Why **EPON® RESINS** for potting?

4 Good Reasons!

1. Outstanding adhesion to metal, glass, plastics
2. Excellent dimensional stability
3. High mechanical strength
4. Excellent dielectric properties

EPON RESINS are preferred for potting, laminating, sealing and encapsulating because they offer an almost ideal combination of electrical and physical properties.

Potting and encapsulating. Epon resins have outstanding adhesive properties. They form strong bonds to metal and glass, provide airtight enclosure of delicate components and vacuum tubes. They also have excellent dimensional stability and can withstand solder bath temperatures.

Sealing. Enamels and varnishes based on Epon resins provide excellent moisture sealing plus outstanding resistance to solvents and chemicals, even at elevated temperatures.

Laminating. Epon resins, laid up with inert fibrous fillers, produce base laminates of superior dielectric properties which can be sheared, punched, drilled and bath soldered.

Adhesives. Solvent-free Epon resin formulations cure at room temperature, with contact pressure alone, form powerful bonds between glass, metal, wood or plastic.

Write for complete information on the use of Epon resins in protective enamels, tool and die materials, etched circuit laminates, transformer and motor sealing compounds.

Section of magnetic amplifier coils embedded in Epon resin by Westinghouse Electric Corporation, Pittsburgh, Pa.

Potting transformer with Epon resin at PCA Electronics, Inc., Santa Monica, Calif.
Contents

Vol. 5, No. 19
October 1, 1957

High Speed Indexing Clutch (Cover) ... 34
Editorial .. 4
Engineering Review .. 5
Washington Report .. 14
Features
Principles of Filtering—I, L. S. Schwartz 20
Transistor Switching Circuits, M. Smith 24
Solderable Magnet Wire, R. Hall .. 32
High Speed Indexing Clutch ... 34
Variable Mercury Delay Line Simulates TV Flutter, C. F. Brockelsby 36
Power Tetrode Transistor ... 40
Slide Rule for Filter Design, R. Davidson 42
A Solid Electrolyte Battery, B. F. Wagner 44

Background for Designers
Frequency Spectra for Pulse Type Waveforms, E. Brenner 28
Measurement of Capacitor Insulation Resistance, T. F. Richardson, Jr. 48

Russian Translations
High Frequency Transistor Oscillator, J. G. Adashko 98
What The Russians Are Writing .. 102

Abstracts
Quartz Crystal Parameters .. 106
Machine Solution of Higher Order Polynomials 108
Noise in Magnetic Tape .. 109
Low Noise Klystron ... 110
Mm Wave Source ... 114

Departments
Meetings ... 16
New Products .. 52
Production Products ... 78
New Literature .. 82
Report Briefs ... 90
Patents .. 94
Books ... 96
Standards & Specs ... 116
Careers ... 117
Advertisers' Index .. 122

Meet all requirements for speed and convenience in processing large quantities of digital data

The Potter Model 905 is the result of the most extensive study of data-processing requirements. It combines high speed with complete reliability and easy accessibility to all wiring and parts. The Potter machined bronze head with precisely aligned gaps provides dimensional stability and minimizes digital drop-outs caused by oxide pickup.

Tape widths:
- A - ⅛" (2 or 3 channels)
- B - ¼" (6 or 7 channels)
- C - ⅜" (up to 8 channels)
- D - ¼" (up to 10 channels)
- E - 1" (up to 13 channels)
- F - 1¼" (up to 15 channels)

Speed combinations:
- A - 5 millisecond
- B - 10 millisecond
- C - 20 millisecond
- D - 40 millisecond
- E - 100 millisecond
- F - 150 millisecond

Start time: 3 milliseconds
Stop time: 3 milliseconds
Reel sizes: 8" or 10½" standard NAB reels. Adaptors for other types can be provided.
Control: Front panel pushbuttons or remote control contact closure and pulses.
Weight: 100 pounds
Dimensions: Panel, width...19"; height...24½"
Depth behind panel...13½"
Depth in front of panel...3½"

Power Requirements: 110 to 120 volts, 60 cps, 400 watts.

For more information, write, wire or phone your Potter representative or the factory.
Designed for Computers
Made for Computers
Tested for Computers
Dependable in Computers

RAYTHEON RELIABLE COMPUTER TRANSISTORS

in the JETEC 30 package

Reliability must be designed and built into computer transistors. It cannot be obtained by selection.

Raytheon Computer Transistors were developed under Signal Corps contract and are manufactured especially for computer service, on a separate production line. They are backed by five years of experience in the mass production and quality control of Raytheon Fusion-Alloy Transistors.

Maximum stability is guaranteed by rigid test procedures including strict process control, 100°C baking of every transistor, 100% steam cycling to assure positive hermetic sealing.

When you specify Raytheon Computer Transistors you are also assured of:

- **HIGH VOLTAGE RATINGS**
- **HIGH CURRENT GAIN**
- **LOW SATURATION RESISTANCE**
- **FAST SWITCHING SPEED**

Here are the electrical specifications for Raytheon PNP Computer Transistors

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions (25°C)</th>
<th>2N425</th>
<th>2N426</th>
<th>2N427</th>
<th>2N428</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVPT</td>
<td>volts</td>
<td>-30</td>
<td>-50</td>
<td>-25</td>
<td>-45</td>
</tr>
<tr>
<td>Vce</td>
<td>volts</td>
<td>-0.35</td>
<td>-0.45</td>
<td>-0.35</td>
<td>-0.45</td>
</tr>
<tr>
<td>Ic</td>
<td>mA</td>
<td>0.3</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Ic</td>
<td>mA</td>
<td>1.6</td>
<td>2.5</td>
<td>1.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Ic</td>
<td>mA</td>
<td>3.2</td>
<td>4.0</td>
<td>3.2</td>
<td>4.0</td>
</tr>
<tr>
<td>Switching Speeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t<sub>9</sub></td>
<td>µsec</td>
<td>0.45</td>
<td>0.55</td>
<td>0.35</td>
<td>0.55</td>
</tr>
</tbody>
</table>

For all types: I_{c (max)} = 600mA, average I_{c (max)} = 1000mA peak

Dissipation coefficient in free air = 0.6°C/mW
Dissipation coefficient with radiator = 0.2°C/mW
Dissipation coefficient with infinite sink = 0.18°C/mW

Editorial

Cutbacks, the Handwriting on the Wall

The engineering shortage seemed to vaporize with the recent cancellation of a few military orders and cutbacks in overtime. There actually are engineers around without a job. The more apprehensive one is even listing themselves with employment agencies. A few short months ago no engineer would consider paying a fee for a job and agencies were hungry for applicants.

Many a young engineer has probably recently experienced an anxiety that heretofore was so remote that it was nonexistent or unreal. Is there a job for me? Since the war, and up until now, engineers have been particularly blessed with regard to job security or employment opportunity. Hundreds of non-engineering people have not had such peace of mind. Most routine white collar workers, not to mention shop personnel, have always been haunted with the fear of being laid off.

For the really bright and adaptable man, these specters of harder times are pretty dim. Employers are still glib about the demand for good engineers. Assuming all engineers are bright, adaptability is an clue to future job contentment. Discounting personality factors (which, of course, can't be in the over-all picture), broad experience is what makes a man adaptable to necessary change.

In general, we can say, those who know that their particular experience, skill, or knowledge can be easily duplicated by others, perhaps by those more youthful and aggressive, are the most vulnerable. In electronics, the young man in a hurry who has gone from coast to coast and has one paying job to the next with a maximum tenure of less than ten months is in the most untenable spot. He can hardly prove that his experience is adequate to complete anything if completely on his own.

On the other hand, a person with only one bit of specialized experience is also in a poor position job security-wise. The market for his specialized knowledge may disappear overnight. If an engineer has been designing one class of transformer when only one manufacturer uses all his life, he may be the top expert in this category. He is valuable only to one company until someone designs out a need for a transformer.

Although company presidents and stockholders are those that have most stake in the face of cutbacks, the handwriting is on the wall for engineers. Be ready for new situations. Make sure your qualifications are diversified enough. Broaden your experience. Demand that your job assignments prepare you for tomorrow.—JAL
Spiral Travelling Wave Antenna

Interest in the travelling wave antenna in recent years, has been for applications in uhf point-to-point communications and fringe area television reception. A familiar example of such an antenna is the array of parallel rods, or Yagi antenna, often used for TV reception.

The power gain of the long Yagi antenna is a function of the overall length; doubling the length doubles the gain. There has, however, been a maximum practical length for these antennas in the past, determined by increasing difficulty in exciting the antenna when it becomes very long. This limitation can be removed by twisting the rods of the antenna gradually along the supporting axis, as shown in the photograph. With this technique, much longer antennas with consequently higher gains can be designed.

Experimental work, sponsored by Air Force Cambridge Research Center, in the Engineering Division of Stanford Research Institute, Menlo Park, Calif., has verified the expected behavior of a twisted Yagi antenna. The model shown in the photograph has a total length of 10 ft. and is a small scale replica of the final antenna.

Electricity From Gases Now Practical

The direct conversion of the chemical energy of gases into electricity, long a dream of scientists, and for years a laboratory curiosity, has been accomplished with the development of the first chemical fuel cell capable of economically producing thousands of watts of power. Using hydrogen and oxygen as fuel, the new silent source of power has been developed by scientists at the Research Laboratories of National Carbon Co., New York.

Present designs call for the grouping of a number of specially catalyzed, hollow porous carbon electrodes in a sealed cell containing a solution of potassium hydroxide as the electrolyte. Hydrogen and oxygen enter the cell through the hollow electrodes, and diffuse through porous carbon to the surface, where they come in contact with the electrolyte. At the hydrogen electrode, the electrochemical reaction with the potassium hydroxide...
New Raytheon CERAMIC SEALING PROCESS gives you 7 major advantages

The unique Raytheon sealing process applied to Raytheon R-95 High-Alumina Ceramic makes possible these 7 advances:

1. Reliable vacuum tight ceramic-to-metal seals
2. Ceramic output windows transparent to microwave energy and capable of passing high peak power
3. Close tolerance assemblies
4. Oxide-free metal components
5. High temperature processing in reducing atmosphere
6. Multiple simultaneous braze joints; subsequent braze joints closely adjacent
7. 700°C exhaust temperatures

Raytheon will supply ceramic parts manufactured from R-95 High Alumina either alone or as hermetic ceramic-to-metal assemblies in accordance with your specifications. The assemblies can subsequently be soft or hard soldered into your production in your own plant.

We will be pleased to supply information and help on any of your needs. Simply provide us with sketches or drawings showing dimensions and tolerances, together with operational conditions. Write for complete specification sheet—there's no cost or obligation.

Engineering Review

produces water and releases an electron that enters the electrical circuit. The electron flows through the external circuit, and returns to the cell at the oxygen electrode. In the electrochemical reaction of the oxygen and the electrolyte, the electron is accepted. Ionic conductivity through the electrolyte completes the circuit.

A concentric tube design has also been developed, in which one electrode tube nestles within the other, with the electrode in between the two. The tubes are made long enough to give the proper cell volume for the current desired.

The general efficiency of the cell ranges from 65 to 80 per cent when operated at normal pressures and temperatures. At lower currents, a greater percentage of the chemical energy is converted to electrical energy. Research to date indicates that the optimum fuel cell design will be one which will produce approximately one kilowatt of power from a packaged unit one cubic foot in volume. The voltage developed across the electrodes of the cell is about one volt and any voltage can be obtained by connecting many cells in parallel.

A future consideration for the fuel cell is in conjunction with the utilization of solar energy. One of the problems in harnessing the energy of the sun is the storage of power. During sunny periods, the energy of the sun could be used to decompose water into hydrogen and oxygen, for later use in the chemical cell.

Missile Data Display

A final visual check of missile performance immediately prior to flight is possible with a new 21-in. screen display developed by Electronic Control Systems, Inc., an affiliate of Stromberg-Carlson Division, General Dynamics Corp., 2136 Westwood Blvd., Los Angeles, Calif. The system satisfies the need for a quick look at telemetering operation before making the final launching decision. The unit provides a display of 7 or more mutated data channels.
A new acoustico-thermal laboratory, designed to aid engineers in lowering sound levels and examining thermal characteristics of transformers, has been added to existing facilities at General Electric's Medium Transformer Dept., Rome, Ga. It will be used to test both dry-type and liquid-filled transformers with ratings up to 10,000 kva.

For thermal tests, heat can be removed from the 2250-sq.-ft test chamber at the rate of 2000 BTU per min without a draft. Accurate testing of transformer sound characteristics down to 40 db is also possible. Heavy masonry construction excludes extraneous external noises to help insure low ambient sound, and serrated acoustical insulation in the form of glass fiber bats prevents internal sound reflection. Doors are pneumatically-sealed. Exhaust fans and a duct system make possible the draftless removal of 2000 BTU per min to prevent gradual ambient temperature rise during thermal tests.

A regulating autotransformer—composed of an induction regulator and an autotransformer—provides precisely-regulated power and insures good wave form and the wide range of volt/amp combinations required for experimental testing. A springless flächer on which transformers may remain during testing provides efficient transfer of units from the manufacturing area into the 33-ft-high anechoic test chamber.

Defamed and Over-Vaulted VTVM's

Both vendors and competitors have pointed out minor errors and discrepancies in our VTVM survey—Part 1, ED Aug. 15. Discrepancies have arisen because in some cases sensitivities and not full scale ranges were tabulated.

The second-mentioned General Radio instrument is Model 1503B. Its lowest full scale range on ac and dc is 1.5 v.

Metronix Model 571 lowest full scale range is 1 v for both ac and dc.

Correct information for the DuMont type 405 is as follows: On dc scales, input impedance is 121 kohms not 21. Resistance ranges are 7 in number, not 8. The ac frequency range is 50 cps to 700 mc and 1 db of response curve. The tube complement is completely in error. The accessories provided are: probe tips and probe tips for frequency response curves. Available are, one additional ac probe, retractable tip and high frequency connector. The circuit design features are dual null output, off ground operation for difference voltage measurements, amplifier output jack, and regulated a quartz power supply.

For those of you who looked for and didn't find a specific particular model that you were familiar with, remember the list was intended as a representative selection of models offered by a manufacturer.

Acoustico-Thermal Laboratory

Perkin has developed Magnetic Amplifier Regulated DC Power Supplies for missile launching and check-out, with ratings of 100, 100, 200, 300, 400, 500 amperes and above. The unit shown here is a 24-32v, 100 amp, unit, 19" rack panel mount, with a regulation of ±5% over the range of 24-32 volts. There are provisions for remote operation and service. Perkin wound power supplies are now being used in the Thor, Atlas, Bomar, Vanguard and other missile programs.

Perkin has designed and manufactured over 8,000 units operating in Military and Commercial Radar Systems. 6, 7, 9, 10, 11, 10 kV and other ratings can be designed for your specific mechanical and space configurations. Typical 6KV specifications are: AC Input – 100-120V, 200-240 err

Perkin airborne power supplies more than meet all military specifications MIL-E-4152A and MIL-E-7115. The use of silicon rectifiers provides a much more compact package with higher efficiency ratings and longer life expectancy. The unit illustrated provides 27.5 volts DC (26 to 30 volt range), 20 amperes continuous duty. The input is 115/200V AC, 3-phase, frequency range 400 CPS ±6 CPS. The regulation is less than ±0.5 volts.

Perkin has developed Magnetic Amplifier Regulated DC Power Supplies for missile launching and check-out, with ratings of 100, 100, 200, 300, 400, 500 amperes and above. The unit shown here is a 24-32v, 100 amp, unit, 19" rack panel mount, with a regulation of ±5% over the range of 24-32 volts. There are provisions for remote operation and service. Perkin wound power supplies are now being used in the Thor, Atlas, Bomar, Vanguard and other missile programs.

Perkin has designed and manufactured over 8,000 units operating in Military and Commercial Radar Systems. 6, 7, 9, 10, 11, 10 kV and other ratings can be designed for your specific mechanical and space configurations. Typical 6KV specifications are: AC Input – 100-120V, 200-240 err

Perkin airborne power supplies more than meet all military specifications MIL-E-4152A and MIL-E-7115. The use of silicon rectifiers provides a much more compact package with higher efficiency ratings and longer life expectancy. The unit illustrated provides 27.5 volts DC (26 to 30 volt range), 20 amperes continuous duty. The input is 115/200V AC, 3-phase, frequency range 400 CPS ±6 CPS. The regulation is less than ±0.5 volts.
PHILCO Silicon Transistors

With Their Outstanding Advantages

Unmatched performance and reliability! Characteristics assured by extensive life tests under typical operating conditions. Philco PNP Silicon Transistors make practical complete transistorization of military and commercial circuits—where high ambient temperatures are encountered.

Philco Silicon Transistors are in production and immediately available. Specify Type 2N354 for amplifier, oscillator and low level general purpose applications and Type 2N355 for high speed switching.

FEATURES
- HIGH TEMPERATURE PERFORMANCE • VERY LOW LEAKAGE CURRENT • HIGH SPEED • SUITABLE FOR DIRECT COUPLING
- LOW SATURATION VOLTAGE • ABSOLUTE HERMETIC SEAL

Make Philco your prime source of information on Silicon Transistor Applications.

Write to Dept. ED, Lansdale Tube Company Division, Lansdale, Penna.

PHILCO CORPORATION
LANSDALE TUBE COMPANY DIVISION
LANSDALE, PENNSYLVANIA

Engineering Review

Brain With Vocal Cords

A voice data link system has been designed which can convert automatic commands from computing machines into verbal messages. The basic system consists of vocabulary storage, word sequence control, programmed sampler and input control units. Combined with an air defense electronic data processing system such as SAGE, the Link can provide fully automatic guidance control of aircraft using existing communication facilities.

The stored vocabulary contains all of the words necessary to command an aircraft on an intercept mission. The best course and altitude for an intercept is computed; the Link transforms this information into the form of a verbal message which can be transmitted to the aircraft using the standard voice channel transmitter. As a multilingual communicator at international air facilities, stored vocabularies in many languages can be utilized by a controller or tower operator who himself may be limited to his native tongue. The word storage unit consists of a rotating magnetic drum and set of recording-playback heads.

A basic message format is set up within the Link system so that control signals are required only for the variable parameters within the formats.

Any number of message formats and message lengths may be obtained by proper programming of the system. The choice of sequential and/or repetitive messages can be controlled by either manual or automatic means.

The system was designed by Fairchild Controls Corp., Syosset, N.Y.

Germanium Unaffected by Same-Valence Impurities

Experimental evidence recently obtained at Bell Telephone Labs indicates that impurities with the same number of valence electrons as germanium would act as neither donors nor acceptors if present in germanium.

Working with tin and germanium, both of which had been highly purified by Bell's zone refining process (see Sept. 15 issue of ELECTRON管 DESIGN, p. 5), single crystals of get...
mumium containing tin at concentrations greater than 10^{19} to 10^{20} atoms per cm2 were obtained. These crystals exhibited room-temperature resistivities of 30 to 50 ohm-cm, practically the same as ultrapure germanium. The long lifetimes in these crystals, as high as 100 to 200 µsec, also indicate that tin atoms definitely are not effective hole-electron recombination centers.

Germanium crystals containing several hundredths of an atom per cent tin were grown by the pulling technique from melts containing the appropriate percentage of tin. For a higher tin concentration germanium was dissolved in tin at a given temperature and precipitated or grown on a seed crystal at a lower temperature, which may be several hundred degrees below the melting point of germanium.

Chemical analysis of the crystals grown by the latter method, after dissolving excess tin, showed a solid solubility of tin in germanium as high as one atom per cent. Precise x-ray measurements of the lattice constant showed the tin is in solid solution.

Magnetic Core Memory
A magnetic core memory unit, comprising 16,384 magnetic cores and claimed to be the largest ever assembled in one piece, is intended for use in a 1000 channel kicksorter for Atomic Energy of Canada Limited. The cores are threaded on fine insulated wires and four wires pass through each core. Two of them pass as straight lines from each side of the tray to the other, while the other two cores are threaded in an intricate zig-zag path through the cores.

By selecting an appropriate pair of wires, it is possible to choose any particular core out of the 16,384, and store a specific piece of information in it. The memory was assembled by Computing Devices of Canada Limited, Ottawa, Canada.

Correction: The Insulation Tester manufactured by Peschel Electronics, Inc., 43 Garden St., New Rochelle, N.Y. has a testing speed of 4000 ft per min. The speed erroneously appeared on page 61 of the July 15 issue at 400 ft per min.

CIRCLE 6 ON READER-SERVICE CARD >

Hook-up wire of TEFLON® specified for environmental test equipment

Both insulating and mechanical properties of TEFLON tetrafluoroethylene resins are important in "Press-Fit" test-point jacks developed by the Sealctro Corporation of Mamaroneck, N.Y. The high dielectric strength of TEFLON resins permits insertion into standard metallic panel boards. Mounting hardware and special seals are eliminated. The terminals are press-fitted into drilled or punched holes. Yield and recovery characteristics of the tough material assure a tight, permanent fit in the board and snug mounting of the beryllium-copper contacts. Since TEFLON resins have an extremely low coefficient of friction, the terminals may be inserted easily. For color-coding purposes, the jacks are made with colored TEFLON resins in the standard eight RETMA colors. Companion plugs are also available.

Registered trademark, Sealctro Corporation

Du Pont TEFLON resins can do jobs no other insulating material can do. To investigate the scope of their electronic use more fully, send the coupon.

FIFTY-ONE WIRES are connected to a test equipment receptacle. Miniaturization is often made possible by TEFLON resins.

Send for Information
For additional property and application data on Du Pont TEFLON tetrafluoroethylene resins, mail this coupon.

E. I. du Pont de Nemours & Co. (Inc.), Polychemicals Dept., Room 1810, Du Pont Building, Wilmington 98, Delaware
Please send me more information on Du Pont TEFLON tetrafluoroethylene resins. I am interested in evaluating TEFLON for

Name

Company

Position

Street

City

State

Type of Business

In Canada: Du Pont Company of Canada (1956) Limited, P.O. Box 660, Montreal, Quebec
Engineering Review

Computer Translates Four Languages

An electronic computer has been programmed to interpret four foreign languages and automatically type out idiomatic English translations. The computer, ElectroData's Dataron, does not merely produce a word-for-word record, but correctly renders the thought or sense behind each foreign phrase.

The development came from Peter Toma of the California Institute of Technology who transmitted to the magnetic memory drum four specially-condensed dictionaries of Russian, French, German and Spanish. These had been punched on paper tape in numerical computer language, along with instructions telling Dataron how it should go about translating. The computer, which adds or subtracts at the rate of 30,000 numbers a minute, electronically converts the code into alphabetic characters, and compares various semantic and logical patterns with the pre-stored glossaries. Toma's dictionaries comprise about 500 words each. They can be easily retained on Dataron's high-speed internal memory drum, with a capacity for 40,800 digits.

Single-Crystal Ferrites

Techniques to produce uniform, single-crystal ferrite magnetic units are being developed at the Naval Ordnance Lab., Silver Spring, Md. The investigation is in connection with production of jewel-like crystals to serve as memory units in missile guidance systems or computers and in uhf communications equipment.

The reason for the endeavor is that single-crystal units behave better than poly-crystal units. Most crystalline solids found in nature consist of a large number of crystal units arranged at random. In looking at the total specimen any directionized properties that are characteristic of the unit are obscured. A single crystal, on the other hand, has all its units lined up and oriented in the same direction. Therefore it readily can be analyzed to discover the properties necessary for an understanding of the fundamental nature of its magnetism.

There are a number of methods of growing crystals, the most common of which is by preparing a supersaturated solution at about 100 C. When the solution cools slowly a crystal forms. Copper sulfates and rochelle salts are examples of crystals that can be prepared in this way. Another method makes use of the characteristic of some chemicals to sublime or change from a solid to a gas without going through the liquid state. When the gas is condensed, crystals form. The method used most extensively is NOL, the flame fusion process, which despite relative antiquity remains the most practical method.

for interchangeable new Heinemann Series

Flying with such top-performance aircraft as the Lockheed F-104, Heinemann's new AM17 circuit breaker has demonstrated perfect reliability on both sides of the sonic barrier.

Hydraulic-magnetic operation makes the AM17 a stable performer through widely varying ambient temperature conditions. No de-rating, no compensation for temperure or vibration necessary.

Designed for interchangeable use on 400-cycle or DC service, and produced to military specs, the AM17 may well be the one circuit breaker for all your electrical and electronic protection requirements.

Complete specifications, including time-delay characteristics, are given in Bulletin T-3302. Send for a copy.

Single-pole AM17's may be readily ganged in the field for two- and three-pole Companion-Trip applications.
for producing both ferrous and nonferrous metal oxide crystals. The method, however, is a rapid and non-equilibrium process wherein the technician growing crystals does not control the gases involved in the seeding procedure. The attempt is now being made to find a better source of melting that does not involve flame and resultant oxidization of some of the material. It is believed that melting might be done electrically to avoid the drawbacks in the flame fusion process.

Incidental by-products of the quest for better magnetic crystals have included excellent synthetic sapphires made from aluminum oxide powder. Emeralds, rubies and other fine synthetics likewise can be grown. No attempt has been made at producing carbon products, such as diamonds, since work has been confined to aluminum oxide and the oxides of the transition elements iron, chromium, cobalt, manganese and nickel.

Wobbled Image Prolongs TV Camera Life

A device about the size of a cigar box, which looks on the outside of a television camera, is expected to double the life of costly picture originating tubes. The device, as yet unnamed by General Electric Company's Technical Products Dept., Syracuse, N.Y., is described as an image-orthicon life extender, and is expected to be a major innovation for TV broadcasters. It prevents burn-in and sticking of images on image orthicon tubes, and therefore makes frequent replacement of these expensive tubes unnecessary. In tests conducted at WSM-TV, the device enabled an I-O tube to be used effectively on one camera for more than 1400 hr. On another camera, an I-O tube previously discarded at 700 hr as totally useless has clocked more than 1200 hr of effective use.

The principle of the device is an electron deflecting system used to move or wobble the TV image inside the I-O tube, and thus avoiding burn-in or sticking. To offset the wobble, a scanning beam inside the tube follows and automatically compensates the wobble, causing the transmitted picture to appear as a normal stationary image on home TV viewers. The complete unit comprises about 50 components, including six capacitors, a synchronous resolver and a drive motor.

The unit is also expected to improve studio camera techniques. Usually, while one camera is transmitting, the other is focused on the scene to follow work is alive but not on the air. Prior to development of the unit, the cameraman on the second camera was required to keep moving his camera to prevent denuding the image of any stickiness of the scene to be televised. Since this will no longer be necessary, he can spend more time studying camera angles and improving his method techniques with no danger of burn-in.

Single-turn, variable-phasing precision potentiometers meeting A.I.A. electrical and mechanical specifications. Five sizes in wide range of resistance values and output functions—\(\frac{3}{4} \), \(\frac{1}{2} \), \(\frac{3}{4} \), 2" and 3" diameters. Available as single or gang assemblies. Various mountings and bearings available.

SEND US YOUR REQUIREMENTS!
Automatic Component Testing

Experimental electronic components are being tested with the Life Test and Data Recording Rack for electron tubes, transistors, and crystal diodes at Wright Air Development Center, Dayton, Ohio. The machine has 8 specimen racks, each containing 100 sockets into which the components are inserted. Four test points are provided for each socket. Tests lasting as long as 1000 hours can be conducted without further attention by the operator and the results are automatically recorded.

When set on automatic, the control console will give accurate readings on all 800 specimens at the rate of less than 10 sec per specimen. At any time the manual control can be switched on and a reading taken on a particular specimen.

The test racks are housed in twelve cabinets, approximately 7 ft. high, 2 ft. wide, and 18 in. deep. Eight of these are specimen racks. The controls and electric typewriter are on a desk-like control console. Special environmental chambers for heat, vibration, and altitude tests are being installed to permit complete environmental and age testing of the components without their removal from fixtures.

3-D Color TV

The first closed-circuit three-dimensional color television system has been developed for remote servicing of reactors used in development of a nuclear aircraft propulsion system. The color stereo system was designed by the General Electric General Engineering Lab., Schenectady 5, N.Y. to permit use of color-coded parts in reactor components and to provide the degree of precise depth perception required for their correct positioning.

The observer's viewpoint is effectively transferred to that of a camera equipped with a dual-optical system having perspective similar to that of the two eyes of the observer. However, instead of presenting the pictorial image to two sensitive surfaces, as the human eyes do, the stereo-TV system presents two images to a single sensitive surface, a television tube, on a time-sharing basis. The frequency of the time sharing is at the picture rate of the television system, in this case 90 pictures a second. By alternating 45 pictures a second for each eye, engineers have eliminated any objectionable flicker. A rotating shutter in the color-TV camera alternately transmits the scene as viewed from two points to the camera's tube. The distance between the two points corresponds approximately to twice the distance between a person's eyes.

Sperry's Microwave Electronics Division provides a unique service: Developing and producing special radar subsystems and components for the electronic industry.

- Microline® equipment ranges from single miniaturized components to complete microwave systems—together with complex antennas, precision test equipment, and automatic checkout instrumentation. Whether your immediate need is for one component or for the complete line, we will be happy to discuss your problem with you.
In the viewing console, light from the television image formed on the cathode-ray tube passes through a drum composed of alternate segments of polarizing filters with axes of polarization at right angles to each other. The drum revolves in synchronism with the television frame rate of the camera and polarizes alternate frames vertically and horizontally. Thus, all left-eye pictures are polarized in one direction and all right-eye pictures are polarized in the other direction. An observer viewing the screen, with his polarized spectacles, sees the left optical path with his left eye and the right optical path with the right. The 45-frame-per-sec rate gives him stereo-vision without an objectionable flicker.

Solar Camera: The energy of solar or light rays sets the lens of this 8 mm electric eye camera. Completely automatic, the camera has an electric eye which sets the lens for correct exposure and continually adjusts to changing light. Developed by Bell and Howell, the unit requires no batteries, motor or spring for the automatic exposure control. The light rays striking the photoelectric cell (through the rectangular honeycomb lens at the bottom of the front plate) generate the electricity, which opens and closes the lens iris. An amber exposure beacon glows as long as there is sufficient light for movie making. It turns black to warn the movie maker that the light is inadequate. A needle pointer indicates the f/stop at which the lens is set when the camera is operated automatically. When the dial below the needle pointer is turned to "manual" the automatic exposure control is de-activated and the lens can be set for under- or over-exposure.
FUSITE V-24 Solid Glass Terminals
Help Relays Shrug Off VIBRATION and SHOCK

After exhaustive tests to determine which type of terminal could best absorb the punishment of vibration and shock, the North Electric Co. selected the Fusite Terminals illustrated in these two relays.

Because Fusite Terminals combine the advantages of both compression and glass-to-metal interstitiality the pins stay secure through punishing production processing and tortuous airborne applications.

Hundreds of electrical components (including these North Relays) are meeting MIL-R-5757C with the help of our rugged hermetic seals.

Fusite smells its own special grades of glass and maintains developmental engineering service.

Send for the Fusite catalog of standard terminals or forward a print of your custom terminal needs.

Write: FUSITE, Dept. L-4

THE FUSITE CORPORATION

6026 FERNVIEW AVE., CINCINNATI 13, OHIO

WASHINGTON REPORT

Herbert H. Rosen

New Faces—Old Problems

After 4-1/2 years at the helm, Charles E. Wilson has retired from his post of Secretary of Defense. It has been a stormy period, climaxied by the long-anticipated but, paradoxically, unexpected parsimony in defense spending. His successor, Neil McElroy, faces problems, the magnitude of which he has never experienced in his business life. The former Procter & Gamble president will be operating a 4-million man organization with a $38 billion budget. In all his 32 years with P & G, McElroy has never had to face the rivalries, confusion, and conflict characterizing the Department of Defense. He will have to call on all his prowess as a public relations expert to solve merely the personnel problems of his chief advisors.

Starting in August, the Joint Chiefs of Staff had a new chairman, Gen. Nathan Twining. How well the former Air Force Chief can assume the role of impartial arbiter between the three services is the big Washington question. Naturally, it will be difficult for him to bend away from the Air Force in the tight squabbles the Joint Chiefs have been keeping away from the public eye under Admiral Radford.

In the civilian hierarchy, McElroy will be meeting a brand new Assistant Secretary of Defense for Research and Engineering. He is Dr. Paul D. Foote. The 69-year-old Dr. Foote has been working at the Pentagon for the past few months as a consultant. In fact, many of the problems formerly solved by Frank Newbury have been passed on to Dr. Foote. The new assistant secretary is reported to be a specialist in magnetic optics, pyrometry, atomic structure, radiation, and petroleum recovery. He retired from the Gulf Oil Company in 1953 after reaching the position of Executive Vice President and member of the Board of Gulf’s R & D company.

For the future, we can look to the old cliché about the new broom sweeping clean—except this time he’s brought his own soap.

Radar Basic Design Patent Awarded

The U.S. Patent Office has awarded Patent 2902819—Object Locating System—to Col. William R. Blair (U.S.A. Ret.). The claims contained in the patent virtually blanket all of the basic ideas inherent in the pulse-echo type of radio ranging and detection. The award effectively names Col. Blair the “father of radar.” According to the Signal Corps, the patent is
as important and far-reaching in its military applications as the first U.S. patent issued on the telephone to commercial communications." The interest shown by the Signal Corps is manifested in the fact that its attorneys have been handling the litigation surrounding the award for the past 12 years.

Blair dates his claims back to the late 1920's, when he was working on optical-aural sensing projects for the Signal Corps. Practical work on radio ranging and detecting began in the '30's, while Blair was director of the Signal Corps Laboratories. (He retired in 1938.) His laboratory notes show that besides concept, the Colonel also designed circuits for his sensing system.

The project was allotted little money—less than $10,000 over several years. A laboratory model was finally built that, in its completed form, strongly resembled the World War II version of the SCR 268. Blair and the Signal Corps officially unveiled the development to War Department officers and members of Congress early in 1937. As a result of this disclosure, an additional $75,000 was allotted to continue the work. Before the war was over, it is estimated that about $3 billion was spent on the radar techniques that grew out of Blair's basic designs.

Application for the basic patent was made the day after World War II ended in Europe, on June 7, 1945. Throughout the 12 years of litigation, it was opposed by the Navy Department, IT&T, Sperry, Raytheon, RCA, and others. They brought to the attention of the Patent Office certain areas thought to be infringing on and interfering with their own patents. In all cases of basic concept, the Patent Office ruled in favor of Blair.

One additional quirk in the patent law had to be overcome. The law prescribes that an application for patent must be made within one year after public disclosure. By 1945, radar was well known, at least in broad principle. However, the 81st Congress passed a private bill, which absolved the prior publication covenant for William R. Blair.

However, since the development came about in a Signal Corps laboratory, the Government has been granted a royalty-free license on the patent right. On the other hand, industry is in a much different position. Blair can now extract "reasonable" royalties on all electronic equipment incorporating his basic ideas. This includes almost all of the radar equipment manufactured for civil use. Also, it could mean some applications of radar—cooking, for one—would be affected by this situation.

But Blair may also be facing a series of court actions reminiscent of the trials and tribulations Major Armstrong went through in validating his FM patent rights. Blair's attorney, however, feels confident that any action placed before them can be won over. If this is the case, Blair has some 17 years before him.
when you have ken

you can!

ESC Has the Know-How and Experience Required to Produce Custom-Built Delay Lines to Your Exacting Specifications.

1st in sales!
1st company devoted exclusively to the manufacture of delay lines!
1st in research, design and development of custom-built delay lines!

Ken—vision, knowledge, perception... as, ESC has the ken to produce the finest custom-built delay lines in use today.

Exceptional employment opportunities for engineers experienced in pulse techniques.

CORPORATION

534 Bergen Boulevard, Palisades Park, New Jersey

CIRCLE 12 ON READER-SERVICE CARD FOR MORE INFORMATION

Meetings

Oct. 7-9 NEC

Sponsored by American Institute of Electrical Engineers, Illinois Institute of Technology, Institute of Radio Engineers, Northwestern University and University of Illinois. Sessions on the following topics are scheduled:

- **Monday a.m., Oct. 7**
 - (1) Transistor Circuits; (2) Communications; (3) Servomechanism Applications; (4) Audio;

- **Monday p.m., Oct. 7**
 - (5) Semiconductor Devices; (6) Microwaves; (7) Circuits; (8) Radio Astronomy (Tutorial Session);

- **Tuesday a.m., Oct. 8**
 - (9) Transistors and Transistor Applications; (10) Microwaves II; (11) Components I; (12) Servomechanism Theory;

- **Tuesday p.m., Oct. 8**
 - (13) Solid State (Tutorial Session); (14) Computers; (15) Components II; (16) Radar and Radio Navigation;

- **Wednesday a.m., Oct. 9**
 - (17) Instrumentation I; (18) Electron Tubes I; (19) Circuit Theory; (20) Magnetic Amplifiers;

- **Wednesday p.m., Oct. 9**
 - (21) Instrumentation II; (22) Electron Tubes II; (23) Network Synthesis.

Oct. 7-9: 1957 International Systems Meeting

Statler Hotel, Los Angeles, Calif. Sponsored by the Systems and Procedures Association of America. The program will consist of panels, seminars, round table discussions, equipment exhibits, demonstrations, case studies, general sessions, illustrated lectures and study groups. The sessions will cover such subjects as systems survey, analysis, procedures, printed forms, electronic systems, organization analysis, systems and management, records management, work simplification and other techniques. For further information, write to the Systems and Procedures Association of America, 629 S. Hill St., Los Angeles 14, Calif.

Oct. 7-11: Fall General Meeting of the American Institute of Electrical Engineers

Hotel Morrison, Chicago, Ill. The technical program will consist of more than 50 sessions devoted to the latest advances in electrical engineering and allied arts. Nuclear reactors, telegraph systems, research, ethics, television and aural broadcasting, basic science, safety, computing devices, land transportation, power generation, transmission and distribution, system engineering, computers, mining and metal industry, radio, and the chemical industry are some of the subjects being covered. For details write to the AIEE, 33 W. 39th St., New York, N.Y.
Oct. 8: Isocyanate Symposium

Curtis Hotel, Minneapolis, Minn. Sponsored by the Upper Midwest Section of the SPE. Among the papers to be read are “A Comparison of Properties Between Polyester and Polyether Based Isocyanate Foams” and “High Temperature Urethanes.” For details write the Society of Plastics Engineers, Inc., 81 E. Putnam Ave., Suite 116-118, Greenwich, Conn.

Oct. 8-12: 1957 Convention of the Audio Engineering Society

New York Trade Show Bldg., New York, N.Y. Between 50 and 60 papers will be presented. Covered will be topics in such fields as disc and tape recording, reception, components and systems, noise control and acoustics. The New York High Fidelity Show, sponsored by the Institute of High Fidelity, will accompany the Convention. More information may be obtained from G. K. Dahl, 230 West 41st St., New York 36, N.Y.

Oct. 9-11: Fourth National Symposium on Vacuum Technology

Hotel Somerset, Boston, Mass. Sponsored by the Committee on Vacuum Techniques. Approximately 25 pages will be presented covering fundamental advances in vacuum technique, means of producing, measuring and conducting low pressures, and advances in applications of vacuum to processing. For further information, write the Committee on Vacuum Techniques, Box 1282, Boston 9, Mass.

Hotel Statler, Los Angeles, Calif. Sponsored by the Army and Navy. For more information send to the News Bureau, Bell Helicopter Corp., P.O. Box 482, Ft. Worth, Tex.

Oct. 16-18: 1957 IRE Canadian Convention and Exposition

Automotive Building, Exhibition Park, Toronto, Canada. Sponsored by the Canadian Sections of the IRE. For information write to Grant Smedmor, IRE Canadian Convention, 745 Mt. Pleasant Rd., Toronto 7, Canada.

Oct. 16-18: AIEE Conference on Computers in Control

Chalfonte and Haddon Hall Hotels, Atlantic City, N.J. Sponsored by the AIEE Committee on Feedback Control Systems. The conference will stress the role of analog and digital computers in automatic control, both as design tools and as components of systems. For more information, write Prof. J. G. Truxal, Dept. of Electrical Engineering, Polytechnic Institute of Brooklyn, 99 Livingston St., Brooklyn 1, N.Y.
Oct. 17: SPE Regional Technical Conference
Hotel Carter, Cleveland, Ohio. Sponsored by the Cleveland-Akron Section of the Society of Plastics Engineers. The theme for the sessions will be "Polyethylene—Properties and Uses." For details, write E. J. Haskins, Zenith Plastics Co., 1009 Rockwell Ave., Cleveland 14, Ohio.

Oct. 17-19: American Ceramic Society, West Coast Convention (Electrical Symposium)
Sheraton-Palace Hotel, San Francisco, California. Sessions that would be of particular interest to the design engineer are “Electrical Ceramics,” “Special Purpose-Ceramics,” and “Alumina.”

Oct. 18-19: Second Annual Symposium on Digital Computers
O'Henry Hotel, Greensboro, N.C. Sponsored by the Piedmont Sub-Section of the North Carolina-Virginia Section of the IRE. “A Short, Short Course in Digital Computers” is the name given to the conference. Discussion topics will be digital computers, computer mathematics, storage devices and techniques, arithmetic units, input and output devices, column shift units, programmers, computer programming techniques, verifications, and digital computer applications. There will also be exhibits. For more information write M. L. Fox, Western Electric Co., Burlington, N.C.

Oct. 21-22: First National Symposium on Engineering Writing and Speech
Sheraton-McAlpin Hotel, New York, N.Y. Sponsored by the IRE Professional Group on Engineering Writing & Speech.
 Monday a.m., Oct. 21
 1. Engineering Writing is Different; 2. Tricks of the Trade; 3. When you Write for the Air Force.
 Monday p.m., Oct. 21
 Tuesday a.m., Oct. 22
 Tuesday p.m., Oct. 22
 1. What Magazine Are You Writing For?

Oct. 24-25: Fourth Annual Computer Applications Symposium
Hotel Sherman, Chicago, Ill. Sponsored by the Armour Research Foundation of Illinois Institute of Technology. Advances in automatic coding and new computers and applications will be stressed. Both management and engineering applications will be considered. More information may be obtained by writing the Secretary, Computer Applications Symposium, Armour Research Foundation, 10 W. 35th St., Chicago 16, Ill.

BRISTOL SYNCROVERTER* SWITCH

100 billion operations and they’re still going strong!

Syncroverter Choppers have run almost six years continuously at 400 and 600 cycles per second

That's the laboratory shelf-test record of a group of Bristol Syncroverter* Switches (above) that are being run at no load as a test for actual mechanical wear out. And they're still going strong!

These Syncroverter switches are predecessors of those being used in aircraft fire control systems, missiles, computers, electronic instruments, control systems, and many other electronic systems.

are dry circuits your problem?

If so, we believe we have the answer. Dry-circuit reliability and long life are outstanding features of the miniature Syncroverter chopper and high-speed polar relay. They are unaffected during severe shock and vibration and are available with the typical operating characteristics shown in the tables at right. They meet a wide variety of requirements. We'll be glad to discuss specific application problems with you.

NEW low-noise chopper available

The Bristol Syncroverter chopper is now offered in an exceptionally low-noise external coil model. Its external coil construction plus complete electrostatic shielding eliminates capacitive coupling between contact and coil leads. Peak-to-peak noise is less than 100 microvolts across 1 megohm impedance.

Write for complete data on the Bristol Syncroverter line.

CIRCLE 14 ON READER-SERVICE CARD FOR MORE INFORMATION

ELECTRONIC DESIGN • October 1, 1957
BRISTOL DYNAMASTER™
ELECTRONIC RECORDERS...for research and testing

high-speed (0.4 sec.) recorder
...accurately follows the rapidly changing variables found in dynamic testing procedures such as those used in wind tunnel research, rocket and jet engine testing, and scientific laboratory work. Maintains same high accuracy, sensitivity, and precision as conventional speed recorders.

These other precision instruments by Bristol can also help you in aircraft and missile testing and development projects:
- Dynamaster 2-pen Recorders
- Dynamaster Extended Range Recorders
- Dynamaster Function Plotters
- Dynamaster Adjustable Span Recorders

Ask us for complete data on these instruments today.

first true motor-driven self-balancing electronic potentiometer and bridge instruments in miniature size
Three-inch strip chart, full plug-in flexibility, 3/4 of 1% of scale accuracy, low dead band (0.15%), and high-torque motor-driven null-balancing are features of the Bristol Series 663 Dynamaster miniature instruments.

Plenty of motor torque for operating alarm contacts, retransmitting slide-wires, electric control contacts.

Bristol offers the widest selection of miniature plug-in instruments on the market—pneumatic, telemetering types; electronic self-balancing recorders, indicators. Find out about Bristol miniatures today!

BRISTOL MULTIPLE-SPLINE SOCKET SCREWS prove reliability in missiles, aircraft, electronic equipment
They meet the most exacting requirements for holding power against shock and vibration. The Bristol-originated Multiple-Spline socket allows these screws to be wrenched up exceptionally tight without danger of stripping the socket.

Bristol Multiple-Spline socket screws, both set and cap, are ideal for critical applications in aircraft, missiles and guidance equipment—like the famous NIKE (left)—communications and control equipment of all types—wherever ability to take extra wrenching torque is a factor.

Find out about them from your industrial distributor today.

Paper Deadlines
Nov. 1: Deadline for papers to be presented at the 1958 IRE National Convention. The convention will be held March 24-27 at the Waldorf-Astoria and the New York Coliseum, New York, N.Y. Prospective authors should submit a 100-word abstract and a 500-word summary. Both must be in triplicate with the title of the paper and the name and address of the author. The technical field in which the paper falls must also be indicated. Only papers not published or presented prior to the convention will be considered. Military or company clearance must be obtained before submittal. Address all material to Dr. George L. Haller, Chairman, 1958 Technical Program Committee, IRE, 1 E. 79th St., New York 21, N.Y.

Oct. 24-25: General Assembly of the Engineers' Council for Professional Development and the Engineers Joint Council
Statler Hotel, New York City. Subjects to be discussed are military service and professional development, the community college and technological education, the place of the engineer in industrial management, and new dimensions in post-graduate education for the young engineer. Further details may be obtained from either the Engineer's Council for Professional Development or the Engineers Joint Council, 29 W. 39th St., New York 18, N.Y.

Oct. 28-30: Fourth Annual Atomic Industry Conference
Plaza and Waldorf-Astoria Hotels and Coliseum, New York City. Sponsored by the Atomic Industrial Forum. For information write to AtomForum, 3 E 54th St., New York 22, N.Y.

Oct. 28-30: Fourth Annual East Coast Conference on Aeronautical and Navigational Electronics
Fifth Regiment Armory and the Lord Baltimore Hotel, Baltimore, Md. Sponsored by the Baltimore Section of the IRE and the Professional Group on Aeronautical and Navigational Electronics. Exhibits will be offered along with the technical sessions. For details write Clayton Knight, 3603 Howard Park Ave., Baltimore, Md.

Nov. 11-13: Third Annual Instrumentation Conference
Biltmore Hotel, Atlanta, Ga. The theme of this conference will be "Instrumentation for Data Handling" with special symposiums on electronic instrumentation as applied to medicine and the sales and purchasing aspects of electronic instrumentation. Papers should be submitted to Lamar Whittle, Federal Telecommunications Lab., 1389 Peachtree St., N.E., Atlanta, Ga. For more information write B. J. Dasher, School of Electrical Engineering, Georgia Institute of Technology, Atlanta, Ga.
Principles of Filtering – I

L. S. Schwartz
New York University

When the concept of minimizing the probability of error is applied to digital communication systems or to search radar, it is convenient to minimize the probability of error according to either one of two, equivalent approaches. The first approach is the criterion approach and consists in guessing whether the signal is present or not according to some criterion. In the course of guessing, the operator may make one of two kinds of errors. He may report the signal present when in fact it is not (called a false alarm), or he may report it as not present when, in fact, it is (called a miss).

The alternative to the criterion approach is to ask: what is the probability that a signal is present if a noise-corrupted wave form in the output of the receiver is assumed? The first approach involves the concept of likelihood directly, and the second the concept of likelihood indirectly, via inverse probability. By “likelihood” is meant the probability that the receiver will respond to signal plus noise rather than to noise alone. The optimum receiver is the one which selects the value of input signal which maximizes the likelihood.

Detection Problem

In the criterion method, the problem of detection is as follows. There are available N voltage samples which are known to have come either from a distribution of signal-plus-noise voltages or from a distribution of noise voltages alone. If the signal-and-noise properties are known, the probability density function of signal and noise and that of noise alone can be specified.

From knowledge of the density functions, it is possible to compute the probability that all the voltage samples came from the distribution of signal plus noise and the probability that they all came from the distribution of noise alone. The ratio of the first probability to the second is the best measure or likelihood that all samples came from the signal-plus-noise distribution. Any monotonically increasing function of this ratio gives an equally good significance test. A constant which the ratio must exceed in order to say that the samples came from the signal-plus-noise distribution is then picked arbitrarily.

This constant determines the false alarm rate. If the logarithm of the ratio of the probabilities is taken, it is seen that in the very important case of Gaussian noise at the input to the envelope detector, the measure or likelihood function indicates the following steps: to take the logarithm of the modified Bessel function of order zero of the voltage sample, to add these logarithms for each sample, and to require the sum to exceed a certain value (the logarithm of the constant exceeded by the ratio of probabilities), called the threshold.

In other words the optimum receiver has an envelope detector with the law

$$y = \log I_n(\alpha v)$$

where $I_n = \text{the modified Bessel function of zero order}$; $\alpha = \text{the amplitude of the noise voltage envelope}$; $a = \text{the signal-to-noise power ratio}$, prior to detection.

Note that for small values of the argument the logarithm of I_n can be replaced by the square of its argument. For large values of the argument, the logarithm of I_n can be replaced by the argument to the first power. Thus, the $\log I_n$ envelope detector functions as a square law device for weak signals and as a linear device for strong signals. Moreover, this detector is followed by an integrator which sums successive voltage samples at the output of the detector. The sum is then applied to a threshold device which, in practice, is some form of trigger circuit that operates on an all-or-none--go or no-go--principle.

If the receiver is designed according to the foregoing criterion, it will perform so as to maximize the probability of detection for a prescribed maximum acceptable probability of false alarm given by the threshold setting. It will thus be a receiver for minimizing the probability of error.
The procedure followed in the inverse probability method achieves the same results as the criterion method. The former method, developed by Woodward, proceeds from the point of view of “inverse” probability since the problem is to discover the cause \(x \) which has produced a given effect \(y \), whereas “direct” probabilities describe the effects produced by a given cause.

To illustrate the significance of these concepts to communications, the example of a given received signal combined with additive Gaussian noise is considered. The reception problem is to operate on the received signal-plus-noise function in such a way as to maximize the probability that the additive mixture of signal and noise originated with some particular message at the sending end. It is found that this probability is indeed maximized if the function

\[
q(x) = \int_{0}^{\infty} y u_x \, dt
\]

is maximized, where \(x \) denotes the message and \(u_x \) the signal voltage representing it, \(y \) being the received signal. The function \(q(x) \) is a measure of the crosscorrelation between \(y \) and all the possible wave forms \(u_x \). The most probable message state is the one which yields the largest crosscorrelation. It follows that in the case of Gaussian noise the optimum receiver is a crosscorrelation device.

At first sight the results of the criterion and inverse probability approaches appear to be in disagreement. It is found from the application of the former that the ideal receiver is a \(\log I_o \) detector followed by an integrator, whereas it was found from the application of the latter that it is a crosscorrelator. Actually, the two results are not in disagreement, since the methods were applied to two different situations. In the application of the criterion approach, an envelope detector was considered, but in the application of the inverse probability approach, nothing was said about the kind of detector that was used. If an envelope detector is used, both approaches will work.

The implications of the foregoing results are important. It is seen that if envelope detection is specified, the optimum receiver is a \(\log I_o \) detector followed by an integrator. If not, the optimum receiver is a crosscorrelation device. In view of the fact that envelope detection is used in conventional receivers, the question arises as to whether there are times when it is preferable not to use it. The answer is yes. In envelope detection when the signal is smaller than the noise, the noise suppresses the signal because of the nonlinearity of the process, so that the signal-to-noise ratio at the output of the envelope detector is smaller than at the input. If it is required to operate under high relative noise conditions, it is advisable, therefore, to avoid envelope detection. The alternative to envelope detection is synchronous detection which is described in some detail in Part 2 of this

If you have this problem, investigate

Grip-eze

—an example of Phelps Dodge's realistic approach to Magnet Wire research

THE PROBLEM: To develop a solderable film-coated wire without fabric for winding universal lattice-wound coils without adhesive application.

THE SOLUTION: Phelps Dodge Grip-eze—a solderable film wire with controlled surface friction for lattice-wound coils that provides mechanical gripping between turns and keeps wire in place.

EXAMPLE: Coils wound with (a) conventional film wire; (b) Grip-eze. Note clean pattern of Grip-eze as compared to fall-down of conventional film wire.

Any time magnet wire is your problem, consult Phelps Dodge for the quickest, easiest answer!
Improving Signal-to-Noise Ratio

Implicit in the operation of optimum receivers is the existence of a threshold device at the output of the receiver. A threshold circuit is a necessity because a receiver is, in the last analysis, a decision device. It must decide whether a signal is present or not, and it must make this decision with minimum probability of error. The decision is a yes-no operation which is implemented circuit-wise by means of a threshold device.

The problem of decision then resolves itself into a question of whether the output of the receiver exceeds the threshold or not. If noise alone is present, the threshold should not be exceeded. Since noise alone can have any amplitude with finite probability, it is evident that noise voltages will occasionally exceed the threshold and cause triggering of system output circuits, no matter what the threshold. This event is called a false alarm, and it is desired to have its probability small, a condition which is achieved by raising the threshold an adequate amount.

The threshold cannot be raised indefinitely, however, because then the probability of misses would become unacceptably large. Accordingly, a compromise must be reached which represents an acceptable balance between the false alarm rate and the miss rate. On the other hand, if the signal-to-noise ratio at the input of the threshold were increased, the threshold could be raised for a given miss probability, or lowered for a given false alarm probability, depending on whether the signal or the noise had been increased relative to the other.

In either case, the result is a reduced probability of error, the objective of increasing the signal-to-noise ratio. By application of either the criterion or inverse probability approaches, it can be seen that integration or correlation, which are techniques of linear filtering, are optimum means for minimizing probability of error when the noise is Gaussian. Since the probability of error is a function (exponential) of the ratio of signal-to-noise, it follows that linear filtering techniques are also optimum methods of improving signal-to-noise ratio when the noise is Gaussian. For this reason, it is desirable to compare briefly the various techniques commonly used to improve signal-to-noise ratio and to show the relationship they bear to each other. The first of these is matched filtering.

Matched Filtering

The matched filter, first considered by North and then later and independently by Middleton and Van Vleck, is a filter designed to achieve maximization of the signal-to-noise ratio. The figure of merit p, on which the filter design is based, is defined as the ratio

$$p = \frac{|v(t_0)|^2}{\sigma^2}$$

where $v(t_0)$ is the value of the output signal at some specified instant $t = t_0$, and σ^2 is the mean square value of the output noise.

It can be shown that the transfer characteristic of the filter which maximizes p is the complex conjugate of the spectrum function of the input signal. Such a filter has the property that its impulse response is the image of the input signal.

The output of the matched filter for a rectangular pulse input is a triangular pulse the base width of which is twice the width of the input pulse. It is observed that the output of a correlation device for a rectangular pulse input is also a triangular pulse of base width equal to twice the input pulse width. Also, time-aperturing (which is convolution, an integration process) a rectangular pulse with an impulse response function which is the image of the input pulse results in a triangular output. Thus, the matched filter can be looked upon either as a correlation or an integration device. This observation will be supported by a mathematical statement in a later section dealing with correlation.
In determining the improvement accomplished by a matched filter, its performance may be compared with that of a resistance-capacitance (RC) filter the bandwidth of which is appropriate to the signal being used. For a rectangular pulse in Gaussian noise, the maximum value of p is

$$p_{sw} = \frac{V^2 \delta}{N_o}$$ \hspace{1cm} (4)

where $V =$ the amplitude of the rectangular pulse; $\delta =$ the pulse width; $N_o =$ the value of the noise power spectrum.

For an RC filter, the output signal-to-noise power ratio is

$$p_{sc} = \frac{V^2 \times (1 - e^{-2\pi a})^2}{a\pi N_o}$$ \hspace{1cm} (5)

where a is a factor which determines the relation that the frequency cutoff point of the RC filter bears to the inverse of the pulse width. The other quantities have been defined previously. The improvement factor in signal-to-noise power ratio for a matched filter over an RC filter is defined as

$$R = \frac{p_{sw}}{p_{sc}} \text{ (6) and } R = \frac{a\pi}{(1 - e^{-2\pi a})^2} \text{ (7)}$$

It is observed that the relative improvement of the matched filter over the RC filter increases with a. This means that if the performance of the matched filter is compared with that of an RC filter the cutoff frequency of which is appreciably larger than $1/\delta$, where δ is the pulse width for which the matched filter is designed, the performance will be better than if the comparison is made with an RC filter of smaller relative cutoff frequency. The physical basis of the improvement is that the matched filter has a frequency transfer function which resembles the spectrum of the input signal so that, unlike a nonoptimum filter, it admits only that noise which is coincident with the spectral components of the signal or which lies between them, but not the noise which lies outside of the signal flex spectrum.

For a reprint of this article, turn to the Reader's Service Card and circle 17.

References

SAVE MONEY
Switch to STAMPINGS
ENGINEER IN STAMPINGS—INCREASE PROFITS.
A good solution to designing and cost problems is through the use of Advance metal stampings which cut material costs, labor costs and assembly costs.

STAMP CRITICAL METAL PARTS TO IMPROVE YOUR COMPETITIVE POSITION

‘CLICK’ Another Stamping

- MAXIMUM 4" BLANKS
- MAXIMUM 2¾" DRAW
- CAPACITY TO 65 TONS

Since 1922 many and varied metal working industries have used Advance services for “clicking” out metal stampings in high and medium production volume. Small stampings of all materials are fabricated to meet tolerance specifications, delivery and price.

Send us your blue prints or samples for quotations. Advance Engineers are available to be of help with your costs, design modification and general improvement of your competitive position.

Write for Small Stamping Specialists Brochure
ADVANCE STAMPING CO.
12023 Dixie Ave., Detroit 39, Michigan
CIRCLE 19 ON READER-SERVICE CARD FOR MORE INFORMATION

TWO PROPERTIES exhibited by transistors, and not found in vacuum tubes, make them ideal active elements for low power switching circuits. One of the properties is polarity of the elements. In a transistor the collector and base have the same polarity with respect to the emitter, while in a vacuum tube the plate and grid have opposite polarity with respect to the cathode. A transistorized Schmitt Trigger is discussed which makes use of this fact. Another basic difference between the two devices is that the transistor can be made symmetrical, i.e. a transistor which is indifferent to which of two electrodes is chosen to operate as the collector. This property is used to advantage in a discussion of transistorized flip-flop circuits.

Schmitt Trigger

The function of a Schmitt Trigger circuit is the same as that of a simple relay. When the input signal equals or exceeds some threshold value, the output is at one of two levels. When the input signal decreases to some point below the threshold value, the output falls to the other level.

In the quiescent state, V1 is cut-off and V2 conducts (Fig. 1a). If a sine wave is applied to the input V1 conducts. The cathodes rise and the decrease in plate voltage of V1 is transferred to the grid of V2, both effects combining to bring V2 into cut-off.

In design work, when it is desired that the function of a given vacuum tube circuit be obtained with transistors, a method commonly employed is to design the transistor dual of the vacuum tube circuit where plate becomes collector, grid becomes base, and cathode becomes emitter. Operation of the transistor dual of the Fig. 1a follows the same description with V1 replaced by T1 and V2 replaced by T2, except that the divider is no longer

Fig. 1. Schmitt Trigger: (a) Transistors do not require the divider used with vacuum tubes (b) Maximum frequency response 5 mc (c) Frequency response 10 cps to 10 mc
necessary. The divider may be omitted since the collector and the base have the same polarity with respect to the emitter. The transistor circuit requires fewer components and no bias supply. In addition to the fact that the transistor circuit is much simpler to design, it is superior to the vacuum tube circuit on every point of comparison that occurs to the author except magnitude of output voltage.

The circuit of Fig. 1b operates on sine wave frequencies up to about 5 mc with leading and trailing edges ranges from 0.03 to 0.08 usec depending on the frequency. The swing at the collector of T2 is 2.6 v.

The circuit of Fig. 1c operates on sine wave frequencies from 10 cps to 10 mc with a negative going edge of at least 0.025 usec. The high frequency limit was not determined because an appropriate oscillator was not available.

ASSIGNMENT MISSILE

Withstanding torture is a specialty of Packard Bell’s Doppler Velocity and Position indicator (DOVAP), designed and developed for an inter-continental missile (classified). In prototype environmental tests, this high powered Doppler Transponder was subjected to temperature, shock and vibration beyond the extremes expected in flight...beyond the extremes called for in specifications.

RESULT: Reliable signal and continuous transmission for an incredible life span.

Write for new Packard Bell Electronics facility brochure...just off the press.

PACKARD BELL ELECTRONICS
TECHNICAL PRODUCTS DIVISION
12333 W. Olympic Boulevard
Los Angeles 64, Calif.
BRadshaw 2-2171
NEW and SPECIAL!

VOLTAGE and CURRENT REGULATION WITH LIMITING!
(IN A SINGLE UNIT)

for TRANSISTOR ENGINEERING

For the first time you can have a power supply that will protect transistors from overload... both voltage and current! Set for maximum voltage on the limiter control and the output power will be interrupted before the limit is exceeded. An audible or visual alarm can also be used. When used for regulated voltage supply, the system becomes a current limiting circuit.

SPECIFICATIONS
INPUT: Nominal 117V, 50-60 cycles.
OUTPUT: Voltage or current regulated ranges—0-3; 0-10; 0-100 volts or milliamperes. Output floating or either positive or negative grounded.
REGULATION: Voltage—better than 0.05%. Current—better than 0.1%.
RIPPLE: Voltage—Less than 2mv peak-peak. Current—Less than 2mv peak-peak across 100 ohm load.
LIMITER: Provides visual and audible alarm or visual and cutout as selected. Same ranges as output. Adjustable by means of panel control.
MODULATION & EXTENDED CONTROL: Plugging jacks provide for external modulation or adjustment of current regulated output and extended or remote adjustment of voltage output.
METER: Dual range 3-10 and multipliers.
PANEL: Anodized aluminum—natural or satin black. Standard rack width, 7" high.
CABINET: Heavy gauge steel finished in silver grey smooth baked enamel.

Write for complete information

Oregon Electronics
2105 S.E. SIXTH AVE.
PORTLAND 14, OREGON
Belmont 6-9292

MANUFACTURERS OF SPECIAL ELECTRONIC EQUIPMENT

CIRCLE 21 ON READER-SERVICE CARD FOR MORE INFORMATION

Fig. 2. Eccles Jordan (Flip-Flop): (a) Isolation of trigger source is obtained in addition to push-pull action (b) Maximum trigger rate is 10 mc with a positive going edge of .05 μsec and a negative going edge of .12 μsec at the collectors (c) Maximum trigger rate is 3 mc with a collector signal rise and fall time of .05 μsec.
Eccles Jordan Circuit

In the transistor version of the well-known Eccles Jordan flip-flop shown in Fig. 2a, T1 is conducting and T2 cut-off. As is generally the case in switching circuits where surface barrier transistors are used, the voltage drop across the conducting transistor is practically zero. In this circuit, the voltage across T2 approaches V since R1 is large compared to R2. The difference between VCE and VCE is sufficient to polarize the “emitter” and “collector” of T3 in Fig. 2b. A negative pulse on the base will therefore cause the transistor to conduct. The pulse is amplified and steered as a positive pulse to the collector of T2, and as a negative pulse to the collector of T1. In addition to push-pull action, some isolation of the trigger source is obtained. The circuit illustrates a use of transistors which is not possible with vacuum tubes since the latter cannot be made symmetrical.

The circuit of Fig. 2b operated on trigger rates up to 10 mc with a 0.05 usec positive going edge and a 0.12 usec negative going edge at the collectors. At the time the data was obtained no symmetrical version of the 2N128 was available. A certain amount of selection was necessary in order to get a T3 which permitted such high trigger rates.

The circuit of Fig. 2c employs essentially the same method of trigger injection except that the pulses are steered to the bases of T1 and T2. Although maximum trigger rate at which this circuit operates is only 3 mc, both fall and rise time of the collector signals are 0.05 usec. This is attributed to the fact that the transpose condensers are omitted.

Temperature Stability

In a shifting register containing a number of circuits similar to those of Fig. 2, it was found that with the resistors R1 grounded, the flip-flop became unstable at 38° C. With the resistors connected to a small positive bias, stability was maintained at higher temperatures. No perceptible changes were observed in a complex waveform produced by these circuits as the temperature was varied from -35 to +75° C with a bias of +0.7 v.

FOOTNOTES

2. This symbol is used because it emphasizes the duality.
4. For other examples of how this property is employed see L. Cavalieri, Jr., What's Inside Transac-1, Electronic Design, July 1, 1958.

The author wishes to acknowledge the assistance of Martin Cabell of the Circuit Research Division of Dumont Laboratories in the preparation of this paper, and the suggestions of Kenneth Hoagland of the Cathode Ray Tube Division.

core-diode type magnetic shift register assemblies

... 100% pulse performance tested

Wherever you use Sprague Magnetic Shift Register Assemblies ... in the air or on the ground ... in counters for industrial controls or basic logic circuits for computers ... chances are you’ll be looking for uniformity and reliability. That’s why Sprague uses truly reliable components throughout their construction. Why every core used is subjected to rigid switching tests before installation. And why every assembly is 100% pulse performance tested before shipment.

Packages matched to the application assure long register life at minimum cost. Register assemblies for ground use are available in hermetically sealed corrosion-resistant metal cases with glass-to-metal solder-seal terminals for severe environmental conditions, or embedded in plastic for moderate environments. Special minimum volume airborne packages are ideal for limited space applications.

All standard packages are characterized by terminal spacing that simplifies external mounting of semi-conductor diodes, or they can be permanently packaged as integral assembly components in Sprague special designs. Single and multiple stage register assemblies are available with read and write provisions to meet most system requirements. Standard designs can easily be modified with additional windings to perform various logical operations.

For Data Sheets on core-diode type magnetic shift register assemblies, write the Technical Literature Section, Sprague Electric Company, 347 Marshall St., North Adams, Massachusetts.

Sprague Components:
Magnetic Components - Transistors - Resistors - Capacitors - Interference Filters - Pulse Networks - High Temperature Magnet Wire - Printed Circuits

Circle 22 on Reader-Service Card for More Information
Frequency Spectra for Pulse Type Waveforms

E. Brenner
College of the City of New York

WHEN aperiodic pulses are impressed on a linear network, Fourier methods can be used provided the continuous rather than the line spectrum analysis is employed. Although the integral relationship which defines such continuous spectra is generally quite complicated, the analysis of a single rectangular pulse yields a wealth of information about the design of pulse type systems.

A single, nonrecurrent pulse cannot be resolved into a Fourier series. Also, when pulses in a sequence have a slow repetition rate compared to the duration of each pulse, the use of Fourier series is not convenient. This is because the problem encountered in response calculations is essentially that of a "repeated transient." The transient associated with one pulse may have "died out" by the time the next pulse occurs. The design of circuits which are to be excited in this manner should, therefore, accommodate a single pulse or a train of pulses which is finite and nonperiodic. Frequency response (i.e., "steady state") methods can be used for this purpose if the continuous spectrum rather than if the Fourier series is used.

Determining the Spectrum

The frequency spectrum for a single pulse can be obtained (and interpreted) by considering a periodic train of pulses, Fig. 1, and allowing the period P to approach infinity while duration, T, remains constant.

The various forms in which a Fourier series can be written are summarized in Table 1. The "complex" forms are chosen here because both amplitude and phase for each harmonic are contained in a single expression. The Fourier series for the periodic train of pulses, Fig. 1, thus has the form

$$v(t) = \sum_{k=-m}^{k=+\infty} \mathbf{D}_k e^{j2\pi k T/P} t$$

where the complex coefficients, \mathbf{D}_k, are given by

$$\mathbf{D}_k = \frac{1}{P} \int_{-P/2}^{P/2} v(t) e^{-j2\pi kt/P} dt$$

so that the periodic pulse train of Fig. 1 is represented by the series

$$v(t) = \sum_{k=1}^{+\infty} V_k \frac{T}{P} \sin \left(\frac{\pi k T}{P} \right) e^{j2\pi kt/P}$$

Note that the "complex" series can always be converted to the "real" trigonometric form by pairing the terms:

$$v(t) = V_1 \frac{T}{P} \sin \left(\frac{\pi T}{P} \right) + V_0 \frac{T}{P} \cos \left(\frac{2\pi T}{P} \right)$$

$$+ V_1 \frac{T}{P} \sin \left(\frac{\pi T}{P} \right) e^{j2\pi t/P} + \ldots$$

or

$$v(t) = V_1 \frac{T}{P} + \frac{2V_0}{\pi} \sin \left(\frac{\pi T}{P} \right) \cos \left(\frac{2\pi T}{P} \right)$$

$$+ \frac{2V_0}{2\pi} \sin \left(\frac{2\pi T}{P} \right) \cos \left(\frac{4\pi T}{P} \right) t + \ldots$$

or by the use of the formulas given in Table 1.

To obtain the frequency composition of a single pulse, the amplitudes of the harmonics for the periodic pulse can be shown graphically by a "line" spectrum for several values of P as P becomes successively larger. In Fig. 2 the harmonic amplitudes for the periodic train of 1 usec pulses are shown for three values of P. These spectra are obtained by inserting the proper ratio T/P in Eq. 3 and calculating \mathbf{D}_k for the desired harmonics. As the period increases (i.e. the pulse repetition frequency decreases), the amplitudes of all the harmonics decrease and the harmonics are crowded closer together.

For a single rectangular pulse, Fig. 3a, the harmonic amplitudes are all infinitesimally large but also infinitesimally close together so that they form a continuous spectral density. The spectral density for the rectangular pulse has the shape given by the envelope of the line spectrum of the periodic pulses (Fig. 2). The equation, which describes the "harmonic" amplitudes of the single pulse is:

$$F(\omega) = V_1 \frac{\sin (\omega T/2)}{\omega T/2}$$

In Eq. 5 harmonic amplitudes are obtained for a continuous function of frequency so that the single pulse contains all frequencies with different amplitudes. The curve corresponding to Eq. 5 is shown in Fig. 3b for the fundamental and harmonic. No single frequency component however contains finite energy, only a finite "band" of frequencies constitutes a signal.

The relation, Eq. 5, is obtained by Fourier integral "transform" theory. The general formulas for the Fourier integral are given in Table 1. Notice that the "addition" of the "harmonic components" is an integration because the "harmonics" are infinitesimally close together.

To use the continuous spectrum method in design it is only necessary to recognize that the meaning of each frequency component in this spectrum is analogous to that of a harmonic component in the series. Thus, the same impedance function or transfer function which relates the steady state sinusoidal quantities also relates the spectral components of input and output in the continuous spectrum. In Fig. 4a, a frequency response curve of a network is shown. If the single rectangular
Table 1 Formulas for Fourier Analysis
(complex quantities shown in bold face type)

<table>
<thead>
<tr>
<th>Fourier Series for Periodic waveforms (period P)</th>
<th>Fourier Integral for Pulse type waveforms ($\omega = 2\pi f$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigonometric form 1</td>
<td></td>
</tr>
<tr>
<td>$v(t) = \frac{A_0}{2} + \sum_{k=1}^{\infty} A_k \cos k2\pi t / P + B_k \sin k2\pi t / P$</td>
<td>$v(t) = \int_{-\infty}^{\infty} \left[A(\omega) \cos \omega t + B(\omega) \sin \omega t \right] d\omega$</td>
</tr>
<tr>
<td>$A_k = \frac{2}{P} \int_{P}^{t+P/2} v(t) \cos (k2\pi t / P) dt$</td>
<td>$A(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} v(t) \cos \omega t dt$</td>
</tr>
<tr>
<td>$B_k = \frac{2}{P} \int_{P}^{t+P/2} v(t) \sin (k2\pi t / P) dt$</td>
<td>$B(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} v(t) \sin \omega t dt$</td>
</tr>
<tr>
<td>Trigonometric form2</td>
<td></td>
</tr>
<tr>
<td>$v(t) = \frac{A_0}{2} + \sum_{k=1}^{\infty} C_k \cos \left(2\pi t / P + \alpha_k\right)$</td>
<td>$v(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} S(\omega) \cos \left[\omega t + \alpha(\omega) \right] d\omega$</td>
</tr>
<tr>
<td>$C_k = \sqrt{A_k^2 + B_k^2}$</td>
<td>$S(\omega) = \pi A^2(\omega) + B^2(\omega)$</td>
</tr>
<tr>
<td>$\alpha_k = -\tan^{-1}(B_k / A_k)$</td>
<td>$\alpha(\omega) = -\tan^{-1}[B(\omega) / A(\omega)]$</td>
</tr>
<tr>
<td>Complex form</td>
<td></td>
</tr>
<tr>
<td>$\cos x = \frac{1}{2} \left(e^{ix} + e^{-ix} \right)$</td>
<td>$\sin x = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right)$</td>
</tr>
<tr>
<td>$v(t) = \sum_{k=-\infty}^{\infty} D_k e^{j2\pi kl t / P} dt$</td>
<td>$v(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$</td>
</tr>
<tr>
<td>$D_k = \frac{1}{P} \int_{P}^{t+P/2} v(t) e^{-j2\pi kl t / P} dt$</td>
<td>$F(\omega) = \int_{-\infty}^{\infty} v(t) e^{-j\omega t} dt$</td>
</tr>
<tr>
<td>$k = 0, \pm 1, \pm 2 \ldots$</td>
<td></td>
</tr>
<tr>
<td>Relationship between the trigonometric and complex forms</td>
<td></td>
</tr>
<tr>
<td>$D_k = \frac{1}{2} [B_k - iA_k]$</td>
<td>$F(\omega) = \pi [A(\omega) - jB(\omega)]$</td>
</tr>
<tr>
<td>$D_k = \frac{1}{2} \frac{C_k}{e^{iak}} = \frac{1}{2} C_k / \alpha k$</td>
<td>$F(\omega) = S(\omega) / \alpha(\omega)$</td>
</tr>
</tbody>
</table>

Fig. 1. A periodic train of rectangular pulses.

Fig. 2. Magnitudes of the harmonic amplitudes for the periodic pulses of Fig. 1 for various ratios of T/P.

ELECTRONIC DESIGN • October 1, 1957
PROBLEM:
How to incorporate fast programming and maintenance into a circuit analyzer.

SOLUTION:
Adaption of Grant Slides to major operating sections.

Dit-mco, Inc., recently developed a new, large capacity mobile Circuit Analyzer built expressly for field use. Subject to generally adverse field conditions, it was necessary for the equipment to stand up under wear, be easily maintained, yet have operating parts quickly accessible. To achieve this, Dit-mco had the switching sections, power supply, detector unit and relay control section mounted on Grant Slides. Grant Slides solved the maintenance problem by permitting extremely fast inspection of the internal components of the equipment.

GRANT INDUSTRIAL SLIDES
Grant Pulley & Hardware Corp.,
21 High Street, West Nyack, New York
944 Long Beach Ave., Los Angeles, California

pulse, Fig. 3, is applied to the network, the output has the spectrum shown in Fig. 4b for the case \(T = 1/f_c \). This output spectrum has been obtained by (graphical) multiplication of the input spectrum by the frequency response curve.

Conclusions
The general problem of transmission of pulses can be stated as follows: To transmit a pulse with fidelity, the amplifier or transmission network must transmit all the harmonic components of the spectrum which are judged to be significant.

An exact definition of a “significant” harmonic amplitude is not possible. However, one can show that for a low-pass network (dc to cut-off frequency \(f_c \)) the rise time of the transmitted pulse is about \(0.8/f_c \) and the overshoot is 9 per cent if the cut-off is very sharp, as illustrated in Fig. 5. It is assumed here that the transmission network introduces no phase distortion (i.e., the phase shift in the pass band is linear or negligible).

If the amplifier or network does not pass dc (and the adjoining very low frequencies), rise time is not affected, but the pulse output waveform will suffer “tilt”. This effect may be negligible if the pulse duration is sufficiently short (when compared with the low frequency cut-off period).

The use of the integral transform formulas can often be avoided if superposition can be used. Thus, if a pulse can be represented as the sum or difference of waveforms whose spectra are known, the spectrum of the sum of the pulses will be the sum of the individual spectrums. In Fig. 6a a “two pulse group” is shown. This signal can be obtained by the addition of the two pulses shown in Fig. 6b. But each of these pulses has a spectrum which is identical to the curve shown in Fig. 3b. Hence, the spectrum of the two pulse group has the shape shown in Fig. 6b. This curve was obtained by graphical addition of the individual spectral curves.

For a narrow bandwidth (e.g. dc to \(f_c \)), the shape of the spectral curve for the two pulse group is almost identical to the curve which represents a single pulse. To transmit such a two pulse group...
Fig. 3. A single rectangular pulse and its frequency spectrum. Absolute values are shown so that the spectral amplitudes are positive. The "negative" frequencies which are associated with the complex form of the spectrum are not shown; the curve is symmetrical with respect to the \(f = 0 \) axis.

Fig. 4. A low-pass network and the output spectrum for pulse input. In the case shown the frequencies beginning with the second "lobe" of the input spectrum are not transmitted.

Fig. 5. Rise time and overshoots which result when transmitting a rectangular pulse through a low pass structure.

Fig. 6. (a) The addition of two single pulses of different duration both centered about \(t = 0 \) results in a "two pulse" group.
(b) Construction of the spectrum for the two pulse group. (The "absolute value" spectrum for the result is not shown here.)

A Short Bibliography

Reference material dealing with Fourier Analysis can be found in many books dealing with transient analysis. Typical are the following:

Solderable Magnet Wire

ISOYANATE-COATED wire has started to replace older types of solderable wire. To demonstrate graphically the properties of this solderable wire, a comparison of test results on enamel, nylon, vinyl acetal (Formvar) and Sodereze, the trade name for the coating, are shown in Table 1. Number 18 wire was used in the tests to facilitate the measurement of basic film properties.

One difference exists between Sodereze and nylon or Formvar. The latter two are high molecular weight polymers that are dissolved in suitable solvents, applied to the wire and cured by shrinking and some further polymerization. Sodereze, on the other hand, must be reacted on the wire. The film is produced by the splitting off of phenol groups on the stabilized isocyanate resin and subsequent reaction with other resins to produce the desired properties.

Experience and data have indicated that the Sodereze coating has good electrical properties and has high moisture and chlorinated-solvent resistance. It has long (extrapolated) life, and would be suitable for a 120 deg transformer. Since at extremely high temperatures it starts to decompose, Sodereze is not a wire for short time high temperatures. It could be used as a “fuse” in certain transformers, however, where extreme overloads require shorting and subsequent opening of the windings.

Proposed times and temperature for soldering this wire are given in Table 2. In order that none of the desired properties in Sodereze wire be sacrificed, and to broaden its field of application as well, the temperature of soldering was kept within the 650 to 750 F range. Of interest is the fact that with isocyanate based insulation, the soldering action is progressive. Parts that have been soldered at too low a temperature may be redipped.

The temperature of the soldering pot must be maintained accurately, since wide variation in temperature will influence the rate of soldering. This is important in dip soldering. When a rosin alcohol flux was used on the joint before dipping in the hot solder, more consistent and uniform lower temperature solderability results were obtained. For soldering with irons, high temperature alloy tip irons are recommended to get extremely high temperatures to permit fast flowing of the insulation and quick wetting of the solder. Tip temperatures from 900 to 1000 deg are the most successful, although some soldering is being done at lower temperatures with conventional irons. Minor changes in coil or equipment design for soldering may be necessary. If low temperature plastic parts are used, the point of soldering should be as far away as practical to prevent damage.

Material in this report was originally presented at the 2nd RETMA conference on Reliable Electrical Connections, Sept. 1956. A bound edition of all papers given at this conference may be obtained from Engineering Publishers, Dept. ED, G. P. O. Box 1151, New York 1, N. Y.

Table 2: Proposed Industry Standard For Solderable Magnet Wire

<table>
<thead>
<tr>
<th>Wire Size</th>
<th>soldering Time, Seconds</th>
<th>Temperature Deg F</th>
<th>Type of Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWG</td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>44 to 37 inclusive</td>
<td>4</td>
<td>680</td>
<td>Wound on #20 tinned copper</td>
</tr>
<tr>
<td>36 to 30 inclusive</td>
<td>5</td>
<td>680</td>
<td>Tinned copper</td>
</tr>
<tr>
<td>29 to 24 inclusive</td>
<td>6</td>
<td>800</td>
<td>Tinned copper</td>
</tr>
<tr>
<td>23 to 20 inclusive</td>
<td>8</td>
<td>800</td>
<td>5 to 10 twists in 3/4 in.-cut ends</td>
</tr>
<tr>
<td>19 and heavier</td>
<td>8</td>
<td>800</td>
<td>5 to 10 twists in 3/4 in.-cut ends</td>
</tr>
</tbody>
</table>

Wire to be dipped in rosin-alcohol flux

Ralph Hall
Phelps Dodge Copper Products
Table 1: Results of Tests on #18 AWG Wire Coated with Various Insulations

<table>
<thead>
<tr>
<th>Tests on #18 AWG</th>
<th>Heavy Enamel</th>
<th>Heavy Nylon</th>
<th>Heavy Formvar</th>
<th>Heavy Solderize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.003 in. OK</td>
<td>0.003 in. OK</td>
<td>0.003 in. OK</td>
<td>0.003 in. OK</td>
</tr>
<tr>
<td>I. Physical Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Build (increase in diam)</td>
<td>15 per cent—3 x</td>
<td>30 per cent—1 x</td>
<td>50 per cent—1 x</td>
<td>20 per cent—1 x</td>
</tr>
<tr>
<td>b. Adherence (snap)</td>
<td>1-3</td>
<td>15-30</td>
<td>50-125</td>
<td>50-100</td>
</tr>
<tr>
<td>c. Film Flexibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Abrasion Scrape-NEMA</td>
<td>800 grams</td>
<td>1000 grams</td>
<td>1100 grams</td>
<td>1200 grams</td>
</tr>
<tr>
<td>e. Unilateral (ITC) .009 in. Needle-Grams to scrape through</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Thermal Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Flex Life at 125 C hr to fail 3 x—NEMA</td>
<td>32-50</td>
<td>250-400</td>
<td>400-500</td>
<td>1000-1500</td>
</tr>
<tr>
<td>b. Heat Shock—NEMA</td>
<td>fail</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>c. Cut Thr—5 lb on cross-over 20 C to 300 C in 30 min</td>
<td>180 C</td>
<td>225 C</td>
<td>210 C</td>
<td>250 C</td>
</tr>
<tr>
<td>d. Dielectric Life 175 C AIEEE 200 C</td>
<td>502</td>
<td>260</td>
<td>402 hr</td>
<td>942 hr</td>
</tr>
<tr>
<td>e. Solderability—Temperature to tin 1 in. lengths in 60/40 solder</td>
<td>will not</td>
<td>750 F to 900 F</td>
<td>950 F to 1050 F</td>
<td>750 F</td>
</tr>
<tr>
<td>III. Chemical Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Solvent Resistance—24 hrs at 25 C</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Cheesecloth Scuff Test Petroleum Naphtha</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Ethyl Alcohol</td>
<td>softens</td>
<td>softens</td>
<td>softens</td>
<td>softens</td>
</tr>
<tr>
<td>5 per cent</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Sulphuric Acid</td>
<td>softens</td>
<td>softens</td>
<td>softens</td>
<td>softens</td>
</tr>
<tr>
<td>1 per cent KOH</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>bad softening</td>
<td>softens</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Styrene Monomer</td>
<td>bad softening</td>
<td>softens</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Butyl Acetate</td>
<td>bad softening</td>
<td>softens</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Acetone (1 hr)</td>
<td>bad softening</td>
<td>softens</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Tolual Alcohol (Cold)</td>
<td>bad softening</td>
<td>softens</td>
<td>bad softening</td>
<td>bad softening</td>
</tr>
<tr>
<td>15 per cent elongation (Toluene)</td>
<td>bad softening</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>b. Crazing—Coils dipped in Toluene</td>
<td>no craze</td>
<td>sl. crazing</td>
<td>craze</td>
<td>craze</td>
</tr>
<tr>
<td>c. Heating—1 hr 125 C after crazing</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>d. Annealing—1 hr—105 C before dip</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>IV. Electrical Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Dielectric Twist-NEMA-volts</td>
<td>8000-9000</td>
<td>7000-8000</td>
<td>8000-9000</td>
<td>8000-9000</td>
</tr>
<tr>
<td>b. Insulation Resistance NEMA twisted boiled 10 min in water—500 volt DC</td>
<td>10⁶ meg</td>
<td>26 meg</td>
<td>21,000 meg</td>
<td>10⁶ meg</td>
</tr>
<tr>
<td>c. Dissipation Factor 25 C</td>
<td>.010</td>
<td>.065</td>
<td>.015</td>
<td>.0125</td>
</tr>
<tr>
<td>Tangent of Loss Angle—800 cps 100 C</td>
<td>.045</td>
<td>off scale</td>
<td>.0125</td>
<td>.020</td>
</tr>
<tr>
<td>d. Dielectric Constant 25 C</td>
<td>4.3</td>
<td>6.1</td>
<td>4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>800 cps 100 C</td>
<td>4.0</td>
<td>off scale</td>
<td>4.0</td>
<td>4.3</td>
</tr>
<tr>
<td>e. Corona Resistance on 35 Heavy with NEMA dielectric twists</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d 10 tests in air</td>
<td>499 min</td>
<td>946 min</td>
<td>353</td>
<td>194</td>
</tr>
<tr>
<td>Volts: 1000</td>
<td>1500</td>
<td>2000</td>
<td>2500</td>
<td>1000</td>
</tr>
</tbody>
</table>

In this Flow Integrator...

FAFNIR Instrument Ball Bearings
"Measure Up"

This Foxboro force-balanced instrument, Fafnir-equipped, is designed for use with any differential pressure flow transmitter producing a 3-15 psig signal.

Centrifugal force produced by an air-driven turbine rotor is ingeniously utilized in the Foxboro Type 14A Pneumatic Integrator to provide continuous, accurate totalization of flow measurement.

In selecting bearings for the rotor shaft, low torque and long wear were all-important for lasting precision. Fafnir extra-small, shielded, instrument type ball bearings were specified. They had proved themselves in a preproduction instrument by operating at 3000 RPM twenty-four hours a day for more than a year under severely adverse conditions.

Outstanding performance records such as this testify to the quality you can expect when you specify Fafnir Ball Bearings for instrument applications. The Fafnir Bearing Co., New Britain, Conn.

FAFNIR BALL BEARINGS
MOST COMPLETE LINE IN AMERICA

CIRCLE 24 ON READER-SERVICE CARD FOR MORE INFORMATION
MARS·LUMO CHROM

makes possible an important new drafting technique. It's not just a colored pencil; it's a color-drafting pencil. Twenty-four colors—and every one reproduces perfectly. Lets you draft with as many colors as you need. Saves time, prevents mistakes.

- won't fade - won't smear - really waterproof - erases perfectly - keeps finest point

Send for free sample

Other new Mars products include the Mars Pocket-Technico for field use, the Mars "Draftmaker" Pencil Sharpener with the adjustable point-length feature, and the efficient, clean Mars lead sharpener. All available - along with the established standards: Mars-Luminograph black graphite drafting pencils, Mars-Technico lead holder and sharpener, and Tradition-Aquarell painting pencils - at all leading engineering and drafting supply dealers.

J.S. STAEDTLER,INC. HACKENSACK, NEW JERSEY

CIRCLE 25 ON READER-SERVICE CARD FOR MORE INFORMATION

High Speed Indexing Clutch

is Mechanical Pulse Amplifier

SMALL triggering forces can engage this indexing clutch in 1 millisecond to transmit 10 in. lb (min) of torque. The small actuating force can be calibrated and is in the order of two to four ounces. The clutch is small and designed with parts having low inertia. High shaft speeds and high speed pulsing are therefore possible. Depending on the index positions, 60 cps is feasible.

Typical applications include remote positioning, and stepping of tape for data processing. As a one revolution device it is useful for computers, control, or, automatic machinery. It is adaptable to servo systems and other numerous clutching, indexing, stepping and pulsing functions. Forces and time delays are carefully specified.

The clutch, manufactured by the Digi- Electronics Corp., Albertson Ave., Albertson, New York, has co-axial input and output shafts; the entire mechanism measures 1 in. in diam and 1-23/32 in. long. The clutch housing has provisions for flange or servo mountings. The rate of index is one revolution or one half revolution, clockwise or counterclockwise shaft rotation. (Less than one half revolution units can be supplied on special order.)

A control or energizing lever, which engages the clutch, is projected outside the cylindrical envelope. Since the transmitted torque of the clutch and the energizing force are known, the amplification ratio of the clutch can be calculated. The amplification torq...
A solenoid type transducer is available for converting electrical pulses to mechanical pulses. The solenoid is linked to the energizing torque, the ratio of the output to the transmitted torque is 20/1.

For more information on this and similar products, turn to the Reader Service card.

The unit uses the wrapping spring principle and is designed for clutches as a function of conical overrunning or control levers of the clutch. Other units are being supplied for applications. Similar units are being designed for clutches, as a function of the control lever of the clutch. The solenoid is linked to the energizing torque, the ratio of the output to the transmitted torque is 20/1.

For more information on this and similar products, turn to the Reader Service card.
Though it may seem to many of us that most of the efforts of TV manufacturers are directed toward progressive cheapening of TV receivers, there is, in reality, a great deal of attention directed to circuit refinements, at least in the laboratory.

The instrument described here simulates TV multipath effects, such as those due to passing aircraft, and is particularly useful in checking AGC systems. It may find application, also, in simulating interference in radar and other pulse equipment. We feel that the novel approach employed in the design of this equipment as well as its application possibilities will be of interest to electronic engineers.

Picture flutter on TV receivers, normally due to reflected signals from passing aircraft, may be simulated with this wide band, continuously variable delay line. This flutter and other multipath effects are due to the arrival at the receiving antenna of two signals, one direct from the transmitter, and the other, with a longer path, by reflection from the aircraft.

As the aircraft moves, the path difference, and hence the time delay, between the two signals changes, and so produces a fluctuating interference pattern giving rise to the characteristic flutter. A means of studying these phenomena with a view to developing receiver circuits that are insensitive to such disturbances has been found in variable mercury delay lines, and is currently in use for this purpose in the Mullard Research Laboratories in England. These lines have application, also, as radar signal simulators handling pulses as short as 0.1 μsec, and in work on pulse systems in general.

![Block diagram of complete dual path apparatus.](image-url)
Construction

Basically, the laboratory apparatus is simple (Fig. 1). A test signal, which may be either from a live television transmitter or a local test pattern generator, is frequency changed on a 15 mc carrier and applied to two transmission paths. One of these consists of a short fixed delay line of, say, 30 μsec, and the other includes a continuously variable delay which can be adjusted from slightly below to well above the fixed delay. The present apparatus uses a delay, variable from 25 to 330 μsec. In series with the variable delay is an attenuator.

The signals from the two paths are combined and frequency changed back to the original carrier which is applied to the receiver under test. By altering the variable delay the effective path difference between the two signals is changed and by altering the attenuator setting the strength of the flutter signal is controlled.

To simulate aircraft in flight it is necessary to vary the delay smoothly and continuously and the construction adopted enables this to be done to better than 0.01 μsec.

The fixed delay line consists simply of a steel tube full of mercury and carrying two quartz crystals, set coaxial and parallel, with a separation of about 45 mm.

The variable delay line presents a slightly more difficult problem. The velocity of ultrasonic waves in mercury is about 1.5 mm per μsec. Smoothness of adjustment to the target figure of 0.01 μsec, therefore, requires a mechanical precision of better than 0.0005 in. (Fig. 2)

Fig. 2. The variable delay line, machined from solid steel forms a rectangular trough which is fitted with a hermetically sealed lid and end blocks.

With sound mechanical design this reduces to a straightforward job of high-precision machining. The body of the line is machined from solid steel and forms a rectangular trough which is fitted with a hermetically sealed lid and end blocks (Fig. 2). Inside the trough is a sliding piston guided by polytetrafluoroethylene (PTFE) pads and driven by a precision lead screw, which passes through a PTFE nut in the piston and has a plain external passing through a sealing gland in one end block. The piston is machined to form a corner reflector. The second end block carries two quartz crystal transducers; the ultra sound radiated from one

New 20kw Klystron for important L band

Exclusive Space-Charge Focus assures long life and reliability

Specify the SAL-81 when you are looking for a reliable tube in L band which will have extremely long service life.

Available for immediate delivery, the SAL-81 is a complete microwave unit requiring no external equipment. This pulsed klystron amplifier features high gain and rugged construction to withstand shocks and vibrations.

Write or phone your nearest Sperry district office for details.

SAL-81 SPECIFICATIONS

Frequency Range.......................... 1215-1365 mc
Power Output............................. 20 kw
Gain.. 30 db
Voltage Requirements..................... 18 kv

Sperry's Space-Charge Focus principle of beam control eliminates need for heavy, unwieldy magnetic structures. New Sperry tube design using this principle cuts weight, size, power consumption and cooling requirements.

CIRCLE 28 ON READER-SERVICE CARD FOR MORE INFORMATION
NEW MOTOROLA SWITCHING TRANSISTOR

TECHNICAL DATA MOTOROLA MN19

<table>
<thead>
<tr>
<th>Maximum Ratings</th>
<th>Typical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CE}</td>
<td>V_{SB}</td>
</tr>
<tr>
<td>40V. 20V.</td>
<td>8 MC</td>
</tr>
</tbody>
</table>

PULSE RESPONSE in typical test circuit

Rise Time t_r 0.1 sec
Storage Time t_s 0.05 sec
Fall Time t_f 0.11 sec

The MN19 is engineered for extreme quality... in quantity. You are assured a dependable volume supply at highly competitive prices.

For complete technical information concerning the MN19 or other performance-proven Motorola Semiconductors—write, wire or phone Motorola, Inc., 5005 East McDowell Road, Phoenix, Arizona. BRidge 5-4411

Other Motorola Quality Products Include:

- High-Power Audio Transistors
- High-Voltage Power Transistors
- Silicon Power Rectifiers
- Medium-Power Transistors

Fig. 3. The assembly mounts in a standard 19 in. chassis containing all necessary power supplies.

To transmit a complete television signal without distortion requires a broad frequency band—at least 3 mc and preferably 5 mc—with a good phase response. The behaviour of a mercury delay line in these respects is governed by the characteristics of the quartz crystals. These have been studied theoretically by Mason (1) and others and it can be shown that if the crystal is provided with a backing material of high acoustic impedance, the characteristics are more than adequate for the present...
purpose. The frequency response of the complete line is shown in Fig. 4.

It is important not to introduce noise. In this apparatus, provided the signal at the receiving crystal has a level of more than a few microvolts, the noise contributed by the line and its termination is negligible compared with the noise in the receiving amplifier. By working at a received signal level of 3 mV, a signal to noise ratio of 50 dB is secured. The insertion loss of the line is around 50 dB so that the transmitted crystal needs a drive of only about one volt, which can readily be provided by a small receiving type tube with adequate linearity.

When variable mercury lines were first made experimentally it was expected that difficulties might be found in preserving the received signal—amplitude, frequency response, or both—while the delay was being varied, since this requires the mercury between the crystals and reflector to be displaced. It has been found possible to overcome these difficulties, and the signal received when the delay is being varied is indistinguishable from that with a stationary delay, except for the inevitable Doppler shift of frequency.

Mercury is poisonous in both vapor and liquid forms. It also amalgamates very readily with almost all metals except steel and nickel. On both these counts it is a dangerous substance to include in electronic apparatus. These mercury lines are therefore hermetically sealed, so that there is no possibility of either vapor of liquid mercury escaping. The very sturdy steel construction assists in the sealing. The hermetic sealing also ensures that no foreign matter can find its way into the system.

Acknowledgements

Acknowledgement is due to the directors of Mullard Ltd. and the manager of the Mullard Research Laboratories for permission to publish this paper.

Reference

Westinghouse SILICON (Si) RECTIFIERS put more muscle in DC power converter!

Successfully proven in rigorous welding, aircraft and guided missile applications, Westinghouse Silicon Power Rectifiers offer many advantages for power supplies.

Used in the Westinghouse 50KW Power Converter to drive the boring mill above, the WN-5082 bridge assembly supplies greater power and higher efficiency in less space. The 3-phase 60-cycle 440 V. power supply operates with a full load efficiency of 90% and an even higher half load efficiency. Regulation is approximately 8% from no load to full load with a Power Factor of 96 to 97.

Especially rugged for varying duty cycles, the WN-5082 withstands heavy loads of constant on-off operation, high-voltage transients, alternate heating and cooling.

Westinghouse can supply single diodes or complete bridge assemblies built to your specifications. For full information on how Westinghouse Silicon Rectifiers can bring new efficiency and economy to your applications, mail the coupon today.

Westinghouse ELECTRIC CORPORATION
P. O. Box 888, Pittsburgh 30, Pa.

Please send me data on the new Westinghouse WN-5082 Silicon Rectifier.

Please send me data on other Westinghouse Silicon Rectifiers. (Describe types or applications)

NAME

TITLE

ADDRESS

CITY

ZONE

STATE

CIRCLE 30 ON READER-SERVICE CARD FOR MORE INFORMATION

1957 ELECTRONIC DESIGN • October 1, 1957
Low distortion, high power output and a reduction in complementary circuitry are achieved with this power tetrode transistor, the first available commercially. It is expected to have wide application in the audio amplifier field and in various switching operations.

The H200E tetrode, a germanium pnp alloyed junction transistor, was developed by Minneapolis-Honeywell Regulator Corp., Minneapolis, Minn. Designed to operate from 28 v collector supplies with currents up to 10 a, the device is characterized by two separate leads to the base or control layer. Double base construction permits a high degree of control over the unit through the use of external biasing circuitry.

Low distortion, high efficiency and high power output are obtained without feedback and without input transformer drive, permitting R-C or direct coupling. A direct-coupled Class A amplifier power output stage is illustrated in Fig. 1. Direct coupling is also possible without low d-c resistance in the driving source. The leakage current, particularly in the region near cutoff, flows into the second base contact, bypassing the emitter junction. It is not amplified by the transistor current gain, consequently improving thermal stability.

The tetrode offers more than a fifty percent increase in frequency response over conventional triode systems. In addition improvements over triode operation in current drive circuits is possible without the auxiliary battery. Some back bias can be des
Fig. 1. Class A amplifier. Quiescent collector current is 1.2 a; power gain, 27 db (f = 100 cps); large signal beta, 50; large signal beta cutoff frequency, 12 kc. Total distortion is 0.5 per cent for a 1 watt output at f = 100 cps and 2 per cent for a 5 watt output. Drain on the auxiliary 6 v biasing battery is about 22 ma.

Developed by using a resistor or, preferably, a silicon diode in the emitter lead. A comparison of triode and tetrode operation of the device in a Class A circuit with a high impedance source is indicated in Fig. 2.

Where operation over a wide temperature range is necessary a fixed resistor R1 may be replaced by a thermistor compensating network. This operating point stability can be accomplished without loss in output power and is of particular value in Class B operation. Junction temperature of the H200E is limited to 95 C with a thermal resistance of 1 C per watt.

For additional information about this power tetrode, fill out the enclosed Reader’s Service Card and circle 32.

Fig. 2. Triode and tetrode operation in a Class A circuit with a high impedance source.

These high quality electrolytic capacitors are especially designed for use as energy storage components in DC circuitry where peak power requirements exceed the maximum output of the associated power supply.

Sangamo Type DCM Capacitors provide exceptionally low equivalent series resistance ... have extremely high capacity for case size in low voltage ranges ... are designed to permit high ripple current without overheating. They minimize ripple voltage and insure steady, stable DC voltage. Use of the Sangamo DCM eliminates any need for heavy, bulky choke components.

Type DCM Capacitors can be supplied in maximum energy content rating of 80-watt seconds in voltage ratings from 15 to 450 VDC. Maximum capacity value of 33,000 mfd. can be supplied at 15 WVDC.

Write for Engineering Bulletin TSC-114C.

SANGAMO Electric Company
SPRINGFIELD, ILLINOIS
Phillips has the ready answer for controlling large numbers of circuits in its Type 2 relay. Available in countless variations, contact combinations and coil windings. Type 2 offers a large coil winding capacity. This permits single and double wound coils and the use of copper or aluminum slugs for time delay on pick-up and drop-out. Large contact capacity permits assemblies of 24 contacts on one relay in a variety of types. Choice of single or twin contacts using precious metals or snap action switches. Type 2 is built from standard precision parts with special features included to fill specific requirements.

If any relay problem has you up in the air, let the “man from PHILLIPS” help.

Do-It-Yourself

Slide Rule for Filter Design

Ralph Davidson
Sperry Gyroscope Co.
Division of Sperry Rand Corp.
Great Neck, N.Y.

This slide rule was constructed to provide a fast and accurate method for calculating the reactive elements of a low-pass constant \(K \) type filter.

This slide rule solves the following formulas:

\[
C_b = \frac{1}{\pi f_b R_0}, \quad L_b = \frac{R_c}{\pi f_c} \\
C_a = \frac{1}{4\pi f_a R_0}, \quad L_a = \frac{R_c}{4\pi f_c}
\]

The reactive element configurations are shown on the face of the slide rule. These basic elements can be used to determine the values for \(M \)-derived type filters by substituting in the appropriate formulas.

Construction

- Glue all templates to hard cardboard.
- Cut out along marked lines.
- Place spacers as shown in diagram. Remember to align arrow markers on both scales.
- Staple along edge (through spacers).
- Place slider into center section as shown in diagram.

How to Use the Slide Rule

For example, suppose a low pass filter is needed in a 50 ohm system, to reject all frequencies above 150 mc. Set the arrow in the set frequency windows to 150 mc. On capacity scale opposite 50 ohms real capacitance (10.8 \(\mu \)fd). On inductance scale opposite 50 ohms read 0.00265 \(\mu \)h.

References

CIRCLE 35 ON READER-SERVICE CARD
For those transistorized circuits and other compact circuitry requirements, they have the desired quality product characteristics of all Hopkins Capacitors.

TEMPERATURE RANGE
The operating temperature range is from $-55^\circ C$ to $+100^\circ C$.

POWER FACTOR
Less than 1% at $25^\circ C$ and 1,000 CPS up to and including 1.0 M.F.D.

INSULATION RESISTANCE
Will average 500 megohms X microfarads for units less than 1 microfarad, when measured at 200 VDC for 2 minutes at $25^\circ C$.

Available in hermetically sealed metal cans or plastic encased.

Send For Catalog TODAY
Write or Wire
Phone: EEmpire 1-8691

HOPKINS Engineering COMPANY
12900 FOOTHILL BOULEVARD
P.O. BOX 191 • SAN FERNANDO, CALIFORNIA
CIRCLE 36 ON READER-SERVICE CARD FOR MORE INFORMATION
A Solid Electrolyte Battery

Burton F. Wagner
General Electric Company
Auburn, New York

This ARTICLE describes a fundamentally new type of battery employing a solid electrolyte. By virtue of its unique construction and chemistry, it displays very long-life, compactness and ability to withstand environmental extremes. These properties qualify it for applications heretofore not feasible with conventional batteries. Included are tentative specifications of this battery, its construction and chemistry, and typical characteristics of the finished device. A brief survey of its potential applications is also given.

Specifications

The battery is shown in Fig. 1 along with a cut-a-way view illustrating its internal construction. Tentative specifications are given in the table. It is instructive to compare these specifications with those for a conventional size D flashlight cell. In a volume only 0.026 times as large, this battery produces a potential 63 times as great and has a storage life 10 times as long. These advantages are gained by sacrifices resulting in only 0.000067 as much available charge, and an ability to deliver current reduced by a factor of 10⁷. Obviously, this battery is not intended as a replacement for conventional batteries, but instead, will fulfill requirements for which batteries have not heretofore been suitable.

Construction and Chemistry

A typical 94 v battery consists of 127 individual cells which are constructed as shown in Fig. 2. The electrolyte, silver-bromide, is a truly dry solid. The chemical reactions that are believed to take place within one of these cells are shown in Fig. 3. The fundamental action is that of all electrochemical cells, the conduction of ions through an electrolyte. Here, however, this action takes place by the diffusion of positive silver ions through a solid electrolyte. Also the net result of the chemical reaction is the displacement of electrons and the generation of additional electrolyte. In the reaction, the silver is used up and the cupric bromide is converted to cuprous bromide.

The open circuit voltage of such a cell is determined by the partial pressure of the bromide gas within the cathode space. Its ability to deliver current is a function of the cross-sectional area of a cell, pressure of the bromide gas in the cathode space, and the diffusion rate of the silver ions into the electrolyte. This battery is essentially dry and possesses no gaseous by-products.

Fig. 1. Photo and cutaway drawing of solid electrolyte battery.

Fig. 2. Basic cell.

Fig. 3. Chemical reactions within cell.

Fig. 4. Voltage-temperature characteristic.
Tentative Specifications of Solid Electrolyte Battery

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>31/32 ± 1/64 in.</td>
</tr>
<tr>
<td>Diameter</td>
<td>0.335 ± 0.005 in.</td>
</tr>
<tr>
<td>Leads</td>
<td>0.15 in., Copper-nickel</td>
</tr>
<tr>
<td>Weight</td>
<td>1 in.</td>
</tr>
<tr>
<td>Shock & Vibration</td>
<td>Very high</td>
</tr>
<tr>
<td>Temperature</td>
<td>-100 to +170°F</td>
</tr>
<tr>
<td>Humidity</td>
<td>To 50 per cent R. H.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Ckt. Potential</td>
<td>94 ± 6 v</td>
</tr>
<tr>
<td>Charge Available</td>
<td>4 µamp min (70°F)</td>
</tr>
<tr>
<td>Flash Current</td>
<td>1 coulomb</td>
</tr>
<tr>
<td>Storage Life</td>
<td>20 years (70°F)</td>
</tr>
<tr>
<td></td>
<td>720 hrs. min (165°F)</td>
</tr>
</tbody>
</table>

Fig. 5. High temperature stability.

Fig. 6. Constant current characteristics.

e cell, the thinness of the electrolyte, and the temperature. The available electric charge is determined by the cross-sectional area and the amounts of cathode and anode materials. It is interesting to note that this type of cell derives its long storage life from the unique properties of the electrolyte. Although the silver bromide demonstrates a usable ionic conductivity, its electronic conductivity is exceedingly poor. Thus, internal discharge, caused by electrons traversing through the electrolyte, is greatly attenuated.

Typical Characteristics

Two important factors were considered in obtaining measurements of the characteristics of this battery. Since the battery was intended for use in a broad range of demanding applications, considerable data have been gathered illustrating its ability to withstand environmental extremes. In addition, the low current capabilities of this battery indicated that many applications would require current levels representing a severe load on the battery. Thus, measurements have been made under conditions which would normally represent extremely heavy currents for such a battery.

Voltage-Temperature Coefficient. The typical effect of temperature on the open circuit voltage is shown in Fig. 4. Note that the relation is approximately linear from -50 to over 100°F. The extreme low temperature readings indicate a sharp roll-off, but this characteristic has not yet been thoroughly evaluated because, at very low temperatures, the current delivery capabilities of the battery become extremely minute, placing severe demands upon the insulation qualities of the instrumentation.

High Temperature Resistance. The ability of the battery to withstand temperatures is displayed in Fig. 5. The shaded area represents the extremes of measurements on six typical batteries while the heavy line shows the variation of one of these batteries. Note that the maximum change does not exceed 3°F over a period of 1000 hr.

Current Characteristics. Illustrated in Fig. 6 is the terminal voltage-time characteristic of a typical battery when subjected to a constant current of 0.1 µamp.

At normal and high temperatures, the terminal...
of the recovery of the battery is accomplished immediately upon removal of the load. At normal and lower temperatures, however, polarization effects predominate and terminal voltage is recovered in a smooth slow curve. Although this figure does not so indicate, full open circuit voltage is eventually recovered on a typical battery.

Load Characteristics. Terminal voltage vs time is shown in Figs. 8 and 9 for several resistor and capacitor loads. These are included to show, in general terms, the types of possible loading that can be used with this battery.

Problems of Application

In applying this battery several precautions should be taken:

External Leakage. If decades of life are required of the battery, care should be taken to avoid the removal of any significant portion of the available charge. This precaution suggests the use of insulating materials having very high volume resistivities \(10^{14} \text{ ohm-cm} \) or higher. Surface leakage must similarly be reduced by encapsulating, coating or desiccating.

Casting Materials and Methods. Since casting is regarded as an excellent method of supporting and protecting the battery under severe physical and environmental conditions, considerable attention has been given to the problems that are encountered here. Cure time and temperatures are important not only because of possible adverse effects from temperatures above 165 F, but also because of the electrical demands that may be placed on the battery during the curing process.

A low volume resistivity of the uncured components combined with a prolonged high temperature curing cycle can result in the complete exhaustion of the battery. Unmodified epoxy and polyester resins cured below 165 F have been found to be generally satisfactory in this respect. Since these are usually quite rigid, their cure shrinkage and coefficient of expansion should be reduced by heavy loading with inert fillers such as quartz or alumina. If extreme thermal cycling will be encountered, it is desirable to "cushion" the battery with a dip coat of room temperature vulcanizing silicone rubber.

An additional consideration stems from the fact that the battery is not yet hermetically sealed. It is thus important to employ only casting materials resulting in very low volatiles content.

Allied Components. In a typical application, the battery may be connected to such components as resistors, capacitors, wires and switches. Care should be taken to assure that these components protect the battery from undesirable leakage. As an example, capacitors employing Mylar, Teflon, polystyrene or glass dielectric are preferable to paper.

Applications

In general, it is believed that the battery will find application in four broad areas: 1. **One-shot devices**, in which the required energy is stored on a capacitor; 2. **Intermittent devices** in which the required energy is repeatedly stored on a capacitor; 3. **Bias supplies** in which a potential is all that is desired and currents are only leakage current; and 4. **Very..."
low drain supplies wherein long periods of disuse dictate a source having excellent storage life.

Typical of the applications is its possibility of use as a voltage source for the first four or all ten of the dynodes of multiplier phototube. Often, these tubes are used in conjunction with scintillation devices for radiation survey. In such applications, the input is a rapid series of minute, brief pulses of light wherein the average light intensity is very low. Since the current is a direct function of the light intensity, the statements above will apply also to the demands placed upon the power supply. This is, therefore, a good illustration of the very low drain type of device. Since, typically, each dynode requires between 75 and 100 v for proper operation, use of these batteries can reduce the other power supply requirements from an original 1000 v to 600 v or less.

Because such a device is often employed in portable and monitoring equipment, the physical ruggedness, long life and ability to withstand temperature extremes on the part of the battery would be important. Another application that is similar in concept is the use of this battery to power portable ionization devices such as Geiger-Meuller tubes.

The battery is highly attractive in applications where its function is to furnish a deflection potential for cathode ray devices. It should also find use as a power source for numerous transducers such as humidity and temperature sensors. In general, it should find application particularly where long periods of standby service are required and where extreme compactness, light weight and environmental resistance are important.

Future Designs

This battery is but the forerunner of a whole family of batteries, based upon the solid electrolyte concept, that will be realized in the future. Obviously, batteries exhibiting a wide range of characteristics can be made by simply altering the configuration of cells of the present type. As an example, the current and charge capabilities can be greatly enhanced by increasing the cell area. Altering the thickness of the three portions of the cell permits further control of the current and storage life.

With the refinement of basic knowledge, one can expect to see the development of batteries having still greater performance in each important characteristic and to see the solid electrolyte principle employed in many diverse ways.

Based on a paper presented by Mr. Wagner at the 1957 Electronic Components Symposium in Chicago, May 2, 1957. Proceedings of this conference will be published and can be ordered from the sponsoring organizations—RETMA, AIEE, IRE and WESCON.

As Close to You as Your Telephone

...your local Mallory Distributor Service

As close to you as a telephone call, your local Mallory distributor can save you valuable production or research time when you want electronic components fast... and need the finest.

For repair work, experimental circuits, short production runs or any of a dozen other applications, a call to your nearby Mallory distributor puts you in touch with your "factory just around the corner." His stocks include the complete range of top quality Mallory capacitors, resistors, controls, rheostats, mercury batteries, vibrators, and selenium rectifiers... the same superior-performance components chosen by leading manufacturers for use in original equipment.

Prompt delivery, often within hours of your call, of Mallory components and those of other well known companies can keep your "hurry-up" jobs on schedule... makes your Mallory distributor a good man to know.

For details about this program and... the name of your nearest distributor... call our local District office, or write to us in Indianapolis.

Depend on MALLORY for Service!

P. R. MALLORY & CO. INC.
Distributor Division, Dept. A
P. O. Box 1558, Indianapolis 6, Indiana

CIRCLE 38 ON READER-SERVICE CARD FOR MORE INFORMATION
One of the objectives in the design of the Canoga Wobbulator 7200 is to obtain high sensitivity without the "hum" problems normally experienced with other swept frequency generators. The swept frequency output voltage of the Wobbulator 7200 is modulated at approximately 50 Kc; the probes, with their internal diodes, detect this modulation which is then amplified in the vertical CRT band-pass amplifier. This new principle allows the use of swept generator techniques for evaluation of low gain or noisy circuits where point by point frequency measurements were previously necessary.

Frequency Range: 2.0 to 1000 mc
Swept Frequency Band: 2.0 to 55 mc, continuously variable
Output: More than 0.03 volts, 50 ohms
Sweep Circuit: All electronic
Swept Output: 1) Constant within ±1 db over 40 mc
2) Constant within fractions of db over 30 mc
Attenuator Dial: Calibrated in 1 db increments
Probe Detectors: 1) Low impedance 50 ohms
2) High impedance
High Sensitivity Vertical Amplifier: 50 microvolts input gives at least 2" deflection
Cathode Ray Tube: 5UP1, with camera mounting bezel
Calibrated Panel Controls: Center frequency
Output Attenuator
Panel Controls: Deviation
Vertical Amplifier Gain Control
Vertical Amplifier Gain Switch, high-low
CRT intensity, focus
CRT Vertical & Horizontal Centering
On-off switch
Power: 115V, 60 cps, 175 Watts
Output Impedance: 50 ohms, BNC connector

The insulation resistance of capacitors is a complex combination of several factors. Among these are semi-ohmic resistance, (anomalous) absorption current, residual charge currents, apparent current readings due to the measuring equipment, and leakage current caused by the capacitor enclosure. In this discussion of insulation resistance, the capacitors are either of the impregnated-paper or plastic-film dielectric types. For purposes of discussion the nomenclature in Fig. 1, the schematic of a basic measuring circuit, will be used. Rm is the primary component of leakage resistance. C is the ac capacity. Rm is the equivalent series resistance of the meter. R and C form an equivalent circuit to account for the absorption current.

For a given capacitor construction some of the important factors which contribute to the leakage current are measuring apparatus, temperature, time, and voltage.

Effect of Measuring Apparatus

The effect caused by the measuring apparatus is perhaps the least understood component of apparent leakage current. In many cases, however, this component may be the principal one. An illustration of its importance is as follows:

![Fig. 1. Basic measuring circuit for capacitor insulation resistance. Rm is the equivalent series resistance of the meter; R is the primary component of leakage resistance; C is the ac capacity; R and C form an equivalent circuit to account for absorption current.](image1)

![Fig. 2. Idealized curve of leakage current with time.](image2)
Assume a value of 10^{10} ohms for R_m, 10^{12} ohms for R_a, and 100 v for the supply. If the capacity of C_m is of the order of 1 µf, the time constant of R_a and C_m is 10,000 sec. It is, therefore, advisable that a quick charge be used. To accomplish this quick charge, R_m is momentarily shorted. This places a charge of 100 v on C_m. The temporary short is now removed from R_m. There is no current flowing through R_m due to the bucking action of the voltage on C_m. Current begins to flow in R_m as the voltage on C_m decays through R_m. The final division of voltage between R_a and R_m will be 100 to 1. Therefore, C_m must decay from 100 v to approximately 99 v before the meter can indicate the true current being drawn by the capacitor. The time for this decay to take place is computed as follows:

\[
\frac{V}{V_0} = \exp\left(-\frac{T}{RC}\right);
\]
\[
V = 99 \text{ v}; \quad V_0 = 100 \text{ v}; \quad R = R_a = 10^{12} \text{ ohms};
\]
\[
C = C_m = 10^{-6} \text{ f}
\]

substituting: $99/100 = \exp\left(-T/10^6\right)$; $T = 10^4 \text{ sec}.$

Therefore, the insulation resistance meter represented by R_m will not read the full leakage current drawn by the capacitor until 10,000 sec have elapsed from the quick charge. As the ratio of R_a to R_m becomes greater, the time lag becomes less. Thus, it can be seen that the above illustration represents a very cumbersome method. Actually, where the values of $R_a \times C_m$ are in excess of 10^6, the ratio of R_a to R_m is all important. If, in the above illustration, R_m is 10^4 ohms, then the division of voltage is 10,000 to 1. Solving for time as above gives:

\[
99.99/100 = \exp\left(-T/10^4\right); \quad T = 100 \text{ sec}
\]

This time is less than the conventional two minute reading, and the measurement of the capacitor leakage current takes only two minutes instead of almost three hours. It is, therefore, usually desirable to have a current or resistance measuring device with a minimum R_m.

Temperature, Time, and Voltage Effects

Time is also a factor of the observed leakage current. Because of the effect of R_m and C_m, these components of dielectric absorption will cause the apparent insulation resistance to increase in a decreasing exponential form. R_m is not a truly ohmic resistance and is somewhat affected by voltage. For some mylar capacitors it is by a factor of 10. That is, the insulation resistance at 50 v dc is ten times that at 500 v dc.

It is well known that temperature has a great effect on the leakage of a capacitor. It also has an effect on R_m and C_m such that at elevated temperatures, the effect of absorption is minimized and the final current due to R_m is reached in a shorter time than at lower temperatures.

Components of Leakage Current

In Fig. 2 is an idealized drawing of the leakage current of a capacitor vs time. The effects due to

KEEP UP-TO-DATE ON MAGNETICS

Here's the first design manual for your work with tape wound cores

Because engineers have expanded high permeability magnetics into a host of new uses, Magnetics, Inc. has combined its new tape wound core catalog with the industry's first design manual. If you and your staff need a working familiarity with magnetic equations, characteristics and terminology, this 28-page book will be of unusual value.

This design manual has been compiled under the direction of our laboratories. It contains basic units and conversion factors, methods of testing (dynamic, EI loop and dc), properties and magnetic values of nickel-iron alloys, and many pages of curves showing the variation of magnetic properties with temperature and of core loss with frequency.
MicroMatch Directional Couplers* measure RF Power and VSWR—giving you, the designer, positive confirmation of your transmitter's performance and providing your customer with a monitor that constantly watches his transmission line and antenna.

Built into major military communications and ballistic missile programs, these compact, rugged—and low cost—couplers produce an output essentially independent of frequency over the range of 3 to 4000 megacycles. They are adjusted for full scale meter deflection at power levels of 1.2 watts to 120 KW. Accuracy of power measurement is plus or minus 5% of full scale.

WRITE FOR OUR 50-PAGE CATALOG ... OR SEE PAGE 101 OF ELECTRONICS BUYER'S GUIDE FOR MORE INFORMATION

WHEN MICROMATCH® IS BUILT IN— YOU KNOW WHAT'S GOING OUT

*U. S. Letters Patent No. 2,588,390

M. C. JONES ELECTRONICS CO., Inc.
BRISTOL, CONNECTICUT

CIRCLE 41 ON READER-SERVICE CARD FOR MORE INFORMATION

Fig. 3. Leakage current curves for a 1.0 µf mylar capacitor at various temperatures. Note that true leakage current is only measured after considerable time—30 minutes for 150 C.

measuring equipment have been ignored. Initially the current is primarily the charging current of the capacitor. The final steady state current is called the final leakage current due to Rc. There is, however, between these two currents a current that cannot be explained by either mechanism. This current is called the absorption current. The absorption current then is equal to the observed current at time t minus the current due to Rc minus the charging current at time t.

In Fig. 3 is shown a summary of graphs taken on a 1.0 µf mylar capacitor using an SIE Model C-6 insulation resistance meter with a potential of 50 v. A quick charge was used. At all temperatures, the primary component of leakage current for the first 1-1/2 min was due to the equipment. This is the cause of the "null" in readings. From 1-1/2 min until the straight line condition is reached, primarily dielectric absorption current is being measured. Only when the leakage current approaches a straight line is the true leakage current measured. The characteristics of the leakage meter used were such that results are questionable in excess of 10^6 megohms. At 85 C, therefore, even after 105 minutes, the final insulation resistance was not obtained.

From voltage decay tests, there are indications that the insulation resistance of Mylar at 25 C is
well in excess of 10⁶ megohms. At 105 C, the final insulation resistance was reached at 45 to 60 min and at 125 and 150 C, it was reached after only 30 min. If two-minute readings were taken on this apparatus, the results would be 5 to 10 times lower than the final value. The actual value reported here for mylar is not to be taken as typical of actual performance, as too small a sample was used. The actual variation from unit to unit even within the same lot of mylar may be considerable.

At higher voltages the final value of insulation resistance is reached in a shorter time. Measurements on the same capacitor at 125 C and 500 v dc showed a final reading at 15 min. This final reading, however, was approximately 7 x 10² megohms instead of 6 x 10³ at 50 v dc.

Effects of the Capacitor Case

The shunting effect of the capacitor case sometimes is a factor in the insulation resistance, especially where such dielectrics as teflon or polystyrene are concerned. Protective wrapping and filling or impregnating compounds may decrease the measured insulation resistance as well as external conditions such as dust, moisture, and soldering flux on the glass or ceramic terminals. These factors are widely variable, but they should not be ignored.

Conclusions

The author has no proposal for a simple, quick, effective way to measure insulation resistance. The two-minute reading, which is frequently taken as standard in the capacitor industry, often tells very little. Designers who use capacitors should be aware of this and should take it into account when specifying a desirable insulation resistance. Treat a capacitor not as a simple RC network, but as a complex RC network. Taking into account the effects of absorption is the only effective way of analyzing the behavior of a capacitor when the leakage resistance is a factor in the circuit performance. As more sensitive leakage meters become available (those with smaller Rₐ), the problem of artificial readings due to the ratio of Rₐ to R will become less important.

Bibliography

WHY IT PAYS TO SHOP AT THE BENDIX “SUPERMARKET”

— NATION’S LARGEST PRODUCER OF SYNCHROS

In buying precision synchros, doesn't it make a lot of sense to insist on getting exactly what you want, when you want it—and at minimum cost?

Best way to be sure you get all three is to depend on the Bendix “Supermarket”.

Our mass synchro production facilities ... the nation’s largest ... are constantly turning out just about all types of synchros imaginable. This means we can offer you immediate delivery of most synchro types—and minimum cost on all synchro types, even for small quantity orders.

You can depend on the quality of Bendix synchros, too. They will equal ... or exceed ... the accuracy of any other synchros made today. Sound reasons why you’ll be ahead to rely on the experience and mass-production facilities of Bendix.

Bendix Aviation Corporation

Eclipse-Pioneer Division

Teterboro, N.J.

CIRCLE 83 ON READER-SERVICE CARD FOR MORE INFORMATION
New Products

Low Impedance Z Angle Meter
Measures in Polar Form

Type 314-A Z Angle Meter is designed specifically for measuring in polar form. The magnitude of the measured impedance is indicated by balancing a single control for a null meter reading. The phase angle is indicated in similar fashion by a null balance made subsequent to the magnitude balance.

Impedance magnitude ranges from 0.005 to 1000 in six steps; the phase angle ranges are 0 to 90 deg lead or lag. Meter has a frequency range of 30 to 1000 cps. Its accuracy with respect to the impedance magnitude is ±1 per cent, and with respect to phase angle, ±1 to ±2 per cent.

Acton Labs., Dept. ED, Main St., Acton, Mass.
CIRCLE 43 ON READER-SERVICE CARD FOR MORE INFORMATION

Tubular Capacitors
Shape Saves Weight and Space

The rectangular form of these tubular capacitors saves 1/3 the space required by round tube types, and reduces the weight. Units fit closer to the chassis, and can be fixed in place with epoxy adhesive, exposing far more surface to the adhesive than does a round type. Units can be shaped by the manufacturer to fit special configurations. Compression glass-to-metal hermetic sealing is employed. The same capacitance and voltage ranges are provided as in conventional tubulars.

Electron Products Co., Dept. ED, 430 N. Halstead Ave., Pasadena, Calif.
CIRCLE 44 ON READER-SERVICE CARD FOR MORE INFORMATION

Vibrator Replacement
For Two-Way Mobile Radio

A transistorized replacement for vibrators in two-way mobile radio communications equipment has the extra capacity necessary to operate both the transmitter and receiver units. The unit is designed for 12 v systems and is capable of switching over 9 a dc and will operate on both positive and negative sources. The vibrator uses proven solid set components in an exclusive circuit.

Transval Engineering Corp., Dept. ED, 10401 Jefferson Blvd., Culver City, Calif.
CIRCLE 45 ON READER-SERVICE CARD FOR MORE INFORMATION

Digital Storage Drum
Modular Design

This digital magnetic storage drum permits different diameter surfaces to be affixed to a standard hub. The modular design is ideally suited for digital system development groups, process automation systems, buffer storage applications, or for any installation where an inexpensive, versatile memory system would be appreciated. Drum diameter, speed, read/record heads and associated circuitry may be selected by the systems designer to meet his individual requirements.

The concept permits engineers to acquire digital storage techniques before investing in a finalized, higher-priced drum.

CIRCLE 46 ON READER-SERVICE CARD FOR MORE INFORMATION

Flexible Printed Cab
Savings in Weight and Size

Made of silicone rubber with or without glass reinforcement, this cable can be produced in any length and in various conductor patterns. Weight savings of 4:1 for signal cable and 2:1 for power cable are possible. This type cable is designed for the firm's cable harness system but will be engineered to individual requirements. Also available with the harness system are pressure type connectors for 600 F service. From 10 to 150 contacts with a wide range of ratings are included within a single connector. Continuity checks, to locate a particular conductor, are eliminated because the conductors always remain in a fixed location relative to one another. Terminations are available for the printed cable, conventional cable or printed circuits boards.

CIRCLE 47 ON READER-SERVICE CARD FOR MORE INFORMATION

Silicon Rectifiers
Rated 250 Ma at 150 C

These Top Hat Design Rectifiers have current ratings up to 250 ma at 150 C ambient, and reverse working voltages up to 500 v. Diffused junction construction offers long life and high efficiency. They are available in the following RETMA types: IN356, IN357, IN358, IN359, IN540, and IN1095.

CIRCLE 48 ON READER-SERVICE CARD FOR MORE INFORMATION
Inductor Assemblies
For Printed Circuits

A wide range of standard variable inductors and coil form assemblies for printed circuit application has been designed for commercial and military applications at audio and rf frequencies. The coils feature mica-filled forms, litz windings, and a built-in torque device for smooth stay-put tuning. Illustrated here is a P 120 variable inductor, one of a standard series covering the 2 to 2000 µh range.

Also available now are the series 700 adjustable coils and the F 700, PF 120 and PF 130 coil form assemblies. The series 700 coils feature high Q at audio and supersonic frequencies. The new coil form assemblies permit winding of coils from 0.5 µh to 2 h, and all forms have four terminals designed for printed circuit use.

North Hills Electric Co., Inc., Dept. ED, 402 Sagamore Ave., Mineola, N.Y.

CIRCLE 49 ON READER-SERVICE CARD FOR MORE INFORMATION

High Voltage Source
Provides 15 Kv

Hyvolt-15 provides a completely adjustable source of high potential (0 to 15 kv) for general purpose use. Its primary purpose is to provide insulation, dielectric and cable test information, and it can be found useful for many other things such as an aid for locating open circuits, etc. It is a reliable source of high voltage for cathode ray, TV tube, X-ray, and nuclear instruments. Two voltage ranges are provided: 0 to 1500 v and 0 to 15,000 v and two current ranges at 0 to 100 µa and 0 to 500 µa are provided. They are regulation resistance can be read to approximately 0.01%. INSS 10000 meg. Ac input is 115 v, 60 through 450 cps, single phase. DC input is 24 to 30 v (to a built-in transformer supply). The unit weighs 36 lb.

CIRCLE 50 ON READER-SERVICE CARD FOR MORE INFORMATION

INSTANTLY...

measure and supply DC voltages to 0.02%

with the new KIN TEL DC voltage standard and null voltmeter

LABORATORY ACCURACY. The Model 301 is an extremely compact and accurate variable DC power supply and calibrated null voltmeter. It employs KIN TEL's proved chopper circuit to constantly compare the output voltage against an internal standard cell. As a DC voltage standard, it combines the stability and accuracy of the standard cell with the current capabilities and excellent dynamic characteristics of the finest electronically regulated power supplies. The self-contained null voltmeter indicates the voltage difference between the supply in the 301 and the DC source being measured, affording simple and rapid measurement of DC voltages to an accuracy of 0.02%.

PRODUCTION LINE SPEED. DC voltage measurements can be made as fast as changing ranges on a VTVM. Merely set the direct reading calibrated dials on the 301 to exactly null out the unknown DC input voltage. The reading on the dial then indicates the value of the unknown input voltage to within 0.02%. As a variable DC standard or power supply, the calibrated dials provide instant voltage selection to an accuracy normally attained only with standard cells.

VERSATILITY. The KIN TEL Model 301 is ideal for rapid and accurate production calibration of precision measuring instruments and DC power supplies... design of DC amplifiers and complex electronic circuits... computer reference... versatile precision reference for calibration and measurement laboratories.

Important Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage & Current</td>
<td>1 to 501 volts at up to 20 ma</td>
</tr>
<tr>
<td>Full Scale Range</td>
<td>±500, 50 volts</td>
</tr>
<tr>
<td>DC Output Range</td>
<td>±500, 50 volts</td>
</tr>
<tr>
<td>DC Input Range</td>
<td>±50, 5, 0.5, 0.05 volts</td>
</tr>
<tr>
<td>DC Null Meter Range</td>
<td>±100 parts per million</td>
</tr>
<tr>
<td>Long Time Stability</td>
<td>±0.02% or 2 mv</td>
</tr>
<tr>
<td>Output Voltage Calibration</td>
<td>±0.02%</td>
</tr>
<tr>
<td>Output Hum and Noise</td>
<td>Less than 100 µv RMS</td>
</tr>
<tr>
<td>Line and Load Regulation</td>
<td>0.002%</td>
</tr>
<tr>
<td>DC Output Impedance</td>
<td>Less than 0.01 ohm</td>
</tr>
<tr>
<td>Response Time</td>
<td>0.2 millisecond</td>
</tr>
</tbody>
</table>

Representatives in all major cities. Write today for demonstration or descriptive literature.

5725 Kearny Villa Road, San Diego 11, Calif., BRowning 7-6700

CIRCLE 51 ON READER-SERVICE CARD FOR MORE INFORMATION
Westinghouse has revolutionized pulse transformer testing. Now, complete performance in your circuit is proved—before delivery. Even pulse shape predictions are now possible. This means that faster delivery of ready-to-use components, eliminates the expense of proving transformer performance in your plant.

Using a new line-type pulse modulator in conjunction with low power pulse testing, these tests will simulate any condition. Tests are applied both in development—level of insulation systems and components, life testing, temperature rise measurements—and in production—core characteristics, dielectric tests, pulse shape determinations.

Although rated at 30 megawatts peak power and 60 kilowatts average power, transformers having ratings up to 50 megawatts peak and 200 kilowatts average power can be tested by deviating from specification impedance or repetition rating. Tests can be made under full load or with no load.

This complete testing—before delivery—is your assurance of specified performance. Call your Westinghouse representative for information on the wide line of fully tested Westinghouse pulse transformers... or write Specialty Transformer Department, Westinghouse Electric Corporation, P. O. Box 231, Greenville, Pennsylvania.

You can be sure... if it's Westinghouse.

CIRCLE 53 ON READER-SERVICE CARD FOR MORE INFORMATION

New Products

Ultrasonic Cleaning Generator
125 W Average Power

This ultrasonic cleaning generator, Model AP-25-B, was designed for use with standard tank type or all-welded stainless steel immersible transducers. For cleaning-rinsing or other two-step operations, the generator output can be switched easily between transducers mounted in separate tanks. Rated RF output of the 10 x 16 x 12 in. deep generator is 125 W average power, with peak power on pulses of 500 W. The generator can be used to drive up to three types B (bulkhead-mounted) immersible transducers, or one 125w type E transducer. These all are meant for mounting in the user's present cleaning tanks, or in tanks made to order.

Branson Ultrasonic Corp., Dept. ED, 40 Brown House Rd., Stamford, Conn.

CIRCLE 54 ON READER-SERVICE CARD FOR MORE INFORMATION

Contact Arc Suppressors
Lengthen Equipment Life

These contact protectors were developed to eliminate arcing and erosion across the contacts of relays or switches. Three basic configurations are available: encapsulated diode types, extremely small in size, for application in limited space; fibre tube cartridge types, and hermetically sealed cartridge types for severe environmental conditions.

Types are available for working de voltages ranging from a minimum of 15 v to a maximum of 154 v, and at maximum coil currents ranging up to 600 ma. Ease of mounting is made possible through pigtail type construction.

International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., El Segundo, Calif.

CIRCLE 55 ON READER-SERVICE CARD FOR MORE INFORMATION

ELECTRONIC DESIGN • October 1, 1957
Transistor Power Supply
Low Ripple and Noise

This power source is especially designed for laboratory and development work on low level transistor circuits. Features of the model A-400 include metered output of both voltage and current at extremely low levels with 2 per cent accuracy. Hum and noise output are sufficiently low to permit its use on low level preamplifier, hearing aid, and instrument amplifier circuits. The ripple is less than 500 µv at full output (0.002 per cent) with less than 20 ohms constant internal impedance comparable to a battery. Voltage output ranges of 0-15 v and 0-30 v, continuously variable using auto-former control, and current ranges of 0-15 ma and 0-60 ma allow precise settings.

Perma-Power, Dept. ED, 3100 N. Elston, Chicago 18, Ill.

CIRCLE 57 ON READER-SERVICE CARD FOR MORE INFORMATION

PNP Germanium Transistors
For Computer and Special Purpose RF Use

Of this line of twelve transistors, new in the Elston-Eltron-Eltronite-Eltron products line, types 2N425, 2N426, 2N427 and 2N428 are especially for computer use and have alpha frequency cutoff values of 4, 6, 11 and 17 mc respectively. Types 2N416 and 2N417 are for special purpose rf applications and have alpha frequency cutoff values of 10 and 20 mc respectively.

For portable radio receiver circuits there are six new types. 2N413 is designed for local oscillator use. Types 2N414 and 2N415 are converters with 2N414 averaging 26 db and 2N415 averaging 30 db for conversion gain. Types 2N413A, 2N414A and 2N415A are i-f amplifiers with average power gains of 35 kc of 32, 35 and 39 db respectively. Production controls for gain and collector capacity make them ideal for i-f amplifiers with fixed neutralization. All twelve of the transistors come in the Elston-Eltron-Eltronite-Eltron products line.

Raytheon Mfg. Co., Dept. ED, 55 Chapel St., Newton, 58, Mass.

CIRCLE 42 ON READER-SERVICE CARD FOR MORE INFORMATION

for circuits requiring utmost voltage economy

Radio Receptor Germanium Diodes

10MA forward current with a maximum loss of only .37 volts!

TYPICAL FORWARD CHARACTERISTIC AT 25°C

MIN. MAX.

DR 385 DR 434 DR 435

-Forward voltage drop 0.34V 0.34V 0.34V
-Perma-Power, Dept. ED, 3100 N. Elston, Chicago 18, Ill.

CIRCLE 57 ON READER-SERVICE CARD FOR MORE INFORMATION

PNP Germanium Transistors
For Computer and Special Purpose RF Use

Of this line of twelve transistors, new in the Elston-Eltron-Eltronite-Eltron products line, types 2N425, 2N426, 2N427 and 2N428 are especially for computer use and have alpha frequency cutoff values of 4, 6, 11 and 17 mc respectively. Types 2N416 and 2N417 are for special purpose rf applications and have alpha frequency cutoff values of 10 and 20 mc respectively.

For portable radio receiver circuits there are six new types. 2N413 is designed for local oscillator use. Types 2N414 and 2N415 are converters with 2N414 averaging 26 db and 2N415 averaging 30 db for conversion gain. Types 2N413A, 2N414A and 2N415A are i-f amplifiers with average power gains of 35 kc of 32, 35 and 39 db respectively. Production controls for gain and collector capacity make them ideal for i-f amplifiers with fixed neutralization. All twelve of the transistors come in the Elston-Eltron-Eltronite-Eltron products line.

Raytheon Mfg. Co., Dept. ED, 55 Chapel St., Newton, 58, Mass.

CIRCLE 42 ON READER-SERVICE CARD FOR MORE INFORMATION

Electronic Design • October 1, 1957
New Products

ADJUSTABLE precision polystyrene capacitors

• WITH PERFECT HERMETIC SEAL TO INSURE EXTREMELY LOW LEAKAGE!

SOUTHERN ELECTRONICS Corporation
239 West Orange Grove Ave., Burbank, California

NOW AVAILABLE FROM 0.1 M.F.D. to 10 M.F.D.
Check these outstanding features:
- Accuracy in the order of 0.1% or better!
- Long Time stability in the order of 0.03%
- I.R. - @ 25° C 10^12 OHMS
- Dielectric Absorption — .015%
- Dissipation Factor — .0002
- Temp. Coeff. (-20° to 140° F.) 100 P.P.M. per °C

Excellent for Computer Integration, Test Equipment or Secondary Standards.

American's electronic leaders specify Southern Electronics' polystyrene capacitors for their most exacting requirements.
Goodyear Aircraft, Beckman Instruments, Reeves Instrument Corp., Electronic Associates, Inc., Convair, M.I.T., Cal Tech, and many others. Make sure you're getting the finest—always specify S.E.C.!

Wire, write or phone for complete catalog today!

CIRCLE 61 ON READER-SERVICE CARD FOR MORE INFORMATION

Miniature Connectors
Aluminum Bracket Prevents Damage

These connectors, though improved, are completely interchangeable with existing military and commercial units of the same type, with the exception of a slight additional width. Screw-locks to facilitate ease of mating and disengagement and to provide a positive vibration-proof lock are mounted directly in the molded insulator. They cannot break loose, rendering the connector useless as often happens with other connectors. The problem is eliminated in the Series WM20 connectors by the incorporation of a die cast aluminum bracket, to which the screw-locks and polarizing guide pins are attached, as an integral part of the connector. This allows inherent body float in the connector, which greatly reduces the chance of damage due to misalignment. The die casting also acts to protect the molding from accidental damage.

Anton Electronic Labs., Inc., Dept. ED, 1226 Flushing Ave., Brooklyn 37, N.Y.
CIRCLE 62 ON READER-SERVICE CARD FOR MORE INFORMATION

Squaring Mechanism
Miniature Computer Device

Shown with a potentiometer attached, this bi-directional mechanical device for squaring and extracting square roots is being manufactured for use in all types of mechanical and electro-mechanical analog computers. Constructed with an aluminum casing, it weighs 10 oz., with a steel casing it weighs 20 oz. The mechanism offers an accuracy and durability which was formerly obtained only in larger devices.

Belock Instrument Corp., Dept. ED, 111-01 146 Ave., College Point, N.Y.
CIRCLE 63 ON READER-SERVICE CARD FOR MORE INFORMATION
The Master Scanner Module, to be used with the manufacturer's new line of modular instruments for measuring dc, ac-dc ohms and ac-dc ratios permits automatic scanning of 100 input channels. When combined with slave modules of 300 channels each, any number of channels can be selected. Scanning time is 0.1 sec per channel. The number of the channel selected is digitally displayed on a 1 in.-high, edge-lighted display of either 3 or 4 digits, depending upon the model selected. Programming is accomplished manually; however, with the addition of a programming unit, programming can be done with cards or tape. Recycling can be done either automatically or manually.

Electro Instruments, Inc., Dept. ED, 3794 Rosecrans, San Diego, Calif.

CIRCLE 65 ON READER-SERVICE CARD FOR MORE INFORMATION

Positioning Motor

Translates Pulses to Accurate Rotation

This motor is a bi-directional unit translating electrical pulses into uniformly accurate, rotary incremental shaft displacements. They have a wide use as a positioner for guided missiles to adjust heading, fuel flow, altitude, and circuit sampling for telemetering purposes.

The two rotary solenoids contained in each motor produce the incremental motion of the output shaft in either direction. Energizing either of these solenoids produces a combination of linear and rotational motion which moves a ratchet gear axially into engagement with its mating ratchet gear and thus imparts a constant amount of rotation to the output shaft. The detent roller assembly insures constant, reproducible angular shaft rotation increments in either direction and maintains the output-shaft position while the motor is at rest with the power off.

CIRCLE 66 ON READER-SERVICE CARD FOR MORE INFORMATION

Federal 200K Swept Frequency Generator

For the first time... swept frequency convenience with point-by-point accuracy!

Federal's 200K Swept Frequency Generator—with a Federal large-screen oscilloscope—provides a compatible system of outstanding versatility and efficiency... capable of producing amplitude vs. frequency displays of the highest accuracy. The frequency response plots obtained bring new speed and dependability to production testing and calibration of frequency-sensitive devices. Effects of changes in circuit parameters upon frequency characteristics can be determined instantly, resulting in an optimum design in minimum time.

Federal's 200K produces a constant amplitude (±1%) output voltage of continuously varying frequency from 20 cps to 200 KC, or any increment in this range. Continuous frequency variations are produced by internally generated sawtooth, logarithmic, triangular, or square waveforms at any rate between 1 and 10 sweeps per second. Sweep linearity is ±2% for full deviation.

A unique, patented feature of the 200K is the ±1%-accurate frequency marker circuit which positions a marker pulse on the oscilloscope display at any frequency within the instrument's range. This internally generated marker pulse does not go through the unit under test and is unaffected by the deviation rate. Federal 17 and 21-inch oscilloscopes are available for use with the 200K.
ELECTRO-SNAP SWITCH & MFG. CO.

WRITE FOR OUR CATALOG!

New Products

Transistorized AC Millivoltmeter
2 Meg Input Impedance

The Model 300 millivoltmeter has an input impedance of 2 meg without use of vacuum tubes. Long battery life, twelve ranges covering 0.001 to 300 v, and a frequency response from 8 cps to 800 kc are other features. The unit measures 5 x 7 x 5 in. and has a large 4 in. meter.

Burr-Brown Research Corp., Dept ED, Box 6444, Tucson, Ariz.
CIRCLE 70 ON READER-SERVICE CARD

Measuring Bridge
Drives High Resistance Instruments

Indicators, recorders, and oscilloscopes available in the 10 mv range work in very well with the B-1 Bridge without the need for further amplification. The bridge measures strain, pressure, load, displacement, acceleration, static to impact speeds, and handles SR-4 strain gages and similar transducers. It drives indicators, recorders, x-y instruments, and oscilloscopes. The unit has low noise pickup and because it operates off the line there is power to drive higher resistance gages fully and thereby get increased sensitivity.

Ellis Associates, Dept. ED, Box 777, Pelham, N.Y.
CIRCLE 71 ON READER-SERVICE CARD

WRITE FOR OUR CATALOG!

ELECTRO-SNAP SWITCH & MFG. CO.
Ceramic Disc Capacitors
Thin for Miniature Circuits

The new copper plating process for manufacturing these ceramic disc capacitors results in increased adhesion and freedom from migration. The process also simplifies production so that noticeable cost savings are achieved. When used for transistorized circuits, the capacitors are made to a thinness of 0.17 max.

Capacities vary in range from 0.01 produced in a 1/4 in. diam body to 0.2 in a 0.72 in. diam body. These values, with a power factor of 3 per cent max at 1 kc, have a working voltage of 90 v dc with a minimum IR of 1000 meg, contingent upon capacity values.

Radio Industries, Inc., Dept. ED, 5225 N. Ravenswood Ave., Chicago 40, III.

CIRCLE 72 ON READER-SERVICE CARD

Gold-Bonded Diodes
Combine Silicon and Germanium

This line of subminiature glass diodes incorporating alloys of silicon and germanium is reported to offer a combination of characteristics not possible with silicon or germanium alone. Particularly at elevated temperatures, they are said to combine the higher reverse resistances of germanium diodes with the fast transient response and high forward conductance of silicon diodes. They are particularly suited to high speed computing circuits and other applications where high rectification efficiency at elevated temperatures must be combined with fast recovery time. They are available in standard JETEC type numbers offered in germanium.

Clevite Transistor Products, Dept. ED, 241 Crescent St., Waltham 54, Mass.

CIRCLE 74 ON READER-SERVICE CARD
CIRCLE 75 ON READER-SERVICE CARD

TESTS ON NEW GENERAL ELECTRIC RESISTORS PROVE . . .

Stable operation from +700° to −70° F

Under searing heat or sub-zero cold, General Electric resistors maintain their rated ohmic values. Actual laboratory tests have proved that these vitreous-enameded resistors hold their rated resistance under ambient temperatures from +700 F to −70 F.

These General Electric resistors are available in over 1400 combinations of ratings (5 to 200 watts), types, and mountings. Stable operation is but one of their outstanding qualities: They have sufficient terminal strength to hold up to 21 pounds of right-angle pull, and special terminals are available to hold up to 34 pounds. Their vitreous-enamel coating provides resistance to adverse atmospheric conditions.

Like to know more? Ask your General Electric salesman for a free set of sample resistors and test them yourself! And mail this coupon today for the new 36-page catalog containing complete information on ratings, dimensions and ordering directions.

Industry Control Department, Roanoke, Virginia.

SEND TODAY FOR FREE RESISTOR CATALOG

Section C784-8
General Electric Co., Schenectady, N. Y.
Please send a copy of GEA-6592, G-E Resistor Catalog.

NAME

COMPANY

ADDRESS

CITY

STATE

Progress Is Our Most Important Product

GENERAL ELECTRIC
New Products

High Voltage Supply
For Scintillation Counting

This high voltage power supply for use in the field of scintillation counting or ionization chamber work is designed especially for use with the RCA No. 6810 photomultiplier tube. The 10 ma capacity enables it to furnish power simultaneously to several of these tubes for coincidence work. The unit, Model N-413, achieves high voltage with reversible polarity. The high voltage transformer is driven by a power oscillator, stabilized to maintain perfect symmetry, and the output is rectified by means of a bridge rectifier. Polarity is determined by a simple polarity-reversing switch. The voltage amplifier and chassis are at ground potential.

Output voltage ranges from less than 500 to 5000 v dc; regulation of 0.005 per cent is achieved for changes in both line and load; and noise and ripple are held to 50 mv peak to peak at full voltage and load. A standard cell is used for reference. The power supply measures 19 x 8-3/4 x 13-1/2 in.

Hammer Electronics Co., Inc., Dept. ED, P.O. Box 531, Princeton, N.J.

CIRCLE 78 ON READER-SERVICE CARD FOR MORE INFORMATION

Mirror Galvanometer
Highly Sensitive

This mirror galvanometer offering a sensitivity of 2000 mm per µA features a brightly lit, built-in scale, fully legible under normal room illumination. The magnified scale image moves below a stationary index line eliminating the visual effort required by other types of mirror galvanometers. Scale length is equivalent to an optical lever nearly 7 ft long. Both linear and logarithmic scales are available.

Jarrell-Ash Co., Dept. ED, 26 Farwell St., Newtonville 60, Mass.

CIRCLE 79 ON READER-SERVICE CARD FOR MORE INFORMATION

Using Thermistors
Edited by FENWAL ELECTRONICS

Here's more news on thermistors—the tiny, highly temperature-sensitive, semiconductors that are being used in new and more applications in all types of industry.

Let's look at just three ways thermistors are now being used... Time Delay, Remote Control and Switching.

A thermistor placed with a variable resistor in series with a battery and a relay (Fig. 1) makes an excellent time delay relay. The high resistance of the thermistor limits the current flow when the switch is closed. The delay time may be increased or decreased by increasing or decreasing the series resistance.

By selecting a thermistor with the same constant as the tube filament it will be in series with, you can keep the current constant during the initial warm-up and prevent an initial current surge.

Read thermistors are available with attached heaters and mounted in a vacuum bulb. (Fig. 2) The thermistor's resistance is reduced when power is applied to the heater. When placed in the input of a vacuum tube amplifier these thermistors make smooth, noiseless remote gain controls, because there are no moving parts or controls in the grid circuit.

CIRCLE 117 ON READER-SERVICE CARD FOR MORE INFORMATION

Engineers: these and other thermistor applications are discussed in 12-page catalog EMC-1. Write for your copy to FENWAL ELECTRONICS, INC., 311 Welles St., Framingham, Mass.

Makers of Precision Thermistors

CIRCLE 111 ON READER-SERVICE CARD
Miniature Indicating Switch
Gives Strong Indication

Designed primarily for pulsing remote controlled relays and indicating their operations, the Pan-lite Switch has a maximum diam of 5/8 in. The push-button bulb-lens assembly is an integral unit designed for quick replacement from the front of the panel. Indication can be seen at 180 deg and at unusual distances. Bulb-lens assemblies are unusually rugged so can be carried in pack, tool kit, or mounted conveniently in panel as spares. A versatile electrical layout allows the switch to be wired either as a momentary contact push-button style indicating switch or as a press-to-test indicating light.

Alden Products Co., Dept. ED, 117 N. Main St., Brockton, Mass.

CIRCLE 81 ON READER-SERVICE CARD FOR MORE INFORMATION

Cathode Follower Probes
High Temperature, Shock Mounted

Known as models F-460 and F-460HT, these probes are primarily designed to couple high impedance piezoelectric accelerometers into recorders or telemetering equipment in airborne applications. Weighing 2 oz, the cathode follower probes are designed for continuous operation at temperatures ranging from -65 to +160 F in the case of the F-460, and -65 to +350 F for the F-460HT. No temperature compensation and no external cooling are necessary.

In both cases, complete electronic and vibration testing of all tubes used assures excellent antimicrophonic characteristics. Each tube module is mounted in a silicone compound for shock and vibration isolation and for high temperature operation. Either model may be supplied with circuit grounds isolated from case grounds to prevent ground loops.

CIRCLE 82 ON READER-SERVICE CARD FOR MORE INFORMATION

MEASURE MICROVOLTS
without pre-amplification!

with the New Du Mont type 403

The Type 403 is the most sensitive oscilloscope commercially available. It permits direct measurements from low output transducers such as strain gages, pressure pickups, accelerometers, and others that normally require pre-amplifiers.

When used as a direct reading voltmeter, the Type 403 offers stability of better than 1 millivolt per hour for all ranges from 500 volts all the way down to 1 millivolt full scale. A super sensitive range is available of 1 millivolt full scale (100 microvolts per scale division) for short term measurements.

This outstanding performance is wrapped in the nicest package in the industry. The 403 features “human engineering” resulting in easier operation, complete accessibility and unsurpassed reliability backed by a 5-year guarantee.

DU MONT
TECHNICAL SALES DEPARTMENT,
Allen B. Du Mont Laboratories, Inc., Clifton, N. J.

CIRCLE 77 ON READER-SERVICE CARD FOR MORE INFORMATION
New Products

Time Delay Relay
For High Temperature and Vibration

These miniature time delay relays combine the features of sub-miniature size, light weight, environmental resistance, maximum reliability, and timing accuracy. Applications include aircraft and missile instruments and controls, navigation systems, automation circuits, computers. Through the use of transistors and RC time-constant circuits, all moving parts except relay contacts have been avoided.

Standard models are available with time delay periods from 0.01 to 60 sec delay occurring between application of current and pull-in or relay contacts. Timing accuracy is ±10 per cent of nominal thru a temperature range of −55 to +125 °C.

Tempo Instrument Inc., Dept. ED, 240 Old Country Rd., Hicksville, N.Y.
CIRCLE 85 ON READER-SERVICE CARD

Commutator Brushes
Resist Silicone Vapors

These brushes, designated E-26 and E-32, were developed for use on such silicone-insulated equipment as seaboard motors and generators, industrial equipment operating under explosive conditions and semi-enclosed mill-type motors. Earlier brushes used on such equipment have been rapidly consumed by silicone vapors eroding or abrading the brush material. Both brushes are formulated to offset this problem. The E-26 is a high-contact drop grade electro-graphitic brush of rugged construction and long life. The E-32 is a very high contact drop electro-graphitic brush, developed for equipment presenting particularly severe commutating problems.

Speer Carbon Co., Dept. ED, St. Marys, Pa.
CIRCLE 86 ON READER-SERVICE CARD

CIRCLE 88 ON READER-SERVICE CARD

Each of the more than 2000 cards in this progress file represents a project on which G-V Engineers are working with a customer's staff. An automatic follow-up makes sure we do our part on time.

Delivery schedules are set up by the Sales Department as soon as orders are received. This production control board charts each order through ten reporting points in the manufacturing process. Delays are avoided before they arise and deliveries are on time.

How Has Service Contributed to G-V?

Engineering develops the prototypes for G-V's famous line; Production maintains the quality and steady flow of this line; SERVICE assures swift delivery, accurate follow-through, specialized engineering assistance to users of thermal relays. These elements, which have made G-V the leader in thermal relays, are available to all of G-V's customers and potential customers.

Complete catalog data is available.

G-V CONTROLS INC.
18 Hollywood Plaza, East Orange, N. J.

Key spots open for engineers interested in going places with a young progressive organization.

G-V's Leadership in Thermal Relays?

HOW DOES G-V SERVICE WORK?—G-V Service starts with cooperative engineering, the offer of specialized engineering assistance to all users of thermal relays. G-V Sales and Application Engineers know their products thoroughly and are interested in your problems. They can tell you precisely how G-V Thermal Relays and Thermostats will perform in your application. They help you to engineer sound, successful systems.

G-V Service continues when you are ready to order. Small lots for test or prototype use are rushed through on a special schedule. Deliveries can be quoted promptly and dependably, the moment you ask for them. Your orders are watched constantly to make sure they are on schedule, and you get delivery on time and without rejections.

To maintain its leadership in the field of Thermal Relays, G-V holds to the same high standards of engineering and quality maintained in the plants of its customers. The fact that these customers include all of the country’s major electronic and aircraft manufacturers clearly shows the superiority of these standards.

Thermal Conductivity Tester
Easy to Use

The K-Factor Tester is a simple apparatus using the bag technique for heat conductivity measurements. Consisting of a portable hot plate unit, a cold bath and a relay rack, the unit meets ASTM requirements, is quick and convenient to use and low in cost. The hot plate unit is a seven layer sandwich of plates held together by spring-loaded bolts. The unit and electrical connections are enclosed in a bag of thin plastic. Measurement can be made with the apparatus in from two to six hours depending upon the specimens. Readings can be taken either from the recorder on the relay rack or from a potentiometer.

CIRCLE 89 ON READER-SERVICE CARD

Resistor Capacitor Networks
High Accuracy for Summing Amplifiers

Resistor capacitor networks with better than 0.01 per cent accuracy have been designed for use with summing amplifiers operating in the range of dc through 3000 cps. These units are for use in analog computers which can be no more accurate than the accuracy of the resistor capacitor networks employed. Featured in the design are stabilized wire wound resistors that are electrostatically and electromagnetically shielded, and whose residual reactive components are closely controlled. Each unit has a coaxial connector at its output and individual pins resulting in a plug-in network. The rectangular shape is standard, but other shapes and dimensions are available.

The Daven Co., Dept. ED, Livingston, N.J.

CIRCLE 90 ON READER-SERVICE CARD

CIRCLE 88 ON READER-SERVICE CARD
El-Menco Dur-Mica CAPACITORS

Now, Stronger Than Ever... give
up to 18 years of sure, rugged service!

Put through a series of rough tests, these tiny, tireless workhorses of the electronics industry came up with a record-smashing performance. El-Menco engineers found that El-Menco DM-15, smallest mica capacitor in the world, DM-20 and DM-30 Dur-Mica Capacitors beat all others for long life and tried reliability. Under accelerated conditions of 1 1/2 times rated voltage at 125°C ambient temperature, El-Menco Dur-Micas kept on going strong even after 12,000 hours... equal to 18 years or more of service under normal operating conditions.

LONGER LIFE . . . TREMENDOUS POWER . . . TINY SIZE . . .
TERRIFIC STABILITY—silvered mica . . . PERFECT PERFORMANCE. Test them for yourself and see...

DM-15—smallest mica capacitor in the world . . . ideal for extreme miniaturization . . . up to 620 mmf at 300 VDCW . . . up to 700 mmf at 1000 VDCW . . . up to 400 mmf at 500 VDCW.

DM-20—ideal for new miniaturized designs and printed wiring circuits . . . up to 7000 mmf at 100 VDCW . . . up to 6000 mmf at 300 VDCW . . . up to 4200 mmf at 500 VDCW.

Write for FREE samples and catalog on your firm's letterhead.

The Model 301 Noise Generator makes available a random voltage source with a spectral density which is automatically controlled to ±0.1 db from 0 to 35 cps and a Gaussian amplitude distribution with an accuracy of better than 1 per cent. Maximum output voltage is 15 v rms.

The low-frequency noise generator has been used with analog computers to study the effects of random disturbances on fire control systems, guided missile systems and airframe structures.

Electronic Noise Generator Co., Dept. ED, P. O. Box 45344, Los Angeles 45, Calif.

DM-20 ACTUAL SIZE

DM-15

430 10% T

WITH NEWLY-DESIGNED CRIMPED LEADS...

Light Beam Projector

For Miniature Photo Cells

Designed for close-proximity use with miniature photo electric cells, this automatic control device can be readily mounted in a single 11.16 in. diam hole. The light source, Model 6375, was designed as a companion component to the recently developed Model 6350 miniature photo electric unit.

Autron Engineering, Inc., Dept. ED, 1251 W. Sixth St., Los Angeles 17, Calif.

Write for FREE samples and catalog on your firm's letterhead.

THE ELECTRO MOTIVE MFG. CO., INC.

Manufacturers of El-Menco Capacitors

WILLIMANTIC CONNECTICUT

• molded mica • mica trimmer • dipped paper
• tubular paper • ceramic • silvered mica films • ceramic discs

Arco Electronics, Inc., 64 White St., New York 13, N. Y.
Exclusive Supplier To Jobbers and Distributors in the U. S. and Canada

CIRCLE 59 ON READER-SERVICE CARD FOR MORE INFORMATION

CIRCLE 112 ON READER-SERVICE CARD FOR MORE INFORMATION

CIRCLE 113 ON READER-SERVICE CARD FOR MORE INFORMATION

CIRCLE 114 ON READER-SERVICE CARD FOR MORE INFORMATION

ELectronic design • October 1, 1957

Ferrite Core Delay Line

400 μSec Delay, Loss of 3.5Db

Potted in an epoxy resin to meet MIL specifications, the series P delay lines are available in delays up to 400 μsec with maximum attenuation of 3.5 db. Tapping is readily accessible. A wide variety of rise times and impedances is supplied.

Digitronics Corp., Dept. ED, Albertson Ave., Albertson, L.I., N.Y.
New Products

Vamistor Resistor

New Model for 1/2 W, 150 C Service

This model of the Vamistor has a guaranteed change in resistance of less than 1 per cent in 1000 hr load-life test of full 1/2 w at 150 C. Known as the Model 9854, the precision metal film resistor measures 1/4 x 5.16 in. and incorporates the characteristics of stability of other Vamistor models.

Weston Electrical Instrument Corp., Dept. ED, 614 Frelinghuysen Ave., Newark 2, N.J.

CIRCLE 108 ON READER-SERVICE CARD

Radar Test Set

Combines X and C Bands

This set provides all the instrumentation necessary for complete X and C Band checkout of radar and other transmitters in the field, or on the production line. The unit covers frequencies ranging from 5200 to 5900 mc for C Band and from 8500 to 10000 mc for X Band. For each band, the set contains a spectrum analyzer, power monitor, direct reading frequency meter and signal generator.

Modular-type construction makes it possible to quickly replace any of the sections if necessary. The waveguide resonant cavity is separately removable from the rf section for calibration or inspection. Stand-by switches increase the life of all tubes including the klystron, by reducing the filament voltage and removing the plate voltage.

CIRCLE 109 ON READER-SERVICE CARD

CIRCLE 107 ON READER-SERVICE CARD

ALLIED'S

New

General Purpose Relay

for d-c Operation

Long life, stability and high reliability are the features of this new general purpose relay. Allied's type GK relay uses twin palladium contacts with bifurcated stationary contact arms. Designed for a wide variety of Industrial and Military applications, Allied's type GK relay has a capacity of 20 springs which can be assembled in a variety of combinations of A, B, C and D contact forms.

Here are the facts:

Operating Voltage:
up to 220 volts d-c

Contact Rating:
up to 4 amperes at 150 watts

Temperature Range:
up to −55°C to +85°C

Vibration:
up to 10 to 55 cps at .062 inch double amplitude

Operating Shock:
up to 30 "g"

*For complete details send for Allied's GK catalog sheet.
New Products

Miniature Twin Triode
Reduced Operating Temperature

This miniature twin-triode with separate cathodes, designated as Type 7062, is designed as an improved plug-in replacement for the older Type 5965 in most computer applications. The tube operates at a reduced heater current of 400 ma as compared with 450 ma for the 5965. A longer glass envelope reduces tube operating temperature and assures more reliable operation.

Amperex Electronic Corp., Special Purpose Tube Div., Dept. ED, 230 Duffy Ave., Hicksville, L.I., N.Y.
CIRCLE 99 ON READER-SERVICE CARD

Record Analyzer and Reader
For Limited Points Over Long Record

In data reduction situations where a limited number of points are to be read over a long trace record, the Oscarette is useful because of its speed and simplicity. Similarly, where much computing is to be done, the unit is peculiarly applicable as it reads out on a fixed numeric scale. The design permits its use with the Viewpak (oscillograph editor and reader) and also with a translucent screen and projector for film record analysis. This single-axis amplitude-measuring machine, with its motor-assisted cursor drive, has a 9999 count full Y scale and a 15 x 15 in. viewing area. The zero or origin can be set anywhere on the record. The output is to either an IBM Summary Punch or to an electrotyper.

Benson-Lehner Corp., Applications Engineering Dept., Dept. ED, 11930 W. Olympic Blvd., Los Angeles 64, Calif.
CIRCLE 100 ON READER-SERVICE CARD
CIRCLE 102 ON READER-SERVICE CARD

P&B PROGRESS/
NEW! INGENIOUS IMPULSE LATCHING RELAY

NOW! TWO-COIL PERFORMANCE
AT SINGLE COIL COST!

This new series, the PC, is an ingenious impulse latching relay which employs a single coil and armature to activate an insulated rocker arm. Switching is positive, fast (30 milliseconds).

Its low cost, dependability and versatility make it ideal for a wide range of uses. For example, two leading TV set manufacturers use the PC in their remote control circuits as an "off-on" switch. It is also used by a maker of automatic garage doors. Conveying systems, automatic processing equipment, flow controls—the PC is right for these applications and many more.

Contact arrangements are available up to 4 Form C (4PDT), and the snap-action contacts are rated 5 amps. at 115 V. AC resistive. The relay may be ordered open as shown, or in a metal dust cover.

Write or wire today for complete information.
PC SERIES ENGINEERING DATA

GENERAL: Description: Single coil, impulse latching relay.
Insulating Material: Laminated Phenolic.
Insulation Resistance: 1500 meg. min.
Breakdown Voltage: 500 V. RMS.
Ambient Temperature: —55° C. to +85° C.
Weight: 5 ozs. (open)
Pull-In: DC, 75%
 AC, 78%
Operate: 30 MS.
Terminals: Pierced Solder Lugs
Coil: Two #20 AWG Wires
Contacts: One #20 AWG Wire

CONTACTS: Arrangements: 4 Form C. max. (4PDT)
Material: ½” dia. Silver Cadmium oxide gold flashed.
Load: 5 amp. @ 115 V. AC resistive.
Pressure: 20 grms. min.

COIL: Resistance: .016 to 34,500 max.
Power: DC, 9 watts.
 AC, 18.4 Volt Amps. at nominal voltage.
Duty: Intermittant.
Insulation: Cellulose acetate wrap; varnish impregnated (open).

MOUNTINGS: Two ½” dia. holes on 2½” center.

P&B STANDARD RELAYS ARE AVAILABLE AT YOUR LOCAL ELECTRONIC, ELECTRICAL AND REFRIGERATION DISTRIBUTORS

Potter & Brumfield, Inc.
PRINCETON, INDIANA
SUBSIDIARY OF AMERICAN MACHINE & FOUNDRY COMPANY
Manufacturing Divisions also in Franklin, Ky. and Laconia, N.H.

Mail the coupon below for further engineering data on P&B's new PC Series relays plus new compact catalog of standard type relays. If you need answers to a specific application problem, write in detail.

Potter & Brumfield, Inc., Princeton, Indiana
Attn: T. B. White, Brig. Gen. USMC (Ret.)
Special Projects Engineer

Please send me complete data on the new PC Series relays, plus the new compact catalog of P&B standard relays.

Name:
Company:
Address:
City Zone State

See our catalog in Sweet's Product Design File

CIRCLE 102 ON READER-SERVICE CARD FOR MORE INFORMATION

ELECTRONIC DESIGN • October 1, 1957
Calorimetric Power Meter
Measures from DC to 4000 Mc

These power meters are greatly simplified calorimeters, using an accurate metering pump of the gear type driven by an over powered synchronous motor to keep the fluid flow constant. The instrument is direct-reading, portable, self-cooled and requires only connection to the power line. It does not use any flow meters, thermometers nor any other controls. There is only the on and off switch for the operator to use on the front panel, when a measurement is to be made. A sensitive thermopile and microammeter measure the power dissipated in the rf load. The microammeter is calibrated in watts and is direct reading. The rf load has a low vswr between dc to 4000 mc. This feature makes it possible to calibrate this instrument at 60 cps against an accurate laboratory type wattmeter, and then use it at any frequency up to 4000 mc. Thus an accuracy of 2 per cent can be easily accomplished.

Electro Impulse Lab., Inc., Dept. ED. 208 River St., Red Bank, N.J.

CIRCLE 103 ON READER-SERVICE CARD FOR MORE INFORMATION

Nickel Cadmium Storage Batteries
High Discharge-Charge Rate

Particularly adaptable to missile and aircraft applications, these sintered plate nickel cadmium batteries utilize nylon cell containers. They are capable of operation at temperatures from -60 to +200 F. Cycle life is virtually unlimited. They can be stored for years in any state of charge without damage. Charge retention is excellent. Further advantages include very high discharge rates, rapid charge acceptance and close voltage regulation during discharge. The potassium hydroxide electrolyte does not give off corrosive fumes and there is no gassing on discharge.

Nickel Cadmium Battery Corp., Dept. ED. 64 Pleasant St., Easthampton, Mass.

CIRCLE 104 ON READER-SERVICE CARD FOR MORE INFORMATION

ALSO PLUG ASSEMBLIES
• INSERTS • SOCKETS • RECEPTACLES • BUSHINGS • PRINTED CIRCUIT HARDWARE • SWAGING TOOLS

Write for free catalog!

LERCO ELECTRONICS, INC.
501 S. Varnay Street, Burbank, Calif.
Phone: Victoria 9-5556
New Products

Printed Circuit Service
Five-Day Delivery

Five-day delivery of prototype printed circuits is possible with an acid-feed etch system. The new technique provides rapid production of both short-run and volume circuitry on copper-clad dielectric. High speed etching takes place on any copper-clad dielectric material, whether solid plastic, laminate or composition.

Tri-Point Plastics, Inc., Dept. ED, Albertson, N.Y.

CIRCLE 92 ON READER-SERVICE CARD

Pressure Transducer
Measures to 15,000 PSI

Model PT32 excels in situations where large pressures must be measured or recorded with a minimum alteration of the pressure chamber. Overall accuracy, (the maximum deviation from linearity including hysteresis), is within a total of 1 percent full scale. The pickup operates between -65 to +350 °F with temperature effect on sensitivity of 0.005 percent per °F. Minimum output is 3.3 mV per °F of excitation.

Dynamic Instrument Co., Dept. ED, 28 Carleton St., Cambridge, Mass.

CIRCLE 93 ON READER-SERVICE CARD

Temperature Test Chamber
-100 to +1000 °F

This chamber makes possible a variance in temperature all in one cabinet of from -100 to +1000 °F. Work space measures 2 x 2 x 2 ft. Two recording controllers, one for -100 to +300 °F and for +300 to +1000 °F, cover the entire range.

International Radiant Corp., Low Temperature Div., Dept. ED, 4 Manhasset Ave., Port Washington, N.Y.

CIRCLE 94 ON READER-SERVICE CARD

CIRCLE 95 ON READER-SERVICE CARD

GREATLY INCREASED LIFE MARKS TWO

General Electric creative tube design is source of high-level dependability.

Through creative tube design, General Electric helps television manufacturers increase public acceptance of their products. A new and outstanding example of this aid is the long-life G-E 6AF4 u-h-f oscillator tube. Fully interchangeable with other 6AF4's, it is much more dependable; gives far longer service with continuing high efficiency. The new tube enables television set manufacturers to offer u-h-f pictures that will retain their high quality... reduces owner complaints, cuts TV servicing requirements.

Excess snow—sudden loss of picture—owner dissatisfaction with set performance—all have occurred.

The same greatly improved performance has been built into General Electric's new 2AF4, 2AF4-A, 3AF4-A, and 6AF4-A. Ask any G-E tube office below for full information!

EASTERN REGION
200 Main Avenue
Clifton, New Jersey
Phones: (Clifton) GRegory 3-6387
(N.Y.C.) WIlconsin 7-4065, 6, 7, 8

CENTRAL REGION
3800 North Milwaukee Avenue
Chicago 11, Illinois
Phone: SPring 7-1600

WESTERN REGION
11840 West Olympic Boulevard
Los Angeles 64, California
Phones: GRanite 9-7765
BRadshaw 2-8566
NEW G-E TUBES FOR CRITICAL TV SOCKETS!

Tubes can be used as direct replacements in TV receivers now in production.

Again, by creative tube design—new thinking applied to structure, materials, and methods—General Electric enables TV manufacturers to replace a critical, often short-life tube with one that gives superior service over extended periods.

General Electric's new long-life 1J3 high-voltage rectifier tube—interchangeable with Type 1B3—gives full 360-degree, top-to-bottom shielding against filament distortion from the electrostatic pull of high anode voltages. Electrostatic effect is reduced by more than 2 to 1 over any predecessor tube. This is made possible by a spiral-wound shield surrounding the filament as shown in center, above.

Here is efficient protection against the commonest cause of short circuits and filament breaks in prototypes of the 1J3! Other design features of the new tube promote long-life performance. Moreover, every General Electric 1J3 is factory-tested at 23,000 v d-c, 28,600 v inverse—higher voltages than will be encountered in actual service. Receiving Tube Department, General Electric Company, Owensboro, Kentucky.

Your nearest General Electric tube office listed at left will be glad to give you further facts.

Progress Is Our Most Important Product

GENERAL ELECTRIC
MINIATUREIZATION IN EVERY PRODUCT LINE

RF CONNECTORS
Subminax® RF connectors to set the highest standards of reliability for miniature components.

RG CABLES
Subminax cables—polyethylene or Teflon—mate with Subminax connectors—complete the reliability circuit.

RACK-&P PANEL CONNECTORS
Amazing Micro-Ribbon connectors use flexible "ribbon" contacts, "wedge" principle for quality performance.

A-N CONNECTORS
Miniature AN-type 165 series connectors are widely used in military and commercial equipment.

MICROPHONE CONNECTORS
New Miniature Microphone Connectors represent AMPHENOL's latest contribution to the art of miniaturization.

AMPHENOL CANADA LIMITED
Toronto 9, Ontario

AMPHENOL ELECTRONICS CORPORATION
Chicago 50, Illinois
New Products

Wire-Wound Resistors
Vacuum Impregnated

This epoxy-encapsulated wire-wound precision resistor is vacuum impregnated and vacuum cast to eliminate hot spots caused by voids in windings. Designated Series EP, the new line utilizes tension-free winding and meets MIL-B-93A and MIL-R-9444. The resistors are heat cycled before encapsulation and post-cured before final inspection, thus resulting in long term stability of resistance under rigid environmental temperature conditions. The series has an operating range from -65 to +125 C and a temperature coefficient of ±0.00002 C.

Kelvin Electric Co., Dept. ED, 5907 Noble Ave., Van Nuys, Calif.

CIRCLE 117 ON READER-SERVICE CARD FOR MORE INFORMATION

High Voltage Supply
0.001 Per Cent Regulation

The high voltage supply has a stability comparable to that of a standard cell through the use of temperature-regulated primary and secondary voltage standards and chopper stabilization of the regulating amplifier. Both the chopper stabilization and temperature regulation are accomplished by means of plug-in units which may be added at any time to the standard HVCST Series. Available in two ranges, 500 to 2500 v and 500 to 1500 v with reversible polarities, these supplies can deliver an output current of 8 ma. The output impedance is less than 1 ohm. Regulation for line voltage changes from 100 to 125 v is better than 0.001 per cent. Long term stability is 0.005 per cent. These supplies are suited for precision spectroscopy and fast coincidence applications where the new fourteen stage multiplier phototubes are used.

Tullamore Electronics Lab., Dept. ED, 6055 S. Ashland Ave., Chicago 36, Ill.

CIRCLE 118 ON READER-SERVICE CARD FOR MORE INFORMATION

FOR...
Slip-On Insulation,
Instrument Tubing,
Bundle Sheathing,
Medical Tubing,
Pigtails...

USE
SPAGHETTI
SLEEVING
MADE FROM
TEFLON*

PF Spaghetti sleeving has these important advantages:
1. Good dielectric strength (500 to 2000 volts/mil)
2. Excellent electrical properties at high temperatures (500°F) and a wide frequency range
3. Low coefficient of friction. It slips easily on lengths of wire up to 3 ft.
4. Eliminates the need for silver coated wire
5. Zero moisture absorption
6. Unaffected by any commercial chemical
7. Stress relieved for negligible shrinkage

25 sizes, 2 wall thicknesses, 10 colors in stock, 100% inspected and controlled dimensionally are available. Write, wire or call for full details, competent engineering assistance and information on special sizes and colors. PF Teflon* flexible tubing, heavy-walled tubing and rod stock are also available.

Pennsylvania Fluorocarbon Co., Inc.
1115 N. 38th Street, Philadelphia, Pa. *Eprene p-005

CIRCLE 119 ON READER-SERVICE CARD
how you can now solve Silicone rubber problems... large and small

Production Problems—New facilities for injection molding and extrusion are now available at Minnesota Silicone. You can have the same precision, close-tolerance production that has characterized 6 years of silicone fabrication experience... in less time, at lower cost than ever before.

Design Problems—To assist you in applying the unique properties of silicone rubber to your needs, we now offer the facilities of our newly expanded laboratories. Compound selection and molding to your most exacting requirements are just part of the complete product development and production service.

We'd be happy to make a thorough and prompt analysis of your problem or supply a quotation from your print or sample. No obligation of course. Just write:

Dept. 311
MINNESOTA SILICONE RUBBER, INC.
5728 West 36th St., Minneapolis 16, Minn. Affiliated with Mmm Rubber & Gasket Co. Offices in principal cities

Component Lead Bending Block
Prevents Damage, Easy to Use

For bending leads on components, during assembly to accurately register with their holes in printed circuit panels, the no. 600 Universal Bending Block eliminates plier damage, wire distortion, and twisted or out-of-line components. All components are accurately centered, and the leads are bent to exactly register with their drilled or punched panel holes. With this tool the entire operation is done in a small fraction of the time required when the leads are bent with pliers. The tool may be quickly adjusted to any component body length from 1/4 to 1-3/4 in. Leads can be bent to within 0.07 in. from end of component and for up to 3 in. hole centers.

By-Buk Co., Dept. ED, 4314 West Pico Blvd, Los Angeles 19, Calif.

CIRCLE 122 ON READER-SERVICE CARD FOR MORE INFORMATION

Precision Power Oscillator
0.02 to 0.5 Per Cent Stability

Precision stability of this audio frequency precision power oscillator is derived from an exclusive high-Q L.C. tuned circuit and special voltage-sensitive bridge combined in a circuit employing a large amount of negative feedback. A feature of the oscillator is its ability to accommodate line voltage variations. Adjustment to these varying load conditions is almost instantaneous, with no appreciable lag and takes place in a cycle or two. The DK-102 has virtually zero output impedance and is designed especially for applications where tuning fork frequency stability, absolute voltage values, extremely low output impedance, very low distortion and high power capacity are required. General specifications include: frequency stability of ±0.5 per cent max., under usual ambient conditions; ±0.02 per cent max. per ±10 v variation in line voltage, and ±0.05 per cent max. zero to full load. The unit measures 5-3/4 x 9 x 16-7/8 in.

CIRCLE 123 ON READER-SERVICE CARD FOR MORE INFORMATION

ELECTRONIC DESIGN • October 1, 1957
BRIEF SPECIFICATION
C. 0.01μF to 100μF
R 1Ω to 10,000MΩ
Ranges 12
Accuracy ±1% on all ranges
Frequency 1592 c.p.s.

FEATURES
- Easy to operate—C & R dials balance independently.
- Built in oscillator and visual detector.
- Measures extremely small capacities without jigs.

PRICE $655
DELIVERY IMMEDIATE

Exclusive Sales and Service in U.S.A.

MARCONI instruments
44 NEW STREET • NEW YORK 4, N. Y.
TEFLON Spaghetti
now in three grades...

THIN WALL
Wire Gauges from 30 to 0
Wall Thicknesses from .009 to .015

STANDARD WALL
Wire Gauges from 24 to 0
Wall Thicknesses from .012 to .020

HEAVY WALL
Wire Gauges from 22 to 5
Wall Thicknesses from .016 to .032

to suit your electronic and dimensional needs

Now, it is possible to select the exact grade of Chemelec TEFLON* Spaghetti tubing to serve your specific electronic needs and dimensions—and to realize tremendous cost savings by eliminating needless purchase of excess weight of TEFLON.

This sleeving is dimensionally accurate and is made of high grade du Pont tetrafluoroethylene resin, free of impurities, to insure the finest in dielectric service. In all grades and sizes, it is extremely flexible and is a non-woven solid material, molecularly integrated to prevent leaks from cracks, splits or perforations. Available in a full range of colors: natural, red, orange, yellow, green, blue, violet, grey, brown and black.

TREATED SPAGHETTI for Potting
TEFLON spaghetti is also available with specially treated surfaces for maximum adherence of all potting or encapsulating compounds, while maintaining, unchanged, all the fine characteristics of the TEFLON.

Write for Catalog EC-757.

FLUOROCARBON PRODUCTS INC., division of United States Gasket Co., Camden 1, New Jersey.

Have you seen our complete line of Chemelec stand-off and feed-through insulators, connectors and tube sockets?

*du Pont Trademark

Sold through leading electronic parts distributors by Erie Resistor Corp.
New Products

Coaxial Teflon Cable
Miniaturized

This line of rf coaxial Teflon cables and miniaturized rf coaxial all Teflon cables meet MIL-C-17B specifications and can operate continuously at 200°C. Miniaturized all Teflon cables in standard sizes of RG-U187 through RG-U196 have a nominal outside diam of 0.16 in., are available in 3 impedances, 50, 75 and 95 ohms, and have substantially higher power handling capabilities than corresponding polyethylene types. Construction is silver plated solid copper wire conductors, extruded Teflon dielectric, silver plated copper shield, with a choice of either sintered tape or extruded Teflon jacketings in 10 standard solid colors for coding purposes.

Times Wire & Cable Co., Inc., Dept. ED, Wal-lingford, Conn.
CIRCLE 127 ON READER-SERVICE CARD FOR MORE INFORMATION

Diode Recovery Time Tester
High Accuracy in 0.05 µSec Range

This test unit has a degree of accuracy not previously achieved in measuring diode recovery characteristics in the 0.05 to 0.3 usec range. The unit is an extensive modification of a circuit developed by the National Bureau of Standards, and has been submitted to JETEC for qualification as an industry standard. Including an auxiliary oscilloscope and square wave generator, the unit allows quantitative measurement of the switching transient occurring when a diode is switched from the forward-biased to the reverse-biased state. Forward current and reverse voltage range have been extended to 100 ma and 60 v respectively, where maximums are not used simultaneously.

CIRCLE 128 ON READER-SERVICE CARD FOR MORE INFORMATION

GUDEBROD BRAIDED NYLON LACING TAPES ARE EASY TO TIE: WON'T SLIP—EASY ON THE HANDS: WON'T CHAFE—EASY TO SEE: COLOR-CODED

Gudebrod flat braided lacing tapes hold harness securely—no bite-through or slip, yet are easy on the hands. Some resist high temperature, some are color-coded...and they come wax-coated or wax-free...rubber-coated...or with special coating. Gudebrod makes many tapes for many purposes, including defense work. Send us your lacing problems or your specifications...we can supply the answer to both.

GUDELACE • GUDE-NYLACE
GUDELACE H • TEFPLACE

GUDEBROD BROS. SILK CO., INC.
ELECTRONICS DIVISION
225 W. 34th St., New York 1, N. Y.
EXECUTIVE OFFICES
12 South 12th St., Philadelphia 7, Pa.
CIRCLE 129 ON READER-SERVICE CARD
Low Tolerance for Strip?

You'll Love Somers Performance

With the installation of the first Accu-Ray Nuclear gauge ever employed in the non-ferrous industry, Somers is able to control the thickness of thinstrip to the hundred-thousandth even on production runs.

This is typical of the modern equipment and the careful quality control that enables Somers Brass to produce the one thinstrip job in ten that must meet exacting standards with absolute uniformity.

If you are now using or anticipate the need for thin gauge brass, nickel, copper and alloys with extremely close tolerances write for the Confidential Data Blank. There is no cost or obligation.

Automatic Tube Analyzer
Fast and Versatile

The basic function of this instrument is to reduce cost through a reduction in manpower requirements in testing vacuum tubes, both from the standpoint of reducing the number of test personnel required as well as permitting the use of less skilled personnel. Another significant factor is the fewer number of test stations required. Tests may be conducted singly or in sequence and may be accomplished automatically, semi-automatically, or manually at the rate of 3000 tests per hr, to ±3 per cent accuracy. The unit provides 17 test positions, which can be set up to perform any combination of 19 basic tests, utilizing the programmer principle consisting of individual, easily inserted patch panels, each unique to a particular tube type.

CIRCLE 133 ON READER-SERVICE CARD FOR MORE INFORMATION
HELP WANTED:
ENGINEER – EXECUTIVES

ELECTRONICS, NON-EXISTENT 20 YEARS AGO, NOW ACCOUNTS FOR 11.5 BILLIONS OF THE U.S. NATIONAL GROSS PRODUCT. THIS EXPANSION MEANS THAT YOUR INDUSTRY NEEDS YOU FOR THE IMPORTANT TECHNICAL MANAGEMENT JOBS.

ELECTRONIC WEEK WILL KEEP YOU INFORMED OF THE IMPORTANT DEVELOPMENTS WHICH YOU MUST HAVE AS A KEY MAN IN THE ELECTRONIC INDUSTRY.

ELECTRONIC WEEK IS THE ONLY WEEKLY NEWS-MAGAZINE WHICH WILL INTERPRET FOR YOU, THE BROAD AND SPECIFIC BUSINESS ASPECTS OF THE PRODUCTS THAT ARE DESIGNED.

ELECTRONIC WEEK WILL INTERPRET THE SIGNIFICANT FACTS, AND WHAT IS MORE IMPORTANT — WILL ANALYZE THEIR SIGNIFICANCE.

YOU CAN SUBSCRIBE TO ELECTRONIC WEEK FOR $3.00 FOR 1 YEAR.

INSURE YOUR FUTURE WITH ELECTRONIC WEEK.

TO CONVENIENTLY SUBSCRIBE CIRCLE NO. 549 ON READER SERVICE CARD.
Handles a Kilowatt with ease

Centralab Series PA-230 Rotary Power Switch

The most versatile multiple-circuit rotary power switch available

Switching configurations up to 24 positions, shorting or non-shorting. Meets all your requirements for transmitters, industrial test equipment, military and commercial applications where you want low-loss operation at high frequencies, high voltages, and high-power levels.

Designed for ruggedness, accuracy, long life

- Sections are Grade L-5 Steatite. Voltage breakdown, 3000 volts R.M.S. between critical parts.
- Ball-bearing index insures positive positioning.
- Square rotor shaft, combined with mating Monel driver, provides rotational accuracy throughout length of switch.
- Coin-silver contacts, for excellent current-carrying characteristics.

New 36-page Switch Catalog.
Write for free copy today.

Centralab
A DIVISION OF GLOBE-UNION INC.
3601—E. Keefe St., Milwaukee 2, Wis.
In Canada:
804 Mt. Pleasant Road, Toronto, Ontario

CIRCLE 136 ON READER-SERVICE CARD FOR MORE INFORMATION
New Products

Electronic Symbol Template
Includes Wide Variety

Schematic diagrams can be drawn to meet the revised MIL-STD-15A and ASA specification Y32.2 with the No. 6001 electronic symbols template. Symbols that can be drawn with this template include pnp and npn transistors, diodes, tubes, power plugs, pilot lamps, relays, phone jacks, connectors, rotary switches, resistors, capacitors, inductors, transformers, amplifiers and block diagram symbols. The template is fabricated from rigid vinyl plastic that will not burn, warp or discolor and features a special non-slip, low glare surface.

E-Z-Way Templates, Dept. ED, P. O. Box 535, Reseda, Calif.
CIRCLE 137 ON READER-SERVICE CARD FOR MORE INFORMATION

Wave Analyzer
Highly Selective

Model 2170C can be used for microwave channeling, carrier telephone and telemetering measurements of carrier and sub-carrier signals. It employs the heterodyne principle with balanced modulation and highly selective crystal filters for frequency and voltage measurement. The selectivity is based on crystal filters of 100 cps and 3 kc bandwidths. The 100 cycle crystal filter is used on all voltage measurements with the 3 kc crystal filter for single sideband monitoring. Incorporated in this instrument is an internal speaker and headphone output for aural monitoring. The instrument utilizes a direct reading meter calibrated for dbm or rms voltages over the range of from -80 to +32 dbm. Accuracy of ±1.2 dbm is achieved. Frequencies below 1 kc can be measured with care.

Rycom Instruments, Dept. ED, 9351 E. 59th St., Raytown, Mo.
CIRCLE 138 ON READER-SERVICE CARD FOR MORE INFORMATION

Flexibility for Designers

Adjust-A-Volt
500BU
VARIABLE AUTO-TRANSFORMER

Designed for back-of-panel mounting, the versatile 500BU Adjust-A-Volt variable auto-transformer offers the dependability and flexibility you have been looking for.

Shaft can be adjusted without disturbing rotor and commutator alignment. Terminal board connections allow for either clockwise or counterclockwise rotation, as well as over-voltage or line-voltage operation.

Ganged units are available to provide increased current output, increased voltages, or for polyphase operation.

Specifications of the 500BU type—input voltage, 115 V; load rating, 10 KVA; output—0 to 135 V; output amps max. 7.5 A; driving torque in oz. 20-40. For more data, send for the catalog on the complete Adjust-A-Volt line.

STANDARD
ELECTRICAL PRODUCTS CO.
2240 E. THIRD ST., DAYTON, OHIO

CIRCLE 139 ON READER-SERVICE CARD
MEGOHMMETER

displays six decades of resistance without range switching

Here is a new standard of resistance measurement for laboratory and production tests—wherever capacitor or insulation leaktages above 10 megohms are measured. The Keithley 510 Megohmmeter combines ease of use with great range, speed, stability, and uniform accuracy.

TEST POTENTIALS of 5, 50 and 500 volts are provided: corresponding meter spans are 10^7 to 10^8, 10^8 to 10^9, and 10^9 to 10^{10} ohms. A novel logarithmic circuit, calibrated by internal resistance standards, eliminates the range switching and scale compression found in conventional ohmmeters. The instrument also offers several times the speed of response and stability of conventional circuits.

OTHER FEATURES include extremely well-regulated test potentials and a guarded, completely shielded input. Volume sensitivity and component adapters, as well as triaxial guarded cables, are available as accessories.

COMPLETE DATA are available in Keithley Engineering Notes, Vol. 5 No. 4. A request on your company letterhead will bring your copy promptly.

KEITHLEY INSTRUMENTS, INC.
1215 Euclid Ave., Cleveland 6, Ohio

CIRCLE 141 ON READER-SERVICE CARD

DC Miniature Relay
Close Pull-in and Drop-out Differential

This hermetically sealed dc relay, Model KL-503-ES-H features 5 per cent differential between pull-in and drop-out. It is suited for electronic systems where differential between pull-in and drop-out is critical such as plate circuits, under voltage control relay in military aircraft and electronically regulated power supplies. Other features include: compensation for ambient temperature changes, high repeatability of pull-in and drop-out and excellent resistance to shock and vibration through the use of efficient magnetic circuit and snap switches. The unit meets the environmental requirements of military specifications. The relay measures 2.375 in. long by 1.593 in. wide and weighs 6.9 oz.

CIRCLE 142 ON READER-SERVICE CARD FOR MORE INFORMATION

Miniature Delay Lines
Handle Large Delays

A new technique in delay line fabrication resulting in a high degree of miniaturization and rapid production is made possible by use of Spira-Coil. The coil can be made half the size with twice the inductance of a given printed inductor. This design results in a minimum size at a lowest cost. Lines are potted in epoxy for protection from moisture and fungus and are available with terminals or with pig-tail leads. Delay line shown measures about 2-1/2 in. long. Delays ranging from 0.05 to 20 μsec with tolerances of ±3 per cent or 0.01 μsec, whichever is greater, are available. Operating voltage is conservatively rated at 600 v dc. Insertion loss is negligible. Operating temperature range is from -55 to $+125$ C.

Com-Tronics, Inc., Dept. ED, 3409 Venice Blvd., Los Angeles 19, Calif.

CIRCLE 143 ON READER-SERVICE CARD FOR MORE INFORMATION

1957 ELECTRONIC DESIGN • October 1, 1957
As specialists in the design and manufacture of RF filters since 1922, TOBE has accumulated a vast wealth of data covering filtering techniques. When it comes to filtering problems, TOBE can solve them. TOBE Filterettes in both single and multiple circuits, are available in several hundred standard designs to meet any conceivable application. All types are engineered to operate under the most severe environmental conditions.

For further data or engineering aid, write TOBE DEUTSCHMANN Corporation, Norwood, Mass.

Tobe Exclusives:
- Miniaturization with maximum quality.
- Guaranteed attenuation characteristics under full-load operating conditions.
- Current ratings up to 350 amps.
- AC and DC voltage ratings up to 5000 volts.
- Maximum insertion loss at all frequencies from 14 kc to 16,000 mc.
- Each type available in a variety of mounting styles.

specify

TOBE

PRODUCTS

TOBE DEUTSCHMANN • CAPACITOR PIONEERS SINCE 1922

CIRCLE 144 ON READER-SERVICE CARD FOR MORE INFORMATION
TELL YOUR
PERSONNEL MANAGER
ABOUT
ELECTRONIC DESIGN'S
"CAREER'S SECTION"

If your company is trying to attract skilled electronic design, development or research engineers, tell your Personnel Manager about ELECTRONIC DESIGN. Here is a concentrated audience of 25,000 engineers ready to read about the advantages offered by your plant.

Remember, more than 5,500 ELECTRONIC DESIGN readers inquire every issue—many of them will be interested in your job opportunities.

You can reach them in ELECTRONIC DESIGN'S "Career's Section."
New Products

Printed Circuit Vise
Permits Easy Access

The Model V-4 production vise is designed for holding printed circuit boards, terminal boards, and small chassis assemblies. Jaws lined with a tough cork and synthetic rubber compound assure a positive grip without excessive pressure, completely eliminating cracked circuit boards. The unit can be handled like a conventional metal chassis and assemblies are readily accessible from both sides. Circuit boards up to 7 in. wide and 18 in. or longer are easily inserted in the vise.

Western Electronic Products Co., Dept. E.D. 655 Colman St., Altadena, Calif.
CIRCLE 147 ON READER-SERVICE CARD FOR MORE INFORMATION

6PDT Latching Relay
Employs Permanent Magnet

This magnetic latching relay is designed to withstand high shock and vibration while operating on minimal power. Designated KG, the relay employs a permanent magnet to hold the armature securely in either of the contact positions.

Tests show the dual coil relay remains operative during 100 g shock, with the contacts opening for no more than 50 μsec. It also withstands vibrations of 30 g's acceleration from 55 to 2000 cps and excursions of 0.195 in. from 10 to 55 cps with no contact opening. The KG requires 2 w at nominal voltage for 12 msec to effect armature transfer. Contact load capabilities range from dry circuits to 5 a, 28 v dc resistive and to 3 a, 115 v ac resistive. Operating temperature is from -65 to +125 C.

CIRCLE 148 ON READER-SERVICE CARD FOR MORE INFORMATION

HIGH VOLTAGE
BREAKDOWN TEST

... proves
Johnson tube sockets are built to take it!

Eliminate special set-up charges!
Pick the tube socket you need from Johnson's 3 basic grades...

STANDARD—These are commercial grade sockets for general requirements. Bayonet Sockets equipped with porcelain bases, glazed top and sides. Phosphor bronze contacts, 0.002 cadmium-plated. Nickle-plated hardware. Bayonet shells are etched aluminum. Wafer Sockets equipped with glazed steatite bases—DC200 treated. Contacts are plated brass with steel springs. Shielded types equipped with etched aluminum shields.

INDUSTRIAL—Superior in quality to "Standard" types, equipped with glazed steatite bases; DC200 treated. Phosphor bronze or beryllium copper contact and springs, 0.003 silver-plated. Fungus resistant cushion washers under contacts. Aluminum bayonet shells and shields for wafer types, iridite No. 14 treated.

MILITARY—Top quality for military requirements. Glazed L4 steatite bases, DC200 treated. Bayonet Sockets equipped with beryllium copper contact, 0.005 silver-plated. Hot tin-dipped solder terminals—brass bayonet shells, 0.003 nickel-plated. Threaded hardware, 0.002 nickel-plated—unthreaded hardware, 0.003. With fungus resistant cushion washers under contacts. Wafer Sockets equipped with phosphor bronze contacts and beryllium copper springs, nickel-plated, 0.001. Hot tin-dipped solder terminals. Fungus resistant, glass base melamine cushion washers under contacts. Aluminum shields on shielded types, No. 14 iridite treated. Entire socket protected for 200 hour salt spray test.

Complete specifications... Write for your copy of Socket Standardization Booklet 336, today!

CIRCLE 149 ON READER-SERVICE CARD
Inder under addition, the contacts are prone to failure.

Electro¬mechanical switching devices are available for industrial applications. These "telephone-quality" relays are now available for industrial use. The following are representative:

- **Type A**: a general-purpose relay especially adapted to the control of switching operations. Approximate size: 2⅞" high, ⅞" wide with 20 Form "A" spring combinations (maximum).
- **Type B**: a gang-type relay—2⅞" high, 2⅝" wide—which can be equipped with 60 Form "A" spring combinations (maximum). The Type BB relay is available in 100 Form "A" spring combinations. Size: 2⅞" high, 4⅞" wide.
- **Type C**: two relays on the same frame mounts in the same space as the A type. It is especially effective where space is at a premium.
- **Type D**: interchangeable with many other makes. It combines the time-proven characteristics of the A relay with a new universal mounting arrangement common to many other brands.

Complete specifications of all Stromberg-Carlson relays are contained in Bulletin 1-20000R, available on request.

Closed-Circuit TV Camera

Self-contained, Weighs 12 lb

Designated Model PD-500, this TV camera weighs 12 lb and is completely self-contained within the camera housing. A remote control box permits camera operation from distances up to one mile away is available as an accessory. Remote control kits are provided to allow remote operation of lens iris, focus, and turret.

General Precision Lab., Inc., Dept. ED, 63 Bedford Rd., Pleasantville, N.Y.

CIRCLE 152 ON READER-SERVICE CARD FOR MORE INFORMATION

RF Slip Rings

Available in Special Designs

A new design in rf slip rings is available for aircraft, ordnance and marine purposes. The firm is offering them as separate products designed to customer specifications and is also including them in complete turret slip rings.

CIRCLE 153 ON READER-SERVICE CARD FOR MORE INFORMATION

Pressure Scanner

Measures 48 Pressures a Second

Replacing 48 transducers and their zero circuits, Model 48D Scanivalve allows pressure and force data to be taken simultaneously, and precisely reads 48 pressures with only one calibration. Used with x-y plotters, it gives direct pressure profiles. Speeds are available with motor drive from one complete scan a see of 48 pressures, to one scan per minute.

General Design, Dept. ED, 631 50th St., San Diego 2, Calif.

CIRCLE 154 ON READER-SERVICE CARD FOR MORE INFORMATION
Wound on ferrite cores, the Type M series is available in a variety of windings to cover pulse widths from 2 microseconds down to .05 microsecond, wound inverting or non-inverting.

While the M series is particularly adapted to subminiature and transistor circuits, we design and build pulse transformers to fit specific circuits or to meet definite mechanical or thermal requirements, including MIL-T-27A.

Additionally, Technitrol makes a complete line of lumped and distributed parameter Delay Lines and a variety of electronic test equipment.

For additional information, write today for our bulletin.
Production Products

These production products are intended to acquaint the designer with the latest in manufacturing and processing machines.

Ultrasonic Degreaser

Small-Scale Unit

A compact, small-scaled duplicate of large ultrasonic degreasers has been developed by the Ramco Equipment Corp. The DV-18 bench model can be used in engineering and for continuous production work. It thoroughly cleans such typical parts as ball bearings, surgical instruments, watch and instrument parts, tools and dies, hydraulic valves, spinerettes. The work area is 9 x 9 x 6 in. high with a capacity of 100 lb per min. Overall size is 33 x 15 x 24 in. high, total wt 75 lb. Construction is stainless steel throughout and it features thermostatic control, filter, manual spray, copper cooling coils, stainless heater and solvent recovery system.

Ramco Equipment Corp., Dept. ED, 1373 Lafayette Ave., New York 59, N.Y.

CIRCLE 159 ON READER-SERVICE CARD FOR MORE INFORMATION

Miniature Armature Winder

Winds up to 1-1/2 In. Rotors

A semi-automatic compact machine with a stationary rotor winds 2-pole or multi-slot rotors up to 1-1/2 in. diam and up to 1-1/2 in. stack length using wire sizes 28 to 44. Variable speed control of the Model 46-S-MA permits winding speeds up to 1100 rpm. Bi-directional feature makes possible reversal of winding direction within 15 min when desired. For amateurs requiring instant reversal of winding rotation from pole to pole, Model 46-S-MA-2 is available at extra cost. Machine dimensions are 14-1/2 x 10 x 14-1/2 in. without tension. Net weight is 45 lb. Accurate alignment of winding slots is assured by positive indexing mechanism.

George Stevens Manufacturing Co., Inc., Dept. ED, Pulaski Rd. at Peterson, Chicago 30, Ill.

CIRCLE 160 ON READER-SERVICE CARD FOR MORE INFORMATION

Can you use these two services to speed your ideas into production?

DIAMONITE high alumina parts

1 **24-HOUR DIAMONITE Off-the-Shelf SERVICE**
on standard shapes and sizes of DIAMONITE parts, adapted to your projects. Hundreds of parts listed in the DIAMONITE OFF-THE-SHELF Inventory and Price List. Ask for a copy, Bulletin No. 357.

2 **SPECIAL SHAPES from DIAMONITE PILOT PLANT**
engineered to your drawings. Delivery in a few days.

- You save time and money. Speed up your production and development work.

Write, WIRE OR PHONE FOR DETAILS

DIAMONITE products manufacturing co.

CANTON 3, OHIO

Pioneers in the development of high alumina ceramics

phone: Glenlake 6-8195

CIRCLE 156 ON READER-SERVICE CARD FOR MORE INFORMATION

LARGE WORK SPACE

Bench Oven 3' x 3' x 3'

MODEL 333

GRIEVE - HENDRY STANDARD

Well constructed, efficient Bench Oven with Large Work Space. Especially adaptable to production line work on large units that require heat processing. Work space 36 x 36 x 36 in. Temperature range to 350 F. 1920 CEM forced air circulation. Stand available. Construction changes to suit needs. No engineering charges. Write for bulletin 2157.

GRIEVE-HENDRY CO., INC.

1419 W. Carroll Ave., Chicago 7, Ill.

Export Dept., 10406 S. Western Ave., Chicago 43, Illinois

CIRCLE 157 ON READER-SERVICE CARD FOR MORE INFORMATION
Automatic Taping and De-taping
For Capacitors, Resistors and Diodes

Both taping and de-taping of capacitors, resistors and diodes can be done automatically to supply components on tape-reels for firms using automatic insertion equipment. Components to be taped are fed into the hopper of the taping device and, with the aid of vibration, stacked and oriented in the chute. A pick-off wheel at the bottom removes the components individually and applies them to pressure sensitive tape. A photoelectric device automatically starts and stops the reel in accordance with the level of the components in the hopper.

The equipment can also be used as an output device on automatic test equipment by simply placing the input hopper underneath the ejection position of the automatic tester. Components meeting test requirements are automatically taped while rejected units are ejected at another position. Adjustment is provided to accept most axial lead components.

Industrial Instruments Automation Corp., Dept. ED, 89 Commerce Rd., Cedar Grove, N.J.
CIRCLE 163 ON READER-SERVICE CARD FOR MORE INFORMATION

Wire Wrap Terminals
For Printed Circuit Assembly

Wire wrap terminals are available in loose or chain form. A clinch-type design which holds the individual terminal firmly in the printed circuit board during additional assembly operations and until permanently soldered is featured.

When used in chain form and in conjunction with the manufacturer's lug inserter, the new terminals make possible a fully automatic assembly of 20 wire wrap terminals into printed circuit boards, in any pattern, at rates up to 20 boards per min. For semi-automatic operation, they can be used in chain form for rapid insertion by means of a single terminal inserter.

Malco Tool and Manufacturing Co., Dept. ED, 4025 W. Lake St., Chicago 24, Ill.
CIRCLE 164 ON READER-SERVICE CARD FOR MORE INFORMATION
A New Concept of TIME...

Here is a complete line of timing motors that includes the right choice for every APPLICATION... entirely re-designed for finer performance. Features include: slower basic rotor speed (450 rpm), controlled lubrication, total enclosure, smaller size, superior accuracy, quieter operation and longer life.

HYSTERESIS... the ideal general-purpose motor.

INDUCTOR... extra torque (30 ounce inches) for display and other heavy-duty jobs.

CLUTCH... allows automatic re-setting without external clutches.

REVERSIBLE... a hysteresis type with 2 coils, each producing opposite rotation.

DIRECT CURRENT... a permanent magnet type for 6 to 32 volts.

400 CPS... miniature and heavy-duty models for airborne instrumentation.

FOR COMPLETE INFORMATION, write today for new catalog... or contact the HAYDON Field Engineer nearest you.

*Trademark Reg. U.S. Patent Office

A SUBSIDIARY OF GENERAL TIME CORPORATION

HAYDON Manufacturing Company, Inc.
2234 ELM STREET, TORRINGTON, CONN.

CIRCLE 165 ON READER-SERVICE CARD FOR MORE INFORMATION
For better design and performance specify R/M Teflon products

A unique combination of properties— electrical, thermal and mechanical— makes R/M “Teflon” ideal for use as insulation, particularly at high temperatures and high frequencies. R/M “Teflon” Tape, for example, has been extensively used to insulate hookup wire for complex circuits. This tape has great toughness and resiliency, is easy to handle, conforms well to odd shapes, and can be readily adapted to automatic wrapping operations. With the trend toward miniaturization resulting in higher operating temperatures, the excellent heat resistance of R/M “Teflon” permits much greater freedom in design than ordinary dielectric materials.

Here are some of the electrical properties of R/M “Teflon”:

1. Power factor — less than 0.0003 for entire spectrum from 60 cycles to 30,000 megacycles
2. Volume resistivity — greater than 10^{15} ohm-cm, even after prolonged soaking in water
3. Surface resistivity — 3.6 x 10^{12} ohms even at 100% humidity
4. Good arc resistance — on exposure to an arc, the material vaporizes, leaving no carbonized path
5. High short-time dielectric strength — from 1000 to 2000 volts per mil, depending on thickness
6. Good temperature resistance — electrical properties are essentially unchanged up to at least 400°F.

R/M pioneered in developing the potentials of “Teflon” for the electrical and electronics industries. So R/M engineers are in a specially good position to help solve your problems—call on them. And remember, we fabricate “Teflon” to specifications or supply it in rods, sheets, tubes, and tape in all standard color codings. Send for our bulletin “R/M Teflon Products.”

RAYBDESTOS-MANHATTAN, INC.
PLASTIC PRODUCTS DIVISION, MANHEIM, PA.

RAYBESTOS-MANHATTAN, INC.: Engineered Plastics • Asbestos Textiles • Mechanical Packings • Industrial Rubber • Sintered Metal Products • Rubber Covered Equipment
Abrasive and Diamond Wheels • Brake Lining • Brake Blocks • Clutch Facing • Laundry Pads and Covers • Industrial Adhesives • Bowling Balls

CIRCLE 166 ON READER-SERVICE CARD FOR MORE INFORMATION

Production Products

Thermal Conductivity Test Console

An automatic thermal conductivity test console, employing the guarded hot plate principle and conforming to the requirements of ASTM Specification C177-45, has been announced. Hot surface temperatures are automatically maintained in the range of 100 to 1400°F with cold surfaces automatically controlled between 60 and 600°F. Coefficients of thermal conductivity up to 5.0 BTU/hr-ft²-F can be determined.

Parameters, Inc., Dept. ED, 195 Herricks Rd, New Hyde Park, N.Y.
CIRCLE 167 ON READER-SERVICE CARD FOR MORE INFORMATION

Printed Circuit Drafting Aid Has Pre-Cut Tapes

Printed circuit layout time is cut with the new “Black ‘N’ White” drafting aids manufactured by W. H. Brady Co. The new “two-colored,” pre-cut.
self-sticking shapes are used for making layouts on clear or translucent film or cloth. Circuity is laid out on both sides of the sheet.

Pre-cut shapes and terminal strips made from Brady B-150X photographic tape have a snow-white adhesive side and a jet-black, non-reflective top side. The new "Black 'N' White" shapes permit a time-saving technique that eliminates setting up the camera twice. Circuits are drawn with "Black 'N' White" shapes on both sides of cloth or film, and the layout placed on a white surface for photographic reproduction. White shapes and strips on the reverse side of the layout do not register. After exposure, the second side of the layout is photographed. "Black 'N' White" shapes permit perfect register of two sides of a printed circuit layout, and assure accurate alignment of connecting strips and terminals on the finished product.

W. H. Brady Co., Dept. ED, 727 W. Glendale Ave., Milwaukee 9, Wis.

CIRCLE 170 ON READER-SERVICE CARD FOR MORE INFORMATION

Two-Ton Press
For Electronic Parts

This special 2-ton fixed bed gap frame press is especially designed for a manufacturer of electronic components. It is equipped with a mechanical clutch which is actuated by an electric solenoid. A single-revolution stop and two cam operated micro switches prevent the electrical system from double tripping. The stopping device consists of a crankshaft-mounted disc notched on its periphery for a spring loaded pawl. Ram location at stop position is held to top dead center.

Special ears on the ram are drilled for bolting ram to die set. Tolerances throughout are refined to insure complete interchangeability of all tooling developed for the press. This press operates at 250 to 290 strokes per minute, has a 5-1/8 in. die space (ram up), and a standard stroke of 3/4 in. Other strokes are available. Opening through the back is 4-1/2 in., bed area is 4 x 7-1/8 in.

CIRCLE 171 ON READER-SERVICE CARD FOR MORE INFORMATION

Novel Inchworm Motor positions work to 0.000,005-inch accuracy

New heavy-duty micro-feed relies on Magnetostrictive nickel

Place nickel in a magnetic field and it shrinks.

Remove it, and it snaps back to size.

Magnetostriction is the reason. And nickel exhibits large magnetostrictive length change ... added to its rugged mechanical properties and moderate cost. Result: a reliable, versatile engineering material.

Take, for example, the novel "Inchworm" motor manufactured by Airborne Instruments Laboratory, Inc., Mineola, N. Y. An extremely accurate feed mechanism for centerless grinders, this device uses a coordinated pair of clamps to convert the magnetostrictive expansion and contraction of a nickel rod into linear incremental motion. Powerful motion, too ... the "Inchworm" will move a 350-pound load in steps variable up to 0.000,005-inch.

You can see the mechanics of the Inchworm in the illustration above. Electronic controls include standard timing and power circuits to energize the coil and operate the clamps for forward and backward steps. An optional gauge and feedback circuit allow full automatic control.

Magnetostrictive transducers made of nickel have many industrial uses today ... as sonar, vibratory drills, ultrasonic cleaners, homogenizers, soldering devices.

Maybe you would like to explore this growing design field. For recommended materials, get in touch with us. Write for our booklets, Magnetostriction, or Design of Nickel Magnetostrictive Transducers. They're yours for the asking.

The INTERNATIONAL NICKEL COMPANY, Inc.
67 Wall Street New York 5, N. Y.

INCO NICKEL...for magnetostriction

CIRCLE 172 ON READER-SERVICE CARD FOR MORE INFORMATION
The LARGEST Selection of the SMALLEST ELECTROLYTICS is available from AEROVOX!

...and only from Aerovox can you choose from the widest selection of case styles and constructions in a complete range of low-voltage values. For small space applications... for transistorized assemblies...ALL your requirements for miniature electrolytic capacitors are available from Aerovox.

TYPES TNE & TNED
Preferred type subminiature electrolytics where cost, small size and long operating life are of prime importance in transistor assemblies. These tiny, low-impedance, low power factor units are furnished in film-lined glossy tins with plastic end seals. Available in standard voltage ratings of 3 to 50 vdc with operating temperature range of —30°C to +65°C. Leads are firmly imbedded in plastic end seal and will not pull out or work loose under the most severe operating conditions. Color coded end-fill and case marking denotes positive terminal.

TYPES SRE, SREN, AND SRED
Improved electrolytics especially suitable for cathode bypass applications, screen circuit filters and transistorized assemblies. Units tightly sealed in tubular aluminum cases available with external wax-impregnated cardboard insulating tube. Exclusive end-seal provides greater creepage distance and assures positive electrical and mechanical contact. Standard dc voltage ratings from 3 to 150 volts. Operating temperatures from 0°C to 85°C.

TYPE XPP
Miniature, hermetically-sealed, metal-based tubular aluminum units designed specifically for maximum life where size and weight must be kept to a minimum. Exceptional shelf-life characteristics. Standard voltage ratings of 1 to 5 vdc and standard temperature range from —20°C to +65°C. Available with axial leads only.

TYPE PWE
Miniature electrolytics encased in dense steatite tubes with special plastic end fill. Offering high capacitance at low voltages, these units are capable of handling full-size loads in industrial applications. Standard voltages from 1 to 50 vdc and standard operating temperatures from —20°C to +50°C.

For detailed technical information write...
New Literature

Battery Boxes

A circuit chart and diagram showing hook-ups for many voltage combinations using dry and mercury miniature cells is included in a 4-page brochure now available. Austin Craft Co., 431 S. Victory Blvd., Burbank, Calif.

Hi-Temp Insulation Folder

Radio Catalog

Now available is a 196-page catalog on radio parts. It contains extensive listings of electronic parts and equipment for service, industrial, public address, and ham use. Northwest Radio and Electronic Supply Co., Minneapolis, Minn.

Power Reactor Systems

Bulletin 1384 presents a detailed picture and word description of various systems using water, gas, sodium and liquid-fuel as coolants. It reviews reactor systems which produce commercially useful electricity from nuclear energy. General Electric Co., Apparatus Sales Div., Schenectady 3, N.Y.

Potentiometers

Specifications and features of precision pick-off and sector potentiometers are presented in Bulletin No. 415, complete with photographs and outline drawings. Designed for aircraft and missile control systems, these units have a life in excess of 1,000,000 cycles and resolutions as fine as 0.006 in. The 2-page bulletin states they will operate in damping fluids and in temperatures above 150 C. Norden-Ketay Corp., Commerce Rd., Stamford, Conn.

compact D-B power supplies for transistor circuits...

precision

performance over the entire range

These are low-voltage, high-current units designed for bench or rack mounting. No derating is needed at any setting of output voltage. Low drift and tight regulation.

Meters have mirror scales, and are accurate to 1%.

FOUR MODELS—FOUR OUTPUTS

Model 6-3MB: 0-60 V.D.C. @ 3 amps. Bulletin 1031
Model 6-1MB: 0-60 V.D.C. @ 1 amp. Bulletin 1024
Model 6-300B: dual 0-60 V.D.C. @ 300 MA. Bulletin 1030
Model 6-300B: 0-60 V.D.C. @ 300 MA. Bulletin 1029.

dressen-barnes

DRESSEN-BARNES CORP. • 250 North Vinedo Avenue, Pasadena, Calif.

CIRCLE 180 ON READER-SERVICE CARD FOR MORE INFORMATION

ELECTRONIC DESIGN • October 1, 1957
Heavy-Duty Footswitch Line

Special features of the Hercules, a heavy-duty footswitch line, are discussed in a comprehensive 6-page bulletin recently issued. Grouped in four classes, all in single, two or three stage, are specifications on each of the Hercules' forty models: general purpose heavy duty, water-tight enclosure NEMA Type 4, explosion-proof Class I Group D NEMA Type 7 (for hazardous locations), and high dc rated switches.

Although designed primarily for use as pilot devices in connection with control circuits of contactors or starters, Hercules switches, as explained in the bulletin, may be used for direct control of small motors, operating machines, welders, solenoids, relays, sound systems, and other electrical devices. Linemaster Switch Corp., 428 Woodstock Terrace, Woodstock, Conn.

Heat Exchange Packages

"Heat Exchange System Design for Airborne Electronic Equipment" is a 10-page paper concerning present and future cooling systems for electronic devices. Illustrated with photos and graphs, this discussion of heat exchange packages includes heat transfer systems such as cold plates, gas-air heat exchangers, air-liquid heat exchangers and associated transfer devices, mechanical refrigeration, and expendable refrigeration. Also presented are design analysis, performance characteristics, packaging techniques, and practical aspects of these system's components. United Aircraft Products, Inc., Box 1035, Dayton, Ohio.

Crimping Tools

An illustrated sheet of information on the uses and performances of two new multipurpose crimping tools has been published. These units are applicable for crimping standard and insulated soldierless terminals and connectors; stripping insulation from wires and cutting wires and insulation. Data on tool identification and wire gage capacities are included in the text. Electri Terminals & Connectors, Inc., 990 E. 67th St., Cleveland 3, Ohio.

For exacting, high-temperature applications...

CERAMASEAL LEAK-TIGHT TERMINALS

Assuring you savings in installation and operation, these Ceramaseal high-temperature terminals are 100% leak-tested and guaranteed leak-tight when shipped. High-alumina ceramic and metal parts of Ceramaseal terminals are joined by an exclusive process to form a high-strength, long-life molecular seal. Brazing, welding or soldering techniques can be used for installation, without resulting damage to the seal, thus eliminating costly rework or replacement. For brochure and spec sheets, or complete information on special high-temperature terminals, write: Ceramaseal, Inc., Box 25, New Lebanon Center, New York.

Supplying High-temperature, Quality Terminals for Five Years

CERAMASEAL, Inc.
Crystal Impedance Meters

Four units now available to measure resonance and anti-resonance resistance of quartz crystals, including those covered by Spec. MIL-C-3098B. Capacitance, inductance and performance index (PI) of the crystal can be determined.

Model 531 (TS-683/TSM) covers range of 10-140 mcs, employing 13 calibrating resistors and an anti-resonance adapter for 10-150 ohm crystals. Price $590.

Model 541A (TS-710/TSM) for 10-1100 kc range crystals having resistances from 200 ohms to 0.5 megohms. Power dissipated in the crystal is measured. Built-in VTVM and ohmmeter provided. Price $860.

Model 459 (TS-330/TSM) covers 1-15 mc frequency range for crystals having resonance resistances from 0 to 9900 ohms. Price $695.

Model 1207 (AN/TSM-15) covers frequency range of 75-200 mcs for 10-125 ohm crystals. Crystal voltage at series resonance is measured and power calculated. Built-in ohmmeter.

All models were developed under Signal Corps technical requirements for the national crystal testing standardization program.

Performance of all models is rigidly guaranteed. Prices are net f.o.b. Boonton, N.J. and subject to change without notice.
YOU CAN DEPEND ON ASHLAND Axial-Flow Fans and Centrifugal Blowers to deliver the highest air volume per pound weight...the greatest efficiency for the job. Rugged, compact and precision-made, they will satisfy your need for reliability and long life even under adverse environmental conditions. Ashland's modern methods, materials and quality workmanship assure your complete satisfaction. Ashland Axial-Flow Fans are available with or without Venturi-ring mounts, or to your mounting requirements. Three to ten inch dia. Fans, matched to Ashland's own 24-slot Motors, provide air delivery ranging to 1200 CFM. Both Fans and Centrifugal Blowers may be had to order for 50, 60 or 400-cycle operation and for variable frequency power supplies up to 1600 CPS; all voltages and phases. Available to FULL MILITARY SPECIFICATIONS.

For assistance in your cooling problem contact Ashland, today's prime source for dependable, value-packed Motors, Fans and Blowers.

Boonton ELECTRONICS Corp.
Morris Plains, N. J. • Phone: JEfferson 6-5110

84
New Literature

Endurance Rated Counters

Heavy duty electric, stroke and revolution counters; electric counter actuators; small electric and stroke counters; coil winding counters; and automatic batch counters are included in condensed catalog now available. General Controls Co., Products Instruments Div., 706-34 W. Jackson Blvd., Chicago 6, Ill.

Environmental Testing Lab

High speed service, accuracy, and complete facilities are the keynotes of a 4-page brochure describing laboratory environmental test conditions. Illustrated with photos showing the equipment used to perform such tests as vibration, high and low temperature, humidity, altitude, salt spray, and acceleration, this brochure contains facts on the wide scope of testing to military, ASTM, and industrial specifications. Associated Testing Labs., Inc., 414 Clinton Rd., Caldwell, N.J.

Film Capacitor Data

Three new engineering bulletins covering standard types of plastic film dielectric capacitors have recently been issued. Each of the bulletins describe the various applications applicable to types “E”, “F” and “G” capacitors. Sprague Electric Co., N. Adams, Mass.

Frequency Standard Broadcasts

Calibration of rf and af signals with standard frequency transmissions is described in “Using Standard Time and Frequency Broadcasts.” The 4-page bulletin details a number of methods for utilizing the standard transmissions from stations WWV and WWVH, National Bureau of Standards. Diagrams aid in the discussion of such topics as upward extension of standard frequencies, audio frequency comparisons, and the use of 1000 cycle time pulses. Covering the program schedules of WWV and WWVH, the bulletin also includes short discussions on code symbol notices of propagation disturbances and the conditions necessary for obtaining various levels of signal accuracy. Specific Products, 21051 Costanso, Woodland Hills, Calif.

Transistor Servo Amplifier

The 60 and 400 cps TRAMPS are presented in a 4-page brochure, "Transistor Servo Amplifier." Diagram illustrated, it covers the performance characteristics and applications of production models. Miniaturized units capable of providing up to 9 w controlled power at a weight factor of less than 1 oz per w are described in detail. An application questionnaire is included to assist in the selection of the TRAMP and control system companions which were designed to meet military specifications. M. Ten Bosch, Inc., Pleasantville, N.Y.

Panel Meters

Round and square panel meters that meet applicable sections at JAN-1-6 and MIL-M-686 are described in a 16-page catalog now available. Illustrated with diagrams and photos, it contains dimensional details and performance specifications for D’Arsonval-type ammeters, millivoltmeters, voltmeters as well as ac rectifier-type microammeters, milliammeters, and voltmeters. Data on custom meters are also included. Waters Mfg., Inc., Boston Post Rd., Wayland, Mass.

All Transistor Amplifier

An all transistor amplifier, designed for use in analog computation and amplification for low level dc signals such as strain gage transducers or thermocouple output, is presented in Bulletin 3003. Containing complete diagrams, block diagrams and photos, the 4-page bulletin cites typical applications and operation specifications of this high gain, broad band, chopper stabilized, precision amplifier. Beckman Instruments, Inc., 325 Muller Ave., Anaheim, Calif.

Current Drivers

Designed for the testing of magnetic cores such as bobbin, square loop, and tape wound, two new current drivers, Types 3003 and 3004, are now fully described in a 4-page brochure. Type 3003 produces a negative current pulse. Type 3004 a positive current pulse. All specifications including rise time, duration, and amplitude of the rectangular output current pulse are listed in this illustrated brochure. Burroughs Corp., Electronic Instruments Div., 1209 Vico St., Philadelphia 7, Pa.
Ballistic Film Analyzers 204

Descriptive information and photographs of ballistic film analyzers are supplied in a 4-page technical bulletin, No. CR-191. These analyzers are used to measure precisely linear distances or angles on photographic film or plates. They convert the measurements into digital form for readout into a lamp bank and punched cards or paper tape, electric typewriter, Flexowriter and other devices. Included in the bulletin are specifications and a block diagram showing the choice of accessory and input-output equipment, with provisions for handling 16, 35 or 70 mm and 5-1/2 in. film. Coleman Engineering Co., Inc., 6040 W. Jefferson Blvd., Los Angeles 16, Calif.

Supersonic Power Steering 205

Application, technical and reference data is contained in 8-page technical magazine available. Entitled "Supersonic Power Steering," it discusses the requirements of an elevator trim system for supersonic aircraft, and shows how the trim servo system is integrated into the delta wing. Convair Div., G. M. Giannini & Co., Inc., 918 E. Green St., Pasadena 1, Calif.

Thermistor 206

Chapter 1 of "Meet the VECO thermistor" is devoted to fundamentals in the use of thermistors starting with a basic dc circuit. Also discussed is the meaning of temperature coefficient, and how it can be used to advantage. The article is written in easy-to-understand language, and raises the curtain on many heretofore unknown facts. Victory Engineering Corp., Springfield Rd., Union, N.J.

Digital and Analog Instruments 207

Seventeen new devices are described in Catalog C704. Eight pages in size and illustrated, it contains specifications and applications for digital and analog instrumentation. Included in this discussion are preset EPUT meters with variable time base for direct digital readout without conversion and a series of portable EPUT meters. The catalog also covers expanded scale volt and frequency meters, transformation ratio meters, resistance bridges, nuclear recorders, readouts, and the EASE 1100 analog computer with digital input and output. Beckman Instruments, Berkeley Div., 2200 Wright Ave., Richmond 3, Calif.

PRECIOUS METAL

ENGINEERED CONTACTS, SLIP RINGS & ALLOYS

Ney designs and makes to customers' specifications sliding contacts, slip rings and assemblies, commutator segments and assemblies, brush and brush holder assemblies, and precious metal resistance wire. Consult Ney's Engineering Dept. and find out how precious metals can improve your product.

THE J. M. NEY COMPANY, P.O. BOX 990, DEPT. D, HARTFORD 1, CONN.

Specialists in Precious Metal Metallurgy since 1812

Ney has just built this modern new plant to give you even better products and better service.

CIRCLE 208 ON READER-SERVICE CARD FOR MORE INFORMATION
FOR HIGH ACCURACY DISPLAY SYSTEMS

We specialize in the design and manufacture of precision deflection Yokes for military and commercial applications. Phone or write for immediate engineering evaluation of your critical display problems—Phone DAVIS 7-1123. MAHW, N. J.

CIRCLE 209 ON READER-SERVICE CARD FOR MORE INFORMATION

PACKS the POWER for 100-WATT SIGNALS...

Since the earliest days of mobile radio ... some thirty years ago ... the name of CARTER has maintained its prominence in the manufacture of rotary power supplies. Today, modern 100 watt police radio communication equipment, is produced by ALL major set manufacturers, and obtain power from CARTER Duovolt Generators ... the kind most recommended by experts where dependability counts first.

CARTER 6/12v. Duovolt Generators operate equally well on 6 or 12 volt input. They combine the efficiency, economy, and capacity to insure top performance in the best and most powerful mobile radios ever available to the nation's police.

CARTER MOTOR CO.
2764 W. George St., Chicago 18

Please send complete information on CARTER Rotary Power Supplies.

Name
Address
City Zone State

CIRCLE 210 ON READER-SERVICE CARD FOR MORE INFORMATION
New Literature

Teflon

Twenty-page illustrated engineering handbook on Teflon (Tetrafluoroethylene) has been released. It covers advanced usage in practical applications as a cushioning and insulating material for supporting clamps.

The handbook contains information on Teflon including chemical, thermal, electrical and ageing properties as well as methods of handling it. Included is a comprehensive tabulated chart covering 25 tests of various physical properties of Teflon. It also illustrates seven models of Teflon Cushioned support clamps, which are available in 18 standard types. TA Mfg. Corp., 4607 Alger St., Los Angeles 39, Calif.

Shielding Enclosures

In a six-page brochure, photographs, charts and graphs illustrate the features and characteristics of enclosures for suppressing radio frequency interference. The catalog gives typical enclosure sizes and performance data and discusses available shielding materials. It also lists typical applications and available accessories. Shielding, Inc., Box 59, Riverton, N.J.

Accelerometers

Illustrations, specifications and special design features for a variety of accelerometers are presented in a recent catalog. An instrument application guide for flight- and fire-control system engineers and a detailed performance breakdown for each instrument is given. The catalog also contains information on such optional configurations as dual output instruments, switch-contact instruments, digital-output instruments, special damping features, and very-low and very-high g-range accelerometers. Technical data, illustrations and possible applications of a new ac output instrument are given. Genisco, Inc., 2293 Federal Ave., Los Angeles 64, Calif.

Electronic Control Assemblies

Electronic control assemblies and complex electronic gear that can be produced in large scale is described in this two-color, 22 page brochure now available.

It contains photographs and illustrations of typical projects, and gives the specifications and applications available. Cook Electric Co., 2700 N. Southport Ave., Chicago 14, Ill.
Carbon Film Resistors

Just cost, precision carbon film resistors are described in Form 307-1056 now available. The illustrated sheet indicates that construction features a layer of pure carbon particles deposited on a ceramic rod. Silver plated end caps are expansion fitted over silver contact bands for good electrical and positive contact. Tinned copper leads are securely riveted to caps. They conform to Mil-R-1059R, are available in five types ranging from ½ to 2 w sizes, and are used in test equipment, meters and hi-frequency circuits. Continental Carbon, Div. Wirt Co., 5221 Greene St., Philadelphia 44, Pa.

Heavy Duty Relays

An eight-page illustrated booklet gives complete information about a line of interchangeable multiple pole and fixed multiple pole heavy duty relays. Diagrams, dimensional drawings and photographs are used for illustration. Described in detail is the finger-tip convertibility from normally-open to normally-closed poles of the relay. Arrow-Hart & Hegeman Electric Co., 103 Hawthorn St., Hartford 6, Conn.

Ultrasonic Gage

Information on the Vidigage, an ultrasonic resonance instrument for fast, nondestructive testing, is available in a technical bulletin of 8 pages. Designated V-200, the illustrated booklet gives complete data on the instrument's time-saving advantages in measuring the thickness of metal, glass, and plastic from one side, and in finding corrosion, laminar discontinuities, and other flaws. The brochure covers the unit's construction, operation, applications and specifications. Accessory equipment is also described. Branson Instruments, Inc., 37 Brown House Bd., Stamford, Conn.

Miniature Electrical Connectors

A 24-page three-color catalog describes a full line of miniature electrical connectors. The booklet is illustrated with drawings of each connector and locking charts that show contacts and alternate insert positions. The line consists of miniature hermetic, quick disconnect, push-pull, and edge connection. A section of the catalog is devoted to construction and operational features, and charts supply significant dimensions and weights. Mating combinations, special numbering and mounting dimensions are also given. The publication follows a quick-reference data sheet format. Catalog sheets may be added as new connectors and modifications are introduced. The Deutsch Co., 7000 Avelon Blvd., Los Angeles 3, Calif.

SLIP RINGS AND BRUSHES

by Iron Fireman

More than just a product

Iron Fireman skill in developing slip rings and brushes for special applications is well illustrated in the Ampex Videotape Recorder. Ampex required a slip ring of exceptionally high standards and with unusual characteristics. Iron Fireman perfected a design to meet this specific need.

If you have a precision slip ring application Iron Fireman can be of service to you, too. Write to the address below for detailed information.
Automatic Digit Pulser

DESCRIPTION: Here is a versatile automatic digital pulser, suitable for many automatic testing applications, where digital pulsing is used. Although the unit was designed for the checking of centralized Automatic Message Accounting circuits of telephone plant installations, its timing and control circuits are adaptable to many other uses.

The functional parts of the pulser are shown in Fig. 1. A simplified schematic of the unit is shown in Fig. 2. The trigger inputs close each part of the chain circuit involved and start the timing circuit, which consists of a vacuum tube. The purpose of the manual keys (S1) is to enable a tester to close those portions of the chain which will not be used in a test.

If all triggering pulses have closed the chain circuit before six seconds have elapsed, then relay K3 will change the timing circuit from six seconds to an additional two seconds from the time all circuits are seized.

Fig. 1. Block diagram.
Fig. 2. Simplified schematic of the unit.
Waldorf announces an important new design concept... MICROMATION

- the logical result of Waldorf's unique talent for compressing more performance into less space.
- MICROMATION—making use of Waldorf's creeds of less space, less heat, less power, to provide last-in-effect amplifiers for servos and computer applications.

Model W1403—Amplifier as used in the W1801 Servo Repeater System.
Model W1403—Amplifier for minimum mounting surface—1 1/2 x 1 x 2 1/2 in. A combination of micro-accumulators, synchronous rectifiers, and power supplies.

If these product improvements—or the coming innovations in MICROMATION—interest you, let us know. We can challenge your imagination, why not ask for further data?
Report Briefs

Permanent-Magnet Generators

Recent improvements in the permanent-magnet generator have brought advantages which, if exploited, will place it in competition with the conventional wound-field machines, NRL researchers anticipate. The elimination in the ac generator of exciter, commutator, slip rings, brushes, and field winding makes the permanent-magnet machine especially attractive for mobile applications where size, weight, and environmental requirements are severe. This report presents a simple theory of the generator. It may be used for the prediction of machine performance and as the basis for optimum design of a generator for a specified application.

The theory is based on an equivalent magnet circuit and uses the conventional synchronous machine constants. Steady-state and transient operation are analyzed, and the demagnetizing effect of a short-circuit transient is evaluated. PB 121862, Permanent-Magnet Generators, D. J. Hanrahan and D. S. Toffolo. Naval Research Lab., OTS, U.S. Dept. of Commerce, Washington 25, D.C., Mar. 1957, 18 pp, $0.50.

Secondary Electron Current

A 2 Mev electrostatic accelerator with a 0.06 usec pulsed electron source was found to produce radiation afterpulses occurring as late as 150 usec after cessation of the source pulse. The rate of afterpulsing was roughly proportional to the pressure in the acceleration and drift tube for pressures up to \(5 \times 10^{-6}\) mm of mercury and rose more steeply at higher pressures. The decay curve of the delayed radiation was independent of the target material and the type of detector used to study it. The energy spectrum was continuous, with an average energy less than that of the bremsstrahlung pulse. The cause of the effect has been determined to be ionization in the drift tube by the primary electron beam. The mechanism for formation of the afterpulses and the instrumentation for their study are discussed. Secondary Electron Current from a Pulsed Electron Accelerator, A. E. Evans, Jr., D. V. Breitenbecher, D. W. Cady, and L. L. Antes, Wright Air Development Center, Aeronautical Research Lab., Dayton, Ohio, PB 121757, Sept. 1956, 20 pp, $0.50. Order from OTS, U.S. Dept. of Commerce, Washington 25, D.C.
SnO-Zn Battery Study

Preliminary work toward the improvement of the silver oxide-zinc alkaline battery through a possible increase in cell capacities of zinc alloy electrodes is described. The aim of the Navy project was to determine whether elements which alloy with zinc and change its crystalline structure and other physical properties will increase or decrease the capacity of the silver oxide-zinc alkaline cell. Although the investigation was not completed, and the data is recommended only as a basis for further study, it was reported that most alloying elements decrease cell capacity, particularly if they are present in appreciable amounts. Mercury, however, improved capacity, and a few other elements such as cobalt and calcium indicated promise. The grain structure of electrodes made of zinc and its alloys was shown to have a large effect on cell capacity.

Electron Scattering

The higher-order radiative corrections are examined in the infrared region, and Schwinger's objective regarding the functional dependence of these corrections on the energy resolution is proved. Higher-order Radiative Corrections To Electron Scattering, D. R. Yennie and H. Suura, Stanford University, PB 12491, Nov. 1956, 15 p., Microfilm $2.40. Photocopy $3.30. Order from Library of Congress, Washington 25, D.C.

Image Intensifier

Development of an image intensifier is described which makes use of cascaded fine mesh screens coated with an efficiency secondary emitter, cesiumantimony, to achieve multiplication of weak photoelectron images from a cesiumantimony photocathode. An axial magnetic field is used together with approximate potentials and spacings of the screens to keep the electron image in focus. Forty-five image tubes were produced under this contract, and the methods of production together with the results of tests and experiments on these tubes are described. Recommendations for the course to be followed in the further development of the screen-type intensifier to overcome the drawbacks of the present design are discussed. PB 124263 Magnetically Focused Secondary Emission Screen Type Image Intensifier, F. F. Rieke, Chicago University, Chicago Midway Labs, Chicago, Ill., Library of Congress, Washington 25, D.C. Aug 1956, 43 pp. Microfilm $3.30, photostat $7.80.

Use Talcott's Flexible Financing Plans

Thousands of firms have grown and earned more for their owners through use of Talcott's Financing Services. These plans are personalized, flexible, and made to order to suit the special problems of your industry. Whatever your working capital need is, you will get time-saving and profitable assistance, when you talk to Talcott.

Talcott's Special Financing...

- Accounts Receivable (Non-Notification)
- Inventories
- Machinery & Equipment
- Installment & Lease Sales

JAMES TALCOTT, INC.
FOUNDED 1854

CHICAGO
209 SOUTH LADALE STREET
Financial 6.144

NEW YORK
221 FOURTH AVENUE
Olivegreen 4200

DETOIT
1870 NATIONAL BANK BLDG
Woodward 2.4563

CIRCLE 239 ON READER-SERVICE CARD FOR MORE INFORMATION

"PIG-TAILORING"

...a revolutionary new mechanical process for higher production at lower costs. Fastest PREPARATION and ASSEMBLY of Resistors, Capacitors, Diodes and all other axial lead components for TERMINAL BOARDS, PRINTED CIRCUITS and MINIATURIZED ASSEMBLIES.

"PIG-TAILOR"...

The "PIG-TAILOR" plus "SPIN-PIN" — Accurately Measures, Cuts, Bends, Ejects and Assembles both leads simultaneously to individual lengths and shapes — 3 minute set-up — No accessories — Foot operated — 1 hour training time.

PIG-TAILORING provides:
1. Uniform component position.
2. Uniform marking exposure.
3. Miniaturization spacing control.
5. "U" leads for printed circuits.
6. Individual cut and bend lengths.

PIG-TAILORING eliminates:
1. Diagonal cutters.
2. Long-nose pliers.
3. Operator judgment.
5. Broken components.
6. Broken leads.
7. Short circuits from clippings.
8. 65% chassis handling.
9. Excessive lead tautness.

"SPIN-PIN"...

Write for illustrated, descriptive text on "PIG-TAILORING" to Dept. ED-10P

BRUNO-NEW YORK INDUSTRIES CORPORATION
DESIGNERS AND MANUFACTURERS OF ELECTRONIC EQUIPMENT
460 WEST 34th STREET • NEW YORK 1, N.Y.

CIRCLE 240 ON READER-SERVICE CARD FOR MORE INFORMATION

ELECTRONIC DESIGN • October 1, 1957
Vinyl-Mylar-Epoxy Markers simplify wire identification

Self-sticking Wire Markers now come in seven stock materials tailored to job requirements. The Brady "Perma-Code" system cuts cost of assembly and installation of electrical and electronic parts. They meet NEMA and NMIBA specs and provide permanent and visible identification for 1/5" per lead.

- ALL-VINYL — Recommended for plastic coated wires. Has high dielectric strength for electronic assemblies.
- POLYESTER FILM — Superthin Mylar markers do not bulk. High dielectric strength for electronic assemblies.
- EPOXY RESIN — Identify oil-immersed wire leads in high voltages and specialty transformers. Made to order.
- ALUMINUM FOIL — Used in elevated temperatures and when oily and conductive conditions demand permanent marking.
- VINYL-CLOTH — All-purpose markers withstand temperatures up to 300°F. Available in 200 stock symbols and numbers.
- COLOR CODE — Conform to NEMA specifications. Get two-way identification with both color and number.
- MINIATURE MARKERS — Specially designed for small diameter wires, electronic and subminiature assemblies.

Listed in SWEET'S Product Design File.

Stocking Distributors in 200 principal cities. Write for free working samples and new Bulletin No. 130-D.

Manufacturer: W. H. Brady Co., 795 E. Glendale Ave., Milwaukee 9, Wis.

CIRCLE 241 ON READER-SERVICE CARD FOR MORE INFORMATION

Report Briefs

Radiometer Calibration at 4.3 Mm

With the advent of the 4.3 mm wavelength radiometer, it became necessary to develop precision instruments for calibrating the radiometer. The major components consist of a high load, discharge tube, waveguide switch, and precision attenuator. These instruments have performed well in laboratory applications and in routine use. It is believed that they represent a step forward in precision instrumentation at millimeter wavelengths. Precision Instruments for Calibrating Radiometers at 4.3 Millimeters Wavelength, Arthur I. Reynolds, U.S. Naval Research Lab., PB 121947, May 1957, 15 pp. $0.50. Order from OTS, Washington 25, D.C.

AF Multicolor Storage Tubes

Shadow-mask multicolor storage tubes for radar and other applications with low frame rates have been constructed for the Air Force. Design of the tubes was directed towards providing long-persistence displays of high brightness. Such color displays reduce flicker and tend to provide a steady picture. They also permit additional information to be superimposed on the radar display. The multicolor storage tube was built by modifying a direct-viewing storage tube. It showed good color purity in a 6 in. diam circle. The tube has 75 total color dots per in. resolution, 8/1-1 brightness, and about 1 min persistence. PB 121815, Long-Persistence Three-color Indicator Cathode-Ray Electron Tube, C. D. Beintema, L. L. Van-Hull, and S. T. Smith. The Hughes Aircraft Co. for Wright Air Development Center, OTS, U.S. Dept. of Commerce, Washington 25, D.C., May, 1936, 29 pp. $0.75.

Phosphor Research

The results of the project to develop a cathode-ray phosphor having a long persistent exponential decay characteristic with a time constant of the order of 0.5 sec to 2.5 sec or a phosphor having a concave downward decay characteristic with a similar decay time are reported. The effort was directed toward the development of a long persistence exponential decay phosphor. The decay and emission characteristics of phosphors using a stronitium, bariun, or calcium silicate matrix and rare earth elements as activators are reported. A phosphor having the desired decay properties was not found. Long Persistent Exponential Decay Phosphors, James F. Elliott, General Electric, PB 121527, 57 p, Feb. 1956, $1.50. Order from OTS, Washington 25, D. C.
Heater-Cathode Leakage

The purpose of the present experimental program is three-fold: 1. to obtain a phenomenological description of heater-cathode leakage under typical life test conditions of military tube types, 2. to determine the nature and relative importance of mechanisms responsible for heater-cathode leakage and to investigate the physical and chemical parameters governing the important heater-cathode leakage mechanisms, 3. to utilize the experimental findings through specific recommendations concerning the use of improved materials, the use of improved processing and aging, and the use of operating conditions to minimize the detrimental effects of heater-cathode leakage. Heater-Cathode Leakage Investigations, Paul E. Carroll, Julius Cohen, Paul Cutler and J. V. Florio, Sylvania Electric Products Inc., PB 124715, Aug. 1956, 31 p, Microfilm $3, Photocopy $6.30. Order from Library of Congress, Washington 25, D.C.

Info Theory Logs

In this report, four-place logarithms to the base 2 are presented in table form for the three-digit numbers between 1.00 and 9.99. The table can be used to obtain the logarithmic values of all three-digit numbers between 0.0000100 and 9.990,000. The logarithms-base-2 are tabulated in a form convenient to use, since all values are placed on two facing pages. Four-Place Logarithms to the Base 2 of Three-Digit Numbers, Earl A. Allusi and Hse B. Webb, Ohio State Univ., Lab. of Aviation Psychology, and Ohio State Univ. Research Foundation, Columbus, Ohio, PB 121996, Dec. 1956, 8 pp, $.50. Order from OTS, Washington 25, D.C.

NEL Reliability Design

This handbook is intended as a source of information on ways of achieving greater simplicity, economy and reliability in electronics equipment developed for the Navy, and as a medium through which information on new materials, processes, and techniques, as well as design aids and reliability concepts can be disseminated. It is intended as a method of coordinating preferred circuits, construction techniques, design procedures, and application design data. The basic book will be enlarged and kept up to date by means of loose-leaf insertion sheets. In addition to NEL originated material, it will contain current reliability and standardization data from the Bureau of Ships, other government organizations, and contractors. NEL Reliability Design Handbook. Revised. U.S. Navy Electronics Lab., San Diego, Calif., PB 121839, Nov. 1955, 282 pp, $3.00. Order from U.S. Dept. of Commerce, Washington 25, D.C.
E-T-A OVERCURRENT
CIRCUIT BREAKERS
USE NEW BI-METAL ELEMENT

TRIPPING CHARACTERISTIC ASSURES FULL PROTECTION.

NOW GET
- Circuit Breaker protection for current ratings of 50 ma.-80 ma.-100 ma. up to 25 ampere
- Calibrated in steps of 100 milli-ampere
- STURDY yet COMPACT DESIGN
- AVAILABLE WITH SEPARATE ALARM CIRCUITS.

Special Capacitors?
E-P offers long experience in meeting unusual needs

If there's a way to supply the capacitor you need, we'll find it without delay. ELECTRON PRODUCTS designs and manufactures capacitors of extra-small size, high insulation resistance, or odd configuration. We make units with special voltage, temperature and/or frequency characteristics—to any quality requirements and meeting pertinent phases of latest Mili. Specs.

You'll find us organized for fast sample service. Samples are designed for immediate production, hence we can produce as fast as incoming materials will permit. You'll find, too, we take great pains to keep deliveries prompt.

Write us your needs. Catalogue of standard capacitors on request.

Electrostatic capacitors—Kraft paper, Mylar, polystyrene, Teflon, metallized paper & metallized Mylar dielectrics.

CIRCLE 250 ON READER-SERVICE CARD FOR MORE INFORMATION
Diverter Conversion Circuit

The conversion circuit illustrated converts a dc signal to an ac signal which is of square form and proportional to the dc signal. The circuit is a bridge type with diodes in two arms of the bridge. These diodes are conventionally germanium or selenium which individually have widely varying forward and backward impedances. In order to secure a balanced bridge of conventional type, these impedances must balance. It requires the testing of a great many diodes before matching sets are found. This is, therefore, an expensive and time-consuming operation. Another difficulty with this type of converter is that because of the lack of exact balance of the impedances in both directions it is difficult or impossible to accurately convert minute dc signals.

The circuit described overcomes these and other difficulties in a simple manner.

In the circuit illustrated the bridge junctions are designated H, J, L, and K with the circuit elements as shown in the figure. A commutating ac potential is applied across the junctions JK through the transformer 17, 18. The diodes 11 and 12 are poled in the forward direction for half of the ac wave supplied by the commutating potential and for the other half wave the diodes are poled in the backward direction. A resistor 10 and 13 is in series with each diode in its respective arm of the bridge. The arms JL and KL of the bridge are formed by resistors 14 and 16. The potentiometer 19, 21, 22 is provided for the purpose of balancing the impedances of the resistors 14 and 16.

The diode 23 shunts the diodes 11 and 12 and is poled to shunt the diodes in its forward direction for that portion of the ac wave which is a backward direction for the two diodes. As a result the backward impedance of the two diodes has essentially no effect on the ac output and any dissimilarity or lack of balance in their backward impedance is of no materiality. The output voltage is determined principally by the impedance of the resistors 10 and 13.

Other circuits are illustrated and described in the patent which makes refinements to the circuit shown herein. These modified circuits give more precise control of the output of the circuit.

Semi-Conductor Sawtooth Wave Generator

The sawtooth wave generator uses a junction transistor with the customary three electrodes. Between the collector and emitter electrodes is a storage capacitor. A first resistor is connected with the collector electrode. A second resistor is connected between the emitter electrode and a point of reference potential. The biasing means for the transistor includes a first source of potential in series with the first resistor and poled to apply a voltage to the collector electrode so that the latter is biased in the reverse direction with respect to the base electrode. A second source of potential in series with the base electrode, is poled to apply a voltage thereto so that the emitter electrode is initially biased in the reverse direction with respect to the base electrode.

As a result a negative resistance characteristic is provided over a portion of the operating range of the transistor which results in the storage capacitor being discharged when it has previously been charged. A push-pull sawtooth output wave is then derived from the generator at the output terminals of an output circuit which is connected with the collector and emitter electrodes.
Pulse Doubling Circuit

The doubling circuit includes a saturable core transformer having primary and secondary circuits. An ac voltage is applied to the primary circuit. The secondary circuit includes means for biasing the transformer whereby it will saturate only once during a charging cycle. A load impedance is included in the secondary circuit. Suitable storing means is in series with the load impedance for storing electrical energy during the charging cycle when the transformer is saturated. This storing means discharges its stored energy during saturation of the transformer to thereby produce a voltage pulse across the load impedance.

Television Circuits

The circuit described is for a cathode ray tube having an electron beam which scans a surface on the screen. A voltage is derived which varies substantially as a fraction of the instantaneous position of impingement of the electron beam on the surface. Circuit elements produce a squared voltage, the instantaneous value of which is equal to the square of the instantaneous value of the first voltage. This squared voltage is then applied to the cathode ray tube to vary the focal point of the beam in accordance with the instantaneous magnitude of the squared voltage.

Transistor Oscillator

Patent No. 2,797,328. E. G. Miller, Jr. (Assigned to the United States of America)

The crystal-controlled oscillator uses a pair of transistors each having at least the usual three electrodes. A crystal is placed between the base electrodes for controlling the frequency of the oscillator. Between the collector electrodes, there is an antiresonant circuit which is tuned to the crystal frequency. A positive and negative bias is supplied to the collector and emitter electrodes respectively. A negative feedback circuit is coupled to the antiresonant circuit and connected between the emitter electrodes.

Crystal-Controlled Relaxation Oscillator

The crystal-controlled relaxation oscillator includes a grid-controlled tube. A direct-coupled low-Q regenerative feedback circuit which includes the stray parameters of the tube is connected between the plate and grid of the tube to form an oscillator circuit therewith. This low-Q circuit has a natural frequency distinct from the relaxation frequency. A timing capacitor is connected to the grid of the tube which applies a rising exponential voltage to the grid. A piezoelectric crystal is coupled to the grid of the tube to form a Pierce oscillator circuit. The crystal has a natural frequency which is harmonically related to the natural frequency of the low-Q circuit. The Pierce oscillator and low-Q oscillator voltages derived from the oscillator circuits are superimposed on the exponential voltage as this exponential voltage nears the conducting value for the tube.

Amplifiers

The saturating-transformer magnetic amplifier is used for supplying energy to a load and includes a magnetic core having a winding inductively coupled therewith. An alternating-current is supplied to the winding during alternate half-cycles through suitable circuit means. The winding, the circuit means, and the magnitude of the alternating-current supply voltage are such as to always effect a substantially complete magnetic saturation of the magnetic core during alternate half-cycles of the alternating-current. During the other alternate half-cycles of the alternating-current, a control signal is developed for resetting the flux level in the magnetic core from saturation flux to a controlled flux reset point. An output circuit produces, over a wide range of variation in the magnitude of the alternating-current, a voltage across the load which is proportional to only the change in flux in the magnetic core that occurs during the alternate half-cycles when the flux level in the magnetic core changes from the controlled flux reset point to saturation flux.
Capable of critical temperature applications up to 125°C, the "Mite-E-Mite" is a ruggedly constructed, full functioning subminiature potentiometer that is smaller than a dime... Here are some features:

- Hermetic Protection—O-Ring and glass sealed header; Solder Mounted—may be soldered into position, minimizing vibration (other mounts available). Weight—10 grams; Size—⅛" dia.; ⅞" long; Resistance range—up to 75K ohms. Other details rushed to you upon request.

Also... Wide range of other sizes, spec's in POTENTIOMETERS
- Mfr's of WEST-CAP CAPACITORS. FILTERS

GENERAL SCIENTIFIC DIVISION
SAN FERNANDO Electric Manufacturing Co.
1509 First Street, San Fernando, California

CIRCLE 251 ON READER-SERVICE CARD FOR MORE INFORMATION

Metallurgists & Specialists in Small Wire
- Serving Industry—For Over 56 Years

BASE METAL WIRES... Very small diameter—for filaments, thermocouples, resistance units.

PRECIOUS METAL WIRES...
Produced in Platinum, Gold, alloy- and pure metals—small diameter... Platinum alloy resistance wires.

COATED WIRES... Comprising an extensive range of electroplated grid wires. Enamel insulated wires for precision resistors and potentiometers.

ANODIZED ALUMINUM WIRE...
Insulation at 800°F... Precision drawn to close resistance in the smaller sizes

Write for List of Products

SIGMUND COHN CORP.
121 SOUTH COLUMBUS AVE., MOUNT VERNON, N. Y.

CIRCLE 252 ON READER-SERVICE CARD FOR MORE INFORMATION
RANGE

Down to 1% Duty Cycle

This instrument is a 1/8 Module of the TELETRONICS Modular Instrumentation System and may be rack mounted with Modular Rack Adapters or stacked on a bench using the Modular Stack Pedestal.

MODEL FM-241

$125.00

TELETRONICS LABORATORY, INC.

54 KINCEL STREET
WESTBURY, L. I., N. Y.

CIRCLE 253 ON READER-SERVICE CARD FOR MORE INFORMATION

"Is seat of pants Amerikan spacemen is flying by. Is not knowing of Reeves-Hoffman's . . .

NEW HIGH PRECISION CRYSTAL FOR FREQUENCY MEASUREMENT

Designed for use as frequency standards, Reeves-Hoffman's new 5mc, high precision crystals offer exceptionally long term frequency stability, ±0.0001%, with aging of less than one part per 10^9 a week! These units are available in hermetically sealed glass T5 1/2 enclosures with pigtail leads or 9-pin Bakelite bases. They are manufactured to meet the most exacting military and commercial standards for frequency measurement.

DIVISION OF DYNAMICS CORPORATION OF AMERICA

CARLISLE, PENNSYLVANIA

CIRCLE 254 ON READER-SERVICE CARD FOR MORE INFORMATION
Books

Microwave Measurements

Basic forms of electrical measurements encountered at microwave frequencies have been compiled into an authoritative reference by Prof. Ginzton. Emphasis is on fundamentals, and the topics discussed provide a background for all common microwave measurements, as well as for more specialized applications. Particular fields such as the measurement of dielectric constants, antennas, and transmitter and receiver characteristics are omitted.

Elements of the electromagnetic theory needed to describe the behavior of electromagnetic waves in bounded regions are presented briefly to justify the generalized impedance concept and the use of generalized transmission line theory. These topics are developed sufficiently to make the application of the impedance concept, transmission line theory, and the equivalent circuit approach plausible and logical. The discussion of the numerous laboratory instruments is limited to the extent necessary to enable the reader to use them without risking difficulties because of an incomplete understanding of their functions. The book will prove useful for engineers who have more than a routine interest in microwave-measurement problems.

NEW...

TEFLON-Glass Fiber Lacing Tape

New Ben-Har Braided Lacing and Winding Tape combines two superior insulation materials—DuPont Teflon and glass fibers. Fibers are Teflon coated before braiding to maintain rough texture and assure tight knots—and to eliminate abrasive action of the glass. Ben-Har Tapes will not shrink and cut through insulated wires. They are pliable from -100°F to 500°F. They are non-absorbent and inert to most known chemicals and oils....completely wax-free and fungus proof.

Available in 3/64, 1/16, 3/32 and 1/4 inch widths, in Offwhite. Also available in 8 colors and Black on special order. Write for prices and samples.

Bentley, Harris Manufacturing Co., 1000 Barclay St., Conshohocken 3, Pa.

Bentley, Harris Flexible Insulations

*TM. Owens-Corning

Circle 255 on Reader-Service Card for More Information

Electronic Design • October 1957
Thermal Stresses

Design problem caused by the thermal stresses which occur at elevated temperatures will unquestionably become the limiting factor in missile and aircraft performance. This is the position Mr. Gatewood takes and the solution of this problem is the particular concern of his text. The book is for engineers—particularly aeronautical engineers. The material is well organized, with emphasis on fundamental theory.

All phases of the analysis and design of structures at elevated temperatures are covered, including temperature distribution, elastic and inelastic thermal stresses, combined applied and thermal stresses, allowable stresses of various materials at elevated temperatures, and the buckling, deflection, stiffness, fatigue, shock, and flutter effects of elevated temperatures. Many of the procedures included are published for the first time. The treatment is applicable to nuclear reactors, rocket motors, steam and gas turbines and their design, as well as guided missiles and aircraft.

Fasteners Handbook

A comprehensive coverage of fasteners with up-to-date answers for fastening problems in all fields has been compiled by Julius Soled. Its pertinent data, illustrations, and full page descriptions supply detailed information on currently available fasteners. It is a handbook in every sense of the word. You can select the type you want from standard and proprietary fasteners of all manufacturers. Specialized types developed since World War II and specific fasteners which increase structural safety and reliability are included for all sizes and types of materials.

Actual uses of fasteners in one industry are related to those of another. Concrete examples of money-saving applications result from the cross reference. The book also points out plus values of many of the less known, but equally valuable, fasteners. All major manufacturers and most smaller ones have contributed material. Industry associations such as the Fasteners Institute and the Screw Bureaus have also supplied information.

THE MOSELEY

AUTOGRAF X-Y RECORDER

A pioneer in its field, the Moseley AUTOGRAF X-Y Recorder is being adapted to an ever increasing number of graphic recording and data translating problems. Carefully manufactured to precision standards, the AUTOGRAF is available in five models to fit your particular requirement.

In addition to curve drawing, a full complement of accessories facilitate use of the AUTOGRAF in point plotting, curve following, card and tape reading, and gain-frequency plotting.

Model 1 portable type
Model 2A flat-bed
Model 3 desk type
Model 4 rack type
Model 5 rack type

Write for complete information:

F. L. MOSELEY CO.
409 NO. FAIR OAKS AVENUE
PASADENA, CALIFORNIA

CIRCLE 256 ON READER-SERVICE CARD FOR MORE INFORMATION

1957 ELECTRONIC DESIGN • October 1, 1957
Teflon connectors, hermetically sealed,
FOR TEMPERATURES FROM \(-100\) TO \(+500\)°F

No other material, natural or synthetic, compares with DuPont Teflon for toughness, chemical inertness, high dielectric strength. It will not char or carbonize from arcing; stands thumping shocks and vibration; will not warp or loosen at jet engine heats or sub-zero climates. Made by a revolutionary new molding process. Every manufacturer of high frequency radio, radar and other electronic equipment should write for details.

The Joclin manufacturing company

CIRCLE 257 ON READER-SERVICE CARD FOR MORE INFORMATION

Sweep Radar IF's up to 280 mc with new

KAY

Kada-Sweep Sr.

24 Crystal Markers

SPECIFICATIONS

Sweep Width: 70% of center frequency to 100 mc, 60 to 70 mc from 100-250 mc.

Sweep Rate: Variable around 60 cps. Locks to line.

RF Output: 0.5 volt rms into nominal 70 or 50 ohms. Higher for lower frequency units. Output held constant to within \(\pm 0.5\) db over widest sweep by AGC circuit.

Attenuators: Switched 20 db, 20 db, 10 db, 6 db, 3 db plus continuously variable 6 db.

Zero Reference: A true zero base line produced on oscilloscope during retrace time.

Sweep Output: Sawtooth synchronized with sweeping oscillator.

Fixed Markers: Up to 24 pulse-type crystal-controlled markers at customer specified frequencies. Accurate to 0.05%. Markers appear simultaneously on each sweep band. Completely isolated from circuit under test.

Price: $545.00, F.O.B. Pine Brook, N. J. including cabinet. Crystals $15.00 each.

FOR NEW KAY CATALOG, WRITE:

KAY ELECTRIC COMPANY

Dept. ED-10
14 MAPLE AVENUE, PINE BROOK, N. J.

CIRCLE 258 ON READER-SERVICE CARD FOR MORE INFORMATION
High Frequency Transistor Oscillator

J. George Adashko

The operating features of transistor oscillators at above-critical frequencies are of considerable interest because the critical frequencies of modern transistors do not exceed several megacycles. In this range, the diffusion character of the motion of the minority carriers from the emitter to the collector exerts a substantial influence on the self-excitation conditions and on the oscillator frequency. The influence of the transistor operating mode on the frequency can be used to produce frequency modulation.

An oscillator of this type was described in Ref. 1, where the frequency dependence of the current gain is given by

$$
\alpha_f = \frac{\alpha_0}{1 + j \frac{\omega}{\omega_c}}
$$

(1)

where \(\omega_0\) is the low-frequency current gain, and \(\omega_c\) is the critical frequency of the transistor in grounded-base operation. Since \(\alpha\) becomes imaginary with increasing frequency, this equation cannot be used to calculate the maximum oscillator frequency attainable.

This article contains an effort to obtain a simple method for the design of nearly-harmonic grounded-base transistor oscillators at above-critical frequencies, to establish the limiting oscillation frequency, and to determine the features resulting from the use of junction transistors in this circuit. The theoretical equations have been experimentally verified.

Analysis of Point-Contact Transistor Operation

Fig. 1 shows the principal diagram of the oscillator, and Fig. 2 shows the equivalent circuit; the capacitance \(C_c\) of the collector junction is neglected, as is permissible at frequencies up to 20-30 mc. An attempt to take \(C_c\) into account will be made below.

The admittance \(Y\) looking into the oscillator, calculated assuming \(R >> r_a + R_h, r_e << |r_e - r_c|\), and \(r_b < r_c\) can be given by the equation

$$
Y = \frac{1}{r_e} + j \omega C \left(1 - \frac{1 - \alpha}{r_e} \right)
$$

(2)

where

$$
Z_c = \frac{1}{\omega C \alpha} = \frac{r_e}{r_e}
$$

(3)

Taking into account the fact that the current gain is complex at frequencies comparable with the critical frequency, we write in general and obtain

$$
Y = \frac{1}{r_e} + \omega C I_{m} \alpha + j \omega C \left(1 - R \alpha \right)
n(3)
$$

It follows from (3) that the circuit of Fig. 2 can be replaced by a parallel circuit consisting of a capacitance

$$
C_{eq} = C \left(1 - R \alpha \right)
$$

and a resistance

$$
R_{eq} = \frac{r_e}{1 + \omega C' \alpha}
$$

(4)

(5)

Fig. 1. Basic oscillator circuit.

Fig. 2. Equivalent circuit of the oscillator, used to calculate the output admittance, using a point-contact transistor.

Fig. 3. Simplified equivalent circuit of the oscillator.
The inequality \(\omega Cr \geq \alpha \) is satisfied and the condition \(\omega Cr \leq \alpha \) is not satisfied. Taking the value of \(R_{eq} \) into account, the equivalent circuit is given by the one shown in Fig. 3, where \(\rho \) is the resistance of the tank circuit, and \(\omega' = \omega_0 + \omega_0 \).

The differential equation of the system shown in Fig. 3 reduces to

\[
\frac{d^2}{dt^2} i + 2 \omega \frac{di}{dt} + \omega_0^2 i = 0
\]

where

\[
\omega \equiv \frac{\rho}{L} + \frac{1}{C' R_{eq}} \quad (6)
\]

\[
\omega_0^2 = \frac{(r + R_{eq}) R_{eq}}{L C'} \quad (7)
\]

The general form of the self-excitation condition is, according to (6),

\[
\frac{\rho}{L} + \frac{1}{C' R_{eq}} < 1 \quad (8)
\]

and the self-excitation frequency will be given by

\[
\omega \equiv \sqrt{\frac{\omega_0^2 - \omega_0^2}{\omega_0^2}} \quad (9)
\]

obtained by solving the diffusion equation for the minority carriers in the base layer.

The literature contains no indication of the limiting frequency for which (1) or (9) still holds. Our experiments have shown that (1) is accurate to 25% for an overwhelming majority of point-contact transistors up to approximately 3 \(\omega_0 \), while expression (9) gives adequate results above 3 \(\omega_0 \).

For convenience let us write the real and imaginary parts of equation (1)

\[
Re \alpha = \frac{\alpha e}{1 + (\omega/\omega_0)^2} \quad (10)
\]

\[
Im \alpha = -\frac{\alpha}{1 + (\omega/\omega_0)^2} \quad (11)
\]

and of equation (9)

\[
Re \alpha = \frac{\cosh x \cos x}{\sinh^2 x + \cos^2 x} \quad (12)
\]

\[
Im \alpha = -\frac{\sin x \sin x}{\sinh^2 x + \cos^2 x}
\]

where \(x = \sqrt{\frac{\omega}{\omega_0}} \).

Using these relationships, we obtain an explicit

Whatever you make, there's a Waldes Truarc Ring designed to save you material, machining and labor costs, and to improve the functioning of your product.

In Truarc, you get

Complete Selection: 36 functionally different types. As many as 97 standard sizes within a ring type. 5 metal specifications and 14 different finishes. All types available quickly from leading OEM distributors in 90 stock points throughout the U.S. and Canada.

Controlled Quality from engineering and raw materials through to the finished product. Every step in manufacture watched and checked in Waldes' own modern plant.

Field Engineering Service: More than 30 engineering-minded factory representatives and 700 field men are at your call.

Design and Engineering Service not only helps you select the proper type of ring for your purpose, but also helps you use it most efficiently. Send us your blueprints today...let our Truarc engineers help you solve design, assembly and production problems...without obligation.
expression for the frequency. Let us note that if the inequality
\[|R_{eq}| \gg \xi \]

is satisfied, equation (7) simplifies to
\[\omega_s^2 = \frac{1}{LC'} \left(\frac{1}{L(C_v + C(1 - R_s \alpha))} \right) \] (15)

Substituting the standard parameters of the transistor and of the circuit into equation (5) and using eq. (13) to determine \(Im \alpha \), it is easy to verify that inequality (14) holds quite rigorously for frequencies above the critical frequency \(\omega_{cr} \), and that \(|R_{eq}| \) increases continuously with increasing frequency. It is possible to compensate for the decrease in the regeneration only by decreasing the resistance \(r \) of the tuned circuit. This is why the dependence of \(Im \alpha \) on the frequency becomes weaker with increasing frequency.

An estimate of the value of \(Re \alpha \) shows that at frequencies less than approximately \(3 \omega_{cr} \), one can no longer assume \(Re \alpha \) to be much smaller than unity in the expression for \(C' \). In this case the oscillation frequency can be obtained from the following equation, derived with the aid of (10)
\[\omega_s^2 = \frac{1}{2} \left[-\omega_s^2 (1 - \xi) + \omega_s^2 + \sqrt{\omega_s^2 (1 - \xi) - \omega_s^2 + 4 \omega_s^2 \omega_x^2} \right] \] (16)

where
\[\xi = \frac{\alpha \omega_x^2}{C_v + C} \]
\[\omega_x^2 = \frac{1}{L(C_v + C)} \]

In the particular case when \(C = C_v \) and \(\omega_x = 2 \), \(r \) is nearly equal to unity and (16) simplifies to
\[\omega_s^2 = \omega_x^2 \left(1 + \frac{\omega_x^2}{\omega_s^2} \right) \] (18)

A similar simplification is possible also for \(\omega_x = 3 \omega_{cr} \). At higher frequencies, in the case of point-contact transistors, the value of \(\alpha \), of which does not exceed approximately 2, equation (17) can still be used, for the error due to neglecting \(\omega_x \) does not exceed 25%.

The results have a simple physical explanation. The higher the frequency, the lower and the less regeneration in the system. If one attempts to offset this reduction by increasing the feedback capacitor, the result is a reduction in frequency (eq. 15). The only way to insure self excitation at higher frequency is to increase the \(Q \) of the tuned circuit. This is why the oscillation frequency still remains close enough to the resonant frequency of the tank circuit, in spite of the substantial phase shift.

Using eq. (10) and (11) it is easy to derive from inequality (8) a condition for self-excitation, valid for frequencies \(\omega < 3 \omega_{cr} \)
\[\alpha \geq \frac{1}{\omega_{cr}^2} \left(1 + \frac{\omega_x^2}{\omega_s^2} \right) \left(1 + \frac{1}{\rho_{cr}} \right) \] (19)

where \(\omega_{cr} = L / rC' \).

At frequencies \(\omega > 3 \omega_{cr} \), the self excitation condition, derived from (12) and (13), becomes:
\[y(x) < A x^2 \]

where
\[y(x) = \sinh^2 x + \cosh^2 x \]
\[\sinh x \sin x \]
\[A = \frac{\alpha \omega_x^2}{1 + \frac{1}{\rho_{cr}}} \]

It must be pointed out that both (19) and (20) were derived by neglecting \(r_s \) and \(r_x \). These conditions are valid only when the phase shift in the feedback loop is close to 90°. This usually holds for frequencies above critical.

Fig. 4 shows a graphic solution of inequality (20), showing that, theoretically, self excitation is possible if \(2n\pi < x < (2n + 1)\pi \), where \(n = 0, 1, \ldots \). At frequencies corresponding to \((2n - 1)\pi < x < 2n\pi \), the phase balance conditions are not satisfied, and oscillation is possible only by reversing the feedback polarity.

A simple analysis shows that in practice oscillation is possible only the first region \((n = 0) \). Actually, even for \(2\pi < x < 3\pi \) oscillation is possible only for \(A > 15 \), which can be obtained only with a feedback capacitance of 30-40 µf, at which the circuit cannot resonate.

The region \(0 < x < \pi \) is shown enlarged in Fig. 5. Self-excitation occurs here at \(A = 1 \); the theoretical maximum oscillation frequency, corresponding to \(A = \infty \), is \(8.1 \omega_{cr} \). In practice, \(A \) was verified experimentally that such a generator can operate up to approximately \(6 \omega_{cr} \).
Extent to which the Theory can be Applied to Junction Transistors.

The results obtained above are valid provided \(r_e \) and under the assumption that the capacitance \(C_e \) of the collector junction in parallel with \(r_e \) is sufficiently low. One can readily check to what extent \(C_e \) can be neglected by replacing the parallel network \(r_eC_e \) with an equivalent series network \(r'C' \) and compare \(r'e' \) with \(r' \). Evidently, for \(C_e \) to be negligible, we must have

\[
r'e' = \frac{r_c}{1 + (\omega C_r)^2} \ll r_e
\]

In view of the relatively high value of \(C_e \) in junction transistors (20 to 70 \(\mu \)f), it is essential that eq. (22) first be checked before starting the design. If \(C_e \) cannot be neglected, it must be added to the capacitance of the tank circuit, and eq. (4) for \(C_{eq} \) must be replaced by

\[
C_{eq} = C_e + C (1 - R/\alpha)
\]

(23)

In addition, experiment has shown that eq. (1) for \(a \) (for) holds for junction transistors, with an accuracy of 25\%, only up to approximately 1.5 \(\omega c \), and eq. (16) and (18) for the oscillation frequencies are valid only over this frequency range. At higher frequencies one can use (17) if (22) is satisfied.

Possibility of Frequency-Modulating the Oscillator.

The equations derived show the generator frequency \(\dot{\omega} \), to depend on the transistor critical frequency \(\dot{\omega}_c \), and on \(C_e \) (in the case of the junction transistor). Since these parameters are functions of the operating conditions, it becomes possible to frequency-modulate the generated oscillations.

The solid curves of Figs. 6 and 7 show experimentally-plotted relationships between \(\dot{\omega}_c \) and the emitter current or the collector voltage, for a point contact (SIB) and junction (FIE) transistor. The dotted lines correspond to the theoretical values, accurate to 25\%.

Measurements have confirmed that it is possible to frequency-modulate the oscillator over a range of 1:107.

It must be emphasized, in conclusion, that the results obtained here hold only for the particular generator circuit given here. Every oscillator circuit must be analyzed separately.

Reference

New R/C low pass filter squeezes max. performance into min. space

It's not a short step from miniature r-f tuning devices to miniature r-f filters. But without R/C's quarter-century of tuning device experience, the low pass filter illustrated might never have been built. Low insertion loss from 200 to 400 mc is often combined with rapid attenuation above 400 mc... but rarely in a space measuring just under 4 cubic inches!

R/C low pass filters owe their small size to a unique capacitor, the Series 75 air dielectric trimmer recently introduced by Radio Condenser. Perhaps the smallest air trimmers ever made in the U.S., they're finding wide application wherever space is a problem. Outstanding insulation resistance, "Q", and thermal stability make miniaturization a much easier job, on filters, i-f transformers, printed wiring boards, and conventional chassis of every description.

Originally designed for defense effort use, this filter is now in quantity production at R/C... and modifications are available to meet special performance requirements as they arise.

Additional information on R/C low pass r-f filters is provided in Engineering Bulletin FL-462. Trimmers are covered in Bulletin TR-123. Both are available on request to Radio Condenser Company.

Located at: 6 Bermondsey Road, Toronto, Ontario

RADIO CONDENSER CO.

CIRCLE 260 ON READER-SERVICE CARD FOR MORE INFORMATION
What the Russians Are Writing

WAVEGUIDES

Gyrotropic Obstacles in Waveguides, V. V. Nikol’ski, (15 pp, 9 figs.)

Expressions are derived for wave propagation in waveguides with gyroscopic obstacles, particularly ferrites magnetized in various directions. The analysis applies to rectangular, coaxial, and cylindrical waveguides with obstacles of various orientations, shapes, and magnetization directions.

Basic equations are derived for various corrugated guides, particularly those used for linear accelerators. The equations determine whether E modes with a specified range of phase velocities can be launched in such guides. The irregularities in the longitudinal electric field and the intensity of the defocusing transverse field are evaluated. The authors conclude that standard round waveguide with disks is best for low beam intensities (up to 0.1 a) and high phase velocities. For higher beam intensities either coaxial or rectangular guides with two sets of ridges are recommended. Medium beam intensities and low phase velocities can be handled by the simpler rectangular guide with single ridge.

Design of Symmetrical Round Waveguide Transitions for H_0 Modes, Yu. N. Kazantsev (7 pp, 7 figs.)

Reflection coefficients are calculated for a few specific types of dielectric inserts and metallic conical transitions between two round waveguides. The investigation yields data on the phase constant of an H_0 wave in a waveguide with a dielectric insert as functions of the radius and of the dielectric constant of the insert. Certain low-reflection dielectric insert designs are obtained from these data.

Fig. 1. Block Diagram of Equipment used in Self-Oscillator Experiments. 1—standard signal generator; 2—amplifier with attenuator; 3—phase shifter; 4—amplifier; 5—modulator (paraphase amplifier); 6—self-oscillator under test; 7—cathode follower; 8—square-wave forming channel; 9—differentiating circuit; 10—forming circuit for negative blocking pulses; 11—frequency divider (300:1); 12—multivibrator; 13—sawtooth voltage generator; 14—to oscillograph modulator; 15—to vertical oscillograph amplifier; 16—oscillograph sweep synchronization.

Fig. 2. a—principal diagram of tested self-oscillator; b—sawtooth oscillator.
FIELD THEORY

On the Electric Field of a Charge Spot Produced on the Surface of a Dielectric by an Electron Beam, Part I, V. Ia. Upatov, (11 pp, 6 figs.)

The normal electric field intensity is computed for a spot with uniform distribution and for a spot with a gaussian distribution of the surface charge density. Analysis of the formation of the positive charge spot on the surface of the dielectric under the influence of a stationary electron beam leads to the conclusion that under certain conditions, when the potential in the center of the spot is lower than the collector potential, part of the secondary electrons return to the target. If the collector field is strong, the effect of the spot becomes negligible. This condition is satisfied in most cathode-ray tubes in which the collector is a fine-structure grid, located in the immediate vicinity of the target.

Method for Measuring the Potential Distribution on the Surface of a Dielectric, V. Ia. Upatov, (9 pp, 11 figs.)

A pulse method is devised to measure the potential distribution on the surface of a dielectric. A metal grid is placed under the dielectric which is bombarded with electrons; the potential of the grid is a function of the surface potential of the dielectric. The experimental setup is described in some detail, the errors inherent in the method are discussed, and the results of the experiments are reported. Reference is made to work by Nelson (Journal Appl. Phys., 1938, Vol 2, 539) and Piore and Morton (ibid., 1940, 11, 153).

ELECTRON PHYSICS

Certain Investigations of Cold Electron Emission from Monocrystals of Cadmium Sulfite, R. Rompe, (3 pp, 5 figs.)

Experiments on electron-emission from CdS needles and points are reported. The experimental setup is described and some of the results are tentatively interpreted. The author points out similarities between cold emission and photo-conductivity.

Investigation of Noise Properties of Traveling-Wave Tubes, A. S. Tager, (8 pp, 7 figs.)

Theoretical analysis of noise in traveling wave tubes as a function of fluctuation waves in the electron beam. The noise distribution along a cylindrical beam is evaluated for the case of temperature-limited emission. Experiments show that if the local fluctuations on the cathode and the higher types of space-charge waves in the beam are neglected erroneous estimates are obtained for the effect of cathode space charge on the tube noise. A traveling-wave tube with a movable electron gun is used in the experimental setup, which is described in detail. The experimental results confirm the author's conclusion that the space charge near the cathode
A MINIATURIZATION MIRACLE by Tensolite

Here, literally is the world's smallest 300 Volt, High Temperature, stranded hook-up wire! So tiny it can be threaded through the eye of a needle! Expressly designed to give you top performance where SPACE LIMITATION is an important factor! TEFLO® insulated and stranded for super flexibility . . . REDUCE space requirements . . . REDUCE assembly time . . . REDUCE rejects!

TENSOLITE is proud to announce this giant step forward in the endless search for greater miniaturization. Our Factory and Field Engineers will assist you with unusual or specific applications where miniaturization is a must. Write today for complete descriptive literature and samples.

BOOTH #108
CHICAGO N.E.C.

HERE ARE SOME OUTSTANDING FEATURES AND CHARACTERISTICS

- VOLTAGE RATING: 300 Volts
- AWG SIZE: #36
- STRANDING: 7/44 (4% SPC)
- WALL THICKNESS: .0045"
- SPARK TEST: 1000 Volts RMS
- O. D. FINISHED WIRE: .015
- O. D. CONDUCTOR: .006
- TEMPERATURE RANGE: -90°C to +250°C
- INSULATION: Teflon

Tensolite INSULATED WIRE COMPANY, INC.
108 MAIN STREET TARRYTOWN, N. Y.
PACIFIC DIV. 1516 N. GARDNER ST. LOS ANGELES, CALIF.

CIRCLE 262 ON READER-SERVICE CARD FOR MORE INFORMATION
plays a substantial role in the suppression of shot-effect noise at super high frequencies.

On the Effect of Space Charge on the Interaction Between the Electron Beam and a Traveling Electromagnetic Wave, V. N. Shevchik, V. S. Stal'makov, 7 pp., 5 figs.

The authors calculate the energy of interaction between an electron beam and a traveling electromagnetic wave, derive equations for the velocity modulation and for the transit angle and compute the current bunching and the electron-interaction power. The results are used to determine the starting conditions for a backward-wave oscillator. Comparison with other investigations and with experimental results shows that the theory is applicable to the analysis of several problems in the electronics of backward-wave oscillators.

Cascade Bunching of Electrons as Applied to the Analysis of the Interaction Between an Electron Beam and a Traveling Electromagnetic Wave, V. N. Shevchik, Iu. D. Zharkov, (7 pp., 4 figs.)

Expressions are derived for the bunching current and for the active and reactive components of the electron power. The effect of non-synchronous spatial harmonics on the power is estimated. The results are applied to the analysis of backward-wave tubes, but the authors emphasize the limitations imposed by the approximations used.

Investigation of One Method of Reducing the Bombardment of Field-Emission Cathodes by Ions of the Residual Gases, M. I. Elinson, V. A. Gor'kov, and G. F. Vasil'ev, (15 pp. 21 figs.)

Artificially created field configurations (Fig. 3) in the vicinity of a sharp cathode reduce the number of the positive ions in the residual gases (compare with Fig. 4). The authors estimate the number of bombarding ions, show several versions of protective field configurations, discuss several electrode-manufacturing techniques, and report in detail their experimental investigations. While the method proposed is quite effective, it is also planned to investigate other methods, such as reducing the cathode sputtering coefficient.

Concerning the Analytic Treatment of Homogeneous Decelerating Systems, A. I. Shiryov, (8 pp., 5 figs.)

The propagation of "slow" electromagnetic waves in periodic structures is treated as a combination of total internal reflections. The analysis covers rectangular homogeneous ridges and rectangular ridges filled with dielectrics, which are compared with an isotropic dielectric sheet bounded by an ideally-conducting plane. Energy flow in decelerating systems is also treated.

BIOGRAPHY

Heinrich Hertz (on the 100th Anniversary of his birth), N. N. Malov, (5 pp.)

Fig. 3. Electric field modified by insertion of third electrode. \(V_3 = 0 \), \(V_2 = V_0 \)

Fig. 4. Conventional system of electrodes used in the investigation of field emission, showing the equipotential electric field lines. 3—metallic point, \(a \)—anode.
Water-Filled Television Antennas

A recent tendency among Russian amateurs (many of whom build their own television sets) is to employ indoor antennas made of glass tubes filled with water or glycerine, examples of which are given in the two accompanying drawings, Figs. 5 and 6. The advantage of such antennas is their small size, the disadvantage—need for a strong signal. Another proposed design (unfortunately without accompanying photographs), consists of two bottles (vodka, no doubt), and copper rods 28-30 cm long and 2-3 mm thick.

Figs. 5 and 6. Examples of water or glycerine filled glass tubes used as TV antennas.

Now... design improvements made possible with components of Du Pont Hyperpure Silicon

Today silicon rectifiers make possible a vast improvement in jet-age aircraft generators—the use of engine oil as a coolant instead of less-efficient ram air. Silicon rectifiers take the place of oil-sensitive brushes, commutator and slip rings...are completely unaffected by 150°C engine oil. Result: a brushless generator of less weight and size than ordinary generators.

Silicon devices can similarly help you miniaturize—improve design and performance. Silicon rectifiers have excellent stability... can operate continuously at -65 to 200°C. They're up to 99% efficient—reverse leakages are only a fraction of those of other semiconductors. Both transistors and rectifiers of silicon can pack more capacity into less of your equipment space.

Note to device manufacturers:
You can produce high-quality silicon transistors and rectifiers with Du Pont Hyperpure Silicon now available in three grades for maximum efficiency and ease of use... purity range of 3 to 11 atoms of boron per billion... available in 3 forms, needles, densified, cut-rod. Technical information is available on crystal growing from Du Pont... pioneer producer of semiconductor-grade silicon.

UNESCO BULLETIN FOR LIBRARIES
(Vol. XI, No. 8-9, 1957)
Machines For Retrieving Information In The USSR,
B. M. Rakov and V. P. Cerenin (5 pp., 2 figs.)

This article, in English, deals with the library problems of evolving a 'machine language' and working out techniques for information retrieval. The author indicates that the system set up will depend on the type of work for which it is required, the bulk of information, the demands on the service, and the way in which the service is operated.

He discusses the operation of the EIM, an experimental information-retrieving machine produced in 1954 by the Institute of Scientific Information of the Academy of Sciences in the USSR. The EIM uses 50-column punched cards and, despite its simple construction, meets all the stipulated requirements and provides the desired flexibility of operation.

NEW BOOKLET ON DU PONT HYPERPURE SILICON
You'll find our new, illustrated booklet about Hyperpure Silicon helpful and interesting—it describes the manufacture, properties, and uses of Du Pont Hyperpure Silicon. Just drop us a card for your copy, E. I. du Pont de Nemours & Co. (Inc.), Pigments Department, Silicon Development Group, Wilmington 98, Delaware.
From the earliest day of radio and radio-frequency circuits, Lapp has pioneered the application of electrical porcelain and steatite to the special requirements of this industry. Today, "Radio Specialties" identifies a large and efficient department at Lapp where hundreds of parts for hundreds of specialized requirements have been designed and built. We welcome the opportunity to help you—in design and production—with your requirements for insulating parts and associated sub-assemblies. Write Lapp Insulator Co., Inc., Radio Specialties Division, 102 Sumner Street, Le Roy, N. Y.

CIRCLE 766 ON READER-SERVICE CARD FOR MORE INFORMATION
Quartz Crystal Parameters

E. Brenner

THE use of quartz crystals in the lattice (bridge) connection makes it possible to construct filters which have exceedingly narrow band width. A passband of 20 or 30 cps centered around 100 kcs, for example can be obtained with ease. Such a bridge type filter is shown in Fig. 1. The two quartz crystals used are represented by their equivalent circuits; the $L_3 - C_3 - C_1$ and the $L_2 - C_2 - C_0$ combinations represent crystals. The band width and cutoff frequencies of such a filter depend on the parameters in the equivalent circuits of the crystals, in particular on the series resonant frequencies and on the inductance values. These parameters must be determined with precision; it can be shown that such measurements depend on the precise determination of small difference frequencies.

To measure the series resonant frequency of a crystal, two basic schemes may be used. In the simple scheme the crystal is connected across a precisely calibrated frequency source in series with the resistance. The series resonant frequency is then established by determining the frequency at which the voltage across it is a minimum.

In the alternate scheme the quartz crystal is used as the coupling element in the series resonant oscillator circuit shown in Fig. 2. If the potentiometers P_1 and P_2 are adjusted, the oscillations barely persist. Then the frequency of the oscillations correspond to the series resonant frequency of the crystal. To measure this frequency with precision, it is particularly convenient if a standard frequency source at the nominal frequency of the crystal is available. In that case a Lissajous figure between the unknown and the standard is produced. Since the two frequencies will differ by only a few cps this difference is measured by timing the rotations of the non-stationary pattern on the oscilloscope screen. If the crystal frequency does not correspond to the available standard, heterodyning may be used.

To measure the inductance a calibrated capacitance may be connected in parallel with the crystal. By measuring the resonant frequency of the combination for two values...
of this capacitance the inductance of the crystal can be determined. The principle used here is essentially that of a "Q-meter."

The precise determination of the difference frequencies which is necessary is carried out with a differential bridge, Fig. 3.

If for \(C_x = C_1 \) (or \(C_2 \)) the parallel resonant frequency is \(f_1 \) (or \(f_2 \)) then it can be shown that the inductance is given by the formula:

\[
L = \frac{1}{\left(\frac{1}{C_2 - C_1}\right) \cdot \frac{\Delta_1}{8\pi^2 f_2 \Delta_1 + \Delta_0}}
\]

where

\[
\Delta_1 = f_1 - f_0 \quad \text{and} \quad \Delta_0 = f_2 - f_0
\]

and \(\Delta_0 \) = series resonant frequency.

The frequency \(f_2 \) and the value \(C_2 - C_1 \) can be determined with the required precision. To determine the difference frequencies the frequency \(f_2 \) is mixed with a low frequency \(f_d \) (Fig. 3) so that the three frequencies \(f_2, f_2 - f_0, f_2 + f_0 \) are applied to the bridge. Assuming that for none of these frequencies the bridge is balanced, the frequencies \(f_2 \) and \(2f_1 \) appear at the plates of the cathode ray tube, the others having been suppressed by the low pass filter. With \(S_1 \) closed, \(f_2 \) is adjusted so that the middle side band \(f_2 - f_0 \) is suppressed because of the series resonance of the crystal. The frequency \(2f_1 \) is eliminated through balancing \(R_x \). This resistance value represents the equivalent resistance of the crystal at series resonance. Opening the switch and varying \(C_x, f_2 + f_0 \) is suppressed and the frequency \(2f_1 \) again disappears. Because of the modulation \(f_2 = \Delta_0 = \Delta_1 \) and the inductance is given by:

\[
L = \frac{1}{\left(\frac{1}{C_2 - C_1}\right) \cdot \frac{1}{16\pi^2 f_2 f_d}}
\]

The temperature of the crystal during these measurements must be carefully controlled. The original paper includes alternate measurement schemes and a detailed discussion of the required tolerances for filter design. (Abstracted from a paper by C. Kurth and R. Miczynski, Nachrichtentechnik, Vol. 1, No. 6, June 1957, pp. 244-249.)

![Fig. 1. Schematic of quartz filter.](image1)

![Fig. 3. Circuit for inductance measurement.](image2)
Another Sealectro First!

Now... Taper-Pin Receptacles combined with "Press-Fit" Teflon-insulated terminals for quick and easy mounting directly on metal chassis or panel. Eliminates usual phenolic board with its troublesome and costly breakage.

"Press-Fit" Taper-Pin Receptacles are individually-insulated units that can be installed in a jiffy at any required spacing. Available in feed-thru and stand-off types as well as high-voltage units with long leakage path. Choice of eight RETMA colors for coding and in a wide range of lug combinations.

New Manual... brand-new edition, more pages, bigger listings, more engineering information. Write for your copy today.

†Trademark of E. I. Du Pont de Nemours & Co., Inc.

Sealectro CORPORATION
610 Fayette Avenue, Mamaroneck, N. Y.

CIRCLE 267 ON READER-SERVICE CARD FOR MORE INFORMATION
German Abstracts

Machine Solution of Higher Order Polynomials

The solution of the algebraic equation

\[f(z) = \sum_{k=0}^{n} a_k z^k = \sum_{k=0}^{n} b_k \phi^k = 0 \]

(1)

can be carried out by means of an analog computer. Assuming that the roots are complex (real values are taken as a special case of complex values), the scheme shown in Fig. 1 can represent Eq. (1). If the variable in Eq. (1) is written in polar form we may write:

\[r + \sum_{k=0}^{n} B_k \exp(\omega t + k\phi) \]

The function f(z) is now identified with the voltage v in Fig. 1. The numbers r and \(\omega \) are so chosen that v(t) is zero for all t. The solution of an equation then proceeds as follows. The coefficients \(a_k \) are set into the machine and r and \(\omega \) are adjusted until the output voltage vanishes.

The problems in construction of the analog fall into four groups: Raising the voltage to a power, setting of coefficients, phase shifting and summation.

The feedback amplifier circuit shown in Fig. 2 is used to raise the voltage v to any integral power. The linear potentiometers in the circuit are ganged. If the gain V, is unity then \(r = 1 \) is the potentiometer ratio.

For phase shifting, an electrostatic device, basically a capacitor whose stator is made in four sections, is used. The rotor is specially designed. The coefficients are set by means of an autotransformer with nine taps, followed by a potentiometer. Summing is accomplished with the usual operational summing amplifiers. An ordinary vacuum tube voltmeter is used as indicator.

An example, the solution of the fifth order equation is cited. Machine solution was accomplished in 12 minutes although the procedure involves trial and error adjustment. The accuracy of the basic unit is better than 4 per cent. The accuracy of solution can be improved by successively solving equations, in each case shifting the zero point to a previously approximated root.

(Abstracted from an article by G. C. Brack, Elektronische Rundschau, Vol. 11, No. 6, June 1957, pp 183-187.)
Noise in Magnetic Tape

A new, unused magnetic tape, when played back, gives rise to less background noise than a tape which has been used and erased. This is due to the fact that in the unused tape the magnetic domains are of smaller volume than in the reused case because erasing cannot reduce the domains below a certain minimum size.

If it is assumed that the domains are oriented in a random fashion and that each domain, as it passes under the reproducing (reading) head produces a voltage pulse, then the noise voltage density (squared average noise voltage per cm per sec) is shown to be approximately:

\[d_{1/2} = \frac{2N_m^2\mu_0 h}{3\pi}(y_d - y_m) \]

where:
- \(N_m \) is the number of magnetic dipoles per unit volume
- \(\mu_0 \) is the magnetic moment of dipole
- \(\mu \) is the absolute permeability
- \(v \) is the speed of the tape
- \(y_d \) is the distance from the closest surface of the tape to the reading head
- \(y_m \) is the distance from the "far" tape surface to the reading head
- \(h \) is the width of the tape

It can be shown that the maximum noise density occurs at a frequency \(f = \sqrt{4\pi y_m} \) which corresponds to 238 kc for \(y_m = 0.5 \times 10^{-4} \) cm at a speed of 130 cm per sec.

Since the factor \(N_m^2 \) appears in all the equations it is concluded that the greater noise level from a previously used tape results from the reduction of \(N_m \) (number of domains) due to erasing and the corresponding increase in \(y_m \). Hence \(N_m^2 \) for an erased tape is increased above the value for an unused tape. (Abstracted from an article by Paul A. Mann, Archiv Der Elektrischen Verkehrsleitung, Vol. 11, No. 3, March 1957, pp 17-20.)

Can a business publication advertising actually sell?

By reputation, salesmen are reluctant to credit anything but their own selling efforts for getting names on the dotted line.

Actually, it's quite a different story. The most successful salesmen will tell you two important things about selling:

1. That the selling process is largely a matter of communicating ideas. 2. And that specialized business publication advertising can help importantly to register information with prospects.

Of course each salesman will express this in his own way... but they all agree that selling would be far more difficult without the advertising that appears in the industrial, trade, and professional publications that serve the specialized markets to which they sell.

Here, for instance, is what a salesman has to say about this kind of advertising:

"The quickest way we can introduce a product is by introducing it through advertising in business papers. That way we get it around faster than we can by word of mouth alone. On occasion my home office has inquiries out to me before I can get to the customer or prospect to introduce a new product. They've already seen it in a trade magazine.

"It's interesting to note that within the last two weeks I received a survey which shows about 80% of the new customers we get on our books come through our trade publication advertising. Of course, our company is only 15 years old and we have grown from what you might say, nothing, to the biggest in our business. Certainly a lot of that has come from our advertising campaigns. Our name is known throughout the world right now, purely because of our advertising program. When I go to a prospect now, they know my company, they know my product... it makes my job easier, and opens doors when I have to make cold calls."

Ask your own salesmen what your company's business publication advertising does for them. If their answers are generally favorable you can be sure that your business publication advertising is really helping them sell.

If too many answers are negative it could well pay you to review your advertising objectives—and to make sure the publications that carry your advertising are read by the men who must be sold.

How salesmen use their companies' advertising to get more business

Here's a useful and effective package of ideas for the sales manager, advertising manager or agency man who would like to get more horsepower out of his advertising. Send for a free copy of the pocket size booklet entitled, "How Salesmen Use Advertising in Their Selling," which reports the successful methods employed by eleven salesmen who tell how they get more value out of their companies' advertising.

You'll find represented many interesting variations in how they do this. Some are very ingenious; all are effective. You can be sure that more of your salesmen will use your advertising after they read how others get business through these simple methods.

The coupon is for your convenience in sending for your free copy. Then, if you decide you want to provide your salesmen with additional copies, they are available from NBP Headquarters in Washington at twenty-five cents each. Or if you choose you can reprint the material yourself and distribute it as widely as you please. But first, send for your free copy.

NATIONAL BUSINESS PUBLICATIONS, INC.
Department 40
1413 K Street, N. W.
Washington 5, D. C.
Sterling 3-7533

Please send me a free copy of the NBP booklet, "How Salesmen Use Advertising in Their Selling."

Name ____________________________
Title ____________________________
Company _________________________
Street Address ____________________
City __________________ Zone __________ State __________

National Business Publications, Inc.

... each of which serves a specialized market in a specific industry, trade or profession.
Low Noise Klystron

Owing to the demand for a very low noise klystron in certain applications, investigations into the sources of noise were undertaken. The flexible diaphragms with which most klystrons are equipped were revealed to be the most important source. A non-tunable klystron was developed in which these diaphragms are absent; the tube has a very much lower noise level and can be used in three modes, delivering respectively 5 w, 33 w, and 200 w. The tube can be frequency and amplitude modulated by variation of the collector voltage; amplitude modulation can also be effected by the grid voltage. Variation of the grid voltage also permits—via thermal effects—a certain limited tuning of the tube.

Experiments showed that the noise in a klystron is predominantly due to microphony, to which tubes of this construction are particularly sensitive because of the presence of the two diaphragms. The extremely small vibrations of these diaphragms give rise to slight variations in the tuning frequency of both cavity resonators, resulting in phase variations and hence frequency variations of the output signal. After the spectrum of one of several tubes tested had been recorded, the diaphragms and tuner were cast in plaster of Paris, and the spectrum again recorded. The spectra before and after the treatment are represented as curves a and b in Fig. 1. The plaster of Paris was then removed and the tube was cast in plastic, after which the spectrum was again recorded. The result is shown as curve c in Fig. 1.

Construction

Attempts were made to build a more robust tuner to hold the diaphragms more firmly but the results showed very little improvement. The rms deviation of the tubes so constructed was of the order of 2 kc. As a low noise level was so important that the tunability of the tube could if necessary be sacrificed.
Fig. 2. Cross-section of a low-noise klystron. F represents the force required to tune the output cavity. 1 modulating cavity, 2 output cavity, 3 modulating gap, 4 inductor gap, 5 cathode, 6 focusing electrode ('grid'), 8 collector, 9 cooling jacket, 10 feedback hole, 11 drift tube, 12 coupling gap, 13 mica window, 14 tapered waveguide, 15 glass envelope, 16 waveguide flange.

Fig. 3. Diode characteristic of the klystron shown in Fig. 2. 1, collector current, \(I_c \); 2, collector voltage, \(V_c \).
Sigma Advanced Scientific Team
...constant challenge to the pinnaticerebic

Original exploration by Sigma's staff scientists at the top level often yields not only marvelous new concepts, but occasional answers to lower order problems as well. In the unposed scene above (our last meeting), world-renowned theoretical application engineer Ansbacher (plain "Square" to his colleagues) has made an electrifying suggestion concerning the Series 8000 Magnetic Amplifier Relay: plug it in to see if it works! Here is the kind of unfettered, creative thinking that has made all industry react swiftly at the mention of our name.

Carrying on from their leader's initial discovery, the group rapidly uncovered more and more secrets of the "Mag-Amp" — some by intensive thought, others by unsoldering certain enclosures. It was soon agreed by all members that Magnetic Amplifier Relays were excellent devices for detecting unbalance (a sizable number are in use at Sigma's own plant), and comparing the outputs of low impedance D.C. signal sources. On went the discussion, out came the applications, higher and higher rose the enthusiasm as each new specification was added to the list. Predictions flew of uses in temperature control devices with thermistor bridges, thermocouples and such, light-sensitive equipment, and wherever 0.1 microwatt is the most you can get to switch 1 to 5 ampere loads at 120 VAC. A caution was voiced over the Magnetic Amplifier Relay's slow speed (30-300 milliseconds), but was cast aside as usually not a consideration. Final moments were devoted to eulogizing such virtues as ruggedness, long life (in the millions) and availability in practically any state of completeness and with whatever Sigma relays necessary to suit the customer's whims. In the warm camaraderie that comes from the knowledge that one of their products is both useful and in production, the distinguished little group rose and in unison repeated their oath: "Exitus, ab eloquentia confusio."*

*Literally, "Success, from eloquent confusion", but generally interpreted: "Go, before you get things any more confused."

SIGMA INSTRUMENTS, INC.
9 Pearl Street, South Braintree 85, Massachusetts
CIRCLE 273 ON READER-SERVICE CARD FOR MORE INFORMATION
FREEZE-UP of solenoid-controlled valve in airborne system at −65°F can choke off vital air supply. Manufacturer faces tight contract delivery schedule.

SPECIAL HEATING unit custom-designed and delivered by G.E. in 5 days enables stock valve to function properly, saves customer time, money.

AIR VALVE OPERATING AT −65°F SHOWS HOW...

General Electric Specialty Heating Maintains Component Temperature

When components must be kept at operating temperature, G-E specialty heating equipment does the job! Thermal conditioning applications ranging from hydraulic and electronic components to tiny test instruments have all been solved by experienced G-E heating engineers.

LET US ANALYZE YOUR HEATING PROBLEM. Whether it's fast delivery on a prototype or quantity production, General Electric can provide specialty heating products engineered to your specific component needs.

FOR MORE INFORMATION contact your local General Electric Apparatus Sales Office or send coupon.

Progress Is Our Most Important Product

GENERAL ELECTRIC

CIRCLE 274 ON READER-SERVICE CARD FOR MORE INFORMATION

112
Abstract cont.

Fig. 4. From left to right: an early type of tunable klystron, a tunable klystron with ruggedized tuning mechanism and a low-noise, non-tunable klystron.

for this purpose, it was furthermore considered to cast the tubes in plastic, after first tuning them to a specified frequency. It would also be possible to make tubes with only one diaphragm—with one of the cavities tuned to a fixed frequency, and finally a tube might be designed with no diaphragms at all. In that case a variable feedback coupling would be necessary to adjust the tube to the conditions for delivering its rated power. An important objection against the latter method lies in the fact that a variable feedback coupling would entail a complicated mechanism, which would very likely also cause microphony and, consequently, noise.

It was therefore finally decided to develop a tube without diaphragms and with a fixed feedback coupling. In spite of the absence of a diaphragm the output cavity can nevertheless be tuned. A simplified cross-section of this tube is shown in Fig. 2. The modulating cavity 1 is permanently tuned to the desired resonant frequency. The output cavity 2 is adjusted, while the tube is oscillating, by applying to the collector a large force, denoted by the arrow F. This force is large enough to strain the cavity wall beyond its elastic limit. When this occurs, the cavity can be deformed to the right amount, at which it remains permanently set. As in the tube shown in Fig. 1, the feedback coupling is effected via an opening 10 in the wall between the two cavities.

Characteristics

The cathode of the tube described here may be either an L cathode or an impregnated tungsten type. The life of these cathodes is better than 1000 hours and, compared with tungsten, thorium or tantalum cathodes, the heater power they require is low; in the present case it is only 7 w.

The electrode 6 (Fig. 2), with which the electron beam is focused, can be used for amplitude modula-
A diode characteristic of the tube, i.e. the collector current plotted as a function of a collector voltage, is shown in Fig. 3. As for every diode, this characteristic can be represented by the equation:

\[I_c = A V_n^{1/2} \]

In this tube the constant \(A \) (the perceance) is approximately \(0.25 \times 10^{-6} \text{ A} \cdot \text{V}^{1/2} \). The tube is liquid-cooled and the maximum rate of flow required for water cooling is about 1/2 gallon per minute.

Since a klystron can be made to operate with different electron transit times between the modulating and output gaps, the tube under discussion can operate in three different modes, denoted by A, B and C, which correspond respectively to transit times of 2-3/4, 2-1/4 and 1-3/4 periods. The power delivered in these modes is respectively 5, 33 and 200 w. Each klystron is adjusted to operate in only one of these modes and will not perform properly in other modes.

Tunable klystrons do not deliver rated power output over their whole tuning range. The low-noise tube, due to its method of manufacture, gives always its rated power. The frequency where this takes place can (as indeed the most favorable frequency of a tunable klystron) be fixed at any desired frequency with a maximum error of 10 mc.

The absence of a tuner makes the construction of this tube much simpler than that of tunable types. This is illustrated in Fig. 4, in which are shown an older tunable klystron, a tube with ruggedized tuning mechanism and a non-tunable low-noise tube. Because of the remarkable precision with which the new tube can be made for any specified frequency, it is possible to switch over or interchange a series of such tubes for quickly altering a transmitter frequency. This would often be easier than a normal klystron.

The noise of these tubes is so low that it was impossible to measure the power spectrum with the best system used. It appeared that the waveguides in the measuring system were now more microphonic than the klystrons under investigation.

The elimination of the diaphragms and tuner offers some advantages in addition to the substantial reduction of noise. In the first place it lowers the cost of the tube. Further, it allows more accurate alignment of the electrodes, while the absence of diaphragms leads to a somewhat better heat distribution.

Research in the mm-wave region has been developing rapidly. Military and commercial interests are finding it desirable to pursue investigations into the nature of frequencies above 30,000 mc. It should be apparent, for example, that aircraft using communication equipment at these frequencies would effectively be preserving radio silence—electromagnetic waves of such frequencies being rapidly attenuated by air. The achievement, however, of carrier waves of millimeter wavelength entails operation with a number of relatively esoteric and awkward devices—moser, crystal harmonic multipliers, and specially designed magnetrons and klystrons. Here is an mm-wave generator that lessens many of the difficulties inherent in producing mm-waves—the 0 type carcinotron, popularly called the backward wave oscillator.

In the travelling-wave amplifier or oscillator, a beam of electrons interacts with a guided electromagnetic wave which travels relative to the beam in such a way that the desired amplification or oscillation is achieved. To set up backward waves in which the direction of energy propagation is opposite to that of phase propagation, it is necessary to use a guiding structure which is spatially periodic or repetitive in nature. Slots are machined into a metal waveguide wall, or metal ribbon is wound around a supporting structure, with spacings

that

light

are

the

that

air

the

are

the

that

air

are

the

that
that are periodic in the same sense that the teeth of a comb are periodically spaced along its length.

To maintain the proper phase relationships between the beam and the wave, considerable uniformity of the periodic circuit is required. In the backward-wave oscillator at millimeter wavelengths, the period length may be in the neighborhood of 0.02 in. Since a critical dimension should be within about one per cent of the desired value, the allowable dimensional tolerance will therefore be only, about 0.002 in. If the backward-wave type of structure were not used, even smaller dimensions and tolerances would be necessary.

Another requirement is that of holding a large number of electrons in a beam sufficiently close to the periodic circuit—that is, of obtaining a well focused beam of high current density. The two described here use a beam current density about five times that of an ordinary electron tube. To focus and hold the beam near the periodic circuit, a strong magnetic field is required.

Prototypes

In spite of these requirements, experimental two tubes have been built fairly easily and inexpensively, and their predictability and reproducibility have been good. In the course of many mm-wave investigations they have evolved through various types illustrated in Fig. 1. An amplifier structure used by S. Millman is indicated in Fig. 1a, where it is seen that the periodic circuit is formed by milling tiny resonant slots in a ridge of metal contained in a section of waveguide. A. Karp then conceived the idea of forming the periodic circuit shown in Fig. 1b where, instead of transverse resonant slots as in the Millman circuit, metallic tape is wound about the structure to form the top wall of the waveguide. The slotted wall formed by the tape performs the same function as the milled slots of the previous structure. Tape is also used in a third form of this type of periodic circuit, Fig. 1c, which is the one presently used. A parallel electron beam floods the region around the tape and as an element of the beam travels down the circuit, little closed feedback loops are established over each period to sustain oscillations in the structure.

Gun Assembly

One of the important improvements in the latter tube is a redesigned electron gun assembly. Conventional tubes usually have an internal insulating and supporting structure on which the various gun electrodes are mounted, but in this tube no such supporting structure is used. Instead, each lead-in is constructed in the form of a mechanically strong rod, insulated from the metal envelope by a ceramic material at the base of the tube. Two of the six lead-in rods are indicated in the left part of the cross-sectional drawing, Fig. 2, and actual rods around the gun electrodes can be seen labeled as “A” in Fig. 3a. Each electrode is spot-welded to its supporting rod, which despite its length is rigid enough to hold the electrode accurately in place. A special jig was constructed to determine the centering and axial position of each electrode.

A single metal-ceramic lead-in rod is shown in Fig. 3b. Before it is incorporated into the tube structure, it can be checked for electrical leakage and various flaws. Because only a small mass of ceramic is used, thermal shock characteristics are excellent. Also, it can be used to produce a variety of stem designs. In a completed and evacuated tube, this sub-assembly has been subjected to 6000 volts without showing signs of electrical arc-over to its surroundings.

Voltage Requirements

Although a bwo has been made to operate with a beam voltage as low as 400 v, better performance is obtained by designing for operation at voltages above 1000. The present version of the tube operates between 1000 and 3500 v, and the tuning range is about 35 per cent of midfrequency. A tube constructed to generate 6 mm power (50,000 mc) has an output of about 10 mw, and the power drops to half this value at points about 10 per cent away from the central frequency. As much as 20 mw has been obtained at one frequency, and other tubes have given about 2 mw at wavelengths as short as 3.3 mm.

The power spectrum of a 6 mm bwo is given as Fig. 4. The curve shows the ripple that are characteristic of such tubes. These are caused by non-uniformity of pitch of the periodic circuit, imperfect focusing of the electron beam, and by slight mismatches at various places in the circuit, window and waveguide. Electronic feedback circuits and ferrite devices have been used in order to smooth out such ripples.

Abstracted from A Versatile Source of Millimeter Waves. C. F. Hempstead and A. R. Strnad, Bell Laboratories Record, July 1957.
For reliability in the most exacting continuous processing, Jeffrey-type H vibrating coolers and dryers specify EL C6J and EL C16S thyatrons.
Prefabricated shielded room of Armorply simplifies installation; cuts maintenance

It took two men just 2½ days to install a 20' by 24' by 11' Armorply prefabricated shielded room at General Electric's plant in Schenectady, N. Y. The Armorply used—plywood core panels with zinc-coated steel faces—requires virtually no maintenance. The room is free of radio interference from 15 kilocycles to 1000 megacycles. The room can be expanded or dismantled quickly with ordinary labor, thanks to special compression points that eliminate the need for soldering. Armorply can be specified with copper, lead, aluminum, or other faces laminated to a variety of cores such as metal and paper honeycombs, calcium silicates, and others. For full information and free Armorply sample write:

Weldwood® ARMORPLY®
UNITED STATES PLYWOOD CORP., DEPT. ED10-7, 55 W. 44TH ST., N.Y. 36, N.Y.
CIRCLE 278 ON READER-SERVICE CARD FOR MORE INFORMATION

Standards and Specs

Sherman H. Hubelbank

Repair Parts

The detail requirements for the selection of repair parts, and the quantity of repair parts to be delivered concurrently with the equipment are specified. Repair parts include components, assemblies, accessories, and replaceable parts. Also covered in this spec are the requirements for the preparation and submission of a Provisioning List and technical data prepared by the contractors. In addition, this spec covers the requirements for the printing, assembly, and distribution of U.S. Marine Corps Repair Lists and their Addenda.

Capacitance

RETMA RS-191, NEMA 505B, Measurement of Direct Interelectrode Capacitance, June 1957

The measurement of direct interelectrode capacitance of the following tubes is covered in this standard: receiving, cathode ray, gas, phototubes and multipliers, and high power vacuum tubes. Included in this standard are tables of connections of electrodes of tube sections for measuring direct interelectrode capacitances, standards for capacitance sockets, and recommended tube shields for use in measurement of tube capacitances. Copies of this standard are available from the Radio-Electronics-Television Manufacturers Association, 11 West 42nd Street, New York 36, New York, for $1.50 per copy. This standard is a revision of ET-109-A.

Interference Measurement

MIL-I-16910A(SHIPS), INTERFERENCE MEASUREMENT, RADIO, METHODS AND LIMITS, 14 Kilocycles TO 1000 Megacycles, Amendment 1, 16 May 1957

The requirement that radio interference filters or capacitors be Navy approved types in accordance with spec MIL-F-15733 has been deleted. The new requirement is that interference filters and capacitors employed for the reduction of interference should be products which have been subjected to the required tests and found satisfactory for inclusion in the Qualified Products List of specs MIL-F-18344 for filters and MIL-C-19080 and MIL-C-19624 for capacitors.
Six new solders have been added as follows: Sn63, a tin-lead eutectic composition, used for soldering printed circuits where temperature limitations are critical and in applications where an extremely short melting range is required; Sn62, a special-purpose solder, used for soldering silver-coated ceramics; Sn10, a high melting point solder, used in making electrical connections in high-ambient operating-temperature equipments; Sn5 is used for applications similar to Sn10, but having a slightly higher operating range; Pb90, used for general purpose soldering on black steel or tin plate; and Ag1.5, used interchangeably with Ag2.5, but has a better shelf life and does not develop a black surface deposit when stored in humid climates.

Microwave Relay Towers

EIA RS-194, MICROWAVE RELAY SYSTEM TOWERS, May 1957

This standard describes the requirements for microwave relay system towers. It includes and is supplementary to the latest issue of RETMA Standard IR-116. Definitions of the factors affecting towers are given, such as, twist, deflection, displacement, wind load, guys, foundations, anchors, and protective grounding. Copies of this standard may be obtained from the Electronic Industries Association (formerly RETMA), 11 West 42nd Street, New York 18, N.Y., for 40 cents per copy.

AIEE Standards

The American Institute of Electrical Engineers has announced that the following publications have recently been released:

Number 1D, GUIDE FOR THE PREPARATION OF TEST PROCEDURES FOR THE THERMAL EVALUATION OF ELECTRICAL INSULATING MATERIALS, June, 1957 (no charge)

Number 1E, GUIDE FOR THE PREPARATION OF TEST PROCEDURES FOR THE THERMAL EVALUATION OF INSULATION SYSTEMS FOR ELECTRIC EQUIPMENT, June, 1957 (no charge)

Number 501, TEST CODE FOR DIRECT-CURRENT MACHINES, July 1957, (60 cents)

Number 66, GUIDE FOR DETERMINATION OF SHORT-CUT CHARACTERISTICS OF DIRECT-CURRENT MACHINERY, July 1957 (no charge)

Number 803, TEST CODE FOR AIRCRAFT EQUIPMENT ELECTRICAL INSULATION, July 1957 (no charge)

Copies may be obtained from AIEE, 33 West 39th Street, New York 18, N.Y.
Wanted:
Sales & Marketing
Executive

Brilliant Future With New Division

Merck & Co., Inc., needs a Sales and Marketing executive with a technical background to organize and direct the Sales and Marketing Department of the Electronic Chemicals Division. This is an outstanding opportunity for an individual interested in building a new department. He will supervise all sales, marketing, and promotional activities.

To qualify for this position, the applicant must have exceptional technical know-how and experience in electronic engineering and physics plus commercial sense and knowledge of markets.

The job will grow in direct proportion to the man's ability. Potential growth is as unlimited as that of the electronic chemicals industry.

Address résumés to: Dept. ED-10

G. A. Ducca
MERCK & CO., Inc., Rahway, New Jersey
Northrop needs computing analysts, qualified either by experience or education, to work in their ever-expanding Computer Center at Hawthorne, in Southern California. If you are qualified, there is an interesting position as well as a bright future for you at Northrop.

Applied mathematicians and engineers are needed as computing analysts for assignment to Northrop's analogue computing facility, as well as their enlarged digital electronic computer department which provides unparalleled service in the practical solution of complex engineering problems.

Your assignments will be fresh and stimulating, and you will have frequent opportunities to advance in your field. Besides an excellent salary, you will receive company-paid benefits that are unexcelled in the entire aircraft industry. Your colleagues will be the brilliant engineers who developed the USAF-Snark SM-62 intercontinental guided missile and the new USAF-Northrop T-38 supersonic twin-jet trainer. These men are congenial and helpful, and will respect your ability and individuality just as Northrop expects them to do. And you and your family will fully enjoy Southern California's many attractions and its delightful all-year climate.

If you qualify for any phase of computer research, design, or application, we invite you to contact the Manager of Engineering Industrial Relations, Northrop Division, Northrop Aircraft, Inc., ORegon 8-9111, Ext. 1893, or write to: 1041 East Broadway, Dept. 4600 N, Hawthorne, Calif.
Electronics Engineers—
Is Leadership your target?

Your opportunities for personal and professional growth at Stromberg-Carlson are as big as your own initiative.

First, you'll get the recognition you deserve as a professional engineer. You'll advance fast because the company is growing fast (5-fold expansion since 1942).

You'll like the work, too—interesting, challenging assignments in many varied fields of engineering.

Living conditions in Rochester match the high calibre of the job assignments at Stromberg-Carlson. This is a beautiful medium-sized city of fine homes, excellent schools, and vast facilities for culture and recreation—in an invigorating four-season climate.

Openings are now available for Electrical Engineers, from junior to senior engineering levels, in the fields listed at the right. Specialized experience desirable in transistorization, sub-miniaturization, and advanced circuitry.

To decide which field of work offers you the greatest opportunity for leadership, check the list, then send a letter or resume to:

ARTHUR N. PAUL, Director of Technical Personnel

Electronic Communication Systems
Telecommunications
Switching Circuits
Carrier Circuits
Data Processing
Solid State Digital Computer Systems
Electromechanical Design
Radar and Countermeasures
Missile Guidance Systems
Production Engineering
Navigation Systems
Systems Test Equipment
Industrial Engineers
Electromagnetic Wave Propagation
Antenna Design
Search Receiver Design
...the ability to think ahead of textbook engineering is a prime qualification at Sanders Associates.

Please address inquiries to D. H. Johnson.

SANDERS ASSOCIATES, INC.
NASHUA NEW HAMPSHIRE

CIRCLE 556 ON READER-SERVICE CARD FOR MORE INFORMATION

HOW TO USE THE HOME REPLY FORM

If you wish to inquire about any of the employment opportunities listed in the "Career Section" simply circle the appropriate Reader Service number in the grey (shaded) area of your Reader Service card. Be sure to include your home (or non-business) address in the space provided at the bottom of the card. In this way, the privacy of your inquiry will be protected while still providing the speed and efficiency of ELECTRONIC DESIGN's Reader Service card system.

Last year ELECTRONIC DESIGN processed more than 60,000 individual reader cards. Now ELECTRONIC DESIGN is first to add a confidential inquiry form—one more step to its speeding communications between reader and advertiser.

...where Motorola offers rewarding opportunities!

Work where it's fun to live. Advance your career—both in recognition and financial gain—at Motorola in Phoenix.

Your family will share your opportunity when you settle down in sunny, dry, healthful Phoenix! Tourists spend millions of dollars every year just to visit Phoenix. The attractions of this fabulous vacationland can be yours to enjoy year-round with Motorola!

If you feel you are qualified for any of the positions below, why don't you write today?

ELECTRONIC ENGINEERS, MECHANICAL ENGINEERS, PHYSICISTS

Transistor Applications
Microwave Techniques
Pulse and Video Circuits
Radar Systems Design
R.F. and I.F. Circuit Design
Servo Mechanisms

Mr. Kel Rowan
Western Military Electronics Center
Motorola, Inc., Dept. B-10
8210 E. McDowell Road
Phoenix, Arizona

Engineering positions also available at Motorola, Inc. in Chicago, Illinois, and Riverside, California.

CIRCLE 558 ON READER-SERVICE CARD
Teamwork in Missile Development

The Jet Propulsion Laboratory provides a wide range of research and development activities. Projects include problems in the fields of Electronic, Mechanical, Aeronautical, Chemical and Metallurgical Engineering, Physics and Mathematics.

The fluid character of these activities provides a keen incentive to JPL engineers and scientists. These men are given wide latitude and unusual individual responsibility—at the same time working as a thoroughly integrated team on all aspects of entire missile systems rather than on certain highly specialized missile components.

Job Opportunities Now in These Fields...

SYSTEMS ANALYSIS • INERTIAL GUIDANCE • COMPUTER EQUIPMENT • INSTRUMENTATION • TELEMETERING • FLUID MECHANICS • HEAT TRANSFER • AERODYNAMICS • APPLIED PHYSICS • PROPELLANTS AND MATERIALS RESEARCH

U.S. CITIZENSHIP REQUIRED

JET PROPULSION LABORATORY
A DIVISION OF CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA • CALIFORNIA
CIRCLE 559 ON READER-SERVICE CARD FOR MORE INFORMATION

ELECTRONIC DESIGN • October 1, 1957
EMPLOYMENT PROSPECTUS

CORNELL AERONAUTICAL LABORATORY

Men needed: Electronics engineers and physicists at all levels of experience. Basic ability and interest in research work are usually more important than experience in any specific field.

Type of work: Principally applied research, with complementary activity in both basic research and development. Present C.A.L. projects include work on computers, communication, radar systems and on guidance, control, and navigation systems for airplanes and missiles. Research is also being done in the areas of intercept tracking and control equipment, search and acquisition radar, subminiturization and heat transfer studies, target discrimination, collision warning devices, weather radars, telemetering, and electronic counter-measures studies.

Description of Organization: C.A.L. is a not-for-profit corporation wholly owned by Cornell University. It is financially self-supporting, and operated for the purpose of advancing and enlarging scientific and engineering knowledge. The value of research completed last year rose to 14 million dollars, an increase of 12% over 1955, and the 6th consecutive annual increase. C.A.L. has 1200 employees.

Desirable features of employment at C.A.L.: VARIETY — the 400 engineers and scientists at C.A.L. are working in 11 technical departments, which last year completed 178 projects, both large and small. INDIVIDUAL RECOGNITION — the high ratio of contracts per engineer, coupled with the Laboratory’s practice of using small research teams, allows the recognition of every man’s individual contribution. To guarantee this recognition, each man’s progress is reviewed every 6 months. SALARY — C.A.L. recognizes its need for above average professionals, and appreciates that such individuals must be compensated accordingly. Annual salary for an Associate Engineer (median of the five non-supervisory categories) can exceed $10,000. INTERNAL RESEARCH — each year the Laboratory sets aside substantial sums for the sole use of staff members in support of their exploration of new scientific areas and the generation of new ideas.

Action to take: If you desire additional information, use the coupon to request “A Decade of Research,” a 68 page report on the Laboratory’s research programs over the past 10 years. If you are interested in employment at C.A.L., check the box below for additional information. All inquiries will be treated as confidential.

CORNELL AERONAUTICAL LABORATORY, INC.

of Cornell University • Buffalo 21, N.Y.

W. E. Diefenbach
CORNELL AERONAUTICAL LABORATORY, INC.
Buffalo 21, New York
Please send me “A Decade of Research.”

Name
Street
City Zone State

Please include employment information

CIRCLE 560 ON READER-SERVICE CARD FOR MORE INFORMATION
Improved operating requirements.

- New tuning ease. Bomac's positive, self-locking, single-screw tuning assures accuracy and re-setability under all operating conditions.
- Added resistance to vibration and shock. Proven in many field tests.
- Less microphonics.
- Electrical uniformity, mechanical stability. Assured by rigid test procedures.

The new BL-803 is one of a complete line of Bomac Reflex Klystrons, any of which can be tailored to your specific system requirements. Write today for complete information.

Write for Bomac's 6-page, file-size folder containing details and specifications on more than 500 different microwave tubes and components.
Precision instruments for automatically measuring DC, AC-DC, Ohms and DC-AC ratios constructed from basic modules.

For example:

Combine the Universal Power Module

with the DC Switch Module

to get an 0.01% Digital Voltmeter

a completely new idea in digital instrumentation!

Now from five basic E-I modules, almost any combination of instruments can be assembled for precision, digital measurement of DC, AC-DC, Ohms and AC-DC ratios. The basic E-I modules never become obsolete. As needs change, simply regroup or add new modules. This new modular concept provides maximum versatility and enables equipment to be kept current at minimum cost and engineering.

New engineering specification and other features have been incorporated into the basic modules from the experience of over 2,500 digital instruments in the field. Where applicable, all circuits have been fully transistorized to provide increased reliability, low power consumption, low heat dissipation and to eliminate radio noise and line transients.

New catalog sheets give the complete story of this newest advance in digital instrumentation and complete specifications on all modules. Write for your set today.
These remarkable tunable X-band magnetrons feature:

(1) exceptional electrical stability at very high rate-of-rise of voltage pulse, (2) virtually constant power output across the entire tuning range, and (3) rugged mechanical construction to meet stringent military requirements.

Available for either servo- or hand-tuned applications, this new family of RCA tunable X-band magnetrons is interchangeable with the 4J50 type magnetron in many systems. All RCA tunable magnetrons are designed for maximum performance throughout warranted life.

If you are working on new designs or modification kits for government end use, investigate RCA’s new tunable magnetrons. For additional information on RCA commercial or custom-designed tunable magnetrons, call the RCA Office nearest you:

TUBES FOR MICROWAVES
RADIO CORPORATION OF AMERICA
Electron Tube Division Harrison, N.J.

Typical Characteristics of RCA 200-Kw Tunable Magnetrons

<table>
<thead>
<tr>
<th></th>
<th>RCA-6885-A</th>
<th>RCA-7008</th>
<th>Developmental Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuning Range</td>
<td>8750 to 9600 Mc</td>
<td>8500 to 9600 Mc</td>
<td>8500 to 9600 Mc</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>Up to 2.5 usec at full power</td>
<td>Up to 2.5 usec at full power</td>
<td>Up to 2.5 usec at full power</td>
</tr>
<tr>
<td>Rate-of-Rise of Voltage Pulse</td>
<td>70 to 180 KV/usec</td>
<td>70 to 225 KV/usec</td>
<td>70 to 200 KV/usec</td>
</tr>
<tr>
<td>Stability at Max. Rate-of-Rise of Voltage</td>
<td>less than 0.1%</td>
<td>less than 0.1%</td>
<td>less than 0.1%</td>
</tr>
<tr>
<td>Type of Tuner</td>
<td>Hand (with tuner lock)</td>
<td>Gearbox (for servo applications)</td>
<td>Hand (with tuner lock)</td>
</tr>
<tr>
<td>Approx. Weight</td>
<td>11.5 lbs.</td>
<td>13 lbs.</td>
<td>11.5 lbs.</td>
</tr>
</tbody>
</table>

*Available with several different tuning mechanisms to meet customer requirements,

Equipment Sales
744 Broad Street, Newark 2, N. J., HUmboldt 5-3900
Suite 1181, Merchandise Mart Plaza, Chicago 54, Ill., WH 4-2900
6355 E. Washington Blvd., Los Angeles 22, Calif., RA 3-8361

Government Sales
415 South Fifth Street, Harrison, N. J., HUmboldt 5-3900
224 N. Wilkinson Street, Dayton, Ohio, HEmlock 5585
1625 "K" Street, N. W., Washington, D. C., District 7-1260