

EPONO RESIN cloes it:

Improved GOOD-AII, capacitors have low leakage, high stability-even in extremely humid climates

Here's how:

Flpon resin is helping to set new standards of excellence in a line of 600 UE capacitors made by Good-All Electric Manufacturing Company, Ogallala, Nebraska.

Good-All reports that Epon resin offers superior moisture resistance . . . far better humidity protection than obtained with
conventional molding materials. These capacitors offer rugged, trouble-free performance because Epon resin assures high dielectric strength, low leakage, great resistance to chemical and corrosive attack, and handsome appearance.
For molding . . . for potting . . . for laminating, sealing and encapsulating . . . Epon resins are pre-
ferred because they offer an almost ideal combination of electrical and physical properties.

Write for complete information on the use of Epon resins in protective enamels, tool and die materials, etched circuit laminates, transformer and motor sealing compounds.

SHELLCHEMICALCORPORATION

CHEMICAL SALES DIVISION, 380 Madison Avenue, New York 17, New York
 in CANADA: Chemical Division, Sholl Oll Company of Conede, Limited - Montroal - Taronto - Vancouvor CIRCLE 1 ON READER-SERVICE CARD

Contents

December 1, 1957
Vibration Resistant Balanced Potentiometer (Cover) 28
Editorial 4
Engineering Review 5
Washington Report 13
Features
Proving Reliability?, L. D. Smith 20
Wave Analyzer Tracks Automatically 24
Precision Microphone 26
Vibration Resistant Balanced Potentiometer 28
Shielded Cable Grounding Techniques, M. D. Lazar 30
Highest Frequency Transistor Covers Entire VHF Spectrum 34
Selection and Application of Travelling Wave Tubes-II, N. Hansen, A. Nielsen 36
Designing FM Systems with an Analog Computer, H. A. Musk 40
Constant Temperature Crystal Oven. 52
Design Forum
Dual Function npn-pnp Flip-Flop. 32
Compact Digital Voltmeter 44
Ideas for Design
Make Prototypes Compatible with Production, S. P. Sims 90
Russian Translations
What the Russians are Writing 102
Phase-Shift Network Nomogram 110
Phase-Shift Oscillator Nomogram 110
Abstracts
Equivalent Circuits for Transistors 112
A Nonreciprocal Attenuator at 4 Kmcps 114
A Waveguide Slide Rule 115
Departments
Meetings Patents 98
New Products Books 100
New Materials Standard \& Specs 116
Hew Literature Careers 119
eport Briefs . Advertisers' Index 122 Inc., 19 E. 62nd Street, New York 21, N. Y., T. Richord Gascoigne, President; James S. Mulholland Jr., Vice-President \& Treasurar and Dovid B. L 3ndis, Socretary. Printed at Hildroth Press, Bristol, Conn. Accoptance under section 34.64
 P. L. \& R. outhorized. Copyrighted 1957 Hayden Publishing Company, Inc. 30,000 Copies this issue

BIG NEWS...IN SEALED

THERMOSTATS!

G-V's Series C8 is Undamaged By 150 G Shock, Vibration up to 2000 Cycles, Exposure to $-100^{\circ} \mathrm{F}$. and $+300^{\circ} \mathrm{F}$.

This new series of electrical thermostats is specially designed to meet the difficult operating conditions of electronic and aircraft applications. Operating points, regardless of setting, are not changed by exposure to temperatures from $-100^{\circ} \mathrm{F}$. to $+300^{\circ} \mathrm{F}$. Shocks up to 150 G for 3 milliseconds, vibration of 25 G up to 1000 cps , and vibration of 10 G up to 2000 cps do not damage these thermostats or change their setting.

Hermetically Sealed But Rapid in Response

Sealed in a metal shell which is also its sensing element, the G-V Series C8 Thermostat responds as rapidly as a laboratory thermometer. Temperature settings may be made at the factory or by the user. Contacts are rated at 5 amps .115 volts AC , or 3 amps. 28 volts DC, non-inductive load. Differential is about $1^{\circ} \mathrm{F}$. Insulation test is 1250 v . between circuit and shell, and insulation resistance is over 100 megohms. These thermostats are suitable for direct control of heaters and for over-temperature and undertemperature indication, alarm, or cut-off.

Available in Numorous Conveniont Mounting forms

WRITE...

for Bulletin with complete technical and application data.

CIRCLE 2 ON READER-SERVICE CARD

Allied's Now MHJ Relay Builf for Shock and Vibration 10-55 cps at 0.235 inch ilubblo-amplitudo. $55-2000 \mathrm{cps}$ af 20 g

Were ure Ihe forts: Contert Perlognt Low lovel up to 2 ampores norinductive or 1 ampere inductive at 29 volts $\mathrm{d}-\mathrm{c}$ or 115 valise e-c Cratmat Amengunt MHJ-12D: 4 लOT MHJ-180: 67 Fm
TomporeleMinus $65^{\circ} \mathrm{C}$ to plus $125^{\circ} \mathrm{C}$

Vibretion:

10-55 cps at 0.125 inch double-amplitud
$55-2000 \mathrm{cps}$ at 20 g
Operalimg shocks 100 g
Altitures
Sea level to 80,000 foet
Wcieline.
MHJ-12D: 3.0 ounces
MHJ-18D: 4.2 ouncos
mavioticm
1000 mogohms minimum
EAcloctric servess

1000 volts rms at sea lovel;

450 valts rms at $7,0,000$ foot
Imilial comiact Rooletancos
.03 chms maximupp all .01 to 2 amps
Oporato Times
15 millisoconds or less
at rated voltage of $25^{\circ} \mathrm{C}$
Relare Times
5 miliseconds or lew
of rated voltage of $\$ 5^{\circ} \mathrm{C}$

MOUNTING $=6-32$ NC-2A THD. (2) STUDS

	A	B	C	D	E.	F
MHJ-12D (4 Pole)	$13 / 4$ max.	$15 / 16$	$1 / 64$	$121 / 32$	1.406	$11 / 8$
MHJ-18D (6 Pole)	$13 / 4$ max.	$15 / 16$	$1 / / 16$	$113 / 16$	1.562	$11 / 64$

Editorial

Sputnik Should Spark Translations

In March 1 of 1956 we r in an abridged translation of a Russia) arti. cle on a telemetering system. Bight: een months and two Sputniks later we get an urgent plea for advice on how to get a complete translation. Although requests for information or full translations has stepped lip re. cently, we can't report that our rrans. lator has been any busier.

Few people want to pay the neces. sary $\$ 50$ to $\$ 100$ to get a complete translation. The common excuse "They couldn't possibly have anything important enough

Now that we can't ignore the com. petition, it's still easy to pass the buck to the Defense Department. But does all moral responsibility for assuring our fitness to protect the free world rest with the Government? We thinh every free man has an obligation.

We recommend a double front fo keeping armored against ignorance.

1. A government translation pro gram comparable to the USSR's.
2. The assuming of individual re sponsibility, to keep abreast of the best in engineering.

Unfortunately, our government doe nothing comparable to the USSR in communicating technical information It is no secret that the Soviet has central translation agency set up t feed their technical personnel Amen can reports. The numerous citations d U. S. articles and books in their tech nical articles prove they read us.

As we have reported, MIT will soon translate electronic journals with N_{j} tional Science Foundation financia aid. But plans for the future are in enough. We recommend a crash pro gram now to survey all Soviet articles books, and reports. If our experts ar in the know, we're not aware of it It seems unreasonable, let alone un comfortable, to realize that our policy is reshaped only after Tass sends ouf news releases. In the next issue we talk about individual responsibility
< CIRCLE 3 ON READER-SERVICE CARD

Engineering Review

For more information on developments described in "Engineering Review," write directly to the address given in the individual item.

Photolithographic Transistor

A transistor small enough to fit in a hole drilled in a printed crcuit board has been shown by the Diamond Ordnance Fuze Laboratory, Washington 25, D. C. This transistor, produced by use of photolithographic fabrication techniques, permits a transistor to become an integral part of a printed circuit.
Tests have shown that the transistor is relatively stable, and one experimental model was operated to an alpha cutoff of 15 mc .
In their paper, presented at the IRE-PGED conference, Washington, D. C., James R. Nall and Jay W. Lathrop, outlined the basic constructional methods employed in the production of this transistor.
Diffused germanium blanks 45 mils square and ten mils thick are coated with a photosensitive resist, masked, exposed to ultra-violet light and developed; leaving a bare rectangular
area of germanium. Aluminum emitter material is evaporated and deposited over the layer of resist. When the underlaying resist is chemically stripped away, the aluminum remains only on the rectangular area. Resolution equivalent to mechanical masking can be achieved by this process. The aluminum emitter is alloyed to the germanium blank by annealing it in a hightemperature hydrogen atmosphere.

A base contact of similar shape is formed next to the emitter, by the same photolithographic process. However, in this case the contact is electrolytically deposited gold on the surface of the germanium, rather than on the resist. This gold contains a small percentage of antimony, and is deposited only on the clean germanium surface, and there is no necessity to strip the resist before alloying. The gold alloying takes place at a lower temperature than the
aluminum alloying, thus leaving the emitter undisturbed. The collector base junction is defined by etching away the germanium except in the vicinity of the emitter and base contacts. This provides a pedestal for the collector-base.

At this point it is possible to produce leads to the emitter and base by placing a coat of photoresist over the finished transistor leaving bare only the areas above the emitter and base contacts. In some cases additional gold is electrolytically deposited in these areas to insure good contact at these points.

The transistor may then be soldered to a thin metal base plate and inserted into a hole in a ceramic printed circuit board. Any gap between the board and the transistor is filled with cement and this firmly attaches the transistor to the ceramic printed circuit board.

With relatively crude masking, aluminum leads are vacuum deposited to connect the printed wiring on the board with the contacts on the transistor pedestal. The leads which have

Phoforesist is placed on the germanium surface, masked, exposed, and developed, leaving a bare rectangle of germanium.

A schematic diagram of the finished unit is shown. The aluminum leads a conductivity approximately equivalent to 0.0006 in. wire.

1st in sales!
1st company devoted exclusively to the manufacture of delay lines!
1st in research, design and development of custom-built delay lines!

1st to submit the most definitive laboratory reports with all custom-built delay line prototypes!
ken-vision, knowledge, perception... as, ESC has the ken to produce the finest custom-built delay lines in use today.

Exceptional employment opportunities for engineers experienced in pulse techniques.

E5CORPORATION

534 Bergen Boulevard, Palisades Park, New Jersey CIRCLE 4 ON READER-SERVICE CARD

Engineering Review

been used have a conductivity of approxinatel what might be found in half mil diameter wire

Photoresist not only insulates the depusited leads from the germanium surface, but als protects the surface from contamination until the circuit or combination of circuits can be mounted and hermetically sealed.

A sample circuit shown to ED utilized these transistors in an audio amplifier. The device ha operated for several weeks with excellent results and no deterioration could be detected.

A limitation of this particular transistor is the presence of lead capacitance. It is felt that the problem may be corrected by changes in the circuit design.

Photolithographic transistors can be producei in any shape. Transistor manufacturers might utilize the technique to produce complete cir cuits, as a single component.

The physical size of the device may permi the construction of devices in form requiring little space, replacing racks of equipment.

Polaris Missile Funds Tripled

Decision by the Navy to sharply increase de velopment tempo on its high-priority fleet bal listic missile project, Polaris, was reflected toda in the award of an expanded contract to the Lockheed Missiles, Sunnyvale, California.
Lockheed, missile system manager for th Polaris, has just been given a $\$ 62.1$ million contract extending the program work through fiscia year 1958. The new award more than triples the funding and considerably increases presen Polaris program activity.
The Polaris-focal point of a new concept U. S. defense strategy is being accelerated to bring it into the front line missile arsenal a rapidly as possible
The Polaris, a weapon that will be virtually impossible to detect or destroy, will be the nations first ballistic missile able to roam the worlds oceans aboard specially equipped naval craft The weapon's flexibility and mobility, unique to naval operations, will extend to great distance our defense perimeter and provide an importari weapon as a deterrent to aggression. Because is in ships at sea, an enemy's efforts to counter will be drawn away from the continental U . S .

Rent-A-Radio: A unique two-way communications system, establishes the dispatch desk of the Dallas Hertz Rent-A-Car system as a radio message center for executives. Mobile radio equipment enables users of properly-equipped Hertz cars to keep in constant contact with their offices, homes, and friends. The Dallas system is described as a pilot installation and is the first of its kind in the nation. The equipment is licensed by the FCC in a radio band known as the Citizens' Radio Service.
If someone wishes to talk to the driver of a car, he dials the Hertz office telephone number and the Executive Service Operator relays the message to the vehicle by radio. If the driver wants to send a message, he merely picks up the handset in the car and calls the operator. A Hertz official said that all that is necessary to rent a car with two-way radio is the usual identification required for auto rentals.

Slide-Rule Correction!

Many readers have built the "do-it-yourself" slide-rule for filter design on page 43 of the October 1 issue and have expressed themselves as gratified at the results obtained.
Unfortunately, the example given contained inaccuracies. The paragraph entitled: "How to Read the Slide Rule" should have read:
"For example, suppose a high-pass filter is needed in a 50 -ohm system to reject all frequencics below 150 mc . On the high-pass face of the rule, set the arrow in the Set Frequency window to 150 mc . On the capacity (C) scale, opposite 50 ohms on the adjoining resistance scale, read capacitance as $10.8 \mu \mu \mathrm{fd}$. On the inductance (L) stale, opposite 50 ohms on its adjoining resistance scale, read $0.0265 \mu \mathrm{~h}$."

PERKIN has incorporated the above features for completely new lines of transistorized B+ units, as well as low voltage power supplies. The following is the detailed description of the design features and performance characteristics of both lines.

B+ POWER SUPPLIES.

Model MTB 300-200
THESE PERKIN POWER SUPPLIES are designed to incorporate the latest magnetic amplifier, transistor assisted design circuitry which insures long, troublefree, continuous-duty type service, with virtually no maintenance. This circuitry features the latest in reliability, since it contains no vibrating contacts and no vacuum tubes. Latest type ? nted Circuit techniques are employed.
The circuitry is based on AC transistor amplifiers; therefore, the effect of any changes in transistor parameters is greatly minimized. AC amplification is obtained by the use of modulators and obtained by the use of modulators and
detectors. The actual carrier frequency detectors. The actual carrier frequency
is approximately 80 Kc which, in effect is approximately 80 Kc which, in effect,
regulates steady state as well as attenuregulates steady s
ating the ripple.
Magnetic amplifiers are used in the cir cuitry for preregulation purposes, and the transistors used supply the fina regulatory element. Provision is made within the circuitry to limit the transistor voltages-especially in the power output transistors-to a safe limit under all conditions of switching, line voltage all conditions of switching, line voltage
transients, and short circuits to insure transients, and short circuits to insure
against any possible transistor failure.

SPECIFICATIONS AMD RATINGS AVAILABLE: AC INPUT: $\mathbf{1 0 5 - 1 2 5}$ volts, single phase, $\mathbf{5 0 - 4 0 0} \mathrm{cps}$ RIPPLE: 6 millivolts peak to peak (2 millivolt). RIPPLE: 6 mill
REGULATION:
$\pm .1 \%$ for line changes of $105-125$ volts.
$\pm .1 \%$ for line changes of $105-125$ volts.
$\pm .1 \%$ for load changes of no load to full load. DYNAMIC IMPEDANCE: 1 ohm from 20 to 20,000 cycles.
OUTPUT VOLTAGE ADIUSTMENT: Potentiometer controlled.
METERS: Optional
CONSTRUCTION: Rack panel; panel dimensions
1.5 A ratings: $10^{11 / 2^{\prime \prime}} \mathrm{H} \times 19^{" W}$.

SPECIFIC Models ant ratimgs available:

MODEL NO.	OUTPUT		
VOLTAGE RANGE			LOAD
:---			
CAPACITY			

transistorized low voltage units.

Model MTR 060-5

TYPICAL OF PERKIN'S NEW LINE of low voltage DC power supplies employing magnetic amplifier circuitry is Model MTR060-5 rated at 0-60 Volts, 0-5 amperes. Features include excellen transient response for both line and load changes, 1 millivolt ripple, regu lation to 5 millivolts, continuously ad justable to 0 volts, wide AC line range and remote sensing.
Applications for these units are tran sistor circuitry, relays, strain gauges, filament power and general laboratory testing.
detailed specifications and ratimgs: DC OUTPUT VOLTAGE RANGE: $0-60$ volts $D C$ DC OUTPUT CURRENT: 0.5 amperes DC
AC INPUT: $95-135$ volts, single phase, 60 cps . RIPPLE: 1 millivolt maximum

REGULATION:

Line
tatic: Less than +5 milliveli
Dynamic: Less than 10 millivolts for step Dynamic: Less than 10 millivolts for step
changes of 20 volts, anywhere between 95 to 135 volts AC.
Load
static: Less than 25 millivolts for changes from no load to full load.
Note: The regulation accuracies above are $0-60$ volts DC.
OUTPUT IMPEDANCE:
Less than 5 milliohms from 0 to 100 cps .
Less than 5 milliohms from 0 to 100 cps .
Less than 25 milliohms from 100 cps to 2 KC .
Less than 50 milliohms from 2 KC to 20 KC .
CONTROLS: Coarse control with resolution of 120 millivolts. Fine control with resolution of 5 millivolts.
PROTECTION: Unit will sustain short circuits without damage. Input and output fuses on front panel.
METERS:
Voltmeter, 0.75 volts $D C, 41 / 2^{\prime \prime}$ rectangular
Ammeter, 0.5 amperes $D C, 41 / 2^{\prime \prime}$ rectangular
DIMENSIONS: Rack panel construction, 19"W
$143 / 4 " \mathrm{D} \times 121 / 4 " \mathrm{H}$. (Cabinet unit also available.)
OTHER MODELS AVAILABLE WITM SIMILAR
SPECIFICATIONS ARE:

MODEL NO.	VOLTAGE RANGE	CAPACITT
TR 036.15	0.36 V	15 C
MTR 036.30	0.36 V	30 A
MTR 28.30	24.32 V	30 A

Further engincering data and quotations available upon receipt of your letterhead inquiry.

PERKIN

 ENGINEERING CORPORATION345 Kansas Street, El Segundo. California EAstgate 2-1375

New York Area Office:
Sales and Warehousing: 25 Great Neck Road
Great Neck, Long island, New York HUnter 2-8608, HUnter 2-8609

New England Area Office: 46 Amesbury, Lawrence, Massachusetts

MUrdock 3-3252

Engineering Review

Mr. G. Kronacher of Bell Telephone Laboratories is holding a display board on which a disassembled vernier resolver is mounted. In back of display board is a set-up for checking the accuracy of the resolver.

Electro Magnetic Resolver

A high precision electromagnetic angle transducer called the vernier resolver has been developed by Bell Telephone Laboratories, 463 West Street, New York 14, New York, under an Air Force contract. The resolution of this transducer is better than $\pm 3 \mathrm{sec}$ of arc. This is about the same angle as that subtended by a baseball at 3 miles.
Such a resolver has potentially wide applications for visual and automatic angle reading systems as required in the machine shop and military applications. At Bell Laboratories, it has been used in an "angle encoder" which converts a shaft angle to a numerical representation acceptable to a digital computer. The standard deviation of the error of this complete encoder is less than ten sec of arc.
The vernier resolver is a reluctance type, variable coupling transformer. In the present design, two output voltages are produced which vary in amplitude as the sine and cosine of 27 times the angle through which the rotor is turned. Thus, the equivalent of a standard resolver driven by a 27:1 gear train is obtained. Other ratios are also possible.
The unit is of small size and simple construction. All windings are on the stator, leaving the rotor free of sliding contacts.

(AATHEOM

The types pictured and charted on these pages possess the characteristics and the dependability to merit your specification and your confidence.

Type	Peak Inverse Volts	Forward Current (min.) at +1 lV mAdc	Average Rectified Curren mAdc $\left(25^{\circ} \mathrm{C}\right)$	Reverse Current μA at V	
113300	15	15	65	0.001	10
1 13300a	15	30	80	0.001	10
11432	40	10	55	0.005	10
1M132A	40	20	70	0.005	10
113001	70	5	45	0.05	50
103014	70	18	65	0.05	50
1m660	90	5	45	0.1	75
1M160A	90	15	60	0.1	75
11303	125	3	40	0.1	100
14303A	125	12	55	0.1	100
12133	145	3	40	0.1	125
1ma33a	145	10	50	0.1	125
IMM34	180	2	35	0.1	150
ins3a	180	7	45	0.1	150
11302	225	1	30	0.2	200
14302A	225	5	40	0.2	200
CKess	300	1	20	0.3	275
crersa	300	3	30	0.3	275

Type	$\begin{aligned} & \text { Peak } \\ & \text { Pinverse } \\ & \text { Volts } \end{aligned}$	$\begin{gathered} \text { Average } \\ \text { RRectived } \\ \text { Current } \\ \text { (max.) mAde } \end{gathered}$	$\begin{aligned} & \text { Reverse } \\ & \text { Current } \\ & \text { at } 10 \mathrm{l} \end{aligned}$
11305	60	125	2
11365 1×307	15 125	150 50	2

Type	Peak Inverse	$\begin{gathered} \text { Average } \\ \text { Reccified } \\ \text { Cuarrent } \\ \text { (max.) mAde } \end{gathered}$	Reverse Current	
	Volts		$\mu \mathrm{A}$	-
IN66	60	50	800	-50
1N67	80	35	50	-50
1 NGI	100	35	625	-100
1N29	60	50	800	-50
[1237	80	35	100	-50
1 2 288	70	50	250	-40
VHF and UHF				
1423s	40	35	200	-10
CK71s	40	35		

ACTUAL SIZE

YOUR DESIGN IS BETTER \qquad
YOUR PRODUCT PERFORMS BETTER

Type	$\begin{gathered} \text { Peak } \\ \text { Pinverse } \\ \text { Volts } \end{gathered}$	Average Rectified Current Amps. ($150^{\circ} \mathrm{C}$)	Reverse Current (max.) at PIV μA	Type	Peak Inverse Volts	Average Rectified Current Amps. $\left(135^{\circ} \mathrm{C}\right)$	Reverse Current (mak.) at PIV μA	Type	Paak Volts	Averrage Rectifiod Curren Amps. $\left(150^{\circ} \mathrm{C}\right)$	Reverse Current (max.) at PIV
CKL ${ }^{\text {ch }}$	100	1.0		$1{ }^{1233}$	95	1.0	10	115337	100	0.25	2
CKH1	200	1.0	2	14250	190	0.4	10	$1 \mathrm{MS38}$	200	0.25	2
Скй	300	1.0	2	14255	380	0.4	10	1 1M33	300	0.25	2
ckus	400	1.0	2	IN258	570	0.2	20	$1 \mathrm{MS60}$	400	0.25	2
ckeso	500	1.0	2					CKM	500	0.25	2
CK851	600	1.0	2					CKMS	600	0.25	2

Objects in Motion
 Seen by Radar "Eye"

A radar eye that ignores stationary objects and speeds a surface-to-air missile instantly toward a threatening moving aerial target was made public as part of the Army Hawk air defense missile system, defender of American cities against aerial invaders flying at even the lowest altitude.

The Hawk's outstanding ability to seek out and destroy invaders even at tree top level, the Army said, is due to use of a radically advanced radar technique in the missile's guidance system.

Another aspect of the Hawk system is the extreme mobility of the ground support equipment which permits Hawk batteries to travel with the fast-moving assault forces of the Army and Marine Corps.

Raytheon Mfg. Co., Waltham, Mass., has complete weapon system responsibility for the Hawk program. Northrop is the major subcontractor for missile airframe components and system support equipment such as the mobile loader and the launcher.

> Silicon and Germanium Diodes and Transistors - Silicon Rectifiers

Chicogo: 95 ni Grand Ave. Franklin Part, TUredoo ofat

Engineering Review

AEC Broadens Fellowships for Nuclear Training

To meet the increasing demand for highly trained scientists and engineers in nuclear fields, the AEC has broadened one of its special fellowship programs to include study through the doctorate level. Fellowships have been established to provide a total of 150 fellowship grants on a one-year basis to first, second, and third year graduate students.
The fellowships carry basic stipends of $\$ 1600, \$ 1800$, and $\$ 2000$ respectively, with additional allowances for dependents, tuition, and travel. The original program, at that time called "AEC Special Fellowships in Nuclear Energy Technology," was announced on October 30, 1956, and supported one year of study at the first-year graduate level.

The revised program is the result of the increased demand for scientists and engineers with more advanced training in nuclear technology and provides the opportunity for a large number of graduate students to pursue, at certain universities, studies in the nuclear aspects of conventional scientific and engineering disciplines in addition to basic work in the reactor technology field.

Nuclear Studies on Ceramics

Advanced research studies of the nuclear effects on ceramics will be conducted by Gulton Industries, Inc., Metuchen, N.J., at the Brookhaven National Laboratory. Irradiated barium titanate and lead zirconate will be used for making fundamental investigations of the property changes of ferroelectrics. These nuclear studies on ceramics will concentrate chiefly on the electrical measurements of the ir-

CIRCLE 7 ON READER-SERVICE CARD $>$

This Visicorder Oscillograph record* is a symbol of the leadership that is typical of Honeywell engineering. In laboratories all over the world the Visicorder's instantly-readable direct records are showing the way to new advances in rocketry, control, computing, product design and component test and in nuclear research.

The Model 906 Visicorder is years ahead of the trend. It is the first oscillograph that combines the convenience of direct recording with the high frequencies and sensitivities of photographictype instruments. The Visicorder alone among oscillographs lets you monitor high-speed variables as they go on the record.

a record of leadership

Some of the general features which give the Visicorder leadership in the direct-recording field are:

- Frequencies from DC to 2000 cps without peaked amplifiers or other compensation
- Six channels plus 2 timing traces on $6^{\prime \prime}$ paper
- Deflection $6^{\prime \prime}$ peak to peak; traces may overlap
- Record speeds $0.2,1,5$, and 25 inches per second, minute, or hour
- Records require no liquids, powders, vapors, or other processing
Call your nearest Minneapolis-Honeywell Industrial Sales Office for a demonstration.

Reference Dafa: Write for Visicorder Bullefin

Minneapolis-Honeywell Regulator Co., Heiland Division, 5200 East Evans Avenue, Denver 22, Colorado.
radiated materials. It is hoped that by changing the structure of the ceramic materials, improved electrical characteristics will be effected. Gulton Industries, Inc., maintains a research staff at the Brookhaven National Laboratory, and was previously licensed by the AEC for the investigation of certain aspects of the use of ceramics in the nuclear field. :

European Trade Show

Exclusively American
The first United States trade show ever presented in Europe under private auspices has been scheduled for Hamburg, Germany, during October 3-12, 1958

Called "1958 American Industrial Exposition of Electronics, Automation and Atomics," exhibits of American manufacturers will be accepted.

The exposition presents a new technique in advertising and sales promotion "packaging" designed for American manufacturers securing new markets for their products throughout Europe. It is the first opportunity American businessmen have had to actually sell their wares abroad in a trade exposition exclusively American. More than 40,000 buyers, government purchasing agents, manufacturers, franchise agents, engineers, and scientists are expected to attend.

The show, embracing 200,000 square feet, is sponsored by a group of Los Angeles businessmen in cooperation with the City of Hamburg and intensive support of the West German government has been assured.

A cost analysis for typical exhibit, based on special rate and transportation arrangements made by Intercontinental Trade Shows, 5746 Sunset Blvd., Los Angeles, Calif., makes it possible for a manufacturer to exhibit and demonstrate his products at Hamburg with his own sales representatives on the scene for $\$ 2500$.

The package is complete from United States plant to Germany and return, and Intercontinental Trade Shows, will handle all of the details.

< CIRCLE 7 ON READER-SERVICE CARD

read the תecti/几iteri at a glance!

RECTILINEAR GALVANOMETRIC RECORDERS

Old-fashioned curvilinear recordings are difficult to interpret-are highly subject to reading errors. The modern "recti/riters," both SINGLE and DUAL, are read at a glance with a simple ruler.
Furthermore, only the "recti/riter" systems provide these wide ranges for recording electrical parameters:

> 10 millivolts to 1000 volts
> 500 microamperes to 1000 amperes
> Monitor standard frequencies $-50,60,400 \mathrm{cps}$

You will also like the fast rise time, full scale accuracy, and high sensitivity inherent in this galvanometric system . . . the easy frontal access for all controls and routine operations . . . the fingertip control of 10 chart speeds
dependable closed inking system . . . AC, DC, spring, or external drives.

TI's efficient "recti/riters" are being used extensively in government projects, production control, medical instrumentation, weather studies, and numerous other applications. Very likely, you can greatly facilitate your specific project with a versatile "recti/riter."

Write for complete detailed information
or a visil from the II representative.

Texas Instruments I NCORPORATED INDUSTRIAL INSTRUMENTATION DIVISION 3609 EUFFALO spEEOWAY - houston. texas - canle moulan CIRCLE 8 ON READER-SERVICE CARD

Engineering Review

Using the harmonic drive principle of motion transmission, a hermetically sealed means of controlling nuclear reactors is available. All rotating parts are exterior to the pressure vessel, and internally, there is but one moving part.

Harmonic Drive Principle
 Hermetically Seals Valves

Among the new devices developed by the Atomic Power Department of the United Shoe Machinery Corporation, Beverly, Mass., are examples of the "Harmonic Drive" principle. While not yet fully proved or in commercial use, the principle offers extremely interesting possibilities, particularly in the atomic power field.
"Harmonic drive" makes use of controlled waves of deflection to produce powerful rotary or linear forces. Deflection waves are produced in solid steel walls of vessels, pipes or other enclosures, so as to drive mechanisms within those walls. The principle eliminates the need for valve stems or other parts passing through the wall. Using this process a valve, for instance, can be truly hermetically sealed.

United's exhibit illustrates "harmonic drive" by means of a linear actuator which demonstrates the application of the principle to a control rod drive mechanism.

Washington Report

Herbert H. Rosen

FCC Stirs up Another Pay-TV Furor

In recent weeks the Federal Communications Commission decided it had jurisdiction over toll television and announced a course of action. The Commission is planning to experiment with the system, and anyone who has the financial and technical know-how can participate. However, in making this decision, the FCC has incurred the wrath of the House Interstate and Foreign Commerce Committee and certain elements of the broadcasting industry. The decision has even caused concern among companies proposing pay-TV systems.
A two-day secret meeting preceding the announcement of the decision brought to five the number of toll TV systems now available to the public. For many years, Zenith's position has been well publicized. Allies in the issue are Skiatron, International Telemeter, Teleglobe, and BlonderTongue. Each offers different systems: some use wire; others, uhf transmission. One uses coding devices; another, a gas-meter type toll box; another ties reception in with the telephone bill; and still another lets you see the picture without the sound until the proper password is given.
Pay-TV has been a big center of controversy in the FCC for some time. It appears that the major industry opponents are the networks. Alhough they, as a body, have made no formal ann -acements, a spokesman did have some words. He was Harold E. Fellows, president of the National Association of Radio and Television Broadcasters. He made note of the fact that the FCC plans to honor no applications until March 1. "This will give Congress, which will then be in session, and its committees an opportunity to express their feelings on this action, including their responsibility on the public interest aspect."
The added confusion that shrouds the toll TV problem has given more ammunition to Sen. C. E. Potter (R-Mich.). He has introduced a Joint Reso-lution-Number 106-that proposes establishment of a national commission to study the extent of allocation of frequency space and the extent of utilization of the space. A companion resolution, Number 381, has been introduced in the House.
In making this decision, the FCC must have realized that opposition would have been forthconing. The magnitude of it was probably a surprice. Therefore, there may be a tendency on the par of the Commission to hold back, to wait and see what kind of bricks will be thrown at it next Jar ary when Congress returns to Washington.

PROBLEM

> VIBRATION • SHOCK AND COOLING

POWER TUBE FAILURE during environmental testing of the ServoAmplifier in the flight stabilization system of Chance Vought's F8U-1 Crusader.

ENGINEERED MOUNTING SYSTEM:
Robinson Model 1514 all-metal light-weight SOLUTION mounting system to protect entire Servo-Amplifler assembly. Highly damped Met-L-Flex resilient elements are incorporated in an opposed cushioning design. Resuiting center-ofgravity suspension system assures all attitude protection for power tube and other electronic components.
The Servo-Amplifier assembly was isolated with no increase in over-all equipment dimensions.

SPECIAL FEATURE:

Range of environmental protection is extended by screened cooling apertures designed as part of the combined chassis and mounting. PERFORMANCE:
Natural frequency of the mounting system is between 15-21 c.p.s. After 15 G drop tests on all six sides, there was no loss of isolation efficiency which remained as high as 90\% at 55 c.p.s. with 060 inches excursion.

RESULT:

1. Increased operational rellability of Chance Vought's supersonic Crusader.
2. Another contribution to the weapons system reliability program pioneered by Chance Vought Alrcraft, inc. in cooperation with Robinson engineers.

ROBINSON AVIATION, INC.

Teterboro, New Jersey
West Coast Enģneering otice, Santa Monica. Calitornna

CIRCLE 9 ON READER-SERVICE CARD

For the record... it's IMMEDIATE-PRINT scope photos with the DUMOMI 302

- NOW, ULTRA-FAST transparent polarolodano film for hig speid recoroines
- contact mino proiection prints.,. Mo imace revershl.
- ELisy, mexpensive convension to vapiett of stamoana roll and cut fllms.
- ciocestop slide penmits
- Mutitice exposunes on simele
frame for greater fllm ECOMOWY AVO EAST, DIRECT WAVEFOMM COMPARISOM.
- fius binocela viewing shmuthaneous with recording.
- modits auickiy ano esisir OU ANY STMNORRD 5^{-}SCOPE, NO ADOITIDMAL SUPPORTS REQUIRED.
- eisi ficeess for lens and ShUTTER ROJUSTMENT.
- buitim data recordme ststem.

SPECIFICATIONS

- Woliensak-Du Mont $75 \mathrm{~mm} 1 / 2.8$ three elemen
lens, or $75 \mathrm{~mm} \mathrm{f} / 1.9$ six element lens.
- Image reduction ratio 2.25:1.
- Alphax \#2 shutter, bulb and $1 / 25$ to $1 / 100$ sec. with $\mathbf{t / 2 . 8}$ lens. Alphax $\# 3$ shutter, time, bulb and 1 sec. with $\mathbf{4 / 1 . 9}$ lens.
- Writing rato dependent upon film used.
- Mounting clamp for use on any standard 5" scope bezel.

Type 302 with $\mathbf{~} / 2.8$ lens $\$ 314.00$ Type 302 with $4 / 1.9$ lens 391.00

The Du Mont Type 302 Recording Camera provides the most convenient and flexible means for applying the many advantages of the immediate-print Polaroid-Land process to oscilloscope recording.

And now the utility of the Polaroid-Land process has been greatly extended with the development of the new Polaroid-Land projection film - a transparent base material with a specified emulsion speed of 1000 (ASA).

This new film not only permits contact and projection prints, and eliminates image reversal, but also enables use of the Polaroid-Land process in recording ultra-high-speed phenomena - even single transients.
Utility of the 302 is further broadened by the availability of adapter backs which permit the camera to use various standard roll and cut films. Write for full information...

WHATEVER YOUR REQUIREMENTS...DU MONT HAS THE CAMERA

TYPE 352
High-speed, single frame 35
mm featuring automatic film

 lens. 584.00

TYPE 339
Immediate-prinn type utilizo
ing polaroif tilm. Speciai ing Polaroid tim. Special
$1 / 2.8$ lens for distortion.tree images. Binocular viewing of imazes. Binocula
screen. $\$ 246.00$

TYPE 299
General-purpose camera ac-
cepting backs for cepting backs for foll-film,
film-pack. or cut film, con.

WRITE FOR COMPLETE DETAILS...
TECHNICAL SALES DEPARTMENT, ALLEN B. DU MONT LABORATORIES, INC. ClIfTON, NEW JERSEY

CIRCLE 10 ON READER-SERVICE CARD

The lower away signal is given for the grab and camera to start the 680 ft dive to the lake bottom.

TV for Salvage

For the first time in underwater salvage, a grappling iron fitted with an underwater television camera has been used to recover wreckage from a crashed aircraft at a depth of 680 ft . The operation was used to recover pieces of a Swiss DC3 which crashed into Lake Constance, Switzerland, with the loss of nine lives.

Following the loss of the aircraft, the Swiss government launched an inquiry to establish the cause of the crash. The approximate location of the wreck was established from eyewitness accounts. Later, the exact spot was located from a helicopter, when oil was sighted, and marked with buoys.

An underwater camera, supplied and operated by Pye Corp., Cambridge, England, was attached to a grapple, to permit observation and recovery of wreckage in one operation. The procedure adopted while searching with the television grapple allowed the crane operator to watch the television monitor for wreckage coming toward the arms of the grapple. As the

Pholograph of operator's viewing monitor, showing the arms of the grapple moving a few feet above the bed of the lake.
wreckage passed below, the grapple was dropped, and the arms were closed. Within minutes, the wreckage was hauled to the surface, and brought to shore.
Experts consider that the underwater television techniques employed during the search constitute a considerable advance in salvage operations. It is now possible for experts to be selective in the wreckage to be salvaged. The TV grapple also saves time as wreckage can be raised without necessitating the lowering of additional bulky equipment, which can not be accurately positioned.

Super Accurate Flight Reference

A new type basic fight reference has been developed which holds random drift rates to one quarter deg per hr in the horizontal or directional plane and to one tenth deg per min in the vertical axis. The lightweight equipment employs two perpendicular gyros rather than the usual combination of one vertical and one directional gyro. Heading information and all-altitude flight information are provided with unprecedented accuracies.
The fully maneuverable "table" was developed by Sperry Gyroscope Co., Great Neck, N.Y. as a central reference system for modern aircraft to replace a multiplicity of special purpose gyro equipment. It provides continuous data regardless of aircraft maneuver.
S itable also as a back-up system for more elal sate inertial navigation equipment, the 18 b 7 iwin Gyro platform requires no warm up, is ver rugged and simple to maintain.

PDBO THMMPI IC NDEGAII

Special group! With its own coil-winding, machining and assembly facilities.
Its own sales, engineering, purchasing, inspection and shipping activities. Its own everything but red tape. Special orders! Potentiometers, in prototype quantities, with these special modifications: resistance values, tolerances, linearities, taps, shafts, lids, bushings, ganged assemblies, torque, bearings and rotation.Take your pick. Special Delivery! In 10 days or less. Special price? No! Not one cent extra! For your non-standard prototype pots, go fast, go first-class, go Poco Tiempo! Ask for it by name.

Beckman $/$ Helipot | Helipot Corporation, Newport Beach, California |
| :--- |
| a division of Beckman Instruments, Inc. |
| Engineering representatives in principal cities |

CIRCLE 11 ON READER-SERVICE CARD

A SELF-RESONANT, SEMICONDUCTOR INTERRUPTER NO CONTACTS • NO MOVING PARTS • UNLIMITED LIFE

Completely Transistorizes Existing Power Supplies - unflug vibatior, plug-in vibristor. mo wiring changes nequired. - ripple ano noise are effectively eliminateo.

- OUTPUTS and over-all performance are unchanced.
- ho damage results from accioental shoris or overloads.
- OPERATINE LIFE OF POWER SUPPLY IS UNLIMITED.
- 100\% starting and operating rellabllity.
- 100% starting ano operating reliablity.
sYnchronous and non.symchronous models avallable.

OTHER PRODUCTS - DCAC Inverers - 400 cos 518 - up to 300 VA

MANY OTHER MODELS AVAILABLE. DATA ON REQUEST.
VRL. long a leader in the vibrator and vibrator power supply field, proudly announces a new and complete line of transistorized power supplies and associated equipment.

VRL has pioneered literally hundreds of power supply developments over the past decade and offers a complete design. engineering. and manufacturing service. Send us vour pouer supply requirements for yuotation.

Revolutionizes New Equipment Design - available for any faequency up to 100 Kc. allows complete freedom of power transformer design. any magnetic MATERIAL MAY BE USED IN ANY CORE CONFIGURATION.

- MAGNETIC SATURATION OF POWER TRANSFORMER NOT REQUIRED.
- MAGNETIC SATURATION OF POWER TRANSFORMER NOT RE
- INVERTER FREQUENCY IS INDEPENDENT OF INPUT VOLTAGE.
- Inverter frequency is independent of input voltage.

REDUCES NUMBER OF COMPONENTS - SIMPLIFIES MECHANICAL DESIGM.
Pever
yuotation.
Vibration research laboratories inc.

58 MARBLEDALE RD., JUCKAHOE, N. Y

CIRCLE 14 ON READER-SERVICE CARD ference and Exhibit

Sheraton-Park Hotel, Washington, D.C. Spon sored by the IRE, the Association for Computing Machinery, and the AIEE. "Computers with Deadlines to Meet" will be the central theme

Dec. 18-19: EIA Conference on Maintainability of Electronic Equipment
University of Southern California, Los Angeles Calif. Sessions will cover military concepts and requirements for maintainability, ground environ ment equipment, missile maintainability, airborne equipment maintainability, and road blocks to maintainability. For additional information contact Engineering Office, Electronic Industrie Association (formerly RETMA), Rm. 650, 11 W 42nd St., New York 36, N.Y.

Jan. 6-8: Fourth National Symposium on Re liability and Quality Control
Hotel Statler, Washington, D.C. Sponsored by th IRE, ASQC and AIEE. Covering fields of reli ability in the electronic industries, the sympo sium will encompass the following topics reliability organization and management; theor and mathematical techniques; application of these techniques; design information; and educ tion and training for reliability.

Jan. 28-31: Fourteenth Annual National Tech nical Conference of the Society of Plastics En gineers
Sheraton-Cadillac Hotel, Detroit, Mich. The theme of the conference will be "Progress Through Plastics Engineering." Its sessions wil deal with radiation and plastics, epoxy resins and embedment, extrusion, injection molding, educa tion, packaging, plastic tooling, mold design, new materials, test methods, reinforced plastics, colo and finishing, foams, compression molding, shee forming, and research. For further details write to Lewis A. Bernhard, Society of Plastics En gineers, Inc., Suite 116-18, 34 E. Putnam Ave Greenwich, Conn
feb. 3-4: Instrument Society of America National Conference on Progress and Trends in Chemical and Petroleum Instrumentation
Wilmington, Del. For information and advance programs write to H. S. Kindler, Director of Technical Programs, ISA, 313 Sixth Ave., Pittsburgh 22, Pa

Feb. 3-7: AIEE Winter General Meeting

Statler and Sheraton-McAlpin Hotels, New York City. The 96 sessions will encompass power generation and computing devices; data communications and telegraph systems; radio communication; television and aural broadcasting; telegraph systems and wire communications; industrial power rectifiers and systems; industrial control; feedback control; electric heating; nucleonics; basic sciences; dielectrics; electrical techniques in medicine and biology; magnetic amplifiers; metallic rectifiers; solid state devices; high frequency instruments; recording and controlling instruments; and a variety of other subjects. For additional information write the AIEE, 33 W . 39th St., New York, N.Y.

Feb. 4-6: Thirteenth Annual Technical and Management Conference of the Reinforced Plastics Division of the Society of the Plastics Industry, Inc.
Edgewater Beach Hotel, Chicago, Ill. The basic theme for the 18 -session program will be the new and improved in materials, test results, quality controls and processing techniques. There will be papers on reinforced plastics tooling, industrial design, speed-temperature-radiation behavior of reinforced plastics, the development of reinforced plastic motors, filament winding, quality control of electrical applications, and other subjects. For complete information, write George L. Smead, Manager, Reinforcement Sales, L-O-F Glass Fiber Co., 1810 Madison Ave., Toledo, Ohio.

Feb. 20-21: 1958 Transistor and Solid State Circuits Conference
University of Pennsylvania and Sheraton Hotel, Philadelphia, Pa. Sponsored by the IRE, AIEE, and University of Pennsylvania. Papers will deal with high speed circuits, analytical techniques for syst om integration, device characterization, high and low power circuits, memory, magnetics, and related topics. For further information send to J. II. Milligan, Jr., Dept. of E. E., New York Univer ity, New York 53, N. Y.

For quick bonding, turn to turn, with a single application of heat or solvent. . .

MAGNET WIRE

These successful uses of Bondeze suggest unlimited new redesign possibilities, often at overall savings.

Random-wound, layer, paper-section and solenoid
COILS coils for brakes and clutches, instruments, television, radio and other applications.

Paper-section, random-wound, oil-filled, air-cooled and high voltage for distribution, current, X-ray, television, radio and other applications.

Windings for shaded pole, series fields, instruments, induction and others.

Any time magnet wire is your problem, consult Phelps Dodge for the quickest, easiest answer!

FIRST FOR
LASTING QUALITYFROM MINE TO MARKET:

PHEIPS DODGE COPPER PROOUCTS CORPORATION

CIRCLE 13 ON READER-SERVICE CARD

Sperry's combination radar test sets integrate all testing functions

Faster, simpler radar maintenance is the pay-off with the Sperry Combination Test Sets. One set does the job of three or more standard test units but requires one-quarter the space and weighs half as much! Here are the five functions each Sperry test set performs:

POWER METER: Difectly measures average power of radar transmitter with accuracy of $\pm 1.0 \mathrm{db}$.
frequency meter: Indicates directly the frequency of both receiver and transmitter.
SPECTRUM ANALVZER: Accurately display power vs. frequency spectrum of transmitter signals from single or multi-pulse systems. Display is stable at all pulse widths and repetition rates.

SYNCMROSCOPE: Simple general-purpose synchroscope functions as an " A " scope and displays radar video signals or similar wave forms-no need for auxiliary synchroscope.

Signal generator: Accurately and directly calibrated output signal level is variable over complete range. Choice of pulse, frequency or external modulation.
With no additional equipment you can also measure transmitter peak power, repetition rate, transmitter pulse width. T.R. recovery time, duplexer losses, transmission line VSWR. Designed for tough operating conditions, these sets comply fully with military specification MIL-T-945A. Your nearest Sperry district office will gladly supply you with complete operating data.

MICROWAVE ELECTRONICS DIVISION

GYROSCOPE COMPANY
Great Neck, New York
DIVISION OF SPERRY RAND CORPORATION

Brooklyn - Cleveland • New Orleans - Los Angeles San Francisco • Seattle. In Canada: Sperry Gyroscope Company of Canada, Ltd., Montreal, Quebec.

Feb. 20-24: 1958 EIA (formerly RETMA) Indus. trial Relafions Conference
Town and Country Hotel, San Diego, Calif. Col lective bargaining in the electronics industry, and technical manpower development and utilizition are among the topics to be discussed. For infor mation write to D. H. Stover, Industrial Fielations Dept., Electronic Industries Assoc., 172? De Sales St., N.W., Washington 6. D. C.

Mar. 11-13: Eighth Annual Conference on Instru. mentation for the Iron and Steel Industry
Roosevelt Hotel, Pittsburgh, Pa. Sponsored b the Pittsburgh Section of the Instrument Societ! of America. For details write to Frank K. Briggs Westinghouse Electric Corp., Atomic Power Dis Large, Pa.

Mar. 16-21: 1958 Nuclear Congress
Chicago Amphitheatre and Palmer House, Chi cago, Ill. Sponsored by the AICE, AIEE, IRE and many others. The congress will include five separate conferences: The Fourth Nuclear Engi neering and Science Conference (Mar. 17-21) The Fourth International Atomic Exposition (Mar. 16-21), The Sixth Atomic Energy in Indus try Conference (Mar. 17-19), The Sixth Hot Lab oratories and Equipment Conference (Mar. 19 20), and The American Power Conference (Mar 17-19). For more information write to the Ameri can Institute of Chemical Engineers, 25 W. 45 th St., New York 36, N. Y.

Mar. 24-27: IRE National Convention
Colieum and Waldorf-Astoria, New York City For information write E. K. Gannett, IRE, 1 E 79th St., New York, N. Y

Mar. 27-29: Ninth Biennial Electrical Industry Show and Fifth Electrical Maintenance Confer. ence

Shrine Exposition Hall, Los Angeles, Calif. Some of the topics to be discussed are maintenance to
prevint breakdown, maintenance of electrical and clectronic equipment, and maintenance of lighting to assure peak output. For more details write Paul H. Henrichs, Southern California Edison Co., P.O. Box 351, Los Angeles, Calif.

Mar. 31-Apr. 2: Instruments and Regulators Conference
University of Delaware, Newark, Del. Sponsored by the IRE, ASME, AIChE, and ISA. For details send to E. M. Grabbe, P.O. Box 45067, Airport Station, Los Angeles 45, Calif.

Apr. 8-10: Sixth National Conference on Electromagnetic Relays
Oklahoma State University, Stillwater, Okla. Sponsored by the National Association of Relay Manufacturers. More information may be obtained from Charles F. Cameron, Dept. of Electrical Engineering, Oklahoma State University, Stillwater, Okla.

Apr. 10-12: IRE South West Regional Conference and Electronics Show
San Antonio Hotel and Municipal Auditorium, San Antonio, Tex. Write for details to J. O. Parr, Jr., 202 Janis Ave., San Antonio, Tex.

Apr. 14-16: Conference on Automatic Techniques
Statler Hotel, Detroit, Mich. Sponsored by the IRE, AIEE, and ASME. Information may be obtained by writing to J. E. Eiselein, Radio Corporation of America, Bldg. 10-7, Camden 2, N. J.

Apr. 22-24: 1958 Electronic Components Conference
Ambassador Hotel, Los Angeles, Calif. Sponsored by the IRE, AIEE, EIA, and WCEMA. With "R liable Application of Component Parts" as its main theme, the conference has been planned to over the following general topics: resistors, cillacitors, and dielectrics; transistors and solid st te devices; component reliability; electron "thes and their application; and progress with terials. For complete information write to vid M. Knox, Packard-Bell Electronics Corp., i.33 W. Olympic Blvd., Los Angeles 64, Calif.

New all-magnetic thyratron grid drive in pre-engineered, packaged unit for power levels up to 15 kilowatts .. . Another important advance from Fairfield! Designed especially for servo applications. Push pull, full wave medium gain thyratron grid drive, incorporating a fast response magnetic amplifier, provides a complete servo amplifier for power levels up to 15 kilowatts when used with appropriate thyratrons.

- Polarity reversible DC input signal controls two sets of two thyratrons each in full wave or back to back connection.
- Either set fires smoothly from off to full on, depending on polarity of input signal.
- Fast 6 millisecond response time for rapid reversing in high performance servo systems.
- External resistor provides complete adjustment of null point crossover.
- Compact packaging. Size: $23 / 8^{\prime \prime} \times 23 / 4^{\prime \prime} \times 33 / 4^{\prime \prime}$.
these exclusive drives feature:
- Linear proportional control - Essentially full 180° range of firing angles • Inherent noise filtering - Automatic compensation for line voltage variations. Elimination of variations due to aging or tube replacement - Maximum economy and reliability in carefully engineered and tested unit.
SOME PROVEN SERVO APPLICATIONS INCLUDE:
- High speed magnetic tape drives for computer memory units.
- Compact reversible motor drives for numerical control of machine tools.
- Electronic reversing of thyratron and Ward-Leonard systems for mills and other large horsepower applications.
- Electronic reversing of three phase induction motors.
- Accurate speed control of clutch and brake AC motor drives.
 new all-magnetic
here are a few of the MANY MODELS AVAILABLE: MODEL NO. DESCRIPTION
Thi201AC Fast response $1 / 2$ wave magnetic amplifier with transistor preamplifier. full output.
TH2201AC Full wave version of above for two thyra-
trons in full wave or back to back connection.
TM23010C Fast response full wave magnetic amplifier with milliampere input signal controls two thyratrons in full wave or back to back connection.
TM3301DC.....Three phase version of TM2301DC.
TM33110C.....Three phase push pull Three phase push pul,
version of TM2801DC.
TM63110C.....Six phase push pull magnetic amplifier with $\underset{2}{\mathrm{DC} \text { millisecond } \text { winding. }}$ ${ }_{\text {time }}$ millisecond response high speed servo power
amplifier. amplifier.

TYPICAL APPLICATION: Polarity of DC input signal controls direction of two phase AC servo motor.

THYRATRON GRID DRIVE

in pre-engineered, packaged unit for power levels up to 15 kilowatts

For Complete Information, Write for Engineering Bulletins
FAIRFIELD ENGINEERING CORP. 934 hopestreet. dept. 122. springdale. conn.

CIRCLE 16 ON READER-SERVICE CARD

This is an approach to proving that a given equipment has the necessary reliability to do the job. One practical concern of the design engineer is the production of a piece of electronic gear that is not over-reliablized. Extra quality costs extra money, though it shortens the testing time required to meet buyer's specs. The problem of the designer is to find the point where the derivative is zero, between testing time and added reliability.
Here are two sides of the same coin. Statistical techniques are applied by the buyer to insure that the equipment he gets will fulfill the requirements. The same techniques are used to show the designer how long a testing time will be required for acceptance, given a numerical reliability attributed to his equipment.
are you ready to pay for

Proving Reliability?

Larry D. Smith, Lt., USAF

Wright Air Development Center

Fig. 1. Typical test record chart for 95 per cent confidence.

OBTAINING proof of an equipment's reliability can be expensive and time consuming. Th buyer must be willing to pay for proof that he i getting the reliability that he needs.

- Two basic assumptions are made in the demon. stration of the accuracy of these statements:
The reliability of the equipment to be tested car be described by $R=e^{-T / M}$ 。
where R is the minimum acceptable reliability, T is the required time of failure-free continuous operation with reliability R, M_{0} is the mean time between failures, e is 2.718 .
- The times between successive failures for the equipment show an approximately normal distribution about M_{0}. This allows the use of standard statistical methods in making predictions about the behavior of groups of data.

According to the first assumption it can be seen that when T is fixed, M_{0} 。gives a useful measure of reliability and it is M_{o} that must actually be measured in any test program.

Let us suppose, then, that the buyer has written the following statement into the contract for a radio transmitter: The vendor shall demonstrate that the mean time between failures of the transmitter is 95 per cent certain to be greater than a minimum of 50 hr under the test conditions specified. The key to this statement lies in the two words greater than. It would be statistically impossible to prove that the equipment has an M_{o} of exactly 50 hr but the difficulty of proving that it is greater than 50 hr depends on just how much greater it is. A 95 per cent confidence level has been chosen because this allows only a 5 per cent or a 1 in 20 chance of making an error. This arbitrary level is subject to argument, but it is the author's belief that it is better to lower the requirement for mean time between failures than to take a greater than 5 or 10 per cent chance of accepting an inadequate design.
A typical test record chart is shown in Fig. 1 where the cumulative number of failures, F, is plotted against elapsed test time. The line $F=t / M_{o}$ divides the chart into regions of reliable and unreliable operation. The existence of the indeterminate region is explained by the knowledge that there is a certain statistical doubt in data obtained from a finite number of observations. The indeterminate region effectively prevents the making of a decision until enough data has been gathered to give the required 95 per cent confidence in any decision made.
The test record chart was developed as follows:

- If an equipment actually has a mean time between failures of M_{0}, a line $F=t / M_{0}$ can be drawn such that one half of the failures plotted will fall on one side of the line and one half will fall on the other side of the line.
- The farther one gets from the line, the less the density of data points. Thus, the points fall into a
distribution about the mean, $F=t / M_{0}$. For small F the distribution is best found by evaluating Poissun's Exponential Binomial Limit but when F is greater than 5 the limits are given sufficiently accurately by

$$
\begin{aligned}
& U=t / M_{o}+1.64 \sqrt{t / M_{o}}, \\
& L=t / M_{\circ}-1.64 \sqrt{t / M_{o}},
\end{aligned}
$$

where U and L are the upper and lower limits, respectively, and are expressed in terms of failures.
For an example of the accuracy of the above approximation, take the point on the line $F=t / M_{0}$ where F is 5 . The limits are

$$
\begin{aligned}
& U=5+1.64 \sqrt{5}=8.67 \\
& L=5-1.64 \sqrt{5}=1.33
\end{aligned}
$$

and although statistical tables were used to draw Fig. 1, this simple approximation gives good accuracy as can be seen.
Fig. 1, then, can represent the buyer's requirement. An equipment put on test would not be accepted unless the plot of failures against time passed through the lower limit line. If a newly designed transmitter of unknown reliability is now run to obtain a plot of cumulative failures vs time the following can be determined:

- If the plot goes above the upper limit line, we know that there is a 5 per cent chance that the transmitter meets the requirement, or, in other words, we are 95 per cent sure that the transmitter fails to meet the requirement.
- If the plot goes below the lower limit line, we know that there is a 5 per cent chance that the equipment fails to meet the requirement or we are 95 per cent sure that it does meet the requirement of having a mean time between failures of more than 50 hr .
- If the plot stays between the limit lines, we have less than the required 95 per cent confidence that the equipment has either a greater or lesser than 50 hr mean time between failures; therefore, according to the rules that have been set up, no decision can be made.
It has been noted before that the better the vendor makes the transmitter the sooner it will be accepted; however, it costs extra money to build in extral quality and the vendor is interested in being able to balance the cost of extra quality against the cost of extra testing time.
Before answering his question of How much bet-
tere the following three questions must be ansilered:

How sure does the vendor want to be of being
*) pted in a given amount of time? More assur-
a1. means more test time and/or more extra qual-
it is a result.
How much time can be devoted by the vendor sting?
How many transmitters can the vendors afford

ELECTRONIC DESIGN • December 1, 1957

CIRCLE 17 ON READER-SERVICE CARD

WESTERN UNION

.....MAKES THEIR Intrafax EQUIPMENT LOOK. WORK AND

SELL BETTER

WITH A FLUSH LATCH

FRONT AND REAR

HARTWELL Flush Latchmes used on Western Union's leased private facsimile systems, called intrafax, save valuable fabricating time. They eliminate expensive hardware parts involving intricate and difficult machining oparations. They improve appearance and reflect the impression of better service and value through the use of tuesh, safe, streamlined eqaipment.
Positive, trigger-action opening and closing. Lightweight stainless corrosion resistant or cold. lightweight stainiess corrosion resistant or coid
rolled steel, cadmium plated. Fast, inexpensive roned steel,
installation.
Use these Flush Lafch advantages to your adyantage...make your equipment easier and less costly to produce....add features which your customers will appreciate.

HARTMELL COMPANK

9035 VENICE BOULEVARD, LOS ANGELES 34, CALIFORNIA BRANCH OFFICES: Hackensack, New Jersey -
Wichita, Kansas • Fort Worth, Texas • Seattle, Washington

Fig. 3. Test time (in multiples of M_{0}) for 95 per cent assurance for the vendor and the buyer when $M_{1}=B M_{1,}$ and E is the number of units on test.

to build for the purpose of testing?
Let us assume that the vendor wants to be as sure of having a good design accepted as the buyer wants to be sure of rejecting an inadequate design-95 per cent sure. Assume, also, that the vendor has actually designed a transmitter with a mean time between failures, M_{i}, greater than $M_{0}(50 \mathrm{hr})$. We can then draw lines on a graph representing $F_{1}=t / M_{1}$ and its limits as shown in Fig. 2. $F=t / M_{o}$ and its limits are also shown.
The intersection of the upper limit of the production with the lower requirement limit gives the time for 95 per cent assurance of acceptance; this time has been designated T_{a}. If the contractor wants to be 95 per cent sure that his design will be accepted by time T_{u}, he will have to make it with a mean time between failures that is greater than 50 hr b! a factor, B, which can be calculated.

The lower limit of the requirement is the accept ance line, L, and is given by

$$
L=t / M_{o}-1.64 \sqrt{t / M_{o}} \quad\left(L^{*}>0\right)
$$

while the upper limit of the vendor's production is

Fig. 4. Test time (in multiples of M_{θ}) for 90 per cent assurance of acceptance for both vendor and buyer when $M_{1}=B M_{0}$ and E is the number of units on test.
given by $\quad U_{1}=t / M_{1}+1.64 \sqrt{ } t / M_{1}$
If we then let $M_{1}=B M_{0}$, we find that

$$
U_{1}^{\prime}=t / B M_{0}+1.64 \sqrt{t / B M_{0}}
$$

When $L=U_{1}$, the time for 95 per cent assurance of acceptance is determined:

$$
L=U_{1}
$$

$1 . M_{o}-1.64 \sqrt{t / M_{o}}=t / B M_{o}+1.64 \sqrt{t / B M_{o}}$

$$
T_{a}=t / M_{o}=2.69 B\left[\frac{\sqrt{B}+1}{B-1}\right]^{2} .
$$

If more than one equipment is placed on test at the same time, the equations are modified like this:

$$
\begin{aligned}
& L=E t / M_{o}-1.64 \sqrt{E t / M_{o}} \\
& U_{1}=E t / B M_{o}+1.64 \sqrt{E t / B M_{o}} \\
& T_{a}=/ M_{o}=2.69 \frac{\bar{B}}{E}\left[\frac{\sqrt{B}+1}{B-1}\right]^{2} .
\end{aligned}
$$

This last relationship for T_{a} is plotted in Fig. 3 for 95 per cent assurance on the parts of both the vendor and the buyer. Fig. 4 shows what happens to T_{a} when 90 per cent assurance on the parts of both the vendor and the buyer is desired.
For an example, let us suppose that a contractor has been asked to bid on a radio receiver that is to have a 95 per cent assurance of a 40 hr mean time between failures with 10 receivers to be built for reliability testing. From past experience and a reliability analysis, the contractor might determine that he can build an equipment with a 60 hr mean time between failures. We can then calculate that

$$
B=M_{1} / M_{o}=60 / 40=1.5
$$

From Fig. 3, where $B=1.5$ and $E=10$ it is seen that $T_{a}=8$. The contractor can then estimate the test time for 95 per cent assurance of acceptance as

$$
t=T_{u} M_{o}=8 \times 40=320 \mathrm{hr} \text { per receiver. }
$$

or a total of 3200 hr since 10 receivers are on test.
If both the buyer and the contractor are willing to accept 90 per cent assurance, T_{a} is reduced to 5 , as determined from Fig. 4:

$$
t=T_{a} M_{o}=5 \times 40=200 \mathrm{hr} \text { per receiver. }
$$

The contractor now has the necessary information for estimating the cost of proving that he has met the buyer's requirement.

Statistical acceptance testing for equipment will b. ©pensive as far as the initial cost of the equipment is concerned, but it will be far cheaper than relesigning the equipment after field usage has sh awn it to have inadequate reliability; in addition, savings in maintenance costs should more than for the cost of the testing since maintenance is have often been estimated at ten times the tinal cost of the equipments.

\pm SIX MICROVOLT INPUT DRIFI

THE RHEEM REL-120 dC AMPLIFIER

represents the latest in the "state of the art" in instrumentation amplifiers. / Complete solid state circuitry / Transistorized Low space requirement Unique closed loop drift control
For further information contact Rheem Electronics Marketing Department

EIECTRONICS DIVISIDN RHEEM MANUFACTURINGG COMPANY

Phone number: RAymond 3.8971 _. 7777 Industry Ave, Rivera. California

ECTRONIC DESIGN • December 1, 1957

oscillator and applied to a narro ${ }^{\circ}$ band crystal lattice filter centered at 97 kc . The oscillator is tunable from 97 to 122 kc . As it is tuned through this band, the spectrum of the vibrations represented by the inferior sideband out of the modulator is shifted, allowing the filter to pass different portions of the spectrum. The output of the filter is then demodulated to restore the original frequencies. This signal is detected to produce a de analog for recording or visualization.

Signals whose repetition rate is proportional to velocity are applied to an electronic tachometer which generates a dc analog of the velocity with an accuracy of 0.1 per cent. This voltage is compared with a dc analog of the oscillator frequency. The error voltage is applied to a servo amplifier, which drives a motor ganged to the tuning element in the oscillator. In this way the frequency output of the oscillator is made to follow the velocity of the machinery under analysis. A ratio selector can be employed to adjust the scale factor of one of the analogs of frequency, for harmonic tracking.

In addition to automatic tracking, the analyzer can be manually tuned or made to scan at frequencies up to 500 cycles. Scanning is accomplished by using tachometer feedback with an : Mijustable sweep rate reference level in a velnity servo loop.
Control panels for the wave analyzer may be ()) tained in two frequency ranges: two to 250 cy and 150 to $25,000 \mathrm{cy}$.

For further information on this automatic tacking wave analyzer turn to the Readers Serv-
card and circle 21.

Vibration analyzer system.
Variable frequency oscillator is made to tune over its 97 to 122 ke range in proportion to the rotational velocity of the machinery under test. In this way the behavior of any vibrational harmonic can be tracked over the full velocity range of the machine.

C-D makes it...

and makes it better!

The World's Tiniest! Miniature and Sub-Miniature Electrolytics!
Designed particularly for applications where space is at a premium.
C-D's Type "EC" ceramic-cased electrolytic capacitors are less than $1 / 4^{\prime \prime}$ in diameter, only $\% / /^{\prime \prime}$ long. Ideal for hearing aids, transistorized devices, remote control assemblies etc.
For sub-miniature applications, C-D's 3 Tantalum Type capacitors feature low P-F; hermetic seal, long shelf life. Type "TX" with sintered anode; "TAN" miniature foil-type; "NT" sub-miniature, wire anode-type.
For all-around reliable service, C-D's type "UP" is made in the smallest tubular aluminium can for any given capacity and voltage.
For printed circuit applications, C-D now has available the type "NL" hermetically sealed electrolytics.
For the finest capacitors in miniature and sub-miniature sizes specify Cornell-Dubilier: consistently dependable since 1910. Engineering samples sent on request. Write for Engineering Bulletins to Cornell-Dubilier Electric Corporation, South Plainfield, N. J.

tough, durable Panel Chanel ${ }^{\circ}$ a new technique in panelboard wiring

INSTALLS WITH ONETHIRD THE WORK

Panel Chanel wiring raceway eliminates time-consuming wire bundling and lacing, frees skilled craftsmen for more important duties. It works easily, attaches without special tools or hardware, slashes wiring costs.

IS SELF-EXTINGUISHING

Play a torch on Panel Chanel and it may char - but never support combustion. Because of Panel Chanel's flame retardant properties, it can never be a fire hazard in control panels. It's selfextinguishing . . . always safe.

AND WON'T SAG OR FLOW

Panel Chanel's tough reinforced phenolic construction holds its shape. Its sides "give" to allow covers to be snapped on and off, but it never sags, cold flows, fatigues, or bends under normally high panelboard temperatures.

Other advantages? Panel Chanel's snap-on, snap-off cover permits quick addition of new wires . . . speeds checkout and trouble shooting . . . wires are threaded through Panel Chanel precisely where you want them. Panel Chanel installed presents a neat, professional looking appearance. Panel Chanel comes in a wide variety of styles and sizes, or to your own specs.

For the full story on the Panel Chanel method and how if can cut your production cests, write foday for Bulletin s-302.

Fig. 2. Preamplifier increases microphone output level to a value easily measured with a VTVM. Low frequency cutoffs are provided at 50,250 , and 1250 cps , to improve signal to noise ratio.

Fig. 1. Microphone measures high forces caused by sound waves.

High Intensity Sound . . .

Precision
Microphone

EREE field sound pressure intensities over a 10 cps to 50 kc frequency range are accurately transformed into equivalent electrical voltages. The voltage is waveform essentially the same as the sound pressure wave. Instantaneous amplitude of the voltage waveform is a measure of the instantaneous sound pressure at the microphone location. Measurements are accurate to $\pm 0.5 \mathrm{db}$

Fig. 3. Microphone response is accurately calibrated to within $\pm 0.5 \mathrm{db}$ from 10 cps to 50 kc . Disc construction and heavy walled aluminum diaphragm give microphone high calibration stability.
thro ghout the frequency range. The microphone is cunstructed for operation in any gaseous or fluil medium up to pressures of 30 psi . It has an ctremely wide dynamic range and is unaffected by temperature changes between 0 C and 110 C . Knowing the frequency and magnitude of ambient sound, an engineer can design components to meet stress requirements.

Developed by Electro-Voice, Inc., Buchanan, Mich., the instrument consists of a transducercathoce follower probe assembly with removable shock mount (Fig. 1), and a preamplifier-power supply assembly (Fig. 2). Four barium titanate generating discs incorporated in a thickness mode vibrating system give an extremely rugged assembly. The discs are polarized in manufacture so that a voltage is generated between the electrodes when the disc is either compressed radially inward, or stressed radially outward. The four elements are equally spaced and cemented to the inside surface of a split cylindrical diaphragm of aluminum tubing. Damping material is placed between the ceramic discs to support the interconnecting wires so that unwanted resonances are eliminated. Since the ceramic elements are displacement devices, that is, the generated voltage is directly proportional to the displacement of its matter, and since the transducer is stiffness controlled below its resonance of 50 kc , a constant output voltage versus actuating pressure results for all frequencies. Ceramics disc construction and a heavy walled aluminum diaphragm give the microphone high calibration stability.

Preamplifier and Power Supply

The preamplifier and power supply unit increase the level from the microphone to a value which is easily measured with a vacuum tube voltmeter. Sound pressure in dynes $/ \mathrm{cm}^{2}$ or intensity level in db re 0.0002 dynes $/ \mathrm{cm}^{2}$ can be determined from the nomograph provided with the preamplifier. Incorporated in the preamplifier are three low frequency cut-off filters of 18 db /octave slope which may be inserted in the signal channel to eliminate low frequency rumble or extraneous noise components which may be present during high frequency measurements. The filters can be selected to become effective below $50 \mathrm{cps}, 250$ ($p \mathrm{p}$ s, or 1250 cps . A 10 cps position is provided on the switch for full range measurements (Fig. 3).

Threshold sensitivity of the microphone is 0.5 nes $/ \mathrm{cm}^{2}$ on the 10 cps range and greatly imjroves when using the low frequency cut-offs. is omnidirectional up to 20 kc with a direcnal marker provided for operation above 20
Maximum sound pressure is 140 db re 0.0002 nes $/ \mathrm{cm}^{2}$, and can be increased to 200 db with iitput attenuator for the preamplifier.
For further information on the microphone in to Reader Service Card and circle 24.

Low-Voltage Test Oscillator Spans 21\% of Center Frequency

Featuring complete coverage of the frequency range from 8.5 to 10.5 kmc , the new SRX-92 reflex oscillator klystron is designed for use as a local oscillator in microwave receivers and spectrum analyzers, as a signal source in radar test equipment. or as a lowpower bench oscillator.

Low-voltage operation, low hysteresis and high thermal stability are other important advantages of this new klystron, which delivers a minimum output power of 20 mw over a minimum bandwidth of 35 mc . In addition, it offers single-screw tuning over the entire frequency range, with integral cavity and tuner.

Sperry has packaged all these key features in a klystron that combines low cost and small size-it weighs only $41 / 2$ ounces. For detailed information on the SRX-92 and other Sperry klystron tubes. write or phone the nearest Sperry district office.

spFERR
 ELECTRONIC TUBE DIVISION
 GYPOSGOPE COMPANY Great Neck. New York

DIVISION OF SPERRY RAND CORPORATION
brooklyn - cleveland - new orleans - los angeles SAN francisco - seattle - in Canada. sperry gyroscope company of canade, ltd., montreal, quebec. ICE CARD

FOR PRODUCT IDENTIFICATION, CUT OUT AND COMPLETELY FREE FROM ALL SUPPORTING BACKGROUND

INDIVIDUAL OR JOINED LETTERS AND DESIGNS WITHOUT DIE CHARGES. All the advantages of Metal-Cal's fullcolored anodized $.003^{\prime \prime}$ and $.005^{\prime \prime}$ thick aluminum foil are available in this new form. Think of it, your product or company name customized in sharp, clear colored letters applied directly to any smooth surface without the expense and nuisance of surface preparation, machining or punching, screws, pins, rivets or any other mechanical holding device. Regardless of quantity ordered there are no die charges for this new method of product identification by Metal-Cal. Only Metal-Cal identification will give your product that extro sales appeal.

For further information on how you can use this remarkable new product, call or write

C\& H SUPPLY COMPANY Manufacturers of Metal Cal

417 East Beach Avenue Inglewood, California

U S. Patent 2.769,265

METAL CAL•C \& H SUPPLY CO., INGLEWOOD, CALIF. Please send samples and free brochure to:

NAME \qquad
COMPANY
ADDRESS
CITY
ZONE \qquad STATE

Vibration Resistant

Balanced

Potentiometer

Fig. 2. Balanced contact assembly is insulated from the arm and is mounted in leweled pivots.

Dynamically balanced arm and contact assembly give continuous operation under 2000 cycle vibration at 30 3's

Fig. 1. Balanced wipor-arm (ib) provenis vibration from couling firtizoniol positioning orror: Bal. anced confact onsombly odded in Ilal prevents vibration from ecous: ing conlaed "bounce"

ADINAMICALLY balanced wiper arm guarantees constant contact in this potentiometer. Accuracy and continuity are thereby assured, regardless of system vibration or operating speed. The resulting low wear gives the potentiometer a 5 million cycle life.
The new potentiometer, developed by the Kin tronic Division, Chicago Aerial Industries, 10265 Franklin Avenue, Franklin Park, Illinois, matches mechanical performance to electronic precision. Previous potentiometer design used a cantilevered spring to provide contact with the wire, Fig. la. When subjected to vibration the unbalanced mass of the arm and spring caused it to rotate and give a positioning error. In applications requiring the wiper to rotate at high speeds, centrifugal force increases pressure on the winding causing excessive wear.

Dynamic Balance

When the mass of the wiper arm is equally balanced on both sides of the shaft, Fig. 1b, vibration or shock will not result in a rotational force on the arm, and therefore accuracy is not affected.
Extending the concept of dynamic balance to the contact, Fig. 1c, allows it to follow the winding under all conditions. The balanced contact assembly, Fig. 2, is mounted in jewel pivots at the end of the arm. As in the case of the arm, vibrations will not cause it to rotate or "bounce." To insure good electrical operation, a small spring loads the contact with a minimum force.
Standard linearity for these dynamically balanced potentiometers is .1 per cent. The units will give continuous operation with a minimum of noise when subjected to vibrations up to 2000 cycles at a force of 30 g 's. Maximum speeds range from 1000 to 3425 rpm depending on the size of the potentiometer. Starting torques are as low as .1 in . oz for the smaller sizes.
The 1000 series is produced in six sizes: $7 / 8$, $1-1 / 16,1-7 / 16,1-3 / 4,2$, and 3 inches. All six can be ordered with either linear or functional windings. Mechanical rotation is 360 degrees continuous, but phaseable stops are available. Electrical rotation of 358 deg is standard. Careful mat.rial selection gives the pots excellent high temperature characteristics. Operation up to 225 C is vailable and 165 C is standard. Housings are all letal, and only ceramic and Teflon are used in terior construction. The winding card is made stable silicone glass laminate.
For further information on the Dynamic Baliced Potentiometer turn to Reader Service Card ad circle 27.

Waldes Truarc Rings speed assembly, facilitate maintenance, improve performance of new automatic calculator

the new marchant DECI magic
automatic-decimals calculator made by Marchant Calculators, Inc., Oakland, California.

E-RING SECURES PARTS AGAINST SPRING THRUST. Slip clutch assembly uses Truarc series 5133 E-ring to hold parts on shaft. Functioning of the assembly is dependent upon the ring's ability to withstand thrust exerted by the heavy borrel spring.

LOCKING PRONG RINGS PERMIT SIMPLE DESIGN. Shift slide assembly uses two Truarc series 5139 bowed locking prong rings to lock the parts together in a sliding fit. Precise amount of spring tension prevents objection. able wobble and noise, permits the key to slide smoothly in operation. Easy radial assembly and disassembly of rings facilitates field maintenance and repair. Alternative construction would have required cur washer, spring washer and hairpin-type spring clip on each stud.

Whatever you make, there's a Waldes Truarc Ring designed to save you material, machining and labor costs, and to improve the functioning of your product.
In Truarc, you get
Complete Selection: 36 functionally different types. As many as 97 standard sizes within a ring type. 5 metal specifications and 14 different finishes. All types available quickly from leading OEM distributors in 90 stocking points throughout the U.S. and Canada.
Controlled Quality from engineering and raw mate-
rials through to the finished product. Every step in manufacture watched and checked in Waldes' own modern plant.
Field Engineering Service: More than 30 engineer-ing-minded factory representatives and 700 field men are at your call.
Design and Engineering Service not only helps you select the proper type of ring for your purpose, but also helps you use it most efficiently. Send us your blueprints today...let our Truare engineers help you solve design, assembly and production problems... without obligation.

WALDES
 RETAINING RINGS
WALDES KOHINOOR, INC.
47-16 AUSTEL PLACE, L. I. C. I, N. Y.

WALDES TRUARC Retaining Rings, Grooving Tools, Pliers, Applicators and Dispensers are protected by one or more of the following U. S. Patents: 2,382,948; 2,411.426

It could be a special laboratory cable . . . intimate in design, unique in construction and use . . or it could be a multi-conductor cable, designed to be the heart of a large and complex electronic operation. Whatever the design or the use, you can recognize a Phalo cable by custom design and uniform quality.
Base your cable performance on Phalo's ingenuity and quality and be sure!

New catalog is available on request.
 - HA P PLASTIC8 CORPORATION WORCESTER, MASSACHUSETTS

CIRCLE 30 ON READER-SERVICE CARD

Shielded Cable Grounding Techniques

Michael D. Lazar
Senior Engineer Burndy Corp.

|N ORDER to protect and isolate the signal, maintain correct impedance and prevent reflection, braided shield must be properly grounded. There are a number of ways to do the job. All are listed in the Table, each with its description, advantages and disadvantages. Depending on the needs of the individual product or production line, the guide will help in selecting the proper technique. One important factor must be kept in mind, howeverprotection of the inner conductor.
If the ground wire is soldered to the shield, the destruction of the insulation of the inner conductor by overheating must be avoided. If the choice is the crimp-type ferrule-either the one or two piece type-the right size ferrules for the cable must be designated. This can be done by trial and error using available sample kits, or-preferably-referring a sample piece of cable to the connector manufacturer for installation and size recommendation. A cutaway drawing of a one-piece ferrule is shown in Fig. 1. A simple way to check for a good joint is to see if the installation slides over the inner conductor when subjected to light hand pressure, after

Fig. 1. Cutaway view of single-unit ferrule. Inner sheil of ferrule is slit under the cable braid; outer shell and ground lead are crimped to braid to provide good contact.
the outer insulation has been removed in the case of jacketed cable. If it slides, the inner conductor is undamaged. If it does not, the size may be incorrect or the connector-tool combination may be improperly designed.

In systems using more than one cable, the ground leads may be connected from ferrule to ferrule in parallel. The inner conductors are then attached to a multi-contact disconnect plug; the ground lead is brought into a socket used to carry it to ground.

If a multicable system demands individual grounding of each shield, a slightly different technique is used. A pigtail is joined to the shield, and a disconnectable socket is attached to the free end of the pigtail as well as the inner conductor, as in Fig. 3. At final assembly, all that is necessary is to plug in both sockets. This permits maximum prewiring in the wiring shop, where the best efficiency is usually achieved.
The one- and two-piece ferrules illustrated are manufactured by the Burndy Corp., Norwalk, Conn. A two-piece ferrule is produced by Thomas and Betts, Elizabeth, N. J.

Fig. 3. Ground leads as well as inner conductors are attached individually to the disconnectable sockets shown here.
(b)

Fig. 2. Jacket insulation may be used with all grounding techniques in Table. Shown here are examples of (a) braided cable used as ground and (b) one-piece ferrule, which comes with insulation already provided. Ferrule-plus-insulation is crimped in normal fashion, as shown.

Tabulation of Various Grounding Methods

Ground Lead Soldered to Braid.

Two-Piece Crimped Ferrules.

One-Piece Crimped Ferrules.

Description	Advantage
Braid is either unravelled and twisted together, or the inner conductor is pulled through a space forced in the braid.	Requires no soldering, con- nectors or crimping tools. Unskilled operators can perform operation.

Solid wire is wrapped around braid and soldered. A variation of this method employs an eyelet under the braid to protect inner conductor insulation.

Ground lead easily terminated. No connectors or crimping tools required.

Inner ferrule slides under braid, outer ferrule over braid; assembly crimped with standard tool.

One-piece combined inner and outer ring. Inner ring slides under the braid as tap wire is held between braid and outer ring.

Disadvantage

Slow, especially on tight braid. Often results in bulky job. Difficult to insulate ground lead and exposed braid, and to terminate ground lead.

Good connection to braid difficult due to oxidation. Heat from soldering iron may melt inner conductor insulation. Skilled operator required. Bulky result. Poor reliability due to frequent cold joints; assem. bly of separate sleeve necessary to insulate

Fast operation with good reliability due to controllable process. Inner conductor insulation protected from damage by brass ferrule. Outer ferrule may be pre-insulated ground lead easily terminated.

Fastest method. Reliable no skill required for operation. Inner conductor protected by inner element. May be pre-insulated; no trimming of braid necessary. The ground lead easily terminated.

Crimping tool required Frayed edges of braid proiruding beyond ferrule may require trimming. The size of ferrule must be specified.

Crimping tool required. The size of ferrule must be specified.

. . two of many special features obtainable in

DIALCO PILOT LIGHTS

The DIALCO series of Pilot Lights, exemplified by the unit shown above, is designed to house the NE-51 Noon Glow Lamp, and for direct use on 125 volt to 250 volt circuits. Since Neon lamps require a current limiting (ballast) resistor, the necessary resistor is "built-in"- an integral part of the lamp socket. The resistor itself is completely insulated in moulded bakelite and sealed in metal (U.S. Pat. No. $2,421,321$)... Small space is required-units are available for mounting in $9 / 16^{\prime \prime}$ or $11 / 16^{\prime \prime}$ clearance holes-
A wide choice of optional features includes metal finishes, terminal types, lens shapes and colors, etc. Meet Military (MIL Spec) and Civilian (UL and CSA) requirements.
All Assemblies Are Available Complete with Lamp.

SUb-MINIATURE OIL-TIGHT

For use with tiny	For heavy-duty indu
Incandescent bulbs	Impervious to

(T-13/4.... Many | oil, water, and units available for use

ully insulated. Single-Terminal
units are for use on grounded tion. Complete
$\begin{aligned} & \text { circuits. Also Dimming and Non- } \text { series for } 11 / 16^{\prime \prime}, 1^{\prime \prime} \text {, } \\ & \text { and } 1-3 / 16^{\prime \prime}\end{aligned}$
Dimming sub-miniatures. Meet all and $1-3 / 16^{\prime \prime}$ mounting. Use applicable Military Specifications. I patented built-in resistor- Neon lamps. SAMPLES ON REQUEST - AT ONCE - NO CHARGE

DIAMTGFT

46 STEWART AVE., BROOKLYN 37, N. Y. - HYacinth 7.7600
 DIALIGHT CORP., 46 Siewart Ave., Brooklyn 37, N. Y. Send brochures \square for NE-51 Neon lamp \square Sub-Miniatures \square Oil-Tight on Pilor Lights
Name
Company
Address
Position.

CIRCLE 31 ON READER-SERVICE CARD

NEW ENGLAND Junior Utility Ovens

- Low cost - Easy to operate
- Minimum maintenance

Junior Sizedz $24^{\circ \prime} \times 24^{\circ \prime} \times 34^{\prime \prime}$ Tomp. range to $1000^{\circ} \mathrm{F}$.

Model	Internal dimensions	Temperafure range	Ideal for: Baking
CA 250	22" w by $20^{\prime \prime} \mathrm{d}$ by $23^{\prime \prime \prime} \mathrm{h}$	us 10 $250^{\circ} \mathrm{F}$	Curing
CA 550	20" w by $17^{\prime \prime} \mathrm{d}$ by $22^{\prime \prime} \mathrm{h}$	100° to $550^{\circ} \mathrm{F}$	Processing
CA 650	20" w by $17^{\prime \prime} \mathrm{d}$ by $22^{\prime \prime} \mathrm{h}$	100° to 650\%\%	Meat l
CA 1000	$18^{\prime \prime} \mathrm{w}$ by $15^{\prime \prime} \mathrm{d}$ by $21^{\prime \prime} \mathrm{h}$	$100^{\circ} 10$ 1000\%	Sample Testing

90 day Guarantee on workmanship and maperials.
All ${ }^{4}$ models have baked hammortono gray finish with an inside
STANDARD EQUIPMENT: Bomom drip pan, $\mathbf{2}^{\text {20 }}$ above oven Aoor;
interlocking switchos for fan and hoating eloment provents heaf

SPECIAL EQUIPMENT: Tomporaturo control instrumentation and non-standa
mew encland ALDO A CIMTLETE LIME OF MEAVY DUTY, CU\& OVEM \& FURMACE COMPAMT innmentakion in mort enjer oitico.

ORANGE, CONN

CIRCLE 34 ON READER-SERVICE CARD

CIRCLE 32 ON READER-SERVICE CARD

Dual Function npn-pnp

TIVO TRANSISTORS, an npn and a pnp, are used together in a versatile flip-flop configuration that finds a double application in a Transistor Curve Tracer manufactured by Cubic Corp. in San Diego, Calif. In one case the flipflop is used as a regenerative switch to produce a sawtooth signal at the rate of 500 cps . The same flip-flop design is also used to provide bi-stable multivibrators in a three-stage binary counter.

Astable Multivibrator

Figs. 1 and 2 indicate the similarity between the pmp-npn fip-flops when used as oscillators or bi-stable multivibrators. In both cases, the transistors are in the common emitter configuration, because of bias considerations. The "switch" is turned "on" by a positive pulse to the base of the npn transistor, and "off" by a positive pulse at its emitter.
Fig. 1 shows the transistor switch as used in a sawtooth sweep generator. Here, in conjunction with two additional transistors, it provides the transistor equivalent of a bootstrap generator. The transistors Q1 and Q2 act as a regenerative switch and provide a charging source for C1. When the potential of $C 1$ approaches the battery

Fig. 1. Transistor switch used in a sawtooth sweep generator. With two additional transistors it provides the equivalent of a bootstrap generator.
supply voltage, the current through $Q 2$ decreases. This causes the regenerative switch to open. C1 then discharges through R4. During the discharge time, the output current of Q4 is coupled through C2 to the junction of R4 and R.5 in order to keep a constant voltage across R4. The result is a linearly decreasing voltage at the output terminal. Q3 supplies the current through C2 to the R4-R5 junction during the charge time of $C 1$.

The repetition rate for the sawtooth signal is approximately 500 cps . In the Cubic curve tracer, the same sweep generator is also used to provide $10-\mu \mathrm{sec}$ positive pulses to the binary counter. These pulses, with amplitudes of 4 to 5 v , are taken from the negative side of C1 and coincide with the positive peaks of the sawtooth signal.

Bi-Stable Multivibrator

Fig. 2 indicates how the pnp-npn switch is used as a bi-stable multivibrator. In this case, three multivibrators form a binary counter to produce a stair-step voltage. This is used in turn to provide a varying base drive for the transistor under test.

The binary counter is designed so that positive pulses from the sweep generator serve to trigger the first multivibrator either "on" or "off." If it is tripped "on" (but not "off"), the first multivibrator produces a pulse that in turn trips the second multivibrator, controls the third multivibrator in the same fashion. Assuming that all three stages are "off," the first pulse from the sweep generator serves to turn all three "on." The second pulse turns the first stage "off," but does not affect the second and third stages. The third pulse turns the first stage "on," and this switches the second stage "off." At the end of the eighth pulse, all three switches are "off."

The outputs of the three counting stages are summed on the base of a phase inverter. Summing resistors are arranged so that the third stage has an output of approximately 4 v , the

Flip-Flop

second stage 2 v , the first stage 1 v . The result is a stair-step signal varying between 7 v and 0 . The repetition rate is approximately 30 per second. An examination of Fig. 2 indicates that a positive pulse at the input terminal passes through both CR1 and CR2 and through C5. The pulse arrives, therefore, coincidentally, at both the base and emitter terminals of Q6. However, the value of parallel resistances R10 and R12 is less than that of R11, and this lowers the voltage at the Q6 emitter. The resulting bias permits current to flow from collector to emitter through Q6.
This results in a $20-\mathrm{v}$ pulse at the $Q 6$ emitter. The pulse passes through $C 6$ to trip the next stage. It also causes a drop in the base voltage of Q5. The resulting emitter-to-base bias promotes a current flow through the Q5 collector. This raises the voltage on the base of Q6 and keeps the flip-flop "on," with steady power available at output 1 .

A second positive pulse at the input terminal is blocked at CR1 by the high potential on the base of Q6. The pulse passes through CR2, however, and is transmitted through $C 5$. The pulse stops the current flow through the Q6 emitter, which raises the voltage on the Q5 base and thus

Fig. 2. The pnp-npn switch used as a bistable multivibrator. Three multivibrators form a binary counter to produce a stair-step voltage.
trips the flip-flop to the "off" condition.
The abrupt drop in voltage at the Q6 emitter puts a negative pulse through C6, but the bias requirements of the input diodes of the next flipflop stage prevent the pulse from affecting its "on" or "off" condition.
The signal at output 1 is a square wave with a repetition rate half that of the positive pulses received at the input terminal. The amplitude of the signal is determined by the ratio between resistances R12 and R9, for the lower limit, and between R12 and the combination of R9 and R8 plus the collector-emitter resistance for Q6 for the upper limit.
Experience has indicated that the ac response of the switch can be improved through the use of a capacitor, C4, between the emitter of Q5 and the positive supply voltage. The certainty with which the switch trips "on" with a positive pulse at the base of Q6 depends on the speed with which Q5 reacts to the lowered voltage on its base. C4 allows this response to be virtually instantaneous. And once current is flowing from emitter to collector of Q5, the proper bias on the Q5 base is assured by the action of $Q 6$ in conjunction with the values of resistors $R 7, R 8, R 11$ and R12. R7 and R8 are selected to provide a steady negative bias to Q5, R11 and R12 give a positive bias to Q6.

Stability in the "off" position is provided by resistor R9. The ratio of this resistance to R12 puts a reverse bias on the emitter of Q6. This bias must be overcome by a positive pulse on the base of Q6 before the switch will be tripped "on." A low value of $R 9$ will assure protection against unwanted transient pulses on the Q6 transistor base.

Thus by suitable selection of resistances and capacitances, the pnp-npn flip-flop can be made either bi-stable or self-oscillating. Moreover, in the bi-stable configuration, the minimum pulse that will trip the switch can be predicted and controlled with great accuracy.

"SELECTED ANSWERS" to instrument hearing problems

How Fafnir can help you cut costs, and meet bearing specifications exactly

Fafnir's broad line of precision instrument bearings includes types and sizes that meet exact specifications in a wide variety of instrument and precision mechanism applications. Made in ABEC classes 1, 3, 5 and 7, these bearings make possible significant savings. Write for catalog. The Fafnir Bearing Company, New Britain, Conn.
SOME POPULAR TYPES OF FAFNIR INSTRUMENT BEARINGS

INCH DIMENSION SERIES
Single row radial, extra-small. Made in bore sizes from $1 / /^{\prime \prime}$ to $11 / 4^{4}$. Made to ABEC-3 tolerances in bore sizes Up to $3 / 4$ and ABEC.5 tolerances in bore sizes up to
$3 / \mathrm{m}^{*}$. Available open, or with one or two 2/r. Available open, or with one or two
removable steel shields. Designed to take thrust, radial, or combined loads.

FLANGED SERIES
This series
This series features shoulders integral with the bearing. Made with eters, and with or without removable shields. Straight OD fianged bear. ings are interchangeable with un.
flanged bearings of same bore size Tapered 00 bore sizes: .1250, .1875 , .2500, .3125 . Straight 00 bore sizes: $.1250, .1875, .2500, .3750$, Made to ABEC-1,-3-5 tolerances.

miniature series
Special precision, made to ABEC-5 and ABEC-7 tolerances. . 0935 bore. Flanged, straight out.
side diameter type avallable, with or without removable shields, for application where it is difficult or costly to application where th in
mhoulders in through-bored housings.

CIRCLE 33 ON READER-SERVICE CARD

for LASTING RELIABILITY!

YouNeed the

MODEL 310 A ALL ELECTRONIC DIGITIZER

Franklin AII Electronic Digital Voltmeter

5 COMPLETE READIMGS/SEC . ACCURACY 0.1\% Full Scale

MODEL 310 A DIGITAL VOLTMETER WITH MODEL 318 AMPLIFIER

Accuracy: Plus one count, minus nothing. $(0.1 \%$ of full scale.)
Ranse: XI, 0.1 V to 120.0 V .
$\times 10,0.01 \mathrm{~V}$ to 12.00 V .
$\times 100,0.001 \mathrm{~V}$ to 1.200 V .
X1000, (318 A Amp. only) 0.0001 V to 0.1200 V .

Imput, Impadance to Amplifier: 318, 1 megohm. 318 A, 100 K ohms.
Speed: Adjustable from 5 complete readings per second down. (310 A Digitizer alone: from 60 complete readings per second down.)
Reading modes: Manual-triggered by push button. Automatic-self triggering at 10 readings per second.
External-by relay closure.
External trigger-reads on applications of 20 volts minimum pulse with 5 volts per microsecond rise time.
Outputs: Visual-4 illuminated decimal digits.
(First digit : zero or one.) Stair case code-a nine is approximately 55 volts; a zero is approximately 130 volts. Time gate-linearly proportional to input voltage (100 microseconds per volt.)

The Model 310 A is the voltmeter you've been looking for to provide you with reliable readings without periodic factory adjustments. It is designed, built and proven for making reliable production line and laboratory precision voltage measurements from 0.0001 volts DC to 120.0 volts DC in four ranges.

This versatile all electronic digitizer can also be used as an analog to digital conversion element in data reduction systems and for measuring strain, pressure, temperature, and motion
The 310 A with 318 amplifier will connect directly to the new Hewlett Packard Model 560 A Printer giving Five Complete Readings per second, or the Model 400 B CMC Printer giving Four Complete Readings per second. Other Printers can be operated with a matrix.

AVAILABLE FROM STOCK

 Franklin Electronics, Inc.BRIDGEPORT, PA.
Electronic \& Kuclear Development \& Manufacturing
For Additional Information write to Dept. 311.
CIRCLE 35 ON READER-SERVICE CARD

Highest Frequency T^{T} Covers Entire VHF S

ANEW class of "field accelerated" transistors with maximum frequency cutoff of 100 Mc is made possible by the Micro Alloy Diffusedbase Transistor (MADT) process. The MADT's constitute a new family of transistors which enable the transistorization of high-gain, high frequency amplifiers; high speed computers; high gain wideband video amplifiers; and other critical high-frequency circuitry.

Made by the Philco Corp., Lansdale Tube Co., Div., Lansdale, Pa., the MADT's are available to various voltage and frequency specifications for the design of transistorized equipment through the entire VHF and part of the UHF spectrum.

High frequency micro alloy diffused base transistor. With electrochemical techniques the colector can be placed on the edge of the graded field region, permitting high-speed operation at very low voltages.

Transistor
 Spectrum

RADIO RECEPTOR'S

Latest achievement of the GI team of semiconductor specialists is this universal silicon diode 1N658. Radio Receptor's newly developed process combines in skillfully balanced propor process every desirable characteristic you've sought in silicon diodes. Result is a fully reliable component that does a better job in almost every standard application.

In addition to the 1N658, Radio Receptor offers to the industry a full range of RETMA subminiature silicon diode types to meet other applications. Full information is available upon request to Section D-10.

RRco. 1N658 is available now in production quantities for immediate delivery from our factory. Small quantities for testing and evaluation cen be and orders sent direct to Radio Receptor will be handled promptly.

Uniform excellence in all parameters permitting a far wider range of applications
REDUCES EXPENSIVE INVENTORY reouces number of diode thpes required result in greater stability and longer life

- HIGH FORWARD CONDUCTANCE 100 mA @ IV.
- LOW REVERSE LEAKAGE . $05 \mu \mathrm{a}$ @ -50 V @ $25^{\circ} \mathrm{C}$
$25 \mu \mathrm{~m}$ @-50V@150 C
- high peak inverse voltage 120 V .
- FAST REVERSE RECOVERY 8OK ohms in $3 \mu \mathrm{sec}$.*
- high operating temperature $175^{\circ} \mathrm{C}$.
*When switching from 5 mA to -40 V . $\mathrm{RL}=2 \mathrm{~K} . C L=10 \mu \mu \mathrm{f}$.

RATINOS

Maximum inverse working voltage: 100 V .
Average forward current: 200 mA
Maximum power dissipation: 200 mW .

RAOIO \& EIECTRONIC

The transistors have a maximum frequency from 250 mc to as high as 1000 mc . MADT gains are typically 10 db at 200 mc and greater than 16 db at 100 mc . A low cost general purpose unit is available which will deliver typically 18 db at 50 mc and 32 db at 10 mc .

A logical outgrowth of the MADT is the development of a super high speed switch. If switching time is discussed in light feet instead of millimicroseconds, a typical transistor will switch "on" or "off" in ten light feet, requiring special oscilloscopes for measurement.
The MADT is a field accelerated transistor owing its high frequency response to a grading of the resistivity throughout the entire base from the emitter to the collector with no intrinsic region. The ultra high frequency properties of the transistor are a result of the fact that the current carriers move much more rapidly from the emitter to the collector than in conventional transistors. The MADT is made from the basic structure of an electro-chemically machined surface barrier and micro-alloyed transistor with a built-in electric field added. This speeds the carrier flow from emitter to collector and overcomes much of the random diffusion effect found in conventional units.

The electrochemical technique has another advantage in that the electrodes can be precisely positioned in the graded field resulting in controlled electrode capacities, break-down voltages and switching properties. In producing a transistor for tuned amplifiers, for example, the collector is placed on a relatively high resistivity portion of the grading and the emitter on a very low resistivity portion near the surface. This results in a very low collector capacity and base required for high frequency performance.

In the design of a switching transistor, the collictor is placed on a lower resistivity portion of the grading and emitter on a higher resistivity portion than in the amplifier case, so as to obtain the high gain, small rise time, and storage values lesired for this application. Using electrochemiool techniques, the collector can be placed di"ctly in the edge of the graded region, so that te high speed operation of the transistor is mainined down to very low voltages.

Selection and Application of

Travelling Wave Tubes-II

This is the concluding part of an article begun in the Nov. 1 issue of ELECTRONIC DESIGN. It deals with the design of solenoids and power supplies associated with travelling wave tubes.
Part I presented the procedures in selecting proper operating performance of a TWT and the most suitable circuit design, together with a discussion of the practical problems associated with designing and packaging a travelling wave amplifier.

Fig. 9. A miniaturized TWT with its solenoid.
N. Hansen and A. Nielsen

Federal Telecommunication Labs.
A Division of I. T. \& T.
Nutley, N. J.

AFTER THE operating parameters have been established, the design of the power supplies and associated circuitry can be effected. Necessarily the first consideration, hecause of its proximity, is the focusing field. Thi: ficld inay be produced by permanent magnet assemblies usually in a form called periodic focusing. Since this type of a structure is not generally avaiiable, only electromagnetic focusing will be discussed. This field is verv critical as to alignment, but not very critical as to magnitude. The tube design used at FTL demancis that the gun structure be free of magnetic fields. The tube is constructed with "barriers" which are disks of magnetic material at each end of the helix to assure parallel flux lines in the helix region. These requirements lead to an electromagnet in the long solenoid form wound on a non-magnetic tube with an enclosing magnetic shield. A picture of a miniaturized TWT and solenoid is shown in Fig. 9. The end plates have holes dimensioned to accept the TWT in a Class 4 fit in order to prevent flux fringing at this joint. In some cases, the most careful dimensioning and quality control practice does not allow this type of construction to be dependable in the alignment of the helix and magnetic field. This condition arises both in low noise tubes and in high power tubes. For this reason, it is sometimes
necessary to rotate the tube for minimum helix current or to construct the solenoid so the twt may be tilted a small amount to effect this alignment.

The cooling of the TWT is simple except in the case of high power TWT's in which the collector dissipates several hundred watts. In this case the TWT collector has fins attached and is cooled by air.
The electrical connections of the tube are usually made by flying leads to the filament cathode and grid. Since the accelerating anode helix and collector are all at about the same potential, we find that the easiest method of connecting these is to ground them through the barrier end plate joint, and to connect the collector to a separate lead if it is necessary to add a bias to avoid secondary emission. The solenoid mass does cause a shock problem and must be securely fastened, as heavy transformers must be, in military equipment.
The selection of the solenoid material is based on the relative importance of size, weight, power dissipation, and ease of cooling. Decisions involving compromises of the optimum materials and sizes must be made. To do this, we can derive an equation for power from the fundamental single turn solenoid which is:

$$
P=\frac{8.7}{K} B^{2} L\left(\frac{r+1}{r-1}\right) \times 10^{-6} \text { watts }
$$

where B is the flux density

L is the length in inches

r is the OD to ID ratio
K is a constant which includes the packing factor and relative resistance. If this function is plotted for a fixed gauss and length, we obtain the curve of Fig. 10.

Note that the power asymptotically approaches infinity at $r=1$. By inspecting the equation, we can see that if the OD were fixed due to size limitations that the ID should be made as small as possible, and hence, the winding should be as close to the electron beam as possible. Hence, we see a marked advantage of the new small diameter tubes over the older types. The curve shows the advantage of working with OD to ID ratios of 2 or greater.
The winding material will determine the factor K in the equation. We find practical values of K to be as listed:

	Copper	Aluminum
Foil	0.85	0.53
Wire	0.70	0.45

If the smallest size were desired, which goes hand in hand with the most efficient material, we would use copper foil. If a light inefficient solenoid were required, aluminum foil is most likely. The most
inexyensive and also the easiest to design is copper wire If the solenoid dissipation is relatively small and if the cooling problem is not difficult, as is the case in equipment shown later, an air cooled wirewound solenoid is the best choice. In military equipment designed for aircraft, for example, the choice is usually a liquid cooled copper foil solenoid. It is important to note that in foil solenoids the heat is readily conducted in an axial direction, this being the reason for cooling the end plates on foil solenoids.
At this point the material can be decided upon. Knowing the size limitations, the power required at room temperature can be found from the equation mentioned before, and then the maximum power at the highest temperature expected. The maximum temperature the insulation will allow could be used as the maximum average winding temperature. At this temperature, of course, is the highest voltage drop, since the current must be determined only by the flux density. Voltage is dictated by the solenoid supply. Because of the type of power supply this is 80 v . If the winding is designed for this voltage at 120 C , or 80 C above a 40 C ambient, as indicated by Class B insulation, it will be 40 v at -55 C . Therefore, the solenoid supply must be designed for a 40 to $80-\mathrm{v}$ range. Since the power and voltage are known, the current is also known. The design is completed by selecting the number of turns to produce the required gauss with the known current, and then determining the wire size by means of trial calculations.
The solenoid can then be wound. In case it is wire-wound and air cooled (as is the one in the equipment shown), the end plates and shell are machined from soft iron and, after winding on a
spool formed by the core and end plates, the shell is fastened to the end plates serving as the means of holding the assembly together.

Power Supplies

The TWT solenoid requires a constant current to maintain the field. In general, the field can vary as much as ± 5 per cent without degrading performance. In searching for a small efficient supply we find that the recent advances in core material permit the use of magnetic amplifiers, and ideal component around which to build the solenoid supplies. A circuit well suited here is commonly called the "self-saturating bridge magnetic amplifier" (Fig. 11). The regulation is accomplished as shown in the control characteristics (Fig. 12). The load ampere turns (supplying negative feedback) are bucked out by the reference current ampere turns; the net ampere turns determine the output.
The diodes are usually germanium or silicon since they are more efficient than other types and are small. The saturable reactor is a two-core device using toroidal tape wound cores of grain oriented 50 per cent nickel iron alloy called Deltamax, Orthonal, and other tradenames. The design of the reactor is relatively simple, using much the same formulae as transformer design. A design procedure is covered in the "Reference Data for Radio Engineers," Fourth Edition, published by I. T. \& T. Available cores should be selected from those with ID to OD ratios of approximately two-thirds to three-fourths.

The actual core size is selected on the basis of its hold-off volt-amperes. The hold-off voltage is usually 85 to 90 v to take care of the $20-\mathrm{v}$ minimum specified in the section on solenoids. This deter-

SAVE MONEY Switch to STAMPINGS

ENGINEER IN STAMPINGS-INCREASE PROFITS.
A good solution to
designing and cost problems is through the use of Advance metal stampings which cut material costs, labor costs and assembly costs.

STAMP CRITICAL METAL
STAMP CRITICAL METAL
PARTS TO IMPROVE YOUR
COMPETITIVE POSITION

MICROWAVE FREQUENCY METERS
 L BAND to Ku BAND

Cavity frequency meters manufactured by Frequency Standards, Inc. offer an order of accuracy and stability far above the orrinary. Invar steel construction, precision-ground micrometer thread, superior electrical characteristics are all an integral part of FREQUENCY STANDARDS frequency meters. Models covering from 900 to 18,000 megacycles and in constructions for portable, waveguide, or special application provide a wide range of instruments for the engineer. Available in calibrated and direct-reading scales, at $.01 \%$ accuracy on most models.

Write for complete information on Frequency Standards microwave frequency meters, or contact your nearest representative . . . offices in principal cities.

Frequency Standards
 P.O.Box504 Asbury PRospect A.0500

Fig. 13. A 10 kv accelerating power supply using
mines the load winding turns. The wire size is de termined by the allowable temperature rise. A figure of 1000 circular mils per amp is usually adequate for Class B insulation in 65 C ambients. The other windings are determined from the regulation requirements. Usually 30 -ampere turns on the feedback and on the reference winding are sufficient. Then the windings should be checked to see if they will fit on the selected core
In the packaged amplifier, the next consideration is that of the accelerating voltages, ranging from 500 to 15000 v . The $500-\mathrm{v}$ supplies can readily be regulated using standard vacuum tube circuitry However, a $15000-\mathrm{v}$, 25 -ma supply using vacuum tube regulation is nearly out of the question because of its size and inefficiency. It would appear that, sacrificing only response time, a magnetic amplifier would be a good component to use in this case also. The magnetic amplifier can be used as a replacement for the series tube as in the circuit o Fig. 13. Here the magnetic amplifier is connected so that it varies the ac reaching the rectifiers and is controlled by a dc coupled feedback amplifier.
The string of gas tubes in Fig. 14 is used to furnish dc coupling to the low impedance control winding without the loss that would be entailed with resistors, thus allowing us to utilize the gain of the magnetic amplifier. The supply holds the voltage to ± 2 per cent with line voltage changes from 105 to 125 v and is adjustable from 500 to 6.50 v
In addition to the major supplies, other voltages

Fig. 14. A power supply with series gas tubes to

- magnetic amplifier as a series control element.
must be applied to the grids and/or focusing electrodes of the TWT. This is in the same nature as the bias on a triode and the same techniques such as cathode bias can be used with TWT's. Some means of adjusting the bias and focusing should be made. These requirements were met by using glow discharge regulator tubes in series with the power supply in the packaged TWT amplifier mentioned previously. Sometimes it is necessary to operate the collector positive with respect to the helix to prevent secondary emission of the collector from reaching the helix. This can be done since some positive voltage is usually avaiable in equipment of this type. Also required in the packaged TWT amplifier are access points to the grid to allow pulsing or modulating the TWT. The TWT may be considered as a low mu triode in applying pulses or modulation. Means for measuring the cathode, and helix current should be included.
Alignment of the tube involves setting the parameters to those specified on the data sheets and adjusting the solenoid current and bias for minimum helix current and then setting the high voltage for maximum output. These parameters are interdependent, but no difficulty in this sort of alignment is found.

Acknowledgement
The packaged travelling wave tube amplifier discussed in this paper is credited to Mr. L. V. Kollmar of Federal Telecommunications Labs. The TWT displayed was developed under U.S.A.F. funds and is gratefully acknowledged.

dc coupling to the control winding.

DESCRIPTIVE DATA

- SIZE: 1 inch diameter $\times 21 / 4$ inches long
- WEIGHT: 3.8 ozs.
- FULL sCale range: 40 to 400 degrees/zecond
- linearity: 0.1% of full scale to $1 / 2$ renge. within 2% to full range
- RESOLUTION: 0.01% full scale
- DAMPING: Fluid damped, remperalure compeasaled
- PICKOFF: Variable Reluctance type, 100 -6.000 cps
- MOTOR EXCITATION: 6.3 volts - $400 \mathrm{cps}, 26$ volls . $400 \mathrm{cps}, 9$ volfs -1.000 cps

GOLDEN GNAT

Miniature Rate Gyros for
 Missiles and Aircraft

Here is a precision, minature rate gyro. It's tiny . . . measures only 1 inch in diameter and $21 / 4$ inches in length. It's rugged . . . withstands 100 G shock and 10 G vibration to $2,000 \mathrm{cps}$. It has a record of proven performance.
Even under the most severe environmental conditions the Golden Gnat will perform as required. To make this possible many unique design details have been incorporated. One such detail is the Gnat's gold plated steel housing for improved corrosion resistance and positive hermetic sealing.
Wherever the need exists for high performance miniature rate gyros such as for autopilot stabilization in missiles and aircraft, antenna stabilization and fire control applications, the Golden Gnat is ideally suited. Write for Bulletin GN . . . Minneapolis-Honeywell, Boston Division, Dept 10.1400 Soldiers Field Road, Boston 35, Mass.

Honéyowell

BOSTON DIVISION
CIRCLE 39 ON READER-SERVICE CARD

Designing FM Systems

with an

Analog Computer

Henry A. Musk
Electronics Division
Westinghouse Electric Corp. Baltimore, Md.

Abstract

\section*{Background of Problem}

High power transmitters in the vif band have a special antenna problem not found at the higher frequencies. The antenna circuit is equivalent to a series resonant circuit with a Q of the order of 700 . Since the time constant of buildup or decay is $\mathrm{Q} / \pi f_{0}$, amplitude modulation keying speeds are limited to about 20 words per min with a typical 90 per cent rise time of 30 msec . It was demonstrated in 1948 at the Westinghouse laboratories that this keying speed limitation could be overcome by using a newly developed principle of frequency modulation transmission through synchronously tuned antenna networks. In the fm system the transmitter master oscillator is frequency shift keyed. The antenna circuit resonant frequency, in addition, is maintained in synchronism with the oscillator instantaneous frequency by keying a saturable reactor in the antenna circuit.. Under these conditions the fm signal is transmitted without distortion or power loss. A 500 kw installation using this system has been made and described.' In 1949 a patent application was made by the author which described a system of this type adapted for use with a fixed frequency source such as a crystal oscillator or an Alexanderson alternator installation. Since the driving oscillator cannof be frequency modulated directly, fm may still be obtained under certain conditions by merely keying the antenna. This system is both experimentaily and analytically more complicated and was investigated with a specially constructed analog computer. The results of this investigation are the subject of this article.

AN ANALOG computer can be used to compute variable frequency network problems, or variable parameters in general, eliminating the tedium of direct analytic computation. This article illustrates how a specially-constructed analog computer was used to analyze synchronously tuned antenna networks for transmitter frequency modulation. The equivalent circuit studied is shown in Fig. 1. The fundamental characteristics and quantitative calculations for the circuit were determined by the computer.

The Problem

In Fig. 1, the current in the antenna, $\mathrm{I}(\mathrm{t})=$ $A(t)^{i \theta(t)}$, is to be determined by the analog computer.
The required computer outputs are:

1. $\mathbf{A}(\mathrm{t})=$ amplitude
2. $\omega(\mathrm{t})=\mathrm{d} \theta / \mathrm{dt}=$ instantaneous frequency

The frequency modulation investigated for the vlf band is 15 to 30 kc .
The inductance of the loading coil is varied at the keying frequency f_{m} by an amount, K, which is of the order of 1 per cent. The antenna is represented by the capacity, C , and the total radiation and circuit losses, r. The transmitter input is Ee ${ }^{\text {voot }}$. The fundamental characteristics of the circuit to be determined are the conditions under which the above system produces frequency modulation, not phase modulation, of the radiating current, $I(t)$.

The fundamental characteristic demonstrated is that frequency modulation will be produced by the keying system of Fig. 1 subject to certain conditions:

1. K is much less than 0.1.
2. The two resonant frequencies of the circuit f_{1}, and f_{2}, corresponding to the switch open and closed, are symmetrically below and above the carrier frequency, f_{o}, with an error less than half the half-power bandwidth of the circuit, $f_{o} / 2 Q$.
3. The circuit Q is high enough so that the time constant $Q / \pi f_{0}$ is greater than the modulating period $1 / f_{m}$ at which the switch is operated. This condition sets a lower limit on f_{m} for a given Q and f_{0} requiring that a sub-carrier frequency be used to frequency modulate the antenna.
Quantitative calculations demonstrate the above conditions and also circuit action when these conditions are not fulfilled.

The Analog Computer

Special equipment was built to derive the output $\omega=\mathrm{d} \Theta / \mathrm{dt}$ since this data cannot be obtained from a standard analog computer. This equipment can be used to analyze any frequency modulation network problem. The system diagram for the computer is shown in Fig. 2. A crystal-controlled carrier is generated from a Hewlitt Packard 522-B electronic counter at the analog frequency of 1 cps ,

Fig. 1. The equivalent circuit of the antenna system.

Fig. 2. Block diagram of the analog computer system.
which corresponds to the actual frequency of $15,-$ 000 cps . The antenna circuit simulator is composed of four operational amplifiers as shown in Fig. 3. The output, $I(t)$, is fed to a novel, digital-type $f m$ detector composed of five gated decimal counters, Hewlett Packard type AC-4A. The counters receive 100 kc pulses which are gated at the instant $I(t)$ goes through zero so that the time for a period of $I(t)$ is measured. During the next cycle of $I(t)$ this number is printed by a decimal counter printer so that every cycle of $I(t)$ is measured. The decimal counter printer is the Berkeley model 1452. The amplitude is continuously recorded by a Fairchild camera oscilloscope. The keying signal for the modulation relay is generated by a Hewlett-Packard 202A function generator at about 0.02 cps , corresponding to the actual frequency of 300 cps .
Because of the low frequency keying limit for this problem, \mathbf{f}_{m} would have to be a subcarrier for teletype modulation of alternator transmission. Teletype keying variations are at a rate of only 2 to 23 CY. This subcarrier would be turned on and off by the teletype signal. Data recorded here is in terms of the subcarrier only, since no information is gained from keying the subcarrier. However, in all cases the carrier amplitude is allowed to stabilize before turning on the subcarrier.

The frequency shift is 1 per cent; the fm detector output is in terms of carrier period rather than fre

Fig. 3. The antenna circuit simulator. Standard $1.0 \mu \mathrm{f}$ integrators with 30 K feedback pots were not used. The Q is set with RI; 16 megohms gives a Q of 800 . The switch, $S 1$, across the 150 K resistor is used to stabilize the carrier amplilude prior to starting the symmetric keying. The output is the analog of E_{c} rather than $I(t)$. The $l(t)$ can be obtained from amplifier 2.

GENERAL SPECIFICATIONS						
TYPE NUMBER	BV ${ }_{\text {cb }}$ volts	$\mathbf{B V}_{\text {ces }}$ volts	$h_{p \varepsilon}$	G. db		F.0
$\begin{aligned} & \text { MN21 } \\ & \text { (2N375 Reserved) } \end{aligned}$	-80	-65	55	37	5	10
2 N 176	-40	-30	60	35	2	7
2 N 178	-40	-30	30	30	2	5
MN26 (2N376 Reserved)	-40	-30	80	36	4	7
$\begin{aligned} & \text { MN25 } \\ & \text { (2N351 Reserved) } \end{aligned}$	-40	-30	60	34	4	7
$\begin{gathered} \text { MN24 } \\ \text { (2N350 Reserved) } \end{gathered}$	-40	-30	40	32	4	7
MN28	-30	-20	65	32	2	8
MN29	-40	-30	65	35	2	8

For complete technical information concern ing these and other performance-proven Motorola Semiconductors, write, wire or phone
Motorola, Inc., 5005 East McDowell Road, Phoenix, Arizona. BRidge 5-4411
 HOLYWOOD 28, CALIFORNI
6555 Suntee Boulevard 6555 Sunsel Bollevar
HOllywood 5.3250

for outstanding periormance and proven rellabllity In military, indusirial and commercial applications

- High power output - low distortion
- Reliable high-temperature performance
- More stable with heat cycling
- Maintain gain at high power
- Proven reliability - highest quality construction Millions of Motorola power transistors have successfully withstood the only real test of reliability - months of customer use with virtually no failures.
- "Productioneered" - Motorola power transistors are engineered for extreme quality. $\mathrm{in}^{\text {in }}$ quantity. You are assured a dependable supply at the most competitive prices. Motorola has produced more power fransistors than any other manufacturer.
dependable quality in ouantity
MOTOROLA SEMICONDUCTORS

MOOTOROLA, INC SOOSE. MCDOWELI
HOENIX, ARIZOMA

Other Motorola Quality Products Include:

Migh.Voltage
Ower Transistors Power Transistors

Sllicon Powe
Rectiviers

Curves of Poriod (sec/cy) and
Amplitude (per cent) with respect to time for various values of Q. Curves 1 through 5 are plotted for symmetric frequency shift. Curves 6 through 9 are for asymmetric frequency shift. Subcarrier rate is $50 \mathrm{sec} / \mathrm{cy}_{\text {; }}$ source period is $1 \mathrm{sec} / \mathrm{cy}$.
quency. However, since the shift is 1 per cent, no appreciable linearity error occurs from plotting the reciprocal of frequency.

The antenna Q values are $800,400,200,100$, and 50. Curves of amplitude envelope and instantaneous carrier period are shown for two cases, symmetric shift and asymmetric shift.

Adjustment of the analog system to prescribed values can be accomplished quite accurately with the equipment mentioned above and is described in the Appendix.

Symmetric Frequency Shift. Curves 1 through 5 show the events per time of each modulation cycle for the various circuit Q's. At low values of Q, transition to phase modulation can be observed. Note that with symmetric shift no appreciable keying transient is observed. The carrier has been allowed to stabilize prior to time equals zero as previously mentioned. For $Q=800$, no amplitude change can be measured and the output frequency

is almost a square wave. Hence, for a typical antenna, 300 cps is a reasonable subcarrier frequency.

Asymmetric Frequency Shift. Several interesting differences can be seen in curves 6 through 9 as compared to symmetric shift. For $Q=50$, even though the source is shifting from 1.000 to 1.008 (0.8 per cent), the output frequency shifts symmetrically about the source frequency after a short keying transient.
The most typical fm curve is for $Q=200$, curve 8. Here the output shift again becomes symmetric after a long keying transient, but the amplitude has dropped to 50 per cent.

Under these conditions the alternator would be unloaded and the system would not work. It is assumed that if the amplitude remains constant then the alternator load is constant and no reduction in alternator power output will result.

The data for curves $9 Q=400$, and for $Q=800$ (not shown) were slightly erratic, but the phenom-
ena would appear to represent an oscillatory keying transient both in frequency and amplitude analogous to a sine wave applied to a series resonant circuit, perhaps 20 db down from resonance in the steady state.

Note that curve 9 shows the results of a slightly asymmetric shift. The keying transiert is not objectionable.

High Speed Problem

Operational tests over long distances on high speed keying showed that standard teletype conversion equipment gave more errors in the presence of impulse noise (static) than reception by ear at lower speeds. Noise discriminating circuits can be developed at the receiver to eliminate these errors.

Conclusion

The conditions under which frequency modulation transmission is possible in the vlf band from a fixed frequency source can be determined using analog computer techniques.
The analog computer technique described is applicable to any fm circuit analysis problem.

Appendix

Operational Procedures

The self resonant frequencies of the series circuit can be measured (to four figures) by applying a battery to the input and reading the time on the printer. The source

EI ©TRONIC DESIGN • December 1, 1957

It is inconvenient to make a one cycle sine wave, hence, a ictangular wave was actually applied to the input. The Q of the circuit eliminates harmonics, however.

References

L. I. I. Jacob, H. N. Brauch, "Keying VLF Transmitters at Hi Speed", Electronics, Vol. 27, No. 12, pp. 148-151, D 1954.

frequency is measured similarly by connecting it directly to the fm defector.
The Q can be measured by applying a battery to the input and counting the number of cycles, n, for the envelope on the Fairchild camera photograph to drop to $0.368=1 / \mathrm{e}$. For high Q s it is more convenient to remove the counter reset and watch the amplitude drop on the oscilloscope. At 0.368 the counter will read $n / 2$. of this point $\mathrm{Q}=\mathrm{n} \pi$.
Transient response at and near resonance was checked for an applied sine wave with the Fairchild camera. Speed", Electronics, Vol. 27, No. 12, pp. 148-151,
1954.
See how the facts speak

- 100,000 hours estimated life Lower voltage drop
Higher current density Less reverse leakage
- Smaller size

RAß̈'IO RECEPTOR Petti-Sel

 SELENIUM RECTIFIERS are revolutionizing the field!* high current density
Both rectifiers ave rated at $26 \mathrm{~V}, 8$ amps, but notice the significant space saving in the compact Petti-Sel unit.
RRco. Petti-Sel
rectifier
rectifier
compare the specs...

STANDARD SELENIUM RECTIFIERS									
NOMINAL CELL SIZE HICHES		$\begin{aligned} & \text { RRCO } \\ & \text { CEIL } \\ & \text { CODE } \end{aligned}$	Continuous DC Amperes at $35^{\circ} \mathrm{C}$ Ambient						
		SINGLE. PHASE	THREE PHASE						
Vert	Horiz.		Half 	Center Tap	Bridge	$\begin{array}{\|l} \text { Halt } \\ \text { Wave } \end{array}$	$\begin{aligned} & \hline \text { Center } \\ & \text { Tap } \end{aligned}$	Bridge	
1.0	1.0		M	. 11	22	. 22	. 29	. 40	. 33
13/16	13/6	P	. 23	. 45	. 45	. 60	. 81	. 67	
1.5	1.5	0	. 45	. 90	. 90	1.2	1.6	1.3	
2	2	S	. 70	1.4	1.4	1.8	2.5	2.1	
3	3	U	1.6	3.2	3.2	4.2	5.8	4.8	
33/8	33/8	V	2.0	4.0	4.0	5.3	7.2	6.0	
4	4	W	3.0	6.0	6.0	8.0	10.8	9.0	
4.5	5	G	3.75	7.5	7.5	10.0	13.5	11.2	
41/4	6	T	4.2	8.5	8.5	11.0	15.0	12.5	
5	6	H	5.0	10.0	10.0	13.3	18.0	15.0	
6	71/4	L	7.5	15.0	15.0	20.0	27.0	22.5	

RRCO. PETTI-SEL SELENIUM RECTIFIERS									
HOMINAL CELL SIZE (INCHES)		$\begin{array}{\|l\|} \text { RRCO. } \\ \text { CELL } \\ \text { CODE } \end{array}$	Continuous DC Amperes at $35^{\circ} \mathrm{C}$ Ambient						
		SINGLE PHASE	THREE PHASE						
Vert	Horiz.		$\begin{aligned} & \text { Half } \\ & \text { Wave } \end{aligned}$	Centar	Bridge	$\begin{aligned} & \text { Half } \\ & \text { Wave } \end{aligned}$	$\begin{gathered} \text { Center } \\ \text { Tsp } \end{gathered}$	Bridge	
1.0	1.0		6	0.2	0.4	0.4	0.6	1.0	0.6
1.3	1.3	11	0.5	1.0	1.0	1.5	2.5	1.5	
1.6	1.6	16	0.75	1.5	1.5	2.25	3.75	2.25	
2	2	25	1.25	2.5	2.5	3.75	6.25	3.75	
2.6	2.6	44	2.25	4.5	4.5	6.75	11.25	6.75	
4	4	100	4	8	8	12	20	12	
4	8	200	8	16	16	24	40	24	
4	12	300	12	24	24	36	60	36	
8	8	402	16	32	32	48	80	48	
8	12	600	22.5	45.0	45.0	67.5	112.5	67.5	
8	16	800	30.0	60.0	60.0	90	150	90	

and compare the prices! HCD Petti-Sel rectifiers, developed in Western Germany by Siemens and now made in the U.S. by Radio Receptor, of fer many important el ctrical advantages over standard types plus economic advantages.

See for yourself - We'll be glad to send you further information on this remarkable new rectifier line. Submit your requirements to Section $D-12 R$

Semiconductor Division

RADIO REGEPTOR COMPANY, INC.
Subsidiary of General Instrument Corporation
240 WYTHE AVENUE, BROOKLYN 11, N. Y. - EVargreon 8.6000
Radio Roceppor producis for Indusiry and Governmenta Gormanium and Silicen Diodes, Solonium Rectifiors, Thermatron Dieloctric Moating Gonorotors and Prosses, Communications. Radar and Novigation Equipmont CIRCLE 41 ON READER-SERVICE CARD

Electronic Produa Since 1922

:Model \boldsymbol{A} simplex-duplex

- "communication" quality blowers

Now Catalog section \#40101-1 describes 60 DIFFERENT
TYPES covering almost any conceivable requirement in
TV-Broadcasting and Radio Communication.
Driven by Rotron's new "L" Frame Induction Motors $1 / 6 \mathrm{HP}$ to 5 H P

- $1 \phi-3$ ф 50-60-400 CPS
- EXTREME RELIABILITY

Design Forum

Compact

Digital

Voltmeter

FLEXIBILITY and compactness als the outstanding features of this new de. veloped digital voltmeter. The use of a magnetic amplifier together with min iture and subminiature parts assured a cos pact design. Two-unit construction lends flexibility and allows convenient application as a component of other equip ent. Through a carefully planned layout, nc ither accuracy nor accessibility have been sacrificed at all.

The instrument may be used as a digital voltmeter or digital ratiometer which fea. tures compact design, good resolution, high accuracy, high input impedance, and rugged construction. Full scale response is about four seconds. It covers ranges from $0-1$ vdc to $0-1000$ vdc with accuracy and reading resolution of 0.1 per cent.

It was designed by John H. Klopp of The Martin Co., Baltimore, Maryland to provide automatic measurement with a high degree of accuracy. It is now used as a standard component of electronic test equipment.

The two units (Fig. 1) are a digital read. out section which can be panel mounted
in

Fig. 2. Digital voltmeter schematic. Two fubes, a chopper, and a magnetic amplifier are the heart of the amplifier.
in a standard 3-1/2 in. hole, and an amplifier, 5 in . high by 4 in . square, which mounts on a separate chassis.
The amplifier (Fig. 2), is a plug-in type, receiving input power and reference voltage from the equipment with which it is used. Scale switching is done on the equipment, obviating the need for selector switches on the meter. The amplifier consists of a chopper input, vacuum tube ac preamp, and a magnetic amplifier which serves as a phase demodulator and driver for the servo motor. Very high gain is incorporated to provide good resolution. A feedback arrangement prevents hunting while a gain control makes the overall response more uniform when different reference voltages are employed. The unit employs a balance potentiometer to compensate for inherent electrical unbalance.

A 1 v reference is used when the instru-
ment is to measure on the $0-1 \mathrm{v}$ range. On all other ranges a 10 v reference is required, together with appropriate input attenuators.

The digital readout section (Fig. 3), consists of three components-a gearhead servo motor, an 11 turn Helipot, and a 10 turn digital dial assembly. These are direct, in line coupled, and housed in an aluminum tubular case. The Helipot provides for five per cent overtravel on both ends of all ranges before engaging the mechanical stops. This permits full utilization of all ranges and makes it possible to read slightly negative going voltages without having to switch polarity.

The accuracy of the system is a function of the accuracy of the Helipot and the reference voltage. Using a Helipot with 0.025 per cent linearity and zener diode regulation in the reference supply, an overall accuracy of 0.1 per cent is easy to get.

Fig. 3. Digital readout section. Only three components are in this easy to get at, reliable urit.

DRAW YOUR OWN CURVE

this overload relay is now tailored...to your equipment

NEVER BEFORE has any practical overload protector offered such close-tolerance specifications.

In most ratings, the Heinemann Silic-O-Netic Overload Relay may now be specified to trip on overloads as small as 15%. Time-delay characteristics can be selected which will permit starting inrush yet give high-speed tripping at critical load points.

Operating on the hydraulic-magnetic principle, this relay will always carry its full rated load despite ambient temperatures. It establishes a new and fully dependable close-tolerance between "must-hold" and "must-trip" current values.
Now, Silic-O-Netic Relays are available with tailored response characteristics. Within limitations, you specify the current value and the tripping time. Here is the ideal means of protection . . . an overload protector precisely rated in current and time delay to your specific equipment.

Risinvimpandy

EEECTRIG COMPANY
Plum Street
Tranton 2, N. J.
CIRCLE 43 ON READER-SERVICE CARD

New Products

Specifically designed for quick insertion in amplifiers and other miniature chassis, these Trinsel terminals require one swift motion for permanent installation and sealing. The Teflon terminal gives during insertion, then expands to hold permanently in place. Because of the material used, more severe shock, electrical and temperature conditions can be withstood.
Tri-Point Plastics, Inc., Dept. ED, 175 I. U. Willets Rd., Albertson, L.I., N.Y.

CIRCIE 44 ON READER-SERVICE CARD

PC Rołary Switches

Dip Soldered Connection

Designed for plug-in installation on printed circuit boards, these rotary switches are suited for any circuit requiring multiple switching. Consisting of a standard rotor and phenolic wafers, the switches differ from conventional rotary switches in that they eliminate manual wiring and soldering to each individual contact terminal.

This is achieved by using etched foil on the wafers to connect the contacts to terminal prongs on the base of each wafer. Dip soldering of the printed circuit board establishes all switch connections in one process. Other advantages include the elimination of solder drip, no temper loss in the contacts, no torque problem with ganged assemblies, and elimination of wiring errors. The switches can be supplied in either 8 or 12 position types, in single or ganged assemblies to meet specific requirements.
Knight Electronics Corp., Dept. ED, 210 S. Desplaines St., Chicago 6, Ill.

CIRCLE 45 ON READER-SERVICE CARD

Taper-Pin Connections
Simplify Circuit Changes

This taper-pin panel assembly was developed for equipment which requires a high degree of flexibility in connections, and thus is particularly useful for circuit testing and development. Versatility is achieved with an aluminum frame in which shielded panels are snapped and locked. While a frame will accommodate as many as five or eight panels, no more need be used than each application requires. Insertion of Stapin-terminated wires into the panel is performed easily with an insertion tool, and they can be removed with needle-nose pliers.

Burndy Corp., Dept. ED, Norwalk, Conn.
CIrcle 46 on reader-Service card

Shields for Power Supplies
Cut Transformer Radiation

This Netic magnetic shield is designed for isolating the substantially increased transformer radiation in transistorized power supplies. The Netic shield meets this requirement by effectively attenuating both high and low frequencies, and thus preventing magnetic radiation or hum at the source. In addition, the shield simplifies filtering problems associated with this type of supply, is not retentive, not shock sensitive and does not require periodic annealing.
Perfection Mica Co., Magnetic Shield Div., Dept. ED, 1322 N. Elston Ave., Chicago 22, Ill.

Circle 47 on reader-Service card

Microphones
Miniature Size

Measuring $1 / 2 \mathrm{in}$. sq and about $1 / 4 \mathrm{in}$. thick, the MC30 microphone was designed for use by manufacturers of hearing aids, tape recorders and dictating equipment. It weighs less than $1 / 6$ oz and is of the controlled magnetic type. Response rating is from 400 to 4200 cps ; output is -76 db at 1000 cps , and impedance is 2000 ohms at 1 kc .

Shure Brothers, Inc., Dept. ED, 222 Hartrey Ave., Evanston, Ill.

CIRCLE 48 ON READER-SERVICE CARD

Oscillogram Reader Handles Non-Linear Channels

The Model R-1 oscillogram reader is capable of handling a large number of linear or non-linear channels, correcting for linear or non-linear scale factors, as well as automatically correcting for the zero line location of each channel. Tracking, record damage and record tension problems have been virtually eliminated. Features include film widths of $0-16$ in.; expendable rolls which can be loaded in the darkroom; design for both reading and scanning; forward and reverse operation; and a vertical variable scale to count cycles, read frequencies, or space stations directly.
Gerber Scientific Instrument Co., Dept. ED, 162 State St., Hartford 3, Conn.

CIRCLE 49 ON READER-SERVICE CARD

Sensitive Relay
Requires $2 \mu \mathrm{w}$ Power

Transistorized relay type 160 features sensiivity down to $2 \mu \mathrm{w}$. Designed for dc applications, hese relays can pick-up as low as 20μ at 100 nv. Contact combination is from spst through pdt. Power source for the transistor may be pither external or internal. The internal source is battcry powered using mercury batteries packged within the relay enclosure. Incorporating viping action, the contacts have a capacity of 1 mp inductive or 3 amp resistive at 115 v ac or 29 dc. Available coil resistance is up to 30,000 ohnv. The relays are available either with hernetically sealed dust cover or open. Headers are vith r plug-in, solder lugs, or other variations.
Cineral Automatic Corp., Dept. ED, 12 Carlon Ive., Mountain View, N.J.

CIRCLE 50 ON READER-SERVICE CARD

INSTANTLY...
measure and supply DC voltages to 0.02\%
with the new KIN TEL DC voltage standard and null voltmeter
lasoratory accuracy. The Model 301 is an extremely compact and accurate variable DC power supply and calibrated null voltmeter. It employs KIN TEL's proved chopper circuit to constantly compare the output voltage against an internal standard cell. As a DC voltage standard, it combines the stability and accuracy of the standard cell with the current capabilities and excellent dynamic characteristics of the finest electronically regulated power supplies. The self-contained null voltmeter indicates the voltage difference between the supply in the 301 and the DC source being measured, affording simple and rapid measurement of DC voltages to an accuracy of 0.02%.
PRODUCTION LUNE SPEED. DC voltage measurements can be made as fast as changing ranges on a VTVM. Merely set the direct reading calibrated dials on the 301 to exactly null out the unknown DC input voltage. The reading on the dials then indicates the value of the unknown input voltage to within 0.02%. As a variable DC standard or power supply, the calibrated dials provide instant voltage selection to an accuracy normally attained only with standard cells.
VERSATIITIT. The KIN TEL Model 301 is ideal for rapid and accurate production calibration of precision measuring instruments and DC power supplies . . . design of DC amplifiers and complex electronic circuitry ... computer reference . . . versatile precision reference for calibration and measurement laboratories.
0.01% stability
0.02\% accuracy

1 to 501 volts at 20 ma
4 accurate null ranges
0.002% regulation
Less than $100 \mu \mathrm{~V}$ ripple

Representatives in all major cities. Write today for demonstration or descriptive literature 5725 Kearny Villa Road, San Diego 11, Calif., BRowning 7-6700

CIRCLE 51 ON READER-SERVICE CARD

IMPORTANT SPECIFICATIONS

Output Voltage \& Current 1 to 501 volts at up to 20 ma full Scale Meter Ranges (Zero Center)

DC Output Range $\pm 500,50$ volts
DC Input Range ± 500, 50 volts
DC Null Meter Range . . $\pm 50,5,0.5,0.05$ volts Long Time Stability ± 100 parts per million Output Voltage Calibration $\pm 0.02 \%$ or 2 mv Output Hum and Noise Less than $100 \mu V$ RMS Line and Load Regulation 0.002% OC Output Impedance Less than 0.01 ohm Response Time 0.2 millisecond Model 301 Price $\$ 625$

KINTEL

(Kay Lab)

SO SMALL

ESC WIDE BAND VIDEO TRANSFORMERS have been engineered and developed to offer. . . subminiature units of unusually wide bandwidth (50 CPS to 8.0 MC). They are used to replace bulkier and more costly components, thereby creating greater economy, and increasing equipment efficiency.

ESC ELECTRONIC COMPONENTS DIVISION specializes
in the design and development of Wide Band Video Transformers to meet your particular applications. Each transformer prototype is accompanied by a comprehensive laboratory report, which includes submitted electrical requirements, photo-oscillograms (which indicate input and output pulse shape and output rise-time), the test equipment used, and evaluation of the electrical characteristics of the prototype.

MDE BAND VIDEO TRANSFORMERS

| ESC PART
 NUMBER | TURNS
 RATIO | PRIMARY
 IMPEDANCE
 (OHMS) | SECONDARY
 IMPEDANCE
 (OHMS) | BANDWIDTH
 At 1 db
 POINTS | APPROXIMATE
 PHYSICAL
 DIMENSIONS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4001 | $1: 1$ | 600 | 600 | 50 CPS to 8.0 MC | |
| | | 3500 | 3500 | 1 KC to 1.5 MC | $1-5 / 8^{\prime \prime} 0 \mathrm{OD} \times 1 / 2^{\prime \prime}$ |
| | | 10,000 | 10,000 | 1.6 KC to 800 KC | |
| 4002 | $4: 1$ | 1600 | 100 | 100 CPS to 320 KC | $1-1 / 8^{\prime \prime} 0 \mathrm{OD} \times 3 / 8^{\prime \prime}$ |

New Products

High Voltage Connector;

Rated at 30 Kv
Included in a line of herme tically sealed high voltage lead-through bushings, is this series of connuctor that use Teflon as the insulating nate rial. Gases, conventional insulating oils, silicone oils and their vapors can not penetrate through these connec tors when they are cycled repeatedry over a temperature range from - 10 to +350 F . Features include rating to 30 kv , operation at sea level to $60,000 \mathrm{ft}$, operation at 100 per cen relative humidity, a hermetic sea tested to 40 psig, and a press-fit screw-in construction.
Joclin Mfg. Co., Dept. ED, Lufbe Ave., Wallingford, Conn.

CIRCLE 52 ON READER-SERVICE CARD

Delay Lines

Continuously Variable

These delay lines feature infinite resolution, no sliding contacts and calibrated delay accuracy of bette than 1 per cent. The temperature co efficient is approximately 0.005 per cent per deg C over a range of -40 to +85 C . The lines are externally ter minated in characteristic impedance Internal termination is optional. The unit is readily adaptable to servo s!stems and automatic tracking device and can be combined, as required with belt or gear drive.

Standard models offer a range d from 0.06-0.1 $\mu \mathrm{sec}$ (for the 1R-.1-1000 model) to 3.3-5 $\mu \mathrm{sec}$ (for the 1R-5-1000 model). The impedence level of these models is 1000 ohms. Elements of 500 ohms and 2000 ohms are available Rise times are $0.02 \mu \mathrm{sec}$ and $0.4 \mu \mathrm{sec}$

Digitronics Corp., Dept. ED, bertson Ave., Albertson, N.Y.
circle 53 on reader-service card
< CIRCLE 54 ON READER-SERVICE CARD

Right Angle Drive
For Low Torque Devices

This right angle drive is intended primarily for remote operation of low torque units such as tuning capacitors or potentiometers. It may be used for continuous operation at low speeds with loads up to 50 in-oz., and will tolerate intermittent 500 rpm operation with loads to 100 in-oz. Backlash is less than $1-1 / 2 \mathrm{deg}$. Unloaded running torque is less than $2-1 / 2$ in.oz. Gears are brass and shafts and bushings are stainless steel. It measures 4-9/16 in. long by 6-1/64 in. wide. National Co., Inc., Dept. ED, 61 Sherman St., Malden 48, Mass.

CIRCLE 55 ON READER-SERVICE CARD

Coaxial Connectors

 High Voltage

These high-voltage coaxial connectors have a rated corona level exceeding 15 kv ac. All electrical connections are accomplished by molded-on pigtails in varying lengths to suit assembly requirements. Thus, no soldering cup is required. Another cost-saving factor is the elimination of the potting operation. The connectors have higher voltage efficiency than potted types, and noise radiation has been reduced to a minimum. The connectors will function without impairment at -55 C , under humidity and salt spray conditions and under vil)ration and shock conditions. The dc breakdown level exceeds $50,000 \mathrm{v}$.
I. H. Buggie, Inc., Dept. ED, Box 817. Toledo 1, Ohio.

CIRCLE 56 ON READER-SERVICE CARD
CIRCLE 57 ON READER-SERVICE CARD \rightarrow

Now-the first $155^{\circ} \mathrm{C}$ (Class F) polyester film-coated magnet wire designed to meet new AIEE requirements

Another Anaconda first! Anatherm-a new polyester filmcoated magnet wire-fully tested for use at "hottest-spot" temperatures up to $155^{\circ} \mathrm{C}$. With this new higher level of thermal stability, Anaconda Anatherm is the first filmcoated wire to meet the newly adopted AIEE $155^{\circ} \mathrm{C}$ (Class F) rating!

Greater thermal stability-plus excellent abrasion-resistance characteristics, chemical stability and dielectric strength-makes Anatherm ideally suited for manufacturers seeking maximum performance and reliability from smaller and smaller equipment operating at higher and higher temperatures.

As a polyester magnet wire, Anatherm can be used equally successfully at any hottest-spot temperature over the range of $105^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$

Available in single and heavy film thickness in AWG sizes from 15 through 25.

free technical bulletin on Anatherm Magnet Wire is available. Simply write: Anaconda Wire \& Cable Company, 25 Broadway, New York 4, New York.

New Products

Lightning Arrestor

For Aircraft Antennas

The AMC-127 aircraft antenna lightning arrestor is designed to provide protection for radio and associated gear in operational aircraft, and is especially designed to adapt to the company's high altitude, high voltage antenna mast AML-53. Arc over voltage in the lightning arrestor is $10,000 \mathrm{v}$ peak at an altitude of $30,000 \mathrm{ft}$ above sea level for the first stroke. Weighing 3.75 lb , the lightning arrestor is mounted at the base of the antenna mast by the mast mounting flange.

Dale Products, Inc., Dept. ED, Columbus, Neb.

CIRCLE 58 ON READER-SERVICE CARD
Bearingless Differential
Backlash of $\mathbf{3 0} \mathbf{~ M i n .}$

This bearingless differential has a backlash of approximately 30 minutes of arc. Constructed of stainless steel spider and bronze bevel gears, both 48 and 72 diametrical pitch, the bearingless variety tumbles within 1 in. plus $1 / 32$ in., and any standard stock precision hubless gear may be assembled to it.

Dynamic Gear Co., Inc., Dept. ED, 20 Merrick Rd., Amityville, N. Y.

CIRCLE 59 on reader-SERVICE CARD
\& CIRCLE 471 ON READER-SERVICE CARD

Hi-Shear Alignment
Aligns Honeycomb Panels

This light-weight alignment bolt is dcsigned to re-align, through normal installation, any misalignment existing between wing panel skins, access doors and heavy stainless steel honeycomb panels. The bolts are manufactured in titanium, type 431 stainless steel and other materials. The fastener is designed for repeated installation and removals.
Hi-Shear Rivet Tool Co., Dept. ED, 2600 W. 247th St., Torrance, Calif.

CIRCLE 61 ON READER-SERVICE CARD

Circuit Breaker

For High Altitudes

Type C6758 high altitude, manual reset, aircraft circuit breaker is designed to indicate when trip-outs occur. Ratings are from 50 to 105 amp for 30 v dc and many $110-220 \mathrm{v}$ ac circuits. The C6758 features high rupture capacity and a sealed and explo-sion-proof construction in compliance with MIL-E5272.
Metals \& Controls Corp., Dept. ED, Attleboro, Mass.

CIRCLE 62 ON READER-SERVICE CARD

Correction: On page 49 of the October $15 t h$ issue, there appears a new product description of a crystal filter manufactured by Bulova Watch Co. The accmpanying illustration, however, is of 1 magnetic amplifier instead of a crytal filter, and belongs to Dynamics Research Associates.

CIRCLE 63 ON READER-SERVICE CARD $>$

tests on new general electric resistors prove . . .

Terminals withstand $21-\mathrm{lb}$ pull

Resistor terminals are often subjected to considerable stress. That's why General Electric has built extra strength into the terminals of these new vitreousenameled resistors . . . strength to hold up to 21 pounds of right-angle pull. For exceptionally heavy-duty applications, there's a special G-E terminal that holds up to 34 pounds of pull.

General Electric resistors are available in over 1400 combinations of ratings (5 to 200 watts), types, and mountings. They will hold standard rated tolerance even under extreme temperature conditions (-70 F to +700 F). Their vitreous-enamel coating provides resistance to moisture, acids, solvents, and alkalies.
Want to see for yourself? Ask your General Electric salesman for a free set of sample resistors and conduct
your own tests. And mail this coupon today for the new 36-page catalog containing complete information on ratings, dimensions, and ordering directions.

Industry Control Department, Roanoke, Virginia.

SEND TODAY FOR FREE RESISTOR CATALOG

Section E784-6
Company, Scheneclady, N. Y.
Please send a copy of GEA-6592, G-E Resistor Catalog.
Name
Address
City

Developed for laboratories and production areas demanding absolute dust control at entrances. As shoe soles and truck wheels pass over the CLEAN TREAD mat, dust and dirt are removed without rubbing. Damp mopping renews surface. Tested by well known labs. $2^{\prime \prime}$ tapered metal edging holds 500 lb . truck. $4^{\prime} \times 4^{\prime} \times 3 / 4^{\prime \prime}, 80 \mathrm{lb}$. mat is $\$ 94$ F.O.B. Boston. All sizes available. Immediate shipment of wire, phone or mail orders. CLEAN TREAD div., Merit Paper and Chemical Corp., 135 Regent St., Cambridge 40, Mass. Phone: TR 6-6122.

CIRCLE 64 ON READER-SERVICE CARD

Two Ideas Provide
Constant Temperature in this

CRYSTAL OVEN

Variable Frequency Oscillator

Has Digital Selector

The output frequency of Model 110 variable oscillator is determined by positioning five digital selector switches located on the front panel. These switches provide for the selection of any frequency in this range to one part in five significant figures. Continuously adjustable from 100 cps to 100 kc , the instrument offers an accuracy of ± 5 counts or 0.005 , whichever is greater.
Digital lnstrument Labs., Dept. ED, 152 S. Atlantic Blvd., Los Angeles 22, Calif. CIRCLE 292 ON REALER-SERVICE CARD

BY UTILIZING the principle of both the la. tent heat of fusion and proportional heat control, this crystal oven achieves an exi remely constant temperature. Other ovens have u ed the volume change of a material at its cha ge-of. state temperature to operate a switch cont olling a heater element. While this is satisfaciory in maintaining average heat input, the cyclic action produces a temperature fluctuation. This crystal oven, available from Robertshaw-Fulto॥ C_{0} Aeronautical Div., Anaheim, Calif., successfully eliminates the cyclic action.
The distinguishing feature of the crystal oven lies in its use of the volume change of a material to control the pressure on a carbon pile. Instead of a separate heater winding being controlled b, the resistance of the pile, the required heat is dissipated by the carbon itself, acting as a heater
Under conditions of a steady 24 C ambien temperature, the crystal oven will maintain 2 temperature accuracy of $70.6 \pm 0.005 \mathrm{C}$. Under ambient conditions ranging from -20 to +50 C the temperature of the oven is maintained stead within $\pm 0.5 \mathrm{C}$. The oven has a stabilization time of approximately 20 min . to within 0.5 deg d the mean from -20 C .

Heater voltage required by the unit is 5 v or dc, regulated to ± 2 per cent, and the powe required amounts to 1.6 w at an ambient of 24 C and 3.5 w at an ambient of -20 C . The unit packaged in an octal-plug container measurin $2-\mathrm{in}$. od by $4-\mathrm{in}$. length.
For further information turn to the Reade Service Card and circle 66.

Trimming Potentiometer
High Resistance in Small Unit

Model 025 trimming potentiometer is available in resistances ranging from 1 to 125,000 ohms a cylindrical case measuring $1 / 4 \mathrm{in}$. in diamete and 1-1/4 in. in length. A mechanical range of 4 turns affords high resolution. Power rating of the standard model 025 is 0.4 w at 50 C , derating to zero at 105 C . All the features of the cylindrica model 025 also are available in the rectangula model 037. Both models are available in resist ances up to 1 meg with carbon elements.
Con-Elco, Dept. ED, P. O. Box 307, 1711 S Mountain Ave., Monrovia, Calif.

CIRCLE 293 ON READER-SERVICE CARD

A cross-section of the crystal oven shows the thermal operation. As the solid-liquid ratio of the chemical increases, the resulting change of volume causes pressure to be applied to the carbon pile. The increased curient flow through the pile causes a proportional amount of heat to be dissipated. The chemical remains at a constant temperature of 70.6 C as long as a solidliquid ratio exists. Accuracy is within 0.005 C for a fixed ambient and within 0.5 C for a -20 to +50 C ambient range.

Transformers

 Mount on PC Boards

Designed especially for mounting on printed wiring boards, these miniaturized transformers hanclle a wide range of audio and carrier frequencies. Core structures are nickel-iron lamination for audio units, and ferrite for carrier fretulency ranges. Cases are made of injectionmolled phenolic in two sizes, $1-1 / 16 \times 3 / 4 \times$ $3 / 4$ in., and $1-1 / 16 \times 15 / 16 \times 1-1 / 8 \mathrm{in}$. After ass unbly the units are filled with an epoxy casting resin.
T lecommunication Div., Stromberg-Carlson, Dept. ED, Rochester 3, N.Y.

CIRCLE 294 on reader-Service caro
A.C.Ratiometer ... accurate to five parts per million!

The Transformers, Inc. Ratiometer is a precision instrument to measure any voltage ratio from 0.000001 to 1.111111 . Transformer ratios can be accurately measured at "no load" and under full load. Two models are available:

MODEL 204 is designed for use between 200 cps and $2,000 \mathrm{cps}$. It is supplied with plug-in units for 400 cps operation.
MODEL 206 is designed for use between 40 cps and $1,000 \mathrm{cps}$. It is supplied with plug-in units for 60 cps operation.
Plug-in units for any other frequency are supplied to order.

ACCURACY
Five parts por million roforoneod to unity ratio.
MAXIMUM VOLTAGE

Model 204	120 V	200 cps
	180 V	30 cps
	240 V	400 cps and over
Model 206	80 V	40 cps
	120 V	60 cps
	240 V	120 cps and over

PRICE
Model 204 Ratiometer, complete with 400 cps plug-in filter and quadrature s865 units
Model 206 Ratiomater, complete with $\$ 1255$
60 cps plug-in filter and quadrature units

[^0]For additional information, ask for Bulletin \# 204
TRANSFORMERS, INCORPORATED
200 Stage Road, Vestal, N.Y.
CIRCLE 67 ON READER-SERVICE CARD

New Products

Concentric Differential

Simplifies Computer Design

Model T-750 concentric shaft differential is designed for high precision servo and computer applications. Instead of the conventional method of having the two inputs at opposite ends of the spider, the output and inputs extend concentrically from one end of a servo-mounted case. This permits mounting of this differential like standard servo components, thus resulting in a single line gear train.

Sterling Precision Corp., Dept. ED, 34-17 Lawrence St., Flushing 54, N.Y.

CIRCLE 69 ON READER-SERVICE CARD

The 2N384 is a hermetically sealed drift transistor of the germanium pnp type. It is designed primarily for use as an oscillator up to 250 mc or as an rf amplifier in mobile communications equipment. The 2 N384 also has application as an i-f and low-level video amplifier, and as a pulse amplifier and high-speed switching device.

The 2N384 features a frequency of 250 mc for unity power amplification, an alpha cutoff frequency of 100 mc , a collector transition capacitance of $1.3 \mu \mu \mathrm{f}$, a base resistance of 50 ohms , and a dissipation rating of 120 my at 25 C and 35 my at 7 l C. In a unilateralized common-emitter circuit, this transistor can provide a power gain of 15 db at 50 mc and 30 db at 10.7 mc .
Radio Corporation of America, Semiconductor Div., Dept. ED, Somerville, New Jersey.
circle 70 ON reader-service card

H MICRO SWITCH Precisio

Here are 5 NEW

Series of Precision Switches by MICRO SWITCH ...

Designed to meet modern electrical control requirements

MICRO SWITCH pioneered the development of precision switches... It has been first in precision switching for two decades...These new switches are typical of MICRO SWITCH's continuing leadership.

Typical ewitch module (a 3-circult dosign)

Exploded viow Seriee 100 PB ewitch showing button and mounting meane.

- LARGE, EASILY ENGRAVED BUTTONS . . . EASILY INSTALLED IN COMPACT ASSEMBLY
- THREE TYPES OF ILLUMINATED SIGNAL
- WIDE CHOICE OF CIRCUITRY
micro switch Series 100PB Lighted Pushbutton Switches provide a neat, good looking panel. Their compact mounting allows more switches per panel.
Because separate terminals are proBecause separate terminals are pro-
vided for each lamp and for each vided for each lamp and for each
element of the contact structure, element of the contact structure,
these switches permit intermixing of voltages, a-c or d-c current and even combinations of opposing polarities.
Three types of illuminated signals are provided: (1) one-color buttons, (2) two colors (lighted singly or in
combination) and (3) choice of either of two colors-neither of which is visible when button is not lighted. Buttons are large enough to allow two lines of clearly legible engraving. The switch assemblies are easily mounted, either individually or in strips, by cutting a single slot in the panel.
Matching indicating lamp assemblies are available with the same button and lamp combinations and same means of mounting as the complete 100PB switch assembly.
(Send for Data Sheet 143)
CIRCLE 68 ON READER-SERVICE CARD
$\frac{\text { suane }}{}$
MICRO SWITCH
3.500
"Rocket Switch"a rugged, sealed small switch for indicating and lockout devices
Developed for use on rocket launchers, this micro switch 21 AS2 assembly fits the needs of many industrial designs.
The assembly consists of one SPDT Type-en switch attached to a rugged cam-type actuator. The assembly is environment-proof and withstands the highly-corrosive effects of rocket pro pulsion gases. The assembly will withstand heavy impact hammer blows on the actuator.
SWITCH CHARACTERISTICS
Operating force- 6 to 12 lbs . Full overtravel force- 10 lbs . min.; Release force- 4 lbs . min .
Elecrical Data: 28 vdc rating: inductive, 3 ampa. at sea level 50,000 feet; inruab, 24 feet; resistive, 4 amps. at sea level and 4 ampas. at sea level and 50,000 feet: inruanh 24 ampet. Motor, amps. at sea level aitud, ratinge established with seal deliberand 50,000 feee.
ately broken.)

New!

MICRO SWITCH Magnetic Hold-in Lighted Pushbutton Provides Three Functions

micro switch lighted pushbutton switch combines the functions of a three-pole double-throw pushbutton switch, indicating light, and holding relay into one compact unit which panel mounts on one-inch centers, both horizontally and vertically. Thus, the cost, wiring, maintenance and added space of these separate components are eliminated space of these separate components are eliminated switch shaft. After the button is manually operated, the solenoid holds the switches in the operated position until electrically released. This feature gives the designer complete freedom in panel layout by eliminating the restrictions found in conventional mechanical release designs. (Send for Data Sheet 128)

SWITCH CHARACTERISTICS:
Operating force- 35 oz. maz. Pretravel-. 050 in. approx. Total travel-. 090 in. max. Three subminiature switches are SPDT.

4
 Nen!

MICRO SWITCH

 three-position toggle switch-4 SPDT circuits with a single levermicro switch 115at Series of toggle switches uses four spdr switching units. Two units are actuated in each extreme toggle lever position. None are actuated when lever is in center position.
Many different combinations, however, may be obtained, including the make and break of circuits in all three lever positions.
Outstanding features of this series include the compact design, positively-driven switch actuators and sturdy construction. A safety catch guards against accidental movement of toggle lever. (Send for Data Sheet 13@) SWITCH CHARACTERISTICS
Electrical rating at 30 vdc : inductive- 10 ampe. at pea level, 6 ampe at 50,000 ft. reaiotive- 10 ampa.; motor- 6 ampe. Basic units listed 125 vdc; $\%$ amp. 250 vdc.

New!

MICRO SWITCH "typewriter" pushbutton switch for manual keyboard control micro switch 1pbsi-T2 switch is ideal for one-finger rapid-repeat operation such as is required for the type of keyboard control found in electric typewriters, adding machines, etc. The repeat action is as rapid as the fastest operator can push the button.
This switch uses a SPDT Micro switch subminiature switch for snap-action reliability. The contoured button and unique overtravel spring combine to reduce operator fatigue. Operating "feel," however, is suffcient to avoid mistakes and false actuations.
Removable $1 / 2 \mathrm{in}$. dia. plastic button is available in red, green, off-white or black. It is keyed to prevent rotation. (Send for Deta Sheet 125)
SWITCH CHARACTERISTICS
Electrical rating at 30 vdc: inductive- 3 ampa. at sea level and $50,000 \mathrm{ft}$.; maximum inrush- 15 amps. Basic subminiature switch $50,000 \mathrm{ft}$; maximum inrush-15 amps. Basic subminiature swivch

Low temperature coefficient and zener impedance over the voltage range are features in these zener diode types. The S series of pigtail type construction, is rated at 1 w over a voltage range 3.9 to 30 v , in 10 per cent voltage steps. The T series is stud mounted, and is rated at 3.5 w over the same range. Full calibration data is supplied with each diode, showing a plot of the zener voltage and zener impedance. Temperature range is from -55 to 150 C .
International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., El Segundo, Calif.

CIRCLE 71 ON READER-SERVICE CARD

G-Line Transmission System
Range Extended to 1700-9000 Mc

The G-Line, a single-wire surface wave transmission line, now covers the microwave range from 1700 to 9000 mc . Featuring ease of installation, the system includes a transmission line terminated at both ends by identical rf field transformers (launcher and collector) to provide efficient transition from a conventional feed line to the surface wave wire and back again at the antenna input end. Typical operating loss at 2000 mc is held down to 0.5 db per field transformer plus 0.8 db per 100 ft of surface wire transmission line.
Prodelin Inc., Dept. ED, 307 Bergen Ave., Kearney, N.J.

CIRCLE 72 ON READER-SERVICE CARD

CIRCLE 68 ON READER-SERVICE CARD

New Products

Miniafure Thermosfat
Has 3/16 In. Diameter

Model WP thermostat features a $3 / 16 \mathrm{in}$. diam and 0.690 in . body length. The unit incorporates bimetal actuated contact, reliable performance, and fast thermal sensing. The thermostat is rated at $1 / 2 \mathrm{amp}$ for $6-28 \mathrm{v}$ ac or dc and 115 v ac circuits. Externally adjustable temperature range is -65 to +150 C .
Chatham Controls Corp., Dept. ED, 33 River Rd., Chatham, N.J.

CIRCLE 74 ON READER-SERVICE CARD

Magnetic Amplifiers With Variable Gain

Model MA 41 and MA 101 magnetic amplifiers feature variable gain to allow full output for a wide range of low-level input signals. Feedback parameters determine overall gain and may be arranged so that either the load current or load voltage is independent of changes in the load value. Stability is maintained by a current or voltage negative feedback which is external to the amplifier.
Cylindrically shaped model MA 41, with a maximum power rating of 62 mw , has an output of 10 v dc max across a $10,000 \mathrm{ohm}$ load and 18 ma dc through a 200 ohm load, and a time constant approximately equal to the voltage gain divided by 1500 (in seconds). Model MA 101 has a maximum power rating of 160 mw , an output of 12 v dc max across a $10,000 \mathrm{ohm}$ load and 28 ma dc through a 200 ohm load, and a time constant approximately equal to the voltage gain divided by 3750 (in seconds).

Dynamics Research Associates, Dept. ED, P.O. Box 5841, St. Louis 21, Mo.

CIRCLE 75 ON READER-SERVICE CARD

G-E Umijumetion Silicon Transistor NOW FULLY CHARACTERIZED AND PROVED FOR USE IN SIMPLIFYING CIRCUITRY

The unique advantage of the unijunction transistor lies in its open-circuit-stable negative resistance characteristics. The unijunction is the nearest solid state equivalent to the grid-controlled thyratron and is very sensitive to voltage levels. It is primarily useful in switching and oscillator applications. Not only will one unijunction do the job of two transistors (and with less circuitry) but the circuit will be more stable over a wide temperature range.

Technical data and application ideas are available to help you in studying the unijunction-the first device other than the transistor itself to reach commercial success. The six unijunction types can be obtained from most G-E Distributors, or write General Electric Company, Semiconductor Products Dept., Section S23127, Electronics Park, Syracuse, New York.

Progress /s Our Most Important Product

GENERAL ELECTRIC

The unijunction consists of an "N" type silicon bar mounted between two ohmic base contacts, with a " P " type emitter near base 2. When the emitter is forward biased, emitter current flows, lowering the resistivity of the bar between emitter and base. Inherent regeneration results in a negative emitter to base 1 impedance. As the emitter current increases past the valley of the curve, the conditions for inherent regeneration cease to exist. The peak point of the curve shows the beginning of the negative resistance region.

Among the many simplified circuits possible with the unijunction (cutting transistor requirements in half) are a frequency divider, matrix switching circuit, low level d-c switching circuit, low levensing circuit, temperature current-sensing circuit, temperature
control element, phase and/or amplicontrol element, phase and/or amplitude sensitive switch. The conventional multivibrator circuit (above right) requires even more circuitry than is shown if it is to be as stable as the comparable unijunction circuit shown below. A relaxation oscillator usually takes 4 resistors, 2 transistors and a capacitor. A single unijunction, a resistor and capacitor will do the equivalent job.

3MALLEST-

EXCLUSTVE

By Filtors, smallest and lightest hermetically sealed latching sub-miniature relays, magnetically heldno power drainand electrically reset. 2PDT, 4PDT and 6PDT

High shock and vibration resistance.

All made to
MIL-R-25018 (USAF) and MIL-R-5757C.
Dry circuit relays available
Write for catalog
Leading manufacturers of hermetically sealed sub-miniature relays.

FILTORS, INC.

Port Washington, Long Island, New York POrt Washington 7 -s850

Radar Interference Blanker
Eliminates Main Bang

This radar interference blanker, model RB-128, eliminates main bang interference occurring in groups of normal and MTI radar sets or reduces it to a negligible value. In operation, the interfering signal is bracketed with a negative blanking gate to eliminate it from the protected radar's display. Since the PRR of the protected radar and that of the interfering radar are usually not synchronized, any loss of displayer information is unimportant.
The system is designed to protect two normal video channels and one MTI video channel. The blanker is self-contained and may be added to existing radar installations without appreciable modification of operating equipment. The use of instantaneous agc circuits and very low time constants in grid circuits reduces the guard-band receiver's susceptibility to jamming well below that of the radar being protected.

Empire Devices Products Corp., Dept. ED, Amsterdam, N.Y.

CIRCLE 77 ON READER-SERVICE CARD

DC Power Supply
25 Amp, 0-32 V

Model M60V has a voltage range of $0-32 \mathrm{v}$ with load capacity of 25 amp . The regulation accuracy is ± 1 per cent at 28 v and ripple is 1 per cent rms. The unit is furnished in a cabinet measuring $20-1 / 4 \times 16-5 / 8 \times 13-3 / 4 \mathrm{in}$.

Perkins Engineering Corp., Dept. ED, 345 Kansas Street, El Segundo, Calif.

CIRCLE 78 ON READER-SERVICE CARD
< CIRCLE 73 ON READER-SERVICE CARD

Bring transistor circuits to life in a matter of minutes with the Sprague LF-1 Transimulator. This new instrument lets you simulate any amplifier stage, a-c or direct-coupled, short of high power audio output; also multivibrator, switching, phasing, push-pull, Class A and B, and many others using cross-coupled Transimulators... whether the circuit is common or grounded emitter, base, or collector ... whether the transistors are PNP, NPN, or Surface Barrier. You can simulate circuits stage-by-stage for cascade operation . . . or use a separate Transimulator for each stage to get simultaneous multi-stage operation.

Bring Circuir Diagrams To Life In Minufes

Everything you need for RC amplifier circuits is built right into the LF-1, including coupling capacitors. bias and load resistors ... battery voltage supplies Base Collector-Voltage Divider stabilization circuits 5-way binding posts for transformer coupling and metering.
Whether you're designing audio circuits or switching circuits, you'll get a true picture of operating parameters minutes after you've drawn the circuit diagram. without wasting valuable time with breadboard and soldering gun.

Pays For Itself In A Matfer Of Weeks

An ideal laboratory instrument, Transimulators are inexpensive enough to justify several on every bench. You can even use the LF-1 to test transistors in the circuit... the only real proof of design parameters. And a complete step-by-step instruction manual makes operation rast, simple, and easy.

FEATURES OF THE LF-I TRANSIMULATOR

- TRANSISTORS -PNP and NPN Junction, and Surface Barrior. - CIRCUITS-Common or Grounded Emittor, Base, Collector.
- RANGE-Audio, up to 100 kc .
- TRANSISTOR POWER - Through modium powor audio output. - batterr supply - Soparate blas and load. 1.5, 3, 4.5, 6 volts d-c. Polarity Roversing Switch.
- COUPLING - 2μ f and $20 \mu \mathrm{~F}$ Direct, and Ext. C. posts, on both Input and Output.
- BIAS RESISTANCE-Up 10555,000 ohms continuously
variablo
- LOAD RESISTANCE-Up to 277,500 ohms continuously variable.
- Emitter resistance-up to $\mathbf{2 , 5 0 0}$ ohms variable. Series rosistor and bypasz capacitor can be addod.
- BASE COLLECTOR STABILITY - Up to 250,000 ohms variable. Sorios resistor and bypass capacitor can be addod. - VOLTAGE DIVIDER STABLLITY - Up to 50,000 oh ms variable. - 5-WAY BINDING POSTS-For moters, transformar coupling, oxtornal supply voltago, dogonoration, bypass, coupling, signal input and outpur, almost
only ${ }^{\text {s }} 7950$

SPRAGUE

SPRAGUE PRODUCTS COMPANY, NORTH ADAMS, MASSACHUSETTS

New Products

Oscillograph Processor
Gives Immediate Records

Called the 5-036 Datarite magazine, this unit attaches to standard oscillographs and provides developed and dried photographic records a fast as the instrument records data. The direct writing magazine chemically develops an oscillogram at rates up to 25 in . per sec and permits instant access to the record. It is completely in terchangeable with the 5-119 recording oscillograph's standard magazine without modification Consolidated Electrodynamics Corp., Dept ED, 300 N. Sierra Madre Villa, Pasadena, Calit

CIRCLE 80 ON READER-SERVICE CARD

Printed Circuit Connector

Polarizing Screwlock

Featuring polarizing screwlocks, series 683 right angle precision connectors are designed fo printed board or printed cable applications, and meet airframe requirements for vibration and high altitude. Contact spacing is based on th 0.1 grid in accordance with EIA printed circuil specifications. Available in 11 or 33 contacts standard molding compound is mineral filled melamine. In addition to the regular solder cup receptacles can be supplied with taper pin ter mination for solderless wiring.

DeJur-Amsco Corp., Dept. ED, 45-10 Northern Blvd., L.I. City 1, N.Y.

Insulation Analyzer
Rapid Quality Check

The D-K analyzer is a portable, non-destructive, direct reading instrument which measures the dissipation factor and dielectric constant of insulating materials. The instrument can be used to investigate the effects of variables such as hardeners, filters, and cure conditions in dielectric systems, to detect non-uniformities in electrical properties, and to inspect incoming material such as etched circuit board stock to insure conformance to standards. Measurements are made quickly and access to a system need only be from one side.
Delsen Corp., Dept. ED, 719 W. Broadway, Clendale, Calif.

CIRCLE 82 ON READER-SERVICE CARD

Printed Circuit Connectors Prevent

Board to Contact Damage

A contact design for printed circuit connectors to eliminate possibility of damage to either contact or printed circuit board during assembly or multiple-insertion has been announced. Called Swingflex, the contacts have high flexing strength combined with positive area contact for use with boards $1 / 16$ and $3 / 22$ in. thick, for either singleor double-sided board connection.
The contacts are made of pretempered beryllium copper in four standard types of terminations: solder eye, taper tab, solder dip and wire wrap. Solder dip types of connectors are available either in straight or right angle terminations for board thicknesses of $1 / 16,1 / 8$, or $1 / 4$ in. Wire wrap terminations are in lengths up to $21 / 32 \mathrm{in}$. to accommodate three wrapped wires. Tajer tab and wire wrap terminations are solderles types.
I. H. Buggie, Inc., Dept. ED, Box 817, Toledo 1,)hio

CIRCLE 83 ON READER-SERVICE CARD

New Products

Adjustable Audio Oscillator For Telemetering Purposes

These adjustable audio oscillators can be used as a stable tone modulator for energizing fre. quency sensitive relays in remote locations. Additional applications include use as a remote frequency audio decoder. The oscillators are can-mounted for plug-in construction and are available in frequency ranges from 200 to 1000 cps. Characteristics included short period drift of 0.1 cps and less than 0.5 per cent drift over a temperature range of 0 to 150 F . Other char acteristics are: distortion, less than 5 per cent; rms output, 0 to 30 v and voltage drift tolerance of 0.1 per cent.

Gulton Industries, Inc., Dept. ED, 212 Durham Ave., Metuchen, N. J.

CIRCLE 86 ON READER-SERVICE CARD

Balancing Potentiometers
25-Turn Screw Adjust

The Trimit line of balancing potentiometers features miniature size, 25 -turn self-locking screwdriver adjustment, and a rectangular shape for compact assemblies. They can be obtained with flexible leads, solder lugs, or printed circuit pins, and may be mounted either individually or in stacked assemblies. The line is available with wirewound resistance elements from 100 ohms to 10 K , or with carbon elements from 20 K to 1 meg .

Bourns Laboratories, Inc., Dept. ED, 6135 Magnolia Ave., Riverside, Calif.

CIRCLE 87 ON READER-SERVICE CARD

Boost DC power efficiency, cut costs with Westinghouse Silicon Rectifiers!

These bail handle stud assemblies are designed lor quarter-turn quick operating fasteners. The bail handle of the 26522 and 40 S47 series can be located firmly in one of three notched positions: vertical, horizontal left, and horizontal right. In these positions, the handle can not be jarred loose due to effects of gravity or vibration.
Camloc Fastener Corp., Dept. ED, 22 Spring Valley Rd., Paramus, N.J.
circle 88 on reader-Service card

Sound Spectrograph

Aids Communications Systems Design

The Sono-Graph recorder is a sound spectograph that makes a permanent, storable aural record in addition to three visual analyses of any audio vibrations in the $85-12,000$ cps range. In communications systems work, the recorder can establish the basic frequency content of intelligence in order to determine the frequency bandwidth for adequate transmission. In addition, the effects on intelligibility of superimposed noise and distortion may be examined visually. The display graphs are made in two switched bands, the first from 85 cps to 6 kc , and the second from 6 to 12 kc .
The recording medium is a flexible magnetic disc $12-\mathrm{in}$. in diameter and approximately 3 mils thick. The first of the permanent graph display, the Sonagram, relates frequency and intensity to time; the second, the Section, relates intensity (over a wider dynamic range than the first) to frequency at any selected time. These two graphs may be made either on the same sheet or on separate sheets. The third display employs an amplitude display unit as an accessory to visu: lly record in db the amplitude/time characteristic of an overall sample.
Kay Electric Co., Dept. ED, Maple Ave., Pine Brook, N. J.
circle as on reader-service card

Whether you use or manufacture DC power equipment for low or high-power applications, Westinghouse Silicon Rectifiers offer you a way to step up power output efficiency yet save space, weight-and costs!
Manufacturing economies through tremendous volume and engineering know-how permit Westinghouse to bring you a product that is unsurpassed for quality at the lowest prices in the industry. All Westinghouse Silicon Rectifiers meet Military Environmental Tests and are ruggedly designed to withstand a wide range of operating conditions.
Westinghouse Silicon Rectifiers are ready for immediate delivery. Why not find out how they can cut DC power costs for you? Call your local Westinghouse Representative or mail the coupon now.

YOU CAN BE SURE... IF IT'S Westinghouse

-

Wostinshouse Eloctric Corp.
 P. O. EOA 864

pitsbursh 30, Ponna.
Will you please send me full information on Westinghouse Silicon Rectifiers No. (s)
mame
TITLE
COMPANY
ADDRESS
ADDRESS

New Products
Permanent-Magnet Motors
One Inch Diameter

Although slightly over 1 in . in diam, these permanent-magnet motors feature a rotatable brush holder which is adjustable for best commutation and power output. Motors designed for operation from 6, 12, and 27.5 v are carried in stock. Other windings or modifications are available.
Servo-Tek Products Co., Dept. ED 1086 Goffle Rd., Hawthorne, N.J.

CIRCLE 91 ON READER-SERVICE CARD

Diode and Matrix Triggering Device

Originally designed for use in an automatic credit checking device, this pluggable diode cartridge assembly consists of a HD-2122 diode or HD2290 diode. The diode is inserted into the two-sided etched wiring matrix to bring one way current from a vertical busbar on the bottom side of the panel through the diode and deliver to a horizontal busbar on the top side of the matrix. The cartridge, which is attached or removed by a twist, provides a triggering device which can be nserted at any desired intersecting so-ordinates in the matrix to provide res-no answers. A matrix employing 10,000 individual positions can be nade up in an area of approximately 26×26 in.
Methode Mfg. Corp., Dept. ED, ' 447 W . Wilson Ave., Chicago 31, Ill.

CIRCLE 92 ON READER-SERVICE CARD
CIRCLE 93 ON READER-SERVICE CARD >

Crystal-Case Size! Permanent Magnet Design. No Contact Openings. Shock: 100g. Vibration: 30g 55 to 2000 cps

SC NON-LATCHING TYPE-This micro-miniature relay sets new standards-in design, in performance, in reliability. Yet the SC conforms to standard dimensions and circuitry and may be used to replace ordinary crystal-case relays. A permanent magnet in the structure provides at least twice the contact pressure found in relays of comparable size. This extra force accounts for the extremely high shock and vibration resistance shown in the specifications.
SL LATCHING TYPE - Unique magnetic latch assures positioning of armature and exceptional pressure. A 1 watt, 3 ms . pulse to either coil transfers contacts. Transfer time is only 0.5 ms . Coils are designed for continuous duty. Has the same exceptional shock and vibration characteristics as the SC.

POTTER \& BRUMFIELD, INC., PRINCETON, INDIANA/SUBSIDIARY OF AMERICAN MACHINE \& FOUNDRY COMPANY

SC-non-latching relay with series-connected dual coils. Operates on approximately I watt at nominal voltage. Coils must remain energized to hold the ormature in the operate position.

SC and SL Series Engineering Data

GENERAL: Insulation Resisfance: 10,000 megohms, min.
Breakdown Voltage: 1,000 V. RMS.
Shock: 100g.
Vibration: 30 g 55 to 2000 cps.; 0.195° max. excursions from 10-55 cps.
Temperature Range: $-65^{\circ} \mathrm{C}$. to $+125^{\circ} \mathrm{C}$. Weight: 17.5 grams ($5 / 8$ oz.).
Operate Time: 3 MS. max. with 550 ohm coil @ 24 V. DC. (SL: 630 ohm coil at 24 V. DC). Transfer Time: 0.5 MS max.
Terminals: (1) Plug-in for microminiature receptacle of printed circuit board.
(2) Hook end solder for one \#20 AWG wire. Enclosure: Hermetically sealed.
CONTACTS: Arrangement: 2 form C. Material: Gold flashed palladium. Load: 2 amps @ 28 V. DC, resistive; 1 amp @ 115 V. AC, resisfive.
Pressure: SC-13 grams min.; SL-16 grams min.
COIL: Power: Approx. 1.0 watt at Nominal Voltage. Resistance: SL-40 to 1400 ohms; SC-35 to 1250 ohms. Duty: Continuous.
MOUNTINGS: Bracket, stud and plug-in. pab standard relays are available at your local electronic, ELECTRICAL AND REFRIGERATION DISTRIBUTORS

Potter \& Brumfield, inc.

PRINCETON, INDIANA

SUBSIDIARY OF AMERICAN MACHINE \& FOUNDRY COMPANY
Manufacturing Divisions also in Franklin, Ky. and Laconia, N.H.
Mail coupon below for further engineering data on P\& B's new SC and SL Series relays plus new compact catalog of standard type relays. If you need answers to a specific application problem, write in detail.

Pofter \& Brumfiold, Inc., Prinction, Indiana
Attn: T. B. White, Brig. Gen. USMC (Ret.)

> Speclal Projects Englneer

Please send me complete data on the new SC and SL Series relays, plus the new compact catalog of P\&B standard relays.

$$
\begin{aligned}
& \text { Name } \\
& \text { Compony } \\
& \text { Depf. No. } \\
& \text { Addross } \\
& \text { Ses our catalog in Sweet's Product Dasign Filo }
\end{aligned}
$$

Galvanometer Assembly

3 Units in Standard Rack

Model 204AR-3 assembly contains three 204A galvanometers and may be mounted in standard $19-\mathrm{in}$. racks. The galvanometers in this unit are combination de null detectors, linear deflection indicators, microvoltmeters, micro-microammeters, and low-level dc amplifiers. Each unit has seven decaded ranges which cover dc voltages from $10 \mu \mathrm{v}$ to 10 v full scale or currents from $0.001 \mu \mathrm{a}$ to 1 ma full scale. The sensitivity control functions as an attenuator and is calibrated in attenuation. Input resistance is a constant 10,000 ohms and there are no restrictions on source resistance. A high degree of isolation is provided between ac line, chassis, and the amplifier circuit. The unit also features a floating input.

Kintel, Dept. ED, 5725 Kearny Villa Rd., San Diego, Calif.

CIRCLE 94 ON READER-SERVICE CARD

Frequency and Counter Meter

 Small Size, Accurate

This counter unit, Model WE-810, uses glow ransfer decade tubes in the counting chain as vell as in the crystal controlled time base dividing chain. This provides a small size $7 \times 19 \mathrm{in}$. panel, 7 in . deep, in addition to a low power consumption. As a frequency meter, time bases of $0.01,0.1,1.0$ and 10 sec are provided. The frequency range covered is 10 cps to 100 kc , with a minimum sensitivity of 100 mv . An external trigger may be used to initiate the counting cycle. The time interval time base frequencies are 100 $\mathrm{kc}, 10 \mathrm{kc}$ and 1 kc , with an accuracy of ± 1 count, and crystal stability of $\pm .001$ per cent.
Westport Electric, Dept. ED, 149 Lomita St., El Segundo, Calif.

HIGH RELIABILITY

DC/AC CHOPPERS

- advanced design
- HIGH STABILITY
- LONG-LIFE

New and advanced designs by Collins Electronics Manufacturing Corporation now make possible a series of precision miniature choppers unique in reliability, stability of operating characteristics and long service life.
This new series of choppers is manufactured in S.P.D.T. types in both break-before-make and make-before-break models. Make-before-break models are unique in that the force developed by the vibrating element is exerted to hold the working contacts closed rather than to hold the non-working contacts open as in conventional designs. This results in firm contact closure, high contact pressure and imperviousness to disturbances caused by shock and vibration.
Write today for detailed brochure listing all types available with applicable technical information.

Hophins

ELECTRONICS MANUFACTURING CORP.

Stevensville. Maryland

CIRCLE 296 ON READER-SERVICE CARD

BIG-POT PERFORMANCE in Miniature-pot size
 alers PRECISION MINIATURE POTENTIOMETERS

are built, tested, and certified* to such rigid specifications as AIA, RETMA, JAN-R-19, MIL-E-5272A, and other applicable military specifications. This new line of single-turn pots packs Waters

traditional performance into tight spots.

- Complete sest data on reques.
-CHECK THESE SPECIFICATIONS

Model	Resistance Range (ohms)	Standard Linearityt	Case Dia. (inches)	Standard Shaft Dia. (inches)
WP $1 / 2$	$1 / 2$ to $250 K$	1.0%	$1 / 2$	$1 / 8$
WP $1 / 8$	$1 / 2$ to $250 K$	0.5%	$1 / 6$	$1 / 8$ or $1 / 4$
WP $11 / 16$	$1 / 2$ to $350 K$	0.5%	$1 / 16$	$1 / 8$
WP $11 / 8$	$1 / 2$ to $350 K$	0.5%	$11 / 8$	$1 / 4$
WP $15 / 8$	$1 / 2$ to 500 K	0.5%	$1 / 8$	$1 / 4$

\$For best possible lineority submit defoiled specifications.
Serva mount sfandard, three hole and bushing mounting available.
A micro-miniature potentiometer that meets the requirements of today and tomorrow for high performance, while retaining the rugged

TYPE
 WP 1/2

 dependability of the approved Waters design.Proved reliable in thousands of military and commercial installations.
Available in dual unit with Waters
new concentric shaft construction.
TYPE
WP $7 / 8$
Offers Waters reliability in the AIA nominal one-inch diameter. Available as servo TYPE or bushing-mounted unit, it gives high

Provides higher resistance values with better resolution and linearity, yet is a miniature unit in every sense. Available as dual unit with concentric shafts.

Reliability and precision equal to many 2 -inch or larger potentiometers

TYPE

 results from Waters proved miniature MP1-5/8design and assembly techniques.

MANUFACTURING, inc.

New Products

Logarithmic Translator Flat Response

The model 6700 logarithmic translator finds applications in audio and acoustic research and development, in measuring wide ranges of levels with maximum low level accuracy and in plotting frequency response characteristics of various components. The output voltage varies in average value proportionately to the logarithm of the input amplitude, and can be fed directly to any averaging type indicator or oscillograph. Decibel range is $0-40 \mathrm{db}$; voltage range is 1 mv to 100 v . Frequency response is 25 cps to $40,000 \mathrm{cps} \pm 1$ db . Linearity is $\pm 0.5 \mathrm{db}$. Output average value varies 0.05 v per db from 2 to 4 v . Input impedance is 500 k and response speed is practically instantaneous.

Electro-Voice, Inc. Dept. ED, Buchanan, Mich.
CIRCLE 97 ON READER-SERVICE CARD

Servo Motor Combination

Contains Brake and Blower

Type 23 -MTG-6327-01 is a single unit combining a size $23 \mathrm{l} / 15 \mathrm{th} \mathrm{hp}$ at 6000 rpm servo motor; a damping tach generator with an output of 1.5 v per 1000 rpm nominal, null voltage of 0.15 , and linearity of ± 2 per cent up to 6000 rpm; a 28 v dc brake; and a blower capable of cooling the entire unit. The unit is available in any desired combination of its components. Designed for driving antennas and other self-cooled drive motor applications. Overall dimensions are 8.1 in . long max x 2.88 in . diam.

John Oster Mfg. Co., Avionic Div., Dept. ED, 1 Main St., Racine, Wis.

Perfect for

 compact RF equipment . . .These tiny variable capacitors provide the ideal solution to compact design problems. Requires just $5 / 8^{\prime \prime}$ $x 34^{14}$ panel area-the longest model extends only $117 / 64^{\prime \prime}$ behind panel. Soldered plate construction, oversized bearings, and heavily anchored stator supports provide extreme ri-gidity-torque is steady-rotor stays "put" where set! Bridge-type stator terminal provides extremely low inductance path to Both stator supports. Nickel-plated rotor con-tact-steatite end frames DC-200 treated. Single section, butterfly, and differential types available.

SPECIALS—Johnson Miniature Air Varsables are available in production quantities with the following features: 1. Locking bearing. 2. 180° stop. 3. Various shaft extensions. 4. High torque. 5 . Silver or other platings.

For complete information on these miniature capacitors or other Johnson miniature capacitors or other Johnson
electronic components-write for your electronic components-write for your
free copy of our newest components free cop
catalog.

Free

Contoins complete spec. ifications on all Johnson electronic components.
E. F. etoolle mevorn Comapperny

3419 Second Ave. S.W. - Waseca, Minnesolo

Miniature Pentode

For Minimum Hum and Noise
The EF86/6267 nine-pin miniature pentode is designed for preamplifier and input stages having stringent requirements with regard to minimum hum, noise, and microphonics. It is a direct plug-in replacement for the older Z729. The low-frequency noise generated by the Amperex EF86/6267 is equivalent to a voltage of $2 \mu \mathrm{v}$ on the control grid in the bandwidth from 25 to 10000 cps . Hum is kept to a minimum by winding the heater as a double helical wire with mutually cancelling magnetic fields. Effective internal screening reduces the internal tube capacitances through which hum can be transferred to the ouput.
Amperex Electronic Corp., Dept. ED, 230 Duffy Ave., Hicksville, N.Y.

CIRCLE 100 ON READER-SERVICE CARD

TV Camera Assemblies Designed for Military Use

Four TV camera units make up this miniaturized chain designed to military specifications. Illustrated are a camera head unit, 5 -in. high, which houses a vidicon pick-up tube and its associated circuits; a picture monitor unit, 7-7/8 in. high, which uses an 8-in. aluminized rectangular crt; a camera control unit, and a power supply unit. The system offers a resolution of 100 per cent modulation at 600 lines, is capable of reproducing the ten shades of gray on the retma
tes: chart, and the sweep non-linearity
is ated at 2 per cent max.
Illen B. Du Mont Labs., Inc., Dept.
ED, 750 Bloomfield Ave., Clifton, N.J.
CIRCLE 101 ON READER-SERVICE CARD CIRCIE 102 ON READER SERVICE CARD $>$

General Electric 5-Star Tubes

MADE LIKE A FINE WATCH FOR UNIFORM RELIABILITY!

Progress Is Our Most Important Product
GENERAL

Contact points able to survive this brutal shear test stay on forever

STANDARDS THAT DETERMINE RELAY QUALITY/

contact points that stay on for keeps

Superior affachment technique guards against insocure wolds.
When you find a relay that sheds its contacts, you usually have a relay that's suffering from "cold welds"; this means that when the contact spring was made, the contact and the spring did not really weld together. When that happens, the contact is likely to fall off at any time.
We prevent that, here at Automatic Electric, by making contacts from a continuous length of preciousmetal wire. In one combined oper-
ation, we weld the end of this wire to the spring blank (using very acto the spring blank (using very accurate control of time and voltage), pinch it off so as to provide exactly the right amount of material for the contact, and finally form it into a dome of the contact metal. Result: a contact with a polished surface, welded to the spring for the life of the relay. This is one more reason why Automatic Electric relays set performance records of 200 to 400 million operations without a failure!

This superior method is typical of the painstaking care that goes into every relay we make.

AUTOMATIC $\frac{4 \Delta}{T V}$ ELECTRIC

A member of the General Tolephone System One of America's great communications systems

CIRCLE 103 ON READER-SERVICE CARD

Class " A " Relay-for use when low Arst cost is important. Write today for Circular 1702. Automatic Electric Sales Corporation, Northlake, Illinois. In Canada: Automatic Electric Sales (Canada) Ltd., Toronto. Offices in principal cities.

New Products

Frequency Converter
 2400 Cps Source for Mag Amps

This transistorized frequency converter is primarily designed for application in autopilot systems, guidance systems and in telemetering functions, as a source of high frequency power for magnetic amplifiers. Producing a 1200 or 2400 cps output, the frequency converter weighs approximately $2-1 / 2 \mathrm{lb}$. Full load efficiency is better than 85 per cent. Synchronizing power is ob. tained by frequency multiplication of the 400 cps 3 phase input. Regulation is 3 per cent from no load to full load.

Robertshaw-Fulton Controls Co., Aeronautical Div., Dept. ED, 401 N. Manchester, Anaheim. Calif.

CIRCLE 104 ON READER-SERVICE CARD

Angular Divider

For Synchros and Pots.

Model D-3 angular divider positions shafts of rotating components to an accuracy of 20 sec of arc. Flexible couplings are avoided by using the synchro shaft to locate the center of rotation of the synchro housing. Unskilled operators can handle this mechanism since colleting is automatic and readings are direct. Adaptation to all housing and shaft sizes can be accomplished easily. Specifications include: weight of 30 lb ; diameter, 12 in.; height, 5-3/4 in.
Theta Instrument Corp., Dept. ED, 48 Pine St., E. Paterson, N.J.

The series PC is a re-cycling timer with a dial calibrated in terms of per cent. Its function is to close any electrical circuit for any desired part or percentage of a fixed time cycle. The PC series includes units in the following time cycles: 15, $30,60 \mathrm{sec} ; 3,5,15,30,60 \mathrm{~min} ; 3,5,12,24 \mathrm{hr}$.
Industrial Timer Corp., Dept. ED, 1407 McCarter Hwy., Newark 4, N.J.

CIRCLE 106 ON READER-SERVICE CARD

High-Mu Twin Triodes
 FM Tuner and TV Use

The 6DT8 and 12DT8 are high-mu twin triodes of the 9 -pin miniature type. They are intended for use as combined oscillator-mixer and rf amplifier tubes in cathode-drive or grid-drive circuits of fm tuners, and may also be used in a variety of applications in television receivers. The two units of each type are effectively isolated from each other. The two cathodes in each type have separate base-pin terminals to provide greater flexibility.
Radio Corporation of America, Electron Tube Div., Dept. ED, Harrison, N.J.

CIRCLE 107 ON READER-SERVICE CARD

Pitch-Yaw Indicator
Accuracy of 0.1 Deg

Model 4-1 pitch-yaw indicator consists of a free-swiveling aerodynamic head providing potentiometer output linear with angles of pitch and yaw. High temperature components used thr ughout the instrument permits operation at hię h mach numbers. Model $4-1$ is available in ral ges up to $27-1 / 2 \mathrm{deg}$, with an indicating accuracy of 0.1 deg . Overall length is 4 in .
Fdeliff Instruments, Dept. ED, P.O. Box 307 ,
171 S. Mountain Ave., Monrovia, Calif.
circle 108 on reader-service card

THE NEW GENISCO

ANGULAR OSHILLTILO TARLE

Generates a precise sinusoidal function accurate to within 0.1% at excursions up to $=2^{\circ}, 0.5 \%$ up to $=10^{\circ}$, and 1% up to $=15^{\circ}$.
This newest Genisco machine utilizes a unique conical crank mechanism to generate an angular oscillation which closely corresponds to a theoretical sinusoidal waveform. A precision sine-cosine resolver coupled to the crankshaft can be used to bring a test instrument output signal and the oscillating table output signal into coincidence for direct reading of phase lag angle.
The extreme accuracy of the Model B386 Oscillating Table makes it particularly suited for evaluating the damping and response characteristics of angular accelerometers and rate gyros. The Model B386 can also be used for calibrating peak angular velocities and peak accelerations to the accuracy of the known angular excursion and frequency. Within its range, the machine can double as an environmental angular shake table.

For complete information and performance specifications, write to-
Genisca
Brief specifications
Angulare Excursion: Infinitoly adjustable
Frenuengy Range: Continuously variable from
0.02 to 3 cp in the low range; 0.2
1030 cos in the high range.
to 30 cps in the high range.
Aceurscy;
Angular Excursion - within 10 minutes of arc.
Frequoncy Indication - within 1% with
tachometer; within 0.1% wift striboscope.
 under dynamic cond tions. Protecte.
overloasd by replacmato shear pins.
viluration isolation:
Vertical Displacement - $0.003^{\prime \prime}$ max. at any frequency
Lateral Displacement - $0.001^{\prime \prime}$ max. at any frequency.
Platterm Diameter: $8^{\prime \prime}$.
Apprex. Weight: 400 ib .

2233 FEDRRAL AVE., LOS ANGELES ©A, CALIFORNIA

CIRCLE 109 ON READER-SERVICE CARD

New
 low pass filter squeezes max. performance into min. space

It's not a short step from miniature r-f tuning devices to miniature r-f filters. But without \mathbf{R} / C 's quarter-century of tuning device experience, the low pass filter illustrated might never have been built. Low insertion loss from 200 to 400 mc is of ten combined with rapid attenuation above 400 mc . . . but rarely in a space measuring just under 4 cubic inches!

R/C low pass filters owe their small size to a unique capacitor, the Series 75 air dielectric trimmer recently introduced by Radio Condenser. Perhaps the smallest air trimmers ever made in the U.S., they're finding wide application wherever space is a problem. Outstanding insulation resistance, "Q", and thermal stability make insulation resistance, " Q ", and thermal stability make miniaturization a much easier job, on filters, i-f trans-
formers, printed wiring boards, and conventional chassis formers, printed wirin
of every description.

Originally designed for defense effort use, this filter is now in quantity production at $R / C \ldots$ and modifications are available to meet special performance requirements as they arise

Additional information on R / C low pass r-f filters is provided in Engineering Bulletin FL 462 . Trimmers are covered in Bulletin TR-123. Both are available on request to Radio Condenser Company.

Electrical Specifications
max. insertion loss, $200-400 \mathrm{mc}$
min . attenuation, 450 mc and above
\min. attenuation, 1000 mc and above
max. rated power
0.75 db 45 db 60 db 100 watts
pass band SWR 1.5:1 Physical Specifications
size over-all
temperature range
50 ohms
"x1"x4" approx. -55 to +85 C

Davis \& Copewood Streets - Camden 3, New Jersey
EXPORT: Radio Condenser Co., International Div., 15 Moore St., N.Y. 4, N. Y CANADA: Radio Condenser Co. Ltd. 6 Bermondsey Road, Toronto, Ontario

CIRCLE 110 ON READER-SERVICE CARD

New Products

AC Ratiometer

Accuracy to 5 PPM

Capable of measuring ac voltage ratios between 0.000001 and 1.111111 with high accuract and at any load, this ratiometer is particularl! suited for testing precision transformers, resistors. capacitors, and inductors. Models 204 and 206 cover the frequency range from 40 to 2000 cps . and have an accuracy of 5 ppm at unity ratio, or 500 ppm at a ratio of 100 to 1 . By following a simple calibration procedure, an accuracy of 5 ppm can be attained for any specific ratio within the range of the ratiometer.

Transformers. Inc., Dept. ED, 200 Stage Rd. Vestal, N. Y.

CIRCLE III on reader-service card

Preset Counter
and Digital Frequency Divider

Model 7240B preset counter and digital frequency divider is a four decade instrument with fast recycle for such applications as batching and frequency division. Switches, photocells, pressure or magnetic pickups, and strain gages are typical transducers used. Outputs upon reaching the preset count include a coincidence pulse for triggering other equipment, an adjustable width gate for actuating external equipment, and dpdt relay, Preset counting capacity is 1 to 9999 input events with absolute accuracy.

Electro-Pulse, Inc., Dept. ED, 11861 Teale St.. Culver City, Calif.

CIRCLE 112 ON READER-SERVICE CARD
ELECTRONIC DESIGN • December 1, 1957

Power Resistor Decade Unit

 Reads Actual Resistance Values

When accurate and predetermined steps of resistance value are desired, such as in calibrating or testing operations in working circuits, the power resistor decade box provides a means of obtaining the desired resistance value under actual load conditions. The unit is rated at 225 w at 1000 v maximum. It provides for any required ohmage from 1 to 999,999 ohms in increments of 1 ohm. Either known or unknown resistance value is dialed and then read directly from the six decade dials.
Clarostat Mfg. Co., Inc., Dept. ED, Dover, N. H.

CIRCLE 113 on reader-Service caro

Coaxial Connectors

Positive Snap-Lock Action

Featuring a snap-lock design for easy connection in limited-access spaces, these connectors withstand shock and vibration without signal loss, loosening, or mechanical damage. A typical unit weighs 0.1 oz and measures $3 / 4 \times 1 / 4 \mathrm{in}$. Snap-lock action is made possible by a springloaded retainer ring that engages in the groove of the receptacle. Frequency range of the connet tors is $0-12 \mathrm{kmc}$ and impedance values are 50.75 , and 95 ohms. Voltage breakdown is $15: 0 \mathrm{v} \mathrm{rms} \mathrm{min} \mathrm{and} \mathrm{temperature} \mathrm{range} \mathrm{is}-70$ to +550 F .
Electro-Physics Labs., Dept. ED, 2065 Huntincton Dr., San Marino, Calif.
circle 114 on reader-service card

to meter-relay dependability

The only truly dependable meter-relays are those built with locking contacts. For lasting, reliable contact action, meter-relay contacts must make firmly and break cleanly, every time.

Abstract

An indicating meter with a couple of contacts stuck somewhere inside just won't do. Such an instrument may be excruciatingly accurate as an indicator, but it will fail miserably in a control application.

LET'S CLEAR THE AIR

We make these statements because there seems to be some misunderstanding about how contact meter-relays should be built and what they will do. Since they are the very

PRIMERSTUFF, BUT PERTINENT
Any meter-relay which makes and breaks contacts by depending on the tiny forces inherent in a meter move ment has been manufactured by whistlers-in-the-dark. Make and break must come from an auxiliary device. Without it, you'll get, at best, only a halting, exploratory type of contact. On the break, you'll get fluttering and arcing and probably sticking . . . at a point maybe 50% behind where the contact should have separated.

heart of our business, we have the greatest concern for their reputation.

Indeed, we think everyone who has anything to do with meter-relays will benefit from a better understanding of them.

We use a locking coil to grab and hold the contacts. When they touch, there is no fooling . . . they close. The locking coil develops thousands of times as much presstogether torque as the meter movement alone can generate. For positive separation, our meter-relays have a spring that loads when the contacts lock. When separation is desired, this spring unloads, flicking the contacts apart.

HERE'S HOW LOCKINGPAYEOFF
Properly used, locking coil contacts will operate reliably 10 to 20 million times. Non-locking contacts will do well to make it through 100,000 cycles, and this at greatly reduced contact current.

GETYOUR MONEY'S WORTH

Meter-relays are used to do hundreds of jobs because they are extremely sensitive, indicating and adjustable. If you've never tried them, we wish you would. If you've tried them

It is true that the need to unlock contacts sometimes presents circuit problems. But think of the problems if a meter-relay's contacts won't work at all! Then you don't have a meter-relay-simply a mighty expensive indicator.
and didn't make out so well, we'd like to have you try again. In particular, try our locking coil types so you give meterrelays a fair shake-and do yourself a good turn in the bargain.

"

HIGH COILECTOR CURRENT PNP tronsistor, colloctor curront iss
colloctor voltage with constont.current collector voltage with constont. curren
bose siops collector swoep is o
sen 5 s with O 0.25 .ohm lood. baso cur-

high input current PNP Ironsistor, collector curront
colloctior volloge with base grounded colloctor volfoge with base grounded
ond consiont. -urrant omitler sleps.
Colloctor sweep is curront $200 \mathrm{mo} / \mathrm{slep}$. Vorticol defloclion is $200 \mathrm{mo} / \mathrm{div}$, horizontal 0.1
v/div. Zero voltage is ol center scole.

IOW input current NPN transisior, collector current colloctoon voltoge with constiont current
bose sleps. Colloctor sweep is 0 to
 vorrical dellection is 10 microomp/
div, horizontol 0.1 v/div.
has 10-AMPERE COLLECTOR SUPPLY 2.4-AMPERE BASE SUPPLY

Displays 4 to $\mathbf{1 2}$ curves per family with input current from 1 MICROAMP/STEP to 200 MILLIAMPS/STEP

T
he Tektronix Type 575 traces characteristic curves for both PNP and NPN transistors on the face of a cathode-ray tube. Seven different types of curves can be plotted. Vertical deflection is calibrated in collector current,

First shipmonts ogoinst o
sizeoblo bocklog octile sizooble bocklog occurrod
arly in November Ploose eorly in November Ploose
cheok with your Tokktronix chock with your Toktronix
Field
Engineer or Roprosiontative for curront Typo
s75 shipping schodule. base voltage, base current and base source voltage. Horizontal deflection is calibrated in collector voltage, base voltage, base current and base source voltage. Collector current supply is capable of 10 amperes from 0 to $\mathbf{2 0 ~ v , 1}$ ampere from 0 to $\mathbf{2 0 0} \mathbf{v}$. Constant current or constant voltage step supply to either base or emitter is calibrated in 17 values from 1 microamp/step to $200 \mathrm{milliamps} / \mathrm{step}$, and in 5 values from $0.01 \mathrm{v} /$ step to $0.2 \mathrm{v} / \mathrm{step}$ with 24 values of driving resistance from 1 ohm to 22 kilohms. Input steps are adjustable from 4 to 12 per family, with repetitive or single-family display.

Abstract

NGINEERS - interested in fur hering the advancement of the oscilloscope? We have openings for men with creative design abilty. Please write Richord Ropieque Vice President, Engineering

Tektronix, Inc.

P. O. Box 831 - Portland 7, Oregon

Phone CYpress 2-2611 - TWX-PD 311 - Cable: TEKTRONIX CIRCLE 116 ON READER-SERVICE CARD

Teflon Capacitors

High Insulation Resistance

This line of Teflon capacitors has a minimum insulation resistance of one million megohmmicrofarads at 25 C and 1000 at 200 C . Capacitance change over the entire temperature range is less than 4 per cent. Dissipation factor reaches a maximum of about 0.2 per cent at 200 C . Capacitance values from 0.001 to 10 mfd are available in hermetically sealed metal tubes or drawn rectangular cans. Standard voltages are 200, 400, and 600.
Dearborn Electronic Labs, Dept. ED, 1421 North Wells Street, Chicago 10, Ill.

CIRCLE 119 ON READER-SERVICE CARD

The Type MA-61 operational magnetic amplifier is a stable dc type operating from a 60 cps 115 v line. It features a linear, reversible output and is suitable for amplifying low level signals. The amplifier is stabilized by external feedback, and gain, which is determined by feedback parameters, may be varied over a wide range. The amplifier has a power rating of 25 mw . It is especially useful for mixing two or more input signals and for providing a buffer between a high impedance signal source and a low impedance load. Characteristics include a zero drift of less than 0.2 per cent of full scale output for a range of 0 to 170 F . Fluctuations in supply voltage and frequency of 10 per cent give a zero error of less than 1 per cent of full scale output. Power gains up to 3×10^{n} are obtainable. The linearity of the output, in terms of input signal, is less than $2 \mu \mathrm{a}$ or 1.3 mv over $\mathbf{l} / \mathbf{1 0}$ the maximum output.
) ynamics Research Associates, Div. Universal Mi tch Corp., Dept. ED, P.O. Box 5841, Fergusol 21, Mo.

CIRCLE 120 ON READER-SERVICE CARD

New ultrasonic welder solves heat problem in thin gauge welding

Purity of Inco Nickel helps Raytheon stabilize emission characteristics in magnetron

The vitality of a radar set is centered in its magnetron oscillator. This is why Raytheon chose their RK2J42 fixedrequency magnetron to pulse their Mariners Pathfinder Radar Model 1500. This tube is designed for long-life operation at 7 kw and 1500 pps .
One reason for the tube's top performance is the use of Electronic Grade "A" Nickel in the cathode. This commercially pure, wrought nickel is noncontaminating, and thus helps maintain optimum emission characteristics Raytheon engineers also report that Raytheon engineers also report that
it stands up against high ambient temit stands up against high ambient

G. E. builds rugged PNP triode for computer use

Magnetostrictive " A " Nickel transducer provides the vibratory energy

Even the testing treatment (being shot out of mortars) doesn't harm the 2N123 transistor. G. E. (Syracuse) engineers build it with rugged, $99 \%+$ pure nickel.

Non-contaminating, corrosion resistant Electronic Grade "A" Nickel has the strength to withstand shock and vibration. It also holds its shape at processing temperatures, and forms, welds and solders easily.

For sure glass-to-metal seals, G. E. uses the special purpose alloys Kovare ${ }^{\circledR}$ (29% Ni) and Dumet ($42 \% \mathrm{Ni}$). ($42 \% \mathrm{Ni}$).
(BTrademark, Weestinghouse Electric Corp.

A new welding process has caught the ear of the electronics industry: "Sonoweld", developed by Aeroproj ects, Inc., West Chester, Pa. By means of high-frequency mechanical

vibrations, it produces a metallurgically sound weld - and without the application of heat.
Thin gauge forms of metals like copper and aluminum are now being welded ultrasonically without melting and with little deformation Photo shows "Sonoweld" unit being used to weld aluminum and copper foil conductors in American Machine \& Foundry Co.'s wafer transformer project.
To maintain its high power levels, "Sonoweld" relies on a laminated stack transducer made from Electronic Grade "A" Nickel, a rugged magnetostrictive material. In a periodic electro-magnetic field, nickel undergoes alternating lengthchanges to vibrate at the field's frequency.
This magnetostrictive effect of " A " Nickel is relatively large, and is useful over a wide frequency range. "A" Nickel also has high resistance to fatigue, heat and corrosion, and is easily fabricated.

Reprints of useful booklet on

> "Inco Nickel Alloys for

Electronic Uses" now available
This booklet describes the compositions and special properties of the various grades and alloys of nickel which are widely used in the industry. It also lists many important electronic applications of the Inco Nickel Alloys. For your copy, fill out the Reader Service Card, or write to The International Nickel Company, Inc., 67 Wall St.,New York 5,N. Y.
 THE INTERNATIONAL NICKEL COMPANY, INC. • 67 Wall Streef • New York 5, N. Y. For more information on nickel alloys for olectronic uses, send reador sorvice card or write.

CIRCLE 121 ON READER-SERVICE CARD

Engineering Review

Pulse Delay Unit Three 2.5-50 μ sec Delays

This pulse delay unit of the 100 series of transistorized pulse programming equipment is available as a three-in-one unit. Each section provides pulse standardization, pulse delay adjustable from 2.5 to $50 \mu \mathrm{sec}$, and square wave output adjustable over the same range. All of these functions may be utilized simultaneously.
Navigation Computer Corp., Dept. D, 1621 Snyder Ave., Philadelphia 45, Pa.

CIrCle 123 on reader-service card

Having transistorized magnetic amplifier type circuitry, this precisely regulated supply takes an ac input of 95 to 135 v at 60 cps , and has an output of 0 to 60 v at 5 amps . Ripple component is 1 mv rms maximum. The unit's line regulation is 5 mv static regulation, and less than 5 mv dynamic regulation; the load regulation is less than 25 mv static and dynamic combined. Especially suited for precision laboratory testing, instrumentation work and transistor circuit testing.
Perkin Engineering Corp., Dept. ED, 345 Kansas St., El Segundo, Calif.

CIRCLE 124 ON READER-SERVICE CARD

Need
 a

Deep

 Draw?
has
an Ace in Unigrain ${ }^{*}$

To provide deep drawing thinstrip brass with increased tensile strength and elongation Somers installed the first high speed continuous annealer in the non-ferrous industry. This produces a much finer grain size than batch annealing with the result that only a single color buff is needed for a polished finish: heavy buffing and orange peel effect are eliminated, an additional saving in production time.
Whatever your problems in thinstrip brass, nickel, copper and alloys, Somers will be glad to solve them for you without cost or obligation.
Write for Confidential Data Blank.

Somers Brass Company, Inc. 116 baldwin ave waterbury, conn CIRCLE 125 ON READER-SERVICE CARD

Adjust- \mathcal{A}-Volt 500BU Variable auto-transformer

Designed for back-of-panel mounting, the versatile 500BU Adjust-A-Volt variable auto-transformer offers the dependability and flexibility you have been looking for.
Shaft can be adjusted without disturbing rotor and commutator alignment. Terminal board connections allow for either clockwise or counterclockwise rotation, as well as overvoltage or line-voltage operation.
Ganged units are available to provide increased current output, increased voltages, or for polyphase operation.
Specifications of the 500BU typeinput voltage, 115 V ; load rating, 1.0 KVA; output-0 to 135 V; output amps max. 7.5 A ; driving torque in oz., 2040. For more data, send for the catalog on the complete Adjust-A-Volt line.

STANDARD

ZLECTRICAL PRODUCTS CO.
$\$ 240$ E. THIRD ST., DAYTON, OHIO

36-Channel Oscillograph

Direct Recording

Model 1012 Visicorder produces oscillograph records that are immediately visible and useable, recording directly on paper that requires no processing. Having 36 channels, the Visicorder incorporates grid lines which may be recorded simultaneously with time lines and galvanometer traces. All speeds are changed by push-button control. The instrument features five speeds in each of three ranges, from 0.1 to 160 in . per sec. Frequency response is 3000 cps , achieved without peaked amplifiers. Writing speed is up to $20,000 \mathrm{in}$. per sec, using 12 in . paper.

Minneapolis-Honeywell Regulator Co., Heiland Div., Dept. ED, 5200 E. Evans Ave., Denver, Colo.

CIRCLE 126 ON READER-SERVICE CARD

Crystal Oscillators

Stability of ± 0.015 Per Cent

These crystal-controlled oscillators are available over a frequency range of 4 kc to 250 kc . and are transistorized for compactness. Length (seated) is $5-1 / 4 \mathrm{in}$.; diameter, $1-3 / 8 \mathrm{in}$. Output power is 600 mw . Frequency stability is ± 0.015 per cent over an ambient temperature range of from -40 to +60 C . Over the same range of operating temperature, output level stability is $\pm 2 \mathrm{db}$ from the 25 C level. The oscillators are mounted in a plug-in octal base.
Dynamics Corp. of America, Reeves-Hoffman Div., Dept. ED, Carlisle, Pa.

FOR MISSILE AND AIRCRAFT SERVO APPIICATIONS

TRANSI-MAE

3.5-6.10.16 WATT

SERVO AMPLIFIER

Completely self-contained, this "minimum space" unit requires no external power supply, demodulator or preamplifier. High performance servo loop is obtained without added amplifying elements and achieved by use of stabilized silicon transistor preamplifier with a high speed, fast response miniaturized magnetic amplifier output stage. Send for complefe data, Bulletin 100-106.

moott mumber	TMA.40501-6x	TMA.40601-KX	TMA-41001-kX	IMa-41601-6x
maximuim outrur rower	3.5	6	10	16
TrFCU moror load	suord Mk. 14 Nocrion R119	RuOrd Math. 7 Rocifort R110	RuOid Mk. 8 licerfon BlII	Rearfon 1112
hefercme SUPPII	115 volls, 400 9x, singe pheres			
SEMSITIVITY Rescows	See ivensfor diareciocillias 0.0013 sexents			
AMMIENT TEMPERATURE	$-55^{\circ} \mathrm{C} 10+100^{\circ} \mathrm{C}$			
WEIGMP -02.	10	14	20	30

MAGNETIC AMPLIFIERS INC.

632 TIMTON AVENUE • NEW YORK 55, N. Y. - CYPRESS 2.6610
West Coast Division
136 WASHINGTON ST. - EL SEGUNDO, CAL. - OREGON 8-2665 CIRCLE 275 ON READER-SERViUCE CARD

> for your measurement problems...in the laboratory or on the production line

■
THE GRAPHIC PRESENTATION...

- THE WIDE IIPPUT VOLTAGE RANGE...
- the continuousit VARIABLE LINEAR SCANNING WIDTH...
THE CONTINUOUSLY ADJUSTABLE RESOLUTION band covered. instrument.

A scanning heterodyne receiver which automatically measures the frequency and amplifude of ultrasonic signals . . . funes repeltitivaly 6.7 times per second through o 200 ke range in any part of the 1 ke to 300 ke

Critically designed for laboratory operations on the research and development lovels, the instrument provides driftloss displays, constant linearity, and stabilized scanning widths yet the grophic display is easily readable by production line personnal. Both linear and log amplitude scales are provided, making if possible to compare simultaneously signals having amplitude ratios os high as 100:1. Defolled examination of signals separated by as little as 100 cps may be made due to the highly selective special contiol features of the

The SB-7aZ provides a unique and rapid mathod of analyzing ultrasonic vibrations for checking the effects of load changes, component variations, shock, humidity and thermal changes upon frequency stability for monitoring communications carrior systems for off-frequency transmissions, interference due to spillover, spurious modulation, parasitic oscillations, otc. . . . for Fourier analyses of complex ultrosonic waveforms.

of
 PANORAMIC'S ULTRA-SONIC (waveform) ANALYZER
 SB-7aZ

The speed, accuracy and vorsatility of the SB-7aZ is further mognified with Panoramic occessory equipment: Panoramic's Ultrasonic Response Indicator Modal G-3 converts the SB-7o2 into a single line responso curve tracer . . . discriminotes against noise onc hum . . . shows response to fundamental frequency only . . . assures accurate frequency response measuremni.
Panoramic's Triangular Wave Generator TW-1 generates a continuously variable linear bidirectional swept'frequency onabling the establishment of the proper rote of scan to insure the presentation of true response.
Panoramic's Signal Altemator SW-1 presents two signals to the Analyzor at alternate intervals making possible comparison of signal being analyzed with a standard. Variations are instantly visible. Write, wire, phone TODAY for more information. There is a Panoramic Spectrum Analyzer to cover frequency ranges from Subsonic through Microwave. Send for our new CATALOG DIGEST and ask to be put on our regular mailing list for the PANORAMIC ANALYZER featuring application data.
Panoramic Radic Producis, Inc., 524 South Fulton Ave., Mount Vernon, Now York Phone: Owens 9-4600. Cabless Panoramic, Mi. Vernon, Now York State CIRCLE 130 ON READER-SERVICE CARD

Engineering Review

This $450 \mathrm{ma}, 6.3 \mathrm{v}$ television picture tube heater incorporates control of both warm-up time and current. Wound from a straight piece of tungsten, the heater is a double helical coil which makes possible the same cathode coating temperature achieved in $600 \mathrm{ma}, 6.3$ volt television picture tubes. The heater features a rigid mechanical structure with little tendency to sag away from the cathode cap. Heater warmup time is controlled to approximately 11 sec . Heater current is regulated to a tolerance of $\pm 5 \%$.

Sylvania Electric Products Inc., Dept. ED, 1740 Broadway, New York 19, N.Y.

CIRCLE 131 ON READER-SERVICE CARD

Instrument Rectifiers
Resist Temperafure and Vibration

Advantages cited for the CX1A4F and CX5A4F series of instrument rectifiers are negligible error with temperature variations, long life, retention of electrical characteristics under vibration and high resistance to momentary overload. Designed for general meter and instrument application, the series also meets the specifications for VU meters. Units consist of four cells in a full-wave bridge circuit, Rated up to 2 ma dc and 6 v ac input.

Bradley Labs., Dept. ED, 168 Columbus Ave., New Haven 11, Conn.

Equipment designers who demand more than "shelf item" specifications, rely on CIC for dependable delivery of ultra-precise potentiometers.

The result of CIC research, carbon film potentiometers are setting new standards of accuracy, life at higher speeds and performance reliability.

CIC has assisted many firms in a wide variety of industrial instrumentation, military fire control and flight guidance equipment.

Why not discuss your specific requirements with us?
*New carbon film techniques assure virtually infinite resolution; linearity to $.01 \%$, sine-cosine to $.025 \%$; compact ganging; precision ball bearing servo construction.
"For Precision Performance... specify CIC"

CIRCLI 133 ON READER-SERVICE CARD

Fractional HP Motor Two-Speed Reversible

This two speed reversible sub-fractional hp motor, designated RBC-2514, is available with basic speeds of 1800 rpm to 3600 rpm . Standard gear reductions are from $3 / 1$ to $3600 / 1$. Basic torque ratings at $115 \mathrm{v}, 60 \mathrm{cps}, 3600$ rpm synchronous, range from 0.15 to $0.5 \mathrm{oz}-\mathrm{in}$., with induction ratings approximately 100 per cent higher. Holtzer-Cabot Motor Div., National Pneumatic Co., Inc., Dept. ED, 125 Amory St., Boston 19, Mass.

CIRCLE 134 ON READER-SERVICE CARD

Model 1733-HBU-249 coolant pump is a self-priming, positive displacement pump, featuring an externally adjustable pressure regulating valve. It is qualified to military specifications which require 1 gpm at 100 psi of ethylene glycol and water. The unit permits the design of airborne electronic cooling systems, utilizing the advantages of this type of coolant. The assembly is flange mounted so that the motor can be inserted directly into the cooling air duct, using this airflow to cool the motor and therefore reduce weight and size. The assembly mea sures $3 \times 3 \times 7-3 / 16 \mathrm{in}$., and weighs 3 lb 9 oz .
E istern Industries, Inc., Dept. ED, 100 ikiff St., Hamden, Conn.
C RCLE 135 on reader-Service card
CIRCLE 136 ON READER-SERVICE CARD \rightarrow

VHF Transistors!

First From

 PHILCO

New family of Micro Alloy

Diffused-base Transistors (MADT)*

Rise, Storage, Fall Time in Low mpsec Range
 High Oscillator efficiency at 200 mcs
 Amplifier gains of 10 dh at 200 mcs

Here is a major breakthrough in the
Here is a major breakthrough in the
frequency barrier . . a new family of fieldfrequency barrier ... a new family of field-
flow Micro Alloy Diffused-base Transistors. flow Micro Alloy Diffused-base Transistors. Philco MADT's extend the range of high
gain, high frequency amplifiers; high speed gain, high frequency amplifiers; high speed computers; high gain, wideband amplifiers
and other critical high frequency circuitry.

MADT's are available to various voltage and frequency specifications for design of high performance transistorized equipment through the entire VHF and part of the UHF spectrum. These transistors range in f_{mas} from 250 mc to as high as range in 1000 mc . MADT gains are typically 10 db at 200 mc and greater than 16 db at 100 mc . A low cost general purpose unit 100 mc . A low cost general purpose unit 18 db at 50 mc and 32 db at 10 mc .
Make Philoo your prime source of information for high frequency transistor applications.

 PHILCO. CORPORATION

LANSDALE TUBE COMPANY DIVISION

 LANSDALE, PENNSYLVANIA
New Products

SLIP RING ASSEMBLIES

of a Series of
Data Sheets

High Power electronic equipment often requires operation at high voltage. The power requirements are continually increasing and as a result the auxiliary equipment such as slip ring assemblies transmitting the power must be capable of transmitting high voltage. In the past slip rings were designed to transmit 8,000 to 10,000 volts, but today re-

quirements for 30,000 volts and higher are not unusual. Available insulating materials will withstand voltages of this magnitude and if one considers only the dielectric strength of the insulating materials, the design of assemblies for high voltages does not appear to present too great a problem. However, the life of many insulating materials is greatly reduced by ozone generated by corona discharge and some excellent insulating materials will disintegrate in a few hours when operated in a confined corona field. Corona is electrical discharge and covers a very wide band of frequen-
cies. This energy can be transmitted over the lead wire and cause radio interference.
Good design requires that there be no corona in the slip ring assembly and the operation of the assembly corona-free is one of the primary problems. When a potential is applied to a configuration of conductors and several insulating materials, one of which may be air, the potential distribution throughout the configuration will be governed by the electric capacitance between the elements, and the higher the capacitance of any element, the lower the voltage gradient across that element.
The capacitance of the insulating elements is governed in part by the dielectric constant of the material, and since the dielectric constant of air is close to 1 and of all other materials is greater than 1, the voltage gradient across the air may become proportionately greater than across the other dielectric materials. If the voltage gradient across the air

exceeds the dielectric strength of the air, corona will result.
The proper design of the slip ring assembly is to effect a balance between the thicknesses and dielectric

constants of the materials in order that the potential gradients across any dielectric do not exceed the dielectric rating of the material.
For compact design of a slip ring assembly, operating voltages in excess of 20 KV require dielectric oil in place of air. Oil can withstand higher voltage gradients than air and the oil has a higher dielectric constant, thereby producing a more uniform voltage distribution in the assembly. This results in a much superior electrical design.
The use of oil dielectric gives some additional complications and these include the requirement of perfect sealing at all joints and bellows to take up expansion and contraction of the oil over a wide range of ambient temperatures. The dielectric oil also becomes viscous at low temperatures and heaters are required to keep the oil warm at low ambient temperatures.

Makepeace

SLIP RINGS

D. E. MAKEPEACE COMPANY Attleboro, Mass.

ENGELHARD INDNSTRIES

Components Oven
Regulation $\pm 3 \mathrm{C}$

Specifically designed for small components, such as capacitors, resistors, transistors, etc. The AM-200 oven cavity measures 1 in . diam $\times 2$ in. length. Temperature regulation is $\pm 3 \mathrm{C}$ over an ambient range of -55 to +100 C . Available with either plug-in or stud mountings.
Bulova Watch Co., Electronics Div. P-846, Dept. ED, Woodside 77, New York.

CIRCLE 138 ON READER-SERVICE CARD

Frequency Calibrator For FM/FM Systems

Model 521 frequency calibrator permits the rapid and accurate calibration of oscillators and discriminators in $\mathrm{fm}-\mathrm{fm}$ telemetering systems, and provides calibrated input voltage to each voltage-controlled oscillator to continuously measure deviations from standard frequencies. Alignment of each discriminator in the receiving system is checked by a standard frequency generated in the calibrator. The instrument features a proprietary circuitry which permits the direct, highly accurate, comparison of two frequencies without need for frequency restrictions or selective filtering. Reference frequencies are accurate to ± 0.02 per cent, with higher accuracies available. Deviation measurements are accurate to ± 0.05 per cent.

Fenske, Fedrick \& Miller, Inc., Dept. ED, 12820 Panama St., Los Angeles 66, Calif.

CIRCLE 139 ON READER-SERVICE CARD

Test Clip Adapter

 Tests Pig-Tail Units

Testing of resistors, capacitors, and similar pigtail components is simplified by the use of this pancl-mounting test clip adapter. Spring action of the clips permits positive contact without manual opening or closing of the jaws. Nickel plated clips and plugs are mounted on an MIL-M-14, type CFG phenolic board.
Grayhill, Inc., Dept. ED, 561 Hillgrove Ave., LaGrange, Ill.

CIRCLE 140 ON READER-SERVICE CARD

FM/FM Calibrator
Dynamic Checks

Test information for all $\mathrm{fm} / \mathrm{fm}$ telemetering systems is obtained with model TDC-5 simultaneous 5-point calibrator and dynamic checker. The instrument offers a simultaneous five-point calibrator for discriminator linearity measurements in all of the 18 rdb subcarrier channels and 5 optional 30 per cent channels. A dynamic checker also converts phase distortion in the discriminator package into harmonic distortion which can then be analyzed on the screen of a panoramic spectrum analyzer.
In its first function, the TDC-5 furnishes five deviation frequencies, which may be set at whatever points desired. As a dynamic checker, a stepped fm wave is generated for each subcarrier discriminator. If the stepping rate is increased beyond the permissible information rate, marked harmonic distortion of the stepping frequency is detected on the screen of the analyzer. By adjusting the cycling rate, which is continuously variable from 2 to 2000 cps , until a clear picture is obtained, the maximum information cap acity of each channel may be established.
Yanoramic Radio Products, Inc., Dept. ED, 52) Fulton Ave., Mount Vernon, N.Y.

CIRCLE 141 ON READER-SERVICE CARD

another"demand" member has joined U.S.C.

family of Printed Card Connectors . . . the new, hooded screw lock Series UPCC . . . SLH bringing the total of different available types to over 150.

- Conforms to MIL-C-8384 and NAS specs.
- Molding materials-melamine and diallyl phthalate
- Die cast aluminum shells-aluminum hoods
- Ideal for critical environmental conditions
- Silver plated-gold flash contacts
- Silver plated-goid flash contacts lock elements-stainless steel-double lead

Screw lock elemen
for double speed

454 East 148th Street - New York 55, N. Y. - CYpress 2.6525

All UPCC-M \&-F units available with wire-solder: turrot type; or soldor dip torminals (for $1 / 16,1 / 8,1 / 4^{\prime \prime}$ boards).
Max. Wire Size ..18 AWG
Voltage Breakdown (Min.)180V, RMS
 Insulation Resistanc
No. of contacts Current Ratings -.....7, 11, 15, 19, 23

Also custom configurations to ment your specific applicetion requiroments.
U.S. COMPONENTS, INC. associated with U. s. Tool \& Mfg. Co., Inc.
circle 142 on reader-service card

DIRECTIONAL COUPLERS

VSWR and RF POWER MEASURING LQUIPMENT

New Products included in new Catalog No.
12 create the most extensive line available.
RF POWER and VSWR INSTRUMENTS

Model No.	Frequency Range (mes.)	Power Range Incident \& Reflected (watts)	RF Connectors and Impedance
$261{ }^{\circ}$	0.5-225	0.1000	Type 83.1R 52 ohms
262		0.1000 (relative)	Indicator only
263	0.5-225	0-10; 100; 1000	Type N* 52 chms
702 N	28.2000	0.4	Type N* 52 chms
703 N	20-2000	0.12	Type N* 52 ohms
$\triangle 705 N$	20-2000	0.120	Type N* 52 ohms
$\triangle 706 N$	28-2000	0.400	Type ${ }^{*} 52$ otms
711 N	25-1000	0-30, 75, 300	N plus 83-1R Adaptors
$\triangle 722 N$	1000-3000	0.4	Type N 52 chms
$\triangle 723 \mathrm{~N}$	1000-3000	0.12	Type N 52 chms
40588	28-2000	0.4000	$1 \mathrm{~K}^{\prime \prime}$ Flange 51.5 chms
$445 A 9$	28.2000	0-12,000	$31 /{ }^{\prime \prime}$ Flange 50.0 chms
445A10	20-2000	0-40,000	$31 / \%^{\prime \prime}$ Flange 50.0 chms

DC OUTPUT DIRECTIONAL COUPLERS

Modes No.	Frequency Range (mcs.)	Power Range Incident \& Reflected (watts)	RF Connectors and Impedance	
576 NT	42-2000	1.2	Typo ${ }^{\text {* }}$	52 chms
$570{ }^{\text {5 }}$	20-2000	0-12	Type ${ }^{\text {N* }}$	52 chmis
$\triangle 576 N 4$	46-2000	0-40	Type N^{*}	52 chms
576N6	28-2000	0.400	Type ${ }^{\text {- }}$	52 chms
$\triangle 592 N$	1000-3000	0.4	Type N	52 chms
$\triangle 593 \mathrm{~N}$	1000-3000	0.12	Type N	52 dhms
40288	28-2000	0.4,000	1\%' Flange	- 51.5 chms
44249	28-2000	0-12,000	31\%"Flange	- 50.0 chms
442 AlO	20-2000	0-40,000	31\%" Flange	- 50.0 chms

RF OUTPUT DIRECTIONAL COUPLERS

ABSORPTION TYPE RF WATTMETERS

RF LOAD RESISTORS

Δ Now products

- Also available with UHF, C, and MN Connectors.
- Coupler Unir Only for uso with 262 Indicator.

BRISTOL, CONWECTICUT

New Materials

Transformer Encapsulation Compound Resist 175 C

Transformers encapsulated with Alcast encapsulation compound, have been subjected to temperatures as high as 175 C for a protracted period of time without being adversely affected. The thermo-setting compound features a coefficient of expansion close to that of glass and metal; excellent adhesion to metal, glass, and printed circuit surfaces; simple handling procedures; and long pot life.
Allen Plastics Corp. Dept. ED, 1015 East 173rd St., New York, N. Y.

CIRCLE 155 ON READER-SERVICE CARD

Elastic Insulation
 In Cloth, Tape, and Tubing

Suitable for continuous-duty operation at about 150 C , Isolastane insulating material has resistance to transformer oils, silicone oils, silicone slipper compounds, askarels, and other synthetic insulating liquids. The material is available in bias glass cloth and tape and glass woven sleeving forms.

Natvar Corp., Dept. ED, Woodbridge, N.J.
CIRCLE 156 ON READER-SERVICE CARD

High Temp Cable Harness
 Will Not Cold Flow

Known as Spiral Wrap-RN, this new type of Spiral Wrap cable harness will not cold flow at any temperature, and can withstand high temperatures. The material used is exposed to irradiation, resulting in a material that has no melting point. It will withstand continuous temperatures of 150 C , and will withstand 270 C for 48 hr . It is also usable at extremely low temperatures.

Illumitronic Engineering Dept. ED, 680 E. Taylor, Sunnyvale, Calif.

Using Thermistors

Edited by FENWAL ELECTRONICS

This is the third in a series of news columns devoted to thermistors - a device that is super-sensitive to tem;erature change.

The example in point: power measurement and voltage control.

A bead thermistor can be used to balance a bridge circuit, allowing the thermistor current to be measured and its DC power calculated. This is done with a 2000Ω bead thermistor in a 200 』 bridge circuit with a variable resistor in series with the bridge. This will heat the thermistor enough to lower the resistance to 200Ω and balance the circuit to determine the H.F. power. By applying a source of high frequency power to the thermistor through capacitors this will further heat the thermistor and the bridge will be unbalanced. Then reduce the DC power until the bridge balances again. Calculate the new DC power, and the difference between the two calculations is the H.F. power.

To maintain constant voltage a thermistor with a suitable series resistor "A" can be placed in parallel with a load in a circuit. As the load resistance increases there is a reduced drop across resistor "B." This tends to raise the voltage across the load. The thermistor heats up, reduces its resistance, and more current passes through it and through resistor "B." This brings the voltage across the load back to its original state. Controls like this can maintain as close as 1% voltage regulation over a broad range of load resistance, or any voltage from $1 / 2$ volt to 100 volts can be regulated in this way with suitable circuitry.

Engineers: these and other thermistor applications are discussed in 12-page catalog EMC-1. Write for your copy to Fenwal Electronics, Inc., 314 Mellen St., Framingham, Massachusetts.

Makers of Precision Thermistors CIRCLE 158 ON READER-SERVICE CARD

CICCLE 159 ON READER-SERVICE CARD

Epoxy Curing Agent

For High Temperatures

This colorless curing agent, hardener 929, permits the development of high temperature properties in epoxies. When cured with appropriate epoxy resins, the hardener will develop heat distortion temperatures of approximately 300 F . The hardener is both non-staining and colorless.
Furane Plastics, Inc., Dept. ED, 4516 Brazil St., Los Angeles 39, Calif.

CIRCLE 160 ON READER-SERVICE CARD

Electrical Contacts

Precious Metal Type

Precision contacts of fine silver, coin silver, Conmet 4 and Conmet 17, are stocked in several different styles in recommended standard sizes. Also available are standard solid headed contacts and clad metal contacts made from composite metals, and special contacts for specialized electronic applications. Solid rivet and composite type contacts are supplied in all standard contact alloys and special metals where required. Contacts Inc., Dept. ED, Wethersfield, Conn.

CIRCLE 161 ON READER-SERVICE CARD

Dip-Soldering Fixtures

High Temperature Ceramic

Designed for automatic dip-soldering of printed circuit boards, M120-F ceramic dip-soldering fixtures can not be wet by molten solders and have sufficient mecahnical strength to prevent boards from warping. Suitable for use at temperatures to 1065 C , the material will handle fixturing of boards up to $12-\mathrm{in}$. wide. Molten solders will not adhere to M120-F ceramic. The material, with its low thermal expansion, maintains absolute flatness in the printed circuit board, preventing its warpage at soldering temperature. The printed circuit fixtures are made to print or are available in raw forms as unfired shapes.

Technion Design \& Manufacturing Co., Inc., Duramic Products Div., Dept. ED, 262-72 Mott St., New York 12, N.Y.

CIRCLE 162 ON READER-SERVICE CARD

3 WATTS at $70^{\circ} \mathrm{C}$

$\pm 1 \%!!$

MEPCO TYPE P3 Power wire wound resistor has found immediate acceptance due to its small size and high power and temperature capabilities.

CHARACTERISTICS:

Size: $13 / 16^{\prime \prime} \times 1 / 4^{\prime \prime}$
Leads: $11 / 2^{\prime \prime}$ \#18 hot solder coated
Watlage: 3 watts at $70^{\circ} \mathrm{C}$
derate to 0 at $275^{\circ} \mathrm{C}$
Protection: Multiple coats baked silicone resin

Resistance: 1Ω to 6.5 K
Tolerance: 1% standard $.1 \%$ to 5% special
Temperature Coefficient: $.002 \% /{ }^{\circ} \mathrm{C}$
Insulation: Multiple coatings of Baked Resin Finish

Dielectric: 1000 V RMS Min.
Moisture: Characteristic G MIL-R-26C
Other types from 2 to 15 watts
Request Catalog WC-1

One of the objectives in the design of the Canoga Wobbulator 7200 is to obtain high sensitivity without the "hum" problems normally experienced with other swept frequency generators. The swept frequency output voltage of the Wobbulator 7200 is modulated at approximately 50 Kc ; the probes, with their internal diodes, detect this modulation which is then amplified in the vertical CRT band-pass amplifier. This new principle allows the use of swept generator techniques for evaluation of low gain or lossy circuits where point by point frequency measurements were previously necessary.

New Materials

Mold Parting Agent

No Deterioration under Heat

Resin release type N is a non-silicone parting agent for use in releasing plastic parts from compression, injection, and casting molds or patterns. The material is a non-melting parting agent which will not change viscosity or deteriorate up to 450 F . The resin release has applications with polyester, epoxy, phenolic, silicone, neoprene, isocyanate, urea, melamine, alkyd, and vinyl resins used in laminating, potting, tooling, molding, casting, bonding, and filament winding operations. It is soluble in toluene, xylene, and related hydro-carbons. These solvents can be used to make a spray solution or dilute wipe-on film.

Specialty Products Co., Dept. ED, 192 Warren St., Jersey City 2, N.J.

CIRCLE 165 ON READER-SERVICE CARD

Titanium and Alloys

Rolled to Foil Thickness

Production quantities of commercially pure titanium and some titanium alloys are successfully being rolled to foil gage and annealed. Profile rolled L-shapes have also been produced in commercially pure titanium, and similar shapes in alloy $6 \mathrm{AL}-4 \mathrm{~V}$ are under consideration. Potential uses of the titanium foil include tubes and honeycomb or sandwich material for aircraft use.

Metals \& Controls Corp., General Plate Div., Dept. ED, Attleboro, Mass.

CIRCLE 166 ON READER-SERVICE CARD

Cold Punch Laminate

For Printed Circuit Boards

Textolite No. 11574 epoxy paper laminate is specifically adapted to use for printed wiring boards in high reliability applications. It is also recommended for tube sockets, terminal strips, and other intricate punched or machined parts. The epoxy paper laminate shears, punches and pierces cleanly without haloing at 80 F . Insulation resistance after 96 hours at environmental extremes is one million megohms. Available in sheets $36 \times 72 \mathrm{in}$. or $36 \times 36 \mathrm{in}$. in thicknesses from $1 / 32 \mathrm{in}$. to $1 / 4 \mathrm{in}$.

General Electric Co., Industrial Laminates, Dept. ED, Coshocton, Ohio.

CIRCLE 167 ON READER-SERVICE CARD

Here's the EASY Vay to Work Up A Nyquist, A Bode, A Nichols

If you're working on servosystem test or design. you'll want to have these FREE chart forms . . a wonderful time-saver! The coordinates are already lettered and the legend imprinted. They are transparent "masters". Almost any duplicator assures you of an immediate supply of charts at any time.
When you get the frequency. phase angle, and amplitude loci plotted on these worksheets. you've got a "standardized" permanent record of the system you are checking.

The Complex Plane Conversion Chart. Worksheet \#104. should be particularly helpful. On it are plotted the loci of constant closed-loop gain (in units of voltage ratio) on the horizontally axial circles. and the con-stant-loop phase (in degrees) on the vertically axial circles. These loci are plotted over Cartesian coordinates, the ordinate of which represents the unreal. and the abscissa the real. component of the gain vector.

Suggestions for an uniform procedure in working up the different curves are included.

SERVO CORPORATION

OF AMERICA

20-20 Jericho Turmpilke. Now Hyde Park, L. I., N.Y.

For your free SERVO Work Forms. call your nearest Servo Corporation represen tative, or write directly to Servo Corporation of America, Inc., Room 12A, New

CIRCLE 168 ON READER-SERVICE CARD

Solvent for Casting Resins

Recovers Embedded Items

Eccostrip 57 is a solvent which is used to attack epoxides, polyesters, polysulfides, and silicone rubbers, and is particularly useful in recovering items which are embedded in casting resins. The solvent attacks the resin, causes it to swell and allows it to be pulled off.

Emerson \& Cuming, Inc., Dept. ED, 869 Washington St., Canton, Mass.

CIRCLE 170 ON READER-SERVICE CARD

Epoxy Series

For Transformers and Coils

Series 6900 epoxies are especially designed for the casting of transformers, coils, magnetic amplifiers, and other similar equipment. They incorporate long pot life, low viscosity, and the elimination of settling. One feature of the epoxies is flexibility preventing cracking caused by temperature cycling.

Houghton Laboratories, Inc., Dept. ED, Olean, N.Y.

CIRCLE 171 ON READER-SERVICE CARD

Adhesive for Teflon

Binds Tefion to Metal

This adhesive, Type 80 , is of the pressure sensitive type, and tests indicate a peel strength of over a thousand grams per inch or a direct pull of 12 to 15 psi per Teflon to Teflon, and Teflon to stainless steel. It has good acid and alkali resistance, excellent electrical properties. It can be applied by brushing, dipping, or spraying.

Flexrock Co., Packing Div., Dept. ED, 3608-B Filbert St., Philadelphia 1, Pa.

delay lines

standard or specially designed

BY TECHNITROL

These extra-compact delay lines assure a minimum of pulse distortion with maximum stability under ambient temperatures . . . and in a minimum of space. They can be had pencil-thin in plug-in, pig tail or fuse-clip mounting. Available cased or dip-coated in epoxy resin as well as hermetically-sealed units for military application . . . with any desired characteristics of impedance or frequency response. Typical are:

- Delay: 0.01 to $6 \mu s$
- Characteristic Impedance: 400 to 5600 ohms
- Band Pass Characteristics: Unique windings furnish maximum band width for given delay per inch.

We ${ }^{\circ}$ are prepared to design lumped constant or distributed constant delay lines for your particular circuit applications.

Write today for Bulletin ED 174

For exacting, high-temperature applications...
 CERAMASEAL LEAK-TIGHT TERMINALS

Assuring you savings in installation and operation, these Ceramaseal high-temperature terminals are 100% leak-tested and guaranteed leak-tight when shipped. High-alumina ceramic and metal parts of Ceramaseal terminals are joined by an exclusive process to form a high-strength, long-life molecular seal.
Brazing, welding or soldering techniques can be used for installation, without resulting damage to the seal, thus eliminating costly rework or replacement. For brochure and spec sheets, or complete information on special high-temperature terminals, write: Ceramaseal, Inc., Box 25, New Lebanon Center, New York.

Supplying High-temperature, Quality Terminals for Five Years
 CIRCLE 174 ON READER-SERVICE CARD

CIRCLE 175 ON READER-SERVICE CARD

New Literature

Electrolytic Capacitors

Type CQM, computer quality electrolytic capacitors are described in engineering bulletin now available. The four-page, well-illustrated bulletin indicates that CQM capacitors may be ordered in various capacitance and voltage combinations ranging from $45,000 \mu \mathrm{fd}$ at 5 v to 850 $\mu \mathrm{fd}$ at 400 v . Container diam are $1-3 / 8 \mathrm{in}$., 2 in ., $2-1 / 2 \mathrm{in}$., and 3 in . Height of all units is $4-1 / 8 \mathrm{in}$. Pyramid Electric Co., North Bergen, N.J.

Induction Heaters

Induction Heaters are described in bulletin now available. Eight pages contain specifications on 15,30 and 40 kw units; basic components; optional features; guide to induction brazing and soldering; frequency selector chart; static hardening curve; and other engineering information. Magnethermic Corp., Youngstown, Ohio.

High Voltage Resistors

Comprehensive data on construction, types, ratings, dimensions, tolerance, terminals, and installation are described in data bulletin G-lb now attached. The bulletin includes detailed charts and graphs. International Resistance Co., 401 N. Broad St., Philadelphia 8, Pa.

Electronics Catalog

This 1958 catalog (404 pages) lists over 27,000 items. Special emphasis has been placed on equipment for industrial maintenance, research and production requirements. There are detailed listings of standard and special purpose electronic tubes, test instruments, voltage stabilizers, transformers, resistors, capacitors, printed circuit components, new transistors, rheostats, relays, switches, rectifiers, fuses, tools, wire, cable, photo-electric components, 2 -way radio telephones, sound powered telephones, counters, program clocks, timers, batteries, sockets, generators, power supplies and a wide variety of other electronic equipment and components. The attractive rotogravure section includes approved public address amplifiers in systems ranging from 8 to 60 w . PA equipment is included for industrial applications, including indoor and outdoor paging, and plant-wide public address. Allied Radio Corp., 100 N. Western Ave., Chicago 80, Ill.

Rugged XY ${ }^{\text {a }}$ Deca Switch

for your selecting and control operations

This direct-drive impulse-controlled stepping switch (reset type) is designed to perform control and select. ing functions in industrial and communication applications.
The lightweight Deca Switch of fers exceptional reliability and compact ruggedness, plus these added features:

- positive stepping action with spe cial locking device to eliminate bounce of wipers and off-normal contacts when the switch returns to the home position;
- 4 banks of 11 contacts each;
- such time-proven XY advantages as dust-free vertical wire banks. bifurcated wipers, dependable release magnet mechanism, and long-wearing, case-hardened working parts with Parco-Lubrite rust-resistant, oil-retaining finish:
- fast operate and release time.

You can order XY Deca Switches in a wide variety of off normal and release magnet spring combinations to suit your specific requirements. Compact and light, the switches are $4^{3} / 4^{\prime \prime}$ long, $4^{\prime \prime}$ wide, $1^{1 / 2 "}$ high and weigh $201 / 4$ ounces.
Complete technical details are contained in Bulletin T-5001, available on request.

STROMBERG-CARLSON

A DIVISION OF GENERAL DYNAMICS CORPORATION TELECOMMUNICATION INDUSTRIAL SALES 116 CARLSON ROAD, ROCHESTER 3.N. CIRCLE 180 ON READER-SERVICE CARD

anazing new silicone coating

Aluminum Bibliography

A selected bibliography has been made available to designers and design engineers in the metalworking industry. All available literature and motion pictures of possible interest to designers are discussed in "Bibliography of Information about Aluminum for the Designer." The final two pages of the booklet include forms to simplify ordering. Aluminum Co. of America. 1501 Mellon Square, Pittsburgh 19, Pa.

Rheostat Potentiometers

Type 2 W rheostat potentiometer is fully described in a four page bulletin, A-3a, now available. The control is a compact unit which offers dependable service.

The bulletin gives comprehensive data on the construction, dimensions, materials, bushings, terminals, contactor, identification, hardware, and locating lugs of the potentiometer. The variable wire wound control provides maximum adaptability to meet rheostat and potentiometer applications. The unit's excellent linearity and resolution are featured in this data sheet. The sheet includes detailed charts and graphs. International Resistance Co., 401 North Broad Street, Philadelphia 8, Pa.

Environmental Test Facility

Facilities and functions of an environmentai testing laboratory available to industry and government agencies for the critical operating examination of electronic and electromechanical products and systems are explained in 4-page technical bulletin 58-116 now available. BJ Electronics, Borg-Warner Corp., Santa Ana, Calif.

Heaters

Designed for a wide range of industrial applications, a cartridge heating unit is described in bulletin 365 now available. It shows that the unit is capable of producing up to 5 times more heat than any standard cartridge heating unit. A typical rating of a "Firerod," $1 / 2 \mathrm{in}$. diam by 4 in. long is 1370 w with a watts density of 250 w per sq in. used in a 600 F application.

Included are graphs, and helpful data on how to select the proper type and size unit, how to determine watts density required for a particular installation, proper fit, and other worthwhile information. A table of specifications (tolerance, type of seals) is also shown. Watlow Electric Mfg. Co., 1376 Ferguson Ave., St. Louis 14, Mo.

ney

miniafure cables

 from

Write for
Bulletin 31A

MINIATURIZED

 All TEFLON RF Coaxial CablesStandard constructinns comply with MIL C-17B. Special constructions which fall outside standard range and sizes available upon request.

Type	Impedance Ohms	Dielectric O.D. (Nom.)	Finished. O. (Nom.)
RG 187/U	75	.060	.110
RG $188 / \mathrm{U}$	50	.060	.110
RG $195 / \mathrm{U}$	95	.102	.155
RG $196 / \mathrm{U}$	50	.034	.080

M\|N』ATURIZED LOW COST Polyethylene Dielectric

 Low Capacitance Cables Smallest possible engineered cables $\mathbf{1 9 . 2} \mathrm{mmf}$ range has OD of $.185^{\prime \prime}$) for LF pulse transmission, HF RF coupling links and low shunt capacitance lead applications for temperatures up to $100^{\circ} \mathrm{C}$. Design range: 6 mmf thru $10 \mathrm{mmf} / \mathrm{ft}$.
TIMES MIRE AND CABLE COa Inc.

An Affiliate of the Infernational Silver Company. WALIINOFORD, CONNECTICUT

CIRCLE 186 ON READER-SERVICE CARD

ON PRECISION PLASTIC FILM CAPACITORS

Now! Close tolerance capacitors are yours at reduced prices, through West-Cap's newest mass-production methods, with rigidly supervised quality control. Well staffed prototype department assures prompt answers to your capacitor design requirements! Write for Tech-Bulletins covering West-Cap's full selection-or submit your problems.

WEST-CAP DIVISION

Electric
Manufacturing Co.
1509 First Street, San Fernando, California CAPACITORS

Filtens
potentiometers
CIRCLE 187 ON READER-SERVICE CARD

NJE OFFERS
 10 NEW MODELS OF SOLID STATE POWER SUPPLIES TO MEET THE GROWING DEMAND!

The enthusiastic reception which greeted our Solid State fully transistorized power supplies encouraged us to expand our stock line, incorporating the most popular of the custom designs of the last 2 years. All designs incorporate our unique short-circuit-proof (not merely short-circuit-protected) power-transistor circuit.

If power supply size, weight, efficiency, and reliability are important to you . . . you need N J E Solid State! We have developed several hundred special designs (series and shunt regulator configurations) and are prepared to quote on custom requirements.

Write for our new Solid State Catalog SS-3-7.

343 CARNEGIE AVENUE KENILWORTH, NEW JERSEY

New Literature

Automatic Interpolation

A method of eliminating la orious and often inaccurate interpola ion in reading measuring instruments having nonlinear characteristics is now avail. able in a 6 page illustrated fold r . This method is embodied in the spiril-scale dial used on Type 504 heterodyne fre quency meter. The dial permits inter. polated measurements to be read directly, without computation. Contents of the folder include materia reprinted from Electronic Desigs, plus a precis of a report by enginee Bob Lebowitz on "frequency measure ment devices," as well as a brief de scription of the Type 504 heterodyn frequency meter. Polytechnic Researcl \& Development Co., Inc., 202 Tillar Street, Brooklyn, N. Y.

Metal Panel Decoration

Panels and control boards for instru. ments and electronic equipment are featured in a 4-page brochure. Etched engraved, lithographed and screened panels ranging from small dials to huge boards are illustrated and described. Etched Products Corp., Panel Dept., 39-01 Queens Blvd., Long Island City 4, N.Y.

Rotating Components

A catal selection and application of synchros, resolvers, and rotating components has recently been published. Synchros, stepper motors and similar products for a wide range of uses are illustrated and described. The catalog has a section covering points of consideration in synchro selection such as types (control or torque), military designations and engineering data. It also contains inquiry sheets enabling the engineer to specify his particular requirements for synchro types, powes specifications and other characteristics. Dimensional data, materials and electrical data are given on the various types described. Induction Motors of California, Div. of Induction Motors Corp., 6058 Walker Ave., Maywood. Calif.
< CIRCLE 188 ON READERRERVICE CARD

Here's an easy way for you to inspect and test the outstanding properties of silisone rubber. Here's a quick and simple method of checking the closetolerance production of a growing silicone fabricator-to help you judge quality and skill. Samples of silicone rubber O-rings, miniature and subminiature parts will be forwarded to you without cost or obligation.
Free quotation quickly made from your sample or blueprint To help you overcome design problems, our engineering staff and experience are at your disposal. To assist you in meeting production deadlines and quality standards, we offer the finest facilities for fast mass production with highest uniformity. Compound selection and molding to meet your exact specifications are also available. Why not write today for your Iree samples or quotation, no obligation, of course.

min esota silicone rubeer co.

5724 /. 36th St., Minneapolis 16, Minn. Dept. 313
Aff zted with Minn. Rubber \& Gasket Co.
Offices in principal cities.
C। CLE 192 ON READER-SERVICE CARD

Mica Selector

Size and quality of natural mica material needed for fabricated parts can be determined accurately through a technical bulletin now released. The mica user merely lays the part or sketch on a full-size "grading chart" provided to estimate the material needed. High-quality natural micas are of particular interest to industry because of their excellent dielectric properties, and resistance to temperatures of 1000 F and higher. Ford Radio \& Mica Corp., 536 63rd St., Bklyn 20, N.Y.

Facilities

Detailed information is provided in this 12 page brochure on facilities for the design and manufacture of custom magnetic components such as transformers, magnetic amplifiers, filters, converters, reactors, discriminators, and networks. The brochure includes photos of products which are available in miniature and subminiature sizes, with iron core construction, and may be packaged to a variety of specifications. Information is also included on hermetically sealed, toroidal, and open frame designs. Servomechanisms, Inc., Magnetics Div., 1000 W. El Segundo Blvd., Hawthorne, Calif.

Bimetal Thermometers

Thermometers made with 3 in . and $4-1 / 2 \mathrm{in}$. diam dials are described in catalog 2256. now available. They are actuated by a powerful, specially processed, bi-metallic helix that responds rapidly to temperature changes. Bimet Dials are dust, moisture and fume-proof, and withstand outdoor applications or highly adverse atmospheric conditions often encountered in the chemical, petroleum, and other industries. Moeller Instrument Co., 132nd St. and 89th Ave., Richmond Hill 18, N.Y.

Rod and Sheet Plastics

Rod and sheet plastics are described in 17 page brochure now available. It contains a technical data sheet and ordering information for each product. Included are Stycast Hi K, adjusted dielectric constant plastic for the range of dielectrics from 3 through 20; Stycast Lo K, low loss and low dielectric constant stock; Eccostock, and specialty epoxide materials. There is also information on a series of foams and absorbers both in rod and sheet form. Emerson \& Cuming, Inc., 869 Washington St., Canton, Mass.

This is probably about the most groundborne relay ever built by Sigma. Since its leviathan specifications include a brutish size of $31 / 2^{\prime \prime} \times 23 / 11^{\prime \prime} \times 2 \frac{3}{3} 2^{\prime \prime}$ and a weight that can reach "/s of a pound (even bigger and heavier when hermetically sealed), it's exceedingly doubtful that it will ever fly, orbitally or otherwise. Since tbat kind of quick fame is out of the question, the " 61 " should be able to do some other - though less timely - sort of job. It can, and here's where you product designers can start paying close attention.

The 61 is a polarized DC power contactor, with four separate heavy-duty contact circuits (DPDT only) for switching up to $\mathbf{2 0}$-ampere resistive loads in response to momentary $1 / 4$ to $1 / 2$ watt signals. Two switching forms are available: Form Z, magnetic latch - in, single or dual coils, and Form Y , magnetically biased, single coil. For special jobs, center-stable 61's can also be built (Form X). Since the Form Z types latch firmly in cither of two positions by magnetic means, there are no mechanical wearing surfaces; the one part that does move uses miniature ball bearing pivots.

Some of the places we'd expect the 61 to be particularly useful include machine tool control panels, battery - powered control systems, and other equipment where big fat loads must be dependably switched by comparatively meager signals, in the presence of contact-disturbing shakes, shocks and rumblings. Space and muney can also sometimes be saved by a 61 , in replacing a pilot and slave relay combination where $225-450 \mathrm{mw}$. signals have to control 1 to 2 kw . loads.
POLARIZED LATCHING CONTACTOR

Series 61 relays are quite easy to order, once you master Sigma's international, all-encompassing system of code designation (readable east to west, north to south, without binoculars). Example : 61 FZ2A $2 \mathrm{~B}-200-\mathrm{CD} S \mathrm{SC}=$ an unenclosed latching DPDT 61 with 200 -ohm dual coils and silver alloy contacts. Bulletin, on request, explains all this and more.

SIGMA INSTRUMENTS, INC.

91 Pearl Street, South Braintree 85, Massachusetts CIRCLE 197 ON READER-SERVICE CARD

porvenco. TEFLON/ snaps

POLYPENCO Spaghetti Tubing Proves Resistance To Heat, Simplifies Assembly

One of the newest applications for POLYPENCO Teflon Spaghetti Tubing is its use on a series of miniature rotary tap switches. The choice of this tubing was based on its complete resistance to soldering heats. These other valuable characteristics make Polypenco Teflon Spaghetti Tubing the ideal choice for your thin wall insulation applications:

- SUPERIOR FOR COMPONENT PRODUCTION

Excellent dielectric permits miniaturization
Does not break down by bending or flexing

- SUPERIOR ELECTRICAL PROPERTIES

High dielectric strength: 400-500 $\mathrm{v} / \mathrm{mil}$
Low dielectric constant: 2.0
High surface resistivity: above 10^{13} ohms
Services entire frequency range
Unaffected by heat and moisture

- SUPERIOR PHYSICAL PROPERTIES

Service range: $-320^{\circ} \mathrm{F}$ to $500^{\circ} \mathrm{F}$
High vibration and flex life

- SUPERIOR Chemical properties

Resistant to solvents, alkalis, acids
Zero water absorption
Fungus resistant
Non-flammable, sunlight resistant
Polypenco Teflon Spaghetti Tubing is available in 10 coded colors and in AWG wire sizes \#0 through \#30. Polypenco Teflon is also available in rod, tubing, thin wall tubing, tape and sheet. Write today for more data on your applications.

THE POLYMER CORPORATION OF PENNA.
Reading, Penna.
Export: Polypenco, Inc., Reading, Penna., U.S.A.

POLYPENCO NyIon, POLYPENCO Tefon,* NYLAFLOW ${ }^{3}$ and NYLATRON ${ }^{3}$ GS
CIRCLE 198 ON READER-SERVICE CARD

New Literature

Silicon Rubber Insulation

Just published is a new brochure devoted to the electrical insulating advantages of Silastic. Coded 9-105, the 4 -page folder contains a tabular summary of dielectric properties of typical Silastic stocks at temperatures ranging from 25 to 250 C . Properties are illustrated with a variety of actual field applications on transformer and motor coils, wire and cable, strip heaters, and electronic assemblies. There is also a special section on the use of room temperature vulcanizing Silastic as a potting and encapsulating material. Dow Corning Corp., Midland, Mich.

Thermoplastic Resin

200
A full-color brochure describes, in words and pictures, the various properties of Cycolac, a high impact thermoplastic resin which is equally suitable for molding, extruding and calendering. A comprehensive list at the back of the book suggests numerous applications for the product. Marbon Chemical, Div. of Borg-Warner, 7165 W. Chicago Ave., Gary, Ind.

Fail Safe Brake

Technical Report WEB 6293 tells the story of an electric brake designed for fail-safe applications. Written for design engineers, the authoritative 36 -page report is illustrated with photographs, drawings, and diagrams. It offers a complete explanation of operation, selection factors, torque characteristics, and controls. Warner Electric Brake \& Clutch Co., Beloit, Wis.

Mail Order Electronics

A catalog has been issued as part of a plan to provide engineers with electronic and electromechanical equipment on a mail order basis. Entitled "Mechatronic Development Apparatus," the 52 -page catalog lists more than 200 components which are frequently used in control equipment for automatic operation. All of the items, whether home manufactured or not, may be ordered from the company. The catalog describes in detail such equipment as precision amplifiers, potentiometers, modulators, power supplies, 60 and 400 cps motor, synchros, precision breadboard equipment, and a variety of functionally packaged units. Servomechanisms, Inc., Mechatrol Div., 625 Main St., Westbury, N.Y.

SINGLE TURRET

FROM THE LARGEST STANDARD and CUSTOM LINE AVAILABLE...

Over 100 varieties are furnished as stand. ard. This includes a full range of types, sizes, body materials and plating combins. tions. Specials can be supplied to any spec. ification. The Whitso line is complete to the fullest extent of every induatrial, military and commercial requirement.

Standoff terminals include fork, single and double turret, post, standard, miniature and sub-miniature body types-male, female or rivet mountings-molded or metal base. Feed through terminals are furnished standard or to specification.

Whitso terminals are molded from melsmine thermosetting materials to provide optimum electrical properties.
Body Matorials: Standard as follows-mela. mine, electrical grade (Mil-P-14, Type MME); melamine impact grade (Mil-P-14, Type MMI); and phenolic, electrical grade (Mil-P-14, Type MFE).

Plating Combinations: Twelve terminal and mounting combinations, depending on elec trical conditions, furnished as standard.
Spocials: Body materials and plating combinations, also dimensions, can be supplied to any custom specifications.
PROMPT DELIVERY IN ECONOMICAL QUANTITY RUNS Get facts on the most complete, most dependable source for terminals and custom molded parts. Request catalog.

9326 Byron Streal, Schiller Park, Illinois IChicogo Suburb)
CIRCLE 203 ON READER-SERVICE CARD

Three illustrated handbook spec sheets introduce a line of tiny indicating lights and switches. For low voltage applications, the switches are designed primarily for pulsing remote control relays and indicating their operation. The leaflets discuss the construction, operation, installation, dimensions, and ratings of the units. Drawings help to illustrate the text. Alden Products Co., 117 N. Main St., Brockton 64, Mass.

Clock Movements

Eight-day spring wound clock movements and

Look no further -

If you're looking for

"HIGH PURITY"

fused quartz

LABORATORY WARE

The world's largest producer of fused quartz products can help you with your most critical and exacting needs for your laboratory ware.
Vitreosil ${ }^{\text {® }}$ products can be supplied in an unusually large variety of types and sizes. Also fabricated to specification to meet semi-conductor requirements for the production of silicon metal.

transparent vitreosil

For ultra-violet applications, metallurgical investigations, chemical research and analysis, photochemistry, spectroscopy and physical, optical and electrical research.

Send specifications for your requirements. Please use coupon below.

THERMAL AMERICAN FUSED QUARTZ CO., INC. 18-20 Salem Street. Dover, New Jersey

Please send rechnical data on

EL ETRONIC DESIGN • December 1, 1957

LAPP

MULTIPLE-CONTACT

PLUG RECEPTACLE

UNITS FOR

SECTIONALIZING

CIRCUITS

These plug-and-receptacle units are used for panel-rack or other sectionalized circuits where a number of connections must be made or broken. Any number of contacts can be provided (in multiples of twelve). Male and female contacts are full-floating for easy alignment and positive contact. Contacts are silver-plated brass and phosphor bronze with terminals tinned for easy soldering. Ceramic blocks are steatite, white glazed... non-carbonizing even under leakage flashover caused by contamination, moisture or humidity. Write for specifications of available units or engineering recommendations for your requirement. Lapp Insulator Co., Inc., Radio Specialties Division, 103 Sumner Street, LeRoy, New York.
Lapp

Now . from Aeroyox! Plastic-coated, dipped-mica capacitors that anceed many of the advantages of molded mica units, and at the same thoue are sualler than conventional units.

Meeting all the applicable RETMA Test Standards for molded mica units, these unique dipped-mica capacitors offer the following outstanding feafures:

* High operating temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
* Excellent long-life characteristics.
- Improved temperature coefficient range.
* Radial-leads for automatic insertion and plug-in assemblies. Ideal for printed-wiring applications.
* Reduced physical sizes.
* Excellent performance and stability characferistics.

Available in a complete range of standard capacitance values in standard $\pm 10 \%$ tolerance. Other values and closer tolerances supplied on request. Conventional molded mica and silvered-mica units are also available from Aerovox in a complete selection of types and sizes.

actual size

Write for descriptive literature
To serve you better... Aeroiox components are stocked and sold by Aerovox Parts Distributors in all major cities.

AERUVOX CORPORATION

NEW BEDFORD, MASSACHUSETTS

In Canada: AEROVOX CANADA LTO., Mamilion, Onl.
CIRCLE 211 ON READER-SERVICE CARD

New Literafure

High Torque-to-Inertia Servomotor

Data Sheet 909 features a size 11, $115 \mathrm{v}, 400$ cps servomotor with low power input which will operate at 200 C . With all specifications, a list of characteristics, a three-view drawing, a torquespeed curve, and a schematic, the 2-page leaflet gives a complete picture of this high torque-toinertia unit. Helipot Corp., Div. of Beckman Instruments, Inc., Newport Beach. Calif.

Single Sideband Linearity

213
"Transmitting Tubes for Linear Amplifier Service," a paper originally presented at the 1956 IRE Convention by R. L. Norton, has been reprinted as an illustrated booklet. The 9-page article details special problems of linearity in output and efficiency, and transmitter tube geometry in linear amplifiers for single-sideband operation. It presents comparative data on triodes, tetrodes, and pentrodes, including oscilloscope patterns and tube loading characteristic curves. Design principles of new tubes are discussed and the results of electron-path studies are illustrated. Penta Laboratories, Inc., 312 N. Nopal St., Santa Barbara, Calif.

Tube Shield Finish

214
In Bulletin PP102-3-1-57 a dry lubricant finish for heat-dissipating tube shields is described. Pointed out are its characteristics, applications, effectiveness, and heat radiation and electrical conduction properties. International Electronic Research Corp., 145 W. Magnolia Blvd., Burbank, Calif.

Accurate Balls

A number of balls, among them a lapped high carbon variety that is accurate within millionths of an inch, are catalogued in Bulletin 101. Detailed specifications and application and design data are provided for balls of chrome steel, stainless steel, brass, bronze, and monel in various grades and in sizes ranging from $1 / 16$ to $4-1 / 2 \mathrm{in}$. in diam. The 8 -page bulletin discusses the confining limits of accuracy demanded of quality balls, together with material analysis and ball hardness. Hoover Ball and Bearing Co., Ann Arbor, Mich.

For Business, Industiy

Beattie VARITRON Electric Camera-Model E.

These modern, rugged cameras are designed for remote control operation, and automatically record any object or event on film ... at fixed time intervals . . . or at random intervals, if desired. Known as demand-rate or pulsetype, they do not require an oper-ator-an electrical pulse or signal causes the camera to take one or more pictures automatically without attention.

Permit data recording under conditions where the use of a manual type camera or presence of an operator would be impossible.

Offer greater flexibility, accuracy and economy than any other known system of data recording.

Use either 70 mm or 35 mm roll film for widest range of picture size.

Ideal wherever data is recorded and stored for future analysis and reference, such as photo recording of meters. production-line opera. tions, under-water life, etc.

Wrise foday and wo will send you our complofe cafalog as well as answer any quesfions you may have concerning your dafa recording needs.

Beattie-Coleman, Inc.

1000 North Olive Street Anaheim, California

AGKNOWHEDCED LEADERS IN THE MANUFACTURE OF ELECTRIC CAMERAS

CIRCLE 216 ON READER-SERVICE CARD

Acoustic Excitation Testing

A system developed for environmental testing of critical jet and missile components is described in a 6-page brochure. The folder cites general specifications for two available test chamber models. It also gives application information, explains the operation of the noise systems, and describes testing procedure. Charts show frequency response characteristics of the high intensity noise systems and sound levels at various locations in typical jet aircraft. Radio Corporation of America, Electronic Instruments Sec., Camden 2, N.J.

Nuclear Measuring Devices

"Radiation Instrument Catalog C" outlines a variety of amplifiers, pulse height analyzers, scalers, rate meters, scintillation detectors, and crystals. It also covers a liquid scintillation beta spectrometer, an amplifier-high voltage power supply unit, and an ultra stable photomultiplier power supply. For each instrument there is a photograph, a description, a list of specifications, and a reference to a bulletin with more complete information. The 6-page folder also has a section devoted to ordering. Technical Measurement Corp., 140 State St., New Haven 11, Conn.

Bright Silver Plating

A bright silver plating process is explained in an 8 -page technical paper. The text presents detailed discussions of bath make-up and maintenance; anodes, tanks, and temperature; current densities; agitation; plating procedure; and simplified removal of solution impurities. A price list is offered as an addendum. Sel-Rex Corp., 75 River Rd., Nutley 10, N.J.

Investment-Cast-Metals Chart

The composition and physical properties of alloys commonly used for investment castings have been tabulated on an $11 \times 17 \mathrm{in}$. chart. The reference material covers both ferrous base and nonferrous alloys. Two sets of mechanical properties are listed: one for metal in the as cast or annealed state, and the other for hardened castings. The metallurgical composition of each alloy is also given. The reverse side of the chart contains investment casting design specifications covering such items as surface finish, dimensional tolerances, concentricity, cored holes, and cast threads. Alloy Precision Castings Co., 3855 W. 150th St., Cleveland 14, Ohio.

More than 20 erystal ovens which will meet MIL-T.945 are available from the Lavoie "Custom-Standard" line. Inquiries for special pequirement ovens invited.

MORGANVILLE, 7. NEW JERSEY

CIRCLE 217 ON READER-SERVICE CARD

From ANY point

it's HAYDON" for timing devices

If you're looking for a complete product line that includes Timing Devices for every application requirement and, in addition, features the highest quality and most advanced design at the lowest possible cost, HAYDON has it! And all Haydon timing devices incorporate the famous Haydon hysteresis and/or inductor timing motors available for 50,60 , and 400 cycle and DC power supplies.
If you're looking for a complete service to meet all your timing needs, HAYDON offers fully integrated engineering and manufacturing facilities ready to take your timing projects right through from design and development to finished product!
And if you're looking for a complete Field Engineering Service to make all these facilities conveniently available, you'll find there's a HAYDON Timing Specialist in your area, a man fully qualified by training and experience to help fill your Timing Device needs. Why not phone him today and make an appointment to discuss your requirements?

AT TORRINGTON

- Trademark Reg. U.S. Patenl Office

HEADQUARTERS FOR
 TIMING

Ideas for Design

Design department keeps in touch with production during prototype development

Make
 Prototypes Compatible with Production

Stephen P. Sims
Filtron Co., Inc.
Flushing, N. Y.

Although one of the most important topics in electronics today is reliability, many fail to realize that the story behind this ofttimes ambiguous term involves many phases of the industry. Not least of these is engineering-production compatibility. Following is a report of how this problem was attacked at Filtron Company, Inc. and what success was achieved. As this plan attains its full measure of anticipated results, it is expected to more than repay its initial costs through greater rf filter economy and reliability

Why compatability would be advantageous became apparent when two important facts were realized. First, greater production efficiency would strengthen the firm's position in competitive military and commercial markets and second. it would allow the experienced and highly valuable staff of engineers and technicians more time to concentrate on the customers' specific interference problems.

The Plan for Accomplishment
In broad outline it was felt that much waste
effort could be eliminated by employing the fol. lowing three plans:

1. Having an engineering division cognizant of production capabilities and constantly serviced by an individual to keep it so informed;
2. Utilizing a manufacturing system composed of separate yet integrated sections, with each section able to divulge, at any time, any and all information as to its progress; and
3. Employing a production engineer who would act as liaison between the two main divisions. In addition to acting as a vehicle for all requests and information, his tasks would include passing on all designs from engineering before acceptance by production. On more complicated orders, he works directly with the engineer while the prototype passed through the design stage.

It can be seen why it was no small task initiating each necessary operation. But, because of the possible returns, management, production, and engineering collaborated to form these departments as close to the plamed model as pos-
while orderly and efficient manufacluring results from production-design planning at prototype stage.

sible And today, these are working realities, whose functions are independent, yet related as part of an integrated whole.

Design, Research, and DevelopmentAll Cognizant

An attitude of cooperative thinking and action has been engendered by more frequent departmental meetings, among research, design, and development; a revised method of inter-office memoranda; and, most important, the ever-present, helpful production engineer. The engineer designs and personally directs the construction of his initial prototype unit, remembering or requesting all the production procedures that follow and all specifications that must be met. New ideas as to materials and procedure are also born in this creative atmosphere and disseminated throughout the department. These thoughts are either geared to present equipment or to equipment readily obtainable . . . information again obtained from the production engineer. It is this combination of "ivory tower" freedom and down-to-earth practicality that has since opened many diversified lines of investigation at Filtron.

Organization of Production Department

Each production section is an efficient, responsible group, expert in its own particular phase of the total operation. The group heads realize their responsibility to yield any and all information to the project engineer. The production worker, whether assembler, solderer, stamper or other, is trained to a set of standards in order to uphold the general workmanship capability of the group. In this way the engineer may never design too high and also, never lower than necessary. Thus management is assured that each production piece will be identical to the prototype design.

Why a Production Engineer?
The task of the production engineer explicitly outlined, is "right hand" to both engineer and production foremen. Any information the engineer requires during design, this liaison is expected to provide, rapidly and correctly. The link between the question, "Do we have machines capable of this job?" or "Are our men in that section skilled enough to perform this operation?" and a responsible answer, is the production engineer. Efficiency is his forte and watchfulness, whether for improvements or meeting standards, his key to efficiency.

It can be seen that an organized, yet departmentalized, production team, coupled with engineering foresight and planning can prove succes ful in widening electronic horizons.

Get $\$ 10.00$ plus a by-line for the time it takes you to iot down your clever design idea. Payment is mode when the idea is accepted for publication Fu information and an "entry blank" can be obta sed by circling 223 on the Reader's Service Card

PHILBRICK PRINTED CIRCUIT AMPLIFIER

Model USA- 3 showing one of the several types of modular packaging available at extra cost.

CIRCLE 224 ON READER-SERVICE CARD

Model USA-3

High performance combined with the reliability and compactness of a printed circuit design are featured in the new Philbrick Universal Stabilized Amplifier, Model USA-3. It is ideally suited for applications to instrumentation, control and analog computation. Extremely high open-loop d-c gain, wide bandwidth, low noise and wide output range are important performance characteristics of this new chopper stabilized amplifier. An interesting design feature makes this instrument safe against self-destruction, even under prolonged overload conditions or direct grounding of its output. At a price of only $\$ 95.00$, it offers more performance per dollar than any other amplifier on the market today. Write to George A. Philbrick Researches, Inc., Dept. 00, for Bulletin USA-3.

GEORGE A.
 PHILBRICK
 RESEARCHES, INC.

230 Congress Street, Boston 10, Massachusetts

A new precision plotting instrument to speed loy. out of printed circuits. Watch manufacturers working on defense projects, are using this Coordinatograph for measuring tiny component parts of electronic equip. ment. All of the units are equipped with chrome-stee pricker microscopes shown here in the center.

Electronic Circuit Plotter

A highly precise and versatile plotting instrument, developed for precision layout of grid systems and coordinate positions, has been finding new applications in production drafting for electronics design.
The Haag-Streit Coordinatograph, manufactured in Switzerland and distributed by Aero Service Corporation, Philadelphia, is being used to speed the layout of printed circuits and to measure accurately minute electronic parts.
One international manufacturer of electronic calculators is using the instrument to draft master copies of printed circuits. The master copies will be etched on copper, then checked by the Coordinatograph. Tests indicate a 30 per cent saving in layout time. The instrument is $4-1 / 2$ times more accurate than conventional hand lay. outs, and often eliminates the need for jig boring machinery.

Construction

The $47.25 \times 47.25 \mathrm{in}$. working surface is made of vertically laminated wood strips. It is equipped with a ruling pen, 7-power chome-steel pricker microscope, brass counter dials, and endless steel scale tapes. The supporting frame and rails are cast iron. The pricking device, incorporated in the microscope, enables both pricking and check-
ing tı be done in a single operation. Micrometertype crews permit fine adjustments of both \mathbf{X} and i po itions. Plotting accuracy in the longest dinension is $\pm .0015 \mathrm{in}$.
The Coordinatograph can save time in laying out special minute parts of electronic equipment within fine tolerances. Watch manufacturers, now working on guided missiles and other defense projects, are using it in this manner.
Other drafting applications for the Coordinatograph include graphic plotting of scientific data, charting of flow patterns, designing precision resolution targets, control drawings for optical comparators, and surveying and mapping uses. Aero Service Corporation, Philadelphia, Pa.

Photo Preparation for Blueprint

Reproduction

Described is a process to make transparent positives of photographs which can be used as intermediates for making blueprint reproductions; and which will take pencil, ink, typing and erasures. These intermediates can be used for assembly drawings, when their preparation represents a savings in time without sacrifice of detail necessary for assembly. They can also be used to make copies of photographs with text added for service instructions, and can be used for operation sheets.

Procedure

Taking the photograph. Best results are obtained with Panatomic \mathbf{X} sheet film. Its fine grain and slow speed are important to get detail and to the method of lighting the subject. Make exposure with $f / 32$ lens setting. Expose for 1 to 1-1/2 min., using a hand-held flood with a 15 w lamp. "Paint" or "wash" the subject with the lamp froll a distance of $12-15 \mathrm{in}$. to eliminate shadows and give sharp detail. A smaller lens opening and lonker exposure would probably improve detail. De clop film in D- 76 or extra-fine-grain develope followed by regular developing processes.
Making a Half-Tone Positive. Tests showed a
"sc sened," half-tone photograph makes the best rep oductions on blueprint. Print negatives on

ELECTRONICS PACKAGE NOW IN FULL PRODUCTION
The AN/ASQ-17 CNI package, developed and built by Packard Bell Electronics, marks the first successful integration of communications, navigation and identification in one compact unit. It has been accepted for service use by the U.S. Navy in the Douglas A4D "Skyhawk", and the Chance-Vought F8U "Crusader." It has been in quantity production for several months. Hundreds are now in operation.

ENGINEERING BEYOND THE EXPECTED

Mutual interference between IFF and UHF is normally inevitable, even when the units are encased separately and spaced several feet apart. In the AN/ASQ-17 these two units are packaged together, a fraction of an inch apart Yet in official trials mutual interference apart. Yet in official trials mutual interference was not noticeable or measurable. This achievement "beyond the expected" resulted from Vought and Packard Bell Electronics Vought

Write for new Packard Bell Electronics facility brochure . . . just off the press.

PACKARD BELL ELECTRONICS TECHNICAL PRODUCTS DIVISION 12333 W. Olympic Boulevard Los Angeles 64, Calif., BRadshaw 2.2171 CIRCLE 246 ON READER-SERVICE CARD

There are several reasons that Fusite customers have for going to a solid glass header. Compact size is one of them. While $1^{\prime \prime}$ diameter is about maximum for this type terminal, we can pack 21 electrodes into this space with the same voltage limits that would require either a much larger disc or fewer pins in a multiple bead terminal. Size for size this is a more rugged terminal than one using a light gage stamping. Where the terminal serves as a structural part of an electrical assembly, solid glass is better able to support stress. Before resting the case for solid glass, it is worthy of mention that it costs less per pin. Fusite offers a complete line of solid glass headers.

While our friend Chichowski presents a strong case for the solid glass header, a large percentage of Fusite Terminal business is still done in multiple bead terminals. There are good reasons. Wherever weight is a factor, you'll usually find a multiple bead terminal in a light gage stamping with its remarkably favorable weight to strength ratio.
This type construction is more versatile. When large sizes are needed, where very heavy pressures are involved or extreme conditions of any nature exist, they can best be coped with, by using multiple beads in a heavy gage body.
While speaking of unusual conditions, it gives me an excuse to mention our special engineering section. Our line of standard terminals is very large but we are constantly at work developing special custom designs to solve specific problems. We solicit yours.

Jim Marsh
V. P. Soles

If you found anything helpful in the words of wisdom from Val and Andy, I'm real happy for you. But frankly, I can't get too excited over which kind of terminal you buy. As long

Ideas for Design

Typical film, processed for blueprint reproduction

Kodalith Autoscreen Ortho film, using an enlarger to obtain final size of print desired. Working with Safelight 1A (red) in darkroom, as recommended by Eastman, exposure time varied ac. cording to type of subject and negative obtained. Exposures ranged from 10 to 30 sec and lens settings from $f / 16$ to $f / 32$. Make additional exposure, following regular exposure, to bring out screening effect in the film. A 15 wlamp with OA (yellow) filter is used, exposing from 10 to 30 sec at a distance of 5 ft . Develop in Kodalith solution. Usual time is from $1-3 / 4$ to $2-1 / 4 \mathrm{~min}$. Solution should not be used for more than 6 sheets of 3×10 Autoscreen (per qt.), or background discoloration will appear. Use standard rinse, fix and wash processes. To obtain sharpest detail in transferring to Mylar intermediate (next stey) by keeping emulsion side to emulsion side, make the Autoscreen in reverse (see sketch).
Making Positive Intermediate (to Accent Pencil, Ink, or Typing and Erasures). Transfer positive to Ozalid sensitized Mylar film (No. 402 XLP, .003, single matte) with Autoscreen emulsion side to emulsion side of Mylar, at speed giving best result. A transparent positive of title block, or several photos may all be spliced together with drawing mending tape to make up as complete a drawing as required for transfer to the Mylar. Fill in title block, add section views and part number callouts on matte surface of Mylar. Photo may be retouched with pencil. Erasures call be made on printed image by using a moistened ink eraser or by scraping the emulsion.

Line Drawing Reproduction. This process may Iso be used for making reproductions of line drawings usually to make a reduction in size of he drawing by photo process. The best film for aking pictures of flat (black and white only), line Irawings is Contrast Process Ortho. If positive is made on Autoscreen film, omit the second exposure to bring out screening effect. Excellent results were obtained in reducing a $40 \times 24 \mathrm{in}$. shematic tracing to 8×10 film size.
Approximate Time For Process. Shooting Pic-fure-10 min.; developing negative- 20 min ., plus drying time; autoscreen reproduction -75 min ., plus drying time; Mylar reproduction-10 min.; plus additional time for composing, determine what is required in photos; retouching adding callouts and section views to Mylar intermediate. Shirley Long, Heiland Division of Minneapo-is-Honeywell Regulator Co.

Simple Solution to Vibrator Problem

Although vibrators may be completely enclosed and sealed against the effects of humidity, they are still apt to fail due to a minute condensation of moisture on the contact points. This moisture, though slight, will eventually cause corrosion and sticking contacts.
A simple solution is used by one manufacturer of vibrators. The company found that no precaution could completely prevent the sealing in of a certain amount of moisture which, in too many cases, led to eventual failure of the vibrator. To solve the problem, a dehydrator disc was insert d into the top of the vibrator can, where it is held in place by a rubber liner that surrounds and protects the operating assembly until the unit is ready for final assembly. The can is sealed, and the dehydrator disc absorbs any remaining moi ture with the result that contact-corrosion failı res were virtually eliminated.
Jones Vibrapowr Co., 4050 N. Rockwell, Chicag 18, Ill.

announcing a new Hughes series high efficiency, medium power
 silicon rectifiers

For the first time, you can obtain high forward conductance and a high breakdown voltage, together in one rectifier. High forward conductance increases the efficiency of the rectifier, thereby providing more power to the load at lower junction temperatures. And low junction temperatures ensure long life plus reliable rectifier operation.

The unique combination of high forward conductance and high breakdown voltage permits rectifier performance never before achieved in the standard EIA Group 20 ($7 / 16^{\prime \prime}$ hex.) stud mounted package. This package is welded and hermetically sealed with a glass-to-metal seal to provide complete protection from contamination and moisture penetration. Inside, where it counts, protection like this is essential.

The HR10681, a typical rectifier in the series.
Min. Breakdown Voltage
Max. Average Rectitied
Current © $25^{\circ} \mathrm{C}$
Average Reverse Leakage Current
©c. 2 A and 420 V rme © $25^{\circ} \mathrm{C}$
Typical Full Load Average
Forward Voltage Drop
$\leqq 1.0 \mathrm{~V}$
Typical Dynamic Forward
Resistance
Higher currents obtainable with heat sink.

Our sales engineers welcome the opportunity to discuss application of these new units 10 your circuitry. For address of sales office nearest you, or for complete information, write: SEMICONDUCTOR DIVISION • HUGHES AIRCRAFT CO. International Airport Station, Los Angeles 45, California

HUGHES ㅍ․
SEMICONDUCTORS

CIRCLE 248 ON READER-SERVICE CARD

Century mOdEL 409

 RECORDING OSCILLOGRAPHFOR VIBRATION, TEMPERATURE, STRESS, STRAIN RECORDING
The Century Model 409 Oscillograph was designed for operation under the most adverse conditions and more especially, where space and weight considerations are limited.

This Oscillograph is one of the smallest and most compact units available on the present market, yet it incorporates many features found in larger oscillographs, such as trace identification, trace view. ing, continuously variable paper speeds and others. The Model 409 Oscillograph has been tested and proven to record faithfully during accelerations in excess of 20 g 's.

Model 409 with 100 ff. Capacity Magazine

This makes it especially desirable for uses such as missile launching, parachute seat ejection, fighter aircraft and torpedo studies.

Write for Bulletin CGC-303 and CGC-301

Century Electronics $\mathcal{\&}$ Instruments, Inc.

1333 No. Ulica, Tulsa, Oklahoma

CIRCLE 249 ON READER-SERVICE CARD

- Alpha and Alpha Cutof
- Beta and Beta Cutoff
- Collector and Emitter Currents
- 3 Voltages: Emitter to Base, Emitter to Collector, Base to Collector
- Ruggedized Transistor Sockets

NEW TRANSISTOR ANALYZER MEASURES

 ALPHA AND BETA CUTOFF TO 50 MC
-LaKiL

 Transalyzer- Displays Alpha or Beta and Reference Trace Simultaneously
- Input Jack Available for Insertion of Variable Frequency Marker
The Kay Transalyzer provides an oscilloscopic display of the Alpha and Beta characteristic of poinf contact, junction, and fefrode fransisfors.
The unit includes a sweep oscillator, affenvafors, DC biasing and mefering circuits for the fransistor, an RF amplifer and defector and all power supplies for accamplishing measuremenfs. The sweep oscillator may be used independenily of transisfor fest circuifry. All fransisfor biases are electronically regulafed. An escilloscope is the only auxiliary equipment needed with the Kay Transalyzer.

SPECIFICATIONS

Sweeping Oscillafor-Frequency Range: 50 kc to 50 mc ; RF Output: I.OV peak-to-peak into nominal 70 ohms. Flat within $\pm 0.5 \mathrm{db}$ over widest sweep; Sweep Rate: Variable around 60 cps; locks to line frequency; Sweep Width: Continuously variable 2.5 to 50 mc . Center frequency may be set any where in 50 kc to 50 mc ranges; Markers: Eigh sharp erystal-controlled pulse-fype markers, individually selected at $10,20,30,40$, and 50 me
Substitutions in $10-50 \mathrm{mc}$
ators: Individually switched 20, 20, 10, 6 and 3 db steps plus continuously variable 3 db ; Biasing and Metering Circuits:-Collector Voltage: Coninuously variable, 0.45 volts, metered; Collector Current: Up to 50 ma , metered; Emitter Current Continuously variable, 0 to 10 ma , metered; RF Amplifier Gain: 42 db maximum; Flatness: ± 0.5 db from 30 kc to 50 mc ; Attenuators: 20, 20, 10 , 6. 3, 2, and 1 db. Price: $\$ 2095$, f.o.b. Pine Brook, New Jersey.

Write for Catalog of the Complate Line of Kay Instruments

Dept. ED-12, Maple Avenue, Pine Brook, N.J., CAldwall 6.4000
CIRCLE 250 ON READER-SERVICE CARD

Report Briefs

Design Guide Oscillator

This design guide has been prepared to expedite the design for production of retarding-field oscillators operating over ranges of frequency that have been investigated at this laboratory. Dimensions, details of construction, and drawings of parts for the basic oscillator design have been included, along with brief discussions of operating principles and theory of the oscillator. Design details are provided on the Heil gun prototype and scaled versions of it. Analysis and design of the power-coupling system are presented. Details are given on resonator structure, and other parts of the standard oscillator design. A discussion of the frequency limitation is provided. Design data for specific frequency ranges with performance characteristics both at high and at low voltages are provided. The effects of design refinements of the coupling system and of the electron gun show the trend in oscillator performance as small changes are made. Laboratory measurements of noise characteristics show that the tube compares favorably with reflex klystrons operating at equivalent wavelengths. Construction techniques involving hobbing methods, brazing, and the preparation of cathodes prepared by compressing properly proportioned mixtures of nickel powder and the carbonates of barium and strontium have been described. It is shown that tubes with nickel matrix cathodes produce more power output at the same beam current than the same structures using oxide-coated cathodes. Design Guide for the Retarding-Field Oscillator, E. Milton Boone, Ohio State University Research Foundation, May 1957, 185 pp., \$4.75. Order PB 131201 from OTS, U. S. Dept. of Commerce, Washington, D. C.

Reusable Seals

Hermetic sealing of airborne electronic assemblies, subassemblies, and equipment has become increasingly important as a reliability safeguard against rugged operation in extremes of altitude and environment. Maintenance problems have also increased, and new techniques have become necessary to permit repeated sealing and unsealing of a protective enclosure without damage to it or its contents, while still maintaining an effective hermetic seal. This report describes the investigation, development, design, and tests of the fused type seal which can be opened and re-

Here's why Southern fasteners help keep assembly lines on the move-fast:

- Southern manufacturers from the high. est quality materials.
- Southern fasteners are precision-made for precision production-are headed, threaded and tested for speedier as. sembly.
- Southern's stock of over a billion screws mean that the screws you want are ready now for shipment.
- Southern's five strategically located warehouses mean fast service-over. night in many instances.

Let Southern help speed your production. Write us, on Company letterhead, your requirements and we will send you free samples and the current Southern Stock List. Box 1360-ED, Statesville, N. C.

Wood Screws - Machine Screws \& Nufs © A, B, C\&F Tapping Screws - Wood \& Type U Drive Screws - Speaker Screws - Stove Bolts Roll Thread Carriage Bolis - Hanger Bolis

Warchouses:

mew york - chicago - dallas - los angeles CIRCLE 295 ON READER-SERVICE CARD
sealed 15 times without harm to the contents of container. Temperature measurement techniques were devised to determine exact heat listrilution in and on the seal. Comparative measurements produced criteria for the best possible seal joint, the best metal for the can enclosures, and the most efficient heat transfer methods. Also developed was a heat reflecting baffle which decreases temperature inside a sealed enclosure to below 85 C . The "band heater" technique was shown to be best for sealing and unsealing containers. The report gives practical details for the operation. Reusable Seals for Electronic Equipment, W. Brown and A. Razdow, General Hermetic Sealing Corp., for Wright Air Development Center, U. S. Air Force, May 1957, 94 pp., \$2.50. Order PB 131194 from OTS, U. S. Dept. of Commerce. Washington, D. C.

Arc Cathodes

Experiments directed toward extracting high voltage electron beams from dc and pulsed arc plasmas are described. A mercury arc plasma was used for dc extraction with the necessary ligh vacunm near the plasma obtained by refrigeration. Extraction from pulsed arcs was accomplished prior to appreciable expansion of the local arc vapor. Confinement of the beams produced and high voltage breakdown were the main difficulties encountered. A cure for both problems is felt to be a highly convergent, strong magnetic field in the arc cathode region. High Perveance Beams from Arc Cathodes, Charles W. Hartman, California University, Berkeley, Calif., May 1957, 37 pp., \$1.00. Order PB 131212 from OTS, U. S. Dept. of Commerce, Washington, D. C.

Thermodynamic Properties

The potential of the $\mathrm{ReO}_{3} / \mathrm{ReO}_{4}$ electrode has been measured over a wide range of concentration and pH . The cell was demonstrated to be satisfactorily reversible by the close agreement of the standard potential calculated from measurements in both acidic and basic solutions, as well as from the reasonable entropy values obtained from a determination of the temperature coefficient. Thermodynamic Properties of Technetium and Rhenium Compounds. VI: Potential of the $\mathrm{ReO}_{s} / \mathrm{ReO}_{4}$ Electrode and the Thermodyn mics of Rhenium Trioxide, J. P. King and J. U Cobble, Purdue University, Dept. of Chemistr! Lafayette, Ind., July 1956, 16 pp. Microfilm §2.4), photostat \$3.30. Order PB 124141 from Libi ıry of Congress, Washington, D. C.

How RIM CTeflon' Tape improves electronic component design

Certain coils in a modern electronic computer required a special kind of insulator. Problem: to design an insulator of the high dielectric strength required-even in thin sections-and conforming to the contours of the small circular coils.

R/M "Teflon" Tape provided the ideal solution to the problem. "Teflon" has unusually high dielectric strength. It is completely unaffected by the many adverse conditions to which electronic components are frequently subjected-corrosive elements (including ozone) in atmospheres, high temperatures, and the like. R / M "Teflon" Tape is relatively easy to applyeven on intricate shapes, such as the ferrite coil shown above.

Here are some of the electrical properties of R / M "Teflon" products:

1. Powor factor - less than 0.0003 over entire spectrum from 60 cycles to 30,000 megacycles.
2. Volume resistivity -greater than $101 .:$ ohm- cm , even after prolonged soaking in water.
3. Surface resistivity -3.6×10^{12} ohms, even at 100% humidity.
4. Good arc-rosistance - on exposure to an arc, the material vaporizes. leaving no carbonized path.
5. High shoritime dioloetrie strongthvolts per mil, depending upon thic upon mich-
6. Resists high remperaturos - electrical properties are essentially unchanged up to at least $400^{\circ} \mathrm{F}$.
Raybestos-Manhattan has extensive experience in developing R/M "Tef-
lon" products for use in the electrical and electronics industries. Let us fabricate R/M "Teflon" products to your specifications or supply the material in rods, sheets, tubes and tape. Write for your free copy of our bulletin "R/M Teflon Products."

RAYBESTOS-MANHATTAN, INC.

PLASTIC PRODUCTS DIVISION, MANHEIM, PA.

RAYbestos.manhattan inc. Engineered Plastics - Asbestos Textiles - Mechanical Packings - Industrial Rubber - Sintored Metal Products . Rubbel Covered Equioment Abrasive and Diamond Wheels•Brake Linings•Brake Blocks•Clutch Facings•Laundry Pads and Covers•Industrial Adhesives • Brwling Balls

CIRCLE 251 ON READER-SERVICE CARD

Sensitive RF Voltmeter

 to 500 MegacyclesFEATURES

[^1]APPIICATIONS
The Model 91B Sensitive RF Voltmeter will be recognized as a valuable laboratory or production tool for broadband low level testing applications, where expensive and cumbersome funed detector equipment would normally be required. A few examples are listed below:

- Amplifier gain measurements
- Attenuator loss measurements
- Mixer gain or loss measurements
- Transistor gain measurements at
low levels
Frequency - gain characteristic measurements over 70 db range
- Null indicator
- Filter network loss measurements
- Signal generator output measurements
- General purpose experimental work
- Low level comparison measurements of signal sources and attenuators

Boonton M上FCHiONICS Corp.

Morris Plains, N. J. • Phone: JEfferson 8-5110

CIRCLE 252 ON READER-SERVICE CARD

and Specialists

BASE METAL WIRES . . . Very small diameter - for filaments, thermocouples, resistance units.
PRECIOUS METAL WIRES... Produced in Platinum, Gold, alloys and pure metals - small diameter ... Platinum alloy resistance wires.

COATED WIRES ... Comprising an extensive range of electroplated grid wires... Enamel insulated wires for precision resistors, potentiometers.

ANODIZED ALUMINUM WIRE... Insulation at $800^{\circ} \mathrm{F}$. . . Precision drawn to close resistance in the smaller sizes

Write for List of Products

SIGMUND COHN CORP.

121 SOUTH COLUMBUS AVE., MOUNT VERNON, N. Y.

Patents

Semiconductor Signal Amplifier Circuit

 Patent No. 2,789,164 T. O. Stanley. (Assigned to Radio Corporation of America)Transistors have symmetrical properties which have been previously described in the literature. Transistors may be of opposite conductivity, that is, if the current through the base should be changed in the same direction for an npn and a pnp transistor, the emitter current will increase through one transistor and will decrease in the other. If two transistors, therefore, are properly connected together they may serve as a pushpull amplifier. Transistors are useful devices in circuitry since there is usually no need for coupling devices, that is, they may be directly connected thereby resulting in a circuit having a minimum of components and enabling the circuit cost to be at a minimum. The circuit of the patent improves the performance of a pushpull circuit by providing improved stability under variations in temperature and differences in the characteristics of the transistors used.

The circuit illustrated uses an amplit ing transistor 10 of one type in series w th a second amplifying transistor 30 of the oher type which serves as a driver for the transistors 50 and 60 having their coll ctors directly connected for push-pull oper ation The transistors 50 and 60 are of different types so that a signal applied to the bases of both transistors render one transistor conducting and the other non-conducting. A resistor 38 is provided between the base

 design we are able to produce custom designed coil forms from almost any moldable material, (including nylon Kel F and the so-called high heat materials used in "class C" bobbins).
Our fast delivery, low tool cost and high quality have made Booker \& Wallestad, Inc. one of the country's largest producers of custom molded, ready to use, coil forms.
Don't improvise by using "stock" bobbins without getting our quotation.
Custom Moldors of Plastics for Industry
Boaker \& Wallestad. Inc.

CIRCIE 254 ON READER-SERVICE CARD
electrodes of the push-pull transistors so that the current through the driving transistor 30 and resistor provides a small potential bias between these two electrodes. As a consequence a differential current will be supplied to the output load impedance 69. The required potentials are secured from the source 70,72 with the potential on the base electrode 16 of the first amplifying transistor 10 through a bleeder circuit of resistors 22,20 and 27. Resistor 24 permits the first and second amplifiers to be directly coupled and assures stability under varying temperatures.
A direct current feedback circuit is provided to the emitter 12 of the first transistor by a resistor 68 in order to insure balanced current flow to the load. Unbalanced currents to the load generated by variations in temperature or differences in transistor characteristics will be subtracted from the bias applied to the first transistor. This emitter is also connected to ground through the capacitor 26 and resistor 27 so that any feedback from the load circuit is attenuated. As a consequence the voltage gain of the entire amplifier will be approximately the ohmic ratio between the resistors 20 and 27 . The resistor 20 may be of a low value without introducing any signal
degeneration. With a resistance 20 of a low value the circuit performance so far as temperature variations is concerned is improved and also makes interchangeability of the transistors more readily accomplished. The overall result is an efficient and stable circuit having a high gain.

Color Television

Patent No. 2,803,697 Walter G. Gibson. (Assigned to Radio Corporation of America)

A color television system receives a plurality of component color siguals and a signal nominally representative of luminance. A signal path for each of the component color signals is provided having a high pass filter. The outputs of all of the signal paths is applied to a network which compares the amplitude of the output of all of the signal paths and selectively passes the signal path output of greatest amplitude to an output circuit. The selective output of this network has added to it in the output circuit, a low frequency portion of the signal nominally representative of luminance.

Giant in industry importance
 Modest in actual size . . .
 Miniature when compared with the job it does.

One of the most flexible switches available to designers, the General Control MCM Lever Switch can be furnished with any combinations of lock and non-lock lever action and with a wide variety of contact assemblies. A few of the valuable benefits provided:

- Ball-bearing lever mechanism for long life and easy operation.
- Positive detent action for long life of contacts.
- Single-hole mounting for ease of installation.
- Controls up to 40 circuits without additional components.
- Precision made for long life.
- Prompr delivery.

Write for Bullefin Cl-100 or see our catalogs in Rodio's Master or Sweet's Product Design File.

MCM

GENERAL CONTROL COMPANY
1207 Soldiers Field Road - Boston \boldsymbol{H}, Massachusetls
SWITCHING TIMING

Teflon connectors, hermetically sealed, for temperatures from - $\mathbf{1 0 0}$ то $\mathbf{+ 5 0 0} \mathbf{F}$
No other material, natural or synthetic, compares with DuPont Tefon for toughness, chemical inertness, high dielectric strength. It will not char or carbonize from arcing; stands thumping shocks and vibration; will not warp or loosen at jet engine heats or sub-zero climates. Made by a revolutionary new molding process. Every manufacturer of high frequency radio, radar and other electronic equipment should write for details. CIRCLE 257 ON READER-SERVICE CARD

The NEMS-CLARKE Type 2000 aboratory Receiver has been designed to fill the need for such a unit in development laboratories. Il is an extremely useful instrument in ontenna development and RF filter design.
The receiver operates in effect as a linear voltmeler having a 100 db range in 20 db steps
The receiver contains an output The receiver contains an output
meter which has a logarithmic scale calibroted between I and scale calibrated between and 20 db step altenuator in this receiver permits the microvalt * meter to be set at any desired full-scale range from 10 microvolts to 0.1 volt.
Audio frequency circuits in the receiver permit oral monitoring of both AM and FM transmission. The receiver is supplied in a cabinet and the panel
light blue smooth finish.

NEMS • CLARKE

A DIVISION OF VITRO CORPORATION OF AMERICA 919 JESUP-BLAIR DRIVE SILVER SPRING, MARYLAND
for further information write deparrment LR-3

Books

Engineering Properties and Applications of Plastics
Gilbert Ford Kinney, John Wiley d Sons, Inc. 440 Fourth Avenue, New York 16, N.Y. 278 Pages, $\$ 6.75$.

This book is written for those who work with plastics, and for those who require background information for the proper utilization or specification of these materials. The various plastics are described separately, in the order of increasing complexity. A unified treatment, rather than a topical approach, permits the principles. concepts, and terminology to be established in the similar cases, and is used on the study of the more complex materials. Separate chapters describe methods for fabrica tion, and the mechanical electrical, optical,
and thermal properties of these material Also provided is an abbreviated survey o the type reactions of organic chemistry Emphasis is placed on an understanding the fundamental nature of plastics, and per tinent material is selected to illustrate the presented principles.

Atomic Radiation and Its Effects

Preparcl b!l the Government Service Del R.C.A. Service Co., Inc., Camden 8, N. 110 pages, $\$ 1.60$

This book, Atomic Radiation, discusses, in simplified terms, nuclear physics, observed biological effects of radiation, shieldino

CIRCLE 258 ON READER-SERVICE CARD

E-P SUPPLIES THEIR SPECIAL CAPACITORS

They call on ELECTRON PRODUCTS for extra-small size capacitors... unusual configurations, high IR, very flat temperature characteristics, and other special needs. E.P meets their quality requirements, and pertinent Mil. Specs. They applaud our fast sample service and efforts to insure prompt deliveries.
Why don't you try E-P? Write us your needs.
Electron Products Co.
430 No. Halstead Ave., Pasadena, Calif.
Electrostatic capacitors - Kraft paper, Mylar, polystyrene, Teflon, metallized paper \& metallized Mylar dielectrics.
methods, monitoring instruments, permissible radiation doses and medical evaluation of injuries and treatments.
Primarily designed for use by technicians and scientists engaged in nuclear power activities, it was originally prepared under contract for the United States Air Force which has approved reprinting and commercial sale.
The understanding of radiation derived from a study of this manual, will indicate to the worker his personal responsibilities in avoiding injury by observing safety precautions devised for his benefit.
While this timely publication is of vital interest to technical personnel, it will be of equal value to teachers, students, medical and civil defense workers, and the general public.
In quantities of ten or more, copies are $\$ 1.45$ each.

Fundamentals of Electron Devices

Karl R. Spangenberg, McGraw-Hill Book Co., Inc., 330 W. 42 nd Street, N.Y. 36, N.Y'. .505 pages, $\$ 10.00$.

The book stresses the internal physics of electron devices, and it discusses the role physics plays in determining external characteristics. A fundamental treatment of commonest circuit applications is also included. About 60 per cent of the book is devoted to the devices themselves, 40 pet cent to their circuit applications.

A new approach is represented in the detailed treatment of energy levels in semiconductors and the influence of these on junction effects, emission, and photo-effects. There is an unusual emphasis on the analogous features of vacuum tubes and transistors and photo-conductive and photovoltaic cells.
> compact D-B power supply for transistor circuits

...high current capacity and tight regulation
This unit is designed to meet recent industry demands for heavier current output, low ripple, and low drift. No de-rating of output current or regulation and ripple specifications is necessary from 1 to 60 Volts D.C. Bench or rack mounting. Meters accurate to 1%.

FOUR MODELS - FOUR OUTPUTS
Write tor
Model .6-3MB: 0.60 V.D.C ra 3 amps. Bulletın 1031
Model . $6-1 \mathrm{MB}: 0.60$ V.D.C. (a 1 amp . Bulletin 1024
Model D.6-3008: dual 0-60 V.D.C. (a) 300 MA. Bulletin 1030
Model .6-300B: 0.60 V.D.C. @ 300 MA. Bulletin 1029.

FIXED FREQUENCY

POWER OSCILLATORS

FREQUENCIES FROM 200 TO

DESIGNED FOR 19" RACK MOUNTING IN A MINIMUM HEIGHT.

- uses: strain gauge, gyroscope, computer and ac transducer power supply.
- laboratory or production source of very stabile harmonic free power.
- single and multiple frequeney units stocked.
- outpur vollages from 10 to 150 volis rms.
- custom units to 60 watts.

CARDINAL INSTRUMENTATION CORPORATION
A-2 4201 Redwood Ave., Los Angeles 66, Calif.
CIRCLE 262 ON READER-SERVICE CARD

IN EVERY CONTROL PHASE

with the Curtiss-Wright "SNAPPER" Thermal Time Delay Relay

Computers, broadcast equipment, motors, lighting systems, missiles, industrial controls - for electrical circuit applications involving time delay that demand unfailing action in every control phase, more and more design engineers in every control phase, more and more design engineers
specify "SNAPPER" Relays by Curtiss-Wright. These specily "SNAPPER" Relays by Curtiss-Wright. These
reliable relays eliminate chatter with positive snap action, reliable relays eliminate chatter with positive snap action,
have single-pole double throw contacts and a wide temperhave single-pole double throw contacts and a wide temper-
ature range $\left(-65^{\circ}+100^{\circ} \mathrm{C}\right)$. Preset time delays from 3 seconds to 3 minutes are now available in metal envelope and from 5 to 60 seconds in glass envelope. Write for our new detailed data sheet with complete application information.

Component
Soles
Dopartment

"SNAPPER" GIASS RELAYS - for commorciol ap. plications, singlesnap action.

MAGNETIC AMPLIFIERS fit complom-designed to ments for control systoms.

- MEMORY'• RELAYS -thermally operoted bi-stable lime dolar clays with two sep. arate heoter circuits.

CIRCLE 263 ON READER-SERVICE CARD

What the Russians are Writing

J. George Adashko

RADIO ENGINEERING AND ELECTRONICS

(Contents of Radiotekhnika i Elektronika No. 4, 1957) KLYSTRON STABILIZATION
Modulation Circuit for Frequency Stabilization of a Reflex Klystron with a Cavity Wavemeter, V. G. Velelago, N. A. Irisova (4 pp, 6 figs).

Fig. 1 shows the block diagram of a modulation circuit for the stabilization of a reflex klystron. The cavity resonator (9) is used as the frequency standard, and a simple pentode synchronous detector (see Fig. 2) serves as the error detector. Continuous measurement of the stabilized klystron frequency is possible over the substantial range from 20 to 60 mc . The complete circuit diagram is shown in Fig. 3.

Fig. 1. Block diagram of stabilizer. 1-sawtooth generator; 2-klystron; 3-900 kc modulator; 4-wave-guide-coax junction; 5-iuned amplifier, 900 kc ; 6synchronous detector; 7-crystal detector; 8-2 rpm motor; 9-cavity wavemeter; 10-power output of klystron.

INFORMATION THEORY

Concerning One Class of Random Pulse Processes, la. I. Khurgin, $(9$ pp, 3 figs).
Spectral analysis of a train of identical pulses appearing at random instants of time, with the intervals between neighboring pulses having a specified distribution probability.
Stationary Random Processes in Linear Pulse Systems with Variable Parameters, G. P. Tartakovski (9 pp, 2 figs).

Equations are derived for the mean value and for the correlation function of the stationary intermittent random output of a pulse system with variable parameters in response to stationary random variations in both the input signal and the system parameters.

Fig. 2. Synchronous detector (principal diagram) 1from 900 kc oscillator; 2-from 900 kc wavemeter amplifier; 3-output.

Concerning the Excitation of an Ellipsoid of

 Rotation, G. T. Markov (5 pp, 1 fig).This very old problem is being revived in modern antenna theory, and an attempt at a complete solution is given by Spence and Wells (Comm. on Pure and Appl. Math.. 1951, vol. 4, 1). The publication of "Spheroidal Wave Functions" by Stratton, Morse, Chu, and Little affords the author a new attack on the problem of asymmetrical excitation of a perfectly-conducting ellipsoid of rotation. The difficulties involved are pointed out and it is shown that the problem can be recast as an infinite system of linear algebraic equations, amenable to numerical computations.

WAVEGUIDES

Calculation of the Propagation Constants in a Rectangular Waveguide Containing Ferrite Plates, A. V. Voronova, A. G. Gurevich (7 pp 10 figs).

The variation of the propagation constants and of their frequency dependence with plate dimensions and with the ferrite parameters was determined with an electronic computer for one and two ferrite plates in contact with the shorter walls of the waveguide. A waveguide with two ferrite plates is shown to have a considerably greater bandwidth. Refers to work by Lax, Button, and Roth (Journal Applied Physics, 1954, vol. 25, 1413), J. H. Rowen (Bell System Technical Journal, 1953, vol. 32, 1333), and Epstein (Rcview Modern Physics, 1956, vol. 28, 3).

Certain Problems in the Theory of a Cylindrical Waveguide with a Ferrite Rod, Ia. A. Monosov, (10 pp, 1 fig).

The behavior of a cylindrical waveguide containing a magnetized ferrite rod is determined. It

is shown that in such a waveguide it is relatively easy to determine the basic characteristics of the magnetic rotation of the plane of polarization of a quasi- H_{11} mode, provided the ferrite rod is matched to the waveguide and the external magnetic field intensity does not exceed $50-150$ oersted. The accuracy is better than 10 per cent. Refers to work by Kales (Journal Applied Physics, 1953. vol. 24. 816), Rado (Physical Revicw, 1953, vol. 15,529), and others.

ANTENNAS

On the Design of Optimal Endfire Antennas,

 V. L. Pokrovski (6 pp, 1 fig).The polynomials required for the analysis of antennas having optimum directivity patterns are obtained by a new method. As in the case of an earlier work by the author (Radiotekhnika i Elekfronika, May 1956, ED, March 1, 1957), the method is valid for any distance between array elements, and can further be used for antennas having an even number of elements, thus being superior to DuHamel's solution (Proc. IRE, 1953. vol. 41,652), which holds only for an odd number of elements. Further extension makes possible the design of antennas with an optimum directivity at an angle to the antenna axis.

MICROWAVES

Use of the Lorenz Lemma to Determine the Constants of Propagation due io Interaction between an Electron Beam and Space Harmonics, L. N. Loshakov (7 pp).

Al approximate method is proposed for the calc lation of the constants of propagation due to ill electron beam in a retarding system. Equation are derived for the interaction between the bean and spatial harmonics (forward and backwar 1) in the form of EH waves. Reference is

Fig. 3. Complete diagram of synchronous detector. 1-to 900 kc oscillator; 2-from wavemeter signal amplifier; 3-to 900 kc oscillator; 4-to sawtooth generator; 5-to klystron; 6-synchronous detector; 7-to oscillograph; 8—phase shifter; 9—amplifier; 10-On; 11-Off; 12—Coarse tuning; 13-fine tuning; 14-detector mode; 15-negative voltage.

470 Mc

citizens

FM 470-10 Mc

Glide
PATH
MET.
AIDS 300

GOVT.
TELE.
METER

200 T
MOBILE
PHONE

MARINE

GOVT.

AERO

100 FM
90 B'DCAST

1 INDUST'L
,TRANS. PORT'N

GOVT.

INDUST'L

20

AERO-
MOBILE

MARINE
MOBILE
AERO

IF'S
10 Mc

MARCONI SIGNAL GENERATOR

Exceptional stability, wide frequency range and the precisely calibrated carrier shift control make Model 1066/1 a joy to use.
First produced in 1955, it is now the accepted test instrument for narrow or wide band applications. It is still the only FM generator with such complete range.
Recent improvements have made microphony and attenuator reaction negligible and have increased tube life. The oscillator chassis is now gold plated.

SPECIFICATION

Frequency Range $10-470 \mathrm{Mc}$ in 5 ranges.
Contactless turret is capacity coupled.
Frequency stability $.0025 \%$ per 10 minutes after warm-up.
Carrier Shift Controls Calibrated $\mathbf{1 - 2 0 0}$ kc
continuously variable. Also stepped increments $\pm 5, \pm 10, \pm 15 \mathrm{kc}$.
Frequency Modulation $0-20$ and 0.100 kc continuously variable.
Amplitude Modulation $0-80 \%$.
Output $.01 \mu \mathrm{~V}$ to $100 \mathrm{mV}, 52 \Omega$. Piston attenuator.
Tubes 6AK5, 6C4, 12AT7, DET22,
6L6, 5651, XB1, OB2,524G
Price $\$ 1495$
FM Deviation Monitor Model 791C is a companion instrument. Range 4-540 Mc. Accuracy $\pm 3 \%$.

T0:-
now mazice Pelice

Pa con.
Pectert Coll
Page Cemm'ns.

Russian Translations

made to two articles by P. K. Tien, "Travelling Wave Tube Helix Impedance (Proc. IRE, 1953, vol. 41. 617) and "Bifilar Helix for BackwardWave Oscillators (ibid., 1954, 42, 1137).
On the Interaction between an Electron Beam and a Spatial Harmonic Field, M. F. Stel'makh (144 pp, 5 figs, 1 table).
The author calculates the propagation constants and the gain in the interaction between an electron beam and a forward and backward TM field, and determines under what conditions selfsustained oscillations are possible in a backwardwave tube. Refers to H. Heffner's "Analysis of the Backward-Wave Travelling-Wave Tube" (Proc. IRE, 1954, vol. 42, 930).

SYNCHRONIZATION

On the Synchronization of an Oscillator to the Frequency of an External Signal, R. R. Lisitsian, 115 pp, 12 figs).
The author investigates the synchronization of an external signal to a continuously-operating single-tuned oscillator with instantaneous selfbias. The characteristics of the tube are approximated in the differential equations by a second-degree curve. The stationary states are determined from the amplitude and phase balance conditions, while the transients are obtained by numerical methods with an electronic digital computer. The resultant phase is determined statistically, owing to the random character of the initial phase.

RADAR

On the Accuracy of Range Determination in Radar Systems, S. E. Fal'kovich (ll pp).
Statistical error analysis, leading to optimum range parameters of radar reccivers used for strong-signal reception.

Fig. 1. One variant of potentiometric phase shifter. If $R_{t}=X_{c}$ and is much greater than $R_{0,}$, and the input voltage is sinusoidal, then the output voltage is a function of α only, and the amplitude remains constant.

TRANSMISSION LINES

Method for Calculating the Local Reflection Coefficients of Optimum Stepped Functions, Ia. M. Turover $(6$ pp, 1 fig, 1 table).
In the February 1956 Radiotekhnika i Elektronika (ED, November 15, 1956) the author, jointly with N. I. Strutinski, developed the theory of the application of Chebyshev polynomials to the design of stepped discontinuities in transmission lines. The method necessitates the calculation of certain reflection coefficients, a procedure for which is now given.

MODULATION

Carrier Modulation by Changing the Magnetic Permeability of Ferromagnetic Conductors, V. S. Etkin, 12 pp, 3 figs).

Description of an experimental set-up used to investigate the possibility of modulation by means of varying the magnetic permeability of ferromagnetic conductors, i.e., by varying the depth of surface effect. The method, originally proposed by Johnson and Rado (Physical Review, 1949, 75, 841), is extended by the author to cover decimeter and meter waves.

ANALYZERS

Possible High-Speed Amplitude Analyzer, V. O. Viazemski (2 pp, 1 fig).
Signal quantization of a regenerative system, having a number of stable states equal to the number of analyzer channels, is used as the basis for the design of an analyzer having a resolution time on the order of $10^{-5} \mathrm{sec}$. Unlike the schemes described by Van Renners (Nucleonics, Sept. 1952, p 32 and Oct. 1952, p 50) and Kelley UN Reports of Geneva Conference, vol. 14), this requires no cumbersome registration units and requires no photographic development.

Fig. 2. Another variant of phase shifter, requiring fewer network elements.

CIRCUIT THEORY

Gain Fluctuations in Vacuum Tube Amplifiers, A. N. Malakhov, (12 pp, 11 figs).

The author considers the origin of gain fluctuations and their connection with resistance fluctuations in the circuit components, tube flicker, and supply-voltage fluctuations. The results obtained are shown to be of particular significance for de amplifiers.

Other Articles In This Issue

Asymmetry of Optical System of Electrostatic Microscope and its Resolving Power, D. V. Fetison, V. I. Miliutin, ($6 \mathrm{pp}, 6$ figs).

Region of Low-Voltage Arcs in Inert Gases, A. V. Nedospasov, K. E. Torgonenko, (8 pp, 8 figs.).

One method of Determining the Envelope of Quasi-Harmonic Fluctuations, V. I. Tikhonov (4 pp, 1 fig.)

Statistical approach, referring to Middleton's "Some General Results in the theory of Noise through Nonlinear Devices" (Quarterly of Applied Mathematics, vol 5, 445 (1948).

RADIO ENGINEERING

(Contents of Radiotekhnika No. 5, 1957)

MODULATION

Experimental Investigation of the Method of Optimum Amplitude-Phase Modulation, S. I. Tetel'baum, lu. G. Grinevich 16 pp, 3 figs, 2 tables).

The author proposed in 1950 that simultaneous amplitude and phase modulation of the broadcast signal (called by him amplitude-phase modulation) would increase the broadcasting effectiveness by narrowing the spectrum radiated by the transmitter down to half the value of the spectrum required for amplitude modulation. Recep-

Fig. 3. If the phase shifter must feed a load of finite impedance (rather than an infinite-impedance amplifier), this circuit is somewhat better, for it requires merely the condition $R_{\text {lonid }}$ much greater than R_{0}.
tion of such a signa! without noticeable distortion is possible with an ordinary radio-broadcasting receiver having a linear detector. The article describes a phase integrator that could be used for the purpose and gives results of comparative measurements of intelligibility of speech in amplitude and optimum amplitude-phase modulation, in the presence and in the absence of noise. Results of experimental transmission of musical programs are also reported. The author claims that the experimental data obtained make largescalle experiments of his system advisable.

PHASE SHIFTER

Potentiometric Phase Shifter, A. M. Melik-Shakhnazarov, (2 pp, 4 figs).
Description of a potentiometric phase shifter made of RC elements and sine and cosine potentiometers, and producing a continuous phase shift up to 360 deg. See Figs. 1, 2, and 3.

CIRCUIT THEORY

Design Features of Radio Transmitters with High-Resistance Plate Supplies, N. I. Shtein 16 pp, 5 figs).
Discussion of the optimum utilization of d-c sources with relatively high internal resistances (such as dynamotors or kenotron rectifiers). The conditions under which vacuum tubes can deliver maximum power to a tuned circuit are analyzed, and recommendations are made concerning the design of vacuum-tube oscillators.
Method for the investigation of Amplifying Systems Having Third-Order Characteristic Equations at Low Values of Time, E. Mokhov, 18 pp, 8 figs).
The method proposed in this article is fundamentally less laborious and more effective than other known methods. It is illustrated with an exiumple describing the analysis of a compensating circuit consisting of an inductance in series with the grid circuit.
Operating Features of Interconnected Long Lines in Inductive Distributed Communication, V. S. Mel'nikov (5 pp).
Circuit-theoretical analysis of two infinite lines with only inductive coupling between them. The terminal loads required to produce standing waves in a finite length of line are computed.

RADIO NAVIGATION

Concerning the Characteristic of the Accuracy of Position Determination in Radio Navigation, A. G. Saybel', (5 pp, 4 figs).
larious positional-accuracy characteristics of rallo navigation are compared statistically for

SENSITIVE RELAYS

Qualified to MIL-R-5757

These balanced-armature relays meet or exceed rigid military specifications. They combine extreme sensitivity with rugged resistance to a wide range of vibration, shock and temperature.
This is why Iron Fireman sensitive relays are used
hy leading systems manufacturers. This, plus Iron Fireman's reputation for prompl, on-time deliveries. Each style pictured above is available in various combinations of resistance, current and power. Write for specifications and performance data.

IRON FIREMAN SOCWONTOA DIVISION
2810 S. E. NINTH AVENUE, PORTLAND 2, OREGON

CIRCLE 265 ON READER-SERVICE CARD

Announcing a new ALLISON FILTER with READING CONTINUOUSLY VARIABLE PASSIVE NETWORK
 DIRECT DIAL

 AUDIO FREQUENCY FILTER-MODEL 420PA new Allison High Pass-Low Pass Filter permits direct reading of the frequency dial! The new filter, Model 420P, has separate High Pass-Low Pass Continuously Variable sections, allowing you to set up any band width within the range of 20 cycles to 20,000 cycles. For rapid, accurate analysis of noise, specify Allison Filters!

ALLISON 420P FILTER FEATURES

- Continuously variable frequency range from 20 cycles to 20,000 cycles
- 20 db attenuation in first octave
- Passive network - No power supply
- No vacuum tubes
- Dynamic range 140 db
- Designed for 600 ohms impedance
- Plug-in input-output transformers for other impedances
- Maximum input 2 volts
- Low loss-Approximately 2 db in pass band
- Low Pass Signals from d-c to cut-off frequency
- Minimum band width approximately one-half octave

Write for Engineoring Bulletin with complete fechnical dafa.

Allison Laboratories, Inc.
14185 E. SKYLINE DRIVE - LA PUENTE, CALIFORNIA

CIRCLE 266 ON READER-SERVICE CARD

O.1 V SENSITIVITY...

9-FUNCTION VERSATILITY

Fully representative of Beckman/Berkeley engineering quality, Model 7360 is a highly accurate and dependable electronic counting and timing instrument, ideal for many research and production applications. It features 10 megohm input impedance, direct- or ac-coupled; step attentuator and trigger level input voltage controls; binarycoded output from DCU's. Makes Frequency and Period measurements from 0 cps to 1 mc ; Time Interval, 1 usec to $10^{7} \mathrm{sec}$; Ratio, 1 to 10^{7} from 0 cps to 1 mc . Priced at $\$ 1245.00$. For Technical Data. write Department DI2.

Beckman

Berkeley Division
2200 Wright Avenue, Richmond s, Californna a division of Beckman Instruments, Inc. CIRCLE 267 ON reader-service card

ROTOPROBE Switching type tube socket test adapter -with permanently attached test lead, and numbered stop positions for each pin.
Measurements are made on each contact by turning the shell of the Roto. probe to the corresponding number on the index.

TUBE SOCKET TEST ADAPTERS
Long Pype
for tight spots

SOCKET CHAMGE
ADAPIERS ADAPTERS
Change tube types without rewiring

Write for catalog-
VECTORELECTRONIC COMPANY 1100 flower st., glemoale 1, calif.

Russian Translations

the case of elliptic scattering. Various acc uracy criteria are studied, including the major dia ;ona of the error parallelogram, the major axis of the error ellipse, the mean squared error, and others.
Frequency Measurement by Signal Time Delay, A. I. Danilenko, (6 pp, 8 figs).

The frequency is measured by introducing time delay in the signal and measuring the fre quency dependence of the amplitude of the sum of the original and delayed signal, of by measur ing the phase difference between the two with linear meter. It is shown that the phase-differ ence method is superior and can be used to plo the phase characteristics of a delay line, to plot the frequency dependence of its time delay, and to determine its temperature coefficient.

INFORMATION THEORY

Refinement to One Premise in Textbook Litera fure, A. M. Zaezdnyi, (4 pp, 3 figs).

It is shown that the difficulties involved in the analysis of lossless circuits, such as a paralle resonant circuit or a short circuited lossless line, can be treated rigorously with the aid of the Dirac delta-function
Statistical Properties of Signals and of Noise in Two-Channel Phase Systems, V. V. Tsvetnov (18 pp, 10 figs, 1 table).
Phase differences between coherent oscillations are widely used in radio navigation at the present time to measure geometrical parameters (range azimuth or range difference) in radar systems The usefulness of such methods is limited. how ever, by the various types of noise present. The author offers a derivation and an analysis of the basic statistical properties of the amplitudes and phase differences of sinusoidal signals and of noise with Gaussian distribution.

On the Calculation of the Spectra of Random Processes, A. A. Kharkevich, 17 pp).

A theoretical statistical discussion of methods used in the spectral analysis of both stationary and non-stationary random processes. Such random processes may be telegraph signals, ampli-tude-pulse modulated random signals, phasepulse modulated random signals, a-m and $\mathrm{f}-\mathrm{m}$ modulated random signals, etc.

CIRCUIT DESIGN

Low Plate-Voltage Circuits for Forming Pulses from Sinusoidal Voltages, V. I. Zabavin, 15 pp, 5 figs).

Several pulse forming circuits that are superior to multivibrators or triggers are considered. The
ircuits proposed employ tubes alone, transistors lone, or tube-transistor combinations, and form wlses from a sinusoidal voltage by discharging capacitor through a vacuum tube and by using ,ositive feedback. To prevent parasitic excitation low plate voltage must be used for the disharge tube and that the capacitor circuit must ave a sufficiently large time constant.

sCATTER PROPOGATION

Effect of Refraction on the Diffuse Propagation bf UHF Waves in the Troposphere, D. M. Vysokovski (7 pp, 2 figs).
Approximate equations are derived for several actors that can serve as a measure of the effect If refraction on diffuse radio-wave propagation. Such factors are a reduction in the altitude of the sattering volume, a change of the scattering angle, or a change in the size of the scattering volime. The receiver power change caused by refraction is calculated. Data from the theory of radio-wave scattering of turbulent irregularities f the troposphere and experimental data are ised in the calculations.

AUTOMATION AND TELEMECHANICS

(Contents of Avtomatika i Telemekhanika
No. 5, 1957)

OPERATIONAL AMPLIFIER

Operational Amplifier without Stabilized Power

 Supply, V. M. Evseev, (10 pp, 10 figs).A serious limitation on the use of operational amplifiers in automatic-regulation systems is the heed for stabilized power supplies particularly if not too many amplifiers are needed. The author reports on the results of experimental and theoretical investigations on a new operational-amflifier, requiring no stabilized supply

SERVO SYSTEMS

Method for Determining the Optimum Characteristics of one Class of Self-Adaptive Control Systems, A. M. Batkov, V. V. Solodovnikov, 115 pp, 4 figs).
The fact that automatic-regulation systems have inherently a "rigid" structure with invariable dynamic properties is one of the basic limitations on their dynamic accuracy. It is therefore inter sting to speculate on "self-adapting" system, which would adapt their dynamic properties to the external conditions and would therefore prov de automatically optimum operation, i.e., prod ice a minimum sum of the squared dynamic and nean errors.

PROBLEM:

Servicing the "heart" of a low, desk-mounted chassis.

SOLUTION:

Specification of Grant tilting slides to pivot the chassis over for "on-top" servicing.

The Soroban Engineering Company recently completed a repackaging program of their Perforated Tape Sequencer for Digital Control of Analogue Computers. This sequencer Anal vital component of the is a vital cipital Input-Output Automatic Digital Device (the ADIOD System Grounds in the White Sands Proving Ground their New Mexico. Tape reade mounted associated equipment grant threewithin the desk, on Grant these provide section tilt slides. These pry quick achassis. Some of the of the chassis. Servicing and equipment requir mised underneath the adjustment is mont Slides are used chassis and Grant, bringing the to till the unted equipment into the view of the operator for easier servicing.

Grant No. 363-P2Y Slides
recommended for
loads up to 200 ibs./pair
Courtesy Soroban Engineering, Inc.
GRANT
INDUSTRIAL SLIDES
21 High Street, West Nyack, New York 944 Long Beach Avenue, Los Angeles, Californía Write for complete technical data on the Write for complete technica.
wide range of Grant Sildes.

CIRCLE 268 ON READER-SERVICE CARD

BOURNS

TRIMpot
and related sub-miniature potentlometers -thousands of variations avallable from stock

SELECT from the mapy combinations shown below. Any choice is available in a wide selection of standard resistance values... for military or commercial applications.

ALL UNITS FEATURE sub-miniature size . . . space-saving configuration . . . self-locking shaft with 25 -turn screwdriver adjustment . . excellent acceleration, vibration and shock characteristics . . . mounting individually or in stacked assemblies, with standard 2.56 screws.

Over $\mathbf{5 0 , 0 0 0}$ units in stock. Send for complete catalog on the TRIMPOT and related potentiometers.

[^2]
Russian Translations

iterion of minimum of practical critical tracking ror by defining and determining the optimum nsfer function of the system for the case when e input is a slowly-varying time function and hen the noise is uniformly distributed over the tire working spectrum. The optimum transfer nction of the servo system can be realized with e aid of dc corrective devices.

SELSYNS

raphic Determination of the Rotation EMF in elsyn Circuits, I. M. Sadovski (5 pp, 4 figs).
A graphic chart is given to simplify the calcution of the additional emf produced when a elsyn control transformer is rotated at a constant peed and to determine the shift of the electrical ero of the selsyns. Reference is made to \mathbf{H}. Chestnut's "Electrical Accuracy of Selsyn Gener-or-Control Transformer System" (Electrical Eninecring, Aug-Sept, 1946).

MAGNETIC AMPLIFIERS

On the Theory of the Half-Wave Magnetic Amplifier, II, R. A. Lipman and I. B. Negnevitski (17 p, 11 figs).
Continuation of the theory of the half-wave nagnetic amplifier from the April 1957 issue of ctomatika i Telemekhanika (ED, November 15, 957). Allowances are made for the finite dyamic permeability of the core material, and a onnection is established between the structural nd the design parameters of the amplifier. Reers to Storm's "Theory of Magnetic Amplifiers ith Square Loop Core Materials" (Trans. AIEE, (0l 72, part I, 1953), Krabbe's "The Residual Time Constant of Self-Saturated Auto-Excited Transluctors" (Proc. IEE, No 3, 1956), and Ramey's The Single-Core Magnetic Amplifier as a Computer Element" (Trans. AIEE, vol 72, part I, 953).

ANALYZER

lectronic Analyzer for Contact-Making Circuits, V.N. Rodin (7 pp, 9 figs).

This article describes a high speed instrument which analyzes contact circuits and solves certain problems in the synthesis of such circuits. Shanfon and Moore in "Machine Aid for Switching Circuit Design" (Proc. IRE, 41, October, 1953), lisenssed a similar machine but gave no diafram: or calculations.

Also

Staric Transfer Device for Pulse Frequency Telen etering Systems, A. M. Pshenichnikov, (5 pp, 2 figs, 1 table).

Design an hermetically sealed 400 cps output transformer for use in a servo amplifier with a high degree of feedback ($M u-\beta=100$). Frequency respons to be linear within 3 db from 200 cps to $170,000 \mathrm{cps}$, with no dips or peaks Primary impedance to be 6,000 ohms, center-tapped, with a maximum DC resistance of 60 ohms. Primary OCL to be 4 henrys minimum when measured at 30 V , 400 cps , and with 7.5 ma of DC flowing through the total winding
Secondary impedance to be 500 ohms, center-tapped, with a maximum DC resistance of 6 ohms. Secondary rated output to be 140 V (a 400 cps into a 500 ohm load. Transformer efficiency to be 95% minimum. Ambient temperature range to be from $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. Maximum altitude to be 70,000 feet. Casin to be in accordance with the applicable requirements of MIL-T-27, with pre-
SOLUTION BY PEERLESS
Output Transformer: 400 cps , high level, hermetically sealed.
Constructlon: Grade 1, Class B, MIL-T-27.
Maximum Altitude: 70,000 feet.
Duty Cycle: Continuous.
Life: Greater than 10,000 hours.
Ambient Temperature: $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Primary: Three terminal, center-tapped winalng, 6000 ohme nominal Primary Res
Primary OCL: 5 henrys, measured at $30 \mathrm{~V}, 400 \mathrm{cps}$, with a 7.5 ma DC, through winding.
Secondary: Three terminal, center-tapped winding, 500 ohme nominal impedance.
Secondary Resistance: 5 ohms.
Rated Operating Level: $140 \mathrm{~V}, 400 \mathrm{cps}$ across 500 ohm secondary load
Efficiency: 96%.
Frequency Response: $200 \mathrm{cps}-300,000 \mathrm{cps}$, flat within 1.0 db , and 200 cps $-550,000 \mathrm{cps}$, flat within 3.0 db . Smooth response, no dilscontinuitles. Dimensions: $21_{2^{\circ}} \times 2 \%_{4^{\circ}} \times 2 \frac{2}{s^{\circ}}$ high $+\%^{\circ}$ terminals.
Consult Peerless for the best solution to your quality transformer requirements.
Experienced engineers throughout the country have shown a marked preference for Peerless products. They know the Peerless engineering staff is uniquely qualified to solve any transformer of a long history of successfully designing transformers to unusual and difficult specifications. Such experience combined with rigid quality controls and the most advanced production techniques achieves uniform quality and dependability in all Peerless products.

DEEDEESS ATS ALTE
 Electrical Products

9356 Santa Monica Blvd., Beverly Hills, Calif. • 161 Sixth Avenue, New York 13, M.Y
EADER-SERVICE CARD

(ML) VARIABLE FREQUENCY A. C. POWER Available In Single, Two or Three Phase Oufput From 50 VA to 80 KVA

WRITE FOR COMPLETE CATALOGUE GIVING DETAILED SPECIFICATIONS ON ALL MODELS

CIRCLE 271 ON READER-SERVICE CARD

Russian Translatians

Phase-Shift Network

THIS NOMOGRAM is intencled for the com putation of the phase shift and of the tota impedance of a phase-shifting L-pad. The nomogram is based on the equations:

$$
\begin{aligned}
\tan \varphi & =X / R \\
Z & =R / \cos \varphi
\end{aligned}
$$

where X, R, and Z are the reactance, resistance and impedance respectively, and φ is the phase difference between the input and output voltages.

Given X and R, the value of φ is first found by drawing a straight line through X and R on the corresponding scales. Another straight line, drawn through R and the thus-obtained value of φ on the φz scale gives the unknown value of Z.

Example: A line drawn through $R=\mathbf{7}$ and $X=5$ kilohms gives $\varphi=36$ deg. Another line drawn through $R=5$ kilohms and $\varphi \mathbf{z}=36 \mathrm{deg}$ gives $Z=8.6$ kilohms.

From "Nomogram Collection on Radio Engineering" by V. M. Rodionov, Soviet Radio Publishers.

Phase-Shift Oscillator

Nomogram

THIS NOMOGRAM is intended for the design of the two types of phase-shift oscillators shown in the diagram. Each oscillator contains a three-element phase-shift network comprising equal resistances and capacitances. The equation for the frequency is

$$
\begin{aligned}
f_{I} & =\frac{\sqrt{6}}{2 \pi R C} \\
f_{I I} & =\frac{1}{2 \pi \sqrt{6 R C}}
\end{aligned}
$$

Given any two of the three quantities, f_{I} (or $f_{I I}, R$, and C), one can readily obtain the third from the nomogram.

Example: Given $R=40,000$ ohms and $C=$ $3000 \mu \mu \mathrm{f}$, we get $f_{I}=550 \mathrm{cps}$ and $f_{I I}=3250 \mathrm{cps}$.

From "Nomogram Collection on Radio Engineering" by V. M. Rodionov, Sovict Radio Publishers.

Ell CTRONIC DESIGN • December 1, 1957

This is

your answer

 where quality and size are prime factors
Centralab's

 Model 3 Radiohm ${ }^{\text {® }}$The Centralab Model 3 Radiohm, with its exclusive Interfused Composition Element, provides unbelievable wattage dissipation, yet is smaller than a dime.

This miniature rotary potentiometer, with its rugged element, is ideally suited for hightemperature operations in both commercial and military applications.

Advanced design features offer you both standard and locking-type bushings. Each is available with sealed construction to meet today's demand for a unit that can be potted.

For immediate delivery in ratings from 1,000 ohms to 2.5 megohms, ask your local Centralab distributor for the JP and JL Series.
> typical watt-hour rating

Only 10\% maximum resistance
change, when used at . . .
1 watt for $1-1 / 2$ hours
$3 / 4$ watt for 35 hours
$1 / 2$ watt for 80 hours
$1 / 3$ watt for 300 hours
$1 / 4$ watt, continuous rating

> Write today for
> Technical Bulletin EP-63, for complete engineering data. GLOBE-UNION INC.
960L E. Keefe Ave.
Milwaukee 1, Wis.
In Canada:

- So basic are Eckel contributions to the field of small solenoid shut-off valves that it is impossible to match Eckel performance without using Eckel features. ILLustrated:

High pressure ethylene oxide valve for missile applications.

VALVECO. Dopt. L-I 1425 First Street. San Fernando. California
East. Rop: The Barker Co. 288 Old Counnty East. Rep: The Barker Co.. 288 Old Country
Road, Mineola, N. \mathbf{Y}. and 734155 h St. N.W. Washinnton, D. .C. © Wost. Repp The Walter
J. Hyatt ©.., Box 943 , Beverly Hills, Calif. CIRCLE 274 ON READER-SERVICE CARD

German Abstract

Equivalent Circuits for Transistors

WHILE in vacuum tube circuits the load impedance has, in the absence of feedback directly to the input, no effect on the input impedance, this is not the case in transistor circuits. An equivalent circuit which takes this effect into account conveniently can be deduced.

If the transistor parameters are considered resistive then the transistor is a special case of the unilateral two terminal pair shown in Fig. 1. The mesh equations for this four-pole network are

$$
\begin{aligned}
& V_{1}=Z_{11} I_{1}-Z_{12} I_{2} \\
& V_{2}=Z_{21} I_{1}-Z_{22} I_{2}
\end{aligned}
$$

where
$Z_{11}=r_{1}+r_{3} ; Z_{12}=r_{3} ; Z_{22}=r_{2}+r_{3} ; Z_{21}=r_{3}+r_{i}$
The ration $D=Z_{12} / Z_{21}$ is defined. This ratio is unity only when the network is unilateral. Each side is now terminated in its image impedance so that the input termination is

$$
Z_{1}=\sqrt{\frac{Z_{11}}{Z_{22}}} \cdot \sqrt{Z_{11} Z_{22}-Z_{12} Z_{21}}
$$

and the output termination is given by

$$
Z_{2}=\sqrt{\frac{Z_{22}}{Z_{11}}} \cdot \sqrt{Z_{11} Z_{22}-Z_{12} Z_{21}}
$$

The transmission factor in the forward direction, g_{1}, is defined by

$$
g_{1}=\ln \frac{V_{1}}{V_{2}}+\frac{1}{2} \ln \frac{Z_{2}}{Z_{1}}
$$

which for the terminations stated gives

$$
\left.g_{1}=\frac{1}{2} \ln I\right)+\cosh ^{-1} \sqrt{\frac{Z_{11} Z_{22}}{Z_{21} Z_{12}}}
$$

Defining the transmission factor in the reverse direction, g_{2} in an anologous manner:

$$
!_{2}=\ln \frac{V_{2}}{V_{1}}+\frac{1}{2} \ln \frac{Z_{1}}{Z_{2}}
$$

one obtains

$$
g_{2}=g_{1}-\ln D
$$

Elaborate manipulations of the mesh equation (by matrix algebra) result in the

Fig. 1. Active unilateral four-pole network.
equiv circu the ε

Fig. 2. Cascade connection of an ideal amplifying four-pole network and a passive bilateral four-pole network to represent active four-pole network.
equivalent circuit shown in Fig. 2. This circuit is particularly convenient because the general four-pole is represented as a cascade connection of an ideal amplifier and a passive bilateral two terminal pair. The transmission factor of the ideal amplifying section of this circuit is g_{\circ} in the forward direction, and for the passive section this factor is g , where

$$
g_{0}=\frac{1}{2} \ln D \text { and } g=\frac{g_{1}+g_{2}}{2}=\operatorname{coskl}-1 \sqrt{\frac{Z_{11} Z_{22}}{Z_{12} Z_{21}}}
$$

Note that if g exceeds g_{o} then no amplification is possible in either direction.
For a transistor the " h " parameters, may be more convenient. They are defined as follows: (See Fig. 3.)

$$
\begin{aligned}
V_{1} & =h_{11} I_{1}+h_{12} V_{2} \\
I_{2} & =h_{21} I_{1}+h_{22} V_{2}
\end{aligned}
$$

With these parameters

$$
\begin{aligned}
& !=\sinh ^{-1} \sqrt{-\frac{h_{11} h_{22}}{h_{12} h_{21}}} \\
& g_{o}=\frac{1}{2} \ln \left(-\frac{h_{12}}{h_{21}}\right)
\end{aligned}
$$

The order of magnitude of the decoupling which was achieved with typical transistors was about $8-10 \mathrm{db}$ or 1 to 1.2 nepers in an application where it was desired to decouple a mixer from a bandpass filter. While vacuum tubes at low freguencies can furnish practically arbitrary decoupling, the use of transistors to amplify and decouple simultaneously seems to recommend itself in diverse applications.
Abstracted from an article by C. Kurth, Fre suenz, Vol. 11, No. 4 April 1957, pp 107-114.

Fig. 3. Reference directions for transistors.

REGOGNIZED Ui LEAD ERSFIP SIDE indicator panel meters*

MAXIMUM ACCURACY AND READABILITY with MINIMUM WEIGHT AND PANEL SIZE

MODEL 1145
2.7-Inch Scale Length

NOW AVALLABLE $\mathbb{I N} 3$ SIIES

MODEL 1135 2.1-Inch Scale Length

MODEL 1120 1.2-Inch Scale Length

horizontal or vertical mounting

Save space on crowded panels without sacrificing performance or readability. Provide same scale length as conventional round meters but occupy only $1 / 3$ the panel area. Accuracy is held to $\pm 2 \%$ of full-scale deflection for d-c operation ($\pm 3 \%$ for Model 1120), and $\pm 5 \%$ for a-c ranges. Meters are self-contained. individually calibrated and ready for use. Dustproof cases have clear plastic covers. Available in a wide variety of standard and special ranges including in a wide variety of standard and special ranges in
Expanded Scale Voltmeters, VU and DB Meters. - Pal. Ponding

MINIATURIZATION HEADQUARTERS mlermational Since 1947 GROWING BIGGER making things smaller
$1^{\prime \prime}$ ROUND and $11 / 2^{\prime \prime}$ ROUND and SQUARE METERS

Sub-miniature $1^{\prime \prime}$ Round Meters have full 90° scale arc with scale length of $760^{\prime \prime}$. VU, DB and Illuminated Meters available with external accessory attachment.
Model 150 Round and Model 153 Square $11 / 2^{\prime \prime}$ Meters have scale length of $1.322^{\prime \prime}$. Tested and approved meters to meet Military Specification MIL-M-3823. Model 163 Ruggedized Meters tested to meet MIL-M-10304 (Sig.C) are also available. $11 / 2^{\prime \prime}$ Meters may be obtained in a wide variety of standard and special ranges, as self-contained VU and DB Meters, and as Illuminated Meters with lamp housing attached.
Write INTERNATIONAL INSTRUMENTS for Engineering Data Sheets Describing These Miniature Components
$11 / 2^{\prime \prime}$ Ruggedized Meters • $1^{\prime \prime}$ and $11 / 2^{\prime \prime}$ Panel Meters • $11 / 2^{\prime \prime}$ VU, DB and Illuminated Meters - Miniature Multitesters - Side Indicators
P.O. BOX 2954, NEW HAVEN 15, CONNECTICUT

Representatives in
Cable:
Principal Cifies
"INTERINST"

Now you can select from nine different resistance values and improve the accuracy and dependability of your circuit performance. ACESET precision, wire-wound, micro-miniature potentiometers offer greater stability under temperature cycling through the use of 20 ppm temperature coefficient wire. Improved performance at lower costs have been achieved by mass producing to standard specifications. Shipments are guaranteed within 24 hours of receipt of order. Call, wire or teletype Dept. G, at Ace Electronics Associates, Inc., 99 Dover Street, Somerville, Mass. SOmerset 6-5130. TWX SMVL 181

MECHANICAL SPECIFICATIONS

One piece precision-machined metal case
Passivated stainless steol shaft
Solf-contained locking device
Panal anti-rotation pin
Mechanical rotation: 330° nominal
Size: $1 / 2^{\prime \prime}$ diameter $\times 5 / 6^{\prime \prime}$ body length

ELECTRICAL SPECIFICATIONS

Heat Dissipation: 2 watts at $60^{\circ} \mathrm{C}$. Voltage breakdown: 1,000 VDC Electrical Angle: 325°-nominal Temperature coofficient of wire: $\mathbf{2 0}$ ppm
Resistance tolerance: $\pm 10 \%$
Linearity: $\pm 5 \%$

A Nonreciprocal

Attenuator at 4 Kmcps

ANONRECIPROCAL attenuator which has the following properties can be constructed by using the principle of resonant absorption in ferrites:

Bandwidth: 400 Mcps (3.8 to 4.2 Kmcps) Reflection factor: 1 per cent
Forward attenuation: 0.5 db (approx)
Attenuation in reverse direction: $13 \mathrm{db}(\mathrm{min})$
The device is based on the principles illustrated in the figure. Insertion of a single ferrite plate in the waveguide will cause resonant ab. sorption and consequently attenuation when the frequency of the electromagnetic waves corresponds to the frequency of precession of the magnetic moments in the ferrite. If two ferrite plates are inserted symmetrically, then there are two positions ($\pm x_{0}$) at which the phenomenon becomes directional, i.e. it will depend on the direction of propagation of the electromagnetic waves. The correct position of the ferrite plates depends on the dielectric constant and permeability of the material and is best determined experimentally.

While several Ni-Zn-ferrites could be used in principle, several objections to their suitability were discovered. With some, the bandwidth was too narrow, while with others, the coercive force was too large so that excessive dc fields were required. Those Ni-Zn-ferrites for which the coercive force was appropriately small have too low a Curie-point and exhibit too great a temperature dependence to be generally useful. The GYferrites (Siemens-Halske AG) were found to be suitable from both points of view.

The original paper also includes sketches of the actual waveguide structure which was built and tested. (Abstracted from an article by J. Deutsch and W. Haken, Frequenz, Vol. 11, No. 7, July 1957, pp. 217-220.)

A
 Waveguide Slide Rule

N THE DESIGN of cavities as well as in other waveguide problems the calculation of the wavelength within the guide for various modes is often time consuming, especially when moderately high precision is required. The "guidewavelength," λ_{g}, the free space wavelength λ_{o} and the cutoff wavelength λ_{c} are related by

$$
\begin{equation*}
1 / \lambda_{\theta}{ }^{2}=1 / \lambda_{o}{ }^{2}-1 / \lambda_{c}{ }^{2} \tag{1}
\end{equation*}
$$

Setting $u=1 / \lambda_{g}{ }^{2}, v=1 / \lambda_{0}{ }^{2}$ and $w=1 / \lambda_{c}{ }^{2}$ and introducing a proportionality constant p, we have the relationship

$$
\begin{equation*}
p u=p v-p w \tag{2}
\end{equation*}
$$

This subtraction can be represented graphically as shown in the Figure. This illustration shows how the slide rule is used: calculate the cut-off wavelength and match the infinity mark on one scale with λ_{c} on the slider. The free space wavelength on the rule will then match the guide wavelength on the slider.
The proportionality constant, p is used to determine the physical size of the slide rule once the required precision is specified. Using $\mathrm{p}=2000$ the length of the scales is 22.5 cm and the rule yields four significant figures in the 3.3 .4 cm region. (Abstracted from an article by W. Otto, Nachrichtentechnik. Vol. 7, No. 7, July 1957. pp 294-296.)

 Principle of the slide rule.

With nowly-designed crimped leads ... Parallel loads simplify use in TV, electronic brains, minialure printed circuits, guided missilos, and count-Dur-Mica Capacifors meas

Write for FREE samples and cat alog on your firm's lefterhead.

El-Menco Dur-Mica DM-15, DM-20, DM-30, DM-40 and DM-42 Capacitors outlive, outperform, outshine.

Longer life . . . Aremendous power . . . tiny size . . . ferrifie stability - silvered mica . . . perfect performance. Test them for yourself and see...
DM-15 - tiniest mica capacitor in the world .ideal for DM-15 - tiniest mica capacitor in the worla $\because 0$ ideal for
extreme miniaturization up to 820 mmf at 300 VDCW
. . up to 400 mmf at 500 VCW .
DM-20 - ideal for new miniatured designs and printed

humidily, iomperafure and electronic humidily, iomperafure and electronic

Capacitoro

THE ELECTRO MOTIVE MFG. CO., INC.

Manufacturers of El-Monco Capacitors

WILLIMANTIC CONNECTICUT

- molded mica - mica trimmer - dipped paper
- tubsular paper - ceramic - silvered mica films - ceramic discs Arce Electronics, Inc., 64 While St., Now York 13, N. Y
Exelusive Supplier To Jobbers and Distributors in the U.S. and Conodo
CIRCLE 277 ON READER-SERVICE CARD

Direct Impedance Measurements

from 400 kc 8060 Mc
\star Antennas \star Networks \star Tuned Circuits
\star Transmission Lines \star Circuit Elements
Resistance Range: 0 to 1,000 Ohms
Reactance Range: $\pm 5,000$. Ohms Direct Reading at 1 Mc ; range varies inversely as frequency Basic Accuracy: $\pm(1 \%+0.1$ Ohm) for Resistance; $\pm(2 \%+10 h m)$ for Reactance; Slightly ess accurate at higher frequencies; h-f correction chart supplied
Type 1606-A Radio Frequency Bridge: $\$ 620.00$
Type 1808-P1 Carrying Caso: $\$ 17.50$ GENERAL RADIO Company

 In CAMADA, 99 flomen Patimey, rorowno is
CIRCLE 278 ON READER-SERVICE CARD

NEW and DIFFERENT PREM-0.RAK by PREMIER
available in 20 different sizes FROM 7" 10 3S" PANEL SPACES BOTH 151/4" and 18" DEEP FOR StANDARD I9" PANELS

- Shipped knocked down lor easr assembly.
- Hondiomely finished in two.tone Gray ond Brown Hemmetione. - Panels mor be mounted on bolh - Tonn and reor - Interlocking removable top ond metol ond held by coptive screws. - Ponels fir into $1 / 2^{\prime \prime}$ "recess. Bose - supplied with 4 tubber leet.
Components may bo mounted - Components mor bo mounted on
base belore ossembly of rock - bere before oisembly or rock visible from oulside.

MRIMNITAR METAL PRODUCTS CO. DEPT.ED, 337 MANIDA ST. NEW YORK 59, N. Y. westren saits obice

crope orearmen
EXPORT DEPARTMENT
EMEC 127 Groce Stree

CIRCLE 279 ON READER-SERVICE CARD

Standards and Specs

Sherman H. Hubelbank

ASA Drafting Standards Manual

The new American Standard Y14 Drawing Manual comprises 17 sections each of which will be separately issued. Since the various sections are to be issued separately, they can be used to supplement company standards where the latter do not provide as thorough coverage as may be required. The 17 sections are as follows: 1. Size and Format, 2. Line Conventions, Sections, and Lettering, 3. Projections, 4. Pictorial Representation, 5. Dimensioning and Notes, 6. Screw Threads, 7. Gears, Splines, and Serrations, 8. Sand Castings, 9. Forgings, 10. Metal Stampings, 11. Plastics, 12, Die Castings, 13. Springs, Round and Flat, 14. Structural Drafting, 15. Electrical Diagrams, 16. Tools, Dies, and Gages, and 17. Hydraulic Diagrams. According to Professor R. P. Hoelscher, chairman of the Y14 committee, in the preparation of the Y14 Drafting Practice, the objective was to produce a comprehensive standard, based on well established conventional practices, to satisfactorily fulfill industry's most exacting fundamental drafting requirements. With respect to simplified drafting practices, every effort was made to reflect universally recognized, time-honored, simplified practices. Many practices, although in substantial use in some segments of industry, have been omitted to avoid every possible objection that might compromise national approval and acceptance of the standard. The first four sections have recently been issued.

Y14.1-1957, ASA Drafting Standards Manual, Size and Format
The portion dealing with sheet sizes, border lines, title blocks, and the like contains seven pages as against two pages in the 1946 standard. The increase is due largely to format of title blocks, revision lists, and zoning. Two basic sizes and multiples thereof have been approved, namely $8 \frac{11}{2} \times 11$ and 9×12. Copies are available from ASA for $\$ 1.00$ per copy.

Y14.2-1957,ASA Drafting Standards Manual, Line Conventions, Sectioning, and Lettering Comprising 24 pages and 28 illustrations, this section combines the material which appeared in Sections 2, 3, and 9 of the 1946 standard. In line work, only the phantom line was changed. The portion on sectional views was expanded for clarification. Lettering is unchanged. Nationwide agreement is well established in the area of this

Freguent time adjustments are no problem with the dial head available on AGASTAT time/delay/relays. They provide a complete range of adjustment with 1 revolution of the dial. Dial markings permit easy calibration for accurate adjustment. And you can spot each of the 4 timing ranges quickly because they are color coded: blue from 30 seconds to 15 minutes; red from from 0.1 to 3 seconds.
Like all AGASTAT relays, units with dial heads are solenoid actuated, pneumatically timed. Each model is available with either dial head or needle valve adjustment. Where fre cuent readjustment of timing is necessary, dial head adjustment should be specified. For bulletin on all popular AGASTAT time delay relays, write to: Dept. A28-1224

CIRCLE 280 ON READER-SERVICE CARD

Cold-Heading is the most versatile, most economical method for producing your fasteners and small parts. This case history is typical of thousands of money saving jobs we've done for our customers. May we quate on your requirements? Write today for the Hassall Catalog. John Hassall, Ine., P.O. Box 2202, Westbury, Long Island, N.Y

SINCE I850 NAILS, RIVETS, SCREWS AND OTHER
 HaSSall COID-HEADED FASTENERS AND SPECIALTIES CIRCLE 281 ON READER-SERVICE CARD

NEW-self-locking Unbrako button head cap screws

The Nylok selflocking feature locks these screws securely in place. They won ${ }^{\circ}$ work loose. Can be used repeatedly. Tough, resilient nylon locking pellets permanently installed. Successfully withstand temperatures ranging from -70 to $250^{\circ} \mathrm{F}$. Low, streamlined heads with accurate hex sockets for heads with accurate hex sockets for positive nonslip drive and freedom from marred or mutilated heads. Heat treated alloy steel, continuous grain flow lines, fully formed Class 3A threads for maximum strength and exact fit. Pellets act as liquid seals. Standard sizes \#6 to $5 / 8 \mathrm{in}$. Write for Bulletin 2193. Unbrako Socket Screw Division, Standard Prissed Steel Co., Jenkintown 12, Pa .
-tM Reg. U.S. Pot. Off., The Nylok Corp.

STANDARD PRESSED STEEL CO. WBPBRD SOCKET Screw division

We also manufacture pre-
cision titanium fasteners. cision titanium fasteners CIRCLE 282 ON READER-SERVICE CARD

SMALL PACKAGE...

Pictured above is PSP Solenoid Module SM717, designed and built especially for the production testing of intercontinental missiles by automation. Signals programmed on punched tape are fed through the 30 -solenoid module, which operates pushbutton switches to select test frequencies from an oscillator. The purpose of this check-out system is to provide a rapid and
extremely accurate method for missile testing work.
Solenoid Module SM717 is just one of several special units designed by PSP for programming applications using miniature PSP Solenoids - and is another example of PSP engineering of work. If you have a problem which may be solved by accurate, cliable solenoid operation-in miniature, sub-miniature o slandard models - write for more detailed information roday!
section. Copies of this standard are available from ASA for $\$ 1.50$ per copy.

Y14.4-1957, ASA Drafting Standards Manual, Pictorlal Drawing
An entirely new section, it covers material that has not previously been covered in any standard. Its chief function is to establish correct nomenclature for various kinds of pictorial drawings, such as isometric, dimetric, trimetric, oblique projections, and the various forms of perspective drawings. Methods of constructing pictorials are not shown. A liberalized method of dimensioning pictorials has been approved. With the need for training unskilled persons, the use of pictorials has become quite important in industry. Copies of this standard are available from ASA for $\$ 1.50$ per copy.

Y14.5-1957, ASA Drafting Standards Manual, Dimensioning and Notes
The definition of terms used in dimensioning drawings and the usual well recognized principles of placing and arranging dimensions, leaders, and notes are covered in this section. Also included are recommended practices for dimensioning standard details such as drilled holes, countersunk or counterbored holes, and a large number of other items which normally appear on drawings. In addition, three other topics, relatively new to American drafting practice, have been included. They are: tolerancing of form, or geometric tolerancing as it is called in the British standard; true position tolerancing; and the application of the maximum material concept in dimensioning drawings. This standard contains 36 pages and 109 illustrations. Copies of this standard are available from ASA at $\$ 2.00$ per copy.

Military Standards

The following standards have recently been released:
MIL-STD-196, Joint Electronics Type Desig-
nation System ("AN" System), 9 May 1957
Mil-StD-408, Rectangular Standaid Designs
and Dimensions for Electrical Contact Brushes, 28 June 1957
MIL-STD-414, Sampling Procedures and Tables for Inspection by Variables for Percent Defective, 11 June 1957
MIL-S-13655A (ORD), Switches, Push-Pull; 30 Volts DC Maximum, 1 July 1957
MIL-C-13721 (ORD), Cable, Electrical; LowTension, Single-Conductor (for Extreme Temperature Applications), 25 April 1957
MIL-C-13777A (ORD), Cable, Special Purpose, Electrical, 20 June 1957

3 New Spring Loaded Diode Clips . . . to hold fragile leads securely

Here are CTC's three new spring loaded diode clips - capable of handling wire diameters ranging from $.005^{\prime \prime}$ to $.0855^{\prime \prime}$ and designed primarily to grasp the fragile pigtail leads of diodes, transistors and other similar components.

These new clips are brass, finished in bright alloy plate. All are available with screw stud mount or with rivet mount in five shank lengths.
Such versatility makes these diode clips unique typical of CTC's original thinking. And like all CTC's other products they have the family traits of high ständards in design, precision, and reliability.
For more information and a price list, write to Cambridge Thermionic Corporation, 457 Concord Avenue, Cambridge 38, Massachusetts. CIRCLE 284 ON READER-SERVICE CARD

CIRCLE 285 ON READER-SERVICE CARD

CIRCLE 287 ON READER-SERVICE CARD

Standards and Specs

ASA Standards

The following ASA standards have been recently published. Copies may be obtained from the American Standards Association, 70 East 45th Street. New York 17, N.Y.
Z24.21-1957, Method for Specifying the Characterisic is of Pickups for Shock and Vibration Measurement, $\$ 1.00$ per copy
(:33.8-1957, Safety Standards for Grounding and Bonding Equipment, $\$ 0.50$ per copy

EIA Standards

The Electronic Industries Association has issued the following Standards Proposals to industry for comment:
S.P. 553, Electrical Rating Systeils for Electron Devices
S.P. 554, Preparation of Outline Drawings of Electron Tubes and Bases (Revision ET-102-B)
S.P. 555, Electron Tube Bases, Caps, and Terminals (Revision ET-103-D)
S.P. 556, Electrolytic Capacitors for Transmitters and Electronic Equipment (Revision TR-140)
S.P. 557, Color Marking of Thermoplastic Wire (Revision GEN-104)

JETEC Publication 11, Summary of Registered Receiving Tubes
The major characteristics of all receiving tubes registered during the period January 1955 to August 1957 are listed in this publication. Copies of this reference manual are available from the engineering offices of the Electronic Industries Association, 11 West 42nd Street, New York 36, N.Y., for $\$ 2.00$ per copy.

Resistors

MiL-R-3080B, Revision B, Resistors, CurrentRegulating (Ballast Tubes), 24 May 1957
The symbol and title of the spec have been changed from MIL-T-3080A, Tubes, Current Regulating. Types TJ601K01 and TJ791K01, formerly covered by MS90040 and MS90039 are now covered by spec sheets MIL-R-3080/1 and MIL-R-3080/2. Thirteen additional types, covered by spec sheets MIL-R-3080/3 through MIL-R-3080/15, are included in the spec.

BLUE M ELEGTRIC CO. sum istano, u. MANUFACTURERS AND DESIGNERS OF COMPLETE

TEMPERATURE CONTROLLED EQUIPMENT
CIRCLE 288 ON READER-SERVICE CARD

Silicone Sponge Rubber

for sealing, gasketing, pressure pads, vibration dampening $-100^{\circ} \mathrm{F}$ to $480^{\circ} \mathrm{F}$
Low density COHRlastic R-10470 silicone sponge rubber is completely flexible after 72 hrs . at $480^{\circ} \mathrm{F}$, shows no brittleness after $5 \mathrm{hrs}$. at $-100^{\circ} \mathrm{F}$. High tensile, tear and elongation Closed cell construction is non-absorbing. Called out on aircraft and electronic drawings and specifications. Available
from stock in sheets $1 / 16^{\prime \prime}$ thru $11 / 2^{\prime \prime}$, in rod $.180^{\prime \prime}$ thru $.585^{\prime \prime}$, Special extruded shapes made to order.
FREE SAMPLES and folder-write, phone or use inquiry service

COHMECTICUT HARD RUBBER
 new haven 9

 $$
\underset{\substack{\text { nishor }}}{205}
$$
 Pr
 120
 CIRCLE 289 ON READER-SERVICE CARD

Important Announcemeñi to MICROWAVE SCIENTISTS Westinghouse
 I. Vow Eatablishing a NEW

MICROWAVE TUBE RESEARCH and DEVELOPMENT CENTER
at ITHACA, N. Y.
(Adjacent to Cornell University)
For Work on ADVANCED MICROWAVE TUBES

The establishment of this new Westinghouse facility at Ithaca, N.Y., (adjacent to Cornell University) presents an outstanding climate of opportunity for competent engineers and physicists. They will participate in the Research Center's formation and activities, and at the same time enjoy the job stability afforded by an established and respected organization. The work will be along new and unexplored channels of investigation with the highest types of professional and academic associations providing a stimulating environment for individual achievement.

Westinghouse will provide opportunity for qualified candidates to work for advanced degrees.

Working conditions are excellent and employee benefits are generous. Living conditions, too, are among the best in the delightful and recreational Finger Lakes region.

Salary commensurate with training and experience.
The following positions are immediately available:

PROJECT DIRECTORS

Ph.D. or M.S. with equivalent extensive high level industrial experience in the microwave tube field, capable of initiating, directing and participating in theoretical and applied research and long range major development.

MICROWAVE TUBE SPECIALISTS

Ph.D. or M.S. with equivalent extensive high level industrial experience in microwave tube field to perform applied research and long range major development of a highly creative nature.

Immediate Openings

also available in ELMIRA, N.Y.
(30 mi . from Cornell)
for MICROWAVE TUBE DEVELOPMENT \& DESIGN ENGINEERS

Write or send resume to Mr. William Kacala, Technical Recruiting, P.O. Box 284, Dept. M-5W, Elmira, N.Y. or phone collect Elmira 9-3611.

Cornell Aeronautical Laboratory and . . .
 ALL-WEATHER RETURN-TO-CARRIER FLIGHT

A hundred jet aircraft scream toward their distant carrier. Some are disabled; others, critically low on fuel. Their landing must be swift; timed to the second. This systems problem was assigned to Cornell Aeronautical Laboratory scientists and engineers by the Bureau of Ships seven years ago. Project name: PACO - Problems of All-Weather Carrier Operations.

In order to link the carrier to the flight group beyond the horizon establish mutually compatible flight paths ... control an efficient landing sequence (with provision for emergency landings and wave-offs). and to land the planes automatically on an unstable deck, electronics in every conceivable form has been focused on the problem.

Systems engineering, traffic control philosophy and the inter-relation of aerodynamics and electronics all play a part in the systems design and experimental support work of C.A.L.'s project team. Their efforts have resulted in significant contributions to equipment development including TACAN, Data Link and Traffic Control Computer, Transition and Wave-Off Computer, and Automatic Landing System with Deck Motion Predictor.

PACO typifies the broad scope and professional maturity of research projects at C.A.L. If you are interested in becoming a member of one of our small, closely-knit research teams, write today for the factual, well illustrated, 68-page report entitled, "A Decade of Research." Mail the coupon now for your free copy.

ENGINEERS

With a few years experience, for diversified sssignments in design and development of electronic countermessures.

Qualified and interested in research and study concepts on navigational guidance, radar, missile systems, etc.

To engineers interested in opportunity to work at the top level of their skills, in a professional engineering atmosphere which encourages advanced thinking, Sanders has much to offer.

The favorable working and living environment is due to the engineering management which has led the company steadily forward since its organization 6 years ago . . . and to the location in the beautiful New Hampshire hill country just one hour from downtown Boston.

Inquiries should be addressed to
D. H. JOHNSON

CIRCLE 552 ON READER-SERVICE CARD

HI-FI
CIRCUIT DESIGNER

To design underwater acoustics apparatus. Minimum 5 years design experience required.

Terrific opportunity for man who wants to develop professionally instead of administratively

Wrife E. A. Gentry; or call
ULsfor 1-5500 (Cloveland) colloct
CLEVITE ORDNANCE
division of clevite corporation
540 East 105 th Street, Cleveland 8, Ohio

CIRCLE 553 ON READER-SERVICE CARD

Work where it's fun to live. Advance your career-both in recognition and financial gainat Motorola in Phoenix.

Your family will share your opportunity when you settle down in sunny, dry, healthful Phoenix! Tourists spend millions of dollars every year just to visit Phoenix. The attractions of this fabulous vacationland can be yours to enjoy year. 'round with Motorola!

ELECTRONIC ENGINEERS,
MECHANICAL ENGINEERS, PHYSICISTS
System Analysis, Design and Test Radar

Communications
Navigation Missile Guidance
Circuit Design, Development and Packaging Microwaye Deve Digital and Analog R-F and 1.F

Digital and Analog
rechnical and Specification Writing Printed and Etched Circuitry
Write: Mr. Kel Rowan
Western Military Electronics Center Motorola, Inc., Dept. B-12 Phoenix. Arizona

Engineoring positions also avallable at Moforola, Inc. in Chicago, illinois, and Riverside, Callfornia.

CIRCLE 554 ON READER-SERVICE CARD

CHIEF OF

ELECTROMICS DESIGN

To manage electronics design for missiles and manned aircraft in Chance Vought's expanding Electronics Department of over 500 personnel. Candidate for this high-echelon position must be a creative, imaginative leader with a Doctor's degree in Engineering preferred, but at least an M.S. in Engineering backed up by 10 to 15 years of engineering experience.
Responsibilities will cover design activities in the fields of radar, radiation, servomechanisms, fire control, communications, support equipment, all types of guidance, reliability and product design.

Salary open. To inquire and negotiate in strict confidence, write direct to:
R. C. Blaylock, Vice-President, Engineering, Dept. 5000-2

P. O. Box 5907 Dallas, Texas

CIRCLE 555 ON READER-SERVICE CARD

ENGINEERS \& SCIENYISTS

New

 Research and Development Opportunities in California as Sylvania ExpandsOther Sylvania laboratories in Mountain View are: microwave Physles Laberatery mlarowave Tube Laboratory Reconnalseance Bystoms Laboratory
P.O. Box 1296

Mountain View, California

Creative assignments are offered by Sylvania's Electronic Defense Laboratory in the San Francisco Bay area for work on electronic countermeasure systems \& equipment. There are openings in the following fields:

- Systems Analysis
- Systems Synthesis
- Systems Test \& Integration
- Research, Design \& Development: Transmitters, receivers, components, antennas
- Equipment Engineoring
- Field Engineering
- Mechanical Engineering

Sylvania is only 5 miles from Stanford Uaiversity ... and our liberal employee benefit program includes company assistance with tuition for advanced study. Salaries are commensurate with training and experience.
To learn more about opportunities with Sylvania in California
Please send your resume to J.C. Richards ELECTRONIC DEFENSE LABORATORY

W SYLVANIA .
 SVLVANIA ELFCTRIC PRODUCTS IN

Teamwork in Missile Development

The Jet Propulsion Laboratory provides a wide range of research and development activities. Projects include problems in the fields of Electronic, Mechanical, Aeronautical, Chemical and Metallurgical Engineering, Physics and Mathematics.
The fluid character of these activities provides a keen incentive to JPL engineers and scientists. These men are given wide latitude and unusual individual responsibility-at the same time working as a thoroughly integrated team on all aspects of entire missile systems rather than on certain highly specialized missile components.

Job Opportunities Now in These Fields . . .
SYSTEMS ANALYSIS - INERTIAL GUIDANCE - COMPUTER EQUIPMENT - INSTRUMENTATION • TELEMETERING • FLUID meChanics - heat transfer - aerodynamics - applied physics - propellants and materials research

A DIVISION OF CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA•CALIFORNIA
CIRCLE 557 ON READER-SERVICE CARD

THE BOMAC BL-BOB REFLEX KLYSTRON FOR X-BAND
Improved performance? You can count on it with the new Bomac BL-803 Reflex Klystron for X-band applications. Here's why: - New tuning ease . . Bomac's positive, self-locking, single-screiv tuning* assures accuracy and re-setability under all operating conditions.
Added resistance to vibration and shoch . . . proven in many field tests

- Low microphonics

Electrical uniformity, mechanical stability . . . assured by rigid test procedures
The new BL-803 is one of a complete line of Bomac Reflex Klystrons, any of which can be tailored to your specific system requirements. Write today for complete information.

W'rite for Bumac's (j-page, file-size folder con taining details and specifications on more than 500 different microreave tubes and components.

SOMROC LAABORATORIES, INC., Dept. ED-10, Beverly, Mass. Otticess in major etbes: - Chicago - Kansas City
Seattle - San Francisco

ADVERTISING INDEX

 December 1, 1957
A vertise

AGA Div., Elastic Stop Nut Corp Ace Electronics Associates
Advance Stamping
Aerovoz Corp.
Allegheny Ludlum Steel Corp Allied Control Co.
Allison Laboratories
Anaconda Wire \& Cable
Assembly Products, Inc. Automatic Electric Co.

Beattie-Coleman, In Berkeley Div. Beckman Instruments, Inc Blue M Electric Co
Bomac Laboratories, Inc
Booker \& Wallestad, Inc Boonton Electronics Corp. Bourns Laboratories

C \& H Supply Co.
Cambridge Thermionic Corp. Canoga Corp.
Cardinal Instrumentation Corp
Centralab Div. Globe Union Inc
Century Electronics \& Instruments, Inc.
Ceramaseal Co., The
Chance Vought Aircraft, Inc.
Clean Tread Div.
Clevite Ordnance
Clevite Transistor Products
Cohn, Sigmund Mfg. Co., In Collins Electronics Mfg. Co.
Communication Measurements Laboratories
Computer Instruments Corp. Connecticut Hard Rubber Co.. The Cornell Aeronautical Laboratory, Inc. Cornell-Dubilier Electric Corp. Curtiss-Wright Corp.
Dialight Corp.
Dressen-Barnes Corp.
Du Mont, Allen B. Laboratories. Technical E S C Corp.
Echel Valve
Electro-Instruments, Inc
Electro-Motive Mfg. Co
Electron Products, Inc. (PRECO)
Fafnir Bearing Co.
Fairfield Engineering Co
Fenwal Electronics, Inc
Filtors. Inc.
Franklin Electronics, Inc
Frequency Standards
Fustie Corp., The
G-V Controls, Inc.
General Control Co.
General Electric Co., Industry Control Dept. Ceneral Electric Co., Electronics Equipment
Sales General Radio Co.
Genisco, Inc.
Gertsch Products, Inc.
Grant Pulley \& Hardware Corp
Grip Nut Co.
Hartwell Co.
Hassall, John, Inc.
< CIRCLE 290 ON READER-SERVICE CARD
(Use belore Jon. 15th, 1958) ELECTRONIC DESIGN

Company Addrens

For Change of Address: Old Compony Name

Oid Company Addrent

	10	20	30	40	50	60	70	80	90
1	11	21	31	41	51	61	71	81	91
2	12	22	32	42	52	62	72	82	92
3	13	23	33	43	53	63	73	83	93
4	14	24	34	44	54	64	74	84	94
5	15	25	35	45	55	65	75	85	95
6	16	26	36	46	56	66	76	86	96
7	17	27	37	47	57	67	77	87	97
8	18	28	38	48	58	88	78	88	98
9	19	29	39	49	59	69	79	89	99

$\begin{array}{llllllllll}100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190\end{array}$ $\begin{array}{llllllllll}101 & 111 & 121 & 131 & 141 & 151 & 161 & 171 & 181 & 191\end{array}$ $\begin{array}{llllllllll}102 & 112 & 122 & 132 & 142 & 152 & 162 & 172 & 182 & 192\end{array}$ $\begin{array}{llllllllllll}403 & 113 & 123 & 133 & 143 & 153 & 163 & 173 & 183 & 193\end{array}$ $\begin{array}{lllllllllll}104 & 114 & 124 & 134 & 144 & 154 & 164 & 174 & 184 & 194\end{array}$ $\begin{array}{llllllllll}105 & 115 & 125 & 135 & 145 & 155 & 165 & 175 & 185 & 195\end{array}$ $\begin{array}{llllllllll}106 & 116 & 126 & 136 & 146 & 156 & 166 & 176 & 186 & 196\end{array}$ $\begin{array}{lllllllllll}107 & 117 & 127 & 137 & 147 & 157 & 167 & 177 & 187 & 197\end{array}$ $\begin{array}{lllllllllll}108 & 118 & 128 & 138 & 148 & 158 & 168 & 178 & 188 & 198\end{array}$ $\begin{array}{lllllllllll}109 & 119 & 129 & 139 & 149 & 159 & 169 & 179 & 189 & 199\end{array}$ $\begin{array}{llllllllllll}200 & 210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290\end{array}$ $\begin{array}{llllllllll}201 & 211 & 221 & 231 & 241 & 251 & 261 & 271 & 281 & 291\end{array}$ $\begin{array}{lllllllllll}202 & 212 & 222 & 232 & 242 & 252 & 262 & 272 & 282 & 292\end{array}$ $\begin{array}{lllllllllll}203 & 213 & 223 & 233 & 243 & 253 & 263 & 273 & 283 & 293\end{array}$ $\begin{array}{lllllllllllllll}204 & 214 & 224 & 234 & 244 & 254 & 264 & 274 & 284 & 294\end{array}$ $\begin{array}{llllllllll}205 & 215 & 225 & 235 & 245 & 255 & 265 & 275 & 285 & 295\end{array}$ $\begin{array}{lllllllllll}206 & 216 & 226 & 236 & 246 & 256 & 266 & 276 & 286 & 296\end{array}$ $\begin{array}{lllllllllll}207 & 217 & 227 & 237 & 247 & 257 & 267 & 277 & 287 & 297\end{array}$ $\begin{array}{lllllllllll}208 & 218 & 228 & 238 & 248 & 258 & 268 & 278 & 288 & 298\end{array}$ $\begin{array}{lllllllll}209 & 219 & 229 & 239 & 249 & 259 & 269 & 279 & 289 \\ 209\end{array}$
$\begin{array}{llllllllll}300 & 310 & 320 & 330 & 340 & 350 & 360 & 370 & 380 & 390\end{array}$ $\begin{array}{lllllllllllllllllll}301 & 311 & 321 & 331 & 341 & 351 & 361 & 371 & 381 & 391\end{array}$ $\begin{array}{lllllllllll}302 & 312 & 322 & 332 & 342 & 352 & 362 & 372 & 382 & 392\end{array}$ $\begin{array}{lllllllllllllllllll}303 & 313 & 323 & 333 & 343 & 353 & 363 & 373 & 383 & 393\end{array}$
 $\begin{array}{llllllllllllll}305 & 315 & 325 & 335 & 345 & 355 & 365 & 375 & 385 & 395\end{array}$ $\begin{array}{lllllllllll}306 & 316 & 326 & 336 & 346 & 356 & 366 & 376 & 386 & 396\end{array}$ $\begin{array}{lllllllllllllllllllll}307 & 317 & 327 & 337 & 347 & 357 & 367 & 377 & 387 & 397\end{array}$ $\begin{array}{lllllllllll}308 & 318 & 328 & 338 & 348 & 358 & 368 & 378 & 388 & 398\end{array}$ $\begin{array}{lllllllllll}309 & 319 & 329 & 339 & 349 & 359 & 369 & 379 & 389 & 399\end{array}$ $\begin{array}{lllllllllllll}400 & 410 & 420 & 430 & 440 & 450 & 460 & 470 & 480 & 490\end{array}$ $401411421 \quad 431441451461471481491$ $\begin{array}{llllllllll}102 & 412 & 422 & 432 & 442 & 452 & 462 & 472 & 482 & 492\end{array}$ $\begin{array}{lllllllllllll}403 & 413 & 423 & 433 & 443 & 453 & 463 & 473 & 483 & 493\end{array}$
 $405415425435445455 \quad 165475485495$ $\begin{array}{llllllllllllll}406 & 416 & 426 & 436 & 446 & 456 & 466 & 476 & 486 & 496\end{array}$
 $\begin{array}{llllllllll}408 & 418 & 428 & 438 & 448 & 458 & 468 & 478 & 488 & 498\end{array}$ $\begin{array}{llllllllll}409 & 419 & 429 & 439 & 449 & 459 & 469 & 479 & 489 & 499\end{array}$

$500 \quad 510 \quad 520 \quad 530 \quad 540$

 $\begin{array}{llllll}501 & 511 & 521 & 531 & 541\end{array}$ 502512522532542 $\begin{array}{lllll}503 & 513 & 523 & 533 & 543\end{array}$ $\begin{array}{llllll}504 & 514 & 524 & 534 & 544\end{array}$ $505 \quad 515 \quad 525 \quad 535 \quad 545$ 506516526536546 507517527537547 $\begin{array}{llllll}508 & 518 & 528 & 538 & 548\end{array}$ $\begin{array}{llll}509 & 519 & 529 & 539 \\ 549\end{array}$$\square$
(Use before Jon. 15th, 1958) ELECTRONIC DESIGN
\square I do deslgn work Neme and Trile

Compony
Company Address

Fer Change of Addrest: Old Cempany'Name

Ofd Compony Addrass
$\begin{array}{llllllllll} & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 \\ 1 & 11 & 21 & 31 & 41 & 51 & 61 & 71 & 81 & 91 \\ 2 & 12 & 22 & 32 & 42 & 52 & 62 & 72 & 82 & 92 \\ 3 & 13 & 23 & 33 & 43 & 53 & 63 & 73 & 83 & 93 \\ 4 & 14 & 24 & 34 & 44 & 54 & 64 & 74 & 84 & 94 \\ 5 & 15 & 25 & 35 & 45 & 55 & 65 & 75 & 85 & 95 \\ 6 & 16 & 26 & 36 & 46 & 56 & 66 & 76 & 86 & 96 \\ 7 & 17 & 27 & 37 & 47 & 57 & 67 & 77 & 87 & 97 \\ 8 & 18 & 28 & 38 & 48 & 58 & 68 & 78 & 88 & 98 \\ 9 & 19 & 29 & 39 & 49 & 59 & 69 & 79 & 89 & 99\end{array}$
$\begin{array}{lllllllllll}100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190\end{array}$
 $\begin{array}{lllllllllll}102 & 112 & 122 & 132 & 142 & 152 & 162 & 172 & 182 & 192\end{array}$ $\begin{array}{llllllllll}103 & 113 & 123 & 133 & 143 & 153 & 163 & 173 & 183 & 193\end{array}$ $\begin{array}{llllllllll}104 & 114 & 124 & 134 & 144 & 154 & 164 & 174 & 184 & 194\end{array}$ $\begin{array}{llllllllllllllll}105 & 115 & 125 & 135 & 145 & 155 & 165 & 175 & 185 & 195\end{array}$ $\begin{array}{llllllllll}106 & 116 & 126 & 136 & 116 & 156 & 166 & 176 & 186 & 196\end{array}$ $\begin{array}{llllllllll}107 & 117 & 127 & 137 & 147 & 157 & 167 & 177 & 187 & 197\end{array}$ $\begin{array}{llllllllll}108 & 118 & 128 & 138 & 148 & 158 & 168 & 178 & 188 & 198\end{array}$ $\begin{array}{lllllllll}109 & 119 & 129 & 139 & 149 & 159 & 169 & 179 & 189 \\ 199\end{array}$

 $\begin{array}{lllllllllll}202 & 212 & 222 & 232 & 242 & 252 & 262 & 772 & 282 & 292\end{array}$ $\begin{array}{llllllllll}203 & 213 & 223 & 233 & 243 & 253 & 263 & 273 & 283 & 293\end{array}$ $\begin{array}{lllll}204 & 214 & 224 & 234 & 244 \\ 254 & 264 & 274 & 284 & 294\end{array}$ $\begin{array}{llllll}205 & 215 & 225 & 235 & 245 & 255 \\ 265 & 275 & 285 & 295\end{array}$ 206216226236246256266276286296 $\begin{array}{llllll}207 & 217 & 227 & 237 & 247 & 257 \\ 267 & 277 & 287 & 297\end{array}$ $\begin{array}{lllllllll}208 & 218 & 228 & 238 & 248 & 258 & 268 & 278 & 288 \\ 208\end{array}$ $\begin{array}{lllllllllll}209 & 219 & 229 & 239 & 249 & 259 & 269 & 279 & 289 & 299\end{array}$

Cify
300310320330340350360370380390
$300 \quad 310320330340350360370380390$ 301311321331341351361371381391 302312322332362352362372382392
 304314324334344354364374384394 305315325335345355365375385395 306316326336346356366376386396 307317327337347357367377387397
 309319329339348359369379389399 400410420430440450400470480490 $401411421431441451461471 \cdot 481491$ 402412422432442452462472482492

 404414424434444454464474484494 405415425435445455465475485495 406416426436446456466476486496 $4074174274374474574674774874 \times 7$ | 408 | 418 | 428 | 438 |
| :--- | :--- | :--- | :--- | 48458468478488498 409419429439449459469479489499 $\begin{array}{lllll}500 & 510 & 520 & 530 & 540\end{array}$ $\begin{array}{lllll}501 & 511 & 521 & 531 & 541\end{array}$ $\begin{array}{lllll}502 & 512 & 522 & 532 & 542\end{array}$ 503513523533543 $504514 \quad 524534544$ $\begin{array}{lllll}505 & 515 & 525 & 535 & 545\end{array}$ $506 \quad 516 \quad 526536546$ $\begin{array}{llll}507 & 517 & 527 & 537 \\ 547\end{array}$ $\begin{array}{lllll}508 & 518 & 528 & 538 & 548\end{array}$ $\begin{array}{lll}509 & 519 & 529 \\ 539 & 549\end{array}$

first Class Permir No. 725, Sec. 34.9, P. L. \& R., Now York, N. Y.

```
BUSINESS REPLY CARD
```

```
BUSINESS REPLY CARD
```

ELECTRONIC DESIGN
19 East 62nd Street
New York 21, N. Y.

$$
\begin{aligned}
& \text { B US IN ESS REPLY C A R D } \\
& \text { First Class Pormit No. } 725, \text { Soc. 34.9, P. L. \& R., Now York, N. Y. }
\end{aligned}
$$

ELECTRONIC DESIGN
19 East 62nd Street

New York 21, N. Y.

Precision instruments for automatically measuring $D C, A C-D C$. Ohms and DC-AC ratios constructed from basic modules.

For example:

Combine the Universal Power Module

to get an 0.01 Cic Digital Voltmeter

Now catalog shoets give the complete story of this newest advance in digital instrumentation and complete specifications on all modules. Write for your set today.

Now from five basic E-I modules, almost any combination of instruments can be assembled for precision, digital measurement of DC, AC-DC, Ohms and AC-DC Ratios. The basic E-I modules of DC, AC-DC, Ohms and AC-DC Recome obsolete. As needs change, simply regroup or add never become obsolete. As needs change, simply regroup or add
new modules. This new modular concept provides maximum vernew modules. This new modular concept provides maximum ver-
satility and enables equipment to be kept current at minimum cost and engineering.
New engineering specification and other features have been incorporated into the basic modules from the experience of over 2,500 digital instruments in the field. Where applicable, all circuits have been fully transistorized to provide increased reliability, low power consumption, low heat dissipation and to eliminate radio noise and line transients.

ELECTRO
 I NSTRUMENTE
 INO. 3794 Rosocrans, San Diego, California

Higher Power Output... 370 Watts up to 150 Mc Higher Plate Dissipation... 250 Watts up to 500 Mc

Unilaterally interchangeable with the 4X150A and 4X:150D, these superior new RCA tubes feature a new specially designed, high-efficiency radiator which is hard soldered directly to the plate for better heat transfer. The 7034 and 7035 offer substantially higher power output capability at frequencies up to 150 Mc , and reliable operation with higher plate dissipation at frequencies up to 500 Mc .
Small and compact, the RCA-7034/4X150A and the RCA-7035 4X150D are useful as af power amplifiers and modulators, wide-band amplifiers in video applications, linear rf power amplifiers in single-sideband suppressed-carrier equipment, and class C amplifiers or oscillators.
Your RCA Field Representative at the RCA Office nearest you will be glad to give you sales information on these new types. For technical bulletin on RCA-7034/4X150A and RCA-7035/4X150D, write RCA Commercial Engineering, Sectior. L-18-Q-1,Harrison, N. J.

RADIO CORPORATION OF AMERICA

RCA Field Offices
East: HUmboldt 5.3900
744 Brood Streot, Nowark 2, N. J.
Midwest: Whitehall 4-2900-Suite 1181
Merchondise Mart Plaza, Chicago 54, Illinois
West: RAymond 3-8361-6355 E.Wathingion Blud Los Angeles 22, Colifornia

[^0]: The Ratiometer consists of two precision variable transformers, a calibrated quadrature injector, o filter, and a pre-amplifier. Block diagram indicates connections of the various components within the instrument.

[^1]: - Range: . 001 volt to 3 volts
 - Full scale volts: .003, .01, .03, .1, .3, 183
 - Freq. range: 0.2-500 megacycles
 - Accuracy: 5% full scale to 200 mc
 - No zero drift
 - RMS response below 0.1 volt
 - High impedance probe: 2.5 mmf
 - 52 ohm probe: vswr approx. 1.1 to 500 mc
 - Power sensitivity: .02 microwatt
 - Calibration in both db and volts
 - Lighted meter scale

 Model 91B Price: $\$ 375.00$

[^2]:

