Radionombohy rimivi Tecturcub Derion

Established

 1921

April, 1932

> In This Issue:

Permanent Magnet Dynamic Speakers Low Range Ohmmeter
Short Wave Receiver
Tube for Amateurs and Experimenters
Weighing with a Beam of Light
Complete Set Analyzer
Sectionalized Rectifiers
Filter Design by Graphs
Professional Seryice Combination
Radiart GXC2 Power Amplifier

Performance Curves and Schematics of:
All American Lyric S-6, Hammarlund Comet, Howard DL, Philco 70, Silver-Marshall J, Strom-berg-Carlson 22, United American Bosch 20, U. S. Radio Apex 7-A, Universal Auto Radio 70, WellsGardner Arcadia 50

Frequency Assignments of All Broadcast, Short Wave Relay, Police, and Visual Stations

As agraduate and a student under your superviston, I have only the highest man of ordinary intedion on ofter. Ang ham ladinary could not helj, but master it ly your methol of training सegs: Montclair Ave., Ietront, Muchigan

1 am a 1 roojectionist in charge at the Andelus theatres, recently completed. lol may quote mu at any thme or pane"
refer to me', if you wish, anyone who may be interested in this vast virgin tilld of all that pertains to ladion and its many allied industriess and 11 shall be delighted to champion honestly without any reservation, your comrs
g'w Wrodburn Ane. ('minnati, Ohio.

Tos study leadio under RR. L. Wuncan is (1) Liarn it properly and in a way that is thank you for your kind assistance and helphumess. F. F. Putce
 hoose Jute. susk. Cunada.

Although it has not yot beern a year since 1 enrolled for a course unter your excelent supervision, I have opened a Radio ful and profitable. ${ }^{\prime}$ 'opple come for my services frome verywhere

IN hundreds of Broadcasting Stations . . . in Kadio Manufacturing Plants throughout the country . . . in Radio Laboratories . . . in Wholesale and Retail Radio Stores... in Radio Servicing . . . in Sound Motion Picture activities ... on hundreds of ships that sail the Seven Seas . . . and even in the latest Television developments - you will find ambitious men who have been trained under my direct supervision.
I have devoted the last twelve years exclusively to the training of men for all branches of Radio. Employers in the Radio field recognize my methods of qualifying men and young men I have geared my training to the rapid growth and development of the Radio industry. My courses, text books, methods and equipment are based on years of practical experience.

And now, with the organization of my own independent Radio Training Schools, Inc., I am better prepared to help you than ever before, in training for the opportunities which the future of the ever-growing Radio industry will have to offer.

You too can train for Future Success

in Radio

The next few years will offer more prospects than ever before. The past several months offer positive proof that the trained man has the best chance. You still can get that training which will qualify you to gain a foothold in Radio. Study at home, in spare time, at minimum ex pense. Earn while you learn. Capitalize your idle and spare time and reap the benefits of a trained man in a progressive industry-Radio.

Make your Idle and Spare Time Profitable

My courses include everything needed for thorough training. There are no "extras" or "specials" to cost you extra money. The lessons, text books, methods, correcting, grading and returning of examinations, all the extra help and personal consultation you need . . . everything is provided until you complete your training.

RADIO TRAINING SCHOOLS, INC. 326 Broadway

New York City

MEN MAILED THEIR COUPON

And in addition you are assured practical as well as theoretical training.

Pick Your Branch of Radio
I amoffering four distinct Radio training courses:

1. Talking Motion Pictures-Sound
2. Radio and Broadcast Operating
3. Practical Radio Fngineering
4. Radio Service and Mechanics

Each course is complete. Each starts out with simple principles well within your grasp. Each is right up to date, including latest developments such as Television. Each prepares you for a good paying position. Each leads to a Certificate of Graduation.

Advanced Training for Radio Men

My Practical Radio Engineering Course is an advanced course intended for Radio men who want to go still higher. It provides that necessary engineering background which, combined with practical experience, qualifies the man for the topmost job.

Ask for Facts - Write Now

Let me sit down with you for an hour or two at your convenience. Let's go over the possibilities in Radio. This we can best do by means of the book I have just prepared. It covers the many branches of Radio and the kind of training required. Be sure to get your copy . . . it is free.

\qquad
\qquad
City State

From all over the world come letters like these

Excellent Program From Germany "'I have recelved with ample yolume Rome, Italy;
FYA. France, its three wave lengthe; G5SW. Eng
land; ZEESEN, Germary ; and half a dozen HKs land; ZEESEN, Germary; and falf a dozen HK s
from
South America, not forgeting VK2ME, Australla, 1 was particularly pleased with the excellen
reception
from Zeesen, Germany. reception from Zeesen, Germany ., New York City, N. Y.

Wished He Knew a Dozen

 Languages'II I knew a dozen different languages I could have poday tuned In a French station and stuck with it until 11:00 A. M. when they quit after playing a phonograph record entitled 'Marsellles.' Ir received
two Spanish atations I could not Identify Another station that bounded very much like Chinese, also went thy the board. I was well repaid for my patience when I tuned In 12 RO . Rome. Here was real recepclear as a bell, no fading and no static at all. I held this station from $1: 30$ to $3: 50$ and heard every word uttered althoush I did not understand much of the language. Therr signal was coming in very strong
untul $5: 30$ P. M.
S. M., McKeesport. Pa.

Indo-China Every Morning

"I get F31CD. Indo-China, every morning from six to eight our time and enjoy their program very in South America nightly.' F. L. F., Boise. Idaho

Italy and France All Week

-I have plcked up these two stations all last week
 volume. I was able to listen to a program from
England from 3:00 to $4: 30 \mathrm{P}$. M . Sure was good reception. I can also get Spanish and South American stations." A. M., Louisville, Ky.

Out of the maze of radio claims and counter-claims-one FACT is outstanding. The Scott All-Wave not only claims ability to tune in stations clear' round the world, but presents undeniable proof of its world-wide prowess. Then it crowns proof of range with proof of regularity-thereby establishing the Scott All-Wave as a 15-550 meter receiver you can depend upon to bring the whole world to your ears whenever you choose.
Here's the proof: During the last 8 months every bi-weekly broadcast (excepting three) put on the air by VK3ME, Melbourne, Australia- 9,560 miles from Chicago-has been received here, recorded on disc and verified. You can hear these recordings at the Scott laboratories any time you wish. You can also hear records made of reception from Japan, France, Germany, England, and South America; reception picked up by a Scott All-W ave right here in Chicago. In other words, you can have ACTUAL PROOF of this receiver's ability before you buy it! And if you came here to the Scott laboratories you would see why the Scott All-W ave can promise daily 'round the world performance-and why all Scott All-Wave Receivers are identical in capability.
The reason, of course, is advanced design and precision work-every step of the job actually done in the laboratory and to strict laboratory standards. And every receiver actually tested on reception from London and Rome before shipping!
Get the only receiver that can promise daily 'round the world performance, and live up to it. Write now for full particulars of the Scott All-Wave. You'll be agreeably surprised at the most reasonable price.

The E. IH. Scott Radio Laboratories, Inc.

(Formerly Scott Transformer Co.) 4450 Ravenswood Ave., Dept.CB42, Chicago, III.

THE E. H. Scott Radio Laboratories, Inc. 4450 Ravenswood Ave., Dept. CB42, Chicago, Ill Send me full particulars of the Scott All-Wave 15-550 Q Set Builder $\quad \square$ Dealer \square

Name
\qquad

In a class by itself -above comparison. The Scott All-Wave is the unchallenged champion of the radio world.

YOU cannot service a present day superheterodyne without the use of an Oscillator, and this Readrite Test Oscillator will fulfill your every need.

A sturdy modulated instrument, carefully made. Completely shielded with separate battery compartment. Furnished with $221 / 2 \mathrm{v}$. and 3 volt batteries and one ' 30 tube. Reads directly broadcast band (550$1500 \mathrm{k} . \mathrm{c}$.) and intermediate band (120-185 k. c.). Other i. f.'s obtained by sharp harmonics. Operating instructions attached in case cover with shielded wire leads.

Very compact, light weight and easy to handle. Comes in strong leatherette case
$6 \times 11^{1 / 2} \times 5^{1 / 2}$ inches. It is made not only of the best materials throughout and assembled for lasting durability, but its beautiful and trim appearance will be the pride of every serviceman to own and use.

One of the serviceman's most important instruments. Used to align r. f. gang condensers, locate defective r. f. transformers, adjust i. f. transformers, check oscillator stage, compare gain in tubes and determine the sensitivity of a receiver. Furnished with or without output meter built in the panel. A truly remarkable instrument at a remarkable price. Get yours today!

Write for Catalog of Servicing Instruments

READRITE METER WORKS

Established 1904
 You'll need for yourstart in thisgreat field. And because wecut out all useless the-
ory and onlygivethat which is necessary you get a practical training in 10 weeks.

TELEVISION and
 TAIKING PICTURES

And Television is already here! Soon there'll be a demand for THOUSANDS of TELEVISION EXPERTS! The man who learns Television now can have a great future in this great new field. Get in on the ground-floor of this amazing new Radio development! Come to COYNE and learn Television on the very latest, new-
est Television equipment. Talking Picture and Public Address Systems offer opportunities to the Trained Radio Man. Here is a great.new Radio field just beginning to grow! Prepare NOW for these wonderful opportunities! Learn Radio Sound Work at COYNE on actual Talking Picture and Sound Reproduction equipment.

You get Free Employment Service for Life. And don't let lack of money stop you. Many of our students make all or a good part of their living expenses while going to school and if you should need this help just write to me. Coyne is 32 years old! Coyne Training is tested-proven beyond all doubt. You can find out everything absolutely free. Just mail coupon for my big free book!

B. C. Lewis, Pres. RADIO DIVISION
 Founded 1899 COYNE Electrical School

All Practical Work At COYNE In Chicago

ALL ACTUAL, PRACTICAL WORK. You build radio sets, install and service them. You actually operate great Broadcasting equipment. You construct Television Receiving Sets and actually transmit your own Television programs over our modern Television equipment. You work on real Talking Picture machines and Sound equipment. You learn Wireless Operating on actualCode Practice apparatus. We don't waste time on useless theory. We give you the practical training you'll need-in 10 short, pleasant weeks.

Mail CouponToday for All the Facts

H. C. LEWIS, President
 Radio Division, Coyne Electrical School
 500 S. Paulina St., Dept. 42-5A, Chicago, I11.

Dear Mr. Lewis: - Send me your Big Free Radio Book, and all details of your Special Offer.
\qquad

Radio Call Book Magazine
 AND TECHNICAL REVIEW
 Established 1921

(ieo. H. Scheer. Jr., Editor
E. H. Peterson, Service Depl.
APRIL, 193:

508 So. Dearborn St., Chicago, Ill. Member Audit Bureau of Circulations

Table of Contents

Philco 70 22
U. S. Broadcasting Stations. 6-9
U. S. Broadcasting Stations by Frequencies 10
List of Police Broadcasting Stations 11
U. S. Visual Broadcasting Sta- tions 11
U. S. Relay Broadcasting Sta- tions 11
Simple Time Chart 11
Foreign Broadcasting Stations.12-13
Foreign Short Wave PhoneStations14
Permanent Magnet Dynamic Speakers 15-16Tube for Amateurs and Ex-perimenters17
Receiver Performance CurveSection18
All American Mohawk, Lyric S-619
Hammarlund Comet 20
Howard DL 21
Silver-Marshall JHammarlund Comet
23
23Stromberg-Carlson $22 \ldots$24
Bosch 20 25
U. S. Radio, Apex 7-A. 26
Universal Auto Radio 70. 27
Wells-Gardner, Arcadia 50 28
Service and Repair Section. . 29-30Jewell Professional ServiceCombination30-31
Low Range Ohmmeter. 31
Sectionalized Rectifiers 32-33
4 Complete Set Analyzer. 34-35
Weighing with a Beam of Light 35
Radio Engineering Section. 36-3717 Short Wave Receiver38
Eveready 239 Characteristics. 38
Power Amplifier Systems. 39
Receiver Voltage Analyses. 41-42
)
New Products Section $43-45$

Editorial

Our attention has been called a number of times to a very lamentable condition existing in the service field. Its prevalence is now assuming almost alarming proportions, and we wish to invite the cooperation of our service men readers with the sincere hope that the thing may be completely wiped out. We refer to the self-termed "service man'" who should in no way be allowed the name. He is the man who, when he cannot find the trouble in a receiver, makes alterations, etc., to give evidence of having repaired the receiver so that he may collect a fee, without having corrected the real trouble which eluded him. Or this type of individual might correct a small fault, and charge for additional service work not performed or unnecessarily performed. Such startling instances have reached our publication recently, that we felt that we could not pass up the criticisms without calling them to the attention of our readers with the hope that none of them can be placed in this category. Our every effort has been to give all of the information possible to the service man so that his trouble shooting and service work might be facilitated and done in the proper manner. As is usually the case, the minority is causing a reflection on the majority who are lionest workers and do not attempt to racketeer. Will you cooperate with us?

We feel greatly pleased to give our readers the first treatise on Permanent Magnet Dynamic Speakers by an eminent authority on the subject. A complete discussion will be found on pages 15 and 16 with comparative data and an illustration of this latest development.

American Broadcasting Stations

Station assignments shown in the following pages were made by the Federal Radio Commission. This list is revised from issue to issue and is therefore up-to-the-minute. Initials such as E, C, M, and P denote Eastern, Central, Mountain and Pacific time.

KABC- 1420 kc, San Antonio, Texas, Alamo Broadcasting Co, 100 w ,
KARK- 890 kc , Little Rock, Ark., Arkansas Radio \& Equip. Co., 250 w .
KBPS - $1420 \quad \mathrm{kc}$, Portland, Ore., Benson Polytechnic School, $100 \mathrm{w}, \mathrm{P}$
KBTM-1200 ke, Paragould, Ark., Beard's
Temple of Music, 100 w , C.
KCRC-1370 ke, Enid, Okla., Champlin Refining Co., $100 \mathrm{w}, \mathrm{C}$
KCRJ- 1310 kc , Jeronie, Ariz., C. C. Robinson, 100 w .
KDB- 1500 kc . Santa Barbara, Calif., Santa Barbara Broadcasters, Ltd., 100 w , P.
KDFN- 1210 kc , Casper, Wyo., D. L. Hathaway, 100 w . P
KDKA-980 kc, Pittsburgh, Pa., WestingKiolR 1210 kc , Devils Lake, N. D., KDLR, Inc., 100 w .
KDYi-1290 kc, Salt Lake City, Utah, Intermountain Broadeasting Corp., 1000 KEC․ .
KECA- 1430 kc, Los Angeles, Calif., Earle C. Anthony, Inc., $1000 \mathrm{w}, \mathrm{P}$.

KELW— 780 kc , Burbank, Calif., Magnolia Park, Ltd., 500 w, P.
KERN-1200 ke, Santa Maria, Cal., The KEX Bakersfield Bdestg. Co., 100 w, P. KEX- 1180 kc. Portland, Ore., Western KFAB-770 lic, Lincoln, Nebr., KFAB Broadeasting Co., 5000 w , C
KFAC- 1300 kc , Tos Angeles, Calif., L. A. Bdestg. Co., $1000 \mathrm{w}, \mathrm{P}$
KFBB- 1280 kc , Great Falls, Mont., Buttrey Broadcast, Inc., 100 , M.
K「BK- 1310 lec, Sacramento, Calif., James MeClatchy Co., $100 \mathrm{w}, \mathrm{P}$.
KFBL- 1370 kc, Everett, Wash., Leese 3ros., $50 \mathrm{w}, \mathrm{P}$.
KFDM-560 kc, Beaumont, Tex., Magnolia 1'etroleum Co., 500 w , C.
KFIY-550 kc. Brookings, S. D., State College, 500 w , C.
KFEL-920 ke, Denver, Colo., Eugene P. O Fallon, Inc., $500 \mathrm{w}, \mathrm{M}$.
KFEQ-680 kc, St. Joseph, Mo., Scroggin \& Co., $2500 \mathrm{w}, \mathrm{C}$.
KFGQ- 1310 kc l loone, Iowa, Boone Biblical College, $100 \mathrm{w}, \mathrm{C}$.
KFil- 1300 ke, Wichita, Kan., Radio Sta-
tion KFH Co., $1000 \mathrm{w}, \mathrm{C}$ tion KFH Co., $1000 \mathrm{w}, \mathrm{C}$.
KFI- 640 kc , Los Angeles, Calif., Earl C.
 Broadcasting Corp, 100 w , P .
KFIU- 1310 kc, Juneau, Alaska, Alaska
Elec. Light

KNJD- 1200 kc , Marshalltown, Iowa, Marshall Electric Co., 100 w , C.
KFJF-1480 kc, Olklahoma City, Okla., National Radio Mfy. Co.. 5000 w , C.
KFJI- 1210 kc , Klamath Falls, Ore., KFJI Broadcasters, Inc., $100 \mathrm{w}, \mathrm{P}$.
KFJv-1370 ke, Grand Forks, N. D., Uni-KF.JR-1300 kc, Portland, Ore., Ashley C. Dixon. KFJR, Inc.. $500 \mathrm{w}, \mathrm{P}$.
KFJY- $1310 \mathrm{kc}, \mathrm{Ft}$. Dodge, Iowa, Cedar Rapids Broadcast Co., w, C.
KFJZ- 1370 kc, Ft. Worth, Texas, Ralph K. Bishop, $100 \mathrm{w}, \mathrm{C}$.

K FKA 8 80 kc, Greeley, Colo., Mid-West-
KFKB - 1050 kc, 500 Wilford, ${ }^{\text {M. }}$ Kan., KFKB Brdestg. Assn., 5000 w , C.
KFKU- 1220 kc , Lawrence, Kan., University of Kansas, 500 w. C.
KFKX-See under KYW.
KFLV-1410 ke, Rockford, Ill., Rockford Broadcasters, Inc., $500 \mathrm{w}, \mathrm{C}$. Texas, Geo. KOy Clough, $100 \mathrm{w}, \mathrm{C}$.
KFMX- 1250 kc , Northfield, Minn., Carle-KFNF- College, 1000 w , C .
 KField Seed Co., 500 w, KFOX-1250 kc, Lon

FOX-1250 kc, Long Beach, Calif., NichKFPL, -1310 kc , Dublin, Texas, C. C. Bax-
ter, 100 w, C. KFPM- 1310 kc , Greenville, Texas, The New Furniture Co., 15 w , C.
KFPW-1340 kc, Ft. Smith, Ark., John Brown Schools, $50 \mathrm{w}, \mathrm{C}$.

KFPY-1340 kc, Spokane, Wash., Symons Broadcasting Co., $1000 \mathrm{w}, \mathrm{P}$.
KFQD- 1230 kc , Anchorage, Alaska, An-

KFQW 1420 kc, Seattle, Wash., KFQW,
K
KFRC-610 kc, San Francisco, Calif., Don
KFRU-630 kc. Columbia, Mo., Stephens
College, 500 w , C.
$\underset{\text { Radio Corp., } 500 \mathrm{w}, ~}{\mathrm{~K}} \mathrm{P}$. 60 , Calif., Airfan
KFSG- 1120 kc , Los Angeles, Calif., Echo
$\underset{\text { Ford, }}{\mathbf{K F U}} \mathbf{1 2 9 0} \mathrm{wc}, \mathrm{C}$ Galveston, Texas, W. H.
KFUO-550 ki St
KFUO-550 ke. St. Louis, Mo., Concordia
KFUP-1310 kc Denver, Colo,
KFUP-1310 kc, Denver, Colo., Fitzsim-
KFVD- 1000 kc Culver City Cal
KFVD- 1000 kc, Culver City, Calif., Los
Angeles Broadcasting Co., 250 w ,
KFVS-1210 kc, Cape Girardeau, Mo.,
1 F
KFWB- 950 kc , Hollywood, Calif., Warner
Bros. Broad
KFWF-1200 ke, St. Louis, Mo., St. Louis
KFWI- 930 kc san F
KFWI-930 ke, San Francisco, Calif., Radio
KFXD- 1420 kc , Nampa, Idaho, Frank E.
KFXD- 1420 kc
Hurt,
100
w
KFXF--920 kc, Denver, Colo., Colorado Ra-
dio Co., $500 \mathrm{w}, \mathrm{M}$
KFXJ- 1310 kc , Edgewater, Colo., Western
KFXM Brand
KFXM- 1210 kc, San Bernardino, Calif., KFII- 1310 kc , Oklahoma City, Okla., Ex KFXIR- 1310 kc, Oklahoma City, Okla., Ex-
change Avenue Baptist Church, 100 w, C . KFXY- 1420 kc, Flagstaff, Ariz., Mary M KFXY-1420 kic, Flagstaff, Ariz., Mary M. KFIO-14, $100 \mathrm{~W}, \mathrm{M}$.
KFYO- 1420 kc , Abilene, Texas, Kirksey
KFYR-550 kc, Bismarck, N. D., Meyer
Broadcasting Co., $1000 \mathrm{w}, \mathrm{C}$. Broadcasting Co., 1000 w , C
KGA-1470kc, Spokane, Wash, Northwest Broadcasting system, Inc., b000 w, 1
KGAR- 1370 kc , Tucson, Ariz., Tucson Motur Service Co., $100 \mathrm{w}, \mathrm{M}$
KGB- 1330 kc , San Diego, Calif., Don Lee,
KGinU- 900 k, , Ketchikan, Alaska, Alaska
Radio \& Service Co., 500 w. Radio \& Service Co., 500 w
KGBX- 1310 kc , St. Joseph, Mo., KGBX, KGBZ- 930 kc , York, Nebr., Geo. R. Miller, 500 w , C
KGCA-1270 kc, Decorah, Iowa, Chas. W Greenley, $50 \mathrm{w}, \mathrm{C}$.
KGCR- 1210 kc , Watertown. S. D., Greater Kampeska Radio Corp., 100 w . KGCU- 1240 kc . Mandan, N. D., Mandan Radio Association, $250 \mathrm{w}, \mathrm{M}$.
KGCX-1310 kc, Wolf Point, Mont., First State Bank of Vida, $100 \mathrm{w}, \mathrm{M}$
KGDA-1370 Kc, Mitchell, S. D., Mitchell KGDE- 1200 kc , Fercus Falls, Minn., Jaren Drug Co., 100 w, C.
KGDM- 1100 ke, Stockton, Calif., E. F. Peffer, 250 w .
KGDY- 1200 kc , Huron, S. D., J. A. Loesch, $15 \mathrm{w}, \mathrm{C}$.
KGEF- 1300 kc , Los Angeles, Calif., Trinity Methodist' Church, 1000 w, P.
KGEK- 1200 kc , Yuma, Colo., Beehler Elec. Equip. Co., 100 w, M.
KGER- 1360 kc , Long Beach, Calif., Consolidated Bdestg. Corp., 1000 w, P
KGEW-1200 kc, Ft. Morgan, Colo., City of Ft. Morgan, $100 \mathrm{w}, \mathrm{P}$.
KGEZ-1310 kc, Kalispell, Mont., Donald C. Treloar, $100 \mathrm{w}, \mathrm{M}$.

KGFF-1420 kc, Shawnee, Okla., KGFF Bdestg. Corp., $100 \mathrm{w}, \mathrm{C}$.
KGFG- 1370 kc , Oklahoma City, Okla., Ok lahoma Broadcasting Co., Inc., $100 \mathrm{w}, \mathrm{C}$. KGFI- 1500 kc, Corpus Christi, Texas,
Eagle Broadcasting Co., 100 w , C.
KGFJ-1200kc, Los Angeles, Calif., Ben S. McGlashan, 100 w , P.
KGFK - 1500 kc , Moorhead, Minn., Red River Broadcasting Co., Inc., 50 w , C.
KGFL-1370 kc, Raton, N. Mex., KGFL,
Inc., $50^{-} \mathrm{w}, \mathrm{M}$.

KGFW-1310 kc, Kearney, Neb., Central Neb. Bdestg. Co., 100 w
KGFX- 580 kc , Pierre, S. D., Dana McNeil 200 w ,
KGGC-1420 kc, San Francisco, Calif
Golden Gate Broadcasting Co., 100 w , P
KGGF-1010 ke, South Coffeyville, Okla.
Powell \& Platz, 500 w
KGGM-1230 kc, Albuquerque, N. Mex.
KGHF- 1320 kc , Pueblo, Colo, Ritchie \&
KGHF-1320 kc , Pueblo, Colo, Ritchie \&
KGHI-1200 ke, Little Rock, Ark., O. A.
Kook, 1000 w .
KGHL- 950 kc , Billings, Mont., Northwest
KGIQ- 1320 kc , Twin Falls, Idaho, Radio Broadcasting Corp.
KGIR- 1360 kc , Butte, Mont., KGIR, Inc., 500 w , M.
KGIW-1420 kc, Trinidad, Colo., Leonard KGiX-1420
Heaton, 100 w, Las Vegas, Nev., J. M
KGIZ- 1500 kc , Grant City, Mo., Grant City Park Corp., 100 w , C.
KGKH- 1500 ke, Tyler, Tex., Tyler ComKGKI Knc 100 w kc , San
KGKO-570 kc, Wichita Falls, Tex., Wichita Falls Proadcasting Co., 250 w , C. KGKX- 1420 kc , Sandpoint Idaho, W. W von Cannon, 100 w , l^{\prime}.
KGKY- 1500 kc , Scottsbluff, Nebr., Hilliard , 100 w ,
KGMB- 1320 kc , Honolulu, Hawaii, HonoGumboadcasting Co., $250 \mathrm{w}, \mathrm{P}$.
KGMP-1210 kc, Elk City, Okla., Bryant \& Elec. Co., 100 w. C.
KGNF- 1430 kc. North Platte, Nebr., H. L. Spencer, $500 \mathrm{w}, \mathrm{M}$.
KGNo-1210kc, Dodge City, Kans., Dodge City Broadcasting Co., Inc.,
KGO-790 Kc, San Francisco, Calif., Na-KGiRs- 1410 kc , Amarillo, Texas, Gish Ra-KGRS- 1410 ke, Amarillo
KGU- 940 kc , Honolulu, Hawaii, Marion Kgulrony, Advertising Publ. Co., 1000 w . KGVO- 1420 kc, Missoula, Mont., Mosby's, inc.
KGW-620 kc, Portland, Ore., Oregonian KGY-1200 ${ }_{100}$ we, Lacey, Wash., KGY, Inc., KHJ-- 900 kc , Los Angeles, Calif., Don Lee,
KHQ- 590 kc, Spokane, Wash., Louis Was-K1CK- 1420 kc , Red Oak, Iowa, Red Oak
KiD- 1320 kc, Idaho Falls, Ida., KID KDDO- 1350 kc , Boise, Idaho, Boise Broadcasting Station, $1000 \mathrm{w}, \mathrm{P}$
Kit-1310 kc, Yakima, Wash., C. E. Hay-
KJBS-1070 kc, San Francisco, Calif., Juius Brunton \& Sons Co., 100 w, P. KJR- 970 kc, Seattle, Wash, Northwest
Broadcasting System, Inc., $5000 \mathrm{w}, \mathrm{P}$. KLCN- 1290 kc, Blytheville, Ark., C. L. Lintzenich, 50 w, C.
KLO- 1400 kc Ogden, Utah, Interstate Bdestg. Corp., $500 \mathrm{w}, \mathrm{M}$.
KLPMI - 1420 kc , Minot, N. D., John B.
Cooley, 100 w , C.
ILLRA-1390 kc, Little Rock, Ark., Arkansas Broadcasting Co., 1000 w.
KLS-1440 kc, Oakland, Calif., Warner Bros., $250 \mathrm{w}, \mathrm{P}$
KLX- 880 kc , Oakland, Calif., Tribune Pub. Co., 500 w, P.
KLZ-560 kc, Denver, Colo., Reynolds Radio Co., Inc., 1000 w, M.
KMA- 930 kc , Shenandoah. Iowa, May Seed KMAC-1370 ke, San Antonio, Texas, W W. McAllister, 100 w , C.

KMBC-950 Kc, Kansas City, Mo., Midland
KMED-1310 ke, Medford, Ore., Mrs. W. J. Virgin, 100 w ,
KMJ- 1210 kc, Fresno, Calif., J. McClatchy
Co., 100 w, .
KMLB- 1200 kc , Monroe, La., Liner's

Bdestg. Station, Inc., $100 \mathrm{w}, \mathrm{C}$.

KMMJ-740 kc, Clay Center, Neb., The M. KMO- 860 kc , Tacoma, Wash., KMO, Inc., $500 \mathrm{w}, \mathrm{P}$.
KMOX-1090 kc, St. Louis, Mo., Voice of St. Louis, Inc., $50,000 \mathrm{w}, \mathrm{C}$.
KMPC-710 kc, Beverly Hills, Calif., R. S. Macmillan, 500 w . P.
KMTR- 570 kc , Los Angeles, Calif., KMTR Radio Corp., $500 \mathrm{w}, \mathrm{P}$.
KNX- 1050 kc, Hollywood. Calif., Western Broadcast Co., sonw,
KOA-830 kc, Denver, Colo., National
KOAC- 550 kc Corvallis, Ore, Oregon Stat Karicultural College, 1000 w. P.
KOB- 1180 ke, State College, N. M. N. M.
KOCW-1400 ke Chickasha Okla Okla KOCW-1400 kc, Chickasha, Okla., Okla-KOH- 1370 kc, Reno, Nevada, Jay Peters
KOIL- 1260 lkc , Council Bluffs, Iowa, Mona Motor Oil Co., 1000 w , C
KOIN-940 kc, Portland, Ore., KOIN, Inc., $1000 \mathrm{~W}, \mathrm{P}$
KOL-1270 kc, Seattle, Wash., Seattle Broadcasting Co., $1000 \mathrm{w}, \mathrm{P}$
KOMO-920 kc, Seattle, Wash., Fisher's Blend Station, Inc., $1000 \mathrm{w}, \mathrm{P}$.
KONO- 1370 kc, San Antonio, Tex., Mission Koos- 1370 kc Marshfield, Ore., H. H Hanseth, Inc., 100 w , \mathbf{P}.
KORE- 1420 kc , Eugene, Ore., Eugene Broadcast Station, $100 \mathrm{w}, \mathrm{P}$.
KOY-1390 kc, Phoenix, Ariz., Nielsen KPCB- 650 kc , Seattle, Wash., Queen City Broadcasting Co., $100 \mathrm{w}, \mathrm{P}$.
KPJM- 1500 kc , Prescott, Ariz., A. P. Miller, $100 \mathrm{w}, \mathrm{M}$.
KPO-680 kc, San Francisco, Calif., Hale
KPOF- 880 kc , Denver, Colo., Pillar of Fire, Inc., $500 \mathrm{w}, \mathrm{M}$.
KPPC-1210 kc, Pasadena, Calif., Pasadena, Presbyterian Church, $50 \mathrm{w}, \mathrm{P}$.
KPQ-1500 kc, Wenatchee, Wash., WesBroadcast
KPRC-920 kc, Houston, Texas, Houston KV-1380 kc, Pittsburgh, Pa., KQV $\mathbf{Q V}-1380$ kc, ${ }^{\text {Pitts }}$
Bdestg. Co., $500 \mathrm{w}, \mathrm{E}$.
K $\underset{\text { Agric. }}{ } \mathbf{1 0 1 0}$ Foundation, $500 \mathrm{w}, \mathrm{P}$.
KRE- 1370 kc, Berkele ${ }^{\text {¹, }}$ Calif., First Con gregational Church, $100 \mathrm{w}, \mathrm{P}$.
KREG- 1500 kc , Santa Ana, Calif., PacificWestern Broadcasting Federation. 100 w ,

KRGV-1260 kc, Harlingen, Texas, KRGV,
KRGV., 500 w .
KRLD- 1040 kc , Dallas, Texas, KRLD, Inc., $0.000 \mathrm{w}, \mathrm{C}$.
KRMD- 1310 kc , Shreveport, La., Robert M. Dean, $50 \mathrm{w}, \mathrm{C}$.
$\underset{\text { Kional Broadcasting Corp, Calif., Educa- }}{\text { KRO }}$ tional Broadcasting Corp., $500 \mathrm{w}, \mathrm{M}$.
KRSC- 1120 kc , Seattle, Wash., Radio Sales Corp., $50 \mathrm{w}, \mathrm{P}$.
KSAC-580 kc, Manhattan, Kan., Kansas State Agricultural College, 500 w , C.
KSCJ- 1330 kc, Sioux City, Iowa, Perkins Bros. Co., 1000 w, C.
KSD- 550 kc , St. Louis, Mo., Pulitzer Pub. Co., $500 \mathrm{w}, \mathrm{C}$.
KSEI-900 kc, Pocatello, Idaho, Radio Service Corp., $250 \mathrm{w}, \mathrm{M}$.
KSL- 1130 kc , Salt Lake City, Utah, Radio Service Corp., 5000 w , M.
KSO- 1380 kc , Clarinda, Iowa, Iowa Bdcstg. Co., $500 \mathrm{w}, \mathrm{C}$.
KSOO-1110 kc, Sioux Falls, S. D., Sioux Falls Broadcasting Assn., 2000 w , C.
KSTP— 1460 kc , St. Paul, Minn., National Battery Broadcasting Co., $10,000 \mathrm{w}, \mathrm{C}$.
KTAB- 560 kc , San Francisco, Calif., Assoiated Broadcasters, 1000 w, P
KTAR-620 kc, Phoenix, Ariz., KTAR Broadcasting
KTAT-1240 kc, Ft. Worth, Tex., S. A. T. Broadcasting Co., 1000 w, C
KTBR- 1300 kc , Portland, Ore., M. E. Brown, 500 w , P .
KTBS- 1450 kc , Shreveport, La., Tri-State Broadcasting Co., 1000 w ,'E.
KTFI-1320 kc, Twin Falls, Idaho, Radio Broadcasting Corp., $250 \mathrm{w}, \mathrm{M}$
KTHS- 1040 kc, Hot Springs, Ark., Chamber of Commerce, $10,000 \mathrm{w}$, C
'KTLC-1310 kc, Houston, Tex., Houston Broadcasting Co., $100 \mathrm{w}, \mathrm{C}$
KTM-780 kc, Los Angeles, Calif., Pickwick
KTRH- 1120 kc , Houston, Tex., Rice Hotel,

KTSA- 1290 kc , San Antonio, Texas, Lone Star Broadcast Co., 1000 w, C.
KTSL- 1310 kc , Shreveport, La., Houseman Sheet Metal Works, Inc., 100 w, C.
KTSM- 1310 kc , El Paso, Tex.; W. S. Bled-KTw- 1220 kc . Seattle, Wash., First Pres Kyterian Church, $1000 \mathrm{w}, \mathrm{P}$.
KUJ- 1370 kc , Walla Walla, Wash., KUJ, Inc., $100 \mathrm{w}, \mathrm{P}$.
KUOA- 1390 kc, Fayetteville, Ark., University of Arkansas, 1000 w , C
KUSD- 890 kc , Vermilion, S. Dak., University of South Dakota, 500 w , C.
KUT- 1500 kc, Austin, Tex., KUT Bdestg Co., 100 w, C.
KVi-760 kc, Tacoma, Wash., Puget Sound
KVL-1370 kc, Seattle, Wash., KVL, Inc. KVL- 1370
100 w, P .
KVOA- 1260 kc , Tucson, Ariz., R. M. Ri-
culfi, 500 w .
KVOO- 1140 kc , Tulsa, Okla., Southwestern Sales Corp., $5000 \mathrm{w}, \mathrm{C}$.
KVOR- 1270 kc , Colorado Springs, Colo
KVos- 1200 kc , Bellingham, Wash., KVOS, EWCR 1310
KWCR-1310 kc, Cedar Rapids, Iowa.
KWEA-1210 kc, Shreveport, La., Hello World Broadcasting Corp., $100 \mathrm{w}, \mathrm{C}$.
KWG- 1200 kc, Stockton, Calif., Portable Wireless Tel. Co., 100 w , P
KWJJ-1060 ke, Portland, Ore., KWJJ Broadcasting Co., Inc., 500 w , P
KWK- 1350 ke, Kirkwood, Mo., Thos. Patrick, Inc., 1000 w , C.
KWKC-1370 kc. Kansas City, Mo., Wilson Duncan Broadcasting Co., 100 w .
KWKH-850 kc, Shreveport, La., Hello World Broadcasting Corp., 10,000 w, C .
KWLC- 1270 kc , Decorah, Iowa, Luther College, 100 w , C
KWSC-1220 kc, Pullman, Wash., State College of Washington, $1000 \mathrm{w}, \mathrm{P}$.
 Brow
KXAM-570 kc, Seattle, Wash., American Radio Tel. Co., 500 w , P.
KXL- 1420 kc, Portland, Ore., KXL Broadcasters, Inc., $100 \mathrm{w}, \mathrm{P}$.
KXO- 1500 kc , El Centro, Calif., Irey \& Bowles, $100 \mathrm{w}, \mathrm{P}$
KXRO- 1310 kc, Aberdeen, Wash., KXRO,
KXYZ-1420 kc, Houston, Texas, Harris County Broadcasting Co.. 100 w ,' C
KYA- 1230 kc , San Francisco, Calif., Pacific Broadcasting Corp., 1000 w , 1 '
KYW- 1020 kc , Chicago, Ill., Westinghouse E. \& M. Co., 10.000 w, C.

NAA-690 kc, United States Navy Department, Washington, D. C., $1000 \mathrm{w}, \mathrm{E}$
WAAB- 1410 kc , Quincy, Mass., Bay State Bdestg. Corp.
WAAF- 920 kc , Chicago, Ill., Drovers Journal Pub. Co., 500 w daytime, C
WAAM- 1250 kc , Newark, N. J., WAAM, Inc., $1000 \mathrm{w}, \mathrm{E}$
WAAT- 940 kc , Jersey City, N. J., Bremer Broadcasting Corp., $300 \mathrm{w}, \mathrm{E}$.
WAAW-660 kc, Omaha, Neb., Omaha Grain Exchange, 500 w daytime, C.
WABC- 860 kc , New York City, N. Y., Atlantic Broadcasting Corp., $50,000 \mathrm{w}$, E.
Wabi- 1200 kc , Bangor, Maine, Pine Tree Broadcasting Co. $100 \mathrm{~W}, \mathrm{E}$.
WABO--See under WHEC.
WABZ- 1200 kc , New Orleans, La., Coliseum Place Baptist Church, 100 w , C . WACO- 1240 kc , Waco, Tex., Central Texas Broadcasting Co., Inc., $1000 \mathrm{w}, \mathrm{C}$.
WADC- 1320 kc , Tallmadge, Ohio, Allen T. Simmons, $1000 \mathrm{w}, \mathrm{E}$
WAGM- 1420 kc , Mars Hill, Me., Aroostook Bdestg. Corp., 100 w
WAIU-640 kc, Columbus, Ohio, Associated Radiocasting Corp 500 w E.
WALR-1
Waller, 100 kc, Z.
WAPI- 1140 kc . Birmingham, Ala., Ala-WASH-1270 kc Giand Rapids Mich Kunsky-Trendle Bdand R. Rorp., 500 w , C.
WAWZ-1350 kc, Zarepath, N. J., Pillar of Fire, 250 w , E.
WbAA- 1400 kc , Lafayette, Ind., Purdue University, $500 \mathrm{w}, \mathrm{C}$.

WBAL- 1060 kc , Baltimore, Md., Consolidated Gas, Elec. Co., $10,000 \mathrm{w}$,' E.
WBAP-800 kc. Ft. Worth, Tex., Carter Publications, Inc., $10,000 \mathrm{w}, \mathrm{C}$.
WBAX-1210 kc, Wilkes-Barre, Pa., John H. Stenger, Jr., 100 w, E.

WBBC- 1400 kc , Brooklyn, N. Y., Brooklyn Broadcasting Corp., 500 w .
WBBL- 1210 kc, Richmond, Va., Grace Covenant Presbyterian Church, $100 \mathrm{w}, \mathrm{E}$ WBnM-770 kc, Chicago, Ill., WBBM Bdestg. Corp., $25,000 \mathrm{w}$, C'
WhBR- 1300 kc , I3rooklyn, N. Y., People's Pulpit Association, 1000 w, E.
wnizz- 1200 kc , Ponca City, Okla., C. L. Carrell, $100 \mathrm{w}, \mathrm{C}$.
WBCM- 1410 kc, Bay
WBCN-See under WENR
WBEN- 900 kc , Buffalo, N. Y., WBEN, Inc $1000 \mathrm{w}, \mathrm{E}$
WBEO- 1310 kc , Marquette, Mich., Lake Bdestg. Co.
WBGF- 1370 kc, Glens Falls, N. Y., W
WBHS-1200 kc, Huntsville, Ala., Hutchens Co., 50 w .
WBIG- 1440 kc , Greensboro, N. C., North VBIG-1440 kc, Greensboro, N. C., No
Carolina Broadcasting Co., 500 w , E.
WBIS-See under WNAC.
WBIS-See under WNAC.
WBMS- 1450 kc, Hackensack, N. J., WBMS
Broadcasting Corp. 250 w Broadcasting Corp., 250 w .
WHNX- 1350 kc , New York, N. Y., Standard vion-See under WABC.
whoa-See under WABC.
WBOW-1310 kc. Terre Haute, Ind., Banks
WBRC-930 ke, Birmingham, Ala., Birmingham Broadcasting Co., $500 \mathrm{w}, \mathrm{C}$.
wBRE-1310 kc, Wilkes-Barre, Pa., Louis G. Baltimore, 100 w , \mathbf{E}.

WBSO- 920 kc, Needham, Mass., Bdestg Service Org.. Inc., 250 w , E.
WBH- 1080 kc, Charlote, N. C., Station WBT, Inc., $5000 \mathrm{w}, \mathrm{E}$, shared
WB'IM- 1370 kc , Danville, Va., Piedmont Bdestg. Corp., 100 w , E.
WBZ- 990 kc , Boston, Mass., Westinghouse L. \& M. Co., 25,000 w, E.

WhZA- 990 kc , Springfield, Mass., Westinghouse E. \& M. Co., $1000 \mathrm{w}, \mathrm{E}$.
whesc-600 kc. Storrs, Conn., Connecticut Agricultural College, 250 w, \mathbf{E}.
WCAD- 1220 kc , Canton, N. Y., St. Lawence University, 500 w , E .
WCAE -1220 kc, Pittsburgh, Pa., WCAE,
Inc., $1000 \mathrm{w}, \mathrm{E}$.
WCAH-1430 kc, Columbus, Ohio, Commercial Radio Service Co., 500 w, E.
WCAJ-590 kc, Lincoln, Neb., Nebraska
WCAL- 1250 kc , Northfield, Minn., St. Olaf College, $1000 \mathrm{w}, \mathrm{C}$.
WCAM- 1280 kc , Camden, N. J., City of Camden, $500 \mathrm{w}, \mathrm{E}$
WCAO- 600 kc Baltimore, Md., Monunental Radio, Inc., 250 w, E
WCAP-1280 kc. Asbury Park, N. J., Radio Industries Broadcast Co., 500 w , E .
WCAT- 1200 kc , Rapid City, S. D. South
Dakota State School of Mines, 100 w , M.
delphia Pa, Uni versal Broadcasting Co., 10,000 w,' w.
wCAX- 1200 kc , Burlington, Vt., Burlington Daily News, 100 w, E
wCAZ- 1070 kc, Carthage, Ill., Superior Broadcasting C Co., 50 w .
wcba- 1440 kc , Allentown, Pa., B. B. Muselman, 250 w , E.
WCBD- 1080 kc , Zion, Ill., Wilbur Glen
WCBM- 1370 kc , Baltimore, Md., Baltimore Broadcasting Corp., 100 w, E.
WCBS- 1210 kc, Springfield, Ill., Dewing \& Meester, 100 w , C.
WCCO- 810 kc , Minneapolis, Minn., Northwestern Broadcasting Inc., 5000 w, C.
WCDA-1350 kc, New York, N. Y., Italian Educational Broadcasting Co., $250 \mathrm{w}, \mathrm{E}$.
WCFL-970 kc, Chicago. Tll., Chicago Federation of Labor $15,000 \mathrm{w}, \mathrm{C}$
WCGU- 1400 kc Brooklyn, N. Y., U. S. Broadcasting Corp., $500 \mathrm{w}, \mathrm{E}$.
WCHI- 1490 kc , Chicago, Ill., People's Pulpit Association, 5000 w, C.
WCKY- 1490 kc , Covington, Ky., L. B. Wilson, 500 w , E.
WCLB-1500 kc, Long Beach, N. Y., Arthur Faske, 100 w, E.
wCLO- 1200 kc , Janesville, Wis., WCLO WCLS-1310 ke, Joliet, Ill., WCLS, Inc., 100 WLS-C. 1310 kc , Joliet, Ill., WCLS, Inc.,
CMA- 1400 kc, Culver, Ind., General WCMA- 1400 kc, Culver, Ind., General wCoA- 1340 ke. Pensacóla. Fla., Pensacola Bdestg. Co., 500 w, E
wCOC- 880 kc , Meridian, Miss., Mississippi Broadcasting Co., $500 \mathrm{w}, \mathrm{C}$.
WCOD- 1200 kc , Harrisburg, Pa., Keystone

WCOH-1210 kc, Yonkers, N. Y., West-
chester Broadcasting Corp., 100 w, E.

WCIVW- 1210 kc , Chicago. Ill., Clinton R.
WCSC-1360 kic, Charleston, S. C., Lewis Burk, $000 \mathrm{w}, \mathrm{E}$
WCsif-9io ke, Portland. Me., Congress Square Hotel Co., 1000 w , L .
WDAN- $12: 0$ lic, Tampa, Fla., Tampa Pub-
lishing Co., 1000 w , Li.
WDAF-610 lic, Kansas City. Mo., Kansas
City
Star Co., 1000 w, C. City Star Co., $1000 \mathrm{w}, \mathrm{C}$.
WDA(i- 1410 kc Amarillo Texas, National IRadio \& lbroadcastine Corp., $2 \overline{5} 0 \mathrm{w}$, C. WidAII- $1310 \mathrm{kc}, \underset{\mathrm{H}}{\mathrm{El}} \mathrm{Cl}$ Paso, Texas, W. S. bledsoe, $100 \mathrm{w}, \mathrm{M}$.
WDAS-1370 kc, Philadelphia, Pa., WDAS Broadcasting Station, Inc., 100 w . E.
Wi)Ay-940 kc, Fargo, N. D., WDAY, Inc., $1000 \mathrm{w}, \mathrm{C}$.
WIBJ-930 kc, Roanoke, Va., Times-World Corp., $250 \mathrm{w}, \mathrm{E}$.
Vibol, 1120 lic, Orlando, Fla., Orlando Broadcasting Co.. 1000 w , E.
WIEL- 1120 ke, Wilmington, Del., WDEL, Inc., $250 \mathrm{~W}, \mathrm{E}$.
WDEV-120 isc, Waterbury, Vt., H. C. Whitehill. 50 w.
DGY- 1180 kc, Minneapolis, Minn., Dr. Geo. W. Young, $1000 \mathrm{w}, \mathrm{C}$.
WDIX-1420 ke, Texarkana, Ark.. North Mississippi Broadcasting Corp., 100 w , C. WDDOD ISroadcisting Co., Inc., 1000 wn $\underset{\text { W }}{ }$ WIIC - 1330 kc. Hartford, Conn., Doolittle Radio Corp., 500 w, \mathbf{E}.
WISU- 1250 kc, New Orleans, La., Jos. H.
Whalt, $1000 \mathrm{w}, \mathrm{C}$.
WI'f-1070 kc, Tuscola, Ill., James L. Bush,
WHEN-660 kc. New York, N. Y., National Droadcasting Co., Inc., 50,000 w, E.
WEAI- 1270 kc, Ithaci, N. Y., Cornell Univ., $1000 \mathrm{w}, \mathrm{E}$.
WHAN-780 kc, Providence, R. I., Shepard
Broadcasting Service, $250 \mathrm{w}, \mathrm{E}$.
tVEAO- 570 kc Columbus, Ohio, Ohio State
Wieno- 570 kc , Columbur
University, 750 w , E .
WHIBC- 1290 ke, Superior, Wis., Head of Whe Lakes Lhroadcasting Co., 1000 w , C.
WEBQ-1210 kc, Harrisburg, Ill., First
WEIBR- 1310 kc , Buffalo, N. Y., Howell
WEAR- 1310 kc, Buffalo, N. Y., Howell
Mroadcasting Co., $100 \mathrm{w}, \mathrm{E}$.
WHIDC- 1210 kc , Chicago, Ill., Emil Dene-WEIDC-1210 kc, Ch
mark, Inc., 100 w.
WIADH-1420 kc. Erie, Pa., Erie DispatchHerald, $30 \mathrm{w}, \mathrm{E}$.
WHICI-590 kc, Boston, Mass., Edison Elec. Mum. Co., 1000 w , E
Whidi- 830 kr, Reading, Pa., Berks Bdestg. Co., 1000 w.
WHIDG- 1350 ke, Emory, Va., Emory and Henty conere, WEIlS-1420 kc, Evanston, Ill., WEHS, Well- 1420 k.
VEIL- 1420 kc, Battle Creek, Mich., En-quirer-News Co., 100 w , L.
WENR-870 kc, Chicago, Ill., Great Lakes Radio Broadcasting Co., $50,000 \mathrm{~W}$, C
WWPS-See under WORC.
WHVD-1300 kc, Brooklyn, N. Y., Debs Memorial IRadio lund, 500 w , E .
WWW-760 kc, st. Louis, Mo., St. Louis University, 1000 w, C .
WENI, 1310 kc, Royal Oak, Mich., Royal Oak broadcasting Co., 50 w, E.
WFAA- 800 lic, Dallas, Texas, Dallas News and Journal, $50,000 \mathrm{w}, \mathrm{C}$.
VHAM- 1200 kc, La Porte, Ind., South Bend Tribune, $100 \mathrm{w}, \mathrm{C}$.
WrAN-610 lic. Philadelphia, Pa., Keystone Broadcasting Co., Inc., 500 w , E .
WIIC-1200 lic, Knoxville, Tenn., First Baptist Church, 50 w, E.
WFIBE- 1200 kc , Cincinnati, Ohio, Post Iubl. Co., 100 w, E.
WFBG-1310 kc, Altoona, Pa., William F. Gable Co., 100 W, E.
WFBL- 1360 kc , Syracuse, N. Y., The Onondirga Co., Inc., 1000 w , E.
WFIBM- 1230 kc , Indianapolis, Ind., Indianapolis, Power \& Light Co., 1000 w, C.
WIIBR- 1270 kc , Baltimore, Md., Baltimore Radio Show, Inc., $250 \mathrm{w}, \mathrm{E}$.
WFDF- $1310 \mathrm{kc}, \underset{\text { Fallain, } 100 \mathrm{w}, \mathrm{E} \text {. }}{\text { Wint, Mich., Frank D. }}$
WFDV-1310 kc, Rome, Ga., Dolies Goings, $100 \mathrm{v}, \mathrm{E}$.
WFDIV-1420 kc, Talladega, Ala., R. C. Hammett, $100 \mathrm{w}, \mathrm{C}$.
WFEA-1430 kc. Merrimack. N. H., New Hampshire Bdestg. Co., 500 w .
WFI- 560 kc, Philadelphia, Pa., Straw-
bridge \& Clothier, $500 \mathrm{w}, \mathrm{E}$ bridge \& Clothier, 500 w , E.
WFIW- 940 kc . Hopkinsville, Ky., WFIW, Inc., $1000 \mathrm{w}, \mathrm{C}$.
WFIA-620 kc, Clearwater, Fla., ClearWater Chimber of Commerce and St. w, E.

WFOX- 1400 ke, Brooklyn, N. Y., Paramount I3roadcasting Corp., 500 w. Inc., 100 W , E.
WGAR- 1450 lic, Cleveland, Ohio, WGAR Broadeasting Co., 500 w , E.
WGisib-1210 kc, Freeport, N. Y., Harry H WGBC-Sce under WNBR.
WGiff-630 ke, Evansville, Ind., Evansville on the Air, Inc., $500 \mathrm{w}, \mathrm{E}$.
WGBI- 880 lic, Scranton, Pa., Scranton Broadcasters, Inc.. 250 w , L.
WGCN-1210 kc, Gulfport, Miss., Great Southern Land Co., Inc.. $100 \mathrm{w}, \mathrm{C}$.'
WGCP-1250 kc, Newark, N. J., May Radio WGEO-1000 kc, York, Pa., York Bdestg. Co., 1000 w, E.
WGEES-1360 kc, Chicago, Ill., Oak Leaves Broadcasting Corp, $500 \mathrm{w}, \mathrm{C}$
WGH-1310kc, Newport News, Va., Hampton Roads Broadcasting Corp., Inc., 100 W, E.
WGI $-1370 \mathrm{kc}, \mathrm{Ft}$. Wayne, Ind., Allen-
Wayne Co., Wayne Co., $100 \mathrm{w}, \mathrm{C}$.
WGMS-See under WLB.
WGN-720 kc, Chicago, Ill., Tribune Co.
WGiR-550 ke, Buffalo, N. Y., Buffalo $\underset{\text { Wroadcasting Corp., } 1000 \text { W. }}{\text { W. }}$ E.,
WGSiv- 890 kc, Atlanta, Ga., Georgia WGY-790 kc, Schenectady, N. Y., General Electric Co., 50,000 w, E.
WHA- 940 kc, Madison, Wis., University of Wisconsin, $750 \mathrm{w}, \mathrm{C}$.
WHAD-1120 kc, Milwaukee, Wis. Mar quette University, 250 w , C.
WHAM- 1150 kc , Rochester, N. Y., Strom-berg-Carlson Tel. Mfg. Co., 5000 w , E.
whar- 1300 kc, New York, N. Y., De-
fenders of Truth Society, Inc., 1000° w, E.
WHAs- 820 kc , Louisville, Ky., The Courier Journal Co. \& Louisville Times Co., 10,000 w, C.
WHAT-1310 kc, Philadelphia, Pa., Independence Broadcasting Co., $100 \mathrm{w}, \mathrm{E}$.
WHAZ- 1300 kc , Troy, N. Y., Rensselaer I'olytechnic Institute, $500 \mathrm{w}, \mathrm{E}$.
WHB- 860 kc, Kansas City, Mo., WHB Broadcasting Co., 500 w , C.
vIIBC- 1200 kc, Canton, Ohio, St. John's Catholic Church, $10 \mathrm{w}, \mathrm{E}$.
WHIBL- 1370 ke, Mt. Orab, Ohio, F. P Moler, $100 \mathrm{w}, \mathrm{E}$.
WHIBF-1210 kc, Rock Island, Ill., Beardsley Suecialty Co., $100 \mathrm{w}, \mathrm{C}$.
WIIIIL-1410 kc, Sheboygan, Wis., Press Pub. Co., 500 w , C.
WHBQ- 1370 ke, Memphis, Tenn., Station WHBQ, Inc., 100
NHBU-1210 kc, Anderson, Ind., Anderson Bdestg. Corp., 100 w. (
WHIBY- 1200 kc , Green Bay, Wis., St. Norbert's College, $100 \mathrm{w}, \mathrm{C}$.
WIIDF- 1370 kc, Calumet, Mich., Upper Michigan Brdestg. Co., 100 w , C.
WHDH-830 kc, Boston, Mass., Matheson Radio Co., Inc., $1000 \mathrm{~W}, \mathrm{E}$.
WHDI-1180 kc, Minneapolis, Minn., Dr. G. W, Young, 500 w , C.
WHDL- 1420 kc , Tupper Lake, N. Y., Tupper Lake Broadcasting Corp., $100 \mathrm{w}, \mathrm{E}$.
WIEC-1440 kc, Rochester, N. Y., Hickson Electric Co., Inc., 500 w , E .
WHFC- 1420 kc , Cicero, Ill., WHFC, Inc., $100 \mathrm{w}, \mathrm{C}$.
WHIS-1410 kc, Bluefield, W. Va., Daily
Telegraph Printing Co., 250 w, E. WHK-1390 kc, Cleveland, Ohio, Radio Air Service Corp., 1000 W, E.
WHN-1010 kc, New York, N. Y., Marcus
WHO- 1000 kc , Des Moines, Iowa, Central Broadcasting Co., $50,000 \mathrm{w}, \mathrm{C}$.
WHOM- 1450 kc, Jersey City, N. J., New
Jersey Broadcasting Corp., 250 , E.
Jersey Broadcasting Corp., 250 w , E.
WHP- 1430 kc , Harrisburg, Pa., WHP, Inc WHP- 1430
$500 \mathrm{w}, \mathrm{E}$.
WIAS-1420 kc, Ottumwa, Iowa, Poling Electric Co., 100 w, C.
WIBA-1280 kc, Madison, Wis., Capital Times Co., $500 \mathrm{w}, \mathrm{C}$.
WIBG- 930 kc, Elkins Park, Pa., WIlsG,
WIBM-1370 ke, Jackson, Mich., WIBM, Inc., 100 w
WIBO-560 kc, Chicago, Ill.. Nelson Bros. Bond and Mortgage Co., $1000 \mathrm{w}, \mathrm{C}$.
wiBU- 1210 kc . Poynette, Wis., W. C. For-
WIBW-580 kc, Topeka, Kan., Topeka
Broadcasting Assn., Inc., 1000 w, C.

WIBX- 1200 kc , Utica, N. Y., WIBX, Inc., 100 w , E.
WiCc-600 kc, Bridreport, Conn., Bridgeport Broadcasting Station, Inc., 500 w , E.
WIL_-1200 kc, St. Louis, Mo., Missouri Broadcasting Co., $100 \mathrm{w}, \mathrm{C}$.
WIII,- 890 kc . Urbana, Ill., University of Illinois, $250 \mathrm{w}, \mathrm{C}$.
WIL.M- 1420 kc , Wilmington, Del., Dela-
ware Broadcasting Co., Inc., 100 w, E.
Wins- 1180 kc , New York. N. Y., Amer-
W10D-1300 kc, Miami, Fla., Isle of Dreams Broadcasting Co., 1000 w , E.
Wip-610 kc, Philadelphia, Pa., Gimbel Bros., Inc., $500 \mathrm{w}, \mathrm{E}$.
WIS-1010 kc, Columbia, S. C., South Carolina Broadcasting Co., Inc., $500 \mathrm{w}, \mathrm{E}$.
WIS.I-See under WIBA.
WISN-1120 kc, Milwaukee, Wis., Evening
WJAC- 1310 kc, Johnsto wn, Pa., Johnstown Automobile Co., $100 \mathrm{w}, \mathrm{E}$.
WJAGi-1060 kc, Norfolli, Neb., Norfolk
Dialy News, 1000 w C. Daily News, 1000 w , C.
WJAK- 1310 kc, Marion, Ind., The Truth Pub. Co., Inc., 50 w .
WJAIR-890 kc, Providence, R. I., The Out let Co., 500 w, \mathbf{E}.
WJAS-1290 kc, Pittsburgh, Pa., Pittsburgh Radio Supply House, 1000 w, E.
WJAX- 900 kc, Jacksonville, Fla., City of Jacksonville, 1000 w , E .
WJAY-610 kc, Cleveland, Ohio, Cleveland Radio Broadcasting Corp., $500 \mathrm{w}, \mathrm{E}$. VJBC-1200 kc, LaSalle, Ill., Kaskaskia Broadcasting Co., 100 w, C
VJin- 1210 kc, Red Bank, N. J., Monmouth Broadcasting Co., 100 w, E.
vJBK-1370 ke, Highland Park, Mich., J. F. Hopkins, 50 w , C.
F. Hopkins,
WBL_ 1200 kc, Decatur, Ill., Cominodore
Broadcasting Co., 100 w , C.
wJBO- 1420 kc, New Orleans, La., Valdemar Jensen, 100 w , C.
WJisT-See under WBBM.
W.JBU- 1210 kc, Lewisburg, Pa., Bucknell University, 100 w . E.
WJBW-1200 kc, New Orleans, La., C. Carlsen, Jr.. $30 \mathrm{w}, \mathbf{C}$.
WJIY -1210 kc, Gadsden, Ala., Gadsden Broadcasting Ćo., 100 w , C.
WJDX-1270 kc, Jackson, Miss., Lamar Life Ins. Co., 1000 w, C.
WJJD- 1130 ke, Chicago, Ill., Loyal Order of Moose, $20,000 \mathrm{w}$, C.
WJKS- 1360 kc , Gary, Ind., Johnson-Kennedy Radio Corp., 1000 w , C.
WJMS-1420 ķ, Ironwood, Mich., Johnson Music Store, 100 w .
WJR- 750 lic , Detroit, Mich., The Goodwill Station, Inc., 10,000 w, E.
wJSV- 1460 kc, Alexandria, Va., WJSV Inc., 10.000 w .
WJTL 1370 kc , Oglethorpe University, Ga., 100 w , E.
wJW-1210,kc, Mansfleld, Ohio, Mansfleld Broadcasting Association, 100 w, E.
WJZ-760 kc, New York City, N. Y., Na-
tional Broadcasting Co., 30,000 w, E.
WKAQ-890 kc, San Juan, Porto Rico, Radio Corp of Porto Rico, 250 worto Rico, WKAR-1040 kc, East Lansing, Mich., Michigan State College, 1000 w, E.
WKAV- 1310 ke, Laconia, N. H., Laconia Radio Club, 100 w , E.
WKRB-1310 kc, Joliet, Ill., Sanders Bros., $100 \mathrm{w}, \mathrm{C}$.
Broyles 1310 kc . Birmingham, Ala., R. B.
Wroyles Furniture Co., 100 w,
apolis Broadcasting Corp., 500 k , 1400 C . apolis Broadcasting Corp., 500 w, C. Inc., $1000 \mathrm{w}, \mathrm{C}$. 1380 laCrosse , Wis., WKBH, WKBI- 1420 ke, Chicago, Ill., WKBI, Inc., $100 \mathrm{w}, \mathrm{C}$.
KiBN-570 kc, Youngstown, Ohio, WKBN Bdestg. Corp., $500 \mathrm{w}, \mathbf{E}$
WKBO- 1450 kc, Jersey City, N: J., Camith Corp., $250 \mathrm{w}, \mathrm{E}$.
WKBS- 1310 kc , Galesburg, Ill., Permil N. Nelson, $100 \mathrm{w}, \mathrm{C}$.
WKBV- 1500 lic, Connersville, Ind., Knox Battery \& wlectric Co., $100 \mathrm{w}, \mathrm{C}$. WKBW-1480 ke, Buffalo, N. Y., WKBW, Inc., 5000 w , E.
WKBZ-1500 kc, Ludington, Mich., K. L. Ashbacker, 50 w.
WIK.JC- 1200 kc , Lancaster, Pa., Lancaster Bdestg. Service, Inc., $100 \mathrm{w}, \mathrm{E}$. WIKRC- 550 kc , Cincinnati, Ohio, WKRC, nc, $1000 \mathrm{w}, \mathrm{E}$.
WKY- 900 kc, Oklahoma City, Okla., WKY Radiophone Co., 1000 w , С.'. WIKZO-590 kc, Kalamazoo, Mich., WKZO, Inc., $1000 \mathrm{w}, \mathrm{C}$.
WLAC-1470 kc. Nashville, Tenn., Life \&
Casualty Ins. Co., 5000 w, C.

WLAP- 1200 kc , Louisville, Ky., American Broadcasting Corp, of Kentucky, 100 w , C.

WLB- 1250 kc, Minneapolis, Minn., University of Minnesota, $1000 \mathrm{w}, \mathrm{C}$
WLBC-1310 kc, Muncie, Ind., Donald A. Burton, 50 W .
WLBF- 1420 kc , Kansas City, Kan., WLBF Broadcasting Co., 100 w , C.
WLBG- 1200 kc, Petersburg, Va., WLBG, Inc., $100 \mathrm{w}, \mathrm{E}$.
WLBL- 900 kc , Stevens Point, Wis., Wisconsin Department of Agriculture, zuv0
WLBW- 1260 kc , Oil City, Pa., Radio-Wire Program Corp., 500 w , E.
WLBX- 1500 kc , Long Island City, N. Y., John N. Brahy, 100 w.
WLiz-620 kc, Bangror, Me., Maine Broadcasting Co., $500 \mathrm{w}, \mathrm{E}$.
WLCI- 1210 kc , Ithaca, N. Y., Lutheran Assn. of 1 thitca, $50 \mathrm{w}, \mathrm{E}$.
WLEY- 1370 kc , Lexington. Mass., Lexington Air Station, 100 w , E.
WLIT-560 kc, Philadelphia, Pa., Lit Brothers, 500 w, E.
WhS-870 kc, Chicago, Ill., Agricultural Broadcasting Co., 5000 w,
WLTH- 1400 kc . Brooklyn, N. Y., Voice of WLTH-1400 ke. Brooklyn,
Brooklyn, Inc., 500 w , E.
WLVA- 1370 kc, Lynchburg, Va., Lynch-
burg Broadcasting Corp., $100 \mathrm{w}, \mathrm{E}$. buifg Broadcasting Corp., $100 \mathrm{w}, \mathrm{E}$
WLW- 700 kc , Cincinnati, Ohio, Crosley Radio Corp., $50,000 \mathrm{w}$, E.
WLwL- 1100 kc , New
Sionary Society of St. Paul, 5000
N.,
M, WMAC-See under WSYR.
WMAL-630 kc, Washington, D. C., M. A. Leese Co., 250 w, E.
WMAQ-670 kc, Chicago, Ill., National Broadcasting Co., 5000 ,
WMAZ- 1180 kc , Macon, Ga., Southeastern Broadcasting Co., 500 w, E.
WMBA- 1500 kc , Newport, R. I., LeRoy Joseph Beebe, 100 w , E.
WMBC- 1420 kc , Detroit, Mich., Michigan Broadcasting Co., Inc., $100 \mathrm{w}, \mathrm{E}$.
wMBD- 1440 lzc , Peoria Heights, Ill., Peoria Bdcstg. Co., 500 w.
WMBF-See under WIOD.
WMBG-1210 ke, Richmond, Va., Havens \& Martin, Inc., 100 w , E.
WMHH-1420 ke, Joplin, Mo., Edwin Dudley Aber, 100 w , C.
WMBI- 1080 kc , Chicago, Ill., Moody Bible Institute Radio Station, $5000 \mathrm{w}, \mathrm{C}$, shared.
WMBJ- 1500 ke, Wilkinsburg, Pa., REv. John W. Sproul, 100 w, E.
WMBO- 1310 kc , Auburn, N. Y., WMBO, Inc., $100 \mathrm{w}, \mathrm{E}$.
WMBQ-1500 kc, Brooklyn, N. Y., Paul J. Gollhofer, 100 w.
WMBR- 1370 kc , Tampa, Fla., F. J. Reynolds, $100 \mathrm{w}, \mathrm{E}$.
WMC-780 kc, Memphis, Tenn., Memphis Commercial Appeal, Inc., $500 \mathrm{w}, \mathrm{C}$.
WMCA- 570 kc , New York, N. Y., Knickerbocker Broadcasting Co., Inc., 600 w , E.
WMIL-
Faske, $1500 \mathrm{kc}, ~ B$
100
W,
WMMN- 890 kc, Fairmont, W. Va., Holt WMMN- 890 lic, Fairmont, W
Rowe Novelty Co., 250 w , E.
WMPC- 1500 kc , Lapeer, Mich., First Methodist Protestant Church, 100 w, E.
WMRJ- 1210 ke, Jamaica, N. Y., Peter J.
Prinz, $10 \mathrm{w}, \mathrm{E}$, Prinz, $10 \mathrm{w}, \mathrm{E}$.
WMSG-1350 lec, New York, N. Y., Madison
Square Garden Broadcast Co., 250 w, E. WMT-600 kc, Waterloo, Iowa, Waterloo Broadcasting Co., 500 w , C.
WNAC-1230 kc, Boston, Mass.; The Shepard Broadcasting Service, $1000 \mathrm{w}, \mathrm{E}$. VNAD- 1010 kc, Norman, Okla., University NAT 570 ko T W,
WNAX-570 kc, Yankton, S. Dak., Gurney
Seed \& Nursery Co., 1000 , ${ }^{2}$. Seed \& Nursery Co., 1000 w, C.
WNBF- 1500 kc, Binghamton,
Howitt-Wood Radio Co., $100 \mathrm{w}, \mathrm{E}$. WNBH- 1310 kc , New Bedford, Mass., New Bedford Broadcasting Co., 100 w, E. shared.
WNBO- 1200 kc , Silver Haven, Pa., J. B. Spriggs, 100 w, E.
WNBR- 1430 kc, Memphis, Tenn., Memphis Broadcasting Co., $500 \mathrm{w}, \mathrm{C}$.
WNBW- 1200 kc, Carbondale, Pa., Home
Cut Glass \& China Co., 10 w, E. Cut Glass \& China Co., 10 w, E.
WNBX -1200 kc. Springfleld, Vt., First Congregational Church Corp., 10 w, E.
WNBZ-1290 kc, Saranac Lake, N. Y., Smith \& Mace, 50 w, E.
WNJ- 1450 kc, Newark, N, J., Radio In-

WNOX- 560 kc . Knoxville, Tenn., WNOX, Inc., 1000 w , $\dot{\mathrm{C}}$.
WNYC-570 kc, New York, N. Y. Depart
ment of Plant \& Structures, 500 w, ment of Plant \& Structures, 500 w , E.
WOAI- 1190 kc San Antonio, Texas, Southern Equipment Co., 50,000 w, C.
woAN-See WREC.
WOAX- 1280 ke, Trenton, N. J., WOAX, OBE., 580
VOBU- 580 kc, Charleston, W. Va., WOBU,
Inc., $250 \mathrm{w}, \mathrm{E}$. Inc., $250 \mathrm{w}, \mathrm{E}$.
Woc- 1000 kc, Davenport, Iowa, Central
Broadcasting Co., 50000 , Broadcasting Co., $50,000 \mathrm{w}, \mathrm{C}$.
wocl- $1210 \mathrm{kc}, \mathrm{Jamestown}, \mathrm{N}. \mathrm{Y.}, \mathrm{A}. \mathrm{E}$. Newton, $50 \mathrm{w}, \mathrm{E}$.
WOLA- 1250 kc, Paterson, N. J., Richard L. O'Dea, 1000 w, E.
WODX- 1410 ke, Mobile, Ala., Mobile Brdcstg. Corp., $500 \mathrm{w}, \mathrm{C}$.
wOI- 640 kc , Ames, Iowa, Iowa State College, $5000 \mathrm{kc}, \mathrm{C}$.
woko -1440 kc, Albany, N. Y., WOKO, Inc., $500 \mathrm{w}, \mathrm{E}$.
WOL- 1310 lzc, Washington, D. C., American Broadcasting Co., 100 w, E.
WOMT-1210 kc, Manitowoc, Wis., Francis M. Kadow, 100 w.

WOOD-1270 kc, Grand Rapids, Mich., Walter B. Stiles, Inc., $500 \mathrm{w}, \mathrm{C}$
woPI- 1500 kc , Bristol, Tenn., Radiophone Broadcasting Co., $100 \mathrm{w}, \mathrm{E}$.
Wor- 710 kc , Newark, N. J., J. Bamberger Broadcasting Service, Inc., 5000 w , E.
WORC-1200 lic, Wcreester, Mass., A. F. Kleindienst, 100 w , E.
wos- 630 kc , Jefferson City, Mo., John 1 . Heiny, 500 w, C.
WOV-1130 kc, New York, N. Y., Internawow ${ }^{\text {wo }}$.
wow - 590 kc. Omaha, Neb., Woodmen of
the Worid, 1000 w, C.
Wowo- 1160 kc , Ft. Wayne, Ind., Main Auto Supply Co., $10,000 \mathrm{w}$.
WPAD- 1420 kc. Paducah, Ky., Paducah
Broadcasting Co., $100 \mathrm{w}, \mathrm{C}$. Broadcasting Co., $100 \mathrm{w}, \mathrm{C}$
WIPAP-See under WQAO.
WPAW- 1210 kc, Pawtucket, R. I., Shartenberg \& Robinson, $100 \mathrm{w}, \mathrm{E}$.
WPCC-560 kc, Chicago. Ill., North Shore Congregational Church, $500 \mathrm{w}, \mathrm{C}$.
WICH-810 kc. New York, N. Y., Eastern Broadcasters, Inc., 500 w , E.
WPEN- 1500 kc, Philadelphia, Pa., Wm. Pen Broadcasting Co., 250 w, E.
WPFB- 1370 kc , Hattiesburg, Miss., Hattiesburg Bdestg. Co., $100 \mathrm{w}, \mathrm{C}$
WPG-1100 kc, Atlantic City, N. J., WPG Broadcasting Corp., 5000 w, E.
WPOR-See under WTAR.
WPRO-1210kc, Providence, R. I., Cherry Webb Bdestg. Co., 100 w , L
wPsc- 1230 kc , State College, Pa., Pennsylvania State College, 500 w , day, E .
WPTF-680 kc, Raleigh. N. C., Durham Life Insurance Co., $1000 \mathrm{w}, \mathrm{E}$.
WQAM- 560 kc , Miami. Fla., Miami Broadcasting Co., $1000 \mathrm{w}, \mathrm{E}$.
WQAN- 880 kc , Scranton, Pa., Scranton Times, 250 w , E.
waAO- 1010 kc , New York, N. Y., Calvary Baptist Church, $250 \mathrm{w}, \mathrm{E}$.
waBC- 1360 kc , Vicksburg, Miss., Delta Broadcasting Co., 300 w , C.
WQDM- 1370 kc , St. Albans, Vt., A. J. St. Antoine, $100 \mathrm{w}, \mathrm{E}$.
WQDX- 1210 kc . Thomasville, Ga., Stevens Luke, $100 \mathrm{w}, \mathrm{E}$.
WRAK-1370 kc. Williamsport, Pa., C. R. Cummins, 50 w , E.
WRAM- 1370 kc , Wilmington, N. C. Wilmington Radio Association, $100 \mathrm{w}, \mathrm{E}$.
WRAW-1310 kc. Reading, Pa., Reading Broadcasting Co., 50 w, E.
WRAX- 1020 kc . Philadelphia, Pa., WRAX Broadcasting Co., 250 w , E.
WRBL- 1200 ke, Columbus, Ga., WRBL Radio Station, Inc., $50 \mathrm{w}, \mathrm{E}$
WRBQ- 1210 kc, Greenville, Miss., J. Pat Scully, $250 \mathrm{w}, \mathrm{C}$.
WRBX- 1410 kc , Roanoke, Va., Richmond Development Corp., 250 w,
WRC-950 kc, Washington, D. C., National Broadcasting Co., $500 \mathrm{w}, \mathrm{E}$
WRDO- 1370 kc , Augusta, Me., Albert S .
Woodman, 100^{w}, E. Woodman, $100^{\circ} \mathrm{w}$, E.
WRDW-1500 kc, Augusta, Ga., Davenport's Musicove, Inc., 100 w, E.,
WREC-600 kc, Memphis, Tenn., WREC, Inc., 500 w .
WREN- 1220 kc , Lawrence, Kan., Jenny Wren Co., 1000 w , C.
WRHM- 1250 kc , Minneapolis. Minn., Minnesota Broadcasting Corp., $1000 \mathrm{w}, \mathrm{C}$.
WRJN- 1370 kc , Racine, Wis., Racine Broadcasting Corp., 100 w, \mathbf{C}.

WRNY- 1010 kc , New York, N. Y., Aviation Radio Station, $250 \mathrm{w}, \mathrm{E}$
WROL- 1310 kc, Knoxville, Tenn., Stuart Broadcasting Corp., 100 w , C.
WRR-1280 kc. Dallas, Texas, City of Dallas, $500 \mathrm{w}, \mathrm{C}$.
WRUF-830 kc, Gainesville, Fla., University of Florida, $5000 \mathrm{w}, \mathrm{E}$.
WRVA- 1110 kc, Richmond, Va., Larus Bros. \& Co., Inc., 5000 w. E
WsAI- 1330 kc , Mason, Ohio, Crosley Radio Corp., 500 w, E.
WSAJ- 1310 lic, Grove City, Pa., Grove City College, $100 \mathrm{w}, \mathrm{E}$.
WSAN- 1440 ke, Allentown, Pal, Allentown Call l'ub. Co., 250 w , E.
WSAR- 1450 kc , Fall River, Mass., Doughty $\&$ Welch Electrical Co., Inc., 250 w. E.
vSAZ- 580 kc, Huntington, W. Va., WSAZ. 11c., 250 w, E
WSB-740 kc. Atlanta, Ga., Atlanta Journal Co., 5000 w , E.
wSBC- 1210 kc . Chicago, Ill., World Battery Co., $100 \mathrm{w}, \mathrm{C}$.
WSBr -1230 ke, South Bend, Ind., South
Bend Tribune, $500 \mathrm{w}, \mathrm{C}$ Bend Tribune, $500 \mathrm{w}, \mathrm{C}$.
WSEN- 1210 kc. Columbus, Ohio. Colum bus Broadcasting Corp., 100 w, E.
WSFA- 1410 kc , Montgomery, Ala., Montgomery Brdestg. Co., $500 \mathrm{w}, \mathrm{C}$.
WSIX- 1210 ke , Springfield, Tenn., 638 Tire ulcanizing Co,, $100 \mathrm{w}, \mathrm{C}$.
WSJS-1310 kc, Winston-Salem, N. C., The Journal Co., $100 \mathrm{~W}, \mathrm{E}$.
WSM-650 Rc, Nashville, Tenn., Natiunal Life \& Accident lns. Co., 5000 w, C.
WSMB- 1320 kc , New Orleans, La., WSMB, Inc., $500 \mathrm{w}, \mathrm{C}$.
WSMK- 1380 kc . Dayton, Ohio, Stanley M. Krohn, Jr., 200 w , C.
WSOC- 1210 kc, Gastonia, N. C., A. J Kirby Music Co., 100 w, E
WSPA- 1420 kc , Spartanburg, S. C., 100 w ,
wsPD-1340 ke, Toledo, Ohio, Toledo Broadcasting Co., 1000 w, E.
WSUI- 880 kc. Iowa City, Iowa, State Univ. of luwa, 500 w , C.
WSUN-See under WFLA.
WSVS-1370 ke. Buffalo, N. Y., Seneca Vocational High School, $50 \mathrm{w}, \mathrm{E}$
WSIB- 1500 kc , Rutland, Vt., Weiss Music Co., $100 \mathrm{w}, \mathrm{E}$.
WSYR-570 kc, Syracuse, N. Y., Clive B. Meredith, $250 \mathrm{w}, \mathrm{E}$.
WTAD- 1440 kc. Quincy, Ill., Illinois Broadcasting Corp., 500 w.
W'TAG— 580 kc , Worcester, Mass.. Worcester 'lelegram Pub. Co., Inc., 250 w , E. WTAM- 1070 kc , Cleveland, Ohio, National Broadcasting Co., $50.000 \mathrm{w}, \mathrm{E}$.
WTAQ- 1330 kc, Eau Claire, Wis., Gillette Rubber Co., 1000 w, C.
WTAR- 780 kc , Norfolk, Va., WTAR Radio Corp., $500 \mathrm{w}, \mathrm{E}$.
WTAW-1120 kc. College Station. Texas, 'TAW- 1120 kc . College Station, Texas,
Agri. \& Mech. College of Texas, 500 w , C . WTAX 1210 kc, Springfleld, Ill., WTAX, linc. 100 w .
WTHO- 1420 kc, Cumberland, Md., Asso-
ciated Brdcstg. Corp., 100 ciated Brdcstg. Corp., 100 w , E .
WTEI, 1310 kc , Philadelphia, Pa., Foulkrod Radio Eng. Co., 50 w, E.
WTFI-1450 kc. Athens. Ga., Toccoa Falls Bdestg. Co., $500 \mathrm{w}, \mathrm{E}$.
WTIC- 1060 kc , Hartford, Conn., Travelers WTJS- 1310 kc . Jackson, Tenn., Sun Publishing Co 100 w . C .
WTMJ- $620 \mathrm{kc}, \mathrm{Milwa}$ ukee, Wis., Milwaukee Journal, $1000 \mathrm{w}, \mathrm{C}$.
WTNT- 1470 kc , Nashville, Tenn., Life and Casualty Ins. Co. of Tenn., 5000 w, C.
WTOC- 1260 kc , Savannah, Ga., Savannah Broadcasting Corp., $500 \mathrm{w}, \mathrm{E}$.
WTSI-Laurel, Miss.
WWAE- 1200 kc , Hammond, Ind.. Ham-mond-Calumet Broadcasting Corp., 100 w, C.
 News Assn., 1000 w, E.
WWL-850 ke, New Orleans, La., Loyola University, $10,000 \mathrm{w}$, C.
WWNC-570 kc, Asheville, N. C., Citizens Broadcasting Co., $1000 \mathrm{w}, \mathrm{E}$.
WWRL- 1500 kc , Woodside, N. Y., Long Island Broadcasting Corp., 100 w.
WWSW- 1500 kc, Pittsburgh, Pa., Walker \& Downing Radio Corp
WWVA- 1160 kc . Wheeling. W. Va., West
Virginia Broadcasting Corp., 5000 w, E
WXYZ-1240 kc. Detroit. Mich.. Kunsky Trendle Broadcasting Co., 1000 w, E.

U.S. Broadcasting Stations by Frequencies

550 Kilocycles, 545.1 Meters: KOAC, WGR, WKRC, KFUO, KSD, KFDY,
560 Kilocycles, 535.4 Meters.
WLIT, WFI. KFDM, WNOX KTAB, KLZ, WIBO, WPCC, WQAM
570 Kilocycles, 526.0 Meters:
WNYC, WMCA, WSYR, WMAC, WKBN, WWNC, KGKO, WNAX, KXA, KMTR' WEAO
580 Kilocycles, 516.9 Meters-Canadian Shared:
WTAG, WOBU, WSAZ, KGFX, KSAC, WIBW 590 Kilocycles, 508.2 Meters:
WEEI, WCAJ, WOW, KHQ, WKZO
600 Kilocycles, 499.7 Meters-Canadian Shared:
WCAO, WREC, WOAN, KFSD, WCAC, WMT WICC
610 Kilocycles, 491.5 Meters:
WFAN, WIP, WDAF, KFRC, WJAY
620 Kilocycles, 483.6 Meters:
WLBZ, WTMJ, KGW. WFLA, WSUN, KTAR 630 Kilocycles, 475.9 Meters-Canadian Shared:
WMAL, WOS, KFRU, WGBF
640 Kilocycles, 468.5 Meters:
WAIU, KFI, WOI
650 Kilocycles, 461.3 Meters:
WSM, KPCB
660 Kilocycles, 454.3 Meters: WEAF, WAAW
670 Kilocycles, 447.5 Meters:
WMAQ
680 Kilocycles, 440.9 Meters: WPTF, KPO, KFEQ
690 Kilocycles, 434.5 Meters-Canadian Wave:
70J Kilocycles, 428.3 Meters: WLW
710 Kilocycles, 422.3 Meters: WOR, KMPC
720 Kilocycles, 416.4 Meters:
WGN
730 Kilocycles, 410.7 Meters-Canadian Wave:
740 Kilocycles, 405.2 Meters:
WSB, KMMJ
750 Kilocycles, 399.8 Meters:
WJR
760 Kilocycles, 394.5 Meters:
WJZ, WEW, KVI
770 Kilocycles, 389.4 Meters:
KFAB, WBBM, WJBT
780 Kilocycles, 384.4 Meters-Canadian Shared:
WTAR, WPOR, KELW, KTM, WMC, WEAN 790 Kilocycles, 379.5 Meters: WGY, KGO
800 Kilocycles, 374.8 Meters:
WBAP, WFAA
810 Kilocycles, 370.2 Meters: WPCH, WCCO
820 Kilocycles, 365.6 Meters: WHAS
830 Kilocycles, 361.2 Meters:
KOA, WHDH, WRUF, WEEU
840 Kilocycles, 356.9 Meters-Canadian Wave:
850 Kilocycles, 352.7 Meters: KWKH, WWL
860 Kilocycles, 348.6 Meters:
WBOQ, WABC, KMO, WHB
870 Kilocycles, 344.6 Meters:
WLS, WENR, WBCN
880 Kilocycles, 340.7 Meters-Canadian
Shared: WGBI, WCOC, KLX, K KPOF, KFKA, WSUI
890 Kilocycles, 336.9 Meters-Canadian
Shared: ${ }_{\text {WTAR, }}$ WMMN, WGST, KARK, WILL, KUSD, KFNF, WKAQ,
900 Kilocycles, 331.1 Meters:
WKY, WLBL, KHJ, KSEI, KGBU, WJAX, WBEN

910 Kilocycles, 329.5 Meters-Canadian Wave:
920 Kilocycles, 325.9 Meters:
WWJ, KPRC, WAAF, WBSO, KOMO, KFXF, FEL
930 Kilocycles, 322.4 Meters-Canadian Shared:
WIBG, WDBJ, WBRC, KGBZ, KMA, KFWI, ROW
940 Kilocycles, 319 Meters:
WCSH, WFIW, KOIN, KGU, WHA, WDAY, WAAT
950 Kilocycles, 315.6 Meters:
WRC, KMBC, KFWB, KGHL
960 Kilocycles, 312.3 Meters-Canadian Wave:
970 Kilocycles, 309.1 Meters:
KJR, WCFL
980 Kilocycles, 305.9 Meters:
KDKA
990 Kilocycles, 302.8 Meters:
VBZ, WBZA
1000 Kilocycles, 299.8 Meters:
WHO, WOC, KFVD, WGEO
1010 Kilocycles, 296.9 Meters-Canadian Shared:
WQAO, WPAP WHN, WRNY, KGGF, WNAD, KQW, WIS
1020 Kilocycles, 293.9 Meters:
KYW, KFKX, WRAX
1030 Kilocycles, 291.1 Meters-Canadian Wave:

1040 Kilocycles, 288.3 Meters:
WKAR, KTHS, KRLD
1050 Kilocycles, 285.5 Meters:
KNX. KFKB
1060 Kilocycles, 282.8 Meters: WBAL, WJAG, KWJJ, WTIC
1070 Kilocycles, 280.2 Meters:
WTAM, WCAZ, WDZ, KJBS
1080 Kilocycles, 277.6 Meters:
WBT, WCBD, WMBI
1090 Kilocycles, 275.1 Meters: KMOX
1100 Kilocycles, 272.6 Meters:
WPG, WLWL, KGDM
1110 Kilocycles, 270.1 Meters: WRVA, KSOO
1120 Kilocycles, 267.7 Meters-Canadian Shared:
WTAW, WISN, WHAD, KFSG, KRSC, WDEL, WDBO, KFIO, KTRH, KMSC, KMBC
1130 Kilocycles, 265.3 Meters:
WOV. KSL, WJJD
1140 Kilocycles, 263.0 Meters:
WAPI, KVOO
1150 Kilocycles, 260.7 Meters: WHAM
1160 Kilocycles, 258.5 Meters:
WWVA, WOWO
1170 Kilocycles, 256.3 Meters:
WCAU
1180 Kilocycles, 254.1 Meters:
KEX, KOR, WHDI, WDGY, WMAZ, WINS 1190 Kilocycles, 252.0 Meters: WOAI
1200 Kilocycles, 249.9 Meters: Canadian Shared:
WABI, WNBX, WORC, WIBX, WHBC, WBHS, WLBG, WNBO, WKJC, WNBW, WABZ, WJBW, WBBZ. WFBC. WRBBL, WJBC, WJBL, WWAE, WFAM, KFJB, WCAT, KGDY, KFWF, KGDE, WCLO, WHBY', KERN, WIL, KVOS, KGY, KGEK, KGETV, KGHI, WCAX, WCOD, WFBE,
1210 Kilocycles, 247.8 Meters—Canadian Shared:
WJBI, WGBB, WCOH, WOCL, WLCI, WPAW, WPRO, WLSI, WJW WBAX, WTBU', WMBG, WSIX, WJBY, WRBO, WGCM', KWEA, KDLR, KGCR. KFOR, WHBU, KFVS, WEBQ, WQDX. WCRW, WEDC, WCBS, WTAX, WHBF, WOMT, WSBC, KDFN, KMJ, KFXM, KPPC, 'WALR. WBBL. WMRJ, KCMP, KGNO, WSEN, WSOC, WIBÜ, KFJI

1220 Kilocycles, 245.6 Meters:

WCAD, WCAE, WREN, KFKU, WDAE, KWSC, KTW

1230 Kilocycles, 243.8 Meters:
WNAC, WBIS, WPSC, WSBT, WFBM, KFQD, KYA, KGGM
1240 Kilocycles, 241.8 Meters:
WACO, KTAT, WXYZ, KGCU
1250 Kilocycles, 239.9 Meters:
WGCP, WODA, WAAM, WLB, WGMS, WRHM, KFMX, WCAL, KFOX, WDSU
1260 Kilocycles, 238.0 Meters:
WLBW, KWWG, KRGV, KOIL, KVOA, WTOC'
1270 Kilocycles, 236.1 Meters:
WEAI, WASH, WOOD, KWLC, KGCA, KOL, KVOR, WFBR, WJDX
1280 Kilocycles, 234.2 Meters:
WCAM, WCAP, WOAX, WDOD, WRR, KFBB WIBA, WISJ
1290 Kilocycles, 232.4 Meters:
WNBZ, WJAS, KTSA, KFUL, KLCN, KDYL, WEBC
1300 Kilocycles, 230.6 Meters:
WBBR, WHAP, WEVD, WHAZ, KFH, WBBR, WHAP, WEVD, WHAZ, KFH,
KGEF, KFAC, KFJR, KTBR, WIOD, WMBF,
1310 Kilocycles, 228.9 Meters:
WKAV, WEBR, WNBH, WOL, WGH, WHAT, WFBG, WRAW, WGAL, WSAJ, WBRE WKBC', WTJS,' KRMD, 'KFPM, WDAH, KFPL, KFXR, WKBS, WCLS', WKBB, KWCR', KFJY',
KFGQ,' WBOW, WJAK, WLBC, KTSL, KFUP, KFGQ, WBOW, WJAK, WLBC, KTSL, KFUP,
KFXJ, KFBK, KGEZ, KMED, KTSM, KGCX, WJAC, WSJS, KXRO, KGFW, KFIU, KGBX, WTEL, WBEO KCRJ, KTLC, WEXL, WROL,
1320 Kilocycles, 227.1 Meters:
WADC, WSMB, KID, KTFI, KGHF, KGMB, KGIQ
1330 Kilocycles, 225.4 Meters:
WDRC, WTAQ, KSCJ, WSAI, KGB
1340 Kilocycles, 223.7 Meters:
KFPW, WCOA, KFPY, WSPD
1350 Kilocycles, 222.1 Meters:
WMSG, WCDA. WBNX, KW'K, WAWZ, WEHC KIDO
1360 Kilocycles, 220.4 Meters:
WOBC, WGES, KGIR, KGER, WFBL, WCSC WJKS
1370 Kilocycles, 218.8 Meters:
WSVS, WCBM, WHBD, WJBK, WIBM, WRAK, WDAS, WHBQ, WRAM, KGFG, KFJX, KGKL, KFLX, KGDA, KRE, WPOE, KFBL, KWKC, WRJN, KGAR, KVL, KGFL, WHDF,
KOOS, WGL, KFJM, KCRC, WMBR, WPFB, WLFY, WISGF W'BTM, WLVA, WQDM, 1380 Kilocycles, 217.3 Meters:
KQV, KSO, WKBH, WSMK
1390 Kilocycles, 215.7 Meters:
WHK, KLRA, KUOA, KOY
1400 Kilocycles, 214.2 Meters: WCGU, WFOX, WLTH, WBBC, WCMA, WKBF, KOCW, WBAA, KLO
1410 Kilocycles, 212.6 Meters:
KGRS. WDAG, KFLV, WHBL, WBCM, WODX, WSFA, WAAB, WRBX, WHIS
1420 Kilocycles, 211.1 Meters:
WTBO, WKBI, WEDH WMBC, KGFF, KABC, KFYO, KICK, WIAS, KGGC, WLBF, WMBH,
KFIZ, KORE, WILM, KGIW, KGKX, KFQW, KLPM, KXL, WIHDL, WHFC, WGEHS, KFQW,
KFXD, KGIX, WIBO, WELI, WFDW, WPDU, WSPA, KBPS', KFXY' KXYZ,' WAGM, WDEV, KGVO, WJ MS, WDIX
1430 Kilocycles, 209.7 Meters:
WHP, WCAH, WGBC, WNBR, WBAK, KECA, KGNF, WFEA
1440 Kilocycles, 208.2 Meters:
WHEC. WABO, WOKO, WCBA
WTAD, WMBD, KLS, WSAN, WBIG
1450 Kilocycles, 206.8 Meters:
WBMS, WNJ, WKBO, WSAR, WGAR, WTFI, KTBS, WHOM
1460 Kilocycles, 205.4 Meters:
WJSV, KSTP
1470 Kilocycles, 204.0 Meters:
KGA, WTNT, WLAC
1480 Kilocycles, 202.6 Meters:
KFJF, WKBW
1490 Kilocycles, 201.6 Meters:
WCKY, WCHI
1500 Kilocycles, 199.9 Meters:
WMBA, WNBF, WMBQ. WLBX, WWRL, WKBZ, WMPC' WOPI, WPBEN, KGKB, WKBV, KPJM KDB, KGGFI, WMBJ, KREG,
KUT,
WXL,

LIST OF POLICE BROADCASTING STATIONS

Meters	Location
189.51	Ingham．Milch．
123.85	Eansas Cits． 30.
121.50	Kokomo．Ind．
123． 1 \％	Lansing，Mich．
175.23	Las Anveles．Cailf．
1 123.140	Louisrille， Ky ．
121．50	Memphis．Tenn．
122.34	Miltrauliee．Wis．
124.17	Minnea dolis，Minn．
6，55．41）	New York．N．Y．
6，90．00	New York．N．Y．
187.97	New York． N ． Y ．
129.4	New York．N．
122.4	New York． N ． Y ．
122.34	Oklahoma City，Okla，
121.50	Omaha，Neb．
15．5．23	Pasadena．Calif．
$1 \because 3.94$	I＇hiladelwhia，Pa．
175． 23	Pittshurgh．1＇a．
124.17	Portland．Ore．
124．17	Richmond．Ind．
175.23	Rochester．N．Y．
175.23	St．Louis．Mo．
124.17	St．Paul．Minn．
121.51	Salt Lake City．Ctah．
185.97	San Francisco．Calif．
124．59	San Francisco．Calif．
121.50	San Jose，Calif．
124.17	Seattle．Wash．
12：？	Syracuse． S ． Y ．
121.50	Sloux Citr．Iowa
121.51	Toledo，Ohio
124.17	Tulare，Calif．
124.50	Vallejo．Calif．
124.50	Washincton．D．C．
1.165 .00	West Reading，Pa．
1223	Wichita，Kans．
1.165 .00 122.05	Wyoming．Pa．

U．S．VISUAL BROADCASTING STATIONS

 －00

Cal
W3XAD
$W 3 X A D$
$W 3 X A D$
$W 3 X A H$
$W 6 X A O$
$W A X A$
$W 8 X A V$
$W 9 X A A$
$W 9 X A B$
$W 9 X A O$
$W 9 X A P$
$W 9 X D$
$W 9 X D$
$W 9 X D$
$W 9 X G$

Kilocycles
$\because 1010$
2.000
2,000
43.1000
2.100
2.100
2.750
1.564
2.1010
2.100
43.000
48．500
60.0 m
2.750

Merers
6.18
5.00
$1+2.10$
150.00
150.00
6.97
142.90
142.90
109.10
141.82
150.00
142.90
6.17
6.18
6.00
109.10
Owner
RCA－Victor．Camden．N．J．
RCA－Victor，Camden． $\mathbf{~ J . ~}$
MCA－Victor．Camden．N．J．
Jenkins Lahoratories．Wheaton．Md．
Pioneer Mercantite Co
Pioneer Mercantile Co．．llakersfilld．Callf． Don Lee．Inc．，Los Angeles，Calif Westinghouse，East Pittshurgh．Pa
Federation of Labor．Chicago． 111.
Federation of Labor．Chicago．In．
Western Television Corp．．Chicago，Ill．
Western Television Corp．Chicaro，II
National Proadcasting．Chicaco．Ill．
Journal Company，Milwaukee，Wis
Journal Co．，Milraukee．Wis
1Purdue Liviversits．W．Lafayette．Ind．
Great Lakes Broadcasting．Chicago．In

U．S．RELAY BROADCASTING STATIONS

112.10
51.11
49.34
39.67
13.95
23.35
49.50
48.86
31.35
25.25
19.72
16.87
13.93
49.34
25.34
16.87
49.83
25.42
13.95
49.50

Dept．Agriculture．Sacramento，Calif．
Pacifle－Western Broadrasting．Westminster，Calle Paciflc－Western liroadrasting，Westminster，Calif． Pacifle－Western Broadrasting，Westminster．Callf． Crosley itadio corp．．Cineinnati．Ohio Wectinghouse，East Pittshurgh，Pa，
Westinghouse Westinghouse，Fast Pittshurgh．Pa． Westinchouse，Ease Irittsburgh．I＇a． Westinghouse．East Pittshurgh，P＇a．
Westinghouse．East Pittsburgh，Pa． Westinchouse．East Pittshurgh，Pa． Federation of Lahor，Chicago． 111 ． Federation of Iabor．Chicago．Il
Federation of Labor．Cinicaco．Ill
Great Lakes liroadcasting，Chicago．III．
Great Lakes Droadcasting，Chicapo．III Great Lakes liroadcasting，Chicago．III．
Great Lakes Rroadoasting．Chtcago，Ill． Mona Motor Oil Co．．Council Bluffs，lowa

SIMPLE TIME CHART

（Time changes every 15 degrees of Longitude East or West）
\leftarrow WEST

IONOTTUDE WEST OF GREFNWICH	180°	165°	150°	$135)^{\circ}$	120°	105°	90°	75°	60°	45°	30°	15°	0°
	录	$\begin{aligned} & \text { E } \\ & \text { 4 } \\ & \text { 合 } \\ & ? \end{aligned}$	合	$\begin{aligned} & 0 \\ & 4 \\ & y \\ & y \\ & B \end{aligned}$	28 9 9 9 0 3 4 0 0 0		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$					$\xrightarrow{2}$	
TIME，	Midnight	$1 \mathrm{a} . \mathrm{m}$ ．	$2 \mathrm{a} . \mathrm{m}$.	$3 \mathrm{a} . \mathrm{m}$ ．	$4 \mathrm{a} . \mathrm{m}$ ．	5 a．m．	6 a．m．	$7 \mathrm{a} . \mathrm{m}$ ．	8 a．m．	9 a．m．	10 a．m．	$11 \mathrm{a} . \mathrm{m}$ ．	Noon

\uparrow International date line．When it＇s Monday East of 180° it is Tuesday West of 180° ．
EAST \rightarrow

LONGITUDE EAST OF GREENWICH	0°	15°	30°	45°	60°	75°	90°	105°	120°	135°	150°	$16.5{ }^{\circ}$	180°
色为苗完	$\widehat{\square}$				$\underset{\sim}{\underset{\sim}{\sim}}$						＜	4	42
会	O				0						5	z	会
\％	B				S		H	4			又	\bigcirc	4
${ }_{4}^{\infty} \stackrel{\rightharpoonup}{\mathrm{n}}$	$7{ }^{2}$				\cdots	\％	－	$\stackrel{3}{3}$	－		䦔曻	田	3
\bigcirc	过号	－	mo		$\stackrel{5}{5}$	\bigcirc	0	4	Z	910	易	2安	－
	辰	嵒	保岂	里	4	\％	－	＋	云	0	\％	感	$\stackrel{3}{3}$
动云或			\bigcirc	＜	发	，	O	ص	P	，		乙	E
TIME	Noon	1 p．m．	2 p．m．	3 p．m．	4 p．m．	5 p．m．	6 p．m．	7 p．m．	8 p．m．	$9 \mathrm{p} . \mathrm{m}$ ．	10 p．m．	11 p．m．	Midnight

FOREIGN BROADCAST STATIONS

[^0]
FOREIGN SHORT WAVE PHONE STATIONS

Permanent Magnet Dynamic Speakers

By H. S. Knowles *

ALTHOUGH Permanent Magnet dynamic speakers have been in production less than a year in this country, they have gained the same widespread acceptance that was accorded the electro-dynamic during its first year. Neither the idea nor Permanent Magnet speakers themselves are new. Some of the earliest moving coil receivers used permanent magnets. Dynamic speakers of this type have been in general use in Europe for over two years. Their acceptance in this country, however, has awaited the introduction of designs comparable in both performance and cost with electro-dynamic types.

The P-M dynamic speaker is a dynamic speaker in its essential constructional features and in its performance. It uses a moving coil and cone assembly of the same type used in electro-dynamic speakers. It differs from the latter only in that instead of having an electro magnet, it has a permanent magnet which supplies the requisite flux in the gap. It therefore resembles the ordinary "magnetic" speaker only in that no source of field current is required. It does not have a "reed" or soft iron armature nor any of the lever system connecting the reed or armature to the cone assembly.

This difference in construction is importance since, in the P-M, the voice coil movement is restricted only by the cone and cone support design. In the magnetic type the sensitivity falls off rapidly as the gap is opened up to permit the armature the greater excursion which is needed at the low frequencies. It is this difference in the low frequency response which has brought about the widespread acceptance of the permanent magnet and electro-dynamic speakers. The latest P-M designs have sensitivities which are comparable with corresponding electro-dynamic speakers with a field excitation of $31 / 2$ to 4 watts. Where the excitation in the electro-dynamic type is increased to 6 or 8 watts, which is the maximum recommended for small structures, the sensitivity of the electro-dynamic is from 2 to 3 decibels greater than that of the P-M dynamic.

Because of the magnet cost, P-M dynamic speakers are slightly more expensive than the DC type of electrodynamic, although quite a bit less expensive than the electro-dynamic types which provide their own field excitation, that is, the types which

* Chief Engineer, Jensen Radio Manufacturing Company.
have a dry or tube rectifier and supply the field excitation from the 110 volt-AC line.

Its application is therefore logical in places where electro-dynamic performance is wanted but without the disadvantage of having to supply field current. It is therefore of primary value in battery operated receivers. It is also of value as a second speaker to be used on an extension line from the usual radio receiver, or as a second speaker in a two-speaker set design. In both of these cases a selfexcited speaker is required because
equivalent. In general, a high voltage distribution system to the fields is used, and this, with its attendant wiring and installation problem, greatly increases the installed cost of the electro-dynamic speaker. In the P-M dynamic, although the initial cost of the speaker is a trifle higher, the installed cost is very much less, since by supplying the voice coil circuits through low impedance lines, all of the wiring can be of the open or semi-open type. Then, too, no provision has to be made for cutting off the field excitation at the speaker.

the radio set, unless specifically designed to do so, does not supply field current for the second speaker. Ordinarily, when such a speaker is added, it either has to have its own rectifier system, or if field current is taken from the receiver, it drops the operating voltages of the tubes in the receiver and affects their performance.
The P-M dynamic speaker is also very valuable in public address systems. Electro-dynamic speakers have not been generally used for this purpose because of their field excitation requirements. In most cities, lines carrying over 12 volts have to be run in armored cable, conduit, or the

The apparent sensitivity of most magnetic speakers is high because of the fact that the moving system is tuned to a frequency between 150 and 350 cycles. This rise in the middle of the range, in which the fundamental frequencies of speech occur, produces unnatural or "yappy" reproduction. It does, however, increase the apparent sensitivity. Recourse is had to the same design practice in the smallest and least expensive electrodynamic types where high apparent sensitivity at the cost of fidelity is wanted.
The clear reproduction of the low frequencies, while higbly desirable
(Continued on next page)

Permanent-Magnet Dynamic Speakers (Continued from page 15)
for high-grade reproduction, does have one disadvantage. It has been found in the cheaper type of building construction which is now prevalent that the sound transmission through the thin walls is sufficient at the low frequency end to introduce the problem of "cross-talk" between rooms. In high grade installations the trend, therefore, appears to be toward the use of a speaker in a small attractive cabinet as a part of the room furniture. This also takes care of the problem of baffling the speaker and greatly simplifies the installation of the speaker where the building is already constructed.

The separate speaker idea is also gaining headway in hotels. If the speakers are supplied only at the request of the guest, the average number of speakers in use is usually about 50% of the number that would be required if every room were provided with a built-in speaker. This considerably reduces the initial cost of the installation and permits an extension of the service as needed. In this case, nothing is provided in the wall except a flush outlet box with a jack into which the speaker is plugged and the station selector switch and volume control where needed.

Although, as pointed out above, the dynamic speaker does not have the same apparent sensitivity as the largest types of magnetics (although the average is the same when the entire register is considered), even this difference in apparent sensitivity is offset in a case of battery operated receivers by the use of Class B or "push-push" amplifiers. This type of amplifier, which is being used in the latest battery operated receivers with dynamic speakers, results in as much acoustic output as can be secured from electro-dynamic speakers excited with 6 or 8 watts and using the same tubes in push-pull. In other words, Class B amplifiers have permitted the use of P-M dynamic speakers with electro-dynamic fidelity on battery operated receivers.

The fidelity of the PM-1 speaker in a 3 ft . baffle (which corresponds to a good size console cabinet) is shown in Figure 1-A. The same speaker run in a small table type cabinet is shown in the same figure, Curve B. It will be noted that due to the smaller effective baffle size of the table type cabinet the low frequency output is reduced. Figure 2, Curve A, shows a magnetic speaker now commonly supplied for P.A. systems but run in a 3 ft . baffle under conditions corresponding exactly to Curve A, Fig. 1. Curve B, Fig. 2, shows a very great reduction in low frequency response when the

Figure 1

Figure 2
magnetic speaker is put into the flush mounting case with which it is supplied for P.A. installations. The reduction in output at the low end is due to the complete enclosure and the absence of venting. A comparison between Curve B, Fig. 1, and Curve B, Fig. 2, shows the improved low and high frequency response of the P-M type speaker, even when it is used in a small baffle.

The apparent bass of the magnetic designs is frequently increased by re-
ducing the high frequency response. This effect is also clearly shown in the curves.
Speakers with fidelity curves which differ from those given in Fig. 1 can also be supplied to improve the combined fidelity of the speaker and P.A. system.
The impedance of the electro-dynamic type is much more uniform than a magnetic type and is an almost ideal load into which to work out of
(Continued on page 46)

Tulbe for Amateurs and Experimenters

RCA Radiotron Co., Inc., and E. T. Cunningham, Inc., have recently made available for amateurs and experimenters a voltage amplifier tube designated as Radiotron UX-841 and Cunningham CX-841.
The 841 is a three-electrode, high vacuum tube which resembles the ' 10

type in general appearance and filament characteristics but has a high amplification factor. It is designed primarily for use as a voltage amplifier in resistance or impedance coupled circuits. In addition to this use, the 841 may also be employed to advantage in amateur transmitters as an oscillator, a crystal-controlled oscillator, a radio-frequency power amplifier, and a frequency doubler.

Characteristics and typical operating conditions for different applications of the 841 are given in the accompanying table. For convenience in presentation, the information has been tabulated in four divisions. The first division, General Data, includes information common to all applications. The other three divisions, under the headings of Class A, Class B, and Class C Service, cover operating conditions for specific applications. These three classifications are the accepted ones used by radio enginecrs for broadly identifying tube applications.

Class A Service is employed in the operation of well-designed audio-frequency and radio-frequency amplifiers of radio receivers. For this use, fidelity of signal reproduction is of prime importance. However, fidelity is obtained at the expense of power output and at relatively low efficiency. The 841 as a Class A Amplifier is operated under such conditions that its dynamic characteristics are essentially linear.

Class P Service is employed in ra-dio-frequency power amplifiers and in balanced or push-pull modulators of radio telephone transmitters. It is also finding application for power output stages of some of the more recent designs of radio receivers. For these uses, large power output is obtained without distortion and with good efficiency. However, to obtain this large power, a large exciting grid voltage is required. The 841 as a Class B Amplifier is operated under such conditions that with no exciting grid voltage applied to the tube, the plate current is very small. Under these conditions when excitation voltage is applied, only the least negative half of this voltage produces power output.

Class C Service covers those applications where tubes are employed as oscillators or radio-frequency power amplifiers for transmitters. For these uses very large power output with high efficiency is of primary consideration. However, this high output is obtained at the expense of considerable harmonic distortion. This distortion introduced in the output may be an advantage, as for example in the case of frequency doubler circuits. In the case of a transmitting power output
stage, the harmonics are removed from the fundamental frequency by means of suitable filters. The 841 as a Class C Amplifier is operated under such conditions that the grid is biased well beyond the point at which plate cur-

rent starts. Under these conditions when excitation voltage of sufficient magnitude is applied, large peaks of plate current are obtained in the output of the tube. Below are the operating conditions for Class A service.

Operating Conditions and Characteristics-Class A Service		
Maximum Operating Plate Voltage.		425 Volts
Maximum Plate Dissipation.		12 Watts
Typical Operation:		
Filament Voltage (D.C.)	7.5	7.5 Volts
Plate Supply Voltage.	42.5	1000 Volts*
Grid Voltage \dagger	-5. 8	-9.2 Volts
Load Resistance	250000	250000 Ohms
Amplification Factor	30	30
Plate Resistance	63000	t0000 Ohms
Mutual Conductance	450	$7 \overline{50}$ Micromhos
Plate Current	0.7	2.2 Milliamperes
Peak Grid Swing.	5.8	9.2 Volts
Output Voltage (5\% 2nd Harmonic)	126	225 Volts

[^1] to the voltage drop in the load resistance.
† If grid leak resistor is used, its value should not exceed 0.5 megohm.

Receiver Performance Curve Section

SERVICE men, dealers and technicians will find on this page our conception of an ideal set of curves. The composite graph may be used to visualize the best possible receiver performance. The more a receiver's curves near parallelism with the ideal, the better the receiver. These curves are not capable of interpretation by a layman. They should be translated only by a service man, dealer, technician or engincer.

Measurements made in our engineering laboratory cover sensitivity, selectivity and electrical fidelity. Standards for these three qualities have been set by the IRE and RMA engineering committees. No standards have yet been adopted for sound pressure measurements. Until a standard is selected, our laboratory will measure only electrical fidelity, which disregards speaker response curves. The fourth measure. ment appearing with the sensitivity, selectivity and electrical fidelity curves represents power overload curves, or automatic volume control curves, as the case may be.

Definitions of the three major characteristics of a receiver are:

Sensitivity is that characteristic of a receiver which determines to how weak a signal it is capable of responding. It is measured quantitatively in terms of the input voltage required to give standard output. The ideal sensitivity, according to the graph on this page, would fall between the two lines, ranging from 10 to 5 microvolts (absolute) or less. This is an arbitrary value.

Selectivity is the degree to which a receiver is capable of differentiating between the desired signal, and signals of other carrier frequencies. This characteristic is not expressible by a single numerical value, but requires one or more graphs for its expression.

sides would be 10 kilocycles apart nearly all the way up the graph sheet. Selectivity as measured by our laboratory only concerns itself with energy entering thereceiver via the input circuit (disregarding shielding effectiveness), since no standard has as yet been adopted to simulate selectivity conditions in the field.

Fidelity i, the degree to which the receiver accurately reproduces at its output terminals, the modulated form of the received wave impressed upon it. Ideal electrical fidelity curve would be a horizontal line almost flatover the frequency range from 60 to 5000 cycles. This range is also of
Best selectivity possible would be an arbitrary width. somewhat like a "chimney" whose

Ideal Composite Curve

The photograph illustrates the equipment used in making the measurements. It conforms to the specifications of the IRE and RMA Standardization Committees. All test frequencies are determined by zero beat of a crystal-controlled dynatron oscillator. Voltmeters and microvoltmeters are periodically checked against calibrated standards for accuracy of adjustment. Individual conditions of measurement pertaining to each receiver will be found in the text accompanying each family of curves.
Since curves of all receivers are taken under the same conditions, it may be said that such curves constitute a yardstick by which receivers of the same general class may be compared, as long as this analysis is made by those technically competent to do so.

All American Mohawk, Lyric Model S-6

OVERALL performance curves on the All-American Mohawk, Lyric model S-6 are given herein.

A dummy antenna standard of 20 uh, 200 uuf and 25 ohms fed the signal to the receiver antenna circuit.

To match the 247 pentode output tube, a load resistance of 7000 ohms was connected across the plate circuit, and the output indicating device was in turn capacitatively coupled to it. An audio level of .05 watts output was maintained except for the power overload curve. To prevent any errors due to reflected impedance, the voice coil circuit was opened during measurements.

In all tests, the volume control was turned to its maximum position, no
changes were made in the alignment of the tuned circuits, and the tubes employed were furnished as standard equipment with the chassis. The receiver drain was .61 amperes with an a-c line voltage of 118 .

An average sensitivity of 33.4

microvolts absolute is taken from the curve of column 1. This is equivalent to 8.35 microvolts per meter. Noise levels were 2.8 per cent at 1400 kc , and 1.2 per cent at 600 kc , the maximum and minimum respectively. With the dial adjusted to 1000 kc , the measured image ratio was 1675. From the power overload curve of column 3 , the maximum audio output
of 3.52 watts is taken, but this value does not take into account the harmonic contents of the audio wave form. Tabulated band widths will be found under the selectivity curves of column 3.

The schematic wiring diagram will

be found under this article. Tubes required for operation are, a 224 first detector, 227 oscillator, 235 second i-f. 224 second detector, 247 pentode, and a 280 rectifier.

Band Widths

Times Field
Strength
10
100
1000
10000

Kilocycles width		
600 kc.	1000 kc.	1400 ke.
9.5	10	11.5
16	17.5	20
23.5	25.5	30
33.5	37.5	43.5

Hammarlund Comet Model

MEASUREMENTS made on the Hammarlund Comet model combination broadcast and shortwave superheterodyne will be found on this page.

Signal generator output was fed to the receiver input circuit by means of

a dummy antenna standard of 20 uh , 200 uuf and 25 ohms. To match the optimum impedance of the single 247 output tube, a non-inductive load resistance of 7000 ohms was connected across the plate circuit, and the output indicating voltmeter was capacitatively coupled to the plate, indicating the standard level of .05 watts except for the power overload curve. To prevent impedance reflection errors, the voice coil circuit was broken during all tests.
For all measurements, the volume control was adjusted for maximum receiver sensitivity, no realignment
was made on the tuned circuits, and average tubes were used because none was furnished with the receiver. With an a-c line voltage of 110 volts, the power transformer primary drain was .79 amperes.

Average sensitivity is computed to

be 2.72 microvolts absolute from the sensitivity curve of column 1. This value is the same as .68 microvolts per meter when employing the standard height antenna. Noise level maximum and minimum values were 85% at 1400 kc and 61% at 600 kc respectively. At a dial setting of 1000 kc , the measured image ratio was found to be 3110 . From the power overload curve of column 2, the maximum audio output measured 2.88 watts, but this value does not take
into consideration the harmonics present in the wave form across the primary of the output transformer. In tabular form, under the selectivity curves of column 3 , are the band widths taken from them.

Below is the schematic wiring dia-

gram of the Comet superheterodyne. From it the tubes required for operation are found to be, a 227 oscillator, 227 short wave oscillator, 224 first detector, 235 second i-f, 235 third i-f, 224 sceond detector, 247 pentode power tube, and a 280 full wave rectifier for supplying the B voltage necessary for the operation of the receiver.

Band Widths			
Times Field	Kilocycles width		
Strength	$600 \mathrm{kc}$.	1000 kc.	1400 kc.
10	6.5	7.5	8
100	11	12.5	14
1000	16.5	18.5	20
10000	23	26	28

Howard Model DL

HOWARD'S model DL fifteen tube superheterodyne, when measured in our laboratory, gave the included performance curves.

Input was through the dummy antenna standard of $20 \mathrm{uh}, 200$ uuf and 25 ohms. Because of the special output arrangement, special matching

was required for the double set of push-pull pentodes. The voice coil circuit was disconnected during measurements, and the output level maintained at .05 watts.

With an a-c line voltage of 112 volts, the current drawn was 1.02 am peres. No changes were made in alignment, the volume control was at maximum, and tubes as furnished were employed in testing.

Average sensitivity is found to be
2.76 microvolts absolute which corresponds to .69 microvolts per meter. At 1400 kc . the noise level measured 57.6%, the maximum, and at 1000 kc . the minimum of 26.6% was found. At 1000 kc . the measured image ratio was 122,000 times. A maximum power output of 19.2 watts is taken

from the automatic volume control curve of column 2. However, no consideration of harmonic content of the waveform is made. Tabulated band widths are given under the selectivity curves of column 3 .

A schematic wiring diagram is
given at the bottom of the page. The fifteen required tubes are, a 235 first r-f, 235 second r-f, 235 first detector, 235 second i-f, 235 third i-f, $227 \mathrm{sec}-$ ond detector, 227 oscillator, 227 automatic volume control tube, 227 special phonograph amplifier, four 247 pentodes, and two 280 rectifiers. Two

speakers are employed, coupled to the push-pull tubes by one secondary, while the primary is made up of two windings.

Band Widths

Times Field	Kilocycles width		
Strength	600 kc.	1000 kc.	1400 kc.
10	7	8	9
100	11.5	13	14.5
1000	16.5	18	20.5
10000	21	23.5	28.5

Philco Model 70

PHILCO'S model 70 superheterodyne when recently measured in our laboratory gave the overall performance curves printed on this page.

For receiver input, the signal generator was coupled to the antenna

circuit through the dummy antenna standard of 20 uh, 200 uuf and 25 ohms. A non-inductive load resistance of 7000 ohms was connected across the output circuit to match the correct operating impedance of the single 247 output pentode. The output indicating voltmeter, which read the standard level of .05 watts, was capacitatively coupled to the plate. The voice coil circuit was opened to prevent any error due to reflection of secondary circuit impedance on the primary circuit.

An a-c line voltage of 118 volts gave the receiver a drain of .75 amperes. In all tests, tubes as furnished
by the manufacturer with the receiver as standard equipment were used, the volume control was adjusted for maximum receiver sensitivity, and no changes were made in the factory alignment of tuned circuits. An average sensitivity of 10.8 microvolts

absolute was measured from the curve of column 1. This value corresponds to 2.7 microvolts per meter when using a standard four-meter antenna. The maximum noise level of 14.5 per cent was found at 800 and 1000 kc and the minimum of 9 per cent at 600 and 1400 kc . With the receiver adjusted to 1000 kc , the resultant image ratio was 8900 . In column 2 the power overload curve gives a maximum audio output of 4.92 watts, which figure disregards the harmonics produced in the output wave form. Below the selectivity curves of
column 3 are the band widths measured from them, given in tabular form.

At the bottom of the page is the complete schematic wiring diagram of the model 70. Required tubes are seen to be, a 224 r-f, 224 first detec-

tor, 227 oscillator, 224 second i-f, 224 second detector, 247 power pentode, and a 280 full wave rectifier for high voltage supply to the receiver. A choke unit tuned for hum elimination by a .09 mfd condenser is used as a series unit in the plus B side with the speaker field in series with the bleeder circuit.

Band Widths

Times Field	Kilocycles width		
Strength	600 kc.	1000 kc.	1400 kc.
10	10.5	14	16.5
100	19	25.5	32
1000	30	38	48.5
10000	47	58	71

Silver-Marshall Model J

SILVER-MARSHALL'S model J gave the included overall performance curves after recent measurement in our laboratory.

Output of the signal generator was coupled to the receiver input circuit through a standard dummy antenna

of $20 \mathrm{uh}, 200$ uuf and 25 ohms . To match the optimum operating impedance of the push-pull pentodes, a non-inductive load resistance of $14,-$ 000 ohms was connected across the plates. The output indicating tube voltmeter, which read an audio level of .05 watts for all tests except the power overload, was capacitatively coupled to the output circuit. In order to prevent a reflection of impedance from the secondary to the primary of the output transformer, the voice coil circuit was broken.

Tubes as furnished by the manufacturer with chassis were employed, the volume control was turned to its maximum position, and no alterations
were made in the alignment of the receiver circuits. The power transformer primary current was .94 amperes with a a-c line voltage of 113 volts.
From the sensitivity curve of column 1, an average of 4.92 microvolts

absolute was taken or 1.23 microvolts per meter, assuming a standard height antenna is used. At 1400 kc the maximum noise level of 26 per cent occurred, and at 600 kc a minimum of 18.5 was measured. An image ratio of 3980 was recorded with the receiver tuned to 1000 kc . In column 2, the power overload curve gives a maximum audio output of 7.8 watts. However, this figure disregards the harmonic content of the wave form across the primary of the output transformer. Under the selec-
tivity curves of column 3 will be found the band widths from which they were taken.

A schematic wiring diagram of this superheterodyne will be found below. The ten required tubes are a 551 r-f, 224 first detector, 227 oscillator, 551

second i-f, 551 third i-f, 227 diode detector, 227 first audio, push-pull 247 pentodes, and a 280 full wave rectifier for B voltage supply. A bucking coil is furnished with the speaker to eliminate excess hum. Bias for the push-pull pentodes is obtained by the drop across a 220 ohm resistor from the center tap of the filament to ground.

Band Widths

Times Field	Kilocycles width		
Strength	600 kc.	1000 kc.	1400 kc.
10	6.5	6.5	7
100	11.5	11.5	12.5
1000	16.5	17	18
10000	23.5	24	28

Stromberg_Carllson Model 22

RECEN'T measurements made on the Stromberg-Carlson model 22 superheterodyne receiver gave the overall performance curves given on this page. A very good automatic volume control is incorporated.

A dummy antenna of $20 \mathrm{uh}, 200$ uuf and 25 ohms served to conduct the signal from the generator to the antenna circuit. To match the pushpull 245 power tubes, a non-inductive load resistance of 7800 ohms was connected across the plates, which in turn were capacitatively coupled to the output indicating voltmeter reading the standard output level of .05 watts except for the power overload curve. To prevent a reflection of the secondary load to the primary of the output transformer, the voice coil circuit was opened during all tests.

A line current of 1.02 amperes a-c was drawn with a line voltage of 117 volts. No changes were made in the
alignment of tuned circuits from factory adjustment, the volume control was turned on full, and the tubes employed in the receiver were those furnished by the manufacturer with the set.
From the sensitivity curve of

column 1, the average is computed to be 2.8 microvolts absolute, corresponding to .7 microvolts per meter when using the standard four meter antenna. At 1000 kc , an image ratio of 346,000 times was measured. From the power overload curve of column 2 , the maximum output is seen to be 7.32 watts of audio power at an input of 10000 microvolts. This figure disregards the harmonics present in the output wave form. At 600 kc the minimum noise level of 52% was measured, while at 1200 kc was found the maximum value of 74%. Tabu-
lated band widths will be found under the selectivity curves reproduced in column 3 .

A schematic wiring diagram of the model 22 is given in detail at the bottom of the page. Tubes required for operation consist of, a 235 r-f, 235

first detector, 227 oscillator, 235 second i-f, 235 third i-f, 227 automatic volume control tube in conjunction with a visual resonance indicating meter, 227 second detector, push-pull 245 power tubes, and a 280 full wave rectifier for all high voltages necessary for tube circuits and field excitation. A "silent key" is used for grounding the voice coil circuit while tuning.

Band Widths

Times Field	Kilocycles width		
Strength	600 kc.	100 kc.	1400 kc.
10	10	10	11
100	15	15	18
1000	20	20	24
10000	25.5	25.5	31

United American Bosch Model 20

OVERALL performance curves on the United American Bosch model 20 are given herein as indicative of its performance.

Input to the receiver was through the dummy antenna standard of 20 uh, 200 uuf, and 25 ohms while the
output of .05 watts was maintained for all tests but that of power overload. A resistance of 3500 ohms was connected across the output circuit to properly match the load for two pentodes employed in parallel. The vacuum tube voltmeter was capacitatively coupled to the plate circuit, while the voice coil circuit was opened to prevent a reflection of the secondary load to the primary of the speaker transformer.

An a-c line current of .95 amperes was drawn by the receiver with an impressed voltage of 117 volts. In all measurements the tubes used were
furnished as standard equipment, the factory alignment of the tuned circuits was not disturbed, and the volume control was set for maximum receiver sensitivity.

Average sensitivity, as taken from the curve of column 1 , is found to be

6.5 microvolts absolute which corresponds to 1.625 microvolts per meter when a standard height antenna is used. Noise level maximum and minimum values were 7.6% at 600 kc , and 1.1% at 1400 kc respectively. At 1000 kc the measured image ratio was 1880 times. From the power overload curve of column 2, the greatest output is found to be 4.00 watts of audio power, but this figure does not take into account the harmonics produced in the output wave form.

Under the selectivity curves of column 2 are the band widths in tabular form.

Below is the schematic wiring diagram of this superheterodyne. Required tubes are, a 551 r-f, 551 first detector, 227 oscillator, 551 second

i-f, 227 second detector, two 247 power pentodes in parallel, and a 280 full wave rectifier for receiver B supply. A tapped choke is employed in the B return lead, and the dynamie speaker field is used as a filter unit.

Band Widths

Times Field	Kilocycles width		
Strength	600 kc.	1000 kc.	1400 kc.
10	9.5	10	11.5
100	16.5	18	21
1000	23	26	31.5
10000	29.5	36	46

U. S. Radio, Apex Model 7.A

CURVES made from our recent measurements on the U. S. Radio and Television Apex Model 7-A are given on this page.

For receiver input, the signal generator was coupled to it by means of the dummy antenna standard of 20

uh, 200 uuf and 25 ohms. 'To match the optimum operating impedance of the single 247 pentode, a non-inductive load resistance of $7,000 \mathrm{ohms}$ was connected across the output circuit, which was coupled to the output voltmeter indicating the audio output standard of .05 watts. The voice coil circuit was broken to prevent any error entering the measurements due to impedance reflection from the secondary to the primary of the out-
put transformer.
With a line voltage of 117 volts, the current drawn by this receiver was .80 amperes a-c. For all measurements, no realignment of tuned circuits was made, the volume con-
trol was turned to the maximum posi-

tion, and the tubes used were those furnished by the manufacturer.

An average sensitivity of 8.00 mi crovolts absolute or 2.00 microvolts per meter is taken from the sensitivity curve of column 1. A maximum noise level of 17.8% was found at 1400 kc , with a minuimum value of 1.4% at 600 kc . At 1000 kc the image ratio measured 17,100 times. From
the automatic volume control curve of column 2 the maximum output is seen to be 2.88 watts with an input of 10000 microvolts. This figure gives no consideration to the harmonic content of the wave form across the primary of the output transformer,

however. Under the selectivity curves of column 3 are the tabulated band widths, and at the bottom of the page is the schematic wiring diagram of the model 7-A.

Band Widths

Times Field	Kilocycles width		
Strength	$600 \mathrm{kc}$.	1000 kc.	1400 kc.
10	9	11.5	13
100	18.5	21.5	25
1000	29	33.5	40
10000	40.5	46	56.5

Universal Auto Radio Model 70

PERFORMANCE curves, made in our laboratory, on the Universal Auto Radio model 70 are included on this page.

For receiver input, a dummy antenna of 20 uh, 200 uuf and 25 ohms coupled the standard signal

generator to the antenna circuit. A non-inductive load resistance of 30 ,000 ohms was connected across the plates of the push-pull 238 tubes to match their operating impedance, which in turn were capacitatively coupled to the vacuum tube voltmeter used to record the standard output level of .05 watts expect for the power overload curve. To eliminate any error due to the secondary circuit reflecting its impedance to the primary, the voice coil circuit of the speaker was opened during measurements.

Receiver drain was 45 milliamperes as measured in the negative B lead. During all measurements, tubes as furnished by the manufacturer were employed, no realignment of tuned circuits was made, and the volume control was turned to its maximum

position.
An average sensitivity of 5.55 microvolts absolute, which is equivalent to 1.38 microvolts per meter, was measured from the curve of column 1. Noise levels, maximum and minimum values, were 6.7 per cent at 1200 kc , and 2.5 per cent at 600 and 1400 kc . An audio output of 1.05 watts is reached at an input of 10,000 microvolts, but no account is taken of
the harmonic content of the wave form. This output is exceedingly high considering the normal output of Class A 238 push-pull tubes. Tabulated band widths will be found in column 3 under the selectivity curves, from which they were measured.

A schematic wiring diagram of this receiver is found below. Tubes necessary are, a 239 first r-f, 239 second r-f, 239 detector, 237 automatic volume control tube, a 237 first audio, and push-pull 238 pentodes.

Band Widths

Times Field	Kilocycles width		
Strength	$600 \mathrm{kc}$.	1000 kc.	1400 kc.
10	16.5	24.5	24
100	41	\ldots	\cdots
1000	85	\cdots	\cdots
10000	\ldots	\cdots	\cdots

Wells-Gardner Arcadia Model 50

DATA made from measurements on the Wells-Gardner Arcadia model 50 produced the included overall performance curves.

Receiver input from the standard signal generator was through the dummy antenna standard of 20 uh,

200 uuf and 25 ohms. A non-inductive load resistor of 7000 ohms was connected across the single pentode output circuit to match its optimum operating load. The plate was capacitatively coupled to the vacuum tube voltmeter which indicated the standard output level of .05 watts except for the automatic volume control curve. The voice coil circuit was broken during measurements so that the secondary impedance would not be reflected to the primary circuit and thus introduce error.

Tubes were not furnished, so aver-
age tubes were employed. No changes were made in circuit alignments, and the volume control was adjusted to maximum. The receiver drain was .78 amperes with an a-c line voltage of 115 volts.

From the curve in column 1, the average sensitivity is computed to be

7.8 microvolts absolute which corresponds to 1.95 microvolts per meter when the standard four meter antenna is used. At 1400 kc the maximum noise level of 32.4% was measured, and at 600 kc the minimum of 1.3%. An image ratio of 14,100 times was measured at a dial setting of 1000 kc. At the greatest signal input, i. e. 10000 microvolts, the power output reached a maximum value of 5.00 watts as found from the automatic
volume control curve of column 2. However, no account was taken of the harmonics introduced in the wave form at this audio level. Band widths, taken from the selectivity curves in column 3 are found listed under them.
At the bottom of the page is the

complete schematic wiring diagram of this Arcadia model. For operation the following tubes are required: a 235 r -f, 224 first detector-oscillator, 235 second i-f, 224 automatic volume control, 224 second detector, 247 output, and 280 rectifier.

Band Widths

Times Field	Kilocycles width		
Strength	$600 \mathrm{kc}$.	1000 kc.	1400 kc.
10	8.5	10	11.5
100	18	20	22.5
1000	28.5	31.5	34.5
10000	38.5	45.5	49

SCHEMATICS PUBLISHED TO DATE

Jewell Professional Service Combination

So great is the need for increased accuracy, both in the determination of voltages and currents in receiver. circuits, and in the adjustment of radio frequency circuits, that servicemen have found complete and rapid servicing of modern receivers to be very nearly impossible without the use of both a set analyzer and test oscillator.

Many servicemen have wanted a single unit that would provide complete facilities for making every necessary service test and adjustment. T'o meet their needs the Professional Service Combination has been designed.

This instrument is comprised of a sturdy leatherette carrying case which houses: a set analyzer to provide for all receiver voltage, current, resistance, continuity, and output tests; an oseillator for all radio frequency circuit adjustments; and a power supply unit that provides all voltages necessary for testing tubes with the analyzer independently of the receiving set. The analyzer and test oscillator units may be slipped from the case
when desired.
Engineers who developed this unusual instrument started with this important consideration as their objective: Service instruments are only
of value to the servicemen when they enable him to make more rapid and more accurate tests and adjustments than he would be able to make with-
(Continued on next page)

out the instrument. With this in mind, it is easy to see why service instruments must be accurate and simple to use if they are to be of value to the serviceman. Thus the analyzer unit of this instrument is provided with large meters having unusually long scales and the resistance networks which make possible multiple measuring ranges with each meter are very carefully calibrated. These features assure accurate readings of all receiver voltages and currents. Reference to the circuit diagram of this instrument, printed on page 27 of the January issue of Radio Call Book Magazine and Technical Review, shows this network. Though it has been greatly simplified by careful design, it still remains rather complicated.

When designing the test oscillator, it was found that "stray'" or "wild", radiations from the oscillator to the receiver being adjusted must be practically eliminated. Otherwise close adjustment of the receiver circuits is not possible. This precluded the use of an alternating current operated oscillator, as too large filters would be
necessary to prevent feedback to the receiver through the power lines. A battery operated design was evolved, completely housed in a metal shielding case. Even the batteries are car-

ried within the shielding. The radio frequency output is conveyed by means of a shielded lead to the exact receiver circuit desired. Of course, the battery operated oscillator has the added advantage of ability to service
auto, aviation, and farm battery operated sets.

Output is provided on three frequency bands: broadcast 550-1,500 K.C., low intermediate $125-175 \mathrm{~K} . \mathrm{C} .$, and $160-280 \mathrm{~K} . \mathrm{C}$. These ranges are all fundamentals and allow adjustment of all radio frequency circuits in tuned radio frequency sets and all superheterodyne intermediate frequency circuits, including those using $130,175,185$, and 275 K.C. The confusion possible when the upper band is covered by harmonics is eliminated.

Perhaps the most novel feature of this instrument is the power unit that makes possible accurate testing of tubes in the analyzer independently of a receiving set. This unit plugs into a 110 volt, 60 cycle socket and supplies standard test voltages to the analyzer. An extremely accurate tube check can then be made by reading the change in plate current for two values of direct current grid bias. The three volt battery in the analyzer supplies this grid bias. A rheostat is placed in the power transformer primary circuit to allow compensation for fluctuations in line voltage.

Low Range Ohmmeter

AS a companion to the Three Range Ohmmeter described on page 28 of the February, 1932, issue of the Radio Call Book Magazine and Technical Review, we present this instrument which covers the lower range of resistance values, with a scale which enables accurately determining resistances as low as two ohms. The upper practical limit of the scale is 10,000 ohms.

A Weston type $301,0-10$ milliampere meter is used, the greatest item of cost. The remaining parts consist of a fixed wire wound resistance unit
of 100 ohms, and a Yaxley rheostat of 75 ohms. A single large flashlight cell is enclosed with the instrument in its case. Binding posts are

brought out on the panel for connections to the resistance to be measured. In use, the meter pointer is first adjusted to the left end of the scale, with the terminals open, by means of the screw adjustment found on the meter face. Then a short piece of copper wire is connected across the terminals on the panel, and the pointer is adjusted to the zero ohms point on the scale by varying the
rheostat by means of its knob, found on the panel.
In column 1 is the front panel view showing the location of the meter, the adjusting knob, and the binding posts for connection to the unknown resistance. A back panel view is given in column 2. It shows clearly the layout of all parts and the connections made to the various circuit elements. In column 3 is the schematic wiring diagram, which is extremely simple and should require no additional explanation for clarity. A special meter scale will be furnished upon receipt of 50 c .

Sectionalized Rectifiers

By A. L. Atherton, Circuit Breaker Engineering Dept., Westinghouse Electric \& Manufacturing Company *

BASIS for the sectional type mercury are rectifier lies in the obvious, but apparently heretofore unrecognized fact that the best possibilities inherent in the principle are realized only in the smaller sizes. Efficiency, reliability, economy, and flexibility of both application and use are all far better in small than in large units. The advantages appear to be fundamental and, therefore, permanent.

Many familiar things are inherently at their best in small sizes; some become impossible or impractical to

Figure 1
make or to use above a small unit size. A book, a bar of soap, a lead pencil among common things; the cylinders of an internal combustion engine, or the engine as a whole, in mechanies; and among electrical things, suspension insulators and incandescent lamps, are examples. In each of these, and almost innumerable other cases, some kind of utility is added by the subdivision of the required amount into smaller unit parts.
Established and common "unit type" things are so well known that we have come to overlook the limitations and inefficiencies introduced by the subdivision and to accept the

[^2]scheme as natural and, therefore, right. In suspension insulator units, a large part of the insulation material is shunted by metal, assembly operations are duplicated many times in a single unit of use, and the distribution of potential along the string is wrong unless corrected; but the mechanical

Figure 2
strength, flexibility, adaptability to all voltages, and the economy of concentrating manufacture and stocks in a single unit are so much more important that the disadvantages almost vanish from our thoughts. Because the benefits outweighed the disadvantages, the introduction of the idea of sectionalization in line insulators created a new utility, and because the increase in utility was great, the whole of the associated art of long distance
transmission received a major stimulus.
So with the metal tank mercury are rectifier. Subdivision into unit sections introduces both advantages and disadvantages, but the advantages so far outweigh the disadvantages that, once the conception is seriously considered and the sectional design actually worked out, doubts disappear and it seems the right and natural way to proceed.
Development through the past twen-ty-nine years has resulted in rectifiers of small capacity, 500 kw . for example, with a high degree of reliability, a reasonable cost, and an efficiency which makes available for the higher voltage conversion applications the unique quietness and freedom from mechanical wear which has provided the major incentive throughout the development. When size is increased to get larger output capacity, however, the quality decreases markedly. Reliability decreases not only in proportion to size as might be expected, but more rapidly because the complexity of the problem of control of the hurricane flow of vapor from the cathode is increased many fold when size is even doubled. The "outage time"' per year with $3,000 \mathrm{kw}$. rectifiers is several times as great as with 500 kw . units. Cost per unit of output does not decrease with increase of size, as it does with some apparatus, be-

Figure 3
cause manufacturing problems increase faster than in proportion to size, and because the total requirement for this kind of equipment, with capabilities and limitations as they are even in the smaller sizes, will not sup, port organized "line manufacture" for the larger capacities. Efficiency falls off with increase in size because of the longer are and greater exposure to deionizing surfaces, and because loss of reliability makes necessary an increase in loss producing devices to get acceptable quality. With present designs, the internal losses for a 500 kw . unit are approximately 25% less than for a $3,000 \mathrm{kw}$. unit, both based on 600 volt operation. The major disadvantages which go with size appear to be fundamental and permanent, whatever advances may be made in the art. Larger units will always be less efficient, and the reliability and cost

Figure 4
disadvantages will probably persist.
If we think of multiple installations of conventional small capacity units of the sort which have been available in the past, we realize that the project is impracticable. The space required is too great and the multiplicity of control and protective devices appears questionable. But when we think of subdivision of a large capacity, taking advantage of space economies resulting from recent advances in the art, building the structure in sections but installing, controlling, protecting and using it as a whole, the project becomes feasible and the desirable qualities of the small rectifier are made available for the larger capacities, while the disadvantages of sectionalizing are so reduced as to become negligible.

Our work with rectifiers of conventional size and characteristics has resulted in the conviction that the limi-
tation in capacity for a given design, for instance the 500 kw . unit shown in Figure 1, lies in local limitations of the various parts. For example, the limits of conductivity and heating at the anode, and not the perhaps more fundamental and difficult tendency to arc back at the higher currents. Such a unit carries a nominal current of 833 amperes continuously, 1,250 amperes for two hours, and $2,500 \mathrm{am}$ peres for one minute. In all our test-
rially to reduce the size of the containing tank without affecting the ability of the unit to carry the loads required by its rating. Experiments along these lines have verified this conclusion

As a further step, a rearrangement of parts made possible a still further reduction in size for a given rating, and at the same time brought about some reduction in the internal losses. The rearrangement was based on the

Figure 5
ing, which includes use at currents up to 17,000 amperes on short circuit, and which includes considerable experimental experience of loads of 2,000 to 2,500 amperes for periods of 5 to 30 minutes, dependent on temperature rise, we have not experienced arcing back as a limitation. Extended service experience with a limited number of installations gives the same result. Evidently, change in the details, leaving the general arrangement unaltered, would make it possible mate-
knowledge gained in our experimental experience as to the effect of the way the vapor flows from the cathode to the condensing wall and the position of the anode structures in relation to this stream of ionized vapor on the limiting current of which the rectifier unit is capable, without excessive arcing back. Although the whole mechanism of vapor flow and its effect on arcing back are far from known, several factors which influence performance have
(Continued on page 38)

Complete Set Analyzer

NUMEROUS requests for construction data on a low priced analyzer has prompted us to run the following article. This analyzer will make all the necessary tests on any receiver with the exception of testing rectifier tubes. However, most service men carry extras and the effidiency of the tube in the receiver can be determined by substitution. The constructor should not, however, expect all the tests that are possible with a factory built instrument to be made with the home constructed article, due to the fact that this type of instrument, in order to be worth while, must be held to a price limit.

Fig. 1 shows the test instrument complete in a small carrying case, which is what is commonly known as an "overnight bag." The meter shown at the left-hand side is a Weston type 476, $0-3$ volts a-c. Direcely below this meter is located a small knob which controls a single pole single throw switch, allowing the meter range to be raised to 15 volts by connecting in series with it a resistance of approximately 72 ohms. This meter can also be used as an out. put meter for aligning of receivers. The leads from it are brought out to the front of the panel for this purpose and terminate at two binding posts marked "a-c." This meter, as used in the test kit, measures filament voltages and is continually in the circuit.

You will also note below the meter an arrowed knob. This actuates a 10,000 ohm resistor, which is connected in series with a push button switch labeled "mu," seen at the right of the meter. The resistance and the switch are connected across the clip lead and the cathode lead of the fiveprong socket. It is not. however, shown in the schematic. This is used to get
a rough mutual conductance reading. By pushing the button you adjust the resistor so as to cut the grid voltage a fraction of its original value. The
ranges as shown on the nine-point switch in Fig. 2 and may be purchased from this office by mailing 60c. Directly below this meter a nine-point

change in plate current is then divided by the change in grid voltage and the result multiplied by one million, giving the answer in micromhos.

The center meter is a Jewell pattern 54, 0-1 milliameter, using special scale

Figure 2
switch changes the range of this voltmeter from a $0-20$ to $0-1000$ volts. To the right and the left of the nine-point switch you will note two arrowed knobs. These control double pole, double throw, three-position switches and by drawing into their various positions, plate, screen grid and cathode voltages are read on the voltmeter. The two D.P.D.T. switches just mentioned, and the nine-point switch are made by General Radio Co.

Two leads are brought out to the front of the panel from the voltmeter so that it may be used externally. To the right of the voltmeter is a double pole, double throw, two-position switch, which reverses the polarity of the meter. The meter at the extreme right is a Weston type $301,0-20$ milliameter. Directly below this is located the single pole single throw switch which allows the meter range to be raised from a 20 ma full scale to 100 ma , by shunting a resistor of approximately .3 ohms across the in-
(Continued on next page)
strument: This meter shows the plate current and is continually in the circuit.

Located at the lower right-hand corner are two fuse mountings, one of which contains a spare. The fuse in use is of $1 / 64$ ampere capacity and is used to protect the voltmeter. These fuses are made by the Littlefuse Co. In order to test output pentodes all that is necessary is to plug the fiveprong adapter into the socket, insert the tube in the test kit, make the plate and grid test as usual and to get a voltage reading on the extra screen, the switch should be thrown into the cathode reading position.

In Fig. 2 you will note at the upper (Continued on page 46)

Figure 3

Weighing With a Beam of Light

ACCURATELY weighing the steady flow of material passing by on a conveyor belt ; keeping careful count of the tons that have been handled; and finally, recording on a time chart the belt loadings throughout the twenty-four hours of the day-such is the latest job undertaken by an electric eye and an ingenious electric brain. This application of the light-sensitive cell and electrical integrator or counter, to use plain terms, represents a notable advance over the means heretofore employed in accomplishing this task, mainly by way of simplicity, lower cost and more positive adjustment. While the gencral scheme of weighing a continuous flow of material remains the same, the means whereby passing weights are converted into corresponding electrical impulses for the operation of the integrator, has been radically changed with the introduction of the light sensitive cell.

To better understand the latest light-control application, let us begin with the main principle. To obtain the weight of a continuous flow of material, it is necessary to combine the size of the stream with the speed at which it moves. The speed may be constant, but the size of the stream may range from zero pounds per foot to the full capacity of the conveyor. Consequently, any variation of load must be instantaneously noted at the controller so that true integration of weight may be obtained.

At the point where the continuous stream of material is to be weighed, a short section of belt is installed, mounted in such manner that its varying weight is communicated to the weight checking equipment placed directly above. With the varying weight of the load on the conveyor belt, the beam of the weight checking
mechanisin is actuated. The scale load at one end causes the fulcrumed beam to swing over the scale of the load indicator at the far or free end. This, of course, indicates the instanlaneous weight, but there is still need for some device to keep tally of the continuous procession of varying weights. It is at this point that the

electric eye gets to work.
Close to the free end of the swinging beam is mounted a cross arm carrying a Burgess Radiovisor Bridge or simplified form of light-sensitive cell, and a light source lamp. These members are so mounted that one is outside, while the other is inside a revolving light-chopper cylinder which is driven in step with the speed of the belt. The light-chopper cylinder derives its name from the fact that it carries 32 parallel longitudinal slots which serve to interrupt the passage of the beam of light between light source and bridge. However, the slots are of varying lengths. The first is equal in length to the distance traveled by the scale beam from zero to full load. Each succeeding slot is shortened an equal amount at the bottom, so that a line drawn from the bottom of slot 1 around the cylinder to the bottom of slot 32 would form a true helix, touching the bottoms of all slots.

The bridge or cell is mounted in a housing provided with a window directly opposite the sensitive plate.

The condensing lens of the light source is adjusted to concentrate an intense beam of light through the window and on to the light-sensitive plate. However, the wall of the rotating chopper cylinder comes between, allowing the light beam to pass only when a slot is in line. Each admission of light reaching the bridge sets up an electrical impulse, which impulse in turn drives the mechanism of the integrator or electric brain that keeps tally, as well as the time chart recorder.

With no load on the belt, the free end of the beam is down, with the focused point of light just below the bottom of slot 1 of the chopper cylinder. Hence no impulses result, since no light reaches the bridge. As load is placed on the belt the beam swings upward proportionately, bringing the focused point of light higher and higher on the chopper cylinder, so that more and more slots admit light and

cause a corresponding number of impulses to actuate the electrical integrator. The number of impulses are always proportional to the load, from zero to the capacity at which the scale is calibrated. At full load there are 32 contacts per revolution of the chopper cylinder. With 350 contacts per
(Continued on page 40)

RUMOR has it that when browbeating, bullying, and Black Magic have failed, the next best way to intimidate some people is to show them a graph. It is claimed that when all other avenues of escape have been cut off, these people will contend that, being at best poor mathematicians, they do not hope to comprehend an array of curves which they already suspect of being heavily fraught with mathematical significance.
It seems incredible that such should be the case, for, after all, graphs present matters in the simplest of all languages, the language of pictures; and, in fact, if one could imagine an event, statistical or purely mathematical, leaving behind it a trail of dust, and then could imagine some enterprising young photographer creeping up and taking a picture of that trail of dust, one might safely say that the photographer now had in his possession scarcely more or less than a graph of the progress of that above-mentioned event.

In Figure 1, for instance, how much easier it is to say that the frequency of resonance is the frequency at which two lines cross each other than it is to take paper and pencil and regard the frequency of resonance as the reciprocal of the product of two numbers, one of which is already the square root of the product of two other numbers (which it undoubtedly is). Many of us must decide at once in favor of the graph.

Of course, in any discussion of resonance, graphical or not, we ought first to reach some semblance of an agreement upon what resonance really is. For one thing, we recognize in resonance an electrical condition without which the development of radio, tele-

Figure 1
vision, and power to their present state would be highly improbable. For this reason alone we could be justified in even a lengthy discussion of the subject. Looking at the mechanical aspects of resonance we find that it always involves inductance, a property common to coils of wire, and capacitance, the chief attribute of a condenser.

If we were to take a coil of wire (inductance) and pass an alternating current through it, we should find that the very act of admitting the changing current in the first few turns of wire had given rise to a disturbance throughout the electric field of the coil, and that this disturbance, in turn, had induced an electro-motive force in

all the other turns of wire, which force, unfortunately perhaps, had an opposite direction to the initial current which gave rise to it. Consequently, as the current proceeds through the next few turns of wire, it must spend some of its energy in overcoming the resisting electro-motive force. If we should measure the electrical energy in the whole circuit, it would become evident that power was being lost somewhere in the coil, and since we are accustomed to suspect that whenever power is lost it has been used in overcoming resistance, we may properly conclude that the coil has some form of resistance which we proceed to measure in ohms. However, since it is necessary to differentiate between this apparent resistance due to opposing electro-motive forces and the usual kind of resistance resulting from friction and manifesting itself in heat losses, we call the former "inductive reactance" and the latter simply resistance.

If, instead of an alterating current, we had put a direct current through the coil, we might measure an appreciable frictional resistance, but there would be no measurable inductive reactance. The reactance effect requires that the current be changing (alternating) and experiment shows that the reactance is directly proportional to the frequency; that is, the greater the number of alternations per second the greater becomes the expression in ohms of inductive reactance.

On the other hand, if we had passed alternating current through a condenser instead of a coil, we might have observed what is called capacity reactance. This sort of reactance is not due to an induced opposite electromotive force, but is more to be accounted for by observing that the condenser behaves like an elastic storage container which, while being filled, admits current readily at first, but becomes increasingly difficult to fill as it nears its elastic limit. It is this difficulty in charging to capacity against an elastic restoring force that we recognize as capacity reactance. If a direct current were put through a condenser it might enjoy a momentary surge, but very shortly the capacity of the condenser would have been reached and at the given voltage no more current could be forced against the large elastic restoring force. This would give the effect of an infinitely high capacity reactance (just the opposite from the inductive reactance effect). In fact, with capacitance, the higher the frequency the lower becomes the reactance, since with high frequency of alternation a current doesn't travel long enough in one direction to charge the condenser to a point of strain.

It is particularly instructive at this point to recall a mechanical analogy suggested several years ago by the famous physicist, Lord Kelvin. He pointed out that an inductance possesses properties of a heavy mass, especially in respect to its inertia, the quality of being hard to start and hard to stop. A current starting out in an inductance promptly meets a high opposing electro-motive force and is retarded, while, on the other hand, a current once started and tending to decrease or stop in an inductive circuit is urged by a contrary electro-motive force to keep going. Lord Kelvin went on to show that a condenser has the property of elasticity, that is, when strained it exerts a force to restore it to its previous equilibrium. There is much in this to remind us of a weight suspended on a steel spiral spring, the other end of which is on a fixed hook. Here the weight has inertia, while the steel spring has elasticity, and the two together form a system which, when started, oscillates up and down with a uniform period. For any particular value of spring and weight there is a definite natural frequency of oscillation which may well be termed the frequency of resonance. It is to be noted that if spring or weight were taken separately, much labor could be performed in lifting them up and down, whereas, when they are together, a slight touch at regular intervals (depending on the resonant frequency) is sufficient to maintain the oscillation indefinitely. We might notice also
that if we were to apply energy to this system at any intervals other than those determined by the resonant frequency, we should be lifting the weight part of the time when it would naturally have tended to go down, and we should be pulling down against the spring when the natural tendency of the system was to go up. Obviously if we supply alternating energy at any other but the resonant frequency we must encounter some resisting force or reactance.

Returning to the condition of electrical resonance, we find that the mechanical analogy has its parallel here in several respects. In Figure 1 has been represented most of the important part of the audible frequency band, namely, frequencies from zero to 6,000 cycles. Starting at the lower left corner and reading to the right, each added small square means an increase in frequency of 100 cycles. Reading upward, each square represents 100 ohms reactance. The heavy curved lines represent capacity values. Thus, if we wished to find the reactance of a one microfarad condenser at 1,000 cycles, we start on the 1,000 cycle line, go up to where it crosses the heavy curved line marked 1 Mfd . and note that this point is on a horizontal level with approximately 1,590 ohms. The answer is simply that the 1 Mfd . condenser has 1,590 ohms reactance at 1,000 cycles. What size condenser will have a reactance of 4,000 ohms at 2,000 cycles? Read up along the 2,000 -cycle line to the 4,000 ohm level, and the nearest capacity line appears to be .2 Mfd ., which is the value we were trying to determine.

The broken lines radiating from the lower left corner represent inductance values (designated around the margin). Suppose we want to know the reactance of 90 millihenrys at 4,500 cycles. We merely find the intersection point of the 4,500-cycle line with the broken line marked in the margin 90 Mh . and observe that this point is in the horizontal reactance level of about $2,540 \mathrm{ohms}$. If we should put a coil of 200 millihenrys inductance in series (as in Fig. a) with a condenser whose capacity is .1 microfarad, what would be the resonant frequency of the combination, or, in other words, at what frequency would their combined reactance be zero? (The reactances of inductance and capacity are opposite in their effect and tend to cancel each other out. If they were equal and opposite, the net effect would be zero reactance.) If we follow the broken line marked 200 Mh . to the point where it crosses the heavy curved line .1 Mfd ., we find this point at a frenquency level of approximately 3,550 cycles. Longhand calculation shows this to be 3,559 cycles, so we are
(Continued on page 40)

Sectionalized Rectifiers

(Continued from page 33)
been established. The design shown in Figure 2 is an attempt to take these as yet rather intangible and, it must be admitted, somewhat uncertain factors into account in the most satisfactory way possible at the present time.

The anode support and shielding arrangement also offered an opportunity for progress and a rather extended series of experiments resulted finally in the anode structure shown. Processing to eliminate foreign material and keep the gas evolution under operation at as low a value as possible have progressed along with the design development.

As a result of these improvements, the rectifier section shown in Figure 2 is capable, with a reasonable margin, of a standard nominal rating of 750 kw . at 600 volts, and even of higher short time overloads as sometimes re quired.

This section, at 750 kw ., 600 volts. rating, is required to carry a normal current of 1,250 amperes, with 50% overload, or 1,875 amperes for two hours. Owing to the fact that final temperatures are reached in times of the order of two hours, it is felt that the two-hour capacity can best be indicated by continuous operation at the 50% overload value and our experimental tests have been made in this way, thus including in a single test some margin of safety along with a degree of acceleration of the test. Double load, or 2,500 amperes, is required by standard nominal rating for a period of one minute following full load. Experimental tests have been made at this current up to 5 minutes' duration.

In all these operations, arcing back is very infrequent, if it occurs at all, and it is a requirement that the rectifier can be put into operation again immediately following such an occurrence.

The internal losses in the rectifier are determined by the are drop, or voltage from anode to cathode during the conducting period. This value varies with load current and can be indicated by a curve of voltage drop against load current. The value that determines efficiency is the average for the various anodes. Figure 4 shows average are drop curve for the unit indicated by Figure 2. The dotted curve shows the value for the older, conventional, unit shown by Figure 1. As the size of a rectifier is increased, the arc path becomes longer and losses per kw. output become greater. Experimental rectifiers of $3,000 \mathrm{kw}$. with a single tank have had are drop values as shown by the dot and dash curve of Figure 4. It is seen that at full
(Continued on page 40)

SHORT WAVE RECEIVER

By W. H. Henton, Slater, Mo.
$\mathrm{C}_{1}=5$ plate midget condenser.
$\mathrm{C}_{2}=.00012 \mathrm{mfd}$. condenser.
$\mathrm{C}_{3}=.0001 \mathrm{mfd}$. condenser.
$\mathrm{C}_{4}=.5 \mathrm{mfd}$. condenser.
$\mathrm{C}_{5}=.0002 \mathrm{mfd}$. condenser.
$\mathrm{C}_{6}=4 \mathrm{mfd}$. electrolytic.
$\mathrm{C}_{7}=.01 \mathrm{mfd}$. condenser.
$\mathrm{C}_{8}=.03 \mathrm{mfd}$. condenser.
$\mathrm{R}_{1}=5$ to 10 megohms.
$R_{2}=20$ ohm center-tapped resistor.

20-40 Meters
$\mathrm{I}_{1}=11$ turns, 28 D.C.C.
$\mathrm{I}_{12}=6$ turns, 28 D.C.C.
$\mathrm{R}_{3}=100,000$ ohm resistor.
$\mathrm{R}_{+}=400$ ohm resistor.
$\mathrm{R}_{5}=50,000$ ohm tone control.
$\mathrm{R}_{6}=1$ megohm.
$\mathrm{L}_{1}, \mathrm{~L}_{2}$ wound on tube base.
$R \mathrm{FC}=85 \mathrm{mh}$.
$\mathrm{T}_{1}=$ Audio transformer with primary and secondary in series, shunted with a 200,000 ohm resistor.
$\mathrm{T}_{2}=$ pentode output transformer.

20 turns, 28 Meters
20 turns, 28 I.C.C.
9 turns, 28 D.C.C. 10 turns, D.C.C.
Wound on tube hase

EVEREADY 239 CHARACTERISTICS

Power Amplifier Systems

RADIART MODEL GXC2

PERFORMANCE curves on the Radiart model GXC2 amplifier, made in our laboratory recently, are given in the included curves. It will be noted that two different curves are given on the graph, the upper one representing the fidelity of the amplifier with the tone adjustment set for maximum bass response, and the lower one with the adjustment made for least bass response. Any electrical fidelity between these limiting curves may be had by variation of the tone control from one extreme to the other.

This amplifier, in addition to being entirely a-c operated, has a transformer incorporated in it to supply heating current to either 4 or $71 / 2$ ampere exciter lamps used in projectors. An output transformer enables matching to dynamic speaker voice coil circuits, a standard 500 ohm line, and, in addition, has a winding to
match a $4,000 \mathrm{ohm}$ monitoring circuit.
No external volume control or levelsetting device is required since it is inchuded in the amplifier. On the panel are the a-c line voltmeter and an ammeter for measuring the exciter lamp current; also the switch for changing from one projector to the other, and the on-off switch. Provision is made for comnections to a microphone or a disc pickup which makes available every form of operation to be met. Separate controls make possible voltage adjustment for two photo-electric cells so that no change in reproduced out put level need occur when changing from one projector to another.

No measurable hum existed in this amplifier. Other features include knock-outs for permanent wiring so that conduit or $B X$ can be run directly to the amplifier proper. The power output should be sufficient to permit installation in theaters with seating capacities up to 1,000 persons.

Tubes required for operation are, a 224 first audio, 227 second audio, 245 third audio, push-pull 250 's and two 281 rectifiers.

Sectionalized Rectifiers (Continued from page 38)

loads the difference between these experimental single tank $3,000 \mathrm{kw}$. rectifiers and the section shown in Figure 2 amounts at full load to approximately 6 volts, or 1%, on the basis of 600 volts output. With ordinary load factors and rates for power, this difference in $3,000 \mathrm{kw}$. rating saves from $\$ 600$ to $\$ 1,500$ per year power cost, which represents an added value of from $\$ 4,000$ to $\$ 10,000$.
The proportions of the new units are such as to make it feasible to mount them in service one above another. Thus, a $3,000 \mathrm{kw}$. unit can be made of four 750 kw . sections mounted two side by side and two deep. The floor space required for such an assembly is approximately 118 inches wide, by 68 inches deep over all parts, including auxiliary equipment. The overall height is 113 inches, and the ceiling height of the room necessary to accommodate this equipment need not exceed this value except for clectrical clearance of a few inches and whatever may be necessary to provide for adequate working space, certainly not more than two feet. It is evident that there is a considerable space economy.

The problem of paralleling is the same as in the case of a single tank rectifier using the same number of anodes and, except in detail, is the same as for any rectifier using twelve or more anodes. Load balancing is inherently approximately correct owing to the fact that the voltage across the are rises with increasing current after a minimum at about 40% load is passed. To get a closer balance, anode balancing coils are used and these are so arranged as to introduce no appreciable impedance into the circuit under normal operation. In the event that it is desired to take a section out of service, for maintenance or any other reason, the corresponding balancing coil sections are short circuited by connection links provided for the purpose.

One arrangement of vacuum pumping is indicated in Figure 5. Use is made of two independent pumping systems, connected through manifolding to the various sections and with cross connections so arranged as to permit the use of either pumping system on any or all of the tanks. The various sections of the rectifier are connected to the vacuum manifold through two valves of unique design, provided with a sealing plate as an extra precaution against outside air. Even if such a valve should develop a leak, this safeguard would prevent any leakage into the tanks except at a very slow rate and for the minute or less while the valve position is being changed. The use of two valves per-
mits the separation of a single section from the balance of the structure without admitting air to either part. In the event that maintenance work is required, it is thus possible to put the repaired section on condition by pretreatment, then install it and by proper manipulation of the valves, exhaust it completely without admitting air to either that unit or any part of the operating system. With the pumping arrangement shown, this requires the operation of one of the other units with valves closed for some time, but experience has indicated that if properly made and treated out the rectifier unit will carry normal loads without pumping for several hours, or even several days, without damage.

Sectionalizing inherently provides the utility that any damage which occurs is likely to be limited to a relatively small part of the total structure and that the load can be carried during the period of maintenance with the balance of the structure. With the arrangement in Figure 5, a faulty section is segregated from the others by removing the connection links and closing the valves, requiring only a few minutes, before load can again be carried. Although a maintenance operation is required to remove a unit from the structure for repairs requiring two hours or so, this can be done during a light or no load period. It would be possible to arrange with jack connections and separate systems of auxiliary equipment or flexible pumping and water connections so that the operator could pull the unit forward a few inches and go on with operation with the balance of the equipment after an interruption of one or two minutes. The choice between these two plans depends on the frequency with which interruptions are likely to occur. The inherent quality in the design, together with the experience thus far, indicates that the interruptions requiring maintenance will be so infrequent as to make the simpler plan preferable.

The project for sectionalizing, together with the development in working out sections of suitable dimensions and proportion, thus makes available an increased degree of reliability, increased flexibility in application and use, improvement in manufacturing requirements, and an efficiency advantage of 1% or more. Beyond this is the belief that as time goes on and as we acquire a clearer understanding of the fundamental knowledge gained from our research but not yet fully used in design, further improvement will be made in respect $t n$ efficiency and size. It is to be expected that, as this progress occurs, the development will be along the lines of sectional structures rather than along the lines of single unit arrangements.

Filter Design by Graphs
 (Continued from page 37)

in error one-third of one percent. At this stage there may be some protest that whereas the claim is made that this particular combination of inductance and capacity is at its resonant frequency and should necessarily have a reactance of zero, the lines actually cross at a reactance level of 4,460 ohms. The answer is simply that if either inductance or capacity were taken separately, the reactance of each would have been $4,460 \mathrm{ohms}$, but when they are combined in a series circuit the reactance is 4,460 minus 4,460 , which is zero.

Weighing with a Beam of Light (Continued from page 35)

 minute and a belt speed of 350 feet per minute, an impulse is obtained for each foot of belt, which is representative of a certain amount of material passing over the scale.Balancing the scale is a simple operation. A test weight is provided which represents exactly half load when hung on the beam. A switch serves to cut out the integrator and throw in a small lamp which flashes at each impulse. A change gear is provided, which slows up the revolutions of the chopper cylinder so that the flashes may be counted. With no load on the moving belt, there should be 16 flashes for each complete cycle if the machine is properly balanced. If out of balance, the scale is balanced with a balance ball as required, until 16 flashes are obtained per revolution. The test weight is then removed.
The bridge, light source and chopper cylinder serve to produce the necessary electrical impulses which are amplified by means of a two-stage amplifier designed and built by the engineering staff of the Burgess Battery Company of New York City. The amplifier output operates a Burgess vacuum contact relay capable of handling all the current required for the operation of one or more integrators or counters, which may be located at any distance from the scale. A rectifier converts stepped down A.C. into low-voltage D.C., for the operation of the integrator and scale chart, in accordance with the makes and breaks of the vacuum contact relay. The integrator is simply an electro-magnetic counter with a number of units to represent the grand total of integrated weights.

The telepoise, as the ingenious continuous weighing and recording mechanism is termed by its designer, E. J. White of the staff of John Chatillon \& Sons, pioneer builders of scales, is finding many applications in mines, power plants, warehouses, factories and other establishments where bulky materials are weighed in motion.

Receiver Voltage Analyses

$\underset{\sim}{\omega}$	$\stackrel{\omega}{\sim}$	$\stackrel{\omega}{\sim}$	¢	\％	W	$\stackrel{\text { 퉁 }}{\text { ¢ }}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & N \\ & N \end{aligned}$
كه	or	$\begin{aligned} & p \\ & p \\ & 0 \end{aligned}$	$\stackrel{\rightharpoonup}{+}$		$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \underset{y}{x} \\ & \end{aligned}$		
N	N	N	N	N	N	$\stackrel{S}{6}$	
皆	$\stackrel{\rightharpoonup}{6}$	阽	8	品	↔		
N	N	¢	ω	ω	ω	$\frac{0}{0}$	
						軻通	
						矣产	
			No	$\stackrel{B}{i}$	8	¢	

免	㫛	\cdots		$\stackrel{N}{ \pm}$	N	$\stackrel{\sim}{6}$	年
－	－	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & ? \end{aligned}$	－	$\begin{aligned} & \stackrel{-n}{+} \\ & \stackrel{\ominus}{8} \\ & \stackrel{+}{+} \end{aligned}$	－	＂	？
$\begin{aligned} & \text { is } \end{aligned}$	N	N	$\stackrel{N}{\text { N }}$	is	N	is	实乐乐
$\stackrel{N}{N}$	先	N		$\begin{aligned} & \text { N } \\ & \text { OU } \\ & \hline \end{aligned}$	$\stackrel{G}{6}$	$\stackrel{N}{\stackrel{\circ}{\circ}}$	$\stackrel{\underset{\sim}{0} \underset{\sim}{0}}{\stackrel{0}{0}}$
$\underset{*}{\underset{O}{\omega}}$	$\underset{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\mathrm{c}}{*}$					$\begin{aligned} & \underset{\sim}{0} \\ & \frac{0}{d} \end{aligned}$
		N	ω $e r$	Er	N	co	
N	N	ir	0	ir	cr	0	奀哥苞
			\bigcirc	\bigcirc		$\stackrel{\text { ® }}{ }$	

∞	出	虫	N	N	$\underset{\sim}{*}$		N	${ }_{\omega}^{*}$	¢	它	
$\begin{aligned} & \text { た/ } \\ & \stackrel{\text { P}}{\gtrless} \end{aligned}$	$\begin{aligned} & \text { To } \\ & \hline \end{aligned}$	- do	又土	$\begin{aligned} & N \\ & 0 \\ & 0 \\ & 0 \\ & \stackrel{O}{P} \end{aligned}$	$\stackrel{-}{-7}$	$\underset{x}{-r}$	\％	$\begin{aligned} & \ddot{n} \\ & \stackrel{\rightharpoonup}{*} \\ & \stackrel{+}{*} \end{aligned}$	דِx	－	
$\stackrel{+}{\circ}$	$\stackrel{N}{N}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & N \\ & i \end{aligned}$	$\begin{aligned} & N \\ & i \end{aligned}$	$\begin{gathered} N \\ i \end{gathered}$	$\begin{aligned} & N \\ & i \end{aligned}$	$\begin{aligned} & \text { N } \\ & i \end{aligned}$	$\begin{aligned} & N \\ & i \end{aligned}$	$\begin{gathered} N \\ + \end{gathered}$	$\frac{0}{6}$	48 0 0
	N0\％	蓲	岕	$\frac{1}{c}$	N	효	$\stackrel{\circ}{8}$	い	$\stackrel{\text { ¢ }}{\substack{*}}$		
	合	呺			$\stackrel{\omega}{i}$	$\stackrel{\sim}{\infty}$		$\stackrel{\omega}{\infty}$	c		$\begin{aligned} & 7 \\ & 0 \\ & 0 \end{aligned}$
			へ	ఱ	$\begin{aligned} & \text { io } \\ & \text { is } \end{aligned}$	－	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	c	通景	N
흥	$\underset{\sim}{*}$	¢	$\stackrel{N}{i}$	\bigcirc	$\stackrel{H}{6}$	∞	\cdots	$\stackrel{-}{\omega}$	$\stackrel{\rightharpoonup}{i}$		
					\％	∞		8	辛		

\otimes	$\stackrel{\sim}{4}$	N	N	0	N	\cdots	$\stackrel{7}{\square}$	
$\begin{aligned} & \text { \% } \\ & \stackrel{+}{+} \end{aligned}$	$\left\lvert\, \begin{gathered} 0 \\ \underset{\sim}{c} \\ \underset{\sim}{c} \end{gathered}\right.$	？	$\begin{aligned} & \text { N } \\ & 0 \\ & \text { O} \\ & \stackrel{+}{+} \end{aligned}$	$\underset{x}{-}$		0x		
$\stackrel{+}{\sim}$	$\begin{array}{\|c} N \\ N_{0} \\ \end{array}$	$\begin{aligned} & N \\ & \text { No } \end{aligned}$	$\begin{aligned} & N \\ & N_{0} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { iv } \\ & \text { con } \end{aligned}$	$\begin{aligned} & N \\ & \text { Noun } \end{aligned}$	$\begin{aligned} & N \\ & \end{aligned}$	$\stackrel{4}{6}$	
M	No	$\stackrel{\sim}{\sim}$	岩	N	No	N		
	${ }_{*}^{*}$	0	is	$\begin{gathered} \infty \\ \infty \\ \infty \end{gathered}$	$\underset{\substack{c \\ \infty \\ \hline}}{ }$	$\begin{gathered} \omega \\ i \end{gathered}$		
							会鱼	
资	$\stackrel{\omega}{\omega}$	$\stackrel{\rightharpoonup}{i}$	io	\bigcirc	is	$\stackrel{\omega}{i}$	各蔽	
	N	N	8	용	앙	O	く	

Receiver Voltage Analyses

RCA－Victor R－11							
Tube	Position	$\begin{gathered} \text { Fil. } \\ \text { Volts } \end{gathered}$	$\begin{aligned} & \text { Plate } \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & \text { Grid } \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & \text { Cath. } \\ & \text { Colts } \\ & \text { Vol } \end{aligned}$	$\begin{gathered} \text { Plate } \\ \text { Ma. } \end{gathered}$	$\begin{aligned} & \text { S. G } \\ & \text { Volts } \end{aligned}$
35	R．F．	2.2	205	1^{*}	2	5	75
27	Ose．	2.2	60	0	8	5	
24	1st Det．	2.2	200	7	7	． 5	70
35	I．F．	2.2	205	．${ }^{*}$	2	5	75
27	A．V．C．	2.2	25	0	0	0	
27	2nd Det．	2.2	180	8＊	20	5	
47	P．P．	2.2	20.5	10		25	210
47	P．P．	2.2	205	10		25	210

	E.	$\bar{\infty}$		∞	＊	退	
	$\frac{c}{4}$	$\stackrel{\sim}{*}$	18	\rightarrow	\checkmark		F
\hat{m}	我	\bigcirc	＊	\cdots	∞		
$\begin{gathered} 0 \\ \infty \end{gathered}$	戠	1－	＊	∞	－	${ }_{\infty}^{*}$	
花	然	$\%$	\＆	\％	\％	\％	
$\underbrace{\text { D. }}_{.}$	$=\frac{x}{3}$	$\stackrel{\sim}{N}$	$\underset{\sim}{N}$	$\stackrel{\underset{\sim}{\mathrm{a}}}{\stackrel{y}{c}}$	$\stackrel{\sim}{\text { N }}$	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{+}$
	B		客	$\stackrel{9}{4}$	$\begin{aligned} & \dot{\stackrel{\rightharpoonup}{\circ}} \\ & \stackrel{\rightharpoonup}{g} \\ & \underset{\sim}{c} \end{aligned}$	\＃	这
	$\stackrel{\sim}{\square}$	\cdots	ה	$\overline{15}$	＊	\％	∞

Colonial 47							
Tube	Position	$\underset{\substack{\text { Fil. } \\ \text { Volts }}}{ }$	$\begin{aligned} & \text { Plate } \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & \text { Cirid } \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & \text { Cath. } \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & \text { Plate } \\ & \text { Ma. } \end{aligned}$	$\begin{aligned} & \text { S. } \mathrm{G} . \\ & \text { Volts } \end{aligned}$
－35	R．F．	2.44	240	1．7－40			65
27	Ose．	2.44	40				
35	1st Det．	2.44	230	10			65
35	I．F．	2.44	240	1．7－40			65
24	2 nd Det．	2.44	160	20			20
47	P．P．	2.45	235	16			240
47	P．P．	2.45	235	16			240
80	Rect．	4.85	350				

U．S．Radio，Gloritone 26P							
Tube	Position	Fil． Volts	Plate Volts	（irid Volts	Cath． Volts	Plate Ma．	S．（i． Volt．
24	1st R．F．	2.2	250	2	2	2.1	55^{*}
24	2nd R．F．	2.2	250	2	2	2.1	55^{*}
24	Det．	2.2	130	2.8	2.8	.25	40^{*}
47	Output	2.3	238	18		27	250
80	Rect．	4.65				56	

. Radio Coil and Wire Intermediate Frequency Transformer

Because of the trowiple and annoyance experienced in receiver sensitivity and sclectivity, due in a great measure to temperature changes, a unique angle of approach was made by the laboratories of the Radio Coil and Wire Corp. in designing this new intermediate frequency transformer unit. The manufacturer issued the following statement:
"Months of intensive study, research and experimenting were spent in designing a unit to withstand extreme changes of temperature and humidity conditions.
"Tests of 2,350 various types of coils and windings were made indicating that the use of definite wire spacings and traverses decreased the effective resistance of coils so they would more nearly approach the ideal resonance curve shape.
"Final results in this research and development has resulted in an advanced design of an i-f unit which will stay peaked at 175 kc , with a steady, even gain, although subjected to extreme temperature and humidity changes.
"It is small in size. Ruggedly constructed. Easily mounted with positive ground to chassis, accomplished with two hold-down spade-bolts. The coils are mounted on a low loss coil form. Extremely efficient in selectivity and gain. Wide capacity
range. Easy to adjust. Compactly assembled and mounted on a newly developed material known as Learite. Enclosed in a satin finished can. Furnished for either upright or inverted mounting."

International Resistance Resistor Kit

In response to the demand by service men and radio experimenters for a compact, inexpensive resistor kit, the International Resistance Co., Philadelphia, Pa., announces its metallized resistor replacement kit. A handy box with sliding cover contains twenty-one-watt resistors of the most used resistance values from 500 ohms to 3 megohms. By following the instructions packed with each kit, thousands of resistance values may be obtained to meet precise requirements. The factory seal applied to this certified kit insures new and genuine resistors of the indicated values.

Janette Makes B-Power for Auto Radios

A number of auto radios have been developed to a point where they give very good reception, when the batteries are at full strength.

The following statement is made by the manufacturers:
"As everyone knows, B batteries begin to lose their power rapidly the minute they are put in service. And sometimes they do not deliver full
power when first installed, due to age, frequent testing or other reasons beyond the control of the man who sells them to the user. That's why the Janette auto B-Power has won the approval of dealers and auto radio owners. This device gencrates

full rated B power when first installed and use causes no drop in its efficiency. Uniform B-Power is guaranteed the user. The owner gets better reception than he has obtained with a B battery and the reception does not weaken or deteriorate. The expense of repurchasing and the bother of replacing the B battery are both eliminated.
"The Janette auto B-Power is a compact, beautiful unit driven right off the regular auto battery, transforming 6 volts $\mathrm{d}-\mathrm{c}$ to 180 volts $\mathrm{d}-\mathrm{c}$, with a very low current consumption. It is manufactured by the Janette Mfg. Co., 556 W. Monroe St., Chicago, manufacturers of electrical motors, generators and converters."

Electrad Announces New Catalog

Electrad, Inc., 175 Varick St., New York City, announces the completion of their new catalog, showing their complete line of volume controls, voltage dividers, vitreous resistors, Truvolt adjustable resistors, amplifiers and other devices for radio and clectrical industries, which will be mailed free of charge upon request.

NEW PRODUCTS ITEMS

Manufacturers who have items that come within the scope of this department will find it of advantage to keep our name on their mailing list for announcements of new products. Halftones or electros should not exceed $21 / 4$ inches in width.

Address-New Products Editor, care this magazine.

New Short Wave Super Converter
Radio Service Laboratories, Clinton, Ia., announce a new low priced short wave superheterodyne converter, consisting of two tubes, as shown in the illustration.

The converter is ideal when used with any size of receiver employing the pentode tube. It will give the user much enjoyment and many thrills listening to police calls, aeroplane reports, ship-to-shore communication, and trans-Atlantic programs. The converter can be left connected permanently to the radio set without interfering with its regular reception.

Gen-Ral RFD No. 10 Special Coil

The RFB No. 10 special coil has been developed to fill a demand for a very small r-f coil, the efficiency of which is not hampered by the small size. It requires a mounting space of only $17 / 8$ inches in diameter and $21 / 4$ inches high. Considerable research work was done to derive the best possible combination of coil length, diameter and shield reactance.

The secondary is bank wound, with Litz wire, resulting in a coil of exceptional high gain (62.5 at 1500 kc and 42.5 at 550 kc).

Mounting of the coils in the shield and matching eliminates a great deal of testing and adjusting by the set manufacturer, which facilitates the operation of phasing the r-f system. Screw lugs are provided for mounting the entire assembly either above
or below the chassis in exactly the same space and holes as provided by a standard $13 / 4$ inch wide tube socket die, a feature which avoids special tools for punching the chassis to mount the radio frequency transformer.
The low r-f resistance due to the bank wound Litz wire extends the range of the unit and with any good condenser of correct minimum (tests were made with the Radio Condenser Co.'s condenser) a band from approximately 1700 kc (police signals) to 550 kc can be effectively tuned.

Western Television Corp. Announces

"Junior Western" for Amateurs
This new set known as the "Junior Western" consists of five integral parts, (1) a high powered lamphouse, (2) an accurately made scanning disc, (3) a synchronous motor, (4) an optically fine projection lens, (5) a pick-up unit consisting of two highly responsive photocells.

The mechanical and optical parts are mounted rigidly in their proper relative positions on a special chassis frame. In view of the fact that the scanning unit may often be placed on the same table or bench as experimental equipment, the chassis frame is rubber insulated and prevents vibration being transmitted to sensitive amplifiers and delicate electrical equipment.

The photocell units may be located in the proper position on each side of the scanning beam in order to pick up a maximum of light from the transmitted subject. The position of the photocell may be carried to suit the ideas of the experimenter on the proper angle of pick-up for his own special work. The effect of the photocell placement on the television picture is as if the photocells were flood lamps illuminating the subject from a similar position.
The photocells used in this unit are made of a specially prepared alkali metal in a bulb approximately 6 inches in diameter; the same as are used in broadcast station transmitters
built by the engineers of the Western Television Corp. They are highly sensitive, with linear characteristics in both light and frequency response and are designed for operation at comparatively low voltages.

Illumination for scanning is furnished by a 1000 watt Mazda projection lamp mounted in a compact ventilated lamp house with reflector and condensing systems for concentrating the light. The lamp is inserted in a prefocus socket, aligned at the factory for greatest efficiency. Replacement lamps will align without adjustment. This feature allows for quick replacement.
The condensing lens system, consisting of two high-powered planoconvex lenses is held in a removable unit. When this unit is inserted in the hole provided, it is the correct position for efficient concentration of the light through the apertures of the dise.

Dubilier Meter Bypass Capacitor

To provide ample protection for transmitting set meters against the heavy surges caused by induced radio frequency currents, the Dubilier PL-357-9 meter bypass capacitor is now available. This mica capacitor is designed with slotted terminal lugs to fit standard meters, the terminal studs of which may vary from 1 to 2 inch spacing. The terminal lugs are sufficiently heavy and wide to take care of the heaviest radio frequency surges that may be encountered in the circuits to which meters are connected. The capacitor is capable of handling up to 10 amperes of radio frequency energy, thereby affording the utmost protection to meters. It is available in any capacity up to .02 mfd., according to its manufacturers, the Dubilier Condenser Corp., New York City.

Jewell Portable Tube-Seller

A portable tube-seller has just been announced by the Jewell Electrical Instrument Co., 1650 . Walnut St., Chicago. This instrument enables
any salesman or service man to make a convincing test of tubes in the customer's home.

Tube value is indicated directly on an attractive three-color instrument dial in terms the customer can understand: Satisfactory, Doubtful, and Unsatisfactory. A short-check circuit with four indicating lights is provided to test tubes for internal shorts. The line voltage indicating meter and adjustment assure accurate tests despite the variations in voltage found in customers' homes.

The pattern 540 is housed in a leatherette carrying case with a heavy strap handle. By removing the cover it may be easily converted for counter testing when not in use outside the store.

Synthane Data Chart

Synthane Corp., Oaks, Pa., manufacturers of Synthane laminated bakelite, have prepared a valuable data chart on "Standards of Quality, Properties and Applications of Laminated Phenolic Sheets." Copies may be secured free by addressing Synthane Corp. at the above address.
CeCo "Mertact"

CeCo Mfg. Co., Providence, R. I., has recently announced an additional item to add to their line of radio tubes, in the form of a mercury switch which will be marketed under the trade name of "Mertact."

Mertacts are being made in all sizes ranging from one ampere at 200 volts to 50 amperes at 220 volts. The design of Mertacts at the present time is that of the rolling or tilting type, where contact is established by rolling or tilting the switch approximately ten degrees from the horizontal plane. Mertacts will be used on many industrial devices where a high contact is necessary. E. A. Zuley, in charge of engineering in the company's Chicago office, claims that on
life tests Mertacts have made as many as 150 million contacts without any great damage to the switch itself, which, the company claims, is attributable to the superior glass used in this device.

Clarostat Ad-A Switch Control

As a further convenience to jobbers and service men, Clarostat now has available a new Ad-A-Switch line of volume controls. These controls are made up in the general style and design of wire-wound potentiometers, and are obtainable in any taper or resistance up to 50,000 ohms. They have the added feature that a switch may be slipped on any of them without the use of tools.

The Ad-A-Switch arrangement enables one to simplify line-up of his stock on volume controls to a point where duplication of resistance on controls carried in stock will no longer be necessary. Any Ad-ASwitch volume control without switch can be converted at will into a complete unit with switch by replacing the usual dust cap with the special snap-on switch.

These switches are the compact bakelite type, built into the metal cover so as to take up very little room. They are Underwriters' approved for 3 amperes, 110 volts. The Ad-ASwitch volume controls are more completely described on page 7 of the new 1932 Clarostat Control Handbook and Catalog which also covers the whole line of Clarostat devices for the radio, sound and electrical industries.

A particular feature of this 32 page handbook is that a special section is devoted to real helpful information on circuits and applications of resistance control devices. A copy may be obtained without charge by writing to the Clarostat Mfg. Co., Inc., 285 N . 6th St., Brooklyn, N. Y. In writing, please mention this magazine.

New Light Weight Portable Public Address System

A new compact P. A. system, especially designed for radio service men to use as a source of revenue in rental to banquets, conventions, sporting events, impromptu public gatherings, political meetings, outdoor overflow audiences, dances, etc., has been recently developed by the Webster Co., 848 Blackhawk St., Chicago.

This system, known as the style PT-463 midget portable public address system, is built complete in one carrying case, weighs less than 40 pounds, and consists of the following equipment: push-pull amplifier employing screen grid and pentode tubes, phonograph turntable driven by electric motor which plays either $331 / 3$ or $78 \mathrm{r} . \mathrm{p} . \mathrm{m}$. records, one microphone, the control providing for the
possible mixing of phonograph and microphone input, allowing musical background for vocal announcements, one high grade dynamic speaker, provision being made for plugging in one additional speaker when desired, 15

feet of microphone cable, the polarized plugs preventing possibility of wrong connections, 30 feet of speaker cord, and all-electric filament and plate power supply, deriving current from 110 or 220 volt, 50-60 cycle alternating current.

It is said that one man can easily transport the entire system, which when packed measures only 13 in . by 14 in. by $15 \frac{1}{2}$ in. He can set it up, ready for operation, in five minutes or less. The system has an output of more than 6 watts, sufficient volume without distortion to fill a medium size auditorium.

Extensive Range of Rheostat Resistance Values

D. T. Siegel, general manager, Ohmite Mfg. Co., 636 N. Albany Ave., Chicago, announces that the line of 50 watt rheostats manufactured by this company and announced several months ago has been increased and now includes several new resistance values.

The manufacturer's bulletin reads as follows: "The Ohmite rheostat, which may also be used as a potentiometer, is of an unusual type, as there are no organic materials used in its construction. It employs a porcelain base and horseshoe-shaped porcelain core to support the winding. The entime unit with the exception of the surface on which the contact arm rides is vitreous enameled. This construction is new to the rheostat field but has been used by this company for many years in the manufacture of vitreous enameled fixed resistors. Thus the best features of the fixed resistor are now incorporated with the mechanical construction of the rheostat for the first time.
"These rheostats were formerly made in a range of values from 2 ohms to 10,000 ohms. This has now been increased to include values from 1 ohm up to 35,000 ohms. And although these units are only $21 / 4$ inches in diameter and less than $11 / 4$ inches in depth, they are conservatively rated at 50 watts.

DEPENDABLE

 MIDGET RELAYS
 Remote Control in Radio Sets
 Time Limit Devices
 Various Uses in Experimental Work
 Whoto Electric Cell Work
 Coil Requires Only 2 Watts for Operation
 A.C. 6 to 120 Volts-D.C. 2 to 24

This is our type ABTX-1 at \$3.50. Single Pole, Single Throw, Double Break. Base measures only $17 / 8$ in. x 2 $2 / 4$ in. Contacts rated 6
 slight increase in price.
In every way DUNCO MIDGET RELAYS meet the high standards of quality set by Dunco Relays of larger size. We have a wide varietytell us your requirements-special types to meet your needs.

Immediate Delivery-Literature and Wiring Diagrams Sent Upon Request DUNCORELAYS
There is a Dunco Relay to meet your requirements

We carry nothing but Brand New Radio Parts-doubly guaranteed

New tubes-for SPARTON radios-S82B, S83. S85 and S84 types.
New tubes-for SPARTON radios-
McCullough Type A-C radio tubes s-S82
Rauland Lyric lab, model Audio transiormers.
All-American $31 / 2$ to 1 audio transf.
Audio transf. $31 / 2$ to 1 -shieldedi-same as (illc
Audio transf. unshielded $31 / 2$ to 1.

2 Watt Carbon llesistors-all capacities.
RCA R.F. Chokes. 48 Millihenries unntd
RCA R.F. Chokes. 48 Millihenries unmet

Tungsol 8 mfd. Electrolytic condensers.
 prices are always the lowest! No order too parts manufacturers. Write for prices. $\mathbf{2} 9$ prices are always the lowest! No order too small for us to ship. Foreign orders solicited.
20% with order required-postage extra. Do not send stamps as payment. FREE butletin-
write for it.

If It's Radio We Hare $1 t$ "
710-712 Broadway

Permanent Magnet Dynamic Speakers
 (Continued from page 16)

a distributing system, since over a great part of the range it behaves like a highly resistive load. Transformers can, of course, he supplied to operate the speaker out of a line of any characteristic impedance. It is usually desirable to select 500 ohms, since volume controls are available to work into and out of this load.

Magnets for both permanent magnet dynamic and magnetic speakers are usually aged during the manufacturing process, so that little further aging takes place in the field. Unless magnets are run at temperatures in excess of $100^{\circ} \mathrm{F}$. a well designed unit will lose less than 2 decibels in sensitivity in the first five or six years of operation, and less than 1 decibel during the five succeeding years.

Where speakers are to be mounted in public places, that is, in dining rooms, lobbies, etc., there is no possibility of the low frequency transmission through a wall disturbing anyone, and in this case the speakers can be mounted in flush wall type boxes. This is also simplified because in these cases the box can usually be several inches deep. Careful tests should be made, however, to be sure that the type of box used does not result in the very great change in performance shown in Fig. 2 which resulted from the use of a speaker in a shallow box with no venting and no absorbing material.

Complete Set Analyzer
 (Continued from page 35)

part of the drawing two symbols, one marked "clip'" and the other "cap." The cap is an ordinary terminal taken from the top of an old 224 , soldered to a screw and mounted on the panel. The clip is fastened to a flexible lead so as to allow it to be transferred on the panel to the cap of a screen grid tube in either the four or fiveprong socket. This method of changing from the control grid prong to control grid cap eliminates the use of an extra switch.

Looking at Fig. 3 you will note on the meter to the left. which is the milliameter, a small coil of wire. This is the shunt. On the meter to the right, which is the a-c voltmeter, is mounted a flat resistor, the original value being 100 ohms. It is cut down to its correct value, approximately 72 ohms, by bridging some of the turns with solder. The high value resistors used in this tester should be of the wire-wound type and accurate to within 1%.

BRIEE ITEMS OF INTEREST TO MANY

A. S. Hediger, San Francisco, Calif.: Are you likely to publish something soon on the prospects for radio receivers giving reasonably uniform response throughout the 35-8000 cycle band, for the transmission of which network channels and pick-ups are now being equipped? Ans. It does seem a bit strange that the new lines being installed for broadcast station program transmission have flat characteristics from 35 to 8000 cycles, whereas most receivers have serious cut-off in audio fidelity long before they reach 3000 to 4000 cycles. This is especially true of very selective receivers and superheterodynes in general. In this respect, we might also mention the attitude of the public, which makes necessary tone controls on practically all receivers sold today which always gives faulty reproduction as far as the high frequencies are concerned. But what can the poor manufacturers do since the fad is started and the public seems to be accustomed to listening
(Con'tinued on pagé 48)

This amazing Radio Set Analyzer plus the instructions given you by the Association will transform you into an expert quickly. With it, you can locate troubles in all types of sets, test circuits, measure resistance and condenser capacities, detect defective tubes. Knowing how to make repairs is easy; knowing what the trouble is requires expert knowledge and a Radio Set Analyzer. With this Radio Set Analyzer, you will be able to give expert service and make big money. Possessing this set analyzer and knowing how to use it will be but one of the benefits that will be yours as a member of the R. T. A.

Write for No-Cost Membership Plan

We have worked out a plan whereby a membership enrollment need not cost you a cent. Our thorough training and the valuable Radio set analyzer can be yours. Write at once and find out how easily both of these can be earned.
Now is the time to prepare to be a Radio Service Man. Greater opportunities are opening up right along. For the sake of extra money in your spare time, bigger pay, a business of your own, a position with a future, get in touch with the Radio Training Association of America now.
Send for this No-Cost Membership Plan and Free Radio Handbook that will open your eyes as to what Radio has in store for the ambitious man. Don't wait. Do it now.

RADIO TRAINING ASSOCIATION OF AMERICA Dept. RCB-4 4513 Ravenswood Ave. Chicago, Ill.

Fill Out and Mail Today!
RADIO TRAINING ASSOCIATION OF AMERICA, Dept. RCB-4, 4513 Ravenswood Ave., Chicago, III.

Gentlemen: Send me details of your No-Cost Membership Enrollment Plan and information on how to learn to make real money in radio quick.

Name
Address

City State

" ${ }^{6}$ GEM"

Super-Shortwave Converter

Get Short Wave Reception

 with Your Present RadioInstall It Yourself No Coils to Change

Covers

Entire Short Wave Band
Make Your Radio a Superheterodyne Short Wave Receiver
Liket Price \mathbf{L} Tubes $\mathbf{\$ 2 6 . 5 0}$

INTRODUCTORY PRICE $\$ 15 \xlongequal{\mathbf{9 0}}$

If not satisfied within ten days, money will be refunded

the ultimato in systems for obtain	erter is Astounding results have been obtained with
the ultimate in systems for obtaining short- this speciaily shielded, highy ongineered.	
wave stations on your present A. C. broad- quality product. Faotory tests. conducted	
shlp to shore, shortwave phones and all under adverse conditions, give highly grail-	
e	
DESCRIPTION	
Single, illuminated dial tuning.	ESSENBEE RADIO DEVICES COMPANY. RCB
Self contained power supply. No	732 Mather St.. Chicago. III.
plug in colls. Selective but not	Enclosed find my payment of \$15.90 for "Gem" Super-
super sharp. Fully shlelded metal	
chassis. Uses 2-24, 1-27, and	
- - 80 tubes. Cablnet of Walnut.	
Operates with only two controls. covers shortwave band from 15 to	Name...
210 meters. Does not have to be	
disconnected when regular broad-	ess
cast is desired. Dlmensions;	Clty State
Wide $\times 510$	
Weight. 8	

SERVICEMEN-DEALERS

Did You Receive Your Copy of Our
OFFICIAL 1932 RADIO PARTS GUIDE

featuring

 THE NEWEST FLASH-O-GRAM"Hours of Servicing Cut to Minutes"
Send 5c in Coin or Stamps

Brief Items

(Continued from page 46)
to muffled programs? With these facts in view, it seems hardly probable that receivers will be sold having good response up to even 5000 cycles, which would give the necessary ten kilocycle band width. We have recently published a few radio receivers which have compensation for side band cutting, but this does not seem to be the general trend of the industry. Until something is done in this line, it seems hardly reasonable to expect that we shall have receivers which have less than 10 or 15 decibels drop at 5000 cycles.

John A. Taylor, Foxboro, Mass.: After reading the many comments under "Brief Items of Interest" in the last Radio Call Book Magazine and Technical Review, I feel the urge to let you know how I feel about it. I heartily welcomed the announcement of the monthly publication instead of quarterly. The first few months, however, I was keenly disappointed, but the wonderful improvement shown lately has completely allayed my fears. I don't see how the copy I received yesterday could have been better. Ans. Thanks, Mr. Taylor! Impossible as you may consider it, we believe that we can make the book better with each succeeding issue.

Eugene A. Palmer, Richmond Hill, L. I., New York: I have been a constant reader of your magazine for a number of years and wish to thank you for your splendid articles which appear each month now. I am especially interested in receiver performance curves and hope to see you continue this department. Ans. Since our magazine is primarily based on precise performance curves of receivers, you need have no fear that this department will be discontinued.
C. C. McIlyar, Cleveland, Ohio: I am a subscriber to your magazine and it is certainly the best one we have ever seen. The articles are just what I want and the curves are great. I wish you would publish an explanation of noise level and field strength as spoken of in relation to these charts. Ans. In making noise level measurements we take the sensitivity with 30% modulation, as usual, and obtain an output voltage reading corresponding to five-hundredths of a watt audio output. Then the modulation is cut off, but the radio frequency is left as it was and the output is measured. This power reading compared with the normal power output is what we cali noise level. We make note that there is no standard procedure with regard to receivers at present.

Chester E. Simpson, Mattapan, Mass.: I have just purchased the February number of the Radio Call Boor Magazine and Technical Review and I want to let you know how pleased I was to read in the editorial that you intend to publish voltage charts with all receiver schematics in the future. I also will be plased when you can make up the voltage charts on receivers in the past four issues. You surely have a wonderful magazine and the addition of the voltage charts will make it 100%.

Delcore Radio Service, Mansfield, Ohio: We like the new issues of your magazine, especially because it is the only publication in the service field. We are subscribers and have cancelled subscriptions to two radio magazines, since they are far inferior to yours.

George J. Davis, Detroit, Mich.: Since I am contemplating a change in address, I will not send in my subscrıption until I am permanently located. You may rest assured I am not missing a single issue of Radio CaLL (Continued on next page)

Brief Items Continued

Book Magazine in the meantime, since I think it is wonderful. However, I think a more uniform system in receiver schematics would be very welcome. By this I refer to the voltage charts. Ans. You undoubtedly know by this time that voltage charts are incorporated as a regular feature.

Wm. A. Schofield, Philadelphia, Pa.: Please advise me as to the method used in computing the average measured sensitive (absolute) and microvolts per meter from the curve. You state that the ideal sensitivity would be 10 microvolts absolute or less. From observation of numerous curves I notice that a set can test below 1 microvolt absolute. Is this proof that such a set is more desirable than others of less sensitivity, noise levels being equal? Ans. Average sensitivity is computed by taking the actual sum of the sensitivity at $600,800,1000,1200$ and 1400 kc , and dividing by 5 . For micro volts per meter, since the standard height antenna is four meters, it is only necessary to divide any absolute figure by 4 to obtain microvolts per meter. If noise levels were the same, a receiver with a sensitivity of 10 microvolts absolute would not be as desirable as one of 1 microvolt sensitivity. This, however, is never the case because the noise level increases rapidly as the sensitivity is increased due to more or less normal inherent qualities.

Clark Bros. Radio Co., Albia, Ia.: We want to compliment you on the excellence of your magazine and tell you that we would not want to be without it in our line of work. Enclosed herewith is check for renewal of subscription.
J. Martin, U. S. Navy Yard, Portsmouth, N. H.: In your issue of February, 1932, I note in the receiver performance curve section various values given for the image ratio ranging from 540 to 134,000 . As I have not noted any description as to $h \mathrm{w}$ these values have been computed, I would be greatly obliged if you would inform me in detail as to how they were obtained. Ans. If we take a receiver which has an intermediate frequency of 175 kc and standard operation, in which the oscillator frequency is higher than the incoming signal, we can see immediately from the resultant series of beat note phenomena that we shall have two frequencies of 175 kc if there happens to be a station of higher frequency than that being received, removed from the signal by 350 kc . As an average, let us take a signal at 1000 kc . This means that the normal oscillator frequency with a 175 kc intermediate amplifier would be 1175 kc , because beating 1000 kc with 175 kc gives the difference of frequency as 175 kc , which is the intermediate frequency signal. There would also be a beat note of 175 kc if a broadcast station were at 1350 kc , since the difference between 1350 kc and 1175 is also 175 kc . The only way to eliminate such an image, as the last signal is termed, would be to have sufficient radio frequency selectivity in the broadcast band to prevent this signal from ever reaching the first detector, since the intermediate frequency amplifier cannot discriminate against it. In our measurements of image ratio, we tune the receiver to 1000 kc and introduce a signal at 1350 kc , which is 350 kc removed in the case of a 175 kc amplifier. This frequency, of course, is determined by the intermediate frequency, with the receiver tuned to 1000 kc . The input necessary for standard output at this image frequency is measured and the ratio to the input necessary at 1000 kc is known as the image ratio.

Henry Claeys, Anchorville, Mich.: I am a radio service man and a subscriber to the Radio Call Book (Contimued on next page)

for DEALERS and JOBBERS
Every customer of yours who owns or operates any of the following sets, must use Kellogg 401 A.C. tubes for replacements. All these set owners are constant buyers.

KELLOGG Sets-510, 511, 512, 514, 515, 516, 517, 518, 519, 520, 521. McMILLAN Sets-26, 26PT. MOHAWK Sets, SPARTON Sets-62, 63, A.C 7. DAY FAN Sets- 5143,5144 , 5145, 5148, 5158. MARTI Sets-TA2, TA10, DC2, DC10, CS2, CS10, 1928 Table, 1928 Console. CLEARTONE Sets110. And the first A.C. models of the following: Bell, Walbert, Wurlitzer, Pathe, Shamrock, Bush \& Lane, Minerva, Crusader, Liberty, Metro, Supervox and Case.

Get your share of business from this profitable market by stocking and displaying Kellogg tubes now. Write Dept. 60 for name of your nearest jobber.

KELLOGG

SWITCHBOARD AND SUPPLY COMPANY

1932 ... the year for Bigger PROFITS in Servicing

Today 3 out of every 4 radio receivers are over one year old. They need servicing-at least new tubes. Aggressive energetic service men and dealers can make a mighty nice income this year by going after this business intelligently.

Hard work, knowledge of the different receivers . . . and good servicing equipment are fundamental requirements.

For this work, Weston Model 566, type 3, is the outstanding equipment. Complete, compact, handy-it makes all the necessary and required tests on any receiver. Checks all type tubes with voltages supplied by the set-easily and quickly. Extra wide instrument ranges plus an ingenious arrangement of switches and pin jacks speed up tests and cut out errors. Equipment designed for quick, accurate and profitable servicing.

SERVICE MANUAL FREE

With every Weston Model 566, type 3, a Complete Service Manual is furnished free. A practical handbook, it tells the causes of poor reception, how to locate and fix them. It gives many helpful tips-information that builds your profits.

WRITE TODAY FOR BOOKLET J

Brief Items Continued

Magazine and Teciinical Review. The advent of short wave converters has greatly increased the demand for a really efficient means of coupling head phones to a modern electric receiver. Adapters, etc., are not very satisfactory when one tries to tune in Europe and I heartily wish the satisfactory detector tapping method used in battery sets could be used equally well with electric sets. Ans. Any method may be used in taking energy from the audio system of almost any receiver for head phone reception. We suggest that the phones be placed across a grid circuit rather than a plate circuit, since the energy transferred would be satisfactory and there will be no d-c potentials with which to contend. Perhaps satisfactory operation would be obtained by using one-half or all of the secondary of the push-pull output transformer.

We have been unable to answer a letter of January 24 written by Ray R. Hetherington, M. D., who gives his address as 719 N . Lang Ave., Homewood, because no state was given.
C. W. Brooks, Northville, Mich., says that month in and month out the "Call Book"' is the best in print.
J. F. Davidson, Iouston, Tex.: I have been buying your magazine from the news stand for sometime and I find it to be very handy in every respect. Why do I sometimes hear WBAL, Baltimore, listed on 1060 kc , on 760 kc with WJZ? For some time, announcements of WBAL have been coming in over the WJZ channel immediately after or sometimes with the WJZ announcements. The same thing occurs when listening to station WEAF, only in this case an announcement of WTIC will be heard. Ans. These two stations have been perfectly synchronized and when broadcasting the same programs use the same wavelengths. In this way there is no objectionable beat note and the range of the stations is naturally increased. These experiments probably will be enlarged to include other stations in the near future, for it seems to be working successfully at present. When WTIC and WBAL are not broadcasting chain programs, their frequencies are those allotted to them and shown under their call letters in our broadcast list.

Wm. R. Brown, United Radio Service, Toledo, Ohio, writes: "I am one of your many readers of Radio Call Book Magazine and wish to state that I think it first rate. I am very much pleased to hear that you are to publish voltage charts each month along with the curves which I think are just the thing for us service men. I hope you will continue to publish them in the same way that you have started because it makes it very easy to pull this page out and file it separately. I would like to request that you continue to publish articles on testing equipment for us poor (in purse, not in knowledge) service men who work in their attics and basements and cannot afford the high prices of good test equipment. I have built the ohmmeter which was featured in the February issue and thank you for this service. I hope to find more features in the following issues which I can build."
N. C. Meyer, president of Universal Auto Radio Co., makes the statement that the new Universal model 70, curves of which appear in this issue, represents the latest advance in auto radio design with regard to elimination of motor noise. A new B eliminator makes unnecessary the use of B batteries which are costly, bulky and heavy.
(Continued on next page)

Brief Items Continued

A later check on the model 15 Sparton superheterodyne gave these sensitivity and selectivity curves. They should be pasted over those given on page 24 of the March issue of the Radio Call Book Magazine and Technical Review.

A new average sensitivity of 6.38 microvolts absolute is

taken from the sensitivity curve. This value corresponds to 1.59 microvolts per meter with a standard height antenna. The old averages were 6.72 and 1.68 , respectively, and a change in the shape of the curve will be noted. The later image ratio at 1000 kc is 95,000 compared with 82,000 . No changes were found in the automatic volume control or fidelity curves, and the changes in selectivit.

were slight, as can be seen from the included curve. The new band widths are given below:

Times Field	Kilocycle Width		
Strength	600 kc.	1000 kc.	1400 kc.
10	8	8.5	9
100	14	15	16.5
1000	20	21.5	24
10000	29.5	31	34.5

(Continued on next page)

Pick Your Branch of Radio

. . . then learn it at R C A Institutes

THERE is no industry more interesting $t h a n$ radio. And the next few years probably will see more happen and offer more prospects for advancement than ever before. With the right training, there may be a future for you in radio.

RCA Institutes offers you that training. Elementary and advanced courses in many branches of practical radio. Founded 22 years ago, today RCA Institutes is America's oldest radio school. In completeness of equipment, instructors, variety of courses it is unsurpassed. In addition, RCA Institutes is directly associated with the largest radio research laboratory in the industry. Four resident schoolsNew York, Boston, Chicago and Philadelphia. Extension courses available for those who cannot attend resident schools, with free scholarships for outstanding graduates. Special equipment

furnished with many courses. All tuition costs moderate.

Check one of the interesting branches of radio you see listed in the coupon below. Then mail it today for general catalog and full information.

The WHEEL WITHIN the WHEEL...

INSIDE your radio business is ANOTHER business-A SERVICE BUSINESS-the "Wheel Within the Wheel."
And that SERVICE wheel is closer to the hub, that supports all, than many radio men realize.
Our observation shows that radio men who conduct their Service Departments as a business which should show a PROFIT, never fail to make a profit out of it.
A SURE way to make a PROFIT from your Service Department is to use ELECTRAD high-quality replacement parts. They save both time and money.

Mail the coupon for moneymaking service helps.

ELECTRAD TRUVOLT RESISTOR

Electrad
volume
CONTROL

ELECTRAD

The Confidence Portable Radio Tube Tester is the latest advancement in the art of testing tubes-it is marvelousselect your tube, press two buttons and in English it tells the condition-emission, spacing of elements, plate impedthing necessary to know about the condition of a tube, all predetermined and interpreted into English. Originators of BAD-GOOD-GAS readnators of BAD-GOD-GAS readevery possible short in a tube. High resistance cathode to heater shorts indicated.
This is the first scientific merchandiser of radio tubes-simple of opera-tion-FOOL PROOF and has the confidence of your customers.

Take advantage of the free trial offer and unconditional factory guarantee, or buy through your jobber.

MANUFACTURED BY

APPARATUS DESIGN CO., Inc. LITTLE ROCK, ARKANSAS
Buy through your jobber or ask us about free trial plan and also easy payment plan.

Also free tube sale plan printed matter.

CONFIDENCE

(ENGLISH READING)

RADIO TUBE TESTER FOR REPLACEMENT TUBE MERCHANDISING

The Confidence Portable Tube Tester reaches the 75% of public who cannot or will not remove their tubes from the radio to be taken to a store for tests-use this portable device and get most of the replacement tube business. It interprets everything and your customer believes it - they know what is happening because it is in English. Sliphinge cover removes for counter use.

Counter type $\$ 59.50$ net. Meter faces customer, otherwise the instrument is same as Portable except it is housed in an attractive black leatherette covered counter housing. Placards are mounted on side, panels reading,

A NEW super-sensitive Short-Wave Receiver with these outstanding features: High-gain coupling-Combination regeneration-volume control (with automatic switch) eliminates unnecessary controls-Micro-vernier full vision dial for easy tuning-Scientifically shielded for maximum re-sults-Heavy cadmium plated chassis-Completely self-contained in attractive metal cabinet-Works on any antennaCovers 14 to 200 meters (550 -meter coil 75 c extra)-Uses only two tubes-Use of screen-grid detector and power pentode gives extreme sensitivity with tremendous volume-Operates speaker or headphones (for weak stations)-The complete absence of AC hum (all non-battery sets have it) makes the operation of this set a distinct pleasure-Uses 1 UX-232, 1 UX-233, 3 " B " batteries, $1221 / 2$-volt " C " and two dry cells (or a 2 -volt cell).
All ROYAL Short-Wave Apparatus is designed by Government licensed operators with a vast experience in that field.
Representatives and Dealers wanted. Write now!

Distributed by
HARRISON RADIO CO., 189 fRantikit st., New York City Send for our FREE CATALOG of Shorf-Wave and Television Apparafus

Brief Items Continued

W. C. Engel, Danville, Ill.: Please correct the connections of the audio transformer given with the schematic diagram of the Universal Modulated Oscillator on page 29 of the January, 1932, issue. Also, what audio transformer ratio do you suggest? What do you mean by " E "' sections and " I '' sections of the laminations? How does this oscillator compare in efficiency with factory-built instruments? Ans. Due to a fault in the zinc cut which was used on page 29 of the January, 1932, issue, a break appears at the low end of the primary and secondary windings. Both of these points should be grounded. An audio transformer with a ratio of 3.5 to 1 , or as high as 6 to 1 , could be satisfactorily employed. When we refer to " E " laminations and "I' laminations, we mean the stampings which are shaped like the letters used to denote them. Occasionally an audio transformer is found in which the laminations are complete in one piece, with two cuts in the mid-section. If you happen to run across one of this type, we suggest that you remove about one-half of the laminations. To our knowledge, the efficiency of the oscillator is good enough to satisfy all requirements. In such an instrument, efficiency is of no important consideration.

John N. Naff, Camden, Texas : Enclosed please find the required amount to extend my subscription for six months. Maybe by that time things will be in better shape for me, although service work has picked up here a little. I certainly do enjoy reading the Radio Call Book Magazine and believe it is getting better than ever. I am enclosing a short wave hookup which may interest you. Ans. Thank you for the encouragement and for the interesting hookup which we hope we may be able to give to our readers in the near future.

Klokow's Radio Service Shop, Wausau, Wis.: There seems to be some difference of opinion as to whether or not the recent change in the Radio Call Book has been an improvement, and as to which data is the more important to publish. I have been a regular reader of the publication for some time past, and I wish to say that I am very much in favor of the monthly edition and of the increased number of schematics as a result. The Book is well worth the price for the drawings alone. Personally I felt that there was only one important thing missing, and that was the voltage charts, but in the March, 1932, issue, you have two pages containing twelve charts. I sincerely hope that you will continue to publish them, and also to publish them in the same manner and size so that they can readily be
(Continued on next page)

Brief Items Continued

put into notebook form. Ans. Your interest and kind words are greatly appreciated. We intend to publish twelve voltage charts every month until we have caught up on back numbers, when we shall run ten an issue.

James Wood (W1AYG), Millis, Mass.: I read Radio Call Book Magazine and like it very much. I think it is the outstanding publication dealing with broadcast receiver problems. Your diagrams contain more complete information than the expensive radio manuals which are available to service men. Every resistor and every condenser is marked. Keep it coming!

Henry Maathuis, Ogden, Utah: I have written you before congratulating you on putting out a monthly magazine instead of the quarterly, so I will not bring that up again. I am desirous of obtaining a formula for finding out the resonant frequency of a circuit using a certain size choke and condenser. I am planning a tuned audio frequency amplifier to use standard parts to keep the cost down. This amplifier, when completed, will raise the level of either the high notes or bass notes, either independently or at the same time, tc make up for the deficiency of recorded programs, and also to improve the high response on a very selective tuner. This will also tend to improve the frequency of the network programs back here from New York, because the new cable, to my knowledge, has not yet been put into operation. Ans. A complete analysis of resonant phenomena is given in the December, 1931, issue under the Radio Engineering columns. We also suggest looking over all the issues since the October number for receiver schematics which include means of frequency response compensation.

Charles K. Wall, Middletown, Penn.: In the January issue of the Call Book Magazine you published a tube test circuit which covers the cathode type tubes. I tried this circuit for the four prong tubes, supplying the correct voltages, but I get no reading for a test. I just omit the cathode in the circuit. Ans. It is necessary that a return path be supplied for the plate current. In the types 227 and 224 , etc., the cathode furnishes the return, but in using filament type tubes it will be necessary to place a centertapped resistor of about 100 to 200 ohms across the filament terminals, and connect the center-tap to the B return, or to the portion formerly connected to the cathode of the original test circuit.

Come to California where many of the world's most famous Radio Stars make their homes-where the great Laboratories of the American Television Corporation are located-where hundreds of trained Sound Engineers and Mechanics are employed in the Talking Picture Studios and Theatres of Hollywood.

RAILROAD FARE ALLOWED

Don't worry about the expense of the trip. For a limited time we are allowing the rallroad fare to Los Angeles from any point in the United States. This is deducted from your tuition, so the trip costs you nothing extra. Take advantage of this opportunity to visit Los Angeles and Hollywood and prepare for a good job at the same time!

PRACTICAL SHOP TRAINING

At the Oldest Trade School in the West

For over 25 years National has been training men by the practical shop method. Over 20,000 ambitious men from all over America have come to National for their training. You'll find National graduates working in the famous Studios of Hollywood, in Talking Picture Theatres, great Broadcasting Stations; for Radio Manufacturers and Dealers; While many have gone into the Radio business for themthey have done, you can do!

SCORES OF JOBS WILL BE OPEN

$10,000,000$ Radio sets to be constantly serviced! 600 Broadcasting Stations employing trained Operators and Mechanics! 10,000 Theatres equipped for sound and the job only half done! Eight stations already sending out regular Television dreds of golden opportunities for the trained man! And you can prepare for them in 4 months at National.

FREE EMPLOYMENT SERVICE
 Spare Time Jobs While at School

When you've finished National Training, four months of practical work in the great National Television, Talking partment will assist you in every possible way to get the partment wint assist you in every possible way to get the gladly help you get a spare time job to pay your living expenses while at school.

MAIL COUPON FOR BIG FREE BOOK

Get all the facts! Mail coupon below for Big Free Book tellIng all about National's famous Shop Training and the many jobs opening up in this fascinating field. No cost or obligation. Just mail the coupon!

Convert Old Sets Into Dollars!

Replace worn-out condensers at little cost and put those old sets back into service. It's profitable business if you use the Special Dubilier Service Kit-a useful package containing 25 assorted sections for by-pass and filter block repairs, ranging from .1 to 2 mfd ., 200 to 400 volts. List Price, $\$ 10.50$.

ORDER NOW! Carry the kit in your service bag and start cashing in on the profitable business of repairing old radio sets. Write for free copy of new General Catalog No. 121.

LEROY M. E. CLAUSING

Consulting and Designing Radio Engineer
55091⁄2 Lincoln Avenue
CHICAGO, ILL.

WHAT YOU NEED TO SUCCEED IN RADIO

Radoo is a highly specialized business. As it develops it is becoming more exacting in its demands. But radio is the modern field of opportunity for those who keep step with its progress and pioneer in its opportunities!

There is a great demand for trained men in the radio industry. There is no place for untrained men. Experience must be accompanied by technical knowledge.

A pioneer in radio instruction, the International Correspondence Schools have kept apace of the times and offer courses prepared by authorities, which give practical instruction in fundamentals and latest developments alike. The courses were prepared and are constantly revised by the Who's Who of Radio!

Composed of 24 basic divisions, the Complete Radio Course is designed to give thorough instruction in the whole field of radio. The I. C. S. Radio Servicing Course was prepared specially for men who wish to become service experts. Study of it makes possible leadership over competition. The I. C. S. Radio Operating Course is vital to mastery of operating and transmitting.

We will be pleased to send you details of any or all of these subjects. Just mark and mail the coupon-the information will be forwarded without delay.

INTERNATIONAL" CORRESPONDENCE SCHOOLS Box 8317 F, Scranton, Pa.
Without cost or obligation, please tell me all about the new radio course

Name Age
S'reet Address
City
If you reside in Canada, send this coupon to the International Correspondence Schools Canadian, Led., Montrëal, Canada

ankosw Ad-A-Switch

STOCK VOLUME CONTROL

PLUS

SNAP-ON SWITCH COVER

EQUALS

COMPLETE UNIT SWITCH ATTACHED

ASa convenience to jobbers and servicemen, Clarostat announces the new Ad-A.Switch line of wire wound volume controls.

The Ad-A-Switch arrangement enables one to simplify line up of his stock on Volume Controls to a point where duplication of resistance on controls carried in stock will no longer be necessary. Any Ad-A-Switch Volume Control may be converted at once into a complete unit with switch by replacing the usual dust cap with the special snap-on switch.
These and other Clarostat aids to the industry are fully
described together with very complete circuit data in the 1932 edition of the Clarostat Control Handbook and Catalog which will be sent without charge.

MAIL THIS COUPON TODAY!

Clarostat Mfg. Co., Inc. 285 North 6th St., Brooklyn, N. Y.	
Please send me FREE COPY of Clarostar Control Handbook and Catalog as offered in Radio Call Book Magazine.	$\sum_{2}, \frac{1}{\min } \leqslant$
Name	
Address	. . .

AS an extension of its recently inaugurated frequèncy checking service for broadcast stations, RCA Communications, Inc., is planning the erection of a laboratory on the West Coast similar to that now in operation at Riverhead, Long Island.

For several years RCA has maintained the Riverhead laboratory to keep close check of the frequencies on its own trans-oceanic stations and those of foreign correspondents. In this work several thousand separate frequency measurements are made each week. Recently facilities of this laboratory were made available through a service offered to American broadcasting stations, and among the many broadcasters utilizing the service have been stations situated as remotely from New York as California.

In commenting on plans for extension of the frequency checking service, Arthur A. Isbell, Manager of the Commercial Department of RCA Communications, said: "The location of the second laboratory will be Point Reyes, California, which is about fifty miles north of San Francisco and across the bay from this company's extensive plant at Marshall. Due to the extreme precision necessary in construction and installation of the apparatus we do not expect that the new laboratory will be placed in ac-
(Continued on next page)

MICROPHONES SIURE OF ALL TYPES... Write for Details SHURE BROTHERS COMPANY Manufacturers-Engineers
 337 WEST MADISON ST. CHICAGO, ILLINOIS

DOOLITTLE \& FALKNOR, Inc.
Radio Engineering and Manufacturing Field Intensity Curves Allocation Engineering Station and Studio Installations Engineering Management
1306-8 W. 74th Street
Chicago, Illinois

SPECIAL
 INTRODUCTORY OFFER

We need immediately 100,000 users the country over to
tell their friends of the improvement of using Pentode tell their friends of the improvement of using Pentode
tubes in place of 245 's, particulariy in sets using 245 tubes in place of 245° s, particulariy in sets using 245 push-pull.
There is a tremendous improvement in depth of tone and set
sensitivity. The improved amplification brings in sensitivity. The improved amplification brings in weak signals.
The Pentode Tube is inserted in Na-ald 954 KPC adapter and the adapter put in the socket in the set. No change in wiring. Money back-Adapters list at $\$ 1.00$ - But for the first ten peo-
ple that order from any town we will send two adapters for ple that order from any town we will send two adapters for
$\$ 1.00$ or-two pentode tubes and two adapters postpaid for $\$ 3.00$. If after trying them in your set. you are not more than pleased with the results. return your purchase anytime within five days
and your money will be instantly refunded. and your money will be instantly refunded.
This ad probably will not appear again. Order today.
ALDEN MANUFACTURING CO. Department C BROCKTON, MASS.

The Latest Data on the Construction and Repair of Radio Receivers

【Including Short-wave and Television Receivers】
WRITTEN by two widely known radio engineers these three books cover every phase of building, repairing and "trouble-shooting" on modern receiving sets.
Radio Construction Library

3 Volumes, $6 \times 9,993$ Pages, 561 Illustrations

This practical Library includes: PRAC'TICAL RADIO-The fundamental principles of radio, and radio set-building, presented in an understandable manner. Mlustrated with working diagrains. RADIO CONSTRUCTION AND REPAIR-Methods of locating trouble and reception faults and making workmanlike repairs. How to
construct all types of sets, including television receivers. RADIO RECEIVING construct all types of sets, including television receivers. RADIO RECEIVING
TUBES-Principles underlying the operation of all vacuum tubes and their use in TUBES-Principles underlying the operation of all vacuum tubes and their use in
reception, remote control and precision measurements. The library is up-to-thereception, remote control and precision measurements. The library is up-to-the-
minute in every respect and is based on the latest 193 I developments in the design and manufacture of equipment.

FREE EXAMINATION COUPON

(Continued from page 55)

tive service much earlier than June of this year. When it is ready it will materially augment the Riverhead laboratory in the world-wide scope of service to commercial radiotelegraph stations besides facilitating the service to broadcasting stations in the West.
"Use of such facilities enables the stations to keep more accurately on their assigned frequencies and it tends to make less difficult the coordination of station operation with the supervisory activities of the Federal Radio Commission. This laboratory service could not be maintained by individual stations except at a prohibitive capital expenditure and operating expense.
"One typical example of the usefulness of the service was the assistance rendered to a group of broadcasters who wished to have their programs synchronized but whose limited station power and service range made the use of connecting land wires uneconomical. The frequency checking service has made it possible for these stations to operate with a considerably higher degree of effectiveness.'

Ultra Short Waves

IT would be maddening if the human eye and ear could see and hear all the sights and sounds that exist in the world.
This surprising and puzzling statement was made by I. E. Mouromtseff, research engineer of the Westinghouse Electric and Manufacturing Company, as he was discussing the new use of ultra short radio waves as a means of communication. L. W. Chubb, director of research, has just announced and demonstrated this simple and economical transmission of beam radio of a 42 -centimeter wave of sufficient power to be heard from a loud speaker.
Mouromtseff, who has had direct charge of the development work to give the idea practical application, points out that the difference between radio waves and light waves is quantitative, not qualitative. In other words, they are identical in every characteristic except wave length. As a matter of fact he says there is more difference between long and short radio waves than there is between short radio and long light waves. To illustrate this, he says the longest radio wave in use is $100,000,000$ times as long as the shortest radio wave ever produced, whereas the shortest radio wave is only 1,000 times as long as the longest visible light ray.
Hence, he concludes, radio waves are merely "dark light." Visible light waves, those between the long red and the short violet, constitute a very small percentage of the total range, just as audible sounds are a small fraction of all existing noises. Many of these have wave lengths or frequencies much too high or too low to set up corresponding vibrations in the human ear drum, the scientist explains.
"Nature has been kind to impose these limitations on our eyes and ears," he says. "Certainly all would be chaos and confusion if we could see and hear everything. On the other hand, science would be seriously handicapped if it had not perfected instruments and apparatus to detect the invisible and inaudible.
"At different times certain people have interested themselves in the possibilities of communication with possible
(Continued on next page)

Ultra Short Waves

(Continued from page 56)
inhabitants of Mars. If anything of this sort is ever to be accomplished, it will probably have to be done by means of ultra short radio waves."

Some 25 years ago certain known facts of radio communication convinced Dr. A. E. Kennelly, professor of electrical engineering at Harvard, and Professor Oliver Heaviside, English scientist, that there must be a sort of cushion or atmospheric layer 100 or more miles from the earth's surface. This has since been known as the Ken-nelly-Heaviside layer.
"Of course, it is a theory just as atoms and electrons were created by theory to explain certain phenomena," resumes Mouromtseff," but we are certain that not only heat and light waves can penetrate something like the Heaviside layer, but that all radio, or 'dark light' waves less than seven meters long will penetrate that layer and leave the earth.
"It is conceivable that the power we have succeeded in getting into our 42 -centimeter beam is sufficient to pierce the Heaviside layer and travel the $35,000,000$ miles to Mars. It is possible that such small power may carry to such great distances, because of the fact that practically all of the intervening space is really a high vacuum and does not, therefore, absorb the waves, once they get through the earth's atmosphere."
Today Westinghouse research engineers are talking on such a beam from station W8XI, on top of the research building, to the roof of the engineering laboratory, more than a mile away, where a parabolic metal mirror gathers the waves, and passes them through a special detector tube to an ordinary little radio receiving set, where they are amplified and made audible.
Radio beams are identical with light beams except that they are of different frequencies or wave lengths and invisible according to engineers. In actual service, communication on the radio-optical waves is dependable and almost immune to theft, interruption and interference. Its operation cannot easily be "jammed," or crippled by an enemy; the beam must be found before its message can be detected and, by means of reflecting surfaces, it can be sent long distances, says Mouromtseff.

In a searchlight, the rays originate at one point, reflect from a parabolic surface and pass out in a narrow beam. In the newest Westinghouse achievement, the waves reverse this process by striking the parabolic mirror where they are reflected to a short antenna and detector tube located at the focal point corresponding to the source of light in a searchlight. Since intervening hills or buildings absorb both types of beams, Westinghouse found a way to reflect the ultra short radio waves so this handicap could be overcome.

Chubb, Mouromtseff and their associates believe the ultra short wave will be adapted to many practical uses in the next few years and that it will prove of commercial value by supplementing radio and other present forms of communication.

The COMET

 ${ }^{14.200}$ mete "PRO"Custom - Built HighFrequency Receiver for professional operators. Super-heterodyne circuit. 8 tubes. Efficient band-spread tuning system, with special long-wave oscillator. Phone jack and speaker connections. Connection for external amplifier.

Write for Details
Console Cab.

Wave Receiver.

A U D I O L A
KNOWN FOR ITS TONE HIGH GRADE SET BUILDERS SINCE 1921

For Auto Radios ${ }^{-1 I f y \text { you wantreal }}$ tion, insist on having the new Wright-DeCoster Vehicle Speaker installed. It has Wright-DeCoster quality throughout. Write for circular.
 WRIGHT DeCOSTER,Inc., 2915 University Ave.,St.Paul, Minn.
 Export Dept. The M. Simon \& Son Co., 25 Warren St., N. E. Cable Address: Simontrice

POLYMET PRODUCTS
 Standard of the Industry

Send for the Special Service Men's Catalogue
Polymet Manufacturing Corp. Worid's Largest Manutacturers of Radio Essentlals 839-B East 134th St., New York City

Measure Receiver Distortion by This New Method

IMPORTANT as is a knowledge of the exact amount of distortion introduced by any given circuit element, the development engineer has had no easy means of securing data. Harmonic analyzers have been difficult to operate and even then the necessary information could usually be obtained only after laborious computation.

General Radio has developed a new and simple method of measuring the total harmonic distortion. It utilizes an instrument called a distortionfactor meter, so named because it is direct reading in percentage distortion factor.

With the new General Radio Trpe 536-A Distortion Factor Meter the distortion factor of any circuit can be determined in a few moments. It is merely necessary to adjust the distor-tion-factor meter for zero reading using the filtered fundamental frequency obtained from filter circuits contained therein. A throw of the switch and the percentage distortion factor is then obtained directly from a dial on the instrument.

Let us tell you more about this instrument. Its price is $\mathbf{\$ 1 4 0 . 0 0}$.

GENERAL RADIO COMIPANY
Cambridge A Massachusetts
 FOR

New Wholesale ELECTRICAL ERADIO + CATALOGUE सम ${ }^{\text {TR }}$

33 YEARS SERYICE TRADE

Royal-Eastern Electrical Supply Co. ... 16-18 WEST 22ND ST.... - NEW YORK - N.Y.

MIDGET CONE SPEAKER

 50c

NEVER before have we been able to offer this Midget Cone Speaker at such a low price-only 50c-and it will pay you to order yours today.
This midget speaker has many advantages and its perfect tone has delighted thousands who are using it.

508 S. Dearborn Street CHICAGO, ILL., U. S. A.

NEW! UNIVERSAL'S

 7-Tube Auto Radio!

Here it is! The new 7 -tube Universal receiver with all the latest features: Steering wheel remote control, high sensitiv-ity-cxtreme se-lectivity-strong volume-uniform reception-Super-Dynamic speaker-free automatic volume control-no fading under vaducts and other shielded spots-Coast-to-coast reception-A-1-quality-- and only $\$ 79.50$. Uses 3 No, 236,2 No. 237 and 2 No. 238 tubes! Investigate imme-
diately the big profts in this sensationally performing - sensationallydiately the big profits in this sensationally performing - sensationally
priced 1932 leader in auto radio sets!
Other Quality Sets at Low Prices! Backed By a Strong Company! Again, we lead the lower-priced field! 'lhe new, improved 6 -tube set at matic volume control, remote control, and 6 tubes. The Standard 5 -tube set has same features and sells for only \$59.50. All Universal receivers are compact. light, easy to
install, and carry the Universal install, and carry the Univers
Guarantee! Write us at once!

DEALERS! DISTRIBUTORS: Get Our Liberal Franchise offer A fow whowe territuries open now. but won't be lone! Get re-
tails of our wery altrach lue franChise which is hatked be frmmy establishod, nationilly recopnized
company. Get these new big profitst
 AUTO RADIO

WRITE to us immediately, It will bay your. National Clain of service stations beint established. Applations buing considered UNIVERSAL AUTO RADIO CORPORATION 1203 S. Michigan Ave. CHICAGO
We Are Establishing National Chain of Service Stations!

Pure, clear tone-greater vol-ume-interference cut out instantly! Attach Clar-A-Tone to your set and enjoy tone you never thought your radio could produce.
Thousands of owners say Clar-A-Tone is amazingly ingenious. And radio engineers will tell you what a fine technical accomplishment it is.

In Canada and other countries 20c extra for postage.

ESSENBEE RADIO DEVICES COMPANY

732 Mather St., Chicago, Ill.
Enclosed find my payment of $\$ 1.65$ for Clar-A-Tone, sent postpaid
NAME
ADDRESS
CITY.
STATE

SERVICE BLUE PRINTS

 FOR SERVICE MEN, TECHNICIANS AND EXPERIMENTERSA cCurate, clear and dependable drawings of nearly every standard circuit. These schematics are drawn to a large scale and so simplified that the whole circuit may be visualized almost instantaneously. This enables the service man to work rapidly and accurately. There is no need for microscopes or clairvoyance in reading our prints.

ANNOUNCING

A Personal Course of Instruction in TELEVISION
ENGINEERING

By ARTHUR H. HALLORAN, Television Consultant

for radio men who want to be ready when CATHODE RAY RECEIVERS
are commercialized. 1932's big promise.

THE course consists of 30 lessons which explain mechanical and electrical scanning, synchronization, generation, transmission and reception of television signals. Each lesson is accompanied by problems to be answered by the student and corrected and graded by the instructor before the next lesson is mailed.
A working knowledge of the fundamental principles of radio and trigonometry is prerequisite to the course. Only a limited number of enrollments can be accepted, preference being given to those who give evidence of a serious interest in the subject. This course is conducted in co-operation with engineers who have developed the cathode ray tube for television purposes. Its purpose is to prepare men for employment in this new industry wherein yesterday's science is today being engineered for tomorrow's sales.

The cost is moderate. A down payment of $\$ 5.00$ brings you the first lesson and four more thereafter as the problems are answered. Similar $\$ 5.00$ payments bring each succeeding set of 5 lessons, a total of $\$ 30.00$ for 30 lessons. Mail the attached enrollment blank with your initial $\$ 5.00$ payment. It marks a turning point in your career.

[^3]

BEN J. CHROMY
Counsellor in Patent Causes 710 Fourteenth Street WASHINGTON, D. C.
"Radio Patent Service"' Weekly

A SELF - CONTAINED, fully A shielded oscillator, with full vision scale calibrated directly in Kilocycles-no charts used-micrometer slow motion dial-can be set at exactly any frequency from 115 to 1680 frequency from 115 to 1680 K.C. Uses four flashlight cells and one $221 / 2$ volt battery automatically connected when inserted. Uses one 30 tube self-modulated. Can be checked for accuracy when attached to any receiver by the "beat" method to within 20 cycles.
Dealer's Price-Oscillator with test leads $\$ 17.50$. Complete set of batteries and tube $\$ 2.25$ extra. Leatherette Carrying Case $\$ 2.00$ extra. If your jobber does not carry, order direct. Sent express collect or C.O.D. with a deposit of $\$ 1.50$. Free circular.

This instrument is made by the manufacturers of the "Submariner" Short Wave Adapter now priced at $\$ 12.50$. The first adapter on the market built

> J.M.P MANUFACTURING CO. INC. (Established 1992) Milwaukee, Wisconsin, U. S. A.

INDEX TO ADVERTISERS

WIRE
WDUND
CANDOHM
FIXEI
RESISTORS

ARMOUREIIREPLACEMENTUNITS
STANDARDEQUIPMENTINTHELLEADING SETS

SPECIAL INTRODUCTORY MONEY MAKING DFFER

To Readers of Hadio Call Bool Magazine and Technical Review

Complete assortment of 50 Candohms in 24 different values enabling immediate replacement of any service job

Contents of Service Men's Kit

An actual photograph of the kit you will receive. By far the greatest value ever offered. Order yours today!

THE MUTER COMPANY 1255 South Michigan Ave. Chicago, III., U. S. A.

Stock	No.	Ohms	Quantity	List	Amt.
702		20	1	\$0.20	. $\$ 0.20$
804		40	1	. 20	. 20
706		60	1	. 20	. 20
709		50	1	. 20	. 20
710		100	2	. 20	. 40
715		150	1	. 20	. 20
720		200	2	. 20	. 40
721		250	1	. 20	. 20
722		300	\geq	. 20	. 40
723		400	1	. 20	. 20
724		$\mathbf{5 0 0}$	4	$.20$. 80
725		600	. 1	. 20	. 20
726		750	4	. 20	. 80
728		1000	5	.20	.1.00
730		1250	1	. 20	. 20
760		1500	3	. 40	1.20
762		2000	. 4	. 40	1.60
764		2500	$.4$. 40	1.60
765		3500	$.2$. 40	. 80
766		5000	4	$.50$	2.00
767		6000	1	.50	.50
768		7500	1	. 50	.50
770		10000	. 2	. 50	1.00
772		12500	. 1	. 50	1.00 .50

CLIP-MAIL NOW: \qquad

[^4]

You Save \$1.50 by this Combination Rate!

If you purchased RADIO CALL BOOK MAGAZINE and TECHNICAL REVIEW on the newsstand each month, the cost would be $\$ 3.00$ for a full year; the regular advertised price of RADIO SERVICE SCHEMATICS is $\$ 1.00$, so ordinarily these two would cost $\$ 4.00$. Here's your chance to save $\$ 1.50$ and obtain the magazines and schematics you are always in need of. Send your order in today!

The New and Enlarged Edition of Radio Service Schematics Contains:

Over one hundred SCHEMATIC WIRING DIA GRAMS of Popular Factory Built Radio Receivers and Power Supplies, carefully drawn by our own expert drafting force.

Laboratory and workshop formulas in simplified form to aid the Serviceman and Engineer.

RECEIVER RESPONSE CURVES showing sensitivity, selectivity and electrical fidelity characteristics, prepared in our own laboratory as specified by the IRE and RMA are given, showing such popular brands as RCA, MAJESTIC, ATWATER KENT, CROSLEY, SILVER, SPARTON, STEWARTWARNER, BRUNSWICK and others.

CLIP-MAIL NDW!
CITIZENS RADIO SERVICE BUREAU
508 S. Dearborn Street, Chicago, Ill.
Please find enclosed $\square \$ 2.50$ U. S. A. $\square \$ 3.00$ Foreign. $\square \$ 3.50$ Canada, for which send me the new and enlarged edition of RADIO SERVICE SCHEMATICS and enter my subscription to RADIO CALL BOOK MAGAZINE and TECHNICAL REVIEW for one year, starting with the
number.
Name
\qquad
City
State

Please put a check mark opposite your occupation:
\square Dealer
\square Serviceman
\square Engineer
\square Manufacturer
\square Distributor
\square Salesman
\square Technician
\square Experimenter

T TTT KEEPSTEP WITH RADIO SERVICE PROGRESS Announcing

Dedicated to and Written Expressly for the RADIO SERVICE MAN

edited by
JOHN F. RIDER

SERVICE, a Monthly Digest of Radio and Associated Maintenance, was born to fill the demand for a magazine devoted solely to radio servicing and intended for distribution among service men only. The service branch of the radio is large and varied and today represents one of the most powerful influences in the entire radio world.
There are many radio magazines-but none written expressly for the Radio Service Technician. This place shall be filled by SERVICE. You-you-and you-earning a livelihood as service technicians do not have time to read long winded, lengthy articles. SERVICE will give you coverage of the entire radio industry and all its branches, broadcast receivers-auto-radioshort wave receivers-refrigeration-public address systems,
etc., in short, brief, but to the point service notes. In it you will find abstracts of service articles appearing in every radio magazine published in the English language. Iou will also find an index of articles of interest to Radio Service Men, which have been published in all radio magazines.
The thousands of letters I have received from men who have purchased my various books show that I have given them their monev's worth. I assure you, that every subscriber to SERVICE will get his money's worth. You will find this magazine to be of inestimable value in your business and work. Fou will find it educational-informative-modern-breezy and easy to read.

John F. Rider.

> —and the price is LOW! $\$ 1.00$ per year in the U.S.
> Full size 9×12 inches
> Publication date is the 25 th of every Month. Sold only by subscription.

If you want a sample copy, fill in the coupon and enclose a 10 cent stamp

COUPON

John F. Rider Publications
I $4+0$ Broadway
New York City
\square Here is io cents in stamps. Send me a copy of Rider's NEW magazine SERVICE
\square Here is \$1.co. Enroll me as a subscriber to Rider's NEW magazine SERVICE
Name
Address

City

SM YOU

Can Make Money as an

Authorized Silver-Marshall Service Station-

SPECIAL DISCOUNTS on 142 Catalog items. Chassis, tuners, amplifiers, all-wave sets, short-wave receivers, converters, speakers, and replacement parts.

SPECIAL RECEIVERS-a line of S-MBearcat receivers especially for Service Stations. MERCHANDISING HELP—by the whole Silver-Marshall staff of experts. INSIGNIA OF AUTHORIZATION-identification card, authorization certificate. If you have any connection with radio, you ought to have all the details. Send the coupon NOW.

[^0]:

 SWWITZ̈ERLAMD
 z_{0}^{4}
 Ba
 Base
 Berne
 Bern
 Ber
 Ge
 La
 Mo
 Sot
 Zu
 C
 T
 A
 A

 | Osmanieh
 | |
 | :---: | :---: |
 | | |
 | | |
 | Alma-Alta | |
 | Arkhangelsk | |
 | | |
 | Bakou | |$\mathbf{C} S^{250}$

 .334
 310
 .770
 .434 .8
 .238
 -245

 Irkoutsk
 Ivanovo-Voznesens
 Karagand
 Karagand

 Khark
 Kiev $\ldots .$.
 Krasnod
 Krasnodar
 Krasnoiarsk
 Leningrad
 Leninh
 Minsk
 Mosc
 Minsco
 Mosco
 Mosce
 Mos
 Moscow
 Moscow
 Moscow
 Moscow
 Moscow
 Moscow
 Naltehik
 Nijni-Novgo
 Novosibirsk
 Novosib
 Odessa
 Oden
 Omsk
 Orenbourg.
 Oufa
 Oufa
 Oi........
 Oufa
 Penza …
 Petrozarodsk
 Petrozavodsk
 Petrozavors
 Piatigorsk
 Pokrovsk
 Rostor
 Samar
 Samar
 Samara..
 Samarkand
 Saman
 Samark
 Simfer
 Simferopol
 Simeropol
 Smolensk
 Smolensk
 Stalino
 Stavropol
 Sverdlov
 Stavropo
 Sverdlovsk
 Sverdlovsk
 Tachkent
 Tachke
 Tifls
 Tomsk
 Verkhn
 Verkhneoudin
 Yladikavkag
 Vadivo
 Voroney
 Vorone
 Mont
 Mont
 Mont
 Mont
 Mon
 Pay
 Pay
 Salt
 Salt
 Salt
 Salt
 Salt

 350

 650
 730
 770
 810
 850
 890
 930
 970
 1050
 1130
 1170
 1210
 1250
 1290
 1410
 1450
 1490
 1340
 1420
 1180
 1220
 1260
 1300
 1140

 800
 960

[^1]: *The voltage effective at the plate is less than the supply voltage by an amount equal

[^2]: * Presented before the A.I. E. E. Winter Convention, New York, Jan. 25-29, 1932.

[^3]: ## ENROLLMENT BLANK

 ARTHUR H. HALLORAN, 430 Pacific Bldg., San Francisco, Calif.

 Enclosed is $\$ 5.00$ for which enroll me as a student in your course on Television Engineering. I understand simple radio principles and trigonometry and expect to complete the course.
 \qquad
 \qquad
 \qquad

[^4]: THE MUTER COMPANY
 1255 South Michigan Ave., Chicago, Hil., U. S. A.
 Please send Candohm Resistor Kit Prepaid. \$5.00 is en closed.
 \square Send c.o.d.
 \qquad
 \qquad
 City \qquad

