(2)

AGMETIC AMPLIFIERS AND
ATURABLE TRANSFORMERS
FAST RESPONSE
MAGNETIC AMPLIFIERS

$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	Supply Freg. In c.p.s.	$\begin{aligned} & \text { Power } \\ & \text { out. } \\ & \text { watts } \end{aligned}$	$\begin{aligned} & \text { Volt. } \\ & \text { Out. } \\ & \text { V. AC } \end{aligned}$	AC or DC sienal voltapo req'd for fuli output.	
MAFS	50	13	110	1.0	-
MARS	400	5	57.5	1.2	0.4
	400	10	57.5	1.6	0.6
MAB-7	400	15	57.5	2.5	1.0

SINGLE ENDED
MAGNETIC AMPLIFIERS

$\begin{aligned} & \text { Cat. } \\ & \text { Me. } \end{aligned}$	Supply Frot. C.P.S.	$\begin{aligned} & \text { Power } \\ & \text { out. } \\ & \text { Watts } \end{aligned}$	$\begin{aligned} & \text { sig. reydd } \\ & \text { for fuld } \\ & \text { ctp. MA-DC } \end{aligned}$	Tatal res. contr. Wdg. ח!	Lead res. othme
MAO. 1	60	4.5	3.0	1.2	3800
MAO-2	60	20	1.8	1.3	700
MAO-4	60	400	9.0	10.0	25
MAO-5	60	575	6.0	10.0	25

PUSH-PULL
MAGNETIC AMPLIFIERS
Phase reversible

$\begin{aligned} & \text { cas. } \\ & \text { Mo. } \end{aligned}$	$\begin{aligned} & \text { Supply } \\ & \text { sproly. } \\ & \text { C.p.s. } \end{aligned}$	$\begin{aligned} & \text { Power } \\ & \text { Out. } \\ & \text { Watts } \end{aligned}$	$\begin{aligned} & \text { yoll. } \\ & \text { out. } \\ & \text { y. Ac } \end{aligned}$	Sig. req'd for full outp. MA-DC	Total res. contr. wds K)
MAP-1	∞	5	-	1.2	1.2
MAP-2	60	15	115	1.6	2.4
1ap-3	∞	50	115	2.0	0.5
AAR-I-A	6	50	115	7.0	2.9
MAP-4	∞	175	115	8.0	6.0
tap. 7	400	15	115	0.6	2.8
1APPS	400	50	110	1.75	0.6

SATURABLE TRANSFORMERS
Phase roversible

Crat.	Supply Frog. C.P.S.	Power watis	Volt. Out. Y. AC	Sig. reg'd for fuil outp. MA-DC	Tetal res. contr. wag. K!
Mas-1	60	15	115	6.0	27
MAS-2	400	6	115	4.0	10
1as-5	400	2.7	26	4.0	3.2
MAS-6	400	30	115	4.0	8.0
MAS.7	400	40	115	5.5	8.0

All units designed for 115 V-AC operation

VARIABLE TEST VOLTAGE MEGOHMMETER NO. 1620

The Freed Type 1620 Megohmmeter is a versatile insulation resistance measurement instrument with a continuously variable $D C$
lest potential from 50 to 1000 volts.

Components such as transformers, condensers, motors, printed circuils, cables and insulation material can be tested at their rated voltage and above, for safely factor Resistance - 0.1 megohms $104,000,000$
megohms.
Voltage - variable, 50-1000 volts.
Accurate - plus or minus 5% on all ranges. simple - for use by unskilled operators. Safe - high voltage relay controlled. Self contained - AC operated.

OTHER MEGOHMMETERS AVAILABLE Type 1620 C Mogohmmetor - a type 1620 with
 Type 1020 Megohmmeter - a 500 volr fixed tes
polential Ronge $1, ~ m a g o h m ~ i o ~$
2
 10 million megohms

FOR PRECISION LABORATORY OR PRODUCTION TESTING

1110-AB INCREMENTAL INDUCTANCE BRIDGE AND ACCESSORIES
Accurate inductance measurement with or without superimposed D.C., for all types of iron core components.

Inductance: 1 Millihenry to 1000 Menry
Frequency: 20 to 10,000 Cycles
Accuracy: 1% to 1000 Cycle
Acceracr: 1% \% 10.1000 Cyele, 2% 10 10 KC
Conductance: 1^{1} Micromho 101 MHO
$\because 0 \because: 0.510100$
Superimpored D.C.: Up 10 I Ampere
Direct Roading: For use by unskilled ACCESSORIES AVALLAELE
1140-A Null Dotector 1170 D.C. Supply and 1180 A.C. Supply

MIL-T-27A POWER, FILAMENT, PULSE \& AUDIO TRANSFORMERS

POWER TRANSFORMERS - STANDARD

FILAMENT TRANSFORMERS-STANDARD

Cat. No.	Secondary		$\begin{aligned} & \text { Test } \\ & \text { VRMS } \\ & \hline \end{aligned}$	CIIL
	Volt	Amp		
MCFI	2.5	3.0	2,500	EB
MGF2	2.5	10.0	2,500	68
MGF3	5.0	3.0	2,500	FB
M6F4	5.0	10.0	2,500	HB
MeF5	6.3	2.0	2,500	FB
MGF6	6.3	5.0	2,500	68
MEF7	6.3	10.0	2,500	JB
MGF8	6.3	20.0	2,500	KB
MGF9	2.5	10.0	10,000	J8

Vrite for detailed listing, or special requirements, and copies of complete Transformer and Laboratory Test Instrument Catalogs
FREED TRANSFORMER CO., INC.
1727 Weirfield St., Brooklyn (Ridgewood) 27, N.Y.

electronio DES I GN

Contents

High Accuracy Servo Element (Cover)

Editosial

Engineering Review
Washington Report

feafures

Reliability-Design Technique for Complex Systems, H. E. Blanton
High Accuracy Servo Element
Variable Coefficient Trimmer
VTVM Survey-II, S. Prensky
250 Mc Coaxial Switch
Telemeter Decommutation System
Ferrite Transducers for Electromechanical Filters, G. S. Hipskind

Trends in Components
Sub-Miniature Metallized Paper Capacitors, P. P. Grad

Ideas for Design

Measuring AC Currents in Transistor Circuits .
Antenna Impedance Measurements90

Low Cost Speaker Horn

Improved Harness Layout

Russian Translations

What the Russians are Writing .

Abstracts

Frequency Compresion of Radar Images

Improved Transistor Biasing 102

epartments

Meetings
New Products
Production Products
New Literature
Report Briefs
Patents
Books
Standards \& Specs
Careers Section.
Advertisers' Index
-

ELECIRONIC DESIGN is published semi-monthly by Hayden Publishing Company, Inc., 19 E. 62nd Street, New York 21, N. Y., T. Richard Gascoigne, President;
James S. Mulholland Jr., Vice-President \& Treasurer and David B. Landis, SecreJames S. Mulholland Jr., Vice-President \& Treasurer and David B. Landis, Secre-
tory. Printed af Hildreth Press, Bristol, Conn. Acceptance under section 34.64 P. L. \& R. authorized. Copyrighted 1957 Hayden Publishing Company, Inc. 30,000
Copies this issue.

Potter Model 905
 Digital Magnetic Tape Handler

(75 inches per
second with 3 msec
starts and stops)

Meets all requirements for speed and convenience in processing large quantities of digital data

The Potter Model 905 is the result of the most extensive study of data-processing requirements. It combines high speed with complete reliability and easy accessialigned gaps provides dimensional stability and minimizes digital drop-outs caused by oxide pickup.
Tape widths:

> A - $1 / 4^{\prime \prime}$ (2 or 3 channels) B - $1 / 2^{\prime \prime}$ (6 or 7 channels) $\mathbf{C}-5 / /^{\prime \prime}$ (up to 8 channels) $\mathbf{D}-13 /^{\prime \prime}$ (up to 10 channels) $\mathbf{E}-1^{\prime \prime} \quad$ (up to 13 channels)

Speed combinations:
$J-30$ and 7.5 inches per second
K - 60 and 15 inches per second
$\mathrm{L}-75$ and 18.75 inches per second

- Special (speeds up to 75 inche 3 to 1 and 6 to 1 are available on special order. Other speed combinations can be accommodated.)

Start time:
Stop time:
3 milliseconds
$8^{\prime \prime}$ or $10^{1 / 2^{\prime \prime}}$ standard NAB reels. Adaptors
Control: Front panel pushbuttons or remote
Weight:
Dimensions: control contact closure and pulses. 100 pounds
Panel, width . . . 19" ; height . . . 241/2"

Depth behind panel... ${ }^{131 / 2^{\prime \prime}}$ Depth in front of panel $\ldots 3^{1 / 2 /^{\prime \prime}}$
110 to 120 volts, $60 \mathrm{cps}, 400$ watts.
Power Requirements: 110 to 120 volts, $60 \mathrm{cps}, 400$ watts
For more information, write, wire or phone your Potter representative or the factory.

POTTER INSTRUMENT COMPANY, INC.
115 Cutter Mill Rood
Great Neck. L I N Y Y

CIRCLE 2 ON READER-SERVICE CARD FOR MORE INFORMATION

DRIVER-HARRIS ALLOYS AT WORK IN PRODUCT ADVANCEMENT

Nichrome ${ }^{*}$ V limiting resistor solves age old brush problem in Ward Leonard Dimmers

This Ward Leonard 6.6 KW Radiastat ${ }^{\dagger}$ Dimmer is essentially a specially designed core type autotransformer whose output voltage is linear, furnishing smooth, stepless control from maximum to zero. Other notable features are: Highest rating in smallest size and longer, maintenance-free life.

Nearly all adjustable autotransformers depend upon carbon brushes to limit the short-circuiting current which occurs whenever the brush straddles two segments. However, in the Radiastat Dimmer, circulating currents are kept to a minimum in a unique way, permitting use of self-cleaning, self-lubricating, low resistance silver-graphite brushes.
In the Radiastat, each segment is electrically connected to its respective turn of the winding through a Nichrome V current limiting resistor. During commutation, the main winding is protected against burnout from high short-circuiting currents: thereby eliminating external resistors or high resistance brushes.

These all important resistors (one for each segment) connect to the segments beneath the vitreous enamel and run out and up to connect with the winding. They protect every step of the Radiastat, regardless of the contact arm position-drop a penny or a nail across adjacent segments-there's no pouff! no burnout! The Nichrome V circulating current resistors completely safeguard the unit.
Nichrome V is used because it supplies a specified ohmage in a \#10 wire $3 \pi / 18^{\prime \prime}$ long; bonds well with the vitreous enamel; is highly resistant to heat and corrosion, and easily withstands severe current surges.
Driver-Harris now produces 132 different high nickel alloys in many different forms and in hundreds of sizes for almost every kind of industrial application. Do you need help with a special alloy? Tell us about it and if we haven't got it, we'll develop it for you.

Driver-Harris Company

HARRISON, NEW JERSEY - BRANChes: Chicago, Detroit, Cleveland, touisville
Distributor: ANGUS-CAMP日ELL, INC., Los Angeles, San Francisco in Canada: The b. GREENING wire company, ldd., Hamillon, Ontario makers of the most complete line of alloys for the electrical. electronic, and heat-treating industries CIRCLE 3 ON READER-SERVICE CARD FOR MORE INFORMATION

Editorial

The Revolutionary Product We Didn't Feature

When the military clamps a lid on performance ratings we're at an impasse in presenting a techuical article on a product. That's why we've run mit feature on inertial guidance accelerometers, gyri) scopes, or stable platforms in Electronic Design.
We're a little remorseful that we haven't had story on these devices. The production of inertial guidance components, particularly those for lous range navigation, is one of today's foremost exam ples of the genius of American industry. The principles of inertial navigation are simple-a design that is manufacturable is the rub. Fabricating tolerance units on a production basis which are the navigational counterparts of the celestial stars is a milestone for American industry. Only a few companies have accomplished the feat, but it has been done. Here are some of the accomplishments.
To keep the drift rate of a gyro for airborne use not exceeding one minute of arc per hour (one nautical mile per hour), the torque acting on the revolving mass would have to be less than 0.08 dyne-cm. This torque is equivalent to the gravity moment exerted by the weight of the paper within this letter (o) cut out and stuck on the gyroscope gimbal at a half-inch radius from the gimbal axis according to an example provided by J. M. Slater of Autonetics. For an air transport to be guided to within 15 miles of its destination after a five-hour 3000 nautical mile great circle flight, gyro drift rate can be about 0.6 minutes of arc per hour. Auto netics' C. F. O'Donnell points out that this is but one complete rotation in about four years. Exac military demands are not known, but the above examples give an idea of specifications being met.
Sperry Gyroscope, as we have reported before does ultraprecision machining to 25 millionths of an inch. Test devices for evaluating precision machined products measure reaction torques of less than 0.05 dyne-cm. Some of these measurements are made on 3 -ton instruments mounted on seismic blocks below the ground. The weight of a gnat is supposed to spin the dial beyond its working scale There is little possibility of gnats being present though, as most air is filtered to remove all particle larger than 12 one-millionths of an inch.

New levels of ultraprecision machining, dimensional stability, quality control, cleanliness, and manpower skill have been reached in the manufac ture of intertial guidance components. To quote J. M. Slater, "[This] . . . is a tribute to the foresight of the national defense authorities for initiating subsidizing, and maintaining the requisite intensivt development programs. It is also a tribute to the scientific, engineering, and manual skills of the personnel involved in such programs." Such statements have been often made. None other has probably been more sincere or more right.-JAL

Engineering Review

 For more information on developments described in "Engineering Review," write directly to the address given in the individual item.

Lightweight Traveling-Wave Tube: Reduction in weight and a substantial increase in operating reliability are the result of a new design in traveling-wave tubes developed by Radio Corp. of America. The experimental tube eliminates the need for external electromagnetic focusing equipment amounting to considerable weight in tubes of high-gain, high-sensitivity design. Vibration, and other variations in environment cannot affect the alignment of the focusing field in the experimental tube. As described, the tube substitutes a compact electrostatic focusing el ment that is built into the tube and is automatically given a permanent proper alignment during assembly.
The result of the design is a plug-in tube which requires no critical alignment during installation, and which opsrates under severe conditions without requiring real gnment. The tube weighs less than a pound, complete with focusing element, which consists of two pairs of helices, or spiral bifilar windings. Only the larger outer pair carries the signal waves, while the inner pair is used with the outer pair for beam focusing.

Ford Gives Missiles a Free Lift

A floating platform for launching missiles is one solution proposed for eliminating the first fuelconsuming miles of a missile's flight. Within the next few months Aeronautics Systems, Inc., Ford Motor Company's West Coast subsidiary, will launch a rocket vehicle which, it is hoped, will travel several thousand miles above the surface of the earth. Designated Operation Far Side, the program is sponsored by the Air Research and Development Command. The initial phase of the Far Side project represents the first step in a research program aimed at obtaining information regarding the environment at great distances from the earth. Present planning calls for further experiments at even higher altitudes, and it is expected that future weapons systems will benefit from the project.

The first Far Side balloon flight experiment was conducted a few months ago at the General Mills Flight Test Center near New Brighton, Minn. During the test a helium-filled balloon designed and produced by General Mills carried 2300 lb to a height in excess of $104,000 \mathrm{ft}$. The balloon, which measured over 200 ft in diam, proved extremely stable during the test. The missile-launching experiment will occur at about the same altitude.
The rocket, inserted into the lower end of the balloon transport, will blast upward through the balloon on firing with an initial first stage thrust of $160,000 \mathrm{lb}$. Boosted in four stages by a combination of ten solid propellant rockets, the Far Side instrumentation will go through its maximum acceleration of 200 g during its 26 sec of powered flight. From stage four the 6×4 in. instrument package and the burned-out last stage rocket will continue upward into space as a free projectile.

During its ascent and descent a miniaturized radio transmitter in the instrument package will transmit measurement of cosmic rays and other data to ground receiving and recording stations. Data will be obtained from these experiments on the nature of cosmic rays, the earth's magnetic field, as well as other phenomena present at high altitudes.

The rocket will be fired from its floating platform and will shoot up through the center of the supporting balloon.

Which ceramic characteristics do you need....
haracteristic

Dielectric Constant (1 mc)

Power Factor (1 mc)
Loss Factor (1 me)
Water Absorption (\%)
Tensile Strength (p.s.i. $\times 10^{3}$)
Flexural Strength (p.s.i. $\times \mathbf{1 0}^{\mathbf{3}}$)
Compressive Strength (p.s.i. $\times 10^{\text {it }}$
Dielectric Sirength (volts/mil)
Hardness, Moh's scale
Modulus of Elasticity (p.s.i. $\times 10^{6}$)
Specific Gravity
Linear Thermal Expansion $20-100^{\circ} \mathrm{C}$ (in. $/$ in. $/{ }^{\circ} \mathrm{C} \times 10^{-6}$)

T_{E} Value $\left({ }^{\circ} \mathrm{C}\right.$)*

E Value (O)

How Raytheon R-95 High-Alumina Ceramic can save you money-do a better job

Consider well the unusual properties present in Raytheon R-95 HighAlumina Ceramic. If your needs are for a less specialized material, you may find a satisfactory performer at lower cost.
However, when you require a material with remarkably high reststance to high temperature, shock and vibration; high dielectric strength and high electrical resistance at all temperatures; extreme hardness; high mechanical strength and positive sealing capability-then you will surely want to be familiar with the ratings of Raytheon's R-95. Proper application of this superior material assures continuing design and assembly economy, particularly where ceramic seals are a factor.
Ceramic parts manufactured from Raytheon R-95 High Alumina are available, either alone or as hermetic ceramic-to-metal assemblies, in accordance with your specifications. The assemblies can be soft or hard soldered into your production in your own plant.
Send sketches or drawings outlining dimensions and tolerances, together with operational conditions. We will be pleased to supply information and help on any of your ceramic needs.

Write for complete specification sheet and your copy of Ceramics in Electronic Design, comprehensive questions and answers on the growing role of ceramics in modern design. No cost or obligation, of course.

Excellence
in Electronics

Engineering Review

Computer Testing of Instruments

Fischer and Porter Co., Hathor Pa., announces the recent purchase an electronic differential analyz from Electronic Associates, Inc. I analog computer will be used \& studying dynamic control system pe formance and for analysis of the ope ating characteristics of the company industrial instruments and instrume components under development. I unit will provide additional servio for the company's customers by pr viding means of simulating compl processes, such as accurate predictic of transient and steady state phenor ena in closed loop process control.

Enlarging Plant for Teflon Coating
The Sparta Manufacturing Co. Dover, Ohio, is enlarging their faci ties for the specific purpose of incre ing their capacity for coating metal and non-metallic parts with Teflo The new quarters will be equipp with completely air conditioned rooms so that humidity and temper tures can be accurately controlle Production line techniques will be i stalled enabling Sparta to proce parts in the quantities that are d manded. The company intends work closely with the customer help solve any complex problems th may arise, and it will run certain sai ples at a nominal fee.

VHF Radio-Telephone System

An inexpensive system bridges telephone service over terrai where it would be physically or ec nomically impractical to install tel phone lines has been developed Allen B. Du Mont Labs., Inc., N Designated the MCA-474-B Thr Channel Multiplex Station, the equi ment utilizes bruadband, point-t point radio in the 450 mc range. B sides its use as a permanent temporary telephone installatic operation in the uhf band makes t equipment advantageously adaptal as a broadband two-way radio syste a multi-channel radio communicatio unit, carrying up to 54 teletype cha nels, or as the transmission facilit for slow-scan industrial television. < CIRCLE 4 ON READER-SERVICE CARD

Automatic Selective Calling For Two-Way Radios

A unit which converts any standard two-way adio network to a fully automatic selective calling vistem has been developed. Christened Tonicam Tone Initiated-Carrier Maintained), the unit elimnates co-channel annoyance in two-way radio communications without the necessity of transmititig bothersome continuous low-frequency tones. Toniam features both a half-second tone burst to acivate a receiver and automatic receiver muting at he termination of a transmission. Selective calling utomatically rejects the constant stream of mesages on a frequency channel shared by many syslems and responds only to messages from its own y stem. Once the initial contact is made, only the caller and the called unit use the channel and other nnits within that system hear nothing.
As an illustration of Tonicam operation, a base tation wishing to contact a specific mobile unit, ar A, transmits a half-second burst of the system's equency tone, and unmutes all receivers in his etwork. All mobile units hear the call to Car A and the operator of Car A lifts his mike from its hangup. This automatically returns his radio to normal two-way operation. All subsequent transmissions between the base and the mobile unit are normal, using no tone burst. Only the base station ind Car A use the channel; the other units within the system hear nothing. The base station operator an talk with more than one mobile unit by calling he desired units. Those who lift their mikes from he hangup position on the mobile unit are participants in a conference call. The unit was designed v Allen B. DuMont Labs., Clifton, N.J.

Correction: We hope haste doesn't make waste in his case, but haste did make mistakes in "A Voltage Cain Nomogram For Transistor Circuit Design" by ludolph Wellsand, p. 56, July 15, 1957. In rushing his nomogram article into our "Transistor Issue" ve did not catch inconsistencies in subscripts such ${ }_{s} r_{e} \mathbf{r}_{c}$ etc. We also confused subscripts by not disinguishing correctly between e's, c's and O's.

1. Following Equation (1), that portion which eads, "Which assumes: $R_{F}+r_{c}+r_{1}$ « r_{c} ", should rad: $\mathbf{R}_{\mathbf{E}}+\mathbf{r}_{\mathrm{e}}+\mathbf{r}_{\mathrm{b}}$ 《 \mathbf{r}_{c}
2. Equation (2) should read:

$$
\mathbf{r}_{\mathrm{c}} \frac{\mathbf{V}_{\mathrm{CB}}}{\overline{\mathbf{I}}_{\mathrm{co}}}
$$

3. The column headings in Nomogram I which read $(1=\alpha)$ and $r_{b}(1=\alpha)$ should read:
$(1-\alpha)$ and $r_{b}(1-\alpha)$ respectively.
4. Midway down on the α scale of Nomogram I, he value marked .890 is obviously .990
5. At the very bottom of the R_{R} scale on Nomorain II, the correct value should read 10 and not 0 . (. Number 6 of the Sample Problems should fea.1: " $R_{\mathrm{R}}>46$ by approximately 10 times"-not

now... 0 TO 32 VOLT, - TO 25 AMPERE, low cost, continuously adjustable DC POWER SUPPLY ${ }^{b y}$ PERKIN!

IMMEDIATE DELIVERY...\$449.00

SPECIFICATIONS

DC OUTPUT: 0.32 volts, 0.25 amps REGULATION: $\pm 1 \%$ (a) at 28 Volts
D. C. Increases to 2% max. over the range 24 -32 V.; does not exceed 2 vols regulation over the range $4-24$
volts D.C.; (b) from $1 / 10$ Full Load to volts D. C.; (b) from $1 / 10$ Full Load to
Full Load; (c) at a fixed AC Input of 15 volts.
RIPPLE: 1% rms @ 32V. and Full

Load - 2\% rms max. © any voltage above 4 vorts. AC INPUT: 115 Volts, Single Phase, MOUNT MOUNTING: Cabinet $203 /{ }^{\prime \prime}$ " wide x
 panel
high.) WEIGHT: 130 lbs.
If these are required, write for specifications on Model MR 1040-30A (5-40V.@30 A) or 28-30 WX.M (24-32 V. @ 30 A.), which are stabilized for AC line changes and regulated to $\pm 1 / 2 \%$.
When you require a power supply, SPECIFY PERKIN, for a wider range of standard models and immediate delivery from stock. There are over 15,000 Perkin units in operation in industry today.
tFor rack panel units without meters. Wire factory collect
for prices for units with cabinet and meters.
For a prompt reply on your application,
write factory on your letterhead.

PERKIN

PERKIN ENGINEERING CORPORATION 345 KANSAS STREET, EL SEGUNDO, CALIFORNIA•OREGON 87215 Immediate delivery on standard models available from factory and: New York area office: Sales and Warehousing: 1060 Broad St., Newark 2, N.I., MArket 3-1454
New England area office: 46 Amesbury Lawrence, Mass., MUrdock 3-3252 New England area office : 46 Amesbury, Lawrence, Mass., MU'́dock 3 -3252 SALES OFFICES: Chicago: PA 56824. Philadelphia: BR 5-2600 - Seattle: LA 9000 . Minneapolis:
MII 6-2621. Atlanta: TR $6-3020$. Winston-Salem: 4-0750. Charlotte: ED $2-7358$. Redwood
 City Calif: : EM 9-3354, Albu
Euclid, Oho: RE 2-7444
Foreign: New York: BR 9-1296.

PERKIN

28 Volt Models

Matal	Volts	Amps	Res.	$\begin{aligned} & \text { AC input } \\ & (60 \mathrm{cps}) \end{aligned}$	$\begin{gathered} \text { Ripple } \\ \text { rms } \end{gathered}$
28-SVFM	0.32 V	5	$\begin{aligned} & 15-20 \% \\ & \text { (24.32V } \\ & \text { range) } \end{aligned}$	$\begin{gathered} 115 \mathrm{~V} \\ 1 \text { phase } \end{gathered}$	2\%
28.10wx	24.32 V	10	$\pm 1 / 2 \%$	$\begin{gathered} 100 \cdot 125 \mathrm{~V} \\ 1 \text { phase } \end{gathered}$	1\%
MRE32-15A	2.36 V	15	$\pm 1 / 2 \%$	105-125V 1 phase	1\%
28-15VFM	0.32 V	15	$\begin{aligned} & 15.20 \% \\ & \text { (24.32\% } \\ & \text { range) } \end{aligned}$	$\begin{gathered} 115 \text { V } \\ 1 \text { phase } \end{gathered}$	5\%
msov	0.32V	25	$\pm 1 \%$	$\begin{gathered} 115 \mathrm{y} \\ 1 \text { phase } \end{gathered}$	1\%
MR1040.30A	5.40 V	30	$\pm 1 \%$	100-130V 1 phase	1\%
20.30wxM	24.32V	30	$\pm 12 \%$	$\begin{array}{\|c\|} \hline 100-125 \mathrm{~V} \\ 1 \text { phase } \end{array}$	1\%
28.50wx	$\begin{array}{c\|} \hline 24.32 \mathrm{v} \\ \pm 10 \% \end{array}$	50	$\pm 1 / 2 \%$	$\begin{aligned} & 230 \text { V* } \\ & 3 \text { phase } \end{aligned}$	1\%
$\underset{100 \times A}{\text { Man }}$	24.32V	100	$\pm 1 / 2 \%$	$\left\lvert\, \begin{gathered} 208 / 2300^{\circ} \\ 3 \text { phase } \end{gathered}\right.$	1\%
$\begin{gathered} \text { MR2432. } \\ 200 \\ \hline \end{gathered}$	24.32 V	200	$\pm 1 / 2 \%$	$\begin{array}{\|c\|} \hline 208 / 2300^{\circ} \\ 3 \text { phase } \\ \hline \end{array}$	1\%
$\begin{gathered} \text { MR2432- } \\ 300 \end{gathered}$	24-32 v	300	$\pm 4 / 2 \%$	$\begin{array}{\|c\|} \hline 208 / 2300^{\circ} \\ 3 \text { phase } \\ \hline \end{array}$	1\%
$\begin{gathered} \text { MR2432- } \\ 500 \end{gathered}$	24.32 V	500	$\pm 1 / 2 \%$	$\underset{\substack{208 / 230 V^{\circ} \\ 3 \text { phase }}}{ }$	1\%

6,12,115 Volt Models

CIRCLE 5 ON READER-SERVICE CARD FOR MORE INFORMATION

Engineering Review

DC Testing of AC Insulation

Despite the fact that the electrical industry is expending much effort in testing insulation on ac apparatus by de voltage, there is no clear and scientific demonstration of the validity of the practice. These findings were announced by two General Electric Co. engineers, C. M. Foust and B. V. Bhimani, of Schenectady, N.Y.
Their conclusion on the widespread practice of direct voltage testing on cables, transformers, capacitors, switchgear and rotating machinery, followed a large number of tests on 12 different kinds of sheet insulation, using especially designed equip ment, including a new type of scintillation probe for ionization detection to study the initiation, severity location and spread of ionization. Based on observations made, several conclusions were reached.

It was noted that composite insulation life or in sulation breakdown strength cannot be predicted by test data for three reasons, namely: the voltagecurrent data cannot be plotted in any systematic manner such that the insulation breakdown voltage can be calculated by its extrapolation; the voltage current relation involves many variables and uncertainties not incipient to breakdown such as, uncertain correlation between conductivity current and ionization levels and wide variation in current values from one sample to another and from one test to another on the same sample; all factors such as insulation make-up, electrode configuration, temperature, humidity, etc., being the same, the patterns of stress distribution and the location, severity and extent of ionization are different under direct and alternating voltage stresses.
In addition, fissures and defects inside composite insulations cannot be detected by de test data, nor may damage possibly suffered from the application of high direct-voltage upon insulation designed for operation under ac service be discovered, even from leakage current characteristics. Finally, the mechanism of extending ionization, similar to that existing under direct voltage stresses, is absent under alternating voltage stresses.
In a previous issue of Electronic Design, August 15, 1957, p. 44, the position favoring DC Overpotential Testing for electronic components was discussed by Victor Wouk of Beta Electric Div., New York, N.Y.

Educational Research

The need for research into what is taught and how it is taught was cited by Dr. Eric A. Walker, President of Pennsylvania State Univ. at the American Society for Engineering Education annual meeting at Corncll Univ. Despite brilliant records

NOW, in the JETEC 30 package

both Silicon and Germanium, including NEW AUDIO

FUSION ALLOY
 RAYTHEOD TRANSISTORS

RAYTHEON AUDIO TRANSISTORS Tomperature Range $-65^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Type	Case	Supersedes	$\underset{\substack{\text { Circuit } \\ \text { Usage }}}{\text { cel }}$	$\begin{aligned} & v_{\text {cex }}^{\text {max. }} . \end{aligned}$ Volts	Beta	$\begin{gathered} \mathrm{I}_{\text {mao }}^{\text {max. }} \\ \mu \mathrm{A} \end{gathered}$			Diss. ${ }^{\circ} \mathrm{C} / \mathrm{mw}$
	2N63	A	-	Amplifier	22	22	20	15	39	0.59
	2N64t	A	-	Amplifier	15	45	20	15		0.59
	2N65:	A	2N130	Amplifier	12	90	20	15	42	0.59 0.59
	2N131A	${ }_{B}^{B}$	2N131	Amplifier	15	45	20	15	41	0.59
	2N132A	B	2N132	Amplifier	12	90	20	15	44	0.59
	2N133A	B	2N133	Low Noise	6	50	20	15	40	0.59
	2N362	c	-	AF Driver	22.5	90	25	20	43	0.36
	2N363	C	-	AF Driver	22.5	45	25	20	40	0.36
	2N422	c	2N133	Low moise	22.5	50	25	20	40	0.36
	CK754	B	-	High Gain	10	300	5	10	42	0.59

RAYTHEON AUDIO OUTPUT	Type	Case	Supersedes	$V_{\text {ce }}$max. Volts	Beta		${ }_{\text {max. }}^{\text {L. }}$ $\mu \mathrm{A}$	Power Gain		Power Output		$\begin{gathered} \text { Diss } \\ \text { Coefi. } \\ \text { Col/mw } \end{gathered}$
								$\begin{gathered} \text { Class } A \\ d b \end{gathered}$	$\begin{gathered} \text { Class B } \\ d b \end{gathered}$	$\begin{gathered} \text { Class } \mathrm{A} \\ \mathrm{mw} \end{gathered}$	Class B mw	
TRANSISTORS	2N138B	B	2N138A	12	90	20	15	37	26-31	20	50	
Temperature Range	2N359	c	2N138A	22.5	100	25	50*	37	33	50	500	0.36
Tempora	2N360	C	2N138A	22.5	70	25	50^{*}	34	30	50	500	0.36
$-65^{\circ} \mathrm{C}$ 10 $+85^{\circ} \mathrm{C}$	2N361	c	2N138A	22.5	40	25	50^{*}	30	30	50	500	0.36

RAYTHEON	Type	Case	Supersedes	Circuit	$\begin{gathered} v_{\text {ce }} \\ \text { max } \end{gathered}$ Volts	$\begin{aligned} & \text { faco } \\ & \text { Mc } \end{aligned}$	$\begin{aligned} & \mathbf{c}_{\mathrm{c}} \\ & \mu \mu \mathrm{l} \end{aligned}$	$\begin{gathered} \text { Powe } \\ \hline \text { at } 455 \mathrm{Kc} \\ \mathrm{db} \end{gathered}$	$\frac{\text { Gain }}{\substack{\text { at 2Mc } \\ d b}}$	$\begin{gathered} \text { Conv } \\ \text { Gain } \\ \text { db } \end{gathered}$	$\begin{gathered} \text { Diss. } \\ \text { Diss. } \\ \text { Coef. } \\ \hline \end{gathered}$
ADIO FREQUENGY	2N413	C	2N111/CK759	Oscillator	-15	3	12 av .	-		-	0.4
TRANSISTORS	2N413A	C	2N111A/CK759A	IF Ampl.	-15	3	12 ± 2	32	-	$\bar{\square}$	0.4
TRANSISTORS	2N414	C	2N112/CK760	Converter	-15	5	12av.			26	0.4
Temperalure Range	2N414A	C	2N112A/CK760A	IF Ampl.	-15	5	12 ± 2	35	-	$\overline{3}$	0.4
$-65^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	2N415	${ }_{C}^{C}$		Converter	-10	10	12 l 12.	39	二	30	0.4 0.4
	2N416	c	2N113	Gen. Purp.	-10	10	12 av .	3	18		0.4
	2N417	c	2N114	Gen. Purp.	-10	20	l2av.	-	25	-	0.4

For above eight types $I_{c}=-200 \mathrm{~mA}$ max.

Wrise for Dapa Sheots on individual pypos for complete ratings and cost conditions.

All ratings on this page taken of $25^{\circ} \mathrm{C}$.
Dissipation confficients Dissipation coofficie shown are for free air.

SEMICONDUCTOR DIVISION

silicon and Germanium Diodes and Transistors - Silicon Rectifiers
NEWTON, MASS.: 55 Chapel St., Blgelow 4-7500 - NEW YORKz 589 Fifth Ave., PLaza 9-3900 CHICAGO: 9501 Grand Ave., Franklin Park, TUxedo 9-5400
LOS ANGELES: 5236 Santa Monica Blvd., NOrmandy 5 -4221
in research with materials, processes, methods and the like, Walker felt that research involving the shortage of professional skills has been relatively neglected. "In the next 15 years," he stated, "engineering education in the United States is going to be revolutionized. If the sweeping changes that are going to take place in the next few years are to produce a sounder, better system of engineering education, we must frankly recognize the problems that we are goirg to face; work out sane, logical solutions to them; and then proceed systematically and courageously to carry them out."
The Penn State president suggested a nine-point program calling for: Identification of potential college material, encourage superior students with the desire to go to college, provide financial assistance for each student to attend college, utilize engineers efficiently, revise the Selective Service System, eliminate costly and wasteful cost-plus-fixed fee government contracts, seek means of financing basic research in engineering, and evaluate the curricula and methods used to teach it.

Bouncing Microwaves

The first commercial microwave system to achieve reliable communications over a 40 -mile distance by using mirror-like reflectors instead of regular repeater stations has been installed for the El Paso Electric Co. in Texas. The system is designed to improve communications efficiency between the utility company's facilities at El Paso and Las Cruces. It is capable of handling private conversations, printed material and remote control signals, and will be used to give information on the flow of power between El Paso Electric Co. and interconnected companies.
Difficult terrain problems existed for the General Electric Co. communications engineers who designed the system. The point of origin was 150 ft lower than the surrounding terrain and the electrical utility wanted to avoid the expense of high towers and the problem of acquiring real estate for guying areas. El Paso also desired to eliminate repeater points in the system.
Microwave specialists worked out a system which enabled El Paso to achieve maximum system reliability without the expense and maintenance of a repeater station continuously powered by dc. The resulting system included a 14 -ft steel mesh dish placed at a 55 -ft elevation at the Rio Grande plant. A $20-\mathrm{ft}$ square aluminum reflector was carried piecemeal by jeep to a location on Mount Cristo Rey 4400 ft above sea level, and a $14-\mathrm{ft}$ dish was placed at a point 80 ft high at the main Las Cruces substation. Under the arrangement, microwaves from El Paso's Rio Grande plant are bounced off the mountain reflector on Mount Cristo Rey, and sent to Las Cruces. The: system also operates equally well in reverse, from: Las Cruces to Rio Grande.

Engineering Review

Pulse Transformer Facility: A pulse testing modulator has been installed by the specialty transformer department of Westinghouse Electric Corp., Pittsburg, Pa. The modulator can be used to simulate the input to the pulse transformer under test as well as its output load conditions during operation. For load tests, a waterload rheostat, shown, is used to load the secondary of a pulse transformer. The main advantage of the water load is its smaller physical size with resulting reduced capacitance to ground. The water load can be varied from 500 to 2000 ohms by changing salt concentrations in the solution.

Heat's Image

Answering a long-time need in steel mills, a new type of camera, the evaporograph has been put into use by the steel industry for making maintenance checks and detecting hot spots. Heat from the surface of blast furnaces, and other steel-making facilities appears as a colored image through the lenses of the camera, which was developed by BairdAtomic, Inc., Cambridge, Mass. Differences in temperature of 1 C can be detected, and objects as distant as three miles will register accurately. The instrument will function as long as the measured temperature is above absolute zero and there is a temperature difference existent in the camera's field of view.

The evaporograph consists basically of a membrane which changes in temperature in relation to the infrared radiations focused on it by a lens. An oil vapor condenses preferentially upon the cooler portions of the membrane, causing an oil film of variable thickness to form. Thus, a heat image (focused on the membrane becomes visible and disItinguishable through the different interference colors formed by the film, much as oil slick on fwater exhibits varying colors. By employing a reference temperature in the field of view, the tevaporograph can be used to calculate unknown Itemperatures. By comparison of colors on the memcbrane, differences of temperature in the target area are readily seen.
miniatures

BASICS
MULTI-POLE

CIRCLE 7 ON READER-SERVICE CARD FOR MORE INFORMATION
switching problems resulting from new size, weight, rating, environment, circuit simplificaion, or cost requirements can be time consumng and expensive to solve if tackled alone. But Electro-Snap engineering can save you time, money and performance - and usually with "standard" switches -if you bring your switching problems to us. The switches and actuators on these pages may solve some of your problems inmediately, but they are only a fraction of the
thousands of switch configurations available "off-the-shelf" at Electro-Snap. Remember that all Electro-Snap switches have self-wiping contacts and quick, postive snap action . . . and are built to the toughest aircraft and industrial specifications. Complete data are available for every switch so you always deal with known quantities - no wasted time in finding out for yourself. Ask for this data. Use the coupon below or write us your problem.

H1-43	ESAKM
DPDT	SPDT NO SPDT 2 Cks.
10A-200,000	10A-MIN 100,000
10A-200,000	
-100 ${ }^{\circ} \mathrm{TO}+250^{\circ} \mathrm{F}$.	-67 $10+160^{\circ} \mathrm{F}$.
8 oz.	$41 / 2$ ox.
1-1/4 $\times 3.3 / 4 \times 1.7 / 32$	1.3/4 $\times 2 \times 1.1 / 32$

HERMETICALLY-SEALED

H10.7	ESA-D
$\begin{aligned} & \text { DPOT } \\ & 4 \mathrm{CKI} . \end{aligned}$	DPDT 4 Ckt.
10-50,000	15A-500,000
15-50,000	104-500,000
$-100^{\circ} 10+250^{\circ} \mathrm{F}$.	$-67^{\circ} 10+160^{\circ} \mathrm{F}$.
6 ©z. APPROX.	7 ox.
1.7/64 $\times 2.1 / 8 \times 1.7 / 16$	$2-1 / 2 \times 2 \times 1.3 / 4$

ELECTRO - SNAP SWITch \& MFG. co.

4216 W. Lake St., Chisage 24, Illinois
MAIL COUPON for catalog DETAILS

> \square Mininture
> \square Basic Switches
> Multirpole
Zone \qquad
_Store.

CIRCLE 7 ON READER-SERVICE CARD FOR MORE INFORMATION

Tribulations of a Telescope

The great size of Britain's Jodrell Bank Telescope will make it the most sensitive short wave radio receiver yet constructed, and also the most far reaching transmitter. The justification for producing this fully steerable telescope arose from the important results obtained from an earlier fixed reflector. The fixed reflector was 218 ft in diam in the form of a paraboloid facing upwards constructed of thin wires stretched on tubular scaffolding. However, the construction of the 2000 -ton fullysteerable instrument posed problems not encountered with the fixed version.
One school of thought proposed building the structure out of aluminum alloy. This idea was soon discarded in favor of steel, for steel had the advantage of a relatively high modulus of elasticity -an important factor since the reflector bowl would suffer great stress-changes during its revolution. Coupled with this, the weight of steel was necessary to combat the effect of sudden gusts of wind. In a structure this large, the coefficient of expansion was also an important factor, and again steel seemed the best solution.
A design had to be evolved which would allow construction firms, who had no previous experience with such structures, to mount the system with a sufficiently powerful driving unit. The power needed to rotate the reflector would be relatively small on a calm day, but the presence of a wind necessitated a tremendous force to keep it revolving. For this purpose, trunnions and trunnion bearings were developed by Cooper Roller Bearings Co., Ltd., of Kings Lynn, Norfolk, Eng., which could each stand a combined dead load and wind load of 1000 tons with minimum resistance.
In order to amplify minute celestial radiations before they were dissipated, it was desirable that the receiving amplifier be located as ciose as possible to the aerial. For some purposes the first amplifier will be immediately adjacent to the aerial at the summit of the 66 ft tower in the center of the bowl; but the main amplifiers are suspended in a steel laboratory hung immediately below the center of the bowl itself. The suspended laboratory can be reached by gangways from the top of each bearing tower, where further high level laboratories travel round with the azimuth motion of the telescope. Much of this high-level mechanical and electronic equipment was installed under difficult conditions of access by the Brush Electrical Engineering Co. Ltd. of Birmingham, Eng.

Correction: The model 401A Audio Oscillator, made by Waveforms, Inc., 333 Sixth Ave., N.Y. 14, N.Y., is in truth a highly portable instrument weighing 12 lbs , and not 121 lbs as it appeared in the June 15th Issue.

HyART U.s.a.antl!

VIBRATION...yet normal operation

No-we don't use paint mixers to measure the vibration resistance of General Electric miniaturized sealed relays. But, it is a dramatic illustration of the punishment G-E hermetically sealed relays can -and do-withstand.

The best of laboratory equipment is used to measure this vibration resistance, and the resuits prove-General Electric voltage-calibrated Micro-miniature relays withstand vibration of 20 G's acceleration from 55 to 2000 cycles (. 125 inch excursion from 10 to 55 cycles).

Excellent vibration resistance is iust one of the many "plus" features-such as high- and low-temperature operation, high shock resistance, and rugged con-struction-you get with all Miniature Sub-miniature, and Micro-miniature G-E sealed relays. Today, General Electric relays are proving their reliability on a variety of military and industrial electronics applications.

What's more, you get all of General Electric's complete line of standard-listed relays on only 3 -week shipment from
receipt of order-plus-immediate service on samples and prototypes.

For further information, contact your G-E Apparatus Sales Office-or-write to General Electric Co., Sect. 792-7, Schenectady 5, N. Y., for complete relay data. Specialty Control Dept., Waynesboro, Va.

Progress ts Our Most Important Product

GENERAL ELECTRIC

Engineering Review

Acoustic Test Lab

To check sound pressure levels hig enough to affect the reliability of m chanical and electrical component Bell Aircraft Corp. has developed lat oratory test equipment to cher sound-sensitive components of own, and that of other companies a sub-contract basis. Facilities also simulate a combination of env ronments such as temperature an vibration, in conjunction with high intensity noise.

Different types of equipment, suc as plane wave tubes and resonant an reverberant chambers, make possib a variety of definitive tests. Soun pressure levels up to 160 db for di crete frequency and up to $145 \mathrm{db} f$ random noise are provided over te areas up to 250 sq in.

Holtest Summer Yet: The appearance this 25 a silicon diode isn't exactly due the weather but is the result of a fire at oil refinery. Still functioning, the diode wh originally installed in an oil-immers cathodic protection rectifier, used to pr vent galvanic action corrosion of oil pip lines. The rectifier was burned out in forest fire, the 11-gage steel case bad warped and the oil burned, but three these diodes were found to still have th original operating characteristics. The una were manufactured by Westinghouse Ela tric Corp.
\& CIRCLE 8 ON READER-SERVICE CARD

Smooth Nose for Missiles

One of the smoothest surfaces ever eated by man exists on the nose ones designed for intercontinental allistic missiles. The Air Force disosed recently that several of these ines have been successfully brought rough the blazing inferno of atmosberic re-entry, using the Lockheed 17 research rocket as the test mise. A $40-\mathrm{ft}$ tall projectile, the cket's first stage is a single rge solid propellant, the second age is a cluster of three Recruit ckets, the third is a single Recruit 1 built by Thoikol Chemical Corp. The first stage blasts the rocket into thin air of the ionosphere. With It sufficient air to provide aerodyst to an altitude where denser air gins to turn its nose down. At this pint, the first stage is ejected and the cond stage is ignited, starting the celerated, headlong plunge through y atmosphere. The third stage, with e nose cone, finally comes into acon and drives the X-17 downward at even greater speed, subjecting ese nose cones to the high temperures used to test their design.

Iding 28-Ft Parabolic Antenna
A 28 -ft all-aluminum mesh paralic antenna assembly has been degned to be easily dismantled into 12 parate self-nesting reflector pie ctions and 12 backup supports arpged about a center hub. Providing v rate bulk transportation, the ene assembly can be shipped in two $\times 8 \times 4 \mathrm{ft}$ packages. One package atains 12 reflector sections nested thin each other, and the other box ntains 12 K -frame assemblies with nter hub plate mounting brackets d other hardware.
When erected, the antenna withands 65 lb per sq ft of wind loading hen completely iced. It can be suplied with a supporting structure for sembly on remote locations by a ur man crew using conventional ols. Gains of 29.1 db at 430 mc to 1 db at 2700 mc over normal isoppic antenna performance are of fed by the tropospheric antenna. is made by Prodelin, Inc., 307 Bern Ave., Kearny, N.J.

Comprehensive presentation of maximum ratings, typical operating values, requency ranges, and power levels for most of the principal unclassified types manufactured. An essential refer-ence-guide for microwave engineers and purchasing departments.
Raytheon is the world's largest producer of CW and pulse magnetrons, available in either fixed or tunable designs.

mall this coupon

technical data service
The most complete data service available for magnetrons, klystrons, special tubes and for magnetrons, klystrons, special tubes and contiouing basis at a modest charge. Use coupon to get full details.

Regional Sales Offices: 9501 W. Grand Ave nue, Franklin Park, Illinois • 5236 Santa Monica Blvd., Los Angeles 29, California

Raytheon makes: Magnetrons and Klystrons Backward Wave Oscillators, Traveling Wave Tubes Storage Tubes, Power Tubes, Miniature rubes, Slomiture Tubes Semiconductor Prod. ucts, Ceramics and Ceramic Assemblies

 MANUFACTURING CO.
 Microwave and
 Power Tube Operations
 Section PT-22,
 Waltham 54, Mass.

Excellence in Electronics

Raytheon klystrons, which can be tuned mechanically or thermally, fit the widest range of requirements from 550 to $60,000 \mathrm{Mc}$. The special tubes include backward wave oscillators, square law tubes, storage tubes and others.
Use coupon below to reserve your copy of the new Raytheon Consolidated Data Booklet. There is no cost or obligation, of course.

Please send me, without cost or obligation:

\square Free Consolidated Data Booklet.

\square Complete details on Raytheon's Technical Data Service for Microwave and Power Tubes.
\qquad
Title
\qquad
\qquad
City__Z_Z_State.___

New Consolidated Data Booklet for Raytheon Magnetrons, Klystrons and Special Tubes

Washington Report

Herbert H. Rosen

DOD's Reliability Program Grows Teeth
This month the Government Printing Office is selling an 800 -page report that reviews all conceivable as jects of reliability. It is the culmination of a 15 -month study by nine task groups of DOD's Advisory Group on Relialiility of Electronic Equip-ment-AGREE. It looks at the way reliability is "controlled" by the Department and makes a large number of recommendations as to how the technique may more realistically become a standard operating procedure for both industry and the military. These recommendations may very well become the basis for establishing all future reliability requirements for military electronic equipment.
For more than a month, top technical people from the military departments and DOD have been studying the report in an effort to implement it as soon as possible. A fair proportion of the recommendations are implied in a good number of DOD directives already in force. The problem is that there is probably no one who knows exactly where or if a directive exists covering all aspects of the reliability problem he is interested in. This study should make inroads into this anomolous situation.
Meanwhile, there are reports that another task group may be formed to look at reliability from the management viewpoint. The genesis for the group will be the membership of AGREE's Task Group 5. It will be augmented by top level members of the military departments.
The fact that the recommendations in the report seem to cross over each other indicates a strong need for consolidation of some sort. One plan seems to be gaining acceptance the more it is talked about in the Defense Department and in industry. The first step would be to consolidate the functions of such groups as AGREE and AGECP (Advisory Group in Electronic Component Parts). To this would be added the operations of the Armed Services Electro-Standards Agency-ASESA. Teeth and authority would be put into the directives that established these and similar groups. Then with reliability, parts and performance as the basis of operations, the DOD would have a small bureau of standards to guide its electronic pursuits.

The new group would have the responsibility for establishing specifications, for example, before a component part gets into use. The military would cite a need, and someone would have to come up with an answer. The resulting specification would be the standard for the industry vendor and the military buyer.

In essence, the group would be a judiciary board

New Sylvania Photodiode Type IN77B

... puts tinier beamspf

Light sensitivity of the new Sylvania photodiode, type 1N77B

Spectral Rleaponse of Sylvania's new 1N77B

> Sylvania designs a smaller photodiode with improved capabilities to handle applications where space is limited

Sylvania, leader in diode development, introduces the 1N77B, a new smaller junction photodiode with superior power dissipation and higher temperature capabilities. The improved unit, with a diameter of .077 inch, is ideal for highly compact assemblies and other applications where space is at a premium. The new 1N77B, which replaces type 1 N 77 A , is now available at substantially lower prices in volume quantities.

The compact construction and fast response of the Sylvania 1N77B make it ideal for rapid, highly sensitive scanning and reading applications, such as in computer tape or punched cards readout. The new unit is also readily
"Sylvania-synonymous
with (7) Semiconductors"
CIRCLE 10 ON READER-SERVICE CARD FOR MORE INFORMATION

daptable to infrared detection and heat-seeking devices ocause it is sensitive to light wave lengths extending om near ultraviolet into infrared. Other applications or the new 1N77B include liquid level control, headlight nd street light dimmers, intensity controls, photoelectric introls and motion picture sound pickup.
Sylvania's improved photodiode has a higher lumen tensity than other types and a high output impedance. his is especially advantageous when coupling into cuum tube or grounded collector transistor circuits. he new units are hermetically sealed in glass with a rilt-in lens that focuses light on the sensitive portion of e junction. The light interruption frequency response the 1N77B photodiode is flat from 300 cycles to 15 kc 100 percent with 260 lumens/sq. ft.; $\mathrm{R}_{\mathrm{L}}=110,000$ $\mathrm{mm},-45 \mathrm{v}$.
Contact your Sylvania representative for further inprmation on the new 1N77B.

- SYLVANIA

having the prestige and authority to enforce the standards and specifications it develops.
In very general terms, the nine task groups looked at reliability from a number of vantage points: Practicality of reliability figures, statistical testing and collection of data, packaging effects on equipment, storage effects, procurement practices impeding or aiding the attainment of reliability objectives, definitions of terms so that all conconcerned are speaking the same language, and controls over testing, specifying, and compliance.

TV Translators or Boosters?

In response to petitions from the Governors of a number of Western states, the Federal Communications Commission has instituted a rule-making proceeding on the subject of TV translator stations vs. TV booster or repeater stations. The Commission is inviting all interested parties to submit engineering data or other pertinent comment as "to the feasibility of operating low powered apparatus for the purpose of 'repeating' or retranslating the signals of television broadcast stations into remote and sparsely settled areas without adequate TV service." The repeater stations would be permitted to operate on both vhf and uhf TV broadcast channels.
The FCC has licensed a number of translator stations, largely in the mountainous east and in the midwest. These stations pick up either by wire or by sensitive receivers TV broadcasts from large urban stations. The signals are then retransmitted on channels for short-range or local consumption.
Obviously, the same technique will not work in areas in which TV stations are separated by very long distances.
The rules the FCC is proposing would limit the power input to the final rf amplifier to 1 watt. They would establish certain minimum performance standards considered to be necessary to prevent interference to established services. Also, they would require the inclusion of certain automatic devices to prevent malfunctioning if the apparatus were to be operated without a technically qualified radio operator in constant attendance. TV repeater stations would be required to protect other classes of stations from interference but would receive no protection from interference. They would be permitted to operate as simple co-channel linear amplifiers, i.e. "boosters," or could convert to other vhf or uhf channels which could be used without causing interference to other classes of stations.

Comments from interested parties are expected to be based on sound engineering considerations. Data should be supplied which will enable the Commission to determine whether or not such devices are technically feasible and should be authorized. Manufacturers are invited to submit data as to the probable cost of suitable equipment.

the long and short of it...

3 Section Illustrated
whatever your needs in

precision potentiometers
 DeJUR has made it . . . or will design it for you!

As you can see, we make tiny, precise potentiometers-and we make big ones. plus all sizes in between. Chances are we already have made the pot you need. Or, if you require a potentiometer that hasn't been built yet-by anyone-our engineering department will call on its vast experience to design a pot for you including prototypes for tests and approval. Write Electronic Sales Division DeJUR-Amsco Corporation, 45-01 Northern Blvd., Long Island City 1, New York.

WRITE FOR TECHNICAL
WRITE FOR TECHNICATOG SHEETS
CATALOV
CAF OVR S 50
OOTENTIOMETERS

Meetings

Sept. 8-13: Second Annual Course on Investmen Castings
MIT, Cambridge, Mass. Sponsored by the Invest ment Casting Institute. Lectures, laborator exercises and demonstrations will be offered o investment materials; melting; gating, riserin solidification and heat transfer; metal and allo systems; defects in castings; and consideration of new investment and allied processes. For furthe information, write Harry P. Dolan, Investmen Casting Institute, 27 E. Monroe St., Chicago 3, It

Sept. 9-13: Twelfth Annual Instrument-Automatio Conference and Exhibit

Cleveland Auditorium, Cleveland, Ohio. Sponsore by the ISA. Organized under the unifying them "Instrumentation for Systems Control," the confe ence will open with formal sessions devoted to da harıdling and instrument terminology. Followin these there will be individual workshop sessions limited discussion groups covering such topics aircraft and missiles (excluding propulsion), wir tunnels, flight propulsion systems, process indu tries, power generation and distribution, meteor logical, nuclear, medical, geophysical exploratic and general industrial laboratories. Some 100 pape will be presented at the technical sessions. The will be about 500 exhibits. For details of the tec nical program write to Herbert S. Kindler, Direct of Technical Programs, ISA, 313 Sixth Ave., Pit burgh, Pa .

Sept. 17-18: RETMA Symposium on Numerical Co trol Systems for Machine Tools
Ambassador Hotel, Los Angeles, Calif. For deta write to RETMA, Room 650, 11W. 42nd St., N York 36, N.Y.

Sept. 17-21: Institute of High Fidelity Manufactur

Show

Morrison Hotel, Chicago, Ill. For further inform tion, contact Bernie Merems, 509 Madison Av New York, N.Y., or Howard Alexander, 75 Wacker Drive, Chicago, Ill.

Sept. 24-25: Sixth PGIE Symposium on Industr Electronics
Morrison Hotel, Chicago, Ill. Sponsored by the II Professional Group on Industrial Electronics a AIEE. The main theme for the conference will the characteristics, use and integration of tra
ers into complete systems to measure and conI complete processes. For further details, write I. N. Banky, 628 West 18th Street, Chicago, Ill.

27-28: Seventh Annual IRE Professional Group

 Broadcast Transmission Systems Fall Symposium lliard Hotel, Washington, D.C. Papers will be d on a variety of subjects ranging from transistor ulated power supplies for video circuits to the lication of automation to TV master control ms and film rooms. More information may be ained from Clure H. Owen, American BroadcastCo., 7 W. 66th St., New York 33, N.Y.7-11: Fall General Meeting of the American thute of Electrical Engineers
tel Morrison, Chicago, Ill. The technical program consist of more than 50 sessions devoted to the st advances in electrical engineering and allied Nuclear reactors, telegraph systems, research, ics, television and aural broadcasting, basic scisafety, computing devices, land transportapower generation, transmission and distribusystem engineering, computers, mining and al industry, radio, and the chemical industry are of the subjects being covered. For details to the AIEE, 33 W. 39th St., New York, N.Y.

9-11: Fourth National Symposium on Vacuum hnology
el Somerset, Boston, Mass. Sponsored by the amittee on Vacuum Techniques. Approximately papers will be presented covering findamental ances in vacuum technique, means of producing, suring and conducting low pressures, and adees in applications of vacuum to processing. For her information, write the Committee on fum Techniques, Box 1282, Boston 9, Mass.

9-12: 1957 Convention of the Audio EngineerSociety
York Trade Show Bldg., New York, N.Y. Ben 50 and 60 papers will be presented. Covered be topics in such fields as dise and tape recordreception, components and systems, noise conand acoustics. The New York High Fidelity v , sponsored by the Institute of High Fidelity, accompany the Convention. More information be obtained from G. K. Dahl, 230 West 41st New York 36, N.Y.

14-15: Third Annual Douglas Aircraft Co. Inc. Bell Helicopter Corp. Integrated Instrument Depment Program Conference
I1 I Statler, Los Angeles, Calif. Sponsored by the and Navy. For more information send to the s Bureau, Bell Helicopter Corp., P.O. Box 482, Virth, Tex.

ESC
HAS THE KNOW HOW AND EXPERIENCE REQUIRED TO PRODUCE CUSTOM-BUILT DELAY LINES TO YOUR EXACTING SPECIFICATIONS.

1st in sales!

1st company devoted exclusively to the manufacture of delay lines!
1st in research, design and development of custom-built delay lines!

1st to submit the most definitive laboratory reports with all custom-built delay line prototypes!
I Isen-vision, knowledge, perception... as, ESC has the ken to produce the finest custom-built delay lines in use today.

Exceptional employment opportunities for engineers experienced in pulse techniques.

Motorole Quality Products Include:

to guarantee qualify . . . speed production of MOTOROLA TRANSISTORS

Exclusive Motorola high-speed testing equipment permits positive control at key check points and at final testing on Motorola's fast moving transistor assembly lines. These simplified instruments, developed by Motorola, incorporating Motorola transistors and silicon rectifiers, check seven electrical characteristics . . . enabling a single operator to test 500 transistors per hour with the highest degree of accuracy.

M PRODULTIUNE:EIT:I

The ability to create specialized
equipment allows Motorola to "productioneer" semiconductor devices accomplishing high-volume production while maintaining exacting standards of quality. At Motorola, semiconductor knowledge and production skill combine to assure you a dependable supply of finest quality units at the most competitive prices.

Unique testing methods are only one example of Motorola's excellence in semiconductor technology. For complete data concerning Motorola semiconductors . . . or for applications information, write, wire or phone Motorola, Inc., 5005 E. McDowell Road, Phoenix, Arizona. Bridge 5-4411

HALLENGING PROFESSIONAL CAREER OPPORTUNITES are available for experienced engineers and scientists with Motorola's rapidily-expanding semiconductor team in the Valley of the Sun. For complete information write in confidence to Mr. V. Sorenson, Dept. 10, 5005 E . McDowell. CIRCLE 13 ON READER-SERVICE CARD FOR MORE INFORMATION

Oct. 16-18: AIEE Conference on Computers Control
Chalfonte and Haddon Hall Hotels, Atlantic City, N.J. Sponsored by the AIFE Committee on Feed back Control Systems. The conference will s'rese the role of analog and digital computers in auto matic control, both as design tools and as compo nents of systems. For more information, write Prof J. G. Truxal, Dept. of Electrical Engineering, Poly technic Institute of Brooklyn, 99 Livingston St. Brooklyn 1, N.Y.

Oct. 16-18: 1957 IRE Canadian Convention and Exposition
Automotive Building, Exhibition Park, Toronto Canada. Sponsored by the Canadian Sections of the IRE. For information write to Grant Smedmor, IR Canadian Convention, 745 Mt . Pleasant Rd., To ronto 7, Canada.

Oct. 17: SPE Regional Technical Conference
Hotel Carter, Cleveland, Ohio. Sponsored by the Cleveland-Akron Section of the Society of Plastia Engineers. The theme for the sessions will bu "Polyethylene-Properties and Uses." For detail write E. J. Haskins, Zenith Plastics Co., 1009 Rodk well Ave., Cleveland 14, Ohio.

Oct. 24-25: Fourth Annual Computer Application Symposium
Hotel Sherman, Chicago, Ill. Sponsored by th Armour Research Foundation of Illinois Institute Technology. Advances in automatic coding and ne computers and applications will be stressed. Bo management and engineering applications will considered. More information may be obtained writing the Secretary, Computer Applications Sym posium, Armour Research Foundation, 10 W. 350° St., Chicago 16, Ill.

Oct. 28-30: Fourth Annual East Coast Conferenc on Aeronautical and Navigational Electronics

Fifth Regiment Armory and the Lord Baltimo Hotel, Baltimore, Md. Sponsored by the Baltimon Section of the IRE and the Professional Group ${ }^{\circ}$ Aeronautical and Navigational Electronics. Exhibi will be offered along with the technical session For details write Clayton Knight, 3603 Howar Park Ave., Baltimore, Md.

Oct. 31-Nov. 1: Third Annual Technical Conferend of the Professional Group on Electron Devices, Ill Shoreham Hotel, Washington, D.C. For more info mation, write W. M. Webster, RCA Semiconduct Div., Somerville, N.J.

Nov. 6-8: Tenth Annual Conference on Electroin Techniques in Medicine and Biology
Boston, Mass. Sponsored by ISA and AIEE. Furth
fetail; and advance programs may be obtained fom H. S. Kindler, Director of Technical Progams, Instrument Society of America, 313 Sixth Wve., Pittsburgh 22, Pa.

tov. 6-8: Third Aero-Com Symposium

Fiotel Utica, Utica, N.Y. Sponsored by the IRE pofessional Group on Communications Systems. the conference will deal with systems, equipment esign, techniques, antennas, spectrum conservaon, air traffic control, management and other ppics. For the presentation of confidential matefal, there will be a classified session on Nov. 8. For lore information, write to R. C. Benoit, 138 Riverfiew Pkwy., Rome, N.Y.

ov. 11-13: Third Annual Instrumentation

lonference

iltmore Hotel, Atlanta, Ga. The theme of this conrence will be "Instrumentation for Data Handling" th special symposiums on electronic instrumentaon as applied to medicine and the sales and purlasing aspects of electronic instrumentation. PaIs should be submitted to Lamar Whittle, Fedal Telecommunications Lab., 1389 Peachtree St., E., Atlanta, Ga. For more information write B. J. asher, School of Electrical Engineering, Georgia stitute of Technology, Atlanta, Ga.
ov. 13-14: Mid-America Electronics Convention
hnicipal Auditorium and Hotel Muehlebach, Kan. Sity, Mo. Sponsored by the Kansas City Section the IRE. There will be exhibits and twelve techal sessions. Approximately thirty papers will al with medical electronics, airborne electronics frumentation, engineering management, elecrrics in nucleonics and a diversity of other subitis. Persons who want to submit papers should atact the Technical Papers Chairman, MAECON, 19 Cherry St., Kansas City 10, Mo. The deadline t submissions is Aug. 15. For more information ite Richard L. Clarke, 425 Volker Blvd., Kansas ty 10, Mo.

per Deadlines

V. 1: Deadline for papers to be presented at the is IRE National Convention. The convention 1 be held March 24-27 at the Waldorf-Astoria the New York Coliseum, New York, N.Y. Prosthive authors should submit a 100 -word abstract da 500 -word summary. Both must be in triplicate h the title of the paper and the name and adiss of the author. The technical field in which paper falls must also be indicated. Only papers published or presented prior to the convention 1 be considered. Military or company clearance st be obtained before submittal. Address all teria! to Dr. George L. Haller, Chairman, 1958 thnical Program Committee, IRE, 1 E. 79th St., w York 21, N.Y.

For the record...
 it's IMMEDIATE-PRINT scope photos with the 叫MON 302

- now, ultra-fast TRANSPARENT POLAROID-LAND FILM FOR HIGH SPEED RECORDING!
- contact and projection PRINTS ... NO IMAGE REVERSAL.
- EÍ́sY, INEXPENSIVE CONVERSION TO Variety of standard roll and cut films.
- click-stop slide permits
- Multiple exposures on single
- prame for greater film ECONOMY AND EASY, DIRECT WAVEFORM COMPARISON.
- boll binocular viewing simultaneous with recording.
- mounts quickly and easily QN ANY Standard $5^{\prime \prime}$ SCOPE. NO ADOITIONAL SUPPORTS REQUIRED.
- easy access for lens and shufter adjustment.
- built-in data recording system.

The Du Mont Type 302 Recording Camera provides the most convenient and flexible means for applying the many advantages of the immediate-print Polaroid-Land process to oscilloscope recording.

SPECIFICATIONS
-Wollensak-Du Mont $75 \mathrm{~mm} t / 2.8$ three element lens, or $75 \mathrm{~mm} 1 / 1.9$ six element lens.

- Image reduction ratio 2.25:1.
- Alphax \#2 shutter, bulb and $1 / 25$ to $1 / 100$ sec. with $1 / 2.8$ lens. Alphax \# $\#$ shutter, time, bulb and 1 sec. with $\ddagger / 1.9$ lens.
-Writing rate dependent upon film used.
- Mounting clamp for use on any standard 5 " scope berel.

Type 302 with $t / 2.8$ lens $\$ 314.00$ Type 302 with $7 / 1.9$ lens $\quad 331.00$

And now the utility of the Polaroid-Land process has been greatly extended with the development of the new Polaroid-Land projection film - a transparent basę material with a specified emulsion speed of 1000 (ASA).
This new film not only permits contact and projection prints, and eliminates image reversal, but also enables use of the Polaroid-Land process in recording ultra-high-speed phenomena - even single transients.

Utility of the 302 is further broadened by the availability of adapter backs which permit the camera to use various standard roll and cut films. Write for full information..

The electronic design engineer has a basic responsibility for ensuring that the system he is designing has adequate reliability in the ultimate application. This article presents a technique for predicting the reliability of a system while it is in the design stages. In addifion, the fechnique shows readily those factors of design which can be changed to realize the best reliability and economy.
Before a reliabilify prediction can be made ene or more proposed system delineations as well as partreliability figures must be available, of course. The part reliability figures can occasionally be obtained from experience. Often, however, these figures must be extrapolated roughly from available data or estimated on the basis of part performance description. But the lack of accurate figures need not delay the reliability analysis. The resulting predictions can be modified easily as new data become available.
A further prerequisite to a design reliability analysis is a detailed statement of what minimum performance levels result in "successful" operation of the system. Although it is possible to evaluate "success" in terms of the system operator's satisfaction offer the system is working, during the design stages it must be related to criteria that can be stated mathematically. Success-definition, the construction of reliability diagrams, and reliability formulas are presented in this article.

Reliability-Design Technique for Complex Systems

H. Elmore Blanfon
Cambridge, Mass.
Hycon Eastern, Inc.

Fig. 1. Reliability diagram of proposed hypothetical airborne telemetering system. Note that this illustration closely resembles an electronic block diagram showing paths of signal flow. These paths can also represent information flow.

AREASONABLY simple reliability-prediction technique has been developed which can be used in the early stages of the design of complex systems. Conventional statistical methods are adapted to a familiar engineering format in order to make an analysis of system reliability easy and straightforward. This technique facilitates comparison of proposed system designs and leads to estimations of the degree of redundancy or component improvement required to realize the target figure for system-performance reliability.
In using this technique, reliability diagrams are prepared by making appropriate changes in the engineering block diagrams for the system. After one or more possible definitions of successful performance are stated, basic rules from probability theory lead to the derivation of reliability formulas for the system. Effects of failures due to one part depending on another and engineering considerations such as the relative importance of various modes of performance can be included readily. Numerical reliability predictions are achieved by evaluating these formulas using the best available componentreliability data. An example based on an airborne telemetering system illustrates the application and usefulness of this technique.
A simplified block diagram of such a telemetering system is given in Fig. 1. For the present, dis regard boxes C^{\prime} and D^{\prime}. Fifteen variables, V_{1}, V_{2} etc. are measured by the system. The engineering design proposes the use of two transducers each to measure 10 important variables in order to provide redundancy and consequently possible reliability improvement-relative to that obtainable when using single transducers. The two groups of 10 transducers use separate commutators, subcarrier oscil lators, and transmitters. To increase the probability that the signals representing these ten variables wil be received successfully in the event of a temporary loss of transmitted signal, the output of Subcarrier Oscillator No. 1 is continuously recorded and re-

$=\frac{7}{8}$

Fig. 2. Reliability analysis of electromechanical commutator. A sketch of this unit is represented in (a), showing that each segment controls one input. If a segment should be inoperant the variable associated with it would not be transmitted. The reliability diagram for this situation is shown in (b).
broadcasted over Transmitter No. 2 after a delay of τ minutes. A common antenna and power supply are used. In this hypothetical system, the simplifying assumption is used that the only part interaction occurs in the transmitters where, if either fails in a particular manner, so will the other.
This telemetering system is used in a missile which is tested during flights of specified duration. Data giving the reliability of the parts under the flight environment are assumed to be available. The problem to be investigated is:
What is the probability that the telemetering system transmits successfully, throughout the test fight, the desired information about the variables which are measured?

Reliability Diagrams

The first step in deriving a formula for system reliability, of course, is to determine the manner in which the reliability of each part affects the reliability of the whole. This information can be displayed effectively by means of reliability diagrams. In these diagrams, the series or parallel grouping of parts, the effects of packaging, power supplies and other associated equipment, and the consequences of interdependence between the performance of parts is clearly evident.
A reliability diagram, as defined in this paper, resembles a conventional signal-flow block diagram. The two types of diagram must not be confused however. Basic considerations in constructing and using reliability diagrams are:

- A line represents a unidirectional path of information flow. For electrical systems, information flow may be interpreted as signal flow.
- A block represents a part or a group of parts which must function successfully if the information is to pass from the input to the output of the block. The information does not necessarily pass through
the parts included within the block.
- The group of parts which are denoted by a particular block preferably should be describable by a probability of successful performance which is independent of the performance of any other part. Dependence between parts in different blocks is admissible if the dependence exists between a specified part shown by one block and the entire group of parts denoted by another block.
- A distinctive symbol represents the probability of success of the parts denoted by each separate block. The probability of success of the parts within a block is defined on the basis of the part specifications and the definition of success in the given application, which will be discussed later.
- A path of information transfer consists of a single series connection of successive lines and blocks from the system input to the system output. Successful transmission occurs along a particular path if the parts represented by each of the blocks operate successfully. Redundant parts that are excluded from one path are included as elements in other parts. A part may serve as a series element in several paths.

The construction of the reliability diagram, Fig. 1, for the telemetering system is initiated by drawing a conventional block diagram. Next, blocks are added as series elements to show the effects of transmitter dependence, power supply, and packaging. Each of these blocks is located on the basis of the manner in which the reliability of the parts influences the system reliability.

A set of transducers, the related commutator, and the subcarrier oscillator are grouped conveniently in a single block in Fig. 1 since these parts function together, independent of other parts, to perform a particular task. The sketch of an electromechanical commutator in Fig. 2(a) reveals that portions of the assembly are associated with individual input signals, whereas other portions are common to all signals. As a result, this single part must be repre-
sented by several blocks in a reliability diagram, as is shown in Fig. 2(b). This figure includes the transducers and subcarrier oscillators in the appropriate blocks to give the complete diagram for the commutated subcarrier channel.

Cables and connectors between parts effectively introduce additional series blocks in a reliability diagram. To eliminate this complication, the reliability symbol assigned to a particular block may be taken as denoting the probability of success of the parts represented by that block and of the cables and connectors leading to and from those parts.

Definition of Successful Performance

The reliability of a system in performing its assigned function obviously should be computed with respect to a precise definition of what constitutes success. It may simply be that the operator is satisfied with the system performance, or at the other extreme, it may be that the output of system fails within certain well-rlefined, measurable bounds. For our purpose, a definition which can be stated mathematically is necessary.

Ideally, the output of the telemetering system is composed of four signals which are members of groups of successive samples originating from the three commutators and transmitted either immediately or after the delay of τ minutes. A definition of successful performance can be stated in terms of the minimum number of samples which must be present in the output during a specified interval.

An engineer, on the basis of his knowledge of the ultimate use of the data, often assigns weights indicative of the relative importance of the record of eqach telemetered variable. Several procedures may be suggested for incorporating these engineering considerations in reliability calculations.
One procedure is based on exponent weighting factors. These are determined by the relative importance of the various telemetered variables. Exponents in the range of zero to one are affixed to the reliabilities of parts that are associated with the transmission of particular variables. If the variable is of primary importance, the exponent is 1 and the related parts must perform exactly in accordance with specifications. However, if the variable is of secondary importance, an exponent less than one, roughly proportional to the relative importance of that variable is used. A mathematical method to derive the weighting factor appears in reference (6). With exponent weighting factors, the definition of successful performance must state that certain variables must be telemetered satisfactorily with a weight w_{1}, others with weight w_{2}, and so forth, where $1 \geqq w_{1}>w_{8}>w_{3} \ldots \geqq 0$.
Let us say that our system performs successfully if the signal received by the ground-based receivers during a test flight contains the theoretically maximum number of samples representing:
(a) At least and four of the five variables $V_{1}-V_{5}$.
(b) Variable V_{8}
(c) Variables V_{7}, V_{8}, V_{9}, and V_{10} subject to exponent weighting $w_{1}\left(1>w_{1}>0\right)$, and
(d) Variables V_{11} to V_{15}, subject to exponent weighting factor $w_{s}\left(1>w_{z}>0\right)$.
To fulfill this definition, variables $V_{1}-V_{10}$ may be received either simultaneously with measurement or after the delay of τ minutes which is inherent in the record-rebroadcast arrangement.

Reliability Formulas

When a reliability diagram is drawn and the defi nition of success stated, a reliability formula can be obtained as follows:

1. Refer to the reliability diagram and write the probability of success for transmission along each separate path of information transfer from an input to the output. Note if the success of a particular path is required for system success or if alternative paths are available. Indicate applicability of weighting factors.
2. Compute the individual probability of success for each separate combination of paths which can re sult in system success. Each of these probabilities is obtained as the product of the reliabilities associated with all blocks which are required for the simultaneous success of the several necessary paths. Effects of exponent weighting factors are included 3. Compute the probability that each pair of combinations of paths, as in Step 2 are successful simultaneously.
3. If more than two combinations of paths which can yield system success exist, compute the probabilities that each group of three, four, etc., of these combinations are simultaneously successful.
4. Compute the probability of success for the system by summing the probabilities obtained in Step 2 subtracting those obtained in Step 3, and alternately adding and subtracting those for the groups computed in Step 4.
An example based on the reliability diagram of Fig. 1 and the definition of successful telemetering given in the preceding section is shown in Table 1. In this table, Lines 1-4 correspond to Step 1, 5-7 to $2,8-10$ to 3,11 to 4 , and Line 12 to Step 5 . As may be noted, the reliabilities given on Line 1 for Path 1 and on Line 4 for Path 4 include the factors D, D^{\prime}, E, and $E^{\prime} ;$ however, the reliability of Paths 1 and 4, Line 5, includes only D and E because these factors are more restrictive than D^{\prime} and E^{\prime}, respectively, for the same parts. With this exception, the probability on Line 5 includes each symbol which appears in the probabilities on Lines 1 and 4. The exponent weighting factor w_{z} is included in the derivation. The effect of the delay of τ minutes in the storage and delay device is neglected in making a first approximation to the actual problem.

The reliability formulas for F, G, and H in Table 1 and Fig. 1 are derived by reference to a reliability diagram similar to Fig. 2(b). On the basis of the
definition for success, the formulas for the channels associated with Subcarrier Oscillator Nos. 1 and 2 are
$F=a_{1}\left[\prod_{i=1}^{5} b_{i}+\sum_{i=1}^{5}\left(1-b_{i}\right) \prod_{\substack{j=1 \\ j \pm i}}^{5} b_{j}\right] b_{6}\left(b_{7} b_{8} b_{g} b_{10}\right)^{w_{1},}(1)$
$G=a_{2}\left[\prod_{i=11}^{15} b_{i}+\sum_{i=11}^{15}\left(1-b_{i}\right) \prod_{\substack{15 \\ j=1 \\ j=1}}^{1 b_{j}} b_{j}\right] b_{16}\left(b_{17} b_{18} b_{18} b_{20}\right)^{w_{1} .}$ In each of these formulas, the two te:ms in the bracketed expression represent the probability that V_{1} through V_{s} are all measured successfully and
that any four of these variables are measured suc cessfully when any one measurement is unsuccess ful. The formula for the channels associated witl Subcarrier Oscillator No. 3 is

$$
\begin{equation*}
H=a_{3} b_{21} b_{22} b_{23} b_{24} b_{25} . \tag{3}
\end{equation*}
$$

The exponent weighting factor w_{1} is applied to the last group of factors in each of eqs (1) and (2) be cause only these part reliabilities are affected there by; however, the weighting factor w_{2} is not included in eq (3) because, for convenience, it is applied directly to H in Table 1

Takle 1. Derivation of Reliability Formula

Line	Item Probabi	ility of Success	Remarks	
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\mathrm{V}_{1}-\mathrm{V}_{10},$Path 1 Path 2 Path 3$\mathrm{V}_{11}-\mathrm{V}_{15},$ABCD'F Path 4ABC'DEFABC'DG		One path required for success	
$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$	Paths 1 \& 4 ABCDFH Paths 2 \& 4 ABC'DEF Paths 3 \& 4		Any one combination yields success	
$\begin{gathered} 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	Paths 1, 2, \& 4 Paths 1, 3, \& 4 Paths 2, 3, \& 4 ABCDEFF Paths 1, 2, 3, \& 4	$\mathrm{FH}^{\mathrm{w}}{ }_{2}$ $\mathrm{GH}^{\mathrm{w}}{ }_{2}$ $\mathrm{FGH}^{\mathrm{w}}{ }_{8}$ $\mathrm{FGH}^{\mathrm{w}}$.	Success of various combinations of paths	
8	Reliability Formula	$\mathrm{ABDH}^{w_{22}}$ ICF $+\mathrm{C}^{\prime} \mathrm{EF}+\mathrm{C}^{\prime} \mathrm{G}-\mathrm{CEF}-\mathrm{CFG}-\mathrm{C}^{\prime} \mathrm{EFG}+\mathrm{CEFG}$		
	Table 2. Reliability Predictions			
	Situation	Formulas		Reliability
1	System-reliability prediction using proposed technique	Line 12, Table 1, and Eqs (1)-(3)		0.819
2	Same as 1 except Subcarrier Cscillator No. 2 and associated transduzers eliminated	Same as 1 except $G=0$		0.740
3	Same as 1 except Transmitter No. 1 eliminated	Same as 1 except $C=0, C^{\prime}=1.0$		0.823
4	System-reliability prediction using product rule	Eq (4)		0.444
5	Same as 4 except part unrelia'jility reduced by factor of 4 (e. g., A is changed from 0.95 to 0.9875 , etc.)	Eq (4) with variables redefined		0.818
6	System reliability prediction considering redundancy shown in Fig. 1 and all data required for success	Eq (5)		0.749
	Overall reliability is based on the following part-reliability estimates:$\begin{array}{lll} \mathrm{A}=\mathrm{C}=\mathrm{D}=\mathrm{E}=0.95 & \mathbf{w}_{1}=0.8 & a_{1}=\mathbf{a}=0.97 \\ \mathrm{~B}=\mathrm{C}^{\prime}=\mathrm{D}^{\prime}=0.99 & \mathbf{w}_{2}=0.5 & \mathbf{b}_{1}=\mathrm{b}=0.98 \end{array}$			$\begin{aligned} & (i=1,2 \\ & (i=1 . . \end{aligned}$

The importance of assigning a distinctive symbol prer resent the reliability of each separate block of the reliability diagram is emphasized by the process §deriving the reliability formula. During this lerivation, these symbols mean that the success of be respective parts is required for the success of be associated paths of information transfer. The pmbols, as factors in the formula, may be manipufied in accordance with the associative, commutave, and distributive laws of algebra and the special wles previously stated. But after the complete reability formula is written, the symbols again repreent merely the reliability of the parts. At that time, he rules of ordinary arithmetic apply; equalities beween the numerical values of factors can be recogired and appropriate substitutions made if desir-

Reliability Predictions and Analyses

When reliability formulas are evaluated using the pest available estimates for part reliabilities, nuperical reliability predictions are obtained. Another mportant use of the technique, however, is in the fesign analyses which are directed towards achievIg the highest possible reliability under stated astrictions. Several sample computations for the telenetering system and a comparison between the prelictions obtained using the technique described in his article and other methods is given in Table 2. the arbitrary set of point estimates for the part reabilities, as used in the computations, is given bewis the table.
Situation 1, Table 2, indicates that the predicted lliability for the system is 0.819 when the relibility formulas derived in the preceding section are sed. If this reliability is assumed to be acceptable, le question arises if the engineer's choice of reandancy in the system is wise. Situation 2 shows fat the elimination of Subcarrier Oscillator No. 2 od associated transducers for V_{1} through V_{10} reaces the reliability by roughly 10 per cent. This hange probably is undesirable. The opposite effect obtained when Transmitter No. 1 is eliminated, shown by Situation 3. An increase in system rebhility is realized because the interaction that duces the reliability for transmission through ransmitter No. 2 is eliminated. Other situations on be investigated in a similar manner.
If the conventional product rule for system relibility is used without consideration either of the manner in which the parts are interconnected or of le actual definition of successful performance, the liability formula for the telemetering system is

$$
\begin{equation*}
P_{\mathrm{s}}=A B C D E a^{3} b^{25} \tag{4}
\end{equation*}
$$

bis formula, which includes the assumption that all b and b 's are equal to a and b, respectively, is raluited as Situation 4. As can be noted, the resultg prediction of 0.444 is lower by nearly a factor of
Fo "hen compared with the prediction for Situa-
tion 1. Situation 5 shows that when the product rule is used the unreliabilities of the various parts must be decreased by factors of the various parts must be decreased by factors of four in order to set a system reliability roughly equivalent to Situation 1 . When the effect of the system redundancy is included in the reliability prediction, and successful performance is defined as the transmission of signals representing all variables (Situation 6), the reliability formula is
$\left.P_{s}=A B D a^{2} b^{15}\right]\left[1_{s}^{11}+\left(1-a b^{10}\right)\left(C+E-\left(E^{\prime}\right)\right]\right.$. (5)
As anticipated, the predicted reliability of $0.749 \mathrm{ob}-$ tained using this formula is higher than for Situation 4, but it is again less than for Situation 1.

The principal significance of the comparison between the predictions for Situations 1,4 , and 6 is that the more nearly the reliability formula approximates the characteristics of the actual system and the engineering requirements for success, the more valid and useful is the reliability prediction. If the specified reliability for this particular system is indeed 0.8 , the prediction obtained using the technique proposed in this paper indicates that the present design is adequate. The erroneously low prediction obtained using either eq (4) or eq (5) would result in substantial additional work on system design and part improvement. If the designer wisely wishes to include a safety factor in the predicted reliability, the reliability diagrams and formulas for Situation 1 enable him to determine quickly the places in the system where design changes-for example, Situation 3 -or increases in part reliability are most beneficial. In fact, the greatest advantage of this technique is not that the reliability predictions are usually higher than those obtained by other methods, but rather that it leads to effective and economical plans for improving system reliability.

For further information on this reliability-prediction technique, and for derivations of exponent weighting factors and representation of statistical dependency see 1. the IRE Convention Record, Vol. 5, Part 10, 1957 and 2. reference (6).

Reforences

1. Approval of New Electronic Equipments and Systems for Service Use, Directive No. 3222.1, U.S. Dept. of Defense, July 5, 1956.
2. Statistical Theory With Engineering Applications, by A. Hald, John Wiley and Sons, Inc., 1952, p 9ff, p $23 f f$. 3. The Reliability of Redundant Systems, by Clarence R. Gates, Memorandum No. 20-76, Jet Propulsion Laboratory, California Institute of Technology, August 27, 1952.
3. "On the Reliability of Networks." by George H. Weiss and Meinhard M. Kleinerman. Proceeding of National Electronics Conference. Vol. 10, 1954, pp 128-136.
4. "Designing Reliability Into Electronic Circuits," by A. H. Benner and B. Meredith, Proceedings of National Electronics Conference, Vol. 10, 1954, pp 137-145.
5. Reliability-Prediction Technique For Use in Design Of Complex Systems, by H. Elmore Blanton, Publication No. AV7M, Hycon Eastern, Inc., Jan. 21, 1957. (Copies of this report are available from the author.)

This new Size 4 A.C. solenoid contactor is ideal for use in motor starters and controllers, as well as for resistance heating and lamp loads.

It's the new Bulletin 4454 - incorporating many advanced design features found on Ward Leonard's Sizes 0 to 3 contactors. Check these advantages:

New sintered-silver-cadmium-oxide contacts - can repeatedly handle high inrush currents without a sign of contact welding or excessive pitting.

Simple, compact solenoid design-excellent for modern metal control panels, front-of-board wiring.
2 or 3 main poles, up to 4 side-mounted auxiliaries.
Write for Bulletin 4454. Ward Leonard Electric Co., 77 South Street, Mount Vernon, New York. (In Canada: Ward Leonard of Canada Ltd., Toronto.)
ENGINEERING DATA size 4 A.c. Contactor Ratings*

Service	$\begin{aligned} & \text { f-Hour } \\ & \text { Ampor } \\ & \text { Rotlise } \end{aligned}$		Exelosed Pown Ratios		
			Volts Three Phase M.P.		
	Opon	Enclosed			
Across-the-Line Starting	150	135	$\begin{gathered} 1100 \\ 2200 \\ 440-550 \end{gathered}$		25 50 100
Acrass-the-Line Plug-Step er Jegging	150	135	$\begin{array}{r} 110 \\ 220 \\ 440-550 \\ \hline \end{array}$		15 36 60
Service	$\begin{aligned} & \hline \text { a-Mour } \\ & \text { ander } \\ & \text { noting } \end{aligned}$	$\begin{aligned} & \text { Single Plase } \\ & \text { K.W. } \end{aligned}$		Three PhaseV.lis.	
Resistive Meatine Load ${ }^{\circ}$	150	110 220 440 550	15 30 60 75	110 220 440 550	26 52 105 130
Tungsten Lamp Lightion of infrated Meating Leado.	120 Amperes for 250 Volt Circuits or Less				

-The matings listed are those recommended by the Mational Electrical
-Manufacturers Association.

- These ratings apply to open or enclosed contactors.

WARD LEONARD ELECTRIC CO. Beoult-Enqinered Contod Since 1892

CIRCLE 15 ON READER-SERVICE CARD FOR MORE INFORMATION

BOURNS TRIMPOT ${ }^{\circ}$ and related sub-miniature potentiometers -thousands of varlatlons avallable from stock

SELECT from the many combinations shown below. Any choice is available in a wide selection of standard resistance values... for military or commercial applications.

ALL UNITS FEATURE sub-miniature size . . . space-saving configuration . . self-locking shaft with 25 -turn screwdriver adjustment . . . excellent acceleration, vibration and shock characteristics . . . mounting individually or in stacked assemblies, with standard 2.56 screws.

Over 50,000 units in stock. Send for complete catalog on the TRIMPOT and related potentiometers.

PLUS THE NEW TRIMPOT JR

Micro-miniature size $Y_{6}{ }^{\prime \prime} \times K_{6}{ }^{\prime \prime} \times 1^{\prime \prime}$ 2.0-watt power rating. Humidity proof. $175^{\circ} \mathrm{C}$. max. operating temperature.

Bo
OURNS LABORATORIES, INC.
General Offices: 6135 Magnolia Ave., Riverside, Calif. Plants: Riverside, California-Ames, lowa
trimpot - linear motion potentiometers - pressure transducers and accelerometers

visit our booth \#319 IS A SHOW

CIRCLE 16 ON READER-SERVICE CARD FOR MORE INFORMATION
 lactured by Farrand Controls, Inc., 4401 Bronx Blvd., New York 70, N. Y., utilizes the inductive coupling between a pair of silver patterns on parallel glass discs, about 12 in . in diameter. A. 01 in . air gap separates the stator disc from the rotor which is directly coupled to the rotatng shaft. The stator (Fig. 1), is divided into uccessive sectors, out of phase with each other av one-quarter cycle. Leads are brought frough the glass to prevent interference with ntor and stator magnetic fields. Due to the low wefficient of coupling, a high-frequency oscilfor (10 kc) is used for excitation.
Functionally, the 12 in . "Inductosyn" is like a posolver that has been geared up 180 to 1 , withfut the errors inherent in a geared system. Conventional electrical resolvers are iron-cored levices, constructed generally, as shown in iig. 2. A two-pole machine is indicated in the Fure, each pole being bifurcated and having indings displaced by 90 electrical degrees. the output voltages of the "Inductosyn" are pactly similar to those from a resolver except at there are many pairs of poles. A complete Jtage cycle is produced for a rotation equal the spacing between pole pairs. The 12 in . nit has 360 poles. This corresponds to a 180 peed resolver (180 electrical cycles per rev.)
For further information about this high prewion device, turn to the Reader's Service ard and circle 17.

New polyclad insulation

eliminates core taping

 required for former uncoated core (shown above).

This excellent insulation, added to the unique properties of Hipersil8 coreshighest permeability with lowest loss, 100% flux carrying activity, lowest volume and weight-means a better foundation for better transformers . . . smaller, lighter, more efficient, and at a lower unit cost.
Positive protection against the effects of humidity and high-voltage stress, new Westinghouse Polyclad resin coating eliminates the need for taping the core or encasing it in a plastic or aluminum box-insulation costs are reduced 15%.
The resin forms a smooth, continuous coating; rounded corners prevent shorting wire to core, allow winding directly on core. Strains induced into the magnetic core are much less than with ordinary insulation-magnetic values stiy constant.
For more information about Polyclad insulated Hipersil cores-and other Hipersil cores, as well as the complete line of Hipermag ${ }^{\circledR}$ and Hiperthin ${ }^{\circledR}$ cores-call your Westinghouse representative, or write Westinghouse Electric Corporation, P. O. Box 231, Greenville, Pennsylvania.

J-70820

you can be SURE...If it's Westinghouse

CIRCLE 18 ON READER-SERVICE CARD FOR MORE INFORMATION

Write for detailed literature. Let us quote on your requirements.

1. Pre-molded and pre-selected resistance element.
2. Molded control base affording exceedingly low conductance, particularly in the presence of high humidity.
3. Single-member carbon contact, providing contact with resistance element and collector terminal, simultaneously.
4. No metal-to-metal movable contacts. Exceptionally long life.
5. "Zero backlash" or "Zero rock" shaft-to-contact assembly. Provides maximum order of "setability."
6. Gold-plated terminals insure solderability.
7. Shafts provided with grease seal, thus excluding moisture.
8. Flexible design readily permitting various mechanical adaptations.
9. No visible openings.
10. No rivets. Terminals permanently molded in resistance element and control base.
11. Mating surfaces of housing are sealed to prevent entrance of dust and moisture.
12. Full 2-watt rating at $70^{\circ} \mathrm{C}$.
13. High order of resistance stability.
14. Salt-spray corrosion resistant.

CLAROSTAT MFG. CO., INC., DOVER, NEW HAMPSHIRE
In Canada: Canadian Marconi Co., Ltd., Toronto 17, Ont.

CIRCLE 19 ON READER-SERVICE CARD FOR MORE INFORMATION

AUNIQUE air dielectric capacitor with variable temperature coefficient has been designed to provide controlled compensation for neutralizing temperature drift in tuned circuits. The miniature trimmer condenser is continuously adjustable for coefficients ranging from +2000 through 0 to $-2000 \mathrm{ppm} /$ degree C over a temperature range from -40 to +100 C .

The operating principle of the Tempa. trimmer, available from British Radio Electronics Ltd., 1833 Jefferson Place, N. W., Washington 6, D. C., is that at room temperature, adjustment of the rotor does not appreciably affect interelectrode capacity. With a change of temperature, however, the annular electrode moves laterally, thereby increasing or decreasing the capacity between electrodes to an extent depending on the rotor setting.
The fact that the capacity remains substantially constant whatever the compensating angle of the rotor electrode, finds application in the following process of adjusting an oscillator for temperature variations: The oscillator is adjusted immedi-
ately after switching on, with the Tem|atrimmer set approximately for the required amount of correction (if this is nown); when a stable operating temperature is reached, the circuit is retuned by the Tempatrimmer only, in the knowledge that its capacitance will be restored to its initial value when the equipment cools.
Nominal capacity at room temperature is 6.5 unf; Test voltage is 750 v dc at 760 mmHg ; torque is $3.8 \mathrm{oz} .-\mathrm{ins}$. The vanes and lags are made of silver plated brass, the base is high frequency ground ceramic. The bimetal is heat treated.
For further information turn to the Reader's Service Card and Circle 20.

Incture of variable temperature foficient trimmer. The semi-circu-- electrode moves on a bimetal v. The amount of temperature mpensation is determined by the for setting. Nominal capacity room temperature is $6.5 \mu \mu$ f.

IMMEDIATE DELIVERY

15kw S-Band Amplifier Klystron has no heavy magnets

Exclusive Space-Charge Focus cuts weight to only $61 / 2 \mathrm{lbs}$.

Available for immediate delivery, Sperry's new S-band transmitting tube is a 3 -cavity pulse amplifier of high gain and extra-long service life.
Exclusive Sperry Space-Charge Focusing design eliminates heavy, cumbersome magnetic structures-a feature of prime importance in equipment design. Although the SAS-61 weighs only $61 / 2 \mathrm{lbs}$., its sturdy construction withstands extreme vibration and environmental conditions.

Main applications for the SAS-61 are as an output tube in low-power radars, or as a driver for higher-powered klystrons in radar and linear accelerator systems. Its unusually long service life, however, makes it highly desirable for any application requiring 15 kw in the S-band. The SAS-61
with its internal tunable cavities is a complete microwave unit. No external equipment is required.
Sperry can deliver SAS-61 tubes in quantity at once. Write or phone your nearest Sperry district office.

DIVISION OF SPERRY RAND CORPORATION cleveland. new orleans • brooklyn • los angeles . SAN FRANCISCO - SEATTLE - IN CANADA: SPERRY GYROSCOPE COMPANY OF CANADA, LIMITED, MONTREAL, QUEBEC

CIRCLE 21 ON READER-SERVICE CARD FOR MORE INFORMATION

Editor's Note: Part I, which appeared in the fug. 15 issue, investigated meters intended for laborc:ory measurements. Part III will investigate meters which could have been included in either the Laboratory or Service Groups, but because of their unusual fealures they are given the catch-all designation-Special Group. It will appear in the Sept. 15 issue.

VTVM Survey-I

Sol Prensky

VACUUM-TUBE voltmeters intend for general-purpose maintenance mea urements are analyzed in Part II of the su vey. A representative cross-section of the meters has been investigated and pertinea information listed in tabular form. Th survey is offered to aid the engineer i choosing a VTVM best suited to his need Meters included in Part II are priced less than $\$ 150$.

Circuit Type

The last column of the tabulation lis circuit design features and places ead meter in one of four general circuit type Circuit Types 1 and 2 employ de amplii catio nand circuit Types 3 and 4 ac amp fication. A detailed discussion of the circu types is given in Part - I of the survey.

Circuit Type 1: This circuit is a straig. dc amplifier and is generally used in symmetrically balanced form. Amplit gain stability is greatly improved by fee back, especially when more than one stax of amplification is used. Grid curren which is an inherent characteristic of t input tube, is not changed essentially by feedback, as is sometimes believed. spite of grid-current limitations of aroud $10^{-11} \mathrm{amp}$, many special applications usii electrometer type tubes are in commerc use. When the single-stage balance bridge is preceded by a rectifier, it becom a Type 2 circuit.
Circuit Type 2: A rectifier plus a sing

SERVICE METERS

Manufacłurer	$\begin{gathered} \text { Modol } \\ \text { Price } \end{gathered}$	DC Scales				AC Scales			
		Voltage	Impedance Megohms	Accuracy	(CS) Conter of Scale	Voltage Range	Impedance Mogohms	Accuracy Per Cont	Freq. Range
Nllied Radio wN. Western Ave. ancogo 80, III.	$83 Y 125$ Knight$\$ 24.95$	$\begin{aligned} & 1.5 — 1500 \\ & (7 \text { ranges) } \end{aligned}$	11	± 3	$\begin{aligned} & R \times 1-R \times 1 \text { Meg. } \\ & (7 \text { ranges) } \\ & 10(C S) \end{aligned}$	$\begin{aligned} & 1.5-1500 \\ & (7 \text { ranges }) \end{aligned}$	$\begin{gathered} 2-2 \text { ineg. } \\ 75-50 \mu \mu f \end{gathered}$	± 5	$\begin{gathered} 30 \mathrm{cps} \\ \text { to } \\ \mathbf{N}^{\mathrm{mc}} \end{gathered}$
Imericon Chronoscope Cop. \% W. First St. Vernon, N.Y	$\begin{aligned} & 6019.50 \end{aligned}$	$\begin{gathered} 3-1200 \\ \text { (6 ranges) } \end{gathered}$	13	-	$\begin{aligned} & \text { 1-100 Meg. } \\ & \text { i6 ranges) } \end{aligned}$	$\begin{gathered} 3-300 \\ \text { (5 ranges) } \end{gathered}$	$\begin{gathered} 6^{6} \\ \text { (approx.) } \end{gathered}$	-	-
Emell-Dubilior Electric Corp. W. Hamilton Blved. Noinfeld NJ.	$\begin{gathered} \text { BF } \\ 100 \\ \$ 59.50 \end{gathered}$	$\begin{aligned} & 1.5-1500 \\ & \text { (7 ranges) } \end{aligned}$	11	± 3	$\begin{gathered} R \times 1-R \times 1 \text { Meg. } \\ 7 \text { reaness) } \\ 10 \text { (CS) } \end{gathered}$	$\begin{aligned} & 1.5-1500 \\ & \text { (7 ranges) } \end{aligned}$	-	± 5	-
Wetronic Dosign School St. eckers, N.Y.	$\begin{aligned} & 100 \\ & \$ 52.50 \end{aligned}$	$\begin{gathered} 3-100 \\ 16 \text { ranges) } \end{gathered}$	11	± 3	$\begin{gathered} 1-1000 \text { Meg. } \\ 16 \text { ranges) } \end{gathered}$	$\begin{aligned} & 10-1000 \\ & (5 \text { ranges }) \end{aligned}$	$\begin{gathered} 1000 / v \\ \text { ohms } / v \end{gathered}$	± 5	-
to-Eleciranic Inst. Co. Inc. 4 Withers 5 t. Eoolyn, N.Y	$\begin{gathered} 232 \\ \mathrm{KIT} \\ \$ 29.95 \\ \text { (Wired } \\ \$ 49.95 \text {) } \end{gathered}$	$\begin{aligned} & 1.5-1500 \\ & (7 \text { ranges) } \end{aligned}$	11	-	$\begin{aligned} & 0.2-1000 \text { Meg. } \\ & \text { (7 ranges) } \end{aligned}$	$\begin{aligned} & 1.5-1500 \\ & (7 \text { ranges) } \end{aligned}$	-	-	-
$\begin{aligned} & \text { keronic Measurement } \\ & \text { Co } \\ & \text { mis st. \& Maple Ave. } \\ & \text { Sonlown, N.J. } \end{aligned}$	$\begin{aligned} & 106 \\ & \text { KkT } \\ & \$ 23.90 \\ & \text { (Wired } \\ & \$ 35.90) \end{aligned}$	$\begin{aligned} & 1.5-1000 \\ & \text { (5 ranges) } \end{aligned}$	16.5	± 3	$\begin{aligned} & R \times 1 \text { _RxI Meg. } \\ & 15 \text { ranges) } \\ & 10 \text { (CS) } \end{aligned}$	$\begin{aligned} & 1.5-1000 \\ & \text { (5 ranges) } \end{aligned}$	2	± 5	$\begin{gathered} 25 \mathrm{cps} \\ 10 \\ 100 \mathrm{kc} \end{gathered}$
	$\begin{gathered} 107^{\circ} \\ \text { K1T } \\ \$ 33.50 \\ \text { (Wired } \\ \$ 48.90 \text {) } \end{gathered}$	$\begin{aligned} & 1.5-1000 \\ & 16 \text { ranges) } \end{aligned}$	16.5	± 3	$\begin{aligned} & R \times 1-R \times 1 \text { Meg. } \\ & 16 \text { (roness) } \\ & 10 \text { (CS) } \end{aligned}$	$\begin{aligned} & 1.5-1000 \\ & 16 \text { ranges } \end{aligned}$	1.5	± 5	$\begin{aligned} & 25 \mathrm{cps} \\ & \text { to } \\ & 200 \mathrm{kc} \end{aligned}$
	$\begin{gathered} 735 \\ \$ 159.95 \end{gathered}$	$\begin{aligned} & 0-1000 \\ & (4 \text { ranges) } \\ & 3000 \text { with } \\ & \text { multiplier } \end{aligned}$	13.3 with mul fiplier 38.3	± 4	$\begin{aligned} & R \times 1-R \times 1 \text { Meg. } \\ & (4 \text { ranges) } \\ & 20 \text { (CS) } \end{aligned}$	$\begin{gathered} 0-1000 \\ \text { (4 ranges) } \end{gathered}$	-	$\begin{aligned} & \pm 6100 \mathrm{v} \\ & \pm 7 \text { over } \\ & 100 \mathrm{v} \end{aligned}$	$\begin{aligned} & 5 \mathrm{cps} \\ & 10 \\ & 50 \mathrm{kc} \end{aligned}$
wh Co. STeritorial Rd. mon Harbor 4, Mich.	$\begin{gathered} \mathrm{v} .78 \\ \mathrm{~K} 1 \mathrm{it} \\ \$ 24.50 \end{gathered}$	$\begin{aligned} & 1.5-1500 \\ & \text { (7 ranges) } \end{aligned}$	11	± 3	$\begin{aligned} & R \times 1 \text { - Rx1 Meg. } \\ & 17 \text { ranges) } \\ & 10(C S) \end{aligned}$	$\begin{aligned} & 1.5-1500 \\ & 7 \text { ranges } \\ & 4-400 \mathrm{VP} \\ & \text { to } \mathrm{P} \end{aligned}$	$\begin{gathered} 750 \mathrm{k} \\ 25 \mu \mathrm{uf} \end{gathered}$	± 5	$\begin{gathered} 60 \mathrm{cps} \\ 7^{10} \end{gathered}$
:xok Electrical Inst. Co. 54 Dupont Ave. melond 8, Ohio	$\begin{gathered} 209 \mathrm{~A} \\ \mathrm{~S} 140.25 \end{gathered}$	$\begin{gathered} 3-1200 \\ \left(66^{2}\right. \text { canges) } \\ \text { zero center } \end{gathered}$	12	± 3	$\begin{gathered} R \times 1-R \times 1 \text { Meg. } \\ (18 \text { ranges } \\ 100 \text { (CS) } \end{gathered}$	$\begin{gathered} 3-1200 \\ \text { (6 ranges) } \end{gathered}$	$\begin{gathered} 12 \\ 7 \mu \mu \mathrm{f} \end{gathered}$	± 5	$\begin{gathered} 50 \mathrm{cps} \\ 150 \mathrm{mc} \\ 150 \end{gathered}$
ron Mfg. Co. 1. E. Colorado St. mosena 8, Calif.	$\begin{gathered} 225 \\ \mathrm{KkT} \\ 559.50 \end{gathered}$		10.5	± 3	$\begin{gathered} R \times 1-R \times 1 \text { Meg. } \\ 17 \text { ranges) } \\ 10 \text { (CS. } \end{gathered}$	$\begin{aligned} & 1.5-1200 \\ & 17 \text { ranges) } \end{aligned}$	$\begin{gathered} 10 \\ 150 \mu \mu \mathrm{f} \end{gathered}$	± 5	$\begin{gathered} 40 \mathrm{cps} \\ 10 \\ 3 \mathrm{mc} \end{gathered}$
	$\begin{gathered} 415 \\ \$ 82.50 \end{gathered}$	$\begin{aligned} & 1.5-1500 \\ & 17 \text { ranges } \end{aligned}$	13.3	± 3	Rxi-RxI Meg. (7 ranges) 10 (CS)	$1.5-1500$ (7 ranges)	$\begin{gathered} 15 \\ 150 \mu \mu \mathrm{~F} \end{gathered}$	± 5	$\begin{aligned} & 40 \mathrm{cps} \\ & 10 \\ & \mathbf{3}^{\mathrm{mc}} \end{aligned}$
	614	$\begin{aligned} & 1.5-1500 \\ & 17 \text { ranges) } \end{aligned}$	$!1$	± 3	$\begin{gathered} 0-1 \mathrm{~K}- \\ 0-1000 \mathrm{Meg} . \\ 16 \text { ranges }) \end{gathered}$	$\begin{aligned} & 1.5-1500 \\ & 17 \text { ranges) } \end{aligned}$	$60_{\mu \mu f}^{\prime}$	± 5	$\begin{gathered} 30 \mathrm{cps} \\ \text { to } \\ 3 \mathrm{mc} \end{gathered}$
xison Eloc. Inst. Co. Ine. 3. Polterson BI. mon 2 Ohio	$\begin{gathered} 709 \\ \$ 95.00 \end{gathered}$	$\begin{aligned} & 1.0-1000 \\ & \text { (7 ranges) } \end{aligned}$	11	-	$\begin{gathered} 0-1000- \\ 0-1000 \text { Mes. } \\ 17 \text { ranges }) \end{gathered}$	$\begin{gathered} 1-1000 \\ (7 \text { ranges) } \end{gathered}$	$\begin{gathered} 0.2 \\ 150 \mu \mu f \end{gathered}$	-	4.5 mc

SERVICE MEIERS

Manufacturer	$\begin{gathered} \text { Model } \\ \text { R } \end{gathered}$	DC Scales				AC Scales				Power Tube Compliment	Accessories	Circuir Design Fearsres
		Voltage Range	Impedance Megohms	Accuracy Par Cent	Ranges_Ohms (CS) Conter of Scale	Voltage Range	Impedance Megohms	Accuracy Per Cent	Freq. Range			
Measurements Corp. Boonton, N.J.	$\begin{array}{r} 62 \\ \$ 135.00 \end{array}$	$\begin{gathered} 1-100 \\ (5 \text { ranges) } \end{gathered}$	-	± 2	-	$\begin{aligned} & 1-100 \\ & \text { (5 ranges) } \end{aligned}$	-	± 2	$\begin{gathered} 30 \mathrm{c} \\ \text { to } \\ 150 \mathrm{mc} \end{gathered}$	(1) $6 \mathrm{H} 6 \quad$ (1) 5 W 4 (2) 6 C 5		Type Circuit: Designed with stabilized, balanced degenem ative amp. to make ossibl the changing of dc voltog ranges without read ustmen of zero for each rarge.
Phaosiron So. Pasadena, California	$\begin{gathered} 777 \\ \$ 74.95 \end{gathered}$	$\begin{aligned} & 1.5-1500 \\ & \text { (7 ranges) } \end{aligned}$	11	± 3	RxI-Rx\| Meg (7 ranges) 9.1 (CS)	$\begin{aligned} & 1.5-1500 \\ & \text { (7 ranges) } \end{aligned}$	-	± 5	$\begin{gathered} 30 \mathrm{cps} \\ \text { to } \\ 1 \mathrm{mc} \end{gathered}$	(1) 6AL5 (1) 12AU7	Available: HV probe to 50 kv . DC, RF probe to 400 me 10 per cent.	Type 2. Circuit: Reclife (12AL5) and Balanced Bridg (12AU7) Circuit. Peak lo ped voltage ranges from 0.4000 ,
Procise Devolopment Corp. 2 Neil Court Oceanside, N.Y.	$\begin{gathered} 9071 \\ \text { KIT } \\ \$ 35.95 \end{gathered}$	$\begin{gathered} 5-1000 \\ \text { (5 ranges) } \end{gathered}$	25	± 2	$\begin{gathered} R \times 1 — R \times 1 \text { Meg. } \\ 10(C S) \end{gathered}$	$\begin{gathered} 5-1000 \\ \text { (5 ranges) } \end{gathered}$	3	± 3	$\begin{gathered} 30 \mathrm{cps} \\ \text { to } \\ 1 \mathrm{mc} \end{gathered}$	$\begin{aligned} & \text { AC } \\ & \begin{array}{ll} \text { (1) } 6 A L 5 & \text { (1) } 6 \times 5 \\ \text { (1) } 6 S N 7 & \text { (1) } 0 A 2 \end{array} \end{aligned}$	Available: RF probe to 250 mc ; HV probe to 50 kv . Provided: DC, AC, ohms lead.	Type 2. Circuit: Vollog regulated.
	$\begin{gathered} 909 \\ \text { K1T } \\ \$ 25.95 \\ \text { (Wired } \\ \$ 37.50 \text {) } \end{gathered}$	$\begin{gathered} 5-1000 \\ \text { (5 ranges) } \end{gathered}$	25	± 2	$\begin{gathered} R \times 1-R \times 1 \text { Meg. } \\ 10(C S) \end{gathered}$	$\begin{gathered} 5-1000 \\ \text { (5 ranges) } \end{gathered}$	3	± 3	$\begin{gathered} 30 \mathrm{cps} \\ \text { to } \\ 1 \mathrm{mc} \end{gathered}$	$\begin{gathered} A C \\ \text { (1) } 6 A L 5 \\ \text { (1) } 6 \times 5 \end{gathered}$ $\text { (1) } 65 N 7$	Available: RF probe to 250 mc ; HV probe to 50 kv . Provided: DC, AC, ohms lead.	Type 2. Circuit:
Precision Apparatus Inc. 70-31 84 Street Glendale 27, L.I.	$\begin{gathered} 68 \\ \$ 54.50 \end{gathered}$	$\begin{gathered} 3-1200 \\ \text { (5 ranges) } \end{gathered}$	13	-	(5 ranges)	$\begin{gathered} 3-1200 \\ \text { (5 ranges) } \end{gathered}$. 5	-	-	AC (I) 12AU7 (2) 6AL5	Provided: Single probe with switch for all ranges.	Peak to peak voltage ronge from 3-1200.
Radio City Products Co. Inc. Centre \& Glendale Sts. Easton, Pa.	$\begin{gathered} 655 \\ \$ 59.50 \end{gathered}$	$\begin{aligned} & 1.5-1500 \\ & \text { (7 ranges) } \end{aligned}$	11	± 3	Rx1-Rx1 Meg. (7 ranges) 10 (CS)	$\begin{aligned} & 1.5-1500 \\ & \text { (} 7 \text { ranges) } \end{aligned}$	$40 \stackrel{1}{\mu \mu f}$	± 5	3 mc	(1) $6 A L 5$ AC (1) 12AU7	Available: HV probe.	Type 2. Circuir: Peak fullwor rectifier and balanced bridg (12AU7) Circuit. Peak to pen voltage ranges from 4.2-420
	$\begin{gathered} 65 \\ \$ 99.85 \end{gathered}$	$\begin{aligned} & 1.5-1500 \\ & \text { (7 ranges) } \end{aligned}$	11	± 3	$\begin{gathered} R \times 1 \text { _ } R \times 10 \text { Meg. } \\ (8 \text { ranges) } \\ 10 \text { (CS) } \end{gathered}$	$\begin{aligned} & 1.5-1500 \\ & (7 \text { ranges }) \end{aligned}$	$\stackrel{1}{\mu \mu \mathrm{f}}$	± 5	3 mc	$\text { (1) } 6 A L 5{ }^{A C} \text { (1) } 12 A U 7$	Provided: Jack for 6 kv DC or AC. Available: HV probe to 30 kv.	Type 2. Circuit. Six ranges capacity I $\mu \mu \mathrm{f}$ to 1000 Peak to peak voltage ranga from 4.2-4200.
Radio Corporation of America Camden, N.J.	$\begin{aligned} & \text { WV77C } \\ & \$ 59.50 \end{aligned}$	$\begin{aligned} & 0.05-1200 \\ & \text { (5 ranges) } \end{aligned}$	11	± 3	$\begin{gathered} R \times 1-R \times 1 \text { Mes. } \\ \text { (5 ranges) } \\ 10(C S) \end{gathered}$	$\begin{aligned} & 0.1-1200 \\ & \text { (5 ranges) } \end{aligned}$	$\stackrel{1}{\mu \mu!}$	± 5	$\begin{gathered} 30 \mathrm{cps} \\ \text { to } \\ 3 \mathrm{mc} \end{gathered}$	$\begin{array}{ll} \text { (1) } 12 A L 5 & \text { (1) 12AU7 } \end{array}$	Available: HF probe to 250 mc ; HV probe 1050 kv .	Type 2. Circuit. Reciif (12AL5) and balanced briad (12AU7).
	$\begin{aligned} & \text { WV878 } \\ & \$ 137.50 \end{aligned}$	$0.1-1500$ (7 ranges)	11	± 3	$\begin{gathered} R \times 1 \text { - } R \times 1 \text { Meg } \\ 17 \text { ranges) } \\ 10 \text { (CS) } \end{gathered}$	$\begin{aligned} & 0.05-1500 \\ & (7 \text { ranges) } \end{aligned}$	$\begin{gathered} 1.3 \\ 80 \mu \mu \mathrm{f} \end{gathered}$	± 3	$\begin{gathered} 30 \mathrm{cps} \\ \text { to } \\ 3 \mathrm{mc} \end{gathered}$	$\begin{array}{lll}\text { (1) 12AU7 } & \text { (2) } 6 \mathrm{AL5}\end{array}$	Available: HF probe to 250 mc ; HV probe to 50 kv .	Type 2. Circuit: Rectifi (6AL5) and balanced bride (12AU7). Peak to peok voll age ranges from $0.2 \cdot 4200$.
	$\begin{gathered} \text { WV98A } \\ \$ 79.50 \end{gathered}$	$\begin{aligned} & 0.02-1500 \\ & (7 \text { ranges) } \end{aligned}$	11	± 3	Rx1-Rx1 Meg. (7 ranges) 10 (CS)	$\begin{aligned} & 0.05-1500 \\ & (7 \text { ranges) } \end{aligned}$	$\begin{gathered} 1.3 \\ 60 \mu \mu \mathrm{f} \end{gathered}$	± 3	$\begin{aligned} & 30 \mathrm{cps} \\ & \text { to } \\ & 3 \mathrm{mc} \end{aligned}$	$\text { (1) } 6 A L 5 \text { AC }$	Available: HF probe to 250 mc ; HV probe 1050 kv .	Type 2. Circuit. Rectifí (6AL5) and balanced briod (12AU7). Peak to peak voll age ranges from 0.2.4200.
Radio Kits Inc. 120 Cedar St. New York, N.Y.	0.12	$\begin{gathered} 3-1000 \\ \text { (5 ranges) } \end{gathered}$	11	-	$\begin{gathered} 0-1000- \\ 0-1000 \mathrm{Meg} . \\ \text { (5 ranges) } \end{gathered}$	$\begin{gathered} 3-1000 \\ (5 \text { ranjes) } \end{gathered}$	6.5	-	-	$\begin{aligned} & A C \\ & \text { (1) } 6 S N 7 \quad \text { (1) } 6 \mathrm{HB} \\ & \text { (1) } 6 \times 4 \end{aligned}$		Type 2. Circuit:
Simpson Electrical Co. 5200 W. Kenzie St. Chicago, III.	$\begin{gathered} 303 \\ \$ 68.00 \end{gathered}$	$\begin{aligned} & 1.2-1200 \\ & \text { (5 ranges) } \end{aligned}$	10	± 3	Rxl-Rxl Meg. (5 ranges) 10 (CS)	$\begin{aligned} & 1.2-1200 \\ & \text { (5 ranges) } \end{aligned}$	$\begin{gathered} 275 \mathrm{k} \\ 200 \mu \mu \mathrm{f} \end{gathered}$	± 5	$\begin{gathered} 25 \mathrm{cps} \\ 10 \\ 100 \mathrm{kc} \end{gathered}$	$$	Available: HF probe 20 kc to $100 \mathrm{mc}(20 \mathrm{v}$ max.); HV probe 30 kv. Provided: AC.DCV, ohms probe.	Type 2. Circuit: Rectifier balanced bridge.
Tolatronics Lab. 54 Kintel St. Westbury, L.I.	$\begin{aligned} & \text { VM236 } \\ & \$ 125.00 \end{aligned}$	-	-	-	-	$\begin{gathered} .01-300 \\ (10 \text { ranges }) \end{gathered}$	1	± 5	$\begin{gathered} 10 \mathrm{cps} \\ 10 \\ 200 \mathrm{kc} \end{gathered}$	$\begin{gathered} \text { (2) } 12 \mathrm{AT} 7 \\ \text { (1) } 6 \mathrm{CA} \end{gathered}$		Type 3. Circuit: Cascade of plifier.
	$\begin{aligned} & \text { VM237 } \\ & \$ 95.00 \end{aligned}$	$\begin{aligned} & \text { 1.5-1500 } \\ & \text { (} 7 \text { ranges) } \end{aligned}$	10	± 3	Rxl-RxI Meg. (7 ranges) 10 (CS)	$\begin{aligned} & 1.5-1500 \\ & \text { (7 ranges) } \end{aligned}$	10	± 5	$\begin{gathered} 50 \mathrm{cps} \\ \text { to } \\ 5 \mathrm{kc} \end{gathered}$	$\begin{gathered} A C \\ \text { (1) } 12 A U 7 \\ \text { (1) } 6 A L 5 \end{gathered}$		Type 2. Circuir: Reclifit (6AL5) and balanced brid (12AU7). Peak to peak ro age ranges from 4-4000.
Triplett Elec. Inst. Co. Bluffion, Ohio	$\begin{gathered} 650 \\ \$ 89.50 \end{gathered}$	$\begin{gathered} 1-1000 \\ (7 \text { ranges) } \end{gathered}$	11	± 3	RxI-RxI Meg. (6 ranges) 10 (CS)	$\begin{gathered} 1-500 \\ \text { (6 ranges) } \end{gathered}$	$\begin{gathered} 1.4 \\ 13 \mu \mu \mathrm{f} \end{gathered}$	± 3	$\begin{gathered} 15 \mathrm{cps} \\ 10 \\ 110 \mathrm{inc} \end{gathered}$	AC 6.5 W (1) 12AU7 (2) 6AL5	Available: HV probe to 50 kv. Provided: DCV, ohms lead, ac-rf shielded tube probe.	Type 2. Circuif: Rectifier balanced bridge circuil; me: shorted in off position damping when carrying. Pg to peak voltage ranges tia $2.8-700$. Thirly per cent 0 curacy at 110 mc .
Weston Electrical Instrument Corp. 614 Frelinghuysen Ave. Newark, N.J.	$\begin{gathered} 982 \\ \$ 76.50 \end{gathered}$	$\begin{aligned} & 1.6 — 1600 \\ & \text { (7 ranges) } \end{aligned}$	10	± 3	$\begin{gathered} R \times 1-R \times 10 \mathrm{~K} \\ 17 \text { ranges) } \\ 25-250 \mathrm{~K} \\ \text { (CS) } \end{gathered}$	$\begin{aligned} & 1.6-1600 \\ & 1.6-1200 \\ & (7 \text { ranges) } \end{aligned}$	$\begin{aligned} & 2.8 \\ & 1.0 \end{aligned}$	± 5	$\begin{gathered} 20 \mathrm{cps} \\ 10 \\ 1.5 \mathrm{kc} \end{gathered}$	DC OP. (1) CK 548 DX	Available: RF probe to 250 mc ; HV probe to 20 kv. Provided: Low cap probe, isolation probe, shielded cable leads.	Type 2. Circuit: Rectifier of balanced bridge with 2 ga bonded germanium diou CK 740. Peak to peak vollo ranges from 1.6-1600.

kage balanced－bridge dc amplifier make mpt this circuit．It is widely used for provid－ ga a combination of ac and dc volt ranges． If can be readily adopted to resistance and reak－to－peak ranges，especially for service mork．When used for laboratory ac meas－ rements，this circuit is capable of covering frequency range up to 300 mc ，if maxi－ num voltage sensitivity is not a prime con－ ideration．The nonlinearity of the rectifier

plained．

Circuit Type 3：Particularly suitable for neasuring small ac voltages．This type em－ loys an ac amplifier－plus－rectifier circuit． thas wide use in audio and low frequency pplications where it is often provided with gaarithmic meter indications．For labora－ bry use，it appears most often in an ar－ angement having a frequency－compen－ gted，constant－impedance input for a multi－stage ac amplifier，with large amounts ffeedback to stabilize gain and expand andwidth．Shunt capacitance in the input ircuit is fairly high，but generally accept－ ble for applications up to 10 mc ．Lowest dill－scale ranges are usually around 0 to 0 mv ．Overload protection is obtained fom the buffer action of the amplifier．
Circuit Type 4：This type uses a modu－ tor for conversion of dc to ac，plus a rec－ fler circuit．It is capable of very high dc dlage sensitivity at a high input imped－
ance．With chopper de to ac conversion． hly a narrow frequency response of the ramplifier is required，since it need cover dy the driver frequency as expanded by le rate of the dc input variation．Use of rge amounts of feedback in the multi－ age ac amplifier allows improvement of ahilized gain and higher input imped－ fre．In a pH application，input impedance mon be made to exceed 100 megohms．
When a modulator of the capacity type ：ised for dc to ac conversion，an input ppedance as high as $10^{15} \mathrm{ohms}$ is achieved Id measurement of very small voltages om a high－resistance source can be made． urent measurements in the micromicro－ mpere range are attainable．At measure－ ent levels or around 100 mv ，zero stability this circuit becomes better than that of echopper type．
The less common galvanometer－type dulator allows full－scale measurements low as 0 to $\mathbf{1 0} \mu \mathrm{amp}$ at a 50 ohms input Distarce，with long－term stability ± 0.2

1 dc null detector
 2 micro－microammeter
 3 microvolt level dc amplifier
 4 microvoltmeter

．．．and can
really take
a beating

KIN TEL＇S ELECTRO－GALVO SOLVES ALL YOUR LOW－LEVEL DC MEASUREMENT PROBLEMS

Sensitive

Functionally equivalent to suspension galvanometers，but with far greater versatility，the Model 204A is the ultimate for DC null detection in low level bridge and potentiometer circuits．KIN TEL＇s chopper stabilized，all transistor design provides extreme sensitivity and rugged durability superior to conventional moving coil or electronic galvanometers．

Rugged

Immune to overload and shock，the current sensitivity of the Model 204A is 20 times greater than the sensitivity of high quality，mechanical current galvanometers．As a volt－ age galvanometer，the extremely high power sensitivity of the Model 204A makes it superior to low impedance moving coil instruments．

Versatile

This reliable，general purpose unit is ideal for use as a direct reading indicator for strain gage，thermocouple and other current or voltage measurements in industry or laboratory． The 204A＇s simplicity of operation makes it the key to efficient production line testing．Its unequalled stability makes it ideal for low level DC amplification to extend the range of recording and other measurement instruments．

Representatives in all major cities．

KIN LER

3725 KEARNY VILLA ROAD•BAN DIEGO 1 CALIFORNIA－BROWNING 7－6700

Check these outstanding specifications
＊ 20 Micro Microamps Per Division Sensitivity
－± 10 Microvolts to 10 Volts or \pm 0.001 Microamp to 1 Milliamp Full Scale Sensitivity
－Withstands Extreme Overload with No Zero Offset
－Transistorized－Rugged－Insensitive to Shock，Microphonics，Position
－Floating Input
－ 7 Voltage or Current Ranges
－10，000 Ohm Input Resistance
－ 10^{-14} Watts Full Scale Power Sensitivity
－Equivalent Built－in Ayrton Shunt－ No Accessories to Buy
－Use as Stable DC Amplifier with 1 Volt at 1 ma Output
－Less than 2 Microvolts Drift
－Less than 1 Microvolt P－P Noise
Model 204A Price $\$ 325.00$

CIRCLE 23 ON READER－SERVICE CARD FOR MORE INFORMATION

WHY...

has this time delay relay aroused such interest?

- May be Energized Continuously . . . does not require auxiliary lock-in circuits . . . a load carrier in itself
- Snap-Action contact speed . . . up to Double Pole, Double-Throw switching.
- Smple Hermetically-Sealed time element long life stability. Not subject to aging or fatigue.
- Low Cost as a unit; even lower considering simplified installation.
- The Name . . . Silic-O-Netic Time Delay Relay ... Meaning: SILICone controlled, magNETIC flux variation.
- It's New . . . the Type "A" Silic-O-Netic Relay is a vastly improved model.

Write for Bulletin T. 5002

EIEINEMANN
ELECTRIC COMPANY
190 Plum St., Tronton 2, N. J.

Circle 24 on reader-service card for more indformation

Radio frequencies up to 250 me can be switched by this coaxial switch making possible the use of one detector for signal comparisons.

250 Mc Coaxia

ACOAXIAL switch which can handle rf sig nals up to 250 mc makes it possible to us one detector for both the reference circuit an the unit being tested. Consequently, the possibil ity of error caused by non-identical detectors avoided.

The switch manufactured by Jerrolds Eleo tronic Corp., 23rd and Chestnut Sts., Philadel phia 3, Pa., utilizes two Clare Mercury Wette switch elements mounted in a coaxial circuit. Th unit has a maximum current rating of 5 a at 50 v and can be supplied for either 50 - or $75-\mathrm{ohn}$ lines with a vswr of less than 1.08 from 0 to 25 mc . The insertion loss of the unit is appron mately $1 / 2 \mathrm{db}$.

Telemeter Decommutatio

A27 -channel, completely self-contained de commutation system has been developa for use in airborne or trailer-installed telemeta receiving stations and in portable ground ched out equipment. The system, consisting of a ga ing unit, a pulse selector, and a regulated pow supply, occupies 19-1/2 in. of panel height wil an overall depth of 13 in . Two spare modul gating units are maintained on standby for is stant use.

This twenty-seven chand decommutation system conse of a gating unit (top), a pur generator (middle) and a res lated power supply bbotlow The system measures 19.1/2 high and 13 in . deep.

a
 Switch

The switching functions are controllable by a blocking oscillator synchronized to some submultiple of the 60 cps of the line. Synchronization is obtained by varying a potentiometer through a screwdriver control. A phase reverse switch and a phasing control are provided for adjusting the phase with respect to the line. Gain adjustment is obtainable with the use of an rf attenuator which must be connected externally to the switch.
When used in conjunction with an oscilloscope, the switch displays two voltages simultaneously for qualitative measurements, making point-bypoint analysis unnecessary.
For additional information concerning this coaxial switch, fill out the enclosed Reader's Service Card and Circle 25.

은
 System

All standard RDB inputs, either PAM or PDM, at any repetition rate from $2-1 / 2$ to 40 rps , and either single-ended or push-pull signals are accepted. Outputs may be operated single or double ended. The overall linearity is within $1 / 2$ per cent at maximum signal level. Circuitry design does not reflect errors produced by center frequency drift of subcarrier oscillators, drift of discriminator dc output level, or playback speed errors. Long term level drift is within $1 / 2$ per cent and gain drift is negligible.
The system, manufactured by Arnoux Corp., 11924 West Washington Blvd., Los Angeles 66, Calif., includes a built-in test selector which permits visual inspection of waveforms throughout for rapid malfunction detection. Neon indicators on each gating unit give continuous visual indiation of correct sequence operation.
Miniaturization is accomplished through the Ilse of seventy-six tubes in the design as compared to a hundred in similar systems. Modular construction permits the expansion of the system to any desired capacity.
The power required by the unit is $115 \mathrm{v}, 60$ cps single phase. An optional $115 \mathrm{v}, 400 \mathrm{cps}$ power supply is available for airborne use. Further information on the decommutation frstem may be obtained by filling out the en[loserl Reader's Service Card and circling 26.

CIRCLE 27 ON READER-SERVICE CARD FOR MORE INFORMATION

Ferrite Transducers for Electromechanical Filters

Glyndon S. Hipskind
Radio Corporation of America

N_{N}any magnetostrictive transducer the efficiency of operation depends upon the magnetostrictive activity of the core or resonator material. One useful way to express this efficiency is by the coefficient of coupling between a given coil and the associated core. The coil with core in place may be represented by the equivalent circuit shown in Fig. 1. In this figure, L is the inductance of the coil with resonator in place, K is the coefficient of coupling, and C is the distributed capacitance of the coil plus any external capacitance necessary to resonate the coil. The antiresonant frequency of the parallel branch of the circuit is the same as the natural frequency of the resonator; the \mathbf{Q} of the parallel branch is the same as the mechanical Q of the resonator. The impedance of the parallel branch may be expressed as

$$
\begin{equation*}
Z_{\rho}=\frac{j \omega K^{2} L}{1-\omega^{2} K^{2} L C} . \tag{1}
\end{equation*}
$$

For the frequency where the circuit is series resonant, the total impedance Z will be equal to zero, neglecting the resistance of the coil.

Let ω_{2} be the series resonant frequency; then,

$$
\begin{equation*}
Z=j \omega_{2} L+\frac{j \omega_{2} K^{2} I}{1-\omega_{2}^{2} K^{2} L C}=0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
K^{2}=\frac{1}{\omega_{2}^{2} I C^{C}-1} \tag{3}
\end{equation*}
$$

Let $\omega_{\text {, }}$ be the frequency at which the parallel branch of the circuit is at resonance (antiresonance condition); therefore:

$$
\begin{equation*}
L C=\frac{1}{\omega_{1}^{2} K^{2}} \tag{4}
\end{equation*}
$$

Substituting the value of $L C$ from eq (4) in eq (3),

$$
\begin{equation*}
K=\frac{\left(\omega_{2}+\omega_{1}\right)\left(\omega_{2}-\omega_{1}\right)}{\omega_{1}^{2}} . \tag{5}
\end{equation*}
$$

If it is assumed that $\omega_{2} \approx \omega_{\text {, }}$ then

$$
\begin{equation*}
K=\frac{1}{\sqrt{\frac{\omega_{1}}{2\left(\omega_{2}-\omega_{1}\right)}}}=\frac{1}{\sqrt{\frac{f_{1}}{2\left(f_{2}-f_{1}\right)}}} \tag{6}
\end{equation*}
$$

The coefficient of coupling K, therefore, can be determined with eq (6) from f_{2}, the seeries resonant frequency of the circuit, and f_{t}, the natural resonant frequency of the core.

Natural Resonance and Propagation Velocity

The resonant frequency of the ferrite core is a function of the velocity of propagation of sound through the body, Young's modulus, the length of the core, and the density of the core material. For
rods vibrating in the longitudinal mode, this fre quency is expressed by

$$
f_{1}=\frac{M}{2 l}\left(\frac{E}{\rho}\right)^{\frac{1}{2}}
$$

Where f_{1} is the frequency in cycles per second n is a small integer (for the fundamental frequency, $n=1$; for the second harmonic, $n=2$; etc.), 1 is the length of the rod in meters, ϱ is the density of th rod in kilograms per meter ${ }^{3}$ and E is Young's modu lus in newtons per meter ${ }^{2}$. The expression ($\left.E / \rho\right) \frac{1 i i l}{\text { i }}$ equal to the velocity of propagation in meters pel second.
Because the rod is not affixed at either end, it is free to vibrate as a half-wave resonator. The veloc ity of propagation of sound through the ferrito medium, therefore, is given by:

$$
V=f_{1} \lambda
$$

An interesting application for the magnetostrictive property of ferrites is in an electromechanical filter. Such a fil ter, which can be an extremely selective band-pass device, consists of an input transducer, a section of mechanically coupled resonant elements tuned to a specific frequency, and an output transducer. Ferrite rods or cores are used as the input and output transducers. Assume that a small ferrite rod having relatively high magnetostrictive character istics is placed in a coil in such a manner that the rod is free to vibrate. Then a small permanent magnet is place near the coil assembly to supply a biasing effect on the core. If the coil assembly is excited with an ac signal, the cir cuit can be tuned by means of capacitor so that the coil energy is absorbed by the core. The core is mechanicall resonant and the energy of the coil is used to provide mechanical motion to the core.
Such a device is a transducer converting electrical energy to mechanical energy. A reversal of energy conversion can also take place. If the core is provided with mechanical motion, it will induce a current in the coil at the same frequency as the mechanical motion of the core. The important parameters for the evaluation of a ferrite rod lo transducer applications and methods for the measurement of these parameters are described in this article. Empir cally obtained values for these parameters are given for rods having differences in size, composition, and fring conditions. In conclusion, performance data including frequency-response and temperature stability characteristics are given for a developmental electromechanical 200 kc filter utilizing ferrite-rod transducers.

Where v is the velocity of propagation, f_{1} is the rsonant frequency, and λ is the full-wave length, 1 in meters.

Testing Procedures

The coefficient of coupling may be measured by pans of the circuit arrangement shown in Fig. 2. the frequency of the signal generator is adjusted til the voltmeter reading is a minimum. This eading indicates the antiresonant condition: the apedance of the coil is a maximum and the current ${ }_{52}$ minimum. This frequency is recorded as f_{1}. The requency of the signal generator is then increased
mitil the voltmeter reading is a maximum. This pading indicates the series-resonant condition. The requency at this point is recorded as f_{2}. The couling coefficient may now be calculated from eq (6), The coefficient of coupling depends to some exent upon the coil design. Such factors as how close he winding is to the core, how long the coil is with Ispect to the core, and how the cores fit into the hiil form affect the coefficient values.

Initial Permeability

Another characteristic of importance is the initial ermeability of the core material. Because of its hationship to the termination impedance of a filt using ferrite transducers, the permeability of the rite must be controlled within very close limits. nce the ferrite is in the form of a rod instead of ring, this property can be controlled by measuring e effective permeability in place of the actual ring meability. The effective permeability is defined the ratio of the inductance of the coil with core serted to the inductance of the coil with an air re. This effective permeability $-\mu_{\mathrm{eff}}-$ is measted with a Q-meter and may be expressed

$$
\begin{equation*}
\mu_{e f f}=\frac{C(\text { coil only })}{C(\text { coil with core })} . \tag{9}
\end{equation*}
$$

he capacitance C indicated on the meter for both onditions is measured at the same frequency.

Frequency Stability

The frequency stability of the core depends on * change of permeability of the ferrite resonator th temperature as well as the magnetostrictive ality. The exact extent of this change, expressed a temperature coefficient, depends upon the comvition and processing conditions. This temperaTe coefficient is most easily determined by measement of the resonant frequency of the ferrite respitor at different temperatures. The coefficient is pressed as follows:

$$
\begin{equation*}
a=\frac{f_{t_{2}}-f_{t_{1}}}{\left(t_{2}-t_{1}\right) f_{t_{1}}} \times 10^{6} \tag{10}
\end{equation*}
$$

Fire a is the temperature coefficient in cycles $\mathrm{mc}, f_{t_{1}}$ is the resonant frequency at room tem-

Fig. 4. Temperature stability characteristic of a 100 kc ferrite resoriator.

Fig. 5. Temperature stability charac teristic of a 200 kc ferrite resonator.

Fig. 6. Effect of change in biasing force on coefficient of coupling.
perature t_{1}, in $\operatorname{deg} C$ and $f_{t 2}$ is the frequency at any other temperature, elevated or reduced, t_{z}. The resonant frequency for determining the temperature coefficient is measured in the same way as the resonant frequencies for the coupling coefficient.

Experimental Results

Fig. 3 shows a typical frequency-response curve of a ferrite resonator core. The ratio of the peak voltage to minimum voltage is about 150 or 200 to one. As previously stated, the anti-resonant fre-

Table 1. Parameters for different ferrite rods 0.510 in . long and 0.037 in . diam designed for operation at approximately 200 kc.

Composition	Coeff. of Coupling K (per cent)	Resonant Frequency f. (cps)	$\begin{gathered} \text { Young's } \\ \text { Modulus } \\ E\left(\text { newtons } / \mathrm{m}^{2}\right) \end{gathered}$	Velocity of Propagation $v(\mathrm{~m} / \mathrm{sec})$	Eff. Perm. $\mu_{\text {eff. }}$.	$\begin{aligned} & \text { Density } \\ & \mathrm{o}\left(\mathrm{~kg} / \mathrm{m}^{3}\right) \end{aligned}$
Ni Ferrite	. 1253	219899	1.65×10	5,740	2.45	5.30×10^{3}
Ni Ferrite with 1/3 per cent impurity added	. 1450	217903	1.681×10	5,680	2.74	5.21×10^{3}
Ni Ferrite with 1/3 per cent impurity added. Fired under different conditions than above.	. 1495	218052	1.692×10	5,690	2.66	5.23×10^{3}
Ni Ferrite with 1 per cent impurity added	. 1593	220358	1.718×10	5,750	2.82	5.19×10^{3}
Ni Ferrite with 2 per cent impurity added.	. 1389	222941	1.765×10	5,820	3.02	5.21×10^{3}

Table 2. Parameters for two 100 kc ferrite rods 1.25 in . long and 0.054 in . diam produced under different conditions.

Composition	Coeff. of Coupling K (per cent)	Resonant Frequency f_{1} (cps)	Young's Modulus E (newions/m²)	Velocity of Propagation $v(\mathrm{~m} / \mathrm{sec})$	Eff. Perm. $\mu_{\text {epp. }}$.	$\begin{aligned} & \text { Densily } \\ & \mathrm{\rho}\left(\mathrm{~kg} / \mathrm{m}^{3}\right) \\ & \hline \end{aligned}$
Ni Ferrite	. 1445	90406	1.700×10	5,760	7.66	5.12×10^{3}
Ni Ferrite	. 1288	91381	1.815×10	5,800	4.60	5.39×10^{3}

quency, f_{t}, of the parallel branch is the natural resonant frequency of the core. The series resonant frequency f_{2} is about 1000 cycles above frequency f_{1}. The greater the difference between f_{1} and f_{2}, the greater the coefficient of coupling.
Five ferrite rods having different compositions or firing conditions, each 0.510 in . long and 0.37 in . diam and designed for operation in the vicinity of 200 kc were tested for coupling coefficient, resonant frequency, Young's modulus, velocity of propagation, effective permeability, and density. The results are given in Table 1. With the addition of small amounts of impurities, the coefficient of coupling increases. This increase continues until somewhat over the 1 per cent impurity point is reached. It then decreases. The value of Young's modulus increases with addition of impurities. The velocity of propagation decreases slightly with small additions of impurities, but further impurity additions cause an increase in velocity. Effective permeability increases with the addition of impurities regardless of the change in firing conditions. The densities show a slight decrease with the addition of impurities.
Table 2 lists the various parameters for two 100 kc ferrite rods produced under different conditions. There is a considerable difference in almost every parameter, but the two that stand out most are the values for the effective permeability and density.
The frequency vs temperature characteristics of a 100 kc transducer rod are given in Fig. 4. The temperature range studied was -40 to 85 C . It will be noted that the frequency increases with increase in temperature until 4 C is reached. At this tem-

Fig. 7. Schematic diagram of electromechanical filter using Ni-span filter elements and ferrite transducers.

Fig. 8. Frequerrcy response characteristic of 200 kc electromechanical filter.

Fig. 9. Temperature stability characteristic of 200 kc electromechanica! filter.
vature, the frequency decreases quite rapidly and hen slows a tendency to level off. The coefficient is nsitive between -40 and 4 C and negative for rimperatures above 4 C .
A similar frequency-temperature study, made for W k r rods, is given in Fig. 5. The same general
trends exist except that the curve rises faster and peaks at a higher temperature than does the curve for the 100 kc rods. There is no indication of a tendency for frequency response to level off as it does for the 100 kc rod.

Although the 100 and 200 kc rods were made of the same compounded material extruded in the same manner, they have different characteristics due, undoubtedly, to differences in extrusion pressures for each size.
Another interesting feature of this magnetostrictive material is the effect of the biasing force on the coefficient of coupling. Fig. 6 shows the results of a typical core subjected to different biasing forces produced by changes in the position of a permanent magnet. With a very weak field, the coefficient of coupling is low. As the field is increased, the coefficient increases and then levels off. A further increase in bias causes the coefficient to increase at a very rapid rate. The maximum value is limited only by the effective resistance of the circuit. With still further increase in the biasing force, the coefficient of coupling again drops off. Obviously there are bias limits within which the rod vibrates most efficiently; the extent of this range depends on the composition and processing conditions of the rod.

Use as Transducer in Mechanical Filter

The best proof as to the effectiveness of these ferrites as transducers is how they perform in an actual filter. A complete filter was built using transducer elements having a coupling coefficient of 0.14 to 0.17 , an effective permeability of 2.46 ± 3 per cent and a temperature coefficient of $\pm 35 \mathrm{cy}-$ cles $/ \mathrm{C} / \mathrm{mc}$. Fig. 7 is a schematic diagram of the filter. The filter was tuned by means of capacitors C_{t} and C_{3} for a 200 kc center frequency. After the tuning, the capacitor received no further adjustment for the remainder of the tests. Several response curves were taken at various temperatures. The filter was placed in an oven for elevated temperature tests and in a ventilated box with dry ice for the tests below room temperature. The frequency response of the filter is given in Fig. 8. The bandwidth, measured at the -6 db point, is a little over 3,000 cycles. The peak-to-valley variation is not more than 2 db over the passing range. The sides of the curve are quite steep as far down as -50 to -60 db .
Fig. 9 shows the temperature characteristics of this filter for temperatures ranging from -50 to +85 C . The greatest peak-to-valley variation occurs at a temperature of 50 C ; however, the value is not more than 2 db . The bandwidth is approximately the same for all temperatures.
The author wishes to express his appreciation to Messrs. George Katz and K. E. Hurley who made the magnetostrictive ferrites; to R. D. Hunter who conducted the tests on the rods and filter; and to L. Dimmick who built and supplied the filter.

NEW! mighty midget

No. 22

Tiny but powerflul thit
new Guardien Mid new Gur powerful: thie
Solenoid packe Ma deet Solenoid pack at deci-
sive punct
rese

 tent or continuour duty
applications.

Select Your Solenoids from GUardian's COMPLETE LINE .. Proved for Superior Performancel
 Many Guardian solenoids are available with Guardian PERMASEAL encapsulated coils. Most standard units are sufficiently flexible in design to meet "special" requirements and thereby eliminate costly pretooling. Adjustable strok. es up to 2 inches; pull or lift up to 20 pounds. All D.C. units available for 400 cycle operation Write for Bulletin SOL-8.

GUARDIAN STEPPERS Get Guardian's free Bulletin P-84. Gives complete operating data on sequence selecting, latching, automatic homing, remote homing, pulsing, electrical reset, slave and mas ter sets, continuous rotation, add/subtract.
 are carried in stock by franchised distributors in the steppers Canada. Write for name of nearby distributor and Bull.SD-11.

GUARDIAN (G) ELECTRIC

"Everything Under Control"
CIRCLE 28 ON READER-SERVICE CARD FOR MORE INFORMATION

New Products

Miniature Inertia

 SwitchWeighs $3 / 4 \mathrm{Oz}$, Has One Moving Part

This miniature inertia switch is designed to eliminate friction and sticking causing unreliable function, costly, complicated mechanisms, and waste space. A single moving part held in a magnetic field momentarily closes electrical contacts, following impact or acceleration above a preset value. Switch setting easily adjustable from 1.5 g up, tolerance ± 0.15. Volume, $1 / 2 \mathrm{cu}$. in. Weight, $3 / 4 \mathrm{oz}$.

Safe Lighting, Inc., Dept. ED, 527 Lexington Ave., New York 17, N.Y.
circle 29 on reader-service card for more information

Telemetering Switch

Operates Up to 200,000 Ft

This multichannel sampling switch is designed for use in missile telemetering applications. The cylindrical pressure sealed container allows the switch to operate at altitudes up to $200,000 \mathrm{ft}$ and in temperatures from 125 down to -65 C . This switch is available with from one to five poles with up to 60 contacts per pole, at sampling speeds ranging from 0.5 to 30 rps . The various motor drives offered include 6, 12, and 27.5 v dc governed or ungoverned, 60 cps single phase, or 400 cps single
or three phase. The governed dc units have a speed regulation of ± 3 per cent. The construction will withstand 150 g shocks and 100 g continuous acceleration bi-directional in each of 3 planes, and a vibration of from 20 to 2000 cps at 20 g for $1 / 2 \mathrm{hr}$. This switch will provide continuous operation for 100 to 1000 hr depending upon the sampling speed, the severity of environmental conditions, and the quality of switching required.
Applied Science Corp. of Princeton, Dept. ED, P. O. Box 44, Princeton, N.J.
circle 30 on reader-service card for more information

The diffused silicon diode/rectifier features 400 ma average rectified forward current plus 600 v peak inverse voltage ratings. The IN649 highlights a guaranteed minimum 2-million-to-1 forward to reverse current ratio. Other significant parameters on the unit include 1.25 a recurrent peak forward current rating, a 3 a surge current (one sec), 600 mw power dissipation, and a 720 v breakdown voltage.
Four other silicon diode/rectifiers, the IN645, IN646, IN647, and IN648, all diffused silicon glass devices, differing from the IN649 only in peak inverse voltage (225 to 500 v), breakdown voltage (275 to 600 v), and reverse current ratings at elevated temperatures, have also been introduced.
Texas Instruments Inc., Dept. ED, Semiconductor Components Div., 2929 Cedar Springs Rd., Dallas 21, Tex.

CIRCLE 31 ON READER-SERVICE CARD FOR MORE INFORMATION

Plug-in Transformer For Printed Circuits

High precision plug-in transformers for printe circuit application are epoxy encapsulated uni designed for maximum moisture resistance an insulated for high operating temperatures. Plugterminals are spaced on multiples of $0.1 \mathrm{in}$. standard grids.

Celco Constantine Engineering Labs. Co., Dtp ED, Island Ave., Mahwah 1, N.J.
circle 32 on reader-service for more information

Miniature Molded Composifion Resisto

0.14 In. Long

Molded composition resistors in a $1 / 10 \mathrm{w}$ si are 0.067 in . in diam and 0.14 in . long. Lead wir are hot-solder-coated for rapid soldering. The units are available in RETMA values from 1 ohms to 1 megohm, ± 10 per cent tolerance.

Ohmite Manufacturing Co., Dept. ED, 36 Howard St., Skokie, Ill.
CIRCLE 33 ON READER-SERVICE CARD FOR MORE INFORMATIG

High-Speed Counter Electrical Reset

The Model MCRP-700 is a high-speed, precision munter developed to add or subtract electrical pulses with optional microswitch control at zero fivel and featuring electrical reset to any predetermined number. The lightweight armature, which phates the counting mechanism, is dynamically |lalanced to provide accurate counting under severe fibrations. The unit can be furnished as a three, Wiin, or five digit counter with any combination of Idd, subtract, and microswitch control at zero

Photocon Research Products, Dept. ED, 421 N. liadena Dr., Pasadena, Calif.
Thle 35 ON reader-service card for more information

Right-Angle Gear Mofor
75 RPM

This right-angle gear head motor is 2 in . in diam, ${ }^{10}$ cps, 115 v , single phase. With an output speed ij rpm , the motor is designed especially for tape fording, aircraft, and numerous other applicaons requiring moderate torque at low speeds.
Sir-Marine Motors, Inc., Dept. ED, 369 Bayview
re, Amityville, N.Y.
reie 36 on reader-service card for more information

3 In. Cathode Ray Tube

26 to 35 V/In. Vertical Sensitivity

The rectangular $3-\mathrm{in}$. cathode ray tube has a frical sensitivity of 26 to 35 v dc per in., which achieved with a second anode voltage of 1000 v . hen an extremely well defined spot is required for Ih resolution and optimum brightness, the tube t be operated with 2000 v at the second anode. der these conditions the vertical sensitivity is 1070 v per in. The tube is available in P1, P2, P7, Pll phosphors.
Waterinan Products Co., Inc., Dept. ED, 2445 lerald St., Philadelphia 25, Pa.
al 37 ON READER-SERVICE CARD FOR MORE Information
CTRONIC DESIGN • September 1, 1957

SEMI-CONDUCTOR DUAL VOLTAGE REGULATED POWER SUPPLY

MODEL 2SC-30-1.5

for Transistors and Strain Gages

a new compact, light weight unit feaTURING TWO INDEPENDENT REGULATED VOLTAGES WITH HIGH EFFICIENCY, FAST RECOVERY TIME, GOOD STABILITY, LOW OUTPUT IMPEDANCE, LOW HEAT DISSIPATION, AND SHORT CIRCUIT PROTECTION.

OUTPUT \#1
OUTPUT VOLTAGE DC: $0-30$ volts continuously variable. OUTPUT CURRENT DC: 0-1.5 amperes continuous duty REGULATION: In the range $0-30$ volts, the output voltage variation is less than 0.02 volts for load variation from 0 to maximum current, and less than 0.02 volts for line fluctuation from 105-125 volts.
RIPPLE VOLTAGE: Less than 3 millivolts RMS.
FUSE PROTECTION: Input and output fuses on front panel.
OUTPUT \#2

OUTPUT VOLTAGE DC: $0-30$ volts continuously variable. OUTPUT CURRENT DC: 0-1.5 amperes continuous duty
REGULATION: In the range $0-30$ volts, the output voltage variation is less than 0.02 volts for load variation from 0 to maximum current, and less than 0.02 volts for line fluctuation from 105-125 volts.
RIPPLE VOLTAGE: Less than 3 millivolts RMS.
FUSE PROTECTION: Input and output fuses on front panel.

RECOVERY TIME: Less than 50 microseconds. The excursion in the output voltage during the recovery period is less than . 05 volts for line fluctuations from 105 to 125 volts or load variations from 0 to maximum current.
STABILITY: The output voltage variation is lesss than .05 volts for a period of 8 hours.
OUTPUT IMPEDANCE: Less than 0.1 ohms from 1KC to 100KC. Less than 0.01 ohms from DC to 1 KC .
POWER REQUIREMENTS: $105-125$ volts, $50-400$ cycles.
OUTPUT TERMINATIONS: DC terminals are clearly marked on the front panel. All terminals are isolated from the chassis. Either positive or negative terminal of each DC output may be grounded. A terminal is provided for connecting to the chassis. The DC terminals are also brought out at the rear of the unit.

PHYSICAL SPECIFICATIONS: Height 7", width 19", deptlı 11". color gray hammertone. This unit is designed for relay rack mounting or bench use. Carrying handles are provided.
METERS: Voitmeters: Two 0.30 volts, $21 / 2^{\prime \prime}$ Milliameters: Two $0-1.5$ amperes, $21 / 2^{n \prime}$
CONTROLS: Power on-off switch; outputs 1 and 2 OC on-off switch; outputs 1 and 2 ten turn voltage controls.
SEND FOR BROCHURE B-576 - SPECIFICATIONS ON
NEW MAGNETIC, TRANSISTOR AND TUBE
VOITAGE REGULATED POWER SUPPLIES AND VOLTAGE REGULATED POWER SUPPLIES AND
SEMI-CONDUCTOR DC TO DC CONVERTERS

KEPCO LABORATORIES, INC. 131-38 SAMFORD AVENUE • FLUSHING 55, M.Y. • INDEPENDENCE 1.7000

CIRCLE 38 ON READER-SERVICE CARD FOR MORE INFORMATION

NEW ENGINEERING BULLETIN LISTS 1:2

 DIFFERENT COMBINATIONS OF FREQUENCY RANGE AND CONSTRUCTION STYLE . . . LIKE THIS: esign your IF stripswith Aldaddin
standard transformers

I. F. SPECIFICATIONS

ALADDIN PART NO.	frea. KC	${ }_{30}^{\text {BANO }}$	$\underset{\text { ODIDIK }}{\text { OWID }}$	$\underset{200 \pm}{\text { KC } \pm 10}$	\% 40 DB	$\begin{gathered} \text { LOADED } \\ 0 \end{gathered}$	ALADDIN PART NO.	FREO.	$\begin{aligned} & \text { SAND } \\ & 3 D 8 \end{aligned}$	WIDTH KC	$c_{\text {20DB }}^{ \pm 10 \%}$	4008	LOADED
*-250	50	3.5	5	12.5	39	19	*-417	1700	35.7	46.5	113	369	67
*-285	85	4	5	12.4	40	31	*-418	1800	39.5	50.9	123	396	65
*-313	132	5.2	6.9	17.4	56	35	*-420	2000	36.4	47.6	117	375	76
*-326	262	7	9.2	22.6	13	52	*-422	2200	43.7	55.8	137	441	71
*-337	370	9.9	12.2	30.1	96.5	54	*-425	2500	46.2	59.1	144	466	77
*-346	455	10.3	14	33.6	108	61	*-427	2700	52.4	68.1	165	504	74
*-350	500	11.9	15.5	37.8	122	57	*-429	2900	52.4	68.3	167	541	77
- 380	800	23	30.1	72.9	236	49	*-440	4000	76.5	98.8	241	790	74
*-410	1000	27.6	36.1	87.9	286	50	*-511	10700	203	258	643	2130	74
*-415	1500	32.8	43.2	106	346	63	*-525	25000	296	390	970	3010	117

20 standard frequencies, from 50 kc to 25 mc . Military and commercial quality units. Four pages of text on IF transformer theory. Performance data and test circuits. Tables of engineering data on performance characteristics of available IF transformers.

WRITE on Company letterhead for this new Aladdin bulletin

ELECTRONICS
A Division of Aladdin Industries, Inc.
719 Murfreesboro Road
Nashville, Tennessee
Tarrytown, N.Y.; Pasadena, Calif.

Diode Clips

Spring Loaded

Two spring-loaded diode clips have ren designed to hold securely diode pitail leads. The two, plus one other reviously offered, can handle pigtail ads in sizes from 0.005 to 0.085 in . The The smallest size clip has been desmated as X2146 when furnished fith a screw stud and X2147 when unished with a rivet mounting. The riddle size clip has been designated $\$ 2329$ with a screw stud and 2330 lith a rivet mount; the large diode 4 is 2339 with a screw stud and 313 with a rivet mount. Each of the Iree rivet mounted clips is available the five different shank lengths.
Cambridge Thermionic Corp., Dept. D, 445 Concord Ave., Cambridge, lass.
CIRCLE 43 ON READER-SERVICE CARD

AC Motors

Induction, Torque and Hysteresis

The 3800 Frame series of ac motors, figned for induction, torque or hysesis synchronous applications, is railable with input voltages of from to $230 \mathrm{v}, 1,2$, and 3 phase with an put frequency from 25 to 400 cps . or induction applications, units in is series are offered in outputs to 1 : torque motors 10 to 200 oz in. stall rque; hysteresis synchronous $1 / 200$ $1 / 4 \mathrm{hp}$. Motors can be wound for pgle, dual, or three speed, and can supplied as self cooled with inter-1 fan. Units in this frame series vary weight from 8 to 11 lb . All can be ed as fan and blower motors and pernianent magnet generators. Induction Motors Corp., Dept. ED. Main St., Westbury, N.Y. CIRCIE 44 ON READER-SERVICE CARD CIRGLE 45 ON READER-SERVICE CARD $>$

INDUSTRY APPROVED

 AlSiMatilespricision ceramics High Strenglf-Low Los:

Your best buy for uses requiring rugged strength, low dielectric loss, precision tolerances. Dependable performance. Produced by the source offering widest choice of specialized ceramic compositions in the field. Withstand high temperatures. Hard. Minimize chipping, breaking. Chemically inert. Permanently rigid. Cannot rust, corrode or deteriorate with time. Wide latitude of shapes and sizes. Pressed . . . extruded . . . machined. The right equipment for every operation, every size order . . . to improve quality, decrease cost. Rapid delivery of uniform parts. Prototypes available . . . small lots for test purposes without special tooling.

VERSATILE AISIMAg 196 STARS IN SUCH APPLICATIONS AS THESE:

Atomic	Mounting Plates
Applications	Spacers
Appliance Parts	Standoffs
Bobbins	Supports
Bushings	Switchbacks
Coil Forms	Terminal Boards
Dowels	Transformer
Grommets	Bushings
High Frequency	Trimmers
Insulators	Tube Parts

Why not investigate the many advantages of AlsiMag 196 for your application? Sketch or blueprint, together with details of operation, will bring you complete information.

RELY on GI

Fractional H. P. Motors 1/40 H. P. to $1 / 1100 \mathrm{H} . \mathrm{P}$.

Your product is only as good as the motor that powers it. Play it safe by specifying the choice of leading O.E.M.'s - Specify G.I.I We have the compiete manufacturing facilities and vital know-how to handle your particular job efficiently, economically, on time. Our design staff will be happy to work with your engineers to solve special fractional hp. problems. You can rely on G.I.I

Write for complete specifications and quantity-price quotations today!

MODEL F 2-pole, shoded pole
AC Induction Pype

MODEL E 4-pole, shoded pole
AC Induction Type

MODEL O 2-pole Capacitor Reversi-
ble Type AC only (fors 6 .
12 , or 24 volts)

MODEL D A. pole. A-coil, shaded
pole AC Induction Type
(4) the GENERAL INDUSTRIES co.

DEPT. GJ• ELYRIA, OHIO
CIRCLE 47 ON READER-SERVICE CARD FOR MORE INFORMATION

New Products

An ac output linear accelerometer for high response systems, this unit has an accurate, large output signal obtained while maintaining high natural frequency and low cross talk. Temperature-compensated fluid damping maintains constant damping over the operating temperature range without a heater, and according to the company, provides exceptionally good dynamic characteristics.

Available in a wide selection of g ranges, the accelerometer meets MIL-E-5272A for all conditions with the following variations: temperature range from -40 to 185 F ; shock to 60 g ; and vibration of $30 \mathrm{~g}, 10$ to 2000 cps .
Pacific Scientific Co., Dept. ED, P.O. Box 22019, Los Angeles, Calif.
circle ab on reader-service card for more information
Two Phase Power Supply
Total Output of 550 VA

This supply is designed for the development and testing of 400 cps servo systems, two phase gyro motors and similar components. Three continuously variable outputs-two at zero degrees and one at ± 90 deg provide flexibility. No. 1 output provides 0 to $225 \mathrm{v}, 1 \mathrm{a}$, zero phase; No. 2 provides 0 to 225 v , 1 a , zero phase; and No. 3 provides 0 to $130 \mathrm{v}, 1 \mathrm{a}$, ± 90 phase. Phase switch allows output no. 3 to be switched to either lead or lag outputs no. 1 and no. 2 by 90 deg. Input is 115 or 200 v line to line, 400 cps, 3 phase. The unit measures $22 \times 15 \times 11 \mathrm{in}$., and weighs 51 lbs .

Pacific Technical Co., Dept. ED, 2047 Sawtelle Blvd., Los Angeles 25, Calif.
circle 49 ON reader-service card for more information

No Brushes

G-E Inductrol*

Voltage Regulator Mean Reliability

Because it is an induction regulator. Inductrol maintains $\pm 1 \%$ a-c outp voltage without using brushes.
This means radically lower main nance costs than are possible with brush-commutator type regulators. Th are no brush inspection, cleaning. placing, or stocking problems. There no commutators to arc over or " down. General Electric Inductrols m precise, highly reliable, economical " age regulation.
For more information, write Secti 425-7, General Electric Co., Schenect 5 , N.Y., or contact your nearest Gem Electric sa'es office or agent.
*General Electric Trademark for induction volloent
Progress is Our Most Imponiant Produd
GENERAL ELGCTR
CIRCLE 50 ON READER-SERVICE CARO

Magnetic Voltage Regulator
400 Cps Applications

Type TMH7101 is designed for 400 \% single phase applications where rewirements demand lightweight equiphent. It has no tubes, transistors or moving parts. The unit can be orared cradled on a shock mount. Inat is 95 to 130 v for nominal output Nltage; output is 115 v nominal, adstable from 110 to 120 v ; load is 1.0 Ia; stabilization and regulation is 1.0 bandwidth for line voltage variaon. It measures $7-3 / 4 \times 5 \times 14-3 / 8 \mathrm{in}$. fit military standard case MS91403IB.
The Superior Electric Co., Dept. D, 83 Laurel St., Bristol, Conn. circle 52 on reader-service card

Temperature Probes

For Low Measurements

For precise measurements at very N temperatures. Model S-101 is a Ner type thermistor used for liquid ygen at temperature range of -185 $10-170 \mathrm{C}$. Model S-102 is designed measurement of air with a range -20 C to 100 . The $\mathrm{S}-105$ probe is signed to determine temperature knges of electronic components, and prates from 0 C to 60 C with an Kuracy ± 2 per cent of resistance. three-point temperature vs. resistre calibration is available for all abes except Model S-101.
Gulton Industries, Inc., Dept. ED, tuchen, N.J.
CIRCLE 53 ON reader-service card CIRCLE 54 ON READER-SERVICE CARD >

Long life, stability and high reliability are the features of this new general purpose relay. Allied's type GK relay uses twin palladium contacts with bifurcated stationary contact arms. Designed for a wide variety of Industrial and Military applications, Allied's type GK relay has a capacity of 20 springs which can be assembled in a variety of combinations of A, B, C and D contact forms.

Here are the facts:
Oporafing Volsages up to 220 volis d-c

Contact Rafings

up to 4 amperes af 150 watts
Tomperafure Ranges
up to $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Vibrafions

up to 10 to 55 cps of .062 inch double amplitude
-poraling Shocks
up to 30 "g"
*
For complete details send for Allied's GK catalog sheet.

DIMENSIONAL IOLERANCES DECIMALS ${ }^{+} 010$ FRACTIONS $\begin{gathered}1 \\ 64\end{gathered}$

the first of a new series of test equipment developed AND PRODUCED BY RHEEM

The Rheem REL-1001 is an automatic electron tube analyzer incorporating new concepts of design for faster, more accurate, highly flexible and extremely simple operation. The unit provides 17 test positions which can be set up to perform any combination of 19 basic tests utilizing the "programmer" principle consisting of individual, easily inserted patch panels, each unique to a particular tube type. Tests may be conducted singly or in sequence, and may be accomplished automatically, semi-automatically or manually at the rate of 3000 tests per hour, to $\pm 3 \%$ accuracy.
The accuracy and speed of the REL- 1001 permits tests to be conducted that heretofore have not been feasible because of the high cost. The Rheem electron tube analyzer performs test operations which would require 17 skilled personnel and as many testing machines of the types available up to this time.
The analyzer tests practically all basic tube types. The unit will accommodate new types and is adaptable for special tests.
For further information, write direct to Rheem. A study of your requirements will show how the automatic tube analyzer may improve your quality control at a greatly reduced cost.

New Products

Recording

 PofentiometerTwo Continuous Record

This recording potentiometer features 2 pens both writing margin to margin on a single 5 -i4 strip chart, producing two continuous records. Th recorder is available with one front set limit switd and 3 back set limit switches on each pen. The am plifiers are completely transistorized. The instry ment offers 0.5 per cent accuracy on each pen, 0.1 per cent of scale span sensitivity, and maximur source impedance of 1000 ohm per mv of span. Th case extends 13 in . behind the panel face. Option features include transmitting slidewires, quid change or manual change gears for 3 speed cha drive, selsyn motor, or synchronous motor cha drive, automatic reference junction compensatio table or panel mounting and margin marker pens.

Westronics, Inc., Dept. ED, 3605 McCart S Fort Worth, Tex.
CIRCLE 57 ON READER-SERVICE CARD FOR MORE INFORMATIC
Load Sentry
Controls Overload

Load Sentry, a fail-safe electro-mechanical ove load control, is intended for use wherever overloo of any kind may be registered on an electric mota It is built around the positive action of a conta meter-relay. It is readily hooked into start-stio switches. The maximum load to be permitted the motor being monitored is set by an adjustat pointer anywhere on the dial of the meter-rela The dial has 30 divisions, ranging from zero to 1 . per cent of normal load. Another pointer indicad the actual running load on the motor. When ${ }^{4}$ pointers meet at an overload position, contacts log and the circuit is broken. The Load Sentry will th sound an alarm and/or shut down the system.
Assembly Products Inc., Dept. ED, Chesterlar Ohio.
CIRCLE 58 on reader-service card for more informait
ELECTRONIC DESIGN • September 1, 19:

Coaxial Switch Remotely Controlled

This remotely controlled coaxial switch, Type 10 , provides 4 -sec switching of $3-1 / 8 \mathrm{in}$. coaxial wismission line to standby equipment at frequensup to 1000 mc . It can be used in high power mmunication systems, as well as uhf and vhf devision stations. Use of these switches eliminates me-consuming manual changes of coaxial transission line connections. Standby equipment may quickly checked under actual operating condiins. In the event of main equipment failure, the are equipment is switched in with negligible offair time. The switch is operated from 115 v , Icps. Other motors are available on special order. entrol circuitry includes a wafer switch for use remote position indication circuits. The microlith is mechanically linked to the switching whanism so that transmitter power is removed fire switching and is reapplied only after new nlact is made.
Indrew Corp., Dept. ED, 363 E. 75 St., Chicago III.
cil 60 on reader-service card for more information

The EFB dc power supply is designed for tranfor circuitry. Designed to operate under almost voltage input condition, the unit supplied a tinuous variable power source from 0 to 16 v current loads to 8 a , and 0 to 32 v for current ds to 4 a . Current and voltages are indicated on arsenval-type meters. At greatest load it has less 010 mv ripple. The unit is built into a $12 \times 7 \times$ 12 in. blue hammerloid heavy steel cabinet. Electro Products Laboratories, Dept. ED, 4500 Ravenswood Ave., Chicago 40, Ill.
ak 61 on reader-service card for more information

Further technical data, prices and delivery information - on the $5490 / 5495$ Console Record ing syous no fwo-ro eight. channet aikitale on request from your Sanborn Sales:Enginooring Roprosentrative of the Industrial Division in Waltham.

Up to eight' problem variables can be recorded in inkless, permanent, rectangular-coordinate tracings-with Sanborn's improved six- and eightchannel 156-, $158-5490$ Console Systems. Less than four feet high and about two feet in width and depth, these Systems are completely mobile and designed for maximum operating convenience. Controls and indicators on the sloping top panel include individual-channel attenuation, position, balance,
sensitivity and stylus heat adjustments; switch for turning off $\mathbf{B}+$ of output sensitivity and stylus heat adjustments; switch for turning of + or or marker and or one-second interval timer stylus switch. The Recorder unit, either six or eight channels, features paper loading from the top, and nine precisely controlled speeds from 0.25 to $100 \mathrm{~mm} / \mathrm{sec}$. Four dual-channel DC Driver Amplifiers of current feedback design are housed below the Recorder, and are mounted on a chassis which may be withdrawn for inspection.

Electrical specifications of the Console Recording Systems include a basic
for analog computer readout: sensitivity of either 01 volt/chart division (5490 types) or 0.1 volt chart division (5495 types); linearity of 1%; drift less than $1 / 2$ chart division/hour (5490), less than $1 / 20$ chart division/hour (5495); flat frequency response to 20 cps , down 3 db at 60 cps for all amplitudes to 5 cm peak; either single-ended or push-pull input signals of 5 meg. impedance (each input lead to ground).

A useful companion instrument is the new Sanborn Model 183 Programmer, designed to provide a connecting link between an analog computer and the Console Recording System. Shown mounted at the top rear of the Console, the Programmer operates the Console in the following automatic sequence: turns recorder drive on-feeds calibration signals to all channels-reads initial DC levels of computer-closes contacts to start computer problem - records computer output for a preset chart length -turns off recorder drive and resets itself for another cycle.

SANBORNCOMPANY
 INDUSTRIAL DIVISION
 175 Wyman Street, Waltham 54, Massachusetts

Visit Sanborn Booths 1318-1320 ISA Show, Cloveland, Ohio, Septomber 9-13, 1957
CIRCLE 62 ON READER-SERVICE CARD FOR MORE INFORMATION

CIRCLE 551 ON READER-SERVICE CARD FOR MORE INFORMATION

New Products

Temperature Indicator

 Direct ReadingMAINTAINABILITY. HEAT TRANSFER. COMPONENT APPLICATION miniaturization ECONOMY

Cla

Electronic Product Design at Hughes is the optimum of many and varied specialties. This expert coordination of specialists has resulted in the solution of complex packaging problems, including the airborne Electronic Armament System and the Falcon guided missile
New projects soon to be underway concern developing practical solutions to the theoretical and actual problems associated with Electronic Product Design. These Hughes projects have both military and commercial application, assuring you of an unlimited future. Engineering positions to be filled include the following: Reliability, Component Application, Electromechanical Development, Miniaturization and Packaging, Chemical and Metallurgical, Applications and Precision Electronics Test-Supervisor. Investigate this opportunity to combine challenging work with the ideal living conditions in suburban Los Angeles. Send your resume to the address below.

HUGHES

REBEARCH AND DEVELOPMENT LABORATORIES
scientific staff relations WUGHES AIRCRAFT CO.. ROOM 2046.D culver city, california

Printed Circuits

For Many Shapes or Materials

In applications for which they are suitable, these rcuits remove many of the limitations imposed by
pper-clad printing methods. Conductive silver k are applied only where required by circuitry, ws etching is eliminated. The silver inks though, e not for sale.
Circuits may be applied to a base of most any ometrical shape including the inside or outside of bes, the surfaces of flats, cylinders, spheres, cones, c. The choice of base material also covers a wide Inge including cellophane, cellulose acetate and lyrate, vinyl chloride and acetate, acrylics, stynes, polyesters (including Mylar), Nylon, CR39 sin, phenolics, epoxies, silicones, melamines, dF, Teflon, mica, paper, wood, ceramics and

Eramples listed in photo are: (A) Condenser terinals printed on Teflon before die-cutting. (B) lbes may be printed on outside or inside. (C) Delarizing element of discone-type antenna, printed Teflon. (D) Condenser terminals after die-cutg. (E) Microwave strip line filter. Solderable silrprinted on both sides within $0.005^{\prime \prime}$ limits. Ends
p-soldered. (F) Flexibility illustrated by copperated silver circuit printed on 0.005 in . Teflon.
J. Frank Motson Co., Dept. ED, Flourtown, masylvania.
ak 67 ON READER-SERVICE CARD FOR MORE INFORMATION
Single Pole Voltage Tester

The tip, tester tests ac or dc voltage from 6 to 250 sa single pole tester, indicating polarity on dc. 2 testor clips into a pocket like a pen with no pling wires. For voltage above 250 and up to IV, an extension is supplied and converts the frument to a bi-polar tester. Contact point can grould to a needle point for puncture testing ds with negligible damage to insulation.
lick Inc., Dept. ED, 2210 Hampton Rd., Erie,
IK 68 ON READER-SERVICE CARD FOR MORE INFORMATION

Speed! of all structural metals, Magnesium costs less to machine

In the picture above, a lathe is making a roughing cot of $0.800^{\prime \prime}$ in an eight inch magnesium billet. The feed is 0.030 inches per revolution at a speed of 630 feet per minute. In finishing operations, cuts of $0.500^{\prime \prime}$ can be made with a feed of 0.003 ipr and a speed of $5,000 \mathrm{fpm}$.
That's real speed and efficiency-the kind you can always expect when you machine magnesium. This remarkable metal can be milled, drilled, sawed, reamed, bored, planed, tapped and threaded faster than any other structural metal!
Faster machining means easier machining and lower cost machining. It means more production per hour and per dollar, and longer tool life.

The following table shows how well magnesium compares to the others:

METAL	RELATIVE MACHINABILITY
magnesium	1.0
cast aluminum	1.8
brass	2.3
cast iron	3.5
rolled aluminum	$\mathbf{5 . 0}$
mild steel	6.5

Let us give you more mformation about the machinability of magnesium. Contact the nearest Dow sales office or write to the dow chemical company, Magnesium Department, Midland, Michigan, Dent. MA 1404R.

New Products

DC Microvolt-ammeter and Amplifier Fifteen Voltage Ranges

The Model 203 AR is a 19 - in. rack-mountable combination de microvoltmeter, microammeter, and low-level dc amplifier. Partially transistorized, the unit uses chopper circuitry to provide high sensitivity with previously unobtainable drift-free stability and high input impedance. Fifteen voltage ranges cover from $100 \mu \mathrm{v}$ full scale to 1000 v full scale and nineteen current ranges cover from 0.001 μ full scale to 1 a full scale. The uncluttered zerocenter meter face instantly indicates polarity on two mirrored scales which cover all ranges. The instrument can measure $10 \mu v$ to $100 \mu \mu$. Input impedance is 10 megohms on the 30 mv range or below and 100 megohms on the 100 mv to 1000 v ranges. Impedance accuracy is ± 1.5 per cent. Output terminals on the front panel are provided for its use as a low-drift de amplifier with high gain, high input impedance, and low output impedance. Maximum gain as an amplifier is 80 db , and maximum output is $\pm 1 \mathrm{v}$ across 500 ohms or greater. Output impedance is less than 2 ohms, and drift less than $10 \mu \mathrm{v}$ equivalent input.

KIN TEL, Dept. ED, 5725 Kearney Villa Rd., San Diego 11, Calif.

CIRCLE 71 ON READER-SERVICE CARD FOR MORE INFORMATION

Potentiometer
-65 to 400 F Temperafure Range

Designed for missile systems, this circular potentiometer, Type CPO5-0101-1, is moisture-proof and will meet explosion-proof requirements. It has $1-3 / 4 \mathrm{in}$. square base and $1 / 4 \mathrm{in}$. diam stainless steel shaft with Graphitar bearings. The temperature range is -65 to 400 F ; vibration 10 g to 2000 cps. The 10,000 ohm winding is constructed so that it can be furnished with taps.
Humphrey Inc., Dept. ED, 2805 Canon St., San Diego 6, Calif.
circle 72 on reader-service card for more information

Using the diffused-meltback process

G.E. gets the most from silicon...

Before going through the diffused-meltback operation a crystal of silicon is sawed into wafer-form: wafers are then diced to produce 4000 to 5000 individual silicon bars. Photomicrograph at left shows size-comparison of a silicon NPN bar or pellet. with human hair (Arrow 21 "Tear drop" at end of bar is formed during meltback process. Micro-thin base, or "P", region (Arrow 1) is created through G.E diffusion technique. Base regions of 2 -micron si\%e are made with relative ease.

Curves illustrating impurity distribu tion after diffusion. P-type impurities in the high concentration side of the meltback junction diffuse. within solid semiconductor, into "plateau" region of low impurity concentration. High resistivity "plateau" contributes to elimination of punch-thru effects.

o put the most into transistors

High degree of uniformity and control in junction formation. General Electric's diffused-meltbach process was developed by Dr. I. A. Lesk of the (i-E Advanced Semiconductor Laboratory. The development came about as the result of Dr. Lesk's efforts to create a transistor manufacturing process that would yield high-quality results at reasonable cost.
Not only does the G-E diffused-meltback proces: result in a maximum number of transistors from a single crystal (4000 to 5000 NPN transistors), but it offers an extremely high degree of uniformity and control in transistor junction formation.

Opens the door to high frequency performance. Diffusion of a melted-back silicon bar, or pellet, is the final step in the diffused-meltback process. It's the stage in which the micro-thin base or "P" region is formed, establishing the final NPN transistor structure. Because the actual diffusion is accomplished over a high temperature heating cycle lasting several hours, the need for split-second accuracy is eliminated. The result is a high degree of process control.
By proper choice of the initial impurity concentrations and the time and temperature of the diffusion cycle, heavily-doped base regions as thin as 2 microns are easily obtained. These micro-thin. uniform base regions are the "open-sesame" to ex-

> Ordering Dafa-G-E Silicon NPN Transistors
> High Frequency Amplifier Type
> ask for: 2N429 (formerly 4JD4A2)
> Computer DCTL Type
> ask for: 2N430 (formerly 4JD4A3)
> General-Purpose Amplifier Types
> ask for:
> 2N431 (formerly 4JD4A4) Beta 2N432 (formerly 4JD4A5) 9 to 30 2N433 (formerly 4JD4A6) 20 to 55
tremely reliable high frequency transistor perform. ance.
High current gain. Silicon NPN transistors feature inherent high current gains and high frequency cut-offs. The diffused meltback process permits mass production, since it combines the principles of impurity segregation and solid-state diffusion. C-E silicon NPN transistors are nominally rated for 25 megacycles, but with useful gain to 50 mega-cycles--the highest frequencies offered by any massproduced silicon NPN triode on the market today. All production units are aged at extremely high temperatures for over 150 hours. This is to provide maximum stability of $I_{\text {co }}$ and current gain (beta). The header assemblies of G-E silicon NPN transistors are constructed of high-purity materials. A gold-silicon alloy is used for end connections: the base lead is pure aluminum. There are no solders or fluxes, eliminating any danger of transistor "sleeping sickness" caused by corrosion at soldered junction points.
Outstanding For Switching Applications and Linear Amplifier Use. The gold-alloy mounting:-, with a melting temperature of over $350^{\circ} \mathrm{C}$ represent the lowest melting point of the entire transistor assembly structure. The G-E Series 4JD.1: silicon transistors provide reliable operation to $150^{\circ} \mathrm{C}$, with storage temperatures to $200^{\circ} \mathrm{C}$.
With well-controlled high frequency characteristics and a low saturation resistance of 40 ohms, G.E silicon NPN transistors are "naturals" for switching applications and linear amplifier use.

Would you like complete specification information? Please contact your nearest G-E Semiconductor Products district office, or write to General Electric Company, Semiconductor Products, Section S2397, Electronics Park, Syracuse, N. Y.
 thack transistor, showing mounted silicon (nith aluminum base lead connected. Bar attached using a gold-alloy mounting mique. No solders or fluxes are used.

Diffusion furnace. Operator places quartz vials, with large quantity of silicon bars, in furnace. Diffusion occurs through high-temperature heating cycle lasting several hours.

An aging oven in which C-E silicnn NPN transistors are aged at extremely high temperatures for over 150 hours. Provide- maximum stability of $I_{c o}$ and current gain (beta).

Progress is Our Most Imporrant Product GENERAL ELECTRIC

CIRCLE 75 ON READER-SERVICE CARD FOR MORE INFORMATION

Set Screws
For Miniafurized Equipment

Mini-Mite No. 0, 1, 2 and 3 set screws are available in socket, socket cap and slotted styles, and in a variety of points. The advantages of Mini-Mite set screws include elimination of need for special design set screws. They have precision, fully formed threads, uniformity for maximum contact with driving tools and special heat-treating to give high tensile strength without brittleness or decarburization. The set screws give maximum reduction in weight and bulk, without sacrificing holding power in sub or final assemblies. They are available in specified lengths, threaded lengths and special materials.
Set Screw \& Mfg. Co., Dept. ED, Bartlett, Ill. CIRCLE 76 ON READER-SERVICE CARD FOR MORE INFORMATION

Potentiometer Multiturn

The type 909 potentiometer, a $7 / 8 \mathrm{in}$. diam multiturn, uses a stainless steel for the case as well as for major structural components, completely eliminating structural parts of phenolic, plastic or other non-metallic materials. Cylinders of stainless steel tubing form the case, which is insulated from the mandrel by a dielectric film. The design utilizes a helical slip bar, which serves also as a guide for the wiper. The wiper assembly straddles the slip bar and the wiper rides on the resistance winding in the middle. Therefore, dual slip bar contact and, due to the different resonant frequencies of the two contacts, excellent vibration characteristics are provided. By riding the helical bar, wear on the resistance element is eliminated and life characteristics are improved. Metal to glass type terminals are used which are welded to the case.

Typical resistance range is 100 ohms to 200,000 ohms for a 10 turn version of the type 909 . Standard linearity is 0.5 per cent with 0.05 per cent available on special order. Rated at 2.5 w at 40 C the standard 909 derates to 0 at 90 C and the high temperature version, available on special order derates at 1.50 C.

Fairchild Controls Corp., Dept. ED, 225 Park Ave., Hicksville, N.Y.
CIRCLE 77 ON READER-SERVICE CARD FOR MORE INFORMATION

synthane－covered if plate rolls last three rimes as long as other materials because of resistance to acids and surface foughness．

EASILY MACHINED

DIELECTRIC STRENGTH

Few industries escape the multiple benefits of Synthane laminated plas－ tics．The food industry puts Synthane to work as star wheels for bottling equipment，bread slicing guides as oil－ less bearings in processing of sugar syrups and even in the tin－plating operation of metal containers．
Resistance to moisture，anti－friction characteristics，chemical and wear resistance are but a few of the reasons why Synthane is at work in this vital industry．

SYNTHANE CORPORATION，I RIVER ROAD，OAKS，PA．
CIRCLE 79 ON READER－SERVICE CARD FOR MORE INFORMATION

Synthane laminates combine in varying degrees－depending on which of the 30 or more grades you use－ many mechanical，electrical and chemical properties hard to find com－ bined in any other material．

You can buy Synthane in sheets， rods，tubes．If you prefer，your part can be supplied fabricated to your specifications．Send for our complete catalog for full information．
Synthane Corporation， 42 River Road，Oaks，Pa．

CHEMICAL RESISTANCE

WEAR RESISTANCE

New Products

Wave and Power Meter Set 500 to $1500 \mathrm{Mc}, 0.5 \mathrm{Mw}$ to 2 W
 ELECTRONIC DESIGN • September 1， 19

This portable wave and power meter set near ures power and frequency from 500 to 1500 mc power levels of 0.5 mw to 2 w average（ -3 dbm t -33 dbm ）．Model 107 consists essentially of a trans mission line comprising a coaxial step attenuato and a coaxial direct reading frequency meter；th line is terminated in a power measuring thermisto mount and bridge．These three principal compe nents are connected in series by coaxial cables an are mounted on the front panel of the set．A fixe 10 db attenuator（CN－388／UP）is provided to tend the power range of the step attenuator．Th frequency meter has a direct reading dial an power measurements are obtained directly in $\mathrm{db} b$ adding the meter reading and attenuator settint The set is housed in a combination type carryin case with a separate lid．The carrying case is wate tight with the cover on．The power input connecto is a coaxial series \mathbf{N} connector on the front panel． video pulse envelope detector，series BNC，is al provided．
The Narda Corp．，Dept．ED，Mineola，N．Y．
CIRCLE 80 ON READER－SERVICE CARD FOR MORE INFORMAIIG

Power Monifor
Radio Frequency

This feed－thru rf power monitor measures in dent power between 2 and 500 mc and reflect power and vswr between 10 and 500 mc ．The strument can be calibrated and the calibration c be checked frequently at 60 cps with aid of a 60 d wattmeter．The power measuring range is $0-15$ and $0-60 \mathrm{w}$ ．
Electro Impulse Lab．，Dept．ED， 208 liver Red Bank，N．J．
CIRCLE 81 on reader－service card for more informat

Pulse Transformers

Encapsulated

Hermetically sealed pulse transformers are being manufactured to meet military specifications such , MIL-T-27. They will operate at ambient tempratures up to 85 C . Special designs for high acpleration applications are available for specific mostomer requirements. Also available are subiniature pulse transformers for printing wiring loard, transistorized circuit and miniaturized cirwit applications. All of the units meet the standard olage, life, pull, temperature, immersion and hoisture resistance tests.
Telex, Dept. ED, Telex Park, St. Paul 1, Minn. gace 83 on reader-service card for more information

Signal Generator and Scope Unit

Displays Gain vs Frequency Response

Called the Wobbulator Model 7200, this integral iit combines a swept frequency signal generator th a built-in oscilloscope. The latest model perlis the visual display of the gain or loss vs frepency response of amplifiers and networks in the nge from 2 to 1000 mc . A swept frequency range 2 to over 55 mc centered anywhere in the 2 to (9) mc region allows rapid play. The effect of comment or adjustment changes or gain and frelency response are instantly pictured on the crt as gin, or loss, vs frequency characteristics.
The scope has a display sensitivity of $50^{\circ} \mu \mathrm{v}$. Since \% mavimum output voltage of the generator is ire than 0.03 v , the Wobbulator has much greater ip sensitivity than older equipment offered. The pplitule variation of the swept output voltage is instant within +1 db over 40 mc and constant thin tractions of 1 db over 30 mc . High impedxe and low impedance probes are furnished. Cano! a Corp., Dept. ED, Van Nuys, Calif.
al 04 on reader-service card for more information

Lowest Thermal Resistance of any Transistor!

Honeywell's New H10 Weld-Seal

- Long thermal time response of junction temperature and low thermal resistance make overload possible for a longer period of time without permanent damage to transistor.
- Allows delivery of 10 watts to a servo motor in an ambient of $85^{\circ} \mathrm{C}$
- Handles 15 amps .

Honeywell's new H10 Weld-Seal has a larger collector area for more rapid heat dispersion. You get the lowest thermal resistance of any transistor!

And you get the other advantages for which all Honeywell Weld-Seal transistors are famous-high and uniform power gain over a wide range of collector currents, long life, outstanding stability and economy.
Honeywell's H10 is hermetically sealed by weldingso you can build ruggedness and durability into your equipment.

Take advantage of this new and improved transistor. Check to the right for the Honeywell office nearest you and write or phone for complete information today!

Honeywell

H First in Coutrols.

Typical H1O Operating Characteristics
Transconductance: . 9 of 10 amps. Current gain: 18 at 10 amps. Maximum collector current: 15 amps.

In applications where the capacity and capabilities of the H10 transistor are not necessary, the high gain H 7 tran sistor provides outstanding operating characteristics. Write or phone for specifications.

UNION, N. J.
MUrdock 8.9000 P.O. Box 161

BOSTON
ALgonquin 4.8730
1230 Soldier Field Rd.

CHICAGO
IRving 8-9266 7350 N. Lincoln Ave.

MINNEAPOLIS
FEderal 2-5229 2749 4th Ave., Sos

LOS ANGELES
RAmond 3 -6611 or
6620 Telegraph Road

CIRCLE 85 ON READER-SERVICE CARD FOR MORE INFORMATION

New Products

Vernier Potentiometer

3 Terminal Construction

Featuring 3 terminal construction for use in circuits having a common ground, a vernier potentiometer provides single knob control of two resistance decades. Standard resistance ranges are, 1000 ohms, 10,000 ohms and 100,000 ohms; accuracy is ± 5 per cent of full scale resistance; linearity is ± 0.5 per cent; resolution is 0.1 per cent; power rating is 4 w when used as a potentiometer and 20 ma when used as a rheostat. Elimination of helical elements allows accurate operation over an unusually wide frequency range from dc to 10 kc . No disassembly is required for mounting.

Research Instrument Co., Dept. ED, P.O. Box 9168, Portland 16, Ore.
circle 87 on reader-service card

Teflon Hook-Up Wire 300 V, 32 to 22 AWG

Extruded Teflon insulated, 300 hook-up wire with a wall thickness of extruded insulation of 0.003 in . to 0.006 in . is available. Sizes available are 32 AWG to 22 AWG inclusive.

Hitemp Wires, Inc., Dept. ED, 1200 Shames Drive, Westbury, L.I., N.Y.

CIRCLE B8 ON READER-SERVICE CARD

Teflon Film Capacifors -65 10 +165 C Range

An operating temperature range of -65 to +165 C without derating is normal for a new line of hermetically sealed Teflon film capacitors. Special models are available up to 200 C . Multiple layer Teflon dielectric construction, together with glass-to-metal compression-type end seals, provides exceptionally high insulation resistance, low dissipation factor, and minimum effect from dielectric absorption. The capacitors' service life is unusualiy long, as shown by tests.
Electronics Development Corp., Dept. ED, 1323 Airway, Glendale 1, Calif.

CIRCLE 89 ON READER-SERVICE CARD

NEW!

Miniature telephone type relay has superior shock/vibration resistance

CIRCLE 90 ON READER-SERVICE CARD $>$

P\&B PROGRESS/

UNIQUE DESIGN IMPROVES WEIGHT, SIZE, PERFORMANCE FACTORS

TERMINALS:

Open Relay: Pierced Solder Lugs.
Contacts: Two \#18 AWG wires. Coil: Two \#20 AWG wires. Hermetically Sealed:
Miniature plug-in header with 7,9 or 14 pins. Multiple Solder
header with hook and terminals for three \#20 AWG wires.
Polystyrene Dust Cover: Micro Ribbon plug-in type.
Mating receptacle: Amphenol \#57-20140 or similar.
INSULATION RESISTANCE: 100 megohms min.
VIBRATION: . $065^{\prime \prime}$ excursion $10-55$ cps.
$10 \mathrm{~g} 55-500 \mathrm{cps}$. upon request.
SHOCK: 30 g accordina to Mil-R-5757C upon request.
TEMPERATURE RANGE: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
WEIGHT: 1.2 ozs. (open) 2.0 ozs. (sealed).
PULL-IN SPEED: Approximately 15 ms at nominal voltage. DROP-OUT SPEED: Approximately 10 ms at nominal voltage. CONTACTS: $3 / 32$ silver.
CONTACT ARRANGEMENT: 4 pole, double throw (4 Form C).
COIL POWER: 3 watts max. DC © $25^{\circ} \mathrm{C}$. Continuous duty.
pes standard relays are avallable at your local ELECTRONIC, ELECTRICAL AND REFRIGERATION DISTRHBUTOR See our catalog in Sweet's Product Design File.

Potter \& Brumfield, inc.
 PRINCETON, INDIANA

SUBSIDIARY OF AMERICAN MACHINE \& FOUNDRY COMPANY Manufacłuring Divisions also in Franklin, Ky. and Laconia, N. H.
Mail the coupon below for further engineering data on P\&B's MG Relay plus new compact catalog of standard iype relays. If you need answers to a specific application problem, write in detail.

Potter \& Brumfield, Inc., Princeton, Indiane
Altn: T. B. Whito, Brig. Gon. USMC (Ref.) Special Projects Engineer
Please send me complete engineering data on the MG Relay plus the new compact catalog of P\&B standard relays.
Nome
Company
Address
City \qquad

CIRCLE 90 ON READER-SERVICE CARD FOR MORE INFORMATION

Unity-Gain RF Probe
Employs Transistors

A new departure from passive type probes, the Transiprobe has unity gain-which is held constant by a transistorized feedback amplifier, ensuring complete stability. The unit is powered by mercury cell batteries. Standard BNC connectors are provided to the scope and battery-box power supply. Low input capacity makes it ideal for use with broad-band oscilloscopes and as an oscilloscope isolation amplifier. Features included in the Transiprobe are low power dissipation, no hum and open design for easy manipulation.
Frequency response is 20 cps to $15 \mathrm{mc}, 1 \mathrm{db}$ down at 50 cps and 12 mc , and 3 db down at 20 cps and 15 mc . Nominal output impedance is 50 ohms. Input impedance: capacitive, $4 \mu \mu \mathrm{f}$; resistive, 100,000 ohms. Maximum input voltage: 0.3 v peak-to-peak. Power supply: mercury cells, 800 hr life; constant supply over life of cells. Separate power supply and connecting cables provided with probe.

Kay Electric Co., Dept. ED, 14 Maple Ave., Pine Brook, N.J.
CIRCLE 92 ON READER-SERVICE CARD FOR MORE INFORMATION

Ballistic Computer

Seven Parameter Display

The Type K-1 Ballistic Computer contains all necessary amplifiers, programming circuitry and balance equipment for direct hookup to thrust and pressure transducers, and automatically displays such parameters as ignition delay, action time, integrals of thrust and pressure, as well as peak values. The K-1 can be supplied either for print-out on paper tape by a clary printer or on cards by IBM summary card punch. It is also available as the Type K-2 which contains special tape recording equipment and a play-back analyzer section for detailed examination of isolated portions of a record.

Allegany Instrument Co., Inc., Dept. ED, 1091 Wills Mt., Cumberland, Md.
circle 93 on reader-service card for more information

LIGHTWEIGHT ELECTRODYMAMIC DRIVE for true rectilinear recordings free of distortions.
Critical acoustic damping eliminates resonant peaks overshoot and ringing. WIDER PREQUENCY RANGE Teproduces signals up to 200 cps .
MICROMETER ADJUSTING SCREWS conveniently located for accurate pen alignment. decimal speed changer with 3 speeds. Max. - $200 \mathrm{~mm} / \mathrm{sec}$.
dISPOSABLE INK CARTRIDGE hermetically sealed prevents evaporation and maintains correct ink viscosity.
NEW PEN DESIGN with mechanical filter permits splatter-free writing at all fice quencies.
WEIGHT 9 lbs . - Dimensions $13^{\prime \prime} \mathrm{L} \times$ $43 / 8^{\prime \prime} \mathrm{W} \times 41 / 2^{"} \mathrm{H}$.

Also available is the Massa Model M-220 DUAL CHANNEL DC AMPLIFIER with self-contained power supply. Sensitivity range is $5 \mathrm{mV} / \mathrm{mm}$ to 200 volts full scale with compensation to yield flat response from dc to 200 cps .

Write to Dept. 14 for technical data.

LABORATORIES, INC HINGHAM, MASSACHUSETTS CIRCLE 94 ON READER-SERVICE CARD

"How would YOU measure RF power accurately... reliably?"

.Lou G. Dameson,
Chief Design Engineer, Cubic Corporation

Designed to meet the requirements of the Military and Industry
$M_{\text {anufacturers of radar and other high frequency pulse equip- }}$ ment have long felt the need for a primary standard laboratory instrument to measure RF power in the microwave region. The Cubic Calorimetric Wattmeter. Model MC-1B, was designed particularly to provide you with a highly precise instrument of this type, and one with simple and fundamental instrumentation methods to establish long calibration life
For example, precision thermometers are used. since they are far more stable and reliable than thermocouple or thermistor temperature-indicating circuits. The high accuracy of the MC-1B is maintained without frequent calibration.
Our Calorimetric Wattmeter consists of two units-a liquid circulator and a water load termination. The circulator unit controls the flow of metered amounts of distilled water through the termination, where RF output is converted to heat by means of a water load. Heat absorbed by the distilled water calorimetric fluid is measured on precision thermometers. A power scale on the termination permits direct, precise power readings in watts.
Distilled water is used as calorimetric fluid because of its
high dielectric loss characteristics above 1000 mcs . The circulator permits visual monitoring of the fluid flow rate at all times. All parts of the circulator are designed and fabricated to prevent fluid contamination

Through the use of RF adapters, a match better than 1.15 in VSWR from 2600 to $26,500 \mathrm{mcs}$ is achieved without problems associated with the excitation and propagation of higher order waveguide modes.

Metered fluid flow, precision temperature readings and well designed control of heat transfer permit extreme accuracies of power measurement.

Cubic Calorimetric Wattmeters are being used extensively by industrial and government laboratories. For example. RCA has over 30 of these instruments in use to check out and calibrate magnatrons and radar systems. Hughes Aircraft Company uses them in the same manner
Cubic's Calorimetric Wattmeter will prove its accuracy - as no other wattmeter can -in your laboratories, in your plant or in the field.

For a prove-it-yourself demonstration of how you can obtain consistent. repetitive results in $R F$ measurement. telephone or write

CUBIC CORPORATION
5575 Kearny Villa Road, San Diego 11, California

New Products

Voltage Monitor
for Power Supplies

The series 2303 Compacts are voltage sensitiv meter-relay controls for monitoring voltages. Compact contains a VHS meter-relay, load rel and other components for continuous monitoring control of voltage supplies. Relay action may manual reset or automatic reset. Several variation are available for detecting either over-voltage, u der-voltage, or both over- and under-voltage, eithe ac or dc. Specifications include: Input-10 mv dc 500 v dc, accuracy 2 per cent at $75 \mathrm{~F}, 4$ per ce from -40 to $+150 \mathrm{~F} ; 250 \mathrm{mv}$ ac to 500 v ac, acc racy 3 per cent at $75 \mathrm{~F}, 6$ per cent from - 40 +150 F . Other inputs down to 0.1 mv ac or dc ar available at reduced accuracy. The input of lo range voltmeters and millivoltmeters is protecte against overload with Stabistors. Load switch spdt, $5 \mathrm{a}, 125 \mathrm{v}$ ac, non-inductive. Connections a mounting are 9 pin plug-in, octal type with A connectors and 4 hold down screws optional. Cas measures 1-3/4 x 4-1/4 $\times 4-3 / 4 \mathrm{in}$., and is steel dustproof with hermetic sealing optional.

Assembly Products, Inc., Dept. ED, P.O. Box X Palm Springs, Calif.
CIRCLE 96 ON READER-SERVICE CARD FOR MORE INFORMAIIC

Servo Digifizer
Binary-Decimal Outpu

The servo driven digitizer, SL-1004, design to digitize an ac input signal, operates directly fro the 400 cps line, and is packaged for inclusion larger equipment. It includes a miniaturized, his gain transistor-magnetic servo amplifier and pow supply. The output is binary-decimal, and the coder shaft is driven ± 170 deg from null. Ft scale corresponds to 10 v rms 400 cps , in pha with the line. The static error is 0.15 per cent full scale, and fast rates can be followed with velocity error constant of $500 \mathrm{sec}^{-1}$

Industrial Control Co., Dept. ED, 805 Albin Av Lindenhurst, L.I., N.Y.
CIRCLE 97 ON READER-SERVICE CARD FOR MORE INFORMATL
ELECTRONIC DESIGN • September 1, 195

These Magne-Speed Junior drives incorporate dnamic braking and reversing. These features may be disconnected by the user if not required. Motors may be mounted in any position and may smoothly adiusted from zero rpm to full rated speed. Base sped is 8000 rpm . They will operate in ambient enperature of 32 to 110 F . Motor is a de shunt, pen construction (closed on special order), with lie cast housing. The $1 / 8$ model has ball bearings, nd the $1 / 15 \mathrm{hp}$ has sleeve bearings with thrust ashers. Available with or without gear reduction. Ill motors equipped with 5 ft cable.
Magnetic Amplifiers, Inc., Dept. ED, 632 Tinton e., N. Y. 55, N.Y
hicle 99 on reader-service card for more information

The Model R-3 is similar to the standard S-3 dual oil transducer, except that it contains four active lements so that a four-arm bridge can be competed within the transducer. The magnetic circuit thin the transducer is designed for applications at require very high output sensitivity. This unit es adequate output to drive typical ruggedized ac peter movements without application and may be ed in most servo applications.
Specifications include: pressure range, 5 to 1000 acceleration sensitivity 0.01 to 0.03 per cent per or less, referred to full range pressure in most nsitive plane; rise time, 150 to $250 \mu \mathrm{sec}$, dependgon pressure range; output sensitivity, dependent carrier frequency and pressure range and will ry from $600 \mathrm{mv} / \mathrm{v}$ at 400 cps to approximately $0 \mathrm{mv} . \mathrm{v}$ at 20 kc ; zero drift with temperature, 0.06 Fcent per deg \mathbf{F} or less referred to full range, and * change in sensitivity temperature is 0.09 per at por deg F . or less referred to full range. It asure $7 / 8 \mathrm{in}$. diam x 1 in . long.
Ultralyne Engineering Labs., Inc., Dept. ED, 0. Bı >3303, Albuquerque, N.M.

KIE ICO ON READER-SERVICE CARD FOR MORE INFORMATION
ECTRONIC DESIGN • September 1, 1957

Successfully proven in rigorous welding, aircraft and guided missile applications, Westinghouse Silicon Power Rectifiers offer many advantages for power supplies.
Used in the Westinghouse 50KW Power Converter to drive the boring mill above, the WN-5082 bridge assembly supplies greater power and higher efficiency in less space. The 3 -phase 60 -cycle 440 v . power supply operates with a full load efficiency of 90% and an even higher half load efficiency. Regulation is approximately 8% from no load to full load with a Power Factor of 96 to 97.
Especially rugged for varying duty cycles, the WN-5082 withstands heavy loads of constant on-off operation, highvoltage transients, alternate heating and cooling.

YOU CAN BE SURE...IF IT'S

Westinghouse

Westinghouse can supply single diodes or complete bridge assemblies built to your specifications. For full information on how Westinghouse Silicon Rectifiers can bring new efficiency and economy to your applications, mail the coupon today.

CIRCLE 101 ON READER-SERVICE CARD FOR MORE INFORMATION

New Products

Molded Composition Potentiometer
Diameter of 0.5 In .

Type AS potentiometer is rated at 0.5 continuous duty and measures $1 / 2 \mathrm{in}$. diam. The relatively thick molded resistance elements offer a large factor of safety. The brush is also molded for long wear and lower noise level. Type AS units are furnished in linear taper with locking type, screw-driverslotted shafts. The units are dust-tight, splashproof and fungus-resistant. Terminals are gold plated to speed soldering. They are available in 15 resistance values from 100 ohms to 5 meg .

Ohmite Manufacturing Co., Dept. ED, 3630 Howard St., Skokie, Ill.
CIRCLE 104 ON READER-SERVICE CARD FOR MORE INFORMATION

Shaft Position Encoder

Accuracy within 3 Min of Arc

The type RD-13 Digisyn is a high precision photoelectric shaft position encoder which provides angular position data in cyclic binary code to an accuracy of 13 digits, or better than three minutes of arc. The unit consists of a glass disc coded by an array of opaque and transparent segments, a flash lamp to illuminate a radius of the code disc, a multi-element photosensitive detector to detect presence or absence of illumination, and a 13 channel transistor preamplifier. Each channel is encapsulated separately and is readily replaceable. The Hash lamp assembly also is encapsulated and can be replaced readily. Type $23 x 6$ a synchro mounting has been provided. Maximum rotation rate is 1200 rpm for full accuracy readout: operating temperature ranges from -55 to +85 C . Diameter measures 3-1/2 in. od.

Adcon Inc., Dept. ED, 1117 Commonwealth Ave., Boston 15, Mass.
Circle 105 on reader-service card for more information

StROMBERG-CARLSOK Special-Purpose telephone handset

Jou can mount this special-purpose hang. up telephone almost anywhere: on desk, wall or piece of equipment. The handset shown is anly one of many standard and special-application types you may order. The right-angle bracket provides 6 different mounting positions.

HOOKSWITCH

You can get hookswitches with any spring combination you need. Illustrated an two of many possible arrangements.

BRACKET

This special bracke gives you a chaice 12 different mountin positions. You may al der it separately or with any combiaatio of components you need. You'll filu complete details in Booklet T-5005. "t get your free copy, write to

SC

STROMBERG-CARLSO
a division of gemeral dymamics corporal
Telecommunication Industrial Sales 116 Carison Road, Rochester 3, New Yon CIRCLE 106 ON READER-SERVICE CARD

Using
 Thermistors

Edited by

FENWAL ELECTRONICS
Thermistors, with their almost incredible tivity to temperature change, now get ews column all their own.

The cases in point for the first column: eperature measurement and temperaprontrol.

Three basic circuits for temperature urement with thermistors:

The first is a battery, a thermistor, and wicro-ammeter. The second, more sensi--has a thermistor as one leg of a bridge iit. The third incorporates two thertors in a bridge, making possible even me precise temperature differential measments. \qquad -
wo basic circuits for temperature conwith thermistors:

200 Channel Analyzer
Simplified Circuitry

The Model 3302, 200 channel analyzer offers all the advantages of a 256 current analyzer but retains the simplicity of the 100 channel analyzer. Burroughs tubes greatly simplify the address circuits and a simple computer logic is used to program computer and other inon-storage functions. The memory may be divided and separate data stored in each half. On special order, the analyzer may be had with the ability to store in one half the memory while simultaneously printing out of the other half. A deadtime correction factor correlates data regardless of energy distribution or counting rate. The analyzer presents data on a cathode-ray tube during and after measurements. It automatically subtracts background and may be operated in coincidence with external pulses, either prompt or delayed. Provision is made for precision recording or decimal printed readout which totals every 10 or 100 channels with channel numbers printed directly.
Radiation Instrument Development Laboratory, Dept. ED, 5737 S. Halsted St., Chicago 21, Ill. CIRCLE 109 on reader-service card for more information

Waveguide Pressure Window

9.5 to 10.1 KMC

This flange-mounted waveguide pressure window for use in half-X waveguide applications covers the frequency range from 9.5 to 10.1 kmc with maximum vswr of 1.10 at the band edges. Resonant freqency is 9800 mc . Designated the MA-1339 it is used in 0.2×0.9 ID waveguide applications. Window flange thickness is 0.060 in . Maximum power rating is 20 kw . Maximum pressure handling capability is 45 lbs on the glassed side of the window. Pressurehandling capability in the reverse direction is 30 psi. The windows are constructed of kovar and glass. All metal surfaces are silver plated

Microwave Associates, Inc., Dept. ED, Burlington, Mass.
CIRCLE 110 ON READER-SERVICE CARD FOR MORE INFORMATION

immediately available in production quantities SAMPLES SHIPPED IN 48 HOURS

Now you can design your circuits with Analogue Controls Potentiomefors with the assurance that they will be available when you need them!

Complete mechanical and electrical specifications of all our potentiometers are avoilable. Write for Catalog P103 today.

POTENTIOMEEERS MEET THE REQUIREMENTS OF NAS-710
 PIONEER $2 .-901$
CIRCLE Ill ON READER-SERVICE CARD FOR MORE INFORMATION

FREQUENCY METER MODEL 802B Range of 2350 to 10,500 megacycles covers the most used frequencies. Veeder-root digital counter provides accurate, legible readings which are referred to calibration charts for frequency in megacycles to rated accuracy of 0.2% without calculation. Completely self-contained with builtin detector and indicating meter.

New Products
Microwave Oscillator
9000 to $10,500 \mathrm{Mc}$

The Model 815 makes a stabilized signal source available for the X -band microwave region from 9000 to $10,500 \mathrm{mc}$. It delivers a nominal 40 mw of power from a 40 U choke flange. It offers short term stability of five parts in 10^{*} and long term stability of one part in $10^{\prime 3}$. Stability is obtained by means of an invar reference cavity and a high gain, low noise feedback amplifiers. The direct reading dial and the automatic stabilization indicator make this instrument easy to operate. The size is 19-1/2 x $13 \times 18 \mathrm{in}$., and it can be rack mounted. This instrument is similar to the Model 814 ultrastable microwave oscillator covering the X -band region from 8500 to $10,000 \mathrm{mc}$, and the Model 803 covering the S-band region from 2680 to 3405 mc .

Laboratory for Electronics, Inc., Dept. ED, 75 Pitts St., Boston 14, Mass.
CIRCLE 114 ON READER-SERVICE CARD FOR MORE INFORMATION

Travel Rate Meter
Measures Linear Speed and RPM

The MF-2 speed-feed meter measures and indicates linear rates of travel and rpm by converting linear motion of any length of travel into an electrical signal. An illuminated meter gives the reading directly, with push-button selection of four scale ranges from $0-1$ to $0-125 \mathrm{in}$. per min. Models are available with four speed ranges or with combinations of linear rate and rpm scales. The small fixed tachometer pickup has no moving parts and is mounted near a gear on the shaft being measured. Neither pickup or indicator can be harmed by overspeeding or sudden starts and stops.

Maico Co., Inc., Dept. ED, Industrial Div., 21 North 3rd St., Minneapolis 1, Minn.
CIRCLE 115 ON READER-SERVICE CARD FOR MORE INFORMATION

Originally developed for EECO cust systems and proven in critical use, a refinement of the building-block cone to a degree hitherto unknown. Each of full line of reliable, tesied, and proven cuits is a complete off-the-shelf packary
function, performance-engineered for plication where ultra-conservative de at the component level is essential beca of system complexity.
New EECO Computer-Series Plug. enable you to meet your project deliv schedules by reducing systems-developm time to a bare minimum and practic
eliminating drafting and layout time. Y (engineers can concentrate on system de instead of routine circuit detail. Y technicians can cut fabrication time step up production by performing sim point-to-point wiring instead of wir
complex circuits. And system prototy can generally be built directly without n for the "breadboard" stage.

Detailed information on new EECO Computer-Series Plug-ing and compatible equipment, as well as on other EECO products,
is available in Catalog No. $856-\mathrm{A}$. is available in Catalog No. 856
Write for your copy-today.

ELECTRONIC ENGINEERS AND PHYSICISTS - EECO offers immediate opportunities for qualified engineers in the transistor, amplifier, data-handling, pulse, timing, and systems-design fields. Send a resume of your qualifications to R. F. Lander, Dept. CS-2.

ENGIMEERED ELECTRONICS COMPLI
(formerly EECO Production Compan
a subsiliary of

CIRCLE 110 ON READER-SERVICE CAR
CIRCLE 117 ON READER-SERVICE CA

It was in Burroughs' own laboratories that the idea first took root. For one thing, it was becoming increasingly obvious that a good testing program was a necessary foundation for good design . . . that, in fact, testing was every bit as important as design. At the same time, the undeniable advantages of digital techniques in testing were bringing increasing numbers of digital specialists into the laboratory. Yet the digital specialist, through lack of tools, had to spend more time breadboarding than he spent on digital techniques! The combined importance of testing and of digital techniques in testing led Burroughs to a thorough evaluation of the situation.
Burroughs found the lack of adequate digital tools a general condition, slowing progress in control and computation.
As a result, the Electronic Instruments Division was organized "to supply the digital specialist with the laboratory test equipment his technology demands." And it has.

Today, E.I.D. offers the laboratory working in digital techniques an unparalleled range of specialized equipment and services, encompassing these three major areas:
(1) logical building blocks for solving logical problems, fast test set-ups, and testing components, circuits, systems.
(2) special purpose laboratory test instruments for performing specific digital operations.
(ङ) facilities for the design of complete complex test systems.
A brief survey of each of these three areas will be found on the pages following.

Installing Magnetic Memory For large Computer

Memory Plane Tester

FOR FURTHER INFORMATION

Complete the reply card on the other side of this sheet ... insert in an envelope, or attach to a postcard... and mail to Burroughs Corporation, Electronics Instruments Division, 1209 Vine Street, Philadelphia 7, Penna. Your request will be given prompt attention.

Exciting Thriller Breaks Model Shop Mystery Madrer

This saga of the intrepid investigaThis saga of the intrepid investiga-
tor veers off on a taut and timely theme - the engineering enigma of that inexplicable time lag in getting new servosystem designs into prototype form. Scene of the crime,
written in a tempo of gore and gusto, written in a tempo of gore and gusto,
is sued by the title-MURDER IN is cued by the title -
There's a switch in the pitch of this turbulent tale.. no one seems to care who done it! The question is, what can be done about it. And this ment with the publisher precludes revealing the denouement here.
A possible clue to the answer is suggested by the sleuth's bringing in his trusty SERVOBOARD®, that lifesaving instrumentality for assemblin jig time. The SERVOBOARD is armed with a rigid aluminum base plate perforated with tapped holes, and a comprehensive range of gear sets, dial assembies, hangers, mary execution of any and all servo designs.
And if there's any question whether the varmint is a true mechanism or a machination, the SERVOSCOPE® beats out any lie detector ever con-
cocted - gets the facts. ma'am, on gain, and phase lead or lag, digs the figures for plotting Nyquist diagrams, sings out with the square wave for transient functions. With the latest edition now coming off the press. MURDER IN THE
MODEL SHOP packed pages - printed on genuine pulp. You've never had such an adventure in lurid lingo, even at many times the price which is exactly nothing
design people

SERVO
CORPORATION
${ }_{2720}^{20}$ Jerlche Turnpike, Mew Hyde Park, L.L., M.Y.
Writ, wire, or call for your free coipy of
MUl IDER IN THE MODEL SHOP.
$\left\lvert\, \begin{aligned} & \text { MUI DER IN THE MOD MEL SHOP, } \\ & \text { publ hed by SERVO CORPORATION }\end{aligned}\right.$

CIRCLE 118 ON READER-SERVICE CARD CIIRCI 117 ON READER-SERVICE CARD

Optical Circular Table

Projects Readings

The Matrix 18 -in. optical circular table is equipped with a $2-\mathrm{in}$. diam illuminated screen, protected by armour plate glass, on which direct readings to 3 sec of arc are clearly visible. The projection is accomplished by system of lenses from a large diameter glass circle graduated in 10 min intervals. This glass circle built within the table is supported in mounting that prevents movement arising from temperature change or shock.

The entire optical system is sealed against dust or oil and insulated from heat radiated by the projection lamp. Smooth and uniform rotation of the table and minimum back-lash are obtained through a precision worm wheel drive. The table is clamped by two diametrically opposed clamps operated by a single lever.

Engis Equipment Co., Dept. ED, 431 S. Dearborn St., Chicago 5, Ill.
CIRCLE 119 ON READER-SERVICE CARD FOR MORE INFORMATION

Regulated Power Supply For Traveling Wave Tubes

The multiple-voltage regulated power supply is used to operate traveling wave tubes. The supply contains eight output voltages:

$$
\begin{array}{llll}
\text { Helix output } & 0-1500 & \mathrm{v}, 0-20 & \mathrm{ma} \\
\text { Collector output } & 0-150 & \mathrm{v}, 0-20 & \mathrm{ma} \\
\text { Grid no. 4 output } & 0-850 & \mathrm{v}, 0-5 & \mathrm{ma} \\
\text { Grid no. 3 output } & 0-300 & \mathrm{v}, 0-5 & \mathrm{ma} \\
\text { Grid no. 2 output } & 0-150 & \mathrm{v}, 0-5 & \mathrm{ma} \\
\text { Grid no. 1 output } & -150-0 & \mathrm{v}, 0-5 & \mathrm{ma} \\
\text { Filament supply } & 0-13 & \mathrm{v}, 0-2 & \mathrm{a} \\
\text { Solenoid output } & 20-150 & \mathrm{v}, 0-2.5 \mathrm{a}
\end{array}
$$

All voltages are continuously variable and the supply is designed for continuous duty operation. The unit features undercurrent protection on the solenoid voltage and provides for the application of external helix voltages.

Kepco Labs., Inc., Dept. ED, 131-38 Sanford Ave., Flushing 55, N.Y.
CIRCLE 120 ON READER-SERVICE CARD FOR MORE INFORMATION

"FLYING SAUCER" FILTER

 solves R-F NOISE problemThe usual black box filter was out of the question. Too much bulk to fit the oddly-shaped space available too little room to add components elsewhere in the system
But the problem was solved by taking advantage of Sprague's assortment of designs including rectangular and cylindrical filter elements. Those needed were taken from the shelves and packaged together in the "flying saucer" shape illustrated.
Chances are that Sprague's filter elements will add up to the fastest, most economical and efficient solution to many of your filter problems
. whether you package them yourself, or Sprague assembles them for
you. But if not, you can depend on Sprague's three filter research and development laboratories, complete facilities for special tests and measurements, library of more than four thousand proven filter designs, mass production facilities on the East and West Coasts, and field engineering consulting service.

If you have an interference problem, pick up your phone and call your nearest Sprague Electric Field Engineering Laboratory. They are located at 12870 Panama Street, Los Angeles 66, Calif. (TExas 0-7531); 224 Leo Street, Dayton 4, O. (ADams9188); MarshallStreet, North Adams, Mass. (MOhawk 3-5311).

oo SPRMGUE

for filters

CIRCLE 121 ON READER-SERVICE CARD FOR MORE INFORMATIO:N

precisioneened

MINITURE MAGNETCC CLUTCHES

at $1 / 10$ oth the usual cost !

Now . . . design single and multiple clutching into your electronic equipment at low cost. The HYCOR line of miniature magnetic clutches is designed around a common clutch body assembly, keeping unit costs low and performance standards high.

Only 2 watts of power develops up to 15 oz . in. of torque with a response time of 5 milliseconds. Zero clutch sli within rated operating conditions. No maintenance-onl 2 moving parts. Ideally compact.

Nine precision-manufactured single and multi-turn models for gear, cable and direct-in-line drives. Also available in multi-shaft drive units.

Write for Bulletin C-2 . . . or for special design help from a HYCOR systems engineer.
(a)

INTERNATIONAL RESISTANCE COMPANY

> HYCOR DIVISION 12970 Bradley Ave., Sylmar, California

CIRCLE 122 ON READER-SERVICE CARD FOR MORE INFORMATION

New Products

High Voltage Rectifiers
Diameter of 0.22 In .

The HDMP Series of high voltage medium power silicon diffused junction rectifiers are designed for applications requiring up to 1000 peak inverse working volts. Rated for operation in free air with no external heat sink, there is a choice of axial or single ended body construction. Maximum dimensions are 0.22 in . diam x $(0.36 \mathrm{in}$. long. The line of HDMP rectifiers includes ten different models.

Hoffman Electronics Corp., Dept. ED, Hoffman Semiconductor Div., 930 Pitner Ave., Evanston, Ill. CIRCLE 123 ON READER-SERVICE CARD FOR MORE INFORMATION

This hermetic waveguide window seal, passes microwave energy with minimum reflection loss, and is thermally stable. The D-B seal maintains a constant pressure and constant dielectric inside when soldered directly to the waveguide flange, and seals out moisture, dust, oil and salt spray. The unit will hold hard vacuum, and withstand shock and vibration. Temperature range is from -55 to +100 C, and the seal will withstand degassing by baking. Pressure differential is 30 psi , and vswr averages 1.19 over the entire range. The seal is designed with optically clear metal-glass-mical windows, and is available in seven standard sizes covering the microwave and ultra-microwave range from 8.2 to 90 kmc .

DeMornay-Bonardi, Dept. ED, Pasadena, Calif. circle 124 on reader-service card for more information

68
0
0

Here is a new series of light-beam galvan ometers that were developed to withstan the extremely severe conditions of shock and vibration encountered in field servicing an testing of jet aircraft.
Through unique folding of the light bean great compactness is achieved while retain ing sensitivity to the highest degree... to that of laboratory instruments!
These Howell Galvanometers featur excellent readability. They are readil adaptable to existing instruments. They ar competitively priced.
Resistances: 20,100, 500 and 1000 ohm Short period; high speed response. Seale construction.

For full information
please wrile or wire
HOWELL INSTRUMENT Company 3101 Trinity St • Fort Worth 7 Texas

SALES-ENGINEERING OFFICES
VALLEY STREAM, L.I., N.Y.: 108 So. Franklin - LO 1.922 DAYTON, OHIO: 209 Commercial BIdg. - MIChigan
COMPTON, CALIFORNIA: 105 N . Brad field St. - NE 6 -89/ CIRCLE 125 ON READER-SERVICE CARD

AL PURPOSE

RANSISTORIZED LECTROMETER

bined preamplifier and dc vtum has 'ohms inpul, 1 mv sensitivity
${ }_{6} \mathrm{H}$ input impedance is only part of the with the new Keithley Model 220. asensitive dc vtvm, it's especially convenient m measuring voltages of transistors. amplifiers and computers, as Ilas many electrochemical and biological s. In its alternate role as a dc preplifier, the 220 has gains of 0.05 to 167 ha suitable outputs. Uses include ording the variations in piezo-electric 1 pH voltages; currents in photocells, wum tube grids and ion chambers; and per long-term monitoring functions.
 ves from 30 millivolts to 100 volts 41 scale. With added accessories, the mument measures voltages from 1 mv 20 kv , currents from 10^{-3} to 5×10^{-14} mere, resistances from 10^{4} to 10^{16} ohms.

MEFUL FEATURES include a 5 -volt falanced output for amplifiers and filloscopes, and a one-milliampere output sensitive recorders; a polarity reversing fich; and zero drift below $3 \mathrm{mv} / \mathrm{hr}$.

RTAILS about the Model 220 are given Keithley Engineering Notes, Vol. 5 0.2. A request on your company lechead will bring a copy promptly.

KEITHLEY

INSTRUMENTS. INC.
12415 Euclid Ave., Cleveland 6, Ohio
CIRCII 127 ON READER-SERVICE CARD

Intermittent Condition Analyzer

 For Radio and TV Troubleshooting

This Model 828 Intermittent Condition Analyzer provides for faster troubleshooting of intermittent circuits using a new principle which makes TV or radio receivers supersensitive to intermittent and pre-intermittent noises caused by capacitors, resistors, tubes, coils, chokes and other components. A sensitive amplifier and an intermittent tracer probe pick up and localize the noises produced by borderline components without waiting for actual breakdown to occur. Phantom probe attachments provide signal pickup from tubes and wiring without making actual circuit connections. A built-in line voltage step-up transformer provides a high line voltage supply to make intermittents easier to locate.
Winston Electronics, Inc., Dept. ED, 4312 Main St., Philadelphia 27, Pa.
CIRCLE 128 ON READER-SERVICE CARD FOR MORE INFORMATION

Balance Bridge

 For Large Systems

Ten 4-arm gage bridge or resistive type pickups may be calibrated individually or simultaneously with a rack-mounted balance unit designed for large-scale instrumentation systems. The Model 228 Bridge Balance employs individual plug-in calibration resistors which are inserted from the front through a hinged door on the panel. Precision 10 turn balance and sensitivity potentiometers are provided with knurled finger locks for maintaining desired settings. Toggle switches permit individual transducer calibration, or all transducers may be calibrated by a remote contact closure. Individual or common voltage supplies of 0 to 30 v may be used. The system is designed for 4 -arm resistive transducers of 120 ohms or more.

Consolidated Avionics Corp., Dept. ED. 66 Brooklyn Ave., Westbury, N.Y.
CIRCLE 129 ON READER-SERVICE CARD FOR MORE INFORMATION

According to Mrs. L. B. Q. (who is Hereafter we'll be glad to oblige, but pictured in the above candid photo- at $25 \mathrm{c}^{*}$ (C. I. A.) per. (It's either this, graph of the advertising department's mail department and is in charge of Sigma premiums, box tops, blown tops and the like) Sigma's July offer of free Slidecharts has turned into a polymorphous hydra.
Now it becomes necessary, due to the laws of Kirchoff and diminishing

. 1
 CLARE RELAYS and AUTOMATION

How Accupay

uses long-llife CLARE Mercury-Wetted-Contact Relays to provide accurate, continuous and automatic control of a manufacturing process

Actuated by variations in the electric current set up by a constant intensity beam of radiation through a cigarette "rod," two clare Mercury-Wetted Contact Relays help the AccuRay Cigarette-Gauge controller to proportion the weight of cigarettes as they are being produced.

In this way AccuRay, a revolutionary precision process control system, uses electronics to provide automatic control of cigarette and other manufacturing production processes.

Engineers of Industrial Nucleonics Corporation makers of this new process control, picked clare Relays to perform these important functions because only these relays gave the long life and low maintenance required. These machines wrap and cut 20 cigarettes a second, day and night, day after day.

With a service life of billions of operations it is no wonder this relay has become the first choice of hundreds of leading designers of computing, data-processing and control equipment. For complete information write for Bulletins 120 and 122 to C. P. Clare \& Company, 3101 Pratt Blvd., Chicago 45, Illinois. In Canada: 659 Bayview Avenue, Toronto 17. Cable address: clarelay.

Drawings(right)from high-speed photographs show the cycle. (a) Filament of mercury forms between the contacts as they separate. (b) This becomes narrower in cross section and (c) finally parts at two points, allowthe capillary path, replaces amount lost, restores the equilibrium. (d) The momentary bridging of the parting contacts - and the extremely fast break that ends it -minimizes the arc and adds greatly to contact load capacity. Contact closure between the two liquid sur-
faces bridges mechanical bounce and prevents any chatter from appearing in the electrical circuit. (8) Industrial Nucleonics Corporation, Columbus, Ohio

CLARERELAYS
 FIRST in the industrial field

CIRCLE 132 ON READER-SERVICE CARD FOR MORE INFORMATION

New Products

Silicon Transistors High Frequency

Eleven types are included which provide a range of current gains up to 60 , and collector voltage ratings to 4.5 v . Rated for operation to 175 C , these units feature low collector cut-off currents. All types are specified for a maximum of 0.5μ at their maximum collector voltage rating. Types ST13 and ST33 have a typical cut-off frequency of 17 mc . Manufactured by the diffusion process, close control is maintained on all characteristics to ochieve uniformity and interchangeability. All units are subjected to temperature cycling and storage, and other environmental tests

Transitron Electronic Corp., Dept. ED, Melrose 76, Mass.
CIRCLE 133 ON READER-SERVICE CARD FOR MORE INFORMATION

This automatic level controlled, broadband trunk line vhf amplifier is equalized to compensate for cable slope between 53 and 89 mc with a flatness of $\pm 0.25 \mathrm{db}$. It can deliver up to 0.2 v output into a 7.5 ohm load and has a maximum gain of 45 db on channel 6. Automatic level control uses stable, drift free circuits to hold the output level within 1 db for 10 db increases of input level. The input stage of the amplifier uses the newly developed 6922 long life, low noise, dual triode to achieve an 8.5 db noise figure. A constant voltage transformer and silicon diodes provide a power supply that requires only 45 w and maintains an output stability of $\pm 0.2 \mathrm{db}$ for ± 20 per cent line voltage variations.

Entron, Inc., Dept. ED, P. O. Box 287, Bladensburg, Md.
CIRCI: 134 O. READER-SERVICE CARD FOR MORE INFORMATION

Stick and stay in elevated temperatures, oils, most solvents
New Brady Aluminum Foil Wire Markers show which wire goes where at a glance. Permanently identify machine tool electrical syscircuits, etc.
Only 3 mils thin. Self-Stick ing Markers wrap around

$$
\text { w. н. } B B_{E+t} A D \text { со }
$$

CIRCLE 135 ON READER-SERVICE CARD FOR MORE INFORMATIO

Transistor Heat Sinks Beryllium Copper

Bcryllium copper heat sinks enable the transistor operate at higher levels of dissipation and prole a mounting clamp for the transistor in those es where the transistor is suspended by its leads f not used with a socket. Model HS-10 is demed for the GT soldered case and Model HS-20 the GT version of the JETEC 30 case. General Transistor Corp., Dept. ED, 91-27 138th Jamaica 35, N.Y.
IaE 138 ON READER-SERVICE CARD FOR MORE INFORMATION

Epoxy Chokes

1.1 to $120 \mu \mathrm{~h}$

Thirteen epoxy encapsulated chokes ranging in wes from 1.1 through $120 \mu \mathrm{~h}$ following preferred thes are available. All are $5 / 16 \mathrm{in}$. in diam and in. long with axial pigtail leads. They are br-coded for value identification. The chokes constructed so as to have maximum ruggedness d resistance to moisture, temperature and other ironmental extremes.
ames Thomas Chirurg Co., Dept. ED, 414 Park Bldg., Boston 12, Mass.
aE 139 ON READER-SERVICE CARD FOR MORE INFORMATION

Vacuum Tube Electrometer

Measures $10^{-11} \mathrm{~A}$

The Model VTE-1 Vacuum Tube Electrometer ssures direct currents of either polarity from 10^{-3} $i 0^{-11}$ a. The unit features a built-in bucking cur* source, with range from 10^{-3} to 10^{-9} a for scale ansion. Time constants of 0.1 to 30 sec are avail-- on a single rotary selector switch. Zero drift 4 per cent per day after initial warm-up period. meter is available with high and low level y trips for process or nuclear control uses.
Tulla nore Electronics Lab., Dept. ED, 6055 S. lland Ave., Chicago 36, Ill.
(al 14) ON READER-SERVICE CARD FOR MORE information
KCTRONIC DESIGN • September 1, 1957

Doubtless you've learned to depend on the Bendix Synchro "Supermarket" for fast delivery and tremendous selection of precision synchros, servo motors and other vital electronics systems components. But did you know that Bendix is also a prolific producer of radar antenna devices?
Over the years Bendix airborne and groundbased antenna devices have been successfully designed by our highly specialized staff of radar and servo-mechanisms enginecrs to meet a wide
variety of exacting requirements. And, of course, world-famous Eclipse-Pioneer precision rotating components are standard in all Bendix radar antenna devices.

When you order from Eclipse-Pioneer, you'll enjoy the advantages of experienced engineering coupled with favorable delivery and prices that result from mass production techniques.
District Ofices: Burbank ond Son Froncisco, Coliff, Dayton, Ohio, ond Soomlo, Wosh.-Export Soles and Sorvice: Bendix International Division, 205 E. 42 nd Wosh.-Export Soles ond
St., Now York 17, N. Y.

TYPICAL EXAMPLES OF BENDIX RADAR ANTENNA DEVICES

Lightweight, ground-based, air-transportable tracking anfenna pedestal for mounting $8-\mathrm{ft}$. diameter, s-band segmented parabolic reflector and nutating scanner; highly accurate 2-speed data systems in elevation and azimuth.

Lightweight, ground-based, air-transportable, dual reflector, multi-band, high gain search antenna and control system; 2-speed data systems and magnetic clutch drives in azimutin and elevation.

Airborne weather radar antenna with line of sight stabilization for x-or c-band; switchable wide fan (cosecant squared) beam pattern for mapping or pencil beam for storm defection.

Eclipse-Pioneer Division
teterboro, N. J.

CIRCLE 141 ON READER-SERVICE CARD FOR MORE INFORMATION

New Products

Gearhead Motor

AC, Oil-filled

This oil-filled gearhead motor meets requirements of MIL-M-17059 and MIL-S-901, Class AI shock. It is a 2 speed motor, 2 pole and 6 pole, designed for 220 v ac, 60 cps 3 phase rated at $1 / 10 \mathrm{hp}$ output at 250 rpm and 84 rpm , intermittent duty at high speed, continuous duty at low speed. It is equipped with an electrically energized brake which will stop motor within 0.2 sec and within 25 deg of output shaft of gear box. The motor is totally enclosed to provide protection against moisture, dust, fungus and salt spray. It is filled with Verselube F-50 silicone fluid for cooling. Ambient temperature: - 65 to $200 \mathrm{C}, 100$ per cent humidity.
Western Gear Corp., Dept. ED, P.O. Box 182 Lynwood, Calif.
CIRCLE 143 ON READER-SERVICE CARD FOR MORE INFORMATION

Isolation Amplifier
Selectable Bandwidths

The Model 102B serves as either a general purpose preamplifier or as an isolation amplifier covering both audio and ultrasonic frequencies. It has a $5-\mathrm{v}, 50$-ohm output to drive oscilloscopes, sound level meters and pen recorder power amplifiers. Frequency response is from 2 cps to 150 kc or to 1.7 mc with selectable bandwidths and accurate decade gains of 0.1 to 1000 . Impedence input is 400 megohms, and noise is below $10 \mu \mathrm{v}$ with 150 kc response. Two accessory probes for low-capacitance connection to the circuit being measured are included. Typical uses include work with accelerometers and hearing aids, pulse amplification, and vibration and noise studies.

Keithley Instruments, Inc., Dept. ED, 12415 Euclid Ave., Cleveland 6, Ohio.

CIRCLE 144 ON READER-SERVICE CARD FOR MORE INFORMATION

Send for FREE SAMPLE PACKET of the three new MUELLER "70 SERIES" ALLIGATOR CLIPS Low-cost, streamlined clips

- SNAP!

which is taking $1 / 2500$ th second to snap shut upon a water. Taik about acceleration! - the upper jow hirs 00 MPH in threehave been caught in many images along their paths of movement it graphically illustrotes Photographed by means of a special process, it graphically illustrates the "snap" in Mueller's traditionally snappy springs. These springs

THE NEW "70 SERIES" ALLIGATORS FEATURE:

Simple, direct, streamlined design, and lower cost than th famous "60 Series".
Faster, easier connection, whether screw sype or soldered: A new patented hinge, and cord strain relief ears. WRITE FACTORY TODAY FOR FREE


```
1580H East 3lst Street Cloveland 14, Ohio
```

CIRCLE 145 ON READER-SERVICE CARD FOR MORE INFORMATION

NEW!

 motor provides precise

The Syncramental Motor accurateiy translates pulses to incrementol shaft position . . . rorares potentiometers, counters, rotary switches, control mechanisms. Features a clutch mechanism, rather than Solenoids.
Angular increment per pulse is 36° either direction
Angulat increment per pulse is 36° either direction maximum
stepping rate, 15 per second stepping rate, 15 per second load capacity, up to 2 lb . in
starting torque ... life expectancy, 2 million steps . dimen sions, $1.500^{\prime \prime}$ dia. $\times 2.525^{\prime \prime}$ long . . . weight, 13 oz. standord Servo mounting.
White taday for complete data

CRAMENTAL MOTOR

123 WEBSTER STREET, DAYTON, OH
 CIRCLE 146 ON READER-SERVICE CARD FOR MORE INFORMATION

x

Differential Amplifier

USE 'DIAMOND H'

 SERIES R RELAYS

Where the temperature hits $200^{\circ} \mathrm{C}$.. or drops to $-65^{\circ} \ldots$ where a dry circuit is downright arid ower circuit employs 10 amperes (or even 20 amps for a mlife need) . . . your best bet for reliability is a "Diamond Series R miniature, hermetically sealed, aircraft type relay. kir shock and vibration resistance you may take for granted. Variations on the basic 4 PDT Series R relay perform outhlingly over such a broad area that they are frequently used Ho many different types of jobs in a given application, with Nlant savings in spare part inventories. Thé range of possilcharacteristics covers:
llarious brackets of vibration resistance from 10 to 2,000 ratious brackets of vibration resistance from 10 to 2,000
coil resistances from 1 to 50,000 ohms, operational shock thances of 30,40 , or over 50 " G "; mechanical shock resist$\$ 10.000$ " G ", contact capacities from 350 V., D.C., 400 h. 1010 A., at 30 V., D.C., as well as signal circuits.
complete information send for a copy of Bulletin R-250.
HE HART MANUFACTURING COMPANY
210 Bartholomew Avenue, Hartford, Conn.
acle 149 on reader-service card for more information
CTR()NIC DESIGN • September 1, 1957

Rejects Noise \& Hum Pickup

Providing high gain and stability necessary for strain-gage and thermocouple applications, the Model DA-101 wide-band differential amplifier handles low-level signals, including pulse signals, without noise or hum pickup. Noise is 6 mv referred to the input with a bandwidth of 50 kc at the 3 db point and at 20,000 ohms differential input impedance. Static common-mode rejection is greater than 100,000 to 1 . Gain is adjustable in steps from 100 to 2000 with a gain accuracy of 0.1 per cent. Linearity is ± 0.05 per cent.
The amplifier is built so that six units can be mounted on a $7-\mathrm{in}$. relay-rack panel.

Epsco, Inc., 588 Commonwealth Ave., Boston 15, Mass.
CIRCLE 150 ON READER-SERVICE CARD FOR MORE INFORMATION

Double Pulse

 Generator

With SPIROL PIN, hole drilling is not limited to plus tolerances. Both plus and minus hole solerances are allowed because the spiral construction permits greater flexibility in expansion and compression. The wider hole tolerances eliminate precision reaming requirements, reduce drilling rejects, and cut costs.

OTHER UNIQUE SPIROL FEATURES

SHOCK RESISTANCE

High resistance to shock and vibration permits use of "medium duty" Spihol pins in a wide variety of materials with wide range of bearing loads. Heavy and light duty Spinol. pins also available in stock.

MINIATURE PINS

Spiriol is the only spring type pin available in these miniature diameters: $1 / 122^{\prime \prime}-.039^{\prime \prime}-3 / 4^{\prime \prime}-.052^{\prime \prime}$. Unique spiral cross-section retains exibiny and strength in smast sizes. Other standard sizes up to $1 / 2^{\prime \prime}$ diameter.

This double pulse generator, Model B-3-2, is capable of generating two pulses both having reoccurrence rates of 1 mc . The internal oscillator controls both pulses and has repetition rates from 10 cps to 1 mc , or the instrument may be triggered externally at rates up to 1 mc . Each of the two pulses may be independently and continuously delayed from 0 to $10,000 \mu \mathrm{sec}$ with respect to the common synchronizing pulse. Each of the two pulses may be continuously varied in width from 0.08 to $10,000 \mu \mathrm{sec}$. The two pulses are available on separate output jacks or may be mixed via a resistance mixing network so that they are both available at a common output. Due to the modular construction of the instrument it may be expanded to furnish greater numbers of pulses.

Rutherford Electronics Co., Dept. ED, 8944 Lindblade St., Culver City, Calif.

PERFECT CHAMFER

A. Smoothly rounded radius where chamfer meets shank eases insertion into hole. No sharp break to "bite" and resist insertion. B. Chamfer angle is precisely designed to offer minimum thrust resistance and
maximum compression leverage.

NON-HEAT-TREATED METALS can be specified in standard Spinol pins for extra corrosion-resistance or conductivity. Less resilient metals are usable because stress is evenly distributed throughout the spiral cross-section, giving maximum spring action.

FREE! Write for literature on Spirol Pins.

SPIROL PIN

C. E. M. COMPANY - 86 SCHOOL ST. - DANIELSON, CONN. CIRCLE 152 ON READER-SERVICE CARD FOR MORE INFORMATION

free selection chart

for
AGASTAT

time delay

 relays

Now you can select exactly the right Agastat time delay relay for your particular timing need-in a hurry. This free selection chart lists data on every popular model in the Agastat line-the most complete line of pneumatic time delay relays in the industry. They're adjustable for timing from 0.1 second to 10 or more minutes, unaffected by voltage variation, dustproof, light, and mountable in any position. And there's an Agastat model to precisely fit your requirements, including two-step, electrical interlock and double head units. A glance at the free selection chart tells you which model to order.

Write for your free copy to Dept. A26-924

MODEL 1200 SINE WAVE GENERATOR

Less than 0.1% distortion at any amplitude or frequency. 1 cps to 1 mc in 6 decades, plus overlap. 600 ohms constant output impedance. Many other exceptional features. Small, portable - 23 pounds. Complete data on request. $\$ 265.00$, FOB Factory.

3 Galindo Street,
Concord, Californio

CIRCLE 155 ON READER-SERVICE CARD FOR MORE INFORMATION

New Products

Silicon Rectifier Units

Supply 1500 Amp

A line of silicon regulated power rectifiers supply up to 1500 a continuous capacity. The unit proves particularly useful as the dc source for ground support equipment and missile testing. Reliable performance is provided by hermetically sealed silicon diodes which are impervious to humidity, fungus, salt spray, sand and dust as well as ambient temperatures from -55 to +65 C. Standard models are available for 1000 a continuous capacity with dc voltage ranges from 6 to 40 v , with dc regulation of ± 0.5 per cent, response of 0.1 sec and ripple of l per cent rms. All models are built to meet the requirements of military specifications.

Christie Electric Corp., Dept. ED, 3410 W 67 St., Los Angeles 43, Calif.
CIRCLE 156 ON READER-SERUICE CARD FOR MORE INFORMATION

Fixed Pad Atfenuafors $10,20,30 \mathrm{db}$

A series of precision fixed pad attenuators have been designed to partically absorb rf power in the 8.2 to 75 kmc frequency spectrum. The pads are useful between klystrons and other elements of a typical waveguide test bench to counteract frequency pulling effects or to reduce by a known amount of rf power flowing in a system. Ratings and general characteristics include a maximum power dissipation of 2 w and nominal attenuation values of 10,20 , and 30 db . The accuracy of attenuation measurement and limits is $1 / 4 \mathrm{db}$. The attenuation value and calibration frequency are stamped on each unit. The fixed pads are fabricated from short sections of waveguide in which a lossy element is mounted. Standard cover flanges are used at each end. All surfaces are silver plated throughout. Excepting flanges, external surfaces are finished with blue-gray lacquer.

Microwave Associates Inc., Dept. ED, Burlington, Mass.
Circle 157 on reader-service card for more information

EW-self-locking Urbrako socket head cap screws

The Nylok* selflocking feature locks these screws securely in place seated or in place, seated or you stop wrenching They won't work loose. Can be used repeatedly. Tough, resilient nylon locking pellets permanently installed. Successfully withstand temperatures ranging from -70 to $250^{\circ} \mathrm{F}$. Familiar UnBRAKO knurled heads for sure finger grip and fast assembly-accurate hex sockets for positive, nonslip internal wrenching. Heat treated alloy steel, controlled fillets, continuous 3 grain how lines, folly forme strength and exact fit. Can be used as adjusting screws. Pellets act as liquid seals. Standard sizes from \#6 to I in diameter. Also available in plated finishes and in stainless steel. Write for Bulletin 2193. Unbrako Socket Screw Division. Standard Pressed Steel Co., Jenkintown 12, Pa.
-TM Reg. U.S. Pat. Off., The Nylok Corporation
standard pressed steel co.

get
 full PROPERTIES plus PRECISION

TSI* grade

TEFLON wo TRIR-POIVI exclusive

* A new hight-density, uniform rod extruA Aew high-density, nuiform rod extru-
NOW AVAILABLE, in unlimited quantities from stock: - Diameters: $.125^{\prime \prime}$ to $1.000^{\prime \prime}$ and larger - Tolerances: .001"
- Increments: $1 / 32^{\prime \prime}$ and less
- Lengths: up to 12 feet

WRITE or PHONE for Bulletin T-556
TITI-POIVIV
SPECIALISTS IN EXTRUDING TEFLON
GICIE 162 ON READER-SERVICE CARD FOR MORE INFORMATION IECTRONIC DESIGN • September 1, 1957

X-Band Magnetron

 40 WatA $40 \mathrm{w}, \mathrm{MA} 215$, X-band pulsed magnetron has been developed for operation in the frequency range from $8800-9600 \mathrm{mc}$. The tube is rated at 40 w peak pulsed power output at a 25 per cent duty cycle for maximum pulse lengths of 5 usec. Substantially higher peak powers may be achieved with shorter pulse durations and reduced duty cycle requirements. Frequency and amplitude modulation of the magnetron output pulse has been measured at less than $\pm 30 \mathrm{kc}$ modulation deviation in experimental models. Operating efficiency of the MA215 is 20 to 30 per cent. A ceramic cathode bushing structure is used for increased reliability. The magnetron weighs approximately 20 oz .

Microwave Associates, Inc., Dept. ED, Burling ton, Mass.
CIRCLE 163 ON READER-SERVICE CARD FOR MORE INFORMATION

Anfenna Matching Transformer

Minimum Loss from 1 to 50 Mc

The antenna coupling or matching transformer is designed to match a 700 or 200 ohm receiving antenna balanced transmission line to a 72 or 52 ohm coaxial line with a minimum transmission loss over the range of 1 to 50 mc . This transformer employs the use of a core material which extends its frequency response considerably beyond that of former units. The insertion loss has also been kept quite low, less than 1 db at mid-band. A spark gap arrangement has been provided for protection against the effects of lightning. The transformer and circuitry has been arranged to provide dc continuity through the antenna for checking purposes. The transformer has been designed with an octal plug to allow easy replacement. Printed circuitry is used to assure uniformly high performance. The overall dimensions making a compact unit are $5-1 / 4 \times 7-7 / 7 \times 4-1 / 2 \mathrm{in}$. It is encased in a completely watertight housing and provided with desiccant.
Nems-Clarke, Inc., Dept. ED, 919 Jesup-Blair Dr., Silver Spring, Md.
circle 164 on reader-service card for more information

For those transistorized circuifs and other compact circuitry requirements. They have the desired quality product charactoristics of all Hopkins Capacitors.

temperature range

The operating romperature range is from $-55^{\circ} \mathrm{C}$ to + $100^{\circ} \mathrm{C}$.

POWER FACTOR
Less than 1% at $25^{\circ} \mathrm{C}$ and 1,000 CPS up to and including 1.0 M.F.D.

INSULATION RESISTANCE Will avorage 500 megohms x mieroforads for units less than 1 microforad, whon moosured $25^{\circ} \mathrm{C}$.

Available in hermotically sealed metal cans or plastic ancaced.

MICRO MINIATURE METALLIZED

PAPER
CAPACITORS

Send For Catelog TODAY
Write or Wire

Phone: EMpire 1-8691

HOPKINS qugineering COMPANY

12900 FOOTHILL BOULEVARD

P. O. BOX 191 - SAN FERNANDO, CALIFORNIA
circle 165 ON READER-SERVICE CARD FOR MORE INFORMATION

New Products

Battery Charger 50 to $\mathbf{2 0 0} \mathbf{M a}$

A battery trickle charger with continuous adjustment range of 50 to 200 ma is available. The battery charger includes a meter to indicate charging current; output is fused to protect charger components. Output voltages are 12 and 24 v dc with input voltages of 110 to $120 \mathrm{v}, 60 \mathrm{cps}$. A full wave selenium rectifier circuit is provided. Automatic Switch Co., Dept. ED, Florham Pk., N.J.

CIRCLE 168 ON READER-SERVICE CARD

Series Summation Amplifier Summation and Isolation

A transistorized summation and is lation amplifier has been designed f eliminating resolver non-linearitic The single channel Model 807 can used with any standard 400 cps is solver, Mach 4 Mod 0 or equivalent With an operating life of over son hrs and an accuracy of ± 0.1 per cent the 807 holds phase shift errors to les than 0.15 deg . Operating efficiency over 90 per cent; temperature rang is -55 to +85 C .
Maxson Instruments, Dept. EI Div. of the W. L. Maxson Corp., 47-3 Austell Pl., Long Island City 1, N.

CIRCLE 169 ON READER-SERVICE CARD

The new Series 5400 Husky Minia ture Relay is designed for continuous duty, general purpose DC use . . . to give superior performance in aircraft, missiles, communications and other circuit control applications.

- Vibration Resistance: withstands 5 to 70 cps at $0.060^{\prime \prime}$ double excursion and 15 G from 70 to 500 cps without chatter or transfer.
- Contacts: available in arrangements up to 6 Form A or 4 Form C [total of 12 springs]. Standard contact material is palladium, rated at 3 amperes 26.5 VDC or 115 VAC resistive. Can be supplied in ratings up to 10 amperes per contact.
- Available in any standard voltage up to 115 VDC. Normally supplied with coil resistance of 280 ohms + 10% for operation on 26.5 VDC.
- Weight 1.7 oz.
- Available hermetically sealed also. Write for Bulletin No. 6.

CIRCLE 167 ON READER-SERVICE CARD FOR MORE INFORMATION

ONE FICK RESETS this
HIGH SPED Electric COUTER \qquad Model "YE" by DURANT
Offered in TWO STYIES: 1. Quick PUSH-BUTTON RESET 2. Electric REMOTE RESET

First high-speed electrically actuated counters with added advantage of electric resel. Clean-cut, legible $3 / 16^{\prime \prime}$ figures, white on black. Ideal for all high-speed electric counting applications - accu. rate at high, low or intermediate speeds.
DURANT MANUFACTURING CO.

Compact, with great rigidity - entirely enclosed against dust and moisture. Base or panel mount. Speeds to 1500 C.P.M.

Transmission Coupling

Flexibility with Positive Action

The Posiflex Coupling for transmis n components permits flexibility of deg shaft to shaft angular misalignmt and $1 / 8$ in. shaft to shaft parallel alignment with positive action. e unit measures $11 / 8 \mathrm{in}$. long by S in. diam wtih a wide range of re sizes. Space saving is made posle by housing the gimbal joints inally in the coupling shell. All parts of Type 303 stainless steel. Gimbal ats are heat treated for maximum ength and precision ground assury tight backlash requirements at (i) speeds and torque

Fourdee, Inc., Dept. ED. P. (). Box 16, Orlando, Fla.

CIRCLE 173 ON READER-SERVICE CARD

Magnetic Tape Reel Easily Threaded
Called the C-Slot Reel, the design features a curved groove in the hub for threading. Tape is simply slipped into this groove in the opposite diracdion of reel rotation and the recorder is ready for operation. No kinks or twists are made in the tape and no tape-ends are left sticking up. Since the C-Slot is self-locking, there is no need to turn the reel by hand. Sharp edges have been eliminated. including those on the inner surface where considerable tape wear takes place on ordinary reels. Hub construction provides strong and well-balanced characteristics.

Audio Devices, Inc., Dept. ED, 444 Madison Ave., New York 22, N.Y. CIRCLE 174 ON READER-SERVICE CARD

in the Spring.

- A young man looks for high ten. sile strength, corrosion-resistance and close tolerances . . . especially if he is a design engineer who plans to incorporte the spring in his own machinery.
- When you require springs, consuit the spring engineers at John Chatillon and Sons. They have over 120 years of experience in designing and manufacturing all types of springs and they can solve all your spring problems.
Send specifications and blueprints to Department D-1.

JOHN CHATILLON A SONS
aE CLIFF STREET, NEW YORK, N, Y.

Manufacturers of Precision Springs and
Force Measuring Instruments Since 1835.

CIRCLE 175 ON READER-SERVICE CARD FOR MORE INFORMATION

N.R.K. MFG. \& ENGINEERING CO., 4601 W. Addison St., Chicago 41, Illinois Eastern Sales Office: Box 445, Wostfiold, N. J.
West Coast Reprosentalivas: Bray and Carter, 2232 W. lIth St., Los Abeles 6, Col. CIRCLE 176 ON READER-SERVICE CARD FOR MORE INFORMATION

"They're sure compact, K.C." "You bet, M.C., only $11 / 4$ by $61 / 2$ inches!"
NEW REEVES-HOFFMAN TRANSISTOR OSCILLATORS
New Reeves-Hoffman oscillators are transistorized for com-
WRITE FOR pactness and crystal controlled for unerring accuracy. Each BULEEIN RHOS. Oscillator is produced and tested with exacting care hy skilled craftsmen using the most modern equipment and facilities available. Reeves-Hoffman will manufacture these units in volume to your specifications.
DIVISION OF DYNAMICS CORPORATION OF AMERICA CARLISLE, PENNSYLVANIA
CIKCL: $1 / 9$ ON READER-SERVICE CARD FOR MORE INFORMATION

CIRCLE 180 ON READER-SERVICE CARD FOR MORE INFORMATION

New Products

Accelerometers

Range of 0.03 to 40,000 G Series 400 Accelerometers employ barium titanate in compression and have a natural frequency of 75 kc . They operate over an acceleration range from 0.03 g to $40,000 \mathrm{~g}$ and over a frequency range from 0.05 cps to 20,000 cps, with a sensitivity of 80 $\mathrm{mv} / \mathrm{g} \pm 5$ per cent throughout the usable range. Pickups are available in various sizes, weights and mounting configurations.
Columbia Research Laboratories, 1)ept. ED, Woodlyn, Pa.

CIRCLE 181 on reader-SERVICE CARD

Linear Displacement Transducer 1000 Fi Remote Operation

This linear displacement transduce Model LD-20, features an all stainle housing and waterproof connecto The unit measures displacement r motely at distances up to 1000 ft more, employing the variable relu tance principle. It is designed to ope ate over a linear range of 2 in . Wit the use of a simple bridge, the tran ducer may be used at frequencies $60-100 \mathrm{cps}$ and the output fed to galvanometer or recorder. Models or erating over a linear range of 5 is are also available.

Jones-Porter Instruments Co., Inc Dept. ED, Box 666, Riverdale, N. CIRCLE 182 ON READER-SERVICE CARD

W0 spocialize in the design and manufacYure of procision doffection Yokes for military and commercial applications. Phone or write for immediate enginooring ovaluPhono DAvis 7-1123. MAHWAH, N. J.

Ceico Constantine Engmeering Laboratories Co. MAHWAH NEW JERSEY

 CIRCLE 183 ON READER-SERVICE CARD FOR MORE INFORMATION

Ealancing Potentiometer 2 W Rating

Nodel 220 measures $3 / 16 \times 5 / 16 \times 1$ Mounting is accomplished by ans of 2-56 screws through stainless d eyelets on $3 / 4 \mathrm{in}$. centers. Tinned piper leads $1-1 / 2 \mathrm{in}$. long by 0.016 diam. permit the use of either ated circuit or standard wiring thniques. A 15-turn screwdriver adment features a self-locking shaft d an idling wiper assembly to preat damage from forcing adjustnts. Power rating is 2 w . The unit designed for a maximum operating mperature of 175 C. Model 220 is ailable in standard resistance values from 100 to 20 K ohms.
Bourns Laboratories, Inc., Dept. . 6135 Magnolia Ave., Riverside, lif.
CIRCLE 186 ON READER-SERVICE CARD

Neutron Defector Tubes

 For Reactor Control

Two new neutron detector tubes for use in reactor control and reactor monitoring systems are anounced. Model VXN-1 is an enriched boron trifluoride proportional tube for counting thermal neutrons. It is available in 1,2 , and $2-1 / 16 \mathrm{in}$. diam of various active lengths. Nominal operating voltage is 1700 v with a 250 v Minimum plateau having a typical slope of 2 per cent per 100 v . The second type, Model VXN-2, is of the recoil type. It has a polyethylene inner wall and an ethylene filling and is used to count fast neutrons. Nominal operating voltage is 1575 v . It is supplied only with a diameter with length corresponding to standard three-chamber ORNL design.

The Victoreen Instrument Co., Dept. ED, 5806 Hough Ave., Cleveland 3, Ohio.

CIRCLE 187 ON READER-SERVICE CARD

SEND FOR FUSED QUARTZ-fUSED SIIICA DATA FILE

CENTER FOR HIGH-PURITY FUSED QUARTZ

AMERSIL service is koyed to your requirements. Here, at the primary source for fusod quartz and silicoware of critical purity, several specially devaloped production processes are used -oach providing an ond product suitod proisely to certain types of fabrication and use. Delivery is prompt. Standard apparatus, cruciblos, trays, cylindrical containers and tubing (up to 25 diam.) are available for prompt service. Amersil engincers will be gled to assiss in doveloping spocial equipmont for your requirements Your inquiry in invited \rightarrow TMTPSET
 COMPANY, INC. rused sthica

685 RAMSEY AVE. * HILLSIDE S, NEW JERSEY

ROTOSII
. OPTOSIL

- homosil
- UITRASIL

21st century city

The shallow, plastic-faced, Geodesic dome makes this city of the future look strange to 2oth century eyes. But designer Philip H. Seligson has combined practical economics with creative thinking in committing his concept to paper. Industries are located at the outer circumference of the city; discharge their smoke through stacks that pierce the dome. Central air conditioning controls the temperature - winter or summer the climate is perfect. Instead of building their own four weather walls and roof, insulating them, heating and cooling them, people can build their walls merely as grilles and curtains.
No matter which of today's ideas become reality, it will be as important tomorrow as it is today to use the best of tools when pencil and paper translate a dream into a project. And then, as now, there will be no finer tool than Mars - from sketch to working drawing.
Mars has long been the standard of professionals. To the famous line of Mars-Technico push-button holders and leads, Mars-Lumograph pencils, and Tra-dition-Aquarell painting pencils, have recently been added these new products: the Mars Pocket-Technico for field use; the efficient Mars lead sharpener and "Draftsman's" Pencil Sharpener with the adjustable point-length feature; and-last but not least-the MarsLumochrom, the new colored drafting pencil which offers revolutionary drafting advantages. The fact that it blueprints perfectly is just one of its many important features.

The 2886 Mars-Lumograph drawing pencil. 19 degrees, EXEXB 109 H . The 1001 Mars-Technico imported leads, 18 degrees, EXB to 9H. Mars. tumochrom colored drafling pencil 24 colors
at all good engineering and drawing material suppliers CIRCLE 189° ON READER-SERVICE CARD FOR MORE INFORMATION

[^0]
PHILCO 60 V ous 80V Power Transistors

Dosigned for servo，confrol，power convertor and power supply applications．
 Here are extremely reliable，high voltage power transistors－im－ mediately available in production quantities．These transistors perform with a typical thermal drop of only $11 / 2^{\circ} \mathrm{C}$ per watt ．．．with storage temperature of $100^{\circ} \mathrm{C}$ ．They have high beta at high currents ．．．improved alpha cut－off ．．．low surface leakage currents ．．．low saturation resistance ．．．low distortion．Both transistors operate at power load of 12.5 watts．The unique knee－action between the alumi－ num mounting clamp and the copper mount assures maximum dissipator contact at all times．Recent price reductions make these transistors the greatest value in the high voltage power transistor field．

Philco cold－welding process permits hermetic sealing in controlled atmosphere．．．assuring exceptional transistor life and performance！

Philco transistors，after vacuum baking，emerge into a controlled atmosphere where they are welded to insure perfect sealing for life．This process eliminates contamination of the transistor elements by moisture or atmosphere． Uniformity and quality control are strictly maintained throughout．

LANSDALE TUBE COMPANY DIVISION

New Products

Snap－Action Switch
Handles $2 \mathbf{H p}$
A heavy duty，snap－action swite has been designed to handle up to hp．Called the Duo－Snap，the devi comes in four terminal and circuit rangements，permitting at least circuit variations．Its snap－action achieved through the rolling spri principle．The unit is 2 in ．in leng and has an electrical rating of 2 h 230 v ac； $1 \mathrm{hp}, 150 \mathrm{v}$ ac；and for pil duty， $20 \mathrm{a}, 250 \mathrm{v}$ ac．
Robertshaw－Fulton Controls C Dept．ED，Acro Div．，Columbus，Of CIRCLE 193 ON READER－SERVICE CARD

Miniafure Timer

Weighs 6 Oz
A timer measuring $1-1 / 2 \mathrm{in}$ ．sq an weighing 6 oz is hermetically seale and designed for 115 v 400 cps ， 115 60 cps and 28 v dc operation． mounting mechanism is interna shock－mounted to meet applical military specifications on shock vibration．It operates in a temperatu range of -55 to +125 C and to a tudes of $60,000 \mathrm{ft}$ ．

The Advanced Products Co．，De ED，North Haven，Conn．

CIRCLE 194 ON READER－SERVICE CARD

RF Duplexer
 450 to 900 Mc

The Type 149 radio frequency plexer is a tuned cavity network signed to couple a transmitter and ceiver operating in the 450 or 900 bands to the same antenna and trat mission line without interaction with negligible loss in efficiency．W the duplexer，one antenna and tra mission line are eliminated．High reduces the spurious radiation of transmitter by at least 20 db and purious responses of the receiver at least 40 db ．The duplexer is asse bled on a 3－1／2 $\times 19 \mathrm{in}$ ．panel to fil standard relay rack and is norma mounted on the same rack as the dio equipment．All tuning adju ments are made at the factory accordance with specified frequenc and locked to prevent movement shipment or under vibration．

Budelman Radio Corp．，Dept．E 375 Fairfield Ave．，Stamford，Conn

CIRCLE 195 ON READER－SERVICE CARO \＆CIRCLE 196 ON READER－SERVICE CARD

Magnetic Cores

 Provide Greater Stability Magnetic cores for transistorized tronic computers are available ich reportedly offer the greatest bility yet achieved for a transistorgrated core over a wide range of heratures, currents and other disbing influences. The result is ater computer accuracy and less wntime for trouble-shooting. The pes can maintain ratios of 3 to 1 or wer between a Read 1 and a Read 0 . p drive current used with one of new cores can vary plus or minus 2 per cent in the 300 to 400 ma ge, over a range of 50 to 100 F . The National Cash Register Co., t. ED, Dayton 9, Ohio.CIRCLE 197 ON READER-SERVICE CARD

Wire Wound Resistor Up to $\mathbf{2 5 0 , 0 0 0}$ Ohms

 wire wound resistor, completely apsulated, measuring $3 / 16 \mathrm{in}$. in meter by $3 / 8 \mathrm{in}$. in length and d at .25 w is available. The maxm resistance on this unit is 250,ohms. All requirements of milispecifications, except physical can be met by this resistor.hie Daven Co., Dept. ED, LivingN.J.

CIRCLE 198 ON READER-SERVICE CARD

Missile Tracking Camera

70 Millimeter
70 mm data recording camera, ITIDATA MOD V, specifically ened for missile tracking provides more detailed record of missile it than 16 or 35 mm cameras can fd and a larger field of view. With same focal length lenses, it minies the effect of tracking error and po keep the missile within the fera's $2-1 / 4 \times 2-1 / 4 \mathrm{in}$. frame. istration pins insure precise ne-to-frame alignment. A sturdy transport eliminates vibration permits high resolution at speeds in fps and at shutter openings of deg. Two neon lights provide visicoding on both edges of film for fect correlation with time base. light Research, Inc., Dept. ED, mond, Va.
GIICLE 199 ON READER-SERVICE CARD
CIRCLE 200 ON READER-SERVICE CARD $>$

Only Triplett affords you such a wide choice of VOMs. Whatever your application-broad or limited-there is a Triplett VOM ' particularly suited for it.

$\begin{gathered} 631 \\ \text { Combination } \\ \mathrm{V}-\mathrm{O}-\mathrm{M}-\mathrm{VTvM} \end{gathered}$	630-NA For Best Testing Around the Lab, Production Lino or Bench	$\begin{aligned} & 630 \\ & \text { The Popular } \\ & \text { All-Purpose } \\ & \text { V-O-M } \end{aligned}$	$\begin{aligned} & 630-A \\ & \text { A Good Lab and } \\ & \text { Production Line } \\ & V-0-m \end{aligned}$	$\begin{aligned} & 310 \\ & \text { The Smallest } \\ & \text { Complete } V-0 .-\mathrm{m} \\ & \text { with Switch } \end{aligned}$	$\begin{aligned} & \text { 630-7 } \\ & \text { For Telephone } \\ & \text { Service } \end{aligned}$	666-HH Medium Size for Field Testine	$\begin{aligned} & \text { 625-NA } \\ & \text { The First V-..-M } \\ & \text { with } 10.000 \\ & \text { Onms/Voit AC } \end{aligned}$	

New Horizons . . . Cireater Achievements . . Challenging, Satisfying. Rewarding Assignments . . await graduate EEs and ME, with three to ten !ears directly applicable experience at . . AC. The Electronics Divisien of (rencral Motors.
Our ever expanding clectromic activities.
The finest of facilities and test equipment
WWorking alongside eutstanding pioncers in Flectronics . . . GM's policy of complete decentralization. .
Provides ever! qualified project engineer the best of personal development opportunities at AC:
We work in every phase of Research, Design. Development. Reliability and Production in these exciting fields:

```
AVIONIGS
COMPUTERS
(Analog-Digital)
```


INERTIAL GUIDANGE JETENGINE
 FUELCONTROLS

AUTOMOTIVE-AERONAUTICAL ELECTRO- MECHANICAL DEVICES

Production Products

Wire-Wrap Machine
Solderless Technique

In this solderless wire-wrap unit, two lateri adjustable wrapping tools are mounted side side, spaced to accommodate the component us This new technique designed for the automat assembly of axial-lead components. Tape-mount components are fed from a reel to a set of gripg jaws which pluck a single component from tape into the wrapping position. The compone leads are simultaneously placed in a set of "si loading" wrapping bits, the gripper maintaini contact with the leads at either end of the coms nent body. The "side-loading" bits fold the lea from the tangential position to an axial positi in the bits. The assembly (component, gripper ja and wrapping tools) moves forward to a positi each wrapping bit over a terminal. The wrappit bits then rotate in opposite directions, forming solderless wrapped connection with each lead the component. The total cycle time for this opit tion is two seconds.

The process is designed to use commercia available components. Permanent connections w the lowest known resistance and high reliability made. The elimination of heat and protection p vided by the gripper jaws during the operati gives maximum care to the component. The si plicity of this type of connection results in increas reliability of commercial electrical equipment.

Gardner-Denver Co., Dept. ED, Keller Tool D Grand Haven, Mich.
CIRCLE 202 ON READER-SERVICE CARD FOR MORE Informat
ELECTRONIC DESIGN - September 1, 19

Toroidal Coil Winder 2 to 8 In . OD Coils

This heavy duty toroidal coil winding machine designed to wind medium to large size toroidal Its such as are used in magnetic amplifier and fitrol systems. The unit specifications include: 1 size, 2 to 8 in . OD; residual hole, $3 / 4 \mathrm{in}$.; ed, maximum of 500 turns per min; winding 12. 24 in . diam, $1 / 2 \mathrm{in}$. cross section; wire load, uimum $1-1 / 2 \mathrm{lb}$ per loading. Turns are counted a system incorporating thyratron pulsing circuit. Donald C. Harder Co., Dept. ED, 3710 Midway San Diego 10, Calif.
cle 205 on reader-Service card for more information

Horizontal Splicing Machine Joins Coated Wires

The AMPli-var splice with its automatic "Hori${ }^{\mathrm{ta}} \mathrm{I}^{\text {A }}$ splicing machine, is designed to produce up 1200 per hr identical, mass produced splices on anel, polyvinyl acetal and similarly coated wire. esplices, with multiple ring stripping action, minate scraping, dissolving in solvents, burning other methods of removing insulation. There is heat damage. The splice, scarcely larger than wires themselves, is design-engineered to lock is and connector into a high tensile strength ice, The joint is hermetically sealed during splicthus rendering it corrosion resistant. Soldering ierial and equipment are unnecessary, less wire time are required, thereby lowering installed is. They can be used on solid or stranded conors or combinations thereof.
IISP Inc., Dept. ED, Harrisburg 13, Pa.
If 206 on reader-service card for more information
STRONIC DESIGN • September 1, 1957

Waldes Truarc Rings speed assembly, facilitate maintenance, improve performance of new automatic calculator

Whatever you make, there's a Waldes Truarc Ring designed to save you material, machining and labor costs, and to improve the functioning of your product.
In Truarc, you get
Complete Selection: 36 functionally different types. As many as 97 standard sizes within a ring type. 5 metal specifications and 14 different finishes. All types available quickly from leading OEM distributors in 90 stocking points throughout the U.S. and Canada.
Controlled Quality from engineering and raw mate-

WATDES

WALDES KOHINOOR, INC.
47-16 AUSTEL PLACE, L. I. C. 1, N. Y.
rials through to the finished product. Every step in manufacture watched and checked in Waldes' own modern plant.
Field Engineering Service: More than 30 engineer-ing-minded factory representatives and 700 field men are at your call.
Design and Engineering Service not only helps you select the proper type of ring for your purpose, but also helps you use it most efficiently. Send us your blueprints today...let our Truarc engineers help you solve design, assembly and production problems... without obligation.

Waldes Kohinoor, Inc., 47-16 Austel Place, L.I.C. I, N. Y. Please send new, descriptive catalog showing all types of Truare rings and representative case history applications. (Please print)

Name

Title
Company
Business Address
City \qquad

WaLDES TRUARC Retaining Rings, Grooving Tools, Pliers, Applicators and Dispensers are protected by one or more of the following U. S. Patents: 2.382,948: 2.411,426;

[^1]
Production Products

Transistor Washer

Uses Distilled Water

A special apparatus for washing and rinsing transistors and other small electronic parts in hot distilled-demineralized water has been developed. It has been found that rinsing in hot, highly-purified, particle-free water improves quality and reduces rejects. This equipment incorporates continuous repurification of the rinse water by ionexchange plus activated carbon filtration followed by ultra-fine filtration of submicroscopic particles to 0.45 micron. Washing and rinsing is accomplished in a five stage cascade type rinse tank. Rinse chambers are individually electrically heated and a regenerative heat-exchanger is employed in the circulating system to conserve electricity. Demineralizer and carbon filter are disposable cartridge type. Submicron filter employs replaceable membranes.
The final rinse water is of high electrical resistance, $5.000,000$ (18 C) or more ohms, and is also free of organic impurities and submicroscopic particles which often contribute to sub-standard results. Complete unit is mounted on a mobile frame with circulating pump, etc, as illustrated.

Barnstead Still \& Demineralizer Co., Dept. ED, 2 Lanesville Terrace, Boston 31, Mass.
circle 210 on reader-service card for more information

CIRCLE 209 ON READER-SERVICE CARD FOR MORE INFORMATION

Choose from a complete line of Scotch" Brand Instrumentation Tapes for industry and defense

Whatever your recording requirements, "SCOTCH" Brand has the right magnetic tape for you. Here's the world's fullest line of tapes for exacting instrumentation use - and the most reliable. Every "SCOTCH" Brand Instrumentation Tape meets critical dropout specifications. In pulse recording these tapes average less than 1 error per roll." In direct recording, these tapes conform to proposed Navy specifications defining dropouts as variations
of 22% or more in signal magnitude, lasting 300 or more microseconds."* All tapes shown are available in standard widths of $1 / 4^{\prime \prime}, 1 / 2^{\prime \prime}, 3 / /^{\prime \prime}, 3 / 4^{\prime \prime}$ and $1^{\prime \prime}$.

FREE BOOKLET gives you specific engineering data on dropouts plus complete physical and magnetic specifications of these famous "SCOTCH" Brand products. Write: Minnesota Mining and Mfg. Co., Dept. PJ-97, St. Paul 6, Minnesota.

Neasured by recording 200 non-return pulses per inch on a 0.035° track. A reduction to less than 50% normal signal amplitude constitutes a signal error wo errors are measured by saturating the tape undirectionally. Each spurious signal greater than 10% of normal signal amplitude constitutes a 2 ero error. rors per roll based on recording 7 tracks on rolls $1 / 2^{\prime \prime} \times 2500^{\prime}$.
"Based on a 8750 cps signal played at 7.5 ips

WHICH MAGNETIC TAPES ARE BEST FOR YOUR INSTRUMENTATION NEEDS?

Tape Number and Description	Stability	Strength	High Temparature Performance	High Speed Performance	Long Wave Length Output	Short Wave Length Output	Recording Jime
108 General Purpose	Best	Best	Good	Good	Good	Good	Normal
109 General Purpose	- Good	Good	Good	Good	Good	Good	Normal
$\begin{gathered} 128 \\ \text { High Output } \end{gathered}$	Best	Best	Very Good	Very Good	Best	Good	Normal
$\begin{gathered} 148 \\ \text { Long Wear } \end{gathered}$	Best	Best	Best	Best	Good	Best	Normal
149 long Wear Extra Play	Best	Good	Best	Best	Good	Best	Exiended
$\begin{gathered} 159 \\ \text { Extra Play } \end{gathered}$	Best	Good	Good	Good	Good	Best	Extended

Iquantities expressed are relative to No. 109
"term "SCOTCH" and the plaid design are registered trademarks for Magnetic Tape made in U.S.A. by MINNESOTA MINING AND MFG. CO., St. Pau Vinn Export Sales Office: 99 Park Avenue, New York 16, New York. © 3M Co., 1457

This Flowsolder unit is designed to eliminate the difficulties involved in the conventional flat dip-soldering of printed circuits. This unit lifts the molten solder up to the circuit instead of lowering the circuit panels down to the molten solder. The solder wave, 8 in . wide and free from oxide, is produced by pumping molten solder through an elongated spout by a motor driven impeller pump. The circuit panel is passed through the crest of this wave and the joints between the component leads and the copper conductors on the underside of the panel are soldered. Fresh solder is fed to the bath by feeder ingots; as the solder is consumed the ingot is gradually lowered into the bath. The unit is electrically heated and the solder temperature is thermo-statically controlled with normal operating temperature at 250 C .
Advantages over the conventional dip-soldering method for soldering printed circuits include: (1) provision for angled entry and exit by the shape of the solder wave, which together with the washing action of the moving solder, prevents trapping of flux or air and assures sound joints; (2) accommodation for panels of any length up to $7-1 / 2 \mathrm{in}$. wide; (3) automatic conveying system preventing hesitation or break in the production flow; (4) constant flow of solder which provides a more rapid heat transfer from solder to panel, reducing dipping time and eliminating surface chilling; (5) short panel exposure to heat, diminishing warping of the panel and heat damage to components; (6) continuous flow of clean solder since the molten solder welling up through the nozzle is drawn from below the bath surface; (7) controlled wave level maintained by adjusting the speed of the metal pump which forces the molten solder upwards through the nozzle.
Electrovert Inc., Dept. ED, 489 Fifth Ave., New York 17, N.Y.
CIRCLE 213 on reader-SERVICE CARD For more information

New Products

Combination Terminal Block
30 to 250 Amp.

This terminal block allows the grouping of any combination of seven different types of terminals in a single block, as required. Terminals with capacities from 30 amp to 250 amp may be factory assembled in the particular combination required by the user. Since the various components of this combination block are all standard, it can be assembled at the factory with a minimum delay and free of special tooling costs.
Curtis Development \& Mfg. Co., Dept. ED, 3250 N. 33rd St., Milwaukee, Wis

CIRCLE 217 ON READER-SERVICE CARD

Miniafure Oscilloscope DC to 150 Kc
Designated Mini-Scope, these oscilloscopes feature high deflection sensitivity and minimum pattern distortion. Series 300 Mini-Scopes are supplied in three models with frequency response from DC to $150 \mathrm{kc}, 3 \mathrm{db}$ down, usable to 200 kc . Horizontal sensitivity is standardized at 0.5 v per in., with vertical sensitivities ranging from 0.5 v to 1 mv per in. Dimensions are approximately 5 in . cube, and weigh less than 4 lb .

Special Products Corp., Dept. ED, B75 Barbey St., Brooklyn 7, N.Y.

CIRCLE 218 on reader-Service caro
CIRCLE 220 ON READER-SERVICE CARD $>$

PAPER AND FOIL WITH SOLID IMPREGNANT

GRAPH ABOVE shows outstanding temperature and voltage characteristics for 95% reliability

Solve critical space and temperature problems with subminiature PVZ* capacitors

Low-cost molded units operate from -55 C to +125 C

Now immediately available for exacting applications in commercial and military electronic equipment, these molded paper capacitors meet performance requirements of Characteristic " E " for MIL-C-91A. General Electric's PVZ capacitors are priced substantially lower than comparable metal-clad tubulars. They are designed to operate for a minimum of one year at +125 C with no voltage derating.

Completely solid after molding, PVZ capacitors feature the following advantages:

- small size
- excellent humidity resistance
- high lead-strength
- insulated body-solid impregnant
- high shock and vibration resistance
- color code for easy identification

General Electric PVZ capacitors are available at $100,200,300$, and 400 volts. Microfarad ratings range from .00047 to .15 .

If you need a capacitor with the characteristics described above, ask your General Electric Apparatus Sales Engineer about PVZ tubulars. He can give you expert application information. He can also arrange for immediate delivery of PVZ capacitors from factory stock in most ratings. For descriptive data write for bulletin GEC-1452 to General Electric, Section 447-2, Schenectady 5, N. Y. \quad Trademark of the General Electric Co.

[^2] length to $.375^{\prime \prime}$ diameter by $1.0625^{\prime \prime}$ length. Capacitance ratings

Progress /s Our Most Important Product GENERAL ELECTRIC

Potentiometer and Mv Source
For All Thermocouples

Model P-55 can be used with any thermocouple, and measures any potential in the 0 to 55 mv range. In addition, the instrument will accurately supply the same potential for checkout of recorders and other instruments. The P-55's dual input provides two sets of 55 -way binding posts for checking two thermocouples, or one thermocouple against a standard, etc. A thermometer is shock-mounted in the lid, and the instrument is available in a weatherproof aluminum case or in mahogany. It measures 4-1/8x4-1/2 $\mathrm{x} 7-1 / 2 \mathrm{in}$. and weighs $3-1 / 2 \mathrm{lb}$.
Allegany Instrument Co.. Inc., Dept. ED, 1091 Wills Mountain, Cumberland, Md

CIRCLE 221 ON READER-SERVICE CARD

400 Cps or DC Circuit Breaker

Single or Ganged

The AM17 circuit breaker can function on either 400 cps ac or dc without any change in rating or essential timedelay characteristics. Although manufactured in single-pole form only, the breakers can be readily linked with others to make two- or three-pole units. The only operating connection necessary is a tie rod through the breaker handles; electrical tripping of ping of the other connected breakers. The breaker, which operates on the hydraulic-magnetic principle, does not require derating for either temperature or vibration conditions.
Heinemann Electric Co., Dept. ED. 453 Plum St., Trenton 2, N.J.
circle 222 on reader-service card
< CIRCLE 220 ON READER-SERVICE CARD

BALLANTINE Sensitive, Wide Band Electronic Voltmeter

measures 1 millivolt to 1000 volts from 15 cycles to 6 megacycles

Accuracy 3\% $103 \mathrm{mc} ; 5 \%$ above
 Input impedance 7.5 mmfds shunted by 11 megs

 All Ballantine instruments are

SENSITIVE - ACCURATE - DEPENDABLE

- Same accuracy at $A L L$ points on a logarithmic voltage scale and a uniform DB scale.
- Only ONE voltage scale to read with decade range switching.
- No "turnover" discrepancy on unsymmetrical waves.
- Easy-to-use probe with self-holding connector tip and unique supporting clamp.
- Low impedance ground return provided by supporting clamp.
- Stabilized by generous use of negative feedback.
- Can be used as 60 DB high fidelity video pre-amplifier.

Write for calalog for more information about this and other
BALLANTINE voltmelers, amplifiers, and accessories.

BHLLITIIINE LIBDRNTORIRS. INC.(B)
 114 Fanny Road, Boonton, New Jersey

CIRCLE 224 ON READER-SERVICE CARD FOR MORE INFORMATION

New Literature

Silicone

225
Brochure No. 6-206 devoted to the properties and performance of silicone-greases is now released. Developed primarily for high-temperature, slow-speed bearings, it has become an industry standard for uses ranging from worm-and-pinion sets to compressor engine injector valves; from holddown bolts to plastic extruder nozzles. Dow Corning Corp., Midland, Mich.

Diameter Dilemma

226
Bnoklet on thread gaging showing that variations in screw thread angle and lead, product misfit fasteners as readily as do deviations in pure diameter dimension itself is now available. The increase can be considerable as shown in charts included in the booklet. Standard Pressed Steel Co., Box 202, Jenkintown, Pa.

Sensitive Relays

Sensitive and power type relays are described in 4 -page leaflet now available. The illustrated pamphlet gives the specifications and characteristics of each model. Five Star Co. Inc., Plantsville, Conn.

Tubing Prices

228
Prices, properties, and application information are given for a complete line of electrical tubing in a 16 -page pricing guide. Included in the guide is a selector chart for plastic tubings. This chart lists application information, maximum recommended operating temperatures, low temperature brittle point, durometer hardness, dielectric strength, dielectric constant, shrinkage, moisture absorption, flammability, fungus resistance, available colors, and applicable military specifications for each available type. A similar chart is provided for various types of coated tubings. The guide also contains data and pricing information on a line of telephone products, among them a wire vibration damper, a filled splice sleeve, and an open splice sleeve. Minnesota Mining and Mfg. Co., Irvington Div., 6 Argyle Terrace, Irvington 11, N.J.

Timers

229
A line of electronic timers is described in 4 -page bulletin now available. This bulletin provides specifications, applications and operation of 11 timers of the repeat cycle, interval and delay types. G. C. Wilson \& Co., 1915 Eighth Ave., Huntington, W. Va.

Paper Tape Equipment

Those involved in tape handling will fil the 4 -page brochure now available intere ing. The illustrated pamphlet describes t construction of the winder and unwinder simple terms. Whiteford Lab., 258 Bro St., Lynn, Mass.

Liquid Sealant

Technical Report No. 5 gives comple information on how to lock threaded f teners with a liquid sealant. Proper selo tion of grade is outlined in simple termin ogy so that predictable results to me specific locking torque requirements can easily obtained. Specific uses and meth of application are documented for stu screws, nuts, and other threaded produc Covered are techniques for sealing soldering sleeve joints. Fundamental da is given on the basic principles of thre locking with plastics, as well as formu for torque determination under vary conditions. Physical properties of the se ant, both in the liquid and solid state given, including cure time, resistance solvents and chemicals, heat aging, strength, resistance to thermal shock, trical properties. Drawings and diagral illustrate the 12 -page booklet. Americ Sealants Co., 103 Woodbine St., Hartfa 6, Conn.

Electronics Catalog

 which of industrial electronics and public addre equipment as well as other electronic c ponents and equipment. Radio Specialt Co., 456 Charlotte, Detroit 1, Mich.
Plastic Wiring Ducts

Low cost plastic wiring ducts for electrical control panel wiring are featur in 4-page folder just released. The fol shows two types of non-flammable plastic ducts, both with covers that snap place directly on the duct. The covers said to provide quick access to the width of the duct for quick, insta tion, trouble-shooting and revision. Th methods of mounting are also illustrat speed mounting with spring steel stand clip; security mounting with threaded st and standard flush mounting with : through base of the duct. Panduit 10132 S. Washtenaw Ave., Chicago 43,
in basic, non-technical and conversanal language, the illustrated 8 -page aklet describes connectors, terminals, ices, panels, and components for the foctronic, Appliance, Aircraft and Military rkets. Burndy Corp., Norwalk, Conn.
gital VTVM Booklet
236
Full line of digital voltmeters, ohmme-ac-dc converters, and complete data ging systems are described in twentyhit page booklet just released. The bookis illustrated with charts, diagrams, and Dotos of instruments. Non-Linear Systems, Del Mar, Calif.

pes for Tape Recording

237
How to Choose the Right Recording ne," is the name of color pamphlet now pased. The illustrated brochure offers neral information on magnetic recording e, recording characteristics and the elewits, such as Mylar and cellulose acetate, wich governs the physical characteristics product. The booklet described indihal requirements which should be conred in choosing a tape. Reeves Soundfi Corp., 10 E. 52nd St., New York, N.Y.

Weld Fasteners

Various types of weld fasteners are described in Bulletin No. 58 now released. Among the highlights of the catalog are typical applications . . . methods of improving the products and reducing costs, production economies and others. It is well illustrated and complete information is available on all types of fasteners. Ohio Nut \& Bolt Co., 33 First Ave., Berea, Ohio.

Panel-Mounting Units

239
In a 36-page catalog and designers guide an entire line of miniature, panel-mounting electronic instruments are presented. For each instrument photographs, outline drawings, a description, mounting details, complete specifications, and operation theory are given. The catalog, sectioned for ease of reference, includes ac vtvm's, dc vtvm's, power supplies, and special instruments such as multichannel vtvm's, phase meters, and null meters. The designers guide aids in the selection and application of vtvm's to measurement or monitoring problems and discusses the how-to phase of building electronic instruments into system equipment. Trio Labs., Inc., 4025 Merrick Rd., Seaford, N.Y.

CIRCLE 240 ON READER-SERVICE CARD FOR MORE INFORMATION

DELAY LINES

standard or specially designed

BY TECHNITROL

 These extra-compact delay lines assure a minimumof pulse distortion with maximum stability under
ambient temperatures ... and in a minimum of space.
They can be had pencil-thin in plug-in, pig tail or
fuse-clip mounting. Available cased or dip-coated in
epoxy resin as well as hermetically-sealed units for
military application ... with any desired characteris-
tics of impedance or frequency response. Typical are:

- Delay: 0.01 to $6 \mu \mathrm{~s}$
- Characteristic Impedance: 400 to 5600 ohms
- Band Pass Characteristics: Unique windings furnish maximum band width for given delay per inch.

We are prepared to design lumped constant or distributed constant delay lines for your particular circuit applications.

Write today jor Bulletin ED 174

ECHNITROL
Enginer ring Company
1952 E: Allegheny Ave., Phila. 34, Po

TV SETS- 17 PEC's replaced over
100 parts, simplifying assembly 100 parts, simplifying assembly
and improving performance.

AUTOMOTIVE - PEC provides
photo-multiplier - tube socket and photo-multiplier tube soch

New Literature

Hi-Fi, PA, and Ham Products
246
In a complete catalog, electronic products for high fidelity, PA, ham, industrial, and experimental applications are listed. The catalog contains 180 pages, 72 of which are devoted to PA and high fidelity items. Custom Electronics, Inc., 1000 S. Main St., Dayton 9, Ohio.
Design and Production Facilities 247
The facilities of the company's specialized engineering, research and product development facilities, experienced personnel and modern production equipment for the design and manufacture of electronic equipment and components is described in four page bulletin 67-193 now available. Hupp Electronics Co., 743 Circle Ave., Forest Pk., Ill.

5 In. Precision Pot

General information and specifications on Series HP1500 5 in. high resolution precision potentiometers are presented in a data sheet of two pages. The literature is illustrated with a photograph and dimensional drawings. De Jur-Amsco Corp., 45-01 Northern Blvd., Long Island City 1, N.Y.

Tape Noise

"Sound Talk," Bulletin 34, discusses problem of noise in magnetic tape reco ings. Illustrated with graphs and line dra ings, the 5 -page text tells what tape no is and how it is diagnosed on a tape corder. Among the topics considered frequency modulation noise, drop-out no modulation noise causes, and erasure pro lems. Minnesota Mining and Mfg. Co., 8 Bush St., St. Paul 6, Minn.

Conversion Tables

A series of tables which simplify conv sion from decimal to binary numbers, vice versa, have been published in a pock size folder. The tables should prove use to those working with coding systems of binary numbers. Barnes Engineering 0 30 Commerce Rd., Stamford, Conn.

Industrial Tachometers

A variety of generators and indicating recording instruments are described in B letin 1258A now released. The illustra booklet states that the instruments available for measuring speed of any ind trial rotating equipment, including tacho eter generators and hand tachomet General Electric Co., Schenectady 5, N

CIRCLE 252 ON READER-SERVICE CARD FOR MORE INFORMATION
tditions and replacements are easily ade in a recent loose leaf catalog and ference manual on timing devices. The pages of data, color coded for convenhnce, are divided into six major categories: pays; repeat cycle timers; time delay reIs; elapsed time indicators and ston pcks; ac, de and chronometrically govhed timing motors; and miscellaneous inmation and application data. The scriptive matter is supported by 60 photoaphs, 30 dimensional drawings, and 50 arts and diagrams. There are approxitely 600 catalog item part numbers. The W. Haydon Co., 232 N. Elm St., Waterfy, Conn.

ketronic Data Processing Systems 256

Individual business applications of the tatron electronic data processing system described in a series of brochures now ilable. The pamphlets document specific utions to computational problems in payprocessing, invoice billing, parts invencontrolling, accounts payable processutility billing, and life insurance reling. Burroughs Corp., Div. Electrota, 460 Sierra Madre Villa, Pasadena,

Servomotor-rate Generator

Complete specifications, characteristics, 3 -view drawing, and schematic of servomo-tor-rate generator, Model II is described in Data Sheet 872 now released. The sheet states that the unit provides fast response, low power input, oscillation damping, sig-nal-to-noise ratio of $25: 1$ and linear torquespeed curve. Beckman/Helipot Corp., Newport Beach, Calif.

Variable Transformer

258
Double wound powerstat with an isolated secondary on a single core is described in 4-page bulletin L 3578 now available. Connection diagrams and ratings are given as well as illustrations, outline drawings and technical rating data on this variable transformer. Superior Electric Co., 8.3 Laurel St., Bristol, Conn.

Klystron Facts

"Klystron Facts Case No. 4" is a 24 -page brochure summarizing recent developments in the field of klystron design. The illustrated booklet contains information on depressed collector operation, use of klystrons in high power uhf SSB service, and shaped pulse applications. Eitel-McCullough, Inc., San Bruno, Calif.

Co-deposits 24 K Bright Gold and closely controlled percentages of Antimony, or other Group 3 or 5 elements,-developed specifically for Germanium and Silicon semiconductors. Bath operates at room temperatures and produces dense, fine grained, uniformly thick "Doped" Gold Plate precisely to your specifications. Write for technical data.

$S E L-R E X^{\text {Precious Metals Division }} \mathrm{R}_{\mathrm{B}} \mathrm{P}$ RTION
 Dept. ED-9, Nutloy 10, New Jersey
 (Offices: Detroit, Chicago, Los Angeles)

 Manufacturers of Exclusive Precious Mofals Processes, Metallic Power Rectifiers, Airborne Power Equipment, Liquid Clarification Filters, Motal Finishing Equipment and Supplies.CIRCLE 260 ON READER-SERVICE CARD FOR MORE INFORMATION

Looking for a Gang--

OF POTS?

If you are in the need of miniature, precision potentiometers with a built-in affinity for each other, you need the MODEL 319 by Daystrom Pacific Corporation, Potentiometer Division.

GANGED IN ALMOST ANY NUMBER, THIS UNIQUE DESIGN OffERS:
\star Independent phasing
\star Smallest cup depth, lightest weight on the market

* No clamp rings
\star Excellent performance under extreme conditions
Each wiper can be independently phased without interfering with the phasing of the other cups in the gang, and without rotating case or terminals, so that pre-assembled wiring harness can be used. Individual cups are one-half the length of any other similar potentiometer, and the high-strength, heat-resistant body reduces weight and eliminates insulation problems.

Available with panel or servo mount, and with ball or sleeve bearings. WRITE FOR COMPLETE SPECIFICATIONS.

CIRCLE 261 ON READER-SERVICE CARD FOR MORE INFORMATION

\ldots . POWER SUPPLIES

model 4.200X

400 VDC - 200 MA - excellent regulation

This is a versatile unit built for highly dependable operation Regulation - for 105 to 125 V line: 100 MV change; NL to FL 100 MV change. Adjustable by factory from 250 to 420 VDC
bulletin 1025
model .28-2M.X

28 VDC - 2 Amps
A compact, unregulated source of power for operating relays. motors, switching circuits, etc. Size: W: $31 / 2^{\prime \prime} ; L: 91 / 2^{\prime \prime} ; H: 41 / 2^{\prime \prime}$ above chassis, $1^{\prime \prime}$ below chassis. bulletin 1026
models ..28-5MX ; .28-5MXR

28 VDC-5 Amps-adjustable
Transformer taps on Model .28-5MX permit adjusting to 28 volts for variations in line and load.
28 VDC-5 Amps

- regulated by mag. ampl.

Model .28-5MXR-regulation for 115 V $\pm 10 \mathrm{~V}$ line: $\pm 0.25 \mathrm{~V}$; NL to $\mathrm{FL}: 0.5 \mathrm{~V}$. bulletin 1018 bulletin 1019
model 5.300XA

500 VDC - 300 MA

 - adjustable, regulatedAdjustable from 250 to 500 VDC by simple internal changes. Regulation-for 105 to 125 V line: $.05 \%$ change; NL to FL: $.05 \%$ change. SizeW: 5"; L: 121/2"; H: $53 /{ }^{\prime \prime}$ " above deck. bulletin 1017
models 1.5-70X, 2.5-70X, 3.70X

Exceptionally Small Types
-W: 41/8"; L: 5"; H: 41/4" above chassis; $1^{3 / 4 "}$ below chassis. Ripple below 4 MV RMS.
outputs:
150 VDC-70 MA, fixed (model 1.5-70X)
250 VDC - $70 \mathrm{MA}^{*}$ (model 2.5.70X
300 VDC-70 MA** (moder 3.70X
*adjustable at factory: 220.260 V
**adjustable at factory: $240 \cdot 350 \mathrm{~V}$
bulletin 1028 and high reliability.

- compact, rugged

units for
original equipment
and lab. work

- all low priced.
model 3-150XHS

300 VDC - 150 MA

- Mil. Spec components Dependable power for mobile computers and amplifiers. Excellent regulation and low ripple. Factory adjust $250-425$ VDC; pot range 50 volts. With stands high humidity.
bulletin 1023
models 1-20X, 1.5-20X, 2.20X

Octal plug-in units

-only $21 / 2^{\prime \prime}$ wide; $23 / 8^{\prime \prime}$ long; $41 / 4^{\prime \prime}$ high. Ripple below 5 MV RMS.
outputs:
105 VDC - 20 MA (Model 1-20X)
150 VDC-20 MA (Model 1.5-20X)
210 or 105 VDC @ 20 MA
(Model 2-20X) bulletin 1027

With the wide range of voltages and currents offered by these units, design engineers can quickly find a model compatible with their needs. Each unit features simplified design, highest quality components, easy-to-trace wiring,

dressen-barnes

DRESSEN-BARNES CORP.
250 N. Vinedo Ave., Pasadena, Calif.

New Literature

Extruded Acrylic Sheets

Complete information on the handling, machin ing, forming, cementing and annealing of low cos Cadco extruded acrylic sheets is given in a 18 page bulletin now available.

Table of properties and four pages of ligh transmittance charts, including comparison witt cast sheet are also included. Cadillac Plastic Chemical Co., 15111 Second, Detroit 3, Michigar

Ceramic Capacitors

Ceramic capacitors are described in a six-pag catalog now available. Disk, tubular, and plat types of ceramic capacitors are illustrated wit charts and diagrams. Each application for temper ture compensating, stable capacitance, high vol age, printed circuitry is discussed, with complet specifications and properties of the ceramics liste Special customized applications are mentione Skottie Electronics Inc., Peckville, Pa

Brass Fittings

Recently issued is a 48 -page brass tube fittin catalog. It lists all available sizes and types, and ha a section showing a complete line of drain an shut-off cocks. Other subjects covered in the catalo are push-pull controls, complete assembly instruc tions on all brass fittings, data on right and wron ways for tubing a system, tube fitting data anc tools. The Weatherhead Co., 128 W. Washingto Blvd., Fort Wayne, Ind

Analysis and Test Instruments

In an eight-page catalog digest of all standar devices, instruments are grouped by type and ap plication. Depicted and described with specifica tions are subsonic, sonic and ultrasonic waveform analyzers; rf, vhf and uhf spectrum analyzers; spe cial and accessory instruments; and telemeterin test instruments. A summary list of application and a detailed table of contents help to locat equipment of specific interest. Panoramic Radi Products, Inc., 10 S. 2nd Ave., Mount Vernon, N.

Motors, Fans and Blowers

Fourteen-page catalog, No. 83 describing motor fans and blowers, has been released. This informa tive catalog offers full details, physical specifica tions and electrical characteristics on complete lin of synchronous, torque, induction and gear motors centrifugal blowers and axial fans. Both standard and custom models are available to order for com mercial or military applications. Ashland Electri Products Inc., 32-02 Queens Blvd., Long Islanc City 1, N. Y.

ELECTRONIC DESIGN • September 1, 1957

Microwave Products Catalog

Short form Catalog 57-BG describes all of the roolucts manufactured. Among items included are pulsed and CW magnetrons, TR and ATR duplexing tubes, microwave silicon diodes, silicon power rectifiers, flange-mounted and solderable waveguide pressure windows, waveguide components, and test quipment.
Operating characteristics are tabulated for a majrity of the products. Microwave Assoc. Inc., 22 Cummington St., Boston 15. Mass.

Efficiency Poster

274
An unusual training poster has been released recently. It is an attractive, colorful $18 \times 24 \mathrm{in}$. sheet, addressed to assembly line operators, and illustrating dramatically how to do a more effective soldering job, eliminating costly rejects and adding to production efficiency. The poster is designed to be useful in any plant, posted along the assembly line. It is an appeal to the employee's pride of accomplishment. Multicore Sales Corp., 80 Shore Rd., Pt. Washington, N.Y.

Automatic \& Semi-Automatic Machines 275

Four specification sheets describing special automatic and semi-automatic machines have been issued. These sheets describe Machine No. 1507, glass tubing cutting machine; Machine No. 2070, automatic bulb blowing machine; Machine No. 1416, high-speed pneumatic base filling machine; and Machine No. 1708, an automatic neck sealing mathine. Kahle Engineering Co., 1400 Seventh St., No. Bergen, N.J.

Resistance Elements

Three bulletins of interest to industrial companies dealing in electronics are available. One bulletin describes the highly-individualized engineering manufacturing and marketing services offered; second bulletin deals with revolutionary line of resistance elements known as RdF Stikons; and third describes development of miniaturized hightemperature resistance thermometer probe. Arthur C. Ruge Assoc, Inc., 733 Concord Ave., Cambridge 38, Mass.

Instrumentation Tape for Telemetering 277
Type B Instrumentation tape designed specifically for telemetering is described in a booklet recently released.
The multi-colored booklet completely describes operating characteristics of the Type B tape for car-rier-type recording, including specifications and magntic properties. The booklet covers use of the tape for $\mathrm{FM} / \mathrm{FM}$ or $\mathrm{FM} / \mathrm{PM}, \mathrm{PDM} / \mathrm{FM}$, or PDM PM. Reeves Sounderaft Corp., 10 E. 52nd St., New York, N.Y.

PHELPS DODGE SODEREZE ENDS STRIPPING, CLEANINGCUTS SOLDERING COSTS!

Sodereze*-Phelps Dodge polyurethane magnet wire-provides:

1. Low temperature soldering-no damage to copper conductor.

2 A balance of physical, chemical and electrical properties permitting replacement of existing film wires.
3. Resistance to heat and solvent shock for safer wax or varnish treatment.

Any time magnet wire is your problem, consult Phelps Dodge for the quickest, easiest answer!

FIRST FOR

LASTING QUALITYFROM MINE TO MARKETI
*Standard color, red.

CIRCLE 278 ON READER-SERVICE CARD FOR MORE INFORMATION

Lighter Operating Pressure

WITH THESE NEW ACRO

PRECISION SWITCHES

NEW MODEL CM Snap Action

The big features of this new, small Acro precision switch are long life and light operating pressure - lighter than any other switch of its type. Having snap action parts of beryllium copper and contacts of fine silver, the CM offers extremely good repeatability and will deliver millions of actuations without failure. It can be ganged for multi-pole applications, will operate in a temperature range of $160^{\circ} \mathrm{F}$., and is designed for use where positive control is required and slow actuation inherent.

NEW MODELCS Non-Snap Action

Operation of the Acro CS switch is through rotary motion (either clockwise or counter-clockwise), with a
spring bias provided for quick return. Available in normally open and normally closed models, this new switch also operates by very light pressure and will give extra long mechanical and electrical life. It's designed for use where rapid actuation is inherent and contacts are protected against vibration or shock in the
"at rest" position.

Both the Acro CM and CS Switches are furnished with a choice of integral actuators to suit individual applications!

Literature and engineoring Literoture and
data furnishad without obligation
 CIRCLE 281 ON READER-SERVICE CARD FOR MORE INFORMATION

Sub-Miniature Metallized Paper Capacitors

Peter P. Grad
Aerovox Corp.
New Bedford, Mass.

A major modification of the metallized pape capacitor has resulted in a 50 per cent volume ie duction of the smallest available units of this type The insulation resistance and temperature coeff cient characteristics have been improved over th best commercial subminiature paper capacitor The small size and high precision of this componen make it suitable for transistor circuitry. Althoug the capacitor is not yet available on the market, thi preview should be useful to the design engineet

Aside from constructional details, the impregnan and the method of impregnation employed are mos important in the manufacture of metallized pape capacitors.
It was found that a liquid impregnant-polysilox anes-is the most successful for high reliability sub miniaturization, and for heretofore unobtainabl electrical characteristics. Although liquid impreg nants were generally considered unsuitable fo metallized paper capacitors because of the conduc tive particles resulting from the self clearing burn out, a newly developed impregnation techniqu coupled with the properties of methyl polysiloxine changed this misconception.
This liquid impregnant has many advantages Inherent in their chemical structure the silicone oil?

Fig. 1. Graph of insulation resistance vs temperature. $1.0 \mu \mathrm{f}$ subminiature merallized paper capacitors impregnated with silicone oil and polyester resin.
dhilit a high degree of stability. Their resistance heat and oxidation is high, and relatively slight hanges in viscosity and dielectric properties take lace with temperature changes. Added factors are sc high degree of water repellency and availability viscosity ranges.
Experimental evidence indicates that methyl
dysiloxanes partially polymerizes under the stress farcing which occurs when the metallized paper adergoes self-clearing. The resultant small gummy asses occlude any conductive decomposition articles as a consequence of the paper pyrolisis. his is a partial explanation for the puzzling phemenon that silicone oil does not cause breakowns whereas mineral oil, for example, is unsuitble as a metallized paper impregnant. The good yformance of the silicone oil impregnant is predated, however, on its complete penetration into le fibrous structure of the paper.
The development of the subminiature metallized per capacitor has resulted in the following:
Insulation resistance values attained at 25 C (0.000) meg- $\mu \mathrm{f})$ and at $85 \mathrm{C}(300$ meg- $\mu \mathrm{f})$ are betIr than the highest values for commercially availble metallized paper capacitors. See Fig. 1.
The volumes are an average of 55 per cent paller than the volumes of the smallest commerfally available metallized paper capacitors. A comletely assembled $1 \mu \mathrm{f}$ unit has a total volume of tou in.
A low capacitance change with temperature has en obtained: $-2,+0.3$ per cent. See Fig. 2.
Power factor values are equivalent to present mmercial and military standards for metallized per: 0.55 per cent at room temperature.
Tolerance on capacity can be kept within ± 10 er cent.
Life expectancy is 7.5 years at 85 C and 25 v . Large scale production is feasible without major \%oling or large equipment investment.

Fig. 2. Graph of capacitance and power factor vs remperature. $1.0 \mu \mathrm{f}$ subminiature netallized paper capacitors impregnated vith silicone oil and polyester resin.

flest in Audio first in Video

 and first
in Instrumentation

noimeome pioneered and perfected tape recording techniques for the radio and recording industry
...First Transcontinental Broadcast of a Musical Program
(Bing Crosby Show) from Magnetic Tape... May 1948
 air television from magnetic tape
...First Demonstration of Video Tape Recording... November, 1951
Dallomoons pioneered and perfected the tight-loop drive for instrumentation recording on magnetic tape
.. First Tight-Loop Drive Recorder... August, 1952
And now - 10800 has perfected wide-band magnetic tape systems which can be used for: Radar Recording • Wide-band Telemetering - Waveform analysis - Spectrum Monitoring and Closed Circuit Television Recording
Recording capability: from DC to 2.5 Megacycles
The "Magnetophon" German Tape Recorderfirst high fidelity recording machine, subsequently improved and used to record and broadcast Bing Crosby's radio programs for over one year. The predecessor of all American Tape Recorders.

Write for complete specifications

80 Washington Street, Hempstead, Now York
CIRCLE 282 ON READER-SERVICE CARD FOR MORE INFORMATION

wTMOHESTER ELECTRONICS, INE.
 Pionecring Sperialists in COWNECTOU

CONTROLLED
HIGH QUALITV SINCE 19\&1

QUALITY Control in the manufacture of elecCualry concept rigidly adhered to by Winchester Electronics since this company received the first of many patents honoring its "original" art. This Quality Control, from design inception This Quality Control, from design inception to final assembly of all its critical parts, assures you of the unqualified reliability of livered to you.
Specializing exclusively in Connectors. Winchester Electronics' many patents . . . and numerous other original designs . . are the product of continuous research, developme

CIRCLE 283 ON READER-SERVICE CARD FOR MORE INFORMATION

Ideas for Design

Measuring

AC Currents
 in Transistor Circuits

0WING to the nature of audio vacuum tube circuits, it is possible to make fairly complete analysis of an experimental circuit by measuring stage-by-stage voltage gains using conventional equipment. In transistor circuits, it is also desirable to ascertain current and power gains. Once knowing these additional facts, it becomes possible to calculate actual stage-by-stage impedances.
Since most small laboratories are not equipped with low impedance ac microammeters, it is possible to measure signal currents as low as 0.1 $\mu \mathrm{a}$ by using the circuit shown in conjunction with a vtvm.

Requirements

The requirements for an ac microammeter should include the following: 1 . it should not increase the impedance in the circuit being me tered; 2. input terminals must be above ground 3. the frequency response should be flat over the ac frequency spectrum to be applied; 4. it should be convenient and easy to use.

In the circuit, a Triad type HS-52 transforme was used, having the following specifications frequency response -20 to $20,000 \mathrm{cps}$; impedanci ratio -62.5 ohms to 20,000 ohms (1.320); turn? ratio-1:17.9; dc resistance of primary-3.6 ohms dc resistance of secondary- 780 ohms. Because the vtvm is actually measuring the current in the

SZ Switch Position

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Secondary Impedance	180 ohms	1.8 K ohms	18 K ohms
Primary Impedance	$.563+3.6$ ohms	$5.63+3.6$ ohms	$56.3+3.6$ ohms
Multiplying Factor	0.1	1.01	0.001
Min. Detectable Current*	$10 \mu \mathrm{a}$	$1 \mu \mathrm{a}$	$0.1 \mu \mathrm{a}$

[^3]cor dary, the dc resistance of the secondary has effect on the accuracy of the measurement; though it does decrease the sensitivity somehat.
The $3.6-\mathrm{ohm}$ dc resistance of the primary does ht affect the accuracy, but in a low-impedance hcuit-such as a 50 ohm common-base input ruit-it will reduce the input current by apJoximately 5 per cent.
The multiplier resistances in the secondary lere chosen so that the switch positions vary the Irrent ranges in powers of 10 . The voltmeter uis reads directly in current, by mentally multiling the scale reading by the proper power 10.

Switch S1 is used to check the effect of insertthe device in the circuit to be measured. This done by noting any change in the output of the st circuit when S1 is alternately opened and losed. With S1 opened, S2 is stepped until a sding effect is noticed by a slight decrease in leoutput voltage of the test circuit. The voltage ading is then noted and by means of the mullying factor is converted directly to current. If a fourth step were added to $S 2$, its resistance ould be 180 K ohms. Because the maximum ecified secondary impedance is 20 K ohms, the 0 ohm resistor would seriously degenerate the quency response. Frequency response is as ted by the transformer manufacturer, profed the 20 K ohm impedance rating is not reeded.

Accuracy

The circuit shown is adequate to measure dio current to at least 3 per cent, which is the it of the Ballantine vtvm. Further improveant can be obtained using a transformer of wer dc resistance and higher inductance.
Due to temperature effects and transistor rameter variations, most high quality transiscircuits make use of multiple ac and dc feed doops to improve stability and linearity. is circuit has been especially useful in measing currents and impedances in these closed p circuits. John W. Sullivan, Northrop Air, Experimental Flight Test, Development

SENSITIVE RELAYS

by Iron Fireman

Qualified to MIL-R-5757

These balanced-armature relays meet or exceed rigid military specifications. They combine extreme sensitivity with rugged resistance to a wide range of vibration, shock and temperature.

This is why Iron Fireman sensitive relays are used
by leading systems manufacturers. This, plus Iron Fireman's reputation for prompt, on-time deliveries. Each style pictured above is available in various combinations of resistance, current and power. Write for specifications and performance data.

IRON FIREMAN Clecronict DIVISION

CIRCLE 284 ON READER-SERVICE CARD FOR MORE INFORMATION

CIRCLE 286 ON READER-SERVICE CARD FOR MORE INFORMATION

Ideas for Design

Low Cost Speaker Horn

A plant loudspeaker paging system was needed. A low-cost solution was found by improvising for loudspeaker enclosures as follows:

Surplus metal spheres were purchased which had been used to hold gyros in transit. These were cut as shown; then the speakers were mounted in the half spheres, resulting in very efficient radiating horns.
These horns were then mounted from the ceiling with a resultant saving in amplifier cost because of the increased efficiency brought about by the horn effect.
Herbert Piller, National Electronics, 451 Thicriot Ave., N.Y. 72, N.Y.

Antenna Impedance Measurements

The solution shown here increases the utility of existing antenna impedance measuring equipment (Heathkit, etc.). It results in 1. greater frequency range; 2 . avoids scale compression at low R readings and extend range to \propto, and 3 . gives more uniform loading of the generator.

The variable series resistor has been replaced by one of fixed composition having superior frequency characteristics. The variable resistor is now used as a slide wire voltage divider across the source, as shown.

The bridge now balances at mid scale with a 51 ohm R_{x} and gives a range of 0 to ∞ ohms. The generator load varies from approximately 33 to 100 ohms. A. H. Nichols, Sr. Staff Eng., Hughes Aircraft Co., Culver City, Calif.

Modified impedance measuring circuit

Miniaturized . . . Ruggedized . . And whether you buy one or thousan of these Shielded Coil Forms you get

Shielded Coil Form Data: Highly shock-resista mechanically enclosed. Mount by single stud. Sin layer or pie-type windings to your specificatio LS-9, $1 / 16^{\prime \prime} \times 1 / 2^{\prime \prime} ;$ LS-10, $5 / 8^{\prime \prime} \times 15 / 1^{\prime \prime} ;$ LS $15 / 6^{\prime \prime} \times 17 / 33^{\prime \prime} ; \mathrm{LS}-12$ (square for printed circui $1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime} ;$ LS-14 (double-ended version LS-9, with separate tuning slugs), $1 / 2^{\prime \prime} \times 15 / 4^{\prime \prime}$.
Ideal for use in IF strips, or as RF coils, oscilla coils, etc.
For samples, information, prices write Cambri Thermionic Corporation, 457 Concord Ave., C ${ }_{2}$ bridge 38, Mass.

CIRCLE 287 ON READER-SERVICE CARD FOR MORE INFORMATI

Three things make Lockitit other holders on the market: used to. Castell 9030 lead in 19 degrees, the same 9

CIRCLE 288 ON READER-SERVICE CARD FOR MORE INFORMAT

CTC Reliability

1. Gun-rifled clutch grips the lead like the jaws bull dog. Lead will not turn when pois any type sharpener, blade or mechanical sal
2. Push-button control advances the lead wi touching fingers, thus avoiding graphite s
3. Locktite is feather light, looks like a po feels like a pencil. No tricked-up shape

Imported Castell Lead
For supreme satisfaction use Locktite with imp lead that made Castell wood pencil famous in vilized country in the world. Call your Dealer
A.W.FABER-CASTELL $\begin{gathered}\text { PENCII CO } \\ \text { NEWARK } 3, N\end{gathered}$

REGULATED POWER SUPPLY

0.001 \% Regulation and 0.1 Millivolts Ripple

The KROHN.HITE Model UHR-220 is a compact POWER SUPPLY for applications requiring up to 0.2 ampere of $\mathrm{d}-\mathrm{c}$ at 0 to 500 volts with ultrahigh regulation, extremely low ripple and unusual stabilization under severe input line voltage transients. The internal impedance is less than 0.01 ohm for low frequencies and d-c, and less than 0.1 ohm for frequencies as high as 100 kc . StabilizaMODEL UHR-220
voltage is 0.003%. Transient response is 0.001 isecond and typical 10 -hour drift is 300 ppm . A 0-150 0.5 ma , bias supply with 0.05% stabilization and 2% ripple is available in addition to two 6.3 volt unlated a-c outputs of 5 A capacity. Price $\$ 390.00$, f.o.b pry.

KROHN-HITE CORPORATION
 Dept. ED, 580 Massachuselts Ave., Cambridge 39, Mass.

IILIE 289 ON READER-SERVICE CARD FOR MORE INFORMATION

WILL NEVER SHORT OUT OR BURN UP

Davohm Series 850 Hermetically Sealed Metal Film Resistors

Extensively used in critical applications where severe line overloads might burn up conventional resistors or cause them to short out and overload other com. ponents. While Davohm Series 850 can momentarily withstand large overloads, extreme overloading will open circuit them; but they cannot short out or burn because there are no organic compounds in this resistor which might carbonize or burn. Typical present applications-fuel gauges in jet planes-line terminations in telemetering circuits.

Write for complete information.
Now carried in stock by your local distributor.

" $\mathrm{mAVEN:}$:

LIVINGSTON, NEW JERSEY World's Largest Manufacturer of Attenuators IE 290 ON RĖADER-SERVICE CARD FOR MORE INFORMATION

Improved Harness Layout

A simple method for the layout of wiring harness assemblies, that lends itself to the accurate duplication of two or more harness boards for higher production rates, has been developed at the Columbus Division of North American Aviation, Inc.
General practice has been to paste down on plywood boards paper blackline prints made from the original layout tracing. Errors occurred because paper prints-however accurate the original layout may have been-are stretched or shrunk during printing, developing, or mounting on the wood. Errors as much as $1 / 2 \mathrm{in}$. in 6 ft -and more in longer boards-have been measured.

In the Radio-Electric Department at the Columbus Division of North American Aviation, Inc., a Master Stabilene film layout is being compared to a duplicate copy which is printed on plywood. The plywood forms a jig used for the manufacture of wiring harness assemblies.

The new method uses a stable base materialKeuffel \& Esser's 130 H Stabilene Film, a re-stabilized Mylar, with a pencil and ink surface-for the preparation of the master layouts for wiring harnesses. Stabilene Film comes in thickness of 0.003 , 0.005 and 0.0075 in ., has a dimensional stability that averages 0.000006 in . per in. in both directions at temperatures from 80 to 220 F , and from 0 to 98 per cent relative humidity.

Once the master layout has been completed on Stabilene Film, the layout is printed directly on plywood that has first been coated with white shellac and sanded smooth and then sensitized with a daylight type diazo emulsion. Printing is done by contact to insure accuracy in a contact printer 6 ft wide and 30 ft long. If more than one harness board is required, additional sheets of plywood can be printed. There is no limit as to the number of reproductions that can be made.

Once printing has been done, the Stabilene Film can be rolled for storage to save space. It contains no plasticizer and will not deteriorate in storage.

DIAMONITE high alumina parts
ready.

to help you... get your ideas into production faster !
PROMPT, 24-HOUR OFF-THE-SHELF SERVICE
Hundreds of standard, different shape and size precision DIAMONITE parts available. Easy to adapt to your projects save time, money in getting your ideas into production. Send for a copy of the DIAMONITE OFF-THE-SHELF Inventory and Price List No. 357.
Ask also about our pilot plant service on special shapes engineered to your drawings. Fast deliveries. Cost savings. Write, wire or phone for details...
PDIAMONTE products manufacturing co. ${ }^{-1}$
pleneers in the covelopment OMIO
EA7s7.2
cevelopment of high al
phone: GLendale $6-8195$

CIRCLE 291 ON READER-SERVICE CARD FOR MORE INFORMATION

"PIG-TAILORING"

- . . . a revolutionary new mechanical process for higher production af lower costs. Fastest PREPARATION and ASSEMBLY of Resisfors, Capacifors, Diodes and all other axial lead components for TERMINAL BOARDS, PRINTED CIRCUITS and MINIATURIZED ASSEMBLIES.

> The "PIG-TAILOR" plus "SPIN-PIN" - Accurafely Measures, Cufs, Bends, Ejects and Assembles both leads simultaneously to individual lengths and shapes 3 minute set-up - No accessories - Foot operafed - 1 hour training time.

CIRCLE 293 ON READER-SERVICE CARD FOR MORE INFORMATION

> Design a miniature audio input transformer for airborne operation. Transformer to operate in an ambient temperature of plus $85^{\circ} \mathrm{C}$, and to conform to the applicable parts of MIL E-5400 and MIL T-27. Duty cycle to be continuous with a minimum life of 1000 hours. Transformer to couple a 300 ohm source to a tube grid. Step-up turns ratio to be $1: 17$ minimum, with the maximum possible desired. Frequency response to be flat within 0.75^{db} from 20 cps to $7,000 \mathrm{cps}$, and flat within 1.2 db from 15 cps to $10,000 \mathrm{cps}$. Maximum signal level to be 500 mv @ 20 cps in 300 ohm primary. Electrostatic shield required between primary and secondary. Electromagnetic shielding to be 40 db minimum. Size to be kept minimum but must not exceed $11_{8^{*}} \times 1 / /^{\circ \prime} \times 13^{\circ} \times$ high.

Audio Transformer, low level input, miniaturized
Construction: Grade 1, Class A. MIL T-27
Duty Cycle: Continuous
Life: Greater than 1,000 hours.
Ambient Temperature: +85 C max
Primary: Three terminal, center-tapped winding. 300 ohms nominal impedance Secondary: Two terminal winding, 125,000 ohms nominal impedance.
Turns ratio: $1: 201 / 2$
Electrostatic Shield: Between primary and secondary.
Frequency
Frequency response: $20 \mathrm{cps}-7,500 \mathrm{cps}$, flat within 0.5 db and
125,000 ohm load.
Maximum Input Voltage: 500 mv at 20 cps
Dimensions: $1^{\prime \prime} \times 11 / 16^{\prime \prime} \times 1^{\prime \prime} \mathrm{high}+1^{n}$ termin
Dimensions: $1^{1 "} \times 11 / 16^{*} \times 1^{*}$ high $+1 \%^{n}$ terminal
The Peerless engineering staff has had a long and successful history of designing transformers to unusual and difficult specifications. Knowledge of this outstanding accomplishment is one of the reasons that Peerless transformers are the first choice of engineers throughout the country. Uniform dependability is assured by the most rigid quality control and advanced custom production techniques.
Consult Peerless for the best solution to your quality transformer requirements.

CIRCLE 294 ON READER-SERVICE CARD FOR MORE INFORMATION Hills, Calif. - 161 Sixth Avenue. New York 13, N.V

Id Electron Emission

Boron is found to be strongly bonded to the ngsten substrate as indicated by activation enerof 2.8 electron volts for surface migration and ev for disappearance. The activation energy of e molybdenum for surface migration is 3.1 ev d for the silicon deposit 2.5 ev for surface migraand about 4.0 ev for evaporation. Field Elec. Emission, Russell D. Young and Earl C oper, Pennsylvania State University, PB 123961, y 1956, 91 p, Microfilm \$4.80, Photocopy $\$ 13.80$. Her from Library of Congress, Washington 25,

kward Wave Amplifier

new form of microwave amplifier known as the kward-wave amplifier has recently become sible due to new discoveries. This electron tube apable of covering a wide band of frequencies, is actually a narrow band filter which is tunable varying the anode voltage. In addition to the ring effect, the tube can have as much gain in pass band as the better known traveling-wave plifier. The history of the backward-wave ampliis briefly discussed, its present status is outand possibilities for future work are sugFed. PB 121797, Backward-wave amplifier, a Iuge tunable micro-wave amplifier, Daniel G. Wright Air Development Center, Dayton, OTS, U.S. Dept. of Commerce, Washington D.C., Sept. 1955, 16 pp, \$0.50.

lectric Panel Design

his report contains a series of graphs of phase rdation design curves for solid lossless flat ditric sheets. The thickness of the flat dielectric is is plotted as a function of incidence angle for perpendicular and parallel polarization and the following constant phase retardation values: 90,135 , and 180 deg . The curves are plotted for ries of dielectric constants. For reference puris on the same graphs the thickness of the flat is are plotted as a function of incidence angle he following cases: (1) with the electrical thickequal to 90 deg , the transmission efficiency is a imum for both polarizations, (2) with the electhickness equal to 180 deg , the transmission tency is a maximum for both polarizations, (3) the electrical thickness equal to 135 deg , the mission efficiency is again a minimum for both rizations, and (4) with the electrical thickness I to 360 deg, the transmission efficiency is again ximum for both polarizations. The graphs are ded for use as a design tool by radome ders. PB 121783, Phase retardation design curves idicl lossless dielectric panels, Eino J. Luoma. ht Air Development Center, Dayton, Ohio. US. Dept. of Commerce, Washington 25, Fch. 1956, 27 pp, \$0.75.

CIRCLE 296 ON READER-SERVICE CARD FOR MORE INFORMATION

CIRCLE 297 ON READER-SERVICE CARD FOR MORE INFORMATION

Patents

Magnetic Device

Patent No. 2,794,164. Shou-Hsien Chow. (Assigned to Burroughs Corp.)

A sub-harmonic generator of the magnetic type uses a single magnetic core having a substantially square hysteresis loop. The core has a first winding and a capacitor in series with the winding to form a charging and discharging path. An alternating current source is in series with the capacitor and the first winding for charging the capacitor. A resistor shunts the first winding and capacitor and lies in the discharge path for the capacitor. A biasing magnetic flux is induced in the magnetic core through a circuit inductively coupled to the core.

Stabilized Two Stage Oscillators

Patent No. 2,792,498. B. D. Pewitt. (Assigned to Radio Corp. of America)

A sine wave oscillator is described which uses a first and a second tube each having input and output electrodes. A regenerative oscillation amplifying loop includes a coupling from an output electrode of said first tube to an input electrode of the second tube and a coupling from an output electrode of the second tube to an input electrode of the first tube. A circuit is coupled to the input electrode of the second tube which developes a gain-limiting self bias voltage. A portion of this bias voltage is applied through a suitable coupling to an input electrode of the first tube.

Gain-Modulated Amplifier

Patent No. 2,974,077. C. L. Olson. (Assigned to Radio Corp. of America)

The amplifier described uses an amplifying tube having an input grid to which the input signals are applied and an anode. A pair of series connected controllable-resistance tubes have a unidirectional supply voltage applied to the anode of one of these tubes. A direct current connection is made between the common cathode anode junction of the pair of tubes and the anode of the amplifier tube. Other signals such as modulating signals are applied to the control grids of the pair of tubes with the same phase which signals control the resistance of these tubes.

Stabilized Direct Current Setting Appara Patent No. 2,792,496. R. N. Rhodes signed to Radio Corp. of America)
It is desirable to control the level conduction of an electron discharge t which is supplied with a signal having r ularly recurring reference portions but la ing its direct current component. The t has a first and a second grid such that difference in potential between the g determines the level of conduction of tube. A circuit is connected to the first for clamping the regularly recurring re ence portions of the signal to the sat voltage level. A direct current path incl ing an impedance is provided from second grid to a point of fixed potentia that the voltage across the impedance proportional to the degree of conduction the tube.
A normally conducting electronic sw and an isolating device connects a sol of reference potential and a point of direct current path for the second This switch is periodically opened co dentally with the recurring portions of signal to produce a control signal wi is proportional to the difference betw the reference potential and the voll across the impedance. The control sign measured and applied to the clamping cuit to establish the clamping level.

Forcible Reversion Of Magnetic Ampli Patent No. 2,792,507. J. P. Eckert Jr. signed to Sperry Rand Corp.)

A control system of the magnetic an fier type is described. The amplifier h core of magnetic material and a co winding on the core. A first circuit i sponsive to the input for selectively af ing a current flow through the con winding so that the output of the amp changes from a predetermined no-si state to a secondary output state. A sec circuit is coupled to the amplifier w circuit is responsive to the output stat the amplifier for reverting the amp from the secondary output state to a signal output state upon cessation of input signal.

Amphenol engineering has designed a new series of rack \& panel connectors with more special features than we have room to describe! Here's a brief checklist, but we hope you will write for the catalog sheet!

Environmentally Sealed rack \& panel connectors designed for potting.

Two Insert arrangements: 57 electrical contacts and 2 coaxial connectors; 75 electrical contacts and 3 coaxial connectors.

No air voids throughout body
Resilient face seal, chemically bonded to insert.
Female connector spring-loaded; constant pressure on face seal; allows for variations in rack and panel designs.
Hooded female contacts-prevent test probe damage.
Temperature Range : $-65^{\circ} \mathrm{C}$. to $+150^{\circ} \mathrm{C}$. (with use of new high temperature potting compounds).

Low Insertion Force-2 ounces min. to 6 ounces max. per contact.
Materials: diallyl phthalate bodies, cadmium-plated aluminum shells with gold iridescent iridite finish; male contacts SAE 72 bronze; female contacts bronze, alloy B, ASTM-B140. Plating on both contacts is rhodium over silver.

Patents

Monostable Multivibrator Circuit

Patent No. 2,784,309. J. D. Sable. (Assigned to Radio Corp. of America)

Multivibrators in their simpler form include two vacuum tubes cross coupled so that when one tube is conducting the other is non-conducting. A monostable multivibrator is one in which one tube is normally conducting and a second tube is normally non-conducting. Upon application of an input pulse the condition of conduction is reversed for a period determined by
circuit values whereupon the initial co tion is restored. When this type of m vibrator is used with a radar system particularly desirable that the circuit h as short a recovery time as possible in o to secure a wide range for the system.
In the multivibrator illustrated in figure, the first multivibrator tube 2 normally conducting and the second m vibrator tube 30 is normally non-cond ing. The buffer tube 15 is norm non-conducting and upon the applicatio
co
0
ode fo lucting is low potent: de fol cut-off ucting onduc
ial val
is $t r$
the c
r tube onduc crease

VERSATROL Electrical Controller

CUSTOM-BUILT: Indicating meter-relay "heart" and control circuit designed for your application. Dial can read RPM, PERCENT LOAD, FOOT CANDLES, ETC.
VERSATHE: Operates directly from any electrical signal. Adjustable control point. Meter-relays interchangeable. 5 ampere load switch. Optional rating to 40 amperes.
SENSITIVE: Meter-relay determines sensitivity. $0 / 5$ micro amperes and $0 / 5$ millivoles up, DC or AC.
ACCURATE: Indicating accuracy to 1%. Trip point, repeato ability, control, to 0.25%
sImple: No vacuum tubes. Few moving parts. No mounting or levelling. Uses standard $115 / 230$ line voltage.
ECONOMICAL: \$99 to \$240.50
Ask for Bulletin 106.

ASSEMBLY PRODUCTS, INC.

Chesterland 17, Ohio, Phone (Cleveland, O.1 HAmilton 3-4436 Booths 1020-1022, ISA Show, Sept. 9-13, Cleveland Auditorium CIRCLE 300 ON READER-SERVICE CARD FOR MORE INFORMATION
< CIRCLE 299 ON READER-SERVICE CARD
ELECTRONIC DESIGN • September 1,
rositive input trigger pulse at the terfal 9 , this tube becomes conducting. The ode follower tube 20 also is normally ducting. When the tube 15 becomes ducting the potential on the plate of this is lowered, due to the increased curthrough resistor 34. As a consequence, potential of the control grid of the tode follower tube 20 is decreased be-cut-off so that this tube becomes nonhucting. With the tube 20 becoming conductive, a negative pulse of subtial value is generated at the cathode h is transmitted through the capacitor b the control grid of the first multivipr tube 25 and this tube is biased to conduction. The plate voltage of tube ncreases which increases the potential the control grid of the second multiator tube 30 so that it is biased to luction. The circuit is now in its "on" jition.
apid transition of the circuit from "off" on" condition is secured through the it feedback connection between the te of tube 25 and the control grid of second multivibrator tube 30. This diconnection is available because the it current supply potentials to the ivibrator tubes 25 and 30 , as shown in
the figure, have values which permit this direct connection.
This "on" condition, that is of non-conduction of the first vibrator tube 25 and conduction through the second multivibrator tube 30 continues for a period dependent upon the time constant of the capacitor 24 and the resistor 24^{\prime}. The negative charge on the capacitor 24 discharges through the resistor $24^{\prime \prime}$ until the potential on the control grid 26 reaches a value above cut-off whereupon the tube 25 again begins to conduct current. Conduction increases rapidly through the first multivibrator tube 25 which quickly lowers the potential on the control grid of the second multivibrator tube 30 below cut-off and it is restored to non-conducting condition. The circuit is restored thereby to its initial or "off" condition to receive a second input pulse.

The rapidity with which the transition is made from "off" to "on" condition is dependent upon the rapidity with which the capacitor 24 is charged after tube 25 begins to conduct. Since this charging occurs through the very low impedance of the cathode follower tube 20, charging time and hence recovery time is very short. The patent gives specific values which may be used for the resistors and capacitors.

Use Taps to
Compensate Potentiometer
Loading Errors
BY JACK GILBERT
Norden Laboratories Division, Norden-Ketay Corporation

Reprinted from August 1956
control engineering

CIRCLE 301 ON READER-SERVICE CARD FOR MORE INFORMATION

GENERATES ENTHUSIASM

High Stability
Wide Range Crystal Calibration Marconi Precision

MARCONI SIGNAL GENERATOR FM-AM, 1.5-220 MC

Engineers will appreciate the calibrated incremental frequency control and oscillator temperature compensation which are the latest improvements in Marconi 995 Signal Generators. Built-in crystal calibrator, variable metered deviation from 0 to 600 kc , AM without FM and precise output calibration are retained in Model 995A/2 AND-the price is right.

```
BRIEF SPECIFICATION: -
```

Frequency 1.5 to 220 Mc in 5 bands.
Output $.1 \mu \mathrm{~V}$ to 200 mV .
Aecuracy ± 1 db to $100 \mathrm{Mc}, \pm 2 \mathrm{db}$ to 220 Mc . Leakage Unmeasurable with $.1 \mu \mathrm{~V}$ receiver.

Price $\$ 940$

Iry it first, at OUR cost. Full specification available, of course.
$\begin{array}{ll}\text { FM } & 0.25 \mathrm{kc} \text {, } \\ \text { AM } \\ 0.50 \% \text {. }\end{array}$
am 0.50%.
Tubes
Tubes 6AK5, 6AK6, 6AU6, 12AT7, 0A2, 524 G.

MARCONI instruments
44. NEW STREET - NEW YORK 4, NEW YORK

CIRCLE 302 ON READER-SERVICE CARD FOR MORE INFORMATION

Another new VTVM from ACTON laboratories

Acron Laboratories has done it again! Here is Another fine vacuum tube voltmerer, the Type 815.A, which follows right on the heels of the Type 810 recently announced. The $815-\mathrm{A}$ has - on the bench or in a rack. Independent zero adjustments for AC, DC, and resistance measurements insure accurate meter readings. Regulation
of both plate and filament voltages in the power suppiy insures stability.
The Type 815 -A has 9 full scale DC ranges: $0.1-1000$ voles (+ or -); 8 AC ranges: $0.1-300$
voles (rms): 9 DC voirs (rms); 9 DC current ranges: 0.001 ua 10100 X0.1 resistance rankes: 0.2 to 500 with multipliers X0.1 to X 10 meg . DC accuracy is $\pm 2 \%$, AC
accuracy is $\pm 3 \%$, both on the 1 vole range and accuracy is $\pm 3 \%$, both on the $15 \mathrm{cps} t 0100 \mathrm{mc}$.
higher. Frequency response is 15 ct DC inpur impedance is 100 meg: AC input imped. ance is 5 mmf and 10 meg .

(4)For more information on the new Type

hitill laboratories, inc.

533 Main St., Acton, Mass. COlonial 3-7756
CIRCLE 303 ON READER-SERVICE CARD FOR MORE INFORMATION

EPSEAL•encapsulated transformers
slash temperature rise as much as 50%

ELECTRO ENGINEERING WORKS

Custom built epseal miniaturized transformers achieve temperature rise as low as 50% of comparable sized units, in ambient temperatures as high as 125 degrees C. A new transformer encapsulation process, in combination with unique coil construction (patent pending), offers the electronics engineer reduced temperature rise in smaller and lighter-weight transformers. Packaged in smooth, hard-covered materials without bulky exterior sealing. Write for complete particulars and design specifications to
electro enginerring works - sol preda street. san leandro, california CIRCLE 304 ON READER-SERVICE CARD FOR MORE INFORMATION

Books

Proceedings of the 1956 National

 ElectronicsConference, Volume XII, 1095 pages, \$5.00.
Proceedings of the 1956 National Electronics Conference are available in book form. 105 technical papers, and three luncheon addresses presented at the 12th Annual Meeting in Chicago make up the book. Papers are grouped and indexed in the table of contents to provide easy access without laborious title searching.

The conference is sponsored by the American Institute of Electrical Engineers, Illinois Institute of Technology, Institute of Radio Engineers, and Northwestern and Illinois University, in co-operation with Radio-Electronics - Television Manufacturers Association, Society of Motion Picture and Television Engineers, and Michigan, Michigan State, Notre Dame, Purdue and Wisconsin universities.

Proceedings of the Sixth Weather Radar

 ConferenceCambridge, Massachusetts, 1957, 372 pages, $\$ 10.00$.

Microwave engineers should find the Proceedings of the Sixth Weather Conference interesting and informative. The 55 papers included in the proceedings constitute a representative cross-section of current research in the field of radar meteorology. The text of most papers is well illustrated with graphs and photos. A list of symbols and abbreviations recommended by the AMS is given at the beginning of the text.

Engineering Electronics

John D. Ryder, McGraw Hill Book Co., Inc., 330 West 42nd Street, New York 36, N.Y. 666 pages, $\$ 9.50$.

Fundamental concepts of electronicsparticularly the areas of instrumentation, computation and general industrial usage -are projected to industrial applications and completed systems. Without letting his treatment become an instruction book in the operation or maintenance of a particu-
lar piece of apparatus, Dr. Ryder discu operating principles important to puters, industrial control, and servom anisms.
The emphasis throughout is on und ing principles and basis circuits applic to various electronic devices and e ment. Mathematics and circuit theory emphasized only when they are neces for a lucid description or advantageoı completely analyzing a system.

In the chapter on semi-conductors transistors, Ryder treats the four-term network theory for transistor equiv circuits. This chapter is probably "strongest" in the book. Fundamenta analog and digital computation and cir common to both computers are treate chapters 8 and 9 . Material is include the frequency response of amplifiers both a sinusoidal and a pulse standpoi
The portion of electronics which is clusively "radio" is not discussed in text.

Advanced Calculus

R. Creighton Buck, McGraw-Hill Company Inc., 330 West 42nd Street, York, N. Y., 423 pages, \$8.50.
R. Creighton Buck believes in ap mathematicians-not applied mathems With this conviction, he has directed treatment toward a development of damentals of analysis, simultaneousl, one variable and multi-variable func Both are regarded as functions of a 1 Because of the tendency in American leges to present Elementary Calculus a purely theoretical point of view, ce topics are often slighted. The subject neglected because of this type of treat is theory of function of several variab

A number of clever innovations in sut and treatment are used to present ma in a lucid manner. For instance, the d integral appears before the fundam theorem of calculus is discussed. This phasizes the essential distinction bet integration and anti-differentiation. theory of (exterior) differential form
gialized to 3 -space to permit a unified ment of Stokes' and Green's theorems. ddition, the 3 -space technique is easily ned and greatly simplifies calculations lving transformation of coordinates. grod balance is maintained between y and application. Consistent with his ion of an applied mathematician rather applied mathematics Mr. Buck promany "tools" not found in traditional neering advanced calculus course.

rical Engineering Circuits

Hildreth Skilling, John Wiley \& Sons, 440 Fourth Ave., New York 16, N.Y., jages, \$8.75.
ectrical engineering circuits are Prof. ing's contribution to the "cold-war" beobsolete text books and a college intor's obligation to his students. To Mr. Skilling from the preface, "we ed a book in touch with modern ght, and at the same time a good classbook. First of all, indeed, the book d fit the needs of students."
e text has twenty-one chapters. The fourteen chapters and the last two in standard material treated from a mporary viewpoint. In all probability lsign engineer has a text in his library dequately covers this material. It is ters 15 to 19 which will prove most ble to the design engineer. The modnncepts covered in these chapters are: prk theorems; loop and mode equaof networks; locus curves and other ical methods; resonance of high-Q Ils; impedance and admittance funcpoles and zeros in the complex frey plane; the transform concept, and place transformation. The design eninterested in a reference work on subjects as well as the engineer who to "self-educate" himself will find it valuable.

mission Circuits

Williams and J. B. Woodford, MacCo., 60 Fifth Ave., New York 11, 1.56 pages, $\$ 4.25$.
thing this text for teaching rather than ference work has forced Messrs. Wiland Woodford to eliminate much of tail which is important to the workgin er. In spite of this limitation the encineer will find the book has many le features.

Transmission line parameters and the theory of generalized transmission circuits are discussed in chapters 1 and 2. The significance of "times" peculiar to transmission circuits is presented in a lucid manner. The remaining four chapters of the book are so organized that a portion or chapter can be omitted without impairing the flow of thought. Subject matter is straightforward and rich in basic fundamentals. The engineer wishing to acquire a background in transmission circuits can use this text as a stepping-stone to more detailed treatments.

Relatively little on "technique" is included by the authors when they give practical applications of the theory. The omission of semi-empirical "aids" will undoubtedly be praised by some as a thought provoking stimulus for the student. Others will view it as a foolish denial of practical information used by all engineers. A special appendix is included with the text on "Solution of Transmission Circuit Problems by means of Electro-magnetic Theory".

The Electrical Production of Music

Alan Douglas, Philosophical Library, Inc., 1.5 East 40th Street, New York 16, N.Y., 223 pages, $\$ 12.00$.

Advantages and limitations of the electrical production of music are treated in simple and interesting terms by Mr. Douglas. Only an elementary knowledge of music and electronics is assumed. The book travels the practical middle road between academic treatises on vibrating systems, and personal opinions which tend to be too traditional.

The experimentor or potential designer of electrical musical instruments is often at a loss to decide whether the strong peculiarities of the traditional instruments are really material to tonal effect or whether they are due to some limitation of design. At times these peculiarities are the result of a conflict between theoretical capabilities of the instrument and the effect attempted. By treating music as frequencies or bands of frequencies, which can be adjusted for - pitch, reinforcement by harmonics, attack, vibrato, reverberation and phase relationship to form a tone-colour, the author presents his reader with a clear cut definition of tone-colour.
Treatment of the subject matter is simple without becoming trite. Adequate references are given for those who feel they would like to consult additional reading material.

NYLON "know-how"

A new ultra-modern extrusion plant produces bubble-free nylon rod up to $3^{\prime \prime}$ dia.; nylon sheet and tape up to $12^{\text {" }}$ wide. tubing from $1 /{ }^{\prime \prime}$ O.D. to $\mathrm{Y}^{\prime \prime}$ O.D. for 1000 psi and 2500 psi.

An extensive, ultra-modern injection molding plant equipped with machines ranging in capacities up to 8 oz., production with accompanying economies.

PRECISION MACHINING on high speed automatics

A complete, high-speed plastics machining plant, geared to the production of innumerable nylon parts to manufacurers' specifications. Whatever your nylon part require-"Know-how."

> United
> United States Gasket Company
> Camden 1, New Jersoy tates
> asket Plastics Division
> OF THE GARLOCK PACKING COMPANY

CIRCLE 305 ON READER-SERVICE CARD FOR MORE INFORMATION

NEW...

TEFLONGLASS FIBER LACING TAPE

New Ben-Har Braided Lacing and Winding Tape combines two superior insulation materials-DuPont Teflon and glass fibers. Fibers are Teflon coated before braiding to maintain rough texture and assure tight knots-and to eliminate abrasive action of the glass. Ben-Har Tapes will not shrink and cut through insulated wires. They are pliable from $-100^{\circ} \mathrm{F}$. to $500^{\circ} \mathrm{F}$. They are non-absorbent and inert to most known chemicals and oils . . . completely wax-free and fungus proof.
Available in $3 / 64,1 / 16,3 / 32$ and $1 / 4$ inch widths, in Off white. Also available in 8 colors and Black on special order. Write for prices and samples.
Bentey, Harris Manufacturing Co. 7082 Barclay St.

Conshohocken, Pa.

BENTLEY, HARRIS

INSULATIONS
-T.M. Oweas-Corning
CIRCLE 306 ON READER-SERVICE CARD FOR MORE INFORMATION

For exacting, high-temperature applications . . . CERAMASEAL LEAK-TIGHT TERMINALS

Assuring you savings in installation and operation, these Ceramaseal high-temperature terminals are 100% leak-tested and guaranteed leak-tight when shipped. High-alumina ceramic and metal parts of Ceramaseal terminals are joined by an exclusive process to form a high-strength, long-life molecular seal.
Brazing, welding or soldering techniques can be used for installation, without resulting damage to the seal, thus eliminating costly rework or replacement. For brochure and spec sheets, or complete information on special high-temperature terminals, write: Ceramaseal, Inc., Box 25, New Lebanon Center, New York.

Supplying High-temperature, Quality Terminals for Five Years

FOR the transmission or recording of radar tures on magnetic tape frequency compressi almost always desirable because the bandv (which lies between 5 and 20 mc) can be pressed by a factor of 20 to 500 without loss , formation. This reduction is possible becaus the low information content of radar pictures.

Block diagram and examples of waveforms for frequency compression by mean storage tube. The four signal pulses (S) are shown together with their echos (A). The, signal is shown in line (B), the deflection voltage of reading beam in (C), and line (D) the scanned signal.

SENIOR VollOhmyst8 WV-98A - Improved circuit provides greater accuracy, 3% on BOTH the peak-to-peak values of complez wave the peak-to-peak values of compler wave
forms and rms values of sine waves. LARGE full-vision meter, with less than 1% tracking VTVOM, provides one of the easiest reading

MASTER VoltOhmyste WV-87B - Ideal for TV, radar and other types of pulse work. Ha accuracy and stability necessary for laboratory shunt resistors; a $\pm 2 \%$ meter movement; DC polarity reversing switch; zero-center scale adjustment for discriminator alignment; $\pm 3 \%$ accuracy on AC and DC voltages,
many other features. User Price $\$ 137.50^{*}$
quency compression method was used successly of harbor-traffic radars.
The basis of the frequency compression results m the following considerations: If the highest quency component of 20 mc corresponds to the ortest echo-pulse duration of about $0.05 \mu \mathrm{sec}$, then number of distiguishable echos is 400 (or smaller he range is less than 3 km). The azimuth resolumay be taken as 0.5 degrees so that the typical har picture consists of about 720×400 or 288,000 finct points. At an antenna speed of 20 rpm the ire picture content must be transmitted every tee seconds so that a maximum bandwidth of 288,$\div 3=96 \mathrm{kc}$ is required.
For frequency compression a storage tube which sa dual beam system is used. The "writing" beam, pose deflection is synchronously controlled by the ginal radar pulse, has its intensity controlled by amplitude of the echo and charges an insulating er, controlled by the video signal of the radar paratus, along a line. The "reading beam," which constant intensity scans the same line and proes for the discharge of the charging produced by "writing" beam. These changes in charge pro(e) the output signal of the storage tube on the tal plate which is located behind the insulating er. Since the deflection of the "reading" beam is wer than that of the writing beam, the output nal has wider pulses and consequently requires aller bandwidth for transmission. If n is the numer of echos which are reflected from a target then e scanning frequency of the "reading beam," f_{2} is hated to the repetition frequency of the original dar pulses f_{1} by the ratio $f_{1} / f_{2}=n$.
A simplified black diagram of the system is shown the figure. As an example four signal pulses (S) shown together with their echos (a). The writing mal is shown in line (b); the deflection voltage of " "reading" beam is shown in line (c). The factor 3 is used in the example. Line (d) shows the mned signal. (Abstracted from an article by H. vil, K. Dinter, and K. Lange, Elektronische hdschau, Vol. 12, No. 5 May 1957, pp. 155-157.)

JUNIOR VoltOhmyst ${ }^{(8)}$ WV-71C - Biggest value in vacuum-tube volt-ohmmeters! Factory tested and calibrated to lab standards. Measures de from 100 millivolts to 1200
volts; ac from 100 millivolts to 1200 volts rms; resistance from 0.2 ohm to $1,000 \mathrm{meg}$ ohms. User Price $\$ \mathbf{5 9 . 5 0}{ }^{*}$
-

FOR YOUR LAB OR LINE

ELECTRON-TUBE MieroMhoMeter WT-100A - Accuracy suited for electronic equipment manufacturers, research and development, maintenance groups. Precision tube testing under actual circuit conditions. Built-in shorts" test; burnout protected meter; regulated power supplies or dc voltages; measures gm
up to 100,00 micromhos in 6 ranges. User
Price $\$ 785.00^{*}$

ULTRA-SENSITIVE DC MICROAMMETER WY-ABPopular choice in industrial, chemical, general lab applications, Designed to measure ertremely "feeble" currents, extremely high
resistances. Self-contained batteries permit resistances. Sely-contained batteries permit tend battery life, meter protected from accitend battery life, meter protected from acci-
dental overloads. User Price $\$ 110.00^{*}$ (less
batteries)

$5^{n \prime}$ OSCILLOSCOPE WO-88A-An all-purpose scope for general lab use, production-line alignment and testing. Built-in voltage calibrating facilities permit simultaneous waveshape display and peak-to-peak voltage measurements. panel poswitch. Directly coupled. push-pull amplifiers in vertical circuit provide flat response down to dc. User Price $\$ 179.50$

CHOOSE AN RCA DESIGN!

5n OSCILLOSCOPE WO-91A-Dual Band 4.5 Mc scope, for waveshape observation and measurement, signal tracing and alignment of
chrominance circuits and wide-band ampli-fiers-voltage-calibrated input step-attenuators and calibrated graph screen make possible direct voltage readings as easily as with
a VTVM. User Price $\$ 239.50^{*}$
*User Price (Optional)

$7^{\prime \prime}$ OSCILLOSCOPE WO-56A-For phase measurements or vector display-7-inch screen plus
trace expansion of 3 times screen diameter trace expansion of 3 times screen diameter
provide unusually large waveshape display provide unusually large waveshape display portions of waveshapes. Frequency-compenportions of waveshapes. Frequency-compen-
sated voltage-calibrated attenuators in both
"V"and "H" amplifiers. User Price $\$ 289.50^{*}$

For fast delivery of the best in test instruments for lab, line or shop.
(
RADIO CORPORATION OF AMERICA
COMPONENTS DIVISION
CAMDEN, N.J.
CIRCLE 471 ON READER-SERVICE CARD FOR MORE INFORMATION

Abstract \qquad

Improved Transistor Biasing

AN AMENDED transistor bias arrangement offers advantages over the conventional circuit in normal as well as critical applications. During the design of a transistorized servo-amplifier intended for airborne applications, it was found that the stabilization of the output stage needed careful attention. The resistance of the input transformer secondary winding, usually considered negligible, had an adverse effect on the bias stabilization. The influence of this resistance, and a means for overcoming it,
are indicated here.
In Fig. 1 the usual arrangement of a Class B output stage is shown. The transformer secondary resistance is denoted by $4 R_{t}$. This resistance acts in series with the base of the transistor, and degrades the stability factor. In practical designs, it is difficult to achieve a stability factor

$$
S=\frac{\partial I_{c}}{\partial I_{c o}}
$$

of less than about three without enlarging the in-

Fig. 1. Schematic diagram, normal Class B output stage.
put transformer to obtain a lower resistance, or increasing R_{1}. Both these steps are undesirable, as the first wastes space while the second causes a loss of gain and maximum power output. In any case, the power dissipated in the bias network, denoted by P_{b}, is unnecessarily large.
The circuit of Fig. 2 overcomes these difficulties by using the transformer resistance as an active part of the bias network in place of R_{2}. The design equations used for the two circuits are given in the table.

Comparative Design Formulas for Two Methods of Transistor Biasing

Parameter	Circuit of Fig. 1	Circuit of Fig. 2
$S=\frac{d_{c}}{\partial I_{c o}}$	$\frac{1+\frac{R_{1}}{R_{t}+R_{2} R_{3}\left(R_{2}+R_{3}\right)}}{(1-\alpha)+\frac{R_{1}}{R_{t}+R_{2} R_{3}\left(R_{2}+R_{3}\right)}}$	$\frac{1+\frac{R_{1}}{R_{3}}+\frac{R_{1}}{R_{f}}}{(1-\alpha)+\frac{R_{1}}{R_{3}}+\frac{R_{1}}{R_{t}}}$
R_{3}	$\frac{E\left\{(\mathbf{S}-1)-\frac{R_{f}}{R_{1}}[1-S(1-\alpha)]\right\}}{2\left(I_{c}-S I_{c o}\right)}$	$\frac{E(S-1)}{2\left(I_{c}-S I_{c o}\right)}$
R_{2}	$\frac{R_{3}\left\{(S-1) R_{1}-R_{t}[1-S(1-\alpha)]\right\}}{\left(R_{3}+R_{t}\right)[1-S(1-\alpha)]-(S-1) R_{1}}$	-
R_{1}	Determined from allowable gain and voltage loss.	$\frac{R_{3} R_{i}}{R_{3}+R_{t}} \cdot \frac{1-S(1-\alpha)}{S-1}$
R_{t}	-	$\frac{R_{1} R_{3}(S-1)}{\alpha S R_{3}-(S-1)\left(R_{1}+R_{3}\right)}$
$P_{\text {b }}$	$\frac{E^{2}}{R_{3}}$	$\frac{E^{2}}{R_{3}}$

Fig. 2. Schematic diagram, improved output stage circuit.
e following example will illustrate the surity of the amended circuit.
ata: $\alpha=$ current gain of transistor, common case $=0.92$
$I_{c}=$ required collector current per transistor $=10 \mathrm{ma}$
$I_{\text {co }}=$ collector cut-off current, of transistors ~0
$E=$ supply voltage $=28 \mathrm{v}$
$S=$ bias stability factor $=\frac{\partial I_{c}}{\partial I_{c o}}=3$
typical value for the transformer resistance $i_{1}=48$ ohms.
the case of Fig. 1, an acceptable value for 10 ohms. We then have:

$$
\begin{aligned}
& R_{3}=1530 \mathrm{ohms} \\
& R_{2}=14.3 \mathrm{ohms} \\
& P_{b}=0.52 \mathrm{w}
\end{aligned}
$$

or the case of Fig. 2 the same transformer is and

$$
\begin{aligned}
& R_{3}=2800 \text { ohms } \\
& R_{1}=4.6 \text { ohms } \\
& P_{b}=0.14 \mathrm{w}
\end{aligned}
$$

the new arrangement gives the same stability fir with only 25 per cent of the power loss. It also yield more gain and maximum power pot owing to the lower value of R_{1}.
With the data given in this example, it is pose to reduce the S factor to two if the power and the value of R_{1} remain at the original les. A value of S as low as this cannot be eved at all with the original circuit.
ote that the dc in the transformer secondary ain: balanced and will not alter the transRer design except for the small heating effect. his article originally appeared in Electronics ineering of Canada, Vol 1, No. 1, May 1957. at thor is Maurice Price, P.Eng., of ComputDevices of Canada Ltd.

Issue No. 7

Now... New Developments in Set Screw Automation Create Greater Opportunities to CUT COSTS!

NEW ... 2 methods of feeding, ver. tical and horizontal!
NEW ... Photoelectric cell control of screw flow!
NEW ... Even nested screws can be hopper-fed! driving!
. Adjustable work table that eliminates individual, high-cost fixtures for each type of work! Here's why the Setko System of feeding and orienting Headless Set Screws is really "catching on" with manufacturers from coast to coast:

1. Requires only $1 / 5$ th to $1 / 10$ th the time required for former methods 2. Automatically rejects misfits
2. Eliminates cross-threading, floor loss
3. Cuts set serow inventory
4. Takes up less floor space
5. Works with both motals, plastics
6. Takes all special Setko Set Scrows, including Solf-Tapping, Solf-Locking, Nu-Cup, otc.
7. Makes possible faster deliveries

Here's What Users Say . . .
"Hopper Foeding saved us $\$ 42,000$ in first yoar."
"Our production rate went from 300 to 2000 per hour."
"Our floor loss wont from 30\% to 0."

FREE DEMONSTRATION

Quickest way to get complete under. standing of the Setko System is to see it! You're welcome to visit the factory for a free demonstration... or ask for the free loan of the new 12 minute, 16 mm color movie on Setko System. For details and free copy of Catalog 21, containing complete data on the Setko HopperFed ${ }^{\bullet}$ Headless Set Screw System, mail coupon - or write direct.
| SET SCREW a mFa. Co.
SET SCREW \& MFG. CO.
265 Main St., Bartlott, lil.
265 Main St., Bartiott, 11

- Advise how and when I can see Setko Systems demonstrated.
Whem Setko movie When can I borrow the new Setko m
for showing in my plant or office? name
COMPANY

CIRCLE 309 ON READER-SERVICE CARD FOR MORE INFORMATION

Russian Translations

What the Russians Are Writing

J. George Adashko

RADIO ENGINEERING AND ELECTRONICS

(Contents of Radiotekhnika i Elektronika, No. 1, 1957)

DISTRIBUTED AMPLIFIER ANALYSIS

Distributed Amplifier as a System of Multi-Terminal Networks, Yu. N. Prozorovski, (8 pp, 7 figs).
In conventional analysis the distributed amplifier is represented as two equivalent long lines formed by the input and output capacitances of the tube and by the inductances of the added coils. (See, for example, Ginzton, Hewlett, Jasberg, and Noe, Distributed Amplification, Proc. IRE, 1948, vol 36, p 956). This approach is satisfactory only at relatively low frequencies, breaks down near the critical frequencies of the elements comprising the lines, and makes no provision for unequal individual sections, complex loads, and other factors. The author proposes a method where the amplifier is considered as a system of a finite number of multi-terminal networks (Fig. l) and derives matrices for the individual sections of the amplifier and for the amplifier as a whole. Any irregularities in the distributed parameters of the amplifier can be accounted for in the pertinent matrix element.

The matrix element for sections I (and V) is:

$$
\boldsymbol{A}_{I}=\boldsymbol{A}_{\mathrm{v}}=\left[\begin{array}{cccc}
1 & 0 & \boldsymbol{R}_{\mathrm{oa}} F_{\mathrm{a}} & 0 \\
0 & 1 & 0 & \boldsymbol{R}_{\mathrm{oc}} \boldsymbol{F}_{\mathrm{e}} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{1} & \boldsymbol{R} \\
0 & 1
\end{array}\right]
$$

where $R_{o a}$ and $R_{o c}$ are the ohmic resistances of the coils and F_{a} and F_{c} are coefficients characterizing the dependence of the losses on the frequency. Similar matrices can be written for the other elements, and the matrix of the entire amplifier is merely the product of the individual matrices.

Fig. 1. Seciion of a distributed amplifier, broken up into several multi-terminal networks. ($\mathrm{R}_{\mathrm{na}}=$ resistive loss in plate circuit, $\mathrm{R}_{\mathrm{nc}}=$ resistive loss in grid circuit.)

PULSE BANDWIDTH

Bandwicith Occupied by Transmitted Pulses, M. S. Gurevich (6 pp, 4 figs).
An "ideal" pulse shape was derived by the author in a previous article ("Signals of Finite Duration,

Containing the Maximum Energy Fraction in a Specified Frequency Band," Radiotekhnika i Elektronika, March 1956, ED December 15, 1956). In this article he determines the frequency bandwidth occupied by several standard pulse shapes, arriving at the interesting results given in the following table:

Puise Shape	Bandwidth (bauds)
"Ideal"	2.5
Rectangular	20.6
Trapezoidal	
ratio of parallel	
sides 0.8	6.5
ratio 0.5	3.9
Triangular	2.6
Cosine	2.6
Cosine-squared	2.8

WAVEGUIDE DESIGN

Voriational Method for Design of Waveguides with Periodic Irregularities, I., Sh. E. Tsimring, 112 pp, 2 figs).

The Ritz method is used for the analysis of the propagation of electromagnetic waves in a periodi-cally-corrugated waveguide. A decelerating system with rectangular corrugations is used as an exampla

UHF TROPOSPHERIC PROPAGATION

Friect of the Form of the Structural Function of Iregularities in the Dielectric Constant of Air on ong-Distance Tropospheric Propagation at UHF, l. N. Troitski, (4 pp, 1 fig).

Continuing his work on this subject (earlier rticles appeared in the May and September 1956 sulus of Radiotekhnika, ED December 1, 1956 and une 15,1957), the author derives equations for the nedian value of field intensity and for the possible andwidth of waves propagated in air subject to specified variation of the dielectric constant.

MAGNETIC FIELD MEASUREMENT

astrument for Relative Measurements of Alterating Magnetic Fields, I. S. Shpigel', M. D. Rayzer, A. Miae, (9 pp, 7 figs).

Most instruments designed for the purpose (balstic, electronic integrators, etc.) do not take into count the residual magnetization. This instrunent, developed to measure the field of the injecon electromagnetization of the 10 Bev synchrohasotron of the USSR Academy of Science employs volear magnetic resonance and is free of this thortcoming.

PULSE SYSTEM STABILITY

Wability of Linear Pulse Systems with Variable larometers, G. P. Tartakovski, (8 pp, 4 figs).
The author continues his investigations of the haracteristics of linear pulse systems with variable parameters (an article on the theory of such systems ras published in the November 1956 issue of Elektrosviaz', ED July 15, 1957, and a discussion of heir time and frequency characteristics appeared in the December 1956 issue of Radiotekhnika i Elektronika, ED August 1, 1957). The stability analwis is based on the derivation of an equation for the transfer function of the system, and the illustrative example used is a frequency-pulse modulated rstem with pulse feedback.

WIDE EAM AMPLIFICATION

High Frequency Oscillations in Electron Beams with eriodically-Varying Velocities, P. V. Bliokh, 112 p.

There has been considerable recent interest in the ossibility of amplifying radio waves by periodic ariation of the parameters of an etectron beam, 0 as to dispense with the decelerating system employed in travelling-wave tubes (see, for example tricles by Birdsall in Proc. IRE, 1954, vol 42, p 128 and Peter-Bloom-Ruetz, RCA Review, 1954, ${ }^{0} 15$, p. 113). In principle, unlike the situation in traveling wave tube, it is possible here to effect IECTRONIC DESIGN • September 1, 1957

FOR PAM and PDM TELEMETRY SYSTEMS
he new Arnoux Model TDS30-1 Decommutation System is completely self-contained within hree chassis assemblies consisting of: Gating Unit (TOP), Pulse Selector (MIDDLE) and Regulated Power Supply (BOTTOM). The unit handles 28 channels of information and occupies only $191 / 2$ inches of panel height in a standard reay rack. Overall depth behind panel is 13 inches.

The Arnoux Model TDS30-1 Decommutation System is compactly designed for use in airborne or trailer installed telemeter receiving stations and in portable check-out equipment.

- Miniaturization is the natural resulf of a new circuit design allowing the entire system to contain only 76 tubes as opposed to several hundred in competitive systems.
- Modular construction permits easy expansion of system to any desired channel capacity.
- Novel circuitry design does not reflect errors due to center frequency drift of sub-carrier oscillators, drift of diseriminator D. C. output level, or tape playback speed errors.
- Built-in test selector permits visual inspection of waveforms throughout system for quick malfunction detection.
- Neon indicators on each gating unit give continuous visual indication of correct sequential operation.
- System accepts all standard IRIG inputs, sither PAM or PDM, at any sampling rate from 75 to 900 per second.
- Overall linearity is within $\pm 1 / 2 \%$ at maximum level. Long term leval drift is within $\pm 1 / 2 \%$. Gain drift is negligible.
- Modular plug-in gating unifs allow quick replacement of faulty channels.
- Two spare units are maintained on standby for instant use.
- Power required is 115 valts, 60 cps , single phase. Optional 115 volt, 400 cps, power supply available for airborne application.

ARNOUX corporation
Designers and Manufacturers of Precision Instrumentation
11924 WEST WASHINGTON BLVD - LOS ANGELES 66, CALIFORNIA PHONE TEXAS 05371 . Exmont 82707 O iWX S MON $/ 498$

CIRCLE 310 ON READER-SERVICE CARD FOR MORE INFORMATION

Berkeley NEVNS NOTES 튼
 Free Data File
 \＃ 111
 ．FREQUENCY MEASUREMENTB AND HOW TO MAKE THEM
 Covers Berkeley EPUT＊meter tech niques for low and medium frequen－ cies；Berkeley EPUT＊and heterodyne techniques for RF，VHF and UHF preset counter and time interval meter techniques for rapid low fre－ quency measurements；measurement of rpm，flow，pressure，temperature of frequency，and nuclear counting of frequenc techniques．
 Write today for your free copy please address Dept．u ）
 Beckman
 Berkeley Division
 Richmond 3．California
 Trademark 128
 CIRCLE 311 ON READER－SERVICE CARD FOR MORE INFORMATION

HERMASEAL

Specialists in
Glass－to－Metal Seals！

Hermaseal

CALL US ON STANDARD AND SPECIAL TERMINALS．

Hermaseal OCTAL Plug．

－Hermaseal
1943 A successful pioneer since ompression（cold rolled steal） and matched（Kovar）to meet our needs（

Hermaseal NOVAL Header and Brackef Assembly．

－Hermaseal

with its expert engineering staff and the latest in produc－ tion equipment is ready to serve you．
Hermaseal 10 kilovolf TERMINAL
For further information phone 2－3773 or write．

[^4]amplification even in an infinitely wide beam，with only the thermal motion of the electrons imposing an upper limit on the frequency．
The author uses kinetic theory to derive a dis－ persion equation（in the small signal approxima－ tion）with which the stability conditions in the beam are established．

DIRECTIONAL COUPLER

H_{11} Wave Directional Coupler for Round Wave－ guide，M．V．Persikov，（10 pp， 9 figs）．
Description of an azimuthal system of rectangular waveguides，coupled to a round waveguide by a longitudinal system of apertures（Figs．1 and 2） Several modes propogate in the round waveguide， but the rectangular guide is single－mode．A model of this coupler was used to indicate the presence of the H_{01} mode，to measure low reflection coefficients （on the order of 30 to 40 db ）in the round wave－ guide，and to measure the power flowing past a given section of the guide．It also measured the at tenuation of the \mathbf{H}_{0} wave in the individual wave－ guide elements and the losses involved in the transformation of the \mathbf{H}_{01} wave into other modes A theoretical analysis of the coupler is given．

Fig．1．Cutaway isometric view of the rectangu－ lar waveguide coupled to the round waveguide． （Note the longitudinal system of apertures．）

Fig．2．Cross sections of the waveguide．

You Get Things Done Better By Seeing What＇s Happening

BOARDMASTER VISUAL CONTROL

\star Gives Graphic Picture of Your Operations in Color．
＊Facts af a Glance－Saves Time and Prevents Errors．
－A Simple，Flexible Tool－Easily Adapted to Your Needs．

Complete Price $\$ 4950$ Including Cards

FREE

24－Page ILLUSTRATED BOOKLET N． Without Obligation

GRAPHIC SYSTEMS， 55 West 42nd St．，New York 3G，M．Y．
CIRCLE 313 ON READER－SERVICE CARD FOR MORE INFORMATION

Really Smooth Speed Control of D－C Motors from A－C Lines

Varlac ${ }^{\circledR}$ Motor Speed Controls Feature
＊Wide Speed Range－from zero to full rated speed
＊Full Torque at ANY Speed
＊No Torque Pulsation even at lowest speed
＊High Starting Torque
＊Extra Fast START－STOP－REVERSE－dynamic braking on most models
＊Instant Start－no electronic tubes－no warm－up time
＊Fifteen models for controlling motors from $1 / 15$ th hp anc less to $11 / 2 \mathrm{hp}$

Write for Variace（1）Motor Control Bullotin
GENERAL RADIO Company
 soss 131 h St．Silver Spring，Md．wasmimgrow，D．C． 1150 York Road．Abinglon，Pa．Phil ADtimina 1182 Los Altos Ave．Los Altos．Calif．SAN PRANcisco 6605 W．North Ave．Oakk Parik．III．CHIC CIRCLE 314 ON READER－SERVICE CARD FOR MORE INFORMATION

Mutu

 figs）．
SYNCHRONIZATION

Mufual Synchronization of Self-Excited Generators at Multiple Frequencies, G. M. Ułkin, 113 pp, 6 figs).

It is customary in the literature to treat this topic in a highly simplified manner, and to neglect the reaction of the "synchronized" oscillator on the "master" oscillator. Actually, however, this reaction is quite substantial over a certain band (synchronisn zone), the width of which is determined in this article as applied to both frequency multiplication and frequency division.

SELF EXCITED OSCILLATIONS

On the Transformation of Fluctuations of the Amplityde and Phase of Self Excited Oscillations in Resonant Systems. G. S. Gorelik, G. A. Elkin, 16 pp, 2 figs).
A signal with random phase and amplitude fluctations is traced theoretically through a circuit comprising a linear (resonant) and non-linear (detector) element. Equations are derived for the statistical nature of the phase and amplitude of the output of such a system, given the statistical characteristics of the input amplitude and phase variations. Refers to work by R. Mueller, G. Dalman \& A. Rhoads, W. Gottschalk, D. Middleton (all in Trans. IRE, Electron Devices, vol 1, 1954), and several other American investigators.

ENERGY INTERACTION

Analysis of Interchange of Energy between an Electron Stream and an Electromagnetic Wave. V. N. Shevchik, (7 pp, 4 figs).

Certain problems in the interaction between an electron stream and a traveling electromagnetic wave are analyzed in this kinematic approximation. The grouping of electrons in the traveling wave, identical with the grouping process in a klystron, is analyzed and other factors such as maximum current, efficiency and synchronization are discussed. The calculations are extended to include traveling-wave tubes and the optimum operating modes of backward wave oscillators at low amplitudes.

Other Articles In This Issue-
"EM sion of Electrons from Complex Surfaces," pl. Timofeev ($7 \mathrm{pp}, 2$ figs). "Concerning the Mechunism of Electron Emission from Thin Dielectric Lay ers under the Influence of a Strong Electric Fieid Malter (Malter effect)," M. I. Elinson, D. V. Lerr:ov, ($10 \mathrm{pp}, 4$ figs). "Influence of Differentiation and Integration of Fluctuations on the Average Number of Swings," V. I. Tikhonov, ($5 \mathrm{pp}, 1$ fig.) Staistical discussion.)

OVER 300 BASIC TYPES... countless STANDARD modificatlons

for TV,

Radio, Audio, and
Instrumentation jobs.

VARIABLE composition RESISTORS

Electronic Components Division
ECH DA STANDARD TYPES Write for Bulletin C-10B or see you ocal Stackpole epresentative.

STACKPOLE CAREON COMPANY, St. Marys, Pa.
In Conoda: CANADIAN STACKPOLE LTD., 550 Evont Avo., Etobicoko, Toronto 14, Ont.
CIRCLE 315 ON READER-SERVICE CARD FOR MORE INFORMATION

TE E PRINTED CIRCUIT SOLDER POTS WITH MECHANICAL TYPE DIAL THERMOMETERS

New proven design with all controls on end of pot. Mechanical type dial thermometers to indicate solder temperature. Hydraulic thermostats. Walls and bottom of the solder cavities are smooth and free of all obstructions.

All components except the elements may be servicod easlly without taking the pot oport. High-low hoat switch so that pot may be ping without excessive eycling.
25 sizes meot all requirements.
SOLDER Pots

Send for new bulletin on complote line.

DEE ELECTRIC CO.

1103 N. PAULINA STREET Chicago 22, III.
CIRCLE 316 ON READER-SERVICE CARD FOR MORE INFORMATION

wire markers provide..
POSITIVE IDENTIFICATION FOR WIRE OF ANY SIZE!

ELIMINATE WIRINE GUESSWORK with easy to read E-Z CODE Wire Markers. Patent features let you apply markers without affecting adhesive quality. Thousands of stock items in standard lengths of $3 / /^{\prime \prime}$ and $11 / 2^{\prime \prime}$, prices start low as $1 / 3$ ¢ per wire lead! E-Z CODE Vari-temp cloth markers (temperature range 300F.) meet MIL-D-10369B for fungus resistance; stock markers also available in aluminum foil. Available nationally from over 200 distributors, write for free working samples and catalog.

Standards and Specs

Sherman H. Hubelbank

Gage Blocks
nbs Circular 581, Metrology of Gage Blocks, April 1, 1957
By far the most widely used precise standards of length in the mechanical industry are precision gage blocks which by nature of their accuracy, range of sizes, and relatively low cost have been made available to even the smallest industry. This circular presents the 15 papers presented at the Symposium on Gage Blocks, held at the National Bureau of Standards in August 1955. This 119-page publication may be obtained from the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D.C., for $\$ 1.50$ per copy.

Tubes

retma RS-190, Nema 502-D, Pin Straighteners and Wiring Jigs for Electron Tubes, June 1957 This standard covers miniature button 7 pin and 9 pin straighteners, T-3 subminiature pin straighteners, locking-in pin straighteners, and wiring jigs for miniature tubes. Copies of this standard are available from the Radio-Electronic-Television Manufacturers Association, 11 West 42nd Street, New York 36, N.Y. for 50 cents per copy

Armorply makes shielded rooms easy to assemble

Shielded rooms constructed of Armorply panels are a snap to put up, take down or move-with ordinary labor. And the room size can be expanded or altered easily, since special compression joints eliminate the need for soldering. Armorply -the metal-clad plywood-comes with faces of copper, lead, alluminum or other metal. (Zinc-bond steel faces are used in the United Air Lines room, shown above, which was built by Shielding, Inc., of Riverside, New Jersey.) For full information, and a free sample of Armorply, write today.

Weldwood ${ }^{\text {Armorply }}{ }^{\circ}$

UNITED STATES PLYWOOD CORPORATION
Dept. ED9-1-57, 55 West 44th St., New York 36, N.Y. CIRCLE 320 ON READER-SERVICE CARD FOR MORE INFORMATION

HELP WANTED:
 ENGINEER - EXECUTIVES

ELECTRONICS, NON-EXISTENT 20 YEARS AGO, NOW ACCOUNTS FOR 11.5 BILLIONS OF THE U.S. NA. TIONAL GROSS PRODUCT. THIS EX. PANSION MEANS THAT YOUR IN. DUSTRY NEEDS YOU FOR THE IM. PORTANT TECHNICAL MANAGE. MENT JOBS.
electronic week will keep YOU INFORMED OF THE IMPORTANT DEVELOPMENTS WHICH YOU MUST HAVE AS A KEY MAN IN THE ELECTRONIC INDUSTRY.
electronic week is the only WEEKLY NEWSPAPER WHICH WILL INTERPRET FOR YOU, THE BROAD AND SPECIFIC BUSINESS ASPECTS OF THE PRODUCTS THAT ARE DE. SIGNED.
electronic week will inter PRET THE SIGNIFICANT FACTS, AND WHAT IS MORE IMPORTANT -WILL ANALYZE THEIR SIGNIFICANCE.
you Can subscribe to elec. TRONIC WEEK FOR \$3.00 FOR 1 YEAR.

INSURE YOUR FUTURE WITH ELECTRONIC WEEK.

TO CONVENIENTLY SUBSCRIBE CIRCLE NO. 549 ON READER SERVICE CARD.

vi brators

RETMA RS-187, Vibrators for Auto Radios, June 19.7

Standards are established for vibrators having a nominal input voltage of 6.3 volts dc at 115 cycles and 12.6 volts dc at 115 cycles. Included are the mechanical and electrical standards, incoming in-

RETMA RS-188, Standard Dimensional System por Automation Requirements, June 1957
A series of dimensional systems and nomenclature lo serve as a guide in the coordination of equipment design, component design, and the design of machinery for automatic manufacture are established by this standard. In the design of electronic equipment which may be built on automatic machines, it shall be standard to make all dimensions, which muist be controlled for automation purposes, to be multiples of 0.025 inch. This modular dimension shall apply to all three axes of Cartesian coordinates. Copies of this standard are available from the Radio-Electronics-Television Manufacturers AsSociation, 11 West 42nd Street, New York 36, N.Y.. for 25 cents per copy.

Cap ors
IIL-C 2871, Capacitors, Fixed, Electrolytic A.C., Dry-Electrolytic, Nonpolarized), AmendEvit 3, 6 June 1957
The list of referenced specs and publications, the rewir ments for packing, packaging, and marking for hip nent have been revised. The time limit for shelf fe ias been changed to 18 months.
mOUntain view, california

- Reconnaissance Systems Laboratory Nowest of Sylvania's Mountain View facilities offors opportunitios for research, development and fabrica. research, dovilery olectronic recontion of military slectronic reconnaissance systems for detection and sum

Electronic Defense Laboratory Research, development and fabrication of electronic countermeasures systems and equipment.

- Microwave Physics Laberatory

Research and advanced development in suided microwave control devices utilizing ferrites, gaseous devices utilizing ferrites, caseous olectronics, ferroelectrics and paramagnetic resonance.

- Microwave Tube Laberatory

Research, design, development and production of Klystron, Traveling Wave tubes and Backward Wave oscillators.

Openings in the following fields:

- Operations Research
- Guided Microwave Devices Research \& advanced development
- Systems Analysis
- Systems Development
- Design \& Development Transmitters, recelvers, components, antennas
Data Handiling
Electronic Packaging
- Fiold Engincering
- Mechanleal Englneoring
- Microwave Tubes Research, dosign \& development

For further information on these West Coast opportunities, send your resume to
J. C. Richards
P.O. Box 1296 Mountain View, Calif.

ENGINEERS and SCIENTISTS
WALTHAM, MASSACHUSETTS
Sylvania
Now
Selecting
Men
for Advanced
Electronic
Research and
Development
in East
and West
Coast
Locations

Missile Systems Laboratery

Openings for senior men In weap. ons systems analyses, design, dovelopment \& management.

- Hish Power Radars
- Electrically Scanned Antonnas
- Missiles \& Cuidance.
- Operations Research
- Information Theory
- Dato Processing
- Electronic Physics

Avionics Laboratory

- Electronic Systome Design a Dovolopmont
- Microwave \& Antenna Research a Development
- Electronic Packaging a

Teat Design
East or West. Sylvania Iah oratories are in the forefront of advanced electronic research and development, offering positions to men capable of important scien+ific contributions... and interested in the rewards this growing company offers for creative work.

- Computer Systems Engineoring \& Logical Design
- Technical Coordination \& Lialson

Applied Research Laboratory

- Operations Research
- Communications Thearg
- Automatic Controls
- Alrborne Interceptor Radar
- Radar Simulators
- Missile Electronics
surate with background and ability. Benefits are broad, and include ample prowision for graduate study. Opportunities for growth are genuine.

For further information on these East Coast opportunities, send your resume to

Graydon A. Thayer 100 First Ave., Waltham, Mass.

CIRCLE 552 ON READER-SERVICE CARD FOR MORE INFORMATION

Electronic \& Mechanical Eng.
This is your chance io get specific assignments at the peak of the art in
Electronic \& Microwave Development \& Design
WITH BENDIX YORK YOU GET

- Professional Achievement
- Rapid Advancement
- Socurity
- Responsibility

We need capable professional peraonnel all levels to fill responsible opening at the steadily expating young Divivioon us, you will find the true opportunity to move upe in your chosen profession. You
will like the life in our beautiful sub. urban area.
Yes, whether you be a Department Chief or a Graduate Engineer with a minimum
of experience, we bave the opening tailored of experience. we have the opening tailored
to you and to your bopes for the future. Aldreas: Chief Engineer Dept. E

AVIATION CORPORATION

CIRCLE 553 ON READER-SERVICE CARD ELECTRONIC DESIG

Nucleonics
Applications of
nuclear radiation
industry, medicine and researchthe field of the pacetime otoma field of infinite potential offering opportunities and challenges of tomorrow . . . today!

The Company
First and foremost firm serving all phases of the nuclear field-from research to industry world leader of peacetime uses of atomic radiation continuing to pioneer in instrumentation, isotopes,
X-ray and constructive automation

The Positions
Unique . . . at various levels including engineering management in: industrial control, medical instrumentation, reactor
monitoring systems and special nuclear apparatus. Assignments are in design, development, application and test engineering. Bachelor's or Master's electronic, electrical. mechanical engineering or physics are desired.

Write in confidence to Tracerlab
1601 Trapelo Road Waltham 54, Mass.
CI CLE 554 ON READER-SERVICE CARD

Electronics Engineers-

Is Leadership your target?

Your opportunities for personal and professional growth at Stromberg-Carlson are as big as your own ambition and initiative.

You'll get the recognition you deserve in our Electronics Division becauseamong other things the Division is managed by engineers. You'll advance fast because the Division is growing fast (10 -fold expansion since 1953 . . . additional 3 -fold growth now under way)
You'll like the work, too-interesting, challenging assignments in military and
civilian electronic equipment well above the present state of the art.
Living conditions in Rochester match the high calibre of the job assignments at Stromberg-Carlson. This is a beautiful medium-sized city of fine homes, excellent schools, and vast facilities for culture and recreation-in an invigorating four-season climate.

To decide which field of work offers you the greatest opportunity for leadership, check the list of assignments at the right. Then send a letter or resumé to:

ARTHUR N. PAUL, Director of Technical Personnel

S.C

 STROMBERG-CARLSONA DIVISION OF CENERAL DYNAMICS CORPORATION
1478 N. GOODMAN STREET - ROCHESTER 3, N. Y:
 CIRCLE 555 ON READER-SERVICE CARD FOR MORE INFORMATION

Electronic Communication Systems
Telecommunications Switching Circuits Carrier Circuits

Data Processing
Solid State Digital Computer Systems
Electromechanical Design
Radar and Countermeasures
Missile Guidance Systems
Production Engineering
Navigation Systems
Systems Test Equipment
Industrial Engineers
Electromagnetic Wave Propagation
Antenna Design
Search Receiver Design

ENOINEER8 for GUIDANCE and NAVIGATION SYSTEMS

ADVANCED ENGINEERING

the ability to think
ahead of textbook engineering

> is a prime qualification
> at Sanders Associates.

Please address inquiries to D．H．Johnson．

SANDERS ASSOCIATES，INC． NASHUA NEW HAMPSHIRE

CIRCLE 556 ON READER－SERVICE CARD FOR MORE INFORMATION

CIRCLE 557 ON READER－SERVICE CARD FOR MORE INFORMATION

OTIS ENGINEERS DEVELOPING ADVANCED ELECTRONIC CONCEPTS WITH WIDE INDUSTRIAL POTENTIAL

New Electronic Division Intensifying Research for Commercial as well as Military Application
Right now the emphasis here is on urgent defense needs Otis＇expanding Electronic Division holds rontracts for basic development work in advanced areas of countermeasure mechanisms．
But Otis has a 105 －year history of looking ahead－so it resources are also being used for research on industial ap plications of the newest ideas in electronics．

Engineers who join Otis now have a chance to excel in vital military work－with the knowledge that their opportunities and rewards will expand with the electronics field itself

Electronic and Mechanical Engineering know－how is required in Servomechanisms，Analog Com－ puters，Pulse \＆Sweep Generators，Microwaves
For additional information，contact William B．DeFrancis． ELECTRONIC DIVISION

35 Ryerson St．
Brooklyn 5，N．Y．

CIRCLE 558 ON READER－SERVICE CARD FOR MORE INFORMATION

UNDERWATER ORDNANCE MISSLIE SYSTEMS

Research and Development

Design electronic and mechanical control circuits for use in underwater acoustic homing devices and systems such as torpe－ does，targets and decoys．

We have openings for engineers with either advanced or limited experience．There are openings in both Cleveland，Ohio and Key West，Florida．

Clevite Research Center develops new prin－ ciples and new products for other units of Clevite Corporation．The Research Center provides the ideal environment for the en－ gineer because it has been supplied with the facilities，equipment and library to provide new knowledge and new products for Clevite Corporation，a company whose entire product line is in the growth fields of electronics，semiconductors and auto－ motive and aircraft power plants．
WRITE E．A．GENTRY OR CALL ULster 1－5500 COLLECT CLEVIte Research Center 540 East 105th Street Cleveland 8，Ohio

CIRCLE 559 ON READER－SERVICE CARD FOR MORE INFORMATION

ELECTRICAL ENGINEERS

If you have had engineering experience in any of the categories shown below. Northrop Aircraft has an attractive position for you, with many benefits. Important among hem are high compensation, challenging assignments, steady advancement, recognition of initiative and ability. and continued interest in your progress. Many outstanding engineering positions are offered, as follows:
ELECTRICAL GROUP, which is responsible for the design of such things as power generation and distribution systems, rectifiers and power converters, and auxiliary ystems as applied to manned aircraft, Euided missiles and ground support equipment.
COMMUNICATIONS AND NAVIGATION GROUP, which is responsible for the design of C/N systems in manned ircraft and installation of guidance systems in missiles. FIRE CONTROL RADAR GROUP, which is responsible or the installation and application of the most advanced ype of fire control systems in fighter-interceptor aircraft. The work covers the installation of the equipment and associated wiring: continuing liaison with equipment manufacturers; preparation of system analysis and re ports; and follow-up of system performance in the field as aircraft become operational.
INSTRUMENT GROUP, which is responsible for the de sign of instrument systems for manned aircraft and the installation of flight test instrumentation for guided missiles.
There are also opportunities for draftsmen with either electrical or mechanical experience.
At Northrop Aircraft you will be with a company that has pioneered for seventeen years in missile research and development. Here you can apply your skill and abil ity on top level projects such as Northrop's new super sonic trainer airplane, Snark SM-62 intercontinental mis sile, and constantly new projects. And you'll be located in Northrop's soon to be completed multi-million-dollar engineering and science building, today's finest in com ortable surroundings and newest scientific equipment. If you qualify for any of these representative positions, we invite you to contact the Manager of Engineering Industrial Relations, Northrop Aircraft. Inc., ORegon 8.9111, Extension 1893, or write to: 1015 East Broadway Department 4600- Hawthorne. California.

NORTHROP

NORTHROP AIRCRAFT, INC., HAWTHORNE, CALIFORNIA Producers of Scorpion F-89 interceptors and Snark SM. 62 Intercontinental Missiles

[^5]
. . and great opporiunities awaif you at Motorolat

Professional success awaits you at Motorola in Phoenix. Salaries are high to attract high-caliber men. Rapid advance. ment is more than a promise, it's a fact (as our present engineering staff will testify).

Your family shares your opportunity. oo. because Phoenix is sunny and health. ful, with lots of fun-things to see and do. Take your choice for the week-end: desert, mountains. seashore, Mexico! Schools are highly-rated (including colleges for your own advanced courses). Sog and smoke just don't exist ... mmuting problems. Remarkill how housing costs will amaze you. expanding too. Grow with Motorola in Phoenix CAN YOU FILL ONE OF THESE OPENINGS? WRITE TODAY!

WESTERN MILITARY
 ELECTRONICS CENTE

Newest, most complete electronics velopment laboratories in the country

ELECTRONIC ENGINEERS, mechanical engineers. physicists Transistor
Applications $\begin{gathered}\text { Radar System } \\ \text { Design }\end{gathered}$ $\begin{array}{ll}\text { Microwave } \\ \text { Techniques } & \text { Systems Test and } \\ \text { Analysis }\end{array}$ $\begin{array}{ll}\text { Techniques } & \text { Analysis } \\ \text { Pulse and Video } & \text { R-F and } 1 \text {-F } \\ \text { Circultry }\end{array}$ Servo Mechanisms
For above positions write: Motorola. Mr. Kel Rowan Motorola, Inc.-Dept. B-9
Western Military Electronics Center
8201 E. McDowell Road ary Electronics Center
01 E. McDowell Road
Phoenix, Arizona

Engineering positions
Motorola, Inc. in Chiso avallable ar MOTOROLA...cc

Ty 4.4 diti
新
Hillif
$\rightarrow 7$
tin:
CIRCLE 561 ON READER-SERVICE CARD FOR MORE INFORMATION

cooling avionic systems

During World War II. Eastern Industries pioneored cooling systems for aircrath olectronic systoms. Now. thousands of installations later. and as the leader in this challenging field, Eastorn is still pioneering.
Experience has been a springboard to new dovolopments . . . compactness. simplification, refrigoration cyclos. Research and dovelopment continue to play their vital parts in perfecting systems to overcome the now problems as expanded circraft performance produces fantastic rises in tomperatures.
If you have a challonging problom, come to the loador in the fiold for complete and creative engineoring holp.

ELECTRONIC TUBE COOLING UNITS

Custom-made units, with or without refrigeration cycles. provide a method of maintaining sale operating temperature limits in electronic equipment. Standard sub-assemblies and components normally are used to create a custom-made design to fit your exact needs. Costs are minimized for these completely self-contained units by combining heat exchangers, fans or blowers, liquid pumps, reservoirs, flow switch, thermostat, and other common components.
Write for Eastern AVIONICS BULLETIN 340

PIONEER OF THE THERMAL FRONTIER

INDUSTRIES, INC. 100 Skiff St., Hamden 14, Conn. wout coost Onco: 1608 continola Avenve . - Inglowoed 3, Collformia

ADVERTISING INDEX

September 1, 1957 Advertiser
AGA Div. Elastic Stop Nut Corp. Acro Div. Robertshaw Fulton Control Co. Laboratories Aladdin Radio Industries, Inc.
Allied Con Allied Control Co. . American Lava Corp. Amphenol Electronics \mathbf{C} Amphogue Controls, Inc. Analogue Controls, Inc.
Arnoux Corp.
Assembly Products, Inc.
Baker \& Co., Div. Englehard Industrics Ballantine Laboratories
Bead Chain Mrg. Co. ©
Bendix Aviation Corp., Eclipse Po......

Bentley, Harris Mfg., Co
Berkeley, Div. of Beckman Instruments
Inc.
Bourns Laboratories
Brady, W. H. Co.
Brand, William \& Co., Inc. Bruno-New York Industries Corp. Burroughs Corp.
C.E.M. Company Cambridge Thermionic Corp. Celco Constantine Engineering Labora-
Centralab Div. of Globe Union, I...... Ceramaseal Co., The Chatillon, John \& Sons
Clare, C. P. \& Co.
Clarostat Mfg. Co., Inc.
Cohn, Sigmund Mfg. Co., Inc.
Comar Electric Co.
Cubic Corp.
Daven Co., The
Daystrom Pacific Corp.
Dee Electric Co
Dee Electric Co.
Dejur Amsco Corp. .i..
Deringer Metallurgical Corp.
Diamonite Products Mfg. Co
Diamonite Products Mig.
Donner Scientific Co.
Dow Chemical Co., The
Dressen Barnes Corp.
Driver-Harris Co.
DuMont, Allen B. Laboratories Techni cal Products Div.
Durant Manufacturing Co.
ESC Corp.
Eastern Industries, Inc
Electro Engineering Works Inc.
Electro-Motive Mfg. Co
Electro Snap Switch \& Mfg. Co.
Electronic Engineering Co.
Faber-Castell, A. W. Co., Inc.
Fenwal Electronics, Inc.
Freed Transformer Co., Inc.
General Electric Co., Apparatus Sales
General Electric Co., Electronic EquipGeneral Sales $\ldots \ldots \ldots \ldots \ldots \ldots$ 48,
ment General Industries Co General Motors Corp., AC Spark Plug,
General Radio Co.
Graphic Systems
Guardian Electric
Hart Manufacturing Co.
Heinemann Electric Co
Henemann Corp., Div. Beckman Instru-
Helipot
ments Inc.......
Hermaseal Co., Inc.
Hopkins Engineering Co
Howell Instrument Co.
Hughes Aircraft Co.
Hycor Co., Inc.
<CIRCLE 324 ON READER-SERVICE CARD
rtiser
Fireman Mfg. Co.

Electric Co
 ab (See Kin Tel)

Hi) Instrumen
Tel (formerly Kay Lab) Isman Instrument Corp. hn-Hite Instrument Co.
ncis \& Gyr, Inc. nz Electric Mfg. Co.
gravox Co., The ..
${ }^{2}$ ni Instrument Co

neapolis-Honeywell Regulator Co.
 torola Semi-Conductor Products Div, ${ }^{76}$ morola, Inc. Western Military Elec
eller Electric Company
rphy \& Miller, Inc.
K Manufacturing \& Engineering
rda Corp., The
Elevator Co.
P Engineering Company
relless Division of Altec Lansing Corp kin Engineering Corp.
ips Dodge Copper Products Co.
ine $\&$ Brumfield
ver Instrument Co
we Electric Corp.
lo Corp. of America
Commercial Electronic Products o Frequency Laboratories, Inc. .. Tube Mrg., Microwave \& Power
heon Mrg., Semi-Conductor Div.
es-Hoftman Div
em Mfg. Co.
born Company
ers Associates, Inc
Rex Precious Metal, Inc
Screw \& Mfg. Co
dikproof, Div, of Illinois Tool Works
Nina Instruments, Inc. ..
rry Gyroscope Company
ckpole Carbon Co., Electronic Com ponents Div. .
redter, J. S. Inc. ... ${ }^{\text {ndard }}$.
mberg-Carlson Co
ania Electric Products, Ele....
iv. Nectric Products, Electronic
ew Laboratories
thane Corp.
chnitrol Engineering Co.

- Laloratories.

Hett Electrical Instrument Co.......
Point Mfg. Co.
ted States Gasket Co
ted States Plywood Corp
tied Transformer
vamun, Inc.
des Kohinoor, Inc
(id) eonard Electric Co
ster Lithograph Co. Westline Div.
an house Electric Corp., Semi-Con-
tin house Electric Corp.
ch. ter Electronics, Inc.
CI CLE 563 ON READER-SERVCE CARD $>$

FILTERS FOR EVERY APPLICATION

To help you endow your popular-priced high-fidelity amplifier designs with a noteworthy measure of concert-hall presence, RCA proudly presents its latest audio-tube development-the RCA-6973. Featuring linear operation over a wide range of power, a pair of these beam-power, 9 -pin miniatures can deliver
20 watts of audio power with only 1.5% distortion. Here, too, is a tube that offers the advantages of low heater wattage (6.3 v at only 450 ma)!
And, for a new measure of performance in medium-priced high-fidelity FM receivers, RCA presents two new tubes-the 6DT8 and the 12DT8. These new RF amplifier and mixer-oscillator tube types can make valuable contributions to your FM-tuner designs. Both types have inter-unit shielding enabling you to achieve substantial reductions in antenna radiation.
For data sheets on any of these new types, or for information on other well-known RCA "audio" tubes, such as the 12AX7 and 6L6-GB, write to RCA Commercial Engineering, Section I-18-Q-1, Harrison. N. J.
Your RCA representative is ready to discuss your high-fidelity tube requirements. Why not call him today at the field office nearest you?

RCA TUBES for HIGH FIDELITY
RADIO CORPORATION OF AMERICA

RCA District Offices:

East:

744 Brood Streof, Nowark, N. J.
HUmboldt 5.3900
Midwest:
Suite 1181, Merchandise Mart Plazo
Chicaso, III.
Whitohall 4-2900
West:
6353 E. Washington Bivd
Los Angolos, Calif.
RAymond 3.8361

[^0]: ENCELHARD INDUSTRIES
 CIRCLE 188 ON READER-SERVICE CARD FOR MORE INFORMATION

[^1]: CIRCLE 207 ON READER-SERVICE CARD FOR MORE INFORMATION

[^2]: PVZ CAPACITORS range in size from $.175^{\prime \prime}$ diameter by $.625^{\prime \prime}$
 are available with $\pm 20 \%, \pm 10 \%$, and $\pm 5 \%$ tolerances. The color code indicates microfarads, volts, and capacitance tolerance.

[^3]: Based on Minimum of 0.1 mv on Ballantine Model 310 A vtvm

[^4]: CIRCLE 312 ON READER－SERVICE CARD FOR MORE INFORMATION

[^5]: CIRCLE 560 ON READER-SERVICE CARD FOR MORE INFORMATION

