Brandes Wireless Headsets

The "SUPERIOR" Type

Price, Complete, Five Dollars

This handsome headset is wound to 2,000 ohms with pure copper wire. The receivers are of polished aluminum, and the earcaps genuine hard rubber. The interior parts are nickel plated and highly polished. The headbands are solid german silver and the green cord is six feet long. Sold under guarantee to be more sensitive than any other headset at this price or money refunded.

Send stamp for our new Catalogue "E," fully describing all our headsets.

C. BRANDES, Inc., Wireless Receiver Specialists
32 UNION SQUARE, NEW YORK
Sayville

AYVILLE and Tuckerton are at present the only links connecting the American Continent directly with the German Empire. Both stations can now receive and transmit wireless messages to and from Germany, without any relaying means, at any given time.

First Tuckerton and now Sayville have been taken over by our watchful Government with the evident intention of preventing the two stations from committing an unneutral act in conformity with international law practice.

The layman will immediately ask, what harm the wireless stations can do, because they have been required for some time to use plain English or plain German. No code messages having been allowed since the outbreak of the war.

The answer is simple enough. A cable message during the time of its dispatch stays on the cable. It has only one destination; no one can "tap" the message without serious difficulties. Not so with the "wireless." Its waves being propagated in every direction, a thousand stations, or more, if properly equipped, can catch the message anywhere; and at any radius of the sending point.

No doubt the far-seeing shrewd German Government long ago foresaw the possibility of a war with England and the inevitable isolation of the empire which would result in consequence thereof. It clearly foresaw the cutting of its cables by the enemy and it acted accordingly.

Sayville and Tuckerton was the answer. Thus when England actually did cut the German cables early in August, 1914, Germany was by no means isolated telegraphically. Thanks to the wireless, which a wise government had long before planted on four points between America and Germany goes on the same as before, with the difference that the messages now travel over the very heads of Germany's enemies. With the inauguration of the German submarine warfare, the German Admiralty doubtless found a powerful weapon in the shape of the Sayville and Tuckerton wireless stations. The two stations were being controlled almost entirely by German capital, it was reasonable to expect. Nevertheless such stations controlled by Germany and its submarines to the best of their ability. Before the United States Government took over the Sayville station, early in July of this year, we had been reading a lot of nonsense as to some new devices being employed at that station which were supposed to be used in sending out messages by means of a special time-spacing system between the dots and dashes, as well as by varying the length of the dots and dashes themselves, which latter make up the telegraphic alphabet. Such a thing is, of course, not impossible, but why should it be done if much simpler means are at our disposal?

Let us imagine the following: A German spy is located on the ocean liner Adriatic headed for Liverpool. When the ship is two days out the spy learns that the ship, on account of submarine danger, will not dock at Liverpool but at Greenock (Scotland) instead. This is important information. Within ten minutes he has sent a wireless to a stockbroker in New York as follows:

H. P. Frye & Co.
255 Wall Street, New York.
Sell at once 2,000 shares U. S. Steel at 58.

John Miller.

When Frye & Co. receive the message they consult their code book and find that it reads thus:

Adriatic will dock at Greenock.

Within twenty-five minutes after John Miller handed his message to the operator on the Adriatic Sayville has received and dispatched the following message to its Nauen (Germany) station:

F. S. Schneider & Co.
Friedrichstrasse, Berlin.
Cannot dispose 2,000 shares U. S. Steel at 58. Are bid 55%. Advise.

Frye & Co.

This message is promptly received by the German commander of the submarine U-69, bobbing up and down not far from the south coast of Ireland.

He also consults his code book and deciphers the harmless message thus:

Adriatic will dock at Greenock next Tuesday.

With this intelligence the German submarine commander is enabled to change his course in order to successfully hunt his quarry.

This is only one of the ways how the wireless stations at Sayville and Tuckerton can be used successfully to violate our neutrality; there are undoubtedly scores more.

In view of the above it is not quite clear how the United States Government, even by exercising the greatest care in censoring messages, can prevent the dispatch at all times of unneutral wireless messages.

H. Gernsback.
THE ELECTRICAL EXPERIMENTER
August, 1915

THE GREATEST SALE OF WIRELESS INSTRUMENTS IN THE HISTORY OF WIRELESS

Ninety of our most popular instruments including 16 new complete transmitting and receiving sets are to be sold at 25% to 35% below regular prices until August 15th.

SEND FOR PAMPHLET TODAY SHOWING THESE WONDERFUL VALUES. IT'S FREE.

SEE OUR BIG SEVEN PAGE WONDER ANNOUNCEMENT IN THE AUGUST ISSUE OF WORLD'S ADVANCE MAGAZINE, which contains the special prices on these instruments with cuts, descriptions and prices on all the new mounted sets.

WHY SUCH PRICES

The reason for this unusual sale are set forth in our 7-page announcement in the World's Advance. Briefly the reasons are to create a greater interest in wireless among the most of the people, to introduce our new unrivaled combined transmitting and receiving sets, which could not be put into our next catalog until the fall, and to emphasize the facilities we have for taking care of our enormous patronage.

OUR NEW MOUNTED SETS

We know that we strike a popular chord among wireless enthusiasts by putting out our new mounted combination transmitting and receiving sets. To our knowledge there are no first class sets of this type on the market. Practically all the instruments in these sets are among our most popular sellers and found described in full length in our No. 8 catalog. To make these sets in every respect practical, we have put the prices of all of them that are within the reach of the average experimenter. In fact a reference to the list prices in our No. 8 catalog of all the instruments in these sets show that very little extra is added for the base, wiring and mounting of the instruments.

The cuts do not begin to do these sets justice. All the instruments are mounted on a beautifully finished mahogany base. The finish on the most of the transmitting sets selling as low as $12.00 is equally as good as the finish on the most expensive sets. All the wiring is concealed in sloated grooves and is done in such a manner that any naval hospital can be put in charge of the equipment. A double pole double throw switch is provided on each set for connecting filaments transmitting to receiving set. Switch is also provided on all the transmitting and receiving sets for shorting out the detector when the transmitting set is in operation. Etched brass name plates are provided at all terminals showing the various connections.

THE WILLIAM B. DUCK CO.
230-232 SUPERIOR ST.
TOLEDO, OHIO

HYPNOTISM!

Be a HYPNOTIST and MAKE FUN and MONEY!

It takes but a few hours to learn. The study is both easy and fascinating. Hypnotism is a science of fun and wonder. If you know how to hypnotize you can perform some of the most marvelous accomplishments. With the power to control the thinking of others you can do many wonderful things that other people cannot do. You can surpise your friends and make yourself popular. You can place others under this strange and mystical spell. You can compe them to think, act and feel just as you wish. If you want to make money you can do so by giving entertainments teaching diseases or teaching music to others. When you master this money making profession you can easily investigate NOW. You must learn at your own home. I will send you your first lesson for the asking. It tells you about this new money making art. It is producely illustrated and written in the simplest easy understood by all. Anybody can learn if they wish. It will be money saving to you. The Hypnotism Spell is the will to the sick, returns it to health, solves sick problems, makes an audience for profit and gains for the operator himself comfort, will power, and a record for health, money and happiness. It also teaches you Personal Magnetism and indirect suggestion. Remember that true success is absolutely free. Simply write for it and it will be sent by next mail, all charges paid. Don't send any money or stamp, but send your name and address only. Address: D. M. BETTS, Sta. 663, Jackson, Mich.

MORE MONEY FOR YOU FROM YOUR OWN WRITING CATALOGUE! No more mailing out silly cards. No more opportunity for ambitious men and women. Experience necessary. Our practical course teaches you quickly and easily the remarkable business of Writing, Addressing, Letter Writing, Letter Writing, Letter Writing. What so many people wish, but want only a few new words and commands, and you can do it. Write for FREE BOOKLET now. Don't bother about the money. If you are ambitious and want to become an expert writer—Write for a free copy of LILITHIAN COLOR CO. 1025 Flatiron Bldg., New York.

TELEGRAPHY AND TRAIN OPERATION

Taught by retired railroad office. Railway wire in Advanced Telephone Training School.

Pelah School of Telegraphy, Madison, Wis.
America's Scientific Railway Training School

BUILD America Must Rely on Her BOYS

Formerly 9th, we are now last in wireless. You must make us first again. Study aviation, build it. We send you plans. Wireless Monoplane 50c, Wright bicycle 35c, Curtis Hydroplane 50c. Short Wave Dial 35c, Morse Monoplane 35c. Cur- rent Wave Dial 35c. Ideal Aerial & Supply Co.

S100 PER MAN PER COUNTY

FREE ADVICE given by experts in regard to any electrical, mechanical or other technical books. So many books are published about each subject, it is difficult for most people to know which is the best book for his particular purpose. Electrical, Mechanical and Other Technical Books (for home study or for reference). In return for this free service we ask that after you have decided what book you want, you will order it from us. Our prices are low. For detailed plans of our plan and subject which you are interested in, Technical Service Bureau, 51 E. 42nd St., New York.

The University of Chicago HOME STUDY

in addition to resident work, offers also instruction by correspondence.

23rd Year
U. of C. Div. III Chicago, III.

FREE ADVICE

given by experts in regard to any electrical, mechanical or other technical books. So many books are published about each subject, it is difficult for most people to know which is the best book for his particular purpose. Electrical, Mechanical, and Other Technical Books (for home study or for reference). In return for this free service we ask that after you have decided what book you want, you will order it from us. Our prices are low. For details of our plan and subject which you are interested in, Technical Service Bureau, 51 E. 42nd St., New York.

You benefit by mentioning "The Electrical Experimenter" when writing to advertisers.
Television, or The Projection of Pictures Over a Wire

By H. Winfield Secor

PROBABLY there is no more interesting, and as yet unperfected, branch of science than that of Television, or the process of transmitting and reproducing a scene or a person's likeness over a wire, such as a telephone circuit, so that, for instance, a person telephoning over a line can see on a screen in front of him the person to whom he is talking.

There have been many attempts made to solve this fascinating problem. Several view before the instrument. Simply explained, this system works as follows:

Each selenium cell on the transmitter would be connected up with its individual lamp (very small, of course), and thus it is perceived how, at the receiving station a picture or view could be reproduced in black and white and intermediate tones, for the reason that each selenium cell would allow a different amount of current to reach its individual lamp.

This may seem a little ambiguous or complicated to those not familiar with the subject, but what we are driving at may be more readily perceived or understood by inspecting Fig. 3A. The portrait photographed, reproduced by the half-tone process, exhibited at Fig. 3A, is photographed onto the copper plate used in printing the reproduction on this page, through a finely ruled glass screen. This screen therefore causes the original photograph to be broken up into many small dots. The illustration here referred to, for instance, has about 140 dots to the inch. By looking in an ordinary manner at the photograph here reproduced, no distortion is noticeable, and the picture appears quite natural. Nevertheless, it is made up entirely of dots. You can convince yourself of this by inspecting our illustration with a good lens. This brings out the logic of the argument previously referred to, viz., that it is possible, theoretically and practically, to make a machine that will reproduce a picture by such an arrangement of dots or points; whether all of the dots necessary in building up the picture are simultaneously thrown on the screen of the Television apparatus, or whether these dots are successively or very rapidly thrown on the screen, one after the other.

The second view, at Fig. 3B, shows a largely magnified portion of the (marked) eye on the face of the half-tone cut. This shows how the reproduction of the face is made up of small dots, and by closely looking at any newspaper illustration, which is usually photographed through a coarse screen, this dot make-up of the picture will be very evident. Some illustrations in magazines and books, which are reproduced on highly polished and specially coated paper, are photographed through such a fine screen that the keenest eye cannot perceive any break-up or dot formation.

As aforementioned, a number of work-
Selenium cells manifest a quality known as "time lag" in their electrical operation or action, and this means that it is difficult to build any such apparatus, as we now have under consideration, to act in any way near perfect manner, when the selenium cells will show varying degrees of "time lag," or, in other words, when they tend to be sluggish in their action of changing from high to low resistance, etc. This lag is small, of course, and it must be understood that in considering the basis of this whole process that with the dot formation, even though made up of a vast number of small lamps, compactly grouped at the receiver end of the line, that the change in the lamps' intensity, which is of course primarily dependent upon the action of the selenium cells on the transmitter, must be quite rapid, and this may be more readily understood when it is known that in the ordinary motion picture, with which we are all familiar, there are from 16 to 20 different pictures projected on the screen per second. This has been found to give us a fairly steady picture owing to the "lag" of the human eye in perceiving an object in motion. That is to say, the eye does not lose its impression simultaneously, but the object's impression on the retina of the eye remains for a fraction of a second, and this explains how motion pictures are made possible by the present methods in vogue.

Some workers in this field have also devised or advocated at different times very clever and ingenious methods, which seem quite good theoretically, for using a less number of selenium cells, lamps, etc., but to gain the same effect as if a large number of cells were used, by suitably moving a beam of light over the various cells successively at a very high speed, and some similar arrangement being used at the lamp end of the circuit, where the picture is to be reproduced. This would act upon the principle of the reproduced light's action, as previously mentioned, and such ideas are based upon the theory that with proper apparatus, which unhappily is nearly impossible to construct from a mechanical standpoint, that each cell could be used for a fraction of a second.

One of the latest and most promising (theoretical) systems of television—the Telephot—of the instrument for "seeing over a wire" makes use of a stream of cathode rays, which can be deflected and changed in their direction of production very rapidly, and moreover, these rays possess an infinitesimal amount of momentum or mass. This method has been brought forth by an Englishman, Mr. A. A. Campbell-Swinton, president of the Röentgen Ray Society, of London.

The apparatus based on his descriptions and ideas are shown in the illustration at Figs. 1 and 2. In this picture detailed apparatus only is shown for transmitting pictures one way, or, in this case, from right to left; the detailed receiving apparatus being then at the left of the picture and the transmitting apparatus with high frequency A. C. generators, etc., being shown at the right. Both transmitting and receiving house arrangements are shown, however. It is evident that one can easily, and without any awkward motions, glance slightly upward to view the reproduced picture in the smaller upper screen, which is shown placed at a small angle. A dictaphone or super-sensitive telephone transmitter is probably best for such instruments and is observed under the television screens. Six wires are required to transmit pictures both ways.

We may now briefly consider the operation of this apparatus advocated by Mr. Campbell-Swinton, and which has been favorably received by the scientific world, although as yet not practically demonstrated. The schematic diagram, Fig. 3, will help the reader to understand the diagnosis of its operation. Three line wires are necessary between the apparatus, as observed from the illustrations at Figs. 1 and 3. At the transmitter end of the line there is used a focusing lens barrel "A." The object whose reproduction is to be electrically transmitted over the line is arranged at the tube opening, as at "B." A Crooke's vacuum tube is understood, and at "B" is the cathode electrode of the tube, from which the cathode rays are shot forth at an incredible velocity and which have practically no mass or momentum. An anode "C" of circular form is placed in the tube, which has at its center a small aperture or opening "a." Through this opening a small stream of cathode rays may pass; these rays being produced by a high potential continuous current from a source "D," going in the neighborhood of, say, 100,000 volts. Placed at right angles about the tube "A" are two electro-magnets "D" and "E," and these are energized by alternating currents from the A. C. electro-magnets "G" and "F." These magnets allow of readily controlling or deflecting the cathode rays stream in a vertical and horizontal direction separately.

At "J" in the transmitter tube is placed a special screen, the whole surface of which is searched out by the stream of cathode rays, every tenth of a second, under the combined action of the A. C. electro-magnets "D" and "E." It should be mentioned here that the dynamos "G" and "F" produce widely different frequencies of alternating current, say, 1,000 complete positive and negative alternations per second, and the other 10 such complete alternations per second. The special screen "J" is proposed to be a gas-
Submarine "Wireless" Signaling

THE subject of safety of submarines at sea is of vital importance, especially in the present submarine warfare, in which many of these undersea fighters are participating.

It is well known that wireless telegraphy is now the most important factor of communication on our present ocean steamers and battleships, which aids their navigation and safety at sea; but when we come to the submarines, the wireless used on these craft cannot now be directly adapted to the undersea fighters, as the etheric waves produced by the ordinary wireless apparatus cannot travel very far in water, and therefore other means of signaling becomes necessary. Many forms of apparatus were invented and used with considerable success, such as the submarine bell, which is still in service; but the distance traveled by the sound is so small that it is practically useless.

These methods were rarely used, however, until finally an Austro-Hungarian physicist, H. Christian Berger, who realized the necessity for an efficient means of submarine signaling between moving undersea vessels, devoted his talents to the solution of the problem. He finally solved the problem by using the principle of longitudinal vibrations in a steel wire or strip set into vibration by frictional means.

His first transmitter consisted of a piano wire, as at A in Fig. 1, which is here shown a ribbon of only 2 millimeters diameter, set into longitudinal vibration by a hand-driven silk wheel B moistened with alcohol; D is a sounding chamber, which is immersed in the water. With this apparatus Morse dots and dash signals were clearly heard for 5 kilometers (1.86 miles). The sound had the qualities of the ordinary etheric wireless, and it has therefore been called submarine wireless.

These experiments were conducted on the United States submarine E-1, and were so successful that the United States officials were encouraged to build a large apparatus, using a 1/2-horsepower electric motor. See Fig. 2. It drive the exciter, and also the wire was substituted by a flat metallic ribbon having a thickness of 1/16 inch and a width of 1/2 inch.

The complete apparatus is shown in Fig. 3. A commercial Morse key, Fig. 3, operates a magnetic clutch D on the shaft by pressing the key, thus supplying current to the electromagnets in the clutch and connecting the worm gear in case E, which is connected in turn to the felt-edged wheel A. This wheel contains a reservoir inside it, in which alcohol is placed in order to feed the felt continuously.

The operation of the transmitter is as follows: The clutch is connected and the steel ribbon is next stretched and placed near the felt wheel so that it touches the felt. The motor is next started by pressing the Morse key. The felt wheel is set in motion, according to the current sent through the magnetic clutch, which is operated by the key, and consequently produces friction on the ribbon, which is caused to rapidly vibrate. These vibrations are sent out on air waves and cause the hull of the boat to vibrate, and finally are communicated to the water. The water is thus also set into vibration and these vibratory tones are received by another vessel containing the proper receiving apparatus. The distance that these waves travel depends entirely upon the number of vibrations which the steel wire or ribbon emits.

The receiving apparatus consists of a receiving tank, super-sensitive microphone, telephone receiver and battery. The receiving tank is placed on the hull of the boat as shown in Fig. 5 at A, and it is filled with water. The microphone transmitter B, Fig. 5, is placed in firm contact with the receiving tank and connected in series with a telephone receiver and battery by waterproof copper wires. The transmitter is then covered with a thick steel plate A. See Fig. 4.

The incoming waves or vibrations caused by the transmitter are caught by the receiving tank, and the microphone intercepts these faint vibrations, which vary the resistance in the telephone circuit, thereby giving the exact sounds as produced at the transmitting station. The water in the tank acts as a conducting medium between the hull of the submarine and the sensitive microphone transmitter, just as ether acts as a conducting medium in aerial wireless telegraphy.

With this system signals were audible read at a distance of 10 knots. The secret of the extraordinary efficiency of this system lies in the fact that the vibrations used are longitudinal and the stresses set up molecular. Unlike a plucked violin string, where the pitch depends on the tension, the pitch in longitudinal vibrations is independent of its tension.

As friction is always rhythmic, the exciter or felt wheel throws the wire into intense longitudinal oscillations, and a clear and absolutely uniform musical note is produced in the water. In order to produce a note of 1,000 vibrations per second, most suitable for microphones, the wire is cut for one-half a wave length. As the velocity of sound in steel is about 16,000 feet per second, the wire would be 1/2,000, or about 8 feet in length, and this would generate a sound wave of about 47 feet in water. So it must be quite evident that to transmit these vibrations for eight or 10 miles a longer wire must be used, or else a shorter wire having a greater tension. Therefore more power is required to set this wire in vibration.

This method of signaling has been approved by marine officials, and many of these apparatus are being used by Uncle Sam's submarines, with good success.
ELECTRIC ELEVATOR CONTROL AT THE WOOLWORTH BUILDING.

One of the most striking objects at the Woolworth Building, in New York City, is the automatic elevator control, which is depicted in the accompanying photograph. The switchboard here seen is not a control board, similar to that in an ordinary power house, but entirely new. It contains many small electric lamps, placed in a number of vertical rows, each row corresponding to an elevator, and the number of lamps in a row corresponding to the number of floors which that particular "car" covers. In this way the operator can readily see just where any of the 27 cars are located in all sections of the building. There are also a number of jack switches on this desk connected to telephones installed in each car, by means of which communication with any particular motorman is easily effected. This system is very simple and works splendidly in large buildings where many elevators are in operation. Elevator dispatching is thus reduced to a science in the modern skyscraper.

ILLUMINATED AEROPLANE GIVES SPECTACULAR EFFECT.

This is a bona fide negative taken of an illuminated aeroplane flight made by Art Smith, the "Upside Down Aviator," flying at night over the Panama-Pacific International Exposition in San Francisco. The picture was made from a single timed exposure on the night of May 27, and is now published for the first time. The shutter was exposed during the period of the flight. The picture is unique, as it is the first photographic record of an aeroplane's course ever made on a single negative. While the course of an aeroplane may be recorded by a cinematograph film, a night exposure obviously is the only one capable of recording the course of an aeroplane on a single plate. A daylight exposure would show the aeroplane at but one point.

Owing to the high speed of the aviator's position grounds while gaining a height from which to loop the loop and turn the side spirals of which he is a master. These parallel lines apparently start or end in the dark, as from time to time the aviator shuts off the light from his aeroplane. The trail of light is caused by the flow of brilliantly illuminated white smoke and a discharge of white fireworks from a non-explosive smoke pot at the back of the aeroplane.

The lines above the Tower of Jewels, in the center of the picture, were taken as the boy aviator, with his aeroplane fully illuminated so that the thousands below might observe his flight, looped toward the earth.

HOW ELECTRICITY KILLS.

Ever since electricity was first used it has been known that under certain circumstances it was deadly, but just what these circumstances were and how electricity kills took almost endless experimenting to find out. The mystery of electricity's deadly power seemed to be one of those unanswerable problems which deal with the question of life and death, but now, thanks to the tireless energy of many scientists, the various results of their observations have brought the answer.

In the case of an electric shock severe enough to kill, death usually results from one of two causes—either from paralysis of the respiratory organs or from contraction of the muscular fibers of the heart. In the former case, the victim may occasionally be literally brought back to life by artificial respiration, but there is no known remedy in the latter case.

The effect of direct and alternating currents vary with the current strength, the duration of contact and the path through the body. Lower animals are much more susceptible to electric shocks than mankind, dogs being frequently killed by a direct current as low as 70 volts. The average man can take a direct current of 100 volts and scarcely notice it; 200 to 400 volts give rise to muscular cramp, while respiration is suddenly stopped at 850 volts. At 600 volts both contraction of the heart and respiratory paralysis begin, but at 2,000 to 4,000 volts the effect is usually confined to the respiratory organs. The electrocution records of various American penitentiaries show that two to seven amperes at 1,500 volts, 15 to 50 cycles per second, always stops the heart when continued 45 or 50 seconds.
Edison 3,000,000 C. P. Storage Battery Searchlight

Profitting by an experience of firemen in fighting the $3,000,000 fire at the Edison Works at West Orange, N. J., on Dec. 9, 1914, Thomas A. Edison has perfected another invention which he took to his home in Llewellyn Park recently to try out.

A few minutes after Charles Edison began operating the device for the edification of his father, people living in the valley east of Llewellyn Park telephoned Police Headquarters and asked, "What is that terrible light shooting out of the park?"

A policeman found Mr. Edison and his family enjoying the wonders produced by a new 3,000,000-candle-power searchlight, capable of throwing a ray several miles, the most powerful portable searchlight yet invented. It is very small and the power is supplied by storage batteries.

In the fire at the Edison plant 'the yards were thrown into darkness when the power was shut off. Mr. Edison conceived the idea of a portable searchlight, and two days after the blaze he had designed a working model. Now he announces the perfection of his idea.

It was said at the Edison laboratory that the patent bears application serial No. 701,219. It is also stated in his communication that, in the apparatus used in his system, the speech and the motions of the speaking person are transmitted by the medium of electric currents, and that the machine is so arranged that it may be used for wireless and other work, which does not use any carbon, but instead a compound product developed by himself, and which substitute is pronounced absolutely free from carbon, after chemical analysis. It is said to be far superior to the ordinary carbon transmitter, and is shortly to be tested out over the New York to San Francisco long-distance telephone circuit. It has also been tested with wonderful results over circuits 75 to 100 miles long, and works better in every way than the common carbon-grain transmitter.

This is an age of improvement: new inventions for the betterment of the conditions of mankind and for his convenience are of almost daily occurrence. Until quite recently, however, they have seemed to labor under the impression that the electric sounder had reached the perfect stage—that the local battery was a permanent fixture. The new diaphram telegraph sounder does away with both electric sounder and local battery. It is attached to the relay, and works from the main line battery. Many devices have been employed with a view of making the relay loud enough to read without a sounder, but the device here pictured is claimed to be the only instrument that actually creates additional sound and intensifies it to practically any degree desired.

The concussive takes place within the airtight diaphragm, starting the vibration through the intensifier similar to the reproduction of the human voice by the phonograph. It has a strong, easily read, non-metallic tone that can be read with accuracy at a distance of a city block, and the adjustments may be so varied that no two instruments need sound alike.

(C) By International News Service.

Thomas A. Edison Inspecting His New 3,000,000 C. P. Storage Battery Search Light.
Baron Münchhausen’s New Scientific Adventures
By Hugo Gernsback

The Earth as Viewed from the Moon

I am in receipt of the following letter, postmarked Red Dog, N. M. It runs as follows:

dear (f) mister i. m. ailer, i am only a uneducated cowboy

that aint all, when mike & i red about that müncheneimer of yourn shoting rocksalt at them germins so they had to skrch themselves which made them throw up their hants we a wile when his sneeses gets weerker an his swaring louder he looks around suspishes like but he dont see us an so he rides on after awhile mike an i looks at each other

... At This Minute It Is NEW EARTH For Us On The Moon ...

(C) E. P. Co.
August, 1915

THE ELECTRICAL EXPERIMENTER

H.

As it ever occurred to you how the earth would look to you if viewed from the moon? Did you know that it is new earth on the moon when it is full moon on earth? If you don't know these things and you certainly should know them—let Münchhausen tell you.

In this instalment he gives you true scientific facts in plain English. The story makes twenty minutes of pleasant as well as instructive reading.

At point A the Moon crosses a point of the earth's orbit where the earth has already passed. At the expiration of about one lunar or lunation she arrives at B, at which time the Earth is between the Moon and the Sun, consequently it is full moon; pursuing her orbit she is now in advance of the Earth and crosses her orbit again at C. From C she crosses on her course till D, she is between the Earth and the Sun, consequently it is new moon; from D she approaches near and nearer to the orbit of the Earth till G, she again crosses it 210,000 miles behind the Earth. This completes one lunation or revolution of the Moon around the Earth.

In order to show how the Earth and the Moon are lighted up by the Sun the zig-zag lines around part of the Earth and the Earth behind this diagram represent the portions which are lighted. Thus it will be readily seen that at A the Moon is in its first quarter in respect of the Earth, while the Earth is in its last quarter as seen from the Moon. At C this order is reversed.

Again at F will be seen a duplication of the phases exactly as occurred when the Earth and the Moon were in the position as shown at A.)

Now then, as the sun continues on full moon the sunlight is reflected down to the earth, half of which naturally is dark, i.e., night. It is now night for you, the moon lighting up your landscape. For this reason it might make out the outlines of the American continent. But it is mostly blurred and very indistinct.

A little to the left of the earth I see the sun—a wondrous sight. As there is practically no atmosphere on the moon the earth as well as the sun sail in a pitchblack sky. For the sky on earth is blue only due to the terrestrial atmosphere and its diffused sunlight. On the moon there being practically no diffusion our sky is naturally black all of the time. The sun, as well as all the stars, shine with a tremendous brilliancy never seen on earth, for our little atmosphere cannot soften the penetrating glare of these heavenly bodies as does the earth's thick atmosphere. Neither do the stars flicker as seen from here, for the "twinkling" is not of the star's making, it is but a product of the earth's air which brings about this phenomenon.

Again gazing earthward this is what I see:

A big almost black disc appearing to me about 14 times as large as does the full moon on earth; old mother earth assuredly is an imposing sight. Around the circumference of the dark disc I see a wondrous pink fringe—it is the earth's atmosphere illuminated from behind by the sun's rays. It

(Continued on page 170)
How Telephone Men Are Trained

To the layman a telephone instrument is a rather mysterious contrivance. He knows that he has merely to signal the operator in order to talk into the transmitter and send his voice over the wires thousands of miles and through the receiver listen to another voice from many miles away. But the operation of the telephone system is not like that of a locomotive or street car, for example, because we can't see the wheels go round.

So when a telephone man comes to our office or residence to install a telephone or inspect and repair one which may be out of order, we may be pardoned for exhibiting a little curiosity as he deftly does his work. It all seems quite simple to him, however, because he has been carefully trained for this work, and every step has been taught him in a systematic and practical way.

The New York Telephone Co. maintains a plant school at 30 Gold street, New York City, where employees of the plant department are instructed in the work of installing and maintaining telephone instruments and the various methods of wiring, etc. It has been in operation since 1905, when it began in a small way as more or less of an experiment. It has grown steadily and taken its place as an important part of the company's organization, and many telephone men have received their first instructions in the principles of telephone practise here.

The object of the school is to interest and instruct the employees of the plant department in the telephone business, develop proper devices on same specially arranged to teach him in the shortest time how telephone switchboards work, and also it is possible for the instructors in charge to throw a multitude of "faults" or troubles on the boards, and the time is then checked carefully which it takes the student to "clear up" all of these troubles. In some cases several hundred "faults," such as short-circuits between wires, the students, during wires or cables, bell troubles, relay troubles, etc., can be simultaneously thrown on such a board, and the student is required to quickly clear up these artificially made "faults.

A closer view of students performing this testing and trouble shooting on switchboards is seen at Fig. 2. The students, as will be observed, are given personal instruction, and this of course conduces to their rapid education and training. A corps of telephone experts are in charge of the school who are men of wide experience in such matters.

The illustration at Fig. 3 shows several students may be observed wiring telephone branch exchange circuits, this being third grade work, as it is termed in the school. This is an important work and must be learned exactly and the student must show considerable skill in handling the soldering iron, as many hundred small joints between wires and connecting studs are to be soldered in a very neat and workmanlike manner; or, in other words, the job must be done perfectly from a mechanical and electric standpoint. A loose joint, caused by improper soldering, can cause a telephone circuit to be worthless for transmitting speech over. Hence, the great importance of training these men to do their work as perfectly as possible. They must know the why and the wherefore of everything.

Illustration Fig. 1. Shows General View of the New York Telephone Co.'s Plant School. Fig. 2. Trouble-Second Grade Work. Fig. 3. Learning How to Wire Up Branch Exchange Circuits—Third Grade Work.

O the layman a telephone instrument is a rather mysterious contrivance. He knows that he has merely to signal the operator in order to talk into the transmitter and send his voice over the wires thousands of miles and through the receiver listen to another voice from many miles away. But the operation of the telephone system is not like that of a locomotive or street car, for example, because we can't see the wheels go round.

So when a telephone man comes to our office or residence to install a telephone or inspect and repair one which may be out of order, we may be pardoned for exhibiting a little curiosity as he deftly does his work. It all seems quite simple to him, however, because he has been carefully trained for this work, and every step has been taught him in a systematic and practical way.

The New York Telephone Co. maintains a plant school at 30 Gold street, New York City, where employees of the plant department are instructed in the work of installing and maintaining telephone instruments and the various methods of wiring, etc. It has been in operation since 1905, when it began in a small way as more or less of an experiment. It has grown steadily and taken its place as an important part of the company's organization, and many telephone men have received their first instructions in the principles of telephone practise here.

The object of the school is to interest and instruct the employees of the plant department in the telephone business, develop proper devices on same specially arranged to teach him in the shortest time how telephone switchboards work, and also it is possible for the instructors in charge to throw a multitude of "faults" or troubles on the boards, and the time is then checked carefully which it takes the student to "clear up" all of these troubles. In some cases several hundred "faults," such as short-circuits between wires, the students, during wires or cables, bell troubles, relay troubles, etc., can be simultaneously thrown on such a board, and the student is required to quickly clear up these artificially made "faults.

A closer view of students performing this testing and trouble shooting on switchboards is seen at Fig. 2. The students, as will be observed, are given personal instruction, and this of course conduces to their rapid education and training. A corps of telephone experts are in charge of the school who are men of wide experience in such matters.

The illustration at Fig. 3 shows several students may be observed wiring telephone branch exchange circuits, this being third grade work, as it is termed in the school. This is an important work and must be learned exactly and the student must show considerable skill in handling the soldering iron, as many hundred small joints between wires and connecting studs are to be soldered in a very neat and workmanlike manner; or, in other words, the job must be done perfectly from a mechanical and electric standpoint. A loose joint, caused by improper soldering, can cause a telephone circuit to be worthless for transmitting speech over. Hence, the great importance of training these men to do their work as perfectly as possible. They must know the why and the wherefore of everything.

To Honor Wireless Heroes.

The dedication of the Jack Philips Titanic memorial fountain at the base of the tower of the United States Barge Office, New York City, took place last May. President McAneny, of the Board of Aldermen, received the memorial on behalf of the city. It consists of a cenotaph 8 feet high with seats on each side and a fountain in the center, all of granite, and a background of cypress trees.

The funds to erect the Philips Memorial were collected by the wireless operators on Atlantic and coastwise steamships on both oceans and amounted to more than $3,000. It is intended to have the names of all operators who have lost their lives while on duty inserted on the cenotaph as a record of their bravery and to inspire others to emulate their example in the time of danger. The names on the memorial are:

George C. Eccles, s.s. Ohio, Aug. 26, 1909; Pacific Coast.

Stephen F. Szczepanek, s.s. Pere Marquette, Sept. 9, 1910; Lake Michigan.

Jack Philips, s.s. Titanic, April 15, 1912; Atlantic Coast.

Lawrence Prudhunt, s.s. Rosecrans, Jan. 17, 1913; Pacific Coast.

Donald Campbell Perkins, s.s. State of California, Aug. 18, 1913; Pacific Coast.

William H. Hood, s.s. Pere Marquette, Sept. 9, 1910; Lake Michigan.

E. Reker, s.s. Ohio, Aug. 26, 1909; Pacific Coast.

Ferdinand J. Syenson, s.s. Ohio, Aug. 26, 1909; Pacific Coast.

Francis H. Leggett, Sept. 18, 1914; Pacific Coast.

Adolph J. Svenson, s.s. Hanalel, Nov. 23, 1914; Pacific Coast.

Ferdinand Kehn, s.s. Monroe, Jan. 30, 1914; Atlantic Coast.

Walter E. Reger, s.s. Admiral Sampson, Aug. 23, 1914; Puget Sound.

Space is left for the addition of other names in the future.

August, 1915
New Thermopile Fire Detector.

A fire alarm system consisting of a number of thermopiles which are distributed throughout the building to be protected and which are connected in series to a galvanometer cabinet has recently been placed on the market. Connections are also made from the cabinet to fire alarm bells and to a trouble buzzer. The cabinet contains, in addition to the test resistors, the special galvanometer which is connected to the thermopiles. A break in the circuit, a drop in battery voltage or a total failure of the battery will cause the operation of a trouble alarm, which continues until the trouble is remedied. The deflecting pointer of the galvanometer is set in its normal position by the test current in the thermopile circuit. When suddenly energized by current from the thermopiles the pointer is moved into contact, sending a fire alarm, and when de-energized the pointer is moved into contact for the trouble alarm. The thermopiles consist of cubes of dissimilar metal connected in couples and mounted in porcelain. The joined ends of the couples are exposed, while the other ends are concealed in the base. According to the manufacturer, a temperature rise need not be more than 10 degrees Fahrenheit, but must take place within 60 seconds in order to operate the fire alarm. The alarm will be operated just as quickly whether the temperature of the room at the time of the fire is at zero or at any higher temperature. A single thermopile is designed to operate throughout a maximum floor area of 400 square feet. The maximum distance between centers of thermopiles in general is recommended to be about 25 feet, and in corridors 40 feet.

New Harmless Ray To Do X-Ray's Work.

Every person who has had experience with X-ray work knows of the severe burns which the ordinary X-rays give when worked with constantly. These defects are now overcome by the discovery of a new ray by Charles H. Stanley, of New York City. This new ray can be put to the same uses as the X-ray and more, and produces very satisfactory results. It is harmless and does not necessitate the operator "screening" himself in order to perform his work safely, as is the ease with the old and dangerous X-ray.

Fourteen years of experimentation and research were expended before this new and harmless ray was perfected. The photograph here with presented shows Mr. Stanley, the inventor, standing near his apparatus, which consists of a specially designed high frequency coil, producing a tension of one million volts and a discharge between two terminals, which can be separated 39 feet apart. This coil is so made that several different frequencies are sent to the X-ray tube, so that the production of the X-rays in the evacuated tube is constant and not flickering, as in the old tubes, using ordinary coils or high frequency machines. Note the immense size of the apparatus. This new ray cannot be developed with smaller apparatus, it is stated. Various kinds of current, such as Tesla, high tension, static, Oudin, etc., can be produced by this machine just by changing the switches, shown on the front of the apparatus.

So powerful is this ray that X-ray pictures can be really taken 35 feet from the tube and strong effects are also produced on a fluoroscope. It has also a great healing effect on cancer, tumors and similar diseases which the ordinary X-ray has not, or at most to a very small extent. Therefore, this new invention may prove a wonderful remedy for the now incurable diseases. It is called the "Stanley Ray," after its inventor.

Finding Unexploded Bombs on European Battlefields by Electricity.

One of the most dangerous propositions the European tillers of the soil have to contend with under the present war conditions is that of running their plow into an unexploded shell. Most of these shells are exploded, as is well known, by coming in sudden contact with some other body, and, of course, a moving plow forms an ideal means by which to explode such shells, which may have buried themselves several inches in the soil.

The Plowman on European Battlefields Uses An Exploring Coil, Attached to the Plow, to Determine the Presence of Unexploded Shells.

(C) By Janet M. Cummings. The Marvelous New X-Ray Machine Capable of Producing Sparks in Feven in Length. Its Inventor, Charles H. Stanley, is Shown in the Picture.
NEW ELECTRIC CLOCK SYSTEMS OF THE EQUITABLE BUILDING

The most difficult problem of to-day in modern office buildings is the regulation of the clock system. The photograph here presented shows the complete mechanism for controlling one thousand electric clocks, of the College of the City of New York Radio Laboratory.

Both of these papers were well received and contained some new and vitally interesting points on radio matters.

Mr. Marriott's paper dealt at length with the proper installation of all wiring on radio sets, such as grounding or iron pipes containing wires and the grounding of all auxiliary metal parts in some cases. It was recommended that all metal members on the vessel be grounded, especially when powdery or highly combustible inflammable materials were to be carried. He explained at length that practical tests had shown that sparks with be produced between various metal parts on the ship and other metal parts, which latter might be grounded, or even between two insulated metal parts. In some cases even the rails around the decks have become charged by induced radio currents, and therefore all metal fittings should be well grounded to the metallic hull of the ship.

Prof. Goldsmith's discourse was rather scientific and quite difficult of practical demonstration or adaptation. It related to shielded aerial wires, etc.

Some interesting discussions were indulged in by those present, and Prof. Ferdinand Braun, of Germany, the famous radio authority, took the floor in the Marconi company. Some of the discussion was in English, and Mr. Weigant, designing engineer of the Marconio company.

IMPROVED SIGNAL-HORN SWITCH FOR AUTOS

The new Seng switch recently developed for operating electric signal horns on automobiles, and shown in our illustration, possesses considerable merit, it seems, as no matter at what point of the steering wheel the hands grip same, it is always possible to operate the electric horn by just touching the "completed" contact rings in which it is shown mounted below the steering wheel proper.

German silver contacts are used in the make-up of this switch, and it should find a wide application among motor car owners and drivers of same.

ELECTRIC HOUSE WIRING TROUBLES

PROPERLY installed electric apparatus is the kind of apparatus that will always give you the most satisfaction. The rules which govern the installation of electrical apparatus are set out in the book by the National Board of Fire Underwriters and are exceedingly rigid. To the average man they seem extreme. The matter of safety depends greatly on the honesty of the electrical contractor in properly installing the wiring and apparatus in accordance with rules of the above board. To receive the approval of the National Board of Fire Underwriters any electrical apparatus must pass a series of rigid tests before the approval is granted to the manufacturer. Wires are put through an unnecessary rig of tests and tests.

Although the use of "approved" apparatus and wire may help to prevent trouble, the greatest source of danger lies with the electrical contractor and his connections or employs. A carelessly installed wiring system will sooner or later cause trouble and necessitate endless repairs and annoyance.

Perhaps the greatest source of trouble is loose connections, which cause heating and eventually the destruction of the connection itself. The heat from a loose connection will start any woodwork smouldering that is in contact with it. As a rule these connections are out of sight and the trouble may continue for weeks without giving any warning. Suddenly there is one of those fires that seem nowhere and are due to the fact that some careless workman neglected to tighten a screw or left a joint poorly soldered. Very often the evidence of its existence by the flickering of the lights. This should have immediate attention, as it is sure to mean that something is the matter. As a general rule people blame the lighting company and talk about "inefficient service." Sometimes this is the cause, but don't take chances—find out. Turn on all the lights in the room and see if they flicker. If they do and if you have no cracked fuses, call in an experienced electrician and your troubles will soon be past. Make yourself familiar with your lighting system and know just where the fuses for each part of the house are situated and also keep a supply of spare fuses handy. This will save you a large amount of trouble and inconvenience, as it is unnecessary to call in an electrician every time there is a fuse blown. A few moments' explanation by a man familiar with house wiring and you can install your own fuses.

Don't overfuse your circuits. If a circuit is intended to carry a current of 10 amperes, don't put 30-ampere fuses in. The fuse is similar to the safety valve on a steam boiler, and prevents the gas where 10-ampere should be is exactly the same as setting the safety valve of a boiler at three times the pressure that the boiler will safely carry. By putting in fuses of a

in the new Equitable building, New York City.

The master clock is shown at the left, which is connected to two sets of relays mounted on a panel shown in the center of the picture. These relays are connected electrically to 16 different lines in the building to which all the secondary clocks in the separate offices are connected. The 16 secondary controlling clocks herewith shown in the panel are connected in parallel with each line. This is done to indicate to the operator the condition of the line. If any one of them stops he can readily see which line is out of order and thereby save time in finding the trouble. Each line has a set of fuses, and also the master clock circuit is properly protected by circuit-breakers on the main panel at right of the photo.

The current used for this system is supplied by a storage battery of 24 to 30 volts, controlled by a switchboard seen at the extreme right. An end cell switch is provided for regulating the battery voltage. The clocks are electrically wound and synchronized by means of a step by step magnetic method. This clock system represents one of the finest and most accurate ever installed in this country. Compare this masterpiece of an "automatic electric time-keeper" with her 10,000 wards to the accuracy attainable if the old time clockman regulated each of the 1,000 clocks by hand.

—Photo by courtesy of Architecture and Building.

INSTITUTE OF RADIO ENGINEERS MEETING

At the last meeting of the Institute of Radio Engineers before closing for the summer holidays and held on June 9 at Columbia University, New York City, two excellent papers were read as follows:

higher capacity than the circuit is wired for you stand an excellent chance of causing trouble that will be expensive to repair.

We come now to one of the most common troubles and one that is little understood by those not familiar with electricity. A copper wire will carry only a limited amount of current with safety. Should the current exceed this amount the wire will begin to warm up, and the more current you cause it to carry the greater the rise in temperature, until finally it will come to the melting point and "blow out." Overloaded wires are the cause of many fires that "cannot be accounted for." The permissible amount of current for a wire of any size is determined by the regulations of the National Board of Fire Underwriters and should never be exceeded without special permission. This is a subject for the electrician to determine. The capacity of your wiring should be sufficient to carry all that you would be likely to use and also to allow for any future additions that you might wish to add. The trouble comes when Mrs. Smith or Mrs. Jones buys some of the modern electric heating devices, such as flat irons, toasters, percolators, etc., brings them home and screws them on the socket. If the circuit is fused just enough to carry the lighting circuit of that room the addition of the new device will blow out the fuse if the current it takes is in excess of the fuse capacity. Perhaps the fuse capacity is too large, and then she may add one thing after another until the wires are carrying more than they can stand and then they will "blow open" or overheat and cause a fire. The best way is not to take chances, but when you wish to install some of the new heating devices call up the electric company and have them look the circuit over.

And now a few words regarding "shocks." The average lighting circuit is about 110 volts, and one might almost say harmless as far as injury from the current is concerned. All apparatus made-to-day for home use is carefully insulated and the danger of receiving a shock slight, but this does not mean that little Willie can take a screwdriver and try to decipher the anatomy of your table lamp. He will not be injured by the shock, but it is almost certain that he will give himself a nice burn and in all probability spoil the lamp, not the fittings to which it is attached. This applies not only to lamps and sockets, but to electrical apparatus in general.

My advice to any man who does not understand his lighting system is to let it alone. Your effort to avoid a bill from the electrician may result in burned fingers and spoiled apparatus. Call the man who knows just what he is doing, and the chances are that the trouble is small if your house has been properly wired. Let it alone—it pays. Porcelain sockets should be used in any place where there is a chance of moisture, or where people are likely to get into contact with the ground. The "ground" means water or steam pipes or any metal that is connected to the earth. Bathrooms and cellars are places where porcelain sockets should be used—the bathroom especially, as there people often stand in their bare feet, with wet hands, and water is an excellent conductor. Death has been known to result from turning on an electric light while in the bath, though deaths from the average lighting circuit are very rare indeed.

Familiarize yourself with your lighting circuit, observe the above suggestions and you are sure to save time, trouble and expense. There is no mystery about house wiring or apparatus. Spend an hour or so with your electrician, let him explain to you how it works and you will find it an excellent investment. Remember! Safety first.

ELECTRIC CHART TELLS PERCENTAGE OF DEATHS IN NEW YORK CITY.

It is pointed out that of every hundred children born in New York City 11 die within a year, in a recent number of the Edison Monthly magazine, and only one at a city. This electrical lamp board is exhibited at the department's museum on Centre street, in the metropolis. In all, there are 100 incandescent electric lamps mounted on the lamp board, in rows of 10. A specially arranged automatic flasher lights all of the lamps first; then at intervals of several seconds the flasher extin-

ELECTRIC IRON CARRIES HEAD-LIGHT.

An electric iron with a feature that is entirely new has recently been developed by a Pittsburgh concern. This feature is a small Mazda lamp attached to the iron in front of the handle. On account of the presence of this lamp, the iron has been named the "Heillite Iron." Due to the fact that the lamp is only a few inches above the surface to be lighted, it gives more light upon the ironing board than would be obtained from several large lamps located in a ceiling fixture.

The lamp is provided with a metal reflector, which has a shield to keep the light from striking the eyes of the operator, both when ironing and when the iron is at rest in a vertical position. The lamp socket is supported by the handle bracket and the supply wires from the lamp are carried through a metal tube to the interior of the iron.

The lamp burns whenever the current flows through the iron and thus acts as a warning signal if the current has been left on by mistake. The current consumption of the lamp and iron is 500 watts. The iron is made in both tiling and stand types.

LIGHTNING RODS REDUCE PROPERTY DAMAGE.

In the annual report of W. E. Longley, State Fire Marshal of Indiana, attention is called to the fact that, as the increasing use of lightning rods on farm buildings, only 453 cases of lightning damage were reported in Indiana during 1914, compared with 1,006 during the preceding year. "Lightning rods properly placed afford certain protection," declares the fire marshal. "For only seven buildings equipped with rods were struck during 1914. In these seven instances investigation showed that the rods either had gone a long time without proper attention or were not properly grounded."
Some Famous Electrical Laboratories.

PROBABLY there is no electrical concern which maintains a finer or greater variety of testing and research laboratories of every description than those of the General Electric Co., whose main plant is at Schenectady, N. Y., and who also maintain extensive plants at East Lynn, Mass., and several other cities.

The views shown herewith are those taken of some of the principal laboratories of this company at Schenectady. The portrait in the center of the group is a likeness of Dr. Charles P. Steinmetz, chief engineer of the General Electric Co.

This renowned engineer and scientist has associated with him some of the leading scientists and research workers of the country, and in this brilliant array appear the names of Irving Langmuir, Sol Dishman, Coolidge, and many others of whom perhaps we have not heard much in a popular way, but who are hard at work solving the many problems confronting such a vast corporation as this. Every imaginable kind of research work is done in these laboratories, including the fields of physics, mechanics, optics, all branches of electrical science. X-ray and incandescent lamps, chemistry, etc., ad infinitum. This will be the more impressed upon the reader’s mind when it is said that the General Electric Co. never attempt to do a thing half way, but always goes to the bottom of any problem tackled. Also they, in most every case, eventually reach some satisfactory solution of their multifarious problems, thanks to the brilliant staff of specialists they maintain and also to the extremely fine laboratory facilities afforded.

In Fig. 1 of the illustrations here presented is seen a section of the chemical laboratory, where all kinds of acids, salts, rare metals and oxides, etc., are kept ready for any kind of research work encountered. In the illustration at Fig. 2 is seen a corner of the special research laboratory, where various kinds of new lamps, vacuum bulbs, etc., are electrically tested out. A desk fan a million cycles per second or more.

Another view of one of the chemical laboratories is shown at Fig. 4, and here is observed also a set of electric ovens used for heating and other purposes. These electric ovens have rheostats located on the bench beneath them, so that the heat may be very finely regulated to any required temperature desired by the chemists.

Every modern appliance is at hand in these wonderful laboratories and they are probably the best equipped in the country to-day, if not in the world. No problem is given up until all of the research staff have

TO LIGHT NIAGARA WITH SAN FRANCISCO EXPOSITION SCINTILLATORS.

A movement has been organized in the sister cities of Niagara Falls, N. Y., and Niagara Falls, Ont., to acquire the battery of electric searchlights now being used for the scintillator illumination at the Panama-Pacific Exposition at San Francisco, and to provide for the electrical illumination of the Falls during a number of months of each year.

Are you a subscriber? Better decide now so you will not miss the many good things in the forthcoming September issue, 64 pp.
How Telephone Transmitters and Receivers Are Made

Do you know of the vast research work back of the telephone instrument you use daily? Telephony has grown to be one of the most highly specialized of applied sciences. How the separate parts of every instrument are exhaustively tested is explained in this article.

The Transmitter.

There are, of course, many different styles of telephones on the market, but as all are made up of essential parts, known as the microphone, into which we talk, and the receiver, which reproduces our speech, with more or less auxiliary attachments, we shall consider the most important parts, viz., the microphone and the receiver.

The "Bell" instruments used in this country are manufactured by the Western Electric Co., and as these have been simplified and standardized to a remarkable degree the greater part of the work here mentioned is that performed on "Bell" type sets.

sets up air waves which are projected into the mouthpiece and against a thin iron diaphragm 3, supported tightly all around its rubber-bound edge in the brass plate 2. The diaphragm 3 has secured at its center a small screw and nut, the inner end of the screw or stud carrying a polished carbon disc 4. A similar disc, carried by a metal bridge bar 5, forms the microphone chamber 6, which contains a small quantity of carbon grains. The transmitter parts being quite delicate, of course are contained in a strong punched brass shell 8. A swivel or trunnion lug 9 is secured to the base of the shell, thus allowing it to swivel up or down in the manner we all know.

This will give a clear conception of the most important parts of the microphone, or transmitter, as it is termed. Each of the parts outlined and making up the complete instrument is the final result of vast technical research in the storehouse of Dame Nature.

The mouthpiece No. 1, for instance, although it looks very simple, has a history of its own. In the first telephone the mouthpiece was simply a hollowed-out portion on the wooden front of the cabinet. Later a wooden funnel was introduced. This progressed through various stages of fibrous and hard-rubber composition, and some of the latest tried out were of glass and porcelain. Glass is sanitary, but extremely fragile. Porcelain is still going through the test stage. "Condenser" is one of the newer synthetic compositions being tried out for the mouthpiece and possesses many good qualities, notably strength. It may be dropped on the floor without breaking. The mouthpiece is an important part, and, indeed, and its shape and "sound" qualities are always going through research tests to find something better. That, in truth, may be taken as the slogan of the telephone specialist: "Something better." The search is everlasting and constant.

Consider the front plate of the case. Part No. 2. For many years this was composed invariably of a cast-brass or alloy plate. Now it was found, by observation and exhaustive trials, that it was practically impossible to produce a cast plate for this purpose which could be polished and nickel-plated, that would show up absolutely smooth and free from blemishes due to air or "blossom-holes" in the casting.

Hence a staff of technicians were started to work on this problem, with the result that the plate is now made of a special bronze or brass alloy, made to a specified chemical formula and rolled in sheet form. The discs are blanked out in massive punch presses, electrically operated, and after passing through several punching and bending stages, we have the finished part ready for nickel-plating. Only a certain alloy will permit of the many and intricate bending and forming operations necessary to give it the proper shape. Sometimes a whole
This complicated elasticity and less amplitude. Oscillograms "speech" functions and also the characteristics of microphone diaphragm shall be.

For the study of the diaphragm's vibrations an electrical oscillograph is utilized. This device records the vibration characteristics of the diaphragm when used for "speech" functions and also the time-period of its decay to a neutral or zero-vibration period after it has vibrated to maximum amplitude. Oscillograms of these vibrations are depicted at Fig. 2. The upper set of waves or ripples "A" are those of voice vibration, while the lower waves "B" show how the diaphragm's natural vibrations decrease from a state of maximum amplitude and vibration "C" at 1, to a zero vibration point at 2. The balance of the microphone comprises, electrically, the carbon grains of a device ever perfected and is susceptible of taking on a very high polish. The grains are quite small, but regular in size and quality. The discs 4 and 6 are secured firmly to the brass sub-discs and supporting studs for attachment to the metal shell members. The carbon disc faces are polished like a mirror in specially designed rotary polishing machines driven by electric motors. Each machine will polish a great number of discs in a short time, owing to that's unusual arrangement of the machine.

The complete transmitter is illustrated at Fig. 3, and behind that innocent-looking little device is a battery of the foremost scientists in the electrical and mechanical realm, still hinging away at the problem of "something better."

The Telephone Receiver.

The receiver on the telephone we use has, oddly enough, remained about the same as Alexander Graham Bell's original.

![Fig. 3. Assembled View of Telephone Transmitter, Showing Carbon Grains, etc.](image)

The telephone receiver is a remarkable tribute to the basic soundness of his theories and early instrument. If his original instrument had not been right to almost an infinite degree it would scarcely have lived through the first few years of its existence unless where in the face of the most stupendous patent-suit litigation this country has probably ever witnessed. Inventors by the hundred sprang up, like mushrooms over night, claiming that they had prior patent rights on a speaking telephone similar to superior to Bell's patents. He finally won out in the highest court in the land, however, and the telephone got started on its way. In the standard forms of the telephone receivers are the "Bell" commercial long type and the watch-case receiver, resembling a watch in size. The...
An Interview With Guglielmo Marconi

By Samuel Cohen

WHAT a wealth of meaning there is to the two words, "Marconi" and "wireless" to practically every educated person to-day! Undoubtedly for many years to come the name Guglielmo Marconi will be familiar throughout the world and known in practically every household as that of one of the greatest benefactors of the age and as the pioneer inventor and manufacturer of wireless telegraphy, as we know it to-day.

Dr. Marconi is well past middle age and looks in the best of health. He is rather tall and well up, making him, you perceive, a military man in more aspects than one. This is due, in a great measure, to the fact that he is a Lieutenant in the Italian Navy. He bears his 41 years well, indicating an uncommonly strong mind and body.

As the wireless telephone is one of the latest and most misunderstood apparatus, perhaps, of the present time, I asked him how this matter was progressing. Mr. Marconi stated that there was great hope for the future and, in fact, in the very near future, of greatly extending the range of wireless telephony. "It is being used on practically all warships of the Italian Navy," he stated, "and is being employed to a considerable extent in the British and other navies. Apparatus of the Arc and other types are being used and thoroughly tried out for this purpose, and the best grade sets, such as used in the Italian Navy, can transmit the spoken voice over distances up to 100 miles and more, which is very good, of course, considering that on shipboard it is difficult to erect a very large antenna. One of the later developments in the wireless telephone apparatus is that making use of a modification of the well-known Fleming Valve. By suitably combining an oscillatory circuit around this valve and other means of other super-imposing circuits, operators have made it possible to talk over quite considerable distances by this very simple and sure means. It is more stable and certain that any of the Arc type of apparatus, generally speaking."

"These wireless telephone sets are provided with a simple switch by which the operating condenser range from transmitting to receiving speech very quickly, and they are operated by means of an 80-ampere-hour storage battery which heats the vacuum valve filament and also a Gailott current is provided for actuating the trigger control circuit of the valve, as it is called." He added that this current is produced by dry batteries, and these sets are not limited to the transmission of wireless telephone speech, but can very easily be converted into wireless telegraph transmitting sets by the substitution of a telegraph circuit, and then it is ready for this use. These vacuum tube transmitters are able to work over ranges up to about 30 miles thus far.

I asked Dr. Marconi about the other forms of wireless telephone apparatus or undamped wave type generators, etc. He pointed out that a great deal of experimental and research work was being carried out in England, both in laboratories and on the water. He mentioned that the Marconi laboratories on the multiple spark frequency wireless generator, which can produce practically undamped waves by alternating several different sparks in the circuit to jump the gap at slightly different periods. In this way there are not any long breaks between the sparks and the ordinary dead-time period between sparks is filled up with the waves from other sparks synchronously and critically timed.

One of the latest branches of science Dr. Marconi is presently interested in is that of seeing over a wire by electricity. He mentioned that a considerable amount of research work has been done in transmitting images by wireless and successful results were already obtained. Dr. Marconi is quite sure that the time will soon come when one will be able to see a friend in Europe by means of wireless television and at the same time speak to him.

Regarding the powerful and recently completed trans-Atlantic radio stations in England and the United States Dr. Marconi is hopeful the European war will soon cease so that these stations can be put into regular operation. These are at present tied up for the reason stated and particularly as the British has not been taken over the control of the Wales stations for official work of the War Department.

Before departing I suggested to Dr. Marconi that he had a new electric-film lamp, which was said to be of great value. He replied that there are not any long breaks in the wire, which coalesce with the color of the smoke, irrespective of what that color may be.

There are two things necessary in the construction of a smoke recording apparatus. To provide means to draw a sample of the gas from the stack and force it through a small orifice and also to provide a device that will remove the gas either by mechanical or other mechanism to move it. Reduced to its primary elements, a smoke recorder consists of a pump and a clock and a piece of paper.

It may be stated that the chart is sectionally ruled in hours and minutes, each chart covering a period in excess of 12 hours, and one can tell almost to the second when the chimney began to smoke and also when the fireman stopped it by proper firing.
THE BIRTH OF THE TELEPHONE.

An extremely interesting lecture on the birth and history of the telephone was presented by Bell's former co-worker, Thomas A. Watson, before the New York Electrical Society at a recent meeting.

He detailed in an interesting manner how the telephone had sprung from the musical telegraph, upon which he and Prof. Bell were engaged. Although Bell had the idea in mind for two years, it was not until June, 1875, that a successful speech-producing instrument was made. The first idea was the proportioning of force or speed over a wire by electrical means was presented by accident. One of the musical telegraph reeds had stuck fast, and Mr. Watson played the reeds several times. Prof. Bell at once came into the test room, demanding to know what Mr. Watson had done. Bell had heard the feeble undulatory magnetic impulses produced by the vibrating reed before its magnet and reproduced electrically over the short line in the musical receiver. Thus the germ was sown which laid the basis of the wonderful telephone system we have to-day.

The illustration here shown is of one of these early Bell musical telegraph systems, where a series of different-toned steel reeds currents in the coil B, which will pass through the wires L and ground LL' to the receiving coil H', mounted on a magnet also provided with tuned steel reeds in front of the coil. Thus a certain reed vibrating at the transmitter would set the "same tone reed" vibrating at the receiver. Multiplex telegraphy over one wire was the goal.

A replica of the first telephone used by Bell was shown and, of great interest also, the original wire used in the first half-mile telephone circuit ever erected by Mr. Watson in Boston. The wire was coiled on a small spool and preserved in a neat glass cabinet.

The first ringer for telephones was developed by Mr. Watson. For the first telephone installations the party was called by thumping the home diaphragm sharply with a pencil. This set up sharp sounds at the receiver in spite of the wire and anything near the instrument would hear the thump so to speak. Shortly after he invented the "Watson jingler," or polarized bell, operated by a magnet, and this device, like Bell's whispering receiver, has practically remained the same in its design these 38 years past.

RUSSIAN DUMA GREETS ENGLISH COMMONS BY WIRELESS.

A new and powerful wireless station erected in Russia since the outbreak of the war transmitted the first messages to England recently in the form of a greeting from the Chairman of the Duma to the Right Honorable James W. Lowther, Speaker of the House of Commons. Mr. Lowther acknowledged the greeting by wireless.

TAPPING THE EARTH'S ELECTRICITY.

The latest suggestion of theoretic science is that inventive mankind will some day be able to tap the earth's electric supply. Now that we know mankind will some day be able to tap the earth's electric supply. Now that we know that the earth is, among other things, an enormous electric magnet and that it twirls around eternally on its unseem axis its fricition against the atmosphere creates a perfectly unlimited supply of electricity.

The British Royal Society claims that invention is already close on the track of perfecting a mechanism by which this electric current can be collected from the atmosphere. If this can be done there will be no necessity for electric power plants. Every factory will be equipped with an inexpensive machine that can absorb from the air electrically just as already there are machines that can absorb oxygen from water that costs little or nothing to collect.

The idea suggested is that some mechanism be created to suck down the earth's electric fluid. This is being done all the time by every tree, and it is the inexhaustive force of tall trees that causes them to be so frequently struck by lightning during big thunder storms when the atmospheric electricity is present in enormous quantities.

A machine for collecting atmospheric electricity, however, would not depend on electric forces of supply. The atmosphere is always filled with a silent, all-pervading but powerful electric current. It is this permanent current that is suggested mankind will some day succeed in utilizing to transport the triumphant car of human progress.

When it is done, the race will have easier and quicker traveling toward the final triumph of mind over matter.

MARCONI A VOLUNTEER.

William Marconi has asked that he be enrolled as lieutenant of engineers and assigned to duty with the wireless brigade at Florence.

A NEW 3-VOLT DRY CELL.

Ordinary dry cells used for bell and ignition work are about 11/2-volt. All such cells are the same as regards voltage. Now we have the "Nitrogen" 3-volt dry battery, which should find a host of friends. It is exactly the same size as the standard No. 6 Columbia cell, and can be interchangeable in battery boxes, etc. It is composed of two cells placed end to end, thus producing 3 volts. Owing to a new construction used in making up these cells their efficiency is much greater than that of ordinary dry cells.

The experimental battery I have just seen find this 3-volt cell a great convenience indeed for operating small motors, spark coils, lighting lamps, etc. It costs but little more than the ordinary 1 1/2-volt cell and marks a new epoch in dry cell manufacture.

TO GO THROUGH PANAMA CANAL SHIP NEEDS WIRELESS.

It is now unlawful for any passenger steamer, whether of American or foreign registry, carrying 50 or more persons, including both passengers and crew, to leave the Canal Zone unless equipped with wireless telegraph apparatus capable of transmitting messages at least 100 miles and having a competent operator.

NEW HIGH-FREQUENCY MA-CHINE FOR TESTING INSULATORS.

It has long been known that when a lightning bolt or discharge strikes a transmission line carrying electric currents this high-frequency atmospheric current will affect the insulators on the line in a different manner than the ordinary current, no matter whether it is direct or alternating current at any commercial frequency, such as 60 cycles, etc.

Therefore high-voltage insulators, such as used on the wonderful long-distance transmission lines such as those in the Western parts of the United States and Canada, have always been tested at 60 cycles frequency for several times the voltage to which they were to be subjected in their regular duty on the line.

It was found, however, that very frequently these insulators would fail for some apparently unknown reason, and after much inspection and research work it was found that a lightning discharge, in view of the fact that it is of very high frequency and similar to a wireless discharge, would strike right through the insulator and put it out of commission for further service. This happened many times where it was self-evident that the transmission line voltage could not have done any such damage.

One of the latest machines for testing these insulators under such lightning discharge conditions is shown in the illustration, and it is built by the General Electric Co.

It is designed and furnished, when desired, for use on any commercial frequency circuit, and utilizes about 2½ K.V.A. at 60 cycles on 110-volt A. C. circuit. It can produce very high frequency currents, running in value as high as 500,000 cycles per second at a potential up to 165,000 volts. Special forms of this machine are furnished, when necessary, giving as high as 800,000 volts. Hence the advance of the engineer continues in his decision to hold his own with the forces of nature.

ELECTRIC POCKET LAMPS FOR THE ARTILLERY.

Among the goods recently bought in the United States for use abroad by soldiers in the fighting zones were 5,000,000 electric pocket lamps. The demand for these lamps is due to the fact that on land the howitzer in large part become a long-range artillery duel, the other branches of the service meanwhile seeking protection from bursting shrapnel by living in covered trenches. In these trenches, as well as in the air, on the sea, or under it, electric pocket lamps are ideal illuminants.

Watson's first telephone system.
known to our readers for its pleasant and efficient light, and second, its value in commercial applications. A. D. Child, of their sales staff, kindly conducted me through the various departments of the plant.

The first step in the manufacture of the mercury tube (see Fig. 1) is the bulb, the tube comprising three glass pieces, A, B and C (Fig. 2), which are fused together. A small stem E is made on top of the large bulb B by heating that portion and blowing it out to the proper size. Another small glass tube E, is fused onto the tube E. This tube is used to connect the bulb B with the air-exhausting apparatus and for filling the tube with mercury.

At right: Fig. 1. The Complete Mercury Vapor Lamp Tube.

Below: Fig. 3. Case Containing Regulating and Controlling Apparatus.

Fig. 2. Details of Mercury Vapor Tube.

The electrode G is now made and sealed in, which consists of a platinum wire sealed into the glass stem L, and is fastened to the connector H. The other electrode I is next sealed in. This electrode I consists of a cylinder of sheet iron with a small lap M for making contact with the mercury when the tube is tilted. The cylinder is joined to a small piece of platinum wire L, which is sealed into the bulb C and then connected with another terminal connector J.

After all these parts are made and skillfully placed in the tube the filling with metallic mercury K and exhaustion of the tube next takes place. The tube is brought to the mercury-filling department, where thousands of them are filled daily. The tube is connected by means of a rubber tube with the mercury chamber through the neck E, and a certain quantity of mercury is admitted, depending upon the size of the tube. Some tubes take six ounces, others 10 and 12 ounces. The tube being filled, it is now ready to be exhausted, and extreme care is taken in this process, as the quality of the tube depends entirely upon the exhausting. The tube is placed in a hot bath of air and connected with an exhaust pump, which is an ordinary mechanical exhaust pump. The connection is made through pipe E. While in the hot bath the mercury is boiled, thereby purifying it and also helping to drive out the air in the bulb. As soon as the operator sees that the exhaustion is complete he carefully seals the tube E by heating it at point E until it melts, and gradually pulls it out to the form D as shown. Fig. 4 shows the exhausting laboratory. In this picture there is shown the apparatus where the mercury tubes are exhausted. A is an asbestos cylinder or shell in which the tube is placed while the air is being pumped out. B is a furnace producing a hot-air blast blowing into the chamber A. C represents the tube coming from the air pump located in the back of the room, and D to the glass tube. D denotes the mercury trap.

The tubes are now finished and are brought to the testing room. Here each tube is carefully tested in every respect, both physically and electrically. They are first examined to see if they contain any mechanical defects. If so, they are placed aside and repaired, while the others are placed on a testing frame. Here they are kept for several hours while each tube is critically watched by experienced men. Every tube before being sent out is thoroughly tested, thereby assuring the consumer of a perfect product.

The tube is not the complete lamp, which includes a controlling device which momentarily tilts the tube automatically, while some tubes are self-starting. This is done by using a "tick apparatus," as it is termed technically. Various kinds of resistance and magnet coils are made in this plant for the mercury vapor lamps also.

The tube is placed in a suitable frame, which also contains the electro-magnets for tilting the tube. This frame is shown in Fig. 3, and it also contains the proper resistance coils. If it is an automatic tube the frame would contain the automatic devices for that particular tube.

The second important thing is the value of the mercury tube commercially, as it is very efficient for photography, drawing, etc. It also gives, in special forms, valuable effects on alternating current, the latter being more interesting to the general experimenter.

Everyone is acquainted with the glaring light which the ordinary electric lamp emits. It has a sort of blinding effect and it also produces many shadows due to its concentrated center of light radiation. These effects are entirely overcome by the mercury tube, because the range of the tube is large, therefore giving a greater diffusion of light, which is, of course, more pleasing and less tiring to the eye than the ordinary incandescent electric lamp. For this reason the Cooper Hewitt mercury tube is now being extensively adopted in factories, drafting rooms, etc., where the shadows are most troublesome. The rapid effect of the light of these tubes on photographic plates makes it extremely valuable for use in photography, especially in motion picture studios and in blue-printing.

Another peculiar feature of the mercury tube is in rectifying alternating current into direct current; this form of rectifier is widely employed in auto garages where alternating current is supplied and batteries are to be charged.

One of the latest types of mercury tubes is the Quartz lamp, which is shown in Fig. 5. This tube works just the same as the (Continued on page 151.)
A NEW HYDROGEN X-RAY TUBE.

By Frank C. Perkins.

The accompanying illustration, Fig. 1, and drawing Fig. 2 show the design of a unique hydrogen X-ray tube offered to Roentgenologists not as an experiment or a promise but as an actuality. It is claimed that the work with the hydrogen tube in several of the most prominent X-ray laboratories in America has substantiated in full the results in the Snook-Roentgen experimental laboratories on the new tube here shown.

It may be stated that the pure hydrogen gas is the chemical means used for the regulation of the hydrogen X-ray tube. When the tube is to be lowered as to vacuum a current of approximately 25 milliamperes is discharged across a spark gap of about ½ inch long in a glass bulb containing chemically pure hydrogen. This spark heats to redness a metal osmotic tube. One end of the tube opens into the vacuum of the bulb proper (see Fig. 2), while the other is closed and prevents the hydrogen from entering the vacuum except when the metal, heated to redness, acts temporarily as an osmotic membrane.

The amount of hydrogen admitted to the vacuum is determined by the length of time the metal tube is kept red hot (and also by the temperature of the osmotic tube). The rate of diffusion through the metal increases with the rise in temperature, care being taken not to melt the metal. Hydrogen gas actually comes out of the tube when the vacuum is "raised," due to its own osmotic pressure, since ordinary atmospheric air contains practically no paroxysmal hydrogen.

It is stated that for continuous, heavy work no tube ever designed has given results equal to the air-cooled type of hydrogen tube. Compressed air, at about 4 pounds pressure, is used as a cooling medium for the air-cooled hydrogen tube. Both the anode and cathode are hollow alloyed in efficiency. Both in initial investment and in repair items a real economy is effected, and the more uniform operating characteristics of the tube are readily demonstrated by the X-ray results and radiographs that are uniformly good, while tests have proven that the focus point is very steady and does not wander.

Fig. 1. New Hydrogen X-ray Tube, Which Is Said to Be Extremely Efficient.

WIRELESS IN COURT.

Judge Mayer sat recently in the Federal District Court of New York City and listened to the wireless messages which were passing between vessels at sea and the land stations at Sayville, L. I., and Sea Girt, N. J. The apparatus, which had been set up in his courtroom, was erected to help him decide a patent infringement suit, brought by Samuel L. Kitter, receiver of the National Electric Signaling Co., against the Atlantic Communication Co.

The suit, which is highly technical, turns largely upon what experts call a "high frequency musical tone." It is alleged to the Atlantic Communication Co., in producing this tone by means of apparatus which has been made under the Telefunken or German patent, is infringing on the apparatus covered by the Fessenden patent, which belongs to the National company.

Most of the length of the vacuum tubes is delivered to the inner extremities, as perceived from the cut.

The air delivered to the cathode serves also to cool the main glass bulb, as illustrated in Fig. 2. The vacuum control of the air-cooled hydrogen tube is identical to that of the standard type of hydrogen tube. The air supply necessary for operating the air-cooled hydrogen tube can be readily obtained from the compressed-air service of many hospitals and office buildings by merely connecting with the piping and installing a pressure-reducing valve. When this is not available a direct-connected motor and air compressor can be installed of the right capacity to care for the simultaneous cooling of two tubes.

It is claimed that results from day-by-day use of the hydrogen tube in X-ray laboratories over a period of many months have demonstrated that it will accomplish from three to five times more than any ordinary tube—in duration of service and

Fig. 2. Details of the New Hydrogen X-Ray Tube Recently Developed.

FEELING FOR ICEBERGS ELECTRICALLY.

It was after the disaster of the Titanic, when inventors realized the importance of an instrument which would notify the navigating officer of some approaching iceberg. Many different devices were invented for this purpose, and one of these is here-with described, its action depending upon the thermo-couple or electric thermometer principle.

Looking at the accompanying sketch, a "thermocouple" ST is mounted inside a metal capsule A, which is screwed through the ship's hull plate B. One junction C of the "thermo-couple" is soldered onto the shell A and hence rapidly assumes the same temperature as the water outside. The second junction D, however, is imbedded in a block of material E, which permits it to assume slowly the temperature of the water inside. The wires ST are connected to a sensitive relay; the wire HH is wound around the insulating tube F and serves for heating purposes. At ordinary times the contacts CD are both at the same temperature, hence no current flows through ST and no alarm is given. But when an iceberg is approached the temperature of the water varies rapidly and the junction C is cooled much more quickly than the junction D. As a result a "thermo-electric" current is set up, and this operates the relay, which in turn closes an alarm circuit and warns the navigating officer of the impending danger.

A NEW VEST POCKET AMMETER.

A novel, compact type of pocket ammeter has been developed by the Benford Manufacturing Co., of Mt. Vernon, N. Y. As perceived from the illustration of same, it is a metallic barrel, inside of which is a coil of magnet wire. When the tip on the flexible cord and the second tip on the base of the instrument are placed in contact with a source of current, such as a dry cell, the calibrated iron plunger in the center moves inward in proportion to the amount of current passing through the coil. The idea is old, but the make-up of the instrument as a whole makes it very serviceable and free from derangement.

The voice by telephone travels from New York to San Francisco in 1-1/8h of a second, traveling at the rate of 33,000 miles per second. The voice of a man speaking in New York is heard in San Francisco three hours earlier, that being the difference in the standard time of the two cities.

www.americanradiohistory.com
How to Build an Electric Writing Machine or Telautograph

By Homer Vanderbilt

The telautograph is an electrical machine by which handwriting may be transmitted electrically over wires. Many articles have been published on the telautograph, but in case the interest of the novice has been rather neglected if he should want to build a simple electric writing machine. It is the object of this short article to show the experimenter, with drawings and general explanation, how to construct one.

The details for the construction of the individual parts are given in the accompanying drawings. These do not require much description. Fig. 1 represents the transmitting station, which consists of four resistance coils at right angles to each other and their sliders moved by brass rods, which are joined together at a common point E, where a pencil or pen is attached. These rods are swiveled by means of universal joints D, D, D, D.

The resistance coils A, A1, A2, A3, are wound with No. 26 B. & S. German Silver wire on wooden cores as shown in Fig. 3, and well shellacked. Ordinary tuning coil sliders are then placed on top of the coils. Four of these resistance coils are made and then fastened to a wooden base \(16\times16\times\frac{3}{4}\), by means of wood screws. These coils should be placed at right angles to each other, as shown in Fig. 1. A small hole is drilled on the back end of each slider and threaded with a 6-32 thread. Now construct the slider rods, which consist of two pieces of brass rod threaded together by means of a universal joint D. The slider rods are now inserted in the end holes A5, Fig. 3, on each side of every resistance coil bobbin. The details of construction of the rods are shown in Fig. 4, and of universal joints at Fig. 5. All parts are made of brass. After the coil and rods are made and assembled on the base, connect all the rods at a point by means of a brass rod, shown in Fig. 6. Four small pins are inserted in each hole through the rods so as to allow a free play between the rod and connector. Each set of terminals of the coils are connected to their respective binding post as indicated.

The receiving apparatus is similar to the transmitter but different in construction. The receiver consists of two solenoid type electro-magnets arranged as shown in Fig. 7. These solenoids have two sets of windings on them, and wound in opposite directions. The two bobbins are made of hard rubber and details of dimensions are shown in Fig. 1. After the bobbins are made according to dimensions, wind in one direction and one-half of the spool, with 200 feet of No. 24 B. & S. copper magnet wire, and then wind the other half and in the opposite direction with the same amount and size of wire. Both coils should be wound exactly the same. Now construct the movable cores, which consist of two pieces of soft iron \(\frac{1}{4}\times\frac{3}{4}\) in diameter. On one end of these cores a No. 10-32 thread is made and a small brass rod H with No. 10-32 thread on one end is inserted, as shown in Fig. 1. Two small springs are then placed behind each end of the cores of the solenoids as shown.

The writing board E, Fig. 2, consists of a thin brass plate \(8\times3\times\frac{3}{4}\), placed between four brass angle pieces F, suitably grooved, so it can be moved easily by the electro-magnet arm A 6, Fig. 2. This arm A 6 is the core of the electro-magnet B and is made from soft iron \(\frac{1}{4}\times\frac{3}{4}\). A small hole is made in one end in order to attach it to the writing board E. Now place these parts on a hardwood base \(19\times10\times\frac{3}{4}\) and arrange them as shown. Connect the respective coils to a pair of binding posts. The apparatus is now ready for use. Connect both transmitter and receiver as follows:

Binding post 1 of sender connect to binding post 1 of receiver and binding post 2 of sender to binding post 2 of receiver, and so with B and A. It is to be remembered that a battery is connected in series with each set of connections. About four cells in each circuit will work very nicely. Draw a figure on a piece of paper and then place it on the transmitter writing plate and trace by means of the pencil. A piece of paper is now attached to the receiver writing plate and a pencil inserted on the rod hole P and laid loosely on the paper. As soon as the transmitter pencil moves the receiver pencil will follow and in this way it will reproduce the exact image. Writing may be sent over the wire just the same.

The principle which this machine depends upon is the variation of resistance which the transmitter's resistance coils create by the movement of the sliders and thereby causing a different current strength to pass through the receiver solenoids by which the iron core is directly affected by the varying changes of current.

A little practise will be necessary at first before good results are obtained. This machine in commercial form is now used in banks, hotels, etc. The writer will be very glad to hear from the readers of any trouble that they may have in constructing this apparatus. He will also answer any questions regarding its operation and construction if addressed in care of the Editor.

HOW TO HANDLE HARD RUBBER.

Hard rubber is one of the most frequently used materials by the electrical experimenter; first, because of its excellent insulating qualities, and second, it is easier to handle than porcelain or similar hard materials. Nevertheless a great deal is often wasted before the desired results are accomplished.

Hard rubber can be cut without chipping with a hacksaw or a fine-tooth saw. If it is cut more than half way through on one side, then starting on the other side until the cuts meet will avoid chipping. The pressure on the saw should be very light or the rubber will crack. Rubber can be drilled with ordinary twist drills in a drill press, but the stock should be laid on a perfectly flat surface and a very light pressure exerted on the drill. When finishing a base it is often desirable to have the edges rounded. This can be done with fine sand paper. To obtain a dull finish at the top it should first be sand-papered and then washed. A brighter finish can be obtained by mixing a little emery with oil and polishing the surface with it.

In working with hard rubber it is better to have it fastened to a solid support so that the drill or saw will not bend, which will cause the rubber to crack.
A FOOT-CONTROLLED DRILL PRESS.

In the small hand-feed drill presses it is necessary to place the work in a vise to hold same while drilling. Very often the work could be done much more quickly and conveniently if both hands were free to hold the work. The sketch shows how this may be done. The feed is simply changed from hand-feed to "foot-feed." In the smaller sizes it is only necessary to drill two or more holes in the handle A and attach the treadle. In the larger sizes it may be necessary to rivet a piece of strap iron to the handle so that sufficient leverage may be obtained.

The pedal may be 2 feet or more in length, and a number of holes should be drilled in one end so that the leverage may be changed. A strong cord, chain or wire is fastened to it as shown; a hinge properly placed will allow the pedal to be thrown back under the bench out of the way when not in use.

A spring (from a window-shade roller) is good if fastened as shown to keep the drill normally above the work. Contributed by FRED'K J. SCHLINK.

WIRELESS TELEGRAPHY A DISCOVERY—NO INVENTION.

Professor Pupin, testifying in court, avers that Marconi discovered wireless by accident in the groining of two wires. This, if so, in no wise detracts from the value of the discovery, nor does it constitute something unheard of before in the scientific world. Didn't the fall of an apple from the tree reveal to Newton the law of gravitation?

LIGHTNING'S PRANK TURNS TROLLEY POLE INTO LIGHTNING'S PRANK.

Lightning struck a tubular steel pole supporting trolley wires in New York City recently, burning the wires and messengers loose and allowing them to fall into the street. A few minutes later water began to spout from the top of the pole and to ooze from the joints, making the pole a veritable fountain. Investigation showed that the lightning had ruptured a water main beneath the pavement, and that the path provided by the tubular pole was the only means of escape for the leaking water.

Since to shut off the main would have deprived a large district of its water supply, the impromptu fountain was allowed to run during the night, and the main was repaired next day.

SPARK GAP WITH COOLING VANES.

An efficient spark gap with radiating fins has not only a necessary place on the wireless table but it gives the appearance as well as the qualities of a commercial station. The commercial spark gap with radiating fins is in many cases beyond the pocketbook of the experimenter, so something else has to be substituted.

The drawings show the general construction of the gap, but a few words of explanation may not be amiss. The base is made preferably of marble or hard rubber, but can also be made of any hard wood, and is 8x1-1/2 inches. Holes are bored and countersunk for the screws that hold the hexagonal uprights and for the binding posts, and grooves made for the connecting wires. The hexagonal brass pillars that support the gaps are 1/4 inches high. The holes through which the threaded rod passes are 1/4 inch from the top and tapped with an 8-32 screw thread. Holes are also drilled and tapped in the bottom of the pillars for the screws which hold them to the base. The pillars are placed 3/5 inches apart, giving a gap of 2 inches, which is more than you will probably need. Each piece of the threaded brass rod is about 2 inches long.

Regular zinc spark-gap ends are used. These are tapped to fit an 8-32 thread. The radiating fins cut from hot brass or copper 1/4 inch thick. These are drilled to pass the 8-32 thread, or may be tapped and screwed on, which insures a more solid and heat-efficiency construction. These are separated by 3/16-inch hexagonal brass nuts. These are screwed up tightly against the fins and one should be put behind the last fin. Do not polish the surfaces of the fins, as this tends to reduce the radiation. They may be painted with aluminum paint if desired.

Hard-rubber binding posts and knobs add a finished and neat appearance to the instrument.

Contributed by JAMES W. LOWRY.

ELECTRIFYING AN OIL PIANO LAMP.

Having one of the old style, but artistic, type of oil piano lamps on hand, the writer conceived the idea recently of converting this into an electric lamp. The accompanying drawing shows how this was done, and in the writer's case it was wired for three lights. Chain-pull sockets are being employed, and thus one or more lamps can be lighted as desired. The detailed sketch shows how the upper part of the lamp was converted to support the three electric sockets. First, the three sockets were secured together on a round fiber disc 3/4 inch thick by three inches in diameter with three gas-electric adapters. These adapters, which have flat brass legs on them about 3 inches long, were bent, as shown, so as to support the three sockets at an angle downward. The three tails of the socket holders were held under the brass nut at the end of the 3/4-inch threaded brass rod indicated, which passes up through the oil tank and fiber tube. The fiber tube was about 1 foot long and 3/16-inch bore by 1 inch outside diameter.

No. 16 rubber-covered fixture wire may be used to lead up through the stem of the lamp, a piece of flexible lamp cord of whatever color silk finish desired being secured to these No. 16 wires inside the lamp.

A wire framework to support the silk draped shade shown was fastened also under the nut on top of the rod which clamps the fiber disc and socket holders. Undoubtedly there are many readers who have one of these lamps of the oil type lying around, and it can thus be changed into an electric type, and, with a new style shade on same, made of fabric, etc., it will make a very artistic addition to any parlor or drawing room. This particular lamp was finished up with some dull black Japalac all over. The shade was of pink china silk, artistically ruffled or draped.

Contributed by A. SHUTTE.

DESTROY WIRELESS STATION.

British troops destroyed the important fort and wireless station at Bukoba, on Lake Victoria-Nyasa, German East Africa, on June 30, the Government bureau announced.
A TRIP THROUGH THE COOPER-HEWITT ELECTRIC WORKS.

(Continued from page 147.)

quartz tube it thereby gives a greater amount of light for its size. This lamp is used when longer lamps cannot be used. It is also of special benefit in electro-therapeutical applications.

The latest use of the mercury tube is in wireless telegraphy. Dr. Peter Cooper Hewitt has found out that, when specially built, they develop a high-frequency current when they are excited by an alternating current, and successful results have been obtained on this line. Dr. Hewitt expects to develop his system to such an extent that ordinary persons will be able to handle his wireless telephone apparatus just as the same as the ordinary wire telephone used to-day.

NEW USES FOR ELECTRIC LIGHTS.

Anyone suffering from earache, toothache, neuralgia and possibly other ills will often obtain relief by taking an electric light—on a pulley—to bed with them. Place the bulb on the part affected and it will very often ease the pain. This is a very handy way to get relief when stove fires are all out and the rooms cold.

My son once used an electric fan to cool a kettle of soup he was cooking to keep the soup from boiling over! It worked splendidly, too. It could be used in cooking jelly.

Contributed by MRS. ELLIOT ROSS.

A CHEAP CARBON RHEOSTAT.

The construction of my home-made rheostat is as follows: On a board about 5 inches wide, 1/2 inch in thickness and 8 inches long fasten 8 brass-headed tacks at switch points, about half an inch apart. Or better yet, procure a drill and make holes through the board. Then in each one fasten a binding post from a carbon rod of a dry battery. Now procure a circular-sha ed brass strip as seen in the illustration. Get a switch handle and fasten same in position as indicated. For the resistance procure 8 sticks of carbon either from small flash-light batteries or dry cells. These carbon sticks are fastened by small blocks of wood screwed on board. String the wires under the base and make the other necessary connections with some bell wire.

Contributed by JOHN HENRY.

J. HOWARD MASON

WIRELESS EXPERT.

Green Island, N. Y., has a prodigy in the person of J. Howard Mason, of 20 Whitehall High Street, who is a young specialist in wireless telegraphy and an electrical expert with a brilliant future. He is the son of Edward A. Mason, foreman of the news equipment department of the Delaware and Hudson Company, located in Colonial. A graduate last June of the Whitehall High School, young Mason enters next year to enter the Rensselaer Polytechnic Institute, a candidate for the degree of electrical engineer. The Masons moved to Green Island from Whitehall last May. From the roof of the Mason home to the roof of the nearest house on the south stretches the wireless apparatus, which has attracted considerable attention. The clocks and watches in the Mason household are regulated by government time, received by wireless from Washington every evening.

The receiving end of this wireless system is in the basement of the Mason house, and the receiver itself consists of the telephone receivers which young Mason adapted. They work just as well, he says, as the regular expensive receivers. When young Mason was at Whitehall and had more time to spend on wireless telegraphy, he used to receive messages from as far as Charleston, S. C., and if the apparatus in his own house now works as it did to its full capacity he could, but he would not, because it is against the law, send messages to 100 miles. Young Mason, who this year is working for the Delaware and Hudson Company, spends his evenings in his laboratory, located in the basement, experimenting either with his wireless or with various electrical phenomena.

IMPROVED ELECTRIC WEATHER VANE.

I have seen many descriptions of electric weather vanes, but find fault with most of them. Some work with lamps, others with bells, and still others with magnets, but the common fault is the complexity of wires.

If four points of the compass are indicated, five wires are necessary; eight points are indicated, when eight wires are necessary. Besides this complexity of wires, the cost is quite heavy when wiring a four or six story building for this kind of apparatus.

It seems to me that the use of one or two wires is cheaper and simpler than that of five or nine wires.

In the type of vane illustrated here the movable axle to which the vane is fastened rotates a ball-bearing slider along the spiral of an ordinary rheostat. In the apparatus room a device similar to that shown in Fig. 2 is installed. By connecting a battery of two or three dry cells in series with the rheostat and indicator the

Contributed by WARREN BAKER.

THE ELECTRICAL EXPERIMENTER 151

Room Entrance Recorder With Siphon Pen.

The construction of the apparatus in the illustration is very simple, the Siphon Pen being used instead of the more time- consuming jelly. When a person steps on the carpet in the act of entering the room the two crossed wires are pressed together by the weight of the foot, thus closing the circuit and actuating the sounder. The inker and hammer strike in contact with the paper covering the drum, thus making a mark on same, and thus the record is made.

Different inking devices may be used, and the longer the ink supply lasts the more useful becomes the apparatus from a time-saving aspect.

As depicted in the sketch, the inker is simply a siphon type glass tube drawn out to the size indicated. It retains the ink by atmospheric pressure, there being a partial vacuum at the top of the sealed-up end A. Invert ink tube when filling. A pen point may be drawn out as at B. This principle is used on several commercial recorders. The paper-covered drum C may be a baking powder tin suitably mounted on standard D D. It may be driven by a clock motor, as shown, the drum C being arranged to rotate, say once every 12 hours, etc. Some burglar alarm matting works very well for the circuit closer.

Contributed by JOHN HENRY.

Battery Carbons Make a Useful Rheostat.

Battery Carbons Make a Useful Rheostat.

Contributed by JOHN HENRY.

Battery Carbons Make a Useful Rheostat.

Battery Carbons Make a Useful Rheostat.
A New 100-Watt Wireless Telephone

The arc is operated from a small 600-volt D.C. dynamo, which is also shown in the illustration. This machine is driven by a gasoline engine or electric motor, whichever may be convenient.

Considerable tests have been made in the past few months of this radiophone transmitting set around New York City, and it works very well indeed. It may be said that the principal feature of the arc, and this takes place between the two platinum buttons or electrodes, of small size, which are mounted on two large copper or other good heat-conducting plates. These will be observed mounted on the right-hand side of the transmitter cabinet.

A schematic diagram is given, which shows the general arrangement of these new sets, and in some of the larger sets, supplied for ship service in transmitting undamped radiotelegraphic waves, the arc is started by momentarily short-circuiting the dynamo through a large choke coil and a switch. This new set, however, is claimed to be self-starting as regards the arc, and this can be managed in several ways, such as temporarily reducing the length of the arc gap, etc.

WIRELESS STORM DETECTOR IN CENTRAL STATION.

The most interesting apparatus at the Waterside station of the New York Edison Co. that may appeal to the experimenter is the wireless storm detector shown in the photograph. It is an ordinary radio receiving outfit of the coherer type. The use of this outfit in the station is to inform the chief operator of an approaching electric storm. Any storm that may occur a few miles away is recorded by this detector and transmitted to a sensitive relay which, relay closes a secondary circuit operating a large electric bell. Whenever electric storms approach the day load is increased on account of more lamps being used. It was noted at the Waterside station that during some storms 60,000 kilowatts in five minutes' increase in load occurred.

The other part of the photograph represents the centralized control switchboard of the same powerhouse. The switchboard of any power plant is really its brain; just as the human brain is the control center of the nerves in the body. The various numbers on the switchboard, as seen, indicate the supply feeder numbers. Two buttons are located under each number, so that by pressing one button the operator may supply or cut off power from that particular feeder. The main switches and meters are shown around the periphery. There are also two miniature electric lamps under each number, one red and one green. These lamps are used to call the operator's attention, whether to supply or disconnect any particular feeder. Thus the absolute control of thousands of horsepower is placed in the hands of one or two men.

ANOTHER BOOST.

Says J.R. Rickman, of Greenville, S.C.; "I received my first copy of the Electrical Experimenter, and I think it is the best magazine I know of. It contains useful hints and many other interesting points, and is well worth the sum that you ask for it."

A British officer who was a prisoner on board the German raider "Kronprinz, Eitel Friedrich" reports that although the Germans' wireless outfit was limited to a 900-mile radius, they sent up 8-foot kites connected by a fine wire with their wireless receiver, and in this manner picked up messages from points 2,500 miles away.
NEW 1½-2 KW. RADIOPHONE ARC GENERATOR.

A specially built and efficient type of wireless telephone arc generator of the Electro type is shown in the illustration. This arc measures 24 inches high over all and takes up 12 by 12 inches table space.

The arc is designed to operate on 110, 220 or 400 volts D. C. and may be used for producing high frequency oscillations for radiophone or radiotelegraphic requirements. In the latter case, of course, a tickter or tone wheel, etc., will have to be used at the receiving station in order to pick up the undamped waves as radiated by the arc excited antenna at the transmitting station.

This particular arc has a substantial steel gas jacket on same, measuring 6 inches in diameter by 8 inches in height. This jacket is provided with gas feed pipe, as observed on the right side of the jacket cylinder, and also on safety valves to relieve the sudden rise in pressure within the gas jacket whenever the gas in same is exploded by the action of the arc.

The upper sliding electrode with screw hand feed carries a solid carbon of large size, while the lower or positive electrode is a water-cooled copper affair of ample proportions. This positive copper electrode is placed in a powerful co-axial magnetic blast field, supplied by a substantial electro-magnet coil mounted under the base of the arc, as will be observed from the photograph. A balance weight holds the top lever and also the upper carbon electrode carrier in an elevated position and the carbon is fed downward, as required in operating the arc, by the small feed handle shown. The crosswise lever works freely by means of a sliding boss on the threaded feed rod, so that by striking downward the outer handle on this crosswise lever with the hand the arc can be quickly started and the carbon allowed to rise again quickly. The length of the arc is adjusted by turning the feed screw as required.

Illuminating gas is used in most cases for this type of arc, and this gas has been found shunted across the arc, as usual, to form an oscillatory circuit, and this is linked with the aerial oscillating circuit either conductively, as by using a helix, or inductively, involving the use of an oscillation transformer.

NewScheme For Controlling Radiophone Arc by Varying Stream of Hydrogen Gas.

Novel method for controlling the arc current in wireless telephone transmitting stations. In substance this idea is as follows: As will be seen in the drawings, arc "1" is used to produce high-frequency oscillations. These are transmitted to the aerial...
and ground "A" and "G" as usual, through the oscillation transformer "T." As is well known, it is always a considerable problem to properly impress the voice waves on the high-frequency circuit.

This inventor has very ingeniously arranged a talking mouthpiece and diaphragm so that every movement of the diaphragm will cause a varying amount of hydrogen gas to be injected into the arc chamber through the nozzle "b," as will be observed in the sketch. Most wireless telephone arc generators, of course, employ a gas envelope surrounding the arc proper, and this has a decided effect on the arc. Therefore, by taking advantage of this function of the gas, this inventor has provided a very simple method which seems indeed quite practical for controlling the strength or degree of oscillations produced by the arc generator.

The small vessel with spirit lamp under it at "4" is the apparatus for producing the gas, which then passes through a rubber tube to the gas chamber "5," and so on through another rubber tube to the nozzle "g."

A RADIO SCHEME FOR PROTECTING U. S. COAST LINE

A UNIQUE wireless scheme was recently brought forth by John Hays Hammond, Jr., of wireless torpedo fame, for the protection of the entire United States coast line on both the Pacific and Atlantic shores. This scheme involves the map layout. This sketch will help to convey Mr. Hammond's idea to the reader, and it indeed seems quite feasible.

Moreover, the cost is not anywhere near as excessive as that involved in building a tremendous navy of dreadnoughts and other ships, some of which cost as high as $15,000,000 apiece.

Briefly, it may be said that from the inventor's figures, covering cost of wireless apparatus for each aeroplane, aeroplane sheds or hangars, etc., the total cost of the 41 scouting aeroplanes complete, ready for service in the event of war, would be between $29,500. He suggests, also, that the Chaffee system of wireless telephony would be very well adapted for the work, as it is simple in operation, very compact and light, and also requires no knowledge of the Morse telegraphic code, as does wireless telegraphy.

The Chaffee system also gives a large power in small aerials, is capable of being very sharply tuned and is remarkably cheap from a constructional standpoint.

The general operation of this scheme is to provide, of course, a small wireless station at the center of each zone point along the coast, and this station in communication with the chief military headquarters. It is thus pointed out that the approach of any foreign naval fleets or transports would be perceived a considerable space of time ahead by the aeroplanes and that by transmitting this intelligence wirelessly to the military authorities in charge of the coast, the event is met by a powerful home fleet in an effort to quickly destroy the hostile vessels.

SPARK POTENTIALS.

Probably every "electrical experimenter" has often wondered how great the discharge potential might be between the secondary terminals of his induction coil or the knobs of his static machine when a spark of given length was passing. Unfortunately, no definite voltage can be ascribed to a jump-spark discharge, partly to the reason that the resistance of the air-gap between the electrodes is far from constant, for the material, shape and size of the terminals themselves play an important part, as do also changes in barometric pressure and various rations that may traverse the space containing the spark. Inasmuch as most experimenters do not possess the requisite apparatus for measuring these potential differences directly, they must content themselves with an approximation based on the measurements of others. It is often stated that the potential difference is directly proportional to the length of the spark, and that it increases at the rate of 30,000 volts per centimeter of spark length. This is only approximately true for sparks of less than 2 or 3 millimeters in length, and where the knobs of the electrodes are large compared to the distance between them. As the length of the spark is increased, the increase in the potential difference is much less than that stated above, so that no idea of the voltage producing a spark of great length can be obtained from measurements made with a short one. Again, the length of spark corresponding to any given potential difference will depend upon the nature of the dielectric filling the space through which the discharge is passing.

The accompanying curve, based on data given in Dr. J. A. Fleming's "Radiotelegraphy," will be found to be a reliable and useful one for reference by the average experimenter. The ordinates or vertical distances are the spark voltages which were measured for discharges between polished metal balls 2 cm. in diameter, in air, at 760 mm. barometric pressure, and hence are only really accurate for the same conditions. However, they give the potential approximately for any discharge between metal balls in air through the range covered.

A brief study of this curve will show that for spark lengths up to 50 millimeters, or 2 inches, the potential increase with increasing length is not at all constant. As suggested above, some radiations have a marked effect on the spark length possible with a given potential difference. It is an easy matter to show that sparks will pass much more easily than normally if the gap, and in particular the negative ball, is illuminated by ultra-violet light, such as that from an electric arc light, or contained in ordinary sunlight. The same effect will result if the gap or negative ball is heated. When, in any experimental work, including radiotelegraphy, small quantities of electricity are discharged across a gap, the best results will be obtained with highly polished metal surfaces, or preferably a polished spark in the open air. The accompanying curve will afford a reliable means of determining the potential difference for distances up to 5 centimeters, the distances being taken between the nearest points on the two balls. Contributed by E. H. JOHNSON.
PPARATUS falling under this category are of paramount importance to all wireless workers, amateur and professional alike. We all realize that if we employ a proper relay, then with a given amount of energy much greater distances can be transmitted over, other things being equal, that if the relay is not used. Relays sufficiently sensitive for radio receiver circuits are now made and applied commercially in several different styles. The principal types now prominent or commercially given are the Lieben-Reiss and DeForest gas or ionic stream valves, the Brown electro-magnetic relays, the Telefunken multiple stage tuned microphone relay, and the Parsons compressed air amplifier. There are several other types on the market, but the above represent the principal basic types so far developed, excepting the Fessenden heterodyne.

The DeForest audition detector and amplifier is already familiar to most readers, and full description of his amplifier, with two and three tubes compressed air amplifier, will be gleaned from Fig. 2 where N S is a permanent steel magnet frame, surrounded by two magnetizing coils K, and two 4,000-ohm coils H (same size pole-pieces, etc., as used in receiver). A light spring or reed P carries a soft iron head to be attracted by the pole-pieces. Attached to the moving reed is a rod joined to a delicate microphone filled with carbon granules.

Referring to the diagram of connections in radio circuits we see that terminals A are joined in place of the regular telephones. The magnet coils K are energized by current from a battery of six volts through the primary (17 ohms) of an auto transformer P S. Across the transformer secondary (29 ohms) at G, 3, is connected a 2 M. F. condenser in series with a pair of 120-ohm telephone receivers. Its action will be understood readily now. The varying hertzian currents react through coils H in the relay magnetic circuit balance, and cause its armature reed P and the microphone M to vary their positions. The microphone thus changes the resistance of the circuit, and these are transmitted through the transformer P S and condenser to the head telephones.

This style "G" Brown relay has an intensifying figure of about 20 times received strength of signal. Newer types of intensity 100 times and more, or several may be joined in cascade to give as high a ratio as required. The Telefunken Co. utilizes a unique amplifier indeed, which is outlined at Fig. 3.

It was discovered by Wehnelt that heated metallic oxides emit electrons; so in the Lieben-Reiss relay the heated cathode K gives off a stream of cathode rays or electrons (cathions), which pass through the holes in the grid H connected to the radio circuit through transformer T. The strength of the cathode current charge through H will depend on the potential of H. Hence it will be seen that varying grid (H) potentials are constantly produced by the received hertzian wave signals acting through the circuit and transformer T. As the cathode stream is varied, so will the 220-volt current vary in proportion, and these variations will be heard as strong signals in phones P.

This valve tube acts therefore as a true relay, and it is said that one tube, as here shown, boosts the received currents to 35 times their original amplitude. Of course two or more tubes can be connected in circuit to give any amplification desired.

The electro-magnetic telephone and telegraph relay made by Brown, of England, is widely used for telephone current intensifying, and has been considerably employed for boosting radio signals. Its make-up will be given from Fig. 2 where N S is a permanent steel magnet frame, surrounded by two magnetizing coils K, and two 4,000-ohm coils H (same size pole-pieces, etc., as used in receiver). A light spring or reed P carries a soft iron head to be attracted by the pole-pieces. Attached to the moving reed is a rod joined to a delicate microphone filled with carbon granules.

Referring to the diagram of connections in radio circuits we see that terminals A are joined in place of the regular telephones. The magnet coils K are energized by current from a battery of six volts through the primary (17 ohms) of an auto transformer P S. Across the transformer secondary (29 ohms) at G, 3, is connected a 2 M. F. condenser in series with a pair of 120-ohm telephone receivers. Its action will be understood readily now. The varying hertzian currents react through coils H in the relay magnetic circuit balance, and cause its armature reed P and the microphone M to vary their positions. The microphone thus changes the resistance of the circuit, and these are transmitted through the transformer P S and condenser to the head telephones.

This style "G" Brown relay has an intensifying figure of about 20 times received strength of signal. Newer types of intensity 100 times and more, or several may be joined in cascade to give as high a ratio as required. The Telefunken Co. utilizes a unique amplifier indeed, which is outlined at Fig. 3.

It was discovered by Wehnelt that heated metallic oxides emit electrons; so in the Lieben-Reiss relay the heated cathode K gives off a stream of cathode rays or electrons (cathions), which pass through the holes in the grid H connected to the radio circuit through transformer T. The strength of the cathode current charge through H will depend on the potential of H. Hence it will be seen that varying grid (H) potentials are constantly produced by the received hertzian wave signals acting through the circuit and transformer T. As the cathode stream is varied, so will the 220-volt current vary in proportion, and these variations will be heard as strong signals in phones P.

This valve tube acts therefore as a true relay, and it is said that one tube, as here shown, boosts the received currents to 35 times their original amplitude. Of course two or more tubes can be connected in circuit to give any amplification desired.

The electro-magnetic telephone and telegraph relay made by Brown, of England, is widely used for telephone current intensifying, and has been considerably employed for boosting radio signals. Its make-up will be given from Fig. 2 where N S is a permanent steel magnet frame, surrounded by two magnetizing coils K, and two 4,000-ohm coils H (same size pole-pieces, etc., as used in receiver). A light spring or reed P carries a soft iron head to be attracted by the pole-pieces. Attached to the moving reed is a rod joined to a delicate microphone filled with carbon granules.

Referring to the diagram of connections in radio circuits we see that terminals A are joined in place of the regular telephones. The magnet coils K are energized by current from a battery of six volts through the primary (17 ohms) of an auto transformer P S. Across the transformer secondary (29 ohms) at G, 3, is connected a 2 M. F. condenser in series with a pair of 120-ohm telephone receivers. Its action will be understood readily now. The varying hertzian currents react through coils H in the relay magnetic circuit balance, and cause its armature reed P and the microphone M to vary their positions. The microphone thus changes the resistance of the circuit, and these are transmitted through the transformer P S and condenser to the head telephones.

This style "G" Brown relay has an intensifying figure of about 20 times received strength of signal. Newer types of intensity 100 times and more, or several may be joined in cascade to give as high a ratio as required. The Telefunken Co. utilizes a unique amplifier indeed, which is outlined at Fig. 3.

It was discovered by Wehnelt that heated metallic oxides emit electrons; so in the Lieben-Reiss relay the heated cathode K gives off a stream of cathode rays or electrons (cathions), which pass through the holes in the grid H connected to the radio circuit through transformer T. The strength of the cathode current charge through H will depend on the potential of H. Hence it will be seen that varying grid (H) potentials are constantly produced by the received hertzian wave signals acting through the circuit and transformer T. As the cathode stream is varied, so will the 220-volt current vary in proportion, and these variations will be heard as strong signals in phones P.

This valve tube acts therefore as a true relay, and it is said that one tube, as here shown, boosts the received currents to 35 times their original amplitude. Of course two or more tubes can be connected in circuit to give any amplification desired.

The electro-magnetic telephone and telegraph relay made by Brown, of England, is widely used for telephone current intensifying, and has been considerably employed for boosting radio signals. Its make-up will be given from Fig. 2 where N S is a permanent steel magnet frame, surrounded by two magnetizing coils K, and two 4,000-ohm coils H (same size pole-pieces, etc., as used in receiver). A light spring or reed P carries a soft iron head to be attracted by the pole-pieces. Attached to the moving reed is a rod joined to a delicate microphone filled with carbon granules.

Referring to the diagram of connections in radio circuits we see that terminals A are joined in place of the regular telephones. The magnet coils K are energized by current from a battery of six volts through the primary (17 ohms) of an auto transformer P S. Across the transformer secondary (29 ohms) at G, 3, is connected a 2 M. F. condenser in series with a pair of 120-ohm telephone receivers. Its action will be understood readily now. The varying hertzian currents react through coils H in the relay magnetic circuit balance, and cause its armature reed P and the microphone M to vary their positions. The microphone thus changes the resistance of the circuit, and these are transmitted through the transformer P S and condenser to the head telephones.

This style "G" Brown relay has an intensifying figure of about 20 times received strength of signal. Newer types of intensity 100 times and more, or several may be joined in cascade to give as high a ratio as required. The Telefunken Co. utilizes a unique amplifier indeed, which is outlined at Fig. 3.

It was discovered by Wehnelt that heated metallic oxides emit electrons; so in the Lieben-Reiss relay the heated cathode K gives off a stream of cathode rays or electrons (cathions), which pass through the holes in the grid H connected to the radio circuit through transformer T. The strength of the cathode current charge through H will depend on the potential of H. Hence it will be seen that varying grid (H) potentials are constantly produced by the received hertzian wave signals acting through the circuit and transformer T. As the cathode stream is varied, so will the 220-volt current vary in proportion, and these variations will be heard as strong signals in phones P.

This valve tube acts therefore as a true relay, and it is said that one tube, as here shown, boosts the received currents to 35 times their original amplitude. Of course two or more tubes can be connected in circuit to give any amplification desired.

The electro-magnetic telephone and telegraph relay made by Brown, of England, is widely used for telephone current intensifying, and has been considerably employed for boosting radio signals. Its make-up will be given from Fig. 2 where N S is a permanent steel magnet frame, surrounded by two magnetizing coils K, and two 4,000-ohm coils H (same size pole-pieces, etc., as used in receiver). A light spring or reed P carries a soft iron head to be attracted by the pole-pieces. Attached to the moving reed is a rod joined to a delicate microphone filled with carbon granules.

Referring to the diagram of connections in radio circuits we see that terminals A are joined in place of the regular telephones. The magnet coils K are energized by current from a battery of six volts through the primary (17 ohms) of an auto transformer P S. Across the transformer secondary (29 ohms) at G, 3, is connected a 2 M. F. condenser in series with a pair of 120-ohm telephone receivers. Its action will be understood readily now. The varying hertzian currents react through coils H in the relay magnetic circuit balance, and cause its armature reed P and the microphone M to vary their positions. The microphone thus changes the resistance of the circuit, and these are transmitted through the transformer P S and condenser to the head telephones.

This style "G" Brown relay has an intensifying figure of about 20 times received strength of signal. Newer types of intensity 100 times and more, or several may be joined in cascade to give as high a ratio as required. The Telefunken Co. utilizes a unique amplifier indeed, which is outlined at Fig. 3.
CONTROLLING 2 K.W. WITH COMMON MICROPHONE.

At one of the Spring meetings of the Institute of Radio Engineers, Dr. Irving Langmuir gave a remarkable paper on the "Electron Discharge in High Vacuum Tubes."

These wonderful tubes, having principally tungsten or molybdenum elements as electrodes, were described in the form of high-voltage rectifiers, high-frequency oscillation generators and radio detectors. Different entirely from the gaseous Audion, they have enormously high vacuums (as low as two 10-millionths of an atmosphere), and the electrodes of tungsten are specially treated so as not to give out when heated, any occluded gases whatever, i.e., gases held in the metals by absorption ordinarily. Hence these tubes always give similar results and are under perfect control, the same as the new Coolidge X-ray tube, as they are absolutely (practically) gas free. Dr. Langmuir described two radio-telephonic microphones to boost the efficiency of Wollaston wire or telephone, as not to give out when heated, any occluded gases whatever, i.e., gases held in the metals by absorption ordinarily. Hence these tubes always give similar results and are under perfect control, the same as the new Coolidge X-ray tube, as they are absolutely (practically) gas free. Dr. Langmuir described two radio-telephonic receivers diaphragm or electro-magnetic,
A MAGNETIC CONTROL AERIAL SWITCH.

As most wireless experimenters do not care to have the old style aerial switch on their table, etc., with which to control the aerial and ground connections from transmitting to receiving apparatus, etc., the idea here incorporated will undoubtedly appeal to them. On a wax-imregnated hardwood panel about 1 foot square, or better, a piece of marble, is mounted by means of a central pivot a fiber or hard rubber arm A. This arm may be about ½ by ½-inch stock and 7 to 8 inches long. It carries at either end a contact plate JB of about 1/16-inch copper or brass, having their edges tapered down so that they will readily slip under the sets of contact springs C C C, etc.

These contact springs may be made of phosphor bronze or brass and of about 1/32 by ½-inch stock, mounting the springs CC about 1½ inches apart on hard rubber blocks as indicated in drawings. The connections to this switch will be readily understood by looking closely at the diagram. The pivoted arm is moved from right to left by means of an iron armature. This armature carries a pin which moves in a slot in the fiber arm A. Two solenoid type electro-magnets M1 and M2 serve to pull the iron armature to the right or left, according as the "control" push buttons are depressed.

The electro-magnets M1 and M2 should consist of brass tubes about ½ inside diameter, the walls of which may be wound with about 14 to 16 layers of No. 20 insulated magnet wire. A battery as shown supplies current for this magnetic control circuit arrangement. If properly constructed and by using 6 to 8 dry cells for the battery, etc., this switch will prove a very efficient and attractive addition to any radio station, and it may be placed in a small box with glass front on it; or it may be placed under the operating table, as the builder and user may elect. Contributed by J. MILTON CRANDALL.

RADICAL DUST-PROOF DESIGN FOR DETECTOR.

As is well known, radio detectors of the mineral type rapidly lose their sensitiveness when the minerals become covered with dust. A great many, of course, endeavor to overcome this trouble by covering the detector with a glass bell or by other means. We believe the detector here described which should prove efficient, and as per sketch the mineral cups are placed on a brass bar or disc A supported by an adjustable threaded rod B. A "cat-whisker" wire contact point of the usual type may be placed on a brass spring C, which has its tension adjustable by means of a threaded rod and knob D. At first this may seem quite impracticable, but on second thought you will see that this is just as easy to adjust as if the mineral cups were facing upward, as in most detectors. This is because you cannot (naturally) "see" the sensitive spot on the mineral, and it must be found, of course, by placing the "cat-whisker" contact point on the various parts of same until the most sensitive spot is ascertained, as manifested by the loudest buzzer-test signal heard in the telephone receivers.

Contributed by CARL HENLEIN.

ANTI-HUM STUNT FOR RADIO RECEIVERS.

A great many amateurs are troubled by humming in the wireless receivers due to induction from neighboring electric light wires. The following directions will, if carried out, nearly always eliminate the said hum:

The first method, applying to receivers with metal shells and headbands (not covered with rubber or other insulating compound), consists of merely connecting the tip with copper wire to the shell of the receiver or headband as shown in Fig. 1.

In instances where the receivers and headbands are covered with rubber or other insulating compound it is necessary to wrap a strip of foil around the tip and then paste it down. Then bring it across and paste it there in such a way that it will touch the ear when the receivers are on the head. This will allow the induced current to pass through the body (see Fig. 2). Contributed by URBAN McMILLER.

BUZZER-TEST RESONATOR.

I have been using an arrangement called a resonator in my wireless-receiving buzzer circuit. It is such a great help that I thought I would send you the description to publish in The Electrical Experimenter.

It is very simple. First, get a 7-inch piece of wood, well seasoned and about ¾ inches in diameter. Shellac or varnish this well. Now wind No. 28 enamelled wire on this core for about 6 inches. Fasten the ends of the wires by driving in a tack or short nail at each end, and wind the wire around it a few times. The coil can then be mounted on two square pieces of seasoned hardwood, which will increase the looks of the apparatus. The coil is connected in series with the regular buzzer-test wire, which leads to the detector. I find that it makes adjustment 50 per cent easier, especially with the Crystal detector. Contributed by DONALD B. ROCKWELL.

A CHEAP BUT EFFICIENT CARBORUNDUM DETECTOR.

It will be necessary to purchase one Adjustable Zinc spark gap to make this detector.

Remove the two zinc points and substitute two pieces brass, ¾" square and 1/16" thick, bending over the four corners as per diagram on both pieces. Put a hole in the center of each, and thread for an 8/32 screw. Screw the pieces on the small threaded ends left after removing the zinc points and rivet the ends that protrude thru the brass squares. Purchase a piece of carborundum and place it between the brass points, then tighten down the hard rubber knob.

The detector is now ready for use. One

ANTI-HUM PREVENTION IN WIRELESS 'PHONES.

Carborundum Detector Made from Spark Gap.

of the characteristics is that when you tighten the thumb screw, the brass points do not move out of alignment. Submitted by H. J. ANDREWS.
CLEVER MINERAL DETECTOR.

The materials needed for the construction of this detector are as follows:
Wooden or hard-rubber base 5 inches long, 2½ inches wide and ⅜ inch thick

(No. 12, referring to diagram): spark-plug ball and socket connector with hard-rubber base (10 and 15); spark-plug ball and socket connector with short brass base (10 and 11); threaded brass rod ⅜ inch in diameter by 3 inches long (6); telegraph key knob (1); clip off small fuse block (9); four binding posts (11, 11); two small washers (4); three small nuts to fit threaded rod (2, 3 and 5); small bolt and nut (13); also two thin bolts to hold uprights to base (not shown in drawing). The four binding posts are mounted, two in front and two in the back, the wire connections being made from the back one on the right-hand side in the drawing to the front one; then to the bolt which holds uprights in place, making contact with brass part of ball and socket joint, the same being done on the other side. Connect the 'phones to the front binding posts. Aerial and ground to the other two.

The "cat whisker" is made fast by passing one end of it through a small hole which is drilled in the brass rod, making the wire fast by soldering it in place. By unscrewing the two nuts (2 and 5) you may move the rod to any desired position. The spark-plug ball and socket connector are made by the Connecticut Co., and may be obtained in any auto-supply store. Contributed by WILLIAM DAVIS HAWK.

DUSTLESS DETECTORS.

Dust gathering on detector crystals necessitates repeated washings if best results are desired, and a good plan for keeping the dust out, still allowing observation, is shown in the sketch. A wine glass, preferably of thin stock, has its stem broken off as near the bowl as is safe and the rest of the stem is carefully ground off on an emery wheel or grindstone until the bowl has a smooth appearance. It may then be smoothed up on an oil stone. The dimensions of the detector itself must conform with the inside of the glass, and for that reason no dimensions are here given. Contributed by FREDK J. SCHLINK.

MAKING TUBES FOR TUNING COILS.

Here is an easy way to construct a very serviceable tube. The tube's great advantage is its lightness.

Take a strip of cardboard several feet long and a foot wide. The width may, of course, be varied if a longer or shorter core is desired. Put the piece of cardboard to soak in water till it is very soft and limp.

Next take a rolling pin or some other cylindrical object and wind the wet cardboard on the cylinder, gluing or shellacking one layer of cardboard to another. When you have wound on enough cardboard to give you the thickness you want, bind the cardboard with heavy string and put the bundle into a warm oven. In a few hours take the pin out, and the cardboard when taken off will be so stiff that it will not go in the wire at any size. NORMAN HALL.

A SELF-EXCITING GEISSLER TUBE.

When the mercury in a barometer tube is agitated the friction of the mercury on the glass generates electricity and produces effects which are visible in the dark.

The self-exciting vacuum tube herewith shown operates in the same manner. The electrical effect is produced by the friction of mercury on the inner surface of the glass vacuum tube as the tube is agitated or shaken. The full effect is realized only when the mercury is allowed to flow quickly from one end of the tube to the other, but any agitation of mercury in the tube produces some phosphorescent light. This principle is utilized as an auxiliary signal in bell buoys and whistling buoys.

GERMANS' TREBLE WIRELESS PLANT.

The big Telefunken wireless station at Sayville, L. I., the plant through which the German Government transmits most of its official communications to the United States, and through which the German Embassy communicates with Berlin, has been quietly, almost over night, so to speak, increased from a 35 K. W. plant into one of 100 K. W. Three 500-foot towers have been added to the aerial system.

The transformation of the Sayville plant into one of the most powerful of the transatlantic communicating stations in this part of the world has been carried on so quietly that very few persons outside of the radio officials of the Department of Commerce and a few naval officials connected with the wireless naval service have known what was being done. The new and larger equipment was shipped from Germany via Rotterdam.

A CHEAP TURNBuckle.

The accompanying diagram (Fig. 1) shows a turnbuckle which can be readily made by everyone. The pieces A and B are of strip brass or iron about ⅛ inch thick and about ⅜ inch wide. At C is an iron bolt about 3 inches long with a round head. The turnbuckle is readily tightened with a screwdriver.

At sketch (Fig. 2) is depicted another easily made and serviceable type of strain turnbuckle. It is made of preferably nothing smaller than a No. 14-30 threaded steel rod, one-half the rod being threaded left-handed and the other half right-handed. The steel nuts N are threaded right-handed and left-handed accordingly, and when the center handle, which is pinned to the threaded rod, is revolved by hand it causes the nuts N to recede or approach each other.

AN ALLOY FOR RADIO CRYSTALS.

Dissolve as much tinfoil (not lead foil) as possible in 5 cents worth of mercury or quicksilver. Work this mass with the fingers until no more tinfoil can be used. Place the mass in a small cup and hold the cup over an alcohol flame until the mass is the shape of pilers until the mixture melts. Pour it onto a paper and let it cool. It may then be broken into pieces and kept indefinitely. This alloy melts easily and the crystals can be mounted in it. It is quite hard when cold.—Contributed by LLOYD STRATTON.

A SIMPLE GALENA DETECTOR.

The following is a description of a galena detector which I have made and found to be very sensitive. The base was a suitable telegraph strap key. The key lever was taken off and a helix clip cut off and drilled and put in its place. The contact screw was then removed and a binding post put in its place under which was placed a battery burr, which served to raise the binding post, and also acted as a lock nut so that the binding post could turn. A small brass rod was placed through the binding post and on one end was mounted a suitable hard rubber handle and to the other end was soldered a coiled piece of copper wire, also the rod was bent as shown in the drawing.

Contributed by HAROLD PRUDEN.
HOW-TO-MAKE-IT DEPARTMENT

This department will award the following monthly prizes: FIRST PRIZE $3.00; SECOND PRIZE $2.00; THIRD PRIZE $1.00.
The idea of this department is to accomplish new things with old apparatus or old material, and for the most useful, practical and original idea submitted to the Editors of this department, a monthly series of prizes will be awarded. For the best ideas submitted a prize of $1.00 will be given; for the second best idea a $2.00 prize, and for the third best a prize of $1.00. The article need not be very elaborate, and rough sketches are sufficient. We will make the mechanical drawings.

FIRST PRIZE $3.00.
FOOT-OPERATED PUSH-BUTTON FOR TEST BUZZER.
It is often found inconvenient when adjusting a crystal detector such as that of the galena type to push with one hand the button or switch controlling the buzzer circuit. In order to allow the freedom of both hands for adjusting the apparatus yet enable one to operate the buzzer when desired, a switch arrangement that may be operated by the pressure of the foot is illustrated in the accompanying drawing. This device consists of a woolen block A, measuring 2 by 1½ by 2 inches; another block B, measuring 2½ by ¼ by 2 inches, which is used for the base; a metal pin C, which is threaded at one end and fitted with the composition knob E; a spring on the pin C shown at K; a metal strip F and the binding posts G. The construction of the push-button can readily be followed by studying the drawing.
Contributed by THEODORE GATHMANN.

OPEN DOOR BELL ALARM.
Below is a sketch of a device which I think a number of the readers of the Electric Experimenter would be interested in. In my house one of our cellar doors is in the pantry, as illustrated. By carelessness or forgetfulness the cellar door was left open three times, each time a person falling into the cellar. This is what brought about my idea of this little device of safety first.

Here is how it works: When the cellar door C is left open spring B comes in contact with the nail D, thus connecting that end of the line. When the pantry door H is opened, the knife G passes between the contact spring points at F, thus completing the circuit and ringing the bell A. This gives ample warning of the danger. Contributed by A READER.

SECOND PRIZE $2.00.
CLOSED CIRCUIT BURGLAR ALARM.
Given two dry cells, two gravity cells, some wire and the necessary tools; connect the two wires from the gravity battery to the magnets (marked "M" in the drawing). Connect the wire from the dry battery to the regular binding post of the bell. When the gravity cell circuit is broken it allows the striker "S" to rebound and touch the contact screw of the bell, which starts it vibrating in the usual manner. I have found this very efficient and at the same time the cheapest and simplest closed circuit burglar alarm on the market.
Contributed by L. A. MADISON.

A HANDY POLARITY INDICATOR.
Mount a bottle in a block of wood as the cut shows. Arrange two copper wires to dip in the solution of salt water or water to which a slight amount of sulfuric acid has been added. Mount two binding posts on the wooden block. When current is connected to the binding posts the negative wire will indicate itself by the greater formation of gas bubbles around it. Contributed by CHARLES ROSENTHAL.

INSTRUMENT LACQUER.
A very good lacquer can be made by dissolving some alum in banana oil. With a small brush paint over the instrument with lacquer and let it dry thoroughly before handling.

Simple Electric Motor Having But One Electro-magnet.
make the other connection to the commutator. I put some small pieces of wire in the screw holes so that they pressed against the shaft.
The current coming from the battery passes through the electro-magnet, upright, axle, commutator, the brush and then back to the battery. JOHN B. MOORE.

FOOT - OPERATED

The construction of the foot operated bell is shown at C. When the foot is placed against the iron projection, the bell is activated, provided the proper wiring has been done. The bell can be made of any size, as seen in sketch.

Simple Closed Circuit Burglar Alarm.

Unique Mounting for Spark Coils on Table.

A very good lacquer can be made by dissolving some alum in banana oil. With a small brush paint over the instrument with lacquer and let it dry thoroughly before handling.

A HANDY POLARITY INDICATOR.
Mount a bottle in a block of wood as the cut shows. Arrange two copper wires to dip in the solution of salt water or water to which a slight amount of sulfuric acid has been added. Mount two binding posts on the wooden block. When current is connected to the binding posts the negative wire will indicate itself by the greater formation of gas bubbles around it. Contributed by CHARLES ROSENTHAL.

INSTRUMENT LACQUER.
A very good lacquer can be made by dissolving some alum in banana oil. With a small brush paint over the instrument with lacquer and let it dry thoroughly before handling.

the circuit and ringing the bell A. This gives ample warning of the danger. Contributed by A READER.

Simple Electric Motor Having But One Electro-magnet.
make the other connection to the commutator. I put some small pieces of wire in the screw holes so that they pressed against the shaft.
The current coming from the battery passes through the electro-magnet, upright, axle, commutator, the brush and then back to the battery. JOHN B. MOORE.

www.americanradiohistory.com
BRUSH HOLDERS FOR SMALL MOTORS.

The illustration below shows how very efficient brush holders for small electric motors are made. To begin with, a small piece of fiber or hard rubber tubing is procured and a round carbon brush slides inside the tube; pressure being exerted behind the brush by a spiral spring, as perceived.

Easily Made Brush Holders for Electric Motors.

Contact is made from the brush through the spring on to a brass terminal connecting plug, as indicated. When the brush holder tube is clamped in the machine against the commutator there should be a space of a quarter or less space between the end of the insulated tube or brush holder and the commutator.

To remove the brushes for renewals, etc., when the machine is assembled and when it is not desirable to remove the whole brush holder for the purpose, the brass terminal plug is easily removed by taking out the brass pin shown. The spring pressure exerted between the terminal plug and the brush will always hold the pin in place, but in some cases a small cotter pin is utilized, so that it will not work out, due to vibration.

HANDY ATTACHMENT FOR DRILLING WITH ELECTRIC MOTOR.

Those having a small electric motor at hand can very easily rig up a handy drilling or boring attachment, as shown in the illustration herewith.

The motor is simply mounted on a hard wood or iron base and the shaft is threaded to hold a small drill chuck, which can be purchased at any machine or supply house at small cost.

Drilling, Boring and Turning Attachment for Small Motors.

At the other end of the base is arranged a hard wood or iron frame having two uprights on it at AA. These are drilled so as to pass around a sliding bar B. This bar is moved back and forth by handle C pivoted at D, and by a slot at E in which a pin fastened on the sliding bar B travels, as it is moved back and forth.

To those desiring to use hand turning tools, etc., a simple brass or iron support F will prove useful. This is held by a heavy machine screw wing-nut, as perceived, so that it may be swung out of the way when not in use. The sliding bar B is used to press the work against the drill, similar to the free drill in a lathe, and in fact a very good lathe for light work can be made in this way by placing a conical center in the spindle B and gripping the work in the chuck, or a second center may be formed on the end of the motor shaft and the work held by a "dog" clamp arrangement. A speed controller is best used in series with the motor, thus giving a wide range of usefulness to this idea.

Contributed by E. L. H.

STATIC MACHINE PLATES.

Many experimenters who wish to build a Wimshurst static machine find it difficult to obtain the necessary plates. Phonograph plates are very suitable for this purpose. Use records that have a song on one side. The tinfoil sectors can be mounted on the smooth side of the record plate with thin shellac, glue or beeswax.

Contributed by S. C. A.

MAKING SMALL LAMP SOCKETS.

The sketch presented is a socket for a miniature candelabra, or single point Editor swan base lamp. It is very simple. The drawing, I think, will explain it all.

Contributed by ROBERT McCREADY.

Arc Lamp: A small electric lamp which archaeologists agree was invented by Noah and used on his hydroplane "The Ark" (from which it takes its name) before the new lighting regulations were enforced.

A NOVEL WINDOW BURGLAR ALARM.

Articles: Two switches (as shown), three cells of battery, some wire, a common hook. It does not require a long description, as the sketch clearly explains itself. Fasten switch on one side of window, as shown. Screw in your hook right under the sash lock of your window. Fasten bell and switch for same at some convenient place in another room.

The idea of this arrangement is as follows: Suppose you set the alarm. You fasten a fine silk thread, or cotton string, from the handle of the switch, string it through the hook you have screwed right under the lock of window and tighten it on another small tack on the right hand side of the window. The intruder comes along, gently lifts the window, the gentle raising slowly moves the handle of the switch to the right (see sketch) to the switch point. A little tack in the switch prevents the handle of the switch from moving further. The burglar keeps on lifting. The thin silk string is broken by the pressure and the circuit between the alarm bell in your room is closed until you throw back your switch.

Contributed by KENNETH SUTTON.
INK RECIPES.

(1) Black Writing Ink.—Take 6 ounces of the best gallnuts and pound them in a mortar or otherwise take 4 ounces of logwood and let it be cut or ground into very small pieces; these, mixed with 4 quarts of rain water, must be boiled together for half an hour. Then take 2 ounces of copperas made into a powder, and 3 ounces of gum arabic; let these be also mixed and strained through a linen cloth. After this mixture has stood a few hours it may be written with.

(2) Green Writing Ink.—Dissolve 1 ounce of Hoffman's Permanent Malachite Green in 1 gallon of hot water; add a little gall and alcohol. Reduce with cold water to the required shade.

(3) Sympathetic Ink.—An ordinary solution of gum camphor in whiskey is said to make a permanent and excellent sympathetic ink. The writing must be done quickly, as the first letters of a word have disappeared by the time the last are written. Dipping the paper in water brings it out distinctly, and it becomes invisible again when the paper is dried. It can be brought out repeatedly without affecting its vividness.

Contributed by CHARISS ROSENTHAL.

A HOME-MADE BLOW TORCH.

A good blow torch for the purpose of soldering wire joints and numerous other things may be made as follows: Obtain an oil can similar to the one shown in the sketch with a rather long spout. Cut the spout off about half an inch from the top of the can. Next curve it as shown and attach to the larger end a small rubber tubing about 1½ feet long. Solder the spout to the side of the can and pinch this small end tightly in order to give a better draft. Place a wick in the can and some alcohol. When using, light the wick and blow in the tube, which will produce a very hot flame.

Contributed by WENDELL L. CARLSON.

SOME MORE ELECTRICAL DEFINITIONS.

Incandescent bulb: An instrument which burns up your money and makes "light" of it.

Fuse: Something which works steadily most of the time, but which, like other human beings, will have a blow-out once in a while.

Switch: Something which can be put on and off, such as hair, etc.

Mage to: Machinist generates current.
ELECTRICAL "SOUNDING" FOR SHIPS.

Believing that depth of water could be measured by mechanical and electrical means from shipboard, a series of experiments were recently conducted from a boat on the Ohio River. The principle adopted and on which the experiments were based was not unlike that of submarine signaling, viz., if a sound could be produced on the bottom of the sea such as that caused by dragging a weight across a floor and then transmitted electrically to a telephone receiver at the ear of the pilot on shipboard, a series of experiments would give warning of the vessel's approach into shallow water. With proper charts, giving speed of boat in knots, length of cable let out and depth of water in feet, it is quite practical to utilize this electrical "sounding" method, which has many advantages over the older method of lowering a weight until it reaches the bottom. A boat can move rapidly and readings taken just as the same, says H. R. Gilson in Electrical Review and Western Electrician.

AN IMPROVEMENT IN ELECTRIC BELLS.

Considering their importance, electric bells have received singularly little attention, and the design remains substantially as when originally invented. The operation of the ordinary bell leaves much to be desired both from the electrical, mechanical and user's point of view. A properly designed electric bell should have a hammer arranged to swing through an appreciable arc, while the contact should be made when the hammer is right back and broken only when the armature has come against the pole-pieces. A bell on these lines appears in the illustration. The armature is hinged at H, while the hammer is pivoted at P, the electric contact being at C. The armature rests against the stop S at the beginning of the stroke, while the hammer falls far enough backwards to make the contact C. Current flows through C when the circuit is completed, thereby exciting the magnets which draw up the armature with a jerk, so that the hammer is thrown against the gong and the contact C is also broken. The armature then falls back on to the stop S, and remains there until the hammer falls back and remakes the circuit when the cycle is repeated. The stop S is made springy, which materially increases the force of the blows. Owing to the fact that the contact is made when the armature is right back and not broken until it is against the poles, this form of electric bell is very efficient, while the slow and rhythmic stroke permits the use of musical gongs which ring out with pleasant tones. Laminated magnets give an appreciably sharper hammer blow, and should be used for large bells. The contacts may be made of nickel or similar metal, and are self-cleaning if the metal is thin enough to insure that the pressure is concentrated on a small area where they meet.—The Electrician, London.

ANNOUNCEMENT

The beautiful art supplement with which we present our readers to-day is the little surprise of which we spoke in our June issue.

While we feel proud of our August number, the September issue will eclipse it by far. To begin with, THE MAGAZINE WILL BE ENLARGED to 8½ x 11¼, the fourth enlargement in five months. Many important new features will be found, all after your own heart. Yes, there will, of course, be another supplement, one over which our "How to make it fiends" will go wild! Then there will be a wonderful illustrated article on Radium, and last, but not least, you will find a rattling good short story in this number, which we know you won't pass up.

If you are not a subscriber, order the next number now. A Fall issue will fail to-day, so your dealer won't tell you, "sold out." Also before we close, remember:

EXPECT MUCH VOLTS FOR WOMEN.

There may be some among our readers to whom the newspaper item about Police- man Ohm being put in a cell means very little. As for ourselves we merely inquire, "Watt for?" and whether he made much resistance. If so, he probably got hot about it. His attorney wanted him discharged, so he could light out. He lost his star connection. Somebody blew on him. Poor man.

EFFECT OF HEAT ON MAGNETISM.

An interesting experiment, depending for its action on the fact that iron when heated ceases to be magnetic, is here described. A pointed disc of sheet iron is suspended by a thread and is placed with the point against the magnet, which holds it there by electrical attraction. The disc is then heated under the point, which when heated strongly is no longer attracted by the magnet, and therefore swings away. By the time that it has completed its swing it has cooled sufficiently to be attracted again by the magnet.

The iron, becoming reheated, swings away again and the cycle of events is repeated. The iron disc should be large enough to cool by radiation sufficiently (during the swing) to become magnetic again, says a writer in Model Engineer.
LATEST PATENTS

Telephonic Relay or Amplifier. (No. 1,140,316; issued to Henry C. Edinghausen.)

A rather novel form of telephone relay or amplifier arrangement, comprising, as shown, a soundproof case, 6, containing in the zinc, protecting thereby and prolonging the life of the zinc, making it a more active element and generating a higher electromotive force in several other improvements are covered in the patent, such as improved container, insulation and non-luckling features for same.

A Magnetic Oscillator Generator. (No. 1,142,196; issued to Alfred H. Cohen.)

A magnetically operated oscillator generator, intended to be used in a wireless transmitting circuit for producing radio-frequency oscillations directly. The main circuit current is broken in an insulating bath "A" in a container 2. The telephone cord 6 is inserted into a peculiar magnetic system 14 and 17. The upper electrode 6 is joined to an iron lifting rod 8. The electromagnets 4 fit act on this rod and an instant afterward the upper set of electromagnets 17 attract an iron armature 19 on the movable magnet frame 13. By this compound magnetic action the patient's claims to be able to synchronize and properly set up a set of these, interrupters operating in series, etc., so that they will work to a maximum electromotive force in several respects.

They are intended to be hooked up directly across the telephone circuit, and to have a capacity and inductance shunted across the gaps here described.

Storage Battery Plate. (No. 1,131,251; issued to Joseph O. Lathrop.)

A novel method of improving storage battery plates and having the active element of same from disintegrating or peeling off. This patent covers a process for coating the outside of the battery plate 1 with a porous, enamel-like coating 4, which, it is claimed, does not lower the efficiency of the battery in any way or under usage, as proved by actual tests. A method is also mentioned for improving this by having the enamel coating supported on a fiber web. It is claimed that this patent absolutely prevents the active element of the plate from falling out or becoming damaged otherwise, etc. (F. Editor.)

A Magnetic Brad-Set. (No. 1,141,073; issued to Charles L. Parks.)

A new and improved method of fastening, wherein a 90° angle is cut on a piece of metal, etc., it is then bent over and bent to a point, thereby forming a brad, and then it is driven with a hammer to the respective distance desired, and is thereby driven into the material.

Improved Lamp Socket. (No. 1,140,198; issued to Charles L. Parks.)

The inventor of this electric lamp socket has endeavored to make it as simple as possible from the manufacturing point of view. The shell "11" is made from one piece of stamped metal and, as the dotted lines shown, the interior insulation plug "14" carrying the lamp base contacts "10, 11" slides forward where proper contact is made. The new wires "16" are removed. The plug "14" is made from the shell "11," the wires being enclosed in a rubber "19." The screws "10" hold this ring in place and also secure lamp shades or reflectors. A promising patent.

Electric Soldering Iron. (No. 1,142,306; issued to John G. Clemons.)

A distinctly novel form of electric soldering iron, quite different from the usual form we are familiar with. This device is arranged to pass electric current through one of its electrodes 11, through the wire joint to be soldered and thence back to the second electrode 12. The patentee mentions that it is best to make these electrodes 11 and 12 of some high resistance material, such as German silver, etc., so as to cause as much heat as possible to be generated by the passage of the current through these parts. Also, no solder is used on the "iron" proper, as is the case with ordinary soldering irons.

Telephone Cord Coiling Device. (No. 1,140,930; issued to Loran K. Haynes.)

We are all more or less familiar with the troublesome telephone cord which, it is forever getting tangled up with something or other. This inventor claims the cord to automatically resume a spiral coil form, very compact and neat, as the illustration shows. A steel wire 10, specially coiled, for instance, is suggested to be secured on the telephone cord "A," causing the action just explained to take place automatically when the receiver "B" is hung up.

Improved Dry Battery. (No. 1,140,926; issued to William L. F. Wight.)

Concerns improvement in the manufacture of dry cells, in which the object is shown of providing a battery device having improved means whereby the life of same may be materially lengthened. Further the invention relates to the use therein of mercury and aluminum, which are decomposed by chemical affinity and the metallic atoms electrolytically deposited on the zinc, protecting thereby and prolonging the life of the zinc, making it a more active element and generating a higher electromotive force in several other improvements are covered in the patent, such as improved container, insulation and non-luckling features for same.

Continued on page 165...
AMATEUR RADIO STATION CONTEST.
Monthly Prize, $3.00.
This month's prize winner.

JOHN J. GROSSMAN'S WIRELESS STATION
Herewith is photo of my wireless station, which I should like to appear in your valuable magazine.

This station made some records in the past winter, having worked with the University of North Dakota, 220 miles; with Northampton, Mass., and 8 O. Z. Kane, Pa., several times. We are a sure link in the American Radio Relay League and the Central Radio Association, as we have two operators and are "in" right along. An Audion set is used for reception.

Tifft, O. JOHN J. GROSSMAN.

E. C. WAIDLER'S LABORATORY
Herewith is picture of my wireless outfit. It consists of a 1/2-K.W. transformer with meters, regulators and an air-cooled gap. The receiving set is composed of a Ferron and Perikon detector, two fixed condensers and a Blitzen variable condenser, a loading inductance of 3,000 meters' capacity and a receiving transformer of my own make.

My aerial is composed of six copper-clad wires on 12-foot spreaders, and is 75 feet long by 80 feet high. I get Arlington every night and sometimes I hear Key West and Colon. I also use a Geissler tube for a radiation tester and it works very satisfactorily. I think your magazine is excellent.

East Toledo, O.

E. C. WAIDLER.

BEECH'S WIRELESS INSTALLATION
Herewith is presented the radio station of Guy Beech, of Clarinda, Iowa. The sending set comprises the following instruments:

One-quarter-inch Bulldog spark coil, key, home-made condenser, helix and spark gap. The receiving outfit is composed of a 75-ohm receiver galena detector, "junior" fixed condenser and tuner.

Good results are obtained with this set and Arlington and (1. W. Co.) Illinois Watch Co. can be easily heard.

Clarinda, Iowa. GUY BEECH.

HOOPER WIRELESS PLANT
The receiving set of my wireless outfit consists of a loose coiler made from a design given in Modern Electrics. A variable condenser, Brandes' navy 'phones loading coil and Perikon detector, from crystals furnished by Electro Importing Co. The sending set is a 1/4 K.W. closed core transformer, with glass plate condenser, helix, key and spark gap. I use a sending wave of 100 meters. I notice only about two out of ten amateurs seem to have a Government license; I would like to see all the amateurs get a license, it is so easy to procure. They only try you in one wireless code, and very slow. Also the questions asked most any amateur knows. My call is "2 L. Y."

RAYMOND HOOPER.

Newark, N. J.

To find the approximate wave length of radio aerials multiply the total length of aerial in meters by 4.5.

ANTONE SYLVIA'S STATION
I give you herewith a photograph of my wireless station for publication in your magazine. The station comprises the following:

Two loading coils, a loose coupler, one sliding plate variable and a Clapp Eastham rotary variable, two fixed condensers, one silicon detector and one Perikon, one pair of Brandes' 'phones, transatlantic type, and also one pair of Brandes' navy type. The cabinet set was designed and built by myself. I use an inside antenna and get good results.

Sending outfit includes Mesco 1-inch spark coil, spark gap, a Clapp Eastham 1/4 K.W. helix, one section of Murdock condenser and Mesco key mounted on a marble base. The station also has a switchboard, seen at the right, which contains all the necessary switches to operate the station.

The microphone seen in the picture is used for wireless telephone experiments and, using the inductive system, I have talked about four blocks away, or 518 feet, to be more exact.

I have read your magazine and find it valuable for radio experimenters.

New Bedford, Mass.

RADIO SET OF F. F. DENNIS.
Below is photo of myself and my radio receiving and sending apparatus. My aerial is 135 feet long and 90 feet high, and consists of five wires 2 feet apart. My receiving apparatus consists of one double-slide tuning coil, one E. I. Co. single-slide tuning coil, one fixed condenser, a galena detector and one pair of Brandes' 2,000-ohm super phone.

My sending apparatus is composed of a 1-inch spark coil, one home-made condenser, Mesco key, large home-made helix, zinc spark gap, 10 dry cells and a three-pole double-throw switch. The receiving range is about 600 miles at night.

I would be pleased to talk to any amateur within by range, or will be glad to hear from anyone. My call is Z J T.

Fair Haven, N. J. FRED F. DENNIS.
PHONEY PATENT OFFIZZ

A. WALL-EYED PIKE, OF MOMBASHA, N. Y.

FISHERMAN'S DELIGHT

Specification of Phoney Patent
Application junked December the onc't, 1899½

No. 41144½ (For Luck)

To Those Whom It May Not Concern:

I, Wall-Eyed Pike (note the hyphen), of the Principality of Mombasha, N. Y., have invented means whereby the sadly neglected fisherman has come into a heaven of his own, by virtue of my marvelous invention, which is described hereinafter, henceforth and ever after, as the "Fisher man's Delight."

Just why the isleman, on whom we all depend at times as food, has been so sadly neglected by the numerous inventors of our marvelous age is hard to reason out, and therefore I have devoted my best energies in perfecting an invention, so devised that when the tired fisherman is at home he can have all the peaceful slumber he cares to indulge in, without having to arise early in the morning, or in fact any time in the morning, to catch a mess of fish for dinner.

In further description of this famous scheme, the reader is referred to the hieroglyphical sketch, and the various parts are numbered to correspond with inscription given below: To begin with, the basic part of this wonderful invention, albeit, a model on the right.

The "Fisher man's Delight" Patent Insures Plenty of Sleep for That Individual. Does Everything but Eat the Fish.

Practically installed, that all of the foregoing operations will take place in the forenoon and at dinner time the alarm clock 22 will then operate, and should the fisherman not hear the ordinary bell, it is arranged to close a circuit through a 12-inch fire alarm gong 23.

A somewhat more gentle awakening device may be provided, if preferred, by utilizing a talking machine 24, electrically actuated or started from a circuit such as that connected to the gong 23. Some folks prefer to be awakened according to the latest scientific theories, or by music; and so a musical record may be placed on the machine, or if the announcement, "Dinner Ready!" is preferred, then a specially prepared record may be made with a continuous rapid-fire string of such words on it.

In testimony whereof I have hereunto appended my name this first day of December, 1899½.

A. WALL-EYED PIKE.

By his attorney:

S. W. Healy, Troy, N. Y.

Witnesses:

A. DILL PICKLEFRESSER,

I. M. A. HELGAMITE,

A. BLACK BASS.

Chappie—"Electricity is wonderful. I tell you it weakly makes one think."

Miss Girling—"Yes; why don't you get a battery?"
RADIO LAW AND WAVE LENGTH.

(294) C. Howard E—, Sandwich, Mass., asks several questions relative to the U. S. radio law.

A. 1. We are pleased to advise you as follows regarding your radio queries:

The matter of a wireless license, as required by the U. S. radio law now in effect, can be explained in detail in papers procurable from your local radio inspector; address care of Custom House, Boston, Mass.

This law requires that where an amateur is to transmit wireless messages his radiated wave length shall not exceed 200 meters in value.

Also with regard to the latest rulings with respect to the U. S. radio law and experimental radio-transmitting stations, would say that where the amateur radio-transmitting station is located so far inside the State border line that it cannot transmit over the border line no Government license is required, ordinarily. However, if this station can interfere with the transmission and reception of commercial or Government stations, the border line is crossed, and State border line, then the amateur transmitting plant must have a license, and this decision has been handed down recently in several court cases.

STORAGE BATTERIES.

(205) William A. Collins, Philadelphia, Pa., writes us regarding storage battery capacity, lamps to be used, etc.

A. 1. The usual discharge rate for 6-volt 60-ampere-hour storage battery is about eight hours, or in other words, about seven to eight amperes for that period.

As the volts times the amperes give the watt capacity in effect, of course, figure out how many lamps you can operate of any type you are interested in, figuring 1 watt per candlepower for the battery-type tungsten lamps.

LIGHTNING RODS vs. WIRELESS.

(296) Clifford Pinkerton, Spencer, S. D., wishes to know whether lightning rods on a building will affect a radio antenna on the same building.

A. 1. Lightning rods, of course, will have some effect on wireless aerials, as they tend to dissipate some energy in the earth.

However, they are generally of relatively small area as compared to the large metallic spread of the antenna, so that they do not have such a great effect as might be imagined, and the result is to either indoor or outdoor aerials. Also the aerial proper should be placed as far as possible from such conductors.

SPARK GAP QUERIES.

(297) C. D. Blair, Richmond, Va., wants data on best form of spark gap to be used on radio transmitter, employing electrolytic interrupter, so as to give the highest pitch possible.

1. You can improve the tone or pitch of your spark by using a quenched gap. It is not usually beneficial to use a rotary-type gap with electrolytic interrupter, as the interruption frequency is not regular enough.

Hence to realize the best results with a variable frequency in the primary you should use a quenched gap, as this form of gap will operate on any frequency very nicely, and it makes practically no difference in the design of the gap whether 60 or 500 cycles are used in the transformer primary circuit.

We believe this to be the best solution of your problem, and of course you can raise the spark tone some by careful adjustment of the electrolytic interrupter anode.

RECEIVER GIVES SOUND WITHOUT DIAPHRAGM.

(298) A. B.—, Amboy, Ind., inquires for construction data of 3000 meter loose coupler.

Want to Swap?

If you have anything to buy, sell or exchange and want to make a few dollars without incurring an insignificant cost advertise in the Scientific Exchange Columns of The Electrical Experimenter.

You will find advertised in these columns:

The owners of these things wish to "swap" them for something else, something which you may have.

The Rates

One cent per word (name and address to be counted) minimum space 3 lines. Average 7 words to the line. Remittance must accompany all orders.

The Classified Columns of the Electrical Experimenter Get Results

More than 35,000 Electrical experimenters will see your ad.

A. 1. You will find this data, with complete working drawings, given in the March, 1914, issue of this journal.

A. 2. As far as we know, a person holding a commercial radio license can obtain a position in a local radio station without first serving at sea.

A. 3. We are very much interested in your experiment whereby you cause a telephone-receiver shell and magnet only, without speaker, to be played on same, to give forth a sound as usual.

I think the matter is explained in several ways from time to time, and as near as can be judged from the various theories and explanations regarding it, it is based on the change of the molecules making up the iron core in the receiver. We should imagine that with a receiver connected across the vibrators of a buzzer, as in your case, the sound heard in the receiver would be naturally more pronounced than if speech were being reproduced, owing to the fact that the buzzer makes and breaks impulses at a very strong frequency.

We give herewith sketch showing how a very interesting experiment can be made by means of a telephone receiver without the usual diaphragm. We may say, if going further, that in all these experiments it has been found best that the coils shall be wound rather loosely, but not necessarily so loose that the turns can jump about or vibrate.

In the sketch a peculiar experiment is shown at "A" where a thick iron plate, which may be as thick as 1 inch, is placed in front of the receiver and made in a coil and the pole piece of some acts on this plate. Speech has been reproduced in this way, and of course, as it is impossible for the small receiver to vibrate, the whole plate by bringing it in the way the diaphragm of 1/4-inch iron does, the iron must vibrate in unison with the speech waves, etc., by molecular vibration.

Regarding the exact theory of how these molecules become magnetized and demagnetized so as to manifest this change in their condition physically, this is not very well defined. It has been pointed out by several authorities such as Silvanus P. Thompson, of England, that a magnetized steel bar is longer than when it is not magnetized. He has also stated that a definite click can be heard when the bar is magnetized and demagnetized, and he says theoretically that this is undoubtedly due to the fact that the molecules which are magnetized tend to set themselves, end to end, and thus the steel bar is lengthened.

It may be said that in such experiments with solid iron plates or bars having coils mounted on them to create speech without the usual diaphragm, the iron used is always best of very soft or cast steel, and steel works very poorly, if at all.

At "B" in the sketch is shown another experiment of interest where the receiver magnet coil has inside it an iron nail with, preferably, a good, large head on same. The nail is driven into a piece of board as shown. If this board is held against the ear, it will be found that the speech can be heard all right, as well as if a regular receiver were used, but of course not quite so loud. The board acts probably as a sound-resonator.
FATAL SHOCK FROM TELEPHONE WIRES.

(299) William F. M., Jr., Cleveland, O., says he has read of people having been electrocuted by coming in contact with telephone circuits, and wishes to know how this is possible.

A. I. It has happened a number of times that people have been electrocuted by coming in contact with telephone wires where there seemed no possibility of such a thing happening.

It has usually been the case, however, when such fatal results have occurred, that the telephone circuit with which the person came in contact was crossed, perhaps temporarily, due to a broken wire, etc., by a high-voltage lightning or power wire carrying several thousand volts.

It is readily seen, then, that a person coming in contact with the telephone wire so charged would form a circuit to earth through his body, and undoubtedly fatal results would obtain.

The fuses you speak of in the telephone circuit would not be of any benefit in such a case, for the reason that the current of dangerous potential would be several thousand volts and the current in amperes would only have to be a fraction of an ampere to prove fatal. Then again, it is quite possible that the current through the body would be made over a full metallic circuit in which no fuses were inserted.

1,000 AND 75 OHM TELEPHONE RECEIVERS ON ONE CIRCUIT.

(300) A. E. Eichner, Trenton, N. J., is using a 75 and a 1,000-ohm telephone receiver on a common circuit, and wants to know why they don't talk good, telephonically.

A. I. The reason why you cannot get good results using the 1,000-ohm receiver is due to the fact that the voltage generated by the movement of the diaphragm in either case is not correctly proportioned to operate the opposite receiver, owing to the different number of turns on each coil, etc.

In other words, you will appreciate that if, for instance, the voice waves operate or move the diaphragm of the 75-ohm receiver, currents will be generated in the magnet coil of same which will have only a few volts potential, with a comparatively large current value.

These currents, of course, when they reach the high-resistance receiver with many thousands of turns of wire on it at the other end of the circuit, cannot operate or move the diaphragm of the 75-ohm receiver, as such a high-resistance receiver is suited to, relatively speaking, high voltages with small current values, and vice versa.

You will readily understand how the 1,000-ohm receiver would have generated in it currents of much higher voltage, of course, than a 75-ohm receiver with a consequent very small current value, and as the 75-ohm receiver, as we know, requires a relatively low voltage with a strong current value, the current passing over the circuit from the 1,000-ohm receiver will not operate efficiently the 75-ohm instrument at the opposite end of the line.

You will always find in this sort of work, as well as in most telegraphic circuits, etc. that the instruments should approximately be balanced to each other as regards current, voltage and resistance ratings.

BUZZER INDUCTION CURRENTS.

(301) Wynn Boyden, Medina, O., states that he has been able to transmit radio signals by a buzzer, and asks why it is not operated.

You Can Only...

secure the best in FLASHLIGHTS and BATTERIES by insisting that this trademark...

"Short-circuit Proof" is on flashlight-case and battery. If your dealer cannot supply you with our product write directly to us for Catalogue A2.

BEACON MINIATURE ELECTRIC CO., 118-30 DUANE ST., NEW YORK.

FOR VACATION TIME

get a copy of the STRAND MAGAZINE FOR AUGUST

It has 82 pages of fine entertaining fiction. Richard Marsh tells of the inimitable "Sam Briggs Adventures on the Firing Line." Alan Graham gives "The Great German Plot," full of mysteries, scheming, spies, plotting, etc., etc.

DO NOT MISS IT—IT IS A GOOD NUMBER

PRICE 15 CENTS

OF ALL NEWS DEALERS

FOR ELECTRICAL AND EXPERIMENTAL WORK

THIS "RED DEVIL" EXTRA HEAVY SIDE CUTTING PLIER No. 1950 is without parallel. Will stand severe tests and save time, temper and material. The electricians' and mechanics' standard tool—used the world over.

Sample 7 in size mailed postpaid for $1.00. Booklet Free. SMITH & HEMENWAY CO., Inc. 126 Chambers Street New York City

Best Paying Branch of the Dental Profession

MECHANICAL DENTISTRY

The demand for mechanical dentistry far exceeds the supply. Prof. Eichner, the most lauded and thorough mechanical dentist in America, gives every student personal instruction. Established 1892. The first and only school recognized by the Dental Professors, "The Cleveland School of Dental Mechanics." Private instruction, no book study. Tuition payable in moderate monthly installments—complete course 2 to 6 months. Graduates received at any date without entrance examinations. Course 2 to 6 months. Write today for catalog E.

BOBEE'S DENTAL TRADE SCHOOL Now in our new building 15 West 44th St., New York.

SALARY WEEKLY $25.00 to $75.00

You benefit by mentioning "The Electrical Experimenter" when writing to advertisers.
Big Money in Electricity

The electrical industries offer wonderful opportunities for boys with a liking for electricity. The salaries paid to trained men are large — promotion comes rapidly, and, best of all, the profession is not overcrowded.

The opening of new lines, from time to time, (such as wireless telegraphy and telephony), promise attractive and paying fields to those who wish to specialize. The will to do and Special Training will bring success to you.

The International Correspondence Schools of Scranton can help to make you an expert in electrical work. Hundreds of boys have already won success through I. C. S. help. You can do the same. Everything is made so clear that you can learn in your spare time, regardless of where you live or what you do. No books to buy.

There's big money in electricity. Get after it by marking and mailing the attached coupon today. Finding out costs you nothing.

Mark the Coupon—NOW

INTERNATIONAL CORRESPONDENCE SCHOOLS
Box 1071B, SCRANTON, PA.

Automobile Running | Motor Boat Running
Electrical Engineer | Electric Lighting
Diploma Running | Mechanical Engineer
M.T. & Drafting | Shop Practice
Chemistry | Steam Engineer

Name ____________________________
Street and No. ____________________________
City and State ____________________________
Present Occupation ____________________________

Showing Buzzer Connected in Two Ways to Aerial and Ground.

A. 1. In regard to your wireless transmission by buzzer, would say that it is generally found that practically the same results are obtained whether the ground and aerial wires are joined directly across the buzzer vibrator, as diagram A shows, or across the whole buzzer-induction circuit, as indicated at B.

In any case, the increase of voltage in the circuit by self-induction whenever the vibrator breaks the circuit will be evident throughout the circuit, and is bound to charge the aerial and ground conductors whatever one of these wires is joined ahead of the magnet coils in the circuit or behind them, due to the reason that the self-induction surge in the circuit passes throughout the whole circuit, roughly speaking.

ARMATURE WINDING.

(202) Gilbert M. M———, Savannah, Ga., asks us about hooking up leads from a motor armature which has one-half as many slots as commutator bars.

A. As far as I can tell from the diagram, the winding of small D. C. motor armature containing twice as many commutator bars as slots for winding, the diagram will help to show how this is usually done, especially on small armatures such as those used in fractional horsepower motors of the fan type.

As you will see from the diagram, there is a loop or lead left out in the middle of each coil, as it is wound, lap-fashion, and so always stays in place. When winding is done, all these small leads, as those used in fractional horsepower motors of the fan type.

How Armature Coils Are Tapped by a Middle Lead When Twice As Many Commutator Segments Are Used As Slots In Armature.

in some way with a piece of string, etc., so that when joining the leads to the commutator the proper sequence will be followed without any trouble. Otherwise, the coil is liable to be connected to the commutator backward.

ELECTRICAL PLANT CULTURE.

(896) Alan E. Simmons, Palmetto, Fl. We do not know just what arrangement you intend to use, but from what we know of the matter of electrical plant culture it may be said that a regular spark coil and high-frequency set is generally utilized for the purpose.

Also it would be possible to utilize a close-coupled wireless-type transformer giving a high voltage at the secondary, such as a ¼-K.W. unit, developing 10,000 to 12,000 volts.

High-frequency current could then be produced by means of this transformer, and a suitable helix and condenser in the regular way.

PARALLEL OPERATION OF TWO A. C. GENERATORS.

(204) Mr. E. O. W. —, White Plains, Ky., asks us about a problem he has relative to parallel operation of two A. C. generators, also several other queries.

Suggested Hook-Up of Two Exciters and Two 3-Phase A. C. Generators to Give Steadiest Operation.

A. 1. With reference to the parallel operation of two 75 kilowatt, 60-cycle, 220-volt, 3-phase A. C. generators would say that the special diagram you show where exciter No. 1 is hooked up with the rotating field winding of alternator No. 2 and exciter No. 2 with alternator field No. 1 is quite practical and has been used considerab--ly to keep the two machines started up from separate engines in as nearly as possible strictly synchronous relation.

This arrangement, however, has a bad disadvantage in that if one of the alternators should for some reason be shut down quickly it would affect the exciter of the second alternator; and thus the whole plant will be shut down. This naturally would be a bad state of affairs.

(Continued on page 170.)
PATENT ADVICE
Edited by H. GERNSBACK

In this Department we will publish such matter as is of interest to inventors and particularly to those who are in doubt as to certain Patent Phases. Questions addressed to "Patent Advice" cannot be answered by mail. Sketches and descriptions must be clear and explicit. Only one side of sheet should be written on.

Applying for His Own Patent.
(8) Benjamin Hurst, Los Angeles, Cal., would like to know if it is feasible for him to make his own patent application at the Patent Office instead of engaging a patent attorney to do this.

(A.) While quite a few people prosecute their own patent business and apply for patents themselves instead of through a lawyer, quite technical and the average layman does not as a rule understand the language used in them.

If you are likely to get into patent complications with your invention and send in a drawing showing what the idea consists of, but the most important part in a patent is the "claim." These claims, which make up the Patent Office's record of where a given patent, an experienced patent attorney will easily find from ten to twelve, and while the Patent Office may not allow all the claims, they certainly, as a rule, will allow more than the layman could make up.

In our opinion it is always best to engage a reputable attorney to obtain a patent and while the cost may be greater, on the other hand the protection is vastly greater also. It has, as a rule, a certain value which the same patent obtained by the untrained layman would not have.

Cost of Patent.
(7) Edwin P. Powell, Red Bank, N. J., desires to know how much it would cost him to patent an invention.

(A.) A patent can be obtained for as low as $50 from reputable patent attorneys if the invention is simple one and does not require more than one sheet of drawings and if it is not too complicated.

If a long search in the Patent Office is necessary in order to convince the attorney that it is safe to go ahead with the application it must be, of course, understood, if such extra work must be done and for. As a rule it would be safe to say that simple patents with one sheet of drawings would not come higher than $75 with most reputable attorneys. If the patent is extremely complicated and has many sheets of drawings the cost will, of course, be much higher.

We would advise correspondents to send for all literature of recent attorneys and ask for their fees. Most of the attorneys get out attractive booklets that very often contain valuable information which the inventors who are interested in patents should possess by all means.

Can He Trust Attorney?
(8) A. B. Wilson, Pittsburgh, Pa., writes as follows:

"I have engaged a new loud talking telephone receiver which I am sure will revolutionize the present telephone receiver. My telephone receiver has several new points not found in any other receiver and, being cheaper to manufacture and talking very much louder than the ordinary one, I think that my invention is quite important and this is what I would like to know:

"I have heard that some patent attorneys have appropriated inventions themselves or otherwise have given out information obtained from their clients to the detriment of the original inventor. Therefore I do not wish to employ an unknown patent attorney and would like to have your advice just what to do.

"This is one of the fears unmerited in inexperienced inventors and we might say that it is a very groundless fear. It should be understood that patent attorneys are professional men, the same as your doctor, and while there are a few exceptions to the rule there have been no instances where patent attorneys have appropriated ideas, the total of such cases as to the numbers of inventions which actually have been patented, is less than one per cent.

From this you can understand that an inventor does not take a great chance by trusting a patent attorney with his invention, as the rule is that one patent much the same as another, and very few if any bother to think about the commercial possibilities of inventions as a whole. We have here of a single case during the last ten years of a patent attorney appropriating any ideas of his client and for this reason we think that you may trust yourself to any reputable attorney.

Arc Light Can Be Patented.
(9) Henry S. Fisher, Jr., Hoboken, N. J., sends in a plan and description of an electric arc light and asks whether he knows the commercial value of his invention.

(A.) The arc light shown seems to have some novel features and a search through our files has shown that nothing similar has ever been described or patented to the best of our knowledge. We feel quite sure that a patent can be obtained on this extremely novel invention.

We advise you to send your model and a full description at once to a good patent attorney in order to obtain a patent on the invention if possible.

As in the mails of most inexperienced inventors this department cannot receive such information because at best it is only pure guesswork. It is impossible for anyone to forecast what a given invention is worth. We might say $5000 when an invention of this kind in the open market perhaps might not bring $500. Or if some manufacturer wanted it really bad he might pay quite a good deal more in most cases or patented to the best of our knowledge. We feel quite sure that a patent can be obtained on this extremely novel invention.

As in the mails of most inexperienced inventors this department cannot receive such information because at best it is only pure guesswork. It is impossible for anyone to forecast what a given invention is worth. We might say $5000 when an invention of this kind in the open market perhaps might not bring $500. Or if some manufacturer wanted it really bad he might pay quite a good deal more in most cases or patented to the best of our knowledge. We feel quite sure that a patent can be obtained on this extremely novel invention.

The confused condition of the commercial world has created a vast increase in the use of wire and radio. We believe that students who start now with a good education will have a chance to get into the wireless business.

HERALD ZUHR
32-34 Franklin St.
New York City

17 FREE SCHOLARSHIPS ARE NOW BEING OFFERED LEARN FREE TELEGRAPH and WIRELESS

The London Electric Telecommunication Company has announced that it is offering 17 free scholarships to students who wish to learn the wireless business. These scholarships provide for instruction in the wireless business at the London Electric Telecommunication Company's School of Wireless Telegraphy in London. The scholarships cover tuition fees, room and board, and all necessary books and materials. The students are required to work for the company after graduation, and the scholarship is intended to help students who wish to pursue a career in wireless telegraphy.

BOSTON SCHOOL OF TELEGRAPHY
18 Boylston St., Boston, Mass.
QUESTION AND ANSWER DEPARTMENT.
(Continued from page 168.)

One of the best methods ever devised for the type of plant you speak of is that where the individual exciters are all operated on parallel to a pair of "common buses," all of the alternators then receive their field excitation current from common exciting bus bars. You will thus see that it is a very simple matter to regulate the alternators by means of their field rheostats, and it is best also to have the exciter dynamos rigidly coupled together in some way if possible, so as to minimize the voltage fluctuations in them which would tend to cause one of them to take more of a load than it should, etc. In a great many modern plants the exciters comprise two D. C. dynamos driven by gears, from a single De Laval steam turbine. These two D. C. generators operate in parallel on a pair of common exciter supply buses.

A. 2. In regard to your question on figuring out the resistance and voltage drop in a circuit, etc., would say that if you will think over this matter you will undoubtedly see why both formulas you cite agree. You can prove this by simply taking a voltmeter and connecting it across any given resistance coil, etc., and you will find that the resistance of that particular unit is proportional to the voltage drop. Therefore the unit of resistance indicated on a voltmeter is divided by the current passing through the circuit, as indicated on an ammeter.

Ohm's law also, as you will remember, states that the resistance of a circuit in ohms is equal to the voltage required (or conjointly the voltage drop) to force a given current through the circuit. It is self-evident that the voltage required, in other words, is also the natural voltage drop.

A. 3. We are not quite certain about your last query regarding calculations of the average load current in amperes from the factor of the known load in kilowatts, or whether you mean here the energy put out from the plant in kilowatt hours. If you mean that you may average load as indicated on a direct reading kilowatt meter of the switchboard type was 90 kilowatts during the two hours' run of the plant, then the average current would, of course, be deduced very readily by dividing the 90 kilowatts (90,000 watts) by the voltage; which would give you the average amperes load carried during the two hours' run.

BARON MUNCHHAUSEN'S SCIENTIFIC ADVENTURES.
(Continued from page 197.)

stands out in a strong contrast against the inky sky. This pink fringe is not absolutely uniform in thickness; it is thickest near the earth's surface, thinnest near the equator. The difference in thickness is not very great, but quite perceptible. The explanation is that the terrestrial atmosphere, due to the centrifugal force produced by the earth's rapid rotation, tends to throw the air away from the equator. It is therefore forced to move toward the poles and as practically no centrifugal force exists there the air is naturally "thicker" here.

Another curious phenomenon is the position of the earth in the lunar sky. As seen from my present location (near the moon's equator) the earth is almost fixed in the heavens, i.e., it never sets or rises as does the moon when observed from the earth. But otherwise the earth for us goes through the same phases as does the moon for you. Thus during one month the earth

**KNAPP **

BOY ELECTRICS

THE KNAPP LEADER
THE BEST

KNAPP

KNAPP KNAPP KNAPP

REDUCES STATIC

IT WILL NOT BURN OUT OR GO OUT, AND WILL LAST INDEFINITELY.

All elements are sealed in the little cylinder which is revolved to secure finest adjustment. The "Crystalol" is positively the most sensitive and thoroughly practical detector ever designed. It is not a make-shift.

It is a precision instrument in every sense of the word, and is beautifully finished. WRITE TODAY for full information. Immediate delivery.

TYPE 0 REGULAR

TYPE AA

POSTAGE, 10 cts.

EUGENE T. TURNERY CO. 2593 Third Avenue NEW YORK CITY

**KNAPP **

KNAPP

KNAPP KNAPP KNAPP

KNAPP, KNAPP KNAPP

KNAPP KNAPP

KNAPP KNAPP

KNAPP KNAPP

KNAPP

KNAPP

KNAPP

KNAPP KNAPP KNAPP

<table>
<thead>
<tr>
<th>Experiments</th>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Phone</td>
<td>Cell</td>
<td>A device for communicating electronically</td>
</tr>
<tr>
<td>Computer</td>
<td>Computer</td>
<td>A machine for processing data</td>
</tr>
<tr>
<td>Television</td>
<td>Televisi</td>
<td>A device for displaying images</td>
</tr>
<tr>
<td>Radio</td>
<td>Radi</td>
<td>A device for transmitting and receiving electromagnetic waves</td>
</tr>
<tr>
<td>Laptop</td>
<td>Lapto</td>
<td>A portable computer</td>
</tr>
<tr>
<td>Smartpho</td>
<td>Smartph</td>
<td>A wireless hand-held communication device</td>
</tr>
<tr>
<td>Printer</td>
<td>Print</td>
<td>A device for producing hard copy</td>
</tr>
<tr>
<td>Scanner</td>
<td>Scann</td>
<td>A device for converting images to digital data</td>
</tr>
<tr>
<td>Speaker</td>
<td>Speak</td>
<td>A device for producing sound</td>
</tr>
<tr>
<td>Printer</td>
<td>Print</td>
<td>A device for producing hard copy</td>
</tr>
<tr>
<td>Scanner</td>
<td>Scann</td>
<td>A device for converting images to digital data</td>
</tr>
<tr>
<td>Speaker</td>
<td>Speak</td>
<td>A device for producing sound</td>
</tr>
<tr>
<td>Printer</td>
<td>Print</td>
<td>A device for producing hard copy</td>
</tr>
<tr>
<td>Scanner</td>
<td>Scann</td>
<td>A device for converting images to digital data</td>
</tr>
<tr>
<td>Speaker</td>
<td>Speak</td>
<td>A device for producing sound</td>
</tr>
</tbody>
</table>

Your Hands Can't Earn the Money You Need
You'll have to work for low wages all your life if you depend upon your hands to make your living. To earn more money you've got to learn how to work with your head—you must have special training for some particular line of work.

And you can get this training without leaving your home or losing an hour from your work—the International Correspondence Schools can bring it to you right in your own home during your spare time. They can train you for the very job you want—where you can earn more than enough money to meet your needs.

If you want to advance in your present occupation, the I. C. S. can train you for promotion. If your present work is not pleasant, the I. C. S. can qualify you for a good position in the kind of work you like best.

Every month more than 400 I. C. S. students of all ages and occupations voluntarily report getting better jobs and bigger pay as a direct result of I. C. S. training. What these men did you can do.

Mark the Coupon—Now
What occupation attracts you most or what position do you want? Mark it and mail the coupon now, and learn how the I. C. S. can help YOU to earn more money.

INTERNATIONAL CORRESPONDENCE SCHOOLS
Box 1071F, SCRANTON, PA.

Explain, without obligation to me, how I can qualify for the position before which I mark X.
X Automobile Running
X Motor Boat Running
X Electrical Engineer
X Electric Lighting
X Electric Railways
X Dynamo Running
X Telegraph, Teleg. Eng.
X Mechanical Drafting
X Mechanical Drafting
X Steam Engineering
X Mine Fore. & Sept.
X Chemistry
X Agriculture

Name__
Address__
City and State____________________________________
Present Occupation______________________________

THE TELEGRAPH EXPERIMENTER August, 1915

You benefit by mentioning "The Electrical Experimenter" when writing to advertisers.
Here It Is At Last!

This V. K. W. Closed Core Transformer

$685

After months of extensive testing and perfecting our new product, the V. K. W. Closed Core Transformer, now available in the market, we are now in a position to inform you that this transformer is the most efficient and the most reliable on the market today. We are confident that our new product will exceed all of your expectations.

The V. K. W. Closed Core Transformer is designed to provide superior performance in a variety of applications. It is ideal for use in industrial, commercial, and residential settings, offering unsurpassed efficiency and reliability.

This transformer is available in a range of sizes to meet your specific needs. We invite you to contact us to learn more about our new product and how it can benefit your organization.

HAWKINS LIBRARY OF ELECTRICITY

In 6 Leather-bound Pocket Books

Price $17.00 per Volume

The Hawkins Library of Electricity is a complete reference work on all aspects of electricity. It includes a comprehensive collection of literature, articles, and technical papers, offering a wealth of information for professionals and enthusiasts alike.

The library covers a wide range of topics, from basic principles to advanced applications. It is an indispensable resource for anyone involved in the field of electricity, providing a valuable reference for students, engineers, and researchers.

The Hawkins Library of Electricity is an essential addition to any library or collection, offering a comprehensive overview of the field of electricity.

THE ELECTRO-SET CO., Dept. C
1906 East 6th St., Cleveland, O.

HAWKINS LIBRARY OF ELECTRICITY

In 6 Leather-bound Pocket Books

Price $17.00 per Volume

The Hawkins Library of Electricity is a complete reference work on all aspects of electricity. It includes a comprehensive collection of literature, articles, and technical papers, offering a wealth of information for professionals and enthusiasts alike.

The library covers a wide range of topics, from basic principles to advanced applications. It is an indispensable resource for anyone involved in the field of electricity, providing a valuable reference for students, engineers, and researchers.

The Hawkins Library of Electricity is an essential addition to any library or collection, offering a comprehensive overview of the field of electricity.

THE ELECTRO-SET CO., Dept. C
1906 East 6th St., Cleveland, O.

Here is a set of books that no man in the ELECTRICAL AGE can afford to do without. This is the ELECTRICAL AGE in which we live; ELECTRICITY is everywhere, and direct and inaudible, and inaudible and direct; it is opening up to all the world new and marvellous possibilities. Do you wish to know the underlying principles of MODERN ELECTRICITY? If so, HAWKINS ELECTRICAL GUIDES will give you the information. In reality they are a map, written in English, and a complete study course with QUESTIONS, ANSWERS AND ILLUSTRATIONS, written in a simple everyday language so that a practical man can understand it.

"THAT'S JUST WHAT I NEED"

They are handsomely bound in flexible black leather with gold edges and will readily go in the pocket. The size of these books is about 5½ by 3½ inches, but the CHEAPEST WORKS PUBLISHED ON ELECTRICITY.

Each book is complete in itself and will be compiled $1.00 per copy, but we believe that the complete set is the best bargain. The books can be bought separately, but we suggest that you examine the following and order your set.

FREE EXAMINATION OFFER

Please submit me for examination HAWKINS ELECTRICAL GUIDES. Ship at once, prepaid the 6 numbers; if satisfactory I agree to send you $1 within seven days, or will return the books at your expense.

Signature ___________________________
Occupation __________________________
Business Address _______________________
Residence _____________________________
Reference ____________________________
THE ELECTRICAL EXPERIMENTER
August, 1915

THE SQUARE

HAND LANTERN
HAS AN ADDED ADVANTAGE

Solidly built with double handles and equipped with the 2-volt Nitrogen battery that produces the perfect range of lights and gives three times the upkeep of any other standard 6-inch battery that this lantern is made for.

Note the feature contact switch. Highly finished nickel or black enamel. Approved by all first-class dealers or write direct.

INTERSTATE ELECTRIC NOVELTY CO.
39-21 PARK PLACE, NEW YORK
Chicago, San Francisco, Toronto, Can.

August Bargains
HIGH TONE ROTARY
RUNS 8,000 R. P. M.

Given 600 cycles a minute spark like a sputtered app., none full sized in 1 second; short dead inside of 3 seconds.

You do not have to wait for the Rotary to start or do you have to wait for it to start, you always get to it.

The lantern revolving diaphragm arm also has a click stop and quick stop.

Will work on all 1 and up to 1 K. W.

Price Complete $22.50

good.

LEARN TELEGRAPHY
at home in shortest possible time. Morse or Williams. Onograph Automatic Transmitter, connected with Sounder or Buzzer, sends you messages at any speed, the answer in your hand. Approved by U.S. Government.

OMNIGRAPH MFG CO.
39 Cortlandt Street
New York

HIGH TENSION SPECIALTIES
We have 8 years' experience in the manufacture of high tension communications apparatus and X-ray apparatus for Experimenter's and Physicians' use.

Write your requirements or send for catalog to-day.

ROSENTHAL LABORATORIES
Camden, New Jersey

hardly imagine what happens when such a heavily projected stream, at the frightful speed of from 2,000 to 3,000 miles a minute, collides with the moon.

The noise of the impact is absolutely overwhelming. The crash of a cannon shot of a 15-inch gun with the hand-lapping in comparison with it. The ground trembles violently for miles around, and if you are less than 500 yards from the scene one will usually be blown off his feet in the explosion, notwithstanding the very thin lunar air. If the meteor happens to strike a rocky or granite surface the result is even more awe inspiring. As a rule, in the large meteoric "stream," the impact is quite forceful, and goes up in a cloud of white-hot metal vapor. If you are near enough, say within one-half mile, the heat generated by the explosion will be enough to melt a hole or make a crater for a short length of time, and within a few minutes exceedingly fine metallic dust will rain down upon you. It sometimes takes hours for this red-hot debris to cool off.

Thus it can be imagined that it is rather dangerous to walk on the moon's surface. This is particularly true in November each year, when the earth and the moon pass through the meteoric "stream." At such a time I would not care to be present on the surface of the moon, and would prefer the lunar caves. Furthermore, if I was stranded upon the moon, I should not have any means of ensuring my safety. Had one of the meteors struck him and killed him? I could not tell. So I finally left my wireless laboratory behind as an uncompleted thing that everything was not quite right.

(To be continued.)

TELEVISION OR THE PROJECTION OF PICTURES OVER A WIRE.

(Continued from page 182.)

tight structure, made up of a very large number of extremely small metallic cubes, which are all carefully insulated from one another, but, however, are connected together and a clean, metallic surface to the cathode rays discharge on the one side and in contact with a suitable gas, as, for instance, sodium vapor, on the other. It is proposed to construct these screen "cubes" of some metal, like rubidium, which readily discharges negative electricity under the action of a ray of light, the negative charge being imparted to the cubes whenever the cathode ray, the so-called beam of the cathode ray falls upon it. The receptive "R" in the tube chamber is filled with some gas, such as sodium vapor, for the reduction of "J" in a gaseous state. A negative electricity far more readily under the influence of light than in the dark. A metallic screen of gauze, parallel to "J" in the tube is placed at "LL," and the small screen of "N" is placed at "LL." The screen at "N" is projected by means of the condensing lens "M," until after passing through the vapor of sodium it is eventually focused on the screen at "J." The gauze screen "LL" is electrically connected through a line wire, as seen in Fig. 8, to the metallic diaphragm plate "O" in the receiving tube "A." Referring now to the receiving instrument, as indicated in our illustrations at Figs. 1 and 3, there is placed at the end of the Crooke's vacuum tube a fluorescent screen "R" and "G." This screen is in a certain condition, which will be explained directly, the cathode rays impinge, and certain parts of this screen are excited to such an extent that it becomes fluorescent. If we apply the combined action of the two C. E.
back
person, explained. A. C. cannot pass beyond the diaphragm coils to be the sipating itself considering those the screen negative charge and without any appreciable cathode rays passes at marvelous velocity through the transmitter instrument. Under ordinary conditions the cathode rays at the receiver cannot pass beyond the diaphragm PS, but they can be made to do so, if slightly repelled by the lower diaphragm plate at O. In this case, they will then fall on the screen H! and cause that part on which they fall to fluoresce green, light green.

Now assume that a short beam of cathode rays passes at marvelous velocity and without any appreciable inertia or mass in the tubes A" and A" and that also the A. C. electro-magnets D" and E" are energized, as previously explained. Also, suppose that the image of a person, for instance, appears at N" before the tube K. This image is focused and projected through the lens M," and through the gauge screen LL" on the back of the metallic screen J," which, as will be remembered, is made up of a very large number of small metallic cubes. Then as the cathode rays in A" oscillate under the combined action of the A. C. electro-magnets D" and E" they will cause a negative charge of electricity to be impressed in turn to all the metallic cubes, of which the screen J" is composed. In the case of the shadows of the projected image, or comparing those cubes on the screen which no light falls, nothing will happen in the action of the apparatus, the charge disspating itself in the tube. Therefore, in the case of those cubes on the screen which are brightly illuminated by the bright point of the projected image, the negative electrical charge imparted to those cubes by the cathode rays will pass along, owing to the action of the sodium vapor, which is ionized under such circumstances, and so on until it reaches the gauge screen LL," whence the charge will travel by the line wire to electrode O" in the tube A" at the receiving instrument.

The plate at "O," will therefore become charged and will slightly repel the rays in the direction of the plate, so that they will thus be enabled to pass through the aperture at "S" and strike, for a fraction of a second, upon a minute portion of the screen, corresponding in position to the small cube surface on screen J", thus making it possible for us to see that the electro-magnets D" and E" are working in perfect synchronism or step, electrically, with the magnet coils D" and E" at the transmitter.

It will be understood, of course, from this description that this action will take place successively, but not simultaneously. In
other words, referring back to our previous discussion of how a picture can be built up out of black dots, etc., it is easily perceivable how this device can produce a picture if the illuminated spots on the screen are successively shown in a sufficiently rapid manner. In the case of our little metallic cube surfaces at \(H \), that are illuminated successively, there appear bright spots at approximately periods on screen \(H \) at the receiving instrument. These bright spots at \(H \) are of course to appear so quickly, and succeed so soon after so rapidly and smoothly, that the appearance they present to the eye will be one continuous picture.

It is quite conceivable that the apparatus of the invention, which will enable us to see the party at the opposite end of a telephone line, for instance, may indeed work on this principle or a modified one. There is no other method which can work so rapidly with so little power. One utilizing the Groove's tube, in which a cathode ray is caused to rapidly oscillate or be deflected through various angles in the same way as the Braun oscillograph tube is used for depicting radio-frequency wave forms. It was the Braun vacuum tube oscillograph that suggested the idea to Mr. Campbell-Swinton of the most interesting method of perfecting a "Television apparatus." This is undoubtedly one of the most interesting fields for research work open to the experimenter of to-day.

NAVY TAKES OVER SAYVILLE RADIO

In the interests of American neutrality and to avoid congestion of the Hamburg-Paraguay period from the establishment of belligerent wireless stations on neutral soil during a war, the United States Government refused to grant a license to the Atlantic Communication Company for the operation of the great German wireless station at Sayville, L. I., and took over the operation, management and control on July 9 last.

The Atlantic Communication Company claims to have committed no improper or unethical act. "No charge of any such act has been brought to the attention of its officers by any official of the United States. The Government censors on duty at the station have carefully supervised all messages sent, and have retained copies of the same. The company, being a public service corporation, had no discretion in refusing or accepting messages. As a matter of fact, the station, on account of static conditions, and also on account of lack of power, was unable during the summer months to communicate with Germany for more than one or two hours during the night. This difficulty will now be overcome by the operation of the new transmitter. Communication has been possible for the past few months only when it was night in Germany and night in the United States, which has been, as heretofore stated, only for one or two hours each night." And I want to add," Mr. Metz, president of the company, continued, "that as a result of the Federal action to-day we will be able to communicate with Berlin all the time. day and night. We can operate 24 hours or two each day, as has been the case up to the present time. We will not for the first time be able to use the new plant, which is three times more powerful than the old plant, and that plant will be ready for the 15th of this month. And, furthermore, there will be a reduction in rates. Instead of 5$ a word plus the land rate the rate to Berlin will be 50 cents per word plus the land toll, while messages for Austria and Turkey will be 88 cents per word plus the land charges instead of $1.98 per word as is now the case.

Benefits for the Experiencer Publishing Co., Inc.

233 Fulton St., N. Y. City
Opportunity Exchange

You will probably find more opportunities and real bargains in these columns than anywhere else in the country.

Most good things in life are hard to find and worth going after—these little ads illustrate that point; you alone will be the real loser if you don’t read these columns. We encourage you to scan through these columns every time your paper reaches you.

Advertisements in this section are for a word each for insertion. Count 7 words per line. Name and address must be included at the above rate. Cash should accompany all classified advertisements unless previously agreed. Ten percent discount for 6 issues, 20 percent discount for 13 issues from above rate. Objectionable or misleading advertisements not accepted.

Advertisements for the September issue should reach us not later than August 10th.

EXPERIMENTER PUBLISHING Co., INC., 233 Fulton Street, New York, N. Y.

BICYCLES AND MOTORCYCLES

BARGAIN—$5 takes 1911 Flinders Motorcycle, nearly new; about $5 equipment. Paul Robins, General Delivery, South Chicago, Ill.

FOR Sale cheap. 1911 Harley-Davidson twin. Write for particulars. Walter Goeckes, 223 Washington St., Newark, N. J.

$50 TO $150 bets the best Motorcycles, every makes and model in our large stock—must be cleared. Half price. Send for list today. Talking Machines, E. S. Machine Co., 618 Commercial Ave., Chicago, Ill.

FORMULAS

MAKE Candy evenings; post, receive, 10c. Emerson Zimmerman, 1433 Welbod, Harrisburg, Pa.

ANY FORMULA WANTED—Send for 20c. 3 invaluable lax formulas, 25c. State requirements to K. B. Davis, 1000 8th Ave., New York.

SIX Valuable formulas for sympathetic lax, 50c. Wayne Thomas, Ithaca, N. Y.

FORMULAS for eggs, black, blue, red, gold, green, silver, ind. each for 40c. Stephen Rafferty, 5212 Arch St., Philadelphia.

CUTS anybody can make, 5c. Samples Stamp—Modern Engraving Co., Lynn, Mass.

MAGIC AND TRICKS

LOOK! STUMP! LISTEN! "CHELSEA CHAPLIN PUZZLE." The most interesting and amusing puzzle out. Send 10c. catalogue, 10c. catalogue, in 1 envelope to Dept. "A," 4333 Lake Park Ave., Chicago.

TOOT CARDS, Tricks and Jokes, Coins, Notes, Stamps and curious things. Catalog for stamp. Coin Exchange, New Rochelle, N. Y.

MAGIC Tricks, Jokes and Puzzles. Trick with my wife, 10c. catalogue. H. V. Del., Huntington, W. Va.

GREAT book wonders, secrets and mysteries and notes, 5c. each, 10, 25c. Wright Spec. Co. (D.), Brewea, N. Y.

MAGIC tricks for the profession. Big catalogue and pocket trick free. Ventilemotional figures, 300 up. Maple Parka, 122 Clifford, Providence, R. I.

NOVELTIES, Books, Tricks, Games, Etc. Illustrations, catalogue free. Sample 20c. card truck, 10c. Auburn Supply Co., Specialty Dept., 1746 Peoria St., Chicago.

* * *

HELP WANTED

AGENT—Build a business of your own with our Piano and Furniture Polish. Have used it in our successful store. Send for free formula and trade secret. E. E. Lundberg School Piano Mfg. Co., 143 Dearborn St., Chicago.

WANTED MEN AND WOMEN EVERYWHERE—Government jobs, $70 to $90 a month, short hours, vacations, rapid advancement, steady work; many opportunities during summer time; common education sufficient; full unaccredited Franklin Institute, Dept. "A-120," Rochester, N. Y.

MODELS

MODELS made for inventors; general machine work, designing and perfecting; developing automatic devices and machine parts for all kinds of light tool and machine work. Prices reasonable, terms favorable especially given. Machine Works, 62 Ann Street, New York City.

INVENTORS: We manufacture metal articles of all kinds. Also special machinery, tools and dies; punchings, lathes and screw machine work, metal stampings, castings, plating, wood and metal machine patterns. Send sketch or estimate and expert advice, free. The Eagle Mfg. Co., Dept. B, Cincinnati, Ohio.

* * *

MISCELLANEOUS

PANAMA CANAL—For only 50c, will send you the great Panama Canal Telescope and a fine picture. For Mail Order Co., 200 Second St., San Francisco, Cal.

THERE is but one Telegraph School that places all graduates with the Railway Telegraph service. It is in Pelham, Madison, Wis.

BLUE PRINTS AND BLUE PRINT PAPER. Have Blue Print Co., Wellesley, Mass.

MANFIELD'S Electrical Water Finder is a thorough, easily adjustable appliance for locating points for sinking wells for pure water supply. Send for particulars to Manfield & Co., Engineers, New Brighton, England.

MAIL ORDER OPPORTUNITIES

NOVELTIES—A complete line of a hundred different kinds of cheap, and provisionally a hundred more for sale cheap. Also catalogues and catalogue, 10c. each. A big chance for you to start a big business. Only prospective buyers need answer. National Novelty Co., Box 325, Duluth, Minn.

* * *

PHOTOGRAPHIC

FILMS developed, all sizes, 10c. Prints, any size, 4c, each, 5c per dozen; double weight paper, 10c, each, 15c per dozen. See your photographers. H. H. Flowers, North Platte, Neb.

FILMS developed, 10c., all sizes. Prints 25c, 5c; 3x4, 50c; 6x9, $1; 4x5; 60c, 24c. Post Card, 3c. Very special Work. Send before and after. 24 hours after receiving. Postpaid. Send negative, or 5c samples. Girard's Commercial Photo Shop, Holyoke, Mass.

EXPERT Kodak Finishing! Send for price list. Electric Studio, 102 Stephensen St., Freeport, Ill.

KODAK Sims developed, 5c. all sizes. Prints, 20c each, any size, P. Johnson, 100 W. Bridge St., Oswego, N. Y.

PATENT ATTORNEYS

PATENTS SECURED OR PEE RETURNED. Send sketch or roughs for free examination. Latest complete patent book free. George P. Kimmel, 251 Harrister Bldg., Washington, D. C.

DRAWINGS made for Inventors. Consulting Engineer, E. E. 5340 Seminary Ave., Chicago.

STAMPS AND COINS

STAMP Album with 338 Genuine Stamps, incl. Rhodesia, Congo (liger), China (dragon), Thomsonia (landscape), Jamaica (waterfalls), etc., 10c. 1885-1914, 25c., 50c., etc. Big beautiful selection. Free. We buy stamps. Homan Stamp Co., St. Louis, Mo.

GIFT the most out of your money you can. Try my 2 and 2-cent approvals and you'll be pleased. References required. Wm. Hasson, 1 De 20th St., Los Angeles, Cal.

STAMPS, 100, ALL DIFFERENT, FREE—Postage 2c.Each, order over. Quaker Stamp Co., Toledo, Ohio.

FOREIGN Stamps Free, 52 different foreign, including China and Venezuela, to all who apply for our high grade approval selections. Send two cent stamp for return postage. Edmond Stamp Co., Dept. H, Milton, Conn.

WIRELESS

EXCEPTIONAL Radio Apparatus. A 2c. stamp will bring you any literature. H. Y. Higgs, Solvay Plattsburgh, N. Y.

WIRELESS receiving set and other instruments for sale. Howard Sorey, Newrirk, Ohio.

TUNER—A fine bare wound double Grid Tuner for only $1.75, postpaid. It is made of vulcanite and is a dandy instrument. Send a 2c. stamp for my list. Carl Disapout, Plattsburg, Wd.

FOR SALE—Hot Wire Ammeters; two readings; Aluminum casing with bracket; complete except dials; guaranteed. L. R. Jewett, 200 Lewis St., Lynn, Mass.

WE make Lone Coupler, 2,500 meter, 8c; Tuning Coils, 390 meter, 2c. Cliff Mfg. Co., Box 130, Brookfield, Mass.

Scientific Exchange Columns

UNDoubtedly you have at the present time some things for which you have no further use. Do you wish to exchange them for something else? The Electrical Experimenters are glad to give you this facility to exchange one thing for something else. If you wish, you may list an item you have for exchange, and say what you wish to get in return. You may list more than one item if you wish. The Classifieds is a good place for you to list your items. If you wish, you may list items with no address. The classifieds are divided into the following categories:

1. Electrical and Radio Equipment
2. Books and Journals
3. Scientific Instruments
4. Tools and Supplies
5. Other Items

The rates are: One cent per word (number and address to be counted) minimum space 3 lines. Count about 7 words to the line. Remittance must accompany all orders.

The following is a sample of the advertisements which we are receiving:

Insects—Last Call—For insect collectors: 1000 insect specimens in all. For further details write to W. R. Adams, 123 Elm St., Chicago, Ill.

FOR SALE—One 1½ inch spark coil minus vibra- tors, for $1.00. Send stamp for sample. W. B. Mccollum, Tulare, Cal.

FOR SALE—One 1½ inch spark coil minus vibra- tors, for $1.00. Send stamp for sample. W. B. Mccollum, Tulare, Cal.

Used sign for sale—For sale, a sign that was used for advertising a used goods store. For $3.50. Contact W. J. Brown, 234 Main St., New Haven, Conn.

FOR SALE—One 1½ inch spark coil minus vibra- tors, for $1.00. Send stamp for sample. W. B. Mccollum, Tulare, Cal.

FOR SALE—One 1½ inch spark coil minus vibra- tors, for $1.00. Send stamp for sample. W. B. Mccollum, Tulare, Cal.

FOR SALE—One 1½ inch spark coil minus vibra- tors, for $1.00. Send stamp for sample. W. B. Mccollum, Tulare, Cal.

FOR SALE—One 1½ inch spark coil minus vibra- tors, for $1.00. Send stamp for sample. W. B. Mccollum, Tulare, Cal.

FOR SALE—One 1½ inch spark coil minus vibra- tors, for $1.00. Send stamp for sample. W. B. Mccollum, Tulare, Cal.

FOR SALE—One 1½ inch spark coil minus vibra- tors, for $1.00. Send stamp for sample. W. B. Mccollum, Tulare, Cal.

FOR SALE—One 1½ inch spark coil minus vibra- tors, for $1.00. Send stamp for sample. W. B. Mccollum, Tulare, Cal.

FOR SALE—One 1½ inch spark coil minus vibra- tors, for $1.00. Send stamp for sample. W. B. Mccollum, Tulare, Cal.

FOR SALE—One 1½ inch spark coil minus vibra- tors, for $1.00. Send stamp for sample. W. B. Mccollum, Tulare, Cal.

FOR SALE—One 1½ inch spark coil minus vibra- tors, for $1.00. Send stamp for sample. W. B. Mccollum, Tulare, Cal.

FOR SALE—One 1½ inch spark coil minus vibra- tors, for $1.00. Send stamp for sample. W. B. Mccollum, Tulare, Cal.
THIS IS YOUR OPPORTUNITY

TO SECURE A RELIABLE SET OF WIRELESS RECEIVERS, POSITIVELY SECOND TO NONE IN APPEARANCE, COMFORT AND SENSITIVENESS, AT PRICES INCREDIBLY LOW FOR INSTRUMENTS OF SUCH UNQUESTIONED WORTH.

Complete
Double 2000 Ohm Set
only $4.00

Complete
Double 3000 Ohm Set
only $5.00

Either Set With Coronet Band, $.50 Additional

FOURTEEN DAYS TRIAL ALLOWED

MONEY BACK IF THEY DON'T MAKE GOOD FOR YOU IN YOUR STATION. ORDER A SET TODAY. ASK FOR “SPECIAL No. 55.”

Our new catalog of really good apparatus is ready. Your request for a copy will introduce you to the finest line of reasonably priced apparatus on the market.

680 HOWARD ST.,
SAN FRANCISCO, CAL.

WM. J. MURDOCK CO., 55 Carter St., Chelsea, Mass.

STOP!

We hereby present one of the greatest bargains in electrical literature ever offered. A complete Volume of the Electrical Experimenter, bound in rich, dark green linen, stamped with gold letters at the extraordinary low price of

75c.

Volume contains twelve numbers (from May, 1914, to April, 1915), 240 pages, 350 complete articles, 550 illustrations, 396 questions and answers.

A world of electrical information; the entire electrical Progress for one year; the greatest reference book on current "Wireless"—all at a price as low as the unbound copies would bring. Mind you, the book is durably bound with heavy covers. You will be proud to have it in your library. We have only a few hundred copies, therefore be sure and order today. Shipping weight 2 lbs. Add a sufficient amount for postage.

EXPERIMENTER PUB. CO., Inc.
BOOK DEPARTMENT
233 Fulton Street, New York

August Bargains

OUR NEW BIG 216 PP. ELECTRICAL AND WIRELESS CATALOG IS THE EXPERIMENTER'S REFERENCE BOOK
THE BEST BARGAIN IN THIS MAGAZINE IS

No 1726,
THE AMCO NAVY TYPE RECEIVING TRANSFORMER

Represents the latest advances made towards the ideal transformer and embodies the greatest degree of perfection yet attained. No private value can be bestowed where accuracy is desired and electrical transformers are designed to be used in the most exacting work. The illustration shown herewith cannot possibly do justice to the instrument itself. The primary winding is contained in a cabinet, the top and sides of which are polished hard rubber. The 15-turn switches are mounted on the front. One switch controls the primary in groups of several turns and the other controls one turn at a time. The entire variation of the primary is thus covered by the rotation of two knurled knobs rather than the movement of a slider, and may be varied from 1 to 225 turns in steps of one turn at a time. The windings are especially adapted to have wave lengths. The secondary is wound with green silk covered wire. The ends are HARD RUBBER, turned and polished. Secondary variation is secured by a 12-point switch which makes it possible to have 25 different values. Send 6 cents for our catalog.

DO IT TODAY.

YOU NEED IT.

ARE YOU BUILDING SOMETHING?

Our No. 6 CATALOG shows several hundred parts and sets of materials for building your own apparatus at home which have never before been listed. We do all the finish work in our factory and ship it ready for home building.

WE HAVE JUST WHAT YOU HAVE BEEN LOOKING FOR

A Treatise on Wireless Telegraphy, telling how to set up an aerial, connect apparatus, etc., together with a Call list and Wiring Diagrams, FREE with every order. In stamps will bring you this wonderful book. The best catalog of wireless apparatus, etc., published.

ADAMS-MORGAN CO. 13 ALVIN PLACE, Upper Montclair, N.J.
August Bargains
Consisting of
BRAND NEW ARTICLES
Of A Style
DISCONTINUED
By Us in
CATALOG No. 15
Every article bears our usual guarantee covering workmanship, materials and efficiency. It will be hard for you to understand why we have changed these fine instruments for our present style.

IF?
You have not yet sent for YOUR copy
OF
CATALOG No. 15
SEND TODAY
IT IS THE
"Livest Catalog in America"
This catalog illustrates a complete line of wireless, electrical and experimental apparatus as well as books, sporting goods, printing presses, steam engines, watches, photographic supplies, etc., etc.

The ELECTRO IMPORTING CO.,
236 FULTON STREET, New York.

If any of the above bargains are to be shipped by Parcel Post remit sufficient postage. Where postage is not included goods will be sent by Express or Freight, collect.