-(1)

 THORDARSON

 THORDARSON

 (1)

 (1) AMPLIFIER GUIDE 346-D

Building Modern Amplifiers

By JEROME H. KLEKER

Chief Sales Engineer, Thordarson Electric Manufacturing Company

TTHE development of amplifiers is steadily progressing. Today the average builder can turn out a unit capable of results which a few years back could be obtained only in the laboratory. Improvements in tubes, transformers, and circuits make it possible to obtain higher power output from a comparatively small amplifier. Good frequency response is easily obtained and harmonic distortion can be held to the point where it is negligible.
The modern amplifier for Public Address must be entirely self contained. The gain must be high to accommodate low level microphones, and the hum level should be low especially where speakers with good low frequency response are used. The power output rating must be actual undistorted watts at all frequencies, and not just nominal or the tube manufacturers maximum output rating of the tubes used. The amplifiers described in this booklet are modern in these respects and incorporate numerous other improvements.

Thordarson engineers produced these amplifiers strictly for the Sound man and amplifier builder, taking into consideration the high standard of results which are always expected of custom built apparatus. Frequency response, power output, and distortion measurements were made periodically throughout their development on expensive laboratory equipment, thus insuring the most out of each amplifier complement. The final construction of the amplifier is reached only when each part is aiding in the superior performance of the unit.

Inverse feedback is used in most of the amplifiers because of the numerous advantages it offers. Distortion is reduced to minimum, frequency response is made more linear and the overall stability of the amplifier is improved. The constructor is urged to read each and every
article. The suggestions offered in the different models will aid in building any amplifier.

In order to facilitate construction, standard sized chassis are used wherever possible. These are nationally available from parts suppliers. Complete mechanical drawings showing socket and mounting holes make cut and try layout unnecessary and save considerable time in building an amplifier. If drills and punches are not available your local parts supplier may be able to do the necessary work for you.

Full size chassis templates for any amplifier are available from the factory for 15 c postpaid. By using a full size drawing the chassis can be marked directly without measurement.
All parts listed are nationally advertised brands and are readily available. Substitution is recommended only when they are of equal quality and the electrical and physical characteristics are the same. Small hardware, etc., is not listed inasmuch as the builder usually has this material on hand.

Assembly of the amplifier is usually started by mounting tube sockets, controls, transformers, and chokes on the chassis. The bottom view photos are marked to indicate the placement of the more important parts used in the amplifier. Small bakelite strips with solder lugs were used in some cases to support small resistors and condensers. If the strips are not available, these parts may be self supported by their leads. The use of the strips, however, tend to make a neater and more rigid wiring job and are recommended.

Proceed to wire the amplifier by starting with the filament or heater circuits. No. 18 stranded pushback wire is suitable.

Wire the power supply next and finally the small resistors, condensers, and controls. It is quite important to use shielded wire as indicated in the circuit diagrams since hum and feedback is liable to result otherwise. Where the schematic diagrams show shielded resistors and condensers this is accomplished by first inserting the part in a piece of spaghetti tubing or wrapping with insulating material such as varnished cambric and then covering with shielding braid. The shielding of the parts so indicated is important in the reduction of hum.

After the assembly and wiring is completed recheck carefully before installing tubes and applying power. When certain that the wiring is correct the power can be applied and voltages checked carefully. It is advisable to measure all voltages and power output before the amplifier is placed in service. This will prevent overloading of tubes or parts due to improper adjustments, bad connections or oscillation.

Due to the high power sensitivity of beam power tubes they sometimes oscillate at a high inaudible frequency if placement of leads is not correct or shield. ing and grounds are insufficient. Oscillation can also be caused by improper phasing of the inverse feedback circuit. Reversal of the leads, connecting the feedback winding of the output transformer to the grid returns of the input transformer, will change the phase relationship of the feedback voltage. The use of an oscilloscope is recommended in determining when these conditions take place and in correcting same. The article on page 31 will be helpful in the proper testing of an amplifier with the oscilloscope.

Correspondence is invited to aid in the solution of your amplifier problems.

TABLEOF CONTENTS

Building Modern Amplifiers 2
Advantages of Inverse Feedback 3
8 Watt Amplifier 4Single Channel Pre-Amplifier20
Four Channel Pre-Amplifier 2215 Watt Amplifier
25 Watt Amplifier6
40 Watt Amplifier 8
00 Watt Amplifer 10
60 Watt Amplifier 12
120 Watt Amplifier 14
2A3 Phono Amplifier 16
6 Volt DC, 115 Volt AC, Mobile Amplifier 18
Dual Tone Control 24
Matching Speaker Loads 26
Chassis Drawing, 6 V. D.C. Amplifier 27
Chassis Drawing, 2A3 and 15 Watt Amplifier 28
Chassis Drawing, 25 and 40 Watt Amplifier. 29
Chassis Drawing, 60 and 120 Watt Amplifier 30
Testing Amplifiers 31
Factory Built Amplifiers 32

ADVANTAGES OF INVERSE FEEDBACK [HORDARSON

A beam power amplifier to be truly modern should incorporate inverse feedback. It is a commonly recognized fact that low plate resistance tubes such as the 2A3 are superior from the standpoint of low distortion and good quality. With in verse feedback the high plate resistance beam power tube may be made to take on the characteristics of the low-mu triode, yet retain most of its high power sensitivity. The important advantages obtained by the use of inverse feedback are fourfold: first, reduction of wave form distortion; second, improvement of frequency response; third, reduction of hum; and fourth, reduction of "hangover" effect. The only disadvantage of inverse feedback lies in the fact that the gain is considerably reduced.

EXPLANATION OF INVERSE FEEDBACK

In the circuit of Fig. 1, a certain amount of the voltage developed in the plate circuit is fed back out of phase with the signal in the grid circuit. If without inverse feedback a certain voltage E_{0} is developed across the output circuit with an input voltage E_{1} the gain of the stage is E_{0} divided by E_{1}. If now a certain percentage N of the voltage E_{0} is fed back to the grid circuit in such a way that the voltage is out of phase with the input voltage E_{1} the total input voltage to obtain an output voltage of E_{0} is ($N E_{0}+E_{1}$) and
the gain of the stage is $\frac{E_{0}}{\left(N E_{4}+E_{1}\right)}$. The
ratio N is the percentage of the output voltage which is fed back to the input circuit. It may be readily seen that if N is large the gain of the stage depends more upon N than upon the circuit constants.

The ratio reduction in gain by the addition of inverse feedback may be readily determined by dividing the gain without feedback by the gain with feedback.

REDUCTION OF DISTORTION

As was pointed out in the above paragraph, an inverse feedback circuit feeds back a certain portion of the output voltage to the grid circuit. If distortion is introduced in the amplifier stage a certain amount of the distorted voltage will be fed back into the grid circuit and this will tend to cancel out the distortion developed in the amplifier stage. If in the circuit of Fig. 1 a certain amount of distortion voltage B is present in the output circuit the distortion voltage fed into the grid circuit

will be $\mathrm{N} \times \mathrm{B}$ and this quantity multiplied by the gain of the stage will give the cancelling effect of the inverse feedback. The total distortion present in the output is then equal to the sum of the distortion without inverse feedback and the distortion cancelled by the inverse feedback. In other words, if b is the distortion with out inverse feedback, the total distortion, B, with inverse feedback is equal to $(b+B) \times N \times A$, where A is the gain of the stage. Evaluating B gives the quantity
 is reduced by the ratio of $\frac{1}{1+N A}$.

Fig. 2 shows the ordinary method of obtaining inverse feedback with the resistorcondenser method. The amount of inverse feedback is equal to $\frac{\mathbf{R}_{\mathbf{1}}}{\mathbf{R}_{1}+\mathbf{R}_{\mathbf{2}}}$ assuming that the reactance of the condenser C_{1} is negligible over the operating frequencies. However, this assumption is not necessarily true especially at the lower frequencies and the circuit of Fig. 3 is much more efficient from this standpoint. In Fig. 3 the feedback voltage is obtained from a tertiary winding on the output transformer. This method also provides a much better overload characteristic since the resistance in the grid circuit is negligible and it is quite possible to operate the tubes in the grid current region.

REDUCTION OF PLATE RESISTANCE

In addition to the reduction in distortion obtained by inverse feedback, there is also a reduction in the plate resistance of the tubes. A high plate resistance is a
definite disadvantage in the case of a power tube which operates into a speaker load which is more or less variable depending upon the impedance of the voice coil. In the circuit of Fig. 4, it may be easily seen that the voltage E developed across the load depends a great deal upon the actual value of R_{L} which is the reflected impedance of the voice coil. This is due to the fact that the signal current depends almost entirely upon the high plate resistance of the tube. Since the load resistance is low in comparison to the plate resistance, the voltage developed across the load is almost directly proportional to the impedance of the load which varies appreciably with change in frequency. In Fig. 5 it may be seen that the voltage across the load does not vary so much since the signal current depends both upon the load and upon the plate resistance of the tube. If the voice coil has an appreciable amount of reactance the impedance rises with the frequency causing distortion and giving an unnatural amount of "highs." The high plate resistance is unsuitable from another view point, that of the amount of low frequency distortion which may be tolerated. This low frequency distortion is not
R_{p}

FIG. 4

FIG 5
due to the characteristics of the tubes which remain unchanged regardless of the frequency, but depends upon the magnetizing current in the output transformer. The magnetizing current is a distorted nonsinusoidal wave and this current, on flowing through the high plate resistance of the tube, develops a nonsinusoidal voltage drop across the tube which, when subtracted from the input signal, results in a distorted wave across the output. Unfortunately, most amplifiers today are measured for distortion at 400 c.p.s. where the magnetizing current is practically negligible. It is not uncommon to find beam power amplifiers without inverse feedback which have only 25 per cent of the rated power at 40 or 50 cycles. This low frequency distortion is particularly objectionable since all harmonics fall within the audible range. Inverse feedback effectively reduces the plate resistance so that the distorted voltage drop caused by the magnetizing current is exceedingly small with the result that there is very little distortion across the output circuit. With a poor output transformer it is quite possible for the distortion to be as high as 30 per cent at 40 cycles without inverse feedback.

"HANGOVER" EFFECT

"Hangover effects," or transients caused by the loud speaker cone vibrating at its natural period when shock excited, are greatly reduced by the use of inverse feedback. The lower plate resistance provides a considerable amount of damping so that the oscillations or transients are reduced. With regular beam power tubes the shunt-
(Continued on page ${ }^{37}$)

TIORDARSON

TOP VIEW

THIS small amplifier is useful in many everyday applications especially for voice amplification. Political meetings, Ballyhoo, etc., usually can be handled successfully with a small amplifier system capable of delivering about 8 watts of audio power.

Three high gain resistance coupled stages will accommodate even the lowest level high impedance microphones. The phono pick-up signal is mixed into the second stage through a resistance network, providing independent control of microphone and phono without one affecting the other. A good selection of output impedances make it easy to match any P.M. or electro-dynamic loud speaker. The amplifier supplies 6 watts of field power which is sufficient for an 8 or 10 inch loud speaker (5000 ohm field). One or more additional P.M. speakers may be connected if desired.

The construction of the amplifier is comparatively simple, especially since the chassis layout is shown. A full size drawing is also available making it possible to spot the hole centers on the chassis with a punch if this method of construction is preferred. After all holes have been drilled or punched, mount all the parts, starting with tube sockets, controls and transformers.

Wire the tube heaters first and then proceed with common ground connections. After wiring the " B " supply, install and wire the small resistors, condensers, etc. Use shielded wire as indicated in the diagram and shield resistors R-1, R-6 and R-8 by inserting in spaghetti tubing and covering with a shielded braid. This shielding aids in eliminating annoying hum and cross talk, ordinarily encountered in high gain amplifiers.

The wiring of the speaker sockel is such that either an electro dynamic or P.M. speaker may be used without altering connections in the amplifier. This is accomplished by properly wiring the speaker plug. If a 5000 ohm field is used, connect the field to the plug prongs corresponding to socket contacts " G " and " A ". If a P.M. speaker is used a jumper wire must be connected in the plug to prongs " G " and " B ". Do not operate the amplifier unless a 5000 ohm speaker field is connected or the plug inserted with the jumper wire.

Make voice coil connections to contacts " G " (common) and either 2, 4, 8 or 500 whichever matches the speaker impedance. The output terminals marked 500 ohms facilitate connecting to a line in portable set-ups. However, be sure a jumper plug from " G " to " B " is inserted when this is used.

It is recommended that the tubes be inserted and speaker and other accessories connected before the amplifier is turned on. Voltages are given on the schematic diagram. All voltages should be checked with a good volt-meter before the amplifier is allowed to operate for any length of time. 10% tolerance is permissible in voltage measurements.

TECHNICAL DATA

Power Output: 8 watts or +31.25 db .
Coverage: 100,000 to $200,000 \mathrm{cu}$. ft. indoors; 6,000 to $10,000 \mathrm{sq}$. ft. outdoors (depending on speaker efficiency and noise level).
Input Circuits: One 5 megohm channel for high impedance crystal, dynamic, or velocity microphone, and one channel for high impedance crystal or magnetic pick-up. The two channels may be mixed.
Field Supply: 6 watts available for 5000 ohm speaker field.
Output Impedances: 2, 4, 8, and 500 ohms.
Frequency Response: Within ± 1 db from 45 c.p.s. to 6000 c.p.s.
Tone Control: Maximum position attenuates $1000 \mathrm{c} . \mathrm{p} . \mathrm{s} .5 \mathrm{db}$, 5000 c.p.s. 17 db , and 10,000 c.p.s. 23 db .
Gain: Microphone input 111 db ; phono input 66 db (based on 100,000 ohms input impedance).
Hum: 61.5 db below maximum output.
Tubes: 1-6J7, 1-6F5, 1-6L6G, 1-80.
Power Consumption: 85 watts, 115 volts, $50-60$ cycles.
Dimensions: $10^{\prime \prime}$ long, $5^{\prime \prime}$ deep, $9^{\prime \prime}$ high.

FREQUENCY-RESPONSE CURVE

BOTTOM VIEW

8 WATT AMPLIFIER

PARTS LIST
thordarson transformers and chokes

T-1	T-75R47 Power Transformer
T-2	T-17S10 Output Transformer
CH-1	T-57C54 Choke

Diagram	RESISTORS		
No.	Ohms	Watts	Type
R-1	5 MEG .	1/2	IRC BT-1/2
R-2	5,000	1	IRC BT-1
R-3	3 MEG.	1	IRC BT-1
R-4	500,000	1	IRC BT-1
R-5	250,000	Volume Control	Yaxiey type "M"
R-6	500,000	$1 /$	IRC BT-1/2
R-7	1 MEG.	Volume Control	Yaxley type "O"
R-8	500,000	$1 / 2$	IRC BT-1/2
R-9	3,000	1	IRC BT-1
R-10	100,000	1	IRC BT-1
R-11	500,000	Tone Control	Yaxley type "M" with
R-12	5,000	1	IRC BT-1
R-13	150	25	Ohmite-Wire wound
R-14	50,000	1	IRC BT-1
R-15	3.500	25	Ohmite-Wire wound
R-16	5,000 .	23	Ohmite-Wire wound

	CONDENSERS		
Diagram No.	Mid.	lage	Typ
$\mathrm{C}-1$	10	25 V Elect.	Aerovox PR25
C-2	. 04	400 V Paper	Aerovox 484
C-3	. 1	400 V Paper	Aerovox 484
C-4	10	25 V Elect.	Aerovox PR25
C-5	. 1	400 V Paper	Aerovox 484
C-6	. 005	400 V Paper	Aerovox 484
C-7, C-10	8-8	450 W.V. Elect.	Aerovox PBS450
C-8, C-9	8-8	450 W.V. Elect.	Aerovox PBS450
		ISCELLANEOUS	PARTS

$\begin{array}{ll}1 & \text { 5x10x } 3^{\circ} \text { Chassis \& Cover - Par-Metal AF-510 } \\ 1 & 5 \times 10^{\prime} \text { Chassis bottom plate - Par-Metal BP-4508. } \\ 3 & \text { Octal sockets - Amphenol S8 } \\ 1 & \text { 4-Contart socket - Amphenol S4 } \\ 1 & 7 \text {-Contact socket - Amphenol S7 } \\ 1 & 7 \text { Prong speaker plug - Amphenol PM7 } \\ 1 & \text { Mic. Connector - Amphenol PC1M } \\ 1 & \text { Mic. Connector - Amphenol MCIF } \\ 2 & \text { Two screw terminal boards } \\ 1 & \text { Line cord and plug - Belden No. } 1725 \\ 3 & \text { Control knobe } \\ 2 & \text { Metal tube grid cape } \\ 2 & \text { Metal grid cap shields } \\ 1 & \text { "MIC" Control dial plate } \\ 1 & \text { "PliONO" Control dial plate } \\ \text { 1 "TONE" Control dial plate } \\ \text { Tubes, 1-6J7, 1-6F5, 1-6L6G, 1-80 } \\ \text { NOTE: The brands and types specified in the parts list } \\ \text { were used in the original laboratory models, Parts of equiva. } \\ \text { lent quality may be substituted except where physical } \\ \text { limitations prohibit. }\end{array}$

Full size template of this chassis available 15 c net, postpaid, from Thordarson.

TOP VIEW

THE output power of this amplifier is sufficient to satisfy the requirements of a large number of installations. This is especially true since the distortion present at full output is low, being less than 5% total. This percentage is generally accepted as undistorted and permits operating at full output with high quality reproduction.

Thordarson CHT transformers are used in this model and are recommended for best results, appearance, etc. Regular types may be substituted as indicated in the parts list but it will be necessary to locate the mounting holes when drilling the chassis since the drawing is based on the use of CHT units. An added advantage is the better selection of output impedances available with the CHT output transformer.

Beam power 6V6-G output tubes are operated in a class A1 circuit employing inverse feedback. The output transformer contains a separate feedback winding which produces a voltage 10% of that developed in the primary. The voltage is fed out of phase into the grid returns of the input transformer secondary. This method of feedback is superior to the resistor-capacity method inasmuch as there is no frequency discrimination, and any distortion that might develop in the output is corrected. It should be noted that the input transformer has a split secondary wind. ing which is essential when this method of feedback is used-
A high impedance microphone and high impedance phono channel with independent controls accommodate any type of microphone and crystal or magnetic pick-up. Amplifier gain is sufficient to obtain full output from microphone and pick-up
under normal operating conditions.

The circuit diagram shows two speaker sockets which are used for making speaker voice-coil and field connections. If electrodynamic speakers are used, ten watts of field excitation is available for one 5,000 ohm, or one or two $2,500 \mathrm{ohm}$ fields. The table below indicates how the connections are made to the speaker sockets. Note that a jumper wire is used on the speaker field terminal board for some condition of operation.

	Jumper	Connect to Prongs
$1-5000$ ohm field	remove	$1-5$
$1-2500$ ohm field	C-2	$2-5$
$2-2500$ ohm fields remove	B-E and $2-5$	
Field Supply not used 1-C		

Speaker voice coil or line connections are made at 3,4 , and C, D of the speaker sockets or the output terminal board. The CHT output transformer, T-2, incorporates a terminal board with jacks and a plug for selecting the proper output impedance.

Terminal board marked POL. V. is provided to supply a polarizing voltage for static types of microphones or a photo elective cell. When the static microphone is used connect a jumper wire to terminals 1 and 2 which completes the circuit. Under no condition should this jumper be left in place when a crystal, dynamic, or velocity microphone is connected to the amplifier.

Photo electric cells of the gas filled type usually require 90 volts operating voltage. Since the normal voltage applied to the input plug is approximately 270 volts, this should be reduced to 90 volts by connecting a 5 megohm 1 watt resistor from the junction of $\mathrm{C}-1$ and $\mathrm{R}-2$ to ground. In the event that a static microphone or photo electric cell is never to be used R-1, R-2, and C-1 may
be eliminated.

It is important to employ the shielding of wires and parts as shown in the diagram if hum, noise, and oscillation are to be eliminated. Enclose R-1, R-3, and C-2 in a metal container for minimum hum. The constructor is advised to read the article on page 31 if any difficulty is experienced in adjusting the amplifier.

FREQUENCY-RESPONSE CURVE

DISTORTION CURVE

BOTTOM VIEW

15 WATT AMPLIFIER

TECHNICAL DATA
Power Output: 15 watts undistorted or +34 db (less than 5% distortion).

Coverage: 200,000 to $500,000 \mathrm{cu} . \mathrm{ft}$. indoors; 10,000 to 20,000 sq. ft. outdoors (depending on speaker efficiency and noise level).

Input Circuits: One 5 megohm channel for high impedance crystal, dynamic, or velocity microphone, and one channel for high impedance crystal, or magnetic pick-up. The two channels may be mixed. Polarizing voltage is provided for static microphone or photo electric cell.

Field Supply: 10 watts available for one 5000 ohm field, or one or two 2500 ohm fields.

Output Impedances: $2,3,4,6,8,16$, 125,250 , or 500 ohms with CHT output transformer, or $4,8,15,250$, or 500 ohms with regular output transformer.

Frequency Response: Within $\pm 1 \mathrm{db}$ from 40 c.p.s. to 15,000 c.p.s. with bass boost of 3.5 db below 100 c.p.s.

Tone Control: Maximum position attenuates 10,000 c.p.s. 28 db .

Gain: Microphone input 113 db ; phono input 72 db (based on 100,000 ohms input impedance).

Hum: 74 db below maximum output.
Tubes: 2-6J7, 1-6C5, 2-6V6G, 1-5Z3.
Power Consumption: 112 Watts, 115 volts, 50-60 cycles.

Dimensions: $17^{\prime \prime}$ long, $10^{\prime \prime}$ deep, $9^{\prime \prime}$ high.

PARTS LIST

Diagram No.	CHT	REG.	
T-1	T-15A74	T-15A74	Input Transformer
T-2	T-15S90	T-17S11	Output Transformer
T-3	T-15R06	T-70R62	Power Transformer
CH-1	T-15C54*	T-57C54	First Choke
CH-2	T-67C46	T-67C46	Second Choke
*Windings in parallel.			
$\begin{aligned} & \text { Diagram } \\ & \text { No. } \end{aligned}$	Resistors		
	Ohms	Watts	Type
R-1	10 MEG.	1/2	IRC BT-1/2
R-2	10 MEG.	1/2	IRC BT-1/3
R-3	5 MEG.	1/2	IRC BT-1/2
R-4	3 MEG.	1	IRC BT-1
R-5	500,000	1	IRC BT-1
R-6	1 MEG.	Volume Control	ol Yaxley type "0"
R-7	500,000	1/2	IRC BT-1/2
R-8	1 MEG.	Volume Control	ol Yaxiey type "0"
R-9	500,000	1/2	IRC BT-1/2
R-10	5,000	1	IRC BT-1
R-11	100,000	1	IRC BT-1
R-12	500,000	Tone Control	Yaxley type "M"
R-13	1,000	1	IRC BT-1
R-14	20,000	1	IRC BT-1
R-15	20,000	1	IRC BT-1
R-16	2,500	25	Ohmite, Wirewound
R-17	1,500	25	Ohmite, Wirewound
R-18	125	25 T	Ohmite, Wire wound, Tolerance $+10 \%,-0 \%$
R-19	2,500	25	Ohmite, Wirewound
		TUBES	
2	6.57		
1	6 C 5		
2	6V 6 -G		
1	5Z3		

For complete mechanical drawing of chassis see page 28 Full size template of chassis available from Thordarson 15 c net. postpaid.

Diagram No.	CONDENSERS		
	Mid.	Voltage	Type
C-1	. 1	400 V Paper	Aerovox 4484
C-2	. 03	400 V Paper	Aerovox 4484
C-3	. 04	400 V Paper	Aerovox 1484
C-4	. 1	$400 \mathrm{~V}-\mathrm{Pa}$ per	Aerovox ${ }^{\text {4 }}$ 4 4
C-5	10	25 V Elect.	Cornell-Dubilier BR-102
C-6	. 1	400V Paper	Aerovox $\$ 484$
C-7	. 03	400 V Paper	Aerovox \$484
C-8	10	25 V Elect.	Cornell-Dubilier BR-102
C-9	. 1	400V Paper	Aerovox \$484
C-10, C-11	$18-8$	450 W. V. Ele	Aerovoz PBS-450
C-12	8	600 V Elect.	Aerovox GL600
C-13	8	600V Elect.	Aerovox GL600
MISCELLANEOUS PARTS			
1	10x17x3* charsis and cover-Par-Metal AF 1017		
1	$10 \times 17^{\circ}$ chassis bottom plate-Par-Metal BP 4526		
1	4-contact sociset - Amphenol S4		
5	Octal sookets - Amphenol 58		
2	5-contact socisets - Amphenol 85		
2	5-prong speaker plugs - Amphenol PM5		
1	Mic. connector - Amphenol PC1M		
1	Mic. connector - Amphenol MC1F		
1	Pilot light socket and jewel - Yaxley f310R		
1	6.3V Pilot light - Mazda 440		
2	Metal tube grid caps		
2	Metal grid cap shields		
1	"Microphone" control plate		
1	"Phono" control plate		
1	"Tone" control plate		
3	Control knobe		
1	AC line cord \& plug		
1	Mallory bias cell - $1.5 \mathrm{~V},-\mathrm{FF} 7$		
1	Mallory bias cell holder - JGB-1A		
1	SPST switch - Arrow H \& H \$20992		
3	Two screw terminal boards		
1	Three screw terminal board		

NOTE: The brands and types apecified in the parts list were used in the original laboratory models. Parta of equiva-
lent quality may be subatituted except where physical limitations prohibit.

THE use of inverse feedback makes it possible to obtain 25 watts of undistorted output from this amplifier with only 300 volts applied to the plates and screens of the power tubes. These low voltages increase tube and condenser life considerably which is a decided advantage. The output tubes are operated in a class AB1 circuit, under which condition no driving power is required; a single 6C5 tube supplies sufficient grid excitation through a C.H.T. input transformer. The windings of this transformer are balanced so that there is a cancelling effect for any hum that might be picked up. Degeneration or inverse feedback is obtained by coupling the tertiary winding of the output transformer to the secondary of the input transformer.

The input circuits are arranged to handle two high impedance microphones and a phono pick-up. Mixing takes place in the second stage in a resistor network that is more simple and economical than electronic mixing. Control action is smooth, and the changing of one control setting does not affect another. It is important, however, to shield resistors R-11, R-12, and R-13, and the leads as shown in the diagram. The impedance of these circuits is high, making them susceptible to hum pick-up and cross-talk unless adequately isolated.

Frequency response is adjusted with two tone controls - one for bass and one for treble. With the tone controls in the normal position, the response of the amplifier is decidedly flat-from 30 to 15,000 cycles per second. There is approximately 3 db accentuation at 60 c.p.s. which is purposely brought about by resonating the primary of the input transformer with condenser C-13. This boost is desirable in radio and record reproduction and can be eliminated with the bass tone control for voice work if necessary. The adjustment of both controls helps eliminate feedback when bad acoustical conditions exist.

To insure good quality, loud speakers with a diameter of at least 12 inches are recommended. They should be capable of efficiently han-
dling 15 watts of audio power each if the full 25 watt output of the amplifier is to be utilized. Either P M or electro-dynamic speakers are suitable since the amplifier will supply 18 watts for field excitation. This is adequate for one large speaker with a 5000 ohm field, or one or two smaller speakers with 2500 fields. A three-screw terminal board is provided for connecting a jumper wire in the event that $P \mathbf{M}$ speakers are used. Use table below in wiring the speaker plugs.

$1-5000$ ohm field	Jumper	Connect to Prongs
$1-2500$ ohm field	C-2	$1-5$
$2-2500$ ohm field	none	B-E -5
Field supply not used $2-5$		

A polarizing voltage may be applied to the input connectors by connecting jumper wires on terminal board marked "POL. V." Refer to the 15 watt amplifier for further details on polarizing voltage for static microphones and photo electric cells.

FREQUENCY-RESPONSE CURVE

TECHNICAL DATA

Power Output: 25 watts undistorted or +36.2 db (less than 5% distortion).

Coverage: 500,000 to $1,000,000 \mathrm{cu} . \mathrm{ft}$. indoors; 20,000 to $\mathbf{3 0 , 0 0 0}$ sq. ft . outdoors (depending on speaker efficiency and noise level).
Input Circuits: Two 5 megohm channels for high impedance crystal, dynamic, or velocity microphones, and one channel for high impedance crystal or magnetic pick-up. All channels can be mixed. Polarizing voltage is available for static microphone or photo electric cell.
Field Supply: 18 watts for one 5000 ohm field, or one or two 2500 ohm fields.

Output Impedances: $2,3,4,6,8,16$, 125,250 , or 500 ohms with CHT output transformer or $4,8,15,250$, or 500 ohms with regular output transformer.
Frequency Response: Within $\pm 1 \mathrm{db}$ from 35 c.p.s. to 15,000 c.p.s. with bass boost of 3.5 db below 100 c.p.s.
Tone Controls: Two: bass control attenuates 12 db at 60 c.p.s.; treble control attenuates 27 db at 10,000 c.p.s.

Gain: Microphone input, 113 db ; phono input 72 db (based on 100,000 ohms input impedance).
Hum: 74.5 db below maximum output.
Tubes: 3-6J7, 1-6C5, 2-6L6G, 1-5Z3.
Power Consumption: 180 watts, 115 volts, $50-60$ cycles.
Dimensions: $17^{\prime \prime}$ long, $10^{\prime \prime}$ deep, $9^{\prime \prime}$ high.

PARTS LIST
THORDARSON TRANSFORMERS AND CHOKES

$\begin{gathered} \text { Diagra } \end{gathered}$			AND CHOK
T-1	T-15A74	T-15A74	Input Transformer
T-2	T-15S91	T-17812	Output Transformer
T-3	T-15R07	T-17R30	Power Transformer
CH-1	T-15C55*	T-67C49	First Choke
CH-2	T-67C46	T-67C46	Second Choke
${ }^{*}$ Windings in series.			
		RESISTORS	
$\begin{aligned} & \text { Nagt } \\ & \mathrm{N}^{2} \end{aligned}$	Ohms	Wats	Type
R-1	10 MEG.	3/2	IRC BT-1/2
R-2	10 MEG .	1/2	IRC BT-1/2
R-3	10 MEG.	1/2	IRCBT-1/2
R-4	3 MEG.	1	IRC BT-1
R-5	3 MEG.	1	IRC BT-1
R-6	500,000	1	IRC BT-1
R-7	500,000	1	IRC BT-1
R-8	250,000	Volume Control	Yaxley type "M"
R-9	1 MEG.	Volume Control	Yaxloy type "0"
R-10	1 MEG .	Volume Control	Yaxley type "0"
R-11	500,000	1/2	IRC BT-1/2
R-12	500,000	3/2	IRCBT-1/2
R-13	500,000	1/2	IRC BT-1/2
R-14	5,000	1	IRC BT-1
R-15	100,000	1	IRC BT-1
R-16	500,000	Tone Control	Yaxiey UC-513
R-17	9 MEG.	Tone Control	Yaxley UC-508
R-18	250,000	3/2	IRC BT-32
R-19	1,000	1	IRC BT-1
R-20	20,000	1	IRC BT-1
R-21	20,000	1	IRC BT-1
R-22	2,500	25	Ohmite Wire Wound
R-23	2,500	25	Ohmite Wire Wound
R-24	100	25	Ohmite Wire Wound,
R-25	5 MEG.	3/2	Tolerance $+10 \%-0 \%$ IRC BT-1/
R-26	5 MEG.	1/2	IRC BT-1/2

NOTE: The brands and types specified in the part list were used in the original laboratory models. Parts of equivalent quality may be substituted except where phyica umitations prohioit.

For complete mechanical drawing of chassio see page 29. Full size template of chassis available from Thordarson. 150 net, postpaid.

THORDARSON
 40 WATT AMPLIFIER

THE characteristics of 6L6 beam power tubes are such that 1 they may be used in the construction of amplifiers ranging from 5 to 60 watts output. Their power output depends on the class of operation employed, such as $A_{1}, A B_{1}, A B_{2}$. This is determined by the applied plate, screen and grid voltages, the plate load and driving power.

This 40 watt amplifier uses two 6L6.G tubes operating in class AB_{2}, with approximately 400 volts on the plates and 250 volts on the screens. Adequate driving power is supplied by a triode connected 6F6 tube through a CHT driver transformer. The use of inverse feedback and ample driving power make it possible to obtain 40 watts output without using fixed bias. This simplifies the construction of the amplifier considerably.
Two microphones and two phono pick-ups may be connected to the amplifier at one time. The two phono channels are especially desirable where dual turn-tables are employed for continuous record reproduction. Also a suitable radio tuner can be connected to one of the phono channels for broadcast reception in conjunction with one phono pick-up. Complete mixing makes possible the selection of one or more input channels for reproduction at the same time.

A dual tone control circuit recently developed in Thordarson's laboratory operates in the cathode circuit of the 6 C 5 tube. One control affects only the low or bass frequencies, and the other controls the high or treble frequencies. Operation is such that with the controls in the center or vertical position the frequency response is normal, as illustrated by the frequency response curve. Turning the bass control to the left increases the bass response and to the right reduces it. The treble control functions in the same manner. More detailed description of this type of control and its effect on the amplifier frequency response is given on page 24.

Two 523 rectifier tubes connected in a parallel circuit provide excellent power supply regulation. The additional tube also allows higher total current which is desirable for speaker field excitation. The amplifier supplies 25 watts for speaker fields, (250 volts at 100 MA) which is adequate for one large auditorium speaker or for two to four smaller speakers. The following table indicates how speaker field connections are made to the speaker sockets and the proper position of the field supply jumper wire.

	Jumper	Connect to prong:
1-2500 ohm field	$1-\mathrm{C}$	$1-2$
$2-1250$ ohm field	1-C	$2-5$ and A-E
$2-5000$ ohm field	1-C	$1-2$ and A-B
$4-2500$ ohm field	$1-\mathrm{C}$	$2-5$ and A-E*
Field supply not used	C-2	
*Connect two fields in parallel to each plug.		

Make speaker voice-coil or line connections to contacts 3-4 and C-D of the speaker sockets or to the output terminal board. Impedance matching is accomplished by inserting the plug into the proper jack on the CHT output transformer terminal board.

TECHNICAL DATA

Power Output: 40 watts undistorted or +38.25 db (Less than 5% distortion).

Coverage: $1,000,000$ to $2,000,000 \mathrm{cu} . \mathrm{ft}$. indoors; 30,000 to 50,000 sq. ft . outdoors (depending on speaker efficiency and noise level).
Input Circuits: Two high impedance channels for crystal, dynamic, or velocity microphones, and two high impedance phono channels for crystal or magnetic pick-ups. All four channels may be mixed.
Field Supply: 25 watts are available for one 2500 ohm , two 1250 ohm , two 5000 ohm , or four 2500 ohm fields.
Output Impedances: $2,3,4,6,8,16,125,250$ or 500 ohms with CHT output transformer or $4,8,15,250$ or 500 ohms with regular output transformer.

Frequency Response: Within $\pm 2 \mathrm{db}, 30$ to 15,000 c.p.s. (Tone controls in normal position).

Tone Controls: Two; Bass control varies response from +12 db to -35 db at $40 \mathrm{c} . \mathrm{p} . \mathrm{s}$. and treble control varies response from +8 db to -35 db at 7,000 c.p.s. from normal. It is possible to obtain practically any desired frequency response.

Gain: Microphone inputs, 118.5 db ; phono inputs, 74 db (based on 100,000 ohms input impedance).

Hum: 75 db below maximum output.

Tubes: 2-6J7, 1-6F5, 1-6C5, 1-6F6, 2-6L6G, 2-5Z3.
Power Consumption: 220 watts, 115 volts, $\mathbf{5 0 - 6 0}$ cycles.
Dimensions: $17^{\prime \prime}$ long, $10^{\prime \prime}$ deep, $9^{\prime \prime}$ high.

BOTTOM VIEW

PARTS LIST

THORD	DARSON	TRANSFORMERS	S AND CHOKES
Diagram			
No.	CHT	REG.	Type
T-1 T	T-15R08	T-17R31	Power Trangformer
T-2 T	T-15S92	T-17S14	Output Transformer
T-3 T	T-15D85	T-15D85	Driver Transformer
CH-1	T.15C56*	T-75C51	First Choke
CH-2 T	T-18C92	T-18C02	Second Choke
CH-3	T-67C46	T-67C46	Third Choke
CH-4	T-14C70	T-14C70	Tone Control Choke
- Winding	gs in series.		
		CONDENSERS	
Diagram No.	Mfd.	Voltage	Trpe
C-1	. 03	400V Paper	Aerovox $\$ 484$
C-2	. 03	400V Paper	Aerovoz $\$ 484$
C-3	. 04	400V Paper	Aerovoz $\$ 484$
C-4	. 04	400V Paper	Aerovor $\$ 484$
C-5	. 1	400V Paper	Aerovor $\$ 484$
C-6	. 1	400V Paper	Aerovor $\$ 484$
C-7	10	25 V Elect.	Aerovox PR25
C-8	. 1	400V Paper	Aerovor $\$ 484$
C-8	10	25 V Elect.	Aerovox PR25
C-10	. 5	400V Paper	Aerovos $\$ 484$
C-11	. 01	400V Paper	Aerovoz $\$ 484$
C-12	. 01	400V Paper	Aerovoz $\$ 484$
C-13	. 003	400V Paper	Aerovoz $\$ 484$
C-14	. 1	400V Paper	Aerovox $\$ 484$
C-15	10	25 V Elect.	Aerovox PR25
C-16, C-17	7 8-8	450V Elect.	Aerovor PBS450
C-18.	8	450V Elect. A	AerovoI PBS450
C-18	8	600 V Elect. A	Aerovoz PBS600
C-20	8	600 V Elect.	Aerovor PBS600
C-21	8	600 V Elect	Aerovoz GL600
C-22	8	600 V Elect. A	Aerovoz GL600
C-23	8	600 V Eleot. A	Aerovox GL600
C-24	8	600 V Elect. A	Aerovoz GL600

FREQUENCY RESPONSE CURVE

RESISTORS	
Watts	Type
Volume Control	Centralab N-103
Volume Control	Centralab N-103
1/2	Centraiab $\$ 310$
1/2	Centralab $\$ 310$
1/2	Centralab ${ }^{\text {P }}$ 310
1/2	Centralab $\$ 310$
1/2	Centralab 7310
Volume Control	Centralab N-104
Volume Control	Centralab N-104
1/2	Centralab $\$ 310$
1/2	Centralab $\$ 310$
1	Centralab $\$ 314$
1/2	Centralab \$310
1/2	Centralab \$ $\mathbf{3 1 0}$
1/2	Centralab \$310
1	Centralab \$ 314
Tone Control	Thordarson R-1068
Tone Control	Thordarson R-1068
1	Centralab $\$ 314$
10	Ohmite, Wirewound
312	Centralab $\$ 310$
3/2	Centralab $\$ 310$
1	Centralab \$314
25	Ohmite, Wirewound
50	Ohmite, Wirewound
50	Ohmite, Wirewound
50	Ohmite, Wirewound

For complete mechanical drawing of chassis see page 29. Full size template of chassis available from THORDARSON 15 c net, postpaid.

THORDARSON 60 WATT AMPLIFIER

THIS 60 watt amplifier has sufficient undistorted power output for practically any loud speaker installation. Four type 6L6-G output tubes operate in a push-pull parallel class AB1 circuit. Under these conditions no driving power is required making it possible to use a single 6 C 5 tube fo- excitation of the power stage. Distortion in the power stage is reduced to a minimum by the use of inverse feedback. Laboratory tests of amplifiers without inverse feedback indicate that distortion at full output may be less than 5% at 400 c.p.s., however it may increase to as much as 30 to 40% at bass and treble frequencies. This peculiarity of pentode and tetrode power tubes is quite easily corrected by the use of inverse feedback. The output of this amplifier has less than 6% distortion at all frequencies jeetween 30 and 10,000 c.p.s.
In wiring the amplifier, shield all leads in the grid and plate circuits of the output tubes. The schematic diagrare indicates clearly where shielding is necessary. This should not be overlooked since shielding is important in modern amplifiers employing tubes with high power sensitivity. Connect the colored leads of the output transformer to the numbered terminals of T-3 as indicated in the diagram. If the leads of the tertiary winding are reversed oscillation is sure to result in the output stage.
Two rectifier tubes are used; one for the plate and bias voltages of the output stage; the other for the screens of the output tubes and the balance of the amplifier. The effect of this circuit is similar to fixed bias and also provides excellent screen voltage regulation which is essential for maximum undistorted outpat. Interstage coupling through the \mathbf{B} supply is also eliminated, since the plate circuit of the 6L6-G tubes is supplied from a separate rectifier.
The amplifier as illustrated is constructed with regular Thordarson transformers and chokes except T-15A74. This is a Thordarson CHT input transformer which incorporates hum balancing construction, and a split secondary winding. The use of this transformer is essential since hum pick-up must be held to a minimum, and a split secondary is required for the inverse feedback connection. A CHT output transformer is also available as given in the parts list. In addition to having a better selection of secondary impedances the CHT output transformer is more efficient and has better frequency characteristics. Both the CHT and the regular output transformer have the 10% feedback winding.
A dual tone control circuit is used in the cathode circuit of the 6C5 tube. Since the control of frequencies is accomplished by means of degeneration, this stage provides very little gain. This stage therefore is strictly for tone control purposes. Refer to page 24 for more detailed information on this circuit and sketch showing connections to the special tone controls.

Both microphone circuits are susceptible to hum pick-up and "eross-talk" unless
properly shielded. A box may be formed from thin metal and placed as illustrated in the bottom view. Mount the bias cells, C-1, C-2, R-5, and R-6 on the inside wall of the chassis before fastening the metal box in place. Resistors R-3, R-4, R-13 and R-14 must also be shielded individually, as shown in the schematic drawing, to prevent hum and "cross-talk" from developing at this point.

TECHNICAL DATA

Power Output: 60 watts undistorted or +40 db (less than 6% distortion).

Coverage: $2,000,000$ to $3,000,000 \mathrm{cu}$. ft. indoors, 50,000 to 75,000 sq. ft. outdoors, (depending on speaker efficiency and noise level).

Input Circuits: Two high impedance channels for crystal, dy. namic, or velocity microphones, and two high impedance phono channels for crystal, or magnetic pick-ups. All channels may be mixed.

Output Impedances: 4, 8, 15, 250, or 500 ohms with regular output transformer as shown or $2,3,4,6,8,16,125,250$, or 500 ohms with CHT output transformer.
Frequency Response: Within $\pm 2 \mathrm{db}$ from 40 to 15,000 c.p.s. (tone controls in normal position).
Tone Controls: Two; bass control varies response from +8 db at $70 \mathrm{c} . \mathrm{p} . \mathrm{s}$. to -30 db at $40 \mathrm{c} . \mathrm{p} . \mathrm{s}$., and treble control varies response from +9 db to -27 db at $7000 \mathrm{c} . \mathrm{p.s}$. from normal. Practically any desired frequency response may be obtained.
Gain: Microphone inputs, 112 db ; phono inputs, 73 db (based on 100,000 ohms input impedance).
Hum: 75 db below maximum output.
Tubes: 3-6J7, 2-6C5, 4-6L6-G, 1-80, 1-83.
Power Consumption: 225 watts, 115 volts, $50-60$ cycles.
Dimensions: $1^{\prime \prime}$ long, $10^{\prime \prime}$ deep, $9^{\prime \prime}$ high.

PARTS LIST

		RESISTOR
Diagram		
No.	Ohms	Watts
R-1	1 MEG.	Volume Contro
R-2	1 MEG.	Volume Contro
R-3	500,000	
R-4	500,000	$1 / 2$
R-5	5 MEG.	$1 / 2$
R-6	5 MEG.	$1 / 2$
R-7	3 MEG.	1
R-8	3 MEG.	1
R-9	500,000	1/2
R-10	500,000	1/2
R-11	1 MEG.	Volume Contr
R-12	1 MEG.	Volume Contro
R-13	500,000	$1 / 2$
R-14	500,000	1/2
R-15	1,000	1
R-16	100,000	1
R-17	20,000	1
R-18	250,000	1/2
R-19	2,000	1
R-20	Dual Tone	Control
R-21	Dual Tone	Control
R-22	20,000	1
R-23	1,000	1
R-24	50,000	1
R-25	20,000	1
R-26	200	1
R-27	200	1
R-28	200	1
R-29	200	1
R-30	20,000	1
R-31	125	50
R-32	40,000	50
R-33	10,000	25

	3	Type 6J7
Type	2	TUBES
Type 6C5		

For complete mechanical drawing of chassis see page 30. Full size template of chassis available from THORDARSON 15 c net, postpaid.

120 WATT AMPLIFIER

TOP VIEW

THE power output of this amplifier is adequate for the largest installations either indoors or out. The input circuit is arranged to operate from a pre-amplifier such as those described on pages 20 and 22. These pre-amplifiers have low impedance outpat transformers, making it possible to operate them several hundred feet from the 120 watt unit. A 500 ohm resistor ($\mathrm{R}-1$) is connected across the input circuit of the 120 watt amplifier to match the 500 ohm output impedance of the pre-amplifier. This method is satisfactory since the 6 J 7 input tube provides approximately the same voltage gain as would be obtained from a line to grid transformer. Should it be desired to operate from a single high impedance pick-up without a pre-amplifier, resistor R-1 can be disconnected from the circuit. Under these conditions the amplifier gain is 90 db which is sufficient for full power output.

The second stage is the tone control and contributes very little to the overall gain of the amplifier. An article describing this tone control circuit may be found on page 24. If the tone control is not required, the 6 C 5 stage and associate parts can be eliminated without seriously affecting the gain of the amplifier.

A dotted line "A...... A" is shown on the circuit diagram just before the 6F6 driver tube grids. If the unit is to be used only as a booster amplifier, eliminate all those parts ahead of the dotted line. For connection to a 500 ohm line use a line to P-P grid transformer such as T-15A67 instead of T-15A74 as shown. The overall gain of the booster with this transformer is about 43 db . Therefore, full output will be obtained when a 0 db signal is fed to the unit (1.73 volts across 500 ohms.)

Four type 6L6-G tubes operate in a push-pull parallel class AB2 circuit with inverse feedback. With this set-up it is possible to obtain maximum undistorted power output from beam power tubes. The driver stage consists of two 6F6 tubes connected as triodes. These provide excellent regulation which is essential when the output tube grids are driven positive.

It is necessary to shield the entire wiring of the final stage. This is easily done by using single shielded wire similar to that used for antenna lead in. Take care that the shielding does not come in contact with the tube socket contacts and other terminals. Ground all shielding carefully. If the amplifier oscillates interchange the leads connecting to terminals 7 and 6 on driver transformer T-4. This reverses the phase relationship of the feedback voltage with respect to the input voltage.

Two power supplies, entirely independent of one another, make it possible to obtain excellent regulation of the bias and screen voltages. The plate
supply of the output stage uses two type 83 rectifier tubes. An 80 is used to supply fixed bias and screen voltage to the output stage as well as plate voltage for the balance of the amplifier A separate filter system for each supply isolates the output stage and insures stability. Resistors in series with the 83 tube plates help distribute the current evenly. These resistors are necessary when mercury vapor rectifier tubes are wired parallel
Before operating the amplifier insert all tubes except the 83's and adjust R-26 until 24.5 volts are measured at the 6 L 6 grids. After the 83 's are placed in the sockets turn the amplifier on and measure the bias voltage again. If any change is noted correct by_adjusting R-26.

TECHNICAL DATA

Power Output: 120 watts or +43 db (less than 8% distortion). Coverage: Up to $5,000,000 \mathrm{cu} . \mathrm{ft}$. indoors; 100,000 to $150,000 \mathrm{sq}$ ft . outdoors (depending on speaker efficiency and noise level).
Input Circuit: Single channel; may be adapted to low or high impedance.
Output Impedances: $84,100,125,166,250$ or 500 ohms; select ed by plug and jacks on terminal board of CHT output transformer.
Frequency Response: Within $\pm 1 \mathrm{db}$ from 40 to 15,000 c.p.s. (tone controls in normal position).
Tone Controls: Two; bass control varies response from +7 db at 60 c. p.s. to -20 db at $30 \mathrm{c} . \mathrm{p} . \mathrm{s}$., and treble control varies response from +7.5 db to -20 db at $10,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$. from normal. Practically any desired frequency response may be obtained.
Gain: 90 db with high impedance input resistor (based on 100,000 ohms input impedance); 72.5 db with 500 ohm input resistor. (If line to grid transformer is used, gain is approximately 90 db .)
Hum: 73 db below maximum output.
Tubes: 1-6J7, 2-6C5, 2-6F6, 4-6L6-G, 1-80, 2-83.
Power Consumption: 570 watts with no signal; 720 watts at maximum output.
Dimensions: $17^{\prime \prime}$ long, $15^{\prime \prime}$ deep, $9^{\prime \prime}$ high.

BOTTOM VIEW

120 WATT AMPLIFIER

PARTS LIST

THORDARSON TRANSFORMERS AND CHOKES				
Diagram No.				
T-1	T-15R06 Power Trannformer			
T-2	T-15R01 Power Tranaformer			
T-3	T-15S94 Output Transformer			
T-4	T-15D86 Driver Transformer			
T-5	T-15A74 Input Transformer			
CH-1	T-15C56 Choke*			
CH-2	T-68C07 Choke			
CH-3	T-67C46 Choke			
CH-4	T-14C70 Tone Control Choke			
*Winding in Series.				
	CONDENSERS			
No.	Mid.	Voltage		Type
C-1	10	25 V. Elect.	Cor.-D	Dub. ER-102
C-2	. 1	400 V. Paper	Cor.-	Dub. ${ }^{\text {DT-4P1 }}$
C-3	10	25 V. Elect.	Cor.-D	Dub. BR-102
C-4	. 5	400 V. Paper	Cor.-D	Jub. 1DT-4P5
C-5	. 04	400 V. Paper	Cor.-D	Dub. DT-4S4
C-6	. 1	400 V. Paper	Cor--D	Dub. DT-4P1
C-7	. 1	400 V. Paper	Cor.-D	Jub. DT-4P1
C-8	10	25 V . Elect.	Cor.-D	Dub. IBR-102
C-9	. 1	400 V. Paper	Cor--	Dub. DT-4P1
C-10, C-11	8-8	450 V. Elect.	Cor.-	Jub. IJR-588
C-12	16	200 V. Elect.	Cor.-D	Dub. JR-216
C-13	8	800 V. Eleet.	Aerov	ox /GL600
C-14	8	600 V. Elect.	Aerove	ox \%GL600
C-15	8	600 V . Elect.	Aerov	0x IGL600
C-16	8	450 V . Elect.	Cor.-D	Dub. JJR-508

	RESISTORS		
Niagram	Ohms	Watts	Type
R-1	500	1	Centralab 1314
R-2	1 MEG.	Volume Control	Centralab N-104
R-3	5,000	1	Centralab 1314
R-4	50,000	1	Centralab $\$ 314$
R-5	250,000	$1 / 2$	Centralab $\$ 310$
R-6	20,000	1	Centralab $\$ 314$
R-7	1,000	1	Centralab 314
R-8		Tone Control	Thordarson R-1068
R-9	Du	Tone Control	Thordarson R-1088
R-10	20,000	1	Centralab $\$ 314$
R-11	1,000	1	Centralab \$314
R-12	50,000	1	Centralab \$314
R-13	20,000	1	Centralab $\$ 314$
R-14	200	1	Centralab $\$ 314$
R-15	200	1	Centralab $\$ 314$
R-16	200	1	Centralab \$314
R-17	200	1	Centralab \$ 314
R-18	25	10	Ohmite, Wirewound
R-19	25	10	Ohmite, Wirewound
R-20	10.000	50	Ohmite, Wirewound
R-21	10,000	50	Ohmite, Wirewound
R-22	50	10	Ohmite, Wirewound
R-23	50	10	Ohmite, Wirewound
R-24	50	10	Ohmite, Wirewound
R-25	50	10	Ohmite, Wirewound
R-26	300	25	Ohmite, Semi-Var.

TUBES: 1-6J7, 2-6C5, 2-6F6, 4-6L_6G, 1-80, 2-83

MISCELLANEOUS PARTS

$17 \times 15 \times 3^{\circ}$ Chassis with bottom plate
"Gain" control plate
"Tone" control plates
Volume control knobs
AC line cord and plug - Belden $\$ 1725$
Fuse mounting - Littlefuse \$1075
Fuse, 10 ampere
Octal Sockets - Amphenol $\$ 8$
4-Contact sockets - Amphenol S4 5-Contact sockets - Amphenol S5 5-Prong speaker plugs - Amphenol PM5 Input conncetor - Amphenol PC3F Input connector - Ampheal MC3M Pilot light socket and jewel - Yaxley f310R Pilot light bulb, 6.3 volts - Mazda $\$ 40$ Metal tube grid cap
Metal tube grid cap shield
SPST toggle switch - Arrow H\&H $/ 20992$

NOTE: The brands and types specified in the parta list were used in the original laboratory models. Parts of equivawere used in the original laboratory models. Parts of equivalent quality may be subatituted exce

FREQUENCY RESPONSE CURVE

For complete mechanical drawing of chassis see page 30. Full size template of chassis available from THORDARSON, 15 c net, postpaid.

THORDARSON 2A3 PHONO AMPLIFIER

transformer has filament voltage available for either type tubes.) A Tru-Fidelity output transformer, T-90S13, makes voice coil or line impedances of $1.25,3.75,5,7.5,10,15,50,125,200,250$, 333 or 500 ohms available.

A form of degeneration is used in a new way to provide the unusually flexible tone compensating circuit shown. This circuit is so important and interesting that it is described in detail on page 24.

On the front panel are the two gain controls, near the input jacks; the expander control; a pilot light; the meter, with a switch at the far end of the chassis to measure the plate current of either or both output tubes; the on-off switch; the two tone controls and the plate current switch just mentioned.

In the photograph is shown the special shielding around the two small resistors from the gain controls. The circuit used results in a minimum of cross-talk, shielding them as shown removes the last possibility of it. Cover the resistors with cambric sleeving, then enclose them in a braid shield.

THIS 10 -watt Tru-Fidelity audio amplifier, with volume expansion and dual tone control, will meet the requirements of the most discriminating listener. It is an improved version of the Thordarson 10 -watt Tru-Fidelity unit, specially adapted to meet phonograph and radio tuner requirements. The amplifier features an unusually flexible tone control and volume expansion, making it possible to reproduce recordings with a high degree of naturalness. The volume expander is especially useful in restoring the range of symphonic renditions. No pre-amplifier stages are included as they are not needed and would materially increase the cost of construction.

With the bass and treble tone controls in "normal" position, the frequency response is flat. Through the use of the dual tone controls the bass may be boosted 7 db between 50 and 200 cycles or dropped 30 db from normal at 30 cycles. The treble may be boosted 9 db at 7000 or dropped 30 db at 10,000 cycles. These controls are independent, so any acoustical condition may be satisfied.

At the rated output of 10 watts, the distortion is but 3.7% and at 16 watts only 4.8%, which is still within high fidelity specifications.

The amplifier consists of five stages giving a gain of 70 db from either phono input (measured across a 100,000 ohm input). This gain is with the volume expansion off. When the expander is at maximum the volume level may be increased 11 db making a total overall gain of 81 db available. This is more than sufficient for any phono or tuner application.

Two phono inputs are mixed and fed into a 6 C 5 stage with a gain of 10 . The output of this stage is fed into a 6L7, the gain of which varies according to the expansion voltage fed into it by the action of the $6 \mathrm{C} 5-6 \mathrm{H} 6$ volume expansion stage. The energy for the expander stage is taken from the grid of the fourth stage 6C5.
The output of the 6 L 7 is fed into a 6 C 5 tone control tube which has a gain of 1.4 with the controls in "normal" position. This in turn is fed into another 6C5 and then, through a T-90A04 Tru-Fidelity transformer, to two 2A3's or 6A3's in push pull. (The power

BOTTOM VIEW
For complete mechanical drawing of chassis see page 28, also, full size template available from Thordarson 15 c net postpaid.

2A3 PHONO AMPLIFIER

TECHNICAL DATA

Power Output: 10 watts or +32.2 db with 3.7% distortion; 16 watts or +34.1 db with 4.8% distoriton.
Input Circuits: Two high impedance phono channels for crystal or magnetic pick-up or radio tuner. Individual controls for mixing or fading.
Output Impedances: $1.25,3.75,5,7.5,10$, $15,50,125,200,250,333$ or 500 ohms selected by connecting output terminals to desired impedance of transformer.
Frequency Response: Within $\pm 1 \mathrm{db}$ from 30 to $15,000 \mathrm{c}$. p.s. (tone controls in normal position).
Tone Controls: Two: bass control varies response from +7 db at 70 c. p.s. to -30 db at 30 c.p.s.; treble control varies response from +9 db to -30 db at 7,000 c.p.s.
Gain: 70 db with volume expander "OFF"; 81 db with volume expander "ON".
Hum: 64 db below maximum output.
Tubes: 4-6C5, 1-6L7, 1-6H6, 2-2A3 or 6A3, 1-80, 1-5Z3.
Power Consumption: 140 watts, 115 volts, 50-60 cycles.
Dimensions: $17^{\prime \prime}$ long, $10^{\prime \prime}$ deep, $9^{\prime \prime}$ high.

PARTS LIST

thordarson transformers and chokes

Diagram No.

Diagram
No.
T-1
T-15R05 Power Transformer
T-2
T-90A04 Audi Transformer
T-3 T-90S13 Output Transformer

RESISTORS			
$\begin{gathered} \text { Diagran } \\ \text { No. } \end{gathered}$	m Ohms	Watls	Type
R-1	1 MEG.	Volume Control	Centralab N-104
R-2	1 MEG.	Volume Contro	Centralab N-104
R-3	500,000		Centralab 4310
R-4	500,000	3/2	Centralab $\ddagger 310$
R-6	20,000 2000	1	Centralab 314
R-7	20,000	1	Centralab 314
R-8	1 MEG.	$1 / 6$	Centralab 1310
R-9	500,000	312	Centralab $\ddagger 310$
R-10	100,000		Centralab ${ }^{\text {P }} 14$
R-11	1 MEG.	Volume Control	Centralab N-104
R-12	10,000		Centralab $\$ 310$
R-13	100,000	12	Centralab 1310
R-14	250,000	$1 / 2$	Centralab 1310
R-15	100,000	1	Centralab \$314
R-16	10,000	10	Ohmite Brown Devil
R-17	10,000	10	Ohmite Brown Devil
R-18	800	1	Centralab $/ 314$
R-19	200	1	Centralab 1314
R-20	250,000	1/2	Centralab $\$ 310$
R-21	20,000	1	Centralab 1314
R-22	1,000	1	Centralab 1314
R-23	Dual Tone	Control	Thordarson R1068
R-24	Dual Tone	Control	Thordarson R1088
R-25	20,000	1	Centralab
R-26	3.500	10	Ohmite Brown Devil
R-27	50,000	1	Centralab $\$ 314$
R-28	1,000	1	Centralab 1314
R-29	50,000	1	Centralab 314
R-30	3,000	Potentiometer	Yaxiey 1C3MP
R-31	3,000	Potentiometer	Yaxiey P C3MP

[^0]
CONDENSERS

Diagram No.	Mid.	Voltage	Type
C-1	10	25 V Elect.	Cor.-Dub. ERR-102
C-2	. 1	400 V Paper	Aerovox 484
C-3, C-7	8.8	450 WV Elect.	Aerovox PBS 450
C-4	. 5	400 V Paper	Aerovox 484
C-5	. 1	400 V Paper	Aerovox 1484
C-6	. 5	400 V Paper	Aerovox $\$ 484$
$\mathrm{C}_{8} 8$	1	400 V Paper	Aerovox 484
C-9	10	25 V Elect.	Cor.-Dub. \&BR-10
C-10	. 03	400 V Paper	Aerovox 1484
C-11	. 03	400 V Paper	Acrovox ${ }^{\text {f }} 484$
C-12	. 002	400 V Paper	Aerovox $\$ 484$
C-13	. 5	400 V Paper	Aerovoz $\$ 484$
C-14, C-15	8-8	450 WV Elect.	Aerovox PBS 450
C-16	. 1	400 V Paper	Aerovox $/ 484$
C-17	10	25 V Elect.	Cor.-Dub. ERR-10
C-18	. 25	400 V Pappr	Aerovox 1484
C-19, C-24	8-8	450 WV Elect.	Aerovox PBS 450
C-20	8	450 V Elect.	Aerovor G 450
C-21	8	450 V Elect.	Aerovor 4450
C-22, C-23	8-8	450 WV Elect.	Aerovos PBS 450
C-25	. 5	400 V Paper	Aerovox 484

miscellaneous parts

1 10x17x3 3° Chas. and screen cover-Par-Metal /AF1017
10x17 ${ }^{\circ}$ Chas. bottom plate-Par-Metal / BP4526
0-150 MA DC meter - Tripiett $/ 223$
SPST toggle switch - Arrow H\&H $\$ 20992$
Two gang three position switeh - Yaxley Octal sockets - $^{2} 23$-J
Octal sockets - Amphenol S8
4-Contact sockets - Amphenol S4
Metal tube grid cap
Metal tube grid cap shield
"Volume" control plates
"Tone" control plates
"Tone" control plates
Three position meter switch plate Control knobe
Mic. connectors - Amphenol PC1M AC line cord and plue - Belden Pilot light socket and jewel - Yaxley 310R Pilot light socket and jewel - Yaxley 310 F
Pilot light bulb, 6.3 volts - Mazda 140 Brackets-YaIley RB $\$ 248$

[^1]
THORDARSON 6 Volt DC - 115 Volt AC AMPLIFIER

TOP VIEW

The combination 6 volt D.C., 115 volt A.C. amplifier has become very popular, especially in mobile public address work. Its flexibility permits operation almost anywhere that a 6 volt storage battery can be placed, such as rural gatherings, picnics, beach parties, motor boats, barn dances, etc. It is the ideal unit for portable and rental work since the undistorted power output of 20 watts is sufficient for most installations. Results are alike on both battery and 115 volt A.C. supplies with no sacrifice in the quality of reproduction.

The amplifier is similar to the 25 watt unit described on page 8; two 6L6-G's operate in a class $A B_{1}$ circuit with approximately 300 volts applied to the plates and screens. Inverse feedback reduces the distortion which is lower than ordinarily encountered in 6 volt amplifiers of this type. Two input channels accommodate a low level high impedance microphone and high impedance phono pick-up. The gain of the amplifier is more than adequate for full output with either "Mic" or "Phono".

Operation from 6 volts D.C. is made possible by incorporating a heavy duty vibrator to convert the D.C. into alternating current. Dual operation is accomplished by having both a 6 voltvibrator primary and a 115 volt primary on one and the same transformer. Two 6W5-G tubes rectify the high voltage for both battery and A.C. operation. A 6.3 volt secondary on the transformer supplies the heater current for A.C. operation only. The heaters are switched to the battery automatically for 6 volt operation by inserting the proper power supply plug. Two plugs are used, one being wired for 115 volt and the other for 6 volt operation. These plugs are wired as indicated on the schematic diagram.

Three switches are required. Two are used for 6 volt operation, one being a heavy duty type which controls the total 6 volt supply and the other is connected in the vibrator circuit and provides standby operation. The third is the "On" and "Off" switch for operation from 115 volts A.C.

When operating from a 6 volt
battery, turn the main heavy duty switch "On' first and wait a minute or so for the tube heaters to warm up before turning on the vibrator switch. The vibrator switch controls the "B" supply and when turned "On" the battery drain increases from 4.5 amperes (which is the heater current) to about 19 amperes. This switch is a desirable feature since the battery can be conserved without waiting for the heaters to warm up when operation is desired.

All converters, whether rotary or the vibrator type, develop a certain amount of high frequency hash. This disturbance is easily picked up in the amplifier circuit unless proper isolation and shielding is employed. Therefore, it is advisable to construct the amplifier as closely as possible to the illustrations and diagram. All shielding should be incorporated where shown. A small metal box is formed and fastened in place by the Amphenol connector PC1M. One side of the box is left open to tighten the connector and insert C1, R1, and the bias cell and holder. Pass a shielded lead through the small hole for the 6 J 7 grid connection. Wire the lead and parts and test the amplifier before soldering the box side in place.

TECHNICAL DATA

Power Output: 20 watts undistorted or 35.5 db (less than 5% distortion).
Coverage: 500,000 to $1,000,000 \mathrm{cu}$. ft. indoors; 15,000 to 25,000 sq. ft. outdoors (depending on speaker efficiency and noise level).
Input Circuits: One 5 megohm channel for high impedance crystal, dynamic or velocity microphone, and one channel for high impedance crystal or magnetic pick-up. Channels may be mixed and faded.
Output Impedances: $4,8,15,250$, or 500 ohms with regular transformer, or $2,3,4,6,8,16,125,250$, or 500 ohms with CHT output transformer.
Frequency Response: Within $\pm 2 \mathrm{db}$ from 50 to 8,000 c.p.s. with bass boost of 5 db at 70 c.p.s.
Gain: Microphone input, 114 db ; phono input, 75 db (based on 100,000 ohms input impedance).
Hum: 70 db below maximum output.
Tubes: 2-6J7, 1-6C5, 2-6L6-G, 2-6W5-G.
Power Consumption: 100 watts at 115 volts, $50-60$ cycles, or 19 amps. at 6 V. D.C. (4.5 amperes on standby position).
Dimensions: $17^{\prime \prime}$ long, $10^{\prime \prime}$ deep, $9^{\prime \prime}$ high.

6 Volt DC-115 Volt AC AMPLIFIER

FOR MECHANICAL DRAWING OF CHASSIS SEE PAGE 27

FREQUENCY-RESPONE CURVE

DISTORTION CURVE

TOP VIEW

ALTHOUGH pre-amplifiers are not as popular as they were some years back, there are cases where their use is recommended or necessary. The sound installation which requires that the microphone be located several hundred feet or more from the main power amplifier, can make good use of a preamplifier of the type shown on these pages. The gain is about 60 db , which will raise the level of the average low level microphone to approximately 0 db . Its output impedances are $500,333,250,200,125$ or 50 ohms. The 500 or 200 ohm impedances are most commonly used. When a line operates under these conditions, any hum or disturbance which is picked up is so far below the signal level that it is not objectionable in the output of the loud speakers. High impedance microphones, such as the crystal, velocity and dynamic, should not be used at distances greater than 50 to 100 feet without such a pre-amplifier. When this distance is exceeded, losses occur either in signal level or frequency response.

This single channel amplifier is entirely self-contained, and operates from 115 volts 60 cycle current. It can be used in conjunction with the 120 watt amplifier described on page 14 or any of the amplifiers described in the Amplifier Guide, if the proper input impedance is built into the amplifier. Best results are obtained when a high quality hum balancing transformer having a 200 or 500 ohm primary is placed in the phono circuit of the amplifier. Thordarson T-90A00 or T-15A66 is suitable for this purpose. Best results are obtained when the gain control on the pre-amplifier is almost all the way on and that on the main amplifier cut down to control the output of the system.

The assembly and wiring of the pre-amplifier is quite simple; however, care should be taken in placeing and wiring those parts enclosed in the dotted line on the schematic
diagram. Condenser C-1 and resistors R-1 and R-2 may require shielding if hum is to be cut to a minimum. It is recommended that the chassis be provided with a base to fully enclose the bottom of the pre-amplifier. Where no base is used, it may be necessary to shield all those parts included in the above mentioned dotted line.

The output transformer T-2 is shown connected to a five-contact socket. The connections indicated provide coupling to either a 200 or 500 ohm line. The additional impedances are obtainable by properly connecting the secondary of the transformer. Full instructions are supplied with each transformer for obtaining these other impedances.

TECHNICAL DATA

Output Level: 0 db or .006 watts (less than 1% distortion).
Gain: 59.9 db (based on 100,000 ohm input impedance).
Frequency Response: Within $\pm 1 \mathrm{db}$ from 30 to 15,000 c.p.s.
Input: 5 megohms for one high impedance crystal, dynamic, or velocity microphone.
Output: Low impedance line - 500, 333, 250, 200 , 125 , or 50 ohms.
Tubes: 1-6F5, 1-6J7, 1-6X5.
Power Consumption: 17.5 watts, 115 volts, $50-60$ cycles.
Dimensions: $91 / 2^{\prime \prime}$ long, $5^{\prime \prime}$ deep, $6^{\prime \prime}$ high — with cover $81 / 2^{\prime \prime}$ high.

SINGLE CHANNEL PRE-AMPLIFIER

PARTS LIST
THORDARSON TRANSFORMERS AND CHOKES

Diagram	
No.	
T-1	T-15R04 Plate and Filament Transformer
T-2	T-15A71 Tube to Line Transformer
CH-1	T-13C26 Choke
CH-2	T-13C26 Choke

Diagram		,	RESISTORS		
No.		s Watts			Type
R-1		. $1 / 2$			IRC BT-1/2
R-2		G. $1 / 2$			IRC BT-1/2
R-3					IRC BT-1
R-4		000	Volume Control		Yaxley type "M"
R-5		000		1	IRC BT-1
R-6		1			IRC BT-1
R-7		1			IRC BT-1
R-8		,000	10		Ohmite Brown Devil
Diagram			CONDENSERS		
No.	Mid.		Voltage		Type
C-1	. 1		00 V Paper	Corne	1-Dubilier ${ }^{\text {JT-4P1 }}$
C-2	. 1		00 V Paper	Corne	I-Dubilier fDT-4P1
C-3	5		00 V Paper	Corne	-Dubilier \$DT-4P5
C-4	10		25 V Elect.	Corne	- Dubilier \$ED-2100
C-5	8		50 V Eleot.	Corne	1-Dubilier \$JR-508
C-6	8		50 V Elect.	Corne	I-Dubilier \$KR-508
C-7	8		50 V Elect.	Cornel	1-Dubilier fKR-508
C-8	8		50 V Elect.	Corne	Il-Dubilier /KR-508

Type 6F5
Type 6.J7
Type 6X5

MISCELLANEOUS PARTS

$$
\text { 5x91/2x } 216^{\circ} \text { Chassis and cover - Bud No. } 698
$$ $5 \times 912^{\circ}$ Chassis bottom plate - Bud No. 680 Octal socketa - Amphenol S8

Output bocket - Amphenol $\$ 5$
Output plug - Amphenol PM5
Mic. input oonnector - Amphenol MC1F
Mic. input conneotor - A mphenol PC1M Metal tube grid caps
Metal tube grid cap shields
AC line cord a plug - Beiden No. 1725
SPST a witch - Arrow H\&H No. 20992
Volume control knob, blac
Pilot light bracket and jewel - Yaxley No. 310R Bias cell, 1.5 Volts - Mallory No. F7 Bias cell holder - Mallory Na. GB-1A Pilot light bulb, 6.3 volts - Masda No. 40

Chassis drawing of Single Channel Pre-Amplifier. Full size template available from THORDARSON, 15 c net, postpaid.

THORDARSON FOUR CHANNEL PRE-AMPLIFIER

TOP VIEW

THE multiple channel pre-amplifier and mixer is useful where more input circuits must be accommodated than the regular amplifier will handle. Most main amplifiers accommodate only one or two microphones. Like the single channel pre-amplifier on the previous page, this unit may be operated several hundred feet from the main amplifier if necessary without serious loss of volume level or frequency response. The main amplifier should be equipped with a 200 ohm or 500 ohm input transformer to match the output impedance of the pre-amplifier. Thordarson transformers T-90A00 or T-15A66 are suitable for this use. The 120 watt amplifier on page 14 is designed to operate with a pre-amplifier and mixer of this type.
The circuit diagram as shown will accommodate four low level high impedance microphones. If it is preferable to handle only three low level microphones and a phono pick-up, one of the 6 F 5 pre-amplifier tubes and associated parts can be eliminated. The phono pick-up will then operate directly into volume control R-16. Likewise, two pre-ampli.fier tubes can be eliminated if two phono pick-up channels are more desirable.

Dotted lines are shown on the circuit diagram indicating that portion of the circuit which is susceptible to hum and noise pick-up. In the laboratory model, it was necessary to shield resistors $\mathrm{R}-17, \mathrm{R}-18, \mathrm{R}-19$, and $\mathrm{R}-20$ and all the leads connecting
to them as well as the grid leads to the 6F5tubes. Additional shielding should not be necessary if the chassis is fully enclosed with a chassis bottom plate. Bias cells provide bias for the 6F5 input tubes, thus eliminating any disturbance that might develop in the cathode circuit of these tubes.

TECHNICAL DATA

Output Level: 0 db or .006 watts (less than 1% distortion).
Gain: 55 db (based on $100,000 \mathrm{ohm}$ input impedance).
Frequency Response: Within $\pm 2 \mathrm{db}$ from 20 to 15,000 c.p.s.
Input Circuits: Four 5 megohm channels for high impedance crystal, dynamic or velocity microphones.
Output: Low impedance line - 500, 333, 250, 200, 166,125 , or 50 ohms.
Tubes: 4-6F5, 1-6J7, 1-6X5.
Power Consumption: 25 watts, 115 volts, 50-60 cycles.
Dimensions: $131 / 2^{\prime \prime}$ long, $5^{\prime \prime}$ deep, $6^{\prime \prime}$ high - with cover $81 / 2^{\prime \prime}$ high.

PARTS LIST
thordarson transformers and chokes Diagram
N 0
$\mathrm{~T}-1$
$\mathrm{~T}-2$
$\mathrm{CH}-1$
T-15R04 Power Transformer
T-15A71 Tubs to Line Output Traneformer ${ }_{\mathrm{T}}^{\mathrm{T}-13 \mathrm{C} 26 \text { Choke }}$

miscellaneous parts

5x131/2x21/2" Chassis and screen cover-Bud No. 1125 5x131/2" Chaseis bottom cover - Bud No. 685
Octal sockets - Amphenol S8
5-contact socket - Amphenol S5
${ }^{6}$-prong output plug - Amphenol PM5
Mio. connectors - Amphenol PC1M
Mic. connectora - Amphenol MC1F
Metal tube grid capa
Metal grid cap shields
AC line cord and plug - Belden No. 1725
SPST Toggle Switch - Arrow H \& H No. 20992 Control knobe
"Volume" control plates
Pilot light bracket and jewel - Yaxley No. 310R
Bias celle 1.5 volts - Mallory No. F7
${ }_{6.3 V}$ Bias cell holders - Mallory No. GB-1

NOTE: The brands and types specified
in the parts list were used in the original laboratory models. Parts of equivalent quality may be substituted except where physical limitations prohibit.

Chassis drawing of Four Channel Pre-

 Amplifier. Full size template of chassis for drilling, showing all mechanical dimensions available from THORDARSON, 15 c net postpaid.

TOP VIEW
DUAL TONE CONTROL

Thordarson's development of this "Dual Tone Control" was prompted by the many requests of sound men for an effective tone compensating system to boost or attenuate the bass or treble frequencies independently of each other. Examination of the schematic diagram will show that the final circuit is simple and not at all complicated to construct. The unit described here is identical in circuit details to the tone compensation employed in the amplifiers shown elsewhere in this "Amplifier Guide." It is constructed on a small chassis, making it adaptable to practically any existing amplifier.

Operation is based on degeneration in the cathode circuit of a 6 C 5 or equivalent tube. If resistance is introduced in the cathode circuit, any signal developed by the tube will also appear across the resistance. This signal voltage is opposite in phase and in series with the voltage impressed on the grid and cathode of the tube. Degeneration takes place and the amplification of the tube is reduced. In this application the plate loading resistor $R-6$ is made small and the cathode resistor $\mathrm{R}-3$ large so that a greater part of the voltage developed by the tube appears in the cathode circuit.

Since the circuit is resistive there is little or no frequency discrimination at audio frequencies, and all frequencies are degenerated an equal amount. If the cathode resistance is shunted with an inductance (of the proper value) the resistance at low frequencies is practically shorted out due to the low impedance of the choke at low frequencies. Therefore degeneration of the low frequencies is eliminated and the greater part of the signal developed by the tube appears across the load resistor R-6. The result is an increase in the low frequency response of the circuit. Likewise
if a condenser (of the proper value) is shunted across the cathode resistor, the low impedance of the condenser at high frequencies reduces the impedance of the circuit and degeneration of the higher frequencies is reduced. The high frequency response of the circuit is thus increased.

Attenuation of the low frequencies can be accomplished by shunting the grid circuit of the following stage with a choke or inductance. It so happens that the value of the choke (described above) used in the bass boost circuit also has the correct value for an attenuation circuit. The high frequencies can be attenuated by shunting the same grid circuit with a suitable condenser.

The function of control R-5 is to introduce the choke CH-1 into either the cathode circuit for bass boost or the grid circuit for bass decrease. Control R-4 applies condenser C-2 to the cathode circuit for treble increase, or $\mathrm{C}-3$ to the grid circuit for

treble decrease. The controls are coupled to the cathode through condenser C-4 and to the following grid by a shielded lead. The small pictorial drawing illustrates clearly how connections are made to the controls.

To install the tone control unit into an existing amplifier, locate the coupling condenser in a resistance coupled stage (preferably the plate circuit of the second stage of the amplifier). Remove the condenser from the circuit and connect the shielded lead of condenser C-1 and the shielded lead of C-5 in its place. Make sure that the lead from C-1 connects to the plate of the tube preceding the tone control unit. Ground the shields of these leads to the amplifier to complete the ground circuit. Connect the unshielded lead to a well filtered point of the amplifier B supply circuit. A pair of twisted wires not over 3 feet long may be used for the filament supply. No difficulty should be experienced with hum or other disturbance since the unit can be placed several feet from the amplifier. It is also possible to build the tone control into an amplifier if there is adequate room and care is taken not to mount the choke and controls near the power transformer.

PARTS LIST FOR THE DUAL TONE CONTROL

NOTE: ${ }_{4}$ The brands and types specified in the parta list were used in the original laboratory models. Parts of equivaent quality may be subetituted except where physical limitations prohibit.

Curves are shown on opposite page illustrating tone controls in various positions. Full size template of the chassis drawing also shown on opposite page available from THORDARSON, 15c net, postpaid.

DUAL TONE CONTROL

Bass Control normal - Treble Control normal

Bass Control increase - Treble Control normal

Bass Control normal - Treble Control increase

Bass Control increase - Treble Control increase

Bass Control increase - Treble Control decrease

Chassis drawing of Dual Tone Control Unit. Full size template availablefrom Thordarson, 15 c net, postpaid.

Bass Control decrease - Treble Control increase

Bass Control decrease - Treble Control normal

Bass Control normal - Treble Control decrease

Bass Control decrease - Treble Control decrease

Dual Tone Control. Schematic Diagrara.

Fig. 1
It is frequently necessary to match a number of speakers to a 500 ohm line in such a way that the speakers take unequal power. It is an easy matter to connect a number of speakers to a 500 ohm line so that each speaker takes the same amount of power and it is also an easy matter to determine the correct impedance ratio of each line to speaker transformer. In Fig. 1, if each of the speakers has a voice coil impedance of 10 ohms , the impedance ratio of the transformers should be 1500:10 so that the three 1500 ohm impedances in parallel will give an impedance of 500 ohms , which is the correct value for the 500 ohm line. In this case, if the total power supplied to the 500 ohm line is 30 watts, each speaker will take one-third of this or ten watts. If this power is to be divided so one speaker receives 15 watts, one 10 watts and one 5 watts, one must make a change in the ratio of the three transformers.

The voltage developed across the 500 ohm line is 122 volts. ($W=\frac{E^{2}}{R} ; W=30$, $R=500, E=\sqrt{15,000}$ or 122 volts). Given the voltage across the 500 ohm line and the voltage required across each voice coil for the desired amount of power, it is an easy matter to determine the turns ratio and the impedance ratio necessary in the various transformers.

For the first speaker, requiring 15 watts of audio, the voltage across the voice coil is 12.25 volts; $\left(W=\frac{R}{R} ; W=15, R=10\right.$, $E=\sqrt{10 \times 15}=12.25$ volts). Similarly, the voltage across the speaker requiring 10 watts is 10 volts and the voltage across the speaker requiring 5 watts is 7 volts. The turns ratio of the various transformers is 122

122
$\overline{12.25}$ or $10: 1$. Also $\frac{10}{10}$ or 12.2:1, and also 122

$\frac{7}{7}$ or 17.5:1. The impedance ratio of the

transformer is the turns ratio squared and the actual primary impedance is equal to the turns ratio squared, multiplied by the voice coil impedance of 10 ohms. The reflected primary impedances are all different. However, when the three are paralleled, they result in an impedance of 500 ohms, which is the correct value for the 500 ohm line. In this case, the power delivered to each of the speakers is entirely different from the condition under Fig. 1.

It must be remembered when using this method of calculation the total power in the individual voice coils must total the power in the primary from which the value of primary voltage was computed.

Frequently it is not possible to match the impedance of the speaker exactly. Whenever this is not possible and whenever there is a sufficient number of taps
on the output of the amplifier, it should be connected in such a way that a lower plate to plate load than normal is reflected. In other words, if it is necessary to match a 15 ohm speaker to an output transformer which has a 16 ohm tap and a 14 ohm tap, the 15 ohm speaker should be connected to the 16 ohm tap. This will reflect a somewhat lower value of plate to plate load so that it is possible to obtain slightly more power from the amplifier although the distortion will be somewhat greater at the peak output. This is much better than connecting the 15 ohm speaker to the 14 ohm tap, thus reflecting a higher plate to plate load and causing the amplifier to overload at a much lower value of power output. This is especially true of pentode and beam power tubes, where the higher value of plate to plate load will result in a flat top wave and severe distortion will result.

IMPEDANCE RATIO

The transformer is an impedance changer and as such it is not necessarily associated with any one value of impedance. In other words, if a transformer is designed to couple a 500 ohm line to a 10 ohm voice coil, the impedance ratio of the transformer is $50: 1$, and the same transformer for all practical purposes will just as effectively couple a 1000 ohm line to a 20 ohm coil or a 250 ohm line to a 5 ohm voice coil, provided, of course, that the power handling ability of the transformer is not exceeded. The only serious result of using the primary of a transformer for an impedance other than that for which it was designed is the changing of the frequency response of the transformer and its operating efficiency. In other words, a transformer designed for 500 ohms operation has a certain amount of inductance, which, when used with a 1000 ohm line, will give poorer low frequency response and better high frequency response. On the other hand, a transformer designed for 500 ohm operation when used on a 250 ohm line, will provide better low frequency response but the high frequency response will drop off considerably.

Thordarson line to voice coil transformer, T-60S48, may be used to reflect a primary impedance from 500 to 3000 ohms. It has been designed with high primary inductance and low leakage so that the
frequency response is good over this range. The secondary has a number of taps making it possible to match practically any voice coil impedance or obtain any desired turns ratio. The accompanying table indicates what turns and impedance ratios may be obtained as well as the voice coil impedances when one to six transformers are connected in parallel to a 500 ohm line. The table will aid in connecting voice coils of the same or different impedance where the distribution of power is equal, without the above computation. Only one speaker should be connected to each transformer.

Where there are a number of speakers which already have 500 ohm input transformers to be connected to a 500 ohm line a matching transformer must be used. A number of 500 ohm speakers connected in parallel may be matched to the 500 ohm amplifier output with T-76S74 matching autotransformer. This unit provides five impedances in addition to the original 500 ohms - $250,166,125,100$, and 84 ohms. These values are the result of connecting $2,3,4,5$, or 6,500 ohm speakers in parallel.
Two 500 ohm speakers connected in parallel will reflect an impedance of 250 ohms. Connections are made to the common terminal No. 7 and terminal No. 5. If three speakers are used, the reflected impedance will be 166 ohms, in which case the common terminal and terminal No. 4 are used.

THORDARSON transformer T-53S81 will couple a 500 or 250 ohm line to voice coils having 4,8 , or 15 ohms impedance. If desired, two of these transformers may be connected to a 500 ohm line by using a series connection and the 250 ohm tap. It is also possible to connect several speaker voice coils to one of the T-53S81 transformers. If the voice coils have 15 ohms impedance each, two of them could be connected in parallel to the 8 ohm tap. Four 15 ohm voice coils can be wired in series parallel to the 15 ohm tap or in parallel to the 4 ohm tap.

The wires connecting the transformer to the speaker coil should not be any longer than necessary. Long voice coil leads result in loss of power and low frequencies. Heavy wire should be used if the transformer is separated from the speaker more than a foot or so.

Table for Connecting Dynamic Speakers of Various Impedances in Same Output System

			Secondary Matching Impedance T-60S48 Transformer					
Secondary Terminals	Turns Ratio	Imped. Ratio	No. of Transformers in Parallel Across 500-ohm Line					
			1	2	3	4	5	6
2-4	89:1	7950	. 06	. 1	. 2	. 2	. 3	. 4
5-6	65:1	4200	. 1	. 2	. 4	. 5	. 6	. 7
2-5	47:1	2200	. 2	. 4	. 7	. 9	1.1	1.3
4-6	39:1	1500	. 3	. 6	1.0	1.3	1.6	1.9
3-6	32:1	1000	. 4	. 7	1.1	1.4	1.8	2.1
2-6	27:1	730	. 6	1.2	2.0	2.7	3.4	4.0
6.7	26:1	670	. 7	1.4	2.2	2.9	3.6	4.3
1.2	19:1	360	1.3	2.7	4.	5.4	6.8	8.1
1.3	17:1	290	1.7	3.3	5.	6.7	8.4	10.
1.4	16:1	250	2.	4.0	6.	8.	10.	12.
3-7	141/2:1	210	2.4	4.8	7.2	9.6	12.	14.4
1-5	133/4:1	190	2.6	5.3	8.	10.6	13.3	16.
2-7	131/4:1	175	2.8	5.6	8.4	11.2	14.	16.8
1-6	111/4:1	125	4.	8.	12.	16.	20.	24.
1-7	7.9:1	62	8.	16.	24.	32.	40.	48.

(Continuod from page 3)

ing effect of the tube is exceedingly small with the result that the damping is negligible. As a result, unnatural "boominess" may result when the speaker is shock excited and the cone vibrates at its own natural period. The natural period depends upon the physical construction of the speaker and is usually in the neighborhood of 50 to 150 cycles.

HUM

Hum in the output stage is cancelled out in much the same way as distortion, since
the hum developed in the stage and the voltage fed into the grid circuit are out of phase and tend to cancel. It must be remembered, however, that distortion not appearing in the stage or hum from a previous stage will not be cancelled by inverse feedback in the output stage. Great reductions in plate circuit distortion and plate resistance may be obtained by the use of large amounts of inverse feedback. However, the limiting factor in inverse feedback is the amount of desired gain from the stage in question. In actual design the amount of inverse feedback is a
compromise between the gain and the desired reduction in distortion. If there is enough gain in the previous stages and if the driver tube can supply the necessary peak voltage, it will be advisable to increase the amount of inverse feedback in order to reduce the plate resistance and the plate circuit distortion. However, if the plate resistance is fairly low and if the plate circuit distortion is a reasonable value, there is not much advantage gained in further reducing the gain by the addition of more inverse feedback.

Full size template of Chassis available from Thordarson, 15 c net, postpaid

CHASSIS DRAWINGS - 2A3 and 15 WATT AMPLIFIERS
Full Size Templates of Chassis Drawings Available from THORDARSON, 15c net postpaid

Practically nothing is said concerning the testing of amplifiers in the constructional articles in this guide. This subject is too broad to be covered in such limited space. The following ideas and suggestions will be of great help to the Sound Man who builds or repairs his own amplifiers. They are the results of long experience in the laboratory and in answering letters on this subject from our many friends and customers.
There are certain basic test instruments that should be available to every sound man and certain routines in their use that should be known and followed, if the full benefit is to be secured from them. These instruments include a good audio oscillator, a cathode ray oscilloscope, a selection of 50 or 75 watt resistors with values of 500 ohms or equal to output impedances to be used (these are to be used as substitute voice coil and line loads when measuring the output of an amplifier), and a vacuum tube voltmeter with a high range. For accurate overall gain measurements an accurate micro-volt meter is needed to measure the audio voltage applied to the input of the amplifier, and an output meter with no frequency discrimination.

CHECKING \HUM

One of the first problems encountered by the constructor is the elimination of Hum from an amplifier. The oscilloscope is very useful in determining the frequency of the Hum, its location, and when it has been reduced to a negligible quantity.

To determine the frequency of HUM, feed a portion of the output of the amplifier to the vertical input of the oscilloscope. Turn the sweep selector switch to " 60 cycle". A 120 cycle HUM will produce some form of a figure eight on the screen of the cathode ray tube as shown in Fig. 1. This indicates that the hum is coming through the power supply circuit, and is caused by lack of filtering or isolation of the different stages. On the other hand, a 60 cycle HUM, usually picked up by induction in the wiring, transformers or chokes will produce some form of circle - no crossing of lines. (Fig. 1).

The best procedure in checking HUM is to pull all tubes but the outputs and clear up any HUM that originates in that stage. Next insert the correct tubes and proceed to the driver stage, the interstage and the inputs successively. It will usually be found that HUM is picked up most often in the input stages. For this reason they must be well shielded. Notice that the resistors and leads associated with this portion of the circuit are always shown as being shielded in the diagrams. This is important in the elimination of HUM and cross talk between inputs. Such simple things as the placement of leads, transformers, tone control chokes, etc., will affect the amount of HUM present in the amplifier. Any defective condensers in the filter circuit will usually be shown at
the first of the test and of course should be replaced with perfect units.
On the oscilloscope the height of the image on the screen is a measure of the amount of HUM. This is shown in Fig. 1 as the distance " a " - " b ". Note: This height is affected by the voice coil impedance across which the tests are made. The greater the impedance, the easier it is to detect HUM on the oscilloscope. The ear will of course tell when HUM is no longer noticeable, but will not aid sufficiently in the location and elimination of the source. Tube hiss, which will appear after a gain of approximately 100 db has been reached, should not be confused with HUM.

OSCILLATION

Another source of trouble, especially in modern high gain amplifiers and those using an inverse feedback circuit, is parasitic oscillation.

If the transformers shown on the parts lists in this guide are used, and the circuit diagrams and various constants are followed, there can be but one main reason for oscillations. This is the reversal of the tertiary winding of the output transformers. All other sources of oscillation have been carefully eliminated.
The following suggestions for the curing of oscillation are given for the benefit of those building their own amplifiers from parts other than those recommended in this guide.

1. Complete shielding of the entire wiring of the final stage including the tertiary center tap.
2. Insert a 200 ohm $1 / 2$ watt resistor in each output tube grid lead.
3. Connect . 001 Mfd., or smaller, con-

densers from the output stage grid leads to ground, or the junction of the above mentioned 200 ohm resistors to ground.
4. Connect a by-bass condenser across the self bias resistor.
5. Connect a 25 ohm 10 watt resistor in series with each plate of push-pull parallel output tubes.
6. Insert 10,000 ohm or larger resistors across each half of the secondary of the driver transformer.
7. Connect a resistor across the total secondary of the driver transformer, the value to be as high as possible and still stop the oscillations.

A simple test procedure for the source of oscillation is as follows: First, reverse the tertiary winding of the output transformer. Second, remove the inverse feedback system entirely to make certain this part of the circuit is or is not responsible. Third, try the various circuit changes as previously outlined.

DISTORTION MEASUREMENTS

The most popular way to check the distortion in an amplifier is shown in Fig. 2. The output of the amplifier is fed to the vertical input of the scope and an audio signal with a sine wave characteristic is fed to the input of the amplifier. Since a
sine wave is uniform, any deviation from it is easily recognized.

It is not possible to distinguish distortion on the oscilloscope below 5 or 6 per cent. The only distortion which may be readily seen with this method is the flat top wave. This flat top may be caused by operating into the curved portion of the tube characteristic in the case of triodes or by using too high a plate load in the case of a pentode. Driving a class A or $A B$ power stage so heavily as to draw grid current will also cause this form of distortion.

Where distortion is present the leads from the vertical input of the oscilloscope should be moved to the output and input of each successive stage, beginning with the final, until the defective one is located.

OUTPUT MEASUREMENTS

Output measurements are usually taken across a resistor, substituted for the impedance which would usually be connected to the secondary. Use an accurate output meter when making these measurements. From the formula Power (Watts) equals $\frac{E^{2}}{R}$, it is then easy to compute the output of the amplifier.
An oscilloscope is almost a necessity in measuring power output if usable output is to be considered. Most amplifiers are capable of consider. ably higher output than their usual rating but with high distortion. An output with a maximum distortion of less than 8% is all that is really useful.
Connect the vertical input of the oscilloscope across the same load resistor that is used for the output voltage measurements. Increase the output, through the use of the gain control, until the sine wave form begins to distort. Back the gain down until no noticeable distortion is present, then take the output voltage reading. The oscilloscope will begin to show distortion when about 6% is A poin
A point often forgotten is that an amplifier passes many frequencies, thus the watts output should be fairly constant over the entire frequency
range if the amplifier has any quality at all. An amplifier with 25 watts output at 400 cycles should also deliver 25 watts with no noticeable distortion at 50 c.p.s. and to at least 8,000 c.p.s. These meas. urements are not possible unless the laboratory equipment previously ment:oned is available.

OVERALL GAIN

No rating can be so abused as the db gain of an amplifier. This is true because of the nature of the measurements involved. The decibel is a unit of power measurement so the resistance across which the voltage measurements are computed will influence the mathematical, not the actual, result.
To compute the overall gain, a carefully measured input voltage is applied to the input of the amplifier and the output voltage measured. The gain is figured in decibels through the use of the
formula $\mathrm{db}=10 \mathrm{log}$. Po output end $\mathrm{Pi}^{\text {is }}$ the power input.

The output voltage is usually read across the load resistor mentioned at the beginning of this article. The input voltage is fed into the regular nput, which is usually a 5 megohm resistor.
It is this input resistor that cen play havoc with the gain measurements. Although its value is 5 megohm, purposely a large value to prevent loading of the microphone, such a value is never encountered as an actual grid load. When shunted by the microphone or other input source the resultant impedance is much less. For this reason he secondary impedance of the usual transformer 100,000 ohms, is the generally accepted figure used in gain computations. An actual input impedance of megohms would obviously ruin the high frequency response of the stage involved. The calcuated be gain wind be tase whe usable gain you it will be more indicative of the usable gain. You amplifier in this guide the figure of 100,000 ohma is given as the value used. Without this statement the db value would be meaningless. Alway state the constanta used when speaking of db gain. Although a higher db gain will be shown by using value of 5 megohms rather than 100,000 ohms in the computations, the actual gain from microphone to speaker will be the same under either condition.

THORDARSON AMPLIFIERS

Factory Built - Laboratory Tested

Model T-25W30
"Built for Audio

Experts
 by
 Audio Experts"

-

WRITE FOR FREE CATALOG

The finest amplifiers are built by Thordarson - pioneers in producing quality audio components. Absolute fidelity is insured by accurate laboratory design and rigid inspection during production. New models from 8 to 75 watts undistorted out put satisfy practically every sound requirement. A 28 watt universal amplifrer with built-in record-player operates from either 6 volt battery or 115 volts a.c.
Catalog $600-\mathrm{D}$ illustrates and describes the beautiful walnut cabinet models and streamlined steel enclosures. Obtain a copy from your distributor or write factory direct.

Model T-25W28

Catalos No. 600-D

Model T-25W20

GUIDES AND MANUALS

Radio Service Guide - No. 342, I5c. Constructional data on improved condenser analyzer and impedance bridge. 32 volt DC power supply, two high fidelity phono amplifiers and adding an extra speaker to a receiver. Full of information you will use every day in the year.

Transmitter Guide - No. 344, 15 c. Forty-eight pages of up-to-the-minute data on transmitter design and operation. Portable units, beginners transmitters, and larger rigs up to 1000 watts are fully described. Circuit diagrams, parts lists, and photographs illustrate each article.

Replacement Transformer Encyclopedia, No. 243, and Supplement, No. 243-S. Free - Complete information regarding correct choke, audio and power transformer replacements. Covers almost 6000 receivers es listed in Rider's Manuals, Volumes I to VIII. Includes data on AC, AC-DC and battery models. This is the only complete listing available and will save valuable time for the serviceman. You cannot afford to be without a copy. Ask your distributor for a copy.

Complete Transformer Manual - No. 340, 50c - The Thordarson Transformer Manual is a complete book, containing the Radio Servicing Guide, the Replacement Transformer Encyclopedia, the Transmitter Guide, and the Sound Amplifier Guide, plus Thordarson catalogs and prices. It is bound in an attractive blue and orange cover with looseleaf arrangement, giving the user opportunity to keep the Manual up-to-date by adding the latest Thordarson releases.

Transformer Catalog - No. 400. Free. Descriptions and prices of the complete line of Thordarson Chokes, Audios and Power Transformers. The most comprehensive listing available to meet the needs of the Sound Man, Amateur, Service Man and Experimenter. May be obtained from your Parts Distributor or direct from the Factory.

THORDARSON ELECTRIC MFG. CO.

REPLACEMENT

TRANSFORMER

 ENCYCLOPPDDA 500 W. HURON ST., CHICAGO, IM. Transformer Specialists Since 1895

M
ODERN conditions call for fast and accurate service Your time and your customer's convenience and good will are valuable. The successful radio service engineer keeps a small stock of replacement transformers on hand to meet his requirements without delay. Thordarson does its part by having a complete line of replacement types for practically all receivers. The most popular types are listed below with full electrical and physical characteristics for your convenience. These transformers are rec-
ommended in the pages of this encyclopedia which has been compiled by Thordarson engineers to assist you in the proper selection of Power Transformers, Filter Chokes, Audio and Output Transformers. Types are listed below in numerical order for easy reference.

The Encyclopedia is larger than ever before and the receiver types have been carefully arranged to enable you to quickly find your model. KEEP THIS BOOK IN A HANDY REFERENCE SPOT - you will find it invaluable.

AUDIO TRANSFORMERS

For coupling the plate or plates of an amplifier stage to the grid or grids of the next stage where grid current is not drawn.

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Classification	Turns Ratio	Ohms Impedance		$\begin{aligned} & \text { Pri. } \\ & \text { M.A. } \end{aligned}$	Mtg. Fig.	Mtg. Centers Width Depth	Dimensions			Wt. Lbs.
			Pri.	Sec.				W.	D.	H.	
T-13A34	RECEIVER (midget)	3:1	10,000	90,000	8	3B	238	213/6	$18 / 8$	15/8	$3 / 4$
T-13A35	RECEIVER (midget)	3:1	10,000	90,000	8	3 B	23 \%	213/66	$15 / 8$	$15 / 8$	8/4
T-13A36	RECEIVER (midget)	1:1	20,000	20,000	$8 \dagger$	3 B	$211 / 16$	3	$18 / 4$	2	1
T-29A99	RECEIVER	3:1	10,000	90,000	8	2 B	$23 / 8$	27/8	2	23/8	$11 / 4$
T-33A91	RECEIVER	3:1	10,000	90,000	8	2 B	23/8	27/8	2	$23 / 8$	11/4
T-57A38	AMPLIFIER	3:1	10,000	90,000	8	2 F	$2^{15} 16$	33/8	21/2	3	21/4
T-57A41	AMPLIFIER	3:1	10,000	90,000	8	2 F	$2^{15} 16$	33/8	$2 \mathrm{P} /{ }^{\text {1 }}$	3	21/4
T-57A42	RECEIVER 积ge)	$3: 1$	10,000	90,000	8	2 B	$2^{15 / 16}$	33/8	21/8	3	2
For coupl	reen grid or power dete	r (Clario	C-60).								2
T-58A70	AMPLIFIER Has split Secondary.	1.5:1	20,000	45,000	$10 \dagger$	2 F	25/16	33/8	$21 / 2$	3	$21 / 4$
T-67A91	AMPLIFIER	1.5:1	20,000	45,000	$10 \dagger$	2B	$2^{15 / 16}$	38/8	21/8	3	2
T-74A31	AMPLIFIER	1:1	10,000	10,000	8	2 F	215/6	$33 / 8$	$21 / 2$	3	$21 / 4$

DRIVER TRANSFORMERS

For coupling the plate or plates to the grids of an amplifier stage in which grid current is drawn during a part of the audio cycle.

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Driver Tubes	Output Tubes	Class	Ratio Pri. to $1 / 2$ Sec.	$\begin{aligned} & \text { Pri. } \\ & \text { M.A. } \end{aligned}$	$\begin{aligned} & \text { Mtg. } \\ & \text { Fig. } \end{aligned}$	Mtg. Centers Width Depth	Dimensions			Wt. Lbs.
								W.	D.	H.	
T-17D01	1-6F6 Triode 1-42 Triode, 1-2	2-6F6, 6L6, etc. Triode	AB	$\begin{aligned} & 1.7: 1 \\ & 1.5: 1 \end{aligned}$	31	3 B	27/8	33/16	2	2	11/2
T-67D47	1-6N7, 6A6, 53	1-6N7, 6A6, 53	B	5.25:1	10	2 F	23/8	23/4	21/8	23/8	$11 / 2$
T-67D50	1-89 Triode	1-79	B	2:1	32	2 F	28/8	23/4	$21 / 8$	$23 / 8$	$11 / 2$
T-67D78	1-46. 59.6F6 42, 2A5 Triode	$\begin{aligned} & \text { 2-46, } 59 \\ & 2-6 L 6 \end{aligned}$	$\begin{gathered} \mathrm{B} \\ \mathrm{AB} 2 \end{gathered}$	2.2:1	32	2F	$2^{15} / 16$	31/8	$21 / 2$	3	$21 / 4$
T-74D32	2-6C5, 76, 56	$\begin{aligned} & 2-6 \mathrm{FG}, 42,2 \mathrm{~A} 5 \\ & 4-2 \mathrm{~A} 3,6 \mathrm{~B} 4 \mathrm{G} \end{aligned}$	$\begin{aligned} & \mathrm{AB2} \\ & \mathrm{AB} \end{aligned}$	3:1	10	2F	215/6	3\%/8	$21 / 2$	3	21/4
T-78D46	1-30	$\underset{\substack{1-1 \mathrm{~J} 6 \mathrm{G} \\ 2-30}}{ } 19$	$\begin{aligned} & \hline \text { B } \\ & B \end{aligned}$	2.4:1	7	2B	$21 / 8$	29/16	15/8	2	$3 / 4$
T-81D42	1-6F6 Triode 1-42 Trinde 1-2A5 Triode	$\begin{aligned} & \text { 2-6F6 Triode } \\ & 2-42 \text { or } \\ & 2-2 A 5 \text { Pentode } \end{aligned}$	$\begin{aligned} & \text { AB2 } \\ & \text { AB2 } \\ & \text { AB2 } \end{aligned}$	$\begin{aligned} & 1.7: 1 \\ & 1.5: 1 \\ & 1.3: 1 \end{aligned}$	31	2 F	$2^{15} 16$	3\%/8	/2	3	21/4
T-81D52	$\begin{aligned} & 1-6 \mathrm{C} 5,76 \\ & 1-56 \end{aligned}$	2-6F6 Triode 2-42, 2A5 Triode	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{AB} \end{aligned}$	$\begin{aligned} & 1.82: 1 \\ & 1.67: 1 \end{aligned}$	8	2 F	215/6	33/8	21/2	3	21/4

OUTPUT TRANSFORMERS

Type No.	Tube Type	Class	Ohms Impedance		$\begin{gathered} \text { Pri. } \\ \text { M. } \mathrm{M} . \\ \text { Per Side } \end{gathered}$	Max. Mtg. Watts Fig.		$\frac{\text { Mtg. Centers }}{\text { Width Depth }}$	Dimensions				
			Pri.	Sec.				W.	D.				
T-13S37	1-6F6, 42, 2A5, 47	A	7,000	1/2/4	36	5	3E		2	$2^{3} 8$	13 \%	18/8	1/2
T-13S38	Tniversal Single or P-P Tubes		$\begin{aligned} & 4,000 / 7,000 \\ & 8,00 / 10,000 \\ & 14,000 \mathrm{Ct} . \end{aligned}$	$\begin{aligned} & \text { Adjustable } \\ & .1 \text { to } 29 \end{aligned}$	36	8	3E	$23 / 8$	$2^{13} / 16$	$15 / 8$	15/8	$3 / 4$	
T-13S40	2-6F6, 42 P-P 2-2A5. 47 P-P	A.A	14,000 Ct.	1/2/4	40	10	3 E	23/8	$2^{13 / 16}$	15/8	18/8	3/4	
T-13S41	Universal P-P Tubes	A	$\begin{aligned} & 3,000 / 5,000 \\ & 6,600 / 7,000 \\ & 8,000 / 10,000 \end{aligned}$	$\begin{aligned} & \text { Adjustable } \\ & .1 \text { to } 29 \end{aligned}$	60	20	2E	25/16	$33 / 8$		3	$21 / 4$	
Copyright 1941 Elect. Mifg. Co., Chicago, ill. Printod in U. S. A. 2													
				World Radio									

OUTPUT TRANSFORMERS (Continued)

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Tube Type	Class	Ohms Impedance		Pri. M.A.	Max. Mtg. Watts Fig.		Mtg. Centers		Dimensions			$\begin{gathered} \text { Wt. } \\ \text { Lbs. } \end{gathered}$
			Pri.	Sec. Pe				Width	Depth				
T-13S42	Universal	A	1,500/2,000	Adjustable	55	10	3E	28/8		$2^{13} 16$	1\%/8	18/8	8/4
	Single		4,000/5,000	. 1 to 29									
	Tube		7,000										
T-13S43	1-1F4, 1D4, 1F5G	A	16,000	1/2/4	10	5	3E	2		28/8	11/4	13/8	$1 / 2$
T-14S81	1-42, 2A5, 6F6 or P-P 45, 71	A	7,000 Ct.	3 to 6	40	5	3B	2		$23 / 8$	18/8	13/8	1/2
T-14S82	1-25L6	A	1,500	3 to 6	55	5	3B	2		$23 / 8$	$13 / 8$	18/8	$1 / 2$
T-14S83	1A5-G, 1E7-G	A	25,000 Ct.	3 to 6	8	5	3B	2		23/8	13/8	13/8	1/2
T-14S84	1-1C5G, 1Q5G	A	8,000	3 to 6	10	5	3B	2		23/8	13/8	$13 / 8$	1/2
T-14S85	Universal Single or P-P Tubes	A	$\begin{aligned} & 4,000 / 7,000 \\ & 8,000 / 10,000 \\ & 14,000 \mathrm{Ct} \text {. } \end{aligned}$	Adjustable 1 to 29	2936	8	3B	23/8		$2^{13 / 16}$	13/8	15/8	$8 / 4$
T-17S10	1-6LG	A	2,500	2/4/8/500	80	8	2 F	2^{15} 价		33/8	23/2	3	21/4
T-17S12	2-6L6 P-P (with 300 V on plate and screen)	n^{AB}	4,300*	4/8/15/250/500	95	25	2 F	311/2		313/6	31/16	31/2	31/2
T-17S13	2-6L6 P-P	AB1	6,600*	4/8/15/250/500	80	34	2G	211/16	2916	35/16	$38 / 8$	48/8	$51 / 2$
T-17S14	2-6L6 P-P	AB2	5,500*	4/8/15/250/500	90	40	2G	211/16	29/16	3516	32/8	45/8	51/4
T-17S15	4-6L6 P-P Par.	AB1	3,300*	4/8/15/250/500	155	60	2G	211/6	21816	${ }^{3} 516$	$35 / 8$	45/8	58/4
T-17S16	4-6L6 P-P Par.	AB2	1,900*	$\begin{aligned} & 84 / 100 / 125 / 166 / \\ & 250 / 500 \end{aligned}$	230	120	2G	,	41/4	38/4	5		141/4
T-57S01*	Universal Single or	A	4,000/7,000	Adjustable	36	8	2 E	$23 / 8$		27/8	2	23/8	11/1
T-57S02 \dagger	P-P Tubes		$\begin{aligned} & 8,000 / 10,000 \\ & 14,000 \mathrm{Ct} \text {. } \end{aligned}$. 1 to 29			2B	28\%8					11/4
T-58572	$\begin{aligned} & \text { 2-2A3, 6B4G P-P } \\ & 2-48,25 \mathrm{~L} 6 \mathrm{P}-\mathrm{P} \end{aligned}$	$\underset{A}{\mathrm{AB}}$	3,000	4/8/15/500	60	30	2 F	$311 / 2$		$313 / 16$	31/16	$31 / 2$	31/4
T-65S94	$\begin{aligned} & \text { 2-50 P-P } \\ & 2-6 \mathrm{~F} 6,42,2 \mathrm{~A} 5 \text { P-P } \end{aligned}$	$\stackrel{\stackrel{A}{\mathrm{~A}}}{\mathrm{AB}}$	8,000	4/8/15/500	55	40	2 F	$311 / 2$		$3{ }^{13} 16$	31/16	$31 / 2$	$31 / 2$
T-67S48	$\begin{aligned} & 2-45,71,43,25 A 6 \text { P-P } \\ & 1-6 \mathrm{~N} 7,6 \mathrm{~A} 6,63 \text { P-P } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	8,000	4/8/15/500	36	25	2 F	$2{ }^{15 / 16}$		38/8	$21 / 2$	3	21/4
T-67S51	2-6F6, 42, 2A5, 47 P-P	A	14,000	4/8/15/500	40	20	2 F	21516		33/8	21/2	3	21/4
T-67S52	$\begin{aligned} & \text { 2-46, } 59 \text { P-P } \\ & \text { 2-6F6, 42, 2A5 P-P } \\ & 2-6 \mathrm{~N} 7,6 \mathrm{~A} 6,53 \text { P-P Par. } \end{aligned}$	$\begin{gathered} \mathrm{B} \\ \mathrm{AB} 2 \\ \mathbf{B} \end{gathered}$	5,800	4/8/15/500	60	30	2 F	$311 / 2$		313/16		$31 / 2$	$31 / 2$
T-67S54	$\begin{aligned} & \text { 2-6L6 P-P } \\ & \text { 2-2A3, 6B4G, } 45 \text { P-P } \end{aligned}$	$\stackrel{A}{A B}$	5,000	4/8/15/500	60	30	2 F	$311 / 2$		$3^{13 / 16}$		$31 / 2$	$31 / 2$
T-67S92	4-2A3, 6B4G, 45 P-P Par. 4-48, 25L6, P-P Par.	$\underset{\mathrm{A}}{\mathrm{AB}}$	$1,500$	4/8/15/500	80	40	2 F	$311 / 4$		$313 / 16$			$31 / 2$
T-75S75	2-6F6, 42 or 2A5 1-6N7, 6A6, 53 P-P 2-6N6G, 6B5, 2B6, 6AC5 P-P	$\begin{gathered} \mathbf{A B 2} \\ \mathbf{B} \\ \mathbf{A} \\ \hline \end{gathered}$	10,000	4/8/15/500	45	40	2 F	311 分		$313 / 16$			$31 / 2$
T-81S01	$\begin{aligned} & 1-19,1 \mathrm{~J} 6 \mathrm{G}, 1 \mathrm{G} 6 \mathrm{G} \text { P-P } \\ & 2-30,49 \mathrm{P}-\mathrm{P} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \hline B \\ & B \end{aligned}$	$10,000 \mathrm{Ct} .$	2/4/8	15	8	2B	21/8		2916		2	8/4

*10\% Feedback Winding

CHOKES

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Inductance		Current Rating M.A.	D.C. Res. Ohms	$\begin{gathered} \text { R.M.S. } \\ \text { Test } \\ \text { Volts } \\ \hline \end{gathered}$	$\begin{gathered} \text { Mtg. } \\ \text { Fig. } \end{gathered}$	Mtg. Centers		Dimensions			Wt.
	$\begin{aligned} & \text { At Zero } \\ & \text { D.C. } \end{aligned}$	$\begin{gathered} \text { At Rated } \\ \text { D.C. } \end{gathered}$					Width	Depth	W.	D.	H.	
T-13C26	21	8	40	530	1600	3B	2		28/8	$18 / 8$	18/8	3/2
T-13C27	22	10	40	475	1600	3B	28/8		213/6	18/8	18/8	8/4
T-13C28	20	10	65	460	1600	3B	211/6		3	18/4	2	1
T-13C29	20	9	85	250	1600	3B	28/4		33/16	2	2	$13 / 2$
T-13C30	25	8	150	200	1600	2B	21516		$38 / 8$	21/8	3	21/4
T-14C61	14	7	55	200	1600	3B	28/8		219 , ${ }^{16}$	13/8	18/8	3/4
T-14C62	16	8	55	250	1600	3B	$23 / 8$		$213 / 6$	13/8	15/8	8/4
T-14C63	19	8	55	300	1600	3B	23/8		$2^{13 / 16}$	13/8	18/8	8/4
T-18C92	37.8	18	35	405	1100	3B	27/8		3316	2	2	13/2
T-29C27	800	500	. 5	6150	1600	28	23/8		27/8	18/4	28/8	
T-44C02	31	12	80	405	1600	3B	27/8		38/16	2	2	11/4
T-47C07	20	12	75	410	1600	3B	$31 / 8$		35/8	17/8	21/4	11/4
T-52C98			. 5	6150	1600	2 F	28/8		27/8	17/8	28/8	13/6
T-57C54	27	10	110	200	1600	2 F	$2{ }^{1516}$		33/8	$21 / 2$	3	21/4
T-67C49	12	5	200	80	1600	2 F	$311 / 2$		313/18	31/18	$31 / 2$	38/4
T-68C08			35	405	1600	2 F	23/8		28/4	21/8	28/8	$11 / 2$
T-74C29	29	15	150	200	2000	2G	21116	29\%6			4\%/8	51/4
T-74C30			15	2100		3B	$211 / 16$		2	$11 / 2$	23/8	1
T-75C49	22	8	120	290	1600	3B	28/4		$3{ }^{3 / 15}$	2	2	$11 / 2$
T-75C51	24	13	250	121	1600	2G	3	21516	38/4	$3^{11} 16$	415/16	8

POWER TRANSFORMERS LISTED ON PAGE 29.

MODEL	Power Trans．	First Filer Choke	Second Filter Choke	$\begin{gathered} \text { First } \\ \text { Audio } \\ \text { 'Jrans. } \end{gathered}$	Second Audio Trans．	Output Trans	MODEL	Power Trane．	First Filter Choke	Second Filter Choke	First Audio Trans． \qquad	Second Audio Trane．	Output Trans．	
AlRLINE（See Montgomery Ward）							ATWATER KENT MFG．CO．（Contd）							
ALL AMERICAN MOHAWK CORP．（See ulso Wurlitzer）							72．11．1．．．．．．．．．．．	T．13106	T．13C30	T－13C29	4	T－33A91	T－57S01	
D，K．．．．．．．．．．．．	T－13R06	T－13C30	म	म	T－33A91	T．57S01	80．．．．．．．．．．．．．．．．．	T．13R03	น	\dot{H}	H	H	T．57S01	
J．．．．．．．．．．．．．．．．	T－13R02	$\dot{4}$	4	น	म	T－57S01	82.	T－13R04	म	4	H	\％	T．57501	
C－6，Studio	T．131206	T－13C30	4	\％	～	§Sprecial	83，84．．．．．．．．．	T－13R03	\％	H	$\dot{4}$	$\dot{\square}$	T－57S01	
S－6．．．．．．．．．．．．．．	T．13R03	¢	$\dot{\sim}$	H	妆	T－57S01	85，86，87，．．．．．．．	T－13R04	山	曻	み	H2	T－57S01	
S．7，5－8＊，5W－8．．．	T．13R04	$\dot{4}$	\％	म	＊T－33A91	T－57S01	89，89P．．．．．．．．．	T－56R05	T．13C30	＇1．13C27	$\dot{4}$	§Special	T－57S01	
S－10．．．．．．．．．．．．．．	T－13R07	T－13C30	$\dot{4}$	H	T－33A91	T－57S01	90，92，94．．．．．．．．	T－13 1204	น	\％	$\dot{4}$	\dot{H}	T．57S01	
S－40．．．．．．．．．．．．．．	T．13H01	म	\％	\％	म	T．57S01	96．．．．．．．．．．．．．．．．．．	T．13R04	T．13C30	§Special	ぬ	\％	T－57S01	
$\begin{aligned} & \text { S.50, S.63. SA•65, } \\ & \text { SW- } \mathbf{W} \text { S. } \end{aligned}$								T－56H05	T－13C30	T－13C27	品	§Special	T．57501	
	13803	）	\％	$\dot{\text { H }}$	\％	T－57S01		T．13R02	म	\％	\dot{H}	山	T－57S01	
60，61，62，65，66．．．	T．56H01	T－13C29	T－13C29	T－29A99	T． 33191	§Sprecial	168	T－13R06	T－13C30	\％	～	T．33A91	T－57S01	
80，83，84，85，86， 88	T－56K01	T－13C29	T．13C29	T．29A99	T－33A91	8 Special	184，184X．．．．．．．	T－13R12	2	H	H	\square	T－57S01	
S－80．．．．．．．．．．．．．．	T－13H04	H	4	H	T－33A91	T－57S01		T－13R02	\％	म	H	H	T－57S01	
90．．．．．．．．．．．．．．．	T－13R06	T．13C30	म	T－33A91	T－13A36	T．57S01	$185.185 \mathrm{~A}, 186 \ldots \ldots$ 188， 228	T－13R04	4	H	\％	H	T．57S01	
SA．90，SA－91，．．．．．	T－13R06	H	号	म	H	T．57S01	$\begin{aligned} & 206,217,236,246, \\ & 266,286,356,376 \ldots \end{aligned}$	T．13R03	म	\％	$\dot{4}$	H	T－57S01	
96．．．．．．．．．．．．．．．．	T．13H06	T－13C30	म	崮	T－33A91	T－57S01								
SA－110．．．	T．13106	T．13C30	H	\％	T－67078	T． 13541	208．．．．．．．．．．．．．．．	T．13144	$\dot{\sim}$	$\dot{4}$	म	T－33491	T－57S01	
SA－130．．．．．．．．．．．	T－13R06	T－13C30	站	\％	T－33A91	T－57S01	P216，P236．．．．．．．	T－13R12	$\dot{4}$	H	H	H	T．57S01	
226， $227 \ldots \ldots \ldots$.	T－56R01	T－13C29	T．13C29	T－29A99	T－29A99	T．57S01	E248．．．．．．．．．．．．．．	T．13R14	म	म	$\dot{4}$	T－33A91	T－57S01	
ANDREA							255．．．．．．．．．．．．．	T．13R12	म	म	म	${ }^{\text {H }}$	T－57S01	
$1 \mathrm{C} 5,2 \mathrm{C} 5,510,511,$ C5L，C5S							310.	T－13R04	T－13C29	\dot{H}	म	T.33A91	T． 57501	
	T－13112	4	म	น	曻	T．57S		T－131209	T．74C29	H	T－33A91	T－13A36	T－13S41	
1D7，2D7，3D7，4D7， 5D7，6D7，7D7，8D7， ch．D7L，D7S	T.13R13	H	\％	म	म	T－57501			$\dot{4}$	म	H	4	T-57S01	
									H	H	4	H	T－57S01	
$1 \mathrm{D8}, 2 \mathrm{D8}, 3 \mathrm{D8} .4 \mathrm{D8}$ ， 5D8，6D8，7D8，8D8， D8L，D8S	T.13R12	4	म	म	$\dot{\square}$	T－13S41	$\frac{328,337 \ldots \ldots \ldots . . .}{\text { E412. E412X, P412, }}$	T．13142	\％	山	\％	H	T－57S01	
D8L，D8S．．．．．．．．		T-13K14 T.75C49		4	\pm			T－57S01	T－13R09	T． 74 C 29	4	T－33A91	T－13A36	T．13S41
4D10，5110．6110，				的		427.	T－13 ${ }^{\text {¢ }}$ 03		令	\％	山	H	T－57S01	
10D10，D10L．D10S				43518 land 2 nil ．．．		T．13 H 12	m		$\dot{\square}$	$\dot{\square}$	4	T．57S01		
1E6，2E6，1＇E6I．， PE6S，PE66L，	T-13R12	品	म		$\dot{4}$	4	T－13S41	$447 \ldots \ldots \ldots \ldots \ldots \ldots$	$\begin{gathered} \text { T.13R03 } \\ \hline \text { T.13R06 } \end{gathered}$	म	$\dot{4}$	号	T－33A91	T－57S01
PE66S， 11 E6，12E6， 14E6				T－13C30						H	\％			
1E8，2E8．3E8，4E8． 5E8，6E8． 7 EB 8 8．8， $9 \mathrm{~EB}, 10 \mathrm{~EB}, \mathrm{P} \mathrm{E} 8 \mathrm{~L}$ ． PE8S	$\text { T. } 13 \mathrm{H} 12$		号	内	म	T－13S41	475．．．．．．．．．．．．	T－13R02	मे	H	\％	动	$\frac{\mathrm{T} .57 \mathrm{~S} 01}{\mathrm{~T}-57 \mathrm{~S} 01}$	
							480．．．．．．．．．．．．	T-131R07	$\text { T. } 13 \mathrm{C} 29$	म	H	T-33A91		
									मे	i	म	म	T．57S01	
2A5，5A5，6A5，ch． A5L，A5S	T－13R12	4	म	内	品	T－57S01	509	T．13R04	－号	H	4	4	T．57S01	
236，3136，4 4 \％	T．13 H 13	\％	$\dot{4}$	安	H	T－57501		$\begin{gathered} \hline \text { T-13R04 } \\ \hline \text { T-13R02 } \end{gathered}$	T－13C29	号	宸	T－33A91	$\frac{\text { T.57S01 }}{\text { T.57S01 }}$	
ch．36L．B6S．．．．									$\dot{4}$	4	$\stackrel{\square}{4}$	动		
2188，B8L，188S．．．．	T－13H12	म	म	$\dot{\square}$	\＆	T－57S01	545．．．．．．．．．．．．．．．	T．13R12		น			T－57S01	
2D5，3D5， 6D5， 8D5， D5L，	T.13R19	H	\％	\％	内	T－57S01	$\frac{555 \ldots \ldots}{558 \ldots \ldots} \ldots \ldots \ldots \ldots$	T－13R02	$\dot{8}$	म	म	म ${ }^{\text {L }}$	T．57S01	
D5S．PD5．								T－13H04	$\dot{\square}$	\％	म	मे	T－57S01	
3A7，ch．A71．．．．．	T－13R12	म		\％	亩	T．57S01	559．．．．．．．．．．．．．．．．	T－13104	T．13C29	น	\％	T－33A91	T－57S01	
$\begin{aligned} & \text { 3E11, 4E11, 5E11, } \\ & \text { 6EE11. } 7 \mathrm{E} 11, \text { 8E11, } \end{aligned}$	「．13R14 T－75C49		4	H	H	T－57S01	567．．．．．．．．．．．．．．	T－13H04	m	$\dot{\sim}$	\％	म	T－57S01	
9E11，10E11，PE11L PEIIS			T－57S01			E－608．．．．．．．．．．．．	T．13R14	\dot{H}	\dot{H}	\％	T－33A91	T－57S01		
B4，1341．400，401．．	T－13119	$\dot{\square}$		刿	$\dot{4}$	曻	T．57S01	627．．．．．．．．．．．．．．	T－13R04	म	ม	H	$\stackrel{H}{4}$	T－57S01
C613．．．．．．．．．．．．．．	T－14R39	T－14C63	$\dot{\sim}$	崮	$\dot{4}$	T－57S01	E648， $649 \ldots \ldots .$.	T－13114	น	\％	H	T－33A91	T－57S01	
E6B．626，627．628．	T－14R35	T－14C63	4	\％	宜	T－14S82	$\begin{array}{llll} 667 . & 708, & 788, & 88 \\ 808 \mathrm{~A} \\ \end{array}$	T－13R03	\dot{H}	H	\dot{H}	$\dot{\sim}$	T．57S01	
APEX（Sen U．S．Ra	udio and T	Television）					710．．．．．．．．．．．．．．．	T－13R09	T－13C30	4	$\dot{4}$	T－33A91	T－13S41	
ATWATER KENT	MFG．CO						725，P755 ．．．．．．．．．	T．13R12	म	H	$\dot{\square}$	$\dot{7}$	T－57S01	
43．．．．．．．．．．．．．．．．	T－56801	T－13C28	$\dot{4}$	T－29A99	9 T－33A91	T．57501	735．．．．．．．．．．．．．	T－13R02	\％	म	山	4	T－57S01	
55，55C Early ．．．．．．	T－13805	T－13C29	T－13C29	\％	T－33A91	T－57S01	810．．．．．．．．．．．．．	T．13R14	T－13C30	\dot{H}	$\dot{\sim}$	T．81D42	T．13S41	
							856，P875，976．．．．	T－13112	$\dot{4}$	H	－	\％	T－57501	
$\begin{aligned} & 70,74,76, L-1, L-2, \\ & F, P \ldots \ldots \ldots . . \end{aligned}$	T－13H04	T－13C29	T－13C27	H	T．33A91	T．57501	$944 \ldots \ldots \ldots \ldots$	T．13R01	म	\＆	崽	4	T－57501	

For complete degcription of these and other Thordarson transformers and chokes see catalog No． 400.

MODEL	Power Trane．	First Fileer Choke	Second Filter Choke	Firal Audio Trane．	Second Audio Trans．	Output Trans．
aUdiola radio CO．（Seo almo Fairbanks，Morse）						
$\begin{aligned} & \text { 4T-31, 4T-32 } \\ & \text { 6T Jr., 6T-31 } \end{aligned}$	T－13R05	น	น	น		T－57S01
7T，8T，9T．．．．．．．．	T－13R06	走	A	4	颪	T－57S01
9T－45．．．．．．．．．．．．．	T－13R06	宜	曻	垵	T－29A99	T－57501
10T Super．．．．．．．．．	T．13R06	尔	号	沜	T－33A91	T．57S01
13T－5．．．．．．．．．．．．．	T．13R05	＊	安	安	沜	T．57S01
13S．9．．．．．．．．．．．．．	T．13R06	T－13C29	T－18C92	曻	T－33A91	T－57S01
$\begin{aligned} & 23 \mathrm{~T}-5,23 \mathrm{~T}-5-\mathrm{SW} \\ & 23 \mathrm{~S}-8 . \mathrm{C} \end{aligned}$	T．13R03	น	น	尔	म	T．57501
23S．8Q．	T－13R05	安	宜	家	家	T－57S01
23S－10．	T－13R04	品	号	曻	号	T．57S01
23S－12．	T－13R04	T－75C51	缶		T．67D47	T－57S01
30B， 31 Super．．．．	T－13R06	T－13C30	崖	㐫	T－33A91	T．57S01
33S－10．．．．．．．．．．．．	T－13R04	म	品	曻	\＆	T－57S01
889．．．．．．．．．．．．．．．	T－56R01	T－13C29	T－13C29	T－29A99	T－33A91	T－57S01
7330．．．．．．．．．．．．．．	T－13R06	T－13C30	宜	垵	T－33A91	T－57501
8430．．．．．．．．．．．．．．	T－13R06	T．13C30	沜	T－29A99	T．33A91	T－57501
balkeit radio co．						
A－3，A－5，A－7．	T－13R00	T－13C29	曻	T－29A99	T．33A91	8Special
C．．．．．．．．．．．．．．．．．	T－13R06	T－13C30	T－13C29	亩	T－33A91	T．57S01
D－5．．．．．．．．．．．．．．	T－13R02	号	曻	岸	4	T－57S01
E．．．．．．．．．．．．．．．．．	T－13R05	T－13C29	安	曻	T－29A99	T－57S01
F．．．．．．．．	T－13 006	T－13C30	亩	ム	T． 29 A99	${ }^{\text {S }}$ Special
KP．．．．．．．．．．．．．．	T－13R03	म	沜	沜	令	T．57S01
L．7．．．．．．．．．．．．．．．	T． $13 \mathrm{R04}$	安	宜	号	\＆	T．57S01
L－8，Windsar 70．．．．	T－13R06	T－13C29	崖	$\dot{4}$	T－33A91	T－57S01
G－18A，G－19B．．．．．	T－13R12	T－13C29	㸝	4	出	T－57S01
GT－20．．．．．．．．．．．．	T．13R13	T－13C30	出	म	म	T．57501
41A．．．．．．．．．．．．．．	T－13R12	T－13C29	\％	4	4	T－57S01
42－E，42－G．．．．．．．．	T－13R01	缶	沜	4	น	T．57501
60，70．．．．．．．．．．．．	T．13R19	崀	岸	㐋	号	T－57501
100．．．．．．．．．．．．．．．	T－13R06	T－13C30	刿	4	T－33A91	T－57501
GT－200．X．．．．．．．．	T－13R13	T－13C30	沜		น	T．57501
BELMONT RADIO CORP．						
40，50，50A－B－C， 60	T－13R02	\＆	4	4	$\dot{4}$	T－57S01
40A．．．．．．．．．．．．．．．．	T－13R01	म	म	น	缶	T－57501
70．．．．．．．．．．．．．．．	T．13R03		н	曻	म	T－57501
70A．．．．．．．．．．．．．．．	T－13R05	＊	＊	尔	吕	T．57501
71C．．．．．．．．．．．．．．．	T－13R03	妆	安	4	म	T－57S01
100．．．．．．．．．．．．．	T－13R06	T－13C30	刿	\＆		T－57501
401．．．．．．．．．．．．．．	T－13R01	号		方		T－57S01
401B．．．．．．．．．．．．．．	T－13R19	号	号	\％	号	T－57S01
408A．．．．．．．．．．．．．	T－14R39	曻	字	\％	\％	T．57501
504A．．．．．．．．．．．．．	T－14R39	T－14C62	堊	号	4	T－13S43
517A，526，529．．．．	T－13R19	沜	古	म		T－57501
489A－B．．．．．．．．．	T－14R39	น	น	H	น	T．57S01
527，529．．．．．．．．．．．	T．13R19	县	县	4	＋	T－57501
550．．．．．．．．．．．．．．	T－13R02	品	刿	4	古	T．57501
555，556，578．．．．．．	T－13R19	\％	令	म	น	T．57501
575．．．．．．．．．．．．．．．	T－13 02	垵	\＆	$\stackrel{4}{4}$	\％	T－57S01
577．．．．．．．．．．．．．．	T．14R39	\％	म		4	T－57S01

MODEL	Power Trans．	Firet Filter Choke	Second Filter Choke	First Audio Trans．	Second Audio Trand．	Ouspur Trans．
BELMONT RADIO CORP．（Contd）						
$\begin{aligned} & 582 \text { A \& B, } 583, \\ & 585 \text { A.B-C. } 586,587 . \\ & 588 \mathrm{~A}, 589 \mathrm{~A} . \ldots . . \end{aligned}$	T－13R19	4	4	\＆	ム	T－57S01
611．．．	T－14R39	曻	\％	～	T．78D46	T－81501
629．．．．．．．．．．．．．．．	T．13R19	म	品	\＆	号	T－57S01
640．．．．．．．．．．．．．．．	T－13R03	H	म	H	\＆	T－57S01
665．．．．．．．．．．．．．．	T－13R11	म	म	凮	品	T．57501
675．．．．．．．．．．．．．．．	T－13R02	म	尔	尔	4	T．57501
685， 686.	T－13R19	品	H	安	\％	T．57S01
708．．．．．．．．．．．．．．．	T－13R20	品	H	献	\＆	T．57S01
740， 777 B．C．．．．．．	T－13R13	4	亩	\％		T．57S01
746，755，777A．．．．．	T－13R19	曻	夜	沜	品	T． 57501
750．．．．．．．．．．．．．．	T．13R06	鼡	品	缶	T－33A91	T．57S01
761．．．．．．．．．．．．．．	T－13R13	4	4	H	\％	T．57501
775．．．．．．．．．．．．．．．．	T－13R03	म	4	－	直	T－57S01
778．．．．．．．．．．．．．．	T．13R13	曻	म	沜	品	T－57S01
786．．．．．．．．．．．．．．	T－13R19	\＆	号	4	H	T－57501
7874．．．．．．．．．．．．．	T－13R12	T－13C28	4	น	\％	T．57501
823.	T－14R39	出		品	T．78D46	T－81501
840，842，860．．．．．．	T－13R13	品	A	品	\％	T－57S01
867．．．．．．．．．．．．．	T－13R12	品	夜	号	म	T．57S01
878A．．．．．．．．．．	T．13113	ム		安	走	T－57S01
879A．．．．．．．．．．．．．	T－13R19	曻	\＆	号	4	T．57S01
888．889．．．．．．．．．．	T－13R11	4	4	号	号	T．57501
890A．．．．	T－13R12	$\dot{4}$	－	皯	म	T．57501
1050.	T－13R06	T．13C30	น	安	T－33A91	T．57S01
$\begin{aligned} & \text { 1070, 1170, } 1171, \\ & 1172,1174,1175 \end{aligned}$	T－13R14	吕	4	4	T－17D01	T．13S41
1075．．．．．．．．．．．．．	T－13R12	号	－	宜	㟧	T．57S01

BOSCH（See United American Boach）

BRETING RADIO MFG．CO．

 BRUNSWICK RADIO CORP．

D．	T－13R04	4	\＆	号	4	T－57501
R．1．．．	T．56R01	T．13C29	T－13C29	T．29A99	T－29A99	T－18C92
2－KRO，3－KRO， 3－KR6，5－K R， 5－KRO，5－KR6．．．．．	T－56R01	T－13C29	T－13C29	T．29A99	T－29A99	T．18C9
3－NC8，5－NC8．	T．13R00	T．13C29	T．13C29	号	T－29A99	T．57S01
10．．．．．．．．．．	T－13R03	T－13C28	＊	品	宜	T．57
11，12，16，18， $33 . .$.	T－13R04	\％	\％	म	宜	T－57S01
14，21， 31.	T－13R06	T－13C30	T－13C30	T－29A99	T－33A91	T． 57
S－14，S－21，S－31	T－13R06	8pecial	म	म	T－33A91	T－57
15，22，32， 42	T－13R06	T－13C29	号	म	品	T－57S01
17，24，25．．．	T－13R06	4	\％	\％	म	T－57S0
PR17－8．．	T．56R01	T－13C29	T－13C29	T－29A99	T－29A99	8 Specia
S－81，S－82．．．．．．．．	T．13R06	\＄Special		号	T－33A91	T－57S0
BULOVA WATCH CO．						
M－501．	T．13R03	T－13C28	4	\＆	4	T－57S01
600，601，605，610．	T－13R03	T．13C28	T．13C28	น		T－57S01
M－701．．．．．．．．．．．．．	T－13R03	T－13C28	4	\＆	＊	T．57501
C－751．．．．．．．．．．．．．	T－13R03	T－13C28	\＆	～	\＆	T．57S0

Hi None required．Available upon special order from your dietributor．Special Note：The following substitutione are made by many aervice ongineers because of
proferences in mountings and sizes：T－57S02，T－13S38，T－14S85 in place of T－57S01；T－57A41，T－13A35 in place of T－33A91；T－57A38，T－13A34 in place of T－29A99

MODEL	First Filter Power Trans． Choke	Second Filter Choke	First Audio Trans．	Second Audio Trans．	Output Trans．
HUSH AND LANE PIANO COMPANY					
	T－13R06 T．13C30	ir	T－29A99	T－33A91 T	T－57S01
12 SG．．．．．．．．．．	T．13R06 T－13C30	\square	$\dot{\square}$	T－33A91	T－57S01
CLARION（See Transformer Corp．of America）					
COLONIAL RADIO CORPORATION					
31AC．．．．．．．．．	T－56R01 T－13C29	T－13C29	T－29A99	T－33A91	T－57S01
32AC．．．．．．．．．．．．	T－13R06 T－13C30	T－13C27	m	T－33A91	T－57S01
$32 \mathrm{DC}, 33 \mathrm{DC} \ldots \ldots$.	\％T．18C92	T－74C30	2	T．33A91	T．57S01
33，34．．．．．．．．．．．	T－56105 T－13C30	is	ค	T－33A91	T． 57 S 01
$\frac{33,34 \ldots \ldots}{36,36 P \ldots}$	T－13R06 T－74C30	\＆	H	§Special	T．57S01
$\frac{36,36 \mathrm{P}}{37,37 \mathrm{P} \ldots \ldots}$	T－131205 \％	\pm	3	म	T．57S01
$\frac{37,37 \ldots}{38 \ldots \ldots \ldots}$	T－13R06 T－74C30	is	\％	\＄Special	T－57S01
38．．．．．．．．．．．．．．．．．．．．．．．．．．．	T．13102	2	\dot{H}	is	T．57S01
	T－13R04 约	\square	I	\％	§Special
$\frac{41,42 \ldots . ~}{\text { 44．}}$	T－13R05 m	\％	\％	～	T－57S01
44．．．．．．．．．．．．．．．．．．．．．．．．．．．．	T．131102	县	i	2	T－57S01
47，48．．．．．．．．．．．．．	T－56R05－	M	B	认	T－57501
47，48．．．．．．．．．．．．．．．．．．．．．．．	T－13R03 \％	A	）	A	T－57S01
51，52．．．．．．．．	T－56R05	น	\pm	2	T－57S01
$\frac{51,5 \ldots \ldots \ldots}{62 \ldots \ldots \ldots}$	T－13R05 म	）	$\dot{\sim}$	H	T－57S01
73．．．．．．．．．．．．．．．．．．．．．．．．．．	T－13R03 \％	I	\％	म	T．57S01
114，117．．．．．．	T－13R06 T－74C30	0 号	H	§Special	1 T．57S01
125．．．．．．．．．．．	T－131802 is	น	4	\％	T－57S01
$\begin{aligned} & 250 \mathrm{AC}, 300 \mathrm{AC}, \\ & 1345 \ldots . . . \end{aligned}$	T－13119 安	is	方	ム	T－5：S01
T397．．．．．．．．．．	T．13R03～	3	＋	）	T－57S01
C399．．．．．．．．．．	T－131212 is	3	～	H	T－57S01
C495．．．．．．．．．．	T－13R03 \％		\square	2	T－57S01
C595．	T－56R05 ふ	\％	\pm	崖	T－57S01
600，600A， 603.	．T．13R12 ）	2	is	\square	T－57S01
601 ．．．．．．．．．	T－13R09 \％	5	\＆	H	T．13S41
604，605 ．．．．．．	T－13R08 さ	\％	\pm	H	T－57S01
650，653．．．．．．	T－13R19－－	2	น	H	T－57S01
652．．．．．．．．．．	，T－13111 \＄	2	H	H	T．57S01
652．．．．．．．．．．．．．．．．	T－13R12	$\dot{\square}$	2	H	T．57S01
658．．．．．．．．．．	．．T．131119 \＄	\square	4	～	T－57S01
662．．．．．．．．	．．T－13R19 ¢	\＆	\square	$\dot{\sim}$	T－57501
C695 ．．．．．．．．．．．．．．．．．．．．	．．．T－56R05 \％	\％	\％	3	T－57501

COLUMHIA PIONOGRAPII COMPANY

C－1，C－2，C－4．．．．．	T．56R01	T－13C29	T－13C28	T．29A99		
C－25－31，C－25－32	T－13R02	T－13C28	$\dot{\sim}$	B	动	T－57S01
	T－131102	T．13C28	H	\square	H	T．57S01
	T．131103	T－13C28	H	म	$\dot{\square}$	T．57S01
， 34.	T－13R04	T．13C29	\％	H	म	T－57S01
C－80．	T－131104	T．13C29	H	$\dot{\sim}$	H	T－57S01
C－101．．．	T． 131102	T－13C28	ム	\＆	\％	T－57S01
C－102．．．．．．．．	T．13R03	T－13C28	H	\＆	\％	T．57S01
C－800．．．．．．．．．．．．	T．13R04	T－13C29	$\dot{\sim}$	म	ม	T－57S01
920．．．．．．．．．．．．	T－13R06	म	H	T－29A99	T－33A91	T．57S01
$930 \ldots \ldots . .$.	T－13R07	$\dot{4}$	น	T－29A99	T－33A91	T－57S01
990．．．．．．．．．．．	T．13R06	\％	H	T． 29 A 99	T－33A91	T－57S01

Prices and dimensions for all transformers and chokes shown herein listed on page 3.

MODEL	Power Trans．	First Filter Choke	Second Filter Choke	First Audio Tranib．	Second Audio Trans．	Output Trans．
CROSLEY RADIO CORP．（Contd）						
125．．．．．．．．．．．．．．	T－13R03	น	\％	H	号	T．57S01
127，127－1．．．．．．．．	T．13R06	T－13C30	安	म	T－33A91	T－57501
129，129．1．．．．．．．．	T．13R08	品	品	$\dot{4}$	宜	T－57S01
130，130－1．．．．．．．．	T－13R18	宜	\％	4	安	T．57S01
131．．．．．．．．．．．．．．	T．13R02	\％	म	安	宜	T．57S01
133，134．．．．．．．．．．	T．13R04	－	安	岩	宜	T－57S01
134－1．．．．．．．．．．．．．	T－13R04	T－13C29	＋	4	$\dot{\sim}$	T－57S01
135．．．．．．．．．．．．．．	T．13R03	म	म	\％	＋	T－57S01
136－1．．．．．．．．．．．．	T．13R09	T－13C30	\％	4	$\dot{\square}$	T－57S01
137．141．．．．．．．．．．．	T－13R02	号	安	म	\％	T－57S01
147．．．．．．．．．．．．．．	T－13H03	म	म	安	म	T．57S01
148，150，154．．．．．．	T．13R17	号	品	$\dot{4}$	－	T．57S01
157．．．．．．．．．．．．．．	T．13 1 18	म	宜	H	\＆	T－57S01
158．．．．．．．．．．．．．．	T－13R17	4	\％	号	曻	T．57S01
160，161，164．．．．．．	T－13H06	T－13C30	号	\％	号	T－57S01
167．．．．．．．．．．．．．．	T．13R12	น	म	\％	H	T．57S01
167 вeries 2，168．．．	T－13R03	号	号	宜	H	T．57S01
169．．．．．．．．．．．．．．．	T－13R17	\％	4	尔	－	T．57S01
170，171．．．．．．．．．．	T－13K06	T－13C30	น	म	曻	T－57501
175．．．．．．．．．．．．．．	T．13R07	T－13C30	宜	宜	H	8Special
179．．．．．．．．．．．．．．．	T－13R03	号	\＆	H	号	T－57S01
180．．．．．．．．．．．．．．	T－13R06	T－13C30	म	H	म	T－57S01
181．．．．．．．．．．．．．．	T－13R12	म	安	号	刿	T－57S01
184．．．．．．．．．．．．．．．	T－13H05	号	\＆	曻	号	T－57S01
438．．．．．．．．．．．．．．．	T．13H11	H	－	H	म	T－13S42
505，515，516．．．．．．	T－13R12	安	4	号	म	T．57501
507．．．．．．．．．．．．．．	T－13R19	安	\％	म	品	T－57S01
517．．．．．．．．．．．．．．．	T－13H19	药	品	崮	$\dot{4}$	T－57S01
518．．．．．．．．．．．．．．．	T－13H19	H	号	\％	\square	T－57S01
525．．．．．．．．．．．．．．	T－13R11	安	み	宜	\％	T－57501
526．．．．．．．．．．．．．．	T－13R12	\＆	＊	$\dot{\square}$	म	T－57S01
534．．．．．．．．．．．．．．．	T－13R12	H	\square	\square	T－33A91	T－57501
537．．．．．．．．．．．．．．	T－13R11	\＆	＋	\＆	尔	T．57501
547．．．．．．．．．．．．．．	T－13R19	宜	良	安	品	T－57501
555．．．．．．．．．．．．．．．	T－13R12	＋	宜	＋	T－33A91	T．57S01
567．．．．．．．．．．．．．．	T．13R19	น	म	น	妆	T．57S01
614，616，626．．．．．．	T－13R12	\＆	走	4	品	T．57S01
628．．．．．．．．．．．．．．．	T－13R19	\＆	\％	\％	4	T．57S01
635，636．．．．．．．．．．	T－13R12	安	出	＊	4	T．5iS01
637，638．．．．．．．．．．	T－13R19	น	ม	号	曻	T．57S01
639．．．．．．．．．．．．．．．	T．13R19	乓	安	\％	号	T．57S01
646．．．．．．．．．．．．．．．	म	宜	\％	4	T．78D46	T－81S01
655，656，666．．．．．．．	T－13R12	น	H	＋	安	T．57S01
668．．．．．．．．．．．．．．．	T－13R20	น	＊	\％	＋	T．57S01
704，706．．．．．．．．．．．	T－56R01	T－13C29	曻	T－29A99	T－33A91	\＆
714，715，716．．．．．．	T－13R13	म	\％	H	H	T－57S01
718．．．．．．．．．．．．．．．	T．13R19	\＆	म	म	म	T．57501
725．．．．．．．．．．．．．．．	T－13R12	\％	＊	宜		T－57S01
726，736．．．．．．．．．．	T－13R13	\＆	＊	号	尔	T－5iS01
758．．．．．．．．．．．．．．．	T．13R20	＊	＋	4	－	T－57501
804．．．．．．．．．．．．．．．	T．13R00	T－13C30	\％	T－29A99	T－33A91	宜

MODEL	Power Trans．	First Filter Choke	Second Filter Choke	Firat Audio Trane．	Second Audio Trane．	Output Truns．
CROSLEY RADIO CORP．（Contd）						
814．．．．．．．．．．．．．．．	T．13113	T－13C29	\％	\％	4	T－57S01
815．．．．．．．．．．．．．．．	号	\％	安	T－29A99	T．78D46	T－81501
816．．．．．．．．．．．．．．．	T－13 1214	＊	น	品	\＄Special	T－13S41
817．．．．．．．．．．．．．．．	T－13R13	\％	宜	4	号	T．57S01
818．．．．．．．．．．．．．．．	T．13H20	食	号	宜	品	T．57S01
828．．．．．．．．．．．．．．．	T－13 14	宜	ค	म	4	T 57501
855，865．．．．．．．．．．	T－13R12	宜	品	4	4	T．57S01
915．．．．．．．．．．．．．．．	T－13H13	\％	宜	\％	宜	T．57501
916．．．．．．．．．．．．．．．	T－13R13	T－13C29	カ	\％	T．33A91	T－57S01
926．．．．．．．．．．．．．．	T－13R14	\＆	\＆	\＆	T－33A91	T．57S01
955．．．．．．．．．．．．．．．	T－13R14	\％	म	出	～	T．57S01
1014．．	T－13R13	น	－	น	T－33A91	T－57501
1016，1026．．．．．．．．．	T－13H14	म	岩	\％	T．33A91	T－57S01
1055．．	T－13R14	曻	出		T－17D01	T－57S01
1117．．．．．．．．．．．．．．	T－13R13	4	4	\％	म	T．57S01
1126．．．．．．．．．．．．．．	T－13R14	$\stackrel{\sim}{*}$	น	H	T－33A91	T－57S01
1155．．．	T．13R14	虫	～	$\dot{\square}$	T－17D01	T－57S01
1216，1336．．．．．．．．	T．13R15	\％	H	宜	T－33A91	T－13S41
5515，5516，5526．．．	T－13R12	4	＜	\％	安	T．57S01
5555，5556，5656．．．．	T－13R12	น	\＆	\＆	宜	T－57S01
5628．．．．．．．．．．．．．．	T－13R19	号	\％	\％	＊	T．57S01
5666，6516，6625．．．	T－13 12	宜	访	น	म	T－57S01

delco radio（Seo United Motors Sorvice）
DETROLA RADIO \＆TELEVISION CORP．

4J．．．．．．．．．．．．．．．．	T－13H11	t	出	म	曻	T－57S01
5B，5D，5W，5X．．．	T．13R11	\＆	\％	宜	$\dot{4}$	T－57S01
6ZM．．．．．．．．．．．．．．	T－13R11	安	\％	$\stackrel{\square}{*}$	$\stackrel{1}{2}$	T－57501
7A，7ZM．．．．．．．．．．	T－13R12	T－13C29	＋	म	น	T－57S01
10ZM．．．．．．．．．．．．．	T－13H14	品	宜	\％	＊	1－57501
106．．．．．．．．．．．．．．．	T－13R19	号	宜	\％	\％	T－57S01
108，146．．．．．．．．．．．	T－13R12	号	\％	\％	妆	T．57S01
147 вeries．．．．．．．．．	T－13H13	宜	\％	＋	品	T－57S01
155X，165．．．．．．．．	T－13R13	安	\％	＊	4	T－57S01
163．．．．．．．．．．．．．．	T－13H15	宜	\％	\％	出	$6^{\text {Special }}$
178．．．	T．13H11	\％	\％	安	\＆	T．57S01
184．．．．．．．．．．．．．．．	T－14R39	宜	\％	\％	4	T．57501
206．．．．．．．．．．．．．．	T－13H11	\％	\％	\％	\％	T．57S01
258，259．．．．．．．．．．	T．13R12	㞱	宜	垵	\＆	T－13S41
276．．．．．．．．．．．．．．	T－13R12	4	－	令	\％	T．57S01
315，325．．．．．．．．．．．	T－13 12	号	H	－	号	T．13541
326．．．．．．．．．．．．．．．	T－13R12	出	\％	萨	म	T－13S41
503．．．．．．．．．．．．．．	T－13R02	H	น	尔	号	T． 57501
1900．．．．．．．．．．．．．．	T－13R11	号	\％	尔	－	T．57501

THOMAS A．EDISON，INC．

C4，R4，R5	T－56R05	T－13C30	น	T－29A99	T－58A70	T．57S01
R6，R7．	T－56R05	T．13C30	T－13C28	）	T－33A91	T．57501
E－175，Abbey Jr	T－56R01	T－13C29	\％	T－29A99	T－29A99	（Sprecial
EMERSON RADIO \＆PHONOGRAPH CORP．						
CS．	T．13R02	安	冎	宛	\％	T－57S01
F	T－13R06	T－13C30	安	宜	T－29A99	T－57s01
JS．．	T－13 $\mathrm{HO2}$	म	安	园	\％	T－57S01

MODEL	Power Trane．	First Filter Choke	$\underset{\substack{\text { Second } \\ \text { Filier }}}{\text { Clit }}$ Choke	First Andio Trane	Second Audio Trans．	Output Trane．	MODEL	Power Trana．	Firat Filter Chuke	Second Filter Choke	First Audio Trans．	Second Audio Trans．	Output Trana．	
EMERSON HADIO N PIIONOGRAPH CORIP．（Contd）							EMERSON RADIO \＆PHONOGRAPII COHIP．（Contd）							
KS	T－131104	$\dot{\$}$	\％	H	म	T．57S01	AT181，AR 185.	T－131812	\％	H	\％	म 1	T－57S01	
T，＇TS．	T．13R02	\％	$\dot{\sim}$	\％	4	T－57S01	AW185（AW）$\ldots \ldots$	T．13R13	H	$\dot{4}$	\pm	\＆T	T．57S01	
L－AC－4	T－131101	\％		H	H	T－57S01	R189．．．．．．．．．．．．．	T．13R19	\％	H	$\dot{3}$	＋ 1	T－57501	
L．AC－5，M．AC． 7	T．131102	\％	H	\％	\％	T．57501	AZ196（AZ）．．．．．．	T－13111	号	$\dot{\square}$	\％	＊）T	T－57S01	
AW7．．．．．．．．．．．．．	T－13113	沜	น	4	§Special	T－57S01	BE198（BE）．．．．．．	T．13R19	\％	\％	H	is T	T．57S01	
23 （4n）．．．．．．．．．．	T－13R12	4	H	\＆	\％	T－57501	$\begin{aligned} & \text { BL200, BL210 } \\ & \text { BL214(BL) AC202 } \\ & \hline \end{aligned}$	T－13149	部	沜	占	น	T－57S01	
26.	T．13102	\％	म	宜	4	T－57S01	BL218，BL220（BL）	T．13119	3	is	H	\％	T．57S01	
28 （5J）$\ldots \ldots \ldots \ldots$	T－13R11	is	方	म	น	T－57S01	BQ223（BQ）．．．．．．．	T－13H11	\％	\％	$\dot{\sim}$	\％	T－57S01	
34C（C6）， 36 （135），．．	T－13112	i	is	\％	\％	T．57S01		BR224（13K）．．．．．．T－13R15		H	H	令	宊	T．13S41
39 （1）S－5）	T－131102	H	น	म	म	T．57S01				H	น	H	H17	T－57S01
45 （6．13D）$\ldots \ldots \ldots$	＇T－13R12	4	\％	品	น	T－57S01	BQ225，BQ228（BQ）	T－13R15	\％	\％	म	$\dot{4}$	T．13S41	
501．50M．S．50．D55	亿－13R02	～	H	\％	）	T－57S01	BR226，BS227，BR， BS							
AW－55．．．．．．．．．	T．131405	H	H	H	$\dot{8}$	T－57S01	BU229，BU230，BU	T－13R11	H	3	4	\＆	T ． 57501	
59．．．．．．．．．	T－131102	\％	\％	\％	H	T－57S01	BW231（BW）．．．．．．T－131411		H	น	म	H	T－57S01	
65．．．．．．．．．．．．．．．．	T．131204	T－13C29	$\dot{4}$	is	T－33A91	\＄Special	CB243（CB）．．．．．．T－13K11			4	$\dot{\sim}$	动	T－57S01	
71．．．．．．．．．．．．．．．．	T．131613	\％	H	\％	\％Special	T－57S01	287 （DA）．．．．．．．．．T＋131111		\％	$\dot{3}$	A	H	T． 13542	
77．．．．．．．．．．．．．．	T－1：31802	\％	H	$\dot{4}$	म	T－57S01	L755，M755，S755．．T－13R02		\％	\％	\％	\％	T－57S01	
101．．．．．．．．．．	T．13R12	\％	a	\％	H	T．57S01	770．．．．．．．．．．．．．T－13R13		号	\％	H	§Special	T－57S01	
102 （A8），1021，${ }^{\text {a }}$					\％		ERLA（See also Sentinel）							
（18），104，1041． H ．	T．13R13	T． 67 C 49	น	\％	\％	T－57501	Erla． S．W．Converter	T－561101	T－13C29	沜	＇「－29A99	T． 33491	\％	
105．．．．	T．13R16	T．67C49	品	\＆	T．17D01	T．13S41		T－13H01	น	is	H	\％	T－57S01	
K116（K）．．．．．	T．13112	～	$\dot{\square}$	H	is	T－5iS01	Alk A13 Amp．	T－13R07	T－13C30	T－13C29	～	T－33A91	T－57S01	
116．．．．	T－13R11	म	म	म	म	T－57S01		T－13K05	T－13C29	T－74C30	宜	T－29A99	T．57501	
$\begin{aligned} & \text { 117. L117, } 117 \mathrm{LW}, \\ & 2117,(\mathrm{KS}, 7) \end{aligned}$	T－13 12	4	4	沜		T．57S01	A13 Amp．	T． $13 \mathrm{K05}$	\％	）	$\dot{4}$	\square	T．57501	
121．K 121.	T． $13 \mathrm{K12}$	म	म	\％	$\dot{\square}$	T－57S01	$30 .$	T－131107	T．13C30	T．13C29	\％	T－33A91	T－57S01	
L122．1122LW，Z122	T－13R12	מ	म	H	น	T－57501	35，37，38， $39 \ldots \ldots$	T－13R06	T－13C30	H	\％	T－33A91	T－57S01	
K123．．．．．．．．．．．．．	T－13R12	H	\％	म	\％	T－57S01	$61,62,63 \ldots \ldots \ldots$ T－131203		\％	4	म	म	T－57501	
L133，L133LW，Z133	T－13k12	品	H	\％	น	T－57S01	75．．．．．．．．．．．．．	剠	H	H	T-29A.99	T.33A91	T.57S01	
C134，C136，C138．							77. $81{ }^{P}$	）	म	\％	T-29A99	T-33A91	T-57S01	
C139， D136． D138， D139，	T－13R13	3	H	4	\％	T－57S01		T． 131105	$\stackrel{\text { r }}{ }$	号	is	24	T.57S01	
$\begin{aligned} & \text { D134LW, D136LW, } \\ & \text { D138LW, D139LWW, } \\ & \text { D140LW, D142LW, } \\ & \text { D146LW, } \end{aligned}$	T－13K14						$224 \mathrm{AC} 22413 .$	T－131R06	T．13C30	T－18C92	\％	T－33A91	T－57S01	
		T－13C30	\％	\dot{H}	H	T． 57501	$\frac{231}{245}$	2）	$\dot{\sim}$	\％	T－29A99	T．33A91	T． 57501	
								T． 131106	T－13C30	म	\％	T－33491	T－57S01	
L135，L1351，W，Z135	T． 131812	㞱	\％	2	\％	T．57S01	248 K	T－13H05	is	is	尔	H	T－57501	
L141，L141LW，Z141	T－13142	\％	म	\％	H	T－57501	250.	T．13103	\％	H	$\dot{4}$	N	T．57501	
C142．．．．．．．．．．．．．．	T－13R13	is	\square	A	$\stackrel{3}{4}$	T－57S01	271，271A．．	T．13R05	T．13C29	\％	约	T－29A99	T－57S01	
L143．．．．．．．．	T－13R12	\％	म	น	$\dot{4}$	T－57S01	335．．．．．．．．．．．．．	T－131201	is	品	宜	H0］	T－57S01	
X143（X），X146．．．	T．131215	H	4	宜	H	T－57S01	5700，5721．．．．．．	T．13R02	4	\％	号	is	T－57S01	
S147，Z150，S151（S）	T－13H12	A	H	น		T－57501	$\begin{aligned} & \mathbf{6 3 0 0}, 6315.6317, \\ & 6323 \ldots \ldots \ldots . . \end{aligned}$	T－13R02	$\dot{\$}$	3	is	\％	T－57S01	
D146．．．．．．．．．．．．．	T．13R15	\＆	\％	म	施	T－57S01	FADA RAllO \＆	ELEC．COI						
$\begin{aligned} & \text { R152, R153, H156, } \\ & \text { R158, } \end{aligned}$	T－13k19	\square	Ir	म	म	T－57S01	6A51．．．．．．．．．．．	T－131811	ら	म	\％	4	T－13S42	
Z150，Z160，AT170，							6A65 ．．．．．．．．．．．	T－13R12	\％	\％	宜	\％	T－13S42	
（AT）	T．13R12	）	$\dot{4}$	$\dot{4}$	［	T－57S01	6A80 ．．．．．．．．．．．．．	T．13R13	\％	4	\％	2	T－13S42	
AR171，AR172， AR173．	T．13R12	）	\％	म	$\dot{\$}$	T－57S01	10，11．．．．．．．．．．．．	－T．13R00	T．13C27	T－13C27	T－29A99	T－29A99	\％	
A 1174 ，AR176，				$\stackrel{+}{ }$		T． 57501	16，17， $20 \ldots \ldots$.	T－13H00	T－13C27	T．13C27	T－29 ¢ $^{\text {99 }}$	T－33A91	§Special	
A 18180	T－13R12	\％	मे	म	\％	T．57501	25．．．．．．．．．．．．．．．．	，T－13K06	T－13C29	号	T－29A99	T．33A91	§Special	
AW171，AW173， AW174，AW17\％，	T－13R12	2 म	\％	के	\％	T－57S01	30，31．．．．．．．．．．．．．	，T－13100	T－13C27	T－13C27	T－29A99	T－29A99	）${ }^{\text {a }}$	
							32．．．．．．．．．．．．．．．．．	－T－13R00	T－13C27	T－13C27	T－29A99	T－33A91	§Special	
X175，X178，X183．	T－13R15	H	\％	s	$\dot{\sim}$	T－57S01	$35 \ldots$.	．T－13R06	T．13C29	\％	T． 29 A99	T－33A91	§Special	
$\begin{aligned} & \mathrm{AB178}, \mathrm{~A} 13182 . \\ & \mathrm{AB} 183, \mathrm{AB} 184(\mathrm{AB}) \end{aligned}$	）T－13R15	）	i	\％	4	T．57S01	$40 \ldots \ldots \ldots \ldots$	．T－13R06	T．13C29	म	T－29A99	T－33A91	§Special	

Thordarson Transformers for all applications are listed in catalog 400．Ask for your frec copy．

MODEL	Power Trana．	First Filter Choke	Second Filter Chuke	Firse Audio Trane．	Second Audio Trane．	Outpue Trans．
FADA RADIO \＆ELEC．CORP．（Contd）						
41．42，43， 44 （KF）．	T．13R06	T．13C29	\＆	4	T－33A91	T．57S01
45 KU ．	T．13R06	T－13C30	4	品	T－33A91	T－57S01
46，47，48，49K W．	T－13R06	T－13C30	曻	म	T－33A91	T．57S01
50.	T－13R00	T－13C29	T．13C29	T．29A99	T－33A91	T．57S01
51（KO），53－55（RG）	T－13R05	\＆	H	＊	\％	T． 57501
$\begin{aligned} & 57(\mathrm{KOC}), 61,66, \\ & \mathbf{K X} \end{aligned}$	T．13R05	沜	＊		\％	T．57S01
64APC，65PC．．．．．．	T．13R12	宜	号	4	H	T． 13542
A66T，A66PC．．．．．	T．13R12	н	म	H	吕	T．13S42
66KY ．．．．．．．．．．．．．．	T－13R07	н	古	岸	4	T－57S01
73.	T．13R07	宜	＊	\square	品	T．57501
74，76，78．．．．．．．．．	T．13R07	安	号	H	T－33A91	T．57S01
78－10．．．．．．．．．．．．	T－13R15	म	ヶ	官	T－33A91	T－57S01
79.	T．13R06	T．13C30	＊	～	T－33A91	T．57S01
79 RC．．．．．．．．．．．．	T－13R07	H	\＆	4	T．33A91	T． 57501
79－10．．．．．．．．．．．．	T－13R15	\＆	$\dot{4}$	县	T．33A91	T．57S01
83．．．．．．．．．．．．．．．．	T．13R07	ム	H	＋	T．33A91	T．57S01
85RE，85RX．．．．．．．．	T－13R07	म	H	म	H	T．57S01
88，89．．．．．．．．．．．．	T－13R07	4	－	4	T．33A91	T．57501
97－10（RW）．．．．．．．	T．13R15	\％	म	H	T－33A91	T．57S01
122 Batt．（KE）．．．．	＊	古	म	T．29A99	T．33A91	T．57S01
126，127， 128 NK．．．	म	H	曻	T－29A99	T．78D46	T．81501
133，134，135，136．．．	T－13R15	\＆		\％	T－33A91	T．57S01
141 （NA）．．．．．．．．．．	T－13R12	尔	吕	म	น	T－57S01
150，151，152，160．．．	T．13R12	H	\％	$\stackrel{\text { a }}{ }$	～	T．57S01
170．．．．．．．．．．．．．．	T．13R13	म	4	\＆	\％Special	T．57S01
E180．．．．．．．．．．．．．．	T．13R00	T．13C29	T．13C29	T－29A99	T．33A91	T．57S01
190．．．．．．．．．．．．．．．	T－13R13	म		4	8Special	＋
211 AC．	T－13R15	\％	H	－	H	T．13S41
212．．．．	T．13R13	T－13C30	\％	－	H	T．13S41
250．．．．．．．．．．．．．．	T－13R12	沜	曻	น	म	T．57501
255，265．．．．．．．．．．	T．13R12	4	\％	\＆	＊	T．57S01
270， 271 （NF）．．．．．．	T－13R12	尔	寺	4	4	T．57S01
290，291，312．．．．．．	T－13R15	H	म	㭊	H	T．13541
365，366，366PT．．．．	T－13R12	\％	H	＊	H	T－13S42
380．．．．．．．．．．．．．．．	T－13R12	沜	म	म	ค	T．13S42
410．．．．．．．．．．．．．．．	T－13R13	\％	4	H	म	T．13542
413．．．．．．．．．．．．．	T－13R14	T．13C28	沜	H	H	T．13S41
451，454．．．．．．．．．．	T．13R19	\dot{H}	4	4	4	T．13S42
465．．．．．．．．．．．．．	T－13R12	堮	म	\＆	缶	T．13542
472－CA，472－UA．．．．	T－56R02	म	＊	T－29A99	T－29A99	\％
475－CA，475－UA．．．．	T．56R02	\＆	4	T－29A99	T－29A99	\＆
$\begin{aligned} & 761(\mathrm{KG}), 762,764, \\ & 766,767 \ldots \end{aligned}$	T－13R05	T．13C29	\％	H	T－29A99	4
1255，1265．．．．．．．．．	T－13R12	4	㐋	म	H	T．57S01
1582，1583．．．．．．．．	T．13K13	म	\％	म	35 pecial	T－57501

FAIRBANKS MORSE \＆COMPANY

4A，4B．．．．．．．．．．．	T．14R39	T－14C61	4	म	\％	T． 13543
5A，5B．．．．．．．．．．．．	T．13R11	\％	4	4	4	T－57S01
5C，6A．	T．13R12	＊	\checkmark	म	4	T－57S01
6C．．	\＄pecial	T－13C27	4		T．78D46	T．81501

MODEL $\quad \begin{gathered}\text { Power } \\ \text { Trans．}\end{gathered}$	Firs： Filter Chule	Second Filter Chule	First Audio Trane．	Secund Audio Trane．	Output Trans．
FAIRBANKS MORSE \＆COMPANY（Contd）					
7A．．．．．．．．．．．．．．．T－13R20	4	尔	曻	4	T－57501
8A，9A．．．．．．．．．．．．T．13R13	\＆	4	น	安	T． $13 \mathrm{S42}$
9C．．．．．．．．．．．．．．．T－13R14	＊	4	4	4	T－13S41
12A，12B．．．．．．．．．．T－13R15	曻	\％	4	\＆	T．13S41
40．．．．．．．．．．．．．．．T－13R19		尔	品	曻	T．57S01
51，52．53．．．．．．．．．T－13R02	＊	＊	\％	4	T．57S01
54，56．．．．．．．．．．．．．T－13R12	－	\％	म	\％	T－57501
57，57T0．．．．．．．．．T－13R19	4	曻	曻	乓	T．57S01
58．．．．．．．．．．．．．．．T．13R19	\＆	尔	＊	4	T．57S01
58（T1），58（T2）．．．．T．13R11	药	刿	\％		T．57S01
63，66．．．．．．．．．．．．T－13R12	\＆	H	\％	\％	T．57S01
70，71．．．．．．．．．．．．T．13R12	म	म	\％	4	T－57S01
$\begin{aligned} & \hline \text { 72-C-2, 72-C-3, } \\ & 72 \cdot \mathrm{~T}-3 . \ldots \\ & \hline \end{aligned}$	\＆	＊	号	4	T－13S42
73，73C3B，73T3B．．\＄Special	T－13C27	宜	宜	T．78D46	T－81501
82，83，84．85．．．．．T－13R13	म	H	น	T．33A91	T．57S01
90．．．．．．．．．．．．．．．．T．13R13	น	4	宜	T－33A91	T．57S01
	4	4	安	4	T．13S41
100，110．．．．．．．．．．T－13R09	T－13C30	T－13C29	曻	T－67D78	T．13S41
5106，5107，5108．．．．T－13R02	H	H	\＆	＊	T．57S01
5109，5111，5112．．．．T－13R02	\％	宜	宜	药	T－5：S01
5141，5143．．．．．．．．T－13R02	～	檪	H	\％	T．57S01
$\begin{aligned} & \text { 5212, 5212A, } 5241, \\ & \text { 5312. } 5312 \mathrm{~A}, 5341 \text {. . T. } 13 \mathrm{R} 02 \end{aligned}$	4	品	品	＊	T．57S01
6010，6044，7014．．．．T．13R12	\％	崮	H	曻	T．57501
7040．7052．．．．．．．．．T－13R12	म	\＆	\＆	曻	T．57S01
FREED RADIO \＆TELEVISION COKI＇．					
MB5．．．．．．．．．．．．．．T．13R02	T－13C．27	尔	4	㸠	T．53501
MB7．．．．．．．．．．．．．．T．${ }^{\text {P13R03 }}$	म	\＆		玺	T－57S01
MB9．．．．．．．．．．．．．．．．T－13R04	T－13C30	4	＊	T－33A91	T．57S01
54．．．．．．．．．．．．．．．T－13R02	T．13C27	म	品	殅	T－57501
55NR．．．．．．．．．．．．．T．56R01	T－13C29	T．13C29	T－29A99	T－33A91	4
56．．．．．．．．．．．．．．．．T－13R02	T－13C27	4	4	＊	T－57S01
57NR．．．．．．．．．．．．．T－56R01	T－13C27	T－13C27	T－29A99	T－29A99	\％
58－59．．．．．．．．．．．．．T－13R02	T．13C27	H	4	H	T－57S01
60NR．．．．．．．．．．．．．T． 56 R 01	T．13C27	T．13C27	T－29A99	T－29A99	H
66 （NR）．．．．．．．．．．．T－56R01	T－13C29	T．13C29	T－29A99	T－33A91	H
72－74．．．．．．．．．．．．．T－13R03	H	H	H	4	T－57S01
78NR，79NR．．．．．．T－13R06	T－13C29	T．13C29	T－29A99	T－33A91	T．57S01
80 NR．．．．．．．．．．．．T－56R01	T．13C27	T－13C27	T－29A99	T－29A99	\＄pecial
90．．．．．．．．．．．．．．．．T－13R04	T－13C30	म	म	T－33A91	T－57501
NR90S．．．．．．．．．．．．${ }^{\text {．}}$ T－13R06	T－13C29	T－13C29	T－29A99	T．33A91	T－57S01
92．．．．．．．．．．．．．．．T．13R03	\＆	＊	\＆	\％	T．57S01
95NR．．．．．．．．．．．．．T－13R06	T－13C29	T－13C29	T－29A99	T－33A91	T－57501
96DC．．．．．．．．．．．．＊	T．13C30	म	म	T．33A91	T．57S01
98FE．．．．．．．．．．．．．T．13R06	T－13C30	\square	H	4	T．57S01
346－4．．．．．．．．．．．．．T．13R19	म	＊	－	H	T－57S01
354－360－360X．．．．．．T－13R12	म	น	\＆	H	T．57S01
GALVIN MFG，CO，（MOTOROLA）					
5T．．．．．．．．．．．．．．．．T－13R19	4	4	4	\＆	T．57S01
5T．1，5T－2．5Y．．．．．T．13R12	カ	\％	\％	$\stackrel{*}{*}$	T－57S01

 preferences in mountinge and eimes：T－57S02，T－13S38，T－14S85 in place of T－57S01；T．57A41，T－13A35 in place of T－33A91；T－57A38，T－13A34 is place of T－29A99．

THORDARSON

MODEL	Power Trans．	First Filter Choke	Second Filter Choke	First Audio Trans．	Second Audio Trane．	Output Trans．
GALVIN MFG．CO．（MOTOHOLA）（Contd）						
5－1．	T．13K19	8	म	沜	म	T．57S01
5－2．．．．．．．．．．．．．．．	T－13R12	字	\dot{H}	㭊	\％	T．57S01
6－1，6－A．．．．．．．．．．	T－13R12	म	4	4	＋	T．57501
6T．6Y．6－2．．．	T．13R12	垵	म	～	\％	T－13S．12
10－1， $10 Y$ ．．．．．．．．．．	T－13R13	\％	\＆	म	म	T－13S42
59F1．．．．．．．．．．．．．．	T－13112	ค	$\dot{\square}$	$\dot{\square}$	\＆	T．13S42
$59 \mathrm{~K} 1,59 \mathrm{k} 2 \ldots \ldots \ldots$	T．13111	\＆	号	\＆	\％	T．57S01
59 14．．．．．．．．．．．．．	T．13111	म	4	H	$\dot{4}$	T．57S01
59T2，59T4， 59 T5．．	T－13111	म	म	$\dot{\square}$	\pm	T．57S01
61C．61D．．．．．．．．．．	T－13 1 19	宜	म	垵	$\dot{\sim}$	T－57S01
61CA，61DA．．．．．．．	T． 13 K 19	H	4	4	म	T．57S01
69K1 early \＆late．．	T－13R13	н	น	$\dot{4}$	\＆	T－57501
$81 \mathrm{C} . .$.	T．13k12	\＆	H	堊	4	T－57S01
GAMBLE－SKOGMO，INC．						
07A．．．．．．．．．	T．13 H 12	\％	号	安	\＆	T．57S01
2．ODM－5：8．．．．．．．	T．13R09	H	4	\＆	T－57A41	T． 13541
7J512．73574．．．．．．．	T．13R12	\＆	म	～	$\dot{4}$	T．57S01
20C7，20CB．．．	T－13R09	\％	\％	म	T－57A41	T－13S41
30A．．．．．．．．．．．．．．．	T．13R12	म	\％	4	H	T．57S01
47LL，47R，47RL．．	T－13R13	म	म	$\dot{\sim}$	＊	T．57501
51C．．．．．．．．．．．．．．．．	T．13802	4	\＆	H	$\dot{\sim}$	T．57S01
70．．．．．．．．．．．．．．．．	T－13 $\mathrm{H05}$	～	\％	\％	\＆	T．57501
71C．．．．．．．．．．．．．．．	T－13R03	药	म	\％	\square	T－57501
72 （CH，8，8X） $85 .$.	T－13R06	T．13C29	号	\＆	\＆	T－57501
425，457．．．．．．．．．．．	T－13R02	म	\＆	\＆	＊	T．57S01
460．．．．．．．．．．．．．．	T．13R12	\＆	安	号	－	T．57S01
510．511．．．．．．．．．．．	T．13R19	\＆	म	\％	\％	T．57S01
521．．．．．．．．．．．．．．．	T．13R19	\％	म	号	安	T． 57501
521Z．．．．．．．．．．．．．	T－56R05	T．57C54	\＆	\＆	T－67D78	T－13S41
525．．．．．．．．．．．．．．．	T．13R02	$\dot{4}$	\％	\＆	म	T－57501
527A．527C．．．．．．	T－13R19	\＆	$\dot{\sim}$	\％	曻	T．57501
550AC．．．．．．．．．．．．	T－13R03	\％	म	म	\％	T－57S01
575．．．．．．．．．．．．．．	T－13R02	4	\＆	म	出	T．57S01
578．．．．．．．．．．．．．．	T－13R12	\＆	4	＊	$\stackrel{+}{4}$	T．57501
585，586A，587A．．．．	T－13R19	㟧	\％	$\dot{\sim}$	\％	T－57501
589．．．．．．．．．．．．．．．	T－13R19	－	\＆	H	H	T－57S01
600，623，645．．．．．．	T－13R19	\＆	\＆	\＆	4	T－57S01
648．．．．．．．．．．．．．	T．13R12	\％	～	म	4	T－13S42
665，765．．．．．．．．．	T．13R19	म	＋	\＆	म	T－57S01
675．．．．．．．．．．．．．．．	T－13R03	म	$\dot{\sim}$	\＆	檪	T．57S01
675A，685B．．．．．．．	T－13R11	\dot{H}	$\dot{\sim}$	4	＋	T－57S01
6908．．．．．．．．．．．．．	T－13R20	号	म	\％	\％	T－57S01
715B．．．．．．．．．．．．．	T．13R13	崖	\％	$\dot{\text { म }}$	म	T－57S01
$735 \ldots \ldots \ldots \ldots$	T－131812	म	4	$\dot{4}$	\＆	T－13S42
740．．．．．．．．．．．．．	T－13R13	म	\＆	$\dot{4}$	－	T．57S01
750．．．．．．．．．．．．．．．	T．13R06	宜	号	H	T－33A91	T．57S01
761A．．．．．．．．．．．．．	T．13R13	～	4	4	\＆	T－57S01
762．．．．．．．．．．．．．．．．	－T．13R13	＊	\％	$\dot{\sim}$	\％	T－57501
767．．．．．．．．．．．．．．．	－T－13R13	安	号	\％	$\dot{4}$	T－13S42
770，774．．．．．．．．．．．	－T－13R13	म	安	\％		T．57S01
777C，777L．778A．	T－13R13	＊	$\stackrel{\sim}{1}$	宜	\％	T－5iS01

MODEL	Power Trans．	Firat Filter Choke	Second Filter Choke	$\begin{gathered} \text { First } \\ \text { Audio } \\ \text { Trane. } \end{gathered}$	Second Audio Trans．	Outpat Trans．
GAMBLE－SKOGMO，INC．（Contd）						
787．．．．．．．．．．．．．．．	T．13K19	म	\％	$\dot{4}$	\＆	T．57S01
$810 \ldots \ldots \ldots \ldots$	T－13R12	$\stackrel{\square}{4}$	म	म	4	T－57S01
864，867A $\ldots \ldots \ldots$	T－13R13	岁	8	म	म	T．57S01
907．．．．．．．．．．．．．．．	T－13R19	म	～	H	内	T．57501
908．．．．．．．．．．．．．	T－13R12	\％	$\stackrel{3}{4}$	म	\％	T．57S01
970．．．．．．．．．．．．．	T－13 119	म	\％	H	－	T－57501
1050．．．．．．．．．．．．．	T－13R07	的	\＆	岸	T－81D52	T－13S41
1070．．．．．．．．．．．．．	T．13R14	\％	＋	令	T．17D01	T．57S01
2078 D．．．．．．．．．．．	T．13R03	H	น	$\dot{\square}$	＊	T．57S01
2516．．．．．．．．．．．．．	T－13R05	药	म	\＆	4	T－57S01
4954．．．．．．．．．．．．	T．13R16	\％	\dot{H}	H	म	T－13541

GAROD RADIO CORP．

2B2，2B2－1．．．．．．．．	T．14R39	T－14C61	$\stackrel{1}{4}$	～	T．78D 46	T－81S01
2B6．2B6－1．．．．．．．．	T．14R39	T－14C61	4	家	T．78D46	T．81S01
25，26，27．．．．．．．．．	T－13R12	\＆	\dot{H}	H	＋	T－57S01
49， $49 \mathrm{M} \ldots \ldots \ldots \ldots$	T－13R09	\％	$\stackrel{1}{*}$	म	T－33A91	T．5：S01
73．73LW．．．．．．．．	T－13R12	\％	$\dot{\sim}$	\dot{H}	н	T．57S01
150．．．．．．．．．．．．．．．	T－13R19	\＆	$\dot{\sim}$	H	\％	T．57S01
205C，205L．．．．．．．．	T．13R11	＊	曻	H	去	T－57S01
205．1．．．．．．．．．．．．	T．13R11	字	$\dot{\square}$	$\stackrel{8}{8}$	古	T－57S01
206C．206L．206P4．．	T－13R11	4	宛	$\dot{\sim}$	4	T－57S01
206．1，250．．．．．．．．	T．13R11	\％	म	म	号	T－57S01
307，307E．．．．．．．．．	T．13R12	\％	\％	H	$\stackrel{\sim}{4}$	T－13S42
309 вeries， $380 \ldots$	T－13R13	म	H	4	4	T－13S42
380D，380K C．．．．．．	T．13R13	H		\％	4	T－13S42
381，381D．．．．．．．．	T．13R13	4	4	\square	～	T．13S42
$381 \mathrm{KC..........}$.	T．13R13	H	4	म	म	T－13542
389．．．．．．．．．．．．．．．	T－13R20	म	4	$\stackrel{\square}{4}$	F	T－57S01
$399 \ldots \ldots \ldots \ldots$	T－13R12	\％	～	－	$\stackrel{*}{*}$	T．57S01
5114．．．．．．．．．．．．	T．13R09	H	－	－	T－33A91	T．57S01
511G． 511 P．．．．．．．	T－13K09	T－13C30	\＆	\dot{H}	T－33A91	T．57S01
930 series．．．．．．．．．	म	T－13C27	4	\＆	T－33491	T．57S01
931 series．．．．．．．．．．	～	T．13C27	$\dot{\square}$	$\dot{\square}$	T－33A91	T－57S01
1540．．．．．．．．．．．	T－13R15	म	－	म	＊	T－13S41
3012 вeries．．．．．．．．．	T．13R14	4	4	4	H	T－13S42
3016．．．．．．．．．．．．．	T．13R16	＊	～	4	\＆	T．13S41
3109．．．．．．．．．．．．	T．13R12	号	～	\％	4	T－57S01
4012 вeries．．．．．．．．．	T．13R14	\％	号	H	म	T－13S42
4016－4 ．．．．．．．．．．	T－13R16	\＆	म	\％	4	T－13S41
4110 series．．．．．．．．．	T－13R08	4	＊	4	H	T－57S01
5140．．．．．．．．．．．．．．	T－13R15	－	\％	号	崀	T－13S41
GENERAL ELECTRIC Co．						
T－12，T－12E．．．．．．	T－131104	茹	म	$\dot{4}$	$\dot{4}$	T．57S01
S－22，S－22A，S－22X．	T－13R13	4	\％	म	\％	T．57S01
H－31．．．．．．．．．．．	T－13R06	T－13C30	$\dot{4}$	H	T．57A42	T－57501
п－32，T－41．．．．．．	T－13R07	\％	$\dot{\sim}$	$\dot{\sim}$	T－13A36	T．57501
F－40．．．．．．．．．．．	T－13R11	－	\％	\＆	－	T－57S01
S－42，SZ－42P．．．．．．	T． 13 R07	（	4	宸	T．13A35	T－57S01
G．50．．．．．．．．．．．．．	T．13R11	＊	म	म	P	T－57501
K．50，K．50P．．．．．．	T－13R05	5 吕	म	म	म	T．57S01
M－50．．．．．．．．．．．．	T．13R13	3 \％	$\dot{8}$	\＆	\％	T．57501

Tropex transformers will stay put on those tough replacement jobs．See page 32.

MODEL	Power Trana．	First Filter Choke	Sorund Filter Choke	First Audio Trans．	Second Audio Trans．	Output Trani．
GENERAL ELECTRIC Co．（Contd）						
H－51，H－51R．．．．．．．	T－13R06	4	4	น	\＄Special	\＄Special
K－51，K－51P．．．．．．．	T．13R05	4	4	\＆	㿾	T－57S01
M－51，M－51A．．．．．．	T．13R13	\％	4	\＆	＋	T－57S01
A－52，E－52，M－52．．．	T－13R12	\％	品	4	宜	T－57S01
K－52．．	T．13R05	\＆	4	宜	＊	T－57501
A－53，F－53，G－53．．．	T－13R：2	4	4	4	\％	T－57S01
K－53，K－53M．．．．．．	T－13R05	＊	4	4	น	T－57S01
K．54，K．54P．．．．．．．	T．13R05	H	น	＊	น	T－57501
A．55．．．．．．．．．．．．．．	T－13R12	\＆	4	＊	＊	T－57S01
G－55．．．．．．．．．．．．．．．	T－13R1I	号	品	宜	\％	T－57S01
K－55．．．．．．．．．．．．．．	T－13R05	म	\＆	\＆	号	T－57S01
M－55，M．56．．．．．．．	T．13R13	古	品	拞	н	T－57S01
G－55，G－57．．．．．．．．	T－13R12	＊	＋	＊	＊	T－57S01
K－60，K－60P．．．．．．．	T－13R04	品	号	号	安	T－57S01
E－61．	T－13R12	＊	4	\％	\＆	T－57S01
G－61．	T－13R20	品	古	4	宜	T－57501
M－61，E－62．．．．．．．．	T．13R12	品	4	4	号	T－37S01
K．62，KZ－62P ．．．．	T．13R07	4	4	＊	安	T－57S01
M．62．．．．．．．．．．．．．	T－13R13	宜	\＆	\＆	安	T－57501
A．63．F－63．．．．．．．．．	T－13R12	㬉	\＆	\＆	＊	T－57S01
K．63．．．．．．．．．．．．．．	T－13R04	品	号	）	安	T－57S01
A－64．．．．．．．．．．．．	T－13R13	\＆	号	安	\＆	T－57S01
G．64．．．	T－13R20	古	古	古	安	T－57S01
K－64．．．．．．．．．．．．．．．	T－13R05	\＆	号	\＆	直	T－57S01
A．65，F－65．．．．．．．．	T－13R13	品	＊	4	\％	T－57S01
K－63，K－65P．．．．．．	T－13R04	म	\＆	म	н	T－57501
M－65．．．．．．．．．．	T－13R05	म	4	\＆	宜	T－57S01
A－66，F－66．	T－13R12	品	\＆	宜	宜	T－57S01
G－66．．．．	T－13R20	น	म	म	म	T－57S01
K－66．K－66M．．．．．．	T．13R03	垵	\％	\＆	＊	T－57S01
M－66．．．．．．．．．．．．．	T．13R13	\＆	\％	\％	4	T－57S01
A－67，M．67．．．．．．．	T．13R13	宜	安	品	古	T－57S01
E－68．．．．．．．．．．．．．．	T．13R12	垵	4	＊	＊	T－57S01
G－68．．．．．．．．．．．．．	T－13R20	安	安	4	4	T．57S01
M－68．．．．．．．．．．．	T．13R05	น	号	\＆	म	T－57501
G－69．．．．．．．．．．．．．．	T－13R20	\＆	\＆	号	म	T－57S01
M－69．．．．．．．．．．．．．．	T－13R13	＊	＊	\％	＊	T－57S01
A－70．．．．．．．．．．．．．	T－13R12	安	\％	\％	安	T．57S01
F－70．．．．．．．．．．．．．．	T－13R13	\＆	น	宜	＊	T－57501
J－70．．．．．．．．．．．．．．	T－13R04	＊	安	\％	T－13A34	T－57S01
E－71，E－72．．．．．．．．	T－13R13	\％	\％	\％	म	T－57S01
H－71 ．．．．．．．．．．．．	T－13R06	宜	\＆	号	5 Special	3 Special
H．72．．．．．．．．．．．．．．	T－13R07	＊		品	4	T－57S01
J．72．．．．．．．．．．．．．．	T－13R05	\＆	म	म	T－13A34	T－57801
1173，1177，H78．．．．	T－13R19	\＆	\％	\％	\＆	T． 13542
F．74，A－75，F．75．．．．	T－13R13	\％	\％	品	＊	T－57S01
G．75．．．．．．．．．．．．．	T－13R11	4	\％	\％	4	T－57501
J．75．．．．．．．．．．．．．	T－13R04	＊	安	\％	T－13A34	T－57S01
E．76．．．．．．．．．．．．．．	T－13R13	＊	\％	品	古	T．57S01
G．76．．．．．．．．．．．．．	T－13R11	品	\％	＊	4	T－57S01
F．77．．．．．．．．．．．．．	T－13R13	安	\％	＊	安	T－57S01

MODEL	Power Trane．	First Filter Choke	Second Filter Choke	First Audio Trans．	Second Audio Trans．	Output Trans．
GENERAL ELECTRIC CO．（Contd）						
H－77，G．78．．．．．．．．	T－13K20	4	\％	内	н	T．57S01
E－79．．．．	T－13R12	\＆	म	\＆	＊	T－57S01
H．79．．．．	T－13K20	品	म	号	安	T．57S01
K－79．．．．	T．13R04	T．13C29	\％	＊	8 Special	T．13S41
F－80．．．．．．．．．．．．	T－13R13	血		＊	安	T－57501
H1M80．．．．．．．．．	T－13R19	4	＊	宜	安	T－13S42
J－80，K－80，K－80X．	T－13R07	\％	的	＊	T．13A34	T．57S01
E－81，F－81．．．．	T－13R14	म	म	宜	且	T－57S01
M－81．．．．．．．．．．．．．	T．13R15	品	＊	＊	T－13A35	T－57S01
A－82．．．．．．．．．．．．．．	T－13R13	安	म	宜	安	T－57S01
J－82．．．．．．．．．．．．．．	T．13R07	\％	\％	～	T－13A34	T．57S01
A－83．．．．．．．．．．．．．．	T－13R13	＊	4	＊	T－13A35	T．57S01
J－83．J．83A．．．．．．．．	T．13R05	\％	4	＊	T－13A35	T－57501
A－85．	T－13R13	－	4	宜	T－13A35	T－57501
F－85．	T－13R13	品	म	\＆	－	T．57S01
G－85．	T．13R20	缶	म	\＆	宜	T－57S01
K－85．	T－13R07	T－13C30	＊	＊	\＄Sprecial	T－57501
M－85．．	T－13R15	品	4	宜	T－13A35	T－57501
E－86，F－86．．	T－13R14	म	म	\＆	安	T－57S01
G－86	T－13R20	号	म	＊	＊	T－57S01
J－86．．．．	T－13R07	\％	品	\＆	T．13A34	T－57S01
M－86．．．．．．．．．．．．．	T－13R15	4	म	直	T．13A35	T．5is01
A－87．．．．．．．．．．．．．．	T．13R13	н	号	म	T－13A35	T－57S01
J．87，J．87A．．．．．．．．	T－13R05	苗	4	＊	T－13A35	T．57S01
F－88．．．．．．．．．．．．．．	T．13R13	4	\％	宜	म	T．57501
K－88．K－88X．．．	T－13R07	T－13C30	\＆	\＆	8Special	1－57S01
M－89．．．．．．．．．．．．．	T．13R15	品	4	\＆	T－13A35	T．57S01
E．91．．．．．．．．．．．．	T－41187	＊	＊	\＆	宜	T－13S41
H－91，H－91R．．．．．	T－13R06	4	＊	\＆	T．13A35	T－57S01
F－96．．．．．．．．．．．．．	T．13R13	直	\＆	\＆	－	T．57S01
G．99 ．．．．．．．．．	T－13R20	\％	\％	4	น	T．57S01
J－100．．	T－56K05	T－13C30	н	म	\％Special	T－13S41
E－101，E－105．．．．．	T－41187	म	\＆	4	\＆	T－13S41
G－105，G－106．．．．．	T－41187	号	म	म	น	T．13541
K－105．．．．．．．．．．．．	T－13R06	น	म	＋	T．13A35	T．57S01
E－106．．．．．．．．．．．．．	T－41187 \dagger	น	号	म	म	T－13S41
M－106．．．．．．．．．．．．	T－13R15	苜	म	T．33A91	T－13A36	T．57S01
J－107，J－109．．．．．．．	T－56R05	T－13C30	＊	म	\＄Special	T．13S41
K－107．．．．．．．．．．．．．	T－13R06	－	＊	安	T－13A35	T．13S41
П－116，H－118．．．．．．	T．13R15	安	\＆	4	宜	T－13S41
A－125．．．．．．．．．．．．．	T－13R15	$\stackrel{\text { r }}{ }$	品	安	安	T－13541
GM－125．．．．．．．．．．	T－13R16	T．13C30	号	म	宜	T．13S41
M－125．．．．．．．．．．．．	T－13R15		直	T．33A91	T－13A36	T．57S01
M－128，M－128IIR ．．	T－13R07	T．13C30	4	T－33A91	Special	T－13541
M－129．．．．．．．．．．．	T．13R15	－	品	T－33A91	T－13A36	T．57501
S－132．．．．．．．．．．．．．	T－13R07	\＆	\＆	4	T－33A91	T－57S01
HM136．．．．．．．．．．．	T－13K15	\％	安	安	4	T．13S41

GENERAL HOUSEHOLD UTILITIES CO．

450，（4A）451．．．	T－13R12	\＆	～	\＆	म	T－57S01
460X	T－13R12	＊	好	故	4	T－57S01
460 （4B）．．	T－13R19	＊	＊	\％	\％	T－57501

Dual Tonc Control permits changing audio frequencies to suit every reguirement. Fully described in Thordarson Amplifier Guide No. 346. Postpaid 15 cents.

MODEI．	Power Trane．	Firat Filier Chuke	Second Filter Chuke	First Audio Trans．	Secund Audio Trane．	Output Trans．
GRICSHY－GRUNOW CO．（Cantd）						
330，331，336．．	T．13R03	号	\％	亩	安	T－57S01
351，352，353．．	T．13R04	4	4	\％	T．13A35	T－5iS01
360，363．．．．．．．．．．	T－13R06	\％	穴	\％	4	T－13541
370，371，373．．．．．．	T－13n03	夜	宜	垵	4	T．57S01
390，393．．．．．．．．．．	T－13R04	4	＊	宜	T．67D47	T－57S01
440．．．．．．．．．．．．．．．	T－13R11	垃	－	岳	\％	T－57501
460，461，463．．．．．．	T－13R03	令	良	良	安	T－57S01
500．．．．．．．．．．．．．．．	T．13R12	的	＊	\％	4	T－57501
560，566．．．．．．．．．．．	T－13R12	安	穴	，	夜	T－57S01
570．．．．．．．．．．．．．．．	T－13R03	站	夜	家	夜	T．57S01
800，998．．．．．．．．．	T．13R04	4	苜	宜	T－67D47	T．57S01
GULBRANSEN CO，						
10，13．．．．．．．．．．．．．	T－13R05	4	沜	4	4	T－57501
23．．．．．．．．．．．．．．．．	T－13R06	T－13C30	垵	宜	T－33A91	T．57S01
60 Champion Jr．， 63	T．13R04	H	H	药	T－33A91	T－57S01
160，161．．．．．．．．．．．	T－13R06	T－13C29	家	4	T．33A91	T．57S01
200，291，292，295．．．	T．56R03	T．13C29	\％	\％	T－33A91	T．57S01
352．．．．．．．．．．．．．．．	T－13R02	去	㲾	＊	＊	T．57S01
872．．．．．．．．．．．．．．	T－13R03	\＆	4	\＆	4	T．57S01
9950．．．．．．．．．．．．．．．	T－56R03	T－13C29	\％	\％	T－33A91	T．57S01

THE HALLICRAFTERS，INC．

5T．．．．．．．．．．．．．．．	T．13R12	4	4	\％	4	T．57S01
H8PA．．．．．．．．．．．．．	T－13R19	出	\％	4	4	\＄Special
S8A，S9，SK9．．．．．．	T－13R13	T－13C30	4	品	＊	T．57S01
s10．．．．．．．．．．．．．．．	T－13R12	4	4	4	\％	T．57S01
Sll Super Sky Rider	T．13R14	T－13C30	म	\％	T－33A91	H
S12 Comm．Sky．．．．	T．13R14	T．13C30	4	\＆	T－33A91	＊
$\begin{aligned} & \text { SI4 Sky Chief, } \\ & \text { Sky Buddy... } \end{aligned}$	T．13R12	品	品	4	4	T－57S01
S15 Sky Challenger．	T－13R13	T－13C28	4	\％	\＆	н
$\begin{aligned} & \text { SX16 Super Sky } \\ & \text { Rider } 38 . . . \text {.... } \end{aligned}$	T－13R14	T－13C30	＋	4	T．33A91	\＆
SX17．	T．13R14	T．13C30	号	＋	T－33A91	T．13S41
S19R Sky Buddy．．．	T－13R19	\％	－	\％	安	T．57501
SX23，SX24．．．．．．	T．13R12	良	品	4	尔	T．57S01

HAMMARLUND MFG．CO．

Comet Pro at＇d Xtal	T－13R04	T－13C29	T－13C29	安	安	น
Comet Pro Doce＇31	T－13R05	T－13C29	㙅	＋	＋	T－57501
HOWARD RADIO CO．						
$\begin{aligned} & \text { AVH, EX (Dual } \\ & \text { Rango)........... } \end{aligned}$	T－13R06	T－13C30	出	宜	T．33A91	T．57S01
D，F Radio D，F Audio Amp．．．．	T．13R13	＊	4	沜	\％	T．57S01
H．	T－13R05	T－13C29	安	\％	T－33A91	T．57S01
SG＂A＂．	T－13R06	T－13C30	\％	\％	T．57A42	T－57S01
SG＂B，＂O．．．．．．	T．13R05	T．13C29		4	T－29A99	T．57S01
SG＂C＂．	T－13R06	T－13C30	安	\％	T－57A42	T．57S01
SG＂T＂．	T－13K05	＊	出	\＆	＊	T－57501
X2，$\times 3$.	T－13R12	T－13C29	＊	$\stackrel{8}{*}$	4	T．57501
Z4．	T－13R09	＊	\％	\％	Speciul	T．57501
6B，6BA，7BT．．．．	T－14R39	T．14C63	\％	\％	T．78D46	T－81S01
Green Diamond＂8＂ （71＇s）．	T－56R01	T．13C29	宜	T－29A99	T－33A91	T－57S01

A．None required．Available upon special order from your diatributor．Special Note：The following aubstitutions are made by many ervice engineers berauae of preferences in mountinge and sizes：T－57S02，T－13S38，T－14S85 in place of T－57S01；T－57A41，T－13A35 in place of T－33A91；T－57A38，T－13A34 in place of T－29A99．

MODEL	Power Trans．	$\begin{aligned} & \text { First } \\ & \text { Finther } \\ & \text { Chuck } \end{aligned}$	$\begin{aligned} & \text { Serond } \\ & \text { Filter } \\ & \text { Choke } \end{aligned}$	$\begin{gathered} \text { First } \\ \text { Audio } \\ \text { Tranan } \end{gathered}$	$\begin{aligned} & \text { Second } \\ & \text { Audio } \\ & \text { Trang. } \end{aligned}$	$\begin{aligned} & \text { Output } \\ & \text { Trane. } \end{aligned}$

HOWARD RADIO（CO．（Contd）

						60.	T．561101	T－13C29	T－13C29	T． 29.199	T．29A99	－
（45 ${ }^{\circ} \mathrm{n}$ ）．．．．．．．．．．．T－561103	T－13C30	4	T－29A99	T－33A91	T． 57501	62，62A	T－13R06	T．13C30	म	4	T－33A91	T－57S01
X8．．．．．．．．．．．．．．T－13R12	T－13C29	～	$\dot{\sim}$	＋	T－57S01	63，63A	T－13R02	म	म	宜	4	T－57501
H9．．．．．．．．．．．．．．．T－13R14	T－13C30	4	\＆	T．33A91	T－57S01	80	T－56R01	T－13C29	品	品	4	T． $\mathrm{F} \mathbf{7 5 0 1}$
20，25，32．．．．．．．．．T－13R05	T－13C29	$\dot{4}$	4	T－33A9！	T．57S01	563A．	T－13R02	$\dot{4}$	H	曻	\％	T．57S01
35，40 ．．．．．．．．．．．T－13R05	T－13C29	\＆	H	T－33A91	T－57S01	826B．．．．．．．．．．．．．	T－13R05	H	น	น	T－33A91	T．57501
67C，67T，68．．．．．．．T．13R12	品	\％	H	म	T－13S42	882－62D ．．．．．．．．．．	T－13R06	\％	H	曻	T．33A91	T． 57501
77C，77T．．．．．．．．．T－13R12	4	\％	4	4	T－57S01	882．64C．．．．．．．．．．	T－13106	$\dot{4}$	$\dot{4}$	品	T－33A91	T．57S01
99C，99T．．．．．．．．T－13R14	म	น	4	H	T－57S01	KOLSTEH RADIO	INC．（Bra	andes）				
118， $218 \ldots$. ．T．13R14	$\stackrel{8}{4}$	म	म	H	T．57S01	A－1．．．．．．．．．．．．．．	T．13R05	吕	\％	～	म	म
218．．．．．．．．．．．．．．T－13R13	\％	－	4	＊	T．57S01	6J，6K．6L，6M，6R	T－56R01	T－13C29	T－13C28	\％	T－29499	T－18C92
220，225，225S．．．．T－13R19	\％	म	4	H	T－57S01	B10，B11，B12．．．．	T．13R09	§Special	T－13C28	T－29A99	T－33A91	म
240－1，240－2．．．．．．T．13R19	品	\＆	\％	\＆	T．57S01	B15，B16．．．．．．．．．．	T．131809	T．13C29	\％	T．33A91	T－33A91	T．57S01
250，S250．．．．．．．．．T－13R19	4	4	\％	\％	T．57S01	K20，K21，K22，K23	T－56101	T－13C29	T－18C92	T－29A99	T－29499	T．18C92
256，S256．．．．．．．．．T－13R12	安	н	品	\％	T－13S42	K25，K27，K37．．．．．	T－56R01	T－13C29	T－18C92	T－29A99	T－29A99	T－18C92
E256，260，S260．．．．T．13R19	永	म	4	\＆	T－57S01	K43，K43A．．．．．．．．	T．13R06	T．13C30	म	T－29A99	T－33A91	T．57S01
266．．．．．．．．．．．．．．．T－13R12	＊	\＆	垵	H	T． 57501	K60．．．．．．．．．．．．．．．	T．13R07	T．13C29	\％	H	H	T． 57501
268，275C．275T．．．．T－13 R12	\％	\％	4	4	T－13S42	K80．．．．．．．．．．．．．．．	T．13R07	T－13C29	4	碞	4	T．57S01
	म	म	4	4	T－13S42	K73．．．．．．．．．．．	म	T－13C27	4	堊	น	T．57S01
300．．．．．．．．．．．．．．T．13R19	H	＊	品	H	T－57S01	80．．．．．．．．．．．．．．．．	T．13R07	T－13C27	品	\＆	T－38A91	T．57S01
301，303 ．．．．．．．．T－13R12	H	的	4	\％	T．13S42	K83．．．．．．．．．．．．．．．	㟧	T－13C30	T－13C29	号	T－33A91	T－57S01
302S，302APC．．．．．T．13R12	\＆	4	4	\％	T－13S42	90．．．．．．．．．．．．．．．	T－13 R07	T－13C27	曻	म	T．3BA91	T－57501
305．306，307．．．．．．T．13R11	\＆	－	品	\％	T．57501	K93．．．．．．．．．．．．．．	缶	T－13C30	T．13C29	吕	T．33A91	T．57501
318．．．．．．．．．．．．．．T－13R13	4	4	的	\％	T－13S41	K110，K120，K122．	T－13R03	4	4	品	\％	T＇－57S01
318D ．．．．．．．．．．．T．13R11	\％	品	品	4	T－13S41	K130，K132．．．．．．	T－13R06	म	H	$\stackrel{4}{4}$	T－33A91	T－57S01
325．．．．．．．．．．．．．．T－13R13	\％	म		㐋	T－13S41	K140，K142．．．．．．	T－131206	म	\＆	म	T．33A91	T．57S01
325D ．．．．．．．．．．T．131111	H	$\dot{\square}$	H	曻	T－13541	MAJESTIC RADIO	8 TELE	VISION				
$368 \ldots \ldots13 R 12$	\＆	4	品	\％	T－13S42	1A50 meries．．．．．．．．	T．13 119	\＆	H	\％	H	r．57501
375. T－13R12	\％	\％	尔	\square	T－13S42	1A59，1A59B，Pla59	T－13R19	\％	曻	\＆	4	T．57S01
377．．．．．．．．．．．．．T－13R19	\％	H	4	4	T－57S01	1B59，P1B59B．．．．．	T－13R19	\％	㟧	4	\％	T－57S01
100．．．．．．．．．．．．．T．131813	号	म	म	岁	T－13S41	2A50 series．．．．．．．．	T－13R19	\％	น	4	4	T．57501
400X ．．．．．．．．．T－13R14	$\stackrel{8}{*}$	＊	沜	H	T．13541	3C70，3C80．．．．．．．．	T．13R11	म	品	\％	4	T．57501
425．．．．．．．．．．．．．T．13115	น	H	4	T．74C30	T－13S41	3SC80．．．．．．．．．．．．	T．13R11	\＆	\％	4	4	T－57S01
430．．．．．．．．．．．．．T．13R11	\＆	म	4	4	T－57S01	3C90．．．．．．．．．．．．．．	T－13812	4	म	4	4	T．57S01
438．．．．．．．．．．．．．．T－13R20	\％	\square	\％	4	T． 57501	5BDA，5BEA．．．．．	T．13R19	～	\＆	\％	\％	T．57501
468．．．．．．．．．．．．．．T－13R20	4	4	品	4	T．57S01	56，62A．．．．．．．．．．．	T－13R19	4	品	品	4	T－57S01
518．．．．．．．．．．．．．．．T．13R14	म	म	म	4	T．13S41	65，66．．．．．．．．．．．．	T－13R12	म	\＆	4	尔	T－57501
520．．．．．．．．．．．．．．T－13R13	\％	\％	沜	H	T．13S41	67，68．．．．．．．．．．．．	T－13R20	宜	曻	沜	H	T－57S01
525．．．．．．．．．．．．．．．T－13R16	H	4	4		T．13S42	75，76．．．．．．．．．．．．．	T－13R12	4	～	号	4	T．57S01
568．．．．．．．．．．．．．．T．13114	น	म	\％	H	T－13S41	85，86．．．．．．．．．．．	T－13R14	म	）	น	4	T－57501
1626．．．．．．．．．．．．．T－13R12	品	H	म	น	T－13S42	511，511A．519P．．．	T．13R19	म	H	曻	～	T－57501
COLIN B．KENNEDY COIP						551，620．．．．．．．．．．	T－13119	H	\＆	号	号	T． 57501
10．．．．．．．．．．．．．．．．T－13R06	T．13C30	H	T－29A99	T． 33 A91	T－57501	639．639B．．．．．．．．	T－13R19	\％	＊	\％	曻	T－57S01
20．．．．．．．．．．．．．．．T－13R05	T－13C29	\％	品	T－33A91	T－57S01	650．．．．．．．．．．．．．．	T．13R12	น	＋	น	家	T－57501
26．．．．．．．．．．．．．．．T－13R06	T．13C30	म	4	\％	T－57501	739．750．．．．．．．．．．	T－13R12	ค	H	म	\％	T．57501
30，32．．．．．．．．．．．T－13R06	T－13C30	－	T－29A99	T－33A91	T．57501	850．．．．．．．．．．．．．．．	T－13R14	4	\％	4	4	T－57S01
42，42B．．．．．．．．．T．13R05	4	\％	H	品	T－57S01	939．．．．．．．．．．．．．	T．13R13	4	म	म	म	T－57S01
50．．．．．．．．．．．．．．．．T－13R03		म	म	म	T－57S01	1050．．．．．．．．．．．．．．	T．13R15	\％	沜	4	T－17D01	T－13S41
52，．．．．．．．．．．．．．T－13R04	4	H	号	T－33A91	T．57S01	1056X．．．．．．．．．．	T－13R20	4	म	\＆	尔	T－57S01
55．．．．．．．．．．．．．．．T．13R01	曻	H	安	号	T．57S01	1058X．．．．．．．．．．．．	T．13R20	म	น	म	沜	T．57501
56．．．．．．．．．．．．．．．．．T．13R04	品	म	4	T．33A91	T－57S01	1250．．．．．．．．．．．．．	T－13R15	号	号	曻	T－17D01	T－13S41

Complete instructions and diagrams for building amplifiers．Thordarson Amplifier guide No．346，post－paid $1 \mathbf{1 5}$ cents．

MODEL	Power Trans．	First Filter Choke	Second Filter Cboke	First Audio Trans．	Second Andio Trane．	Output Trune．
MAJESTIC RADIO \＆TELEVISION CO．（Contd）						
1356X．．．．．．．．．．．．	T－13R15	\％	\％	\％	\％	T－13541
1870．．．．．．．．．．．．．．	T－13R20	$\stackrel{*}{*}$	＊	＊	＊	T－57S01
MONTGOMERY WARD a CO．						
04WG．725．．．．．．．．．	T－13R19	\％	\％	\％	\％	T－57501
11．．．	T－56R05	T－13C30	宜	\＆	＊	T－57S01
15，16．．．．．．．．．．．	T－13R02	\％	\％	4	\％	T－57S01
17．．．．．．．．．．．．．．．	T－13R06	\％	\％	4	H	T－57S01
21，22．．	T－13R06	T－13C29	\％	4	T－33A91	T－57S01
62－010．．．．．．．．．．．．	T－13R03	T－13C28	\％	\％	T－33A91	T－57S01
62．020．．．．．．．．．．．．	T－13R06	T－13C29	T－18C02	\＆	T－33A91	T－57S01
62．030，62．040．．．．	T－13R04	T－13C29	\pm	亩	T－33A91	T．57S01
62．060，62．070．．．．	T－13R02	T－13C28	4	4	\％	T．57S01
62－7，62－8．．．．．．．．	T－13R05	4	4	4	\％	T．57S01
62．9．．．．．．．．．．．．．．	T－13R06	म	น	H	T－33A91	T－57501
62－14．．．．．．．．．．．．．	T－56R05	T－13C30	＊	4	＊	T－57S01
62－20．．．．．．．．．．．．．	T－56R05	＊	安	\％	悬	T－57S01
62－25．．．．．．．．．．	T－56R05	\％	\％	\％	4	T－57S01
62．26．．．．．．．．．．．．．	T－56R05	म	म	＊	\％	T－57S01
62－29．．．．．．．．．．．．．	T－56R02	\％	ム	宜	＊	T－57501
62－30．．．．．．．．．．．．	T．13R06	T－13C29	18	8	T－33A91	T－57S01
62－34．．．．．．．．．．．．	T－13R03	T．13C29	宜	\％	H	T－57S01
62－38．62－40．．．．．．	T－56R05	＊	＊	宜	T－33A91	T－57S01
62－PC43．．．．．．．．．．	T－13R02	H	－	\％	＊	T－57S01
62－50．．．．．．．．．．．	T－56R05	म	＊	н	T－33A91	T－57S01
62－70，62－70X．．．．．．	T－13R05	4	宜	＊	4	T－57501
62－72X．．．．．．．．．．．	T－13R05	＊	H	＊	安	T－57S01
62－97，62－97X．．．．．	T．13R02	\％	宜	\％	4	T－57S01
62－99，62－99 X．．．．．．	T．13R02	म	म	㭊	\％	T－57501
62－101，62－101X．．．．	T－13R04	T－13C29	H	H	T．33A91	T．57501
62－103，62－105．．．．．	T－13R13	4	号	尔	＊	T－57S01
62－106．62－107．．．．．	T－13R07	T．13C30	น	＋	T－33A91	T－57S01
62－121．．．．．．．．．．．．	T－13R07	T－13C30	\％	＊	T－33A91	T－57S01
62－131．．．．．．．．．．．	T－13R13	म	4	＊	4	T－57S01
62－132．．．．．．．．．．．．	T－13R09	4	H	H	T－33A91	T．57S01
62－133．．．．．．．．．．．．	T－13R13	4	H	4	＊	T．57S01
62－135．．．．．．．．．．．．	T－13R02	4	4	＊	\＆	T－57S01
62－140，62－140X．．．	T－13R02	\％	～	\％	＊	T－57S01
62－142．．．．．．．．．．．．	T－13R13	\％	\％	H	म	T－57501
62－144．．．．．．．．．．．	T－13R13	4	4	H	沜	T－57S01
62－147．．．．．．．．．．．	T．13R12	品	H	4	8Special	T－57S01
62－148，62－148X．．．	T－13R02	\％	น	\％	H	T．57S01
62－150．．．．．．．．．．．	T－13R02	4	H	H	H	T－57S01
62－152．．．．．．．．．．．	T－13R12	4	＊	\＆	4	T．57S01
62－154．．．．．．．．．．．	T－13R02	4	H	＊	－	T．57S01
62－156．．．．．．．．．．．	T－13R12	4	\＆	4	4	T－57S01
62－164．．．．．．．．．．．	T－13R12	$\stackrel{*}{*}$	\＆	H	H	T－57S01
62－173，62－175．．．．	T－13R13	4	4	4	\％	T－57S01
62－176．．．．．．．．．．．．	T－13R13	4	的	4	H	T．57S01
62－177．．．．．．．．．．．	T－13R12	4	4	\％	H	T．57S01
62－179．．．．．．．．．．．	T－13R09	म	安	\％	T－33A91	T－57S01
62－181．．．．．．．．．．．．	T－13R04	T－13C29	安	4	T－33A91	T－57S01

MODEL	Power Trana．	First Filter Cbute	Secund Filter Cboke	First Audio Trans．	Second Audio Trana．	Output Trana
MONTGOMERY WARD＊CO．（Contd）						
$\begin{aligned} & 62-185.62-187 \text {, } \\ & 62-190 \end{aligned}$	T－13R13	\％	＊	沜	沜	T．57S01
62－193．．．．．．．．．．	T－13R13	4	4	\％	4	T－57S01
62－194．．．．．．．．．．．	T－13R09	म	安	＊	T－33A91	T－57S01
62－196．．．．．．．．．．	T．13R13	\pm	\＆	\％	＊	T－57S01
62－206，62－216．．．．	T－13R09	H	安	\％	T－33A91	T－57S01
62－218．．．．．．．．．．．．	T－13R09	＊	安	＊	T－33A91	T．57501
62－226，62－228．．．	T－13R12	＊	＊	＊	＊	T－57S01
62－232．．．．．．．．．．	T－13R04	T－13C29	\％	\％	T－33A91	T－57S01
62－233，62－235．．．	T－13R12	－	น	安	品	T－57501
62－248，62－259．．．	T－13R12	安	＊	＊	\checkmark	T－57S01
62－261．．．．．．．．．．．．	T－13R14	～	\％	\％	§Special	T－57S01
62－267．．．．．．．．．	T－13R12	\＆	\％		\％	T－57S01
62－274，62－276．．．．	T－13R19	\％	\＆	म	\％	T－57S01
62－277．．．．．．．．．．．．	T－13R12	＊	\％	安	沜	T－57S01
62－280．．．．．．．．	T－14R39	4	\＆	＊	8	T－57S01
62－288．．．．．．．．．．．．	T－13R19	\％	4	\％	8	T－57S01
62－290．．．．．．．．．．．．	T－13R19	4	\％	4	凮	T－5iS01
62－297．．．．．．．．．	T－13R12	＊	4	药	沜	T－57S01
62－301，62－301 X．．．．	T－13R13	＊	－	म	4	＇r－13541
62－304．．．．．．．．．．．．	T－14R39	T－14C63	＊	＊	4	T－13S43
62－306．．．．．．．．．．．．	T．13R19	4	安	\％	\％	T－57S01
62－307．．．．．．．．．．．．	T－13R11	4	宜	\％	म	T－57S01
62－308．．．．．．．．．．．．	T－13R12	4	\％	号	4	T－57S01
62－309．．．．．．．．．．．．．	T－13R13	4	4	4	4	T－57S01
62－311．．．．．．．．．．	T－13R14	4	宜	4	\＄Speciul	T－57S01
62－315．．．．．．．．．．．．	T－13R19	－	＊	ム	4	T－57S01
62－316．．．．．．．．．	T－13R11	4	－	品	＊	T－57S01
62－318．．．．．．．．．．	T．13R12	4	＊	4	4	T－57S01
62．321，62－451．．．．．	T－13R12	\％	\％	\％	म	T－57S01
62－323．．．．．．．．．．．．	T－13R20	4	$\stackrel{ }{*}$	4	品	T－57S01
62－324．．．．．．．．．．．	T－13R20	\％	\％	＋	4	T－57S01
62－345．．．．．．．．．．	T－14R39	T－14C63	宜	4	म	T－13S43
62－346，62－350．．．	T－13R19	－	\＆	乓	）	T－57S01
62－347．．．．．．．．．．．	T．13R12	H	\％	\％	4	T－57S01
62－351，62－352．．．．	T－13R19	म	宜	म	4	T－57S01
62－357．．．．．．．．．．．	T．13R12	\％	4	\％	म	T－57S01
62－361，62－362．．．．	T－13R11	4	\％	\％	\％	T－5：S01
62－367．．．．．．．．．．．．	T－13R12	\％	\％	\％	4	T－57S01
62－370．．．．．．．．．．．．	T－13R19	苗	म	\％	4	T－57S01
62－372．．．．．．．．．．	T－13R11	4		म	\％	T－57S01
62－380．．．．．．．．．．．	T－13R19	\％	4	4	\％	T－57S01
62－390．．．．．．．．．．．．	T－13R11	\％	－	\＆	\＆	T．57S01
62－401，62－402．．．．	T－13R13	＋	4	宜	4	T－13S41
62－403．．．．．．．．．．．	T－13R15	4	\＆	म	म	T－13S41
62－404．．．．．．．．．．．．	T－14R39	T－14C63	4	\％	安	T－13S43
62－406．．．．．．．．．．．．	T－13R19	＋	4	4	4	T－57S01
62－407．．．．．．．．．．．．	T－13R11	＊	＊	\％	\％	T－57S01
62－408．．．．．．．．．．．．	T－13R12	4	4	\％	\％	T－57S01
62－411．．．．．．．．．．．．	T－13R14	垵	＊	＊	\＄Special	T－57S01
62－415．．．．．．．．．．．．	T－13R19	安	4	＋	\％	T－57S01

\＆None required． 5 Available upon special order from your distributor．Special Note：The following aubstitutions are made by many eervice engincera becaute of preferences in mountings and sizes：T－57S02，T－13S38，T－14S85 in place of T－57S01；T－57A41，T－13A35 in place of T－33A91；T－57A38，T－13A34 in place of T－24A99．

End your transformer troubles by using Tropex Transformers. See page 32.
*Diaregard 5 volt winding

[^2]| MODEL | Power Trans． | Firat Filter Choke | Second Filter Choke | First Audio Trans． | Second Audio Trans． | Output Trans． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R．C．A．MFG．CO．，INC．（Contd） | | | | | | |
| C8－15．C8－17．．．．． | T－13R12 | 2 म | 号 | $\stackrel{\sim}{4}$ | 曻 | T．57S01 |
| C8－19，C8－20．．．．．．． | T－13R12 | 2 号 | 号 | म | 安 | T．57S01 |
| D8－28，8K．．．．．．．．． | －T－13R12 | 2 年 | म | $\dot{4}$ | 崖 | T－57501 |
| 8K11．．．．．．．．．．．． | T．13R13 | 3 4 | 安 | म | 4 | T．57S01 |
| $\begin{aligned} & \text { 8Q2.8QU5C, } \\ & \text { 8QUSM..... } \end{aligned}$ | T．13R13 | \％ | म | 尔 | \checkmark | T－57S01 |
| 8Q4．．．．．．．．．．．．．．．． | T．13R13 | み | \＆ | 宜 | 曻 | T－57S01 |
| 8T．．．．．．．．．．．．．． | T．13R12 | \％ | \％ | म | \＆ | T．57S01 |
| 8T2，8T11．．．．．．． | T． 3 3R13 | H | 曻 | \％ | \＆ | T．57S01 |
| T8．14．T8－16．．．．．． | T－13R12 | 曻 | 号 | $\dot{4}$ | म | T．57S01 |
| 8U，8U2．．．．．．．．． | T－13R13 | $\stackrel{*}{*}$ | 号 | म | $\dot{4}$ | S01 |
| C9．4，C9．6．．．．．． | T．13R12 | \＆ | 号 | \％ | H | T－57S01 |
| CRD 9．．．．．．．．．．． | T．13R06 | T． 13 C 30 | \％ | \％ | T．33A91 | T．13S41 |
| D9．19．．．．．．． | T－13R12 | 宸 | ＊ | \＆ | 号 | T－57S01 |
| 9K1．．．．．．．．．．．．．． | T－13R13 | म | 4 | 品 | ＊ | －57501 |
| 9K2．．．．．．．．．．．．． | T－13R12 | 名 | \％ | म | น | T．57S01 |
| 9K3．．．．．．．．．．．．．． | T．13R14 | \％ | म | 堊 | 安 | T－13542 |
| 9Q4．．．．．．．．．．．．．．． | T．13R14 | \％ | \＆ | 安 | 4 | ．57S01 |
| 9T．．．．．．．．．．．．． | T．13R14 | $\dot{4}$ | ＊ | 宜 | \％ | T－57S01 |
| T9－9，T9．10．．．．．． | T．13R12 | H | 4 | \％ | 4 | T．57S01 |
| 9 tube AW．．．．．．． | T－13R06 | T．13C28 | 曻 | 号 | T．67D47 | T．57S01 |
| R9DC．．．．．．．．．．．． | 4 | T－13C29 | \＆ | 字 | T－33A91 | T．57S01 |
| 9U，9U2．．．．．．．．． | T．13R14 | 号 | ＊ | $\dot{\square}$ | म | T．13S42 |
| 10K．．．．．．．．．．．．．． | T．13R14 | T．13C30 | म | $\dot{4}$ | 号 | T．13S42 |
| 10K1．．．．．．．．．．．．． | T－13R14 | \％ | 堊 | $\dot{4}$ | 4 | T．13S42 |
| 10T．．．．．．．．．．．．．． | T．13R14 | T－13C30 | 4 | 4 | 曻 | T－13S42 |
| T10－1，T10－3．．．．．． | T－13R14 | म | 品 | म | T．81D52 | T－57S01 |
| U10．．．．．．．．．．．．．．． | T．13R12 | म | म | \＆ | 刿 | T．57S01 |
| U12，U20．．．．．．．．．． | T．13R12 | म | － | \％ | ＋ | T．57S01 |
| D11－12．．．．．．．．．．．． | T．13R15 | H | \％ | T－57A41 | T．74D32 | T．13S41 |
| R11．．． | T－13R07 | T－13C30 | \％ | ＊ | T．33A91 | T．57S01 |
| C13－2．．．．．．．．．．．．． | T．13R15 | \％ | \％ | T．57A41 | T．74D32 | T．13S41 |
| C15－3．．．．．．．．．．．．． | T－13R15 | म | \％ | T－57A41 | T．74D32 | T．13541 |
| 15U． | T．13R09 | T－67C49 | 号 | \％ | T－33A91 | T．57S01 |
| 16K，16T3．．．．．．．．． | T－13R12 | म | 宜 | \％ | 宜 | T．57S01 |
| 16T2．．．．．．．．．．．．．． | T－13R13 | म | 亩 | 4 | $\dot{4}$ | T．57S01 |
| 16T4．．．． | T．13R12 | \％ | 宸 | 安 | H | T．57S01 |
| RE 16A．．．．．．．．．．． | T．13R04 | 号 | $\dot{8}$ | \％ | T－33A91 | T－57S01 |
| 17K，18T．．．．．．．．．． | T－13R13 | 㟧 | 品 | 字 | ＋ | T－57S01 |
| R17．．．．．．．．．．．．．． | T－56R01 | T．13C29 | T－13C29 | T－29A99 | T－29A99 | น |
| Radiole 17．．．．．．．． | T－56R01 | T－13C29 | T－13C29 | T－29A99 | T－29A99 | \＄Special |
| Rediol 18DC．．．．． | म | T－13C28 | 8Special | T－29A99 | T－29A99 | §Special |
| R18．．．．．．．．．．．．．．． | T．56R01 | T－13C29 | T－13C29 | T－29A99 | T－29A99 | ＊ |
| RE．18 ．．．．．．．．．．．． | T－13R07 | T－13C30 | 宜 | 号 | T－33A91 | T－57S01 |
| 19K．．．．．．．．．．．．．． | T－13R13 | \％ | 㚱 | 沜 | ＊ | T．57S01 |
| R－19．．．．．．．．．．．．．． | T．13R04 | \＆ | \＆ | ＊ | T－29A99 | T－57S01 |
| Q20．．．．．．．．．．．．．．．． | T．13R11 | \％ | \checkmark | \％ | \％ | T－57S01 |
| RE．20．．．．．．．．．．．． | T－13R07 | T－13C30 | H | $\dot{4}$ | T－33A91 | T．57S01 |
| D－22．．．．．．．．．．．． | T．13R13 | T－68C08 | \％ | T－52C98 | T－57A41 | Special |
| PK23A1 Amp．．．．．． | T－13R01 | T．13C27 | T－13C27 | 4 | \％ | \％ |
| R23．．．．．．．．．．．．．． | T－13R04 | 号 | म | \％ | T－29A99 | T－57S01 |

MODEL	Power Trans．	First Filter Choke	Second Filter Choke	First Audio Trans．	Second Audio Trans．	Output Trans．
R．C．A．MFG．CO．，INC．（Contd）						
TB328．M1．	T．13R06	－	岸	म	T．57A41	T．13S41
25－DC．．．．．．．	\％	T－13C28	\＆	\％	T－33A91	T．57S01
U25，U26．．．．．	T－13R12	$\dot{\square}$	品	$\dot{\sim}$	น	T－57S01
A．28．P．．．．．．．．．	T．13R02	－	\％	\＆	品	\＆
R．28．．．．．．．．．．．．	T．13R03	T－13C28	品	$\stackrel{\sim}{4}$	～	T－57S01
R－28．P．．．．．．．．．	T－13R03	T－13C28	$\dot{4}$	म	4	T－57S01
R－32．．．．．．．．．．．	T－56R03	T－13C30	\＆	T－29A99	T－33A91	T－57S01
33AC．．．．．．．．．．．．	T－56R01	T．13C29	T．13C29	T－29A99	T－29A99	\％
R－35．．．．．．．．．．．．．．	T－13R06	T．13C29	号	\％	T．33A91	T．57S01
R－37．．．．．．．．．．．．	T．13R03	T．13C28	崩	号	\％	T．57S01
R．37．P．．．．．．．．．．．	T－13R03	T．13C28	号	4	\％	T．57S01
R－38，R－38－P．．．．．	T．13R03	T－13C28	崖	\％	$\dot{\sim}$	T．57S01
R．39．．．．．．．．．．．．．．	T．13R06	T．13C29	号	म	T－33A91	T．57S01
RE－40，RE－40－P．	T－13R03	T－13C28	＊	$\dot{4}$	\％	T．57S01
42，R－43．．．．．．．	T．13R07	T－13C30	4	$\stackrel{\sim}{2}$	T．29A99	T－57S01
U42．．．．．．．．．．．．．．	T－13R12	मे	म	－	\％	T．57S01
U43．．．．．．．．．．．．．	T－13R12	H	म	\％	4	T－57S01
U44，U45．．．．．．．．	T．13R13	$\stackrel{\sim}{4}$	म	$\dot{\sim}$	～	T．57S01
44．．．．．．．．．．．．．．．	T－13R06	T－13C29	T－13C2R	\％	$\dot{\square}$	T．18C92
RE－45．．．．．．．．．．．	T－56R03	T－13C30	\％	T－29A99	T－33A91	T．57S01
46．．．．．．．．．．．．．．．．	T． 13 R 06	T－13C29	T．13C28	々	－	T－18C92
47．．．．．．．．．．．．．．．	T．13R06	T．13C29	T－13C28	永	字	T．57S01
48．．．．．．．．．．．．．．．．	T．13R07	T．13C30	$\dot{4}$	号	T－29A99	T－57S01
R50．．．．．．．．．．．．．	T．13R07	T．13C30	\％	\％	T．33A91	T．57S01
K50，T55，T56．．．．．	T－13R12	म	म	㐫	字	T．57S01
Re52．．．．．．．．．．．．．．	T．56R03	T．13C30	म	T－29A99	T－33A91	T．57S01
R5S．．．．．．．．．．．．．．．．	T．13R07	T．13C30	号	＊	T－33A91	T．57S01
RE57．．．．．．．．．．．．．	T．13R06	T－13C29	号	\％	T．33A91	T．57501
K60，K62．．．．．．．．	T－13R12	म	曻	号	\％	T．57S01
T60，T62．．．．．．．．．	T．13R12	म	号	म	$\dot{8}$	T－57501
K61．．．．．．．．．．．．．．．	T．13R12	品	字	4	$\dot{4}$	T－57501
Radiola－62．．．．．．．．．	T－13R00	T．13C29	T．13C29	敢	T－29A99	$\begin{aligned} & \text { T. } 57 \mathrm{~S} 01 \\ & \text { T. } 18 \mathrm{C} 92 \end{aligned}$
PG63．．．．．．．．．．．．．	T－13R04	T－13C30	\dot{H}	$\dot{4}$	T－67D47	T－13S41
T63，T64，T65．．．．	T．13R12	म	म	4	म	T－57501
66．．．．．．．．．．．．．．．．．	T－13R07	T．13C30	H	宜	Sppecial	T－57S01
R70．．．．．．．．．．．．．．	T－13R03	T－13C29	\＆	宸	T－29A99	T．57S01
R71，R72．．．．．．．．．	T－13R05	T．13C29	沜	$\dot{4}$	T－29A99	T－57S01
R73．．．．．．．．．．．．．．	T．13R06	T．13C29	宜	\％	T－33A91	T．57S01
R73A．．．．．．．．．．．．．	T．13R04	4	$\stackrel{\sim}{r}$	\％	T－29A99	T－57S01
R75．．．．．．．．．．．．．．．	T．13R04	4	$\stackrel{\text { H }}{ }$	$\stackrel{4}{4}$	T－33A91	T－57S01
RAE－79．．．．．．．．．．．	T－13R07	T－13C30	\％	\％	T－33A91	T－57S01
K80，K81，K82．．．．．	T－13R12	म	\％	$\dot{\sim}$	4	T．57S01
T80．．．．．．．．．．．．．．．．	T－13R12	H	号	岁	\％	T．57501
Radiola 80．．．．．．．．．	T．13R04	§Special	4	H	T－57A42	T－57S01
RE80．．．．．．．．．．．．．	T－13R04	H	น	尔	T．33A91	T－57S01
82．．．．．．．．．．．．．．．．	T－13R04	§Special	$\dot{4}$	号	T－57A42	T－57S01
84BT6．．．．．．．．．．．	T．14R39	T－14C63	号	岗	\％	T．57S01
85E．．．．．．．．．．．．．．	T－13R12	4	म	沜	म	T．57S01
85T．．．．．．．．．．．．．．	T－13R19	\％	品	药	\＆	T． 57501
85T1，85T5．．．．．．．．	T．13R12	H	म	4	\％	T－57S01

Interested in building amateur radio receivers or transmitters？Full instructions and diagrams in Thordarson Transmitter Guide No．344，post－paid 15 cents．

MODEL	Power Trana．	First Filter Cboke	Second Filter Cboke	Firat Audio Trane．	Second Audio Trans．	Outpue Trans．
R．C．A．MFG．CO．，INC．（Contd）						
86.	T－13R04	\％Special	＊	＊	T－57A42	T－57S01
86E，86K．．．．．．．．．	T－13R12	＊	＊	\％	\％	T－57S01
86K7．．．．．．．．．．．．	T－13R12	＊	＊	\％	\％	T－57S01
86T，86T－1．．．．．．．．	T－13R12	＊	\％	＊	＊	T－57S01
86T－3，86T－4 ．．．．．．	T－13R12	宜	＊	＊	＊	T－57S01
86T6．86T44．．．．．．．	T－13R12	＊	＊	4	$\dot{4}$	T－57S01
87K1，87T．．．．．．．．	T－13R12	＊	＊	\％	＊	T－57801
87T1，88K	T－13R12	宜	＊	宜	H	T－57S01
R90．．．．．．．．．．．．．．．	T－13R04	T－18C92	\％	น	$\begin{aligned} & \text { T-57A42 } \\ & \text { T-29C27 } \end{aligned}$	T－57S01
R90P．	T－13R06	T．13C27	宜	T－29C27	T－33A91	T－57S01
$94 \mathrm{BT6}$.	T－14R39	T－14C63	＊	\checkmark	＊	T－57S01
95 T.	T－13R11	T－13C30	＊	\％	T－81D52	T－13S41
95T5．．．．．	T－13R19	纹	安	\％	\％	T－57S01
95T5LW．．．．．．．．．	T－13R19	4	4		尔	T－57501
96E，96K．．．．．．．．．．	T－13R12	宜	＊	垵	垵	T－57S01
96K2．R96．．．．．．．．	T－13R12	＊	＊	垵	安	T－57S01
96T．96Tl．．．．．．．．．	T－13R12	4	－	号	＊	T－57S01
96T2，96T3．．．．．．．	T－13R12	宜	垵	垵	曻	T－57501
97E．97KG．．．．．．．．	T－13R12	垵	4	缶	＊	T－57S01
R97，97T．．．．．．．．．．	T－13R12	宜	4	\％	\％	T－57S01
R99．	T－13R09	T－13C30	น	＊	T－81D52	T－13S41
U101．U102E．．．．．	T－13R12	Δ	4	＊	品	T－57S01
U103．．．	T．13R12	\％	\％	4	－	T－57S01
K105．	T．13R15	4	น	敢	＊	T．57S01
U105．U106．．．．．．	T－13R14	宜	\＆	\＆	＊	T－57S01
U107．．．．．．．．．．．	T－13R14	＊	刿	妆	\％	T－57S01
U109．．．	T－13R16	T－67C49	＊	尔	T．81D52	T－13S41
RCA 110，111．．．．	T－13R03	T－13C28	安	故	＊	T－57S01
ACR111．．．．．．．．．	T－13R12	4	＊	\＆	＊	T－57S01
U111．．．．．．．	T－13R11	म	A	－	＊	T－57S01
115．．．	T－13R03	T－13C28	去	4	\＆	T－57S01
117．118．．．．	T－13R12	4	安	＊	沜	T－57S01
U119．．．．	T－13R12	－	＊	\％	＊	T－57S01
120．．．．	T－13R04	T－13C28	垵	＊	＊	T－57501
121．．．．．	T－13R05	4	＊	宜	＊	T－57S01
122．．．．	T－13R03	T－13C28	故	＊	＊	T－57S01
U122E．	T－13R12		＊	的	＊	T－57501
124．．．．．．．	T－13R04	＊	＊	宜	垵	T－57S01
U124，128E．．．．．．．．	T－13R12	的	好	宜	垵	T－57501
ARC 136．．．．．．．．．．	T－13R12	\％	垵	\＆	＊	T－57S01
140，141．．．．．．．．．．	T－13R06	T－13C30		垵	T－67D47	T－13S41
141E．．．．．．．．．．．．．	T－13R06	T－13C30	宜	宜	T－67D47	T－13S41
143．．．．．．．．．．．．．．．	T－13R15	4	的	4	T－33A91	T－57S01
ACR 175．．．．．．．．．	T－13R14	殅	好	\％	沜	T－57S01
210．．．．．．．．．．．．．．．	T－13R03	T－13C28	\％	的	垵	T－75S01
211．．．．．．．．．．．．．．．	T－13R12	－	宜	－	\％	T－57S01
214．．．．．．．．．．．．．．	T－13R12	＊	4	－	H	T－57801
221．．．．．．．．．．．．．．．	T－13R04	＊	垵	\％	T．33A91	T－57S01
220，222．．．．．．．．．．．	T．13R12	－	\％	4	4	T－57501
224，224E．．．．．．．	T－13R12	出	尔		\％	T－57S01

MODEL	Power Trane．	First Filter Choke	Second Filter Cboke	Firet Audio Trane．	Second Audio Trans．	Output Trang．
R，C．A．MFG．CO．，INC．（Contd）						
240.	T－13R06	T－13C30	＊	＊	T－67D47	T－13541
242， 243.	T－13R15	4	4	＊	T．33A91	T－57501
260， 261	T－13R06	T－13C27	4	T－29C27	T－33A91	T－57S01
262， 263.	T－13R15	4	＊	T－57A41	T－74D32	T－13S41
281.	T－13R15	म	น	T－57A41	T－74D32	T－13S41
310.	T．13R03	T．13C28	\＆	＊	\＆	01
DUO 320， $321 . . .$.	T．13R04	\checkmark	\％	安	T－33A91	T－57501
322 DUO．．．．．．．．．．	T－13R12	＊	＊	＊	\％	01
330， 331.	T－13R06	T－13C30	－	＊	T－67D47	T－13S41
332 E DU0．	T－13R12	＊	－	＊	4	57501
340 DUO，340E．．．．	T－13R06	T－13C30	＊	＊	T－67D47	T－13S41
341.	T．13R15	น	\％	宜	T－33A91	T－57S01
381 DUO．	T．13R15	4	\dot{H}	T－57A41	T－74D32	T－13S41
810K，810K1．．．．．．	T－13R14	宜	＊	＊	\＆	T－57501
810 T .810 T 4.	T－13R14	好	＊	＊	\＆	T－57S01
813 K ．	\＄Special	T－13C30	ヶ	\＆	T－17D01	T－57S01
SEARS ROEBUCK \＆CO．						
FF，J．．．．．．．．．．．．．	T－56R01	T－13C28	\％	T－29A99	T－29A99	ム
49－50．	T－56R01	T－13C28	น	T－29A99	T－29A99	\％
52，53， 54.	T－13R06	T－13C30	＊	T－29A99	T－33A91	Special
56．．	T－13R06	T－13C30	4	T－29A99	T－33A91	T－57S01
92，93．	T－56R01	T－13C28	垵	T－29A99	T－29A99	\％
94，95，99， 100.	T．13R04	T－13C30	\％	T－29A99	T－33A91	Sppocial
108.	T．56R01	T－47C07	4	T－29A99	T－33A91	58pecial
109．．．．．．．．．．．	T－13R04	T－13C29	尔	\％	T－33A91	T－57S01
$\begin{aligned} & 110,111,112,114, \\ & 116 \end{aligned}$	T－13R06	T－13C30	4	น	T－33A91	T．57501
388．388X．	T－13R14	T－13C30	\％	垵	\＄Special	T－57S01
$\begin{aligned} & 709,719 \\ & \text { (Internatinnal).... } \end{aligned}$	T－13R14	宜	＊	＊	§Special	T－57S01
802，812．．．．．．．．．．	T－13R15	\％	4	\％	T－17D01	T－13S41
1130，1132．．	T－13R04	T－13C29	\％	敢	T－33A91	T－57S01
1150.	T－13R06	4	缶	安	\＄Special	T－57S01
1152．．．．．．．．．．．	T－13R04	4	县	安	＊	8 Special
1170．．．．．．．．．．．	T－13R06	宜	4	น	5 Special	T－57S01
1174.	T－13R04	垵	缶	\％	站	8^{8} Special
1250，1252．．．．．．．．	T－13R01	＊	4	4	垵	T－57501
1260 early．．．．．．．．	T－13R06	4	H		\＄Special	T－57S01
1260 late．．．．．．．．．．	T－13R04	＊	－	尔	尔	${ }^{8}$ Special
1280，1282．．．．．．．．．	T－13R03	T－13C29	T－13C29	\％	宜	T－57S01
1310，1311，1312．．．．	T－13R04	T－13C29	＊	玺	H	T－57S01
$\begin{aligned} & \text { 1320, 1322, } 1324 \\ & \text { 1326. } \end{aligned}$	T－13R04	T－13C29	宜	宜	直	T－57S01
1370．．．．．．．．．．．．．．	T－13R01	\％	安	的	曻	T－57501
1390，1400，1402．．．．	T－13R05	\％	\％	＊	宜	T．57501
1404，1406．．．．．．．．	T－13R05	\＆	น	น	垵	T－57S01
1420．．．．．．．．．．．．．．	T－13R04	\＆	＊	玺	－	T－57S01
1430．．．．．．．．．．．．．．	T－13R05	\％	＊	\％	宜	T－57S01
1506.	T－13R03	T．13C28	T－13C28	＊	安	T－57S01
1580，1582，1584．．．．	T－13R05	4	宜	号	＊	T．57S01
1590，1592．．．．．．．．．	T－13R02	4	4	＊	－	T－57S01
1597，1598．．．．．．．．．	T－13R11	缶	น	安	8	T－57S01

4．None requirod．Available upon apecial order from yonr distributor．Special Note：The following subatitutione are made by many aervice engineera because of proferences in mountinge and aizes：T－57S02，T－13S38．T－14S85 in place of T－57S01；T－57A41，T－13A35 in place of T－33A91；T－57A38．T－13A34 in place of T．29A99，

MODEL	Power Trane．	First Filter Chuke	Second Filter Choke	Firat Audio Trans．	Second Audio Trane．	Outpur Trane．	MODEL	Power Trans．	First Filter Choke	Second Filter Choke	First Audio Trane．	Second Audio Trans．	Output Trans．
SEARS ROEBUCK \＆CO．（Contd）							SEARS ROEBUCK \＆CO．（Contd）						
							1956.	T－13R12	H	H	H	म	T－57S01
1600 Converter．．．．．	T．13H01	T－74C30	茹	\＆	\％	\＆	1962．．．．．．．．．．．．．	T-13R14	安	म	म	垵	T－57S01
1660．．．．．．．．．．．．．．	T．13H11	）	$\dot{4}$	$\dot{\square}$	4	T－57S01	1964, 1964A		宜	宜	4	品	T－57S01
1708．．．．．．．．．．．．．．	T－13108	令	\％	H	H	T．57501	1965	T－131214	म	H		安	T－57S01
1708A．．．．．．．．．．．．．	T．13142	安	\％	崮	\％	T－57S01	1967，1967A．．．．．．	T－13R14	म	－	号	－	T．57501
1709．．．．．．．．．．．．．．	T－131108	น	2	H	H	T－57S01	1968，1968A．．．．．．T－13R09		\dot{H}	T－47C07	\＆	宜	T．57S01
1720．．．．．．．．．．．．．	T．13R09	म	㸝	号	น	T－13541	1970A．．．．．．．．．．．T－13K12		म	H	H	号	T－57S01
1721，1722，1722X．	T－13109	\dot{H}	垵	号	4	T－13S41	1972．．．．．．．．．．．．．＇r．13R14		\＆	H	号	安	T－57501
1725．．．．．．．．．．．．．．	T－131R09	\％	家	$\dot{\sim}$	H	T． 13541	1981，1981C．．．．．．	T－13R14	T－13C30	H	\＆	8Sperial	T．57S01
1726．．．．．．．．．．．．．．	T．13H09	H	安	4	T－67A91	$\begin{aligned} & \text { T-67S.54 } \\ & \text { T. } 57 \mathrm{~S} 01 \end{aligned}$	1986，1987．．．．．．．．T．13R12		\％	H	宜	号	T－57S01
1729．．．．．．．．．．．．．	T．13112	号	4	\％	\％	T－57S01	1988．．．．．．．．．．．T－13R11		4	\＆	宜	\＆	T．57S01
1731．．．．．．．．．．．．．	T．13102	H	म	4	H	T－57S01	1994，1998．．．．．．．．．T．13R14		H	\＆	\％	安	T．57S01
1732X．．．．．．．．．．．．	T．13 ${ }^{\text {O }}$	4	沜	品	T－67A91	$\begin{aligned} & \text { T-67S54 } \\ & \text { T-57501 } \end{aligned}$	$3972 \ldots \text {. . T-13R20 }$		म	4	H	缶	T.57S01
1743，1743A．．．．．．．	T－13R02	～	沜	凮	4	T．57501	$\begin{array}{ll} \hline 4401,4402 \ldots \ldots & \text { T-13R11 } \\ \hline 4403 & \end{array}$		8	4	\％	4	T.57S01
1760．．．．．．．．．．．．．	T．13112	㸠	曻	4	\＆	T．57S01	$\frac{4403 \ldots \ldots \ldots}{4405 \mathrm{~F} \ldots \ldots \ldots}$	$\begin{gathered} \text { T-13R12 } \\ \hline \text { T.14R39 } \end{gathered}$	H	म	品	号	T-57S01
1800．．．．．．．．．．．．．．．	T．13R01	\＆	宜	品	\＆	T－57S01			H	H	＊	号	T－57501
1802，1803，1803A．．	T．13R02	品	－	安	～	T－57S01	$4428 \mathrm{~A}$. $4431,4432 \ldots$.		品	$\dot{4}$	4	H	T－57S01
1804，1805．．．．．．．．．	T－13R08	म	乓	出	\＆	T．57S01			T-14C62	4	－	4	T．13S43
1805A．．．．．．．．．．．．．	T－131103	号	4	4	品	T－57S01	$\frac{4431,4432 \ldots \ldots \ldots}{4.433 \ldots \ldots \ldots}$	T．14R39	म	H	4	H	T－57S01
1806．．．．．．．．．．．．．．	T－13R08	म	宜	\＆	曻	T－57501		T－561001	リ－47C07	\&	T.29AU9	$\text { T. } 33 \mathrm{~A} 91$	§Special
1807．．．．．．．．．．．．．	T．13R02	म	乓	䊉	盛	T－57S01	$\frac{\text { R4433 } \ldots \ldots}{4435, ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~}$	T－14R39	T.14C62	4	号	q	T-13S43
1808A ．．．．．．．．．．．．．	T．13R03	H	站	4	品	T－57S01	$\frac{4435,4436 \ldots \ldots}{4448 A \ldots \ldots} .$	T－14R39	\％	＊	安	4	T－57S01
1809．．．．．．．．．．．．．．．	T－13R03	\％	$\dot{4}$	4	4	T．57501	$\frac{4448 \mathrm{~A} \ldots \ldots \ldots \ldots}{4453 \ldots \ldots \ldots}$	T．141139	品	4	曻	\％	T.57S01
1811．．．．．．．．．．．．．．	T－13R03	H	म	H	4	T．57501	$\frac{4453 \ldots \ldots}{4461,4462 .}$	T．13RII	\％	H	म	\％	T-57S01
1820．．．．．．．．．．．．．．	T－13R08	\＆	\＆	H	\＆	T．57S01	$\begin{aligned} & 4461,4462 \ldots \ldots \ldots \\ & \hline 4463,4464 \ldots \ldots \ldots \end{aligned}$	$4463,4464 \ldots \ldots .$. $4465 \ldots .13 \mathrm{R} 12$	4	H	号	堮	T-57S01
1821．．．．．．．．．．．．．．	T－13R09	4	号	品	\％	T－13541	$4465 .$	T-13R13	号	\&	＊	$\dot{\text { H }}$	$\text { T. } 57 \mathrm{~S} 01$
1823．．．．．．．．．．．．．．	T－13R08	H	म	号	4	T－57501	$\frac{4466,4467 \ldots \ldots}{4469 \ldots \ldots} .$	T．131111	的	4	品	\pm	T-57S01
1826．．．．．．．．．．．．．．	T． 131108	\％	म	4	号	T．5iS01		T．13111	H	H	\＆	号	T－57S01
1826A．．．．．．．．．．．．	T．131103	H	म	A	4	T－57S01	4472，4473．．．．．．．	T．14R39	－14C62	安	沜	号	T－13S43
1827．．．．．．．．．．．．．．	T．131809	\＆	H	品	4	T－13S41	4484，4485．．．．．	T．13120	H	号	म	沜	T．57S01
1829．．．．．．．．．．．．．．	T－13R08	น	4	$\dot{\square}$	म	T－57S01	4486，4488．．．．．．	T－13R14	4	\％	宜	\％	T．57S01
1832，1832A．	T－13R09	～	น	น	T－67A91	T－67554	．．．．．	T．13R14	\＆	\＆	4	䊉	T－57S01
						T－57501	4488 B ．	T．13R15	令	H	令	号	T－57S01
1833，1835．．．．．．．．．	T－13 103	\＆	安	宜	4	T－57S01	4528A．．．．．．．．．．．．	T－14R39	号	म	沜	垵	T．57S01
1840．．．．．．．．．．．．．	T－13R03	4	H	宜	H	\＄Special	4531， 4533.	T－14R39	T－14C62	号	品	号	T－13S43
1841，1845．．．．．．．．	T．131103	H	H	岸	\％	T－57S01	4548 A ．	T－14R39	H	H	H	H	T－57S01
1900．．．．．．．．．．．．．．	T－13R13	品	品	4	品	T－57S01	4563.	T－13R12	品	4	H	H	T－57S01
1904，1904A．	T－13R12	H	号	号	4	T－57501	4564， 4565 （Dup．）．	T－13R20	\％	H	品	号	T－57S01
1905．．．．．．．．．．．．．．	T－13114	\＆	H	㭊	H	T－57501	4566，4567．．．．．．．．	T．13R11	H	4	4	H	T－57S01
1906．．．．．．．．．．．．．．．	T．13R12	H	4	$\dot{\square}$	\＆	T－57S01	4569．．．．．．．．．．．．．．	T．13R13	\＆	\＆	宜	\dot{H}	T． 13542
1909．．．．．．．．．．．．．．	T－13R14	\％	字	H	म	T－57501	4586，4586A．．．．．．	T－13R14	\＆	＊	\＆	\＆	T－57S01
1912．．．．．．．．．．．．．	T．13R14	$\dot{\sim}$	म	宜	\％	T．57501	4587，4588．．．．．．．．	T．13R14	\％	4	H	号	T－57S01
1914．．．．．．．．．．．．．．	T－13R12	H	\％	\＆	品	T． 57501	4588A．．．．．．．．．．．．	T．13R14	H	H	H	H	T－57501
1915，1917．．．．．．．．	T．13R14	品	H	H	4	T－57S01	4589．．．．．．．．．．．．．．	T－13R13	\＆	4	H	H	T－57S01
1918，1918A．．．．．．	T．13R09	4	T－47C07	沜	号	T－57501	4610．．．．．．．．．．．．．	T－13R13	H	H	H	$\dot{\square}$	T－13S42
1930，1940．．．．．．．．	T－13R12	H	H	H	沜	T．57501	4613．．．．．．．．．．．．	T－14R39	T－14C62	H	4	4	T－13S43
1941．．．．．．．．．．．．．．	T－131114	T－13C30	H	4	\＄Special	T－57S01	4622，4623．．．．．．．．	T．14R39	T．14C62	H	H	品	T－13S43
1942，1944，1945．．．	T－13R14	H	\％	H	H	T－57S01	4640．．．．．．．．．．．．．．	T－14R39	\％	$\dot{4}$	＊	T．78D46	T－81S01
1946．．．．．．．．．．．．．．	T．13R14	T．13C30	\＆	\＆	\＄Special	T－57501	4643．．．．．．．．．．．．．	T－14R39	T－14C62	4	म	H	T－13S43
1954，1954X．．．．．．	T－13R12	$\dot{4}$	4	\＆	\＆	T－57501	4650 ．．．．．．．．．．．．．	T．14R39	4	蝗	\＆	T．78D46	T．81S01
1955 ．．．．．．．．．．．．．	T－13R14	4	\％	\％	\％	T－57S01	4664．．．．．．．．．．．．．	T．13R11	$\dot{\square}$	\＆	4	4	T－13S42

Prices and dimensions for all transformers and chokes shown herein listed on page 3 ．

MODEL	Power Trans．	$\begin{aligned} & \text { First } \\ & \text { Filter } \\ & \text { Cboke } \end{aligned}$	Second Filter Cboke	$\begin{gathered} \text { First } \\ \text { Audio } \\ \text { Trans. } \end{gathered}$	Second Audio Trans．	Output Trans．
SEARS ROEBUCK \＆CO．（Contd）						
4667．．．．．．．．．．．．．．	T－13R14	安	4	น	＊	T－13S42
4668．．．．．．．．．．．．．．	T－13R12	H	H	品	H	T．57S01
4469．．．．．．．．．．．．．．	T．13R13	＊	\％	＊	\％	T－13S43
4677．．．．．．．．．．．．．．	T－13R14	＊	4	号	\％	T．13S42
4684．．．．．．．．．．．．．．	T－13R11	安	\％	垵	垵	T－13S42
4688．．．．．．．．．．．．．	T－13R15	＊	安	4	T．17D01	T．13S41
4722，4723．．．．．．．．	T－14R39	T－14C62	尔	\％	＊	T．13S43
4740．．．．．．．．．．．．．．	T－14R39	म	曻	\＆	T．78D46	T－81501
4743．．．．．．．．．．．．．	T．14R39	T．14C62	＊	\＆	H	T－13S43
4750．．．．．．．．．．．．．	T－14R39	\＆	\＆	\％	T．78D46	T－81S01
4764．．．．．．．．．．．．．	T－13R11	म	\％	म	น	T．13S42
4769．．．．．．．．．．．．．	T．13R13	㸤	H	缶	古	T．13S42
4776．．．．．．．．．．．．．	T．13R12	\＆	＊	品	＊	T－57S01
4784．．．．．．．．．．．．．．	T－13R11	＊	安	\％	\％	T－13S42
4788．．．．．．．．．．．．．．	T－13R15	ヶ	H	4	T－17D01	T． 13541
4789．．．．．．．．．．．．．．	T．13R13	\＆	直	品	\＆	T－13543
4796．．．．．．．．．．．．．．	T．13R12	宜	4	H	＊	T－57S01
4799．．．．．．．．．．．．．．	T－13R15	品	＊	尔	品	T．13S41
5710，5711．．．．．．．．．	T－13R20	म	\％	＊	\＆	T－57S01
6002．．．．．．．．．．．．．．	T．13R19	安	亩	的	H	T．57S01
6003，6004．．．．．．．．．	T－13R13	＊	\％	\％	＊	T．13S41
6021．．．．．．．．．．．．．．．	T－13R19	\％	\％	\％	\％	T－57S01
6024．．．．．．．．．．．．．．	T．13R13		म	H	\％	T．13541
6028．．．．．．．．．．．．．．	T－13R12	＊	\％	尔	品	T．57S01
6031．．．．．．．．．．．．．．	T－13R19	安	宜	\％	号	T．57S01
6034．．．．．．．．．．．．．．	T．13R13	＋	\＆	H		T．13542
6036．．．．．．．．．．．．．．	T－13R14	$\stackrel{*}{*}$	\＆	品	＊	T．13S41
6038．．．．．．．．．．．．．．	T－13R16	\％	\％	\％	－	T．13S41
6121．．．．．．．．．．．．．．	T．13R19	曻	品	म	\％	T．57501
6124．．．．．．．．．．．．．	T．13R13	\＆	\＆	号	म	T．13S42
6131．．．．．．．．．．．．．．	T－13R19	\％	\square	\％	\％	T．57S01
6136．．．．．．．．．．．．．．	T－13R14	宜	埍	\％	น	T．13S41
6138．．．．．．．．．．．．．	T－13R16	\＆	\％	H	म	T．13541
$6140 . \ldots$.	T－13R14	\＆	＊	＊	\＆	T－13S41
6155．6156，6254．．．．	T－13R14	＊	\＆	4	म	T－13S41
6157．．．．．．．．．．．．．．	T－13R15	＊	म	H		T．13541
6337，6437．．．．．．．．	T－13R14	\＆	古		号	T－13S41
7043，7044．．．．．．．．．	T－13R06	T－13C30	＊	म	＊	T．57501
7049．．．．．．．．．．．．．．	T．13R03	＋	\％	\％	品	T．57S01
7050．．．．．．．．．．．．．．．	T－13R11	＊	\％	＊	\checkmark	T．57S01
7065．．．．．．．．．．．．．．	T－13R09	＊	\％	\％	T－67A91	T．13S41
7121．．．．．．．．．．．．．．	T－13R01	\＆	\％	म	\％	T－57501
7124．．．．．．．．．．．．．．	T－13R03	＊	品	品	4	T－57S01
7136．7137．．．．．．．．．	T－13R02	＊	号	\％	品	T．57S01
7140．．．．．．．．．．．．．	T．13R02	म	म	品	म	T．57S01
7143．．．．．．．．．．．．．	T．13R04	म	म	म	म	T－57S01
7144，7150．．．．．．．．	T－13R12	－	＊	＊	＊	T－57S01
7153．．．．．．．．．．．．．．	T－13R01	品	\％	4	品	$\$^{\text {Special }}$
7154，7155．．．．．．．．．	T．13R12	ヶ	น	\＆	\％	T－57501
7158．．．．．．．．．．．．．	T．13R12	品	品	品	品	T．57S01
7170，7170A．．．．．．．	T－13R13	号	安	\％	4	T．57S01

MODEL	Power Trans．	Firat Filter Choke	Second Filter Choke	First Audio Trans．	Second Andio Trans．	Output Trads．
SEARS ROEBUCK \＆CO．（Contd）						
7171．．．．．．．．．．．．．．．	T－13R20	म	น	म	म	T． 57501
7172．．．．．．．．．．．．	T－13R12	H	H	号	＊	T－57S01
7181，7182．．．．．．．．	T－13R12	＊	品	号	＋	T．57S01
7221．．．．．．．．．．．．．．	T－13R15	\％	H	H	宜	T．57S01
7230.	T－13R12	H	H	宜	＊	T－57S01
7234．．．．．．．．．．．．．．	T．13R12	\％	4	－	＊	T－57S01
7807．．．．．．．．．．．．．．	T－13R11	\％	号	＊	宜	T－57S01
SENTINEL RADIO CORP．（Seo alao Erla）						
6A．．．．．．．．．．．．．．．．	T－13R13	म	＊	\＆	H	T－57S01
8，9，11，12．．．	T－13R06	T．13C30	\＆	T－29A99	T－33A91	T－57S01
14．14A．．．．．．．．．．．	T－13R14	－	宜	\％	\％	T－57S01
15，16．．．．．．．．．．．．．	T．13R06	T－13C30	म	T－29A99	T．33A91	T．57S01
19A．．．．．．．．．．．．．．．	T－13R13	H	号	＊	\star	T－57S01
20A．．．．．．．．．．．．．	T－13R12	＊	＊	H	म	T－57501
30A．．．．．．．．．．．．．．．	T．13R11	＋	－	＊	曻	T－57S01
40B，44A．．．．．．．．．	T－13R12	\％	＊	4	＋	T．57S01
46A．．．．．．．．．．．．．．	T－13R13	\％	H	4	\＆	T－57S01
47 A ．	T－13R15	म	＊	＊	T－17D01	T－13S41
48A．．．．．．．．．．．．．．．．	T－13R11	－	\％	\％	＊	T－57501
52 A ．	T－13R11	म	म	н	＊	T．57S01
53A．．．．．．．．．．．．．．．	T－13R14	H	\＆	＊	＊	T－57S01
54A．．．．．．．．．．．．．．．	T－13R11	\＆	\＆	\％	\％	T．57S01
70A．．．．．．．．．．．．．	T．13R11	＋	＊	尔	＊	T．57S01
72A，72AE．．．．．．．．	T－13R12	品	＊	\star	－	T－57S01
74A，74AE．．．．．．．．	T－13R12	＊	＊	＊	\％	T－57S01
76A．．．．．．．．．．．．．．．	T－13R14	＋	\＆	＊	\％	T－57501
82A，82AE．．．．．．．．	T－13R12	古	－	＊	＊	T．57S01
92AE，98AE．．．．．．．	T－13R11	\＆	4	4	直	T－57S01
99AE．．．．．．．．．．．．．	T．13R14	म	安	म	\＆	T．13S41
103A．．．．．．．．．．．．．．	T．13H05	T－13C30	尔	＊	T－33A91	T－57S01
104．	T－13R06	T．13C30	＊	T－29A99	T－33A91	T－57S01
106A．	T－13R19	\％	－	－	н	T．57S01
106B．．．．．	T．13R06	T．13C30	＊	T－29A99	T－33A91	T．57S01
108，108A．．	T．13R04	T－13C29	T－13C29	4	＊	T－57S01
109．110．．．．．．．．．．．	T－13R04	T－13C29	T－13C29	＊	\％	T．57S01
110A．．．．．	T．13R14	＋	H	4	玺	T．57S01
111．．	T－13R01	＊	＊	＊	－	T－57S01
114，115．．．	T．13R04	T－13C30	4	4	安	T．57S01
116．．．．．	T－13R06	T．13C30	＊	＊	品	T．57S01
118．．．．．．．．．．．．．．．	T－13R06	T－13C30	＊	\＆	＊	T．57S01
125．．．．．．．．．．．．．．．	T．13R04	T－13C29	＊	H	＊	T．57S01
125AE．．．．．．．．．．．．	T－13R20	म	－	\＆	\＆	T．57S01
138AE．．．．．．．．．．．．	T－13R20	＋	＋	H	＊	T－57S01
141AE．．．．．．．．．．．．	T－13R20	＊	＊	＊	－	T－57S01
142A．．．．．．．．．．．．．．	T－13R20	\％	－	－	捳	T．57S01
142AE．．．．．．．．．．．．	T－13R20	\％	น	＊	＊	T．57501
145AE．．．．．．．．．．．．	T－13R15	H	\＆	म	＊	T．57S01
148A．．．．．．．．．．．．．．	T－13R19	\＆	－	－	－	T．57S01
149A，149AE，159AE	T．13R19	\％	\＆	\％	尔	T．57S01
158AE．．．．．．．．．．．．	T．13R20	H	号	＊	尔	T．57S01
185A．．．．．．．．．．．．．	T－13R11	＊	＊	＊	安	T．57S01

\＆None required． 8 Available upon apecial order from your distributor．Special Note：The following eubatitutions are made by many eervice engineers becauee of preferences in mountinge and sizes：T－57S02，T－13S38．T－14S85 in place of T－57S01：T－57A41，T－13A35 in place of T－33A91；T－57A38，T－13A34 in place of T－29A99．

MODEL	Power Trans．	First Filter Clioke	Second Filter Choke	Firat Audio Trans．	Second Audio Trane．	Output Trans．	MODEL	Power Trana．	First Filter Choke	Second Filter Choke	First Audio Trans．	Second Audio Trana．	Outpue Trans．
SENTINEL RADIO CORP．（Contd）							SPARKS－WITHINGTON CO．（SPARTON）						
198A，198AE．	T．13R14	\＆	品	4	\％	T．57S01	5，9．．．．．．．．．．．．．．	T．13R04	\square	号	\％	～	T．57501
199A，199AE．．．．．	T－13R14	$\dot{\text { H }}$	访	म	\％	T．57S01	10，12．．．．．．．．．．．．．	T．13R03	\＆	म	宜		T－57501
206A．．．．．．．．．．．．	T－13R20	म	\＆	म	म	T－57S01	14．．．．．．．．．．．．．．．	T．13R04	म	\＆	品	品	T－57S01
440， 444.	T－13R06	T－13C30	\％	号	T－33A91	T－57S01	15．．．．．．．．．．．．．．	T．13R05	4	$\dot{\sim}$	$\dot{4}$	म	T－57S01
513．．．．．．．．．．．．．．	T－13R02	垵	\％	¢	$\dot{\sim}$	T－57801	16，16AW．．．．．．．．．	T－13R07	T－13C30	म	$\dot{4}$	T－33A91	T－57S01
$622.623, \ldots \ldots \ldots$.	T－13R03	か	\＆	号	\％	T． 57501	17，18．．．．．．．．．．．．．	T．13R07	T－13C30	$\dot{\sim}$		T－33A91	T－57S01
634，635．．．．．．．．．．	T－13R03	号	4	妆	品	T－57S01	25，26，26A W ．．．．．	T．131107	T－13C30	4	\％	T－33A91	T．57501
660AC，666，666C．	T－13R06	T－13C30	曻	¢	T－33A91	T－57S01	27，27A，27X．．．．．	T－131107	T－13C30	$\dot{3}$	H	T＇33A91	T．57S01
4500．．．．．．．．．．．．．	T．13R11	म	4	号	\＆	T．57S01	28．28X．．．．．．．．．．	T．13R07	T－67C49	म	品	T－17D01	T．13S41
5700．5700B．．．．．．．	T－13R03	㽞	曻	4	4	T．57S01	30，45．．．．．．．．．．．．	T－13R07	T．67C49	4	4	T．17D01	T．13S41
5721．．．．．．．．．．．．．．．	T－13R03	4	～	$\dot{3}$	4	T．57S01	46P．．．．．．．．．．．．．．．	T－14R39	兆	4	น	\＆	T．57S01
5800．．．．．．．．．．．．．．	T－13R02	$\dot{\square}$	品	崮	\＆	T－57S01	60 Super Converter．	T－13R01	T．13C26	\＆	4	4	म
6315，6317．．．．．．．．．	T－13R03	家	$\dot{\sim}$	4	\％	T－57S01	67． $68,68 \mathrm{XS} \ldots \ldots$.	T．13R12	H	$\dot{4}$	4	4	T．57S01
6321．．．．．．．．．．．．．．	T－13R03	\＆	म	$\dot{4}$	4	T．57S01	71．71B，72．．．．．．．	T－13 1212	4	4	$\dot{4}$	\＆	T．57S01
7100，7100B．．．．．．	T．13R13	\＆	＊	号	品	T．57S01	73，73AX，73BX \ldots	T－13R12	永	\％	号	4	T．57S01
7200．．．．．．．．．．．．．．	T－13K12	म	4	4	号	T－57S01	74．．．．．．．．．．．．．．．	T－13R04	T．13C30	\＆	H	T－33A91．	T－57S01
7200B．．．．．．．．．．．．．	T－13R13	\％	น	म	号	T． 57501	75A，75AX．．．．．．．	T－13R03	\％	H	\％	म	T．57S01
8100B．．．．．．．．．．．．．	T－13R13	曻	H	\＆	4	T－57S01	78．．．．．．．．．．．．．．．．	T．13R12	$\dot{\sim}$	म	哃	号	T．57S01
8200B．．．．．．．．．．．．	T－13R14	T．13C30	$\stackrel{\square}{4}$	号	号	T－57S01	80，83，84．．．．．．．．	T．13R13	㟧	\＆	品	\＆	T－57S01
SILVER－MARSHALL．INC．							85－X．86－X	T－13R13	发	安	म	H	T－57S01
A．．．．．．．．．．．．．．．．．	T－13R04		\＆	म	\＆	T．57S01	104．105，105XS．．．．	T－131814	品	方	म	\＄Special	T． 57501
A31．．．．．．．．．．．．．．．	T－13R12	㚱	$\dot{\square}$	品	$\dot{4}$	T－57S01	111X．．．．．．．．．．．．．	T．13R07	T－13C30	永	\＆	T－33A91	T－57S01
B．．．．．．．．．．．．．．．．．．	T－13R03	4	品	\％	T－33A91	T．57S01	135．．．．．．．．．．．．．．．．	T．13R15	H	曻	品	T－33A91	T．57S01
C，CW（AVC）．．．．	T．13R06	T－13C30	\＆	म	T－33A91	T－57S01	235．．．．．．．．．．．．．．T．371R70C T．13C29			H	म	T－33A91	T． 57501
D，E，F．．．．．．．．	T．13R06	T．13C30	\＆	号	T－33A91	T．57S01	417X．．．．．．．．．．．．T－13R11		－	古	\＆	\＆	T－57S01
G．．	T－13R06	T－13C29	T．74C30	T－29A99	T－33A91	T．57S01	420 DC，JR Jewel．．	～	T－18C92	\＆	4	T－33A91	T－57S01
J．．	T－13R06	T－13C28	\％	म	T．33A91	T．57S01	427X，437X．．．．．．	T－13R12	\％	4	～	H	T－57S01
Q，R．．．．．．．．．．．．．．	T－13R04	म	\＆	\＆	$\dot{4}$	T－57S01	$457 \times \ldots \ldots \ldots$		＋	3	\％	\＆	T－57S01
Z deluxe，Z10．	T－13R07	T．13C30	号	号	T－81D52	T－57S01	$475 \mathrm{~A}, 478 \mathrm{~A} \ldots \ldots . \mathrm{T}, 13 \mathrm{H03}$		字	字	4	\％	T－57S01
213．．	T－13R07	T－13C30	\＆	4	T－67D78	T－13S41	516, 516X T-13R12		岸	$\dot{\sim}$	号	H	T．57S01
30 мeries，30B．．．．．	T－13R06	T－13C28	4	家	T－33A91	T－57S01	$517 \ldots \ldots \ldots \ldots \ldots \text { T. }$		\％	4	म	म	T－57S01
33A，34A，35A．	T－13R05	T－13C30	4	曻	T．33A91	T．57S01	518，518X．．．．．．．T－13R12		4	\％	म	म	T－57501
36A， 37.	T．13R04	T－13C29	4	家	T－33A91	T．57S01	530X．．．．．．．．．．T－13R11		$\dot{4}$	\％	म	\＆	T．57S01
38，39．．．	T－13R04	T－13C29	安	2	T－33A91	T．57501	536，536X	T．13R12	\＆	4	4	म	T－57S01
$60 \mathrm{~B}, 75,75 \mathrm{~B}, 90 \mathrm{~B}$.	T．13R06	T－13C28	म	\＆	T－33A91	T．57S01	537，538，538X．．．．．T－13R12		\＆	号	\％	ふ	T．57S01
683.	T．13R06	T．13C30	\＆	晏	T－33A91	T－57501	540LX．．．．．．．．．．．．T－13R12		A	\％	H	～	T－57S01
SM684．．	T－13R04	T－13C30	T－13C30	\％	T－33A91	T－57S01	546X，548X．．．．．．T－13R12		H	品	品	H	T－57S01
716.	T－13R06	T－13C30	之	方	T－33A91	T－57S01	550M．．．．．．．．．．．T－13R20		＊	8	安	\％	T－57S01
722AC．．．．．．．．．	T．13R05	T－13C30	家	\＆	T－33A91	T－57501	557，558B，558C．．．．T－13R12		4	4	$\dot{3}$	H	T－57S01
724．．．．．．．．．．．．．．．	T－13R06	T－13C28	2	方	T－33A91	T－57S01	567，568．．．．．．．．．．T－13R12		吕	H	号	\％	T－57501
726.	T－13R04	T－13C29	H	B	T．33A91	T－57S01	577．．．．．．．．．．．．．T－13112		\＆	品	号	म	T． 57501
7275W．．．．．．．．．．．．	T－13R04	म	垵	\＆	$\dot{\square}$	T－57S01	580X ．．．．．．．．．．T－13R12		\％	放	カ	$\dot{\sim}$	T－57S01
729SW．．．．．．．．．．．．	T－13R07	T－13C30	म	म	T．81D52	T．57S01	589．．．．．．．．．．．．．．T－37R70C T－13C29			旌	H	T－33A91	T－57S01
737．．．．．．．．．．．．．．	T－13H02	T－13C28	T－13C28	\％	～	8 Special	591，593．．．．．．．．．．T－37R70C T－13C29			\％	4	T－33A91	T－57S01
773，782．．．．．．．．．．	T－13R04	T－13C29	宜	\＆	T－33A91	T－57S01	616，616M．．．．．．．	T－13R12	安	$\dot{\text { H }}$	字	\％	T－57S01
sonora elec．phonograpir co．							617，617X．．．．．．．T．13R12		म	沜	方	\＆	T－57S01
A31，A33，A35．．．．	T－13R04	T－13C29	～	\％	T－33A91	T． 57			म	\＆	䘾	号	T－57S01
64．．．．．．．．．．．．．	T－13R04	T－13C30	～	4	T．33A91	T．${ }^{\text {d }}$	620．．．．．．．．．．．．T－37R70C		\＆	安	\％	山	T－57501
70．．．．．．．．．．．．．．．．．	T－13R06	T－13C29	\＆	S		T．57S0	628，636MX．．．．．．．T－13R12		$\dot{3}$	\＆	永	\＆	T－57S01
	T－13803		－	\＆	\％	T．57501	640LX，740LX．．．．T－13 1412		\＆	\＆	＊	\＆	T－57S01
74．．．．．．．．．．．．．．．．	T－13R03	T－13C28	古	\＆	\＆	T．57S01	660M．．．．．．．．．．．．T 13 R 20		\＆	\＆	号	\％	T． 57501

[^3]| MODEL | Power Trane． | First Filter Choke | Second Filter Chuke | First Audio Trane． | Second Audie Trans． | Output Trans． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SPARKS－WITHINGTON CO．（Contd） | | | | | | |
| 666，666M．．．．．．．．． | T．13R12 | \％ | ＊ | ＊ | ＊ | 11－57S01 |
| 666MX，666X．．．． | T．13R12 | 4 | ＋ | ＊ | ＊ | T．57S01 |
| 667，667X．．．．．．．．． | T－13R12 | ＊ | ＊ | ＊ | ＊ | T－57S01 |
| 668，678．．．．．．．．．．． | T－13R12 | ＊ | ＊ | ＊ | ＊ | T－57S01 |
| 685，686， 691. | T．13R12 | ＊ | ＊ | ＊ | ＊ | T．57S01 |
| 716．．．．．．．．．．．．．．． | T－13R12 | ＊ | ＊ | ＊ | \pm | T－57S01 |
| 727X，727XD．．．．．． | T．13R13 | ＊ | ＊ | ＊ | ＊ | T－57501 |
| 728．．．．．．．．．．．．．． | T．13R20 | ＊ | ＊ | ＊ | ＊ | T－57S01 |
| 737．．．．．．．．．．．．．．．T－37R70C T－13C29 | | | ＊ | ＊ | T－33A91 | T－57S01 |
| 738．．．．．．．．．．．．．． | T－13R14 | ＊ | ＊ | ＊ | ＊ | T－13S42 |
| 740. | 4 | T．13C30 | ＊ | ＊ | T－33A91 | T．57S01 |
| 748X．．．．．．．．．．．．． | T－13R12 | ＊ | ＊ | ＊ | ＊ | T．57S01 |
| 750 all DC．．．．．．． | ＊ | T－13C30 | ＊ | ＊ | T－33A91 | T－57S01 |
| 750A，750X ．．．．．． | T－13R07 | T－13C30 | ＊ | ＊ | T－33A91 | T－57S01 |
| 760PS．．．．．．．．．．．．． | T－13R11 | 4 | ＊ | ＊ | ＊ | T．57S01 |
| 766． $766 \mathrm{X}$. | T－13R12 | ＊ | 4 | 4 | ＊ | T．57S01 |
| 766XP，766XS．．．．． | T－13R12 | 4 | ＊ | ＊ | ＊ | T．57S01 |
| 768，768X． | T－13R12 | 4 | ＊ | ＊ | ＊ | T－57S01 |
| 770，880A． | T－13R14 | \％ | ＊ | ＊ | ＊ | T－57S01 |
| 778．778X．．．．．．．．． | T．13R12 | 古 | ＊ | ＊ | ＊ | T．57S01 |
| 827X，827XD．．．．．． | T－13R16 | ＊ | ＊ | ＊ | ＊ | T－13S42 |
| 867．．．．．．．．．．．．．．． | T－13R13 | ＊ | ＊ | ＊ | ＊ | T－57S01 |
| 870A，870X．．．．．．． | T－13R07 | T．13C30 | ＊ | ＊ | T－33A91 | T．57S01 |
| 877X．．．．．．．．．．．．． | T－13R13 | ＊ | ＊ | ＊ | ＊ | T．57S01 |
| 880．．．．．．．．．．．．．． | T－13R11 | 4 | ＊ | ＊ | ＊ | T－57S01 |
| 928X．．．．．．．．．．．．． | T－13R14 | ＊ | 4 | ＊ | ＊ | T－13S42 |
| 930，931．．．．．．．．．．．．T－37R70C T－13C29 | | | ＊ | ＊ | T－33A91 | T．57S01 |
| 940LX，940SX．．．．． | T－13R14 | \％ | ＊ | ＊ | ＊ | T－57S01 |
| 966，966X．．．．．．．． | T．13R14 | ＊ | ＊ | ＊ | \＄Special | T．57S01 |
| 968，968X．．．．．．．．． | T．13R13 | ＊ | ＊ | ＋ | ＊ | T－13S42 |
| 977．．．．．．．．．．．．．． | T－13R12 | 4 | ＊ | ＊ | ＊ | T．57S01 |
| 987，997X．．．．．．．． | T．13R16 | 4 | ＊ | ＊ | ＊ | T．13S42 |
| 1068．1068X．．．．．． | T－13R12 | \％ | ＊ | ＊ | ＊ | T．57S01 |
| 1078，1078X．．．．．．． | T－13R12 | \％ | ＊ | ＊ | ＊ | T．57S01 |
| 1089．．．．．．．．．．．．． | T－13R14 | 4 | ＊ | ＊ | ＊ | T－13S42 |
| 1116X，1166．．．．．． | T－13R14 | T．13C30 | \％ | \％ | T－33A91 | T．57S01 |
| 1160．．．．．．．．．．．．．． | T－13R15 | ＊ | － | ＊ | ＊ | T．57S01 |
| 1166XP，1166XS．．． | T－13R14 | T．13C30 | ＊ | ＊ | T－33A91 | T－57S01 |
| 1167．．．．．．．．．．．．． | T－13R09 | T－13C30 | T－13C28 | म | T．33A91 | T．57S01 |
| 1176，1176XP．．．．．． | T－13R14 | T．13C30 | ＊ | 立 | T－33A91 | T－57S01 |
| 1176XS，1186．．．．．． | T－13R14 | T－13C30 | म | 号 | T－33A91 | T－57S01 |
| 1196．．．．．．．．．．．．． | T．13R14 | T．13C30 | ＋ | 立 | T－33A91 | T－57S01 |
| 1268，1288P．．．．．．． | T－13R09 | T－13C30 | T－74C30 | 文 | T－33A91 | T－57S01 |
| 1567．．．．．．．．．．．．． | T．13R04 | T－13C30 | T－74C30 | T－29A99 | \＄Special | T．13S41 |

STEINITE RADIO CO．

8 Tube Pentode．	T－13R03	T－13C28	安	＊	4	T－57S01
40C，45，45A，50A．	T－56R05	T－13C29	मे	T－29A99	T－33A91	T－57S01
60C．．．．．．．．．．．．．．．	T－56R05	T．13C29	安	T－29A99	T－33A91	T－57S01
70，80，95．．．．．．．	T－13R05	T－13C28	令	＊	T－33A91	T－57S01
102C．．．．．．．．．．．．．	T－56R05	T．13C29	म	T－29A99	T－33A91	T－57S01
102SPU．．	T－56R05	T－13C29	安	T－29A99	T－33A91	T－57S01

MODEL	Power Trann．	First Filter Chole	Second Filter Chole	First Audio Trans．	Second Audio Trane．	Outpur Trans．
STEINITE RADIO CO．（Contd）						
203．．．．．．．．．．．．．．．	T－13R04	T－13C29	\％	\％	T．57A42	T．57S01
210，230．．．．．．．．．．．	T－13R05	T－13C29	4	＊	T－33A91	T．57S01
$\begin{aligned} & 261,262,263, \\ & 264,265 \ldots \ldots \end{aligned}$	T．56R01	T．13C28	T－13C28	T－29A99	T－33A91	T－57S01
420 （15）．．．．．．．．．．．	T－13R00	＊	4	\％	T－29A99	T．57S01
420 （17）．．．．．．．．．．	T－13R06	T．13C30	4	\％	T－57A42	＋
421，425．．．．．．．．．．．	T－56R05	T－13C29	＊	4	T－57A42	T．57S01
423．．．．．．．．．．．．．．	T－13R03	＊	\％	\＆	Special	T－57S01
450 （15）．．．．．．．．．．．	T－13R00	＊	\pm	＊	T－29A99	T－57S01
450 （17）．．．．．．．．．．．	T．13R06	T．13C30	＊	4	T－57A42	＊
642B．．．．．．．．．．．．．．	T．13R04	T．13C29	＊	4	T．57A42	T－57S01
700， 701.	T－13R03	＊	＊	\pm	SSpecisl	T－57S01
705，706，725．．．．．．	T－13R04	T－13C29	＊	＊	T．33A91	T．57S01
STEWART－WARNER CORP，						
	T－13R20	＊	＊	4	\％	T．57S01
$\begin{aligned} & 01-6 \mathrm{D}, 01-6 \mathrm{DX}, \\ & 01-6 \mathrm{~A}, 01-6 \mathrm{~B}, \\ & 01-6 \mathrm{AX}, 01-6 \mathrm{BX} \end{aligned}$	T－13R20	＊	＊	＊	＊	T－57S01
01－6C9，010－6C9X．	T－13R20	＊	＊	＊	4	T－57501
$\begin{aligned} & \hline 01-6 \mathrm{El} \text { to 01.6E9 } \\ & (01-6 \mathrm{E}) . \ldots \ldots \ldots \end{aligned}$	T－13R20	＊	＊	4	＊	T－57S01
$\begin{aligned} & \hline 01-8 \mathrm{Al} \text { to } 01-8 \mathrm{~A} 9 \\ & (01-8 \mathrm{~A}) \\ & \hline \end{aligned}$	T－13R12	＊	＊	＊	品	T．13S42
01.8 C 7 （01－8C）．	T－13R13	＊	＊	4	＊	T．57S01
01．9A\％（01．9A）．．．．	T．13R13	＊	\pm	\％	＊	T．57S01
$\begin{aligned} & 01-8 \mathrm{B1} \text { to } 01-8 \mathrm{B9} 9 \\ & (01-8 \mathrm{~B}) \ldots \ldots \ldots . . \end{aligned}$	T－13R12	＊	＊	4	4	T．13S42
$\begin{aligned} & \hline 01.521 \text { to } 01.529 \\ & (01.52) \ldots \ldots \ldots \\ & \hline \end{aligned}$	T．13R11	＊	＊	＊	$\dot{*}$	T．57S01
$\begin{aligned} & \hline 01.531 \text { to } 01.539 \\ & (01.53) \ldots \ldots ~ \\ & \hline \end{aligned}$	T．13R11	＊	＊	＊	4	T．57501
$\begin{aligned} & 01-541 \text { to } 01-549 \\ & (01-54) \ldots \ldots \end{aligned}$	T－13R11	＊	＊	＊	4	T．57S01
$\begin{aligned} & 01-611 \text { to } 01-619 \\ & (01-61) \ldots \end{aligned}$	T－13R11	＊	＊	\pm	4	T－57S01
$\begin{aligned} & 01-811 \text { to } 01-819 \\ & (01-81) \ldots . . . \end{aligned}$	T．13R20	＊	＊	＊	吕	T－57501
	T－13R19	\pm	＊	4	Δ	T－57S01
$\begin{aligned} & 91-6112091.619 \\ & (91-61) \ldots . . . \end{aligned}$	T－13R20	＊	＊	\％	4	T－57S01
$\begin{aligned} & \hline 910.621 \text { to } 910-629 \\ & (91-62) \ldots \ldots \ldots . . \\ & \hline \end{aligned}$	T－13R19	＊	＊	a	4	T－57S01
$\begin{aligned} & \hline 91.641 \text { to } 91.649 \\ & (91.64) \ldots \\ & \hline \end{aligned}$	T－13R19	＊	＊	4	＊	T．57S01
91－648（91－64）．．．．．	T．13R11	\＆	\％	4	4	T．57S01
$\begin{aligned} & 91.711 \text { to } 91.719 \\ & (91.71) \ldots \ldots . . \end{aligned}$	T－13R20	＊	4	＊	4	T－57S01
$\begin{aligned} & \hline 91.811 \text { to } 91.819 \\ & (91.81) \ldots \ldots \ldots . . . \\ & \hline \end{aligned}$	T－13R14	＊	＊	\％	寺	T．57S01
$\begin{aligned} & \hline 91-821 \\ & (91-82) \ldots \ldots \ldots \ldots . . \end{aligned}$	T－13R15	4	＊	＊	＊	T－13S42
R100，A，B，E．．．．．	T－13R06	T－13C30	4	4	T－33A91	T－57S01
R101A，R101B．．．．．	T－13R01	\＆	古	\＆	н	T－57501
102A，B，E，．．．．．．．	T．13R03	T－44C02	4	＊	T－33A91	T－57S01
R104A．B，E．．．．．．	T．13R04	T－13C29	\％	\％	म	T－57S01
106．．．．．．．．．．．．．．．	T－13R04	T．13C29	4	\％	\％	T－57501
R110．．．．．．．．．．．．．	T．13R06	T．13C30	4	4	T．33A91	T．57S01

A None required，§ Available upon npecial order from your distributor．Special Note：The following aubstitutiong are made by many mervice engineere becaue of preferences in mountinge and aise日：T－57S02，T－13S38．T－14S85 in place of T－57S01；T－57A41，T－13A35 in place of T－33A91：T－57A38，T－13A34 in place of T－29A99．

MODEL $\quad \begin{gathered}\text { Power } \\ \text { Trans．}\end{gathered}$	Firat Filter Choke	Second Filter Choke	First Audio Truns．	Second Audio Trane．	Output Trane．
STEWART－WARNER CORP．（Contd）					
R116．．．．．．．．．．．．．T－13R12	\dot{H}	汖	म	\％	T－57S01
R119．．．．．．．．．．．．T．13R12	म	म	4	\％	T－57S01
R120．．．．．．．．．．．．．T－56R05	4	\％	\＆	\％	T．57S01
530，535．．．．．．．．．．T－56R01	T－13C29	T－13C29	永	a	is
715，720，750．．．．．．T－56R01	T．13C29	T－13C29	4	4	4
801，802，811．．．．．T－56R01	T－13C29	T．13C29	\％	4	म
901，902，903．．．．．．T－13R06	T－13C30	T－13C30	T．29A99	T．33A91	T－57S01
911，912，913．．．．．．T－13R06	T．13C30	T．13C30	T－29A99	T－33A91	T－57S01
951．952，953．．．．．．T－13R06	T－13C30	T．13C30	T－29A99	T－33A91	T－57S01
1090，1099．．．．．．．．．T－13R03	的	म	\＆	4	T．57S01
1201－1209（R120）．．．T－56R05	4	\％	安	宜	T．57S01
1231－1239（R123）．．．T－13R12	$\dot{4}$	4	方	म	T－57S01
1251－1259（R125）．．．T－13R12	\＆	म	直	\％	T－57S01
1261－1269（R126）．．．T－13R12	H	H	号	4	T－57S01
1271－1279（R127）．．．T－13R12	\％	㞱	4	\％	T．57S01
1301．1309（R130）．．．T－13R12	\％	म	刿	刿	T－57S01
1341－1349（R134）．．．T．13R12	म	这	宜	$\dot{4}$	T－57501
1361－1369（R136）．．．T－13R12	㟧	宜	4	\％	T．57501
1371－1379（R137）．．．T－13R09	崀	T－47C07	永	T．57A41	T－13S41
1381－1389（R138）．．．T－13R09	岸	T．47C07	寝	T．57A41	T－13S41
1401－1409（R140）．．．T．13R12	4	4	H	\dot{H}	T．57S01
1451－1459（R145）．．．T－13R12	\％	$\dot{4}$	崮	4	T－57S01
1461－1469（R146）．．．T－13R12	永	$\dot{4}$	\＆	4	T．57S01
1471－1479（R147）．．．T．13113	4	H	4	H	T．13S42
1481－1489（R148）．．．T－13R15	H	H	H	T－33A91	T－13S41
1491－1499（R149）．．．T．13R15	み	\％	曻	T．57A41	T．13S41
（R161D－1639D （R163D）．．．．．．．．．．．T－14R39	\％	H	\＆	T－78D46	T．81S01
1671－1679（R167S）．．T．13R11	H	H	น	H	T－57S01
1691－1695（R169）．．．T．13R11	H	～	म	4	T－57S01
1721－1729（R172）．．．T．13R11	H	4	$\dot{\square}$	4	T－57S01
1731－1739（R173）．．．T．13R12	H	4	品	H	T．57S01
1801－1809（R180）．．．T－13R11	\％	4	茳	म	T－57S01
1811－1819（R181）．．．T－13R11	～	4	～	号	T－57S01
1821－1829（R182）．．．T．13R12	H	㞱	垵	\％	T－13S42
1831－1839（R183）．．．T．13R12	\％	＊	4	H	T．13S42
1841－1849（R184）．．．T－13R14	4	4	म	म	T．13S42
1851－1859（R185）．．．T．13R15	号	म	म	4	T－13S41
1861－1869（11866）．．．T．13R15	沜	4	4	H	T．13541
3041.3049 （R30．1）．．．T－13R19	म	ม	H	H	T．57S01

STROMBERG－CARLSON TEL．MFG．CO．

10， 11	T－13R06	T－13C29	T－13C29	4	$8 S_{j p e c i a l ~}^{\text {a }}$	T－57S01
19， 20.	T－131206	T－13C30	\％	2	\＄Special	T－57S01
22，22A	T－13R06	T－13C30	म	H	8Special	T．57S01
25， 26	T．131206	T．13C29	T．13C29	H	8 Special	T－57501
29.	T．13R06	T－13C29	T－13C29	H	8 Special	T－57S01
37，38， 39.	T．13R06	\％	\％	故	\＄Special	T－57S01
40，41．．．．	T－13R06	沜	令	宊	§Special	T－57S01
52，54．．．	T－13R07	T－75C51	4	T－33A91	T－58A70	T－13S41
58．L，58．LB，58．T．	T－13R12	号	H	令	\pm	T－57S01
58－TB，58－W，58－WH	T－13R12	）	曻	\＆	4	T－57S01

MODEL	Power Trane．	First Filter Choke	Second Filter Chok	Firat Audio Trane．	Second Audia Trans，	Outpur Trans．
STHOMBERG－CARLSON TEL．MFG．CO．（Contd）						
60．．．．．．．．．．．．．．．．	T－13R13	T－13C30	0 मे	\＆	T－33A91	T－57S01
61－L，61－LB，61．T．．	T－13R12	4	4	น	\％	T．57S01
61－TB，61．W，61．WB	T－13R12	站	去	म	\＆	T．57S01
62，63．．．．．．．．．．．．．	T－13R15	T－13C30	0 尔	\％	§Special	T． 57501
64．．．．．．．．．．．．．．．．	T．13R15	T．13C30	－${ }^{\text {a }}$	T－29A99	T．17001	T．13S41
70，72．．．．．．．．．．．	T．13R08	T－67C49	9 方	मे	T－67D78	T－67S92
80．．．．．．．．．．．．．．．．．	T－13R16	T．13C30	0 品	4	$\$_{\text {Special }}$	T．13S41
82，82B，83，83B．．．	T． $13 \mathrm{R15}$	T－13C30	0 \％	\％	T．17D01	T－13S41
84，8413．．．．．．．．．．．	T－13R15	T－13C30	－	H	T－17D01	T．13S41
130．．．．．．．．．．．．．．．	T－13R12	\％	H	$\stackrel{\sim}{4}$	म	T－57S01
140H，140HB．．．．．	T．13R14	T－13C30	\％	H	\＆	T－57501
140K，140K B．．．．．	T－13R14	T－13C30	$\dot{\sim}$	\dot{H}	\＄Special	T．57501
140－L，140－P．．．．．．．	T－13R14	T．13C30	H	4	\＄Special	T．57S01
145－L，145－LB．．．．	T．13116	T－67C49	\％	म	\＄pecial	T．13S42
145－P，145－PB．．．．．	T－13R16	T－67C49	म	H	\＄Special	T．13S42
150．L，150－LB．．．．．	T－13R15	T．67C49	H	安	8 Special	T．13S41
160．L，160．LB．．．．．	T．13R16	T－67C49	H	曻	T．17D01	T－13S41
180．L，180．LB．．．．	T－13R16	T．67C49	刿	䏒	T－17D01	T－13S41
228 neries．．．．．．．．．．．	T－13R12	\dot{H}	म	边	म	T．57S01
229P．．．．．．．．．．．．．．．	T－13R12	म	这	4	古	T．57S01
230 series， 231 series	T－13R12	$\dot{4}$	4	$\stackrel{\sim}{3}$	H	T－57S01
23511，235HB．．．．．．	T－13R12	H	H	4	4	T． 57501
235－L，235－LB ．．．．	T．13R12	4	4	H	边	T． 57501
240 series．．．．．．．．．．	T．13R14	\％	4	\％	H	T－57501
245 series．．．．．．．．．．	T－13R15	$\stackrel{\text { r }}{ }$	\％	\％	T－17D01	T．13S41
250－L，250－LB ．．．．	T－131116	T．67C49	＋	$\stackrel{3}{*}$	\％	T－13S41
255．L．．．．．．．．．．．．．	T． 131116	T－13C30	$\dot{4}$	म	4	T－13S41
260 вeries．．．．．．．．．．	T．13R16	\dot{H}	H	古	8Sperial	T－13S41
320－H，320－T．．．．．	T－13K19	H	H	边	袻	T．13S42
325－J．325．M．325．S	T－13R19	\＆	H	宸	H	r．13S42
335－L，336．P．．．．．．．	T．13R13	4	\dot{H}	4	4	T－57501
337－H，337－L．．．．．	T．13R13	H	站	H	4	T－57S01
$\begin{aligned} & \text { 340-F, 340-H, 340-M, } \\ & \text { 340.V, 340-P........ } \end{aligned}$	T.13R14	的	去	4	\％	T．13S41
341－P，341－R．．．．．．．	T．13R13	म	\％	～	म	T．13S41
345－F，345－M．．．．．．	T．13R14	म	曻	站	म	T－13S41
$\begin{aligned} & 350-\mathrm{M}, 350-\mathrm{P}, \\ & 350 \cdot \mathrm{R}, 350-\mathrm{V} . \end{aligned}$	T－13R16	T－13C30	4	4	\＆	T．13S41
400.	T．13R11	म	म	4	H	T．13S42
410，411，412，420．．	T．13R12	品	\＆	म	4	T．57S01
430．．．．．．．．．．．．．．．	T－13R14	म	去	म	品	T．13S42
435 （AM）．．．．．．．．．	T．13R14	\＆	H	－	म	T．13S42
435 （FM）．．．．．．．	T．13R20	4	म	H	曻	T－57S01
455．．．．．．．．．．．．．．．	T－13R14	म	H	\％	H	T．13S41
635，636．．．．．．．．．．	T．56R01	T．13C29	－	T－29A99	T－29A99	T．18C92
638－AC．．．．．．．．．．．	T－13R05	T．13C29	म	T－29A99	T－29A99	T．18C92
641，642．．．．．．．．．	T．13R05	T．13C29	T－13C29	㟧	T－29A99	T．57S01
652，654．．．．．．．．．．	T－13R05	T－13C29	T－13C29	म	T－29A99	T．57S01
846．848．．．．．．．．．．．	T－56R05	T．13C30	T．13C29	T－29A99	T． 33 A91	T．57S01
TRANSFORMER CORP．OF AMERICA（CLARION）						
TC1，TC2，TC6．．．．	T．13R12	$\dot{\sim}$	永	म	4	T－57S01
TC20，TC21．．．．．．．	T－13R02	$\stackrel{4}{4}$	\＆	4	\％	T．57S01

Prices and dimensions for all transformers and chokes shown berein listed on page 3.

MODEL	Power Trans．	First Filter Choke	Second Filter Choke	First Audio Trans．	Second Audio Trane．	Output Trane．
TRANSFORMER CORP．OF AMERICA（Contd）						
TC22，TC23．	T．13R12	\downarrow	\downarrow	2	\％	T－57S01
25.220.	T－13R03	T－13C28	T－13C28	\％	is	T．57S01
$\begin{aligned} & \text { TC39, TC39A, } \\ & \text { TC39L } \end{aligned}$	T．13 R12	＊	H	\％	\％	＇r．57S01
40.	T－13R04	T－13C29	T．18C92	\＆	Special	T－57S01
TC40	T－13R02	＊	＊	＊	\＆	T． 57501
TC42，TC43，TC44．	T－13R06	－	\％	＊	T－33A91	T－57S01
51， 53.	T－13R07	T－13C29	T．18C92	＊	T－33A91	T－57S01
TC53A．	T－13R08	T－13C30	＊	＊	T－33A91	T－57S01
55．	T－13R07	T．13C29	T－18C92	＊	T－33A91	T－57S01
60 Jr．．	T．13R04	T．13C29	T－18C92	मे	8 Special	T－57S01
61，70．．	T－13R04	T－13C29	T－18C92	н	T－33A91	T．57501
80，84， 85. ．	＇T－13R04	T－13C29	$\stackrel{3}{3}$	＊	$\stackrel{*}{*}$	T．57S01
94.	T－56R05	T．13C29	\％	＊	H	T－57S01
100．．	T．13R03	T．13C28	T－13C28	－	H	T－57S01
160．．	\＄Special	T．13C30	\％	＊	T－33A91	T－57S01
220.	T－13 R03	T－13C28	T－13C28	4	\％	T－57S01
241.	T－13R04	T．13C29	去	\％	\％	T－57501
AC－260．	T－13R06	T．13C30	\％	\％	म	T－57501
AC－280．	T．131207	T－13C30	\＆	4	T－33A91	T．13S41
AC－320．．．．．．．．．	T．13R02	\％	\％	\％	近	T－57501
340．．．．．．．．．．．．．．	T－13 R04	＊	н	\％	\＆	T．57501
470．．．．．．．．．．．．．．．	T－13R02	＊	＊	＊	$\stackrel{\sim}{4}$	T－57S01
480．．．．．．．．．．．．．	T－13R06	T－13C30	人	4	\＄Special	T－67552
490．．．．．．．．．．．．．	T－13R06	T．13C29	\％	4	T－67D47	T－57501

4 Ebsex．．	T．13R02	น	น	$\stackrel{\text { H }}{ }$	ค	T－57S01
5A．．．．	T．13R03	4	4	＊	\％	T－57s01
10 Easer．	T．13R06	\％	＊	\％	T－33A91	T－57S01
20J，20K，20L．．．．．．	T．13R04	T．13C29	น	\％	म	T．57S01
28．．．．．．．．．．．．．．．	T－56R01	T．13C28	¢	T－29A99	T．33A91	\＄Special
36， 37.	T．13RE3	म	म	म	＊	T－57S01
40，41AC．．．．．．．．．	T－13R04	म	म	～	々	T． 57501
46．．．．．．．．．．．．．．．．	T－56R01	T．13C29	T－13C29	T－29A99	T－29A99	－
48．．．．．．．．．．．．．．．	T－13R06	T．13C30	T－74C30	น	T－33A91	T－57501
54DC．．．．．．．．．．．．．	\％	T．13C27	H	\＆	T．33A91	T．57S01
56 Batt．	4	4	号	T－29A99	T－33A91	T．57S01
58，60．	T．56R05	T－13C30	\％	～	T 33A91	T－57501
62DC，63DC．．．．．．	尔	T－13C27	म	म	T－33A91	T．57S01
66，96．．．．．．．．	T－56R01	T．13C29	T．13C29	T．29A99	T．29A99	\＆
107．．．．．．．．．．．．．．．	T－56R01	T－13C29	T．13C29	T－29A99	T－29A99	§Special
116，126，136．．．．．．	T．56R01	T－13C29	T－13C29	T－29A99	T－29A99	\％
146，166，176．．．．．	T－56R01	T－13C29	T．13C29	T．29A99	T．29A99	\＆
200，201．．．．．．．．．．．	T－13R02	म	म	म	H	T．57S01
205，206，211．．．．．．．	T．13R03	\％	\％	\％	4	T．57501
236，237．．．．．．．．．．．	T．13R03	\％	\＆		晏	T． 57501
242，243．．．．．．．．．	T－13R04	T．13C29	\％	$\stackrel{4}{4}$	4	T－57S01
250，251．．．．．．．．．．	T．56R05	T－13C30	म	4	T－33A91	T．57S01
260，261．．．．．．．．．．．	T．56R05	T－13C30	\％	安	T．33A91	T．57S01
305．．．．．．．．．．．．．．．	T．13R02	म	\％	永	4	T－57S01
306．．．．．．．．．．．．．．．	T．13R14	8Special	\％	\％	T－74A31	T－57S01

MODEL	Power Trans．	First Filter Choke	Second Filter Choke	First Audio Trans．	Second Audio Trans．	Output Trane．
UNITED AMERICAN BOSCH CORP．（Contd）						
307．．．．．．．．．．．．．．．	T．13R03	\％	\％	\％	\＆	T－57501
310A．．．．．．．．．．．．．	T－13R06	\＆	ヶ	4	T－33A91	T．57S01
$352 . .$.	T． 13 R02	ヶ	\％	\％	\％	T－57S01
360．．．．．．．．．．．．．．．	T－13R03	H	H	H	\％	T．57501
370．．．．．．．．．．．．．．	T．13R06	T．13C30	$\stackrel{4}{4}$	4	T－67D47	T－13S41
420，421．．．．．．．．．．	T．13R01	н	曻	$\dot{4}$	\％	T－57S01
430，430J，430T．．．．	T－13R01	म	н	\＆	＋	T．57501
$440 \mathrm{C}, 440 \mathrm{~T}$ ．	T－13R12		ム	\％	\pm	T－57S01
450H，450L．．．．．．．	T－13R12	\％	～	म	岩	T．57S01
460，460A．．．．．．．．	T．13R02	म	～	น	\％	T．57S01
460B，460R．．．．．．．．	T－13R02	म	\＆	म	H	T．57501
480．．．．．．．．．．．．．．	T－13R15	T－13C30	T－13C28	＊	\＄Special	T．13S41
505，510，510E．．．．	T－13R12	～	\％	\％	4	T－57S01
515．．．．．．．．．．．．．．	T．13R19	น	\％	H	H	T．57S01
565K，565W．．．．．．．	T．13R12	4	\＆	\＆	म	T．57S01
570G，570U．．．．．．．．	T－13R02	4	म	＋	म	T．57S01
5751，575Q．．．．．．．．	T－13R12	$\stackrel{3}{4}$	\％	\％	$\dot{\sim}$	T．57S01
585．585Y，585Z．．．．	T．13R12	\％	मे	H	H	T．57501
595M，595P．．．．．．	T．13R14	4	4	$\stackrel{\square}{2}$	\＄Special	T．57S01
605， $605 \mathrm{C}$.	T．13R12	н	म	4	\％	T．57S01
640，650．．．．．．．．．．．	T－13R12	H	म	\％	म	T－57501
660C，660T．．．．．．．	T－13R12	～	\％	\％	\＆	T．57501
812．．．．．．．．．．．．．．．	T－13R04	म	4	安	T－33A91	T．57S01
1350．．．．．．．．．．．．．	T．13R02	\％	H	4	4	T．57S01

UNITED MOTORS SERVICE（DELCO）

1102，1103，1104．．．．	T－13R12	н	น	ヶ	म	T．57S01
1105，1106，1107．．．．	T．13R12	～	\％	\％	\＆	T－57S01
1108．．．．．．．．．．．．．．	T．13R12	\％	＊	म	～	T．57S01
1109．．．．．．．．．．．．．．	T．13R14	น	म	น	T．33A91	T．57S01
1110．．．．．．．．．．．．．	＇r．13R09	T－13C30	4	4	T－17D01	T－13541
R1115 early－late．．．	T．13R11	\％	\％	～	$\dot{*}$	T．57S01
R1116，R1117．．．．．．	T－13R11	\＆	\＆	$\stackrel{+}{4}$	น	T．57501
R1118．．．．．．．．．．．．	T－13R13	म	－	\％	\＆	T－57S01
R1119．．．．．．．．．．．．	T－13R15	म	－	～	T．33A91	T．13541
R1120．．．．．．．．．．．．	T－13R20	4	药	\＆	\＆	T．57S01
R1125．．．．．．．．．．．	T－13R19	\％	\％	4	\％	T．57S01
R1126．R1127．．．．．．	T－13R11	मे	－	\％	－	T．57S01
R1128．．．．．．．．．．	T－13R20	\％		\％	म	T．57S01
R1129．．．．．．．．．．．．	T－13R20	\＆	4	4	म	T．57S01
R1130，R1131．．．．	T－13R12	म	\％	H	\％	T．13S42
R1132．．．．．．．．．．．．	T－13R14	\％	＊	4	4	T．13S41
R1140，R1141．．．．．	T－13R11	H	＊	म	品	T．57S01
R1142．．．．．．．．．．．	T．13R20	म	\％	垵	4	T．57S01
R1143．．．．．．．．．．．．	T．13R20	น	н	\＆	मे	T．57S01
R1144．．．．．．．．．．．．	T－13R20	ム	\＆	\＆	\％	T．57501
R1145．．．．．．．．．．．	T．13R20	H	\＆	$\stackrel{8}{4}$	\＆	T．57S01
R6011，R6012．．．．．	T．14R39	T－14C63	令	会	T－78D46	T－81S01
R6015．．．．．．．．．．．	T．14R39	T．14C63	\＆	น	T．78D46	T－81S01
U．S．RADIO \＆TELEVISION CORP．（APEX）						
5A．．．．．．．．．．．．．．．．	T．13R02	\＆	今	\％	म	T．57S01
7AC，7D（700）．．．．	T．13R05	T．13C29	安	$\dot{\square}$	\％	T．57S01

\＆None required．§ Available upon special order from your distributor．Special Note：The following subetitutione are made hy many service engineers because of
preferences in mountings and simen：T－57S02．T－13S38．T－14S85 in place of T－57S01；T－57A41．T－13A35 in place of T－33A9l；T－57A 38 ，T－13A34 in place of T－29A99．

MODEL	Power Trans．	First Filter Choke	Second Filter Choke	$\begin{gathered} \text { First } \\ \text { Audio } \\ \text { Trans. } \end{gathered}$	$\begin{aligned} & \text { Second } \\ & \text { Audio } \\ & \text { Trans. } \\ & \hline \end{aligned}$	Output Trans．	MODEL	Power Trane．	First Filter Choke	Second Filter Choke	First Audio Trane．	Second Audio Trane．	Output Trans．
U．S．HADIO \＆TELEVISION COIIP．（Contd）							WESTINGIIOUSE ELECTIIC SUPIPLY Co．，INC．						
8．．．．．．．．．．．．．．．．．	－T－13R05	T．13C29	3	3	\％	T．57S01	WR－4，WR－5．	T－131107	T－13C29	H	\％	T－33A91	1 T－57S01
10，10C（1000．1001）	）T－131206	T－13C30	＊	$\dot{\sim}$	T－33A91	T－57S01	WR．6，W1R－6－R．	T－131107	T－13C29	袻	\％	T－33A91	1 T－57S01
24 （400）．．．．．．．．．．．	－T－13R01	\％	\％	$\dot{4}$	H	T－57501	WR．7，WR－7－R．	T－131207	T．13C29	＊	3	T－33A91	1 T－57501
25 （500）．．．．．．．．．．	－T－13R02	～	动	$\dot{\sim}$	\％	T．57501	WR－10．．．．．．．．．	－T．131207	－	H	\％	T－33A91	1 T－57S01
26，261P．．．．．．．．．	－T．131203	T－13C28	的	$\dot{4}$	A	T－57S01	W1R－10－A．．．．．．．．．	－T－131204	－\％	\％	H	T－33A91	1 T－57S01
27，271P．．．．．．．．．．	－T－13R03	T－13C28	$\dot{\sim}$	H	T－29A99	T．57S01	WR－12，WR－13．．．．	－T－13R07	茹	动	曻	T－33A91	1 T．57S01
28．．．．．．．．．．．．．．．．	－T－13H06	T－13C30	山	\％	T－33A91	T－57S01	WR－14，WR－14－CR	T．1310．4	号	动	㞱	\％	T－57S01
29，31，32．．．．．．．．	－T－13H04	T－13C29	山	～	T－33491	T－57S01	WR．15．．．．	T． 131107	\％	岗	\％	T－33A91	T－57S01
36，37 аррхх．．．．．．．	－T－56R01	T－13C29	T．13C29	T． 29 A 90	T－29449	～	WR－15－A，WR－16．	T．131107	H	$\dot{3}$	H	T－29199	T．57S01
41－60．．．．．．．．．．．	－T－13R06	T－13C30	\％	T－29A99	T－33＾91	T－57501	Wh－17．．．．．．．．．．．．	T－131804	，	4	\％	T－29A99	T．57S01
42－60．．．．．．．．．．．	－T－13R06	T－13C30	T．18C92	T－29A99	T－33A91	T－57S01	WR－18，WR－	T－131107	～	\％	H	T－29A99	T－57S01
43－25，44－25．．．．．．	－T．131206	T－13C30	\％	T－29A99	T－33A91	T－57S01	WR－20．．．．．．．．．．	T．56R05	T．13C30	的	放	T－78D46	T．57S01
A．．．．．．．．．．．	－T－13R06	T－13C30	\％	T－29A99	T． 33.191	T－57S01	WR．21．．．．．．．．．．．	T．13R05	\％	耑	H	\＄Sprecial	§Sıecial
47，47A ．．．．．．．．．	T－13R06	T．13C30	剠	T－29 199	T－33191	T－57S01	WR－22．	T．13R02	H	\％	\％	－	T－57S01
48，48A．．．．．．．．．	T．13R06	T－13C30	i	T－29A99	T－33 191	T－57S01	$\begin{aligned} & \hline \text { WR-23, WR-24.... } \\ & \hline \text { WR-27. } \end{aligned}$	T－13R03	～	妆	令	$\dot{\sim}$	T－57501
80．．．．．．．．．．．．．．．	T－56R01	T－13C29	～	T．29A99	T－33A91	§Special	$\begin{aligned} & \hline \text { WR-27......................... } \\ & \hline \text { WR-28, WR-29... } \end{aligned}$	T．131819	is	H	H	4	T－57S01
99，99 X ．．．．．．．．．．	T－13103	$\dot{\sim}$	4	H	～	T－57S01		T－131122	$\dot{\sim}$	H	\％	H	T－57S01
112A．．．．．．．．．．．．	T－131201	T－13C27	山	～	\％	H	WR－30，WR．31	$\begin{gathered} \text { T-131K07 } \\ \hline \text { T-131105 } \end{gathered}$	T－13C30	山	in	\＄Sprecial	T． 13541
$\frac{160,250(90) \ldots \ldots .}{3010,3056}$	T－131806	T－13C29	T．74C30	T－29A99	T－33A91	T－57S01	W 1 －35．．．．．．．．．．．		\％	縎	H	H	T－57S01
O，3056（507）．．．	T－131202	\％	动	施	น	T－57S01	WR－36．．．．．．．．．．．	T．13R04	$\dot{\sim}$	～	น	耑	T－57S01
$\frac{3070}{\text { WeldLS－GARIDNER }}$	T． 131104	T－13C29	H	紓	T．33A91	T－57S01	WR．37．．．．．．．．．．．T－13R05		\％	H	动	\dot{H}	T－57501
C，CG．．．．．．．．．．．	T－56R03						WR－45，WR－45．A．．	$\begin{gathered} \text { T.13R07 } \\ \hline \text { T. } 13 \mathrm{~K} 155 \end{gathered}$	T－13C29	墭	H	§Suecial	T．13S41
ODM ．．．．．．．．．．．．．．．．．	T－13R08	T．13C29	认	$\dot{\sim}$	T． 33191	T－57S01			\％	江	访	T．33 191	T－57S01
0EL．．．．．．．．．．．．．	T－13R14				331	T－57S0	$\begin{array}{l\|} \hline \text { WR-46, WR-46-A.. } \\ \hline \text { WR-13R13 } \\ \hline \text { WR-48, WR-48-A.. } \\ \text { T-13R13 } \end{array}$	$\frac{\mathrm{T}-13 \mathrm{~K} 15}{\mathrm{~T}-13 \mathrm{R} 13}$	永	放	H	H	T．57S01
02A．．．．．．．．．．．．	§Sprecial	T．13C30	H	$\dot{4}$	T－81）42	T－57S01	WR－49，WR－50．．．T－13113		认	出	$\dot{*}$	动	T－57501
07A．．．．．．．．．．．．．．	T－131112	＊	\＃	$\dot{3}$	H	T－57S01				H	\％	\％	T－57S01
07315C．．．．．．．．．．．	\％	T．13C29	T－13C29	\％	T－33A91	T－57S01	WR－53．．．．．．．．．．T－13R13		\％	\sim	\％	凩	T－57S01
Al series．．．．．．．．．	T－131811	H	\％	H	H	T－57S01	WR－201．．．．．．．．．．．．T－13R12 WR－203，WR－204．． T－13R12				\％	is	T－57S01
A2 series．．．．．．．．．．	T．13114	＊	方	$\stackrel{\rightharpoonup}{2}$	堊	T－57S01	WR－205，WR－208．．T－13R12						
A4 series．．．．．．．．．	T－13R11	H	H	น	悬	T－57501			H	H	H	ふ	1
45 series，51）series．	T． 13112	is	i	施	的	T－57S01	$\begin{array}{\|l\|l\|} \hline \text { WR-209, WR-210 } & \text { T.13R12 } \\ \hline \text { WR-211, WR-211.A } & \text { T.13R12 } \end{array}$		安	\％	～	\％	T－57S01
5F，5FL，5K，5KL．．	T．13R19	H	น	H	H	T－57S01	WR－211U，WR－211X T．131R12		就	动	耑	H	T－57501
6C series．．．．．．．．．	T－13R12	え	H	$\stackrel{\sim}{2}$	～	T．57S01	WR－212，WR－212X．T－13R12		น	岗	\％	H	T．57S01
61）вeries， 6 K ．．．．	i	T－13C28	～	ふ	T－671）50	T－57S01			耑	H	\％	～	T．57S01
$\begin{aligned} & \text { 71) 世eries } \\ & \text { (271)!, 27D5) } \end{aligned}$	T－131122	ウ	\％	H	4	T－57S01	WR－214．	WH-222. T.13R19	H	\％	4	$\dot{4}$	T－57S01
7F，7FL ．．．．．．．．．	T－131312	$\dot{\square}$	H	3	～	T．57S01	WH224．．．．．．．．．．T－13120		＊	\％	\％	H	T．57S01
7G 11 series （37G－508，37G－566）	T－13R12	4	H	施	\％	T．57S01			\％	i	～	认	T．57S01
7J，7K вeries．．．．．．．	T．13R12	H	\％	$\dot{4}$	$\dot{4}$	T－57S01	W11－256．．．．．．．．．T－13111		น	故	\％	岁	T－57501
A8 serics．．．．．．．．．．	T．13R11	น	is	H	$\stackrel{3}{3}$	T－57S01			i	え	ふ	$\dot{\sim}$	T． 57501
A10 series．．．．．．．．．	T－13119	立	\％	$\dot{\sim}$	～	T－57501	WR258．．．．．．．．T－13R19		令	效	$\dot{\sim}$	耑	T－57501
112．．．．．．．．．．．．．	T－13114	动	动	刿	内	T－57S01	WR260．．．．．．．．．．T． 131119		～	H	H	\pm	T－57501
A14 вeries．．．．．．．．	T－13R11	4	$\dot{\sim}$	H	H	T－57S01	WR－264．．．．．．．．．．T－13H12		方	～	\％	\％	T－57S01
15 series．．．．．．．．	T． 131619	动	\％	3	站	T－57S01			4	4	3	H	T－57S01
60．．．．．．．．．．．．．．．．	T－131104	T－13C29	$\dot{\sim}$	H	立	T－57S01	WR－303，WR－304．．T－13R12		\％	H	\pm	\dot{H}	T－57501
0A．．．．．．．．．．．．．．．	T－561805 T	T－13C30	～	H	$\dot{\sim}$	T－57S01	WR－305．．．．．．．．．．．T－13R12		$\stackrel{\sim}{2}$	H	is	H	T－57S01
72．．．．．．．．．．．．．．．．	T－131204 T	T． 13 C 29	$\dot{4}$	$\dot{\sim}$	T－33A91	T．57S01	WR．306．．．．．．．．．．T．13R14 T－67C49			म	山	§Special	T．13S41
0，82A ．．．．．．．．．．	T．13R06 T	T．13C29	边	H T	T－33A91 T	T－57S01	WR－310，WR－311．．T－13R12		H	H	4	\％T	T．57S01
02．．．．．．．．．．．．．．．．	T．13R06	म	动	4	\％T	T－57S01	WR－311X．．．．．．．T．13R12		H	H	H	4	T－57S01
72AC．．．．．．．．．．	T．561105	H	H	H	H T	T．57S01	WR－312．．．．．．．．．．T－13R12		น	H	H	\％T	T－57S0 1

Thordarson Transformers for all applications are listed in catalog 400，Ask for your free copy．

MODEL	Power Trana．	First Filter Choke	Second Filter Choke	First Audio Trans．	Second Audio Trans．	Output Trans．
WESTINGHOUSE ELECTRIC SUPPLY CO．，INC．（Contd）						
WR－312X	T－13R12	）	A	\％	A	T．57S01
WR－314．	T．13R15	म	म	น	म	T－57S01
WR－315．．．．．．．．．．．	T．13R16	A	4	A	8Special	T．13S41

FESTONE RADIO CORP．
$11,12,70,70 \mathrm{C} . . . \mathrm{T} .13 \mathrm{R03}$ if \quad ir

WILCOX－GAY CORP．

2S5，2T5．．．．．．．．．．	T－13R02	\square	＊	H	म	T．57S01
2VA7，2VB7．．．．．．．	T－13R02	号	$\xrightarrow{\square}$	\＆	H	T．57501
3D5，3F7．．．．．．．．．	T．13R02	म	น	H	\％	T．57S01
355－66，3SB5．．．．．．	T．13R12	品	\＆	H	H	T．57S01
3V6，3VA6．．．．．．．．．	T－13R12	\square	品	沜	み	T．57S01
3VB6．．．．．．．．．．．．．	T．13R12	H	H	品	H	T．57501
4C5，4CA5．．．．．．．．	T．13R11	H	号	$\stackrel{\square}{\square}$	－	T．57S01
4CB5，4CD5．．．．．．．	T－13R11	म	म	号	\square	T．57S01
4D10，4DB10．．．．．．	T－13R06	H	品	\％	\square	T． 58582
4E6，4G7．．．．．．．．．	T－13R12	$\stackrel{\sim}{r}$	号	尔	\％	T．57501
4H11．．．．．．．．．．．．	T．13R09	H	म	H	$\stackrel{\square}{4}$	T－67S92
5B5．．．．．．．．．．．．．．	T．13R12	ム	ム	岸	－	T－57S01
5BA5．．．．．．．．．．．．．	T．13R11	H	H	药	4	T．57S01
5BC5．．．．．．．．．．．．	T．13R12	\％	4	号	\％	T．57S01
5BE6．．．．．．．．．．．．．	T－13R11	品		\＆	H	T．57S01
5E7，5EA7．．．．．．．．	T－13R12	～	म	น	\％	T．57501
5E8，5E9．．．．．．．．．	T－13R12	\＆	H	宸	\＆	T．57501
6A5．．．．．．．．．．．．	T．13R19	म	म	H	曻	T．57S01
6B5．．．．．．．．．．．．．．	T．13R13	H	म	H	\％	T．57S01
6B8，6F6．．．．．．．．．．	T．13R19	\＆	品	沜	茄	T．57S01
6FB6．．．．．．．．．．．．．	T－13R19	H	H	品	药	T．57S01
6T11．．．．．．．．．．．．．．	T．13R14	H	H	\％	म	T－57S01
7E5．．．．．．．．．．．．．．	T．13R11	\％	H	म	药	T．57501
7G5，7GB5．．．．．．．	T－13R11	～	H	＊	\％	T．57S01
737，7K7．．．．．．．．．．	T．13R13	H	น	म	\dot{H}	T．57S01
A69．．．．．．．．．．．．．．．	T－13R19	\dot{H}	＊	म	म	T．57501
A70，A81，A82．．．．．	T．13R14	H	म	\dot{H}	\dot{H}	T－57S01
A78．A79．．．．．．．．．	T．13R12	\％	H	H	＋	T．57S01

RUDOLPH WURLITZER CO．（Also see All－American Mohawk）

SA5．	T．13R02	H	H	म	ム	T．57S01
SA6．．．．．．．．．．．．．．	T．13R03	H	a	H	น	T－57501
SW88．	T．13R03	\％	＊	\％	\＆	T．57S01
SA91－A，SA120．．．．．	T－13R06	\＆	H	\＆	H	T． 57501
450．．．．．．．．．．．．．．．	T．13R02	品	H	H	म	T．57501
454．．．．．．．．．．．．．．．	T－13R11	\＆	$\stackrel{1}{4}$	\＆	\＆	T．57501
470，471．．．．．．．．．．．	T－13R12	H	H	म	म	T－57S01
480 ．．．	T－13R13	\％	3	H	म	T．57S

ZENITH RADIO CORP

A，B，C，D．．．．．．．	T．13R03	T．13C29	H	\％	म	T．57S01
BH（202）．．．．．．．．．．	T－13R05	T－13C29	＊	म	म	T．57501
CH．．．．．．．．．．．．．．．	T－13R04	म	4	\％	\＆	T．57S01
L．．．．．．．．．．．．．．．．．．	T．13R01	T．13C28	म	\dot{H}	H	T．57S01
LH，MH．．	T．13R04	H	H	H	म	T．57501
RH．	T．13R04	4	$\xrightarrow{4}$	H	म	T．57501
WH（2022）．	T．13R04	安	\＆	$\stackrel{\square}{4}$	\＆	T－57501

MODEL	Power Trane．	First Filter Choke	Second Filter Choke	First Audio Trans．	Second Audio Trane．	Output Trane．
ZENITH RADIO CORP．（Contd）						
$\begin{aligned} & \text { 4B313 (5410) } \\ & 48314(5411) \ldots . . \end{aligned}$	T－14R39	น	号	$\dot{\text { r }}$	4	T－57S01
4B317，4B355．．．．．．	T－14R39	\＆	品	น	\＆	T－57501
4D26（5401）4P51．．	T．13R12	号	$\dot{\sim}$	曻	4	T．57S01
4T26，4T51．．．．．．．．	T．13R12	น	म	म	H	T．57S01
5A119．．．．．．．．．．．．．	T．13R20	म	น	म	म	T－57501
5A126．．．．．．．	T－13R20	号	品	曻	号	T．57S01
5A127．．．．．．．．．．．．	T．13R20	น	H	H	H	T－57S01
5A151（CH5517A）．．	T．13R20	น	み	म	น	T．57S01
5A313B（CH5535BT）	T．13R11	\square	H	\＆	4	T．57S01
$\begin{aligned} & \text { 5A318, 5A325 } \\ & (5532 \AA) \ldots \ldots \ldots . . \end{aligned}$	T．13R11	म	号	号	家	T－57S01
5R123（5519）．．．．．	T．13R12	म	H	H	H	T．57S01
5R135，5R165．．．．．．	T－13R12	\＆	H	म	म	T．57501
5R216（5526）．．．．．．	T．13R19		H	म	～	T．57501
5R226，5R236．．．．．．	T－13R19	4	号	\＆	H	T．57S01
5R303（5528）5R312	T．13R11	$\dot{4}$	4	H	H	T－57S01
5R316，5R317．．．．．．	T．13R11	\＆	म	म	น	T．57501
5R337．．．．．．．．．．．．	T．13R11	\square	4	H	曻	T．57S01
5529 （5513A）5556．．	T．13R12	H	H	H	H	T．57S01
5S119．．．．．．．．．．．．	T－13R12	H	品	น	น	T．57501
5S126，5S127， 5 S150	T－13R12	$\stackrel{\square}{4}$	品	H	H	T－57S01
5S151，5S161．．．．．．．	T．13R12	4	\dot{H}	H	～	T．57S01
55201（5521）．．．．．．	T－13R12	\％	H	H	म	T．57S01
5S218．．．．．．．．．．．．．	T－13R12	ム	号	H	น	T．57501
5S218AT（5521AT）．	T．13R12	$\dot{\square}$	$\xrightarrow{3}$	A	H	T．57S01
$\begin{aligned} & \hline \mathbf{5 S 2 2 0}, \mathbf{5 S 2 2 8}, \\ & \text { 5S228AT. } \end{aligned}$	T．13R12	～	\＆	A	H	T－57501
5S237，5S237AT．．．．	T－13R12	号	古	H	\＆	T．57S01
55250，5S252．．．．．．．	T－13R12	$\dot{\square}$	\％	H	H	T．57S01
55319 （5529）5S327．	T－13R11	岸	म	H	\＆	T．57501
5S330，5S338．．．．．．	T－13R11	$\stackrel{\square}{\square}$	古	\％	\％	T．57S01
5s339．．．．．．．．．．．．．	T．13R11	沜	म	$\dot{4}$	H	T．57501
6A203．．．．．．．．．．．．．	T－13R20	寝	崖	H	\＆	T．57S01
6A223．．．．．．．．．．．．	T．13R20	म	古	\＆	H	T．57S01
6A229．．．．．．．．．．．．	T．13R20	म	म	H	～	T．57S01
6A239．．．．．．．．．．．．．	T－13R20	म	म	H	म	T．57S01
6A241．．．．．．．．．．．．．	T－13R20	古	म	म	\＆	T．57S01
6B321（5653）．．．．．．	T－14R39	म	H	H	4	T． 57801
6S27（5619）6S28．．．	T－13R12	น	穴	H	\％	T． 57501
6S52，6S53．．．．．．．．	T－13R12	4	\＆	み	\＆	T－57S01
$6 \mathrm{S128}$（5634）， 65137	T．13R12	H	H	H	号	T－57S01
6S147，6S152， 6 S 157	T－13R12	H	¢	म	म	T． 57501
6 S 203 （5638），6S222	T．13R12	品	ム	น	曻	T．57S01
6S223，6S229．．．．．．	T－13R12	น	H	H	מ	T．57S01
6S239，6S241．．．．．．	T．13R12	\＆	म	น	น	T－57501
6S254（5644）．．．．．．．	T－13R12	म	H	வ	म	T．57S01
6S254AT（5644AT）．	T－13R12	\＆	ム	品	品	T－57S01
65256，6S256AT．．．．	T－13R12	\＆	\＆	น	品	T．57S01
6S301（5651）6S306．	T－13R11	म	म	น	\＆	T－57S01
6S321，6S322．．．．．．	T－13R11	H	น	म	น	T．57501
65330，65340．．．．．．	T．13R11	H	\square	\＆	\＆	T．57S01

[^4]| MODEL | Power Trane． | First Filter Choke | Second Filter Choke | First Audio Trane． | Second Audio Trane． | Oиtрия Trane． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LENITII RALDIO CORIP．（Contd） | | | | | | |
| 6S341（5649）．．．．．． | T－13112 | ～ | 号 | H | \＆ | T－57S01 |
| 6S361．．．．．．．．．．．． | T－13K11 | $\dot{\square}$ | \％ | \％ | 定 | T－57S01 |
| 6S362．．．．．．．．．．．． | T－13112 | 4 | \＆ | H | 故 | T－57S01 |
| 6S439，6S469．．．．．． | T－13 1820 ＊ | 古 | 吕 | 品 | \％ | T－57501 |
| 7S28， 7553 （5704）．．． | T－13113 | 寝 | 4 | 夏 | H | T－57S01 |
| 7S232AT（5709AT）． | T．13R12 | H | 令 | \＆ | \％ | T－57S01 |
| 7S240．．．．．．．．．．．．． | T－131812 | 号 | 品 | \＆ | H | T－57501 |
| 75242．．．．．．．．．． | T－13K12 | $\dot{\sim}$ | 曻 | 4 | H | T． 57501 |
| 75258．．．．．．．．．． | T－13R12 | \％ | 寝 | 方 | $\dot{\sim}$ | T－57S01 |
| 75260．．．．．．．．．．． | T．13112 | \＆ | $\dot{\sim}$ | 刿 | \％ | T－57S01 |
| $75261 \ldots \ldots \ldots$. | T－131412 | म | i | 古 | 的 | T－57501 |
| 75323 （5714）7S3．22． | T．13K12 | H | \square | 寝 | 4 | T－57S01 |
| 75343．．．．．．．．．．．．． | T． 131112 | H | \＆ | H | H | T－57S01 |
| 75363，7S364． | T－13122 | म | 楥 | 亩 | \＆ | T－57501 |
| 75366．．．．．．．．．． | T－13R12 | \％ | H | $\dot{\sim}$ | H | T．57S01 |
| $\begin{aligned} & \text { 7S432, 7S433, } \\ & \text { 7S } 434,7 S 449 \end{aligned}$ | T．13R20＊ | H | म | H | | T． 57501 |
| $\begin{aligned} & 7 S 450, \\ & 7 S 458 \text { to } 7 S .162 \end{aligned}$ | T．13120＊ | ～ | \dot{H} | 安 | I | T－57S01 |
| $\begin{aligned} & \text { 7S.487, 7S488, } \\ & 7 \mathrm{~S} .490 \\ & (5725) . \end{aligned}$ | T－13R19＊ | 4 | \％ | म | น | T－57S01 |
| 8A129．．．．．．．．．． | T－13K20 | \％ | म | 宜 | H | T－57S01 |
| 8A147．．．．．．．．．．．． | T－131120 | H | 约 | \dot{H} | H | T－57501 |
| 8A154．．．．．．．．．．．． | T．13R20 | \％ | H | H | $\dot{\square}$ | T－57S01 |
| 8A157．．．．．．．．．．．． | T．131120 | H | 访 | 宜 | น | T－57S01 |
| 8A232 ．．．．．．．．．． | T－13120 | ＊ | \％ | 宜 | 宸 | T－57S01 |
| 8A2．42．．．．．．．．．．． | T．13 ${ }^{\text {P20 }}$ | 4 | 妆 | 垵 | 菹 | T－57S01 |
| 8A244．．．．．．．．．．． | T．13K20 | ＊ | － | म | H | T－57S01 |
| 8A262．．．．．．．．．．． | T－13H20 | ＊ | \％ | म | H | T－57S01 |
| 8S129（5801）8S154． | T－13112 | ＊ | 4 | \％ | 宸 | T－57S01 |
| 8S359．．．．．．．．．． | T－13120 | \％ | \％ | \％ | | T－57S01 |
| 9S30，9S54．．．．．． | T－13114 | H | H | H | T－33A91 | T－57S01 |
| 9555．．．．．．．．． | T－13R14 | 4 | 品 | म | T－33A91 | T－57S01 |
| 9S203（5905）．．．．．． | T－13R13 | 4 | 4 | H | H | T－57S01 |
| $9 \mathrm{S201AT}$（ 5905 AT ）． | T－13112 | \＆ | 4 | H | H | T－57S01 |
| 9S232．．．．．．．．．．．． | T－13R13 | H | \＆ | म | H | T－57S01 |
| 9S232AT．．．．．．．．．． | T－131812 | H | H | H | 版 | T－57S01 |
| 9S242．．．．．．．．．．．． | T－13113 | 永 | H | \＆ | H | T－57S01 |
| 9S244．．．．．．．．．． | T－13R13 | \％ | H | \％ | म | T－57S01 |
| 9S24．LAT．．．．．． | T－13R12 | H | H | H | \＆ | T－57S01 |
| 9S262，9S263．．．．．． | T．13K13 | H | H | H | 家 | T．57S01 |
| 9S261．．．．．．．．．．． | T．13113 | H | H | 堊 | 寝 | T－57S01 |
| 9S264AT．．．．．．．．． | T－13R12 | 4 | H | H | H | T－57S01 |
| 9S307（5907）．．．．．． | T－13R12 | \％ | \％ | H | 4 | T． 57501 |
| 9S324，98344．．．．．． | T－13R12 | 古 | \square | H | \＆ | T－57501 |
| 9S365（5906）．．．．．． | T．13112 | 4 | H | H | H | T－57501 |
| 9S367，9S369．．．．．． | T－13112 | \％ | 方 | \dot{H} | H | T－57S01 |
| 10．．．．．．．．．．．．．．．． | T－13R04 | | 曻 | H | 4 | T－57S01 |
| 105130 （1004）．．．．． | T．13115 | T－13C30 | 4 | \％ | T－33A91 | T－13S41 |
| 10S147，10S153．．．． | T．13R15 | T－13C30 | \％ | \％ | T．33A91 | T．13S41 |
| 10S155，10S156．．．． | T－13R15 | T－13C30 | a | H | T－33A91 | T－13S41 |
| 10S157，10S160．．．． | T－13115 | T．13C30 | H | 3 | T－33A91 | T－13S41 |

MODEL	Power Trans．	First Filter Choke	Second Filter Chooke	First Audio Trans．	Second Aladio Trans．	Output Trans．
ZENITII RADIO CORP．（Contd）						
$\begin{aligned} & \text { 10S443, 10S } 452, \\ & 105464,10 \mathrm{~S} 170, \\ & \text { 10S441 10S } 192(1005) \end{aligned}$	T．17143i	\square	H	\％	4	T－13S．41
11，12．．．．．．．．．．	T－131204	น	H	\square	H	T－57S01
12S205，12S232．．．．	T－13世15	品	म	宜	$\dot{\sim}$	T－13S41
12S245，12S265．．．．	T－13115	家	\dot{H}	号	＊	T．13S41
12S266，12S267．．．．	T－131215	令	安	～	4	T－13S 41
125268．．．．．．．．．．．	T－13K15	H	म	曻	4	T－13S41
12S345（1206）．．．．．	T－13R13	\％	$\dot{4}$	H	－	T．13S42
12S370，12S371．．．．	T．13R13	～	น	H	म	＇T－13s42
12U158（1203）．．．．	T－13R15	1－13C30	顷	म	＇T－33A91	T－13S41
12U159．．．．．．．．．．．	T－13R15	T－13C30	\＆	号	T－33A91	＇1－13S41
50，52，53，54．．．．．	T． $13 \mathrm{R06}$	T－13C30	$\dot{\sim}$	T－33A91	T－13A36	T．57S01
60，61，62．．．．．．	1－131206	T．13C30	น	T．33A91	T－13A36	T－57S01
64，67．．．．．．．．．．	T－13R06	T－13C30	\＆	T．33A91	T－13A36	T． $57 \mathrm{S01}$
70，71，72，73，77．．．	T－13R06	T－13C30	H	T－33A91	＇T－13A36	T－57S01
80．．．．．．．．．．．．	T－131206	T－13C30	$\dot{\sim}$	T－33A91	T－13136	T－57S01
91，92，103．．．．．．	「－131206	T－13C30	H	～	T－33A91	T． 57501
210，211．．．．．．．．．	T．13R03	H	\％	\％	\％	T－57S01
215，216，217．．．．．	T．13R04	4	\％	H	in	T－57S01
220，221．．．．．．．．．．	T－131203	岁	\％	H	＊	T－57S01
225．．．．．．．．．．．．．．	T－13R04	㞱	H	\％	安	T－57S01
230，240．．．．．．．．．．	T－131105	品	\＆	\％	＋	T．57S01
241， $214 . \ldots \ldots \ldots$.	T－131R05	4	\％	颪	\％	T－57S01
245．．．．．．．．．．．．．．	T．131205	4	\＆	\％	盛	T－57S01
250，251，252．．．．．．	T． 131103	－	\％	～	H	T－57S01
258， $259 \ldots \ldots \ldots$.	T－13R04	吕	H	H	म	T－57S01
260，261．．．．．．．．．．	T－131103	H	H	H	H	＇1－57S01
$262 \ldots \ldots \ldots \ldots$	T－131204	น	מ	\％	H	T－57S01
268， $269 \ldots \ldots \ldots$.	T－131804	刿	H	H	H	T－57S01
272．．．．．．．．．．．．．．．	T－13 1103	H	沜	4	H	T－57S01
273．．．．．．．．．．．．．．	T． 131106	T－13C30	楥	H	\＄Special	T．57S01
278，280，281．．．．．．	T－131804	म	H	H	H	T－57S01
288，289．．．．．．．．．．	T－13R04	H	म	H	H	T－57S01
291， $292 \ldots \ldots . . .$.	T．13 1803	म	$\dot{4}$	品	H	T－57S01
410，411，412，414．．	T． 131806	T．13C30	น	\square	T－17D01	T．13S41
420．．．．．．．．．．．．．	T－13R06	T－13C30	น	$\stackrel{\square}{4}$	T－17D01	T－13S41
443，444．．．．．．．．．．	T．13R06	T－13C30	$\dot{\square}$		T－17D01	T－13541
472．．．．．．．．．．．．	T．13R04	H	H	岩	\＆	T．57501
473．．．．．．．．．．．	T－13R06	T－13C30	\％	安	T－17D01	T－13S41
474，475．．．．．．．．．	T．13R04	4	H	令	T－33A91	T－57501
176．．．．．．．．．．．．．．	T－13R06	T－13C30	$\dot{4}$	$\dot{\square}$	T－17D01	T－13S41
4761．．．．．．．．．．．．	T－13R06	T－13C30	\％	垵	T－33A91	T－57501
478．．．．．．．．．．．．．．．	T．13R04	H	H	H	な	T．57S01
500，501，502， 503.	T－13R05	宜	म	垵	H	T－13S41
514，515，516．．．．．	T－131205	H	H	H	H	T－13S41
520 （2035），521．．．．	T．13R06	T．13C30	H	H	T－67D78	T－67S52
558．568， $578 \ldots \ldots$	T．13R04	H	H	H	H	T－57S01
589，590．．．．．．．．．	T－13R04	岁	\％	\％	\％	T－57S01
6001．．．．．．．．．．．．．．．	T－13R05	H	\％	$\dot{\sim}$	H	T－13S41
M601．．．．．．．．．．．．．．	T．13R03	H	4	\＆	H	T．57S01

* D.C. volts to filter AUDIO TRANSFORMERS AND CHOKES LISTED ON PAGES 2 AND 3.

This accurate and convenient table has been compiled to facilitate choosing the correct output transformer. Two types are offered for most tubes: the
universal type, which is designed to accommodate a wide range of tube and voice coil impedances, and the specific duty type.

Tube	Plate Volts	Bias Volts	$\begin{aligned} & \text { Plate } \\ & \text { M. A. } \end{aligned}$	Plate LOAD Ohms	Watts Output	Universal Type TransFORMER	Specific Duty TransFORMER
1A5G...............	90	-4.5	4.0	25,000			
1C5G................	90	-7.5	7.5	25,000 8,000	$\begin{aligned} & .115 \\ & .240 \end{aligned}$	T-13S38 \dagger	$\begin{aligned} & \text { T-14S83 } \\ & \text { T-14S8 } \end{aligned}$
1D8GT............	90	-9.0	5.0	12,000	. 200	T-13S38 \dagger	
1E7G (1 section) (2 sections, P-P)	$\begin{aligned} & 135 \\ & 135 \end{aligned}$	$\begin{aligned} & -4.5 \\ & -7.5 \end{aligned}$	$\begin{array}{r} 7.5 \\ * 3.5 \end{array}$	$\begin{aligned} & 16,000 \\ & 24,000 \end{aligned}$	$\begin{aligned} & .290 \\ & .575 \end{aligned}$	T-13S38 \dagger	T-13S43
1F4, 1F5G...........	135	-4.5	8.0	16,000	. 310	T-13S38 \dagger	T-13S43
1G5G...............	90	-6.0	8.5	8,500	. 250		
1G6G...............	90	0	*1.0	12,000	. 675	$\begin{aligned} & \text { T-13S } 38 \dagger \dagger \\ & \text { T-13S } 38 \dagger \end{aligned}$	T-14S84
$\underset{\substack{\text { 1J6GG }}}{ }$	135	-16.5	7.0	13,500	. 450	T-13S38 \dagger	
1J6G................	135	0	*5.0	10,000	2.1	T-13S38 \dagger	T-81S01
1Q5G, 1Q5GT	90	-4.5 -4.5	3.1 9.5	25,000 8,000	100 .170		T-14S83
1S4...................	45	-4.5	3.8	8,000	. 065		T-14S84
1T5GT...............	90	-6.0	6.5		. 06	T-13S38 \dagger	T-14S84
2 A 3 (Single Cl. A).	250			14,000	. 170	T-13S38 \dagger	T-13S43
(P-P AB fixed bias)..	300	${ }_{-62.0}^{-4.0}$	$\begin{array}{r} 60.0 \\ * 40.0 \end{array}$	$\begin{aligned} & 2,500 \\ & 3,000 \end{aligned}$	$\begin{array}{r} 3.5 \\ 15.0 \end{array}$	T-13S42 T-13S41	T-17S10
(P-P AB self bias)...	300	-62.0	*40.0				T-15S91)
				5,000	10.0	T-13S41	T-67S54 T-15S9C
2 A 5 (Single Cl. A)	250	-16.5	34.0	7,000			
(Single Cl. A)	285	-20.0	38.0	7,000	4.5	T-13S42	T-13S37
$\left(\begin{array}{l}\text { P-P Cl. A) } \\ (\text { P-P Cl. AB }\end{array}\right.$	250 315	-16.5	${ }_{*}^{*} 34.0$	14,000	6.2	T-57S01§	T-67S51
(P-P Cl. AB2) $\ldots \ldots$	$\begin{aligned} & 315 \\ & 375 \end{aligned}$	-24.0 -21.0	${ }_{*}^{*} \mathbf{*} 27.0$	10,000 10	11.0	T-13S41	T-75S75
3Q5GT (Fil. par.)	90	-4.5			19.0	T-13S41	T-75S75
(Fil. series).........	90	4.5	7.5	$\begin{aligned} & 8,000 \\ & 8,000 \end{aligned}$	$.270$	$\begin{gathered} \text { T-13S38 } \\ \text { T-13S38 } \end{gathered}$	T-14S84
$\begin{aligned} & 4 \mathrm{~A} 6 \mathrm{G} \\ & \hline 6 \mathrm{~A} 3 \end{aligned}$	$\begin{array}{r} 90 \\ \mathbf{9 5 0} \\ \hline \end{array}$	$\begin{array}{r} -1.5 \\ -45.0 \end{array}$	$\begin{aligned} & * 1.1 \\ & 60.0 \end{aligned}$	$\begin{aligned} & 8,000 \\ & 2,500 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 3.2 \end{aligned}$	$\underset{T-13 \mathrm{~S} 42}{\mathrm{~T}-13 \mathrm{~S}} \dagger$	$\underset{\text { T-14S81 }}{\text { T-14 }}$
$\begin{aligned} & 6 \mathrm{~A} 4 . \\ & 6 \mathrm{A5G} . \end{aligned}$	$\begin{aligned} & 180 \\ & 250 \end{aligned}$	$\begin{aligned} & -12.0 \\ & -45.0 \end{aligned}$	$\begin{aligned} & 22.0 \\ & 60.0 \end{aligned}$	$\begin{aligned} & 8,000 \\ & 2,500 \end{aligned}$	1.4 3.2	$\underset{\text { T-13S382 }}{\text { T-13 }}$	T-13S37
6A6..................	300	0	*17.5	8,000	10.0		
6AC5G	250	self	32.0			T-13s41	T-67S48
(P-P Cl. B)	250	0	${ }_{* 2.5}$	10,000	$\begin{aligned} & 3.7 \\ & 8.0 \end{aligned}$	$\begin{gathered} \text { T-13S42 } \\ \text { T-13S41 } \end{gathered}$	$\begin{aligned} & \mathrm{T}-13 \mathrm{~S} 37 \\ & \mathrm{~T}-75 \mathrm{~S} 75 \end{aligned}$
6AL6G	250	-14.0	72.0	2,500	6.5	T-13S42	T-17S10
6B4G (Single Cl. A)	250	-45.0	60.0			T-13S42	T-17S10
(P-P AB fixed bias).	325	-68.0	*40.0	3,000	$\begin{array}{r} 3.2 \\ 15.0 \end{array}$	$\begin{aligned} & \text { T-13S42 } \\ & \text { T-13S41 } \end{aligned}$	T-17S10
(P-P AB self bias)	325	-68.0	*40.0	5,000	10.0	T-13S41	${ }_{\text {T-15S91) }}^{\text {T-67S54 }}$
						${ }^{\text {r }}$ (C	T-15S90)
6В5...................	300	0	42.0	7,000	4.0	T-13S42	T-13S37
6 E 6.	250	-27.5	*18.0	14,000	1.6	T-57S01§	T-13S40
6F6...................	250	-16.5	34.0	7,000	3.1	T-13S42	T-13S37
6G6G	180	-9.0	15.0	10,000	1.1	T-13S38 \dagger	
6K6G	135	-6.0	11.5	12,000	. 6	T-13S38 \dagger	
6K6G	250	${ }_{-18.0}$	25.5 32.0	9,000	4.5	T-57S01§	
6 L 6 (Single Cl. A)	250			2,500	3.4	T-13S42	T-13S37
(Single Cl. A)	320	-20.0	76.0	$\stackrel{2,500}{2,500}$	6.5 8.0	T-13S42	T-17S10
(P-P Cl. A_{1})	270	-16.5	*67.5	5,000	18.5		$\begin{aligned} & \mathrm{T}-17 \mathrm{~S} 10 \\ & \mathrm{~T}-67 \mathrm{~S} 54 \end{aligned}$
(P-P Cl. AB ${ }_{1}$)	319	-23.0	*50.0	4,300	25.0		$\begin{aligned} & \mathrm{T}-15 S 90) \\ & \mathrm{T}-17 \mathrm{~S} 12 \end{aligned}$
(P-P Cl. AB_{1})	400	-25.0	*51.0	6,600	34.0		$\begin{gathered} \mathrm{T}-15 \mathrm{~S} 91) \\ \mathrm{T}-17 \mathrm{~S} 13 \end{gathered}$
(P-P Cl. AB ${ }_{2}$).	430	-20.0	*47.0	5,500	40.0		$\begin{gathered} \mathrm{T}-15 \mathrm{~S} 92) \\ \mathrm{T}-17 \mathrm{~S} 14 \end{gathered}$
(P-P-Par. Cl. AB_{1})...	410	-28.0	*50.0	3,300	60.0		$\begin{gathered} T-15 S 92) \\ T-17 S 15 \end{gathered}$
(P-P-Par. $\mathrm{Cl}^{\text {d }} \mathrm{AB}_{2}$)	430	-24.5	*52.0	1,900	120.0		T-15S93)
							T-15S94)

Tube	Plate Volts	Bias Volts	Plate M. A.	Plate Load Онмs	Watts Output	Universal Type Trans- FORMER	Spectific DUTY TransFORMER
6N6G	300	0	42.0	7,000	4.0	T-13S42	T-13S37
6N7...................	300	0	*17.5	8,000	10.0	T-13S41	T-67S48
6V6 (Single Cl. A)	250	-12.5	44.5	5,000	4.5	T-13S42	
(Single $\mathrm{Cl}, \mathrm{A}_{1}$)	315	-13.0	34.0	8,500	5.5	T-57S018	
(P-PCl. AB ${ }^{\text {P }}$)	250	-15.0	*35.0	10,000	10.0	T-13S41	T-75S75
(P-P Cl. AB ${ }_{1}$) .	306	-20.0	${ }^{*} 50.0$	8,000	15.0	(С.Н.Т., T-15S90)	
6Y6G	135	-13.5	58.0	2,000	3.6	T-13S42	T-17S10
6Y6G	200	-14.0	61.0	2,600	6.0	T-13S42	T-17S10
6Y7G	180	0	*3.8	7,000	5.5	T-13S42	T-67S48
6Y7G	250	0	*5.3	14,000	8.0	T-57S018	T-13S40
6Z7G	135	0	*3.0	9,000	2.5	T-13S38 \dagger	T-81S01
6Z7G	180	0	* 4.2	12,000	4.2	T-13S38 \dagger	T-13S40
7A5....................	110	-7.5	35.0	2,500	1.4	T-13S42	T-17S10
7B5.	100	-7.0	9.0	12,000	. 35	T-13S38 \dagger	
7B5..................	250	-18.0	32.0	7,600	3.4	T-13S42	T-13S37
7 C 5	250	-12.5	45.0	5,000	4.5	T-13S42	T-89S74
(P-P Cl. AB ${ }_{\text {a }}$)	250	-15.0	*35.0	10,000	10.0	T-13S41	T-75S75
10....................	425	-50.0	18.0	10,000	1.6	T-57S018	
12A5	100	-15.0	17.0	4,500	. 8	T-13S42	T-13S39
12A5..................	180	-25.0	45.0	3,300	3.4	T-13S42	T-13S39
12A7..................	135	-13.5	9.0	13,500	. 55	T-13S38 \dagger	T-13S43
18.....................	250	-16.5	34.0	7,000	3.0	T-13S42	T-13S37
19.....................	135	0	*5.0	10,000	2.1	T-13S38 \dagger	T-81S01
25A6..................	95	-15.0	20.0	4,500	. 9	T-13S42	T-13S39
25A7G.............	100	-15.0	20.5	4,500	. 770	T-13S42	T-13S39
25AC5GT	180	0	27.0	8,000	2.0	T-13S38 \dagger	T-13S37
(P-P Cl. B)	180	0	*2.0	4,800	6.0	T-13S41	T-67S54
25B6G................	105	-16.0	48.0	1,700	2.4	T-13S42	T-14S82
25L6..................	110	-7.5	49.0	1,500	2.1	T-13S42	T-14S82
31......................	135	-22.5	8.0	7,000	. 185	T-13S42	T-13S37
32L7GT.......	110	-7.5	40.0	2,500	1.5	T-13S42	T-17S10
33.......................	135	-13.5	14.5	7,000	. 7	T-13S42	T-13S37
35A5-LT	110	-7.5	40.0	2,500	1.5	T-13S42	T-17S10
35L6GT	110	-7.5	40.0	2,500	1.5	T-13S42	T-17S10
38.	135	-13.5	9.0	13,500	. 55	T-13S38 \dagger	
38......................	250	-25.0	22.0	10,000	2.5	T-13S38 \dagger	
41.	250	-18.0	32.0	7,600	3.4	T-13S42	T-18S37
42....	250	-16.5	34.0	7,000	3.1	T-13S42	T-13S37
43.	95	-15.0	20.0	4,500	. 9	T-13S42	T-13S39
45 (Single Cl. A)	250	-50.0	34.0	3,900	1.6	T-13S42	T-89S74
(P-P Cl. AB ${ }^{\text {a }}$)	275	-56.0	*36.0	5,060	12.0	T-13S41	T-67S54
46 (Single Cl. A Triode) .	250	-33.0	22.0	6,400	1.25	T-13S42	T-13S37
(P-P Cl, B)	400	0	*6.0	5,800	20.0	T-13S41	T-67S52
47...............	250	-16.5	31.0	7,000	2.7	T-13S42	T-13S37
(P-P Cl. A)	250	-16.5	*31.0	14,000	5.4	T-57S018	T-67S51
48...............	96	-19.0	52.0	1,500	2.0	T-13S42	T-14S82
(P-P Cl. A ${ }_{1}$ Pent.) ...	125	-20.0	*50.0	3,000	5.0	T-13S41	T-58S72
49 (P-P Cl. B)	135	0	*1.3	8,000	2.3	T-13S38 \dagger	T-14S81
50 (P-P Cl. A)	450	-84.0	*55.0	8,000	9.2	T-13S41	T-65S94
50C6G.	135	-13.5	58.0	2,000	3.6	T-13S42	T-17S10
50L6GT	110	-7.5	49.0	1,500	2.1	T-13S42	T-14S82
52	110	0	43.0	2,000	1.5	T-13S42	T-17S10
(P-P Cl. B)	180	0	*1.5	10,000	5.0	T-57S01 8	T-81S01
53.....................	300	0	*17.5	8,000	10.0	T-13S41	T-67S48
59 (Single Cl. A Triode)	250	-28.0	26.0	5,000	1.25	T-13S42	T-13S39
(Single Cl. A Pent.).	250	-18.0	35.0	6,000	3.0	T-13S42	T-13S37
(P-P Cl. B)	400	0	*13.0	6,000	20.0	T-13S41	T-67S52
70L7-GT................	110	-7.5	40.0	2,000	1.8	T-13S42	T-17S10
71-A	180	-40.5	20.0	4,800	. 79	T-13S42	T-13S39
(P-P Cl. A.)	180	-40.5	*20.0	8,000	1.6	T-13S38 \dagger	T-33S99
79......................	180	0	*3.8	7,000	5.5	T-13S42	T-67S48
89......................	250	-25.0	32.0	6,750	3.4	T-13S42	T-18S37
182B/482B	250	-35.0	20.0	4,500	1.35	T-13S42	T-13S39
183/483................	250	-65.0	20.0	4,500	1.8	T-13S42	T-13S39
950.	135	-16.5	7.0	13,500	. 450	T-13S38 \dagger	

[^5]
...even if you did, THORDARSON TROPEX transformers would give you complete protection against moisture, high humidity and salt air.
The TROPEX process was perfected for just that purpose. It thoroughly impregnates the coil against the corrosive effects of adverse weather conditions.
TROPEX is a special process which may be applied to any Thordarson open mounting type tran sformer or choke. It is especially adaptable to fine wire audio transformers and chokes but is not ordinarily recommended for power transformers nor for encased types.
The additional cost for THORDARSON TROPEX transformers is surprisingly small. The following table has been compiled to enable you to easily determine this price increase by referring to the weight of the transformer as listed.
When ordering TROPEX add an " X " to the regular type number. For example, T-13S38-X is the TROPEX equivalent of T-13S38.

Weight of transformer	ADd To List price
Up to $7 / 8 \mathrm{lb}$.	25 c
From 1 lb. to $17 / 8 \mathrm{lbs}$.	30 c
From 2 lbs. to $27 / 8 \mathrm{lbs}$.	50 c
From 3 lbs. to $47 / 8 \mathrm{lbs}$.	65 c
From 5 lbs to $67 / 8 \mathrm{lbs}$.	75 c
Over 7 lbs.	13 c per lb.

YOUMAYNOT UNDER WORK these BلT==

TROPEX REPLACEMENT AUDIO TRANSFORMERS

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Application
T-13A34-X	$10,000 \mathrm{ohm}$ plate to single gri
T-29A99-X	$10,000 \mathrm{ohm}$ plate to single grid
T-13A35-X	$10,000 \mathrm{ohm}$ plate to P.P. grids
T-33A91-X	10,000 ohm plate to P.P. grids
$\begin{aligned} & \text { T-13A36-X } \\ & \text { T-78D46-X } \end{aligned}$	$\stackrel{\text { P.P. }}{ }{ }_{\text {Single }} 10,000 \mathrm{ohm}$ plates to P P.P. grids,
T-17D01-X	Single 6F6 etc., to 2-6F6, etc.

TROPEX FILTER CHOKES

TROPEX OUTPUT TRANSFORMERS

T-13S37-X	Single 6F6, 42. 2A5 etc. to voice coil
T-13S39-X	Single 45, 1-2A5 etc. to voice coil
T-13S40-X	P.P. 6FF, 42, 2A5 etc. to voice coil
T-3S99-X	P.P. 45, 71A, 43 etc. to voice coil
T-81S01-X	Class B 19, IJ6G, 30's etc. to voice coil
T-13S43-X	Single 1F4, 1D4, 1F5G etc. to voice coil
T-14S81-X	Single 6F6, 2A5 etc. or P.P. 45, 11 etc.
T-14S82-X	to voice coil

T-13S38-X	
T-57S01-X	Any single tube or
T-57S02-X	to voice coil
T-13S41-X	Any P.P. tubes to voic
T-13S42-X	Any single tube to voic

THORDARSON ELECTRIC MFG. COMPANY
 500 West Huron Sireet, Chicago
 Distributed by

Since 1895-

Since 1895 the Thordarson organization has pioneered in the development and manufacture of quality transformers in the progressive electrical world. The policy of the company - to engineer the best product for the application - is consistently maintained. Small wonder that Thordarson is the recipient of both national and international awards for outstanding contributions to better engineering.

From the earliest spark coil days Thordarson has devoted the major part of its engineering and laboratory resources to the development of Amateur Radio. Today, the Amateur Radio fraternity is the training ground for broadcast, communications and government engineers.

To further promote the interest and pleasure of this worthy hobby, Thordarson presents this latest Transmitter Guide. This guide offers you a wide choice of units from the smallest transmitter for the beginner to the larger and more elaborate rigs for the advanced amateur. These transmitters are conservatively rated and employ the latest technical developments for efficient and economical operation. The cabinets and panels are beautifully designed and the circuits are adaptable to a multitude of amateur applications. Simplified construction methods are employed throughout the guide and the use of Thordarson transformers and chokes will insure perfect performance for many years.

Our sincere wish is that this guide will enable you to find many hours of enjoyment in contacting old friends and making new ones on the amateur bands.

Contents

20 Watt CW Transmitter 3
Amateur Speech Amplifier 22
35 Watt Phone-CW Transmitter 4, 5
50 Watt $5 \& 10$ Meter Phone Transmitter 6, 7
55 Watt Phone, 80 Watt CW Transmitter. .8, 9, 10, 11
250 Watt Phone, 450 Watt CW Transmitter. 23, 24, 25
400 Watt Transmitter 26,27, 28
600 Watt Transmitter 29, 30, 31, 32
1000 Watt Transmitter 33, 34, $\$ 5,36$
12 Watt Mobile Transmitter, 5 \& 10 Meters 12, 13
12 Watt Universal Transmitter for Portable and Fmergency Service 14,15
40 Watt Band-Switch Exciter Unit 16,17
120 Watt Band-Switch Exciter Unit 18,19
1(6) Watt Band-Switch Transmitter 20, 21
Transmitter Pre-Amplifier 37
Thordarson Technical I-iterature 37
Class B Output Calculations 38, 39
Driver Transtormer Ratios 40
Matching Class C Loads. 41
Multi-Match Modulation Transformer Ratios..41, 42Matched Power Supplies43

FOR the newcomer in amateur radio desiring a simple yet reliable transmitter, this transmitter with metal chassis has been designed. Its crystal controlled circuit is of such a type that operation is possible on five amateur bands. If higher power is desired at some later date this transmitter may also be used as the crystal oscillator stage of a larger multi-stage transmitter.

Circuit Operation

Operation on the five amateur bands from 160 to 10 meters is possible. On all of these five bands the oscillator will work "straight through"; that is, the crystal frequency and the output frequency are the same. In addition, the oscillator will give good outputs when doubling, using 160,80 and 40 meter crystals.

The plug-in coils on this transmitter are of a type having a built-in link on the "cold" end of the coil. If used as the exciter for a larger transmitter this unit may be link-coupled or capacitycoupled to the succeeding stage.

Successful operation of this type

THORDARSON TRANSFORMER and CHOKE	
T-1	T-70R61 Power Translormer
CH-1	T-44C02 Filter Choke
Resistors:	
K-1	20,000 Ohm 25 Watt Wirewound Resistor,
	Semi-Variable
H-2	20,000 Ohm 1 Watt Renistor
R-3	300 Ohm 10 Watt Resistor
Condensers:	
C-1	Double 8 Mfd .450 Volt Condenser
C-3	. 0001 Mid. Mica Condenser
C-4	. 01 Mfd. 400 Volt Condenser
C-5	. 01 M Pd . 400 Volt Condenser
C-6	. 002 Mid. 1,000 Volt Mica Condenser
C-7	100 Mmld . Variable Condenser
C-8	. 00025 Mid. Mica Condenser

Chassis View

oscillator on the five amateur bands is made possible by including condenser C-8 in the 40 meter coil base. Since the capacity, C-3, which gives adequate performance with 10 and 20 meter crystals results in excessive crystal current with a 40 meter crystal, the 0.00025 Mfd . condenser, $\mathrm{C}-8$, is mounted on the 40 meter coil base in such a manner that it is paralleled with the cathode-to-ground circuit of the 6L6G when the 40 meter coil is used. This minimizes the likelihood of high crystal current in the 40 meter crystal, yet it perinits the 20 and 10 meter crystals to oscillate with highest efficiency.

A pilot tamp in the negative high voltage lead makes an inexpensive yet effective tuning indicator. For best results in tuning it is recommended that the operator start to tune from minimuni capacity toward maximum capacity, until the lamp passes through its first minimum in brilliancy. The condenser should then be tuned back a slight amount toward minimum capacity to maintain good oscillator stability and ease of starting when keying. A flashlight bulb connected to a two or three turn wire loop placed over the tank coil is a handy indicator of circuit conditions when tuning.

Parts Required
 RF Chokoe:

HFC-1 HF Choke
RFC-2 RF Choke
RFC-3 RF Choke

Miscellaneou: Parts:

Chassis $813^{\circ} \times 6^{\circ} \times 25^{\prime \prime}$ (Punched and Drilled) Feed-thru Insulators
Name Plate
Dial Plate
Octal Socket
4-Contact Socket
5-Contact Socket
5-Contact Socket, Steatite
Pilot Lamp Socket
Pilot Lamp Socket
Line Cord and Plug
SPST Switch
Knob

Bottom View
The parts layout shown in the above photograph should be closely followed for best results. The position of the power supply leads is not critical, but all connections in the RF circuit should be made as shown.

The keying jack is mounted on the rear apron of the chassis. It is of the circuit closing type so that the removal of the keying plug closes the circuit.

When properly loaded the input to the 6L6-G plate is about 20 watts. At slightly greater antenna loading, the change in " B " current when tuning through resonance is barely noticeable.

The screen voltage may be adjusted by moving the tap on the bleeder resistor R-1. The recommended setting for this tap is approximately one-fifth of the distance from the B + end. The position of this tap has been selected as being optimum for reasonable output on all five bands without exceeding the rated crystal current of any crystal, or the rated dissipation of the tube in any condition of loading. With the 160 or 80 meter crystals the moving of this tap closer to the B+ end of the bleeder will result in greater output without damage to the crystal or without exceeding the rated dissipation of the tube.

Misc. Parts: (Cont'd)

Cloeed Circuit Jack
Closed Circuit Jack
Miscellaneous nuts, bolts, soldering and mounting lugs, lock-washers and other hardwart.

Accessories:
1160 Meter RF or Equivalent
Meter PF Cir, 80 Meter RF Coil, End Linked, Bud OEL-80 40 Meter RF Coil, End Linked, Bud OEL-40 or Equivalent Coil, Fid Linked, Bud OEI-20 20 Meter RF Coil, End Linked, Bud OEL-20
10 Meter RF Coil, End Linked, Bud OEL-10 or Equivalent
Phone Plug Yaxley No. 75 or Equivalent Crystal
80 Tube
80 Tube
$6 \mathrm{~L} 6-\mathrm{G}$ or 6 L 6 X Tube

Complete kit of the above parts with large size circuit diagram arailable from your local Thordarson distributor. (Accessories not included in kit).

Cabinet View

Chassis View

THIS compact transmitter is capable of 35 watts input on CW and phone. Its power supply and its Class B audio amplifier are included on the same chassis as the RF section, and its flexibility makes it a desirable transmitter for those wishing low power on the five amateur bands from 160 to 10 meters. The complete transmitter is built upon a rectangular chassis and is housed in an attractive cabinet with a curved panel of modern design. The cabinet, panel and chassis are finished in gray flat enamel. All controls are mounted on the front panel.

The 6V6-G crystal oscillator circuit easily provides enough driving power for the 6L6-G final amp'ifier. The oscillator and amplifier plate voltage is 315 V . and the oscillator screen voltage is 210 V . Harmonic operation of the crystal oscillator may be obtained when using 160,80 and 40 meter crystals.

There is a condition of optimum excitation for the beam power final amplifier. In some cases it may be desirable to reduce the output of the oscillator stage so that the final stage will not be overdriven. To do this the oscillator tank is detuned by turning the tank condenser toward its minimum capacity setting.

The final amplifier may be worked "straight through," or it may be used for doubling. It delivers good power outputs when doubling to $80,40,20$ and 10 meters. The final amplifier stage uses plate neutralization so that even on the highest frequencies no difficulty is experienced with selfoscillation. Cathode bias is used on the
final amplifier; this aids in limiting the plate current when the final tank is not tuned to resonance or when there is no excitation on the final grid.

The plate tank coils for both stages are of the plug-in type. Although the crystal oscillator stage is capacity coupled to the final amplifier stage, the plug-in coil used is a Bud type OEL, having a link on one end so that the coil may be used in other applications. The final tank coil is of the center-taped, center-linked type with a semi-fixed link. For the amateur whe changes bands often, this provides the advantage of being able to change coils without changing the loading adjustment for each band.

Both the oscillator and final stage are keyed. The keying jack is of the closed circuit type so that no change in connections is necessary for changing quickly from CW to phone operation.

When properly loaded, the plate current in the final amplifier stage is

110 MA ; and the current in the crystal oscillator plate is 25 to 30 MA . The modulator is a Class B 6A6 operating with 255 volts on the plate. Despite the high plate voltage, operation is very satisfactory in internittent service.

The 6A6 operates at zero bias, and it is driven by another 6A6 triode with its two sections in parallel. The plates of the driver are also operated at 325 volts. The cathode bias on the driver is of the order of 5 to 6 volts. High gain is realized in this stage so that no additional amplification is needed to obtain 100% modulation when using a carbon microphone.

The current for the carbon microphone is obtained by passing the bleeder current through the microphone circuit. Adequate filtering is provided so that no hum enters the audio circuit at this point. In order that the removal of the microphone plug from the chassis will not place a high voltage across $\mathrm{C}-4$, the microphone connector is of the shorting type which closes the microphone circuit even when the microphone has been removed. With such a feature the operator can never inadvertently place high voltage on the condenser, C-4.

The power supply uses a $5 \mathrm{Z3}$ rectifier tube. Separate switches are provided for the plate and filament supplies. A filament switch is mounted on the volume control. A handy toggleswitch on the panel controls the plate supply. A single meter is provided with switching which permits the reading of either the final plate or the oscillator plate current.

TRANSFORMER SPECIALISTS SINCE 1895

Parts Required

	THORDARSON TRANSFORMERS and CHOKES
T-1	T-92R21 Power Transformer
T-2	T-86A02 Microphone Transformer
T-3	T-19D06 Driver Transformer
T-4	T-19M13 Modulation Transformer
CH-1	T-18C30 Filter Choke
CH-2	T-74C30 Filter Choke
R-1	Remistors: 20,000 Ohm 25 Watt Semi-Variable Resistor
R-2	500,000 Ohm Volume Control with Switch
R-8	1,000 Ohm 1 Watt Resistor
R-4	50 Ohm 10 Watt Resistor
R-5	500 hm 10 Watt Resistor
R-6	3,500 Ohm 10 Watt Resistor
R-7	50,000 Ohm 1 Watt Resistor
R-8	200 Ohm 10 Watt Resistor
R-9	20,000 Ohm 1 Watt Resistor
R-10	200 Ohm 10 Watt Resistor
C-1	Condensers: 8 Mfd. 600 Volt Condenser
C-2	Double 8 Mfd .450 Volt Condenser
C-4	10 Mid. 25 Volt Electrolytic Condenser
C-5	10 Mfd. 25 Volt Electrolytic Condenser
C-6	. 002 Mfd .500 Volt Mica Condenser
C-7	. 0001 Mid. 500 Volt Mica Condenser
C-8	. 002 Mfd. 500 Volt Mica Condenser
C-9	. 002 Mfd . 1,000 Volt Mica Condenser
C-10	. $0001 \mathrm{Mfd} .1,000$ Volt Mica Condenser
C-11	. 002 Mfd . 1,000 Volt Mica Condenser
C-12	. 002 Mfd. 1,000 Volt Mica Condenser
C-13	.002 Mfd. 1,000 Volt Mica Condenser
C-14	100 Mmid . Variable Condenser

Condensers: (Cont.)

C-15 100 Mmfd . Variable Condenser C-16 Neutralizing Condenser

RF Chokes:

RFC-1 RF Choke
RFC-2 RF Choke
RFC-3 RF Choke
RFC-4 RF Choke
RFC-5 RF Choke

Miscellaneous Parte:

1 Chassis $14^{\circ} \times 10^{\prime \prime} \times 3^{\circ}$ (Punched and Drilled)
1 Panel (Punched and Drilled)
1 Cabinet
4 Feed-thru Insulators
2 5-Contact Sockets, Steatite
2 7-Contact Sockets, Large
2 Octal Sockets
1 4-Contact Socket
1 5-Contact Socket
1 Switch Plate
1 SPST Switch
1 DPDT Toggle Switch
1 Mic. Input Plug
1 Input Plug Shield
3 Knobs
2 Name Plates Marked "CRYSTAL OSC. PLATE"
2 Name Plates Marked "POWER AMP. PLATE'
1 Name Plate Marked "A.F. GAIN"
1 Name Plate Marked "PLATE VOLTAGE"
1 Name Plate Marked "MICROPHONE"

Miscellaneous Parts: (Cont.)
1 Circuit Closing Jack
1 Line Cord and Plug
Miscellaneous nuts, bolts, soldering and mounting lugs, lock-washers and other hardware.

Accessories:

1 L-1 160 Meter RF Coil, End Linked, Bud Type OEL-160 or Equivalent
1 L-1 80 Meter RF Coil, End Linked Bud Type OEL-80 or Equivalent
1 L-1 40 Meter RF Coil, End Linked, Bud Type OEL-40 or Equivalent
1 L-1 20 Meter RF Coil, End Linked, Bud Type OEL-20 or Equivalent
1 L-1 10 Meter RF Coil, End Linked, No Tap Bud Type OEL-10 or Equivalent
1 L-2 160 Meter RF Coil, Center Linked, Center Tapped, Bud Type OLS-160 or Equivter alent
1 L-2 80 Meter RF Coil, Center Linked, Center Tapped, Bud Type OLS-80 or Equivalent
1 L-2 40 Meter RF Coil, Center Linked, Center Tapped, Bud Type OLS-40 or Equivalent
1 L-2 20 Meter RF Coil, Center Linked, Center Tapped, Bud Type OLS-20 or Equivalent
1 L-2 10 Meter RF Coil, Center Linked, Center Tapped, Bud Type OLS-10 or Equivalent 0-150 MA DC Meter, 2* Square Case. No Illumination Triplett 227-A or EquivNo alent Crystal
6V6G Tube
6L6-G or 6L6GX Tube
523 Tube 6A6 Tubes

Complete kit of the above parts with large size circuit diagram available from your local Thordarson distributor. (Accessories not included in kit).

Cabinet View

THIS transmitter, designed especially for operation on the 5 and 10 meter bands, includes on one chassis a 50 watt RF section, a 25 watt modulator and the power supplies for both the RF section and modulator.

The tube line-up for the RF section is a 6L6-G tri-tet oscillator, an HK-24 doubler and an HK-24 final amplifier.

The 6L6-G oscillator uses 40 and 20 meter crystals for transmitter outputs on 10 and 5 meters respectively. The plate tank of the tri-tet is always to be runed to a frequency double that of the crystal, and in this condition good outputs are obtained. Attempts to operate the oscillator plate tank at the crystal frequency when using a 6L,6-G are likely to damage the crystal. The coil and condenser combination. L.-1 and C-1, has been chosen to give a good oscillator output with reasonably low crystal current.

The HK-24 driven by the oscillator is not neutralized and is always used as a doubler stage delivering power on 10 and 5 meters. The crystal oscillator and doubler stages operate at a plate voltage of 400 volts, and the voltage on the screen-grid of the oscillator is 250.

The HK-24 final amplifier is a conventional Class C stage using a splitstator tank condenser with plate neutralization. Neutralization is accomplished as easily as in transmitters operated at lower frequencies. The neutralizing condenser, $\mathrm{C}-15$, is located on the under side of the chassis and is supported by the large wire connected to its terminals. It should always be adjusted with a non-metallic screw driver.

The oscillator cathode and plate tank coils are wound on $1^{\prime \prime}$ forms, and

Chassis View
the doubler and final amplifier coils are self-supporting coils wound with large copper wire and mounted on National type PB-16 plugs. The doubler plate tank is capacity coupled to the final amplifier grid, and power is taken from the final amplifier plate coil by means of a link which is supported on the coil base terminals. When properly loaded. the final amplifier plate current is 60 MA at 800 volts. The plate transformer has a nominal rating of 750 volts DC. but because of the light loading the higher plate voltage is obtained. The excitation of the final amplifier tube is such that 25 to 30 MA grid current is obtained. The cathode tank of the tri-tet oscillator should be adjusted for the maximum output consistent with good oscillator stability. It will be found that this occurs with the 100 mmfd. cathode condenser, C-1, at about one-half of its maximum capacity.
A meter, M-1, and meter switch. SW-3, are provided for metering the current to the oscillator plate, the

Bottom View
doubler plate, the final amplifier grid and the final amplifier plate.

The modulator uses two 6L6-G tubes in push-pull and operates at a plate voltage of 400 and a screen-grid voltage of 250 , operating in Class $A B_{1}$. The audio amplifier tube line-up is one 6 J 7 pentode, one 6J7 triode and one 6N7 phase invertor. This arrangement provides high gain for use with crystal microphones.

The power supply uses a single transformer to supply all filaments and a dual plate transformer to supply two separate rectifiers. These transformers are controlled by separate

Coil	10 Meter Operation				5 Meter Operation			
	T'urns	Wire Size	Diam. of Winding	Winding Length	Turns	Wire Size	Diam. of Winding	Winding Length
L-1	10	No. 16 Enam.	$1^{\prime \prime}$	Close Wound	4	No. 16 Enam.	1"	Close Wound
L-2	11	No. 16 Enam.	1^{*}	7/8*	6	No. 16 Enam.	$1{ }^{\prime \prime}$	8/4"
L-3	7	No. 10 Bare	$1^{\prime \prime}$	$1{ }^{\prime \prime}$	3	No. 8 Bare	$1{ }^{\prime \prime}$	$3 / 4$.
L-4	16 Center- Tapped	No. 10 Bare	1"	$2^{\prime \prime}$	6 Center-	No. 8 Bare	$1^{\prime \prime}$	$1^{\prime \prime}$

Link coupled to L-4 is of No. 14 bare copper 10 meters a 2 turn link is used: for 5 meters, wire $11 / 2^{\prime \prime}$ in diam. wound over the center of $a 1$ turn link. Coils $L-1$ and $L-2$ are wound on the plate tank coil and supported by the lugs attached to the pins on the PB-16 base. For
a 1 turn link. Coils $L-1$ and $L-2$ are wound on
$I^{\prime \prime}$ forms, Millen No. 45004 . Coils $L-3$ and $L-4$ are self-supporting on National PB-16 plugs.
switches on the panel. The filament switch, SW-1, is associated with the audio amplifier gain control, and the plate switch. SW-2, is of the toggle type placed in a position for convenient operation. The 400 volt supply delivers the current required by the oscillator. doubler, modulator and audio stages. It uses a type 523 rectifier tube. The 800 volt supply handles the final plate power only. Although this transformer is rated at 400 and 750 volts, it is being operated at less than full load so that advantage may be taken of the higher-than-normal voltage available. Economy in the filtering of the two high voltage power supplies is obtained by using the same chokes for filtering the output of both rectifier systems. These chokes are in series with the center tap of the dual plate transformer.

The complete unit is contained on a chassis $17^{\prime \prime} \times 13^{\prime \prime} \times 3^{\prime \prime}$ and is attached to a panel $19^{\prime \prime} \times 10 \frac{1}{2 \prime \prime}$ with the conventional type of chassis mounting brackets. The chassis, panel and chassis mounting brackets are finished in gray flat enamel, giving an unusually attractive appearance with the chromium dial plates. The transmitter may be enclosed in a cabinet or mounted in a rack with other equipment.

Parts Required

THORDARSON TRANSFORMERS

	d
T-1	T-19F77 Filament Transformer
T-2	T-19P70 Plate Transformer
T-3	T-19M14 Modulation Transformer
CH-1	T-75C51 Choke
CH-2	T-75C51 Choke
	Resistors:
R-1	50,000 Ohn 1 Watt Resistor
R-2	350 Ohm 10 Watt Resistor
R-3	10,000 Ohm 10 Watt Resistor
R-4	2,500 Ohm 10 Watt Resistor
R-5	50 Ohm 10 W att Resistor
R-6	50 Ohm 10 Watt Resistor
R-7	50 Ohm 10 Watt Resistor
R-8	50 Ohm 10 Watt Resistor
R-9	5 Megohm 1/2 Watt Resistor
R-10	5,000 Ohm 1 Watt Resistor
R-11	3 Megohm 1/2 Watt Resistor
R-12	500,000 Ohm 1/2 Watt Resistor
R-13	1 Megohm Volume Control with S vitch
R-14	5,000 Ohm 1 Watt Resistor
R-15	100,000 Ohm 1 Watt Resistor
R-16	250,000 Ohm 1/2 Watt Resistor
R-17	2,000 Ohn 1/2 Watt Resistor
R-18	100,000 Ohm 1 Watt Resistor
R-19	100,000 Ohm 1 Watt Resistor
R-20	250,000 Ohm 1/6 Watt Resistor
R-21	$12,000 \mathrm{Ohm} 1 / 2 \mathrm{Watt}$ Resistor
R-22	250,000 Ohm 3/2 Watt Resistor
R-23	250 Ohm 10 Watt Resistor
R-24	20 Ohm 10 Watt Center Tapped Resistor
R-25	$40,000 \mathrm{Ohm} 50$ Watt Resistor
R-26	300 Ohm 10 Watt Resistor
R-87	20,000 Ohm 50 Watt Semi-Variable Resistor
R-28	20,000 Ohm 1 Watt Resistor
R-29	20,000 Ohm 1 Watt Resistor
R-30	7,500 Ohm 25 Watt Semi-Variable Resistor

Condensers:

C-1 $\quad 100 \mathrm{Mmfd}$. Variable Condenser .01 Mfd. 400 Volt Condenser .002 Mfd. 1,000 Volt Mica Condenser . 002 Mfd. 1,000 Volt Mica Condenser 35 Mmfd . Variable Condenser .0001 Mfd. 1,000 Voit Mica Condenser $.002 \mathrm{Mfd} .1,000$ Volt Mica Condenser $.002 \mathrm{Mfd} .1,000$ Volt Mica Condenser 35 Mmfd . Variable Condenser
.002 Mfd. 1,000 Volt Mica Condenser .0001 Mfd. 1,000 Volt Mica Condenser $.002 \mathrm{Mfd} .1,000$ Volt Mica Condenser $.002 \mathrm{Mfd} .1,000$ Volt Mica Condenser $35-35 \mathrm{Mmfd}$. Variable Condenser Neutralizing Condenser
04 Mfd 400 Volt Condelic Condenser .04 Mfd .400 Volt Condenser
10 Mfd. 25 Volt Electrolytic Condenser
.1 Mfd. 400 Volt Condenser
.1 Mfd. 400 Volt Condenser
.1 Mfd. 400 Volt Condenser
10 Mfd .25 Volt Electrolytic Condenser
2 Mfd . 1,000 Volt Condenser
2 Mfd. 1,000 Volt Condenser
8 Mfd .600 Volt Electrolytic Condenser
8 Mfd. 600 Volt Electrolytic Condenser
Triple 8 Mfd .450 V Electrolytic Condenser
RF Chokes:
$\begin{array}{ll}\text { RFC-1 } & \text { RF Choke } \\ \text { RFC-2 } & \text { RF Choke } \\ \text { RFC-3 } & \text { RF Choke } \\ \text { RFC-4 } & \text { RF Choke } \\ \text { RFC-5 } & \text { RF Choke } \\ \text { RFC-6 } & \text { RF Choke }\end{array}$

Miscellaneous Parts:

Chassis $17^{\prime \prime} \times 13^{\prime \prime} \times 3^{\prime \prime}$ (Punched and Drilled)
1 Panel $19^{\circ} \times 121^{\circ} \times$ (Punched and Drilled) Pr. Chassis Mounting Brackets
Ortal Sockets
4-Contact Socket
4-Contact Sockets, Isolantite
Plug-in Sockets
Plug-in Bases
Coil Forms
Crystal Socket
Knobs
Pointer Knob
SPST Switch, N. P.
Double-Pole, 4-Throw Switch, Isolantite Input Plug
Input Shield
Metal Tube Grid Caps
Metal Tube Grid Cap Shields
Name Plates Marked "POWE1K A MP. PLATE"
Name Plate Marked "POWER AMP. GRID"
Name Plates Marked 'BUFFERPLATEGRID'
Name Plates Marked "CRYSTAL OSC.
Name Pla
1 Name Plate Marked "AF GAIN"
Line Cord and Plug
Miscellaneous nuts, bolts, soldering and mounting lugs, lock-washers and other hardware.

Accessories:				
11	$0-150$ MA DC Meter 3^{\prime} Square Case, Illumination, Triplett 327A or Equivalea			
	Cabinet	3	6L66-G or	6L6G X
1	Crystal	1	573	Tube
2	6J7 Tubes	2	866-JR	Tubes
1	6N7 Tube	2	HK-24	Tubes

Complete kit of the above parts with large size circuit diagram available from your local Thordarson distributor. (Accessories not included in kit).

Cabinet View

Rear View

COMPACTNESS, reliability, ease of operation and neatness of appearance are salient features of this 55 watt phone and 80 watt CW transmitter. Designed with entirely separate audio and RF sections and each having its own power supply, either of these two matched units may be used separately. For the CW operstor the compact and neat appearing RF section is a pleasure to have on the operating table or in the rack. Operating with 80 watts input, the high plate efficiency of the final stage not only makes it an outstanding transmitter but also a highly desirable exciter unit for trausmitters having inputs as high as 500 watts. Circuits are strictly conventional, and components are conservatively chosen.

The modulator, with an output of 30 watts, easily modulates the 55 watt Class C input of the RF amplifier. The high gain (122 db) enables it to modulate the transmitter 100% with very weak audio signals. With the MultiMatch modulation transformer the amateur may use it to modulate any transmitter requiring 30 watts of audio power.

The RF line-up is as follows: a 6F6-G crystal oscillator stage, a 6I,6-G buffer-doubler stage, and an 809 final amplifier stage. The 6F6-G operates with 320 volts on the plate and 270 volts on the screen-grid. The 6L6-G operates with a plate voltage of 340 volts and a screen-grid voltage of 250 . For phone operation the voltage on the 809 plate is 625 volts, and for CW operation this voltage is raised to 785.
The oscillator stage operates with all crystals from 160 to 10 meters, but
for best stability and freedom from "chirps" it is recommended that for 10 meter operation a 20 meter crystal be used and doubling be carried on in the buffer-doubler stage. When the crystal stage is in an oscillating condition and is loaded by the grid of the next stage, the oscillator plate current is approximately 30 to 40 MA . The buffer-doubler stage is neutralized and may be used with excellent results either for frequency multiplying or as a regular buffer. When using 160 and 80 meter crystals, not only is doubling easity accomplished in the second stage but enough output can be obtained by quadrupling to give good excitation to the 809 grid on 40 and 20 meters. When the 61.6-G is driving the 809 grid to 30 MA of grid current, the plate current of the 6L.6-G is on the order of 70 MA . The antenna loading should be adjusted so that the final amplifier plate current is 88 MA for a 55 watt phone input. For an 80 watt CW input the loading is adjusted so that the final amplifier plate current is 102 MA. The secondary of the plate transformer supplying energy to the final amplifier is equipped with taps so that by merely changing these taps the change from 625 volts for phone operation to 785 volts for CW operation may be made. Correct tuning of the buffer-doubler plate circuit is accomplished by noting the grid current reading of the final amplifier stage. Care should be taken that the 6L6-G plate circuit is not tuned to some undesired harmonic of the crystal frequency.

The same final tank coil is used for operation on 80 and 160 meters. For

160 meter operation a fixed air condenser is plugged into the jack-base which is shown in the top view of the RF section on page 9. If the amateur does not desire operation on 160 meters, it is unnecessary to have the Cardwell IB base or the Cardwell JD-80-OS condenser. The spacing of the final tank condenser is $0.070^{\prime \prime}$, which is greater than is usually found for use with the voltages encountered in this circuit. However, such spacing permits grounding of the rotor. Should the amateur wish to build for CW operation only, a spacing of $0.050^{\prime \prime}$ is satisfactory.

The modulator has for its output stage two 6L6-G's operating in Class $A B_{1 .}$ At no-signal the plate-to-ground (-B) voltage is 390 volts. The screengrid voltage to ground should be adjusted by means of R-14 to a value of 310 volts. In this condition the voltage measured from cathode to ground across R-13 is 20 volts.
The three stages before the output stage provide adequate gain for the use of this modulator with all types of microphones. The input to the first stage, a pentode-connected 6J7. is shielded to avoid hum pick-up and to prevent pick-up of RF energy. As a further precaution against the entrance of RF energy to the grid of this stage, a filter consisting of $\mathrm{C}-1, \mathrm{RFC}-1$ and $\mathrm{C}-2$ is installed in the input circuit. These elements, in addition to the grid lead and R-1, are carefully shielded with pieces of tinned copper. The result is that with the volume control wide open, the amplifier operates perfectly; and the residual hum is 45 to 50 db below the full output power.
(Continued on Page 10)

55 Watt Phone, 80 Watt CW Transmitter

Top View of RF Section

Bottom View of RF Section

COIL DATA - 55 or 80 WATT TRANS.

COIL DATA - 55 or 80 WATT TRANS.							
Band	L-1 and L-2			L. -3			
	Turns	Winding Length	Wire Size	Turns	Winding Length	Wire Size	$\begin{aligned} & \text { Link } \\ & \text { Turns } \end{aligned}$
160	58	$19 / 1{ }^{\prime \prime}$	\#22	42	13/4"	\#18	\pm
80	30	$13 / 8{ }^{\prime \prime}$	$\# 18$	42	$13 / 4{ }^{\prime \prime}$	\#18	4
40	16	$13 / 8{ }^{\prime \prime}$	$\# 18$	32	$23 / 8{ }^{\prime \prime}$	\#18	4
20	8	11/4"	\#18	14	$2^{\prime \prime}$	\#16	2
10	4	11/4"	\#18	6	11/4"	\#16	1
$L-1$ and L-2 are wound on IIammarland XP-53 Coil Forms. The coil ends are connected to No. 1 and No. 4 pins. L-2 is center-tapped. the tap being brought out on pin No. 3. L-3 is wound on National $X R-13$ Coil Forms attached to a PB-5 plug. Link is wound with insulated wire directly over bare wire of plate coil.							

Front View of RF Section

Top View of Modulator

Plug-In Coils

RF Section

The power supply for the RF unit consists of two rectifier systems, one using a 573 to supply the plates and screen-grids of the two low power stages and the other using a pair of 866 -JR's to supply the plate of the final amplifier. The power supply on the modulator chassis uses a 57.3 . On each chassis there is a separate filament supply. On the RF chassis and on the modulator chassis there are two switches, one for the filament supply and one for the plate supply. Thus, one unit can be operated independently of the other. When using the RF unit alone for CW operation, join terminals No. 2 and No. 3 and connect the 115 volt supply line to terminals No. 1 and No. 2. In this condition of operation SW-1 controls the filaments and SW-2 controls the plate supplies. For phone operation, in which it is desired that a single switch operate all plate supplies, connect the 115 volt supply line to terminals No. 4 and No. 5 on the modulator chassis; then connect terminals No. 1, No. 2 and No. 3 on the modulator to their respectively numbered terminals on the RF chassis. On the RF chassis, close SW-1 and SW-2. Then, on the modulator chassis, SW-1 controls all the filaments and SW-2 controls all the plate supplies.

Parts Required

TRANSFORMER SPECIALISTS SINCE 1895

Modulator Section

Parts Required

THORDARSON TRANSFORMERS

R-1 5 Megohm 1/4 Watt Resistor
R-2 5,000 0hm 1/4 Watt Resistor
R-3 25,000 Ohm 1 Watt Resistor
R-4 250,000 Ohm $1 / 2$ Watt Resistor
R-5 $\quad 500,000 \mathrm{Ohm}$ 1/2 Watt Resistor
R-6 1 Megohm Volume Control
R-7 $2,5000 \mathrm{hm} 1$ Watt Resistor
R-8 100,000 Ohm 1 Watt Resistor
R-9 $250,000 \mathrm{Ohm} 1 / 2$ Watt Reaistor
R-10 1,000 Ohm 1 Watt Resistor
$\begin{array}{ll}\text { R-11 } & 50,000 \mathrm{Ohm} 1 \text { Watt Resistor } \\ \mathrm{R}-12 & 50,000 \mathrm{Ohm}\end{array}$
R-13 1500 hm 25 Watt Reasistor
R-14 2500 Ohm 25 Watt Semi-
R-14 2,500 Ohm 25 Watt Semi-Variable Resistor
12,000 Omm Watt Resistor
R-17 20,000 Ohm 1 Watt Resistor

Condensers:

C-1 . 0001 Mfd. 500 Volt Mica Condenser C-2 .0001 Mid .500 Volt Mica Condenser C-3 $\quad 10 \mathrm{Mfd} .25$ Volt Condenser

1 Mid 400 Volt Paper Condens
10 Mrd .45 Volt Paper Condenset
.1 Mfd. 400 Volt Condenser
10 Mfd 25 Volt Condenser
10 Mfd . 50 Volt Condenser
8 Mid. 600 Volt Condenser
Triple 8 Mfd. 450 Volt Condenser

RF Choke:
T-74A31 Push-pull Input Transforme T-19M1 Modulation Transiormer
T-19P7 Plate Transformer T-17C00 Filament Transformer T-13C27-B Filter Choke 20,000 Ohm 1 Watt Resistor $\mathbf{2 0 , 0 0 0} 0 \mathrm{hm} 1$ Watt Resistor

RFC-1 RF Choke

Miscellaneous Parts
Chassis $17^{\prime \prime} \times 10^{\prime} \times 2^{\prime \prime}$ (Punched and Drilled) Panel $19^{\prime} \times 7^{*}$ (Punched and Drilled)
5-Lug Terminal Board
Pr. Chassis Mounting Brackets
Feed-thru Bushings
Octal Sockets
4-Contact Socket \quad Dial Plate Marked "GAIN"
Dial Plate Marked "GAIN"
Microphone Input Plug
Microphone Input Plug
Microphone Input Plug Shield

Complete kit of the above parts with large size circuit diagram availabl from your local Thordarson distributor. (Accessories not included in kit).

Bottom View of Modulator

12 Watt Mabile Transmitter for 5-10 Meters

PORTABLE mobile operation on 5 and 10 meters is the distinctive feature of this unit. It is of a rugged chassis type construction especially planned to be used in automobiles. It operates from a 6 volt storage battery using a vibrator power supply which may be remotely controlled from a point several feet away, as for example, a driver's seat.
The RF tube line-up is as follows: a $6 \mathrm{~V} 6-\mathrm{G}$ tri-tet crystal oscillator, and a T-2l final amplifier. The oscillator stage operates with a 20 meter crystal, and doubling is carried on in the plate circuit. At no time is operation of the crystal stage "straight through" recommended. The oscillator plate tank is capacity-coupled to the T-21 grid. The T-21 operates "straight through" on 10 meters, and for 5 meter operation doubling in the final is accomplished. The final tank condenser is of the splitstator type. The final amplifier is neutralized in a conventional manner. The cathode tank coil is wound on a $1^{\prime \prime}$ form, and the oscillator plate and final plate tank coils are wound on National PB-16 bases with heavy copper wire. Power is taken from the final tank by means of a link.

The power input to the final amplifier plate when it is properly loaded is of the order of 10-12 watts. The final stage cathode current should be between 50 and 55 MA .

Since the transmitter will be operated in an unattended condition, the three variable condenser adjustments are made with a screw driver and then locked with special nuts. The metering of the oscillator cathode current, the final grid current and the final cathode current is done by plugging in an external meter in the jacks provided.

A single $6 \mathrm{~V} 6-\mathrm{G}$ tube operates as a Class A amplifier to modulate the T-2I tube. Provision is made for remotely connecting a carbon microphone to the primary of the microphone transformer which is installed on the under side of the chassis. A control with a screw driver adjustment permits the adjustment of the gain of the audio system to the desired amount.

The power supply uses a vibrator having accessible actuating coil terminals. With such a vibrator it is possible to avoid switching the high current which flows in the primary of the

vibrator transformer, and consequently, the control of this vibrator may be done at a distance without the necessity of using connections of high current carrying capacity. The rectifier tube is a $6 \mathrm{~W} 5-\mathrm{G}$. Connections made through socket S-2 to the control box, which may be located at any given convenient place, are such that the closing of switch SW-1 causes the filaments to heat and the current to flow in the microphone circuit. The closing of SW-2 starts the vibrator. Consequently, SW-2 may be used as a stand-by switch. The operator is cautioned against closing SW-2 before the filaments have had time to heat, for the premature closing is likely to damage the $6 \mathrm{~W} 5-\mathrm{G}$.

Separate plugs and sockets are provided for the entrance to the chassis of the power supply and the control wiring. This also aids in keeping vibrator noises out of the microphone circuit. As a further precaution against (Continued on following page)

Coil	Turns	Wire Size	Diam. of Winding	Winding Length	Supporting Form
L-1	5	No. 16 Enameled	$1{ }^{\prime \prime}$	Close Wound	Millen No. 45004 Coil Form
L-2	6	No. 10 Bare	$1^{\prime \prime}$	$1{ }^{\prime \prime}$	Self-Supporting on National PB-16 Plug
$\frac{\mathrm{L}-3}{10 \text { Meters }}$	16 Center- Tapped	No. 10 Bare	1*	2"	Self-Supporting on National PB-16 Plug
$\begin{gathered} \mathrm{L}-3 \\ 5 \text { Meters } \end{gathered}$	$\stackrel{6}{\text { Center- }}$ Tapped	No. 10 Bare	$1{ }^{\prime \prime}$	1 "	Self-Supporting on National PB-16 Plug
The link on $L-3$ is made of 1 turn of No. 14 bare copper wire about $11 / 2^{\prime \prime}$ in diameter looped around the center portion of L-3 and supported by the terminal lugs on the PB-16 plug.					

TRANSFORMER SPECIALISTS SINCE 1895

12 Watt Mabile Transmitter for 5-10 Meters

having any vibrator interference in the microphone circuit, any ripple which is superimposed on the leads from SW-1 is effectively filtered out by the $\mathrm{CH}-2$ -C-12 filter. All leads carrying current to the 6 V primary of the power transformer should be of heavy wire, No. 16 or larger. This measure must be taken so that the full battery voltage is available at the transformer. Similarly, the
wire in the power cable from S-1 to the battery should be large. This precaution also tends to minimize vibrator noise.
The polarity of the battery when connected to the transmitter is not important. However, when installed in an automobile in which one battery serves both the transmitter and the car electrical system, some attention should
be given to the polarity. This is especially necessary if the transmitter chassis is in contact with the frame of the car.

In wiring, careful attention should be given to the placement of leads and chassis connections. Wherever possible the leads carrying vibrator current should not be common with those carrying signal currents.

Parts Required

THORDARSON TRANSFORMERS and CHOKES

and CHOKES	
T-1	T-14K38 Power Transformer
T-2	T-86A02 Microphone Transformer
T-3	T-19M13 Modulation Transformer
CH-1	T-57C53 Filter Choke
CH-2	T-14C61 Filter Choke
	Resistors:
R-1	200 Ohm 1 Watt Resistor
R-2	500,000 Ohm Volume Control
R-3	300 Ohm 10 Watt Resistor
R-4	20,000 Ohm 10 Watt Resistor
R-5	$50,000 \mathrm{Ohm} 1 \mathrm{Watt}$ Resistor
R-6	350 Ohm 10 Watt Resistor
R-7	$12,000 \mathrm{Ohm} 10$ Watt Resistor
R-8	$50,000 \mathrm{Ohm} 1$ Watt Resistor
R-9	350 Ohm 10 Watt Resistor
R-10	10,000 Ohm 10 Watt Resistor
	Condensers:
C-1	. 002 Mfd. 500 Volt Mica Condenser
C-2	. 01 Mid. 400 Volt Condenser
C-3	. 002 Mfd. 500 Volt Mica Condenser
C-4	. 002 Mfd. 500 Volt Mica Condenser
C-5	100 Mmid . Variable Condenser

Condensers: (Cont.)

Condensere: (Cont.)	
C-6	35 Mmfd . Variable Condenser
C-7	. 0001 Mfd. 500 Volt Condenser
C-8	. 002 Mid. 500 Volt Mica Condenser
C-9	. 002 Mid. 500 Volt Mica Condenser
C-10	Neutralizing Condenser
C-11	35-35 Mmid. Variable Condenser
C-12	100 Mid. 25 Volt Electrolytic Condenser
C-13	10 Mfd. 25 Volt Electrolytic Condenser
C-14	. 1 Mid. 400 Volt Condenser
C-15	. 1 Mid. 400 Volt Condenser
C-16	. 05 Mfd . Oil Impregnated Condenser
C-17	. 05 Mfd . Oil Impregnated Condenser
C-18 ${ }_{\text {C-1 }}$ (Double 8 Mfd .450 Volt Condenser
RF Chokes:	
RFC-1	RF Choke
RFC-2	RF Choke
RFC-3	RF Choke
RFC-4	RF Choke
Miscellaneous Parts:	
1 Cha	assis $11^{\prime \prime} \times 8^{\prime \prime} \times 3^{\prime \prime}$ (Punched and Drilled)
1 Vib	rator Mounting Plate
1 Bot	tom Plate

from your local Thordarson distributor. (Accessories not included in kit).

FOR PORTABLE AND EMERGENCY SERVICE

Cabinet Viow

Chassis View

OPERATING on either 115 volts $A C$ or 6 volts $D C$, this unit not only provides the amateur with an emergency transmitter for battery opcration but also may be used as the regular transmitter in the "shack" when so desired. No changes of parts or wiring are necessary for conversion from AC to DC - only the insertion of the proper power plug is required.

On battery operation 10 to 12 watts input may be obtained, and on AC operation, slightly more than 12 watts input may be expected.

The oscillator tube is a 6 V 6 - G used in a regenerative type circuit having an RF choke in the cathode circuit. The final stage uses an 807 tube.

The final tank circuit consists of two condensers, $\mathrm{C}-10$ and $\mathrm{C}-11$, and a coil, L-2. This tank circuit may be used in the conventional manner by turning C-11 to maxinum capacity, in which position a bent rotor plate shorts it out and grounds one side of the link. For settings of $\mathrm{C}-11$ less than full capacity, the 807 is working into a pi network having for its elements $\mathrm{C}-10, \mathrm{C}-11$ and $\mathrm{L}-2$. A singlewire antenna may then be connected to the high side of $\mathrm{C}-11$, and the degree of loading may be adjusted by varying C-11 and retuning $\mathrm{C}-10$. In all cases C-10 should be tuned for the nainimum plate current, and each readjustment of $\mathrm{C}-11$ will require a change of C-10. This provides an easy method of connecting a wide variety of types of sing!e-wire antennas to the transmitter and quickly adjusting to the proper degree of loading. The loading is made greater as the capacity of C-11 is decreased.

A single meter is provided with a switch which permits reading plate current in either the oscillator or the final stage. Because of the excellent shielding and the good circuit layout it was unnecessary to neutralize the 807 tube.

The transmitter may be used on all bands from 160 to 10 meters, and doubling may be accomplished in the crystal stage when using 160,80 and 40 meter crystals. A closed circuit jack is provided which permits keying the oscillator and amplifier stages simultaneously. Too much grid excitation on the 807 final causes the screen-grid current to become too high. Because the screen-grid voltage is obtained through a dropping resister, this increase in screen current causes the screen-grid voltage to become low enough that the power output capability of the 807 is reduced. In cases where less excitation is desired, the oscillator tank condenser C- 6 may be turned toward its minimum capacity setting.

The modulator is a $6 \mathrm{~V} 6-\mathrm{G}$ operating Class A, and the audio amplifier section consists of two 6 J 7 tubes, pentode connected, providing enough gain for operation with a crystal microphone.
The power supply uses a special vibrator transformer which may be used on either 6 volts DC or 115 volts AC. For AC operation the heater voltage for the tubes is obtained from a transformer winding; and for DC operation the heater voltage is obtained directly from the battery.

In DC operation the closing of $\mid S W-1$ causes the filaments to be heated, and the closing of SW-2 causes the vibrator to operate. A short time should be allowed for the heaters to warm up before closing SW-2. Unless such a precaution is taken, there is possibility of damaging the 6 W 5 -G tube.
In AC operation SW-1 should be closed, and the complete power supply is then controlled by SW-2. To provide a source of high voltage DC for the operation of receivers or any other auxiliary equipment, a switch is prorided on the meter panel which removes the plate voltage from the tubes in the transmitter and makes it javailable at a terminal board to which may be connected any other equipment. This switch, SW-3. can then be used as a stand-by switch between transmissions. This source of voltage is available in either AC or DC operation. It is an extremely handy way of supplying the high voltage required for a receiver. Currents up to 100 MA may be drawn from the supply for use on external equipment.
The complete transmitter is mounted in a small metal cabinet and the entire unit, including the cabinet, is finished in gray flat enamel.

FOR PORTABLE AND EMERGENCY SERVICE

THORDARSON TRANSFORMERS

T-14R40 Power Transformer T-19M13 Modulation Transformer

Resistore
$20,000 \mathrm{Ohm} 1 \mathrm{Watt}$ Resistor 350 Ohm 10 Watt Resistor 15,000 Ohm 10 Watt Resistor $100,000 \mathrm{Ohm} 1$ Watt Resistor 300 Ohm 10 Watt Resistor 15,000 Ohm 10 Watt Resistor 50 Ohm 10 Watt Resistor 5 Megohm 16 Watt Resiato $5,000 \mathrm{Ohm}$ 1 Watt Resistor 3 Megohm is Watt Resistor 5000000 Mm w 1 Megohm Volume Control $5,000 \mathrm{Ohm} 1$ Watt Resistor 8 Megohm $1 / 2$ Watt Resistor $500,000 \mathrm{Ohm} 16 \mathrm{~W}$ att Resisto $500,000 \mathrm{Ohm} 3 \mathrm{~W}$ Watt Resistor 300 Ohm 10 Watt Resistor $20,000 \mathrm{Ohm} 1 \mathrm{Watt}$ Resistor 20,000 Ohm 1 Watt Reaistor 30,000 Ohm 20 Watt Resistor

Condensers:
01 Mfd. 400 Volt Condenser 0001 Mid 500 Volt Mica Condenser 01 Mfd .400 Volt Condenser 002 Mid. 1,000 Volt Mica Condenser 0001 Mfd. 500 Volt Mica Condenser 100 Mmid . Variable Condenser 002 Mid. 500 Volt Mica Condenser

Parts Required

Condensers: (Cont.)
C-9 .002 Mid . 1,000 Volt Mica Condenser C-10 100 Mmfd . Variable Condenser C-11 100 Mmfd . Variable Condenser
C-12 10 Mfd. 25 Volt Electrolytic Condenser . 04 Mid. 400 Volt Condenser
.04 Mid. 400 Volt Condenser
10 Mfd. 25 Volt Electrolytic Condenser
.04 Mid .400 Volt Condenser
C-17 $\quad .04$ Mid. 200 Volt Clendenser
$\begin{array}{ll}\text { C-18 } & 10 \text { Mid. } 25 \text { Volt Electrolytic Condense } \\ \text { C-19 } & \text {. } 5 \text { Mfd. } 400 \text { Volt Condenser }\end{array}$
C-20 4 Mfd. 600 Volt Condenser
$\left.\begin{array}{c}\mathrm{C}-21 \\ \mathrm{C}-22\end{array}\right\}$ Double 8 M fd. 450 Volt Condenser
C-23 . 05 Mfd. 1,600 Volt Condenser
C-24 . 05 M Id. 1,600 Volt Condenser

RF Chokes:			
RFC-1	RF Choke	RFC-4	RF Choke
RFC-2	RF Choke	RFC-5	RF Choke
RFC-3	RF Choke		

Miscellaneous Parta:

1 Chasgis $10^{\prime \prime} \times 14^{\prime \prime} \times 3^{\prime \prime}$ (Punched and Drilled)
Panel (Punched and Drilled)
Cabinet
Vibrator Mounting Plate
5-Contact Sockets
Octal Sockets
4-Contact Socket
5-Contact Socket
DPST Switches
SPDT Switch
DPDT Switch
Phone Jack, Circuit Closing

Miscellaneous Parte: (Cont.)

1 Plug

2 Sockets
1 Mic. Plug
1 Mic. Plug Shield
Knobs
Name Plate Marked "A.F. GAIN"
Name Plate Marked "CRYSTAL OSC. PLATE''
2 Name Plates Marked "POWER AMP. PLATE"'
Name Plate Marked "'SEND-RECEIVER'"
Name Plate Marked "PLATE VOLTS"
Name Plate Marked "KEX Plate Marked "PLATE CURRENT"
Miscellaneous nuts, bolts, soldering lugs, lock washers, grommets and other hardware.

Accessories:

Vibrator Mallory 825 or Equivalent $0-100$ MA DC Meter 2^{\prime} Square Case Triplett 227A or Equivalent Crystal
$6 W 5-G$
6W5-G Tube
6V6-G Tubes
807 or HY61/807 Tube
160 Meter RF Coils, End Linked, No Tap, Bud OEL-160, or Equivalent 80 Meter RF Coils, End I inked, No Tap, Bud OEL-80, or Equivalent 40 Meter RF Coils, En
OEL-40, or Equivalent 20 Meter RF Coils, En
20 Meter RF Coils, End Linked, No Tap, Bud
10 Meter RF Coils, End Linked, No_Tap, Bud OEL-10, or Equivalent

THIS to watt exciter operates on the five :mateur bands from 160 to 10 meters, all bands being selected by switches on the panel. The operator has the choice of three crystal frequencies, which may provide operation on all bands or at s'ighty different points in the same band.

The exciter is a three-stage unit using a 6V6-G crystal oscillator, a 61,6-G buffer-doubler and an 807 final amplifier. The excirer is built on a 17" $\mathrm{x} 13^{\prime \prime} \mathrm{x} 4^{\prime \prime}$ chassis, complete with its filament and high voltage power supplies. It is supplied with a specially prepared $19^{\prime \prime} \times 121 / 4^{\prime \prime}$ panel designed to harmonize with the many high power units with which it may he associated. The panel is finished in black with white lettering opposite all switches and dials. No additional markings or lettering are necessary. The position of each coil switch is clearly shown. The chassis is equipped with a five-lug terminal board so that connections can be made for controlling high voltage power supplies and filament supplies for other units by means of the switches on this chassis.

Circuit Details

The 6V6-G crystal oscillator is of the regenerative type having an RF choke in its cathode circuit. The oscillator plate tank coil is a Barker and Williamson type 2AB, which may be tuned with one condenser to all five frequency bands. This tank coil is divided into five sections, and the switching is such that all tive sections are used for 160 meters; and only one section for 10 meters. The shorting switch on this coil is such that not only are the unused portions of the coil shorted out, but the unused portion adjacent to the one in operation is independently and directly shorted out. This feature reduces the losses due to shorted turns.

The oscillator stage operates with a plate voltage of 350 volts and a screen
voltage of 180 volts. When loaded by the buffer-doubler stage, the oscillator plate current is about 20 to 25 MA . For 10 meter operation hest resulus are obtained by using a 20 meter crystal, although quadrupling from 40 meters may a!so be easily carried out in the buffer-doubler. The crystals are mounted on the chassis with very short leads to the grid circuit. Crystal switching is accomplished by means of a flexible shaft connected to the crystal switch on the panel. This allows the crystat to be well placed to avoid undesirable electrical effects and also permits the crystal switch to be placed in a position on the panel which makes operation most convenient.

The buffer-doubler stage uses a 6L6-G with a plate voltage of 400 V . and a screen voltage of 180 V . This stage also has for its plate tank coil a type $2 A B$ coil which covers five bands with ane condenser. When loaded down by the grid of the final stage, the buf-fer-doubler plate current is 35 to 40 MA. With excitation on any band from 160 to 20 meters the buffer-doubler stage very efficiently doubles. With excitation on 160,80 and 40 meters. quadrupling may be accomplished in this stage. Although the 6L6-G is not neutralized, the amount of feedback is so low that the stage may be worked "straight through" on 160 meters.

The final amplifier stage uses an 807 and operates with 400 volts on the plate and 270 volts on the screen. A power input of 40 watts may be obtained under such conditions. and the power output is of the order of 25 watts. The excitation to this stage shou!d be adjusted so that the grid current is 5 to 10 MA . Care should be taken not to overdrive this bearm power tube. for in such a case the plate efficiency decreases. Usually more than enough excitation is obtainable, and the reduction of excitation to this stage may be accomplished by slightly detuning the buffer-doubler tank. The

cathode bias on the buffer-doubler stage prevents the current from rising to abnormal values when detuning. The final plate coil is of turret type construction; and the turret has mounted upon it a coil for each of the five bands, each coil with its associated link. Provision is made for shorting out the four unused coils and their links. The final tank condenser is of the split-stator type with the rotor grounded. It was not found necessary to neutralize the final amplifier.

The power supply uses an 83 rectifier, and the power transformer is conservatively rated. Filament and plate supplies may be switched separately from the front of the panel. The switches are plainly marked on each panel.

The oscillator tank and buffer tank coils are mounted with their axes at right angles to each other to avoid any interaction. The final tank coil is mounted above the chassis, and no coupling exists from the final coil to any of the low power stages.

The power output is sufficient to excite Class C stages having inputs as high as 250 to 400 watts. A single meter on the panel and its associated switch provide current readings in the following circuits: crystal oscillator plate. buffer-doubler plate, final amplifer grid and final amplifier plate.

The chassis construction is so arranged as to provide for an increase in power output by changing to the circulit shown for the 120 watt band switching exciter. Knock-our holes are made for the addition of rectifier tube sockets, and extra holes are drilled in the chassis to accommodate the dual plate transformer and the T-19F77 filament transformer required because of the additional $866-\mathrm{JR}$ filament load. Space is provided on the under side of the chassis for the mounting of the high voltage condensers used to filter the output of the $866-J$ R's.

TRANSFORMER SPECIALISTS SINCE 1895

Parts Required

THORDARSON TRANSFORMERS
 and CHOKES

T-1 T-19F76 Filament Transformer
T-2 T-94P60 Plate Transformer
CH-1 T-75C51 Filter Choke
CH-2 T-75C51 Filter Choke

Resistors:

R-1 20,000 Ohm 1 Watt Resistor
R-2 350 Ohm 10 Watt Resistor
R. 3100,000 Ohm 1 Watt Resistor

R-4 $\quad 350$ Ohm 10 Watt Resistor
R-5 10,000 Oh'n 10 Watt Resistor
R-6 350 Ohm 10 Watc Resistor
R-7 50 Ohm 10 Watt Resistor
R-8 50 Ohm 10 Watt Resistor
R-9 50 Ohm 10 Watt Resistor
R-10 50 Ohm 10 Watt Resistor
R-11 25,000 Ohm 50 Watt Semi-Variable Resistor, Ohmite or Equivalent

Bottom View

Condensers:
C-1 . 002 Mfd .1000 Volt Mica Condenser CD-1-6D2 or Aerovox 1455
C-2 . 0001 Mfd. 1000 Volt Mica Condenser C 3 CD-4-6T1 or Aerovox 1455
C-3 . 002 Mfd . 1000 Volt Mica Condenser
C-4 .002 Mfd. 1000 Volt Mica Condenser CD-4-6D2 or Aerovox 1455
C-5 $\quad 100 \mathrm{Mmfd}$. Variable Condenser, Cardwel! C-6 ZU-100-AS or Equivalent
C-6 . 0001 Mfd . 1000 Volt Mica Condenser,
C-7 CD-4-6T1 or Aerovox 1455
$\begin{array}{ll} \\ \mathrm{C} & \mathrm{CD}-4-6 \mathrm{D} 2 \\ .002 \mathrm{Mfd} .1000 \text { Volt Mica Condenser, }\end{array}$
C-9 CD-4-6D2 or Aerovox 1455
C-10 CD-4-6D2 or Aerovox 1455
C-10 $\quad 100 \mathrm{Mmfd}$. Variable Condenser, Cardwell
C-11 . 0001 Mfd. 1000 Volt Mica Condenser,
C-12 CD-4-61 or Aerovox 1455
C-12 .002 Mfd. 1000 Volt Mica Condenser,
C-13 . 002 Mfd . 1000 Volt Mica Condenser CD-4-6D2 or Aerovox 1455
C-14 260-260 Mfd Variable Condenaer Card well MR-260-BD or Equivalent
C-15 $\quad 8 \mathrm{Mfd} .600$ Volt Electrolytic C
C-15 8 Mid. 600 Volt Electrolytic Condenser, 8 Mfd 600 Volt Electrolytic C Mallory HS-693 or Equivalent

6VGG Tubes:

1 6V6-G Tube
1 816-G or 6 or $\mathbf{1}$ GX Tube
$\begin{array}{ll}18 \\ 183 & \text { or HY61/807 Tube }\end{array}$
RF Chokes:
RFC-1 RF Choke, Millen $\$ 34101$ or Equiv. RFC-2 RF Choke, Millen $\$ 34101$ or Equiv. $\begin{array}{ll}\text { RFC-2 } & \text { RF Choke, Millen } \$ 34101 \text { or Equiv } \\ \text { RFC-3 } & \text { RF Choke, Millen } \$ 34100 \text { or Equiv }\end{array}$ $\begin{array}{ll}\text { RFC-3 } & \text { RF Choke, Millen } \$ 34100 \text { or Equiv } \\ \text { RFC-4 } & \text { RF Choke, Millen } \$ 34101 \text { or Equiv }\end{array}$ RFC-4 RF Choke, Milen $\$ 34101$ or Equiv. RFC-5 RF Choke, Milen $\$ 34100$ or Equiv

Miscellaneous Partss Pr Punched Chassis $17^{\prime \prime} \times 13^{\prime \prime} \times 4^{\prime \prime}$ Panel 19* $\times 121^{\prime \prime}$
Chassis Mounting Brackets Condenser Mounting Bracket Bushings
Octal Sockets
4-Contact Socket
5-Contact Socket, Steatite
4-Contact Sockets, Steatite
Feed-thru Insulators
Grid Grip
Crystal Sockets, Millen $\$ 38002$ or Equiv.
SW-1 Single Pole 4-Throw Switch, Isolantite, Centralab 2542 or Equivalent
SW-2 SPST Switch; Arrow H \& H $\$ 20994$
SW-3 SPST Switch, Arrow H \& H 20994 or Equivalent
SW-4 2-Pole 4-Throw Switch, Isolantite, Centralab 2543 or Equivalent
L-1 Band Switch Coll, B-W Type 2AB or Equivalent
L-2 Band Switch Coil, B-W Type 2AB or Equivalent
L-3 Baby Turret, B-W Type BTCL
M-1 $\quad 0-200$ MA DC Meter, $3^{\prime \prime}$ Square Case, Rear Illumination, Triplett $\$ 327 \mathrm{~A}$ or Equivalent
ional Type 24 or Equiv
Control Wheels 21/4" Diameter, Coto Ci-4 or Equivalent
Knobs, Crowe 588 or Equivalent
Tube Shield, Hammarlund Type PTS or Equivalent
Shaft Extension, Yaxley (RS-242
Panel Bearing Assembly, Johnson 1256 or Equivalent
Shaft Coupling, National TX-11
Miscellaneous screws, nuts, bolts, lock-washers required hook-up wire and other hardware.

Circuit diagram, drawings and full size template of chassis available from Thordarson 15 cents net each, postpaid.

Panel View

FOR transmitters having inputs as high as 700 or 890 watts this exciter provides adequate excitation on all bands from 160 to 10 meters without the necessity of plugging in different coils. Three crystal frequencies and five operating bands may be selected at will by means of controls on the panel.

The exciter usès for its final amplifier an 811 tube operating at a plate voltage of 1000 volts. The power input to the final stage is 120 watts, and power outputs of over 70 watts may be rea!ized on all bands.

The panel is an especially designed unit requiring no additional name plates or markings. It is finished in black with white lettering, and the position of each control is c'early indicated.

The chassis and panel are the same as those used on the 40 watt band switching exciter. For converting the 40 watt unit to this 120 watt unit it is necessary only to replace the filament plate transformers, to add two filter condensers, a neutralizing condenser and a bleeder resistor; and to replace the final tank circuit with a larger unit. The same cenvenience of operation and attractive appearance will be retained by the amateur who wishes to increase the power output of his exciter without obsoleting the smaller equipment.

The crystal oscillator stage uses a 6V6-G tube operating with a plate voltage of 350 V . and a screen-grid voltage of 190 V . This stage drives a buffer-doubler stage with a 6 L. $6-\mathrm{G}$ tube operating at a plate voltage of 400 V . and a screen-grid voltage of 275 V . This buffer-doubler stage provides adequate excitation to the 811 grid on all bands.

Chassis View

The crystal oscillator stage operates with crystals in any band from 160 to 10 meters. When using crystals in the 160,80 and 40 meter bands, doubling may be accomplished in the oscillator: and enough output is available from it to drive the 6L6-G bufferdoubler stage easily. When working "straight through" in the crystal oscillator stage, the plate current is of the order of 20 to 25 MA when loaded with the grid of the buffer-doubler stage. The buffer-doubler stage may be operated "straight through," or it may be used to double. With grid excitation on $160,80,40$ and 20 meters, doubling is easily accomplished in this stage with enough power output to excite the 811 final stage easily. With excitation on 160 , 80 and 40 meters, quadrupling can be carried on to give good outputs on 40,20 and 10 meters.
Although the buffer-doubler stage is not neutralized, no difficulties will be encountered when operating "straight through." However, for best results, it is recommended that wherever possible frequency multiplication be accomplished in this stage.

The oscillator and buffer-doubler plate tank coils are sectionalized and mounted on a switch so that the amount of the coil being used can be easily controlled from the panel. It is thus possible to tune to all five bands with a single condenser. These tank coils are of the type in which the unused winding is short circuited.

The buffer-deubler stage is capacity coupled to the 811 grid. At resonance. and when loaded by the final grid, the plate current in the buffer-doubler stage is of the order of 55 to 60 MA .

The final tank circuit consists of a split-stator condenser and a BarkerWilliamson type BCL turret assembly. This coil assembly consists of five coils, one for each frequency band. The coil

Eottom View
which is desired may be selected from the panel, and the other four coils with their links shorted out.

The 811 tube is neutralized in a conventional manner, and no difficulty is encountered in obtaining perfect neutralization.
Since it is a high mu tube, the 811 requires no bias to protect it in the event of failure of excitation. In this exciter grid leak bias is used. .With proper excitation the grid current should be 30 to 35 MA .

Two DC power supplies are mounted upon this chassis, one delivering 400 volts to supply the oscillator and buffer-doubler stages and the other delivering 1000 volts to the 811 tube. The low voltage rectifier uses a $5 Z 3$ tube, and the high voltage rectifier uses two 866-JR tubes. These power supplies are filtered with the same chokes.
Filament supplies for the RF tubes and for the rectifier tubes are controlled by a single switch on the panel, and the two high voltage supplies by another switch. The terminal board on the rear of the chassis has three extra terminals so that other units associated with this exciter may be controlled by the exciter switches.

A single meter is mounted upon the panel, and under it a four-position switch permits the reading of the oscillator plate current, the buffer-doubler plate current, the final amplifier grid current and the final amplifier plate current.

The three crystal sockets are mounted on the chassis base. The selector switch is coupled to the panel switch by means of a flexible shaft, thus permitting the crystals to be located for best performance and retaining a convenient switch position on the panel.


```
THORDARSON TRANSFORMERS and CHOKES
T-1 T-19F77 Filament Transformer T-2 T-19P57 Plate Transformer CH-1 T-75C51 Filter Choke
```


Resistors:

```
R-1
20,000 Ohm 1 Watt Resistor
30 Ohm 10 Watt Resistor, Ohmite Brown Devil or Equivalent
R-3 100,000 Ohm 1 Watt Resistor
350 Ohm 10 Watt Resistor, Ohmite Brown Devil or Equivalent
R-5 2,500 Ohm 10 Watt Resiator, Ohmite Equivalent
R-6 20 Ohm 10 Watt Center Tapped Resistor Ohmite Brown Devil or Equivalent
R-7 50 Ohm 10 Watt Resistor, Ohmite Brown
Devil or Equivalent
R-8 50 Ohm 10 Watt Resistor, Ohmite Brown Devil or Equivalent
R-9 50 Ohm 10 Watt Resi 50 Ohm 10 Watt Res
R-10 50 Ohm 10 Watt Resistor, Ohmite Brown
R-11 25,000 Ohm 50 Watt Semi-Variable Re R-12 sistor, Ohmite 10585 or Equivalent 100,000 Ohm 50 Watt Reasistor, Ohmite or Equivalent
```


Condensers:

C-1 . 002 Mfd . 1,000 Volt Mica Condenser, C-2 . 0001 Mid. 1,000 Volt Mica Condenser C-3 C-D 4-6T1 or Aerovox 1455
C-3 . 002 Mfd . 1,000 Volt Mica Condenser
C-4 C-D 4-6D2 or Aerovox 1455
C-D 4-6D2 or Aerovox 1455 Condenser,
C-5 $\quad 100 \mathrm{Mmfd}$. Variable Condenser, Cardwell ZU-100-AS or Equivalent

Parts Required

Miscellaneoua Parta

Punched Chassis $17^{\circ} \times 13^{\circ} \times 4^{\prime \prime}$
Panel $19^{\circ} \times 121 /{ }^{*}$
Condenser Mounting Bracket
Bushings
Octal Socketa
4-Contact Socket
5-Contact Socket, Steatite
-Contact Sockets, Steatite
insulators
Crystal Sockets, Millen $\$ 33002$ or Equiv. Single-Pole, 4-Throw Switch, Isolantite Centralab $\$ 2543$ or Equivalent
SW-2 SPST Switch, Arrow H \& H 420992 (Nickel Plated) or Equivalent
SPST Switch, Arrow H \& H 120992 2-Pole, 4-Throw Switch, Isola

L-1 Band Switch Coil, Barker-Williamson Type 2AB or Equivalent Type 2AB or Equivalent
1.-3 Coil Turret Assembly, Barker-Williamson Type BCL or Equivalent -200 MA DC Meter, ${ }^{\prime}$ Square Case Equivalent
Control Wheels, 21/4" Diameter, Coto CI-45 or Equivalent Shaft Extension, Yaxley /RS-242 or Punel Bearing Assembly, Johnson $\$ 256$ or Equivalent

Miscellaneous nuts, bolts, soldering lugs, lock washers, varnished tubing, cable and other hardware.

Circuit diagram, drawings and full size template of chassis nvailable from Thordarson 1.5 rents net each, postpaid.

100 WATT MULTI-BAND

THIS complete 100 watt transmitter consists of two units, each having its own power supply. The RF section may be modulated or may be used for CW only: Its final stage operates at 1000 volts with 100 watts input. The modulator provides sufficient power output to modulate 100% the RF section, and the speech amplifier is incorporated in the nodulator chassis.
Any three pre-selected amateur bands in the range from 160 to 10 meters may be selected with panel switches.

The RF section is at three-stage circuit using at 6 L 6-G oscillator, a 6 L 6 -G buffer-doubler stage and a TZ-40 final stage.
The oscillator stage has provision for switching in its plate tank circuit any one of three coils, and the same switching operation which selects the coils also selects the proper crystal. With 160 and 80 meter crystals, doubling can be accomplished in the oscilliator stage, but crystals in the range from 160 to 20 meters may be used in the oscillator stage when working "straight through."

In the buffer stage provision is made for switching to any one of three tank coils. Because the GLb-G buffer-doubler tube is not neutralized and since, when the second stage is used in frequency multiplying service adequate drive is obtained on the TZ-40, it is recommended that doubling be carsied on in this stage whenever possible. However, on the lower frequency bands, there is no tendency toward trouble when operating "straight through." In all cases the final, stage is operated "straight through." For 10 meter output it is

RF Section
ricommended that a 20 meter crystal t.e used and that doubling be carried on in the second stage.
The oscillator stage is capacity conp'ed to the buffer-doubler stage, and the latter is capacity coupled to the final grid.
Three Barker-Williamson center linked. center tapped tank coils, mounted in a type B coil turret, permit the selection of any one of these coils for use in the final tank. With this arrangement the link around the coil in use is connected to the antenna or to an antenna matching network.
With one nuerer and four meter switches provision is made for reading the oscillator cathode current, the buf-fer-doubler cathode current, the final grid current and the final plate current. The meter switches are of such a type that the circuit controlled by each switch may be opened by placing the switch in its "half way" position.
Tiwo direct current supplies are installed in this chassis, one of which delisers approximately 400 volts to supply the plates of the 6L6-G's and the other which delivers 1000 volts to supply the plate of the TZ-40. The screen supply for the 6L6-G's is taken from taps on the 400 volt bleeder R-5, these taps being adjusted so that the voltage on the oscillator screen-grid is about 150 to 200 volts and on the buiffer-doubler screen-grid it is about 2(0) to 250 volts. When the oscillator tube is operating properly, the cathode current should dip to a value of 50 MA or less. and the cathode current in the buffer-cioubler stage at resonance, should be about 75 MA . The grid current on the final should be 25 MA or more; and for a 100 watt input to the final stage, the TZ-40 plate current should be 100 MA .
The removal of the high voltage for neutralizing the final stage may be done easily by removing the $866-J R$ tubes from their sockets and then making the neutralizing adjustment in the conventional manner with the antemna or antenna matching network

connected to the link on the final tank coil.

For CW operation the key is connected between terminals 1 and 2 on the five-screw terminal board on the back apron of the chassis, the 115 volt line is connected to terminals 3 and 4 and the plate voltage is controlled by a switch connected between terminals t and 5 . The terminals of the two No. 55 feed-thru insulators on the rear apron of the chassis are connected together.

Modulator Unit

The modulator tubes are 6L6-G's in push-pull, Class $A B_{z}$. These tubes are connected to the Class C load through : Multi-Match modulation transformer. The connections to the modulation transformer are as follows: One $6 \mathrm{l}, \mathrm{l},-\mathrm{G}$ plate is connected to terminal 1, and the other plate to 6 . Terminals 2 and 5 arc joined and connected to the plate supply. Terminals 9 and 10 are also joined, but no connection is made to them. The Class C load is connected to terminals 8 and 12 .

The speech amplifier tube line-up is as follows: a pentode connected 617 a 6F5 and a 6 F 6 , triode connected.
The power supply uses an 83 to supply high voltage to all tubes and an $\$ 2$ in the bias supply for the 6L6-C's.
In preparing the modulator unit for operation, an adjustment must be made of the bias and the screen voltage on the 6L.6-G's. For obtaining the correct bias adjust R-11 until the voltage across it is 25 volts. Then adjust R-12 until the screen voltage is 310 volts. It may be necessary to readjust $\mathrm{R}-11$ to maintain the 25 volts of bias. The modulator plate current should be about 115 MA for two tubes, and with a sine wave signal of sufficient magnitude to modulate 100% the RF section the plate current will rise to approximately $225 \mathrm{M} \Lambda$. For speech waves having the same peak power plate current will kick up to about 170 MA . To connect the modulator to the RF section terminals 3,4 and 5 on the RF

feomotyeting me.

$$
\begin{aligned}
& \text { ryetiag } \\
& B+\mathrm{M} \\
& \mathrm{~N}=\mathrm{N}
\end{aligned}
$$

9 Viz themonexid. Whavelyer
 \rightarrow-ty mond dex Pirconclatulf ery Sork worm if $9 P R z$ du \quad tur $18 R$ mi1250 $\mathrm{b}^{2^{2}}$

100 WATT MULTI-BAND

RF Unit
section should be connected to terminals 1,2 and 3 on the modulator. Connection should be made from the terminals of the No. 55 feed-thru insulators on the modulator chassis to the corresponding insulators on the RF chassis. With the two chasses so interconnected the filament switch on the modulator chassis controls all the filaments, and the plate switch controls all plate supplies.

The RF section may be used alone as an exciter for transmitters having power inputs of almost one kilowatt.

BAND	TURNS	WINDING LENGTH
160	40	Close wound
80	22	Close wound
40	12	$18{ }^{\prime \prime}$
20	6	$18{ }^{\text {\% }}$
10	3/4	
Osc. \& Buf. coils are identical. Use wire on $13 / 2^{\prime \prime}$ Dlam. form.		

RF Unit

Parts Required
THORDARSON PARTS

RF Unit

Condensers: (Cont'd)
C-12 . 005 Mfd .1000 Volt Mica
$\mathrm{C}-17, \mathrm{C}-18 \quad .001 \mathrm{M}$ if. 5000 Volt M
Aerovox $\$ 1457$ or C-D 4-25D1 Aerovox 1457 or C-D 4-25D1
C-19, C-20 2 Mid. 1500 Volt
Aerovox ${ }^{(1505}$ (2 Can)
C-21 4 Mfd. 600 V. Electrolytic, Aerovox GL-600 C-22 4 Mfd. 600 V . Electrolytic, Aerovox GI-600

Modulator Unit Parts Required

THORDARSON PARTS

1.	T-17K22	Foundation Unit
T-1	T-67D78	Driver Transformer
T-2	T-11M75	CHT Modulation Transformer
T-3	T-79F84	Filament Transformer
T-4	T-84P60	Plate Transformer
CH-1	T-74C30	Third Choke
CH-2	T-75C49	Bias Choke
CH-3	T-75C51	First Choke
CH-4	T-68C07	Second Choke

Modulator Unit

Tubees:

6F5 Tube
6F6 Tube

182 Tube
183 Tube
Resistors:
R-1 5 Megohm 1/2 Watt Resistor, IRC BT-1/2 R-2 \quad R-8 Megohm 1 Watt Resistor, I RC BT-1
 500,000 Ohm Volume Control, IRC 13-133 $20,000 \mathrm{Ohm} 1 \mathrm{~W}$, Resistor IRC BT $100,0000 \mathrm{hm} 1$ Watt Reaistor IRC BT 75000 hm 10 W watt Resistor, IRC BT-1 7500 hm 10 Watt Resistor, IRC Type AB
10,000 Ohm 2 Watt Resistor, IRC BT-2 R-10 10,000 Ohm 2 Watt Resistor, IRC BT-2 R-12 $\quad 2500$ Ohm 25 Watt Semi-Variable, Ohmite R-13 25,000 Ohm 50 Watt Wirewound, Ohmite Condensers:
C-1, C-2 . 0001 Mfd . 500 Volt Mica Condenser, Aerovox 1467 or C-D 5W-5T1
C-3 . 04 Mfd. 400 Volt Paper Condenser, Aero-C-4, C-7 . 1 Mfd. 400 Volt Paper
C-4, C-7. 1 Mfd. 400 Volt Paper Condenser, Aero-
C-5 $\quad 8 \mathrm{Mfd} .450$ Volt Elect
Aerovox PBS-450 or C-D JR508 Condenser
C-6 10 Mfd. 25 Volt Electrolytic Condenser
Aerovox PR-25 or C-D ED-2100
$\left.\begin{array}{c|c}\mathrm{C}-8 \\ \mathrm{C}-15\end{array}\right\} 8-8 \mathrm{M}$ d. 450 V. Dual Elect., Aerovox 2 G
C-9 10 M fd. 50 V . Elect., Aerovox PR-50
C-10, C-11 $\quad 0.002 \mathrm{M}$ id. 1000 Volt Mica Condenser Aerovox $\$ 1455$ or C-D 4-6D2
C-12, C-13 8 Mfd. 200 Volt Electrolytic Conden-
C-14 8 ser, Aerovox PBS-200 or C-D JR208 600 V. Elect., Aerovox GL-600
C-16 0.01 Mid. 400 Volt Paper Condenser, Aerovox 484 or C-D DT-4S1

Miscellaneoua Parts:
RF Choke, National R-100
Mic. Connector, Amphenol MC-1F
Mic. Connector, Amphenol PC-1M
Bias Cell, Mallory IF7
Bias Cell Holder, Mallory GB-1A
11/ Bar Knob, Black Streamlined
AC Line Cord and Plug, Belden 1725
Octal Sockets, Amphenol S8
4-Contact Sockets, Amphenol S4
Metal Tube Grid Caps
Dial Plate, Crowe $\$ 566$
Feed-thru Insulators, Johnson $\$ 55$
$0-300 \mathrm{MA}$ Meter, Simpson $/ 27 \mathrm{~S}$ or Triplett *827-A (Illuminated)
2 Metal Tube Shields, ARHCO 192
1 Red Jewel and Candelabra Bracket, ARHCO *93 or Drake Mfg. Co. I10C
1 Green Jewel and Candelabra Bracket, AlkHCO
2110 Volt Carbon Lamps Type G6

Complete Instruction Book SD-386-A giving full details of building data, photos, diagrams and layout available at 25 cents postpaid.

Chassis View

UTSING low plate resistance output tubes, this amplifier is capable of easily delivering 10 watts of audio power for driving the largest modulators used by amateurs. Its low internal output impedance provides the excellent regulation required in Class B driver service, and its high gain makes it usable with crystal microphones.
The circuit shown is that incorporating the peak limiting keature, but this amplifier is also available with a circuit for overmodulation control or as a conventional amplifier. The punched chassis is designed to fit either the regular type amateur transformers or the C.H.T. Series of transformers, which give better

Thordarson Parts

1	T-17K20 Foundation Linit					
T-1	T-15A7A					
T-2	T-15S90 or T-67S54 for 500 ohm output or					
	T-15D76, T-15D77, T-1.5D78 or T-15D79 or					
	T-19D01, T-19D02, T-19D03 or T-19D04					
'T-3	T-15R05 or T-87R85					
T-4	T-78D46					
CH-1	T-15C5 1 or T-74C29					
CH-2	T-75C49					
CH-3	74 C 31					
	Tubes:					
1-6F5	$1-6 \mathrm{C5}$	1-.573	1-6R7	1 -6L7	$2-2 \mathrm{A3}$	1 -80
			Resis	rs:		

R-1 5 Megohm, 1/2 Watt, IRC BT-1/2
R-2 250,000 Ohms, 1 Watt, IRC BT-1
R-3 500,000 Ohms, Volume Control, IRC 13-133
$\begin{array}{ll}\text { R-7 } & 350 \text { Ohms, } 10 \text { Watts, Ohmite Brown Drvil } \\ \text { R-8 } & 500,000 \text { Ohms } 1 \text { Watt, IRC BT-1 }\end{array}$
R-9 154 Ohma 10 Watts, Ohmite Brown Devil
$\begin{array}{ll}\mathrm{R}-10 & 100,000 \mathrm{Dhms}, 1 \text { Watt, IRC BT-1 }\end{array}$
R-11 4,000 Ohms 10 Watts, Ohmite Brown Devii
R-12 254,000 ohms 1 Watt, IRC BT-1
R-13 504 Ohms, 1 Watt, IRC BT-1
R-14 12,000 (thms, 25 Watts, Ohmite Semi-Variable
R-15 20,000 (ohms, 1 Watt, IRC BT-1
R-16 20,000 (ihms, 1 Watt, IRC, BT-1
R-17 2,500 Ohms, 25 Watts, Ohmite Semi-Variable
R-18 $504,000 \mathrm{mms}$, Volume Control, IRC 13-133
R-19 1,000 Obras, 1 Watt, IRC BT-1
R-20 2,500 Ohmas, 1 Watt, IRC BT-1
R-21 10,000 Ohms, 1 Watt, I RC BT-1
R-22 100,000 Ohms, 1 Watt, IRC BT-1

frequency response and less distortion. The amplifier may be adapted to rack and panel mounting, or a cover may be obtained for use on an operating table.

For T-2, a driver transformer may be used to couple the 2 A 3 plates directly to the Class B grids; or, if it is desired to locate the amplifier remotely from the modulator, an output transformer may be installed to couple the 2 A 3 plates to a 500 ohm line.

Specifications showing the different circuits, together with a complete parts list, are shown on the Thordarson SD-389 bulletin, available at all jobbers.

Condensers:

C-1	0.0001 Mfd., 500 V Mica Aerovox 1467
C-2	0.1 Mfd., 400 V Paper Aerovox 484 or C-D DT-4P1
C-3	8 Mfd ., 450 V Elect. Aerovox PBS-450 or C-D JR508
C-5	$0.5 \mathrm{Mfd} ., 400 \mathrm{~V}$ Paper Aerovox 484 or C-D DT-4P5
C-6	8 Mid., 450 V Elect. Aerovox PBS-450 or C-D JIR508
C-7, C-11	8-8 Mfd., 450 V Dual Elect. Aerovox 2G
C-8	0.1 Mfd., 400 V Paper Aerovox 484 or C-D DT-4P1
C-9	8 Mfd .450 V Elect. Aerovox PBS-450 or C-D JR508
C-10	10 M fd., 25 V Elect. Aerovox PR-25 or C-D ED-2100
C-12, C-13	8-8 Mfd., 450 V Dual Elect. Aerovox 2G
C-14	$8 \mathrm{Mfd} ., 200 \mathrm{~V}$ Elect. Aerovox PBS-200 or C-D JI2208
C-15	$8 \mathrm{Mfd} ., 200 \mathrm{~V}$ Elect. Aerovox PBS-200 or C-D Jl2208
C-17	0.1 Mfd., 400 V Paper Aerovox 484 or C-D DT-4P1
C-18	10 Mid., 25 V Elect. Aerovox PB-25 or C-D ED-2100
C-19	

Miscellaneous Parts:

1 Mic. Input Connector, Amphenol MC1F
1 Mic. Input Connector, Amphenol PC1M
1 Red Jewel and Bracket, Yaxley No. 310K
1 Bias Cell, Mallory No. F7
1 Bias Cell Holder, Mallory No. GB-1A
$1 \begin{aligned} & \text { GB-1A } \\ & \\ & \\ & \\ & \text { lined Bar Knob, Black Stream- }\end{aligned}$

SPST Toggle Switch, H \& H No. 20992 AC Line Cord and Plug, Belden No. 1725
Metal Tube Grid Caps Metal Tube Shields, ARHCO No. 92
Dial Plate, Crowe No. 566 RF Choke, National R-100 Octal Sockets, Amphenol S8 4-Contact Sockets, Amphenol S-4 6.3 Volt Pilot Light, Mazda N0. 40

The parts list shown is for the amplifier with either the over-modulation control or the peak limiting circuits; complete drawings, photos, parts lists and instructions for easy assembly of either of the above circuits are contained in Instruction Book SD-387, 1.5 cents postpaid.

PARTICULARLY designed for use with the new RCA-811 and 812 tubes, this transmitter, with its unusual mechanical layout and carefully planned wiring, gives superior performance on the five amateur bands from 160 to 10 meters. With an input of 250 watts for phone operation, a carrier output of 190 watts is easily obtained; and with 450 watts input for $\mathrm{CW}, 350$ watts may be delivered to the antenna. Higher than usual plate efficiencies are obtained by careful attention to mechanical layout and by the selection of high quality parts.

In addition to the RCA-812 the transmitter will also operate satisfactorily with other tubes such as the Taylor TZ-40, Taylor T-55, or the Eimac 35 T . It is only necessary to use the correct filament transformer and to adjust the grid bias resistor.

A semi-fixed swinging link grid tank coil of the plug-in type is used in the grid circuit. This allows not only close adjustment for optimum excitation but also permits the coil to be removed without changing the link setting. This latter feature is particularly desirable for the amateur who wishes to avoid time-consuming operations when chang-

ing bands. The plate tank coil is also of the swinging link type, which permits quick adjustment of the amplifier loading. The Class C amplifier is easily driven by the Thordarson 40 watt Band-Switch Exciter unit, this combination affording the advantage of quick band changing without involving costly coil switching parts in the high power stage.
The Class C amplifier requires 200 MA at 1250 volts for a phone input of 250 watts. For a 450 watt CW input the plate current is 300 MA at 1500 volts. The grid current for the Class C tubes depends upon the choice of tubes and whether CW or phone operation is desired. For 812 's it is 50 MA for two tubes. To meet the various bias requirements of the different tube types, an adjustable grid resistor is provided.
Should the amateur wish to install an external fixed bias supply for CW, provision has been made for its easy connection. If external bias is used, the negative of the bias supply connects to terminal No. 1 and the positive to No. 2. If external bias is not desired terminals No. 1 and No. 2 on the Class C amplifier chassis are con-
nected together. About 30 volts of fixed bias are required to maintain the tubes within their rated plate dissipation without excitation.

Both the grid and the plate currents are metered, the meters being in the cathode return leads. This places both meters at a low DC potential with respect to the chassis, thus eliminating any tendency toward deflection of the needle due to electrostatic effects and removing the possibility of Hash-over from the meter terminals to the pilot lamp mounting.

The modulator uses the new 811 tubes and easily delivers the required 125 watts of audio frequency power with very little distortion. It is designed to operate from a " 500 ohm " line. The modulation transformer is of the Multi-Match type so that it may be used to modulate any Class C stage of 300 watts input power. The no-signal plate current of the 811 's is 60 MA , and the current with a 125 watt sine wave output is 177 MA. For speech signals having the same peak power the plate current should swing to about 90 or 100 MA .
The required driving power is very small, being on the order of 4 peak

450 WATT CW - 160 TO 10 METERS

watts. If 2 A 3 's are used as the driver tubes, an unusually high step-down ratio from the plates of the $2 \mathrm{A3}$'s to the grids of the 81l's may be used to obtain excellent driving regulation. The Thordarson Amateur Speech Amplifier is an exce!lent unit to furnish the driving power required by this modulator.

The power supply, with its tapped plate transformer, is rated at 300 MA at 1250 or 1500 volts. The load requirements of the Class C amplifier and the modulator are such that the power supply is fully loaded for both phone and CW so that regardless of the type of operation the amateur
chooses, he is not investing in a power supply which is not being loaded up to its rating at all times. The power supply is entirely self-contained with separate plate and filament switches, making it an ideal power supply for other equipment of similar load requirements.

RF Chassis View

RF Bottom View

THORDARSON TRANSFORMER

'I'-6	T'-19F85 Filament Transformer
Resistor:	
R-2	$4,000 \mathrm{Ohm} 50$ Watt Wirewound Ohmite Semi-Variable or Equivalent
Condensers:	
C-3	Variable Air Condenser, Cardwell MR-150-BD or Equivalent
C-4	Variable Air Condenser, Cardwell XP-165-KD or Equivalent
C-5	Neutralizing Condenger, HammarIund N-10 or Equivalent
C-6	Neutralizing Condenser, HammarIund $\mathrm{N}-10$ or Equivalent
C-7	.001 Mfd. 3,500 Volt Mica Condenser Aerovox 1653 or Equivalent
C-8	. 009 Mfd. 1,000 Volt Mica Conderser CD-4-6D2 or Aerovox 1455
C-9	. 002 Mfd. 1,000 Volt Mica Condenser CD-4-6D2 or Aerovox 1455
C-10	.002 Mfd. 1,000 Volt Mica Condenser CD-4-6D2 or Aerovox 1455
C-11	.002 Mfd. 1,000 Volt Mica Condenser CD-4-6D2 or Aerovox 1455
	Tubes:

Gircuit diagram, drawings and full size template of chassis available from Thordarson 15 cents net each, postpaid.

RF Section

Parts Required

Miscellaneous Parts:
Punched Chassis $81 / 2^{\prime \prime} \times 10^{\circ} \times 3^{\prime \prime}$
Panel $19^{\circ} \times 14^{\prime}$
Misc. Partas (Cont'd)
Coil Socket, National Type XB-16 or Equivalent
Sub-Panel
160 Meter Coil, National Type
Terminal Board
Bushings
L-1 AR16-160C or Equivalent $\quad 80$ Meter Coil, National Type A0 Meter Coil, National Type
Feed-thru Insulators

L-1 40 Meter Coil, National Type	40 Meter Coil, National
Alk16-40S or Equivalent	

4-Contact Isolantite Sockets
Stand-off Insulators
L-1 20 Meter Coil, National Type AR16-20S or Equivalent
Shaft Couplings, National TX-11 or Equivalent

L-1 10 Meter Coil, National Type
Shaft Coupling, Johnson No. 252 or Equivalent
Panel Bearing Assemblies, Johnson Panel Bearing Assembl
No. 256 or Equivalent
$0-200$ MA DC Meter, $3^{\prime \prime}$ Square $0-200$ MA DC Meter, ${ }^{3}$ Square Case, Rear IMmmination, Triplett
No. $327-\mathrm{A}$ or Equivalent $0-300$ MA DC Meter, $3^{\prime \prime}$ Square Case, Rear Illumination, Triplett No. 327-A or Equivalent
Control Wheels, Complete, Coto Control Wheels, Complete, Coto Indicator Plate Marked "PWR AMP GRID" Coto CI-47 or Equivalent
Indicator Plate Marked "PWR AMP PLATE" Coto CI-47 or Equivalent

AR16-10S or Equivalent
L-2 Swinging Link \& Jack Bar Assem-L-2 bly, B-W Type TV or Equival ent L-2 160 Meter Coil, B-W 160 TVL or L-2 80 Meter Coil, B-W 80 TVL or 80 Meter Coii, B-W 80 TVL or
Equivalent 40 Meter Coil, B-W 40 TVL or Equivalent 20 Meter Coil, B-W 20 TVL or Equivalent 10 Meter Coil, B-W 10 TVL or Equivalent Grid Grips,
Grid Grips, National Type 12 or $\begin{array}{ll} \\ \text { RFC-1 } & \text { Equivalent } \\ \text { RF Choke, }\end{array}$ or Equivalent
Miscellaneous screws, nuts, bolts, lock-washers, required hook-up wire and other hardware.

Modulator Parts Required

THORDARSON TRANSFORMERS and CHOKES
T-3 T-19F99 Filament Transformer
T-4 T-19D05 Driver Transformer
T-5 T-19M16 Modulation Transformer

Miscellaneous Parts:

| M-1 0-200 MA DC Meter. 3" Square Case, Rear Illumination, Triplett $\$ 327 \mathrm{~A}$ or Equivalent
Punched Chassis $17^{\prime} \times 8^{\prime \prime} \times 3^{\prime \prime}$
Panel $19^{\prime \prime} \times 101 / \mathbf{2}^{\prime \prime}$
1 Pr. Chassis Mounting Brackets 6-Lug Terminal Board Feed-thru Insulators
4-Contact Socketa, Steatite Isolantite Plate Caps

Miscellaneous nuts, bolts, lock-washers, grommets, soldering lugs and other hardware.

Modulator and Power Supply

Power Supply

Power Supply Parts Required

THORDARSON TRANSFORMERS and CHOKES
T-1 T-19F90 Filament Transformer T-2 T-19P60 Plate Transformer CH-1 T-19C37 Input Cherke Cl:-2 T-19C44 Smoothint Choke

Resistor:

18-1 40,000 Ohm 200 Watl Wirewound Resixtor, Ohmite 1370 or Equivalent

Condensers:

('-1 2 Mfd . 1,500 Volt Condenser. GF, $23 \mathrm{FF}^{\circ} 21$
C-2 $\quad 2 \mathrm{Mfd}$. 1,500 Volt Condenser, (iE $\mathbf{2} 23 \mathrm{~F} 21$ or Equivalent

> 2
> 2 \quad Tubea:

Miscellaneous Parts:
Punched Chassis $17^{\circ} \times 12^{\prime \prime} \times 3^{*}$ Panel 19' $\times 121 / 4$
Chassis Mounting Erackets
4-Contact Sockets, Steatite
Feed-thru Insulator
Isolantite Plate Caps
SW-1 Switch, Arrow H \& H Type HDT or Equivalent
SW-2 Switch, Arrow H \& H Type HDT or Equivalent
Miscellaneous nuts, bolts, lock-waskers, soldering lugs and other hardware.

Circuit diagram, drawings and full size template of chassis available from Thordarson 15 cents net earh, postpaid.

Wide Choice of Class C Tubes

Adjustable Excitation
Adjustable Loading
Multi-Match Modulator

High Efficiency with Adjustable Loading

T${ }^{-} \mathrm{HIS} \mathrm{f}_{(0)}$ watt phone transmitter has the same construction and superior features of the transmitter shown on pages 24,25 and 26 . It is suitable for operation on all bands from 160 to 10 meters. It is easily driven by any exciter having an output of 20 watts; an ideal exciter for this transmitter is the Thordarson 40 Watt Band-Switch Exciter.

The transmitter is supplied with panels finished in black wrinkle, and the chassis and chassis mounting brackets are in gray flat enamel.

RF Section:

The unusual mechanical consiruction of the RF Section results in iniproved electrical performance. Flexible shafts are used to couple the grid and plate tuning condensers to the panel controls. The tubes used in the RF section are Heintz and Kaufman HK-54's or Taylor T-55's. The HK-54's require a T-19F85 filament transformer, and the T-55's, a T-19F94 filament transformer. Holes are provided on the chassis for either of these types.

A swinging link which couples the plate tank coil to the antenna, permits
the amateur to adjust the loading of the final stage to the desired power input. For 400 watts input, the Class C plate current is 267 MA at 1500 volts. A plate efficiency of between 75% and 80% may be obtained when the transmitter is in proper adjustment.

The grid tank coils are the plugin type, having link coupling to the exciter. The coils for the $80,40,20$ and 10 meter bands have semi-fixed swinging links, and the 160 meter coil has a fixed link. Excitation should be adjusted so that the total grid current for both Class C tubes is 40 MA . The value of the grid resistor used with the HK-54's is 3750 ohms; with the T-55's, 5000 ohms.

Since the RF unit was designed primarily for phone operation, no attempt was made to install a fixed bias supply on the RF chassis. However, for CW , provision has been made on the terminal board for the connection of an external bias supply. About 45 volts of bias is required to hold the tubes at their rated dissipation with no excitation. When external bias is not used terminals No. 1 and No. 2 are connected together. If external bias is used, the negative of the bias
supply connects to terminal No. 1 and the positive to No. 2.

Both the grid and the plate currents are metered. The meters are in the cathode return leads, thus placing both meters at a low DC potential with respect to the chassis, and thereby avoiding any possibility of Hash-overs from the meter terninals to the pilor lamp mounting and any likelihood of deflection of the movements due to electrostatic effects.

Modulator:

The modulator, using 811 's with 1500 volts on the plates, has a power output of 200 watts. The no-signal plate current for two tubes is about 70 MA . With a 200 watt sine-wave output the plate current rises to 217 MA . For speech signals of sufficient magnitude to modulate the Class C siage 100%, the average plate current is about 125 MA. The modulation transformer, as well as the driver transformer, is of the Multi-Match type so that a large variety of Class C loads and sources of driving power may be accommodated. The primary of the driver transformer is designed to couple from a " 500 ohm " line. Very little driving power (3.5 watts) is needed to obtain

TRANSFORMER SPECIALISTS SINCE 1895

200 watts output; thus the large excess of power output capability of the usually chosen pair of 2A3's serving as driver tubes can be turned to good advantage in obtaining a driving voltage of exceptionally good regulation. The plate-to-plate load on the modulator tubes is 15.500 ohms .

Power Supply:
The power supply for this transmitter uses two 866^{\prime} 's and has a rating of 500 MA at 1500 volts DC. On its $14^{\prime \prime}$ panel are mounted two switches: one for controlling filaments and the other for controlling the plate transformer. Having well insulated line terminals
and high voltage terminals mounted on the rear apron of the chassis, the power supply matches in appearance and construction the modulator and RF units with which it was designed to operate. Its simplicity and completeness make it an excellent general purpose power supply.

RF Section

RF Chassis View

RF Bottom View

THORDARSON TRANSFORMER
T-6 T-19F99 Filament Transformer

Resistor:

R-2 4,000 Ohm 50 Watt Wirewound Ohmite Semi-Variable or Equivalent

Condensers:
C-3 $\quad 150-150 \quad \mathrm{Mmfd}$. Variable Condenser,
C-4 165-165 Mmid Variable Conden
C-4 Cardwell XP-165-KD or Equivalent
C-5 Neutralizing Condenser, Hammarlund
N-10 or Equivalent
C-6 Neutralizing Condenser, Hammarlund
$\mathrm{N}-10$ or Equivalent
C-7 . 001 Mfd. 8,500 Volt Mica Condenser
Aerovox 1653 or Equivalent
C-8 .002 Mfd. 1,000 Volt Mica Condenser
C-9 CD4-6D2 or Aerovox 1455
CD4-6D2 or A erovox 1455 Condenser
C-10 . 002 Mfd. 1,000 Volt Mica Condenser CD4-6D2 or Aerovox 1455
C-11 . 002 Mfd. 1,000 Volt Mica Condenser CD4-6D2 or Aerovox 1455

Tubes:

RF Section Parts Required

2 HK-54 Tubes $\begin{array}{r}\text { Tubes: } \\ \end{array}$
2 HK-54 Tubes Tubes: $\begin{array}{r}\left.1 \quad \begin{array}{c}\text { Indicator Plate Marked "PWR AMP }\end{array} \begin{array}{c}\text { Miscel }\end{array}\right) \\ \text { PLATE" Coto CI-47 or Equivalent } \\ \text { requir }\end{array}$
Miscellaneous Parts:
Punched Chassis $81 / 2^{\prime \prime} \times 10^{\circ} \times 3^{\prime \prime}$
Panel 19" $\times 14^{\prime \prime}$
Sub-Panel
Terminal Board
Bushings
Feed-thru Insulators
4-Contact Isolantite Sockets
Stand-off Insulators
Stand-off Insulators
Shaft Couplings, National TX-11 or
Equivalent Equivalent
Shaft Coupling, Johnson $\$ 252$ or Equiv.
Panel Bearing Assemblies, Johnson *256 or Equivalent
M-2 0-200 MA DC Meter, 3^{*} Square Case, Rear Illumination, Triplett \#327-A or Equivalent
1 M-3 0-300 MA DC Meter, 3^{\prime} ' Square Case, Rear Illumination, Triplett \#327-A or Equivalent
Control Wheels, Complete, Coto CI-45 or Equivalent
Indicator Plate Marked "PWR AMP GRID" Coto CI-47 or Equivalent

Misc. Parts: (Cont'd)
1
Coil Socket, National Type XB-16 or Equivalent
1 L-1 160 Meter Coil, National Type AR16. 160 C or Equivalent
1 L-1 80 Meter Coil, National Type AR16. 80 S or Equivalent
L-1 40 Meter Coil, National Type AR16. 40 S or Equivalent 40 S or Equivalent
1 L-1 20 Meter Coil, National Type AR1620S or Equivalent
1 L-1 10 Meter Coil, National Type AR1610S or Equivalent
Swinging Link \& Jack Bar Assembly,
B-W Type TV or Equivglent B-W Type TV or Equivalent
L-2 160 Meter Coil, B-W 160 TVL or Equiv. L-2 80 Meter Coil, B-W 80 TVL or Equiv. L-2 40 Meter Coil, B-W 40 TVL or Equiv. L-2 20 Meter Coil, B-W 20 TVL or Equiv. L-2 10 Meter Coil, B-W 10 TVL or Equiv. 10 Meter Coil, B-W 10 TVL or Equiv.
Grid Gripe, National Type 12 or Equiv.
RFC-1 $\begin{aligned} & \text { RF Choke, National Type R-154U or } \\ & \text { Equivalent }\end{aligned}$ Equivalent
Miscellaneous screws, nuts, bolts, lock-washers, required hook-up wire and other hardware. available from Thordarson 15 cents net each, postpaid.

Modulator and Power Supply

Modulator

Modulator

 Parts RequiredTHORDARSON TRANSFORMERS and CHOKES

T-3	T-19F99	Filament Transformer
T-4	T-19D05	Driver Transformer
T-5	T-19M17	Medulation Transformer

$\begin{aligned} & 2811 \text { Tubes Tubes: } \\ & \text { Miscellaneous Parts: }\end{aligned}$
1 M-1 0-300 MA DC Meter, 3° Squase Case Triplett 327-A or Equivalent Punched Chassis $17^{\circ} \times 10^{\prime} \times 3^{\prime}$
1 Panel $19^{*} \times 10 \frac{1-2 *}{2}$
1 Pr. Chassis Mounting Brackets Feed-thru Insulators
4-Contact Suckets, Steatite
Isolantite Plate Caps

Miscellaneous nuts, bolts, lock-washers, grommets and other hardware.

Bottom View of Power Supply

Bottom View of Modulator

Power Supply

Power Supply
 Parts Required

THORDARSON TRANSFORMERS and CHOKES
T-1 T-19F90 Filament Transformer T-2 T-19P64 Plate Transformer $\begin{array}{ccc}\mathrm{CH}-1 & \mathrm{~T}-19 \mathrm{C} 37 & \text { Inpur Choke }\end{array}$

Resistor:

R-1 40,000 Ohm 200 Watt Wirewound Reais tor, Ohmite 1370 or Equivalent

Condensers:

C-1 2 Mfd . 2,000 Voh Condenser GE 23 F 31
 or Equivalent

Tubes:

Miscellaneous Parts:
1 SW-1 Switch, Arrow H \& H Type HDT or
SW-2 Equivalent $\begin{aligned} & \text { Switeh, Arrow H \& H Type HDT or }\end{aligned}$ Equivalent
Punched Chassis $17^{\circ} \times 12^{\circ} \times 3^{\prime}$ Panel $19^{\circ} \times 141^{\circ}$
Chassis Mounting Brackets Terminal Board
4-Contact Sorkets, Steatite
Feed-thru Insulator Isolantite Plate Caps

Miscellaneous nuts, bolts, lock-washers and other hardware.

Circuit diagram, drawings and full size template of chassis arailable from Thordarson 1.5 cents net each, postpaid.

THIS transmitter consists of a Class C amplifier of 600 watts input, a modulator capable of delivering 300 watts of audio frequency power and a 1750 volt power supply of sufficient capacity to furnish the current required by both the RF stage and the modulator. Operation may be obtained on all five amateur bands from 160 to 10 meters. Relay switching is incorporated in this transmitter, thus not only permitting complete control of the transmitter with a single switch but also protecting the Class C amplifier from underexcitation and preventing the possibility of abuse to the modulation transformer by underloading it.

The Class C amplifier may be operated with any one of three types of tubes, namely Taylor TW-150's, Eimac 100 TH 's or Heintz and Kaufman HK-254's. The modulator tubes are Tayior 805's. and the rectifier tubes are 866's.

The panels are supplied in a black wrinkle finish; and the chassis, chassis mounting brackets and other small metal fixtures in a gray flat enamel.

Completely Relay Controlled

Under Excitation Protection

High Quality Audio System
\star

Multi-Match Modulator

RF Unit:

The Class C amplifier circuit is of the conventional push-pull type operating with 600 watts input at 1750 volts. It requires from 30 to 40 watts of driving power. The Thordarson 120 watt BandSwitch Exciter or the Thordarson 100 Watt Multi-Band Transmitter are ideal exciters. These units are described on pages 18 and 20. Plate and grid coils are of the plug-in type with a swinging link and jack bar assembly, thus permitting close adjustment of grid excitation and plate loading. Provision is made on the chassis for using either the UX sockets required by the TW-150's and the 100 TH 's, or the 50 watt sockets needed for use with HK-254's. The grid resistor is of the semi-variable type so that the correct bias requirements for various tubes may be met. The plate tuning condenser is of the split-stator type, having each stator section divided into two parts. This permits a very favorable L/C ratio to be obtained on all bands. The coils specified for the plate tank circuit have such a base construction that the correct stator combination is automatically obtained on each band when the coil is plugged in.

With 600 watts input the Class C plate current is 343 MA at 1750 volts. Plate efficiencies on the order of 75% are easily obtainable. When the amplifier is unloaded the plate current at resonance dips to about 25 MA on the 160,80 and 40 meter bands; and to about 40 and 50 MA when operation is on the 20 and 10 meter bands respectively. The grid current is about 100 MA (for two tubes), and the grid resistor should be adjusted to about 1200 ohms.

Modulator:

The modulator has a " 500 ohm" input and can be easily driven by the Thordarson Amateur Speech Amplifier. A rectified AC bias supply is installed on the modulator chassis. It uses a type 83 tube, which furnishes 20 volts of bias. This bias not only prevents the plate dissipation of the 805 's from rising to an abnormal value during periods of no-signal hut also tends to reduce distortion in the output of the modulator.

With no-signal on the grids of the 805's the plate current (two tubes) is about 80 MA. This current rises to 345 MA with a sine wave signal of magnitude sufficient to cause 100%
modulation, but for speech the same degree of modulation can be obtained when the modulator current rises to about 150 MA .

When the " 500 ohm" input to the modulator grids is supplied by a

Thordarson Amateur Speech Amplifier, the driver transformer ratio should be 1 to 1.4 , primary to half the secondary. The turns ratio of the modulation transformer is 1.4 to 1 . and the plate-to-plate load on the modulators is 10,000 ohms.

The driver and modulation transformers are of the Multi-Match type so that not only may a variety of Class C loads be accommodated but also different driving tubes may be used.
(Confinued on Page 31)

RF Chassis View

RF Section

RF Bottom View

RF Section Parts Required

THORDARSON TRANSFORMER
T-7 T-74F23 Filament Transformer

Resistor:

R-s 2,500 Ohm 50 Watt Sem:-Variable Resistor, Ohmite or Equivalent

Condenser :

C-5 \quad 260-266 Mmfd. Variable Condenser,
Cardwell M R-360-BD or Equivalent
G-6 $\quad 160-160 \quad \mathrm{Mmfd}$. Variable Condenser
C-\% Cardwell XE-160-70-XQ ar Equivalent
C-f Neutralizing Condemser, Hammarlund
C.s Neutralizing Condenser. Hammarlund

C-9 N-10 or Equivalent $\quad .001$ Mfd. Mica Condenser, CD-21C-8e . 001 Mfd. M
C-10 . 002 Mfd. Mica Condenser, CD-4-6D2
or Aerovox 1455
C-11 .002 Mfd. Mica Condenser, CD-4-6D2
C. 12 or Aerovox 14.55

C-12 .002 Mfd. Mica Condenser, CD-4-6D2
C-13 $\begin{aligned} & \text { or Aerovox Mid. Mica Condenser, CD-4-6D2 }\end{aligned}$ or Aerovox 1455

Tubes:
2 TW-150 or HK-254 or 100 TH

Miscellaneous Parte:

Punched Chassis $17^{\prime} \times 13^{*} \times 21 / 2^{\prime}$ Panel $19^{*} \times 14^{*}$
Pr. Chassis Mounting Brackets Socket Mounting Plates Condenser Mounting Brackets Coil Mounting Brackets Bushings
Feed-thru Bushing
Feed-thru Insulators
4-Contact Sockets, Steatite
50 Watt Sockets
Grid Grips
RY-3 SPST Underload Relay, Ward-Leonard 507-514A or Equivalent
0-200 MA DC Meter, 3^{*} Square Case Rear Illumination, Triplett \$327A or Equivalent
M-3 0-500 MA DC Meter, 3^{*} Square Case Rear Illumination, Triplett \$327A or
L-1 Equivalent \quad Swinging Link \& Jack Bar Assembly, B-W Type BVL or Equivalent
I-1 160 Meter Coil, B-W Type 160 BVL or Equivalent
80 Meter Coil, B-W Type 80 BVL
I-1 $\quad 40$ Meter Coil, B-W Type 40 BVL 40 Meter Coi
or Equivalent

Miscellaneous Parts: (Cont.)
20 Meter Coil, B-W Type 20 BVI, or Equivalent
10 Meter Coil, B-W Type 10 BVI. or Equivalent
160 Meter Coil, B-W Type 160 TVH
or Equivalent
80 Meter Coil, B-W Type 80 TVH
or Equivalent 40 Meter Coil, B-W Type 40 TVH
or Equivalent
or Equivalent 20 Meter Coil, B-W Type 20 TVH
or Equivalent, B-W Type 10 TVH
10 Meter Coil, B-W Type 10 TV
or Equivalent
Swinging Link \& Jack Bar Assembly,
RF Choke, National Type R-100-U
or Equivalent
RF Choke, National Type R-154 or
Equivalent
Equivalent Wheels Coto CI-45 or
$21 /{ }^{*}$ Control Wheels, Coto CI-45 or
Equivalent Indicator Plate Marked "PWR AMP
GRID," Coto CI-47 or Equivalent
Indicator Plate Marked "PWR AMP
PLATE," Coto CI-47 or Equivalent
Miscellaneous screws, nuts, bolts, lock-washers, required hook-up wire and other hardware.

Modulator

Top View of Modulator

Power Supply:

FOR BOTH the convenience of the operator and the protection of the equipment, relay switching was chosen. When the filament switch on the exciter is closed, RY-1 closes, causing the application of voltage to the speech amplifier and the filaments of the rectifiers, modulator tubes and Class C amplifier tube. In addition, this operation places bias voltage on the modulator grids and prepares RY-2 for closing. Turning on the plate switch of the exciter results in the grid current in the Class C amplifier closing RY-3. which in turn causes RY-2 to apply primary voltage to the plate transformer. The opening of SW-1 prevents the operation of RY-2 even though RY-3 may be closed. This feature makes neutralizing convenient, and in addition affords more protection to the operator.
For CW operation it is only necessary to place a jumper between terminals 2 and 3 at the back of the RF chassis and insert a 22.5 volt battery at point A.
Since the power supply is rated at 1750 volts at 500 MA, 700 watts CW operation may be carried on by operating with a Class C plate current of 400 MA .

Power Supply

Bottom View of Power Supply

Bottom View of Modulator

Modulator and Power Supply

Circuit diagram, drawings and full size template of chassis available from Thordarson 15 cents net each, postpaid.

HERE is a conservatively rated transmitter which is designed to handle the maximum allowable input of 1 kilowatt. The transmitter is built up in two racks, one containing the R.F. section with associated power supplies and the other the speech equipment, drivers, modulators, and necessary power equipment.
The exciter unit is built up on a separate chassis. Three stages are provided so that there is ample excitation on all bands. It may be found necessary to neutralize the 6 L .6 and the RK-39, especially if they are operated as straight buffers on the higher frequencies. These neutralizing condensers (NC-1, NC-2) may consist simply of a few turns of twisted wire. The RK-39 is link coupled to the T125 buffer; this stage should always be operated as a straight amplifier and all doubling should be done in the preceeding low power stages. The buffer in turn is link coupled to the final stage, which consists of a pair of T-200's in push-pull. The plate voltage is 2500 volts and the plate current 400 M.A.; the grid current should be 125 M.A.
No pre-amplifier is incorporated in
the transmitter proper. It is far more desirable, both from the standpoint of convenience and performance, to place the low level speech stages some distance from the transmitter. The impedance of the speech input is 500 ohms and the level appriximately zero db . The first stage consists of a pair of 6F6's, triode connected, which provide ample grid swing for the 845 's. The 845 drivers operate at 1250 volts, and the necessary bias is obtained from a resistor in the filament return. The 822 modulators operate at 2000 volts and provide ample power to modulate the 1 kilowatt input.

An important feature of high power equipment which has not been overlooked is the installation of an underload and two overload relays.

The underload relay is so connected that the Class C current must be 250 M.A. before the modulator plate supply is turned on. Possible damage to the modulation transformer is avoided in the event that excitation to the final fails with a signal applied to the modulators. If the current of either the Class C stage or the buffer should be-
come excessive, the overload relay will automatically turn off all plate supplies. Another overload relay is installed in the modulator plate supply, however this relay controls only the modulators. In order to simplify operation, relays are also used to control the filaments and plate supplies. The wiring is so arranged that it is impossible to turn on the plate supplies without having the filament relay closed. This relay operation of both filament and plate supplies enables the transmitter to be controlled from the operating table simply by extending the light leads connected to the relay switches.

The correct bias for the 822 modulators is -67.5 , and this is shown as battery bias in the diagram, although in the photograph an experimental bias supply is shown. This bias supply has not yet been fully developed and it is felt that it should be with-held until its performance is proven satisfactory.
The pre-anılifier is shown on page 37. It is mounted in a metal cabinet and if remote control is desired the filament and plate relay switches may be mounted on this panel.

Thordarson Transformers and Chokes			
T-1	T-19F97	CH-1	T-15C36
T-2	T-19F95	CH-2	T-15C36
T-3	T-11F51	CH-3	T-15C45
T-4	T-15R60	CH-4	T-15C39
T-5	T-19F91	CH-5	T-15C48
T-6	T-15P11	CH-6	T-15C39
T-7	T-11F54	CH-7	T-15C45
T-8	T-15P21	CH-8	T-15C36
T-9	T-11F54	CH-9	T-15C36
T-10	T-15P21	CH-10	T-15C45
T-11	T-19F89		
T-12	T-15P15		
T-13	T-15R03		
T-14	T-19F96		
T-15	T-11F51		
T-16	T-15A67		
T-17	T-15D76		
T-18	T-18D19		
T-19	T-11M78		

Resistors:

R-1 50,000 Ohm I Watt IRC BT1 or Equiv. R-2 200 Ohm 10 Watt Ohmite or Equiv. R-3 10,000 Ohm 10 Watt Ohmite or Equiv. R-4 200 Ohm 10 Watt Ohmite or Equiv. R-5 $\quad 10,000$ Ohm 10 Watt Ohmite or Equiv. R-6 $\quad 50$ Ohm 10 Watt Ohmite or Equiv. R-7 5,000 Ohm 25 Watt Ohmite or Equiv. R-8 2,000 Ohm 25 Watt Ohmite or Equiv. R-9 2,000 Ohm 50 Watt Ohmite or Equiv.
R-10 10,000 Ohm 50 Watt Ohmite or Equiv. R-11 1,000 Ohm 75 W att Ohmite or Equiv.
R-12 25,000 Ohm 50 Watt Ohmite or Equiv.
R-13 100,000 Ohm 200 Watt Ohmite or Equiv.
R-15 50,000 Ohm 100 Watt Ohmite or Equiv.
R-16 500 Ohm 25 Watt T Pad Utah or Equiv.
R-17 750 Ohm 10 Watt Ohmite or Equiv.
R-18 2,000 Ohm 50 Watt Ohmite or Equiv.

CONDENSERS

Variable Condensers
C-1 150 Mmfd . Cardwell MR150BS or Equiv. $\mathrm{C}-2$
$\mathrm{C}-3$ $\mathbf{2 6 0 \mathrm { Mmfd } \text { . Cardwell MR260BD or Equiv, }}$ C-4 150 Mmfd . National TMC150 or Equiv. C-5 100 Mmid . National TMA100DA or Equiv. C-6 200 Mmid. National TMC200D or Equiv. C-7 200 Mmfd . National TMC200DA or Equiv.

(CONTINUED)

Parts Required

C-8 to C-10
C-11
C-12, C-13 . 001 Mfd. 1000 Volt Mica Aerovox
C-14
C-15 to C-20
C-21
C-22 to C-24
C-25
C-26, C-27
C-28
C-29, C-30
C-31 to C-33
C-34, C-35
C-36, C-37
C-38
.001 Mfd. 1000 Volt Mica Aerovox 1450 or Equiv.
.0001 Mfd. 1000 Volt Mica Aerovox 1450 or Equiv. 1450 or Equiv.
. 0001 Mfd. 1000 Volt Mica Aerovox 1450 or Equiv.
. 001 Mid. 1000 Volt Mica Aerovox 1450 or Equiv.
.001 Mfd. 5000 Volt Mica Aerovox 1652 or Equiv.
. 001 Mid. 1000 Volt Mica Aerovox 1450 or Equiv.
.001 Mid. 10,000 Volt Mica Aerovox 1654 or Equiv.
. 001 Mid. 1000 Volt Mica Aerovox 1450 or Equiv
16 Mfd .450 Volt Elec. Aerovox G475 or Equiv
2 Mid. 1000 Volt Aerovox 1010 or Equiv.
2 Mid. 3000 Volt Aerovox 3009 or Equiv.
2 Mid. 2000 Volt Aerovox 2009 or Equiv.
8 Mfd. 450 Volt Elect. Aerovox G475 or Equiv.
.001 Mid. 1000 Volt Mica Aerovox 1450 or Equiv.

Neutralizing Condensers:

NC-1 See note in copy
NC-2 See note in copy
NC-3 12 Mmfd. 8000 Volt National NC-150 or NC-4 Equiv.
$\mathrm{NC}-5(13 \mathrm{Mmfd}$. 12,000 Volt Johnson N375 or. Equiv.

Metera:

MA-1 0-100 M.A. Simpson 27 S (Illum.) or Equiv. MA-2 $\left.\mathbf{M A}^{\text {MA }}\right\}$ 0-150 M.A. Simpson 27 S (Illum.) or Equiv. MA-4 $0-100$ M.A. Simpson 27S (Illum.) or Equiv. MA-5 $0-500$ M.A. Simpson 27S (Illum.) or Equiv. MA-6 $0-250$ M.A. Simpson 27 S (Illum.) or Equiv. | MA-7 | $0-750$ M.A. Simpson 27S (Illum.) or Equiv. |
| :--- | :--- |
| MA-8 | $0-7$ |

RF Chokes:

RFC-1 to RFC-3 125 M.A. National R100 or
RFC-4 600 M.A. National R154U or Equiv.
RFC-5 125 M.A. National R100 or Equiv.
RFC-6 600 M.A. National R154U or Equiv.

Relays:

1, "2 Guardian B100 or Equiv.
Guardian L500 or Equiv.
Guardian (special) or Equiv. Guardian L500 or Equiv.

Miscellaneous Parts:

5 Pr. Chassis Mounting Brackets $31 / /^{\prime}$ Wheels Coto or Equiv. $21 /{ }^{\prime \prime}$ Wheels Coto or Equiv. Coil Forms National XR-4 or Equiv. Coil Assembly National UR-13 or Equiv. Coils Coto-Coil 80 BTVL or Equiv. Coil Coto-Coil 80 TVL or Equiv. Sockets Johnson type 211 or Equiv. C-1 Bases Coto-Coil 6BTLM or Equiv. C-1 Base Coto-Coil 8TLM or Equiv. Cone Insulators Johnson $\# 604$ or Equiv. Bee Hive insulators Johnson $\$ 45$ or Equiv. Feed-thru insulators Johnson 442 or Equiv. 1 "Cone insulators Johnson "601 or Equiv. Insulatora National \$GS-2 or Equiv. Insulators National \#GS-1 or Equiv. SPST Toggle Switches H \& H or Equiv. Steatite Sockets Amphenol or Equiv. Steatite Octal Sockets Amphenol or Equiv. Bakelite Sockets Amphenol or Equiv. Bakelite Octal Sockets Amphenol or Equiv. Plugs Amphenol or Equiv. Bakelite Knob Large Grid Grips

Tubes:

1	RK39	1	T-125
2	T-200	4	872
2	866	2	83
1	$5 Z 3$	2	$6 F^{\prime} 6$
2	845	2	822
	261.6 G or 6 L 6 GX		

See page 37 for Pre-Amplifier

COIL DATA					
BAND	160	80	40	20	10
L1, L2, L3, L4	40T \#18	26 T \#16	12T \#16	8T \#16	3T \#16
L5, 16	$\begin{gathered} 36 T \text { \# } 16 \\ 41 / 8^{" 1} \text { Diam. } \end{gathered}$	34T \#16 27/8" Diam.	22T \#16 27/8" Diam.	$\begin{gathered} 16 T \text { \#14 } \\ 27 / 8^{n} \text { Diam. } \end{gathered}$	$\begin{gathered} \text { 4T \#14 } \\ 27 / 8^{\prime \prime} \text { Diam. } \end{gathered}$
17	42T \#14 51/8" Diam.	$\begin{gathered} 30 \mathrm{~T} \text { \#10 } \\ 41 / 8^{m} \text { Diam. } \end{gathered}$	20T \#10 31/4" Diam.	$\begin{gathered} 10 \mathrm{~T} \text { \#10 } \\ 31 / 4^{\prime \prime} \text { Diam. } \end{gathered}$	$\begin{gathered} \text { 4T \#10 } \\ 311_{4}^{\prime \prime} \text { Diam. } \end{gathered}$
Link for L3, LA, L5, L6	4T \#18C.C.	3T \#18C.C.	2T \#18C.C.	2T \#18C.C.	2 H \#18.C.
L1, L2, L3 wound en $1 \frac{1}{2} /{ }^{\prime \prime}$ Diam. winding length $18 /{ }^{\prime \prime \prime}$. L4 wound en $13 / 4^{\prime \prime}$ Diam. winding length $2^{\prime \prime}$. Winding length of L5, L6, $41 / 2^{\prime \prime}$. Winding length of $\mathrm{L} 7,61 / 2^{\prime \prime}$.					

MODULATOR POWER SUPPLY
Chassis: $20^{\prime \prime} \times 15^{\prime \prime} \times 31 / 4^{\prime \prime}$; Panel: $14^{\prime \prime}$

Circuit diagram, drawings and full size template of chassis available from Thordurson 1.5 cents net each. postpaid.
(CONTINUED)

R. F. POWER AMPLIFIER

Chassis: $17^{\prime \prime} \times 17^{\prime \prime} \times 3^{\prime \prime}$; Panel: $191 / 4^{\prime \prime}$

BUFFER
Chassis: $17^{\prime \prime} \times 10^{\prime \prime} \times 1^{\prime \prime}$; Panel: $15 \%{ }^{\prime \prime}$

EXCITER UNIT
Chassis: $17^{\prime \prime} \times 10^{\prime \prime} \times 3^{\prime \prime}$; Panel: $10^{1 / 2 \prime \prime}$

BIAS AND EXCITER POWER SUPPLIES Chassis: $17^{\prime \prime} \times 13^{\prime \prime} \times 3^{\prime \prime}$; Panel: $101 / 2^{\prime \prime}$

R:F: POWER SUPPLY
Chassis: $20^{\prime \prime} \times 15^{\prime \prime} \times 31 / 4^{\prime \prime}$; Panel: $14^{\prime \prime}$

DRIVER AND SPEECH AMPLIFIER Chassis: $17^{\prime \prime} \times 10^{\prime \prime} \times 3^{\prime \prime}$; Panel: $10 \frac{1 / 2^{\prime \prime}}{}$

DRIVER AND SPEECH POWER SUPPLY Chassis: $17^{\prime \prime} \times 12^{\prime \prime} \times 3^{\prime \prime}$; Panel: $12 \frac{1 / 4^{\prime \prime}}{}$

CLASS B MODULATOR Chassis: $13^{\prime \prime}$ w. x $131 / 2^{\prime \prime}$ d.; Panel: $191 / 6^{\prime \prime}$

PRE-AMPLIFIER CHASSIS AND ASSEMBLY
Chassis: $17^{\prime \prime} \times 10^{\prime \prime} \times 3^{\prime \prime}$; Case: $19^{\prime \prime \prime} \times 13^{\prime \prime} \times 83 / 4^{\prime \prime}$

PRE-AMPLIFIER PARTS REQUIRED

Condensers: (Cont'd.)

	Resistors: (Cont'd)		Condensers: (Cont'd.
R-10	$20,000 \mathrm{Ohm}$ I Watt Ohmite or Equiv.	C-6	10 Mid .25 Volt Elect. Aerovox
R-11	$50,000 \mathrm{Ohm} 1$ Watt IRC BT1 or Equiv.		or Eq
R-12	$250,000 \mathrm{Ohm} 1$ Watt IRC BT1 or Equiv.	C-7	. 1 Mid. 400 Volt Paper Aerovox 4
R-13	$2,0000 \mathrm{hm} 1$ Watt Ohmite or Equiv. $50,000 \mathrm{Ohm} 1$ Watt IRC BT1 or Equiv.	C-8 to C-10	${ }_{8}^{\text {or Equiv. }}$ Mrd.
R-15	10,000 Ohm 25 Watt Ohmite or Equiv.		or Equiv.
C-1, C-2	Condensers: .1 Mid. 400 Volt paper Aerovox 484		Miscellaneous Parts:
C-3	or Equiv. 10 Mfd. 25 Volt Elect. Aerovox PB25	1 Makelit	Ocket Amphenol or Eq
	or Equiv.	4 Bakelite	ctal Sockets Amphenol or
C-4	8 Mfd .450 Volt Elect. Aerovox G475	Bakelite	Knobs
C-5	. 1 Mid. 400 Volt paper Aerovox 484	Tubes: 1-8	2-6F5, 2-6C5

10 Mid. 25 Volt Elect. Aerovox PR2: or Equiv.
or Equiv. 8 Mid. 450 Volt Elect. Aerovox (iA7.) or Equiv.
Miscellaneous Parts:
2 Mike Connectors Amphenol or Fquiv
4 Bakelite Socket Amphenol or Equiv.
2 Bakelite Knobs

Tubes: 1-80, 2-6F5, 2-6C5

Thardarson Technical Literature

No. 333 - Amateur Radio
75c Postpaid Mr . Fortune, Thordarson engineer and a prominent amateur radio enthusiast, spent over twelve months in preparing this text-book. There are approximately 160 pages, and matters covered include Learning the Code, Receiver Theory and Construction, Crystal Oscillator Transmitter, Two-stage Transmitter, Three-stage Transmitter, Construction of the Modulator and reference notes on receivers, inductance, capacity and many other electrical and radio terms. It is a book recommended to all experimenters, beginning amateurs and even to amateurs of long experience. Amateur net price 75c. Profusely illustrated with over 100 comprehensive photographs and drawings. Heavy cover finished in wear-1 esistant blue cloth, with attractive gold stamping. This is a cloth covered case bound text-book.

No. 340 - Complete Transformer Manual 35c Postpaid The Thordarson Transformer Manual is a complete book, containing the Replacement Transformer Encyclopedia and Servicing Guide, the Transmitter Guide, and the Sound Amplifier Guide, plus current Thordarson catalogs. It is bound in a strong attractive blue and orange cover with looseleaf arrangement, giving the user opportunity to keep the Manual up-to-date by adding later Thordarson releases. A book that has proven to be most popular in the rechnical library.

No. 352-Replacement Encyclopedia, Service Guide, Free Thordarson Replacement Transformer Encyclopedia and Service Guide No. 352 recommends proper transformer and choke replacement for receivers listed in Rider's Manuals. This handy, useful time-saver, originated by Thordarson is now used by good service engineers the wolld over. In addition, it contains a new edition of the popular Service Guide giving practical solutions to everyday service problems, including useful charts and tables.

No. 346 - Amplifier Guide 15c Postpaid
P. A. men and experimenters interested in building high quality amplifiers find the Thordarson Amplifier Guide No. 346 a worthwhile source of information. It contains laboratory designed and tested circuits of amplifiers from 8 to 120 watts output. Complete parts list, mechanical chassis drawings, and comprehensive illustrations enable the constructer to obtain supetior results with matched transformer and choke components. Data is ineluded for pre-amplifiers, dual rone controls, speaker impedance matching and testing.

No. 500 - Broadcast Components Catalog . . . Free
Thordarson offers a complete line of transformers and chokes for broadcast use, each capable of meeting and surpassing the most rigid broadcast tolerances. These transformers are listed and described in the new Broadcast Catalog, No. 500. Broadcast stations, experimenters, laboratories or air craft stations are urged to secure a copy of this valmable listing.

No. 600 - Amplifier Catalog Free
The finest amplifiers are built by Thondarson - pioneers in producing quality audio components. Absolute fidelity is assured by accurate laboratory design and rigid inspection during production. New models from 8 to 900 watts satisfy practically every sound requirement. Pre-aimplifiers and boosters round out a truly complete line of equipment for sound rechnicians. Fully described in Catalog 600.

No. 400 - Complete Transformer Catalog . . . Free A catalog of transformers and reactors for every radio use. Contains full physical and electrical descriptions.

Obtainable from your radio parts distributors or direct from factory.

Class B Audio Frequency Amplifiers

CLASS B modulators are usually used in transmitters having plate modulated Class C inputs of more than 50 or 60 watts. For audio frequency power outputs of more than 30 watts, the increased cost and size of tubes which can be used in Class A amplifiers, and the power supply components used to supply these tubes make Class B systems economicaliy justifable.

The principal differences between Class A and Class B audio amplifiers are as follows:

1. The plate dissipation of the tubes in a Class B amplifier increases with increasing signals and is a maximum at some level near full power output. In a Class A amplifier the plate loss of the tubes is a maximum at nosignal.
2. The excitation of a Class B amplifier is carried into the positive grid region of the tube characteristics, causing grid current to flow, with the resultant requirement that the source of audio frequency excitation is called upon to de'iver an appreciable amount of power. Class A amplifiers, in general, are not designed to operate with a positive grid in any condition of normal excitation.
3. In a Class B amplifier the changing plate current requires better regulation of the power supply than does the Class A amplifier.
4. Class A amplifiers usually require negative bias on the grids. In many Class B amplifiers there are conditions of operation in which no bias is required.
5. Class B audio frequency amplification reguires the use of two tubes, whereas Class A amplification can be obtained with one tube.

Class B Audio Frequency Output

 CalculationsThe amateur has many occasions in which it is desirab'e to have more data concerning the operation of given tubes in Class B service than are given by the tube manufacturers. The data which are given usually show rypical onerating characteristics at a given plate voltage, showing the plate load which delivers a given amount of power with nominal distortion, driving power, and tube losses.

In a particular installation there often arise circumstances in which operation in some condition other than the "typical" case is desirable. For ex-
ample: (1) the plate supply voltage may be other than that listed; (2) more or less distortion may be tolerated; (3) greater tube losses may be permissible at full-signal or at no-signal; (4) the regulation of the source of driving voltage may be poor; (5) the voltage or power output capabilities of the driving source may be limited; (6) the output power requirements may be different; (7) the wave form of the signal may be unusual; (8) the operation may be intermittent; and (9) space and weight requirements may justify overloading.

So that the amateur may take full advantage of the possibilities of varying the plate load on his Class B tubes by changing connections on the MultiMatch modulation transformers, an example of Class 13 output calculations is shown below:

Suppose that a Class C amplifier of 330 watts input is to be 100% modulated by the tubes having the characteristics shown in Fig. 1. The plate

supply voltage is 1250 V ., the rated maximum tube dissipation is 40 watts, and the maximum plate current is 125 MA.

The audio frequency requirement is that 165 average watts of output power be delivered to the Class C stage. This figure is based on a sine wave signal. The maximum allowable power input to the modulator (two tules) is 1250 x $0.125 \times 2=312.5$ watts. Thus an overall efficiency of at least

$$
100 \times \frac{165}{312}
$$

or 52.5% is required. This is not at all unreasonable for a Class B audio frequency stage; in an amplifier of power output capabilities of 150 watts an overall efficiency of 60 to 65% is easily obtainable.

Practice has shown that to allow for transformer losses and the deviation of tube characteristics from average values, the value of power delivered by the tulbes as calculated from their aver-
age characteristics should be, for outputs of this order of magnitude, about 16% higher than the power required to be delivered from the secondary of the modulation transformer. In this case, the calculations should be based on a power output from the tubes of 165 x 1.16 or 192 watts output.

Since the maximum plate loss in a Class B amplifier occurs at a level slightly below maximum power output, an allowance of 35 average watts loss per tube at full signal is reasonable in this example. Considerable leeway may be taken with this in cases where speech waves of 330 watts peak power are required at the output of the modulation transformer. However, in this example, it is assumed that sine wave modulation will occur.
The power input to the two tubes at full-signal will then be the sum of power ontput and tube losses. This is $192+(2 \times 35)$ or 262 watts. A check now shows that the Class B plate efficiency, that is. the efficiency of conversion from DC energy supplied to the plate to audio frequency energy, is

$$
100 \times \frac{192}{262} \text { or } 73 \%
$$

This is a reasonable value, for the maximum possible efficiency of a Class B stage is 78.5%.

For a power input of 262 watts at 1250 volts the direct current supplied is $\frac{\text { watts }}{\text { volts }}$ or $\frac{262}{1250}$ or 210 MA . The average current in each tube is half of this amount, or 105 MA . With the tubes biased to a value near cut-off, the shape of the current wave in each tube very nearly approximates that of a halfsine wave.

The average value of current in a series of half-sine wave pulses is 31.8% of the peak value of the current. Therefore, the peak value of the current in the tube is $\frac{105}{0.318}$ or 330 MA .

At the time the peak power occurs. only one of the two modulator tubes is working, and, therefore, it alone is delivering this power. The peak power is twice the average AC power developed or 2×192 or 384 watts. The peak AC voltage across the load is $\frac{\text { peak watts }}{\text { peak current }}=\frac{384}{0.330}=1160$ volts. The AC load on the tube is the peak voltage divided by the peak current or $\frac{1160}{0.330}=3500$ ohms. On the family of curves shown in figure 1 , the oblique straight line AD is known as the load line. It is a plot of the instantaneous voltage and current relations for one Class B tube when working into a resistive load of 3500 ohms. The

TRANSFORMER SPECIALISTS SINCE 1895
location of the line is found by locating any two sets of simultaneous values of plate voltage and plate current. The value of 1160 peak volts across the load and 330 MA in the tube corresponds to a value of 1250 1160 or 90 volts across the tube. Thus $e=90$ volts and $i=330 \mathrm{MA}$ is one set of points. It is located at point C . Then, knowing the load, any other set of points can be found. At one-ninth power output the peak current and the peak voltage are one-third of that occurring at full power output. At this power level, then, the peak current is 110 MA, and the peak voltage across the load is $\frac{1160}{3}$ or 387 . This corresponds to a peak voltage across the tube of $1250-387$ or 863 V . Thus another point on the load line is $\mathrm{e}=863$ volts and $\mathrm{i}=110 \mathrm{MA}$. This point is shown at F. A straight line through C and F locates the load line.
A simpler way of locating the load line is to draw a line through the point 1250 volts on the abscissae axis, which is shown at point A , and the point $\frac{1250}{\mathrm{R}}$ or $\frac{1250}{3500}$ or 0.357 ampere on the ordinate axis. This latter point is designated as D. Then the points A, C, D and F are on the load line, and any two of them might have been used to obtain its position on the family of curves shown.
It will be seen that the point C falls on the curve corresponding to a grid voltage of +70 V . This voltage of +70 is the voltage on the grid at the instant of minimum plate voltage and peak power output. It (+70 volts) is the most positive value of grid voltage required for this condition of operation. It is to be noted that the maximum grid voltage and the minimum plate voltage occur at the same instant; furthermore, the minimum plate voltage of 90 V . is only slightly greater than the maximum grid voltage of 70 V .

The load of 3500 ohms on the plate of one audio tube represents a plate-toplate load of four times this or 4 x $3500=14,000$ ohms. This plate-toplate impedance is of no particular value in the calculation of Class B performance by the method outlined above, but it is useful in describing the characteristics of the required Class B output transformer.

The calculation shown has been that for the solution of the operating characteristics for a given power output with a given tube loss. Where it is desired to find operating conditions to meet other requirements, such as a specified plate load or a specified peak driving voltage, a different order of procedure must be used. A study of the above ex-
ample will be a guide in other solutions.
Whether or not the tubes are to be operated at zero bias involves the consideration of the plate loss at no-signal and the tolerable distortion. In the example given the value of no-signal plate current for zero bias voltage may be found at the intersection of the 1250 volt ordinate and the curve for $\mathrm{Ec}=0$. This is shown at the point B. Here the current for one tube is 10 MA , and the plate loss per tube is 1250 x 0.010 or 12.5 watts, well below the allowable limit.

The dotted curve represents the relation of grid current to plate voltage for a grid voltage of +70 volts. If from the coordinates $\mathrm{Ep}=90, \mathrm{Ip}=$ 330, a vertical line is passed which intersects the dotted line at E , the ordinate (90 MA) at this point represents the peak value of grid current. The peak grid driving power required to obtain full output under the conditions specified may now be obtained. It is $\mathrm{Eg} \times \mathrm{Ig}=70 \times 0.090=6.3$ watts. The ratio of peak driving power to average driving power depends mainly upon the plate load, the type of tube, and the peak grid voltage and its relation to the minimum plate voltage. For some conditions of operation the average power is one-half the peak power. and for other conditions it may be only one-third or one-fourth the peak power.
The following characteristics have thus been obtained for two tubes in a Class B stage:

Plate voltage - 1250 volts
Average no-signal plate current 20 MA

Average full-signal plate current 210 MA .

DC grid volts - 0
Peak grid-to-grid voltage - 140 volts
No-signal plate loss - 25 watts
Full-signal plate loss - 70 watts
Load resistance (per tube) - 3500 ohms

Plate-to-plate load - 14,000 ohms
Peak driving power-6.3 watts
Plate efficiency - 73%
Stage efficiency - 65%
Power output - 165 watts
The maximum efficiency of a Class B amplifier is 78.5%. This value is realized only when the instantaneous plate voltage swings to zero and the halfsine wave shape of current in each tube is retained.
In the example given, if such a condition could be obtained, the average plate current (two tubes) would be $0.357 \times 0.318 \times 2=0.227$ ampere. The power output would be 0.357 x $\frac{1250}{2}=223$ watts, and the power input would be $1250 \times 0.227=284$ watts for an efficiency of $100 \times \frac{223}{284}$ or 78.5%.

Considerations in Selecting Driver Transformer Ratios

Although the driving power for a Class B stage is usually obtained from a Class A amplifier, ordinary Class A amplifier design for maximum power output does not suffice. Most Class A amplifiers not intended for driver service are planned to deliver the maximum possible undistorted power into a given fixed load.

Unfortunately, the load on Class A tubes in driver service is not constant throughout the cycle. This is due to the fact that the grids of the modulator tubes do not have a constant resistance over the audio cycle. In the positive grid region the grid current increases more rapidly than the grid voltage, thus exhibiting the characteristic of a decreasing grid resistance with increasing voltage. The degree to which the resistance changes depends mainly upon the relation between minimum plate voltage and maximum grid voltage. For tubes operated with zero bias the resistance change in most cases is, fortunately, not large. In a Class B stage working into a resistance load, the maximum instantaneous grid voltage and the minimum instantaneous plate voltage occur at the same time. During the part of the cycle that the minimum plate voltage and the maximum grid voltage are not greatly different, the change in grid-to-cathode resistance is most apparent. It is well to plan to have the ratio of minimum plate voltage to maximum grid voltage exceed two in cases where low driver distortion is desired. In instances where more driver distortion can be tolerated, or in cases where the apparent internaloutput impedance of the driver is very low, as compared with the minimum Class B grid resistance, this ratio may be reduced to 1.0 or 1.5 . With tubes having negative grid bias the resistance changes from a very high value to a very low value within a small per cent of the time required for a complete cycle.

If a driving voltage of perfect regulation were available, this change in resistance would not be of such serious consequence. However, all practical drivers have some internal impedance, and in delivering energy to a varying load, harmonic distortion will occur. If the internal output impedance of the driver has an appreciable reactance, extremely disagreeable distortion can result. This is especially true if the Class B grids are biased. It is important to have a driver transformer having a low leakage reactance.

AN IMPORTANT problem in the selection of a driver is to obtain a source of adequate voltage of good regulation without prohibitive amounts of driver tube capacity. Fortunately, there are receiving tubes (2 A 3 's) which will supply driving power for most modulators having power outputs up to several hundred watts.

In general, for amateur work, the amateur should use tubes which in normal Class A amplifier service will deliver an average power output of at least one-half as much as the peak power required to supply the Class B grids. It is preferable in nearly all cases to have the average power output capabilities of the driver be one to two times as great as the peak power requirements of the Class B grids. This corresponds to peak power capabilities of two to four times the peak power which is required at the driver grids. The ratio of average power capacity of driver to peak power required at the Class B grids may approach the lower value when the Class B tubes are operated at zero bias and the ratio of minimum plate voltage to maximum grid voltage is large (two or more). In such a case, the grid resistance is substantially constant during the cycle.
The installation of driving tubes having power output capabilities greater than required allows the changing of the plate load from that which is optimum for maximum undistorted output to a higher value which delivers less power, but which lowers the internal impedance of the driving source as seen from the Class B grids.

In selecting the turns ratio of a driver transformer, it is desirable to make the step-down ratio as high as possible from the driver plates to the Class B grids and yet be able to develop the required peak driving voltage on the Class B grids without overloading the driver tube.
The determination of the correct driver transformer ratio can be studied by reference to the following discussion. In figure 2, Eg is the peak value of the $A C$ voltage required on the Class B grid. Rg is the grid resistance at this value of voltage. (This is the lowest value of grid resistance.) $R D$ is the internal resistance of the source of

Fig. 2
driving energy, and ED is the peak open circuit voltage developed by the driver source. The transformer ratio is N to 1, primary to secondary. Figure 3 is a simplified version in which the secondary voltage and resistance are

reflected to the primary side of the transformer. The secondary voltage is stepped up N times and appears across the primary as NEg. The secondary load, in accordance with regular transformer theory, is stepped up N^{2} times and appears to the primary as $\mathrm{N}^{2} \mathrm{Rg}$.

At all instants the ratio of the voltages is equal to the ratio of the resistances across which they occur. Thus:

$$
\frac{E D}{N E g}=\frac{R_{D}+N^{2} R g}{N^{2} R g}
$$

There are two solutions, one giving a turns ratio which gives relatively good regulation and the other giving a turns ratio with poor regulation. For either solution there is adequate driving voltage. The desired solution is given by the formula:

$$
N=\frac{E_{D R g}+V \frac{E_{D^{2} R g^{2}}-E_{g^{2} R g R D}}{2 E_{g} R g}}{\text { 枵 }}
$$

Example:

Assume a pair of push-pull 2A3's with 300 volts on the plates, 60 volts bias and an available signal of 53 peak volts on each 2A3 grid. The Class B grid minimum resistance is 780 ohms at +70 volts. The Class B tubes are at zero bias. The 2A3 tubes have a mu of 4.2 and a plate resistance of 1050 ohms.

Solution:

The open circuit driving voltage of two 2A3's in series is $2 \times 4.2 \times 53$ or 445 volts. This voltage may be considered as that in a generator of internal resistance $R p \times 2$ or 1050×2 or 2100 ohms. Then:
$\mathrm{N}=\frac{445 \times 780+\sqrt{(445)^{2}(780)^{2}-(70)^{2}(780)(2100)}}{2 \times 70 \times 780}$

Solving:

$\mathrm{N}=6.25$, which is the turns ratio from the total primary to one-half the secondary. In this case, the 780 ohm grid load is reflected as a 30,500 ohm plate-to-plate load on the 2A3's, much higher than the 5000 ohm plate-to-plate load of ten encountered.

Line to Class B Grid Driver Ratio

In selecting the driver transformer to transfer energy from a so-called " 500 ohm" line to Class B grids, the fact is often overlooked that the " 500 ohm" line is usually not of 500 ohms internal output resistance. Its internal output resistance (when the source of energy to it is not "padded down") is usually far from being 500 ohms. This is of considerable consequence in calculating driver transformer ratios.
Suppose, for example, that the " 500 ohm" line had been fed from two 2A3's having an amplification factor of 4.2 , a plate resistance of 1050 ohms and a maximum available signal voliage on their grids of 53 peak volts. If the 2A3 output transformer was designed to place a 5000 ohm plate-to-plate load on the tubes when a 500 ohm load was connected to the secondary, the turns ratio of total primary to total secondary would be 3.16 to 1 . The 500 ohm line would then have an internal impedance of $\frac{2 \times 1050}{(3.16)^{2}}$
or 210 ohms, and the maximum available open circuit voltage on the line side of the transformer would be $2 \times 53 \times \frac{4.2}{3.16}$ or 140 peak volts. This voltage and the source resistance of 210 ohms should be used in calculating the line to Class B grid ratio.

For the Class B grid condition previously given, the solution yields:
$\mathrm{N}=\frac{140 \times 780+\sqrt{(140)^{2}(780)^{2}-(70)^{2}(210)(780)}}{2 \times 70 \times 780}$
which gives $\mathrm{N}=1.97$ as the ratio from the line to one grid (that is, the primary to one-half the secondary). It is to be noted that this ratio (1.97) multiplied by the ratio of the transformer with which it is associated (3.16) gives $1.97 \times 3.16=6.25$, which is the ratio obtained for the solution of turns ratio for a driver transformer coupling the 2A3 plates directly to the grids.

In the calculation of driver ratio shown, no allowance has been made for transformer losses or for deviations of the driver tube characteristics from the average values given by tube manufacturers. Furthermore, it is not well to have a peak signal on the driver tube grids which reduces that grid voltage to zero. It is better to limit the maximum peak grid voltage on the driver to about 95% of the bias voltage. Allowance for these three factors can be made by reducing the step-down ratio of the driver transformer 10 to 15%.

HAVING selected the proper load resistance into which the modulator should deliver energy it is necessary to couple the modulator to its Class C load through a transformer of the proper turns ratio.

It is characteristic of a transformer that the resistance to which the secondary delivers energy can appear as a different value of resistance at the primary terminals. The degree to which this actual load resistance and the reflected load resistance differ depends upon the turns ratio of the transformer. Of the total energy supplied to the primary of a transformer almost all is available for delivery to the load on the secondary. Thus, the actual load resistance presented by the Class C amplifier may be made to appear as the desired load on the modulator tubes, and all of the alternating current energy developed in the modulator stage can be delivered to the Class C amplifier and its load. In general, then, a transformer may be thought of as an impedance changing device in which very little of the energy supplied to it is lost. In amateur work, the transformers are of such size and construction that the efficiency is good enough that little attention need be given to the losses; that is, for most calculations it may be assumed to behave as an ideal transformer.

To show how a transformer acts as an impedance changing device the following demonstration is given:
Referring to Figure 4 a transformer is shown having a turns ratio of primary to secondary of 1 to N . The load

on the secondary is R ohms, and the voltage impressed on the primary is E.

Ordinary transformer theory indicates that the voltage across each winding is proportional to the number of turns on the winding. Thus, with E volts across the primary, the voltage across the secondary is N times as much, or NE. The power at the load resistance R is equal to the square of the voltage across it divided by the resistance. Thus, in this case the power at the secondary load is $\frac{N E)^{2}}{R}$.
With a perfect transformer the power at the primary is the same value as it is at the secondary. Thus, the power at the primary is also $\frac{(\mathrm{NE})^{2}}{\mathrm{R}}$.

For the moment, assume the secondary load resistance, R, appears at the primary terminals as another resistance, R_{1}. It is desired to find the value of the turns ratio of secondary to primary in terms of these resistances, R and R_{1}. The power at the primary of the transformer is $\frac{E^{2}}{R_{1}}$. But this value is also equal to $\frac{(N E)^{2}}{R}$. Therefore, $\frac{E^{2}}{R_{1}}=\frac{(N E)^{2}}{R}$ or $\frac{1}{R_{1}}=\frac{N^{2}}{R}$ and $N^{2}=\frac{R}{R_{1}}$.
Thus, it is to be seen that the reflected resistance is equal to the secondary resistance divided by the square of the turns ratio from secondary to primary. Stated in another manner, the reflected resistance is equal to the secondary resistance multiplied by the square of the turns ratio from primary to secondary. It is important not to become confused by the indiscriminate use of the terms "turns ratio," "step-up ratio" and the like. These terms are used interchangeably, but they are not necessarily equal to each other.

Suppose, for example, that it is desired to calculate the turns ratio of the full primary to the full secondary of a modulation transformer used under the following conditions:

Power input to Class C amplifier 330 watts.
Plate voltage on Class C amplifier 1250 volts.
Modulator plate-to-plate load desired - 14000 ohms.
The Class C plate current is $\frac{W}{E}$ or $\frac{330}{1250}$ or 0.264 amperes. The Class C load on the secondary of the modulation transformer is then $\frac{\mathrm{E}}{\overline{\mathrm{I}}}$ or $\frac{1250}{0.264}$ or 4740 ohms. This is equal to R .

$$
\text { Then, if } N^{2}=\frac{R}{R_{1}}, N^{3}=\frac{4740}{14000}=
$$

0.338 and N is equal to the square root of this value, or 0.58 . In this case N is the ratio of secondary turns to primary turns. The value of 0.58 , being less than unity, indicates that the secondary has less turns than the primary. This is as it should be when a given Class C load is less than the plate-toplate load which it is desired be reflected on the primary side of the nodulation transformer. The amateur may avoid making the mistake of obtaining a turns ratio which is the inverse of the proper value by always making an estimate of which winding, primary or secondary, has the greater number of turns, this estimate to be made before the start of calculations.

MULTI-MATCH

MODULATION

TRANSFORMER RATIOS

Tapped double winding coils as used in Multi-Match modulation transformers make possible a large number of impedance ratios, so many in fact that it is not practical to list in table form all the combinations possible. However, there are occasions when the modulator plate-to-plate load, or the Class C load, are of values not shown in the table and yet are within the range covered by the transformer. The chart shown on the opposite page may be used to determine the correct modulation transformer connections when the desired turns ratio is known. The transformer connections may then be found from the list of ratios in the adjoining table. As an example, to match a 10,000 ohm plate-to-plate load to a Class C load of 5000 ohms, a turns ratio of $\sqrt{\frac{10,000}{5,000}}$ or 1.41 is necessary. The connections shown in the table should be used to secure this ratio. In this particular case these connections are:

For the primary, connect the modulator plates to terminals 2 and 5;3 and 4 are joined and connected to the modulator plate supply. For the secondary, join terminals $7-11$ and 8-12. Connect the Class C load to terminals 7 and 8 .

Since only part of the winding is used for some combinations, the maximum allowable value of plate-to-plate load is necessarily variable. This maximum value is shown in the last column of the table and should not be exceeded.

Care should be taken that the DC secondary current does not exceed the maximum rating of the transformer. A parallel connected secondary will carry twice the current of a series connection, and in the event that the Class C current is greater than the allowable current of the series connection, a parallel connection must be used.

Turns Ratio Primary to Secondary	PRIMARY			SECONDARY				Maxinum Allowsble Plate to Plate Koad	
				SERIES		Parallel			
	Plate	B +	Plate	Join Together	Connect Class "C" Load To	Join Together	$\begin{aligned} & \text { Connect } \\ & \text { Class "C' } \\ & \text { Load To } \end{aligned}$		
3.14	2	3-4	5			$\begin{gathered} 8-9 \\ 10-11 \end{gathered}$	$\stackrel{8-10}{ }$	12000	Ohms
2.88	7	8-11	12			$\begin{gathered} 2-3 \\ 4-5 \end{gathered}$	$\stackrel{2-4}{-}$	16000	Ohms
2.8	1	3-4	6	9-10	8-11			20000	Ohms
2.61	7	9-10	12	2-5	1-6			20000	Ohms
2.5	1	2-5	6			$\begin{gathered} 8-9 \\ 10-11 \end{gathered}$	8-10	10000	Ohms
2.5	1	3-4	6			$\begin{aligned} & 7-11 \\ & 8-12 \end{aligned}$	7-8	20000	Ohms
2.32	7	9-10	12			$\begin{aligned} & 1-3 \\ & 4-6 \end{aligned}$	$\stackrel{1-4}{-}$	20000	Ohms
2.07	7	9-10	12	3-4	2-5			20000	Ohms
1.8	7	8-11	12	2-5	1-6			16000	Ohms
1.73	1	3-4	6			$\begin{gathered} 7-9 \\ 10-12 \end{gathered}$	7-10	20000	Ohms
1.61	8	9-10	11			- $\begin{aligned} & 2-6 \\ & 1-5\end{aligned}$	1-2	8000	Ohms
1.60	7	8-11	12			$\begin{aligned} & 1-3 \\ & 4-6 \end{aligned}$	14	16000	Ohms
1.59	7	9-10	12	2-3	1-6			20000	Ohms
1.57	2	3-4	5	9-10	8-11			12000	Ohms
1.49	7	9-10	12	3-4	2-6			20000	Ohms
1.44	7	8-11	12	3-4	2-5			16000	Ohms
1.4	2	3-4	5			$\begin{aligned} & 7-11 \\ & 8-12 \end{aligned}$	7-8	12000	Ohms
1.32	1	$3-4$	6	9-10	8-12			20000	Ohms
1.28	8	9-10	11			$\begin{aligned} & 2-3 \\ & 4-5 \end{aligned}$	$\stackrel{2-4}{-}$	8000	Ohms
1.25	1	3-4	6	8-11	7-12			20000	Ohms
1.25	1	2-5	6	9-10	8-11			10000	Ohms
1.15	7	9-10	12	3-4	$1-6$			20000	Ohms
1.11	1	2-5	6			$\begin{aligned} & 7-11 \\ & 8-12 \end{aligned}$	7-8	10000	Ohms
1.1	7	8-11	12	2-3	1-6			16000	Ohms
1.03	7	8-11	12	3-4	2-6			16000	Ohms
1.02	1	3-4	6	8-9	7-12			20000	Ohms
. 967	2	3-4	5			$\begin{gathered} 7-9 \\ 10-12 \end{gathered}$	7-10	12000	Ohms
. 866	1	3-4	6	9-10	7-12			20000	Ohms
. 8	7	8-11	12	3-4	1-6			16000	Ohms
. 77	1	2-5	6			$\begin{gathered} 7-9 \\ 10-12 \end{gathered}$	7-10	10000	Ohms
. 742	2	3-4	5	9-10	8-12			12000	Ohms
. 714	8	9-10	11			${ }_{4-6}^{1-3}$	1-4	8000	Ohms
7	2	3-4	5	8-11	7-12			12000	Ohms
. 639	8	9-10	11	3.4	2-5			8000	Ohms
. 588	1	2-5	6	9-10	8-12			10000	Ohms
. 575	2	3-4	5	8-9	7-12			12000	Ohms
. 555	1	2-5	6	8-11	7-12			10000	Ohms
. 495	8	9-10	11	2-3	1-6			8000	Ohms
. 483	2	3-4	5	9-10	7-12			12000	Ohms
. 458	8	9-10	11	3-4	2-6			8000	Ohms
. 455	1	2-5	6	8-9	7-12			10000	Ohms
. 385	1	2-5	6	9-10	7-12			10000	Ohms
. 357	8	9-10	11	3-4	1-6			8000	Ohms

Thordarson Multi-Match Transformer Ratings

Type No.	Max. Audio Watts	Max. Pri. M.A. Each	Max. Sec. M.A. Series	Marallel

TRANSFORMER SPECIALISTS SINCE 1895

THESE matched power supplies provide the amateur with any of the direct current voltages ordinarily encountered in amateur radio work. The dual transformers T-19P57. T-19P70 and T-19P71 are especially useful for transmitters having low voltage exciter and high voltage final amplifier stages on the same chassis. The transformer T-19P58 is especially useful in transmitters with a Class 13 modulator and Class C amplifier having slightly different plate voltage requirements. All of them may be depended upon to give the rated direct current voltage and current when using the prescribed chokes.
For CW work or for use in transmitters where the $\mathrm{Cl}_{\text {ass }} \mathrm{B}$ modulator and Class C amplifier plate voltage are to be taken from one supply, the excellent regulation of these matched units is desirable. When the bleeder, R, is of such magnitude as to drain approximately 10% of the rated current, the regulation of these supplies is approximately 15% and the ripple is approximately 1%.
The power supplies using the transformer T-1, marked with an asterisk, are dual supplies; that is, power is supplied at two direct current voltages simultaneously. The dual supplies using the transformers T-19P58 and T-19P71 use two chokes in each B+ lead, and the proper chokes are specified opposite these transformers. For the dual supplies using the transformers T-19P57 and T-19P70, two chokes in the high voltage center tap connection provide filtering for both the direct current voltages obtainable. The rated secondary load currents of each of these four dual plate transformers may be delivered simultaneously. But, when it is desired to use only the low voltage tap on any one of these dual units, the current rating of this tap is then equal to the sum of the current ratings of the two sections.
The filament transformer chosen for each plate supply is designed for mounting underneath the chassis. The plate transformers and chokes are supplied with black cases to provide not only matched electrical performance but also matched appearance in the rig.
The T-19F83 filament transformer supplies the filament of a 573 , the T-19F88 is for 866JR's and the T-19F90 is for 866's. The T-19F78 filament transformer is to be used with a $5 \mathrm{Z3}$ and 866JR's.

$\begin{gathered} \text { Power } \\ \text { Trans. } \\ \text { T-1 } \end{gathered}$	DC Volts from Tap A	DC Volts from Tap B	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{MA} \end{aligned}$	Input Choke CH-1	Smoothing Choke CH-2	$\begin{gathered} \text { Fil. } \\ \text { Trans. } \\ \text { T-2 } \end{gathered}$
T-19P5t	400		150	T-19C39	T-19C+6	T-19F83
T-19P55	500	400	250	T-19C36	T-19C+3	T-19F88
T-19P70*	750	400	$\begin{aligned} & 100 \\ & 225 \end{aligned}$	T-19C36	T-19C+3	$\begin{aligned} & \text { T-19F88 } \\ & \text { T-19F83 } \end{aligned}$
T-19P56	750	600	225	T-19C36	T-19C+3	T-19F88
T-19P57*	1000	400	$\begin{aligned} & 125 \\ & 150 \end{aligned}$	T-75C51	T-75C51	T-19F78
T-19P58*	1000	750	$\begin{aligned} & 200 \\ & 150 \end{aligned}$	$\begin{array}{r} \mathrm{T}-19 \mathrm{C} 35 \\ \mathrm{~T}-19 \mathrm{C} 39 \end{array}$	$\begin{gathered} \mathrm{T}-19 \mathrm{C}+2 \\ \mathrm{~T}-19 \mathrm{C} 46 \end{gathered}$	$\begin{aligned} & \text { T-19F90 } \\ & \text { T-19F88 } \end{aligned}$
T-19P69	1000	750	300	T-19C36	T-19C+3	T-19F90
T-19P71*	1250	400	$\begin{aligned} & 125 \\ & 200 \end{aligned}$	$\begin{aligned} & \mathrm{T}-19 \mathrm{C} 39 \\ & \mathrm{~T}-19 \mathrm{C} 35 \end{aligned}$	$\begin{aligned} & \text { T-19C+6 } \\ & \text { T-19C+2 } \end{aligned}$	$\begin{aligned} & \text { T-19F90 } \\ & \text { T-19F83 } \end{aligned}$
T-19P59	1250	1000	300	T-19C36	T-19C+3	T-19F90
T-19P60	1500	1250	300	T-19C36	T-19C+3	T-19F90
T-19P61	1750	1500	300	T-19C36	T-19C43	T-19F90
T-19P62	2000	1750	300	T-19C36	T-19C+3	T-19F90
T-19P63	1250	1000	500	T-19C38	T-19C+5	T-19F90
T-19P64	1500	1250	500	T-19C38	T-19C+5	T-19F90
T-19P65	2500	2000	300	T-19C36	T-19C+3	T-19F90
T-19P66	1750	1500	500	T-19C38	T-19C45	T-19F90
T-19P67	2000	1750	500	T-19C38	T-19C45	T-19F90
T-19P68	2500	2000	500	T-19C38	T-19C+5	T-19F90

Fin 2% $2=3$

THORDARSON ELECTRIC MFG. CO. 500 W. Huron St. Chicago, III. U.S.A.

Thandormer Smecialists Sineeterss

Since 1895-

Since 189.5 the Thordarson organization has pionecred in the development and manufacture of quality transformers in the progressive clectrical world. The policy of the company - 10 engineer the best product for the application - is consistently maintained. Small wonder that Thordarson is the recipient of both national and international awards for outstanding contributions to better engineering.

From the earliest spark coil days Thordarson has devoted an important part of its engineering and laboratory resources to the development of Amateur Radio. Today, the Amateur Radio fraternity is the training ground for broadcast, communications and government engineers.

To further promote the interest and pleasure of this worthy hobby, Thordarson presents this latest Transmitter Guide. This guide offers you a wide choice of units from the smallest transmitter for the beginner to the larger and more elaborate rigs for the advanced amateur. These transmitters are conservatively rated and employ the latest technical developments for efficient and economical operation. The cabinets and panels are beautifully designed and the circuits are adaptable to a multitude of amateur applications. Simplified construction methods are employed throughout the guide and the use of Thordarson transformers and chokes will insure perfect performance for many years.

Our sincere wish is that this guide will enable you to find many hours of enjoyment in contacting old friends and making new ones on the amateur bands.

3

Cantents

20 Watt CW Transmitter 3
Amateur Speech Amplifier 22
35 Watt Phone-CW Transmitter 4, 5
50 Watt 5 \& 10 Meter Phone Transmitter 6,7
55 Watt Phone, 80 Watt CW Transmitter. . 8, 9, 10, 11
12 Watt Mobile Transmitter, 5 \& 10 Meters 12, 13
12 Watt Universal Transmitter for Portable andEmergency Service14,15
40 Watt Band-Switch Exciter Unit 16, 17
120 Watt Band-Switch Exciter Unit 18,19
((K) Wanl Band-Swith Transmitter. 20, 21
250 Watt Phone, 450 Watt CW Transmitter. 23, 24, 25
4()) Watt Transmitter 26, 27, 28
600 Watt Transmitter 29, 30, 31, 32
$10(1)$ Watt Transmitter $33,34,35,36$
Transmitter Pre-Amplifier 37
Thordarson Technical Literature 37
Class B Output Calculations 38, 39
Driver Transformer Ratios 40
Matching Class C Loads. 41
Multi-Match Modulation Transformer Ratios. . 41, 42 Matched Power Supplies 43

FOR the newcomer in amateur radio desiring a simple yet reliable transmitter, this transmitter with metal chassis has been designed. Its crystal controlled circuit is of such a type that operation is possible on tive amateur bands. If higher power is desired at some later date this transmitter may also be used as the crystal oscillator stage of a larger multi-stage transmitter.

Circuit Operation

Operation on the five amateur bands from 160 to 10 meters is possible. On all of these five bands the oscillator will work "straight through"; that is, the crystal frequency and the output frequency are the same. In addition, the oscillator will give good outputs when doubling, using 160,80 and 40 meter crystals.
The plug-in coils on this transmitter are of a type having a built-in link on the "cold" end of the coil. If used as the exciter for a larger transmitter this unit may be link-coupled or capacitycoupled to the succeeding stage.

Successful operation of this type

THORDARSON TRANSFORMER and CHOKE
T-1 T-70R61 Power Transformer (Hi-1 T-44C02 Filter Choke

> Resistors:

R-1 20,000 Ohm 25 Watt Wirewound Resistor, Semi-Variable
R-2 $20,000 \mathrm{Ohm} 1$ Watt Resistor
R-3 $\mathbf{3 0 0} \mathbf{O h m} 10$ Watt Resistor
Condensers:
$\left.\begin{array}{c}\mathrm{C}-1 \\ \mathrm{C}-2\end{array}\right)$ Double 8 Mid. 450 Volt Condenser
C-3 .0001 Mfd . Mica Condenser
C-4 . 01 Mid .400 Volt Condenser
C-5 . 01 Mfd .400 Volt Condenser
C-6 . 002 Mfd. 1,000 Volt Mica Condenser
C-7 $\quad 100 \mathrm{Mmfd}$. Variable Condenser
$\mathrm{C}-7 \mathrm{~F} .00025 \mathrm{Mid}$. Mica Condenser

Chassis View
oscillator on the five amateur bands is made possible by including condenser C-S in the 40 meter coil base. Since the capacity, $\mathrm{C}-3$, which gives adequate performance with 10 and 20 meter crystals results in excessive crystal current with a 40 meter crystal, the (0.00025 Mfd. condenser, C-8, is mounted on the 40 meter coil base in such a manner that it is paralleled with the cathorle-to-ground circuit of the 6L6G when the 40 meter coil is used. This minimizes the likelihood of high crystal current in the 40 meter crystal, yet it permits the 20 and 10 meter crystals to oscillate with highest efficiency.
A pilot lamp in the negative high voltage lead makes an inexpensive yet effective tuning indicator. For best results in tuning it is recommended that the operator start to tune from minimum capacity toward maximum capacity, until the lamp passes through its first minimum in brillancy: The condenser should then be tuned back a slight amount toward minimum capacity to maintain good oscillator stability and ease of starting when keying. A flashlight bulb connected to a two or three turn wire loop placed over the tank coil is a handy indicator of circuit conditions when tuning.

Parts Required RF Chokes:

RFC-1 RF Choke
RFC-2 RF Choke
RFC-3 RF Choke

Miscellaneous Parts:
Chassis $8^{12^{\prime}} \times 6^{\prime \prime} \times 21_{2}^{*}$ (Punched and Drilled)
Feed-thru Iusulators
Name Plate
Dial Plate
Octal Socke
Octal Socket
5-Contact Socket
5-Contact Socket, Steatite
Pilot Lamp Socket
Line Cord and Plug
SPST Switch
Knob

Bottom View
The parts layout shown in the above photograph should be closely followed for best results. The position of the power supply leads is not critical, but all connections in the RF circuit should be made as shown.

The keying jack is mounted on the rear apron of the chassis. It is of the circuit closing type so that the removal of the keying plug clases the circuit.

When properly loaded the input to the 6L6-G plate is about 20 watts. At slightly greater antenna loading, the change in " B " current wher tuning through resonance is barely noticeable.

The screen voltage may be adjusted by moving the tap on the bleeder resistor $\mathrm{R}-1$. The recommended setring for this tap is approsimately one-fifth of the distance from the $\mathrm{B}+$ end. The position of this tap has been selected as being optimum for reasonable output on all five bands without exceeding the rated crystal current of any crystal, or the rated dissipation of the tube in any condition of loading. With the 160 or $\$ 0$ meter crystals the moving of this tap closer to the $B+$ end of the bleeder will result in greater outpuy without damage to the crystal or without exceeding the rated dissipation of the tube.

Misc. Parts: (Cont'd)

1 Closed Circuit Jack
6.3 Volt Pilot Light

Miscellaneous nuts, bolis, soldering and mounting lugs, lock-washers and other bardware.

Accensories:

$1 \quad 160$ Meter RF Coil, End Linked, Bud OEL-160 or Equivalent
180 Meter RF Coil, End Link+d, Bud OEL-80
or Equivalent
140 Meter RF Coil, End Linked, Bad OEL-40
or Equivalent 20 Meter RF
20 Meter RF Coil, End Linked, Bud OEL-20
or Equivalent Coil, End Linked, Bud OEL-10
10 Meter RF
Or Equivalent \quad Phone Plug Yax No. 75 or Equivalent
Crygtal
80 Tube
6L6-G or 6L6 GX Tube

Complete kit of the above parts with li:rge size circuit diagram available
from your local Thordarson distributor. (Accessories not included in kit).

THIS compact transmitter is capable of 35 watts input on CW and phone. Its power supply and its Class B audio amplifier are included on the same chassis as the RF section, and its Hexibility makes it a desirable transmitter for those wishing low power on the five amateur bands from 160 to 10 meters. The complete transmitter is built upon a rectangular chassis and is housed in an attractive cabinet with a curved panel of modern design. The cabinet, panel and chassis are finished in gray flat enamel. All controls are mounted on the front panel.

The 6V6-G crystal oscillator circuit easily provides enough driving power for the 6L6-G final amplifier. The oscillator and amplifier plate voltage is 315 V . and the oscillator screen voltage is 210 V . Harmonic operation of the crystal oscillator may be obtained when using 160,80 and 40 meter crystals.

There is a condition of optimum excitation for the beam power final amplifier. In some cases it may be desirable to reduce the output of the oscillator stage so that the final stage will not be overdriven. To do this the oscillator tank is detuned by turning the tank condenser toward its minimum capacity setting.

The final amplifier may be worked "straight through," or it may be used for doubling. It delivers good power outputs when doubling to $80,40,20$ and 10 meters. The final amplifier stage uses plate neutralization so that even on the highest frequencies no difficulty is experienced with selfoscillation. Cathode bias is used on the
final amplifier; this aids in lemiting the plate current when the final tank is not tuned to resonance or when there is no excitation on the final grid.

The plate tank coils for both stages are of the plug-in type. Although the crystal oscillator stage is capacity coupled to the final amplifier stage, the plug-in coil used is a Bud type OFL having a link on one end so that the coil may be used in other applications. The final tank coil is of the center-taped, center-linked type with a semi-fixed link. For the amateur who changes bands often, this provides the advantage of being able to change coils without changing the loading adjustment for each band.

Both the oscillator and final stage are keyed. The keying jack is of the closed circuit type so that no change in connections is necessary for changing quickly from CW to phone operation.
When properly loaded, the plate current in the final amplifier stage is

Bottem View
Botron View

110 MA ; and the current in the crystal oscillator plate is 25 to 30 MA . The modulator is a Class B 6A6 operating with 255 volts on the plate. Despite the high plate voltage, operation is very satisfactory in intermittent service.

The 6A6 operates at zero bias, and it is driven by another 6A6 triode with its two sections in parallel. The plates of the driver are also operated at 325 volts. The cathode bias on the driver is of the order of 5 to 6 volts. High gain is realized in this stage so that no additional amplification is needed to obtain 100% modulation when using a carbon microphone.

The current for the carbon microphone is obtained by passing the bleeder current through the microphone circuit. Adequate filtering is provided so that no hum enters the audio circuit at this point. In order that the removal of the microphone plug from the chassis will not place a high voltage across $\mathrm{C}-4$, the microphone connector is of the shorting type which closes the microphone circuit even when the microphone has been removed. With such a feature the operator can never inadvertently place high voltage on the condenser, C-4.

The power supply uses a 523 rectifier tube. Separate switches are provided for the plate and filament supplies. A filament switch is mounted on the volume control. A handy toggleswitch on the panel controls the plate supply. A single meter is provided with switching which permits the reading of either the final plate or the oscillator plate current.

TRANSFORMER SPECIALISTS SINCE 1895

Parts Required

THORDARSON TRANSFORMERS and CHOKES
T-1 T-92R21 Power Transformer
T-2 T-86A02 Microphone Transformer
T-3 T-19D06 Driver Transformer
T-4 T-19M13 Modulation Transformer
CH-1 T-13C30 Filter Choke
CH-2 T-74C30 Filter Choke
Resistors:
R-1 20,000 Ohm 25 Watt Semi-Variable Reaiator
R-2 500,000 Ohm Volume Control with Switch
R-3 $1,000 \mathrm{Ohm} 1$ Watt Resistor
R-4 50 Ohm 10 Watt Resistor
R-5 50 Ohm 10 Watt Resistor
R-6 3,500 Ohm 10 Watt Resistor
R-7 50,000 Ohm 1 Watt Resistor
R-8 200 Ohm 10 Watt Resistor
R-9 20,000 Ohm 1 Watt Resistor
R-10 200 Ohm 10 Watt Resistor Condensers:
8 Mfd. 600 Volt Condenser
Double 8 Mfd .450 Volt Condenser
C-4 10 Mfd .25 Volt Electrolytic Condenser
C-5 $\quad 10$ Mid. 25 Volt Electrolytic Condenser
C-6 . 002 Mid. 500 Volt Mica Condenser
C-7 . 0001 Mid. 500 Volt Mica Condenser
C-8 .002 Mid. 500 Volt Mica Condenser
C-9 . 002 Mid. 1,000 Volt Mica Condenser
C-10 . 0001 Mfd . 1,000 Volt Mica Condenser
C-11 . 002 Mfd . 1,000 Volt Mica Condenser
C-12 . 002 Mfd . 1,000 Volt Mica Condenser
C-13 . 002 Mfd . 1,000 Volt Mica Condenser
C-14 100 Mmfd . Variable Condenser

Condensers: (Cont.)
C-15 100 Mmfd . Variable Condenser
C-16 Neutralizing Condenser
RF Chokee:
RFC-1 RF Choke
RFC-2 RF Choke
RFC-3 RF Choke
RFC-4 RF Choke
RFC-5 RF Choke

Miscellaneous Parta:

1 Chassis $14^{\prime \prime} \times 10^{\prime \prime} \times 3^{\prime \prime}$ (Punched and Drilled)
1 Panel (Punched and Drilled)
Cabinet
Feed-thru Insulators
5-Contact Sockets, Steatite
7-Contact Sockets, Large
Octal Sockets
4-Contact Socket
5-Contact Socket
Switch Plate
SPST Switch
DPDT Toggle Switch
Mic. Input Plug
Input Plug Shield
Knobs
2 Name Plates Marked "CRYSTAL OSC. "PLATE"
2 Name Plates Marked "POWER AMP. PLATE'
Name Plate Marked "A.F. GAIN"
Name Plate Marked "PLATE VOLTAGE"
1 Name Plate Marked "MICROPHONE"

Miscellaneous Parts: (Cont.)
1 Circuit Closing Jack
1 Line Cord and Plug
Miscellaneous nuts, bolts, soldering and mounting lugs, lock-washers and other hardware.

Accessories:

1 L-1 160 Meter RF Coil, End Linked, Bud Type OEL-160 or Equivalent
1 L-1 80 Meter RF Coil, End Linked, Bud Type OEL-80 or Equivalent
1 L-1 40 Meter RF Coil, End Linked, Bud Type OEL-40 or Equivalent
1 L-1 20 Meter RF Coil, End Linked, Bud Type OEL-20 or Equivalent
1 L-1 10 Meter RF Coil, End Linked, No Tap Bud Type OEL-10 or Equivalent
1 L-2 160 Meter RF Coil, Center Linked, Center Tapped, Bud Type OLS-160 or Equivalent
1 L-2 80 Meter RF Coil, Center Linked, Center Tapped, Bud Type OLS-80 or Equivalent
1 L-2 40 Meter RF Coil Center Linked Center Tapped, Bud Type OLS-40 or Equivalent
1 L-2 20 Meter RF Coil, Center Linked, Center Tapped, Bud Type OLS-20 or Equivalent
L-2 10 Meter RF Coil, Center Linked, Center Tapped, Bud Type OLSS-10 or Equivalent $0-150$ MA DC Meter, $2^{\prime \prime}$ Square Case, No Iflumination Triplett 227-A or Equivalent Crystal
6V6G ${ }_{\boldsymbol{1}}$ Tube
6L6-G or 6L6GX Tube
© 523 Tube
6A6 Tubes

Cabinet View

THIS transmitter, designed especially for operation on the 5 and 10 meter bands, includes on one chassis a 50 watt RF section, a 25 watt modulator and the power supplies for both the RF section and modulator.

The tube line-up for the RF section is a 6L6-G tri-tet oscillator, an HK-24 doubler and an HK-24 final amplifier.

The 61.6-G oscillator uses 40 and 20 meter crystals for transmitter outputs on 10 and 5 meters respectively. The plate tank of the tri-tet is always to be tuned to a frequency double that of the crystal, and in this condition good outputs are obtained. Attempts to operate the oscillator plate tank at the crystal frequency when using a 6L,6-G are likely to damage the crystal. The coil and condenser combination, $\mathrm{L}-1$ and $\mathrm{C}-1$, has been chosen to give a good oscillator output with reasonably low crystal current.

The HK-24 driven by the oscillator is not neutralized and is always used as a doubler stage delivering power on 10 and 5 meters. The crystal oscillator and doubler stages operate at a plate voltage of 400 volts, and the voltage on the screen-grid of the oscillator is 250.

The HK-24 final amplifier is a conventional Class C stage using a splitstator tank condenser with plate neutralization. Neutralization is accomplished as easily as in transmitters operated at lower frequencies. The neutralizing condenser, $\mathrm{C}-15$, is located on the under side of the chassis and is supported by the large wire connected to its terminals. It should always be adjusted with a non-metallic screw driver.

The oscillator cathode and plate tank coils are wound on $1^{\prime \prime}$ forms, and

Chassis View
the doubler and final amplifier coils are self-supporting coils wound with large copper wire and mounted on National type PB-16 plugs. The doubler plate tank is capacity coupled to the final amplifier grid, and power is taken from the final amplifier plate coil by means of a link which is supported on the coil base terminals. When properly loaded, the final amplifier plate current is 60 MA at 800 volts. The plate transformer has a nominal rating of 750 volts DC, but because of the light loading the higher plate voltage is obtained. The excitation of the final amplifier tube is such that 25 to 30 MA grid current is obtained. The cathode tank of the tri-tet oscillator should be adjusted for the maximum output consistent with good oscillator stability. It will be found that this occurs with the 100 mmfd. cathode condenser, $\mathrm{C}-1$, at about one-half of its maximum capacity.
A meter, M-1, and meter switch, SW-3, are provided for metering the current to the oscillator plate, the

doubler plate, the final amplifier grid and the final amplifier plate.

The modulator uses two 6L6-G tubes in push-pull and operates at a plate voltage of 400 and a screen-grid voltage of 260 , operating in Class AB_{1}. The audio amplifier tube line-up is one 6 J 7 pentode, one 6 J 7 triode and one 6 N7 phase invertor. This arrangement provides high gain for use with crystal microphones.
The power supply uses a single transformer to supply all filaments and a dual plate transformer to supply two separate rectifiers. These transformers are controlled by separate

TRANSFORMER SPECIALISTS SINCE 1895

50 Watt 5 and 10 Meter Phone Transmitter

switches on the panel. The filament switch, SW-1, is associated with the audio amplifier gain control, and the plate switch, SW-2, is of the toggle type placed in a position for convenient operation. The 400 volt supply delivers the current required by the oscillator, doubler, modulator and audio stages. It uses a type 573 rectifier tube. The 800 volt supply handles the final plate power only. Although this transformer is rated at 400 and 750 volts, it is being operated at less than full load so that advantage may be taken of the higher-than-normal voltage available. Economy in the filtering of the two high voltage power supplies is obtained by using the same chokes for filtering the output of both rectifier systems. These chokes are in series with the center tap of the dual plate transformer.
The complete unit is contained on a chassis $17^{\prime \prime} \times 13^{\prime \prime} \times 3^{\prime \prime}$ and is attached to a panel $19^{\prime \prime} \times 12 \frac{1}{4 \prime \prime}$ with the conventional type of chassis mounting brackets. The chassis, panel and chassis mounting brackets are finished in gray flat enamel, giving an unusually attractive appearance with the chromium dial plates. The transmitter may be enclosed in a cabinet or mounted in a rack with other equipment.

Parts Required

THORDARSON TRANSFORMERS

and CHOKES:	
T-1	T-19F77 Filament Transformer
T-2	T-19P70 Plate Transformer
T-3	T-19M14 Modulation Transformer
CH-1	T-75C51 Choke
CH-2	T-75C51 Choke
Resistors:	
R-1	$50,000 \mathrm{Ohm} 1$ Watt Resistor
R-2	3500 hm 10 Watt Resistor
R-3	10,000 Ohm 10 Watt Resistor
R-4	2,500 Ohm 10 Watt Resistor
R-5	50 Ohm 10 Watt Resistor
R-6	50 Ohm 10 Watt Resistor
R-7	50 Ohm 10 Watt Resistor
R-8	50 Ohm 10 Watt Resistor
R-9	5 Megohm 1/3 Watt Resistor
R-10	$5,000 \mathrm{Ohm} \mathrm{i} \mathrm{Watt} \mathrm{Resistor}$
R-11	3 Megohm $1 / 2$ Watt Resistor
12-12	$500,0000 \mathrm{hm}$ 12 Watt Resistor
R-13	1 Megohm Volume Control with Switch
R-14	5,000 Ohm 1 Watt Resistor
R-15	100,000 Ohm 1 Watt Resistor
R-16	250,000 Ohm 12 Watt Resistor
R-17	2,000 Ohm 1/2 Watt Resistor
R-18	100,000 Ohm 1 Watt Resistor
R-19	100,000 Ohm 1 Watt Resistor
R-20	250,000 Ohm $1 / 2 \mathrm{~W}$ att Resistor
R-21	$12,0000 \mathrm{hm} 1 / 2$ Watt Resistor
R-22	$250,000 \mathrm{Ohm} 1 / 2$ Watt Resistor
R-23	2500 hm 10 Watt Resistor
R-24	20 Ohm 10 Watt Center Tapped Resistor
R-25	$40,000 \mathrm{Ohm} 50 \mathrm{Watt}$ Resistor
R-26	300 Ohm 10 Watt Resistor
R-27	20,000 Ohm 50 Watt Semi-Variable Resistor
R-28	20,000 Ohm 1 Watt Resistor
R-29	20,000 Ohm 1 Watt Resistor
R-30	7,500 Ohm 25 Watt Semi-Variable Resistor

RF Chokes:
$\begin{array}{ll}\text { RFC-1 } & \text { RF Choke } \\ \text { RFC-2 } & \text { RF Choke } \\ \text { RFC-3 } & \text { RF Choke } \\ \text { RFC-4 } & \text { RF Choke } \\ \text { RFC-5 } & \text { RF Choke } \\ \text { RFC-6 } & \text { RF Choke }\end{array}$

> 100 Mmfd . Variable Condenser .01 Mfd .400 Volt Condenser .002 Mrd. 1,000 Volt Mica Condenser 35 Mmfd . Variable Condenser
> 002 Mfd. 000 Volt Mica Condense 002 Md 1000 Volt Mica Condenser 35 Mmfd . Variable Condenser
> 0001 Mid. 1,000 Volt Mica Condense
> 002 Mifd. 1,000 Volt Mica Condenser 002 Mid. 1,000 Voit Mica Condenser 10 Mid. 25 Volt Electrolytic Condenser Mra. 400 Volt Condenser

> 10 Mfd. 25 Volt Electrolytic Condenser
> .1 Mfd .400 Volt Condenser
> MIfd 400 Vot Condenser
> 10 Mfd .25 Volt Electrolytic Condenser
> Condenser

> Triple 8 Mid. 450 V Electrolytic Condenser

Condensers:

Miscellaneous Parts:
1 Chassis $17^{\prime \prime} \times 13^{\prime \prime} \times 3^{\prime \prime}$ (Punched and Drilled) Panel $19^{\circ} \times 121_{4}^{\prime \prime}$ (Punched and Drilled) Pr. Chassis Mounting Brackets
Octal Sockets
4-Contact Socket
4-Contact Sockets, Isolantite
Plug-in Sockets
Plug-in Bases
Coil Forms
Crystal Socket
Knobs
Pointer Knob
SPST Switch N P
Double-Pole, 4-Throw Switch, Isolantite
Input Plug
Metal Tube Grid Caps
Metal Tube Grid Cap Shields
Name Plates Marked "POWER AMP. PLATE"
Name Plate Marked "POWER AMP. GRID"
Name Plates Marked "BUFFFRRPLATEGRID"
Name Plates Marked "CRYSTAL OSC.
PLATE"'
Name Plate Marked "AF GAIN"
Line Cord and Plug
Miscellaneous nuts, bolts, soldering and mounting lugs, lock-washers and other hardware.

Complete kit of the above parts with large size circuit diagram available
from your local Thordarson distributor. (Accessories not included in hit).

55 Watt Phone, 80 Watt CW Transmitter

COMPACTNESS, reliability, ease of operation and neatness of appearance are salient features of this 55 watt phone and 80 watt CW transmitter. Designed with entirely separate audio and RF sections and each having its own power supply, either of these two matched units may be used separately. For the CW operator the compact and neat appearing RF section is a pleasure to have on the operating table or in the rack. Operating with 80 watts input, the high plate efficiency of the final stage not only makes it an outstanding transmitter but also a highly desirable exciter unit for transmitters having inputs as high as 500 watts. Circuits are strictly conventional, and components are conservatively chosen.
The modulater, with an output of 30 watts, easily modulates the 55 watt Class C input of the RF amplifier. The high gain (122 db) enables it to modulate the transmitter 100% with very weak audio signals. With the MultiMatch modulation transformer the amateur may use it to modulate any transmitter requiring 30 watts of audio power.

The RF line-up is as follows: a 6F6-G crystal oscillator stage, a 6L6-G buffer-doubler stage, and an 809 final amplifier stage. The 6F6-G operates with 320 volts on the plate and 270 volts on the screen-grid. The 6L6-G operates with a plate voltage of 340 volts and a screen-grid voltage of 250 . For phone operation the voltage on the 809 plate is 625 volts, and for CW operation this voltage is raised to 785 .
The oscillator stage operates with all crystals from 160 to 10 meters, but
for best stability and freedom from "chirps" it is recommended that for 10 meter operation a 20 meter crystal be used and doubling be carried on in the buffer-doubler stage. When the crystal stage is in an oscillating condition and is loaded by the grid of the next stage, the oscillator plate current is approximately 30 to 40 MA . The buffer-doubler stage is neutralized and may be used with excellent results either for frequency multiplying or as a regular buffer. When using 160 and 80 meter crystals, not only is doubling easily accomplished in the second stage but enough output can be obtained by quadrupling to give good excitation to the 809 grid on 40 and 20 meters. When the 6L6-G is driving the 809 grid to 30 MA of grid current, the plate current of the 6L6-G is on the order of 70 MA . The antenna loading should be adjusted so that the final amplifier plate current is 88 MA for a 55 watt phone input. For an 80 watt CW input the loading is adjusted so that the final amplifier plate current is 102 MA . The secondary of the plate transformer supplying energy to the final amplifier is equipped with taps so that by merely changing these taps the change from 625 volts for phone operation to 785 volts for CW operation may be made. Correct tuning of the buffer-doubler plate circuit is aecomplished by noting the grid current reading of the final amplifier stage. Care should be taken that the $6 L 6-G$ plate circuit is not tuned to some undesired harmonic of the crystal frequency.

The same final tank coil is used for operation on 80 and 160 meters. For

160 meter operation a fixed air condenser is plugged into the jack-base which is shown in the top view of the RF section on page 9. If the amateur does not desire operation on 160 meters, it is unnecessary to have the Cardwell JB base or the Cardivell JD-80-OS condenser. The spacing of the final tank condenser is $0.070^{\prime \prime}$, which is greater than is usually found for use with the voltages encountered in this circuit. However, such spacing permits grounding of the rotor. Shoyld the amateur wish to build for CW operation only, a spacing of $0.050^{\prime \prime}$ is satisfactory.

The modulator has for its output stage two 6L6-G's operating in Class $A B_{1}$. At no-signal the plate-to-ground (-B) voltage is 390 volts. The screengrid voltage to ground slould be adjusted by means of R-14 to a value of 310 volts. In this condition the voltage measured from cathode to ground across R-13 is 20 volts.

The three stages before the output stage provide adequate gain for the use of this modulator with all types of microphones. The input to the first stage, a pentode-connected 617, is shielded to avoid hum pick-up and to prevent pick-up of RF energy. As a further precaution against the entrance of RF energy to the grid of this stage, a filter consisting of $\mathrm{C}-1, \mathrm{RFC}-1$ and $\mathrm{C}-2$ is installed in the input circuit. These elements, in addition to the grid lead and R-1, are carefully shielded with pieces of tinned copper. The result is that with the volume control wide open, the amplifier operates perfectly; and the residual hum is 45 to 50 db below the full output power.
(Continued on Page 10)

55 Watt Phone, 80 Watt CW Transmitter

Top View of RF Section

Bottom View of RF Section

COIL DATA - 55 or 80 WATT TRANS.

COIL DATA - 55 or 80 WATT TRANS.							
Band	L-l and L-2			L.-3			
	Turns	$\substack{\text { Winding } \\ \text { Length }}$	Wire Size	Turns	Winding Length	Wire Size	$\begin{aligned} & \text { Link } \\ & \text { Turns } \end{aligned}$
160	58	19 年 ${ }^{\prime \prime}$	\#22	42	13/4"	\#18	4
80	30	13,8	\#18	42	$13 / 4$ "	\#18	4
40	16	$13 / 8$	\#18	32	$23 / 8$ "	\#18	4
20	8	$11 / 4 \prime$	\#18	14	$2^{\prime \prime}$	\#16	2
10	4	11/4"	\#18	6	11/4"	\#16	1
L-1 and L-2 are wound on Hammarlund XP-53 Coil Forms. The roil ends are connected to No. 1 and No. 4 pins. L--2 is center-tapped, the tap being brought out on pin No. 3. L-3 is zound on National $X R-13$ Coil Forms attached to a PB-5 plug. Link is wound with issulated wire directly over bare wire of plate coil.							

L-1 and L-2 are vound on Hammarlund XP-53 Coil Forms. The coil ends are connected to No. 1 and No. 4 pins. L-2 is center-tapped, the fap being brought out on pin No. 3. L-3 is wound on National XR-13 Coil Forms attached to a PB-5 plug. Link is wound with issulated wire directly over bare wire of plate coil.

Front View of RF Section

Top View of Modulator

Plug-In Coils

RF Section

(Continued from Page 8)
The power supply for the RF unit consists of two rectifier systems, one using a 573 to supply the plates and screen-grids of the two low power stages and the other using a pair of 866 -JR's to supply the plate of the final amplifier. The power supply on the modulator chassis uses a 523. On each chassis there is a separate filament supply. On the RF chassis and on the modulator chassis there are two switches, one for the filament supply and one for the plate supply. Thus, one unit can be operated independently of the other. When using the RF unit alone for CW operation, join terminals No. 2 and No. 3 and connect the 115 volt supply line to terminals No. 1 and No. 2. In this condition of operation SW-1 controls the filaments and SW-2 controls the plate supplies. For phone operation, in which it is desired that a single switch operate all plate supplies, connect the 115 volt supply line to terminals No. 4 and No. 5 on the modulator chassis; then connect terminals No. 1, No. 2 and No. 3 on the modulator to their respectively numbered terminals on the RF chassis. On the RF chassis, close SW-1 and SW-2. Then, on the modulator chassis, SW-1 controls all the filaments and SW-2 controls all the plate supplies.

Parts Required

THORDARSON TRANSFORMERS

	and CHOKES:	
T-1	T-19F76	Filament Transformer
T-2	T-19P54	Plate Transformer
T-3	T-19P56	Plate Transormer
T-4	T-19F88	Filament Transormer
CH1-1	T-19C39	Input Chore
CHI-2	T-19C46	Smoothing Choke
CH-3	T-57C53	Filter Choke
CH-4	T-57C53	Filter Choke
	Resistors:	

R-1 7,500 Ohm 50 Watt Resistor
R-2 50,000 Ohm 1 Watt Resistor
R-3 50,000 Ohm 10 Watt Wirewound Resistor
3500 hm 10 Watt Wirewound Resistor
$3,500 \mathrm{Ohm} 10$ Watt Wirewound Resistor
$\begin{array}{ll}\text { R-6 } & 3,500 \mathrm{Ohm} 10 \\ \text { R-6 Watt Center Tapped Resistor }\end{array}$
R-7 $\quad 20,000$ Ohm 50 Watt Wirewound Resistor

Condenaers:

C-1 $\quad 4 \mathrm{MPd} .600$ Volt Condenser
$\begin{array}{ll}\mathrm{C}-2 & 4 \mathrm{Mid} . \\ \mathrm{C}-3 & 475 \text { Volt Condenser } \\ \text { Mid. } 475 \text { Volt Condenser }\end{array}$
$\mathrm{C}-4 \quad .002$ Mid. 1,000 Volt Mica Condenser $\begin{array}{ll}\mathrm{C}-5 & .002 \text { Mfd. 1,000 Volt Mica Condenser } \\ \mathrm{C}-6 & .002 \mathrm{Mfd} .1,000 \text { Volt Mica Condenser }\end{array}$ $\begin{array}{ll}\mathrm{C}-6 & .002 \mathrm{Mrd.} \\ \mathrm{C}-7 & 100 \mathrm{Mmfd} \text {. Variable Condenser }\end{array}$.001 Mmd . Variable Condenser
C-9 $\quad .001 \mathrm{Mid} 1,$.000 Volt Mica Condenser
C-10 Neutralizing Condenser
$\begin{array}{ll}\text { C-11 } & .002 \text { Mid. } 1,000 \text { Volt Mica Condenser } \\ \text { C-12 } & .002 \text { Mid. } 1.000 \text { Volt Mica Condenser }\end{array}$
C-13 100 Mmfd . Variable Condenser
C-14 . 0001 Mid. 1,000 Volt Mica Condenser
C-15 Neutralizing Condenser
C-16 . 001 Mid. 1,000 Volt Mica Condenser
C-17 . 001 Mrd. 2,500 Volt Mica Condenser
C-18 100-100 Mmid. Varjable Condenser
$\begin{array}{ll}\text { C-20 } & 2 \mathrm{MPd} .1,000 \text { Volt Oil Filled Condenser } \\ \mathrm{C}-21 & 2 \mathrm{Mfd} .1,000 \text { Volt Oil Filled Condenser }\end{array}$

RF CHOKES:

$3 \quad$ RF Chokes

Miscellaneous Parta:

1 Chassis $17^{*} \times 12^{\circ} \times 4^{\prime \prime}$ (Punched \& Drilled)
Pr Panel $101^{\prime \prime} \times 19^{*}$ (Punched \& Drilled)
Chassis Mounting Brackets
-Contact Socket
Contact 1solantite Sockets
Feed
Feed-hru Bushings
tand-off Insulators
Coil Forms, 4-Prong
Phone Jack, Circuit Closing
SPST' Switches
Grid Grip
Dials, 21/4 Diameter
Coil Form
Base for PB -5 Pl
Name Plate Marke
ked "OSCILLATOR" Name Plate Marked "POWER AMP. Name plate Marked "POWER AMP Name P' Miscellaneous nuts, bolts, solder and mounting lugs. lock-washers and other hardware.

Accessories:

1 Coil Form per band National XR13 or Equiv. Coil Form Plug per band National PB-5 or Equivalent
2 Coil Forms per Band Hammarlund XP-53 or
1 150 MA DC Meter, 2^{\prime} Square Case, No lllumi-
nation, Triplett 227-A or Equivalent
100 MA DC Meter, $2^{\prime \prime}$ Square Case, No Illumi-
250 MA nc Meter 2° or Equivalent
250 MA DC Meter, $2^{\text { }}$ Square Case, No Illumi-
nation, Triplett 227-A or Equivalent
1 Cabinet
6F6-G Tube
6L6-G or 6L6 GX Tube $\quad 1 \quad 809$ Tube
$\begin{array}{lll}\text { 6L6-G or } 6 \mathrm{~L} 6 \mathrm{GX} \text { Tube } & 1 & 809 \text { Tube } \\ 5 Z 3 \text { Tube } & 2 & 866-\mathrm{JR} \text { Tubes }\end{array}$
Jack Base Cardwell JB
80 Mmid . Fixed Air Condenser (C-19) Cardwell JD-80-OS (Used only on 160 Meters)
Complete kit of the above parts with lirge size circuit diagram available from your local Thordarson distributor. (Accessories not included in kit).

Modulator Section

Parts Required

C-1 $\quad .0001$ Mid. 500 Volt Mica Condenser .0001 Mid. 500 Volt Mica Condenser 10 Mid. 25 Volt Condenser .03 Mfd .400 Volt Condenser .1 Mid. 400 Volt Paper Condenser 10 Mid. 25 Volt Condenser .1 Mid. 400 Volt Condenser 10 Mfd 25 Volt Condenser 8 Mfd 600 Volt Condenser Triple 8 Mfd .450 Volt Condenser

T-74A31	Push-pull Input Transforme
T-19M14	Modulation Transformer
T-19P54	Plate Transformer
T-19F76	Filament Transformer
T-17C00-B	Filter Choke
T-18C27	Filter Choke

Resistors:

 5 Megohm 1/4 Watt Resistor
 5 Megohm 1/4 Watt Resistor
 5,000 Ohm 1/4 Watt Resisto
 5,000 Ohm 1/4 Watt Resisto
 250000 hhm W W Resistor
 250000 hhm W W Resistor
 500,000 Ohm % Watt Resistor
 500,000 Ohm % Watt Resistor
 500,000 Ohm 1/2 Watt Resisto
 500,000 Ohm 1/2 Watt Resisto
 2,500 Ohm 1 Watt Resistor
 2,500 Ohm 1 Watt Resistor
 100,000 Ohmm 1 Watt Resistor
 100,000 Ohmm 1 Watt Resistor
 250,000 0hm 1/4 Watt Resistor
 250,000 0hm 1/4 Watt Resistor
 1,000 Ohm 1 Watt Resistor
 1,000 Ohm 1 Watt Resistor
 50,000 Ohm 1 Watt leesistor
 50,000 Ohm 1 Watt leesistor
 50,000 Ohm 1 Watt Resisto
 50,000 Ohm 1 Watt Resisto
 150 Ohm 25 Watt Resistor
 150 Ohm 25 Watt Resistor
 2,500 Ohm 25 Watt Semi-Variable Resistor
 2,500 Ohm 25 Watt Semi-Variable Resistor
 12,000 Ohm 25 Watt Resistor
 12,000 Ohm 25 Watt Resistor
 20,000 Ohm 1 Watt Resistor
 20,000 Ohm 1 Watt Resistor
 20,0000hm 1 Watt Resistor
 20,0000hm 1 Watt Resistor
 Condensers:

RF Choke:

Miscellaneous Parts:
Chassis 17" $\times 10^{\prime \prime} \times 2^{\prime \prime}$ (Punched and Drilled) Panel $19^{\circ} \times 7^{\prime \prime}$ (Punched and Drilled)
5-Lug Terminal Board
Chassis Mounting Brackets
Feed-thru Bushings
Oetal Sockets
Octal Sockets
Dial Plate Marked "GAIN"
Microphone Input Plug
Microphone Input Plug Shield

Complete kit of the above purts with large size circuit diagram available from your local Thordarson distributor. (Accessories not included in kit).

Bottom View of Modulator

PORTABLE mobile operation on 5 and 10 meters is the distinctive feature of this unit. It is of a rugged chassis type construction especially planned to be used in automobiles. It operates from a 6 volt storage battery using a vibrator power supply which may be remotely controlled from a point several feet away, as for example, a driver's seat.
The RF tube line-up is as follows: a $6 \mathrm{~V} 6-\mathrm{G}$ tri-tet crystal oscillator, and a T-21 final amplifier. The oscillator stage operates with a 20 meter crystal, and doubling is carried on in the plate circuit. At no time is operation of the crystal stage "straight through" recommended. The oscillator plate tank is capacity-coupled to the T-21 grid. The T-21 operates "straight through" on 10 meters, and for 5 meter operation doubling in the final is accomplished. The final tank condenser is of the splitstator type. The final amplifier is neutralized in a conventional manner. The cathode tank coil is wound on a $1^{\prime \prime}$ form, and the oscillator plate and final plate tank coils are wound on National PB-16 bases with heavy copper wire. Power is taken from the final tank by means of a link.

The power input to the final amplifier plate when it is properly loaded is of the order of $10-12$ watts. The final stage cathode current should be between 50 and 55 MA.
Since the transmitter will be operated in an unattended condition, the three variable condenser adjustments are made with a screw driver and then locked with special nuts. The metering of the oscillator cathode current, the final grid current and the final cathode current is done by plugging in an external meter in the jacks provided.

A single 6V6-G tube operates as a Class A amplifier to modulate the T-21 tube. Provision is made for remotely connecting a carbon microphone to the primary of the microphone transformer which is installed on the under side of the chassis. A control with a screw driver adjustment permits the adjustment of the gain of the audio system to the desired amount.

The power supply uses a vibrator having accessible actuating coil terminals. With such a vibrator it is possible to avoid switching the high current which flows in the primary of the

vibrator transformer, and consequent!y, the control of this vibrator may be done at a distance without the necessity of using connections of high current carrying capacity. The rectifier tube is a 6W5-G. Connections made through socket S-2 to the control box, which may be located at any given convenient place, are such that the closing of switch SW-1 causes the filaments to heat and the current to flow in the microphone circuit. The closing of SW-2 starts the vibrator. Consequently, SW-2 may be used as a stand-by switch. The operator is cautioned against closing SW-2 before the filaments have had time to heat, for the premature closing is likely to damage the 6W5-G.

Separate plugs and sockets are provided for the entrance to the chassis of the power supply and the control wiring. This also aids in keeping vibrator noises out of the microphone circtit. As a further precaution against (Continued on folloring rage)

Coil	Turns	Wire Size	Diam. of Winding	Winding Length	Supporting Form
L-1	5	No. 16 Enameled	$1 "$	Close Wound	Millen No. 45004 Coil Form
L-2	6	No. 10 Bare	$1^{\prime \prime}$	1"	Self-Supporting on National PB-16 Plug
$10 \text { Meters }$	16 Center- Tapped	No. 10 Bare	$1^{\prime \prime}$	2"	Self-Supporting on National PB-16 Plug
$\stackrel{\mathrm{L}-3}{5 \text { Meters }}$	6 Center- Tapped	No. 10 Bare	$1^{\prime \prime}$	1"	Self-Supporting on National PB-16 Plug

The link on L-3 is made of 1 turn of No. It bare copper wire about $1 / \frac{13}{2}$ in diameler looped around the center portion of $L-3$ and supported by the terminal lugs on the PB-I6 plug.

TRANSFORMER SPECIALISTS SINCE 1895
having any vibrator interference in the microphone circuit, any ripple which is superimposed on the leads from SW-1 is effectively filtered out by the CH-2-C-12 filter. All leads carrying current to the 6 V primary of the power transformer should be of heavy wire, No. 16 or larger. This measure must be taken so that the full battery voltage is available at the transformer. Similarly, the
wire in the power cable from $\mathrm{S}-1$ to the battery should be large. This perecaution also tends to minimize vibrator noise.
The polarity of the battery when connected to the transmitter is not impportant. However, when installed in an automobile in which one battery serves both the transmitter and the car electrical system, some attention should
be given to the polarity. This is especially necessary if the transmitter chassis is in contact with the frame of the car.

In wiring, careful attention should be given to the placement of leads and chassis connections. Wherever possible the leads carrying vibrator current should not be common with those carrying signal currents.

Parts Required

Condensers: (Cont.)
$C-6$
$\mathrm{C}-7$
$\mathrm{C}-8$ 35 Mmfd. Variable Condenser 0001 Mid. 500 Volt Condenser .002 M d. 500 Volt Mica Condenser .002 Mid. 500 Volt Mica Condenser Neutralizing Condenser -35 Mid. Variable Condense 10 Mid. 25 Volt Electrolytic Condenser .1 Mfd. 400 Volt Condenser 1 Mid. 400 Volt Condenser .05 Mrd . Oil Impregnated Condenser Double 8 Mfd .450 Volt Condenser

RFC-1 RF Choke
RFC-2 RF Choke RFC-3 RF Choke

Miscellaneous Parts:
1 Chassis $11^{\prime \prime} \times 8^{\prime \prime} \times 3^{\prime}$ (Punched and Drilled)
1 Vibrator Mounting Plate
Bottom Plate
RF Chokes:
RF Chokes:
RF Chokes:

Miscellaneous Parts: (Cont.)

1 Control Box Octal Sockets
4-Contact Socket, Steatite
6-Contact Socket, Steatite
6-Contact Socket
6-Prong Plug
4-Prong Plug
6-Contact Socket
4-Contact Socket
Feed-thru Insulators
Coil Sockets
Coil Base Plugs
Circuit Closing Jacks
Crystal Socket
4-Prong Coil Forms
Resistor Mounting Strips
Miscellaneous nuts, bolts, soldering and mounting lugs, lock-washers and other hardware.

Accessories:

1 Vibrator, Electronics /427 or Equivalent
Crystal
T-21 Tube
6W5-G Tube
6V6-G Tubes
Complete kit of the above parts with large size circuit diagram available
from your local Thordarson distributor. (Accessories not included in kit).

12 Watt Universal Transmitter

FOR PORTABLE AND EMERGENCY SERVICE

Cabinet View

Chassis View

OPERATING on either 115 volts AC or 6 volts DC, this unit not only provides the amateur with an emergency transmitter for battery operation but also may be used as the regular transmitter in the "shack" when so desired. No changes of parts or wiring are necessary for conversion from AC to DC - only the insertion of the proper power plug is reguired.

On battery operation 10 to 12 watts input maty be obtained, and on AC operation, slightly more than 12 watts input may be expected.

The oscillator tube is a 6V6-G used in a regenerative type circuit having an RF choke in the cathode circuit. The final stage uses an 807 tube.
The final tank circuit consists of two condensers, $\mathrm{C}-10$ and $\mathrm{C}-11$, and a coil, L-2. This tank circuit may be used in the conventional manner by turning C-11 to maximum capacity, in which position a bent rotor plate shorts it out and grounds one side of the link. For settings of C-11 less than full capacity, the 807 is working into a pi network having for its elements C-10, C-11 and L-2. A singlewire antenna may then be connected to the high side of $\mathrm{C}-11$, and the degree of loading may be adjusted by varying $\stackrel{\mathrm{C}}{\mathrm{C}}-11$ and retuning $\mathrm{C}-10$. In all cases C-10 should be tuned for the minimum plate current, and each readjustment of $\mathrm{C}-11$ will require a change of $\mathrm{C}-10$. This provides an easy method of connecting a wide variety of types of single-wire antennas to the transmitter and quickly adjusting to the proper degree of loading. The loading is made greater as the capacity of $\mathrm{C}-11$ is decreased.

A single meter is provided with a switch which permits reading plate carrent in either the oscillator or the final stage. Because of the excellent shielding and the good circuit layout it was unnecessary to neutralize the 807 tube.

The transmitter may be used on all bands from 160 to 10 meters, and doubling may be accomplished in the crystal stage when using 160,80 and +0 meter crystals. A closed circuit jach is provided which permits keying the oscillator and amplifier stages simultaneously. Too much grid excitation on the 807 final causes the screen-grid current to become too high. Because the screen-grid voltage is obtained through a dropping resister, this increase in screen current causes the screen-grid voltage to becone low enough that the power output capability of the 807 is reduced. In cases where less excitation is desired, the oscillator tank condenser C-6 may be turned toward its minimum capacity setting.

Bottom View

The modulator is a 6V6-G operating Class A, and the audio amplifier section consists of two 6J7 tubes, pentode connected, providing enough gain for operation with a crystal microphone.
The power supply uses a special vibrator transformer which may be used on either 6 volts DC or 115 volts AC . For AC operation the heater voltage for the tubes is obtained from a transformer winding; and for DC operation the heater voltage is obtained directly from the battery.
In IDC operation the closing of SW-1 causes the filaments to be heared, and the closing of SW-2 causes the vibrator to operate. A short time should be allowed for the heaters to warm up before closing SW-2. Unless such a precaution is taken, there is possibility of damaging the 6W5-G tube.

In AC operation SW-1 should be closed, and the complete power supply is then controlled by SW-2. To provide a source of high voltage DC for the operation of receivers or any other auxiliary equipment, a switch is provided on the meter panel which removes the plate voltage from the tubes in the transmitter and makes it available at a terminal board to which may le connected any other equipment. This switch. SW-3, can then be used as a stand-by switch between transmissions. This source of voltage is available in either AC or DC operation. It is an extremely handy way of supplying the high voltage required for a receiver. Currents up to 100 MA may be drawn from the supply for use on external equipment.

The complete transmitrer is mounted in a small metal cabinet and the entire unit, including the cabinet, is finished in gray flat enamel.

FOR PORTABLE AND EMERGENCY SERVICE

Parts Required

THORDARSON TRANSFORMERS
 and CHOKES

T-1
T-2
$\mathrm{CH}-1$

$\mathrm{R}-1$
$\mathrm{R}-2$
$\mathrm{R}-8$
$\mathrm{R}-4$
$\mathrm{R}-5$
$\mathrm{R}-6$
$\mathrm{R}-7$
$\mathrm{R}-8$
$\mathrm{R}-9$
$\mathrm{R}-10$
$\mathrm{R}-11$
$\mathrm{R}-12$
$\mathrm{R}-13$
$\mathrm{R}-14$
$\mathrm{R}-15$
$\mathrm{R}-16$
$\mathrm{R}-17$
$\mathrm{R}-18$
$\mathrm{R}-19$
$\mathrm{R}-20$
$\mathrm{R}-21$
$\begin{array}{cc}\text { T-14R40 } & \text { Power Transformer } \\ \text { T-19M13 } & \text { Modulation Transfo }\end{array}$
T-19M13 Modulation Transformer

20,000 Ohm 1 Watt Resistor 350 Ohm 10 Watt Resistor -8 $15,000 \mathrm{Ohm} 10 \mathrm{~W}$ att Resistor -4 $\quad 100,000 \mathrm{Ohm} 1$ Watt Resistor 300 Ohm 10 Watt Resistor $15,000 \mathrm{Ohm} 10$ Watt Resisto 50 Ohm 10 Watt Resisto 5 Megohm 1/2 Watt Resistor 5 Megohm Wat Resistor 3 Megohm 1/6 Watt Resistor 5 Megohm Watt Resistor 1 Megohm Volume Control 1 Megrohm Volume Contro $5,000 \mathrm{Ohm} 1 / 2$ Watt Resistor $3 \mathrm{Megohm} 1 / 2 \mathrm{Watt}$ Resistor
$500,000 \mathrm{Ohm} 1 / 2 \mathrm{Watt}$ Resistor $500,000 \mathrm{Ohm} 1 / 2 \mathrm{hatt}$ Resistor 300 Ohm 10 Watt Resistor 20,000 Ohm 1 Watt Resistor $20,0000 \mathrm{hm} 1 \mathrm{~W}$ Wtt Resistor $30,000 \mathrm{Ohm} 20 \mathrm{Watt}$ Resistor

Condensers:
.01 Mfd .400 Volt Condenser .0001 Mfd .500 Volt Mica Condenser .01 Mfd .400 Volt Condenser .002 Mid. 1,000 Volt Mica Condenser .002 Mid. 1,000 Volt Mica Condenser 100 Mmfd . Variable Condenser .002 Mfd. 500 Volt Mica Condenser .002 Mfd . 500 Volt Mica Condenser

Condenaers: (Cont.)

C-9 $\quad 002 \mathrm{Mfd}$. 1,000 Volt Mica Condenser C-10 100 Mmfd . Variable Condenser
$\begin{array}{ll}\text { C-11 } & 100 \mathrm{Mmfd} \text {. Variable Condenser } \\ \text { C-12 } & 10 \mathrm{Mfd} .25\end{array}$
$\begin{array}{ll}\mathrm{C}-12 & 10 \mathrm{Mid} .25 \\ \mathrm{C}-13 & .04 \mathrm{Mfd} .400 \text { Volt Condenser }\end{array}$
C-1 04 Mrd. 400 Volt Condenser
C-15 10 Mfd. 25 Volt Electrolytic Condenser
C-16 $\quad .04 \mathrm{Mfd} .400$ Volt Condenser

$\mathrm{C}-16$.04
C	Mfd .400 Volt Condenser

C-17 $\quad .04 \mathrm{Mfd} .400$ Volt Condenser
$\begin{array}{ll}\text { C-18 } & 10 \mathrm{Mfd} .26 \\ \mathrm{C}-19 & .5 \mathrm{Mfd} .400 \text { Volt Condenser }\end{array}$
$\mathrm{C}-20 \quad 4 \mathrm{Mfd} .600$ Volt Condenser
C-21 Double 8 Mfd. 450 Volt Condenser
C-23 . 05 Mfd . 1,600 Volt Condenser
C-24 . 05 Mid. 1,600 Volt Condenser

	RF Chokes:		
RFC-1	RF Choke	RFC-4	RF Choke
RFC-2	RF Choke	RFC-5	RF Choke
RFC-3	RF Choke		

Miscellaneous Parts:
Chassis $10^{\prime \prime} \times 14^{\circ} \times 3^{\prime \prime}$ (Punched and Drilled) Chassis (Punched and Drilled) Panel (P
Vabinet Mounting Plate
Feed-thru Insulators
5-Conthru Insulator
Octal Sockets
Octal Sockets
5-Contact Socket
DPST Switchea
SPDT Switch
DPDT Switch
DPDT Switch

Miscellaneous Parts: (Cont.)

1 Plug 2 Sockets 1 Mic. Plug Knobs
Knobs Plate Marked "A.F. GAIN"
Name Plate Marked "CRYSTAL OSC Name Plat
PLATE" Name Plates Marked "POWER AMP. PLATE" Name Plate Marked "SEND-RECEIVER" Name Plate Marked "PLATE VOLTS" Name Plate Marked "KLAT"
Name Plate Marked "PEYTE CURRENT"
Miscellaneous nuts, boltg, soldering lugs, lockwashers, grommets and other hardware.

Accessories:

Vibrator Mallory 825 or Equivalent
Vibrator Mallory Meter 2" Square Case Triplett $0-100$ MA DC Meter
227 A or Equivalent 227A or

Crystal

6W5-G Tube
6V6-G Tubes
$6 J 7$ Tubes
807 or HY61/807 Tube
160 Meter RF Coils, End Linked, No Tap, Bud OEL-160, or Equivalent 80 Meter RF Coils, End Linked, No Tap, Bud OEL-80, or Equivalent 40 Meter RF Coils, End Linked, No Tap, Bud, OEL-40, or Equivalent
20 Meter RF Coils, End Linked, No Tap, Bud OEL-20, or Equivalent
210 Meter RF Coils, End Linked, No Tap, Bud OEL-10, or Equivalent

Complete kit of the above parts with large size circuit diagram available from your local Thordarson distributor. (Accessories not included in kit).

THIS 40 watt exciter operates on the five amateur bands from 160 to 10 meters, all bands being selected by switches on the panel. The operator has the choice of three crystal frequencies, which may provide operation on all bands or at slightly different points in the same band.

The exciter is a three-stage unit using a 6V6-G crystal oscillator, a 6L6-G buffer-doubler and an 867 final amplifier. The exciter is builr on a $17^{\prime \prime}$ $\mathrm{x} 13^{\prime \prime} \times 4^{\prime \prime}$ chassis, complete with its filament and high voltage power supplies. It is supplied with a specially prepared $19^{\prime \prime} \times 12^{1 / 4 \prime \prime}$ panel designed to harmonize with the many high power units with which it may be associated. The panel is finished in black with white lettering opposite all switches and dials. No additional markings or lettering are necessary. The position of each coil switch is clearly shown. The chassis is equipped with a five-lug terminal board so that connections can be made for controlling high voltage power supplies and filament supplies for other units by means of the switches on this chassis.

Circuit Details

The 6V6-G crystal oscillator is of the regenerative type having an RF choke in its cathode circuit. The oscillator plate tank coil is a Barker and Williamson type 2 AB , which may be tuned with one condenser to all five frequency hands. This tank coil is divided into five sections, and the switeching is such that all five sections are used for 160 meters; and only one section for 10 meters. The shorting switch on this coil is such that not only are the unused portions of the coil shorted out, but the unused portion adjacent to the one in operation is independently and directly shorted out. This feature reduces the losses due to shorted turns.

The oscillator stage operates with a plate voltage of 350 volts and a screen

Chassis View
voltage of 180 volts. When loaded by the buffer-doubler stage, the ascillator plate current is about 20 to 25 MA . For 10 meter operation hest results are obtained by using a 20 meter crystal. although quadrupling from 40 meters may also be easily carried out in the buffer-doubler. The crystals are mounted on the chassis with very short leads to the grid circuit. Crystal switching is accomplished by means of a flexible shaft connected to the crystal switch on the panel. This allows the crystal to be well placed to avoid undesirable electrical effects and also permits the crystal switch to be placed in a position on the panel which makes operation most convenient.
The buffer-doubler stage uses a $6 \mathrm{~L} 6-\mathrm{G}$ with a plate voltage of 400 V . and a screen voltage of 180 V . This stage also has for its plate tank coil a type 2 AB coil which covers five bands with one condenser. When loaded down by the grid of the final stage, the buf-fer-doubler plate current is 35 to 40 MA. With excitation on any band from 160 to 20 meters the buffer-doubler stage very efficiently doubles. With excitation on 160,80 and 40 meters, quadrupling may be accomplished in this stage. Although the 6L,6-G is not neutralized, the amount of feedback is so low that the stage may be worked "straight through" on 160 meters.

The final amplifier stage uses an 807 and operates with 400 volts on the plate and 270 volts on the screen. A power input of 40 watts may be ohtained under such conditions. and the power output is of the order of 25 watts. The excitation to this stage should be adjusted so that the grid current is 5 to 10 MA . Care should be taken not to overdrive this beam power tube, for in such a case the plate efficiency decreases. Usually more than enough excitation is obtainable, and the reduction of excitation to this stage may be accomplished by slightly detuning the buffer-doubler tank. The
cathode bias on the buffer-doubler stage prevents the current from rising to ihnormal values when detuning. The final plate coil is of turret type construction; and the turret has mounted upon it a coil for each of the five bands, each coil with its associated link. Provision is made for shorting out the four unused coils and their links. The final tank condenser is of the split-stater type with the rotor grounded. It was not found necessary to neutralize the final amplifier.

The power supply uses an 83 rectifier, and the power transformer is conservatively rated. Filament and plate supplies may be switched separately from the front of the panel. The switches are plainly marked on each panel.
The oscillator tank and buffer tank coils are mounted with their axes at right angles to each other to avoid any interaction. The final tank coil is mounted above the chassis, and no coupling exists from the final coil to any of the low power stages.

The power output is sufficient to excite Class C stages having inputs as high as 250 to 400 watts. A single meter on the panel and its associated switch provide current readings in the following circuits: crystal oscillator plate, buffer-doubler phate, final amplifier grid and final amplifier plate.
The chassis construction is so arranged as to provide for an increase in power output by changing to the circuit shown for the 120 watt band switching exciter. Knock-out holes are made for the addition of rectifier tube sockets, and extra holes are drilled in the chassis to accommodate the dual plate transformer and the T-19F77 filament transformer required because of the additional $866-\mathrm{JR}$ filament load. Space is provided on the under side of the chassis for the mounting of the high voltage condensers used to filter the output of the 866-IR's.

TRANSFORMER SPECIALISTS SINCE 1895

THORDARSON TRANSFORMERS and CHOKES
T-1 T-19F76 Filament Transformer T-2 T-84P60 Plate Transformer CH-1 T-75C51 Filter Choke CH-2 T-75C51 Filter Choke

Resistors:

R-1 20,000 Ohm 1 Watt Resistor
R-2 350 Ohm 10 Watt Resistor
R-3 100,000 Ohm 1 Watt Resistor
R-4 350 Ohm 10 Watt Resistor
R-5 10,000 Ohm 10 Watt Resistor
R-6 350 Ohm 10 Watt Resistor
R-7 50 Ohm 10 Watt Resistor
R-8 50 Ohm 10 Watt Resistor
R-9 50 Ohm 10 Watt Resistor
R-10 50 Ohm 10 Watt Resistor
R-11 25,000 Ohm 50 Watt Semi-Variable Resistor, Ohmite or Equivalent

Bottom View

Parts Required

Condensers:

C-1 . 002 Mfd .1000 Volt Mica Condenser, CD-4-6D2 or Aerovox 1465 C-2 . 0001 Mfd. 1000 Volt Mica Condenser,
C-3 . 002 Mfd. 1000 Volt Mics Condenser, CD-4-6D2 or Aerovox 1455
C-4 . 002 Mfd. 1000 Volt Mica Condenger, CD-4-6D2 or Aerovor 1455
C-5 $\quad 100 \mathrm{Mmfd}$. Variable Condenser, Cardwell ZU-100-AS or Equivalent
C-6 . 0001 Mfd. 1000 Volt Mica Condenser, CD-4-6id 1000 Volt Mica
C-7 . 002 Mfd. 1000 Volt Mica Condenser, CD $-6 \mathrm{Cl}^{2} 1000$ Vox 1465
C-8 . 002 Mfd. 1000 Volt Mica Condenser, CDI Mid 1000 Volt 46
C-9 . 002 Mid. 1000 Volt Mica Condenser, 100 Mm Variable 1455
C-10 $\quad 100 \mathrm{Mm}$ dd. Variable Condenser, Cardwell ZU-100-AS or Equivalent
C-11 .0001 Mid. 1000 Volt Mica
C-12 . 002 Mfd. 1000 Volt Mica Condenser, CD-4-6D2 or Aerovox 1455
C-13 . 002 Mfd. 1000 Volt Mica Condenser,
CD-4-6D2 or Aerovox 1455
C-14 260-260 Mfd. Variable Condenser, Cardwell MR-260-BD or Equivalent
C-15 8 Mfd. 600 Volt Electrolytic Condenser, Mallory HS-693 or Equivalent
C-16 8 Mfd. 600 Volt Electrolytic Condenser, Mallory HS-698 or Equivalent

RF Chokes:
RFC- 1 RF Choke, Millen \$34101 or Equiv. RFC-2 RF Choke, Millen $\$ 34101$ of Equiv. RFC-3 RF Choke, Millen $\$ 34100$ or Equiv. $\begin{array}{ll}\text { RFC-3 } & \text { RF Choke, Millen } \$ 34100 \text { or Equiv. } \\ \text { RFC-4 } & \text { RF Choke, Millen } \$ 34101 \text { or Equiv. }\end{array}$ $\begin{array}{ll}\text { RFC- } & \text { RF } \\ \text { RFC-5 } & \text { RF } \\ \text { Choke, Millen } \$ 34101 \text { or Equiv. } \\ \$ 34100 \text { or Equiv. }\end{array}$ RFC-6 RF Choke, Millen $\$ 84100$ or Equiv.

Miscellaneous Parts
Punched Chassis $17^{\prime \prime} \times 13^{\prime \prime} \times 4^{\prime \prime}$
Panel $19^{\circ} \times 121 /{ }^{\prime \prime}$
Chassis Mounting Brackets Condenser Mounting Bracket
Bushings
Octal Sockets
4-Contact Socket
5-Contact Socket, Steatite
Feed-thru Insulators
Grid Grip
Crystal Sockets, Millen $\$ 33002$ or Equiv.
SW-1 Single Pole 4-Throw Switch, Isolantite, Centralab 2542 or Equivalent
SW-2 SPST Switch, Arrow H \& H 20994
SW-3 SPST Switch. Arrow H \& H $\ddagger 20994$ or Equivalent
SW-4 2-Pole 4-Throw Switch, Isolantite, Centralab 2548 or Equivalent
L-1 Band Switch Coil, B-W Type 2AB or Equivalent
L-2 Band Switch Coil, B-W Type 2AB or Equivalent
L-3 Baby Turret, B-W Type BTCL
1 M-1 0-200 MA DC Meter, $3^{\prime \prime}$ Square Case Rear Illumination, Triplett $\$ 327 \mathrm{~A}$ or Equivalent
Grid Grip, National Type 24 or Equiv.
Control Wheels $21 / 4$ " Diameter, Coto CI-45 or Equivalent
Knobs, Crowe $\$ 588$ or Equivalent
Tube Shield, Hammarlund Type PTS or Equivalent
Shaft Extension, Yaxley RS-242
Panel Bearing Assembly, Johnson 256 or Equivalent
Shaft Coupling, National TX-11
Miscellaneous screws, nuts, bolts, lock-washers required hook-up wire and other hardware.

Circuit diagram, drawings and full size template of chassis available from Thordarson 15 cents net each, postpaid.

Panel View

FOR transmitters having inputs as high as 700 or 800 watts this exciter provides adequate excitation on all bands from 160 to 10 meters without the necessity of plugging in different coils. Three crystal frequencies and five operating bands may be selected at will by means of controls on the panel.

The exciter uses for its final amplifier an 811 tube operating at a plate voltage of 1000 volts. The power input to the final stage is 120 watts, and power outputs of over 70 watts may be realized on all bands.

The panel is an especially designed unit requiring no additional name plates or markings. It is finished in black with white lettering, and the position of each control is clearly indicated.
The chassis and panel are the same as those used on the 40 watt band switching exciter. For converting the 40 watt unit to this 120 watt unit it is necessary only to replace the filament plate transformers, to add two filter condensers, a neutralizing condenser and a bleeder resistor; and to replace the final tank circuit with a larger unit. The same convenience of operation and attractive appearance will be retained by the amateur who wishes to increase the power output of his exciter without obsoleting the smaller equipment.

The crystal oscillator stage uses a 6V6-G tube operating with a plate voltage of 350 V . and a screen-grid voltage of 190 V . This stage drives a buffer-doubler stage with a 6I.6-G tube operating at a plate voltage of 400 V . and a screen-grid voltage of 275 V . This buffer-doubler stage provides adequate excitation to the 811 grid on all bands.

Chassis View
The crystal oscillator stage operates with crystals in any band from 160 to 10 meters. When using crystals in the 160,80 and 40 meter bands, doubling may be accomplished in the oscillator; and enough output is available from it to drive the 6 I. $6-\mathrm{G}$ bufferdoubler stage easily. When working "straight through" in the crystal oscillator stage, the plate current is of the order of 20 to 25 MA when loaded with the grid of the buffer-doubler stage. The buffer-doubler stage may be operated "straight through." or it may be used to double. With grid excitation on $160,80,40$ and 20 meters, doubling is easily accomplished in this stage with enough power output to excite the 811 final stage easily. With excitation on 160, 80 and 40 meters, quadrupling can be carried on to give good outputs on 40, 20 and 10 meters.
Although the buffer-doubler stage is not neutralized, no difficulties will be encountered when operating "straight through." However, for best results, it is recommended that wherever possible frequency multiplication be accomplished in this stage.

The oscillator and buffer-doubler plate tank coils are sectionalized and mounted on a switch so that the amount of the coil being used can be easily controlled from the panel. It is thus possible to tune to all five bands with a single condenser. These tank coils are of the type in which the unused winding is short circuited.
The buffer-doubler stage is capacity coupled to the 811 grid. At resonance. and when loaded by the final grid, the plate current in the buffer-doubler stage is of the order of 55 to 60 MA .

The final tank circuit consists of a split-stator condenser and a BarkerWillianson type BCI, turret assembly. This coil assembly consists of five coils, one for each frequency band. The coil

Bottom View
which is desired may be selected from the panel, and the other four coils with their links shorted out.
The 811 tube is neutralized in a conventional manner, and no difficulty is encountered in obtaining perfect neutralization.

Since it is a high mu tube, the 811 requires no bias to protect it in the event of failure of excitation. In this exciter grid leak bias is used. With proper excitation the grid current should be 30 to 35 MA .

Two DC power supplies are mounted upon this chassis, one delivering 400 volts to supply the oscillator and buffer-doubler stages and the other delivering 1000 volts to the 811 tube. The low voltage rectifier uses a 573 tube, and the high voltage rectifier uses two $866-\mathrm{JR}$ tubes. These power supplies are filtered with the same chokes.

Filament supplies for the RF tubes and for the rectifier tubes are controlled by a single switch on the panel, and the two high voltage supplies by another switch. The terminal board on the rear of the chassis has three extra terminals so that other units associated with this exciter may be contwolled by the exciter switches.

A single meter is mounted upon the panel, and under it a four-position switch permits the reading of the oscillator plate current, the buffer-doubler plate current, the final amplifier grid current and the final amplifier plate current.
The three crystal sockers are mounted on the chassis base. The selector switch is coupled to the panel switch by means of a flexible shaft, thus permitting the crystals to be located for best performance and retaining a convenient switch position on the panel.

THORDARSON TRANSFORMERS and CHOKES

T-1 T-19F77 Filament Transformer T-2 T-19P57 Plate Transformer $\begin{array}{lll}\mathrm{CH}-1 & \mathrm{~T}-75 \mathrm{C} 51 & \text { Filter Choke } \\ \mathrm{CH}-2 & \mathrm{~T}-75 \mathrm{C} 51 & \text { Filter Choke }\end{array}$

Resistora:

20,000 Ohm 1 Watt Resistor 350 Ohm 10 Watt Resistor, Ohmite Brown Devil or Equivalent
100,000 Ohm 1 Wat
R-4 350 Ohm 10 Watt Reastor, Ohmite Brown Devil or Equivalent
R-5 2,500 Ohm 10 Watt Resistor, Ohmite Brown Devil or Equivalent
R-6 20 Ohm 10 Watt Center Tapped Resistor, Ohmite Brown Devil or Equivalent
R-7 50 Ohm 10 Watt Resistor, Ohmite Brown Devil or Equivalent
R-8 50 Ohm 10 Watt Resistor, Ohmite Brown Devil or Equivalent
R-9 50 Ohm 10 Watt Resistor, Ohmite Brown Devil or Equivalent
R-10 50 Ohm 10 Watt Resistor, Ohmite Brown Devil or Equivalent
R-11 25,000 Ohm 50 Watt Semi-Variable Re sistor, Ohmite 10585 or Equivalent
R-12 100,000 Ohm 50 Watt Resistor, Ohmite or Equivalent

Condensers:

C-1 . 002 Mid. 1,000 Volt Mica Condenser C-D 4-6D2 or Aerovox 1455
C-2 . 0001 Mid. 1,000 Volt Mica Condenser
C-D 4-6T1 or Aerovox 1455
.002 Mid. 1,000 Voit Mica Condenser C-D 4-6D2 or Aerovox 1455
C-4 . 002 Mfd. 1,000 Volt Mica Condenser
C-5 $\quad 100 \mathrm{Mmind}$. Variable Condenser, Cardwell ZU-100-AS or Equivalent

Parts Required

Condensers: (Cont.)

C-6 . 0001 Mid. 1,000 Volt Mica Condenser

 C-D 4-6T1 or Aerovox 1455 C-7 C-D M-6D2 or Aerovox 1455 Condenser, C-8 $\quad .002$ Mid. 1,000 Volt Mica C-9 C-D 4-6D2 or Aerovox 1455 Mid. 002 Volt Mica Condenser C-10 C-D 4-6D2 or Aerovox 1455 C-10 100 Mmfd . Variable Condenser, Cardwell C-11 ZU-100-AS or EquivalentC-11 . 0001 Mid. 1,000 Volt Mica Condenser, C-D 4-6TI or Aerovox 1455
C-12 . 002 Mfd . 1,000 Volt Mica Condenser C-D 4-6D2 or Aerovox 1455
C-13 . 002 Mfd. 1,000 Volt Mica Condenser,
C-14 $210-210$ Mmid. Variable Condenser,
C-15 Cardwell XT-210-PD or Equivalent
C-15 8 Mid . 600 Volt Electrolytic Condenser, C-16 8 Mfd .600 Volt Electrolytic
C-16 8 Mfd .600 Volt Electrolytic Condenser,
C-17 Mallory HS-693 or Equivalen
C-17 2 Mid. 1,500 Volt Condenser, Mallory
C-18 2 Mid 1500 Volt
TX 808 , Mallory NX-808
113 G 45 or Equivalent E . F. Johnson

Tubes:

Tubes:					
1	6V6-G	Tube	$\mathbf{1}$	811	Tube
1	6L6-G or		1	$5 Z 3$	Tube

RF Chokes:

RFC-1 RF Choke, Millen $\$ 34101$ or Equiv. RFC-2 RF Choke, Millen $\$ 34101$ or Equiv RFC-3 RF Choke, Millen $\$ 34101$ or Equiv. RFC-4 RF Choke, Millen 34101 or Equiv RFC-5 IRF Choke, Millen $\$ 34101$ or Equiv. RFC-6 RF Choke, Millen $\$ 34101$ or Equiv.

Miscellaneous Parts:

Punched Chassis $17^{\prime \prime} \times 13^{\prime \prime} \times 4^{\prime \prime}$ Panel $19^{\prime \prime} \times 121 / 4^{\prime \prime}$
Pr. Chassis Mounting Brackets Condenser Mounting Bracket
Bushings
Octal Sockets
4-Contact Socket
4-Contact Sockets, Steatite
Feed-thru Insulators Grid Grip
Crystal Sockets, Millen $\$ 33002$ or Equiv.
SW-1 Single-Pole, 4-Throw Switch, Isolantite, Centralab $\$ 2543$ or Equivalent
SW-2 SPST Swritch. Arrow H \& H $\$ 20992$ (Nickel Plated) or Equivalent
SPST Switeh. Arrow H \& H 120992 (Nickel Plated) or Equivalent
SW-4 2-Pole, 4-Throw Switch, Isolantite, Centralab $/ 2543$ or Equivalent
L-1 Band Switch Coil, Barker-Williamson Type 2AB ar Equivalent
L-2 Band Switch Coil, Barker-Williamson Band Switch Coil, Bark
Type 2AB or Equivalent
L-3 Coil Turret Assembly, Barker-William Con Turret Assembly, Barke
M-1 0-200 MA DC Meter, $2^{\prime \prime}$ Square Case Rear Illumination, Triplett $\sqrt{327-A}$ or Equivalent
Control Wheels, $21 / 4$ Diameter, Coto CI-45 or Equivalent
Knobs, Crowe $\$ 588$ or Equivalent
Shaft Extension, Yaxiey fRS-242 or Equivalent
Panel Bearing Assembly, Johnson $\$ 256$ or Equivalent
Shaft Coupling, National TX-1
Miscellaneous nuts, bolts, soldering lugs, lockwashers, varnished tubing, cable and other hardware.

100 WATT MULTI-BAND

T\square HIS complete 100 watt transmitter consists of two units. each having its own power supply. The RF section may be modulated or may be used for CW only. Its final stage operates at 1000 volts with 100 watts input. The nodulator provides sufficient power output to mudulate 100% the RF section, and the speech amplifier is incorporated in the modulator chassis.

Any three pre-selected amateur bands in the range from 160 to 10 meters may be selected with panel switches.

The RF section is a three-stage circuit using a ob, (6-G oscillator, a 6L6-G buffer-doubler stage and a TV--10 final stage.
The oscillator stage has prevision for switching in its plate tank circuit any one of three coils. and the same switching operation which selects the coils also selects the proper crystal. With 160 and 80 meter crystals, doubling can be accomplished in the oscillator stage, but crystals in the range from 160 to 20 meters may be used in the oscillator stage when working "straight through."
In the buffer slage provision is made for switching to any one of three tank coils. Because the 6L6-G buffer-doubler tube is not neutralized and since, when the second stage is used in frequency multiplying service, adequate drive is obtaned on the TZ-40, it is recommented that doubling lee carried on in this stage whenever possible. However, on the lower frequency bands, there is no tendency toward trouble when operating "straight through." In all cases the final stage is operated "straight through." For 10 meter output it is

RF Section
recommended that a 21 meter crystal be used and that doubling be carried on in the second stage.

The oscillator stage is capacity coupled to the buffer-doubler stage, and the latter is capacity coupled to the rinal grid.

Three Barker-Williamson center linked, center tapped tank coils, mounted in a type B coil turret, permit the selection of any one of these coils for use in the final tank With this arrangement the link around the coil in use is connected to the antema or to an antenna matching network. With one meter and four meter switches provision is made for reading the oscillator cathode current, the buf-fer-doubler cathode current, the final grid current and the final plate current. The meter switches are of such a type that the circuit controlled by each switch may be opened by placing the switch in its "half way" position.

Two direct current supplies are installed in this chassis, one of which delivers approximately 400 volts to supply the plates of the 6L6-G's and the other which delivers 1000 volts to supply the plate of the TZ-40. The screen supply for the 6L6-G's is taken from taps on the 400 volt bleeder R-5, these taps being adjusted so that the voltage on the oscillator screen-grid is about 150 to 200 volts and on the buffer-doubler screen-grid it is about 200 to 250 volts. When the oscillator tube is operating properly, the cathode current should dip to a value of 50 MA or less, and the cathode current in the buffer-doubler stage at resonance, should be about 75 MA . The grid current on the final should be 25 MA or more; and for a 100 watt input to the final stage, the TZ-40 plate current should be 100 MA .

The removal of the high voltage for neutralizing the final stage may be done easily by removing the $866-\mathrm{JR}$ tubes from their sockets and then making the neutralizing adjustment in the conventional manner with the antenna or antenna matching network

Modulator
comected to the lisk on the final tank coil.

For CIl operation the key is connected between terminals 1 and 2 on the five-screw terminal board on the back apron of the chassis, the 115 volt line is connected to terminals 3 and 4 and the plate voltage is controlled by a switch connected between terminals 4 and 5 . The terminals of the two No. 55 feed-thru insulators on the rear apron of the chassis are connected together.

Modulator Unit:

The modulator tubes are 6L6-G's in push-pull, Class $A B_{2}$. These tubes are connected to the Class C load through a Multi-Match modulation transformer. The connections to the modulation transformer are as follows: One 6L6-G plate is connected to terminal 1, and the other plate to 6 . Terminals 2 and 5 are joined and connected to the plate supply. Terminals 9 and 10 are also joined, but no connection is made to them. The Class C load is connected to terminals 8 and 12 .
The speech amplifier tube line-up is as follows: a pentode connected 6J7, a 6155 and a 6F6, triode connected.
The power supply uses an 83 to supply high voltage to all tubes and an 82 in the bias supply for the 6 L 6 -G's.
In preparing the modulator unit for operation, an adjustment must be made of the bias and the screen voltage on the $6 \mathrm{I}, 6-\mathrm{G}$'s. For obtaining the correct bias adjust $\mathrm{R}-11$ until the voltage across it is 25 volts. Then adjust R-12 until the screen voltage is 310 volts. It may be necessary to readjust R-11 to maintain the 25 volts of bias. The modulator plate current should be about 115 MA for two tubes, and with a sine wave signal of sufficient magnitude to modulate 100% the RF section the plate current will rise to approximately 225 MA. For speech waves having the same peak power plate current will kick up to about 170 MA .
To connect the modulator to the RF section terminals 3,4 and 5 on the RF

RF Unit
section should be connected to terminals 1, 2 and 3 on the modulator. Connection should be made from the terminals of the No. 55 feed-thru insulators on the modulator chassis to the corresponding insulators on the RF chassis. With the two chassis so interconnected the filament switch on the modulator chassis controls all the filaments, and the plate switch controls all plate supplies.
The RF section may be used alone as an exciter for transmitters having power inputs of almost one kilowatt.

BAND	TURNS	WINDING LENGTH
160	40	Close wound
80	22	Close wound
40	12	$138^{\prime \prime}$
20	6	$13 / 8^{\prime \prime}$
10	$3 / 4$	
Osc. \& Buf. coils are identical. Use No. 18E wire on $11 / /^{\prime \prime}$		

RF Unit

Parts Required
THORDARSON PARTS
T-17K21 Foundation Unit

T-1	T-19F97	Filament Transformer
T-2	T-19F93	Filament Transformer
T-3	T-19F88	Filament Transformer
T-4	T-19P57	Plate Transformer
5	T-19F91	Filament Transformer
CH-1	T-75C51	First Choke
CH-2 T-75C51		Second Choke
		Tubes:
${ }_{T V}^{6 L}$	G or 6 L 40 Tube	Tubes2 $866-\mathrm{J}$

Resistora:
R-1 50,000 Ohm 1 Watt Resistor, IRC BT-1 R-2 $50,000 \mathrm{Ohm} 10 \mathrm{Watt}$, Ohmite Red Devil $\mathrm{R}-3 \quad 2,500 \mathrm{Ohm} 25 \mathrm{Watt}$, Ohmite, Wirewound R-4 100,000 Ohm 50 Watt, Ohmite Wirewound $20,000 \mathrm{Ohm} 50 \mathrm{Watt}$, Ohmite Semi-Variable

Condenseras
C-1, C-2 Variable Condenser, National TMS-250 C-3 Variable Condenser, National TMC-200D C-4 Neutralizing Condenser, Johnson 13G45 $\mathrm{C}-5, \mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-9, \mathrm{C}-10, \mathrm{C}-11, \mathrm{C}-13, \mathrm{C}-14, \mathrm{C}-15$,
C-16 . 001 Mifd. 1000 Volt Mica Condenser, Aerovox 11455 or C-D $4-6 \mathrm{D} 1$
C-6 . 0001 Mrd. 1000 Volt Mica Condenser, Aero-

RF Unit

Condensers: (Cont'd)
C-12 . 005 Mfd .1000 Volt Mica Condenser, Aero-C-17 Vox 51455 or C-D 4-6D5
C-17, C-18 . 001 Mid. 5000 Volt Mica Condenser Aerovox 1457 or C-D 4-25D1
C-19, C-20 2 Mfd .1500 Volt Oil Filled Condenser
C-21 4 Mfd .600 V . Electrolytic, Aerovox GL-600 C-22 4 Mfd .600 V . Electrolytic, Aerovox GL-600

Miscellaneous Parts:

5-Contact Sockets, Amphenol S5
4-Contact Sockets, Amphenol S5
4-Contact Sockets, Ampheno
4-Contact Isolantite Sockets, Amphenol SS4 Feed-thru Insulators, Johnson $\$ 55$
Feed-thru Insulators, Johnson $\$ 42$ RF Chokes, National R-100
4' Shaft Extension, Yaxley fRS243
2-Gang Band Switch, Centralab $\$ 2543$
2-Gang Band Switch, Centralab $\$ 2543$
l-Gang Band Switch, Centralab $\$ 2542$
Coil Turret, Barker-Williamson Model "B"
160 Meter Coil, Barker-Williamson 160 BL
Center Linked
80 Meter Coil, B-W 80BL, Center Linked
40 Meter Coil, B-W 40BL, Center Linked 20 Meter Coil, B-W 20BL, Center Linked
10 Meter Coil, B-W 10BL, Center Linked
$21 / 4$ Coto-Coil Wheels CI-45 With Indicator Plates CI-47 Marked "OSC. PLATE,"' "BUF FER PLA TE," "PWR. AMP. PLATE."
Indicator Plates, Marked "OSC. PLATE," "BUFFEIR PLATE," "PWR. AMP. PLATE," "PWIR. AMP. GRID," Coto-Coil CI-47.
Meter Switches, Yaxley 762
0-200 MA Meter, Simpson 427 S or Triplett 1127-A (Illum.)
Grid Cap, Large, National Type 12
SPST 6 Ampere Toggle Switches, H \& H 26993 Coil Forms, National XR-4
Cone Insulator, Johnson $\$ 601$
Cabinet, Bud /697 or Par Metal /SC2613
Variable Kesistor Lug, Ohmite 10358

Modulator Unit
 Parts Required

THORDARSON PARTS

1	T-17K22	Foundation Unit
T-1	T-67D78	Driver Transformer
T-2	T-11M75	CHTModulation Transformer
T-3	T-79F84	Filament Transformer
T-4	T-84P60	Plate Transformer
CH-1	T-74C30	Third Choke
CH-2	T-75C49	Bias Choke
CH-3	T-75C51	First Choke
CH-4	T-68C07	Second Choke

6F6 Tube
Resistor:
1-2 Megohm $3 / 2$ Watt Resistor, IRC BT- $1 / 2$ $\mathrm{R}-3, \mathrm{R}-8 \quad 250,000$ Ohm 1 Watt Resistor, IRC BT-1 R-4 $\quad 500,000$ Ohm Volume Control, IRC 13-133 2000 Ohm 1 Watt Resistor, IRC BT-1 $20,0000 \mathrm{hm} 1$ Watt Resistor, IRC BT-1
$100,000 \mathrm{Ohm} 1$ Watt Resistor, IRC BT-1 750 Ohm 10 Watt Kesistor, IRC Type AB 10,000 Ohm 2 Watt Reaistor, IRC BT-2 R-12 2500 Ohm 25 Watt Semi-Variable, Ohmite R-13 25,000 Ohm 50 Watt Wirewound, Ohmite Condensers:
Aerovox $\$ 1467$ or C-D 5W-5T1
C-3 . 04 Mfd. 400 Volt Paper Condenser, Aero-
C-4, C-7 . 1 Mid. 400 Volt Paper Condenser, Aero-
C-5 8 Mfd . 450 Volt Electrolytic Condenser,
C-6 10 Mid 25 Volt Clectrolytio
Aerovox PR-25 or C-D KD 2100
-15 88 Mid. 450 V. Dual Elect., Aerovox 2 G
C-10, C-11 0.002 Mifd. 1000 Volt Mica Condenger
C-12, C-13 8 Mfd . 200 Volt Electrolytic Conden-C-14 8 Mfd. 600 V Elect Aerov GL-600 0.01 Mfd. 400 Volt Paper Condenser, Aero-
vox 484 or C-D DT-4S1 Miscellaneous Part

RF Choke, National R-100

Mic. Connector, Amphenol MC-1F
Mic. Connector, Amphenol PC-1M
Bias Cell, Mallory $4{ }^{F} 7$
Bias Cell Holder, Mallory fGB-1A
AC Line Cord and Plug, Belden $\$ 1725$
Octal Sockets, Amphenol S8
4-Contact Sockets, Amphenol S4
Dial Plate Crowe 456
Feed-thru Insulators, Johnson $\$ 55$
27 MA Meter, Simpson $\mathbf{2 7 S}$ or Triplett
2 Metal Tube Shields, ARHCO 492
1 Red Jewel and Candelabra Bracket, ARHCO
Green Jewel and Candelabra Bracket, ARHCO
2110 Volt Carbon Lamps Type G6

Complete Instruction Book SD-386-A giving full details of building data, photos, diagrams and layout available at 25 cents postpaid.

Chassis View

USING low plate resistance outpur tubes, this amplifier is capable of easily delivering 10 watts of audio power for chriving the largest modulators used by amateurs. Its low internal output impedance provides the excellent regulation required in Class B driver service, and its high gain makes it usable with crystal microphones.

The circuit shown is that incorporating the peak limiting feature, but this amplifier is also available with a circuit for overmodulation control or as a conventional amplifier. The punched chassis is designed to fit either the regular type amateur transformers or the C.H.T. Series of transformers, which give better

Thordarson Parts

R-3 500,(000) Ohms, Volume Control, IRC 13-133
$\begin{array}{ll}\text { R2-7 } & 350 \text { Ohmss. } 10 \text { Watts, Ohmite Brown Devil } \\ \text { R-8 } & 500,000 \text { Ohms } 1 \text { Watt, 1RC BT-1 } \\ \text { R }\end{array}$
R-9 $1500 \mathrm{Ohms}, 10$ Watts, Ohmite Brow
$\begin{array}{ll}\mathrm{R}-10 & 100,000 \text { Ohms, } \\ \mathrm{R}-11 & \mathrm{~A}_{4}, 000 \text { Ohms } 10\end{array}$

$\begin{array}{ll}\mathrm{R}-12 & 2500 \mathrm{Ohms}, 1 \text { Watt, IRC BTI } \\ \mathrm{R}-13\end{array}$
${ }_{\mathrm{R}-14} \quad 12,000$ Ohms, 25 Watts, Ohmite Semi-Variable
R-15 20,000 Ohrs, 1 Watt, IRC BT-1

R-17 2,500 Ohms, 95 Watts, Ohmite Semi-Variable
R-18 500,000 Ohms, Volume Control, IRC 13-133
R-19 1,000 Ohmss, 1 Watt, IRC BT-1
R-20 2,500 Ohms, 1 Watt, IRC BT-1
R-21 100,000 hms, 1 Watt, IRC BT-1

frequency response and less distortion. The amplifier may be adapted to rack and panel mounting, or a cover may be obtained for use on an operating table.

For T-2, a driver transformer may be used to couple the 2 A3 plates directly to the Class B grids; or, if it is desired to locate the amplifier remotely from the modulator, an output transformer may be installed to couple the 2 A 3 plates to a 500 ohm line.
Specifications showing the different circuits, together with a complete parts list, are shown on the Thordarson SD-389 bulletin, available at all jobbers.

Condensers:

C	0.0
C-2	$0.1 \mathrm{Mfd} ., 400 \mathrm{~V}$ Paper Aerovox 484
C	$8 \mathrm{Mrd}$. , 450) ${ }^{\text {d }}$ Elect. Ae
C-5	$0.5 \mathrm{Mid} ., 400 \mathrm{~V}$ Paper Aerovox
C-6	8 Mfd ., 450 V Elect. A
C-7, C-11	$8-8 \mathrm{M}$ d., 450 V Dual Elect. Ae
C-8	0.1 Mid., 400 V Paper Aerovo
C-9	$8 \mathrm{Mid} ., 450 \mathrm{~V}$ Elect. Aerovox PRS-450 or C-D
C-10	$10 \mathrm{Mrd.}$,25 V Elect. Aerovox PR-25 or C
C-12, C-13	$8-8 \mathrm{Mfd} ., 450 \mathrm{~V}$ Dual Elect. Aer
C-14	8 Mid., 200 V Elect. Aerovox PBS-200 or C-D JR2
C-15	8 Mfd . 200 V Elect. Aerovox PBS-200 or C-D JR2
C-17	0.1 Mid., 400 Paper A
C-18	$10 \mathrm{Mrd}, 25$ E Elect. A
C-19	0.1 Mid., 400

Miscellaneous Parts:

1 Mic. Input Connector, Amphenol
MC1F
1 Mic. Input Connector, Amphenol
Hed Je
1 Hed Jewe and Bracket, Yaxley
Bias Cell, Mallory No. F7
1 Bias Cell, Mallory No. Miallory No. $\underset{\text { GB-1A }}{\text { Bias }} \mathrm{Ce}$
GB-1 A
$11 /$ " $^{\prime \prime}$ Bar Knob, Black Stream-
lined

1 SPST Toggle Switch, H \& H No. 20992 AC Line Cord and Plug, Belden No. 1725
3 Metal Tube Grid Caps
2 Metal Tube Shields, ARHCO No. 92
Dial Plate, Crowe No. 566 RF Choke, National R-100 Octal Sockets, Amphenol S8
4-Contact Sockets, Amphenol S-4 4-Contact Sockets, Amphenol S-4
6.3 Volt Pilot Light, Mazda No. 40

The parts list shown is for the amplifier with either the over-modulation control or the peak limiting circuits; complete drawings, photos, parts lists and instructions for easy assembly of either of the above circuits are contained in Instruction Book S1)-387, 15 cents postpaid.

PARTICUlARLY designed for use with the new RCA-S11 and 812 tubes, this transmitrer, with its unusual mechanical layout and carefully planned wiring, gives superior performance on the five amateur bands from 160 to 10 meters. With an imput of 250 watts for phone operarion, a carrier output of 190) watts is easily obtained; and with 450 watts input for CW, 350 watts may be delivered to the antenna. Higher than usnal plate efficiencies are obtained by careful attention to mechanical layout and by the selection of high quality parts.

In addition to the RCA-812 the transmitter will also operate satisfactorily with other tubes such as the Taylor T $/ 40$. Taylor T-55, or the Eimac 35T. It is only necessary to use the correct filament transformer and to adjust the grid bias resistor.

A semi-fixed swinging link grid tank coil of the plug-in type is used in the grid circuit. This allows not only close adjustment for optimum excitation but also permits the coil to be removed without changing the link setting. This latter feature is particularly desirable for the amateur who wishes to avoid time-consuming operations when chang-

High Efficiency Final Stage

Multi-Match Modulator

1250 and 1500
Volt Power Supply

Up to 150 Watts
Modulator Output
ing bands. The plate tank coil is also of the swinging link type, which permits quick adjustment of the amplifier loading. The Class C amplifier is easily driven by the Thordarson 40 watt Band-Switch Exciter unit, this combination affording the advantage of quick band changing without involving costly coil switching parts in the high power stage.
The Class C amplifier requires 200 MA at 1250° volts for a phone inpur of 250 watts. For a 450 watt CW input the plate current is 300 MA at 1500 volts. The grid current for the Class C tubes depends upon the choice of tubes and whether CW or phone operation is desired. For 812's it is 50 MA for two tubes. To meet the various bias requirements of the different tube types, an adjustable grid resistor is provided.
Should the amateur wish to install an extermal fixed bias supply for CW, provision has been made for its easy connection. If external bias is used, the negative of the hias supply connects to terminal No. 1 and the positive to No. 2. If external hias is not desired terminals No. 1 and No. 2 on the Class C amplifier chassis are con-

nected together. About 30 volts of fixed bias are required to maintain the tulbes within their rated plate dissipation without excitation.

Both the grid and the plate currents are metered, the meters being in the cathode return leads. This places both meters at a low DC potential with respect to the chassis, thus eliminating any tendercy toward deflection of the needle due to electrostatic effects and removing the possibility of flash-over from the meter terminals to the pilot lamp mounting.

The modulator uses the new 811 tubes and easily delivers the required 125 watts of audio frequency power with very litt'e distortion. It is designed to operate from a " 500 ohm" line. The modulation transformer is of the Multi-Match type so that it may be used to modulate any Class C stage of 300 watts input power. The no-signal plate current of the 811's is 60 MA , and the current with a 125 watt sine wave output is 177 MA. For speect signals hasing the same peak power the plate current should swing to about 90 or 100 MA .

The required driving power is very small, being on the order of 4 peak

450 WATT CW - 160 TO 10 METERS

watts. If 2 A 3 's are used as the driver tubes, an unusually high step-down ratio from the plates of the 2A3's to the grids of the 811 's may be used to obtain excellent driving regulation. The Thordarson Amateur Speech Amplifier is an excellent unit to furnish the driving power required by this modulator.

The power supply, with its tapped plate transformer, is rated at 300 MA at 1250 or 1500 volts. The load requirements of the Class C amplifier and the modulator are such that the power supply is fully loaded for both phone and CW so that regard'ess of the type of operation the amateur
chooses, he is not investing in a power supply which is not being loaded up to its rating at all times. The power supply is entirely self-contained with separate plate and filament switches, making it an ideal power supply for other equipment of similar load requirements.

RF Chassis View

RF Botlom View

THORDARSON TRANSFORMER

T-6 T-19F85 Filament Transformer

Resistor:

H-2 $4,000 \mathrm{Ohm} 50$ Watt Wirewound Ohmite Semi-Variable or Equivalent

Condensers:

C-3 Variable Air Condenser, Cardwell MR-150-BD or Equivalent
C-4 Variable Air Condenser, Cardwell XP-165-KD of Equivalent
C-5 Neutralizing Condenser, Hammar-
C-6 Lund N-10 or Equivalent
C-6 Neutralizing Condenser, Hammarlund N-10 or Equivalent
ammar. 001 Mid. 3,500 Volt Mica Con-
C-8 . 002 Mfd. 1,100 Volt Mica Con-
C-8 denser CD-4-6D2 or Aerovox 1455
C-9 . 002 Mid. 1,400 Volt Mica Con-
denser CD-4-6D2 or Aerovox 1455
C-1 - . 002 Mfd. 1,400 Volt Mica Con-
C-11 denwer Mfd. 1,002 Volt Mica Condenser CD-4-6D2 or Aerovox 1455
Tubesi

2812 Tubes

Parts Required

Miscellaneous Parts:

Punched Chassis $8 \frac{1}{2^{\prime \prime}} \times 10^{\prime \prime} \times 3^{\prime \prime}$
Panel $19^{\circ} \times 14^{\prime \prime}$
Sub-Pane!
Terminal Board
Bushings
Feed-thru Insulators
4-Contact Isolantite Sockets
Stand-ofi Insulators
Stand-ofi Insulato
Shaft Couplings, National TX-11 quivalent
Shaft Coupling, Johnson No. 252 or Equivalent
Pane! Bearing Assemblies, Johnson No. 256 or Equivalent
M-2 0-200 MA DC Meter, $3^{\prime \prime}$ Square Case, Rear Illumination, Triplett No. 327-A or Equivalent
M-3 0-300 MA DC Meter, $3^{\prime \prime}$ Square Case, Rear Illumination, Triplett
No. 327-A or Equivalent,
Control Wheels, Complete, Coto CI-45 or Equivalent Indicator Plate Marked "PWR AMP GRID" Coto CI-47 or Equivalent
Indicator Plate Marked "PWR AMP PLATE'" Coto CI-47 or

$$
\begin{aligned}
& \text { AMP PLA } \\
& \text { Equivalent }
\end{aligned}
$$

RF Section

2

Misc. Parts: (Cont'd) Coil Socket, National Type XB-16 or Equivalent AR16-160C or Equivalen
AR16-80S Cor Equivalional Type AR16-80S or Equivalent Meter Conl, National Type AR1 6-40S or Equivalent 20 Meter Coil, National Type 10 Meter or Equivalent
10 Meter Coll, National Type AR16-10S or Equivalent
Swinging Link \& Jack Bar Assem60. B-W Type TV or Equivalent Equivaler Coil, B-W 160 TVL or 80 Meter Coil, B-W 80 TVL or Equivalent
40 Meter Coil, B-W 40 TVL or Equivalent
L-2 $\quad{ }^{\text {Equivalent Meter }}$ Coil, B-W 20 TVL or Equivalent
L-2 10 Meter Coil, B-W 10 TVL or Equivalent
Grid Grips, National Type 12 or Equivalent
1 RFC-1 RF Choke, National Type R-154U
or Equivalent
Miscellaneous screws, nuts, bolts, lock-washers, required hook-up wire and other hardware.

Circuit diagram, drawings and fall size template of chassis available from Thordarson 15 cents net each, postpaid.

Modulator Parts Required

TIIORDARSON TRANSFORMERS and CHOKES
T-3 T-19F99 Filament Transformer
T-4 T-19D05 Driver Transformer
T-5 T-19M16 Modulation Transformer

Miscellaneous Parts

2811 Tubes
1 M-1 0-200 MA DC Meter, $3^{\prime \prime}$ Square Case, Rear Illumination, Triplett $\$ 327 \mathrm{~A}$ or Equivalent
1 Punched Chassis $17^{\circ} \times 8^{\prime \prime} \times 3^{\prime \prime}$
Panel $19^{\prime \prime} \times 101 / 2^{\prime \prime}$
1 Pr. Chassis Mounting Brackets
5-Lug Terminal Board
Feed-thru Iasulators
4-Contact Sockets, Steatite Isolantite Plate Caps

Miscellaneous nute, bolts, lock-washers, grommets, soldering lugs and other hardware.

Modulator and Power Supply

Bottom View of Power Supply

Power Supply

Parts Required

THORDARSON TRANSFORMERS and CHOKES
'T-1 T-19F90 Filament Transformer T-2 T-19P60 Plate Transformer Cli-1 T-19C'37 Input Choke CH-2 T-19C44 Smoothing Chuke Resistor:
R-1 40,000 Ohm 200 Watt Wirewound Resistor, Ohmite 1370 or Equivalent

Condensers:

C-1 2 Mfd. 1,500 Volt Condenser, GE 23F21 or Equivalent
C-2 2 Mfd. 1,500 Volt Condenser, $\mathrm{GE} \neq 23 \mathrm{~F} 21$ or Equivalent

> Tubes:
> 2866 Tubes
> Miscellaneous Parts:
$1 \quad \begin{aligned} & \text { Punched Chassis } 17^{\circ} \times 12^{\circ} \times 3^{\prime \prime} \\ & P^{\prime} \\ & \text { Panel } 19^{\circ} \times 1214^{\prime \prime}\end{aligned}$
1 Pr. Panel $19^{\circ} \times 1214^{\prime \prime}$
Chassis Mounting Brackets
4-Contact Sockets, Steatite
Feed-thru Insulator
Isolantite Plate Caps
SW-1 Switch, Arrow H\&H Type HDT or
SW-2 Switch, Arrow H \& H Type llDT or Equivalent
Miscellaneous nuts, bolts, lock-weshers, soldering lugs and other hard ware.

Circuit diagram, drawings and full size template of chassis available from Thordarson 15 cents net each, postpaid.

Wide Choice of Class C Tubes

Adjustable Excitation

Adjustable Loading

Multi-Match Modulator

High Efficiency with Adjustable Loading

TWIS 40 warr phone transmitter has the same construction and superior features of the transmitter shown on pages 24,25 and 26 . It is suitable for operation on all bands from $180)$ to 10 meters. Ir is easily driven by any exciter having an output of 20) watts: an ideal exciter for this transmitter is the Thordarson 40 Watt Band-Switch Exciter.
The transmitter is supplied with panels finished in black wrinkle, and the chassis and chassis mounting brackets are in gray flat enamel.

RF Section:

The unusual mechanical construction of the RF Section results in improved electrical performance. Flexible shafts are used to couple the grid and plate tuning condensers to the panel controls. The tubes used in the RF section are Heintz and Kaufman HK-54's ar Taylor 'T-55's. The HK-54's require a T-19F85 filament transformer, and the T-55's, a T-19F94 filament transformer. Holes are provided on the chassis for either of these types.
A swinging link which couples the plate tank coil to the anterma, permits
the amateur to adjust the loading of the final stage to the desired power input. For 400 watts input, the Class C plate current is 267 MA at 1500 volts. I plate efficiency of between 75% and 80): may be obtained when the transmitter is in proper adjustment.

The grid tank coils are the plugin type, having link coupling to the exciter. The coils for the $80,40,20$ and 10 meter hands have semi-fixed swinging links, and the 160 meter coil has a fixed link. Excitation should be adjusted so that the total grid current for both Class C tubes is 40 MA . The value of the grid resistor used with the HK-54's is 3750 ohms: with the T-55's, $50(1)$ ohms.
Since the RF unit was designerl primarily for phone operation, no attempt was made to install a fixed bias supply on the RF chassis. However, for CW, provision has been made on the terminal board for the connection of an external bias supply. About 45 volts of bias is required to hold the tubes at their rated dissipation with no excitation. When external bias is not used terminals No. 1 and No. 2 are connected together. If external bias is used, the negative of the bias
supply connects to terminal No. 1 and the positive to No. 2.

Both the grid and the plate currents are metered. The meters are in the cathode return leads. rhus placing hoth meters at a low IDC potential with respect to the chassis, and thereby avoiding any possibility of Hash-overs from the meter terminals to the pilot lamp mounting and any likelihood of deflection of the movements due to electrostatic effects.

Modulator:

The modulator, using 811's with 1500 volts on the plates, has a power output of 200 watts. The no-signal plate current for two tubes is about 70 MA . With a 200 watt sine-wave output the plate current rises to 217 MA. For speech signals of sufficient magnitude to modulate the Class C stage 100%. the average plate current is about 125 MA. The modulation transformer, as well as the driver transformer, is of the Multi-Match type so that a large variety of Class C loads and sources of driving power may be accommodated. The primary of the driver rransformer is designed to couple from a " 500 ohm" line. Very little driving power (3.5 watrs) is needed to obtain

TRANSFORMERTSPECIALISTS SINCE 1895

200 watts output; thus the large excess of power output capability of the usually chosen pair of 2 A 3 's serving as driver tubes can be turned to good advantage in obtaining a driving voltage of exceptionally good regulation. The plate-to-plate load on the modulator tubes is 15,500 ohms.

Power Supply:

The power supply for this transmitter uses two 866's and has a rating of 500 MA at 1500 volts DC. On its $14^{\prime \prime}$ panel are mounted two switches: one for controlling filaments and the other for controlling the plate transformer. Having well insulated line terminals
and high voltage terminals mounted on the rear apron of the chassis, the power supply matches in appearance and construction the modulator and RF units with which it was designed to operate. Its simplicity and completeness make it an excellent general purpose power supply.

RF Section

RF Chassis View

RF Bottom View

THORDARSON TRANSFORMER

T-6	T-19F99 Filument T
Resistor:	
R-2	4,000 Ohm 50 Watt Wirewound Ohmite Semi-Variable or Equivalent
Condensers:	
C-3	150-150 Mmid. Variable Condenser, Cardwell MR-150-BD or Equivalent
C-4	165-165 Mmid. Variable Condenser,
	Cardwell XP-165-KD or Equivalent
C-5	Neutralizing Condenser, Hammarlund N-10 or Equivalent
C-6	Neutralizing Condenser, Hammarlund N-10 or Equivalent
C-7	. 001 Mfd. 3,500 Volt Mica Condenser
	Aerovox 1653 or Equivalent
C-8	.002 Mfd. 1,000 Volt Mica Condenser
	CD4-6D2 or Aerovox 1455
C-9	. 002 Mfd. 1,000 Volt Mica Condenser
	CD4-6D2 or Aerovox 1455
C-10	.002 Mid. 1,000 Volt Mica Condenser CD4-6D2 or Aerovox 1455
C-11	. 002 Mfd. 1,000 Volt Mica Condenser
	CD4-6D2 or Aerovox 1455
Tubes:	
2	HK-54 Tubes

RF Section Parts Required

Miscellaneous Parts:
Punched Chassis $8^{1 / 2^{\prime \prime} \times 10}$
Punched Chassis $8^{1 / 2^{\prime \prime}} \times 10^{\prime \prime} \times 3^{\prime \prime}$
Panel $19^{\prime \prime} \times 14^{\prime \prime}$
Sub-Panel
Terminal Board
Bushings
Feed-thru Insulators
4-Contace Isolantite Sockets
Stand-off Insulators
Shaft Couplings, National TX-11 or Equivalent
Shaft Coupling, Johnson 252 or Equiv. Panel Bearing Assemblies, Johnson F256 or Equivalent
1 M-2 0-200 MA DC Meter, $3^{\text {" }}$ Square Case, Rear Illumination, Triplett /327-A or Equivalent
1 M-3 0-300 MA DC Meter, $3^{\text {² }}$ Square Case, Rear Illumination, Triplett \$327-A or Equivalent
2 Control Wheels, Complete, Coto CI-45 or Equivalent
Indicator Plate Marked "PWR AMP GRID" Coto CI-47 or Equivalent
Indicator Plate Marked "PWR AMP PLATE" Coto CI-47 or Equivalent

Misc. Parts: (Cont'd)
Coil Socket, National Type XH-16 or Equivalent
160 Meter Coil, National Type AR16160 C or Equivalent
80 Meter Coil, National Type AR1680S or Equivalent
40 Meter Coil, National Type AR1640 S or Equivalent
20 Meter Coil National Type AH1G 20 Meter Coil, Na
10 Meter Coil National Type Alt 10 Meter Coil, Na
10 S or Equivalent
10 S or Equivalent Swinging Link \& Jack Bar Assembly,
B-W Type TV or Equivalent
1-2 160 Meter Coil. B-W 160 TVL or Equiv. L-2 80 Meter Coil. B-W 80 TVL or Equiv. L-2 40 Meter Coil, B-W 40 TVL or Equiv. L-2 20 Meter Coil, B-W 20 TVL or Equiv. $\begin{array}{lll}\text { L-2 } & 20 \text { Meter Coil, B-W } & 20 \text { TVL or Equiv. } \\ \text { L-2 } & 10 \text { Meter Coil. B-W } & 10 \text { TVL or Equiv. }\end{array}$ 10 Meter Coil. B-W 10 TVL or Equiv.
Grid Grips, National Type 12 or Equiv. RFC-1 RF Choke, National Type R-154U or Equivalent
Miscellaneous screws, nuts, bolts, lock-washers, required hook-up wire and other hardware.

Circuit diagram, drawings and full size template of chassis available from Thordarson 1.5 cents net each, postpaid.

Modulator and Power Supply

Modulator

Modulator Parts Required

THORDARSON TRANSFORMERS and CHOKES
$\begin{array}{lll}\text { T'-3 } & \text { T-19F99 } & \text { Filament Transformer } \\ \text { 'T'-4 } & \text { T-19D05 } & \text { Driver Transformer } \\ \text { 'T-5 } & \text { T'-19M17 } & \text { Modulation Transformer }\end{array}$

2811 Tubes Tubes:

Miscellaneous Parts:
1 M-1 0-300 MA DC Meter, $3^{\prime \prime}$ Square Case Triplett 327-A or Equivalent
Punched Chassis $17^{\prime \prime} \times 10^{\prime \prime} \times 3^{\prime \prime}$ Panel $19^{\prime \prime} \times 101 / 2^{\prime \prime}$
Pr. Chassis Mounting Brackets Feed-thru Insulators
4-Contact Sockets, Steatite Isolantite Plate Caps

Miscellaneous nuts, bolts, lock-washers, grommets and other hardware.

Bottom View of Power Supply

Bottom View of Modulator

Miscellaneous nuts, bolts, lock-washers and other hardware.

Circuit diagram, drawings and full size template of chassis available from Thordarson 15 cents net each, postpaid.

T${ }^{\top}$ HIS transmitter consists of a Class C amplifier of 600 watts input, a modulator capable of delivering 300 watts of audio frequency power and a 1750 volt power supply of sufficient capacity to furnish the current required by both the RF stage and the modulator. Operation may be obtained on all five amateur bands from 160 to 10 meters. Relay switching is incorporated in this transmitter, thus not only permitting complete control of the transmitter with a single switch but also protecting the Class C amplifier from underexcitation and preventing the possibility of abuse to the modulation transformer by underloading it.

The Class C amplifier may be operated with any one of three types of tubes, namely Taylor TW-150's, Eimac 100 TH 's or Heintz and Kaufman HK-254's. The modulator tubes are「aylor 805's, and the rectifier tulbes are 866's.

The panels are supplied in a black wrinkle finish; and the chassis, chassis mounting brackets and other small metal fixtures in a gray flat enamel.

Completely Relay Controlled

Under Excitation Protection

High Quality Audio System

Multi-Match Modulator

RF Unit:

The Class C amplifier circuit is of the conventional push-pull type operating with 600 watts input at 1750 volts. It requires from 30 to 40 watts of driving power. The Thordarson 120 watt BandSwitch Exciter or the Thordarson 100 Watt Multi-Band Transmitter are ideal exciters. These units are described on pages 18 and 20. Plate and grid coils are of the plug-in type with a swinging link and jack bar assembly, thus permitting close adjustment of grid excitation and plate loading. Provision is made on the chassis for using either the UX sockets required by the TW-150's and the 100 TH 's, or the 50 watt sockets needed for use with HK-254's. The grid resistor is of the semi-variable type so that the correct bias requirements for various tubes may be met. The plate tuning condenser is of the split-stator type, having each stator section divided into two parts. This permits a very favorable I./C ratio to be obtained on all bands. The coils specified for the plate tank circuit have such a base construction that the correct stator combination is automatically obtained on each band when the coil is plugged in.

With 600 watts input the Class C plate current is 343 MA at 1750 volts. Plate efficiencies on the order of 75% are easily obtainable. When the amplifier is unloaded the plate current at resonance dips to about 25 MA on the 160,80 and 40 meter bands; and to about 40 and 50 MA when operation is on the 20 and 10 meter bands respectively. The grid current is about 100 MA (for two tubes), and the grid resistor should be adjusted to about 1200 ohms.

Modulator:

The modulator has a " 500 ohm" input and can be easily driven by the Thordarson Amateur Speech Amplifier. A rectified AC bias supply is installed on the modulator chassis. It uses a type 83 tube, which furnishes 20 volts of bias. This bias not only prevents the plate dissipation of the 805 's from rising to an abnormal value during periods of no-signal but also tends to reduce distortion in the output of the modulator.

With no-signal on the grids of the 805's the plate current (two tubes) is about 80 MA. This current rises to 345 MA with a sine wave signal of magnitude sufficient to cause 100%
modulation, but for speech the same degree of modulation can be obtained when the modulator current rises to about 150 MA .
When the " 500 ohm" input to the modulator grids is supplied by a

Thordarson Amateur Speech Amplifier, the driver transformer ratio should be 1 to 1.4 , primary to half the secondary. The turns ratio of the modulation transformer is 1.4 to 1 , and the plate-to-plate load on the modulators is 10,000 ohms.

The driver and modulation transformers are of the Multi-Match type so that not only may a variety of Class C loads be accommodated but also different driving tubes may be used.
(Continued on Page 31)

RF Chassis View

RF Section

RF Section Parts Required

THORDARSON TRANSFORMER
T-7 T-74Fe3 Filament Transformer

Resistor:

R-3 2,500 Ohm 50 Watt Semi-Variable Resistor Ohmite or Equivalent

Condensers:

C-5 260-260 Mmfd. Variable Condenser, Cardwell M R-260-BD or Equivalent
C-6 $\quad 160-160 \quad \mathrm{Mmfd}$. Variable Condenser, C-7 Cardwell XE-160-70-XQ or Equivalent
C-7 Neutralizing Condenser, Hammarlund $\mathrm{N}-10$ or Equivalent
C-8 Neutralizing Condenser, Hammarlund
C-9 . 001 Mfd. Mica Condenser, CD-21C-86 or Equivalent
C-10 . 002 Mfd. Mica Condenser, CD-4-6D2 - 11 or Aerarax 1453

C-11 . 002 Mid. Mica Condenser, CD-4-6D2
C-12 002 Mfd Mica Condenser CD-4-6D2
C-13 or Aerovox 1455 Condenser CD-4-6D2 or Aerovox 1455

Tubes:
TW-150 or HK-254 or 100 TH

Miscellaneous Parts:
Punched Chassis $17^{\circ} \times 13^{\circ} \times 21 / 3^{*}$
Panel $19^{\prime \prime} \times 14^{\prime \prime}$
Panel $19^{\prime} \times 14^{\prime \prime}$
Chassis Mounting Brackets
Chassis Mounting Bracke
Socket Mounting Plates
Socket Mounting Plates
Condenser Mounting Brackets
Coil Mounting Brackets
Bushings
Feed-thru Bushing
Feed-thru Insulators
4-Contact Sockets, Steatite
50 Watt Sockets
Grid Grips
Cone Insulators
RY-3 SPST Underload Relay, Ward-Leonard $507-514 \mathrm{~A}$ or Equivalent
$0-200 \mathrm{MA}$ DC Meter, $3^{\prime \prime}$ Square Case, Rear Illumination, Triplett $\$ 327 \mathrm{~A}$ or Equivalent
0-500 MA DC Meter, $3^{\prime \prime}$ Square Case Rear Illumination, Triplett $\$ 327 \mathrm{~A}$ or Equivalent
Swinging Link \& Jack Bar Assembly, B-W Type BVL or Equivalent
160 Meter Coil, B-W Type 160 BVI.
80 Meter Coil, B-W Type 80 BVL
or Equivalent or Equivalent

Miscellaneous Parts: (Cont.)
20 Meter Coil, B-W Type 20 BVL or Equivalent
1 Eqeter Coil, B-W Type 10 BVL
160 Meter Coil, B-W T pe 160 TVH
or Equivalent
80 Meter Coil, B-W T pe 80 TVH
or Equivalent 40 Meter Coil, B-W Type 40 TVH
or Equivalent 20 Meter Coil, B-W Type 20 TVH
or Equivalent, B-W Type 10 TVH
10 Meter Coil, B-W Type 10 TVH or Equivalent
Swinging Link \& Jack Bar Assembly, B-W Type TVH or Equivalent
RFC-1 RF Choke, National Type R-100-U RF Choke, National ype R-100-U
or Equivalent National Type R-154 or
RF Choke, Nat RF Choke, National Equivalent Extensions, Yasey Rs-242 or $21 / \mathbf{0}^{\circ}$ Control Wheels, Coto CI-45 or Equivalent Indicator Plate Marked "PWR AMP Indicator Plate Marked "PWR AMP PLATE," Coto CI-47 or Equivalent

Miscellaneous screws, nuts, bolts, lock-washers, required hook-up wire and_other hardware.

Circuit diagram, drawings and full size template of chassis
available from Thordarson 15 cents net each, postpaid.

Modulator and Power Supply

Modulator

Top View of Modulator

Power Supply:

FOR BOTH the convenience of the operator and the protection of the equipment, relay switching was chosen. When the filament switch on the exciter is closed, RY-1 closes, causing the application of voltage to the speech amplifier and the filaments of the rectifiers, modulator tubes and Class C amplifier tube. In addition, this operation places bias voltage on the modulator grids and prepares RY-2 for closing. Turning on the plate switch of the exciter results in the grid current in the Class C amplifier closing RY-3, which in turn causes RY-2 to apply primary voltage to the plate transformer. The opening of SW-1 prevents the operation of RY-2 even though RY-3 may be closed. This feature makes neutralizing convenient, and in addition affords more protection to the operator.

For CW operation it is only necessary to place a jumper between terminals 2 and 3 at the back of the RF chassis and insert a 22.5 volt battery at point A.

Since the power supply is rated at 1750 volts at $500 \mathrm{MA}, 700$ watts CW operation may be carried on by operating with a Class C plate current of 400 MA .

Power Supply

Bottom View of Pover Supply

Bottom View of Modulator

TRANSFORMER SPECIALISTS SINCE 1895

Modulator and Power Supply

THORDARSON TRANSFORMERS and CHOKES
T-3 T-19F77 Filament Transformer T-4 T-19R31 Bias Transformer T-5 T-15D82 Driver Transiormer T-6 T-11M77 Modulation Transformer CH-3 T-19C42 Filter Choke

Resistor:

R-2 100 Ohm 25 Watt Semi-Variable Resistor Ohmite /0368 or Equivalent

Condensers:

C-3) Double 16 Mfd. 250 Volt Condenser
C-4) Aerovox Type PBS or Equivalent

Tubes:

183 Tube
2805 Tubes, Taylor or Equivalent
Miscellaneous Parts:
$1 \quad 0-500 \mathrm{MADC}$ Meter, 3° Square Case, Rear Illumination, Triplett $1327-\mathrm{A}$ or Equivalent Punched Chassis $17^{\circ} \times 12^{\prime \prime} \times 2 \frac{1_{2}}{}{ }^{\prime}$ Panel 19" $\times 10 \frac{1}{2} 2^{\prime \prime}$
Pr. Chassis Mounting Brackets Buahings
Terminal Board
50 Witt Sockets
4-Contact Socket, Steatite
Lead-in Bushings Grid Grips

Miscellaneous screws, nuts, bolts, lockwashers, required hook-up wire and other hardware.

Power Supply Parts Required

THORDARSON TRANSFORMERS and ChOKES

T-1	T-19F90	Filament Transformer
T-2	T-19P66	Plate Transformer
CH-1	T-19C38	Choke
CH-2	T-19C45	Choke

R-1 75,000 Ohm 200 Watt Wlrewound Resistor, Ohmite No. 0924 or Equivalent

Condensers:

C-1 $\quad 2 \mathrm{Mfd} 2000$ Volt Condenser, Mallory TX-811 or Equivalent
C-2 2 Mid. 2000 Volt Condenser, Mallory TX-811 or Equivalent

Tubes:
2866 Tubes

Miscellaneous Partas
RY-1 Relay, SPST, Ward-Leonard No. 507-510 or Equivalent Relay, SPST, Ward-Leonard No. 607-518 or Equivalent SPST Switch N.P., Arrow 11 and H No. 20992 or Equivalent Punched Chassis $17^{\circ} \times 13^{\prime} \times 216^{\circ}$ Panel $19^{\circ} \times 14^{\prime \prime}$
Chassis Mounting Brackets Switch Plate
4-Contact Sockets, Steatite Isolantite Plate Caps Lead-in Bushing
6-Contact Socket $6-$ Prong Plug

Miscellaneous screws, nuts, bolts, lock-washers required hook-up wire and other hardware.

Circuit diagram, drawings and full size template of chassis available from Thordarson 15 cents net each, postpaid.

TRANSFORMER SPECIALISTS SINCE 1895

1000 Watt Transmitter

HERE is a conservatively rated transmitter which is designed to handle the maximum allowable input of 1 kilowatt. The transmitter is built up in two racks, one containing the R.F. section with associated power supplies and the other the speech equipment, drivers, modulators, and necessary power equipment.
The exciter unit is built up on a separate chassis. Three stages are provided so that there is ample excitation on all bands. It may be found necessary to neutralize the 6L6 and the RK-39, especially if they are operated as straight buffers on the higher frequencies. These neutralizing condensers (NC-1, NC-2) may consist simply of a few turns of twisted wire. The RK-39 is link coupled to the T125 buffer; this stage should always be operated as a straight amplifier and all doubling should be done in the preceeding low power stages. The buffer in turn is link coupled to the final stage, which consists of a pair of T-200's in push-pull. The plate voltage is 2500 volts and the plate current 400 M.A.; the grid current should be 125 M.A.

No pre-amplifier is incorporated in
the transmitter proper. It is far more desirable, both from the standpoint of convenience and performance, to place the low level speech stages some distance from the transmitter. The impedance of the speech input is 500 ohms and the level appriximately zero db . The first stage consists of a pair of 6F6's, triode connected, which provide ample grid swing for the 845 's. The 845 drivers operate at 1250 volts, and the necessary bias is obtained from a resistor in the filament return. The 822 modulators operate at 2000 volts and provide ample power to modulate the 1 kilowatt input.

An important feature of high power equipment which has not been overlooked is the installation of an underload and two overload relays.

The underload relay is so connected that the Class C current must be 250 M.A. before the modulator plate supply is turned on. Possible damage to the modulation transformer is avoided in the event that excitation to the final fails with a signal applied to the modulators. If the current of either the Class C stage or the buffer should be-
come excessive, the overload relay will automatically turn off all plate supplies. Another overload relay is installed in the modulator plate supply, however this relay controls only the modulators. In order to simplify operation, relays are also used to control the filaments and plate supplies. The wiring is so arranged that it is impossible to turn on the plate supplies without having the filament relay closed. This relay operation of both filament and plate supplies enables the transmitter to be controlled from the operating table simply by extending the light leads connected to the relay switches.

The cosrect bias for the 822 modulators is -67.5 , and this is shown as battery bias in the diagram, although in the photograph an experimental bias supply is shown. This bias supply has not yet been fully developed and it is felt that it should be with-held until its performance is proven satisfactory.
The pre-amplifier is shown on page 37. It is mounted in a metal cabinet and if remote control is desired the filament and plate relay switches may be mounted on this panel.

Thordarson Tranaformers and Chokes			
T-1	T-19F97	CH-1	T-15C36
T-2	T-19F95	CH-2	T-15C36
T-3	T-11F51	CH-3	T-15C45
T-4	T-15R60	CH-4	T-15C39
T-5	T-19F91	CH-5	T-15C48
T-6	T-15P11	CH-6	T-15C39
T-7	T-11F54	CH-7	T-15C45
T-8	T-15P21	CH-8	T-15C36
T-9	T-11F54	CH-9	T-15C36
T-10	T-15P21	CH-10	T-15C45
T-11	T-19F89		
T-12	T-15P15		
T-13	T-15R03		
T-14	T-19F96		
T-15	T-11F51		
T-16	T-15A67		
T-17	T-15D76		
T-18	T-18D19	T-11M78	

Resistors:

R-1 $50,0000 \mathrm{hm} 1$ Watt IRC BT1 or Equiv. R-2 2000 hm 10 Watt Ohmite or Equiv. R-3 10,000 Ohm 10 Watt Ohmite or Equiv. R-4 2000 hm 10 Watt Ohmite or Equiv. R-5 10,000 Ohm 10 Watt Ohmite or Equiv. R-6 50 Ohm 10 Watt. Ohmite or Equiv. R-7 5,000 Ohm 25 Watt Ohmite or Equiv. R-8 2,000 Ohm 25 Watt Ohmite or Equiv. R-9 2,000 Ohm 50 Watt Ohmite or Equiv. R-10 10,000 Ohm 50 Watt Ohmite or Equiv. R-11 1,000 Ohm 75 Watt Ohmite or Equiv. R-12 25,000 Ohm 50 Watt Ohmite or Equiv.
R-13 $\} 100,000$ Ohm 200 Watt Ohmite or Equiv.
R-15 50,000 Ohm 100 W att Ohmite or Equiv. R-16 500 Ohm 25 Watt T Pad Utah or Equiv. R-17 750 Ohm 10 Watt Ohmite or Equiv. R-18 2,000 Ohm 50 Watt Ohmite or Equiv.

CONDENSERS

Variable Condensers
C-1 150 Mmfd . Cardwell MR150BS or Equiv. $\left.\begin{array}{c}\mathrm{C}-2 \\ \mathrm{C}-3\end{array}\right\} 260 \mathrm{Mmfd}$. Cardwell MR260BD or Equiv. C-4 $\quad 150 \mathrm{Mmfd}$. National TMC150 or Equiv. C-5 100 Mmfd . National TMA100DA or Equiv C- 6200 Mmfd . National TMC200D or Equiv.
C-7 200 Mmfd . National TMC200DA or Equiv.

Parts Required

C-8 to C-10
C-11
C-12, C-13
C-14
C-15 to C-20
C-21
C-22 to C-24
C. 25

C-26, C-27
C-28
C-29, C-30
C-31 to C-33
C-34, C-35
C-36, C-37
C-38

Neutralizing Condensers:

NC-1 See note in copy
NC-2 See note in copy
NC-3 12 Mmfd. 8000 Volt National NC-150 or Equiv.
$\mathrm{NC}-4$
$\mathrm{NC}-5$$\frac{13 \mathrm{Mmfd} .12,000}{}$ Volt Johnson N375 or. Equiv.

Meters:
MA-1 $0-100$ M.A. Simpson 27 S (Illum.) or Eiquiv. $\left.\begin{array}{l|l}\mathrm{MA}-2\end{array}\right\} \mathbf{0 - 1 5 0}$ M.A. Simpson 27S (Illum.) or Equiv. MA-4 0-100 M.A. Simpson 27S (Illum.) or Equiv. MA-5 0-500 M.A. Simpson 27S (Illum.) or Equiv. MA-6 0-250 M.A. Simpson 27S (Illum.) or Equiv.
$\left.\begin{array}{l}\text { MA-7 } \\ \text { MA-8 }\end{array}\right\}$ 0-750 M.A. Simpson 27 S (Illum.) or Equiv.
.001 Mfd. 1000 Volt Mica Aerovox 1450 or Equiv.
. 0001 Mfd. 1000 Volt Mica Aerovox 1450 or Equiv.
. 001 Mfd. 1000 Volt Mica Aerovox 1450 or Equiv.
.0001 Mfd. 1000 Volt Mica Aerovox 1450 or Equiv.
.001 M fd. 1000 Volt Mica Aerovox 1450 or Equiv.
.001 Mid. 5000 Volt Mica Aerovox 1652 or Equiv.
.001 Mfd. 1000 Volt Mica Aerovox 1450 or Equiv.
. 001 Mfd. 10,000 Volt Mica Aerovox 1654 or Equiv.
.001 Mrd. 1000 Volt Mica Aerovox 1450 or Equiv.
16 Mid. 450 Volt Elec. Aerovox
G475 or Equiv. G475 or Equiv.
2 Mfd. 1000 Volt Aerovox 1010 or Equiv.
2 Mfd. 3000 Volt Aerovox 3009 or 2 Mfd. 2000 Volt Aerovox 2009 or Equiv.
8 Mfd. 450 Volt Elect. Aerovox
C475 or Equiv.
.001 Mfd. 1000 Volt Mica Aerovox 1450 or Equiv.

Fixed Condensors:

See page :37 Jor Pre-Amplifier

COIL DATA					
BAND	160	80	40	20	10
L1, L2, L3, L4	40T \#18	$26 T$ \#16	12T \#16	8T \#16	3 T \#16
L5, 16	$\begin{gathered} 36 \mathrm{~T} \text { \#16 } \\ 41 / 8^{4} \text { Diam. } \end{gathered}$	$\begin{gathered} 34 \mathrm{~T} \text { \#16 } \\ 27 / 8^{\prime \prime} \text { Diam. } \end{gathered}$	$\begin{gathered} 22 \mathrm{~T} \text { \#16 } \\ 27 / 8^{\prime \prime} \text { Diam. } \end{gathered}$	$\begin{gathered} 16 \mathrm{~T} \text { \#14 } \\ 27 / 8^{m} \text { Diam. } \end{gathered}$	$\begin{gathered} \text { 4T \#14 } \\ 27 / 8^{*} \text { Diam. } \end{gathered}$
17	42T \#14 51/8" Diam.	$\begin{aligned} & 30 \mathrm{~T} \text { \#10 } \\ & 41 / 8^{\prime \prime} \text { Diam. } \end{aligned}$	$\begin{gathered} 20 \mathrm{~T} \text { \#10 } \\ 31 / 4^{\prime \prime} \text { Diam. } \end{gathered}$	$10 \mathrm{~T} \# 10$ 31/4" Diam.	$4 T$ \#10 $31 / 4^{\prime \prime}$ Diam.
$\begin{gathered} \text { Link fer } \\ L 3, L 4, L 5, L 6 \end{gathered}$	4T \#18C.C.	3T \#18C.C.	2T \#18C.C.	2T \#18C.C.	2T \#18C.C.
LI, L2, L3 wound on $1 \frac{1}{2^{\prime \prime}}$ Diam. winding length $13 / 4^{\prime \prime}$. L4 wound on $184^{\prime \prime}$ Diam. winding length $2^{\prime \prime}$. Winding length of $L 5, L 6,41 / 2^{\prime \prime}$. Winding length of $\mathrm{L} 7,61 / 2^{n}$.					

MODULATOR POWER SUPPLY Chassis: 20" $\times 15^{\prime \prime} \times 31 / 4^{\prime \prime}$; Panel: $14^{\prime \prime}$
(CONTINUED)

R. F. POWER AMPLIFIER

Chassis: $17^{\prime \prime} \times 17^{\prime \prime} \times 3^{\prime \prime} ;$ Panel: $191 / 6^{\prime \prime}$

BUFFER
Chassis: $17^{\prime \prime} \times 10^{\prime \prime} \times 1^{\prime \prime}$; Panel: $15 \%{ }^{\prime \prime}$

EXCITER UNIT
Chassis: $17^{\prime \prime} \times 10^{\prime \prime} \times 3^{\prime \prime}$; Panel: $10 \frac{1}{2} 2^{\prime \prime}$

BIAS AND EXCITER POWER SUPPLIES Chassts: $17^{\prime \prime} \times 13^{\prime \prime} \times 3^{\prime \prime}$; Panel: $101 / 8^{\prime \prime}$

R.F. POWER SUPPLY Chassis: $20^{\prime \prime} \times 15^{\prime \prime} \times 31 / 4^{\prime \prime}$; Panel: $14^{\prime \prime}$

DRIVER AND SPEECH AMPLIFIER Chassis: $17^{\prime \prime} \times 10^{\prime \prime} \times 3^{\prime \prime}$; Panel: $101 / 2^{\prime \prime}$

DRIVER AND SPEECH POWER SUPPLY Chassis: $17^{\prime \prime} \times 12^{\prime \prime} \times 3^{\prime \prime}$; Panel: $12 \frac{1}{4} /^{\prime \prime}$

CLASS B MODULATOR
Chassis: $13^{\prime \prime}$ w. $\times 131 / 2^{\prime \prime}$ d.; Pawel: $191 / 4^{\prime \prime}$

TRANSFORMER SPECIALISTS SINCE 1895

PRE-AMPLIFIER CHASSIS AND ASSEMBLY
Chassis: $17^{\prime \prime} \times 10^{\prime \prime} \times 3^{\prime \prime}$; Case: $19^{\prime \prime} \times 13^{\prime \prime} \times 83 / 4^{\prime \prime}$

Thordarson Transformers and Chokes:

T-1	T-15A71	CH-1 T-70R78
T-13C26		
T-13C26		

PRE-AMPLIFIER PARTS REQUIRED

10	Resistora: (Cont'd)
R-11	50.000 Ohm 1 Watt IRC BT1 or Equiv
R-12	250,000 Ohm 1 Watt IRC BT1 or Equiv.
R-13	2,000 Ohm 1 Watt Ohmite or Equiv
R-14	$50,000 \mathrm{Ohm} 1$ Watt IRC BT1 or Equiv.
R-15	10,000 Ohm 25 Watt Ohmite or Equiv.
	d
C-1, C-2	${ }^{.1} \mathrm{Mfd}$ or Equiv. 400 Volt paper Aero
C-3	10 Mid. 25 Volt Elect. Aerovox PB2
C-4	
	or Equiv.
C-5	.1 Mfd. 400 Volt paper Aerovox 484 or Equiv.

Condensers: (Cont'd.)

Miscellaneous Parts:
2 Mike Connectors Amphenol or Equiv,
1 Bakelite Socket Amphenol or Equiv.
Bakelite Octal Sorkets Amphenol or Equiv.
2 Bakelite Knobs
Terminal Strip
Tubes: 1-80, 2-6F5, 2-6C5

Thordarson Technical Literature

No. 333 - Amateur Radio
.75c Post paid Mr. Fortune, Thordarson engineer and a prominent amateur radio enthusiast, spent over twelve months in preparing this text-book. There are approximately 160 pages, and matters covered include Learning the Code, Receiver Theory and Construction, Crystal Oscillator Transmitter, Two-stage Transmitter, Three-stage Transmitter, Construction of the Modulator and reference notes on receivers, inductance, capacity and many other electrical and radio terms. It is a book recommended to all experimenters, beginning amateurs and even to amateurs of long experience. Amateur net price 75 c . Profusely illustrated with over 100 comprehensive photographs and drawings. Heavy cover finished in wear-t esistant blue cloth, with attractive gold stamping. This is a cloth covered case bound text-book.

No. 340 - Complete Transformer Manual 35c Postpaid The Thordarson Transformer Manual is a complete book, containing the Replacement Transformer Encyclopedia and Servicing Guide, the Transmitter Guide, and the Sound Amplifier Guide, plus current Thordarson catalogs. It is hound in a strong attractive blue and orange cover with looseleaf arrangement, giving the user opportunity to keep the Manual up-to-date by adding later Thordarson releases. A book that has proven to be most popular in the technical library.

No. 352-Replacement Encyclopedia, Service Guide, Free Thordarson Replacement Transformer Encyclopedia and Service Guide No. 352 recommends proper transformer and choke replacement for receivers listed in Rider's Manuals. This handy, useful time-saver, originated by Thordarson is now used by good service engineers the wolld over. In addition, it contains a rew edition of the popular Service Guide giving practical solutions to everyday service problems, including useful charts and tables.

No. 346 - Amplifier Guide
15c Postpaid
P. A. men and experimenters interested in building high quality amplifiers find the Thordarson Amplifier Guide No. 346 a worth while source of information. It contains laboratory designed and tested circuits of amplifiers from 8 to 120 watts output. Complete parts list, mechanical chassis drawings, and comprehensive illustrations enable the constructor to obtain superior results with matched transformer and choke components. Data is included for pre-amplifiers, dual tone controls, speaker impedance matching and testing.

No. 500 - Broadcast Components Catalog Free Thordarson offers a complete line of transformers and chokes for broadcast use, each capable of meeting and surpassing the most rigid broadcast tolerances. These transformers are listed and described in the new Broadcast Catalog, No. 500. Broadcast stations, experimenters, laboratories or air craft stations are urged to secure a copy of this valuable listing.

No. 600 - Amplifier Catalog Free The finest amplifiers are built by Thordarson - pioneers in producing quality audio components. Absolute fidelity is assured by accurate laborarory design and rigid inspection during production. New models from $\&$ to 900 watts satisfy practically every sound requirement. Pre-amplifiers and boosters round out a truly complete line of equipment for sound rechnicians. Fully described in Catalog 600.

No. 400 - Complete Transformer Catalog . . . Free A catalog of transformers and reactors for every radio use. Contains full physical and electrical descriptions.
Obtainable from your radio parts distributors or direct from factory.

Class B Audio Frequency Amplifiers

CLASS B modulators are usually used in transmitters having plate modulated Class C inputs of more than 50 or 60 watts. For audio frequency power outputs of more than 30 watts, the increased cost and size of tubes which can be used in Class A amplifiers, and the power supply components used to supply these tubes make Class B systems economically justifiable.

The principal differences hetween Class A and Class B audio amplifiers are as follows:

1. The plate dissipation of the tubes in a Class B amplifier increases with increasing signals and is a maximum at some level near full power output. In a Class A amplifier the plate loss of the tubes is a maximum at nosignal.
2. The excitation of a Class B amplifier is carried into the positive grid region of the tube characteristics, causing grid current to flow, with the resultant requirement that the source of audio frequency excitation is called upon to deliver an appreciable amount of power. Class A amplifiers, in general, are not designed to operate with a positive grid in any condition of normal excitation.
3. In a Class B amplifier the changing plate current requires better regulation of the power supply than does the Class A amplifier.
4. Class A amplifiers usually require negative bias on the grids. In many Class B amplifiers there are conditions of operation in which no bias is required.
5. Class B audio frequency amplification requires the use of two tuhes, whereas Class A amplification call be obtained with one tube.

Class B Audio Frequency Output Calculations

The amateur has many occasions in which it is desirable to have more data concerning the operation of given tubes in Class \bar{B} service than are given by the tube manufacturers. The data which are given usually show typical operating characteristics at a given plate voltage, showing the plate load which delivers a given amount of power with nominal distortion, driving power, and rube losses.
In a particular installation there often arise circumstances in which operation in some condition other than the "typical" case is desirable. For ex-
ample: (1) the plate supply voltage may be other than that listed; (2) more or less distortion may be tolerated; (3) greater tube losses may be permissible at full-signal or at no-signal; (4) the regulation of the source of driving voltage may he poor; (5) the voltage or power output capabilities of the driving source may be limited; (6) the output power requirements may be different; (7) the wave form of the signal may be unusual; (8) the operation may be intermittent; and (9) space and weight requirements may justify overloading
So that the anateur may take full advantage of the possibilities of varying the plate load on his Class B tubes by changing connections on the MultiMatch nodulation transformers, an example of Class B output calculations is shown below:
Suppose that a Class C amplifier of 330 watts input is to be 100% modulated by the tubes having the characteristics shown in Fig. 1. The plate

supply voltage is 1250 V ., the rated maximum tube dissipation is 40 watts, and the maximum plate current is 125 MA .
The audio frequency requirement is that 165 average watts of output power be delivered to the Class C stage. This figure is based on a sine wave signal. The maximum allowable power input to the modulator (two tubes) is 1250 x $0.125 \times 2=312.5$ watts. Thus an overall efficiency of at least

$$
100 \times \frac{165}{312}
$$

or 52.5° is required. This is not at all unreasonable for a Class B audio frequency stage: in an amplifier of power output capabilities of 150 watts an overall efficiency of 60 to 65% is easily obtainable.

Practice has shown that to allow for transformer losses and the deviation of tube characteristics from average values, the value of power delivered by the tubes as calculated from their aver-
age characteristics should be, for outputs of this order of magnitude, about 16% higher than the power required to be delivered from the secondary of the modulation transformer. In this case, the calculations should be based on a power output from the tubes of 165 x 1.16 or 192 watts output

Since the maximum plate loss in a Class I amplifier occurs at a leve! slightly below maximum power output, an allowance of 35 average watts loss per tube at full signal is reasonable in this example. Considerable leeway may be taken with this in cases where specch waves of 330 watts peak power are reguired at the output of the modulation transformer. However, in this example, it is assumed that sine wave modulation will occur.

The power input to the two tubes at full-signal will then be the sum of power output and tube losses. This is $192+(2 \times 35)$ or 262 watts. A check now shows that the Cass B plate efficiency, that is, the efficiency of conversion from DC energy supplied to the plate to audio frequency energy, is

$$
100 \times \frac{192}{262} \text { or } 73 \%
$$

This is a reasonable value, for the maximum possible efficiency of a Class I 3 stage is 78.5%.

For a power input of 262 watts at 1250 volts the direct current supplied is $\frac{\text { watts }}{\text { volts }} \frac{262}{1250}$ or 210 MA . The average current in each tube is half of this amount, or 105 MA . With the tubes biased to a value near cut-off, the shape of the current wave in each tube very nearly approximates that of a halfsine wave.

The average value of current in a series of half-sine wave pulses is 31.8% of the peak value of the current. Therefore, the peak value of the current in the tube is $\frac{105}{0.318}$ or 330 MA .

At the time the peak power occurs, only one of the two modulator tubes is working, and, therefore, it alone is delivering this power. The peak power is twice the average 1 C nower developed or 2×192 or 384 watts. The peak AC voltage across the load is $\frac{\text { peak watts }}{\text { neak current }}=\frac{384}{0.330}=1160$ volts. The AC load on the tube is the peak voltage divided by the peak current or $\frac{1160}{0.330}=3500$ ohms. On the family of curves shown in figure 1 , the oblique straight line AD is known as the load line. It is a plot of the instantaneous voltage and current relations for one Class B tube when working into a resistive load of 3500 ohms. The
location of the line is found by locating any two sets of simultaneous values of plate volrage and plate current. The value of 1160 peak volts across the load and 330 MI in the tube corresponds to a value of 1250 1160 or 90 volts across the tube. Thus $\mathrm{e}=90$ volts and $\mathrm{i}=330 \mathrm{MA}$ is one set of points. It is located at point C. Then, knowing the load, any other set of poiuts can be found. It one-ninth power output the peak current and the peat voltage are one-third of that occurring at full power output. At this power level, then, the peak current is 110 MA , and the peak voltage across the load is $\frac{1160}{3}$ or 387 . This corresponds to a peak voltage across the tube of $1250-387$ or $863{ }^{5}$ V. Thus another point on the load line is $e=863$ volts and $\mathrm{i}=110 \mathrm{M}$ \. This point is shown at F . A straight line through C and F locates the load line.

A simpler way of locating the load line is to draw a line through the point 1250 volts on the abscissae axis, which is shown at point A, and the point $\frac{1250}{\mathrm{R}}$ or $\frac{1250}{3500}$ or 0.357 ampere on the ordinate axis. This latter point is designated as D. Then the points A, C. D and F are on the load line, and any two of them might have been used to obtain its position on the family of curves shown.

It will be seen that the point C falls on the curve corresponding to a grid voltage of +70 V . This voltage of +70 is the voltage on the grid at the instant of minimum plate voltage and peak power output. It (+70 volts) is the most positive value of grid voltage reguired for this condition of operation. It is to be noted that the maximum grid voltage and the minimum plate voltage occur at the same instant; furthermore, the minimum plate voltage of 90 V . is only slightly greater than the maximum grid voltage of 70 V .

The load of 3500 olims on the plate of one audio tube represents a plate-toplate load of four times this or $4 x$ $3500=14,000$ ohms. This plate-toplate impedance is of no particular value in the calculation of Cl ass B performance by the method outlined above, but it is useful in describing the characteristics of the reguired Class B output transformes.
The calculation shown has been that for the solution of the operating characteristics for a given power output with a given tube loss. Where it is desired to find operating conditions to meet other requirements, such as a specified plate load or a specified peak driving voltage. a different order of procedure must be used. I study of the above ex-
ample will be a guide in other solutions.
Whether or not the tubes are to be operated at zero bias involves the consideration of the plate loss at no-signal and the tolerable distortion. In the example given the value of no-signal plate current for zero bias voltage may be found at the intersection of the 1250 volt ordinate and the curve for $\mathrm{Ec}=0$. This is shown at the point B. Here the current for one tube is $10 \mathrm{M} A$, and the plate loss per tube is 1250 x 0.010 or 12.5 watts, well below the allowable limit.

The dotred curve represents the relation of grid current to plate voltage for a grid voltage of +70 volts. If from the coordinates $\mathrm{E}=90 . \mathrm{I}_{\mathrm{p}}=$ 330. a vertical line is passed which intersects the dotted line at E , the ordinate (90 M 1 I) at this point represents the peak value of grid current. The peak grid driving power required to obtain full output under the conditions specified may now be obtained. It is $\mathrm{Fg} \times \mathrm{Ig}=70 \times 0.090=6.3$ watts. The ratio of peak driving power to average driving power depends mainly upon the plate load, the type of tube. and the peak grid voltage and its relation to the minimum plate voltage. For some conditions of operation the average power is one-half the peak power. and for orher conditions it may be only one-third or one-fourth the peak power.
The following characteristics have thus been obtained for two tubes in a Class B stage:
Plate voltage - 1250 volts
Arerage no-signal plate current20 MA

Average full-signal plate current 210 MA .

DC grid volts - 0
Peak grid-to-grid voltage - 140 volts
No-signal plate loss - 25 watts
Full-signal plate loss - 70 watrs
Ioad resistance (per tube) - 3500 ohms

Plate-to-plate load - 14.000 ohms
Peak driving power- 6.3 watts
Plate efficiency - 73%
Stage efficiency- 65%
Power output - 165 watts
The maximum efficiency of a Class B amplifier is 78.5 . This value is realized only when the instantaneous plate voltage swings to zero and the halfsine wave shape of current in each tube is retained.

In the example given, if such a condition could be obtained, the average nlate current (two tubes) would be $0.357 \times 0.318 \times 2=0.227$ ampere The power ourput would be 0.357 x 1250
$2^{-}=223$ watts, and the power input would be $1250 \times 0.227=284$ watts for an elficiency of $100 \times \frac{223}{284}$ or 78.5%.

Considerations in Selecting Driver Transformer Ratios

Although the driving power for a Class 13 stage is usually ohtained from a Class A amplifier, ordinary Class A amplifier design for maximum power ourput does not suftice. Most Class A amplifiers not intended for driver service are planned to deliver the maximum possible undistorted power into a given fixed load.

Untortunately, the load on Class A rubes in driver service is not constant throughout the cycle. This is due to the fact that the grids of the modulator tubes do not have a constant resistance over the audio cycle. In the positive grid region the grid current increases more rapidly than the grid voltage, thus exhibiting the characteristic of a decreasing grid resistance with increasing voltage. The degree to which the resistance changes depends mainly upon the relation between minimum plate voltage and maximum grid voltage. For tubes operated with zero hias the resistance change in most cases is, fortunately, not large. In a Class B stage working into a resistance load, the maximutin instantaneous grid voltage and the minimum instantaneous plate voltage occur at the same time. During the part of the cycle that the minimum plate voltage and the maximum grid voltage are not greatly different, the change in grid-to-cathode resistance is most apparent. It is well to plan to have the ratio of minimum plate voltage to maximum grid voltage exceed two in cases where low driver distortion is desired. In instances where more driver distortion can be tolerated. or in cases where the apparent internaloutput impedance of the driver is very low, as compared with the minimum Class B grid resistance, this ratio may be reduced to 1.0 or 1.5 . With tubes having negative grid bias the resistance changes from a verv high value to a very low value within a small per cent of the time required for a complete cycle.
If a driving voltage of perfect regulation were available, this change in resistance would not be of such serious consequence. However, all practical $d r i v e r s ~ h a v e ~ s o m e ~ i n t e r n a l ~ i m p e d a n c e, ~$ and in delivering energy to a varying load, harmonic distortion will occur. If the internal output impedance of the driver has an appreciable reactance, extremely disagreeable distortion can result. This is especially true if the Class B grids are biased. It is important to hase th driver transformer having a low leakage reactance.

AN IMPORTANT problem in the selection of a driver is to obtain a source of adequate voltage of good regulation without prohibitive amounts of driver tube capacity. Fortunately, there are receiving tubes (2 A 3 's) which will supply driving power for most modulators having power outputs up to several hundred watts.

In general, for amateur work, the amateur should use tubes which in norınal Class A amplifier service will deliver an average power output of at least one-half as much as the peak power required to supply the Class B grids. It is preferable in nearly all cases to have the average power output capabilities of the driver he one to two times as great as the peak power requirements of the Class B grids. This corresponds to peak power capabilities of two to four times the peak power which is required at the driver grids. The ratio of average power capacity of driver to peak power required at the Class B grids may approach the lower value when the Class B tubes are operated at zero bias and the ratio of mininum plate voltage to maximum grid voltage is large (two or more). In such a case, the grid resistance is substantially constant during the cycle.
The installation of driving tubes having power output capabilities greater than required allows the changing of the plate load from that which is optinum for maximum undistorted ourput to a higher value which delivers less power. but which lowers the internal impedance of the driving source as seen from the Class B grids.

In selecting the turns ratio of a driver transformer. it is desirable to make the step-down ratio as high as possible from the driver plates to the Class B grids and yet be able to develop the required peak driving voltage on the Class B grids without overloading the driver tube.

The determination of the correct driver transformer ratio can be studied by reference to the following discussion. In figure 2, Eg is the peak value of the $A C$ voltage required on the Class B grid. Rg is the grid resistance at this value of voltage. (This is the lowest yalue of grid resistance.) R_{D} is the internal resistance of the source of

Fig. 2
driving energy, and E_{D} is the peak open circuit voltage developed by the driver source. The transformer ratio is N to 1. primary to secondary. Figure 3 is a simplified version in which the secondary voltage and resistance are

reflected to the primary side of the transtormer. The secondary vo!tage is stepped up N times and appears across the primary as NEg. The secondary load, in accordance with regular transformer theory, is stepped up N^{2} times and appears to the primary as $\mathrm{N}^{2} \mathrm{Rg}$.
At all instants the ratio of the voltages is equal to the ratio of the resistances across which they occur. Thus:

$$
\frac{\mathrm{ED}}{\mathrm{NEg}}=\frac{\mathrm{RD}_{\mathrm{D}}+\mathrm{N}^{2} \mathrm{Rg}}{\mathrm{~N}^{2} \mathrm{Rg}}
$$

There are two solutions, one giving a turns ratio which gives relatively good regulation and the other giving a turns ratio with poor regulation. For either solution there is adequate driving voltage. The desired solution is given by the formula:

$$
\mathrm{N}=\frac{\mathrm{EDRg}_{\mathrm{D}}+\sqrt{\mathrm{ED}^{2}} \overline{\overline{R g}^{2}}-\mathrm{Eg}^{2} \mathrm{Rg}_{\mathrm{R}} \mathrm{DD}}{2 \mathrm{EgRg}}
$$

Example:

Assume a pair of push-pull 2A3's with 300 volts on the plates, 60 volts bias and an availahle signal of 53 peak volts on each 2A3 grid. The Class B grid minimum resistance is 780 ohms at +70 volts. The Class B tubes are at zero bias. The 2 A 3 tubes have a mu of 4.2 and a plate resistance of 1050 olims.

Solution:

The open circuit driving voltage of two 2A3's in series is $2 \times 4.2 \times 53$ or 445 volts. This voltage may be considered as that in a generator of internal resistance Rp $\times 2$ or 1050×2 or 2100 ohms. Then:
$\mathrm{N}=\frac{445 \times 780+\sqrt{(445)^{2}(780)^{2}-(70)^{2}(780)(2100)}}{2 \times 70 \times 780}$ Solving:
$\mathrm{N}=6.25$, which is the turns ratio from the total primary to one-half the secondary. In this case, the 780 ohm grid load is reflected as a 30,500 ohm plate-to-plate load on the 2A3's, much higher than the 5000 ohm plate-to-plate load of ten encountered.

Line to Class B Grid Driver Ratio

In selecting the driver transformer to transfer energy from a so-called " 500 ohm" line to Class B grids, the fact is often overlooked that the " 500 ohm" line is usually not of 500 ohms internal output resistance. Its internal output resistance (when the source of energy to it is not "padded down") is usually far from being 500 ohms. This is of considerable consequence in calculating driver transformer ratios.
Suppose. for example, that the " 500 ohm" line had been fed from two 2A3's having an amplification factor of 4.2 . a plate resistance of 1050 olms and a maximum available signal voltage on their grids of 53 peak volts. If the 2 A 3 output transformer was designed to place a 5000 olım plate-to-plate load on the tubes when a 500 ohm load was connected to the secondary, the turns ratio of total primary to total secondary would be 3.16 to 1 . The 500 ohm line would then have an internal impedance of $\frac{2 \times 1050}{(3.16)^{2}}$
or 210 ohms, and the maximum available open circuit voltage on the line side of the transformer would be $2 \times 53 \times \frac{4.2}{3.16}$ or 140 peak valts. This voltage and the source resistance of 210 ohms should be used in calculating the line to Class B grid ratio.

For the Class B grid condition previously given, the solution yields:
$\mathrm{N}=\frac{140 \times 780+\frac{V(140))^{2}(780)^{2}-(70)^{2}}{2 \times 70 \times 780}(210)(780)}{2 \times 7}$
which gives $\mathrm{N}=1.97$ as the ratio from the line to one grid (that is, the primary to one-half the secondary). It is to be noted that this ratic (1.97) multiplied by the ratio of the transformer with which it is associated (3.16) gives $1.97 \times 3.16=6.25$, which is the ratio obtained for the solution of turns ratio for a driver transformer coupling the 2 A 3 plates directly to the grids.

In the calculation of driver ratio shown, no allowance has been made for trinsformer losses or for deviations of the driver tube characteristics from the average salues given by tube manufacturers. Furthermore, it is not well to have a peak signal on the driver tube grids which reduces that grid voltage to zero. It is better to limit the maximum peak grid voltage on the driver to about 95% of the bias voitage. Allowance for these three factors can be made by reducing the step-down ratio of the driver transformer 10 to 15%.

HAVING selected the proper load resistance into which the modulator should deliver energy it is necessary to couple the modulator to its Class C load through a transformer of the proper turns ratio.
It is characteristic of a transformer that the resistance to which the secondary delivers energy can appear as a different value of resistance at the primary terminals. The degree to which this actual load resistance and the reHected load resistance differ depends upon the turns ratio of the transformer. Of the total energy supplied to the primary of a transformer almost all is available for delivery to the load on the secondary. Thus, the actual load resistance presented by the Class C amplifier may be made to appear as the desired load on the modulator tubes, and all of the alternating current energy developed in the modulator stage can be delivered to the Class C amplifier and its load. In general, then, a transformer may be thought of as an impedance changing device in which very little of the energy supplied to it is lost. In amateur work, the transformers are of such size and construction that the efficiency is good enough that little attention need be given to the losses; that is, for most calculations it may be assumed to behave as an ideal transformer.

To show how a transformer acts as an impedance changing device the following demonstration is given:

Referring to Figure 4 a transformer is shown having a turns ratio of primary to secondary of 1 to N . The load

Fig. 4
on the secondary is R ohms, and the voltage impressed on the primary is E .

Ordinary transformer theory indicates that the yoltage across each winding is proportional to the number of turns on the winding. Thus, with E volts across the primary, the voltage across the secondary is N times as much, or NE. The power at the load resistance R is equal to the square of the voltage across it divided by the resistance. Thus, in this case the power at the secondary load is $\frac{N E)^{\frac{2}{2}}}{R}$.
With a perfect transformer the power at the primary is the same value as it is at the secondary. Thus, the power at the primary is also $\frac{(\mathrm{NE})^{2}}{\mathrm{R}}$.

For the moment, assume the secondary load resistance, R, appears at the primary terminals as another resistance, R_{1}. It is desired to find the value of the turns ratio of secondary to primary in terms of these resistances, R and R_{1}. The power at the primary of the transformer is $\frac{E^{2}}{R_{1}}$. But this value is also equal to $\frac{(N E)^{2}}{\mathrm{R}}$. Therefore, $\frac{E^{2}}{R_{1}^{2}}=\frac{(N E)^{2}}{R}$ or $\frac{1}{R_{1}^{-}}=\frac{N^{2}}{R}$ and $N^{2}=\frac{R}{R_{1}}$
Thus, it is to be seen that the reHected resistance is equal to the secondary resistance divided by the square of the turns ratio from secondary to primary. Stated in another manner, the reflected resistance is equal to the secondary resistance multiplied by the square of the turns ratio from primary to secondary. It is important not to become confused by the indiscriminate use of the terms "turns ratio," "step-up ratio" and the like. These terms are used interchangeably, but they are not necessarily equal to each other.

Suppose, for example, that it is desired to calculate the turns ratio of the full primary to the full secondary of a modulation transformer used under the following conditions:

Power input to Class C amplifier 330 watts.
Plate voltage on Class C amplifier 1250 volts.
Modulator plate-to-plate load desired - 14000 ohms.
The Class C plate current is $\frac{W}{E}$ or $\frac{330}{1250}$ or $0.26 t$ amperes. The Class C load on the secondary of the modulation transformer is then $\frac{E}{I}$ or $\frac{1250}{0.264}$ or 4740 ohms. This is equal to R.

$$
\text { Then, if } N^{2}=\frac{R}{R_{1}}, N^{2}=\frac{4740}{140 C 0}=
$$

0.338 and N is equal to the square root of this value, or 0.58. In this case N is the ratio of secondary turns to primary turns. The value of 0.58 , being less than unity, indicates that the secondary has less turns than the primary. This is as it should be when a given Class C load is less than the plate-toplate load which it is desired be reflected on the primary side of the modulation transformer. The amateur may avoid making the mistake of obtaining a turns ratio which is the inverse of the proper value by always making an estimate of which winding, primary or secondary, has the greater number of turns, this estimate to be made before the start of calculations.

MULTI-MATCH MODULATION

TRANSFORMER RATIOS

Tapped double winding coils as used in Multi-Match modulation transformers make possible a large number of impedance ratios, so many in fact that it is not practical to list in table form all the combinations possible. However, there are occasions when the modulator plate-to-plate load, or the Class C load, are of values not shown in the table and yet are within the range covered by the transformer. The chart shown on the opposite page may be used to determine the correct modulation transformer connections when the desired turns ratio is known. The transformer connections may then be found from the list of ratios in the adjoining table. As an example, to match a 10,000 ohm plate-to-plate load to a Class C load of 5000 ohms, a turns ratio of $\sqrt{\frac{\overline{10,000}}{5,000}}$ or 1.41 is necessary. The connections shown in the table should be used to secure this ratio. In this particular case these connections are:

For the primary, connect the modulator plates to terminals 2 and 5;3 and t are joined and connected to the modulator plate supply. For the secondary, join terminals $7-11$ and 8-12. Connect the Class C load to termina!s 7 and 8 .

Since only part of the winding is used for some combinations, the maximum allowable value of plate-to-plate load is necessarily variable. This maximum value is shown in the last column of the table and should not be exceeded.

Care should be taken that the DC secondary current does not exceed the maximum rating of the transformer. A parallel connected secondary will carry twice the current of a series connection, and in the event that the Class C current is greater than the allowable current of the series connection, a parallel connection must be used.

-Cannections for Matching Multi-Match and Uniuersal Transformers-

TTHESE matched power supplies provide the amateur with any of the direct current voltages ordinarily encountered in amateur radio work. The dual transformers T-19P57, 'T-19P70 and T-19P71 are especially useful for transmitters having low voltage exciter and high voltage final amplifier stages on the same chassis. The transformer T-19P58 is especially useful in transmitters with a Class B modulator and Class C amplifier having slightly clifferent plate voltage requirements. Nll of them may be depended upon to give the rated direct current voltage and current when using the prescribed chokes.
For CW work or for use in transmitters where the Class B modulator and Class C amplifier plate voltage are to be taken from one supply, the excellent regulation of these matched units is desirable. When the bleeder, R , is of such magnitude as to drain approximately 10% of the rated current, the regulation of these supplies is approximately 15% and the ripple is approximately 1%.
The power supplies using the transformer T-1, marked with an asterisk, are dual supplies; that is, power is supplied at two direct current voltages simultaneously. The dual supplies using the transformers T-19P58 and T-19P71 use two chokes in each B+ lead, and the proper chokes are specified opposite these transformers. For the dual supplies using the transformers T-19P57 and T -191970, two chokes in the high voltage center tap connection provide filtering for both the direct current voltages obtainable. The rated secondary load currents of each of these four dual plate transformers may be delivered simultaneously. But, when it is desired to use only the low voltage tap on any one of these dual units, the current rating of this tap is then equal to the sum of the current ratings of the two sections.

The filament transformer chosen for each plate supply is designed for mounting underneath the chassis. The plate transformers and chokes are supplied with black cases to provide not only matched electrical performance but also matched appearance in the rig.
The T-19F83 filament transformer supplies the filament of a 5 Z 3 , the T-19F88 is for $866, \mathrm{R}$'s and the T-19F90 is for 866's. The T-19F78 filament nansformer is to be used with a $5 \mathrm{Z3}$ and 866 JR 's.

$\begin{gathered} \text { Power } \\ \text { Trans. } \\ \text { T-1 } \end{gathered}$	DC Voits from Tap A	DC Volts from Tap B	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{MA} \end{aligned}$	$\begin{aligned} & \text { Input } \\ & \text { Choke } \\ & \text { CH-1 } \end{aligned}$	Smoothing Choke CH-2	$\begin{gathered} \text { Fil. } \\ \text { Trans. } \\ \text { T-2 } \end{gathered}$
T. 19P54	400		150	T-19C39	T-19C+6	T-19F83
T-19P55	500	400	250	T-19C36	T-19C43	T-19F88
T-19P70*	750	400	$\begin{aligned} & 100 \\ & 225 \end{aligned}$	T-19C36	T-19C43	$\begin{aligned} & \mathrm{T}-19 \mathrm{~F} 88 \\ & \mathrm{~T}-19 \mathrm{~F} 83 \end{aligned}$
T-19P56	750	600	225	T-19C36	T-19C+3	T-19F88
T-19P57*	1000	400	$\begin{aligned} & 125 \\ & 150 \end{aligned}$	T-75C51	T-75C51	T-19F78
T-19P58*	1000	750	$\begin{aligned} & 200 \\ & 150 \end{aligned}$	$\begin{aligned} & \text { T-19C35 } \\ & \text { T-19C39 } \end{aligned}$	$\begin{aligned} & \mathrm{T}-19 \mathrm{C}+2 \\ & \mathrm{~T}-19 \mathrm{C}+6 \end{aligned}$	$\begin{aligned} & \text { T-19F90 } \\ & \text { T-19F88 } \end{aligned}$
T-19P69	1000	750	300	T-19C36	T-19C+3	T-19F90
T-19P71*	1250	400	$\begin{aligned} & 125 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { T-19C39 } \\ & \mathrm{T}-19 \mathrm{C} 35 \end{aligned}$	$\begin{aligned} & \mathrm{T}-19 \mathrm{C}+6 \\ & \mathrm{~T}-19 \mathrm{C}+2 \end{aligned}$	$\begin{aligned} & \text { T-19F90 } \\ & \text { T-19F83 } \end{aligned}$
T-19P59	1250	1000	300	T-19C36	T-19C+3	T-19F90
T-19P60	1500	1250	300	T-19C36	T-19C43	T-19F90
T-19P61	1750	1500	300	T-19C36	T-19C+3	T-19F90
T-19P62	2000	1750	300	T-19C36	T-19C+3	T-19F90
T-19P63	1250	1000	500	T-19C38	T-19C45	T-19F90
T-19P64	1500	1250	500	T-19C38	T-19C+5	T-19F90
T-19P65	2500	2000	300	T-19C36	T-19C+3	T-19F90
T-19P66	1750	1500	500	T-19C38	T-19C45	T-19F90
T-19P67	2000	1750	500	T-19C38	T-19C+5	T-19F90
T-19P68	2500	2000	500	T-19C38	T-19C45	T-19F90

№. $400-\mathrm{FX} 1942$

THORDARSON ELECTRIC MFG. CO., CHICAGO, ILL., U.S. A.

EFFECTIVE OCTOBER 15， 1941
Catalog prices are list，subject to trade discount and change without notice．Add 100% for 25 cycle 115 v．primary； 60% for 230 v． 60 cycle primary； 100% for 230 v． 25 cycle primary．
The letter separating the first two digits of the type number from the last two indicates the classification of the unit．The following legend will further explain：

$\begin{aligned} & \mathbf{A}= \\ & \mathbf{C}= \end{aligned}$	Audio， Choke，	$\begin{aligned} \mathbf{D} & =\text { Driver, } \\ \mathbf{F} & =\text { Filament, } \end{aligned}$			$\begin{aligned} & \mathbf{K}=\text { Foundation Unit, } \\ & \mathbf{M}=\text { Modulation, } \end{aligned}$				$\begin{aligned} & \mathbf{P}=\text { Plate } \\ & \mathbf{R}=\text { Power, } \end{aligned}$		$\begin{aligned} & S=\text { Output or Speaker, } \\ & V=\text { Voltage Changer, } \end{aligned}$			$\mathrm{W}=\text { Wired Amplifier. }$			
Type No．	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$	List Price	Type No．	Page No.	List Price	Type No．	Page No．	List Price	Type No．	Page No．	List Price	Type No．	Page No．	List Price	Type No．	Page No.	List
T－1A50	6	\＄17．40	T－13R15	20	\＄6．90	T－15C37	9	\＄15．00	T－18V03	27	\＄8．70	T－19F92	14	\＄4．20	T－67	16	\＄5．40
T－1A51	6	17.40	T－13R16＊	20	7.80	T－15C38	9	18.00	T－18V04	27	10.80	T－19F93＊	14	3.00	T－67D78 ${ }^{\text {T }}$	11	3.60
T－1A52	6	18.60	T－13R17	20	5.10	T－15C39	9	27.00	T－18V05	27	16.20	T－19F94＊	14	3.60	T－67A91	4	4.20
T－1A53	6	18.60	T－13R18	20	6.00	T－15C41	9	33.00	T－18V06 ${ }^{\text {\％}}$	27	7.50	T－19F95	14	3.30	T－67S92	24	4.80
T－1A54	6	16.80	T－13R19＊	20	3.60	T－15C45		10.80	T－18V07	27	16.20	T－19F96	14	4.20	T－67R97	21	5.10
T－1A55	6	17.40	T－13R20	20	4.50	T－15C46	9	15.00	T－18V10－	26	3.60	T－19F97＊	14	2.10	T－68S06	24	3.00
T－1A56	6	18.00	T－13C26	9	1.10	T－15C47	9	18.00	T－18V20	27	7.20	T－19F98	14	3.30	T－68C07	9	2.40
T－1A57	6	16.80	T－13C27	9	1.30	T－15C48	9	27.00	T－18V21	27	8.40	T－19F99＊	14	4.20	T－68C08	8	2.10
T－1A59	6	16.80	T－13C28	9	1.45	T－15C50	9	33.00	T－18V22	27	10.80	T－26V04＊	27	5.70	T－68R26	21	8.70
T－1A60	6	16.80	T－13C29＊	9	1.90	T－15C52＊	8	6.60	T－18V23	27	15.00	T－29C27	8	2.10	T－69R35	21	8.10
T－1C62	6	12.00	T－13C30＊	9	2.40	T－15C53	8	6.90	T－18V24	15	2.70	T－29A99	4	2.40	T－70R20 ${ }^{\text {\％}}$	20	3.90
T－1C63	6	12.00	T－13A34 ${ }^{\text {－}}$	4	1.60	T－15C54	8	7.50	T－18V25	15	4.80	T－33A91＊	4	2.40	T－70R21	20	5.40
T－2A36	7	21.00	T－13A35＊	4	1.80	T－15C55	8	9.00	T－18V26	27	6.90	T－33S99	24	1.80	T－70R61 ${ }^{\text {² }}$	21	5.70
T－2A66	7	21.60	T－13A36	4	2.40	T－15C56	8	12.00	T－18C92	8	1.80	T－37C36	8	2.40	T－70R62	21	7.50
T－2A68	7	22.80	T－13S37 ${ }^{\text {＊}}$	24	1.50	T－15R60	19	23.40	T－19D01	10	7.50	T－37R70－	21	9.00	T－70R78	21	5.10
T－3S16	26	45.00	T－13S38＊	25	1.80	T－15R61	19	21.00	T－19D02	10	7.50	T－43C92		2.00	T－70A82	5	4.20
T－3S17	26	54.00	T－13S39	24	1.50	T－15R62	19	23.40	T－19D03	10	7.50	T－44C02	9	1.80	T－70A83	5	4.20
T－3S21	26	21.60	T－13S40	24	1.80	T－15A66	5	9.60	T－19D04	10	7.50	T－47V01	27	9.00	T－72S58	24	2.00
T－3S22	26	22.80	T－13S41 ${ }^{\text {为 }}$	25	3.30	T－15A67	5	9.60	T－19D05	10	7.50	T－47V02＊	27	13.20	T－72A59	5	2.00
T－3S23	26	45.00	T－13S42＊	25	1.80	T－15A68	5	9.60	T－19D06＊	11	3.30	T－47V03	27	26.10	T－73M52	16	27.00
T－3A32	7	21.00	T－13S43	24	1.60	T－15A69	5	9.60	T－19M13＊	17	5.70	T－47V04	27	42.00	T－73F60	14	4.80
T－5Al	7	12.60	T－14A29	，	3.00	T－15A70	5	9.60	T－19M14 ${ }^{\text {－}}$	17	9.90	T－47C07 ${ }^{\text {\％}}$	9	2.00	T－74F23	14	6.00
T－5A2	7	13.20	T－14R32－	19	9.00	T－15A71	5	9.60	T－19M15	17	14.40	T－47A25	4	2.70	T－74F24	14	10.20
T－5A3	7	11.40	T－14R33	20	3.60	T－15A72	5	9.60	T－19M16	17	20.40	T－49C91	9	2.10	T－74R28	21	8.10
T－5A4	7	10.50	T－14R34 ${ }^{\text {＊}}$	20	4.20	T－15A73－	4	9.00	T－19M17	17	33.00	T－50R03－	20	3.90	T－74C29	9	4.80
T－5A5	7	9.60	T－14R35 $=$	20	4.50	T－15A74	4	8.40	T－19M21－	16	8.40	T－50V11 ${ }^{\text {部 }}$	27	9.00	T－74C30	8	1.80
T－5A7	7	12.00	T－14R36	20	5.70	T－15A75	4	8.70	T－19M22－	16	12.00	T－50F61	14	2.10	T－74A31	4	4.20
T－5A8	7	12.60	T－14R37	20	6.00	T－15D76－	10	10.80	T－19R30	21	9.60	T－52C98	8	2.40	T－74D32 ${ }^{\text {＊}}$	11	3.90
T－5A9	7	12.60	T－14R38	20	6.90	T－15D77－	10	10.80	T－19R31	19	11.40	T－53C19	9	1.80	T－75R47 ${ }^{\text {t }}$	20	5.70
T－6A0	7	12.60	T－14R39	20	3.30	T－15D78	10	10.80	T－19R32	19	15.00	T－53S81 ${ }^{\text {＊}}$	25	5.70	T－75C49＊＊	9	1.80
T－6Al	7	12.60	T－14R40	20	9.00	T－15D79	10	10.80	T－19C35	9	4.80	T－54D63	11	2.70	T－75R50＊	21	9.30
T－6A3	7	11.40	T－14M49	16	21.60	T－15D82	10	10.80	T－19C36＊	9	8.40	T－55A16 ${ }^{\text {＊}}$	5	3.30	T－75C51＊	9	6.00
T－6A4	7	12.00	T－14C61	9	1.20	T－15D83	10	18.00	T－19C37	9	15.00	T－56R01	21	6.90	T－75A74	4	3.30
T－9V30	26	51.00	T－14C62 ${ }^{\text {－}}$	9	1.20	T－15D85	11	9.60	T－19C38	9	18.00	T－56R02－	21	5.10	T－75S75 ${ }^{\text {² }}$	24	4.80
T－9V31	26	78.00	T－14C63	9	1.20	T－15D86	11	10.80	T－19C39＊＊	9	3.90	T－56R03	21	8.10	T－76S74	25	4.50
T－9V32 当	26	120.00	T－14C64	9	1.20	T－15S90	25	12.00	T－19C42	9	4.80	T－56R05	21	8.10	T－78D46	11	1.80
T－9V33	26	210.00	T－14C70＊	8	3.00	T－15S91	25	15.00	T－19C43＊	9	8.40	T－57S01 ${ }^{\text {－}}$	25	2.40	T－79F84	15	5.70
R－1068 ${ }^{\text {\％}}$	8	3.00	T－14A75	4	17.40	T－15S92	25	18.00	T－19C44	9	15.00	T－57S02	25	2.40	T－81S01 ${ }^{\text {K }}$	24	1.80
T－11F50	15	10.80	T－14A76	4	17.40	T－15S93	25	21.00	T－19C45	9	18.00	T－57A36	4	2.70	T－81C15	8	2.40
T－11F51	15	13.20	T－14S80 ${ }^{\text {＊}}$	25	2.40	T－15S94	25	24.00	T－19C46＊	9	3.90	T－57A38	4	3.60	T－81D42 ${ }^{\text {＊}}$	11	3.90
T－11F52	15	15.90	T－14S81	24	1.50	T－15S96	25	15.00	T－19P54	18	7.20	T－57A39	4	3.00	T－81D52	11	3.90
T－11F53	14	10.20	T－14S82	24	1.50	T－15S97	25	19.20	T－19P55	18	7.80	T－57A40	4	3.90	T－82V11	27	18.00
T－11F54	14	24.00	T－14S83＊	24	1.50	T－15S98	25	12.00	T－19P56 ${ }^{\text {＊}}$	18	8.40	T－57A41＊		4.20	T－82V12	27	24.00
T－11F55	14	15.00	T－14S84＊	24	1.50	T－15S99	25	12.00	T－19P57	18	10.20	T－57A42	4	4.20	T－82V13	27	36.00
T－11F57－	15	16.50	T－14S85	25	1.80	T－16C07＊	9	2.70	T－19P58	18	18.00	T－57C51＊	9	1.80	T－82M25	16	51.00
T－11F58－	15	18.00	T－14A90＊	5	3.00	T－17C00－B	9	3.30	T－19P59	18	21.00	T－57C52	9	2.10	T－83D21	11	4.20
T－11F59	14	9.00	T－14A91＊	5	3.00	T－17D01	11	2.40	T－19P60＊	18	25.20	T－57C53	9	2.40	T－83M22	16	13.80
T－11F60	14	9.60	T－14A92	4	1.60	T－17A02 ${ }^{\text {＊}}$	4	3.00	T－19P61	18	27.00	T－57C54＊		2.70	T－83A78＊	5	2.70
T－11F61	14	27.00	T－14D93	11	2.10	T－17D03	11	5.40	T－19P62	18	32.10	T－58A37		2.70	T－83R82－	21	12.00
T－11F62	14	10.20	T－14A94	5	3.00	T－17D04 ${ }^{\text {＊}}$	11	5.40	T－19P63	18	30.90	T－58A70＊	，	4.50	T－83R85	21	15.00
T－11F63	14	11.40	T－15R00	21	15.00	T－17S10	24	3.60	T－19P64＊	18	35.70	T－58S72	24	4.50	T－83S87	24	10.80
T－11F64	14	12.00	T－15R01	21	21.00	T－17S11	24	5.40	T－19P65	18	37.20	T－60S48＊	25	3.60	T－84S58	24	7.20
T－11M69	17	10.80	T－15R02	21	15.90	T－17S12	24	5.40	T－19P66	18	49.80	T－60R49	20	3.60	T－84D59	11	3.90
T－11M70	17	15.00	T－15R03	21	1650	T－17S13 ${ }^{\text {令 }}$	24	7.20	T－19P67	18	60.00	T－61S25	25	3.90	T－84P60	18	9.00
T－11M71	17	18.00	T－15R04	21	9.00	T－17S14	24	7.20	T－19P68	18	70.20	T－61S26＊	25	4.20	T－84M70	16	12.00
T－11M74	17	13.20	T－15R05	21	15.90	T－17S15	24	7.80	T－19P69	18	18.00	T－61F85	14	2.70	T－86A02	5	2.70
T－11M75	17	15.30	T－15R06	21	14.70	T－17S16	24	18.00	T－19P70	18	13.80	T－61A94	5	3.90	T－86A03	4	2.70
T－11M76	17	27.00	T－15R07	21	15.90	T－17S17	25	7.80	T－19P71	18	16.80	T－63R63－	20	3.90	T－87R85	21	9.00
T－11M77	17	36.00	T－15R08	21	19.20	T－17S18	25	4.50	T－19F75	14	2.70	T－63F99	14	3.90	T－89R28＊	21	13.80
T－11M78	17	72.00	T－15P11	19	16.80	T－17R30	21	10.20	T－19F76	15	5.70	T－64F14	14	6.00	T－89S68	24	7.80
T－11K99	16	18.00	T－15P12	19	19.20	T－17R31	21	15.00	T－19F77	15	9.90	T－64M26	16	7.20	T－89S74	24	4.50
T－13R00	20	5.40	T－15P13	19	28.80	T－17R32	18	12.30	T－19F78	15	6.90	T－64F33	14	7.20	T－89S75	24	4.80
T－13R01	20	4.20	T－15P14	19	36.00	T－17R33	18	20.40	T－19F79	15	8.10	T－64F38	14	7.20	T－90A02	7	20.40
T－13R02＊	20	4.50	T－15P15	19	42.00	T－17R34	21	6.30	T－19F80＊	14	1.60	T－65A73	5	3.60	T－90A03－－	7	20.40
T－13R03＊	20	5.10	T－15P16	19	63.00	T－17R35	21	4.20	T－19F81	14	1.80	T－65S94	24	4.80	T－90A05－	7	20.40
T－13R04	20	6.00	T－15P17	19	45.00	T－17R36	21	4.80	T－19F82	14	6.00	T－67C46 ${ }^{*}$	8	2.10	T－90A06－	7	20.40
T－13R05＊＊	20	6.00	T－15P18	19	84.00	T－17R37	21	5.70	T－19F83	14	2.70	T－67D47	11	3.00	T－90S07－	26	21.60
T－13R06＊	20	6.90	T－15P19 ${ }^{\text {＊}}$	19	81.00	T－17R38	21	6.30	T－19F84	14	3.30	T－67S48	24	4.20	T－90C09－	7	15.00
T－13R07	20	7.20	T－15P20	19	120.00	T－17C40	8	6.60	T－19F85	14	4.80	T－67C49 ${ }^{\text {W }}$	9	3.30	T－90A10－	7	20.40
T－13R08	20	6.00	T－15P21	19	114.00	T－17A42	5	12.00	T－19F86	14	6.60	T－67D50	11	3.30	T－90S12－	26	20.40
T－13R09	20	7.50	T－15C30	8	6.00	T－17A43	5	12.00	T－19F87	14	7.50	T－67S51＊	24	4.20	T－92F20－	14	6.30
T－13R11	20	3.90	T－15C31	8	7.20	T－17S57	25	2.70	T－19F88	14	2.40	T－67S52	24	4.80	T－92R21	21	9.00
T－13R12	20	4.50	T－15C32	8	9.60	T－17M59 ${ }^{\text {＊}}$	16	3.30	T－19F89	14	2.70	T－67S54	24	4.80	T－92R33	19	5.40
T－13R13	20	5.40	T－15C34	8	10.80	T－18V00	27	12.60	T－19F90	14	3.60	T－67M69	16	3.30	T－92R53	21	6.90
T－13R14	20	6.00	T－15C36	9	10.80	T－18V01	27	23.40	T－19F91	14	3.00	T－67M73－	16	4.20	T－93C20	8	3.30

THIS catalog presents the complete Thordarson line of transformers and chokes for radio replacement, amplifier, amateur transmitter, commercial laboratory and experimental use. Several choices are offered in mounting style, coil impregnation and electrical characteristics. Each unit, is built by highly skilled Thordarson craftsmen, and of finest quality materials is the result of experience gained in over 46 years of transformer design and manufacture.

THORIARSON AIR COOLED TRANSFORMERS AND CHOKES

These units are compact and comparatively light in weight. They are designed for consistent performance at rated characteristics. Open frame styles are $2 \mathrm{~B}, 3 \mathrm{~B}, 2 \mathrm{C}, 3 \mathrm{C}, 2 \mathrm{E}$, and 3 E . Mounting styles 3 A , $2 \mathrm{D}, 4 \mathrm{D}, 4 \mathrm{E}, 2 \mathrm{~F}, 2 \mathrm{G}, 4 \mathrm{G}, 2 \mathrm{H}, 2 \mathrm{~J}, 2 \mathrm{~K}, 2 \mathrm{M}, 2 \mathrm{~N}, 2 \mathrm{~V}$, and $2 W$ are mechanically shielded. Cases $2 Q$ and 3 V are compound filled for complete coil protection.

THORDARSON C.II.T. TRANSFORMERS AND CHOKES

A premium quality line offering these outstanding advantages: Uniform case design, conservative ratings, extended frequency range, humbucking coils in audio and driver types, plug-in jack terminal board, compound filled cases for complete coil protection against humidity.

THORDARSON TRU-FIDELITY TRANSTORMERS

Tru-Fidelity transformers, as the name implies, make possible better audio response. Superior coil and core materials, the result of metallurgical research, are used throughout. Every Tru-Fidelity unit is engineered and manufactured to precision standards. A representative listing of Incher, Bantam and Major types is included in the Audio listing. Major output units are catalogued in the Output transformer section. For information on the complete line of Thordarson Tru-Fidelity components see Catalog No. 500.

COIL IMPREGNATION

Salt air and high humidity are formidable enemies of transformer life. A very minute absorption of salt laden moisture by a fine wire audio coil may result in fatal electrolytic action and corrosion. This is especially true of fine wire audio coils which operate with direct current voltage above ground, since this polarizing voltage in combination with an extremely minute salt concentration will drive electrolytic currents from the copper wire to ground.

While this current may be much less than a microampere it will, over a period of time, take enough copper from the fine wire to cause an open circuit. Radio receiver power transformers and the larger amateur type transformers are not nearly so subject to the electrolytic and corrosive action as the small fine wire audio transformers. This is due partly to the fact that the coils on these transformers do not have a direct current voltage applied between them and the ground. The alternating current voltage present is not nearly as effective in driving electrolytic current as a direct current potential. The wire sizes used on these transformers are ordinarily so large that even though a minute electro lytic current might be present it would take a very long time (years in most cases) for enough copper to be taken to open the coil or cause trouble. Then, too, there is usually enough heat generated in these transformers, since they are power operating units, to drive out moisture which might otherwise be absorbed.
It has been found that many common impregnating compounds, while for most purposes considered waterproof, are yet hydroscopic enough to permit a fatal amount of moisture absorption if it is accompanied with salt. Complete enclosure of the core and coil in cases filled with moisture-proof high melting compounds as used in Thordarson C.H.T. and Tru-Fidelity components is the best protection against such action.

TROPEX

 Space and weight considerations are often as important as coil protection; here an open frame mounting is most desirable. Thordarson Tropex coating was developed for full protection on such mountings. The Tropex coating is entirely impervious to moisture and fully protects the coil against salt moisture conditions. Tropex is a special process which may be applied to any Thordarson open mounting type transformer or choke. It is especially adaptable to fine wire audio transformers and chokes and is not ordinarily recommended for power transformers nor for encased types.
The additional cost for Thordarson Tropex transformers is surprisingly smiall. The following table has been compiled to enable you to easily determine this price increase by referring to the weight of the transformer as listed. When ordering Tropex add an " X " to the regular type number. For example, T-13S38-X is the Tropex equivalent of T-13S38.

weight of transformer	ADD To LIST PRICE
Up to $7 / 8 \mathrm{lb}$.	\$. 40
From 1 lb . to $17 / 8 \mathrm{lbs}$.	50
From 2 lbs. to $27 / 8 \mathrm{lbs}$.	70
From 3 lbs. to $4^{7} \mathrm{l}$ l lbs .	85
From 5 lbs. to 6781 lbs .	1.00
Over 7 lbs .	18 c per lb.

ThORDARSON Audia (A) Transfarmers

30

2B

3B

AUDIO (A) INTERSTAGE TRANSFORMERS

For coupling the plate or plates of an amplifier stage to the grid or grids of the next stage where grid current is not drawn
C. H. T. interstage audio transformers have hum-bucking coil construction and balanced windings. Frequency response, using parallel feed in the primary winding, is flat within $\pm 11 / 2 \mathrm{db}$ from 60 to 8,000 c.p.s.

Single Plate To Single Grid

*Maximum Signal Level +15 db . \dagger Parallel feed recommended.

T-13A34	\$1.60	RECEIVER (midget)	3:1	10,000	90.000	8							
- T-29A99	2.40	RECEIVER	3:1	10,000	90.000	8	313	$2^{23} 8$		2136	15/8	15/8	3
T-57A36	2.70			10,000	90,00	8	$\stackrel{2}{2}$	${ }_{9}^{23} 8$		27 27	$21 / 8$	238	$11 / 4$
T-47A25	2.70 3.30	RECEIVER	$\cdot \cdot 1$				2 F	1916080	$11 / 2$	278 $21 / 8$	21/8	23/8	$11 / 2$
T-15A73-*	9.00	C.H.T.	$2: 1$	10000/2500	$40000 \cdot 10000$	$10 \dagger$	3 U	238	21/2	3	3	$35 / 6$	219

Single Plate To Push-Pull Grids
${ }^{*}$ Max. signal level +15 db . \dagger Parallel feed recommended.

Push-Pull Plates To Push-Pull Grids

${ }^{*}$ Maximum signal level +15 db . \dagger Each side.

Universal Interstage Replacement Transformer

Will couple single plate to single grid, single plate to push-pull grids or push-pull plates to push-pull grids. Has split secondery.
T-17A02 $\$ 3.00$ RECEIVER
3:1
Universal
$10 \quad 2 \mathrm{~F} \quad 2^{3}$
$\begin{array}{llll}27 / 8 & 21,9 & 2^{3} 8 & 11 / 2\end{array}$

MICROPHONE CABLE TRANSFORMERS

Permit quick and efficient change from high to low impedance microphone input on any amplifier. Hum pick-up is reduced to a minimum through the use of magnetic shielding. As the illustra-
tion shows, these Microphone Cable transformers, exclusively Thordarson, are connected in series with the microphone cable and the amplifier input connector and are small and inconspicuous. Frequency Response $\pm 11 / 2 \mathrm{db}$ from 30 to $15,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$.

AUDIO（A）INPUT TRANSFORMERS

For coupling a signal source to the grid or grids of a Class A amplifier stage．Frequency range of C．H．T．rypes is flat within $\pm 11 / 2 \mathrm{dh}$ from 60 to $8,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$ ．Other features include hum－bucking coil construction and balanced windings．

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	Application	Ohms Impedance		Turns Ratio	$\begin{aligned} & \text { Mtg. } \\ & \text { Fig. } \end{aligned}$	Mtg．Centers		Dimensions			Wt． Lbs．
			Pri．	Sec．			Width	Depth	W．	D．	H．	
Low Impedance Source（Microphone，Line or Mixer）to Grid												
T－65A73	\＄3．60	DB mike to grid	20050	100，000	1：22．2	2 F	2何盾		$33 / 8$	$21 / 2$	3	2
T－58A37	2.70	DB mike to grid	20050	100，000	1：22．2	2 F	23.8		27／8	2）s	$2^{3} 8$	$11 / 2$
$\begin{aligned} & \text { T-83A788 } \\ & \text { T-86A02 } \end{aligned}$	$\begin{aligned} & 2.70 \\ & 2.70 \end{aligned}$	Single button mike to single or P－P grids	100	$400,000 \mathrm{Ct}$ ．	1：64	$\begin{aligned} & \frac{2 \mathrm{~F}}{2 \mathrm{~B}} \end{aligned}$	$\begin{aligned} & 2^{3,8} 88 \\ & 2^{3}, 8 \end{aligned}$		$\begin{aligned} & 27 / 8 \\ & 27 / 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 / 8 \\ & 13 / 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 23 / 8 \\ & 23 / 8 \\ & \hline \end{aligned}$	$1^{1 / 4}$
T－55A16	3.30	Dyn．mike，line or mixer to single or P－P grids	200／50	100，000 Ct．	1：22．3	2 F	$23 / 8$		27／8	$21 / 8$	$23 / 8$	11／2
T－61A94	3.90	Line to single or P－P Cl．A grids	500／125	100，000 Ct．	1：14．1	2 F	21516		3／8	$21 / 2$	3	$21 / 4$
T－72A59	2.00	Plate and Single Button microphone to grid	$\begin{array}{r} 5,000 \\ 200 \\ \hline \end{array}$	100，000	$\begin{aligned} & 1: 3.25 \\ & 1: 35 \\ & \hline \end{aligned}$	2B	$21 / 8$		25／8	15／8	2	$3 / 4$
T－14A94	3.00	Voice Coil to grid	4－8	100，000	1：112	2B	23.8		27／8	21白	23／8	1
T－15A66	9.60	C．H．T．Low Imped－ ance to grid	$\begin{aligned} & 500 / 333 / 250 \\ & 200 / 125 / 50 \end{aligned}$	$\begin{gathered} 60,000 / 15,000 \\ \text { Single Grid } \end{gathered}$	1：10．95	3 U	$23 / 8$	21／2	3	3	3%	21／4
T－15A67	9.60	C．H．T．Low Imped－ ance P－P grids	$\begin{aligned} & 500 / 333 / 250 / \\ & 200 / 125 / 50 \end{aligned}$	$\begin{gathered} 120,000 / 30,000 \\ \text { P-P Grids } \end{gathered}$	1：15．5	3 U	$23 / 8$	21／2	3	3	35皃	$21 / 4$
T－15A68	9.60	C．H．T．Low Imped－ ance to single grid	$\begin{aligned} & 60 \quad 3830 / 22 / \\ & 15 / 10^{\prime} 5.5^{\prime} 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 60,00015,000 \\ & \text { Single Grid } \end{aligned}$	1：31．6	3 U	$23 / 8$	$21 / 2$	3	3	35\％	$21 / 2$
T－17A42	12.00	C．H．T．With Triple Telescopic High－Permea－ bility Magnetic Shields	$\begin{array}{r} 500 \dagger 333250 \\ -200 \dagger 12550 \end{array}$	$\begin{gathered} 50,000 \\ \text { Single Grid } \end{gathered}$	1：10	3U	$\begin{gathered} 23 / 8 \\ \text { Min. } \end{gathered}$	$\begin{array}{ll} 17 / 8 \\ \text { el }-20 \end{array}$		21／2	$31 / 8$	$11 / 4$
Microphone or Line to Mixer or Line												
T－70A82	\＄4．20	DB mike to line	200．50	500／125	1：1．68	2 F	2516		$3{ }^{3} 8$	21／2	3	$21 / 4$
T－70A83	4.20	Crystal mike to line or mixer	100，000	200 50	1：22．4	2 F	2 洣		33.8	21 1́2	3	$21 / 4$
T－15A69	9.60	C．H．T．Low Imped－ ance to mixer or line	$\begin{aligned} & 500 / 333 / 250 / \\ & 200 / 125 / 50 \end{aligned}$	$\begin{aligned} & 500 / 333 / 250 / \\ & 200 / 125 \text { / } 50 \end{aligned}$	1：1	3 U	$23 / 8$	21／2	3	3	35／6	2
T－15A70	9.60	C．H．T．Dyn．mike to mixer or line	$\begin{aligned} & 60 / 38 / 30 / 22 / \\ & 15 / 10 / 5.5^{\prime 2} .5 \end{aligned}$	$\begin{aligned} & 500 / 333 / 250 \\ & 200 / 125 / 50 \end{aligned}$	1：2．88	3 U	$23 / 8$	$21 / 2$	3	3	356	2
Tube to Line or Mixer（Low Level）												
T－14A90	\＄3．00	Sgl．or P－P Plates to line or mixer	20，000 Ct．	500／125	8＊	2 F	23／8		27／8	$21 / 8$	$23 / 8$	$11 / 2$
T－14A91	3.00	Sgl．or P．－P Plates to line or mixer	20，000 Ct．	200／50	8＊	2 F	$23 / 8$		27／8	21／8	23／8	$11 / 2$
T－72A59	2.00	Plate and sgl．button mike to grid	5，000 and 200	100，000	10＊	2B	$21 / 8$		25／8	15／8	2	$3 / 4$
T－15A71	9.60	C．H．T．single plate to line or mixer．	$\begin{array}{r} 20,000 / 5,000 \\ \text { Single Plate } \end{array}$	$\begin{aligned} & 500 / 333 / 250 \\ & 200 / 125 / 50 \end{aligned}$	8＊	3U	$23 / 8$	$21 / 2$	3	3	35／6	$13 / 4$
T－15A72	9.60	C．H．T．P－P plates to line or mixer．	$\begin{gathered} 20,000 / 5,000 \\ \text { P-P Plates } \end{gathered}$	$\begin{aligned} & 500 / 333 / 250 \\ & 200 / 125 / 50 \end{aligned}$	0 ＊	3 U	$23 / 8$	$21 / 2$	3	3	3的	$13 / 4$
T－17A43	12.00	C．H．T．With Triple Telescopic High－Permea－ bility Magnetic Shields	$\begin{array}{r} 10,000 \text { to } \\ -\quad 15,000 \end{array}$	$\begin{aligned} & 500+/ 333 / 250 / \\ & 000+/ 125 / 50 / \end{aligned}$	0 ＊	3 U	23／8	17／8	3	$21 / 2$	$31 / 8$	

\dagger Indicates balanced center tap．＊Indicates Primary M．A．
C5

TRU-FIDELITY BANTAM SERIES

Cross sectional tiew, Bantam Transformer

Diameter.
Height (Case ang lugs)
Mounting centers.

Bottom view, illustrating ring
mounting as used in Bantam and Major Series Transformers

- One piece drawn high permeability alloy case. Case style R2
- Maximum operating level +10 db .
- Uniform frequency response $\pm 1 \mathrm{db}$ from 30 to 15,000 c.p.s. (Except where otherwise noted).
- Balanced (humbucking) coil construction.
- Electrostatic shields. (Except Interstage types.)
- Relative hum reduction 67 db .
- High permeability alloy laminations.
- Moisture-proof compound filled case.
- One-hole ring mounting, permitting rotation of transformers for maximum hum reduction.
- Grey enamel finish. (Chrome plated case $\$ 1.25$ list extra.)
- Sturdy solder lugs, machined from solid brass and tinned for quick soldering.
- Terminals arranged circularly to fit within standard tuble socket hole.

TRU-FIDELITY BANTAM AUDIO REACTORS

Type						
No.	Price	Application	No	Rated		
T-1C62*	\$12.00	Parallel feed		D.C.	D.C.	Ohms Res D.C.
T-1C63	12.00	Parallel feed		320/80	2/4	6,000/1,500
			450	200/50	4/8	5,000/1,250

TRU-FIDELITY INCHER SERIES

- Especially small and lightweight - $156^{\prime \prime}$ " diameter, $11 / 8^{\prime \prime}$ high and wt. 11/4 oz. Case style R1.
- Maximum operating level 0 db (6 milliwatts).
- Uniform frequency response $\pm 11 / 2 \mathrm{db}$ from 30 to 15,000 c.p.s (Except where otherwise noted.)
- Single coil shell type construction.
- Electrostatic shields. (Except Interstage types.)
- Minimum hum pick-up.
- High permeability alloy laminations.
- Moisture-proof compound filled case
- Grey enamel finish. (Chrome plated case 75c list extra.)
- Sturdy solder lugs machined from solid brass and tinned for quick soldering.

CASE DIMENSIONS			
	R1	3 T	C5
Diameter			
Width		3:	31/5
Depth.		2 \%	236
Height.	.11/8		35 5\%
Height (Including lugs)	.11/4	$41 / 8$	436
Mounting Centers (Width)		23\%	21/8
Mounting Centers (Depth)		$17 / 8$	21/8
Weight................................... .	. $11 / 40$		$43 / 4$

$\begin{aligned} & \text { T'ype } \\ & \text { No. } \end{aligned}$	List Price	Application	Ohms Impedance		$\begin{aligned} & \text { Primary } \\ & \text { Max. D.C. } \\ & \text { Per Side } \\ & \hline \end{aligned}$	M.A. Unbalance
			Primary	Secondary		
T-5A1	\$12.60	Mike, Line or Pick-up to Single Grid	50,200*/500*	50,000	25	. 5
T-5A2	13.20	Mike, Line or Pick-up to P-P Grids	50/200* 500 *	80,000*	25	. 5
T-5A3	11.40	Dynamic Microphone to Single Grid	7.5/30*	50,000	0	0
T-5A4	10.50	Single Plate to Single Grid Ratio 1:2	10,000 to 15,000	60,000	0	0
T-5A5	9.60	* Single Plate to Single Grid, D.C. in Primary, Ratio 1 to 2	10,000 to 15,000	60,000	2	2
T-5A7	12.00	\star Single Plate to P-P Grids, D.C. in Primary, Ratio 1 to 2.5	10,000 to 15,000	95,000*	2	2
T-5A8	12.60	P-P Plates to P-P Grids, Ratio 1 to 1.5	10,000 to 15,000 each side	67,500*	2	. 25
T-5A9	12.60	Single Plate to Line	10,000 to 15,000	50 200* 500 *	0	0
T-6A0	12.60	\$ Single Plate to Line, D.C. in Primary	10,000 to 15,000	50/200* 500 *	2	2
T-6A1	12.60	Push-pull Plates to Line	10,000 to 15,000 each side	50 200\%, 500*	2	. 25
T-6A3	11.40	Matching and Mixing	50/200*/500*	50 200*	25	. 5
T-6A4	12.00	*50:1 Mike or Line to Single Grid	200	500.000	10	10

* Voice Frequencies Only, 150 to 6000 cy cles. *Center tapped.

TRU-FIDELITY MAJOR SERIES

- High operating level.
- Uniform frequency response $\pm 1 / 2 \mathrm{db}$ from 30 to 15,000 c.p.s.
- Balanced (hum-bucking) coil construction.
- Electrostatic shields. (Except Interstage Types.)
- High permeability alloy laminations.
- Moisture-proof compound filled case.
- One-hole ring mounting, permitting rotation of transformers for maximum hum reduction.
- Grey enamel finish cast case.
- Sturdy solder lugs machined from solid brass and tinned for quick soldering.
- Terminals circularly arranged to fit within standard socket hole.

Special Major transformers to meet other audio requirements will be quoted on application.

Type No.	List Price	Ohms Impedance		Primary Max. D.C. Per Side	$\begin{aligned} & \text { M.A. } \\ & \text { Un. } \\ & \text { balance } \end{aligned}$	Max. Sig. Level DB	Case Style
		Primary	Secondary				

CRYSTAL MICROPHONE OR PHOTO CELL TO LINE

T-90A06-	\$20.40	250,000/62,500	500*/125/200*/50	0	0	-10	3 T
PLATE TO LINE (LOW LEVEL)							
T-90A02-	20.40	20,000 5000 Single Plate	500* '125 200*'50	8	8	+15	3 T
T-3A32	21.00	20,000,5000 Single \dagger or P-P Plates	500*'125 200*/50	10	0	+20	C5
MIXER							
T-90A10-	20.40	500*/125/200*/50	500*/125,200*/50	100	. 5	$+10$	3 T
LINE TO GRID							
T-2A66	21.60	500*/125/200*/50	75,000/18,750 Single Grid	100	. 5	$+10$	C5
T-2A68	22.80	500*/125/200*/50	100,000*/25,000 P-P Grids	100	. 5	+20	C5
INTERSTAGE							
T-90A03-	20.40	10,000/2500 Ratio overall Single Plate 1 to 2	40,000/10,000 Single Grid	0	0	+15	3 T
T-2A36	21.00	10,000/2500 Ratio overall Single Plate 1 to 2	40,000 10,000 P-P Grids	0	0	± 15	C5
T-90A05-	20.40	20,000/5000 Ratio overall P-P Plates 1 to 1.5	45,000/11,250 P-P Grids	10	0	+20	3 T

PLATE REACTOR

Type No.	List	Connection	Henries	M.A.	D.C. Ohms	Case Style
T-90C09-	\$15.00	Series Parallel	$\begin{array}{r} 300 \\ 75 \end{array}$	$\begin{array}{r} 8 \\ 16 \end{array}$	$\begin{aligned} & 4,000 \\ & 1,000 \end{aligned}$	- 3 T

* Indicates inductive and capacitive balance to center tap for use on balanced transmission lines.
\dagger With single tube use parallel feed with resistor or T-90C09.

CHOKES AND REACTORS（C）
It is well known that as the D．C．current in a choke increases，there is a corresponding decrease in inductance．Thordarson chokes are R．M．S．test volts rating as shown is approximately 2 times the operating D．C．voltage recommended．

Parallel Feed Audio Reactors

For supplying plate current to a vac
uum tube where it is desirable to isolate plate current from the transformer primary or where
the voltage drop caused by a resistor load is objectionable．

Type No．	List Price	Plate Impedance	Typical	Induct． Hen． 300	Cur． M．A．	$\begin{aligned} & \text { D.C. } \\ & \text { Ohms } \\ & \hline 6470 \end{aligned}$	R．M．S． Test Mtg． Volts Fig．		Mtg．Centers Width Depth	Dimensions			$\xrightarrow{1 \mathrm{t} .}$	
$\overline{\text { T－37C36 }}$									W	D．	H．			
＋T－67C46	2.10		56－30－76－6C5－ 55－85，etc．				1600	${ }_{2}^{2 \mathrm{~F}}$		${ }_{23}^{238}$	278	${ }_{2}$ 沰	${ }^{2} \frac{3}{3} 8$	11／2
T－52C98	2.40	Plate Impedance	24－57－56－76－	500	． 5			2 F	23．8	$\underline{27}$	$21 / 8$	238	1／4	
＊T－29C27	2.10	for screen Grid detector or as	6C5－6F5－6J7	500	． 5	6150	1600	2 F	$2{ }^{3} 8$	27／8	17／8	23／8	$11 / 4$	
		impedance						2B	$23 / 8$	278	$13 / 4$	238		
$\begin{aligned} & \text { T-68C08 } \\ & \text { T-18C92 } \end{aligned}$	$\begin{aligned} & 2.10 \\ & 1.80 \end{aligned}$	Plate Impedance	45－46－10，etc．	22	35	405								
		Filter					1100	3 B	23%	278	$\begin{aligned} & 215 \\ & 21 / 5 \end{aligned}$	$2_{2}^{23} s$	T／1／	

Tuned Audio Circuit Reactors

\＄2．40 Tuned Audio Circuits \quad Tuned Audio Circuit Reactors										
T－74C30	1.80	Tuned Audio Circuits or Filter	250	． 5	6400	2 B	$\underline{23}$	$2^{2 / 4}$		$2^{3} \times 11 / 4$
	1.80	Tuned Audio Circuits or Filter	42		2100	3B	2 省	$31 / 16$	13／4	$2{ }^{*}$

DUAL TONE CONTROL COMPONENTS

C．H．T．SPEECH FILTER

This hi－pass filter with a cut－off below 200 c．p．s．provides a definite
increase in effective side band power and corresponding reduction
$\bar{T}-15 C 34 \quad \$ 10.80 \quad$ Plate to Single or P．P．tubes
of hum pick－up．It may be used instead of an interstage audio transformer to couple a single plate to single or push－pull grids．

C．H．T．SPLATTER CHOKES

These tapped chokes are used ber C．H．T．SPLATTER CHOKES

T－15C30 $\$ 6.00$ Elimination													
$\begin{aligned} & \mathrm{T}-15 \mathrm{C} 31 \\ & \mathrm{~T}-15 \mathrm{C} 32 \end{aligned}$	7.20 9.60	of side band	$\left\{\begin{array}{l}.025 \text { to } .8 \\ .025 \text { to } 8\end{array}\right.$	150 300	54 20	$\begin{aligned} & 3000 \\ & 5000 \end{aligned}$	${ }_{3}^{3 \mathrm{U}}$		$17 / 8$	3	$21 / 2$	318	21
		Splatter	， 025 to .8	500	14	$\begin{aligned} & 5000 \\ & 7500 \end{aligned}$	3 U 3 U	$\frac{23}{35}$	23／4	${ }_{4}^{3}$	${ }^{33}$ 3，	$4{ }^{1}$	2

C．H．T．AMPLIFIER CHOKES

Two inductance ratings are shown，one for parallel connection of the
Cases are compound filled for complete coil protection．

Type	List	Inductance	Current		R.M.S.		Mtg．	Centers		nens		
－$\frac{\mathrm{No}}{\text { T－15C52 }}$		Henries	M．A．	Res．	Volts	$\begin{aligned} & \text { M tg. } \\ & \text { Fig. } \end{aligned}$	Widt	Depth	W．	D．		Wt．
－ 1 －15C52	\＄6．60	120 Parallel	$\begin{aligned} & 35 \\ & 17 \end{aligned}$	675	1，600	3 U －	$2{ }^{3} 8$	$\frac{\text { Depth }}{21 / 2}$	W．	D．	H．	
T－15C53	6.90	12 Parallel 50 Series	$\begin{array}{r} 100 \\ 50 \end{array}$	$\begin{array}{r} 272 \\ 1090 \end{array}$	1，600	3 U	238	21_{2}	3	3	$35 / 6$	$31 / 4$
－T－15C54	7.50	32 Series	$\begin{array}{r} 150 \\ \hline 75 \\ \hline \end{array}$	$\begin{array}{r} 1090 \\ \hline 184 \\ 735 \end{array}$	1，600	3U	$2^{3 / 8}$	$23 / 4$	3	$3^{3} 8$	45.	31 立
T－15C55	9.00	$\begin{aligned} & 2 \text { Parallel } \\ & 8 \text { Series } \\ & \hline \end{aligned}$	$\begin{array}{r} 500 \\ \hline 500 \\ 250 \end{array}$	$\begin{array}{r} 150 \\ \hline 32 \\ 130 \end{array}$	1，600	3 U	35%	31 \％	4^{516}	$3^{3} 4$	$4{ }^{13 / 6}$	712
15C56	12.00	$\begin{aligned} & 2 \text { Parallel } \\ & 8 \text { Series } \end{aligned}$	$\begin{aligned} & 700 \\ & 7050 \end{aligned}$	$\begin{array}{r} 100 \\ \hline 27 \\ 107 \end{array}$	1，600	3 U	35\％	37.	$45^{5 / 6}$	418	$5^{7}{ }_{16}$	93.4

∞

Type No．	$\underset{\text { Price }}{\text { List }}$	Inductance At Zero At Rated		$\begin{gathered} \text { Current } \\ \text { Rating } \\ \text { M.A. } \end{gathered}$	D．C． Res． Ohms	$\begin{gathered} \text { R.M.S. } \\ \text { Test } \\ \text { Volts } \end{gathered}$	$\begin{aligned} & \text { Mtg. } \\ & \text { Fig. } \end{aligned}$	Mtg．Centers		Dimensions				
				Width				Depth	W．		H．	Wbs．		
＊T－13C26	\＄1．10	21	8		40	530	1600	3B	2 。		23／8	15／8	$13 / 8$	
＋T－13C27	1.30	22	10	40	475	1600	3B	23／8		29／8	15／8	$15 / 8$	3	
＊T－13C28	1.45	20	10	65	460	1600	38	211／0		31／1／	$13 / 4$	2	，	
＊T－43C92	2.00	24	10	75	260	1600	2 C	1918	11／2	$21 / 8$	2	28／8	13／2	
\star T－47C07	2.00	20	12	75	410	1600	3B	$31 / 8$		39／10	2	21／4	11	
＊T－44C02	1.80	31	12	80	405	1600	3B	23／4		33／18	21／8	2	11	
－T－57C51	1.80	15	6	80	138	1600	2B	23／8		27／8	$21 / 8$	$23 / 8$	11	
＊T－13C29	1.90	20	9	85	250	1600	3B	28／4		33／18	$21 / 8$	2	1	
＊T－68C07	2.40	32	15	85	375	1600	2B	251／		$38 / 8$	$21 / 2$	3	2	
＊T－57C53	2.40	27	10	110	200	1600	2B	21／80		$33 / 8$	21／2	3	$21 / 4$	
＊T－75C49	1.80	22	8	120	290	1600	3B	$23 / 4$		$331 / 8$	$21 / 8$		11	
T－53C19	1.80						2B	2888		27／8	$21 / 8$	$23 / 8$	1	
＊T－13C30	2.40	25	8	150	200	1600	2B	2150／3		$33 / 8$	$21 / 8$	3	9	

Filter Chokes for Replacement in AC－DC Receivers												
T－14C61	\＄1．20	14	7	55	200	1600	3B	23／8	2㸲	18／8	15／8	8
\star T－14C62	1.20	16	8	55	250	1600	3B	$28 / 8$	2410	$18 / 8$	18／8	3／4
T－14C63	1.20	19	8	55	300	1600	3B	28／8	2406	18／8	18／8	8／4
\star T－14C64	1.20	21	10	55	350	1600	3B	23／8	2年	15／8	18／8	8／4

Filter Chokes for Amplifiers and Small Transmitters

T－57C52	\＄2．10	15	5	80	138	1600	2 F	28／8		27／8	$21 / 8$	23／8	$11 / 2$
\star T－16C07	2.70	32	15	85	375	1600	2 F	2 歺		33／8	$21 / 2$	3	$21 /$
\star T－57C54	2.70	27	10	110	200	1600	2 F	25		$33 / 8$	21／2	3	$21 / 4$
T－49C91	2.10	12	4	120	160	1600	2 F	$23 / 8$		27／8	17／8	23／8	11／4
＊T－17C00－B	3.30	28	12	150	231	1600	2 F	$38 / 8$		3咟	3	$31 / 2$	$33 / 4$
\star T－74C29	4.80	29	15	150	200	2000	2G	2110	29／6	3518	38／8	45／8	$51 / 4$
＊T－67C49	3.30	12	5	200	80	1600	2 F	$3{ }^{3}$		3特	31／13	$31 / 2$	$33 /$
－T－75C51	6.00	24	13	250	121	1600	2G	－	251／6	33／4	31110	47／8	8

TRANSMITTER INPUT AND FILTER CHOKES

Matched input and smoothing chokes for amateur，amplifier or experimental applications．

Input Chokes＂19＂Series												
＊T－19C39	\＄3．90	5－20	150	215	3000	2F	$38 / 8$		348	3110	$31 / 2$	33／4
＊T－19C35	4.80	5－20	200	130	3000	2D	$31 / 4$	21／6	33／4	$38 / 8$	4	51／2
＋T－19C36	8.40	5－20	300	105	5000	2D	23／4	31／6	3918	47／8	45／8	103／4
T－19C37	15.00	5－20	400	90	5000	2J	$31 / 4$	31／8	$41 / 4$	51／2	6	191／2
＊T－19C38	18.00	5－20	500	75	5000	2J	$37 / 8$	$33 / 4$	5	$51 / 2$	65／8	251／4

Smoothing Chokes＂19＂Series											
＊T－19C42	4.80	12	200	130	3000	2D	$31 / 4$	$21 / 10$	33／4／	38／8	$4 \quad 51 / 2$
\star T－19C43	8.40	12	300	105	5000	2D	28／4	$31 / 10$	39960	47／8	$45 / 8103 / 4$
T－19C44	15.00	12	400	90	5000	2 J	31／4	37／8	$41 / 4$	$51 / 2$	$6193 / 4$
\star T－19C45	18.00	12	500	75	5000	2J	$37 / 8$	$38 / 4$	5	$51 / 2$	$65 / 8251 / 4$

C．H．T．Input Chokes
Conservatively designed for continuous and quiet operation．Cases are compound filled for complete coil protection．

T－15C36	\＄10．80	5－25	200－20	105	4，000	3U	$35 / 8$	$3{ }^{7 / 16}$	45^{5}	$41 / 8$	57	
T－15C37	15.00	5－25	300－30	78	4，000	3U	4\％16	41／1／3	53／8	44／18	$63 /$	22
T－15C38	18.00	5－25	400－30	95	4，000	3U	4\％	48／4	$53 / 8$	$51 / 2$	$63 /$	24
T－15C39	27.00	5－25	500－30	86	10，000	3 U	$65 / 6$	57\％	75／6	$6^{7 / 1 / 4}$	8	$381 / 2$
T－15C41	33.00	5－25	650－50	46	10，000	3U	$65 / 8$	57／6	$75 / 6$	67／16	8	51

C．H．T．Smoothing Chokes

T－15C45	$\$ 10.80$	12	200	105	4,000	3 U	$35 / 8$	$37 / 6$	$49 / 6$	$41 / 8$	$57 / \mathrm{k}$
10											

Through the use of five or ten ratios on each transformer，these transformers will handle all driver requirements usually encoun－
rered in amateur transmitter circuits．See complete table of Driver and Modulator combinations on pages 12 and 13.

						Mtg． C	Centers		mens		
$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	List Price	Cap． Watts	Max．Pri． M．A．Per Side	Ratio Pri．to $1 / 2$ Sec．	$\begin{gathered} \text { Mtg. } \\ \text { Fig. } \end{gathered}$	Width	Depth		D．		$\begin{aligned} & \text { Wt. } \\ & \text { Lbs. } \end{aligned}$
Universal Driver Transformers＂19＂Series											
T－19D01	\＄7．50	15	60	1：1，1．2：1，1．4：1，1．6：1，1．8：1	4D	33／8		3米／4	33／8	31／2	31／2
T－19D02	7.50	15	60	2：1，2．2：1，2．4：1，2．6：1，2．8：1	4D	$33 / 8$		34／8	$3{ }^{3} 8$	31／2	$31 / 2$
T－19D03	7.50	15	60	3：1，3．2：1，3．4：1，3．6：1，3．8：1	4D	$33 / 8$			$33 / 8$	31／2	$31 / 2$
＋T－19D04	7.50	15	60	4：1，4．5：1，5：1，5．5：1，6：1	4D	33／8		34190	38／8	$31 / 2$	$31 / 2$
－T－19D05	7.50	15	Primary for 500 ohm line	$\begin{aligned} & 1: 3.15,1: 2.75,1: 2.5,1: 2.25, \\ & 1: 2,1: 1.75,1: 1.4,1: 1.25,1: 85,1: .75 \end{aligned}$	4D	$33 / 8$		3特		$31 / 2$	$31 / 2$
	Fea	re Co	$\begin{array}{r} \text { C.H } \\ \text { Switcl } \end{array}$	T．Multi－Match Driver Transforme hboard Plug－In Terminal Board and	Comp	und	led C				
「－15D76＊－	\＄10．80	15	60	1：1，1．2：1，1．4：1，1．6：1，1．8：1	3H	$35 / 8$	3最		，	48／4	$71 / 2$
「－15D77＊	10.80	15	60	2：1，2．2：1，2．4：1，2．6：1，2．8：1	3H	35／8	32919	$41 / 8$		$48 / 4$	6
T－15D78＊	10.83	15	60	3：1，3．2：1，3．4：1．3．6：1，3．8：1	4U	$35 / 8$	3習	$4{ }^{5} \mathrm{~m}$	438	4l／4	6
T－15D79＊	10.80	15	60	4：1，4．5：1，5：1，5．5：1， $6: 1$	4 U	35／8	31910	45 自	$4{ }^{3} \mathrm{~s}$	43／4	6
T－15D82	10.80	15	Primary for 500 ohm line	$\begin{aligned} & 1: 3.15,1: 2.75,1: 2.5,1: 2.25, \\ & 1: 2,1: 1.75,1: 1.4,1: 1.25,1: .85,1: .75 \end{aligned}$	4U	$35 / 8$	3 96	45／r	$43 / 8$	43	$53 / 4$
T－15D83	18.00	30	Primary for 500 ohm line	$\begin{aligned} & 1: 3.15,1: 2.75,1: 2.5,1: 2.25,1: 2, \\ & 1: 1.75,1: 1.4,1: 1.25,1: 85,1: 75 \end{aligned}$	4U	$35 / 8$	31910	43 伯	$43 / 8$	48	$81 / 2$

Chart for Determining Overall Physical Dimensions and Mounting Centers

These drawings illustrate the method of determining overall dimensions and mounting centers．MD indi－ cates mounting centers depth，MW indicates mounting
centers width．Characteristics are similar wherever mounting styles are somewhat similar．

Beginners Hand Book and Guide－Amateur Radio

AMATEUR RADIO A Beginners Guide By J．Douglas Fortune This text－book was carefully prepared and edited to make learning of radio by all beginners easy and interesting．In addition to presenting funda－ mental theory，instructions are given for con－ structing and operating oscillators，receivers and transmitters．The subjects covered include：Learn－ ing the Code，Receiver Theory and Construction， Crystal Oscillator Transmitter，Two－stage Trans－

mitter，Three－Stage Transmitter，Construction of the Modulator，and reference notes on receivers， inductance，capacity and many other electrical and radio terms．It is a book recommended to all experimenters，beginning amateurs and even to amateurs of long experience．Profusely illustrated with over 100 comprehensive photographs and drawings．Heavy cover finished in wear－resistant blue cloth，with attractive gold stamping．This is a cloth cover，case bound text－book of approxi－ mately 160 pages．Amateur net price 75 c．

DRIVER (D) TRANSFORMERS
For coupling single or push-pull plates to the grids of an amplifier stage in which grid current is drawn during a part of the audio cycle.

DRIVER TRANSFORMERS FOR SPECIFIC APPLICATIONS

Line-to-Grid Driver Transformers (High Level)

*Split secondary as required for inverse feedback and separate power tube bias.

THORDARSON AMPLIFIERS

(Factory Wired and Tested)

The finest amplifiers are built by Thordarson - pioneers in producing quality audio components. High fidelity is assured by accurate laboratory design and rigid inspection during production.
The new catalog No. 600F contains complete information on amplifiers from a one watt dry battery amplifier to preamplifiers and boosters large enough to cover the largest amplifier requirement. New rack and panel equipment; 6 volts DC, 115 volt AC models; a loud speaker field supply and other modern equipment also included.

No. 346-Amplifier Guide 15c Postpaid

P. A. men and experimenters interested in building high quality amplifiers find the Thordarson Amplifier Guide No. 346 a worthwhile source of information. It contains laboratory designed and tested circuits of amplifiers from 8 to 120 watts output. Complete parts list, mechanical chassis drawings, and comprehensive illustrations enable the constructor to obtain superior results with matched transformer and choke components. Data are included
 for pre-amplifiers, dual tone controls, speaker impedance matching and resting.

THORDARSON Driver and Madulator Combinations

MODULATOR STAGE

W-E 242A, 261A, 276A Same as R.C.A. 211
NOTE: This ratio is correct only when the tubes supplying power to the 500 ohm line are of the same type and operated under the same conditions as the driver tubes listed under "P-P Driver Tubes." 2A3 driver tubee are operated with 300 plate volta, self biased, unlesa preceded by t. 45 driver tubes are operated with 275 plate volta, self biased, unleas preceded by $\dagger 2 \mathrm{~A}$ driver tubea are operated with 300 plate volta, fized bias. 45 driver tubee are operated with 250 plate volts, self biased. ${ }^{*} * 6 \mathrm{~L} 6^{\prime}=$ with 16.6% feed-back, 400 volte plate, 300 volts screen.

FILAMENT (F) TRANSFORMERS

FILAMENT (F) TRANSFORMERS
Recommended for complete filament requirements of transmitters or amplifiers. Improved appearañee and protection of coils from mechanical injury are afforded by mechanical shields.

						R.M.S.		Mtg. C	enters		nensi		
$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	$\underset{\text { Volts }}{\text { Primary }}$	Sec. Volts	Sec. Amps.	$\begin{aligned} & \text { Pri. } \\ & \text { V.A. } \end{aligned}$	$\begin{aligned} & \text { Test } \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & \text { Mtg. } \\ & \text { Fig. } \end{aligned}$	Width	Depth	W.	D.	H.	$\begin{gathered} \text { Wt. } \\ \text { Lbs. } \end{gathered}$
MULTIPLE SECONDARIES - "19" SERIES													
T-19F76	\$5.70	115	Sec. 1-5 V. Sec. 2-7.5/6.3/5	$\begin{aligned} & 3 \\ & 6 \end{aligned}$	67	$\begin{aligned} & 1600 \\ & 1600 \end{aligned}$	2G	2110	25/18	33/6	$31 / 8$	45/8	$43 / 4$
T-19F77	9.90	115	See. 1-5 V. Sec. 2-2.5 V. Ct. Sec. 3-10/7.5/6.3/5	$\begin{array}{r} 3 \\ 10 \\ 5 \quad 8 \\ \hline \end{array}$	133	$\begin{aligned} & 1600 \\ & 7500 \\ & 1600 \\ & \hline \end{aligned}$	2G	3	27/8	38/4	$33 / 8$	47/8	7
T-19F78	6.90	115	Sec. 1-2.5 V. Ct. Sec. 2-5 V.	$\begin{array}{r} 10 \\ 3 \end{array}$	45	$\begin{aligned} & 7500 \\ & 1600 \end{aligned}$	2G	2110	2916	3516	38/8	45/8	5
T-19F79	8.10	115	Sec. 1-6.3 V. Ct. Sec. 2-10/7.5/6.3/5	$\begin{array}{r} 3 \\ 5 \quad 10 \end{array}$	133	$\begin{aligned} & 1600 \\ & 1600 \end{aligned}$	2G	2110	2踙	35960	35/8	45/8	6
T-79F84	5.70	115	Sec. 1-2.5 V. Ct. Sec. $9-5$ V. Ct. Sec. 3-6.3 V. Ct.	3.5 3 3	48	$\begin{aligned} & 1600 \\ & 1600 \\ & 1600 \end{aligned}$	2G	2110	$25 / 6$	35/n	$31 / 8$	45/8	43/4

MULTIPLE SECONDARIES-C. H. T. SERIES

T-11F57-	\$16.50	105/115	Sec. 1-10 Ct. Sec. 2-10 Ct. Sec. 3-6.3 Ct. Sec. 4-5 Ct.	$\begin{aligned} & 8 \\ & 4 \\ & 3 \\ & 3 \end{aligned}$	170	2000	3K	31/60	$41 / 8$	53/6	5\%	$68 / 415$
T-11F58-	18.00	105/115	Sec. 1-7.5 Ct. Sec. 2-7.5 Ct. Sec. 3-6.3 Ct . Sec. 4-5 Ct.	$\begin{aligned} & 6.5 \\ & 3.25 \\ & 3 \\ & 3 \end{aligned}$	120	2000	3K	35/6	$41 / 8$	53\%	59\%	$63 / 4131 / 4$

TAPPED SECONDARIES - C. H. T. SERIES

T-11F50	\$10.80	105/115	7.5/6.3/5*/2.5 Ct.	6.5	55	2000	3 U	35/8	$31 / 8$	45/15	38/4	43/8	61/4
T-11F51	13.20	105/115	10/7.5/6.3 Ct.	8	90	2000	3U	35/8	31/8	45/18	$38 / 4$	45/10	78/4
T-11F52	15.90	105/115	11/10/7.5 Ct.	10	125	20610	3 U	35/8	3910	$45 / 10$	$41 / 8$	57\%	131/2

*Not center tapped.
FILAMENT CORRECTOR AUTOTRANSFORMERS
To compensate for variations in line voltage or for drop in filament leads. Correct filament voltage at the tube is made possible.

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	List Price	Capacity Filament Power Watts	Primary Taps	$\begin{gathered} \text { Mtg. } \\ \text { Fig. } \end{gathered}$	Mtg. Centers Width Depth	Dimensions			Wt. Lbs.
						W.	D.	H.	
T-18V24	\$2.70	60	105/110/115/120/125V.	2 E	23/8	27/8	21/8	28/8	1
T-18V25	4.80	150	105/110/115/120/125V.	2 E	2516	$33 / 8$	21/2	3	13/4

No. 344E-Transmitter Guide 15c Postpaid

 Another Thordarson publication produced for the amateur operator. Complete description and details on practical types of transmitters and short wave apparatus. Schematic diagrams. pictures and parts lists of 12 new, modern transmitters from 10 to 1000 watts including an all-band A.C.battery, emergency portable unit and a 5-10 meter mobile transmitter. Also ask for free catalog sheet SD464 describing 6 new, modern and economical to build, transmitter kits.
No. 340 - Complete Transformer Manual . . . 35c Postpaid

The Thordarson Transformer Manual is a complete book, containing the Replacement Transformer Encyclopedia and Servicing Guide, the Transmitter Guide, and the Sound Amplifier Guide. plus current Thordarson catalogs. It is bound in a strong, attractive blue and orange cover with loose leaf arrangement. giving the user
 opportunity to keep the Manual up-to-date by adding later Thordarson releases. This book has proven to be most popular in the technical library.

2F

MODULATION (M) TRANSFORMERS

To couple the plate or plates of an audio output stage to a Class C R.F. load.

MODULATION TRANSFORMERS FOR SPECIFIC APPLICATIONS

High efficiency, quiet operation and good frequency characteristics have been attained in this series of transformers by thorough engineering
and careful construction. These units are designed for stan

GRID MODULATION TRANSFORMERS

$\frac{\text { T-67M73- }}{\text { T-67M74- }}$	$\$ 4.20$ 5.40	1-42, 46, 6 F		6,300										
T-67M74-	5.40	P.P. 45-2A3	$\overline{\mathrm{AB}}$	5,000	$\frac{0,400}{5,000}$	60	20	2 D	$\frac{218}{21 / 8}$	$\frac{1918}{1918}$	${ }^{27 \%}$	$2{ }^{1515}$	3	21/4

MATCHING LINE TO R. F. LOAD MODULATION TRANSFORMERS

This popular series is designed for direct connection to 500 orm
on type T.83M22.

Type	List	Pri.	Secondary Ohms Load				Max. D.C.Max Sec. M.A. Wat				Mtg. Centers		Dimensions			Wt.			
T-73M52	\$27.00							Width	Depth	W.	D.								
T-83M22	13.80	$500 / 200$	5,000	6,000 7,000	$\frac{8,000}{8,000}$	9,000				10,000	215	80	$\stackrel{2}{ } \mathrm{Q}^{\text {N }}$	$6^{3} 4$	$3^{33_{\mathrm{pi}}}$	71/2	5.		
					8,000	9,000	10,000		30	2 N	231	$2^{3}{ }_{8}$	378	39 們	41118	8			

THORDARSON OSCILLOSCOPE KIT

Accurately designed circuit uses a 913 tube. Magnifying lens gives clear $2^{\prime \prime}$ image and small over alses. Circuit diagres it ideal for relay rack of servicemen and for amateur and experimental

UNIVERSAL AND MULTI-MATCH MODULATION (M) TRANSFORMERS

The radio amateur or experimenter regularly makes changes in equipment to take advantage of new circuits and tubes. To enable quick and accurate matching of various tube loads without changing transformers, and to assure peak transformer performance while testing new tubes or making circuit changes, these Universal and Multi-Match transformers are made available. A complete table
of driver and modulator combinations on pages 12 and 13 makes easy the selection of the proper driver or modulation transformer. Larger modulation transformers are available on special order. Please consult the Thordarson Sales Engineering Department concerning special requirements.

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$	Capacity Watts	Pri. M.A. Each Side	Secondary M.A.		$\begin{aligned} & \text { Mtg. } \\ & \text { Fig. } \end{aligned}$	Mtg. Centers		Dimensions			
				Series	Parallel		Width	Depth	W.	D.	H.	
+ T-19M13	\$5.70	15	50	50	100	4D	215/6		33/8	21/2	3	2
T-19M14	9.90	30	75	75	150	2N	314	$13 / 10$	3^{3},	31,	1	412
T-19M15	14.40	60	125	125	250	${ }_{2} \mathrm{~N}$	$31 / 4$	2\% ${ }^{\text {a }}$	$33 / 4$	$3^{7 / 8}$	4	$61 / 2$
T-19M16	20.40	100	175	175	350	2N	$31 / 4$	$23{ }_{4}^{4}$	± 14	$41 / 4$	616	$12 \frac{1}{2}$
T-19M17	33.00	250	225	225	450	20	$73 / 4$	$33 / 16$	$81 / 2$	$53 / 4$	678	$30^{3 / 4}$

C. H. T. MULTI-MATCH MODULATION TRANSFORMERS
*Feature Thordarson Switchboard Plug-in terminal board for quick and accurate matching of tube loads.

T-11M74	\$13.20	40	100	80	160	4U*	$3{ }^{5} 8$	$3{ }^{1816}$	4518	$43 / 8$	$4{ }^{3}$	7
* T-11M75	15.30	75	145	145	290	$4 \mathrm{U}^{*}$	35.	3396	45/60	$4{ }^{3} 8$	434	9
* T-11M76	27.00	125	210	160	320	4U*	$4^{9}{ }^{\text {b }}$	43/4	53/8	512	$6{ }^{3}$	
* T-11M77	36.00	300	250	250	500	4 ${ }^{*}$	538	61/8	$63 / 5$	75/8	73	30
* T-11M78	72.00	500	320	320	640	3 P	31/6	$10^{3} 8$	$53 / 8$	$131 / 4$	67	54

C. H. T. MULTI-MATCH CATHODE MODULATION TRANSFORMERS

Audio power is 10% of the Class C input. R. F. efficiency is 44%. With the exclusive Thordarson Switchhoard Plug-in Terminal Board.

T-11M69	\$10.80	15	5,000, 7,000, 10,000	80 to 2,000	300	4U	$35 / 8$	31/8	$4^{5}{ }^{\text {i6 }}$	$33 / 4$	$35 / 8$
T-11M70	15.00	40	3,000, 6,600, 10,000	80 to 2,000	400	4 U	$35 / 8$	$41 / 4$	4^{5}	4318	$5^{7}{ }_{4 i} 7$
T-11M71	18.00	100	$6.000,8,000,10.000$	80102,000	600	4 U	35/8	414	$4^{5}{ }_{16}$	$4^{7} 8$	$5^{3} 810$

THORDARSON BROADCAST UNITS

CATALOG No. 500-F

Cross section vieu Multi-shield Audio Transformer

See Bantam, Incher and Major Series listed on pages 6 and 7.

The same high quality transformers that have been made to the special requirements of discriminating engineers, broadcast stations and laboratories are now a vailable as stock catalog items. Thordarson offers a complete line of transformers and chokes for broadcast use, each capable of meeting and surpassing the most rigid broadcast tolerances. Audio transformers perfectly designed and manufactured to assure uniform frequency response are listed. Filters, line equalizers, many types of filament transformers and filter reactors, plate transformers, modulation transformers and reactors round out an unusually complete line of broadcast components. Station engineers, experimentors, laboratories or air-craft equipment manufacturers and engineers are urged to secure a copy of catalog 500 .F - FREE.

PLATE SUPPLY (P) TRANSFORMERS - "19" SERIES

Supply the voltage porential between cathode and anodes of vacuum tubes in a rectifier circuit. Thordarson plate transformers are rated in D.C. voltages from a two section filter which includes the voltage drop through the rectifier tubes. Designed especially for Amateur Short W'ave or experimental equipment. Electrostatic shielding is provided between p and secondary windings.

*These transformers designed for double rectifiers and will deliver both secondary ratings simultaneously. If only the lower voltage taps are used the current rating is equal to the current rating of both windings.

POWER (R) TRANSFORMERS

TELEVISION POWER TRANSFORMERS

$\begin{aligned} & \text { Type } \\ & \text { No. } \\ & \text { T-17R32 } \end{aligned}$	List	$\begin{aligned} & \begin{array}{c} \text { Kinescope } \\ \text { Tubes } \end{array} \\ & \hline 5^{\prime \prime} \end{aligned}$	Secondary		R.M.S. Test Volts	Mtg.Fig.	Mtg. Centers		Dimensions			Wt. Lbs. $41 / 2$	
	Price				Width		Depth	W.	D.	H.			
	\$12.30		No. $1-2300 \mathrm{~V}$ AC No. $2-2.5 \mathrm{~V}$ at 2 A No. $3-2.5 \mathrm{~V}$ at 2 A	3000 V DC		7500	2G	2116	$\underset{25}{518}$	W. ${ }_{16}^{5}$	D.		H.
T-17R33	20.40	9 "	No. $1-4500 \mathrm{~V}$ AC No. $2-2.5 \mathrm{~V}$ at 5 A No. $3-2.5 \mathrm{~V}$ at 2 A	6000 V DC	10,000	2G	$211 / 16$	316	3516	37\%	45/8	$6 \frac{1}{12}$	

PLATE SUPPLY (P) TRANSFORMERS - C. H. T. SERIES
Will operate continuously under full rated load conditions with excellent regulation and with minimum temperature rise. Cases are compound filled for complete coil protection.

								Mtg. C	enters		mensio		
Type No.	List Price	Primary Volts	Sec. A.C. Load Volts	D.C. Volts	D.C.	$\begin{aligned} & \text { Pri. } \\ & \text { V.A. } \end{aligned}$	$\begin{aligned} & \text { Mtg. } \\ & \text { Fig. } \end{aligned}$	Width	Depth	W.	D.		$\stackrel{\text { Wt. }}{\text { Lbs }}$
T-15P11	\$16.80	115-230	$\begin{aligned} & 665-0-665 \\ & 535-0-535 \end{aligned}$	$\begin{aligned} & 500 \\ & 400 \end{aligned}$	200	160	3 U	35.8	$3^{7}{ }^{7}$	4 5,	41/3		$15^{3} 4$
T-15P12	19.20	115-230	$\begin{aligned} & 835-0-835 \\ & 655-0-655 \end{aligned}$	$\begin{aligned} & 400 \\ & 650 \\ & 500 \end{aligned}$	200	200	3U	4%	41/6	$53 / 8$	4^{136}		191/2
T-15P13	28.80	115-230	$\begin{aligned} & 945-0-945 \\ & 770-0-770 \end{aligned}$	$\begin{aligned} & 750 \\ & 750 \end{aligned}$	300	315	3 U	53/8	$515 / 6$	63 㻢	75.8		313
T-15P14	36.00	115-230	$\underset{945-0-945}{1225-0-1225}$	$\begin{array}{r} 1000 \\ 750 \end{array}$	300	427	3U	53,8	515.6	6 3/6	65\%	77	41
T-15P15	42.00	115-230	$\begin{aligned} & 1450-0-1450 \\ & 1190-0-1190 \end{aligned}$	$\begin{aligned} & 1250 \\ & 1000 \end{aligned}$	300	520	3 U	$6^{5 / 6}$	61/4	7 9, 减	71/3	8	$511 / 4$
T-15P17	45.00	115-230	$\begin{aligned} & 1815-0-1815 \\ & 1535-0-1535 \end{aligned}$	$\begin{aligned} & 1500 \\ & 1250 \end{aligned}$	300	665	3U	$65 / 9$	61/4	75	81_{8}	8	55
T-15P19	81.00	115-230	$\begin{aligned} & 2950-0-2950 \\ & 2365-0-2365 \end{aligned}$	$\begin{aligned} & 2500 \\ & 2000 \end{aligned}$	300	1160	3 P	$31 / 4$	$10!8$	$6^{3} \times$	$123 / 4$	9	85
T-15P16	63.00	115-230	$\begin{aligned} & 1540-0-1540 \\ & 1255-0-1255 \end{aligned}$	$\begin{aligned} & 1250 \\ & 1000 \end{aligned}$	500	875	3P	$31 / 4$	95/8	$6^{3} 5$	121/4	9	81
T-15P18	84.00	115-230	$\begin{aligned} & 2130-0-2130 \\ & 1845-0-1845 \end{aligned}$	$\begin{array}{r} 1750 \\ 1500 \\ \hline \end{array}$	500	1210	3 P	$31 / 4$	1078	63.8	131/2	9	96
T-15P21	114.00	115-230	$\begin{aligned} & 3440-0-3440 \\ & 2980-0-2980 \\ & 2340-0-2340 \\ & 1815-0-1815 \end{aligned}$	$\begin{aligned} & 3000 \\ & 2500 \\ & 2000 \\ & 1500 \end{aligned}$	500	2180	3 P	$41 / 4$	111/8	7\%\%	117/8		
T-15P20	120.00	115-230	$\begin{aligned} & 2960-0-2960 \\ & 2390-0-2390 \end{aligned}$	$\begin{aligned} & 2500 \\ & 2000 \end{aligned}$	650	2380	3 P	$41 / 4$	117/8	$7{ }^{9}$	145/8		140

POWER (R) TRANSFORMERS
 \section*{Universal Bias Transformers - "19" Series}

C. H. T. Multi-Volt Bias Transformers

Have the convenient feature of Switchboard plug-in terminal board tacilitating changes of voltage.

POWER TRANSFORMERS FOR CATHODE RAY TUBES

			POW	WER TRAN	F								
					Filamen	Windings		Mtg. Ce	enters		mensio		
Type No.	List Price	Volts D.C.	M.A.	Rect. Fil.	Fil. No. 1	Fil. No. 2	Mtg. Fig.	Width	Depth	W.	D.	H.	Wt. Lbs.
T-92R33	\$5.40	**500	3	$6.3 \mathrm{~V}-.9 \mathrm{~A}$	$6.3 \mathrm{~V}-.6 \mathrm{~A}$	$6.3 \mathrm{~V}-.6 \mathrm{~A}$	2 F	$3 \frac{1}{32}$		319,400	3316	31/2	35
For 913 tube		tap-400	15			(No. $32.5 \mathrm{~V}-1.4 \mathrm{~A}$)							
T-14R32-	9.00	400	15	$\begin{aligned} & 5 \mathrm{~V}-2 \mathrm{~A} \\ & 5 \mathrm{~V}-2 \mathrm{~A} \end{aligned}$	$6.3 \mathrm{~V}-.6 \mathrm{~A}$	$\begin{array}{r} 2.5 \mathrm{~V}-2 \mathrm{~A} \\ \text { (No. } 3 \mathrm{6.3V}-.6 \mathrm{~A} \text {) } \end{array}$	2G	$21 / 8$	$21 / 8$	$27 / 8$	$3{ }^{3} 8$	311/6	4

For Dumont 24-XH; RCA 902, 913; National 2002 Tubes.
**With half wave rectification.
No. 352 -Replacement Transformer Encyclopedia. Free
Thordarson Replacement Transformer Encyclopedia Nu. 352 indicates proper transformer and choke replacement for receivers listed in Rider's Manuals. This handy, useful time-saver, originated by Thordarson, is now used he good service engineers the world over. In addition. it contains electrical and physical characteristics of all transformers and chokes listed in the Guide. Also included is a convenient table for choosing the correct output transformer for each application.

POWER (R) TRANSFORMERS

To furnish plate and filame rowER (R) TRANSFORMERS

UNIVERSAL REPLACEMENT POWER

The choice of servicemen in all parts of the world because fRANSFORMERS - "13R" SERIES
and mechanically. Adjustable mounting brackets permit flush, vertical or horizontal mounting to receiver replacement, both electrically are given in Thordarson Replacement Transformer Encyclopedia No. 352 .

AMPLIFIER, TRANSMITTER AND REPLACEMENT - Half Shell or Flush Mounting

Lugs are brought out through solder terminals facilitating circuit changes for the experimenter

VIBRATOR POWER TRANSFORMERS

For operation with a vibrator from a six volt battery source.

$\begin{gathered} \text { Type } \\ +\begin{array}{c} \text { No. } \end{array} \\ \hline \text { T-14R33 } \end{gathered}$	List Price	Secondary		$\begin{aligned} & \text { Mtg. } \\ & \text { Fig. } \end{aligned}$	Mtg. Centers		Dimensions			Wt.
		D.C. Volts to Filter	M.A.							
- T-14R33	\$3.60	225	M.A.		Width	Depth	W.	D.	H.	
- T-14R35	4.20 4.50	250	50	3 C	21/60	${ }^{1565}$	$2^{1 / 2}$	25/8	$3^{1 / 8}$	2
T-14R36	5.70	260	60	3 C	2/10	$21 / 16$	$21 / 2$	$23 / 4$	$31 / 4$	$21 / 4$
T-14R37	6.00	285	75	3 C	2	21/60	21/2	27/8	$31 / 8$	$21 / 2$
T-14R38	6.90	350	75 100	3 C	2	$\frac{116}{1 / 6}$	$21 / 2$	$31 / 8$	$31 / 8$,
* T-14R39	3.30	150	100	2 G	2姩	25 后	35			$31 / 2$
			40	2B	23/8		27/8	21/8		5 $11 / 4$

UNIVERSAL 115 VOLT A. C. OR 6 VOLT D. C. VIBRATOR POWER TRANSFORMER
$\$ 9.00350$ D. C. @ 1.35 Ma . Fil. 6.3 @4.75 Amp. 2G
$3 \quad 31 / 4$

POWER (R) TRANSFORMERS - Amplifier, Transmitter and Replacement

C. H. T. POWER TRANSFORMERS

For amplifiers, transmitters, or deluxe receivers. Designed to operate continuously at full rated load. Cases compound filled for complete coil protection.

T-15R00	\$15.00	140	500-0-500	150		$5 \mathrm{~V}-3 \mathrm{~A}$	7.5V/6.3-5A		3U	49\%	$33 / 4$	58/8	49/18	58/415
T-15R01	21.00	310	500-0-500	400		$5 \mathrm{~V}-6 \mathrm{~A}$	$6.3 \mathrm{~V}-6 \mathrm{~A}$		3U	58/8	49\%	63/18	58/8	6410 241/2
T-15R02	15.90	220	750-0-750	200		$2.5 \mathrm{~V}-10 \mathrm{~A}$	7.5V/6.3-3A		3U	4910	41/18	58/8	4 518	$68 / 817$
T-15R03	16.50	205	400-0-400	200		5.V-3A	6.3V-3A	$2.5 \mathrm{~V}-4 \mathrm{~A}$	3U	4913	41/8	58/8	4\%	$68 / 819$
T-15R04	9.00	30	255-0-255	25			6.3V-2.1A Ct.		3 U	28/8	21/2	3	3	$35 / 10$
T-15R05	15.90	150	340-0-340	135	77V	$\begin{aligned} & 5 \mathrm{~V}-3 \mathrm{~A} \\ & 5 \mathrm{~V}-2 \mathrm{~A} \end{aligned}$	$6.3 \mathrm{~V}-4 \mathrm{~A} \mathrm{Ct}$.	$\begin{aligned} & * 6.3 \mathrm{~V}-2 \mathrm{~A} \mathrm{Ct} . \\ & { }^{*} 2.5 \mathrm{~V}-5 \mathrm{~A} \mathrm{Ct} . \end{aligned}$	3U	$3 \mathrm{~s} / 8$	37/n	45 盾	41/8	57/10 10
T-15R06	14.70	155	360-0-360	175		$5 \mathrm{~V}-3 \mathrm{~A}$	$6.3 \mathrm{~V}-5 \mathrm{~A} \mathrm{Ct}$.		3U	$35 / 8$	37/818	4\%/83	41/8	57/111
T-15R07	15.90	238	380-0-380	280		$5 \mathrm{~V}-3 \mathrm{~A}$	6.3V-7A Ct.		3 U	$35 / 8$	41/4	45/6	47/8	58/812
T-15R08	19.20	253	450-0-450	325		5V-6A	$6.3 \mathrm{~V}-8 \mathrm{~A} \mathrm{Ct}$.		3U	49\%	414	53/8	$418 / 18$	$68 / 822$

SPEAKER FIELD SUPPLY TRANSFORMERS

This accurate and convenient table has been compiled to facilitate choosing the correct output transformer. Two types are offered for most tubes: the
universal type, which is designed to accommodate a wide range of tube and voice coil impedances, and the specific dury type.

Tube	Plate Volts	Bias Volt	Plate	Plate LOAD Онмs	Watts Output	Universal Type TransFORMER	SPECIFIC Duty FORMER
6N6G	300	0	42.0	7,000	4.0	T-13S42	T-13S37
6 N 7 .	300	0	* 17.5	8,000	10.0	T-13S41	T-67S48
6V6 (Single Cl. A)	250	-12.5	44.5	5,000	4.5	T-13S42	$\begin{gathered} \text { T-75S75 } \\ \text { T-17S11 } \\ \text { T-15S } 90 \end{gathered}$
(Single Cl. A_{1}) \ldots.	315	-13.0	34.0	8,500	5.5	T-57S018	
$\left(\mathrm{P}-\mathrm{PCl} \mathrm{AB}_{3}\right.$)	250	-15.0	*35.0	10,000	10.0	$\begin{gathered} \mathrm{T}-13 \mathrm{~S} 41 \\ \mathrm{~T}-13 \mathrm{~S} 41 \end{gathered}$	
($\mathrm{P}-\mathrm{PCl} \mathrm{Cl}^{\text {A }}$)	306	-20.0	*50.0	8,000	15.0		
6Y6G	135	-13.5	58.0	2,000	3.6	T-13S42	T-17S10
6Y6G..................	200	-14.0	61.0	2,600	6.0	T-13S42	T-17S10
6Y7G	180	0	*3.8	7,000	5.5	T-13S42	T-67S48
6Y7G................	250	0	*5.3	14,000	8.0	T-57S01§	T-13S40
6Z7G	135	0	*3.0	9,000	2.5	T-13S38 \dagger	T-81S01
677G	180	0	*4.2	12,000	4.2	T-13S38 \dagger	T-13S40
7A5.......	110	-7.5	35.0	2,500	1.4	T-13S42	T-17S10
7B5	100	-7.0	9.0	12,000	. 35	T-13S38 \dagger	
7B5.	250	-18.0	32.0	7,600	3.4	T-13S42	T-13S37
7 C 5	250	-12.5	45.0	5,000	4.5	T-13S42	T-89S74
(P-P Cl. AB ${ }_{1}$) \ldots.	250	-15.0	*35.0	10,000	10.0	T-13S41	T-75S75
10...................	425	-50.0	18.0	10,000	1.6	T-57S01§	
12 A 5	100	-15.0	17.0	4,500	. 8	T-13S42	T-13S39
12A5.	180	-25.0	45.0	3,300	3.4	T-13S42	T-13S39
12A7..................	135	-13.5	9.0	13,500	. 55	T-13S38 \dagger	T-13S43
18..................	250	-16.5	34.0	7,000	3.0	T-13S42	T-13S37
19...................	135	0	*5.0	10,000	2.1	T-13S38 \dagger	T-81S01
25A6.................	95	-15.0	20.0	4,500	. 9	T-13S42	T-13S39
25A7G...............	100	-15.0	20.5	4,500	. 770	T-13S42	T-13S39
25AC5GT	180	0	27.0	8,000	2.0	T-13S38 \dagger	T-13S37
(P-P Cl. B)	180	0	*2.0	4,800	6.0	T-13S41	T-67S54
25B6G	105	-16.0	48.0	1,700	2.4	T-13S42	T-14S82
25L6.................	110	-7.5	49.0	1,500	2.1	T-13S42	T-14S82
31...................	135	-22.5	8.0	7,000	. 185	T-13S42	T-13S37
32L7GT	110	-7.5	40.0	2,500	1.5	T-13S42	T-17S10
33....................	135	-13.5	14.5	7,000	. 7	T-13S42	T-13S37
35A5-LT	110	-7.5	40.0	2,500	1.5	T-13S42	T-17S10
35L6GT	110	-7.5	40.0	2,500	1.5	T-13S42	T-17S10
38.	135	-13.5	9.0	13,500	. 55	T-13S38 \dagger	
38..................	250	-25.0	22.0	10,000	2.5	T-13S38 \dagger	
41	250	-18.0	32.0	7,600	3.4	T-13S42	T-13S37
42	250	-16.5	34.0	7,000	3.1	T-13S42	T-13S37
43	95	-15.0	20.0	4,500	. 9	T-13S42	T-13S39
45 (Single Cl. A)	250	-50.0	34.0	3,900	1.6	T-13S42	T-89S74
($\mathrm{P}-\mathrm{P}, \mathrm{Cl} . \mathrm{AB}_{2}$)	275	-56.0	*36.0	5,060	12.0	T-13S41	T-67S54
46 (Single Cl. A Triode)	250	-33.0	22.0	6,400	1.25	T-13S42	T-13S37
(P-P Cl. B) $\ldots \ldots \ldots$	400	0	*6.0	5,800	20.0	T-13S41	T-67S52
47...................	250	-16.5	31.0	7,000	2.7	T-13S42	T-13S37
(P-P Cl. A) $\ldots \ldots$	250	-16.5	*31.0	14,000	5.4	T-57S01§	T-67S51
	96		52.0	1,500	2.0	T-13S42	T-14S82
(P-P Cl. A_{1} Pent.)	125	-20.0	*50.0	3,000	5.0	T-13S41	T-58S72
49 (P-P Cl. B)	135	0	${ }^{*} 1.3$	8,000	2.3	T-13S38 \dagger	T-14S81
50 (P-P Cl. A)	450	-84.0	*55.0	8,000	9.2	T-13S41	T-65S94
50 C 6 G	135	-13.5	58.0	2,000	3.6	T-13S42	T-17S10
50L6GT	110	-7.5	49.0	1,500	2.1	T-13S42	T-14S82
52	110	0	43.0	2,000	1.5	T-13S42	T-17S10
(P-P Cl. B)	180	0	${ }^{*} 1.5$	10,000	5.0	T-57S01§	T-81501
53.................	300	0	*17.5	8,000	10.0	T-13S41	T-67S48
59 (Single Cl. A Triode)	250	-28.0	26.0	5,000	125	T-13S42	T-13S39
(Single Cl. A Pent.)	250	-18.0	35.0	6,000	3.0	T-13S42	T-13S37
(P-P Cl, B)	400	0	*13.0	6,000	20.0	T-13S41	T-67S52
70L7-GT...............	110	-7.5	40.0	2,000	1.8	T-13S42	T-17S10
71-A	180	-40.5	20.0	4,800	. 79	T-13S42	T-13S39
(P-P Cl. A.) $\ldots . .$.	180	-40.5	*20.0	8,000	1.6	T-13S38 \dagger	T-33S99
79......................	180	0	*3.8	7,000	5.5	T-13S42	T-67S48
89..................	250	-25.0	32.0	6,750	3.4	T-13S42	T-13S37
182B'482B $\ldots \ldots \ldots \ldots$	250	-35.0	20.0	4,500	1.35	T-13S42	T-13S39
183/483	250	-65.0	20.0	4,500	1.8	T-13S42	T-13S39
950................	135	-16.5	7.0	13,500	. 450	T-13S38 \dagger	

See footnote page 22.

OUTPUT (S) TRANSFORMERS

For coupling audio power amplifier tubes to a
speaker load is important. Efficiency, frequency response and distortion are affecred by thectly matching the output tubes to a have multiple secondary impe with receivers where the transformer is usually mounted on the bud matching. Small, unshielded rypes ances, meeting practically all speaker required in sound amplifiers. C.H.T. output transformers have aker frame. Larger shiekded types speaker matching. Tertiary winding requirements. These units are compound filled and are have a greater selection of output impedtubes with recommended output transformers.

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$		Tube Type	Class	Ohms Impedance		$\begin{gathered} \text { Pri. } \\ \text { M.A. } \\ \text { Per Side } \end{gathered}$	Max． Watts	$\begin{aligned} & \text { Mtg. } \\ & \text { Fig. } \end{aligned}$	Mtg．Centers		Dimensions			
	$\begin{aligned} & \text { List } \\ & \text { Price } \end{aligned}$			Pri．	Sec．				Width	Depth	W．	D．	H．	
＊T－13S38	\＄1．80	Universal	A	4，000 7，000	Ajustable	36	8	3E	238		231／8		$13 / 8$	3／4
T－14S85 \dagger	1.80	Single or		$8,000 / 10,000$	． 1 to 29				$2^{3}{ }^{3}$		2318	15／8	158	3／4
＊T－57S01	2.40	P－P Tubes		14，000 Ct．				2 E	$23^{3} 8$		$27 / 8$		238	$11 / 4$
T－57S02 \dagger	2.40								23.8					
T－17S57	2.70							2 C	19 白	1\％2			238	$11 / 4$
＊T－13S42	1.80	Universal Single Tube	A	$\begin{aligned} & 1,500,2.000 \\ & 4,000 / 5,000 \\ & 7,000 \end{aligned}$	$\begin{aligned} & \text { A justable } \\ & .1 \text { to } 29 \end{aligned}$	55	10	3 E	23，8		2第退	2	1发	$3 / 4$
＊T－13S41	3.30	Universal P－P Tubes		$3,000 / 5,000$ $6,600 / 7,000$ $8,000 / 10,000$	$\begin{aligned} & \text { Ajustable } \\ & .1 \text { to } 29 \end{aligned}$	60	20		$2{ }^{1516}$		33／8	$21 / 2$	3	$21 / 4$
\mp Color coded leads for voice coil connections．Unused leads may be clipped off at coil．														
UNIVERSAL TUBE TO LINE														
－T－61525	\＄3．90	Univ．Single Tube	A	$\begin{aligned} & 2,500 / 4,000 \\ & 5,000,6,000 \\ & \hline \end{aligned}$	${ }_{7,000} 500$	60	10		$2{ }^{16} 16$		33／8	$21 / 2$	3	$21 / 4$
＊T－61S26	4.20	Univ．P－P Tubes	A	$\begin{array}{r} 8,00010,000 \\ 12,000,14,000 \\ \hline \end{array}$	$\text { Ct. }{ }^{500}$		10		$2{ }^{1510}$		$33 / 8$	$21 / 2$	3	$21 / 4$

C．H．T．MULTIPLE TAP OUTPUT TRANSFORMERS

Switchboard plug－in terminal board for quick and accurate selection of secondary impedances．Tertiary winding provides feedback poltage

T－15S90	\＄12．00	$\begin{aligned} & \text { 2-6V6 P-P } \\ & \text { 2-6L6 P-P } \\ & \text { 2-2A3 P-P (self bias) } \end{aligned}$	$\begin{aligned} & \mathrm{AB1} \\ & \mathrm{AB1} \\ & \mathrm{AB} \end{aligned}$	$\begin{aligned} & 8,000 \\ & 5,000 \\ & 5,000 \end{aligned}$	$\begin{aligned} & 2 / 3 / 4 / 6 /- \\ & 8 / 16 / 125 /- \\ & 250 / 500 \end{aligned}$	70	15	4U	3／8	3\％\％	45／6	4^{3}	$43 / 4$	71／4
T－15S91	15.00	$\begin{aligned} & \text { 2-6L6 P-P(300 V. P. \& Sc.) } \\ & \text { 2-2A3 P-P (fixed bias) } \end{aligned}$	$\begin{aligned} & \mathrm{AB} \\ & \mathrm{AB} \end{aligned}$	$\begin{aligned} & 4,300 \\ & 3,1000 \end{aligned}$	Same as above	95	25	4U	$35 / 8$	33／6	45\％	438	43.4	8
T－15S92	18.00	$\begin{aligned} & \text { 2-6L6 P-P } \\ & 2-6 \mathrm{P} 6 \mathrm{P}-\mathrm{P} \end{aligned}$	$\begin{aligned} & \mathrm{AB} 1 \\ & \mathrm{AB}: \end{aligned}$	$\begin{aligned} & 6,600 \\ & 5,501 \end{aligned}$	Same as above	90	40	4U	35／8	41／4	45\％	47／8	5 ${ }^{3 / 8}$	83／4
T－15S93	21.00	$\begin{aligned} & \text { 2-6L6 P-P } \\ & { }_{4-6 \mathrm{~L} 6}^{\mathrm{P}-\mathrm{P}} \text { Par. } \end{aligned}$	$\begin{aligned} & \mathrm{AB} 1 \\ & \mathrm{AB} 2 \end{aligned}$	$\begin{aligned} & 3,300 \\ & 3,800 \end{aligned}$	$\begin{gathered} \text { Same } \\ \text { as above } \end{gathered}$	155	60	4 U	$35 / 8$	41／4	4\％／6	47／8	$5^{\frac{3}{3}}$	$151 / 2$
T－15S94	24.00	4－6L6 P－P Par．	AB2	1，900	$\begin{aligned} & 500 \quad 250 / 166 \\ & / 125 / 100 / 84 \end{aligned}$	230	120	4 U	49\％	43／4	538	51／2	$6^{3} 8$	18

UNIVERSAL LINE TO VOICE COIL

T－53S81	\＄5．70	Line to Voice Coil	500／250	4－8－15	35	2D	$21 / 8$	$13 / 4$	27.8	$2{ }^{36}$	31 伯	31／2
－$\overline{\text { T－60S48 }}$	3.60	Line to Voice Coil	500／1，000	Pri．as 500 ohm－	10	2 E	$2{ }^{15}$		33／8	$21 / 2$	，	
T－17S18	4.50	$\left\{\begin{array}{l}1-6 \text { may be con．in } \\ \text { par．to } 500 \text { ohm line }\end{array}\right.$	$1,500,2.000$ $2,500,3,000$	$\left.\begin{array}{l}.06 \text { to } 8 .: \text { Pri．as } \\ 1000 \text { ohm } .12 \text { to } 16, \text { etc．}\end{array}\right\}$		2D	2416	1116	3	23.	25／3	$21 / 4$
－T－14S80	2.40	Line to Voice Coil	500	$2 / 4.6 / 8$	12	2 E	$2^{3} 8$		27.8	2！！	23 \％	11／2
T－17S17	7.80	Line to Voice Coil	500	4／8／16，25／50	75	3C	31年	2110	$3{ }^{3} 4$	33 左	4	$6 \frac{1}{2}$
T－76S74	4.50	Line to multiple spkrs （autotransformer）	500	$\begin{gathered} 250 / 166 / 125 / \\ 10084 \end{gathered}$	30	4 C	21后	15\％	3	21／2	25／8	21／2

C．H．T．MULTIPLE LINE TO VOICE COIL

With Switchboard plug－in terminal board．

T－15S96	$\$ 15.00$	Line to Voice Coil	$1000 / 500$	$50 / 24 / 16 / 8$	$6 / 4 / 3$	2	25	4 U	$35 / 8$	$41 / 4$	$45 / 8$	$47 / 8$
T－15S97	19.20	Line to Voice Coil	$1000 / 500$	$50 / 24 / 16 / 8 / 6 / 4 / 3,2$	60	4 U	$35 / 8$	$41 / 4$	$45 / 8$	$47 / 8$	$53 / 8$	9

C．H．T．CRYSTAL RECORDER TRANSFORMERS

The wave of interest in recording radio programs，speech and other audio happenings has created the desire to build recording equipment． These two transformers are offered to meet the requirements for coupling to a crystal recording head．Secondary designed for constant velocity recording（series connection），and constant amplitude recording（parallel connection）．

T－15S98	$\$ 12.00$	Line to crystal cutting head	500	Series 16,000 Par．4，000	10	3 U	$23 / 8$	$21 / 8$	3	$23 / 4$	4	5
T－15S99	$\mathbf{1 2 . 0 0}$	Push－pull2A3，6B4G etc． to crystal cutting head	1600	Series 16,000 Par．4，000	10	3 U	$23 / 8$	$2 \frac{1}{8}$	3	$23 / 4$	4	5

TRU-FIDELITY HIGH LEVEL OUTPUT TO LINE OR VOICE COIL TRANSFORMERS

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	List Price	Ohms Impedance		$\begin{gathered} \text { Max. } \\ \text { Max. D.C. } \\ \text { D.C. un- } \\ \text { per side balance } \\ \text { M.A. M.A. } \end{gathered}$		Max. Sig. Level db	Mtg. Fig.	Mtg. Centers		Dimensions				
		Primary	Secondary			Width		Depth	W.		H.			
T-90S07-	\$21.60	$\begin{aligned} & 1250 / 5000^{*} \\ & 750 / 3000^{*} \end{aligned}$	$\begin{aligned} & 50 / 200^{*} \\ & 125 / 500^{*} \end{aligned}$	60	5		$+32$	3 T	$23 / 8$	17/8	35	2\% $\%$	41/8	43/4
T-3S21	21.60	$\begin{aligned} & 1250 / 5000^{*} \\ & 750 / 3000^{*} \end{aligned}$	$\begin{aligned} & 1.25 / 5^{*} \\ & 3.75 / 15^{*} \end{aligned}$	60	5	+32	C7	$17 / 8$	$23 / 8$	$31 / 4$	$35 / 8$	45/8	$43 / 4$	
T-3S22 \dagger	22.80	$\begin{aligned} & 1250 / 5000^{*} \\ & 750 / 3000^{*} \end{aligned}$	$\begin{aligned} & 50 / 200^{*} / 125 / 500^{*} \\ & 1.25 / 5^{4} / 3.75 / 15^{*} \end{aligned}$	60	5	+34	C10	17/8	$23 / 8$	378	4	5	$43 / 4$	
T-3S16 \dagger	45.00	$\begin{aligned} & 6600^{*} \text { P-P 6L6§ } \\ & 6000^{*} \end{aligned}$	$\begin{aligned} & 62.5 / 250^{*} / 125 / 500^{*} \\ & 1.25 / 5^{*} / 7.5 / 10 \\ & 3.75 / 15^{*} \end{aligned}$	84	7	+37.5	3 P	23/6	61/8	418	65/8	$51 / 4$	$43 / 4$	
T-3S17 \dagger	54.00	3800* P-P Par. 6L6§ 3300* or P-P 6L6	$\begin{aligned} & 62.5 / 250^{*} / 125 / 500^{*} \\ & 1.25 / 5^{*} / 7.5 / 10^{2} \\ & 3.75 / 15^{*} \end{aligned}$	152	7	+40	3P	23/6	$75 / 8$	4		51/4	43^{3}	
T-3S23 \dagger	45.00	$\begin{aligned} & 2500 * / 1500^{*} \text { P-P Par. } \\ & 2 \mathrm{~A} 3,6 \mathrm{~B} 4,6 \mathrm{~L} 6 \text { 's } \\ & \text { etc. § } \end{aligned}$	$\begin{aligned} & 62.5 / 250^{*} / 125 / 500^{*} \\ & 1.25 / 5^{*} / 7.5 / 10 \\ & 3.75 / 15^{*} \end{aligned}$	140	7	$+37$	3 P	23 有	$57 / 8$	418	$63 / 8$	$51 / 4$	$43 / 4$	
T-90S12-	20.40	50/200*/125/500*	$\begin{aligned} & 1.25 / 5^{*} / 3.75 / 7.5 / \\ & 10 / 15^{*} \end{aligned}$	100	. 5	+30	3T	28/8	17/8	31/r	29	41/8	$43 / 4$	

AUTOMATIC VOLTAGE REGULATORS

Will deliver a constant voltage (within $\pm 1 \%$) despite line fluctuations from 95 to 130 volts and or secondary loads from no load to full load rating. Operation is fully automatic and instantaneous. Once installed no further adjustment is necessary. Supplies optiona output voltages of 110,115 or 120 volts - 60 cycles. Cases are compound filled for coil protection and to minimize operating noise.

The ideal voltage regulator for oscillators, speech amplifiers, monitoring equipment, signal generators, metering equipment, recording equipment - wherever constant voltages are required.

Special units can be furnished incorporating various types of transformer windings.

For details on the complete line of Thordarson Automatic Voltage Regulators write for Catalog SD-422.
Chart shows actual line voltage fluctuations over 14 hour period and corresponding regulated output delivered by a Thordarson Automatie Voltage Regulator.

Type No.	List Price	Capacity V.A.	$\begin{aligned} & \text { Mtg. } \\ & \text { Fig. } \end{aligned}$	Mtg. Centers		Dimensions			$W^{\top} \mathrm{t}$. Lbs.
				Width	Depth	W.	D.	H.	
* T-9V30	\$ 51.00	100	S2N	115/8	$25 / 8$	12^{7}	51/4	$6^{3 / 4}$	48
* T-9V31	78.00	250	S2N	$115 / 8$	$31 / 8$	12\%\%	$61 / 8$	$81 / 2$	68
+ T-9V32	120.00	500	S2N	16	4	$17{ }^{\circ}$	$61 / 8$	75%	76
+ T-9V33	210.00	1000	S2N	19	4	20	$71 / 8$	$101 / 4$	150

FENCE CONTROLLER TRANSFORMER
For 6 volt D.C. operation, with suitable relays. Open horizontal mounting.

Voltage Changer（v）Transfarmers

VOLTAGE CHANGER（V）TRANSFORMERS

 AUTOTRANSFORMERSAutorransformers consist of a single winding on an iron core．Voltage variation is accomplished by means of taps．
Step Down－Convemience Outlet Type
Input side equipped with cord and plug．Output side has standard receptacle．

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	List Price	Input Volts	Output Volts	Output Load		Mtg． Fig．	Mitg．Centers		Dimensions			
				V．A．	Amps．		Width	Depth	W．	D．	H．	Lbs．
＊T－26V04	\＄ 5.70	220－250	110－125	80	0.725	2 V	2年	21／6	33／8	278	45／8	41／2
＊T－18V06	7.50	$\because 20-250$	110－125	150	1.35	2V	2 3 \％	2360	$3{ }^{3}-8$	35，8	45／8	
＊T－50V11	9.00	2：0－250	110－125	250	2.25	2 V	3	$3 \frac{1}{2}$	313	41／4	4，16	$101 / 4$
T－18V07	16.20	220－250	110－125	500	4.5	2 V	，	$41 / 8$	$33 / 4$	4\％8	$4{ }^{136}$	

Line Voltage Adjusting－Convenience Outlet Type
For boosting or lowering line voltage．Input taps may be selected by means of a convenient plug arrangement as illustrated（Fig．4E）．

T－18V20	\＄ 7.20	95／105／125	115	100	0.9	2 V	2410	21／3	$3{ }^{3,12}$	2%	45／8	$41 / 2$
T－18V21	8.40	95／105／125	115	150	1.3	2 V	2410	25／6	$3{ }^{3} / 8$	$31 / 8$	45／8	5
T－18V22	10.80	95／105／125	115	250	2.2	2 V		25／8		33.8	$4{ }^{156}$	61／2
T－18V23	15.00	95／105 125	115	500	4.5	こV	3	$31 / 8$	34／6	378	$4{ }^{1316}$	9

Primary Regulating Types
For increasing or decreasing line voltage．Taps for $60,80,90,100,110,120$ ，and 125 volts． $50-60$ cycles．Complete with instructions．

T－82V11	\＄18．00	$\begin{aligned} & 60 / 80 / 90 / 100 / \\ & 110 / 120 / 125 \end{aligned}$	Variable	500	4.5	20	314	31／6	$41 / 4$	458	61／16 163／4
T－82V12	24.00	$\begin{aligned} & 60 / 80 / 90 / 100 / \\ & 110 / 120 / 125 \end{aligned}$	Variable	1000	9.0	$2 \mathbb{1}$	37／8	3	5	$43 / 4$	65／8221／2
T－82V13	36.00	$\begin{aligned} & 60 / 8090 / 100 / \\ & 110 / 120 / 125 \end{aligned}$	Variable	2000	18.0	2M	53／4	$53 / 4$	6\％	7！2	$63 / 439$

Line Voltage－Solder Lug Taps
Provide means of increasing or decreasing line voltages from 0 to 135 volts in 5 volt steps，when operated from 100 to 135 volt line．

T－18V03	\＄ 8.70	0－135	Variable	150	1.35	3 C	21／4	17／8	23	$21 / 2$	$33 / 4$	3
T－18V04	10.80	0－135	Variable	250	2.25	3 C	$31 / 4$	23 鶞	$3{ }^{3 / 4}$	2 n 的	4	5
T－18V05	16.20	0－135	Variable	500	4.5	3C	$31 / 4$	278	41.	$33 / 4$	61	

LINE REGULATING AUTOTRANSFORMER

Provides for an increase or decrease of 7.5 volts．May be used on any A．C．line of $50-60$ cycle frequency from 90 V to 125 V as a step－up or step－down transformer．Especially suitable for boosting line voltage for fluorescent lighting units．Fully enclosed（similar to 2 H ）and mounted on a $4^{\prime \prime}$ outlet box cover，allowing for complete enclosure of all wiring in a conduit or BX system．

ISOLATION TRANSFORMERS

Electrostatic shield between primary and secondary．Feature unique plug－in primary voltage adjustment－no changing of connections．

－T－18V00	\＄12．60	105 115 125	115	100	2 V	3	27／8	37.	35／8	$4{ }^{1516} 8$
－T－18V01	23.40	105／115／125	115	250	4 E	$4{ }^{3 / 16}$	2%	5%	57／8	$6 \frac{18}{1 / 3}$

SIGNALING TRANSFORMERS－Listed by Underwriters＇Laboratories
Cases are compound filled and have separate primary and secondary wiring compartments．Knock－outs permit attachment of rigid or flexible conduit without exposing the wiring．Four secondary leads provide these output voltages $-4,8,12,16,20$ and 24 volts．

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	List Price	Intermittent Duty	Constant Duty	Mitg． Fig．	Mtg．Centers		Dimensions			$\begin{aligned} & \text { Wt. } \\ & \text { Lbs. } \end{aligned}$
					Width	Depth	W．	D．	H．	
＊T－47V01	\＄ 9.00	$50 \mathrm{~V} . \mathrm{A}$ ．	35 V ．A．	3 V	$33 / 4$	$6{ }_{4}$	$41 / 2$	，	4，／4	61／4
＊T－47V02	13.20	100 V．A．	85 V．A．	3 V	$33 / 4$	$6 \frac{1}{4}$			41／4	8
T－47V03	26.10	250 V．A．	190 V．A．	3 V	$33 / 4$	$81 / 4$	$4 \frac{1}{2}$	9	41／4	141／4
T－47V04	42.00	500 V．A．	475 V．A．	3 V	$33 / 4$	93 后	51／4		53／4	$221 / 2$

Classified Index

(See Page 2 for Index by Type No.)

Classification

Amplifiers
Audio Transformers
Audio Reactors
Autotransformers
Automatic Voltage Regulators
Bias (Power) Transformers
PAGE NO.
...... 11

Cathode Modulation Transformers ... 17
Cathode Ray Power Transformers 19
Chokes . 6, 7, 8, 9
Choosing Output Transformers . . 22, 23
Crystal Recorder Transformers. 25
Driver Transformers.
10, 11
Driver and Modulator Combinations

12,13
Dual Tone Control Choke and Potentiometer
.8
Fence Controller Transformer 26
Field Supply Transformer...... 21
Filament Transformers. 14, 15
Isolation Transformers.
Line Regulating Autotransformer
Magnetically Shielded Audio
Transformers
.27

Microphone Cable Transformers
Modulation Transformers
5,6,7
16,17
PaGE NO
4, 5, 6, 7 Oscilloscope . 16
6,7,8 Output Transformers 24, 25, 26
15, 27 Plate Supply Transformers.........18, 19
. 26 Power Transformers....... 18, 19, 20, 21
Classification18, 19, 20, 21
Power Transformers for Cathode Ray Tubes 19
Signalling Transformers 27
Splatter Chokes 8
Television Filter Reactor 8
Television Power Transformers 18
Tropex Transformers 3
Tru-Fidelity BroadcastTransformers.$6,7,17,26$
Vibrator Power Transformers 20
Voltage Changers 27
Amateur Radio 10
(A Beginners Guide)
Amplifier Catalog 11
Amplifier Guide. 11
Broadcast Catalog 17
Replacement Transformer Encyclopedia 19
Transformer Manual 15
Transmitter Guide 15
THORDARSON ELECTRIC MFG. CO.
500 W. HURON STREET... CHICAGO, ILLINOIS, U. S. A.

THORDARSON AMPLIFIER GUIDE 346-D

Building Modern Amplifiers

By JEROME H. KLEKER

Chief Sales Engineer, Thordarson Electric Manufacturing Company

THE development of amplifiers is steadily progressing. Today the average builder can turn out a unit capable of results which a few years back could be obtained only in the laboratory. Improvements in tubes, transformers, and circuits make it possible to obtain higher power output from a comparatively small amplifier. Good frequency response is easily obtained and harmonic distortion can be held to the point where it is negligible.

The modern amplifier for Public Address must be entirely self contained. The gain must be high to accommodate low level microphones, and the hum level should be low especially where speakers with good low frequency response are used. The power output rating must be actual undistorted watts at all frequencies, and not just nominal or the tube manufacturers maximum output rating of the tubes used. The amplifiers described in this booklet are modern in these respects and incorporate numerous other improvements.

Thordarson engineers produced these amplifiers strictly for the Sound man and amplifier builder, taking into consideration the high standard of results which are always expected of custom built apparatus. Frequency response, power output, and distortion measurements were made periodically throughout their development on expensive laboratory equipment, thus insuring the most out of each amplifier complement. The final construction of the amplifier is reached only when each part is aiding in the superior performance of the unit.

Inverse feedback is used in most of the amplifiers because of the numerous advantages it offers. Distortion is reduced to minimum, frequency response is made more linear and the overall stability of the amplifier is improved. The constructor is urged to read each and every
article. The suggestions offered in the different models will aid in building any amplifier.

In order to facilitate construction, standard sized chassis are used wherever possible. These are nationally available from parts suppliers. Complete mechanical drawings showing socket and mounting holes make cut and try layout unnecessary and save considerable time in building an amplifier. If drills and punches are not available your local parts supplier may be able to do the necessary work for you.

Full size chassis templates for any amplifier are available from the factory for 15 c postpaid. By using a full size drawing the chassis can be marked directly without measurement.

All parts listed are nationally advertised brands and are readily available. Substitution is recommended only when they are of equal quality and the electrical and physical characteristics are the same. Small hardware, etc., is not listed inasmuch as the builder usually has this material on hand.
Assembly of the amplifier is usually started by mounting tube sockets, controls, transformers, and chokes on the chassis. The bottom view photos are marked to indicate the placement of the more important parts used in the amplifier. Small bakelite strips with solder lugs were used in some cases to support small resistors and condensers. If the strips are not available, these parts may be self supported by their leads. The use of the strips, however, tend to make a neater and more rigid wiring job and are
recommended. recommended.

Proceed to wire the amplifier by starting with the filament or heater circuits. No. 18 stranded pushback wire is suitable.

Wire the power supply next and finally the small resistors, condensers, and controls. It is quite important to use shielded wire as indicated in the circuit diagrams since hum and feedback is liable to result otherwise. Where the schematic diagrams show shielded resistors and condensers this is accomplished by first inserting the part in a piece of spaghetti tubing or wrapping with insulating material such as varnished cambric and then covering with shielding braid. The shielding of the parts so indicated is important in the reduction of hum.

After the assembly and wiring is completed recheck carefully before installing tubes and applying power. When certain that the wiring is correct the power can be applied and voltages checked carefully. It is advisable to measure all voltages and power output before the amplifier is placed in service. This will prevent overloading of tubes or parts due to improper adjustments, bad connections or oscillation.

Due to the high power sensitivity of beam power tubes they sometimes oscillate at a high inaudible frequency if placement of leads is not correct or shield. ing and grounds are insufficient. Oscillation can also be caused by improper phasing of the inverse feedback circuit. Reversal of the leads, connecting the feedback winding of the output trarisformer to the grid returns of the input transformer, will change the phase relationship of the feedback voltage. The use of an oscilloscope is recommended in determining when these conditions take place and in correcting same. The article on page 31 will be helpful in the proper testing of an amplifier with the oscillo-
scope.

Correspondence is invited to aid in the solution of your amplifier problems.

TABLE OF CONTENTS

Building Modern Amplifiers 2
Advantages of Inverse Feedback.
3
3
8 Watt Amplifier
8 Watt Amplifier 4
15 Watt Amplifier
6
6
25 Watt Amplifier
8
8
40 Watt Amplifier
10
10
60 Watt Amplifier
12
12
120 Watt Amplifier
14
14
2A3 Phono Amplifier
2A3 Phono Amplifier
16
16
6 Volt DC, 115 Volt AC, Mobile Amplifier 18
Single Channel Pre-Amplifier 20
Four Channel Pre-Amplifier. 22
Dual Tone Control.
24
24
Matching Speaker Loads
26
26
Chassis Drawing, 6 V. D.C. Amplifier
27
27
Chassis Drawing, 2A3 and 15 Watt Amplifier 28
Chassis Drawing, 25 and 40 Watt Amplifier. 29
Chassis Drawing, 60 and 120 Watt Amplifier 30
Testing Amplifiers
31
31
Factory Built Amplifiers 32

A beam power amplifier to be truly modern should incorporate inverse feedback. It is a commonly recognized fact that low plate resistance tubes such as the 2 A 3 are superior from the standpoint of low distortion and good quality. With inverse feedback the high plate resistance beam power tube may be made to take on the characteristics of the low-mu triode, yet retain most of its high power sensitivity. The important advantages obtained by the use of inverse feedback are fourfold: first, reduction of wave form distortion; second, improvement of frequency response; third, reduction of hum; and fourth, reduction of "hangover" effect. The only disadvantage of inverse feedback lies in the fact that the gain is considerably reduced.

EXPLANATION OF INVERSE FEEDBACK

In the circuit of Fig. 1, a certain amount of the voltage developed in the plate circuit is fed back out of phase with the signal in the grid circuit. If without inverse feedback a certain voltage E_{0} is developed across the output circuit with an input voltage E_{1} the gain of the stage is E_{0} divided by E_{t}. If now a certain percentage N of the voltage E_{0} is fed back to the grid circuit in such a way that the voltage is out of phase with the input voltage \mathbf{E}_{1} the total input voltage to obtain an out put voltage of E_{0} is $\left(N E_{0}+E_{1}\right)$) and
the gain of the stage is $\frac{E_{0}}{\left(N E_{0}+E_{1}\right)}$. The
ratio N is the percentage of the output voltage which is fed back to the input circuit. It may be readily seen that if N is large the gain of the stage depends more upon N than upon the circuit constants.

The ratio reduction in gain by the addition of inverse feedback may be readily determined by dividing the gain without feedback by the gain with feedback.

REDUCTION OF DISTORTION

As was pointed out in the above paragraph, an inverse feedback circuit feeds back a certain portion of the output voltage to the grid circuit. If distortion is introduced in the amplifier stage a certain amount of the distorted voltage will be fed back into the grid circuit and this will tend to cancel out the distortion developed in the amplifier stage. If in the circuit of Fig. 1 a certain amount of distortion voltage B is present in the output circuit the distortion voltage fed into the grid circuit

will be $\mathrm{N} \times \mathrm{B}$ and this quantity multiplied by the gain of the stage will give the cancelling effect of the inverse feedback. The total distortion present in the output is then equal to the sum of the distortion without inverse feedback and the distortion cancelled by the inverse feedback. In other words, if b is the distortion without inverse feedback, the total distortion, B, with inverse feedback is equal to $(b+B) \times N \times A$, where A is the gain of the stage. Evaluating B gives the quantity

$1+\mathrm{NA}$
is reduced by the ratio of $\frac{1}{1+\mathrm{NA}}$.

Fig. 2 shows the ordinary method of obtaining inverse feedback with the resistorcondenser method. The amount of inverse feedback is equal to $\frac{\mathbf{R}_{\mathbf{1}}}{\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}}$ assuming that the reactance of the condenser C_{1} is negligible over the operating frequencies. However, this assumption is not necessarily true especially at the lower frequencies and the circuit of Fig. 3 is much more efficient from this standpoint. In Fig. 3 the feedback voltage is obtained from a tertiary winding on the output transformer. This method also provides a much better overload characteristic since the resistance in the grid circuit is negligible and it is quite possible to operate the tubes in the grid current region.

REDUCTION OF PLATE RESISTANCE

In addition to the reduction in distor tion obtained by inverse feedback, there is also a reduction in the plate resistance of the tubes. A high plate resistance is a
definite disadvantage in the case of a power tube which operates into a speaker load which is more or less variable depending upon the impedance of the voice coil. In the circuit of Fig. 4, it may be easily seen that the voltage E developed across the load depends a great deal upon the actual value of $\mathbf{R}_{\mathbf{L}}$ which is the reflected impedance of the voice coil. This is due to the fact that the signal current depends almost entirely upon the high plate resistance of the tube. Since the load resistance is low in comparison to the plate resistance, the voltage developed across the load is almost directly proportional to the impedance of the load which varies appreciably with change in frequency. In Fig. 5 it may be seen that the voltage across the load does not vary so much since the signal current depends both upon the load and upon the plate resistance of the tube. If the voice coil has an appreciable amount of reactance the impedance rises with the frequency causing distortion and giving an unnatural amount of "highs." The high plate resistance is unsuitable from another view point, that of the amount of low frequency distortion which may be tolerated. This low frequency distortion is not
R_{p}

FIG. 4

FIG 5
due to the characteristics of the tubes which remain unchanged regardless of the frequency, but depends upon the magnetizing current in the output transformer. The magnetizing current is a distorted nonsinusoidal wave and this current, on flowing through the high plate resistance of the tube, develops a nonsinusoidal voltage drop across the tube which, when subtracted from the input signal, results in a distorted wave across the output. Unfortunately, most amplifiers today are measured for distortion at 400 c.p.s. where the magnetizing current is practically negligible. It is not uncommon to find beam power amplifiers without inverse feedback which have only 25 per cent of the rated power at 40 or 50 cycles. This low frequency distortion is particularly objectionable since all harmonics fall within the audible range Inverse feedback effectively reduces the plate resistance so that the distorted voltage drop caused by the magnetizing current is exceedingly small with the result that there is very little distortion across the output circuit. With a poor output trans former it is quite possible for the distortion to be as high as 30 per cent at 40 cycles without inverse feedback.

"HANGOVER" EFFECT

"Hangover effects," or transients caused by the loud speaker cone vibrating at its natural period when shock excited, are greatly reduced by the use of inverse feedback. The lower plate resistance provides a considerable amount of damping so that the oscillations or transients are reduced. With regular beam power tubes the shunt-
(Continued on page 27)

8 WATT AMPLIFIER

T HIS small amplifier is useful in many everyday applications especially for voice amplification. Political meetings, Ballyhoo, etc., usually can be handled successfully with a small amplifier system capable of delivering about 8 watts of audio power.

Three high gain resistance coupled stages will accommodate even the lowest level high impedance microphones. The phono pick-up signal is mixed into the second stage through a resistance network, providing independent control of microphone and phono without one affecting the other. A good selection of output impedances make it easy to match any P.M. or electro-dynamic loud speaker. The amplifier supplies 6 watts of field power which is sufficient for an 8 or 10 inch loud speaker (5000 ohrn field). One or more additional P.M. speakers may be connected if desired.
The construction of the amplifier is comparatively simple, especially since the chassis layout is shown. A full size drawing is also available making it possible to spot the hole centers on the chassis with a punch if this method of construction is prethe parts, starting with tube been drilled or punched, mount all

Wire the tube heaters first and then proceed with common ground connections. After wiring the " B " supply, install and wire the small resistors, condensers, etc. Use shielded wire as by inserting the diagram and shield resistors R-1, R-6 and R-8 by inserting in spaghetti tubing and covering with a shielded braid. This shielding aids in eliminating annoying hum and cross

There
The wiring of the speaker socket is such that either an electro nections in the amplifier. This is accomplish without altering connections in the amplifier. This is accomplished by properly wiring the speaker plug. If a 5000 ohm field is used, connect the field to the plug prongs corresponding to socket contacts " G " and " A ". If a P.M. speaker is used a jumper wire must be connected in the plug to prongs " G " and " B ". Do not operate the amplifier unless a 5000 ohm speaker field is connected or the plug inserted with the jumper wire.

Make voice coil connections to contacts " G " (common) and either $2,4,8$ or 500 whichever matches the speaker impedance The output terminals marked 500 ohms facilitate connecting to a line in portable set-ups. However, be sure a jumper plug from " G " to " B "' is inserted when this is used.

It is recommended that the tubes be inserted and speaker and other accessories connected before the amplifier is turned on. Voltages are given on the schematic diagram. All voltages should be checked with a good volt-meter before the amplifier is allowed to operate for any length of time. 10% tolerance is permissible in voltage measure-
ments. ments.

TECHNICAL;DATA

Power Output: 8 watts or +31.25 db .
Coverage: 100,000 to $200,000 \mathrm{cu}$. ft . indoors; 6,000 to $10,000 \mathrm{sq} . \mathrm{ft}$. outdoors (depending on speaker efficiency and noise level).
Input Circuits: One 5 megohm channel for high impedance crystal, dynamic, or velocity microphone, and one channel for high impedance crystal or magnetic pick-up. The two channels may be mixed.
Field Supply: 6 watts available for 5000 ohm speaker field.
Output Impedances: 2, 4, 8, and 500 ohms
Frequency Response: Within $\pm 1 \mathrm{db}$ from 45 c.p.s. to 6000 c.p.s.
Tone Control: Maximum position attenuates 1000 c.p.s. 5 db , 5000 c.p.s. 17 db , and 10,000 c.p.s. 23 db .
Gain: Microphone input 111 db ; phono input 66 db (based on 100,000 ohms input impedance).
Hum: 61.5 db below maximum output.
Tubes: 1-6J7, 1-6F5, 1-6L6G, 1-80.
Power Consumption: 85 watts, 115 volts, $50-60$ cycles.
Dimensions: $10^{\prime \prime}$ long, $5^{\prime \prime}$ deep, $9^{\prime \prime}$ high.

FREQUENCY-RESPONSE CURVE

BOTTOM VIEW

8 WATT AMPLIFIER

PARTS LIST thordarson transformers and chokes

T-1 T-							
$\begin{aligned} & \mathrm{T}-2 \\ & \mathrm{CH}-1 \end{aligned}$		T-17810 Output Transformer					
		T-57C54 Choke					
CH-1		RESISTORS					
Diagram		Watts					
No.	Ohms		Type				
R-1	5 MEG.		IRC BT-1/2				
R-2	5,000	1	IRC BT-1				
R-3	3 M EG.	1	IRC BT-1				
R-4	500,000	1	IRC BT-1				
R-5	250,000	Volume Control	Yaxley type "M"				
R-6	500,000		IRC BT-1/2				
R-7	1 MEG.	Volume Control	Yaxley type "0"				
R-8	500,000		IRC BT-1/2				
R-9	3,000	1	IRC BT-1				
R-10	100,000	1	IRC BT-1				
R-11	500,000	Tone Control	Yaxley type " M " with switch				
R-12	5,000	1	IRC BT-1				
R-13	150	25	Ohmite-Wire wound				
R-14	50,000	1	IRC BT-1				
R-15	3,500	25	Ohmite-Wire wound				
R-16	5,000	25	Ohmite-Wire wound				
		CONDENSERS					
Diagram							
	Mrd.	Voltage	$\mathrm{Type}^{\text {The }}$				
C-1	10	25 V Elect.	Aerovox PR25				
C-2	. 04	400 V Paper	Aerovor 484				
C-3	. 1	400V Paper	Aerovox 484				
C-4	10	25 V Elect.	Aerovox PR25				
C-5	. 1	400 V Paper	Aerovox 484				
C-6	. 005	400 V Paper	Aerovox 484				
C-7. C	10 8-8	450 W.V. Elect.	Aerovox PBS450				
C-8, C	9 8-8	450 W.V. Elect.	Aerovox PBS450				
MISCELLANEOUS PARTS							
1	$5 \times 10 \times 3$ " Chassis \& Cover - Par-Metal AF-510 $5 \times 10^{*}$ Chassis bottom plate - Par-Metal BP-4508						
1							
3	Octal sockets - Amphenol S8						
1	4-Contact socket - Amphenol S4						
1	7-Contact socket - Amphenol S7						
1	7 Prong speaker plug - Amphenol PMi						
1	Mic. Connector - Amphenol PC1M						
1	Mic. Connector - Amphenol MC1F						
2	Two screw terminal boards						
1	Line cord and plug -- Belden No. 1725						
3	Control knobs.						
2	Metal tube grid caps						
2	Metal grid cap shields						
1	"M1C" Control dial plate						
1	"PHONO" Control dial plate						
1	"TONE" Control dial plate						
Tubes, 1-6J7, 1-6F5, 1-6L6G, 1-80							
NOTE: The brands and types specified in the parta list were used in the original laboratory models. Parts of equivalent quality may be substituted except where physical limitations prohibit.							

Full size template of this chassis available 15 c net, postpaid, from Thordarson.

TOP VIEW
THE output power of this amplifier is sufficient to satisfy the especially true se of large number of installations. This is being less than 5% total. This percestant at full output is low, as undistorted and permits operating at is generally accepted quality reproduction.

Thordarson CHT transformers are used in this model and are recommended for best results, appearance, etc. Regular types may be substituted as indicated in the parts list but it will be neressary to locate the mounting holes when drilling the chassis since the drawing is based on the use of CHT units. An added advantage is the better selection of output impedances available with the CHT output transformer.
Beam power 6V6.G output tubes are operated in a class A1 circuit employing inverse feedback. The output transformer contains a separate feedback winding which produces a voltage 10% of that developed in the primasy. The voltage is fed out of phase into the grid returns of the input transformer secondary. This method of feedback is superior to the resistor-capacity method inasmuch as there is no frequency discrimination, and any distortion that might develop in the output is corrected. It should ing which is essential transformer has a split secondary wind-
A high impential when this method of feedback is used. channel with independent controls and high impedance phono microphone and crystal or controls accommodate any type of sufficient to obtain full output fropick-up. Amplifier gain is under normal operating conditions.

The circuit dind
The circuit diagram shows two speaker sockets which are used for making speaker voice-coil and field connections. If electrodynamic speakers are used, ten watts of field excitation is available for one 5,000 ohm, or one or t wo $2,500 \mathrm{ohm}$ fields. The table below indicates how the connections are made to the speaker sockets. Note that a jumper wire is used on the speaker field terminal board for same condition of operation.

Jumper

Connect to
 Prongs

$1-5000 \mathrm{ohm}$ field remove
$1-2500$ ohm field $\quad \mathbf{C - 2}$
:-5
2-2500 ohm fields remove
2.5

Field Supply not used 1-C

Speaker voice coil or line counections are made at 3,4 , and C, D of the speaker sockets or the output terminal board. The CHT output transformer, T-2, incorporates a terminal board with jacks and a plug for selecting the proper output im-

Terminal board marked POL. V. is provided to supply a polarizing voltage for static types of microphones or a photo electric cell. When the static microphone is used connect a jumper wire to terminals 1 and 2 which completes the circuit. Under no condition should this jumper be left in place when a crystal, dynamic, or velocity microphone is connected to the amplifier.

Photo electric cells of the gas filled type usually require 90 volts operating voltage. Since the normal voltage applied to the input plug is approximately 270 volts, this should be reduced to 90 volts by connecting a 5 megohm 1 watt resistor from the junction of $\mathbf{C}-1$ and $\mathbf{R}-2$ to ground. In the event that a static microphone or photo electric cell is never to be used R-1, R-2, and C-1 may eliminated.

It is important to employ the shielding of wires and parts as shown in the diagram if hum, noise, and oscillation are to be eliminated. Enclose R-1, R-3, and $\mathbf{C}-2$ in a metal container for minimum hum. The constructor is advised to read the article on page 31 if any difficulty is experienced in adjusting the amplifier.

FREQUENCY-RESPONSE CURVE

DISTORTION CURVE

BOTTOM VIEW

TECHNICAL DATA

Power Output: 15 watts undistorted or +34 db (less than 5% distortion).

Coverage: 200,000 to $500,000 \mathrm{cu} . \mathrm{ft}$. indoors; 10,000 to 20,000 sq. ft. outdoors (depending on speaker efficiency and noise level).

Input Circuits: One 5 megohm channel for high impedance crystal, dynamic, or velocity microphone, and one channel for high impedance crystal, or magnetic pick-up. The two channels may be mixed. Polarizing voltage is provided for static microphone or photo electric cell.

Field Supply: 10 watts available for one 5000 ohm field, or one or two 2500 ohm fields.

Output Impedances: 2, 3, 4, 6, 8, 16, 125,250 , or 500 ohms with CHT output transformer, or $4,8,15,250$, or 500 ohms with regular output transformer.

Frequency Response: Within ± 1 db from 40 c.p.s. to 15,000 c.p.s. with bass boost of 3.5 db below 100 c.p.s.

Tone Control: Maximum position attenuates 10,000 c.p.s. 28 db .

Gain: Microphone input 113 db ; phono input 72 db (based on 100,000 ohms input impedance).

Hum: 74 db below maximum output.
Tubes: $2-6 \mathrm{~J} 7,1-6 \mathrm{C} 5,2-6 \mathrm{~V} 6 \mathrm{G}, 1-523$.
Power Consumption: 112 Watts, 115 volts, 50-60 cycles.

Dimensions: $17^{\prime \prime}$ long, $10^{\prime \prime}$ deep, $9^{\prime \prime}$ high.

PARTS LIST

NOTE: The brands and types specified in the parts list were used in the original laboratory modele. Parts of equivalent quality may be subatituted except where physical lent quality may be subatituted exce.
$\begin{array}{ll}2 & 6 . J 7 \\ 1 & 6 \mathrm{C} 5 \\ 2 & 6 \mathrm{~V} 6-\mathrm{G} \\ 1 & 5 \mathrm{Z3}\end{array}$ $\begin{array}{ll}2 & 6 . J 7 \\ 1 & 6 \mathrm{C5} \\ 2 & 6 \mathrm{~V} 6-\mathrm{G} \\ 1 & 5 \mathrm{ZZ}\end{array}$ $\begin{array}{ll}2 & 6 . J 7 \\ 1 & 6 \mathrm{C5} \\ 2 & 6 \mathrm{~V} 6-\mathrm{G} \\ 1 & 5 \mathrm{ZZ}\end{array}$

CONDENSER

MISCELLANEOUS PARTS

10x17x3 charsis and cover-Par-Metal AF 1017 $10 \times 17^{\circ}$ chassis bottom plate-Par-Metal BP" $452 \overline{6}^{\circ}$ -contact socket - Amphenol S

Onal sockets - Amphenol 58
5-contact sockets - Amphenol S5 5-prong speaker plugs - Amphenol PM5 Mic. connector - Amphenol PC1M Pilot lisht sociket and jewel - Yaxley 310R 6.3V Pilot light - Maxda \& 40

Metal tube grid caps
"Mierophone" control plate
"Phono" control plate
Tone" oontrol plate
knobs
AC line cond \& plug
Mallory bias cell-1.5 V. - FF7
allory bias cell holder -
Two screw terminal boards
Three screw terminal board

THORdarson
 25 WATT AMPLIFIER

THE use of inverse feedback makes it possible to obtain 25 watts of undistorted output from this amplifier with only 300 volts applied to the plates and screens of the power tubes. These low voltages increase tube and condenser life considerably which is a decided advantage. The output tubes are operated in a class AB1 circuit, under which condition no driving power is required; a single 6C5 tube supplies sufficient grid excitation through a C.H.T. input transformer. The windings of this transformer are balanced so that there is a cancelling effect for any hum that might be picked up. Degeneration or inverse feedback is obtained by coupling the tertiary winding of the output transformer to the secondary of the input transformer.

The input circuits are arranged to handle two high impedance microphones and a phono pick-up. Mixing takes place in the second stage in a resistor network that is more simple and economical than electronic mixing. Control action is smooth, and the changing of one control setting does not affect another. It is important, however, to shield resistors R-11, R-12, and $R-13$, and the leads as shown in the diagram. The impedance of these circuits is high, making them susceptible to hum pick-up and cross-talk unless adequately isolated.
Frequency response is adjusted with two tone controls - one for bass and one for treble. With the tone controls in the normal position, the response of the amplifier is decidedly flat-from 30 to 15,000 cycles per second. There is approximately 3 db accentuation at 60 c.p.s. which is purposely brought about by resonating the primary of the input transformer with condenser C-13. This boost is desirable in radio and record reproduction and can be eliminated with the bass tone control for voice work if necessary. The adjustment of both controls helps eliminate feedback when bad acoustical conditions exist.

To insure good quality, loud speakers with a diameter of at least 12 inches are recommended. They should be capable of efficientiy han-
dling 15 watts of audio power each if the full 25 watt output of the amplifier is to be utilized. Either PM or electro-dynamic speakers are suitable since the amplifier will supply 18 watts for field excitation. This is adequate for one large speaker with a 5000 ohm field, or one or two smaller speakers with 2500 fields. A three-screw terminal board is provided for connecting a jumper wire in the event that $P \mathrm{M}$ speakers are used. Use table below in wiring the speaker plugs.

1-5000 ohm field	Jumper none	Connect to Prongs $1-5$
$1-2500$ ohm field	C-2	$2-5$
$2-2500$ ohm field	none	B-E and $2-5$
Field supply not used $1-\mathrm{C}$		

A polarizing voltage may be applied to the input connectors by connecting jumper wires on terminal board marked "POL. V." Refer to the 15 watt amplifier for further details on polarizing voltage for static microphones and photo electric cells.

FREQUENCY-RESPONSE CURVE

DISTORTION CURVE

TECHNICAL DATA

Power Output: 25 watts undistorted or +36.2 db (less than 5% distortion).

Coverage: 500,000 to $1,000,000 \mathrm{cu} . \mathrm{ft}$. indoors; 20,000 to 30,000 sq. ft. outdoors (depending on speaker efficiency and noise level).

Input Circuits: Two 5 megohm channels for high impedance crystal, dynamic, or velocity microphones, and one channel for high impedance crystal or magnetic pick-up. All channels can be mixed. Polarizing voltage is available for static microphone or photo electric cell.

Field Supply: 18 watts for one 5000 ohm field, or one or two 2500 ohm fields.
Output Impedances: $2,3,4,6,8,16$, 125,250 , or 500 ohms with CHT output transformer or $4,8,15,250$, or 500 ohms with regular output transformer.

Frequency Response: Within $\pm 1 \mathrm{db}$ from 35 c.p.s. to 15,000 c.p.s. with bass boost of 3.5 db below 100 c.p.s.
Tone Controls: Two: bass control attenuates 12 db at $60 \mathrm{c} . \mathrm{p} . \mathrm{s} . ;$ treble control attenuates 27 db at 10,000 c.p.s.
Gain: Microphone input, 113 db ; phono input 72 db (based on 100,000 ohms input impedance).
Hum: 74.5 db below maximum output.
Tubes: 3-6J7, 1-6C5, 2-6L6G, 1-5Z3.
Power Consumption: 180 watts, 115 volts, 50-60 cycles.

Dimensions: $17^{\prime \prime}$ long, $10^{\prime \prime}$ deep, $9^{\prime \prime}$ high.

PARTS LIST

THORDARSON TRANSFORMERS AND CHOKES			
No.	CHT	REG.	
T-1	T-15A74	T-15A74	Input Transformer
T-2	T-15S91	T-17S12	Output Transformer
T-3	T-15R07	T-17R30	Power Transformer
CE-1	T-15C55*	T-67C49	First Choke
CH-2	T-67C46	T-67C46	Second Choke
-Windings in serica.			
		RESISTORS	
$\begin{aligned} & \text { Dasgr } \\ & \text { No. } \end{aligned}$	Ohms	Watts	Type
R-1	10 MEG .	1/2	IRC BT-1/2
R-2	10 MEG.	1/21	IRCBT-1/2
R-3	10 MEG .	1/2	IRC BT-1/2
R-4	3 MEG.	1	IRC BT-1
R-5	3 MEG.	1	IRC BT-1
R-6	500,000	1	IRC BT-1
R-7	500,000	1	IRC BT-1
R-8	250,000	Volume Control	Yaxley type "M"
R-9	1 MEG.	Volume Control	Yaxley type "0"
R-10	1 MEG.	Volume Control	Yaxley type "0"
R-11	500,000	$1 / 2$	IRC BT-1/2
R-12	500,000	1/2	IRC BT-1/2
R-13	500,000	1/2	IRC BT-1/2
R-14	5,000	1	IRC BT-1
R-15	100,000	1	IRC BT-1
R-16	500,000	Tone Control	Yaxley UC-513
R-17	9 MEG.	Tone Control	Yaxley UC-508
R-18	250,000	$1 / 2$	IRC BT-1/2
R-19	1,000	1	IRC BT-1
R-20	20,000	1	IRC BT-1
R-21	20,000	1	IRC BT-1
R-22	2,500	25	Ohmite Wire Wound
R-23	2,500	25	Ohmite Wire Wound
R-24	100	25	Ohmite Wire Wound,
R-25	5 MEG.	1/2	IRC BT-1/2
R-26	5 MEG.	3/2	IRC BT-1\%

TUBES
Type 6.37
Type 6C5
Type 6Le-G
Type 5Z3

Diagram		CONDENSERS		
	M	Voltage	Type	
C-1	. 1	400 V Paper	Cornell-Dubilier	DT-4P1
C-2	. 03	400 V Paper	Cornell-Dubilier	DT-4S3
C-3	. 03	400 V Paper	Corneil-Dubilier	DT-4S3
C-4	. 04	400 V Paper	Cornell-Dubilier	DT-484
C-5	. 04	400 V Paper	Cornell-Dubilier	DT-484
C-6	. 1	400 V Paper	Cornell-Dubilier	DT-4P1
C-7	. 1	400 V Paper	Cornell-Dubilier	DT-4P1
C-8	10	25 V Elect.	Cornell-Dubilier	BR-102
C-9	. 1	400 V Paper	Cornell-Dubilier	DT-4P1
C-10	. 03	400 V Paper	Cornell-Dubilier	DT-4S3
C-11	. 001	600 V Paper	Cornell-Dubilier	DT-6D1
C-12	10	25 V Eleet.	Corneil-Dubilier	BR-102
C-13	. 1	400 V Paper	Cornell-Dubilier	DT-4P1
C-14	8-8	450 WV Elect.	Cornell-Dubilier	DT-
C-15			EH-9808SL	
C-16	8	600V Elect. 600 V Elect.	$\begin{aligned} & \text { Aeerovox GL000 } \\ & \text { Aerovox GL600 } \end{aligned}$	

miscellaneous parts
10×17x3 ${ }^{\circ}$ Chassis and cover - ICA $\$ 3875$ 10x 17° Chassis bottom plate - ICA $\$ 4067$ Octal sockets - Amphenol 88
4 -contaet socket - Amphenol S4
5-contact sockets - Amphenol $\$ 5$
5-prong speaker plugs - Amphenol PM5
Mic. input connectors - Amphenol PC1M Mic. input connectors - Amphenol MC1F Three serew terminal boards
Two serew terminal boarda
Pilot light socket and jewel - Yaxley 310R
6. $3 V$ Pilot light bulb - Mazda 140

SPST toggle switeh - Arrow IIdH f 20992
Control knobs
Metal tube grid cape
AC line cord and plug - Belden 1725
AC line cord and plug Melden 1725
Bias cells, 1.5 volta - Mallory $\$ \mathrm{~F} 7$
Bias cells, 1.5 volts -Mallory FF 7
Bias cell holders - Mallory
Bias cell holders - M
"Mic" control plates
"Phono" control plate
"Tone" control plates (bass and treble)

NOTE: The brands and types specified in the parta liat were used in the original laboratory models. Parts of equivalent quality may be substituted except where physieal limitations prohibit.

Full size templeto mechanical drawing of chassis see page 29, Full size template of chassis available from Thordarson. 15 e net, postpaid.

THORDARSON 40 WATT AMPLIFIER

THE characteristics of 6L6 beam power tubes are such that they may be used in the construction of amplifies ranging from 5 to 60 watts output. Their power output depends on the class of operation employed, such as $A_{1}, \mathrm{AB}_{1}, \mathrm{AB}_{2}$. This is determined by the applied plate, screen and grid voltages, the plate load and driving power.

This 40 watt amplifier uses two 6L6-G tubes operating in class $A B_{2}$ with approximately 400 volts on the plates and 250 volts on the screens. Adequate driving power is supplied by a triode connected 6F6 tube through a CHT driver fransformer. The use of inverse feedback and ample driving power make it possible to obtain 40 watts output without using fixed bias. This simplifies the construction of the amplifier considerably.

Two microphones and two phono pick-ups may be connected to the amplifier at one time. The two phono channels are especially desirable where dual turn-tables are employed for continuous record reproduction. Also a suitable radio tuner can be connected to one of the phono channels for broadcast reception in conjunction with one phono pick-up. Complete mixing makes possible the selection of one or more input channels for reproduction at the same time.

A dual tone control circuit recently developed in Thordarson's laboratory operates in the cathode circuit of the 6 C 5 tube. One control affects only the low or bass frequencies, and the other controls the high or treble frequencies. Operation is such that with the controls in the center or vertical position the frequency response is normal, as illustrated by the frequency response curve. Turning the bass control to the left increases the bass response and to the right reduces it. The treble control functions in the same manner. More detailed description of this type of control and its effect on the amplifier frequency response is given on page 24.

Two $\mathbf{5 Z 3}$ rectifier tubes connected in a parallel circuit provide excellent power supply regulation. The additional tube also allows higher total current which is desirable for speaker field excitation. The amplifier supplies 25 watts for speaker fields, (250 volts at 100 MA) which is adequate for one large auditorium speaker or for two to four smaller speakers. The following table indicates how speaker field connections are made to the speaker sockets and the proper position of the field supply jumper wire.

	Jumper	Connect to prongs
$1-2500$ ohm field	$1-\mathrm{C}$	$1-2$
$2-1250$ ohm field	1-C	$2-5$ and A-E
$2-5000$ ohm field	1-C	$1-2$ and A-B
$4-2500$ ohm field	$1-\mathrm{C}$	$2-5$ and A-E*
Field supply not used	C-2	
*Connect two fields in parallel to each plug.		

Connect to

 1-2ohm field - 1250 ohm field 4-2500 ohm field Field supply not used parallel to each plug.

Make speaker voice-coil or line connections to contacts $3-4$ and C-D of the speaker sockets or to the output terminal board. Impedance matching is accomplished by inserting the plug into the proper jack on the CHT output transformer terminal board.

TECHNICAL DATA

Power Output: 40 watts undistorted or +38.25 db (Less than 5\% distortion).

Coverage: 1,000,000 to $2,000,000 \mathrm{cu}$. ft. indoors; 30,000 to 50,000 sq. ft. outdoors (depending on speaker efficiency and noise level).

Input Circuits: Two high impedance channels for crystal, dynamic, or velocity microphones, and two high impedance phono channels for crystal or magnetic pick-ups. All four channels may be mixed.

Field Supply: 25 watts are available for one 2500 ohm, two 1250 ohm , two 5000 ohm , or four 2500 ohm fields.

Output Impedances: $2,3,4,6,8,16,125,250$ or 500 ohms with CHT output transformer or $4,8,15,250$ or 500 ohms with regular output transformer.

Frequency Response: Within $\pm 2 \mathrm{db}, 30$ to 15,000 c.p.s. (Tone controls in normal position).
Tone Controls: Two; Bass control varies response from +12 db to -35 db at 40 c.p.s. and treble control varies response from +8 db to -35 db at $7,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$. from normal. It is possible to obtain practically any desired frequency response.

Gain: Microphone inputs, 118.5 db ; phono inputs, 74 db (based on 100,000 ohms input impedance).

Hum: 75 db below maximum output.
Tubes: 2-6J7, 1-6F5, 1-6C5, 1-6F6, 2-6L6G, 2-5Z3.
Power Consumption: 220 watts, 115 volts, $50-60$ cycles.
Dimensions: $17^{\prime \prime}$ long, $10^{\prime \prime}$ deep, $9^{\prime \prime}$ high.
\qquad

BOTTOM VIEW

PARTS LIST

FREQUENCY RESPONSE CURVE

Watis
Type
Centralab N-103
Centralab N-103
Centraiab P3to
Centralab $=310$
Centralab 8310
Centralab $\ddagger 310$
Centralab $\$ 310$
Centralab $\$ 310$
Centralab $\boldsymbol{f} 310$
Centralab $\$ 310$
Centralab N-104
Centralab N-104
Centralab $\$ 310$
Centralab $\$ 310$
Centralab ${ }^{2} 14$
Centralab $\$ 310$
Centralab f310
Centralab $\$ 310$
Centralab $\$ 314$
Thordarson R-1068
Thordarson R-1068
Centralab 7314
Ohmite, Wiremound
Centralab f310
Centralab $\$ 310$
Centralab $\$ 314$
Obmite, Wirewound Obmite, Wirewound
Obmite, Wirewound
Obmite, Wirewound

TUBES

$$
\begin{aligned}
& \text { Type 6.J7 } \\
& \text { Type 6F5 } \\
& \text { Type 6C5 } \\
& \text { Type 6F6 } \\
& \text { Type 6L6-G } \\
& \text { Type 5Z3 }
\end{aligned}
$$

MISCELLANEOUS PARTS
10×17×3 ${ }^{\circ}$ Chassis and cover - ICA $\$ 3875$
10x $17^{\prime \prime}$ Chassis bottom plate - ICA $\$ 4067$
5-Contact sockets - Amphenol 85
4. Contact sockets - Amphenol S4

Octal sockets - Amphenol S8
5-Prong speaker plugs - A mphenol PM5
Metal tube grid cape
Metal tube grid cap shields
Pilot light socket and jewel - Yaxley $\$ 310 \mathrm{R}$
6.3V Pilot light bulb - Mazda 40

SPST toggle switch - Arrow H\&H f20992
Mic. input connectors - Amphenol $\boldsymbol{P P C 1 M}$
Mic. input connectors - Amphenol $\mathrm{MC1F}$
Primary line cord and plug - Belden $\$ 1725$
Bias cells, 1.5 volts - Mallory \&F7
Bias ce!l hoiders - Mallory fGB-1A
"M.c." control plates
"Phono" control plates
"Tone" control plates
Volume control knobe
Fuse mounting - Littlefuse $\boldsymbol{£ 1 0 7 5}$
Fuse, 5 smp .
2-Screw terminal board, output
2 -Screw ter minal boards, phono input
3-Screw terminal board, field supply
NOTE: The brands and typea specified in the parts list were used in the original laboratory models. Parte of equiveent quality may be subutituted except where physical limitations prohibit

For complete mechanical drawing of chassis see page 29. Full size template of chassis available from THORDARSON 15c net, postpaid.

TOP VIEW

THIS 60 watt amplifier has sufficient undistorted power output for practically any loud speaker installation. Four type 6L6-G output tubes operate in a push-pull pasallel class AB1 circuit. Under these conditions no driving power is required making it possible to use a single 6C5 tube for excitation of the power stage. Distortion in the power stage is reduced to a minimum by the use of inverse feedback. Laboratory tests of amplifiers without inverse feedback indicate that distortion at full output may be less than 5% at $400 \mathrm{c} . \mathrm{p} . \mathrm{s} .$, however it may increase to as much as 30 to 40% at bass and treble frequencies. This peculiarity of pentode and tetrode power tubes is quite easily corrected by the use of inverse feedback. The output of this amplifier has less than 6% distortion at all frequencies between 30 and 10,000 c.p.s.

In wiring the amplifier, shield all leads in the grid and plate circuits of the oulput tubes. The schematic diagram indicates clearly where shielding is necessary. This should not be overlooked since shielding is important in modern amplifiers employing tubes with high power sensitivity. Connect the colored leads of the output transformer to the numbered terminals of T-3 as indicated in the diagram. If the leads of the tertiary winding are reversed oscillation is sure to resalt in the output stage.

Two rectifier tubes are used; one for the plate and bias voltages of the output stage; the other for the screens of the output tubes and the balance of the amplifier. The effect of this circuit is similar to fixed bias and also provides excellent screen voltage regulation which is essential for maximum undistorted output. Interstage coupling through the B supply is also eliminated, since the plate circuit of the 6L6-G tubes is supplied from a separate rectifier.

The amplifier as illustrated is constructed with regular Thordarson transformers and chokes except T-15A74. This is a Thordarson CHT input transformer which incorporates hum balancing construction and a split secondary winding. The use of this transformer is essential since hum pick-up must be held to a minimum, and a split secondary is required for the inverse feedback connection. A CHT output transformer is also available as given in the parts list. In addition to having a better selection of secondary impedances the CHT output transformer is more efficient and has better frequency characteristics. Both the CHT and the regular output transformer have the 10% feedback winding. A dual tone control circuit is used in the cathode circuit of the 6 C 5 tube. Since the control of frequencies is accomplished by means of degeneration, this stage provides very little gain. This stage therefore is strictly for tone control purposes. Refer to page 24 for more detailed information on this circuit and sketch showing connections to the special tone controls.

Both microphone circuits are susceptible to hum pick-up and "cross-talk" unless
properly shielded. A box may be formed from thin metal and placed as illustrated in the bottom view. Mount the bias cells, C-1, C-2, R-5, and R-6 on the inside wall of the chassis before fastening the metal box in place. Resistors R-3, R-4, R-13 and $\mathrm{R}-14$ must also be shielded individually, as shown in the schematic drawing, to prevent hum and "cross-talk" from developing at this point.

TECHNICAL DATA

Power Output: 60 watts undistorted or +40 db (less than 6% distortion).

Coverage: $2,000,000$ to $3,000,000 \mathrm{cu}$. ft . indoors, 50,000 to 75,000 sq. ft. outdoors, (depending on speaker efficiency and noise level).
Input Circuits: Two high impedance channels for crystal, dynamic, or velocity microphones, and two high impedance phono channels for crystal, or magnetic pick-ups. All channels may be mixed.

Output Impedances: $4,8,15,250$, or 500 ohms with regular output transformer as shown or $2,3,4,6,8,16,125,250$, or 500 ohms with CHT output transformer.
Frequency Response: Within $\pm 2 \mathrm{db}$ from 40 to 15,000 c.p.s. (tone controls in normal position).
Tone Controls: Two; bass control varies response from +8 db at 70 c. p.s. to -30 db at $40 \mathrm{c} . \mathrm{p} . \mathrm{s}$., and treble control varies response from +9 db to -27 db at 7000 c. p.s. from normal. Practically any desired frequency response may be obtained.
Gain: Microphone inputs, 112 db ; phono inputs, 73 db (based on 100,000 ohms input impedance).

Hum: 75 db below maximum output,

Tubes: 3-6J7, 2-6C5, 4-6L6-G, 1-80, 1-83.

Power Consumption: 225 watts, 115 volts, $50-60$ cycles.

Dimensions: $17^{\prime \prime}$ long, $10^{\prime \prime}$ deep, $9^{\prime \prime}$ high.

BOTTOM VIEW

Type

 $\begin{array}{ll}\text { Centralab } & \text { N-104 } \\ \text { Centralab } & \text { N-104 }\end{array}$ Centralab N-104 Centralab Centralab $\$ 310$ Centralab 1310 Centralab 314 Centralab $\$ 314$Centralab $\$ 310$ Centralab $\$ 310$
Centralab $\$ 310$ Centralab 310 Centralab
Centralab -104 Centralab 4310 Centralab 1310 Centralab 1314 Centralab 1314 Centralab 1310 Thordarson R-1068 Thordarson R-1068 Centralab 1314 Centralab $\mathbf{C} 314$ Centralab $/ 314$ Centralab
Centralab 314 Centralab 1314 Centralab $\$ 314$ Centralab \$ $\$ 314$ Centralab $\$ 314$
Ohrnite, Wirewound,
Ohmite, Wirewound
Ohmite, Wirewound

	TUBES
3	Type 6J7
2	Type 6C5
4	Type 6L6-G
1	Type 80
1	Type 83
	MISCELLANEOUS PARTS
1	10x17x3 ${ }^{\prime \prime}$ Chassis and cover - Bud \$1127
1	10x17 ${ }^{\prime}$ Chassis bottom plate - Bud $\$ 689$
9	Octal sockets - Amphenol S8
2	4-Contact socisets - Amphenol S4
2	Mic, input connectors - Amphenol PC1M
2	Mic. in put connectors - Amphenol MC1F
1	6-Screw output terminal board
1	Fuse mounting - Littlefuse $\$ 1075$
1	Fuse, 5 amp.
1	AC line cord and plug - Belden $\$ 1725$
2	2-Screw terminal boards
1	Pilot light socket and jewel - Yaxley f310R
1	Pilot light, 6.3 volts - Mazda 140
1	SPST toggle switch - Arrow H\&H \$20992
3	Metal tube grid caps
	Metal tube grid cap shields
2	"Mic" control plates
2	"Phono" control plates
2	"Tone" control plates
6	Control knobs
2	Bias cells, 1.5 volto - Mallory 4F7
2	Bias cell holders - Mallory IGB-1A

NOTE: The brands and types specified in the parts list were used in the original laboratory models. Parts of equivalent quality may be subatituted except where physical limitations prohibit.

FREQUENCY RESPONSE CURVE

For complete mechanical drawing of chassis see page 30. Full size template of chassis available from THORDARSON 15c net, postpaid.

TOP VIEW

THE power output of this amplifier is adequate for the largest installations either indoors or out. The input circuit is arranged to operate from a pre-amplifier such as those described on pages 20 and 22. These pre-amplifiers have low impedance output transformers, making it possible to operate thein several hundred feet from the 120 watt unit. A 500 ohm resistor ($\mathrm{R}-1$) is connected across the input circuit of the 120 watt amplifier to match the 500 ohm output impedance of the pre-amplifier. This method is satisfactory since the 6 J 7 input tube provides approximately the same voltage gain as would be obtained from a line to grid transformer. Should it be desired to operate from a single high impedance pick-up without a pre-amplifier, resistor R-1 can be disconnected from the circuit. Under these conditions the amplifier gain is 90 db which is sufficient for full power output.

The second stage is the tone control and contributes very little to the overall gain of the amplifier. An article describing this tone control circuit may be found on page 24. If the tone control is not required, the 6 C 5 stage and associate parts can be eliminated without seriously affecting the gain of the amplifier. A dotted line "A..... A" is shown on the circuit diagram just before the 6 F 6 driver tube grids. If the unit is to be used only as a booster amplifier, eliminate all those parts ahead of the dotted line. For connection to a 500 ohm line use a line to P - P grid transformer such as T-15A67 instead of T-15A74 as shown. The overall gain of the booster with this transformer is about 43 db . Therefore, full output will be gbtained when a 0 db signal is fed to the unit (1.73 volts across 500 ohms.)

Four type 6L6-G tubes operate in a push-pull parallel class AB2 circuit with inverse feedback. With this set-up it is possible to obtain maximum undistorted power output from beam power tubes. The driver stage consists of two 6 F 6 tubes connecred as triodes. These provide excellent regulation which is essential when the output tube grids are driven positive.

It is necessary to shield the entire wiring of the final stage. This is easily done by using single shielded wire similar to that used for antenna lead in. Take care that the shielding does not come in contact with the tube socket contacts and other terminals. Ground all shielding carefully. If the amplifier oscillates interchange the leads connecting to terminals 7 and 6 on driver transformer T-4. This reverses the phase relationship of the feedback voltage with respect to the input voltage.

Two power supplies, entirely independent of ane another, make it passible to obtain excellent regulation of the bias and screen voltages. The plate
supply of the output stage uses two type 83 rectifier tubes. An 80 is used to supply fixed bias and screen voltage to the output stage as well as plate voltage for the balance of the amplifier. A separate filter system for each supply isolates the output stage and insures stability. Resistors in series with the 83 tube plates help distribute the current evenly. These resistors are necessary when mercury vapor rectifier tubes are wired parallel. and adjust R. 26 until 24.5 volts are measured at except the 83 's and adjust R - 26 until 24.5 volts are measured at the 6 L 6 grids. After the 83 's are placed in the sockets turn the amplifier on and measure the bias voltage again. If any change is noted correct by_adjusting R-26.

TECHNICAL DATA

Power Output: 120 watts or +43 db (less than 8% distortion). Coverage: Up to $5,000,000 \mathrm{cu}$. ft . indoors; 100,000 to $150,000 \mathrm{sq}$. ft. outdoors (depending on speaker efficiency and noise level).
Input Circuit: Single channel; may be adapted to low or high impedance.
Output Impedances: $84,100,125,166,250$ or 500 ohms; selected by plug and jacks on terminal board of CHT output
Frequency Response: Within $\pm 1 \mathrm{db}$ from 40 to 15,000 c.p.s (tone controls in normal position).
Tone Controls: Two; bass control varies response from +7 db at $60 \mathrm{c} . \mathrm{p} . \mathrm{s}$. to -20 db at $30 \mathrm{c} . \mathrm{p} . \mathrm{s}$. , and treble control varies response from +7.5 db to -20 db at 10,000 c.p.s. from normal.
Practically any desired frequency response may be obtained.
Gain: 90 db with high impedance input resistor (based on 100,000 ohms input impedance); 72.5 db with 500 ohm input resistor. (If line to grid transformer is used, gain is approxi-
mately 90 db .) mately 90 db .)
Hum: 73 db below maximum output.
Tubes: 1-6J7, 2-6C5, 2-6F6, 4-6L6-G, 1-80, 2-83.
Power Consumption: 570 watts with no signal; 720 watts at maximum output.
Dimensions: $17^{\prime \prime}$ long, $15^{\prime \prime}$ deep, $9^{\prime \prime}$ high.

BOTTOM VIEW

PARTS LIST

Disgram			
No.			
T-1	T-15R06 Power Tranaformer		
T-2	T-15R01 Power Tranaformer		
T-3	T-15S94 Output Tranaformer		
T-4	T-15D86 Driver Transformer		
T-5	T-15A74 Input Transformer		
CH-1	T-15C56 Choke*		
CH-2	T-68C07 Choke		
CH-3	T-67C46 Choke		
CH-4	T-14C70 Tone Control Choke		
*Winding in Series.			
		CONDENSER	
No.	Mid.	Voltage	Type
C-1	10	25 V . Elect.	Cor.-Dub. /BR-102
C-2	. 1	400 V. Paper	Cor.-Dub. DT-AP1
C-3	10	25 V . Elect.	Cor.-Dub. BR-102
C-4	. 5	400 V. Paper	Cor,-Dub. JDT-4P5
C-5	. 04	400 V. Paper	Cor.-Dub, fDT-4S4
C-6	. 1	400 V. Paper	Cor.-Dub. \$DT-4P1
C-7	. 1	400 V. Paper	Cor.-Dub. \$DT-4P1
C-8	10	25 V . Elect.	Cor.-Dub. \& BR-102 $^{\text {a }}$
C.9	. 1	400 V. Paper	Cor.-Dub. DT-4PI
C-10, C-11	$8-8$	450 V. Elect.	Cor.-Dub. JJR-588
C-12	16	200 V. Elect.	Cor,-Dub. HJR-216
C-13	8	600 V. Elect.	Aerovox \$GL600
C-14	8	600 V . Elect.	Aerovor \%GL600
C-15	8	600 V. Eleet.	A erovor 7 GL 600
C-16	8	450 V. Elect.	Cor.-Dub. PJR-508

Diagram	RESISTORS		
No.	Ohms	Watts	Type
R-1	500	1	Centralab $\$ 314$
R-2	1 MLGG .	Volume Control	Centralab N-104
R-3	5,000	1	Centralab 814
R-4	50,000	1	Centralab 1314
R-5	250,000	$1 / 2$	Centralab 1310
R-6	20,000	1	Centralab 1314
R-7	1,060	1	Centralab 314
R-8		Tone Control	Thordarson R-1068
R-9		Tone Control	Thordarson R-1068
R-10	20,000	1	Centralab 514
R-11	1,000	1	Centralab $\$ 314$
R-12	50,000	1	Centralsb $\$ 314$
R-13	20,000	1	Centralab $\$ 314$
R-14	200	1	Centralab $\$ 314$
R-15	200	1	Centralab $\$ 314$
R-16	200	1	Centralab $\$ 314$
R-17	200	1	Centralab $\$ 314$
R-18	25	10	Ohmite, Wirewound
R-19	25	10	Ohmite, Wrewound
R-20	10,000	50	Ohmite, Wirewound
R-21	10,000	50	Ohmite, Wirewound
R-22	50	10	Ohmite, Wirewound
R-23	50	10	Ohmite, Wirewound
R-24	50	10	Ohmite, Wirewound
R-25	50	10	Ohmite, Wirewound
R-26	300	25	Ohmite, Semi-Var.

TUBES: 1-6.J7, 2-6C5, 2-6F6, 4-6L.6G, 1-80, 2-83

MISCELLANEOUS PARTS

$17 \times 15 \times 3^{\prime \prime}$ Chassis with bottom plate

 "Gain" control plateTone" control plates
Volume control knobs
AC line cord and plug - Belden 1725
Fuse mounting - Littlefuse $\$ 1075$
Fuse, 10 ampere
Octal Sockets - Amphenol S8
4-Contact sockets - Amphenol S4
5-Contact sockets - Amphenol S5 -Prong speaker plugs - Amphenol PM5 Input connector - Amphenol PC3F Input connector - Amphenol MC3M Pilot light socket and jewel - Yaxley f310R Pilot light bulb, 6.3 volts - Marda $\$ 40$ Metal tube grid cap
Metal tube grid cap shield
SPST toggle switeh - Arrow H\&H $\$ 20992$

NOTE: The brands and types specified in the parts list were used in the original laboratory models. Parts of equivalent quality may be substituted except where physical limitations prohibit.

FREQUENCY RESPONSE CURVE
For complete mechanical drawing of chassis see page 30. Full size template of chassis available from THORDARSON, 15 c net, postpaid.

2A3 PHONO AMPLIFIER

transformer has filament voltage available for either type tubes.) A Tru-Fidelity output transformer, T-90S13, makes voice coil or line impedances of $1.25,3.75,5,7.5,10,15,50,125,200,250$, 333 or 500 ohms available.

A form of degeneration is used in a new way to provide the unusually flexible tone compensating circuit shown. This circuit is so important and interesting that it is described in detail on page 24.

On the front panel are the two gain controls, near the input jacks; the expander control; a pilot light; the meter, with a switch at the far end of the chassis to measure the plate current of either or both output tubes; the on-off switch; the two tone controls and the plate current switch just mentioned.

In the photograph is shown the special shielding around the two small resistors from the gain controls. The circuit used results in a minimum of cross-talk, shielding them as shown removes the last possibility of it. Cover the resistors with cambric sleeving, then enclose them in a braid shield.

THIS 10 -watt Tru-Fidelity audio amplifier, with volume expansion and dual tone control, will meet the requirements of the most discriminating listener. It is an improved version of the Thordarson 10 -watt Tru-Fidelity unit, specially adapted to meet phonograph and radio tuner requirements. The amplifier features an unusually flexible tone control and volume expansion, making it possible to reproduce recordings with a high degree of naturalness. The volume expander is especially useful in restoring the range of symphonic renditions. No pre-amplifier stages are included as they are not needed and would materially increase the cost of construction.

With the bass and treble tone controls in "normal" position, the frequency response is flat. Through the use of the dual tone controls the bass may be boisted 7 db between 50 and 200 cycles or dropped 30 db from normal at 30 cycles The treble may be boosted 9 db at 7000 or dropped 30 db at 10,000 cycles. These controls are independent, so any acoustical condition may be satisfied

At the rated output of 10 watts, the distortion is but 3.7% and at 16 watts only 4.8%, which is still within high fidelity specifications.

The amplifier consists of five stages giving a gain of 70 db from either phono input (measured across a 100,000 ohm input). This gain is with the volume expansion off. When the expander is at maximum the volume level may be increased 11 db making a total overall gain of 81 db available. This is more than sufficient for any phono or tuner application.

Two phono inputs are mixed and fed into a 6C5 stage with a gain of 10 . The output of this stage is fed into a 6L7, the gain of which varies according to the expansion voltage fed into it by the action of the $6 \mathrm{C} 5-6 \mathrm{H} 6$ volume expansion stage. The energy for the expander stage is taken from the grid of the fourth stage 6C5.

The output of the 6L7 is fed into a 6C5 tone control tube which has a gain of 1.4 with the controls in "normal" position. This in turn is fed into another 6C5 and then, through a T-90A04 Tru-Fidelity transformer, to two 2A3's or 6A3's in push pull. (The power

CYCLES PER SECOND
 -o o Bass - decrease, treble - normal

- - - Bass - decrease, treble - decrease nerease

---n- Bass - increase, treble - increase
DO-00-Bass - increase, treble - normal
- - - - - Bass - increase, treble - decrease

FREQUENCY-RESPONSE CURVE

Bottom View
For complete mechanical drawing of chassis see page 28 , also, full size template available from Thordarson 15 c net postpaid.

TECHNICAL DATA

Power Output: 10 watts or +32.2 db with 3.7% distortion; 16 watts or +34.1 db with 4.8% distoriton.
In put Circuits: Two high impedance phono channels for crystal or magnetic pick-up or radio tuner. Individual controls for mixing or fading.
Output Impedances: $1.25,3.75,5,7.5,10$, $15,50,125,200,250,333$ or 500 ohms selected by connecting output terminals to desired impedance of transformer.
Frequency Response: Within ± 1 db from 30 to 15,000 c.p.s. (tone controls in normal position).
Tone Controls: Two: bass control varies response from +7 db at 70 c.p.s. to -30 db at 30 c.p.s.; treble control varies response from +9 db to -30 db at $7,000 \mathrm{c}$.p.s.
Gain: 70 db with volume expander "OFF"; 81 db with volume expander "ON".
Hum: 64 db below maximum output.
Tubes: 4-6C5, 1-6L7, 1-6H6, 2-2A3 or 6A3, 1-80, 1-523.
Power Consumption: 235 watts, 115 volts, 50-60 cycles.
Dimensions: $17^{\prime \prime}$ long, $10^{\prime \prime}$ deep, $9^{\prime \prime}$ high.

PARTS LIST

THORDARSON TRANSFORMERS AND CHOKES

Diagram No.

Diagram	Ohms	Watts	Type
R-1	1 MEG.	Volume Control	Centralab N-104
R-2	1 MEG.	Volume Contro	Centralab N-104
R-3	500,000		Centralab 1310
R-4	500,000	1/2	Centralab $\$ 310$
R-5	2,000		Centralab ${ }^{\text {d }} 314$
R-6	20,000	1	Centralab $/ 314$
R -7	20,000	1	Centralab 1314
R-8	1 MEG.	13	Centralab $\$ 310$
R-9	500,000	$1 / 2$	Centralab $\$ 310$
R-10	100,000		Centralab f314
R-11	1 MEG.	Volume Control	Centralab N-104
R-12	10,000	3/2	Centralab 310
R-13	100,000	32	Centralab ${ }^{310}$
R-14	250,000	動	Centralab $\dagger 310$
R-15	100,000	1	Centralab 3314
R-16	10,000	10	Ohmite Brown De
R-17	10,000	10	Ohmite Brown D
R-18	800	1	Centralab $/ 314$

Centralab N-104
Centralab N-104
Centralab 1310
Centralab
Centralab $\$ 310$
Centralab $\$ 310$ Centralab 7310
Centralab $\$ 314$ Centralab Centralab $\$ 314$
Centralab $\$ 310$ Centralab $\$ 310$
Centralab $\$ 310$ Centralab f314 Centralab N-104 Centralab $\$ 310$
Centralab 310 Centralab $\$ 310$ Centralab $\$ 314$ Ohmite Brown Devil Ohmite Brown Devil Centralab ≤ 314 Centralab 314 Centralab -310 Centralab 314 Centralab 1314 Thordarson R1068 Thordarson R1068 Centralab 1314 Ohmite Brown Devil Centralab $\$ 314$ Centralab 314 Centralab 314 Yaxley C3MP TUBES

[^6]
CONDENSERS

 NOTE: The brands and types specified in the parta list
were used in the original laboratory models. Parts of equivawere used in the originallaboratory models. Parts of equivalimitations prohibit.

TOP VIEW

The combination 6 volt D.C., 115 volt A.C. amplifier has become very popular, especially in mobile public address work. ome flexility permits operation almost anywhere that a 6 volt Its flexibility permits operated, such as rural gatherings, picnics, storage battery can be placed, such as res, etc. It is the ideal unit beach parties, motor boats, for portable and rental work since installations. Results are alike of 20 watts is sufficient for most installations. Re no sacrice in on both battery and 115 volt A.C. supplies with no sacrifice in the quality of reproduction.

The amplifier is similar to the 25 watt unit described on page 8; two 6L6-G's operate in a class AB_{1} circuit with approximately 300 volts applied to the plates and screens. Inverse feedback reduces the distortion which is lower than ordinarily encountered in 6 volt amplifiers of this type. Two input channels accommodate a low level high impedance microphone and high impedance phono pick-up. The gain of the amplifier is more than adequate phono pill output with either "Mic" or "Phono".

Operation from 6 volts D.C. is made possible by incorporating a heavy duty vibrator to convert the D.C. into alternating current. Dual operation is accomplished by having both a 6 voltvibrator primary and a 115 volt primary on one and the same transformer. Two 6W5-G tubes rectify the high voltage for both battery and A.C. operation. A 6.3 volt secondary on the transformer supplies the heater current for A.C. operation only. The heaters are switched to the battery automatically for 6 volt operation by inserting the proper power supply plug. Two plugs are used, one being wired for 115 volt and the other for 6 volt operation. These plugs are wired as indicated on the schematic diagram.

Three switches are required. Two are used for 6 volt operation, one being a heavy duty type which controls the total 6 volt supply and the other is connected in the vibrator circuit and provides standby operation. The third is the "On" and "Off" switch for operation from 115 volts A.C.

When operating from a 6 volt
battery, turn the main heavy duty switch "On" first and wait a minute or so for the tube heaters to warm up before turning on the vibrator switch. The vibrator switch controls the "B" supply and when turned "On" the battery drain increases from 4.5 amperes (which is the heater current) to about 19 amperes. This switch is a desirable feature since the battery can be conserved without waiting for the heaters to warm up when operation is desired.
All converters, whether rotary or the vibrator type, develop a certain amount of high frequency hash. This disturbance is easily picked up in the amplifier circuit unless proper isolation and shielding is employed. Therefore, it is advisable to construct the amplifier as closely as possible to the illustrations and diagram. All shielding should be incorporated where shown. A small metal box is formed and fastened in place by the Amphenol connector PC1M. One side of the box is left open to tighten the connector and insert C1, R1, and the bias cell and holder. Pass a shielded lead through the small hole for the 6 J 7 grid connection. Wire the lead and parts and test the amplifier before soldering the box side in place.

TECHNICAL DATA

Power Output: 20 watts undistorted or 35.5 db (less than 5% distortion).
Coverage: 500,000 to $1,000,000 \mathrm{cu}$. ft. indoors; 15,000 to 25,000 sq. ft. outdoors (depending on speaker efficiency and noise level).
Input Circuits: One 5 megohm channel for high impedance crystal, dynamic or velocity microphone, and one channel for high impedance crystal or magnetic pick-up. Channels may be mixed and faded.
Output Impedances: 4, 8, 15, 250, or 500 ohms with regular transformer, or $2,3,4,6,8,16,125,250$, or 500 ohms with CHT output transformer.
Frequency Response: Within $\pm 2 \mathrm{db}$ from 50 to 8,000 c.p.s. with bass boost of 5 db at $70 \mathrm{c} . \mathrm{p} . \mathrm{s}$.
Gain: Microphone input, 114 db ; phono input, 75 db (based on 100,000 ohms input impedance).
Hum: 70 db below maximum output.
Tubes: 2-6J7, 1-6C5, 2-6L6-G, 2-6W5-G.
Power Consumption: 100 watts at 115 volts, $50-60$ cycles, or 19 amps. at 6V. D.C. (4.5 amperes on standby position).
Dimensions: $17^{\prime \prime}$ long, $10^{\prime \prime}$ deep, $9^{\prime \prime}$ high.

BOTTOM VIEW

6 Volt DC-115 Volt AC AMPLIFIER

PARTS LIST

condensers

Diagram	CONDENSERS	
No.	Mid.	Voltage
C-1	03	400 V Paper

MISCELLLANEOUS PARTS (Continued)

```
AC line cord and plug
Jewel and Bracket - Yaxley f310R
6.3 volt pilot light - Mazda \(\$ 40\)
SPST Toggle switches - Arrow H\&H \(\$ 20992\) DPST Toggle switch - 6 v 25 amp . \(\mathrm{C}-\mathrm{H} \$ 8244\) Metal tube grid cape
Metal tube grid shields
Control knobs
Control plates
10 -contact power plugs - H. B. Jones \(/ \mathrm{S}-310-\mathrm{FHT}\)
10 -contact power plug - H. B. Jones /P-310-CB
Vibrator - Electronics \(\$ 490\)
Bias cell holder - Mallory \(\mathbf{H B}\) IT
Bias cell holder - Mallory IGB-1A
pe. tinned co
Fuse holder for 30 smp fuse
Battery clipe 50 amp capacity
Battery Cable: 110 stranded wire, rubber covered
Battery Cable: 10 stranded wire, rubber covered.
Tube Complement: \(2-6 \mathrm{~J} 7,1-6 \mathrm{C} 5,2-6 \mathrm{~L}, \mathrm{G}, 2-6 \mathrm{~W} 5-\mathrm{G}\)
NOTE: The brands and types specified in the parts list NOTE: The brands and types apeciled in the parts list lent quality may be substituted except where physical limitations prohibit
```

FOR MECHANICAL DRAWING OF CHASSIS SEE PAGE 27

Tone controls normalTone control in bass pasition
FREQUENCY-RESPONE CURVE

WAT TS OUTPUT
DISTORTION CURVE

THORDARSON
 SINGLE CHANNEL PRE-AMPLIFIER

TOP VIEW

ALTHOUGH pre-amplifiers are not as popular as they were some years back, there are cases where their use is recommended or necessary. The sound installation which requires that the microphone be located several hundred feet or more from the main power amplifier, can make good use of a preamplifier of the type shown on these pages. The gain is about 60 db , which will raise the level of the average low level microphone to approximately 0 db . Its output impedances are $500,333,250,200,125$ or 50 ohms. The 500 or 200 ohm impedances are most commonly used. When a line operates under these conditions, any hum or disturbance which is picked up is so far below the signal level that it is not objectionable in the output of the loud speakers. High impedance microphones, such as the crystal, velocity and dynamic, should not be used at distances greater than 50 to 100 feet without such a pre-amplifier. When this distance is exceeded, losses occur either in signal level or frequency response.

This single channel amplifier is entirely self-contained, and operates from 115 volts 60 cycle current. It can be used in conjunction with the 120 watt amplifier described on page 14 or any of the amplifiers described in the Amplifier Guide, if the proper input impedance is built into the amplifier. Best results are obtained when a high quality hum balancing transformer having a 200 or 500 ohm primary is placed in the phono circuit of the amplifier. Thordarson T-90A00 or T-15A66 is suitable for this purpose. Best results are obtained when the gain control on the pre-amplifier is almost all the way on and that on the main amplifier cut down to control the output of the system.

The assembly and wiring of the pre-amplifier is quite simple; however, care should be taken in placeing and wiring those parts enclosed in the dotted line on the schematic
diagram. Condenser C-1 and resistors R-1 and R-2 may require shielding if hum is to be cut to a minimum. It is recommended that the chassis be provided with a base to fully enclose the bottom of the pre-amplifier. Where no base is used, it may be necessary to shield all those parts included in the above mentioned dotted line.

The output transformer T-2 is shown connected to a five-contact socket. The connections indicated provide coupling to either a 200 or 500 ohm line. The additional impedances are obtainable by properly connecting the secondary of the transformer. Full instructions are supplied with each transformer for obtaining these other impedances.

TECHNICAL DATA

Output Level: 0 db or .006 watts (less than 1% distortion).
Gain: 59.9 db (based on 100,000 ohm input impedance).
Frequency Response: Within $\pm 1 \mathrm{db}$ from 30 to 15,000 c.p.s.
Input: 5 megohms for one high impedance crystal, dynamic, or velocity microphone.
Output: Low impedance line - 500, 333, 250, 200, 125 , or 50 ohms.
Tubes: 1-6F5, 1-6J7, 1-6X5.
Power Consumption: 17.5 watts, 115 volts, $50-60$ cycles.
Dimensions: $91 / 2^{\prime \prime}$ long, $5^{\prime \prime}$ deep, $6^{\prime \prime}$ high - with cover $8 \frac{1}{2} 2^{\prime \prime}$ high.

PARTS LIST
THORDARSON TRANSFORMERS AND CHOKES

miscellaneous parts

$$
\begin{aligned}
& 1 \text { 5x91/2x24: Chassis and cover-Bud No. } 699 \\
& 5 \times 91 /{ }^{\prime \prime} \text { Chassis bottom plate - Bul No. } 680 \\
& \text { Octal sockets - Amphenol } 58 \\
& \text { Output socke - Amphel PN5 } \\
& \text { Mic. in put connector - Amphenol MC1F } \\
& \text { Mic. input connector - Amplenol PC1M } \\
& \text { Metal tube grid caps } \\
& \text { Metal tube grid cap shieids } \\
& \text { AC line cord \& plug - Beldee No. } 1725 \\
& \text { SPST switch - Arrow H\&H No. } 20992 \\
& \text { Volume control knob, blaes } \\
& \text { Volume control dial plate } \\
& \text { Pilot light bracket and jewel - Yax'ey No. 310R } \\
& \text { Bias cell, } 1.5 \text { Volta - Mallory No. E7 } \\
& \text { Bias eell holder - Mallory No. GB-1A } \\
& \text { Pilot light bulb, } 6.3 \text { volts - Mazda No. } 40 \\
& \text { NOTE: The brands and types specifird in the parta list } \\
& \text { were used in the original laboratory models. Parts of equiva- } \\
& \text { lent quality msy be substituted except where physical } \\
& \text { limitations prohibit }
\end{aligned}
$$

Chassis drawing of Single Channel Pre-Amplifier. Full size template available from THORDARSON, 15 c net, post paid.

TOP VIEW

THE multiple channel pre-amplifier and mixer is useful where more input circuits must be accommodated than the regular amplifier will handle. Most main amplifiers accommodate only one or two microphones. Like the single channel pre-amplifier on the previous page, this unit may be operated several hundred feet from the main amplifier if necessary without serious loss of volume level or frequency response. The main amplifier should be equipped with a 200 ohm or 500 ohm input transformer to match the output impedance of the pre-amplifier. Thordarson transformers T-90A00 or T-15A66 are suitable for this use. The 120 watt amplifier on page 14 is designed to operate with a pre-amplifier and mixer of this type.

The circuit diagram as shown will accommodate four low level high impedance microphones. If it is preferable to handle only three low level microphones and a phono pick-up, one of the 6F5 pre-amplifier tubes and associated parts can be eliminated. The phono pick-up will then operate directly into volume control R-16. Likewise, two pre-amplifier tubes can be eliminated if two phono pick-up channels are more desirable.

Dotted lines are shown on the circuit diagram indicating that portion of the circuit which is susceptible to hum and noise pick-up. In the laboratory model, it was necessary to shield resistors $\mathrm{R}-17, \mathrm{R}-18, \mathrm{R}-19$, and $\mathrm{R}-20$ and all the leads connecting
to them as well as the grid leads to the 6F5 tubes. Additional shielding should not be necessary if the chassis is fully enclosed with a chassis bottom plate. Bias cells provide bias for the 6F5 input tubes, thus eliminating any disturbance that might develop in the cathode circuit of these tubes.

TECHNICAL DATA

Output Level: 0 db or .006 watts (less than 1% distortion).
Gain: 55 db (based on 100,000 ohm input impedance).
Frequency Response: Within $\pm 2 \mathrm{db}$ from 20 to 15,000 c.p.s.
Input Circuits: Four 5 megohm channels for high impedance crystal, dynamic or velocity microphones.
Output: Low impedance line - 500, 333, 250, 200, 166,125 , or 50 ohms.
Tubes: 4-6F5, 1-6J7, 1-6X5.
Power Consumption: 25 watts, 115 volts, 50-60 cycles.
Dimensions: $131 / 2^{\prime \prime}$ long, $5^{\prime \prime}$ deep, $6^{\prime \prime}$ high — with cover $81 / 2^{\prime \prime}$ high.

FREQUENCY-RESPONSE CURVE

BOTTOM VIEW

FOUR CHANNEL PRE-AMPLIFIER

PARTS LIST
THORDARSON TRANSFORMERS AND CHOKES Diagram

T-15R04 Power Transformer
T-15A71 Tube to Line Output Transformer T-13C26 Cboke T-13C26 Choke

Diagram No.	RESISTORS		
	Ohms		Type
R-1	5 MEG.	$1 / 2$	IRC BT-1/3
R-2	5 M ${ }^{\text {a }}$ ($1 / 2$	IRC BT- $1 / 3$
R-3	5 MEG.	$1 / 2$	IRC BT-1/
R-4	5 MEG.	14	IRC BT- $1 / 2$
R-5	5 MFG.	$1 / 3$	IRC BT- $1 / \%$
R-6	5 MEG.		IRC BT- 15
R-7	5 MEG.	$1 / 2$	IRC BT- $1 /{ }^{\circ}$
R-8	5 MEG.	1/2	IRC BT- $1 / 2$
R-9	100,000	1	IRC BT-1
R-10	100,000	1	IRC BT-1
R-11	100,000	1	IRC BT-1
R-12	100,000		IRC BT-1
R-13	500,000	Volume Control	Yaxley type "0"
R-14	500,000	Volume Control	Yaxley type "0"
R-15	500,000	Volume Control	Yaxley type " 0 "
R-16	500,000	Volume Control	Yaxley type "0"
R-17	500,000	16	IRC BT- $3 / 2$
R-18	500,000	16	IRC BT- ${ }^{1 / 2}$
R-19	500,000	12	IRC BT-1/2
R-20	500,000	$31 / 2$	IRC BT-1/2
R-21	2,000	1	IRC BT-1
R-22	50,000	1	IRC BT-1
R-23	20,000	1	IRC BT-1
R-24	50,000	10	Ohmite Brown Devil
	CONDENSERS		
Diagram			
	Mid.	Voltage	Type
C-1	. 1	400 V Paper	Aerovox $\$ 484$
C-2	. 1	400 V Paper	Aerovor 1484
C-3	. 1	400 V Paper	Aerovox $\$ 484$
C-4	. 1	400 V Paper	Aerovor 1484
C-5	. 1	400 V Paper	Aerovor $\$ 484$
C-6	. 1	400 V Paper	Aerovox $\$ 484$
C-7	. 1	400 V Paper	Aerovor $\$ 484$
C-8	. 1	400 V Paper	Aerovor 4484
C-9	10	25 V Elect.	Cor.-Dub. BR-102
C-10	. 5	400 V Paper	Cor. Dub. DT-4PS
C-11	8	450 V Elect.	Aerovor PPBS5
C-12	8	450 V Elect.	Aerovor FGLS 450
C-13	8	450 V Elect.	Aerovor FGLS450
C-14	8	450 V Elect.	Aerovor fGLS450
		TUBES	
4	Type 6F5		
1	Type 6J7		
1	Type 6X5		

MISCELLANEOUS PARTS

1 5x1312x $212^{"}$ Chassis and screen cover-Bud No. 1125 $5 \times 1312^{\prime \prime}$ Chassis bottom cover - Bud No. 685 Octal sockets - A mphenol S8
5-prontact socket - Amphenol So
Mic. connectors - Amphenol PC1M
Mic. connectors - Amphenol
Motsl tube grid caps
AC line cord and plug - Beiden No. 1725
SPST Toggle Switch - Arrow H \& H No. 20992 Control knobs
"Volume" control plates
Pilot light bracket and jewel - Yaxley No. 310 R Bias cells 1.5 volts - Mallory No. F7
Bias cell holders - Mallory No. GB-1A
6.3V Pilot light - Mazda No. 40

NOTE: The brands and types specified
NOTE: Tho brands and types specified in the parts list were used in the origina quality may be subatituted except where physical limitations prohibit.

Chassis drawing of Four Channel PreAmplifier. Full size template of chassis for drilling, showing all mechanical dimensions available from THORDARSON, 15 c net postpaid.

TOP VIEW
DUAL TONE CONTROL

Thordarson's development of this "Dual Tone Control" was prompted by the many requests of sound men for an effective tone compensating system to boost or attenuate the bass or treble frequencies independently of each other. Examination of the schematic diagram will show that the final circuit is simple and not at all complicated to construct. The unit described here is identical in circuit details to the tone compensation employed in the amplifiers shown elsewhere in this "Amplifier Guide." It is constructed on a small chassis, making it adaptable to practically any existing amplifier.

Operation is based on degeneration in the cathode circuit of a $6 \mathbf{C} 5$ or equivalent tube. If resistance is introduced in the cathode circuit, any signal developed by the tube will also appear across the resistance. This signal voltage is opposite in phase and in series with the voltage impressed on the grid and cathode of the tube. Degeneration takes place and the amplification of the tube is reduced. In this application the plate loading resistor $R-6$ is made small and the cathode resistor $R-3$ large so that a greater part of the voltage developed by the tube appears in the cathode circuit.

Since the circuit is resistive there is little or no frequency discrimination at audio frequencies, and all frequencies are degenerated an equal amount. If the cathode resistance is shunted with an inductance (of the proper value) the resistance at low frequencies is practically shorted out due to the low impedance of the choke at low frequencies. Therefore degeneration of the low frequencies is eliminated and the greater part of the signal developed by the tube appears across the load resistor R-6. The result is an increase in the low frequency response of the circuit. Likewise
if a condenser (of the proper value) is shunted across the cathode resistor, the low impedance of the condenser at high frequencies reduces the impedance of the circuit and degeneration of the higher frequencies is reduced. The high frequency response of the circuit is thus increased.

Attenuation of the low frequencies can be accomplished by shunting the grid circuit of the following stage with a choke or inductance. It so happens that the value of the choke (described above) used in the bass boost circuit also has the correct value for an attenuation circuit. The high frequencies can be attenuated by shunting the same grid circuit with a suitable condenser.

The function of control R-5 is to introduce the choke $\mathrm{CH}-1$ into either the cathode circuit for bass boost or the grid circuit for bass decrease. Control R-4 applies condenser $\mathrm{C}-2$ to the cathode circuit for treble increase, or $\mathbf{C}-3$ to the grid circuit for

treble decrease. The controls are coupled to the cathode through condenser C-4 and to the following grid by a shielded lead. The small pictorial drawing illustrates clearly how connections are made to the controls.

To install the tone control unit into an existing amplifier, locate the coupling condenser in a resistance coupled stage (preferably the plate circuit of the second stage of the amplifier). Remove the condenser from the circuit and connect the shielded lead of condenser C-1 and the shielded lead of C-5 in its place. Make sure that the lead from C-I connects to the plate of the tube preceding the tone control unit. Ground the shields of these leads to the amplifier to complete the ground circuit. Connect the unshielded lead to a well filtered point of the amplifier B supply circuit. A pair of twisted wires not over 3 feet long may be used for the filament supply. No difficulty should be experienced with hum or other disturbance since the unit can be placed several feet from the amplifier. It is also possible to build the tone control into an amplifier if there is adequate room and care is taken not to mount the choke and controls near the power transformer.

PARTS LIST FOR THE DUAL TONE CONTROL

Diagram	THORDARSON
No.	THe
CH-1	Tone Control Choke, T-14C70
R-4	Dual Tone Control, Thordarson R-1068
R-5	Dual Tone Control, Thordarson R-1068

RESISTORS

	RESISTORS		
	Ohms	Watts	Type
R-1	250,000	1/2	Centralab $\$ 310$
R-2	1,000	1	Centralab $\$ 314$
R-3	20,000	1	Centralab f314
R-6	20,000	1	Centralab 1314
	CONDENSERS		
	Mid.	Voltage	Type
C-1	. 1	400	Cornell-Dubilier ${ }^{\text {d }}$ T-4P1
C-2	. 04	400	Cornell-Dubilier \$DT-4S4
C-3	. 01	400	Cornell-Dubilier fDT-4S1
C-4	10	200	Aerovox \dagger PR-200
C-5	. 1	400	Cornell-Dubilier /DT-4P1

1	TUBE
	Type 6C5
	miscellaneous parts
1	Chassis $6^{* \prime}$ long, $31 / /^{\prime \prime}$ mide, $3^{\prime \prime}$ high
1	Chassis bottom plate
4	5 -lug resistor mtg. strips
2	2 -lug resistor mtg. strips
1	2 -screw terminal board
1	Octal socket Amphenol S8
2	Control knobs
2	"Tone" control plates

NOTE: The brands and types specified in the parts list were used in the original laboratory models. Parts of equivaent quality may be subetituted except where physical limitations prohibit.

Curves are shown on opposite page illustrating tone controls in various positions. Full size template of the chassis drawing also shown on opposite page available from THORDARSON, 15 c net, postpaid.

BOTTOM VIEW

Bass Control normal - Treble Control normal

Bass Control increase - Treble Control normal

Bass Control normal - Treble Control increase

Bass Control increase - Treble Control increase

Bass Control increase - Treble Control decrease

Chassis drawing of Dual Tone Control Unit. Full size template availablefrom Thordarson, 15 c net, postpaid.

Bass Control decrease - Troble Control increase

Bass Control decrease - Treble Control normal

Bass Control normal - Treble Control decrease

Bass Control decrease - Treble Ccntrol decrease

Dual Tone Control. Schematic Diagram.

Fig. 1
It is frequently necessary to match a number of speakers to a 500 ohm line in such a way that the speakers take unequal power. It is an easy matter to connect a number of speakers to a 500 ohm line so that each speaker takes the same amount of power and it is also an easy matter to determine the correct impedance ratio of each line to speaker transformer. In Fig. 1, if each of the speakers has a voice coil impedance of 10 ohms , the impedance ratio of the transformers should be 1500:10 so that the three 1500 ohm impedances in parallel will give an impedance of 500 ohms , which is the correct value for the 500 ohm line. In this case, if the total power supplied to the 500 ohm line is 30 watts, each speaker will take one-third of this or ten watts. If this power is to be divided so one speaker receives 15 watts, one 10 watts and one 5 watts, one must make a change in the ratio of the three transformers.
The voltage developed across the 500
ohm line is 122 volts. $\left(W=\frac{E^{2}}{R} ; W=30\right.$, $\mathbf{R}=500, \mathbf{E}=\sqrt{15,000}$ or 122 volts). Given the voltage across the 500 ohm line and the voltage required across each voice coil for the desired amount of power, it is an easy matter to determine the turns ratio and the impedance ratio necessary in the various transformers.
For the first speaker, requiring 15 watts of audio, the voltage across the voice coil
is 12.25 volts; $\left(W=\frac{E^{2}}{R} ; W=15, R=10\right.$, $E=\sqrt{10 \times 15}=12.25$ volts). Similarly, the voltage across the speaker requiring 10 watts is 10 volts and the voltage across the speaker requiring 5 watts is 7 volts. The turns ratio of the various transformers is 122 or 10:1. Also 122 $\frac{12}{12.25}$ or $10: 1$. Also $\frac{122}{10}$ or $12.2: 1$, and also 122
$\frac{7}{7}$ or $17.5: 1$. The impedance ratio of the transformer is the turns ratio squared and the actual primary impedance is equal to the turns ratio squared, multiplied by the voice coil impedance of 10 ohms. The seflected primary impedances are all different. However, when the three are paralleled, they result in an impedance of 500 ohms, which is the correct value for the 500 ohm line. In this case, the power delivered to each of the speakers is entirely different from the condition under Fig. 1.

It must be remembered when using this method of calculation the total power in the individual voice coils must total the power in the primary from which the value of primary voltage was computed.
Frequently it is not possible to match
he impedance of the speaker exactly. the impedance of the speaker exactly. Whenever this is not possible and whenever there is a sufficient number of taps
on the output of the amplifier, it should be connected in such a way that a lower plate to plate load than normal is reflected. In other words, if it is necessary to match a 15 ohm speaker to an output transformer which has a 16 ohm tap and a 14 ohm tap, the 15 ohm speaker should be connected to the 16 ohm tap: This will reflect a somewhat lower value of plate to plate load so that it is possible to obtain slightly more power from the amplifier although the distortion will be somewhat greater at the peak output. This is much better than connecting the 15 ohm speaker to the 14 ohm tap, thus reflecting a higher plate to plate load and causing the amplifier to overload at a much lower value of power output. This is especially true of pentode and beam power tubes, where the higher value of plate to plate load will result in a flat top wave and severe distortion will result.

IMPEDANCE RATIO

The transformer is an impedance changer and as such it is not necessarily associated with any one value of impedance. In other words, if a transformer is designed to couple a 500 ohm line to a 10 ohm voice coil, the impedance ratio of the transformer is $50: 1$, and the same transformer for all practical purposes will just as effectively couple a 1000 ohm line to a 20 ohm coil or a 250 ohm line to a 5 ohm voice coil, provided, of course, that the power handling ability of the transformer is not exceeded. The only serious result of using the primary of a transformer for an impedance other than that for which it was designed is the changing of the frequency response of the transformer and its operating efficiency. In other words, a transformer designed for 500 ohms operation has a certain amount of inductance, which, when used with a 1000 ohm line, will give poorer low frequency response and better high frequency response. On the other hand, a transformer designed for 500 ohm operation when used on a 250 ohm line, will provide better low frequency response but the high frequency response will drop off considerably.

Thordarson line to voice coil transformer, T-60S48, may be used to reflect a primary impedance from 500 to 3000 ohms. It has been designed with high primary inductance and low leakage so that the
frequency response is good over this range. The secondary has a number of taps making it possible to match practically any voice coil impedance or obtain any desired turns ratio. The accompanying table indicates what turns and impedance ratios may be obtained as well as the voice coil impedances when one to six transformers are connected in parallel to a 500 ohm line. The table will aid in connecting voice coils of the same or different impedance where the distribution of power is equal, without the above computation. Only one speaker should be connected to each transformer.
Where there are a number of speakers which already have 500 ohm input transformers to be connected to a 500 ohm line a matching transformer must be used. A number of 500 ohm speakers connected in parallel may be matched to the 500 ohm amplifier output with T-76S74 matching autotransformer. This unit provides five impedances in addition to the original 500 ohms - $250,166,125,100$, and 84 ohms. These values are the result of connecting $2,3,4,5$, or 6,500 ohm speakers in parallel.

Two 500 ohm speakers connected in parallel will reflect an impedance of 250 ohms. Connections are made to the common terminal No. 7 and terminal No. 5 If three speakers are used, the reflected impedance will be 166 ohms, in which case the common terminal and terminal No. 4 are used.
THORDARSON transformer T-53S81 will couple a 500 or 250 ohm line to voice coils having 4,8 , or 15 ohms impedance. If desired, two of these transformers may be connected to a 500 ohm line by using a series connection and the 250 ohm tap. It is also possible to connect several speaker voice coils to one of the T-53S81 transformers. If the voice coils have 15 ohms impedance each, two of them could be connected in parallel to the 8 ohm tap. Four 15 ohm voice coils can be wired in series parallel to the 15 ohm tap or in parallel to the 4 ohm tap.

The wires connecting the transformer to the speaker coil should not be any longer than necessary. Long voice coil leads result in loss of power and low frequencies. Heavy wire should be used if the transformer is separated from the speaker more than a foot or so.

Table for Connecting Dynamic Speakers of Various Impedances in Same Output System

(Continued from page 3)
ing effect of the tube is exceedingly small with the result that the damping is negligible. As a result, unnatural "boominess" may result when the speaker is shock excited and the cone vibrates at its own natural period. The natural period depends upon the physical construction of the speaker and is usually in the neighborhood of 50 to 150 cycles.

HUM
Hum in the output stage is cancelled out in much the same way as distortion, since
the hum developed in the stage and the voltage fed into the grid circuit are out of phase and tend to cancel. It must be remembered, however, that distortion not appearing in the stage or hum from a previous stage will not be cancelled by inverse feedback in the output stage. Great re. ductions in plate circuit distortion and plate resistance may be obtained by the use of large amounts of inverse feedback. However, the limiting factor in inverse feedback is the amount of desired gain from the stage in question. In actual design the amount of inverse feedback is a
compromise between the gain and the desired reduction in distortion. If there is enough gain in the previous stages and if the driver tube can supply the necessary peak voltage, it will be advisable to increase the amount of inverse feedback in order to reduce the plate resistance and the plate circuit distortion. However, if the plate resistance is fairly low and if the plate circuit distortion is a reasonable value, there is not much advantage gained in further reducing the gain by the addition of more inverse feedback.

Full size template of Chassis available from Thordarson, 15c net, postpaid

CHASSIS DRAWINGS - 25 and 40 WATT AMPLIFIERS

Full Size Templates of Chassis Drawings Available from THORDARSON, 15c net postpaid

Practically nothing is said concerning the testing of amplifiers in the constructional articles in this guide. This subject is too broad to be covered in such limited space. The following ideas and suggestions will be of great help to the Sound Man who builds or repairs his own amplifiers. They are the results of long experience in the laboratory and in answering letters on this subject from our many friends and customers.

There are certain basic test instruments that should be available to every sound man and certain routines in their use that should be known and followed, if the full benefit is to be secured from them. These instruments include a good audio oscillator, a cathode ray oscilloscope, a selection of 50 or 75 watt resistors with values of 500 ohms or equal to output impedances to be used (these are to be used as substitute voice coil and line loads when measuring the output of an amplifier), and a vacuum tube voltmeter with a high range. For accurate overall gain measurements an accurate micro-volt meter is needed to measure the audio voltage applied to the input of the amplifier, and an output meter with no frequency discrimination.

CHECKING HUM

One of the first problems encountered by the constructor is the elimination of Hum from an amplifier. The oscilloscope is very useful in determining the frequency of the Hum, its location, and when it has been reduced to a negligible quantity.

To determine the frequency of HUM, feed a portion of the output of the amplifier to the vertical input of the oscilloscope. Turn the sweep selector switch to " 60 cycle". A 120 cycle HUM will produce some form of a figure eight on the screen of the cathode ray tube as shown in Fig. 1. This indicates that the hum is coming through the power supply circuit, and is caused by lack of filtering or isolation of the different-stages. On the other hand, a 60 cycle HUM, usually picked up by induction in the wiring, transformers or chokes will produce some form of circle - no crossing of lines. (Fig. 1).
The best procedure in checking HUM is to pull all tubes but the outputs and clear up any HUM that originates in that stage Next insert the correct tubes and proceed to the driver stage, the interstage and the inputs successively. It will usually be found that HUM is picked up most often in the input stages. For this reason they must be well shielded. Notice that the resistors and leads associated with this portion of the circuit are always shown as being shielded in the diagrams. This is important in the elimination of HUM and cross talk between inputs. Such simple things as the placement of leads, transformers, tone control chokes, etc., will affect the amount of HUM present in the amplifier. Any defective condensers in the filter circuit will usually be shown at
the first of the test and of course should be replaced with perfect units.

On the oscilloscope the height of the image on the screen is a measure of the amount of HUM. This is shown in Fig. 1 as the distance " a " - " b ". Note: This height is affected by the voice coil impedance across which the tests are made. The greater the impedance, the easier it is to detect HUM on the oscilloscope. The ear will of course tell when HUM is no longer noticeable, but will not aid sufficiently in the location and elimination of the source. Tube hiss, which will appear after a gain of approximately 100 db has been reached, should not be confused with HUM.

OSCILLATION

Another source of trouble, especially in modern high gain amplifiers and those using an inverse feedback circuit, is parasitic oscillation.

If the transformers shown on the parts lists in this guide are used, and the circuit diagrams and various constants are followed, there can be but one main reason for oscillations. This is the reversal of the tertiary winding of the output transformers. All other sources of oscillation have been carefully eliminated.

The following suggestions for the curing of oscillation are given for the benefit of those building their own amplifiers from parts other than those recommended in this guide.

1. Complete shielding of the entire wiring of the final stage including the tertiary center tap.
2. Insert a 200 ohm $1 / 2$ watt resistor in each output tube grid lead.
3. Connect . 001 Mfd., or smaller, con-

densers from the output stage grid leads to ground, or the junction of the above mentioned 200 ohm resistors to ground.
4. Connect a by-bass condenser across the self bias resistor.
5. Connect a 25 ohm 10 watt resistor in series with each plate of push-pull parallel output tubes.
6. Insert 10,000 ohm or larger resistors across each half of the secondary of the driver transformer.
7. Connect a resistor across the total secondary of the driver transformer, the value to be as high as possible and still stop the oscillations.

A simple test procedure for the source of oscillation is as follows: First, reverse the tertiary winding of the output transformer. Second, remove the inverse feedback system entirely to make certain this part of the circuit is or is not responsible. Third, try the various circuit changes as previously outlined.

DISTORTION MEASUREMENTS

The most popular way to check the distortion in an amplifier is shown in Fig. 2. The output of the amplifier is fed to the vertical input of the scope and an audio signal with a sine wave characteristic is fed to the input of the amplifier. Since a
sine wave is uniform, any deviation from it is easily recognized.

It is not possible to distinguish distortion on the oscilloscope below 5 or 6 per cent. The only distortion which may be readily seen with this method is the flat top wave. This flat top may be caused by operating into the curved portion of the tube characteristic in the case of triodes or by using too high a plate load in the case of a pentode. Driving a class A or $A B$ power stage so heavily as to draw grid current will also cause this form of distortion.

Where distortion is present the leads from the vertical input of the oscilloscope should be moved to the output and input of each successive stage, beginning with the final, until the defective one is located.

OUTPUT MEASUREMENTS

Output measurements are usually taken across a resistor, substituted for the impedance which would usually be connected to the secondary. an accurate output meter when making these equals $\frac{E:}{R}$, it is then easy to compute the output of the amplifier.
An oscilloscope is almost a necessity in measuring power output if usable output is to be coning power output Most amplifiers are capable of considersidered. Most amplifiers are capable of considerwith high distortion. An output with a maximum distortion of less than $\mathbf{8 \%}$ is all that is really useful.

Connect the vertical input of the oscilloscope
Connect the vertical input of the oscilloscope across the same load resistor that in used for the out output voltage measurements. Increase the out sine wave form begins to distort. Back the gain down until no noticeable distortion is present, then take the output voltage reading. The oscilloscope will begin to show distortion when about 6% is present.
A point often forgotten is that an amplifier passes many frequencies, thus the watts output should be fairly constant over the entire frequency range if the amplifier has any quality at all. An amplifier with 25 watts output at 400 cycles should also deliver $\$ 5$ watts with no noticeable distortion $50 \mathrm{c} . \mathrm{p} . \mathrm{s}$. and to at least $8,000 \mathrm{c}$.p.s. These meas rements are not possible unless the laboratory equipment previously ment oned is available.

OVERALL GAIN

No rating can be so abused as the $d b$ gain of an mplifier. This is true because of the nature of the measurements involved. The decibel is a unit of power measurement so the resistance across which the voltage measurements are computed will influ ence the mathernatical, not the actual, result.

To compute the overall gain, a carefully meas ured input voltage is applied to the input of the amplifier and the output voltage measured. The gain is figured in decibels through the use of the formula $d b=10 \log . \frac{P_{0}}{P_{i}}$, where P_{0} is the power output and Pi is the power input.

The output voltage is usually read across the oad resistor mentioned at the beginning of this oadicle. The input voltage is fed into the regular input, which is usually a 5 megohm resistor.
It is this input resistor that can play havoc with the gain measurements. Although its value is 5 megohm, purposely a large value to prevent loading of the microphone, such a value is never encountered as an actual grid load. When shunted by the microphone or other input source the resultant impedance is much less. For this reason the secondary impedance of the usual transformer, 100,000 ohms, is the generally accepted figure used in gain computations. An actual input impedance of 5 megohms would obviously ruin the high frequency response of the stage involved. The calculated db gain will be less with 100,000 ohms but it will be more indicative of the usable gain. You will notice that in the technical data on each amplifier in this guide the figure of 100,000 ohms is given as the value used. Without this statement the db value would be meaningless. Always atate the constants used when speaking of db gain, Although a higher db gain will be shown by usi a value of 5 megohms rather than 100,000 ohm the computations, the actual gain from m phone to

THORDARSON AMPLIFIERS

Factory Built - Laboratory Tested

Model T-20W60
"Built for Audio Experts
by
Audio Experts"

Amplifier Catalog No. 600. Free. Illustrates models with outputs ranging from 8 to 60 watts.. Features the new solid walnut cases with sloping, illuminated and recessed panels. Gives technical data, prices and complete information for each model. Includes a line of portable amplifier and speaker cases. See your Jobber for a copy or write the Factory.

GUIDES AND MANUALS

Radio Service Guide - No. 342, 15 c. Constructional data on improved condenser analyzer and impedance bridge. 32 volt DC power supply, two high fidelity phono amplifiers and adding an extra speaker to a receiver. Full of information you will use every day in the year.

Transmitter Guide - No. 344, 15c. Fifty-two pages of up-to-the-minute data on transmitter design, and operation. Portable units, beginners transmitters, and larger rigs up to 1000 watts are fully described. Circuit diagrams, parts lists, and photographs illustrate each article.

> Replacement Transformer Encyclopedia, No. 243 , and Supplement, No. $243-S$. Free-Complete information regarding correct choke, audio and power transformer replacements. Covers almost 6000 receivers as listed in Rider's Manuals, Volumes I to VIII. Includes data on AC, AC-DC and battery models. This is the only complete Isting available and will save valuable time for the serviceman. You cannot afford to be without a copy. Ask your distributor for a copy.

Complete Transformer Manual - No. 340, 50c - The Thordarson Transformer Manual is a complete book, containing the Radio Servicing Guide, the Replacement Transformer Encyclopedia, the Transn tte: Guide, and the Sound Amplifier Guide, plus Thordarson catalogs and prices. It is bound in an attractive blue and orange cover with looseleaf arrangement, giving the user opportunity to keep the Manual up-to-date by adding the

Transformer Catalog -- No. 400. Free. Descriptions and prices of the complete line of Thordarson Chokes, Audios and Power Transformers. The most comprehensive listing available to meet the needs of the Sound Man, Amateur, Service Man and Experimenter. May be obtained from your Parts Distributor or direct from the Factory.

THORDARSON ELECTRIC MFG. CO.

REPLACEMENT

TRANSFORMER

 ENCYCLOPPDDATHORDARSON BHFCTMIC MTG. CO. 500 w . hURON ST., chicaco, mı. Transformer Specialists Since 1895

MODERN conditions call for fast and accurate sersice Your time and your customer's convenience and good will are valuable. The successful radio service engineer keeps a small stock of replacement transformers on hand to meet his requirements without delay. Thordarson does its part by having a complete line of replacement types for practically all receivers. The most popular types are listed below with full electrical and physical characteristics for your convenience. These transformers are rec-
ommended in the pages of this encyclopedia which has been compiled by Thordarson engineers to assist you in the proper selection of Power Transformers, Filter Chokes, Audio and Output Transformers. Types are listed below in numerical order for easy reference.

The Encyclopedia is larger than ever before and the receiver types have been carefully arranged to enable you to quickly find your model. KEEP THIS BOOK IN A HANDY REFERENCE SPOT -- you will find it invaluable.

AUDIO TRANSFORMERS

For coupling the plate or plates of an amplifier stage to the grid or grids of the next stage where grid current is not drawn.

DRIVER TRANSFORMERS

For coupling the plate or plates to the grids of an amplifier stage in which grid current is drawn during a part of the audio cycle.

For coupling the plate or plates to the grids of an				Ratio Pri. to $1 / 2$ Sec.	Pri. M.A.	$\begin{aligned} & \text { Mtg. } \\ & \text { Fig. } \end{aligned}$	Mtg. Centers Width Depth	Dimensions			Wt. Lbs.
Type	Driver Tubes	Output Tubes	Class					W.	D.	H.	
T-17D01	1-6F6 Triode 1-42 Triode, 1-2	$2-6 \mathrm{~F} 6,6 \mathrm{~L} 6 \text {, etc. }$ Triode	AB	$\begin{aligned} & 1.7: 1 \\ & 1.5: 1,1 \end{aligned}$	31	3B	278	33/6	2	2	11/2
T-67D47	1-6N7, 6A6, 53	1-6N7, 6A6, 53	B	5.25:1	10	2 F	23,8	$23 / 4$	21/8	$2^{3} 8$	112
T-67D50	1-89 Triode	1-79	B	2:1	32	2 F	238	$28 / 4$	21/8	2^{3} \%	112
T-67D78	1-46, 59, 6F6, 42, 2A5 Triode	$\begin{aligned} & 2-46,59 \\ & 2-6 \mathbf{L} 6 \end{aligned}$	$\begin{gathered} \mathrm{B} \\ \mathrm{AB}, \end{gathered}$	2.2:1	32	2 F	$2{ }^{15} / 16$	$31 / 8$	212	3	$21 / 4$
T-74D32	2-6C5, 76, 56	$\begin{aligned} & \text { 2-6F6, 42, 2A5 } \\ & 4-2 A 3,6 \mathrm{~B} 4 \mathrm{G} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{ABP}}{ }^{\mathrm{ABB}} \end{aligned}$	3:1	10	2 F	215\%	33_{8}	21.	3	21/4
T-78D46	1-30	$\underset{2-30}{1-1 \mathrm{~J} 6 \mathrm{G}, 19}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	2.4:1	7	2 B	21/8	$2^{9} 16$	15%	2	3/4
T-81D42	1-6F6 Triode 1-42 Triode 1-2A5 Triode	$\begin{aligned} & \text { 2-6F6 Triode } \\ & 2-42 \\ & \text { or } \\ & 2-2 \text { A5 Pentode } \end{aligned}$	$\begin{aligned} & \mathrm{AB2} 2 \\ & \mathrm{AB} 2 \\ & \mathrm{AB2} \end{aligned}$	$\begin{aligned} & 1.7: 1 \\ & 1.5: 1 \\ & 1.3: 1 \end{aligned}$	31	2 F	21516	$3^{3} 8$	21.	3	$21 / 4$
T-81D52	$\begin{aligned} & 1-6 \mathrm{C} 5,76 \\ & 1-56 \end{aligned}$	2-6F6 Triode 2-42, 2A5 Triode	$\begin{aligned} & A B \\ & A B \end{aligned}$	$\begin{aligned} & 1.82: 1 \\ & 1.67: 1 \end{aligned}$	8	2F	$21 / 16$	$3^{3 / 8}$	21.	3	$21 / 4$

OUTPUT TRANSFORMERS

Type	Tube Type	Class	Ohms Impedance		$\begin{gathered} \text { Pri. } \\ \text { M.A. } \\ \text { Per Side } \end{gathered}$	Max. Mtg. Watts Fig.		Mtg. Centers Width Depth	Dimensions			Wt. Lbs.	
			Pri.	Sec.					D.	H.			
T-13S37	1-6F6, 42, 2A5, 47	A	7,000	1/2/4	36	5	3 E		2	$2^{3} 8$	$1^{3} 8$	138	$1 / 2$
T-13S38	Universal Single or P-P Tubes	A	$\begin{aligned} & 4,00 / 7,000 \\ & 8,000 / 10,000 \\ & 14,000 \mathrm{Ct} . \end{aligned}$	$\begin{aligned} & \text { Adjustable } \\ & .1 \text { to } 29 \end{aligned}$	36	8	3 E	$2^{3} 8$	$213 / 6$	15 \%	15/8	$3 / 4$	
T-13S40	2-6F6, 42 P-P 2-2A5, 47 P-P	$\overline{\mathrm{A}}, \mathrm{A}$	$14,000 \mathrm{Ct}$.	1/2/4	40	10	3 E	$2^{3}{ }_{8}$	$2^{13} / 6$	15.	15/8	3/4	
T-13S41	Universal P-P Tubes	A	$\begin{aligned} & 3,000 / 5,000 \\ & 6,600 / 7,000 \\ & 8,000 / 10,000 \\ & \hline \end{aligned}$	Adjustable .1 to 29	60	20	2 E	215	$3^{3} 8$,	$21 / 4$	

OUTPUT TRANSFORMERSȳ (Continued)

* 10% Feedback Winding

CHOKES

Type No.	Inductance		Current Rating M.A.	$\begin{aligned} & \text { D.C. } \\ & \text { Res. } \\ & \text { Ohms } \end{aligned}$	R.M.S. Test Volts	Mtg. Fig.	Mtg. Centers		Dimensions			Wt. Lbs.
	At Zero	At Rated										
	D.C.	D.C.					Width	Depth	W.	D.	H.	
T-13C26	21	8	40	530	1600	3B	2		23/8	$13 / 8$	$13 / 8$	1/2
T-13C27	22	10	40	475	1600	3B	$23 / 8$		$2^{13} / 16$	$15 / 8$	$15 / 8$	$3 / 4$
T-13C28	20	10	65	460	1600	3B	211/16		3	$13 / 4$	2	1
T-13C29	20	9	85	250	1600	3B	23/4		33/16	2	2	$11 / 2$
T-13C30	25	8	150	200	1600	2 B	$\overline{2}^{15}$ /6		338	21/8	3	$21 / 4$
T-14C61	14	7	55	200	1600	3B	$2^{3} 8$		213/16	$15 / 8$	$18 / 8$	8/4
T-14C62	16	8	55	250	1600	3B	2^{3}.		213/16	$15 / 8$	$15 / 8$	$3 / 4$
T-14C63	19	8	55	300	1600	3B	$2^{3} 8$		213/16	15/8	$15 / 8$	$3 / 4$
T-18C92	$3 \overline{7} \overline{8}$	18	$3 \overline{5}$	405	1100	3B	278		$33 / 16$	2	2	$11 / 2$
T-29C27	800	500	. 5	6150	1600	2 B	$2^{3} 8$		278	$13 / 4$	238	1
T-44C02	31	12	80	405	1600	3B	278		33,16	2	2	$11 / 4$
T-47C07	20	12	75	410	1600	3B	$31 \frac{1}{8}$		$35 / 8$	178	$21 / 4$	11/4
T-52C98			. 5	6150	1600	2 F	$2{ }^{3} 8$		278	17/8	$23 / 8$	$11 / 4$
T-57C54	27	10	110	200	1600	2 F	$2{ }^{15} 16$		$3{ }^{3} 8$	21/2	3	21
T-67C49	12	5	200	80	1600	2F	$311 / 32$		$3^{13} / 16$	31/16	$31 / 2$	$33 / 4$
T-68C08			35	405	1600	2 F	2^{3}		23/4	21/8	$23 / 8$	$11 / 2$
T-74C29	29	15	150	200	2000	2G	$211 / 16$	${ }^{29}{ }^{9} 6$	$33 / 8$	$33 / 8$	$45 / 8$	$51 / 4$
T-74C30			15	2100		3B	211/6		2	11/2	$23 / 8$	1
T-75C49	22	8	120	290	1600	3 B	$23 / 4$				2	$11 / 2$
T-75C51	24	13	250	121	1600	2G	3	215/16	$3 \frac{8}{4}$	311/16	$4^{15 / 16}$	8

POWER TRANSFORMERS LISTED ON PAGE 29.

For complete description of these and other Thordarson transformers and chokes see catalog No. 400.

MODEL	Power Trans．	Firse Filter Choke	Second Fiher Choke	First Audio Trans．	Second Audio Trane．	Outnut Trane

aUdiola Radio CO．（See also Fairbanks，Morse）

4T－31．4T－32 6T Jr．．6T－31	T－13R05	म	H	H	म	T－57501
7T，8T，9T	T－13R06	沜	H	曻	H	T．57S01
9T－45．	T． 13 R06	\＆	\＆	H	T－29A99	T－57S01
10 T Super	T－13R06	म	品	म	T－33A91	T．57S01
13 T－5．	T－13R05	\％	म	4	4	T－57S01
135．9．．．．．．．．．．．	T．13R06	T－13C29	T－18C92	H	T－33A91	T－57S01
$\begin{aligned} & \text { 23T-5, 23T-5-SW } \\ & 23 \mathrm{~S}-\mathrm{B} . \end{aligned}$	T－13R03	＊	म	山	म	T．57S01
23S．8Q．．．．．．．．．．．	T－13R05	4	＊	＊	4	T－57S01
23 S －10	T－13R04	H	宜	家	H	T－57S01
23S－12．．．．．．．．．．．．	T－13R04	T．75C51	น	म	T－67D47	T－57S01
30B， 31 Super ．．．．．．	T－13R06	T．13C30	尔	म	T－33A91	T．57S01
33S－10	T－13R04	4	H	号	4	T． 57501
889	T－56R01	T－13C29	T－13C29	T－29A99	T－33A91	T－57S01
7330.	T． 13 R06	T－13C30	H	म	T－33A91	T－57S01
$8430 \ldots \ldots . .$. ．	T－13R06	T－13C30	म	T．29A99	T．33A91	T．57S01

balkeit radio co．

A－3，A－5，A－	T．13R00	T－13C29	น	T－29A99	T．33A91	§Special
C．．．．．．．．．．．．．．．．	T－13R06	T－13C30	T－13C29	\＆	T．33A91	T－57S01
D．5．	T－13R02	म	म	号	म	T－57S01
E	T．13R05	T－13C29	म	H	T－29A99	T－57S01
F．．．．．．．．．．．．．．．	T．13R06	T．13C30	H	H	T－29A99	\＄Special
KP	T．13R03	म	4	म	म	T．57S01
L．－7．	T－13R04	H	4	4	4	T－57S01
L－8．Windeor 70	T－13R06	T．13C29	ふ	H	T－33A91	T－57S01
G－18A，G－19B	T－13R12	T．13C29	म	म	म	T．57S01
GT－20	T－13R13	T－13C30	4	H	H	T．57S01
41 A	T．13R12	T．13C29	H	＋	म	T－57S01
42－E，42－G	T．13R01	म	\％		म	T． 57501
60， 70	T－13R19	$\dot{4}$	$\dot{4}$	\％	H	T．57S01
100.	T．13R06	T．13C30	म	น	T－33A91	T－57S01
GT－200．X	T．13R13	T－13C30	\％	\＆	\％	T．57S01

BELMONT RADIO CORP．

40，50，50A－B－C， 60	T．13R02	～	म	H	\％	T－57S01
40A．．．．．．．．．．．．．．．	T－131101	\＆	ム	H	\square	T－57S01
$70 \ldots \ldots \ldots \ldots$	T－13R03	H	号	H	\square	T－57S01
70A $\ldots \ldots \ldots \ldots \ldots$	T．13R05	\％	น	4	H	T－57S01
71C．．．．．．．．．．．．．	T．13R03	म	H	म	H	T．57S01
100．．．．．．．．．．．．．	T－13R06	T－13C30	范	H	H	T－57501
401 ．．．．．．．．．．．．．	T－13R01	म	号	\＃	4	T－57S01
401 B．．．．．．．	T－13R19	म	$\dot{4}$	$\dot{4}$	\pm	T－57501
408 A．．．．．．．．．．．．．	T－14R39	म	H	म	H	T． 57501
504A．．．．．．．．．．．．	T．14R39	T．14C62	H	H	$\dot{\square}$	T．13S43
517A，526， 529.	T－13R19	H	4	\＃	H	T－57S01
489A．B．	T．141839	म	H	曻	－	T．57S01
527，529．．．．．．．．	T．13119	म	म	\dot{H}	～	T－57S01
550．．．．．．．．．．．．	T－13R02	म	H	H	H	T－57S01
555，556，578．．．．．	T－13R19	ム	4	4	\＆	T． 57501
575．．．．．．．．．．	T．13R02	म	H	安	\＆	T．57501
577．．．．．．．．．．．．．．．．	T．14R39	H	H	H	耑	T－57S01

MODEL	Power Trane．	First Filter Choke	Second Filier Choke	First Audio Trans．	Second Audio Trans．	Output Trans．
BELMONT RADIO CORP．（Contd）						
$\begin{aligned} & 582 \text { A \& B. } 583, \\ & 585 \text { A-B-C, } 586,587, \\ & 588 \mathrm{~A}, 589 \mathrm{~A} . . . \end{aligned}$	T－13R19	永	H	म	म	T．57S01
611.	T．141439	म	म	か	T．78D46	T－81501
629.	T－13R19	宜	品	古	古	T．57S01
640.	T－13803	H	\％	H	म	T－57S01
665．．．．．．．．	T－131111	\＆	安	म	म	T．57S01
675．．．．．．．．．．．．	T－131102	म	मे	\＆	ム	T．57S01
685， 686.	T－13R19	H	4	H	H	T．57S01
708．．．．．．．．．	T．13R20	म	\％	$\dot{\sim}$	\％	T－57S01
740． 777 B－C．．．．．	T－13813	\＆	मे	园	म	T．57S01
746．755，777A．．．．．	T－13119	号	H	H	ム	T－57S01
750	T－131206	म	4	4	T－33A91	T－57S01
761.	T．13R13	मे	H	走	ค	T－57501
775.	T．131103	\＆	म	H	H	T．57S01
778.	T－13113	H	4	म	H	T．57S01
786	T．131219	H	H	H	H2	T＇57S01
787 A	T．13112	T－13C28	म	H	4	T．57S01
823.	T－11R39	म	H	＊	T．781） 46	T－81S01
840，842， 860.	T－13R13	安	\％	4	\％	T－57S01
867.	T．13R12	4	H	\＆	H	T．57S01
878 A	T．13113	\＆	म	\＆	म	T． 57501
879 A	T－13R19	H	H	H	安	T－57S01
888， 889	T．13R11	H	H	H	\＆	T． 57501
890 A	T－13R12	म	\％	A	H	T－57S01
1050.	T－13R06	T．13C30	4		T－33A91	T－57S01
$\begin{aligned} & \text { 1070, 1170, } 1171, \\ & 1172,1174,1175, \end{aligned}$	T．13R14	H	4	$\dot{4}$	T－17D01	T．13S41
1075.	T．13R12	H	H	\＆	\＆	T．57S01

BOSCH（See United American Boach）
BRETING RADIO MFG．CO．

Breting 14	T－13R15	H	\pm	4	H	T．75S75

BRUNSWICK RADIO CORP．

D．．．．．．．．．．．．	T．13R04	4	号	$\dot{\square}$	म	T－57S01
R．1．	T－56R01	T．13C29	T－13C29	T．29A99	T．29A99	T．18C92
2．KRO，3．KRO， 3－KR6，5－KR， 5－KRO，5－K R6	T－56 R01	T－13C29	T－13C29	T． 29 A99	T－29A99	T－18C92
3－NC8，5－NC8	T－131200	T－13C29	T．13C．29	H	T－29A99	T．57S01
10	T．13R03	T．13C28	\＆	मे	म	T－57S01
11，12，16，18， 33.	T－131104	म	H	曻	म	T－57S01
14，21，31．	T．13R06	T－13C30	T－13C30	T－29A99	T－33 A91	T．57S01
S．14，S－21，S－31．	T－13R00	§Special	H	H	T．33A91	T－57S01
15，22，32， 42	T．13R06	T－13C29	म	H	\＆	T．57S01
17，24，25，．．．．．．	T． 131206	म	म	L	म	T．57S01
PR17－8．	T－56R01	T－13C29	T．13C29	T－29A99	T－29A99	\＄Special
S．81，S－82．．．．．．．	T－13R06	§Special	H	\＆	T－33A91	T－57S01

BULOVA WATCH CO．

M－501 ．．．．．．．．．．	T．13R03	T－13C28	4	म	4	T．57501
600，601，605，610．．	T－13R03	T．13C28	T－13C28	म	4	T．57S01
M－701	T．13R03	T－13C28	\％	\％	म	T．57S01
C－751．	T．13R03	T．13C28	\％	H	\％	T－57501

MODEL	Power Trans．	First Filter Choke	Second Filter Choke	Firat Audio Trana	Second Audio Trans．	Output Trana．	MODEL	Power Trans．	$\begin{aligned} & \text { First } \\ & \text { Filter } \end{aligned}$ Choke	Second Filter Choke	First Audio Trans．	Second Aurlio Trane．	Output Trana．
BUSH AND LANE PIANO COMPANY							CONTINENTAL RADIO \＆TELEVISION CORP．						
10．．．．．．．．．．．．．．．	T－13R06	T－13C30	\％	T－29A99	T－33A91	T．57S01	AM4	T－13115	น	\％	山	ஷ	T－13S41
$12 \mathrm{SG} . . . \ldots \ldots .$.	T－13R06	T．13C30	H	哯	T－33A91	T－57S01	AM7．．．．．．．．．．	T．13H13	\＆	H	$\dot{4}$	\％	T．57S01
CLARION（See Transformer Corp．of America）							AM8－RF．．．．．．	T－13R19	T－13C26	\＆	\％	म	म
COLONIAL RADIO CORPORATION							M1．．．．．．．．．．．．．．	T－13112	म	$\dot{4}$	\％	H	「－57501
31AC．．．．．．．．．．．	T－56R01	T－13C29	T－13C29	T－29A99	T－33A91	T－57S01	L2．．．．．．．．．．．．．	T－13112	T． 13 C 28	$\dot{4}$	4	永	T．57501
32AC．．．．．．．．．．．	T．13R06	T－13C30	T－13C27	म	T－33A91	T．57S01	Z2．．．．．．．．．．．．．	T． 131112	－	$\dot{\sim}$	\％	H	T－57S01
32DC，33DC．．．．．	म	T－18C92	T－74C30	म	T－33A91	T－57S01	L4，MIL4，LS．．．．	T－131113	T－13C29	$\dot{*}$	\％	4	T． 57501
33，34．．．．．．．．．．．	T－561105	T－13C30	म	$\dot{4}$	T－33A91	T－57S01	5A，5AZ．5R．5F．5G， 5M，5V1，5X，5\％．．	T．131119	म	4	3	tr	
36．36P	T．13R06	T－74C30	㐫	颪	\＄Special	T－57501	6 B	T．13819	ม	\％	\％	\cdots	r．57S01
37，37P ．．．．．．．．	T． 13 H 05	㐫	น	H	＊	T．57S01	6G． $6 \mathrm{~K} .6 \mathrm{~W} \ldots \ldots$	T－131819	म	\％	4	म	T－57S01
38．．．．．．．．．．．．．．．．	T－13806	T．74C30	H	H	\＄Special	T－57S01		T－13R14	T－13C30				
39．．．．．．．．．．．．．．．	T－13R02	म	H	\dot{H}	～	T．57501		T．14R33	T－14C63	\％	山	$\stackrel{\text { म }}{\text { ¢．}}$	$\frac{\text { T．} 57 \mathrm{~S} 01}{\text { T－81S01 }}$
41，42 $\ldots \ldots \ldots \ldots$	T－13R04	म	म	ฝ	\＆	\＄S serial $^{\text {a }}$	$0 \mathrm{PD}$ 7C．71I，7C－PII， 711．111		T－1463				T－8isol
44．．．．．．．．．．．．．．	T－13R05	म	H	＊	4	T－57S01		T－13R12	H	म	\％	\％	T－57S01
46．．．．．．．．．．．．．．．	T－13R02	म	今	H	\％	T－57S01	76	T－13R19	\dot{H}	H	H	is	T．57S01
47，48．．．．．．．．．．	T．56R05	$\dot{\square}$	耑	म	$\dot{4}$	T－57501	7M，7MU，X8．．．．	T．13R12	$\dot{4}$	म	난	म	T－57S0！
49．．．．．．．．．．．．．．．	T．13R03	み	～	H	$\dot{4}$	T－57S01	8A．	T．13R12	方	$\dot{\sim}$	$\stackrel{4}{4}$	म	T．57S01
51，52．．．．．．．．．．	T－56R05	$\dot{4}$	㟔	H	म	T－57501	8C．．．．．．．．．．．．．	T．13112	\＆	\＆	立	㐫	T． 57 S 01
62．．．．．．．．．．．．．．．	T． 13 R 05	H	น	\＆	$\stackrel{\square}{4}$	T－57S01	80．．．．．．．．．．．．．	T．13R19	\dot{H}	म	H	山	T－57S01
73．．．．．．．．．．．．．．．	T．13R03	吕	म	\＆	H	T－57S01	8K，${ }^{\text {¢ }}$ G．．．．．．．．．．	T－13R13	的	4	$\dot{\square}$	H	T．57S01
114．117．．．．．．．．．．	T－13R06	T．74C30	堊	$\dot{4}$	\＄Special	T－57S01	113，118．PH．．．．．	T－13H14	H	＊	H	$\dot{\sim}$	T－57S01
125．．．．．．．．．．．．．	T．13R02	म	म	म	म	T－57S01	1618	T．13R14	§Sirecial	$\dot{4}$	山	$\dot{4}$	T．13S41
$\begin{aligned} & 250 \mathrm{AC} .300 \mathrm{AC} \\ & \mathbf{T 3 4 5} \ldots \ldots \ldots \\ & \hline \end{aligned}$	T－13R19	น	म	$\dot{\sim}$	म	T． 57501	$\frac{131 \ldots \ldots \ldots \ldots}{137 \times, 150 \times, 171 \mathrm{Y}}$	T． 13 H 12	H	म	म	山	T－57S01
								T－13113	मे	～	$\dot{\square}$	崮	T－57S01
C399	$\begin{array}{r}\text { T．13R03 } \\ \hline \text { T．13R12 }\end{array}$	म	H	\％	म	T＇57S01	150－5Z．155－5Z， Chabais 5Z	т－13619	\dot{H}	म	\dot{H}	H	T．57501
C399．．．．．．．．．．．．．	T－13112	म	堊	น	is	T－57501	M11．156．						
C495	T．13R03	H	H	म	is	T－57501		T－13H12	T－13C28	号	H	\dot{H}	T．57S01
C595．．．．．．．．．．．．．	T－56R05	$\dot{\sim}$	\dot{H}	$\dot{\sim}$	is	T－57S01	160．5X，165．6W ．．．	T－13R19	म	み	$\dot{\sim}$	\％	1．57501
600，600A． $603 \ldots$	T－13R12	H	4	山		T－57S01	111．－266．．．．．．．．．．	T－13R12	T－13C28	\＆	म	4	T．57501
$601 . . . \ldots \ldots . .$.	T．13R09	4	H	\％	is	T．13S41	975－6 W．980－5X ．．．	T－13R19	～	H	H	访	T． 57501
604，605 ．．．．．．．．．	T．13R08	H	म	मे	岗	T－57S01	985－57，990－57．．．．T－13119		品	H		永	T－57501
650，653．．．．．．．．．．	T－13R19	म	म	H	站	T．57S01	CROSLEY HADIO CORP．						
652．．．．．．．．．．．．．．	T．13R11	H	is	난		T－57S01	5M3， $512 \ldots \ldots \ldots$	T－13180	म	$\dot{\square}$	妆	H	T－57S01
656．．．．．．．．．．．．．．．	T－13R12	H	म		$\dot{\square}$	T－57S01	$\frac{6 H 3 \ldots \ldots \ldots}{305, ~ 315, ~ 335, ~ 345}$	＇T－13k12	H	म	น	म	T．57S01
658．．．．．．．．．．．．．．．	T－13R19	4	动	$\dot{4}$	$\dot{\text { H }}$	T－57S01		T． 13 ROO	T－13C30	站	म	T－33A91	T－57S01
662．．．．．．．．．．．．．	T－13119	\dot{H}	म	H	म	T－57S01	10S， $41 \mathrm{~S}, 42 \mathrm{~S} \ldots \ldots$	＇T－13106	T－13C30	म	$\dot{\sim}$	T－33A91	T．57S01
C695．．．．．．．．．．．．．	T－56R05	H	且	\％	is	T－57501	41，41A， $42 \ldots \ldots \ldots$	T－561201	T－13C29	म	T－29A99	T－33A91	T－57S01
COLUMBIA PHIONOGRAPII COMPINY								T－13R03	A	岸	म	मे	T．57S01
C－1，C－2，C－4．．．．．	T－56R01	T－13C29	T－13C28	T－29A99	T－29A99	T． 18 C 92		T－13世19	म	悬	म	म	T－57S01
C－25－31，C－25．32．．	T－131402	T－13C28	$\dot{\sim}$	H	म	T－57S01	53．54．57．58． 59 AC	T－13 ${ }^{\text {Pros }}$	T－13C29	म	H	is	T－57S01
C．31，C－32．．．．．．	T．13R02	T．13C28	\％	ค	म	T－57S01	$\frac{61 \ldots \ldots \ldots}{72,72 \mathrm{~L}, \mathrm{~B} \cdot(7 \mathrm{H} 2) .}$	T－13R12	म	म	㐫	＊	T－57S01
31，33．．．．	T－13R03	T－13C28	\＆		म	T－57S01		T．13104	म	安	\％	み	T－57S01
32． 34	T－13R04	T－13C29	\＆	H	3	T－57501	72，72L，B，（7H3）．．．．	T－13k13	\％	吕	$\dot{\sim}$	\＆	T－57S01
C－80．．．．．．．．．．．．．	T．13R04	T－13C29	H	म	H	T－57S01	77－1．77A－B－L． 80AW，8111，	T－131806	T－13C30	\％	$\dot{4}$	T－33A91	T．57S01
C－101．．．．．．．．．．．．	T．13 102	T．13C28	\％	站	$\dot{\text { म }}$	T－57S01		T．13R13	T－13C29	的	\％	\％	T－57S01
C－102．．．．．．．．．．．	T－13R03	T．13C28	म	\％	मे	T．57S01	82S．．．．．．．．．．．．	6	T－13C	山	山	T－33A91	T－57S01
C－800 ．．．．．．．．．．．	T－13R04	T－13C29	मे	म	म	T－57S01	84C．，84D ．．．．．．．．．			4	$\dot{4}$	33A91	T－57S01
920．．．．．．．．．．．．．	T．13R06	H	H	T－29A99	T－33A91	T－57S01	$121 \text { A.B. }$	T－13R06	T－13C30	み	น	33A91	T－57S01
930．．．．．．．．．．．．．	T－13R07	म	4	T－29A99	T－33A91	T－57S01		T．13R04		\％	山	T－33A91	T－57501
990．．．．．．．．．．．．．．	T－13R06	म	म	T－29A99	T－33A91	T－57S01	122.	T．13R04	H	म	＊	T－33A91	T．57S01

Prices and dimensions for all transformers and chokes shown herein listed on page 3.

MODEL	Power Trank．	$\begin{aligned} & \text { First } \\ & \text { Filter } \\ & \text { Ciove } \end{aligned}$	Second Pilter Choke	$\begin{aligned} & \text { Firal } \\ & \text { Audiu } \\ & \text { Trans. } \end{aligned}$	Second Audio Trant．	Output Trans．
CROSLEY RADIO）CORI．（Contd）						
12.5	T－13R03	品	尔	永	ㄹ	T－57501
127，127－1 ．．．．	T－13 1 （06	T－13630	\％	H	T．33A91	T－57501
129，129－1 \ldots	T－13R08	六	4	\％	is	T． 57501
130，130－1．．1．．．．	T－13118	4	H	$\dot{\sim}$	4	T－57S01
131．．．．．．	T．131102	म	5	$\dot{4}$	\＃	T．57501
133， 134 ．．．	T－131104	4	4	$\dot{\square}$	is	T． 57501
134－1	T． 131104	T－13C29	H	＊	S	T－57801
135 ．1． 136.1	T．13803	कt	\％	म	ม	T－57801
136－1．．．．．．．．	T－131009	T－13C30	$\stackrel{\text { a }}{ }$	H	H	T． 57501
13\％，141 ．．	T－131202	S	点	4	\％	T－57S01
$147 \ldots$	T－131203	is	म	曻	牊	T－57S01
148，150， 1.54	T－13117	$\stackrel{ }{*}$	2	म	น	T－57801
1．57．．．．．．．．．	T－13R18	＊	is	\％	म	T． 57501
1.88	T－13R17	\％	म	\dot{H}	म	T． 57501
160，161，161	T－13R06	T－13630	$\dot{4}$	I	4	T． 57501
167 －	T．131212	\pm	म	H	空	T－57S01
167 aerifa 2． 168	T－131803	而	号		4	T．57801
169.	T－13R1？	tr	H	is	t	T． 57501
170，171	T－13R06	T－13C30	म	4	¢	T－57501
17．5 ．．．．	T－131607	T．13C30	น	น	나	§Spectial
$179 \quad$－ 11	T－131203	t	4	\＃	t	T． 3 7501
180）	T－131106	T－13030	4	咅	1	T－57501
181	T． 131212	is	\％	3.	\＄	T－57801
181 －	T．131205	$\dot{\square}$	म	d	It	T－57501
438	T． 13 HIT	4.	H	\pm	去	T．13542
505，515， 310	T－13R12	is	号	2r	）	T－57501
507	T．13R19	p	～	\dot{H}	\＆	T－57501
517	T－131819	is	\dot{L}	－	永	T． 57501
518	T－13119	\％	㟔	i	㞱	T．57501
523	T．13H11	南	庴	i	－	T． $57 \mathrm{S01}$
526.	T－131612	it	产	म	म	T． 57 s 01
534	T－13R12	交	\＆	is	T－33191	T． 37501
537.	T－13R11	15	\％	4	म	T－57S01
347 －．．．	T－13R19	I2	家	म	मे	T． 57501
35．\％	T－13R12	น	is	4	T－33A91	T．57S01
567.	T．13R19	น	冎	宜	4	T－57S01
614，616，626．	T－13R12	म	\pm	म	曻	T－57S01
628	T－13R19	$\stackrel{\square}{4}$	A	山	น	T． 57501
635， 636	T－13R12	立	\％	岸	曻	T． 57501
637，638．	T．13R19	\％	\％	㞩	4	T． 57801
639	T－13119	4	$\stackrel{\text { r }}{ }$	픈	म	T．57S01
616	is	\because	$\stackrel{\text { a }}{ }$	H	T．78D46	T－81501
65．5，6．56，6066 ．．．	T－13112	\pm	＋	：	ar	T－57501
668 ．．．．．．	T－13H20	\％	मे	म	H	T－57S01
709． 800 ．	T－¢bR01	T－134 29	4	T．29A99	T． 33191	\％
714，715， 716	T－13R13	3 3：	耑	4	L	T－57S01
718 ．．．．．．．．．	T－13R19	9	\＃	나	¢	T－57S01
725	T－13R12	$\%$	尔	\％	， 1	T－57501
726． $736 \ldots \ldots$	T－131413	4	in	尔	$\stackrel{1}{4}$	T．57501
758 ．．．．．．．．．	T－13R20	날	）	म	4	T－57801
804.	T．13R00	T． 13 C 30	H	T－29A99	T－33A91	会

MODEL	Poner Trans．	Firat Filter Choke	Second Filter Choher	First Audio Trans．	Seeond Audio Trana．	Output Trane．
CROSLEY RADIO CORP．（Contd）						
814	T－13R13	T－13C29	म	＊	मे	T－57S01
815	if	म	म	T－29A99	T．78D46	T－81501
816	T－13R14	\％	\＆	$\dot{4}$	§Special	T－13S41
817.	T－13R13	就		H	曻	T－57S01
818.	T－13R20	4	4	＊	＊	T－57S01
828.	T－13R14	4	4	4	4	T 57S01
855， 865	T－13R12	4	मे	4	\％	T－57501
915.	T． 13 R 13	म	\＆	is	म	T－57501
916	T－13R13	T－13C29	4	4	T－33A91	T．57S01
926	T－13R14	H	\％	4	T－33A91	T－57S01
955	T－13R14	永	\＆	मे	＋	T．57501
1014	T－13R13	4	\％	$\dot{\text { w }}$	T．33A91	T－57501
1016． 1026	T－13R14	\％	4	4	T．33A91	T． 57801
1055	T－13R14	\％	\％	4	T－17D01	T－57S01
1117	T－13R13	H	\％	म	น	T－57S01
1126	T．13R14	4	H	is	T－33A91	T－57S01
1135	T．13R14	4	\＆	1t	T－171）01	T－57501
1216． 1336.	T－13R15	\pm	4	म	T－33A91	T－13S41
5515．5516，5．226	T－13R12	$\hat{*}$	म	it	म	T－57S01
．5555，5556， 56.56	T－13R12	4	4	H	＊	T．57S01
5628．．．．．．	T－13R19	4	4	4	4	T－57S01
5666，6516， 6625	T－13R12	म	\％	40	4	T－57S01
DELCO RADIO（See United Motors Service）						
DFTROLA RADIO \＆TELEVISION CORP．						
iJ	T－13R11	म	㐫	㟧	宜	T－57S01
5B，5D，5W，5X	T－13R11	4	\％	म	\％	T－57501
6 ZM	T．13R11	H	4	＊	H	T－57501
74． 7211	T－13R12	T－13C29	\％	H	\dot{L}	T－57S01
107．M	T． $13 \mathrm{R14}$	म	मे	म	\％	T－57501
106	T－13R19	$\dot{4}$	～	म	म	T． 57501
108． 1 16．	T－13R12	\％	\％	＊	4	T－57S01
14 i keries	T－13R13	\＆	H	मे	म	T－57501
$155 \mathrm{X}, 16.5$	T－13R13	2	\％	4	4	T－57501
163.	T－13R15	मे	मे	म	＊	$\dagger_{\text {Special }}$
178	T－13R11	H	H	＋	म	T－57501
184.	T－14R39	4	\％	म	H	T． 57501
206	T－13R11	\％	4	4	㐫	T． 57501
258． 259	T．13R12	\％	4	\％	4	T． 13341
276	T．13R12	H	H	2	4	T－57S01
315， 325	T． 13 R 12	\％	永	H	\％	T．13S41
326	T．13R12	\％	4	4	म	T． 13541
503	T．13R02	म	立	\％	H	T－57S01
1900	T．13R11	4	4	$\stackrel{\square}{4}$	H	T．57501

TIIOMAS A．EDISON，INC．

C．t．R4，R．S	T－56R05	T－13C30	\＃	T－29199	T－58A70	T－57S01
186． R i	T．56R05	T－13C30	T－13C28	亡	T－33A91	T－57801
F．．175．Whise：Jr．	T－56R01	T－13C29	$\stackrel{3}{4}$	T． 29199	T－29A99	8Special
WMERSON RADIO \＆PHONOGRAPII CORP．						
Cs	T－13R02	is	$\stackrel{\text { a }}{ }$	3	4	T－57S01
F	T－13R06	T－13C30	\pm	8	T－29A99	T－57S01
IS	T－13R02	4	से	含	［）	T．57501

[^7]| MODEL | Power Trana． | First Filter Choke | Second Filter Choke | First Andio Trans | Second Audio Trans． | Output
 Trans． | MODEL | Power Trank． | First Fitter Chote | Second Filter Choke | $\begin{gathered} \hline \text { First } \\ \text { Audio } \\ \text { Trans. } \\ \hline \end{gathered}$ | Second Andio Trane． | Ontput Trana． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| EmERSON RADIO \＆PHONOGRAI＇I CORP．（Cu | | | | | | | EMERSON RADIO \＆PHONOGRAPH CORP．（Contd） | | | | | | |
| | T－13R04 | $\dot{\sim}$ | \dot{H} | $\stackrel{3}{3}$ | $\dot{\sim}$ | T．57S01 | AT181，AR185．．．．． | T－13R12 | 山 | \％ | 方 | น | T－57S01 |
| T，TS．．．．．．．．．．．． | T－13R02 | ～ | 方 | 4 | 4 | T．57S01 | AW185（AW）．．．．． | T－13R13 | 山 | 4 | \＆ | ム | T．57S01 |
| L－AC－4． | T－13R01 | $\stackrel{\text { d }}{ }$ | $\dot{\text { H }}$ | 方 | $\dot{\sim}$ | T．57S01 | R189．．．．．．．．．．．．． | T－13R19 | \％ | H | ＋ | H | T－57S01 |
| L－AC－5，M－AC－7 | T．131102 | $\dot{\text { H }}$ | $\dot{4}$ | म | $\dot{\sim}$ | T－57501 | AZ196（AZ） | T－13R11 | 4 | H | 放 | म | T－57501 |
| AW7 | T．13R13 | น | म | 訔 | §Special | T－57S01 | BE198（BE） | T－13R19 | \dot{H} | 4 | \dot{H} | is | T－57S01 |
| 23 （48）．．．．．．．．．． | T－13R12 | 岁 | H | \％ | $\dot{\sim}$ | T－57S01 | $\begin{aligned} & \text { BL200. BL210 } \\ & \text { BL214(BL) AC202 } \end{aligned}$ | T－13R19 | 4 | म | 4 | म | T－57S01 |
| 26．．．．．．．．．．．．．．．． | T．13R02 | H | H | H | \％ | T．57S01 | BL218, BL220 (BL) | T－13R19 | 曻 | 4 | H | \dot{H} | T．57501 |
| 28 （5J）$\ldots \ldots \ldots \ldots$ | T－13R11 | H | ～ | 永 | 宜 | T－57S01 | | T．13R11 | $\dot{\sim}$ | \dot{H} | $\dot{\square}$ | H | T-57S01 |
| 34C（C6）， 36 （B5），．． | T－13R12 | म | म | H | ＊ | T－57S01 | $\begin{aligned} & \text { BR224 (BR) } \\ & \hline \text { BQ225, BQ228 (BQ) } \end{aligned}$ | T－13R15 | H | H | is | म | T-13S41 |
| 39 （DS－5）．．．．．．．．． | T．13R02 | \％ | $\dot{\square}$ | | म | T．57S01 | | T－13R11 | $\dot{\sim}$ | H | 4 | $\dot{4}$ | T－57S01 |
| 45 （6－BD）．．．．．．． | T－13R12 | \＆ | 2 | $\dot{\sim}$ | म | T－57S01 | BR226，BS227，BR， BS | | | | | | T－13S41 |
| 50L．50M，S－50， 155 | T－13R02 | \＃ | 紹 | \％ | 访 | T－57S01 | | T－13R15 | か | 耑 | 的 | \％ | |
| AW－55．．．．．．．．．．．． | T．13R05 | \％ | $\dot{\sim}$ | H | H | T－57S01 | BU229，BU230，BU | T－13R11 | म | म | म | 字 | T．57S01 |
| 59. | T－13R02 | H | \％ | \％ | \％ | T－57S01 | BW231（BW）．．．．．． | T－131111 | \dot{H} | $\dot{4}$ | H | \＃${ }^{\text {a }}$ | T.57S01 |
| | T－13R04 | T－13C29 | \dot{H} | म | T－33A91 | ${ }^{\text {S }}$ pecial | CB243（CB）．．．．．．． | T．13R11 | $\dot{\square}$ | \％ | \dot{H} | 4 | |
| 71. | T－131413 | $\dot{4}$ | $\dot{4}$ | $\dot{\sim}$ | \＄Special | T．57501 | 287 （DA）$\ldots \ldots . \ldots$ T－13R11 | | म | H | 萨 | H | T－13S42 |
| 72．．．．．．．．．．．．．． | T－13R02 | $\stackrel{\text { d }}{ }$ | $\dot{4}$ | $\stackrel{3}{4}$ | \dot{H} | T－57S01 | L755，M755，S755．．T－13R02 | | $\dot{\sim}$ | $\dot{4}$ | \pm | \＃ | T．57S01 |
| 101．．．．．．． | T－13R12 | $\dot{\square}$ | H | 岇 | \％ | T．57S01 | 770................... T-13R13 | | H | ＋ | म | §Special | T-57S01 |
| $\begin{aligned} & 102(A 8), 102 \mathrm{LW} \\ & (\mathrm{~B} 8), 104,1041 . \mathrm{W} . \end{aligned}$ | T－13R13 | 认 | $\dot{4}$ | $\dot{4}$ | \＆ | T－57S01 | ERLA（See also Sentinel） | | | | | | |
| | T．13R16 | T－67C49 | ウ | \＆ | T－17D01 | T－13S41 | Erla
 S．W．Converter | T－56R01 | T－13C29 | \dot{H} | T－29A99 | T－33A91 | 4 |
| K116（K）．．． | T－131812 | 品 | म | ม | น | T－57S01 | | $\begin{gathered} \text { T-13R01 } \\ \hline \text { T-13R07 } \end{gathered}$ | $\stackrel{3}{*}$ | 4 | H | म | T－57S01 |
| K116（K）．．．．． | T．13R11 | H | \％ | \％ | \％ | T－57S01 | AR3．
 Al3 Amp． | | T－13C30 | T－13C29 | $\dot{4}$ | T．33A91 | T．57501 |
| 116．．．．．．．．．．．．．．． | T－13R11 | 姣 | म | म | म | T－57501 | | T－13R05 | T－13C29 | T． 74 C 30 | H | T'-29A99 | T-57S01 |
| $\begin{aligned} & 117,1117,117 \mathrm{LW}, \\ & \text { Z117, (KS, 7) } \end{aligned}$ | T－13R12 | 㽣 | \％ | H | H | T．57S01 | $\frac{\text { A13 Amp. }}{30 \ldots \ldots}$ | T-13R05 | ＊ | $\dot{4}$ | \％ | H | T－57S01 |
| 121．K121．．．．．．．． | T－13R12 | म | 施 | म | म | T－57S01 | | T．13R07 | T－13C30 | T－13C29 | H | T－33A91 | T－57S01 |
| L122．L122LW，Z122 | T－13R12 | $\dot{4}$ | 安 | \％ | \dot{H} | T－57S01 | 31，32．．．．．．．．． | T－13R06 | T－13C30 | म | 4 | T－33A91 | T－57S01 |
| K123． | T．13R12 | \dot{H} | H | H | म | T－57S01 | 61，62，63．．．．．．．．．T－13n03 | | ＊ | H | H | म | T－57S01 |
| L133，L133LW， 2133 | T－13R12 | H | \％ | $\stackrel{3}{4}$ | \％ | T－57S01 | $75 .$ | म | \％ | म | T－29A99 | T－33A91 | T－57S01 |
| C134，C136，C138， | | | | | | | $\frac{77 .}{81 P}$ | $\begin{gathered} \text { म } \\ \text { T. } 131 \mathrm{R} 05 \end{gathered}$ | $\dot{\sim}$ | H | T•29A99 | T.33A91 | T－57S01 |
| C139，C140，D134，
 D136．D138．D139， | T－13R13 | | H | ＊ | น | T－57S01 | | | T－13C30 | म | $\dot{4}$ | H | T－57S01 |
| D140，D142．．．．．．． | | | | | | | $224 \mathrm{AC}, 224 \mathrm{~B}$ | $\text { T. } 13 \text { R06 }$ | | | \＆ | T－33A91 | T－57S01 |
| D134LW，D136LW，D138LW，D139LW，D140LW，D142LW，D146LW， | T－13R14 | T－13C30 | $\dot{\sim}$ | ～ | 率 | T－57S01 | | $\frac{\dot{4}}{\text { T. } 13 \mathrm{R} 06}$ | म | $\stackrel{\sim}{4}$ | T-29A99 | $\begin{gathered} \text { T-33A91 } \\ \hline \text { T-33A91 } \end{gathered}$ | T-57S01 |
| | | | | | | | | | T-13C30 | म | $\dot{\sharp}$ | | T-57S01 |
| L135，L135L W， 7.135 | T． 131112 | H | | 啇 | H | T－57S01 | $\frac{245 \ldots}{248 \mathrm{~K}}$ | T-13R05 | म | $\dot{\square}$ | $\dot{\sim}$ | H | T－57501 |
| L141，L141LW，Z141 | T－13R12 | म | $\dot{\sim}$ | H | $\stackrel{3}{3}$ | T－57S01 | $\stackrel{248 \mathrm{~K}}{250 .}$ | T－13R03 | \dot{H} | $\dot{4}$ | 品 | 4 | T．57S01 |
| Cl42．．．．．．．．．．． | T－13R13 | a | म | ～ | म | T－57S01 | 271， 271 A | T－131R05 | T－13C29 | \pm | 山 | T－29A99 | T－57S01 |
| L143．．．．．．．．．．． | T－13R12 | H | 4 | H | म | T－57S01 | 335．．．．．．．．．．．． | T－13R01 | म | H | 悬 | $\dot{*}$ | T－57S01 |
| X143（X），X146．．． | T－13R15 | \dot{H} | $\dot{8}$ | \％ | \dot{H} | T－57S01 | 5700， $5721 \ldots \ldots$. | T－13R02 | $\dot{\square}$ | H | น | \＆ | T．57S01 |
| S147，Z150，S151（S） | T．13R12 | H | \dot{H} | \％ | H | T－57S01 | $\begin{aligned} & 6300,6315.6317, \\ & 6323 \end{aligned}$ | T．13R02 | \％ | \％ | H | 好 | T－57S01 |
| D146．．．．．．．．．． | T－13R15 | A | 敢 | \％ | น | T－57S01 | FADA RADIO \＆ | ELEC．COR | RP． | | | | |
| $\begin{aligned} & \text { R152, R153, R156, } \\ & \text { R158, } \end{aligned}$ | T－13R19 | \％ | นี่ | \pm | $\dot{4}$ | T－57S01 | 6A51．．．．．．．．．．．．． | T－13R11 | ＊ | $\dot{\sim}$ | H | H | T．13S42 |
| Z159，Z160，AT170， | | | | | | T－57S01 | 6 6465． | T－13R12 | ＊ | \＆ | \＆ | \＆ | T．13S42 |
| （AT） | T－13R | म | मे | म | น | T－57501 | 6A80．．．．．．．．．．．．．．． | T．13R13 | ＋ | म | H | म | T－13S42 |
| AR171，AR172． AR173． | T－13R12 | 2 \％ | \dot{H} | H | 号 | T．57S01 | 10，11．．．．．．．．．．．． | T－13R00 | T－13C27 | T－13C27 | T．29A99 | T－29A99 | \％ |
| AK174．AR176， | | | | | | | 16，17， $20 \ldots \ldots \ldots$. | －T－13R00 | T－13C27 | T－13C27 | T－29A99 | T－33A91 | §Special |
| AR180 | T－13R12 | （ ${ }^{\text {a }}$ | a | म | \％ | T－57S01 | 25．．．．．．．．．．．．．．．． | －T－13R06 | T－13C29 | \pm | T－29A99 | T－33A91 | 8Special |
| AW171，AW173， AW174，AW176． | T－13R12 | 2 み | \％ | H | म | T－57S01 | 30，31 ．．．．．．．．．．．． | T－13R00 | T－13C27 | T－13C27 | T－29A99 | T－29A99 | \％ |
| | | | | | | | 32．．．．．．．．．．．．．．．．． | －T－13R00 | T－13C27 | T－13C27 | T－29A99 | T－33A91 | §Special |
| X175，X178，X183． | T．13R15 | 3 ＊ | 4 | म | H | T－57S01 | 35．．．．．．．．．．．．．．． | T．13R06 | T－13C29 | \dot{H} | T－29A99 | T－33A91 | $\ell_{\text {Special }}$ |
| AB178，AB182， AB183，AB184 | T－13R15 | 5 ＊ | \％ | \dot{H} | $\dot{3}$ | T．57S01 | $40 \ldots \ldots$. | －T．13R06 | T－13C29 | म | T－29A99 | T－33A91 | §Special |

Thordarson Transformers for all applications are listed in catalog 400．Ask for your free copy．

MODEL	Power Trane．	Firat Filier Choke	Sceond Milter Choke	First Audio Trane．	Second Audio Trana．	Output Trans．
FADA RADIO \＆ELEC．CORP．（Contd）						
41，42，43， 44 （ $\mathrm{KF}^{\text {）}}$	T．13R06	T－13C29	is	\＆	T－33191	T－57S01
45 KU ．	T－13R06	T－13C30	is	\＆	T－33A91	T．57S01
46， $47,48,49 \mathrm{KW}$	T－13R06	T－13C：30	\％	\％	T－33A91	T－57S01
50	T．13R00	T．13C29	T－13C29	T－29A99	T．33A91	T－57S01
51（KO），53－55（R6）	T－13R05	I	\％	4	4	T－57501
$\begin{aligned} & 57(\mathrm{KOC}), 61,66, \\ & \mathrm{~K} \end{aligned}$	T－13R05	मे	\％	\％	L	'T-57S01
64．A1P． $651^{\text {P }} \mathrm{C}$ ．..	T－13R12	4	4	स	H	T．13S 12
A66T，A66PC．	T－13112	H	H	4	A	T－13S42
60K Y．．．．．．．．．	T． 131807	น	H	\therefore	t	1－57S01
73．．．．．．．．．．．．．．	T－13R07	4	\％	山	$\dot{\sim}$	T－57S01
$74,76,78 \ldots \ldots$	T－13R07	岗	4	4	T－33A91	T－57S01
78－10	T－13R15	म	）	草	T－33A91	T－57S01
$79 \ldots \ldots \ldots \ldots$	T．13R06	T．13C30	$\stackrel{\text { H }}{ }$	$\stackrel{\rightharpoonup}{t}$	T－33A91	T－57S01
$79 \mathrm{RC} \ldots \ldots \ldots \ldots$	T－13R07	म	I	4	T－33A91	T． 57501
79－10．．．．．．．．．．．	T－13R15	H	is	\＆	T－33A91	T－57S01
83．$\ldots \ldots \ldots \ldots \ldots$	T．13R07	ir	or	\％	T－33A91	T－57S01
$85 \mathrm{HLE}, 85 \mathrm{LX}$	T－131207	H	H	म	म	T．57S01
88，89．．．．．．．．．．	T－13R07	st	＊	H	T－33A91	T－57S01
97－10（RW）．．．．	T．13R15	H	H	간	T－33A91	T－57S01
122 Batt．（KE）	\checkmark	t	4	T－29A99	T．33191	T． 57501
126， 127,128 NK．	4	4	\％	T－29A99	T－78D46	T－81501
133，134，135，136．．．	T．13R15	4	\％	级	T－33 191	T－57S01
141（NA）．．．．．．．．．	T－13R12	i	ar	4	म	T．57S01
150，151，152， 160.	T－13R12	H	ir	\％	4	T． 57501
170．．．．．．．．．．	T－13R13	\％	太	4	${ }_{8}{ }^{\text {Sppecial }}$	T－57S01
E180．．．．．．．．．．．．．．	T－13R00	T．13C：29	T－13C29	T－29＾99	T－33A91	T－57S01
190.	T－13R13	4	＊	if	§Special	4
211 AC．．．．．．．．	T．13R15	$\stackrel{\sim}{~}$	4	\＆	4	T．13S41
212.	T－13R13	T－13C30	\％	88	＋	T－13S41
250．．．．．．．．．．．．	T－13R12	H	A	of	\％	T－57S01
255，265．．．．．．．．．	T－13R1	药	\％	4	8	T－57501
270，271（NF）．．	T－13R12	is	If	If	H	T－57S01
290，291，312 $\ldots \ldots$	T－13115	感	＊	4	\％	T－13S 41
365，366，3661PT．．．	T－13R12	\pm	is	\％	is	T－13S42
380．．．．．．．．．．．．	T－13R12	is	\％	3	H	T－13S 12
410．．．．．．．．．．．．．	T－13R13	4	H	¢	B	T－13S 42
413．．．．．．．．．．．．．．	T－13R14	T－13C28	4	4	\triangle	T．13S．11
451．454．．．．．．	T．13R19	मे	H	7.	4	T－13S 12
465．．．．．．．．．	T－13R12	\＃	it	H	I	T－13S42
472－CA，472－UA．．．．	T－56R02	th	$\stackrel{5}{4}$	T－29A99	T－29499	古
475．CA，475－UA．．．．	T－56R02	令．	H	T－29A99	T－29＾99	$\frac{1}{2}$
$\begin{aligned} & 761(\mathrm{KG}), 762,764, \\ & 766,767, \ldots \ldots \ldots \ldots \end{aligned}$	T－13R05	T－13C29	4	H	T－29A99	म
1255，1265．．．．．．．．	T－13R12	1	4	4	H	T－57501
1582，1583．．．．．．．．	T－13R13	4	H	$\stackrel{\sim}{4}$	§Special	T－57S01

FAIRBANKS MORSE \＆COMPANY

4A，4B．．．．．．．．．．	T－14R39	T－14C61	\＆	－	）	T－13543
5 $1,5 \mathrm{~B}$ ．	T－13111	\％	）	4	\％	T－57501
5 C .64.	T－13R12	尔	4	H	4	T－5750］
6 C ．	§Special	T－13C27	M	\＆	T－781 16	T－81501

MODEL	lower Trans．	First Filter Choke	Second Filter Choke	Firat Audio Trane．	Second Audio Trans．	Output Trana．
Fairbanks morse \＆Company（Contd）						
7 A ．	T－13R20	H	H	म	$\dot{4}$	T－57S01
8A，91	T－13R13	म	站	tr	令	T． 13512
9 C ．	T－13R14	म	म	क	＊	T－13541
12A， 12 B	T－13R15	$\dot{\square}$	4	ti	A	T．13S41
40.	T－13R19	号	永	\％	1.	T－57501
51，52，53．．．．．．．	T－13R02	㚱	tr	\％	P	T－57s01
54，56，．．．．．．．．．	T－13112	崮	s	is	＊	T－57501
57． $57 \mathrm{~T} 0 \ldots \ldots .$.	T－13R19	\％	4	is	\％	T－57501
58.	T．13R19	म	st	玲	＊	T－57S01
58（T＇1）． 58 （T2）\ldots	T．13R11	药	\％	4）	$\dot{\sim}$	T－57501
（03， 66	T－13R12	H	H	\＃	\％	T．57501
70， 71	T－13R12	\％	尔	＊	\％	T．57501
$\begin{aligned} & \text { 72-C-2, } 22-\mathrm{C}-3, \\ & 72 . \mathrm{T}-3, \end{aligned}$	7．13R13	\pm	म	2	ir	T－13542
73． $73 \mathrm{C} 3 \mathrm{~B}, 73 \mathrm{~T} 3 \mathrm{~B}$ ．	§Sperial	T－13C27	t	6	T－781）16	T－81501
82，83，84，85 ．．	T－13R13	$\stackrel{\text { H }}{ }$	恧	\＃	T－33191	T．57501
90．．．．．．．．．．．．．	T．13R13	2	fir	\＃	T－33491	T－．5750］
$\begin{aligned} & \text { 91. } 91(\mathrm{C4}, 91 \mathrm{C} 5, \\ & \text { niT4. } \end{aligned}$	T．13113	\％	If	\therefore	$\frac{1}{4}$	T－13851
100，110．．．．．．．．	T－13R09	T－13C．30	T．13C29	B	T－671）78	T－13541
5106，5107，5108．．．	T－13R02	＋	म	\＆	मे	T－57801
5109，5111，5112．．．	T－131202	15	It	मे	\＃	T．57501
5141，5143．．．．．．．	T－13R02	H	\＆	म	＊	T－57S01
$\begin{aligned} & 5212.52124,5211 \text {, } \\ & 5312,5312 \mathrm{~A}, 5341 \text {. } \end{aligned}$	T－13R02	2	4	4	dr	T－57501
6010，6014，7014．．．	T－13R12	\％	＊	t	H	T－57501
\％040， $7052 \ldots \ldots \ldots$	T－13R12	号	H	น	น	T．57S01

FREIED RADIO \＆TELEVISION CORP．

11135	T．13R02	T－13C27	म	मे	म	T－57S01
MB7．	T－13R03	מ	A	If	A	＇1－57S01
1189	T．13R04	1－13C30	म	H	T＇33A91	T＇－5．501
51．．．．	T－13R02	T－13C27	म	म	स	＇1－57S01
5．5N12	T－56R01	T－13C29	T－13C29	T－29＾99	T－33 191	is
56	T．13R02	T－13C27	म	म	म	T－．73S01
57 NR	T－56R01	T－13C27	T．13C27	T－29A09	T－29 199	
58－59	T－13R02	＇T－13C27	－	A	is	T－57501
60 NR	T－36R01	T．13C27	T－13C27	T－20A99	T－29（09）	it
66 （NR）．．．．．．．．．	T－56R01	T－13C29	T－13C29	T－29A09	T－33 191	स
72－74．	T－13R03	\％	4	z	4	T－57S01
$78 \mathrm{VR}, 79 \mathrm{VR}$	T－13R06	T－13C29	T－13C29	T－29 199	T－33 191	T－37501
80 NlR	T－56R01	T．13C27	T．13C27	T－29A99	T－29A99	${ }_{8}^{85 p e c i a l}$
90	T－13R04	T－13C30	is		T－33A91	T＇5．501
NR90S ．．．．．．．	T－13R06	T－13C29	T－13C29	T－29A09	T－33A91	＇T－57501
92，．．．．．．．．．	T－13R03	）	－	is	人	1＇57501
9．－VII ．．．．．．．．．．	T－13R06	T－13C29	T－13（22）	T－29A99	T－33 191	T－57501
$961) \mathrm{C}$	If	T－13C30	म	\rightarrow	1－33 191	T－5\％S0］
98ドE．．．．．．	T．13R06	T－13C30	）	स	it	T－5750］
316－4．．．．．．．．．	T．13R19	란	＋	$\stackrel{\square}{\square}$	H：	T－37801
351－360－360X ．．．．	T．13R12	म	मे	安	क	T－57S01

© ILVIV MFG．CO．（MOTOROLA）

MODEL $\quad \begin{gathered}\text { Power } \\ \text { Trans．}\end{gathered}$	$\begin{aligned} & \text { First } \\ & \begin{array}{c} \text { Filter } \\ \text { Choke } \end{array} \end{aligned}$	Second Filter Choke	$\begin{aligned} & \text { First } \\ & \text { Audio } \\ & \text { Trans. } \end{aligned}$	Second Audio Trane．	Output Trans．
GALVIN MFG．Co．（MOTOROLA）（Contd）					
5．1．．．．．．．．．．．．．．．T－13R19	म	म	\％	म	T．57S01
5－2．．．．．．．．．．．．．．T－13R12	म	宜	4	4	T．57S01
6－1，6－A．．．．．．．．．．．T－13R12	号	品	म	4	T．57S01
6T，6Y，6－2．．．．．．．T－13R12	号	म	म	H	T－13S42
10．1，10Y．．．．．．．．．T－13R13	म	म	＊	น	T－13S42
59F1．．．．．．．．．．．．．．T－13R12	尔	4	\％	号	T－13S42
59K1，59R2．．．．．．．T－13R11	H	4	4	4	T－57S01
59R4．．．．．．．．．．．．．．T－13R11	4	म	号	น	T－57S01
59T2，59T4，59T5．．T－13R11	4	4	म	凮	T－57S01
61C，61D．．．．．．．．．T．13R19	－	म	म	\％	T－57S01
61CA，61DA．．．．．．．T．13R19	H	H	4	$\dot{4}$	T－57501
69 K 1 early \＆late．．T－13R13	品	站	4	4	T－57S01
81C．．．．．．．．．．．．．．T－13R12	4	号	4	म	T－57S01

GAMBLE－SKOGMO，INC．

07A．．．．．．．．．．．．．．．	T．13R12	म	\％	4	4	T．57S01
2－ODM－578．．．．．．	T．13R09	＊	4	\％	T－57A41	T－13S41
7J512．7J574．．．．．．．	T－13R12	4	\％	\％	4	T－57S01
20C7，20C8．．．．．．．．	T－13R09	尔	＊	4	T－57A41	T．13S41
30A．．．．．．．．．．．．．．．	T－13R12	4	4	म	H	T－57S01
47LL，47R，47RL．．	T－13R13	म	－	古	4	T－57S01
51C．．．．．．．．．．．．．．．	T．13R02	म	－	\square	น	T－57S01
70．．．．．．．．．．．．．．．．	T－13R05	号	4	4	H	T－57S01
71C．．．．．．．．．．．．．．	T－13R03	म	4	4	4	T．57S01
72 （CH，8，8X） $85 .$.	T－13R06	T．13C29	号	\％	～	T－57S01
425，457．．．．．．．．．．．	T．13R02	म	4	\％	$\dot{4}$	T－57S01
460．．．．．．．．．．．．．．	T．13R12	4	H	म	4	T．57S01
510．511．．．．．．．．．．	T－13R19	म	H	म	H	T．57S01
521．．．．．．．．．．．．．．	T．13R19	乓	－	4	म	T． 57501
5212．．．．．．．．．．．．．	T－56R05	T－57C54	4	4	T－67D78	T－13S41
525．．．．．．．．．．．．．	T－13R02	म	号	म	$\dot{\square}$	T－57S01
527A．527C．．．．．．．．	T－13R19	น	垵	4	4	T． 57501
550AC．．．．．．．．．．．．	T．13R03	号	म	4	H	T－57S01
575．．．．．．．．．．．．．．	T－13R02	4	\％	4	4	T－57S01
578．．．．．．．．．．．．．．．	T－13R12	＋	品	4	4	T．57S01
585，586A，587A．．．	T．13R19	4	4	म	H	T－57S01
589．．．．．．．．．．．．．．．	T－13R19	म	H	$\dot{\sim}$	H	T．57S01
600，623，645．．．．．．	T－13R19	म	म	4	宜	T．57S01
648．．．．．．．．．．．．．．．	T．13R12	H	4	म	沜	T－13S42
665，765．．．．．．．．．．	T－13R19	4	H	号	沜	T－57S01
675．．．．．．．．．．．．．．	T－13R03	H	म	－	\％	T．57501
675A，685B．．．．．．．．	T．13R11	\＆	H	4	म	T．57S01
690B．．．．．．．．．．．．．．	T－13R20	宜	\％	4	4	T－57S01
715B．．．．．．．．．．．．．．	T－13R13	म	妆	4	4	T．57S01
735．．．．．．．．．．．．．．	T－13R12	品	4	\％	品	T．13S42
740．．．．．．．．．．．．．．．	T－13R13	4	น	4	4	T－57S01
750．．．．．．．．．．．．．．．	T．13R06	4	＊	4	T－33A91	T．57S01
7614．．．．．．．．．．．．．．	T－13R13	4	H	म	＊	T－57S01
762．．．．．．．．．．．．．．	T－13R13	4	H	H	\＆	T－57S01
767．．．．．．．．．．．．．．．	T．13R13	4	号	म		T－13S42
770，774．．．．．．．．．．．	T－13R13	H	น	4	4	T－57501
777C．777L，778A．．	T－13R13	म	沜	悬	－	T－57501

MODEL $\quad \begin{gathered}\text { Power } \\ \text { Trans．}\end{gathered}$	First Filter Choke	Second Filter Choke	First Audio Trans．	Second Audio Trana．	Output Trans．
GAMBLE－SKOGMO，INC．（Contd）					
787．．．．．．．．．．．．．．T－13R19	\＆	น	म	沜	T．57S01
810．．．．．．．．．．．．．．T．13R12	4	号	尔	म	T－57S01
864，867A ．．．．．．．．T－13R13	म	4	म		T－57S01
907．．．．．．．．．．．．．．．T．13R19	H	म	4	4	T－57S01
908．．．．．．．．．．．．．T－13R12	宜	H	4	म	T．57S01
970．．．．．．．．．．．．．．T－13R19	㿾	H	\％	H	T－57S01
1050．．．．．．．．．．．．．T．13R07	＋	म	4	T－81D52	T．13S41
1070．．．．．．．．．．．．．T－13R14	＋	$\dot{4}$	म	T－17D01	T－57S01
2078D ．．．．．．．．．．T．13R03	4	H	म	－	T－57S01
2516．．．．．．．．．．．．．．T－13R05	$\stackrel{4}{4}$	＊	4	म	T．57S01
4954．．．．．．．．．．．．．T－13R16	\％	4	～	น	T－13S41

GAROD RADIO CORP．

2B2，2B2－1．．．．．．．．	T．14R39	T－14C61	\square	4	T．78D46	T－81S01
2B6，2B6－1．．．．．．．．	T．14R39	T－14C61	H	\％	T－78D46	T－81501
25，26，27．．．．．．．．．．	T－13R12	म	म	4	H	T－57S01
49，49 M ．．．．．．．．．．．	T－13R09	号	4	\％	T－33A91	T．57S01
73．73LW．．．．．．．	T－13R12	4	4	4	4	T－57S01
150．．．．．．．．．．．．．．．	T－13R19	4	H	\％	म	T－57S01
205C，205L ．．．．．．．．	T．13R11	$\stackrel{+}{4}$	म	4	品	T．57S01
205－1．．．．．．．．．．．．．	T－13R11	$\dot{4}$	म	$\dot{4}$	H	T－57S01
206C，206L，206P4．．	T－13R11	म	－	号	म	T－57S01
206－1， 250.	T－13R11	$\stackrel{8}{4}$	－	－	\＆	T－57S01
307，307E．．．．．．．．	T．13R12	म	4	4	4	T－13S42
309 series， $380 \ldots$.	T．13R13	म	म	4	म	T－13S42
380D，380KC．．．．．．	T－13R13	4	4	4	$\dot{4}$	T．13S42
381，381D．．．．．．．．．	T－13R13	4	\％	\＆	4	T．13S42
381KC．．．．．．．．．．	T．13R13	H	म	\＆	4	T－13S42
389．．．．．．．．．．．．．．．	T－13R20	4	$\dot{4}$	－	म	T． 57501
399.	T－13R12	\dot{H}	4	4	－	T－57S01
511A．．．．．．．．．．．．．	T．13R09	4	4	म	T－33A91	T－57S01
511G，511P．．．．．．．	T－13R09	T．13C30	4	$\dot{\square}$	T－33A91	T－57S01
930 series．．．．．．．	\％	T．13C27	म	น	T．33A91	T－57S01
931 series．．．．．．．．．．	＋	T－13C27	＋	म	T－33A91	T－57S01
1540．．．．．．．．．．．．．．	T－13R15	म	H	4	\％	T．13S41
3012 вeries．．．．．．．．．	T．13R14	堊	4	म	＋	T－13S42
3016．．．．．．．．．．．．．．	T－13R16	म	म	4	H	T．13541
3109．．．．．．．．．．．．．．	T－13R12	म	4	4	4	T．57S01
4012 series．．．．．．．．．．	T－13R14	＋	4	H	H	T－13S42
4016－4 ．．．．．．．．．．	T．13R16	4	4	म	妆	T－13S41
4110 series．．．．．．．．	T－13R08	4	H	4	म	T．57S01
5140．．．．．．．．．．．．．．	T－13R15	म	\％	म	\％	T－13S41

GENERAL ELECTRIC CO．

T．12，T－12E．．	T．13R04	म	\％	4	4	T－57501
S－22，S－22A，S－22X	T－13R13	－	4	म	4	T－57501
H－31．．．．．．．．．．．．．	T－13R06	T－13C30	H	4	T－57A42	T－57S01
H－32，T－41．．．．．．．．	T－13R07	\＆	4	4	T．13A36	T－57S01
F．40．．．．．．．．．．．．．	T．13R11	4	म	4	\＆	T－57S01
S．42，SZ－42P．．．．．．．	T．13R07	4	4	$\stackrel{\square}{4}$	T－13A35	T－57S01
G－50．．．．．．．．．．．．．	T．13R11	4	4	－	\＆	T－57S01
K．50，K－50P．．．．．．．	T．13R05	4	－	4	－	T－57S01
M－50．．．．．．．．．．．．	T．13R13	\％	4	H	म	＇T－57S01

Tropex transformers will stay put on those tough replacement jobs．See page 32.

MODEL	Power Trana．	First Filter Choke	Second Filter Choke	First Audio Trane．	Second Audios Trana．	Outpue Trans．
GENERAL ELECTRIC CO．（Contd）						
H．51，日－51R．．．．．．	T－13R06	म	म	\％	\＄Special	8Special
K－51，K－51P．．．．．．．	T－13R05	H	\square	น	\＆	T－57S01
M－51，M－51A．．．．．	T－13R13	H	н	＊	H	T－57S01
A－52，E－52，M．52．．．	T－13R12	\％	H	\＆	\％	T－57S01
K－52．．．．．．．．．．．．	T－13R05	H	号	\％	\＆	T－57501
A－53，F－53，G．53．．．	T－13R12	H	＊	＊	H	T．57S01
K－53，K－53M．．．．．．	T－13R05	\％	H	H	＊	T－57S01
K－54，K－54P．．．．．	T．13R05	4	4	is	म	T．57S01
A－55．．．．．．．．．．．．．	T－13R12	म	म	म	म	T－57S01
G．55．．．．．．．．．．．．．	T－13R11	H	＊	＊	H	T－57S01
K－55．．．．．．．．．．．．．	T－13R05	H	\％	H	＋	T－57S01
M－55，M－56．．．．．．	T－13R13	H	\％	＊	H	T－57S01
G－56，G－57．．．．．．．	T－13R12	\％	म	म	H	T－57S01
R．60，R－60P．．．．．．．	T－13R04	H	म	$\stackrel{3}{3}$	H	T－57S01
E－61．．．．．．．．．．．．．．	T－13R12	H	H	H	\％	T－57S01
G－61．．．．．．．．．．．．．．	T－13R20	H	tr	H	म	T－57S01
M－61，E．62．．．．．．	T－13R12	a	म	H	\＆	T－57S01
K－62，KZ．62P ．．．．	T－13R07	H	4	4	I	T－57S01
M－62．．．．．．．．．．	T－13R13	～	н	\＆	A	T－57S01
A－63，F－63．．．．．．．．	T－13R12	4	$\stackrel{4}{4}$	4	家	T－57S01
K－63．．．．．．．．．．．．．	T－13R04	H	\％	\％	家	T－57S01
A．64．．．．．．．．．．．．．．	T－13R13	4	H	H	悬	T－57S01
G－64．．．．．．．．．．．．	T－13R20	H	H	H	䏒	T－57S01
K－64．．．．．．．．．．．．．	T－13R05	号	H	\＆	宜	T－57S01
A．65，F．65．．．．．．．	T－13R13	H	H	मे	悬	T－57S01
K－65，K－65P．．．．．．	T－13R04	药	म	म	H	T－57S01
M－65．．．．．．．．．．．．．	T－13R05	号	\％	H	安	T－57S01
A－66，F－66 ．．．．．．．	T－13R12	\％	晏	䏒	\％	T－57501
G．66．．．．．．．．．．．	T－13R20	H	\＆	H	H	T－57S01
K．66，K－66M．．．．	T 13R03	4	＊	\％	悬	T－57501
M．66．．．．．．．．．．．	T－13R13	沜	沜	\＆	H	T－57S01
A－67，M－67．．．．．．．	T－13R13	A	H	\％	\％	T－57S01
E－68．．．．．．．．．．．．	T－13R12	H	tr	H	H	T－57S01
G－68．．．．．．．．．．．	T－13R20	H	म	म	\＆	T－57S01
M－68．．．．．．．．．．	T－13R05	4	内	\＆	\＆	T－57S01
G－69．．．．．．．．．．．．．	T－13R20	\pm	\％	H	4	T－57501
M－69．．．．．．．．．．．	T－13R13	$\dot{\sim}$	＋	\％	\＆	T－57S01
A－70．．．．．．．．．．．．	T－13R12	H	म	沜	म	T－57S01
F－70．．．．．．．．．．．．．	T－13R13	H	＊	\％	＊	T－57S01
J－70．．．．．．．．．．．．	T－13R04	$\stackrel{ }{*}$	\％	\％	T－13A34	T－57S01
E－71，E－72．．．．．．．	T－13R13	H	H	H	\dot{H}	T－57S01
H－71 ．．．．．．．．．．．．	T－13R06	H	H	4	8Special	8 Special
H－72．．．．．．．．．．．．	T－13R07	H	H	4	\＆	T－57S01
J－72．．．．．．．．．．．．	T－13R05	H	\pm	\％	T－13A34	T－57801
H73，H77，H78．．．．	T－13R19	\dot{H}	H	is	\＆	T－13S42
F．74，A－75，F－75．．．	T－13R13	古	\＆	म	म	T．57501
G－75．．．．．．．．．．．．．	T－13R11	古	\％	H	＋	T－57S01
J－75．．．．．．．．．．．．	T－13R04	\％	$\dot{4}$	＊	T－13A34	T－57S01
E－76．．．．．．．．．．．．	T－13R13	\％	\＆	H	4	T－57S01
G－76．．．．．．．．．．．	T－13R11	4	古	\＆	\＆	T－57S01
F－77．．．．．．．．．．．．	T－13R13	\％	4	\％	－	T－57S01

MODEL	Poner Trane．	First Filter Choke	Second Filter Choke	First Audio Trana．	Second Audio Trane．	Output Trans．
（EENERAL ELECTRIC CO．（Contd）						
I1－77．G－78．	T－13R20	\dot{H}	\％	$\dot{\sim}$	$\stackrel{\text { ¢ }}{ }$	T－57S01
E－79．．．．．．．．	T－13R12	4	＊	－	น	T－57S01
I1－79．	T－13R20	म	$\stackrel{3}{2}$	\％	\＆	T－57S01
K－79．．．．．．．．．．．．．	T－13R04	T－13C29	H	H	Special	T－13S41
F－80．．．．．．．．．．．．．	T－13R13	－	4	H	น	T－57S01
IIM80．．．．．．．．．．．	T－13R19	4	号	4	म	T－13S42
J－80，K－80，K－80X．．	T－13R07	宜	H	\％	T－13A34	T－57S01
E－81，F－81．．．．．．．	T－13R14	H	a	$\dot{4}$	म	T－57S01
M．81．．．．．．．．．．．	T－13R15	H	耑	H	T．13A35	T－57S01
1．82．．．．．．．．．．．．．	T－13R13	$\stackrel{\text { r }}{ }$	H	苗	品	T－57S01
J－82 ．．．．．．．．．．．．	T－13R07	\％	H	4	T－13A34	T－57501
A－83 ．．．．．．．．．．．．．	T－13R13	\％	尔	H	T－13A35	T－57S01
J－83，J－83A．．．．．．．	T－13R05	$\dot{4}$	4	म	T．13A35	T－57S01
A－85 ．．．．．．．．．．．	T－13R13	H	H	म	T－13A35	T－57S01
F－85．．．．．．．	T－13R13	䳪	宜	$\stackrel{\text { a }}{ }$	H	T－57S01
G－85．．．．．．．．．．．．	T－13R20		H	L	म	T－57S01
K－85．．．．．．．．	T－13R07	T－13C30	沜	4	\＄Special	T－57S01
M－85．．．．．．．．．．	T－13R15	＋	\％	\％	T－13A35	T－57S01
E－86，F－86．．．．．．．．	T－13R14	H	H	म	म	T－57S01
G－86	T－13R20	＊	H	H	\＆	T－57S01
J－86．．．．．．．．．．．．	T．13R07	म	4	4	T－13A34	T－57S01
M－86．．．．．．．．．．．．	T－13R15	4	4	\％	T－13A35	T－57S01
A－87．．．．．．．．．．．．	T－13R13	\％	H	古	T－13A35	T－57S01
J．87，J－87A．．．．．．	T－13R05	H	H	\＆	T－13A35	T－57S01
F－88．．．．．．．．．．．	T－13R13	H	\＆	\％	\＆	T－57501
K－88，K－88X．．．．	T－13R07	T－13C30	H	\％	8Special	T－57S01
M－89．．．．．．．．．．	T－13R15	म	म	\＆	T－13A35	T－57S01
E．91 $\ldots \ldots \ldots$	T． 41187	H	4	4	\％	T－13S41
H－91，II－91 R．．．．．	T－13R06	$\dot{\square}$	\％	\dot{H}	T－13A35	T．57S01
F． 96	T－13R13	म	古	\％	\＆	T－57S01
6－99 ．．．．．．．．．．．	T－13R20	H	\％	\％	म	T－57501
J－100．．．．	T－56R05	T－13C30	म	H	\＄Special	T－13S41
E．－101，E．105 ．．．	T． 41187	म		\＆	H	T－13541
G－105，G－106．．．．．	T－41187	H	\％	H	म	T．13541
K－105．．．．．．．．．．	T－13R06	$\stackrel{\square}{4}$	沜	\％	T－13A35	T－57S01
E－106．．．．．．．．．．．	T－41187 \dagger	$\stackrel{\sim}{r}$	\＆	म	4	T－13S41
M－106．．．．．．．．．．	T－13R15	H	\％	T－33A91	T－13A36	T－57S01
J－107，J－109．．．．	T－56R05	T－13C30	4	\％	8 Special	T－13S41
K－107．．．．．．．．．．．	T－13R06	म	4	\％	T－13A35	T－13S41
IT－116，П1－118．．．．．	T－13R15	宜	\＆	\％	$\dot{4}$	T－13S41
A－125．．．．．．．．．．．．	T－13R15	\％	县	4	\＆	T．13S41
GM－125．．．．．．．．．．	T－13R16	T－13C30	म	\＆	म	T－13841
M－125．．．．．．．．．．	T．13R15	H	H	T－33A91	T－13A36	T．57S01
M－128，M－128HR ．	T－13R07	T－13C30	\％	T－33A91	Special	T－13S41
M－129．．．．．．．．．	T－13R15	H	म	T－33A91	T－13A36	T．57S01
S－132．．．．．．．．．．．．	T－13R07	4	4	\％	T－33A91	T－57501
HM136．．	T－13R15	म	尔	\％	\％	41

GENERAL HOUSEHOLD UTILITTES CO．

450，（4A） 451.	T－13R12	\％	a	\＃	4	T－57S01
460X．	T－13R12	品	4	4	\％	T－57501
460 （4B）．	T－13R19	宜	永	＊	\％	T．57S01

[^8]| MODEL | Power Trana． | First Filter Choke | Second Filter Choke | First Audio Trans． | Second
 Audios
 ＇Trans． | Output Trams． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GENERAI．HOUSEHOLD UTILITIES CO．（Contd） | | | | | | |
| 461，461X | T．13R12 | म | म | म | म | T－57S01 |
| 470 （4C）．．．．．．． | T－13R12 | $\dot{\square}$ | 4 | $\dot{4}$ | $\dot{\text { L }}$ | T－57S01 |
| 500 （5A）．．．．．．．．． | －T－13R08 | 4 | 4 | म | म | T－57501 |
| 532 （5H）$\ldots \ldots \ldots$ | T．13R19 | $\dot{\square}$ | ＊ | म | 号 | T－57S01 |
| 542 （5J） $551 \ldots \ldots$ | T－13R11 | 4 | $\dot{4}$ | ～ | म | T－57S01 |
| 553， 555 （51．）．．．．． | T－13R11 | ～ | म | $\dot{\text { म }}$ | म | T－57S01 |
| 560．．．．．．．．．．．．． | T．13R12 | \％ | म | म | 㞱 | T－57S01 |
| 564 （5R）． 566 （5S）．． | T－13R19 | 4 | म | म | \％ | ＇F－57501 |
| 570． $571 \ldots \ldots \ldots$. | T－13R12 | म | म | is | म | T－57501 |
| 572， 573 （50）．．．． | T．13R11 | \％ | $\dot{\square}$ | म | 4 | T－57S01 |
| 576 （5T）． $578 \ldots \ldots$ | T－13R11 | म | $\dot{4}$ | म | $\dot{\sim}$ | T－57S01 |
| 580，581．．．．．．．．．． | T－13112 | म | น | 4 | \％ | T－57S01 |
| 583 （5 W），585， 586. | T－13R11 | म | म | म | 号 | T－57501 |
| 587 （5U）． 589 （5P） | T－13R12 | \dot{H} | H | $\dot{4}$ | $\dot{4}$ | T－57S01 |
| 599， 639 （6m）．．．．． | T－13R12 | is | 4 | म | म | T．57S01 |
| 632 （6H）．．．．．．．．． | T－13R12 | H | $\dot{\square}$ | म | $\dot{4}$ | T－57S01 |
| 640 （6J）． $641 \ldots \ldots$ | ＇T－13R12 | म | म | $\dot{\square}$ | म | T－57501 |
| $643 \ldots \ldots \ldots \ldots$ | T－13R12 | 4 | म | म | म | T－57S01 |
| 650 （6A）， $651 \ldots \ldots$ | T．13R12 | $\dot{4}$ | H | 4 | 4 | T－57S01 |
| $661.662 \ldots \ldots \ldots$ | T－13R12 | $\dot{\square}$ | H | म | म | T． 57501 |
| 663 （6E）．．．．．．． | T－13R12 | म | น | น | 站 | T－57S01 |
| $664(6 \mathrm{~N}) .660(6 \mathrm{C})$. | T．13R12 | म | म | 4 | 4 | T－57S01 |
| 670 （6D）， $671 \ldots \ldots$ | T－13R12 | म | H | 4 | म | T． 57501 |
| 680，681．．．．．．．．． | T－13112 | म | म | म | \％ | 1－57501 |
| 700 （7A），701．．．． | T．13R12 | T－13C29 | ¢ | 4 | מ | T－57S01 |
| 723 （7M），731．．．．． | T．13R12 | H | म | $\dot{\square}$ | 4 | T－57S01 |
| 733，735．．．．．．．．．． | T－13 1412 | म | म | น | 4 | T－57501 |
| 750，751．．．．．．．．． | T－13R12 | म | ム | $\dot{\square}$ | H | T－57501 |
| 752． 753 （7B）， 755. | T． $13 \mathrm{R12}$ | म | 号 | 4 | \％ | T．57S01 |
| 760， 761 （7C）$\ldots \ldots$ | T－13813 | 宸 | $\dot{\square}$ | 4 | म | T．57501 |
| 801 （8A）$\ldots \ldots \ldots$. | T－13R13 | $\dot{\sim}$ | \％ | 4 | 4 | T－57501 |
| 821．．．．．．．．．．．．． | T－13113 | म | म | $\dot{\sim}$ | H | T－57S01 |
| 823 （8H），831．．．．．． | T－131112 | 㞱 | $\dot{\square}$ | \％ | म | T． 57501 |
| 833，835．．．．．．．．． | T－13112 | म | \％ | $\dot{\square}$ | $\dot{4}$ | T－57S01 |
| 861．．．．．．．．．．．．．． | T－13R13 | T－13C29 | 4 | 号 | म | T－57S01 |
| 871（8E）．．．．．．． | T－13R14 | म | $\dot{\square}$ | म | T－33A91 | T．57501 |
| 901 （9A）， $902 \ldots \ldots$ | T－131208 | T－13C29 | $\dot{4}$ | म | T．33A91 | T．57S01 |
| 941 （9E）$\ldots \ldots \ldots$ | T－13R13 | म | $\dot{\square}$ | म | T－33A91 | T－57S01 |
| 1067 （10D）．．．．．．． | T－13R14 | $\dot{\square}$ | 4 | 4 | T－33A91 | T－57501 |
| 1091（10G）．．．．．． | T．13R15 | म | 宜 | म | \％ | T．57S01 |
| 1151 （11A，1113； 112 | 2 ＇T－13R09 | T．13C30 | म | म | T－17D01 | T－13S41 |
| 1162．．．．．．．．．．．．． | T－131809 | T－13C30 | 4 | $\dot{\square}$ | T－17D01 | T．13541 |
| 1171．．．．．．．．．．．．．． | T－13R15 | \％ | म | น | T－81052 | T－13S41 |
| 1191 （116），1191B．． | T－13R13 | H | H | म | T－33A91 | T－57S01 |
| $\begin{aligned} & 1181(11 H), 1183 . \\ & 1185 \ldots \ldots . \end{aligned}$ | T－13115 | 2 | म | म | म | T－57S01 |
| 1241．．．．．．．．．．．．． | T．13R15 | H | 4 | 4 | T－81D52 | \＄Special |
| 1291． 1297 （12B）．．． | T－13R15 | $\dot{4}$ | 4 | 4 | म | T．13S41 |
| 1541．．．．．．．．．．．．．．． | T－13R16 | T－13C30 | म | \＆ | T－17D01 | T－13S41 |

GENERAL MOTORS RADIO COIRP．

MOLILL	Pouer Trin＝．	First Filter Choke	Second Eilter Cluoke	Jirst Audio Trans．	Second Audio Trans．	Output Tranf．
Cilfillan bros．（Contd）						
1131 C ．	T－13R15	2	ม	\＄Special	T．13A36	＇T－57S01
1331 C	T．13H14	म	\＆	\＆	${ }^{\text {IT－13A36 }}$	T－57S01
1．H．GREBE \＆CO．						
Al11．．．．．．．．．．．．．．	T－561805	T．13C28	म	令	T－57A42	T－57s01
1153	T．131803	น่	A	号	\＆	T－57501
11S4．（1 ventode）．．．	T－131104	T－13C29	$3{ }^{3}$	\％	$\dot{\sim}$	1.57501
IIS4（pp 45 or 47）．．	T． 131106	T－13C30	6	隹	T－57A42	＇1－57501
SK4．	T． 131806	T．13C．30	－	is	T－37A42	T－57501
AC7．	T－561101	T－13C29	मे	T－29A99	T－29 99	\＆
HS7，HS8．	T－13 004	T－13C29	is	占	\％	T－57S01
11S11，HS12．．．．．．	\＆	T－13C：30	\＆	난	T．33A91	T－57501
89．．．．．．．．．．．．．．	T－13R04	＊	म	น	म	T． 57501
1118．．．．．．．．．．．	T－13R07	T－67C49	尔	4	T－67D78	＇1－13S41
GRIGSBY－GRUNOW CO．（See also Majestic）						
15，15B．．．．．．．．．．	T－13R03	is	th	号	4	T－57501
20，21，22， 23.	T－13R07	T－13C30	T－13C－30	4	T．57A42	T－57501
25，25B．．	T－56H05	T．13C30	T－71630	is	$\begin{gathered} \mathrm{T}-74 \mathrm{~A} .31 \\ \mathrm{~T}-74 \mathrm{C} 30 \end{gathered}$	＇T－57S01
30．．．．．．．．．．．．．．	T－13R06	T－13C：24	6	\％	T－57A42	T－57S01
31．．．．．．．．．．	T－13R05	T－13C29	4	4	T－57A42	T－57501
35.	T－56R05	T－13C．30	th	म	$\begin{aligned} & \text { T. } 57 \mathrm{~A} 42 \\ & \mathrm{~T} .74 \mathrm{C} 30 \end{aligned}$	T－57S01
44，49．．．．．．	T－13111	\pm	4	\％	\＆	T－57S01
50．．．．．．．．．．．．	T－13R06	T－13C29	\＆	\％	T－57A42	T－57S01
51．．．．．．．．．．．．．．．．	T．13H04	T－13C28	\％	ir	T－57A42	T．57501
52．．．．．．．．．．	T．131006	T－13C29	is	น	T－57A42	T－57501
55	T－13स12	iे	İ	18	म	T－57501
56，57，58，\ldots	T．13H03	者	tr	मे	号	T－57501
34 ．．．．．．．．．．	T－13K12	मे	is	\％	安	T－57501
60	T－56R05	T．13C30	T－13C29	2r	T．57A42	T－57501
70 ．．．．．．	T． 561201	T－13C：29	म	T－29A99	T－33A91	T－57S01
71，72．．．．．．．．	T－56R01	T．13C：28	म	T－29A99	T－33A91	T－57S01
75．．．．．．．．．．．．．	P－131202	－	म	น	4	T．57S01
77．．．．．．．．．．．．．	T－13R03	\＆	मั	\＆	古	T－13S41
85，86．．．．．．．．．	T－13K0t	is	म	4	T－67D47	T－57S01
90，90B ．．．．．．．．	T－13R07	T．13（30	T－13C30	म	T－57A42	T－57S01
41，92，93．．．．．．	T．13R01	T．13C30	म	㭊	T－57A42	T－57S01
1008．．．．．．．．．．	T－13R07	T．13C30	T－13C30	咅	T－57A42	T－57S01
101，102，103．．．．．	T．13R04	T－13C30	म	म	T－57A42	T－57S01
130A，131， $132 \ldots$	T．13R07	T．136：30	T－13C30	म	T－57A42	T．57S01
$\begin{aligned} & 150,151,153,154 . \\ & 155,156 \ldots \ldots \ldots \ldots \end{aligned}$	T．13R03	L20	4	4	安	T－57S01
159.	T．13112	\＆	8	म	น	T．57S01
160	T－56R05	T－13C30	T－13629	is	T－57A42	T－57S01
144．．．．．．．．．．．．．	T－13R11	＊	म	म	म	T－57S01
195．．．．．．．．．．．．	T．131202	号	\＆	\＆	号	T－57S01
200，201，203，204．	T－13R04	T－13C29	沜	A	占	T－57S01
210．211，214， 215.	T－131306	T．13030	\pm	น	T．74A31	T．57501
230，233．．．．．．．．．	T．13402	4	\％	\＆	मे	T－57801
$\begin{aligned} & 251,251 \mathrm{~B}, 253,253 \mathrm{~B}, \\ & 254,254 \mathrm{~B}, \ldots \ldots \end{aligned}$	T－13110．4	T．13630	4	\＆	T－13A35	T－57S01
$\begin{aligned} & 310 \mathrm{~A}, 310 \mathrm{~B}, 311 \text {, } \\ & 314,315 \ldots \ldots . . \end{aligned}$	T－13R03	㐫	is	म	म	T－57501

MODE1．	Power Trans．	Firat Fither Choke	Second Filter Chake	Firnt Audio Trans．	Sccond Audio Trans．	Output Trane．
GRIGSBY－GRUNOW CO．（Contd）						

330，331，336．．．．．．	T－13R03	＊	4	म	＊	T－57S01
351，352， 353.	T＇13R04	\％	＊	＊	T－13A35	T．57S01
360，363．．．	T．131200	＊	\＆	\＆	\＆	T．139．41
370，371，373．．．．	T－131103	4	＊	$\dot{4}$	4	T－57S01
340，393．．．	T－131204	4	ム	मे	T－67D47	T． 57501
$40 . \ldots . . .$.	T．13111	it	\％	मे	\＆	T－57S01
$460,461,46.3 \ldots$	T－13R03	4	म	\＆	4	T－57S01
$500 \ldots \ldots \ldots$	T－13R12	\％	4	म	म	T－57S01
560，566．．．．	T．13R12	沜	＊	H	\＆	T． 57501
570	T－13H03		古	品	＊	T－57S01
800，998．．．．．．．．．	T－13R04	4	＊	H	T－67D47	T－57S01

GULBRANSEN CO．

10， 13.	T－131105	म	＊	म	म	T－57501
23.	T．13800	T．13C30	$\dot{4}$	\％	T＇33A91	T－57S01
60 Champion Jr．， 63	T－131204	म	＊	4	T－33A91	T－57501
160， 161.	T．13 106	T－136：29	म	号	T．33A91	T－57501
200，291，292，295．．．	T－56R03	T－13629	4	4	T－33A91	T－57S01
352.	T－13R02	म	मे	म	म	T－57501
872.	T．13R03	\＆	H	मे	म	T．57501
9950．．．．．．．．．．．	T．56R03	T－130．24	r	4	T－33A91	T－57S01

THE：IIALICRAFTERS，INC．

5 T	T－13R12	म่	น	\％	\＆	T． 57501
II8PA．．．．．．．．．．．．	T．13R19	＊	＋	4	\＆	\＄Special
S8A，S9，SK9．．．．．．	T－13R13	T－13C30	मे	\％	号	T－57S01
S10．．．．．．．．．．．．．．．	T．13R12	\＆	\％	络	น	T－57S01
S11 Super Sky Rider	T－13R14	1＇13C30	\％	4	T－33A91	㙃
S12 Comm．Sky．．．	T－13R14	T．13C30	\％	is	T－33A91	म
Si4 Sky Chier． Shy Buddy．	T．13M12	H	is	4	㒳	T－57S01
S15 Sky Challenger．	T－13R13	T－13C28	น	나	म	म
SX16 Super Sky Rider 38.	T．13R14	T．13C30	\％	令	T－33A91	म
SX17．	T－13R14	T－13C30	＊	\％	T－33A91	T－13S41
S19R Sky Buddy．．．	T－13R19	H	H	मे	मे	T－57501
SX23，SX24．．．．．．．	T．13R12		㚱	मे	मे	T－57501
HAMMARLUND MFG．CO．						
Coniet Prona＇d Xtal	T－13R04	T－13C29	T－13C29	\＆	4	म
Comer Pro Dec．＇31	T－13R05	T．13C29	म	मे	मे	T．57S01

IIOWARID RADIO CO．

$\begin{aligned} & \text { AVH, EX (Dual } \\ & \text { Range)........... } \end{aligned}$	T－13R06	T．13C30	is	म	T－33A91	T．57501
D， \mathbb{F} Radio D，F Audio Amp．	T－13R13	น	H	म	＊	T－57S01
Hi	T．13R05	T－13C29	a	4	T－33A91	T．57S01
SG＂A＂	T－13R06	T－13C30	H	\％	T－57A42	－5－57S01
SG＂B，＂ 0	T－13R05	T．13C29	4	品	T．29A99	T－57S01
Sc＂C＇＂	T－13R06	T．13C30	品	＊	T－57A42	T．57501
SG＂T＂．	T－13K05	4	4	＊	＊	T－57S01
X2，X3	T．13R12	T－13C29	\％	\＆	品	T－57S01
24.	T－13R09	尔	＊	H	\＄Speciel	T－57S01
6B，6BA，7BT ．．．．	T－14R39	T－14C63	＊	म	T．78D46	T．81501
```Green Diamond "g" (71's)```	T－56R01	T－13C29	म	T－29A99	T－33A91	T－57S01

[^9]| MODEL | Power <br> Trans． | First <br> Firter <br> Cboke | Second <br> Filter <br> Chole | First <br> Audio <br> Trans． | Second <br> Audio <br> Trans． | Output <br> Trans． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HOWARD RADIO CO．（Contd） |  |  |  |  |  |  |


Green Diamond （45＇s）	T－56R03	T．13C30	\％	T－29A99	T．33A91	T－57S01
X8．．．．．．．．．．．．．．．	T．13R12	T－13C29	$\dot{\square}$	म	\％	T－57501
R9．．．．．．．．．．．．．．．	T－13R14	T－13C30	\＆	字	T－33A91	T－57S01
20，25，32．．．．．．．	T－13R05	T．13C29	\％	$\stackrel{3}{*}$	T－33A91	T－57S01
35，40．．．．．．．．．．．	T－131105	1－13C29	\％	\＆	T－33A91	T－57S01
67C．67T，68．．．．．．．	T－13R12	¢	$\square$	म	H	T．13S42
77C，77T．．．．．．．．．．	T－13R12	H	4	$\dot{\sim}$	म	T－57S01
99C．99T．．．．．．．．．．	T．13R14	号	\＆	\＆	\＆	T．57S01
118， $218 \ldots \ldots . .$.	T－13R14	\％	\＆	H	方	T．57S01
218．．．．．．．．．．．．．．．	T．13113	$\dot{\sim}$	$\square$	号	4	T－57501
220，225， $2255 \ldots$.	T．13R19	H	H	ค	垵	T－57501
240－1，240－2．．．．．．．	T．13119	永	म	宜	H	T．57S01
250，S250．．．．．．．．．．	T－13R19	宜	\％	畦	\％	T－57S01
256，S256．．．．．．．．．	T．13R12	4	म	म	＋	T－13542
E256，260，S260．．．．	T－13R19	म	น	亩	म	T－57S01
266.	T－13112	宜	\％	4	4	T－57S01
268，275C，275T．．．．	T．13R12	H	－	＋	字	T－13542
280．．．．．．．．．．．．．．．	T－13R12	म	น	刿	$\stackrel{\sim}{*}$	T－13542
300．．．．．．．．．．．．．．	T－13R19	字	4	4	\％	T－57S01
301， $303 \ldots \ldots \ldots \ldots$	T－13R12	妆	4	\％	म	T． 13542
302S，302APC．．．．．	T．13R12	H	น	\＆	म	T． 13542
305，306，307．．．．．．．	T－13111	น	\％		H	T－57S01
318．．．．．．．．．．．．．．	T－13 13	颪	H	H	\％	T．13S41
318D	T．13RII	$\dot{4}$	H	म	\＆	T．13S41
325．．．．．．．．．．．．．．．	T－13R13	म	\＆	\＆	\＆	T－13S41
325D．．．．．．．．．．．．．	T－13R11	म	H	म	$\dot{\sim}$	T－13S41
$368 \ldots \ldots \ldots \ldots$.	T－13R12	4	品	号	म	T－13S42
$375 . \ldots \ldots \ldots \ldots$	T．13R12	$\dot{\sim}$	\＆	म	\＆	T．13S42
$377 . . . . . . .$.	T．13R19	$\stackrel{\sim}{4}$	म	\＆	H	T－57S01
$400 \ldots \ldots \ldots \ldots$	T－13k13	＋	\＆	\＆	$\stackrel{\text { ¢ }}{ }$	T－13S41
400 X ．．．．．．．．．．	T－13R14	4	$\dot{\sim}$	म	字	T．13S41
425．．．．．．．．．．．．．	T－13R15	\＆	号	沜	T．74C30	T－13S41
$430 \ldots \ldots \ldots \ldots$	T－13111	\＆	安	檪	古	T．57S01
438．．．．．．．．．．．．．	T－13R20	$\dot{\sim}$	म	$\stackrel{\text { r }}{ }$	\％	T．57S01
468．．．．．．．．．．．．．．．	T．13R20	म	4	\＆	\＆	T．57S01
518．．．．．．．．．．．．．．．	T－131114	宜		\＆	น	T－13S41
520．．．．．．．．．．．．．．	T－131115		म	$\stackrel{\square}{4}$	$\dot{4}$	T－13S41
525．．．．．．．．．．．．．	T． 131116	$\dot{\square}$	$\dot{H}$	4	म	T－13S42
568．．．．．．．．．．．．．．	T．13R14	垵	4	\＆	\＆	T－13S41
1626．．．．．．．．．．．．．	T．13R12	H	4	H	＋	T－13S42

COLIN B．KENNEDY CORP．

$10 \ldots \ldots \ldots \ldots .$.	T－13R06	T－13C30	\％	T．29A99	T．33A91	T－57S01
20．．．．．．．．．．．．．．．．	T－13R05	T．13C29	$\stackrel{8}{4}$	\％	T－33A91	T．57501
26．．．．．．．．．．．．．．．．	T－131206	T．13C30	\％	品		T．57501
30，32．．．．．．．．．．．．	T－13R06	T－13C30	颪	T－29A99	T．33A91	T．57S01
42，42B ．．．．．．．．．．	T．13R05	म	$\stackrel{\text { r }}{ }$	4	म	T－57501
50．．．．．．．．．．．．．．	T．13R03	\％	\％	宜	献	T－57501
52．．．．．．．．．．．．．．	T－13R04	）	宜	字	T－33A91	T．57501
55．．．．．．．．．．．．．．．	T－13R01	亩	4	$\square$	म	T－57S01
56．．．．．．．．．．．．．．．	T．13R04	内	$\dot{\square}$	$\dot{\square}$	T－33A91	T－57S01


MODEL	Power Trans．	First Filter Choke	Second Filter Choke	$\begin{aligned} & \text { Firat } \\ & \text { Audio } \\ & \text { Trang. } \end{aligned}$	Second Audio Traun．	Output Trane．
COLIN B．KENNEDY CORP．（Contd）						
60.	T－56R01	T．13C29	T．13C29	T－29A99	T－29A99	म
$62,62 \mathrm{~A}$ ．	T－13R06	T－13C30	\＆	म	T－33A91	T．57S0
$63,63 \mathrm{~A}$.	T－13R02	\％	曻	$\dot{3}$	\％	T．57S0
80.	T－56R01	T－13C29	$\dot{\square}$	$\dot{\sim}$	み	T－57S0
563 A ．	T－13R02	$\dot{\square}$	\＆	H	～	T－57S0
$826 \mathrm{~B} . \ldots$.	T－13R05	\％	H	4	T－33A91	T－5750
882．62D ．．．．．．．．．．	T．13R06	$\dot{4}$	H	म	T－33A91	T－57S0
882－64C．．．．．．．．．．	T－13R06	H	\＆	～	T．33A91	57S

## KOLSTER RADIO INC．（Brandos）

A－1．	T－13R05	म	4	q	म	\＆
6J，6K，6L，6M，6R	T－56R01	T－13C29	T．13C28	म	A99	
B10，B11，B12．	T．13R09	§Special	T－13C28	T－29A99	91	น
B15，	T．13R09	T．13C29	～	T－33A91	A91	－57
23	T－56R01	T－13C29	T－18C92	T－29A99	T－29A99	T
K25，K27，K37．．．．	T－56R01	T－13C29	T．18C92	T－29A99	T－29A99	T． 18
K43，K43A	T－13R06	T－13C30	4	T－29A99	T－33A91	T． 57
K60	T．13R07	T－13C29	H	म	\％	T．57S
K	T．13R07	T－13C29	永	\％	$\dot{4}$	T－57
K7	～	T．13C27	4	$\dot{\square}$	น	T－57S
80.	T．13R07	T－13C27	4	$\dot{\sim}$	T－33A91	T． 57
K83 ．．．．．．．．．．	$\dot{\square}$	T－13C30	T－13C29	$\dot{\beta}$	T．33A91	T．57S
90	T－13R07	T－13C27	＊	$\dot{4}$	T．33A91	T－57S
K93．	म	T－13C30	T．13C29	$\dot{\sim}$	T－33A91	T．57S0
K110，K120，K122．	T－13R03	$\dot{4}$	\％	\＆	म	T－57S0
K130，K132．．．．．．．	T－13R06	号	山	H	T－33A91	T－57S0
K140，K142	$13 \mathrm{R06}$					

MAJESTIC RADIO \＆TELEVISION CO．

1A50 series．．．．．．．．	T．13R19	$\stackrel{\square}{4}$	म	$\dot{\sim}$	ค	T．57S01
1A59，1A59B．Plas9	T．13R19	\＆	－	4	H	T．57S01
1B59，P1B59B．．．．．	T－13R19	\＆	4	\＆	～	T．57501
2A50 reries．．．．．．．．	T－13R19	4	4	\％	宜	T．57S01
3C70，3C80．．．．．．．．	T－13R11	\＆	म	$\square$	$\dot{4}$	T．57S01
3SC80．．．．．．．．．．．	T．13R11	\＆	$\stackrel{\square}{4}$	\％	\＆	T－57501
$3 \mathrm{C90} \ldots \ldots \ldots \ldots$.	T．13R12	$\dot{4}$	号	宜	\％	T．57501
5BDA，5BEA．．．．．．	T．13R19	\＆	म	$\square$	\％	T－57S01
56，62A．．．．．．．．．．．	T．13R19	\＆	म	安	号	T－57S01
65，66．．．．．．．．．．．．．	T－13112	字	品	$\dot{\square}$	\＆	T．57501
67，68．．．．．．．．．．．	T．13R20	$\square$	$\stackrel{\square}{4}$	म	字	T－57501
75，76．．．．．．．．．．	T．13R12	म	宜	\％	H	T．57S01
85．86．．．．．．．．．．．	T－13R14	म	\＆	4	\＆	T．57501
511，511A，519P．．．	T．13R19	$\square$	＋	\％	品	T．57S01
551，620．．．．．．．．．．．	T．13R19	－	－	4	म	T－57S01
639，639 B ．．．．．．	T－13R19	4	H	\＆	\＆	T．57S01
650．．．．．．．．．．．．．．	T．13R12	\％	\＆	\％	\％	T－57S01
739， $750 . \ldots \ldots \ldots$	T－13R12	म	＊	$\dot{4}$	\％	T－57S01
850．．．．．．．．．．．．．．．	T－13R14	4	H	\％	म	T－57S01
939．．．．．．．．．．．．．．．	T．13R13	\＆	＊	号	H	T－57S01
1050．．．．．．．．．．．．．．	T．13R15	म	4	म	T－17D01	T－13S41
1056X．．．．．．．．．．．	T．13R20	$\dot{\square}$	$\dot{\sim}$	म		T．57S01
1058X．．．．．．．．．．．．	T．13R20	\％	म	宜	宜	T－57S01
1250．．．．．．．．．．．．．	T．13R15	\＆	\％	\％	T－17D01	T－13S41

Complete instructions and diagrams for building amplifiers．Thordarson Amplifier guide No．346，post－paid 15 cents．

MODEL	Power Trade．	Firse Filter Choke	Second Filter Choke	$\begin{gathered} \text { Firat } \\ \text { Audio } \\ \text { Trane. } \end{gathered}$	Second Audio Trans．	Outpus Trana．
majestic radio a television Co．（Contd）						
1356X	T．13R15	亩	品	\％	4	T．13S41
1870.	T－13R20	＊	4	＊	\％	T．57501
MONTGOMERY WARD \＆CO．						
04WG－725．．．	T－13R19	）	＊	म	\％	T－57S01
11．．．．	T－56R05	T－13C30	内	宜	$\pm$	T－57S01
15，16．．．．．．	T－13H02	\％	垵	亗	内	T－57S01
17．．．．．．．．．．．．．．．	T．13R06	内	＊	宊	曻	T－57S01
21，22．．．．．．．．．．．	T－13R06	T－13C29	＊	\％	T．33A91	T．57S01
62－010．．．．．．．．．．	T．13R03	T－13C28	缶	～	T．33A91	T．57S01
62－020．．．．．．．．．．．	T．13R06	T．13C29	T．18C92	か	T－33A91	T－57S01
62．030，62－040 ．．．．	T．13R04	T．13C29	\％	4	T．33A91	T．57S01
62－060．62－070 $\ldots$	T．13R02	T．13C28	\％	＊	\％	T－57S01
62－7，62．8．	T．13R05	\＆	म	内	น	T．57S01
62．9．．．．．．．．．．	T．13R06	4	\＆	\％	T．33A91	T．57501
62－14．．．．．．．．．．．	T－56R05	T．13C30	4	\％	$\dot{4}$	T．57501
$62.20 . \ldots \ldots \ldots$.	T．56R05	म	म	㞱	\％	T－57S01
62－25．．．．．．．．．．．	T－56R05	垵	方	寧	4	T．57S01
$62.26 \ldots \ldots \ldots .$.	T－56R05	内	㞱	\％	曻	T．57S01
62－29．．．．．．．．．．．．．	T－56R02	内	～	म	垵	T－57S01
62－30．．．．．．．．．．．	T－13R06	T－13C29	宜	ヶ	T－33A91	T－57S01
62－34．．．．．．．．．．．．．	T．13R03	T－13C29	$\dot{4}$	悬	永	T．57S01
62－38，62－40．．．．．．	T．56R05	㐫	\％	\＆	T－33A91	T．57S01
62－PC43．．．	T－13R02	永	～	～	－	T－57S01
62－50	T－56R05	\＆	\％	－	T．33A91	T－57S01
62．70，62．70X	T．13R05	4	品	4	品	T．57501
62.72 X	T．13R05	曻	\％	4	H	T－57S01
62－97，62．97X	T．13R02	品	\＆	म	宜	T．57S01
62－99，62．99X．．．．．	T－13R02	4	4	\％	4	T．57S01
62－101，62－101 X ．．．	T．13R04	T－13C29	\％	म	T－33A91	T－57S01
62－103，62－105．	T．13R13	4	宜	\＆	4	T． 57501
62－106，62－107．．．．．	T－13R07	T．13C30	4	\＃	T－33A91	T．57S01
62－121．．．	T－13R07	T－13C30	宜	\％	T－33A91	T－57S01
$62.131 \ldots \ldots \ldots$	T－13R13	号	4	曻	\％	T－57S01
62－132．．．．．．．．．	T－13R09	内	品	4	T－33A91	T．57S01
62－133．．．．．．．．．．．	T．13R13	宜	น	4	$\dot{\square}$	T－57S01
62－135 ．．．．．．．．	T－13R02	悬	म	4	H	T．57S01
62．140，62－140X	T－13R02	宜	号	方	\％	T．57S01
62－142．．．．．．．	T．13R13	－	曻	宜	4	T－57S01
62－144．．．．．．．．．．	T－13R13	宜	宜	ヶ	4	T－57S01
62－147．．．．．．．．．．．	T．13R12	宜	县	䫆	Special	T－57S01
62－148，62－148X．．．．	T．13R02	会	内	宜	\％	T－57501
62－150．．．．．．．．	T．13R02	－	म	－	＊	T－57S01
62－152．．．．．．．．．．．	T．13R12	4	号	4	宜	T．57S01
62－154．．．．．．．．．．．．	T．13R02	内	\％	－	亗	T－57S01
62－156．．．．．．．．．．．．	T．13R12	品	म	－	～	T． 57501
62．164．．．．．．．．．．．	T．13R12	$\dot{4}$	－	－	－	T．57S01
62－173．62－175．．．．	T．13R13	ヶ	4	－	4	T．57501
62－176．．．．．．．．．．	T－13R13	内	म	－	＋	T－57S01
62－177．．．．．．．．．．．．	T．13R12	\％	妆	$\dot{\square}$	内	T－57S01
62－179．．．．．．．．．．．．	T．13R09	\％	－	4	T．33A91	T．57S01
62．181．．．．．．．．．．．．．	T．13R04	T．13C29	4	$\dot{4}$	T－33A91	T－57S01


MODEL	Power Trans．	Firat Filter Cher	Secund Filter Choke	Firs： Audio Trane．	Second Audio Trane．	Outpue Trans．
MONTGOMERY WARD \＆CO．（Contd）						
$\begin{aligned} & \mathbf{6 2 - 1 8 5}, \mathbf{6 2} 187, \\ & \mathbf{6 2 \cdot 1 9 0} \ldots \end{aligned}$	T－13R13	4	4	$\dot{4}$	＊	T－52S01
62．193．．．．．．．．．．．	T－13113	亩	म	\％	\％	T－57S01
62－194．．．．．．．．．．	T．13R09	安	品	崮	T－33A91	T．57S01
62－196．．．．．．．．．．．	T－13113	\％	\％	刿	\％	T－57S01
62－206．62－216．．．．	T．13R09	品	内	\％	T－33A91	T－57S01
62－218．．．．．．．．．．．	T－13H09	＊	$\dot{\square}$	\％	T．33A91	T．57501
62．226，62．228．．．．	T－13R12	4	H	4	$\dot{4}$	T－57S01
62．232．．．．．．．．．．	T－131104	T－13C29	～	4	T－33A91	T－57501
62－233，62－235．．．．	T－13R12	4	म	4	良	T．57501
62－248，62．259．．．．．	T．13H12	\％	内	＊	曻	T．57S01
62－261．．．．．．．．．．．．	T．13H14	\＆	～	か	¢Special	T－57S01
$62.267 \ldots \ldots \ldots$.	T．13112	\＆	尔	น	น	T．57S01
62－274，62－276．．．．	T．13119	\％	＊	＊	＊	T．57501
62－277．．．．．．．．．．．．	T．13R12	\％	～	～	宸	T－57S01
62－280．．．．．．．．．．	T．14R39	\＆	म	น	内	T－57501
62－288．．．．．．．．．．．	T－13R19	H	\＆	品	$\dot{\sim}$	T－57S01
62－290．．．．．．．．．．	T－13119	\％	$\dot{\sim}$	号	品	T－57S01
62－297．．．．．．．．．．．	T－13R12	4	\％	\＆	ム	T－57501
62－301，62－301X．．．．	T－13113	－	～	\＆	内	T－13S41
62－304．．．．．．．．．．．	T－141839	T．14C63	～	\％	н	T．13543
02－300．．．．．．．．．．	T－131419	㐫	\％	\＆	म	T．57S01
62－307．．．．．．．．．．．	T．13K11	～	寝	\％	$\pm$	T－57S01
62－308．．．．．．．．．．	T．13R12	岗	～	\％	\％	T－57501
62－309．．．．．．．．．．．．	T－13H13	品	宜	4	\％	T－57S01
62－311．．．．．．．．．．．	T．13R14	宜	H	状	\＄Special	T－57S01
62－315．．．．．．．．．．	T．13R19	亩	म	＊	$\dot{4}$	T－57501
62－316．．．．．．．．．	T－13R11	宜	品	$\dot{\sim}$	H	T－57S01
62－318．．．．．．．．．．	T．13R12	ヶ	～	寝	＊	T－57S01
62－321，62－451．．．．	T．13R12	宜	垵	曻	4	T－57S01
62－323．．．．．．．．．．	T．13H20	\％	$\dot{\square}$	4	$\pm$	T－57S01
62－324．．．．．．．．．．	T．13R20	म	～	H	4	T－57S01
$62.345 \ldots \ldots \ldots$.	T．14R39	T．14C63	\＆	4	4	T．13S43
62－346，62－350．．．．	T－13R19	＊	－	岗	\％	T－57S01
62－347．．．．．．．．．．	T．13R12	4	～	＊	\＆	T－57S01
62－351，62－352．．．．	T－13119	\％	म	＊	4	T－57S01
62－357．．．．．．．．．．	T．13k12	H	－	H	＊	T－57S01
62－361，62－362．．．．	T．13R11	4	＊	H	＊	T－57S01
62－367．．．．．．．．．．	T．13R12	4	4	4	$\dot{\square}$	T－57S01
62－370 $\ldots \ldots \ldots \ldots$	T．13H19	\％	$\dot{\sim}$	H	\＆	T．57501
62－3：2．．．．．．．．．．	T－13R11	号	\＆	内	4	T．57S01
62－380 $\ldots \ldots \ldots \ldots$	T．13R19	$\dot{\sim}$	＊	\＆	安	T－57S01
62－390．．．．．．．．．．	T－13R11	苗	4	\％	＊	T．57S01
62－401，62－402．．．．．	T．13H13	4	＊	\＆	\％	T．13S41
62－403．．．．．．．．．．．	T．13R15	宜	\％	＊	＊	T－13S41
62．404．．．．．．．．．．．．	T．14R39	T．14C63	4	＊	＊	T－13543
62－406．．．．．．．．．．	T－13R19	म	ム	\％	4	T．57S01
62－407．．．．．．．．．．．	T－13R11	宜	4	\＆	\＆	T．57501
62－408．．．．．．．．．．．	T．13R12	－	古	悬	宜	T．57S01
62－411．．．．．．．．．．．．	T．13R14	4 㐫	安	＊	§Special	T－57S01
62－415．．．．．．．．．．．	T－13R19	9 －	म	$\stackrel{\sim}{2}$	＊	T－57S01

 preferences io mountinge and eizes：T－57S02，T－13S38，T－14S85 in place of T－57S01；

MODEL	Power ＇l＇rans．	First Filter Choke	Second Filter Choke	$\begin{gathered} \text { First } \\ \text { Audio } \\ \text { Trane. } \end{gathered}$	Second Audio Trans．	Output   Trans．
MONTGOMERY WARD \＆CO．（Contd）						
62.416.	T．13R11	＊	म	म	\％	T－57S01
62－418	T－13K12	4	4	4	安	T－57S01
62－425	T－13R19	\％	$\dot{\sim}$	\＆	म	T－57S01
62－445，62－455．．．．	T－13R19	\％	\＆	\％	4	T－57S01
62－4．49．．．．．．．．．．．．	T－13R13	\％	$\dot{\sim}$	4	\％	T－57S01
62－457．．．．．．．．．．．	T－13R12	\＆	\＆	म	म	T．57S01
62.465	T－14R39	T－14C63	H	4	\＆	T．13S43
62－467．．．．．．．．．．．	T－13k12	น	$\dot{\sim}$	ヶ	म	T－57S01
62－471，62－472．．．．	T－13119	$\dot{\square}$	\％	\＆	म	T．57S01
62－473．．．．．．．．．．．	T－13R13	¢	$\dot{\square}$	\＆	妆	T－13S42
62－475，62－476．．．．	T－13k19	\＆	$\dot{\square}$	म	म	T．57S01
62－479．．．．．．．．．．．	T．13K19	\％	＊	\％	\＆	T－57S01
62－490．．．．．．．．．．．	T－13R11	\％	4	4	$\dot{4}$	T．57S01
62－497．．．．．．．．．．．．	T－13112	$\dot{\square}$	$\dot{4}$	4	H	T－57S01
62－500，62－601．．．．	T－13119	म	\％	म	垵	T－57501
62－606，62．616．．．．	T． 13119		䏒	\＆	\＆	T－57S01
62－700．．．．．．．．．．．	T－13119	\％	4	$\dot{\square}$	$\dot{\sim}$	T－57S01
$\begin{aligned} & 62-701,62-702, \\ & 62.703 . . . . . \end{aligned}$	T－13111	\％	\＆	\＆	\％	T－57S01
62－704．．．．．．．．．．．	T－131120	\＆	น	म	H	T－57501
62－712．．．．．．．．．．．	T．13K20	म	H	म	4	T－57S01
62－900．．．．．．．．．．	T－131111	H	安	\＆	म	T．57S01
62－1100，62－1101．．．．	T－131413	म	म	म	म	T－13541
62－1611．．．．．．．．．．	T．131106	น	悬	\％	$\square$	T－57S01
62－1711．．．．．．．．．．	T－13R06	\＆	मे	4	品	T．57S01
62－1838．．．．．．．．．．	T．13R06	म	น	म	म	T－57S01
$93 \mathrm{BK}-7111 \mathrm{~B}$ ．	T－13K20	\％	\＆	H	\＆	T．57S01
93BK．391A．．．．．．．．	T－13120	4	म	म	น	T－57S01
93BR－714A．．．．．．	T－131220	\％	म	＋	\％	T－57S01
93BK－715B 93BR．716A．	T．13120	4	4	4	\％	T．57S01
93BR－717A．．．．．．．．	T．13120	\％	\％	\％	～	T－57S01
93BR－1201A．．．．．．．	T．131R14	4	$\dot{\sim}$	4	4	T－57S01
93 WG－382．．．．．．．．	T．13112	\％	\＆	4	म	T－13S42
93W G－800   93WG－801，   93 WG－802．   93 WG－805，	T－13R12	म	\％	\＆	म	T－57S01
93WG．1000，   93 WG－1001	T． 131115	म	H	\％	$\dot{4}$	T－13S41
93 WG－1103，   93 WG． 1104	T－13K12	म	安	\％	$\dot{\square}$	T－57S01
811，1111，1238．．．．．	T．13R06	4	垵	\＆	内	T－57S01
1355．．．．．．．．．．．．．．	T－13R06	T－13C30	मे	\＆	T－33A91	T－57S01
1800．．．．．．．．．．．．．．	T－56R02	T－13C28	म	字	$\dot{\text { H }}$	T－57S01
1955．．．．．．．．．．．．．	T－13R06	T－13C30	H	4	T－33A91	T－57S01
$\begin{aligned} & 2822,2827,2895 \\ & 2897 \ldots \ldots \ldots . . \end{aligned}$	T．131205	T．13C29	$\dot{4}$	मे	T－33A91	T－57501
2955X，2957X ．．．．	T．13R06	T－13C30	मे	म	T－33A91	T－57S01
3035. 3037, $3065,3067 \text {. }$	T－13R04	T－13C29	4	म	T－33A91	T－57S01
10，000．．．．．．．．．．．	T．131105	T．13C29	崮	T－29A99	T－33A91	T－57S01
11，000，14，000 $\ldots \ldots$	T－13R04	T－13C29	4	4	T－33A91	T－57S01
62，000．．．．．．．．．．	T－13R04	T．13C29	\＆	\＆	T．33A91	T－57S01


MODEL	Power Trans．	First Filter Choke	Second Filter Choke	First Audio Trans．	Second Audio ＇liane．	Output Trans．
MOTOROLA（See Gaivin Mfg．Co．）						
PHILCO RADIO \＆TELEVISION CORP．						
5.	T－56R01	T．13C29	T－13C29	T－29A99	T－29A99	T－18C92
12	T－13R11＊	\％	म	\％	\％	T－57S01
14， 15.	T－13R15	T－13C30	\＆	\＆	T－81D42	T－57S01
16，17	T－13k16	T．13C30	\％	\％	T－81D42	T－57S01
18.	T－13115	T．13C30	$\dot{\square}$	\＆	T－81D42	T－57S01
19.	T－13K13	म	\＆	\％	\＆	T－57S01
20，20A	T－13R00	T－13C29	$\dot{4}$	4	T．33A91	T－57S01
21.	T． 131104	1－13C30	H	म	\＄Special	8Special
22L．	T－13R13	\＆	\％	\％	\＆	T－57S01
23X， 29	T－13R14	T．13C30	\％	म	T－33A91	T－57S01
37－62．	T－13R12	垵	\％	म	म	T－57S01
37.84	T－13R12	म	$\dot{\square}$	\％	H	T－57S01
37－93．	T－13R12	宜	宜	\％	\％	T－57S01
37.600.	T－131412	\％	4	is	q	T－57S01
38－7，38－8．	T－13R12	म	म	\＆	$\dot{3}$	T．57S01
38－9，38－10	T．13R12	品	$\stackrel{\sim}{\sim}$	म	น	T．57S01
38－15．	T－13R11	\％	\＆	4	4	T－57S01
38－22，38－23．．．．．．	मे	T－14C63	\％	म	T－33A91	T－13541
39．55．．．．．．．．．．．．	T－13R14	म	古	¢	H	T－57S01
39－116	T．13R15	म	宜	H	$\dot{H}$	T．57S01
39.117	T－13R11＊	म	म	㞱	4	T－57S01
39－119．	T－13R19＊	म	म	म	म	T－57S01
39－770．．．．．．．．．	T－13R15	\％	\＆	\＆	is	T－57S01
40．130， $40135 \ldots$	T－13R20＊	＊	4	㕸	\％	T－57S01
40－140，40－145 ．．．	T－13R20＊	म	म	म	म	T－57S01
40－165．．．．．．．．．	T－13R11＊	म	म	मे	น	T－57S01
40．205．．．．．．．．	T－13R15	4	4	－		T．57S01
40．216．．．．．．．．．．	T－13R15	H	$\dot{4}$	म	$\dot{\square}$	T－57S01
40．503，40．506．．．	T－131812＊	\％	म	म	方	T－57S01
40－507．	T－13R11	\＆	＋	H	内	T－57S01
40－510	T－13R14	4	is	म	\＆	T－57S01
40－516．	T－13R14	म	$\dot{4}$	$\dot{\sim}$	\％	T－57S01
40．525．	T－13H12＊	\％	$\dot{\sim}$	म	म	T－57S01
	T．13R13	T－13C28	$\dot{4}$	\＆	T－33A91	T－57S01
47	น	T－13C29	寝	\％	T－33A91	T－57S01
49.	म	T．13C28	T－13C28	म	T．33A91	T－57501
50，50A．．．．．．	T－13R03	＋	\％	\％	\％	T－57S01
51，51A， $52 \ldots \ldots$	T－13R03	\％	\％	$\dot{\square}$	\％	T－57S01
57，58，59．．．．．．．	T－13 112	म	म	\＆	म	T－57501
60	T－13R13	T－13C30	4	$\dot{\sim}$	म	T－57S01
$65 \ldots \ldots \ldots \ldots$	T－13R06	T－13C29	T．74C30	\％	T－57A42	T－57501
66.	T．13R13	T．13C30	म	வ	\＆	T－57501
70．70A	T－13R05	T－13C29	字	$\dot{4}$	H	T－57S01
71．．．．．．．．．．．．．．	T．13R13	T． 13 C 28	म	～	T－33A91	T－57S01
76，77．．．．．．．．．．．	T．13R06	T．13C30	沜	字	T．33A91	T．57S01
77A，78．．．．．．．	T．13R06	T－13C30	安	4	T－33A91	T－57S01
80， $81 \ldots \ldots \ldots \ldots$	T．13R12	म	म	म	म	T－57S01
$82 \ldots \ldots \ldots . .$.	T－56R01	T．13C28	म	T－29A99	T－33A91	T－57S01
84．．．．．．．．．．．．．	T－13R12	म	H	4	＋	T．57S01
86．．．．．．．．．．．．．．	T－56R01	T．13C28	\％	T－29A99	T－33A91	T．57S01

End your transformer iroubles lyy using Tropex Transformers．See page 32.
＊Disegard 5 volt winding．

MODE1，	Power ＇Trane．	Firse   Filier Clooke	Secoud Filter Choke	Firaz   Audio   Trana．	Second Audios Trane．	Outpur Trane．	MODEI．	Power Trank．	Firnt Filler Choke	Second Filter Choke	Firat Audiu Trana．	Second   Audio   ＇Prana．	Output Trans．
PHILLCO RADIO \＆TELEVISION CORP．（Contd）							PILOT RADIO \＆TURE（Contd）						
87．．．．．．．．．．	T－56R03	T－13C30	T－13C28	T－29A99	T－33A91	T．57S01	T．122．	T－13R11	म	\％	\％	\％	T－57S01
89 ．．．．．．．．．．．．．	T－13113	4	4	4	4	T－57S01	K111，Power Pack．	T－56R01	T－13C29	T－13C29	\＆	H	म
90，90 A	T－131206	T－13C30	is	म	T－33 191	T－57S01	114，115．．．．．．．．．．	T．13R16	T． 75 C 49	म	䫆	T．17D01	T－13541
91.	T．13R15	T．13C30	4	म	T－811）42	T．57S01	K122．．．．．．．．．．	T－13R00	T－13C：39	T－13C27	T－29A99	T－33A91	T－57S01
95，96，96A ．．．	T－13R06	T－13C30	4	品	T－33A91	T－57S01	K126，K128．．．．．．．	T－131106	T－13C30	1－13C28	ห	T－33A91	T－57501
97．98．．．．．．．．．	T－13114	T－13C30	म	म	T－33A91	T－57S01	K136．．．．．．．．．．．	T．13R05	T－13C29	T－13C29	＇T－29C27	T－33A91	T－57501
107．．．．．．．．．．．．．	T－13R19＊	＊	น	म	故	T．57501	S148．．．．．．．．．．．．．	T－13R03	म	＋	浪	\％	T－57501
111，111A．	T－13R07	T－13C30	＋	4	T－33A91	T－57S01	$\begin{aligned} & \text { S155, S155A, S155B, } \\ & \text { S155F, C157, } \\ & \text { C157A, C157B, C157F }-13 R 05 \text { T-13C29 } \end{aligned}$			～	म	T－29．499	T－57801
112，112A．．．．．．．．	T－13K07	T－13C30	म	म	T－33A91	T－57S01							
116B．．．．．．．．．．．．．	T－13R16	T－13C30	4	म	T－81D42	T．57501	S162，S164．．．．．．．	T－13R03	号	4	a	4	T－57501
118．．．．．．．．．．．．．．．	T－13R15	T－13C30	4	4	T－81D42	T－57S01	C165．．．．．．．．．．．．．．	T－13R03	H	म	म	\％	T－57501
144．．．．．．．．．．．．．．	T－13113	＋	म	号	मे	T－57S01	183，185 ．．．．．．．．．	T－13R12	\＆	म	म	म	T． 57501
$200 \mathrm{X}, 201 \ldots . .$.	T－13R16	T－13C30	\％	म	T－81D42	T－57501	193，195．．．．．．．．．．	T－13R12	मे	品	\＆	\％	T－57S01
211， 211 A ．	T．13R07	T－13C30	缶	4	T－33A91	T－57501	213，215．．．．．．．．．．	T－13R13	4	\％	\％	\％	T－57S01
212.212 A	T－13R07	T－13C30	安	品	T－33A91	T－57S01	293，295，S295．．．．．	T－13R12	म	\＆	น	\％	T－57S01
220，220A	T－13R00	T－13C29	ค	ค	T－33A91	T－57501	364， $365 \ldots \ldots \ldots$.	T．13R15	捳	缶	直	4	T－57S01
245．．．．．．．．．．．．	T．13R12	～	号	㿾	直	T－57S01	S393， $395 \ldots \ldots$.	T．13R12	म	－	म	$\dot{4}$	T－57501
264，265．．．．．．．．．	T－13R13	4	4	尔	4	T－57S01	403，405．．	T－13R12	\＆	\＆	น	म	T－57501
270，270A．	T－13R05	T－13C29	\＆	\＆	献	T－57501	H554，H555．	T－13R12	म	安	走	品	T－57S01
296，296A	T－131106	T－13C30	\％	品	T－33A91	T－57S01	BG562，BG563．．．．	T－13R12	4	म	म	म	T－57S01
370，470，470A．．．	T－13 ${ }^{\text {P06 }}$	T－13C30	\％	尔	\％	T－57S01	C576，C577．．．	T－131212	म	\＆	\＆	去	T． 57501
503．．．．．．．．．．．．	T－13K14	T－13C30	น	น	T－17D01	T－57501	G584，G585．	T． 13 H 14	मे	\＆	4	去	T－13S41
504，505 ．．．．．．．	T－13113	म	म	म	号	T－57501	11664，H665．．．	T－13k12	\％	4	号	4	T－57S01
507．．．．．．．．．．．．．．	T－13 115	T－13C30	म	$\dot{\text { x }}$	T－81042	T－57S01	G752，G753．．．	T－13K11	\％	म	＋	म	T－57501
509．．．．．．．．．．．．．．．	T－13 116	T－13C30	4	म	T－81D42	T－57S01	1010	T．13R03	吕	\＆	故	＊	T－57S01
511．．．．．．．．．．．．．	T－56R01	T－13C29	T－13C29	T－29 A99	T．33A91	\＄Special	T－1664，T－1764．．．．．	T－13R11	\＆	品	号	紓	T－57S01
570．．．．．．．．．．．．．．	T－131107	T－13C29	号	崮	品	T－57S01	T－1854．．．．．．．．．．	T－13R11	＋	＋	म	म	T－57501
600，610．．．．．．．．．	＇T－13R12	म	$\stackrel{\square}{+}$	म	$\dot{+}$	T－57501	R．C．A．MFG．CO．	．，INC．					
620，625．．．．．．．．	T．13113	म	\％	＋	故	T－57501	AVR－1．	T．13R06	T．13C30	\＆	H	T－67D47	T－13S41
630，635 ．．．．．．．．．	T－13613	安	म	H	\％	T－57S01	HF．1．．．．．．．．．．．	T－13R14	号	H	\＆	म	T－57S01
640．．．．．．．．．．	T－13R14	T－13C30	is	カ	T－33191	T－57501	R4．	T－13R04	号	म	\＆	T－29A99	T．57501
641 ．．．．．．．．．．．．．	$\hat{H}_{3}$	T－13C28	4	直	T－33A91	T－57S01	5Q1，5Q2．．．．．．．．	T－13R12	堮	\％	\＆	म	T－57S01
645．．．．．．．．．．．．．	T－13H14	T－13C30	मे	म	T－33A91	T－57S01	5Q4，5Q5 seriea．．．．．	T．13K12	4	4	4	ir	T－57501
$650 \ldots \ldots . .$.	T－13R15	T－13C30	\＃	म	T－81D42	T－57501	R－5，R－5X．．．．	T－13R02	\％	\％	走	\＆	T．57501
651．．．．．．．．．．．．．	म	T－13C28	品	号	T－33A91	T－57S01	5T，5T－1，T5－2．．．．	T．13R12	4	4	＋	H	T．57S01
655，660，665．．．．．	T－13R15	T－13C30	$\dot{\text { H }}$	\＆	T－81D42	T－57S01	5T－4，5T－5，5T－6．．．	T－13R12	म	म	\％	H	T－57501
PILOT RADIO \＆	TUBE						5T－7，5T－8，5U．．．．	T．131212	म	म	म	म	T． 57501
PE6SG．．．．．．．．．．	T－13R00	T－13C29	－1－13C：27	T－29A99	T．33A91	T．57S01	C6．2，C6．12．．．．．．	T．13R12	H	号	\％	安	T－57S01
7，8，18．．．．．．．．．．	T－13 03	号	म	－	म	T－57S01	6K，6K－2，6K－3．．．．	T－13R12	号	H	4	4	T－57S01
10，12，20．．．．．．．	T－13R03	น	म	ム	म	T． 52501	6Q1，6Q4．．．．．．．．．．	T－13R13	\％	म	H	\％	T．57501
31．．．．．．．．．．．．．．．	T－13R01	4	文	号	4	T－57S01	6Q8．．．．．．．．．．．．	T．13R12		4	4	品	T．57S01
39．．．．．．．．．．．．．．．．	T．13R03	म	म	म	$\stackrel{\text { r }}{ }$	T－57501	R6．．．．．．．．．．．．．	T－13R04	4	${ }_{4}$	\％	T－29A99	T－57501
$41 \ldots \ldots \ldots$.	T．13R01	म	\＆	㭊	古	T－57S01	6T，T6－1，6T－2．．．．	T－13R12	ค	\＆	म	\％	T．57S01
X41．．．．．．．．．．．．	T－13R11	म	म	म	$\dot{4}$	T－57501	6T5，T6．9，T6．11．．．	T－131122	\％	号	4	\％	T－57S01
4．3．．．．．．．．．．．．．	T．13R02	น	म	म	म	T．57S01	C7－6，C7－14．．．．．．	T－13R12	\％	\％	म	䫆	T．57501
45．．．．．．．．．．．．	T－13R11	म	म	品	4	T－57S01	D7－7，7K，7K1．．．．．	T． 131112	\＆	\＆	号	号	T－57S01
53，55．．．．．．．．．．．．	T－13R12	म	म	H	म	T－57501	R7A．．．．．．．．．．．．．．	T．13R04	4	म	म	T－33A91	T－57S01
63，X63，X65 ．．．．．	T．13 12	＊	म	H	永	T．57S01	R7DC．．．．．．．．．	\％	T－13C29	म	म	T．33A91	T．57501
81，84．．．．．．．．．．．．	T．13R03	号	म	号	号	T－57S01	7T，7T1，T7－5．．．．．	T－13R12	趐	\％	\％	म	T－57S01
T－102．．．．．．．．．．．．	T－13R11	म	$\dot{\sim}$	मे	$\dot{4}$	T－57S01	7－11，7－26．．．．．．．．．	T－561101	T－13C29	T－13C29	T－29A99	T－29A99	\％
103，105，X $105 \ldots$.	T－13R12	म	म	म	㸠	T－57501	T7－12，7U，7U2．．．．．	T－13R12	$\dot{4}$	\％	\％	＊	T－57501

[^10]| MODEL | Power Trans． | First Filter Choke | Second Filter Choke | First Audio Trans． | Second <br> Audio <br> Trans． | Output Trans． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R．C．A．MFG．CO．，INC．（Contd） |  |  |  |  |  |  |
| C8－15，C8－17． | T－13R12 | 2 号 | น | $\dot{4}$ | 4 | T－57S01 |
| C8－19，C8－20．．．．． | T－13R12 | 2 擅 | 品 | $\dot{4}$ | 4 | T－57S01 |
| D8－28，8K． | T－13R12 | 2 品 | H | \％ | म | T－57S01 |
| 8K11．．．．．．．．．．．．． | ．T－13113 | 3 品 | น | 4 | 㟧 | T－57S01 |
| $\begin{aligned} & \text { 8Q2. BQUSC, } \\ & 8 Q U S M . . . . \end{aligned}$ | T－13R13 | 3 4 | 4 | ＋ | น | T－57S01 |
| 8Q4．．．．．．．．．．．．．． | T．13R13 | 3 品 | ～ | น | 曻 | T－57S01 |
| 8T．．．．．．．．．．．．．．．． | T－13R12 | 2 号 | H | 品 | 4 | T－57S01 |
| 8T2，8T11．．．．．．．．． | T－13R13 | 3 － | \＆ | 沜 | \％ | T－57S01 |
| T8．14，T8．16．．．．． | T－13R12 | 2 品 | 曻 | 曻 | 4 | T－57S01 |
| 8U，8U2 $\ldots \ldots \ldots$. | T．13R13 | 3 安 |  |  | 4 | T－57S01 |
| C9－4，C9－6．．．．．．．． | T－13R12 |  | 号 | 4 | 4 | T－57501 |
| CRD9．．．．．．．．．． | T－13R06 | T－13C30 | ） | म | T－33A91 | 1 T．13S41 |
| D9．19．．．．．．．．．．．．． | T．13R12 | म | 沜 | 品 | 品 | T－57S01 |
| 9K1．．．．．．．．．．．．．．． | T－13R13 | 4 | 4 | 4 | 㭊 | T－57S01 |
| 9K2．．．．．．．．．．．． | T．13R12 | $\square$ | 品 | म | 岸 | T．57S01 |
| 9K3．．．．．．．．．．．．． | T－13R14 | $\dot{4}$ | म | 乓 | 4 | T－13S42 |
| 9Q4．．．．．．．．．．．．．．． | T－13R14 | 4 | 品 | 品 | म | T－57501 |
| 9T．．．．．．．．．．．．．．． | T．13R14 | 4 | 品 | 沜 | 品 | T－57501 |
| T9．9，T9．10．．．．．．． | T－13R12 | － |  | 品 | 4 | T－57S01 |
| 9 tube AW．．．．． | T．13R06 | T－13C28 | 号 | 4 | T－67D47 | 7 T－57S01 |
| R9DC．．．．．．．．．． | म | T－13C29 | 4 | น | T－33A91 | T－57S01 |
| 9U，9U2 ．．．．．．．．．． | T－13R14 | $\stackrel{\text { \％}}{ }$ |  | 号 | 4 | T－13S42 |
| 10K．．．．．．．．．．．．．． | T－13R14 | T－13C30 | 4 | 4 |  | T．13S42 |
| 10K1．．．．．．．．．．．．．． | T－13R14 | म | $\square$ | $\square$ | म | T．13S42 |
| 10T．．．．．．．．．．．．．． | T－13R14 | T－13C30 | 4 |  | 凰 | T．13S42 |
| T10．1，T10．3． | T－13R14 | 4 | 号 | ค | T－81D52 | T－57S01 |
| U10．．．．．．．．．．．．．． | T－13R12 | 4 | 4 | \＆ | 堮 | T－57S01 |
| U12，U20．．．．．．．．．． | T－13R12 | 品 | 4 | H |  | T．57S01 |
| D11－12．．．．．．．．．．． | T－13R15 | H | － | T－57A41 | T．74D32 | T－13S41 |
| R11．．．．．．．．．．．．．． | T．13R07 | T－13C30 | 沜 | 4 | T－33A91 | T－57501 |
| C13－2．．．．．．．．．．．． | T－13R15 | म | 品 | T－57A41 | T．74D32 | T． 13541 |
| C15－3．．．．．．．．．．．．． | T．13R15 | 4 | 品 | T－57A41 | T．74D32 | T．13S41 |
| 15U．．．．．．．．．．．．． | T－13R09 | T－67C49 | 号 | 4 | T－33A91 | T－57501 |
| 16K．16T3．．．．．．．．． | T－13R12 | म | 吕 | 4 | 4 | T－57501 |
| 16T2．．．．．．．．．．．．． | T．13R13 | 宜 | 4 | 品 | 号 | T－57S01 |
| 16T4．．．．．．．．．．．．． | T－13R12 | 品 | 㟧 | 沜 | 4 | T－57S01 |
| RE 16A．．．．．．．．．．． | T－13R04 | म | म | 号 | T－33A91 | T－57S01 |
| 17K，18T．．．．．．．．．． | T．13R13 | H | 品 | 4 | म | T－57S01 |
| R17．．．．．．．．．．．．．． | T－56R01 | T－13C29 | T－13C29 | T－29A99 | T－29A99 | 4 |
| Radiola 17．．．．．．．．． | T－56R01 | T－13C29 | T－13C29 | T－29A99 | T－29A99 | §Special |
| Radiola 18DC．．．．． | H | T－13C28 | 8 pecial | T－29A99 | T－29A99 | §Special |
| R18．．．．．．．．．．．．．． | T－56R01 | T－13C29 | T－13C29 | T－29A99 | T－29A99 |  |
| RE－18 ．．．．．．．．．．． | T－13R07 | T－13C30 | 哭 | － | T－33A91 | T－57S01 |
| 19K．．．．．．．．．．．．． | T－13R13 | 品 | 品 | 4 | 4 | T－57501 |
| R．19．．．．．．．．．．．．．． | T－13R04 | 4 | H | ค | T－29A99 | T．57S01 |
| Q20．．．．．．．．．．．．．．． | T－13R11 | 品 | 風 | $\square$ | 品 | T－57S01 |
| RE－20．．．．．．．．．．．． | T－13R07 | T－13C30 | \＆ | 乓 | T．33A91 | T－57S01 |
|  | T．13R13 | T－68C08 | H | T－52C98 | T－57A41 | Specis 1 |
| PK23A1 Amp．．．．．． | T－13R01 | T－13C27 | T－13C27 | 4 | 4 | म |
| R23．．．．．．．．．．．．． | T－13R04 | 4 | 曻 | 号 | T． 29 A99 | T－57S01 |


MODEL	Power Trans．	First Filter Choke	Second   Filetr   Choke	First Audio Trans．	Second   Audio   Trans．	Output Trans．
R．C．A．MFG．CO．，INC．（Contd）						
TB－28－M1．	T－13R06	म	品	曻	T－57A41	T－13S41
25－DC．	品	T－13C28	म	น	T－33A91	T－57S01
U25，U26．．．．．．．	T－13R12	2 \％	म	沜	म	57S01
A．28－P．．．．．．．．．．	T．13R02	品	4	号	4	4
R－28．．．．．．．．．．．．．．	T－13R03	T－13C28		岸	\％	T－57S01
R－28．P．．．．．．．．．．	T－13R03	T．13C28	－	4	म	T．57501
R－32．．．．．．．．．．．．	T－56R03	T．13C30	H	T－29A99	T－33A91	T－57S01
33AC．．．．．．．．．．．．．	T．56R01	T．13C29	T－13C29	T－29A99	T－29A99	4
R－35．．．．．．．．．．．．．．	T．13R06	T．13C29	尔	品	T．33A91	T－57501
R－37．．．．．．．．．．．．	T．13R03	T．13C28	4	म	4	T．57S01
R－37－P．．．．．．．．．．．	T－13R03	T－13C28	म	沜	4	T．57S01
R－38，R－38－P．．．．．	T－13R03	T－13C28	沜	4	4	T－57S01
R－39．．．．．．．．．．．．	T－13R06	T．13C29	宜	尔	T－33A91	T．57501
RE－40，RE－40－P．	T．13R03	T．13C28	去	品	4	T－57S01
42，R－43．．．．．．．．．．	T－13R07	T－13C30	4	4	T－29A99	T－57S01
U42．	T－13R12	\＆	㟧	尔	म	T．57S01
U43．．．．．．．．．	T－13R12	म	缶		品	T－57S01
U44，U45．．．．．．．．．．	T－13R13	म	沜	4	号	T－57501
44．．．．．．．．．．．．．．．．	T．13R06	T－13C29	T－13C28	\＆	¢	T．18C92
RE－45．．．．．．．．．	T－56R03	T－13C30	4	T－29A99	T－33A91	T－57S01
46．．．．．．．．．．．．．．．．	T－13R06	T－13C29	T．13C28	品	曻	T－18C92
$47 .$	T－13R06	T．13C29	T－13C28	น	ค	T．57S01
48.	T－13R07	T．13C30	4	沜	T－29A99	T－57S01
R50．．．．．．．．．．．．．．．	T－13R07	T．13C30	म	垵	T－33A91	T－57S01
K50，T55，T56．．．．．	T－13R12	㗫	品	品	4	T－57S01
RE52．．．．．．．．．．．．．	T－56R03	T－13C30	4	T－29A99	T－33A91	T．57S01
R55．．．．．．．．．．．．．．．	T－13R07	T－13C30	品	品	T－33A91	T－57S01
RE57．	T．13R06	T－13C29	म	$\square$	T－33A91	T．57S01
K60，K62．．．．．．．．	T．13R12	म	古	4	4	T－57501
T60，T62．．．．．．．．．	T．13R12	4	妆	缶	品	T．57S01
K61．．．．．．．．．．．	T－13R12	म	น	品	4	T．57S01
Radiola $62 . . . . . . .$.	T．13R00	T．13C29	T．13C29	\＆	T－29A99	$\begin{gathered} \text { T-57S01 } \\ \text { T.18C92 } \end{gathered}$
PG63．．．．．．．．．．．．．	T－13R04	T－13C30	H	น	T－67D47	T－13S41
T63，T64，T65．．．．．	T－13R12	म	－	4	敢	T．57S01
66.	T－13R07	T．13C30	品	品	§Special	T－57S01
R70．．．．．．．．．．．．．．	T－13R03	T－13C29	品	品	T－29A99	T．57S01
R71，R72．．．．．．．．	T－13R05	T．13C29	㽞	品	T－29A99	T－57S01
R73．．．．．．．．．．．	T．13R06	T．13C29	品	4	T－33A91	T－57S01
R73A．．．．．．．．．．．．．	T．13R04	4	品	म	T－29A99	T．57S01
R75．．．．．．．．．．．．	T．13R04	म	\％	缶	T－33A91	T－57S01
RAE－79．．．．．．．．．．．	T－13R07	T－13C30	号	4	T－33A91	T－57S01
K80，K81，K82．．．．	T．13R12	＊	4	4	म	T－57S01
T80．．．．．．．．．．．．．．．	T－13R12	म	म	－	品	T． 57501
Rediola 80．．．．．．．．．	T－13R04	8Special	4	吕	T－57A42	T－57S01
RE80．．．．．．．．．．．．．．．	T－13R04	4	＊	尔	T－33A91	T－57S01
82．．．．．．．．．．．．．．．．	T－13R04	§Special		号	T－57A42	T－57S01
48T6．．．．．．．．．．．	T．14R39	T－14C63	4	品	品	T－57501
5E．．．．．．．．．．．．．．	T－13R12	H	म	尔	品	T－57S01
35T．．．．．．．．．．．．．．	T－13R19	म		品	4	T－57S01
85T1，85T5．．．．．．．．	T．13R12	乓	品	4	－$T$	T－57S01

Interested in building amateur radio receivers or transmitters？Full instructions and diagrams in Thordarson Transmitter Guide No，344，post－paid 15 cents．

MODEL	Power Trans．	First Filter Choke	Second Filter Choke	Eirst   Audio   Trans．	Second   Audio   Trans．	Output Trana．	MODEL	Power Trans．	Firat Filter Choke	Second   Filter   Choke	First Audio Trans．	Second Audio Trans．	Output Trans．
R．C．A．MFG．CO．，INC．（Contd）							R．C．A．MFG．CO．，INC．（Contd）						
86．．．．．．．．．．．．．．．	T－13R04	§Special	4	＊	T－57A42	T－57S01	240．．．．．．．．．．．．．．	T－13R06	T－13C30	4	＊	T－67D47	T－13S41
86E，86K．．．．．．．．	T－13R12	\＆	曻	安	＊	T－57S01	242，243．．．．．．．．	T－13R15	H	4	म	T－33A91	T－57S01
$86 \mathrm{~K} 7 \ldots \ldots \ldots .$.	T－13R12	み	म	\％	म	T－57S01	260，261．．．．．．．．．	T－13R06	T－13C27	号	T－29C27	T－33A91	T－57S01
86T，86T－1．．．．．．．	T－13R12	म	म	品	宜	T－57S01	262，263．．．．．．．．	T－13R15	म	$\dot{4}$	T－57A41	T－741）32	T－13S41
86T－3，86T－4 $\ldots .$.	T－13R12	$\dot{4}$	$\dot{4}$	号	号	T－57S01	281．．．．．．．．．．．．．．	T－13R15	म	4	T－57A41	T－74D32	T．13541
86T6，86T44．．．．．．．	T－13R12	म	म	म	＋	T－57S01	310．．．．．．．．．．．．．	T－13R03	T－13C28	म	म	म	T－57S01
87K1，87T．．．．．．．．	T－13R12	$\stackrel{\square}{4}$	\＆	म	\％	T－57S01	DUO 320， $321 \ldots$	T－13R04	H	4	$\dot{\mu}$	T－33A91	T－57S01
87T1，88K．．．．．．．	T－13R12	$\dot{\text { ¢ }}$	$\dot{\text { \％}}$	$\dot{4}$	म	T－57S01	322 DU0．．．．．．．．．	T－13R12	म	म	$\dot{4}$	म	T．57S01
R90．	T－13R04	T－18C92	宜	ム	$\begin{gathered} \text { T-57A42 } \\ \text { T-29C27 } \end{gathered}$	T－57S01	330，331．．．．．．．．．．	T－13R06	T－13C30	म	$\stackrel{\square}{\square}$	T－671347	T－13S41
R90P．．．．．．．．．．	T－13R06	T－13C27	\％	T－29C27	T－33A91	T－57S01	332E DUO.	T－13R12	$\frac{\text { 品 }}{\mathrm{T}-13 \mathrm{C} 30}$	\＆	\％	म	T-57S01
94BT6．．．．．．．．．．	T－14R39	T－14C63	म	\＆	म	T－57S01	$\begin{aligned} & 340 \text { DUO, 340E } \ldots \\ & \hline 341 \ldots \ldots \end{aligned}$	T-13R06		\＆	＊	T．67D47	T．13541
95T．．．．．．．．．．．．．．	T－13R11	T－13C30	म	म	T－81D52	T－13S41	341   381 DUO	T－13R15	म	ค	4	T-33A91	T－57S01
95T5．．．．．．．．．．．．	T．13R19	㞱	＊	＊	\＆	T－57S01	$381 \text { DUO........... . }$	T－13R15	\＆	ヶ	T－57A41	T－741）32	T－13S41
$95 T 5 L W . . . . . . . . . . ~$	T－13R19	4	＊	\＆	品	T－57S01	$\text { 810K, } 810 \text { K1...... }$   $810 \mathrm{~T}, 810 \mathrm{~T} 4$	T－13R14	4	4	＋	\％	T．57S01
$96 \mathrm{E}, 96 \mathrm{~K} . . . . . . . .$.	T－13R12	म	号	म	H	T－57S01	$\begin{array}{ll} \hline 810 \mathrm{~T}, 810 \mathrm{~T} 4 \ldots \ldots & \text { T-13R14 } \\ \hline 813 \mathrm{~K} & \text { SCociel } \end{array}$		\％	म	安	4	T－57501
96K2，R96．．．．．．．．	T－13R12	品	म	म	म	T．57S01	813K．．．．．．．．．．．．§Special T－13C30			H	号	T－17D01	T－57S01
96T，96T1．．．．．．．．．	T－13R12	\＆	＊	H	\＆	T－57S01	SEARS ROEBUCK \＆CO．						
96T2，96T3．．．．．．．．	T－13R12	4	～	H	म	T－57S01	FF，J．．．．．．．．．．．．	T－56R01	T－13C28	＋	T－29A99	T－29A99	\％
97E，97EG．．．．．．．	T．13R12	\＆	म	म	\＆	T－57S01	$49-50 \ldots \ldots \ldots \ldots$	T－56R01	T-13C28	4	T-29A99	T-29A99	－
R97，97T．．．．．．．．．	T－13R12	＊	\＆	直	品	T－57S01	$52,53,54 \ldots \ldots \ldots \ldots$	T-13R06	T-13C30	म	T-29A99	'Г-33A91	8Special
R99．	T．13R09	T－13C30	$\dot{4}$	म	T－81D52	T．13S41		T－13R06	T．13C30	4	T-29A99	T－33A91	T－57S01
U101，U102E．．．	T－13R12	म	＊	\＆	म	T－57S01	$\frac{92,93 \ldots \ldots \ldots \ldots}{94,95,99,100 \ldots \ldots}$	T－56R01	T-13C28	H	T-29A99	T－29A99	$\dot{\text { म }}$
U103．	T．13R12	H	\＆	妆	म	T－57S01	$94,95,99,100 \ldots \ldots$	T－13R04	T-13C30	$\dot{\text { r }}$	T-29A99	T－33A91	8Special
K105．．．．．．．．．．．．	T－13R15	म	号	品	葠	T－57S01	108．．．．．．．．．．．．．．．	T－56R01	T－47C07	＋	T-29A99	T－33A91	8Special
U105，U106．．．．．．	T－13R14	＋	号	म	म	T－57S01		T－13R04	T－13C29	＊	4	T-33A91	T－57S01
U107．．．．．．．．．．	T．13R14	मे	म	म	安	T－57S01	$\begin{aligned} & 110,111,112,114, \\ & 116, \ldots . . . . . . . \end{aligned}$	T．13R06	T－13C30	म	H	T－33A91	T－57S01
U109．．．．．．．．．．．．	T－13R16	T－67C49	म	＋	T－81D52	T－13S41	388，388X．．．．．．．．．T－13R14 T－13C30			H	㚗	§Special	T－57S01
RCA 110，111．．．．．	T－13R03	T．13C28	ヶ	尔	म	T－57501				म	म	§Special	T－57S01
ACR111．	T．13R12	\＆	号	\＆	म	T－57S01	$\begin{aligned} & \text { 709, } 719 \\ & \text { (International). } \\ & \hline \end{aligned}$	T－13R14	4				
U111．	T－13R11	म	म	号	号	T－57S01	$802,812 .$	T－13R15	H	＊	म	T－171001	T－13S41
115．．．．．．．．．．．．．	T－13R03	T．13C28	म	म	म	T．57S01	1130，1132．．．．．．．．．	T－13R04 T．13C29		म	म	T－33A91	T－57S01
117．118．．	T－13R12	号	品	$\dot{\square}$	号	T－57S01		T－13R06	沜	4	म	§Special	T－57S01
U119．	T－13R12	म	呙	म	म	T－57S01	$1152 .$	T－13R04	\％	$\stackrel{\text { a }}{ }$	$\dot{H}$	\＆	8Special
120.	T．13R04	T－13C28	म	\％	म	T－57501	$\frac{1170 \ldots \ldots \ldots}{1174 \ldots \ldots \ldots}$	T－13R06	号	\＆	$\dot{\text { म }}$	§Sperial	T－57S01
121．．．．．．．．．．．．．．	T．13R05	直	宜	安	4	T－57S01	$\frac{1174 . \ldots . .}{1250,1252 .}$	T．13R04	H	H	म	\％	8Special
122．．．．．．．．．．．．．．．	T－13R03	T－13C28	㽞	$\dot{\square}$	$\dot{4}$	T－57S01	1250，1252．．．．．．．	T－13R01	H	号	垵	म	T－57S01
U122E．．．．．．．．．．．	T－13R12	\＆	म	$\dot{4}$	$\dot{\square}$	T－57501	$\frac{1260 \text { early ．．．．．．．}}{1260 \text { late．}}$	T． $13 \mathrm{R06}$	H	号	$\dot{4}$	8 Special	T－57S01
124．．．．．．．．．．．．．	T．13R04	म	म	ค	\＆	T－57501		T－13R04	म	म	$\dot{\text { म }}$	安	8Special
U124，128E．．．．．．．	T－13R12	$\dot{\square}$	$\dot{4}$	直	4	T－57S01	1280，1282，．．．．．．．	T．13R03	T－13C29	T．13C29	म	\＆	T．57S01
ARC 136．．．．．．．．．．	T－13R12	म	म	म	म	T－57501	1310，1311，1312．．．．	T－13R03	T－13C29	4	安	安	T－5：S01
140，141．．．．．．．．．．	T－13R06	T－13C30	号	㞱	T．67D47	T－13S41	$\begin{aligned} & 1320,1322,1324 \\ & 1326 \ldots \ldots \ldots \end{aligned}$	T－13R04	T．13C29	म	宜	น	T－57501
141E．．．．．．．．．．．．．	T－13R06	T－13C30	$\stackrel{\square}{4}$	$\stackrel{4}{4}$	T－67D47	T－13S41	1370．．．．．．．．．．．．	T－13R01	H	号	古	$\dot{4}$	T－57S01
143．．．．．．．．．．．．．．	T．13R15	$\stackrel{ }{\wedge}$	म	म	T－33A91	T． 57501	1390，1400，1402．．．	T－13R05	म	म	4	$\dot{\square}$	T．57S01
ACR 175．．．．．．．．．．	T－13R14	i	品	$\pm$	\＆	T．57S01	1404，1406．．．．．．．	T－13R05	म	म	म	\＆	T．57S01
210．．．．．．．．．．．．．．．	T－13R03	T－13C28	安	号	号	T－75S01	1420．．．．．．．．．．．．	T－13R04	号	म	मे	म	T－57S01
211．．．．．．．．．．．．．．	T－13R12	म	＊	म	น	T．57S01	1430．．．．．．．．．．．．．．	T－13R05	म	म	म	म	T－57501
214．．．．．．．．．．．．．．	T－13R12	$\stackrel{8}{4}$	म	\＆	4	T－57S01	1506．．．．．．．．．．．．．	T．13R03	T－13C28	T－13C28	＊	\＆	T．57S01
221．．．．．．．．．．．．．．．	T－13R04	4	号	品	T－33A91	T－57S01	1580，1582．1584．．．．	T－13R05	＊	म	＋	4	T－57S01
220，222．．．．．．．．．．	T．13R12	म	号	म	号	T． 57501	1590，1592．．．．．．．．	T－13R02	4	＋	H	4	T－57501
224，224E．．．．．．	T－13R12	$\dot{\square}$	म	म	म	T．57S01	1597，1598．．．．．．．	T－13R11	น	น	म	म	T．57501

[^11]| MODLL | $\begin{aligned} & \text { Power } \\ & \text { Practur } \end{aligned}$ | First Filter Choke | Sccond Mitar Choke | $\begin{gathered} \text { First } \\ \text { Audi, } \\ \text { Arans. } \end{gathered}$ | Second Audio Trang． | Output Trans． | MODEI， | Power Trans． | $\begin{aligned} & \text { Firat } \\ & \text { Filter } \\ & \text { Cho } \end{aligned}$ Choke | Second Filier Choke | First Audio ＇Trans． | Second Audio Trana． | Ourput Trane． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SEARS ROEBUCK \＆CO．（Contd） |  |  |  |  |  |  | SEARS ROEBUCK \＆CO．（Contd） |  |  |  |  |  |  |
| 1600 Converter．．． | T－131101 | 1 T－74C30 | 0 ） |  | \＆ | $\stackrel{\square}{\square}$ | 1956 | T－13R12 | 品 | म | H | \＆ | T－57S01 |
| 1660．．．．．．．．．．．．． | T．13111 | 1 安 | \＆ | म | 8 | T．57S01 | 1962．．．．．．．．．．． | T－13R14 | 亩 | $\dot{4}$ | \＆ | म | T－57501 |
| 1708．．．．．．．．．．．． | T－131108 | \％ | 安 | \％ | म | T－57S01 | 1964，1964 A ．．．． | T－13R12 | 凮 | \＆ | ＋ | 貯 | T．57S01 |
| 17084．．．．．．．．．．． | T－13142 | 2 ～ | \％ | 古 | H | T－57S01 | 1965 | T．13R14 | 刿 | ＊ | 哯 | 敢 | T－57801 |
| 1709. | T－131108 | 風 | \＆ | म | मे | T－57S01 | 1967，1967A．．．． | T－13R14 | \％ | H | ～ | ～ | T－57501 |
| 1720．．．．．．．．．．．． | T．13R09 | ＊ | 宜 | H | 古 | T－13S41 | 1968，1968A．．．． | T－13R09 | म | T．47C07 | 安 | H | T－57501 |
| 1721，1722，1722X． | T．131009 | $\stackrel{\sim}{*}$ | 永 | 号 | 沜 | T－13S41 | 1970A | T．13R12 | 号 | म | 永 | म | T－57S01 |
| 1725．．．．．．．．．．．．． | T－131109 | म | 号 | 内 | 内 | T－13S41 | 1972．．．．．．．．．．．．．． | T．13R14 | น | 永 | か | \＆ | T－57S01 |
| 1726. | T－13R09 | 安 | म | म | T．67A91 | $\begin{gathered} \mathrm{T}-67 \mathrm{~S} 54 \\ \mathrm{~T}-57 \mathrm{~S} 01 \\ \hline \end{gathered}$ | $\begin{aligned} & 1981,1981 \mathrm{C} \\ & 1986,1987 . \end{aligned}$ | T．13114 | T．13C30 | ＊ | $\stackrel{H}{4}$ | \＄Special | $\frac{T-57 S 01}{T .57 S 01}$ |
|  |  |  |  |  |  |  |  | T．13R12 | म | 缶 | น |  |  |
| 1729．．．．．．．．．．．．．． | T－13R12 | मे | ～ | 晏 | म | T－57501 | $\frac{1988 \ldots \ldots \ldots \ldots}{1994,1998 \ldots \ldots}$ | T－13R11 | \＆ | ค | 字 | \& | T－57S01 |
| 1731．．．．．．．．．．．．． | T－13R02 | म | H | म | 囚 | T－57S01 |  | T．13H14 | 缶 | 安 | 县 | 曻 | T－57501 |
| 1732X ．．．．．．．． | T－13R09 | H | か | 古 | T－67A91 | $\begin{aligned} & \text { T. } 67554 \\ & \text { T. } 57501 \end{aligned}$ | $3972 .$ | T－131420 | \％ | \％ | म | 内 | T－57S01 |
| 1743，1743A．．．．． | T－13R02 | $\dot{4}$ | $\dot{4}$ | म | म | T－57501 | $\frac{4401.4402 .}{4403 \ldots \ldots}$ | T－131111 | म | म | 号 | \＆ | T－57S01 |
| 1760. | T． 13112 | น | म | $\dot{\sim}$ | म | T－57S01 |  | T－13R12 | म | $\dot{H}$ | $\stackrel{\sim}{8}$ | म | T＇57S01 |
| 1800．．．．．．．．．．．．． | T－13 HOL | म | H | 颪 | मे | T．57501 | $4405 \mathrm{~A} .$ | T．14K39 | か | म | ～ | \＆ | T－57501 |
| 1802，1803，1803A． | T－13R02 | H | म | 旌 | 古 | T－57S01 | $4428 \mathrm{~A} \ldots \ldots$ | T－14K39 | म |  | \＆ | $\dot{\square}$ | T－57S01 |
| 1804，1805．．．．．．．． | T－13स08 | म | म | 古 | मे | T－57501 |  | T－14R39 T－14C62 |  | H | ～ | म | T．13S43 |
| 1805 A ． | T．13 03 | म | 永 | \＆ | 沜 | T－57S01 | $4433$ | T－14R39 | ＊ | म | म | 缶 | T－57S01 |
| 1806．．．．．．．．．．．． | T．13H08 | 古 | $\dot{4}$ | म | \＆ | T－57S01 | $\begin{aligned} & {[14433 \ldots} \\ & 4435,4436 . \end{aligned}$ | T－56R01 | T－47C07 | \％ | T－29A99 | T－33A91 | §Special |
| 1807．．．．．．．．．．．．． | T－13R02 | น | 令 | म | H | T－57501 |  | $\begin{gathered} \text { T-14R39 } \\ \hline \text { T.14R39 } \end{gathered}$ | T．14C62 | $\stackrel{8}{3}$ | － | ヶ | T．13543 |
| 1808 A | T－13R03 | म | 貯 | म | 内 | T．57501 | $4148 \mathrm{~A}$ |  | ～ | म | म | 古 | T－57S01 |
| 1809．．．．．．．．．．．．． | T－13R03 | म | $\dot{\text { H }}$ | น | 出 | T－57S01 | 4453．．．．．．．．． | T．141139 |  | 4 | ） | $\dot{\sim}$ | T-57S01 |
| 1811．．．．．．．．．．．．．． | T－13R03 | 品 | म | म | 安 | T－57S01 | 4461， $4462 \ldots \ldots \ldots$ | T－13H11 | \％ | H | म | 字 | T．57501 |
| 1820．．．．．．．．．．．．．． | T－13R08 | 尔 | 家 | \＆ | ค | T－57S01 | $4463,4464$ | T－13H12 |  | म |  | 4 | T－57S01 |
| 1821．．．．．．．．．．．． | T．13R09 | \＆ | 曻 | \％ | \％ | T．13S41 | $4465$ | T－13113 | 古 | म | 曻 | $\dot{8}$ | T－57S01 |
| 1823．．．．．．．．．．．． | T－13108 | 亩 | म | น | $\stackrel{\text { H }}{ }$ | T－57501 | 4466，4467．．．．．．．． | T．13R11 | म | 号 | H | 4 | T－57S01 |
| 1826．．．．．．．．．．．．． | T－131408 | H | 冎 | म | $\dot{\sim}$ | T－57501 | $4469 \text {. }$ | T． $13 \mathrm{H11}$ | 字 | $\dot{H}$ |  | ～ | T－57501 |
| 1826A．．．．．．．．．．．． | T－13403 | म | 垵 | \％ | म | T－57S01 | $4472,4473 .$ | T－141439 T－14C62 |  | ＊ | \＆ | \＆ | T-13S43 |
| 1827．．．．．．．．．．．．．． | T． $13 \mathrm{R04}$ | म | $\dot{4}$ | \％ | 颪 | T－13S41 | 4484． $4485 \ldots \ldots .$. | T－13R20 | ～ | H | H | \％ | T-57S01 |
| 1829．．．．．．．．．．．．．． | T－131608 | म | － | ¢ | 品 | T－57S01 | $4486,4488 \ldots \ldots \ldots$ | T－13114 | 4 | H | น | H | $\text { T. } 57501$ |
| 1832，1832A．．．．．． | T－131109 | म |  | \％ | T－67A91 | T－67S54 | $\begin{aligned} & 4488 \mathrm{~A} \ldots \ldots \ldots \ldots \\ & 4488 \mathrm{C} \ldots \ldots \ldots \ldots \end{aligned}$ | T－13R14 | 4 | 字 | 4 | － | $\frac{\mathrm{T}-57 \mathrm{~S} 01}{\mathrm{~T}-57 \mathrm{~S} 01}$ |
|  |  |  |  |  |  | T． 57501 |  | T．13R15 | ＊ | 古 | 号 |  |  |
| 1833，1835．．．．．．．．． | T．13K03 | 名 | \％ | \％ | $\pm$ | T－57S01 | $\frac{4488 \mathrm{~B} \ldots \ldots \ldots \ldots}{4528 \mathrm{~A} \ldots \ldots \ldots \ldots}$ | T－14R39 | H | \％ | 遌 | म | T．57501 |
| 1840．．．．．．．．．．．．．． | T－13100 | \＆ | 字 | \＆ | ＋ | §Special | $4531,4533 .$ | T－14R39 | T－14C62 | \％ | म | म | T－13S43 |
| 1841，1845．．．．．．．． | T．13R03 | 令 | म | 号 | 宜 | T－57S01 | 4548A．．．．．．．．．．．． | T－14R39 | म | म | 亩 | $\dot{4}$ | T－57S01 |
| 1900．．．．．．．．．．．．． | T．13R13 | 尔 | 品 | \＆ | น | T－57S01 | 4563．．．．．．．．．．．．． | T．13R12 | \＆ | म | \％ | म | T－57501 |
| 1904，1904A．．．．．． | T－13112 | \％ | म | น |  | T－57S01 | 4564． 4565 （D．1．p．）． | T．13R20 | ＋ | म | 山 | 岸 | T－57501 |
| 1905．．．．．．．．．．．．．． | T－13R14 | 品 | 宜 | 4 | म | T－57501 | 4566，4567．．．．．．．． | T－13H11 | म | 字 | 颪 | 古 | T－57S01 |
| 1906．．．．．．．．．．．．． | T－13112 | 缶 | 安 | น | น | T．57S01 | 4569．．．．．．．．．．． | T－13R13 |  | 完 | $\dot{\square}$ | ～ | T－13542 |
| 1909．．．．．．．．．．．．．． | T－13114 | म | ～ | म | 㘧 | T－57S01 | 4586，4586A．．．．．． | T－13R14 | 宜 | H | H | म | T－57501 |
| 1912．．．．．．．．．．．．．． | T－13H14 | น | म | म | $\dot{H}$ | T－57501 | 4587，4588．．．．．．．． | T－13R14 | 安 | 号 |  | \＆ | T－57S01 |
| 1914．．．．．．．．．．．．． | T．13R12 | 亩 | 宜 | \＆ | म | T．57S01 | 4588A．．．．．．．．．． | T－13R14 | 号 | 字 | $\dot{\sim}$ | \＆ | T－57501 |
| 1915，1917．．．．．．．．． | T－13H14 | म | 品 | H | 号 | T－57501 | $4589 \ldots \ldots \ldots \ldots$ | T－13R13 | 今 | 曻 |  | म | T．57S01 |
| 1918．1918A ．．．．．． | T－131409 | $\dot{\text { r }}$ | T．47C07 | \＆ | ＊ | T－57501 | 4610．．．．．．．．．．．． | T－13R13 | म | म | 4 | \＆ | T－13S42 |
| 1930，1940．．．．．．．． | T－13R12 | 宜 | म | म | म | T－57S01 | 4613．．．．．．．．．．．． | T－14R39 | T－14C62 | $\dot{\text { r }}$ | น | 偁 | T－13543 |
| 1941．．．．．．．．．．．．．． | T－13R14 | T－13C30 | H | H | §Special | T－57S01 | 4622，4623 $\ldots \ldots .$. | T－14R39 | T－14C62 | 合 | 貯 | म | T－13S43 |
| 1942，1944，1945．．．． | T－13R14 | म | 园 | \％ | 4 | T－57S01 | 4640．．．．．．．．．．． | T－14R39 | 風 | H | \＆ | T－78D46 | T－81501 |
| 1946．．．．．．．．．．．．．． | T－13R14 | T－13C30 | み | \％ | §Special | T－57S01 | $4643 \ldots \ldots \ldots$. | T．14R39 | T－14C62 |  | म | म | T－13S43 |
| 1954，1954X．．．．．． | T－13R12 | म | 品 | \％ | \％ | T－57S01 | $4650 \ldots \ldots \ldots$. | T．14R39 | H | 内 | 内 | T－78D46 | T－81S01 |
| 1955 ．．．．．．．．．．．．． | T－13R14 | म | म | 号 | म | T－57501 | 4664．．．．．．．．．．．． | T－13R11 | 直 | 凩 |  | ＋ | T－13S42 |

Prices and dimensions for all transformers and chokes shown herein listed on page 3.

MODEL	Power Trans．	$\begin{aligned} & \text { First } \\ & \text { Filter } \\ & \text { Choke } \end{aligned}$	Second Filter Choke	First Audio Trans．	Second   Audio   ＇lrans	Output   Trans．
SEARS ROEBUCK	\＆CO．（C）	Contd）				
4667．．．．．．．．．．．．．．	T－13H14	4	म	म	4	T－13S42
4668．．．．．．．．．．．．	T．13812	号	4	故	म	T．57S01
4469．．．．．．．．．．．．．	1－13613	\％	$\stackrel{1}{4}$	\＆	4	T． 13543
4677．．．．．．．．．．．．．	T－13114	免	曻	4	4	T．13S42
4684．．．．．．．．．．．．．	T－13111	4	\％	4	म	T－13542
4688．．．．．．．．．．．	T．13R15	岸	\＆	㐫	T－171001	T．13541
4722，4723．．．．．．．	T－141839	T－14C62	4	4	的	T．13S43
$4740 \ldots \ldots \ldots \ldots$	T．14139	म	曻	4	T－78046	T．81501
$4743 \ldots \ldots \ldots \ldots$	T．14139	T－14C02	$\pm$	\＆	4	T．13S43
4750．．．．．．．．．．．．	T．14839	\％	4	4	T－78D46	T－81501
$4764 \ldots \ldots \ldots \ldots$	T－13811	号	品	म	म	T．13542
$4769 \ldots \ldots \ldots .$.	T－13113	4	4	4	4	T．13542
$4776 \ldots \ldots \ldots \ldots$	T－13R12	品	古	\＃	4	T－57S01
$4784 . \ldots \ldots \ldots \ldots$	T－13R11	曻	4	4	4	T－13542
4788.	T．13R15	$\dot{4}$	品	4	T．17001	T．13541
$4789 \ldots \ldots \ldots \ldots$	T．13R13	4	$\dot{\square}$	म	\＆	T－13843
$4796 \ldots \ldots \ldots \ldots$	T－13R12	$\dot{4}$	\＆	\＆	4	T．57s01
4799．．．．．．．．．．．．	T．131115	4	4	4	4	T－13S41
5710，5711．．．．．．．．	T． 131820	号	A	म	म	T．57501
$6002 \ldots \ldots \ldots \ldots$	T－13119	4	4	4	4	T．57S01
$6003,6004 \ldots \ldots$.	T．13R13	म	4	म	－ 4	T．13541
$6021 \ldots \ldots \ldots \ldots$	T．1311919	$\dot{4}$	$\stackrel{\square}{4}$	म	म	T－57501
$6024 \ldots \ldots \ldots .$.	T－13R13	4	4	4	4	T－13541
6028	T－131122	4	曻	म	\％	T． 57501
$6031 \ldots \ldots \ldots \ldots$	T－13R19	4	4	4	4	T－57S01
$6034 \ldots \ldots \ldots \ldots$	T－131113	4	4	4	4	T－13S12
6036．．．．．．．．．．．	T．13R14	曻	崩	令	古	T．13541
$6038 \ldots \ldots \ldots \ldots$	T－13R16	＋	$\pm$	$\pm$	4	T－13541
$6121 . \ldots \ldots \ldots \ldots$	T－13119	$\dot{4}$	品	$\dot{4}$	曻	T－57S01
6124．．．．．．．．．．．．．	T．13113	品	म	\％	$\dot{4}$	T．13542
$6131 \ldots \ldots \ldots \ldots$	T．131119	म	म	4	4	T．57501
$6136 \ldots \ldots \ldots$	T－13R14	号	4	4	免	T－13S41
$6138 . . . \ldots \ldots \ldots$	T．13R16	4	4	＋	＋	T．13S 11
$6140 \ldots \ldots \ldots \ldots$	T－13R14	H	म	म	\％	T．13S41
6155．6156．6254．．．	T－13R14	4	4	4	4	T－13S41
6157．．．．．．．．．．．．	T．13R15	宜	म	म	$\dot{4}$	T．13541
6337，6437．．．．．．．．	T．13R14	4	4	$\stackrel{\square}{\square}$	4	T－13S．41
7043．7044．．．．．．．	T．13R06	T．13C30	4	म	曻	T．57S01
$7049 \ldots \ldots \ldots \ldots$	T．13R03	म	$\stackrel{4}{4}$	म	号	T－57501
$7050 \ldots \ldots \ldots .$.	T．13111	4	म	is	＋	T－57S01
7065．．．．．．．．．．．．．	T．13R09	म	म	方	T－67A91	T－13541
$7121 \ldots \ldots \ldots$.	T．13R01	品	4	号	品	T．57501
7124．．．．．．．．．．．．	T－13R03	品	4	号	4	T－57S01
7136．7137．．．．．．．．	T－13 1202	4	म	$\dot{\sim}$	4	T－57S01
$7140 \ldots \ldots \ldots \ldots$	T．13R02	4	म	म	㟧	T－57501
7143．．．．．．．．．．．．	T．13R04	4	4	$\dot{4}$	$\dot{\mu}$	T．57S01
7144．7150．．．．．．．．	T－13112	4	＋	的	4	T－57S01
$7153 \ldots \ldots \ldots \ldots$	T－131101	म	号	म	品	$\$_{\text {Special }}$
7154．7155．．．．．．．．	T．1311！2	4	4	4	4	T－57S01
$7158 \ldots \ldots \ldots \ldots$	T－131312	म	म	म	放	T－57501
7170，7170A．．．．．．	T．131113	4	is	4	म	T－57501


MODEL	Power Trans．	$\begin{aligned} & \text { First } \\ & \text { Filter } \\ & \text { Choke } \end{aligned}$	Second Filter Choke	$\begin{gathered} \text { First } \\ \text { Audio } \\ \text { Trans. } \end{gathered}$	$\begin{aligned} & \text { Second } \\ & \text { Audio } \\ & \text { Trung. } \end{aligned}$	Ontput Trana．
SEARS ROEBUCK \＆CO．（Contd）						
7171．．．．．．．．．．．．．．	T－13R20	㐫	岇	$\dot{4}$	品	T－57S01
7172.	T－13112	म	म	曻	म	T．57s01
7181，7182．．．．．．．．．	T．13 12	的	曻	岀	号	T－57S01
7221.	T－13R15	म	म	号	H	T－57S01
7230．．．．．．．．．．．．．	T－13112	号	永	㐫	\＆	T－57S01
7234.	T．13112	म	म	亩	古	T－57501
7807．．．．．．．．．．．．．	T．13R11	4	宜	4	号	T－57S01
SENTINEL RADIO CORIP．（See also Erla）						
6A．．．．．．．．．．．．．．．．	T．13R13	म	－	म	＋	T．57S01
8．9，11，12，．．．．．．	T．13R06	T－13C30	的	T－29199	T－33A91	T－57s01
14．14A．	T－13R14	的	4	म	4	T－57501
15， 16.	T－13H06	T－13C30	म	T－29A99	T－33A91	T．57S01
19A．．．．．．．．．．．．．．	T－13R13	म	म	站	4	T－57S01
20A．．．．．．．．．．．．．	T－13世12	4	4	4	4	T－57S01
30A．．．．．．．．．．．．．．	T－13R11	4	4	$\stackrel{4}{4}$	直	T－57501
40B，44A．．．．．．．．．	T－13H12	边	म	म	出	T．57S01
46 A ．	T．131113	品	म	4	ir	T．57S01
47 A ．	T－13R15	म	4	4	T－17D01	T－13S41
48A．．．．．．．．．．．．．	T－131411	4	н	＋	出	＇r．57801
52A．．．．．．．．．．．．．．．	T－13R11	H	4	立	4	T－57S01
53A．．．．．．．．．．．．．．	T－13R14	4	H	4	出	T－57S01
54A．．．．．．．．．．．．．．	T－13R11	～	मे	म	号	T．57s01
70A．．．．．．．．．．．．．．．	T．13H11	म	4	悬	边	T－57S01
72A，72AE．．．．．．．	T－13R12	4	4	म	4	T－57S01
74A，74AE．．．．．．．．	T－13R12	号	म	4	$\dot{4}$	T．57S01
76A．．．．．．．．．．．．．	T－13R14	4	\＆	4	म	T－57S01
82A，82AE．	T－13R12	号	म	म	号	T．57S01
92AE，98AE．．．．．．．	T－13R11	＋	＋	4	4	T－57S01
99AE．．．．．．．．．．．．	T－13R14	म	4	म	4	T－13S41
103A．	T－13R05	T－13C30	4	4	T－33A91	T．57S01
104．．．．．．．．．．．．	T．13R06	T－13C3n	म	T－29A99	T．33A91	T．57S01
106A．．．．．．．．．．．．．	T－13R19	－	4	4	म	T－57S01
106B．	T－13806	T－13C30	4	T－29A99	T－33A91	T－57S01
108，108A．．．．．．．．	T．13180	T－13C29	T－13C29	म	$\stackrel{\text { a }}{ }$	T．57501
109．110．．．．．．．．．．．	T－13R04	T－13C29	T－13C29	4	H	T－57S01
110 A	T－131144	4	म	\＆	म	T－57501
111.	T－13R01	山	4	a	4	T．57S01
114．115．．．．．．．．．	T－13R04	T－13C30	\％	4	\％	T－57S01
116．．．．．．．．．．．．．	T－131206	T－13C30	品	品	号	T－57501
118．．．．．．．．．．．．．	T－13R06	T－13C30	4	4	4	T－57501
125.	T－13R04	T－13C29	4	站	4	T－57801
125AE	T－13R20	म	H	म	म	T－57S01
138AE．．．．．．．．．．	T－13R20	品	4	4	\＆	T－57S01
141AE．．．．．．．．．．	T－13R20	H	\％	\％	尔	T－57501
142A．	T．13R20	曻	म	4	站	T－57S01
142AE．．．．．．．．．．．	T－13R20	4	\％	is	4	T－57501
145AE．．．．．．．．．．．	T－13R15	म	4	4	H	T－57S01
148A	T．13119	品	曻	古	म	T－57501
149A． 149 AE ．159AE	T－13819	is	4	品	4	T－57501
158.1 E	T－131120	品	4	4	is	T－57801
185．1．．．．．．．．．．．．	T－13R11	H	मे	म	म	T－57s01

 preferences in mountings and sizes：T－57S02，T－13S38，T－14S85 in place of T－57S01；T－57A41，T－13A35 in place of T－33A91；T－57A38，T－13A34 in place of T－29A99

MODEL	Power Trans．	First Filter Choke	Second   Filter   Choke	Firat   Audio   Trans．	Second Audio Trans．	Output Trans．	MODEL	Power Trana．	First Filter Choke	Second Filter Choke	$\begin{aligned} & \text { First } \\ & \text { Audio } \\ & \text { Trana. } \end{aligned}$	Second Audio Trans．	Output Trana．
SENTINEL RADIO CORP．（Contd）							SPARKS－WITHINGTON CO．（SPARTON）						
198A，198AE．．．．	T－13R14	4 亩	岂	\＆	4	T－57S01							
199A，199AE．．．．．	T－13R14	4 永	म	4	H	T．57S01	10，12．．．．．．．．	T－13R03	$\dot{4}$	$\dot{\square}$	म	4	T－57S01
206A．．．．．．．．．．．．	T．13R20	0 号	4	～	น	T－57S01	14.	T－13R04	\％	is	म	4	T－57S0
440，444．．．．．．．．	T－13R06	T． 13 C 30	\％	\％	T－33A91	T－57S01	15．．．．．．．．．．．．．．	T－13R05	H	H	4	站	T．57S0
513．．．．．．．．．．．．．．．	T－13R02	2 \％	号	H	$\dot{\square}$	T－57S01	16，16AW．．．．．．．．	T－13R07	T－13C30	H	$\dot{4}$	T－33A91	T－57S0
622，623，．．．．．．．．．	T．13R03	3 \％	म	म	म	T－57S01	17， 18.	T－13R07	T－13C30	म	$\dot{4}$	T－33A91	T．57S0
634，635．．．．．．．．．．	T－13R03	＊	म	㟧	\％	T．57501	25，26，26A	T． 131107	T－13C30	H	4	T－33A91	T．57S0
660AC．666，666C．．	T－13R06	T．13C30	4	म	T－33A91	T．57S01	27，27A，27X．．．．	T－13R07	T－13C．30	＊	$\dot{4}$	T－33A91	T－57S01
4500．．．．．．．．．．．．．．	T．13R11	－	म	4	\％	T－57S01	28，28X．．．．．．．．	T．13R07	T－67C49	H	\＆	T－17D01	T．13S4
5700，5700B．．．．．．．	T－13R03	号	4	\％	म	T．57501	30，45．．．．	T－13R07	T－67C49	号	安	T－17D01	T－13S4
5721．．．．．．．．．．．．．．．	T．13R03	4	\％	H	म	T－57S01	46P．．．．．．．．．．．．．	T－14R39	\％	宜	म	4	T－57S01
5800．．．．．．．．．．．．．．	T－13R02	\％	\％	直	H	T－57S01	60 Super Converter．	T－13R01	T－13C26	म	H	\％	म
6315，6317．．．．．．．．	T－13R03	－	4	＊	ム	T－57S01	67．68，68XS．．．．．．	T．13R12	$\dot{H}$	安	$\dot{\square}$	\％	T－57S01
6321．．．．．．．．．．．	T．13R03	\％	＊	น	म	T－57S01	？1，71B， 72.	T．13R12	品	$\dot{\text { r }}$	\％	$\dot{4}$	T－57S01
7100，7100B．．．．．．．	T－13R13	म	म	安	$\dot{\square}$	T．57S01	73，73AX， 73 BX ．	T．13R12	is	म	品	$\dot{4}$	T－57S01
7200．．．．．．．．．．．．．．．	T－13R12	\＆	号	$\dot{4}$	म	T－57S01	74．．．．．．．．．．．．．．．	T－13R04	T－13C30	म	$\dot{\text { r }}$	T－33A91．	T－57S01
7200B．．．．．．．．．．．．．	T．13R13	古	$\dot{\text { H }}$	垵	\％	T－57S01	75A，75AX．．．．．．	T－13R03	म	H	\％	\％	T－57S01
8100B．．．．．．．．．．．．．	T－13113	म	น	曻	H	T－57501	78．．．．．．．．．．．．．．	T．13R12	\％	H	$\dot{4}$	\％	T－57S01
8200B．．．．．．．．．．．．．．	T－131114	T－13C30	动	堊	\＆	T－57S01	80，83，84．．．．．．	T－13R13	H	\％	4	H	T－57S01
SILVER－MARSHALL，INC．							85－X，86－X．．．．．	T－13R13	म	\％	\％	H	T－57S01
A．．．．．．．．．．．．．．．．	T－13R04	$\dot{4}$	म	4	号	T．57S01	104，105，105XS．．	T－13R14	4	\％	$\dot{4}$	§Special	T－57S01
A31．．．．．．．．．．．．．．．	T－13R12	字	\＆	\％	म	T－57S01	111X．．．．．．．．．．．．	T．13R07	T－13C30	म	宜	T－33A91	T．57S01
B．．．．．．．．．．．．．．．．	T．13R03	\＆	\＆	$\dot{4}$	T－33A91	T－57S01	135．．．．．．．．．．．．．．．	T－13R15	म	H	म	T－33A91	T－57S01
C，CW（AVC）．．．．	T－13R06	T－13C30	H	4	T－33A91	T－57S01	$235 \ldots \ldots . . . . . .$. T－37R70C T－13C29			H	\％	T－33A91	T－57S01
D，E．F．．．．．．．．．．	T－13R06	T－13C30	4	म	T－33A91	T－57S01	417X．．．．．．．．．．．．	T－13R11	H	म	宜	\％	T－57S01
G．．．．．．．．．．．．．．．．	T．13R06	T．13C29	T－74C30	T－29A99	T－33A91	T－57S01			T．18C92	品	\％	T－33A91	T－57S01
J．．．．．．．．．．．．．．．．．	T－13R06	T－13C28	म	品	T－33A91	T－57S01			\％	$\dot{\square}$	H	4	T－57S01
Q，1．．．．．．．．．．．．	T－131104	म	म	曻	H	T－57S01	457X．．．．．．．．．．．．．T．13112		म	\％	$\dot{4}$	\％	T－57S01
Z deluse，Z10．．．．．	T－13R07	T－13C30	H	म	T－81D52	T－57S01	475A，478A．．．．．．T－13R03		的	H	\％	म	T－57S01
Z13．．．．．．．．．．．．．．．	T．131R07	T．13C30	म	$\dot{\square}$	T－67D78	T－13S41	516，516X．．．．．．．．${ }^{\text {¢ }}$ T－13R12		म	4	$\underline{\square}$	म	T－57S01
30 series，30B．．．．．	T－13R06	T－13C28	$\dot{4}$	4	T－33A91	T．57S01	517．．．．．．．．．．．．．T－13R12		H	$\dot{\square}$	永	4	T－57S01
33A，34A，35A ．．．．	T－13R05	T－13C30	\＆	$\dot{\sim}$	T－33A91	T－57S01	518，518X．．．．．．．T．13R12		曻	H	म	$\dot{4}$	T－57S01
36A，37．．．．．．．．	T－13R04	T－13C29	$\dot{4}$	$\dot{4}$	T－33A91	T－57S01	530X ．．．．．．．．．．T－13R11		\％	\％	号	$\dot{4}$	T．57S01
38， 39.	T－13R04	T－13C29	$\dot{\square}$	4	T－33A91	T－57S01	536，536X．．．．．．．．T－13R12		$\dot{H}$	म	म	号	T－57S01
601， $75,75 \mathrm{~B}, 90 \mathrm{~B}$ ．	T－13R06	T－13C28	4	म	T－33A91	T－57S01	537，538，538X．．．．T．13R12		\％	म	宜	\％	T－57S01
683．．．．．．．．．．．．．．．	T．13R06	T－13C30	म	म	T－33A91	T－57S01	540LX．．．．．．．．．．．T－13R12		$\dot{H}$	\＆	H	\％	T－57S01
SM684．．．．．．．．．．．．	T－13R04	T－13C30	T．13C30	$\dot{4}$	T－33A91	T－57S01	546X，548X．．．．．．T．13R12		4	4	¢	4	T－57S01
716．．．．．．．．．．．．．．．	T－13R06	T－13C30	$\dot{4}$	म	T．33A91	T－57S01	550M ．．．．．．．．．．．T－13R20		㞱	\％	4	H	T－57S01
722AC．．．．．．．．．	T－13R05	T－13C30	ム	宜	T－33A91	T－57S01	557，558B，558C．．．．T－13R12		म	号	$\dot{\sim}$	$\dot{\sim}$	T－57S01
724．．．．．．．．．．．．．．．	T－13R06	T－13C28	म	\％	T－33A91	T－57S01	567，568．．．．．．．．．T－13R12		㒸	$\dot{\sim}$	$\dot{\square}$	4	T．57501
26．．．．．．．．．．．．．．．	T．13R04	T－13C29	号	4	T－33A91	T－57S01	577．．．．．．．．．．．．．．T－13R12		म	$\dot{\square}$	\％	น	T－57S01
27SW ．．．．．．．．．．	T．13R04	宜	म	म	\％	T－57S01	580X ．．．．．．．．．．．T－13R12		\％	4	$\dot{\square}$	म	T－57S01
29SW．．．．．．．．．．．	T－13R07	T－13C30	4	\％	T－81D52	T－57S01	589．．．．．．．．．．．．T－37R70C T－13C29			\＆	मे	T－33A91	T－57S01
737．．．．．．．．．．．．．．．	T－13 02	T－13C28	T－13C28	曻	4 8	§Special	591，593．．．．．．．．．T－37R70C T－13C29			म	4	T－33A91	T－57S01
73，782．．．．．．．．．．	T．13R04	T－13C29	$\dot{4}$	\％	T－33A91	T－57S01	616，616M．．．．．．．．．	T－13R12	\％	H	म	み	T－57S01
SONORA FLEC．PIIONOGRAPH CO．							616MX，616X．．．．．T－13R12		4	4	$\dot{4}$	品	T－57S01
431，A33，A35．．．．	T．13R04	T．13C29	$\dot{\square}$	方	T－33A91	T－57S01	617，617X．．．．．．．．．．T．13R12   $620 \ldots \ldots . .$. T－37R70C		\％	म	म	H	T－57S01
4．．．．．．．．．．．．．．．．．	T．13R04	T－13C30	म	宜	T－33A91	T－57S01			\％	म	H	म	T． 57501
0．．．．．．．．．．．．．．．．	T－13R06	T－13C29	म	垵	מ	T－57S01	$628,636 \mathrm{MX} \ldots \ldots . \mathrm{T} .13 \mathrm{R} 12$		H	永	น	4	T－57S01
4．．．．．．．．．．．．．．．	T．13103	T－13C28					$640 \mathrm{I} . \mathrm{X}, 740 \mathrm{LX} \ldots .$. T．13R12   $660 \mathrm{M} . \ldots . . . . . .$.		\％	म	4	＊	T．57S01
，	T．13 03	T．13C26	น	म	～	T－57S01			H	म	म	म	T－57S01

For complete description of these and other Thordarson transformers and chokes sec catalog No． 400.

MODEL	Power Trane．	First Filter Choke	Second Filter Choke	Eirst Audio Trane．	Second   Audio   Trans．	Output Trans．
SPARKS－WITHINGTON CO．（Contd）						
666，666M．．．．．．．．．	T－13R12	\％	\％	\％	$\square$	T－57S01
$666 \mathrm{MX}, 666 \mathrm{X}$	T－13R12	म	म	\％	み	T－57S01
667，667X．	T．13R12	मे	\％	म	म	T． 57501
668． 678.	T．13R12	＊	品	\＆	$\pm$	T．57S01
685，686，691．．．．．．	T－13R12	安	$\dot{\square}$	\％	\％	T－57501
716．．．．．．．．．．．．．．．	T．13R12	\＆	\％	4	\＆	T． 57501
727X，727XD．．．．．．	T－13R13	\％	4	4	4	T－57S01
728X．．．．．．．．．．．．．	T．13R20	\＆	H	\％	\＆	T－57S01
737．．．．．．．．．．．．．	T．37R70C	T－13C29	品	4	T．33A91	T．57S01
738．．．．．．．．．．．．．．．	T－13R14	号	品	\％	安	T． $13 \mathrm{S42}$
740．．．．．．．．．．．．．	म	T．13C30	म	म	T．33A91	T．57S01
748X．．．．．．．．．．．．．	T．13R12	H	म	4	\％	T－57S01
750 all DC．．．．．．．	4	T－13C30	4	安	T－33A91	T－57S01
750A，750X ．．．．．．	T－13R07	T－13C30	H	－	T－33A91	T－57S01
760PS．．．．．．．．．．．	T－13R11	4	安	尔	沜	T．57501
766，766X．．．．．．．	T．13R12		म	＊	沜	T．57S01
766XP，766XS．．．．．	T．13R12	4	4	म	安	T－57S01
768，768x．．．．．．．	T．13R12	4	$\dot{\sim}$	H	\％	T－57S01
770，880A．．．．．．．．	T－13R14	म	म	म	宜	T－57501
778．778X．．．．．．．．	T－13R12	4	\＆	\＆	古	T－57S01
827X， $827 \mathrm{XD} \ldots \ldots$.	T－13R16	म	\＆	म	$\dot{4}$	T．13S42
867．．．．．．．．．．．．．．．	T－13R13	म	走	म	H	T．57S01
870A，870X．．．．．．．	T．13R07	T－13C30	品	品	T－33A91	T－57S01
877X．．．．．．．．．．．．．	T－13R13	म	ค	＊	＋	T．57S01
880．．．．．．．．．．．．．．．	T－13R11	4	म	\＆	乓	T．57S01
928 X ．	T－13R14	4	4	4	4	T－13S42
930，931．．．．．．．．	T．37R70C	T．13C29	म	\＆	T－33A91	T－57501
940LX，940SX．．．．	T－13R14	\％	4	म	沜	T－57S01
966，966X．．．．．．．．	T－13R14	4	号	4	§Special	T－57S01
968，968X．．．．．．	T．13R13	म	\＆	म	मे	T．13S42
977．．．．．．．．．．．．．．	T－13R12	म	品	म	मे	T．57501
987，997X ．．．．．．．	T－13R16	4	\＆	4	4	T－13S42
1068，1068X．．．．．．	T．13R12	品	\＆	H	4	T－57S01
1078．1078X．．．．．．	T－13R12	म	\＆	H	म	T．57S01
1089．．．．．．．．．．．．．	T．13R14	4	H	4	品	T．13S42
1116X．1166．．．．．．	T－13R14	T．13C30	म	म	T－33A91	T．57S01
1160．．．．．．．．．．．．．	T－13R15	状	古	品	म	T－57S01
1166XP，1166XS．．．	T．13R14	T－13C30	号	$\dot{H}$	T．33A91	T－57S01
1167．．．．．．．．．．．．．	T－13R09	T．13C30	T．13C28	ค	T－33A91	T－57501
1176，1176×P．．．．．．	T． 13 R14	T－13C30	4	\＆	T－33A91	T－57S01
1176×5，1186．．．．．	T－13R14	T－13C30	H	H	T－33A91	T－57S01
1196．．．．．．．．．．．．．	T－13R14	T－13C30	म	～	T－33A91	T． 57501
1268，1288P．．．．．．．	T－13R09	T－13C30	T．74C30	H	T．33A91	T－57S01
1567．．．．．．．．．．．．．	T－13R04	T． 13 C 30	T．74C30	T－29A99	\＄Special	T－13S41

STEINITE RADIO CO．

8 Tube Pentode．	T．13R03	T．13C28	4	म	曻	T－57501
$40 \mathrm{C}, 45,45 \mathrm{~A}, 50 \mathrm{~A}$	T－56R05	T－13C29	4	T－29A99	T－33A91	T．57501
60 C	T－56R05	T－13C29	\％	T－29A99	T－33A91	T－57S01
30，80，95 $\ldots$	T－13R05	T．13C28	\＆	म	T－33A91	T－57S01
102 C	T－56R05	T．13C29	\＆	T－29A99	T－33A01	T－57S01
102SPU．．	T．56R05	T．13C29	\＆	T－29A99	T－33A91	T－57S01


MODEL．	Iower   Trans．	Firat   Filter   Choke	Second   Filter   Choke	Firat   Audio   Trana．	Second   Audin   Trana．	Output   Trans．

STEINITE RADIO CO．（Contd）

203.	T．13R04	T－13C2S	\＆	＋	T．57A42	T－57S01
210， 230.	T－13R0S	T－13C29	$\dot{4}$	号	T－33A91	T－57S01
$\begin{aligned} & 261,262,263, \\ & 264,265 \ldots \ldots \end{aligned}$	T－56R01	T－13C28	T－13C28	T－29A99	T．33A91	T－57S01
420 （15）	T－13R00	4	4	4	T． 29 A99	T－57S01
420 （17）．	T－13R06	T－13C30	4	家	T－57A42	н
421， 425	T．56R05	T－13C29	\＆	内	T．57A42	T． 57501
423.	T－13R03	\％	\％	4	\＄Special	T－57S01
450 （15）	T－13R00	\＆	\％	$\dot{4}$	T． 29 \99	T－57S01
450 （17）	T．13R06	T－13C30	\＆	a	T－57A42	4
642B．	T－13R04	T－13C29	4	\％	T．57A42	T－57501
700， 701.	T．13R03	म	\＆	4	\＄Special	T．57S01
705，706，725．．．．．．	T．13R04	T．13C29	\％	\％	T－33A91	T－57S01

STEWART－WARNER CORP．

$\begin{aligned} & 01-5 \mathrm{H1} \text { to } 01-5 \mathrm{H} 9 \\ & (01.5 \mathrm{H}) \ldots \ldots . . \end{aligned}$	T－13R20	$\dot{\square}$	\％	$\stackrel{\square}{\square}$	4	T．57S01
$\begin{aligned} & \text { 01-6D, 01-6DX, } \\ & 011.6 \mathrm{~A}, 01-6 \mathrm{~B}, \\ & 01.6 \mathrm{AX}, 01.6 \mathrm{BX} \end{aligned}$	T－13R20	\％	म	म	मे	T．57S01
01．6C9，010－6C9X．	T－13R20	号	क्ष	म	\％	T．57S01
$\begin{aligned} & \hline 01-6 \mathrm{E} 1 \text { to 01.6E9 } \\ & (01.6 \mathrm{E}) \ldots \ldots . . \end{aligned}$	T．13R20	म	म	मे	म	T－57501
$\begin{aligned} & 01.8 \mathrm{~A} 1 \text { to } 01.8 \mathrm{~A} 9 \\ & (01-8 \mathrm{~A}) \ldots . . . \end{aligned}$	T－13R12	4	\％	4	4	T．13S42
01－8C7（01－8C）．．．．	T－13R13	苑	\＆	म	＋	T－57501
01．9A7（01．9A）．．．．	T－13R13	H	\％	H	H	T．57S01
$\begin{aligned} & 01-8 \mathrm{BI} \text { to } 01-8 \mathrm{B9} 9 \\ & (01-8 \mathrm{~B}) \ldots . . . \end{aligned}$	T－13R12	4	A	＋	$\dot{\sim}$	T． 13542
$\begin{aligned} & 01-521 \text { to } 01-529 \\ & (01-52) \ldots . . . . . . . . . . . . . . . ~ \end{aligned}$	T．13R11	安	\％	\＆	म	T．57501
$\underset{(01-53) \ldots . . . . . . .}{01.531} \underset{(01.539}{ }$	T－13R11	म	म	$\underline{\square}$	4	T－57501
$\begin{aligned} & 01-541 \text { to } 01.549 \\ & (01-54) \ldots \ldots . . \end{aligned}$	T．13R11	4	4	म	\％	T． 57501
$\begin{aligned} & 01-611 \text { to } 01.619 \\ & (01-61) \ldots \ldots . . \end{aligned}$	T．13R11	A	H	\％	4	T－57S01
$\begin{aligned} & 01.811 \text { to } 01.819 \\ & (01-81) \ldots \ldots . \ldots \\ & \hline \end{aligned}$	T．13R20	म	म	น	4	T．57501
$\begin{aligned} & 91-510 \text { to } 91-519 \\ & (91-51) \ldots . . . \end{aligned}$	T．13R19	＋	4	$\dot{\square}$	H	T－57S01
$\begin{aligned} & 91.611 \text { to } 91.619 \\ & (91-61) \ldots . . . . \end{aligned}$	T－13R20	मे	म	भे	4	T－57501
$\begin{aligned} & 910-621 \text { to } 910.629 \\ & (91.62) \ldots . . . . . . . . . . . . ~ \end{aligned}$	T－13R19	म	＊	म	म	T－57S01
$\begin{aligned} & 91.641 \text { to } 91.649 \\ & (91-64) \ldots \ldots . . \end{aligned}$	T－13R19	古	盛	㐋	＊	T． 3 S01
91.648 （91－64）．	T－13R11	म	\＆	$\dot{\square}$	4	T－57S01
$\begin{aligned} & 91.711 \text { to } 91.719 \\ & (91-71) \ldots . . . . \\ & \hline \end{aligned}$	T．13R20	＊	म	म ${ }^{2}$	\％	T．57501
$\begin{aligned} & 91.811 \text { to } 91.819 \\ & (91.81) \ldots \ldots . . \\ & \hline \end{aligned}$	T．13R14	A	$\square$	\％	4	T－97501
$\begin{aligned} & \hline 91-821 \text { to } 91-829 \\ & (91-82) \ldots \ldots . . \\ & \hline \end{aligned}$	T．13R15	म	म	म	मे	T－13S42
R100，A，B，E．．．．	T－13R06	T．13C30	H	म	T－33A91	T．57S01
R101A，R101B．．．．．	T－13R01	म	म	म	＋	T． 57501
102A，B，E，．．．．．．．	T－13R03	T－44C02	＋	品	T－33A91	T－57501
R104A．B，E．．．．．．	T．13H04	r－13C29	म	$\dot{4}$	म	T－57S01
106．．．－．．．．．．	T．13R04	T－13C29	$\square$	L	म	1－35501
R110．．．．．．．．．．．	T． 13 R 06	T．13C30	$\square$	H	T－33A91	T－57501

[^12]| MODEL | Power Trane | First Filter Choke | Sceond Filter Choke | First Audio Trane． | Sccond <br> Audio <br> Trane． | Output Trans． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S＇IEWART－WARNER CORP．（Contd） |  |  |  |  |  |  |
| 1116．．．．．．．．．． | T－13R12 | 4 | A | म | म | T．57S01 |
| 1119．．．．．．．．．．．． | T－13R12 | म | H | H | 4 | T－57S01 |
| 11120．．．．．．．．．．．． | T－561205 | \％ | H | \％ | 内 | T．57S01 |
| 530，535．．．．．．．．． | T－561101 | T－13C29 | T－13C29 | $\stackrel{\text { r }}{ }$ | म | म |
| 715，720， 750 | T－561101 | T－13C29 | T－13C29 | $\dot{3}$ | $\dot{4}$ | म |
| 801，802， 811 | T－56R01 | T－13C29 | T－13C29 | \％ | मे | म |
| 901，902，903 $\ldots \ldots$. | T－13R06 | T－13C30 | T－13C30 | T－29A99 | T．33A91 | T－57S01 |
| 911，912，913．．．．． | T－131106 | T－13C30 | T－13C30 | T－29A99 | T－33A91 | T－57S01 |
| 951，952，953．．．．． | T－131106 | T－13C30 | T－13C30 | T－29A99 | 1．33A91 | T．57S01 |
| 1090， $1099 . . . . . .$. ． | T－131103 | म | 㒸 | ～ | $\cdots$ | T－57S01 |
| 1201－1209（R120）．．． | T－561105 | H | ム | 字 | म | T．57501 |
| 1231.1239 （R123）．． | T－13R12 | $\dot{3}$ | 岢 | 4 | 4 | T－57S01 |
| 1251－1259（R125）．．． | T．13R12 | น | น | H | \％ | ＇T－57S01 |
| 1261－1269（1126）．．． | T－13R12 | $\dot{\square}$ | $\dot{\square}$ | $\dot{\sim}$ | 山 | T－57501 |
| 1271－1279（R127）．．． | T－13R12 | म | H | H | 4 | ＇1＇57S01 |
| 1301－1309（11130） | T．13112 | \％ | $\dot{4}$ | 亩 | 字 | T－57S01 |
| 1341－1349（R134）． | T－13R12 | म | 动 | म | H | T－57501 |
| 1361－1369（R136）．．． | T－13R12 | $\dot{\text { r }}$ | H | 寝 | H | T－57S01 |
| 1371－1379（R137）．．． | T．13R09 | म | T－47C07 | 字 | T－57A41 | T－13S41 |
| 1381－1389（R138）．．． | T－13R09 | 4 | T－47C07 | 冎 | T－57A41 | T．13S41 |
| 1401－1409（R140）． | T－13112 | \％ | \％ | म | 方 | T－57S01 |
| 1451－1459（R145）．．． | T．13112 | म | म | 令 | $\dot{\sim}$ | T－57S01 |
| 1461－1469（R146）．．． | T．13112 | $\dot{4}$ | म | म | म | T－57S01 |
| 1471－1479（R147）．．． | T－131213 | 宜 | 永 | H | ＋ | T－13S42 |
| 1481－1489（R148）．．． | T－13R15 | む | $\dot{\sim}$ | म | T．33A91 | T．13S41 |
| 1491－1499（R149）．．． | T－13R15 | $\dot{\sim}$ | 站 | H | T－57A41 | T－13S41 |
| $\begin{aligned} & \text { 1631D.1639D } \\ & \text { (R163D) } \ldots \ldots \end{aligned}$ | T． 141139 | น | i | H | T－78D46 | T－81S01 |
| 1671－1679（11167S）．． | T－13R11 | 宜 | น | 方 | น | T－57S01 |
| 1691－1695（11169）．．． | T－13R11 | म | น | น | น | T－57S01 |
| 1721－1729（1172）．．． | T－13R11 | 近 | म | 施 | H | T－57S01 |
| 1731－1739（R173）．．． | T－13R12 | \％ | 2 | 旡 | H | T－57S01 |
| 1801－1809（R180）．．． | T－13R11 | म | म | H | 宜 | T－57S01 |
| 1811－1819（18181）．．． | T－13111 | H | \％ | $\dot{4}$ | म | T－57S01 |
| 1821－1829（1182）．．． | T－13R12 |  |  | म | 宜 | T－13S42 |
| 1831－1839（R183）．．． | T－13R12 | $\stackrel{\text { H }}{ }$ | H | म | 宜 | T－13S42 |
| 1811－1849（18184）．．． | T－13R14 | $\stackrel{3}{4}$ | H | 曻 | 垵 | T－13S42 |
| 1851－1859（H185）．．． | T－13R15 | น | H | H | म | T．13S41 |
| 1861－1869（1186）．．． | T－13115 | is | H | น | म | T－13S41 |
| 3041－3049（R304）．．． | T．13R19 | H | 永 | H | น | T－57S01 |

STROMBERG－CARLSON TEL．MFG．CO．

10， 11.	T－13R06	T－13C29	T－13C29	\＆	\＄Special	T．57S01
19， 20.	T－13106	T－13C30	亩	云	§Syecial	T－57S01
22．22A．．．．．．．．．	T－131106	T－13C30	\％	曻	§Special	T－57S01
25，26．．．．．．．．．．．．．	T． 131106	T．13C29	T．13C29	永	§Sipcial	T．57S01
29.	T． 13 R 06	T－13C29	T－13C29	is	§Special	T－57S01
37，38， $39 \ldots \ldots \ldots$	T． 13 B 06	鸰	㟧	म	§Special	T－57S01
40，41．．．．．．．．．．．．．	T－131106	म	\％	～	§Special	T．57S01
52， 54.	T． 131107	T－75C51	म	T－33A91	T－58A70	T－13S41
58－L，58－L13，58－T．．	T．13R12	म	म	म	\％	T－57S01
58．TB，58．W， 58 －W B	T－13R12	\％	站	म	訔	T．57S01


MODEL	Power Trans．	First Filter Choke	Second Filter Choke	First Audio Trane．	Second   Audio   Trane．	Output Trans．
STROMBER（；－CARLSON TEL．MFG．CO．（Contd）						
60.	T－13113	1－13C30	\＆	น	T．33A91	T．57S01
61－I，61－LB，61－T．．	－13R12	＊	H	H	म	T－57S01
61．TH，61．W，61．WB	T．13112	\％	故	म	म	T．57S01
62，63．．．．．．．．．．．．	T． $13 \mathrm{R15}$	T－13C30	$\dot{*}$	\％	§Special	T－57S01
	－13R15	T－13C30	\％	T－29A99	T－17D	T．13S41
70， 72.	T．13R08	T．67C49	\＆	尔	T．67D78	T－67S92
80.	T－13R16	T－13C30	4	㒸	\＄Special	T－13S41
82，82 $18,83,83 \mathrm{~B}$	T－13R15	T－13C30	永	か	T－17D01	T－13S41
84，84B．．．．．．．．．．．	T－13R15	T－13C30	म	H	T－17D01	T－13S41
130	T－13R12	น	宜	\％	\％	T－57S01
140II，140HB．	T－13R14	T－13C30	㞱	H	$\dot{4}$	T－57S01
$140 \mathrm{~K}, 140 \mathrm{~KB}$ ．	T－13R14	T－13C30	H	$\dot{H}$	al	T－57S01
140．L，140．P．	T．13R14	T．13C30	म	凩	pecial	T．57S01
145－L，145－LB ．．．．	T－13R16	T－67C49	म	夜	8Special	T－13S42
145－P，145－PB．．．．．	T－13R16	T－67C49	म	म	§Special	T－13S42
150－L，150－LB．	T－13R15	T－67C49	मे	म	8Special	T－13S41
160－L，160－LB	T．13R16	T－67C49	\＆	म	T－17D01	T－13S41
180－L，180－LB．	T－13R16	T－67C49	\％	म	T－17D01	T－13S41
228 series．	T－13R12	$\dot{\sim}$	$\dot{\square}$	म	म	T－57S01
229P．．．．．．．．．．．．．	T－13R12	ふ	\％	น	H	T－57S01
230 series， 231 serien	T－13R12	H	H	H	む	T－57S01
2351I，235HB	T． 131112	カ	म	म	4	T． 57501
235－L，235－LB．	T－13R12	H	$\dot{4}$	$\dot{H}$	曻	T－57S01
240 series．	T－13R14	$\dot{\sim}$	น	म	㐫	T．57S01
245 series．．．．．．．．．	T．13R15	H	\＆	น	T－17D01	T－13S41
250－L，250－LB	T－13R16	T－67C49	$\dot{4}$	4	4	T－13S41
255－L．．．．．．．．．．．．	T－13R16	T－13C30	$\dot{H}$	4	\％	T．13S41
260 яeries．．．．．．．．．．	T－13R16	น	宛	施	\＄Special	T－13S41
320－H，320－T．．．．．	T－13R19	म	垵	\％	＋	T－13S42
325－J，325－M，325－S	T．13B19	站	ふ	น	号	－－13S42
335－L，336－P．．．．	T－13R13	म	寝	H	H	T－57801
337－H，337．L．．．．．	T－13R13	字	น	म	H	T－57S01
$\begin{aligned} & \text { 340-F, 340-II, 340-M, } \\ & \text { 340-V, } \mathbf{3 4 0 - \mathrm { P } , \ldots \ldots} . \end{aligned}$	T-13R14	मे	宜	ヶ	\％	T－13S4］
341－P，341－R．．．．．	T－13R13	4	恧	म	～	T－13S41
345－F，345－M．．．．	T－13R14	～	म	म	曻	T－13S41
$\begin{aligned} & 350-\mathrm{M}, 350-\mathrm{P} \\ & 350-\mathrm{R}, 350 . \mathrm{V} \end{aligned}$	T－13R16	T－13C30	H	㐫	4	T－13S41
400.	T－13R11	H	方	刭	\％	T－13S42
410，411，412，420．．	T－13R12	$\dot{H}$	म	म	垵	T．57S01
$430 . \ldots . . . . . .$.	T－13R14	H	H	4	寝	T－13S42
435 （AM）．．．．．．．	T．13R14	$\dot{\sim}$	～	म	～	T－13S42
435 （FM）．．．．．．．．	T－13R20	H	永	内	म	T．57S01
$455 . . . . . . . . . . . . .$.	T－13114	品	$\dot{\square}$	$\dot{3}$	\％	T－13S41
1835，636．．．．．．．．	T－561101	T－13C29	字	T－29A99	T－29A99	T－18C92
638．AC．．．．．．．．．．	T．131105	T－13C29	म	T－29A99	T．29A99	T－18C92
641，642．．．．．．．．．	T－131105	T－13C29	T．13C29		T－29A99	T－57S01
652，654．．．．．．．．．	T．13R05	T－13C29	T－13C29	4	T－29A99	T－57S01
846，848．．．．．．．．．．	T－56R05	T．13C30	T－13C29	T－29A99	T－33A91	T－57S01
TRANSFORMER CORI＇．OF AMERICA（CLARION）						
TC1，TC2，TC6．．．．	T－131122	2 安	H	H	\％	T．57S01
TC20，TC21．．．．．．．	T－131802	\％	म	मे	？	T－57501

Prices and dimensions for all transformers and chokes shown hercin listed on page 3.

MODE1．	Power Trank．	First Filier Clioke	Sceond Filier Choke	First Audios Trane	Second Audio ＇I＇stin．	On！   ＇T＇ги1＂．
TRANSHORMER CORP．OF AMERICA（Contd）						
TC22，TC23	T－13R12	\％	\％	4	i	T－57S01
25－220	T－13R03	T－13C28	T－13C28	\％	＊	T－57S01
$\begin{aligned} & \text { TC39. TC39A, } \\ & \text { TC39L } \mathbf{W} \ldots \ldots . \end{aligned}$	T－13R12	$\dot{H}$	$\dot{4}$	น	4	T．57S01
	T－13R04	T－13C29	T－18C92	4	1al	T－57S01
TC40．	T－13R02	$\square$	4	4	4	T－57S01
TC42，TC43，TC44．	T．13R06	4	\％	H	T－33A91	r．57S01
51， 53	T－13R07	T．13C．29	T－18C92	\％	T．33A91	T－57S01
TC53A	T－13R08	T．13C30	4	4	T－33A91	T－57S01
55.	T－13R07	T－13C29	T．18C92	4	T－33A91	T．57501
60 Jr	T．13R04	T－13C29	T．18C92	$\dot{\sim}$	\＄Special	T． 57501
61.70	T－13R04	T－13C29	T． 18 C 92	4	T－33A91	T－57S01
80，84． 85	T－13R04	T－13C29	4	4	4	T－57S01
94.	T－56R05	T－13C29	～	स	H	T． 57501
100	T－13R03	T－13C28	T．13C．28	$\dot{\square}$	4	T． 57501
160 ．．．．．．．．．．．．．	ecial	T－13C30	4	4	33A91	T－57S01
$220 \ldots \ldots \ldots$.	T．13R03	T－13C28	T－13C28	\％	\％	T．57S01
$241 \ldots \ldots \ldots$.	T－13R04	T－13C29	4	山	家	T． 57501
AC． 260	T．13R06	T－13C30	if	山	4	T－57S01
AC－280	T－13R07	T－13C30	4	4	T－33A91	T．13541
AC－320	T－13R02	म	垵	\＆	\＆	T－57S01
340	T－13R04	म	宜	¢	is	T－57S01
470．．．．．．．．	T－13R02	H	H	近		T－57S01
480	T．13R06	T－13C30		H	\＄Special	T．67S52
490	T－13R06	T－13C29	永	山	T．67D47	T－57S01
UNITED AMERICAN BOSCH CORP．（BOSCII）						
4 Esber	T－13R02	\＆	मे	4	4	T．57S01
5A	T． $13 \mathrm{R03}$	4	4	－	मे	T． 57501
10 Essex．．．．．	T．13R06	is	म	4	T．33A91	T． 57501
20J，20K，20L．．．．	T． 13 R 04	T．13C29	H	4	ts	T－57S01
$28 . . . . . . . . . . . . .$.	T－56R01	T－13C28	4	T－29．499	T－33A91	8Spreial
36，37．．．．．．．．．．．	T－13Re3	मे	立	山	ゅ	T－57S01
40， 41 AC	T．13R04	मे	म	\％	H	T－57S01
46	T－56R01	T－13C29	T．13C29	T－29A99	T－29A99	H
48．．．．．．．．．．．．	T－13R06	T－13C30	T．74C30	मे	T－33A91	T－57S01
54 DC ．	$\dot{H}$	T－13C27	H	น	T．33A91	T－57S01
56 Batt．	म	म	म	T－29A99	T－33491	T－57S01
58， 60.	T－56R05	T－13C30	4	$\stackrel{\text { r }}{ }$	T 33A91	T－57S01
62DC，63DC．．．．	4	T－13C27	मे	म	T－33191	T．57S01
66．96．	T．56R01	T．13C29	T．13C29	T－29A99	T－29A99	4
107.	T．56R01	T－13C29	T－13C29	T－29A99	T－29A99	8 Special
116．126．136．．．	T－56R01	T－13C29	T－13C29	T－29199	T． $29 \overline{199}$	म
146， 166,176	T．56R01	T．13C29	T．13C29	T． 29199	T－29A99	安
200， $201 \ldots \ldots . .$.	T．13R02	4	4	4	मे	T－57S01
205，206，211．．．．．．	T－13R03	\％	4	स	4	T－57S01
236，237．．．．．．．．	T－13R03	4	H	－	$\dot{4}$	T－57S01
242， $243 \ldots \ldots .$.	T－13R04	T．13C29	$\dot{4}$	4	4	T－57S01
250， $251 \ldots \ldots \ldots$.	T－56R05	T．13C30	4	4	T－33A91	T－57801
260， $261 \ldots \ldots . . .$.	T－56R05	T－13C30	น	安	T－33A91	T－57S01
$305 \ldots \ldots \ldots \ldots$	T－13R02	मे	म	म	～	T．57S01
$306 . . . . . . . . . . . . .$.	T．13R14	SSpecial	ม	\％	T－74A31	T－57S01


MODEL	Power Trana．	First Filier Choke	Sceond Filter Clioke	$\begin{gathered} \text { lingt } \\ \text { Andi, } \\ \text { Trann. } \end{gathered}$	Second Audin Trane．	Output Trane．
UNITED AMERICA V BOSCII CORP．（Contd）						
307.	T－13R03	4	\％	4	4	T－57S01
310 A ．	T．13R06	म	良	4	T－33A91	T－57S01
352.	T－13R02	น	म	H	\％	T．57S01
360．．．．．．．．．．．	T－13R03	4	\＆	4	4	T－57S01
370．．．．．．．	T－13R06	T－13C30	4	4	T－6714．7	T－13S41
420， 421.	T－13R01	4	号	㐫	4	T－57501
430，430J，430 T	T．13R01	4	$\dot{4}$	曻	み	T－57S01
440C．440T	T－13R12	4	亩	\＆	\＆	T－57S01
450H， $450 \mathrm{I} . . . . . .$.	T．13R12	\％	山	H	H	T－57S01
460，460A．．．．．．．．	T－13R02	岁	4	$\dot{\sim}$	म	T－57S01
460B，460R．．．．．．	T－13R02	¢	\＆	\％	가	T－57S01
480．．．．．．．．．．．．．．	T．13 1815	T－13C30	T－13C28	4	§Special	T－13S41
505．510，510E．．．	T－13R12	4	4	4	$\dot{4}$	T－57S01
515．．．．．．．．．．．．	T－131119	耑	4	$\dot{4}$	4	T－57S01
$565 \mathrm{~K}, 565 \mathrm{~W}$ ．	T．13112	H	H	H	म	T．57S01
570G，570U．．．．．．	T．13R02	H	$\stackrel{4}{4}$	H	H	T－57S01
575F，575Q．．．．．．	T－13H12	म	म	is	H	T－57S01
585， $585 \mathrm{Y}, 585 \mathrm{Z} \ldots$	T－13H12	น	म	म	น	T－57S01
595M，595P．．．．．．．	T－13R14	$\dot{4}$	H	is	\＄Specinl	T－57S01
605，605C．．．．．．．．	T－13R12	4	म	$\dot{4}$	म	T－57S01
640，650．．．．．．．．．．	T－13R12	मे	น	म	म	T－57S01
660C，660T $\ldots . . .$.	T－13R12	4	म	4	\％	T．57S01
812．．．．．．．．．．．．．．	T－13R04	म	H	म	T－33AD1	T－57501
1350．．．．．．．．．．．．	T－13R02	4	4	\％	म	T－57S01

UNITED MOTORS SERVICE（DELCO）

1102，1103， 1104.	T－13R12	$\stackrel{\text { ¢ }}{ }$	4	it	4	T．57S01
1105，1106，1107．．．	T－13R12	$\stackrel{\square}{4}$	4	$\dot{4}$	4	T－57S01
1108．．．．．．．．．．．．．．．	T－13R12	H	H	H	4	T．57S01
1109	T－13R14	\＆	\％	$\dot{\sim}$	T．33A91	T．57501
1110	T．13R09	T．13C30	4	4	T－17D01	T－13S41
R1115 early－late．．．．	T－13R11	H	4	4	म	T－57S01
R1116，R1117．	T－13R11	म	\％	吕	म	T－57S01
R1118	T－13R13	म	म	$\dot{\sim}$	म	T．57S01
R1119．．．．．．．．．．．．．	T－13115	\％	＊	\％	T－33A91	T－13S41
R1120．．．．．．．．．	T－13R20	मे	H	H	H	T－57S01
R1125	T．13R19	\％	น	号	\％	T．57S01
R1126，R1127	T．13R11		म	4	म	T．57S01
R1128	T－13R20	H	4	4	\％	T－57S01
R1129	T－13R20	म	\％	$\underline{\square}$	A	T．57S01
R1130，R1131	T． 13 R 12	H	$\pm$	H	म	T．13S42
R1132	T－13R14	H	4	4	H	T－13S41
R1140．R1141	T．13R11	4	$\dot{4}$	4	H	T． 57501
R 1142	T－13R20	간	मे	H	ar	T． 57501
R1143．．．．．．．．．．．．	T．13R20	म	at	\＆	\％	T－57S01
R1144．．．．．．．．．．．	T－13R20	\％	H	$\dot{H}$	H	T－57501
R1145	T－13R20	म	4	H	म	T．57S01
R6011，R6012	T．14R39	T．14C63	म	A	T．78D 16	T－81S01
R6015 ．．．．．．．．．．	T－14R39	T．14C63	\＆	मै	T－78D46	T－81S01
U．S．RADIO \＆TELEVISION CORP．（APEX）						
5A．．．．．．．．．．．．．．．	T． 13 R 02	म	4	$\pm$	\％	T－57S01
7AC，7D（700）．．	T－13R05	T－13C29	\％	\％	4	T－57S01

[^13]| MODEL | $\begin{aligned} & \text { Power } \\ & \text { 'Trane. } \end{aligned}$ | First Filter Chohe | Secamd Filier Choke | $\begin{gathered} \hline \text { Firsi } \\ \text { Alrdio } \\ \text { Trann. } \end{gathered}$ | Second ludio， I＇rans． | Sutput <br> Trans． | MODEL | Power ＇Trana． | First Filter Choke | Second Filter Choke | $\begin{gathered} \text { Pirat } \\ \text { fudio } \\ \text { Prans. } \end{gathered}$ | $\begin{aligned} & \text { Second } \\ & \text { Audio } \\ & \text { Trana. } \end{aligned}$ | Output Trans． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| U．S．HUIDIO \＆TELAVISION CORIP．（Contd） |  |  |  |  |  |  | WESTINGIIOUSE ELECTHIC SUPPLY CO．，INC． |  |  |  |  |  |  |
| 8. | ＇T－13R05 | T－13C29 | म | $\stackrel{3}{3}$ | 4 | T－57S01 | WR－4，WR－5 | T－13107 | T－13C29 | 4 | म | T－33A91 | T－57S01 |
| 10，10C（1000－1001） | T－13 $\mathrm{HO6}$ | T－13C30 | 4 | म | T－33＾91 | T－57S01 | WR－6．WR－6－K | T－131107 | T－13C29 | 4 | 颪 | T－33A91 | T－57s01 |
| 24 （400）．．．．．．． | T－13R01 | म | 故 | \＆ | $\stackrel{\text { u }}{ }$ | T－57S01 | WR－7，WR－7－R | T－131107 | T－13C29 | 4 | H | T－33A91 | T－57s01 |
| 25 （500） | T－131102 | म | H | i | 4 | T－57S01 | WR－10 | ＇T－13807 | $\dot{4}$ | 曻 | 字 | ＇T－33A91 | T－57501 |
| 26． 261 P | T－13R03 | T－13C28 | H | H | म | T－57501 | WR－10－A | T－13804 | मे | $\dot{4}$ | म | T－33A91 | T－57s01 |
| 27，271 | T－131603 | T－13C28 | 4 | म | T－29А99 | T－57501 | W＇R－12，W1R－13 | T－13R07 | 颪 | H | $\dot{4}$ | T－33A91 | T－57501 |
| 28. | T－13R06 | T．13C30 | 尔 | 4 | T－33：391 | T－57S01 | WR－14，WR－14－CR | T－131801 | H | 4 | H | $\dot{3}$ | T－57501 |
| 29．31， 32 | ＇1．131104 | T－13C29 | म | 4 | T－33 ${ }^{\text {191 }}$ | T－57S01 | WR．15． | T－131107 | $\dot{4}$ | 4 | \％ | T－33 191 | T－3isol |
| 36， 35 apex | T－36R01 | T－13C29 | T－13C29 | T－29190 | T－29 490 | म | WR－15－A．WR－16 | T－131107 | म | A | น | T－29A99 | T．atsoi |
| 41.60 | T－13R06 | T－13C30 | म | T－29499 | T．33A91 | T－．57S01 | WR－17． | T．131804 | म | i | H | T－29109 | T－57S01 |
| $42-60$ | T－131806 | T－13C30 | T－18C92 | T．29A90 | T－33491 | T－57S01 | WR－18，WR－19 | T－131807 | 4 | 4 | H | T－29499 | T－57s01 |
| 43－25．41－25 | T－131806 | T－13C30 | 4 | T－29A99 | T－33A91 | T－57S01 | WR－20．．．．．． | T－56R05 | T－13C30 | is | म | 7．781） 6 | T－57s01 |
| 46． 46.1 | ＇1．13R06 | T－13C30 | म | T．29A99 | T－33＾91 | T． 57501 | W R－21 | T－131805 | H | 盛 | 令 | SSperial | Esprecial |
| 47． 471 | T－131806 | T－13C30 | \＆ | T．29A99 | T－33A91 | T． 57501 | WR－22． | T－13 ${ }^{\text {¢ }}$（132 | H | H | 岸 | म | T－57s01 |
| 18． 48.1 | T．131806 | T－13C30 | 的 | T．29A99 | T－33A91 | T－57S01 | WR－23，WR－24 | T－131803 | \％ | H | น | 尔 | T－57S01 |
| $80 . \ldots \ldots$ ．．．．．． | T－561801 | ＇1－13C29 | 刿 | T－29A9） | T－33A91 | §Special | WK－27 | T－131819 | in | 夙 | 乓 | H | T． 57501 |
| 99．90\ ．．．．．．． | T． 131103 | म | \％ | $\dot{\text { H }}$ | म | r．57S01 | WK－28．WR－29 | T－13612 | ［ | 4 | 4 | \％ | T．57s01 |
| $\overline{112 \mathrm{~A}}$ | T． 131801 | T－13C27 | 内 | H | 4 | H | WR－30．W＇R－31． | T－131207 | T－13030 | म | 4 | \＄Suctial | T－135．41 |
| 160． 250 （90） | T－131806 | T－13C29 | T－74C30 | T－29A90 | ＇1＇－33A91 | T．57501 | WR．35 | ＇T－13R0\％ | \％ | म | 岸 | $\dot{\sim}$ | T． 57501 |
| 3040．3056（507）．．． | T－13 02 | 㟧 | म | น | น | T． 5 S 501 | WR－36 | T．13R04 | 品 | $\stackrel{\text { H }}{ }$ | 泣 | 4 | T－57501 |
| 3070 （1004）$\ldots \ldots$ | T－13R04 | T．13C29 | 去 | 宜 | T－33A91 | T－57S01 | WR－37．．．．．．．． | T．13R0S | 楥 | म | 崖 | H | T．57801 |
| WELLSGG；ABIDNEI N CO． |  |  |  |  |  |  | $\frac{\text { WR-38. WR-39.... }}{\text { WR-45. WR-45-A. }}$ | ＇下－13R07 | T－13C29 | म | 耑 | \＄5，minal | T－13s 41 |
| C．CG．．．．．．．．．．． | T－561803 | T－13C29 | $\dot{\sim}$ | ～ | T－33A91 | T－57501 |  | T．13115 | म | म | 荘 | T－33191 | T－37501 |
| ロロい ．．．．．．．．．． | T－13R08 | ～ | \％ | 4 | T－33A91 | T－57S01 | WR－46，WR－46－I | T－13113 | 品 | म | म | ［） | T－57S01 |
| 0どL．．．．．．．．．．．．． | T－13R14 | \％ | \％ | $\dot{4}$ | §Sperial | T－37S01 |  | T． 13113 | 4 | 4 | 4 | is | T－57S01 |
| $021 .$ | ${ }_{8}$ Special | T．13C30 | $\stackrel{4}{4}$ | H | T－81D12 | 1－57S01 | $\begin{aligned} & \text { FR-48, WR-48-A. } \\ & \hline \text { WR-49, WR-50.... } \end{aligned}$ | T－13113 | 盛 | น | 4 | ＊ | T．57s01 |
| 071．．．．．．．．．．． | T． 13112 | म | 4 | $\dot{3}$ | \％ | T－57S01 | WR-53.............. T.13R13 |  | น | म | ¢ | Af | T．57S01 |
| 0731 C | 4 | ＇「．13C29 | T－13C29 | น | T－33A91 | T－57S01 |  |  | 4 | 曻 | 曻 | ＊ | T－57s01 |
| 11 series．．．．．． | ＇T－13R11 | 㐫 | $\dot{\sim}$ | 岗 | is | T－57S01 |  |  | 4 | 4 | 4 | 4 | T－57501 |
| 12 aerian | T－13R14 |  | 4 | \％ | H | T．57S01 | W $\mathrm{C}-205$ W $\mathrm{F}-208$ | T－13112 | 山 | $\therefore$ | H | H | T．57s01 |
| 14 series．．．．．．． | T．13R11 | H | 4 | H | \％ | T－57501 | $\frac{\text { WR-209. WR-210.. }}{\text { WR-211. WR-211.A }}$ | 1．13R12 | म | 永 | น | $\underline{3}$ | T．57s01 |
| 15 nerien． 511 nerips． | T－13R12 | \％ | \％ | म | H | T－57S01 |  | T－13812 | 今 | 盛 | ～ | 宜 | T－57．301 |
| SF．SFL． $5 \mathrm{~K}, ~ 5 \mathrm{KL}$ ． | T－13R19 | H | น | 㐫 | $\dot{\sim}$ | T－57S01 | WR－211U．प 18.211 X T．13k12 |  | $\dot{\square}$ | 曻 | \％ | ふ | T－57：501 |
| 60；series．．．．．．．． | T－131412 | म | \％ | H | म | T－57501 | WR．212，WR－212X．T．13R12 |  | 4 | 颪 | 字 | म | T－57501 |
| 61）series，6K ．．．．． | ） | T－13C28 | ） | 站 | T－6715：0 | T．57S01 | WR．214．．．．．．．．．T．13R15 |  | ¢ | \＆ | \％ | น | T．57501 |
| $\begin{aligned} & \text { 7D series } \\ & \text { (271)1. 2705). } \end{aligned}$ | T－131812 | 4 | मे | $\dot{\sim}$ | 耑 | T． 57501 | WR－222．．．．．．．．．．．．T．13119 |  | 号 | 4 | H | म | T．57501 |
| 7F． $\mathbf{7 W 1}$ | T． $13 \mathrm{R12} 12$ | म | 4 | 堊 | $\pm$ | T． 57501 | WR224．．．．．．．．．．T－13R20 |  | म | 4 | H | H | T．57501 |
| ic：ll neries <br> （376－5118．376－566） | T．13112 | म | \％ | म | \％ | T． 57801 | WR-226............. T-13R20 |  | 4 | 4 | 耑 | $\dot{4}$ | T．57S01 |
| 7J，7K arrice．．．．． | T．13R12 | म | म | ム | म | $\cdots$ T－57S01 | $\text { WR.228 } \ldots \ldots \ldots \text {. T-13R14 }$ |  | \％ | 4 | 4 | 4 | T－57501 |
| A8 meries．．．．．．． | T－131311 | H | 4 | 4 | H | T．57S01 | WR－256＿．．．．．．． | T． 131811 | ～ | ¢ | \＆ | $\nsim$ | T－57501 |
| 110 serips ．．．．．．． | T－13119 | 4 | 4 | 4 | น | T－57501 | W 11258．．．．．．．． | T－131819 | น | \％ | $\checkmark$ | $\downarrow$ | T－57501 |
| 112 | ＇T－131814 | 4 | is | 今 | म | ${ }^{1} \cdot 57501$ | W＋11260 ．．．．．．．．．．T－131819 |  | 䳪 | 4 | $\dot{4}$ | H | T－37501 |
| A 14 nerien ．．．． | 9．13811 | \％ | \＆ | \％ | 4 | T－57501 | W R．264．．．．．．．．．T－131112 |  | 缶 | \％ | \％ | \％ | T． 57.501 |
| 115 series．．．．．．．． | T－13119 | H | $\dot{4}$ | 4 | 令 | T．57S01 | W18270．．．．．．．．．T－131811 |  | 4 | $\dot{\sim}$ | 3 | \％ | 1．57s01 |
| 40．．．．．．．．． | T－13R04 | ＇「－13C29 | \％ | $\dot{4}$ | $\dot{4}$ | T－57S01 | W1R－303，WR－304． | T－13112 | 刿 | 4 | 4 | 4 | 1－57s01 |
| 401．．．．．．．．．． | T－56R05 | T－13C30 | H | \％ | H | T．57S01 | प1R－305．．．．．．．．．． | T－13R12 | 4 | $\pm$ | 4 | 永 | T．57S01 |
| 72．．．．．．．．．．．．． | T－13104 | T．13C29 | H | H | T－33 491 | T．57S01 | W1R－306 $\ldots \ldots \ldots$ | T－131814 | T－67C49 | $\dot{\sim}$ | म | \＄Special | T．13541 |
| 80． 82 C ．．．．．．．．．． | T．131806 | T．13C29 | น | म | T－33A91 | T．57S01 | WR－310，WR－311．． | T．13112 | $\stackrel{3}{4}$ | 4 | is | \＆ | ＇T－57s01 |
| 502．．．．．．．．．．．．． | T．13R06 | \％ | म | म | म | T．57S01 | WR－311X | T．131112 | 4 | $\dot{\square}$ | म | \＆ | T． 5 Tisel |
| 572＾C．．．．．．．．．． | T－56R05 | н | 㭊 | H | $\dot{\square}$ | T－57S01 | W1R－312．．．．．．．．T－13K12 |  | 4 | is | 4 | \％ | T． 57501 |

Thordarson Transformers for all applications are listed in catalog $\mathbf{4 0 0}$ ．Ask for your free copy．

MODEE．	Poner Trann．	$\begin{aligned} & \text { First } \\ & \text { Filter } \\ & \text { Choke } \end{aligned}$	Second Viliter Chohe	Wirnt   Audios   Tratio．	Sceond   Audio   Trana．	Outjut   Trans．
W ESTINGHOUSE，ELECTRIC SUPPLY（O．，INC．（Contd）						
WR－312\．．．．．．．	T－13R12	：	\％	$\star$	去	T－57501
WR－314	T．13615	4	\＃	恶	is	T－57501
WR－315	T．13816	4	\％	\％	\＄Sprecial	T－13S41
WESTONE，RIDIO CORP．						
11，12，70，70C．．．．	T－13R03	\＄	\＆	d	\％	T．57501
WILCOX－GAY CORP．						
2\＄5， $2 \mathrm{~T} 5 \ldots \ldots \ldots$	T－131102	$\cdots$	\＃	产	$\ddagger$	T－57501
2VA7，2VB7．．．．．	T．13102	\％	H：	\％	\％	T－57801
355，3F\％．．	T－13R02	H	星	$\pm$	$\stackrel{\square}{4}$	T．37501
355－60，3S 85	T－13112	－	感	\％	4	T－57501
3V6． 3 V16．	T．13112	F	\＃	है	市	T－57801
3VB6．．．．．．．	T－13112	it	i）	\％	南	T． 57501
1C5．HCAS	T．13H11	者	＋	艮	＊	T－57501
$1 \mathrm{CBS}, 4 \mathrm{CD} 5$	T－131811	克	市	म	4	T－57501
41）10，41）B10．	T－131806	H	$\pm$	－	）	T． 588572
4E6． 167 ？	T． 131112	＊	2	4	$\frac{1}{4}$	T．57S01
4111．．．．	T．13R09	2）	敢	4	\＃	T． 67592
5B5．．	T－13812	$\pm$	盛	$\stackrel{\text { ¢ }}{ }$	㟧	T－57S01
5BA5．．．．．．．	T－13R11	นั	\％	4	से	T－．57501
5 BC 5	T－13R12	\＃	交	4	\＃	T． 57501
5BE6．．．．．．．．．	T－13611	\％	is	产	＋	T－3is01
5E7，5L1？	T－13R12	it	4	3）	2	T－57S01
5E8． 5 E9 $\ldots$ ．．．．．	T－13112	\＃	：	\％	म	T－57501
615 ．．．．．	T－13R19	0	$\cdots$	荲	令	T．57S01
6135 ．．．．．	T－13R13	＊	堸	\＃	\％	T－57S01
6B8．GF\％．．	T－131819	发	2	It	\％	T－3：501
6FB6．	T－131219	75	\％	3	e	T． 57 S 01
${ }^{\text {¢T11 }}$ ¢ $\ldots \ldots \ldots \ldots$	T－13R14	च	＊	\％	4	T－37801
7E3－．．．	T－13R11	2r	e．	＊）	6	T－57501
765．7¢85．．．．．．．	T－13R11	4	$\underline{*}$	H	\＃	T－57501
7J7．7K7．．．．．	T－131813	4	5	ar	1	T． 57501
A69．．．．．．．．．．．．．	T－131119	4.	$\stackrel{ }{ }$	$\geqslant$	8	T－57501
170．181． 182	T．13K14	\％	3	II	4	T－57501
178． $179 \ldots \ldots$ ．	T－13112	H	5	6	is	T． 57 Sol
S15．．．．．．．．	T－13R112	is	\＃	\％	is	T． 57801
816	T－13120．3	t．	$\frac{8}{4}$	\＃	$\hat{3}$	T．57S01
SW88	T－131803	4）	$\pm$	4	\％	T． 57501
s191－1．S．1120	T．13186	4	\％	＊	ct	T－57．401
450．．．	T－131102	20	t	$\cdots$	总	T－57501
4.54 ．	T．131111	近	\＃	9	盛	T－57501
470．471 $\ldots$	T．131112	W	卉	\％	8	T－57501
480 ．．	T－13113	W	Ir	W	\％	T．57801

TENITII RADIO COHID．

1，B，（．） V ）	T．13R0，3	T－130：29	$\ldots$	8	\％	T－37501
BH（202）	T．13180．5	T－136：29	$\pm$	4	\＆	T－57801
C：H	T－131804	3	三	4	6	T－57501
1.	T－13R01	T－136：28	\％	4	$\stackrel{ }{*}$	T．57501
1．11，M11	T－13R04	$\therefore$	$\stackrel{1}{4}$	4	\％	T－．57S01
RII	T－13180！	0	节	草	$\vdots$	T－57S01
W．11（2022）	T．131204	tr	家	तt	，	T．57S01


MODILL	Powrr   Trank，	First   Filter   Choke	Second   Filter   Choke	Firat   Audio，   Trana，	Second   Audin   Trana．	Output   Trima．

## ZENITHI RADIO CORP，（Contd）

$\begin{aligned} & 18313(5110) \\ & 18314(5111) \end{aligned}$	T－14R39	\％	म	A	4	T． 57501
4B317，4B355．	T． 141139	is	全：	古	A	T－57501
4D26（5401）4P51．．	T－131112	＋	\％ 1	4	\％	T－5\％ 01
4 T 26.4 T 51.	T－13K12	A	\＃	4	H	T． 57501
5A119．．．．．．．．．．．．	T．13R20	8.	E	8	A	T－5\％501
5A126．．．．．．．．．．	T．13120	$\therefore$	If	$\pm$	为	T－57501
5\＄127．．．．．．．．．．	T－131120	－	E1	$\geqslant$	克	T－57501
S1151（CII5．517A）．	T－131820	As	H	A	As．	T－35801
5A313B（C1L5535BT）	T－131111	\＃	戻	\＄	37	T－57801
$\begin{aligned} & 51318.51325 \\ & (55324) \ldots \ldots \end{aligned}$	T－13R11	5	＊	0	－	T－5\％（1）
5R123（5319）．．．	T－13R12	4	$E$	\＃	\％	T－5\％ 5111
5R135．5R16．5．．．．	T－13N12	t．	\＃1：	A	n－	T． 7 \％ 601
514216 （5526）．．．．．	T－13K19	畐	＊	＊	A．	T－57501
5R220，5R236．．．	T－131219	82	h	\＃	各	T－\％－$\frac{101}{}$
5R303（552B）5R312	T－13K11	3	数	\％	立	T－37501
5R316，5R317．．．．．	T．131211	2	i	9	is	T－35 501
5R337．．．．．．．．．．	T－13R11	$t$	4	$\therefore$	$\pm$	T－52801
5S29（5513 1）5S56．	T．131122	in	E	$\because$	4	ケ－57501
5S119 ．．．．．．．．．．	T－13R12	\＃	\＃	管	A	T－5TS01
5S126．5S127， 5 S150	T．13K12	मे	令	4	$\cdots$	T－57801
5S151，5S161．．	T－13112	S	\％	4．	令	T－3T501
5S201（5521）．．．	T．13112	ts	4	\＃	A	T． 37501
5S218 ．．．．．．．．．．．	T－13R12	（i）	\％	th	tr	T－大T＊01
$5 \mathrm{~S} 2181 \mathrm{~T}(5.521 \mathrm{TT}$ ）．	T－13112	म	※े	38	令	ナ－37501
$\begin{aligned} & 5 S 220.5 S 228, \\ & 5 S 228 A^{\prime} T . . \end{aligned}$	T－131112	＊	8	\％	＊	T－57501
35237，3S2．37＇t．	T－13R12	ai	\％	औ	鿬	T－57501
5S2：0．5S2．52	T．13112	स	哨	ther	A	T－57501
55319（5529） 55327 ．	T． 131111	\％	会	\％	$\underline{8}$	T－5\％s01
55330． 5 S338	T－13 111	\％	N	4	A	T－53s01
5S339．	T．131211	14	8	A	$\underline{9}$	T－5\％
6A203．．．．	T－13120	5	4	나	$\because$	T－37s01
$61223 \ldots$	T．131120	it．	＊	合	※	T－5\％501
61229.	T－13120	2	A	\＃	－	T－58501
6 A239	T． 131120	\％	＊	4	4	T－大亏501
61211	T－13R20	6	\％	0	教	T－52s（0）
6B321（5653）．	T－14R39	d	＋	is．	先	T－大ア大吅
6S27（5619）6．528	T． 131112	$A$	：	0	e	T－ラくら101
6552， 6553	T－13112	ir	4	（ ${ }_{4}$	＊	T－3ละ01
6S128（ 5636 ），6S137	T－13R12	4	A	7	$\pm$	T－3ティ01
6S147，6S 152． 6 S157	T．131812	4	\％	4	\＃	T－57501
${ }_{6}^{10.5203}$（56381．6S222	T－13R12	14	\＄	3	5	9－5－501
6S223，6S229	T．131：12	4.	：	3	＊	1－37501
（15239． 68241	T－13112	4	－	18	8	T－3T\％（1）
（152．51（5614）．．．	T．131812	it	E	（6）	＋	T－．，5 501
08251TT（56H1T）	T－13142	3）	官	7）	v：	T．55：501
	T． 131812	（a）	0	6	E	T－57501
6， 301 156．511 08306	T－131811	， 4	\＃	2til	A	T－3\％501
6S321，6S322	T－131811	S	$\pm$	W	擩	T．57501
65330． $6 . \overline{3} 340$	T－13111	н	t	． 4	4	T－37501

[^14]| MODEL | Power Trans． | First Filter Choke | Second Filter Choke | First Audio Trans． $\qquad$ | Second Audio Trans． | Output Trans． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LENITII RADIO CORIP．（Contd） |  |  |  |  |  |  |
| $6 \mathrm{S341}$（5649）．．．．．．． | T．13112 | is | \％ | H | 内 | T－57S01 |
| 6S361．．．．．．．．．．． | T－13R11 | H | \％ | \％ | H | T．57S01 |
| 6S362．．．．．．．．．．． | T－13112 | \％ | म | 方 | 站 | T－57S01 |
| 6S439，6S469．．．．．． | T－131820＊ | म | $\dot{4}$ | H | \％ | T－57S01 |
| 7S28，7S53（5704）．．． | T－13R13 | 4 | H | ม | H | T．57501 |
| 7S232AT（5709．1T）． | T－13112 | 曻 | 4 | 4 | \％ | T．57S01 |
| 7S240．．．．．．．．．．．． | T． 131112 | ゅ | 宜 | 刿 | H | T－57S01 |
| 7S242．．．．．．．．．． | T－13R12 | H | i | ¢ | H | T－57501 |
| 7S258．．．．．．．．．．．． | T－13R12 | म | म | म | \％ | T－57S01 |
| 75260．．．．．．．．．． | T．13R12 | \％ | น | \％ | 4 | T－57S01 |
| 75261．．．．．．．．．．．． | T－13R12 | 站 | मे | H | H | T．57501 |
| 75323 （5714）7S342． | T－13R12 | \％ | 4 | 立 | is | T－57S01 |
| 75343．．．．．．．．．．．．． | T－13R12 | म | H | น | म | T－57S01 |
| 7S363，7S364．．．．．． | T．13R12 | 4 | 4 | \％ | म | T．57S01 |
| 75366．．．．．．．．．．． | T．13R12 | 敢 | म | म | j） | T－57S01 |
| $\begin{aligned} & 7 \mathrm{~S} 432,7 \mathrm{~S} 433, \\ & 7 \mathrm{~S} 434,7 \mathrm{~S} 449 . \end{aligned}$ | T－13R20＊ | H | \％ | H | if | T－57S01 |
| $\begin{aligned} & 7 S 450, \\ & 7 S 458 \\ & 7 S 462 \end{aligned}$ | T－13R20＊ | म | H | H | 4 | T－57S01 |
| $\begin{aligned} & 7 S 487,7 S 488, \\ & 7 S 490(5725) . \end{aligned}$ | T－13R19＊ | 4 | म | म | 4 | T－57S01 |
| 8A129．．．．．．．．．． | T－131120 | म | \％ | म | H | T－57501 |
| 8A147．．．．．．．．．．． | T－13120 | H | H | H | $\dot{4}$ | T－57S01 |
| 8A154．．．．．．．．．．． | T．13R20 | H | 山 | 动 | $\dot{4}$ | T－57S01 |
| 8A157．．．．．．．．．．． | T－13R20 | म | 4 | H | H | T－57S01 |
| 8A232．．．．．．．．．． | T．13R20 | \％ | म | म | \％ | T－57S01 |
| 8A242．．．．．．．．． | T－13R20 | 永 | \％ | म | 号 | T－57S01 |
| 8A244．．．．．．．．．．． | T－13R20 | H | is | is | H | T－57S01 |
| 8A262．．．．．．．．．．． | T－13R20 | H | H | H | म | T－57501 |
| 8S129（5801）8S 154. | T．13R12 | 4 | 曻 | \％ | is | T－57S01 |
| 8S359．．．．．．．．．．． | T－131120 | H | ม | 4 | 4 | T－57S01 |
| 9S30，9S54．．．．．．．． | T－13R14 | 的 | ウ | 宜 | T－33A91 | T－57S01 |
| 9S55．．．．．．．．．．．． | T．13K14 | H | H | H | T－33A91 | T－57501 |
| 9S203（5905）．．．．．．． | T．131813 | म | म | H | मे | T．57S01 |
| 9S204AT（5905AT）． | T－13R12 | म | म | H | 4 | T－57S01 |
| 9S232．．．．．．．．．．．．． | T．13R13 | म | 垵 | 山 | H | T－57S01 |
| 9S232AT．．．．．．．．．． | T．13112 | \％ | \％ | 乓 | H | T－57S01 |
| 9S242．．．．．．．．．．．．． | T．13R13 | ir | 4 | H | $\square$ | T．57S01 |
| 9S244．．．．．．．．．．． | T－13H13 | म | น | \％ | H | T－57S01 |
| 9S244T．．．．．．．．．． | T．13R12 | \％ | \％ | \％ | म | T－57S01 |
| 9S262，9S263．．．．．． | T．13H13 | H | H | 4 | 4 | T．57S01 |
| 9S264．．．．．．．．．．．． | T－13R13 | 4 | 4 | 4 | \％ | T－57S01 |
| 9S264AT ．．．．．．．． | T．13R12 | म | 4 | H | H | T．57S01 |
| 9S307（5907）．．．．．． | T－13R12 | $\dot{4}$ | i | H | \％ | T－57501 |
| 9S324．9S344．．．．．． | T－13R12 | म | H | น | H | T－57S01 |
| 9S365（5906）．．．．．． | T－13R12 | H | 4 | 4 | \％ | T．57S01 |
| 9S367，95369．．．．．． | T．13R12 | 㒸 | H | H | is | T－57S01 |
| 10．．．．．．．．．．．．．． | T－131804 | म | 㭊 | म | म | T．57S01 |
| 10S130（100．4）$\ldots .$. | T－13H15 | T．13C30 | 去 | 4 | T．33A91 | 1 T．13S41 |
| 10S147．10S153．．．．． | T．13R15 | T－13C30 | 岗 | म | T．33A91 | T－13S41 |
| 10S155，10S156．．．． | T－13R15 | T－13C30 | म | म | T－33A91 | T－13S41 |
| 10S157．10S160．．．．． | T－131115 | T－13C30 | $\dot{H}$ | 4 | T－33A91 | T．13S41 |


MODEL	Power   Trans．	First   Filter   Cloke	Second   Fiher   Choke	First   Audio   Trans．	Second   Andio   Trans．	Output   Trans．
ZENITII HADIO CORP．（Contd）						

10S443， 10 S 452,
10S464． 10 S 170,


11， $12 \ldots \ldots \ldots \ldots$	T．13R04	it	$\dot{4}$	苟	4	T－57S01
12S205，12S232．．．．	T．13R15	H	$\dot{\square}$	น	刿	T－13S41
12S245，12S265．．．．	T．13R15	H	H	晾	H	T－13S41
12S266，12S267．．．．	T．13R15	H	$\dot{4}$	H	方	T．13S41
12 S 268.	T－13R15	$\dot{\sim}$	it	H	H	T．13S41


12 S 345 （1206）．	T．13R13	繠	H	㐫	～	T－13S42
12S370，12S371．．．	T．13R13	\％	\％	H	的	T．13S42


12 U 158 （1203）	T－13R15	T．13C30	$\dot{\text { H }}$	4	T－33A91	T－13S41
12 U 159	T．13R15	T－13C30	\％	\％	T－33A91	T－13541


| $50,52,53,54 \ldots \ldots$ | T－13R06 | T－13C30 | д | T－33A91 | T－13A36 | T－57S01 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $60,61,62 \ldots \ldots .$. | T－13R06 | T－13C30 | मे | T－33A91 | T－13A36 | T． 57501 |

$64,67 \ldots \ldots \ldots$ T－13R06 T－13C30 血 T－33A91 T－13A36 T－57S01

| $70,71,72.73 .77 \ldots$ | T．13R06 | T－13C30 | मे | T．33A91 | T－13A36 | T－57S01 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $80 \ldots \ldots . . . . . .$. | T－13R06 | T－13C30 | मे | T－33A91 | T－13A36 | T－57S01 |


$91.92 .103 \ldots \ldots \ldots$	T－13R06 T－13C30	मे	मे	T－33A91	T－57S01	
$210,211 \ldots \ldots \ldots$.	T－13R03	मे	मे	मे	मे	T－57S01


$215.216 .217 \ldots \ldots$	T－13R04	मे	㞱	मे	मे	T－57S01
$220,221 \ldots \ldots \ldots$.	T－13R03	मे	मे	मे	मे	T－57S01
$225 \ldots \ldots$	T－13R04	मे	मे	मे	मे	T－57S01


$230,240 \ldots \ldots \ldots$	T－13R05	मे	मे	मे	मे	T－57S01
$241,244 \ldots \ldots \ldots$	T－13R05	मे	मे	मे	मे	T－57S01


$245 \ldots \ldots \ldots \ldots$	T－13R05	मे	मे	मे	मे	T－57S01
$250,251,252 \ldots \ldots$	T－13R03	मे	मे	मे	मे	T－57S01


258． $259 \ldots$.	T－13R04	4		立	น	T－57S01
260.261.	T．13R03		4	H	H	T－57S01
262	T－13R04	\％	去	4	4	T－57S01


268， 269	T－13R04	म	$\dot{\square}$	\％	岸	T－57S01
272.	T－13R03	$\ddagger$	$\dot{H}$	出	H	T－57S01


| $273 \ldots \ldots \ldots \ldots$ | T－13R06 | T－13C30 | मे | मे | 8Special | T－57S01 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $278,280.281 \ldots \ldots$ | T－13R04 | मे | मे | मे | मे | T－57S01 |


288， 289	T－13R04	\％	山	म	ஷ	T－57501
291， $292 \ldots \ldots$	T－13R03	\％	H	H	山	T．57S01
410．411，412．414．．	T－13R06	T－13C30	\％	）	T－17D01	T－13S41
420.	T－13R06	T－13C30	ir	\％	T－17D01	T－13S41
443， 444.	T－13R06	T－13C30	4	म	T－17D91	T－13541
472.	T－131104	म	is	4	\＆	T－57S01
473.	T－13R06	T．13C30	安	方	T－17D01	T－13541
474，475．．．．．．．．．．	T－13104	म	4	H	T．33A91	T．57S01
476．．．	T．13 106	T－13C30	H	4	T－17D01	T－13S41
476 B ．	T－13H06	T．13C30	H	4	T．33A91	T－57S01
478.	T．13R04	म	म	4	\％	T．57S01
500．501，502， 503.	T－131005	H	H	\％	4	T－13S41
514，515，516．．．．．．	T－131005	H	म	4	4	T．13S41
520 （2035）， $521 \ldots \ldots$	T－13R06	T－13C30	म	म	T．67D78	T．67S52
558．568． $578 \ldots \ldots$	T－13R04	H	$\dot{\sim}$	\％	मे	T－57S01
589． 590	T－13R04	\％	$\dot{4}$	\％	\％	T．57S01
600．．．．．．．．．．．．．．．．	T－13R05	4	4	\％	\％	T－13541
M601．．．．．．．．．．．	T－131403	H	น	\％	म	T－57S01

Tropex transformers will stay put on those tough replacement jobs．See page 32.

MODEL	Poner   Trans．	First Filter Choke	Second Filter Choke	Firs？   Audio   Trane．	Second Audio Trank．	Output Trans．
ZENITH RADIO CORP．（Contd）						
602，605， 608.	T－13R06	T－13C30	57	药	T－671）78	T－67S52
611，612．	T－13R06	T．13C30	－	2	T－67D78	T－67S52
615．．．	T－13R06	T－13C30	4	\＆	T－67D78	T． 675.52
616，618．	T． 131506	）	W	2	～	T－13S 11
622， 612.	T－13R04	T－13C30	B	H	T－33 191	T－57S01
705，706，70－．．．．	T－131203	埌	Ar	令	15	T．57S01
711．712．	T－131203	\％	＊	＊	A	T－57501
715．．．．．．．	T－13120	\＆	L	W	T－33491	T－57S01
722．725， 732	T．13R04	T－13C30	मे	今	T－33 491	T－57S01
750 ．	T． $13 \mathrm{H03}$	म	H	＋	$\stackrel{\text { H }}{ }$	T－57501
755， $756 \ldots$	T．13 H0：	－	\％	is	T． 33491	T－57S01
760．765，767．．．	T－1310：	み	）	2）	T－33A91	T－57S01
770，7708，775， 77513	T－131206	T．13C30	2	के	T． 33191	T－57S01
777．780，788．．．．．．	T－131200	T－13C30	मे	म	T－171301	T－13S41
805，806．．．．．．．．．	T－13142	\＆	＊	\＆	म	T．57S01
807，808．．．．．．．	T－13112	\％	$\xrightarrow{2}$	$\dot{\sim}$	$\stackrel{1}{2}$	T－57801
809， 81 ：（5611）．．．．	T－13 ${ }^{\text {d }} 12$	น	5	\＆	1	＇1＇57501
815 （5612） $825 \ldots$	T－13R12	\＆	5	\％	\＆	T． 57501
827，S827．．．．．．．．	T－13R12	$\xrightarrow{\sim}$	\＆	\＆	\％	T－57S01


MODEL	Power   Trans．	First Filter Choke	Second Filter Choke	First Audio Trane．	Second Audio Trans．	Output Trans．
ZENITH RADIO CORP．（Contd）						
829．S829（5701 H）．．	T－13R12	）	\％	मे	L	T－57801
835.	T－13H15	T．13C30	म	मे	T．171001	T－6559．4
845.	T．13R12	\＆	मे	St	is	T－57801
\＄847．850．	T．131212	\＆	＊	\＆	13	T－57501
860，861．864．	T－13R12	\％	）	is	\％	T－57S01
S870．（5702R）	T．13H12	\＆	垵	A 1	I	＇T－57S0］
S871（5703R）．．．．．．	T－13K12	\％	＊	is	15	T－57501
880 （1001）（10014）．	T－131215	T－13C30	S	虎	T－171301	T－6559：
908，909	T．13R12	8	Ir	3	\％	T－37501
935.	T．13R15	T．13C30	$\underline{\square}$	4	T．17101	T． 13511
915，950	T．13R12	I	a	＋	$v$	T－57S01
960，961．．．．	T－13R12	\＆	）	$\stackrel{*}{*}$	2	T－57501
970， 975.	T．13R04	T．13C29	\％	\％	T－33 191	T－6\％S0！
980，985， 990 （1201）	T－13K15	T－13C30	む	T． 29199	T－7．13．32	＇T－1．35 11
1105.	T－13R15	T－13C．30	\＆	$2{ }^{2}$	＇1－171301	T－13S． 91
1117，1161．．．．	T－13R12	$\stackrel{\square}{2}$	）	）	4	T－57501
1167．1170．．．．．．．．	T－13R12	น	沜	）	）	T．57501
2038．．．．．．．．．．．．．	T．56R05	T．13C30	H	น	is	T－67S52
2056，2056－1 ．．．．．．	T－13R0．4	\％	\＆	＊	\＄	T－57S01


$\stackrel{3 \text { Type }}{3 \text { Pri．}} \quad \begin{gathered}\text { 3C } \\ \text { Secondary } \\ \text { A．C．}\end{gathered}$
The choice of servicemen in all parts of the world because of the universal adaptability to receiver replacement，from both electrical and mechanical considerations．Designed to furnish plate and filament voltage requirements of amplifiers，receivers and exciter stages of transmitters．Adjustable mounting brackets Fig．3A permit flush，vertical or horizontal mounting．


$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Pri. } \\ & \text { V.A. } \end{aligned}$	A．C．   Load Volts	D.C.	Rect．Fil．	Fil．No． 1	Fil．No． 2	Fil．No． 3	$\begin{gathered} \text { Mtg. } \\ \text { Fig. } \end{gathered}$	Width	Depth	W．	D．		$\begin{aligned} & \text { Wt. } \\ & \text { Lbs. } \end{aligned}$
T－13R00	70	275－0－275	70	$5 \mathrm{~V}-3 \mathrm{~A}$	$5 \mathrm{~V}-5 \mathrm{~A} \mathrm{Ct}$ ．	$2.5 \mathrm{~V}-10.5 \mathrm{~A}$		3A	$21 / 4$	$2{ }^{13 / 16}$	$213 / 6$	33／6	$3{ }^{3} 8$	4
T－13R01	60	325－0－325	40	$5 \mathrm{~V}-3 \mathrm{~A}$	$2.5 \mathrm{~V}-4 \mathrm{~A} \mathrm{Ct}$ ．			3A	2！ 16	212	21／2	23／4	3	$31 / 4$
T－13R02	60	350－0－350	50	$5 \mathrm{~V}-3 \mathrm{~A}$	$2.5 \mathrm{~V}=7.25 \mathrm{~A} \mathrm{Ct}$			3	21.16	$21 / 2$	$2!/ 2$	$2{ }^{15} / 16$	3	314
T－13R03	75	350－0－350	70	$5 \mathrm{~V}-3 \mathrm{~A}$	$2.5 \mathrm{~V}-9 \mathrm{~A} \mathrm{Ct}$ ．			3A	$21 / 4$	$2{ }^{13} 16$	$213 / 16$	33／16	$33 / 8$	4
T－13R04	115	350－0－350	100	5V－3A	$2.5 \mathrm{~V}-12.5 \mathrm{~A}$（ t ．			3A	$2^{1 / 2}$	318	3！	$33 / 4$	33／4	51／4
T－13R05	110	350－0－350	70	5V－3A	$2.5 \mathrm{~V}-9 \mathrm{~A} \mathrm{Ct}$ ．	$2.5 \mathrm{~V}-3.5 \mathrm{~A} \mathrm{Ct}$		3 A	21.	$3{ }^{1} \times$	3118	31／2	$3{ }^{3} 4$	$51 / 4$
T－13R06	130	350－0－350	120	$5 \mathrm{~V}-3 \mathrm{~A}$	$2.5 \mathrm{~V}=12.5 \mathrm{~A} \mathrm{Ct}$	$2.5 \mathrm{~V}-3.5 \mathrm{~A}$ Ct．		3A	3	$33 / 4$	$33 / 4$	33／8	4！！	$61 / 2$
T－13R07	140	400－0－400	110	$5 \mathrm{~V}-3 \mathrm{~A}$	$2.5 \mathrm{~V}-15 \mathrm{~A} \mathrm{Ct}$ ．	$2.5 \mathrm{~V}-3.5 \mathrm{~A} \mathrm{Ct}$ ．		3A		$33 / 4$	$3^{3 / 4}$	31／2	$41 / 2$	63／4
T－13R08	105	350－0－350	90	5V－3A	$6.3 \mathrm{~V}-3.3 \mathrm{~A} \mathrm{Ct}$ ．	$2.5 \mathrm{~V}-6 \mathrm{~A} \mathrm{Ct}$ ．		3A	21.	31.8	$3^{1 / 8}$	31	$33 / 4$	$51 / 4$
T－13R09	160	375－0－375	180	$5 \mathrm{~V}-3 \mathrm{~A}$	$6.3 \mathrm{~V}-3.3 \mathrm{~A} \mathrm{Ct}$ ．	$2.5 \overline{\mathrm{~V}} \quad 6 \mathrm{~A} \mathrm{Ct}$ ．		$3 \bar{A}$	3	$33 / 4$	$33 / 4$	3910	$4^{1}{ }^{2}$	$71 / 2$
T－13R11	60	290－0－290	50	$5 \mathrm{~V}-3 \mathrm{~A}$	$6.3 \mathrm{~V}-2 \mathrm{~A} \mathrm{Ct}$ ．			3A	21，＜6	21.	2112	$23 / 4$	－	$31 / 4$
T－13R12	65	350－0－350	70	5V二3A	$6.3 \mathrm{~V}-2.5 \mathrm{~A} \mathrm{Ct}$ ．			3A	$2{ }^{16}$	$2!2$	$21 / 1 / 2$	35，16		$31 / 4$
T－13R13	90	350－0－350	90	5V－3A	$6.3 \mathrm{~V}-3.5 \mathrm{~A} \mathrm{Ct}$ ．			3A	$21^{1}$	$3{ }^{1} 8$	$31 / 8$	$3{ }^{3} 8$	$33 / 4$	$51 / 4$
T－13R14	115	350－0－350	120	$5 \mathrm{~V}-4 \mathrm{~A}$	$6.3 \mathrm{~V}-4.7 \mathrm{~A}$ Ct．			3A	$21_{2}$	$3{ }^{1}$	$3^{1 / 8}$	$31 / 2$	$38 / 4$	$51 / 4$
T－13R15	140	375－0－375	150	$5 \mathrm{~V}-4 \mathrm{~A}$	6．3V－5A Ct．			3A		$33 / 4$	$33 / 4$	$3^{3} 8$	41／2	61.
T－13R16	180	400－0－400	200	$5 \mathrm{~V} \quad 4 \mathrm{~A}$	$6.3 \mathrm{~V}-5.14 \mathrm{~A} \mathrm{Ct}$ ．			3A		$33 / 4$	$33 / 4$	$311 / 16$	41.2	$73 / 4$
T－13R17	85	300－0－300	60	5V 3A	$6.3 \mathrm{~V}-2.5 \mathrm{~A}$ Ct．	2．5V－7．5A Ct．		3A	$21 / 4$	$213 / 16$	$2^{13 / 6}$	$3{ }^{3} 8$	338	41／2
T－13R18	115	350－0－350	90	$5 \mathrm{~V}-3 \mathrm{~A}$	$6.3 / 2.5-3.5 \mathrm{~A} \mathrm{Ct}$	$2.5 \mathrm{~V}-9 \mathrm{~A}$ Ct．		3A	，	$33 / 4$	33／4	$31 / 4$	$4 \frac{1}{2}$	53／4
T－13R19	45	240－0－240	40	$5 \mathrm{~V}=2 \mathrm{~A}$	$6.3 \mathrm{~V}-2 \mathrm{~A} \mathrm{Ct}$.			3A	2！16	21.2	21／2	21.2	3	$21 / 2$
T－13R20	60	305－0－305	70	$5 \mathrm{~V}-2 \mathrm{~A}$	$6.3 \mathrm{~V}-3.5 \mathrm{~A} \mathrm{Ct}$ ．			3A	21／16	21.	$21 / 1 /$	35／6	3	$31 / 4$
T－14R35		$260^{\text {\＃}}$	60	For use w	ith vibrator opera	ting from 6 V bat	tery．	3 C	$21 / 16$	$2{ }^{16}$	$21 / 2$	278	31．	21／2
T－14R39		150 ＊		For use w	ith vibrator opera	ting from 6 V bat	tery．	2 B	$2^{3} 8$		$2 ? 8$	？	$2^{3} 8$	$11 / 4$
T－17R34	90	300－0－300	125	$5 \mathrm{~V}-2 \mathrm{~A}$	$6.3 \mathrm{~V}-4.8 \mathrm{~A} \mathrm{Ct}$ ．			2G	$211 / 16$	29，16	35，16	$3^{3} 8$	$4 \% 8$	$43 / 4$
T－37R70－		350－0－350		$5 \mathrm{~V}-2 \mathrm{~A}$	t．3V－10A Ct．	$5 \mathrm{~V}-2.5 \mathrm{~A} \mathrm{Ct}$		2G	$211 / 16$	3！向		378	4：8	63／4
For Sparto	$\text { on } \mathrm{Mo}$	dels 235， 589	9，593，	600 Series	，737， 931 and oth	r receivers using	Kellogg and		$V$ tubes					
T－56R01	60	325－0－325	70	$5 \mathrm{~V}-2 \mathrm{~A}$	$2.5 \mathrm{~V}-3 \mathrm{~A} \mathrm{Ct}$ ．	$\begin{aligned} & 1.5 \mathrm{~V}-1 \mathrm{~A} \\ & 1.5 \mathrm{~V}-4 \mathrm{~A} \end{aligned}$	$5 \mathrm{~V}=.5 \mathrm{~A} \mathrm{Ct} .$	2G	$2^{11 / 16}$	3	3\％	$3 \frac{5}{8}$	$45^{58}$	53
T－56R02－	70	350－0－350	70	$5 \mathrm{~V}-2 \mathrm{~A}$	$2.5 \mathrm{~V}-9 \mathrm{~A} \mathrm{Ct}$	$2.5 \mathrm{~V}-1.5 \mathrm{~A} \mathrm{Ct}$ ．		2G	$2^{11 / 16}$	$2^{13} 16$	3， 15	$3{ }^{5} 8$		6
T－56R03	85	350－0－350	105	$5 \mathrm{~V}-3 \mathrm{~A}$	$2.5 \mathrm{~V}-3 \mathrm{~A} \mathrm{Ct}$ ．	$2.5 \mathrm{~V}-1.75 \mathrm{~A} \mathrm{Ct}$	$\begin{aligned} & 1.5 \mathrm{~V}-5 \mathrm{~A} \\ & 1.5 \mathrm{~V}-1 \mathrm{~A} \end{aligned}$	2G	3	$22^{13} 16$	33,4	3916	$4{ }^{15}$	71／4
T－56R05	115	350－0－350	110	$5 \mathrm{~V}-3 \overline{\mathrm{~A}}$	$2.5 \mathrm{~V}-9 \mathrm{~A}$ Ct．	$2.5 \mathrm{~V}-3 \mathrm{ACt}$ ．	$2.5 \mathrm{~V}-3 \mathrm{~A} \mathrm{Ct}$	2G	3	$2{ }^{15}$	$33 / 4$		$4^{15,16}$	

[^15]This accurate and convenient table has been compiled to facilitate choosing the correct output transformer. Two types are offered for most tubes: the
universal type, which is designed to accommodate a wide range of tube and voice coil impedances, and the specific duty type.

Tube	Plate Volts	Bias   Volts	Plate   M. A.	$\begin{aligned} & \text { Plate } \\ & \text { Load } \\ & \text { Ohms } \end{aligned}$	Watts Output	Universal   Type TransFORMER	Specific DUTY TransFORMER
1 A5G	90	-4.5	4.0	25,000	. 115		T-14S83
1C5G	90	-7.5	7.5	8,000	. 240	T-13S38 $\dagger$	T-14S84
1D8GT . . . . . . . . . . . .	90	-9.0	5.0	12,000	. 200	T-13S38 $\dagger$	
1E7G (1 section)	135	-4.5	7.5	16,000	. 290	T-13S38 $\dagger$	
(2 sections, P-P)	135	-7.5	*3.5	24,000	. 575	T-13S38 $\dagger$	T-14S83
1F4, 1F5G	135	-4.5	8.0	16,000	. 310	T-13S38 $\dagger$	T-13S43
1 G5G	90	-6.0	8.5	8,500	. 250		T-14S84
$1 \mathrm{G6G}$	90	0	*1.0	12,000	. 675	$\text { T-13S38 } \dagger$	1-14, 84
1 J 5 G	135	-16.5	7.0	13,500	. 450	T-13S38 $\dagger$	
1J6G	135	0	*5.0	10,000	2.1	T-13S38 $\dagger$	T-81S01
1N6G 1Q5GT	90	-4.5	3.1	25,000	. 100		T-14S83
1Q5G, 1Q5GT	90	-4.5	9.5	8,000	. 270	T-13S38 $\dagger$	T-14S84
1S4	45	-4.5	3.8	8,000	. 065	T-13S38 $\dagger$	T-14S84
1T5GT	90	-6.0	6.5	14,000	. 170	T-13S38 $\dagger$	T-13S43
2A3 (Single Cl. A) ...	250	-45.0	60.0	2,500	3.5	T-13S42	
(P-P AB fixed bias)	300	-62.0	*40.0	3,000	15.0	T-13S41	T-58S72
(P-P AB self bias)	300	-62.0	*40.0		10.0	T-13S41 ${ }^{(C)}$	$\mathrm{T}-15 \mathrm{~S} 91)$
(P-P AB self bias).	30	-62.0	40.0	5,000	10.0	(С.Н.T., T-15S90)	
2A5 (Single Cl. A)	250	-16.5	34.0	7,000	3.1		T-13S37
(Single Cl. A) . . . . . .	285	-20.0	38.0	7,000	4.5	T-13S42	$\begin{aligned} & \text { T-13S37 } \\ & \text { T-13S3 } \end{aligned}$
$(\mathrm{P}-\mathrm{P} \mathrm{Cl} . \mathrm{A})$	250	-16.5	*34.0	14,000	6.2	$\begin{aligned} & \mathrm{T}-57 \mathrm{~S} 01 \S \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & \text { T-13S37 } \\ & \text { T-67S51 } \end{aligned}$
$\left(\mathrm{P}-\mathrm{P} \mathrm{Cl} \mathrm{Cl}^{\text {P }} \mathrm{AB}_{1}\right.$ ) . . . . .	315	-24.0	*31.0	10,000	11.0	T-13S41	T-75S75
(P-P Cl. ABz) . . . . .	375	-21.0	*27.0	10,000	19.0	T-13S41	T-75S75
3Q5GT (Fil. par.) ......	$90$	-4.5	9.5	8,000	. 270	T-13S38 $\dagger$	T-14S84
(Fil. series)	$90$	-4.5	7.5	8,000	. 230	T-13S38 $\dagger$	T-14S84
$4 \mathrm{~A} 6 \mathrm{G}$	90 250	-1.5	*1.1	8,000	1.0	T-13S38 $\dagger$	T-14S81
6A3.	250	-45.0	60.0	2,500	3.2	T-13S42	T-17S10
$6 \mathbf{A} 4$ $6 \mathrm{~A} 5 \mathrm{G}$	180	-12.0	22.0	8,000	1.4	T-13S38 $\dagger$	T-13S37
6A5G	250	-45.0	60.0	2,500	3.2	T-13S42	T-17S10
6A6	300	0	*17.5	8,000	10.0	T-13S41	T-67S48
6AC5G ${ }^{\text {P }}$ -	250	self	32.0	7,000	3.7	T-13S42	T-13S37
(P-P Cl. B) . . . . . . .	250	0	*2.5	10,000	8.0	T-13S41	T-75S75
6AL6G	250	-14.0	72.0	2,500	6.5	T-13S42	T-17S10
6B4G (Single Cl. A)	250	-45.0	60.0	2,500	3.2	T-13S42	T-17S10
(P-P AB fixed bias).	325	-68.0	*40.0	3,000	15.0	T-13S41	T-58S72
(P-P AB self bias)	325	-68.0	*40.0	5,000	10.0	T-13S41 ${ }^{\text {(C }}$	$\begin{gathered} \mathrm{T}-15 \mathrm{~S} 91) \\ \mathrm{T}-67 \mathrm{~S} 54 \end{gathered}$
				5,000	10.0	(C.H.T., T-15S90)	
6B5 . . . . . . . . . . . . . . . . .	300	0	42.0	7,000	4.0	T-13S42	T-13S37
6E6 . . . . . . . . . . . . . . .	250	-27.5	*18.0	14,000	1.6	T-57S01§	T-13S40
6 F 6	250	-16.5	34.0	7,000	3.1	T-13S42	T-13S37
6G6G	180	-9.0	15.0	10,000	1.1	$\begin{aligned} & \mathrm{T}-13 \mathrm{~S} 38 \dagger \\ & \mathrm{~T}-13 \mathrm{~S} 38 \dagger \end{aligned}$	
6G6G	135	-6.0	11.5	12,000	1.1		
6K6G	315	-21.0	25.5	9,000		$\begin{aligned} & \mathrm{T}-57 \mathrm{~S} 01 \S \\ & \mathrm{~T}-13 \mathrm{~S} 42 \end{aligned}$	T-13S37
6K6G	250	-18.0	32.0	7,600	3.4		
6 L 6 (Single Cl. A)	250	-14.0	72.0			T-13S42 $\begin{aligned} & \\ &(\mathrm{C} . \\ & \text { (C. } \\ & \text { (C. } \\ & \text { (C. } \\ & \text { (C. }\end{aligned}$	
(Single Cl. A)	320	-20.0	76.0	2,500	8.0		T-17S10
(P-P Cl. $\mathrm{A}_{1}$ )	270	-16.5	*67.5	5,000	18.5		(C.H.T., T-15S590)
(P-P Cl. AB ${ }_{1}$ )	319	-23.0	*50.0	4,300	25.0		
(P-P Cl. $\mathrm{AB}_{1}$ ) . . . . .	400	-25.0	*51.0	6,600			(C.H.T., T-15S91)
(P-P Cl. AB ${ }_{2}$ ) . . . . .	430	-20.0	*47.0	5,500	34.0		C.H T., T-15S92)
(P-P-Par. Cl. AB ${ }_{1}$ ). .	410	-28.0	*50.0	3,300	60.0		C.H.T., T-15S92)
							C.H.T., T-15S93)
(P-P-Par. Cl. AB2)...	430	-24.5	*52.0	1,900	120.0		T-17S16

[^16]| Tube | Plate Volts | Bias <br> Volts | Plate <br> M. A. | $\begin{aligned} & \text { Plate } \\ & \text { Load } \\ & \text { Ohms } \end{aligned}$ | Watts Output | UNIVERSAL Type TransFORMER | Spectric I)UTy TransFORMER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6N6G | 300 | 0 | 42.0 | 7,000 | 4.0 | T-13S42 | T-13S37 |
| 6N7. | 300 | 0 | *17.5 | 8,000 | 10.0 | T-13S41 | T-67S48 |
| 6 V6 (Single Cl. A) | 250 | $-12.5$ | 44.5 | 5,000 | 4.5 | T-13S42 |  |
| (Single $\mathrm{Cl} . \mathrm{A}_{1}$ ) | 315 | -13.0 | 34.0 | 8,500 | 5.5 | T-57S01§ |  |
| (P-P Cl. AB ${ }_{1}$ ) | 250 | -15.0 | *35.0 | 10,000 | 10.0 | T-13S41 | T-75S75 |
| (P-P Cl. AB ${ }_{1}$ ) | 306 | -20.0 | *50.0 | 8,000 | 15.0 | T-13S41 | $\begin{array}{r} \mathrm{T}-17 \mathrm{~S} 11 \\ \mathrm{~T}-15 \mathrm{~S} 90) \end{array}$ |
| 6Y6G | 135 | -13.5 | 58.0 | 2,000 | 3.6 | T-13S42 | T-17S10 |
| 6Y6G | 200 | -14.0 | 61.0 | 2,600 | 6.0 | T-13S42 | T-17S10 |
| 6Y7G | 180 | 0 | *3.8 | 7,000 | 5.5 | T-13S42 | T-67S48 |
| 6Y7G | 250 | 0 | *5.3 | 14,000 | 8.0 | T-57S01§ | T-13S40 |
| 6Z7G | 135 | 0 | *3.0 | 9,000 | 2.5 | T-13S38 $\dagger$ | T-81S01 |
| 627G | 180 | 0 | *4.2 | 12,000 | 4.2 | T-13S38 $\dagger$ | T-13S40 |
| 7A5 ................. | 110 | -7.5 | 35.0 | 2,500 | 1.4 | T-13S42 | T-17S10 |
| 7 B 5 | 100 | -7.0 | 9.0 | 12,000 | . 35 | T-13S38 $\dagger$ |  |
| $7 \mathrm{B5}$ | 250 | -18.0 | 32.0 | 7,600 | 3.4 | T-13S42 | T-13S37 |
| $\overline{7} \bar{C} 5$ | 250 | -12.5 | 45.0 | 5,000 | 4.5 | T-13S42 | T-89S74 |
| (P-P Cl. AB ${ }_{1}$ ) | 250 | -15.0 | *35.0 | 10,000 | 10.0 | T-13S41 | T-75S75 |
| 10 | 425 | -50.0 | 18.0 | 10,000 | 1.6 | T-57S01 § |  |
| 12 A 5 | 100 | -15.0 | 17.0 | 4,500 | . 8 | T-13S42 | T-13S39 |
| 12A5 | 180 | -25.0 | 45.0 | 3,300 | 3.4 | T-13S42 | T-13S39 |
| 12A7.............. | 135 | -13.5 | 9.0 | 13,500 | . 55 | T-13S38 $\dagger$ | T-13S43 |
| 18. | 250 | -16.5 | 34.0 | 7,000 | 3.0 | T-13S42 | T-13S37 |
| 19 | 135 | 0 | *5.0 | 10,000 | 2.1 | T-13S38 $\dagger$ | T-81S01 |
| 25Ā6........... | 95 | -15.0 | 20.0 | 4,500 | 9 | T-13S42 | T-13S39 |
| 25A7G | 100 | -15.0 | 20.5 | 4,500 | . 770 | T-13S42 | T-13S39 |
| 25AC5GT | 180 | 0 | 27.0 | 8,000 | 2.0 | T-13S38 $\dagger$ | 'T'-13S37 |
| (P-P Cl. B) | 180 | 0 | *2.0 | 4,800 | 6.0 | T-13S41 | T-67S54 |
| 25B6G. $\ldots$. | 105 | -16.0 | 48.0 | 1,700 | 2.4 | T-13S42 | T-14S82 |
| $25 \overline{\mathrm{~L} 6}$ | 110 | -7.5 | 49.0 | 1,500 | 2.1 | T-13S42 | T-14S82 |
| 31 | 135 | $-22.5$ | 8.0 | 7,000 | . 185 | T-13S42 | T-13S $\overline{37}$ |
| 32L7GT - . . | 110 | -7.5 | 40.0 | 2,500 | 1.5 | T-13S42 | T-17S10 |
| 33 | 135 | $-13.5$ | 14.5 | 7,000 | . 7 | T-13S42 | T-13S37 |
| $35 \mathrm{~A} 5-\mathrm{L}$ T | 110 | -7.5 | 40.0 | 2,500 | 1.5 | T-13S42 | T-17S10 |
| $\overline{3} \overline{5}$ L6GT | 110 | -7.5 | 40.0 | 2,500 | 1.5 | T-13S42 | T-17S10 |
| 38 | 135 | -13.5 | 9.0 | 13,500 | . 55 | T-13S38 $\dagger$ |  |
| 38 | 250 | -25.0 | 22.0 | 10,000 | 2.5 | T-13S38 $\dagger$ |  |
| 41 | 250 | -18.0 | 32.0 | 7,600 | 3.4 | T-13S42 | T-13S37 |
| 42 | 250 | -16.5 | 34.0 | 7,000 | 3.1 | T-13S42 | T-13S37 |
| 43 | 95 | -15.0 | 20.0 | 4,500 | . 9 | T-13S42 | T-13S39 |
| $4 \overline{5} \text { (Single Cl. A) }$ | $250$ | -50.0 | 34.0 | 3,900 | 1.6 | T-13S42 | T-89S74 |
| $\left(P^{P}-P\left(1 . A B_{y}\right)\right.$ | 275 | -56.0 | ${ }^{3} 36.0$ | 5,060 | 12.0 | T-13S41 | T-67S54 |
| 46 (Single Cl. A Triode) | 250 | -33.0 | 22.0 | 6,400 | 1.25 | T-13S42 | T-13S37 |
| $(\mathrm{P}-\mathrm{P} \text { Cl. } \mathrm{B})$ | 400 | 0 | *6.0 | 5,800 | 20.0 | T-13S41 | T-67S52 |
| 47. | 250 | -16.5 | 31.0 | 7,000 | 2.7 | T-13S42 | T-13S37 |
| (P-P Cl. A) | 250 | -16.5 | *31.0 | 14,000 | 5.4 | T-57S018 | T-67S51 |
| 48.................. | 96 | -19.0 | 52.0 | 1,500 | 2.0 | T-13S42 | T-14S82 |
| (P-P C'l. $\mathrm{A}_{1}$ Pent.) | 125 | -20.0 | *50.0 | 3,000 | 5.0 | T-13S41 | T-58S72 |
| 49 (P-P Cl. B) | 135 | 0 | *1.3 | 8,000 | 2.3 | T-13S38 $\dagger$ | T-14S81 |
| 50 (P-P Cl. A) | 450 | -84.0 | ${ }^{5} 55.0$ | 8,000 | 9.2 | T-13S41 | T-65S94 |
| 50 C 6 G | 135 | -13.5 | 58.0 | 2,000 | 3.6 | T-13S42 | T-17S10 |
| 50 L 6 GT | 110 | -7.5 | 49.0 | 1,500 | 2.1 | T-13S42 | T-14S82 |
| $\overline{5} 2$ | 110 | 0 | 43.0 | 2,000 | 1.5 | T-13S42 | T-17S10 |
| (P-P Cl. B) | 180 | 0 | *1.5 | 10,000 | 5.0 | T-57S018 | T-81S01 |
| 53 | 300 | 0 | ${ }^{1} 17.5$ | 8,000 | 10.0 | T-13S41 | T-67S48 |
| $59 \text { (Single ('. A Triode) }$ | 250 | -28.0 | 26.0 | 5,000 | 1.25 | T-13S42 | T-13S39 |
| (Single Cl. A Pent.) | 250 | -18.0 | 35.0 | 6,000 | 3.0 | T-13S42 | T-13S37 |
| (P-P Cl. B) . ... | 400 | 0 | *13.0 | 6,000 | 20.0 | T-13S41 | T-67S52 |
| 70L7-GT .......... | 110 | -7.5 | 40.0 | 2,000 | 1.8 | T-13S42 | T-17S10 |
| 71-A ........ | 180 | -40.5 | 20.0 | 4,800 | . 79 | T-13S42 | T-13S39 |
| (P-P Cl. A.) | 180 | -40.5 | *20.0 | 8,000 | 1.6 | T-13S38 $\dagger$ | T-33S99 |
| 79 | 180 | 0 | *3.8 | 7,000 | 5.5 | T-13S42 | T-67S48 |
| 89 | 250 | 25.0 | 32.0 | 6,750 | 3.4 | T-13S42 | T-13S37 |
| 182B 482B | 250 | -35.0 | 20.0 | 4,500 | 1.35 | T-13S42 | T-13S39 |
| $183483 \ldots$ | 250 | -65.0 | 20.0 | 4,500 | 1.8 | T-13S42 | T-13S39 |
| 950............... | 135 | -16.5 | 7.0 | 13,500 | . 450 | T-13S38 $\dagger$ |  |

* Zero signal per plate. †T-14 885 may he used when a transformer with leads is preferred to one with lugs. § T-57S02 may be userl when a transformer with leads is preferred to one with lugs.

even if you did, THORDARSON would give you complete protection against moisture, high humidity and salt air.
The TROPEX process was perfected for just that purpose. It thoroughly impregnates the coil against the corrosive effects of adverse weather conditions.
TROPEX is a special process which may be applied to any Thordarson open mounting type transformer or choke. It is especially adaptable to fine wire audio transformers and chokes but is not ordinarily recommended for power transformers nor for encased types.
The additional cost for THORDARSON TROPEX transformers is surprisingly small. The following table has been compiled to enable you to easily determine this price increase by referring to the weight of the transformer as listed.

When ordering TROPEX add an " X " to the regular type num. ber. For example, T-13S38-X is the TROPEX equivalent of T-13S38.

WEIGHT OF TRANSFORMER	ADD TO LIST PRICE
Up to $7 / 8 \mathrm{lb}$.	25 c
From 1 lb. to $17 / 8 \mathrm{lbs}$.	30 c
From 2 lbs. to $27 / 8 \mathrm{lbs}$.	50 c
From 3 lbs. to $47 / 8 \mathrm{lbs}$.	65 c
From 5 lbs. to $67 / 8 \mathrm{lbs}$.	75 c
Over 7 lbs.	13 c per lb.

TROPEX REPLACEMENT AUDIO TRANSFORMERS

Type   No.	Application
T-13A34-X	10,000 ohm plate to single grid
T-29A99-X	10,000 ohm plate to single grid
T-13A35-X	10,000 ohm plate to P.P. grids
T-33A91-X	10,000 ohm plate to P.P. grids
T-13A36-X	P.P. 10,000 ohm plates to P.P. grids
T-78D46-X	Single 30 to Class B 19, 1J6G, or 30's
T-17D01-X	Single 6F6 etc., to 2-6F6, etc.

## TROPEX FILTER CHOKES

TROPEX FILT 40 M.A. 530 ohms D.C.


## TROPEX OUTPUT TRANSFORMERS

T-13S37-X	Single 6.6\%, 42, 2A5 etc. to voice coil
T-13S39-X	Single 45, $1-2 \mathrm{~A} 5$ etc. to vo voice coil
T-13S40-X	P.P. $6 \mathrm{FF}, 42,2 \mathrm{~A} 5$ etc. to voice coil
T-33S99-X	Class B 19, 1J6G, 30 's etc. to voice coil
T-13S43-X	Single 1F4, 1D4, 1F5G etc. to voice coil
T-14S81-X	Single 6F6, 2A5 etc. or P.P. 45, 71A etc. to voice coil
-14S82-X	Single 25L6 etc. to voice coil

## TROPEX UNIVERSAL OUTPUT TRANSFORMERS

T-13S38-X T-57S01-X

Any single tube or P.P. tubes T-57S02-X
to voice coil
T-13S41-X
Any P.P. tubes to voice coil
T-13S42-X

Single 6Fo, 42, 2 Ab etc. to reice ingle 45, 1-2As etc. to woice coll P.P. $456,42,2 A 5$ etc. to voice coil Class B 19, $1 \mathrm{~J} 6 \mathrm{G}, 30$ 's etc. to voice coil Single 1F4, 1D4, 1F5G etc. to voice coil ingle 6F6, 2A5 etc. or P.P. 45, 71A etc. to voice coil Single 25L6 etc. to voice coil
-
THORDARSON ELECTRIC MFG. COMPANY 500 West Huron Street, Chicago

Distributed by

# THORDARSON Oscilloscope 

"Build It Yourself"

## Using the NEW 913 CATHODE-RAY tube



# A Complete Quality Instrument at Surprisingly Low Cost 

## All the Features Found in Higher Priced and Larger Oscilloscopes

1-Intensity control.
2-Focus control.
3-Horizontal centering control.
4-Vertical centering control.
5-Self-contained linear sweep covering frequencies from 20 to 12,000 cycles in 5 ranges.
6-Vernier control of sweep frequency.

7-Sweep lock-in control for absolute synchronization of sweep frequency with signal frequency.
8--Sweep amplifier stage.
9--Signal amplifier stage.
10-60 cycle and external sweep.
11-Provides for "Single" or "Double image" R. F. align ment.

12-Panel selector switch for lin. ear, 60 cycle or external sweep.
13-On and off panel switch for vertical amplifier.
14-Optional Thordarson panel with all control positions marked.
15-Optional lens for magnification of figure.

## THORDARSON <br> O S C ILLOSCOPE "Build It Yourself"

## thordarson foundation unit and accessories

Foundation Unit (Consists of punched chasssis, panel, light shield, etched panel. ventilated cabinet and 2 "' magnifying lens with retainer tring. ond complete circuit with constructional and operating dar belowl and one T. 74 C 30 filter choke are required.
thordarson transformers and chokes
T-92R33 Power Transformer

$\$ 12.50$
List
Price
-4.00
-1.50
.

T-74C30 Choke

## 913 Cathode ray oscilloscope

 CONTROLS



NOTE :The bronds and types specified in the parts list were used in the orig NOTE :The brands ond taboratory models. Ports of equivalent quality may be substituted excep where physical limitations prohibit.


Highest quality standard parts are used throughout. An accurately planned foundation unit with explicit instructions enable the builder to complete a perfectly engineered instrument, a professional job, at a surprisingly low cost. Small overall size- $63 / 4 \times 101 / 2 \times 5_{1}^{3} 6$ makes it a handy portable unit for the serviceman. It fits neatly into the amateur station cabinest or $51 / 4^{\prime \prime} \times 19$ relay rack. Large panel open.

USING THE OSCILLOSCOPE

ing with a funnel shaped shield tapering off to the tube, and a $2^{\prime \prime}$ magnifying lens produces a large. clear image. These practical features together with important technical advantages rate the Thordarson oscilloscope high in quality, dependable in performance and low in cost. Be satisfied with only the best. Get a Thordarson foundation unit and "build your own."

## THORDARSON HHFCHRIC MEC. CO. 500 W. HURON ST., GHIGAGO, M.


[^0]:    4 Type 6C5
    $\begin{array}{ll}1 & \text { Type } 6 \mathrm{~L} 7 \\ 1 & \text { Type } 6 \mathrm{H} 6\end{array}$
    ${ }_{2} \quad$ Type 6 H 66
    $\begin{array}{ll}2 & \text { Type 2A3 } \\ 1 & \text { Type } 80 \\ 1 & \text { Type } 5 Z 3\end{array}$

[^1]:    NOTE: The brands and types opecified in the parts list were used in the original laboratory models. Parts of equivaent quality may be subatituted except where physical

[^2]:    A. None required. Available upon special order from your diotributor. Special Note: The following substitutions are made by many eervice engineers becaune of
    preferences in mountinge and vizes: T-57S02, T-13S38, T-14S85 in place of T-57S01; T-57A41, T-13A35 in place of T-33A91; T-57A38, T-13A34 in place of T-29A99. -Disregerd 5 V winding.

[^3]:    For complete description of these and other Thordarson transformers and chokes see catalog No． 400 ．

[^4]:    A None required．Available upon special order from your distributor．Special Note：The following substitutions are made by many service engincera hecause of pre．
    

[^5]:    * Zero signal per plate. † T-14S85 may be used when a transformer with leads is preferred to one with lugs. \& T-57S02 may be used when a transformer with leads is preferred to one with lugs.

[^6]:    4 Type 6C5
    1 Type 6L7
    1 Type $6 \mathrm{H}^{2} 6$ or 6 A
    Type 80 or 6A3
    Type 80
    Type $5 Z 3$

[^7]:    

[^8]:    
     $\dagger \$ 10.00$ List．Order onlv from your distributor．

[^9]:    
    

[^10]:     preferences in mountings and siars：T－57S02，T－13S38，T－14S85 in place of T－57S01；T－57A41，T－13A35 in place of T－33A91；T－57A38，T－13A34 in place of T－24A94 Dieregerd 5 V winding．

[^11]:    A）None required．§ Available upon apecial order from your dietributor．Special Note：The following sulnstitutions are made by many service engineers because of preferences in mountinge and sizes：T－57S02，T－13S38，T－14S85 in place of T－57S01；T－57A41，T－13A35 in place of T－33A91；T－57A38，T－13A3A in plare of T－24．109

[^12]:    \＆None required．\＆Available upon ppecial order from your diatributor．Special Note：The following substitutions are made by inany service entineers becauke of preferences in mountinge and sizes：T－57S02，T－13S38，T－14S85 in place of T－57S01；T－57A 11 ，T－13A35 in place of T－33A91；T－57A38，T－13A34 in plaec of T－29A99．

[^13]:    
    

[^14]:     ferenece in mounting atul mizen．T－57

[^15]:    ＊D．C．volts to filter
    AUDIO TRANSFORMERS AND CHOKES LISTED ON PAGES 2 AND 3.

[^16]:    *ero signal per plate. †T-14S85 may be used when a transformer with leads is preferred to one with lugs. § T-57S02 may be used when a transformer with leads is preferred to one with lugs.

