AUDIO INPUT TRANSFORMERS

Scanned and Prepared by Dale H. Cook

20A00	Line to Single or Push-Pull Grids Turns Ratio Pri. to Sec. 1:10 500/600 Ohm CT Pri. Connect to Blue and Brown use Red for CT 60,000 Ohm CT Sec. Connect to Green and Yellow use Black for CT BROWN GREEN PRI. SEC. RED CT BROWN YELLOW				
20A01	Line to Single Grid Turns Ratio Pri. to Sec. 1:20 500/600 Ohm CT Pri. Connect to Blue and Brown use Red for CT 240,000 Ohm Sec. Connect to Green and Black BLUE PRI. SEC. BROWN BLUE GREEN SEC. BROWN				
20A02	Line to Push-Pull Grids Turns Ratio Pri. to Sec. 1:20 500/600 Ohm CT Pri. Connect to Blue and Brown use Red for CT 240,000 Ohms Sec. Connect to Green and Yellow use Black for CT BLUE PRI. RED CT BLACK BROWN YELLOW				
20A03	Single Button and/or Plate to Grid 10,000 Ohm Pri. Connect Plate to Blue, Red to B + (10MADC) 200 Ohm Pri. Connect 200 Ohm Mike or Line to Brown 100,000 Sec. Connect to Green and Black HAS INTERCOM AND TRANSCEIVER APPLICATIONS BROWN BROWN BROWN BROWN				
20A04	Voice Coil to Grid Turns Ratio Pri. to Sec. 1:80 3/6 Ohm Pri. Connect to Blue and Red 38,400 Sec. Connect to Green and Black RED BLUE GREEN GREEN BLUE BLUE BLACK				
20A05	Line to Single or Push-Pull Grids Turns Ratio Pri. to Sec. 1:10 500/600 Ohms CT Pri. Connect to 1 and 4, join 2 and 3 50 Ohms Pri. Connect to 1 and 4, join 1 and 2, 3 and 4 60,000 Ohms CT Sec. Connect to 5 and 8, join 6 and 7 SPLIT Pri. and Sec. CT for Balancing Networks.				

INTERSTAGE TRANSFORMERS

Scanned and Prepared by Dale H. Cook

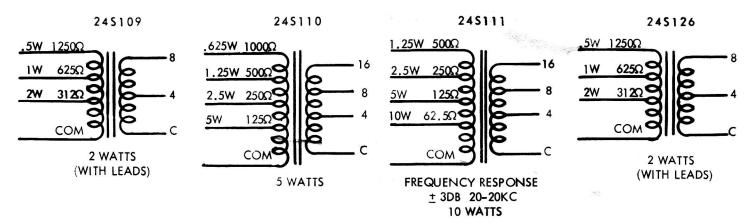
	Coamica and Freparoa by Daio in Cook
20A16 20A17	Single Plate to Single or Push-Pull Grids Turns Ratio Pri. to Sec. 1:2 Connect Plate (7000 to 15000 Ohms @ 10 MADC) to Blue Connect B + to Red Connect Grids to Green and Yellow Connect Ground or Bias to Black RED GREEN SEC. RED YELLOW
20A18 20A22 20A23	Single Plate to Single or Push-Puil Grids Turns Ratio Pri. to Sec. 1:3 Connect Plate (7000 to 15000 Ohms @ 10 MADC) to Blue Connect Bt to Red Connect Grids to Green and Yellow Connect Ground or Bias to Black RED GREEN SEC. BLUE BLUE SEC. BLACK SEC. YELLOW
20A19	Single or Push-Pull Plates to Single or Push-Pull Grids Turns Ratio Pri. to Sec. 1:3 Connect Plates (10000 to 20000 Ohms @ 10 MADC) to PRI. Blue and Brown. Connect B + to Red (Not used in singled ended outputs) Connect Grids to Green and Yellow Connect Ground or Bias to Black BROWN GREEN GREEN BLACK SEC. BROWN YELLOW
20A24	Single or Push-Pull Plates to Single or Push-Pull Grids Turns Ratio Pri. to Sec. 1:3 Connect Plates (20000 Ohm CT @ 10 MADC) to Blue and Brown Connect B+ to Red (Not used in single ended outputs) Connect Grids to Green and Yellow Connect Ground or Bias to Black and Red/Yellow (Split CT) BROWN BLUE GREEN RED-YELLOW RED BROWN SEC. SEC.
20A25	Single or Push-Pull Plates to Single or Push-Pull Grids Turns Ratio Pri. to Sec. 1:1.41 Connect Plates (10000 to 20000 Ohms CT @ 10 MADC) to 1 and 4 Connect B+ to 2 and 3 Connect Grids to 5 and 8 Connect Ground or Bias to 6 and 7 (Split CT)
20A27	Single or Push-Pull Plates to Single or Push-Pull Grids Turns Ratio Pri. to Sec. 1:2 Connect Plates (2500 to 10000 Ohm CT @ 10 MADC) to 1 and 4 Connect B+ to 2 and 3 Connect Grids to 5 and 8 Connect Ground or Bias to 6 and 7 (Split CT)

UNIVERSAL OUTPUT TRANSFORMER

Designed to couple the output tube or tubes to any dynamic speaker voice coil. The chart below is based on the manufacturers' recommended plate loads for the tube listed. Some tubes may be operated under different load conditions depending on the applied plate voltage etc. Measure the receiver voltages and refer to a tube manual for the proper load.

The transformer has three primary leads; brown, red, and blue. When used with a single tube, connect the brown lead to the tube plate and the blue lead to B+, disregarding the red lead. With a push-pull circuit connect the brown and blue leads to the plates and the red lead to B+.

Voice coil values are the actual secondary impedance of the various terminals for given loads. Choosing the terminals to the value nearest the rated voice coil impedance will result in the maximum undistorted output from the tubes. Where the impedance of the voice is unknown the proper secondary terminals may be determined by trial.


By the use of the column marked "Impedance ratio of primary to secondary", it is possible to compute the correct matching for many combinations not shown in the table. If the load resistance of the tube to be used is divided by the impedance of the voice coil, the result will be the impedance ratio that should be used, and the proper tap may be selected by referring to the impedance ratio column and choosing the closest value. For example, to match an 5,000 ohm tube to a 16 ohm voice coil, the impedance ratio $\frac{5,000}{16} = 312$

The nearest value to this is 310, and the secondary connections should be made to terminals 3 and 5.

Secondary Terminals	Impedance Ratio	PLATE LOAD IMPEDANCE 6,000 5,000 4,000 3,000 2,500 2,000 1,500 Voice Coil Impedance						
1-2	1,820	3.3	2.75	2.2	1.65	1.9	1.1	.8
1-3	1,000	6	5	4	3	2.5	2	1.5
3-4	556	10.8	9	7.4	5.4	4.5	3.7	2.7
2-4	390	15.4	12.8	10.3	7.7	6.4	5.2	3.9
3-5	310	19.3	16.1	12.9	9.7	8	6.5	4.9
2-5	236	25.4	21.2	16.9	12.7	10.6	8.5	6.9
1-4	182	-	-	22	16.5	13.8	11	8.3
1-5	128	-	-	-	23.4	19.5	15.2	11.7

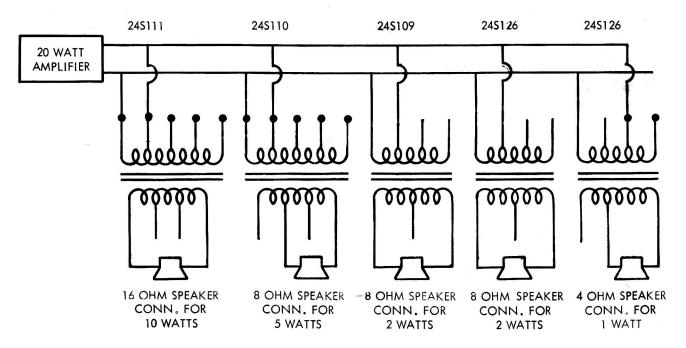
Scanned and Prepared by Dale H. Cook

IN SCHOOLS - AUDITORIUMS - GRILLS - INDUSTRIAL PLANTS - PRIVATE HOMES - and COIN OPERATED SYSTEMS

These HI-FIDELITY SPEAKER TRANSFORMERS have been designed for their ability to provide the custom audio engineer with a system that combines versatility with excellent acoustics.

Some newer amplifiers have a designated 25 volt outlet, but almost any amplifier has an impedance tap which may be used as a 25 volt output.

The following table gives these impedance taps:


Full Power Output of Amplifier	Impedance ta ps for 25 Volt Line			
5	125 Ohms			
10	62.5 Ohms			
20	31 . 25 Ohms			
25	25 Ohma			
40	15 Ohms			

For Power ratings not shown use the following formulae:

$$\frac{-625}{W}$$
 = Impedance Tap
for 25 Volt Line W = Full Power Output of Amplifier

Any combination of speakcer and TRANSFORMERS may now be connected to the 25 tap providing that the sum of the watts equals the output rating of the amplifier.

A typical system installed in a building including a large auditorium is shown.

