in lining up schedules for 7 or 3.5 Mc. 3QP says he would like to contact any amateur in his vicinity who will give him details on getting into ham radio. 3FI is out of the Navy and is interested in lining up schedules with some of the local boys upon arrival at his new assignment. 3GNU is workin, out on 144 Me. 3SAK (3ABS) is shaping up the 144-Mc. net for the Forestry emergency. 3BKEU is assistant EC for that territory. 3RCV has been handling some 3.5-Mc. traffic from Germany and the countries. OXX has been sweatin, out some 14-Mc. DX. 3QCM has been busy ironing some bugs out of the new 1-kw. rig using p.m. 810s on 3.5, 7, and 28 Mc. The new rig at 3ROG consists of a Macintosh Static Plant and Central Shifter. The receiver is an NC-30-40. 3RQV worked SQEN/CT2 in the Azorees. The Lakeland Radio Club conducted a hidden transmitter hunt on 144 Mc. Sept. 15th. 3GEO is proud possessor of Old Timers Club certificate. New calls are 2BEI, ex-4BEI, 3BAD, 3DQ, 2PH/3SXN, 2PTN/3COT, 2P1N/3BEF, 3KYM/3HTY, 3BDJ/3BDL, 2KQK/3TIZ, 2RYG/3CVG, 2ROG/3BYR, 3ROG/3AZJ, 2AZA/3ZXZ, 2GQT/3GLK, 2HUY/3HYU, 2SAK/3ABS, 3CRC/3PCR, 2JET/3JET, 3DQ/3AQW, 2UM/3TTK, 2FBC/3FBC, 2RLY/3GQX, 2RLQ/3GPM, 2BAQ/3BAQ, 2QRE/3AXU, 2RGG/3JUX, 2W/3W0, 2RSP/3HTJ, 2BRN/3TR, 2RPP/3BET, 2QMD/3QMD, 2EYK/3EYK, 2QCP/3QCP, 2F1P/3AQW, 2F2P/3AQW want traffic schedules. Traffic: W5QCM 13, W2OXX 10. 73, Roy.

FALVA NEWS

W4ZQ — The Delaware Valley Radio Association honored 3BB0 at the August meeting. 3DEA has moved to Hot Springs. 3RBG has finally convinced Ole Z1 that the sky-wire can be horizontal also. 2RYB, ex-3JXJ, says the new rig will cover 10-80 meters with 811 p.p. final. The annual corn roast of the DVFRA was held Aug. 20th at a press of the men. 3SVEY has new assignment. 3GNY has 45 watts on 3.9 Mc. 2QUI is in love with his BC-346Q receiver. 3AWL was heard on 3.9 Mc, repeatedly for the first time since 1939. 3J7P is quite consistent on 28 Mc. 3DNU, an old-timer in New Jersey ORS and AARS nets, comes up with W2ORS/3CHQ is working e.w. on 7 Mc. 3G1L keeps regular schedule with his brother, 1CMO; in Augusta, Maine. 3EDE's 1-kw. rig will emanate from the cellar of Z2Z. 2AQW has nice pair of Lary H antennas. 3QCS is working out on 144 Mc. 3SAK (3ABS) is shaping up the 144-Mc. net for the Forestry emergency. 3BKEU is assistant EC for that territory. 3RCV has been handling some 3.5-Mc. traffic from Germany and the countries. OXX has been sweatin, out some 14-Mc. DX. 3QCM has been busy ironing some bugs out of the new 1-kw. rig using p.m. 810s on 3.5, 7, and 28 Mc. The new rig at 3ROG consists of a Macintosh Static Plant and Central Shifter. The receiver is an NC-30-40. 3RQV worked SQEN/CT2 in the Azorees. The Lakeland Radio Club conducted a hidden transmitter hunt on 144 Mc. Sept. 15th. 3GEO is proud possessor of Old Timers Club certificate. New calls are 2BEI, ex-4BEI, 3BAD, 3DQ, 2PH/3SXN, 2PTN/3COT, 2P1N/3BEF, 3KYM/3HTY, 3BDJ/3BDL, 2KQK/3TIZ, 2RYG/3CVG, 2ROG/3BYR, 3ROG/3AZJ, 2AZA/3ZXZ, 2GQT/3GLK, 2HUY/3HYU, 2SAK/3ABS, 3CRC/3PCR, 2JET/3JET, 3DQ/3AQW, 2UM/3TTK, 2FBC/3FBC, 2RLY/3GQX, 2RLQ/3GPM, 2BAQ/3BAQ, 2QRE/3AXU, 2RGG/3JUX, 2W/3W0, 2RSP/3HTJ, 2BRN/3TR, 2RPP/3BET, 2QMD/3QMD, 2EYK/3EYK, 2QCP/3QCP, 2F1P/3AQW, 2F2P/3AQW want traffic schedules. Traffic: W5QCM 13, W2OXX 10. 73, Roy.
Amphenol dipoles. l:lGM is on 14 Mc. RDA has been heard on 14-Mc, 'phone 50 miles away at midnight working W6s.

KJV worked W6 on 3.5 Mc., changed 807 for 813, dropped a.9-Mc. 'phone in Dwyer, Ind. After 5 years of plugging, they operate mobile in Waukegan and Wadsworth almost every weekend. EJT is on 3.5-Mc. c.w. FTZ is on 4.9 Mc. at present. JVI is contacting by mail local 50-Mc. men besides the screen which gives him 40 watts input. JEU has audio dipole rotary antenna 30 feet high. CYG will be back at the 14-Mc. beam. BKH needs either an operating table or key to strap to his leg; on my last visit to his shack he was busy working with his new 28-Mc. beam. JVI's dad passed Class B test and now is PRE. FWE came out well on 14-Mc 'phone with p.p. 813s. LTN NBV, and LQS are new Altoona amateurs. KWA and his XYL, JSH, now have their transmitter in condition. BWF keeps traffic schedules on 14-Mc. 'phone with 60CA/1J. DANS, hear all is just tearing EN8s on 15.5 and 14 Mc. T5Q is rebuilding, four 3T5s in final, all band c.c., and crystal, and is making many parts himself. FGZ lives at 10833 S. Ave. F, Chicago, and rebuilt 260TI 500 watts input c.w. and 'phone SX receiver. MFY/9, Stop 16, Long Beach, Michigan City, Ind., has been on 14 Mc. and works 2Ls and Vks with good reports. He gets into Chicago better than he expected on 14 Mc., even with booms. He had schedules with BRD. VKF/9, of Minneapolis, now is at 512 Parke Drive, Pierors, Ill. A memorial radio station will honor three members of the Central Illinois Amateur Radio Association (Allied Mission For the Observation of Greek Elections) and will return soon to IU. GWL is going with 50 Mc. converter at Griffin. UIA reports 50 Mc. open on the night of July 27th; on August 8th at 5 p.m. he worked INWE/4 at Orlando, Fla. On Aug. 9th he reports the band open from 8:30 a.m. until noon; he worked INWE/4 and 41UJ in Florida and 8CR1/1 and 1QB in Massachusetts. He heard 9TYQ in Kansas, JEU received his SX-28 back from the factory in Oct., 1956. GWL has new 830s modulated by a pair of 16T5s in Class B feeding a folded dipole rotary antenna 30 feet high. CYC will be back at the fixed location in Kokomo for the winter with 200 watts to a 28- and 14-Mc. beam. BGK needs either an operating table or key to strap to his leg; on my last visit to his shack he was operating while lying on the floor. JLF is starting at Purdue. EQU needs 665 filament transformer before he can put the rig on 3.5 Mc. EGY is modulating the plate of 306c-4s besides the screen which gives him 40 watts input. JEU received a mike from the local gang for his birthday. EHU worked PKCTC and 2 Vks on 7 Mc. WNM is on 28 Mc. FJI has more r.f. in his antenna support than the radiotron 806. QCA needs 906s for his transmitter, JVA has been relicensed as LQQ. MJK maintains 866 filament transformer before he can put the rig on 3.5 Mc. "East" and "West" are new clubs in WNY and WI, respectively. "Central" is being reactivated. Latest call changes included KWL, LOF, LQQ, NDE, OJL, TOJ, TUA, VYU. LOF is now JUQ. LKC. LST runs 170 watts on 14-Mc. c.w. and uses BC342 and 829 final. KEW worked ZL2US on 7 Mc. with 73.

CENSAL DIVISION

ILLINOIS—SCM, David E. Blake, II, W9NUX—SUGR says, "Jim at Great Lakes Early Net—3693 ks. Mondays through Fridays at 7 A.M. Traffic. Tralle and fine reports from SCM, KFU, W9TQV, and KJL. SCM changed his YL to XYL June 8th and is preparing her for FCC exam. He is looking for his old pals on 3.5 and 7 Mc. IHT has been operating 28-Mc. 'phone at ZXR, Tower Radio Club of Chicago, 60-21, Chicago 34, makes scheduled QSOs with WDC for the Chicago area with some line appointment, will have more outside traffic for the net. Additional net sessions are needed, particularly in the Pittsburgh area. Amateurs interested in traffic and net operation are welcome to report into the Western Pennsylvania VHF Club, which meets Monday nights at 8:30 p.m. on 3750 kc. RMs TOJ and KWL are in charge.

MICHIGAN — SCM, Harold C. Bird, WSDEP — 8MCV reports the Detroit Metropolitan Club held a summer meeting on July 21. The final program featured an operating contest, and traffic. 8UTC and 8UMI are operating on 144 Mc. ELCKE operated 28-Mc. phone on new eastside QTH, MYP is on 3.9 Mc. 8YDJ is using 616 oscillator 616 amplifier running 35 watts, and uses an EX25 for receiver. 8JJD is running about 140 watts and uses 6YK receiver. 8ML is looking for his new 8MST, Net 8F8J, president, reports the Motor City Radio Club ran up a big score in the recent Field Day and has some very fine emergency equipment. 8URH would like all ad­joining Clubs get on the Armonk Early Net. 8NGO is working 3.9-Mc. phone. 8EQC is working 14-Mc. phone using VT127A tubes. 8YJC is using Millen exciter for his QSL rig. 80VY has Signal Shifter pair 807's 35 TWs at 500 watts which is modulated with push pull 305. 8R8 is handling the traffic with his Elim, Ill., schedule. 8TRP has schedule with 8VYU at 9 p.m. weekdays at 3590 kc. 8YCT is operating on QMN Net. 8UKV has crystal for QMN Net but now his receiver has gone haywire. 8MQT reports his rig is 8L6 e.c.o. - 6L6 - 807 -·· HK24B -· HK54 push pull lln,,1300 - 1300 µA. 8YL is working 144 Mc. phone, 8VAO has new L129X receiver "for club use". 8WDZ has new rig working on the radio communication for 'the Dawn Patrol' held at country airport on August 26th. Following participated: TBP, UCG, NWU, MKL, MRL, NZU and others, 8MCB has been gleaning three-element beam on 3.9-Mc. "Beavernet" over QMN Net and building oscillator for keying monitor. 8FX is busy with DARA work. 8YNG is working on BR Net. 8DYH and your SCM want you fellows to inform them of any QSL's you have not received. They have a very fine club library to send news of activity. 8STP is doing a swell job on QMN Net. 9YX has 3618- and 3514-ke. crystals for QSY. 8YLA reports the following call changes in U.P.: 18V1 now 8XJQ, 80EQ now 8YU, 9081 now 8CNE, 9V8J now 8YJQ. 8K8V reports his Rig is 28-Mc. 915. His new rotary beam. 8NDE has been heard on QMN Net lately working from Ann Arbor. 8NYH is working on all bands with low power. 8W0 worked in Central States boat regatta with SOR using variable 144-Mc. rigs. The QMN will be split into two nets, one starting at 7 p.m., running at 15 w.p.m. and one from 8 p.m. to 9 p.m. using faster method of operating. Traffic: 8WSAY 169, 8DAQ 144, 8SCW 78, SABB 70, 8XY 42, 8DEP 24, 8WET 28, 8FX 24, 8WWL 10, 8YXE 18, 8YES 17, 8GIX 17, 8TBP 14, 8UFF 11, 8KOS 8, 8STR 6, 8NQT 4, 8MGC 3, 8YNG 3, 8YCT 1. 73. Fal.

OHIO — SCM, William D. Montgomery, WBNPQ — QVL is working VE2, 3, 5, 7, and ZL2 with an 815 on 7 Mc. at 28-Mc. frequency. Every day during August, Cleveland, held a 14-hour QSO with his YL in Lucerne, Switzerland, over RDZ's 14-Mc. 'phone. YPJ is having a very fine emergency equipment. 8TFR is working on all bands with low power. 8owy worked in Central States boat regatta with SOR using variable 144-Mc. rigs. The QMN will be split into two nets, one starting at 7 p.m., running at 15 w.p.m. and one from 8 p.m. to 9 p.m. using faster method of operating. Traffic: 8WSAY 169, 8DAQ 144, 8SCW 78, SABB 70, 8XY 42, 8DEP 24, 8WET 28, 8FX 24, 8WWL 10, 8YXE 18, 8YES 17, 8GIX 17, 8TBP 14, 8UFF 11, 8KOS 8, 8STR 6, 8NQT 4, 8MGC 3, 8YNG 3, 8YCT 1. 73. Fal.

DAKOTA DIVISION

NORTH DAKOTA — SCM, Raymond V. Barnett, W0EVP — WULV has been operating a new station at Minot, for a family hamfest. They keep schedules daily between Minot, Bismarck, and Ashley. On 3.9-Mc. phone and 3.5-Mc. c.w. PV and EVP have aided crystal sockets to front panels for quicker frequency change. GJJ didn't finish the 28-Mc. rig in time to take on his trip to Alabama. GJJ and GLE are interested in emergency work? How many want to handle the higher frequencies above 29,000 kc. Signals are just coming in. Association meeting was held at the Firemen's Hall, 10th Street, Minot. GJJ and GLE have new rotary beams. 8NDE has been heard on QMN Net lately working from An Arbor. 8NYH is working on all bands with low power. 8cw worked in Central States boat regatta with SOR using variable 144-Mc. rigs. The QMN will be split into two nets, one starting at 7 p.m., running at 15 w.p.m. and one from 8 p.m. to 9 p.m. using faster method of operating. Traffic: 8WSAY 169, 8DAQ 144, 8SCW 78, SABB 70, 8XY 42, 8DEP 24, 8WET 28, 8FX 24, 8WWL 10, 8YXE 18, 8YES 17, 8GIX 17, 8TBP 14, 8UFF 11, 8KOS 8, 8STR 6, 8NQT 4, 8MGC 3, 8YNG 3, 8YCT 1, 73. Fal.
Some months ago we published a series of articles on phonograph reproduction and since then we have received a number of requests for a wiring diagram of an amplifier such as we described.

You will find the diagram below. The amplifier was designed to use standard parts available to the amateur. There should be no difficulty in building it for it is a straightforward circuit with no tricky elements. However, it does have very high gain at low frequencies and care must be used to keep hum at a low level. We will give you some pointers on this next month.

It is designed for use with a high-grade, velocity-type pickup having a flat frequency response throughout its range. The bass compensation provides, at maximum setting, about 30 db rise at 50 cycles. This is more than is needed and switch position No. 2 which provides about 20 db gives more faithful reproduction. On many records you may wish this extra bass.

The high frequency filter is designed to give good response with commercial wax pressings of the kind you buy in record stores. At the lowest step, the response is down about 16 db at 5000 cycles. On poor recordings, this relatively low cut-off suppresses high-frequency distortion in the record and holds needle-scratch at a low level. On good records you will prefer wider range. The best switch position can be determined for each record by ear.

If you have access to high-fidelity transcription records you will want a wider frequency range than the filter provides and indeed may decide to eliminate it altogether. However, with commercial wax or plastic records of the type used in the home, the filter shown below gives best results.

William A. Ready

[Diagram of the amplifier circuit]
his aome r.f. in the air. FWD/WL and like duplex on 27 Mc. LA.E, KXU, and LDH worked triplex. Texarkana boys have organized a club with EGY as president. EGY is laboring over a new RME-45 and RWX a new receiver. 73, Phil.

SOUTHERN MONTANA --- SCM, Vernon G. Prilby, W0OMC. The Jackson County Amateur Radio Club held its annual picnic September 15th. FAF finally got an HF rig skywire up and is all set for the winter. JOY came back from Colorado on his new motorcycle. LSX is still looking for a receiver. GRZ has his antenna poles but no wire or insulator and is looking for a high voltage transformer. NUI reports he worked a G6 on 14-Mc. with 35 watts at an 807. RJE enjoyed a vacation and visited IZG at Kemington. He is active on 3.5-, 7-, and 14-Mc. e.w. with 400 watts. He says his whole set up is all automatic because of having the high voltage power supply through 1500-volt transformer, GRJ is on 14.5, 2380 kc. and looking for Montana traffic. 9DCM, ex-SCM of this section, sends an interesting report. He was discharged in February as a medical discharge and is now looking for a new location. But any fine is sales manager for Electro-Voice, Inc. Web is active on 3.9-Mc., 'phone and 80-Mc. o.w. with a 4-250A in the final. In the midst of constructing a super-duper e.c.o. HYS is on 78 MC. in the air. IZG now has a good signal with a pair of 4-250s. KVN and E.K. are looking for radio control on 144 Mc. The SARA Hamfest is in full swing. Traffic: W4G8J 12.

DELTA DIVISION

A REANSAS -- SCM, Marshall Rigs, WJIC -- LCO is on 28 Mc. and is going to town in a big way. CFQ and his XYL, IZK, recently were visitors in town. HPL is on 7 Mc., 150 watts to a pair of 24Gs in final. HOT is in the midst of constructing a super-duper e.c.o. He is on 1500 volts. 813s. BMM and EA were visitors in Ft. Smith recently. ESS, PNL, and PAG. Brooklyn's EC, OHE, vacationed but drills continued with at least ten stations on regularly. On August 19th many messages were originated run delivered. NQQ has ground plane working for a.9-Mc. 'phone. IZG now has a good signal with a pair of 4-250s. KVN and E.K. are looking for radio control on 144 Mc. The SARA Hamfest is in full swing. Traffic: W4G8J 12.
FOR HAMS!

THE LOW-COST, EASY-TO-USE MODULATION MONITOR

Now you can monitor your modulation percentage and speech quality with this new Sylvania Model X-7018 Modulation Meter. Compact and stylish. Economical. Of great assistance in complying with FCC regulations on overmodulation. Helps keep your average percentage up between 60% and 90%. Indicates carrier shift.

THE 1N34 GERMANIUM CRYSTAL DIODE

1. Small size
2. Elimination of heater supplies. Removes possible source of hum.
3. Pigtail construction—can be soldered into place, without use of sockets.

The 1N34 is ideal for use in lightweight and portable equipment, for frequency ranges up to 500 mc. Fields of application include: field, strength meters, detectors, clippers, discriminators, series noise limiters.

THE 1N35 GERMANIUM CRYSTAL DUO-DIODE

A new circuit element consisting of two crystal diodes mounted in a single assembly that facilitates mounting. The diodes are matched for values of forward and back resistance, under conditions typical of those encountered in actual use.

SEE YOUR SYLVANIA DISTRIBUTOR

SYLVANIA ELECTRIC

500 Fifth Avenue, New York 18, N.Y.

MAKERS OF ELECTRONIC DEVICES: RADIO TUBES; CATHODE RAY TUBES; FLUORESCENT LAMPS, FIXTURES, WIRING DEVICES; ELECTRIC LIGHT BULBS
Inexpensive
Dependable
Trouble-free

Supply for every need--to do the job better
and more economically!

Mallory Rectifier or a complete Mallory Power
Mallory Rectifier Catalog and the Rectifier
Distributor for more information. Ask for the

Dry Disc Rectifiers are famous for:

- Filaments to burn out. Those are some of
 the dependable direct current. In addition, Mallory
 Rectifier or a complete Mallory Power Supply
 for every need—to do the job better
 and more economically!

P. R. MALLORY & CO., Inc.
INDIANAPOLIS 6 INDIANA

There are no bearings to lubricate in Mallory
Magnesium-Copper-Sulphide Rectifiers—no
brushes to wear out, no liquids to spill, no
filaments to burn out. Those are some of
the reasons why they provide you with low cost,
dependable direct current. In addition, Mallory
Dry Disc Rectifiers are famous for:

- Durable all-metal construction
- Small size, light weight
- Maximum overload range
- Constant output during rectifier life
- Output unaffected by temperatures

Write to Mallory or your nearest Mallory
Distributor for more information. Ask for the
Mallory Rectifier Catalog and the Rectifier
Application Questionnaire. There is a
Mallory Rectifier or a complete Mallory Power
Supply for every need—to do the job better
and more economically!

P. R. MALLORY & CO., Inc.
INDIANAPOLIS 6 INDIANA

(Continued from page 78)

whistles (not h.t.). ATJ is active on 3.5, 7, and 28 Mc.
using low power pending the usual k.l.w.a.t. What has
California been doing this week? FG received a
second tryout certificate on 28 Mc. and has sixteen cards already. IGO left
New York City for Newburgh. KFC took fatal step recently but
XYL knows the (radio) fate that awaits her. M/ID received
his old call after holding KE2P and 2800; he's on 28 Mc.
JBP now has p.p. 813a on 7 and 14 Mc. FGK disregarded
popular advice and operates with low power on 3.9-Mc.
ophone. Herb has worked eight states and four districts so
far with 15 QSO's. The president of the YLRL finalists got her
w5QGK. IBDK/2 also finally did it. See now between
29QJ and is very active on 3.5, 14, and 28 Mc. with some
nice DX. From Staten Island, GJK, assistant EC, reports
interesting interest, partly due to good local publicity. The
hills prevent quite a problem, however. AMQ on 144 Mc.
occasionally uses GJK's TR-4. CF is raising broad-band
three-element rotary on 28 Mc. ACZ is using 400 watts on
28 Mc. FCS now is in Flushing. P3F and PRF are new hams in
Grant City, QYB, ditto Tompkinsville. NCI is on 28
Mc., after long silent spell. GJK has his 0-10 converter. All
Staten Island hams interested in the Emergency Corps
should contact OFD or GHR. IBP is living at Elmhurst,
awaiting family from Chesterle., S. C.; Nemo will be dis-
charged in Nov. 15th. Q5W worked 2NF1/L in Massachusetts
on 144 Mc. LGK gave up 238 oscillator and now uses
382 and has worked Orange A/a, N. J., on 144 Mc.
31LB/2 operates from flushing. NAZ is district chairwoman
of the YLRL. QVM has his 807 parking on 7 Mc. PBI has
worked 100 stations on 144 Mc. and wants to contact
others who have done same. BGV, released from the AAF
last December, is pushing an 813 on 3.5 and 28 Mc. plus
some 14-Mc. Net. DX. EC reports CTAP operating on
3030 kc. OBU is forming N-S net on 3.5-Mc. c.w. and works
8XFQ on schedule Friday midnight. HXT has urge to re-
build, but old rig works FB. LXXL of R.C.A., transferred to
Riverhead; the East End gang welcomes Marshall. OUG
reports, even though on vacation. QAK is on M.S. True
Knot with 50 watts on 28-Mc. c.w. en route to Iceland.
Traffic: W2BO 36, RQJ 21, DOG 10, KDC 8, BGO 7,
OBU 6, EC 5, JBP 3, IBX 3, UX2J.

NORTHERN NEW JERSEY—SCM. John J. Vitale,
W3TIN—IZC reports that hams in Western Electric,
Keary, are forming a club. FKI, with 100 watts to an 829,
14T Super, is on 144, 50, and 28 Mc. DFV, with 7 watts
6C4s, worked seven states. LKN has a sixtieth-element
rotary beam. NUM is using crystal 815. NJP and FFE are
on 28 Mc. 1BR is using a TR-1, MLF is using a superhet
and 60 watts on 144 Mc. DFV reports that JLB has new 144-Mc.
beam, using 155, NLE, and RPF are on 144-Mc. ODZ is using
a BC-1068A. MDZ and MDP are working mobile. The Red Bank Radio Club meets at Perth
Amboy YMCA the fourth Tuesday of each month. ADP
and JN are on 14 Mc. LAO/3 is running 250 watts on 2512,
3080, and 28 Mc. and is open for traffic to D.C. BZJ is on
3.5 Mc., with 100 watts. BRC knocked off thirty-five states
quick as a flash on 7 Mc. and worked eleven sections during
ORS Party. GYV has 200 watts on 3.5, 7, and 14 Mc. NML
and GHN are on 14 Mc., from Glassboro, Labrador. LTP
and NKD are on 14 Mc. Hank has a new rotary beam for the
kw. LIQ is doing nicely with Collins 13A. FQC and RIG are
buzzing c.w. on 3.5 Mc. ELC is working on multiband
receiver. DOH is on 7 and 3.5 Mc. NLL is looking for a
144-Mc. DX. EBK, BXX, and AE7/2 are on 3.5 Mc. The
UCARA is running a 144-Mc. net nightly at midnight.
MRG is crystal on 144 Mc., also mobile with six-element
portable beam; he is looking for stations on 144.1-2 Mc. for a
net. MDF and NUM have 1083A. GOJ now is OBU 6.
Ex-SWWQ is 2NZH again. The MCARA meets on Thurs­
days, 8 P.M., at Vail Homes Hall. QM3, QOH, QZW, and
QEM are members. HTA is on 28-Mc. phone. LPS is on 7
and 14 Mc., 200 watts to 814. OFB has 100 watts on 14
Mc. to 899, using an s.o.e. IGW has 150 watts to pair 592a
on 3.5, 7, and 14 Mc. HIX has 300-watt phone on 3.9, 14,
and 28 Mc. to pair of V703D, SUAM/2 has 50 watts on 39 Mc.
1OHF, FQF, and SABUS work mobile. NCX is on 14 and
28 Mc. with 300 watts. NOX would like to contact NCI in
1068C. LKN has 75 watts with a three-element fixed beam 35
feet above sea level. Capt. NCY has 125 watts on 3.9 and 14 Mc.
The TCARA meets every Thursday 9 P.M. at Elizabeth
YMCA. KFC and theory classes at 7 Mc. and 7 P.M. CGQ has
traffic by channel for Japan. MJW is on 3.5, 7, 14, 28, and
144 Mc. BZJ maintains schedules with 2LAX/3. NIX has schedules with
(Continued on page 88)
Each day brings a greater number of active amateurs to the ham bands. If you want successful QSO's you need a scientifically designed filter to give the exact degree of selectivity necessary to avoid QRM. The uniformly smooth response curve of the HQ-129-X filter also makes it ideal for Narrow Band FM.
YOU DO NOT HAVE TO ACCEPT SUBSTITUTES

The Cardwell transmitter condenser line covers every amateur need from flea power to California kilowatt. Our dealers are well stocked. A very large stock of all standard catalog items is also maintained at the factory for immediate shipment. If a particular condenser is temporarily sold out, your dealer can get it for you on short notice. So why be satisfied with anything less than a Cardwell Condenser—the “Standard of Comparison” since the days when “short waves” meant 200 meters.

THE ALLEN D. CARDWELL MANUFACTURING CORP.
MAIN OFFICE & FACTORY
97 WHITTING STREET, PLAINVILLE, CONN.

(Continued from page 86)
Amphenol is known and relied upon by amateurs and professionals in every branch of radio and electronics. The encyclopedic array of more than 8,000 different Amphenol components completely serves the entire range of frequencies in use today.

Amphenol engineers steadily are helping to pierce the veil of the unknown in the higher television and FM frequencies. They have been among the pace-setters in achieving the higher standards of mechanical efficiency and electrical correctness upon which progress in these fields depends.

Teamed with top-flight production facilities, Amphenol research has continuously developed new products to keep the Amphenol line of cables, plugs, connectors, fittings, sockets, antennas and plastic components the most complete available from any one source in the world today.

Wherever you find electrons at work, you'll find Amphenol components recognized as the standard of performance.

AMERICAN PHENOLIC CORPORATION, CHICAGO 50, ILLINOIS

In Canada • Amphenol Limited • Toronto

AMPHENOL

COAXIAL CABLES AND CONNECTORS • INDUSTRIAL CONNECTORS, FITTINGS AND CONDUIT • ANTENNAS • RF COMPONENTS • PLASTICS FOR ELECTRONICS
WHEN Bell Telephone scientists designed and Western Electric manufactured the first vacuum tube repeater amplifier back in 1914, they opened a vast new frontier of communications and sound distribution. Up to that time, telephone communications—both by wire and radio—could cover only limited distances and produce relatively low volumes.

For more than 30 years, this team has produced ever better amplifiers for almost every use—long distance wire and radio telephony, radio broadcasting, sound distribution systems, mobile radio, sound motion pictures, disc recording, acoustic instruments and radar.

Equipped with unexcelled tools of research, experience, skill and manufacturing facilities, the Bell Laboratories-Western Electric team will continue to design and build amplifiers outstanding in quality, efficiency and dependable performance.

— QUALITY COUNTS —

BELL TELEPHONE LABORATORIES
World's largest organization devoted exclusively to research and development in all phases of electrical communications.

Western Electric
Manufacturing unit of the Bell System and the nation's largest producer of communications equipment.
1922. The Western Electric 8A was the first commercial broadcast amplifier. Today, 24 years later, some of these 8A's are still in use. This long life speaks volumes for the quality built into them.

1928. This so operated amplifier, one of the first made, reduced maintenance costs, did away with cumbersome batteries and charging equipment. Used to record some of the earliest sound motion pictures.

1934. Western Electric was an early leader in making compression type amplifiers to enable higher speech intensity between noise level and overload point. Used in overseas radio-telephony.

1946. The brand new 124H and J amplifiers for wired music and public address systems are small and light weight, yet deliver 20 watts. They are setting new standards of quality for music reproduction.

1942. This compact and powerful unit for battle announce systems is typical of Western Electric amplifiers designed during the war. It operated dependably when mounted a few feet from the largest guns.

1938. Negative feedback is another of Bell Laboratories' many contributions to amplifier design—now in general use. This amplifier for disc recording was able to supply as much as 50 db of feedback.

1928. The 1126C is the latest design of Western Electric's popular level governing amplifiers. In operation it acts as a program-operated gain control to prevent overmodulation in AM or FM broadcasting. It immediately reduces gain when an instantaneous peak exceeds a predetermined level, slowly restores it when the peak is passed.
salts, to attack the wire. The cement is crack proof, is cured are wound on tough, non-porous ceramic forms, have extreme and hardened at low temperature to prevent the temper from corrosive action, contains no chemically active ingredients, no rapidly, does not deteriorate under any reasonable overload. IRC Fixed and Adjustable Power Wire Wound Resistors have a coarse finish, special cement coating that This rugged coating is dark and rough, dissipates heat and corrosion, IRC Fixed and Adjustable Power Wire Wound Resistors have a coarse finish, special cement coating that prevents the temper from and being baked out of winding and terminals. IRC Fixed and Adjustable Power Wire Wound Resistors are wound on tough, non-porous ceramic forms, have extreme mechanical strength. They are available from 10 to 200 watts.
There are many types in the tube family. Like humans they differ in appearance and performance. Each makes individual demands on its socket. A JOHNSON socket accommodates the 4-250A where provision for adequate heat dissipation is a major requirement. JOHNSON designed the first ceramic socket for miniature tubes where the socket must hold the small pins firmly and still accommodate minor variations without fracturing the envelope.

JOHNSON has achieved unusual prominence through skill in engineering both ceramics and metal to meet these demands. Experienced electronic engineers recognize and provide for tube and circuit requirements. Confidence, cooperation and assistance on the part of tube manufacturers explain the more complete line, and why JOHNSON is the only manufacturer producing some types.

When you need sockets look to JOHNSON. The price is usually no more, frequently less.
why we say -whatever your needs, you are 400-the Drake No. 400 is the perfect Iron for work In small places. Only 9 Inches long, 600·10-the Oralee No. 600·10 is Ideal for those create connections. 60 watt, Yes, Drake irons are all Important connections when rewiring your especially designed for tight corners and dell, other jobs, too, for over 25 years. That's pendable connections with this 100 watt dependability and worth in use on countless radio. Get back on the air fad. Make good de• c:ertain to find a Drake iron that fills the rig. It

88

DRAKE ELECTRIC WORKS, INC.
3656 LINCOLN AVE. CHICAGO 13, ILL

the Drake No. 400 is ideal for those all important connections when rewiring your rig. Get back on the air fad. Make good dependable connections with this 100 watt ¾" tip.

400—the Drake No. 400 is the perfect iron for work in small places. Only 9 inches long, it is especially designed for tight corners and delicate connections. 60 watt, ½" tip.

DRAKE RADIO SOLDERING IRONS

Yes, Drake irons are right for radio. And these sturdy irons have proved their dependability and worth in use on countless other jobs, too, for over 25 years. That's why we say — whatever your needs, you are certain to find a Drake iron that fills the bill exactly!

*Pres. W. A. Kush! is shown at his amateur radio station WY2ZN. With the war over, Walt is again pursuing his favorite hobby.

STATION TESTED*

an added proof of Quality!

(Continued from page 80) Conn., is interested in forming a New England traffic net on 3560 kc. EZR reports that OTM is a new ham in Norway, he also says that his new NC-46 has arrived. BWB reports that his new DMX is working in Worcester, Mass. CEQ has the rank of major in the Reserve Corps. LKP reports a visit from LNI. OTM worked his sixty-fifth station a month after receiving his ticket. His W8KDR is stationed at Lawrenc. CMC has moved from W3MA to Atlantic City. Your SCM recently spent a week in York County and called on LK, BWD, GJX, and DAY. This office is in receipt of reports from some of the gang who were former members of such nets as the Pine Tree Net, Sea Gut Net, Penobscot Bay Net, etc. Why not receive some of these nets and start the old ball rolling in Maine? 73, "GC."

EASTERN MASSACHUSETTS— SCM, Frank L. Baker, Jr., W1ALP—Anyone interested in New England Traffic Net should drop a line to CRM in Connecticut or to our RM, BDU, New ECR, NXY, Watertown; HP, Mattapan; NJX, Mattapan; OAI, Somerville; IIZU, Brookline, ONZ, in Ayer, now is OS and OBS. ILWE renewed his ORS appointment. OAI and OLP are OBS. RFC, JBY’s brother-in-law, in Quincy, is a new 144 Mc. PAB, PBM, OTZ, and OEX, in Greenwood, and ORR, Mattapan, are on 144 Mc. PAR, in Auburndale, is on 14 Mc. CCC, an ex-W8, is on 3.3-Mc. ‘phone in Lowell. PCC, of Needham, operates from 20EC, the Fort Monmouth Radio Club station on all bands. "OHA, in Allston, has a new Meehiser transmitter, LIP has one that he is using at ORT, Watson Lab Amateur Radio Club, in Cambridge. HVR is on 144 Mc. JD0 says his sister, ex-1MTB, now is 1LOA and her OM, ex-6CSU, is 1LOI. HVR is the president of the TeleFlo Radio Club, which consists of commercials of the N. E. Telephone Co. LIO says his daughter Arlene Bory, former secretary of the wallham Amateur Radio Club, had a son recently. JMJ is back in Vineyard Haven. MBG has a rig on 144 and 50 Mc, in his car. HOM has a rig on 144 Mc. in his car, OER, in Hyannis, wants to get a radio club started. Anyone interested should write him at 124 Bayview St. He is on 3.5-Mc. e.w. and 144 Mc. Joe Singer, ex-1MUK, now is 2RQJ and writes from Rego Park. L. L., N. Y. that he would like to work the gang in this section. 9AX, publicity manager of MX, says they have 360 watts on 14-Mc. e.w. and have QSOed VZ9 and 211S, on 7 MHz. Don Danvers, lives in the same house as JMJ, new is the station agent for the B&M R. R. EWE has not been on much lately. NXG is a new ham in Malden. ADP has plans for a rig on 144 Mc. after a long layoff. NBV is going back to sea as a brassepounder. OMT is in Somerville. BBU, is on 144 and 14 Mc. ORR is going to put a rig on 28 Mc.

(Continued on page 90.)
Here's Why Eimac 250T's Lead the Field

TYPICAL CW OPERATION
ONE TUBE, 250TH OR 250TL

<table>
<thead>
<tr>
<th>Plate Voltage</th>
<th>2000</th>
<th>2500</th>
<th>3000</th>
<th>4000</th>
<th>volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Current</td>
<td>350</td>
<td>350</td>
<td>333</td>
<td>315</td>
<td>ma.</td>
</tr>
<tr>
<td>Driving Power</td>
<td>25</td>
<td>30</td>
<td>32</td>
<td>36</td>
<td>watts</td>
</tr>
<tr>
<td>Power Output</td>
<td>460</td>
<td>625</td>
<td>750</td>
<td>1000</td>
<td>watts</td>
</tr>
<tr>
<td>Power Input</td>
<td>710</td>
<td>875</td>
<td>1000</td>
<td>1250</td>
<td>watts</td>
</tr>
</tbody>
</table>

TYPICAL PHONE OPERATION
ONE TUBE, 250TH OR 250TL

<table>
<thead>
<tr>
<th>Plate Voltage</th>
<th>2000</th>
<th>2500</th>
<th>3000</th>
<th>3200</th>
<th>volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Current</td>
<td>200</td>
<td>150</td>
<td>150</td>
<td>140</td>
<td>ma.</td>
</tr>
<tr>
<td>Grid Voltage</td>
<td>0</td>
<td>-30</td>
<td>-30</td>
<td>-50</td>
<td>volts</td>
</tr>
<tr>
<td>Driving Power</td>
<td>50</td>
<td>24</td>
<td>34</td>
<td>14</td>
<td>watts</td>
</tr>
<tr>
<td>Plate-to-Plate Load</td>
<td>4300</td>
<td>6000</td>
<td>6000</td>
<td>10,000</td>
<td>12,500 ohms</td>
</tr>
<tr>
<td>Power Output</td>
<td>850</td>
<td>650</td>
<td>900</td>
<td>650</td>
<td>1150 watts</td>
</tr>
</tbody>
</table>

CLASS-B MODULATOR—TWO TUBES, 250THs

<table>
<thead>
<tr>
<th>Plate Voltage</th>
<th>1500</th>
<th>2000</th>
<th>2000</th>
<th>2500</th>
<th>3000</th>
<th>volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero—Sig. Plate Current</td>
<td>200</td>
<td>150</td>
<td>150</td>
<td>140</td>
<td>100</td>
<td>ma.</td>
</tr>
<tr>
<td>Max.—Sig. Plate Current</td>
<td>750</td>
<td>550</td>
<td>700</td>
<td>450</td>
<td>560</td>
<td>ma.</td>
</tr>
<tr>
<td>Grid Voltage</td>
<td>-40</td>
<td>-30</td>
<td>-30</td>
<td>-140</td>
<td>-175</td>
<td>volts</td>
</tr>
<tr>
<td>Driving Power</td>
<td>50</td>
<td>17</td>
<td>32</td>
<td>9</td>
<td>30</td>
<td>watts</td>
</tr>
<tr>
<td>Plate-to-Plate Load</td>
<td>4300</td>
<td>6000</td>
<td>6000</td>
<td>10,000</td>
<td>12,500 ohms</td>
<td></td>
</tr>
<tr>
<td>Power Output</td>
<td>850</td>
<td>650</td>
<td>900</td>
<td>650</td>
<td>1150 watts</td>
<td></td>
</tr>
</tbody>
</table>

CLASS-B MODULATOR—TWO TUBES, 250TLs

<table>
<thead>
<tr>
<th>Plate Voltage</th>
<th>1500</th>
<th>2000</th>
<th>2000</th>
<th>2500</th>
<th>3000</th>
<th>volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero—Sig. Plate Current</td>
<td>200</td>
<td>150</td>
<td>150</td>
<td>140</td>
<td>100</td>
<td>ma.</td>
</tr>
<tr>
<td>Max.—Sig. Plate Current</td>
<td>750</td>
<td>550</td>
<td>700</td>
<td>450</td>
<td>560</td>
<td>ma.</td>
</tr>
<tr>
<td>Grid Voltage</td>
<td>-40</td>
<td>-30</td>
<td>-30</td>
<td>-140</td>
<td>-175</td>
<td>volts</td>
</tr>
<tr>
<td>Driving Power</td>
<td>50</td>
<td>17</td>
<td>32</td>
<td>9</td>
<td>30</td>
<td>watts</td>
</tr>
<tr>
<td>Plate-to-Plate Load</td>
<td>4300</td>
<td>6000</td>
<td>6000</td>
<td>10,000</td>
<td>12,500 ohms</td>
<td></td>
</tr>
<tr>
<td>Power Output</td>
<td>850</td>
<td>650</td>
<td>900</td>
<td>650</td>
<td>1150 watts</td>
<td></td>
</tr>
</tbody>
</table>

OVER A DECADE OF PROVEN PERFORMANCE

Today, the Eimac 250T is as far ahead of the times as was its predecessor over a decade ago. The ratings shown above are conservative ones, but they plainly demonstrate why the Eimac 250T is an outstanding triode for amateur or industrial use.

Plus performance of the Eimac 250T in either high (TH) or low (TL) mu versions is graphically illustrated here.

Get further information now on this 250T—one of many Eimac tubes for champions. **Follow the Leaders to**

EIMAC 250T TRIODE

EITEL-McCULLOUGH, INC., 1315M San Mateo Avenue, San Bruno, California

Export Agents: Frazar and Hansen, 301 Clay Street, San Francisco 11, California

89
Get back on the AIR with... SHURE STRATOLINER MICROPHONE

This expensive-looking, low-cost Microphone reproduces your voice clearly and fully. High output level with sharp speech response. Designed especially for Communications, Recording and Public Address. Has all the features of more expensive Microphones such as swivel-head, built-in cable connector. Genuine Bimorph Crystal. Model 707A.

List Price $21.35

SHURE 707A CRYSTAL MICROPHONE

A quality Microphone at low-cost—has long been a favorite among HAMS for dependable service and clear speech reproduction. High output. Attractive modern die-cast case in Iridescent Gray finish with highly-polished plating on front grille. Model 707A.

List Price $13.50

Available at Shure Distributors everywhere

SHURE BROTHERS, Inc.

Microphones and Acoustic Devices
225 W. Huron St., Chicago 10, Illinois
Cable Address: SHUREMICO

(Continued from page 88) layoff. NKN inquires about section net. BV finally got 3.9-Mc. 'phone rig going and is battling the kw. boys on 3949 kc. ODS is on with Millen exciter. running temporarily on low voltage supply. The Pittsfield Radio Club now has its own call—OSA, which acts as control for 144-Mc. emergency net drills which are held Mondays at 7 to 8 on meeting nights and 9 to 11 on alternate nights. This net is under the direction of EJLUD. The club has also ordered a Mc. Silver. 3.9-Mc. 'phone c.w. rig. JAH is working on new full-wave antenna to give the peanut whittle a break. Please time your reports to reach here right after the first of each month. Traffic: W1BVR 29, EOB 17, JAH 11, FOI 8, BTV 7, 73. New.

New Hampshire — SCM, John H. Stoughton, W1AXL — Reports are rolling in. Keep up the good work. We have yet to hear from you fellows in the northern part of the State. We have a newcomer to the New Hampshire section, Edwin Hill, 4HMS/1, a staff transmitter engineer at WKNE in Keene. He is working 'phone and c.w. on all bands. Welcome to our section. Ed. Oh? 11 active on 3.9-Mc. 'phone in Charlestown. NQH's XYL will be on the air soon. In the meantime, Bert is keeping her new RME-45 and 150-B in good shape. JNC is now on the road traveling for BFT. IOC expects to be back on the air this fall. CMF was a recent visitor at Bow and Manchester while home on a short vacation. He is in Florida. JBG, of Manchester, now is 3KG1, of Washington, D.C. He is on 3.5, 7, and 14 Mc. With 100 watts and is looking for his New Hampshire friends on the air. OST, of Tilton, has a new 150-B and is going to town, having made over ninety contacts in three weeks. APK, our old friend, has his emergency net started. He is setting the New Hampshire section up by counties. We expect to have simulated emergency communication drills in the near future. Drop a line to Basil and ask for an application blank and join the AEC. 30. Old #1.

Rhode Island — SCM, Clayton C. Gordon, W1HRC — QR says he had a swell time in the ORS Party and got a total score of 1425. He visited Tropical Radio at Bingham to see JOB/ WBF and to see the sight. JBG returned from the visit the following Sunday. He is the Rhode Island station in a New England net being formed by the Nutmeg Net. Which brings up the question of the forming of a Rhode Island traffic net. Get in touch with either QR or myself if interested in joining such a net, please. ODJ is a new ham in East Providence with 6L6 for a starter. OUB will be at Brown by the time this comes out. He is an old friend of mine who got his start through my humble efforts.

Traffic: W1QR 8.

Vermont — SCM, Gerald W. Benedict, W1NDL — AVP has beam on 14 Mc. ND1 visited EKU and MMU. MMU is building nice shack, and has two poles over 70 feet. MMU has four-element beam on 28-Mc. pole. EGQ and JBR visited MCQ at Stowe. MCQ is building 28-Mc. beam. MMU, MMV, and MLJ have new final. Traffic: W1BVR 26, EOB 17, JAH 11, FOI 8, ODU 5. 73.

New England net being formed by the Nutmeg Net. Which brings up the question of the forming of a Rhode Island traffic net. Get in touch with either QR or myself if interested in joining such a net, please. ODJ is a new ham in East Providence with 6L6 for a starter. OUB will be at Brown by the time this comes out. He is an old friend of mine who got his start through my humble efforts.

Traffic: W1QR 8.

Vermont — SCM, Gerald W. Benedict, W1NDL — AVP has beam on 14 Mc. ND1 visited EKU and MMU. MMU is building nice shack, and has two poles over 70 feet. MMU has four-element beam on 28-Mc. pole. EGQ and JBR visited MCQ at Stowe. MCQ is building 28-Mc. beam. MMU, MMV, and MLJ have new final under construction. Your SCM regrets that he has not been able to visit more Vermont hams but is always glad to have you drop in. 73. Jerry.

New England net being formed by the Nutmeg Net. Which brings up the question of the forming of a Rhode Island traffic net. Get in touch with either QR or myself if interested in joining such a net, please. ODJ is a new ham in East Providence with 6L6 for a starter. OUB will be at Brown by the time this comes out. He is an old friend of mine who got his start through my humble efforts.

Traffic: W1QR 8.

Vermont — SCM, Gerald W. Benedict, W1NDL — AVP has beam on 14 Mc. ND1 visited EKU and MMU. MMU is building nice shack, and has two poles over 70 feet. MMU has four-element beam on 28-Mc. pole. EGQ and JBR visited MCQ at Stowe. MCQ is building 28-Mc. beam. MMU, MMV, and MLJ have new final under construction. Your SCM regrets that he has not been able to visit more Vermont hams but is always glad to have you drop in. 73. Jerry.

New England net being formed by the Nutmeg Net. Which brings up the question of the forming of a Rhode Island traffic net. Get in touch with either QR or myself if interested in joining such a net, please. ODJ is a new ham in East Providence with 6L6 for a starter. OUB will be at Brown by the time this comes out. He is an old friend of mine who got his start through my humble efforts.

Traffic: W1QR 8.

Vermont — SCM, Gerald W. Benedict, W1NDL — AVP has beam on 14 Mc. ND1 visited EKU and MMU. MMU is building nice shack, and has two poles over 70 feet. MMU has four-element beam on 28-Mc. pole. EGQ and JBR visited MCQ at Stowe. MCQ is building 28-Mc. beam. MMU, MMV, and MLJ have new final under construction. Your SCM regrets that he has not been able to visit more Vermont hams but is always glad to have you drop in. 73. Jerry.

New England net being formed by the Nutmeg Net. Which brings up the question of the forming of a Rhode Island traffic net. Get in touch with either QR or myself if interested in joining such a net, please. ODJ is a new ham in East Providence with 6L6 for a starter. OUB will be at Brown by the time this comes out. He is an old friend of mine who got his start through my humble efforts.

Traffic: W1QR 8.

Vermont — SCM, Gerald W. Benedict, W1NDL — AVP has beam on 14 Mc. ND1 visited EKU and MMU. MMU is building nice shack, and has two poles over 70 feet. MMU has four-element beam on 28-Mc. pole. EGQ and JBR visited MCQ at Stowe. MCQ is building 28-Mc. beam. MMU, MMV, and MLJ have new final under construction. Your SCM regrets that he has not been able to visit more Vermont hams but is always glad to have you drop in. 73. Jerry.

New England net being formed by the Nutmeg Net. Which brings up the question of the forming of a Rhode Island traffic net. Get in touch with either QR or myself if interested in joining such a net, please. ODJ is a new ham in East Providence with 6L6 for a starter. OUB will be at Brown by the time this comes out. He is an old friend of mine who got his start through my humble efforts.

Traffic: W1QR 8.
THE NEW Gates
CB-10 TRANSCRIPTION
★ TURNTABLE...

...affords a Perfected Playback Technique

Because it's new — in engineering, in simplicity and in ease of operation, the CB-10 excels all others in playback technique — it need not be confined to the control room.

SELF-CONTAINED PRE-AMPLIFICATION

VERTICAL-LATERAL REPRODUCER

for Modern Professional Operation
Meeting Present-Day Demands of "Tight"
Schedules and Split-Second Timing...

Embodying integral gain control, self-contained, 3-stage preamplification, power supply, mixer attenuator and filter control, right on the Control Panel, the GATES CB-10 is a master Turntable — the answer to the demands of the modern broadcasting station. Affording five different frequency response curves selected by the filter switch, a high level performing Reproducer Unit, and compactness, the CB-10 will bring your station up-to-the-minute in efficiency and studio technique. The chassis also is superior throughout in construction and materials, and the whole unit adds distinction in appearance as well as in performance, to any station.

NEW YORK OFFICE:
9th Floor
40 Exchange Place

SOLD IN CANADA by:
Canadian Marconi Co., Ltd.
Montreal

CONDENSED SPECIFICATIONS

SPEED ACCURACY — 4% over extended periods of time. Within one revolution accuracy is better than .2%.

TURNTABLE DIAMETER — 17 inches.

OVERALL DIMENSIONS — 22 in. wide, by 26 in. deep by approximately 36 in. high. Packed for export, 25 cu. ft.

POWER REQUIREMENTS — Approximately 150 watts from 115 volts, 60 cycles source. Other voltages and frequencies available.

COLOR and FINISH — Cabinet is flat two-tone gray enamel. Turntable assembly finished in gray wrinkle enamel with green felt topping on platter.

MOTOR SPECIFICATIONS — 1/75 HP. Continuous duty type. Very quiet and stable in operation.

WRITE FOR COMPLETE SPECIFICATIONS
Combination Transmitter and Exciter Permanently Protects Your Investment

The 75 GA is also the exciter unit for the 500 watt transmitter pictured at the right. This means that your investment in a Temco 75 GA is good forever and represents a substantial savings when stepping up to 500 watts. For further details see previous ads in this publication.

TEMCO 75 GA Telephone & Telegraph
75/100 Watt Output TRANSMITTER

It's a rare pleasure to operate the TEMCO 75 GA for it is engineered and designed to combine into one cabinet all the conveniences and high performance qualities desired by the most discriminating amateur. When you snap on the switch and go on the air here's what you have at your fingertips - 75 Watts output on Phone — 100 Watts output on CW. Multi-frequency VFO with crystal-like stability. 5 band operation covering 3.5-7-14-21-28 megacycles. Crystal control with front of panel selection for two crystals.

Unusual Operating Simplicity

One dial operation when on crystal frequency control. All controls adjacent meters. Switch controlled built-in antenna relay for Standby-Transmit. Metering of grid and plate currents of the final amplifier and plate current of modulator. Front panel connection for high impedance crystal or dynamic microphone. Compact construction without sacrificing accessibility for easy servicing. Selected components rated in excess of requirements to afford long trouble-free performance. Craftsmanship of the highest order which has been Temco's distinguishing mark throughout the world.
TEMCO 500 GA
500 Watt Output
Telephone & Telegraph
TRANSMITTER

Rated Output: 500 watts on both radio telephone and telegraph.

Frequency Range: 3.5—7—14—21—28 m.c. amateur bands (other harmonically related bands within 2 to 30 m.c. can be supplied on special order).

Type of Modulation: High Level Class B.

Modulation Capabilities: 100%.

Input Level: From high impedance crystal or dynamic microphone, level of approximately —60 db.

Audio Frequency Response: ±2 db from 100 to 6000 c.p.s.

Noise Level: —50 db below 100% modulation.

Audio Distortion: Less than 5% at 90% modulation.

Custom Built Quality Throughout

Frequency Control: Variable frequency oscillator or crystal control with positions for two crystals.

Front of Panel Control: VFO dial—IPA tuning dial—PA grid selector switch—PA grid tuning—PA plate tuning—PA variable link control—VFO or crystal selector switch—Exciter band switch—Transmit-standby switch—Phone CW switch—Line Switch—Overload relay reset button.

Metering: IPA grid—IPA plate—PA plate—PA grid—Modulator plate current—Class A driver plate current.

Tube Complement: In addition to the tubes contained in the 75 GA exciter, the tube line-up of the 500 GA is as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-100TH</td>
<td>Push-pull final amplifier</td>
</tr>
<tr>
<td>2-100TH</td>
<td>Class B Modulator</td>
</tr>
<tr>
<td>2-872A</td>
<td>Final amplifier and modulator power supply</td>
</tr>
<tr>
<td>1-5U4</td>
<td>Final amplifier and modulator bias supply</td>
</tr>
</tbody>
</table>

Handsome Enough for the Library

Power Consumption: Approximately 2 KW.

Power Factor: Approximately 90%.

Power Source: 110-115V, 50/60 cycles AC.

Measurements: Approximately 55” high x 31” wide x 24” deep.

Ask Your Dealer for a Demonstration

Everything at your fingertips and everything in one cabinet.
VAPLEY CRYSTALS

The Answer to Crystal Control on the New 2, 6 and 11 METER BANDS

Ready for IMMEDIATE DELIVERY and furnished in your choice of frequency ranges:

<table>
<thead>
<tr>
<th>Frequency (kHz)</th>
<th>Amateur Net Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>140000</td>
</tr>
<tr>
<td>10</td>
<td>280000</td>
</tr>
<tr>
<td>6</td>
<td>65200</td>
</tr>
<tr>
<td>6</td>
<td>120000</td>
</tr>
<tr>
<td>2</td>
<td>230000</td>
</tr>
<tr>
<td>11</td>
<td>6765 75</td>
</tr>
<tr>
<td>11</td>
<td>13925 5</td>
</tr>
<tr>
<td>11</td>
<td>27185</td>
</tr>
<tr>
<td>12</td>
<td>9000</td>
</tr>
<tr>
<td>2</td>
<td>12000</td>
</tr>
<tr>
<td>1</td>
<td>24000</td>
</tr>
</tbody>
</table>

Write for prices on spot frequency "nets". Specific frequency prices on request. Contact Your Local Dealer.

VAPLEY CRYSTAL CORP.
Craftsmanship In Crystals Since 1931
HOLLISTON, MASSACHUSETTS

(Continued from page 69)
possible. Let's combine our talents and interests into making a good Idaho section. Suggestions for a weekly 3.5-4.0 Idaho Night will be welcome. All current OIS, OBS, EC, etc., please advise of your continued interest for renewal of appointment. Those interested in new appointments should write at once. JMM is looking for traffic and desires net work. DOE is 28-Mc. beam-tuning. GYN is going to school this fall. Father, mother, and daughter are licensed as QGQ, GUQ, and JFQ, respectively. BCAU, respectively. BCAU bought a 1200E. CQY, using his BC5A5, was worked by III/I in 3.9-Mc. 'phone, IWI, on 2115 and 3743 kc, and on 3.9-Mc. 'phone, wishes to work Idaho stations. 73, Alan.

OREGON — Acting SCM, Cliff Thier. W7BRE — Pendleton is getting ready for annual celebration of the Round-Up and that cramps activities. Three of the PARC, MQ, KR, and FLS, now have the SCR transmitters and as soon as the Round-Up is over there should be plenty of QRM on all bands. A going-away party was held at JQ's house recently for EQL, the manager of the local broadcasting station. For the next year and a half Uncle Sam will be his employer. Yes, he was drafted. The only visitor at BEE's house from outside was IMM, who used to live at Durkee but now is in La Grande. He has a large locomotive over the Blue Mountains from there to here on the Union Pacific. BEE will be off the air for a while for two reasons. One is that annual leave is due and a trip up the Coast from Crescent City, Calif, all the way to Vancouver, Canada, is in prospect. This may drum up a little news. The other reason is that a very severe lighting storm played hob, burned out a transformer in the receiver, did the same to the antenna relay and a good hot water heater. Worst of all, ruined the 220- to 110-volt transformer supplying juice to the transmitter. It also kicked out all the fuses in the house, burned the phone line in two and split out one of the poles a short distance away. Now for a more pleasant subject. It is time for the Oregon gang to think about electing a regular SCM. I have tried to carry on when GNJ was unable to do so because of illness. His term expires in November, so By at it, gang. Very 73, Chet.

WASHINGTON — SCM, O. U. Tice. W7FWD — D dy, A. J. Wade, 7178 — 16th N., Seattle, is EC and OBS. CZY is Washington OES No. 1. Colfax: ERO and DRD are working DX on 14-Mc. c.w. ELH was on 7-Mc. c.w. until h.p. plate transformer burned up. CEN keeps 3.5-Mc. c.w., schedule with ELH in Moscow, DP keeps early-a.m. schedule with ELH on 3.9-Mc. 'phone and is changing from 14 to 7 Mc. for a trial. DTJ, CNS, DP, and FDD held a three-hour round table with ELH who was in the mountain town working portable-to-portable with OQF down in Central Idaho. FDD is on 3.9 Mc. Everett: CZY has new HT-9 that is being put out without coils. IQQ reports the organization of a club with JUI, pres.; BLK, vice-pres.; IQQ, secretary. A three-day 3.5-Mc. QRM was active: JTT, BWC, 1GAE/7, DXQ, JIQ, IYE, IXT, and AYO. SGQW/7 has new HQ-129. HQY, HEG, BWC, and W0B keep help keep KCJ's transmitters on the air while DXQ, 1GAE/7, and 6KIO are using this receiver and are active on 144 Mc. JIJ reports DET on 14-Mc. c.w. with a kw. and contacted the Dream Boat, through 7NU. L1N/KL7 is on 23 Mc. looking for someone in Seattle to handle traffic. FWL is on 28 Mc. JII is on 14 and 28 Mc. with an 8k beam. GWA is on 3.9, 14, and 28 Mc. JN1 has offered his 3.5- and 7-Mc. rig for emergency use. APS is on 3.5 Mc. RT is on 144 Mc. with HKBQG; he is also on 7 Mc. and worked all districts. KEB, K1T, XES, E2L, VE8, in both Yukon and Northwest Territories, is offering for RM and ETM in Seattle Area U.S. Naval Reserve Division, JWC, XYL of IGM, has an HQ-129X. EKQ is on 3.5-Mc. 'phone and c.w. HIQ, on 3.5, 7, 14, 28, and 50 Mc. with 600 watts. marine mobile with 15 watts on 28 and 144 Mc. and a walkie-talkie on 144 Mc., is working BDX at 3500 ft. elevation in Olympics from both on 28 Mc. and worked on 144 Mc., K1U, EUI, EQO, and JHI, on 144 Mc., and 7 NU. K1T is on 3.9-Mc. three-way with AXS, marine mobile: JIQ, car mobile; and EQQ, fixed. Tacoma: The Tacoma Radio Club, with Director BG presiding, entertained F. E. Handy. ARRL Communications Manager, EVW holds a schedule with his box. KAS, RAIKE, every morning. McCork, K9KQ, offered his 3.5-Mc. 'phone, TPN, on 28 and 3.5 Mc. 5EI/7, 7JPT, and DSR are on from the McChord shack at Spokane. Your SCM feels that a younger man should assume the responsibilities of this office, and has appointed EAD as Acting SCM for the
One of the Most Versatile "HAM" Transmitters Yet Offered

Supreme

Built for the Present - - - and the Future

Price $450.00
Complete with Tubes and Coils

MODEL AF-100

6-BAND AMATEUR TRANSMITTER

100 WATTS — AM, FM, CW AND ICW

Write for detailed information and Catalog

SUPREME TRANSMITTER CORPORATION
260 WEST ST. NEW YORK 3, N. Y.
BRUSH UP ON YOUR TECHNICAL KNOWLEDGE!

with Ghirard's COMPLETE COURSE IN BASIC RADIO ELECTRONICS

(Radio Physics Course)

Including Basic Electricity.

Knowing exactly what you're doing—every step of the way—every time you tackle a radio problem. Prepare for FCC examinations so that nothing can "stump" you. Get the background that is necessary for understanding the helpful hints of many manuals such as the ARRl Handbook! And learn in a way that will prepare you for a successful future in ANY branch of Radio-Engineering—for only $35 complete!

36 COURSES IN ONE
Ghirard's 972-page RADIO PHYSICS COURSE book starts at the very beginning—over 300 pages devoted to Basic Electron alone, ideal for newcomers. Equally good for those who want to "brush up" on forgotten fundamentals. Nothing condensed. Every Radio- Electronic subject covered fully—in a manner you cannot fail to understand. 208 illustrations and 856 self-check review questions make training easy—at home or in the shop. Read it for 5 days on our Money-Back Guarantee offer!

REPAIR RADIOS THIS FAST, EASY WAY!

No Tedium, Testing!

Every radio has its weak spots that cause trouble first! Ghirard's RADIO TROUBLESHOOTER'S HANDBOOK lists these according to make and model on practically every popular radio in use today—over 4000 of them. Tells exactly what is likely to be the trouble—exactly how to repair it. Enables 4 out of 5 jobs to be handled in ½ the usual time—without costly test equipment—without highly specialized experience. Over 300 additional pages contain tube charts, service graphs and data compilations, 4½ footprint maps, etc., that will help you repair any radio ever made easier and TWICE AS FAST. Only $5.50 complete, 5-Day Money-Back Guarantee!

SPECIAL OFFER!
Let The Handbook save time on common jobs. Let Modern Radio Servicing, etc., train you for professional work. Both only $9.50. See coupon.

LEARN TO SERVICE ALL TYPES OF EQUIPMENT...Professionally

Ghirard's MODERN RADIO SERVICING is a complete training course in Radio- Electronic servicing by the most modern methods, ideal for amateurs who want to know professional procedure. Just the thing for fitting yourself for a profitable future in ANY branch of Radio-Engineering. Nothing omitted. Just the thing for fitting yourself for a profitable future in ANY branch of Radio-Engineering. Nothing omitted. Nothing condensed. Every Radio- Electronic subject covered fully—in a manner you cannot fail to understand. 208 illustrations and 856 self-check review questions make training easy—at home or in the shop. Read it for 5 days on our Money-Back Guarantee offer!

PACIFIC DIVISION

Hawaii—Acting SCM, John F. Sousa, Jr., KH6EL—With the change from K6 to KH6 the gang has been getting acquainted all over again. The C.W. gang is riled at KI6F for not writing to them. The one thing that K6 enjoys about the "H" thrown in, KH616OT is doing a spell down at Canton for CAA. QRT is planning more power with a pair of 7400s to "V" beam after wearing down his key to pair of 807s in main. PLZ is giving DX a hot time on 14-Mc, c.w. with 800 watts to pair of 807s feeding a 200-mile distance to K6M, using battery power. 6GSB now is 7U6; 6RPU is 7JXH; Kotovsky is 7JWV; 7JY is constructing a full-gallon (kw) for 14 Mc. 6U0 now is 7VO; 7JN has an RF doublet to 30-Mc. c.w. 7JS is on 14 Mc. 7VW has built a 400-watt condenser to the Johnson Q beam entirely of 300-ohm Amphenol, elements, matching sections, and feed line. 7RQF acquired a pole pig. 6SGC is 70C; 6PA is 7PA; 7LG is on 3880 kc. consistently. 7PVW is converting an ARRl-12 807 tube and 7TG, of Glendale, Calif., and 6D6E and 6AYL of San Francisco, Calif., visited the Reno gang recently. 6BEY, Southwestern Division Director, visited your SCM recently. 7GCX has called on 3 phones and new DX on 14 Mc. c.w., 8U4, UB, and EB, and on "phone, C, VS. 73.

Santa Clara Valley—SCM, Roy E. Pinkham, W6BPT—Acting SCM, Geoffrey Almy. W6BTP, PAM: QLP. The SCCARA held a dinner in honor of P. E. Handy, C.M. of ARRl. Among the guests were TBK, ex-PCJ, fixed-vice-president of ARRl; RBQ, Bill Ladley; TBK, Horace Greer, both of whom are candidates as Pacific Division Director. The SCCARA is arranging a display of amateur gear for the Santa Clara County Fair. OKQ has a 40-foot windcharge tower on which to mount his 14- and 28-Mc. beam. 20FK, 6 now is 6WMN. CFK returned from vacation and is about getting on 14 Mc. LAX is using Q matched antenna on 14 Mc. LCP has a 40-foot power to work 14 Mc. DX. KG tried his luck on 14 Mc. 9F6A/7, HC, and LCF have secured telephone poles for their antennas. It should be easy time around San Jose with pole-raising parties. QLP has a DB-20 ahead of his RME-45. TKW worked 2007 on 28 Mc. VCF would like to work 28 Mc. He is working hard trying to raise DX on 14 Mc. JSF and HBB are busy working 140 Mc. 7IKU/6 has been heard working European DX. UGF now is in business for himself. He is destined to become the juck box king of the valley. OMT and his XYL, PMC, are busy on 28 Mc. KH6, and HB, and on "phone, C, VS. 73.

Continued on page 94)

(Continued from page 94)
The job of a vacuum tube designer would really make you tear your hair. Drawing mainly on long experience — only the bare principles of tube design are found in books — the design engineer must co-ordinate the innumerable interlocking characteristics you specify.

Using standard parts when possible — hand-fabricating others, he assembles and processes engineering samples. Some characteristics may fall outside limits. Then begins a seesaw of compromises. Screen diameter is lowered; input capacitance rises. Plate current is raised; amplification factor drops. Back and forth teeters, the design. Interlocking electrical, mechanical, physiochemical, ceramic, and metallurgical characteristics must be reconciled one after another. Finally the harassed designer submits apparently satisfactory tubes for application tests.

You guessed it. Changes are required. The balancing act begins anew. Innumerable variables are again co-ordinated. Science and creative craftsmanship triumph; everyone is satisfied. Production takes over. Sure, it’s a swell tube. But could this lead be changed, this spacer eliminated, this material substituted? Well, you see what we mean.

Through the years, Hytron design engineers have sweated for you. They have originated: GT, subminiature, vhf, instant-heating tubes. They have improved standard types including: OC3, OD3, 1616. Their experience will continue to craft for you the best in tubes.
AMATEURS! Leo W0GFQ Offers Immediate Delivery
On His New, Exclusive, Low Priced
WRL GLOBE TROTTER TRANSMITTER KIT

Users Acclaim Its Superior Performance!

Actual field reports of amateurs using the Globe Trotter testify to its excellent performance. It’s the hottest ham equipment on the market today. The WRL Globe Trotter is capable of 40 watts input on C.W. and 25 watts input on phone on all bands from 1500 KC through 28 Megacycles. Power output using a suitable modulator: three hands, all preset; 10, 20, and 80 meters; two power supplies, one for 807 final and modulator tubes, one for speech amplifier and oscillator stage.

40 WATT INPUT
Cat. No. 70-300 $69.95
(complete including parts, chassis, panel, streamlined cabinet, ears, tubes, coils, and meter.
No. 70-312 same as above, wired by our engineers $79.50

For Fast Delivery order your receiver now from World Radio.
Easy Payment Plan Available.
RME 45 $195.70 RME 84 $288.70
Hammarlund HQ-129X $217.25 Hammarlund SP-400-SX $323.25
Hallicrafters S-38 $39.50

TELESCOPING ANTENNA
Perfect for 10 meter beams. Telescopes Up to 12 feet. Cat. No. 0-255 $3.95

FREE! OUR LATEST FLYER
Packed with real boys in radio, electronics, and general merchandise.

Giant Radio Map
(Size 9½ ft. x 4½ ft.) $1.00
Handy Tube-Base Calculator $0.25
Tube and Circuit Book $0.10

*Prices quoted are domestic. Write for export prices.

WORLD WAREHOUSE LABORATORIES
Formerly Wholesale Radio Laboratories
Address Dept. QST-11 Council Bluffs, Iowa

(Continued from page 96)

where: he has p.p. 1007 Hs with 700 watton 14- and 3.9-Mc., 'phone. AHW, in San Leandro, has been working L5X, in Waterville, with an HY75 with 10 watts on 144 Mc. J.L., in Watsonville, with an HY75 with 900 watts with a 3 meter wave, B6,730 with 10 watt stations. R9 signals both ways. WN1 received his new call; he was SJTC. LMZ is working good DX with his 807 rig. TTP is getting to be a good fisherman. DUB is active on 14-Mc. 'phone, BUT and PB are having a contest on DX. HAVE YOU JOINED THE OAH? if not, subscribe to the club magazine. The OAH is busy these days in his new business as design-construction-modification and repair of commercial-amateur and airborne communication equipment. Let's get those reports in the next month. Trafic: WEBT 26, EAE 13, CRP 11, TI 4, UXZ 7, 28, "TT".

SAN FRANCISCO — SCM, Samuel C. Van Liew, W6CV — "Phone Juniper 7-6457. Asst. SCM, Joseph H. Horvath, Can. Di, PM, RBO, OQ, 5XX, OSS: RQXV, WB, OBS: FVX, KHN, DJ, ORS: RF, BIP, ATY, RBQ, CVP, OPS: OZC, NYS, Mike Jackowski, ex-2GOJ, now is a resident of San Francisco with new call of 6WF. Mike has an SX-15 and a new SX-28A. Ex-9WWB, Buck Buchanan, now is 6VPC, in San Francisco, and is active on 14 Mc. VKB sent in the following: MGL is attending Headals and is operating school station at 250 watts using 3½ waves in phase on 14 and 7 Mc. UHF QSOed Madame Stork and it is in a list. LMM, Corte Madare, OSC, QSLed San Francisco from 334 Mc. VKB says he is working from VKB at Aquatic Park, San Francisco. Ed says a beam is in order. There is a good chance for some comparative tests there. Ed is working on 144 Mc. from home QTH, 760 N. Point St., using HYVIA-HB. Ed included Edi, WM7B, Vallejo, and ATF, San Rafael. VQB’s high frequency report includes the following observations for August: Extreme conditions of temperature inversion observed on 144-148 Mc. In many reports saw contact between points with hills or mountains in between. On 420 Mc. frequent contacts in San Francisco of a mile and a half over 900-ft. hills. Thompson has completed his parabolic antenna for 420 Mc. Tests show forty-degree beam width. Continued experiments with 420-Mc. antennas are in progress. Another record attempt was made August 25th on 420 Mc. VQB was heard on Mt. Diablo but, unfortunately, was unable to work FSQ, who was at Parkridge Lookout, 192 miles to the south in Grant National Park. However, OZC contacted FZA, 140 miles to the south of him at Mt. Frazer. This should be a new record for 420 Mc. OZC is working South Africa on 28 Mc. with Rig report. Doug says the secret of his success is his new four-element rotary beam. All the 28 Mc. boys report many fine DX contacts this season and will be staying open several hours in the morning for Europe and Africa. RRQ is installing a portable 28-Mc. ‘phone rig in his car, using 110 volts a.c. as gas-driven generator power supply. Remote control from car instrument panel is being used. Bill is now on 144- and 28-Mc. ‘phone and 7- and 14-Mc. c.w. DJI manages to work some 14-Mc. DX between vacationing and painting the house. FSN is awaiting parts to complete his ‘phone rig. He is sure to make a nice DX multiplier limited of his own design which is well worth duplicating in any ‘phone rig. KNE temporarily has reduced power, and is now running 811 final. WB has volunteered his services in frequency checks to all stations requesting same. He now holds OO appointment, so any out-of-band reports will be authentic. The f.m. followers report about fifty f.m. stations around this area, all looking for contacts and schedules in other sections on or between 27.37 Mc. and 29.4 Mc. The San Francisco Radio Club reported new junior YL operators. KME is using an HK-24. CLV, W6RDO, KBQ, W9nicos, and the above officers. The Marin Annual Dip­ sea Race was held Sept. 4th, with the Marin gang furnishing portable communication on 3.9-Mc. ‘phone for reporting the race in progress. MZ had the misfortune to break his wrist while ‘working DX.’ he says. Thanks for the report. Trafic: WEBP 55, (August) W6RQJ 32, VPC 25, BIP 5, DJI 2, Sam.

SACRAMENTO VALLEY — SCM, John R. Kinney, W6MGC — The Sacramento Amateur Radio Club, Inc., held Old Timers Night on Aug. 21st to honor OAH, AK, and others. Two KBQ, ex-2GOJ, RF, and DLQ, ex-9WWB, RBQ, ex-KW, FW, AP, EBW, EY, AHB, APE, UM, JN, AHN, NO, ATN, CKA, DVE, and FOT, ZF will have a 220-watt portable rig on 3.5 and 7 Mc. NIGC and GYM report new VKL operators. KME and KSF, ex-2GOJ, BYK, GSY, KME, QJK, QYQ, MIW, RKH, PIV, AUO, (Continued on page 108)
ONE OF OUR MOST IMPORTANT ANNOUNCEMENTS IN 19 YEARS OF PROVEN LEADERSHIP IN TRAINING PROFESSIONAL RADIO MEN!

Here it is! Your First Practical Step Toward a Good-Paying Career in TELEVISION...

CREI Introduces a Streamlined Home Study Course in Practical Television

AVAILABLE NOW—FOR THE FIRST TIME!

Here's Your Chance to "Get in on the Ground Floor" of TELEVISION Opportunities

Don't say, "I never had a chance!") Prepare NOW for the good paying jobs awaiting trained television engineers and technicians. Be in a position to command a "key" job in the growing TELEVISION Industry by preparing now with the type of thorough, practical TELEVISION Engineering training that the industry requires. The new CREI TELEVISION Engineering course is (1) A complete, well-coordinated course of study that covers the entire field of practical TELEVISION Engineering: (2) Presented in CREI's professional and proven home study form; (3) Prepared by CREI's experienced staff, based on actual experience in our own TELEVISION Studios and Laboratories, plus years of close contact with leaders in television development. Here's your opportunity to be prepared for tele

Dept. Q-11, 16th and Park Road, N. W., Washington 10, D. C.

JUST OFF THE PRESS! MAIL COUPON FOR COMPLETE FREE DETAILS AND OUTLINE OF COURSE

If you have had professional or amateur radio experience and want to prepare for opportunities in TELEVISION, let us prove to you we have the training you need to qualify. To help us intelligently answer your inquiry - PLEASE STATE BRIEFLY YOUR BACKGROUND OF EXPERIENCE, EDUCATION AND PRESENT POSITION.

CAPITOL RADIO ENGINEERING INSTITUTE
16th and Park Road, N. W., Washington 10, D. C.

Gentlemen: Please send me complete details describing the new CREI home study course in Practical Television Engineering. I am attaching a brief resume of my experience, education and present position.

NAME...

STREET...

CITY...

ZONE...

STATE...

OCCUPATION...................................

□ I am entitled to training under the G.I. Bill.
FLASH!
New Amphenol—Mims Beam
Be among the first to own this valuable aid to operating efficiency. Send us your order for delivery soon.

CAPACITOR BUYS
G.E. 4000 Volt
2 MFD.
PYRANOL
$5.95

AND THESE ADDITIONAL "BUYS"

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>2000</td>
<td>$0.49</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>.71</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
<td>.39</td>
</tr>
<tr>
<td>8</td>
<td>600</td>
<td>.71</td>
</tr>
<tr>
<td>10</td>
<td>600</td>
<td>1.19</td>
</tr>
<tr>
<td>8</td>
<td>660 a-c</td>
<td>1.50</td>
</tr>
</tbody>
</table>

This compact, 3-watt amplifier — originally furnished for use in the Collins AN-ART-13 Aircraft transmitter — makes a fine speech amplifier and driver for amateur use when converted for self-powered operation according to the simple instructions furnished by the Radio Shack. Can be used with high impedance mike; also makes an amazingly satisfactory phonograph amplifier. Amplifier only $2.95; kit of 2 tubes (6SJ7 and 6V6-GT) $1.60.

TUBE SPECIALS

EIMAC VT-127A
Comparable to 100 TL
Balanced grid and plate structure; ideal for Class C and long-line oscillator service; can be used on 144 mc; brand new. Sig. Corps insp. $3.45 each

KEN-RAD 829-B
In original packing, these Signal Corps inspected tubes are a real bargain at Only $4.95

WESTINGHOUSE 807
Brand new, JAN-inspected 807's at a price you never hoped to see — only $1.35 each.

AND MORE
813's $9.95 ea.
838's 4.95 ea.
832A's 5.95 ea.
211's 4.95 ea.

... and a few more BC-375-E transmitters available at only $45.00 complete with tubes and accessories.
Put your favorite amateur — yourself — at the top of your list and make him an early Christmas present of a new NATIONAL receiver. These amateur favorites are in stock at the Radio Shack for delivery immediately (that's RIGHT NOW, son). Time payments, too, if you want them — see schedule below.

NC-2-40D

Here's another National favorite that's been kept abreast of amateur needs by incorporation of war-proved features. Covers 490 Kc to 30 Mc with calibrated electrical bandspread in 80, 40, 20, and 10 meter bands. All components treated to resist moisture and fungus for all-weather dependability in any climate. Complete with 12 tubes, built-in power supply and matching speaker.

Net price only $240.00

NC-10-A

For your experimental work between one and eleven meters, you'll find this 4-tube super-regenerator the answer to your need. It's furnished with six sets of easily changed coils, kit of tubes, power supply, and speaker for only $101.93.

TIME PAYMENT SCHEDULE

<table>
<thead>
<tr>
<th></th>
<th>6 mo. payments</th>
<th>9 mo. payments</th>
<th>12 mo. payments</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRO-STA-1</td>
<td>35.01</td>
<td>23.68</td>
<td>18.02</td>
</tr>
<tr>
<td>NC-2-40D</td>
<td>27.50</td>
<td>18.58</td>
<td>14.13</td>
</tr>
<tr>
<td>NC-46</td>
<td>12.67</td>
<td>8.60</td>
<td>6.62</td>
</tr>
<tr>
<td>One-ten-A</td>
<td>12.18</td>
<td>8.26</td>
<td>6.38</td>
</tr>
</tbody>
</table>

SEND FOR OUR FREE 108-PAGE CATALOG

We are also delivering HAMMARLUND • R.M.E. • HALLICRAFTERS in all popular models ORDER now for PROMPT SHIPMENT

HRO-5TA-1

This is the newest version of the favorite receiver for amateurs who want professional performance. The familiar value features of the HRO are complemented by new ANL circuits that give even greater efficiency. Furnished complete with 11 tubes, speaker, power supply and plug-in coil sets for the popular amateur bands.

Net price only $306.71

NC-46

This postwar design is already acclaimed for its sensitivity, stability, and day-in-and-day-out dependability. Smooth handling, convenient grouping of controls, positive band switching, full-vision, slide-rule type dial — and modern styling in keeping with the trend toward beauty in amateur gear. Furnished ready to use with tubes, power supply, and matching speaker.

Net price only $107.40
First for the Greatest Names in Ham Radio

Here they are — the newest Post-War "Ham" Receivers with all the latest improvements in technique and design.

NATIONAL HRO - STA - 1 • Net $274.35
697 Power Unit $20.36 • MCS, Speaker $12

A Receiver, designed for the Amateur to provide dependable communications, under most severe conditions. New Noise Limiter incorporated.

HAMMARLUND HQ-129-X • Net $173.25
Price Includes Cabinet Speaker

A "Ham" Receiver with the professional touch, providing flexibility of operation. Six bands for easy location of stations. Has all "Ham" features with sensitive and stable performance.

HALLICRAFTER S-40 • Net $79.50
With Built In Speaker

Performance and Economy are combined in this outstanding Receiver value. Many circuit refinements never before available at this price. Electrical Bandspread Dial - Coverage 540 KC to 43 MC.

HAM RADIO SUPPLIERS SINCE 1919

Continued from page 98

BLP, BNZ, AK, and MGC are active on 144 Mc. HR is active on 260 and 7210 kc. DBP is on 7 Mc. with 160 watts and an HQ-129. REB has a ½ kw. on 3.5 Mc. c.w. RXY has surplus BC375E transmitter on 3.5 and 7 Mc. POB is active on 28, 14 and 3.5 Mc. SXF has a pair of 807s on 7.0 and 3.5 Mc. At the SARC meeting on Sept. 18th DBP won an FB mike, donated by chromatone Electric Supply. VKM won Cardwell v.h.f. kit donated by F. M. Kemp Co. New calls are WS1 and WRD, ex-9MJQ. PIV reports schedule with REB and FGK on 3.5 Mc. OJN is on 3.5 Mc. and schedules with VY5A and ZL7CP. Z9Y, OBS, reports schedule with GZU and the bulletin is sent on 147 Mc. Mon. and on 3.705 Mc. Wed. and Fri. VGM reports DX worked: On 23-Mc., phone — ZK1AB, ZAA, KLJ, PE6AW, OX2AD/Island. V9B, FA1A, and YN1FF. On 14-Mc., phone — CT2, OX1AA, VOGF, H1Y, VP4, CR9, and SUITE. AP reports DX worked on 14-Mc. c.w.: ZS6CH, ZS0G, ZS6B, ZS6IK, ZS1D, ZS1D, ZS2X, PA7J, DJ4AN, XU4B — Mongolia, AUAKK — Moscow, G3HF, G3JKE, and GLBB. Traffic: (July) W6HIR 28, GYM 16, A8, C7Z 1. (August) W6GYM 48, PIV 13, AP 8, OJW 1, T3. Jack.

ROANOKE DIVISION

NORTH CAROLINA — SCM, W. J. Wortman, W4CYB
— Thanks for the reports this month, fellows. It was good to hear from a few of the gang. MR has a McElroy s.s.o. working and is on 14 Mc. with lots of watts. Part of this gang in Greensboro spent the Labor Day weekend painting up the club house. GG, BHA, BML, and AGD are given credit for most of the work. Someone went berserk with the spray gun and when the windows are cleaned off the work will be able to see out again. Plans are under way for a kw. rig before Sweeps time. The fellows around Burlington are planning the organization of a club, according to HER. The Western Electric Plant there has erected lots of foreign hams: 38WK, 10GJ, IASQ, 9SE3, 9TCP, 20DR, 9UYX, 20FN, and 2CPU are moving into this area. CXM, Coc, ELT, BYE, GHI, and 1DS are on 3.9-Mc. "phone. AEH is busy on 7 Mc. ETG and HER are on 28 Mc. FXU is interested in the formation of a traffic net for the winter. It is hoped that some of the gang are interested. The Charlotte Club has an EC who has lined up quite a few fellows to help out. HER is EC for the Burlington area. BP is OPS. TO now is in Atlanta but hopes to come through this area occasionally. Attention, Raleigh, Winston, Asheville, and Clinton. How about a report from the clubs there? We can’t write the news if we don’t get it, so send some dope along.

SOUTH CAROLINA — SCM, Ted Ferguson, W3EQE/ANG — FNS had trouble with receiver power supply. CXQ QSped traffic from Frankfurt. B/PD has rhombics on 7, 14, and 28 Mc. and reports the following DX: VK, LU, CX, and UU. LLP has 150 watts on 7- and 14-Mc. c.w. EBP has taken unto himself a wife, none other than GILC from Tennessee. GCW is knocking them off on 14 Mc. With his exciter. GCJ works 7-Mc. c.w. HAZ has 300 watts on 7 Mc. HAX works 7 Mc. DPN is dividing his time between his new jr. operator and 3.5 Mc. C3L helped BP with his rhombics. Z9WV*4 keeps Ft. Jackson on the air. HMG has a new 28-Mc. beam. HEY now is Claus A. CO works 28-Mc. HOY keeps schedules on 3.5-Mc. c.w. FMS is EC for Columbia area. BEN works 27 and 28-Mc. phone. JGM is waiting for his new HT-9. HJR is dividing his time between 7-Mc. rag-chew and DX. CZA has had his hands full making preparations for the Charleston "fest. DPN is EC for Orangeburg area. Has any one seen GKD? FNC is on 3.9-Mc. "phone. On October 16th I completed ten years in SC. GIC has his hands full painting in Greenville. spent the Labor Day weekend painting up the mem­house. Someone went berserk with the spray gun and when the windows are cleaned off the work will be able to see out again. Plans are under way for a kw. rig before Sweeps time. The fellows around Burlington are planning the organization of a club, according to HER. The Western Electric Plant there has erected lots of foreign hams: 38WK, 10GJ, IASQ, 9SE3, 9TCP, 20DR, 9UYX, 20FN, and 2CPU are moving into this area. CXM, Coc, ELT, BYE, GHI, and 1DS are on 3.9-Mc. "phone. AEH is busy on 7 Mc. ETG and HER are on 28 Mc. FXU is interested in the formation of a traffic net for the winter. It is hoped that some of the gang are interested. The Charlotte Club has an EC who has lined up quite a few fellows to help out. HER is EC for the Burlington area. BP is OPS. TO now is in Atlanta but hopes to come through this area occasionally. Attention, Raleigh, Winston, Asheville, and Clinton. How about a report from the clubs there? We can’t write the news if we don’t get it, so send some dope along.

Virginia — SCM, Walter R. Bullington, W4JJH
— The following are new calls in Roanoke: Alldizer, 4JIV; Canaday, 4JGI; Francis, 4JDT; Norris, 41WF; Perky, 41PK; Niceimer, 41BA; Lasaa, 41RE; Wohlford, 41WZ; 41WP is the new km. Anyone interested in traffic handling should get in touch with him. New calls in Richmond are: Arnold, 4JOT; Smith, 4KCM; Anderson, 4KAO; Martin, 4CGV; Jones, 4BZE; Hall, 4B3J; Johnson, 4TK; Faulk, 4WF; EOB. I have a new km. that is burning ‘em up. SCM invite a spray gun and when the windows are de­farad off the members will be able to see out again. Plans are under way for a kw. rig before Sweeps time. The fellows around Burlington are planning the organization of a club, according to HER. The Western Electric Plant there has erected lots of foreign hams: 38WK, 10GJ, IASQ, 9SE3, 9TCP, 20DR, 9UYX, 20FN, and 2CPU are moving into this area. CXM, Coc, ELT, BYE, GHI, and 1DS are on 3.9-Mc. "phone. AEH is busy on 7 Mc. ETG and HER are on 28 Mc. FXU is interested in the formation of a traffic net for the winter. It is hoped that some of the gang are interested. The Charlotte Club has an EC who has lined up quite a few fellows to help out. HER is EC for the Burlington area. BP is OPS. TO now is in Atlanta but hopes to come through this area occasionally. Attention, Raleigh, Winston, Asheville, and Clinton. How about a report from the clubs there? We can’t write the news if we don’t get it, so send some dope along.

South Carolina — SCM, Ted Ferguson, W3EQE/ANG — FNS had trouble with receiver power supply. CXQ QSped traffic from Frankfurt. B/PD has rhombics on 7, 14, and 28 Mc. and reports the following DX: VK, LU, CX, and UU. LLP has 150 watts on 7- and 14-Mc. c.w. EBP has taken unto himself a wife, none other than GILC from Tennessee. GCW is knocking them off on 14 Mc. With his exciter. GCJ works 7-Mc. c.w. HAZ has 300 watts on 7 Mc. HAX works 7 Mc. DPN is dividing his time between his new jr. operator and 3.5 Mc. C3L helped BP with his rhombics. Z9WV*4 keeps Ft. Jackson on the air. HMG has a new 28-Mc. beam. HEY now is Claus A. CO works 28-Mc. HOY keeps schedules on 3.5-Mc. c.w. FMS is EC for Columbia area. BEN works 27 and 28-Mc. phone. JGM is waiting for his new HT-9. HJR is dividing his time between 7-Mc. rag-chew and DX. CZA has had his hands full making preparations for the Charleston "fest. DPN is EC for Orangeburg area. Has any one seen GKD? FNC is on 3.9-Mc. "phone. On October 16th I completed ten years in SC. GIC has his hands full painting in Greenville. spent the Labor Day weekend painting up the mem­house. Someone went berserk with the spray gun and when the windows are de­farad off the work will be able to see out again. Plans are under way for a kw. rig before Sweeps time. The fellows around Burlington are planning the organization of a club, according to HER. The Western Electric Plant there has erected lots of foreign hams: 38WK, 10GJ, IASQ, 9SE3, 9TCP, 20DR, 9UYX, 20FN, and 2CPU are moving into this area. CXM, Coc, ELT, BYE, GHI, and 1DS are on 3.9-Mc. "phone. AEH is busy on 7 Mc. ETG and HER are on 28 Mc. FXU is interested in the formation of a traffic net for the winter. It is hoped that some of the gang are interested. The Charlotte Club has an EC who has lined up quite a few fellows to help out. HER is EC for the Burlington area. BP is OPS. TO now is in Atlanta but hopes to come through this area occasionally. Attention, Raleigh, Winston, Asheville, and Clinton. How about a report from the clubs there? We can’t write the news if we don’t get it, so send some dope along.
WHEN YOU ORDER A PR INSIST THAT YOU GET A PR

There is no shortage of PR Precision Crystals! The factory is maintaining maximum production to keep your jobber supplied with ALL FREQUENCIES AVAILABLE TO THE AMATEUR UNDER PRESENT REGULATIONS...80, 40, 20 and 10 meters...and all those doubling and quadrupling into other bands, including 11 meters. Substitution is unnecessary! If your jobber doesn't have the EXACT FREQUENCY you want, he can get it from our plant in 24 hours! So—INSIST ON PRs, and take no substitute. Enjoy the features that have made PR Precision Crystals famous since 1934...low drift...high activity...maximum power capabilities...contamination and moisture-proof...drift less than 2 cycles per MC per degree Centigrade. Unconditionally guaranteed. Exact frequency (integral kilocycle) at NO EXTRA COST. Order PR! Insist you GET PR! — Petersen Radio Company, 2800 West Broadway, Council Bluffs, Iowa. (Telephone 2780)
...THAT QUICK!

Walter Ashe
DELIVERIES!

Instant Delivery On:
4 Mfd. 2500 V. Condensers, GE Pyranol. $3.75
2 Mfd. 4000 V. Condensers, GE Pyranol. $5.75

Army-Navy HEADPHONES
Limited quantity! Highly sensitive, 8000 ohm impedance. Bi-polar magnets, bakelite shell and cap. A swell value!
$1.96 with Short Cord
and Short Plug
Long Cord, 50¢ extra

RECEIVERS — Instant Delivery
RME 45 with Col-O-Matic Dial and Speaker. ...$198.70
NATIONAL NC 240-D, newest model, complete.$241.44
NATIONAL HRO 3TA, 1.7 MC to 30 MC with Band Spreader and Note Limiter, less Speaker and Power Supply.$274.35
Speaker, type MCS $12.00
Power Supply, type 697 $20.36

And We Give Liberal Trade-Ins, Tool

* Immediate to 30-Day Delivery On:
Hammarlund HQ 129-X with Speaker.$173.25
Holli-corder S-40. $79.50
Holli-corder S-38. $39.50

Talkie Crystal Kits to grind your own 40 meter crystals. 98¢
Crystal Adapter for using new type holder in old sockets 35¢

AMERTRAN PRIMARY CONTROLS
To adjust your input voltage
Primary from 95 to 120 V. @ 9½ Amps. $14.95
Type 32415 at. $17.95
Primary from 102 to 128 V. @ 16 Amps. $39.95

Amertran Plate TRANSFORMERS, rated at 2 KVA.
Primary 105/110/15, 60 cycle, Secondary 6200 V. ct. Freight prepaid anywhere in Continental U. S. A., $39.95

SONAR F-M EXCITER
Narrow Band (2-3 Kc deviation), for use with any CW or Phone Transmitter. Price complete. $39.45

IS YOUR NAME ON OUR MAIL LIST?
New Catalog Just Out
WGGTF W6YD W6ULX W6ZIP W6DLO

WALTER ASHE RADIO CO.
1125 PINE STREET
ST. LOUIS 1, MO

(Continued from page 108)

308, Petersburg, Va. The SCM crew would appreciate more station activity reports. Here's for more news next month!
Traffic: W4WOP 36, 7U, Monk.

WEST VIRGINIA — SCM, Donald B. Morris, W8JM — BTV visited 3AVJ and 2RG while on vacation and upon his return accepted the RM post for Northern West Virginia. K3KQ moved to Virginia, but WXW is on 3.5 Mc. for you boys. W9JL also needs Hardy County DX and may be heard on 3.5-4.0 Mc. w.c.w., regularly. HD visited the MARA and brought along his movies. OXO has returned to the air after a long absence. New hams: ZF7, YBO, YBI. MFS works VKS and ZLs on schedule on 14 Mc. with low power. YCK is new OH5 and drives 125 miles regularly to attend the MARA meetings. SCG is stationed in Cuba and has a kilowatt on 14-Mc. ‘phone. K5KV, Houston, Tex., wants West Virginia schedule to handle traffic to Mannington. 3C6G visited hams in Clarksburg and Grafton while on vacation. UG9T is located at Lowell, Mass., and can be heard on 14-Mc. ‘phone. QWJ79 has moved to Chicago and is operating on 3.5-Mc. c.w. QGE has a new high-power rig on 3.9-Mc. phone and has spare operator to insure twenty-four-hour-a-day operation. OXO reports to date about WJS out in front in the Work All Counties Contest. 73, Don.

ROCKY MOUNTAIN DIVISION

COLORADO — SCM, Glen Bond, W5QYT — With summer over and vacations gone we can now settle down to some good old DX on the bands. There has been some very nice DX coming in on 14 and 28 Mc. 9FAN has rebuilt his rig using 811 modulated with four 6L6s. DSB is sporting a new 28-Mc. three-element beam. QYU has returned from Bikini, when he was associated with the electron staff of the Cross Roads Project. BNJ has his rig working now. TFR is trying to get back on the air but WELCO has been selling his rigs as fast as he can rebuild. ARROD is building a club transmitter to be used in Field Day activities. TFP is putting up a tower and 14-Mc. beam. WAXG, of Pueblo City, has passed his radiotelegraph 1st exam and is taking radiotelephone 1st soon. QDU has been grinding crystals for 7 and 14 Mc. ACA and his brother, LUT, are doing some 144-Mc. testing from Sterling and Flagstaff Mountain. The Western Slope Radio Club held a hamfest on Grand Mesa this summer with most all the members attending. Nathan Bale, the president, got his ticket and now is WPX7 on 28-Mc. ‘phone. GMB is harvesting his peaches but will be back on as soon as he debuses his rig. FQT is building a house. GEK7 is on 7 Mc. with an 807. EBBW still is checking checks at the local bank. We had several 28-Mc. mobile visitors in town this summer and the local boys are putting rigs in their car garages. W0FCH is on Phoenix, Arizona, and will be looking for 7- and 14-Mc. contacts. Y7S, reported dead in July to work all bands; he also built an FB field-strength meter. The SCM moved to Virginia, but WXW is on 3.5 Mc. for you boys. W9JL also needs Hardy County DX and may be heard on 3.5-4.0 Mc. w.c.w., regularly. HD visited the MARA and brought along his movies. OXO has returned to the air after a long absence. New hams: ZF7, YBO, YBI. MFS works VKS and ZLs on schedule on 14 Mc. With low power. YCK is new OH5 and drives 125 miles regularly to attend the MARA meetings. SCG is stationed in Cuba and has a kilowatt on 14-Mc. ‘phone. K5KV, Houston, Tex., wants West Virginia schedule to handle traffic to Mannington. 3C6G visited hams in Clarksburg and Grafton while on vacation. UG9T is located at Lowell, Mass., and can be heard on 14-Mc. ‘phone. QWJ79 has moved to Chicago and is operating on 3.5-Mc. c.w. QGE has a new high-power rig on 3.9-Mc. phone and has spare operator to insure twenty-four-hour-a-day operation. OXO reports to date about WJS out in front in the Work All Counties Contest. 73, Don.

SOUTHEASTERN DIVISION

EASTERN FLORIDA — SCM, Robert B. Murphy, W4IP — GVC is SEC; his helpers are: BYP, Dado; FWZ, (Continued on page 109)
SPEER Graphite Anodes help tube manufacturers produce closely matched tubes that give closely matched performance — because SPEER Graphite Anodes defy warping.

The relative position of tube elements doesn't change when SPEER Graphite Anodes are used, and tube performance remains uniform throughout the life of the tube. Because they have a low coefficient of expansion and no softening point (graphite sublimes without melting at 3500° C), SPEER Graphite Anodes hold their shape at the high temperatures encountered in the exhaust stage of manufacture and during overload operation — temperatures at which other anode materials soften or distort.

SPEER Anodes are made of a specially processed, highly pure, heat-dissipating, homogeneous graphite. They minimize envelope darkening, prevent hot-spots, improve degassing qualities, allow wide latitude of anode design.

The many advantages of SPEER Graphite Anodes listed here are available to manufacturers and users of almost every type of electronic tube. Write today for further details, without obligation.

SPEER GRAPHITE ANODES:
1. Increase allowable plate power dissipation
2. Lower temperatures of associated tube parts
3. Withstand severe overloads
4. Defy warping
5. Prevent hot spots or fused holes
6. Minimize bulb darkening and insulator leakage
7. Improve degassing qualities
8. Decrease gas troubles
9. Enhance tube appearance
10. Provide precise anode dimensions
11. Produce uniform tube characteristics
12. Retain original dimensions in service
13. Maintain normal tube characteristics
14. Allow wide latitude of anode design

SPEER CARBON COMPANY
ST. MARYS, PA.
Save on
BRAND NEW
GOVT. SURPLUS

V.H.F. TRANSMITTER-RECEIVER
BD-645—a 15 tube interrogrator-transmitter designed to receive either a pulse or 30 KHZ modulated signal, and return a coded reply on transmitter. Receiver is fixed-tuned to 470 MC but adjustable on transmitter. Uses six W.T. tubes: 245 MC to 450 MC amateur band. Transmitter uses a W.T. tube as a tuned line oscillator, 2 preset channels may be set. 318 in a tuned line oscillator. 2 preset, channels may be set. 318 as a tuned line oscillator. 2 preset, channels may be set. 318 as a tuned line oscillator. 2 preset, channels may be set.

COMPLETE WITH 15 TUBES:
Transmitter: 1.99
Receiver: 2.95-4.777
2.76-2.777
2.06-2.777

CRYSTAL CONTROLLED TRANSMITTER
Uses standard 8 MC crystals (not included) with 832 tube. Complete with tubes, built-in modulator, with 6LE6A tubes.

ARC — 3 TWO METER
44.95

TUNING UNITS WITH CASE AS USED IN BC 375 E TRANSMITTER
Any Type
395 Each
Each unit contains 2 transmitting type variable condensers, 2 ceramic coil forms, velvet vernier type knob, and 2 ceramic coil forms, velvet vernier type knob. Each unit contains 2 transmitting type variable condensers, 2 ceramic coil forms, velvet vernier type knob, and 2 ceramic coil forms, velvet vernier type knob.

SPECIAL VALUE! BC 620 FM TRANSMITTER AND RECEIVER
79.50

SURPLUS SPECIALS!
8298 4.95 813 9.95 RCA 406 15.00 4 Gang 223 MAF tuning condenser, 3.30

JUST OFF THE PRESS!
SPECIAL BULLETIN OF VALUES ON RADIO PARTS AND EQUIPMENT
Send for Yours Today!

Radio-Electric
SERVICE CO. OF PENNA., INC.
7TH AND ARCH STREETS, PHILA. 6, PENNA.
Branches at 5133 Market St. and 3145 N. Broad St., Philadelphia. Also in Wilmington, Del., Eton, Pa., Allentown, Pa.

(Continued from page 104)

Duval; AVX, Lake; CQZ, Lee; DQW, Manatee; KH6IRS/A, Monroe; QC, Orange; ACX, Palm Beach; IYO, Pinellas; HGO, Seminole; and ASR, Volusia. RM BYF has DQW, AVX, and his wife, DIL, PAM, and all three are working on 14 Mc. Their rig is a BC-610, and they work DX with it. RM sends QSLs to all who work them on 14 Mc.

Duval; AVX, Lake; CQZ, Lee; DQW, Manatee; KH6IRS/A, Monroe; QC, Orange; ACX, Palm Beach; IYO, Pinellas; HGO, Seminole; and ASR, Volusia. RM BYF has DQW, AVX, and his wife, DIL, PAM, and all three are working on 14 Mc. Their rig is a BC-610, and they work DX with it. RM sends QSLs to all who work them on 14 Mc.

WESTERN FLORIDA—SCM, Lt. Comdr. Edward J. Collins, W4BMS—JNP is our latest ham. EQR is having an FB time working W6K. AXP has rebuilt the rig and it looks FB. JJI is moving to Memphis. JBI is going great guns on 28 Mc. IIA sold the BC-610, 2014U now has four-element Yagi and DIL has moved to W4 and wants some tubes. DAI is rebuilding 28-Mc rig but really perks on 7 Mc. FQH is having an FB time on 7 Mc. JFV has three-element Yagi now. DQX promises activity. DZG has just finished building a 14-Mc rig but hasn't the power for DX yet. 27cvE is on 5 watts. EGN continues to work DX. See the article on page 104 for more information.

(Continued on page 108)
DYNAMIC TYPE EARPHONE and MICROPHONE ASSEMBLY

This unit consists of a microphone handset with push to talk switch and a set of earphones. Both are 50 ohm impedance: complete with 37" cord and plug.

COMPLETE ASSEMBLY—PHONES AND MICROPHONE

$2.95

Now in Stock!

UTC MODULATION TRANSFORMERS

Type Watts Your Cost
VM-1 30W $7.56
VM-2 60W 11.16
VM-3 125W 15.96
VM-5 600W 63.84

DYNAMOTOR POWER SUPPLY

PE-103A

U.S. Army PE-103A operates from 6- or 12-volt battery, will deliver 500 volts D.C. at 160 ma.

NEWARK'S SPECIAL PRICE $14.95

MARK II TUBE REPLACEMENTS

E-1148, 99¢

Similar to HY-615. These tubes are all Brand New, in factory sealed cartons, and perfect. Order a pair at this amazing low price.

E-1148, 99¢

STANDARD RECEIVERS

Now Available!

NATIONAL

HRO-STA complete $303.00
NC-240D with speaker 241.44
NC-46 with speaker 107.40
1-10A with tubes, less speaker and power supply 67.50

HALLICRAFTERS

S-38 complete $39.50
S-40 complete 79.50
SX-42 with speaker 265.00

HAMMARLUND

HQ-129X complete $173.25
SP-400X complete 342.00

Mail orders filled promptly FOB New York or Chicago. Send 20% deposit with order. Prices subject to change.

NEW YORK Electric Company, INC.

New York City Stores: 115-17 W. 45th St. & 212 Fulton St.
PRE-EXAM TESTS
For Commercial Radio Operator
FCC LICENSE EXAMINATIONS

Don't Take A Chance!
Avoid Failure On FCC Commercial Radio Operator License Examinations!
Use NILSON'S COMPLETE PRE-EXAMINATION TESTS AND COACHING SERVICE

Ensures You to
REHEARSE the FCC license examinations + PRACTICE the procedure + PRACTICE the multiple-choice examination methods used by FCC + CHECK your knowledge + LOCATE your weak points + CORRECT your weak points before taking the actual examination
Prepared by Arthur R. Nilson, Famous Co-Author of Nilson and Hornung's Radio Questions and Answers. Use Coupon or write for Descriptive Folder

Cleveland Institute of Radio Electronics
811 Fourth Street • Cleveland, Ohio

SOUTHWESTERN DIVISION

Los Angeles — SCM, Ben Onstenk, W6QWZ — The Los Angeles Section Council of Radio Clubs has grown to the Federation of Southwestern Division Amateur Radio Clubs, All clubs not already approached by this organization are requested to contact SCM. The newly formed Metropolitan Radio Club of Los Angeles is doing very nicely. For information as to meeting dates and places call Ben PL 9752. During the latter part of July the Mike and Key Club operated for the Aquaphone Association during their races off Hermosa and Manhattan Beaches. The members operated three evenings for swimming, paddleboard, and dory races, all day Saturday for laying out of the course and spotting of the race publicity photographers, and all day Sunday for the main races themseleves. KP4CF had one station on shore for the p.a. system, and one on a boat at the seaeward end of the course for reports on the races. KIU put the output of an MF6 right into the p.a. system. ESR did the announcing. On Sunday for the big races they had three mobile marine stations and two on land. On boats were ESR, NSC, and AJQI. On shore CFI and PTR were at the finish line at the end of the pier and KIU was at the judges' stand for the p.a. NSC used his boat as a mobile boat to start the races. MBFs were used emergency equipment, crystal-controlled transmitters on short frequency, and improved operating procedure and incident drills. A complete revision of net operating procedure now is in process and will be completed soon. The metropolitan area has fifteen members. IFW is hearing his hair out because of BCI with his HT4. Trev using an MFB, Lee. GM is using his frequency meter to calibrate v.f.os for the boys in the Citrus Belt area. IOX, using a BCB91, has traffic schedules with 4 PL ASW on his four six ARRL bulletin w.r. KP4CC, ex-W4ESH. Traffic: KP4AM 8, 73.

(Continued from page 108)

Mc, AW worked E19J for his first big DX on 28 Mc. AY makes FB recordings of local 'phones AU tried running a kw. to his p s 813s but settled for a half-kiw. AW sold out to W1DRS/KP4 and is going to the Slater. W1DRS/KP4 is on leave in Europe. CW still is causing headaches. KP4CF is back on 28 Mc, after giving 14 Mc, a whirl. He and KD worked J9LQ on 14 Mc, and got QSL. AO, ex-K4DTH, is on 14-Mc c.w. AK has now rig with 829 final on 28-Mc. c.w. Call changes: KP4CP, ex-W4BZA; KP4CE, ex-W4DRS/KP4; KP4CC, ex-W4SVRD; KP4CC, ex-K4ESEH. Traffic: KP4AM 8.

(Continued on page 110)
The QUALITY Transcription and Recording Equipment

MODEL "M-5" RECORDING MECHANISM ILLUSTRATED • MOUNTED

"MASTER-PRO" M-5 RECORDING MECHANISM WITH CUTTER

"Master-Pro" M-5 is a beautiful precise tool you will be glad to own.

RUGGEDNESS: Fifteen pounds of steel and bronze, chrome plated, assures long wear and the ability to stand up against rough treatment.

QUALITY: The "Master-Pro" M-5 is machined to tolerances unheard of in pre-war production. Working surfaces and moving parts are polished to a micro finish to insure velvety smoothness and control in operation.

The "Master-Pro" M-5 is a universal machine that can be readily attached not only to the Master-Pro V Recording turntable, but to any other make of turntable that has the standard center pin.

Proved by test and performance by experts.

Standard screw cuts 120 line per inch outside-in. Feed screws for 105 or 120 line outside-in or inside-out, substituted at purchaser's request.

"MASTER-PRO" VM-2 RECORDING LEVEL METER

Mounted in an unbreakable, cast aluminum case, the VM-2 Recording Level Meter takes recording out of the hands of the expert. The dial is scientifically designed, as to angle and to color. It enables the artist to watch the volume of his recording while performing and is readable up to 25 feet. The possibility of over-cutting is reduced to a minimum.

The VM-2 Recording Level Meter is wired to operate from the output of an 8, 15, 200 or a 500 Ohm amplifier.

MODEL G-2 16" TRANSCRIPTION TURNTABLE

...Not shown... Similar to Model V above. Write for Literature.
A M A T E R G E A R

8 CONNECTICUT AND MASSACHUSETTS HAM STORES

Quick as you can say "Ham," you'll find the first-choice makes, the elect in electronics, at Hatry & Young. Eight conveniently located stores...dozens of lines...and the best names, such as...

- Amphenol
- Bud
- Cardwell
- G.E.
- Hallcrafter
- Hammarlund
- Malcol\n
- Millen
- National
- Ohmite
- Panoramic
- Par-Metal
- Petersen
- RCA
- R.M.E.
- Silver
- Shure
- Stancor
- Taylor
- Turner
- Valpey
- and many others

CONNECTICUT:
- Conveniently located stores
- many others

HATRY & YOUNG
The Elect in Electronics

RECEIVING SENDING CODE (Speed) without strain

CHAMPIONS ENDORSE CANDLER WAY

Get skill, accuracy, speed with the highly endorsed Candler System. Learn to send and receive by telegraph or radio code. Government service and commerce need thousands of better trained operators. Air commerce, mail, freight, etc., demand expert, reliable operators. Good pay. Get the Candler system, the master of champions. It teaches you the "knack" of sound sense, alertness, speedy sending and receiving without strain. Adventure—good pay. Learn at home or wherever you are. Rush name today for free book.

CANDLER SYSTEM CO.
Dept. 4-M, Box 228, Denver 1, Colorado, U.S.A.
and at 121 Kingsway, London, W.C. 2, England

(Continued from page 108)

element beam on 28 Mc. JKN runs a 6L6 final on 28 Mc. RNB has 650 watts on 7, 14, and 28 Mc. RKM won an S-38 as first prize in the Phoenix QSO Contest. JHY has a Millen exciter for second place. New Phoenix Club officers are: SOG, pres.; Holcomb, treas.; JMS, act. mgr. JFT is on 27 and 28 Mc. QNO worked his first J on 28 Mc. New Tucson Club officers are: UFP, pres.; JPQ, club officer at 14 Mc. JQ, secretary, QWQ has a super compression unit on 3.5-14-, and 28-Mc, 'phone. JHB has thirty-seven counties with 90 watts. PET has sixteen counties with 60 watts. PDA has WAC with 50 watts and heard a G.WAC with 8950 KX and KAD, ex-SJBG, have heard each other's carriers. Traffic: W7MAE 172, 73, GG.

SAN DIEGO — SCM, Ralph H. Culbertson, W6CCH.—FB report was received from M.K.W on activity around Orange County. SCQ is on 3.6 Mc, working W4 and W5. JZ is active on 3.6 Mc. at Balboa. AQD has portable rig on 3.9 Mc. at Balboa. UWM is new call on 3.9 Mc. PHI is working for local radio factory. TFK is sticking to 28 Mc. and VAD in trying his luck on 14 Mc. In Santa Ana CIG, DIP, FCT, and MQP work at Post Office. DEY, FCI, ROA, TON, VEB, and 3LKB are at monitoring station. ALO and BAM are on 14 Mc. DEY is on 28 Mc. with 12, low power. VEB and VKR are new calls. QG has worked plenty of DX on 50 Mc., with pair of 2SC427s working W4 and W5. RP is working on DX at US Navy plant and schedules 1WE weekly on 3.9 Mc. BWO, HWJ, and MKW are on 3.9 Mc. with pair of 807 rigs and are active on GG Breakfast Club. LYP uses an HT-4 at Dana Point. DHP and JZ are active on 14 Mc. JZB is a legal call. LWJ is on 28 Mc. with Signal Shifter and SX-28. HWJ and MKW have new 144-Mc. rigs. GG Breakfast Club held FB picnic on Aug. 25th at Doheny Beach State Park with AA4FO, BWO, BTE, COZ, DEX, ESH, HWJ, LCG, LMC, LYE, MDL, MKW, FPF, RYE, SEL, UYK, WDO, and WKF among those attending BAM wants OBS appointment cancelled until he can keep regular schedules. LUJ has shifted to 7 Mc. where conditions are more stable and DX hounds find this more active. FMJ reports little activity because of summer vacations. PDP has returned to college. PAX also left for vacations. PDP has returned to college. PAX also left for, FMJ reports little activity because of summer vacations. PDP has returned to college. PAX also left for, FMJ reports little activity because of summer vacations. PDP has returned to college. PAX also left for, FMJ reports little activity because of summer vacations. PDP has returned to college. PAX also left for, FMJ reports little activity because of summer vacations. PDP has returned to college. PAX also left for,
Modern functionally designed capacitors. Metal ferrules are soldered to silver bands fused to each end of heavy-walled glass tubes. This vacuum tight assembly is fungus-proof and passes Signal Corps, Air Corps and Navy thermal cycle and immersion tests.

For low and medium power coupling and bypass circuits where mica capacitors have previously been required

- Television and Oscilloscope Circuits
- Vibrator Buffer and Arc Elimination
- Geiger Counter and Instrument Capacitors

Order from your jobber: If he cannot supply you, order direct

Condenser Products Company
1375 North Branch Street • Chicago 22, Illinois
Kilgore and active on all bands and makes application for ORS appointment. HIF reports the New Valadad net at Corpus Christi has brought in a lot of hams from all call areas. FH is out of the Navy and engaged in the radio supply business. AQX, HP, and 31ME/5 have been working some good DX on 26-Mc. 'phone. HIF has two new steel poles erected for a new beam. W1R is operated by a new Island Radio School Club, FBC is active with a pair of 100THs, MN is pushing the construction of his new rig and is looking forward to lots of traffic. E2WZ is on 14-Mc. c.w. and 28-Mc. 'phone in Harlingen. BKL is busy getting the bugs out of his final amplifier and teaching the XYL the code. E1S is moving again and expects to be on the air shortly. 73 Jim.

Quebec Division
Quebec — SCM, G. F. J. Phelan, VE2SU. — Greetings from your new SCM, Postwar reorganization of the section will require lots of hard work, but we are sure you
Communications Equipment
for earliest delivery order from ALLIED
Time Payments Available
Trade-Ins Accepted

NEW! HALLICRAFTERS SX-42 $250.00. Order yours now!

Hallcrafters S-38 $339.50
Hallcrafters S-40 $39.50
National HC-16 $99.00
NC-48 Speaker $9.90
RME-84 $98.00
RME VHF-152 Converter 88.80

Net F.O.B. Chicago. Prices subject to possible change.

* * ALLIED HAM "SCOOP"!

MECK
60-1 60-WATT TRANSMITTER IMMEDIATE DELIVERY!

A great performer on any band, 10 to 80 meters, phone or C. W. Compact, single unit design, only 15" x 11" x 9". Features: Plug-in coils for band selection; Combined plate and screen modulation; Two complete built-in 60-cycle power supplies, 1 for final RF, 1 for Modulator; Speech Amplifier and Oscillator; built-in antenna change-over relay; meter switching to final amplifier grid or plate circuits for tuning; crystal socket on front panel. Complete with set of coils covering 10 and 11 meter bands (other band coils available at $5.50 per band). Includes 5-6LG6, 2-6SN7 GT/G, and 2-5U4G tubes. Only $150.00

ALLIED RADIO
Everything for the HAM

This month, our hats are off to Edwin C. Shaw, W5SSH, Ft. Worth, Texas . . . first, for his fine-looking rig; second, for his stimulating activity on the air. And we want to add our thanks, too, for his recent friendly note that expresses, among other pleasant things, his "complete satisfaction not only with the equipment but also with the extremely courteous treatment I have received from your good company."

No need to thank us, W5SSH. That's what we're here for. We get our satisfaction out of serving you. Whether you're an amateur starting "from scratch," rebuilding, or newly licensed, you can count on ALLIED for all the help you need—for earliest delivery of the latest available gear, for guaranteed quality at the lowest prevailing prices, for preferred personal service from ALLIED'S staff of licensed hams, each of whom shares your interest in amateur radio.

Send for Allied's 1946 Radio Catalog

Here's the Buying Guide that lists everything for the Ham . . . communication receivers, transmitters, Ham gear, code apparatus, parts, kits, tubes, test instruments, etc.Send for your FREE copy.

ALLIED RADIO CORP., D. L. Warner, W91BC
833 W. Jackson Blvd., Dept. 27-L1-6
Chicago 7, Illinois

[Order options]

Name...
Address...
City.................................. Zone...... State.......

Salute to W5SSH
Post-war W5SSH—equipped by ALLIED.
Listen for him on 10 and 20 meter phone.
RADIO CHASSIS PUNCH

Saves hours of work cutting clean, accurate holes in radio chassis — for connectors and other receptacles. Simply insert cap screw in hole to be enlarged (drill small hole if necessary), turn with ordinary wrench to force punch through the metal. No reaming or filing — hole is smooth and clean. No distortion — die supports metal. Ten sizes from 1/4" to 2 1/4"; also up to 3 1/2" for meters. Write for free catalog.

GREENLEE
FOR THE CRAFTSMAN

FOR DELIVERY
Contact your nearest jobber. If he doesn't have the POCKETSCOPE available, contact us direct.

- So SMALL in size (4" x 6 1/4" x 10") - So LIGHT in weight (5 1/2 lbs.) - So COMPLETE in performance - So INEXPENSIVE in price - Plus WIDE-ANGLE VISION: on shelf, on floor, on bench. - Plus RETRACTABLE LIGHT SHIELD: for increased visibility.

WATERMAN PRODUCTS CO. INCORPORATED
PHILADELPHIA 25, PA.

(Continued from page 118) will pitch in and help us out. Many thanks to LC for helping to get the column in each month. Your former SCM, CO, is deserving of many thanks for the hard work he had to do during the long war years. Congrats to HI on his appointment as RM. Ossie needs all the help he can get, so send in those applications for ORS. Lots of AEC members are required, particularly from the smaller towns. ORS are needed in Quebec City, Montreal, and Hull districts. Drop us a card for information on those or PAM, EC, or OES appointees. CO is interested in traffic work. EA is firing up a new rig. XR is warming up the shack with a 6L6 and all the trimmings. JO has nice signals on 14 Mc., as have DO, DR, and MZ. KS is going on with 800s. LZ, of Quebec City; OA, of Chicoutimi; and QA, of Cap de Madelaine, put nice signals in to Montreal on 8.9-Mc. phone. LF's 144-Mc. receiver is working well. UG has new scopes in the lower apartment in an excellent DX district. Gordie Waugh, ex-ILY of Halifax, expects his VE2 call. BB will be heard with 8L6, 807, and 812. UN, RZ, SU, and HI favor the old 8L6, 807, and BB will have a few hundred watts on from 815s soon. Lloyd is ex-6ASB of London. KC is back in the city. Start sending in that dope on what you are doing, boys. If you prefer, phone AT0541. See you in the S8 Context. Traffic: VE2SU 23, VE2UO 4, VE2DR 2, VE2EG 2, VE2YN 2, 72, Gordon.

VANALTA DIVISION

ALBERTA — SCM, W. W. Butchart, VE6LQ — JJ crocked both ankles when he fell off roof while adjusting new beam. AO has new half-kw. rig on 7 Mc. ZJ is stationed in Edmonton with RCCS and has station set up in P. O. Armories. MJ has new e.c.o. receiver, spending many hours on 3.9-Mc. 'phone than any other VE6, and gets 807-plus reports from down near Mexican border. 8AO is very enthusiastic over new HQ-120X recently delivered to him at Lae La Barke. Y. T. ET puts FB 'phone signal into local telephone lines, thereby getting in subscribers. 8B has placed tentative order for a "single sidereal receiver." At hit 9.9-Mc. 'phone in August with 80 to 90 watts to pair of 807s. He wound his own modulation transformer, too. HR has 90-watt cw rig on 3.5 Mc. using 207 Final. QE keeps 3.9-Mc. 'phone hot over the week ends when he gets home from Calgary. LW is busy lining up equipment to get on 3.5 Mc. WG probably will be alternate ORS for Calgary. HM has pair of 35Ta to replace 810B. WS finished new 28-Mc. beam. AZ has SX-25. FK put pair of 813s soon. Lloyd is ex-3ASB of London. KC is back in the city. Start sending in that dope on what you are doing, boys. If you prefer, phone AT0541. See you in the S8 Context. Traffic: VE6AO 44, DL 22, LG 20.

PRAIRIE DIVISION

MANITOBA — SCM, A. W. Morley, VE6AM — We now have several towns working on 50 Mc. The latest to report are AP, RPK, NB, YW, and portable 6AU, from Brandon. AP managed to work W2JB on this band. DG, our only OES, is trying to form a net and clean up the interference from transceivers. PA in Dauphin, is on 7 Mc. and reports activity for northern points. AW spent holidays in Salt Lake City and parted with some sugar for equipaucat. EO is on at Flin Flon. XP hates suppressor grid modulation and will replace it with megaphone. CU, ex-VEE, is on at Roblin. New call at Portage is DX. No reports of working any net though. The Simpson family, HS, LS, and KN, are all active on 3.5 Mc. and all work within 40 kc. of each other. JP/GE had a swell holiday at the Coast. They still talk about it on 3.9-Mc. 'phone. SD spent his vacation visiting WS and VE5Es. New 50-Mc. stations in Winnipeg include QC, QC, CX, and PV. C8 in Morris also hangs out on 50 Mc. Bootlegging is getting bad on 50 Mc. and it is hoped anyone knowing the whereabouts of any such station will report it to the R.F. WP has some dope from a few of you who haven't been heard from for ages. 73, Art.

SASKATCHEWAN — SCM, Arthur Chesworth, VE5SS — "OK used 6-volt wind charger for power to run an 877 e.c.o. and 807 amplifier at about 20 watts. Receiver is an SW3 operating on 7 and 14 Mc. 8Y got his Tri-tet working OK at last; he now is trying out 28-Mc. doublet. OM is working some DX on 14 Mc. MW has a new 50-Mc. transceiver under construction, also new 50-Mc. W. A. 4ES and MW want to know if anyone is interested in (Continued on page 118)
MODEL 800 RECEIVER

MODEL 700 TRANSMITTER

MODEL 700 xtal controlled transmitter. 144-148 and 235-240 mc. 6AQ5 Trittet drives 6C4 doubler, 6C4 doubler/tripler, 832 long-line push-pull final. Built-in 14 watt 6AQ5 push-pull voice modulator. New "ATOM-X" construction, size only 5" x 10" x 5¼". Matches MODEL 800. Makes serious home-station or mobile rig. Factory built or kit.

HI-Q AIR CAPACITORS

Of unusually high-Q, extraordinary mechanical and electrical stability, easy of adjustment, small in size and useful to beyond 500 megacycles for trimming or tuning, a new air-dielectric capacitor is now available.

Less than one-half inch in diameter, less than 1¾" in length, SILVER Model 619 capacitor provides 3 to 30 mmfd. with air and high quality ceramic insulation. Rotor and stator are one piece, low inductance, multiple aluminum cups. Rotor meshing with stator gives a linear capacitance range of 27 mmfd. over three full rotations.

Produced at the famous Phillips works in Holland, it is brought to American amateurs and experimenters. Price 30¢ each, net, at your favorite jobber.

NEW ULTRA COMPACT HIGH-Q AIR CAPACITOR

Illustrated and high spotted above are but two of many fresh, post-war receivers, transmitters, factory built or kits and parts designed by and for serious amateurs. Prices are as low as quality is high. A penny post-card will bring you catalog of what's new . . . your favorite jobber will have them soon.

OVER 35 YEARS OF RADIO ENGINEERING ACHIEVEMENT

McMurdo Silver Co., Inc.

1249 MAIN STREET • HARTFORD 3 • CONNECTICUT

In Canada—McMurdo Silver Division, General Radionics Ltd., 465 Church St., Toronto, Ont.
GON-SET CONVERTERS
Now available for 20, 10-11, or 6 Meters
Immediate Delivery
Price Complete, $39.95—Special Noise Silencer, $8.25—High Frequency Antenna Load Cable, 8 Cents Foot
O.P.A. Approved • W6VR
See Your Dealer
Manufactured by WATERPROOF ELECTRIC CO.
BURBANK, CALIFORNIA

W8GFK
Aluminum Call Plates
Your call cast in aluminum with black background and polished 1½" letters. Plate size 2" by 6½". 3 styles; L for license, O for no call. Each, postpaid.
P & H SALES CO. 614 Jasper St., Kalamazoo 31, Michigan

RADIO TELEPHONY
RADIO TELEGRAPHY
Courses ranging in length from 7 to 12 months. Dormitory accommodations on campus. Advanced students eligible for practical training at KWAY, 1 KW broadcast station owned and operated by Port Arthur College. New students accepted monthly. If interested in radio training necessary to pass P.C.C. examinations for first-class telephone and second-class telegraph licenses, write for details.
PORT ARTHUR COLLEGE PORT ARTHUR TEXAS
Approved for G.I. training

MARITIME DIVISION A.R.R.L. CONVENTION
Enthusiastically acclaimed the best ever held, and attended by over 300 hams and their XYLs and YLs, the first postwar Maritime Division A.R.R.L. Convention took place during August 31st, September 1st and September 2nd at the Nova Scotian Hotel in Halifax. The Halifax Amateur Radio Club under the capable leadership of Walt Wooding, VE1ET, saw to it that everyone had an excellent time, and the varied program was completed without a hitch. At the banquet, Mayor Ahern of Halifax, in extending a cordial welcome to all visitors, spoke in appreciation of the amateurs' wartime contribution, and expressed the conviction that ham radio would continue in the future, as in the past, to exhibit the highest ideals of citizenship.

C.G.M. Alex Reid, VE2BGE, spoke interestingly on phases of A.R.R.L. relationship in Canadian amateur affairs, and received a tremendous ovation. Other speakers at the banquet were Mr. E. P. Tilton, WHDHQ, West Hartford, and the VE1's own R.L., Mr. G. F. Harris. The speakers were introduced by Art Crowell, VE1DGQ, who presided most acceptably. Ron Hart, VE1MZ, with his roving "mike," provided much amusement, his effervescent wit being a considerable factor in the evening's fun. Table "contacts" were made with many districts, including VE1, VE2, W1 and VO1. The usual hamfest contests, with some added novelties, kept the crowd in a continual uproar, and the judges, Means, Reid, Cobb and Tilton earned the plaudits of the crowd.

On Sunday, following a talk by Mr. Halroyd, of Canadian General Electric Co. on frequency modulation, a field day with various athletic events was featured, and concluded with a delicious picnic lunch. A theater party completed the day's activities. Local hams keeping "open house" until a late hour to accommodate out-of-town visitors.

The five-meter hunt on Monday morning was followed by an interesting talk on v.h.f. by Mr. Tilton, whose articles in QST are so widely read. At the conclusion, 73... and, in many cases, 88... were exchanged, before the visitors took very reluctant leave.

The Halifax Amateur Radio Club deserves great credit for a difficult job excellently performed. Visitors can never forget the wonderful hospitality. Thank you, historic Halifax, we're coming back!

W9GFK

"New Electronic Terms" Department:
From the Lansing State Journal: "P.A. system, hydraulic mike, like new, $100." — D. D. Gibbons

From the Chicago Daily Tribune: "The voltage in use has dropped from 2400 amperes to 800..." — W9GFK

Latest FCC W9/W-cipher reshuffling has brought about these complications: W9LVE is now a W0LVE, a swell guy like W9R1 turns out to be a W0R1, and the W9RLD is ex-W9RLD's. Ex-W9RSE got the W9RSE of it.

WBBP
TELRAD SECONDARY FREQUENCY STANDARD

1000-100-10kc. crystal controlled with multivibrator and harmonic amplifier. Ideal for calibrating receiver dial, for setting transmitter to exact frequency, for aligning receivers, etc. Range: 10 to 45,000 kc. Power supply: 110-250 volts, 25 to 60 cycle. Uses 6V6, 6N7, 6L7, 6X5G tubes. Brand new Signal Corps surplus. Quantities limited!

Harvey Special Price Complete $29.50

SONAR NARROW BAND FM EXCITER

Cut through the QRM with a narrow-band FM signal (2-3kc. deviation). Any receiver can be used. Eliminates BCI, provides maximum economy, more DX, higher output from your final. Self-contained power supply.

Less crystal $39.45

HARVEY'S HITS OF THE MONTH

Harvey does it again! 20 meter fundamental xtal for a buck! Mounted in new style holder with ½” pin spacing. Also 40 and 80 meter xtal at the same low price. $1.00, plus 10¢ postage. Thousands sold already! Specify your frequency!

Special! 8 to 8.2Mc. xtal for 2 meter xtal control Only $1.50, plus 10¢ postage.

Still left — a few of those 5Mc. precision xtal in dustproof holders with neoprene gaskets. Harvey Special Price $1.95

HARVEY'S HAMFESTIVAL OF VALUES

Cornell-Dubilier TJ-20040 — 4 mfd., 2000 working volts DC. Dykanol filled; ceramic insulated standoff terminals; factory installed mounting bracket ... not to be confused with "surplus" filter condensers. Brand new Harvey Special Price $3.75

Harvey has a full line of test equipment for amateur and service use. All standard makes ... most popular models in stock. Write us your needs for immediate quotation!

Telephone: LO, 3-1800

103 West 43rd St., New York 18, N. Y.

Receivers ... all standard makes ... for delivery as soon as released by manufacturers. Cardwell, Hallicrafters, Hammarlund, National, RME ... and others!
The Workshop Associates, Inc.

66 Needham Street • Newton Highlands 61, Massachusetts

RCAINSTITUTES, INC.
Offer thorough training courses in all technical phases of
RADIO and TELEVISION
VETERANS - RCA Institutes is approved
under G. I. Bill of Rights
For Free Catalog write Dept. ST-f6
RCA INSTITUTE, INC.
A Service of Radio Corporation of America
75 Varick Street, New York 13, N. Y.

CONNECTICUT HAM HEADQUARTERS
Complete stocks of nationally known amateur gear — radio electronic parts — tubes — sets and equipment.
Wholesale Only

R. G. SCELI & CO.
317 Asylum St., Hartford 3, Conn.
Tel. 2-1144
84 Elm St., Bridgeport 3, Conn.
Tel. 6-1811
ASK FOR OUR BARGAIN BULLETIN

CLASS D
414 Marshal St., Hampton, Va.

Editor QST:
When the Signal Corps accomplished the feat of receiving a signal reflected from the moon, it must have been apparent to the League and to anyone else with more than an ounce of imagination that it was only a matter of time before point-to-point communication to all parts of the world would be practical on the ultra high frequencies. It was immediately apparent to commercial interests, who lost no time in starting work on installations to do just that. ARRL probably foresaw the rush to those frequencies would overwhelm the amateur unless something was done about it, and I am in complete agreement that the Class D license proposal was the only answer. How so many amateurs could be so short-sighted as to force a restriction against such a license is beyond my comprehension. Those Class D amateurs could have and would have helped hold those frequencies available for us to step into after the techniques had been established. Where has the ham spirit of cooperation and building for the future gone?

— Fred S. Howell, W9QAF/4

Editor, QST:
I want one of those musically-modulated bell-ringing notes that cut through QRM so well they cover up completely any signal beneath 'em. You know — the note like WS — and a lotta other nice fellas use. What I like best about such a D — signal is that no one can smother it. Isn't there some way I can fix my rig so I'll always come out on top with a nice TS note? And isn't it nice of FCC to let us use 'em?

— Dawson W. Bearden, W4IKK

Editor, QST:
There is nothing that has disturbed me, in my 16 years as a ham, so much as the obvious trend toward more and more power in the final, forced by the increased number of people on the air and the consequent QRM. It is a vicious circle: more QRM, so we use more power to overcome it. Much has been written on the subject of power and many suggestions made, but right now it is beginning to look as though the 80-meter band is going to be quite useless during evening rush hours unless you have high power. I speak not only of the 'phone band, where even a kilowatt frequently is insufficient, but also of the c.w. portion of the band.

All of this power business is tied up with another very important item to most of us, and that is money. More and more of the little green notes are needed now to get the same results on 80 — and I’m not talking inflation, I’m talking power. We have arrived at a sad state of affairs when we are forced to admit that, in general, our success on 80 is a measure of our pocketbooks. Right now I defy anyone to deny flatly that this isn’t true today. It was not true ten years ago and our hobby was never intended to be that way.

I have a feeling that the majority of hams, and would-be hams, would like to see some sort of limitation. I speak of 80, and 40 when we get it back. I think they would like to see part of the 80-meter band, say 150 kc. of the c.w. portion, restricted to those using 100 watts or less. This would allow the fellow with the limited pocketbook to go on the air with his inexpensive receiver, and his rig with an 807 final, and rag-chew and handle traffic with a reasonable and equal chance of success which anyone, who listens on 80, knows he hasn’t got today.

— Henry B. Spreague, Jr., W6NOH, az-W1CHR

(Continued from page 110)

QST reports on world radio conferences, particularly the regional Inter-American meetings. It is hoped, of course, that some day it will be possible to work out a satisfactory international solution.)
Bob Henry says:

MOST MODELS IN STOCK

FOR IMMEDIATE DELIVERY

Most models listed below are in stock... ready for immediate delivery:

- Hallcrafters 538 complete: $39.50
- Hallcrafters 540 complete: 79.50
- Hallcrafters 53A: 307.50
- Hammarlund HQ-129X and speaker: 168.00
- Hammarlund SP-400-X and speaker: 342.00
- National NC-2-400 (complete with speaker): 241.44
- National HRO-STA1 and HRO-5RA1: 274.35
- National NC-46: 97.50
- National 1-10A with tubes and coils: 67.50
- RME-45 complete: 198.70
- RME-84 complete: 98.70
- RME DB-20 complete: 68.20
- Parson KP-81 complete: 318.00
- Panoramic panadapter complete: 99.75
- Temco 750A transmitters: 492.00
- Meck 60T transmitters: 150.00
- Gordon, Amphenol, Johnson rotary beams: 39.50, 79.50, 307.50, 168.00, 342.00, 241.44, 274.35, 97.50, 67.50, 198.70, 98.70, 68.20, 318.00, 99.75, 492.00, 150.00

The new Hallicrafters and Collins receivers, transmitters, VFO, etc. as fast as available.
Prices subject to change.

The delivery situation is much improved. I can make immediate delivery of most receivers and other apparatus. Take advantage of the extra service and selection you get by dealing with me, based on my reputation as the world's largest distributor of short wave receivers. Send me your order now. Send five dollars and I will ship at once C.O.D. Or order on my 6% terms. I finance the terms myself to give you better service and save you money. Trade-ins accepted. Tell me what you have to trade, and let's make a deal. Besides having all amateur receivers and transmitters, I also have a complete stock of all other amateur apparatus and parts, also test equipment, etc. I have real bargains in the really good war surplus such as SCR-211's, BC-610, BC-342, BC-348, BC-312, parts, etc. Write, phone, wire, or visit either of my stores.

HENRY RADIO STORES

Butler, Missouri

Los Angeles 25, Calif.

"WORLD'S LARGEST DISTRIBUTORS OF SHORT WAVE RECEIVERS"
Get this Helpful
RELAY CATALOG D-111

Gives latest data on various types of Relays, such as:
- Antenna Change-Over
- Antenna Grounding
- Band Switching
- RF Break-in, Keying
- Overload, Underload
- Latch-In, Safety
- Sensitive, Time-Delay
- Remote Control

Available from your
Ward Leonard Distributor

See how the proper relays can increase the efficiency of your rig. Send for this helpful new CATALOG D-111 now. It's Free!

WARD LEONARD ELECTRIC CO.
Radio and Electronic Distributor Division
538 W. JACKSON BLVD., CHICAGO 4, ILL.

WARD LEONARD RELAYS • RESISTORS • RHEOSTATS
Electric control and devices since 1892

COMMERCIAL RADIO INSTITUTE
A RADIO TRAINING CENTER FOR 26 YEARS

Literature upon request. Veteran training
Dept. B, 38 West Biddle Street, Baltimore 1, Maryland

Our High Forward Gain, Wide-Spaced, 4-Element, All-Aluminum
10 METER BEAM
and High Forward Gain, Wide-Spaced, 3-Element, All-Aluminum
20 METER BEAM are both now available with
A PERFECT MATCH, NO STANDING WAVES
Do not fail to send for literature
We are also glad to announce our new,
XTAL LATTICE BEAM
20 element, 2 METER BEAM

This is a genuine "DREAM BEAM"! Has vertical stacking, horizontal stacking, and longitudinal stacking. The most powerful beam ever offered to amateurs on 2 meters. The price is only $25. This is done because the undersigned has always been partial to the 2-meter band. Add $1 for shipping and packing. This beam is also known as an ARRAY of驚AYS, or three dimensional beam. DO NOT USE UNLESS YOU CAN ROTATE! Sharper than a knife!

Send for literature on the above and our beams for 50 MC, and up, including 18" paraboloids (dish, or paraboloid of revolution) for 1200 MC, and up.

U.H.F. RESONATOR CO.
W. F. Hoisington, WZBAV
GUION ROAD, RYE, N. Y. • Telephone Rye 2030

Correspondence

(Continued from page 118)

Editor, QST:
Let's have a band for low-power 'phone. I enjoy DX 'phone contacts as much as the next fellow, but try to break through these California kilowattls With the increase in number of amateur high-power stations, soon there won't be any 100 per cent QSOs. I have worked Okinawa on 10 watts when there wasn't any QRM and know it can be done; the VKs use 50 watts. It seems to me the rest of us low-power boys ought to have a chance at DX. Why not have a band limited to 50-watts input?
— Ed. Marriner, W0BLZ

AMATEUR G-2

[Editor's Note: The following is excerpted from a letter to W2CSS and published with his permission.]

Editor, QST:
"Johan calling Ludwig: How is Highroad?"
"Ludwig calling Johan: Highroad 235."
"Johan calling Ludwig: Vierer Highroad 235, How is Polarbear?"
"Ludwig calling Johan: Polarbear 20."
"Johan calling Ludwig: Victor! Polarbear 20."

I did not grasp it the first time I heard it. Neither will you, I suppose. Imagine a ham in Holland, Time: second year of World War II. Spot: his shack. Circumstances: German boots stomping thru the streets; British bombers roaring overhead in the night. Ham activity: completely at a standstill, xmr's confedent, all other gear that could be kept out of the hands of the occupiers safely hidden from the spying eyes of the German "organizers." All that is left for the time being is a BCL-box. Officially it is not of much use. Listening to any other but Dutch and German stations is verboten! The Germans were such bad psychologists; they did not know that the way to have a Netherlander do something was to forbid it. So we listened to any station but the Dutch and German ones — and kept ourselves well informed about the happenings at the war fronts.

The BCL was quite content when he managed to pick up the news from London thru a lot of German-made static. But I, as a ham, was not content with that. Every now and then I explored the whole range of my receiver, looking out for anything interesting. The range of my box was up to 23 Mc., so the possibilities to find something were many...

One evening, searching for something interesting on shortwave, I heard a communication somewhere between 3 and 5 Mc., part of which I recorded at the beginning of the year. (For your convenience I translated it literally into English.) I suspected at once it had something to do with the nightfighters, and after a few weeks of intensive listening I knew who they were and what they chattered about: it was the German nightfighter communication system.

As soon as I knew this, I wished to know everything about it, in order to pass my information to British Bomber Command. I supposed they would be interested to know more about this German system. So from now on I was in my shack every night the nightfighters took to the air; all lights put out including all-lights, windows opened in order to see and hear what happened in the sky, at the same time making mental notes of what I heard in my radio. The volume control was turned down as low as readability permitted.

Due to my knowledge of the German language and due to the very simple code the Germans used, I was soon able to tell what were the results of the fighters, how many went up on a night, in what mood the pilots (afraid, drunk, lazy, etc.), why a plane was sometimes circling around for hours on end (connection with ground broken) and, most important of all, which methods might be used to disable this defense system.

Thru the underground channels I sent a report of my observations and suggestions to British Bomber Command. I was not a little surprised when I observed, several months...
ALL STANDARD LINES

- **RECEIVERS**

- **TRANSMITTERS**
 - Tonso — Hallicrafters — Collins — Mock — Abbott.

- **TEST EQUIPMENT**

- **AMPLIFIERS**
 - Bogen — Thordarson — Masco — Bell — Eastern — Webster — etc.

- **PARTS**
 - All good makes — Harrison has it! Complete stock.

MORE AND MORE NEW MODELS ARE NOW IN OUR STOCK for IMMEDIATE DELIVERY

Get yours sooner! Send your order to Harrison, NOW!

COAXIAL RELAY
Constant 52 ohm impedance. A throw-on coaxial switch from receiver to transmitter. Handles 750 watts of RF. Has three connectors for PL-259 plugs, 115 Volt AC coil, Price $7.35.

Same, with additional NC and NO contacts to control receiver, ECO, etc. Model 6004 $8.83.

ROTORARY COAXIAL COUPLING
$2 ohm constant impedance slip ring coupling. Made for Signal Corps by Lapp, to feed rotary antennas.

Head, 1 1/4" dia. machined from brass. Copper feed line 1/4" dia, is 5 1/2" long. Coaxial sockets at each end. HSS $7.75.

COAXIAL CABLE
RG-8/U 52 Ohms impedance, PB for feeding beams, etc., has aluminum 1/2" Cu wire with high efficiency. New, perfect cables.

100-foot length with two PL-259 coaxial plugs $4.98.
65-foot length with one PL-259 coaxial plug $3.35.

OIL CONDENSERS
1 mfd, 5000 Volt. Brand new, $3.95.
2 mfd, 5000 Volt. Brand new, $5.75.

HSS TUBES
1 mfd, 5000 Volt. Brand new, $3.95.
2 mfd, 5000 Volt. Brand new, $5.75.

MAIL ORDERS?
Certainly! Just list everything you want (items in this ad, or any ad, magazine or catalog) and include deposit.

VY 73 de

Bill Harrison, W2AVA
Correspondence

(Continued from page 180)

after sending my report, that my suggested methods of jamming, false messages, etc., actually were used by the RAF and with good success — the I did not know whether this was in consequence of my information (the RAF must have had many sources of information). I took it as a proof that I was able to serve my country and the allies with my hobby. It was a stimulant to continue in the field. How I and so many other PA-hams did so is another story.

— G. H. Pietersen, PA4GE

"‘T’other day when winding an oscillator coil I needed some binding strips. I found an old phonograph record and used that. On looking at the title I read ‘Looking for Someone.’ Prophetic? Well, I remember the second line of the song went ‘... and not finding anyone there.’ I wonder!” — VE3GII

W5GUZ is back on the air after 3½ years as a Jap POW and 8 months in Army hospitals. He reports that W9VTH, USN, and KA1AT, USA died in Jap prison camps. W7AYV, USN, and W5GUZ took over the Jap radio station, JAW, near Tsuurga, Japan, during the interim of August 29—September 9, 1945, before the Yanks landed at Yokohama. They did this unarmed and in the company of ex-W6HIJJ, USN, one Marine, and a Navy radio operator. San Francisco was worked and relief food obtained by plane. They then ran a sked with the POW camp in Osaka, Yokohama and 1st Army Hq.

W4ICC, author of “A Combination Test Meter,” September QST, forwards this added operating note: When using the device as an output meter, with the pin jacks J2 connected to the speaker terminals of a receiver, L1 should be removed from its socket.

It works today — it worked then! At the turn of the century, Lord Kelvin (William Thomson, 1824–1907), inventor of the siphon recorder and the galvanometer, and scientific writer of repute, wooed and won his second XYL via the romantic language of the dits and dahs.

It is our sad duty to relate that Gordon Anderson, W5IQU, was electrocuted on August 1, 1946, while operating his ‘phone transmitter. Investigation has disclosed that a defective transformer, with windings shorted to the core, caused Mr. Anderson’s ungrounded transmitter rack and microphone cable to become “hot” with respect to ground.

Note to enterprising receiver manufacturers: The Signal Corps has announced a war-developed radar device for measuring wind velocity, which should make a handy receiver gadget for accurately measuring verbose 40-dB.-above-S9 ‘phone stations.
COMPLETE STOCKS! QUALITY! SERVICE! VALUE!

Terminal is New York’s leading distributor of top-quality radio equipment. Our large stocks, spacious sales floor and courteous salesmen assure you of a pleasant and successful shopping visit.

Next time you drop in at Terminal, run your eyes over our 80-foot bargain counter — you’ll see hundreds of money-saving buys you just won’t be able to pass up!

SUPER-SPECIALS IN CHOICE SURPLUS!

Compare These Sensational Terminal Values!

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.E. 872A, rugged high voltage rectifier</td>
<td>$2.95</td>
</tr>
<tr>
<td>G.E. 814, a favorite, selling fast for only</td>
<td>$5.95</td>
</tr>
<tr>
<td>3C24/24G JAN Approved, 25-watt H.F. triode</td>
<td>2.45</td>
</tr>
<tr>
<td>3E29/829B JAN Approved</td>
<td>4.95</td>
</tr>
<tr>
<td>829B steatite socket and aluminum base shield</td>
<td>.75</td>
</tr>
<tr>
<td>Simpson 0–200 Microamperes, 3½” round case</td>
<td>4.95</td>
</tr>
<tr>
<td>G.E. 0–150 Volts AC, 3½” round case</td>
<td>3.39</td>
</tr>
<tr>
<td>G.E. 0–200 Milliamperes, 3½” round case</td>
<td>3.39</td>
</tr>
<tr>
<td>G.E. 0–4000 Volts DC</td>
<td>$8.45</td>
</tr>
<tr>
<td>Complete with external precision multipliers</td>
<td>8.45</td>
</tr>
<tr>
<td>Westinghouse 0–2000 Volts DC</td>
<td>$7.45</td>
</tr>
<tr>
<td>1 mill movement, 3½” round. Complete with external multipliers</td>
<td>7.45</td>
</tr>
<tr>
<td>4 Mfd.—600 Volts, oil, round can</td>
<td>.75</td>
</tr>
<tr>
<td>4 Mfd.—1000 Volts DCW, oil, rectangular can</td>
<td>.95</td>
</tr>
<tr>
<td>1 Mfd.—2500 Volts DCW, oil, round can</td>
<td>1.25</td>
</tr>
<tr>
<td>1 Mfd.—5000 Volts DCW, oil, rectangular can</td>
<td>2.50</td>
</tr>
<tr>
<td>.001 Mfd.—2500 Volts DCW, 5000 V test, mica.</td>
<td>$3.00</td>
</tr>
<tr>
<td>.002 Mfd.—2500 Volts DCW, 5000 V test, mica.</td>
<td>$3.00</td>
</tr>
<tr>
<td>50,000 ohm Bleeder, 100 watts, IRC type HA</td>
<td>.69</td>
</tr>
<tr>
<td>Precision resistors, 1% tolerance, wire wound. .5 meg—75c, 3 for $2.00</td>
<td>2.50</td>
</tr>
<tr>
<td>1.0 meg—95c, 3 for</td>
<td>2.50</td>
</tr>
<tr>
<td>Advance Antenna Relay, Type 1000-1B, DPDT, ceramic insulation, 10 amp. contacts, 115 Volt AC coil</td>
<td>2.95</td>
</tr>
<tr>
<td>Dunco 30 sec. Time Delay Relay, 20 amp. contacts</td>
<td>4.65</td>
</tr>
<tr>
<td>Twin-lead 300 ohm transmission line, polystyrene insulation. Per foot</td>
<td>.03</td>
</tr>
</tbody>
</table>

WARRANTY — NO CHANGE IN OUR POLICY. EVERY ITEM WE SELL IS GUARANTEED, REGARDLESS OF ITS LOW PRICE. SURPLUS, TOO!

If unable to visit our store, send us your mail orders with 25% deposit. Remit in full all orders under $5.00. Prices are F.O.B., New York.

RECEIVERS!

National

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRO-STA, complete</td>
<td>$306.71</td>
</tr>
<tr>
<td>NC-2400—with speaker</td>
<td>$241.44</td>
</tr>
<tr>
<td>NC-46—with speaker</td>
<td>$107.40</td>
</tr>
<tr>
<td>1–10A, complete with National selected tubes, less speaker and power supply</td>
<td>67.30</td>
</tr>
<tr>
<td>1–10 power supply No. 5886</td>
<td>22.43</td>
</tr>
</tbody>
</table>

Hallicrafters

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-38, complete</td>
<td>$39.50</td>
</tr>
<tr>
<td>S-40, complete</td>
<td>$79.50</td>
</tr>
<tr>
<td>SX-42 receiver</td>
<td>25.00</td>
</tr>
<tr>
<td>R-72 Speaker for above</td>
<td>25.00</td>
</tr>
<tr>
<td>HT-9 Transmitter, 100 Watts on Phone and CW. Complete with tubes, less crystals and coils</td>
<td>$250.00</td>
</tr>
</tbody>
</table>

RME

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RME-45, complete</td>
<td>$198.70</td>
</tr>
<tr>
<td>RME-84, complete</td>
<td>98.70</td>
</tr>
</tbody>
</table>

Hammarlund

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQ-129X, complete</td>
<td>$173.25</td>
</tr>
<tr>
<td>SP-400-X, complete</td>
<td>342.00</td>
</tr>
</tbody>
</table>

Prices subject to change

Waterman Pocketscope

A 2” "pocket-size" scope incorporating the cathode ray tube, vertical and horizontal amplifiers, linear time base oscillator, synchronization means and a self-contained power supply. Your cost | $59.50 |

Du Mont 274 5” Oscillograph

Du Mont’s new 5” oscillograph answers your requirements for a full-size scope for routine testing. Popularly priced at | $59.50 |

XMITTING CRYSTALS

BLILY , PETERSEN VALPEY

Our stock of thousands of new crystals, covering all amateur requirements, assures you the widest selection of frequencies.
LINE SPACER

- Low Loss
- Easily Attached
- No Metal Contact

PATENT APPLIED FOR

Type LX-2 (2 in.)
Type LX-4 (4 in.)
Type LX-6 (6 in.)

- Fabricated from Amphenol 912-B (low moisture absorption—low power factor—low loss factor).
- Easily attached to line wires without threading wire through holes.
- No metal contact between line wires and spacer to cause noise or changes in line characteristics.

SEE THEM AT YOUR SUPPLY HOUSE!
FACTORY: Laurelwood and Tippecanoe Avenue
Loma Linda, California

THE Arthur L. Munzig MANUFACTURING COMPANY

RADIO INSTRUCTORS

Receiver servicing experience, College degree preferred. $3000 a year to start, $4200 after four months. Work in the heart of the Radio Industry. We will teach you practical television. Write Raleigh G. Dougherty, 158 Market Street, Newark 2, New Jersey, c/o New York Technical Institute of New Jersey. America’s foremost Television school.

RADIO FLIGHT OFFICERS wanted by international carrier for overseas assignments. Draft exempt. Applicant must hold radiotelegraph license—2nd Class or better. Radiotelephone license—2nd Class or better. Age 21 to 25. Ability to copy code 20 to 25 words per minute. Must have proof of citizenship for passport procurement. Pass flight physical. (Glasses permitted).

Address inquiries to Personnel Relations Dept., Trans World Airlines, AAF Annex No. 1 Bldg., T-7 Room 1534, National Airport, Gravelly Point, Washington, D. C.

Mass. Radio School
271 Huntington Ave., Boston 15, Mass.

Licensed by Commonwealth of Mass., Department of Education

Three-Band Transmitter

(Continued from page 88)

26 hours and one of 33 hours, it is suggested that 2 rows of \(\frac{1}{4} \) -inch diameter holes be added along the rear apron for ventilation, since \(R_7 \) dissipates approximately 10 watts.

Operation

Operation is as usual with a VFO and amplifier. If the coil specifications have been followed closely, only a slight adjustment of end turns on the oscillator grid coils should be necessary to obtain full band coverage.

With a 60-watt lamp connected across the link terminals as a dummy load, the following data were obtained:

- Oscillator screen, 150 volts at 1 ma.
- Oscillator plate, 300 volts at 11 ma.
- Amplifier grid, 105 volts at 2.5 to 4.5 ma.
- Amplifier screen, 240 volts at 10 to 15 ma.
- Amplifier plate, 660 volts at 110 ma. doubling, or 75 ma. straight-through.

It must be remembered that the meter reads total grid, screen and plate currents, so the minimum at resonance, unloaded, will be in the neighborhood of 30 to 45 ma., depending on whether the 807 is running straight through or doubling. Loaded, the plate input runs about 70 watts when doubling and 50 watts at straight-through.

The proper ratio of plate voltage to plate current for an 807 operating as a straight amplifier at 750 volts requires a tuning capacity of better than 1\(\frac{1}{2} \) \(\mu \)fd. per meter or resonance for a \(Q \) of 12.\(^1\) If the plate is tapped down on the coil,\(^2\) a better impedance match can be obtained using the values called for here and greater loading may be obtained on 3.5 Mc. or 7 Mc. straight amplifier operation. Of course, greater loading than shown may be used, but no increase in output will be gained, as indicated by a detuning of the plate tank circuit. The West Coast was worked on 7 Mc., operating the amplifier straight through and as a doubler, and there isn’t a great difference in output one way or the other. Since the tuning is not as sharp for doubler operation, the transmitter and antenna coupler may be tuned for the center of either the present 7- or 14-Mc. bands, after which only the oscillator grid tuning need be varied for changing frequency. A neon bulb at the antenna tuning condenser shows no change with this type of operation. For straight amplifier operation it will be necessary to retune all circuits approximately every 100 kc., but the output will be greater.

Performance

The antenna used with this transmitter was 67 feet long, center fed, and the antenna coupler was of the swinging-link type. Over a period of 6

(Continued on page 186)

\(^1\) The Radio Amateur’s Handbook (Power Amplifier Operation).
MEISSNER SIGNAL SHIFTER
The Number One requirement for the "complete" ham shack. Covers all the new bands. Completely new. Ask your jobber for full information.

THORDARSON Transformers
Ham rigs "Powered by Thordarson" have been creating and breaking DX records since radio began. Designs now available to match the newest tubes. Power your new rig with Thordarson...visit your Thordarson jobber today!

ELECTRONIC DISTRIBUTOR AND INDUSTRIAL SALES DEPARTMENT, MAGUIRE INDUSTRIES, INCORPORATED
936 NORTH MICHIGAN AVENUE, CHICAGO 11, ILLINOIS
Electrox Model AR 1
Battery Eliminator
An exceptionally well-built battery eliminator for servicing, testing, and demonstrating automobile radio, and for other uses requiring negligible hum. Uses Selenium rectifiers and is housed in attractive case. Has D.C. output of 6 volts at approximately 1.5 amperes. Operates on 115 volt, 60-cycle A.C. An unusually high-grade battery eliminator at low cost. Price..... $37.50
Write for descriptive Circular 1463
Electrox Division
SCHAUER MACHINE CO.
2049 Reading Rd. Cincinnati 2, Ohio

This is the eleventh issue of QST for 1946. Can you readily find your first nine issues? You can if they are kept in a QST BINDER PRICED AT $2.00 POSTPAID
(For the present not available outside of the United States and Possessions.) One set of yearly labels (1922-1946) now provided with each binder.
American Radio Relay League, West Hartford, Connecticut

SAVE YOUR ARM WITH THE GENUINE EAST-WORKING VIBROPLEX
Reg. Trade Marks: Vibroplex, Lightning Bug, Bug "Original" Deluxe Model WITH PATENTED JEWEL MOVEMENT $19.50

For downright easy sending — there's nothing to equate to "Original" Deluxe Vibroplex key, famous the world over for its effortless action, superior signals and ease of operation. The only key equipped with PATENTED JEWEL MOVEMENT. Actually cuts sending effort in half, prevents "jogged" arm and develops the highest degree of sending skill attainable. Try this labor-saving key and you will agree with thousands of other operators that it is the best key you ever used. Polished chromium parts and base, Red switch knob, finger and thumb piece, DIE CUT contacts and main spring, 1/16th contacts, Circuit closer, cord and wedge. I/O available in "Blue Racer" and "Lightning Bug" modes. Order yours to-day! Money order or registered mail. FREE catalog.

THE VIBROPLEX CO., Inc.
833 Broadway New York 3, N. Y.

(A.R.R.L. QSL BUREAU

For the convenience of American and Canadian amateurs, the League maintains a QST-card distributing system which operates through volunteer "District QSL Managers" in each call area. To secure such foreign cards as may be received for you, send your district manager a standard No. 10 stamped self-addressed envelope. If you have reason to expect a considerable number of cards, put on an extra stamp so that it has a total of six cents postage. Your own name and address go in the customary place on the face, and your station call should be printed prominently in the upper left-hand corner. If you have held other calls in previous years, submit an envelope for each such call to the proper manager — there are many thousands of unclaimed-for cards in the files. All incoming cards are routed by hand to the home district of the call shown in the address. Therefore, cards for portable operation in other districts should be obtained from the home-district manager.

W1 — Jules T. Steiger, W1BGY, 231 Meadow St., Williamstown, Mass.
W2 — Henry W. Yahne, W2SN, Lake Ave., Helmetta, N. J.
W3 — Maurice W. Downe, W3WU, 1311 Sheridan St., N. W., Washington 11, D. C.
W5 — L. W. May, Jr., WSAJG, 9428 Hobart St., Dallas 18, Texas
W6 — Horace R. Greer, W6TI, 414 Fairmount Ave., Oakland, Calif.
W7 — Frank E. Pratt, W7DXJ, 5025 S. Ferry St., Tacoma, Wash.
W8 — Fred W. Allen, W8AER, 1959 Riverside Drive, Dayton 5, Ohio.
W9 — F. Claude Moore, W9HIF, 1024 Henrietta St., Pekin, Ill.
W10 — Alva A. Smith, W9DMA, 238 East Main St., Caledonia, Minn.
VE1 — L. J. Fader, VE1QF, 125 Henry St., Halifax, N. S.
VE2 — C. W. Skarstedt, VE2DR, 3821 Gironaut Ave., Montreal 28, P. Q.
VE3 — W. Bert Knowles, VE3QB, Lanark, Ont.
VE4 — C. J. Campbell, VE4CG, 276 Ash St., Winnipeg, Manitoba.
VE5 — J. A. Betten, VE5YR, P. O. Box 35, Toyo, Sask.
VE7 — H. R. Hough, VE7HR, 1785 Emerson St., Victoria, B. C.
VE8 — Yukon A. R. C., P. O. Box 298, Whitehorse, Y. T.
K4, KP4 — E. W. Mayer, KP4KD, P. O. Box 1061, San Juan, P. R.
K5, KZ5 — Signal Officer, KZ5A, Quarry Heights, Canal Zone.
K7, KL7 — J. W. McKenney, KL7CK, Box 1533, Juneau, Alaska.

weeks, 36 states, 6 Canadian districts and 10 countries in 5 continents were worked with average reports. This transmitter was also used in the July ORS party for 33 hours continuous operation, and for 26 hours at reduced input in the June Field Day. During Field Day Tests, the VR-150s really earned their place in the rig, compensating for line voltage fluctuations from the gasoline-driven generator. Excellent reports have been received on the air from members of the ARRL Headquarters gang, who, it might be mentioned, are about the most critical group of hams this side of Purgatory, when the question is "QRI?"
TRANSMITTER BC-375E

Here is the famous airborne transmitter made by General Electric Co. It's ideal for hams. Has 7 tuning units, antenna tuning unit, heavy duty 24-38 volt dynamotor. Complete with tubes but less cables. F.O.B. Boston or Chicago. Must be prepaid in full. Yours for... $46.45

CRYSTAL FREQUENCY INDICATOR AND M.E.W. UNIT

A plug-in sub-assembly of the AN type T-47/ART-13 Radio Transmitter. Consists of a Crystal (200 kc) Controlled Oscillator, and 50-KC Multi-vibrator Circuit, and Audio (1000 C.P.S.) Oscillator. Comes with TWO 12 SL 7 GT and One 128A7 tubes. Less Plate Supply. Overall dim. 6" x 3 1/2" x 5"... $7.95

A STEAL IN ANTENNAS

Telescopic Aerial—15 inches to 45 inches...... 99¢

22-inch Aerial for 150 to 200 Mc.—with cable connector........... $1.69

Telescopic Aerial—from 14 inches to 9 feet, 6 inches........ $2.69

HEADPHONES

$1.87

Signal Corps 4000 ohm magnetic headphones. This double headphone set comes complete with Phono Plug, cord and leather-covered headband. Brand new. Please enclose 30¢ to cover mailing and handling. A $14.50 value.

MICROPHONES $1.99

U. S. Army brand new single button carbon hand microphone "Shure" type with push to talk switch. Enclose 30¢ to cover mailing and handling.

• ½ Million Dollars in War Surplus Equipment. Write for Free Catalog

127
ARMY-NAVY
Official
HEAD PHONES
$249

EXTRA
SPECIAL
VALUE

Limited quantity of these head phones. Highly sensitive, 8000 ohms impedance. Bi-polar magnets, bakelite shell and cap. Adjustable head band. Cord connects from one side out of the way. One of our many special features. Write today for complete catalog.

BURSTEIN-APPLEBEE CO.
1012 T McGee, Kansas City 6, Mo.

RADIO
RADIO Technician and Radio Communications courses. Register now for new classes starting first Monday of each month. Day and Evening Classes. AMERICAN RADIO INSTITUTE 101 West 63d St. New York 23, N. Y. Approved under GI Bill of Rights

YOU ASKED FOR IT
Here It Is!
A directional Telecurve great circle map of the world giving shortest route curves with great circle compass directions, airline distances, and corresponding world time. Maps in stock based on the following cities:

Wichita Chicago Hartford
Denver Kansas City San Francisco
New York New Orleans Rochester
Seattle Fort Worth and Washington
St. Louis Dallas Los Angeles

Price per map only $2.00 including illustrated Telecurve information folder. (California residents please include sales tax.)

• NOTHING LIKE IT ON THE MARKET •
Numerous other starting areas now in preparation. If your city is not listed above write for full information about same.

Order today
JOHN A. GRUTZIUS, W6FZ
2640 St. George St., Los Angeles 27, Calif.

Sweepstakes
(Continued from page 81)

Additional Club-Member Awards
Certificate awards (besides the 'phone and telegraph Section awards) will be made through each club where three or more individual club members, or new hams invited and reported by such a club, in addition to sending a contest report, have their club secretary write HQ, listing their individual calls and scores and the total of such scores. Only the aggregate of scores confirmed by ARRL receipt of Contest Logs shall count for the club. If there are both club 'phone and c.w. entries ARRL will provide two certificate awards for the club to give its leading members. The sum of the scores of all club participants ('phone and c.w.) confirmed by logs will be added by the secretary, to count for the club.
A gavel with engraved sterling-silver band is offered as an award to that club whose officers or activities manager submit the greatest collective score from "88" logs. Club members must send in full reports either direct or through the secretary to substantiate any club's claim on the gavel award!

Report Results
Report to ARRL, West Hartford, Conn., as soon as the contest is over. Use the log form shown in the example. List all operators whose work at your station is responsible for any part of the score.
All active ham operators are invited to take part and report. You will work a new bunch of stations, make new records for your station, get QSL cards (the sure to send one for each QSO), have a lot of fun, meet new friends, and perhaps rate an ARRL award at the conclusion. Do your best operating. MAIL YOUR REPORT IMMEDIATELY AT THE END OF THE CONTEST TO INSURE THAT YOUR RESULTS ARE CREDITED.

5 All hams are requested to submit lists, even if they only show a small score, on a postal to help support claims from other stations.
6 The highest individually-attained score of any one of the operators of amateur stations having more than one operator is the official score for such a station. The summary of scores must show all stations worked by all operators however, circling the entries of stations and/or Sections that cannot count in the official total. Awards will be based on the official total and will be made to the individual operator accredited with this total. To show the possible scores that can be built up by several operators at one station, such scores (all Sections listed by all points listed) may be shown parenthetically after the "official" score that counts toward a possible award.

Strays
"They 'dood' it — and is our face red too!" Department:
Lafayette Radio, Inc., Boston, in a bulletin on a surplus Signal Corps receiver, states that the power requirements are "800-volts d.c. at 100-150 Mc." — WINXJ
In May QST, WSICO's test-oscillator description reads, "250 volts at 65 Mc. will handle the requirements." — P. R. Crownfield, jr.
V.h.f. auroral influence!

The Radio Association of Western New York is holding their annual hamfest, Saturday, November 9, 1946, at the Markeen Hotel, Buffalo, N. Y. Program starts at 2 P.M., turkey dinner at 7:30 P.M., followed by prizes, show and dancing.
10-11 METER GON-SET CONVERTER

NEW BC 223A TRANSMITTER and PE 103A GENERATOR

TRANSMITTER—801 Oscillator and 803 Power Amplifier. 2·3 Muhinders and 1·4·8 Speech Amplifier A·CELL, Frequency and Volume Controls on separate switch, 30 to 30 wave output. Self-Contained Antenna Tuning Unit. FREQUENCY—4000 to 5000 KC—Faults corrected. Black wrinkle finish. Table Units 12 volt DC; larger 110 Volt AC or 60 amp. or more output. Combination is ideal for both fixed or mobile transmitters. All for $28.95 F.O.B. Los Angeles.

AMERICAN LIP MIKE T-45
TYPE USED IN TANKS .95

AMERICAN MICROPHONE
Hand Set H22A/U—Mike, 100 ohm. Receiver, 3300 ohm — $3.95.

SMOOTHING CHOKE
CASED LIGHT 300 MIL. 40 ohm — $3.95.

We carry in Stock all Standard Brands
Regular shipments are being received of communications receivers—
NATIONAL HALLICRAFTERS
HAMMARLUND CARDWELL RME
PIERSON MILLEN COLLINS
and all other major lines
Orders Filled Promptly

WHIP ANTENNA
Type AN131A Galvin Mfg. Co. Collapsible 11 Ft. Long — $1.35.

The West's Largest Radio Parts
Distributor * Established 1932

RADIO SPECIALTIES COMPANY
1956 South Figueroa Street • Los Angeles 7, Calif.
These little inductor coils have so many different uses, we don't know them all ourselves! Every day amateurs tell us about new applications they've discovered.

Miniductors can be used in all sorts of coil applications for receivers, transmitters, test equipment. They'll prove useful as tank circuit coils, r-f chokes, high-frequency i-f transformers, loading coils and in many other ways. They can be cut to any required length. They can even be slit lengthwise and flattened to make excellent Faraday Shields.

They're light in weight, yet extremely rugged. Q factor is amazingly high, due to the almost total absence of insulating material in the electrical field. Experiment with MINIDUCTORS yourself! You'll be pleasantly surprised how handy they are to have around. Your jobber has them!

Write for the complete B & W Catalog

BARKER & WILLIAMSON
237 FAIRFIELD AVENUE
UPPER DARBY, PENNA.

NEW ENGINEERING • NEW DESIGN

NEW RANGES • 50 RANGES

Volt: 5 D.C. 0-10-50-250-500-1000 at 25000 ohms per volt.
5 A.C. 0-10-50-250-500-1000 at 1000 ohms per volt.
4 Resistance 0-4000-40,000 ohms—4-40 megohms.
6 Decibel -10 to +15, +20, +25, +40, +45, +55.
Output Condenser in series with A.C. volt ranges.

Model 2400 is similar but has D.C. volts Ranges at 5000 ohms per volt.
Write for complete description
You'll Find What You Want at ONE of Our FOUR "Ham Shacks"

Receivers

NATIONAL'S—NC-46

NATIONAL has again combined craftsmanship and reliability in building the NC-46 to fit the needs of Radio Amateurs. The NC-46 incorporates these features: Coverage from 540 KC to 30 MC; Automatic Volume control; 120 volt AC-DC receiver with 4 Watts of audio output; 2 IF stages; 10 tubes and electrical bands

All these features are incorporated in a smart looking grey crackle chrome trimmed metal cabinet. You will be proud to own a NC-46. Priced with $100.00 speaker (Plus State Tax)

CRYSTALS

- **BLILEY**
 - 80 and 40 Meter $2.80

- **PETERSEN**
 - 80 and 40 Meter $2.65
 - 20 Meter $3.50
 - 10 Meter $5.00

NEEDED PANEL METERS

For building of that new rig, Supreme Meters will do the job. The following 2, 3, and 4-inch square DC. MA bakelite meters are in stock:

2" — 0-10, 0-25, 0-50, 0-75, 0-100, 0-200, 0-250, 0-300, 0-500, 0-750 $5.67

3" — 0-1 6.17

3" — 0-10, 0-25, 0-50, 0-75, 0-100, 0-200, 0-250, 0-300, 0-500, 0-750 $5.84

4" — 0-1 6.94

4" — 0-10, 0-25, 0-50, 0-75, 0-100, 0-200, 0-250, 0-300, 0-500 $6.60

Treat Yourself to a New SPEED-X Key

FOR THE BEGINNER

Model No. 300. Well-built and inexpensive. Black bakelite base and knob. All machine parts are nickel plated. .. $0.99

GENERAL PURPOSE KEY

Model No. 301. Moulded black bakelite base. Nickel key arm, adjustable smooth acting bearings and pigtail connections are just a few of the features that make it a buy at. .. $1.41

HIGH SPEED KEY

Model No. 515 with baked black crackle finished steel base with four rubber feet to prevent slipping. Chromium plated brass vibrator has main spring and U-spring clock spring for smooth snappy action. .. $6.00

ANTENNA NEEDS

All four of our "HAM SHACKS" carry a complete line of Antennas and Antenna accessories. Look over the list below and fill your needs.

PREMAX ANTENNAS

10 Meter Beams — 3-Element adjustable complete with Ladder Assembly $30.00

PREMAX BEAM ROTAMOUNT

Hand-operated turntable for Rotary Beams will support largest type of Beam Assembly. Construction will permit full 360 rotation in either direction ... $21.90

PUBLICATIONS—IN STOCK

- **Radio Amateur Call Book** .. 1.50
- **Hints & Kinks** .. .50
- **Antenna Handbook**50
- **Learning the Radiotelegraph Code** .. 25
- **How To Become a Radio Amateur** ... 25
- **License Manual** ... 1.15

Add 10 cents for postage

OUR PUBLICATIONS KEEP YOU POSTED

Simply by dropping a postal card to Dept. Q you can keep up with the latest information on Amateur Equipment and ideas. This postal card will bring you: "Across the Operating Table," "New Catalogue," and "Weekly Special Sheet."

R. C. & L. F. HALL, INC.
"The Ham Shack"
HOUSTON: 1306 Clay Avenue — Tel. C-9731
BEAUMONT: 961 Pearl Street — Tel. 4749
DALLAS: 2123 Cedar Springs Ave. — Tel. R-8689
GALVESTON: 1803 Tremont Street — Tel. 24807
SEND MAIL ORDERS TO HOUSTON

All prices quoted subject to change without notice

R. C. (Dick) Hall
W5EIB
L. F. (Lillian) Hall
W5EUG
Sylvania Modulation Meter X-7018. Now in Stock. Accuracy is within 5% from 300 Kc. to 144 Mc. No plate or filament supply needed. Order yours now.

$29.50 net

PREMAX Rotary Beam Kit RB-6109. Extremely light assembled weight, one man can erect it. Small mounting space required. Adjustable for use on 6-10-11 meter bands.

$30.00 net

125-Watt Multi-match Thordarson Modulation Transformer. Type 11M76. $19.15 net

ALL OF THE ABOVE F.O.B. OAKLAND, CALIF.

Mail orders given careful attention

Foreign Notes

(Continued from page 25)

GREAT BRITAIN

September 1st saw the return of part of “eighty” to G amateurs, the frequencies 3500-3635 and 3685-3800 kc. becoming available on that date. The missing segment is not available under the Cairo regulations. With the full release of the 1715-1800-ke. band, British amateurs have most of the Cairo allocations (except, of course, the not-yet-retumed halves of 40 and 20).

Portable privileges are again available in Great Britain, upon payment of an additional 10s. per year, with a power limit of 25 watts. The indicator /PP will be used. It is now also possible, as a result of representations made by R.S.G.B., for an amateur license to carry an alternate address, and when operating from that address the licensee must sign the designator /A. There is no charge for this privilege.

The VT-127-A

(Continued from page 27)

band, with correspondingly improved performance. The experimental equipment described herein was operated only in the 144-148-Mc. band in order to determine the operating characteristics of the tube under the most severe conditions. Calculated operating conditions for medium-frequency operation are given in Table III. In this table the power output represents tube output, and the actual useful power output would be less than this by the circuit losses.

Amateurs will find the VT-127-A a quite versatile triode for medium-power applications, and since it is available at a very low price through the surplus disposal channels it should find many uses in numerous amateur stations.

About the Author

- Gomer L. Davies, ex-W8AFW, joined our ranks in 1926. During the intervening years he strayed from the fold, doing stints with the Bureau of Standards (1923-1933), and the Washington Institute of Technology, as engineer, director of engineering and general manager (1933-1945). He is now actively engaged as president of the Davies Laboratories, Inc. Mr. Davies received his B.S. degree in 1929 from the Case School of Applied Science, Cleveland. His present-day pursuits are radio research and development.

Switch to Safety!
The PROVAC electronic vacuum tube volt-ohmmeter permits the laboratory engineer and radio service technician to measure every voltage required in the design laboratory and radio servicing.

Measure R.F. with the same ease as measuring D.C. with the latest development in R.F. probes. It is no longer necessary to guess at which point the signal stops.

DC Ranges: 0 to 3-10-30-100-300 and 1,000 volts. All ranges have a constant input resistance of 11,000,000 ohms. Accuracy 3% ±

AC Ranges: 0 to 10-30-100-300 and 1,000 volts. Sensitivity: 1,000 ohms per volt. Accuracy 5% ±

Electronic Ohmmeter Ranges: 0-1,000 ohms, 0-10,000 ohms, 0-100,000 ohms, 0-1 megohm, 0-10 megohms, and 0-1,000 megohms.

R.F. Voltage ranges 0/3-10-30-50 Volts to be measured on 100 Volt range.

Bridge Amplifier Circuit Meter individually calibrated for use with set of test leads, signal tracer probe and batteries.

Features of the EDIPROBE

- Smallest R.F. probe made.
- Frequency range 60 Cycles to over 100 Megacycles.
- Effective circuit loading: 3 mmf. and 1 megohm.
- Can be used as an output meter.

PROVAC

- Can be used for measuring decibels.
- Checks condensers for open circuit.
- Works with any standard VTVM.

PROVAC Model ED 100 $59.50 VTVM Model ED 100 $22.50 EDIPROBE $9.50 (RF Probe). *52.50 (without probe).

Jobbers and dealers write for exclusive Territory Distribution.

Orders addressed to us will be credited to your nearest dealer.

Write Dept. QK for FREE Technical Manual.

S/C LABS ADJUSTABLE ROTARY BEAM KITS 702A, 702B, 702C

Type 702A 27 mc to 29.7 mc (10 and 11 meter band) $14.95
Type 702B 50 mc to 54 mc (6 meter band) 29.95
Type 702C 144 mc to 148 mc (2 meter band) 24.50

The new S/C LABS THREE ELEMENT BEAM presents a distinct high-gain directive antenna designed for 2, 6, and 10 meter amateur bands, adjustable in every respect and sound in mechanical design. Electrically and mechanically engineered to give the best in efficiency. The antenna is constructed of the finest grade aluminum, weight of entire beam is less than 15 lbs.

PRECISION AND ADJUSTABLE ANTENNA

Type 701A (23-44 mc) 10-meter amateur $8.95
Type 731B (44-88 mc) Television 5 meter amateur 7.95
Type 731C (88-148 mc) FM 2 meter amateur 7.45

In stock, all types of coaxial cables, transmission lines and hookup wire.

SEE YOUR LOCAL DEALER.
Your fishing days are over O.M. — that is — fishing for replies to your CQs. A glance at the Panoramic screen shows band activity just before CQing and immediately after your QRT. Chances are that new signal between the two strong ones is the reply to your call. With just a quick twist of your receiver tuning dial—to center the pip—you have your answer. Only with PANORAMIC Reception can you see at once each new signal as it comes on the air. Many of the PANADAPTOR’S equally remarkable features have been put down in a Handbook which you will find at your dealer when you go in for a demonstration of the PANADAPTOR.

The Panadaptor Model PCA-2 is a 10 tube electronically tuned superheterodyne with a self contained scope, complete with accessories and full instructions, for 115 V, 50-60 cycle operation; at only $99.75 net. One Year Guarantee.

HAM SPECIALS
From Ham Headquarters

<table>
<thead>
<tr>
<th>Order</th>
<th>Net Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panoramic Adapter PCA-2</td>
<td>$99.75 Each</td>
</tr>
<tr>
<td>Cabinet: 24½” W 29½” D 7½” Deep, 2½” High Painted Black</td>
<td>90.00 Each</td>
</tr>
<tr>
<td>Choke: 300 M.A. Swing 150/300 Smooth 9-Houry.</td>
<td>7.50 Pair</td>
</tr>
<tr>
<td>Ode Oscillator: Complete with Speaker, Telegraf: Operated, MS-706.</td>
<td>9.05 Each</td>
</tr>
<tr>
<td>Coil Assembly: K.P. from Army Receiver BC-264M.</td>
<td>7.55 Each</td>
</tr>
<tr>
<td>Condenser: .1 X .1 Mfd. 600-Volt Tobe Metal Case, Batch</td>
<td>49 Each</td>
</tr>
<tr>
<td>Condenser: 100 M.F. Midget Variable</td>
<td>50 Each</td>
</tr>
<tr>
<td>Condenser: 2 Mfd. 1000-Volt Oil Filled, Round Can, C.D.</td>
<td>1.50 Each</td>
</tr>
<tr>
<td>Condenser: 10 Mfd. 500-Volt, Oil Filled, Rectangular Type</td>
<td>6.75 Each</td>
</tr>
<tr>
<td>Condenser: 10 Mfd. 500-Volt, Oil Filled, Rectangular Type</td>
<td>6.75 Each</td>
</tr>
<tr>
<td>Condenser: 4 Mfd. 600-Volt Oil Filled, Rectangular Type.</td>
<td>3.25 Each</td>
</tr>
<tr>
<td>Condenser: 50 M.F.</td>
<td>50 Each</td>
</tr>
<tr>
<td>Condenser: 100 M.F. Oil Filled, Rectangular Type</td>
<td>99 Each</td>
</tr>
<tr>
<td>Condenser: 4 Mfd. 600-Volt Oil Filled, Rectangular Type</td>
<td>1.50 Each</td>
</tr>
<tr>
<td>Transformer: General Electric Modulation</td>
<td>400 Watts</td>
</tr>
<tr>
<td>Transformer: Filament, 6½ Volt at 1½ Amps, Small Round</td>
<td>6.75 Each</td>
</tr>
<tr>
<td>Converter: Gonsett New 10-11 Meter, 300 Watts</td>
<td>39.95 Each</td>
</tr>
<tr>
<td>Chassis: for Handy Talkie 511F</td>
<td>10.00 Each</td>
</tr>
<tr>
<td>Meter: Westinghouse 2½” D.C. M.A. 0-250</td>
<td>3.25 Each</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order</th>
<th>Net Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter: Burlington, 2½” A.C. 0-150 0.25Lİ</td>
<td>1.80 Each</td>
</tr>
<tr>
<td>Meter: Time Hour 110-Volt 50-Cycle</td>
<td>3.50 Each</td>
</tr>
</tbody>
</table>

MANY OTHER METERS UPON REQUEST

<table>
<thead>
<tr>
<th>Order</th>
<th>Net Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike: T/FR Carbon Hand Mike</td>
<td>2.50 Each</td>
</tr>
<tr>
<td>Receiver: BC-343, Frequency 600 to 500 K.C., 1000 K.C., 10 M.C.A S.I.</td>
<td>69.00 Each</td>
</tr>
<tr>
<td>Relay: D.P.D.T. 6½ Volt, D.C. Coil, Leach 14” Silver Contact</td>
<td>1.75 Each</td>
</tr>
<tr>
<td>Transformer: General Electric Modulation</td>
<td>6.00 Each</td>
</tr>
<tr>
<td>Transformer: Filament, 6½ Volt at 1½ Amps, Small Round</td>
<td>6.75 Each</td>
</tr>
<tr>
<td>Transformer: BC-223, Frequency 2000 to 3000 K.C.</td>
<td>25.00 Each</td>
</tr>
<tr>
<td>Transmitter and Receiver: BC-1335 F.M. Ideal for 10 Meter Mobile Operation 6 or 11-Volt input, 1½ Watts Output, Dimensions 12½” Long, 13½” Deep, 6½” High, Ready to go with Telephone Headset and 1 Crystal for 10-Meter Band</td>
<td>53.00 Each</td>
</tr>
</tbody>
</table>

MAIL ORDERS PROMPTLY FILLED
Amateurs to Serve You
(20% Must Accompany All C. O. D. Orders)
Write to Dept. QST
W6SCQ • W6UXN • W6EY • W6WZ • W6IV
WRITE FOR FREE BULLETIN /29
HELLO and GOOD BUYS!
I promised 'em to you and HERE THEY ARE!

DU MONT 274
5" OSCILLOSCOPE
For the lab, shack, and repair shop
New, accurate, low priced
5" scope
14" x 3½" x 1½"
115V 50-60 cycles.
$99.50

JOHNSON 'E' DUAL CONDENSER
Stators mounted above to reduce capacity to ground. Heavy construction. 4600V rating.

<table>
<thead>
<tr>
<th>Type</th>
<th>Capacity</th>
<th>Max.</th>
<th>Min.</th>
<th>Length</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>50ED45</td>
<td></td>
<td>51</td>
<td>9</td>
<td>6½"</td>
<td>4.77</td>
</tr>
<tr>
<td>70ED45</td>
<td></td>
<td>73</td>
<td>11</td>
<td>7½"</td>
<td>5.37</td>
</tr>
<tr>
<td>100ED45</td>
<td></td>
<td>100</td>
<td>18</td>
<td>9½"</td>
<td>6.18</td>
</tr>
</tbody>
</table>

THE PIXY SAVES YOU MONEY WITH THESE SPECIALS
807 Beam Power Tube JAN...$1.39
3 for....................3.87
Johnson 10 QS Antenna..5.85
Johnson 20 QS Antenna..9.90
Filter Condenser 4 mfd, 400 V, GE Pyranol..9.95
3 for....................2.49
Filter Condenser 10 mfd, 400 V, GE Pyranol..1.46
Westinghouse 0-500 ma meter, DC, 3"........4.75
Brush Xtal phone, pair, type A 7.20
Brush Xtal phone, single, type B........3.99
Amphenol 300 ohm twin lead per foot. .03
Cordwell Butterfly condensers, 14-11 mfd 2.40
National ACN Dial. 3.00
Guardian adjustable overload relay, X-100..7.70
B & W Coda connector..5.00

DUTCH/'S' FAN 15" OSCILLOSCOPE
7" Beam Power Tube JAN...$1.99
3 for....................5.91
Johnson 10 QS Antenna..8.90
Johnson 20 QS Antenna..13.90
Filter Condenser 4 mfd, 400 V, GE Pyranol..9.95
3 for....................2.49
Filter Condenser 10 mfd, 400 V, GE Pyranol..1.46
Westinghouse 0-500 ma meter, DC, 3"........4.75
Brush Xtal phone, pair, type A 7.20
Brush Xtal phone, single, type B........3.99
Amphenol 300 ohm twin lead per foot. .03
Cordwell Butterfly condensers, 14-11 mfd 2.40
National ACN Dial. 3.00
Guardian adjustable overload relay, X-100..7.70
B & W Coda connector..5.00

KYNON MODULATION TRANSFORMER!
T-465 Max. Audio 300 W, Prl. 9000 ohms P to P, Sec. 8000 ohms 250 ma, 4000-370 ma. $154.95
T-470 Max. Audio 500 W, Prl. 9000 ohms P to P, Sec. 8000 ohms 350 ma, 9200-400 ma, 4000-800 ma. $245.95

Hammarlund HQ 120-X
LIKE NEW! Were only used in a lab to test xtal. Reconditioned inside and out .54-31 mc in 6 bands. Cal. band spread. Xtal filter, AVC, noise limiter, 12 tubes. Relay rack mounting. Limited quantity.
An amazing buy at— $128.75
Special speaker..............$4.75

THE PIXY SAVES YOU MONEY WITH THESE SPECIALS
Brush Xtal up to 750 mhz........3.99
Misc. Xtal parts, per piece... .03
Amphenol coil, 0.008 in., 300 ohm..... .90
Cordwell condensers, 14-11 mfd 2.40
National ACN Dial. 3.00
Guardian adjustable overload relay, X-100..7.70
B & W Coda connector..5.00

Impulse Filter
Hudy, fully shielded, 12 by @ 260 ma on 10, 15, 20, and 10 meters.
$245

Westinghouse Filter Choke
Hudy, fully shielded, 12 by @ 260 ma on 10, 15, 20, and 10 meters.
$245

Mail orders promptly filled — Please enclose 25% Deposit

SUN RADIO & ELECTRONICS CO., Inc.
ESTABLISHED 1922
122-124 DUANE ST. • NEW YORK 7, N. Y. • BArday 7-1840
EN MEXICO
La RADIOTECNICA, S. A. tiene en la Ciudad de México, uno de los más modernos laboratorios para el tallado de cristales de cuarzo y un fino equipo de medición de frecuencias que es el primero de su clase en la América Latina. Nuestro personal de más de 15 años de experiencia, nuestros productos son garantizados sin reserva.

Unidades de Cristales
Ofrecemos 16 TIPOS DISTINTOS DE UNIDADES DE CRISTALES DE CUARZO con una exactitud como se puede conseguir en cualquier otro lugar, Cualquiera que sea su necesidad, podremos proporcionar de 15 años de experiencia, nuestros productos son garantizados sin reserva.

Mediciones de Frecuencia
También ofrecemos un servicio de medición de frecuencias para las estaciones dentro del radio audible en la Ciudad de México. A petición hacemos mediciones exactas, o por contrato anual podemos dar servicio diario, semanal, mensual o bimestral. Todas las mediciones son hechas con referencia a un patrón primario de frecuencia y equipo asociado de la General Radio Company y se comparan con la estación W W V de la National Bureau of Standards en Washington, D.C. Las mediciones son hechas en colaboración con la Secretaría de Comunicaciones y Obras Públicas. Si desea información completa, sírvase escribirnos directamente.

RADIOTECNICA, S.A.
CIPRES 164 • MEXICO, D.F.

RADIO COURSES
• RADIO OPERATING • RADIO SERVICE • CODE
• ELECTRONICS • REFRIGERATION SERVICING
Personal Counseling Services for Veterans
Y. M. C. A. TRADE & TECHNICAL SCHOOLS
4 W. 64th Street
New York City

FAST DELIVERY!
APPROVED Model A-200
SIGNAL GENERATOR
• S. B. BANDS
150-250 Kc., 150-500 Kc.,
300-1500 Kc., 4 Mc.-9 Mc.,
3 Mc.-9 Mc., 9 Mc.-25 Mc.,
18 Mc.-80 Mc., 27 Mc.-75 Mc.
Net Price — $49.50
25% deposit with C.O.D. orders
53 Park Pl. — Dept. Q — New York 7

The World Above 50 Mc.
(Continued from page 63)
evening from his high elevation at Bedford, N.Y. He has been heard on 235 Mc. by W2DZA at Teaneck, N.J., and by W2LXO at West Orange, N.J. He will continue on this schedule from the tower location as long as weather permits, and will carry on from his home location at Rye, N.Y., thereafter.

V.h.f. Reflections from Meteors?
Did you read the letter from W2IXK in this month's "Correspondence from Members" column? We invite your attention to his interesting report, which points to the possibility of still another propagation angle which will bear investigating. Any observations along this line are always welcomed by this department.

Strays
W3QP says Brazos Bill's suggestion in July "Strays" re use of XXYL complicates matters. He's for using XYF. Well, OMs, how about striking a compromise and dedicating XXYL to the use of young squirts whose YLs have given them the double-cross?

W4FEE, J. A. Chumley, is probably one of the few hams who have ever rejoiced over the possession of a "pink ticket."

After plenty of combat service, W4FEE found the world at peace, himself in the Canal Zone and still in the Army, and hams becoming hams again and not merely something of interest to draft boards. He applied to the military authorities for an amateur call and permission to work in the ham bands. All OK, they said, but you will have to present proof that you have heretofore held a ham call. No licenses were to be found but an intensive hunt turned up a "pink ticket" somewhat faded by several dunkings in the Pacific but legible enough requesting one J. A. Chumley, W4FEE, to explain to the FCC how come he was operating outside the ham bands with a r.a.c. note?

This was solemnly presented as evidence and just as solemnly accepted. W4FEE is now KZ5AD, and working them high, wide and handsome.

— Benton White, W4PL

"New Apparatus" Department — Quoting The Saturday Evening Post, June 8, 1946: "A motor policeman will have only to tune in his microphone . . . Through a remarkable automatic apparatus, it will instantly relay his broadcast to every patrol car in the vicinity."

W1LIG, W5NM, W9GTL
FOR TOUGH JOBS
where an ordinary mike won't do
TURNER Model 99 Dynamic

Here's a truly professional unit for professional results from your rig. The Turner Model 99 delivers crisp and clear under the most difficult operating conditions. Its precision built dynamic circuit withstands severe changes in climate and temperature with no loss of performance level. Response stays flat within ±5DB from 30 to 9,000 cycles. Adjustable saddle fits any standard mike stand and allows semi- or non-directional operation. Gun metal type finish. Available in all standard impedances with level of −52DB at high impedance. Complete with 20 ft. removable cable set.

ASK YOUR DEALER OR WRITE
Licensed under U. S. Patents of the American Telephone and Telegraph Company, and Western Electric Company, Inc.

TURNER Microphones
Pioneers in the communications field

Vertical Antennas
Telescoping, Adjustable Tubular Types That Meet Every DX Requirement for the Amateur

WIDELY known and accepted in amateur, commercial and military fields for their dependable performance, Premax Tubular Metal Antennas are available to meet every requirement. Sizes range from 6 feet to 35 feet high and may be had in steel, aluminum, stainless or monel ... with suitable mountings for any installation.

Ask your Radio Jobber for details and prices of these outstanding Antennas and Mountings.
Special-purpose transmitting antennas designed for volume production to your own specifications. Collapsible — sectional — direction finding — radar and coaxial type. All sizes, lengths and materials. Consult us on your needs.

L. S. BRACH MFG. CORP.
200 CENTRAL AVENUE NEWARK, N. J.
WORLD'S OLDEST AND LARGEST MANUFACTURERS OF RADIO ANTENNAS AND ACCESSORIES.

The Famous

NATIONAL "HRO-5TA" COMMUNICATIONS RECEIVER

One of the Many "Bests" carried by Kierulf's Ham Shack for you!

Try us first for that hard-to-get part

Do you want to be on our mailing list? Drop a card to Dept. BT with your name and address.

Kierulf AND COMPANY
WHOLESALE RADIO DISTRIBUTORS
828 WEST OLYMPIC BLVD., LOS ANGELES 15, CALIF.
THE RADIO AMATEUR'S LIBRARY

These are the publications which every Amateur needs. They form a complete reference library for the Amateur Radio field; are authoritative, accurate and up to date.

<table>
<thead>
<tr>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>QST</td>
<td>$2.50 per year*</td>
</tr>
<tr>
<td>Operating an Amateur Radio Station</td>
<td>Free to members; to others 10c</td>
</tr>
<tr>
<td>The Radio Amateur's Handbook</td>
<td>$1.00**</td>
</tr>
<tr>
<td>The Log</td>
<td>35c each; 3 for $1.00</td>
</tr>
<tr>
<td>How to Become a Radio Amateur</td>
<td>25c</td>
</tr>
<tr>
<td>The Radio Amateur's License Manual</td>
<td>25c</td>
</tr>
<tr>
<td>Hints & Kinks for the Radio Amateur</td>
<td>50c</td>
</tr>
<tr>
<td>Lightning Calculators:</td>
<td></td>
</tr>
<tr>
<td>a. Radio (Type A)</td>
<td>$1.00</td>
</tr>
<tr>
<td>b. Ohm's Law (Type B)</td>
<td>$1.00</td>
</tr>
<tr>
<td>A.R.R.L. Antenna Book</td>
<td>50c</td>
</tr>
<tr>
<td>The Minilog</td>
<td>25c</td>
</tr>
<tr>
<td>Learning the Radiotelegraph Code</td>
<td>25c</td>
</tr>
<tr>
<td>A Course in Radio Fundamentals</td>
<td>50c</td>
</tr>
</tbody>
</table>

* In the United States and Possessions—other Countries $3.00 per year.

** Postpaid in Continental U. S. A.—$1.50, postpaid, elsewhere. *(No stamps, please)*

THE AMERICAN RADIO RELAY LEAGUE, INC.
WEST HARTFORD 7, CONNECTICUT
HAM-ADS

(1) Advertising shall pertain to radio and shall be of
interest to radio amateurs or experimenters in the
field of radio. All advertisements will be shown in
capital letters as used by the advertisers and to the
other parties. Any display or statement which
would tend to make the description of any
equipment or anything else untruthful will not be
allowed.

(2) No display of any character will be accepted, nor
can any alteration be made in any advertisement
after it has been accepted by the publishers.

(3) The Ham-Ad rate is 30c per word, except as noted
in paragraph (4) below.

(4) All replies must accompany copy. No cash
or contract discount or agency commission
will be allowed.

(5) Closing date for Ham-Ads is the 25th of the second
month preceding publication date.

(6) A special rate of 7c per word will apply to advertising
with the exception of the new equipment section,
where the rate is 10c per word.

(7) All advertising in this column regardless of which
rate apply must be in capital letters.

(8) Because error is more easily avoided, it is requested
that signatures and addresses be printed plainly.

(9) No advertiser may use more than 75 words in any one
issue.

Having made no investigation of the advertisers in the classified
columns, the publishers of QST cannot be responsible for
the goods or character of the products or services advertised.

QUARTZ — Direct importers from Brazil of best quality pure
piezo-electric crystals. Diamond Drill Carbide, 2418 Burt
Ave., New York 21, N. Y.

COAXIAL cable, RG8/U, 7 ft. per ft., RG58/U, 9 ft. per ft. See QST.
April 1946, P. 51 for detailed description. coaxial Cable Co., Box 19,
Waverly Hills, Ky.

FOR SALE: Transmitter, National 600 W. phone-cw, 40, 20, 10
H. W. Fortiedel, M. W., 2447 Selby St., St. Paul 4, Minn.

CRISTALS: Precious low drift units. Type 100A in 80, 40, and
20 meter bands. Two units plug in one octal socket. One dollar each.
Box, K. G., Davenport, Fla.

WSITF is former WBCJ.

FOR SALE: transmitter combination, mobile type, for 10,
40 and 80-meter bands. $125. To buy: we pay best prices for National,
Hammarlund, Western Electric, Collins a/o, and Hallicrafters.
Transmitters and receivers. G1 Radio Exchange, Box 431, Coral Gables,
Florida.

WE urge the machine, the skill and the desire to do an excellent job
on that new equipment you are planning or building. We cut any size
round or oblong holes for meters, speakers, dials, and transformers.
We build special cabinets, parts for dial mechanisms, rotary knobs,
etc. We engrave, layout panels, and build any type of machine.
We can make a duplicate machine in a short time. Ask us to quote.
Write for information in this line. E. S & G Instrument Co., Box 1401,
Tulsa 1, Okla.

WRI. Transmitting kit — 15, 35, 50, and 100-watt units — low
prices. All makers of radios, new and reconditioned.
Leo offers home trade-in for a new transmitter, plan of Mutual
buying and selling of parts supply houses.
Write today for free catalog, special map offer, tube-base calculator offer, and other items.
Leo, World Radio Dept., H.A., Coral Gables, Fla., W3PSW, 1042
Pine Heights Ave., Baltimore 29, Md.

WEST is former WWCJ.

FOR SALE: receiver combination, mobile type, for 10,
40 and 80-meter bands. $125. To buy: we pay best prices for National,
Hammarlund, Western Electric, Collins a/o, and Hallicrafters.
Transmitters and receivers. G1 Radio Exchange, Box 431, Coral Gables,
Florida.

OLD amateur, commercial radio acts, parts, catalogs, wanted.
Will trade new gear or pay cash. McMurdo Silver, simphony, Conn.
AMATON radio loggers. Complete code and theory preparation
for amateur radio examinations. Home study course. American
Radio Institute, Inc., 101 West 63rd St. New York City.

DLR, 10310 W S. St., Chicago 35, Ill., 24609 48th St., Chicago 24,
Vern Sigalle, W7VYS, 1704 Hale Ave., Roncey 6, Ind.

FOR SALE: PR16 communications receiver with Jensen baile and 175
picocouml. Complete, new, $135. Boss, 490 N. Meridian, Cincinnati 19,
Ohio.

BRO Noise limiting tubes, variable condenser, easily installed. Drill
one hole only. Complete with instructions, $15.95. Radio Electronic
Supply, 39 W. 52nd St., New York 19, N. Y.

QLS, samples for sale. Henry L. Carter, Jr., W2RSW, 749 S
Pine Heights Ave., Rochester 8, N. Y.

U. H. Jones war surplus $250, new, 85 watts to 200 Mc., $7.10
per watt. New and used. Goldsmith Electronics, Chicago 14.

NEW 24 Ga. $2.25 each. postpaid. Send card for list of other stuff.
W. S. Chamberlain, 1056 W 59th St., Los Angeles 36, Calif.

SELL: Patterson FR-10 communications receiver. R 4650 Mc., 15-550

BACK QSTs available: 1923-1942 inclusive. Some missing. Write
to H. D. Holleman, W2CCQ, 4433 Wayland Ave., Pittsburgh 27, Penna.

SELL: One Stanoc 110C xmtr. Uses 4-6L6s instead of cathode modulation.
125 watts, tubes, coils for 150-40-20-10-watt, in deluxe cabinet and transmitter. Also tape recorder (2 stage) and
new T220, T55, Shure 702D, stxle mile, 1350-1350-1050 300 milli-
amps, two tubes. First offer over $150 for lot. Harry Cook, W2WOFO, Dunoon, Maine.

FOR SALE: New Collins ART-13 xmtr, $715 final. Complete
distributor's kit. 1000-watt voltmeter, 200 amp fuses, relay, coolers,
tube leads, local 120-volt, fob. WSLWC, W. Z. Ferguson, P.O. Box 103, Waco, Texas.

SELL: Meissner Deluxe signal shifter with 10, 20, 40, 80 meters
guaranteed, 1-3590, 2-3592, 3-2500, 3-3592, 4-3592. First offer, $115.
QSL-SWLS. Meade, W2XKX, 1507 Central Ave., Kansas City, Kansas.

For Sale: Elements: 147'4" dural element, 20 M., $10.50; 10 M., $5.
Servo controlled rotary mechanisms. W2KOA/2, 375 Oak Place,
Bayonne, N. J.

W2SHP is former W2GNO.

AMATEURS, experiments, industries and export accounts write
for catalog and monthly bulletins. Buy the "TB" guaranteed
way to save. TAB, Dept Z.

FOR SALE: New RKO $70000, $250000 250000. Complete, with
12 device, two 100 M. xtals, one 40 M. xtal. Make offer over $150 for
list. Fred Smith, WJCCD, 3423 Woodlawn Ave., Pittsburgh 27, Penna.

URGENTLY needed for repair of obsolete radios and intercom
units. 2000 V., $250. Big stock meters. Inquiries answered. T. E. Tappen,
Waverly, V. Y., W2AVD, ex-WAVD.

Servo controlled rotary mechanisms. W9KOA/2, 375 Oak Place,
Bayonne, N. J.

FOR SALE: New RKO, $7500, $2500, $25000. Complete with
12 device, two 100 M. xtals, one 40 M. xtal. Make offer over $150 for
list. Fred Smith, WJCCD, 3423 Woodlawn Ave., Pittsburgh 27, Penna.

WANT: Servo controlled rotary mechanisms- W9KOA/2, 375 Oak Place,
Bayonne, N. J.

RELY on Quadra for all your servo equipment needs. Send
list, state make, model, condition. All replies answered.
B. E. Judd, 90 Chipewa Road, Tuckahoe 7, N. Y.

ALIGNMENT service, communication receivers. Only precision
SPEIAT H~ holida*y gre~ting cards, ~a~ionery, photocopies: quality Q~Ls. ~amples,
for list. Fred Smith, WJCCD, 3423 Woodlawn Ave., Pittsburgh 27, Penna.

FOR SALE: New RKO, $70000, $250000 250000. Complete, with
12 device, two 100 M. xtals, one 40 M. xtal. Make offer over $150 for
list. Fred Smith, WJCCD, 3423 Woodlawn Ave., Pittsburgh 27, Penna.

WANT: Servo controlled rotary mechanisms- W9KOA/2, 375 Oak Place,
Bayonne, N. J.

RELY on Quadra for all your servo equipment needs. Send
list, state make, model, condition. All replies answered.
B. E. Judd, 90 Chipewa Road, Tuckahoe 7, N. Y.

SEI~LE, Electors 10 to 20 meters, self-contained power supplies:
$19.95, 2-meter super-regen, receivers: $27.95. Write for details.
Bennett, W2ZCF, 3612 East 13th St., Chicago 19, Ill.

140
HRO-W, Milton Kalashian, W1NXT, 2 Congress, Newportport, Maine.

WEIEF selling out. Two composite c.w. telegraph transmitters, one receiver, power supply and act of coils $100. 40 and 80 meter bands. Excellent condition and standard makes such as National, Cardwell, Hammarlund, Thordarson CHT, etc. Also antenna material and complete Monroe and Scott aerials.

SELL: RJ-15 watt input, 'phone/c.w. transmitter, complete for 75 meters, less crystal kite. $30 plus postage. R. M. Mark, Wellfield, Pa.

WEIB selling out. Two composite c.w. telegraph transmitters, one receiver, power supply and act of coils $100. 40 and 80 meter bands. Excellent condition and standard makes such as National, Cardwell, Hammarlund, Thordarson CHT, etc. Also antenna material and complete Monroe and Scott aerials.

FOR Sale: New Hammarlund H'u-129-X, matching speaker. In-

SELL: RJ-15 watt input, 'phone/c.w. transmitter, complete for 75 meters, less crystal kite. $30 plus postage. R. M. Mark, Wellfield, Pa.

FOR Sale: Two composite c.w. telegraph transmitters, one receiver, power supply and act of coils $100. 40 and 80 meter bands. Excellent condition and standard makes such as National, Cardwell, Hammarlund, Thordarson CHT, etc. Also antenna material and complete Monroe and Scott aerials.

The No. 90281 high voltage power supply has a d.c. output of 700 volts, with maximum power of 6.3 watts at 4 amperes. It is also ideal for use with transmitters, such as the Millen No. 90800, as well as general laboratory purposes.

Pyranol capacitors. The panel is standard.

The power supply uses two No. 816 rectifiers in addition, AC filament filters with 10.000 volt General Electric Pyranol capacitors. The panel is standard.

Index to Advertisers

Allied Radio Corporation ... 113
American Radio Corporation 7
American Phenolic Corporation 114
American Radio Institute ... 103
Aline Radio Co., Waller 104
Astatic Corporation, Inc. .. 105

Baltimore Technical Institute 132
Barson & Williamson .. 130
Burrell Radio Company .. 101
Bush Manufacturing Company 104
Cowell Co., W. D. .. 106
Burlington Instrument Co. 108
Burton-Atwaller Co. ... 109

Cambridge Company ... 102
Campbell system Co. ... 110
Central Radio Engineering Institute 109
Cardwell Mfg. Corp., Allen 113
Cleveland Institute of Radio Elec. 108
Collins Radio Company .. 114
Commercial Radio Institute 110
Condenser Products Co. 111
Continent Sales Co. ... 110
Cornell-Dubilier Elec. Corp. 111

Draught Electric Company 88
Drake Electric Company .. 88
Eitel-McCullough, Inc. ... 89
Electro-Voice (Corp.) ... 111
Electronic Designs .. 113
Gate Radio Company .. 101
General Electric Company 114
Greenlee Tool Co. ... 114
Grimes, John .. 128
Hall, R. C. & L. F. ... 131
Hailey Brothers, The ... 19
Hammond Mfg. Co., Inc. ... 102
Harrison Radio Company ... 113
Harvey St. Electric Co. ... 114
Harry & Young .. 110
Henry Radio Stores ... 97
Hytron Radio & Electronics Corp. 97
International Resistance Co. 86
Johnson Co., E. F. .. 87
Kerflau & Co. .. 138
Maguire Industries ... 125
Mallory Mfg. Co., F. R. .. 129
Mass. Radio & Television 124
Mellen Mfg. Co., James .. 120
Murray Hill Book Co. ... 90
National Company, Inc. .. 77, Cov.
Newark Electric Co. ... 109
New York Tech. Institute 115
N. Y., YMCA Trade & Technical Schools 114
Oak & Sons, D. W. .. 221

Panoramic Radio Corporation 134
P R Sales Co. ... 106
Peterson Radio Co. .. 103
Port Arthur College ... 116
Premax Products Co. ..
Radio Electric Service Co. of Penna. 106
Radio Manufacturing Engineer
Radio Products Sales Co. ... 134
Radio Shack Corp. .. 100
Radin-Curtis Co. .. 104
Radin-Curtis Co. .. 101

Radioelectric S/A .. 36
RCA Institutes .. 118
Calico Mfg. Co. ... 117
RCA Mfg. Co. .. 117

S C Laboratories .. 133
Scott & Co., R. G. .. 118
Scenic Radio Company ... 136
Schafer Machine Co. .. 76
Shure Brothers .. 90
Silver Co., Melkrose .. 15
Sky-Lane Products Co. ... 132
Speer Carbon Company ... 105
San Radio & Electronics Co. 135
Sanitarium of Washington, D.C.
Supreme Transmitter Corp. 95
Sylvania Electric Products

Telegraff Apparatus Co. 112
Terminal Radio Company .. 133
Transcontinental & Western Airways 124
Transmitter Bump, Mfg. Co. 92, 93
Tripod Echo, Instrument Co. 137
Tuner Co., The ... 137

U. S. F. Rewinder .. 120
United Electronics .. 144
Valence Technical Institute 145
Valley Crystal Co. .. 84
Vibracraft Company, Ltd. 126

Ward Leonard Electric Co. 120
Waterman Products Co. 114
Waterman Electric Co. ... 116
Westinghouse Electric Co. 123
Workshop Associates ... 118
World Radio Laboratories 98
Have you ever felt that you were not getting the most out of your receiver? If you have, you'll want to read RME's pamphlet on this important subject. Although it's sent to each owner of an RME 45 on receipt of his registration card, it's yours for the asking — regardless of the communications instrument you happen to own. If you are troubled with QRM, doubtless you'll find the material on adjustments for single signal reception especially beneficial. The pamphlet is one more example of RME service.

Simply address your request to Radio Mfg. Engineers, Inc., First Avenue, Peoria, Ill., and ask for your copy of GET THE MOST OUT OF YOUR RECEIVER.

You'll also find that the RME 45 provides many pleasant surprises — surprises that spell the difference between RME performance as against service from just another receiver. You'll like Two Speed Tuning which results in smooth, effortless, single dial control and calibration on five amateur bands with plenty of spread and real efficiency. Then there's voltage regulation that reduces drift to an absolute minimum, and an improved noise limiter that goes after all types of interference with a vengeance!

Make your own comparison — and you'll find the 45 gives you MORE for LESS!

Descriptive Folder of RME 45 Also Available.
New BEAM TETRODE by United

COMPACT • POWERFUL • DURABLE
with graphite, the real low temperature anode

Designed for service longevity, UNITED type 5562 will prove to be a popular number on the VHF bands of the amateur, aeronautical, mobile, and emergency services. Conservatively rated at 175 watts input up to 120 megacycles. Authentic input ratings for higher frequencies will be announced after completion of further factory life tests.

Type 5562 has low drive characteristics—from 2 to 4.5 watts dependent upon plate input, frequency, and class of operation.

GENERAL CHARACTERISTICS

- Filament, 6.3 volts at 3.0 amps.
- Amplification factor — 60
- Transconductance — 2500 micromhos
- Direct Interelectrode capacitances
 - Input to plate - 0.2 mfd
 - Input - 6.5 mfd
 - Output - 1.8 mfd

MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Class C</th>
<th>Class C Telegraphy</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.C. Plate Voltage</td>
<td>1250</td>
</tr>
<tr>
<td>D.C. Grid Voltage (Grid # 1)</td>
<td>250</td>
</tr>
<tr>
<td>D.C. Grid Voltage (Grid # 2)</td>
<td>350</td>
</tr>
<tr>
<td>D.C. Plate Current</td>
<td>100</td>
</tr>
<tr>
<td>D.C. Grid Current</td>
<td>20</td>
</tr>
<tr>
<td>Plate Input</td>
<td>125</td>
</tr>
<tr>
<td>Screen Input</td>
<td>8</td>
</tr>
<tr>
<td>Plate Dissipation</td>
<td>35</td>
</tr>
</tbody>
</table>

NEW UNITED ISOLATED GETTER TRAP
Keeps tube free from gas
Preserves filament emission

$10.00 ea.

UNIVERSAL ELECTRONICS COMPANY
NEWARK, NEW JERSEY

Transmitting Tubes EXCLUSIVELY Since 1934
NC-2-40D

Beauty goes deep in the NC-2-40D. Deep inside the chassis parts of watchlike precision are assembled with painstaking care. Carefully designed mechanisms enable the controls to respond to your slightest touch. Thorough shielding helps circuits to develop the fine performance, stable operation and uniform response that you expect of a National receiver. We invite you to study the photographs above. They are pictures of quality.

NATIONAL COMPANY, INC., MALDEN, MASS.
RCA has a tube type for every amateur service and every active band. A few of the most popular types in each classification are listed. Power input figures shown here are maximum absolute ratings for class C telegraph service and, in general, are ICAS ratings.

There are also special types, such as voltage regulators, thyatrons, and the well-known receiving types in metal, glass, and miniature.

Your local RCA Tube Distributor has complete technical data on all RCA tube types. Contact him for further information, or write RCA, Commercial Engineering, Section A-21, Harrison, N. J.

THE FOUNTAINHEAD OF MODERN TUBE DEVELOPMENT IS RCA