
basically they consist of high grade base phenolic sheet with IRC resistance material permanently bonded by carefully controlled heat processing.

Resistance strips can be supplied by IRC with either side or end termination or further processed to form particular shapes for individual requirements.

SITUATIONS WANTED

MAN-Can you use us? IRC Resistance Strips and Concentric Disc Resistors des. pt. or full-time job in electronics, espec. in servomechanical, telemetering \& UHF equipment fields. 10 yrs.' exp. Adaptable to special reqmts. Excellent ref. from electronic engrs. and designers.

International Resistance Co., 401 N. Broad St., Phila. 8, Pa., U.S.A. or phone WAlnut 2-2166 (Philadelphia). Qualifications and photo in Bulletin T-1A.

IRC Resistance Strips are widely used in strain gauges, servo-mechanisms, UHF attenuators, telemetering equipment, in conjunction with wave guides and in similar applications.

IRC Concentric Disc Resistors are punched from standard resistance strips and prepared for use by IRC. They are extensively used aring resistors for line matching stubs, for concentric line terminatior ments, as matching resistors in measuring equipmen © vacuum tube voltmeters and in signal generators, a
resistors are required.

Insulared Composition Resistors High Frequency, High Voltage, High Temperature Resistors - Metal Film and Wire Wound Precision Resistors - Selenium Rectifiers and Diodes Wherewer the Cirait Says
Deposited Carbon Precistors - Low Weposited Carbon Precistors • Low Wattage Wire Wounds - Resistance
Strips and Concentric Discs. Power Strips and Concentric Discs - Power
Resistors - Voltmeter Multipliers - Resistors - Voltmeter Multipliers - Hermetic Sealing Terminals

International resistance company Dept. 336, 401 N. Broad St., Phila. B, Penna.

hIGHLIGHTS OF ISSUE

Diffused Base Transistor

With the development of the diffused base transistor the circuit designer has now at his disposal high frequency devices with alpha cut-off values in the 500 to 1000 mc range. Because of their many commercial and military application possibilities two typical diffused base transistors are discussed in terms of their operating characteristics.

Voltage Limiter 20

Here is a reliable voltage limiter that effectively protects transistorized equipment from overvoltage. It achieves this by a novel voltage limiting technique.

The PNN and NPP 106
These two interesting transistor devices can be assembled from ordinary junction type Iransistors. Soon available commercially, they can eliminate the need of an inverter in a push-pull transistor circuit.

	10	20	30	40	100	110	120	130	140
1	11	21	31	41	101	111	121	131	141
2	12	22	32	42	102	112	122	132	142
3	13	23	33	43	103	113	123	133	143
4	14	24	34	44	104	114	124	134	144
5	15	25	35	45	105	115	125	135	145
6	16	26	36	46	106	116	126	136	146
7	17	27	37	47	107	117	127	137	147
8	18	28	38	48	108	118	128	138	148
9	19	29	39	49	109	119	129	139	149
50	60	70	80	90	150	160	170	180	190
51	61	71	81	91	151	161	171	181	191
52	62	72	82	92	152	162	172	182	192
53	63	73	83	93	153	163	173	183	193
54	64	74	84	94	154	164	174	184	194
55	65	75	85	95	155	165	175	185	195
56	66	76	86	96	156	166	176	186	196
57	67	77	87	97	157	167	177	187	197
58	68	78	88	98	158	168	178	188	198
59	69	79	89	99	159	169	179	189	199

Home Address \qquad City
Zone
5 Soto

DATA REQUEST PROCESS CARD U UP Before Aug. ROth, 19EB
ELECTRONIC DESIGN

	10	20	30	40
1	11	21	31	41
2	12	22	32	42
3	13	23	33	43
4	14	24	34	44
5	15	25	35	45
6	16	26	36	46
7	17	27	37	47
8	18	28	38	48
9	19	29	39	49
50	60	70	80	90
51	61	71	81	91
52	62	72	82	92
53	63	73	83	93
54	64	74	84	94
55	65	75	85	95
56	66	76	86	96
57	67	77	87	97
58	68	78	88	98
59	69	79	89	99

$\begin{array}{llll}100 & 110 & 120 & 130 \\ 140\end{array}$ $101111121 \quad 131141$ $\begin{array}{llllll}102 & 112 & 122 & 132 & 142\end{array}$ $\begin{array}{lllll}103 & 113 & 123 & 133 & 143\end{array}$ $\begin{array}{llllll}104 & 114 & 124 & 134 & 144\end{array}$ $\begin{array}{lllll}105 & 115 & 125 & 135 & 145\end{array}$ 106116126136146 $\begin{array}{llll}107 & 117 & 127 & 137 \\ 147\end{array}$ $\begin{array}{lllll}108 & 118 & 128 & 138 & 148\end{array}$ $\begin{array}{llll}109 & 119 & 129 & 139 \\ 149\end{array}$
$\begin{array}{llll}150 & 160 \quad 170 & 180 & 190\end{array}$ $\begin{array}{llllll}151 & 161 & 171 & 181 & 191\end{array}$ $152 \quad 162 \quad 172 \quad 182 \quad 192$ $\begin{array}{lllllllllll}155 & 165 & 175 & 185 & 195\end{array}$ $\begin{array}{llllll}156 & 166 & 176 & 186 & 196\end{array}$ $\begin{array}{lllll}157 & 167 & 177 & 187 & 197 \\ 158 & 168 & 178 & 188 & 198\end{array}$ $\begin{array}{lllll}159 & 169 & 179 & 189 & 199\end{array}$

200210220230240 201211221231241 $\left|\begin{array}{lllll}300 & 310 & 320 & 330 & 340 \\ 301 & 311 & 321 & 331 & 341\end{array}\right|$ 1 $\begin{array}{lllllllllll}202 & 212 & 222 & 232 & 242 & 302 & 312 & 322 & 332 & 342\end{array}$
 $\begin{array}{lllllllllllllllllllll}204 & 214 & 224 & 234 & 244 & 304 & 314 & 324 & 334 & 344\end{array}$ $\begin{array}{lllllllllllll}205 & 215 & 225 & 235 & 245 & 305 & 315 & 325 & 335 & 345\end{array}$ 206216226236246
 $\begin{array}{lllllllllll}208 & 218 & 228 & 238 & 248 & 308 & 318 & 328 & 338 & 348\end{array}$ $\begin{array}{llllllllll}209 & 219 & 229 & 239 & 249 & 309 & 319 & 329 & 339 & 349\end{array}$
\qquad $\begin{array}{llllllllll}153 & 163 & 173 & 103 & 193 & 252 & 262 & 272 & 282 & 292\end{array}$ $\begin{array}{lllllllllll}153 & 163 & 173 & 183 & 193 & 253 & 263 & 273 & 283 & 293\end{array}$
 $\begin{array}{lllllllllllll}157 & 166 & 176 & 186 & 196 & 256 & 266 & 276 & 286 & 296\end{array}$

200210220230240 201211221231241 202212222232242

 205215225235245305315325335345405415425435445 206216226236246 $\begin{array}{llllllllllllllllllllll}207 & 217 & 227 & 237 & 247 & 307 & 317 & 327 & 337 & 347 & 407 & 417 & 427 & 437 & 447\end{array}$ $\begin{array}{llllllllllllllllllll}208 & 218 & 228 & 238 & 248 & 308 & 318 & 328 & 338 & 348 & 408 & 418 & 428 & 438 & 448\end{array}$ $\begin{array}{llllllllllllll}209 & 219 & 229 & 239 & 249 & 309 & 319 & 329 & 339 & 349 & 409 & 419 & 429 & 439\end{array} 449$

500510520530540 501511521531541 $\begin{array}{lllll}502 & 512 & 522 & 532 & 542\end{array}$ $\begin{array}{llllll}503 & 513 & 523 & 533 & 543\end{array}$ 504514524534544 505515525535545 $\begin{array}{llllll}506 & 516 & 526 & 536 & 546\end{array}$ $\begin{array}{lllll}507 & 517 & 527 & 537 & 547\end{array}$ $\begin{array}{lllll}508 & 518 & 528 & 538 & 548\end{array}$ $509519 \quad 529 \quad 539549$

\section*{550560570500500} 551561571581591 $\begin{array}{lllll}552 & 562 & 572 & 582 & 592\end{array}$ $\begin{array}{llllll}553 & 563 & 573 & 583 & 593\end{array}$ 554564574504594 $555 \quad 565$ 575 505595 $\begin{array}{lllll}556 & 566 & 576 & 506 & 596\end{array}$ $\begin{array}{lllll}556 & 568 & 577 & 587 & 597 \\ 558 & 568 & 571 & 588 & 598\end{array}$ 558568574588590 55956957058959 | 250 | 260 | 270 | 280 | 290 | 350 | 360 | 370 | 380 | 390 | 450 | 460 | 470 | 480 | 490 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 251 | 261 | 271 | 281 | 291 | 351 | 361 | 371 | 381 | 391 | 451 | 461 | 471 | 481 | 491 | 452462472482492 | 352 | 362 | 372 | 382 | 392 | 452 | 462 | 472 | 482 | 492 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 353 | 363 | 373 | 383 | 393 | 453 | 463 | 473 | 483 | 493 | 454464474484494 455465475485495 | 355 | 365 | 375 | 385 | 395 | 455 | 465 | 475 | 485 | 495 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 356 | 366 | 376 | 386 | 396 | 456 | 466 | 476 | 486 | 496 | | 357 | 367 | 377 | 387 | 397 | 457 | 467 | 477 | 487 | 497 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 358 | 368 | 378 | 388 | 398 | 458 | 468 | 478 | 488 | 498 | | 359 | 369 | 379 | 389 | 399 | 459 | 469 | 479 | 489 | 499 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1

\square
Title

SUBSCRIPTION POLICY

ELECTRONIC DESIGN is circulated only to qualified electronic design engineers of U. S. manufacturing companies, industrial consultants, and government agencies. If design for manufacturing is your responsibility, you qualify for subscrip ion without charge provided you send us the following information on your company's letter head: Your name and engineering title, your company's main products, and description of your design duties. The letter must be signed by you per sonally. Any address changes for oid subscribers necessitates restatement of these qualifications. Subscription rate for non qualified subscribers- $\$ 15.00$ for 1 year only.

Hayden Publishing Co., Inc., 830 Third Avenue, New York 22, N.Y

CONTENTS

Editori

Transistor Data Chart

Features 12 Diffused Base Transistors, C. H. Knowles, E. A Temple
16 Tomorrow's Transistors Depend on Better Semiconductor Bulk Properties, A. D. Kurtz, C. Gravel

20 Voltage Limiter Protects Transistors
22 Variations of Transistor Parameters with Temperature, M. J. Maloney

26 Transistor Impedance Nomogram, T. R. Nisbet
30 Guarantee Performance Limits and New Core Protection
32 Error-Free Analog/Digital Converter
106 The PNN and NPP
109 Identifying Scope Displays
110 Low Cost-High Intensity Lighting
111 Elliptical Spot Smothers TV Line Structure 122 What the Russians Are Writing

130 Temperature Stabilization of Transistors
131 Transistor Oscillators
Departments

$\mathbf{3 4}$	New Products	120	Books
96	New Literalure	132	Meetings
112	Report Briefs	134	Careers Section
116	Patents	138	Advertisers' Index

York, N. Y. Copyright 1958 Hayden Publishing Company, Inc. 30,000 copies this issue.

another Potter Finst

The compact '909' Perforated Tape Strip Reader now makes it possible to process information from perforated tape into digital data computer to process ingormation from perforated tape into digital data computer
systems at high speed and low cost. Simple to operate by clerical personnel, the ' 909^{\prime} is completely transistorized, and will give maximum performance with complete reliability.
The " 009 ' is a compact unit, suitable for console or rack mounting. Here are some of the performance features, available for the first time in equipment of this type:

- Character
char/sec.
- Simple In-Line threading
- 3 Millisec starting time
- Stops on STOP Character, (0.2 millisec)
and will read next character after start
- 100×10^{8} operation pinch roll
- Photo Diode Head reads any tape (in
cluding oiled yellow teletype tape)
- Reads 5, 6, 7 or 8 level tape with
sprocket channel
- Ambient temperature up to $125^{\circ} \mathrm{F}$. with 10,000 hour life
Built to meet requarements of MIL-E.
4158 A 4158A

Contact your Poller representative or call
or urite direct for further information.
POTTER INSTRUMENT COMPANY, INC.
Sunnyside Boulevard, Plainview, N. Y.
The mark of
Engineering Quality
OVerbrook 1-3200

Porter has career opporiunities for qualified engineers who
ike a challenge, and the freedom to meer ir.
CIRCLE 2 ON READER-SERVICE CARD

YOUR COMPUTER DESIGNS ARE BETTER YOUR COMPUTERS PERFORM BETTER
 when you draw from this comprehensive

 range of

 range of

 Computer reansitiors

 Computer reansitiors}Raytheon PNP Germanium Fusion-Alloy Computer Transistors are approved for military applications. They provide:

- H_{FE} control at high currents - High voltage ratings
- Fast switching speed - Low saturation resistance
- Temperature range $-65^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

(AAYTHEDN SEMICONDUCTOR DIVISION
Silicon and Germanium Diodes and Yransistors. Silicon Rectifiers
Newton, Mass.............. . 55 Chapel St., Blgelow 4.7500 New York:. 589 Fifth Ave., PLaza 9-3900 Chisage: 9501 Grand Ave., Franklin Park, NAtional 5.6130 Les Angeles: 5236 Santa Monica Blvd., NOrmandy 5-4221

STAFF

Editor
 Edward E. Grazda

Managing Editor J. A. Lippke
Associate Edifors L. D. Shergalis
Assistant Editors T E. Mount
Assistant Editors
T. E. Mount
E. T. Blake
M. M. Rebinson
B. Patrusky
A. E. Takacs

Contributing Editors
S. H. Hubelbank
G. Adashko
E. Brenner

Editorial Assistants
M. S. Buckley

Art Director S. Sussman
Asst. Art Director R. A. Schulze
M. M. Zaum

Production Manager T. V. Sedita
Asst. Prdo. Manager M. P. Hedrick
Prdouction Assistant C. D. Palmer
Business Manager P. L. Canfield
Circulation Manager N. M. Elston
Asst. Circ. Manager A. C. Lovelt
Readar Service E. Hession

CO-PUBLISHERS

T. Richard Gascoigne

James S. Mulholland, Jr

ADVERTISING REPRESENTATIVES

Advertising Sales Manager
Bryce Gray, Jr.

New York: Owen A K 830 Third Avenue Robert W. Gascoigne Plaza 1.5530 Blair McClenachan Richard Parker James P. Quinn Charles C. Wadsworth

664 N Michigan Ave. SUperior 7-8054

Los Angeles:
5720 Wilshire Blvd. WEbster 8-3831 John V. Quillman London, W.1: Michael M. Horne 24 Baker Street

England

Decade of Transistor Progress

Alexander E. Takacs
Assistant Editor

PROGRESS over the past ten years in the transistor field has been feverish and exciting. The transistor chart in this issue which lists 619 units, indicates the growth of the transistor field. Our first transistor chart in 1953 listed 43 available types. From 1948, the year of the invention of the transistor, to 1958 when transistors provide the radio voice in our satellites, a few of the potentialities of the transistor realized were:

- Diffused base transistors now operate in the 1000 mc range;
- Rise, storage, and fall times of switching transistors in the order of 10 millimicrosec;
- Operating junction temperature over 100 C with silicon transistors;
- Germanium power transistors available with power gains of 35 db and collector currents of 13 amp .
In this report the highlights of transistor developments are discussed. We also take a look at the current and future status of transistors.

Areas of Application

Audio. One common type of junction transistors produced is the diffused alloy type. The procedure is basically melting indium dots into a wafer of germanium. However, diffused alloy transistors have their limitations by being only suited for medium power and audio frequency work. Because of the high capacitance between collector and base, the device does not perform effectively at high frequencies.
High Frequencies. The rate grown junction transistor is an improvement, being more stable at higher frequencies. The manner of construction is essentially different from the diffused alloy type. From a melt which has been doped with small amounts of antimony and gallium, a germanium bar is grown. The characteristics of the bar change from p type to n type according to temperature and rate of growing. This technique of fabrication has the advantage of avoiding non-uniform junctions which occur in ordinary function-growing methods.
Over the past year the production of diffused base ransistors increased greatly as manufacturers raced o exploit its advantages. By diffusing gaseous impuri-

Fig. 1. Frequency vs power dissipation curves of various types of transistors.
ties into a semiconductor an incredibly small base width in the order of $1.5 \times 10^{-1} \mathrm{~cm}$ is produced. The change in resistivity, from high conductivity near the emitter to almost intrinsic near the collector, reduces the transit time of the holes in a pnp type. The 1000 mc range could then be reached, which is 10 to 50 times higher than using alloy and grown junction types. It became suited for computer and switching circuits.

Diffused silicon types were also produced. A typical value for silicon base width is $3.8 \times 10^{-4} \mathrm{~cm}$. Though they operate at a lower frequency, they are useful for high temperature applications. Silicon diffused base
transistor can also be used as an electronic switch because of its high impedance when non-conducting Power. The upper limit for germanium power transistors was 10 to 15 w several years ago, with maximum operating junction temperatures of 80 C . Today transistors are available as high as 55 w at 95 C maximum junction temperature. However, there is still a need for transistors operating at higher voltages.

Silicon power transistors proved useful because of their high ambient temperature range. With each passing year higher temperature materials associated with the fabrication of silicon transistors are developed.

Maferial

Characteristic

Dielectric Constant 11 mcl
Power Factor $(1 \mathrm{mc})$
Loss Factor (1 mc)
Water Absorption (\%)
Tensile Strength (p.s.i. $\times 10^{\%}$)
Flexural Strength (p.s.i. $\times 10^{\prime \prime}$)
Compressive Strength (p.s.i. $\times 10^{3}$)
Dielectric Strength (valts/mil)
Hardness, Moh's scale
Modulus of Elasticity (p.s.i. $\times 10^{6}$)
Specific Gravity
Linear Thermal Expansion
$20-100^{\circ} \mathrm{C}$ (in./in. $/{ }^{\circ} \mathrm{C} \times 10^{-6}$)
T_{E} Value $\left({ }^{\circ} \mathrm{C}\right) *$
${ }^{*} T_{E}$ is that temperature at which the volume resistivity reaches 1 Meg.

How Raytheon R-95 High-Alumina Ceramic can save you money-do a better job

Consider well the unusual properties present in Raytheon R-95 High. Alumina Ceramic. If your needs are for a less specialized material, you may find a satisfactory performer at lower cost.
However, when you require a material with remarkably high resistance to high temperature, shock and vibration; high dielectric strength and high electrical resistance at all temperatures; extreme hardness; high mechanical strength and positive sealing capability-then you will surely want to be familiar with the ratings of Raytheon's R-95. Proper application of this superior material assures continuing design and assembly economy, particularly where ceramic seals are a factor.
Ceramic parts manufactured from Raytheon R-95 High Alumina are available, either alone or as hermetic ceramic-to-metal assemblies, in accordance with your specifications. The assemblies can be soft or hard soldered into your production in your own plant.
Send sketches or drawings outlining dimensions and tolerances, together with operational conditions. We will be pleased to supply information and help on any of your ceramic needs.
Write for complete specification sheet and your copy of Ceramics in Electronic Design, comprehensive questions and answers on the growing role of ceramics in modern design. No cost or obligation, of course.

Fig. 2. Noise figure vs frequency curve.

The power gain in a transistor is a result of the rela ively small amount of current drawn by the basemitter circuit in producing a current change in the -mitter-collect circuit. The current change produced n the collector circuit is developed at high impedance. 1 typical high power audio transistor is the Sylvania ype 2 N173 which provides a power gain of 34 db and maximum collector current of 13 amp .
The amount of power gain in a transistor amplifier, ike that in a tube amplifier, depends on the circuit sonfiguration. The maximum gain, 40 to 50 db , is obtained with the input signal on the base and the output taken from the collector. Somewhat less gain, 30 db , is obtained when the input signal is introduced into the emitter and the output taken from the collector; and even less gain, about 20 db , with the input signal into the base and the output taken from the emitter.
Frequency Response. Limitations in the frequency response of transistors have been overcome by technological breakthroughs such as diffused base techniques. The principal parameters affecting frequency response are r_{b}^{\prime}, and $g_{/}$and $C_{b c}$ and $C_{c b}$. Often preliminary design is based on the assumption (frequently the assumption is invalid) that the base spreading resistance r_{b}^{\prime} may be neglected. If the input source impedance to the transistor is less than the reactance of the input capacitance, $C_{b r}$, then, for r_{b} negligible, a relatively uniform response may be obtained. Since the value of $C_{b e}$ for a transistor depends on the uniformity of current flow across the base and on the thickness of the base, an increase in the allowable source impedance can be obtained only by the selection of a transistor having a smaller value of $C_{b e}$. This capacitance may be small as $100 \mu \mathrm{Hf}$ or possibly less, and as large as (0. $1 \mu \mathrm{f}$.

Frequency of operation is plotted in Fig. 1 as a function of power dissipation for various types of transistors presently available. Values of alpha cutoff frequencies are used. For oscillator applications, higher values of frequency are possible, while lower values would apply for broadband applications. Areas under the curves show the continuing trend of transistor device development toward the latest types of structures with wider ranges of operating characteristics.

As the power rating of a transistor is increased through enlarging the active areas of the emitter and collector, a corresponding increase in the value of $C_{b e}$ s inevitable, reducing the operating frequency range. The use of diffusion techniques to produce a graded

HUGHES...
pioneer and largest producer of storage tubes

Type 6498 tube displays successive transient writings until intentionally erased. Careful analysis and comparison of wave forms now becomes possible without photography.

> THIS IS A DEMONSTRATION OF THE HUGHES TYPOTRON VISUAL CHARACTER DISPLAY STORAGE TUBE. NUMBERS SMMBOLS AND CHARACTERS BOTH UPPER AND LOWER CASE MAY BE WRITTEN AT A RATE OF 25000 LETTERS PER SECOND.

The TONOTRON*
Type 7033 Magnetic Deflection tube at left presents a complete spectrum of gray shades for use in weather radar and PPI information. Tonotron tubes also available in 3 and 5 -inch Electrostatic versions, ideally suited for " B " scan projections and complex radar systems.
Currently being widely used in both military and commercial systems," these cathode-ray tubes have established outstanding records of reliability. New storage tubes are under development for an ever-increasing range of applications. Across the country, Hughes engineers are available to discuss the applicability of these tubes to your problems. For further information please write : HUGHES PRODUCTS, Electron Tubes, International Airport Station, Los Angeles 45, California, or contact our local offices in Newark, Chicago or Los Angeles.

Creating a new world with ELECTRONICS
HUGHES PRODUCTS

C1958. H.A.
Trademark, H. A.C.
CIRCLE 5 ON READER-SERVICE CARD

Radio Receptor

hcal petti-sel
 *high current density
 selenium rectifiers

Life expectancy of 100,000 hours

800 ma D.C., 15,000 volts

High voltage, low current for smoke precipitation. 12 containers required.

50,000 amps, 9 volts D.C.

High current, low voltage, fan cooled. For electroplating power supply.

makes them first choice for these applications

The engineers who specified these Radio Receptor rectifiers know the outstanding record of similar stacks in Germany and throughout the world. They also know they can install RRco. Petti-Sel rectifiers once and forget them, confident they'll deliver up to 100,000 hours of trouble-free performance!

Produced by the improved new vacuum process developed by Siemens of West Germany, and now manufactured exclusively in the U. S. by Radio Receptor, Petti-Sel rectifiers are available in an even wider range of current and voltage ratings than indicated above. We'll gladly send you information regarding your rectification problems. For prompt attention, write today to Section ED-7R.

base or drift transistor extends the frequency rar ge for any given power device. Typical limiting frequencies for standard type transistors are indicated in Table I.
Noise Figure. The noise figure of present-day tran istors for the range of frequencies for which therr aal noise is the predominant component may be as str ill as two to twelve db , depending on the processing and the circuit conditions under which the transistor is used. A typical noise figure vs frequency curve is shown in Fig. 2. The noise developed by the transistur depends on both the circuit and on the currents and voltages applied to it.
The deterioration of noise figure at a low frequency is ustually attributed to semiconductor moise and surface recombination noise. The frequency $f_{n 1}$ at which the low frequency deterioration sets in varies from tramsistor to transistor, and may be as high as several megacycles. The deterioration above the switch limit frequency $f_{n 2}$ is caused primarily by the non-uniformity in the diffusion of the minority carriers through the base region.
Impedance Levels. The input and output impedances for the three circuit configurations differ substantially. The actual values depend on the characteristics of the transistor and also the values of the associated circuit components. The range of typical values is shown in Table 2.

Other Transistor Types

Field Effect Transistor. Typical junction type transistors depend upon both minority and majority carriers for operation. The unipolar field effect transistor, however, involves only the flow of one carrier, either holes or electrons. It is constructed by forming pn junctions on a bar of germanium. The bulk resistance is modulated by the application of an electric field. A change in the n-type material-depleted of carriers, is produced by a voltage change across the pn junction.

In the May 14 issue of Electronic Design a field effect transistor was described using an electrolytesemiconductor interface. Between the two ends of the semiconductor, oppositely biased with respect to an clectrolyte, a neutral point exists which shifts back and forth with changing biasing grid voltage. The resist ance changed accordingly and a current flowed follow ing the driving frequency. This experimental amplifiel operated at 1000 cps with 15 db gain.

However, the field effect transistor has not been investigated to the extent that typical junction transistors were. A question mark still hangs over the future role of the field effect transistor.
Intrinsic Barrier Transistor. The distinguishing char acteristic of an pnip intrinsic barrier transistor is a layer of nearly intrinsic material next to the collector This layer which in some respects compares to the grid of an electron tube, serves several functions. First close control of the carriers is permitted. Second, separating the input from the output allows the device to operate at higher voltages. Last, lower collector ca-

Table 1. Limiting Transistor Frequencies

Type	Approx. $f_{\text {max }}$
Junction transistors High Power Low Power	100 kc to 10 mc 1 kc to 20 kc
Thin-base transistors	10 mc to 75 mc
Surface barrier transistors	10 mc to 200 mc
Double-base transistor	200 mc
Diffused base transistor Low Power High Power	50 mc to 1000 mc 20 kc to 10 mc

mcitance is achieved. The device can operate with utoff frequency of over 300 mc .
Tetrode. The tetrode is basically an npn grown-junctim transistor with a double base connection. A potuntial drop is set up across the base. Electron flow is confined to a small region near to one base control, and a lower effective base resistivity results because 0) the shorter path. This permits the device to be desgned with a higher cutoff frequency.
Point-Contact. Because of the advantages of junction trpe transistors, the point-contact transistor has almost been reduced to historical importance only. It was the fist transistor to be developed. The distinctions are lower power capabilities, more noisy and lower collector impedance. It has been used mainly for switchung applications.
Thyristor. The thyristor is a transistor that acts like a thyratron. It can be riggered "on" and "off" with low power and has a collector voltage drop of only about 10.5 v during conduction. It is almost a perfect switch having a collector current rise and fall time of less than $0.1 \mu \mathrm{sec}$. The speed of switching is limited by the Thyristor design and the input and the output capacities. Since the high frequency response is good the rise and fall times below one tenth $\mu \mathrm{sec}$ are easy to (1)tain. Ring counters, shift registers and similar type devices may be made by using the Thyristor collector current triggering characteristics.
Silicon Controlled Rectifier. This semiconductor witch combines both transistor and rectifier features for high power switching at μ sec speeds. This device operates at low power levels. Ratios of load power to control power of 100,000 to 1 have been obtained. The future of silicon controlled rectifier is promising. We expect to see many manufacturers producing this type device in the near future. A few of the devices it can (place are thyratrons, relays and typical rectifiers. It can replace the power transistor in servo motor amplifiers.

Transistor Art Today

Transistors are superior to electron tubes because f their long life, rugged construction and smaller size. But they were initially inferior in other ways. The inherent noise limited minimum signals. Internal caracitance limited maximum frequency. Internal heat-

MOTOROLA NOW offers HIGH QUALITY COMPUTER TRANSISTORS

CIRCIE 7 ON READER-SERVICE CARD

Independent external phasing, before or offer mounting:
precision potentiometers meeting A.I.A. electrical and mechanical specifications. Five sizes in wide range of resistance values and output functions- $7 / 6^{\prime \prime}, 116^{\prime \prime}, 15 / 8^{\prime \prime}$, $2^{\prime \prime}$ and $3^{\prime \prime}$ diameters. Available as single or gang assemblies. Various mountings and bearings available.

SEND US YOUR REQUIREMENTS!

CLAROSTAT MFG. CO., INC. - DOVER, NEW HAMPSHIRE, U.S. A. In Canada: Canadian Marconi Co., Itd., Toronto 17. Onf.
ing and distortion limited maximum power. Large tem perature coofficient limited ambient temperature range. However in recent years some of these limitations were overcome. Diffusion techniques shorter transit times of the carriers and higher frequency ranges were reached. The use of silicon permitted high ambient temperature range.

Today the transistor does not perform as many funs tions as the electron tube. But there is little doubt that in the future years transistor device research will maki deep inroads on the earlier successes of the electron tube. This will be dependent on technological breakthroughs not only in device research but investigation of the bulk and surface properties of semiconductor materials.

There are many semiconductor materials other than silicon and germanium. Yet only these two have been exploited, germanium to a greater extent than silicon. There is a constant search for other suitable semiconductor materials that would make the transistor a more versatile device. A promising family of semiconducting material is the intermetallic semiconductor group They have characteristics similar to germanium and silicon. In this group the indium phosphide and anti monide compounds are most promising.

Acknowledgment

Appreciation for contributing valuable transistor data to this issue is expressed to K. C. Pullen, Bal listic Research Lab., Aberdeen Proving Ground, Md

CIRCUITS WANTED

The Bureau of Ships recently awarded a contract to Transistor Applications, Inc. to prepare a "Selected Semiconductor Circuits Handbook."

The Boston firm will invite companies, gov ernment organizations and individuals to submit reliable transistor and diode circuits and their descriptions for possible inclusion in the handbook. Among the many circuits to be covered will be amplifiers, oscillators, mixers and converters, switches, and power supplies

All circuits will be reviewed by a committee of technical authorities, and all contributors will receive full credit.
The handbook, it is hoped, will encourage better engineering practice by transistor cir cuit engineers, in designing circuits for mili tary electronic equipment.
We, at Electronic Design, hope this project will lead to some standardization in semiconductor circuitry. Our readers can help by sending their contributions to the Research Director at Transistor Applications, Inc., 50 Broad St., Boston, Mass.

VITROTEX, magnified approximately 400X. The lower laver is the copper wire the upper layer, the glass insulation. The glass fiber-enas appear as smal! circles in the photograph. The sections between fibers are occupied by bonding varnish. Notice the fibers are close together, well distributed.

VITROTEX-D. ubers in fused Dacron. Notice the even distribution which provides unitorm insulation value -no !arge "islands" where fibers are missing

Mek. U.S. I'at. Off., Dupont

Let these Anaconda photomicrographs help you select high-temperature Magnet Wire with glass-type insulation

These two longitudinal sections of Anaconda magnet wires have been blown up 400 times- to show you the difference between Anaconda Vitrotex and Vitrotex-D (both $130^{\circ} \mathrm{C}$-AIEE Class B).

Maximum high-temperature protection in glass-type insulation depends on the proportion of the glass fibers present. Maximum resistance to winding damage, however, can call for reducing the number of glass fibers and adding a "damage reducing" agent such as Dacron.
This is essentially the difference between Vitrotex and Vitrotex-D.
Anaconda provides both-in complete size ranges, in rounds, squares and rectangulars. You, the designer, must weigh the need for insulation and heat-resistance against those properties which affect windability

Vitrotex, as the left-hand photograph shows, consists of all glass tibers-therefore, where winding damage is controllable, Vitrotex offers you greater insulation value.
Sometimes, however, the risk of winding damage cannot be avoided. For these situations. Anaconda offers Vitrotex-D. The

Dacron acts as a bonding agent-holds the libers in place and protects them during winding.
The pictures above show more than the difference in glassfiber content. They show how Anaconda engineering and manufacturing care provide uniform fiber distribution in both types how each has been designed to do a different job-and do it well!

Ask the Man from Anaconda for additional details on (1) Vitrotex, (2) Vitrotex-D, (3) Silotex ${ }^{+}\left(180^{\circ} \mathrm{C}\right.$-AIEE Class H) and (4) Silotex-Dt. See "Anaconda" in your phone book, in most principal cities, or write: Anaconda Wire \& Cable Company, 25 Broadway, New York 4, N. Y.
\dagger Reg. U. S. Put. Off.
SEE THE
MAN FROM
ANACONDA ${ }^{\circ}$ for MAGNET WIRE

ANATHERM $155^{\circ} \mathrm{C}$ (AIEE Class FI

PLAIN ENAMEL $\operatorname{CS} 5^{n} \mathrm{C}$ IAIEE Closs A

FORMVAR $105^{\circ} \mathrm{C}$ IAIEE Closs

ANALAC $105^{\circ} \mathrm{C}$ IAIEE Class

MAGNET WIRE DATA SHEET from Anaconda Wire \& Cable Co.

IMPORTANT FACTS FOR YOUR WORK...

... about Anaconda Vitrotex

$130^{\circ} \mathrm{C}$ (AlEE Class B) Magnet Wire

high temperature overload protection. Even under severe overload conditions, Vitrotex provides protection. This exceptional high-temperature resistance is Vitrotex's outstanding advantage-and can be put to use even in totally enclosed applications.
reduction in frame size. Because of the higher temperature stability, excellent space factor (compared with cotton), and the high heat conductivity of the glass fibers. Vitrotex-wound motors and generators can be produced in smaller frame sizes for equal rating or with increased ratings in comparable size lrames.

TECHNICAL PROPERTIES

mechanical properties. Vitrotex has the necessary abrasionresistance for most winding applications. It is suitable wherever controllable winding is possible. Vitrotex possesses remarkable space factor, especially when considering its ability to withstand high operating temperatures. Single Vitrotex has a space factor better than single cotton of equal gage. Double Vitrotex has a space factor better than double cotton of equal gage. Vitrotex has good "mesh" factor-windings expand no more than other insulations so that special precautions are unnecessary in design of windings.
electrical properties. Vitrotex is offered as a $130^{\circ} \mathrm{C}$ (AIEE (lass B) magnet wire. Its high-grade organic bonding varnish plus the glass. give Vitrotex high electrical qualities. Vitrotex will retain sufficiently high dielectric strength to operate satislactorily at temperatures above the destruction point of organic fiber insulation. At high relative humidity, Vitrotex retains its dielectric strength to a marked degree.
chemical properties. Vitrotex is compatible with most Class B bonding varnishes and materials. Windings with Vitrotex can be baked after impregnation at temperatures that would destroy ordinary insulations. Windings' can be impregnated with commercial varnishes or other compounds by standard methods. While the glass fibers themselves will not absorb liquids or compounds, the interspaces of the insulation will take up and retain the impregnant. Allows great latitude in design. THERMAL PROPERTIES. Vitrotex is a $130^{\circ} \mathrm{C}$ (AIEE Class B) magnet wire by definition. However, the precise temperature at which Vitrotex wire can be operated will depend on the design of the apparatus. For example. Vitrotex is excellent for use in dry-type transformers under Group 2 NEMA classificition for operation at $150^{\circ} \mathrm{C}$ hottest spot. Under severe overload conditions where all bond and varnish are destroyed, the inorganic glass remains to protect against shorting.

...about Anaconda Vitrotex-D $130^{\circ} \mathrm{C}$ (AIEE Class B) Magnet Wire

 windability. Vitrotex-D is a high-temperature AIEE Class B magnet wire with special abrasion-resistance properties. Where a controllable winding operation is not possible (making the use of all glass insulation impractical), Vitrotex-D is recommended.PRECAUTION: Dacron is a polyester. Theretore the use of this wire is limited to ventilated equipment.

TECHNICAL PROPERTIES

mechanical properties. Vitrotex-D exhibits superior abrasionresistance. It is ideally suited to those situations where a high-temperature Class B magnet wire is needed, but where the winding operations from the standpoint of abrasion. small bending radii or forming stresses are too severe to permit the use of all glass insulated wire. Use of Vitrotex-D on rectangulars results in thinner insulation and thus improves space factor.
electrical properties. As in the case of Vitrotex, Vitrotex-D is offered as a $130^{\circ} \mathrm{C}$ (AIEE Class B) magnet wire. The same high-grade, organic bonding varnish is used in Vitrotex-D as in Vitrotex - giving this wire similar high electrical properties. chemical properties. The chemical properties of Vitrotex-D are similar to those of Vitrotex except, since Dacron is a polyester, care should be taken in the selection of the proper varnish.
thermal properties. Vitrotex-D shows the same general thermal properties as Vitrotex-with excellent aging and heatresistance. Since less glass is present in the covering. less protection is provided under severe overload conditions.

SEE THE MAN FROM ANACONDA FOR MAGNET WIRE

Anaconda Wire \& Cable Company, 25 Broadway, New York 4, N. Y.

EDITORIAL

Look for and Try for the Unexpected

Recognition of the 10th Anniversary of Transistors has produced so many words on the subject that this editor is reluctant to add more. No doubt, most every generalization and point of view worthwhile saying has been said. But in addition to being the Tenth birthday of transistors, it's our occasion for publishing the Sixth Annual Transistor Data Chart. We cannot forego saying a few words about it. Tedious as the compilation was, we enthuse and marvel over the picture of the industry it gives us. True there are no prices, no statement of the volume of business for the various types. Yet, every transistor listed represents a saleable item and every type will be sold. There are 619 transistors tabulated, the total different types listed are 535. The total number of transistors on the market by all USA manufacturers increased 38 per cent. The total number of different types increased 32 per cent. The difference is several manufacturers now make the same type. We begin to see a slight trend to settle on a few "standard" types.

That every manufacturer's transistor is not special is becoming more evident by the replacement or substitution guides put out by the manufacturers. Manufacturer A does have a type that can be used in place of Manufacturer B's device. We would have liked to publish such cross-reference guides but space would not permit. As a matter of fact, the tabulation has grown so that we have deferred until later issues many of our "how to apply" transistor design articles. We just didn't have the necessary space.

One can hardly appraise transistor developments without making comparison with tubes. We know practically everyone is investigating conversion from tubes to transistors. Despite this activity we suspect transistors are not being exploited as fully as they might. The reason: the designer has the wrong frame of reference. He approaches the problem "Can I use a transistor here more profitably than a tube?" This approach assumes tubes are the natural component. Transistors offer enough so that they ought to be the first consideration. The question should be "Is a tube better than a transistor in this application?" New concepts in thinking are needed.
We are certain the future of transistors holds surprises that are not even hinted at today. Walter H. Brattain, speaking of research in the June Proceedings of the IRE, said " while a well thought of experiment may always give good results, nevertheless the really important experiment is the one that leads to new and unxpected results regardless of the original reason or expectation that inspired it." Can not this alertness to the new and unusual give us new insights into circuit design? We think so.
\& CIRCLE 425 ON READER-SERVICE CARD

NEW precision variable RESISTOR with no sliding wiper

FEATURES:

- Complete Hermetic Seal
- Infinite Resolution
- High Temperature Operation
- Long Life
- Low Torque
- Exceptionally High Accuracy
- Extremely Low Noise

A patented compression contact eliminates the wear or friction caused by usual wiper contacts. A precious metal capsule contact provides dependable long life operation.

Details will be sent upon request.
 The deposited metal film resistance element is encased and hermetically sealed. The ultimate in craftsmanship is employed in the manufacture to produce a potentiometer unparalleled for performance. This new concept of design makes possible super reliability under the most severe environmental conditions such as those encountered in airborne, missile and satellite applications.

TECHNOLOGY INSTRUMENT CORP.

555 Main St.
Acton, Mass. No. Hollywood, Calif.
COlonial 3-7711
CIRCLE 9 ON READER-SERVICE CARD

Fig. 1. Minute electrode structure of a diffused base transistor.

1000 me range reached with Diffused Base Transistors

C. H. Knowles and E. A. Temple*

HIGH FREQUENCY characteristics, rugged construction and relative temperature insensitivity were the main reasons why diffused base transistors were used in the Vanguard and Explorer satellites. They have been designed to operate in the 1000 mc range and maintain good characteristics up to about 100 C . A diffused base germanium transistor, shown in Fig. 1, now serves many functions previously reserved because of temperature considerations for a silicon transistor. In this article high and low frequency characteristics are discussed, along with the power rating and fabrication techniques. Important parameters of two typical diffused base transistors are listed in Table ${ }^{1}$.

High Frequency Characteristics

The most common figure of merit for high frequency transistors is the maximum frequency of oscillation 1:

$$
\begin{equation*}
f_{\max }=\sqrt{\frac{f_{a}}{8 \pi r_{b}^{\prime} C_{e}}} \tag{1}
\end{equation*}
$$

where f_{x} is the frequency at which the grounded base short circuit current gain is 3 db down, r^{\prime} is the high frequency base resistance, and C_{0} is the collector depletion layer capacitance.

Because of its high value of around $1000 \mathrm{mc} f \alpha$ cannot be measured conveniently for the 2 N 509 2N5:37 series. Instead, the common emitter high
frequency short circuit current gain is measured. This is easier to measure and it is related to the common base characteristics in a calculable way. Fig. 2 shows a typical plot of common emitter short circuit current gain, $h_{f e}$, versus frequency. By measuring $h_{f e}$ at a low frequency, say 100 mc , $f_{o e}$ can be extrapolated. Since $f_{o e}$ is about threefourths $f a$ in this type of transistor, we have:

$$
\begin{equation*}
f_{a}=h_{f e}(\text { at } 100 m c) \times 100 m c \times 4 / 3 \tag{2}
\end{equation*}
$$

Using the data of Table 1 in Eqs. 1 and 2, a typical 2 N 537 is found to have an $f_{\max }$ of 1000 mc . The amplitude of $h_{f e}$ at 100 mc is 6.3 . This value rather than the corresponding 16 db in Table 1 is used in Eq. 2.

The high frequency characteristics of the 2N509 and the 2 N 537 are relatively insensitive to temperature. For example, $h_{f e}$ at 100 mc falls less than 1 db from -200 C to room temperature and about 1 db more from room temperature to 100 C . Ohmic base resistance rises about 20% from - 200 C to room temperature and somewhat less from room temperature to 100 C. Collector barrier capacitance has a very low temperature coefficient as in all germanium and silicon transistors.

Variations of high frequency parameters with bias voltage and bias current are similar to those in other transistors. For example, the collector barrier capacitance varies approximately as the
inverse square root of collector barrier voltage as in alloy transistors. This variation shows clearly that the collector barrier lies primarily in the p-type collector body.

At $100 \mathrm{mc} h_{f e}$ increases with increasing emitter current. In this and the following figures parameters for the 2 N 509 and 2 N 537 are normalized to their respective values at $V_{\Gamma}=10 \mathrm{ma}, I_{E}=-10$ ma at room temperature. This variation may be understood from the dependence of $h_{f e}$ on emitter current. This parameter is given at high frequencies by
$h_{f e} \simeq \frac{2 \pi f_{o e}}{2 \pi f}=\frac{1}{2 \pi f \tau_{o e}} \simeq \frac{1}{2 \pi f\left(\tau_{e}+\tau_{b}+\tau_{c}+\tau_{x / 2}\right)}$
Here τ_{e} is the emitter barrier charging time constant $C_{0} \times k T / q I_{e}, \tau b$ is the carrier transit time across the base, τ_{c} is the collector barrier charging time constant, $-r_{c}^{\prime} C_{c}$, and τ_{x} is the carrier transit time through the collector barrier.

Rough calculations show that these times for a 2 N 509 biased at 10 ma and -10 v are:

$$
\begin{aligned}
\tau_{e} & \approx 0.5 \times 10^{-10} \mathrm{sec} \\
\tau_{b} & \approx 1.2 \times 10^{-10} \\
\tau_{c} & \approx 0.6 \times 10^{-10}
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
\tau_{x / 2} & \approx 0.2 .5 \times 10^{-10} \\
. & \tau_{\nu e} \approx 2.60 \times 10^{-10}
\end{aligned}
$$
\]

$$
f_{o e} \approx 615 \mathrm{mc}
$$

The first of these terms, τ_{e}, accounts for a large part of the decrease in $h_{f e}$ as emitter current is decreased.
Increase of collector voltage, while decreasing collector capacitance, increases $h_{f e}$ and ohmic base resistance somewhat. The increase of $h_{f e}$ results from a decrease in the base transit time associated with thinning of the base layer at higher voltages and from a reduction of τ_{c}. Increase of ohmic base resistance is caused by thinning of the base layer.

Low Frequency Characteristics

The collector reverse current, $I_{\text {co }}$, varies with temperature and voltage in the conventional fashion. It increases about 8 per cent per degree C, reaching 100μ at 100 C . Breakdown voltages average around 40 v and $I_{c 0}$ has essentially the low voltage value at 20 v .

Low frequency common base h-parameters change with temperature as shown in Fig. 3. The current gain defect $1+h_{f b}$ decreases steadily with increasing temperature over the entire range. Although the basic physical cause of this variation is not understood, it is consistent with other observations on this parameter. The short circuit input impedance $h_{i b}$ is nearly independent of temperature. It contains a term $k T / q I_{e}$ which increases linearly with temperature and which apparently dominates at high temperatures.

Other variations are traceable to changes in $1+h_{f b}$ and in r^{\prime}. The open circuit voltage feedback ratio $h_{r b}$ changes relatively little with temperature because its two major components have temperature coefficients of opposite sign. The space charge layer widening factor $k T / q w$ $\delta \omega / \delta V_{c}$ increases linearly with temperature. Since the collector conductance $h_{o b}$ decreases quite rapidly as temperature increases, its contribution to $h_{r b}, h_{o b} r^{\prime}$, also decreases with rising temperature. The decrease of $h_{o b}$ with increasing temperature results in part from the decrease of $1+h_{f b}$ with increasing temperature and in part from a decrease of avalanche multiplication as temperature is increased.

In both the 2 N 509 and the $2 \mathrm{~N} 537,1+h_{f b}$ decreases steadily as emitter current is increased. This effect is connected to the temperature dependence of $1+h_{f b}$ and is not yet fully explained. The decrease of $h_{t b}$ with increase of emitter current results primarily from a reduction in the term $k T / q I_{e}$ as in other transistors and in small part from the reduction of $1+h_{f b}$ at high I_{b}. The rise of $h_{o b}$ with emitter current is that ordinarily found in junction triodes. This rise ac-

TABLE 1. Diffused Base Transistor Parameters

Bias I_{E}, V_{C} ma. v.	2N509		2N537	
	Median	Spec. Limit	Median	Spec. Limif
(10,-10)	16	>12	12	>10
(10,-10)	70	<80		<30
(0,-10)	1.2	<1.5	1.2	<1.5
(0.-20)	1.0	<5	1.0	< 5
(10,-10)	. 02	$<.04$. 07	$<.10$
(10,-10)	5	<14	5	<10
(10,-10)	9.0	<20	9.0	<20
(10,-10)	1.6×10^{-3}	$<3 \times 10^{-3}$	1.2×10^{-3}	$<3 \times 10^{-3}$

Fig. 2. $h_{f e}$ vs frequency.

Fig. 3. How low frequency common base h-parameters change with temperature.

Fig. 4. Cutaway view of a germanium pnp diffused base transistor.

counts for the rapid increase of $h_{r b}$ with emitter current, since $h_{n b} r^{\prime}{ }_{b}$ is the dominant term in $h_{r b}$.

Increase of collector voltage causes a monotonic decrease of $1+\boldsymbol{h}_{f b}$. At low voltages, the change of base layer thickness is largely responsible, but from about 12 v upward the increase of avalanche multiplication is responsible. The short circuit input impedance $h_{i b}$ quite naturally reflects the decrease of $1+h_{f b}$. The open circuit output admittance $h_{o b}$ shows the effects of avalanche multiplication even at 8 to 10 v . The increase of $h_{o b} r^{\prime}$ is, in turn, largely responsible for the rapid increase of $h_{r b}$ at high voltages.

Power Rating

The 2N509 and the 2N537 can dissipate several hundred milliwatts when clamped to a cooling plate at room temperature. Power ratings have not been completely established and the values given here are conservative.

The tentative maximum junction temperature is 100 C . An increase to about 125 C is expected in a few months. B. Reich of the Evans Signal Laboratory has measured the thermal resistance from junction to can as 30 C per watt. M. A. Logan has measured 26 C per watt. Both workers used the $I_{\text {ro }}$ method for determining the rise. As shown in Fig. 4 the hottest spot in the transistor
is the collector junction immediately across the base from the emitter. Straightforward thermal calculations indicate that the temperature rise at this hot spot is probably four to five times greater than the rise determined by the $I_{c o}$ method. The $I_{\text {ro }}$ method inherently averages temperature over the entire region in which the reverse current is generated.

Siructure and Manufacture

A cut-away view of the active region of a germanium pnp diffused base transistor ${ }^{2}$ is shown in Fig. 4. As this sketch suggests, the production steps are: preparation of thin slabs (0.003 in .) of 1 ohm centimeter p-type germanium; diffusion of an n-type impurity layer 0.04 mils deep with an impurity concentration of about 10^{17} at the surface; evaporation and alloying of the aluminum emitter stripe; evaporation and alloying of the gold base contact; mounting of the wafer onto a header; masking with wax and chemical etching of the mesa; bonding of the gold wires to the emitter and base stripes; sealing it into the can.

This structure is inherently rugged. Its most fragile parts are the 0.4 mil gold wires. However, the wire lengths are such that centrifuge acceleration of more than $20,000 \mathrm{~g}$ may be applied in any direction without damage.

The most important structural features of the semiconductor crystals used in the 2N509 and the 2N537 are the very thin, heavily doped base layers and the location of the collector barrier layer largely on the collector side of the base-tocollector $\mathrm{p}-\mathrm{n}$ transition. These features are essential to obtaining the short carrier transit times, low ohmic base resistances, low collector capacitances, and reasonable breakdown voltages required for good high frequency transistor performance. Transit times through the very thin base layers of these transistors are shortened significantly by the gradient of impurities inherently produced by diffusion ${ }^{3,4,5}$. This gradient sets up an electric field in the base which speeds minority carriers through the base from emitter to collector.

The techniques of diffusion of impurities into semiconductors and the evaporation of electrodes onto semiconductors are highly controllable. They produce large numbers of transistors per square inch of semiconductor material used. Diffused base transistors are therefore very manufacturable.
We can summarize the advantages obtained from the thin base layers and proper location of the collector barrier in diffused base transistors and from the diffusion and evaporation-alloying

Fig. 5. Video amplifier circuit using 2N509 diffused base transistors.

Fig. 6. Oscillator circuit employing the 2N537.

Table 2

100 mc	250 MC	450 MC
c_{1} 3-12 UUF	2-7 UUF	<iuuf
C_{2} (APPROX) 2	STRAY	Stray
C_{3} STRAY	STRAY	Stray
Cs 15-90 UuF	7-45	8-13 UUF
$L_{1} \begin{cases}\text { DIA } & 1 / 2 \\ \text { LENGTM } & 1 / 2 \\ \text { WURE } & 16 \\ \text { TURNS } & 8\end{cases}$	$\begin{aligned} & 3 / 8 \\ & 14 \\ & 14 \end{aligned}$	$\left.\begin{array}{l}1 / 4 \\ 1 / 2 \\ 16 \\ 2\end{array}\right\}$ COIL HAS $1 / 2^{\circ}$ LEADS MOUNTING IS CRITICAL
APPROX POWER OUT 90 MW	60 mw	35 mw

techniques as:

- Very high $f a(500-1500 \mathrm{mc}$);
- Low collector capacitance (0.3-1.5 mmf);
- Low base resistance (10-100 ohm);
- Relatively high voltage operation (in these types $B V_{B C}-40-45 \mathrm{v}$);
- Good manufacturability.

Typical Applications

The 2N509 is designed for moderate power video and uhf amplifier service. Fig. 5 shows a 50 mc video amplifier circuit designed by R. P. Abraham using 2N509's. This amplifier, designed t) couple an fm discriminator to a 75 ohm line, has 35 db of current gain over its 50 mc band. The amplifier has 34 db of feedback. Reduction of the input resistor from 3000 ohm to 75 ohm "ould yield 35 db of stable power gain out to 50 mc with feedback of 28 db .
Median characteristics and specification limits of the 2N509 and the 2N537 are shown in Table I. Note that the principal differences are the high alpha in the 2 N 509 and the low ohmic base resistance $r^{\prime}{ }_{b}$ in the 2N537.

The 2 N 537 is designed as a power oscillator for the vhf and low uhf range. Fig. 6 shows an oscillator circuit for the 2N537 designed by R. L. Lowell. The output powers shown in the Table 2 are for bias powers of 150 to 200 mw . Somewhat higher efficiencies are obtained at larger emitter currents. R. L. Lowell has designed a 1000 mc oscillator which radiates tens of milliwatts using selected 2N537's. This oscillator is to be displayed at the World Fair in Brussels this summer.

Summary

Two types of transistors, capable of operating in the 1000 mc range are now beyond the devel(pment stage and into production. These transistors are the 2N509, suitable for amplifier service, and the 2N537, intended for oscillator service.

The two transistors are intended for several hundred milliwatts of internal power dissipation, and operate in the hundreds of me with high efficiency (10 to 45 per cent). These transistors maintain good characteristics up to about 100 C , hence will serve many functions previously reserved for silicon transistors.
R. L. Pritchard, Talk References
R. L. Pritchard, Talk at Winter Meeting AIEE, N.Y., Jan. 1954.
2. C. A. Lee, Bell System Technical Journal, Jan. 1956. 3. Zur theorie des Diffusions und des Drift Transistors, H. Kromer, arch. Elekt, Ubertragang, vol. 8, pp. 223228 and pp. 363-369, May, Aug. 1954.

1. The Drift Transistor, RCA Lab., Transistors 1, Princeton, N.J., pp. 208, 214, 1956.
2. The Dependence of Transistor Parameters on the Distriloutions of Base Layer Resistivity, J. L. Noll and J. M. Ross, Proc. IRE, vol. 44, Jan. 1956, pp. 72 to 78.

TH SAMPLING SWITCH - PERFORMANCE!

AN IMPORTANT ADDITION TO THE FAMILY OF

 SMALLER • LIGHTER • BETTER COMPONENTSTo the world of dramatically smaller components, ASCOP now adds the MINIPLEXER ${ }^{\circledR}$ - subminiature samnow adds the MINIPLEXER
pling switch that does a full-size job more reliably. The MINIPLEXER is the ideal companion to the transistor, the diode and the etched circuit for solving today's critical spacesaving, weightsaving and powersaving problems.
This tiny time-division multiplexing device contains 60 contacts, providing 30 channels of break-before-make operation. It weighs 2.37 ounces, is $3 / 4$ of an inch long and $11 / 4$ inches in diameter. Yet, it will give longer service-free life and operate under more extreme environmental conditions than the much heavier, bigger switches it replaces.

The secret of the MINIPLEXER lies in exclusive ASCOP DURAPOINT® ${ }^{\text {® }}$ contact pins, developed through extensive metallurgical research. The pin material combines metallic
hardness and low friction coefficient, permitting truly miniature design with low peripheral wiper speeds and longer life.

The MINIPLEXER is one of a family of miniaturized ASCOP DURAPOINT switches that will meet the ever widening range of stringent design requirements for your data and control systems. This family of miniatures also includes complete pulse telemetering commutator packages. For further information, contact any of the ASCOP offices listed below or write for Bulletin No. EM-100

ENGINEERING DATA \qquad ASCOP MINIPLEXER Service-Free Life \qquad 500 Hrs . at 30 RPS. Ambient Temperatures \qquad $+125^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$ Vibration \qquad Up to 2000 cps at 25 G

APPLIED SCIENCE CORPORATION OF PRINCETON

ELECTRO-MECHANICAL DIVISION general offices: princeton, new jersey
district offices:

[^1]A. D. Kurtz, C. Gravel
Minneapolis-Honeywell Regulator Co. Boston 35, Mass.

DEVELOPMENT of solid state devices depends upon the purity and perfection of semiconductor crystals. In designing the ideal transistor, crystal characteristics are often in contrariety. In the case of leakage current problems at high temperatures, a large energy gap is required. The reverse is true if greater mobility of holes and electrons is required. Therefore better semiconductor materials must be made available having wider ranges of energy gap, mobility, conductivity, and lifetime. This article after discussing these electrical properties, describes how the need for a higher degree
of crystal perfection is leading to improved devices and fabrication techniques. The magnitudes of the bulk properties (energy gap, mobility, conductivity, and lifetime) are listed in Table 1, along with the significant concentration of impurity.

The Need for Higher Energy Gaps

In germanium, with an energy gap of 0.7 electron-volt, the effects of leakage current are very serious at temperatures above 80 C . For many applications higher impedance pn junctions would be desirable at room temperature.

Silicon with an energy gap of 1.1 ev gives exceptionally high impedance junctions at room temperature and operates satisfactorily even above 200 C. Higher energy gaps are available in intermetallic compounds such as gallium arsenide (1.45 ev), indium phosphide (1.25 ev), and silicon carbide (3 ev). These materials will make possible the operation of semiconducting devices at temperatures in excess of 500 C .

Mobilities of Germanium and Silicon

For high frequency devices high mobility of holes or electrons is required. Germanium is

Table 1 Magnitudes of Important Bulk Properties

Property	Desirable Characteristics	Significant Impurity Concentration (atom fraction)
Energy Gap	0.7 electron-volt	10^{-7}
Mobility	$1000 \mathrm{~cm}^{2} / \mathrm{v} \mathrm{sec}$	10^{-6}
Conductivity	Controlled magnitude, type, and geometry.	10^{-8}
Lifetime	$10^{-5} \mathrm{sec}$	10^{-10}
Surface Properties	Stability	
Crystal Perfection	Highly perfect	10^{-3} dislocations/cm ${ }^{2}$

Semi conductor	Energy Gap (electron volts)	Electron Mobility $\left(\mathrm{cm}^{2} /\right.$ volt sec.)
Ge $\begin{aligned} & \mathrm{Ge} \\ & \mathrm{Si} \end{aligned}$	$\begin{aligned} & 0.68 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 3800 \\ & 1700 \end{aligned}$
Ge-Si Alloys	0.8-1.0	~ 3000
GaAs	1.45	~ 4000
InP	1.25	~ 3400
GaSb	0.77	~ 4000
InAs	0.35	$\sim 23,000$
InSb	0.18	77,000
CulnSe ${ }_{2}$	0.9	~ 1000

superior in this respect to silicon since the mobility of charge carriers is about twice as great. I However, certain of the intermetallic compounds vith small energy gaps have extremely high mobilities, as much as a factor of 30 higher than that of germanium. Devices employing these compounds will be discussed subsequently. Table 2 lists the room temperature energy gaps and electron mobilities for germanium, silicon, and some of the intermetallic compounds.

Effects of Crystal Imperfections
Most semiconductor devices require adjacent rugions of opposite conductive types (pn, np junctions), whose widths must be very accurately controlled. In high frequency transistors these regions may be as thin as 0.00005 in . In order to control junction geometry the semiconductor material must also have a high degree of crystal perfection including crystallographic orientation, low dislocation densities, and the absence of such gross imperfections as lineage and slip. Dislocations may be thought of as mistakes made in the ordinarily perfect arrangement of atoms in a crystal lattice. They arise from either accidents in the crystal growing process or the application of plastic deformation to the crystal. Since the dislocations are stress centers they will dissolve during alloying faster than the more perfect regions of lattice and thus make it difficult to control junction formation. In addition they tend to lower the junction breakdown voltage, increase reverse currents and limit the transfer of carriers. Thus the control and avoidance of these imperfections is fundamental to the production of semiconductor material suitable for device fabrication.

Lifetime Degrading Impurities

The lifetime, τ, of an injected carrier is the time constant describing the rate at which carriers of one type recombine with carriers of the opposite type. Preserving minority carrier lifetime places the most stringent requirements on purity and crystal perfection. Impurities such as nickel and copper in germanium and gold and iron in silicon of one part in ten billion are sufficient to markedly decrease the lifetime. Since the low level grounded emitter gain of a transistor, β, is given by:

$$
\beta=\frac{2 D \tau}{W_{B}^{2}}
$$

where W_{B} is the base width of the transistor, the gain may be affected by the presence or absence of lifetime degrading impurities. Similarly dislocation densities must be less than 10^{4} per cm^{2} to insure high lifetime, and high gain as well is ease of fabrication.
(Continued on page 18)
ready-made answers . . .
HEINEMANN CIRCUIT BREAKERS CAN SOLVE MANY CONTROL AND PROTECTION PROBLEMS

It may well be that one of the special Heinemann circuit breakers shown at right can do double service for you. By combining control and protective functions in a single component, you may be able to reduce substantially equipment wiring complexity and overall production costs.

In addition, you can specify Heinemann circuit breakers in any standard, odd or fractional rating you require from 0.010 to 100 amperes. And there's a choice of time-delay responses, too.
For custom service in equipmentmatched protection and control, look to Heinemann. Many of industry's leaders have done so . . . profitably.

Complete information is avail able in the handy "Circuit Breaker Engineering Guide," Bulletin 201. Send for a copy
 CONSTRUCTION Over-current sensing and cirwith interruption are in series Breaker may also serve as the equipment power switch.
 Provides a separate control circuit through the coil terminals; this circuit may be at a higher or lower voltage. Can be supplied with current-sensing seilsing

DUAL-RATING CONSTRUCTION Protects equipment designed to operate on either of iwo input voltages. Breaker has overload coil.
 CONSTRUCTION Permits remote tripping through appropriate circuir control or safely demices. control or safely devices.
 Permits control of two circuits, with tripping in response 10 overloads in the main circuit only. Coil may be shunted with a fixed or variable resistor to raise trip current rating.

AUXILIARY CONTACTS
Permits control of remole in. dicalors, alarms, elc. by means of a minialure snapaction switch mechanically contacts.

FisINTMMANN

ELECTRIC COMPANY

156 Plum Street, Trenton 2, N. J.

VICTOR DIGIT-MATIC PRINTERS

Proved by over 16,000,000 printings without repairing, adjusting or cleaning!

The adding machine in the Digit-Matic has been tested with over $16,000,000$ continuous printings, with no failure, no service other than periodic oiling. Forty years of experience in producing 1,500,000 adding machines as well as precision instruments such as the Norden Bombsight - has given Victor Adding Machine Co. outstanding qualifications for producing rugged and reliable digital printers.

CHECK THESE 4 VICTOR ADVANTAGES

Reliability: Examine the rugged construction of a Victor machine. Each part is conservatively designed to provide extended life and reliability enearing surfaces heat treated, cyanide hard parts cadmium plated to prevent rusting.
Immediate Service: Factory-trained servicemen (and parts) are on call in more than 725 cities coast to coast.
Flexibility: At least 500,000 different combinations available, with speeds up to 33 characters tions available, with speeds up to 33 characters per second. With ictor Digit-Matics you have tors plus an almost infinite number of other variations ranging from electrical noise filters to upside-down printing
Fast Delivery, Low Price: Because of Victor's continuous high volume of adding machine production, we can ship almost any quantity of Digit30 days. Victor Digit-Matics, from only $\$ 425.00$ are the value buy in the digital printer field.

VICTOR PARALLEL ENTRY DIGIT-MATIC PRINTER
All digits 1 through 9 of each column equipped with solenoids. Digit and print command solenoids may be simultaneousy energize. Pecends Avale 0 seconds, accum entry capacity COIL DATA

Voltage Resistance, ohms

Digit solenoid	17.6	53.0	700.	125.
+ Print solenoid	17.6	89.0	375.	125.
- Print solenoid	17.6	53.0	375.	125.
Minimum on time, seconds	. 020	. 020	. 015	. 025
Maximum on lime, seconds	. 050	. 050	. 035	. 050

A few popular model variations:-columnar spacing right side of machine accumulating and left side list ing data identification: Non-Add printing; Non printing adding; MIL-I-17623 Electrical Motor Noise elimination; Induction Motors; Manual Keys over the solenoids; "digit key depressed" switch and all kinds of alphabetic and special types.

Write today! Victor's electronics-trained staff will gladly help you solve any digital printing or calculating problem
Write for technical m
VICTOR ADDING MACHINE CO. 3900 N. Rockwell Street, Chicago 18, III.

New Devices and Techniques

Processes. The diffusion of impurities from the vapor phase into the solid semiconductor pronises an extremely reliable and controllable prccess for fabricating closely spaced, uniform junctions. The need for such junctions is one of the limitations on the frequency response of junction transistors. Units have been made by this technique which amplify and oscillate at frequencies well over 1000 mc with controlled impurity layers as thin as 0.00003 in . In addition a given gradient of impurities in the diffused layers may be obtained by the proper choice of both diffusion temperatures and impurity vapor pressures.
Zone-refining has made it possible to prepare germanium and silicon with no more than one part per billion of electrically-active impurities In zone-refining a molten zone is swept through an ingot of the semiconductor material, sweeping impurities to one end of the bar, taking ad vantage of the fact that the solubility of the impurities in the liquid is greater than in the solid material.

Since copper and nickel diffuse very rapidly into germanium, and gold and iron diffuse rapidly into silicon at the temperatures necessary for the fabrication of devices, efficient methods for removing these undesirable impurities must be found. Various techniques such as getting materials on the semiconductor surfaces, forming a metal semiconductor eutectic which leaches out the impurity, and annealing to precipitate the impurity, are being investigated.

The requirement for a higher degree of crystal perfection has led to improvements in the crystal growing process. Crystals of germanium and silicon can now be produced almost free from lattice defects.
Materials. The intermetallic compounds promise new and interesting devices. These may be divided into three classes: higher temperature and frequency transistor-like devices; infrared, ultraviolet and visible light sensing devices; and magnetic sensing devices. The first class of devices depends on the very large energy gap of certain of the intermetallics. For instance, use of silicon carbide as a semiconductor should permit transistor operation above 500 C. Furthermore the large carrier mobilities of the intermetallics makes possible the much higher attainment of frequency response than now possible (as large as a factor of ten greater than that of germanium).
Sensitivity to radiation of a particular wave length is also possible with these compounds because of their wide variation of energy gap. When these effects are better understood we have available photo-sensing devices set for fixed frequencies or bands of frequencies.

The electrical properties of these materials Iso show very large changes in the presence of nagnetic fields. In indium antimonide very large magneto-resistance effects including resistance (hanges of as much as $20: 1$ are obtainable with convenient magnetic fields. This property can le used to make variable resistors without sliding contacts, such resistors being electronically controlled for use in servo-systems or current tabilizers.
New Devices. A whole family of devices stem from the use of the Hall effect. Devices for measuring magnetic field strength, an electric compass, a high sensitivity magneto-meter, clip on current ammeters for de systems, multiplying clements in analog computers, a de Hall amplifier are a few of the possibilities. The attractireness of indium antimonide for these devices arises from its high power efficiency which is some 300 times higher than for germanium. The sharp conductivity change of indium antimonide when subjected to a magnetic field may also be adapted to a relay with no moving parts which can be switched from on to off with the application of a magnetic field.

Since work on the intermetallic semiconductors was started relatively recently their purity and crystal perfection does not equal that available for germanium and silicon and the carrier mobilities are still limited by impurities and imperfections. Further work is required to control their conductivity sufficiently for transistor applications.
The advent of new techniques and devices must be examined against a background of the economics concerned. Semiconductor progress in the beginning encountered great difficulties in manufacture with yields of usable devices as low as 15 to 20 per cent of starts. Much of this difficulty has been overcome with standard devices in mass production operations and a continual effort is directed towards increasing yields and in reclaiming as much waste material as possible. Silicon has proved to be more difficult to process than germanium because of its extreme activity and high melting point. Uncontrolled impurity variations from lot to lot of the raw material are reflected in lower device yields and in higher unit costs. Silicon cannot be purified by ordinary zone melting techniques as can germanium, because the impurity element boron possesses a distribution coefficient in silicon of nearly unity and does not segregate on zone melting. In addition, quartz, the only crucible material found practical for melting silicon, contains sufficient boron so that repeated recrystallisation in quartz results in the contamination of silicon by the quartz. Before silicon is competitive with germanium, the industry must reduce the cost of the basic material by overcoming these technological difficulties.

TUNG-SOL POWER TRANSISTORS IMPROVED THREE WAYS BY:

NEW

Tung-Sol's new true cold-weld seal represents a major advance in transistor technology. An exclusive Tung-Sol development, cold-weld sealing increases TO-3 outline package efficiency and brings designers a threefold bonus in over-all transistor performance.
Improved thermal qualities. The cold-weld process produces a hermetic, copper-to-copper seal and makes possible a 100% copper transistor with thermal properties superior to previous high power types.
Improved reliability. Cold-weld encapsulation eliminates heat damage, "splash", and heat-caused moisture that can impair transistor performance.

Longer efficient life. Even through temperature fluctuations that cause "breathing", the cold-weld seal stays vacuum-tight, moisture-proof-result of actual integration of the copper molecules during sealing.
Tung-Sol power switches with the new cold-weld seal withstand the most rigid combination of tests given any transistor-the 100 psi "bomb" immersion test and the critically sensitive Mass Spectrometer leak test. Further, they meet all military environmental requirements. For full data on the improved Tung-Sol types ... to fill any transistor need, contact: Semiconductor Division, Tung-Sol Electric Inc., Newark 4, New Jersey.
these tung-sol high power (to-3 OUTINe)
TRANSISTORS FEATURE THE NEW, COID-WELD SEAL
IMPROVED SPECIFICATIONS OF TUNG-SOL
COLD-WELDED HIGH POWER TRANSISTORS.

This outstanding production story is another good example of why so many manufacturers now say to Fansteel:

. . . "determine the right metal for our job

. . . make the metal
. . . and fabricate the parts to our specifications."
Actual dollar and cents savings over the last $4 \frac{1}{2}$ years has proved to this customer that turning the entire job over to Fansteel was a profitable move. Over 310,000 parts, machined to customer's rigid specifications, were delivered as needed and on time to meet production schedules...rejects and scrap were no longer a costly problem...breakage in subsequent broaching operations was practically eliminated... and customer's machines and personnel were available for other work.

To the customer, all of these benefits added up to the lowest possible FINAL COST-PER-PIECE.

INVESTIGATE the possibilities of similar savings in the production of some of your component parts. Get the combined consulting services of Fansteel metallurgists and our production engineers -the men who know how to make the metal as well as machine and fabricate it.
This story is sypical of the news and tech. nical comment contained in our publication, fansteel metallurgy. Write, if you would like to receive a free copy' regularly.

15 OPERATIONS

1. Cut off rod
2. Centorless ground
3. Heot treat
4. 100% inspection-material and roundness
5. Center hole drilled
6. One end faced and chamfered
7. Bored to finish dimension
8. Other and is faced
9. Shoulders furned
10. Degreased and inspected for dimensions
11. Roll threaded to a class 3 fit
12. Faced to final length
13. Slot ground
14. Deburred
15. Final inspoction for concen-
tricity, all dimensions and finish
Tolerances: $\pm .0005$ Concentric with thread
pitch dia. within 002 T T.,R. finish: 16 Micro Inches

Fig. 2. Simplified functional diagram.

TRANSISTORIZED equipment is cleverly protected by this voltage limiter that both instantaneously clamps the dc voltage and removes input power from the power source. In many transistor applications, the briefest overvoltage causes the transistor to start over-heating and possibly race away to destruction. This can be very costly where a large amount of semiconductor equipment is undergoing life or heat tests. The voltage limiter described here has been developed to protect transistors from damaging overvoltages, particularly those overvoltages of a transient nature.

Effective Voltage Limiting

Model 66 voltage limiter manufactured ly Electronic Measurement Co., Inc., combines the best features of typical voltage limiters. Upon overvoltage, the
dc voltage is instantaneously clamped and while the clamp is holding the voltage, input power is quickly removed from the power source.
Operation of the voltage limiter shown in Fig. 1 is straightforward, requiring no special procedures. A glance at Fig. 2 is sufficient to determine the required connections. The cut-off point may be set to any value between 0 and 50 v by means of a continuously variable front panel control.
A semiconductor provides a clamp with an adjustable operating level. The return path for the clamp current is through the winding of relay K1. If the power supply voltage E_{0} exceeds the operating level at which the clamp is set, clamp current operates relay K1 which in turn short circuits the dc line and disconnects ac power. During the time required for the relay to operate,

Fig. 1. Model 66 voltage limiter.

Voltage Limiter

Protects Transistors

he clamp continues passing current, holding \boldsymbol{E}_{0} within very narrow limits of its initial value.

Operating Characteristics

The curves in Fig. 3 show the behavior (f the clamp at two different operating levels, namely 10 and 50 v . With the clamp set at 50 v , trip-out occurs at less than 50.8 v . The 50.8 v point corresponds to 130 ma . This is the minimum current required for relay trip-out. If the power supply is capable of furnishing more than 130 ma during the surge, the limiter will absorb the additional current. However, there will be a slight increment of voltage due to the additional current. For example, as shown in the graph, an available current of 1 amp during clamp operation will produce a voltage of about 1.1 v above the nominal setting. At 2 amp the rise is still very low, being about 1.5 \checkmark above nominal. These slight increments are well below the level of the voltage spikes generally responsible for damage.
The voltage increment plotted against limiter current for the $10 \cdot$ curve is approximately the same as for the 50 v curve. Although this represents somewhat of an increase percentagewise over the 50 v curve, it is still a small increase compared to the nature of most damaging transients. Additional curves for other voltages can be extrapolated.
Limiting occurs at the very beginning of an overvoltage, however, as indicated in the graph, the relay will not operate until the clamp current reaches or exceeds 130 ma . Therefore, the power supply should be capable of furnishing at least 130 ma , the minimum required for relay trip-out.

For more information, turn to the Reader-Service card and circle 15.

Fig. 3. Voltage increase above nominal limiter setting vs available current at time of limiter trip out.

Improved Metal-To-Glass Alloy Holds Seals Tight Against Hydrogen at 250 Pounds Pressure

Development of Clare ${ }^{+}$Mercury-Wetted Contact Relays aided by special gas-free Driver-Harris \#152 Alloy

For all kinds of high-speed switching machines and devices which demand accuracy and dependability of the highest order, this new Clare Type HG Relay offers a combination of high speed, high current-and-voltage capacity with remarkably uniform long-life performance. It has a conservative life expectancy of more than a billion operations when operated within its ratings and can be driven at speeds up to 100 operations per second.

In this cutaway view ($23 / 3 \mathrm{x}$) a magnetic switch, hermetically sealed in a high-pressure hydrogen filled glass capsule, and a coil, are enclosed in a steel vacuum tube type envelope. The switch forms the core of the coil which provides the magnetomotive force for operating it.

The glass enclosed switch is very compact and small ($5 / 16^{\prime \prime}$ diameter $\times 2^{\prime \prime}$ long) yet its handling capacities of 5 amperes and 500 volts maximum are truly remarkable.
These features of its construction make this possible. In the switch segment, the platinum contact surfaces are wetted and protected from electrical and mechanical erosion with mercury by means of a capillary connection to a mercury reservoir below the contacts. In addition, the high hydrogen pressure enables the contact gap to withstand a high voltage gradient without breakdown.

Keeping the gas from leaking posed a production problem. The specifications for the lead wires at the top of the switch and the tubular vacuum stem at the bottom were stiff. 1. Gas-tight seal against hydrogen at 250 PSI. This was difficult. 2. Perfect match to thermal expansion characteristics of the glass. 3. Good ferromagnetic properties. 4. Exceptional surface bonding properties since the permissible maximum 5 ampere 500 volt limits are dictated rather by factors relating to heating of the metal-to-glass seal than the current handling capacities of the contacts.

Driver-Harris was called upon to produce such an alloy and succeeded in developing a special gas-free nickel-iron alloy No. 152 which meets all these requirements to the complete satisfaction of Clare Engineers.

Do your engineering and product development plans hinge upon a special alloy - why not discuss it with DriverHarris. We have, since 1899 , produced 132 special purpose alloys in just this fashion - in answer to a particular problem and extraordinary specifications. We have a special bulletin on Sealing Alloys if you care to have one. Your inquiry is awaited,
tC. P. Clare \& Co., Chicago, III.
-T.M. Reg. U.S. Pat. Of.

DRIVER-HARRIS* COMPANY

HARRISON, NEW JERSEY - BRANCHES: Chicago, Detroit, Cleveland, Loüisville
Distributor: ancus-CAMPBELL, INC., Los Angeles, San francisco - In Canada: The B. GREENING WIRE COMPANY, Ltd., Hamilton, Ontario
MAKERS OF THE MOST COMPLETE LINE OF ALLOYS FOR THE ELECTRICAL, ELECTRONIC, AND HEAT-TREATING INDUSTRIES
CIRCLE 16 ON READER-SERVICE CARD

ENGINEERS AND PHYSICISTS: WRIIUS for illustrated brochure TALENT GROWS AT EMERSON ELECTRIC

CIRCLE 550 ON READER-SERVICE CARD

Variations
 Of

Transistor Parameters With
Temperature
W. J. Maloney

General Electric Co. Semiconductor Products Dept. Syracuse, N. Y.

TRANSISTOR parameters variations small changes in temperature may be great than suspected by the designer. The magnitud of variation of important transistor paramete are shown in Figs. 2-6. Ambient temperatu for testing range from 25 to 45 C (77 to 113 I The following parameters were considered:

- Grounded emitter power gain, G_{e}, at 455 kc
- Reverse voltage feedback, $h_{r b}$, at 1 m grounded base
- Collector current with base open, $I_{\text {cE }}$
- DC beta, $h_{F E}$, with a constant base current The parameters investigated are those direct affecting small signal radio frequency amplifier All tests were performed at $V_{c}=5 \mathrm{v}$ and $I_{E}=$ ma except where other conditions are noted. Th power gain was measured in the circuit show in Fig. 1. The gain figures are in decibels an represent the circuit gain rather than the trat sistor gain. [Ozalid copies of other test circuit for various parameters may be obtained by wri ing to the editors.]
In addition to the difficult application problen classification of the units presents an associate (Continued on page 2

W. J. Maloney joined the Sem conductor Division of GE thr years ago. Prior to obtaining h degree in electrical engineerin from Lehigh University, served six years in the navy ${ }^{2}$ electronic technician. His mal area of effort is the evaluation of specification on products ant specific applications encompas ing instrumentation, parametril variations, and product stabilitit as they affect both the produc and its application. The authori shown demonstrating the impo tance of transistors to the yount er members of his family.

Fig. 1. Test circuit used to measure the effects of temperature on transistor parameters. 100 Ge , npn, rate grown transistors, types 2N168A, 2N292, 2N169 and 2N193, were tested. Figs. 2-6 show the changes in specific transistor parameters with temperature, assuming regligible effects of circuit parameters.

Fig. 2. The curves show the minimum, average and maximum changes in power gain, G_{e}, caused by increasing ambient transistor temperature from 25 to 35 C .

Fig. 3. Change in G_{e} caused by increasing ambient temperature from 25 to 45 C .

TRY

THIS
 NUMBER
 TQ-2C/24VD

(At right) Advance TQ type is
 our smallest telephone relay: Length, $11 / \mu^{\prime \prime}$; Width, $1 / /^{\prime \prime}$;

Helght, from $11 / s^{\prime \prime}$ to $111 / a^{\prime \prime}$.
SPECIFICATIONS

Coil resistance, 2 C: From 40 Ohms at 6 volts, DC, to 12,000 Ohms at 110 volts, DC
Coil resistance, BC : From 10 Ohms at 6 volts, DC, to 6C: From 10 Ohms at 6 vol.
5,000 Ohms at 110 volts, DC.
Nominal power required: 2C, 1.0 watts nominal (appr.); Contact rating: 3 amps resistive, 1 amp inductive at 115 volts AC or 26.5 DC .
Contact arrangement: A valable in form A, B, C, D, or
All Advance Telephone Relays feature small size, short armature travel, and highly efficlent magnetic structure. in addition to the type TQ "Miniature" telephone relay (illustrated), which has a contact rating of 3 amps resistive, Advance also offers the TF "Midget" the TD "Small' and the TS "Sensitive" All with he T "

Available From Leading Distributors

WRITE FOR COMPLETE DETAILS
You'll want all \& data sheets for your file: TQ, TF, TD \& TS.

CIRCLE 17 ON READER-SERVICE CARD

CHEMISEAL* NYLON performer

Design to use Chemiseal Nylon (du Pont Zytel) for those mechanical and electromechanical parts that must be strong, durable, wear resistant. It has the highest compressive strength, is the most rigid, has the best resistance to heat, abrasion, chemicals, solvents, oils and greases. And it is the lowest priced of the standard nylon compositions. Coupled with U.S.G.'s Injection Molding "know-how"Chemiseal Nylon assures you the lowest cost, precision parts, in volume production. And we specialize in handling designs difficult to mold.
U.S.G. Nylon service goes all the way-offering not only injection molding of parts but also a complete stock of bubble-free Nylon rod, standard and pressure tubing, tape and extruded shapes. In addition, extensive, specialized facilities for high speed automatic machining of parts from stock to your specifications.
For prompl service, contact one of The Garlock Packing Company's 30 sales offices and warehouses throughout the U.S. and Canada, or write

United
States
asket Plastics Division of GAREOCKI
\qquad

Fig. 4. Change in reverse voltage feedback ratio, $h_{r b}$, with increase in temperature,

Fig. 5. Change in $I_{\text {CEO }}$ for changes in transistor ambient temperature.

Fig. 6. Change in $h_{F_{E}}$ with increase in temperature.
problem where the value of any parameter will change with ambient temperature. This can be associated either with a manufacturer's production and quality control testing or with a customer's incoming inspection testing. The temperature of 25 to 45 C are typical ambient values encountered in production testing.

Parameters

Power gain, \boldsymbol{G}_{e}, decreases with an increase in ambient temperature, as shown in Figs. 2 and 3. The magnitude of decrease is dependent on the original reading at room temperature and the umperature rise.
The change in reverse voltage feedback, $h_{r b}$, increases at a nearly linear rate with respect to the 25 C reading. See Fig. 4. The slope is dependent upon the new ambient temperature. The collector capacity increased. The change was essentially a constant equal to $0.25 \mu \mu \mathrm{f}$ increase when the ambient was raised to 35 C and 0.4 $\mu \mu f$ increase for an ambient of 45 C. Alpha cutoff frequency decreased. Again the change was constant amounting to 0.3 mc change when ambient temperature was raised to 35 C and 0.5 mc change for 45 C .
The breakdown voltage with the base open is constant with temperature. However the inherent current level increases with temperature. Fig. 5 shown a plot of $I_{\text {CEO }}$, the current level, at 5 v for various temperature conditions. Obviously $I_{\text {CEO }}$ increases with temperature and when testing $V_{C E O}$ or $V_{C E R}$ to a specified current level, the test may indicate a decrease in $V_{C E O}$ or $V_{C E R}$ depending on the current level. The results will be influenced by $I_{c o}, h_{F B}$ and the specified current level as well as the temperature. Hence, specific conclusions must take these into account.

DC beta, $h_{F E}$, increases with temperature. See Fig. 6. Correlation to any readily available parameter is not apparent.

Conclusions

Changes in transistor parameters are large enough to cause major problems even with small changes in ambient temperature. Tolerances on inspection specifications must take this into account. In some cases, such as dc beta, the problem is compounded since the variations are large and erratic and not readily related to a simple measurement technique. These changes can cause major problems where large quantities of transistors are tested unless the ambient temperature is controlled.

Reference

High Frequency Power Gain of Junction Transistors, K. L. Pritchard, Proceedings of IRE, Vol. 43, pp 1075, Sept., 19.55.

sorensey Magnetic Voltage Regllators

Cove the Full Range-30 to 2000 Volt-Amps...
tter Regulation and Fast Response...Smaller and Lighter
Ex fllent voltage regulation that's constant within $\pm 0.5 \%$
gainst any line change from 95 to 130 VAC - with operation that instantaneous, automatic, continuous, and protected against overload damage-Sorensen MVR's
blanket the low and medium power levels.
Supplied in fifteen standard models that range from 30 0 VA rating, these Sorensen regulators can be mounted in any position. Ideal for bench or shop use,
Model MVR30
Output 30 VA: $\pm 0.87 \%$ regulation
from 0 to full load;
Weight: 5 los.

Model MVR60-6

Output 60 VA, isolated 6.3 volt
output; $\pm 3 \%$ regulation, 0 to full load.

Model MVRH-1000

Output 1000 VA; $\pm 0.9 \%$ regulation. 0 to full load; distortion 3\% at any load. for inclusion as a component in your product lines
to improve performance and life.
These MVR's are available in three basic designs.

1. Basic Line Regulators, providing minimum-cost, ge, eral-purpose, highly reliable regulation of RMS voltage, from 30 to 2000 VA.
2. MVR Filament Regulators, providing regulated and isolated 6.3 volt filament supply for vacuum tubes; outputs from 30 to 500 volt-amps. Also a model with 12.6 filament supply and 60 VA rating.
3. Harmonic Filtered Regulators (MVRH). Lowest distortion of any regulator of similar design. Recommended for critical applications requiring precise waveform.

Complete information on the full line of MVR' is wa ting at your Sorensen representative. or will gladly be mailed on your requet to:

CONTROLLED POWER FOR RESEARCH AND INDUSTRY
SORENSEN \& COMPANY, Inc.
Richards Avenue, South Norwalk, Connecticut

In Europe, contact Sorensen-Ardag. Eichstrasse 29, Zurich. Switzerland, for all products including 50 cycle, 220 volt equipment CIRCLE 20 ON READER-SERVICE CARD

Transistor Impedance Nomogram

T. R. Nisbet

Alto Scientific Co.
Palo Alto, Calif.

MATCHING transistors to circuits and vice versa is made simpler with these nomograms. In each of the four nomograms, the key shows the method of operation. Where a curve is used, the traversing straightedge should be laid tangent to the curve. Certain scales can be multiplied by any factor, provided certain other scales are also multiplied. To make the arrangement easy to use, one point on each of the relative scales has been labeled with one alternative value. Scales bearing the same type of label (e.g. outlined by a single or double line) must be dealt with in the same way.
Because of the nature of the equations various amounts must be added to or subtracted from the data before or after using the nomograms. In many calculations, however, these amounts are negligible. Details are shown in a note on each nomogram.

Common Emitter Examples

A transistor with $r_{b}=500$ ohms, $r_{e}=50$ ohms, $r_{c}=2$ megohms, $\alpha=0.96$, is used in the following situations:
Ex. 1. Load resistance 20 K : find input resistance. Nomogram shows $R_{i}^{\prime}=960$. Add $r_{e}+r_{b}$. Input resistance $=1510$ ohms.
Ex. 2. If input resistance is to be 5000 ohms , and load resistance is 20 K , find the series resistance to be added in emitter circuit. $R_{i}^{\prime}=5000-r_{e}$ $-r_{b}=4450$ ohms. Nomogram shows emitter resistance to be 230 ohms. Subtract r_{c}. Required additional resistance $=180 \mathrm{ohms}$.
Ex. 3. Generator resistance is $\mathbf{4 0 0}$ ohms. Find output resistance. $R_{a}=400+r_{e}+r_{b}=950$ ohms. Nomogram shows $R_{o}=181 \mathrm{~K}$.

Common Collector Examples

Ex. 4. Assume the same transistor characteristics as listed for common emitter examples. Load resistance, 160 K ; find input resistance. Using multiplier on nomogram scales, $R_{1}=1.33 \mathrm{meg}$ ohms.
Ex. 5. Output resistance, 15.5 K ; find generator resistance. Nomogram shows this to be 480 K .

A useful scale for converting between α and β is available on the input vs load resistance, common collector nomogram. (Continued on page 28)

Transistor Impedance Nomograms-1

Fig. 1. Generator resistance vs output resistance, common collector. Note: nomogram uses $R^{\prime}{ }_{0}$ as equal to the output resistance. True outpul resistance is $R_{u}=R_{u}+r_{e}$.

Transistor Impedance Nomograms-2

Fig. 2. Generator resistance vs output resistance, common emitter. Note that the nomogram uses R_{g}^{\prime} as equal to the generator resistance, though true generator resistance is $R_{g}=R_{g}^{\prime}-r_{e}-r_{b}$.

NEW G-E PRE-AGED GLOW LAMP has starting voltage stabilized within ± 8 volts

3 DIAMETER ENLARGEMENT

GENERAL ELECTRIC NE-81 GLOW LAMP
(pre-aged, stabilized version of the NE-2)
STARTING VOLTS -72 ± 8 volts.
HIGH INSULATION RESISTANCE-G-E "Drifilm" treatment insures minimum leakage resistance of 100 megohms under high humidity.

REDUCED DARK EFFECT - Higher-thannormal starting voltage in darkness now reduced with a mild, radioactive additive.

ANODE IDENTIFICATION—Permanent white dot marks positive lead.

PLATED LEADS - Cadmium plating permits easier soldering.

STARTING VOLTAGE RANGE is reduced in the NE- 81 from the ± 15 volts of the earlier NE-2 to a ± 8 volts-a cut of nearly 50%.

Precision "seasoning" of the NE-81 under ideal conditions now delivers a component permitting circuit design based on closely fixed and stable glow lamp specifications Dependable characteristics are assured-lamp to lamp, lot to lot.

The extreme precision, long life and rugged construction of the NE-81 makes it ideal for many applications such as: relaxation oscillator; leakage indicator, switch, voltage regulator or voltage indicator.

For further information write: General Electric Co., Miniature Lamp Dept. ED-78, Nela Park, Cleveland 12, Ohio.

Progress /s Our Most Important Product GENERAL (36) ELECTRIC

Transistor Impedance Nomograms-3

Fig. 3. Input resistance vs load resistance, common emitter. The nomogram uses $R^{\prime}{ }_{i}$ equal to the input resistance. True input resistance is $R_{i}=R_{i}^{\prime}+r_{b}+r_{e}$.

The equations from which these four nomograms have been developed are as follows:
Common emitter.
$R_{i}=r_{b}+r_{e}\left[\frac{r_{c}+R_{L}}{r_{c}(1-\alpha)+R_{L}}\right]$. No assumptions.
$R_{o}=r_{c}(1-\alpha)+r_{e}\left(\frac{\alpha r_{c}+R_{o}}{r_{e}+r_{b}+R_{o}}\right)$, assuming

$E_{\text {ngineering }} D_{\text {ata }}$

Transistor Impedance Nomograms-4

Fig. 4. Input resistance vs load resistance, common collector. In this nomogram $R_{i}^{\prime}=$ inpur resistance and $R_{L}^{\prime}=$ load resistance. True equations for these are $R_{i}=R_{i}^{\prime}+r_{b} ; R_{L}=$ $R_{L}^{\prime}+r_{e}$.
that $\alpha r_{c} \gg r_{e}+r_{b}$ and $R_{o} \gg r_{e}$.
Common collector.
$R_{i}=r_{b}+r_{c}\left(1-\frac{r_{c}-\alpha r_{e}}{r_{c}+\alpha r_{c}+r_{e}+R_{L}}\right)$. No a sumptions. Assuming that $r_{c} \gg r_{b}$, then $F_{i}=r_{e}+r_{e}-\alpha r_{c}-\left[\left(r_{c}-\alpha r_{c}\right) r_{c} /\left(r_{b}+r_{c}+R_{g}\right)\right]$.

NEW REFINEMENT
MAKES OLD DOG GOOD
FOR LOW LEVEL WORK
This particular little friend of man (left, above) has been on the Sigma payroll now for about ten years, which explains why he can be called "old." Over the years he's been sent out on a variety of switching assignments, where neither space nor available power would permit using a St. Bernard. Although he's earned a reputation for being pretty dependable when there's a lot of shaking and tail wagging going on, lately certain people at Sigma have been hard at work to give him more "class." They figure that with his background, he might be able to show up a lot of late-model poodles in cases where loads hover around 0.0000001 watt, or in the native vernacular, "dry circuit" applications.

It looks now as if the Brink of Success has been reached: 98 out of 100 of these refined types consistently pass our special low level tests, switching 10 microamperes at 10 millivolts 5,000 times, with all operations monitored. This is 100% production testing on this type, and the 2% that don't pass are sent to a horrible end (in our plant, not in yours). As a matter of interest, the contacts in these new types for low level work use 24 karat gold.

In case your circuit is considerably more moist, but still calls for long, dependable switching that's immune to high shock and vibration levels, old faithful can also be ordered with silver, palladium or gold alloy contacts. The silver contacts are rated up to 2 amp . (resistive load at 120 VAC or 28 VDC), the palladium and gold alloy types, 0.5 amp . Latest facts are available in a Sigma bulletin entitled "Series 22 Relay", a straight presentation with no animal pictures.

91 Pearl Street, So. Braintree 85, Massachusetts CIRCLE 23 ON READER-SERVICE CARD

Photocircuits

 printed circuit cards
Guaranteed Performance Limits

 And
New Core Protection

Seen for the first time: complete core protection.

PHONES GLEN COVE 4.8000 FLUSHING 7.8100
CABLE

PHOCIRCO

CIRCLE 24 ON READER-SERVICE CARD

Tough glass polyester cap allows complete freedom of handling and using tape wound and bobbin cores, and helps lower production costs. UARANTEED core performance limits will be a boon to designers of computer drive circuits, switching matrices, shift registers, core-diode memory systems and pulse transformers. Engineers can now buy bobbin cores with tight maximum and minimum limits on ojen circuit characteristics, core flux, and squareness.
By defining and guaranteeing perfor nance limits, Magnetics, Inc. has taken the first step towards placing cores on the same catalog basis as vacuum tubes and resistors. The Butler, Pa. firm also guarantees performance limits on $B_{m}, B_{r} / B_{m}, H_{1}$, and gain for tape wound cores.

New Core Protection

Protections are now available for tape wound and bobbin cores. A tough glass polyester cap completely protects cores during handling and use, while a new finish for aluminum tape wound core boxes guarantees a minimum voltage breakdown of 1000 v at 60 cps .

Tough Core Caps

The "Poly Cap" cores are available for both stainless steel and ceramic bobbins. The rigid structure of the new cap does not distort with wide temperature changes, and thus, allows freedom of handling, and assures against damage or changes in core characteristics.
The permanent protection of these caps (unbreakable in normal use), not only lowers production costs, and assures performance stability, even after potting, but actually allows for smaller cores because the cap fits over the top of the flanges rather than requiring encapsulation.

Guaranfeed Voltage Breakdown

The new finish for the aluminum boxes for tape wound cores insulates the windings from the box without tapingand over a temperature range from -70 o +450 F . By eliminating the need to tape the core box, cost and production time are knocked down. This GVB finish s compatible with any standard potting a)mpound, and allows vacuum impregnation down to 20 mm of mercury.
For more information on these new devlopments, turn to the Reader Service ard and circle 25.

GLASS DIODES

 and
POWER TRANSISTORE

CIRCLE 26 ON READER-SERVICE CARD

WITH BOURNS POTENTIOMETERS!

Compared with the conventional single-turn rotary potentiometer, the adjustability of Bourns potentiometers is a $33: 1$ improvement. Providing 9000° of rotation instead of 270°, Bourns potentiometers
simplify and speed up the adjustment or balancing of circuits.

You can repeat any setting quickly and easily.
Settings are virtually immune to shock, vibration and acceleration. Translatory action of wiper provides inherent stability. The rigidly

> mounted wiper is driven by a threaded stainless steel shaft,
which is actuated by your screwdriver. No need to recheck settings after
a lock-nut is tightened. There isn't any lock-nut.
Available with printed circuit pins, solder lugs, or stranded insulated leads.

BOURINS

Laboratories, Inc.
P. O. Box 2112-B - Riverside, California
originators of trimpota and trimito pioneers in potentiometer transoucers for position, pressure and acceleration
\qquad

CIRCLE 27 ON READER-SERVICE CARD

Error-Free

Analog/Digital

Converter

Unbuttoned A/D converter shows staggered segments on 3-1/2 in. disc. Ten bit resolution and no ambiguity for "on the fly" reading is obtained in this way, with an unusual internal switching network.

Fig. 1. Staggered pattern of disc. Black areas are permanently energized, shaded areas are the leading and lagging portions of the segments. The electrical status of the bit brush is a function of a logic circuit formed by feed brushes and conducting segments. Control of the logic circuit is by the controlling bit brushes.

NAMBIGUOUS ten bit resolution on a 3-1/2 in. disc results from staggergits on two concentric tracks in this ew analog to digital converter. Amiguity is controlled by preventing the ransition of any of the nine most signifant bits-except when they coincide fith the least significant bit. An unusual combination of bit tracks and transistored logic circuits provides the 10 bit esolution.
Designed by Librascope, Inc., Glendale, Calif., the converter uses 17 brushes -one readout brush per digit, six feed rushes, and one common brush. The isc pattern shown in Fig. 1 is designed oach normally-conducting segment has an electrically isolated leading and gging portion (shaded areas).
The unique brush arrangement couled with the transistor logic eliminates mbiguous outputs due to time differnces in bit transition. The transition of dingle brush depends on the simultais transition of the controlling bit.
Aminguity in earlier disc converters fually resulted from disc misalignment. tiscounts and noise resulted. To dodge is problem, some computers operate nly on information received when the onverter's input shaft has been stopped nd locked. This eliminates ambiguity, 1 right, but decreases the amount of nta available to the computer during y interval.
Other converters use either special merical codes-requiring that only one pgit change at a time-or some combi-
nation of electrical and mechanical techniques to prevent errors. With these, a translator is needed for the output. The computer usually accepts only binary or binary coded decimal systems.

A double brush system, formerly used by Librascope, required that two brushes be used on the more significant track, instead of one. The angular distance between each of the double brushes and the single, least significant brush was half the angular length of the least significant segment. A switching circuit, controlled by the signal from the single brush, eliminated the transition between conductive and nonconductive segments. Need for this switching made the system more complex.
The new A/D converter can be used with conventional data logging equipment, and as a source of digital information in computer facilities. It can be used in a host of applications. Typical ones include supplying integration information for aircraft engine thrust measurements; and in recent computer work, finding the convolution integral, given a weighting function and an independent function.
In the latter application the independent function is represented by the input shaft position as a function of time, and the weighting function is approximated by adjusting the computer's sampling rate.
For further information on this errorfree A/D converter, turn to the ReaderService Card and Circle 28.

$112 \mid$ Transistor Test Set -$25-\infty$
 with Semiconductor Regulated Power Supplies for ease of operation

LABORATORY
research and quality control applications

- Common Base or Common Emitter
- Current Range - 100μ a to 1 amp . (special models to 2 amp.$)$
- Collector Voltage Range - 0 to 100 v .
- Frequency Range - 100 cps to 200 kc
- Direct measurement of h parameters plus α and β cutoff
- Meter indication of DC parameters, Ico, $\mathrm{I}_{\mathrm{E} O}, \mathrm{BV}_{\mathrm{CER}}, \mathrm{V}_{\mathrm{EBF}}$

Designers of custom test equipment for specific applications (e.g., automatic and production test sets). B-A transistor test sets are designed by transistor circuit engineers.
Other Baird-Atomic Transistor Test Equipment Available:

|TRANSISTOR TEST SET - GP-4

The transistor tester that meas. ures: h parameters and equivalent T coefficients . . . NPN and PNP junction and surface-barrier transistors . . . grounded-base or emitter circuits
. alpha and beta cut-off . . . Ico . and Cc. Measurement frequency from $100 \mathrm{c} . \mathrm{p} . \mathrm{s}$. to 1 mc .

ALSO:
Minority Carrier Lifetime Test Set Semiconductor Resistivity Test Set

For specific applications, modified versions of standard instruments are available.
Write for complete technical information.

NEW PRODUCTS

To provide a complete coverage of ALL new products generally specified when designing electronic original equipment, the New Product section has been extended. To include the largest number of items, products which are best suited to a brief description have been noted at the end of the section.

APR CAMERA
Up to 24 channels of low frequency data are stored on 16 mm film by the automatic processing and recording camera. The record is automatically developed and fixed internally by conventional processing methods. Processing is completed within 5 to 10 minutes depending upon film speed. Utilizing precision galvanometers, the APR camera has a resolution of 20 cps for a film speed of 3 cm per min , and a linearity of better than ± 1 percent.

The Geotechnical Corp., Dept. ED, 3712 Haggar Dr., Dallas 9, Tex.

$$
\text { CIRCLE } 30 \text { ON READER-SERVICE CARD }
$$

DECIMAL COUNTER

Providing a four line 1-2-4-8 code, with 4 ma drive available directly from each of these lines, this transistorized counter has the output amperage necessary for a variety of recording purposes. The counter is designed to operate from negative pulses of approximately 2 v amplitude and 1 to $2 \mu \mathrm{sec}$ in duration, and at operating speeds from 0 to 150 kc .
Navigation Computer Corp., Dept. ED, 1621 Snyder Ave., Philadelphia 45, Pa.

CIRCLE 31 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 9, 1958

VARIABLE CAPACITOR

Semicap, a silicon variable capacitor, has a of over 1000 at 1 mc , with a 10 to 1 capacity io well within its piv rating of -200 v dc. plications are in automatic frequency control, quency modulation oscillators, and bandpass 1 filter networks where precision capacitance htrol is needed.
International Rectifier Corp., Dept. ED, 1521 Grand Ave., El Segundo, Calif.

CIRCLE 32 ON READER-SERVICE CARD

TOROIDAL INDUCTORS

rge inductance values, despite a relatively dall size, are featured in series 781 toroidal inctors. Inductances range from 1 mh to 7 h , in iseful frequency range of 100 cps to 80 kc . aximum Q for a typical 50 mh inductor operng at 11 kc is 130 . The line is designed for Inied circuit boards, or stacking on a single ew for chassis mounting.
A nold Magnetics Corp., Dept. ED, 4613 W. frson Blvd., Los Angeles 16, Calif.

CIRCLE 33 on reader-service card

1" SQUARE PULSE GENERATOR!

ESC"s Low Cost, Portable Modupulser ${ }^{\circledR}$

Now generate any fixed or variable pulse repetition rate without tying up larger pulse generating equipment. ESC's new 1 " square fixed Modupulser is factory-set at the specified pulse rate-you just plug it in to operate. The Modupulser is so inexpensive and convenient, you can stock several (with various pulse rates already fixed)
for quick insertion at any time-or a Modupulser with a variable repetition rate. Also supplied for external triggering. Manufactured for commercial and military applications, Modupulsers are available from stock or custombuilt to your specifications. Write for complete technical data today!

SPECIFICATIONS FOR FIXED MODUPULSER

Pulse Width Range: $1.0 \mu \mathrm{sec}$ to $8 \mu \mathrm{sec}$
PRF Range: 400 cps to $15,000 \mathrm{cps}$
Rise Time: $0.2 \mu \mathrm{sec}$ min.
Output: 6 volts positive and 6 volts negative when operated from a 6 volt DC source
Supply Voltage: -6 volts
Supply Current: Dependent on pulse width and PRF

Tolerance (on pulse width and PRF) $\pm 20 \%$ * change in performance from nominal (@25 ${ }^{\circ} \mathrm{C}$): when operated over a wide operating temperature range: 10%
Minimum Output Load: 75,000 ohms (lower output load values available with reduced amplitude)
Volume: $1^{\prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime}$
Available with miniature 7 -pin plugs, $1 / 10^{\prime \prime}$ grid pins for printed circuit boards, or to your specifications.
-This tolerance can be reduced if specified

\qquad
s34 bemgen boulevaro . palisades pank. new jerser
\qquad

[^2]CIRCLE 34 ON READER-SERVICE CARD

A combination X and C band radar test has been designed into one compact unit. Mo W 909-1C-A has all four master functions of sp trum analyzer, power monitor, signal genera and direct reading frequency meter. Identica function with standard single band models, unit has a stacking arrangement that permits dual performance check.

Kearfott Company, Inc., Microwave D Dept. ED, 14844 Oxnard St., Van Nuys, Calif CIRCLE 35 ON reader-service card

Phase Measuring Units

Accuracy of $\pm 2-1 / 2$ per cent

Type 410 phase meter features: no tubes, b tery, or power supply; no error due to harmo or noise content; no amplitude adjustment, zeroing; direct reading in degrees; no drift, warm-up period required; and accuracy $\pm 2-1 / 2$ per cent. Type 206 microsecond indicat measures: phase angle between two puls modulated sine waves; time interval betwe any two points of an irregular pulse; time del of a four-terminal network; and time inter between an incident and its reflected puls through a medium.

Ad-Yu Electronics Lab., Inc., Dept. ED, 2 Terhune Ave., Passaic, N.J.
circle 36 on reader-service card

Synchronous Motor
Delivers 12 oz-in. torque

This hysteresis synchronous morr , size 10 with a maximum length
1-3/16 in., will operate directly om 115 v line, 400 cps , single or tee phase, delivering 12 oz-in. at 90 rpm pull out torque. The unit ni be supplied with a gearhead th a maximum length of $2-1 / 8 \mathrm{in}$. p to a ratio of $200: 1$ and with a maximum length of $2-3 / 8 \mathrm{in}$. up to 0,500: 1
Servomechanisms, Inc., Mechafol Div., Dept. ED, 1200 Prospect e., Westbury, N.Y.

CIRCLE 37 ON READER-SERVICE CARD

Filament Transformer For transmitting tubes

Type P-6463 filament transformer as been designed especially for se with the Eimac 4CX1000A transmitting tube. The unit proides center-tapped secondaries of 6.5 or 7 v , at 13 amp . Primary is $7 \mathrm{v}, 60$ cps. The P-6463 is degild to withstand 2000 v rms. Chicago Standard Transformer cire., Dept. ED, 3501 Addison St., licago 18, Ill.
CIRCLE 38 ON READER-SERVICE CARD CIRCLE 39 ON READER-SERVICE CARD \geqslant

Transition

Silicon

Now...
The widest A NE
DOER RAN POWER in the indus ty! Transistors

New high power transistors have just been added to the Transitron line, increasing power ratings to 85 watts. Now, whatever the application. you can choose from the broadest power range in the industry ... with Transitron reliability built into every transistor.

Visit us af WESCON, Booth 1567-68

HIGH POWER

- Ratings to 85 watts
- Operation to 5 amps
- Low Res, 1.5 ohms typical
- Voltage Ratings to 60 V
- High Current Gain
- High Speed Switching

fast switching type

SMALL SIGNAL

- Operation to $175^{\circ} \mathrm{C}$
- Low leo at Rated Vc max.
- High Current Gain
- Three package sizes available

Transition

WRITE FOR BULLETIN TE 1353

STEMCO THERMOSTATS for precise, sensitive temperature control

1, 2, TYPE C somi-enclosed (1), hermeticelly sealed (2). Small, positive acting with electrically independent bimetal strip for operation from -10° to $300^{\circ} \mathrm{F}$. Rated at approximately 3 amps, dopending on application. Hermetically sealed type can be furnished as double ther mostot "alarm" type. Various terminals and mountings. Bulletin 5000.
3, 4, TYPE M somi-anelosed (3), hermetically seaded (4). Electrically independent bimetal disc types for appliance and electronic applications from -20° to $300^{\circ} \mathrm{F}$. Rating: 8 amps a 115 VAC, 4 amps at 230 VAC and 28 VDC Semi-enclosed with virfually any type terminal, hermetically sealed with pin or solder termi nols, wire leads, various mounting brackets.
Bulletin 6000 . Bulletin 6000 .

5, 6, TYPE MX semi-anclosed (5), hermotically sealed (6). Snap acting miniature units to open on temperature rise for missile, avionic, electronic and similar uses. 2° to 6° differentials available. Rated at 3 amps 101 amp , depend ing on duty cycle, at 115 VAC and 28 VDC for 250,000 cycles. Semi-enclosed types with metal or ceramic bases; hermetically sealed in circular or CR7 cans. Various ferminals,

7, 8, TYPE 5* adjustable (7), non-adjustable (8). Positive acting with single stud or nozzle mounting. Operation to 600 F. Rated at 15 amps of $115 \mathrm{VAC}, 7$ amps at 230 VAC . Spade, screw or elevated terminals, various adjusting stems, etc. Bulletin 1000.
9, TYPE SA* adjusiable (9) or non-adjusfable. Snap acting with electrically independent bimetal. Also single-pole, double-throw. Single stud or nozzle mounting. Non-inductive-load rating: 15 amps at $115 \mathrm{VAC}, 10$ amps at 230 VAC. Spade or serew terminals. Bulletin 2000.
10, TYPE SM* manual resef (10). Electrically same as Type SA (above) except for manual reset feature. Bulletin 2000.

11, TYPE B adjustable (11) or non-adjusiable. For uses where heat generated by passage of current through bimetal strip is desirable. Various terminals, single stud or nozzle mounting. Operation to $400^{\circ} \mathrm{F}$. Nominal rating: $51 / 2$ aulletin 9000 VAC of 10 cyice rond higher 12, 13. 14.
12, 13, 14, TYPE A* somi-onclosed (12, 13), hermetically sealed (14). Insulated, electrically independent bimetal disc gives fast response and quick, snap action control for appliance, electronic and apparatus applications from -20° 10 $300^{\circ} \mathrm{F}$, or higher on special order. Roting: 3 to 4 amps, depending on duty cycle, Various enclosures and mountings, including Various enclosures and
brackets. Bulletin 3000 .

15, TYPE R* seoled adjustable (15), sealed nonadjustablo. Posifive acting for operation to 600°. Rated at 15 amps at $115 \mathrm{VAC}, 4 \mathrm{amps}$ at 230 VAC. Screw terminals. Bulletin 7000. 16, TYPE W* odjustable (16), or non-adjustable. Snop action bimetal strip lype for operation to $300^{\circ} \mathrm{F}$. Rated at 5 amps at $115 \mathrm{VAC}, 3$ spade, solder or serew terminals. Bulletin 4000.
17, TYPE H \dagger adjustable. Positive acting for fry pans, skillets, sauce pans, elc. Fail-safe, open in low to $500^{\circ} \mathrm{F}$ in high. Rated at 1650 walts af 115 VAC. Bulletin 10,000.
18, TYPE D* automatic (18), or manual resef. For laundry dryers or other surface and warm air applications. Snop acting disc type U.L approved for operation to $350^{\circ} \mathrm{F}$. Open o enclosed styles. Rated at 25 and 40 amps a 120-240 VAC. Screw or spade terminals. Bul letin 8000.
lllustrations, for general information only, do not necessarily show size comparisons. Fully dimensioned and cerlified prints on request. Manufacturer reserves right to alter specifica tions without notice.
Rever to suan cooso ter U.l. or C.S.A. apmoud ratiges Thitan applied for.

NEW PRODUCTS

Recorder Calibrator

Checks airborne tape recorders

A recorder calibrator, designed for checkout and calibration of airborne analog tape recorders ha been developed. Voltage can b supplied to all recorder circuits from a single $28-\mathrm{v}$ dc source. Voltages to supply bias current and motor drive are available. A signa current is supplied in various steps as desired to within 0.1 per cent through a Ledex type of switch Any normal bridge type of end in strument may be calibrated.

Aerophysics Development Corp. Div. Curtiss-Wright Corp.. Dept ED, P.O. Box 689, Santa Barbara, Calif

CIRCLE 42 ON READER-SERVICE CARD

Pressure Transducer

Has high sensitivity

Performance characteristics of pressure transducer model 22005 are: resolution 0.0002 or less, hysteresis better than ± 0.3 per cent, repeatability better than 0.3 per cent, high temperature operation. low vibration, and steady state acceleration error.
Technology Instrument Corp. of California, Dept. ED, 7229 Atoll Ave., North Hollywood, Calif.

CIRCLE 43 ON reader-service card
< CIRCLE 41 ON READER-SERVICE CARD

Radar Transmitters

Available in several operating frequencies

Operating frequency of the X-band radar transmitter model is $8500-9600 \mathrm{mc}$ (tunable). In other models frequency ranges are: 30303110 mc (fixed); $5360-5400 \mathrm{mc}$ fixed); 16,400-16,600 mc (fixed); 23,800-24,270 mc (fixed). Repetition ate can vary over the range 300 to $0,000 \mathrm{pps}$ and pulse length over the range 0.25 to $2.5 \mu \mathrm{sec}$, within naximum duty cycle ratio (repetifion rate times pulse length) of p. 001.

Resdel Engineering Corp., Dept. ED, 330 S. Fair Oaks Ave., Pasadena, Calif.

CIRCLE 44 ON READER-SERVICE CARD

Energizer

Has sandwich construction

A cut-away model of the cathodic nvelope energizer construction hows the various layers of the andwich making up this long-life igh-energy battery designed speifically for transistorized equipnent. Type of construction allows ide range of shapes and sizes. National Carbon Co., Div. Union arbide Corp., Dept. ED, 30 East 2nd St., New York 17, N.Y. CIRCLE 45 on reader-service card

CIRCLE 46 ON READER-SERVICE CARD $>$

Mev, .. most casy to reat

- Clear, unbreakable, shadowless front for instant wide vision

- 5 to 500,000 cps on A.C
- Continuous resistance reading from 0.1 ohms to 100 megohms.
- Polarity reversing switch.
- Only one (king-sized) switch selects hoth circuit and range minimizes wrong settings, hurnouts.
Only Triplett affords you such a wide choice of V()Ms. Whatever your application-broad or limited-there is a Triplett VOM particularly suited for it.

extremely pure, 'Baker Analyzed' REAGENT

FYDBOBGOOBIC ACBD

in your choice of
$61 / 2$ GALION Câabobis 10-LB. or -LEB. E. Eititis
...functional, labor-saving packaging for your

HYDROFLUORIC ACID is a key processing chemical.
To meet the sharply rising demand for Hydrofluoric Acid manufactured to J. T. Baker's exceptional standards of quality, Baker has once more expanded production facilities. In addition to dependable, on-time deliveries, Baker offers you:
YOUR CHOICE OF CONTAINER SIZES: $61 / 2$ gallon polyethylene carboys, $10-1 \mathrm{~b}$. and $1-\mathrm{lb}$. polyethylene bottles.
SAFE, CONVENIENT, LABOR-SAVING PACKAGING: Carboys and $10-\mathrm{lb}$. bottles expedite convenient handling of large quantities of acid. The Baker 1-lb. bottle makes possible more rapid pouring
than competitive $1-\mathrm{lb}$. containers and with an added safety factor: There's no diaphragm to puncture-no danger of "acid-spurt."
PURITY: Baker manufactures in conformance with extremely high standards of purity. Specifications assure that copper and nickel each will not exceed $1 / 2$ part per million.
ACTUALIOT ANALYSIS: Each container is labeled with the actual lot analysis defining copper, nickel and eight other significant impurities.
ACTUAL LOT ASSAY: You'll appreciate this "J. T. Baker extra" especially important for your use.
FULL AVAILABILITY AND FAST SERVICE - from expanded production facilities.
for prices and additional information, write or phone
J. T. Baker Chemical Co.

Phillipsburg. New Jersey

NEW PRODUCTS

Chargeable Dry Cell
Can be stored indefinitely

Manufactured in the uncharg state, this dry cell can be stored definitely at any temperature like to be encountered, and charge when ready to use. Nominal outp is 0.9 v , and average capacity 1500 ma-hr. Using an alkaline le oxide-silver system, the cell available in experimental produ tion quantities.
P. R. Mallory \& Company, In Dept. ED, 28 S. Gray St., dianapolis 6, Ind.

CIRCLE 48 ON READER-SERVICE CARD
Decade Inductors
High Q , low frequency

Designed for use in analog cori puters, network design, and eral laboratory applications, the decade inductors have maximu values of Q in excess of 300 an micrometer adjustment for precis settings. Models LP 121, LP 131 and LP 141 are available in thre decades (0.01 to $0.1 \mathrm{~h} ; 0.1$ to 1.0 and 1 h to 10 h) which may be com bined to permit switching in al value of inductance from 0.01 11.1 h in 0.01 h steps. Low lev inductance is within 0.1 per cent nominal value at 100 cps .

Computer Engineering Assoc ates, Inc., Dept. ED, 350 N. H2 stead Ave., Pasadena, Calif.

CIRCLE 49 ON READER-SERVICE CARD < CIRCLE 47 ON READER-SERVICE CARD

Relay Sockets

For use with 6, 4 and 2 pole double throw relays

This Hi-Reli series of relay sockets features old plated over silver plate, free floating screw achine contacts in a molded body of MIL-MIE type insulation. Contacts are available with plder cup, turret or eyelet terminations. Units re for use with 6 pole, 4 pole and 2 pole double trow relays.
Armel Electronics, Inc., Dept. ED, 840 5th ve., Brooklyn 32, N.Y.

CIRCLE 50 ON READER-SERVICE CARD

Cooling System

Employs water boil-off method

This system, known as model RS-50, type 100, as designed to protect electronic equipment by paintaining a safe temperature within the close onfires of a pressurized pod. Cooling is accomlishe! by circulating refrigerated air over the ot electronic components and transferring this eat to a vapor-cycle refrigeration system. This eat, plus that generated by the refrigeration ompressor motor and other motors in the sysem , is disposed through the condenser where vater carried for this purpose is boiled and exallsted overboard. Its capacity is 2500 w , with over requirements of $200 \mathrm{v}, 400$ cycle, threehise and 28 v dc.
Castern Industries, Inc., Dept. ED, 100 Skiff , Hamden, Conn.

CIRCLE SI ON READER-SERVICE CARD
closes switch with ONE PUSH

NEW PUSH-PUSH SWITCH CONTROLS

. . . take the waiting out of warm-up time!

TURN

SHAFT FOR VARIABLE RESISTANCE CONTROL

Here's real operating convenience and added sales appeal for TV and radio receivers, phonographs and instruments!
Three new Stackpole controls combine pushbutton switching with rotary control of volume, tone, contrast or similar functions. "Waiting for the warm-up" before making final adjustments is a thing of the past. Just one push and the circuit is "on" and adjusted to the last selected setting of the variable resistor.
NEW STACKPOLE TYPE "E" SWITCH used on these controls has a positive, SP-ST snap-action. It carries a UL rating of 3 amps . at 125 volts ac-dc or 1 amp . at 240 volts ac-dc.

BASIC SWITCH/CONTROL COMBINATIONS using the popular Stackpole L-type control are available as follows. Printed wiring and wire-wrap terminals obtainable on each:
Type LE: single-section, single-shaft. Push shaft for switch, furn same shaft for control.
Type L3E: single-section, dual-shaft. Push inner shaft for switch, turn outer shaft for control.
Type LXE: dual-section, dual-shaft. Push inner shaft for switch, turn inner shaft for rear control, turn outer shaft for front control.

Containing complete specifications and dimensions sent on request.

NEXT PUSH opens switch

STACKPOLE

V/ARIAABLIE comosmon REESUTORS

Electronic Componente Division

STACKPOLE CARBON COMPANY, St. Marys, Pa.

Coldite 70 土 $^{\text {® }}$ fixed composition resistors Snap ond Slide Switches 11 Ceramag ${ }^{*}$ ferromagnetic cores
Iron cores

- Ceremagnet ceramic magnets Electrical contacts Hundreds of related carbon. graphite and metal powder products. CIRCLE 52 ON READER-sERVICE CARD

NEW PRODUCTS

Calorimeter Bridge
Measures 10 kw full scale

For use with any water load, this calorimeter bridge measures 10 kw full scale. Water flow is 4 gallons per minute. Accuracy of the ac wattmeter is 1 per cent. The instrument contains an ac standard load, a balancing thermopile, a galvanometer, a Variac and an ac wattmeter.
Electro Impulse Labs., Dept. ED, 208 River St., Red Bank, N.J.

CIRCLE 53 ON READER-SERVICE CARD
High Voltage Supply
0 to 90 ky regulated

Model LAB-90 dc power supply provides voltages continuously variable from 0 to 90 kv . Output current is 1 ma at 80 kv ; and 2 ma from 40 kv down. Voltage regulations are better than 1 per cent throughout the range.
Spellman Television Co., Dept. ED, 3029 Webster Ave., New York 67, N.Y.

CIRCIE 54 ON READER-SERVICE CARD

Klystron

1700 to 2400 mc range

The $4 \mathrm{~K} M 50,000 \mathrm{SG}$ external-cavity power amplifier klystron covers the 1700 to 2400 mc range. It is rated at 10 kw cw power output with less than 1 w drive. The unit incorporates a modulat-

DOW CORNNG 200 FLUIDS
 . . . ássure added rellability at extreme temperatures

These miniature capacitors made by Gudeman Company for filter, by-pass and blocking service, are impregnated with silicone fluids to decrease electrical losses and increase permissible operating temperatures. Designed to meet all specifications of characteristic "K" MIL-$\mathrm{C}-25 \mathrm{~A}$, they have an operating temperature range of - 55 to 125 C .

	Temperature		
Property	-55 C		200 C
Dielectric Constant.			
1.0 kcs .-.-.-.--	3.1	2.7	2.3
0.1 mcs .	3.1	2.7	2.3
Dissipation Factor,			
$1.0 \mathrm{kcs}$. .-...----	0.0005	0.00004	0.001
$0.1 \mathrm{mcs}$. ...-.-	0.0002	0.00001	0.0003
Resistivity, ohm-cm.	10×10^{16}	2.0×10^{10}	1.0×10^{13}
Electric Strength, dc, 20 mil gap		650	550

As a liquid dielectric and coolant for electronic components and assemblies. Dow Corning 200 Fluid aids miniaturization and makes higher temperature operation possible. For example, paper capacitors impregnated with 200 Fluid have almost constant capacitance over an extremely wide temperature range . . . help assure reliable equipment performance. Heat stable electrical grade Dow Corning 200 Fluids show little change in electrical and physical properties over a wide range of frequencies and environmental conditions. Available in $20,50,100,500$ and 1000 centistokes viscosity grades, they are finding growing use as a means of increasing the reliability of capacitors, transformers, filter networks and other electronic devices.

first in
 silicones

Electronic "Package" on B-58 by Emerson Electric.

SILICONE GLASS LAMINATES Have HICH ARC RESISTAMCE, STRENGTH

Silicone-glass laminates are easily molded into one-piece core and flange structures. Strong even at flange joints, they ane lightweight and moisture-resistant, retain excellent physical and dielectric properties at 250 C . Finished shapes are available from leading laminators.

SILICONE VARNISH MAKES MOTORS TOUGHER, MORE DEPENDABLE

Dipped or impregnated with Dow Corning 997 Varnish, the insulating components of motors, servos, generators, transformers and other assemblies are bonded into an integrated moisture resistant insulation system with high dielectric strength. This silicone varnish combined with other silicone components permits operating temperatures up to 250 C . . . protects against moisture, many chemicals and corrosive atmospheres.

AiResearch minialure motors for B.52A Bomber.

For further information on these products, write Dept. 167
CIRCLE 55 ON READER-SERVICE CARD
ing anode which allows simple, continuously variable control of power applied to the tube.

Eitel-McCullough, Inc., Dept. ED, San Bruno, Calif.

CIRCLE 56 ON READER-SERVICE CARD

SILASTIC PROTECTS ELECTRONIC "PACKAGES"

Silastic ${ }^{\text {b }}$ the Dow Corning silicone rubber, remains resilient from -70 to 250 C , has excellent dielectric strength and offers superior resistance to moisture, ozone, corona and corrosive atmospheres. Available in many forms, including molded parts, extrusions, tapes, sheets and pastes, Silastic is ideal for insulating, sealing and cushioning delicate electrical and electronic equipment.

thousands of
 "
 " without DELAY!

THESE 22 SERIES OF STANDARD SWITCHES WILL HANDLE ALMOST ANY LOW-CURRENT APPLICATION ...		ROTARY MINIATURE: 8, 10, and 12 positions; up to 18 confacts per wafer.	SMALL: Up to 12 positions in phenolic, Mycalex, or steatite insulation.	ADAPTABLE: 8, 10, 12, and 14 posifions; many variations; economical. Series J, K, N
GENERAL PURPOSE: UP 1012 positions, $30^{\circ}, 45^{\circ}$. 60° throw.	LOW COST: Up io 12 positions; staked or strut serew construction.	18.POSITION: Single or double .eyelet fastening of clips. Series L	24-POSITION: 15° throw handles complex circuits. Series MF	LOW COST: 2 to 5 positions; fits in limited space. Series 50, 53
SIMPLE SWITCHING: Up to 5 positions combined with AC switch.	SIMPLE SWITCHING: Up to 4 positions; numarous variations. Series 20	LEVER OPERATED: 2 to 5 positions; numerous versions using std. wafers. Series 185	CONCENTRIC SHAFTS: Dual and triple shafts with many wofer types.	FOR PRINTED CIRCUITS: Special lug designs for direct insertions.
CUSTOM-MADE TO YOUR EXACT SPECIFICATIONS FROM STANDING TOOLE	SOLENOID SWITCH: Oak wafers with G. H. Leland type of Rotary Solenoid.	SLIDE 2-POSITION: Shorting type with floating slider. Series 70	COMPLICATED SWITCH. ING: 2 to 4 positions; up to 20 poles; very thin. Series 150	ROTARY SLIDE COMPACT-2 104 posi tions, max. switching in min. space. Series 160
PUSHBUTTON SINGLE BUTTON-1 to poles; spring return and push-push. Series 170, 175	SIMPLER CIRCUITS: 3 to 12 buttons; very adapt able unit.	COMPLICATED CIRCUITS: 1 to 18 buttons, up to 32 contacts each. Series 130		EACH SWIICH IS PRETOOLED IN NUMFious VARIATIONS. DETAILS ON ANY GERIES ARE AVAILACLE ON REEUEST

For Recommendations on Unusual Applications, send us a sketch and short description.

Amplifier

Voltage gain of 1000

Model M-10 transistorized amplifier has th following characteristics: input impedane greater than 150 K ; voltage gain of 1000 ; pow gain of 85 db and maximum output of 150 mm rms into 350 ohm.
M F Electronics Co., Dept. ED, 122 E. 25 St., New York 10, N.Y.

CIRCLE 59 ON READER-SERVICE CARD

Two rugged, portable, wide-band sweep gen erators to test and align radio frequency circuit in the range from 4 mc to 225 mc are available Models 601 and 602 have an all-electronic sweep circuit, of the saturable reactor type, with : continuously variable sweep range from a min mum of a nominal 1 per cent of center frequency to a maximum frequency deviation of approx mately 5 to 1 . Agc circuitry holds fundamenta frequency output constant throughout the oper ating range.

The 601 has a frequency range of 12 mc 225 mc divided into 11 switchable bands. Out put voltage is 1 v rms with a variation at max mum sweep widths of $\pm 0.5 \mathrm{db}$. The 602 has frequency range of 4 to 112 mc , also dividel into 11 overlapping bands. A voltage output 2.5 v rms is maintained across any band to withii $\pm 0.5 \mathrm{db}$.
Jerrold Electronics Corp., Dept. ED, 23rd ant Chestnut Sts., Philadelphia 3, Pa.
circle 60 on reader-service card
ELECTRONIC DESIGN • July 9, 1958

Pulse Event Recorder Recoverable type

This recoverable pulse event recorder monitors accurately whether or not an event occurs in missile, led and other applications. Deigned to withstand high impact forces, the recorder has a self-conained electrical system. Weight is one pound.
Aerophysics Development Corp., Div. Curtiss-Wright Corp., Dept. ED, P.O. Box 689, Santa Barbara, Calif.
CIRCIE 61 ON READER-SERVICE CARD

Logic Units

Thirty types available

Thirty types of plug-in printed circuits in modular form are currently offered as stock items. The various types of bales currently available include: multi-vibrators, high speed binary and decimal electronic counters, stepping switches, operational amplifiers, storage devices, for both short and lung-tiorm applications; pulse-shaping circuits, timing and delay circuits, diode logic, "and," "or," and "not" circuits, gating circuits and transmission gates, relay and switching circuits, voltage regulators, pulse generators, clocks and gated oscillators, and analog to digital conversion systems and vice versa.
>kiatron Electronics \& Telefision Corp., Dept. ED, 180 Varick . New York 14, N.Y.
CIRCLE 62 ON READER-SERVICE CARD
faced with a tough design problem?

 dirrectoryl: Allanto, Go. - Boston: Nowton Centor, Mass. - Buffalo. N. Y. - Chicagor Bodiord Pork, III. - Cincinnati, O. Clevolond, O. Dalles, Toxas Col. - Seattlo, Wash. Con, N. C. - Los Angotes, Cal. - Now York, Ridgofield, N. J. - Philodolphio, Po. - St. Lovis, Mo. - St. Poul, Minn. - So. San francizco,

NEW PRODUCTS

Microsyn
$3 / 4$ in. in size

The unit shown is the T 813 microsyn, $3 / 4 \mathrm{in}$. in size, used with frequency from 400 to 1600 cps. The signal generator T 813 S 1 has a sensitivity of $0.3 \mathrm{mv} / \mathrm{milliradian} / \mathrm{ma}$ excitation of 400 cps. The range is $\pm 10 \mathrm{deg}$ and the resolution is 15 sec of arc. Maximum torque of 3000 dyne-cm rated continuous torque 50 dyne- cm is a feature of the T 813 T 1 torquer. The unit has a transfer function 0.005 dyne- $\mathrm{cm} / \mathrm{ma}^{2}$.

Sterling Precision Corp., Instrument Div., Dept. ED, 17 Matinecock Ave., Port Washington, N.Y.

Cathode Ray Indicator Tube

Operating conditions of cathode ray indicator tube model VTP-P1XP-11 are heater voltage of 6.3 v , heater current of 0.400 to 0.500 a , anode \# 1 from 400 to 500 v dc, anode \#2 of 2000 v dc, anode \#3 of 4000 v dc and grid \#1 of -35 to -70 v . The undeflected spot position is within $1 / 8 \mathrm{in}$. radius circle with deflection factors: $D_{1} D_{2}$ of 255 to 325 v per in. and $D_{3} D_{4}$ of 143 to 175 v per in. Ratio of anode \#3 voltage to anode \#2 voltage is a maximum of 3 with optimum conditions obtained when the ratio is less than 1.5.
Vacuum Tube Products Co., Inc., Dept. ED, 2020 Short St., Oceanside, Calif.
circle 65 ON reader-service card

General Electric Semiconductor News
New lixed-bed mounting withstands

New data on the silicon Unijunction transistor

The unijunction features open-circuit-stable negative resistance characteristics. In switching and oscillator applications, one unijunction not only does the work of two transistors with less circuitry, but the circuit is also more stable over a wide temperature range.
To help you in your use of the unijunction, a new series of curves has been developed as shown. It points up emitter characteristics at different base-to-base voltages. The unijunction is also the first G-E transistor to be converted to the new impact-resistant Fixed-Bed Mounting process as described above.

Please send for complete data on the six unijunction types - sample circuits, theory and specifications.

YOUR G-E SEMICONDUCTOR SALES REPRESENTATIVE will be glad to give you further information and specifications on General Electric transistors and rectifiers. Spec sheets, bulletins, and other data can also be obtained by writing Section S-2388 Semiconductor Products Dept., General Electric Company, Electronics Park, Syracuse, N. Y.

tremendous impact and vibration

"GOLF CLUB TEST" General Electric transistors with Fixed-Bed Mounting have been struck full force with a No. 2 Iron. Affer traveling forty yards, tests showed they still worked perfectly.

"JACKHAMMER TEST" Another G-E transistor with Fixed-Bed Mounting was taped to a pneumatic drill, which was then operated for ten minutes. When the transistor was removed, tests showed it still worked perfectly.

Ceramic disk guards against major causes of transistor failure

In General Electric's new Fixed-Bed Mounting, critical elements of the transistor are welded flat on a disk of ceramic. Thus any impact must be great enough to damage the disk itself before transistor failure can occur. In conventional methods of manufacture, impact need only penetrate the transistor's metal case in order to damage the standard upright header.
Because of their many suspended parts, standard upright headers are also subject to inertial stress at a number of points. General Electric's Fixed-Bed Mounting eliminated all but one of those parts-the suspended aluminum emitter lead. And this is provided with enough slack to absorb inertial stress, with connection points so securely welded that the unit withstands far more than the military centrifuge test of $20,000 \mathrm{G}$'s.

To eliminate thermal stress, the coefficient of expansion of G.E.'s ceramic disk has been made equal to that of the semiconductor metal. Previously, enough "play" had to be allowed to absorb alternate expansions and contractions, thereby reducing the strength and stability of the unit.

The Fixed-Bed Mounting's electrical elements lie flat, in close contact to the transistor case, providing greater heat conduction out through the case. Therefore, the fixed-bed construction cuts down junction temperature, making it possible to double the power dissipation of the same transistor made with upright-header construction.
Fixed-Bed Mounted units have exceeded all standard shock, centrifuge and temperature-cycling tests. General Electric's unijunction transistor (see below) now has this feature.

New G-E Controlled Rectifier rectifles and controls current up to 5 amperes at 300 v .

 The controllod rectifier is a four-layer silicon
device with a "got" to which a signal can be evelied to control forward current. It can handle more than one kw of power.
need a few semiconductors in a hurry? Check your local G-E distributor first. You'll find his delivery, service facilities and prices are hard to beat

General Electric's new silicon controlled rectifier acts like a thyratron. In the reverse direction, it's a standard rectifier. But it will also block forward current until either a critical breakover voltage is exceeded or a signal is applied to the third lead. Then it switches to a conducting state and acts as a forward-biased silicon rectifier.

The controlled rectifier can be actuated by a little as 15 mw . Breakdown occurs at speeds approaching a microsecond, after which voltage across the device is so low that current is determined by the load. This enables the user to control a large anode-to-cathode current with an extremely small amount of power, or to switch power from high impedance to low impedance in microseconds.

Applications include replacement of relays, thyratrons, magnetic amplifiers, power transistors and conventional rectifiers. Sample quantities of the controlled rectifier are now available. Prices will be sent on request.

GENERAL (3) ELECTRIC

CIRCLE 66 ON READER-SERVICE CARD

Converter Operates over 100 c

This transistorized high temperature dc to dc converter features: input from 12 to 30 v ; output from 6 to 300 v ; regulation line and load ± 1 per cent; and temperature line and load ± 5 per cent

Jordan Electronics, Dept. ED, 3025 W. Mission Rd., Alhambra, Calif.

CIRCIE 67 ON READER-SERVICE CARD

Power Supply
0.03 ohm internal impedance

Model 104 transistorized has a low internal impedance of less than 0.03 ohms , dc to 10 kc . Overload protection is provided for the current meter, with automatic reset. Coarse and fine voltage controls facilitate precision settings.

Quan-Tech Lab., Dept. ED, Morristown, N.J. CIRCLE 68 ON READER-SERVICE CARD

Illumination Control

Light level actuates relay

A new version of an illumination control instrument which monitors light levels and signals a relay to switch lights on or off automatically has been announced. Model 1099 Luminaire features operation without regard to temperature, or weather conditions.
Weston Instruments, Division of Daystrom Inc., Dept. ED, Newark 12, N.J.

CIRCLE 69 ON READER-SERVICE CARD

Use high-quality, dependable

 BROWN COMPONENTS
in your measuring circuits and servo loops

For additional details, call your nearby Honeywell sales engineer. He's as near as your phone.
Minneapolis-Honeywell Regulator Co., Industrial Division, Wayne and Windrim Avenues, Philatrial Division, W
delphia 44, Pa .

CONVERTERS - Handle d-c signals as small as 10-8 volt. SPDT switching action. Sensitive, stable performance. Ideal for computers, servomechanisms, balancing circuits. Available with special features such as fungus proofing, grounded housing, mica-filled base, various contact percentages. Weight: 10 ounces. Driving coils in 60,40 and 25 cycle converters are energized by 6.3 volt a-c. 400 cycle uses 18 volts. Other coil ratings as follows:

Cenverter Typo	Impodence	$\begin{gathered} \text { D-C } \\ \text { Resistence } \end{gathered}$	$\begin{aligned} & \text { Power } \\ & \text { Consumption } \end{aligned}$	Current Drain
60 eycle	125 ohm	110 ohm	. 3 watts	. 05 amps
$\begin{aligned} & 25 \text { and } 40 \\ & \text { cycle types } \end{aligned}$	65 chm	55 ohm	. 60 watts	. 10 amps
400 cycle	191 chm	110 chm	1.7 wars	. 094 amps

> Write for Specification S900-2.
input transformers-Handle low-frequency a-c, or choppermodulated d-c signals from .005 to 200 millivolts, such as generated by thermocouples or other transducers. Designed with highly efficient shielding. Measure $15 / 8^{\prime \prime}$ in diameter, $23 / 5{ }^{\prime \prime}$ high.

Choose from three modals		355567-1	356326	35567-2
Primary (centortopped)	Purns ($1 / 2$ primary) Resistance (approx.) 60 eps impedance impedance, full pri.	$\begin{gathered} 600 \\ 30 \text { ohms } \\ 1,00 \text { ohms } \\ 5,200 \text { ohms } \end{gathered}$	$\begin{aligned} & 1,094 \\ & 750 \text { ohms } \\ & 70,500 \text { ohms } \\ & 30,000 \text { कhms } \end{aligned}$	$\begin{aligned} & 3,400 \\ & 750 \mathrm{ohms} \\ & 30,000 \text { ohms } \\ & 120,000 \text { ohms } \end{aligned}$
Secondary	Purns Resislonce (opprox.) Capacily to fune to 60 cycles	$\begin{aligned} & 9,600 \\ & 2,500 \text { ohms } \\ & .015 \mathrm{mfd} . \end{aligned}$	$\begin{aligned} & 17,500 \\ & 5,800 \mathrm{ohms} \\ & .001 \mathrm{mfd} . \end{aligned}$	$\begin{aligned} & 12,000 \\ & 3,400 \mathrm{ohms} \\ & .003 \mathrm{mfd} . \end{aligned}$
Weight		5.7 or.	7.1 or.	6 oz.

Write for Specification S900-1.
ELECTR-O-VANE CONTROL UNIT-A torque of 2 gram-inches or less actuates this precision switch. Use it as a limit switch to operate valves, lights or hopper openings, in response to motion of weighing beams or other members. Use it to sense other mechanical movements-to operate protective devices when a diaphragm is bulged or near rupture, for example.

Torque to move vane . 2 gram-inches max. Vane motion for snap action . . 0.003 in . Precision.
within 0.002 in . Switch action. SPDT, when vane centerline approx. 41° left of vertical Load relay rating . 115 volts, 6 amp . a-c, non-inductive load Operating power . 115 volts, 50-60 cycles; also 230 volt model Write for Specification S800-1.

Honeywell

NEW PRODUCTS
Rotary Joints

These waveguide rotary joints are of the line type and feature broadband operatio high speeds. The joints employ novel transd from rectangular to loaded circular wavegu producing a pure circularly symmetric TM n Because of the purity of the mode, no dissip mode suppressors are required so that inset loss is held to a minimum, and there is no pt shift with mechanical rotation. The joints a frequencies from 2.6 to 26.5 kmc . Average pc handling ranges from 3 kw to $1 / 2 \mathrm{kw}$. VswI less than 1.5 to 1 . Insertion loss is less than 0.1

Diamond Antenna \& Microwave Corp., D ED, 7 North Avenue, Wakefield, Mass. circle 71 on reader-service card

Spectrum Analyzers 2400 to 9600 mc

Series 860 spectrum analyzers have a range of performance that makes them valu for precise spectrum measurements, such as uation of high vswr, leakage, and loss; and ail sis of radar, radio relay, and other signals. turing simplicity of operation and lower p they offer a choice of frequency ranges from: to 9600 mc and have an accuracy of ± 0.08 cent, or $\pm 1 \mathrm{mc}$. The instruments are base the improved power supply and indicator type 860-I.
Polytechnic Research \& Development pany, Inc., Dept. ED, 202 Tillary St., Brool 1, N.Y.

CIRCLE 72 ON reader-service card

ENGINEERS

. cross new frontiers in system electronics at THE GARRETT CORPORATION
Increased activity in the design and production of system electronics has created openings for engineers in the following areas:
ELECTRONIC AND AIR DATA
SYSTEMS Required are men of project engineering capabilities. Also required are development and design engineers with specialized experience in servo-mechanisms, circuit and analog computer design utilizing vacuum tubes, transistors. and magnetic amplifiers.
SERVO-MECHANISMS
and electro-magnetics Complete working knowledge of electro-magnetic theory and familiarity with materials and methods employed in the design of magnetic amplifiers is required.

FLIGHT INSTRUMENTS AND
 TRANSDUCER DEVELOPMENT

Requires engineers capable of analyz. ing performance during preliminary design and able to prepare proposals and reports.

FIIGHT INSTRUMENTS

DESIGN Requires engineers skilled with the drafting and design of light mechanisms for production in which low friction, freedom from vibration effects and compensation of thermo expansion are important.

HIGH FREQUENCY MOTORS,
GENERATORS, CONTROLS Requires electrical design engineers with BSEE or equivalent interested in high frequency motors, generators and associated controls.

Send resume of education and experience today to: Mr. G. D. Bradley

corporation

9851 S Seplud Bir 985 S. Sepulveda Brird.
Los Angeles 45. Calif. divisions: AiResearch Manufacturing Los Angeles
AiResearch Manufacturing Phoenix
AiResearch Industrial Rex-Aero Engineering Airsupply - Air Cruisers
AiResearch Aviation

CIRCLE 551 ON READER-SERVICE CARD

AUXILIARY POWER

b for the U.S. Army's deadly NIKE HERCULES

NEW PRODUCTS

Kilomegacycle Generator

Stability of 1 part $\ln 10^{8}$

Model RD-170 generates both sinusoidal frequencies of 100 mc and 1000 mc and harmonic signals covering a major portion of the microwave spectrum. Output frequency stability is governed by the stability of a 1 mc reference signal. The unit is intended for use as a precise but low cost source for reference, monitoring or calibrating purposes. Employing crystal synthesizer design techniques, the instrument essentially consists of a free running 100 mc oscillator, which is phase-locked to the 1 mc reference, and multiplier stages which raise the frequency to 1000 me. A pencil tube in a coaxial cavity forms the final output state. Power delivered is 100 mw across 50 ohms.

Manson Laboratories, Inc., Dept. ED, 207 Greenwich Ave., Stamford, Conn. circle 73 on readir-service card

Pulse Modulator

Delivers 21 kw

USN-3D21B pulse modulator is a beam power tube capable of delivering 21 kw in $10 \mu \mathrm{sec}$ pulses. It features an open-type plate of large area for high thermal dissipation, a non-warping cathode, and gold-plated special alloy grids with heavy side rods and oversize heat radiators. The tube is rated to withstand a plate pulse voltage of 5 kv .

CBS-Hytron Div. Columbia Broadcasting System, Inc., Dept. ED, 100 Endicott St., Danvers, Mass.

CIRCLE 74 ON READER-SERVICE CARD

THヂ SKx Is

NO IOMNGER TEIE IMIMIT

Under the water... on the water... on land... in the air . . . and out into space . . . in all these areas Hughes advanced technology is being applied to vital military and commercial electronics projects.
In the space satellite field, for example, Hughes is active in the preliminary design of guidance and control systems, communication and telemetry systems, and sensing devices using infrared, optical and radar techniques.
Responsible for guiding and formulating the advanced systems concepts that make this new product diversification possible is the Systems Analyst. His creative thinking has motivated such new Hughes projects as advanced ballisitic missile guidance, space vehicle systems, and tactical missile systems. Other new programs initiated by Hughes Systems Analysts include advanced radar systems for all areas of military and civilian applications, including AICBM, missile

The wide range of activity at the Hughes Fullerton facility extends from basic data processing and surveillance radar research through final design and packaging.

```
New commercial and military contracts have created an immediate
need for engineers in the following areas:
```

Circuit Design
Reliability
Communications
Microwaves
Nuclear Electronics
ar Electronics
Write in confidence Computer Engineerin
Hughes General Offices, Bldg. 6-M, Culver City, Califomia.
Aerodynamics Vacuum Tubes Crystal Filters Systems Analysis 6-M, Culver City, Califomia.

O 195s. hughes aimeraft company
guidance, early warning, air traffic control; and integrated electronics systems for undersea warfare.
Currently the Hughes Research and Development Laboratories are engaged in the greatest expansion in their history. Professional opportunities have never been more promising, especially in the more senior areas such as Systems Analysis.
Other Hughes activities are also participating in the expansion. Hughes in Fullerton is developing and producing advanced three-dimensional radar systems. Hughes Products, the commercial activity of Hughes, is producing an electronics system which automates a complete line of machine tools.
Today Hughes offers Engineers and Physicists the opportunity of locating with an established firm and working in advanced new technical fields.

Ferromagnotic studios conducted by the Hughes Research Labora tories include fundamental research in the physics and chemistry of ferrites, synthesis of ferrite materials and development of ferromagnetic devices.

Creating a new world with ELECTRONICS
HUGHES

[^3]Tucson, Arizona

Time Delay Relays

Transistorized series

This line of time delay relays offers high temperature operation, high vibration, light weight and very short time delays. A transistorized rc time constant network is used. Two series are currently offered with time delays ranging from 50 msec to 60 sec . Operating voltage for either type will be 18 to $30 \cdot \mathrm{v}$ dc, although operation on ac voltages can be offered. The 31200 series can be provided with contact arrangements up to 4 pdt . Weight is approximately 6 oz , length $2-1 / 4$ in., and the unit will withstand vibrations up to 500 cps . The 31300 miniature series can be supplied with contact arrangements up to dpdt. This unit can withstand vibrations up to 2000 cps at 10 g . Weight of this style is approximately 3 oz .
A. W. Haydon Co., Dept. ED, Waterbury 20, Conn.

CIRCLE $7 S$ ON reader-service card

Response Indicator Range from 0.5 to 2250 cps

Model G-5 analyzes frequency response characteristics of servo amplifiers, filters, acoustic reproducers, transformers and shaker tables in the low frequency range from 0.5 to 2250 cps . It is helpful in locating resonant frequencies in mechanical structures and testing networks and devices which tend to produce distortion products, where hum and noise are present, and where measurements through large dynamic ranges are necessary.

Panoramic Radio Products, Inc., Dept. ED, 520
S. Fulton Ave., Mt. Vernon, N.Y.
circle 76 on reader-service caro

NEW PRODUCTS

Voltage Regulator

400 cps use

Type TM7101 voltage regulator is designed for $115 \mathrm{v}, 400 \mathrm{cps} \pm 5$ per cent, single phase duty with a rating of 1 kva . The input voltage range is $95-130 \mathrm{v}$ and the output voltage is adjustable from 110 to 120 v . Output voltage accuracy is constant to within a 1 v bandwidth for line voltage variations.
Superior Electric Co., Dept. ED, Bristol, Conn. CIRCLE 77 ON reader-SERVICE CARD

Pulse Height Analyzer

Improved 256-channel unit

The improved 256-Channel Pulse Height Analyzer, Model 20609, has these advantages: 27 hours pre-set time during which background may be counted and automatically subtracted from original run data; logarithmic readout on flatfaced cathode ray tube and strip chart recorder; dual-function high voltage supply; and interpolation lights to aid in setting zero point and instrument maintenance. All channels are printed out in less than one minute.
Radiation Counter Laboratories, Inc., Dept. ED, Skokie, Ill.
circle 78 on reader-service card

THE MISSILE MEN

From the earliest Assyrian "artillery missile"-with the flint-tipped warhead and hawk feathers for a guidance system - the fate of nations has been in the hands of the missile men.
Today, our strength in military missilery may hold the key to survival.
Martin based its long-range planning on that probability in 1946 with the development of one of this nation's first successfully operational guided missiles. The result is the total missile concept. Under this concept, far more is involved in missile system contracting than the design and production of hardware:
The testing, packaging, delivery, maintenance, launching, operation, field training and contractor service requirements make up the total story of missile performance...in the air, and operated by the military personnel.
The heavy demands of our country's greatly accelerated missile and space development programs now emphasize the importance of Martin's total capabilities as a major resource for the military and astroscientific branches of the government. Among those capabilities are three plant facilities which include the newest and most advanced missile development centers in the world.
Also part of these Martin capabilities is one of the great U. S. resources in manpower: More than 3.000 specialist engineers, trained and teamed in the total missile concept.
is one of the few systematically organized companies of genuine Missile Men in the country.

EALTIMORE.DENVER.ORLANDO

Packaged Amplifier

High flexibility

This flexible packaged amplifier, the Model UPA-2, can drive a $12,000 \mathrm{ohm}$ load to 100 v in either direction, and will tolerate large values of cable capacitance. Typical operations which can be performed separately or in combination include: straight amplification and inversions; slaving or transducing voltages into currerts and vice-versa; integrating and differentiating; adding and subtracting; and oscillating, bounding, clip ping, multivibrating, and other nonlinear functions. For standard $3-1 / 2 \mathrm{in}$. rack mounting, the unit can be removed from the rack adaptor and used as a bench-top amplifier or plug-in subassembly.

George A. Philbrick Researches, Inc., Dept. ED, 230 Congress St., Boston, Mass. circle 79 on reader-service card

Chopper
Nonmechanical type

This transistorized chopper, Model 50, is a solidly encapsulated unit which can be used either as a modulator or demodulator. Unlike mechanical choppers, the Model 50 can be driven from dc to hundreds of kilocycles. The switching circuitry used operates the transistors in a manner which provides stability and freedom from drift. The unit withstands shocks of 500 g for 11 msec , vibrations of 30 g up to 2000 cps , and acceleration of 700 g .
Solid State Electronics Co., Dept. ED, 8158 Orion Ave., Van Nuys, Calif.

CIRCLE 80 ON READER-SERVICE CARD

"Special" is our middlo name! We make millions of odd-size brass and aluminum nuts for all brass and aluminum nuts for all types of equipment. Unique high speed machinery turns all Fischer Extreme uniformity, competitive prices and prompt delivery assure price of aubatantial savings in co you of substantial savings in cost and time.
Next time you need 'special' brass or aluminum nuts, contact Fischer for fast action... premium quality.
 for precision at

SPECIAL MFG. CO.

- fischer special mfg. co.

422 Morgan St., Cincinnoti 6 .
Pleaso sond your now 20-page
CATALOG FS. 1000 contoining com.
plote specififor
oluminum nuts.
Nome
Nompony
Stroot-
City
CIRCLE 401 ON READER-SERVICE CARD

NEW PRODUCTS

Handy \& Harman Silver Powder and Flake for Electronic Applications

Among the manyforms of silver and silver alloys manufacfured by Handy \& Harman are:
Fine silver (wire, strip and foil) • Silver anodes and grain for plating Silver contact alloys - Silver powders Silver flake, paints and paste - Silver brazing alloys - Silver electronic solders • Silver sintered metals • Solder-flushed silver alloys - Silver chloride and oxide - Coin silver (wire and strip) - Silver bi-metals

The increased acceptance of silver powder and flake in electronic circuitry and components has created a demand for a source that can supply these materials at a consistently high level of quality.

Handy \& Harman manufactures silver powder and flake in all types and forms, for use in formulations on printed circuitry and wiring, resistors, condensers, thermistors, printed terminal strips on glass, ceramics or plastic laminates, etc.

If you are working on conductive or resistive coatings where you require excellent electrical conductivity, Handy \& Harman will welcome the opportunity to assist you in the choice - or discussion of any silver product that may interest you. Write for Technical Bulletin A-4 on Silver Conductive Coatings and Bulletin A-5 on Silver Powder and Flake.

Our technical service and field application experience are at your disposal... we welcome inquiries on products and product problems involving any form of silver.

Potentiometer
For dc analog computation

Developed initially for accurate conversion of slant range to ground range and altitude in dc analog computation, model PT315 trigonometric potentiometer enables accurate triangle solution over a range of angles commonly encountered in navigational problems. These 15 -turn units embody the sine or cosine function over a 100 -degree range of function. Conformity is 0.02 per cent for sine or cosine less than 0.707, and 0.04 per cent for sine or cosine greater than 0.707 .

Analogue Controls, Inc., Dept. ED, 39 Roselle St., Mineola, N.Y.

CIRCLE 82 ON READER-SERVICE CARD

Aircraft Blower

Delivers 175 cfm of air

The MSA 7861 aircraft blower unit delivers 175 cfm of air against an operating pressure of 16 in . of water and can be used in a temperature range from -75 to 160 F . The totally enclosed, explosion-proof 1.2 hp aircraft motor furnished with the unit operates with a 4-pin-type connector on a $200-\mathrm{v}, 400-\mathrm{cps}$ system and at speeds up to $11,000 \mathrm{rpm}$. The MSA 7861 unit weighs 8 lb and occupies a space of less than $8 \times 8 \times 9 \mathrm{in}$.

Torrington Manufacturing Co., Air Impeller Div., Dept. ED, Torrington, Conn.
circle su on reader-service card

A standard series of delay lines features compactness and meets MIL-C-15305A, Grade 1, Class B requirements. The $1 \mu \mathrm{sec}, 1000$-ohm line hals a delay-bandwidth product of over 7.5 per cu in. Molded in epoxy resin, units are square or tubular for printed circuit use or for stacking on common mounting screws. They can be stacked in series to give higher delays, or tap-off points can be used to give lower delays. Impedances range from 500 to 2000 ohms, with delays up to 1μ sec. Operating temperature range is -55 to +125 C . Rise times are short $-0.15 \mu \mathrm{sec}$ maximum for the longest delay.
NYT Electronics, Inc., Dept. ED, 2979 N. Ontario St., Burbank, Calif.
circle 84 ON reader-service card

Curve Tracer

Plots transistor characteristics

Iodel 341 power transistor characteristics plutis: is a compact, general purpose curve tracer, designed for use with both point-contact and junction transistors. Its uses include supplying design information for transistor circuits, observing transistor anomalies, examining transistors for changes or deterioration, checking tolerance of transistors and matching or comparing transistors. Design permits circuit simplification similar to that of one-curve tracers, yet yields information equivalent to that from far more compl x plotters.
Dunn Engineering Assoc., Inc., Dept. ED, 225 C Brian Hwy., Cambridge 41, Mass. circle 85 on reader-service card

MEETS ALL
EXISTING
SPECIFICATIONS AND VIBRATION
TESTSI

In order to give you the widest range of application, DeJUR can also supply apecial configurations for unusual design functions, where less than 5 degrees separation between taps is desirable. Illustrated to the left are two of the new Field Insertable Taps set zero degrees apart.

PRODUCT-DESIGN MEMOS
 FROM DUREZ

Phenolics for a relay

 New Idea for control panels
But what if it rains?

From time immemorial, weather has upset the military plans of men. In Colonia days, wet gunpowder could lose a skir mish. Today, one moisture-affected part an nullify months of costly labor on a can nullify
This helps to explain the increasing pressure on moisture-resistant insulations for electronic parts that must not fail. It explains, too the growing interest in elatively new Durez molding material, diallyl phthalate.
This is the only plastic that retains its high insulation values over extended periods at relative humidities above 90%.
Its arc resistance, as measured by ASTM D495 (Method A or B) can be consistently reproduced.
It does not corrode metal contact points. Because it is a thermosetting material, it provides virtual freedom from cold flow and creep.
You can get this material from us as an orlon-filled granular blue or green molding compound with plasticity values of 10 , 12, or 16 by ASTM D731. It is designed o meet the requirements of Mil-M-18794, Type SDI-5.

For a data sheet detailing properties of the compound and of molded material, check the coupon.

Right for a relay

Are you taking full advantage of the versatility of today's phenolics?
Consider the example of this new power relay produced by R-B-M Division, Essex Wire Corporation-a natural application for phenolic
Designers wanted this relay to be low in cost, since it is intended for use in appliances. A unique feature, hammer-blow action on the contacts, calls for a specific action on the contacts, calls for a specific degree of mechanical strength in the parts.
Other requirements include high dielectric

strength, stability on exposure to high humidity, and glossy finish

A Durez medium-impact phenolic satisfies all these musts; helps R-B-M to offer a rugged, trouble-free product at a low price.
When you're designing electrical parts or components, remember that you're most likely to find the exact balance of properties you need-electrical, mechanical, and chemical-in one of the more than 150 Durez phenolic molding compounds. to work for you. Why not call him in to work early on your next job?

New duct

cuts wirlng cos

You can save up to 30% of the cost of wiring control panels with this new per-
forated material, called "Channel-Duct." Easily installed by means of clips, it takes the place of harnesses and solid-wire layouts, at a substantial reduction in cost. It also simplifies wire-tracing and replacement, and prevents trouble from vibration

Assembly consists of two side members punched with $1 / 2^{\prime \prime}$ holes, and a solid snapon cover strip. Strips may be sheared to any length.

Made of HeTron ${ }^{(3)}$ polyester resin, re inforced with fibrous glass, the duct combines high degrees of flame retardance impact strength, heat and moisture stability, and superior arc resistance.

The Glastic Corp
For information on "Channel-Duct," write the manufacturer, The Glastic Corp. 4321 Glenridge Road, Cleveland 21. Ohio This is iust one example of how product designers are using Hetron's unique properties. If you have a product (or just popa) calling for a strong lightweight an idea) calling for a strong, lightweight material with ine in a complete, you may find some help in a comple Hetro ata fle which we glad to send you. ust check the coupon.

For more information on Durez materials mentioned above, check here:
\square Diallyl phthalate, 16694
\square Phenolic molding compounds-descriptive bulletin
\square Hetron resins-technical data file
Clip and mail to us with your name, title, company address. (When requesting samples, please use business letterhead.)

PLASTICS DIVISION

HOOKER CHEMICAL CORPORATION
2207 Walck Road, North Tonawanda, N. Y.
CIRCLE 87 ON READER-SERVICE CARD

NEW PRODUCTS

Phase Meter and Phase Shifters
 0.1 deg accuracy

Model 340 phase meter and phase shifter as shown provides phase measurements and a phase source having an accuracy of 0.1 deg . The phase angle is continuously adjustable from 0 to 400.0 deg. Model 440 phase shifter has an accuracy of better than 0.1 deg . The input impedance is 200 K and the output impedance is 500 ohm .

Dytronics Co., Dept. ED, P.O. Box 3676 Columbus 14, Ohio.

CIRCLE 88 ON READER-SERVICE CARD

Clutch
Has torque of $140-0 z-\mathrm{in}$.

Model HCS-500 clutch has 140 oz-in. torque rating. Torque may be controlled from zero up to the maximum rating of the unit, relatively independent of slip speed characteristics, according to the clutch control current setting. The unit employs a stationary coil, eliminating frequently objectionable characteristics of slip rings.

Magtrol, Inc., Dept. ED, 240 Seneca St., Buf. falo 5, N.Y.

CIRCLE 89 ON READER-SERVICE CARD

Low Pass Filters

Feature low insertion loss
Type A2 low pass filters have low insertion loss, are very compact in size and have rugged construction. Six models are available with cutoffs from 125 to 1000 cps. Specifications include an insertion loss of 0.2 to 0.5 db ripple in the
piss band; vswr of 1.5 max; puwer handling of 5 v , and weight of less than 3 oz .
Maury \& Assoc. Electronic Research \& Develop, nent, Dept. ED, 10373 Mills Ave., Pomona, Calif.

CIRCLE 90 ON READER-SERVICE CARD

Servo Amplifier

Has variable damping or feedback control

Operating from -55 to +125 C , this transistorized servo amplifier with variable damping or feedback control, has an output power of up to 10 w . Type AMP-9616 can be designed to drive a servo motor-generator with standard 115/57.5 v control phase or $40 / 20 \mathrm{v}$ control phase without the need of an output transformer. Open loop power gain is up to 90 db .
John Oster Manufacturing Co., Avionic Div., Dept. ED, 1 Main St., Racine, Wis.

CIRCLE 91 ON READER-SERVICE CARD

Timers

Intervals from 50 msec to several hours

This series of transistorized RC timers has time intervals ranging from $50 \mu \mathrm{sec}$ to several hours and eliminates use of motor-driven and thermal elements. Voltage ranges are 14 to 32 v dc or 24 to 220 v ac. They measure as small as 3 cu in. and weigh a minimum of 3 oz . Temperature range from -55 to +71 C or -55 to +125 C.
Jordan Electronics Div. of The Victoreen Instrument Co., Dept. ED, 3025 W. Mission Rd., Aihambra, Calif.

Circle 92 on reader-service card

H MICRO SWITC 1 Precision Switches

We've Miniaturized the Subminiaturel

WEIGHT: 1 gram . . 28 switches to the ounce . . . over 430 to the pound. SIZE: . $500^{\prime \prime}$ long, $.200^{\prime \prime}$ wide, . $350^{\prime \prime}$ high. CUBIC CONTENT: . 035 cubic inches. ELECTRICAL RATING: $5 \mathrm{amps}-250 \mathrm{vac}, 30 \mathrm{vdc}$. SPDT.

After a long period of laboratory development, miCRO sWITCH announces this new, highly miniaturized precision snapaction switch and a complementary line of actuators.
We call it the "Sub-subminiature!"
This new "SX" basic switch represents an entirely new set of answers to the space-weight problems in dependable precision switching. It combines new small size with more than ample capacity for wide usefulness, meeting the pressing demand for miniaturization combined with reliability.
In its exacting development, many prob-

The two-word name micro switce
is not a generic term. It is the
name of a division of Honeywell.
lems of design, testing and quality control presented themselves. However, 23 years of experience proved of immense value. As a result, a new standard has thus been set by which all precision switches must be measured.
This broad experience can prove of equal value to you. Send for more information about this new switch. Request Data Sheet No. 148.
\qquad
MICRO SWITCH...FREEPORT, ILL. A division of Honeywell
In Canada: Honeywell Controls, Ltd., Toronto 17, Ontario

CIRCLE 9'S ON READER-SERVICE CARD

REGOHM SOLVES Another Electronics Control Problem

REGOHM CONTROL HELPS MAINTAIN 0.01 oz/year SENSITIVITY IN NEW HALOGEN LEAK DETECTORS

The General Electric Company uses a regohm to control the input voltage to the power supply transformer of its Type H Halogen Leak Detectors. The regohm was installed because the high sensitivity requirements of these instruments call for rigid control of the voltages on the amplifier tubes and the sensing element. regohm's small size and light weight were other factors in this application. Furnished with extremely stable gain by the REGOHM, the Leak Detector provides a quick. clean, and reliable method of locating leaks as small as 0.01 ounce a year in pressurized or evacuated enclosures.

In operation, the REGOHM senses any change in the voltage across the secondary of the power supply transformer and instantly modifies the transformer primary input to restore the secondary voltage to normal. In this way, both AC and DC output voltages are regulated to better than $\pm 1 \%$, with input voltages of 120 or $240 \mathrm{VAC} \pm 8 \%$ at frequencies from 48 to 480 CPS.

Where close control is required in electronic or electrical equipment, designers choose regohm, because of its exceptional sensitivity; stability, wide range of control resistance, long life, permanence of adjustment, rugged design, and low cost.

Electric Regulator Corporation produces many other control devices MAGOHM magnetic voltage regulators, regohm-magaset exciter field regulators, voltage and frequency monitors, line-load regulators, airborne magnetic amplifiers, filament regulators, speed controls, GOVOHM diesel governors, and servomotor controls.

Our engineers will be glad to help you select a control that can solve your problem, both performancewise and costwise. Quite likely, it has already been solved by an established application of an Electric Regulator control device. Call, wire, or write Electric Regulator Corporation, Norwalk, Connecticut.

CIRCLE 94 ON READER-SERVICE CARD

Please write for design data and performance specs on REGOHM multi-stage regulators in applications similar to this.

REGOHM (

ELECTRIC REGULATOR CORPORATION NORWALK
connecticut

NEW PRODUCTS

Gear-Head Motor
Withstands very high shock

Model P5B827P75 is stated to be designed to withstand 7500 g . It operates on 28.5 to 31.5 v dc developing $1000 \mathrm{oz}-\mathrm{in}$. of torque at -65 C . The gear box is a six-stage, planetary design with a reduction ratio of $13,840: 1$, giving the output shaft a rotation speed of 1.3 rpm .
Western Gear Corp., Dept. ED, P.O. Box 182, Lynwood, Calif.

CIRCLE 95 ON READER-SERVICE CARD

Gas Noise Source Tube

Generates random noise of $16 \pm 1 \mathrm{db}$

Designed for use with the standard RG-52/U waveguide assembly, this gas noise source tube type $6: 357$ will generate random noise at a noise level of $16 \pm 1 \mathrm{db}$ above 290 K at frequencies in the 2.4 to 3.6 cm waveband. The use of an inert gas makes the noise output independent of the operating temperature.

Central Electronic Manufacturers, Inc., Dept. ED, 2 Richwood Pl., Denville, N.J.

Circie 96 on reader-service card

Magnetic Shift Register

Speeds to 500 kc

A two-cores-per-bit shift register operates at speeds up to 500 kc . The maximum shifting rate of the DK 107 is above one megacycle. All components including two cores and four gold-
honded germanium diodes are encapsulated in ezoxy. Units are provided with solder lug headers, plug in bases, and solder pins for printed circuitry.

Airtronics, Inc., Dept. ED, Bethesda, Md. circle 97 ON reader-service card

Converter

Features three section tuner

Model 99R all-channel uhf converter features a three-section tuner with a dual input section. Addítional features are simplified single-knob tuning of channels 14 through 83 , drift-free performance, double-tuned rf section and precise 300 ohm impedance match. The unit operates on 117 v at 60 cps . It weighs $3-1 / 2 \mathrm{lb}$ and measures $6-3 / 4 \times 5 \times 4-3 / 4 \mathrm{in}$.
Blonder-Tongue Labs., Inc., Dept. ED, 9-25 Alling St., Newark 2, N.J.

CIRCLE 98 ON READER-SERVICE CARD

Transistor Tester

Measures transistor characteristics

Model TT-205 transistor tester measures small signal beta, collector leakage current, and collector resistance on all npn, pnp, surface barrier, grown or diffused junction transistors. Eleven oplerating points are provided with one selector switch. The instrument employs three transistors, Ore as a stable local oscillator having a nominal fr quency of 1000 cps , the other two as a special purpose, low level, synchronous linear detector. Sonex, Inc., Dept. ED, 73 S. State Rd., Upper Larby, Pa.

CIRCLE 99 ON READER-SERVICE CARD
ElECTRONIC DESIGN • July 9, 1958

NOW...AUTOMATED PIGTAILING ...AT 75% LESS COST - with the NEW AMPl Automachine Shielded Wire Ferrule

- machine-fed ferrules and pigtail wire - controlled compression termination, with AMP automachine technique - dual applicator permits termination of two leads or double-ended jumper, simultaneously - pigtails cut to desired length, automatically!

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA A-MP products and engineering assistance are available through wholly-owned subsidiaries in: Canada • England • France • Holland • Japan CIRCLE 104 ON READER-SERVICE CARD

New

Ruggedized Westinghouse Image Orthicon!

DURABLE NEW WL-7198 WITHSTANDS SEVERE ENVIRONMENTAL CONDITIONS, SHOWS NO DEGRADATION AFTER 30 G'S!

Now Westinghouse has developed an image orthicon tube hat's rugged enough to withstand 30 g 's . . . yet sensitive enough to perform efficiently at low light levels. The new WL-7198 is ideal for military, industrial and scientific applications subject to extreme environmental conditions.
tYPICAL CHARACTERISTICS OF THE WL-7I98 ARE:
Vibration: (1) Operable throughout MIL-E-5272A Procedure I (10 g 's from 50 to 500 cps)
(2) 350 lines horizontal resolution at 5 g 's from 50 to 500 cps with 3×10^{-2} footcandles on photocathode.
Shock: No degradation after 30 g 's
Low light level performance: 250 lines minimum resolution 3×10^{-4} footcandles on photocathode.
Sample quantities of the WL-7198 are available for immediate delivery.
WESTINGHOUSE ENGINEERS WILL HELP YOU SOLVE YOUR IMAOE ORTHICON PROBLEMS UPON YOUR REQUEST.

YOU CAN BE SURE...IF IT'S
VVester Electronic Tube Div. $\underbrace{6}_{\text {Elmira, New York }}$

NEW PRODUCTS

Patchcord System
Modular contact strips

This patchcord programming system provides an uncomplicated method of programming that is both compact and flexible. Its flexibility result from the modular arrangement of contact strip. and the use of either single or multiple patch cords. By altering the size of the framework any reasonable number of contacts can be provided The compactness of the system is such that 44 contacts are contained in an area $8-3 / 32 \mathrm{in}$. wide by $4-1 / 2 \mathrm{in}$. high.
Virginia Electronics Co. Inc., Dept ED, Rive Rd. and B. \& O. Railroad, Washington 16, D.C CIRCLE 106 ON READER-SERVICE CARD

Sampling Switch 45 channels

This solid state commutator has 45 non-short ing channels, sampled 20 times per second. It ac cepts signals ranging from 0 to +5 v dc and pro duces a train of noise-free pam waveforms wit rise and fall times not exceeding 0.5 per cent 0 full scale pulse. "On" time is continuously a justable from 100 to 0 per cent of duty cycle. Pr selected repetition rates are selected by prope wiring to mating plugs. The unit weighs less tha $2-1 / 4 \mathrm{lb}$, and requires less than 3 w of 28 v dc With source impedances as low as 5 k conversion accuracy is ± 0.5 per cent of full scale.

General Devices, Inc., Dept. ED, Princeton N.J.

CIRCLE 107 ON READER-SERVICE CARD
ELECTRONIC DESIGN • July 9, 1958

Type 2SM two-pole relay is available on special order to those who need vibration immunity to two or three times the normal limitation of 20 g at 2000 cps . The relay will withstand temperatures to 125 C, standard, and to 200 C , special. Contacts are rated to 5 amp resistive, and for dry circuit application.
Hi-G, Inc., Dept. ED, Bradley Field, Windsor Locks, Conn. CIRCLE 108 ON READER-SERVICE CARD

Tape Monitor
Multi-channel

Model P-106-B Systemat multichannel tape monitor has applications in telemetering, jet engine testing and many other similar jobs. The unit includes six Panelscopes, power supply, and sweep generator for up to 14 monitors. A system of lamps is used to indicate under or over modulation. The model P-106-B is designed to indicate full scale vertically or horizontally with an input of 1 v rms with a response of dc to 300 kc thin 3 db .
Waterman Products Co., Inc. Dept. ED, 2445 Emerald St., Philadelphia 25, Pa.
CIRCLE 109 ON READER-SERVICE CARD CIRCLE 393 ON READER-SERVICE CARD $>$

Heater voltage is onlv 1 volt. $30 \mathrm{ma}, \mathrm{AC}$ or I$) \mathrm{C}$. The ancorls will draw only 0.5 ma from a 50 volt I)(supply durine the zerero-bias "on " condition. A :3.0) volt I)(voltage is sufficient () cut-off plate current and light. Write for data sheet to Semiconductor and Special P'urpose Tube Livision. Amperex

The amperex 6977 is a high-vacuum filamentary suhminia ture indicator triode which gives a bright hlue-green indication when the control grid is at zero potential. It has heren developed specifically for transistorized computers, where its high inpuut impedance and small signal recquirements enable it to monitor the transistor circuits without loading them and affecting their operation. It replaces the conventional and much more expensive high-voltage transistor and neon lamp combination so far used in transistor computers for the same purpese. Since its high input imperdance permits the use of a series grid resistor, it will not short out the transistor circuit if it should ever fail. Manufactured with special computer tube techniques, the 6977 is designed for 20,()()() hours life.

Nonitors Transistorized circuits

- with higher information density
- with simpler associated circuitry
- without ionization- and deionization-time problems
- with increased circuit protection
- with lower power requirements
- with lower cost per unit
- with ultra-compact assembly on printed circuit boards 2

NEW PRODUCTS

Punched Card Buffer

Card-to-tape compatibility

This magnetic core memory unit, type 80-CB7, stores up to 80 alpha-numeric characters to accommodate the full contents of a standard card. Additional applications include transfer of card data to electronic computers, digital control systems, and remote transmission equipment.

Telemeter Magnetics, Inc., Dept. ED, 2245 Pontius Ave., Los Angeles 64, Calif.

CIRCLE 394 ON READER-SERVICE CARD

Tuning Forks

Accuracies to 0.01 per cent

Series 6250 tuning forks cover a range of 3 CO4000 cps at accuracies to 0.01 per cent. Configurations available include thermistors for external circuit temperature compensation and heaters for extreme temperature ranges.

Varo Manufacturing Co., Inc., Dept. ED, 2201 Walnut St., Garland, Tex.

CIRCLE 395 ON READER-SERVICE CARD
Power Supply
Dual transistorized unit

Model TQ-36 is a twin transistorized dc power supply, with each output rated at 4-36 v, 0-1 amp. Regulation of 0.1 per cent for line or load is

WESTINGHOUSE TAKES A GIANT STE:N

Through major improvements in silicon purification and transistor fabrication, Westinghouse has broken down the previous limitations of Silicon Power Transistors. The result is a new series of Westinghouse Power Transistors which can operate at high efficiencies in the "true power range."

LIFE-SIZE DRAWING
shows how Westinghouse Silicon Power Transistor is Silicon Power Transistor is
designed for attachment to designed for attachment to
heat sink with a screw stud. heat sink with a screw stud
All leads are in the base.

THESE are the first members of an entirely new family of Westinghouse Silicon Power Transistors, which have the advantages associated with silicon (high voltages and high operating temperature) without the disadvantages (high losses). As you can see from the chart on the right-hand page, these units possess exceptionally low saturation resistance-less than one half ohm. This low saturation resistance which results in low internal dissipation, coupled with high power handling capacity, makes possible silicon transistors which can efficiently handle 1000 or 1500 watts. For example, as a DC switch, handling 1.5 kw (300 volts at 5 amperes) the internal dissipation of the units is about 12.5 watts with a resulting efficiency of better than 99%. Typical reverse leakages are 3 milliamperes.

Like other silicon devices, these transistors can operate in ambient temperatures up to and exceeding $150^{\circ} \mathrm{C}$ while germanium units are limited to $85^{\circ} \mathrm{C}$. Thus, where the higher power rating is not required these units may be used for their high temperature capabilities. It also follows that wherever germanium power units are presently employed, a switch to silicon transistors will result in higher reliability of operation, because of the greater margin of safety with respect to operating temperature.

There are a great many circuits for which this new type of silicon power transistor is made to order. It will find use in inverters or converters (AC to AC , AC to DC, DC to AC, DC to DC), to control frequencies for data processing, servo output, and other aircraft information applications. It will serve as a low frequency switch, as mentioned above; it will operate efficiently with low power supply voltages; and it will find a number of uses in class A amplifiers. There are also many additional applications-too numerous to list here.
These Westinghouse Silicon Power Transistors are available in sample quantities for your testing and immediate application. Call your Westinghouse representative or write directly to Westinghouse Electric Corporation, Semiconductor Dept., Young wood, Pennsylvania.

N SLILCON POWER TRANSISTORS

	current rating	V сво	$V \mathrm{SE}\left(\mathrm{V}_{\mathrm{Eb}}=0\right)$	R s
X 107-2	2 amperes	30-300V	$30-300 \mathrm{~V}$	0.5 ohms Typical
X 107-5	5 amperes	30-300V	$30-300 \mathrm{~V}$	0.4 ohms Typical

Thermal resistance-Junction to case, $0.7^{\circ} \mathrm{C} /$ watt typical. Current ratings based on the current at which current
gain is equal to or greater than 10. It is possible to switch higher collector currents with some sacrifice in gain.

LOW SATURATION RESISTANCE
is exhibited in this graph showing values for a typical Westinghouse Silicon Power Transistor driven to 5 amperes. The values are fractions of those abserved in other silicon transistors.

VOLTAGE CHARACTERISTICS
of a 300 -volt unit are shown here. High emitter-base voltage may be important in some circuits. In this illustration emitter-base reaches 100 volts.

COMMON EMITTER OUTPUT
 CHARACTERISTICS

are charted here for the lower current outputs. The characteristics saturate sharply.

DC CURRENT GAINS
are presented as functions of col lector-emitter current in the 2 am-pere- and 5 ampere-rated units.

YOU CAN BE SURE...IF IT'S Westinghouse CIRCLE 396 ON READER-SERVICE CARD
afforded by a Zener diode reference. Output impedance is 0.01 ohm, dc. Typical transient response is $50 \mu \mathrm{sec}$ and ripple is less than 3 mv .
Universal Electronics Co., Dept. ED, 1720
22nd St., Santa Monica, Calif.
CIRCLE 397 ON READER-SERVICE CARD

Constant Speed Drive
 16 in. oz at 1000 rpm

Designed for computer and control system applications, this constant speed power drive supplies $16 \mathrm{in.oz}$ at 1000 rpm . Tolerance on speed is in the order of ± 0.1 per cent with an input voltage variation of ± 20 per cent and an input speed of $1100 \mathrm{rpm} \pm 15$ per cent. A typical unit, type 041-9902, measures $4-1 / 4 \times 2 \times 2 \mathrm{in}$. and weighs in the order of 1 lb . This unit utilizes a timing motor requiring $28 \mathbf{v}$ dc at $3 \mathbf{w}$.
M. Ten Bosch, Inc., Dept. ED, Pleasantville, N.Y.

CIRCIE 398 ON READER-SERVICE CARD

Resistors
 Grid resistance Element

Using a specially designed metal alloy grid resistance element, these resistors are available in three types: the CAH, 0.25 w ; the $\mathrm{EAH}, 0.50$ w ; and the GAH, 1.0 w , with full ratings at 100 C ambient. The resistors exceed Mil specifications for wirewound and metal film type precision resistors. The resistors employ a noninductive resistance element for excellent high frequency characteristics. The metal alloy grid results in a noise level comparable to that of wirewound resistors.

Allen-Bradley Co., Dept. ED, 136 W. Greenfield Ave., Milwaukee 4, Wis.

CIRCLE 399 ON READER-SERVICE CARD

WESTON INSTRUMENTS: STANDARDS OF STABILITY IN SCIENCE AND INDUSTRY
Weston offers a broad new hive \rightarrow of long- scale instruments

250° SCALES MEAN GREATER READABILITY FROM EACH SQUARE INCH OF PANEL SPACE

Weston's new series of Long-Scale Instruments now fills the requirements of a wide variety of special applications. Rugged, spring-backed-jewel mechanisms are self-shielded for immunity to the effects of stray magnetic fields. The instruments may be mounted without concern for panel thickness or material. Thus, exceptional stability (both mechanical and electrical) teams up with unequalled readability for a new high in panel instrument value. Accuracies are within $\pm 1 \%$ of full-scale range.

Weston Long-Scale Instruments are available in Aircraft and Standard Flanged cases for a wide range of current, voltage, tachometric and temperature indications. Consult your local Weston representative for complete details on Long-Scale Instruments . or write for Catalog A-50. Address: Weston Instruments, Division of Daystrom, Inc., Newark 12, N. J. In Canada: Daystrom Ltd.. 840 Caledonia Rd. Toronto 10. Ont. Export: Daystrom Int'l., 100 Empire St., Newark 12, N. J.

Take advantage of Weston's unusually fast prototype service,

WESTON

CIRCLE 110 ON READER-SERVICE CARD

NEW PRODUCTS

Terminals

High temperature ce. ramic-to-metal

These ceramic-to-metal lead-through terminal which provide vacuum seals around conduct lead-throughs, are designed for high tempera tres and high altitudes. The terminals are fo use with soft solders at temperatures up to 450 and with hard or silver solders at temperature to 1400 F .
Thermo Materials, Inc., Dept. ED, 4040 Camp bell Ave., Menlo Park, Calif.

CIRCLE 111 ON READER-SERVICE CARD

Capacitor
Leads
Lock-in

Available on RI-cap printed circuit capacitor Swedge leads lock firmly into circuit boards ant prevent falling out or tipping over. A specif shoulder stop keeps the leads from being pusher through the board and prevents durez pant from interfering with soldering. The leads inset easily into various size holes.

Radio Industries, Inc., Dept. ED, 5225 Ravenswood Ave., Chicago 40, Ill.

CIRCLE 112 ON READER-SERVICE CARD

Components

For 26 v and 115 v, 400 cps operation

This series of synchros, resolvers and line transformers for indication and control is d signed for 26 v and $115 \mathrm{v}, 400 \mathrm{cps}$ operation

St.uinless steel construction with high nickel la ninations provides for good corrosion resistarce. Operating temperatures are from -50 to +125 C . In addition to position indicating on valves, computer shafts, and missile components, the units achieve accuracy as sensing elements and in servo mechanisms.
Induction Motors of California, Dept. ED, 60.58 Walker Ave., Maywood, Calif.

CIRCLE 113 ON READER-SERVICE CARD

Cooling System

Takes large heat loads

The U-520878-1 hydraulic and electronic system has such performance characteristics as: max heat loads of 2500 w (hydraulic) and 5150 w (electronic); required air flow of only 75 lb per min; max pressure drop of $6 \mathrm{in} . \mathrm{H}_{2} \mathrm{O}$ at 122 lb per \min, and an operative altitude range to f0,000 ft.
United Aircraft Products, Inc., Dept. ED, 1116 Bolander Ave., Dayton, Ohio.

CIRCLE 114 ON READER-SERVICE CARD
Silicon Diodes
Rated to 500 r pir

These diodes provide dc forward currents up to 45 a with a maximum peak inverse voltage to 800 v . They are capable of operation at a junction temperature of 200 C .
International Rectifier Corp., Dept. ED, 1521
2. Grand Ave., El Segundo, Calif.
circle 115 ON READER-SERVICE CARD

If you have this problem, investigate

- an example of Phelps Dodge's realistic approach
to Magnet Wire research

THE PROBLEM: To develop a solderable film-coated wire without fabric for winding universal lattice-wound coils without adhesive application.

THE SOLUTION
Phelps Dodge Grip-eze - a solderable film wire with controlled surface friction for lattice-wound coils that provides mechanical gripping between turns and keeps wire in place.

EXAMPLE: Coils wound with (a) conventional film wire; (b) Grip-eze. Note clean pattern of Grip-eze as compared to fall-down of conventional film wire.

Any time magnet wire is your problem, consult Phelps Dodge for the quickest, easiest answer!

Narda SonBlasters offer the most complete line of lowest-cost mass-produced ultrasonic cleaners!

Narda's mass-production techniques assure you the most complete line of ultrasonic cleaners at the lowest prices in the industry! From the smallest 35 -watt to the amazing 2500-watt unit with a tank capacity of 75 gallons, Narda's SonBlasters are available now-off-the-shelf-for immediate delivery. And with a full 2 -year warranty besides!

What do you want to clean? Transistors, semi-conductors other electronic, automotive, missile and avionic components, instruments, timing mechanisms - Narda's SonBlasters clean
'most any mechanical, electrical or horological part or assem bly you can think of - and clean faster, better and cheaper. No matter what you need in ultrasonic cleaning equipment, you'll find Narda's complete line of production-size units have the quality, power, performance, capacity and appearance of cleaners selling up to three times their price! Write for more details now and we'll include a free questionnaire to help determine the precise model you need. Address: Dept. ED-16E.

Generato
35 watts
Cerized Tank NT-202
Capacity: $3 / 8$ gallon An amazingly efficient, yet inexpensive, ultra sonic cleaner. Duty cycle timer permits opera-
tor to turn the unit on, set it, and leave; the SonBlaster will turn off automatically at the end of the cycle. Four to 0.120 min . Also available with. out timer at slightly lower cost
$(\mathbf{G}-201)$.
$\$ 220$

Generator G. 601 Transducerized Tank NT. 602 60 watts special circuit and selector switch
permitting operator to alternate
between two tanks. when items being cleaned require different
$\$ 351$ being cleaned require differen 411

Transducerized Tank NT-1505 Generator G-1501
Capacity: 5 gallons 200 watts
The lowest price in the industry f
this capacity and activity. Generator also will operate 2, 3 or 4
submersible transducers at one time. with just a turn of the load
selector switch on the front panel.
$\$ 695$

Transducerized Tank NT. 5001
Capacity: 10 gallons

Generator G-25001 2500 watts Powerful unit drives the largest mass-produced industrial-size transducerized ultrasonic cleaning tank made! (Tank NT. 25001; capacity: 75 gallons.) G-25001 generator also energizes up to 40 submersible transducers.
\$4360
Heli arc welded stainless case, hermetically sealed Heli arc welded stainless case, hermetically sealed
for safe. Ieak-prof immersion. Radiating face: 27 sq. in. Effective plane of radiation: 40.50 sq . in. (approximately 10 $\mathrm{K} 5^{\prime \prime}$). Effective cavitation of volumes up to 1200 cu in. at 24 in. tank
height (5 gal.) and 2400 cu . in. at 48 in . tank height (10 gal .). Bulkhead electrical fitting on back allows all wiring connections to be made on outside of tank. For use in any arrangement or location in any shape tank you desire to use. Also available-
model NT-604, identical with NT-605. except for pipe mhread instead of bulkhead fitting, permitting electrical
connections inside of tank.
$\$ 130$

Consult with Narda for all your ultrasonic requirements. The SonBlaste catalog line of ultrasonic cleaning equipment ranges from 35 watts to
2.5 kW , and includes transducerized tanks as well as immersible trans ducers which can be adapted to any size or shape tank you may now be using. If ultrasonics can be applied to help improve your process. Narda will recommend the finest, most dependable equipment available

- and at the lowest price in the industry! switch on the front panel to operate up to 8 submers-
ble transducers of 8 NT. 602 or 2 NT.1505 transduc-
erized tanks at one time. Larger tanks available on erized tanks at one time. Larger tanks available on
special order.
\qquad
the narda ultrasonics corporation 118.160 HERRICKS ROAD, MINEOLA, L.I., N. Y. Subsidiary of The Narda Microwave Corporation
\square
(D) ())ITIID

For custom-designed installation and unique electro-acoustic applications, including cleaning, soldering, welding, drilling and non-destructive testing, consult our subsidiary, Alcar Instruments Inc., at the address below.

CIRCLE 116 ON READER-SERVICE CARD

NEW PRODUCTS

Frequency Measurement
Range from 2000 to 4000 mc

Developed for the exact determination of fre. quencies of transmitted signals, this instrument is basically a frequency marker generator cover ing the range from 2000 to 4000 mc . Applic tions include use in counter-measures, commun: cation systems, and telemetering.

Allen B. DuMont Labs., Inc., Dept. ED, 750 Bloomfield Ave., Clifton, N.J. CIRCLE 117 ON READER-SERVICE CARD

Video Attenuator
Flat response to $\mathbf{1 0} \mathbf{m c}$

Model V256 video attenuator is available i 45 steps of 0.1 db per step. The attenuator has flat frequency response from dc to 10 mc and has either a standard lug type terminal board, or UG-185/U connectors.
The Daven Co., Dept. ED, Livingston, N.J. CIRCLE 118 ON READER-SERVICE CARD

Low-Noise Potentiometer
Operates from -85 to +185 F

Capable of handling up to 3 w , the mode 101 low-noise precision potentiometer operates
ver a temperature range from -85 to +185 F . t stands 5 g of vibration between 20 and 2000 p s and up to 30 g of shock in six directions. This 0 -turn potentiometer is available in eight standrid resistance values between 500 and 100,000 hnis. Standard linearity tolerance is ± 0.5 per ent. Other resistance values can be provided vith linearity up to ± 0.05 per cent.
Hub-Pot, Inc., Dept. ED, 1242 E. Transit Ave., omona, Calif.

CIRCLE 119 ON READER-SERVICE CARD

Waveguide Bending

Process provides smooth interior

This forming process, for bending and twisting vave guides, produces a uniformly smooth inlerior devoid of energy absorbing hot-spots. Draw marks, creases, burrs and ripples are elimnated by the process, which is called Micromooth. The method allows closer tolerances to o be held on inner dimensions while bends in ny plane can be combined with twists and sharp adii.
Uniwave, Inc., Dept. ED, Farmingdale, N.Y. circle 120 on reader-service card

I-F Preamplifier

20 db gain over 10 mc band

Model P205 preamplifier is designed to be fed tom a crystal mixer having a 200 to 300 ohm bilanced output. A variation of the P205, model P205A, is available for 200 ohm unbalanced mixers. The unit provides a gain of 20 db with a Enclwidth of 10 mc . Noise figure is 2 db . Output Ip dance is 50 ohms, and input is either 200 to 0 ulims balanced or 200 ohms unbalanced.
Instruments For Industry, Inc., Dept. ED, 150 en Cove Rd., Mineola, N.Y. CIRCLE 121 ON READER-SERVICE CARD

2 Giant Waldes Truarc Beveled Rings Cut Costs \$500, Save 7612/2 Hours Machining-Assembly Time on X-Ray Unit

Whatever you make, there's a Waldes Truarc Ring designed to save you material, machining and labor costs, and to improve the functioning of your product.
In Truarc, you get
Statistically Controlled Quality from engineering and raw materials to the finished product. Every step in manufacture watched and checked in Waldes' own modern plant.
Complete Selection: 36 functionally different types. As many as 97 standard sizes within a ring type. 5 metal specifications and 14 different finishes. All types available
quickly from leading OEM distributors in 90 stocking points throughout the U. S. and Canada.

Field Engineering Service: More than 30 engineering. minded factory representatives and 700 field men are at your call.
Design and Engineering Service not only helps you select the proper type of ring for your purpose, but also helps you use it most efficiently. Send us your blueprints today... let our Truarc engineers help you solve design, assembly and production problems . . . without obligation.

WALDES KOHINOOR, INC., LONG ISLAND CITY 1, N. Y.
Waldes Kohineor, Inc., 47-16 Austel Place, L.I.C.1, N. Y. Please send new. descriptive catalog showing all types of Truarc rings and representative case history applications.
(Please print)

Name

Title
Company
City _ Zone__State State.

Consult the Yellow Pages of Your Telephone Directory for Name of Local Truarc Factory Representative and Authorized Distributor. Look under "Retaining Rings" or "Rings, Retaining."

CIRCLE 122 ON READER-SERVICE CARD

ANNOUNCING...

- the newest addition to the Delco family of PNP germanium transistors! It's ideally suited for highspeed switching circuits and should find wide use in regulated power supplies, square wave oscillators, servo amplifiers, and core-driver circuits of high-speed computers. It's the 2N553!

NEW HIGH-FREQUENCY POWER TRANSISTOR BY DELCO

No other transistor offers so desirable a combination of characteristics for applications requiring reliability and consistency of parameters.

TYPICAL CHARACTERISTICS $\mathbf{T}=25^{\circ} \mathrm{C}$ unless otherwise specified
Collector diode voltage $V_{\text {CB }}$ ($\mathrm{V}_{\text {EB }}=-1.5$ volts)
Emitter diode voltage $V_{E B}$ ($\mathrm{V}_{\mathrm{CB}}=-1.5$ volts)
Collector current
Base Current.
Maximum junction temperature
Minimum junction temperature.
.80 volts maximum
40 volts maximum
4 amps. maximum 1 amp. maximum
$\begin{array}{r}95^{\circ} \mathrm{C} \\ \hline 65^{\circ} \mathrm{C}\end{array}$
$-65^{\circ} \mathrm{C}$

Collector diode current $\mathrm{I}_{\mathrm{CO}}\left(\mathrm{V}_{\mathrm{CB}}=2\right.$ volts) \ldots................ $12 \mu \mathrm{a}$ Collector diode current $I_{C O}\left(V_{C B}=-60\right.$ volts $) \ldots \ldots . . .0 .5 \mathrm{ma}$ Collector diode current $\mathrm{I}_{\mathrm{CO}}\left(\mathrm{V}_{\mathrm{CB}}=-30\right.$ volts, $\left.75^{\circ} \mathrm{C}\right) \ldots . .0 .5 \mathrm{ma}$ Current gain ($V_{C E}=-2$ volts, $I_{C}=0.5 \mathrm{amp}$.).
Current gain ($\mathrm{V}_{\mathrm{CE}}=2$ volts, $\mathrm{I}_{\mathrm{C}}=2 \mathrm{amps}$.)
Saturation voltage $V_{E C}\left(I_{B}=220 \mathrm{ma}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{amps}\right.$. $)$ 25

Common emitter current amplification cutoff frequency
($I_{C}=2 \mathrm{amps} . \mathbf{V}_{E C}=12$ volts)
25 kc
Thermal resistance (junction to mounting base)........... $1^{\circ} \mathrm{C} /$ watt

NEW PRODUCTS

Model 1029A high-altitude ignition primer a hermetically-sealed part designed for the igi tion of propellants and powders at altitudes excess of $100,000 \mathrm{ft}$. The unit is a standard scren in construction having a $3 / 8-24$ class 2 A threm and a $7 / 16 \mathrm{in}$. hex.

Holex, Inc., Dept. ED, P.O. Box 148, Hollist Calif.

CIRCLE 125 ON READER-SERVICE CARD

Potentiometer

2.5 w at 200 c

Designed for high temperature service, this tentiometer is for use up to 250 C , with 2.5 w ri ing 200 C . Sample and pilot quantities are avi able in linear tapers from 10 to 20,000 ohms, in in standard tolerance of ± 5 per cent.
P. R. Mallory \& Co. Inc., Dept. ED, Indianay lis 6, Ind.

CIRCLE 124 ON READER-SERVICE CARD
Frequency Standard
Temperature shifts less than 0.01 C

The LA90 5-mc frequency standard offers lo term stability to better than one-part in ore
linn. Long term operation results in temperature s ifts of less than 0.01 C . The environmental temperature range is 0 to 50 C . When the unit is in operation a high coefficient crystal acts as a very sinsitive high Q control device which equalizes the power in the oven.
ravoie Laboratories, Inc., Dept. ED, Mata-w:in-Freehold Rd., Morganville, N.J.

CIRCLE 126 ON READER-SERVICE CARD

Tuneable Transformers

Plug-in PC units

This series of sealed miniature tuneable transformers and reactors for printed circuit use are plug-in types with provision for assuring clearance of body of unit from printed circuit board. This type of construction is available with 2 to 8 functional terminals. Characteristics include a frequency range of up to 70 mc , inductance to 30 mh , and Q value to 125 .
Coil Winders, Inc., Dept. ED, New York Ave., Westbury, N.Y.

CIRCLE 127 ON READER-SERVICE CARD
Power Supply
For strain gages

Model 2-200 transistorized strain-gage power supply provides $0-15 \mathrm{v}$ at $0-5 \mathrm{amp}$ with less than 1 mv drift over a $24-\mathrm{hr}$ period at constant tem perature, and less than 0.001 per cent per $\operatorname{deg} F$ change with temperature variations. A 10 per cent change in line voltage will produce a change 5 of less than 2 mv in output, while a 1 amp change in load current will produce less than 1 mv ch inge in output. Ripple is less than 1 mv peak to reak under all conditions of load.

Neff Instrument Corp., Dept. ED, 2211 E. Fo ,thill Blvd., Pasadena, Calif.

CIRCLE 128 ON READER-SERVICE CARD

CBS-HYTRON Semiconductor Operations, Lowell, Massachusetts. A Division of Columbia Broadcasting System, Inc. Sales Offices: Newark, N.J.; Melrose Park, Ill.; Los Angeles, Calif.

CIRCLE 129 ON READER-SERVICE CARD

PHILCO Silicon Transistors

2N495-2N496

For outstanding performance at high junction temperatures

- Excellent performance af Temperafures from $-65^{\circ} \mathrm{C}$ to $+140^{\circ} \mathrm{C}$
- Collector Saturation Voltage of 0.1 Volt or Under
- Maximum Frequency of Oscillation in the 15 Megacycle Range

These new Philco PNP Surface Alloy Silicon Transistors permit transistorization of circuits where high ambient temperatures are encountered.

Type 2N495 is a general purpose silicon transistor, with excellent performance and reliability in amplifier and oscillator applications at frequencies through 15 mc . Units are rated at 150 mw total dissipation with a collector voltage rating of 25 v .
Type 2N496 is specifically designed for high speed switching circuits . . . $f_{a b}$ typically over 17 mc . This unit gives the designer the advantages of low saturation, low voltage operation and minimum load impedance even at junction temperatures as high as $140^{\circ} \mathrm{C}$.
Make Philco your prime source for information and prices on silicon transistors. Write Depf. ED 758
PHILCO, CORPORATION

cmazactamsic	conomow	trpical value	
		2mass	2 2096
Current Amplification Factor, hio	$\begin{aligned} & V_{c u}=-6 \mathrm{v} \\ & \mathrm{I}_{\mathrm{R}}=1 \mathrm{ma} \end{aligned}$	18	
Current Amplification Factor, h_{pg}	$\begin{aligned} & V_{c z}=-0.5 \mathrm{v} \\ & I_{c}=-15 \mathrm{ma} \end{aligned}$		12
Output Capacitance, Cob	$\begin{aligned} & V_{\mathrm{ch}}=-6 \mathrm{v} \\ & I_{\mathrm{E}}=1 \mathrm{ma} \end{aligned}$	$7 \mu \mu \mathrm{f}$	$7 \mu \mu \mathrm{f}$
Maximum Frequency of Oscillation, f_{c} max.	$\begin{aligned} & V_{c a}=-6 \mathrm{v} \\ & I_{\mathrm{k}}=1 \mathrm{ma} \end{aligned}$	15 mc	
Frequency for Beta $=1, f_{t}{ }^{*}$	$\begin{aligned} & V_{c z}=-6 \mathrm{v} \\ & \mathrm{I}_{\mathrm{z}}=1 \mathrm{ma} \\ & \mathrm{f}=4 \mathrm{mc} \end{aligned}$		15 mc
Cutof Current, $\mathbf{I}_{\text {cho }}$ or $\mathbf{I}_{\text {rmo }}$	V_{CB} or $\mathrm{V}_{\mathrm{ra}}=-10 \mathrm{v}$. 001 ma	. 001 нa
Maximum Power Disoipation- 150 mw	Maximum Collector Voltage 2N495-25 V $2 \mathrm{~N} 496-10 \mathrm{~V}$		
${ }^{-1}{ }^{t}$ (the frequency at whic 85% of the alpha cutoft	ch beta is unity) is typic Irequency.		

NEW PRODUCTS

Tape-Programmed Tester
Improved flexibility

The new model Robotester, type LA-302, permits random selection throughout any two of 250 circuit points for measurement of resistance, polarized dc or ac voltage or insulation resistance. This improve ment in flexibility increases user savings over that obtained with the original model. The unit is adaptable to automated production running 60-100 tests per minute and is able to signal wiring or assembly errors with a flashing light indicator. The range of voltage measurement is from 0.5 to 500 v and hi. pot is accomplished at 500 v de with a theoretical $10,000 \mathrm{meg}$ uppers limit. The resistance range of the Robotester is from one ohm to 9.99 meg.

Lavoie Laboratories, Inc., Dept ED, Matawan-Freehold Rd., Mor ganville, N.J.

CIRCLE 131 ON READER-SERVICE CARD

Relay

Switches radio frequencies

This relay for switching radio frequencies has applications such as antenna change-over on mobil radio. A special contact spring construction is designed to provide the lowest possible capacitance be tween springs. Operating voltages 6 to 110 v dc spst or spdt contacts rated 2 amp at 24 v dc or 115 va non-inductive load.

Magnecraft Electric Co., Dept ED, 3:3500 W. Grand Ave., Chicag 51, Ill.

CIRCLE 132 ON READER-SERVICE CARD
< CIRCLE 130 ON READER-SERVICE CARD

Audio and High Frequency Transistors

Manufacturer and Type	Class and Application	$\begin{gathered} \mathrm{W}_{\mathrm{c}} \\ (\mathrm{mw}) \end{gathered}$	$\begin{aligned} & \text { Max } \\ & T_{1} \\ & \text { (C) } \end{aligned}$	mum (a) mw (b) C / m	atings C V_{c} w (volts)	$\left.\begin{array}{c} I_{c} \\ (\mathrm{mal} \end{array}\right)$	$h_{\mathrm{h}_{\mathrm{f}}} \mathrm{~h}_{\mathrm{fb}}$	$\underset{\substack{\text { co } \\ \left(\begin{array}{l} \text { a } \end{array}\right)}}{\mathbf{C l}}$	aract NF (db)	ristle C ($\mu \mu \mathrm{f})$	$\begin{aligned} & \mathbf{f}_{\text {co }} \\ & (\mathrm{Mc}) \end{aligned}$	$\mathrm{r}^{\prime} \mathrm{b}$
Amporex Eloctronle Corp., Hecksvillo, N. Y.												
2N279 p	p-n-p, alloy, audio pre-amp.	125	75	$2.5(a)$	-30	10	40	$5{ }^{2}$	10		0.33	
2 N 280 O	$\mathrm{p}-\mathrm{n}$-p, alloy, audio driver			$2.5(a)$	-30	10	75	4.5	10		0.3	
2N283 P	$\mathrm{p}-\mathrm{n-p}$, alloy, audio gen. pur.			$2.5(a)$	-32	10	55	3.5	10		0.5	
2N284 P	p-n-p, alloy, audio output	1671		3.33(a)	-32	250	45	4.5	10		0.35	
OC6S P	p-n-p, alloy, hear aid, pre-amp.	501	65	1.54(a)	-10	10	30	$5{ }^{2}$	9		0.15	
OC66 P	p-n-p, alloy, hear aid, out.	.1	1	1.54 (a)	-10	10	47	5^{2}	9		0.15	
Bondix Avlarlon Corpo,Long Eranch, N. J.												
B139 p	p-n-p, AJ, oudio	500	95	0.20 (b)	40	300	100				10 kc	
Sogue Eloctric Mfg. Co., Patorson, N. J.												
$2 \mathrm{NQ7}{ }^{\text {n- }}$	n-p-n, grown, oudio, if	50	75	2.01a)	30	10	0.93	2^{1}	15	14	1.0	
2N161 no	n-p-n, grown, Si, comp. servo	150	175	1.0(a)	40	25	30	0.5	25	10	5	
2N163A n-	n-p-n, grown, Si, comp. servo						50	0.5			6	
2N160 n-	n-p-n, grown, Si, comp. servo						15	0.5			4	
2N163 n-	n-p-n, grown, Si, comp. servo						50	0.5			6	
2N162A n-	n-p-n, grown, Si, comp. servo	1				\dagger	35	0.5		1	8	
RD316 n-	n-p-n, grown, Si, comp. servo	1003	175	1.0(a)	20	20	10	0.2^{4}	25	10	0.2	
2 N 347 n-	n-p-n, grown, Si, servo, sw.	750		3.01a)	60	60	20		24			
2 N 348 n-	n-p-n, grown, Si, servo, sw.			3.0(a)	90	50	20		1			
2 N 349 n-	n-p-n, grown, Si, servo, sw.	1		$3.010)$	125	40	20		,	,	I	
2N332 n -	n-p-n, grown, Si, gen, purpose	150		1.16 (b)	45	25	0.925	4	20	7	4	
2 N 33 s	n-p-n, grown, Si, gen. purpose	150	175	1.1616	45	25						
2 N 334 n-	n-p-n, grown, Si, gen. purpose			1		,	0.975	1	1	1	8	
2N335 n-	n-p-n, grown, Si, gen. purpose						0.980				6	
Goneral Elocrric Co.,												
Syracuso, N. Y.												
3N36 n-	n-p-n, Mellback, amp.	30	85	$0.5(a)$	7	20		,			50	50
3 N 37 n-	$n-p \cdot n$, Meltback, amp.				1	1		,			90	I
$2 \mathrm{NA4A}$ P	p-n-p, AJ	155					30	-5	6	40	1	
2N324 P	P-n-p, AJ	225		0.27 (b)	1	-500	1			25	2	
2NS23 P	P-n-p, AJ						44				2.5	
2N526	P-n-p, AJ						64				3	
2N527 P	P-n.p, AJ						81				3.3	
General Translator Corp., Jamaica, N. Y.												
gri4 p	p-n-p, AJ, audio	125	85	2.0(a)	-25		20-34	<10	16			
GT20 p	p-n-p, AJ, audio	125		2.0(a)	-25		35.49	<10	16			
G734 P	p-n-p, AJ, audio						10.19	1	1			
G774 p	p-n-p, AJ, audio			1	1		50-99	1	<12			
G77 3 P	P-n-p, AJ, audio	125	85	2.0(a)	-25		100-199	<10	<12			
Gre 1 P	p-n-p, AJ, audio	1					50.99		16			
GTims p	p-n-p, AJ, audio	150					50.99					
cre2 p	p-n-p, AJ, audio	125			\dagger		100.999		1			
Gra7 p	P-n-p, AJ	125		2.0(a)	-25		20-34	<15			>0.5	
G188 p	p-n-p, AJ						>50	<10	16		>1.0	
Gr109 P	p-n-p, AJ, audio						80-140	1	<29			
cr122 p	$p-n-p, A J$			1			>50	<10			>1.5	
67229 n	$n-p-n, A J$, amateur	100		1.67(a)	1		>10	<20		1	>3	
gT34Hy P	P-n-p, AJ, hi-volt	125	85	2.0(a)	-50		10-34					
GT7s9R P	$p-n-p, A J$, rf-if	90	75	1.8(a)	-10		>15	6		16	0.5	90
GT760R P	p-n-p, AJ, rf-if	1	1	1	1		>20	1		1	3.0	110
cra 3 P	p-n-p, AJ	125	85	$2.010)$	-25		35.49	<10		<50	>0.7	
6735 ${ }^{\text {P }}$	p-n-p, AJ	100	1	1.67(a)	1		20-80	<25				

Sixth Annual

Transistor Data Chart

THIS YEAR'S data chart has been designed as quick and comprehensive reference for the tram sistor circuit designer. Only the most significant che acteristics have been tabulated in an effort to keep tit chart within reasonable proportions. Each transistor operating characteristics depends on a particular c cuit used, the frequency of operation, the temperatu and other conditions so that the operating characte istics given are typical ones, usually for the ground emitter circuit.

Four Data Charts

Transistors are grouped into four categories accorr ing to principal use.

Audio and high frequency types-these are the most part general purpose types.
Low level switching types-low power devic for signal circuits are included here. Currents of amp or better are included under Power typu Switching characteristics such as rise time, fall ting and storage time in addition to other factors whid are important to switching are tabulated.
Power types-devices having a collector dissip tion of one watt or greater are included here. Traw sistors for switching substantial currents are include in this section. Thus the compilation contains aud output, servo, and switch devices.
Special types-photo transistors, unijunctio units, etc. are found in this section. Not include are controlled switching rectifiers. As three termin devices they might be considered transistors by since operating characteristics do not fall into or chart conveniently, they are not tabulated.
Transistors made by a single manufacturer grouped together within the main categories. Th type number is generally used to classify transista within each manufacturer's grouping. However, the did not always seem the best arrangement and if grouping by similar fabrication type, power, or 1 rating seemed better, this scheme was followed.
A total of about 612 different types of transisto are available this year as compared to about $430!$!a

Contents

Introduction to Data Chart Symbology for Transistors
Typical Amplifier Equations
Audio and High Frequency Transistors Switching Transistors

Power Transistors
Special Transistors
Transistor Cross Index
Choosing the Proper Transistor Circuit Battery
year. One important development of the year has been the further trend toward coordination of types beween manufacturers. Probably this trend will confinue in the coming years as designs become stabilized. We have not included foreign types this year. To late, sales of foreign transistors has been negligible. U.S.A. types are generally better for the price. (Japanese transistors are not available to American buyers.) Footnotes are used throughout to add pertinent inormation or distinctions that might be of interest. Unless otherwise described, the transistor is a gernarium type and classed according to the following bbreviations:
$\mathrm{AJ}=$ alloy junction
SBT = surface base
$\mathrm{GJ}=$ grown junction
DJ $=$ diffused
$\mathrm{PC}=$ point contact
$\mathrm{FJ}=$ fused
$\mathrm{MAJ}=$ micro-alloy junction
$\mathrm{Si}=$ silicon
Not all explanatory notes are included as the chart vould become too unwieldy. Manufacturers data hould be consulted before selecting transistors.
Ratings depend on testing conditions. Because there re few or no standards in the industry, the reader hust not assume that he can accurately compare one manufacturer's transistors with another's on the basis ff published data.
For an additional copy of this chart, turn to the Reader-Service card and circle 100.

```
Collector Dissipation at 25 C 11. with heat sink 0.15 c/mw
af I cbo
Ho of 25C(v}=5v
Mw's at 25 C
6. Symmetry pairs (npn)
    . Niso 2N35
    Military
    a 270 cps
    12. wrounded base
    13. same type flexible leads
        a. collector to base volts -12
        b. collector to bose volts - 25
        c. collector to base volts - 30
        d. 2 transistor push-pull
    14. matched pair
    15. push-pull
```

 with heat sink \(0.18 \mathrm{c} / \mathrm{mw}\)
 16. maximum frequency of oscillation

Manufacfurer and Type	Audio and High Frequency (cont.)											
	Class and Applleatlon	$\begin{aligned} & W_{c} \\ & (m w) \end{aligned}$	Max TJ (C)	imum Re (a) mw (b) C / mw		$\begin{gathered} I_{c} \\ (\mathrm{ma}) \end{gathered}$	$\begin{aligned} & h_{f 0} \text { or } \\ & h_{f b} \end{aligned}$		$\begin{aligned} & \text { aract } \\ & \text { NF } \\ & \text { (db) } \end{aligned}$	-risile $(\mu \mu f)$	$\begin{gathered} f_{c o} \\ (M c) \end{gathered}$	$\mathrm{r}^{\prime} \mathrm{b}$
Industre Transisfor Corp. (cont.) Long Island Ciry, N. Y.												
$2 \mathrm{NAEI} 1 \quad P$	p-n-p, $A J$, rf radio	150	85	$0.4{ }^{10}(b)$	-12	150		2		12	2.5	
$2 \mathrm{Na82}$ P	P-n-p, AJ, ff :odio										4	
2N483 P	p-n-p, AJ, rf radio										4	
2 N 485 P	p-n-p, AJ, rf radio										8	
2N486 P	p-n-p, AJ, rf radio										8	
2NS 19 P	p-n-p, AJ, hf gen pur	150	85		-15	150	25	5		14	0.5	
2N520 P	p-n-p, AJ, hf gen pur				-12		40				0.3	
2N521 P	$p-n-p, A J, h f$ gen pur				-10		70				0.8	
2 N522 P	p-n-p, AJ, hf gen pur				-8		120				15	
2N523 P	p-n-p, AJ, hf gen pur				-6	1	200				21	
TRE1 P	P-n-p, AJ, audio	150	85	$0.36{ }^{\prime \prime}(b)$	-22	150	200	5	12			
TR722 P	p-n-p, AJ, audio			I	-25	1	22	1	1			
Motorola, Inc., Semiconduetor												
Prod. Dlv., Phoonix, Arizona												
2N464	p-n-p, AJ, audio			2.5(a)		100	26^{12}	6	22	20	700 kc	
2N465	p-n-p, AJ, audio						15				800 kc	
2N466 P	p-n-p, AJ, audio				-35		90				1	
2 N 467 P	p-n-p, AJ, audio						180				1.2	
2 N650 P	p-n-p, AJ, audio	200	100	2.8(a)	-45	250	40	15	10		2	
2N6SI P	p-n-p, AJ, audio	200	100				75	15	10		2.5	
2 N652 p	p-n-p, AJ, audio			,	-45	1	160				2.5	
$2 N 653$ P	p-n-p, AJ, audio				-30		40				2	
2N654 P	p-n-p, AJ, audio						75				2.5	
2N655 P	p-n-p, AJ, audio					\checkmark	160				3	
Philce Corp., Lansdale, Pa.												
2 N 207 P	p-n-p, AJ, aud. amp.	50	65	0.8(b)	12	20	100	15			2	
2N207A P	p-n-p, AJ, aud. amp.							10				
2N207 ${ }^{\text {2 }}$	p-n-p, AJ, aud amp.							10				
2N53S P	p-n-p, AJ, amp.		85		20			10			1	
2N223 P	p-n-p, AJ, audio driver	200	65	0.2(b)	18	150	95	20		90		
2N22414 P	p-n-p, AJ, audio out.	250	75		25	1		25		125	0.5	
2N22614 P	p-n-p, AJ, aud. out.	250	75	0.2(b)	30	150		25		140	0.4	
2N128 P	p-n-p, Sbt, rf, if video	25	85	0.75 (b)	10	5	35	0.7	9	3	65^{10}	
2N499 P	p-n-p, Madt, rf, osc amp.	75						15	5	1.3	320^{16}	
2NS00 P	p-n-p, Madt, uhf osc.			1	20			25				
2N302 P	p-n-p, Madt, whf amp.	60		1(b)	\|	1		\|	5	1	500^{16}	
2N344 P	p-n-p, Sbt, hf	20	55	0.75 (b)	5	5	22	3		3	50^{16}	
2 N 45 P	p-n-p, Sbt, hf	20	55	0.75 (b)	5	5	35	3		3	50^{16}	
2 N 346 P	p-n-p, Sbt, hf	1	\|		\|	1	30	0.7			75^{16}	
2N299	p-n-p, Sbt, hf tuned amp.			1		20		I			10516	
2N300	p-n-p, Sbl, Video amp.	1		1	1	1	16		1	\mid	\|	
2N503 P	p-n-p, Madt, whf amp.	60		1(b)	20	50		10	5	1		
2N504 P	p-n-p, Madt, if amp.	50	85		35	50	16	10		1.7	50^{10}	
2NS88 P	p-n-p, Madt, osc., vhf amp.	80			20	18		15	15		200	
RCA, Somerville, N. J.												
2N104,21513P	p-n-p, AJ, amp.	150	85		-30	-50	41	-10^{130}	6.5	22.8	0.7	290
2N105 P	p-n-p, AJ, amp.	60			-25	-15	55	-7130	7.5	12.4	0.75	250
2N109,21713P	p-n-p, AJ, Ige. sig. amp.	150			\|	-70	75	-14136				
2N175,220 ${ }^{\text {3 }} \mathrm{P}$	p-n-p, AJ, amp.	50			-10	-2	65	-12^{136}	6	25	0.85	190
2N206 P	p-n-p, AJ, amp.	75	50		-30	-50	47	-1013c	9		0.78	200
2N270 P	p-n-p, AJ, Ige. sig. amp.	250	85		-25	-150	70	-16				
2N405,406 ${ }^{13} \mathrm{P}$	p-n-p, AJ, driv., amp.				-12	-70	35	-14^{130}			0.65	
2N407,408 ${ }^{13} \mathrm{P}$	p-n-p, AJ, Ige. sig. amp.	1			-20	1	65	$\text { \| } 13 \mathrm{a}$				

Symbology

THE BASIC Symbols for transistor electrica quantities comprise a combination of lower case and capital letters. For example, instantine ous signal values use lower-case symbols and lower-case subscripts, whereas the instantaneous total values use lower-case symbols and capith subscripts. Likewise, rms, limit, or effective vant ing component values may be identified by cap talized symbols with lower-case subscripts, an the average or dc value by capitalized symbo! and subscripts.

Values at specified limiting conditions take thi symbols for the corresponding rms value and add an extra subscript to identify the specific condi tion. For example, the negative-limit value fo the base voltage is written as $V_{b n}$. Tables for th significant transistor voltages are included Table I, and currents in Table II.
The symbols for the electrical parameters are made up in a somewhat similar fashion. The recognized families of parameter symbols include the hybrid, or h symbols, the admittance or y symbols, the current gain, or a (alpha) symbols, and the equivalent tee, or R symbols. In ac cordance with electrical engineering practice both the z and y parameters may be taken a phasor quantities according to the equations:

$$
\begin{aligned}
& z=r+i x \\
& y=g+i b
\end{aligned}
$$

Because of these standard and accepted form for impedance and admittance components, the selection of g to represent the inverse h parame ters appears to be contrary to good usage. Rea sons for not using g symbols to represent inverse h parameters include the use, for many years, a g parameters on transistor data sheets, notably by RCA, for conductance components, and the general use of the g symbol for conductance with such active devices as tubes.

The subscripts which indicate the specific r lation, input, forward, reverse, or output immil tance (an immittance may be an impedance, ill admittance, or a numerical ratio of two imped ances or admittances) have been changed by the IRE from the $11,21,12$, and 22 subscripts com monly used in physics for many years to th more descriptive i, f, r, and o, respectively. Thes

Transistors

allistic Research Laboratories
berdeen Proving Ground, Md.
symbols are simpler than the old number symbols, and have proven to be entirely satisfactory. One additional specific relation is often convenient, since it helps in the removal of the differencing of two products. It is represented by the subscript c, and is defined by the relation:

$$
y_{i} y_{c}=y_{i} y_{o}-y_{j} y_{r}
$$

As a result, a simple relation exists between one of the h parameters and the y_{c} parameter:

$$
h_{o}=y_{c}
$$

The subscripts associated with small-signal parameters always use lower-case letters. The first letter indicates the specific immittance relation, and the second letter, if used, indicates the circuit configuration under which the parameter should be measured. In this application, an e subscript indicates that the grounded emitter configuration is used for measurement, b-the grounded base, and c-the grounded collector. The relations between these various parameters are indicated in the conversion tables in the list of parameter relations.
The number subscripts, $11,12,21$, and 22 , still may be used for the designation of immittances, but the use of the i, f, r, o, and c symbols is more practical since they convey the same information and require writing fewer symbols. In either case, a configuration subscript symbol may be required after the specific immittance symbol or symbols to make the equations clear.
Considerable confusion has arisen in the field of transistor parameters as a result of the failure Do designate the configuration used for the measurement. Since the trend for several years has ustifiably been toward the use of the common emitter configuration as a reference, it is suggested that the configuration symbol be omitted when the data are measured for a grounded emiter circuit, and included when the measuremellts are for either grounded base or grounded milter circuits.
The following three tables show the suggested yn bols for use by design engineers for voltage, cul ent, and immittance symbols. They conform with IRE symbols insofar as possible, but proid additional symbols which have proven use-

Audio and High Frequency Transistors (cont.)

Audio and High Frequency (cont.)

ful to the writer. The third table may be con verted from admittance to hybrid parameters b the substitution of an h for the corresponding j values.

con.
sby
The following list is a compilaton of symbols and definitions extracted from the IRE Standard 56 lliE 28.S1. In each definition, only the basic symbol, without a conficuration subscript, is listed. Where a second symbol is required to identify an electrode which is inactive or connected in some specified manner, the electrode is identified by the symbol μ. Where several possible symbols can be used for the same parameter, only one of the group is included, since the other forms may be found by consulting the reference.

List of Terms

C_{i} (added symbol) $=$ diffusion (or input) capacitance from base to emitter; the output is short-circuited to ac.
$C_{o}=$ capacitance measured across the output terminals with the input open-circuited to ac.
$f_{a}=$ frequency at which the magnitude of the forward-current transfer ratio (small-signal) under low impedance output is 0.707 of its low frequency value.
$h_{F}=$ static value of the forwardcurrent transfer ratio under low-impedance output conditions.
$h_{f}=$ small-signal value of the for-ward-current transfer ratio under low-impedance output conditions.
$h_{l}=$ static value of the input impedance under low-impedance output conditions.
$h_{i}=$ small-signal value of the input impedance under lowimpedance output conditions.
$h_{u}=$ static value of the output impedance under open-circuit input conditions.
$h .=\underset{\text { small-signal value of the out- }}{\text { put impedance }}$ put impedance under opencircuit input conditions.
(Continucd on following page) CIRCLE 380 ON READER-SERVICE CARD $>$

Irist from

 PRPONWNACE for VHF Amplifiers and OscillatorsPhilco MADT" Transistors Assure Reliable Operation for Circuits With Collector Current Ratings As High As 50 ma ... Power Dissipation Up To $100 \mathrm{mw} .$. Collector Voltages to 35 V !

```
* Low rb
* High fab
Low co
High fmax
```

Philco's family of MADT transistors offers the designer a new dimension in very high frequency amplification and oscillation. These new transistors will provide amplification as high as 1500 megacycles. MADT transistors have been successfully operated through the entire VHF military electronics spectrum. The accompanying circuit diagrams show typical 100 mc and 200 mc amplifier layouts.
Due to their low $\mathrm{rb}^{\prime} \mathrm{c}_{\mathrm{c}}$ product, Philco MADT transistors will oscillate at frequencies far in excess of $f_{a b}$. The 2 N 499 produces a specified minimum of 25 mw output at 100 mc . The 2N500 will deliver 20 mw output at 200 mc .
Mass production of these very unique transistors is possible through Philco's exclusive electrochemical etching process. Due to the outstanding precision of this process, certain of these graded base transistors are manufactured with no intrinsic base region. This results in much lower power dissipation of the transistors in critical circuitry. A typical $100 \mathrm{mc}-200 \mathrm{mc}$ oscillator circuit is shown.

Make Philco your prime source of information for high frequency transistor applications.
Write to Lansdale Tube Company, Division of Phileo Corporation, Lansdale, Pa., Dopt. ED758

200 MC POWER AMPLIFIER

100 MC-200 MC OSCILLATOR

MADT FAMILY APPLICATIONS DATA

TYPE*	$P_{\text {max }}$	$\begin{aligned} & \text { Powor } \\ & \text { Goin } \end{aligned}$	Oscilletan Efficioney	Clase of Use
2N499	$\begin{gathered} 250 \mathrm{mcs} \\ (\mathrm{~min}) \end{gathered}$	10 db at 100 mc	$\begin{array}{r} 25 \% \text { at } 100 \\ \text { mes (min) } \end{array}$	oscillator and amplifier to 100 mcs
2N500			$\begin{array}{\|c\|} \hline 25 \% \text { at } 200 \\ \text { mes (min) } \end{array}$	oscillator to 400 mcs
2N501	Ultra high-speed switch typical $\mathrm{t}_{\mathrm{r}}=12$ mpsec; (18 max.); $t=7$ musec; (12 max.); tit 4 musec; (10 max.). In circuit with current gain of 10 and voltage turnoff.			
2N5021	500 mcs	$\begin{gathered} 10 \mathrm{db} \text { at } \\ 200 \mathrm{mcs} \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline \text { amplifier to } \\ 250 \mathrm{mcs} \end{array}$
2N503 \dagger		$\begin{aligned} & 12 \mathrm{db} \text { at } \\ & 100 \mathrm{mc} \end{aligned}$		amplifier to 100 mcs
2N504	50 mcs	$\begin{aligned} & 46 \mathrm{db} \text { at } \\ & 455 \mathrm{KC} \end{aligned}$		high gain IF amplifier
2N588	$200 \mathrm{mcs}$ (\min)	13 db at 50 mcs		oecillator and amplifier to 50 mcs

*Available in uoltage ratings up to 35 V and dissipation ratings to 100 mw .
tIn JETEC TO-9 Case (widely known as JETEC 30 Case),

PHILCO CORPORATION

> LANSDALE TUBE COMPANY DIVISION LANSDALE, PENNSYLVANIA

Audio and High Frequency (cont.)

$h_{R}=$ static value of the reverse voltag transfer ratio for open-circuit in pue conditions.
$h_{r}=$ small-signal value of the reverse wht age transfer ratio for open-circuit in put conditions.
$I_{\nu, L_{\nu}}=$ base current when the base is bic see in the high-impedance direction vith respect to the given reference tlea trode; the remaining electrode open-circuited with respect to dc.
$I_{b, l_{n}}=$ base current when the base is biatset in the high-impedance direction wit respect to the given reference elec trode; the remaining electrode " short-circuited with respect to de.
$I_{r} \mu_{n}=$ collector current when collector biased in the high-impedance directic with respect to the given referen electrode; the remaining electrode " open-circuited with respect to dc.
$I_{c} \mu_{s}=$ collector current when collector biased in the high-impedance direction with respect to the given referenc electrode; the remaining electrode μi short-circuited with respect to dc.
$I_{r} \mu_{o}=$ emitter current when emitter is biased in the high-impedance direction wit respect to the given reference elen trode; the remaining electrode μ open-circuited with respect to dc.
$I_{c} \mu_{s}=$ emitter current when emitter is biasei in the high-impedance direction witt respect to the given reference elea trode; the remaining electrode μ short-circuited with respect to dc.
$r_{b}^{\prime}=$ base spreading resistance-resistance between the external connection and the active area of the base region.
$t_{d}=$ ohmic delay time-time interval be tween the rise of a pulse applied at th input terminals and the rise of the out put pulse generated by minority car riers.
$t_{8}=$ storage time-time interval between the start of the decay of a pulse applied a the input terminals and the start of the decay of the output pulse generated b the minority carriers.
$V_{R \mid \|_{F}}=$ floating potential; open-circuit dired voltage between base and referenct electrode when the electrode μ biased in the high-impedance diret tion.
$V_{c} \mu_{r}=$ floating potential; open-circuit dired voltage between the collector and rel erence electrode when the electrode is biased in the high-impedance direc tion.
$V_{E} \mu_{F}=$ floating potential; open-circuit dc volt age between emitter and reference
electrode when the electrode μ is biased in high-impedance direction.
$B_{0} \mu_{0}=$ breakdown voltage between the base and reference electrode.
$B V_{, \mu n}=$ breakdown voltage between the sollector and the reference electrode.
$B K^{\prime} \mu_{0}=$ breakdown voltage between the emitter and the reference electrode.
$y_{c}=$ modified output admittance with high input impedance.
$y_{1}=$ forward transfer admittance with low output impedance.
$y_{i}=$ input admittance with low output impedance.
$y_{1 \prime}=$ output admittance with low input impedance.
$y_{r}=$ reverse transfer admittance, low input impedance.
$z_{j}=$ forward transfer impedance with high output impedance.
$z_{i}=$ input impedance with high output impedance.
$z_{n}=$ output impedance with high input impedance.
$\tilde{z}_{r}=$ reverse transfer impedance with high input impedance.
The g components of y parameters are frequently used rather than the y parameters, since often the susceptance component may be neglected. In that case, $y_{c}, y_{f}, y_{i}, y_{o}$ and y_{r} are replaced with $g_{c}, g_{f}, g_{i}, g_{o}$, and g_{r} respectively.

Parameter Conversion Tables

Literature over the years in the transistor field has been written in a mixture of early network parameters and later IRE designations. The problem is further complicated by the use of impedance, admittance, and hybrid parameters. The following tables are included in this issue to facilitate easy conversion from one system to another. See figs. 1-5.
Any of these symbols may carry an additional c, b, or c subscript to designate the configuration in which the transistor is operated. The only exceptions are $h_{f b}$ and $h_{f e}$, which already have the additional subscripts.
Admittance parameters may be represented by conductance parameters at low frequencies.
All h and y parameters are grounded emitters unless otherwise noted.
The primed conductances are those which would be observed at the active region in the transistor aftir correction for base spreading resistance.
In all the above tables, $y_{i}, y_{/}, y_{c}$, and y_{o}, may be replaced by the corresponding g functions, $g_{i}, g_{/}$, g_{6}. ind g_{0}, respectively except when capacitance eff cts are important.

- dditional parameter relations may be for ind for h, z, and r parameters in the 1957 Data Clirt.
(Continued on page XIII)

More power for its size

than any other transistor

Honeywell

Power

Transistors

More rugged, more compact, more flexible-specifically designed for the following applications:

- D. C. Power Converters-(shown at right)
- Amplifier for Servo Motors-for control motors or indicator motors
- Voltage Regulation
$W_{\text {is still required, Honeywell's complete line of }}^{\text {here }}$ power transistors is your best answer.

Honeywell stud-mounted transistors combine smaller size per power output with greater flexibility and interchangeability. Stud mounting is ideal for printed circuit techniques.
They offer a narrow span of characteristicsalong with superior electrical performance and high uniform power gain over a wide range of collector current values.
For complete information on these and other Honeywell Transistors, contact your nearest Honeywell Representative below, or Minneapolis-Honeywell Semiconductor Products Division, Dept. ED. 7-114, Minneapolis 8, Minnesota.

UNION, N. J.
MUrdock 8-9000

BOSTON
ALgonquin 4.8730

CHICAGO
IRving 8-9266
LOS ANGELES
RAymond 3.6611 os
PArkview 8-7311

Honeywell stud-mounted 2N539 transistors make this 48-watt, 14 ounce D. C. Power Converter more compact than any other.

EXCERPTS FROM 2N540 SPECIFICATIONS					
Symbol	Conditions	Min.	Typ.	Max.	Unit
Hfe	$\mathrm{lc}=-2 \mathrm{a}, \mathrm{V}_{\text {ce }}=-2 \mathrm{~V}$	45	64	113	
$V_{\text {be }}$	$\mathrm{lC}=-2 \mathrm{a}, \mathrm{V}_{\text {CE }}=-2 \mathrm{~V}$	-0.75	-1.3	-1.88	Volt
θ			1.7	2.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
τ	(Thermal time response)	10	30		Ms
Icbo	$\mathrm{IE}_{\mathrm{E}}=0, \mathrm{VCB}=-2 \mathrm{~V}$		-0.04	-0.1	Ma
	-28V		-0.1	-1.0	
	- 60 V		-0.3	-2.0	
	-80V		-0.6	-10	
Vebr	ReB $=10 \mathrm{~K}, \mathrm{VCB}=-60 \mathrm{~V}$		-0.1	-0.3	Volt
	-80V		-0.4	-1.5	
Vs	$\mathrm{IC}^{\text {a }}=-2 \mathrm{a}, \mathrm{I}_{B}=-200 \mathrm{ma}$		-0.15	-0.6	Voll

Complete specifications available on request for 2 N538, 2N538A (formerly H5), 2N539, 2N539A (formerly H6), 2N540 ond 2N540A (formerly H7): also specifcotions for the largost transistors made, the
2N57, 2N574, 2 2N575 and 2 N575A 2N574, 2N574A, 2N575 and 2N575A

Honeywell

国 Fwit in Cantrol

Switching Transistors, Low Level (cont.)

ELECTRONIC DESIGN • July 9, 195

continued from page IX)
Grounded Emitter Amplifier

$$
\begin{aligned}
K & =\frac{-g_{f} R_{L}}{1+g_{i} R_{s}+g_{o} R_{L}+g_{i} g_{c} R_{s} R_{L}} \text { (voltage) } \\
K_{i} & =\frac{-g_{\delta} R_{s}}{1+g_{i} R_{s}+g_{o} R_{L}+g_{i} g_{c} R_{s} R_{L}} \text { (current) }
\end{aligned}
$$

Degenerative Emitter Amplifier (Voltage)

$$
K=\frac{-\left(g_{s}-g_{i} g_{c} R_{e}\right) R_{L}}{1+g_{i} R_{s}+\left(g_{i}+g_{J}+g_{o}\right) R_{t}+g_{o} R_{L}+g_{i} g_{c}\left\{R_{s}\left(R_{e}+R_{L}\right)+R_{e} R_{L}\right]}
$$

Grounded Base Amplifier

$$
K_{b}=\left(g_{f}+g_{o}\right) R_{L} /\left[1+\left(g_{i}+g_{f}+g_{o}\right) R_{s}+g_{o} R_{L}+g_{\mathrm{i}} g_{c}\left(R_{\mathrm{o}}+R_{L}\right) R_{s} \mid\right.
$$

Grounded Collector Amplifier

$$
K_{c}=\frac{\left(g_{i}+g_{f}-g_{i} g_{c} R_{e}\right) R_{e}}{1+g_{i} R_{s}+\left(g_{i}+g_{f}+g_{o}\right) R_{e}+g_{i} g_{c} R_{s} R_{e}}
$$

Grounded Collector Amplifier Complex

The normal R_{e} is replaced with a transistor T_{i} having its collector connected to the emitter of the grounded emitter amplifier T_{2}, and with its emitter connected to the emitter return through a new \boldsymbol{R}_{e}. The base current is fixed for the load transistor T_{1}.

$$
K=\frac{1}{1+\frac{g_{o 2}+G_{L}}{g_{i 2}+g_{f 2}}+\frac{g_{o 1}+g_{i 1} g_{c 1} R_{e}}{\left(g_{i 2}+g_{f 2}\right)\left[1+\left(g_{i 1}+g_{f 1}+g_{o 1}\right) R_{e}\right]}}
$$

where the " 1 " refers to a value of T_{1}, the " 2 " to a value for T_{2}, and G_{L} is the load conductance.

Input and Output Conductances

Grounded Emiffer

In the following equations R_{g} is the source resistance, R_{e} the emitter resistance, and R_{L} the collector load resistance.

$$
\begin{aligned}
G_{i e} & =\frac{1+g_{c} R_{L}}{1+g_{i} R_{s}+g_{o} R_{L}+g_{i} g_{c} R_{s} R_{L}} \\
G_{o e} & =\frac{g_{o}+g_{i} g_{c} R_{z}}{1+g_{i} R_{s}+g_{o} R_{L}+g_{i} g_{c} R_{s} R_{L}}
\end{aligned}
$$

Degenerative Emitter

$$
\begin{aligned}
G_{i d} & =\frac{g_{i}\left[1+g_{c}\left(R_{e}+R_{L}\right)\right]}{1+g_{i} R_{s}+\left(g_{i}+g_{f}+g_{o}\right) R_{e}+g_{o} R_{L}+g_{i} g_{c}\left[R_{s}\left(R_{e}+R_{L}\right)+R_{e} R_{L}\right]} \\
G_{o d} & =\frac{g_{o}+g_{i} g_{c}\left(R_{e}+R_{s}\right)}{1+g_{i} R_{s}+\left(g_{i}+g_{j}+g_{o}\right) R_{e}+g_{o} R_{L}+g_{i} g_{c}\left[R_{s}\left(R_{e}+R_{L}\right)+R_{e} R_{L}\right]}
\end{aligned}
$$

Grounded Base

$$
\begin{aligned}
G_{i b} & =\frac{\left(g_{i}+g_{f}+g_{i} g_{c} R_{L}\right)}{1+\left(g_{i}+g_{f}\right) R_{s}+g_{o} R_{L}+g_{i} g_{c} R_{a}\left(R_{s}+R_{L}\right)} \\
G_{o b} & =\frac{\left(g_{i} g_{c} R_{s}+g_{o}\right)}{1+\left(g_{i}+g_{f}\right) R_{s}+g_{o} R_{L}+g_{i} g_{c} R_{s}\left(R_{s}+R_{L}\right)}
\end{aligned}
$$

Grounded Collecior

$$
\begin{aligned}
G_{i c} & =\frac{g_{i}\left(1+g_{c} R_{e}\right)}{1+g_{i} R_{e}+\left(g_{i}+g_{f}+g_{o}\right) R_{e}+g_{i} g_{c} R_{s} R_{e}} \\
G_{o c} & =\frac{\left(g_{i}+g_{f}\right)}{1+g_{i}\left(R_{s}+R_{e}\right)+g_{f} R_{e}}
\end{aligned}
$$

These equations may be changed to the hybrid parameter form by dividing numerators and denominators both by $g_{i} \boldsymbol{R}_{s}$, and substituting

$$
h_{i}=\frac{1}{g_{i}} ; \quad h_{f}=\frac{g_{f}}{g_{i}} ; \quad h_{o}=g_{c} ; \quad h_{c}=h_{o}-\frac{h_{f} h_{r}}{h_{i}}=y_{o}
$$

Table I. From Network to IRE Parameters

Hybrid	Admittance	Impedance	Conductance
$h_{11}=h_{1}$	$y_{11}=y_{1}$	$\mathbf{z}_{11}=\mathbf{z}_{1}$	$\mathrm{g}_{11}=\mathrm{g}_{\mathbf{i}}$
$h_{21}=h_{\text {g }}$	$y_{21}=y_{1}$	$\mathbf{z}_{21}=\mathbf{z}_{\mathbf{f}}$	$\mathbf{g}_{21}=\mathbf{g}_{t}$
$\mathbf{h}_{12}=\mathbf{h}_{\text {r }}$	$\mathbf{y}_{12}=\mathbf{y}_{\mathbf{r}}$	$\mathbf{z}_{12}=\mathbf{z}_{\text {r }}$	$\mathbf{g}_{12}=\mathbf{g}_{\text {r }}$
$\begin{aligned} \mathbf{h}_{22} & =\mathbf{h}_{\mathbf{o}} \\ \boldsymbol{a} & =\mathbf{h}_{\mathrm{f}} \end{aligned}$	$\begin{aligned} \mathbf{y}_{22} & =\mathbf{y}_{10} \\ \beta & =h_{0} \end{aligned}$	$\mathbf{z}_{22}=\mathbf{z}_{\text {o }}$	$\mathbf{g}_{22}=\mathbf{g}_{1}$

Fig. 1. Grounded base equivalent circuit using h parameters.

Fig. 2. Equivalent circuit using either y or g parameters.

Fig. 3. Open circuit impedance equivalent circuir with one generator.

Fig. 4. Basic amplifier circuir.

Table II. Between y and z Paramefers

z to y	y to z
	$\begin{aligned} \mathbf{y}_{1} & =\mathbf{z}_{0} / \mathbf{D}(\mathbf{z}) \\ \mathbf{y}_{t} & =-\mathbf{z}_{t} / \mathbf{D}(\mathbf{z}) \\ \mathbf{y}_{\mathrm{r}} & =-\mathbf{z}_{r} / \mathbf{D}(\mathbf{z}) \\ \mathbf{y}_{0} & =\mathbf{z}_{1} / \mathbf{D}(\mathbf{z}) \\ \mathbf{y}_{\mathbf{c}} & =\mathbf{1} / \mathbf{z}_{i} \\ \mathbf{D}(\mathbf{y}) & =\mathbf{y}_{1} \mathbf{y}_{\mathrm{c}} \end{aligned}$

Table III. Between h, y, and z Parameters $h_{h_{i}}=\mathbf{l} / \mathbf{y}_{1}=D(\mathbf{z}) / \mathbf{z}_{0} \quad \mathbf{h}_{\mathbf{r}}=\left(\mathbf{y}_{\mathrm{c}}-\mathbf{y}_{\mathrm{o}}\right) / \mathbf{y}_{\mathrm{e}}=\mathbf{z}_{\mathrm{r}} / \mathbf{z}_{\mathrm{i}}$ $h_{\mathrm{f}}=\mathbf{y}_{\mathrm{f}} / \mathbf{y}_{\mathrm{i}}=-\mathbf{z}_{\mathrm{f}} / \mathbf{z}_{\mathrm{o}} \quad \mathbf{h}_{\mathrm{v}}=\mathbf{y}_{\mathrm{c}}=\mathbf{l} / \mathbf{z}_{\mathrm{i}}$

$$
D(h)=h_{1} h_{o}-h_{f} h_{r}
$$

Table IV. Relations for Tee Parameters $\mathrm{r}_{\mathrm{d}}=\mathbf{I} / \mathrm{y}_{\mathrm{c}}=$

$$
1 / h_{0}
$$

$$
\mathbf{r}_{\mathrm{m}}=-\mathbf{y}_{\mathrm{f}} / \mathbf{y}_{\mathrm{i}} \mathbf{y}_{\mathrm{c}}=
$$

$\mathrm{r}_{\mathrm{u}}=\mathrm{y}_{\mathrm{o}} / \mathrm{y}_{1} \boldsymbol{y}_{\mathrm{c}}=$
$\mathbf{r}_{\mathrm{e}}=\left[\left(\mathbf{y}_{\mathrm{o}} / \mathbf{y}_{\mathrm{c}}\right)-l\right] / \mathbf{y}_{\mathrm{f}}=$
D (h) / $h_{\text {o }}$
$-h_{r} / h_{\text {o }}$
$\mathbf{r}_{\mathrm{e}}=\left(\mathbf{y}_{\mathrm{i}}+\mathbf{y}_{\mathrm{f}}\right) / \mathbf{y}_{\mathbf{i}} \mathbf{y}_{\mathrm{e}}=\left(\mathbf{I}+\mathbf{h}_{\mathrm{f}}\right) / \mathbf{h}_{\mathrm{o}}$
Table V. Miscellaneous Relations $\begin{array}{cc}\alpha=\mathbf{y}_{\mathrm{f}} /\left(\mathbf{y}_{\mathrm{i}}+\mathbf{y}_{\mathrm{f}}\right)=\mathbf{h}_{\mathrm{fb}} & \beta=\mathbf{y}_{\mathrm{f}} / \mathbf{y}_{\mathrm{i}}=\mathbf{h}_{\mathrm{f}} \\ \mathbf{g}_{\mathrm{i}}^{\prime}=\mathbf{g}_{\mathrm{i}} /\left(\mathbf{I}-\mathbf{g}_{i} \mathbf{r}_{\mathrm{b}}{ }^{\prime}\right) & \mathbf{g}_{\mathrm{i}}{ }^{\prime}=\mathbf{g}_{\mathrm{e}} /\left(\mathbf{I}-\mathbf{g}_{\mathrm{i}} \mathbf{r}_{\mathrm{l}}\right)\end{array}$

Table VI. RCA Parameters

$\mathrm{r}_{\mathrm{b}}=\mathrm{r}_{\mathrm{bb}}=$ base spreading resistance

Fig. 5. RCA π circuit.
Table VII. Between y Parameters for Different Configurations

Parameters	CE	CB	CC
Input	y_{1}	$y_{1}+y_{\text {f }}+y_{\text {c }}$	
Forward	y_{s}	$-y_{r}-y_{0}$	$-y_{1}-y_{p}$
Reverse	y_{r}	$y_{r}+y_{0}$	$\mathbf{y}_{\mathbf{1}}+\mathrm{y}_{\mathbf{r}}$
Output	y_{0}	y_{0}	$y_{1}+y_{\mathrm{g}}+y_{0}$
Modified	y_{c}	$y_{i} y_{c} /\left(y_{1}+y_{r}\right)$	$y_{1}+y_{\text {f }}+y_{0}$

Table VIII. Between h Parameters for Different Configurations

BROADEN DESIGN HORIZONS with new pnp drift transistors

TYPICAL APPLICATIONS
TV CIRCUITS -
FM RADIOS SHORT WAVE RADIOS high frequency oscillators

VERY HIGH Speed SWITCHING DEVICES

SEVEN NEW DRIFT TRANSISTORS FOR HIGH SPEED SWITCHING AND HIGH FREQUENCY AMPLIFIER APPLICATIONS

General Transistor's new 2N602, 2N603, 2N604 provide the design engineer with guaranteed switching parameters such as gain-bandwidth and DC current gain, while the 2N605, 2N606, 2N607 and 2N608 provide guaranteed power gains at high frequencies. In addition to the great speed advantages offered by the drift transistor at no sacrifice of gain such additional features as higher voltages and lower capacity are available. Thus one can now drive higher impedance loads with no sacrifice of speed or pulse power.
The complete control of G. T.'s Drift Transistor assures longer life and maximum performance while possessing complete reliability
good signal-to-noise ratio, good signal-to-noise ratio, good automatic-gain-control capabilities and the rugged mechanical construction of a positive hermetically sealed JETEC 30 case.
all transistors can now be supplied in full compliance with mil.t.igsooa.

DC Current Gain $h_{\text {fE }}$			$\begin{gathered} \text { Gain X } \\ \text { Bandwidth } \end{gathered}$		Power Gain K_{p}		
2N602	$\mathrm{V}_{\mathrm{ct}}=1 \mathrm{v}$		$\mathrm{V}_{\mathrm{ct}}=5 \mathrm{~V}$	10.30 mc	2N605	$\mathrm{Vc}=7.5 \mathrm{v}$	20.25 db
2N603	$\mathrm{l}_{\mathrm{i}}=0.5 \mathrm{ma}$	25-100	$\mathrm{Ic}_{\mathrm{c}}=5 \mathrm{ma}$	30-50	2N606	Ic $=1 \mathrm{ma}$	25.30 db
2N604				50.70	2N607	$\mathrm{f}=2 \mathrm{mc}$	30.35 db
					2N808		35.40 db

[^4]\[

$$
\begin{aligned}
& g_{\mathrm{b}}^{\prime}{ }_{e}=g_{1} \approx \boldsymbol{y}_{1} \quad \quad \mathbf{g}_{\mathrm{m}}=\boldsymbol{y}_{\mathrm{f}}-\mathbf{y}_{\mathrm{r}} \approx \mathbf{y}_{\mathrm{f}} \approx \mathbf{g}_{\mathrm{f}}
\end{aligned}
$$
\]

offers you
all these

Texas Instruments
semiconductors
in 1-99 quantities
at factory prices
off-the-shelf
for overnight
delivery

mILORAY ELECTRONICS

[^5] xvi

©

- Audio voltage gain $=\frac{E \text { Out }}{E \text { in }}$ in recommanded circuit.
if Min. audio power - Class A/Class B.

Texas Instruments

Contact your nearest TI sales office or distributor for detailed data sheets. SEMICONDUCTOR-COMPONENTS DIVISION
POST OFFICE BOX $3 / 2$. DALLAS TEXAS

CIRCLE 385 ON READER-SERVICE CARD

Recent Transistor Literature

Transistor Technology, Vol. I,

Bridgers, Scaff, and Shive; Van Nostrand, New York, 1.9 .58

Transistor Circuits and Applications

Joln M. Carrol; McGraw-Hill Book Co., Inc., New York, 19.57

An Introduction to Transistor Circuits,

E. H. Cooke-Yarborough; Oliver and Boyd, Ed inlurgh, Scolland, 19.57

Transistor Electronics,

David DeWitt and A. L. Rossof; McGraw-Hill Book Co., Inc., New York, 19.57

Transistor A. F. Amplifiers,

D. D. Jones and R. A. Hilbourne; Philosophical Library, Inc., New York, 19.57

Transistor Engineering Reference Handbook,

H. E. Marrows; John F. Rider, New York, 19.57

An Introduction to Junction Transistor Theory,
R. D. Middlebrook, John Wiley d Sons, Inc., New York, 19.57

Transistor Physics and Circuits,

R. L. Riddle and M. P. Ristenhatt; PrenticeHall, New York, 1958

Transistor Circuit Engineering,

Edited by Richard Shea; John Wiley and Sons, Inc., New York 19.57

Quarterly Listing of Transistor Types

Derivation and Tabulation Associates, Inc. publishes quarterly, a list of available transistor types. Complete cross indexes make the tabulation easy to use. Characteristics described are very similar to those contained in the Electronic Design Data Chart. The principal difference is that D.A.T.A.'s charts are organized by increasing maximum collector dissipation. Major subdivisions are general junction transistors and power transistors. For more information on this service write to Derivation and Tabulation Associates, Inc., 67 Lawrence Ave., West Orange, N.J.

Power Transistors (cont.)
Switching

Power Transistors (cont.)

Power Transistors (cont.)

Special

General Electric Co., Syracuse, N. Y.
2N489-94 Unijunction, Si
General Transistor Corp.,
Jamaica 35, N. Y.
2N3 18 p-n-p, AJ, sideview, photo
2 N469 p-n-p, AJ, endview, pholo
GT34N p-n-p, AJ, neon light
Texas Instrumental, Inc.
Dallas, Texas
800 n-p-n, Grown, photo

Cesfern Electric,
lew York, N. Y.
INES p-n-p, GJ, pholo

These 6 types are specified in three ranges of stand-off ratio (.56, .62, .68) and two ranges of interbase resistance (5.6 and 7.5 K).

Power Transistor

Foolnoles:

1. Matched pairs for Class B push-pull
2. Collection dissipation at 25 C
3. Military
4. Also under 7002
5. sink at 70 C
6. 2 transistor push-pull
7. sink at 25 C
8. Class B push-pull outpur

Cross-index to transistor types at the end of this section.

Choosing tha Proper Transisto

Circuit Batter

DESIGNING a power supply for portabl transistorized equipment requires the propa choice of batteries. The basic criteria must 1 long periods of uniform sustained voltage ant low drain under proper loads. Some of the que tions that must be asked when determining th proper transistor circuit battery are:

- How do environmental factors affect the operation of the battery?
- What are the discharge characteristics unda loads?
- What are the relative advantages and dir advantages of different battery constructions?
These and other useful questions will answered as to how to make the operation of the transistor circuit battery more efficient and mon reliable. A designers check list is furnished it Table 1, enumerating the points that must b considered before the electronic circuit ant physical package are finalized. A cross referenc chart relating the types of batteries available presented in Table 2.

The Effects of Temperature

Temperature is the most serious of the environ mental factors that affect the life and operatio of a battery. Batteries operate very efficiently a temperature range of 60 to 90 F . But l typical batteries higher temperatures are an to be detrimental when the batteries at stored for months at these higher temperaturo Three months at 115 F reduces the capacity the battery from 10 to 50 per cent. It also pm duces occasional duds. Much higher tempera tures can be withstood for shorter periods, bu temperatures above 160 F are very damaging even for short periods. The chemical action which takes place on discharge within a dry ce

> Vital information on the factors affecting the choice and operation of transistor batteries were obtained in an interview with J. J. Coleman, Vice President, Engineering, and R. C. Clock, Battery Design Chief, Burgess Battery Co. The article concludes with a handy designer's check list and with a cross reference chart.

is improved by higher temperatures. So long as something serious such as a blown seal does not develop, the higher the temperature, the greater the power and energy output.

On the other hand, the lower the storage temperature, the better. The shelf life of batteries is greatly prolonged at storage temperatures near 0 F . The life of even very tiny batteries can be extended by many years at temperatures of -40 F . The performance of the battery is greatly reduced at near 0 F unless special low temperature batteries are employed. In the latter case, one can get some performance down to -40 F . Below this temperature, little or no performance can be obtained.

Batteries are not much affected even by extremes of humidity. If moisture condenses, leakage currents can develop, as in the case of any electrical device. At extremely low humidities, there may be an increased tendency for batteries to dry out. The water contained in dry batteries is very vital to their operation.

Discharge Characteristics Under Load

Dry batteries ordinarily have a quick drop in their potential at the start of the discharge period. Then they discharge at a rather uniform potential down to 1 v per cell. See Fig. 1. Higher end points such as 1.2 v per cell are very common but they mean a substantial loss of performance. At end points much higher than 1.2 v per cell, the performance is likely to be inadequate. There is no sudden drop off in potential and the life is steadily increased as the end point is decreased beyond 1 v per cell. Frequently this gradual decrease is beneficial since it warns the user that a new battery is required long before the point is reached at which no operation of the

CURVE B-Conventional design cell, made with high activity materials, normal usage
CURVE C-Improved cell construction design, made with high activity materials, normal usage drain.

Fig. 1. Various types of cells showing voltage vs time characteristics.
Table 1. Designer's Check List

\square BATTERY VOLTAGE-(Nomina!)

This is normally dictated by the using equipment. The equipment will frequently operate satisfactorily over a moderately wide volt range. The designer should keep this in mind and select a standard battery if possible.

battery end voltage

This again is governed by the using equipment. For best battery efficiency the circuit should be designed to allow the widest possible range between nominal battery voltage ($1-1 / 2$ volts per cell) and end voltage.
\square BATTERY SIZE
Normally batteries of the same voltage are available in several different physical sizes. Most economical service will usually be obtained by selecting the largest battery size that can be tolerated.

\square BATTERY COMPARTMENT

This should be free from all sharp projections that might puncture the battery or ground to a metal battery case. Some batteries are made with rounded corners or with corners beveled at 45 deg. Where space permits, it is desirable to leave the battery compartment so that it could accommodate the full rectangular cross section without the round or beveled corners. This allows later increase in battery service by design change to utilize these comers.
The battery should fit freely into the compartment with allowance for minor size variations. This can frequently be accomplished by sponge rubber pads or light leaf springs. These also serve to prevent the battery from moving.

\square TERMINALS

The using equipment should be provided with proper connections such as plugs or snap fasteners to mate with the battery terminals. Battery terminals are made to conform to RMA standards. The mating terminal should also conform to these standards. The location should be such that neither the battery nor the equipment will be damaged in the process of connecting or disconnecting the battery.

\square BATTERY LOCATION IN EQUIPMENT

Battery should be located away from any sources of excessive heat. Ideal battery operating temperature is in the range of $60-90 \mathrm{deg}$. F. Weight balance is frequently a factor. Battery location should be considered with this in mind.

\square BATTERY DISCONNECT SWITCH

This should provide a positive means for disconnecting the battery when the equipment is idle. An indicator to show "Off" and "On" positions is desirable to prevent the power being left on accidentally when the equipment is put away. In many instances a battery is blamed for giving poor service when in fact the power switch has been left "On" while the equipment was idle.

So COMPACT that it occupies less than half a cubic foot of bench space, the H-Lab Model 800A Power Supply is fully transistorized to provide these advanced features: twin, continuously variable, 2-36 volt 1 ampere, outputs, that may be series-connected to deliver a single 4-72 volt, 1 ampere, output . . . less than 500 microvolts ripple . . . less than . 01 ohms source impedance . . . constant regulation over full voltage and current range . . . automatic short-circuit and overload protection. For full information on H-Lab Power Supplies, transistorized and vacuum tube, write to: HIKRRISON 工凡BOR_ATORIES. INC. 15 Industrial Road, Berkeley Heights, New Jersey CIRCLE 387 ON READER-SERVICE CARD
device is possible. Decreasing the load on dry battery greatly increases not only the life in hours but also the life in ampere hours. A si mle formula gives a fair approximation of th is. crease to be expected:
\log of output (ma-hr) $=$ constant $-\log$ of lod current (ma)
As an example of the application of this formuind reducing the load to one-half increases the nat output 20 per cent, an increase in life by a f ccter of 2.40 .

Different Types of Construction

Commercial dry batteries are differentiated b the following characteristics: their chemical com ponents; form; and envelope. There has beend growing use of more active chemical compnents. The increased activity has sometimes lef to unreliable performance. Hence there has bee a great deal of work done toward the control i the new materials. An example is manganey diovide. A crystal structure which is suitable fut some types of dry batteries is not at all suitabs for other types.

Most multi-cell batteries are now made with cells of a rectangular shape which efficientl use the space available. The early B batteris were simply flashlight cells soldered in serite Their cylindrical shape resulted in a waste of space. One approach to the problem has been return to something like the original voltaic pile A duplex electrode is employed. Zinc plates anf coated with carbon paint and they are assembled with other components into units which are nul individual cells but which, when stacked one on another, form a pile of cells connected in series Ordinarily the unit is enclosed in a plastif sheath or envelope. This method employs the space efficiently but presents other problems.

Since individual cells are not made, the 10 per cent testing and inspection of individuad cells is no longer possible. The lower potential

Table 2. Cross Reference Chart

Burgess	NEDA	General Dry	Mercury	Na tional Carbon	RCA	$\begin{gathered} \text { Ror } \\ 0 . \\ V_{\text {oc }} \end{gathered}$
2N6	1602	178	-	246	VS305	1602
D6	1603	88	-	276	VS306	1603
D6S	1608		-	2761		
D6PI	1601	89	-	2506	VS301	1601
C6X	-	86	-	2356	-	
P6M	1600	-	-	226	VS300	160
$2 \mathrm{U6}$	1604	-	-	216	-	160.
XX9	1900	177	-	239	V5304	1901
NE	910	913	G401	W468	V5073	716
930	-	-	G502	1015E	-	-
130	-	-		635	-	-
230		-	-	A100	-	-
4D4	1400	-	-	274	-	-
A4	-	-	-		-	-

ELECTRONIC DESIGN • July 9, 1958
f a weak cell is masked by the other cells in a eries assembly. It is likely to escape detection the inspection process. Moreover, these units e not themselves sealed against loss of moisure. It is only the finished stack of cells which s sealed by dipping in wax.
The wafer cell meets both of these problems has a complete cell, sealed against moisture which can be individually tested. The cell $s s t)$ strong that a stack of cells can be molded nto a smooth form, leaving no wasted voids of pace. One of the problems of forming such a stack of cells has always been that of making an Hectrical connection. This problem led to the ise of duplex electrodes in the older type of dry hattery.
One of the electrodes in the wafer cell is a thin sheet of plastic made conductive by loading it with graphite. It is not possible to solder to such a material nor to make any of the usual mechanical connections. A conductive wax has been deeloped which is rendered conductive by silver lated copper particles. This material is exremely conductive and at the same time has the oft adhesive properties of wax. Two small buttons of this wax serve as the terminals on the wafer cell.
When these cells are piled one on the other, strong electrical bond is formed from terminal o terminal, which is very resistent to vibration hecause of the lack of rigidity. Each wafer cell is sealed in a plastic envelope which has a low moisture vapor permeability. The entire stack is vrapped once again with a sheet of mylar to which another plastic has been bonded to form in additional moisture vapor barrier. Finally the entire assembly is dipped in a special type o vax solution.

Cost Considerations

The following factors increase cost unneces sarily. Some types of sockets need to extend down into the battery a great distance. This not only wastes space that could be better used bu' also requires considerable padding. While the cost of this is not large, it is sometimes entirely unnecessary. The voltage of dry batteries deth when discharged and for efficient use ather wide variation is required. When cost is extremely important, the batteries should be contained in simple, rectangular paper boxes. Metal containers are quite common. Both alumnum and steel are used. They can improve the quality of the battery-for example, making it more rugged and greatly enhancing its appearance. When these containers are used, the batteri's usually have rounded corners. However, when possible the designers should provide a tect ingular compartment for the battery so that the hattery manufacturer can use this shape if he finds it desirable.

ASTRON' 'SAFETYMMARGIN, * ELECTROLYTIC CAPACITORS

for transistorized and printed circuits

IMPORTANT DESIGN ADVANTAGES OF ABTRON EZ AND EX ELECTROLYTICS

- miniaturized size-Light in weight - desioned for minimum losses -

Low drain

- Long "shelf" and operating life
- hermetically sealed
- nugeedly constructeo

Today's low-voltage transistorized and printed circuits demand capacitors with absolute minimum leakage and impedance. To meet these exacting needs, Astron Engineers developed new miniaturized EZ and EX Electrolytics for ambient operation up to $85^{\circ} \mathrm{C}$.
$\mathbf{9 9 . 9 9 \%}$ pure aluminum foil is specially anodized by an exclusive process power drain is cut to a minimum. They are constructed to withstand extreme temperature changes and give reliable operation after periods of "long idleness."

Each electrolyte formula is scientifically compounded of special chemicals, selected for their high purity. Assembly steps are kept meticulously clean ... the result: Safety Margin Construction, famous for its ability to withstand ripple currents, vibration, shock and wide temperature fluctuations. These hermetically sealed units are available in a broad selection of capacitance and voltage ratings.

Send today for further technical information . . . please describe your application; it helps us offer proper assistance to
you ... when special
conditions require, we will design a prototype to meet your specifications.

-Trade-Mank
WEST COAST WAREhOUSE: I. R. Stern and Co., 4109 Burbank Blvd., Burbank, Calif., 13 East 40 th St., M.Y., M.Y. -IM CAMADA: Charles W, Pointon, 6 Alelna Ave., Torento, Ontario. CIRCLE 388 ON READER-SERVICE CARD

TAKE YOUR PICK FROM THE SPRAGUE TRANSI-LYTIC FAMILY
 of tiny electrolytic capacitors for every requirement in entertainment electronics pocket radios, wireless microphones, miniature tape recorders, auto receivers

LITTL-LYTIC*
 CAPACITORS

Sprague's new Type 30D her-metically-sealed aluminumencased capacitors are the tiniest electrolytic capacitors made to date... and their performance is better than ever. Their remarkable reliability is the result of a new manufacturing technique in which all the terminal connections are welded. No pressure joints . . . no "open circuits" with the passage of time. And check this for ultralow leakage current: for a $2 \mu \mathrm{f}$, 6 volt capacitor . . . only $1.0 \mu \mathrm{a}$ max.; for a $300 \mu \mathrm{f}, 6$ volt capacitor... 3.5μ max.! Engineering Bulletin No. 3110 gives the complete story. $85^{\circ} \mathrm{C}$ standard.
${ }^{-}$Trademark

VERTI-LYTIC* CAPACITORS

These space-saving Type 89D 'lytics are designed for easy manual upright mounting on printed wiring boards. Keyed terminals assure fast mounting and correct polarity. No reworking on the assembly line. Sturdy pre-molded phenolic shell with resin end-fill gives excellent protection against drying-out of the electrolyte or the entry of external moisture. The phenolic case eliminates the necessity for additional insulation. Reasonably priced for mass production receivers. Engineering Bulletin No. 3060 lists standard ratings with performance data.

FOR ENGINEERINO BULLETINS on the industry's first complete line of subminiature aluminum electrolytic capacitors, write Technical Literature Section, Sprague Electric Company, 347 Marshall Street, North Adams, Massachusetts.

SPRAGUE COMPONENTS:
CAPACITORS • RESISTORS • MAGNETIC COMPONENTS • TRANSISTORS • INTERFERENCE FILTERS - PULSE NETWORKS • HIGH TEMPERATURE MAGNET WIRE • PRINTED CIRCUITS CIRCLE 389 ON READER-SERVICE CARD

minimizes transistor derating for thermal conditions...

UAP cold plate U-521330, designed for Collins Radio Company, dissipates heat generated by power transistors used in ground and airborne electronic circuits. The heat is transferred across a pressure thermal contact to cooling air. The cold plate controls the transistor junction temperature within operating limits compatible with the installation. Therefore, transistor derating is minimized.

The cooling air, which is forced through the cold plate, can be ducted from an air cycle refrigeration system; a ram air supply; an air manifold within
the electronic compartment or a pressurized equip ment package.
The aluminum cold plates are bonded by UAP's dip braze method which produces extremely lightweight assemblies with maximum heat transfer area within the core. Cold plates can be used individually or assembled in manifolded banks.

DESIGN PERFORMANCE CHARACTERISTICS
OF U-521330 COLD PLATE

Air flow: 7 lbs. por hr.
Air pressure drop: $0.25^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$ correeted 10.0765 donsity Temperature drop in' cold plate: $1.5{ }^{\circ} \mathrm{C}$ per watl dissipated Weight: Approximately 1 az.

Performance charactoristics can be modified to requirements.
For complete information call the nearest UAP Confractual Engineering Office
CALIFORNIA. 1101 Chestnut St., Burbank Calif., VI 9-4236 NEW YORK. 50 E. 42nd St., New York 17, N. Y., MU 7-1283 OHIO............................ 1116 Bolander Ave., Dayion, Ohio, BA 4-3841 CANADA United Aircraft Products, Lid., 5257 Queen Mary Road,
Montreal, Canada, Elwood 4131
a famons family of aiccoffe essentials since 1229
UNITED AIRCRAFT PRODUCTS, INC.
1116 BOLANDER AVENUE, DAYTON, OHIO CIRCLE 390 ON READER-SERVICE CARD

"beat the clock"

on every electronic test

new Lawoie robotester slashes test time and expands checkout capabilities
The new Lavoie Robotester brings a fresh viewpoint to operational testing and production line checkout through continuous, high-speed sampling and comparison . . split-second recognition, isolation, and identification of abnormal functions - with the added versatility and

CUTS
FINAL TEST
TIME
80\%

A state-of-the-art ADVANCE
with unlimited
applications flexibility of pre-programmed acceptance standards.
Nominal circuit values and specified tolerances are tape-punched in minutes to accommodate voltages (AC and DC) from 0.5 to 500 volts; resistances from 1 ohm to 9.99 megohms; and tolerances of $1 \%, 5 \%, 10 \%$, and 20% of nominal. The Robotester will check any two of 250 circuit points at rates up to 100 tests per minute. Automatic operation stops when an out-of-tolerance value is met, while nixie-fube readout identifies the isolated, faulty circuit.
The high speed of the Robotester means a saving of up to 80% of your production test time or a five-fold increase in test capabilities... NOW.

In research, development, manufacturing
In avionics, communications, missile count-down
In design, production, maintenance

$$
=-2=
$$

Savoie Laboratories, Inc.
MORGANVILLE, NEW JERSEY
designers and manufacturers of electronic equipment
CIRCLE 421 ON READER-SERVICE CARD

CROSS INDEX cont.

ELECTRONIC DESIGN • July 9, 1950

Core Plane Tester
Programmed outputs

This unit is a transistorized core tester that can - used for automatic core plane testing. It is so useful for magnetic research or individual re testing. The current outputs can be proammed to give various combinations of full or lf currents. The currents are adjustable from ro to 1.5 amp . Rise time adjustments from $3 \mu \mathrm{sec}$ to $1 \mu \mathrm{sec}$ are provided. Current widths e also controllable. Accurate current control is rovided and maximum reliability is achieved ith the use of transistors and printed circuit sfemblies throughout.
Transistor Applications, Inc., Dept. ED, 50 road St., Boston, Mass.

CIRCLE 402 ON reader-SERVICE CARD

> Silicon Rectifiers
> 1250 wof rectified power

Peak inverse voltage ratings for the series J licour rectifiers are $100,200,300$, and 400 v . The 1 units are rated at 1.5 amp dc at a temperare of 100 C . They feature low forward drop, wo current density, and axial leads. Type J-2 ctifiers are rated at 10 amp de to 100 C . They quire a cooling fin or heat sink to limit temfrat ire rise. Mounting is by means of a \#10-32 ud.
Sarkes Tarzian, Inc., Rectifier Div., Dept. ED, 5 . College Ave., Bloomington, Ind.
circle 403 on reader-service card

FOR A MIRROR BRIGHT FINISH

"SILVA-BRITE" SILVER PLATING PROCESS . . . Provides hard, bright, highly-ductile finish in stable deposits from flash to heavy. Water-clear solution enables plater to watch process; parts falling into tank may be recovered without contamination. Uniformly good results with current densities from 10 to 40 amperes per square foot; operation and control are noncritical, economical. Filfration through activated carbon removes organic contaminants; no purification downtime. Excellent throwing power, less fendency foward bath decomposition or fumes. Write for fechnical bulletin.
American Platinum \& Silver Division, 231 New Jersey Railroad Avenue, Newark 5, N. J.

CIRCLE 101 ON READER-SERVICE CARD

FOR PURIFYING AND PURIDRYING
DEOXO ${ }^{\otimes}$ PURIFIER . . . provides low-cost catalytic purification of hydrogen and other gases to the extent of less than one part oxygen per million. Requires no operating expense, no maintenance, no reactivation, no auxiliary heating, no water cooler. DEOXO ${ }^{\circledR}$ DUAL PURIDRYER . . . combines continuously-operating, dual tower, automatically-run drying unit with the features of Deoxo Purifier-catalytically produces pure, dry hydrogen, so pure it contains less than one part oxygen per million, so dry that it has a dew point of befter than - $100^{\circ} \mathrm{F}$.
Chemical Division, 113 Astor Street, Newark 2, N. J. circle 103 on reader-service card

Varian Strip Chart Recorders

POTENTIOMETER PERFORMANCE* AT MODERATE COST

*
The servo-balance potentiometer method has long been used in expensive recorders to achieve superior stability, sensitivity, ruggedness and high input impedance. Use of servo balancing systems assures full realization of these inherent advantages by providing ample power independent of the source being measured. Now Varian offers you recorders of moderate cost using this time-proven principle.

VARIAN SPECIFICATIONS:

- Spans as low as 10 mv
- Limit of error 1%
- Maximum source resistance 50K ohms or higher
- Balancing times: 1 second or 2.5 seconds on G-10; 1 second on G-1 1

WRITE TODAY FOR COMPLETE SPECIFICATIONS

Varian recorders are sold and serviced throughout the free world by representatives in principal cities.

Varian Associates manufactures Klystrons, Traveling Wave Tubes, Bachward Wave Oscillators, Linear Accelerators, Microwave System Components, R. F. Spectrometers, Magnots, Magnetometers, Stalos, Power Amplifiers and Graphic Recorders and offers research ond dovelopment services. CIRCLE 133 ON READER-SERVICE CARD

NEW PRODUCTS

Transformers

Wide band

Designed for operation from 100 kc to $100{ }^{\text {m }}$ with minimum insertion loss, type 1210 tra formers may be used for step-up or step-dow The impedance ratio is 600 ohms; 75 ohms. G_{w} balance, low cross talk, and minimum capaciis coupling are achieved.
North Hills Electric Co., Inc., Dept. Mineola, N.Y.

CIRCLE 134 ON READER-SERVICE CARD
Three-Phase Oscillator
Facilitates component testing

Model 603 three-phase oscillator provides wide range, variable-frequency three-phase s nal source. Coupled with three amplifiers, it c be used for variable speed-control of synch nous or induction motors; the testing of syste or components required to operate over a ran of frequencies varying from the normal; and testing gyros.

Genisco, Inc., Dept. ED, 2233 Federal A Los Angeles 64, Calif.

CIRCLE 135 ON READER-SERVICE CARD

Transistor Mounting
For P-C boards

The Transipad, a glass filled Diallyl Phthlo wafer with three holes and three hemispheri
eet, permits easier installation and more reliable nounting for transistors on printed circuit (or rds. Designed especially for Jetec 30 transisors, the device eliminates the need to use leads is supports and permits lower, more stable nounting with positive insulation between the ransistor case and the printed circuit conducor s . The Transipad is approved under MIL-M15794 SDG.
Milton Ross Metals Co., Dept. ED, Davisville Rd., Bucks County, Southampton, Pa. circle 136 ON reader-service card

Recorder

Sensitivity of $2 \mathrm{mv} / \mathrm{mm}$

For recording electrical data from de to 100 cps, the ER-20 direct-writing strip chart recorder features direct-coupled amplifiers which give a sensitivity of $2 \mathrm{mv} / \mathrm{mm}$. Stylus deflection on each channel is 40 mm , with an accuracy of 2 per cent.
Mandrel Industrial Instruments, Dept. ED, б134 Glenmont Dr., Houston, Tex.

CIRCLE 137 ON READER-SERVICE CARD

Decade Delay Line
High Impedance Output

This lumped-constant decade delay line features high impedance output. The following input are available: 500 ohms, 1000 ohms, 2000 ohris. Variable from 0 to $11 \mu \mathrm{sec}$, in increments of $1 \mu \mathrm{sec}$, with rise times of 0.25 microsecond. Unils are provided with coaxial input and output cor rectors.
I psco Inc., Components Div., Dept. ED, Cummil ston St., Boston, Mass.

CIRCLE 138 ON READER-SERVICE CARD

Itre finest if mitridis....

superior engineoring know-how combine to build in El-Menco Dur-Mica Capacitors the highest reliablity ... to give long, ever-ready, powerful sorvice in electronic equipm from lighming-fast glant brains to iny Iramsisior receivers.

* ninpue leturese in

EI-Menco Dur-Miaces

- Specially-selected, highest-grade India Ruby mica flms. . . pre-tested to hove highest insulation resistance. greatost dielectric strength... lowest dissipation factor. Specially developed dipped coating retains the superior properties of India Ruby mica.

Debugging - the removal of early failures by wublecting mica capaciors to short life tests at elevated voltages and temperatures . . THE SCORE . DM30, 10,000 MMF, "Debugged" El-Menco Dur-Mica Capacitors. subiectod to 257,000 hours of life of $85^{\circ} \mathrm{C}$ with 100% of the rated DC voltage applied ... Iurned in a record APPROX 0.6% CUMULATIVE FAILURE OR ONLY I FAILURE PER 43 MILLION UNIT-HOURS.

El Menco "Dur-Micas"

hove proved their tremendous power and ability under accelerated conditions of $11 / 2$ times rated voltages at ambiont temperatures of $125^{\circ} \mathrm{C}$ and inning out over all others in longest ilife, most powerful performance, smallest size, greatort stability.

DM15, DM16, DM19, DM20, DM30, DM40, DM42, DM43 porfect for extrome miniaturization; ideal for now miniafured designs and printed wiring circuits. Now "hairpin" parallel leads insuro easy applications in radio, television, guided missiles. E-Menco Dur-Micas meer all humidity, requirements, including military specs.

ACTUAL
ACTUAL
SIZE

Alillenco Capacitors

THE ELECTRO MOTIVE MFG. CO., INC.
Manufacturers of El-Monco Capacifors

WILLIMANTIC CONNECTICUT

- molded mica - mica trimmer - dipped paper
- ceramic feed-thrus - silvered mica films e ceramic dises

Arco Electronics, Inc., 64 White SI., New York 13, N. Y.
Exclusive Supplier To Jobbers and Distributors in the U.S. and Canada CIRCLE 139 ON READER-SERVICE CARD

New precision in glass:

precision glass puts giant thyratron on target

Here's a job in precision glass fabricating that wasn't easy - not even for the experienced production staff of Chatham Electronics, Division of Tung-Sol Electric, Inc.
This giant hydrogen thyratron just had to have its anode stem precisely centered at the top of the tube. The slightest lack of uniformity in the glass components used to make up the stem assembly would throw the anode off-center, resulting in spurious discharges, arcs, and misfires. Such behavior could hardly be tolerated in the high power radar pulse modulator service for which the tube was designed. Glass components made to conventional tolerances were not good enough!
That's when F \& P was called in. Recommended by 20 years of experience in the field of precision glass forming and fabricating, F \& P was the company chosen most likely to meet the strict ID-wall thickness-concentricity requirements of this critical application. F \& P not only succeeded in furnishing components to the required tolerances, but also worked with Chatham in solving related glass design and fabricating problems. How's that for service?
This is just a sample of what F \& P can do for you in precision glass. F \& P has met tolerances as low as $\pm .0001 \mathrm{in}$. . . . in special types of glass tube enclosures, glass switch components, miniature glass battery enclosures, and precision molds. If you would like to explore the possibilities of using precision glass in your designs, contact the Glass Products Division, Fischer \& Porter Company, 5778 County Line Rd., Hatboro, Penna.

The 33 megawatt hydrogen thyratron shown above is just one of the many special purpose electronic tubes manufactured by Chatham Elec tronics, a Division of Tung-Sol Electric, Inc. The precision glass components shown in both photos are typical of those supplied by F \& P for use in thyratrons and other tube products manufactured by Chatham.

NEW PRODUCTS

The RVG-8T trimmer potentiometers at stocked in resistance ranges of 20 to 50,000 ohns and are available to 100,000 ohms. The standar unit has a rating of 2 w at 85 C derated to zen at 150 C . Resistance tolerance of ± 5 and linea ity of ± 3 are produced with windings on bol cards and mandrels.
Gamewell Co., Dept. ED, Newton Upper Falls Mass.

CIRCLE 141 ON READER-SERVICE CARD

Retaining Rings
 Easily identified

A complete series of retaining rings are avair able for instrument use. Ring size is engraved 00 each piece for size identification. The rings are available stacked on rods for automatic assembl operations

Rotor Clip Co., Dept. ED, 114 Allen Blvd. Farmingdale, N.Y.

CIRCLE 142 ON READER-SERVICE CARD
I-F Amplifier
With detector and cathode follower

amplifiers includes two models which are nown as the M-230A and M-235A. A built-in evector and cathode follower is featured. Cenr frequency for both units is 30 mc . Band3ths are 2 mc and 10 mc respectively.
Instruments for Industry, Inc., Dept. ED, 150 len Cove Rd., Mineola, N.Y.

CIRCLE 143 ON READER-SERVICE CARD

Servo Breadboard

Provides accurate test results

This apparatus consists of stocked components hich may be assembled quickly into a variety f $2-7 / 8 \mathrm{in}$. diam mechanisms. As many as six nchro style components of any pilot diameter ay be mounted. Standard gear ratios range from 1 to 78,125:1. Antibacklash gearing is available all ratios. The fixed gear center mechanisms rovide test results which truly represent the beavior of a correctly designed production unit. Precision Mechanisms Corp., Dept. ED, 577 ewbridge Ave., East Meadow, N.Y.

CIRCLE 144 ON READER-SERVICE CARD

Power Supplies

Short-circuit proof

These transistorized power supplies feature ree-way short circuit protection, including a gh-speed circuit breaker. Regulation is 0.1 or 01 v for extremes of line and load. Ripple is iss than 0.001 v . Wide range models start at 0 to v up to 0 to 36 v . Current ratings are up to 5anip.
Electronic Measurements Co., Inc., Dept. ED, ato itown, N.J.

CIRCLE 145 ON READER-SERVICE CARD

CRITICAL

SANGAMO TYPE S CAPACITORS

HERMETICALLY SEALED PAPER TUBULARS

These high reliability subminiature capacitors are encased in brass
tubular metal cases, hermetically sealed with Sangamo's exclusive
"INNERSEAL" glass-to-metal terminal that gives utmost protection against leakage under severe operating conditions.
Sangamo Type S Capacitors meet the performance requirements of MIL-C-25A, MIL-C-14157A, and MIL-C-26244USAF. For design convenience, several choices are available with regard to tolerances, circuit assembly, lead styles, mounting brackets, insulating sleeve, and inductive or non-inductive sections. Engineering Catalog No. 2421 gives complete information. Popular styles and ratings are available from stock.

SANGAMO ELECTRIC COMPANY
8PRINGFIELD. ILLINOIS
CIRCLE 146 ON READER-SERVICE CARD

FOTOCERAM circuit board blanks are made photographically. All holes and shapes are produced by simple exposure to light, heat, and an etching operation.

This is a FOTOCERAM printed circuit

... an unusual new type of printed circuit board

Reliable through-plate holes - The good adhesion of the circuit runs applies also to the through-plate holes because both are produced with one plating operation.
Excellent resolderability - We have removed and resoldered components over twenty times on a Fotoceram board without damage to circuit runs or through-plate holes. And this is without using adhesives to bond the copper to the board.
Dimensional stability - Rigid structure of Fotoceram prevents unusual design
considerations-eliminates problem of warp and twist.
Good adhesion • It takes 12-25 pounds to peel a one-inch copper strip from a Fotoceram board.
Exceptional pull strength • 1400 pounds per square inch.
No water absorption - Fotoceram's nonporous-zero water absorption.

Non-flammable

No blisters - Fotoceram never blisters. We put it through repeated 15 -second
cycles of copper metallizing at $500^{\circ} \mathrm{F}$. and could not find a single blister or sign of peeling or failure.

Other properties:

Dissipation factor
$1 \mathrm{mc} @ 20^{\circ} \mathrm{C} .0 .006$ @ $200^{\circ} \mathrm{C}$. 0.014
Dielectric constant
$1 \mathrm{mc} @ 20^{\circ} \mathrm{C}$. 5.6 @ $200^{\circ} \mathrm{C} .6 .3$
Loss factor $1 \mathrm{mc} @ 20^{\circ} \mathrm{C}$. 0.034 @ $200^{\circ} \mathrm{C} .0 .088$
For more information, write for our Data Sheet on Fotoceram.

Chering means revesucte ic Glas

y CORNING GLASS WORKS, Bradford, Pa.

Electronic Components Sales Department
CIRCLE 147 ON READER-SERVICE CARD

NEW PRODUCTS

Toroidal Transformers
For de to de converters

A standard line of toroidal transformers dc to dc or ac transistorized converter applia tions is available. Dual purpose transformers but switching power transistors and supplying va ous output voltages have power ratings to w , inputs of 6,12 , and 24 v dc , and outputs to 6 v. Basic power transistor switching transforme for use with other multiple tap power tran formers are available for use with transistors different power ratings. Units are uncased, capsulated, or hermetically sealed.

Polyphase Instrument Co., Dept. ED, E. St., Bridgeport, Pa.

CIRCLE 148 ON READER-SERVICE CARD

Force Transducer
1.68 v output

A differential transformer type force trai ducer, the model 9-1 features a high output 1.68 v full scale with input of 115 v ac at 60 of into a 5000 ohm resistive load. An efficient m netic circuit makes the output possible. Tempu ature drift and sensitivity at zero are maximu of 2 per cent at full scale per 100 F . Units had $75-\mathrm{lb}$ or $240-\mathrm{lb}$ capacity with a ring element sign. Maximum linearity is 0.5 per cent, hysteresis does not exceed 0.09 per cent. Un meet or exceed MIL-E-005272B environmen requirements.

Edcliff Instruments, Dept. ED, P.O. Box 50 Monrovia, Calif.
circle 149 on reader-service card

Shock Tester

Provides 77 g on $\mathbf{4 0 0 \mathrm { lb } \text { units }}$

Model 30 K drop test machine provides shock orces in excess of 77 g on specimens weighing p to 400 lb . The machine consists of a piston pe platform on which the equipment to be ested is mounted. The platform is then subected to a free fall into a cylinder of air presure. The advantages offered are repeatability of cceleration waveforms and simplicity of operaion.
Aeroflex Corp., Aeroflex Laboratories Div., Dept. ED, 34-06 Skillman Ave., Long Island City N.Y.

CIRCLE 150 ON READER-SERVICE CARD

Dual-Beam Oscilloscope

DC to 25 mc

Type 551 is a dc-to- 25 mc dual-beam oscillocope with the company's plug-in feature. All pe $53 / 54$ plug-in units can be used in both vercal channels, providing a high degree of signalandling versatility. Risetime of the two main ertical amplifiers is $0.012 \mu \mathrm{sec}$, and both have $2-\mu \mathrm{sec}$ signal-delay networks. The type 551 weep is common to both beams. Twenty-two alibrated direct-reading sweep rates from 0.1 sec. cm to $5 \mathrm{sec} / \mathrm{cm}$ are provided, with a vernier inc: librated) control for continuous adjustment tom $0.1 \mu \mathrm{sec} / \mathrm{cm}$ to $12 \mathrm{sec} / \mathrm{cm}$.
Te tronix, Inc., Dept. ED, P.O. Box 831, Portand $;$, Ore.

CIRCIE 407 ON READER-SERVICE CARD

NEW PLUG-IN UNIT
 for Measuring Transistor High-Frequency Characteristics by the Pulse-Response Method

The Type 53/54R

I nit can trigger the Oscillussope suteep either ont the start of the rest pulse only.
or onl buth the start ar int buth the start und finish in display delay. rise. sturage. and fall times
simultancously.

C H A R A C TEARISTIIC S
The Type 53/54R Unit and your Tektronix Oscilloscope with the Plug.In Feature equip you to measure transistor delay, rise, storage, and fall times. No other equipment is needed. Just plug in the Type 53/54R Unit and you're ready to go.

Collector Supply

1 to $15 v$ continuously variable, positive or
negative. Current Capability, 400 ma .
Mercury-Switch Pulse Generator
Risetime less than $0.005 \mu \mathrm{sec}$. Overall risetimes
with the oscilloscopes are as follows: Types 541, 543, 545-0.012 $\mu \mathrm{se}$ Type 551-0.014 $\mu \mathrm{sec}$
Type 533-0.023 sec
Types 531, 535, 536-0.035 1 Isec

Type 532-0.07 $\mu \mathrm{sec}$ (The Type 532 and Type 536 have an additional limitation in the lack of Amplifude -0.02 y to 10 y continuously adiustable Amplitude -0.02 v to 10 v , continuously adiustable, across 50 ohms. Eight co
$0.2,0.5,1,2,5$, and 10 v .
Bias Supply
-0.5 v $10+0.5$ vand -5 v $10+5$ v, continuously
variable. Current Capability $- \pm 100$ ma.
Calibrated Vertical Defection
$0.5,1,2,5,10,20,50$, and 100 ma cm collector current.

w-frequency characteristics of the some transistor under driving conditions paralleling those of the Arst three pairs
af left. Fomily of curves photographed af left. Family of curves photographed
on a raktronix Typp 575 fronsistor-Curve

Tracer- $0.5-v$ div horizontal calibration, | Tracer- $0.5-\mathrm{v}$ div harizontal calibration, |
| :--- |
| $1-\mathrm{ma}$ div vertical calibration, $500-\mathrm{hm}$ | 1-ma div vertical calibration, 500 -ohm

load line. Driving conditions al right of -ach photograph.
53 54 the pulse coinciding with the $2-\mathrm{cm}$ line. The
scope-3.5-v collector supply, $500-\mathrm{hm}$ collector load
aiv vertical calibration, $0.5-\mu \mathrm{sec}$ div sweep rate. Driv-

Tektronix, Inc.
P. O. Box 831 - Porifand 7, Oregon

Phone CYpress 2-2611. TWX-PD 311 . Cuble: TEKTRONIX

TEKTROMIX ENGINEREING REPRESENTATIVES: Arthut Lynch EAssoc, FI Myers Flo

CIRCLE 408 ON READER-SERVICE CARD

KEEP UP-TO-DATE ON MAGNETICS

Now-guaranteed maximum and minimum performance limits for tape wound cores!

For the first time you can order tape wound cores with guaranteed performance to published limits.
All tape wound cores coming from the hydrogen atmosphere annealing furnaces at Magnetics, Inc. are tested by flux reset as proposed by the AIEE Working Group on Core Matching and Grading ${ }^{\circ}$. Thus, standard cores are given a standard test to give engineer-designers a standard component whose performance is guaranteed within fixed limits.
Magnetics, Inc. has established the limits to provide maximum, minimum and nominal $\mathrm{B}_{\mathrm{m}}, \mathrm{B}_{\mathrm{r}} / \mathrm{B}_{\mathrm{m}}, \mathrm{H}_{1}$ and gain performance data. It is published for one, two, four and six mil tape thickness for Orthonol ${ }^{\circledR}$ and Hy Mu 80.
Now it is possible for you to select and order cores specifically suited to your design (just as with any other standardized
component). You'll save many hours of experimenting, and because the reliability of the data is guaranteed, you'll be sure at every stage of design and production.
The published limits for Magnetics, Inc. tape wound core performance are ready now. Write for your copy: Depl.ED-f5, Magnetics, Inc., Butler, Pennsylvania.

MAEDETICS inc.

-Paper No. TWC-45, Winter General Meeting, AIEE, February, 1958,
Flux Reset Test is one of two tests proposed for standardization Flux Reset Test io one of two tests proposed for standardization. ER-SERVICE CARD

NEW PRODUCTS

Transistor Mounts
Shock, vibration resistant

These transistor mounts provide standardiz mounting for all transistors regardless of size shape. They offer shock resistance and pret movement under severe vibration. Temperat range is from -60 to +99 C . The mounts ha a low dissipation factor, low conductivity, an low dielectric constant.
Delbert Blinn Co., Dept. ED, P.O. Box Pomona, Calif.

CIRCLE 152 ON READER-SERVICE CARD

Headers
 One-piece construction

Square and rectangular headers of one-pie construction headers eliminate assembly "I ation. They are available in nearly every stan ard size and include moat, square flange, and sert type constructions.
Glasseal Products Co. Inc., Dept. ED, 1111 Elizabeth Ave., Linden, N.J.
circle 153 on reader-service card

Frequency Indicator

Meter and converter in one package

Model FR 305 frequency indicator combir an indicating meter with the manufactur transistorized frequency-to-voltage converter a single package. Accurate indication of rate, frequency or rpm is provided.

Waugh Engineering Co., Dept. ED, Burnet Ave., Van Nuys, Calif.

CIRCLE 406 ON READER-SERVICE CARD

Diode Function Generator

Punched card memory

The Model 100 may be used to generate either -linear functions of an independent input tage, or of any parameter which may be conted to a voltage, or it may be used to gener-non-linear functions of time by using either internal or an external time base. A comte library of non-linear functions may be ated for future use.
Electrol, Inc., Dept. ED, P.O. Box 1152, BevHills, Calif.
fircle 154 ON reader-service card

Phase Meter

10 cps to 50 kc range

Type 328-A transistorized phase meter meass the phase angle in degrees between two usoidal or non-sinusoidal voltages within a quency range from 10 cps to 50 kc . It is a ect reading electronic instrument which feaes broad frequency coverage, wide input namic range, accuracy and excellent stability. Acton Laboratories, Inc., Dept. ED, 533 Main Acton, Mass.

CIRCLE 155 ON READER-SERVICE CARD

Model MA telephone-type relay has a push-toease reset lever. The relay operates on 2.4 w , mscc pulses and has contact arrangements up 4 plt. When the relay operates, a latch lever ks the armature in position so that the conits remain transferred when power is removed m the coil. Potter \& Brumfield, Inc., Dept. ED, Princeton, CIRCLE 156 ON READER-SERVICE CARD

Now...major components

 for weapons testing and control systems come as reusable, universally adaptable modulesIt's called MATE-Modular Automatic Testing Equipment-for go nogo readout, the first significant step go readout, the first significant step in eliminating obsolesc
matic testing systems.
matic testing systems. found that all automatic systems, regardless of type or complexity, can be reduced to the same, basic, packageable components.

wide range available

AMF has already designed and produced 19 of these modules-each one a self-sufficient package with a disa self-sumicient package with a dis-
tinct responsibility. Available to you tinct responsibility. Available to you on an "off-the-shelf" basis now, are
programming and control modules, programming and control modules, signal translator modules, compara-
tor-evaluator modules and display tor-evalu
devices.

universally adaptable

These modules can be put together to implement any automatic testing program. Or, any of them can be integrated with existing equipment of other manufacture.

obsolescence eliminated

After serving their purpose for the system under test, MATE modules can be reintegrated into other systems requiring the same functions. The result: complete flexibility in the most complex systems; low-cost components available on short delivery, pre-designed to accomplish many dif-
ferent tasks; modules that retain their usefulness and validity after weapons systems modification. The resulting economies to prime contractors and the military are enormous.

MAJOR ASPECTS OF MATE

The response of all types of weapons hardware can be evaluated with MATE, including electrical, mechanical, and hydraulic. Signal Simulators and Transducers are not part of the MATE line, but the system is designed to match most currentlysignedable transducer elements. From available transducer elements. From
transducer to display device, MATE modules take over.
Conirol-the test sequence is achieved through sequential programming equipment...punched tape, sequential stepping switch or a combination of both.
Signal Evaluation-A key feature of MATE is the use of either analog or digital comparators which evaluate data without conversion. Analog comparators operate from 5 to 20 vdc with a nominal operating level of 10.000 vdc. Analog translators are available to convert sinusoidal and other complex data for the analog comparator.

Reforence-Because the entire system is normalized to operate at 10 vdc, just one reference supply of 10.000 vdc , accurate to $\pm 0.02 \%$ is re quired. Methods are provided for re-
motely establishing pre-set tolerance limits. Several different display devices are also provided.*

Your inquiries invised-W rite to Associated Missiles Products Co. (a division of AMF), 2709 North Garey Avenue, Pomona, California... or to AMF, Government Products Office, Washington, D. C. or Dayton, Ohio; or Los Angeles, Cal.

\% MATE MODULES AVAILABLE

PROGRAMMING \& CONTROL
Program Sequencer Control Pane Channel Selector Data Selector Translator Selector

SIGNAL TRANSLATORS AC to DC Translator Frequency to DC Translator IBM Translator
COMPARATOR-EVALUATORS
LO.GO.HI Comparator (2 modules) Differential Error.Detector Digital Comparator-Ev
(4 modules) Quasi-Digitizer
dISPLAY DEVICES \& POWER SUPPLY
LO.GO.HI Display Panel
LO-GO.HI Meter Display
Quasi-Digital Light Display Panel
2log Reference Standa Analog Reference Standard Static Pressure Generator

It's called MATE...It's from AMF

GOVERNMENT
 PRODUCTS

Government Products Group
AMERICAN MACHINE \& FOUNDRY COMPANY
1101 North Royal Streot, Alexandria, Vo.
CIRCLE 405 ON READER-SERVICE CARD

WRITE for this brochure listing features, method of operation and applications of MATE Modules.

Reverse current: 10-7 amp. Rectification ratio: 10,000,000:1

Now...new efficiency for TV power supplies with dependable diodes of Du Pont Hyperpure Silicon

More efficient power supplies . . . savings in space and weight . . . important reasons why TV manufacturers are replacing conventional rectifying systems with silicon diodes. Today, several types of silicon diodes and rectifiers are readily available for TV circuits. TV manufacturers have tested silicon rectifiers and report no noticeable change in output voltage under continuous load conditions over long periods of time. Sili-
con components can operate in ambients from -65° to $150^{\circ} \mathrm{C}$. They maintain excellent electrical stability and resist aging.
Silicon components have high shock and vibration limits. They are up to 99% efficient in units operated at 60 cps . and require little maintenance. Silicon cells permit a rectification ratio as high as 10 million to 1 -almost negligible reverse conductance. Silicon bridges are
available with ratings from 1 to 1,000 amperes and more than 600 volts rms. Note to device manufacturers: You can produce silicon transistors, rectifiers and diodes of the highest quality with Du Pont Hyperpure Silicon. It's now available in three grades for maximum efficiency and ease of use ... with a purity range of 3 to 11 atoms of boron per billion. Technical information on crystal growing is available from Du Pont . . . pioneer producer of semiconductor-grade silicon.

PIGMENTS DEPARTMENT

better things for better uving through chemistry

4NEW BOOKLET ON DU PONT HYPERPURE SILICON You'll find our new, illustrated booklet about Hyperpure Silicon helpful and interesting-it describes the manufacture, properties and uses of Du Pont Hyperpure Silicon. Just drop us a card for your copy. E. I. du Pont de Nemours \& Co. (Inc.), Pigments Department, Silicon Development Group, Wilmington 98, Delaware.
(This offer limited to United States and Canada.)

NEW PRODUCTS

This metal film resistance element is sax wiched between rubber, fibreglass or other sulator as the particular application requires, a total thickness of 0.02 in . This insures ra transfer of heat and maximum efficiency. The is capable of continuous operation at 500 F , power densities as high as 60 w per sq in.
Thermatic Co., Dept. ED, P.O. Box 585, Gre Neck, N.Y.

CIRCLE 158 ON READER-SERVICE CARD

Switchable Tuning Unit

Requires one subcarrier discriminator
Requiring only one subcarrier discriminata this switchable tuning unit provides regular dat reduction quality on all standard telemetry cha nels. It incorporates the company s bandpass an low pass output filters and provides a single stallation available with 8,16 , or 24 channels.

Data-Control Systems, Inc., Dept. ED, Da bury, Conn.

CIRCLE 159 ON READER-SERVICE CARD

Isolator

Frequency range of 3.5 to 9.6 kmc

Model W668-1A-2-0 transverse field isolat has a frequency range of 8.5 to 9.6 kmc wi isolation at $10 \mathrm{db} \min$ and insertion loss of
${ }^{1}$ lax. Other features include an input vswr 1.10 max with peak power at 300 kw nominal ambient temperature of -65 to +125 C . Kıarfott Co., Microwave Div., Dept. ED, 844 Oxnard St., Van Nuys, Calif.

CIRCLE 160 ON READER-SERVICE CARD

Spectrum Analyzers

100 and 30 channel types

This 100 -channel analyzer model 100 analyzes cps bandwidths in the $50-10,500 \mathrm{cps}$ range in ee bands. The 30 channel analyzer model 30 lates a single amplitude to frequency, making instant graphic display of complex audio aveforms. It is a heterodyne-type analyzer ach separates 4 -kc wide bandwidths up to 20 into 29 equal frequency bands. A 30th chan1 is provided for reference.
Kay Electric Co., Dept. ED, Maple Ave., Pine took, N.J.

Circle 161 on reader-service card

Waveguide Switch Range from 4.7 to 11.0 kmc

Technical characteristics of double ridged veguide switch model H14A2AA are: frelency range from 4.7 to 11.0 kmc ; vswr under 15 to 1 ; insertion loss of 0.5 db max; crosstalk 40 db ; 1P2T positions; actuator operating voltef from 18 to 30 v dc; switching time of 1.5 sec x; and life of 100,000 actuations.
Tho mpson Products, Inc., Electronics Div., pt. ED, 2196 Clarkwood Rd., Cleveland 3,

CIRCLE 162 ON READER-SERVICE CARD

Here's one of the smallest precision servo motor series currently available. The new Daystrom Transicoil Type 6 Motors are wound for $26-, 33$-, and 52 -volt operation. Control phase is center tapped for operation with transistor drive. These Motors develop .125 oz -in. min. stall torque and 6200 RPM free speed. Each unit weighs only .9 oz . and is less than $11 / 4^{\prime \prime}$ overall.

NEW TYPE 8 INDUCTIVE POTENTIOMETER

ThisInductive Potentiometer is an infinite resolution a-c potentiometer whose output voltage is linear rather than sinusoidal with the angle. Output voltage phase is dependent upon the direction of shaft displacement from null. When operated into load resistors not less than those specified, output is linear within $.25 \%$ through an angular rotation of $+85^{\circ}$ through null to -85°.

NEW TYPE 8 SYNCHROS

The new Daystrom Transicoil Type 8 Synchro Line consists of transmitters, control transformers, differentials and repeaters. Dimensions equal to BuOrd Size 8. Operation: 115V 400 cycles or 26 V 400 cycles. Accuracy of ± 10 minutes is standard. Other accuracies are available upon request. Corrosion resistant construction throughout. Conforms to MIL-E-5272-A. Operating temperature range is -54 C to +125 C . Higher temperature units also available.

NEW TYPE 11 INERTIAL DAMPED MOTOR

Here's inertial damping with no reduction in no-load speed! This new Type 11 Motor (BuOrd size 11) provides acceleration or deceleration damping in high-speed and high-gain servo systems. In non-critical applications, this motor can be used as a low-cost substitute for damping motor generators.

DATA SHEETS AVAILABLE Write for complete specifications, mechanical data, dimensions and characteristics. Be sure to ask about our New 24 HOUR SERVICE for servo motors and motor generators.
DAYS ON TRANSICOIL CORF.
A Subsidiary of Daystrom, Inc.
in Canada:
Daystrom, Ltd., 840 Caledonia Rd., Toronto 19, Ont.
FOREION:
Daystrom International Div.,
100 Empire St., Newark 12, N. J.
WORCESTER, MONTGOMERY COUNTY, PA. - PHONE: JUNO 4.2421 circle 404 ON READER-SERVICE CARD

NEW PRODUCTS

What do these latest aircraft and missiles have in common?

All are cquipped with Genisco flight control or instrumentation accelerometers. What better proof of reliability?
With component reliability getting increased attention from missile and aircraft designers, it is significant to note the number of supersonic weapon systems equipped vith Genisco accelerometers.
A complete list reads like a roll call of tactical and strategic missiles and aircraft now in the nation's arsenal. Included are such weapons as the Atlas, Thor, Nike Ajax, Incluced are such weapons as the Atlas, Thor, vike Aiax, Dart, Matador, Corporal and Terrior missiles; and the F100D Super Sabre, F101 Voodoo, F106A, and Canada's CF105 aircraft. What better proof of the reliability of Genisco instruments than this acceptance by designers of these weapons?
Combining product reliability with guaranteed delivery schedules and competitive pricing has made Genisco the free world's largest producer of potentiometer-type flight and fire control accelerometers. More than 40,000 have been delivered to date.
Send for technical data sheets on all Genisco Accelerometers.

2233 FEDERAL AVENUE - LOS ANGELES 64. CALIFORNIA CARD

Encapsulated Resistors

Operate at 125 C

These encapsulated axial or lug-type wound resistors operate effectively at 125 c full rated load, derated to 0 at 145 C . Stand miniature in size, they have maximum resista values and a low inductance factor. The unitsa shock and humidity resistant.

General Resistance, Inc., Dept. ED, 577 156th St., New York 55, N.Y.
circle 164 on reader-Service card

Filter
 Highpass-lowpass

A dual unit, this direct coupled highpass/L pass filter is an addition to the company's lint analog filters. Model LH-24D has two indivi filter units which are identical and may be a verted from highpass to lowpass by a selee switch.

Spectrum Instruments, Inc., Dept. ED, Bos Steinway Station, L.I.C., N.Y.

CIRCLE 165 on reader-Service card

Decade Amplifier

Low phase shift

Model 12-D decade amplifier features pri sion gain and low phase-shift. Gain is down than 3 db at 3 cps and 500 kc . Phase shiff nominally zero, and less than 10 deg at 20 There is less than 3 per cent change in gain, F to 120 F . Input impedance is greater ti 100,000 ohm.
Microdynamics Div., Plas-Kem Electrou Corp., Dept. ED, 100 W. Alameda Ave., B bank, Calif.

CIRCIE 166 ON READER-SERVICE CARD

Switch

Designed for high voltage use

Hhis hermetically sealed rotary selector switch ated at 1650 v de and 20 ma . Other charactercs are: 28 v dc operating voltage; 2.3 amp coil rent at rated voltage; hi-pot rating of 2000 v with maximum leakage of $1 \mu \mathrm{a}$.
f. H. Leland, Inc., Dept. ED, 123 Webster Dayton 2, Ohio.
circle 167 On reader-service card

Precision Potentiometer

Linearity of 0.015 per cent
Iodel MST-150 single turn potentiometer is a
cision unit with linearities to 0.015 and resoon compatible with linearity. Dissipation at C is 8 w . Temperature range is 125 C conlous and 160 C short periods.
Inalogue Controls, Inc., Dept. ED, 39 Roselle Mineola, N.Y.
clircle 168 on reader-service card

Radar Picture Tube High resolution

The WX3751 high resolution radar picture e produces 667 lines to the inch or a scanning 0.0015 in . wide across the $5-\mathrm{in}$. faceplate. tically flat, the faceplate is gray glass to inase contrast. The tube has a modified P-11 e phosphor and a metal-backed screen to obMaximum light output. An electrostatic 75, wagnetic-deflection type, the tube is 13 in .
Vesinghouse Electric Corp, Electronic Tube ;, I ept. ED, P.O. Box 284, Elmira, N.Y.

CIRCLE 169 ON READER-SERVICE CARD

This hand-pourad casting was not evacuated to remove bubbles.

See for yourself the clarity of new Dow Epoxy!

This unretouched photo demonstrates how easy it is to see through several inches of Dow Epoxy Resin 332-and thus how easy it is to visually inspect parts which are encapsulated in D. E. R. 332.
But a perfect inspection "window" is not the only advantage you get when you use D. E. R. 332 for encapsulation. Compared to ordinary epoxies, the high purity of D. E. R. 332 makes possible more uniformity, lower viscosity, longer pot life and greater heat resistance. Of special interest also for electrical applications, D. E. R. 332 and D. E. R. 331 are very low in total and hydrolyzable chlorides.
D. E. R. 331 is a standard unmodified resin designed for customary applications and D. E. R. 334 is a modified lowviscosity resin especially suited for laminating.
All three of these Dow Liquid Epoxy Resins are available for prompt delivery to you in drums, truck or tank car lots. For complete information on Dow liquid and solid epoxies and epoxy novolaks, call your nearest Dow sales office. Or write the dow chemical company, Midland, Michigan Coatings Sales Dept. 2262P.

YOUCANDEPENDON

CIRCLE 170 ON READER-SERVICE CARD

for your transistorized circuits ...

RI.:.ransemamas

custom-built to the \mathbf{Q} you require with the low cost advantages of mass production . . . in $3 / 8^{\prime \prime}, 1 / 2^{\prime \prime}$ and $3 / 4^{\prime \prime}$ sizes

Whether your circuit requires a high Q for performance or a low Q for greater stability, Radio Industries will engineer and manufac. ture I.F. transformers to meet any specific level you require, up to 200 for the $3 / 4^{\prime \prime}$ and $1 / 2^{\prime \prime}$ and up to 140 for the $3 / 2^{\prime \prime}$. RI transformers have the shunt capacitors built in to meet your requirements.

Available in a variety of terminal styles for wired and printed circuits.

for your transistorized circuits ...

1 DISC CAPACITORS

unique copper plating process lowers production costs The Radio Industries patented Kemetal copper plating process provides copper electrodes that assure greater adhesion and freedom from migration. Another special RI process makes possible the unusual thinness of these capacitors, to meet the need for increased capacitance in a smaller size.
With a power factor of 3% maximum at $1 \mathrm{KC}, \mathrm{RI}$-caps have a working voltage of 30 volts DC with a minimum I.R. of 1000 megohms contingent upon capacity values. Capacitance tolerances are available in $+100 \%-20 \%, \pm 20 \%, \pm 10 \%$.

Write for complafe description and defails RADIOINDUSTRIES, INC. 666 Garland Place - Des Plaines, Illinois 3 modern plants: Chicago, Des Plaines, and Marshall, III.
CIRCLE 171 ON READER-SERVICE CARD

Comparator
Permits fast production testing

Type $265-\mathrm{A} \mathrm{O}$ is available for fast produc testing of coils, capacitors, and resistors. comparator provides comparison measurem of relative Q , inductance and capacitance ease and accuracy. No operator tuning or adj ment is necessary. Measurement is by means a dot in the center of the crt. Any dot which not appear at the center of the crt indicates the component under test is different than standard. Deviation along the vertical axis sha a change in Q , and deviation along the horizori axis shows a change in L or C.

Boonton Radio Corp., Dept. ED, Boonton, CIRCLE 172 ON READER-SERVICE CARD

Linear Actuator

860-lb normal load

Adaptable for a wide range of aircraft, missil ordnance, and industrial applications, the Mois D-1890 linear actuator operates under a nom load of 860 lb at a rate of 0.28 ips . The maximu operating load is 1800 lb . The basic stroke 2.50 in . can be lengthened or shortened to st requirements. The unit features a radio noi filter, adjustable travel limit switches, integs thermal overload protection, an electromecha cal clutch brake for low overtravel and in versibility, and positive nonjamming mechani stops.

Hoover Electric Co., Dept. ED, 2100 S. Ston Ave., Los Angeles 25, Calif.
circle 173 ON reader-service card

Miniature Relay

Weighs less than $\mathbf{1 / 2} \mathbf{0 z}$. easuring less than 1 in . long and weighing than $1 / 2 \mathrm{oz}$, type $\mathrm{S}-\mathrm{M}$ relay is designed for inuous use in a -65 to +125 C temperature e. Life expectancy is 100,000 operations inum, at rated load. Specifications include: inal coil voltage 26.5 v dc; contact arrangeit, 2 pdt; contact rating, 2 amp at 28 v dc reve; maximum operate time 4 msec ; maximum ase time 3 msec ; maximum contact bounce sec operating shock 50 g for 11 msec ; vil ra20 g to 2000 cps . The unit meets MIL-R15 and MIL-R-5757C.
omar Electric Co., Dept. ED, 3349 W. AddiSt, Chicago 18, Ill.

CIRCLE 174 ON READER-SERVICE CARD

Pulse Transformers

Plug-in types with four windings

ypes PT-82 and PT-91 pulse transformers are igned to plug into standard noval sockets. units may be used for isolation, coupling or cking oscillator circuits. The four windings be connected in various ways for impedance thing.
Berkshire Laboratories, Dept. ED, 964 Bank lage, Greenville, N.H.

CIRCLE 175 ON READER-SERVICE CARD

Resistance Averaging Unit

Independent of number of resistors
his system for averaging resistors in parallel lesigned for applications where it is necessary continue averaging as individual resistors are in or out of the circuit (e.g. resistance thermeters). The basic principle of operation is ise angle measurement and the unit does not orporate any relays or other moving parts. Acacies obtained are within ± 3 when as many 50 of the resistors are cut out of the circuit. eral designs have been developed whereby her magnetic amplifiers, vacuum tubes, or Isistors are utilized.
The B.G. Corporation, Dept. ED, 321 Broad 6, lidgefield, N.J.

CIRCLE 176 ON READER-SERVICE CARD

Sylvania develops cast germanium and silicon discs for more efficient infrared detection systems

Cermanium and silicon lenses, ground G from optical blanks cast by Sylvania, are finding wider application in the infrared detection systems in today's missiles and aircraft. These semiconductor materials are transparent to wave lengths above $7 \mathrm{mi}-$ crons where other materials, such as quartz, are opaque.

Sylvania's Chemical \& Metallurgical Division now offers cast discs of polycrystalline germanium in sizes as large as $81 / 2$ inches in diameter and 6 inches thick. Even larger sizes are being developed to meet the needs of detection system manufacturers. Cast sili-
con discs, too, are available for infrared use. Silicon, which weighs less than germanium, is finding growing acceptance in airborne systems. Other factors, such as the maintenance of infrared transmission characteristics at higher temperatures are of particular interest.
Through constant research and close cooperation with industry, Sylvania is continually improving its products to meet the needs of all areas of electronics. This is a basic reason why Sylvania has become a leading source for both silicon and germanium for all applications.

TUNGSTEN • MOLYBDENUM • CHEMICALS • PHOSPHORS • SEMICONDUCTORS

Complicated hermetically sealed relay actuator problem solved by KOVAR ${ }^{\text {® }}$

The hermetically sealed relay in the circuir shown below required an actuator meeting all these conditions: it had to be small, rugged, a good insulator, and had to resist heating in the range of 124° to $200^{\circ} \mathrm{C}$ without gassing or losing strength.

Engineers at Carborundum's Latrobe plant solved the problem by developing a technique in glass beading for the actuator. They used Kovar alloy and hard borosilicate glass which meet all of the actuator's mechanical and temperature requirements. Carborundum is now making the actuator in a wide variety of shapes and sizes to conform to the varied demands of the relay industry. Success like this with glass-to-metal seals explains why manufacturers are relying more and more on Carborundum s electronic products . . . and experience. Contact The Carborundum Company, Refractories Division, Latrobe Plant, Latrobe, Penna

Precision Engineered Electronic Products CARBORUNDUM

THERMISTORS

NEW PRODUCTS

DC Voltage Regulator
Provides 20 v dc power

Model PR-10 is a completely transistorized dual dc voltage regulator capable of operation under extremes of shock and vibration. It is designed to provide a stable positive and negative 20 v dc power source for as many as 30 TSO200B voltage-controlled sub-carrier oscillators. The unit is sealed against fungus and humidity.

United Electrodynamics, Dept. ED, 1200 S. Marengo Ave., Pasadena, Calif.
circle 179 on reader-Service card

Voltmeters

Accuracy ± 3 per cent

The dc voltmeters offer seven discrete voltage ranges from 1 to 1000 v . Accuracy is ± 3 per cent. The ac voltmeter has broad frequency response, from 20 cps to 100 kc . Full-scale ranges are provided in 10 db steps from 10 mv to 300 v .

Metronix, Inc., Dept. ED, Chesterland, Ohio. CIRCIE 180 ON READER-SERVICE CARD

Plug-in Case
Metal enclosure simplifies design

A small metal enclosure, called a Frame-Loc, has recently been made available. All sides are flush and the case is provided with snap-out side

NESOR offers a complete rana of fine wire in all Ferrois, Non-Ferrous, and Precios Metals. We are specialists the fabrication of special wirk for the stringent requiremen of Semi-Conductors (Transi tors, Diodes, etc.).

Other specialties are: Hig purity aluminum- 99.999% for silicon rectifiers. Tinned and bare wire supplied; wire als cut to precision sizes for lead

Mefals and Alloys in Stock:

- Aluminum and Alloys
- Brass and Alloys
- Phosphor Bronze
- Copper: Bare, Tinned

Silver Plafed.

- Lead and Solder Alloys
- Monel, Monel-Nickel, Nickel
- Steels: Copper Coated, High and Low Carbon, and Stainles ELECTRO-PLATING SERVICE:
Ultra-modern plating facilitie for wire, ribbon, and comp nent parts. Tin, copper, nickel can be plated over base metal to your specifications.

,

 Theso A Phot 10PBODUC Mfr. of Fraid and Strand 286 Halsey St., Newark 2, N. , 4 286 Halsey S., Mitchell 2-1682, 3,
Telephone:

In NYC Phone: Dlgby $4-9890$

CIRCLE 181 ON READER-SERVICE CARD
making the case particularly suitable for tor circuitry in small pluggable units. The made in a wide variety of sizes and finInternal terminal structures may be printed uit panels or the company's wall, decks, or posts can be supplied. Where ventilation ssential, the side panels can be omitted, or orations can be used. A variety of plug types ptional.
(ector Electronic Co., Dept. ED, 1100 Flower Cilendale 1, Calif.

CIRCLE 182 ON READER-SERVICE CARD

Multicoder

Accepts up to 88 mv inputs

his transistorized pulse duration multicoder epts up to 88 ten mv full scale differential inThe unit, termed model MC-G90X10, proes any of the standard PDM frame and comation rates of $30 \times 30,45 \times 20$, or 90×10 at turn of a selector switch. Input full scale les of $10,20,50,100$, and 500 mv are selectby means of a front panel switch.
auke \& Co., Dept. ED, 1632 Pico Blvd., Santa nica, Calif.

CIRCLE 183 ON READER-SERVICE CARD

Magnetic Tape Transport

Speeds of 7.5 and 3.75 in . per sec

duipped for automatic or manual operation, masnetic tape transport is designed for for1 and reverse operation at speeds of 7.5 and in. per sec. The Series 610 is provided with forvard and rewind speeds of 2400 ft in two
merican Electronics, Inc., Data-Tronics Div., pt. ID, 655 W. Washington Blvd., Los An5 la, Calif.

CIRCLE 184 on reader-service card

GLOBE A.C. MOTORS / GEAR REDUCERS / PACKAGES
In precision miniature motors, gear reducers, and small-package devices using clutches, brakes, and other components, Globe Industries has the hardware to meet your requirement. From a single source you can get fast 2 to 4 week prototype delivery of standard units. Modular design, interchangeable precision parts, and an efficient special order department are specific, unique reasons why you get what you need before your design grows cold.

Three basic A.C. motors are shown above. With their integral gear reducers they reliably span the torque range to more than 2000 in. oz. Custom modifications are a specialty.

Globe motor packages were chosen for the Army's Jupiter C, and as you read this, at least one such package is circling the earth. Ask the largest precision miniature motor manufacturer first. Request the Globe A.C. Motor Catalog now. GLOBE INDUSTRIES, INC., 1784 Stanley Avenue, Dayton 4, Ohio. BAldwin 2-3741.

GLOBE

CIRCLE 185 ON READER-SERVICE CARD

N○W... from Victoreen COROMA TYPE HIGH VOLTAGE REGULATORS WITH CURRENT CAPABILITIES AND SLOPES hever before obtainable

- Maximum currents to 4 ma
- Peak currents to 9 ma
- Regulation to $1.5 \% / \mathrm{ma}$
- Voltages from 400 to 3000
- 9 pin and octal base tubes
- In use by the military

Make Victoreen your headquarters for high voltage regulation. Send for Form 2022A and Form 2023A describing the GV6A and GV9A line of corona type voltage regulators.

See us af WESCON, Booth 1542

The Victoreen Instrument Company Components Division
5806 Hough Avenue - Cleveland 3, Ohic CIRCLE 186 ON READER-SERVICE CARD

NEW PRODUCTS

Bourdon-Tube Transducer High resolution

With the Model 461227 Bourdon-tube pressure transducer resolution of up to 400 wires is obtained. Covering pressure ranges from 200 to $10,000 \mathrm{psi}$, the unit is suitable for measuring noncorrosive liquid or gas pressure in airborne applications.
G. M. Giannini \& Co., Inc., Dept. ED, 918 E. Green St., Pasadena 1, Calif.

CIRCLE 187 ON READER-SERVICE CARD

Relay Meter

Controlled by true rms

Model 1094 Sensitrol relay deflects in proportion to the true rms of the impressed current or voltage. Offered with either one or two preset contacts and in current or voltage ranges, the unit is designed for applications in over and/or under current or voltage control and alarm.
Weston Instruments Div., Daystrom, Inc., Dept. ED, Newark 12, N.J.

CIRCLE 188 ON READER-SERVICE CARD
Pulse Sorter
Controls random inputs

Although the reversible counting of the model 111 A binary counter is automatic, the feedback

WHO IS BORG

George W. Borg, who found corporation, is the "Mr. Clutel started with Borg \& Beck. H helped organize the Borg-h Corporation of which h b president. Later he served as 10 man of the board until he ref to devote his full attention it George W. Borg Corporation.

The George W. Borg Corporar comprised of three divisions

- Borg Products Division

Manufactures automotive

- Borg Fabries Division

Manufactures deep-pile fabir best known of this line

- Borg Equipment Division

Manufactures Micropots
(precision turn-counting
instrument motors, frea
standards, aircraft navigat
instruments and componeni systems.

HOW BORG
EQUIPMENT DIVISION CAN HELP YOU

Borg's background of experience save you time and money by you solve design and production lems of electronic components. W you are faced with a special pr or interested in a standard comi call Borg Equipment Division is economically sound solution. economically sound solutio
today for catalog BED-A90. today for catalog BED-A90.

BORG EQUIPMENT DIVISIC the george w. borg corporati JANESVILLE, WISCONSIN

CIRCLE 189 ON READER-SERVICE CA

BORG 105 SERIES ICROPOTS...

 OFFER PPENDABLE, LIFETIME PRECISION!

205 Series MICROPOTS have ven themselves exceptionally ged and dependable. They have en years of service in many ferent mobile and stationary lications for both military and mercial uses. They're readily lable, too, as Borg's modern duction facilities assure prompt ivery in any quantity. Write y for the name of your nearest g Jobber or "Tech-Rep". It will you to know him.

heck These Advantages...

Fine resolution because of $431 / 2^{" 1}$ Kohlrausch winding in the helical element!
Accurate setting and resetting due to anti-backlash spring in contact guide!
Permanent accuracy because resistance wire is moulded integrally with housing!
/Long life because slidercontact is the only moving member that touches the resistance element.

ORC, EQUIPMENT DIVISION
me george w. horg corporation janesville, wisconsin
rcie 190 ON reader-service card

Model 1D1 lumped constant ferrite delay line provides a high ratio of delay/rise time/number of sections through elimination of the leakage flux linkages in the cup cores. Whereas formerly a twelve section line had a delay/rise time ratio of 8 , the new line has a ratio of 9.3 for twelve sections. Temperature coefficient is 25 ppm per deg C. Normal production tolerances on delay are 1 and 2 per cent on characteristic impedance.

Digitronics Corp., Dept. ED, Albertson Ave., Albertson, N.Y.

CIRCLE 193 ON READER-SERVICE CARD

for microwave applications are precision engineered to attain the highest level of performance, with highest transmitted power, lowest standing wave ratio. They are fully tested for trouble-free operation.

- COMPLETE FEED SYSTEMS designed and installed. For any antenna, anywhere.
- HORNS - both single and dual polarization. Exceptional low VSWR.
- TRANSITIONS - better bandwidth and lower VSWR.
- DUPLEXERS - rejection ratios better than 100 db
- STRaight SECTIONs - Length $3^{\prime \prime}$ to 20^{\prime}
- BENDS - E-plane or H-plane
- COMPLETE HARDWARE and accessories

For the most efficient use of your antenna, let Kennedy engineers design your feed system. Complete, detailed specification data is yours for the asking. Write today for your free copy of the handy file size Kennedy Antenna Equipment folder.
pulses may occur at random or coincidental with the command pulses. The pulse sorter 136A is the answer to this problem. It is connected in series with both the forward and reverse inputs to the counter and blanks both pulses, should they occur within $5 \mu \mathrm{sec}$ of each other.

Navigation Computer Corp., Dept. ED, 1621 Snyder Ave., Philadelphia 45, Pa.

CIRCLE 191 ON READER-SERVICE CARD

Power Supply

For strain gage excitation

Model SR-200A power supply is designed especially for strain gage excitation. The unit features floating output, less than $10 \mu \mathrm{v}$ of noise from the dc output to ground when used with a grounded strain gage, and 0.1 per cent regulation for line voltage changes from 95 to 135 v . The dc output is continuously variable from 5 to 12. Maximum output current is 200 ma .

Video Instruments Co., Inc., Dept. ED, 3002 Pennsylvania Ave., Santa Monica, Calif. CIRCLE 192 ON READER-SERVICE CARD

Delay Line

High delay-rise time ratio

Typical Performance Curves

MAXIMUM FREQUENCY STABILITY WHERE SPACE IS LIMITED..

A high power unit of exceptionally small size and weight, this newest Kearfott product is the answer to microwave circuitry applications where space is limited.

IMPORTANT FEATURES:

BROAD FREQUENCY RANGE - from 8.5 to 9.6 KMC HIGH ISOLATION - Minimum of 15 DB INSERTION LOSS - Only 1.0 DB Maximum SMALL SIZE $-1.000^{\prime \prime}$ deep $\times 2.100^{\prime \prime}$ high x 2.400" high

POWER - Average 200 Watts

TEMPERATURE-AMB - $150^{\circ} \mathrm{C}$
PRICE - $\$ 135.00$ each f.o.b., Van Nuys, Calif. Quantity prices on request DELIVERY-from stock

OTHER STANDARD Ferrite Isolators and Duplexers in a wide range of sizes and band widths are available plus facilities to produce special contigurations if desired. Our sales engineers can help you.

KEARFOTT COMPANY, INC. MICROWAVE DIVISION
DEPT. IOE, 14844 OXNARD ST. VAN NUYS, CALIF.
circle 195 ON reader.service card

NEW PRODUCTS

Signal-Noise Correlator

Takes dynamic measurements

Model I-101 signal-noise correlator can be used to make dynamic signal-to-noise measurements at the outputs of various types of communications equipment such as receivers, amplifiers, magnetic tape systems, etc. The signal-to-noise ratio can be measured without removing either the signal or the noise.
General Electronic Laboratories, Inc., Dept. ED, 18 Ames St., Cambridge, Mass.

CIRCLE 196 ON READER-SERVICE CARD
Encapsulation Cups
For cores and laminations

Designed to fit standard cores and laminations, these encapsulation cups permit the component to be placed closer to the container wall due to their arc resistance. The cups are made of glassfilled diallyl phthalate.

Electronic Production \& Development, Inc., Dept. ED, 138 Nevada St., El Segundo, Calif. CIRCLE 197 ON READER-SERVICE CARD

Moving Coil Indicator
Measures 7/16 in. diameter

Model HCM 7/16 core magnet moving coil indicator measures $7 / 16$ in., permitting it to be in-

LABORATORY recording of oscilloscope traces is far more efficient with this new camera.

Key to the versatility of the new Beattir Oscillotron with a polaroid back is the feather-touch Multiple Exposure Posi tioning Bar. Now you can get one-to-ont presentation or up to 10 exposures on a single frame - by simple adjustment. Other features: $\mathrm{f} / 1.9$ lens, shutter speeds from 1 sec. to $1 / 100$ sec., time, and bulb.

This new Oscillotron camera fits the same periscope to which all other Beattie Oscillotron cameras are attached.

Multiple Exposure Positioning Bar
for more information write to

D BEATTIE-
 COLEMAN

1000 N. Olive St., Anaheim, Califo

CIRCLE 416 ON READER-SERVICE CAI

FOLLOM THE GARAVAN:
 2000 ACRE INDUSTRIAL PARK

a part of the forward move to the anned-with-a-future 2000 acre industripark in the very heart of ever-expand8 Southern California. Ready now for scupation is plenty of zoned, low-cost dustrial land with development careIlly guided by an extensive plan of mple 88^{\prime} and 100^{\prime} roadways, railroad ill tracks to major railways, ample wage and complete utilities services. punded on two sides by four-lane super bete highways, the acreage is $11 / 2 \%$ hiform sloping land with 3000 pound aring pressure per square inch. Cenalized location puts you minutes away fom Metropolitan Los Angeles and all witbound points.
stablished wealth . - a promised future

- promised future WRITE re Seword, Monoger -SOClation of COMmerce and industry. inc. Th West "B" Street, Ontorio, Colifornio ILE IILE. VINIESS
corporated within other meters to indicate such information as alarm, position, or malfunction. Hermetically sealed, the indicator is available with either flag or pointer display, and in a variety of electrical sensitivities and functions.
Marion Electrical Instrument Co., Dept. ED, Grenier Field, Manchester, N.H.

CIRCLE 418 ON READER-SERVICE CARD

Audio Response Plotter

Direct-reading indication

The ARP-1 audio response plotter gives immediate visual proof of performance of any audio system or component, by indicating whether the system provides equal amount of acoustical energy per octave. Records are plotted on a 40 db -range logarithmic chart by a hightorque, dry-writing, servo-controlled pen.
Southwestern Industrial Electronics, Dept. ED, 2831 S. Post Oak Rd., Houston, Tex. circle 419 on reader-service card

DC Digital Voltmeter
 Includes 5 digit display

Model DVA-500 dc digital voltmeter consists of a DVX- 500 switch module and a DXA-000 power module. The power module is transistorized and features internal modular construction. Specifications of the new instrument include a 5 digit display, automatic ranging and polarity, 0.0001-999.99 range and 0.01 per cent accuracy, \pm one digit. Stability is better than 0.01 per cent.

Electro Instruments, Inc., Dept. ED, 3540 Aero Court, San Diego 11, Calif.
circle 420 on reader-service card

Engineers who don't know "It Can't be Done that Wayl"
General Electric's Jet Engine Dept. at Cincinnati now conceives and designs its own Jet Engine controls, accessories, and components, also designs its own test instruments and instrumentation systems. This has created many new positions to be filled, and we have immediate openings for graduate engineers with experience in any of the following fields:

INSTRUMENTATION SYSTEMS	ACTUATION DEVICES
ELECTRONIC CIRCUITRY	RELAY CIRCUITS
INSTRUMENT DESIGN	HYDRAULIC COMPONENTS
DIGITAL TECHNIQUES	INERTIAL GUIDANCE
AERODYNAMICS	SERVO MECHANISMS
ELECTRONIC PACKAGING	FUEL CONTROLS
MAGNETIC AMPLFIIRS	LUBE SYSTEMS
AIRCRAFT SURFACE CONTROLS	

These are career jobs and they pay well for engineers willing and able to work on brand new problems and come up with new answers. Actually, you'll be finding answers that will appear in Tomorrow's textbooks!
If you like the challenge of new problems . . . if you like to work where Engineers don't know "it can't be done that way" . . . fill out the coupon below and mail to
J. A. McGovern, Jet Engine Dept. ED-79

General Electric Co., Cincinnati 15, Ohio

Gentlemen: ${ }^{1}$ am interested in the possibility of an association with the Jet Engine Dept. of General Electric.

Name

Address

Degrees_College__ Date

My field of interest is:
ED-79
general
ELECTRIC
CINCINNATI 15, OHIO

Brand new, Type HR solenoid relays are Result-Engineered to function as the "heart" of any control system. The Type HR is designed as a multi-pole relay for piloting machine and process control components where ultra-long life and hi-speed operation are mandatory.
Wiping action contacts insure high electrical reliability; nylon movable contact carriers and armature guides minimize operating friction.
Simple, fast, easy installation speeds assembly into your equipment, saves time, cuts cost. Accessible front connected coil and contact terminals equipped with pressure connectors . . . no lead lugging needed!
Four basic models, up to eight unitized poles, convertible N.O. or N.C. contacts, completely enclosed, make the $H R$ an unusually versatile relay line.
Write for Ward Leonard Bulletin 4470. Ward Leonard Electric Co., 77 South Street, Mount Vernon, New York. (In Canada: Ward Leonard of Canada Ltd., Toronto.)

ENGINEERING DATA

CONTACT RATINGS : A.C. -10 amps., 600 V . max.; D.C. -6 amps., 115 V., 1 amp., 230 V.
COILS: A.C. $110,208-220,440$, or 550 V., $50-60 \mathrm{cps}$. D.C. for 115 or 230 V . Others on special order.
POLES: 2 to 8 , in all combinations of N.O. and N.C. Contacts convertible from N.O. to N.C. and vice versa.
DIMENSIONS: Maximum, 4 pole - $3 \%_{6}^{\prime \prime} \mathrm{W}, 53 \mathrm{~m}^{\prime \prime} \mathrm{H}, 3 y_{3}{ }^{\prime \prime} \mathrm{D} .8$ pole $51 / 0^{\prime \prime} \mathrm{W}, 53 / 4^{\prime \prime} \mathrm{H}, 3 \mathrm{H}_{2}^{\prime \prime} \mathrm{D}$. Mounting centers for all models identical.

CIRCLE 198 ON READER-SERVICE CARD

NEW PRODUCTS

Piston Potentiometer
 Noise-free ot 40 g vibration

This self-aligning linear motion potentiometer is capable of noise-free operation at $40 \mathrm{~g}, 10$ 2000 cps . The floating shaft of Model 157 permits free lateral movement of an actuator without side-load effect on the instrument. Error is less than $1 / 2$ per cent when tested under the above vibration.

Bourns Laboratories, Inc., Dept. ED, Riverside, Calif.

CIRCLE 199 ON READER-SERVICE CARD

Modulator Monitor
 Frequency range from 20 to 100 mc

Modulation monitor model 257B. measures total deviation of the carrier of fm transmitters when modulated by multiple sub-carrier oscillators. Frequency range is 20 to 100 mc and deviation measurements can be made from 0 to 1000 kc . The audio frequency range is flat within ± 1.0 db from 50 cps to 200 kc .
New London Instrument Co., Inc., Dept. ED, 82 Union St., New London, Conn. circle 200 ON reader-service card

Flange Feed

Adjustable through 360 degrees

With 360 deg adjustable flange feed, this mounting flange adjusts polarization during in-

SODECO'S ME
 Predetermining Impulse Gounfe

Compact
 Measures only $31 / 4{ }^{\prime \prime} \times 13 / 4 " \times 376^{\prime \prime}$

 Suitable for fush mounting
CONVENIENT PRESET -

Easily accessible setting wheels
FAST RESET - Manual, or electric for repeat cycling
S.P.D.T. PREDETERMINING SWITCH -

Less than 50 ms switching time

LOW POWER REQUIREMENT -

Counting at 10 i.p.s.-3.8 W; at 25 i.p.s.-5.1 W
Reset-7.6 W, all at 110 V. DC.

Write today for your
sopy of Sodeco Bulletin E-25 which gives full tochnical information.

LANDIS \& GYR,
45 West 45th Street, New York:
CIRCLE 201 ON READER-SERVICE CARD

KIL STD 15-A

CATALOGUE NO. 60 AVAILABLE IJPON REQUE

RADIDESIGN wc
 P. O. BOX 429 , BURBANK, CALIFORN
 CIRCLE 202 ON READER-SERVICE CARD

EVERYTHING UNDER CONTROL

GUARDIAN - Sadenshíh

in electromagnetic control began more than twenty-six years ago when Guardian betwenc dedicated to the control of maximum came dedicated to the control of maximum power in minimum space. Here you see preferred standards of micro-miniature, sub miniature and miniature control of today missiles and electrical industries.

Series 1005 Cro-Minia Control
 (maximum) 3 Amp Double Pole, Double Throw. Meots or surpasses requirements for all specifications of MIL-R.-25018 and MIL-R-5752C No excoptions. Contact Rating: 3 Ampa a $125^{\circ} \mathrm{C}$. per Mill R-25018; 2 Amps at 1255° C. per MIL-R-25018 and MIL-R-5757C Hormetically sealed. Specity plug-in or solder hooks.
$\$ 5.90$ each in lots of one thousand units to.b. Cubago, II.

Series 2005
Sub-Miniature Control
 maximum)
5 Amp 6 Pole, Double Throw. Meets or exceeds MIL-R-6106B and MIL-R-5757C. Built to withstand 100 G shock. Vibra. tion resistance is 10 G minimum from 75 o 2000 c.p.s. in all mounting planes. All contacts rated at 5 Amps 24 to 30 v . D.C., resistive load. Operates with voltage variations as low as 16 v . at $25^{\circ} \mathrm{C}$. ambient.

stallation or for alignment of center-fed, 7000 mc , Series B parabolic antennas. Insertable from the rear, it fits standard GED feed mounting bolts. The unit can be adjusted without removing nuts or bolts. Close tolerances permit accurate seating and positive clamping action, and there is no loss in rigidity over standard mounting flanges.
Gabriel Electronics Div., Dept. ED, Needham Heights, Mass.

CIRCLE 204 ON READER-SERVICE CARD

Rectilinear Recorder

True rectilinear motion and good transient response are features of this 12 -channel rectilinear recorder. Free of resonant peaks, overshoot, and ringing, the Model RE-12 has a frequency range from de to 200 cps . Push button selection permits 18 chart speeds from $1 / 2 \mathrm{~cm} / \mathrm{hr}$ to 200 $\mathrm{mm} / \mathrm{sec}$.
Massa Labs., Inc., Dept. ED, 5 Fottler Rd., Hingham, Mass.

CIRCLE 205 ON READER-SERVICE CARD

Memory Amplifier

Low standby current

Type 19 memory amplifier consists of an amplifier and bistable circuit. A relay load or any other may be connected from the output to ground. Upon application of a 50 mv trigger, full supply is applied to the load. The power continues to be applied until a reset pulse is connected to the reset line, when the power is removed from the load. A very low standby current allows the device to be connected for relatively long periods of time.

MF Electronics Co., Dept. ED, 122 E. 25 St., New York 10, N.Y.

CIRCLE 206 ON READER-SERVICE CARD

TYPICAL INDUCTION HEATING APPLICATIONS IN THE MANUFACTURE OF TRANSISTORS

Concentrator-type coil creatos high intensity, restrictod hearing at joint of nickel shell and tinned glass, thus causing colder to flow for permanent socl.

SINGLE CRYSTAL PULLER
$\bullet \bullet ०$ ・ー०
 - General arrangement for pulling single crystals. Induction heating coil is shown surround. ing quartz tube containing crucible with molten gormanium in suifable atmosphere. MULTIPLE ZONE REFINING

Induction heating apparatus used in zone refining. The six coils shown provide simultaneous molten zones in the ingot es it passes through the fube containing the protective atmosphere.

CIRCLE 207 ON READER-SERVICE CARD

Price Electric's new Style 6 micro-miniature relay is a lightweight, crystal can style relay designed to give superior performance in miniaturized assemblies. Weighing only 0.5 ounce, the Husky Style 6 is engineered for the utmost simplicity-a simplicity that allows for mass production of a high quality, reliable relay that is as versatile as it is dependable. Termination can be provided to meet most requirements. Style 6 meets the applicable requirements of military specifications and will perform continuously in ambients of -65 C to +125 C. This tiny Husky Relay will give excellent performance in guided missiles, computers, control systems, and other critical applicatıons.
For further details write for Bulletin Number 10.

NEW PRODUCTS

Frequency Standards

Have cathode follower output

This line of frequency standards features a cathode follower output for long-term stability. Modules are available for any set frequency from 240 to 4000 cps , with accuracies up to ± 0.001 per cent. Output is 5 v rms , variable from 0 to 5 rms with external control.

The Gyrex Corp., 3003 Pennsylvania St., Dept. ED, Santa Monica, Calif.

CIRCLE 209 ON READER-SERVICE CARD

FERRITE ISOLATOR.-Model IXL10, for the frequency range of 9 to 10 kmc , is added to a line of X-band isolators. Length is 1.04 in .

Raytheon Mfg. Co., Dept. ED, Waltham 54, Mass. CIRCLE 210 ON READER-SERVICE CARD

AC ACCELEROMETER.-The model GAH ac accelerometer is available in ranges from ± 0.1 to ± 20 g. Output is as high as 3 v per volt input.

Genisco, Inc., Dept. ED, 2233 Federal Ave., Los Angeles 64, Calif.
circle 211 on reader-service card

ANECHOIC TEST CHAMBER.-A portable test chamber used for determining acoustical characteristics of miniature radio and audio equipment.
Industrial Acoustics Co., Inc., Dept. ED, 341 Jackson Ave., New York 54, N.Y.

CIRCLE 212 ON READER-SERVICE CARD

POSITION LIGIIT FLASHER.-Model AFS-125 is desigued to replace the C-2 flasher.
P. R. Mallory \& Co., Inc., Dept. ED, 28 S. Gray St., Indianapolis 6, Ind.

CIRCLE 213 ON READER-SERVICE CARD

COAXIAL ATTENUATORS. - Models are available for 1000 to $11,000 \mathrm{mc}$, at 3,6 , and 10 db attenuation. 20 db models are available for 2000 to 11,000 mc . All have an impedance of 50 ohm .

Narda Corp., Dept. ED, Mineola, N.Y. CIRCLE 214 ON READER-SERVICE CARD

Our complete environmental testing laboratory samples and certifies daily production.

New NORMALLY CLOSED RELAYS NOW AL ABLE. They both meet or exceed requirements guided missiles and complex electronic gear.

They are hermetically sealed by bonding n headers to high thermal, shock resistant housings.
They open or close a circuit positively in second or other delay times.
They can also be safely used as a "squil timing mechanism.

Typical Charactaristice
Temperature: $\quad-100^{\circ} \mathrm{F}$. to $+450^{\circ} \mathrm{F}$
Vibration: $\quad 20-3000 \mathrm{CPS}$ at 40 G 's
Shock: 250 G's
Brochure containing complete ch acteristics and specifications availa upon request.

NETWORKS ELECTRON CORPORATION

14806 OXNARD ST., VAN NUYS, CAlll Orioinal deaigne for hiohess reliability in plan
oused miniature Relays and Resistors for all purn

CIRCLE 215 ON READER-SERVICE CARD

NEW wire- wound RESISTORS*

 Crafted with Precision for Reliability

For critical military and industrial applications.
Hermetically sealed by bonding glasskovar headers to high thermal, shock resistant glass housings. 100% humid-ity-proof.
Networks' new, truly accurate, precision Resistors are available in $1 / 4,1 / 2$, 1 and 2 watt ratings at $105^{\circ} \mathrm{C} \pm 0.1$ to 1%. Units for $125^{\circ} \mathrm{C}$ available on special order. Lug types or flexible leads. Test results prove substantial improvement over MIL specs. They combine remarkable stability, under load and on the shelf, with exceptionally low temperature coefficient.
*Patented

Reliability

Conservative Ratings Stable Characteristics
NEC
Engineering Bullerin with complete specifications

NETMORKS ELECTRONIC CORPORATION

CIRCLE 216 ON READER-SERVICE CARD

POWER SUPPLIES.-Magnetic Rangers, models MR36-15 and MR36-30 are tubeless continuouslyvariable regulated 5 to 36 v dc power supplies. They have outputs of 0 to 15 amp and 0 to 30 amp respectively.

Sorensen \& Co., Inc., Dept. ED, Richards Ave., S. Norwalk, Conn.

CIRCLE 217 ON READER-SERVICE CARD
SNAP ACTION SWITCH.-Has exact repeatability and stability in temperature and humidity conditions. Conforms to dimensional requirements of MS 25026.

Meletron Corp., Dept. ED, 950 N. Highland Ave., Los Angeles 38, Calif.

CIRCLE 218 ON READER-SERVICE CARD
NIOBIUM STRIP.-Rolled in thicknesses as low as 0.0005 in . to tolerances as close as 0.0001 in .

American Silver Co., Inc., Dept. ED, 36-07 Prince St, Flushing 54, N.Y.

CIRCLE 219 ON READER-SERVICE CARD
50-WATT TOROIDAL TRANSFORMER.-Input voltage is $115 \mathrm{v}, 400 \mathrm{cps}$, single phase. Output voltage can be any from 1 to 1000 v . Standard units supplied for filament use, for synchro drive, isolation voltage, and plate voltage. Temperature is from -55 to +100 C .

Arnold Magnetics Corp., Dept. ED, 4613 W. Jefferson Blvd., Los Angeles 16, Calif.
circle 409 on reader-service card
SERVOMOTOR.-Size 8 model 8 SM 420 has rotor inertia of $0.1 \mathrm{gm} \mathrm{cm}^{2}$ and stall torque of $0.25 \mathrm{oz} \mathrm{in}$. to offer acceleration at stall of $170,000 \mathrm{rad} / \mathrm{sec}^{2}$.

Helipot Corp., Dept. ED, Newport Beach, Calif. CIRCLE 410 ON READER-SERVICE CARD

DIRECT-READING MICRODIALS. -1300 series has 3,4 , and 5 digit dials for $10-, 100-$, and $1000-$ turn applications.

The George W. Borg Equipment Div., Dept. ED, 120 S. Main St., Janesville, Wisc. Circle all on reader-service card

TRANSISTORIZED COUNTING PACKAGE.Added to model C, the Count-Pak series now has model N-1 which counts at speeds up to 30,000 counts per min for more than 1 billion counts.
Veeder-Root Inc., Dept. ED, 70 Sargeant St. Hartford 2, Conn.

CIRCLE 412 ON READER-SERVICE CARD
RECYCLING TIMERS AND TIMING KITS.-In single, double, and three gang assemblies. Speeds vary from 50 cps to 1 cy per hr.

Herbach \& Rademan, Inc., Dept. ED, 1204 Arch St., Philadelphia 7, Pa.

CIRCLE 413 ON READER-SERVICE CARD
TRANSISTORIZED POWER INVERTER.-Model PS-3001 provides 115 v ac at 400 cps and up to 750 ma load current. Input is 26 v dc ± 5 per cent. Power Sources, Inc., Dept. ED, Burlington, Mass.

VERSATILE, FUNCTIONAL AND STRUCTURAL DESIGN

Catalog los avallable UPON YOUR REQUEST

EMCOR Modular Enclosure Cabinets house load banks used to simulate loads in testing generators at Jack \& Heintz, Inc., Cleveland, Ohio.

EMCOR units are relied upon by leading instrument and electronic equipment manufacturers for their design and construction which comply to universally accepted engineering standards of structural strength, serviceability and flexibility. Engineering "know-how" and alertness to the demands of these industries has developed a proven confidence in the EMCOR Modular Enclosure System.

As specialists in the electronic enclosures field, EMCOR engineers are closely oriented to the needs of control and instrumentation designers. Highly trained EMCOR Sales Engineering Representatives located in all major industrial areas are available to help in planning specific applications of EMCOR equipment. Discover how EMCOR Engineering Skill can work for you, write for the name of the EMCOR Sales Engineer nearest you. *Registered Trademark of Elgin Metalformers Corporation.
ORIGINATORS OF THE MODULAR ENCLOSURE SYSTEM
ELGIN METALFORMERS CORP.

630 CONGDON, DEPT. 1224 - ELGIN, ILLINOIS CIRCLE 415 ON READER-SERVICE CARD

This is one of the many applications for the Stepper Motor - a device for translating electrical pulses into accurate, bi-directional, incremental shaft displacements.

The Synchro Positioner uses two Stepping Motors, an Autosyn differential, and a built-in pulse generator. One motor positions the Autosyn Shaft in coarse increments in either direction, while the other motor, using a different gear ratio, positions the same shaft in vernier increments in either direction. As the reset command signal is of steady-state type, the built-in pulse generator permits use of the driving motors for the reset function.

STEPPER MOTORS corporation

Subsidiary of California Eastern Aviation, Inc.
7445 West Wilson Avenue - Chicago 31, Illinois

- WEST COAST . . . 11879 W. FLORENCE AVE. . . CULVER CITY, CALIF. CIRCLE 220 ON READER-SERVICE CARD

NEW LITERATURE

Pressure Comparator

Catalog Sheet 32CA110 explains operation and construction of a pressure comparator. Unit gives precise service as high as 300 psi and 300 F , has about 50 times the life expectancy of other commercially-available pressure switches. Fischer \& Porter Co., 496 Jacksonville Rd., Hatboro, Pa.

Special Metal Stampings

222
Services in the fabrication and production of stampings from rare and specialized metals are discussed in a 4 -page illustrated folder. A quick reference chart lists the properties and typical uses of 20 types of rare or special metals. These metals include beryllium copper, KMonel, molybdenum, tantalum, phosphor bronze, rodar, titanium, and silicon bronze. The Staver Co., 47 N. Saxon Ave., Bay Shore, N.Y.

Hermetic Seals

A brochure discusses the services of fered by this manufacturer of herneti seals and terminals. A consulting eng neering service provides engineers f_{0} visiting customer plants to develop r quired components on the spot. method for testing and inspecting fiz ished parts is described which duplicate the testing procedures used by the cu tomer. Glass-Tite Industries, Inc., 8 Spectacle St., Cranston 10, R.I.

Temperature Instruments

Having nearly 70 photographs, a 30 page booklet outlines facilities for th design and manufacture of temperatur controls, detectors, and indicators. Thu brochure covers research, engineering production, quality control, product affiliated companies, and customer serices. Fenwal Inc., Ashland, Mass.

CIRCLE 225 ON READER-SERVICE CARD

Victory

egulators

226

A 4-page illustrated brochure furishes complete technical data on magetic voltage regulators and also serves s a technical manual. It covers detailed product description, principles of operaenance. Illustrated with dimensional liagrams, response curves, schematics, and vector diagrams, the brochure anjwers most questions about their operatng capabilities. Sorensen \& Co., Inc., Richards Ave., S. Norwalk, Conn.

Creativity

Deutsch and Shea, Inc., technical manpower consultants, have compiled a bibliography on creativity and its role in echnology, industry, and business. The references include books, articles, and tudies encompassing science, engineering, business, and other fields. The bibliography is intended as a help to better anderstanding of techniques for stimulating and developing creative abilities. Copies are $\$ 2.00$ and may be obtained from Industrial Relations News, Dept. ED, 230 W. 41st St., New York 36, N.Y.

Delay Lines

227
A 4-page catalog describes special and standard lumped constant delay lines. It lists over 275 different units covering standard impedance ranges from 50 to 10,000 ohms and delays from 0.25 to 5000 $\mu \mathrm{sec}$. Control Electronics Co., Inc., Huntington Station, N.Y.

Connectors

Catalog MS-E-3, containing 16 illustrated pages, covers all type E plugs. These plugs conform to the provisions of Military Standard MIL-C-5015. Also available is bulletin EX-1, describing the company's four basic EX types. Cannon Electric Co., 3208 Humboldt St., Los Angeles 31, Calif.

Society of Plastics

229
This society prospectus summarizes all the activities and benefits of the organization. It contains 16 illustrated pages and includes instructions on how to join the organization. Society of Plastics Engineers, Inc., 34 E. Putnam Ave., Greenwich, Conn.

PrECIOUS METALS DIVIIION

SEL-REX CORPORATION
Offices: Defroit, Chicago, Los Angeles
Manufaturers of Exelusive Precious Motals Procosses, Motallic Power Roctifiors, Airborne
Powor Equipment, Liquid Clarification Filfors, Motal Finishing Equipment ond Supplios.

NEW CONCEPTS IN TR TUBES...

Microwave Associates now offers guaranteed crystal protection for entire life of tube . . . even under full power and elevated temperatures.

Out of Microwave's Switching Devices Laboratory, directed by Dr. Lawrence Gould, comes an important advance in duplexer tubes.

NEW KEEP-ALIVE DESIGN with new ruggedized windows and new stable gas fill maintains spike and flat leakage powers within specified limits over a wide temperature range.

Duplexer loss plus interaction plus noise generation from keep alive are controlled generation from keep alive are controlled
within tight limits as specified by the within tight limits as specified by the
system overall noise figure requirement.

MICROWAVE ASSOCIATHS. INC.

RETROFIT IS EASY . . . single and dual tubes are physically interchangeable with conventional tubes, or tubes can be shortened if desired.
Each half of a dual tube is tested individually to provide guaranteed performance. Tubes for applications requiring high repetition rate and short recovery time are available.

FOR COMPLETE DATA about these new TR tubes and other advanced tubes for TR tubes and other advanced tubes for switching high powers with guaranteed
crystal protection at any frequency, crystal protection at any frequency,
write or phone for specific information.

BURLINGTON, MASSACHUSETTS - Telephone: BRowning 2-3000 CIRCLE 231 ON READER-SERVICE CARD

immediate delivery...

phase-lock

discriminators

by Hallamore

We'll see you at the Wescon Show, Booths 412 \& 433.

Ready, as a "building-block" for your system application... Hallamore Model 0162, phase-lock discriminator, a compact plug-in type unit, has been thoroughly proven in telemetering systems of major missile programs. Designed around a concept entirely new to telemetry, it eliminates signal suppression by noise...non-linearity as a result of filtering...thresholding, common at low signal-to-noise levels. For quick action, wire Hallamore Electronics Company, Dept. 24P, 8352 Brookhurst Avenue, Anaheim, California / TWX: AH-9079.

HALLAMORE ELECTRONICS COMPANY
Engineers....for ideal working conditions with a dynamic, creative organization, address resume to Chief Engineer.
a division of The Siegler Corporation

Forerunner in System Development CIRCLE 232 ON READER-SERVICE CARD

NEW LITERATURE

Connector Soldering

A 10-page report giving a step by step procedure for the soldering of miniature electrical connectors is available. The illustrated report is entitled "Electrical Connector Soldering Techniques." Deutsch Co., 7000 Avalon Blvd., Los Angeles 3, Calif.

Conductive Gasketing

A data sheet which describes a company's electrically conductive gasketing is available. The company also provides samples with each data sheet. Connecticut Hard Rubber Co., 407 East St., New Haven, Conn.

RF Connectors

Rf connectors are covered in an 84page loose-leaf catalog. The catalog contains illustrated descriptions, charts, cross indexes, assembly instructions, and technical data. Kings Electronics Co., Inc., 40 Marbledale Rd., Tuckahoe, N.Y.

Filter Capacitors

Bulletin GEA-6819, six pages, de scribes dc aluminum electrolytic filt] capacitors for computer circuits. It dif cusses the materials and construction the units and also their operation and uses. Specifications cover case sizes. raings, performance, and characteristic Pictures, charts, dimensional drawing, and tables fill out the text. General Ele. tric Co., Schenectady 5, N.Y.

Switching Reactors

Catalog S-10 shows a complete lin of standard switching reactors for one step, low-cost static control. Adaptabl for ac or dc use, the units perform a logic functions and are applicable to switching and sequencing installations The 16 -page catalog describes the units their applications and dimensions. contains tables of electrical characteri tics and several typical application cir cuits. Control, Div. of Magnetics, Inc Butler, Pa.
\square

MORE $=$ Gertsch $=$ models

sub-miniature Coaxial RatioTrans*

 the need for meeting military speci-
fications are of prime importance.

In spite of their small size the CRT 3 and CRT- 1 have the standerd Gertsch accuracy of $.001 \%$ and all Gertsch accuracy of $.001 \%$ and all
other inherent RatioTran ${ }^{\text {ch }}$ charac. teristics. All components and materials used meet military specifications and are designed to operate under severe service conditions.

FOR FURTHER INFORMATION
write your Gerisch Representative or the factory

$-G$ ertsch $=$

CIRCLE 238 ON READER-SERVICE CARD

nstrument Bearings

239
1)etails on a miniature line of instrunent bearings, including dimensions, orque values, static and re covered cacities and limiting speeds nent M1. The illustrated catalog has fold-out pages. Barden Corp., Danbury

Conduit Fittings

240
A 28 -page color catalog illustrates and lescribes a full line of conduit fittings and accessories. The units are for rigid conduit, electric metallic tubing, armored table flexible metallic tubing, and nonmetallic cable. Conduit Fittings Corp., ${ }^{8400}$ W. 66th St., Chicago 38, Ill.

Control Reactors

A çatalog containing graphs and pecifications for 48 standard control reactors covers 15 to 450 w type. Four series covering sensitivity range from 1.5 to 3 amp-turns. The series meets all MIL-T-27-81 specifications and stands 2000 G shock tests. Four standard wind-
ings are provided or units can be delivered with any number of windings up to eight to specifications. Chicago Magnetic Control, 1616 N. Damen Ave, Chicago 47, Ill.

Delay Lines

Bulletin 510 outlines performance characteristics and design considerations for ultrasonic delay lines. The 4 -page data bulletin covers such subjects as: delay medium material, transducers, bonding medium, casing and packaging. Three pages are devoted to the performance characteristics of five different ultrasonic delay lines. Bliley Electric Co., Union Station, Erie, Pa.

Egghead Manual

An invaluable guide to aspiring eggheads is now in its second printing. Entitled "On Being An Egghead, or Engineermanship for the Shell of It," it contains a complete set of rules for egghead behavior. The booklet is fully illustrated. Benson-Lehner Corp., 11930 W. Olympic Blvd., Los Angeles 64, Calif.

Linearity $\pm 3 \%$ and Power Rating 2w (II $85^{\circ} \mathrm{C}$ derated to 0 at 150° standard $200^{\circ} \mathrm{C}$ intermittent operation available

> RVG-8T Specifications $1 / 2^{\prime \prime}$ Trimmer Pot Rating (walls) Torque (oz.-in.) Max.
special high torque available $\begin{aligned} & \text { Weight (ounces) } \\ & \text { Resistance Range }=5 \%\end{aligned} \quad 1 / 3$ Resistance Range $=5 \%$
2032 to $50 K^{\circ}$ Electrical Function Angle 320° Voltage, Max. (insulation) $\begin{gathered}1000 \mathrm{DC}\end{gathered}$ Linearity, Standard (\%) ${ }_{ \pm 3}$ - 100K available Notes: Shaft lock nut is
supplied.

High Performance and Low Cost

Improve performance of your electrical
and electronic circuitry with this new and electronic circuitry with this new Excellent performance characteristics for its type and size. Windings are on cards or mandrels, usually with wire temperature
coefficient of 20 ppm . Body is one-piece phosphor bronze, nickel plated; terminals are gold plated; stop pins and shaft are of
stainless steel; precious metal contacts are
used throughout. Insulation is designed to Available now! RVG-8T is atocked in tandard resistance ranges. 100 ohms to 50 K ohms - up to 100 K ohms available. Can be aupplied with precision potentiometer tol-
erances, servo-mount, or for $200^{\circ} \mathrm{C}$ intermittent operation. Write for prices and catalog sheet today.

THE GAMEWELL COMPANY Newion Upper Falls 64, Mass.
PRECISION POTENTIOMETER DIVISION
 CIRCLE 244 ON READER-SERVICE CARD

- Output: 35KV - 25 KVA continuous duty - Corona-free - Vacuum-oil filled
- Equipped with special brackets for pole mounting

The outdoor potential transformer, a new member of the well-known family of NWL custom-built Transformers, is made to fit the particular needs of the user. Each Nothelfer transformer is individually tested for core loss, polarity, voltage, corona, insulation breakdown and aging characteristics and must meet all customer's requirements before shipment. We shall be glad to receive your specifications and quote you accordingly.

NOTHELFER WINDING LABORATORIES, INC, P. O. Box 455, Dept. ED-7, Trenton, M. J. (Specialists in eustom-builaing)
CIRCLE 245 ON READER-SERVICE CARD

A dependable source serving the industry with precision quality magnetic heads created individually to your exact specifications and quantity requiroments. Let our design engineors and production people soive your rape recording head prob demsils.

MICHIGAN MAGNETICS, INC.

Vermonivillo, Michigan
EXPORT DIV., MORHAN EXPORTING CORP., NEW YORK CITY ENTERTAINMENT• BPECIAL APRLICATION

CIRCLE 246 ON READER-SERVICE CARD

ruveesilzo

FREQUENCY CONTROL need for "ruggedized" frequency control in the field of airborne and missile-

WEW
CRYSTAL UNITS
MEET VIBRATION
UP TO 2000 cps. AT
5G. AND 100G. SHOCK

NEW LITERATURE

Computer Design Techniques

New design techniques to accomplish substantial savings throughout engineering development programs for electronic digital computers are described in a booklet just published.
The well-illustrated booklet describes use of a family of general-purpose digital building blocks. It also explains the application of advanced com-puter-aided design methods, beginning with the checking of logical equations for systems definition through to the preparation of component lists and wiring tabulations. Control Data Corp., 501 Park Ave., Minneapolis, Minn.

High Speed Switching

"High Speed Zener Switching Circuits," an application bulletin giving detailed information on high speed electronic switching necessary for missile computers, ground control computers and industrial computers has been published. The bulletin describes the operation of silicon junction diodes about the zener or avalanche breakdown region. This permits diode switching at speeds of many magnitudes greater than those obtainable with zero bias point switching. The high speed limitation can be circumvented in this way to permit a reversal time, theoretically as short as one one-billionth of a second. Hoffman Electronics Corp., Semiconductor Div., 930 Pitner Ave., Evanston, IIl.

Data Display Indicators

250
Catalog 1015 has 12 pages of technical data on plug-in indicators for data display, storage, and transfer. It describes the construction, operation, specifications, and typical applications of the units. Union Switch \& Signal, Div. of Westinghouse Air Brake Co., Pittsburgh 18, Pa.

Platinum-Clad Mefals

251
Bulletin PLA-5 is a 2 -page, illustrated discussion of platinum-clad metals as a low-cost substitute for solid platinum. A table lists the physical properties of platinum-group metals, while the text points out their advantages and applications. Metals \& Controls Corp., General Plate Div., Attleboro, Mass.

Photoelectric Catalog

252
With pictures and descriptions, Catalog 58 lists 24 pages of photoelectric and other electronic controls. It covers high speed, ultra sensitive, and impulse actuated photoelectric timing controls; a complete series of light sources; normal, small, and miniature phototube and light source heads; electronic timers; and controls operated by current surge and impact. Autotron, Inc., Box 722 HA, Danville, Ill.

Now Available! Tiny Variable Vacuum Capacitors
type A-10/3 WITH CERAMIC
ENVELOPES
Especially suited for the needs of telemetering and other miniaturized electronic equipment, these new UNITED vacuum variable capacitors represent the latest and most effective solution to many complex problems.

RATINGS
Capacitance range 2 to 10 uff Max. peak RF voltage 3000 volts Maximum RMS current 1 ampere Maximum temperature $500^{\circ} \mathrm{C}$ Shaft revolutions 5 turns Net weight $\quad 4 / 10 \mathrm{oz}$. Nominal overall
dimensions less \quad Length: $11 \pi /{ }^{\circ}$ dimensions less connector lugs

Diameter: $5 / 8^{\prime \prime}$
For dielectric stability and maintenance of precise setting of capacitance in high altitude, high temperature environment, there is no other class of capacitor that can equal these new vacuum variables. Capacitance variation control is straight line.
Your inquiries are cordially invited.

CIRCLE 253 ON READER-SERVICE CARD

We insist on the Philbrick amplifier br our new package" says Philbrick ERE'S PHILBRICK ON PHILBRICK We use only the finest components in ur products. That's why we insisted on Philbrick's new USA-3 Operafional Amplifier as a sub-assembly for wr new Analog Package, the UPA-2. We have found it (the USA-3) nifty and thrifty. We recommend it withoul eservation. And that goes for the UPA-2 - too."
MILBRICK OPERATIONAL AMPLIFIER ...USA-3 Sore pertormance per dollar than any other amplifier.
Shaty efliable - no electrolytic capacitors or glow tubes. Whly relable - no electrolytic capaciliors or glow tubes. Bronded Drith noise, offset under 100 microvolts output ± 116 VOC. Wide frequency range- DC 10100 kc cattenuMon less than 3 adb when conected as a gain- 0 of-ten ampli-

We characterenistics same as the USA-3 mmolitier, the hearm. thlis package. Can saize as the USA. 3 ampliter, the heari

 Renl and control. continuous data reduction. Price SI49. Write for technical literature and advice on your pplication.

GEORGE A.

PHILBRICK
RESEARCHES, INC. HUbbard 2-3225 34 Congress Street, Boston 10, Massachusetts The Analog way is the model way CIF CLE 254 ON READER-SERVICE CARD

Relays

255
Six subminiature relays for critical airborne applications are described in this product engineering bulletin. Characteristics and detail specifications for the DC 31,32 , and $33-\mathrm{AC}, 34$, and 36 subminiatures are furnished along with circuit diagrams and detail drawings of each. Features and technical data involving the production of these subminiature relays are included. The bulletin contains 4 pages plus a panel fold-in. Phillips Control Corp., 59 W. Washington St., Joliet, Ill.

Thermisfor Probes

256
Nine specially designed thermistor probe assemblies are described in detail in a 4-page brochure. Each assembly is identified by its most common application, and has complete dimensions and mounting arrangements. Applications of the probes include air, oil, and fuel temperature measurement; surface temperature measurement; and liquid level indication and control. The probes are widely used in missile telemetering circuits and other places where precise and accurate control is demanded. Fenwal Electronics, Inc., Mellen St., Framingham, Mass.

Waveguide Components

Duplexers, horns, bends, straight sections, and other components for large size waveguides are described in a short form catalog. The components are especially suited to frequencies favored for tropospheric scatter propagation. D. S. Kennedy \& Co., Cohasset, Mass.

Pulse Height Analyzer

 257This literature is an 8-page pamphlet listing specifications and operating characteristics of a company's 256 -channel pulse height analyzer, model 20609. The pamphlet also describes quality control tests which finished instruments undergo before shipment. Radiation Counter Laboratories, Inc., 5121 W. Grove St., Skokie, Ill.

Power Supplies

258
Catalog No. E-58 illustrates and describes a line of dc power supplies, ac line regulators, and static inverters. The catalog contains six illustrated pages. Perkin Engineering Corp., 345 Kansas St., El Segundo, Calif.

Wire and Cable

A six page illustrated brochure, TWC 57, presents descriptive information, including operating specifications for a wire and cable line. A special section of the brochure outlines the various multiconductor cables now offered by the company. William Brand \& Co., Inc., Willimantic, Conn.

Now you can order from stock the new
BRYANT MAGNETIC
 versatile enough to be used as a laboratory instrument. These $5^{\prime \prime}$ dia. x $12^{\prime \prime}$ long drums are stocked for immediate shipment at a price that is far below the cost of customer-designed drums.
Features: Guaranteed accuracy of drum run-out, .00010" T.I.R. or less; Integral motor drive; Capacities to 625,000 bits; Speeds up to 12,000 R.P.M.; 500 kilocycle drum operation possible; Accommodates up to 240 magnetic read/record heads; For re-circulating registers as well as general storage.
Special Models: If your storage requirements cannot be handled by standard units, Bryant will assist you in the design and manufacture of custom-made drums. Speeds from 60 to 120,000 R.P.M. can be attained, with frequencies from 20 C.P.S. to 5 M.C. Sizes can range from $2^{\prime \prime}$ to $20^{\prime \prime}$ diameter, with storage up to $6,000,000$ bits. Units include Bryant-built integral motors with ball or air bearings. Write for Model 512A booklet, or for special information.

BRYANT GAGE and SPINDLE DIVIBION P. O. Box620-M, Springfield, Vermont, U.S. A. division of bryant chucking grinder co.

WHY DO MORE ENGINEERS READ ELECTRONIC DESIGN FIRST?

FIRST
to bring you ALL the new products normally encountered by design engineer in his work.
FIRST . . . to concentrate on 100% design information.
FIRST . . . to bring you every-other-week frequency.
FIRST . . . to bring you 13 FEATURE REPORT issues on current design subjects.
FIRST . . . to offer translations and abstracts of Russian electronic articles.
FIRST . . . to bring you IRE and WESCON convention coverage \& previews.
FIRST . . . to design a fast and easy to use READER SERVICE CARD for use in obtaining additional electronic information.

Reader preference studies show that more and more Electronic Design subscribers are becoming "one publication" readers. ED is more timely, more complete, and of more direct interest to the electronic engineer than any other technical publication. You can save valuable reading time, and be sure to cover your field completely when you READ ELECTRONIC DESIGN FIRST.

NEW LITERATURE

Teflon Terminals

Dimensions and performance data on over $2 x$ types of subminiature Teflon terminals are siver in an 8-page catalog. The illustrated booklet is scribes subminiature stand-offs, feed-throngls plugs, jacks, and special terminal fabricution Straight-pin, hollow, and threaded pin termind are included. Data is also given on tin, gold- 0_{0} silver, and other pin platings available for read to-solder use. Trinseel, Inc., Div. of Tri-Pon Plastics, Inc., 177 I.U. Willets Rd., Albertsm N.Y.

Magnetic Core Testing

 Bulletin 57-G describes a modular magne , which delivers programmed pu chains in a periodically repeated, basic 8 -ste pattern. The 4-page illustrated folder discuss the features of the instrument and the versatilie of pulse programming through the repetition any one or more steps or step-pairs. It also has detailed explanation of the programming methe a block diagram, complete specifications, a brief descriptions of optional equipment. Re Engineering, Inc., 731 Arch St., Philadelphia Pa .
Microwave Test Equipment

An 86-page catalog has been released to scribe a full line of precision microwave te equipment. Charts illustrate the complete tect nical data, and photographs show all instrument There are tables covering measurement formula waveguides, and waveguide connectors. T catalog also contains technical reports. Two them are "Noise Measurement Techniques" "Summary of Design for Aluminum Flux-D Brazing." Waveline, Inc., Caldwell, N.J.

Epoxy Resin Systems

This brochure outlines the physical and eled trical properties of a company's epoxy resin sing tems. It covers twenty-five of the systems offered Included in the brochure are room-temperature moderate-temperature, and moderate-high-telly perature curing systems. For each system avaí able, a chart gives the average pot life, viscosiif in centipoises, recommended cure condition flexural deformation temperature, and maximul exothermic temperature. Also listed in each chan are physical properties of cured samples of the systems, heat resistance, thermal shock, voluin resistivity, dielectric constant. and dissipatio factors. The brochure also contains a list of de finitions of terms used in connection with epors resin systems. Permacel-Lepage's, Inc., N Brunswick, N.J.
in instrumen
design

MEDALIST*
meters
Combine Increased readability
 mounting. Up to 50% longer scale in same space as conventional types. Standard and special
colors. Bulletin on request. colors. Bulietin on request. Manchoster, N. H., U. S. A.
T.M. Reg. U.8. Pat. Or. U.s. \& Forelgn Patents Copstight © 1958, Marion meters
CIRCLE 265 ON READER-SERVICE CARD

Waveguide Bends

267
A 12-page Catalog No. C-158 juşt released, provides an up-to-date guide for the selection of precision cast bends and formed waveguide bends. The catalog covers the wide variety of bends offered and provides simplified ordering information. Microwave Development Labs., Inc., 92 Broad St., Babson Park 57, Wellesley, Mass.

Precision Springs

268
Catalog No. 10 covers compression springs, flat springs, strip springs, contact rings, contact strips, and screw machine products. The catalog includes complete engineering data on the greatly expanded line of standard products and describes design engineering service available, tool making facilities, and lists various finishes available. Instrument Specialties Co., Inc., 244 Bergen Blvd., West Paterson, N.J.

Rotary Electrical Equipment

Bulletin 258 contains information on a company that produces miniature motors, generators, hand driven generators, and rotary converters. The company specializes in design and development work required in the electrical rotary field for specialized applications. Heinz Mueller Engineering Co., Inc., 1906 N. Cicero Ave., Chicago 39, Ill.

Pulse Generators

270
Model 3450B two megacycle pulse generator is covered in a 3-page booklet. Specifications, large instrument photo, and typical applications, are provided. Also available is a similar description of the model 3460A megacycle double pulse generator. Electro-Pulse, Inc., 11861 Teale St., Culver City, Calif.

Thermistors and Varistors

Over 250 standard thermistors and varistors are listed with pertinent engineering data in a recent catalog. The applications and characteristics of the units are noted, and curves and drawings are used for illustration. Other products mentioned include experimenters' kits, gas analysis equipment, and hypsometers. Victory Engineering Corp., 519 Springfield Rd., Union, N.J.

Hardware

272
Catalog 30, 24 pages, features complete lines of molded and standard terminals, diode clips, taper pins, plubs and receptacles, handles, quintlock nuts, terminal boards, swaging tools, and other hardware. Among the items new to the catalog is a snap-lock teflon-insulated terminal line. Facilities for custom design and manufacture are described. Lerco Electronics, Inc., 501 S. Varney St., Burbank, Calif.

Non-pressurized at 50,000 feet . . . yet retains 100% RELIABILITY!

Extreme altitude is only one of many demanding requirements in which DALOHM RSE precision wire wound resistors offer dependable reliability.
The precision resistor element is inserted in a special shock absorbent material and completely sealed in a tough metal ube Tis ready hermal cycling and power loading.

Here are the RSE standard specifications that help you meet demanding electronic requirements
 Roted at 2, 3, 5, 7 and 10 wats
Resistance range from 5 ohm 10175 K ohm
Temperature coefficient: 0.00002 /Degree

- Insulation breakdown: $1000 \mathrm{~V} \mathrm{AC} \mathrm{or} \mathrm{DC}$.
- Soven sizes: $11 / 16 \times .220$ 10 $101 / 64 \times 395$.
- Complote protection from vibration, moisture and salt spray

SEVEN SIZES; FIVE POWER RATINGS

YPICAL RSE-5 DERATING CURVE

Abstract

JUST ASK US

For the Computer-Automation Industries
datalites by dialco are ultra-miniature Indicator Lights specially designed to meet the critical requirements of the computer-automation fields. Made in 2 basic styles: Lamp Holders with dialco's own replaceable Lamp Cartridges (see above); or integrated datalites with Built-in Neon Lamps which are not replaceable (see below). Ultra-compact, single units mount in $3 / \mathrm{s}^{\prime \prime}$ clearance hole; the twin-lamp assembly mounts in $3 / 4$ " clearance hole.

datalites have fully insulated terminals and conform to all applicable military specifications. Integrated units are available with or without built-in resistors. The cylindrical lenses can be hot-stamped with digits, letters, etc. Complete details in Brochure L-160. Send for it now SAMPLES ON REQUEST-AT ONCE - NO CHARGE

46 STEWART AVE., BROOKLYN 37, N. Y. - HYacinth 7.7600 CIRCLE 274 ON READER-SERVICE CARD

NEW LITERATURE

Shock Mounting
Four-page Bulletin FlA deals with engineered vibration and shock mounting systems for airborne electronic equipment. It illustrates and describes variable-damped engineered mounting systems, and discusses the design and selection of the component parts of these systems. A section covers problems involved in vibration isolation mountings for gyroscopic instruments. Another describes test facilities. Mounting bases are illustrated along with special, standard, miniature, and subminiature unit mounts. Federal Shock Mount Corp., 1060 Washington Ave., New York 56, N.Y.

Solid Film Lubricants

276
Eight solid film lubricants and their applications are the subject of Catalog LB-6-1157. Included are coatings for high temperature (to 1500 F), low temperature (-300 F), corrosion resistance, high loads ($225,000 \mathrm{psi}$), and high speeds (to $30,000 \mathrm{rpm}$). The 16 -page illustrated booklet gives a brief description of each type with graphs to show its performance. It contains processing recommendations for various metals and a table of physical properties. Research facilities are also covered. Electrofilm, Inc., P.O. Box 106, North Hollywood, Calif.

Snap Switches

277
Catalog 0158 has 28 pages on snap-acting switches. General-purpose, high-sensitivity, en-vironment-free, immersion-proof, metal-cased, AN and JAN, direct-current, reset, appliance, miniature, and subminiature units are listed. A pictorial index tells where to find drawings, descriptions, force and movement specification tables, and electrical ratings. Data on bases and terminals, actuator types, circuit arrangements, and NEMA sensitive-switch terms are included. Unimax Switch Div., The W. L. Maxson Corp., Ives Rd., Wallingford, Conn.

Power Oscillators

278
This literature is a technical information and product brochure on precision power oscillators offering an ultra-stable voltage source for use in a wide variety of electronic systems. The brochure is clearly illustrated and folds in a manner to provide quick identification in notebook or reference files. Photographs and descriptive material on the instrumenation line are presented with technical information prepared in text and graphs which explain ultra-stable power source characteristics, test results, etc. Electronics International Co., 145 W. Magnolia Blvd., Burbank, Calif.

AEROTEST LABS
 FOR RELIABLE TESTING OF ALL PRODUCTS TO ALL SPECS

CIRCLE 279 ON READER-SERVICE CARD

rigid spees Demand WEINSCHEL PRECISION!

CIRCLE 280 ON READER-SERVICE CARD

অINDIUEM"

and High Purity Metals...

As one of the world's largest primary producers, we are supplying TADANAC Brand Indium and Indium Alloys to leading American, European and Canadian electronic firms. We are in quantity production of the forms shown and are prepared to preform and alloy to your specifications. Our prices include customs duties and we handle al prices include customs duties and we handle al ment, backed by the full facilities of our Research Division, is ready to assist you in the use of this versatile metal, available as
TADANAC High Purity Indium-99.999\% (by diff. TADANAC Standard Grade Indium- $99.97+\%$ TADANAC Indium Alloys-a wide range to customer specifications

> Other TADANAC High Purity Metals We can supply LEAD, CADMIUM, SILVER or BISMUTH with a total impurity content of less than 1 p.p.m." or ZINC with a total impurity content of less than 2 p.p.m.
> *Total impurity centent detormined by seectropraphic analysin
> For further information and a new booklet on Indium Properties and Uses vorite:

The Consolidated Mining and Smelting Company of Canada Limited METAL SALES DIVISION-215 St. James Street, W.

Montreal 1, Quebec, Canada
CIRCLE 281 ON READER-SERVICE CARD

Harmonic Generation

"PRD Reports." Vol. 5, No. 4, discusses the frequency resolution obtainable from a noisejittered harmonic generation system. The case analyzed in the 4-page is that of a noiseless oscillator whose frequency is to be adjusted to zero beat with some harmonic of a frequency standard which is likewise immersed in noise. Polytechnic Research \& Development Company, Inc., 202 Tillary St., Brooklyn, N.Y.

Multicoder

A company's G series multicoder and associated commutator sampling switches for low-level data acquisition are described in this set of three catalog bulletin sheets. The bulletin sheets give features and specifications of console units which operate directly from strain gages, thermocouples and similar transducers which provide outputs in the low millivolt range. Applied Science Corporation of Princeton, P.O. Box 44, Princeton, N.J.

Metal Strip

"Electronics Precision Strip Selector" is a pamphlet to help engineers pick the right precisionrolled metal strip for miniature applications. The strips are rolled as thin as 0.0005 in . with tolerances as close as $\pm 0.0001 \mathrm{in}$. The pamphlet lists electronic parts and components alphabetically, showing the precision-rolled metals used in the manufacture of each. Applications are given for rarer metals such as niobium, zirconium, tantalum. and titanium. American Silver Co., 36-07 Prince St., Flushing 54, N.Y.

Heat Dissipating Shields

"Heat-Dissipating Electron Tube Shields and Their Relation to Tube Life and Equipment Reliability" is available in a new 28 -page edition illustrated with charts, graphs, photographs, and cutaway drawings. The text is a speech that Harvey Riggs read to the U. K. Inter-Services Committee for the Coordination of Valve Development in London. International Electronic Research Corp., 145 W. Magnolia Blvd., Burbank, Calif.

Russian Research Contents

With May, 1958, a monthly guide to current Soviet research begins. Each issue will contain English titles of all papers being translated into English from 39 Soviet journals. Called "Express Contents of Soviet Journals," the guide will give the contents of Soviet periodicals two months after they are published and two to six months before translations are ready. An annual subscription is $\$ 25.00$ and may be ordered from Consultants Bureau, Inc., 227 W. 17th St., New York 11, N.Y.

For ALL your dry battery needs BURGESS

Serves You Better!

MOST COMPLETE LINE OF STANDARD BATTERIES

 FREE DESIGN SERVICE FOR NEW APPLICATIONS Foer thoce quocial appliestions. stilliod Burgess Enolnoors offor yoe a FREE

BURGESS Exclusive WAFER CELL CONSTRUCTION Gives Greatest Selec-
tion of Dry Batteries
The revolutionary Wafer call ofiors a 30% incroase in batrory life at no incroase in aizo. This exelusive Burgess construetion consists of a andwich of manganose dioxide mix betweon twe hat coctroder of zine and carbon with spots of hol allver wax applied to each expesed pole lit call allowing portoci and contacts throughoul of vibration. Colls absonee ood in Mylor Alm and packed puch modern materiole oluminum for compaciness long chelf life, oxcoptional ong ehice life, outstanding dopendability.

transistor activators
RESERVE BATTERIES
BURGESS BATTERY COMPANY

CIRCLE 286 ON READER-SERVICE CARD

FLAWLESS
 PERFORMERS!

IDEAS FOR DESIGN

Get $\$ 10.00$ plus a by-line for the time it takes you to jot down your clever design idea. Payment is made when the idea is accepted for publication.

Have you thought of using

The PNN and NPP

You can eliminate the inverter in a push-pull circuit with npp and pnn type transistors. They can be assembled from ordinary npn and pnp units. Some types are expected to be available commercially from Advanced Research Associates.

Fafnir Miniature
 Ball Bearings of
 EXTRA-GLEAN VACUUM MELT 440C STAINLESS STEEL

Wherever requirements put a premium on precise bearing performance and long service life, you can confidently specify Fafnir Miniature Ball Bearings.

Fabricated of extra-clean, vacuum-melt 440 C stainless steel, these bearings are free of raceway pits or imperfections. Superior race and ball finish produces supersensitive types with low torque values.
Individual hardened retainers for each bearing size assure balanced bearing design. Pitch circle of balls is centered between bore and outside diameter. All bearings are made to ABEC- 5 tolerances, or better.
For bulletin, write The Fafnir Bearing Company, New Britain, Connecticut.

MULTI-ELECTRODE devices of npp or pnn configurations can be built that are capable of handling 10 w with good frequency response. They are built up from typical npn and pnp transistors, each selected for its individual characteristics. Essentially, the operation is based upon the stable properties of a hook connection. In this article the important design features are presented along with a simplified procedure of assigning symbols. An interesting circuit application of these devices is included where they are coupled with high-powered pnp or npn transistors in push-pull circuits.

Designing PNN and NPP Devices

In the past, pnpn structures have been built and used in a variety of ways. Many designers took advantage of the positive feedback properties a hook connection exhibits. However, no commercial units have been designed to be used in the stable configuration. On reason for this is that the floating region should have good collector characteristics and at the same time be a good base. A compromise has to be made between the two with the result that the frequency
response and power handling capabilities of th device are limited when used as a pnn or npp.

By using available npn and pnp transistor each selected for its individual properties, prac tical pnn or npp devices can be made. A typica pnn connection is shown in Fig. 1. Units have been built that are capable of handling 10 w witl good frequency response and α° 's of 5×10 Here the current gain of the npp or pnn transis tor has been designated α°. This is approximate ly equal to \propto of a common base stage times β ai the transistor used as the output stage when direct coupled. Fig. 2 is typical characteristio curve of one such pnn device. Block and sche matic diagrams of the junction structure of a con ventional transistor and the hook collector junc tion transistor are shown in Figs. 3 and 4.

The assignment of symbols differs with con ventional methods. Current distribution in the npn or pnp device is related to transistor action and standard transistor terminology has been derived from consideration of this action in devices which have been available hitherto. In the stand ard transistor the base lead, which carries the control signal only, is connected to the base re

CIRCLE 308 ON READER-SERVICE CARD

Fig. 1. A typical pnn connes tion built up from pnp and npt units.

Fig 2. Collector characteristics of pnn type Iransistor.
n, which is physically situated between the er regions and hence is common to both juncis. In the more complicated hook connection h one additional junction the control current ws through the region attached to one end of array, and the connection attached to the Itral or base region carries both signal and outcurrents. In the standard texts describing the ok connection, the leads are still designated by regions to which they connect, so the base inection carries both the control and output rents and the emitter connection carries only control current.
This terminology appears to be particularly lortunate from the point of view of the circuit igner who is only interested in the perform-

Fig. 3. Block diagrams of conventional and the hook collector junction transistors.

TPC-2 specilications
Input Voltage: 12 vdc nominal
Input Current: 6.2 a full load, 0.8 a no load Maximum Rated Output: $400 \mathrm{ma} @ 150 \mathrm{vdc}$ or $200 \mathrm{ma} @$ 300 vdc
Efficiency: Better than 80% at full load Load Regulation: Less than 15\%, No Load to Full Load
Less than 8\%, One-Half Load to Full Load
Ambient Temperature: $-40^{\circ} \mathrm{F}$. to $+150^{\circ} \mathrm{F}$.
Ripple: 0.5% full load, RMS basis
Dimensions: $\quad 33 / 4^{\prime \prime} \mathrm{H} \times 325 / 3_{2}{ }^{\prime \prime} \mathrm{L} \times 23 / 4^{\prime \prime} \mathrm{W}$ Weight: $13 / 2 \mathrm{lbs}$. Price: $\$ 125.00$ (F.0.B. Houston, Texas)

There's an

SIE Power Supply

10 meet

any application

 to 1 C AC 1.0 DC

New circuit developments now enable SIE :o offer transistorized power supplies to cover all possible applications: DC to DC, DC to AC and AC to DC ; regulated and unregulated, high and low voltage and current ratings, for laboratory, industrial and military installations.

Especially significant is SIE's new circuit which permits operation from DC input voltages above 30 volts without requiring special transistors.

In the 60 watt TPC-2, an ingenious case design permits it to be used in free air without a heat sink, or attached to a heat sink in a confined space.
Check these specifications. They will suggest many new applications for these latest SIE contributions to Electronic Instrumentation for Industrial Progress.

SOUTHWESTERN INDUSTRIAL

ELECTRONICS COMPAMY

2831 post oak roan - P O bOX 13058 - houstom, rexas CIRCLE 309 ON READER-SERVICE CARD

Need no insulation ...
Can't rust...
Can'í corrode . . .

CUT ASSEMBLY TIME

$2-56,4-40,6-32,8-32,10-32$ and $1 / 4-20$ in stock. Actual production samples will give you the whule story. Write on your letterhead.

WECKESSER GOMPANY
 5703-05 Northwest Hwy. - Chicago 46, III.

Acomputarazew suaminature

HAYDON 5300 SERIES SWITCH

This new switch is available with a full range of operating forces, from 2 to 20 ounces. The case is made of Diallyl Phthalate, a plastic with high strength and stability. A choice of two shapes-the MS525085 configuration (${ }^{2} 5366$), or the spacesaving round base style ($\# 5335$). Special versions of the 5300 Series Switch can be furnished for a wide variety of applications. For further information, write for data on the Haydon 5300 Series Switch.

CIRCLE 310 ON READER-SERVICE CARD
CIRCLE 311 ON READER-SERVICE CARD

WASHABLE DRY TYPE AIR FILTER

for electronic cabinet ventilation

A new panel filter to provide clean, oil-free air for ventilating electronic devices. New type, highly inert synthetic material backed by aluminum screen provides durable corrosion-resistant media for operation at temperatures up to $350^{\circ} \mathrm{F}$. Expanded area type construction provides high filtering efficiency and low pressure loss through filter. Operation is uneffected by changes in velocity and temperature. Available in all sizes and thicknesses from $1 / 2^{\prime \prime}$ to $2^{\prime \prime}$. Air velocities from 100 to 450 fpm . Write for full details. Air-Maze Corporation, Cleveland 28, Ohio. Dept. EL-7.

CIRCLE 312 ON READER-SERVICE CARD
 REPRESENTATIVES IN PRINCIPAL CITIES

CIRCLE 313 ON READER-SERVICE CARD

NAN

NP

PAP

BN

Fig. 4. Schematic diagrams of conventional and the hook collector junction transistors.
ance of the transistor as a black box.
Practical terminology of transistors will be adhared to, namely that the base connection is that which carries the control signal, the emitter connection is that which carries both control and output currents. The only adverse result of this convention is that as the control and output currents are of opposite sign, the actual emitter current is less than the actual collector current. If leads are connected to the semiconductor sectons that are to be used in the circuit, one section floats. By naming the device for the sections connected, we have an mp or a mn transistor. In Fig. 4, the four units are shown with the direction and distribution of currents.

Push-Pull Circuit Applications

One of the most interesting circuit applications of these devices is when they are coupled with existing high-powered gnp or np transistors in

Fig. 5. (a) Typical push-pull amplifier circuit. (b) Replacing one of the npr's eliminates the need for a phase inverter.

 A MEMO from ERIE
Now in stock at your

 Cuttromed Ene Comm Dutubution foo MMEDATE Edelieng

CORNING TYPE S-20 RESISTORS
($1 / 2$ watt- $120^{\circ} \mathrm{C}$) MLL-R-11804 B Specifications for Reliable, Stable, Accurate Operation up to $120^{\circ} \mathrm{C}$.
call or waite for name of your nearest distributor

TOUCh!
end tiny
save SPACE
ord WEIGHT with
A. W, HAYDON COMPANX'S

CIRCLE 316 ON READER-SERVICE CARD

ELECTRONIC DESIGN • July 9, 19 mplifier circuit shown in Fig. 5a. When using (1) npn transistors in a push-pull amplifier, the ced for a phase inverter at the input arises in rder to cancel the phase inversion in one of the pn's. If one of the npn's is replaced with a npp phase inverter is no longer needed, as shown (n) Fig. 5b.

In addition to push-pull applications, there n ny other circuits in which these devices ${ }^{1}$ jrovide greater efficiency. When composite mints such as the npp and pnn are available to the dogn engineer, much of the detail circuit lesi-n ian be eliminated.
Ve ri H. Hoge, General Manager, Semiconfuctor Div., Advanced Research Associates, c., Kensington, Maryland.

Identifying Scope Displays

Especially when using a transistor curve tracer with a scope, it's handy to be able to identify the variables on the scope screen. An easy way lo do this is to rough out a small area on the back urface of the plastic coordinate screen near the dge of the viewing area. A small piece of emery paper does this quickly. Then, one can apply fecal letters on the front surface of the coordihate screen. (Decals with transparent backing are commercially available.)
The scope's scale illumination lights both the oordinates and the variable designations and implifies the identification of curves.
Keats A. Pullen, Jr., Ballistic Research Labs., berdeen Proving Ground, Md.

oughing the back of a scope's scale plate makes it is / to identify variables.

NEW EVEREADY ENERGIZER with exclusive CATHODIC ENVELOPE construction

ENERGY IN A SANDWICH - a new concept in battery design . . . doubles the active anode surface . . gives high current, lower voltage required by transistor circuits . provides volume efficiency unknown to other carbon-zinc cells. And there are no side penalties for peak performance. You actually get more hours of power in one-third the space at the lowest possible cost!

For new transistorized...

- Cordless Radios with up to a year's service on normal listening schedules.
- Pocket Portables use leakproof "Eveready" Energizer No. 2713 for these handy radios, easy battery snap-on connection.
- Standard Portables with longer service, fewer battery changes, trouble-free listening.
- Electronic Equipment, any transistorized batteryoperated device whose drain approximates that of transistor radios.

This, and other "Eveready" Energizers in this series,
take one-third less volume than round D-size cells for same service life!
For complete information write for our fully illustrated brochure : Manager, Battery Engineering Dept., National Carbon Company, Division of Union Carbide Corporation, 30 East 42nd Street, New York, N. Y.

The terms "Eveready" and "Union Carbide" are registered irade-matks of Union Carbide Corporation mational carbon company - Division of Unlon Carbide Corporation - 30 East 42nd Stroet, Now York 17, N. Y.

CIRCLE 317 ON READER-SERVICE CARD

Over 3-MILLION Screw Machine Parts

for one cusfomer (Name on requess.)

LESS THAN .0025\%!

Our record of low rejects means real savings for you. Near-new Brown \& Sharpe Automatic Screw Machines, manned by skilled set-up men (not operators), assure you high quality work! We're equipped to do the complete job...design and make our own cams...small assembly work...every detail. Delivery per your schedule. Mail blueprint for bid or phone.

IMLAND AUTOMATIC, INC.,

Subsidiary INLAND MFG. CO.
1108 Jackson St., Omaha 2, Nebr., Phone: HArney 1108
CIRCLE 318 ON READER-SERVICE CARD

CIRCLE 319 ON READER-SERVICE CARD

IDEAS FOR DESIGN

Low Cost-High Intensity Lighting

High intensity lighting is often required for printed-wiring exposure techniques. It is desirable to avoid are lamps and photo-floods.
Ordinary 120 v light bulbs can be used if they are operated with higher voltage across them They can burn much brighter and still last for many hours. For example, with 180 v across them they burn three times as bright, and can be used for many hours.

A simple method uses any transformer, connected as an autotransformer. The secondary winding must be able to deliver the required load current, I_{L}

James L. Holcomb, Electronic Eng., Forney Mfg. Co., Fort Collins, Colo.

Connected as an autotransformer, any transformer with adequate secondary windings can supply higher voltage to intensify illumination of ordinary light bulbs.

OVER 100,000 PERSONS READ the Generaliradio skiconcer

DO YOU?

Published continuously since 1926, the GR Experimenter is the oldest monthly publication in the electronics field. Its circulation is the largest of all.
It is devoted to the description of new techniques in electronic instrumentation and measurement and is mailed without charge each month to scientists, engineers, technicians, and others interested in keeping abreast of the most recent advances in electronic measurements.
If you would like to join the other 100,000 readers check this magazine's Reader Service Card or write us direct giving your name, title and address.

GENERAL RADIO COMPANY
275 Massachusetts Avenue, Cambridge 39, Massachusetts
Since 1915, Manufacturars of Procision Electronic Equipment for Science and Industry
CIRCLE 320 ON READER-SERVICE CARD

New Miniature fransistorized control panel light that mounts in just 30 seconds! Simply insert this indicator light in a $3 / /^{\prime \prime}$ panel-hole, tighte he collar nut and plag in the taper pins. It's completely mounte and hooked up in 30 seconds . . no soldering needed! Enclow transistor and 3 resistors can control the NE-2E neon lamp wis unit is available in a variety of circuits for computers, data unit is available in a variety of circuits for computers, data pr
ceesors, signal systems and transistorized automatic contr devices. Body only $112^{\prime \prime}$ in diameter and $114^{\prime \prime}$ long. For compl data on the Mini-Lite and other control panel components, write or phone WEst 9-6754.

TRANSISTOR ELECTRONIC

C O R P O R A T O Designers and Manufacturers of Electronic Equipment and Components

CIRCLE 321 ON READER-SERVICE CARD

Lef Farlite Plastic Laminates improve your products too!

All of the parts shown were made of high-pressure plastic lami nates. In every case the selection of this material substantially improved product life and performance or made a new analyze your requirements. FREE Technical Catalors available

CIRCLE 322 ON READER-SERVICE CARD

Versatile Rollpin ${ }^{\circ}$

simplifies design, speeds production
ROLLPIN can be used in place of taper pins, solid straight pins, set screws, hinge pins, dowels, clevis pins . . . and in some cases as a rivet.
ROLLPIN is a slotted, cylindrical spring pin deliberately oversized in relation to standard production drilled holes . . . compressive forces lock it in place. Reaming or secondary safety operations such as peening are eliminated.
ROLIPIN is easy to install, easy to drive out with a drift pin or punch, yet will "stay put" indefinitely.
OLLPIN is available for immediate off-the-shelf deliverycomes in sizes from $.062^{\prime \prime}$ diameter to $.500^{\prime \prime}$ in carbon steel, tainless steel or beryllium copper.
For a free bulletin detailing Rollpin applications and instalation methods, write to Dept. R-53-757.

ELASTIC STOP NUT CORPORATION

OF AMERICA

2330 Vauxhall Road, Union, Now Jorsoy CIRCLE 324 ON READER-SERVICE CARD

Elliptical Spot Smothers TV Line Structure

Visible scanning lines on TV viewing screens are undesirable, particularly on large screens and studio monitors. The latter are usually viewed at close range. Most schemes to reduce the visibility of these lines added a small amplitude high frequency signal. Thus the sweep trace was changed from a line
to a wiggly pattern.
This scheme requires many more components and adds an rf interference problem.

The ideal solution would use a scanning spot whose horizontal dimension is minimized, but whose vertical size is equal to the distance between adjacent sweeps. An approximation is easily achieved by introducing astigmatism.

By distorting the beam focus field, an elliptical spot can be made whose major axis is in the vertical plane. Though this is a compromise with picture definition, it can reduce the visibility of the line structure.

It is an attractive solution because it can be incorporated into the electron gun design on new tubes, or added to older tubes by proper placement of external magnets.
E. R. Gunny, Hughes Aircraft Co., Culver City, Calif.

New! Super-Filtered DC for transistor design work Less than 15 millivolts AC ripple up to max. load
DC Power...for precision laboratory and design work

- Dual range - 0.32 volis up to 4 amperes
0.16 volis up to 8 amperes
- Internal Impedance: 4 ohms at 32 volts
- Smooth vollage control with continuously variable carbon brush-type auto transformer
- Long-lite selenium rectifiers-patented heat sink cooling

> Available al
beffer Parts Jobbers everywhere
Send for new detailed Bulletin EFB!

Electro
ELECTRO PRODUCTS LABORATORIES
 CIRCLE 325 ON READER-SERVICE CARD

New TEMP-R-TAPE ${ }^{\circ} \mathrm{C}$

.002"thick, $2750 \mathrm{y} / \mathrm{m}$ pressure sensitive TEFLON* tape For $-100^{\circ} \mathrm{F}$ to $500^{\circ} \mathrm{F}$ applications
TEMP-R-TAPE® C, CHR's newest pressure-sensitive tape, is made of ultra-thin, high dielectric, cast Teflon film to which a silicone polymer adhesive has been applied. Both pressure-sensitive and thermal curing, the adhesive sticks well to any surface over a $-100^{\circ} \mathrm{F}$ to $500^{\circ} \mathrm{F}\left(-70^{\circ} \mathrm{C}\right.$ to $260^{\circ} \mathrm{C}$) temperature range, Providing on easy-toapply, extremely thin, high dielectric insulator (2750 volts/mil). TEMP-R.TAPE C was designed for and is now being used in the manufacture of miniature electronic units to withstand Class H and higher temperature requirements. Send for data on TEMP.R-TAPE C and CHR's other extreme temperature, electrical and mechanical pressure sensitive tapes.

COMMECTICUT HARD RUBBER

NEW HAVEN
du Pont TM.
CIRCLE 326 ON READER-SERVICE CARD

This is a

 photosensitiveresistor... actual size

It's called a Kodak Ektron Detector, the photosensitive substance is lead sulfide, and if can be laid down in any pattern.

- Signal response extends from 0.25 microns in the ultraviolet to 3.5 microns in the infrared with maximum sensitivity of 2.2 microns in the infrared.
- They are available in com-
 mosaics.
- Signal-to-noise ratio is excellont, particularly in the infrared.
- Vibration doesn't affect them.
- Elements can be extremely small in size.

To get the details on Kodak Ekiron Detectors, write for o free booklet tor Military and Special Products Sales.

EASTMAN KODAK COMPANY
Rochoster 4, N. Y.
Kodak

CIRCLE 327 ON READER-SERVICE CARD

When WEIGHT and SIZE are Critical...

consider

ARNOUX's new,

 transistorized, highsensitivity, miniature temperature-measurement subsytems for missile and aircraftflight testing.

This newest series -TME-1SD and TME-2SD are for use with fast-response, 100 -ohm resistance temperature transducers to produce a full 5-volt output for a span of only 75 F . TME-1SD is a single-channel model; TME-2SD, a dual-channel model.

The unit contains a regulated power supply. transistor amplifier, and gain and zero controls. No additional power source or controls are needed.

Nominal, overall accuracy is ± 2.5 percent throughout MIL-E-5272A environmental conditions. Power consumption is 26 watts (TME-1SD) or 27 watts (TME-2SD), at 28 vdc . Output impedance is approximately 10,000 ohms. The bridge can be balanced for zero output setting at any temperature from -320 F to +250 F . Gain adjust-

For further information write for Bulletin 503 ment allows full-scale span to be varied. Maximum drift over the environmental temperature range is ± 2 percent of full scale.
designers and manufacturers of precision instrumentation

arnoux ARNOUX corporation

Sales Offices.
CIRCLE 328 ON READER-SERVICE CARD

REPORT BRIEFS

Backward-Wave Amplifier

This study was undertaken in an effort to explain gains which were measured in some early two-helix traveling-wave tubes when they were operated with one helix on the fundamental and other helix on the minus one space harmonic. A series of measurements and calculations was carried out to determine whether asymmetries in the tube could be a cause of this apparent coupling between the two space harmonics. In the study of a circumferential non-uniformity, measurements were made using a tube with a shuttered electron gun so that a portion of the electron beam could be removed. Also gain expressions were derived and calculations were made for a tube with a portion of the beam removed. On the basis of these measurements and calculations, it is concluded that the interspace harmonic gains measured in these earlier tubes were principally due to a small misalignment of the electron beam and the helix. It was found that a misalignment of one or two thousandths of an in. in a tube with helices of one-half in. diameter, could produce positive gains because of the resultant coupling between the forward and backward space harmonics. Study of the Effect Produced by Asymmetries in the TwoHelix Backward-Wave Amplifier, Wilbur H. Watson, Calif. University, Div. of Electrical Engineering, Electronics Research Lab., Berkely, Calif. July 1957, 50 pp, photos, drawings, diagrams, graphs, $\$ 1.25$. Order PB 131412 from Office of Technical Service, U. S. Department of Commerce, Washington 25, D.C.

New Endfire Antenna

A new endfire element, the dielectric plate, has been experimentally investigated. Endfire arrays of these plates have been found to yield gains and beamwidths otherwise unattainable in a given volume as well as a measure of sidelobe control. The plate arrays have the property that whatever the broadside aperture available it may be used to advantage. In this respect they combine the characteristics of endfire and of aperture antennas. Beamwidths have, in fact, been empirically related to the volume occupied by the array. Patterns calculated by conventional means have shown good agreement with the experimental data. Dielectric Plate Array, A New Endfire Antenna, by J. O. Pullman, U.S. Naval Research Lab., Jan. 1958, 22 pp, photos, diagrams, graphs, $\$ 0.75$. Order PB 131473 from OTS, U.S. Department of Commerce, Washington 25, D.C.

 weight saving under conditions where weight saving under conditions where
excess weight can be costly. Life excess weight can be costly. Life
expectancy of $2,000,000$ revolutions expectancy of 2,000,
assures long service.

TEMPERATURE RANGE $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (special applications to $\left.+200^{\circ} \mathrm{C}\right)$
POWER RATING
$1.5,2.5,3.5$ and 5 watts

Auliple Taps-Varying number and location, according to model.
earing Construction-Ball bearings on all slandard servo mount types, sleeve bearings on standard bushing mount types.
anged Assemblies-May be ganged up to any
reasonable number of sections of the reasonable number of sections at the factory to desired resistance and phasing.
supplied to any spent and rear shaft extension treatment-knurls, flats, etc. are available.

HOME OFFICE: 712 S. E. Hawthorne Blvd. Portland 14, Oregon
For tumber informonion, witio
SBORNE
electronics corp.
13105 S. Cronshaw Hawthorne, Callfornia CICCLE 330 ON READER-SERVICE CARD

Electron Tubes in Military Equipment

This technical report presents tube information primarily from the point of view of the electronic designer as a guide in the application of electron tubes. In Part I tube properties are discussed. These are grouped according to ratings, characteristics essential in circuit operation, and properties detrimental to circuit operation. Part II discusses the tube properties in relation to circuit design. It includes a check list for use of the circuit designer to insure coverage of all important design factors. Part III contains numerical data and special design considerations for specific tube types. Part IV presents product distribution curves derived from life test records where available. The concepts of specification control, operation within ratings, and tolerance of characteristics are emphasized throughout. Supersedes earlier editions (PB 111644 and PB 111644 r). Techniques for Application of Electron Tubes in Military Equipment, Rex S. Whitlock, U. S. Air Force, Air Research and Development Command, Wright Air Development Center, Electronic Components Lab., WrightPatterson Air Force Base, Dayton, Ohio. Oct. 1957, 558 pp, drawings, diagrams, graphs, tables, $\$ 7.00$. Order PB 111644r2 from Office of Technical Service, U. S. Department of Commerce, Washington 25, D.C.

New Approaches to Printed Circuitry

Operative capacitors, resistors, and connective circuit patterns have been made by vacuum evaporation. Improvement of the elements by various changes in techniques and materials has constituted the principal effort. Mechanical and temperature characteristics of electroplated ceramic circuit patterns have been studied. Samples withstood severe abrasion, temperatures as high as 500 C and high electric currents without detriment other than normal oxidation. All metal screen type stencils were formed by a hot dip process and subsequent selective etching. Results show that a stencil of long life, high temperature resistance, and special versatility suitable for printing electronic circuits can be made. Trials of usual xerographic techniques in the direct formation of metal patterns were unsuccessful. An investigation of special surface films produced by chemical treatment was begun. Performing Research on New Approaches to Printed Circuitry. Scientific Report No. 2, by John H. Dessauer, Frederick A. Schwertz and others, Haloid Co., Rochester, N.Y. Sept. 1956, 32 pp, photos, graphs, tables, microfilm \$3.00, photocopy $\$ 6.30$. Order PB 126412 from Library of Congress, Washington 25, D.C

Transistorized Power Supplies Turn Claims Into Specs!

- super regulated...

No derating ever! Specified regulation is valid over the entire range of input and load... 0.1% or 0.01 V .

- short circuit proof...

An exclusive electronic (no moving parts) circuit breaker fully protects transistors against burnout.

- remote sensing...

Brings votage regulation to the load where it's needed. Eliminates the effect of voltage drops in power leads.

- all popular ranges...

Available in narrow or wide range models. Narrow range models cover all standard battery voltages. Wide range models start at 0 to 7 volts and are available up to 0 to 60 volts. Various current ratinge up to 15 amperes.
. . . plus all the other features you'd expect in an E/M Power Supply: low output impedance (approx. 0.001 ohm at 1 kc) ; ripple free (less than .001 volt) ; negative, positive or ungrounded output; front panel calibration and null balance controls . . . and the extras too, like printed circuitry; removable subassemblies . . . but why not get all the facts. Write for Preliminary Bulletin T.

ELECTRONIC MEASUREMEDNTS CO., Inc.
EATONTOWN • NEW JERSEY

CIRCLE 331 ON READER-SERVICE CARD

CIRCLE 332 ON READER-SERVICE CARD
 strength, long life, molecular seal.
Stock sizes for up to 100 KV -DC operatıng voltages available for short delivery. For complete information, brochure, spec sheets and price lists, write or phone: Ceramaseal, Inc., New Lebanon Center, N. Y. West Lebanon 3-5851.

REPORT BRIEFS

New Microwave Receiver

A new receiver has been investigated and described in some detail in this report. The principal advantage is the elimination of the l-f noise which is generated by the input tubes of a video amplifier at low modulation frequencies. With these same modulation demands, which are essentially aimed at pulse fidelity in microwave pulse reception, the new receiver should give a 12 db increase in sensitivity over a crystal video type. An important step toward receiver miniaturization has been indicated, and additional work leading to the design of an optimum r-f system is contemplated. Some Aspects of Crystal Performance in a New Microwave Receiver, George E. Hambleton, U. S. Signal Corps Engineering Labs., Fort Monmouth, N.J. June 1956, 37 pp, photos, diagrams, graphs, table, $\$ 1.00$ Order PB 131335 from Office of Technical Service, U. S. Department of Commerce, Washington 25, D.C.

Calibrations at Microwave Frequencies

Discusses receiver noise factor, principles employed in noise source calibrations, critical parameters and errors, and hot-body noise sources and their use as standards. Fundamentals in Noise Source Calibrations at Microwave Frequencies by J. Edwin Sees, U. S. Naval Research Lab., Jan 1958, 24 pp, diagrams, graphs, $\$ 0.75$ Order PB 131367 from OTS, U. S. Dept. of Commerce, Washington 25, D. C.

Electromagnetic Waves

Preliminary, and promising, results are given on a new, smaller bolometer made from $10 \mu \mathrm{in}$. wire in $.022 \times .045$ guide. The three-dimensional physical calculation of diffraction from an echelette grating is presented, the result at present being exact but difficult to apply. Further results are also given for the calculations being done on a UNIVAC of the optical constants of simple crystals. A new method for determining the complex index of refraction of solids is also included. For 1st-5th reports under this Contract see PB 116645, 116990, 117767, 119237, 123401. Study of the Generation and Detection of Electromagnetic Waves in the Millimeter Wave Region, Scientific Report No. 6 by J. H. Rohrbaugh, New York University, Washington Square College of Arts and Science, Physics Dept., Dec. 1956, 26 pp, microfilm \$2.70, photocopy \$4.80. Order PB 126373 from Library of Congress, Washington 25, D.C.

DURANT

 SpecialsFor RADAR, ELECTRONIC and INSTRUMENT APPLICATIONS

Representatives in Principal Cities write for literature
DURANT MANUFACTURING CO. 1993 N. Buffum St. Milwaukee 1, Wis. 93 Thurbers Ave., Providence 5, R.I.

PRDDIETMMEIEBG
Count Evergtinsuy
CIRCLE 334 ON READER-SERVICE CARD

FUSED QUARTZ
MEETS YOUR CRITICAL REQUIREMENTS

CHECK WHAT VITREOSIL OFFERS：
／Absolute Chemical Purity
1 Extreme Heat Resistance
1 Thermal Shock Resistance
\checkmark Chemical Inertness
／Outstanding Electrical Properties
／Full－Range Radiant Energy Transmission
VITREOSIL fused quartz prod－ ucts can be supplied in an un－ usually large variety of types and sizes．Also fabricated to specification to meet semi－con－ ductor requirements．

TRANSPARENT VITREOSIL

 For ultra－violet applications， metallurgical investigations and processes，chemical research and analysis，photochemistry，spec－ troscopy and physical，optical and electrical research and pro－ duction operations．Send specifi－ cations for your requirements． Please use coupon below．See our ad in
Chemical Engineering Catalog
THERMAL AMERICAN
FUSED QUARTZ CO．，INC． 18．20 Salem Street．Dover，New Jersey

Maximally Flat Amplifiers

This approach to network synthesis offers a relatively simple geometric situation in which synthesis is accomplished by arranging points on a plane．The two main techniques to be devel－ oped are：the explicit visual handling on the complex frequency plane of poles and zeroes of the network transfer function；and the applica－ tion of this visualization to network synthesis through mappings of function theory，in conjunc－ tion with a striking potential analogy．This method is applied to a class of bandpass ampli－ fier interstage networks．Maximally Flat Ampli－ fiers of Arbitrary Bandwith and Coupling by De－ Forest L．Trautman，Stanford University，Elec－ tronics Research Lab．，Stanford，Calif．Feb．1952， 145 pp，diagrams，graphs，table，microfilm \＄7．20， photocopy $\$ 22.80$ ．Order PB 126300 from Library of Congress，Washington 25，D．C．

Grounded－Grid Amplifier Transfer Function

Contents：I－Introduction；II－The analysis of grounded－grid amplifiers；III－The synthesis of grounded－grid amplifier transfer functions；IV－ Design equations and alignment procedure；V－ The design and performance of a grounded－grid amplifier；VI－Conclusions．Analysis and Synthe－ sis of Grounded－Grid Amplifier Transfer Func－ tions by Warren A．Christopherson，Stanford University，Electronics Research Lab．，Stanford， Calif．May 1952， 135 pp．diagrams，graphs，tables， microfilm $\$ 6.90$ ，photocopy $\$ 21.30$ ．Order PB 126343 from Library of Congress，Washington 25，D．C．

Radioactive Energy

Newly developed techniques of preparation of relatively large area electrode couple sheets from the point of view of cleaning the stainless steel base，anodizing，and evaporating magnesium on one side are described．The advantages of cou－ ples made in this manner over welded couples are given and a comparison of CPD measure－ ments on both types is presented and analyzed． A new program of investigating promising insu－ lators is discussed in detail．The importance of this program is reinforced by experimental evi－ dence that the high voltage terminal of battery models must be potted．Investigations on Utiliza－ tion of Radioactive Energy as A Source of Bat－ tery Power，by Alexander Thomas，Tracerlab， Inc．，Boston，Mass．October 1954， 41 pp，photos， graphs，tables，microfilm \＄3．30，photocopy $\$ 7.80$ ． Order PB 130243 from Library of Congress， Washington 25，D．C．

BIRTCHER TRANSISTOR CLIPS

material
Beryllium \＃25
FINISH
Choice of Cadmium，
Choce of Cadmiu
black Ebanol or
Silver plated
sizes
Availiable in sizes and
modifications modifications to
retain all popularly used transistors．

Write for catalog

Birtcher TRANSISTOR CLIPS perform the dual functions of retention and heat reduction．Being made of tempered beryllium copper they grip the transistor securely and hold it in place even under severe conditions of shock and vibration． In addition they provide an excellent heat path to drain off heat into chassis or heat sink．

New
STATIE /NVERTER SUPPLY

```
                                    INPUT 28V D.C. 士 10%
                                    OUTPUT Nom. 115V }\pm2%400 CPS \pm0.OF%
                    0 (2- or 3-phose output available)
                RATINGS: 30VA SOVA IOOVA
                    Higher ratings available.
                    APPLICATION:
                    For gyro wheel supplies and where
        Fof gyro wheel supplies and where
        precise 400 cycle volfages are re-
        quired in aircraft, rodar and missile
        compufers.
            FEATURES:
            PRECISION OUTPUT FREQUENCY
        RUGGED
            EXCEILENT WAVEFORM
            SIMPLICITY OF CIRCUITRY
        FAST STARTING TIME
        GOOD VOLTAGE REGULATION
        throughout an adjustable range
        ISOLATED CASE DESIGN
        HIGH RELIABILITY
        VIBRATION ISOLATED
    COMPACT
    MILITARY SPECIFICATIONS
```

 (5end for Bullotin 5-864)
 erformance specifications
 | MODEL | $\pm .01 \%$ CPS | SIS 40311 | SIS 40511 | SIS 410011 |
| :---: | :---: | :---: | :---: | :---: |
| | $\pm .05 \%$ CPS | SIS 40315 | SIS 40515 | SIS 410015 |
| ImPut VOLTACE | | 28V or $\pm 10 \%$ | | |
| max. OUTPUT POWER | | 30VA | sova | 100VA |
| OUTPut Voltage | | IISV AC (Adiustable $\pm 10 \%$) | | |
| OUTPUT FREOUENCY | | $\begin{aligned} & 400 \mathrm{CPS} \pm .01 \% \\ & 400 \mathrm{CPS} \pm .05 \% \end{aligned}$ | | |
| voltage regulation | | $\pm 1 \%$ for lime Variations $\pm 2 \%$ fer lood\|Variations | | |
| FREQuENCY DISTORTION | | 3% Maximum At full lood | | |
| LOAD POWER FACTOR | | +0.5 to-0.5 Maximum | | |
| milltant specs. | | MIL-E.S400A 8 MIL-E.S272A | | |
| ambiewt temperature | | $-55^{\circ} \mathrm{C} 10+71^{\circ} \mathrm{C} \text { when }$ mounted to hoal sink | | |
| vibeation | | 20610102000 CPS | | |
| UNIT OIMENSIOMS | | | | $\begin{array}{\|r\|lll\|} \hline 10^{\prime \prime} & 0 & 4 & 1 / \gamma^{\prime \prime} \\ & & 2 & 13 / 16^{\prime \prime} \\ \hline \end{array}$ |
| WEIGHT (Appras.) | | 2 lbs . | 3.5 lbs . | 5 lbs . |

MAONETIC AMPLIFIERS INC.
632 TINTON AVENUE • HEW YORK 55, N. Y. - CYRAESS 2.6610 West Coast Division
136 WASHINGTON Si. - EL SEGUNDO, CAL. - OREGON - 2665
CIRCLE 338 ON READER-SERVICE CARD

PATENTS

Combined Automatic Gain Control and Synchronizing Signal Separation Circuits

Patent No. 2,810,783. W. J. Gruen. (Assigned to General Electric Company)
A circuit for securing both automatic gain control and separation of the synchronizing signal from the composite signal is shown. Circuits commonly used for performing these functions have been subject to interference from noise transients. The circuit described makes use of this form of keyed A.G.C. systems having substantially greater immunity from noise. The coupling transformer 11 feeds the input signal, as from the if stage of a television receiver, to the circuit. Diode 14 detects the signal. The synchronizing signal developed across resistor 17 and condenser 18 is negative, requiring phase inversion so that the blanking pulse applied to the cathode 27 of the picture tube 28 is a positive signal which will black out the tube. The triode 19 is used for this purpose.

Substantially the entire signal of amplifier 19 will appear across resistor 24 and inductor 25 . This signal is coupled to a second control grid 45 of tube 40 through a resistor 80 which provides a dc connection. Condenser 81 offers ac coupling of the amplifier signal to control grid 43 of tube 40. To obtain a keyed
signal pulses are applied to the anode as from the sweep circuit genera which is coupled into the plate cir through transformer 51. A low pass is provided in series with second winding 50 of transformer 51 for erating a negative age voltage across sistor 54 and condenser 56. This si is fed to a stage which controls am fication through the receiver circuit. signal applied to control grid 45 erates a current through the plate circ the magnitude of which is fixed by peak value of the video signal. The normally is in a non-conducting con tion until the signal on the second trol grid approximates the potential positive source 26 . This potential is ab at the cut-off potential of amplifier Conduction through the tube gener a control voltage which is sufficient provide the age potential.

By proper selection of resistor 60 in circuit of control grid 43 the tri formed by the cathode, first control and second grid 44 serves as a clip since it transmits the synch pulse a^{2} The second grid 44 which is connea with potential source 71 functions as anode for the triode. The clippeds chronizing pulse of the input signal pears across the resistor 70 and is fed the sweep circuit generator.

legalive Impedance Bistable

 ignal-Operated Switchatent Vo. 2,820,155. John G. Linvill. 4ssigned to Bell Telephone Labs., Inc.) The two terminal signal-operated aparatus is designed to connect the signal purce, or a related source, and a load rr signals in excess of a specified thresh old. When the signal source is conected to the load, the circuit includes negative impedance adjusted to be 1 ss than the positive resistance of the sociated circuit so that the switch and s load together are stable when the witch is closed. At the same time the vitch furnishes a substantial amount of fective gain thereby reducing the mount of gain which might otherwise e required. Negative impedance conerters using vacuum tubes are known the art and prior patents have deloped the theory of transistorized negive converters.
As shown, the source 5 connects to the ad R_{L} through n-type transistor 1 and type transistor 2 interconnected rough "Zener" diodes D_{1} and D_{2}, poled opposite senses with respect to the ansistor electrodes. The operation of e circuit is as follows:
For small applied voltages, the input retance is very high. The transistors are evented from carrying current because ch of them has in series with it a breakown diode biased in its reverse direcon. When the threshhold voltage, equal the sum of the breakdown voltages diodes D_{1} and D_{2}, is exceeded, the odes D_{1} and D_{2} bearkdown and neglible resistance is present in the crossupling paths. The transistors and the v impedance cross-coupling constite a negative impedance converter. agnitude of the negative impedance e2n at the input terminals of converter a direct function of the magnitude of istances R_{1} and R_{2} in series. One retor R_{2} is shorted out when diode D_{3} eaks down and the transient response d , tability of the switch improves.

Oscillator

Patent No. 2,829,256. Joseph Kalish. (Assigned to International Telephone \& Telegraph Corp.)

A triode produces ac at useful power level by means of a miniature crystal in an oscillating circuit, which is independent of variations in the other circuit elements, supply voltages and output characteristics.

In the circuit are shown amplifier tube 210 connected to the Colpitts-type oscillatory circuit 11 through the very high resistor 11. Crystal 226 operating in the

parallel mode forms the inductive branch in shunt with condensers 222 and 224 connected in series.

By using a special cut, the crystal is made miniature in size at low frequency. Typical circuit parameters are given for use in conjunction with one half of a type 5670 tube. The crystal dissipation is about $30 \mu \mathrm{w}$ and the output may be 200 v peak-to-peak operating into a load of 100,000 ohms.

Frequency Multiplier

Patent No. 2,816,277. Alwin Hahnel. (Assigned to the United States of America)

The frequency multiplier may also be termed a spectrum generator. The multiplier uses a vacuum tube having in its grid circuit an rf generator. There are two discrete resonant networks in circuit with the plate of the tube and one of these resonant networks is tuned to the fundamental frequency. The other resonant network is tuned to a prescribed multiple of the fundamental frequency so that there are prduced respective simultaneous self-excited oscillations at the fundamental frequency and at the multiple frequency. The initial cycle of each of the periodic multiple frequency oscillations has the same relative phase.

CIRCLE 339 ON READER-SERVICE CARD

- For individual packaging or kits - Wide range of sizes • $1 / 5$ the weight of glass - Lower shipping costs - Can be printed or decorated \cdot Low cost - Reusable

Write for complete prices and literature
LERMER PLASTICS, INC.
572 South Avenue, Garwood, N. J.
pioneers ano specialists in plastic containers since 1919 CIRCLE 341 ON READER-SERVICE CARD

Stable Transistor Oscillator

Patent No. 2,810,073. R. W. Bradmiller. (Assigned to Avco Manufacturing Corp.)

The circuit developed compensates for variations in voltage supply and temperature so that an improvement in the frequency stability of the oscillator is secured in the ratio of about 20 to 1 .

The oscillator shown in the figure uses a transistor 1 with an oscillating tank circuit in the circuit of the base electrode. The resistor 5 provides the proper potential for the base electrode. Feedback to the emitter 2 is accomplished through the adjustable condenser 9 . Voltage is applied across the series resistors 21 and 22, the mid-terminal of which is grounded. The positive side of the supply is applied to terminal 19 and the negative terminal to the terminal 20 . Values of resistance are chosen so that the proper positive potential is applied to the emitter 2 and the proper negative potential is applied to collector 3. It is necessary that the current through the resistors 21 and 22 be at least as great as the total oscillator current to assure a proportional distribution of the supply voltage between emitter and collector.
To secure compensation for variations in voltage supply the diode 18 is used in series with a variable resistor 17 and in shunt with the resistors 21 and 22. The
diode is connected to operate in "Zener" breakdown region, in which diode passes current at a minimum sut ply voltage. If now the supply volta should increase, the effect of which is lower the collector potential, volta across the diode remains constant. C rent flow through the diode increa and passes through the resistor 31 raise the potential on the oscillator. adjusting the resistor 17 to give proper current for compensation, potential of the collector electrode mains substantially constant and, hem the frequency of oscillation remains a stant. Increase in collector voltage tr sistor temperature tends to decrea When this occurs the diode 18 aga operates to maintain a substantially al stant potential across the terminals the compensating circuit. The colled voltage is thus maintained constant.

High Fidelity Audio Amplifier

Patent No. 2,825,766. Sidney A. Coril man. (Assigned to McIntosh Laborat Inc.)

Disclosed is an improved McInt Amplifier. The required driving pow is obtained by cathode followers wh have the same ac voltage on their pl
elec
stag
Mor
curn
tory
gibl
freg
bifil
acta
sequ
gibl
of
othe
amt
filar
con
stag
stag
the
as t
latt,
pow
the
for
the
put
sipa at :

electrodes as the cathodes of the output stage. The circuit is incorporated into the Model MC-60 Power Amplifier which is currently manufactured by the Laboratory. The McIntosh amplifier has negligible distortion even at the higher audio frequencies since unity coupling in the bifilar windings reduces the leakage reactance of the output transformer. Consequently the transient voltage is negligible when the current shifts from one of the push-pull output tubes to the other.
The most significant features of the amplifier described are the separate bifilar windings $51-52$ and $37-38$, and crossconnection of the plates in the output stage and the cathode follower driver stage, tubes 29 and 30 . These tubes have the same ac voltages in the plate circuits as the cathodes of the output stage. The latter feature reduces the necessary power capacity of the driver stage since the power requirement is compensated for by the resulting counter balancing of the ac voltage on the cathode of the output stage. In this manner, the power dissipation in the driver stage is maintained at a more reasonable value.

Voltage Regulated Power Supply

P'ul.nt No. 2,830,250. Arden H. Frederick, Alfred S. Gano. (Assigned to General Precision Laboratory)
Voltage regulation of a dc power supply is obtained using a saturable reactor cunnected in series with the ac supply to
the rectifier. Compared to the series tube control circuit, this method is preferred since the design is not limited by the range of conductance or power capacity of the tube. However, the control range using a saturable reactor is severely restricted unless a condenser input filter is used.

A typical circuit is illustrated. The half wave rectifier 16 is connected to condenser 21 which returns back to the

rectifier through secondary winding 31. The amount of current flow in primary winding 34 is determined by the voltage at terminal 48 since the grid voltage of tube 38 is held constant by regulator 43 . When the voltage at terminal 48 changes due to a change in load, the current in winding 34 changes in phase and magnitude. This change is sufficient to change the inductance of winding 31 to compensate for the change in output voltage. Since the transformer is step-down from winding 34 to winding 31 , triode plate resistance if divided by the transformer ratio is effectively inserted in series with the ac supply to the rectifier. The rectifier current changes and, as a result, the output voltage is stabilized.

PROVIDED BY
POWER SPECTRAL DENSITY ANALYSIS OF RANDOM WAVES
tp. 625 WaVE ANALYZER SYSTEM WITH POWER INTEGRATOR

Integrity in instruments for over a quarter-century assures reliability of the TP-625 Wave Analyzer System. It provides accurate, practical, economical solutions to problems in a wide range of applications. It determines frequency and amplitude of components in a complex wave ranging from 2 to 25,000 cycles. And, with the TP-633 Power Integrator, it produces a direct current analog output proportional to power spectral density. Analog can be made proportional to peak level, average value, mean square value, as well as continuous time integrallinear or square - of the voltages in a narrow frequency band.
TRACKS AUTOMATICALLY: Other auxiliary equipment includes Servo Drive that allows automatic tracking to frequency set by speed of equipment being analyzed.

Get full details. Write for new bulletin on the TP-625 Wave Analyzer System.
Developed, improved and manufactured by INSTRUMENT DIVISION

Technical Products Company

6670 Lexington Ave., Los Angeles, 38
INTEGRITY IN INSTRUMENTS SINCE 1932
CIRCLE 342 ON READER-SERVICE CARD

The only $1 / 4$ watt multiple mininture - ariablo resistor*

that gives you these 5 exclusive and imporlant advantages

1. LOWER COST: These compact units with superior electrical characteristics actually cost less than larger units of equivalent rating now on the market.
2. REDUCED SIZE: 1 to 4 variable resistors on a single steatite base plate. The 4-resistor unit measures only $21 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}$. Units with fewer resistors are propotionately smaller.
3. VERSATIIITY: Available with horizontal or vertical mounting brackets, plug-in terminals for printed circuit boards or wire leads for metal chassis.
A. SUPERIOR KNOB CONSTRUCTION: Unusual knob design permits adjustment with an internal or external hexagon wrench, screwdriver or by fingertip.
s. FLEXIBLIITY: Fixed resistors and capacitors can be incorporated in the Model 5 to make a complete operating circuit.
SPECIFICATIONS:
Resistance Range: 1000 ohms to 5 megohms, $=35 \%$, linear taper
Wattage Rating: $1 / 6$ watt at $70^{\circ} \mathrm{C}$. ambient
Breakdown Voltage: 1250 Volts RMS, between adjacent sections and to bracket
Minimum End Resistance: Less than 1\%
Rotational Life: $\mathbf{5 \%}$ change after 250 rotations
Initial Torque: 2 inch ounces average; 50% change after 250 rotations
Write for Centralab Bulletin EP-539 giving full specifications on the Model 5 Radiohm(8) series.

P1 a division of globe.union, inc. - 2 OGOG E. KEEFE AYE. MILWAUKEE I, WIS. in Cenade: 804 Mr. Pbosent Rd. - Torento, Ontario
*Patent allowed
. r.5834
variable resistors CERAMIC CAPACITORS enginerred ceramics - seml-conductor products CIRCLE 343 ON READER-SERVICE CARD

Co

Electronic Semiconductors

Eberhard Spenke, McGraw-Hill Book Co., 3.30 W. 42nd St., New York 36, N.Y., $375 \mathrm{pp}, \$ 11.00$.

A translation of the second edition of Elektronische Halbleiter, this book develops the subject of semiconductor physics in a logical and consistent manner from simple concepts. The reader is familiarized with the fundamentals of semiconductor devices such as rectifiers and the various transistor types.

The book specifically features treatments of the acceleration of electrons and the Zener effects. A chapter covers statistics and kinetics of electrons as modified by electrostatic potentials.

The first part describes basic theoretical concepts of semiconductors leading up to a detailed description of the operation of crystal rectifiers and the physics of crystal amplifiers.

Quantum mechanics of the hydrogen molecule, the band model, Fermi statistics of electrons in a crystal, imperfection equilibria, and boundary layers in semiconductors are considered in the second part. The translators have added a section on junction capacitance and separate problems for each chapter.

High-Speed Data Processing

C. C. Gotlieb, McGraw-Hill Book Co., 330 West 42nd St., New York, N.Y. 305 pp, $\$ 9.50$.

Important principles and general techniques of processing data at high speeds, particularly for business purposes, are thoroughly outlined in this new book. A wide range of subjects, from the method of representing information in a processor to advances in automatic programming, is covered. This volume shows precisely how data processors work, how they are used, and what their advantages are.

The book does not confine itself to any particular machine but covers data proc-
essors of all types from all manufacturers. To focus attention on the fundamental operational principles of all high-speed data processors, a hypothetical machine is used as a model. This model is a synthesis of several existing machines and has the full complexity of a real machine.

With scores of tables and illustrations, the book gives a detailed study of coding and programing, and provides several helpful examples showing typical applications of high-speed data processing in the major fields.

The Theory of Networks in Electrical Communication and Other Fields
F. E. Rogers, D. Van Nostrand Co., Inc., 120 Alexander St., Princeton, N. J. 560 $p p, \$ 11.50$.

In this comprehensive volume the author makes a clear and thorough analysis of the subject. The principles covered in Chapters 1 through 7 are general. They provide the background for the special approaches associated with the transmission lines and communication networks, which are developed in Chap. ters 8 through 11; and also for the survey of light-current measurements presented in Chapter 12.
The Laplace Transform and matrices are omitted, but the treatments in Chap. ters 2 and 3, which include the Fourier integral and the generalization of network solutions respectively, should lead smoothly into such specialized studies; and suitable references are given.

Conductance Curve Design Manual

Keats A. Pullen, John F. Rider Publisher, Inc., 116 West 14th St., New York 11, N. Y. 128 pp, \$4.25.

Dr. Pullen is a familiar figure to Elec tronic Design readers. He has presented many articles here which describe tho design of specific circuits using conduct ance curves. His contributions in thit
area have been expanded with the recent 1.ublication of the Conductance Curve 1)esign Manual. This authoritive book aplains the use of these curves in circuit design and provides more than 70 of the most representative curves used in all services. With the aid of these twocolored, full-page, clearly drawn graphs, design using small signals parameters can lee used to predict large signal perform ince. A set of tables useful in making tule substitutions. and tables to simplify the selection of tubes for given applications have also been included.

Proceedings of the 1958 Electronic Components Conference

Engineering Publishers, Div. of the AC Book Co., Inc., GPO Box 1151, New York 1, N.Y. 222 pp, $\$ 6.00$.
Contained within this hard cover volume are the papers presented at the 1958 Electronic Components Conference. The technology advanced represents generally the designs, developments, production, and applications of electronic component parts in evidence today. Included for discussion are the latest developments in resistors, capacitors, and dielectrics; transistors and solid-state devices; electron tubes and their applications: economic aspects of component reliability; application aspects of component reliability, and progress with materials.
The brook was published prior to the actual conference representing the 25 papers chosen by the Program Committee.
The theme for this conference was "Reliable Application of Component Parts." The material presented shows evidence where reliability is actually being applied as a prime design consideration in component part specification, application, and ultimate use.

Motion and Time Study

Ralph M. Barnes, John Wiley \& Sons, Inc., 440 Fourth Ave., New York 16, N.Y. 66.5 pp, \$9.25.

In this revised edition, the basic prin(i, li, les that underlie the successful application of motion and time study are presented. Each is supplemented with ill istrations and practical examples. Five new chapters deal with: motion study,
mechanization, and automation; mechanized time study and electronic data processing; systems of motion-time data; work sampling; evaluating and controlling factors other than labor; and multifactor wage incentive plans.

The book includes new material on developments in the industrial use of pulse rate as an index of physical activity. All known systems of motion data are outlined and four of these systems are described in detail, including complete tables of motion-time data for each.

Introduction to Electromagnetic Engineering

Roger F. Harrington, McGraw-Hill Book Co., Inc., 330 West 42nd St., New York 36, N.Y., 312 pp, $\$ 8.00$.
Fields theory is introduced as an extension of circuit theory, with Maxwell's equations obtained early in the text. These equations are then specialized to the static case, and considerable time is spent on static field theory. An introduction to the study of time-varying field theory is given in the last chapter. The theory of vector analysis is developed as needed. The mksc systems of units is employed throughout. An analytical approach to the theory has been emphasized. This text was designed for the introductory study of electromagnetic theory at the junior, senior, or first-year graduate level.

Zone Melting

William G. Pfann, John Wiley \& Sons, Inc., 440 Fourth Ave., New York 16, N.Y., 236 pp, \$7.50.
This first book on the subject includes all the information needed to plan a zone melting process or to decide whether one is feasible. It covers both theory and practice and spells out potentialities of crystallization as yet unexploited.

Among the features: a comprehensive description of how to build and operate zone refineries; a complete set of computed zone-refining curves showing impurity concentrations throughout an ingot as a function of the number of passes; a discussion of the largely unexploited continuous multistage techniques; extensive coverage of solidification methods for growing and controlling properties of semiconducting crystals.

MEASURE DC VOLTAGES ACCURATELY

LEFT-ZERO OPERATION

(0-10 mV to 0-1 KV)
Permanent zero on all left-zero ranges, from 10 mV up, eliminates need for zero-setting and zerodrifts. Maximum scale length facilitates measurement of the larger voltages in power supplies, plate or screen potentials, efc.

MID.ZERO OPERATION (0-250 uV fo 0-2.5 mV)

Used as a null defecior, this sensitive DC voltmeter is fully polarized, reading positive volrages upscale and negalive voltages downscale. Easy balancing of bridges or standard - cell - pofentiomełers.

STABLE

ACCURATE (2\%) POLARIZED

MODEL MV-27D

POLARIZED DC - VTVM

MILLIVAC

I N STRUMENTS Division of Cohu Electronics, Inc. SCHENECTADY, N. Y.

Capable Transistor Transformer design is simple as

Capable transistor transformer design is simple at ADC. The problems are no different than those for vacuum tube circuits. And ADC has been solving these design problems for 22 years.

The transformer shown below at right, was ADC designed as an experimental output transformer for use by Minneapolis Honeywell with their H200E Power Tetrode. This transformer is capable of delivering up to 20 watts with low distortion through the frequency range of 20 to 20,000 cycles. A typical application is pictured below in the class A amplifier circuit.

The tiny transistor transformers such as those illustrated at the right are for low power applications. Introduction of new, low distortion, power transistors has required larger transformers, especially for operation at low fre-
 quency. While these may be new to transistor circuits, the design problems and solutions are identical with those of vacuum tube circuitry.

Whether you are interested in transformers for use with transistors or vacuum tubes, it will be to your advantage to come to a firm with the design experience of a pioneer like ADC.
Write for the NEW adc catalog

RUSSIAN TRANSLATIONS

What The Russians Are Writing

J. George Adashko

On
A
R
figs. St deter dence quem probs avera equal conta ence Asyn pp 2^{\prime}

Estim
tribul
ited
L. A

Th
a pri
effect
of ce
paral
numl
infor

From
Stati
11/5
e
descı
erfe
eive

INFORMATION THEORY

On the Probability of n-Coincidences by A R Livshitz. REE 8/57, pp 947-950, 3 figs.

Statistical discussion of the problem of determining the probability of coincidence of pulses in n-pulse random sequences. Equations are derived for the probability of coincidence and for the average duration of coincidence for equal and different duration of pulses contained in the pulse sequences. Reference is made to "Theoretical Aspects of Asynchronous Multiplexing" by W. D. White, Proceedings IRE, Vol. 38, No. 3, pp 270-275.

Estimate of the Parameters of the Distribution of a Random Function at Limited a Priori Data by Yu. P. Leonov and L. A. Tel'ksnis. AT 11/57, pp 984-998, 6 figs.
The authors show that reducing the priori data concerning the parameters whose estimate is being sought can be effected if one can verify the correctness of certain hypotheses concerning these parameters. Reference is made to a large number of standard American works on prediction and statistical approaches to information theory.
from Mechanical Relays to Synchronous Static Detectors by A. A. Pirogov. EC 11/57, pp 6-16, 2 figs.
Although this is essentially devoted to the development of information theory in the U.S.S.R., it does have a detailed description of Kotel'nikov's maximum in-terference-immunity theory. This has received a lot of publicity in recent times. The article also discusses efforts of Soriet scientists to overcome certain substantial informational defects of presentday communication systems.

Correlation Function and Energy Spectrum of Speech Signals that are Strongly limited in Amplitude by Yu. G. RostovIsev. EC 12/57, pp 45-49, 5 figs.
The author calculates the correlation flliction and the energy spectrum of poech signals that are limited (above (10) 50 db) so as to have the signal acquire
rectangular form. The jumps take place at the instant when the values of the speech signal are zero. The sensible information is carried by the zero points of the signal.

Principal Problems in the Theory of Signals and Tasks in Its Further Development on the Basis of a New Stochastic Model by N. A. Zheleznov. RE 11/57, pp 3-12, 1 fig.

Assuming the spectrum is limited, in the analysis of a basic model for a modern theory of signals, leads to a complete statistical breakdown of the signal and leads to the impossibility of forming these signals in physically realizable systems. The limited nature of the signal concept excludes all types of radio signals. A new stochastic model, which retains the principal properties of real signals, is proposed. Refers to the standard articles by Shannon, Paley, Wiener and Middleton.

Optimum Regulation of Parameters of a Radio Line by S. I. Samoylenko. EC 12/57, pp 3-8, 2 figs.

To increase the amount of information transmitted per unit time under varying transmission conditions, it is possible to employ optimum regulation of the parameters of the radio line, the optimum depending on the transmission conditions. A procedure is examined for constructing optimum-regulation systems in the case of continuous and binary-coded signals. The method is illustrated by an example of optimum regulation of the amplitude threshold level in the transmission of communication coded with a binary code. Reference is made to an article by R. A. Silverman, Transactions IRE, IT-1, No. 3, 1955.

CIRCUITS

Procedure for Calculating the Optimum Parameters of DC Bridge Measuring Circuits by E. A. Yakubaytis. Izvestiya (Bulletin), Academy of Sciences, Latvian SSR, 6/57, pp 95-109.

A procedure is given for choosing the optimum parameters of a measurement dc bridge circuit operating with an input from an amplifier having a control

Mobile communications for today's fast moving military operations require equipment which is rugged, compact, highly accurate and dependable. Filling this need is the Avco-Crosley, fully transistorized, 920 channel, mobile VHF-FM Radio Receiver incorporating a Hycon Eastern 11.5 Mc Crystal Filter and matching Discriminator.

The use of only one frequency conversion provides excellent image rejection in combination with high adjacent channel selectivity. By eliminating multiple conversions, cross modulation and receiver desensitization are reduced even in the the presence of strong interference from any of the other 920 channels.

High Frequency Crystal Filters for mobile applications offer the advantages of small size, freedom from microphonic behavior, and ability to maintain their characteristics throughout the entire temperature range of $-60^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$. Hermetically sealed, no realignment or readjustment is ever required.

There are Hycon Eastern Crystal Filters designed to solve selectivity problems in AM or FM receivers and SSB transmitters, whether fixed or mobile. Hycon Eastern engineers can assist you in choosing filter characteristics best suited to your needs. Write for Crystal Filter Bulletin.

Model 62-121

transistorized power supply

> the reliability you've been waiting for!

This latest Dressen-Barnes power supply is fully transistorized, functioning without vacuum tubes or magnetic amplifiers. Its circuitry* provides superb regulation, and a high degree of freedom from spikes and transients. Unit is short-circuit proof, and the output is double fused to protect the transistors against damage.
TOP COOLING EFFICIENCY - the forced-air cooling system intake is located on the panel, where it draws an air supply more than adequate to cool the transistors.
NO DERATING for continuous operation - the output range is 0.5-36 VDC at 15 amps, with full current available down to 0.5 volts. Extremely low ripple . all components conservatively rated for long, trouble-free operation. Sold under a one-year guarantee and competitively priced, this power supply offers outstanding value. Write for Bulletin on Model 62-121.
dressen-barines
DRESSEN-BARNES CORP. - 250 North Vinedo Avenue, Pasadena, Calif. CIRCLE 348 ON READER-SERVICE CARD

for all SEMI-CONDUCTORS...

made of ULTRAHIGH PURITY metals \& alloys to 99.999% and of regular Grade A metals \& alloys

ANCHOR Motal Co., Inc. ED-7
966 Meoker Avo., Treoklyn 22, N.Y.
\square Sond FREE literaluri on your solder mieroforms for sembconducters.
B Mave your reprosentative cell for en eppeintment.
Name
Title
Firm
Address
Cily
Zono

ANCHOR . . FIRST to pioneer the development of solde metals $\&$ alloys for the semi-conductor field. Made from indium, indium-gallium, indium-gold, indium-fin, indiumlead, gold-antimony, gold-gallium, tin, tin-antimony, tinlead, fin-arsenic, lead-anfimony, lead-arsenic, aluminum, aluminum-lin, platinum, and others. From "slock' or to your specificalion.
Send us your problem - our engineers are glad to help you. Fill in the coupon.

ANCHOR Metal Co., Inc. 966 Mimoker Avon Erooklyn 22, M. 7.

RUSSIAN TRANSLATIONS

winding (magnetic dynamoelectric, carbon pile, etc.) The nonlinear bridge elements used in this article are barreters, but the procedure described can be readily extended to include other bridge circuits with nonlinear elements, whose characteristics lend themselves to piecewise-linear approximation.

Synthesis of Networks with Lumped Elements, Which Reproduce the Properties of Networks with Distributed Constants by N. S. Kochanov. RE $11 / 57$, PP 72-78, 6 figs.

Considers the problem of representing several irrational and transcendental functions, and expressing the input impedance of a long line, with the aid of continuous fractions. It is shown possible to synthesize two and four-terminal networks with lumped elements, simulating the properties of long lines both with respect to the input impedance and the propagation constant.

Certain Problems in the Theory of Microwave

 Tefrode Oscillators by V. S. Mikhaylov. RE 12/57, pp 3-9, 6 figs.The author considers the electronic phenomena that take place in the screen grid-anode region of a planar tetrode. He derives formulas for the efficiency of the microwave tetrode oscillator used either for power amplification or for frequency multiplication. Equations are derived for the motion of the electrons and for the coefficient of energy utilization of a single electron.

Simplified Design Method for a Transistor Ampli-

 fier Stage by A. A. Sokolov. AT 12/57, pp 11391141, 1 fig, 3 tables.In this simplified procedure the transistor equivalent circuit is taken to be an active fourterminal network, thus leading to rather simple design equations.

KEY

The sources of the Russian articles and their dates of issue follow the authors names. Here is the key to the names of the journals in which the articles originally appeared.
AT Automation and Telemechanics (Avtomatika i Telemekhanika)
CJ Communications Journal (Vestnik Svyazi)
EC Electrical Communications (Elektrosvyaz')
IET Instruments and Experimental Techniques (Pribori i Teknika Eksperimenta)
R Radio
RE Radio Engineering (Radiotekhnika)
REE Radio Engineering and Electronics (Radiotekhnika i Elektronika)

zero common mode - low level driff free - broadband • high reliability all transistor
used in missile-aircraft telemetry systems to amplify low level signals...
Suitable for use with currently ovailable commutators, and easily adaptable to telemelering systems presently being specified.

SPECIFICATIONS

Input Voltage: 100 microvolis to 500 millivolts
Input Impedance: 50K to 500K (a function of frequency) Gain: 1 to 400
Frequency Response: D.C. to 25kc
Linearity: . 5% to 1%
Common mode voltage: Zero
Zero Drift: (with time) . 0005% at normal ambient; . 002% over the temp. range $-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Power Requirement: 28v D.C.
.75 watts (Max.)
Temperature: $-55^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Vibration, Acceleration, Shock, Humidity,
Altifude: in accordance with standard missile - aircraft specifications.

Send for literacure

AVION
DIVISION

CIRCLE 350 ON READER-SERVICE CARD

The evolution of industry toward automation has created a demand for precision data handling systems such as the Beckman 112 Data Processing Computer. Statham Model IPG60 pressure transducers are specified in this system, providing basic information signals which are accurate within $\pm 1 / 4 \%$. Complete data on the Model IPG60, or information on other Statham instruments, are available upon request.

ANGE: 0 to +15 psig.
EESSURE MEDIA: Non-corrosive fluids
JTPUT: Approximately 35 mv . full scale at
V. excitation

ON. LINEARITY \& HYSTERESIS: Not more than 0.25% of full scale

AThAM instruments, inc. of Puerto Rico 25: Carpenter Rd., Hato Rey, Puerto Rico Cable Address: STATRICO
A SUBSIDIARY OF STATHAM INSTRUMENTS, INC. 12.01 W. Olympic Blvd., Los Angeles, California RCLE 351 ON READER-SERVICE CARD

Fig. 1. Typical ladder networks used frequently in vacuum tube oscillators for feedback.

Improving the Parameters of RC Ladder Networks by I. A. Zakhariya. RE 11/57, pp 66-71, 7 figs.

This article analyzes improvement in the properties of ladder RC circuits by bridging. Comparative graphs are given for a three-element and four-element network with parallel resistances. Formulas are derived for the characteristics of the three-element RC circuit for changes in individual resistance and progressive changes in the circuit elements. The basic networks are shown in Fig. 1.

Increasing the Useful Power of a Tuned Semiconductor Amplifier by Increasing Its Efficiency. Part I by L. S. Berman. RE 11/57, pp 62-65, 3 figs, 2 tables.

Since there are no practical limitations to the emission current in transistors, the useful power is limited principally by the maximum heat dissipation. By increasing the efficiency of a tuned semiconductor amplifier with an additional tuned circuit to filter the third harmonic, it is possible to double the useful power compared with the usual circuit, using equal dissipation in both cases.

TRANSLATIONS AVAILABLE

Electronic Design is gratified to learn of the growing availability of full translations of important Russian electronics journals.

Consultants Bureau, Inc. of 227 W. 17th St., New York 11, N.Y. translates Automation and Telemechanics regularly.

Pergamon Press of 122 E. 55th St., New York 22, N.Y. is preparing translations of Radio Engineering, Radio Engineering and Electronics, and Electrical Communications.

Readers interested in specific Russian journals can obtain more information by writing directly to one of these publishers.

- Fast Switching to Check Points ($1 / 2$ Power, etc.) at Any Pre-Set Reference Level
- $0-101 \mathrm{db}$ in 1 db Steps from Single Unit
- Choice of 50,70 , or 90 Ohm Impedance

SPECIFICATIONE

Model	20	21	22	20.0	21.0	22.0	30.0	31.0	32-0
Cat. No.	430 A	440.A	450.A	431 A	4414	451 A	432-8	442.8	452.8
Iin ${ }^{\text {rout }}$	50 ohms nom.	$\begin{aligned} & 70 \text { ohms } \\ & \text { nom } \end{aligned}$	$\begin{array}{\|c\|} \hline 90 \text { ohms } \\ \text { nom. } \end{array}$	$\begin{aligned} & 50 \text { ohms } \\ & \text { nom } \end{aligned}$	$\begin{gathered} 70 \text { ohms } \\ \text { nom. } \end{gathered}$	$90 \text { ohms }$ nom	50 ohms nom.	$\begin{gathered} \hline 70 \text { ohms } \\ \text { nom } \end{gathered}$	$90 \text { ohms }$ nom
Max. Power	1_{2} wall								
Insertion Loss	10 db			zero db at low frea; approx. $\hat{1} 1 \mathrm{do}$ at 250 mc			approx $02 \mathrm{db}, 250-500 \mathrm{mc}$		
DB Switched	41 db in i steps						101 db in 9 steps		
Steps	20 db .10 db .5 db .3 db .2 db .1 db						$20 \mathrm{db} .20 \mathrm{ob}, 20 \mathrm{db} .20 \mathrm{db}$. 10 db .5 db .3 db .2 db .1 db		
Frequency Range	OC to 500 mc (useful to 1000 mc)								
Accuracy of Attenuation	$\begin{aligned} & 1.0 \mathrm{db} \max \text { at } 500 \mathrm{mc} \\ & 0.5 \mathrm{db} \text { max at } 250 \mathrm{mc} \\ & \text { Beller accuracy at lower } \end{aligned}$						1.5 db max at 500 mc 0.75 db max at 250 mc quencies		
Connectors	BNC type UG-185: U								
Dimensions	$2^{\prime \prime} \times 71 / 0^{\prime \prime} \times 21 /{ }^{\prime \prime}$						$2^{\prime \prime} \times 93 / 4^{\prime \prime} \times 21 / 4{ }^{\prime \prime}$		
Weight	2 lbs.						3 lbs .		
Price	\$65			\$60			\$95		

All prices f.o.b. foctory.
ON SPECIAL ORDER: 0.5 db steps and your choice of insertion loss, aftenuation
Write for 1958
Kay Caralog

Ruggedized High Frequency Switches-Solid Silver Contacts in Teflon for Low Insertion Loss

- 1% Carbon Film ResistorsHighly Accurate and Stable
Q SPECIFICATIONE
 reputation for dependable, trouble-free performance-a tribute to SAGE engineering skill and manufacturing "know-how."

We invite your inquiry regarding heat-sink applications . . . Write for complete specifications.

NEW SAGE "Silicohm" TYPE "M", METAL.CLAD RESISTORS Avallable in 25 and 50 watts up to $\mathbf{6 0 , 0 0 0}$ ohms. Meet MIL-R-18546 requirements.

652 Hudson Street - New York 14, N.Y.
CIRCLE 354 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

Calculations for Grounded Grid Oscillators by Ye. P. Korchagina and G. M. Utkin. RE 11/57, pp 29-38, 14 figs.

Discusses the choice of the optimum operating modes for amplifiers and frequency multipliers with grounded grids. If the resonant impedance of the tank circuit is limited, the energy relations in the plate circuit must take into account the power consumed by the preceding state of the transmitter. Recommendations are given concerning the choice of the cutoff angle and the amplitude of the plate-current pulse in amplifiers and frequency multipliers with allowance for the power gain of the stage.

Transients in a High Frequency AmplifierDetector System by L. S. Gutkin and O. S. Chentsova. RE 11/57, pp 50-61, 19 figs.

A preceding article by the same authors (Radiotekhnika, April 1957) showed that the analysis of transients in a system comprising a high frequency amplifier and a strong signal diode detector is carried out more simply and obviously by using a low-frequency equivalent. In this article the method proposed is applied to the analysis of transients in the most widely used detector circuits (tuned resonant circuit, untuned resonant circuit, two coupled circuits).

Square-Law Detection with Aid of a Semiconducfor by O. V. Sorokin. REE 10/57, pp 1293-1294, 3 figs.

This is a continuation of the subject discussed by the author previously in the May 1957 issue of Radiotekhnika i Elektronika, p 664.

Use of Nonlinear Feedback to Eliminate Saturation of Transistors in Pulse Circuits by B. N. Kononov. REE 10/57, pp 1253-1260, 9 figs.
A method is proposed to eliminate saturation in junction transistors and the associated delays in the pulse circuits with nonlinear feedback. Two ways to design these circuits are shown. In addition to eliminating delay, nonlinear feedback extends the limits of permissible dispersion of transistor current gain. This makes it possible to use transistors whose gain ranges from a certain minimum to infinity without a change in circuit parameters. Refers to work by Ebers \& Moll (Proceedings IRE, 1954, Vol. 42, Page 1761), Moll (Proceedings IRE, 1954, Vol. 42, Page 1773), Cooke-Yarborough (Journal of Electronics, 1956, Vol. 1, Page 539), Bothwell \& Booth (Transactions IRE, 1956, EC-5, Page 132) and Prom \& Crosby (Transactions IRE, 1956, EC-5, 4, Page 192).

Semiconductor DC Transformer by G. S. Tsykin. RE 12/57, pp 56-62, 8 figs.

The article discusses several methods for trans- reliable line voltage regulation, use Sola

> Five constant voltage transformer types answer most stabilizing needs

1. Standard Constant Voltage Transformers can be built into youl equipment or added as an accessory (see Hurletron printing register control, above). The static-magnetic Sola regulator stabilizes output voltaee within $\pm 1 \%$ with input variations up to $\pm 15 \%$. . . automatic . . . continuolis . . . no maintenance . . . no tubes . . response within 15 cycles.

2. Harmonic-Free*

Line voltage regulation of $\pm 1^{\prime}$; with less than 3% total rms har monic content. regardless of inpu fluctuations as great as $\pm 15 \%$

3. Filament*

Regulated $\pm 1 \%, 6.3$ volt outpu for operating large numbers o electron tube filaments . . . stod units for outputs up to 25 amps

4. Plate-Filament*

Regulated $\pm 3 \%$. Plate and fila ment windings are combined of a single, compact core for chas sis mounting. Typical ratings
5. Adjustable Outpu

Adjustable from $0-130 \mathrm{v}$ less than 3% harmonics. output regulated $\pm 1 \%$ will input variations to $\pm 15 \%$
-Stock or custom designs
Send for circular 316-CV-170. Sola Electric Co., 4633 W. 16 th St., Chicago 50, III

Constani Voltoge Iranstormers Regulatei OC Power Supplics Mercury Lamp Transformels Fluverscent Lame Bellasts

CIRCLE 356 ON READER-SERVICE CART

for mobile and portable military shelters

- designed and produced in accordance with military specifications for
space, equipment and personnel heatance with military specifications for
space, equipment and personnel heating requirements.
- 5 basic models - each customengineered for a wide variety of applications - for ground control and maintenance equipment in missile systems, radar, microwave and radio communication systems, etc.
- BTU/Hour range: from 15,000 to 60,000.
- multi-fuel-burning models; also models which burn any type gasoline.
- all models air-circulating, thermostatically controlled, all designed for cold starts as low as $-65^{\circ} \mathbf{F}$.
Other Hunter equipment for military applications: engine beaters; unpowcred, instant lighting torches; refrig. eration units.

[^6]forming dc at one voltage into dc at another voltage, at power ratings which can supply vacuum tube equipment. A semiconductor keying power amplifier is proposed, controlled by a master oscillator. The fundamental properties of the design are given. See Figs. 2-5.

Fig. 2. Basic dc to de transformer using a transistor to generate nearly rectangular pulses and diodes to rectify them.

PHC 2
Fig. 3. Full wave version of the same scheme.

Fig. 4. The circuits of Figs. 2 and 3 have the shortcoming that the frequency and waveform of the selfexcited oscillations vary with the load and with the supply voltage. A better semiconductor de transformer would be the one shown here. It includes a master oscillator with rectangular waveform, a power amplifier, a semiconductor rectifier, a filter, the load, and the dc power source whose voltage is to be transformed. Theoretically its efficiency may reach 90 to 95 per cent.

Fig. 5. Waveforms in the circuit of Fig. 4. 1-emitter current, 2-collector current, 3-input to rectifier, 4current to filter, 6 -output current.
(continued on following page)

$1 / 3$ the size. $.1 / 2$ the cost !

metronix

ELECTRONIC VOLTMETERS Panel-mounted, single and multl-range

FROM $1 / 3$ to $1 / 6$ smaller than conventional units, these METRONIX instruments occupy no more panel space than the meter.
METRONIX AC and DC models are the smallest available with such a wide choice of ranges. Single-range, military, rack-mounted and plug-in types. Ask for Bulletin M-602

MODEL 300 D. C. (illustrated)
RANGES: $0.1 / 3 / 10 / 30 / 100 / 300 / 1000$ volts D. C.
ACCURACY: $\pm 3 \%$, full scale deflection INPUT RESISTANCE: 10 megohms
PRICE: \$94.50

Metronix inc
A SUBSIDIARY OF
Assembly Products Inc.
Chesterland 17, Ohio
CIRCLE 358 ON READER-SERVICE CARD

DIMCO-GRAY SWAPSLIDE FA
 PROVIDE VIBRATION-PROOF HOLDING AND QUICK, FOOL-PROOF RELEASE!

APPROVED UNDER ARMY-NAVY STANDARDS
Here's a simple, easy means of securely fastening assemblies to withstand shock or vibration, and yet allow auick removal for inspection or repair. Instant snap action engages or releases fastener . . . no tools are requiredl After installation, fasteners never need adjustment . . . even with repeated use.
Three sizes ovailable for different load requirements. Large and medium sizes are made of corrosion-resistant stainless sfeel. Small size is made of nickel-plated brass. Stock parts fit various thicknesses of flanges and mounting plates special parts

Meet the industry's top efficiency team . . .

CIRCLE 360 ON READER-SERVICE CARD

In Electronic Design, engineers find not only more new products, but all the new products normally encountered in the design of electronic original equipment. 26-time publishing frequency brings this information quickly to the engineer's attention, timed to a fast-moving industry. Electronic Design is more up-to-the-minute, more complete, more helpful, and easier to read than any other electronic publication. No wonder more and more engineers read Electronic Design first!

ELECTRONIC DESIGN

830 THIRD AVENUE, NEW YORK 22, N. Y.

RUSSIAN TRANSLATIONS

Scheme for Switching Radio Broadcast Programs by P. A. Palladin. CJ 1/58, p 12.

Brief description of a circuit permitting automatic selection of programs and checking the correctness of the switching in a central broadcast studio.

Auxiliary Multi-Channel Transistorized Amplifier by K. P. Yegorov and I. V. Sukhodoyev. EC 12/57, Pp 58-64.
The authors discuss the possibility of designing a group amplifier for multi-channel communication using pnp transistors, and describes methods for reducing the noise.

SPUTNIK

Second Soviet Artificial Earth Satellite. R 12/57, pp 24-29, 5 figs.

Reprint of description, unsigned, of the Soviet second Sputnik, originally printed in "Pravda" November 13, 1957. The arrangement and the description of some of the electronic and cosmicray apparatus are described.

Exact Determination of the Velocity of a Satellite by S. Khaykin. R 12/57, pp 5-7.

Outlines the fundamental principles, in a popular manner, of how the speed of a moving satellite can be determined by its frequency shift.

Preliminary data on Propagation of Radio Waves by A. Kazantsev. R 12/57, pp 7-8.

Relates briefly how signals from the satellite can throw new light on the various ionized layers around the atmosphere.

COMPONENTS

Single Cycle Switching Circuits with Intermediafe LC Network Employing Ferrites with Rectangular Hysteresis Loop by Ya. G. Koblents and D. A. Yakovenko. EC 11/57, pp 101-112, 12 figs.

Description of a contactless magnetic switching element developed by the authors, intended for automatic control equipment in automatic telephone stations and for long-distance apparatus.

Germanium Rectifiers by B. A. Pionfkovskiy. CJ 11/57, pp 5-7, 4 figs.

Most rectifiers used for power supply for communications apparatus contain selenium rectifiers. Recently the Russian industry has developed new semiconducting germanium rectifiers, whose electrical parameters and properties are considered in this article.

Estimate of Nonlinear Properties of Junction

 Transistors by A. I. Borisov. EC 12/57, pp 37-44, 8 figs.The author introduces coefficients that charac-

Using Thermistors

Edited by

New Experimenter's Thermistor Kit

Now it's easier than ever to choose th thermistor best for your applicatioh!
New Fenwal Thermistor Kit No. G20 can be purchased for experimental wor and use in circuit design. It containta \boldsymbol{a} se lection of 12 thermistors -2 glass phobes 3 beads, 2 dises, 3 rods and 2 washer Price is only $\$ 19.95$ f.o.b. Framingham Massachusetts.

Complete fechnical dafa provide with each thermistor right on its individ ual package. Information includes: rati of resistance at $0^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$; dissipatio constant; time constant; typical Ecurve; typical Resistance-Temperatur curve; actual resistance at 5 specific tem peratures; plus current, voltage and temperature parameters.

To order Fenwal Thermistor Kit No G200, write - Fenwal Electronics, Inc., 37 Mellen St., Framingham, Mass.

Design - Engineering - Production of Precision Thermistors
CIRCLE 362 ON READER-SERVICE CARD

CALL ON LINK'S EXPERIENCE FOR...

> DESIGN and PRODUCTION of ELECTROMECHANICAL ASSEMBLIES... PRECISION SERVOS... GEAR HEADS...

Link Aviation can provide expert assistance in the design and manufacture of precision electromechanical assemblies, because:

- Link has years of experience designing computer assemblies
- Fabrication and assembly are performed under environmentally controlled conditions
- Stringent quality control includes 100\% inspection of precision gears with graphical record
Call Link at Binghamton 3-6318 today-or send your specifications or drawings directly to Industrial Sales, Department ED.

Link's \#026 precision Gear Reduction Kit, with 16 interchangeable gear and pinion clusters for making 23 different ratio setups, is available for your experimental and development needs.

LIMK

 A suesidiant of
OENERAL PRECIEION EQUIPMENT CORPORATION
LINK AVIATION, INC. BINOMAMTON, NIEW VORK CIRCLE 363 ON READER-SERVICE CARD
terize the fundamental nonlinear properties of junction transistors. He shows that the nonlinear distortion introduced by the transistor is due to electric processes originating in the emitter and collector p-n junctions in the base region and he recommends a method for selecting transistors with least pronounced nonlinear properties. Reference is made to an article by W. M. Webster, Proceedings IRE, Vol. 42, Page 914-920, 1954.

RGM-500, an Oscillator Triode with Continuous Vacuum Pumping by A. L. Mints, M. I. Basalayev, N. I. Oganov, and Ye. V. Rudnev. REE 10/57, pp 1240-1252, 10 figs, 2 tables.

Describes the construction of a dismountable oscillator triode with continuous vacuum pumping, having a useful power of 500 kw . The tube has several features that distinguish it from previous models. The article contains an extensive description of the mechanical and electrical parameters of the tube, as well as some test resulte.

Effect of Impurity Distribution in the Base of Drift Transistors on Frequency Characteristics by Ya. A. Fedotov. REE 10/57, pp 1261-1270, 4 figs, 1 table.

The distribution of impurities in the base due to diffusion, determines certain properties of a transistor. In particular, this diffusion produces an internal accelerating field, which affects the process of the charge transport from the emitter to the collector. This article considers the frequency characteristics of such drift transistors, and discusses the diffusion of impurities in germanium, the connection between the collector voltage, thickness of the junction, and the capacitance of the junction, and also the influence of uneven distribution of the impurities in the base region on the motion of the carriers from the emitter to the collector. The maximum power gain frequency is also determined.

RADIO ASTRONOMY

New Radio Telescope (Preliminary Communicafion) by V. V. Vitkevich and V. A. Udal'isov. REE 12/57, pp 1548-1549, 1 fig.
Short report on the new large radio telescopes, installed in July 1957 at the Crimean Scientific Station of the Physics Institute of the Academy of Sciences, USSR. The dish has a diameter of 31 meters and was used to study radio waves from the sun and from the Crab nebula at 50 and 10 cm , and from the sun at 3 cm .

A more detailed report on this article appears in Soviet Bloc International Geophysical Year Information published by the U.S. Department of Commerce, Office of Technical Services, Washington 25, D.C.

This OTS bulletin is the first of a weekly series extending to January 2, 1959. The subscription price for the series is $\$ 10$.

need metal components of
 WTill

...with accuracies to 0.0005 in.? Let BART LECTROFORM them for you

When shapes are too complex to machine or cast . . . When thin walls and super-fine internal finishes are vital ... BART Lectroforming is often the answer. And no other process approaches it for maintaining identical dimensions throughout mass production runs.
In Bart Lectroforming, your products or parts are built up electrolytically on removable matrices. There are no secondary operations to alter tolerances.

Products successfully Lectroformed include many of "difficult" form for electrical, electronic, and other precision applications, in many metals and metallic combinations.

Explore the vast new designing possibilities of Lectroforming when your product is at drawing-board stage. Bart's research and development facilities and experience are at research a
your call.

Precision Mechanical Tube-Forming, Too

The F. C. Kent Company, a division of Bart Manufacturing Corporation, offers 44 years' experience in the production of precision-formed tubular parts for the aircraft and electronic induatries. Inquiries are invited and catalog is available on requeat.

\section*{Electra-Pulse presents

\section*{the 5100 SERIES

the 5100 SERIES PULSE CODE GENERATORS

 and Magnetic Core Testing Equipment

MEGACYCLE OPERATION

- Ten-Interval Pulse Code

- Five-Interval Controllable Repeaf
- Variable Width and Delay Pulses
- Amplitude Variable to 5 Amp. per Channel-500 Mil. Avg. Currenf
- Independenily Coded Channels
- Mixed Output-

4 Channels Pos. and Neg.

Model 5100A

Four-Channol Pulse Code Generafor
Designed for: Magnetic Memory Core Testing - Switch Core Testing - Magnetic Maferial Pulse Response Studies - Pulse Code Transmission System Design and Test - Multi-pulse Circuit Development.

The Electro-Pulse 5100 Series Pulse Code Generator has been developed to meet an increasing demand for higher clock rates and higher output currents necessary in data handling and related fields.
The flexible coding system is based on 10 intervals with controllable repeat of five intervals. Each channel Control Unit optionally selects (independently for each interval) a pulse or no pulse.
Four direct channels and two delayed channels feed four output amplifiers to form any required positive or negative code patterns, pulse current amplitudes, or waveforms with variable rise times.

Write for Complete Data: our Bulletin 5 100/ED

Model 3450B
megacycle pulse generator

- 2 mc to 200 cps
- Continuously variable pulse width and delay to $100 \mu \mathrm{~s}$ in 3 ranges
- Simultaneous pos. \& nog. pulsos

The 5100A Series and the Model 3450B are latest additions to the Electro-Pulse instrumentation line. Others: Precision Pulse Generators, Variable Pulse Generators, Time Delay Generators, Pulse Oscillators, Voltage and Current Calibrators, and Electronic Counters.
三 \square Electra-Pulse, Inc.
11861 TEALE ST., CUIVER CITY, CALIF. • Phone: EXmont 8.6764 or TExas 0-8006 CIRCLE 366 ON READER-SERVICE CARD

GERMAN ABSTRACTS

E. Brenner

Temperature

Stabilization

 Of TransistorsBOTH LINEAR and non-linear circuitry can be used for temperature compensation. The use of non-linear elements can, in principle, completely compensate for changes in quiescent collector current, collector voltage or gain.

If the collector current is maintained constant an experimental curve relating
emitter-base voltage to temperature can be obtained. For an OC811 transistor this curve is a straight line with slope -2.7 $\mathrm{mv} / \mathrm{deg}$ C. In general the temperature dependence of emitter-base voltarge $\left(V_{E B}\right)$ with temperature (θ) gives values of $\Delta V_{E B} / \Delta \theta$ between -2 and -3 $\mathrm{mv} / \mathrm{deg} \mathrm{C}$.

A temperature dependent resistor (semiconductor) can be used, as illus. trated, to compensate for the transistor characteristics. For a limited temperature range such elements are described by the equation

$$
R=R_{o} e^{-c \Delta \theta}
$$

where c depends on the temperature but is treated as constant over small ranges. For the circuit shown one sets

$$
\frac{V_{E B}}{\Delta \theta}=\frac{d}{d \theta}\left(\frac{E \cdot R(\theta)}{R+R(\theta)}\right) \approx \frac{E}{R} \frac{d R(\theta)}{d \theta}
$$

Because the parameter c is actually temperature dependent, compensation is achieved only over a limited range of temperatures.

The range can be extended by linearization, i.e. by connecting a linear resistor in series or in parallel with the temperature dependent semiconductor. This requires, of course, that the nonlinear element have greater temperature sensitivity.
The original paper includes a review of the basic temperature/transistor characteristics relationships and a discussion of various linear compensation schemes.

Abstracted from an article by R. Lunze, Nachrichtentechnik, Vol. 8, No. 3, March 1958, pp 98-108.
$L_{\text {IN }}$ types In one tion d transis of the transis quencs If t ratio a four p Barkh comes
a (一o
where h_{12} is ally ne Z_{12} are imped: elemen circuit pling "short $Y_{22} Y_{11}$ of the the tra
The into th the ph networ this el fotr-p assume reactar ictance conditi by the

To
.e., "m
vhere
To

Transistor Oscillators

LINEAR analysis of the block diagram shown in Fig. 1 indicates that two types of transistor oscillators can be built. In one case the conditions for oscillation depend on the parameters of the transistor; in the second the frequency of the oscillation is independent of the transistor and depends only on the frequency selective feedback network.
If the ideal transformer with turns ratio a is considered part of the transistor four pole, as shown in Fig. 2, then the Barkhausen criterion for oscillation becomes

$$
\begin{gathered}
a\left(-\alpha+h_{11}\right) \geq \frac{a^{2}(1-\delta) A_{12}}{Z_{2 b}}+Z_{1 s} A_{21} \\
+a^{2} A_{22} \frac{Z_{18}}{Z_{28}}+A_{11}
\end{gathered}
$$

where $\&$ is the short circuit current gain; h_{12} is the feedback voltage gain (generally negligible compared to α); \mathbf{Z}_{18} and Z_{12} are the short circuit input and output impedances respectively; the $A_{i j}$'s are the elements of the cascade matrix (general circuit parameters $A B C D$) of the coupling four-pole. The parameter is the "short circuit stability" defined as $\mathbf{Y}_{21} \boldsymbol{Y}_{12}$ $Y_{22} Y_{11}$ where $Y_{i j}$ represents the elements of the open circuit admittance matrix of the transistor without the transformer.

The ideal transformer is introduced into the calculations for convenience. In the physical realization of the coupling network it is often possible to "absorb" this element by using unsymmetrical four-poles. If the coupling network is assumed to be a symmetrical lattice with reactance X_{1} in the series arm and reactance X_{2} in the cross-arm, then the conditions for oscillations are described by the following relationships:

To satisfy the amplitude condition, i.e., "magnitude of gain"

$$
\left(-\alpha+h_{12}\right)_{m i n}-2 \frac{X_{1}+X_{2}}{X_{2}-X_{1}}\left(\frac{Z_{1 s}}{Z_{2 \imath}}\right)^{\frac{1}{2}}
$$

where a^{2} is chosen as the ratio Z_{28} / Z_{18}. To uniquely specify the frequency of
oscillation

$$
-a^{2}(1-\delta)^{\top} X_{1} X_{2}+Z_{1 s} Z_{2 s}=
$$

This last equation can be satisfied if

$$
X_{1} X_{2}=Z_{18} Z_{2 s} / a^{2}(1-\delta)
$$

or if the product $X_{1} X_{2}$ is indeterminate in the sense that X_{1} has a zero when X_{2} has a pole or vise versa. In the latter case the frequency of oscillation is independent of the transistor parameters. These parameters appear in the last equation through the quantity δ.

In the original paper several realizations of each type of oscillator without ideal transformer are discussed: the problem of losses; the possibility of not meeting exactly the requirement for zero (or pole) in X_{1} when a pole (or zero) is required in X_{2}. In either case the frequency of oscillation differs slightly from the value calculated from the last equation.

Abstracted from an article by J. Paul, Nachrichtentechnik, Vol. 8, No. 3, March 1958, pp 109-116.

Fig. 1. Block diagram of the oscillator.

Fig. 2. Transistor with ideal transformer. The transformer is introduced to facilitate computations. The use of unsymmetrical four-poles often eliminates the transformer.

From General Electric . . .

PLAIN TALK ON TANTALYTIC* CAPACITOR AVAILABILITY

It's time for plain talk on the facts of tantalum electrolytic capacitor availability. There is no "availability" problem as far as General Electric is concerned.
Here's why:

- No metal shortage -Stocks of capacitor-grade tantalum have doubled within the past year.
- No production capability shortage General Electric's production facilities have tripled in the past year.
- No delivery bottlenecks-General Electric's improved manufacturing processes and techniques have virtually eliminated production rescheduling.
- Few military directive priorities-Since the supply of Tantalytic capacitors has met demand, the military requirements can be met without directive priorities.
This is why we say-now and in the future, General Electric will continue to provide Tantalytic capacitors in the types and ratings you want-when you want them.

For specific information on Tantalytic capacitor ratings, prices, deliveries, contact your nearest General Electric Apparatus Sales Office or write to General Electric Co., Section 449-4, Schenectady 5, N. Y.

125 C TANTALYTIC $125 C$ TANTALYTIC
CAPACITORS-for alrerafi olocironie ystems - ratings $10-180 \mathrm{mid}, 3010$ 100 volts. Sises $1 / 2$ to $11 / 8$ inches in hoight. Also fubular,

KSR* TANTA. IYTIC CAPACIslles, reder, elro borno elecironle -quipment appll-callons-reling up to $3500 \mathrm{mfl}-$ three cese sizes es in hoight.

ISC TANTALYTIC CAPACITORS for applications requlring high aualily bul whore semperafures are lese severe.

GENERAL (96) ELECTRIC

Available as follows
\# 100.245 and 101-345 - for all JETEC "30" cases - cadmium plated spring steel and silver plated beryllium copper, respectively
\#106-343-1 - for Texas Instrument 2N497 and 2N498 black finished beryllium copper allows only $20^{\circ} \mathrm{C}$ case rise under full 4 watt load at room temperature

All ATl.EE clips may be supplied coated with Durafilm Hi-Dielectric Enamel (2700 volts/mil). ATLEE clips are available for all E.I.A. case sizes.

Send for APPIICATION DATA SHEET - lists the proper Atlee clip for use with each transistor on the market.

ATLAS E-E CORPORATION

47 Prospect Street - Woburn, Massachuset 3757 Wilshire Blvd. - Los Angeles, California CIRCLE 368 ON READER-SERVICE CARD

QUICKER - MORE ACCURATEMORE RELIABLE CIRCUIT DESIGN CONDUCTANCE CURVE DESIGN MANUAL

by Keats A Pullen, Jr, Eng, D

As a reader of Electronic Design, you have read Dr. Keats Pullen's articles on the use of conductance curves as the basis for tube and transistor circuit design. This vacuum tube working manual for the engineer thorparameters for use in circuit design. It provides a group of data, in table and graph form, so organized that it helps the user design circuits which function in the manner desired, with a minimum of readjustment. With the manual, the engineer can use small signal parameters to predict large signal performance with the following benefts:

- makes it possible to optimize a design so that a given performance can be obtained with minimum tube element dissipation by per ditions anywhere within a tube's rating. Life and circuit reliability are enhanced and experimental readjustment is minimized.
- clearer understanding of in what manner circuit performance changes when any circuit parameters are varied. Makes it evident that when a required performance can't be obtained without operating the tube near or at its peak, a nother tube type with greater
power handing capability should be chosen.
- aids in the design of conservatively rated circuits for greater

MANUAL DIVIDED INTO THREE PRINCIPAL SECTIONS amplifier designs.
(2) tables useful in making tube substitutions and tables to simplify the selection of tubes for given applications.
(3) a special set of conductance curves for more than 70 of the most representative vacuum tube types used in all services. Includes low power
and high power tubes, triodes and pentodes, and several mixer tubes. \#210-128 pp., $81 / 2 \times 11^{\mu}$ in a spiral bound stiff cover binding only $\$ 4.25$ 10-DAY UNCONDITIONAL MONEY-BACK OFFER

CIRCLE 369 ON READER-SERVICE CARD

July 24-25: 5th Annual Symposium on Computers and Data Processing

Albany Hotel, Denver, Colo. Sponsored by the Denver Research Institute, Electronics Div., University of Denver. Symposium will consist of technical papers on basic problems in the field of data processing, particularly in the areas of formalized analysis techniques, logical design techniques, automatic programming, systems organization, digital communications, and components and devices. Queries concerning the symposium may be addressed to C. A. Hedberg, Head, Electronics Div., Denver Research Institute, University of Denver, Denver 10, Colo.

Aug. 6-8: Special Technical Conference on NonLinear Magnetics and Magnetic Amplifiers

Hotel Statler, Los Angeles, Calif. Sponsored by AIEE. The four technical sessions will include: technological and theoretical aspects of nonlinear magnetics and magnetic amplifiers; computer applications; special purpose devices and applications; "new frontiers" in the field. Exhibits will be displayed by 40 manufacturers selected for their contributions to the industry. For more information about the conference, write AIEE, 33 West 39th St., New York 18, N.Y.

Aug. 13-15: Conference on Electronic Standards and Measurements

NBS Boulder Labs., Boulder Colo. Sponsored by the Professional Group on Instrumentation of IRE, Electronic and High-Frequency Instruments Committee of AIEE, and the Radio Standards Lab. of the National Bureau of Standards Six technical sessions will cover the following subjects: The Relationship of Standards to Physical Constants; Frequency and Time Interval Standards; Direct-Current and Low-Frequency Standards; Radio-Frequency Standards (Measurement of voltage, current, power, impedance attenuation, phase shift, field strength); Microwave Standards (Measurement of power, impedance, attenuation, noise); and The Organization and Operation of Standards Laboratories. Write James F. Brockman, National Bureau of Standards, Boulder Labs., Boulder, Colo.

Aug. 13-15: 7th Annual Conference on Industrial Applications of X-Ray Analysis

Albany Hotel, Denver, Colo. Sponsored by University of Denver, Denver Research Institute,

flexible shafting provides

 STRENGTH AND FLEXIBILITYRecent advances in manufacturing techniques have macie possible the production of flexible shafts able to handle loads greatly exceeding those of some years ago when small loads. This was due to conned to the handing having to be enlarged excessively in ratio to the loin applied.
For example, a flexible shaft which will carry a load of 55 lb . inches will require a flexible cable with a 187 diameter. This cable has a torsional deflection of only 4.7 and may be bent into a minimum radius of $3^{\prime \prime}$ while made to rotate in either a clockwise or counter clockwise direction when being viewed from the driven end. Previously, this same load of 55 lb . inches would have required a much more cumbersome and more expensive cable which would have
lost its flexibility with the increase of the cable diameter.
Flexible shafting for use in industry offers distinct ad vantages in alignment, the main advantage being its abinty the use of costly ond cumplicated arouring It responds immediately to the drive power and may function in a continuous or intermittent operation. F'lexible shafts may be composed of either power drive cable for rotation in either a clockwise or counter clockwise direction, or they may be composed of remote control cable which provides for rotation both clockwise and counter clockwise.
The F. W. Stewart Corporation is prepared to manufacture complete flexible shaft assemblies to your specifications which will permit easy and economical incorporation of flexible shafts into your designs.
Send for further details. F.W. Stewart Corporation, 4311-13 Ravenswood Avenue, Chicago 13, Illinois.

CIRCLE 370 ON READER-SERVICE CARD

HOW TO CUT MAJOR COSTS

 of Small Plastic PartsNew Methods are Saving Thousands of Dollars for Leading Electrical and Electronics Industries

If high costs are a problem, here's your answerl It's the new MIN JECTOR $®$ way to small plastic parts development and production. Begins by eliminating expensive big-press tooling where not required New catalog is detailed, fully illustrated. Outlines latest methods used by hundreds of plants to develop and produce widest variety, precision plastic injection molded items in popular Nylon and all thermoplastics it is to cut your expenses to the bone. Write today-it's yours without it is to cut your ex
cost or obligation.

AERO-POT*
miniature! humidity proof!
Mechanical-all metal structure Stability -10 to $60 \mathrm{ppm} \cdot{ }^{\circ} \mathrm{C}$.
Environment-passes MIL-STD-202. Environment- passes MiL ${ }^{\text {Sto }}$.
method 106
Power - 4 watts at $25^{\circ} \mathrm{C}$. Derates to Power -4 watis at $25^{\circ} \mathrm{C}$. Derates to
zero at $10^{\circ} \mathrm{C}$
Resistance -100 to 100.000 ohms. Resistance -100 to 100.000 ohms.
Rize $-1.257 \times .330 \times .242 \pm .003$. Size-1.257×. $330 \times .242 \pm .003$.
1000 mtg. centers.

Comprehensive data on the Aero Pot Model 925 and other Aero prod ucts will be sent to you on request.

AERO ELECTRONICS CORP.
1657 west 134th stretr, gardena, calif

CIRCLE 372 ON READER-SERVICE CARD

CIRCLE 373 ON READER-SERVICE CARD

Metallurgy Div. For additional information write William M. Mueller, Metallurgy Div., Denver Research Institute, University of Denver, Denver 10, Colo.

Aug. 19-22: Western Electronic Show and Convention

Los Angeles, Calif. Details will be announced later. For more information write Western Electronic Show and Convention, 1435 S. La Cienega Blvd., Los Angeles 35, Calif.

Sept. 12-14: 7th Annual High Fidelity Show
Palmer House, Chicago, Ill. Write to International Sight and Sound Exposition, Inc., One N. La Salle St., Chicago 2, Ill., for further details.

Sept. 15-19: 13th Annual Instrument-Automation Conference and Exhibit

Philadelphia Convention Hall, Philadelphia, Pa. Sponsored by ISA. Two technical sessions on the use of instruments in the nuclear field will highlight the 5-day conference. Ask Fred J. Tabery, Conference and Exhibit Manager, 3443 S. Hill St., Los Angeles, Calif., for further information.

Sept. 22-24: National Symposium on Telemetering
Americana Hotel, Miami Beach, Fla. Sponsored by PGTRC of IRE. Ken West, 1345 Indian River Dr., Eau Gallie, Fla., has additional information about the symposium.

Sept. 24-25: 7th Annual Symposium on Industrial Electronics

Rackham Memorial Auditorium, Detroit, Mich. Co-sponsored by PGIE and AIEE. Address queries to William R. Thurston, General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass.

Courses-Seminars

Aug. 4-15: Summer Study Course in Microwave Theory and Technique. Case Institute of Technology, Cleveland, Ohio. The course will be directed toward the engineer in industry who has found a growing need for training in the methods of measuring and analyzing with microwaves. Requests for additional information on the course should be directed to the Director of Special Programs, Case Institute of Technology, 10900 Euclid Ave., Cleveland 6, Ohio.

A COMPREHENSIVE
NEW LINE OF $125^{\circ} \mathrm{C}$
HIGH RELIABILITY CHOKES

3

(1)

small encapsulated

 R.F.chokes100,000 to 1 inductance range. Here is the widest range available -0.1 uH to 10 MHI
Miniature to subminiature sizes. For example, a unit Mith an inductance of 100 uH measures only .0122 cubic inches.
$125^{\circ} \mathrm{C}$ - the operating temperature range of these units is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Excellent environment features-NYT chokes are epoxy encapsulated for resistance to moisture and immersion. All units are designed to meet MIL.C. 15305A, Grade 1, Class B.
Do your application engineering with a minimum of experimental work. New technical and performance data including description of electrical parameters in Bulletin 125.

> NVI
> Chokes now available from stock
> ELECTRONICS, INC. CIRCLE 374 ON READER-SERVICE CARD

TAKE THE "ELECTRONICS HIGHWAY" WHEN VACATIONING IN NEW ENGLAND
 ... and visit

SYLVANIA'S WALTHAM LABORATORIES
to discuss our newest projects and your professional opportunities

nterview and relocation expenses mid by vecks. Convenient Saturday interviews arranged

AERO-THERMODYNAMICISTS EXPLORE HIGH-SPEED RE-ENTRY

Advanced weapon system technology has brought to the forefrom problem areas requiring attention to interaction between aerodynamic and thermodynamic phenomena. Typical of these is the problem of high-speed atmospheric re-entry

A report to Engineers and Scientists from
Lockheed Missile Systems . where expanding missile programs insure more promising careers

Expanding research and development activities have coincided with acceleration on top priority programs like our Polaris IRBM, and Reconnaissance Satellite. At the same time, positions for qualified engineers and scientists have opened up that are unequalled in responsibility or in opportunities for moving ahead
Positions in aero-thermodynamics include such areas as: acrodynamic characteristics of missiles at high Mach numbers; missile and weapon system design analysis; boundary layer and heat transfer analyses in hypersonic flow fields; and calculation of transient structural and equipment temperatures resulting from aerodynamic heating and radiation.
In addition, openings exist at all levels in Gas Dynamics, Structures, Propulsion, Test Planning and Analysis, Test Operations, Information Processing, Electronics, and Systems Integration. Qualified engineers and scientists are invited to write Research and Development Staff, Palo Alto 29. California.

Lockheed

MISSILE SYSTEMS DIVISION

sunnyvale, palo alto. van nuys. santa cruz. cooke afb calif. - cape canaveral. fla . alamogordo n m.

Greatlife
 IN PHOENIXI

. . . and career opporfunities at Moforola in Phoenix are second to none!

Pay is excellent, advancement is rapid, the attitude is friendly and helpful. Other advantages: no commuting problems; colleges that offer advanced study; remarkably low home costs.
And think of the pure pleasure of living in a famed resort area with sunny, dry, shirtsleeve winters . . . year-round golfing, swimming, picnicking . . . and seashore and Mexico within a day's drive!
Expanding Phoenix is a vitallyimportant electronics center.

Motorola is expanding, too. Grow with Motorola in Phoenix ... where it's fun to live!

If you are qualified for one of these positions, write, wire or phone Motorola in Phoenix today!

ELECTRONIC ENGIMEERS,
MECHAMICAL ENGIMEERS, PHYSICISTS
Systom Analysis, Design and Test
Radar Communications
Navlgation Mlssile Guidance
Data Processing and Display
Circuit Design, Development and Packaging
Microwave Pulse and Video
Antenna Digital and Analos
R-F and I-F Transistor
Servos

Technical and Specification Writing Printed and Etched Circultry

Mr. Kel Rowan
Western Military Electronics Center Motorola. Inc., Dept. B-7 8201 E. McDowell
ngineoring posifions also available at Moforela, Inc. in Chicage, Mllineis, and Miverside, Callfernie.

CIRCLE 561 ON READER-SERVICE CARD

Excellent openings for Design Engineers exist in General Electric's Light Military Electronic Equipment Dept.

The capable man will find rough problems to lick in designing complex indicator circuitry. He will be called upon to assist in the development of indicators and associated equipment for display of data obtained from high-power, long range airborne search radar. The problems will tax his knowledge of digital computer techniques, CRT display and video indicating circuitry.

To learn more of these opportunities, forward your resume to: Mr. Richard C. Kimm, Room 66-A

hight militant electromic couipment ocpantuent

GENERAL ELECTRIC

French Road, Utica, New York

Bairl-A
Baker,
Bart M:
Bealtie-
Birtcher
Bliley
Borg,
Bourns
Bryant
Burgess
CIRCLE 555 ON READER-SERVICE CARD

HOW TO USE THE
 HOME REPLY FORM

If you wish to inquire about any of the employment opportunities listed in the "Career Section" simply circle the appropriate Reader Service number in the grey (shaded) area of your Reader Service card. Be sure to include your home (or non-business) address in the space provided at the bottom of the card. In this way, the privacy of your inquiry will be protected while still providing the speed and efficiency of ELECTRONIC DESIGN's Reader Service card system.

Last year ELECTRONIC DESIGN processed more than 120,000 individual reader cards. Now ELECTRONIC DESIGN is first to add a confidential inquiry formone more step to its speeding communications between reader and advertiser.

ADVERTISERS' INDEX

July 9, 1958

derrtiser	Page
AMP. Inc. 59	
Ad): Precision Products	
d dance Relays	
d : Electronics Corp.	133
A 1 rotest Laboratories	104
Air Maze Corp.	108
A!..ldin Electronics	117
American Lava Corp.	45
American Machine \& Foundry	79
Amperex Electronic Corp.	61
Anatonda Wire \& Cable Co. 10, 11	
Anchor Metal Co. 124	
Applied Science Corp. of Princeton	
Arıoux Corp. 112	
Assmbly Products Co., Metronix Div. .. 127 Astron Corp. Insert. XXV	
Atlas E-E Corp. 132	
Audio Development Co. 122	
Augat Brothers, Inc.	128
Avion Division. ACF Industries, Inc. . . . 124	
Baird-Atomic. Inc. 33	
Baker, J. T., Chemical Co.	
Bart Manufacturing Corp. 129	
Beattie-Coleman, Inc. 90	
Birtcher Corp. 115Bliley Electric Co. 100	
Borg, George W., Corp., The 88, 89	
Bourns Laboratories 32	
Bryant Chucking Grinder Co. 101Burgess Battery Co. . 105	
CBS-Hytron 69	
Carborundum Co., The 86Centralab, Div. of Globe Union, Inc. .. 120	
Ceramaseal Co., The 114	
Clarostat Mfg. Co. 10	
Clevite Transistor Products 31 Connecticut Hard Rubber Co., The 111	
Consolidated Mining and Smeltins Co. .. 105	
Corning Glass Works 76	
Dale Products, Inc. 103	
Daystrom Transicoil Corp. 81	
DiJur Amsco Corp. 55	
Delco Radio, Div. of General Motors 68 Dialight Corp. 104	
Diamond Antenna and Microwave Corp. .. 111	
Dimeo-Gray Co. 127	
Duw Chemical Co.. The 82,43Donv Corning Corp. 43	
Drissen-Barnes Corp. 124	
Durant Mfg. Co. 114	
E.SC Corp. 35	
Eastman Kodak Co. 111Elastic Stop Nut Corp. 111	
E:lectric Regulator Corp. 58Electro-Motive Mfg. Co.	
Electro) Products Lalooratories 1111Electro-Pulsc,	
Electronic Measurements Co. 113	
Elgin Metalformers Corp. 95	
Emerson Electric Mfg. Co. 22	
inglehard Industries, Inc. rie Resistor Corp.	

Electronics Engineers . . .

Be our guest on your vacation here where history was made. Λ visit to the National Company enables you not only to see the famous sites of the Revolutionary War such as Bunker Hill, Concord and Lexington, Paul Revere's home. the Old North Church, the homes of the whalers and clipper ships, inns hundreds of years old, and the woods and lakes that great American writers loved and wrote about, but also affords the opportunity to find out first-hand about the National Company.
We want you to see for yourself how at National Creativity is Required, Recognized and Rewarded. We want to show you the challenging new prospects at National-development of missile check out equipment using microwave and digital techniques; the Atomichron, the world's most accurate
frequency standard; ionospheric and tropospheric scatter systems, as well as National's outstanding line of commercial receivers and components which keep National's business evenly balanced and steady
We believe that you and your family will enjoy a visit to historical New England, and that you will like National Company and its environs. Write us today: tell us about your training and background in the microwave and digital and component fields, and reserve your day to be National's guest.

Write or phone

Om/amentationalw.
 National Company, Inc., Malden, Mass.

Gamewell co

Garrett Corp.
General Elecetric Co., Voltage Regulators
General Electric Co., Tantalytic Capacitors
General Electric Cóiv.
Cueral Eletric Co Jet Engine De.. 46,
Coneral Electric Co., Jet En Div.
General Electric Co.. Lamp Div. 2
General Electric Co., Light Military Div. 138
Gencral Radio Co.
Cencral Transistor Corp
Genisco, the.
Gertsch Products, Inc
Clobe Industries. Inc
Guardian Electric
Hallamore Electronics Co.
tandy \& Harman Co
9. Marman Co. 98
Harrisom Laboratories, Inc. . . . In............... 54 Haydon, A. W. Co., Inc. Haydon Switch Heinemann Electric Co. Hewlett-Packard Co. . Hooker Chemical Corp. Hughes Aircraft Co.
Hunter Mfs. Co. Hycon Eastern. Inc.
Illinois Condenser Co
nland Automatic, Inc. nternational Resistance Co
Kaly Electric Co.
Kearfott Co., Inc., Little Falls Div Kearfoutt Co., Inc., M:crowilue Div. kennedy \& Co., D. S. Kester Solder Co. Kollsim.in Instrument Corpxxiv
108 17 Hooker Chemin Corp.

Landis \& Gyr, Inc

 Lavoie LaboratoriesMaknetic Amplifiers, Inc
Magnetics. Inc., Components Diy
arions. Me., Comprent Di
He Co C.
Martin Co
igan Magnetics, Inc
Micro Switch
ficrotran C
ficrowave Associates, Inc
tilgray Electronics, Inc. Milivate Instrument Corp fimearapolis Honeywell Motorola Semiconductor Products 1 D Motornala, Inc., Western Military
Electronics Center
NYT Electronics, Inc.
Narda Ultrasomics Corb
Cattomal Carbou Con
Natiomal Company, Ine
Nesor allos Products Co
Networks Electronic Corp)

TRANSISTOR Popty

that prevents overload damage to transistors

An outstanding feature is a special circuit limiting output current to a nominal value (selected on the front panel in 4 steps- $25,50,100$ and 225 ma .) This unique feature prevents accidental overloads which otherwise cause costly damage to transistors under test.

Convenience of the new 721A is further increased by its compact size, low power consumption, simple controls and extreme dependability resulting from ultra-conservative circuit ratings. Model 721A, $\$ 145$.

Other -hp- regulated and klystron power supplies

Simple operation, widest usefulness, high regulation, broad voltage range, rugged dependability-these characteristics have made -h \boldsymbol{p} - Power Supplies basic experimental, testing and production tools in America's laboratories and factories. The many jobs these precision instruments perform daily include powering low level amplifiers, constant frequency oscillators, pulse circuits with heavy instantaneous current demands, oscillators, small transmitters, klystrons and "bread board" arrangements from the most simple to the most complex. Brief data on $-h p$ - power supplies appear in the table at right. For complete details on -hp-supplies meeting your power needs, call your - $h p$ - representative for demonstration on your bench. Or, write direct.

Modal	Charactoristics	Rogulation	Current	Voliage Range	Hum 8 Noise Leval	Price
7108	General purpose de/oc supply	$\pm 1 \%, 010$	100 ma	$\begin{gathered} 100 \text { to } 360 \vee \text { de; } \\ 6.3 \vee \text { oc } \end{gathered}$	$\begin{aligned} & \text { Less than } \\ & 0.0005 \mathrm{v} \end{aligned}$	\$110.00t
7114	Similar to 710 B wider voltage range	Less than $\pm 0.5 \%$ or 0.1 v no lood to full lood	100 ma	$\begin{aligned} & 010500 \mathrm{v} \mathrm{dc} ; \\ & 6.3 \mathrm{vac} \end{aligned}$	Ripple less than 0.1 mv	225.001
7128	Heary duly, 4 oulputs, 0.1 msec response	Less than 50 mv no lood to full load	200 ma (pos. dc)		Ripple less than 500 uv	365.00†
715A	Rlystron supply; square wave, oxternal modulation	Less than 1\%, no load to full lood	50 ma (at 400 v$)$	900 de reflector; 6.3 \checkmark OC	Ripple less than 7 mv	300.00

Look at this new, compact, \$145

150 ma output $\mathbf{0}$ to $\mathbf{3 0} \mathbf{~ v ~ d c , ~ c o n t i n u o u s l y ~ v a r i a b l e ~}$
 High regulation; less than $\mathbf{0 . 3} \%$ or 30 mv change no-load to full-load
 Ripple less than $150 \mu \mathrm{vrms}$
 Metered output and current limiter prevent damage to transistors under test
 Compact transistorized construction

New -hp- 721A Transistor Power Supply

recifically designed to provide precision de test voltages transistor investigations, the new -hp-721A Power Supply produces 0 to 30 volts at 150 milliamperes-suffiient for almost every type of transistor in use today.
Model 721A has a convenient 3-terminal output so that
either positive or negative terminals may be grounded. Or, the supply may be "stacked" on another voltage for still greater usefulness. Need for additional metering and control equipment is eliminated since the 721A's front panel meter monitors either output voltage or current.

New $1 / 10200$ KC oscilloscope, ${ }^{\mathbf{5}} \mathbf{4 3 5 . 0 0}$.

CIRCLE 379 ON READER-SERVICE CARD

Oak Mfs. Co.

Ontario Association of Commerce $\&$. 1 . 9 . 91
O.smorne Electronics Corp.

Phelps Dexise Copper Products Co. 6:
Philco, Corp., Lansdale Tube Div. 70, Insert, VII Phillorick, George A., Rescarches Inc. 101
Photocircuits Corp.
Pike. E. W., \& Co., Inc. 103
Plastic Capacitors Corp. 126
Potter Instrument Co.
Price Electric Corp.

Radio Corp. of Americia 140
Radio Industries, Inc. 8
Radio Receptor Co.
Rapi-Design, Inc.
Raytheon Mfs. Co., Microwave \&
Raytheon Mfg. Co., Semiconductor Div.
Raytheon Mfg. C
Rider, John F., Publisher, Inc

Sage Electronics Corp.
Sangamo Electric Co
Sel-Kex Precious Metals, In
Sikma Instrument, Inc.
Sola Electric Co. .
Sorensen \& Co., Inc.
Southwestern Industrial Flectronics Co......... 25
Spectronic Plating Cor, Inc. 126
Sprague Electric Co. Insert, XXII, XXVI
Stackpole Carbon Co., Electronic
Components Div.
Statham Instruments, Inc. 125
Stepper Motors (Land-Air, Inc.) 96
Stevens M.g. Co.
Stewart, F. W. Corp. 1.32
Sylvania Elecetric Proclucts,
Systron Corp.

Technical Products Co.
Technology Instrument Corp.
Tektronix, Inc.
Tektronix, Inc. 77
Texas instruments, Inc. Insert, XVI, XVII
Thermal Ameris, Fused Quartz Co. 115
Transistor Electronics Corp. 110
Triplett Electrical Instrument Co. 39
Tuns-Sol Electric, Inc. Semiconductor Div, 19

United Aircraft Products Insert, XXVII
United Electronics Corp.
United States Gasket Co.

Varian Associates 72
Victor Adding Machine Co.
Victoreen Instrument Co.
Victory Engineering Corp.

Waldes Kohinoor, Inc.
Ward Leonard Electric Co. 92
Weckesser Co.
Weinschel Engineering \& Mfg. Corp.
Weinschel Engineering \& Mfg. Corp. 104
129
Welwyn International, Inc.
Westinghouse Electric Corp..
Industrial Tules 60
Westinghouse Electric Corp.,
Weston Electrical Instrument Co.

TT T , A 2N301 2N301-A

 deliver 85\% more

New, improved RCA-2N301 and RCA-2N301-A-now can provide an audio-frequency power output up to 5 watts in class A service at a mounting-flange temperature of $80^{\circ} \mathrm{C}$-a significant increase (85%) over the original class A power output of 2.7 watts! These two units offer high reliability, high power efficiency, and low-distortion characteristics in power output stages of automobile radios, high-fidelity amplifiers, juke boxes, intercoms, PA systems, marine and mobile communications equipment, and electronic musical instruments.

RCA also announces the addition of three types to its expanding line of POWER OUTPUT TRANSISTORS: 2N176, 2N351, 2N376 For additional information on these types and the complete line of RCA transistors, contact your RCA field representative at the field office nearest you. For technical data on RCA POWER TRANSISTORS listed above, write RCA Commercial Engineering, Section G-18-NN-1, Somerville, N. J.

maximum ratings				typical Operation ${ }^{\text {a }}$		
	Collector ${ }^{\text {a }}$	Peok	Peak	Class	Service	Class B Service
Type	Wolls	$\begin{gathered} \text { Collector } \\ \text { lo Base } \\ \text { Volts } \end{gathered}$	$\begin{aligned} & \text { Current } \\ & \text { Amperes } \end{aligned}$	Max-Sig. Output Walts	$\begin{gathered} \text { Power } \\ \text { Coin } \\ \text { db } \end{gathered}$	$\begin{aligned} & \text { Mox. Sig } \\ & \text { Power Output } \\ & \text { (2 tronsistors) } \\ & \text { Walts } \end{aligned}$
2N301	11	-40	-3	5		12
2N301-A	11	-60	-3	5	$\text { ot } 5^{33} \text { waths }$	12
2N176	10	-40	-3	2	35.5	-
2N351	10	-40	-3	4	33.5	-
2N376	10	-40	-3	4	35	-
*At mounting. fonge lemperature of 80 C						

GOV'T: 224 N. Wilkinson St., Dayton 2. Ohio

RADIO CORPORATION OF AMERICA

Semiconductor \& Materlals Division
Somerville, N. J.
$1625^{\text {"K }}$ " Street, N. W.
EAST: Washington 6, D. C. . District 7.1260
MIDWEST: HUmboldt 5-3900 Newark 2. N. J.
Suite 1154, Merchandise Mart Plaza
Chicago 54, Ill. - WHitehall 4-2900
WEST: 6355 E. Washington Blud.
AVA Los Angeles 22, Calif. - RAymond 3 -बेs61
AVAILABLE, TOO. AT YOUR LOCAL
AUTHORIZED RCA DISTRIBUTOR.

[^0]: C. H. Knowles is with Bell Telephone Lab., Inc. Murray Hill, N. J. and E. A. Temple is with Western Electric Co., Laureldale, Pa.

[^1]: PRINCETON, NEW JERSEY, P. O. BOX 44, Swinburne 9. 1000
 VAN NUYS, CALIFORNIA, 15551 Cabrito Rd., State 2-7030
 COCOA BEACH, FIORIDA, I N. .Atlantic Ave., Cocoa Beach 3900
 DALLAS, TEXAS, 4918 Greenville Ave., Emerson 1-1003 CIRCLE 10 ON READER-SERVICE CARD

[^2]: Pulse transformers - Medium and low-power transformers - Filters of all types - Pulse forming networks - Miniature plug.in encapsulated circuit assemblies

[^3]: HUGHES AIRCRAFT COMPANY
 Culver City, El Segundo.
 Fullerion and Los Angeles, California

[^4]: GENERAL TRANSISTOR
 91-27138TH PLACE • JAMAICA 35 • NEW YORK

 CIRCLE 382 ON READER-SERVICE CARD

[^5]: 136 Liberty Street fhome: New York 6, N.Y. REctor 2-4400

 CIRCLE 384 ON READER-SERVICE CARD

[^6]:

