

ELECTRONIC

High Speed Avalanche
Switch
It takes the avalanche switch about 50 trillionths of a second to furn current on. This is a hundred times faster than the best semiconductor swilch. And it has good current handling capabilities.

6 Systems for Tracking Down
Vibration Resonance 20
W. A. Reinman presents a very down-to-earth discussion of vibration resonance and how to spot it. Six basic signs of resonance that can be observed directly are: failure, modulation of output signals, visible motion of equipment relative to its supporting fixture, high acceleration of one part in relation to another, loud noises, and large changes in power required to provide vibration at the desired level.

Starting This Issue

38
The first two of a series of papers presented at the Symposium on Microminiaturization of Electronic Assemblies sponsored by Diamond Ordnance Fuze Laboratories late last year. Because symposium attendance was limited to governmer, personnel oniy, ELECTRONIC CE. SIGN is publishing these papers as a special service to our readers.

SUBSCRIPTION POLICY

ELECTRONIC DESIGN is circulated only to qualifled electronic design engineers of U. S. manufacturing companies, industria consultants, and government agencies. If design for manufactur ing is your responsibility, you qualify for subscription without charge provided you send us the following information on your company's letterhead: Your name and engineering titie, you The letter must be signed by you personally.
The letter must be signed by you personally. SITATES A RESTATEMENT OF THESE QUALIFICATIONS, Subscription rate for non qualifled subscribers- $\$ 15.00$ for 1 yea only.

Hayden Publishing Co., Inc., 830 Third Avenue, New York 22, N. Y.

CONTENTS

Editorial 19 Conferences Are For Communicating

Behind The News 3 BOMARC To Join SAGE As Air Defense System's First Automated Missile

Washington Report 15 H-Hour for Decisions

Features 206 Symptoms for Tracking Down Vibration Resonance, W. A. Reinman High Speed Avalanche Switch The Flow Graph, G. V. Woodley Test Complex Systems Rapidly With S.P.A.M. Design Ideas At The Hi-Fi Show
Rugged Micro-Miniafure Chopper Flexibility Plus-With Two Scopes in One
Using Thin Films in Microminiaturization, H. G. Mạnfield Miniaturizing Shipboard Simulators, A. P. Vigliotta; New Products Index, July-Dec. 1958

Ideas for Design 112 Tips for Machining Glass Base Laminates

Russian Translations
16 Nonlinear and Parametric Phenomena in Radio Engineering Part 10, A. A. Kharkevich
120 What The Russians Are Writing

German Abstracts 122 Practical Two-Phase Networks

Departments 18 Letters
107 Production Products
110 New Literature
Patents
Books
126 Standards and Spec
129 Careers Section

LECTRONIC DESIGN is published bi.weekly by Hayden Publishing Company, Inc., 830 Thicd ELECTRONIC DESIGN is published bi-weekly by Hoyden Publishing Company. Inc., 830 Third Vice-fresident \& Treasurer; ond Eiovid 8 . Landis, Secretary. Printed at Hildreth Presss, Bristol, Conn. Accepted as controlled circulation publication of Bristol, Conn. Additional entry, New York, N.Y. Copyright 1959 Hoyden Publishing Company, Inc. 32,000 copies this issue.

Keluogg

 TYPE "L" RELAY miniaturized • versatile • reliable

Kellogg's Type "L" Relay features -
High operating force: greater sensitivity, gram pressure, springs per pileup.
Roar mounting: for ease of wiring
wide coll variety: single or double wound, for any circuit needs.
sifurcated stationary springs: for independent contact action and high reliability (single contacts also available).
IBRARY ypavy duty bronze yoke and stainless steel bearing
NGREASpins: for long life and stable adjustment.
CECORAngle or double arm type armatures available Hermetically sealed models, if desired.
9 1953perating speed: minimum of 1-2 milliseconds. Contact points: gold, silver, palladium, tungsten; others available.
Residual: adjustable.
Time delay: heel-end slugs and armature-end slugs for release time delay and operate time delay, respectively.
Torminals: slotted.
Weight: net, 2-1/4 oz.
Dimenslons: $2-1 / 4^{\prime \prime} \mathrm{L} \times 1-1 / 8^{\prime \prime} \mathrm{W}$, height ranges from 17/32" to 1-1/16" (max.)
Operating voltages: up to 220 volts D.C.
Backed by Kellogg and International Telephone and Telegraph Corporation. Inquiries are invited. Send for a free catalog on Kellogg relays, components.

Kellogg Switchboard and Supply Company, 6660 South Cicero Avenue, Chicago 38, III. Communications divislon of
International Telephone and Telegraph Corporation.
Manufacturers of Relays • Hermetically sealed relayseSwitches esolenolds

onv rimil orres bent

 SILICON TRANSISTORSPNP.NPN
for COMPLEMENTARY CIRCUITS because characteristics are so similar as to permit full and confident use

Specify RAYTHEON and get these significant advantages:

Higher, more constant beta
Lower saturation voltage
Low noise type available in both PNP and NPN

Made by the Raytheon reliable fusion alloy process which assures more constant characteristics over the entire temperature range

aATHEOM FOR LARGE: SIGNAL APPLICATIONS
 Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$

$\begin{gathered} \text { ro.9 } \\ \text { onoss } \\ \hline \end{gathered}$		】ype		$\underset{\substack{v_{C E} \\ \text { mox.t. }}}{\substack{\text { molt }}}$	$\underset{\substack{\text { Hret } \\ \text { ave. }}}{ }$	$\begin{gathered} \text { ' } \mathrm{b}^{\prime} \\ 1 \mathrm{Mc} \\ \text { ohms } \end{gathered}$	kilohms	Noise Figure $d b$ (max.)	$\begin{gathered} \text { cob } \left.\begin{array}{c} \text { cobc } \\ \text { ave ce } \\ \mu \mu i l \end{array}\right) \end{gathered}$	tab a ave. ke
		2N327A	0.005	-40	15	1200	500	30	65	200
IT		2N328A	0.005	-35	30	1400	500	30	65	300
		2N329A	0.005	-30	60	1500	500	30	65	400
		2N330A	0.005	-30	25	1300	500	15	65	250
	N	2N619	0.005	50	15	2000	500	30	35	200
		2N620	0.005	40	30	2500	500	30	35	350
		2N621	0.005	30	60	2700	500	30	35	500
	N	2N622	0.005	30	25	2400	500	15	35	300

110 P PNP, $I_{E}=-0.1 \mathrm{~mA}: V_{C E}=-0.5 \mathrm{~V} ; 101$ NPN, $I_{I}=0.5 \mathrm{~mA} ; V_{C E}=1.5 \mathrm{~V}$

FOR SMALL SIGNAL APPLICATIONS
Temperature Range $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$

		Type	$\begin{gathered} I_{E 0} \text { or } I_{c o} \\ \text { at } V_{c B}=20 V_{d c} \end{gathered}$ $\mu \mathrm{A}$	$\underset{\substack{\mathrm{v}_{\mathrm{cz}} \\ \text { molits }}}{ }$	Hrit ave.	$\begin{aligned} & \text { hie } e^{\cdot} \\ & \text { max. } \\ & \text { ohm } \end{aligned}$	$\begin{aligned} & \mathrm{h}_{\mathrm{oc}}{ }^{\circ} \\ & \text { max. }_{\mu \text { mhos }} \end{aligned}$	$\begin{gathered} \text { Noise } \\ \text { Figure } \\ \text { fb } \end{gathered}$	$\begin{gathered} \substack{\text { cob } \\ =\text { iokcc } \\ \text { ave. } \\ \mu \mu \mu \mathrm{c}} \end{gathered}$	$\begin{aligned} & \mathrm{t}_{\mathrm{ab}} \\ & \text { ave. } \\ & \mathrm{kc} \end{aligned}$
	P	2N1034	0.005	-40	15	3000	70	30	65	200
	N	2N1035	0.005	-35	30	3000	85	30	65	300
		2N1036	0.005	-30	60	3000	100	30	65	400
	P	2N1037	0.005	-35	30	3000	85	15	65	250
	N	2N1074	0.005	50	15	3500	70	30	35	200
	-	2N1075	0.005	40	30	3500	85	30	35	350
		2N1076	0.005	30	60	3500	100	30	35	500
	N	2N1077	0.005	30	25	3500	85	15	35	300

[^0]STAFF

CO-PUBLISHERS

T. Richard Gascoigne

James S. Mulholland, Jr.

ADVERTISING REPRESENTATIVES

Advertising Sales Manager
Bryce Gray, Jr.
New York:
830 Third Avenue Plaza 1.5530 Plaza 1-5530

Owen A. Kean
Robert W. Gascoigne Richard Parker Blair McClenachan James P. Quinn Charles C. Wadsworth

Chicago: Thomas P. Kavooras
664 N. Michigan Ave. Serry Conner, Jr. SUperior 7-8054

Los Angeles:
275 Wilshire Blyd
Wishre 17337

Southeastern:
2808 Middle River Dr,
Ff. Lauderdale, Flo.
LOgan 6-5656
London, W. 1: Michael B. Horne 24 Baker Street

England

BEHIND THE NEWS

BOMARC To Join SAGE As Air Defense

 System's First Automated MissileNEWEST WEAPON in America's air defense system is Boeing's BOMARC IM-99 supersonic missile, which will be the first automated surface-to-air missile integrated into the SemiAutomatic Ground Environment (SAGE) warning system.
Air Force Secretary James H. Douglas has revealed that the $15,000-\mathrm{lb}$. BOMARC will become operational this year. The first four of 14 planned BOMARC sites are being readied at McGuire Air Force Base, N.J. (where the first SAGE center has been operating 24 hours a day since July); Suffolk County AF Base, Long Island, N.Y.; Duw AF Base, Me., and Otis AF Base, Mass.
Douglas explained that the Army's 200 Nike batteries, several of them now equipped with the Hercules missile, are effective for point defense, but BOMARC is designed "to go as far out as possible from our borders to meet attacking bombers."

Remote Control Tests Successful

From an experimental IBM-SAGE center at Kingston, N.Y., BOMARC missiles 1500 miles away at Cape Canaveral, Fla., have been launched by remote control and have successfully downed drone targets more than 200 miles at sea. But Douglas reveals that an advance type "will have several times that range." And work is underway on a solid propellent propulsion system.

BOMARC, 47 feet long, 35 inches in diameter, with an 18 -foot wing span, now combines the high thrust feature of a booster rocket with the

Integrated with SAGE, the supersonic BOMARC is America's first wholly automated air defense missile. An IBM computer of the SAGE center tracks the target, fires the missile automatically, guides it to the target.

Creative Microwave Technology

Vol. 1
Published by MICROWAVE and POWER TUBE DIVISION
RAYTHEON MANUFACTURING COMPANY, WALTHAM 54, MASSACHUSETTS

NEW DEVELOPMENTS IN ELECTRONIC TUBES AND CERAMICS

Where abnormal conditions of vibration (25 to 2000 cps at loG) are encountered such as in advanced airborne applications, this pulsedtype X-band ($9245 \pm 40 \mathrm{Mc}$) air-cooled RK6967A/QK366A magnetron oscillator maintains exceptional Prequency stability and operational reliability. Optimum performance is assured by a double-end supported cathode and aluminum-clad integral magnets. Nominal peak

power output is 100 kw at typical pulse conditions of $0.5 \mu \mathrm{sec} .(.001$ duty cycle). The tube operates at a peak anode voltage and current of 15 kv and 13.5 amp. respectively.

CIRCLE 209
Reader Service Card
*
Integrally insulated semiconductors can now be produced by using high-alumina ceramic stem assemblies. Heat dissipating ceramic wafer (arrow) in the base insulates up to 2000 volts dc and withstands soldering temperatures as high as

1100C. Bases can be directly mounted to chasses or cold plates. Stems are available to all semi-conductor manufacturers.

CIRCLE 210
Reader Service Card

* * *

Miniature gyro feedthroughs provide take-off points from gas-filled gimbal housings. These highalumina, vacuum-tight, R-95 ceramic assemblies can be soldered to housings at temperatures up to 1000C. They also assure positive electrical insulation with leakage less than one microampere per 500 volts dc.

CIRCLE 211
Reader Sorvice Card

A Leader in Creative Microwave Technology

Designed for voltage tunable CW or pulsed operation over the Government X-band (8500 to 9600 Mc) the QK684 integral magnet backward wave oscillator delivers 10 to 50 mW over delay-line voltages ranging from 215 to 325 vdc. Regulation of a special control gridfacilitates pulsed or amplitude modulation to meet power and frequency requirements. Models available for coupling to standard, type "N" connectors.

CIRCLE 212
Reader Service Card

Compiled as a Raytheon service to the field, new Consolidated Data Booklet contains comprehensive information about principal unclassified magnetrons, klystrons, backward wave oscillators and special purpose tubes manufactured by Raytheon. Characteristics presented include maximum ratings, typical operating values, band or frequency ranges and other essential data formicrowave engineers and purchasing departments.

CIRCLE 213
Reader Service Card

BEHIND THE NEWS

fuel economy of twin ramjet engines to achieve altitudes above 70,000 feet and speeds over Mach 2.5 . Carrying either nuclear or conventional warhead, it employs the latest electronic guidance systems, including the terminal guidance system in the missile itself. When integrated with SAGE it is fully automated; the target-subsonic or supersonic-is tracked automatically, the missile is launched and guided automatically.
The SAGE/BOMARC system consists of the missile plus two elements of the air defense ground environment: search and heightfinding radar with a built-in data processor, and a giant IBM-SAGE computer which functions as the control center for the system.
Heart of the SAGE system is this IBM AN/FSQ-7 computer, which digests radar returns from all sources, plus ground observer reports, domestic flight plans and weather information. The computer automatically calculates the most effective employment of guided missiles, anti-aircraft batteries and jet interceptors.

A single BOMARC firing sequence, in which the computer must run through many thousands of individual steps in continuous sequence, is organized into four phases: target detection and reporting, target tracking, missile firing preparation, and missile guidance and intercept.

Target Detection and Reporting

The firing sequence begins when an AN/FPS-20 long-range search radar detects what may be a flying object in a sector screened by that radar. The return is passed along an AN/FST-2 coordinate data transmitter, which converts it to polar coordinates-range and azi-muth-for transmission in digital form over leased lines to the nearest SAGE AN/FSQ-7.
This information is stored in "long range input" magnetic drums, where it is read by a "program" previously stored in the computer, then converted into "Car-
tesian coordinates." The "program" consists of detailed instructions fed into the computer by punched cards and by magnetic tapes, while the "Cartesian coordinates" supplant the range ind azimuth relayed to the center from the radar iite. These coordinates are referenced to the launch pad of the nearest BOMARC. Thus when the missile is launched, track information on the target and guidance information on the BOMARC are referenced to the same fixed point.
At this stage, the radar return is examined by the track correlation program to determine whether it is a new track, part of a previous track (as a regularly scheduled airliner), electronic "noise," or atmospheric interference.

Target Tracking

The computer checks subsequent radar returns at five-second intervals to determine if they correlate with the initial pickup. If this correlation is established, the computer automatically classifies the initial pickup as a "tentative" track and gives it speed and heading. Another return with the same correlation, and the "tentative" track becomes "established."
The program transmits the "Cartesian coordinates" of the target-for which height still must be calculated-to the output buffer drums of the computer, and the request for height data is transmitted by telephone lines to an AN/FDS-6 height finder radar at the radar site. This information returns to the SAGE center by the same AN/FST-2 data transmitter that carried the search radar data; the height information is automatically inserted into the computer along with other track data.
The program compares the new track with filed flight plans to determine if the target is "hostile" or "friendly." The blip on the tracking console appears with a three-letter symbol-ogy-a letter identifying the track, a letter indicating the "merit" of the track, and, when determined, a letter indicating whether it is friendly or hostile.

The "merit" of each track is constantly reviewed as all subsequent returns are correlated -"G" for good, "F" for fair, "P" for poor. If the merit rating of a track declines or the track disappears, it could indicate it was caused by interference. But if the track remains and the pro«ram determines it is a violator of the air space, the symbol for "enemy" appears on the console and BOMARC is called on to intercept it.

Missile Firing Preparation

The computer requests information from the nearest BOMARC base as to what stage the missile is in-Ready Storage, Warm-up, Standby, Fire-up, Launch, or Malfunction. This information is sent from a "launcher status multiplexer"

Quality Control: state of the art

It has been rumored that some engineers rely upon supernatural means to insure proper quality control. When all else fails, there is something to be said for this method. At Hughes Products, however, we try to take a more scientific approach to quality control. That's why Hughes Products systems and components have established such an outstanding record of reliability.
On the following three right-hand pages are specific examples of reliable Hughes compo-nents-Quick Recovery Diodes, TONOTRON *Storage Tubes, and MEMO-SCOPE ${ }^{\circledR}$ Oscilloscopes.

In addition to these, other Hughes Products devices with this "built-in" reliability include: Precision Crystal Filters for selective tuning...Rotary Switches...Thermal Relays... MEMOTRON ${ }^{\circledR}$ and TYPOTRON ${ }^{\circledR}$ storage tubes... Diodes, Transistors and Rectifiers with uniform performance...and Industrial Systems which automate a complete and integrated line of machine tools. Trademark of H. A.C.
For additional information regarding any component or system please write: Hughes Products, Marketing Dept., International Airport Station Lo8 Angeles 45, Calijornia.

ELECTRONIC DESIGN • January. 21, 1959

COAXICON-brand new. One stroke of the A-MP precision tool does it. Two strokes and you have the pin and receptacle units permanently attached to coaxial cable. For low level circuitry, either panel mounted or free hanging.

- Reliability-the highest. Cost-lower than anything you're now using.
- Further, coaxial cable is fully supported against vibration.
- All this in seconds . . . no more burned insulation . . . no more tedious soldering ... no more doubtful connections. Attachments at unbeatable speed that give you the finest termination at the lowest total installed cost.

Write for more information today.

AMP INCORPORATED

GENERALOFFICES: HARRISBURG, PENNSYLVANIA A.MP products and engineering assistance are available through subsidiary companies in: Canada - England. France - Holland • Japan CIRCLE 6 ON READER-SERVICE CARD

BEHIND THE NEWS

close to the launch pad, and goes via telephone lines into a cross tell drum of the IBM computer at the SAGE center, appearing as a digital display at the console. Missiles ready for firing will show up in "Standby" status.
The console operator requests an "engagement prediction point"-the point at which the intercept would be made if the BOMARC were fired at this time. The computer, referring to its program, relates range, speed, heading and altitude of the target to the complex performance characteristics of the BOMARC.

The "engagement prediction point" appears on the scope in the form of a small square. The SAGE operator presses a FIRE button. The signal is relayed by telephone lines to the missile site. The "Standby" stage becomes the "Fire-up" stage, preparatory to launch. The computer continues to follow the target track.

Missile Guidance and Intercept

Pre-launch computations are initiated and transmitted to the guidance unit in the BOMARC. A few seconds after the FIRE button has been pressed, the BOMARC is boosted into a vertical climb by its rocket motor. The missile's ramjets cut in as soon as ignition speed is achieved. Computations, fed to the launch site by land-line from the SAGE center, go by radio to the missile. The square "engagement prediction point" on the SAGE console now is replaced by an "X" to mark the computed intercept point as the missile completes its climb to altitude and levels off for the midcourse phase.
Commands are transmitted to the BOMARC as required to maintain an intercept course. Commands concern missile azimuth, time remaining to dive, dive angle, and the pointing angle of the homing device built into the missile. All computations are programmed in the computer so the same program can be employed in firing other missiles of varying characteristics.
The flight path of the target appears on the SAGE scope as a line of tiny crosses; the path of the BOMARC is a succession of slants or slashes. When the missile is guided to within striking distance of the target, the IBM computer tips it into a steep dive. Soon after the dive begins, the computer cuts out; the missile track is dropped by the computer program and the BOMARC is on its own. The missile's seeker then "locks on" the target. The BOMARC "homes" to the target and makes the intercept. The enemy is destroyed before it gets within sight of land.
Says Secretary Douglas: "SAGE and its proven reliability provide a great step forward in air defense."

New Transducer Seen As Ultrasonic "Breakthrough"

The transducer, heart of any ultrasonic system, et traditionally its weakest link, may now be at I stage of development justifying forecasts of abundant ultrasonic energy for the future.
Intensive research and development has scored successes possibly opening the door to a wide range of applications for which ultrasonic equipment long has been considered too costly, too inefficient and too low in usable power.

Latest advances in the field were made by Westinghouse. Using a new concept of "spaced laminations," engineers in its new products department have developed a magnetostrictive ultrasonic transducer providing twice the normally usable power for the same electrical output.

Breakthrough in Design

"We consider this new transducer a significant breakthrough in transducer design for applications requiring sizeable amounts of ultrasonic power," said the department's manager, Dr. R. A. Ramey. "A radical new design has resulted in a device that is twice as efficient and considerably more compact than any existing units of comparable power."
Conventional transducers have plates that must be "tuned" by grinding them carefully to an exact thickness. This time-consuming, costly operation is eliminated in making the Westinghouse transclucer, for the plate is an uncritical piece of metal rectuiring no grinding or machin-

New Westinghouse ultrasonic transducer (right) has laminations spaced in a latticework across the plate, compared with stacks scattered across the plate's surface in conventional transducer (left). Instead of wavelike motion requiring expensive "tuning," a pistonlike motion results, permitting use of simple, unmachined plate.

Reliable Hughes Silicon Junction Diodes

With recovery to 400 K ohms (minimum) in 1 microsecond... Hughes high-speed silicon diodes reliably meet the quick recovery requirements of most germanium types, and in addition, stand up under high voltages at high temperatures. In fact the break down voltages increase with temperature...thereby downiding maximum protection when temperatures reach unexpected levels. With this order of reliability reach unexpected levels. With this order of reliability,
Hughes quick recovery silicon diodes assure dependa. bility under the most severe operating temperatures.
Typical performance levels:
Breakdown voltages at current of 0.1 mA from $30-200$ volts.

Ambient operating temp. $-80^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Reverse current-as low as $1 \mu \mathrm{~A}$ at -175 volts and $25^{\circ} \mathrm{C}$
-as low as $30 \mu \mathrm{~A}$ at -175 volts and $100^{\circ} \mathrm{C}$
Special high conductance types in the quick recovery series are available in all voltage classes. No matter what your problem, chances are that there is a Hughes diode to meet your need. Write today for a complete data sheet on the Hughes quick recovery silicon diode -or any other Hughes semiconductor device. Address: HUGHES PRODUCTS, Marketing Department, International Airport Station, Los Angeles 45, Calif.

Crēating a new world uith ELECTRONICS
HUGHES PRODUCTS

O I9SE. HUGHES AIRCRAFT COMPANY
semiconductor devices storage and microwave tubes - crystal filters - oscilloscopes - relays - switches - industrial control systems CIRCLE 9 ON READER-SERVICE CARD

U. S. Semcor "know-how" |aunchesthew

SOLID TANTALUM

IMMEDIATE "OFF THE SHELF" DELIVERY . . .

featurlng highest capactance in the smallest packace yef!

Extreme stability at low temperatures in typical

 U. S. Semcor "over spoc" standards

BEHIND THE NEWS

ing. Such a simple plate can be used because the transducer does not vibrate in a wavelike motion, as do conventional transducers. Dr. Ramey described the difference this way:

Stacked vs Spaced Laminations

In conventional magnetostrictive transducers, metal laminations are built into a stack wrapped lengthwise in wire through which flows current driving the entire assembly. Several stacks, placed end to end a few inches apart, are welded to a metal plate; any stack energizes the plate only at the spot to which it is attached. Driven at these scattered points, the plate vibrates in wavelike motion. It therefore must be "tuned" so vibrations reinforce instead of cancel out each other.
In the Westinghouse transducer the whole plate pulses in and out with a single piston-like movement, the most efficient motion for producing ultrasonic vibrations.

To obtain this motion, separate stacks of laminations are discarded. Instead the laminations are spaced in a latticework across the plate. Each lamination, attached individually to the plate, is a driving element working in unison with the others.

This "spaced lamination," in addition to doubling usable power, distributes it over the plate instead of concentrating it in scattered "hot" and "dead" spots.

No More "Weak Link'

"Spaced lamination," said Dr. Ramey, "has proved so successful that we no longer consider the transducer as a 'weak link' in useful ultrasonic systems. Instead we view it as a component whose perfection will make ultrasonic energy abundantly available in the future."

Suggested applications include electroplating aluminum bus bars with silver, cleaning printed circuitry boards for TV and radio receivers, and decontaminating pieces of nuclear apparatus. In one application, manufacturing operations were reduced from 12 steps requiring 30 minutes to three steps taking only two-and-a-half minutes.

Cause of Atomic Clock Differences Discovered

Results of an investigation to discover the reasons for discrepancies between British and American atomic clocks have been announced. (See Electronic Design, July 23, page 9.) The two standards were constructed quite independently and although they both employ the same spectral
line of the metal caesium they differ markedly in the methods of operation.
Comparisons made by means of radio transmissions indicate that the British clock was gaining relative to the American clock by seven parts in ten thousand million (less than a ten thousandth part of a second per day).

New Alternator Puts Out Steady Frequency At All Drive Speeds

Development of an electronically-controlled alternator that puts out a constant frequency regardless of the speed of its mechanical drive has put the Hallamore Electronics Division of the Siegler Corp. into the electrical power plant field.

Ultimately, when perfected and marketed, the device may account for $\$ 50,000,000$ annually in new sales.
A unique feedback mechanism is used in the constant-frequency alternator, developed by Hallamore design engineers headed by Leo Johnson.

Exciter Counter-Rotates

An exciter feeds a rotating field into the alternator. If the alternator slows down, the exciter field counter-rotates in radio. The exciter is controlled by a demodulator or comparator, which receives information from a tuning-fork reference and a tachometer.
All parts are on the same shaft. The only maintenance required is on bearings and brushes.
Advantageous applications are numerous. In jet aircraft, plagued by variations in engine speed, mechanical hydraulic or pneumatic speed compensators could be done away with. Use of the Hallamore system here would save a third of the weight-roughly that of a man-and eliminate the relatively high maintenance of mechanical compensators.

Any Number-in Parallel

Present systems require that independent electrical systems be used in multijet aircraft, each working from a different engine. With the Hallamore variable-speed CFA, any number of alternators can be worked in parallel.

Also eliminated would be special stabilizers now used for aircraft electronic fire control, gyro and auto pilot. And any such reduction in flight equipment means a proportionate reduction in spare parts and maintenance. This means an increase in reliability.

The alternator was designed to hold any constant frequency-400 cycles for aircraft, or any other frequencies used by power utilities or industrial plants. (A complete technical description of the Hallamore CFA will be included in a future issue of Electronic Design.

The Hughes TONOTRON tube presents a complete spectrum of grey shades. Result: high-fidelity picture reproduction. The illustration above, for example, is an unretouched photo of a typical radar display as viewed on the face of a TONOTRON E.I.A. Type 7033 Tube.

Additional outstanding characteristics of the TONOTRON tube are high brightness (in excess of 1500 foot lamberts with full half tone range) and controllable persistence. The family of TONOTRON tubes is ideally suited for ground mapping, weather radar displays, slow-scan TV, "B" scan radar, oscillography, armament control radar, optical projection systems, and miniature radar indicators.
Other Hughes cathode-ray storage tubes: The MEMOTRON ${ }^{\text {® }}$ tube displays successive transient writings until intentionally erased. The TYPOTRON tube, an exceptionally high-speed character writing tube, displays any combination of 63 letters or symbols until intentionally erased.

For complete technical data please write Hughes Products, Electron
Tube Division, International Airport Station, Los Angeles 45, California
"trademark of ha.c.

- REGISTERED trademark
Creating a new world with ELECTRON1CS
HUGHES PRODUCTS

OI9SE, HUGHES AIMCRAFT COMPANY

EEMICONDUCTOR DEVICES • STORAGE AND MICROWAVE TU日ES. CRYSTAL FILTERS • OSCILLOSCOPES • RELAYS • SWITCHES - INDUSTRIAL CONTROL SYSTEMS CIRCLE 11 ON READER-SERVICE CARD

BEHIND THE NEWS

New High Accuracy Transistor Tester Built

A new machine is automatically testing transistors, to a degree of accuracy hitherto unknown.

The Stromberg-Carlson equipment processes any type of transistor through seven successive tests, at rates up to 430 transistors per hour. The new machine was designed especially for the Sperry Gyroscope Co. Another similar machine, for the testing of diodes, also is being built for the same firm.

One feature of the original machine is a temperature chamber in which the transistors can be subjected to any one of the tests in the series, while being operated at any preselected temperature up to 200 .

Transistors which fail any one of the tests are automatically ejected at the station at which they fail. Thus the machine sorts rejected transistors according to their defects.

The parameters in which the machine will test transistors are: dc beta (pulse test); ac beta (small signal); saturation, and leakage. The additional test positions provide for testing these parameters by more than one method, or for testing additional parameters, if desired.

Since this original machine will be used primarily to test transistors for military applications, the specifications for the various tests have been set to exceptionally close tolerance limits, with accuracy maintained to within ± 2 per cent of the range, company official explained. However, the machine is modular in construction, and the tolerances can be changed easily, simply by the substitution of a few plug-in modules, officials noted.

Operation of the machine is completely automatic, requiring only one operator, for loading. An additional facility, called a "remote test table," provides for even greater output where less extensive tests are needed. With up to six operators, working at this table, as many as 2000 transistors can be tested per hour.

Accurate operation of the testing machine is assured by 60 built-in trouble indicators. These not only flash a light if any part of the equipment fails, but they also serve to indicate the exact location of any such trouble. In most cases trouble can be corrected by the substitution of a plug-in module, requiring only a few minutes. Additional development work is now in progress on different modules which will adapt the machine to testing other components, such as capacitors, resistors, and transformers.

NEWS BRIEFS

MARCONI OF ENGLAND is delivering for jet airliner use a completely crystal-controlled automatic direction finder in production quantities. The AD712, abandoning conventional tuning methods, has crystal control permitting simple switch selection of frequencies in the bands 100 to $415 \mathrm{kc} / \mathrm{s}$, and 490 to $1799.5 \mathrm{kc} / \mathrm{s}$ in steps of $0.5 \mathrm{kc} / \mathrm{s}$. The control is locked to within plus or minus $50 \mathrm{c} / \mathrm{s}$ of the indicated frequency under all normal working conditions, a degree of accuracy never before attained by radio compass designers.
R. H. MACY, launching the "biggest automation program in department store history," by 1961 will put in operation a $\$ 1,000,000$ National Cash Register system to prepare customers' statements at a rate of 50 a minute- 25 times faster than present speed. An all-transistor NCR 304 computer and 40 other machines will automatically handle 750,000 customer accounts of Macy's six New York stores. In one hour the system will handle punched-tape data on 300,000 sales checks.

SUPPLY PROCEDURES at the Philadelphia Army Quartermaster Depot have been streamlined by installation of the IBM 650 Tape RAMAC (Random Access Method of Accounting and Control). Unveiled at Dec. 3 ceremonies, the system was hailed as "the greatest advance yet made towards office automation by electronics." The computer, storing some 35,000 stock numbers and 120,000 stock records, provides more sensitive inventory control by automatically processing 115,000 requisition line items monthly. The basic IBM 650 magnetic drum processing system features four disk memory units providing storage capacity of $24,000,000$ alpha-numeric characters. Darting arms locate dates, names or quantities instantly. Magnetic tape units provide daily input and output at the rate of 15,000 digits per sec.

EXPERIMENTAL MICROWAVE SYSTEM will be set up between Dallas and Fort Worth, Tex., by Central Freight Lines if FCC approves application. Central and 12 other trucking firms will use microwave stations on nonprofit, cost-sharing basis, they told Dec. 15 FCC hearing. Voice and teletypewriter communications would speed routing, administration and billing, while TV would help driver safety and salesman training, said spokesman, adding: "We see in microwave, with its admitted lower costs over wire line construction costs, the possible key that may provide the greatest forward step in trucking efficiency in the next 10 or 20 years." Long lines firms opposed the application.

Trial and error methods necessary to capture elusive transients on conventional scopes waste time, film, and precious research dollars. Never again need this happen. With the Hughes memo-scope ${ }^{\circledR}$ oscilloscope you may instantly "freeze" wave forms with brilliant clarity for careful study, comparison and analysis.
The Hughes memo-scope ${ }^{\text {T}}$ oscilloscope retains these frozen transients until intentionally erased. Selected transient information may be triggered externally or internally. Successive wave forms may be written above, below or directly over the original information.

SWEEP SPEED FOR STORAGE: 10 microseconds to 10 seconds per division ($0.33^{\text {\% }}$). frequency response : DC to 250 KC down 3 db.
SENSIIIVITY: 10 millivolts to 50 volts per division or with optional high sensitivity proomplifier 1 millivolt to 50 volts per division.
APPLICATIONS: Trouble shooting data reduction equipment ...switch and relay contect study ... ballistics and explosives rosearch . . . ultresonic fllaw dotioction ... physical testing study ...batilistics and
shock - stross - -strin.

A Hughes representative will gladly demonstrate the MEMO-sCOPE oscilloscope in your company. Simply address your request to:
Hughes Products, Marketing Dept- Memo-scope ${ }^{\circ}$
International Airport Station, Los Angeles 45, California

ELECTRONIC DESIGN • January 21, 1959

The first two Motorola Mesa transistors, the 2N695 switch (with a rise time less than $3 \mathrm{~m}_{\mu} \mathrm{sec}$) and the 2 N 700 (a 200 mc amplifier), were announced in August, 1958. Our pilot line facility at that time had a capacity to produce several hundred devices per day and our plans were to move into full scale production during the first few months of 1959. We expected this capacity to be able to meet any possible demand which our customers might place on us. However, the reception of these devices surpassed all expectations and requests for samples far exceeded our pilot production. Naturally, we have been very happy with the response, but our main concern has been the integrity of our product, and we have steadfastly refused to proceed with expanded production until we satisfied ourselves that each new process would yield the extremely high quality and reliability which we intend to be synonymous with the name Motorola Mesa.

As many of you already know, the two Motorola Mesa transistors now available are unusual devices. The active region of these transistors covers an area less than that of a human hair. Yet they are manufactured by methods so precise that they do not need to be selected, as are most transistors today, but are made within extremely close tolerances to the electrical and mechanical characteristics desired. The elements which are used in their fabrication have
been carefully selected so that each and every transistor can be baked out under high vacuum at $300^{\circ} \mathrm{C}$ before being hermetically sealed.

This is just one of the extra steps we at Motorola are taking to insure the integrity and reliability of these devices. The size of the transistor, the ultra-precise methods which we use in its fabrication. and the basic design of the Motorola Mesa itself all combine to give you the most reliable transistor the industry has yet seen. There is no doubt in our minds that the Mesa is "the" transistor of the future.

With this conviction guiding us we have been putting great emphasis on production tooling for Motorola Mesas and within a few weeks we shall swing into large scale manufacture of the Mesa transistor. At that time, we shall be in a position to accept production orders for these transistors of the future.

Even with this emphasis on production, basic research and development has not been neglected. Motorola's development team has expanded its study of the Mesas. Extensions of the design to higher power and higher frequency are ready for introduction in the very near future. Before long. we shall have a whole family of Motorola Mesas with the same integrity and zeliability of these first two devices . . a family of devices that will open up entirely new areas of transistor application.

CIRCLE IA ON READER-SERVICE CARD

BEHIND THE NEWS:

New

Electrostatic Memory RUGGED, COMPACT, FAST

A NEW electrostatic memory device has been proposed in France by E. Nazare. According to Dr. A. V. J. Martin of the Carnegie Institute of Technology, the new device uses the breakdown property of a thin sheet of dielectric material placed between two sets of electrodes. Claimed advantages are economy, ruggedness, compactness and high speed.

Principle

The sparkover voltage between two electrodes is greatly increased when a dielectric material filis the gap betwen the electrodes. This provides a simple way of determining two voltage levels.

Fig. 1. The two basic states of the new electrostatic memory.

Fig. 2. A voltage V_{R}, halfway between $V I$ and $V 2$, will cause a current to flow if there is no dielectric. No current will flow if there is a dielectric.

Fig. 3. A memory plane. 1 and 6 are insulating boards, 2 and 5 are orthogonal set of wires, 3 is the perforated matrix sheet, and 4 is the dielectric sheet.

Fig. 4. The memory planes can be stacked to make a memory block.

If there is no dielectric, breakdown will occur for a voltage V1 dependent on the electrode spacing. If there is a dielectric, breakdown will occur for a voltage V2 much larger than V1 (Fig. 1).
Hence, by applying across the electrodes a voltage V_{R} halfway between V1 and V2, either current will flow (no dielectric) or the circuit will stay open (dielectric). These only two possibilities, current or no-current, correspond to the yes-no or 0-1 positions of the basic binary system (Fig. 2). The readout function is thus easily obtained with a very wide
tolerance, since V2 » V1.
Originally, there is a dielectric between the electrodes. Writing-in, that is in fact suppressing the dielectric in the air gap, is also a simple matter. A voltage $V_{\text {w }}$ higher than V2 is applied, and the spark jumps across the electrodes and burns a hole through the dielectric. This constitutes of course a permanent recording.
An erasure process might even be-envisioned. Coating the erroneous hole with an appropriate varnish would cancel the recording.

There is then the simple and necessary

DESIGN TIPS...ON LIQUID COOLING M0. 1

Design Simplification

PROBLEM: Cool magnetron tube.
Supply hydraulic power for tuning. Keep design simple.

SOLUTION: Use one fluid, Coolanol 45, as coolant for tube and hydraulic fluid for power transmission.

EXAMPLE:

Engineers at Eastern Industries, Inc., Hamden, Connecticut, actually solved this problem by using two units: a liquid heat-dissipating unit (Model E/HT 200), shown at the left in the diagram, and a hydraulic tuning unit (Model E/HS 100), on the right. Sealed in both units, Coolanol 45 cools the magnetron tube and actuates the mechanical tuning mechanism.

Coolanol 45 was selected for this application because it fully met the rigid requirements. Consider its outstanding qualities: wide temperature range (-65° to 400° F.), excellent lubricity and material compatibility, good dielectric and heat-transfer properties, extreme purity (must pass 0.8 u filter).
SEND FOR NEW DESIGN BOOKLET
"Design Tips on Liquid Cooling with

Coolanol 45" describes cooling approaches, fluid properties essential to equipment reliability, a typical design, and other important design aspects. For your copy, circle the reader-service number . . . or write:

Cooonol: Monsonto Trademork

MONSANTO CHEMICAL COMPANY
Organic Chemicals Division
Aviation Fluids Dopartment St. Louis 66, Missouri

When you need a synthetic fluid, come to Monsanto - creator of fluids for the future CIRCLE IS ON READER-SERVICE CARD
ELECTRONIC DESIGN • Januarý 21, 1959

SPECIFICATIONS

- Size: $1 / 2^{n}$ dia. Weight: $1 / 402$.
- Power rating: 1.5 watts at $40^{\circ} \mathrm{C}$.
- Resistance Range: to 40 K ohms. Resistance Tolerance: $\pm 10 \%$ standard. Linearity: (Independent) $\pm 2 \%$ standard; $\pm 1 \%$ special. Welded connections.
- Dielectric Strength: 1000 V. AC for 1 minute at atmospheric pressure.
- Torque: Less than 0.50 oz.in.
- Completely enclosed to meet toughest environmental conditions. Applicable solder cannot get into potentiometer.
- Mountings: Servo and bushing. Also locking type.
- Rotation: Limited or continuous.
- High-frequency operation.
- Modifiable to your requirements.

HIGH RELIABLITY 1/2" PRECISION wounip POTENTIOMETERS

Designed to meet the ever-increasing demand for greater performance and highest reliability in less space, the Clarostat Series 57 Precision Potentiometers feature a new rotor and brush assembly for maximum stability and longest trouble-free service. Nickel-silver body. Thermally compatible cover with sturdy terminals molded in place. \quad Write for details . . .

Controls and Resistors

BEHIND THE NEWS

relationship between the various voltages $\boldsymbol{V} 1<V_{R}<\boldsymbol{V} 2<V_{W}$
This multiple inequality is easily satisfied because of the wide gap between V1 and V2. In other words, neither V_{R} nor V_{W} is at all critical. These two voltages are in fact provided by capacitors discharging in the circuit.

Memory Sheet

Each pair of electrodes thus stores a bit of information, and any storage capacity can be obtained by multiplying the electrodes. A convenient arrangement is illustrated Fig. 3. It uses two orthogonal sets of wires 2 and 5 , separated by the dielectric sheet 4 and a perforated matrix sheet 3 . Mechanical protection is provided by the external insulating boards 1 and 6 .

Such an arrangement is called a memory plane. Its dimensions can be quite small. The type represented has a 100×100 matrix of 0.4 mm diameter wire and can store 10,000 bits. For a wire spacing of 1 mm , this is obtained by a flat plane $10 \times 10 \mathrm{~cm}$.
Larger areas provide proportionately larger memories. Moreover, the small thickness of the planes makes it easy to stack a large number of them, as indicated in Fig. 4. The reference numbers have the same meaning as in Fig. 3.
Such a stack is called a memory block. One type, measuring $50 \times 50 \times 90 \mathrm{~cm}$, or approximately $20 \times 20 \times 36$ inches, has a capacity of 24 million bits. At 6 signals per letter, this is equivalent to 4 million letters. If numbers only are used, the equivalent capacity is 6 or 8 million numbers, according to whether the binary decade or pure binary system is used.

For comparison, such a memory block is equivalent to 60,000 perforated cards of 100 nu merical columns, or 40,000 alpha-numerical cards.
Memory blocks in their turn are combined in memory racks. The small type contains 8 blocks and has a capacity of 192 million bits. The standard type contains 24 blocks and has a capacity of 576 million bits.
Notice that the data is accumulated only in the dielectric sheets. When starting anew, they are the only parts to be removed and replaced by virgin sheets in the memory planes.
The somewhat complex arrangement of Figs. 3 and 4 could be greatly simplified and made more economical by using printed circuit techniques. A saving in space and weight would also result.
It is claimed that, compared with the common perforated card system, the new memory increases the operating speed by a factor between 40 and 200.

WASHINGTON \$ REPORT

H-Hour for Decisions

In the Pentagon, in the councils of America's military, executive and legislative leaders, this again is an hour of decision.

Right now must be made the judgments that will insure or lose the nation's security in the next five years, a half-decade that will see the coming of age of the intercontinental ballistic missile. For the 90,000 members of the Air Force ballistic missile team, this time of decision is a particularly critical one, and may be recorded by historians as the watershed hour when the tenets of America's defense philosophy began to flow through new channels.

If this sounds like an exaggerated view of the situation facing Washington decision-makers, listen to the words of Maj. Gen. Bernard A. Schriever, commander, USAF Ballistic Missile Division, ARDC:
"To get where we are today in our ballistic missiles and other space vehicles, we had to make basic, far-reaching, long-term decisions back in 1954. We had to make decisions on design, on investment in production and test and operational base facilities. Now we face a similar time of decision. We now have to make the same kind of basic, far-reaching, long-term de-cisions-looking toward 1963 and beyond-as we made in 1954. . . . Otherwise, in this age of space weapons, we shall not be able to convince any potential enemy that he cannot hope to gain victory from any surprise assault."

The 1959 decisions cannot be made within the same frame of references as the 1954 decisions, anymore than World War III could be fought with World War II methods. Says a tour! fighting man, Gen. Curtis LeMay, Vice Chief of Staff, USAF:
"Today Air Force readiness and capabilities are tied directly to the accomplishments and advancements of science. In this period of remarkable breakthroughs in all fields of scientific endeavor, we are hard pressed to keep up with these advances. Some of the things that were new to us five years ago are obsolete today. You can imagine the impact this must have not only on our hardware-our bombers, fighters, radars and so forth-but also on our concepts. In the

ELECTRONIC DESIGN • January 21, 1959

Miracle of Precision and Uniformity

Allen-Bradley has been making precisely uniform resistors - not by the millions but by the billions-over the years. The exclusive hot molding process - developed and perfected by Allen-Bradley - uses specially designed automatic machines that incorporate precision control at every step of production. Shown here are a few of the special machines that make possible the amazing uniformity-from resistor to resistor, year after year-for which AllenBradley composition resistors are famous.

Allen-Bradley Co., 1344 S. Second St. Milwaukee 4, Wisconsin
In Canada: Allen.Bradley Canada Ltd. Galt, Ontario

allen-bradley

Electronic Components

AUTOMATIC HEADING MACHINES form heads on the end of lead wires to make sure they will be solidly anchored in the resistor body. Wire has been previously tinned for easy soldering.

AUTOMATIC MOLDING MACHINES take the resistance powder, insulation powder, and lead wires, and hot mold them under closely controlled high temperature into one integral unit.

AUTOMATIC COLOR CODING MACHINES apply color bands and oven-bake the enamel at high temperatures to assure that the color coding will withstand the maximum operating temperatures of $150^{\circ} \mathrm{C}$ and all types of cleaning solvents.

WASHINGTON REPORT

past, opportunities were lost when military leadership compromised the potentials of new weapons by measuring their worth in terms of old, time-worn concepts. We cannot run this risk today when time is so critical and the margin for error so slim."

So the decision-makers have their goals set for them-new hardware, but also new concepts.
The concept of readiness for both "brushfire" wars and nuclear wars seems fairly well accepted in Pentagon halls by now, so Army and Navy potentialities will not be neglected. But perhaps the most crucial decisions facing the military lie in the field of ICBM's, and the decisions to be made run the gamut, including choices between liquid fuel or solid, "soft" or "hard" bases, entrenched or mobile launching pads.

The liquid-fueled Atlas and Titan will remain star performers. Atlas, its propulsion capability so dramatically demonstrated when it became the largest satellite in orbit last December, will be tested at an accelerated pace. And Air Force Secretary James Douglas reveals that the first operational Atlas squadron will be equipped in 1959. Schriever meanwhile has announced that launching sites for later Atlases will be "toughened," that is, revetted with sheaths of steel and concrete, like Titan bases

Titan, a back-up to Atlas, but more sophisti-cated-a true two-stage missile designed to be well dug in at "hardened" bases-already is getting final tests at Cape Canaveral. And Schriever adds: "As in the case with Atlas and Thor, every Titan flown-even in the earliest test flights-will be fabricated on a production line. There will be no costly time lag for tooling up and for converting blueprints into the finished product."
These liquid-fueled birds will get high priority. But in Pentagon councils an air of excitement pervades discussions of the new solidfueled missile, the Minuteman ICBM. Schriever could not suppress that excitement when he said:
"The Minuteman promises to be a major economic breakthrough. The Minuteman will reverse the whole previous trend in modern weapon system development-a trend marked by the fact that the newer and more effective weapon has been invariably more complex and more costly than its ancestors."
Solid-fueled Minuteman can be operated and maintained with fewer personnel than can Atlas or Titan. Says Schriever: "Hundreds of Minuteman missiles can be placed in underground bombproof shelters, left unattended for long periods of time, ready to be fired from remote control centers on a few seconds' notice."

These are
 Simpson

engineered and built to

available from stock or

panel instruments...

stay accurate...

custom-built

CIRCLE 18 ON READER-SERVICE

5202 W. Kinzio St., Chicago 44, III. Phone: EStebrook 9-1121 In Canada: Bach-Simpson Lid., London, Onfario

Douglas shares his optimism. "The Minuteman missile," says the Secretary, "may be the most important of our Air Force developments. It will provide intercontinental range, with all the advantages of a solid-propellant system relative to ease of handling, quick reaction, dispersal, and hardening of launching sites."

So the trend would seem to be toward solid fuel and hardened bases. As for entrenchment versus mobility, the white hope for the future, at least in Navy circles, is Polaris. An IRBM in range, it will be an ICBM for tactical purposes, because its launching pad-a submerged sub-marine-can bring targets near. Even the air Force Secretary, though more restrained than Navy advocates, looks forward to the 1960 operational target date for Polaris, and says:
"We count on the successful development of the Navy Polaris missile, with an atomic submarine as its launching base, to provide a useful addition to our strategic weapons. Its mobility will present new and difficult problems of defense to an enemy."

Some Navy brass see Polaris as more than "a useful addition" to our arsenal. They see it ultimately making the easily-pinpointed pads of land-based ICBM's obsolete

The first Polaris submarine will be launched this spring; some eight to 12 are currently programmed. One of the major decisions of our policy makers will be whether these eight to 12 should be reinforced fourfold in the next half decade.

For 1959—New Peaks

Importance to the industry of all this military preparedness effort is seen in the fact that electronic equipment and components now account for 28 per cent of all military purchasing for major production and procurement. In 1958, military electronics totaled $\$ 4.1$ billion, more than half the record $\$ 7.7$ billion total factory sales of electronics manufacturers. EIA anticipates $\$ 8.3$ billion total sales for 1959, a year when military sales should top $\$ 4.4$ billion.
EIA president David R. Hull points out that electronics emerged from the recession as one of the few industries to establish a new sales record in 1958 (up $\$ 100$ million from the previous 1957 high). Although consumer goods declined from $\$ 1.5$ to $\$ 1.3$ billion, industrial electronic products rose from $\$ 1.3$ to $\$ 1.4$ billion, passing consumer goods in dollar volume for the first time.
For 1959, Hull predicts consumer sales, boosted by the growing popularity of hi-fi and stereo, will climb back to $\$ 1.5$ billion or more. And industrial sales, spurred by computer and data processing advances, should total about the same.

Type F: Miniature 12 -position, $30-60^{\circ}$ throw, can be mounted in 1-5/16" circle; phenolic, Mycalex or steatite.

Type H: Standard 12-position; $1.7 / 8^{\prime \prime}$ diameter 15-30-60 ${ }^{\circ}$ throw; pheno lic, Mycalex or steatite.

Types J, K, N: 1-17/32" diameter; provides for flexibility of layout; interchangeable sections, phenolic or steatite.

Special Switches

Series 20: Simple switch for tone controls, band switching, and talk-listen circuits.

For Printed Circuits: Special lug design for in sertion into printed circuit boards.

Multiple Shafts combined to operate snap switches and potentiometers; many different secfion types.

Type L or DL: Using dual eyelet fastening; 18 -posifion; mounts in 2-9/32" circle, phenolic, Mycalex.

Iype MFs 24-position switch may be mounted in $2.5 / 16^{\prime \prime}$ circle; in phemolic insulation.

an INFINITE VARIETY
 from standard parts

Type 160 Rotary Slider: 7/8" height allows shallow chassis; leads are readily accessible.

1260 Clybourn Ave., Dept. D, Chicago 10, Illinois Phone: MOhawk 4-2222

SWITCHES - ROTARY SOLENOIDS - CHOPPERS VIbrators - TUNERS

SUBASSEMBLIES
-Manufactured under License from G. H. Leland, Inc.

- No matter what you need in low-current switches, you are most sure to find it in an OAK switch design. In the last 25 years, OAK has produced over a quarter billion switches-rotary, slider, pushbutton, plug, and door switchesin thousands of variations. Why not take advantage of OAK's unmatched, switch engineering background . . production facilities . . . and huge inventory of tooling?

WRITE FOR your copy of the OAK Switch Catalog which covers the most popular of OAK's standard switches.

Type 185z Now leveroperated version of the standard Oak rotary switches.

Type 130 Pushbutton: Available with from one to 24 buttons, 32 contacts each button.

CIRCLE 19 ON READER-SERVICE CARD

Type 80 Pushbutton: Very adaptable. Used in communication equip ment; economical for less complex applications.

New Year's Greeting

Dear Sir:
Please accept my thanks for publishing my "Idea for Design" in the May 28 issue, and for extending your invitation to submit more ideas for publication. I enclose two ideas that I have developed here in the design of ground electronic checkout equipment, which may prove of general usefulness. Each is on a separate sheet with the pertinent drawings attached.
Congratulations on an excellent year of publishing one of the most helpful of all technical journals, and best wishes for even better years to come.

George S. F. Orsten
Sr. Engineer
The Martin Co.
Denver. Colo.

Seeks Soldering Solution

Dear Sir:
I would greatly appreciate it if one of your other readers could enlighten me regarding one aspect of soldering iron design. I think most engineers will agree that, in the ideal case, the only hot portion of a soldering iron would be the extreme end. Having any other portion hot means that:

1. Wire insulation may be accidentally damaged by it; 2 . Operator's fingers may be accidentally burned by it; and 3 . Power paid for will be unnecessarily wasted in it.

It would seem to me that applying some heat insulator to soldering iron tips at the factory would present little problem and add only slightly to their cost. The resultant sales advantage should be considerable. It would seem that either I am overlooking an important consideration in this problem, or that soldering iron manufacturers are overlooking an opportunity for significant product improvement.
A. I. Tersoff

Chief Project Engineer
Intelligent Machines Research Corp. Alexandria, Va.

CIRCIE 23 ON READER-SERVICE CARD \geqslant
ELECTRONIC DESIGN • January 21, 1959

.... and now Duralar*
 joins this famous family of fine pencils

*The only pencil specifically designed for work on matte. ers, some with special chisel points - TECHNICO lead surface tracing film of Mylaro, DURALAR is the newest in holders for color and black graphite drawing, with new the complete line of fine MARS drafting products. All are sure-hold finger grips and degree markings for quick imported from West Germany and made to meet the high- identification; also with clips, for pocket use © NON. est professional standards. Below Bright-hued LUMO- PRINT pencil and leads make notes and sketches that will
CHROM pencils in 24 colors for color-coded drafting and not reproduce - Pencil sharpeners in STANDARD and perfect reproduction \bullet LUMOGRAPH graphite drawing pencils in 19 degrees; some degrees available with eras-
 "DRAFTSMAN" models; latter with adjustable point-length

VITREOUS-ENAMELED RESISTORS Tremendous variety of types and sizes. Fixed, adjustable, tapped, noninductive, thin, and precision resistors available in a wide range of wattage and resistances. Also available to meet MIL-R-26C requirements.

METAL FILM RESISTORS Riteohm ${ }^{\circledR}$ metal film precision resistors feature full $1 / 4$-watt rating at $150^{\circ} \mathrm{C}$ ambent; excellent high frequency characteristics; low temperature coefficient of resistance. Long-term load and shelf stability.

INDUSTRY'S MOST COMPLETE LINE OF QUALITY WIRE-WOUND RESISTORS

POWER RESISTORS Power-type resistors for high-current, low-resistance applications. Vitreous-enameled, edge-wound. corrugated ribbon Corrib ${ }^{\circledR}$ units and open-type, edge-wound ribbon or round-wire Powr-Rib ${ }^{\text {D }}$ units handle a wide range of power resistor needs. Available in fixed or adjustable "DIVIDOHM ${ }^{\text {®" }}$ types.

OHMITE HAS EXACTLY THE RESISTOR YOU NEED

Ohmite offers the most complete line of high quality resistors on the market . . . fixed, adjustable, tapped, noninductive, and precision resistors in many sizes and types of terminals . . . in a wide range of wattage and resistances. All-welded construction. Ohmite applicaion engineers will be pleased to help you in selecting the resistors for your job.
 Write on company letterhead for Catalog 58.

MOLDED PRECISION WIRE-WOUND POWER RESISTORS Insulated units with Silicone-Type molded covering. Available in 3-, 5-, and 10 -watt sizes. Tolerances: 0.1%, $0.25 \%, 0.5 \%, 1 \%$, and 3%. Maximum resistance: 3-watt. 10,000 ohms; 5-watt, 25,000 ohms; 10-watt, 50.000 ohms.

NONINDUCTIVE

Tubular vitreous-enameld resistors with special winding. Dummy antennas consist of assemblies of several resistors. Watts, 5 to 1000 ; ohms, I to 5000 .

SPECIAL VARIETIES

Ohmite can provide toroids, flat strips, plaques, special-sized tubes, or tubes with mixed terminals, etc. Watt ratings and resistances available as required.

OMIT ${ }^{\oplus}$ Manufacturing Company

QUALITY COMPONENTS

3643 Howard Street Skokie, Illinois

RHEOSTATS RESISTORS RELAYS TAP SWITCHES TANTALUM CAPACITORS
R. F. CHOKES VARIABLE TRANSFORMERS DIODES

EDITORIAL

Conferences Are For Communicating

An unusual approach to the exchange of ideas was tried at the recent Third EIA Conference on Reliable Electrical Comnections, held in Dallas, Texas, on December 2, 3 and 4, 1958. No technical papers were read. The three days were devoted entirely to discussion between the audience and the various panel members who had written papers. (Last week the Symposium on Reliability and Quality Control followed the same format.)
Technical papers prepared for the conference were published in book form. The books were distributed in advance of the meeting to those who desired them. This allowed the papers to be studied and questions formulated before the conference got under way.
A sampling of those who attended showed that the approach was a success. Minor suggestions were made for improving this type of conference, but the basic format was endorsed.
Actually, this round-table method of discussion, so to speak, is not new. Most companies have a conference room where engineers meet to review their problems. With ties unloosened and sleeves rolled up they try to arrive at some solutions of their problems. Maybe the answers aren't established at the first discussion. What is important, though, is that there has been communication and understanding between the participants.

When the engineer leaves his company and attends a conference he goes through some sort of metamorphosis. Instead of communicating with others in the field at a technical session, he retracts into a shell. Fear that he might not be among peers but superiors (or just a downright fear of crowds), keeps him from venturing beyond a prepared script.

When the reading is over there is usually little time for questions and discussion. If the speaker is not button-holed in the corridor then the question the engineer had may go unanswered. And the long trip to the conference was not as fruitful as was originally anticipated.

The round-table type of conference does have weaknesses and can fall to pieces. As was mentioned at the conference, "large groups sometimes get too unruly." Also, "people who take the floor should stick to the point." And, "moderators need to be strong enough to cut off irrelevant discussion."

Nevertheless, with some modifications, this format seems like the right step towards better communication at technical conferences. And that is what conferences are for.

Low

 DISTORTION
The Behlman

 INVERTRON* features low harmonic distortion. Sine wave distortion is held to less than 1% with . 05% or better available on special order.The Behlman Invertron is a completely electronic A.C. Power Source widely used in research and development, production testing, test consoles. electronic systems or wherever A.C. Power other than that obtainable from the 60 cycle line is required.

INVERTRON ${ }^{\circ}$

Models are available with single phase, two phase or three phase output and with either fixed and variable frequencies.

A wide range of power ratings are available in standard models with other power ratings on special order.

The Invertron features extreme frequency accuracy and stability, exceptional regulation against both line and load, and low harmonic distortion and noise.

INVERTRON ${ }^{\circ}$

Specifications for all standard models include 1% maximum distortion. 1% regulation no load to full load. extremely low output impedance, and essentially zero response time.

Modular construction techniques
employed to provide low cost stom as well as standard units. write or call

Representatives in all principal cities and Canada

William Reinman has a conviction. He feels that electronic equipment designers need some plain-language explanations of what vibration resonance means and doesn't mean. Elegant mathematical analyses are fine-but they're hard to apply while watching the pieces fly during a vibration test.
Despite improvements in low-mass accelerometers and direct-writing recorders, which will make vibration instrumentation easier to use, Mr. Reinman's direct observation techniques will continue to be important test tools.

symptoms

For Tracking Down Vibration Resonance

W. A. Reinman
Astronautics Div. of Convair
San Diego, Calif.

WHEN AN electronics engineer's design moves into the vibration laboratory for testing, he must be able to understand and interpret the various symptoms of vibration resonance. He must learn not only what they mean but what they don't mean.
The most consistent "killer" of electronic airborne equipment, in flight and in the laboratory, is vibration. Circuits open. Unwanted modulations develop. Parts break loose and smash around inside. Elcetro-mechanical parts slow down, chatter, or stop working. And arc-overs develop into fires.

However, vibration itself is not the true villain. The undesirable vibratory response of the equipment, commonly known as vibration resonance, really causes the damage. If all the parts of a device move together as a unit, no damage results from exposure to vibration.
Vibration resonance is usually thought of as local amplification of input vibration. This is the most common form of resonance, and the most dramatic. But in many cases, one part may stand still, while the rest of the assembly moves in response to the vibration input. Or two parts may
move at comparable amplitudes but out of phase with one another. The various forms of resonance all have one thing in common-more stress exists in some part of the device than when no resonance occurs. Therefore, a more suitable definition of vibration resonance is "relative motion of parts of an object in response to a vibration stimulus."
There are six basic signs of resonance which can be detected during vibration testing of equipment:

1. Failure of a device in the equipment.
2. Modulation of equipment. outputs or internal signals.
3. Visible Motion of the equipment relative to its supporting fixture, or of one part of the equipment relative to another.
4. High Acceleration of some part of the equipment relative to another part or to the supporting fixture.
5. Loud Noises emanating from the equipment, or changes of sound quality, especially harsh or shrill or random sounds.
6. Large Changes in Power Required to provide vibration at the desired g level.

Failure of a part of the equipment needs little explanation or comment. At least it's definite data. Only a foolish engineer would replace the part and not think twice about what might have caused the failure. And only a foolish engineer would fail to repeat the test to evaluate the fix he tried.
Many designers cringe at the very idea of a failure. Yet failure provides what a passed test never can yield-the limit of a sample of the design.
Modulation of the equipment outputs or internal signals is often the most important sign of resonance. Modulation itself may be objectionable in the quantity detected. Even when it is not undesirable in itself, it may indicate potential failure. Sometimes designers prefer to have a modulating vibration input continued or increased in amplitude during laboratory testing until the sensitive part fails. This makes pinpointing of failures easier in complex circuits, especially when other methods of identifying the sensitive part can't be used.
A fingertip (or a pencil's eraser tip, if the circuit is "hot") may be used to damp part vibration
electively, and thus to isolate the modulating jart. When a sensitive part is found, it is wise o continue to search for excessive vibration in ome other part which may be driving the sensiive part to significant amplitudes.
In one case, modulations of signal and open ircuits in a receiver were traced to several diferent parts, all supposedly quite resistant to viration. The true source of trouble was a small ransformer on the other side of the chassis, nounted cantilever fashion on a bracket which was a cantilever beam in itself. When this assembly resonated, it shook the whole chassis, causing malfunctions in parts which were reasonably vibration resistant in themselves.
Modulation may occur at the vibration frequency, at harmonics of this frequency, or as a beat between an operating frequency and the vibration frequency. In some instances an offset may appear in a dc signal or a long-term amplitude change will appear in an ac signal. In a recent test, an experimental amplifier showed all these forms of modulation during one run.
Visible Motion indicates resonance at low frequency, or extremely severe resonance at high frequency. The probability of physical breakage is high with large deflections.
Relative motion of various parts may be seen
with the unaided eye if the motion is pronounced enough. Stroboscopic lighting aids in detection of the "sneaker" forms of resonance, such as out-of-phase motion. If a stroboscopic light is not available, a fluorescent lamp or an incandescent lamp shuttered by a fan or slotted rotating disc, may serve as well.
Photographic records of visible resonance can be made with motion picture cameras, with highspeed still cameras, or by deliberate use of the smearing effect of long exposures. The latter method proved most successful in obtaining proof of switch arm resonance, after an attempt to use high-speed motion pictures failed. A $1 / 25$ second exposure with a still camera showed about 25 cycles of switch arm vibration, neatly documenting the maximum travel of the switch arm, the amplification ratio, and the mode of vibration, all in one picture. When the input g level and frequency were lettered on the picture, the story was complete.
High Acceleration, as measured by vibration pickups, is often the only clue to high frequency resonance. High g levels in themselves are not dangerous-they're only danger signs. It must be remembered that high vibratory acceleration at high frequency results in tiny displacements.
(Continued on following page)

Missile parts must take a beating. In this vibration test, the specimen is mounted in the heavy jig. Accelerat on and frequency are monitored at the test console.

DIALCO Pilot Lights

with Built-in Resistor ${ }^{\text {aramo }}$
(a patented DIALCo feature) and the NEW High Brightness Neon Glow Lamp NE-51H

times the level of current duce 8 times as much light-with long life! Very low duce 8 times as much light-with long 1 ire. Very low power is required, less than 1 watt on
In the dIALCO assembly, the built-in current limiting (ballast) resistor ($18,000 \mathrm{ohms}$) is completely insulated in moulded bakelite and sealed in metal (U.S. Patent No. $2,421,321$)...Small space required-units are available for mounting in $9 / 16^{\prime \prime}$ or $11 / 16^{\prime \prime}$ clearance holes ... A wide choice of optional features includes lens styles, shapes, and colors; terminal types; metal finishes, etc. . . . Meet applicable MIL Spec and UL and CSA requirements.

All Assemblies Are Available Complete with Lamp

SAMPLES ON REQUEST-AT ONCE-NO CHARGE

```
DIALIGHT CORP., 46 Stewart Ave., Brooklyn 37, N. Y.
l}\begin{array}{l}{\mathrm{ Send brochures }}\\{\mathrm{ on Pilot Lights }}\end{array}\square\mathrm{ for NE-5IH Neon Lamp }\square\mathrm{ Sub-Miniofures }\square\mathrm{ Oil-Fight
Nome
Company
Address.
```

DIAMTGFT
46 STEWART AVE., BROOKLYN 37, N.Y. - HYocinth $7-7600$ CIRCLE 21 ON READER-SERVICE CARD

"All shook up" by exposure to 400 cps vibration at 26 g .

Improved design breaks later in different place (bottom right).

Peak-to-peak displacement for 10 g vibration at 10 cps is two inches; at 100 cps it is 0.02 inch , and at 1000 cps it is only 0.0002 inch. So small a displacement as 200 microinches seldom causes any physical breakage, but it may produce modulation of signals in tubes, klystrons, and capacitors, or it may cause resistance variations in relay contacts or potentiometer wipers.

Often an oscilloscope study of vibration pickup) output reveals that the high g levels are not occurring at the input vibration frespuency, but at very high frequency or a scramble of frequencies. This display often accompanies loud, discordant noises coming from the equipment. It may indicate harmonics excited by the input vibration, vibratory transients excited by parts slapping together as they vibrate, or transients excited by impacts of a loose part rattling around. It may indicate a loose vibration fixture or some loose part in the vibration exciter, too. The "hash" thus produced call represent very tiny displacements of the portion of equipment upon which the vibration pickup is mounted. It (an also represent a very-high-Q resonance of the

pickup itself. Some crystal (piczoelectric) accelerometors are notorious for this "ringing." It may be necessary to filter the accelerometer output to distinguish vibration at the frequencies of interest.

High g indications at higher frequeacies sometimes are assumed to represent high accelerations of the whole equipment. As the vibration frequency goes up, the equipment behaves less and less as a single mass, and more as a collection of little spring-mass systems. Each has its own vibration spectrum, its own standing or traveling wave patterns, and with its neighbors, creates local reinforcements, beats, and cancellations.

After the first major resonance appears as the vibration frequency is increased, a given vibration pickup is less and less reliable as an indication of the vibration response of the equipment. Thorough quantitative vibration analysis soon becomes impossible, because the pickup's mass and the structural effect of attachment of the pickup distort local vibration characteristics.

Fortunately for the designer, most circuits and circuit elements are relatively insensitive to vi-
bration breakage at frequencies above 500 cps . Loud Noises or Changes of Sound Quality sometimes indicate vibration resonance in the equipment. Since loudness indicates good coupling of mechanical motion to air, the loudest racket usually occurs when an equipment cover or chassis plate vibrates, cither directly or because some other vibrating element is driving it. This sort of resonance is often more annoying than serious, but it shouldn't be overlooked. The vibrating cover may crack, or it may induce crippling vibration in a sensitive part. Many times a simple stiffener will cure a severe cover resonance.
Be sure, when tracing a noisy resonance, that the specimen is guilty. Vibration exciters sometimes howl like banshees when nothing is really wrong.
Raucous changes in tonal quality of noise may indicate loose parts, or slapping together of parts which don't touch each other unless vibration of a certain amplitude is incluced. This "velocity impact" often accounts for the sudden appearance of high-intensity, high-frequency "hash" on the pickup output. This "hash" frequency appears when some threshold level of vibration intensity is exceeded.
The hand is a useful damper to smub vibration of first one part and then another when tracking down noise sources. When the noisy part is damped, the sound diminishes.
The fingertips also serve as relative accelerometers. Since they are soft, they are "low-frequency elements" and do not interfere markedly with the motion of even small parts unless considerable pressure is applied. The fingertips can detect very small g levels, even at quite high frequency. Thus they can be used to determine which part of a complex structure is vibrating most, when installation of sufficient or small enough pickups would be impracticable.
Large Changes in Shaker Power required to maintain a given vibration g level are significant only if the equipment being tested is an important part of the whole vibrating system-that is, if resonance in the equipment can affect the power required to drive the shaker. In many cases of supposed resonance, the equipment is just going along for the ride, and the vibration exciter or the fixture is the guilty member of the vibrating system.

The old $F=m a$ equation is a handy one for vibration work. It checks dimensionally with F as pounds of force, m as mass in pounds, and a as peak acceleration in g units. Without reso-nance-when shaker armature, fixture, and test specimen are moving as a unit- m is the sum of the three masses and a is the measured g level. Under any other condition, $F=m a+m_{2} a_{2}+$ $m_{3} a_{3}+\ldots \ldots \ldots$, for as many parts as are mov-
ing in their own response to the induced vibration. Phase relationships among the various vibrations complicate matters further, so that the general equation is $F=\Sigma(m a<\hat{\prime})$.
The series and parallel resonant circuit analog apply, helping to explain why at resonance the shaker power requirement may go up or down. In one case the system is absorbing power; in the other case, phase and amplitude relationships are such that overall power requirements are very low, while one part of the system may be excited to very high g levels.

In one classic example, internal resonance of a gyro mechanism created an effect similar to what would be expected if the weight of the gyro suddenly multiplied by about ten times. By the basic $l^{\prime}=m a$ formula, the shaker should have been capable of producing an acceleration of 20 g , but the accelerometer on the fixture showed only 3 g at full applied power. When the gyro case was cut open for high-speed movies, it was seen that at this resonant frequency the internal mechanism was moving at very high amplitudes relative to the case. At a slightly different frequency, the opposite phenomenon occurred. It was difficult to hold shaker input power low enough to stay at the desired 10 g level on the fixture. The gyro mechanism then appeared to be standing still while everything else moved.
Often the two resonant conditions follow each other so closely during a frequency sweep that the shaker operator is unable to compensate in time for either condition. Manufacturers and users of vibration equipment have been working on this control problem for years, with only qualified success.
The caution must be repeated that this powerlevel symptom of resonance may, and often does, inclicate a problem that hasn't anything to do with the resonant characteristics of the equipment under test. The g levels induced in the equipment may cause malfunction or failure; therefore, control of resonances outside the equipment is important. But there may be no design problem in the equipment.

To Summarize: Of the six symptoms of vibration resonance, failure is the most positive evidence of vibration trouble in electronic equipment. Modulation is a common symptom, and often serious. Visible motion is significant because large relative motions mean high stresses and the possibility of physical breakage. High accelerations, loud noises, and unusual shaker power requirements frequently are misleading, since they may have little or no bearing on the behavior of the device under test. Systematic investigation of each symptom of resonance will allow the test engineer and the designer to locate the resonant condition and evaluate it. This is the first step in correcting vibration troubles. - -

ELECTRONIC DESIGN • January 21, 1959

in frequency control-components and systems
Today, an increasing number of electronic systems demand a degree of reliability heretofore unobtainable. That is why more and more manufacturers are specifying Bulova.
Bulova crystals, filters, ovens, packaged oscillators, and Bulova frequency control systems. custom-designed for either limited or mass production, meet and exceed military and industrial specifications.
Bulova's experience in mastering many of the most difficult problems involving component and system reliability has made it the number one source for frequency control devices. This experience can prove of immense value in your particular program. For more information write Dept. A-1183, today.

BULOVA warch comenanv

ELECTRONICS DIVISION•WOODSIDE 77, NEW YORK CIRCLE 22 ON READER-SERVICE CARD

CIRCIE 25 ON READER-SERVICE CARD

TIME/FREQUENCY CALIBRATOR

A Compact, Accurate and Inexpensive Frequency Standard

* Crystal-controlled fundamental frequencies of $10 \mathrm{kc}, 100 \mathrm{kc}, 1 \mathrm{Mc}$ and 10 Mc ; usable harmonics above $1,000 \mathrm{Mc}$
\star High stability of $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ after warm-up when used with Type $1201-\mathrm{A}$ Regulated Power Supply
\star New crystal-mixer circuit produces and detects beats over entire 1,000 Mc range; with self-contained audio amplifier locates calibration points for r-f oscillators with no additional equipment
- Internal video amplifier supplies accurately-known multivibrator square waves giving time pulses at intervals of $0.1,1.0,10$ and $100 \mu \mathrm{sec}$ for triggering scope sweeps and pulse-generating equipment

Type 1213-C Time Frequency Calibrator: $\mathbf{\$ 2 6 0}$
Type 1201-B Unir Regulated Power Supply: $\$ 85$
Write for Complete Data

GENERAL RADIO Company

275 Massachusens Avenue, Cambridge 39. Massachusems, U. S. A. Bioad Avenue M Linden. Ridgetilald. N. NEW YORK AREA 1000 N. Seward SI LOS ANORESS 3 a
 1182 los Allos Ave los Altos. Calli. SAN prancisco 6605 w North Ave. Oath Parth. Ill enicaco CIRCIE 26 ON MEADEP SERVICE TSA

This tiny avalanche switch operates in the trillionth second range. In "off" condition, the current entering section \mathbf{A} is prevented from flowing to section \mathbf{C} by an atomic mechanism contained within the joining layer, represented by fine line B about four millionths of an inch thick. When voltage at inpu section \mathbf{A} is raised slightly, the mechanism turns current "on in less than 100 trillionths of a second.

CURRENT
OUTPUT
Too Fast to Measure

High Speed Avalanche

THIS NEW semiconductor device switches current on and off in less time than it takes light to travel one inch. The switch is 100 times faster than any previously available device-so fast its action camnot be timed with any accuracy: Use of the switch will increase the speed of computers measurably. With it. special purpose navigational and guidance computers for missiles and spacecraft can be built not only to operate faster. but to supply improved accuracy over long ranges.

Avalanche Effect Employed

Developed by the Semiconductor Division, Sperry Rand Corp., S. Norwalk, Conn., the tiny device has for its working element an alloy junction formed by fusing a speck of aluminum to a small piece of silicon. It operates by making use of a controlled avalanche effect.

Although this effect is an annoyance in other semiconductor devices, contributing to sudden breakdowns in transistors and rectifiers, it is put to good use
in the Sperry device.
A slight increase in voltage accelerates one or more electrons to speeds sufficient to knock new electrons out of their atomic shells; these accelerate and free more electrons in a mounting avalanche. Each electron creates a microplasma which almost instantly spreads throughout the layer formed at the semiconductor alloy junction-a layer with a diameter of two-thousandths of an inch and a thickness of four-millionths of an inch.
Conversely, a slight decrease in voltage reduces electrons' speeds so they no longer release other electrons, and the current-carrying microplasma is swept out of the layer. The action is almost instantaneous, for no measurable delays or recovery time constants have been found to accompany the slight voltage changes.

Switch Characteristics

Switching voltage of the devices produced to date ranges from 6 to 7.5 v .

Fig. 1. Characteristic curve of the switch. The avalanche effect occurs at 7 v .10 milliamps of current is almost instantaneously furned on as the voltage at the input section is raised slightly.

Switch

Other characteristics:

- Current ratings: 20 to 50 milliamp.
- Dynamic resistance: 8 to 20 ohms at 10 milliamp.
- Junction capacitance: 1.8 भ $\mu \mathrm{f}$ typical.
- Power dissipation: 250 milliwatts.
- Maximum operating temperature: 150 C .

Its typical characteristic curve is illustrated in the accompanying figure.

The switches have been employed in new computer logic circuits operating at 100 mc clock speeds-and the switches proved very much faster than any of the computer's other components.
Working elements presently are sealed within relatively large glass capsules, 45 of which can be placed in a thimble. Production is being limited to the output of a pilot manufacturing line, but sample quantities will be made available for developmental models of advanced equipment.
For more information on this high speed semiconductor avalanche switch, turn to Reader-Service card, circle 103.

Why permanent magnets are only temporary

Magnetic Materials Section reports on a continuing search for better permanent magnets

 ... and on what this means to your new product designsPermanent magnets are getting better. In fact, since the introduction of Alnico magnets by General Electric in 1934, there has been a constant flow of stronger, more efficient G-E magnetic materials.
General Electric developed directional grained magnets to provide higher energy potential. Then, by sintering Alnico V and Alnico VII, General Electric was able to create magnets with better flux distribution and vastly improved tensile strength. P-series alloys, with consistently uniform flux for
use in hysteresis motors, marked another step forward. And these are just part of the important advances that have come from General Electric in the past 25 years.
Watch General Electric for even more advanced magnetic materials that will soon give you a freer hand in bold new product design. If you would like the design assistance of a G-E engineer, write: Magnetic Materials Section, General Electric Company, 7820 N. Neff Blvd., Edmore, Michigan.

MAGNETIC MATERIALS SECTION
 GENERAL (36) ELECTRIC

CARBOLOY® CEMENTED CAREIDES - MAN-MADE DIAMONDS - MAGNETIC MATERIALS - THERMISTORS - THYRITE@ - VACUUM-MELTED ALLOYS CIRCLE 27 ON READER-SERVICE CARD

THE FLOW GRAPH

A Shortcut to Network Simulation

George V. Woodley
Raytheon Manufacturing Co.
Wayland, Mass.

Abstract

George Woodley spends almost all his time at Raytheon's Surface Radar Dept. in circuit design. Looking for a simple way to analyze network behavior, he remembered the flow techniques taught at MIT by Professor Sam Mason. Applying these techniques, he developed this interesting way of setting up an analog computer with a flow graph.

SIMULATING networks with analog computers can be simplified by flow graph analysis. The beauty of this method lies in the fact that a block diagram of the computer setup can be drawn directly from the flow graph, providing a very simple configuration.
The rules for flow graphs are simple: Labeled circles represent currents and voltages. Impedances or coefficionts are placed above arrow heads pointing to the solution. These arrows replace "equal" signs.
The method is best illustrated by the network of Fig. 1. which is to be set up on an analog computer. The loop equations are:

$$
\begin{align*}
& \epsilon_{2}=e_{1}-\epsilon_{3} \tag{1}\\
& i_{1}=\frac{\epsilon_{2}}{Z_{g}} \tag{2}\\
& \epsilon_{3}=\frac{i_{1}-i_{2}}{s C_{1}} \tag{3}
\end{align*}
$$

$$
\begin{align*}
e_{4} & =e_{3}-e_{o} \tag{4}\\
i_{2} & =\frac{e_{4}}{s L_{2}} \tag{5}\\
e_{o} & =i_{2} Z_{L} \tag{6}
\end{align*}
$$

where:

$$
\begin{align*}
& Z_{o}=L_{1}\left(s+\frac{R_{0}}{L_{1}}\right) \tag{7a}\\
& Z_{L}=\frac{1 / C_{2}}{s+1 / R_{L} C_{2}} \tag{7b}
\end{align*}
$$

If the differential equations are written this wat, the complex frecuency s appears only in the denominator. This allows the use of integrators throughout.
Equations appear also for the impedances $Z_{2,}$, and $Z_{l l}$. These two equations can be rewritten, breaking up the components in the impedances.
$\mathrm{Eq}(1)$ through (6) are readily transformed to
the flow graph in Fig. 2. Since the branches are unilateral, this flow graph represents a block diagram of an analog computer setup of the network in Fig. 1.

Branches with s in the denominator can be replaced directly by an integrator. Branches with Z can be replaced by the configuration in Fig. 3. Caution must be used with signs, however, since active computer elements have an inherent inversion. Correctness of signs can be checked from the fact that any closed loop must have an odd number of amplifiers. Fig. 2. is then redrawn on the basis of the system block diagram as in Fig. 4. Note that only one element is redundant. The two potentiometers marked $1 / c$ can be combined following their associated integrator.

A note on the scaling of network coefficients: There are two variables which can be scaled at will in any linear network-the time base and the impedance level. To scale resistors, capacitors, and incluctors:

Let:

$$
\begin{aligned}
& R^{\prime}=\frac{R}{n} \\
& s^{\prime}=\frac{s}{m}
\end{aligned}
$$

and
(8b)
where R^{\prime} and s^{\prime} are the scaled impedance level and complex frequency, respectively.

$$
\text { then: } \quad \begin{align*}
\frac{1}{C^{\prime}} & =\frac{1}{n m C^{\prime}} \tag{9a}\\
\frac{1}{L^{\prime}} & =\frac{n}{m L} \tag{9b}\\
\frac{R^{\prime}}{L^{\prime}} & =\frac{R}{m L} \tag{9c}\\
\frac{1}{R^{\prime} C^{\prime}} & =\frac{1}{m R C} \tag{9~d}
\end{align*}
$$

Eq (8a) lowers the impedance level of the circuit by a desired amount and eq (8b) slows the time base by a factor m. These two factors can be balanced to give "reasonable" computer coefficients. The latter should be held between 0.1 and 10. Large coefficients should be aroided as much as possible so as not to overload the amplifiers. The time base should be slowed down sufficiently to fall within the capabilities of the computer. - -

References

Feedback Theory-Some propertics of Signal Flow Graphs, S. J. Mason. Proceeclings of the IRE, Sept. 1953. Only a few beginning paragraphs need be read to be able to draw Fig 2 from eq (1)-(6).

Fig. 1. This is the basic network which, for illustration, is to be set up on an analog computer.

Fig. 2. This flow graph for the network of Fig. 1 is the basis of the computer setup.

Fig. 3. The computer replacement for impedance branches in the flow graph.

Fig. 4. The system block diagram drawn from the flow graph in Fig. 2.

BENDIX ANNOUNCES NEW

15-AMP

POWER TRANSISTOR SERIES

Now in production by Bendix are eight new 15 -ampere power transistors capable of switching up to 1000 watts -and you can get immediate delivery on all cight types.
New in design, the transistors have a higher gain and flatter beta curve. The series are categorized in gain and voltage Ireakdown to provide optimum matching and to eliminate burn-out. Straight pins or flying leads can be supplied on request.
Ask for complete details on this new Bendix transistor series . . . and on the complete Bendix line of power rectifiers and power transistors. Write semiconductor products, bendix aliation corporation, long branch, new jersey.

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline \begin{array}{l}
\text { Current } \\
\text { Gain at }
\end{array} & \text { Collector-to-Emitter Voltage Rating* } \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|l|}
\hline \begin{array}{l}
\text { Gain at } \\
10
\end{array} & 30 & 40 & 70 & 80 \\
\hline & & & \\
\hline
\end{array} \\
& \overline{20-60} \overline{2 \mathrm{~N} 1031} \overline{2 \mathrm{~N} 1031 \mathrm{~A}} \overline{2 \mathrm{~N} 1031 \mathrm{~B}} \underset{2 \mathrm{2N1031C}}{ } \\
& \begin{array}{llllllll}
50-100 & 2 N 1032 & 2 N 1032 \mathrm{~A} & 2 \mathrm{~N} 1032 \mathrm{~B} & 2 \mathrm{~N} 1032 \mathrm{C} \\
\hline
\end{array} \\
& \text { *Comparable collector- } 10 \text { - Dase breakdowns range } 20.50 \% \\
& \begin{array}{l}
\text { West Coass Soles and Sorvice: } \\
117 \text { E. Providencia Ave., Burbank, Calift }
\end{array} \\
& \text { Canadian Affiliate: Computing Dovices of Canado, Led., } \\
& \text {. } \text {. Box 508, Ollowa 4, Ont. } \\
& \begin{array}{l}
\text { Export Sales \& Service: Bendix International, } \\
205 \text { E. } 42 \text { nd St. Now York 17. N. Y. }
\end{array} \\
& 205 \text { E. 42nd St., Now York 17, N. Y }
\end{aligned}
$$

Hi*?
CIRCLE 28 ON READER-SERVICE CARD

...for Complate Reliability Under Savere Environmental Conditions

TYPE RS, RLS POWER RESISTORS

Wire Wound, Precision, Miniature, Ruggedized

RS-2A DERATING CURVE

JUST ASK US
The DALOHM lime includes precision resistors twire wound and deposited car hon); trimmer potentiometers; resistor
notworks; collet fitting knobs and h his. teresis motors designed specifically for ahsanced electronic circuitry. If nome of the WAI.OHM standard line meets your neres. our engmeermg depart ment is ready to help sille vour problem IIt the reaim of development. engemeering
deolgn and production. lual out line your spect

Designed for the specific applaca tion of high power, coupled with precision tolerance recuure ments Available with axial leads - RS TYPE: with radial leads - RI.S TYPE (for printed circuitry) Gives reliability under severe ent virommental conditions.

- Rated at 1, 2, 3, 5, 7 and 10 watts.
- Resistance range from 0.1 ohm to 175 K ohms, depending on type.
- Tolerance: $\pm 0.05 \%, \pm 0.1 \%, \pm 0.25 \%$ $\pm 0.5 \%$, $\pm 1 \%$, $\pm 3 \%$.

TEMPERATURE COEFFICIENT: Within 0.00002 degree C

OPERATING TEMPERATURE RANGE: - 55 C. 10275 C.

SMALLEST IN SIZE: $32^{\prime \prime} \times 13 / 32^{\prime \prime}$ - 3 8" 1.25 32"

COMPLETE PROTECTION: Impervious io moisture and salt spray.
WELDED CONSTRUCTION: Complete welded construction from terminal to terminal.
SILICONE SEALED: Offers maximum re. sistance to abrasion, and has high dielectric strength
MILITARY SPECIFICATIONS: SURPOSses applicable paragraphs of MII.R-26C

Write for Bulletins R-23, R-30

TEST COMPLEX SYSTEMS RAPIDLY

WITH
S.P.A.M.

AN operator presses a button and S.P.A.M. starts measuring voltages-in almost any system. In less than five seconds, lights tell the operator if the reading is within prescribed tolerance, if it is too high, or too low. If the voltage is correct, S. P. A. M. (Selective Programmed Automatic Maintenance) starts measuring another voltage.

Developed as a universal tester by the Engineering Division of Taylor Engineering, Inc., 2100 St. Paul St., Baltimore, Md., S.P.A.M. can be used by unskilled personnel to check any system properly instrumented with test points.

The basic system includes a very high impedance voltmeter, a highly stable modified oscilloscope, and an automatic circuit tester or modified Lavoie Laboratories "Robotester."
Since the voltmeter reads voltages in operating circuits, such as phantastrons, pulse modulators, and oscillators, with no disturbance to the circuit, it is called "Nodis."

Critical waveshapes on film can be compared directly with scope patterns.

Sample of daia on 120 mm film

S.P.A.M. provides rapid "go-no go" check on voltage or resistance.

The oscilloscope displays video and rectified rf signals. Equipped with a "Film Data Comparator," it becomes a "Video-Scope." The "Film Data Comparator," mounted in front of the crt, has filmed information telling the operator exactly how to set up the equipment under test and how to set up the scope to view critical waveshapes. An optical arrangement superimposes the filmed waveshapes on the scope pattern, allowing the operator to make a direct, exact comparison. One to tiwo wave shape tests can be made per minute.
"The Automatic Circuit Tester" uses punched tape to program resistance or continuity tests at 60 to 120 per minute, or voltage tests at 20 to 40 per minute. The punched tape provides complete instructions. It tells the instrument

- between which two points to measure,
- what the voltage should be,
- if the voltage can be less than, higher than, or an either side of the prescribed voltage,
- if the tolerance can be 5,10 , or 20 per cent of the required value.
- if the measurement should be on a 5,50 , or 500 volt scale.
Illuminated digits show where S.P.A.M. is measuring at any time, what the voltage should be, and what type of check is being made. Illuminated buttons show if the actual voltage is all right, too high, or too low.
For further information on this almost universal tester, turn to the Reader-Service Card and circle 105.

A planning chart for designers who need both

From high-power audio types to high-stability switching types, both NPN and PNP germanium transistors are now available from Sylvania. With this wide range of types, electronic design engineers can take full advantage of the complementary aspects of NPN and PNP in every major circuit application.

Sylvania NPN and PNP transistors for switching applications exhibit the high Beta stability and fast rise time so important for data processing. NPN and PNP types for RF-IF applications feature high output resistance for increased gain. For your audio needs Sylvania offers one of the industry's most complete lines.

The entire Sylvania line of NPN and PNP types incorporates hermetic seal construction for maximum protection against humidity and other environmental conditions that can affect performance. For complete information on NPN and PNP transistors, contact your Sylvania representative or write Sylvania directly.

V SYLVANIA
 Sylvania Electric Products Inc. 1740 Broadway, New York 19, N.Y. In Canada: P.O. Box 1190, Station " O " Montreal 9

lighting - television - radio - electronics - photography - atomic energy - chemistry-metallurgy CIRCLE 30 ON READER-SERVICE CARD

Rer rollpin appIcation DATA!

ELASTIC STOP NUT CORPORATION OF AMERICA
2330 Vauxhall Road, Union, N. J.
CIRCLE 31 ON READER-SERVICE CARD

O READER-SERVICE CARD

WITH MORE than a hundred manufacturers showing their wares at New York's High Fidelity Music Show, one might well expect to find at least a few clever design ideas. Your editors combed the show for ideas electronic design engineers could use. They found a few-very few.

Show Theme-Stereo

Any visitor could see immediately that stereo is here. Manufacturers had stereo cartridges with two signal outputs; two loudspeaker systems for each program source; two amplifiers in one bosor, at least, two amplifiers side by side. Only turntables (and pickup arms) did not leave one with the impression of seeing clouble.

New Design Concepts-A Few

Stripped of all fanfare and tinsel, the show was very sparing in design ideas. Cartridges and records, of course, were different. Amplifiers and other equipment were different only in styling
and front panel design.
Loudspeakers were the same-with very few exceptions. Outstanding perhaps, was the new Acoustic Research high frequency speaker (Fig. 1). It looks like no tweeter we've ever seen, using no spider, no horn, no cone, no dispersion device. no voice coil former, and no skiver. Yet this tweeter combines unusually wide dispersion with a very flat frequency response.

Stereo System Doesn't Demand Much

The almost universal adoption of the Westrex system of stereo dise recording and playback is most fortunate. Beyond the record playing equipneent no basic changes are needed, except of course, that all components must appear in pairs.

The major change that stereo calls for is in the phonograph cartridge. It must have equal compliance in all directions so as to transfer the information recorded in each channel. Monaural cartridges need have no response to vertical stylus movement.

Fig. 1. Synthetic rubber in the gap of Acoustic Research's tweeter holds the self-supporting voice coil in the magnetic gap. The entire moving system (diaphragm, voice-coil, and rubber suspension) weighs slightly more than a gram.

DISK uAGNETS

Fig. 2. The platter rides on air in Pickering's turntable.

Here Comes Rumble

Rumble, the low frequency noise that results from mechanical vibration being coupled to the turntable platter or pickup arm, plagues every turntable and record changer to some extent. In monaural systems, where the phono cartridge has little or no vertical response (records are cut laterally), the effects of rumble are often negligible. But in binaural (or stereophonic) systems, rumble can be very annoying indeed.

Sensitive to this problem, many manufacturers have redesigned their turntables to reduce rumble to almost unmeasurable levels. Others have modified their tables slightly, and a few, feeling they had the problem licked long ago, made no changes.

It's hard to tell from manufacturers' claims. just how successful they've been. Though the National Association of Radio and Television Broadcasters has very clearly spelled out standards for measuring rumble, only one major manufacturer (Fairchild), publicly claims to measure according to NARTB specs.

This is not to say that other manufacturers don't measure rumble. They all do. But it's not always clear how they measure. So, matching rumble figures of different manufacturers may not be too meaningful. Only by one criterion are all published figures the same: every one is "conservative."

Design Ideas In Turntables

Some of the concepts used in turntables may well serve electronics engineers in entirely unrelated fields. Particularly in vibration isolation, one or more of these ideas may avoid lots of trouble.
Pickering. Perhaps the most novel and simplest approach appears in Pickering's "Gyropoise 800." To minimize coupling of motor noise through the

New Indium-Bonded Computer Diode Design Proves More Reliable

Computer diodes must be reliable
with a small fraction of 1% failures.
Opens and shorts usually account for the majority and CBS-Hytron indiumbonded junction diodes are designed to eliminate them. That they do is proved daily by CBS-Hytron shock and vibration tests more severe than military tests. And by freedom from failure in actual equipment.

Now 49 types

Type	$\begin{gathered} \text { Min. } \\ \text { forward } \\ \text { MA @ }+ \text { IV } \end{gathered}$	ReverseRecovery		Reverse Resistance Ohms -Volts		Typo	$\begin{gathered} \text { Min. } \\ \text { Forward } \\ \text { MA @ +IV } \end{gathered}$	Peak Reverse Volts	Reverse Resistance		
		$\mathrm{K} \Omega$	${ }_{\mu} \mathrm{S}$			Ohms			- Volts		
COMPUTER							HIGH	NDUCTA			
1N276	40	80	. 3	500k	10.50	1N107	150	15	50k	10	
1N631	100	80	. 3	500k	10.50	10273	100	30	1M	20	
1N632	7.5	so	. 3	500k	10.60	1 1279	100	35	100k	20	
1N633	150	25	. 3	500k	40.90	10281	100	75	100k	50	
1N699	100	50	. 3	300k	$75.70{ }^{\circ} \mathrm{C}$	1 1283	200	20	500k	10	
1N770	15 @ .5V	15	. 35	250k	10. $40^{\circ} \mathrm{C}$	1N454	200	75	19	50	
	Min.					LD-70	100	15	120k	10	
	Forward			Revers	iesistance	LD-123	100	35	280K	20	
Typo	MA@ + IV			Ohms	-Volts	LD-130	200	60	1 m	15-50	
HIGM REVERSE RESISTANCE						LD-142	200	100	200k	100	
1N99	10	10		$1 M^{\prime}$	5-50	GEME	PUPPO				
1 N 100	20	10		1 M	5-50	GENE	Purpo				
1N289	20			1 M	50	1 N 95	10	75	62K	50	
1 Whas	50			$1 M$	10-30	1N96	20	75	62K	50	
1N452	100			IM	30	1M108	so	60	250k	50	
1N497	100			$1 M$	20	1N117	10	75	500k	50	
1N498	100			1.6. ${ }^{\text {M }}$	60	1 N 118	20	75	500k	50	
$\begin{aligned} & \text { 1N499 } \\ & \text { 1N500 } \end{aligned}$	100			1.6. ${ }^{\text {M }}$	50	1N287	20	60	33K	50	
	100			1.5.M	60	1N288	80	85	140K	50	
						1N292	100	75	250k	50	
high	LTAGE					1N298	30 (3) 2V	85	160K	40.50 ${ }^{\circ} \mathrm{C}$	
1N97	10	10		500k	50	1N47	25	50	500k	10.30	
1N98	20	10		500k	50	LD-71	2 (1).4V	15	500K	12	
1 N 293	40	12		1 M	100	LD-125	10	75	100k	50	
2NAES	25	12		1 m	30-100	LD-141	20	80	100K	10	
1 maso	50	120		1 m	30.100	LD-143	60	75	500K	50	
1M453	100	12		1 m	30-100						
1N634	50	11		1 M	45-100						

Many types have been added to meet growing demand for these inherently more rugged and reliable diodes. Check the 49 types in six major classifications. Order the ones you need . . . or write for Bulletin E-314 giving complete data . . . today.

CBS

semiconductors
Wore reliable produsts through Adoanced-Fingineering
CBS-H YTRON, Semiconductor Operations
A Division of Columbir Broadcasting System. Inc

Sales (Offices: Lowell, Mass., 900 Chelmslord St Glenview 40446 - Mewart. N. I., 32 Green St
MAikel 35832 . Melrose Park. II.. 1990 N Mannhelm Rd EStebrook 92100 Los Angeles. Camf., 2120 S Garlield Ave, RAymond 39081

Fig. 4. No metal-tometal contact in Metzner's "Starlight."
aluminum wheel

Fig. 5. Thorens uses a belt to drive a step-pulley.
table to the pickup arm, the table spindle sits on air (Fig. 2).
A disk magnet under the table repels another one on top of the motor board to support the table vertically, yet keeps the spindle at least $1 / 8 \mathrm{in}$. clear of the bottom of the bearing well.
Fairchild. Many factors contribute to the rumble-free operation of the " 412 Series" turntubles (Fig. 3). There are as few moving parts as possible. In the four-speed model, a four-frequency Wien bridge oscillator drives a singlespeed hysteresis synchronous motor. This removes the need for additional mechanical parts for speed changing.
Most unusual in the " 412 " is the two-belt drive. One belt delivers rotation from the motor to a shock-mounted intermediate pulley. This pulley drives a second belt which drives the outer rim of the turntable. This two-stage speed reduction allows for a larger motor capstan whose diameter can be held to tighter tolerances. It also minimizes belt slippage.
The cast aluminum turntable is machined on its own shaft. Before machining, Densite is cast into the rim to eliminate table ringing and to provide a flywheel effect. The motor cradle rests on flexible Barry mounts whose aves are 45 degrees from the vertical.
For further noise reduction, the bottom of the babbit-lined bearing well is screwed to the bottom of the chassis.
Weathers. Like the Fairchild machine, the Weathers turntable uses electronic speed changing. Beyond that there is little similarity. This machine uses a small 12 pole synchronous motor, about the size you'd use to drive a clock. The light, stamped aluminum table is driven by a gum-rubber drive wheel.

Fig. 6. Two rubber couplers serve as torsional motor filters in H. H. Scott's table.

ELECTRONIC DESIGN • January 21, 1959

A very unusual feature is the free-floating spindle which rides on Teflon bearings above and below. With a diameter of about $1 / 8 \mathrm{in}$., the spindle is at least four or five times smaller than most.
To eliminate acoustic feedback, the motor board sits on four conical springs tuned to resonate at 3 cps .
In spite of the use of direct rim drive from the motor, Weathers claims an unbelievably low rumble figure of -70 db .
Metzner. In the "Starlight" turntable (Fig. 4), the motor drive system uses no metal-to-metal contact. In this center-drive system, the motor drives a worm gear with a highly compressed felt center. Two pieces of aluminum are staked to the foll before the gear is hobbed.

This worm gear drives a neoprene disk whose surface drives a serrated aluminum wheel. This wheel. which drives the table spindle, can be moved across the radius of the neoprene disk to provide continuous speed variation from 16 to 84 rpm .
Thorens. The "TD 124" (Fig. 5), has a belt from the motor driving a step-pulley which. in turn, drives the rim through a soft rubber idler.

One of the tricks in this machine is the use of : "two-in-one" table. A light aluminum turntable proper is coupled to a heavy 10 lb rim-concentrated, cast iron flyweel, which is driven by the idler.
H. H. Scott. The motor drives a phenolic cone which drives a separate rubber-tired wheel for cach speed in the "Stroboscopic Turntable 710 A" (Fig. 6). Moving any of the wheels along the cone provides a five per cent speed adjustment.
The engaged rubber wheel drives a dynami-cally-balanced metal drum. This drum drives a train of hardened steel and nylon helical gears through a shaft with two rubber isolation couplers. The gears which drive the spindle are housed in an oil bath.
To reduce noise even more, the motor and speed control drum are suspended on springs independent of the turntable and pickup board.
Pek-O-Kut. Rek-O-Kut's single speed machines use a crowned pulley integral with the motor shaft to drive the belt which drives the rim of the table. The pulley is ground on the motor shaft. Rek-O-Kut attributes very low noise levels to extreme care in machining. They keep the surface of a 12 in . table flat to 0.00 .3 in . and the concentricity to within 0.002 in.
Other manufacturers didn't seem to use any "new" ideas. This does not mean other turntables are inferior-but rather that "new" ideas are not essential ingredients of quality. No turntable, no machine, no system can provide top quality performance without top quality workmanship, materials, and carc. - -

The New ARNOLD 6T Aluminum-Cased Tape Cores give you 4 BIG ADVANTAGES ... at no added cost!

New compactress in Aluminum-Cosed cores permits you to design for greater miniaturization. yet recain the distortion-free Overall of an aluminum case that resists winding cases and comparable in size with plastic-cased cores,(2)
hermetically sealed, with Bullt-in Protection against shock one vibration, Arnold 6T Cores provide the most complete protection against deterioration of magnetic properties available on the market. Strain-sensitive core materials are completely on the market. Strain-sensitive core materials are completely surrounded by 2 n inert shock absorbent, hermetically sealed
within the cases. Trouble.free performance is virtually assured within the cases. Trouble-free performance is virtually assured,
even over long standby periods. $6 T$ Core design further guareven over long standby periods. 6T Core design
antees that you can vacuum-impregnate your coils.

1000-VOLT BREAKDOWN GUARANTEED!

The Arnold 6 T Core employs a strong, inert covering with hard gloss finish which carries a 1000 -volt breakdown guarantee. Suitable radii and the elimination of sharp corners insure against cutting the winding wire's insulation Its hard non-cold-flowing finish protects the covering against cuts. Both features guarantee against shorted wiring.
mets military "specs" for Operating Temporapuros and Temperature Rise.
The Arnold GT Core fully meets the requirements of miliary specifications Mil-T- 383 or Mil-T. 7210 , wherever applicable. specifications
These specifications call for case construction to withstand ambient temperatures to $170^{\circ} \mathrm{C}$, and a $25^{\circ} \mathrm{C}$ temperature rise.

Arnold GT Tape Cores are available in all standard sizes, and special sizes may be made to order. all guaranteed for size, hermetic seal, dielectric strength and temperature of operation.

- Wo'll welcome your orders for prompt delivery of pilol or production quantities.

Tie Arvold Enginerring Company

Main Office 2 Planf: Marengo, Illinois

topath Pesific Oivistion Mants cal Eest blat Stroot, Les Angoloes, Callu. District Sales Offices:
Boston: 49 Waltham St., Loxingion Los Angooles: 3450 Willhhire Blvd. Now Yorti: 350 Fifth Avo. Wachington, D.C.: 1001-1 Sth Si, N.W.

CIRCLE 33 ON READER-SERVICE CARD

ENGINEERING UNL/MITED

at one of the world's most SUCCESSFUL CORPORATIONS

Select Openings at Clationalis NEW Engineering-Research Center at Dayton, Ohio Long-range non-military projects with exceptional stability

COMPUTER ENGINEERS

Senior Systems Analysts-Require Senior Systems Analysts with strong theoretical and design knowledge in the electronic engineering field including familiarity with electronic and electro-mechanical digital machines. Should possess minimum of 3 years' experience with commercial application digital data processing equipment, however, would consider experience with scientific or defense application systems. Operational experience with a large data processing system is a distinct asset. Will be required to analyse and direct product improvement on large general purpose computer or small special purpose desk computer series. Advanced degree desired.
Senior Circult Designers-Experienced in the design, development and analysis of transistorized computer circuits. Familiar with the application of magnetic cores to computer highspeed memory design. Growth opportunities involving decision making, concerning reliability, cost and component selection are offered. Advanced degree desired.
Senior Circuit and Logical Designers-Similar experience and duties as noted for Senior Circuit Designer, plus evaluation and de-bugging arithmatic and control areas of computer systems. Advanced degree desired.

DATA PROCESSING ENGINEERS

Senior Electronic Design Engineers-Experienced in development of logical design using standard computer elements, must also evaluate and design transistorized circuits including voltage regulated power supplies and circuitry related to decimal to binary coding. This data processing system is concerned with bank automation.

SEND RÉSUMÉ TO:

Mr. K. M. Ross
Professional Personnel Section C The National Cash Register Co. Dayton 9, Ohio

accountine macinumes move mocime . Cin anomes

ADIME can almost conceal this rugged chopper. The edge of a dime conceals the reed and shorting contact assembly. The entire chopper, potted and encased in steel, weighs less than $1 / 4 \mathrm{oz}$.
Yet it withstands 50 g shock in any direction. Contacts, in operation, are deranged no more than 10 electrical degrees when subjected to 15 g vibration at any frequency from 10 to 2500 cps . Life at rated load is guaranteed to exceed 2000 hrs .

It takes unusual construction to build that kind of ruggedness into a tiny chopper. And this unit, by Rawco Instruments Inc., 3527 W. Rosedale, Fort Worth, Tex, certainly has unusual construction.

Construction

Most unusual is the moving contact assembly. The reed, made of fatigue-resistant elgiloy, supports a multi-fingered shorting contact. These fingers, arranged in a square cluster, alternately short pairs

of fixed contacts. This configuration allows for a wide choice of contact materials for optimum life and performance.
The balanced armature, with a very low mass, travels only 0.025 in . Its slotted configuration shock mounts the vee jewel pivots. The armature springs open to compensate for pivot wear, and opens and closes to take up dimentional changes due to temperature variations. (The unit operates from -65 to 125 C .) Solder grouting the sapphire vee jewels provides maximum support area for the pivots and eliminates the stresses usually incurred in conventional mountings. It also facilitates production, as no sizing of vee jewels is required to obtain a perfect fit. The pivot can take 500 times the armature weight.
The armature and contacts are fully isolated from the shielded and potted coil, and are hermetically sealed in one atmosphere of dry nitrogen. This eliminates oxidation and organic contamination of the contacts.

Performance

Despite its size, this chopper outperforms many larger units. It can supply resistive loads up to 10 v at 1 ma . In the 400 cycle unit, the coil requires only 25 ina at 6.3 v . Insulation resistance is at least 100 megs between all terminals and ground.
The noise level is normally less than $10 \mu \mathrm{v}$ rms across 1 meg , and is never greater than $100 \mu \mathrm{v}$. The moving contact dwells on a pair of fixed contacts for at 1.ast 150 electrical degrees of the switching period, with a contact bounce never aceeding 4 degrees per period.
For more information, turn to the Header-Service Card and circle 101.

WESTIMGHOUSE Sllicon power RECTIFERS

For efficient medium-power rectification on land, at sea and in the air

Westinghouse types 304, 303, and 302 rectifiers offer a range of current and voltage ratings which are ideal for efficient medium-power rectification.
All three types are immediately available from stock - and at an attractive price! They are characterized by long life, high efficiency, low regulation, low cost, and operation at high ambient temperatures (up to $190^{\circ} \mathrm{C}$ junction temperature). They meet or exceed requirements of all applicable military tests. And they are available in a variety of Andifier assemblies.
Listed below are some suggested applications.

- DC power supplies for ground and airborne
- 6-12-24-48 volt AC-DC generator systems
- Battery chargers
- Small plating supplies for laboratory use
- Power supplies for business machines
- Computer power supplies
- Transistor power supplies
- Telephone exchange DC power supplies
- Power supplies for marine smallcraft - Electronic tube filament supplies

For further design data, contact your Westinghouse representative or write to Westinghouse Electric Corporation, Semiconductor Department, Youngwood, Pennsylvania.

SILICON POWER RECTIFIERS • GERMANIŪM TRANSISTORS • SILICON POWER TRANSISTORS you can be SURE...Ifris Westinghouse

COMING SOON-HIGM-SPEED GERMAMIUM DYMISTOR SWITCH
featuring low stand-hy currents, low internal power loss, and switching time in he milli-microsecond range.
METAL ENCLOSED - MYLAR DIELECTRIC - HERMETICALLY SEALED
Six rugged new capacitor types designed SPECIFICALLY to SAVE SPACE in compact, transistorized assemblies. Two temperature ranges to choose from. All types rated for 500 -hours accelerated life testing.

$$
\text { Full Rated to } 85^{\circ} \mathrm{C}
$$

Types 626C-627C (Extended foil) Types 628G-629C (Inserted tab)
Temperature Range-Full rating at $85^{\circ} \mathrm{C}$ - 10 life Test- 500 hours at 85 life rest voltage. Insulation Resistance not exceed 70.000^{x} merohms Case Styles-Avallable in all case style variations
Type 616G (Extended foil)
Type 617C (Extended foil)
Temperature Range-Full rating to $125^{\circ} \mathrm{C}$ - 10
Life Test- 5000 hours at $125^{\circ} \mathrm{C}$ and 125% of
rated voltage.
rated voltage.
Capacity
Tolerance
Copacity rolerance-All folerances to $\pm 1 \%$.
Insulation Resistance- ex.ed meg. $25^{\circ} \mathrm{C}$ but need not exceed 100.000^{x} megohms
Case Strles-Available in all case style variations

Write for literature on these new types.
 6
 GOOD-ALL ELECTRIG MFG, CO.

GOOD.ALL CAPACITORS NOW AVAILABLE AT YOUR LOCAL DISTRIBUTOR

Engineer checks sawtooth with two-gun, dual-beam oscilloscope. Channel \mathbf{A} is used here to show the sawtooth on the calibrated time base. Channel B shows an expanded part of the sawtooth.

y S

Plus-with In One

Y signal against X, or Y against the variable time base in one channel while performing analogous feats in the other, a host of display combinations are possible.

Another innovation lies in the sweep circuitry. Both expanded and calibrated sweeps can be positioned independently while being displayed. Since the calibrated sweep is generated at a high level, it can be fed directly to the H deflection plates. Hence one gun of the crt can be used as a single beam oscilloscope with identical amplifiers, while either the X or Y input can be displayed against time on the other channel.
Developed by Allen B. Du Mont Laboratories, Inc., 750 Bloomfield Ave., Clifton, N.J., the Type 411 provides completely independent control of each eleciron beam. Each channel has its own focus and intensity controls, and either leam can be switched off. "Pin-ball" inlicator lights clearly show when a chanlel is in operation.

With a flat frequency response from dc to beyond 100 kc , the instrument provides a vertical resolution of $20 \mu \mathrm{v}$. Front panel controls offer 19 calibrated sweeps from $1 \mu \mathrm{sec} / \mathrm{cm}$ to $1 \mathrm{sec} / \mathrm{cm}$, and 17 vertical full-scale measurements from 1 mv to 500 v .

The "Unusual" Is Built In

Both driven and recurrent sweeps are available with automatic beam brightening during trace time. On driven sweep, the beam is brightened only when the sweep is triggered, so the shutter of a recording camera can be left open without fogging the film while waiting for the sweep.

For capturing transients, an unusual "electronic shutter" can be triggered to turn on the display for a predetermined time. All unwanted parts of the trace are invisible.

For more information on this dualbeam scope turn to the Reader-Service Card and circle 104.

PROBLEM which provide an output Potentiometer-Transducer which can be readily engaged with a minimum angular error to a servomechanisms gear train when energized by an external command signal. The transducer must
accurately return to a specified null position when the command signal is removed.

A SOLUTION:

Provide an electro-magnetic clutch, spring return mechanism and rotary potentiometer. Assemble these parts into the required package with the resultant difficulties brought about by the mounting and coupling problems with a consequent increase in cost.

THE OPTIMUM SOLUTION:

Technology Instrument Corpo ration's west coast engineering facilities developed and offer a unitized package consisting of an electro-magnetic clutch. spring return mechanism and rotary potentiometer as one compact assembly. The clutch will transmit high torque without slippage and has negli-
 gible angular engagement error. TIC's unique spring return mechTE unitized package

GENERAL

 INFORMATION:Shaft Position Transducers can be linear or nonlinear potentiometers, synchros. inear transformers or digitizers. Spring return
nechanism can be supplie mechanism can be supplied
designed to return to any designed to return to any
desired point. A built-in slip clutch can also be furnished clutch can also be furnish
if the input corque can if the input corque can
exceed the rating of the exceed
clutch.
anism will accurately return the output
transducer to the desired null, yet requires low driving torque. TIC's unitized assembly replaces three (3) individual components with their inherent assembly difficulties.

TIC UNITIZED PACKAGE HAS MANY APPLICATIONS,

SUCH AS: Auto pilots, altitude controllers, machine controllers. measurement and control problems, speed control, process control of temperature and flow, differential measurement,
expanded scale servos, or any other problem requiring an
output, commencing at some specified servo position determined
by an external command signal.

TECHNOLOGY INSTRUMENT CORPORATION
Subsidiaries: \qquad Acton Lobbortiories, Inc., Acton, Mass,
Tucson nostrument Corp., Tucson, Ariz.
Sorvotrol, Inc., Chicago., ill. Sorvotrol, Inc., Chicago, ill. CIRCLE 37 ON READER-SERVICE CARD

555 Main Street Acton, Massachusetts

This is one of a series of papers presented at the Symposium on Microminiaturization of Electronic Assemblies sponsored by Diamond Ordnance Fuze Laboratories late last year. Because symposium attendance was limited to government personnel only, ELECTRONIC DESIGN is publishing these papers as a special service to our readers. In addition, all of the symposium papers will be published in their entirety in bound form available only from ELECTRONIC DESIGN. For further information on these Proceedings, turn to Reader-Service Card and circle 100.

SEVERAL new thin film techniques for making miniature components offer interesting approaches to miniature component production.
Thin film components have the advantage of high surface area to volume ratio. This leads to a substantial reduction in size for a given wattage rating. Three types of thin films are: (a) resistive, (b) capacitive and (c) inductive

For resistive films of $200-500$ ohms per square, thickness should be a few hundred Angstroms.
For high capacitive films greater than 0.1 !f, thickness required is about 0.0001 in .

For inductive films, thickness should not exceed 200-300 Angstroms, otherwise eddy current losses become appreciable.
Three classes of base material used are:

- Inorganic materials (ceramic, glass)
- Plastics (Teflon, etc.)
- Semiconductor materials (silicon, germanium)

Ceramics are probably the simplest to use. It is possible to deposit silver or other compositions by chemical means or by evaporation upon them. With material of suitable permittivity, high value capacitors may be oltained by metallizing both sides of the base.

Plastics do not make good bases. Although they have excellent electrical properties, their low resistance to heat precludes their use in "fired-on" processes, while their high vapor pressure and occluded gases make them difficult to use in vacuum systems

Using Thin Films in Microminiaturization

Henry G. Manfield
Royal Radar Establishment
Malvern, England

In any typical tubular component, most of the available volume is occupied by material which plays no part in the electrical performance. An increase in power with small size could be made by opening the cylinder and its leads into flat strips. This article discloses new methods and materials for making these components flat initially.

The use of semiconducting material, such as silicon, as a base is very attractive. By suitable alloying and doping, the active elements can be produced directly on to the substrate instead of being added separately as is required when using other materials.

Preparation of Resistive Films

Resistors of platinum/gold alloy deposited on glass have been developed ${ }^{1}$ at the Royal Radar Establishment and are now in production. ${ }^{2}$ They have excellent temperature coefficient and are very stable. An alloy of 80 per cent gold and 20 per cent platinum gives a resistivity of 60 microhms per cm in a thickness of 1000 Angstroms with a temperature coefficient of 0.025 per cent. An alloy of $60 / 40$ gold-platinum has a resistivity of 75 microhms per cm in the same thickness and its temperature coefficient is then 0.06 per cent.

Various stages in the process of manufacture are shown in Fig. 1. The final value of resistance is adjusted by cutting through the requisite number of trimming bars. By suitable design of the master an accuracy of 0.1 per cent is obtainable.
So far this process has only been applied to making actual resistors, but by scaling it down it can be adapted to making the complete circuit. The resolution that can be obtained by the photo-mechanical process has been demon-
strated ${ }^{3}$ when it is applied to the making of transistors on a dice only 0.05 in . sq.

High resistivity is obtained from films of nickel chromium. Recent advances ${ }^{4}$ in the evaporation of this alloy make it attractive. Typical properties as used in resistors are shown in Table 1.

Because of its excellent temperature/resistance properties, nickel chromium is being carefully studied ${ }^{4}$ as, even in the microminiaturized subunits, a high order of stability will be required once the initial novelty of being able to make them at all has passed. However, the resistivity as given is not entirely satisfactory, because to make very small units would entail a line width of not more than 0.010 in . which, although practicable, in thin film form requires scrupulous care in processing with a probable high reject rate in production.

An alloy of chromium 20 per cent, iron 3 per cent, aluminum 3 per cent and nickel 74 per cent (Karma Alloy) looks interesting. Early experiments in evaporation of this alloy gave a resistiv-

Table 1—Typical Properties of Nickel-Chromium Films

Thickness (Angstroms)	Resistance (Ohms/sq.)	Temp. Coefficient (ppm/C)
50	300	+24
80	210	-38
90	180	-27

ity of 400 ohms per square, and evaporation at 1650 C on a cold, glass substrate. The film showed good adhesion and apparently good stability. Work on this material continues, but at the same time alloys with much higher resistivities are being sought.
Practical resistors have been made and values up to 1 megohm have been obtained by photomechanical processing. A circuit using $\mathrm{Ni} / \mathrm{Cr}$ resistors and nickel electrodes is shown in Fig. 2.

Preparation of Capacitative Films

Dielectrics for capacitors can be made in the form of strips or films as thin as 0.00025 in . (glass) or 0.005 to 0.010 in . (ceramics). But it is probably more convenient to evaporate them on a metallic substrate which forms one electrode, with a further metal evaporated layer to provide the other. Repetition of this process can build up a stacked film capacitor of high value of the type required in low impedance circuits.

Single thickness films of high permittivity are attractive and, if only a few molecules in thickness, high value capacitors can be realized. A useful formula for capacitance is: 1000 urf per (m sq per micron in thickness (assuming K in air $=1.0$). This formula results in a value which is about 10 per cent too high, and should be reduced accordingly.

In a proposed standard module ${ }^{\overline{5}}$ of 0.31 in . sq, about 1 cm sq could be considered as the working area, of which 5 mm sq could be allowed as a maximum for one component.

If a high permittivity material such as barium titanate is used, a K of 1000 can be expected, and it would be possible to make a capacitor of 0.25 !!if within the alotted area. Care would be neces-

Fig. 2. Resistor and conductor pattern printed on glass (a), and its circuit diagram (b).
sary to insure that its ferroelectric properties and its low Curie point do not interfere with its operation as a capacitor. But for use with transistors with their inherent low operating temperature this is quite possible.
Experimental capacitors have been made by producing an oxide film on tantalum ${ }^{6}$ in a mix-

Nem Accurate and Sensitive FLUTTER METER

With Builh-in 3 ke Oscillator, High-Gain Preamplifier and Limiter, Filter Ranges: 0.5 to $6 \mathrm{cps} ; 0.5$ to $250 \mathrm{cps} ; 5$ to 250 cps. Designed for rapid visual indication of nutter and wow produced by magnetic tape recorders and playback equipment. disc recorders and reproducers (all speeds), sound film mechanisms and film recorders.
Flutter and wow readings can be separated by a high-pass and low-pass filter. Large, sensitive 7 inch meter has three scales: $0.3 \%, 1.0 \%$, and 3.0%, calibrated for flutter and wow read ings. Accuracy within 2% of full scale value, independent of wave form, amplitude variation, hum, noise, switching surges and other extraneous transients.
Flutter meter complies with standards set by the Institute of Radio Engineers. Recommended for recording studios, broad cast stations, schools, research labs, service lechnicians and
recording equipment manufacturers.

CONDENSFD SPECIFICATIONS

Inpur Voltage	0.001 to 100 Volts
Ranges	0.01 to 3%
Limiter Range	20 db
Oscillator (Builsoin)	3,000 Cycles
Ner Price	$\$ 495.00$
Write for complete specifications to	

AMPLIFIER CORP. of AMERICA 398 Broadway, New York 13. N. Y. CIRCLE 47 ON READER-SERVICE CARD

WILL NEVER SHORT OUT OR BURN UP

Davohm Series 850 Hermetically Sealed Metal Film Resistors

Extensively used in critical applications where severe line overloads might burn up conventional resistors or cause them to short out and overload other components. While Davohm Series 850 can momentarily withstand large overloads, extreme overloading will open circuit them; but they cannot short out or burn because there are no organic compounds in this resistor which might carbonize or burn. Typical present applications-fuel gauges in jet planes-line terminations in telemetering circuits.

Write for complete information.
Now carried in stock by your local distributor.

" DAVEN:

LIVINGSTON. NEW JERSEY
World's Largest Manufacturer of Attenuators
CIRCLE 48 ON READER-SERVICE CARD

Complete captive assembly; all sizes. Comprised of slotted-head thumb screw, insert bushing, captive nut assembly, splash-proof seal.
FOR FREE FACTS on this stainless steel hardware, write:
RAYTHEON, Commercial Equipment Div., Dept. 6120 , Equipment Div., Dept. 6120,
Waltham 54, Massachusetts
circle 49 on reader-service card

CUSTOM WAVEGUIDE ASSEMBLIES . . to Precision Tolerances

BRASS OR ALUMINUM

- all modern joining and production techniaues
- pioneers of aluminum flux dip BRAZING
- complete microwave electrical test facillites
- dependable on-time deliveries

Send for copy of "Report on Flux Dip Brazing"
WAVELINE
INC. Telophone: CApital 6-9100 TWX Caldwall, N. J. 703
ture of phosphoric acid and amyl alcohol. The dielectric thickness was about 1200 Angstroms. After drying, a layer of zinc oxide was evaporated on to its surface and a counter electrode of silver followed. Manganese dioside is more usual than zinc oxide, but the latter is casier to evaporate. These oxide coatings increase the breakdown voltage.

A sample capacitor made by this method had a capacitance of 0.1 !f for 0.6 sq cm , with a power factor better than 1 per cent which is good enough to warrant investigating the effects of different thicknesses of zinc oxide layers on breakdown. A multilayer capacitor can be made by utilizing both sides of the tantalum and in this way a capacitance of several microfarads is obtainable in a very small space.

Silicon monoxide has also been examined. Good, uncracked films were obtained up to thicknesses as great as 0.02 in . However, the power factor of these films was very high. At best it is 40 to 50 per cent which makes such material of little interest for this work.

In some circuits, a rapid discharge time of less than a microsecond is required. This is not possible with electrolytic capacitors and must be considered as a limiting factor.

There are many more materials which can be craporated for use as capacitor dielectrics:

Magnesium fluoride
Calcium fluoride
Calcium silicate
Zinc sulphide
Lead sulphide
Cadmium sulphide
Some of these are well known as lens blooming agents, and zinc sulphide has been used extensively in infra-red detectors. With a permittivity reported $^{\top}$ as 8.2 at 1000 kmc and measured locally as about 9 at 10 mc , it is considered to be worth examining.

To obtain high stability and low coefficient of temperature will be just as big a problem as with resistors. Very thin films will not be practicable if they are unstable. This means that as no compromise is possible between high capacitance and stability the latter must be made the dominant factor. In consequence, it is important to develop a multilayer film capacitor as it is essential to achieve values in excess of 0.1 uf and preferably of at least 1.0 uf.

Plastic Films

Although inorganic materials can be evaporated more readily, plastics have already been made in very thin films. Their progress has been sufficiently fast to justify the belief that they may be used in microminiaturization techniques, although they will probably be used as components to be added separately.

Table 2-Characteristics of Ferrite and Metal Magnetic Films

	Metal	Ferrite
Operating Speed	30 mulsec	1 !1sec
Drive	400 ma into	800 ma into
Power	5 ohms (transistor)	50 ohms (tube)
Repetition Rate	5 mc	500 kc

Following the work by Bell Telephone Laboratories" on cellulose-acetate-butyrate, thin films have been made from high moleccular weight polystyrene and copolymers of this with poly-alpha-methylstyrene. These films are cast on to a carricr of polyethylene-terephthalate (Mylar or Melinex) from a solvent solution. The carrier is subsequently stripped after the film has been metallized, is then demetallized and slit for the making of metallized capacitors. So far very thin films have not been made-about 0.0002 in . or 5 microns being used to gain experience.
It is the necessity of handling on a substrate that makes it essential to use cast films; extruded films of this thickness would be far too thin and fragile to handle. A cast film limits the material to one which can be dissolved fairly readily. This is the reason that an otherwise ideal material-polyethylene-terephthalate-is unsuitable and polystyrene is preferred.

Capacitors have been made from these films but early models have been made from multilayer wound foils. As the final units will almost certainly be required in the form of single sheet "castellated" metallized capacitors, work has now been directed into making this type only.

The gain in capacitance-volume ratio is calculated as 5:1 over conventional metallized paper capacitors. It is unfortunate that polystyrene has a permittivity of only 2.5 but this is the price paid for an almost perfect dielectric material. Experiments have been made with high permittivity fillers and it has been found possible to achieve a permittivity of 5 with films less than 0.001 in. thick.

A novel method of making large value capacitors is by using differential solvents. On to a substrate of polyester film a layer of polystyrene is cast and dried as usual. It is metallized and another insulating layer of cellulose nitrate is cast on top. As the metallized layer is not a barrier for the styrene solvent, a material dissolving in a different solvent is needed. So far, cellulose nitrate has been used experimentally. Although this is by no means a good dielectric, it can be cast from solvents which do not attack the polystyrene. By building up multilayers, say ten, it
is possible to strip off the substrate as the dielectrics are strong enough in the form of laminae to support themselves. By this technique it is hoped to produce capacitors of very high capacitance per unit volume.

On the whole, plastics do not seem to hold much promise for these techniques except as an interim measure for use in separate components until such time as all the components are made on the substrate which itself forms an integral part of the sulb-unit.

Preparation of Magnetic Films

The choice between magnetic films of metal or of ferrite is in favor of the former because they have superior physical properties (Table 2). Also, they are easier to evaporate as an alloy.

Both have rectangular hysteresis loops and are suitable for use as memory devices. Eddy current losses are high for a thickness exceeding a micron or so, and interference between opposite domain walls can occur if the thickness falls as low as about 20 Angstroms. The usual thickness is between 300 and 1000 Angstroms.

Attempts are being made to deposit a conducting layer on top of the magnetic film with an intervening layer of an insulant, but so far great difficulty has been experienced with pinholes.

To be able to make a complete memory device by deposition would be a tremendous advance over the painstaking method of ferrite-core threading practiced at present. There is the additional advantage that the speed of operation can be improved by keeping down the conductor lengths.

Detailed information on the production procedures mentioned in this article will be found in the complete paper to be published in our proceedings of the Symposium on Microminiaturization of Electronic Assemblies. For further information on the proceedings, turn to the Reader Service Card and circle $\mathbf{1 0 0}$.

References

1. Metal Filmi Resistors, R. J. Heritage, Elece. Eng., 2th July, 19.52, 1). 324 .
2. Photoctched Flat Metal Resistors, Painton d Co. Ltd., British Patent No. 689461 1953.
3. The Use of Photolithographic Techniques in Transistor Falbrication.. J. R. Nall \& J. W. Lathrop, D. O. F. L., TR 608.
4. Unpublished Ministry of Supply Report.
5. Army Signal Corps Program for Micro-Morlules June 3 rd , 19.958 .
6. Anodic Oxide Films on Tiuntalum Electrodes, L. Young, Trans. Faraday Soc., 50, February 1954.
7. Liebisch \& Rubens, Sitzer, Preuss. Acad, Wiss. Physic-Math., II, 1921, 211.
8. Miniature Metallized Latequer Filon Capacitors, H. G. Wehe, Bell Lalbs. Record, 33, No. 12, December 1955. 1). 44!

Engineered by Tinnerman..

On the assembly line... and in the field

 plug-in SPEED CLIPS ${ }^{\text {s }}$ simplify rectifier installationAt General Electric, two variations on a single Speed Nut ${ }^{n}$ principle are being used to make things easier for production-line assemblers and for electronics servicemen.

The basic idea of the Tinnerman front-mounting Speed CLIP is incorporated into the sockets of GE germanium rectifiers made by GE's Semiconductor Products Department, Syracuse, for industrial electronics applications.

On the TV production line, the Tinnerman Speed Clip permits rapid, tight, and simple installation of rectifiers. In the field, merely by unplugging the original equipment rectifier and plugging in its germanium replacement, the serviceman can quickly get a unit back in service.

Working together, General Electric and Tinnerman engineers developed the two types of Speed Nut parts that are fabricated right into the rectifier shells.

Unusual applications of the Speed Nut principles to scores of different products are developed every day at Tinnerman. That's why over 9,000 different forms of Speed Nut Brand Fasteners
have been designed for all leading manufacturers. Your fastener problem can probably be solved quickly by a call to your Tinnerman sales representative. If his name isn't in your telephone directory, write to:
TINNERMAN PRODUCTS, INC. Dept. 12 . P. O. Box 6688 - Cleveland 1, Ohio

TINNERMAN

Speed Nats

fastest thing in fastenings.

THE NEW FANSTEEL S-T-A

Solid Tantalum Capacitor

It's another step by Fansteel to provide a complete range of Solid Tantalum Capacitors designed to meet the ever-increasing needs for greater capacity in subminiature sizes.
It's available in capacity ranges of .0047 to 330 mfd .. . from 6 to 60 volts (wvdc).
Assures unfailing reliability where extremely small size, higher capacitance and extended operating temperatures are required.

S-T-A CASE SIZE		
Sorios	Length	Dia.
5	.250	.125
6	.438	.175
7	.650	.279
8	.750	.341

FAN TEEL

Wrife for Latest Information

RELIABILITY

E XTENSIVE and complex simulator - systems have been developed for training of Armed Forces personnel at shorebased schools in the fields of Fleet Air Defense Weapon Systems and CIC training. With the advent of shipboard guided missile weapon systems, a new concept of installing simulator systems aboard Naval vessels has been imple-

Another article of the exclusive series on microminiaturization. See note accompanying article p .38 in this issue regarding the entire series.

Miniaturizing Shipboard Simulators

Anthony P. Vigliotta
U. S. Naval Training Device Center Port Washington, N.Y.

Fig. 1. Typical transistorized assemblies used to reduce size.

FANSTEEL METALLURGICAL CORPORATION North Chicago. III., U. S. A.
CIRCLE 52 ON READER-SERVICE CARD

Fig. 2. Large 60 cps motor (left) replaced with smaller motor when 400 cps power supply was adopted.

Fig. 3. Mechanical bearing gate comparator mechanism that was discarded.

tubular type transistorized assemblies (Fig. 1.) are used extensively as compared to the molded card type. The advantages lie in greater maintainability and replacement. The disadvantages are larger size and weight. Since the units have to be capable of replacement, it was agreed that the use of the tubular transistorized type is preferred.

Fig. 4. Electronic bearing gate comparator mechanism replaced large mechanical unit.

Change to 400 cps

When one considers that approximately 50 to 60 of these circuits are used, the size is quite appreciable. In addition, the console and chassis assembly are decreased in size. An obvious shrinkage was obtained in converting the system from a 60 cps power system to a 400 cps system (Fig. 2). The major weight saving was in transformers, filters and motor assemblies. Weight and size shrinkage ratio was approximately 4 to 1 . Another area of miniaturization was the careful investigation of design techniques utilized and possible use of other techniques. Fig. 3 shows the electro-mechanical assembly which is utilized as a bearing gate simulator.

Replace Mechanical Assembly

After careful study, a design technique utilizing target input to the rotor of a control transformer and antenna position data fed to the stator leads was developed. The error signal was fed to a dc level comparator circuit (Fig. 4). Bearing width is readily adjustable by

35 AMP. Silicon Power Rectifier

Here's the newest addition to Fansteel's growing line of reliable silicon rectifiers. The 4 A carries a full $35-\mathrm{amp}$. load -up to 100 amps in bridge circuits-with rated peak inverse voltages from 50 to 400 V . in 50 -volt multiples. And it's built to withstand junction temperatures up to $165^{\circ} \mathrm{C}$., storage temperatures from $-65^{\circ} \mathrm{C}$. to $200^{\circ} \mathrm{C}$.
This new low-loss unit mounts snugly in any position. Entire unit is hermetically sealed, with heavy-duty construction to give long trouble-free performance and maximum dependability in high load circuits.

Wrife for Latest Information

FANTTEEL

RELABILITY

FANSTEEL METALLURGICAL CORPORATION North Chicago. III. U SA

changing the de level. The weight and shrinkage ratio gained was approximately 10 to 1 .
Another typical example of circuit redesign was the replacement of crt tubes and associated circuits utilized for simulation of complex conical and spiral scan simulation of fire control simulators with ring modulators. Fig. 5 shows a four target conical spiral simulator chassis utilizing crt as compared to Fig. 6 which is a six target chassis utilizing ring modulators. Size and shrinkage accomplished was approximately 3 to 1 .

Fig. 6. Large ring modulator type conicalspiral simulator that was replaced by smaller unit.

INPUT SYSTEM

Sine Wave: 0.1 lv rms Square Wave: $0.3 \mathrm{v}, \mathrm{p} \cdot \mathrm{p}$ Pulse (+ or -): 1 -volt peak Input trigger threshold control

 Froquency: dc to 300 • kcDirey Srom Input Terminal Direct Sync Terminal:
$0.12=0.02 \mu \mathrm{sec}$ Direct Syne Pulso Amplitude: $\pm 15 \mathrm{v}$ Amplitude: $=15 \mathrm{va}$
Duration $0.13==02 \mu \mathrm{sec}$
Impedance: 93Ω,

DELAY CIRCUITS

	delay no. 1	delay no. 2
Range	0.1 .1 sec in seven ranges	$0.5 \mu \mathrm{sec} \cdot 0.5 \mathrm{sec}$ in six ranges
Accuracy	0.1μ sec range: ± 0.01 $\mu \mathrm{sec}$. Remainder of range $\pm 1 \%$ of dial reading	$\pm 3 \%$ of dial reading
Jimer	1:30,000 at worst	1:20,000
Lue Drith	$\begin{aligned} & \text { 1:10,000 with } 20 \% \text { line } \\ & \text { change } \end{aligned}$	$\begin{aligned} & 1: 5000 \text { with } 20 \% \\ & \text { line change } \end{aligned}$
Rosolution	0.1μ sec range: 0.004 ${ }^{\mathrm{ssec} .}$ Remainder of range 1:8800	1:2000
Output Sync Pruse		
Duration	$0.1 \pm 0.02 \mu \mathrm{sec}$	$0.13 \mu \mathrm{sec} \pm 0.02 \mu \mathrm{sec}$
Amplitude	$\pm 25 \mathrm{v}$	= 20 v
$\begin{gathered} \text { Output } \\ \text { Impedance } \end{gathered}$	9382	9382
Max. PRF	for $0.1 \mu \mathrm{sec}, 300 \mathrm{kc}$; 1.4 sec to 1.1 sec . 250 kc	300 kc
Duty-Ratio Effocts	For duty ratios up to 60%. dial accuracy is 1% as specified: accuracy is 5% at 80% duty ratios	Less than dial accuracy a full scale for duty ratios up to 60% and at bottom end of scale for duly ratios up to 20%

SOINCIDENCE CIRCUIT

Inpur: positive or negative pulse 5 vo over
Input Frequency: 1 cps to 1.7 Mc (for single Inpur Frequency:
inpulse selection)
input Rice time: $0.1 \mathrm{\mu sec}$ or less at 5 v

The most precise and flexible delay generator available, the 1392-A uses linear sawtooth waveforms and accurate amplitude comparators to produce two variable delays. Gating-on errors encountered in digital equipment are eliminated, yet the accuracy of delay is comparable with digital apparatus when the 1392-A is used with a source of quartz-crystal controlled pulses.

An external signal source establishes within the Time-Delay Generator a $0.1 \mu \mathrm{sec}$ synchronizing pulse which serves as the time reference. Two independent variable delay circuits provide delays relative to this reference sync pulse from 0 to 1.1 seconds (Delay No. 1), and from $0.5 \mu \mathrm{sec}$ to 0.5 seconds (Delay No. 2). These two delay circuits can be operated "in series," (adding in delay times) or "in parallel," producing two independent delays.
The DELAY NO. I circuit includes a passive variable delay line with a precisely calibrated dial to produce incremental delays from 0 to $1 \mu \mathrm{sec}$ in $10-\mathrm{m} \mu \mathrm{sec}$ divisions. This delay line can be used either as the first range $(0-1 \mu \mathrm{sec})$ for Delay No. 1 , or as a verniér on the $1-\mu \mathrm{sec}$ to 1.1 -second electronically produced delay. It can also be used to delay the sync pulse produced by Delay No. 2, or to delay an input signal.

DELAY NO. 2 is in principle similar to Delay No. 1, but its associated gate can be used to actuate a coincidence amplifier. In coincidence operation, the gate is opened by the Delay No. 1 sync, and its duration is set by the Delay No. 2 circuits. Delay No. 2 times the gate, and does not produce a sync output. In this way, pulses from a timing comb which are present while the gate is open can be selected. For example, the $0.5-\mu \mathrm{sec}$ minimum setting of Delay No. 2 permits the selection of a single $1-\mu \mathrm{sec}$ pulse from a 1 -Mc train to provide $1-\mu \mathrm{sec}$ steps of delay. In addition, the coincidence feature can be used to produce bursts of pulses from a timing comb.

GENERAL RADIO COMPANY

275 MASSACHUSETTS AVENUE, CAMBRIDGE 39, MASSACHUSETTS

PHILADELPHIA
1150 York Rd.
Abingor, Pa.
HAncock A. 4419

WASHINGTON, D.C.
8055 Thirtoenth St.
Silvor Spring, Md. SAN FRANCISCO
1182 fos Allos Ano.
Los Allot, Col. Los Allos, Cal.
Whitecliff $8-8233$ LOS ANGELES
100 N . Sowar St.
Los Angeles 38 , Col.

IN CANADA 99 Floral Phwy.
Toronto 15 O Ontario
CHery 6.2171

CIRCLE 54 ON READER-SERVICE CARD

Fig. 5. Miniature cathode ray tube conical-spiral simulator.

Smaller Power Supplies

Another extensive saving in weight and size is realized in power supply units utilized with transistors. Regulated power supply units as shown were decreased in voltage and current requirements. Power supply shrinkage ratio varied from 5 to 1 to as high as 10 to 1 . A complete analysis showed that 80 to 85 per cent of the circuits in this design are capable of transistorization.

Shrinkage, then, of 50 per cent was accomplished by:

- Complete analysis of circuit design. Transistorize only when warranted and conforms with good design practices. In some specific cases it was found that conventional miniature tubes were better suited and more efficient.
- Using 400 cycle supply in lieu of 60 cycle whenever possible.
- Investigating alternate design techniques when possible and warranted. It must be realized that transistorization and miniaturization are not the panacea for all design problems. Its application is usually expensive and time consuming. However when the ultimate requirement is a maximum shrinkage of size and weight, these factors can be realized using the above analytical approach without the sacrificing of good design practices and reliability.
More detailed information on the equipment described in this article will be found in the complete paper to be published in our Proceedings of the Symposium on Microminiaturization of Electronic Assemblies. For further information on the Proceedings, turn to the Reader-Service Card and circle 100.

every aspect of Ward Leonard bulletin "HR" relays is designed for maximum reliability... these are components you can buy, install and then forget

Ward Leonard "HR" relays are engineered for industrial and electronic applications requiring: ultra-long life, high speed, high reliability, compactness and versatility.
Consider the powerful solenoids, just one of the features shown above. Every HR relay, AC or DC, is equipped with a powerful solenoid to assure fast, consistent, long-life operation so essential in the circuitry of any high reliability relav. The "E-I" laminated magnet ar-
mature is free-floating and self-aligning to minimize noise level. DC solenoids feature exceptionally fast operation. Nylon armature guides minimize operational friction. All AC and DC power plants are readily interchangeable.
2 to 8 pole "HR" relays are but one of five W / L lines of industrial power relays ... all designed with emphasis on reliability. Write for bulletin 4470. Ward Leonard Electric Co., 77 South Street, Mount Vernon, N. Y

ELECTRIC COMPANY MOUNT VERNON, NEW YORK

LIVE BETTER...Electrically

Renerc-Evinuened Cmate Since Isp $\stackrel{\circ}{\circ} \mid$ 圆

 CIRCLE 45 ON READER-SERVICE CARD
NEW PRODUCTS

SYSTEM ERROR BRIDGE
With this bridge the angular position of any synchro or resolver can be measured directly without any mechanical coupling. The only connection is through electrical leads. Three dials display angular position digitally to three decimal places over a 360 degree range. Readability is 3.6 sec ; accuracy within 10 sec . The unit's measurements are $19 \times 10.5 \times 8$ in.
Theta Instrument Corp., Dept. ED, 48 Pine St., East Paterson, N.J.
circle 56 on reader-service card

SILICON RECTIFIERS

Rated from 100 through 400 piv, the IN1563. A through 1.11566 A silicon rectifiers were designed for military and inclustrial applications. Forward rectified currents are 1.5 amp and 2.50 ma at 2.5 C and 1.50 C ambient temperature. One cycle average reverse current is limited to 150 нa max when rectified output is 250 ma and ambient temperature is 150 C . These diffused-junction units cam be used with both printed circuit and chassis construction.
Motorola, Inc., Semiconductor Products Div., Dept. El). 5()$(1) 5$ East McDowell Road. Phoenix, Ariz.

CIRCLE 57 ON REAADER-SERVICE CARJ

HIGH FREQUENCY GENERATOR

Suitable for a missile power supply, the Model D-1309 generator develops 100 w at 6000 (ps with shaft speeds up to 60,000 rpm. It can be driven by a hot gas turbine or other suitable means. Featured in the design is low inertia and short circuit protection. The unit weighs 6.5 oz , and its measurements are 1.5 in . in diameter and 1.67 in . long.
D) \& R Lttl., Dept. ED, 402 East Cutierre\%, P.O. Box 1500, Santa Barbara, Calif.

CIRCLE 58 on reader-service card

METAL FILM RESISTORS

Standard tolerance of these metal film resistors is ± 1 per cent. Their temperature coefficient is $\pm 50 \mathrm{ppm}$ per degree C over a temperature range of from -65 to +165 C , independent of resistance value. Type WHMM, equivalent Mil style RN - 75 , measures $1.125 \times 0.406 \mathrm{in}$. It has a maximum voltage rating of 500 v . Type WFH measures $0.781 \times 0.25 \mathrm{in}$.

Resistance Products Co.. Dept. ED, 914 S. 13th St., Harrisburg. Pal.

CIRCLE 59 on reader-service card

COMMUTATOR

This commutator is spring-driven. Due to this drive mechanism the commutator has no rf noise generation, no gyroscopic effect, no heat generation and extremely low average power consumption. The unit is hand-wound and can be used for missile and space telemetering systems. Up to 100 or more sampling revolutions can be made before rewinding. Typical sampling speeds are 12 or $1 / 50$ of a sec per revolution.
Applied Science Corp.. of Princeton, Dept. ED. P.O. Box 44, Princeton. N.J.

CIRCLE 60 ON READER-SERVICE CARD

MAGNETIC AMPLIFIERS

Each of the four magnetic amplifiers in the Preac 60 -cps line can be used by itself or as a preamplifier for such devices as thermocouples. strain gages and bolometers. The four units proride a power gain greater than 50 db and a full linear output of 2 vinto a 5000 ohm load with mill drifts as low as $0.03 \mu \mathrm{mmp}, 2.25 \times 10^{-12} \mathrm{w}$. riferred to the input. They are rated for operatin from $60 \pm 6 \mathrm{cps}$ power lines at $115 \mathrm{v}^{\circ} \pm 11$ It 1 s.
Airpax Products Co.. Seminole Div., Dept. ED): F irt Lauderdale. Fla.

CIRCLE 61 ON READER-SERVICE CARD

ONLY KIN TEL DIGITAL VOLTMETERS GIVE YOU ALL THESE ADVANTAGES

1. SINGLE-PLANE READOUT: KIN TEL digital voltmeters employ a simple projection system to present numbers on a readable single plane... no superimposed outlines of "off" digits...reduced possibility of error. Standard pilot lamps give extra long life.
2. ADVANCED CIRCUIT DESIGN: Transistors employed where they contribute to performance and reliability... relay drive coils energized with DC as in telephone type service to provide long, trouble-free operation...automatic, continuous standard cell calibration. No electronic circuitry in readout allows easy remote mounting. Sensitivity control permits stable reading of noisy signals.
3. MANUFACTURING EXPERIENCE: KIN TEL has manufactured over 10,000 "standard cell accuracy" DC instruments on a true production line basis. Only by this method, by years of repeated manufacturing experience, by an over-all awareness of the accuracies and tolerances involved, is it possible to guarantee consistent accuracy and reliability... to assure real value for every dollar you invest.
4. NATIONWIDE APPLICATION ENGINEERING FACILITIES: KIN TEL has engineering representatives in every major city. An experienced staff of over 200 field engineers is always immediately available to help solve your application problems, provide technical data, or prepare a detailed proposal. Factory level service is available in all areas.
5. DESIDERATE BPECIFICATIONS (MODEL 401B dC DIGITAL VOLTMETER): Display . . 4 digit with automatic polarity indication and decimal placement. Total display area $2^{\prime \prime}$ high $\times 7 \frac{1}{2}$ " long, internally illuminated. Each digit $11 / 8^{\prime \prime}$ high. Automatic Ranges... 0001 to 999.9 volts covered in 4 automatic ranges. Sensitivity control provides gain $\div 10$ setting and least digit sensitivities of $.1,1$, and 10 mv . Accuracy... $\mathbf{0 . 0 1 \%} \pm 1$ digit. Counting Rate ... 20 counts per sec., providing average balance (reading) time of 1 sec . Reference Volt-age...Chopper-stabilized supply, referenced to an unsaturated mercury-cadmium standard cell. Input Impedance ... 10 megohms, on all ranges. Output...Visual display, plus print control. Automatic print impulse when the meter assumes balance. No accessories required to drive parallel input printers. Input... 115 volt, 60 cycle, single phase, approx. 75 VA Dimensions...Control unit, $5^{1 / 4 \prime \prime}$ high x $19^{\prime \prime}$ wide x $18^{\prime \prime}$ deep. Readout display, $3^{1 / 2 \prime \prime}$ high x $19^{\prime \prime}$ wide x $9^{\prime \prime}$ deep. Weight...Approx. 40 lb . Price... $\$ 2,450$.

Model 402 B AC/DC 4-digif

Model 401 B DC 4-digit

Model 501 DC 5-digif
6. WIDE RANGE OF MODEL8-ACCESSORIE8-SPECIAL SYSTEMS: Versatile "digital building blocks" permit measurement of AC, ohms, ratios of AC and DC, automatic scanning of multiple inputs...4- or 5-digit models. Preamplifiers increase digital voltmeter sensitivity to 1 microvolt DC, 10 microvolts AC. Buffers permit driving typewriters, tape punches and printers. KIN TEL's Special Products Department can design and manufacture digital instruments to meet special requirements...complete digital systems for data logging, missile checkout and automatic production line testing.

Write today for descriptive liferature or demonstration. 5725 Kearny Villa Road, San Diego 11, California CIRCLE 62 ON READER-SERVICE CARD

NEW PRODUCTS

Covering all new products that might generally be specified by an electronics engineer engaged in the design of original equipment.

SYSTEM ERROR BRIDGE

With this bridge the angular position of any synchro or resolver can be measured directly without any mechanical coupling. The only connection is through electrical leads. Three dials display angular position digitally to three decimal places over a 360 degree range. Readability is 3.6 sec ; accuracy within 10 sec . The unit's measurements are $19 \times 10.5 \times 8 \mathrm{in}$.

Theta Instrument Corp., Dept. ED. 48 Pine St., East Paterson. N.J.
CIRCIE 56 ON reader-service card

SILICON RECTIFIERS

Rated from 100 through 400 piv, the 1 N1563A through 1 N1566t silicon rectifiers were designed for military and industrial applications. Forward rectified currents are 1.5 amp and 250 ma at 25 C and 1.50 C ambient temperature. One cycle average reverse current is limited to 150μ a max when rectified output is 250 ma and ambient temperature is 150 C . These diffused-junction units cam be used with both printed circuit and chassis construction.
Motorola, Inc., Semiconductor Products Div., Dept. ED). 5 ()) 5 East McDowell Road, Phoenix, Ariz

CIRCLE 57 ON RĒADER-SERVICE CARJ

HIGH FREQUENCY GENERATOR

Suitable for a missile power supply, the Model D-1309 generator develops 100 w at 6000 cps with shaft speeds up to 60,0000 rpm. It can be driven by a hot gas turbine or other suitable means. Featured in the design is low inertia and short circuit protection. The unit weighs 6.5 oz , and its measurements are 1.5 in . in diameter and 1.67 in . long.

D \& R Ltd., Dept. ED, 402 East Gutierrez, P.O. Box 1500, Santa Barbara, Calif.

CIRCLE 58 ON READER-SERVICE CARD

METAL FILM RESISTORS

Standard tolerance of these metal film resistors is ± 1 per cent. Their temperature coefficient is $\pm 50 \mathrm{ppm}$ per degree C over a temperature range of from -65 to +165 C , independent of resistance value. Type WHM, equivalent Mil style RN-75, measures $1.125 \times 0.406 \mathrm{in}$. It has a maximum voltage rating of 500 v . Type WFH measures $0.781 \times 0.25 \mathrm{in}$.

Resistance Products Co., Dept. ED, 914 S. 13th St., Harrisburg, Pa.

CIRCLE 59 ON READER-SERVICE CARD

COMMUTATOR

This commutator is spring-driven. Due to this drive mechanism the commutator has no rf noise generation, no gyroscopic effect, no heat generation and extremely low average power consumption. The unit is hand-wound and can be used for missile and space telemetering systems. Up to 100 or more sampling revolutions can be made before rewinding. Typical sampling speeds are $1 / 2$ or $1 / 50$ of a sec per revolution.
Applied Science Corp., of Princeton, Dept. ED, P.O. Box 44, Princeton, N.J.

CIRCLE 60 ON READER-SERVICE CARD

MAGNETIC AMPLIFIERS

Each of the four magnetic amplifiers in the Preac 60 -cps line can be used by itself or as a preamplifier for such devices as thermocouples, strain gages and bolometers. The four units provide a power gain greater than 50 db and a full linear output of 2 v into a 5000 ohm load with null drifts as low as $0.03 \mu \mathrm{amp}, 2.25 \times 10^{-12} \mathrm{w}$, riferred to the input. They are rated for operaion from $60 \pm 6 \mathrm{cps}$ power lines at $115 \mathrm{v} \pm 11$ ins.
Airpax Products Co., Seminole Dis., Dept. EI), Fort Lauderdale, Fla.

CIRCLE 61 ON READER-SERVICE CARD
ECTRONIC DESIGN • January 21, 1959

ONLY KIN TEL DIGITAL VOLTMETERS give you all these advantages

1. SINGLE-PLANEREADOUT: KIN TEL digital voltmeters employ a simple projection system to present numbers on a readable single plane... no superimposed outlines of "off" digits...reduced possibility of error. Standard pilot lamps give extra long life.
2. ADVANCED CIRCUIT DESIGN: Transistors employed where they contribute to performance and reliability...relay drive coils energized with DC as in telephone type service to provide long, trouble-free operation....automatic, continuous standard cell calibration. No electronic circuitry in readout allows easy remote mounting. Sensitivity control permits stable reading of noisy signals.
3. MANUFACTURING EXPERIENCE: KIN TEL has manufactured over 10,000 "standard cell accuracy" DC instruments on a true production line basis. Only by this method, by years of repeated manufacturing experience, by an over-all awareness of the accuracies and tolerances involved, is it possible to guarantee consistent accuracy and reliability... to assure real value for every dollar you invest.
4. NATIONWIDE APPLICATION ENGINEERINO FACILITIES: KIN TEL has engineering representatives in every major city. An experienced staff of over 200 field engineers is always immediately available to help solve your application problems, provide technical data, or prepare a detailed proposal. Factory level service is available in all areas.
5. DESIDERATE SPECIFICATIONS (MODEL 401B DC DIGITAL VILTMETER): Display ... 4 digit with automatic polarity indication and decimal placement. Total display area $2^{\prime \prime}$ high $\times 7 \frac{1 / 2 " 1}{}$ long, internally illuminated. Each digit $11 / /^{\prime \prime}$ high. Automatic Ranges... 0001 to 999.9 volts covered in 4 automatic ranges. Sensitivity control provides gain $\div 10$ setting and least digit sensitivities of $.1,1$, and 10 mv . Accuracy... $0.01 \% \pm 1$ digit. Counting Rate ... 20 counts per sec., providing average balance (reading) time of 1 sec . Reference Volt-age...Chopper-stabilized supply, referenced to an unsaturated mercury-cadmium standard cell. Input Impedance ... 10 megohms, on all ranges. Output...Visual display, plus print control. Automatic print impulse when the meter assumes balance. No accessories required to drive parallel input printers. Input ... 115 volt, 60 cycle, single phase, approx. 75 VA . Dimensions... Control unit, $5^{1 / 4^{\prime \prime}}$ high $\times 19^{\prime \prime}$ wide x $18^{\prime \prime}$ deep. Readout display, $3^{1 / 2^{\prime \prime}}$ high x $19^{\prime \prime}$ wide x $9^{\prime \prime}$ deep. Weight...Approx. 40 lb . Price... $\$ 2,450$.

Model 4028 AC/DC 4-digit

Model 401 B DC 4-digit

Model 501 DC 5-digir
8. WIOE RANOE OF MODELS-ACCESSORIES-sPECIAL SYSTEMS: Versatile "digital building blocks" permit measurement of AC, ohms, ratios of AC and DC, automatic scanning of multiple inputs...4-or 5-digit models. Preamplifiers increase digital voltmeter sensitivity to 1 microvolt DC, 10 microvolts AC. Buffers permit driving typewriters, tape punches and printers. KIN TEL's Special Products Department can design and manufacture digital instru ments to meet special requirements ...complete digital systems for data logging, missile checkout and automatic production line testing

Write today for descriptive literature or demonstration. 5725 Kearny Villa Road, San Diego 11, California CIRCLE 62 ON READER-SERVICE CARD

PRIME
 4. of ilne 5 principal manufacturers of AM, FM and TV transmitters, now specifically include the Amperex ${ }^{\text {a }}$ Type 5924 A Triode and the A O $O=M^{\circledR}$ Type 607 S* * Tetrode

in the design of their transmitting equipment

THE REASONS:

High Power Amplification Type 5924 A , anode capable of dissipating 6 kilowatts
Type 6076, anode capable of dissipating 3 kilowatts
Broad Frequency Range
Ratings for both tube types apply up to 220 mc .
Long Tube Life
Average life in excess of 5000 hours of operation under normal load conditions
Compact Design
Dimensions closely controlled for cavity operation
-Designates the air-cooled version. The water-cooled version bears the designation, Type 6075

amperex electronics corp., 230 duffy avenue, hicksville, l. l., n. Y. In Canada: Regors Electronic Tubes \& Components, 116 Vanderhoof Ave., Toronto, Ont.

Rapid Heat Dissipation
Extra-heavy copper wall anodes with high overload capacity All brazed cooler-fin radiator assembly
Proven Materials
Thoriated tungsten filaments
Platinum-clad molybdenum grids
All external surfaces silver-plated
Unique Design Features Low-inductance coaxial grid terminals permit improved isolation of input and output circuitry Short electrode structure for economical and compact transmitter design
abour sommunteations rubos for Rr, YMF and UNF appllicallone

ask Amperex

The Amperex Type 6076 incorporates modern tube design for excellent power capabilities throughout the RF. VHF and UHF ranges. AND, it is uniquely suited to single sideband operation.

NEW PRODUCTS

Tube, Transistor, and Diode Tester

Portable

Model 10-60 Electronamic tester affords comprehensive tube, trall sistor, crystal diode, and TV picture tube testing for industrial and conimunications applications. In tube tests, the unit covers a complete path of operation and checks all elements. It has built-in pin straighteners for 7 and 9 pin tubes. On voltage regulator tubes, it performs picture tube beam current tests, ultrasensitive gas tests, and functional tests. For transistor and crystal diode testing it has $I_{\text {cbo }}$ ranges to cover low, medium, and high power types. The $I_{\text {rlo, }}$ readings are directly related to true collector current. Collector potential range is from 0.5 to 160 vdc in 22 steps. The direct-reading Beta ranges employ separate injection currents for low and high power types. The tester comes in a carrying case 20×15. 7 in.
Precision Apparatus Co., Inc. Dept. ED, 70-31 84th St., Glendale N.Y.

CIRCLE 64 ON READER-SERVICE CARD

Microwave Frequency Calibrator

Generates harmonics up to $\mathbf{2 5} \mathbf{k m c}$
Harmonics up to 25 kmc can be generated with the 101 microwave frequency calibrator. The 450 mc crystal controlled signal is designed to feed directly into a waveguide or coaxial crystal holder. A 5 mc fundamental crystal provides a means of calibrating the instrument against WWV. Lower inten sity markers at 150 and 50 mc are present for wavemeter or receiver calibration.

Micro-Now Instrument Co., Dejt. ED, 6340 N. Tripp Ave., Chicaso 46, III.

CIRCLE 65 ON READER-SERVICE CARD

- CIRCLE 63 ON READER-SERVICE CARD

Binary Scaler
Has automatic reset

Binary scaler model GS-7 is designed for use "ith Geiger, scintillation, or proportional delectors. It has an automatic electric reset button which resets the register, timer, and binary scale indicators all at once. The unit contains a 5 digit Sodeco register and a 300 to 3000 v de detector upply. For predetermined counts, there is a elector switch which automatically stops the saling action after 1,10 , or 100 register counts
Technical Associates, Dept. ED. 140 W. Provilencia Ave., Burbank, Calif.

CIRCLE 66 ON READER-SERVICE CARD

Tantalum Capacitors

Offer high capacitance at low voltage

Providing large capacitance for low voltage circuits, type 200D tantalum electrolytic capacitors operate from -55 to +125 C under severe vibration and shock. In rectangular cases and five sizes, they have maximum capacitances of $-200 \mu \mathrm{f}, 15 \mathrm{v}$ at 85 C or 10 v at $125 \mathrm{C} ; 1300 \mu \mathrm{f}$, 30) v at 85 C or 20 v at $125 \mathrm{C} ; 1100$ uf, 45 v at 5 C or 30 v at $125 \mathrm{C} ; 1000 \mu \mathrm{f}, 50 \mathrm{v}$ at 85 C or河 v at $125 \mathrm{C} ; 660 \mu \mathrm{ff}, 75 \mathrm{v}$ at 85 C or 50 v at 25 C ; and $360 \mathrm{uf}, 110 \mathrm{v}$ at 85 C or 75 v at 125 C . IIl units have glass-to-metal solder seal termimals and porous anode type internal construction. Sprague Electric Co., Dept. ED. North Adams, 'ass.

CIRCLE 67 ON READER-SERVICE CARD
ECTRONIC DESIGN • January 21, 1959

From the research laboratories of ESC come pathfinding prototypes that keep ESC first in custom-built delay lines. As America's largest producer of delay lines, ESC has constantly assumed leadership in the vital area of research and development, creating delay lines that have met the most stringent requirements of military and commercial applications.

But there is more to ESC leadership. Its production and quality control facilities are unequalled in the field. ESC submits complete and definitive laboratory reports with all custom-built prototypes which include submitted electrical requirements, photo-oscillograms, the test equipment used, and an evaluation of the electrical characteristics of the prototype.

WRITE TODAY FOR COMPLETE TECHNICAL DATA.
exceptional employment opportunities for engineers experienced in computer components ...excellent profit-sharing plan.

Distributed constant delay lines - Lumped-constant delay lines - Variable delay networks - Contınuously variable delay lines - Pushbutton decade delay lines - Shift registers - Pulse transformers - Medium and low-power transformers - Filters of all types - Pulse-forming networks - Miniature plug in encapsulated circuit assemblies

CIRCLE 68 ON READER-SERVICE CARD

Filtors, the leading specialists in the development and manufacture of sub-miniature relays is proud to announce the addition of the new Powrmite micro-miniature relay to its existing line of traditionally outstanding relays.

In every field of achievement there is always one leader. In
relays with highest available reliability the leader is Filtors, Incorporated. All of the experience and know how gained in attaining its position of leadership have gone into making Filtors new Powrmite micro-miniature relay truly reliable again the leader in a fisld of many.
Leading manufacturers of hermetically sealed micro and sub-miniature relays. FILTORS, INC.

NEW PRODUCTS

Chart Recorder

For temperature and humidity
For indoor or outdoor use, model HGS-HYT-1SA temperature and humidity recorder consists of a sensing section and a signal cabinet which may be remotely located. From 32 to 130 F , it records relative humidity between 15 and 95% with $\pm 3^{\%} \%$ accuracy. Temperature recordings are within $\pm 1 \mathrm{deg} \mathrm{F}$ from 0 to 100 F . The unit incorporates a variable range limit alarm and has 6 in. daily or weekly recording charts. The sensing section is $12 \times 15 \times 6 \mathrm{in}$., and the signal cabinet is 8 cu in . Combined they weigh 20.75 lb .

Serdex, Inc., Dept. ED, 12 Bowdoin Sq., Boston 14, Mass.

CIRCLE 70 ON READER-SERVICE CARD

Encapsulated Silicon Rectifiers

Have piv values from 350 to 3200

This line of encapsulated silicon rectifiers includes units with piv values from 350 to 3200 and current ratings from 150 ma to 1 amp . Ambient temperature ratings are up to 140 C. Stock items include direct replacement types for $6 \mathbf{X} 4$, 5 Y 3 , and other vacuum tubes. Also available are printed circuit and under-chassis types in full wave, full wave bridge, and half wave versions.

Control Circuits, Inc., Dept. ED), 5 Barton Hill, East Hampton, Conis. CIRCLE 71 ON READER-SERVICE CARD

* CIRCLE 69 ON READER-SERVICE CARD

Core Storage Buffer
Handles 100,000 characters per see

Aaptable to printers and to pat per tape, magnetic tape, and punched card units, model 720-BA7 core storage buffer handles 100,000 characters per sec. It accepts any size block of data up to 720 characters of 6,7 , or 8 binary bits cach. Marker pulses indicate the loading of a block, permitting more than one to be loaded at a time. The buffer provides parallel loading and unloading of all bits of each character, sequential loading and mbloading of characters, and remote manual or electronic clearing. For mounting in a standard relay rack, it has all solid state elements and a self-contained power supply.
Telemeter Magnetics, Inc., Dept. ED, 2245 Pontins Ave., Ios Angeles 64, Calif.

CIRCLE 72 ON READER-SERVICE CARD

Mylar Capacitors
 No derating to 125 C

Epoxy encapsulated, type MD Mylar dielectric capacitors operate from -60 to +125 C without derating. For use in filters and couplings, they come in capacitances of 0.001 to 1 uf, for voltages from 100 to 800 v . They have a monconductive case with a hard. thin outer shell that eliminates tube -nclosure, end seals, tube fillers. and ground insulation.
Electronic Fabricators, Inc., Dept. ED, 682 Broadway, Now York 12. N.Y.

CIRCLE 73 ON READER-SERVICE CARD
CIRCLE 74 ON READER-SERVICE CARD $>$

Shown is A. Jacobsen, of the Du Mont engineering department, working with the Type 401.A

THE SUPERLATIVE PERFORMANCE OF THE 401-A SCOPE IS AVAILABLE IN RACKMOUNTED VERSION

We have made considerable comment recently concerning the gratifying success of our 401-A scope, which has become-in its relatively brief history-the most popular instrument in the low-frequency range. However, we have been needlessly silent regarding this noble scope's brother instrument, the 401-AR, which also has been making a most enviable record for itself.
The 401-AR is electrically identical to the bench-type $401 \cdot A$, and provides exactly the same high level of performance and dependability-the same high criteria of stability and accuracy-that characterize its much dis-
cussed counterpart. The only differences between the two units lie in the physical alterations required to adapt the scope for mounting in a standard 19 -inch relay rack.
We would like to emphasize at this point that there is no difference in price between the rack-mounted and bench-type models. Both sell for $\$ 450.00$ (FOB Clifton, New Jersey, U.S.A.)

For full information, call our representative in your area, or drop a line to us at the address below.

RESUME OF PERFORMANCE SPECIFICATIONS

IDENTICAL X-AND Y- AMPLIFIERS
Sensitivity: $10 \mathrm{mv} / \mathrm{cm}$ (100 mv full scale). Frequency Range: $D C$ to 100 kc ; down less than 3 db at 100 kc .
Calibration: Internal amplitude calibrator (both axes) with pre-set calibrated vernier detent points to eliminate need for recalibration after changing vernier gain control setting. SWEEPS
Range: Continuously variable fiom 250 msec / cm to $5 \mathrm{usec} / \mathrm{cm}$.
Modes: Front panel selection of driven or automatic sweep.

Synchronization: Front panel selection of internal, external, or line on signals of either polarity.
Calibration: Direct-reading sweep calibration
CATMODE-PAY TUBES
CATHODE-RAY TUBES
Tight tolerance Du Mont Type 5ADP, operated

POWER SUPPLY

All operating potentials regulated. Choice of electronic regulation or selffregulating transformer. (No price differential)

DEPENDABILITY

Stability: Drift does not exceed 1 cm from center in 8 -hour period, including 10% variations in line voltage.
Components: All components tested to exceed specifications. Hand-crafted wiring used throughout.

MECHANICAL

Dimensions: $83 /{ }^{\prime \prime}$ high $\times 14 \% / /^{" 1}$ wide (behind
panel) $\times 183 / /^{\prime \prime}$ deep behind panel, $201 /{ }^{\prime \prime}$
overall. Panel 19" wide.
Weight: Approximately 45 pounds.

Three voltage ranges:
 0-200, 125-325, 325-525 VDC

1.5 AMPERE MODELS NEED ONLY $83 / 4$ " OF PANEL HEIGHT!

MODEL C. $1580 \mathrm{M}: \quad 0-200 \mathrm{VDC}, 0-1500 \mathrm{MA} .580 .00 \quad$ MODEL C. $158 \mathrm{D}: \quad 0.200 \mathrm{VDC}, 0.1500 \mathrm{MA} .550 .00$ MODEL C-1581M: $125-325 \mathrm{VDC}, 0-1500 \mathrm{MA} .605 .00 \quad$ MODEL C-1581: $125-325 \mathrm{VDC}, 0.1500 \mathrm{MA} .575 .00$
MODEL C-1582M: $325-525 \mathrm{VDC}, 0-1500 \mathrm{MA} .680 .00 \quad$ MODEL C. $1582: 325-525 \mathrm{VDC}, 0.1500 \mathrm{MA} .650 .00$

800 MA MODELS NEED ONLY $7^{\prime \prime}$ OF PANEL HEIGHT!

400 MA MODELS NEED ONLY $51 /{ }^{\circ \prime \prime}$ OF PANEL HEIGHT!
MODEL C-480M: $0-200$ VDC, $0.400 \mathrm{MA}$.289.50 MODEL C-480: $0-200 \mathrm{VDC}, 0-400 \mathrm{MA} .259 .50$ MODEL C.481M: $125-325$ VDC, 0.400 MA. 274.50 MODEL C. 481 : $125-325$ VDC, $0-400$ MA. 244.50 MODEL C-482M: $325.525 \mathrm{VDC}, 0.400 \mathrm{MA} .289 .50$ MODEL C-482: $325-525 \mathrm{VDC}, 0.400 \mathrm{MA} .259 .50$

200 MA MODELS NEED ONLY 51/4" OF PANEL HEIGHT!
metered)
MODEL C-280: 0-200 VDC, 0-200 MA 184.5 MODEL C-281M: 125.325 VDC, $0-200$ MA. 189.50 MODEL C-281: $125-325$ VDC, $0-200$ MA. 159.5 MODEL C. $282 \mathrm{M}: 325-525$ VDC, 0.200 MA .199 .50 MODEL C.282: $325-525 \mathrm{VDC}, \mathrm{O} 0200 \mathrm{MA} .169 .50$

For all power supply needs through 1.5 amperes:

LAMBDA COM-PAK POWER SUPPLIES

Less space! Improved performance! Long, trouble-free service! Transient free output!

Fills the need for compact, regulated DC power supplies. Economy of panel space, functional simplicity, new quick-service features.
Wiring, tubes and other components readily accessible. You can reach them easily, service them fast.
$400 \mathrm{MA}, 800 \mathrm{MA}$, and 1.5 ampere models include new, high-efficiency, long-life, hermetically-sealed semi-conductor rectifiers. All Com-Pak models are constructed with hermetically-sealed magnetic components and capacitors for long trouble-free service.

Condensed Data

LINE REGULATION
Better than 0.15% or 0.3 Volt, whichever is greater. OAD REGULATION Better than 0.25% or 0.5 INTERNAL IMPEDANCE

C. 200 Series C- 400 Series C- 800 Series C-1500 Series	. . Less than 6 ohms. . . Less than 3 ohms. . . Less than 1.5 ohms. . . Less than 0.75 ohms.
RIPPLE AND NOISE	Less than 3 millivolts rms.
POLARITY	Either positive or negative may be grounded.
AMBIENT TEMPERATURE.	Continuous duty at full load up to $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ ambient.
AC OUTPUT (unregulated)	6.5 VAC (at 115 VAC Input).
C. 200 Series	10 AMP
C- 400 Series	15 AMP
C- 800 Series	20 AMP
C-1500 Series	30 AMP
AC input	105-125 VAC, 50-400 CPS
OVERLOAD PROTECTION	AC and DC fuses; built-in tlown-fuse indicators.

NEW 1959 CATALOG NOW AVAILABLE

New 36-page edition contains information and specifications on Lambda's full line of transistor-regulated and tube-regulated power supplies.

ALL LAMBDA POWER SUPPLIES ARE GUARANTEED FOR FIVE YEAR8.
LAMBDA ELECTRONICS CORP.

NEW PRODUCTS

Terminal Block

Has gold plated lugs

Terminal lugs on the T-1000 block are gold plated to meet environmental conditions of salt spray and humidity. Designed for use with ground support equipment, this terminal block is constructed of a molded phenolic base with reinforced barriers between terminal cavities. One cavity will accommodate four terminals. U_{p} to 40 connections can be made with one block. The block measures 5 x $1-1 / 16 \times 3 / 4 \mathrm{in}$.
Twin Lock Inc., Dept. ED, 1024 W. Hillcrest Blvd., Inglewood, Calif.

CIRCLE 76 ON READER-SERVICE CARD

Regulated DC Power Supply

0.04% ripple

Tubeless model KM-254 power supply delivers in two ranges: 30 to $60 \mathrm{v} \mathrm{dc}, 0$ to 4 amp ; and 60 to 90 v dc, 0 to 2.8 amp . Regulation for line or load is less than $\pm 1 \%$ and ripple is less than 0.04%. The unit has a control for optimizing regulation at any given output volt age, short circuit and overload pro tection, and good line transient re sponse and resolution. It is 19 in . wide, 5-1/4 in. high, and 13 in . deep.

Kepco Labs, Inc., Dept. EI) 131-38 Sanford Ave., Flushing 55 N.Y.

CIRCLE 77 ON READER-SERVICE CARD
\& CIRCLE 75 ON READER-SERVICE CARD

Decimal Selector

 For transistorized binary counterA decimal to four line binary code converting switch, model 319C can be used to preset the complement nine binary code directly into the company's model 190A or 312 transistorized binary decimal counters. The selector panel measures 2-7/S × 3-1/4 in. and is mounted directly on a miniature 10 position switch which can in turn be mounted directly to a control panel in a $1 / 4 \mathrm{in}$. mounting hole. The selected decimal number is converted into four line binary code and is controlled by four diode gates at the output points. With complement nine presclting, the carry pulse from the last decade can be used as a stop pulse in a counting operation, and no resetting is needed.
Navigation Computer Corp., Dept. ED, 1621 Snyder Ave., Philadelphia 45, Pa.

CIRCLE 78 ON READER-SERVICE CARD
Silicon Power Diode
70 to 250 amp

These silicon power diodes provide up to 250 amp forward current and are rated from 50 to 500 piv. They are designed for high temperature use and can operate at I junction temperature of 190 C . Units are hermetically sealed and no soft solders or fluxes are used in sealing.
International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., El iegundo, Calif.
CIRCLE 79 ON READER-SERVICE CARD

INTERNATIONAL RECTIFIER CORPORATION

Military Type High Temperature Silicon Power Diodes Operate to $165^{\circ} \mathrm{C}$

For military or industrial applications For military or industrial applications where high temperature operation is a
must, International Rectifier offers two must, International Rectinier offers two power diodes. Both supply full rated power under convection cooling with out a heat sink
JETEC series 1N536-1N540 and iN1095-96 operates at $-65^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$ with output currents to 75() ma . I'IV ratings from 50 to 600 v . Bulletin SR-202A describes them.
For power supply or magnetic amplifier use, 16 JETEC types are listed in Bulletin SR-132E. Ratings: 50 to 600 v PIV at 300 ma . Temperature range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.
The high forward conductance and extremely low leakage of these diodes permits rectification ef. up to 70% to 99% CIRCLE READER SERVICE CARD NO. 547

Ratings: $\mathbf{1 0 0}$ to $\mathbf{6 0 0}$ PIV, up to $\mathbf{5 0 0} \mathrm{ma}$
Miniaturized Sllicon Diodes For Military and Commercial Use. Write for Bulletin SR-203

Hermetically Sealed Industrial Silicon Diodes Provide $\mathbf{7 5 0 m a}$ Output Without Heat Sink

Diodes in this scries have been designed to provide optimum reliability and efficiency to your industrial or commercial equipment circuits. By eliminating the space consuming heat sink you can also realize economies in
equipment size as well as assembly equipment size
time and costs.
ime and costs
Rectified dc output current ratings to 750 ma at $50^{\circ} \mathrm{C}$ can be obtained with PIV voltages ranging from 100 to 500 v The diode junction is hermetically sealed in an all-welded, shock-proof housing, a a inechanical construction assuring physical strength and a posi-
tive safeguard against contaminants. This addls up to the really important frature - long term reliability! For complete specifications
CIRCLE READER SERVICE CARD NO. 548

Absolute Maximum Ratings (at 60 cps . Resistive or Inductive Load)

O100E TVFS	30-91	30.20	30-33	80.4	80.05	80.019	80.02A	80.339	30-4a	80.00m
Peoul invers Voituge Volts	100	200	300	400	500	100	200	300	400	500
RMS Inout Volitece, Voits	70	140	210	280	350	70	140	210	280	350
Coninuous D.C. Voluse. Volts	100	200	300	400	500	100	200	300	400	500
Rectified D.C. Output Current, ms. et $50^{\circ} \mathrm{C}$ Ambient	550	550	550	550	550	750	750	750	750	750
\%1100 ${ }^{\circ} \mathrm{C}$ Ambiemt	300	300	300	300	300	500	500	500	500	400
Max, Surge Current (1) cyclo), Amps.	10	10	10	10	10	15	15	15	15	15
Max Operating Frequencr, Kilocycles	50	50	50	50	50	50	50	50	50	50
Ambienl Operating Temperature. ${ }^{\circ} \mathrm{C}$	$-65^{\circ} \mathrm{C}$ 10 $+125^{\circ} \mathrm{C}$					$-65^{\circ} \mathrm{C}$ 10 $+125^{\circ} \mathrm{C}$				
Eisctracml cmanactensilis										
Mase D.C. Formard Voltage Oroo at $25^{\circ} \mathrm{C}$	c 1.5 volts @ $550 \mathrm{mo} \mathrm{de} \mathrm{call} \mathrm{types)}$					13 woils @ 750 modc cull types)				
Min. Series Resistance Capacitive Load) (ohms)	6.8	68	6.8	68	68	$4)$	47	4.7	4.7	4.7
Mar. Leakage Current (mAi in Aoted Continuous DC. Voltage at $100^{\circ} \mathrm{C}$	1.0	10	10	80	. 65	05	05	0.5	0.4	0.3

High Temperature Stud Mounted Silicon Diode Series Includes Nineteen JETEC and JAN Types.

These silicon power rectifiers are de signed for conduction cooling by mounting directly onto the chassis. Rating from 400 ma to one amp. are possible at PIV ratings of from 50 to $\mathbf{6 0 0}$ volts. Power supply types 1N607 thru 1N614 and magnetic amplifier types eaturing low leakage current and high forward conductance are included in Bulletin SR-135C.
JAN types IN253, 1N254, 1N255 for the military are in full production.
CIRCLE READER SERVICE CARD NO. 549

RESEARCH ACTIVITIES APPROACH IDEALIZED TRANSISTOR RELIABILITY

A bright new chapter in transistor history is being recorded at GIS research laboratories, resulting in progressive transistor design of unprecedented reliability, performance and stability. Advanced pro. duction control techniques have made possible the New "A-Types" with specification refinements providing. .
tighter parameter control
higher operating voltages
higher switching speeds WIDER APPLICATION RANGES

New process controls highlighted by high sensitivity hermetic seal testing, pre-tinning of internal parts, automatic welding of the hermetic seal case and individual handling of units in process insure improved reliability, uniformity of electrical properties, high mechanical strength and superior hermetic seal. All transistors are pre-aged for 100 hours at $100^{\circ} \mathrm{C}$.

Popular computer types 2N311. 2N312, 2N4O4, 2N426, 2N427. 2N428. 2N439 and 2N440 are also avallable.
You grow fastest with the products that serve you best. Prove it to
GENERAL TRANSISTOR
91.27 138TH PLACE • JAMAICA 35. NEW YORK

CIRCLE 80 ON READER-SERVICE CARD

YEARS AHEAD IN RELIABILITY

NEW PRODUCTS

Transistor Tester

Has five $I_{c b o}$ ranges

Portable model 960 transistor and crystal diode tester checks $I_{\text {cbon }}$, gain, leakage, and shorts on low, medium, and high power transistors. It handles tetrode, pnp, and npn types. In five $I_{\text {cbo }}$ ranges, it provides direct readings in terms of true collector current on a wide angle 5-1/2 in., 100μ a meter. The unit also offers collector potentials from 0.5 to 100 v de in 17 selected steps, and direct reading gain ranges with five separate injection currents for low, medium, and high power types. Leakage tests check emitter to collector current at fixed collector bias. All tramsistor test settings are on a high speed roller chart. The unit has a patchcord element selector system. A self-contained, ac operated unit, it comes in an $18 \times 10-1 / 2 \times 6-1 / 4 \mathrm{in}$. case.
Precision Apparatus Co., Inc.. Dept. ED. Glendale, N.Y.

CIRCLE 81 ON READER-SERVICE CARD

Tachometer Generator
Brush lasts over 10 years

The brush in this de tachometer generator is guaranteed to last through $1(0),(0) 0$ hours of continuous operation at 3600 rpm . From 0 to $12,000 \mathrm{rpm}$, the gencrator provides a linearit of better than 0.1% of the voltage output at 3600 rpm . The commutator is fabricated from an alloy containing more than 85% pure silver.
Servo-Tek Products Co., Dept. ED, 1080 Goffle Rd., Hawthorne, N.J.

CIRCLE 82 ON READER-SERVICE CARD
ELECTRONIC DESIGN • January 21, 1955

(left) Lockheed X-17.
Lockheed-designed checkout computers are already proving their effectiveness in service
(left) Automatic Checkout and Readiness Equipmen (ACRE) - a Lockheed product-attomatically performs pre-program missile checkouts and run: lagnost routc
(helow) Another Lockheed
(helow) Another Lockheed lesigned automatic missile feckight

EXPANDING

THE FRONTIERS
OF SPACE
TECHNOLOGY

Lockheed's capability in the design and development of computers is contributing to the advancement of the state of the art. Research is being conducted in the building of machines capable of reading 5,000 characters a minute ; in the development of high-speed digital plotters which will operate up to 5,000 points a second from magnetic tape input; in the improvement of library reference systems for the storing and retrieval of information; and in the study of self-organizing machines using variable threshold neurons that will operate essentially without programming.
The ACRE system developed by Lockheed combines outstanding performance at the lowest cost in the industry, and has broad applications to a number of other missile and space projects. Scientists and engineers of outstanding talent and inquiring mind are invited to join us in the nation's most interesting and challenging basic research and development programs. Write: Research and Development Staff, Dept. A A-21, 962 W. El Camino Real, Sunnyvale, California, or 7701 Woodley Ave., Van Nuys, California. For the convenience of those living in the East and Midwest, offices are maintained at Suite 745, 405 Lexington Ave., New York 17, and Suite 300, 840 No. Michigan Alc.. Chicago 11.
"The organization that contributed most in the past tear to the advancement of the art of missiles and astronalitic:" NATIONAI. MISSII INDUSTRY CONFFRFNCE AWARID
Lockheed / missile systems division
\qquad

NEW PRODUCTS

Microwave Attenuator

Electronically variable

Called V Pad, this broadband coaxial attenuator is electronically variable from 10 to 25 db . Variation is continuous, being a function of solenoid current. Maximum attenuation requires 30 ma at S-Band and 70 ma at X-Band. Other models available with attenuation as low as 3 db over the 2 to 10 kmc range.
Microwave Control Corp., Dept. ED. 250 W. 57th St., New York 19, N.Y.

CIRCLE 83 on reader-SERVICE CARD
SSB Transmission Tester
150 cps to 30 kc preset sweep widths

Made up of a spectrum analyzer, a tuning head, and a two-tone generator, the SSB-3 tester incorporates equipment needed to set up, adjust, monitor, and trouble-shoot ssb and a-m transmissions. It has preset sweep widths of 150,500 . $2000,10,000$, and $30,000 \mathrm{cps}$; a continuously variable sweep width to 100 kc ; a dynamic range of 60 db ; and hum sidebands of 60 cps measurable down to -60 db . The unit has linear and logarithmic amplitude scales, a standard 5 in . crt, and two auxiliary outputs for chart recorder or large screen crt. The tuning head spans the 2 to 3.9 mc spectrum with direct reading dial.
Panoramic Radio Products, Inc., Dept. ED, 514 S. Fulton Ave., Mt. Vernon, N.Y.

CIRCLE 84 ON READER-SERVICE CARD

The Visicorder charts pressure fluctuations in a supersonic inlet

A Model 906 Honeywell Visicorder wrote this record of pressure fluctuations . . ."buzz". . . for the National Advisory Committee for Aeronautics at the Lewis Flight Propulsion Laboratory in Cleveland. Buzz is the term used to describe unsteady variation in pressure and airflow characteristics of a supersonic aircraft or missile inlet.

The purpose of these Visicorder studies is to define the buzz-free operating limits of the inlet. and to provide the designer with structural load information in case the inlet is inadvertantly caused to operate on buzz during flight. This is
particularly important because inlet buzz can result in fluctuating structural loads of the order of 1000 psf. Depending on the inlet design, this could cause structural failure of the inlet and loss of the airplane.

High response pressure transducers are used to measure these fluctuating pressures and the resulting electrical signal is fed into the Visicorder. Records such as this are also necessary in the determination of the inlet dynamics such as delay time. This information is then used to design inlet control systems.

is a record of "Buzz""

The Honeywell Visicorder is the first highfrequency, high-sensitivity direct recording oscillograph. In laboratories and in the field everywhere, instantly-readable Visicorder records are pointing the way to new advances in product design, rocketry, computing, control, nucleonics . . in any field where high speed variables are under study.

To record high frequency variables-and monitor them as they are recorded-use the Visicorder Oscillograph. Call your nearest Min neapolis-Honeywell Industrial Sales Office for a demonstration.

Reference Dafa: Write for Visicorder Bulletin Minneapolis-Honeywell Regulator Co., Industrial Products Group, Heiland Division 5200 E. Evans Ave., Denver 22, Colo.

Limiting Amplifier

Has fast attack time

Designed to overcome problems encountered in automatically controlling program level, the model 660 limiting amplifier has a fast attack time to catch short transients without audible or observable thumps. Release time is adjustable from 0.5 to 40 sec in six steps. Three of these positions made the release time the automatic function of the nature of program material, thus providing fast recovery for short duration peaks and automatic reduction of overall level should the program level remain high. Audible thumps are eliminated by the use of a single push-pull stage of audio amplification and high control voltage. The unit has low distortion and noise and may be placed into any normal line level circuit. It is mounted on a 10.5 in . chassis.

Fairchild Recording Equipment Corp., Dept. ED, 10-40 45th Ave., Long Island City 1, N.Y.

CIRCLE 86 ON READER-SERVICE CARD

Precision Resistors

High temperature

Sealed by metal to glass fusion, these resistors are free of contamination. The PT501, $17 / 32 \mathrm{in}$. long, is rated at $0.5 \mathrm{w}, 350 \mathrm{v}$; the PT1001, 1-1/32 in. long, is rated at $1 \mathrm{w}, 500 \mathrm{v}$. Derating is linear from full power at 70 C , with usable properties to 400 C . Storage at high temperatures shows negligible changes. The units exceed MIL-R-10509B requirements.
Pyrofilm Resistor Co., Dept. ED, U.S. Highway 46, Parsippany, N.J.
circle 87 On reader-service card

Save design time, avoid assembly headaches with General Electric custom-designed DC power supplies

NO PROBLEM TOO GREAT...
... NO PROBLEM TOO SMALL!

Complete systems

Individual packages

Partial systems

Subcontract your power supply problems to General Electric! Whether your requirements can be met by the existing, completely engineered supplies we have on hand-or involve custom-packaging of "building blocks"-or call for altogether new designs-give us the power supply system responsibility! Consult your local Apparatus Sales Office, or write for bulletin GEA-6690 to Section G465-5, General Electric Co., Rectifier Dept., Lynchburg, Va.

Progress is Our Most Imporrant Product GENERAL (96) ELECTRIC

NEW PRODUCTS

Microwave Oscillators

3950 to $11,000 \mathrm{mc}$ range

Test oscillators C.772A and X762A are selfcontained power source's for the 3950 to 11,000 inc range. Their output is 10 to 100 mw . They have an integral regulated power supply and modulator, single knob direct reading frequency control, automatic reflector voltage tracking, and ath rf attenuator.
F-R Machine Works, Inc.. Dept. EI), 26-12 Borongh Place, Woodside 7T, N.l.

CIRCLE 89 ON READER-SERVICE CARD
Servo Amplifier
Voltage gain of 2500 at 10 v output

I fermetically sealed model 1800-3300 is a plugin, transistorized servo amplifier primarily intended to receive signals, from a synchro control transformer and to operate a size $11,400 \mathrm{cps}$, 3.5 w servo motor. The unit has a nominal voltage gain of 2500 at 10 v output and an input impedance of 5000 ohms. Input power is 28 v dc at 100 ma , and output is 20 v . Phase shift is essentially 90 deg, and carrier frequency is 380 to $4_{20}()_{\text {chs. }}$ Designed to exceed MIL-E-5400A environmental requirements, the amplifier operates continuously between -5.5 and +100 C , and intermittently to 1.25 C. A 7 -pin unit, it is $1-3 / 16$ 1-11/16 $\times 2-37 / 64 \mathrm{in}$. and weighs 4-1/2 o7.
M. Ten Bosch, Inc., Dept. ED, So Wheeler Ave., Pleasantville, N.Y.

CIRCLE 90 ON READER-SERVICE CARD

FLIGHT DATA and CONTROL ENGINEERS

Cross new frontiers in system electronics at The Garrett Corporation.
High-level assignments in the design and development of system elec. tronics are a a ailable for engineers in the following specialties:

I. ELECTRONIC AND FLIGHT DATA

 SYSTEMS AND CONTROLS A wide choice of opportunities exists for creative $R \& D$ engineers having specialized experience with control devices such as: transducers, flight data computers, Mach sensors, servo-mechanisms, circuit and analog computer designs utilizing transistors, magamps and vacuum tubes.2. SERVO-MECHANISMSAND ELECTRO-MAGNETICS Requires engineers with experience or academic training in the advanced design, development and application of magamp inductors and transformers.
3. FLIGHT INSTRUMENTS AND TRANSDUCERS
1) DESIGN ANALYSIS Requires engineers capable of performance analysis throughout preliminary design with ability to prepare and coordinate related proposals.
2) DEVELOPMENT Requires engineers skilled with the analysis and synthesis of dynamic systems including design of miniature mechanisms in which low friction freedom from vibration effects and compensation of thermo expansion are important.
4. PROPOSAL AND QUALTEST ENGINEER For specification review, proposal and qualtest analysis and report writing assignments. Three years electronic, electrical or mechanical experience required.

Forward resume io

> Mr. G. D. Bradley

comporatrone
9851 S. Sepulveda Blved.
Los Angeles 45, Calif:
DIVISIONS:
AiResearch Manufacturing-Los Angeles AiResearch Manufacturns

Airesearch Industrial
Air Cruisers Engineering
AiResearch Aviation Service

THE NAVY'S FIRST WEAPON SYSTEM...

The A3J "Vigilante,"

 equipped with viral AiResearch subsystems

Centralized Air Data Computing System

Refrigeration Package

Ram Air Turbine

North American Aviation: s win-jet A3J "Vigilante" is the Navy"s new est attack weapon system ... an allweather, carrier-based, $30,000 \mathrm{lb}$. thrust aircraft which delivers both conventional and nuclear weapons from high or low altitudes at supersonic speeds.

Contributing to the success of the first aircraft produced under the Navy's weapon system management concept is the following AiResearch equipment:
AiResearch Centralized Air Data Computing System pro-
vides information for the major flight data subsystems dealing with bombing, navigation, engine inlet control. radar, automatic flight control and includes cockpit indicators showing true air speed. altitude and engine inlet air temperature. AiResearch Environmental System Components for personnel and compartment air conditioning and pressurization include: cabin pressure regulators. safety valves. cabin refrigeration package. equipment compartment refrig. eration package, primary heat
rxchangers, pressure suit heat exchangers and water-alcohol tanks for evaporative cooling.
AiResearch Ram Air Turbines provide power for operation of surface controls, instrumentation and landing gear in case of emergencies. Also included are miscellaneous valves and electro-mechanical equipment.
Systems engineering, support services and svstems management have enabled AiResearch to integrate these vital subsystems into North American's A3J.

NEW PRODUCTS

Tubular Capacitors

For high voltage use

In hermetically sealed steatite housing，these tubular capacitors are constructed of polyester film impregnated with a stable purified silicone fluid．They are designed to operate at full volt－ age from -60 to +125 C with no derating．Ca－ pacitances range up to $0.5 \mu \mathrm{f}$ ，and dc working voltages range from 2 to 15 kv for continuous operation at 125 C ．The units are available with plain end caps for clip mountings；with axial threaded studs no． $8-32 \times 3 / 8 \mathrm{in}$ ．long；or with axial tinned no． 20 copper wire leads $1-3 / 8 \mathrm{in}$ ． long at the ends．

Axel Bros．，Inc．，Axel Electronics Div．，Dept． ED，134－20 Jamaica Ave．，Jamaica 18，N．Y．

CIRCLE 92 ON READER－SERVICE CARD

Time Delay Relays
Provide instantaneous reset

Available with multiple poles and various cur－ rent ratings，type MTRH－6 time delay relays pro－ vide immediate reset at the completion of a delay cycle．In standard mounting arrangements，the units occupy 2.25 cu in ．and weigh 3 oz ．

Branson Corp．，Dept．ED， 41 S．Jefferson Rd．， Whippany，N．J．

CIRCLE 93 ON READER－SERVICE CARD

SCIENTISTS at Sylvania＇s Microwave Components Labo－ ratory are probing advanced concepts in magnetic ferrites， gaseous electronics，and electromagnetic wave propagation．

ENGINEERS at Sylvania＇s Mountain View microwave tube plant are incorporating the findings of advanced research into new microwave components for mass production．

A SPECIAL REPORT ON SYLVANIA

MEN OF MICROWAVE

TWT，BWO，BWM，TR，ATR－At Sylvania＇s Special Tube Operations，vital microwave components like these are the products of dedicated scientists and integrated plant facilities

ADVANCED RESEARCH AND DEVELOPMENT

Today，nearly 500 scientists，engineers and technicians in three integrated facilities make up Sylvania＇s Special Tube Operations．Sylvania scientists，physicists and mathema－ ticians，all leaders in their helds，are making bold new investigations in the fields of magnetic ferrites，gaseous electron physics，electromagnetic wave propagation and microwave circuitry．Their findings are being applied to the development of advanced microwave devices to meet the increasing needs of industry and government．

Some of the important developments already made pos－ sible include PM focus Traveling－Wave Tubes，Ka Band and Backward Wave Magnetrons，Coaxial Transmit－Receive

Tubes，Four－port ferrite circulators and C－Band Klystrons TRAVELING－WAVE TUBES
PM Focus Traveling－Wave Tubes sharply reduce size ant weight and eliminate the need of a power supply．Sylvanit is producing over 15 Traveling－Wave Tube types，one of the most complete lines available in terms of frequency cover age and power levels．

MAGNETRONS AND KLYSTRONS
New Sylvania magnetrons range from six－ounce miniature and rugged Ka band types to Backward Wave Magnetron： New BWM＇s have been developed for several frequenc bands in medium to high power outputs．Current Klystron production includes over 20 types－from Disc Seal types to C－Band metal types．

TR－ATR TUBES AND FERRITE DEVICES
Transmit－Receive Tubes in the new coaxial construction are also in production at Sylvania，along with over 2

TECHNICIANS, shown here working side by side with engineers at Sylvania's Williamsport, Pa., plant, are applying new testing techniques to mass production.

E LETTERS

different types of Klystrons. A full commercial line of ferrite devices ranges from wave guide and coaxial isolators to variable attenuators and other ferrite devices.

MICROWAVE DIODES
Long an acknowledged leader in microwave crystal diodes, Sylvania is continuing to add new and improved versions to its extensive line. New mixer diodes are available that can extend radar coverage by as much as 18 per cent. New dual duty S and X band types that can be used in either forward or reverse applications are also available.

OTHER S.T. O. PRODUCTS

In addition to a full range of microwave components Sylvania`sSpecial Tube Operations also produces a complete line of counter tubes, planar triodes and trigger thyratrons.
S.T.O. stands ready to meet the industry's microwave components needs-for present production items in volume -for custom modifications-or for pure research and development in microwave electronics.

PRODUCTION engineers and specialists are developing new control techniques for better matss production of microwave components.

A. Microwave Crystal Diode, B. Ferrite Isolator, C.Couxial TR Tube, D. Traveling-Wave Tube, E. Ka Band Magnetron.

- SYLVANIA

Sylvania Elegtric Products Inc. Special Tube Operations 500 Evelyn Ave., Mountain View, Calif.

Now, Immediate Delivery from Stock on GENERAL CERAMICS SPECIAL PURPOSE FERRITE CORES

Rush service for designers - use this handy materials selector chart

Ferrite Cores available in various materials for development and design engineers to cover specific frequency bands of operation from 1 KC to 50 megacycles. General Ceramics provides extrafast service on sample quantities for development and will make prompt delivery on production parts in reasonable quantities. Call. wire or write General Ceramics Corporation. Keasbey, New Jersey Please direct inquiries to Dept. ED.

GENFRAL GERAMICS

Industrial Ceramics for Industrial Progress... Since 1906
CIRCLE 97 ON READER-SERVICE CARD

NEW PRODUCTS

Rotary Mechanical Stops
Size 10

Regardless of turn setting, these rotary mechanical stops are all size 10 . Standard units are set for 15 or 30 turns; others can be set for partial turns or any number of full turns from 1 through 30. Suited for use in instruments and gear trains, the stops have a total turn accuracy of ± 5 deg. Starting torque is 0.04 in .-oz maximum; static torque, 200 in.-oz minimum; and rotor inertia, $0.68 \mathrm{gm} \mathrm{cm}^{2}$. The units operate from -54 to +71 C .
Kearfott Co., Inc., Dept. ED, 15000 Main Ave. Clifton, N.J.

CIRCLE 98 ON READER-SERVICE CARD

Coaxial Hybrid Junctions

Cover 460 to 4000 mc

For use in duplexers, mixers, and other circuits. these three coaxial hybrid junction models cover frequencies of 460 to 950,950 to 2000 , and 2000 to 4000 mc . They provide 3 db coupling, ± 0.25 over the entire band and have a vswr of 1.2 with 20 db isolation. A signal into any terminal of the hybrid appears at the two opposite terminals The two output signals are equal in amplitude but one is 90 deg out of phase with the other. Each unit consists of two coupled coaxial transmission lines with rectangular center conductors Type \mathbf{N} female terminals are standard, but types C, TNC, BNC, or SC may be ordered.

Narda Microwave Corp., Dept. ED, 118-160 Herricks Rd., Mineola, N.Y.
cIRCLE 99 on reader-SERVICe card
ELECTRONIC DESIGN • January 21, 1959

Teflon Terminals For high voltage requirements

11

Teflon insulated, these Press-Fit terminals are available in nominal voltage ratings of 5500 or 13,000 flashover at sea level. The Teflon offers high surface resistivity and does not carbonize or form decomposition products during flashover or arcing. Thus there is no insulation loss with successive arcing.

Sealectro Corp., Dept. EI), 610 Fayette Ave., Mamaroneck, N.Y.

CIRCIE 106 ON READER-SERVICE CARD

Synchros
Indicate shaft rotation

These synchro transmitters indicate shaft rotation about a reference position in the form of a polarized voltage. Phase relationships indicate the direction of turn. Induction type, the potentiometers need no sliders to make electrical contacts, and thus eliminate circuit interruptions and the wear found in other potentiometer types. Outputs of shaft rotation are linear over a range of $\pm 60 \mathrm{deg}$ from electrical zero. Linearity of the unit is 0.28 to 1%; nominal output, 20.4 or 60 v ; rensitivity, 0.34 to 1 v per deg. Input to output phase shift is 9 deg . The unit has a $2 \mathrm{gm} \mathrm{cm}^{2}$ rotor moment of inertia and operates from -.55 in +100 C . It weighs 4 oz .
Kearfott Co., Inc., Dept. ED, 1378 Main Ave. ($\mathrm{lifton}, \mathrm{N} . J$.

CIRCLE 107 ON READER-SERVICE CARD

Kleinschmidt super-speed teletypewriters provide world's fastest printed combat communications for the U.S. Army!

Taking the jolts and jars of movement by air in stride, the new Kleinschmidt telecommunications units handle printed messages at speeds up to 750 words a minute! Using these machines, developed in cooperation with the U. S. Army Signal Corps, information on enemy movements could move accurately and rapidly to friendly units widely
dispersed under nuclear battlefield conditions. In recognition of Kleinschmidt's high standards of quality, equipment produced for the U. S. Army is manufactured under the Reduced Inspection Quality Assurance Plan. Today, the advanced commercial application of electronic communications is unlimited.

Pioneer in teleprinted communications systems and equipment since 1911 CIRCLE 108 ON READER-SERVICE CARD

KEEP UP-TO-DATE ON MAGNETICS

GUARANTEED TO WITHSTAND 1,000 VOLTS!

GVB-finished tape wound core boxes drop your production costs

We have developed a radical new finish for aluminum boxes for tape wound cores. Your production department will glow with delight, for we guarantec this finish to withstand 1.000 volts (at 60 cycles) without taping!
GVB, for Guaranteed Voltage Breakdown (limits), is what we call this new fimish. It is perfectly matcleed to our alluminum core boxes, for it will withstand temperatures from $-70^{\circ} \mathrm{F}$ to $450^{\circ} \mathrm{F}$. Potting techniques need not change. for GVB-finish lives happily with standard potting compounds.
By eliminating the need for taping the wore box, you also eliminate a time consuming proxluction sep. By com bining GVB-finish with our aluminum core box. we assure you a core capable of being vatumm impregnated down to 20 mm . of mercury.

And they are Performance Guaranted! Like all tape wound cores from Magnetics. Inc., aluminum-boxed or phe-nolic-boxed vou buy them with performance guaranteed to
published limits. The maximum and minimum limits are for $\mathrm{B}_{\mathrm{m}}, \mathrm{B}_{\mathrm{r}} / \mathbf{B}_{\mathrm{m}}, \mathrm{H}_{1}$ and gain. This data is published for one, wo, four and six mil Orthonol ${ }^{\circledR}$ and Hy Mu 80 tape cores.

GVB-finished cores are ready for you now. So are the published limits for all Magnetios, Inc. tape wound cores. Write today for more GVB details, and for vour copy of the guaranteed performance limits: Dept. ED-51 Magnetics, Inc. Butler, Pemmsvamia

MAEMETICS inc.

NEW PRODUCTS

Low Frequency Analyzer

2 to 22 cps resolution

Model SS-5 low frequency analyzer will give a fourier analysis of all signals in the 1 cps to 5.3 ke range, and simultaneously measure frequency and amplitude. The unit provides continuously variable tracked sweep width, sweep rate, and gain compensation. It has neon tube failure indicators, front end overload protection, a spurious rejection input filter, and a built in power supply. Center frequency is 0 to 5 kc ; sweep width, 20 to 600 cps ; sweep rate, 1 to 30 sec; resolution 2 to 22 cps; and full scale sensitivity. 5 mv to 500 v . Voltage scales are linear and 2 decade log. The SS-5 is suited for the design and harmonic analysis of servo and telemetering systems; for tape recorder wow and hum analysis; and for vibration and noise analysis of motors. generators, and electron tubes.
Probescope Co., Inc., Dept. ED. 8 Sagamore Hill Dr., Manorhaven, N.Y.

CIRCLE 110 ON READER-SERVICE CARD

Voltage-Current Calibrator

0.3% accuracy

Designed to serve as either a comparator type calibrator or a secondary voltage standard, model 1080 voltage-current calibrator has better than 0.3% accuracy. As a voltage reference, it delivers calibrated positive or negative voltages continuously variable through four ranges between 1 mv and 100 v . The standard voltage is available either as a direct voltage or as a 5 msec level repeated at rates of 5 to 50 times per sec. In comparator type operation, the unit calibrates positive or negative voltages from 1 mv to 1000 v or currents from 1 ma to 10 amp , continuously vari able through five and four ranges, respectively.

Rese Engineering, Inč., Dept. ED, 731 Arch St., Philadelphia 6, Pa.

CIRCLE III ON reader-service card

Antenna Multicoupler 45 db minimum isolation

This antenna multicoupler will pass the frequency range between 200 and 400 mc from a single wideband antenna to four separate-channel receivers. By cascading multicouplers, the same antenna will feed additional receivers. Used as a wideband amplifier, the unit will feed the signals of one generator to four independent rf amplifiers or receivers. Isolation between outputs is 45 db minimum; gain is 10 db for each channel; and uniformity of response is $\pm 2 \mathrm{db}$. The unit has an integral power supply and is packaged for standard rack mounting

Resdel Engineering Corp., Dept. ED. 330 S Fair Oaks Ave., Pasadena, Calif.
circle 112 on reader-service card

Digital Shaft Position Encoder

Has magnetic readout

With passive circuitry and no mechanical or optical contact, model EPD-3 shaft position encoder provides long life and resistance to heat, cold, humidity, and dirt. Its readout is magnetic. The unit has a disc with magnetized code spots arranged in concentric tracks around the wheel. The spots are invisible and never wear out. Above the path of each track, a toroid is mounted close to the disc. As the disc turns and a magnetic spot passes beneath a toroid, the toroid is saturated and its impedance drops to zero. Readout is accomplished by interrogating the toroids with a constant current pulse. With a voltage pulse across the unsaturated toroids. and none across the saturated, a binary 1 or 0 is generated on demand. The angular position of the disc, whether it is still or turning at $10,000 \mathrm{rpm}$, is determined within 0.5 deg resolution by the output pulse code. The interrogation rate call be up to 5 million pulses per sec.
Applied Science Corporation of Princeton, Dept. ED, P.O. Box 44, Princeton, N.J.

CIRCLE 113 on readerservice card

HANDY ALLOY DATA SHEET

Handy \& Harman Silver Brazing Alloys ...The COMPLETE line that meets all specifications and production needs

Need to join any combinations of metals - ferrous and nonferrous? Investigate the vast number of products, assemblies and parts that are being joined better by silver brazing allows. Handy \& Harman, the Number

One Source of, and Authority On Brazing Alloys and Methods makes - and makes readily available - the following silver brazing alloys:

HANDY \& HARMAN SILVER BRAZING ALLOYS								
NAME		SILVER	COPPER	ZINC	OTHER	MIELTING POINT	$\begin{aligned} & \text { FLOW } \\ & \text { POONT } \\ & \text { OF } \end{aligned}$	TROY OUNCES PER CU. IN.
$\begin{aligned} & \text { EASY-FLO } \\ & \text { EASY-FLO \#3 } \end{aligned}$		$\begin{aligned} & 50 \% \\ & 50 \end{aligned}$	$\begin{aligned} & 151 / 2 \% \% \\ & 151 / 2 \end{aligned}$	$\begin{aligned} & 161 / 2 \% \\ & 15 \mathrm{t} 2 \end{aligned}$	$\begin{aligned} & (18 \% \mathrm{Cd} .) \\ & (16 \% \mathrm{Cd} . \end{aligned}$	1160 1170	$\begin{aligned} & 1175 \\ & 1270 \end{aligned}$	$\begin{aligned} & 5.00 \\ & 5.00 \end{aligned}$
EASY-FLO 45 EASY-FLO 35 SIL-FOS SIL-FOS 5		$\begin{array}{r} 45 \\ 35 \\ 15 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 26 \\ & 80 \\ & 88.75 \end{aligned}$	$\begin{aligned} & 16 \\ & \underline{21} \\ & \hline \end{aligned}$		$\begin{aligned} & 1125 \\ & 1125 \\ & 1185 \\ & 1185 \\ & \hline \end{aligned}$	$\begin{aligned} & 1145 \\ & 1295 \\ & 1300 \\ & 1300 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.92 \\ & 4.90 \\ & 4.45 \\ & 4.37 \end{aligned}$
NEW NAME	FORMER NAME	SILVER	COPPER	ZINC		$\begin{gathered} \text { MELTING } \\ \text { POINT } \\ \text { OF } \end{gathered}$	$\begin{aligned} & \text { FLOW } \\ & \text { POINT } \end{aligned}$	TROY OUNCES PER CU. IN.
BRAZE TEC*	TEC**	5	-	-	(95\% Cd.)	640	740	4.60
" 056*	TEC-2*	5	-	16.6	(78.4\% Cd.)	480	600	4.53
" 071	SN \#7	7	85	-	(8\% Sn.)	1225	1805	4.82
" TL	TL	9	53	38		1410	1565	4.50
" 202	AT SPECIAL	20	45	35		1315	1500	4.68
" ATT	ATT	20	45	30	(5\% Cd.)	1140	1500	4.64
" NE	NE	25	521/2	221/2		1250	1575	4.71
" 251	AE	25	57.5	17.5		1255	1625	4.68
\cdots SS	SS	40	30	28	(2\% Ni.)	1220	1435	4.76
" 404	SS-5	40	30	25	($5 \% \mathrm{Ni}$.	1220	1580	4.72
" DT	DT	40	36	24		1235	1415	4.80
" DE	DE	45	30	25		1230	1370	4.82
- ETX	ETX	50	34	16		1250	1425	4.99
" 541	ALLOY-4772	54	40	5	(1\% Ni.)	1340	1575	5.06
" 560	ER	56	22	17	($5 \% \mathrm{Sn}$.)	1145	1205	5.00
" 580	EB	57.5	32.5	-	(3\% Mn.-	1120	1345	5.05
					7\% Sn.)			
* RT	RT	60	25	15		1245	1325	5.02
" 603	RT-SN	60	30	-	(10\% Sn.)	1115	1325	5.23
1 630	RSNI	63	28.5	-	($6 \% \mathrm{Sn}$.-	1275	1475	5.12
					2.5\% Ni.)			
" EASY	EASY	65	20	15		1235	1325	5.06
" MEDIUM	MEDIUM	70	20	10		1275	1360	5.14
* BT	BT	72	28	-		1435	1435	5.24
- HARD	HARD	75	22	3		1365	1450	5.28
$\cdots 752$	TR \#1	75	-	25		1300	1330	5.06
" IT	17	80	16	4		1345	1490	5.29
" 852	$85 \mathrm{Ag} .-15 \mathrm{Mn}$.	85	-	-	(15\% Mn.)	1760	1780	5.08

*A Solder-Not a Brazing Alloy
Space does not permit listing the many special alloys, formulated for a particular or unique application. Handy \& Harman Brazing Engineers and Technical Service are
always ready to work closely with you on metal-joining problems and methods.
Comprehensive technical literature covering all aspects of brazing methods and alloys awaits your request.

GET THE FACTS FROM BULLETIN 20 This informative booklet gives a good picture of silver braza good picture and its benefits...includes details on alloys, heating duction techniques. Write for your copy.

Your NO. Source of Supply and Autherity on Brazing Alloysomen ...on num atuartion.

HANDY \& HARMAN
General OMices: 32 fulton Slo, New York 35, M. Y. distainutors in paincipal cities

GLOBE A.C. MOTORS / GEAR REDUCERS / PACKAGES In precision miniature motors, gear reducers, and
small-package devices using clutches, brakes,
and other components, Globe Industries has the
hardware to meet your requirement. From a
single source you can get fast 2 to 4 week pro-
totype delivery of standard units. Modular
design, interchangeable precision parts, and an
efficient special order department are specific,
unique reasons why you get what you need be-
fore your design grows cold.
Three basic A.C. motors are shown above.
With their integral gear reducers they reliably
span the torque range to more than 2000 in.
oz. Custom modifications are a specialty.
Globe motor packages were chosen for the
Army's Jupiter C. and as you read this, at least
one such package is circling the earth. Ask the
largest precision miniature motor manufacturer
first. Request the Globe A.C. Motor Catalog now.
GLOBE INDUSTRIES, IN., 1784 Stanley Avenue,
Dayton 4. Ohio. BAldwin 23741 .

CIRCLE 115 ON READER-SERVICE CARD

NEW PRODUCTS

Miniature Pulse Amplifier

Supplies 2 amp peak in 10 usec pulses
Siniature twin-triode type 6955 is a 9 -pin, medium-mu amplifier suited for blocking oscil lators, square wave modulators. and multivibrators. It (alll supply 2 amp of peak courrent in 10 pusec pulse's and warms up to 80% of steady state plate current within 10 sec. It has high resistance to the formation of cathode interface resistance and operates from -62 to +100 C . It is also vibration resistant. The unit has twin 175 ma heaters that can be connected in series or parallel for operation at 6.3 or 12.6 V .

CBS-Hytron. Dept. ED, Dambers, Mass. CIRCLE 116 ON READER-SERVICE CARD

Precision Potentiometers

Linear and nonlinear

Single turn precision units, tope 357 potentiometers are $1-34 \mathrm{in}$. in diamcter and come in four basic design variations. Type 757(C potentiometers, for linear or monlinear applications, use a card winding. They operate from - 5.5 to +8.5 (: and hatwe a resistance rallge from 1 to 300 K . Standard linearity is $=0.5^{\circ}$, but values to $\pm 0.25 \%$ are obtainable. Resolntion varies between (0.0.35 and 0.15\% depending on resistance.

Type 757.11 units use a mandrel winding for linear applications, and can be ganged with up to (ight cups on a single shaft. The extemal clamp band does not increase the diameter of the units. Temperature range is -5.5 to +8.5 C for standard mits and up to +150) (: For high temperature versions. Resistance range is I to 250 K ; resolution is 0.02 .5 to 0.12% accorcling to resistance; and linearity is $\pm 0.25 \%$ in standard models, $\pm 0.15 \%$ in spectial models.

Fairchild Controls (Corp., Components I)iv. D(p)t. EI), 22.5 Park Ace. Hicksville, N.Y.

CIRCLE 117 ON READER-SERVICE CARD

Operating without electronic tubes, series GX silicon power rectifiers have an output voltage of 30 v de and output currents of 0 to 10,0 to 15 , and 0 to 20 amp . They consist of a double wound varnish impregnated step-down transformer, a full wave silicon rectifier, a varnish impregnated reactor, and a filtering network. Models 15GX and 20GX have a protection circuit with a front panel warning light which Hashes when continuous ratings are exceecled. All models have several transformer taps so that the voltage output may be adjusted to 30 v de for various values of line and load. The units operate from 110 to 125 v ac and have under $1 / 2$ ripple. Their overload capacity is $400^{\%}$ for $1 / 2$ minute; 200% for 2 minutes. Viodel 10GX is $19 \times 8-3 / 4 \times 10 \mathrm{in}$.; models 15 GX and 20GX are $19 \times 10-1 / 2 \times 11 \mathrm{in}$. All are for rack mounting.
Gates Electronic ((o.. Dept. E1), 2090) Barnes tie., Bronx 62, N.Y.

CIRCLE 118 ON READER-SERVICE CARD

Voltage-Controlled Oscillators

For airborne telemetry

A vailable in standard and miniature sizes, these voltage-controlled oscillators are designed for airborne telemetry. The standard unit has $\pm 1^{\%}$ temperature stability from 20 to 100 C and withstands 100 g shock and 20 g vibration at 2000 cps . 13 supply variations of 10% produce less than 1% handwidth frequency shift. The unit will drive most transmitters without a mixer amplifier. The miniaturized unit uses a single 18 v de supply and has $\pm 3 \%$ temperature stability from 20 to 100 C. It withstands the same shock and vibralion as the standard unit. Bandwidth frequency hift is under 2% for 10% B supply variation, and distortion is less than 1\%. Both standard and niniature units are also asailable with gernanium transistors and temperature ranges to 0 C .
DatatControl Systems, Inc.. Dept. El). Danury, Comn.

CIRCLE 119 ON READER-SERVICE CARD
LECTRONIC DESIGN • January .21, 1959

..practically everything when it comes to RF shielding. For only knitted wire mesh has the necessary conductivity, resiliency and flexibility required for effective RF suppression.
At Metal Textile, we've been knitting answers to specific RF interference problems since 1943. As the originators of knitted wire mesh for electronic applications, Metal Textile has the engineering experience-and the research and production resources, necessary to support that experience-to take on the most exacting RF shielding problems. Our engineering depart-
ment stands ready to help you solve your particular needs with ment stands ready to help you solve your particular needs with
complete design assistance. Write or call without obligation: complete design assistance. Write or call without obligation:
Metal Textile Corporation, Electronics Division, Roselle, N. J.

METEX

gentlemen :
Please send me your fact-filled METEX data file today.
name.
COMPANY
ADDRESS
cITY
CITY—_ZONE__STATE

NEW PRODUCTS

Tantalum Capacitors

Shock and vibration resistant

Improved type PP miniature tantalum capaci tors have an anode base support for resistance to shock and vibration. Suited for airborne equip ment, they operate at high altitudes and remain electrically stable from -55 to +85 C .

Fansteel Metallurgical Corp., Dept. ED, North Chicago, Ill.

CIRCLE 122 ON READER-SERVICE CARD

Volt-Ohmmeter

For TV and industrial testing

Supplied in kit form or factory-wired, the WV-77E VoltOhmyst can be used for television and industrial test applications. It measures ac rms sine wave voltages from 0.1 to 1500 v ; dc voltages from 0.02 to 1500 v ; peak to peak ac voltages from 0.2 to 4000 v ; and resistance values from 0.2 ohm to 1000 meg . The ac voltmeter portion features an electron tube as the full wave signal rectifier. The unit has provision for zero center indication; separate scales for low ac voltage measurements; and protection against meter burnout. The resistors in the ohms divider network are protected by a separate fuse. Input impedance is high on all dc and ac voltage ranges.
Radio Corporation of America, Electron Tube Div.. Dept. ED, Harrison, N.J.

CIRCLE 470 ON READER-SERVICE CARD

Electronic Tachometers

Accurary of 1%
With transistorized circuitry and no moving parts except for a meter movement, series ET tachometers maintain 1% accuraey through variations from -30 to $+160 \mathrm{~F}, 95$ to 135 v ac, and 55 to 65 cps . They have a built in frequency test reference for calibration, and can be used to measure rotary or linear speeds of such devices as conveyors, motors, pumps, machine tools, and jet and reciprocating engines. Models are available with a variety of ranges from 0.1 to over 1 million rpm full scale. The units have deep-drawn aluminum cases and a can front that is extended and profiled to protect the panel meter and con trol knob.

Southwestern Industrial Electronics Co.. Dept ED, 2831 Post Oak Rd., Houston 19, Tex circle 123 on reader-service card

ELECTRONIC DESIGN • January 21, 1959

Capacitors

Highly stable

For laboratory standards. compensating networks, rf filters, and general coupling use, these high stability polystyrene dielectric capacitors offer 0.03 to 0.01% retrace. Temperature coefficient is -100 ppm per degree $\mathrm{C}, \pm 20 \mathrm{ppm}$; insulation resistance is 1 million meg per $\mu \mathrm{f}$ at 25 C ; dielectric absorption is 0.01 to 0.02%; and operating temperature range is 0 to +70 C . Dissipation factor at 1000 cps is 0.05%. Various capacitance and voltage ratings are available with tolerances of $\pm 5, \pm 2, \pm 1$, and $\pm 0.5 \%$.
Electronic Fabricators, Inc., Dept. ED. 682 Broadway, New York 12, N.Y.

CIRCLE 124 ON READER-SERVICE CARD
Linear Potentiometer
Mounts inside hydraulic actuators

This linear potentiometer mounts to the piston inside a hydraulic cylinder. Built to withstand virtually all specified MIL and JAN environments, it operates effectively at high altitudes, under high humidity conditions, and at constant temperatures to 400 F . Linearities are 0.1% or more, depending on the stroke, and resistances start at 1 K with either center or functional taps on standard models. The potentiometer elements, made from precious metal alloys, are produced with OD's down to 0.5 in ., and strokes from 0.1 to 8 in .
Edcliff Instruments Inc., Dept. ED, 1711 .S. Uountain Ave., Monrovia, Calif.

CIRCLE 125 ON READER-SERVICE CARD
ELECTRONIC DESIGN • January 21, 1959
 On Contact Cost

General Plate Electrical Contact Tape can be applied to any large-volume contact

In addition . . .
Contact Tape permits:

- Broader latitude in contact assembly design
- Smaller contacts for smaller contacts for same ectrical
- Weight-saving
- Simpler material handling
design. permitting the automatic assembly of two or more parts in a single operation. Tape contacts are easily attached by spot welding methods. They are self-aligning . .allow broader assembly tolerances. Because of this, tape contacts reduce assembly costs and eliminate or reduce adjustment time.
Tape contact material is supplied in long continuous lengths which simplify material handling.
In addition to supplying clad electrical contact tape material, General Plate is equipped to weld contact tape sub-assemblies for you.
Design engineers are invited to make use of General Plate contact engineering services . . . for material selection . . . parts design . . . samples.

Let us make an electrical contact cost analysis on products you want to automate. Find out how General Plate electrical contact tapes, as well as other clad contacts, can be put to work for you.

FIELD OFFIEES NEW YORK - CHICAGO - DETROIT• INDIANAPOLIS • MIL WAUKEE • PABADENA
CIRCLE 126 ON READER-SERVICE CARD

N

Research Labs Keep Pace With Giant Stride Of America's Air Industry!

CUSTOMER PROBLEM:

Require test rig for measuring full scale aircraft turbine bearings. Test rig must simulate actual operating conditions.

SOLUTION:

N/D engineering, in cooperation with customer under the direction of a defense agency, developed the aircraft turbine bearing testing equipment shown above. The Test Rig Control Console, shown on the left, initiates and controls tests, and completely records all operating performance characteristics. The test stand itself, above right, simulates the actual condi-
tions to which the bearings are subjected in flight. It develops radial loads of up to 25,000 lbs. ... and thrust loads reaching a maximum 75,000 lbs. Bearings up to 110 mm bore are tested at speeds as high as 20,000 r.p.m., in temperatures ranging up to $1200^{\circ} \mathrm{F}$. Research facilities such as this are your assurance that New Departure stands ready to work closely with you on your bearing research problems. For information on New Departure precision Aircraft and Instrument ball bearings, or research facilities, call the New Departure Sales Engineer in your area or write Dept. J-1.

NEW PRODUCTS

Instrument Load

Suitable as a secondary standard
A stable instrument loade type 110813 provides a nearly reflectionless termination on a 50 ohm coavial transmission line. For the () to 1100 mc trequency range, the unit is suitable for use as a secondary standard. It has a rated iswr below 1.02 and a maximum input power of 0.5 w . It is designed for use with type N connectors.

Alford Mfg. (\%., Dept. ED. 299 Atlantic Ave. Boston 10. Mass.

CIRCLE 128 ON READER-SERVICE CARD

Printed Circuit Sockets

Precision molded

Available in eight types, these precision molded printed circuit sockets come with 7 to 9 pins. All have center shields.

Waldom Electronics, Inc.. Dept. ED, 4625 W . 53rd St., Chicugo :32, III.

CIRCIE 129 ON RēADER-SERVICE CARD

VHF Silicon Power Transistors

Triple-diffused npn junction type
These six silicon power transistors are triplediffused npn junction units with mesa configuration. Three are 70 me oscillator transistors and three are 70 me amplifier transistors. In each group, power capabilities at 70 me are $1 / 4,1 / 2$ or $3 / 4 \mathrm{w}$. Collector power dissipation rating at .5) C case temperature is $2-14 \mathrm{w}$. All units opcrate at collector voltages up to 100 v dc. The three amplifier transistors have a typical gain of 10 dl at 70 mc .
Pacific Semiconductors, Inc., Dept. ED, 10451 W. Jefferson Blved., Culver City, Calif.

CIRCLE 130 ON READER-SERVICE CARD
ELECTRONIC DESIGN • January 21, 1959

Measuring phase, transient response, and gain, model H servo system analyzer facilitates the plotting of Nyquist, Bode, or Nichols diagrams. Covering the 0.1 to 2 and 1 to 20 eps ranges, it provides direct reading of amplitude, frequency, and phase lag. Phase measurements are accurate within ± 1 deg, and frequency accuracy is ± 5 k of setting. The minit generates sinc wave and modulated carricr waveforms. For standard 19 in. rack or bench use, it measures $19 \times 8.75 \times 12$ in.
Servo Corporation of America, Dept. ED, 20-20 Jericho Tumpike, New Hyde Park, N.Y.

CIRCLE 131 on reader-service caro

This set of transistorized digital computer circuit packages includes Hip-fopss, diode logic boards, read amplifiers, write amplifiers, and hlocking oscillators. Each component contains two identical circuits except the logic board. This contains 2-1. 2-2. 2-3, 1-4, and 2-5 function AND tates, and nine OR cates. Dc pulse gating techniques permit operation of 75 pulse gates from cach output of the flip-flop and read amplifier at requencies up to 500 kc . The boards are sup,lied individually or with mounting racks, power upplies, magnetic drums, and other circuitry to erve as memory units, shift registers, buffer regters, counters, and logical control units.
Aeronutronic Systems, Inc., Computer Div, Jept. ED, P.O. Box 486, Newport Beach, Calif. circle 132 on readsr-service card

FOTOCERAM circuit board blanks are made pholographically. All holes and shapes are produced by simple exposure to light, heat, and an etching operation.

This is a FOTOCERAM printed circuit

... an unusual new type of printed circuit board

Reliable through-plate holes. The good adhesion of the circuit runs applies also to the through-plate holes hecause both are produced with one plating operation.
Excellent resolderability - We have removed and resoldered components over twenty times on a Fotoceram hoard without damage to circuit runs or through-plate holes. And this is without using adhesives to hond the copper to the board.
Dimensional stability - Rigid structure of Fotoceram prevents unusual design
considerations-eliminates problem of warp and twist.
Good adhesion•It takes 12-25 pounds to peel a one-inch copper strip from a Fotoceram board.
Exceptional pull strength • 1400 pounds per square inch.

No water absorption - Fotoceram s nonporous-zero water absorption.

Non-flammable

No blisters - Fotoceram never blisters. We put it through repeated 15 -second
cycles of copper metallizing at $500^{\circ} \mathrm{F}$. and could not find a single blister or sign of peeling or failure.
Other properties:
Dissipation factor
$\begin{array}{lll}1 \mathrm{mc}(a) & 20^{\circ} \mathrm{C} & 0.006 \\ (a) & 200^{\circ} \mathrm{C} & 0.014\end{array}$
Dielectric constant
1 mc (a $20^{\circ} \mathrm{C} .5 .6$
(a $200^{\circ} \mathrm{C} . \quad 6.3$
$\begin{array}{llll}\text { Loss factor } & \mathbf{I m c} \text { (a } & 20^{\circ} \mathrm{C} & 0.034 \\ \text { a } & 200^{\circ} \mathrm{C} & 0.088\end{array}$
For more information, write for our Data Sheet on Fotoceram.

CORNING GLASS WORKS, Bradford, Pa.

Sola Constant Voltnse ISC Pouter Suppliow here dessigned for intermittent, variathle, pulse or hish-amperage loads.

Sola packs 6 amps of 300 -watt regulated dc power into $5^{1 / 4}$ inches of relay-rack space

Looking for a source of regulated dc power that fits into a small space? You'll probably find that the Sola Constant Voltage DC Power Supply offers what you want.

This compact unit has exceptional performance characteristics, too - it delivers current in the "ampere range," regulates within $\pm 1 \sigma_{0}^{\sigma}$ even under a $\pm 10 \%$ variation in line voltage, has less than $1 \% \mathrm{rms}$ ripple, and even tolerates dead shorts. It is $80_{\%}^{\%}$, efficient and has a very low static output impedance.

How's it done? Sola managed it through a balanced assembly of three complementary components special Sola Constant Voltage Transformer is teamed up with a semiconductor rectifier and a high-capacitance
filter. Electrical characteristics of the transformer maxi mize most of the advantages of the rectifier and filter. while virtually eliminating all their disadvantages. The resulting regulated de power supply is simple, highly reliable, compact and moderately priced.

These benefits are exhibited by the entire line of Sola dc power supplies. Sola has designed and produced hundreds of ratings to meet requirements of equipment manufacturers. The company is set up to handle specific needs for custom-designed units in production quantities. A Sola sales engineer can supply all the facts. In addition to this custom service, Sola currently stocks six models ranging from 24 volts at six amps to 2.50 volts at one amp.

For complete data write for Bulletin "A-CV-235
Sola Electric Co., 4633 W. 16th St., Chicago 50, III., elshop 2-1414 • Offices in princlpal cities • In Canada, Sola Electric (Canada) Lla., 24 Canmotor Ave., Toronto 18, Ont.

SOLA
COMSTANT VOLTAEE TRAMSORMERS

rechated oc power supples

MERCURY LIMP TRAMSFORMERS

fuprescent lump bulusis

NEW PRODUCTS

Coupling Type Clutch

 Size 2.5

The SM clutch is a size 2.5 , stationary field, coupling type furnished with a mounting flange $2-1 / 8 \mathrm{in}$. square. It is $1-9 / 16 \mathrm{in}$. long with armature and driven hub, 1 in . long without. The unit has a static torque rating of $30-\mathrm{in} . \mathrm{lb}$ and can be offered with a coil suitable for operation on any de source with voltages up to 90 v dc.

Stearns Electric Corp., Dept. ED, 120 N . Broadway, Milwaukee 2, Wis.

CIRCLE 135 ON READER-SERVICE CARD

Delay Lines

Continuously variable

Model IR continuously variable delay lines are available with delay ranges from 0.18 to 0.22 $\mu \mathrm{sec}, 0.23$ to $0.27 \mu \mathrm{sec}, 0.28$ to $0.32 \mu \mathrm{sec}, 0.33$ to $0.37 \mu \mathrm{sec}, 0.48$ to $0.52 \mu \mathrm{sec}$, and 0.58 to $0.62 \mu \mathrm{sec}$. Characteristic impedance is 250 ohms, with higher impedances available. Rise time is 0.06 $\mu \mathrm{sec}$ and maximum attenuation is 1 db . In the lower delay ranges, case size is $1 \times 1.25 \times 7.75 \mathrm{in}$.; in the upper ranges, it is $1 \times 1.25 \times 10 \mathrm{in}$. Sturdily built, the lines are hermetically sealed and feature infinite resolution.

Digitronics Corp., Dept. ED, Albertson Ave., Albertson, N.Y.

CIRCLE 136 ON READER-SERVICE CARD

Servo Multiplier
 0.25% static error

Miniaturized servo multiplier type SL-1024 consists of a servo loop that positions a shaft to follow a \pm dc signal and a multisection potentiometer for computation. It uses a transistormagnetic amplifier with all circuits sealed and operates directly from a $117 \mathrm{v}, 400 \mathrm{cps}$ line. Typical input signals are within $\pm 100 \mathrm{v}$ dc, with static error under 0.25% and full scale travel within 0.5 sec . The output position is indicated on a calibrated dial. Four of the units fit into a 19 in . rack panel type $764-\mathrm{A}$. The computing potentiometer sections are customer specified. Other data elements, such as autosyns or resolvers can be coupled to the potentiometer.
Industrial Control Co., Dept. ED, 805 Albin Ave., Lindenhurst, N.Y.

CIRCLE 137 ON READER-SERVICE CARD

Transistorized Digital Totalizer
Accuracy of ± 1 indicated count

Designed to perform independently or with the company's turbine-type flowmeters, model 521 digital totalizer is a fully transistorized modular plug-in subassembly. Its print wired circuitry is stabilized for operation up to 160 F . The counter will totalize any events, such as flow or revolutions, which can be converted to electrical impulses. Switch selected digital circuitry can extend its range by $\mathbf{1 0}$ or 100 times. Frequency range is 0 to 4000 cps for pulse input and 10 to 4000 cps for sinusoidal signal; sensitivity is 10 mv , rms 10 to $400 \mathrm{cps}, 20 \mathrm{mv}$ at 1 kc , and 50 mv at 4 kc . Count capacity is 999,999 and accuracy is ± 1 indicated count, including the effects of line voltage from 105 to 130 v and of temperature to 160 F . Standard styles include portable, halfrack, explosion proof, and industrial panel nounted versions.
Potter Aeronautical Corp., Dept. ED. Route ?2, Union, N.J.

CIRCLE 138 on reader-service card
ELECTRONIC DESIGN • January 21, 1959

H MICRO SWITC H Precision Swirches

Five switches of special interest to Electronic Engineers Three of them are NEW

NEM
 ultra-small

 super-sensitive mercury switch AS603A1

This new switch, designed for vertical gyros, stable platforms, missiles and rockets, is the most precise mercury switch available. Differential angle $-.150^{\circ}$ max. Mass shift-. 085 gm . cm. SPDT. It operates
reliably at temperatures as low as $-65^{\circ} \mathrm{F}$. Hermetically sealed contacts. Switch is unaffected by water vapor, dust, dirt, fungus and corrosive fumes. It is rated at .225 amps., 30 vac, 400 cps resistive load. Weight-3.5 grams (including leads). Ask for data sheet No. 153 .

NEW

"SX" series
sub-subminiature
switches
These all-new switches combine extremely small size with "regular size" electrical capacity and exceilent reliability. They present a new set of possibilities to the designer of compact devices. 5 amps. $250 \mathrm{vac}, 30 \mathrm{vdc}$. Two mounting holes accept No. 2 screws. Weight $-1,28 \mathrm{oz}$. Ask for data sheet No. 148.

Subminiature door interlock switch 7AC1-T
Cuts off power in equipment cabinets when service door is opened. Manually pulling the rod actuator to maintained contact position closes circuit for checking. When door is next closed, switch returns to normal \ldots. re-sets itself to safety position. Ask for data sheet No. 108.

NEW

"1PB600" series

"One Shot" switches
These new switch assemblies produce a one-and-only-one pulse output. Miniature package includes pushbutton switch and potted one-shot circuit. Eliminates need for designing special pulse input circuits for high speed electronic devices.
The square wave pulse
width is factory adjustable from .5 to 2.5 micro seconds, and the amplitude from 3 to 60 volts. Both width and
 amplitude are independent of speed of operation of switch. Ask for data sheet No. 150.

"SE" series environment-free

subminiature switches

"SE" Series switches are the smallest and lightest environ-ment-free switches available. Construction is completely sealed. Operate reliably from -65° to $+350^{\circ} \mathrm{F}$. Pin plunger actuation. Choice of contact arrangements. Rating 5 amps . 125 or 250 vac. 28 vdc- 15 amps. inrush; 4 amps. resis.
 tive; $\mathrm{Weight}-.24 \mathrm{oz}$ or. (without leads). Ask for Catalog 77.

Engineering assistance in switch applications is available from the MICRO swITct branch office near you. Consult the yellow pages of your telephone book.
MICRO SWITCH ... FREEPORT, ILLINOIS
A division of Honeywell
In Canada: Honeywell Controls, Ltd., Toronto 17, Ontario

GUARANTEED PERMEABILITY. . and at higher values than old average values in AL-4750

AL-4750 nickel-iron strip now has higher permeability values than ever before . . . and the new, higher values are guaranteed. For example, using the standard flux density test, at 40 induction gausses, AL- 4750 now has 57% higher permeability than in the past. And permeability values are guaranteed.

This guaranteed permeability means greater consist. ency and better predictability for magnetic core performance . . permits careful, high performance design.

The improvement in AL-4750 didn't just happen. It is the result of Allegheny's electrical alloy research and production program in nickel-bearing steels. A similar improvement has been made in AL Moly Permalloy.

And research is continuing on silicon steels including AL's famous Silectron (grain oriented silicon steel), as well as on other magnetic alloys.
Another service of Allegheny Ludlum includes complete facilities for the fabrication and heat treatment of laminations. Years of experience in AL's lamination department means that Allegheny Ludlum has encountered and solved most problems common to core materials. This practical know-how is available to all. Call us for prompt technical assistance. Write for blue sheet EM-16 for complere dara on AL-4750.
Allegheny Ludlum Steel Corporation. Oliver Building, Pittsburgh 22, Pa. Address Depts. IED-I3.

NEW PRODUCTS

Secondary Voltage Standards

Absloute accuracy of $\mathbf{2 0} \mathbf{~ p p m}$ for $8 \mathbf{h r}$
These two secondary standard reference power supplies have an absolute accuracy of $\pm 20 \mathrm{ppm}$ for 8 hr , and $\pm 50 \mathrm{ppm}$ for long terms over their entire load and line voltage ranges of 0 to 100 ma and 105 to 125 v. Model PVS-105A has a dual output of $\pm 50 \mathrm{v}$, or 100 v if used end to end Model PVS-105B provides $\pm 36 \mathrm{v}$, or 72 v end to end. In dual channel application, the voltages track each other to within 20 ppm . Total adjust ment range is $\pm 12() \mathrm{mv}$ around the nominal voltage rating, and thermal stability is better thart 2 ppm per deg C in the region of 25 C . The units incorporate a cyeled zener reference diode and a stable transistorized preamplifier, both mounted in an isothermal oven. Meters and controls are provided to permit calibrating the output against an internal reference cell, to $\pm 20 \mathrm{ppm}$.
Julie Research Labs, Inc.. Dept. EI). 556 W 16isth St., New York 32, N.Y.

CIRCLE 141 ON READER-SERVICE CARD

Crystal Can Relays

Sensitivities of 25 and $\mathbf{4 0} \mathrm{mw}$

Type RS800 spdt and R800) dpelt crystal can relays provide sensitivities of 25 and 40 mw . respectively, without the use of permanent magnets or polarized exciting power. The units meas ure $1.281 \times 0.915 \times 0.462 \mathrm{in}$. and withstand 20 vibration to 2000 (.ps and 100 g shock. They have a minimum life of 100,000 operations at 125 C while carrying contact loads of $\boldsymbol{2}$ amp at 115 rms and 28 vide. Header terminals are arranged on a 0.2 in . modular basis for plug-in circuit applications. Solder hook terminals are also avail. able.
Iron Fireman Mfg. Co., Electronics Div., Dept. E1). 2938 S.E. Ninth Ave.. Portland 2. Ore. CIRCLE 142 on reader-Service card

Multiconductor Cable Tester

Checks 150 circuits per minute
Fully automatic, model $50-\mathrm{A}$ is a go no-go able test set that checks continuity, insulation resistance, and high potential of cables or juncion boxes with up to 109 conductors. Each circuit under continuity test is isolated from all othrs; and each terminal in the leakage resistance and high potential test series is checked against .ll other terminals simultaneously tied to ground. Iny no-go decision halts the testing, and the exact fault is located by the indicators. Parts of a test or one or more of the three functions can be by-passed. For continuity, test rate is 150 circuits per minute; for insulation resistance, 150 terminals per minute. High potential test duration is (electable from 2 to 120 sec per terminal.
Optimized Devices, Inc., Dept. ED. P.O. Box 3. Gedney Sta., White Plains, N.Y.

CIRCLE 143 ON READER-SERVICE CARD

Resistance-Capacity-Ratio Bridge
Portable

liesistance-capacity-ratio bridge model RC-1 is a portable tester with four resistance ranges from 0.5 ohms to 200 meg , four capacity ranges from $10 \mu \mu \mathrm{f}$ to $2000 \mu \mathrm{f}$, and ratio test ranges from 0.05 to 20 . The unit incorporates a 3 vam -
plifier for checking electrolytics used in miniaturized equipment such as transistor radios. It proides a 0 to 60% power factor test on capacitors from 0.1 to $2000 \mu \mathrm{f}$ and a sensitive leakage test for all types of capacitors at rated voltages beween 0 and 500 v dc. It also provides a quick ractance ratio between any two capacitors, inluctors, or resistors within the ratio test range, and can be used to determine the turns ratio of transformer windings. Power requirements are 117 v ac, $60 \mathrm{cps}, 25 \mathrm{w}$; climensions, $7 \times 11-1 / 2 \times 5$

Pyramid Electric Co., Dept. ED, 1445 Hudson |s.d., North Bergen, N.J.
circle 144 on reader-service card
U.S.Army Signal Laboratory designs computer to measure wind effects on missile launchings...
... and Vernistat* is there!

Since different types of pilot balloons have different rates of rise, and wind effects vary with each type of missile, signal inputs to the computer must be easily and quickly adjusted. That's one reason why USASRDL onds are requred to change from one 'unction to another

Near-surface winds at a launching can easily force a missile oft course, with the result that the missile lands outside the target area. To counter the effect of such surface winds, the missile launcher is tilted to a corrective angle. Calculating the wind effect and the proper angle of tilt of the launcher, however, can be mathematically quite complex and a time-consuming operation. The United States Army Signal Research and Development Laboratory at Ft. Monmouth, New Jersey has developed a compact
computer for this job. Quickly and accurately, from pilot balloon data, the computer calculates both wind displacement on the missile and the proper tilt of the launching stand.

Doesn't Vernistat thinking belong in your system design too?

panel which allows for instant visualization and adjustment.
Connected to a 34 -pole printed cir ruit switch are 101 voltage levels. An! of the 34 poles can be connected to any desired voltage level to within $\mathbf{0 . 5 \%}$. The Generator's X -axis represents shaft position of an interpolating Vernistat potentiometer, and the Y-axis represents percentage of input voltage.
Linear interpolation between each adjacent pair of the 34 selected volt.
age levels is provided by a Vernistat interpolating potentiometer. Minimum slope of voltage output curve is \%ero, with a 20 -volt maximum between adjacent poles. Maximum output impedance is 130 or 470 ohms. Units are designed for operation over a wide range of frequencies.

Write now for full details on Vernistat Adjustable Function Generators, a. c. potentiometers, and varialle ratio transformers.

Nonlinear servo system and computer inputs are easily adjusted with the Vernistat Adjustable Function Generator. In addition, the Function Generator enables nonlinear system characteristics to be corrected with a minimum of time and effort. The Function Generator, a variation of the unique Vernistat a. c. potentiometer, can generate mathematical or empirical functions, even those with multiple slope reversals. The function is displayed graphically on a 6×8 inch

* Vernistat - a new design concept that unites in one compact device the best features of both the precision autotransformer and the multiturn potentiometer.

Perkin-Elmer Copopation

CIRCLE 145 ON READËR-SERVICE CARD

vernistat

Heat-Dissipating ELECTRON tUBE SHIELDS IMPROVE RAYTHEON'S CAA "FLIGHT TRACKER" RADAR!

NEW PRODUCTS

Environment Cabinets

Temperature-humidity
"Weatherlab" temperature-humidity environmental cabinets can sustain temperatures from -120 to +350 F and humidities from 20 to 98%. Models range in size from 5 cu ft to large walk-in types. They are equipped with high pressure, large volume air blowers to assure uniform temperature throughout the chamber. Humidity is supplied and controlled through a water float, feed valve, and electrically heated steaming chamber or a separate, electrically heated steam generator that is mounted externally. All electrical or electronic controls are interlocked, and re-corder-controller programmers are available for cycling operations according to military specifications. Of double wall construction, the units have Monel metal interiors for corrosion resistance and Fibreglas insulation a minimum of 6 in. thick. Thermopane windows in doors and penetrations in the walls can be supplied as required.

Hudson Bay Co., Dept. ED, 3070-82 W. Grand Ave.. Chicago 22. IIl.

CIRCLE 147 ON READER-SERVICE CARD

Directional Couplers
 Have high directivity

Designed for reflectometer measurements in waveguide systems, these dual directional couplers have flat coupling response, ± 0.4, and high directivity, 40 db minimum. Coupling structures are placed on opposite broad walls of the primary line, and the output arm of each secondary line is an H-plane bend, brought out on a common side. Detector mounts can be readily attached to these arms for power monitoring or for measurement of reflection coefficients within systems. All models except the M band are constructed from precision waveguides; milled blocks of tellurium copper are used in the unit covering 50 to 75 kmc . Coupling holes are placed on thin metallic foils which form the common broad walls between the primary and secondary lines. Input and output arms of all models are terminated with standard cover flanges. Coupling value of all units is 20 db ; primary line vswr is 1.1 maximum for the M band unit, 1.05 for all others; secondary line vswr is 1.15 maximum.
Narda Microwave Corp., Dept. ED, 118-160 Herricks Rd., Mineola, N.Y.
circle 148 on reader-service card

AN INSIDE LOOK AT SAGE

Unretouched photograph of SAGE
Resistor (Magnified 6 . Resistor (Magnified 6 times)

Take a Sage Precision Resistor apart and you'll discover how a new brazing technique enhances SAGE's reputation for trouble-free performance.

Close inspection shows that resistance wire is literally "floated" into silver-braze connections at the time of winding, thus eliminating possibility of weakening deformities or variable contacts. This in-process procedure is but one of many which support Sage's claim-"Quality bullt-IN First . . . To Last"!

For the present, applicable to
$+1_{0}^{\circ}$ and closer tolerances only.
f you are looking for the operating dependability your product needs, you'll find the answer with Sage Precision Power Resistors.

ELECTRONICS CORP.
P.O. BOX 126 - ROCHESTER 10, N. Y.

CIRCLE 149 ON READER-SERVICE CARD
ELECTRONIC DESIGN • January 21, 195?

Polystyrene Capacitors
Tolerances of ± 5 and $\pm 2 \%$

Reduced in length, these hermetically sealed polystyrene capacitors meet all existing military specifications in the 0.001 to $100 \mu \mathrm{f}$ capacitance range for voltage ratings to 1200 wvdc. They operate from -65 to +85 C without derating. Standard tolerances are ± 5 and $\pm 2 \%$, but tolerances closer than $\pm 1 \%$ may be specified.
Electronic Fabricators, Inc., Dept. ED, 682 Broadway, New York 12, N.Y.
circle 150 on reader-service card

Current Pulse Generator

Produces musec pulses

Current pulse generator model 1051 produces jitter-free positive or negative pulses with durations of approximately $10,20,50$, and 100 musec . Pulse amplitudes are continuously variable from 0 to over 2 amp , and pulse repetition frequency is continuously variable from 100 pps to 10,000 pps. Rise time for 10 musec pulse widths is approximately 5 m msec. The unit can be used for thin magnetic film studies, diode and transistor switching and recovery studies, and basic magnetics switching research. In addition to periodic operation from internal clock timing, the 1051 may be triggered from an external source or manually operated from a front panel push button. Supplied in a cabinet $16-1 / 2 \times 8-1 / 4 \times 8 \mathrm{in}$., it consumes 75 w from a $115 \mathrm{v}, 50$ to 60 cps line.
Rese Engineering, Inc., Dept. ED, 731 Arch St, Philadelphia 6, Pa.

CIRCLE ISI ON READER-SERVICE CARD
ElECTRONIC DESIGN • January 21, 1959

New Humphrey dual-rate gyros

 do the work of two unitsNow important reductions in the space required for instrument and control packages can be made with the introduction of a new Humphrey rate gyro that replaces two ordinary gyros. The new design utilizes a single motor to drive two separate wheels in one unit. With this new development, it is possible to measure rates about two different axes with an RG-18 Series Gyro or cover two different rate ranges about the same axis with a single RG-20 Series instrument.

RG-18 gyros should find widespread use for applications now requiring two instruments. For example, one unit could be used to measure both pitch and yaw. The RG-20 Series, with its two different rate ranges, may be applied to instrumentation systems where greater accuracy is required. For example, a single unit can be furnished to cover the rate ranges from $0-20$ degrees/second and from $0-200$ degrees/second. In effect, you expand the dynamic range of your instrumentation system from 100 to 1 to 500 to 1 . This expanded scale gives you far greater accuracy.

The new rate gyros are built with two independent pickoffs - one for each axis or one for each range. They meet tough environmental conditions, such as temperature from $-65^{\circ} \mathrm{F}$ to $180^{\circ} \mathrm{F}$ while operating, relative humidity 100%. unlimited altitude and excellent resistance to acceleration, vibration and shock. Phone or write today and let the kind of engineering that developed these new dual-rate gyros go to work for you.

HNHumphrey $_{\text {Ince }}$
ELECTRO-MECHANICAL INSTRUMENTS DEPT. ED. 19, 2805 CANON STREET SAN DIEGO, CALIFORNIA

FOR COMPLETE SYSTEMS, SPECIFY HUMPHREY GYROSCOPES, ACCELEROMETERS, POTENTIOMETERS SERVIC: CARD

NEW PRODUCTS

High Voltage Power Supplies
0.1% line or load regulation

[- -8

High voltage, high current Magnitran power suplies combine the properties of a magnetic regulator with the fast transient characteristics of a transistor regulator. Two models are available: the TR160-1M which provides an adjustable output of 10 to 160 v dc at () to 1 amp , and the TRB30()-1.11 with an adjustable output of 150 to $B(x)$, de at () to 1 amp . The units operate from anl input of $1(0)$ to $130 \mathrm{vac}, 60 \mathrm{cps}$ with line or load regulation of 0.1% and ripple of 0.01% or 50 mis. maximum. Completely protected against short circuits, they feature instant warmup and minimum heat dissipation on all transistors, independent of line voltage variations. They incorporate differential de amplifiers, compensated Zoner references, and silicon rectifiers. Intended for bench or relay rack mounting, they occup? a minimum of space.
Electronic Research Associates, Inc.., Dept. EI) (i, Factory Place. Cedar Grove, N.J.

CIRCLE 154 ON READER-SERVICE CARD

Lumped Constant Delay Lines

Custom built

Cinstom built to meet military specifications, these lumped constant delay lines have delay time tolerances to 0.1%. The illustrated unit has a delay time of 40 ± 0.04 usec at 25 C . Temperature coedficient of delay is 20 pporn per deg C ; at(cmation is $4(\mathrm{~d})$; and rise time is $0.4 \mu \mathrm{sec}$. The mitit occupies 50 (1) in.
PCA Electronic:s, Inc., Dept. ED, 16799 Schocmborn St., Scpulveda, Calif. CIRCLE 155 ON READER-SERVICE CARD

for extreme accuracy in transmission of shaft position data.
transmitters (1HG, 1HG400, 5HG, 5HG400) angle transmission units for torque trans mission and servo control systoms.
receivers (1F, 1F400, 5F, 5F400)
Used as receivers in torque transmission
. systems. Have shaft damping to prevent os
lation and overcome any tendency to spin.
control transformers (1 HCT)
produce an a.c voltage at the rotor termi. nals that depends on rotor shaft position and the voltages applied to windings.
difforential transmitters (1HDG, 5HDG)
"add in" other shaft positions when connected between transmitter and receiver or control transformer.

표표 ! Check coupon below for free literature on Ford Instrument's complete syn chro line!

Printed Circuit Reliability through Custom Production

Have you ever had to discard freshly delivered printed circuits that didn't meet your specifications? Whether the holes you need are plated or eyeletted, whether the base material is fiber or plastic, demand precision first!

The Bureau is striving for perfection in each circuit before it reaches your plant. We have developed production flexibility to custom-tailor our manufacture to your circuit. That is why our engineers and personnel are successfully building boards in the varified atmosphere of missile-tolerances at a rate that exceeds normal probability. Consider the Industrial Division of the Bureau of Engraving, Inc. for your important circuits . . . why settle for less?

We have a limited surplus of our U.S Air Force opproved QUALITY CON.
TROL MANUAL FOR PRINTED CIRCUIT TROL MANUAL FOR PRINTED CIRCUIT
BOAROS AND BOARD ASSEMBIES. Copies will be sent to qualified persons on request... write today on
your company letterheod.

ber of the lestitute of Printed Circuits

BUREAU OF ENGRAVING, Inc.

Industrial Division

500 S. 4th St., Minneapolis 15, Min Telephone FEderal 9-8721

CIRCLE 157 ON READER-SERVICE CARD

Teflon Terminal
Has two standoffs

The DST-900 double-standoff Teflon terminal provides separate connection points on both sides of a chassis. It consists of two straight shank lugs mounted in a single body, but electrically and physically separated.

Sealectro Corp., Dept. ED, 610 Fayette Ave. Mamaroneck, N.Y.

CIRCLE 158 ON READER-SERVICE CARD

Digital Voltmeter

Accuracy of $0.01 \% \pm 1$ digit

In four automatic ranges from 0.0001 to 1000 v dc, model 501 digital voltmeter maintains 0.01% ± 1 digit accuracy. In range cross-over areas, it keeps this accuracy by adding a first-place 1 at the top of the range. Thus, the 0 to 9.999 range becomes 0 to 19.999, with millivolt accuracy retained well into the 0 to 99.99 v range. The unit has five windows for digit display and a sixth to show polarity. Range selection automatically places the decimal. The built-in printer drive can handle 10 -line parallel input printers without accessories, and a print control allows either automatic drive when the unit comes to balance or remote operation by an external switch. Average balance time is 1 sec with transistor switches feeding voltages at about 20 steps per sec. Input impedance at null is 10 meg on all ranges. A switch selects $0.1,1$, or 10 mv sensitivities to facilitate the reading of noisy signals.
Kin Tel, Div., of Cohu Electronics, Inc., Dept. ED, 5725 Kearny Villa Rd., San Diego 12, Calif. CIRCLE 159 ON READER-SERVICE CARD
 GREATER RELIABLLITY!

Transistorized C. \& N. Power Supplies PROTECTED Against SPIKES \& TRANSIENTS*

The pioneer in transistorized circuitry for power supply applications now puts you a tremendous step ahead in the design of truly reliable missile and aircraft systems. Universal's intensive research toward tota protection against the hazards encountered in these systems results in a notable achievement!
Advanced circuitry now provides built-in protection against spikes and transients which disturb the system voltage. Coupled with the well-known reliability of the Universal static supplies now powering much of today's operational mobile electronic equipment, these units set a new standard for the field. They retain Universal's superior protection against input polarity reversal and against short circuits while providing you with unmatched overvoltage control, as well. Clearly. Universal has the experience to supply the reliable power needed for your most critical applications.
For many other types of power supplies, too. Universal provides the most complete source for designers who want the highest in performance and the most modern in design. Special circuitry, conservatively rated, results in their specifications being met-and surpassed! You can look with confidence, to Universal for

- DC to DC - AC to DC - DC to AC
- High Voltage - Low Voltage
- High Power - Low Power

Or custom units to meet wide temperature range and rugged shock specifications.

OVERVOLTAGE with UNIVERSAL
OOWER SUPPIY in same system

TRURISISTOR PRODUCTS CORT
Dept. ED-1 • 17 Brooklyn Ave., Westbury, L. I., N. Y. • EDgewood 3-3304 • Cable: Univatoms IN CANADA-Conway Electronic Enterprises Regd., 1514 Eglington Ave., Toronto 10, Ont., Canada

Transistor Chopper

The Airpax Type 6000 Transisfor Chopper performs a switching operation over a frequency range of 0 (DC) to 100 KC with signal levels from a fraction of a millivolt to 5 volts.

Two percent linearity at signal levels as low as 1 millivolt and noise levels comparable to mechanical choppers, make this unit suitable for many null seeking applications.

Fully encapsulated, the transistor chopper is substantially im. mune to shock and vibration and its life is unlimited.

NEW PRODUCTS

Audio Response Plotter Covers 20 cps to 20 kc range

With permanent, pen-written frequency response curves, audio response plotter ARP-2 gives immediate visual proof of the smoothness of performance and sound production of any audio system or component. The unit has a 20 cps to 20 kc audio oscillator which supplies an input to the system to be tested. As the oscillator sweeps its range, driven either manually or by a self-contained motor, output signals from the system or component under test are either fed directly to the plotter or detected by an accessory condenser microphone. Records are plotted automatically on a 40 db range logarithmic chart by a servo-controlled pen. An input attenuator network enables the instrument to accept voltages up to 10 v . The oscillator is directly connected to the recording drum to permit retracing or multiple recording of any portion of a curve. A single sweep of the drum covers 20 cps to 20 kc .

Southwestern Industrial Electronics Co., Dept. ED. 2831 S. Post Oak Rd., Houston, Tex.

CIRCLE 162 ON READER-SERVICE CARD

Electronic Chopper
Modulates 0.1 mv to Ir signal amplitudes

Using matched transistors as switches, model M-1 electronic chopper modulates differential or ground referenced voltages into square waves at carrier frequencies from 60 to 2000 cps . It will modulate signal amplitudes from 0.1 mv to 1 v . When operating from low signal source impedances, it achieves a null accuracy of 0.1 mv . The switching action is always in-phase and synchronous with the 6 ma excitation current. Epoxy encapsulated, the unit has no moving parts and is insensitive to vibration. The 0.5 cu in. package is suited for chassis or printed circuit mounting. Servo Devices Co., Dept. ED, Box 244, Huntington Station, N.Y.

CIRCIE 163 ON READER-SERVICE CARD

ARNOLD

 transistorized power supply

FEATURES

- Constant output voltage as battery discharges.
- 1/5 weight, $1 / 2$ size of comparable dynamotors.
- Withstands short circuit indefinitely.
- Withstands input voltage transients of 70 volts for 0.1 sec . and 60 volts indefinitely.
- Output voltage drift only 1.5% from -55° to $+71^{\circ} \mathrm{C}$.

SPECIFICATIONS

D. C. OUTPUT Model 591-A Input Voltage: 24-30 VDC
Output Voltage: Any from $\mathbf{2 5 - 1 2 0 0}$ VDC Dutput Power: 60 watts regulated Regulation: Line: $\pm 0.5 \%$ for 6 V variations Ripple: 0.3% RMS
Size \& Weight: $3^{\prime \prime} 00 \times 33 / 16^{\prime \prime}$ high; 2202.
A. C. OUTPUT Model 591.AC

Input Voltage: $24-30$ VOC
Dutput Voltage: 115 VAC, $400 \mathrm{cps}, 1$ phase Dutput Voltage: 115 VAC, $400 \mathrm{cps}, 1$ Regulation: Frequency: $\pm 0.5 \%$ Regulation: Frequency: $\pm 0.5 \%$
(line \& load) Voltage: $\pm 2.0 \%$
Size \& Weight: $3^{\prime \prime} 00 \times 31 / 16^{\prime \prime}$ high; 2202.

Write or phone for literature

ARNOLD MAGNETICS CORPORATION
4613 W. Jefferson Blvd. Los Angeles 16, Calif. REpublic 1-6344
CIRCLE 164 ON READER-SERVICE CARD ELECTRONIC DESIGN • January 21, 1959

Stake screws with LOCTIIE ...a retaining compound designed for thread locking!

Insulating varnishes and mechanical punching have been widely used for years for the lack of a better method. Now there is a retaining compound de. signed specifically for thread locking Consider these advantages:

1. LOCTITE provides complete resistance to loosening under shock or vibration because ir fills and locks engaging threads, providing both breakloose and prevailing torque.
2. LOCTITE has several times the holding power of locknuts or lockscrews because locking action extends over entire engaged surface and persists for several furns.
3. LOCTITE is easy to apply . . . not sticky . no mess... does not air dry! Hardens only in absence of air. Large batches of threaded parts can be treated and stored for days . . lock only when assembled. No heating or mixing is necessary.
4. LOEtite comes in different strengths which apply any required locking torque-ranging from a light drag suitable for adjustment screws to a locking force exceeding the torsional strength of the screw. Provides greater uniformity than mechanical staking.

LOctite is a thin liquid that hardens when confined between closely fifting metal parts. It forms a tough, heat and ail-resistant, bond that secures threaded parts better than any mechanical locking device. Write for literature and free sample.

B®GTITE

AMERICAN SEALANTS COMPANY 183 Woodbine St., Hartford 6, Conn In Canada: J. S. Parkes \& Co., Lld., Montreal

Centrifugal Blowers

For high altitudes

Light and compact, these custom centrifugal blowers automatically vary their speeds inversely with density, thereby approaching constant cooling with a minimum of power drain and noise. The illustrated unit increases in speed three times from sea level to $50,000 \mathrm{ft}$. The blowers are available with a variety of operational frequencies, cfin outputs, blower housings, and mounting bases. Constant speed and other modified types may be provided.
Ashland Electric Products, Inc., Dept. ED. 32-02 Queens Blvd., Long Island City 1, N.Y. CIRCLE 166 ON READER-SERVICE CARD

Aluminum Electrolytic Capacitors

Have long shelf life

Aluminum electrolytic capacitors in the PET series have a low-resistance electrolyte which affords a long shelf life at temperatures to 85 C . They have a temperature range of -30 to +85 C, and a capacitance stability of -15 to $+10 \%$ within this range. Leakage current, power factor, and impedance are low. The units are encased in plastic with an epoxy end seal and vary in size from $3 / 8 \times 5 / 8$ in. to $5 / 8 \times 1-7 / 8 \mathrm{in}$. At 25 C they have a capacitance tolerance of -10 to $+250 \%$. Their ratings cover voltages from 3 to 50 wvdc and capacities of 1500 to 1μ fotal per unit. Maximum capacity in the $5 / 8 \times 1 \mathrm{in}$. size ranges from 550 uf at 3 v to 86 uf at 50 v .
P. 'R. Mallory \& Co., Inc., Dept. ED, Indianapolis 6, Ind.

CIRCLE 167 ON READER-SERVICE CARD

This can't be FirebaN...

New Taylor Fireban 321 Laminated Plastic

is self-extinguishing in only 3 seconds

Electrical faults in appliances, TV sets, radios, motors and other electrical devices frequently lead to fires-and these fires lead to complete destruction of the equipment, sometimes extensive damage to the facilities surrounding it. Taylor Fireban 321 is designed to retard fire. Self-extinguishing in only 3 seconds-it is an effective barrier against the spread of flame. In addition, this flame-retardant laminated plastic has excellent moisture resistance, excellent electrical resistance after exposure to high humidity, and good mechanical properties; also offers low dielectric losses. These properties help prevent the electrical faults that lead to fires. Write TAYLOR FIBRE CO., Norristown 48, Pa., for complete details.

One pot's

answer to
 tough requirements

NEW PRODUCTS

Static Inverters

$\pm \mathbf{0 . 0 2 \%}$ frequency regulation

For use in driving rate gyros, inertial guidance equipment. and other missile and aircraft devices, these transistorized static inverters are available with single phase or three phase outputs. Operating from an input of 28 v dc, they pro-
vide $115 \mathrm{v}, 400$ and 2000 cps single phase and $115 \mathrm{v}, 400 \mathrm{cps}$, three phase. Voltage regulation is $\pm 1 \%$; frequency regulation, $\pm 0.02 \%$; and distortion, 5 to 10%. The units weigh 5 to 15 lb , depending upon power requirements, and are designed to meet MIL-E-5272A specifications.

Gulton Industries, Inc., Dept. ED, 212 Durham Ave., Metuchen, N.J.

CIRCIE 170 ON READER-SERVICE CARD

Toroidal Inductors

Temperature stabilized
Type S toroidal inductors are small, temperature stabilized units with a range of -55 to +71 C . Inductance change can be as low as $\pm 0.25 \%$ in this range. Fully encapsulated and built with a stabilized and meet the specifications of MIL-E-5272A and MIL-T-27A. Units are available with inductance values from 0.1 mh to 17 h and useful

AMCI

" $1108 B$
balance"
Precision potentiometers capable of living up to toughest circuitry demands! Built-in immunity to extremes of vibration, shock and acceleration... and finest quality materials assure maximum precision, exceptionally long life. A new concept proved in both military and commercial applications. Available from $7 / 8^{\prime \prime}$ to $3^{\prime \prime}$.

Precision single furn pofenfiometers feafuring:

- Linear or functional windings - $\mathbf{0 . 1 \%}$ standard linearity
- Rotational speeds to 3,500 R.P.M.
- $165^{\circ} \mathrm{C}$ standard... $225^{\circ} \mathrm{C}$ special
- Ball bearings, class 7 stainless
- No hygroscopic... no fungus supporting materials
- NAS 710, procedure III

kintronic

Division of
Cnicago Aerial Industries. Inc

10265 Franklin Avenue - Franklin Park, lllinois CIRCLE 169 ON READER-SERVICE CARD

THIS IS KINTRONIC'S OYNAMIC BALANCE arm is dynomically bol anced on shaft

Write for complote specifica. lions of the ", ",000 Sories" Apply the inimitable porform. ance of of ornamie Bolance
proceision your project.
core, they withstand extreme shock frequency ranges from 60 cps to 500 kc . They are designed for printed circuit boards, or stacking on a single screw for chassis mounting.
Arnold Magnetics Corp., Dept. ED, 4613 W. Jefferson Blvd., Los Angeles 16, Calif.
CIRCLE 172 ON READER-SERVICE CARD

RF Head
 Direct reading

For use with the company's model SA30 microwave spectrum analyzer, the 30X5 rf head covers the 8500 to 9700 mc range. Accurate to 0.05%, it has a direct reading frequency dial. The unit features automatically tracked reflector voltage for constant display centering and a precision 80 db rf input attenuator
Itek Corp., Dept. ED, 158:3 Trapelo Rd., Waltham 54, Mass. CIRCLE 173 ON READER-SERVICE CARD

Mesa Germanium Transistors

Have millimicrosecond switching speeds

A diffused base mesa germanium transistor, the 2N559 meets and exceeds all reliability specifications outlined in MIL-T-19500A. It has switching speeds into the millimicrosecond range and a typical alpha cutoff frequency of 250 mc . It dissipates over 150 mw in free air and operates at temperatures to 100 C . The unit is provided in a miniature round-welded case that is less than half the size of the standard JETEC TO-5 unit. The case is compatible with the 100 mil grid mounting system. The 2N559 was originally developed and produced by Bell Telephone Labs for military missile and airborne electronic circuits.

Texas Instruments Incorporated, Semiconductor-Components Div., Dept. ED, P.O. Box 312, Dallas 9, Tex.
CIRCLE 174 ON READER-SERVICE CARD

Specializing in terminal blocks for over a quarter-century, Kulka offers the outstanding choice of types and sizes and "know-how." Kulka blocks are molded of high tensile strength Bakelite for general commercial use, or in other materials made in compliance with latest military specs. Plain or engraved or with marker strips. 1 to 20 terminals. Etc.
ASK FOR DATA...Catalog with listings, specs, dimensional drawings, sent on request.
Complete the wiring with

KULKA ELECTRIC CORP.

KULKA

633.643 So. Fulion Avenue

Mount Vernon, N. Y.

D'Arsonval, permanent magnet meter-Adaptable to all types of mounting

- ULTRA SENSITIVE-full scale sensitivities to as low as $1 / 2$ microampere
- FRICTION FREE-no pivots, jewels or hairsprings
- RUGGED-much more resistant fo shock and more rugged than conventional pivot meters
- HIGH DEGREE OF ACCURACY-
there is no friction error and suspension is free from fatigue effect
- RELIABILITY - the complete elimination of wearing parts has increased life indefinitely
- HIGH OVERLOAD CAPACITY up to 5 times full scale current indefinitely and unharmed by surges up to 300 times normal current.

Write foday for additional technical information.
THE HICKOK ELECTRICAL INSTRUMENT COMPANY
10514 DUPONT AVENUE - CLEVELAND 8, OHIO
CIRCLE 177 ON READER-SERVICE CARD

NEW PRODUCTS

Mercury-Wetted Contact Relay
Has 5 mw sensitivity

Type HBS mercury-wetted contact relay is biased with permanent magnets which are adjustable for single-side stable or bistable operation. Sensitivity may be $\pm \mathbf{2} .5 \mathrm{mw}$ for a bistable adjustment or 5 mw
for a single-side stable adjustment. Operating speeds are up to 200 cps, and contact rating is 2 amp 500 v , with a limit of 100 va . The units have no contact bounce and provide billions of trouble-free opcrations.
C. P. Clare \& Co., Dept. ED :3101 Pratt Blvd., Chicago 45, Ill. circle 178 on reader-service card

Transistor-Diode Tester

Needs no external power supply
For testing the dc characteristics of semiconductors, model TITT-200 transistor-diode tester contains no batteries and needs no auxiliary motor, pulse generator, oscilloscope, or external power supply. With a wide selection of voltage, current, and metering ranges, the unit checks current gain, voltage, and reverse and forward current.

Transistor Electronics Corp, Dept. ED, 3357 Republic Ave., Minneapolis 26, Minn.
CIRCLE 179 ON READER-SERVICE CARD

Trimmer Potentiometer
Operates up to 150 C

Trimmer potentiometer model H-0505-T operates at temperatures up to 150 C ; and in ambients of 125 C , it can carry 4 ma of current through its brush contact on the winding. Available in resistances up to 100 K , it is designed to withstand 30 g vibration from 50 to 2000 cps and 150 g shocks for 11 msec . It also passes the humidity requirements of MIL-STD 202, Method 106. The unit is $1 / 2 \mathrm{in}$. in diameter
and has silver plated gold-flashed terminals which afford maximum corrosion resistance and installation and connection simplicity.

Tucson Instrument Corp., Dept. ED, 1050 E. Valencia Rd., Tucson 2, Ariz.
CIRCLE 181 ON READER-SERVICE CARD

Digitizer

For punched tape or telemetering
Designed for use with any of the company's Autronic transmitters or converters, model A9M indicating digitizer translates analog signals into a digital code for punched tape or telemetering. Operating on a 0 to 0.5 v ac signal, it can also be used in parallel with the company's controllers or recorders. The unit is housed in a standard case which fits into a panel cutout five inches square.

Swartwout Co., Dept. ED, 18511 Euclid Ave., Cleveland 12, Ohio. circle 182 on reader-service card

Completely new Babcock BR-7 miniature DPDT relay, ruggedly designed for diversified MIL-SPEC airborne and missile applications, will permit contact loads from dry circuit conditions to 10 amperes. Single size for all uses with $0.2^{\prime \prime \prime}$ grid spaced header supplied for interchangeability. Specifically engineered for greater reliability, extended life and extreme sensitivity. Minimum life at 10 amps $-300,000$ operations at $25^{\circ} \mathrm{C}$ and 100,000 operations at $125^{\circ} \mathrm{C}$. Meets or exceeds applicable specifications for life, temperature, vibration (30 g min . to 2.000 cps). and shock. 480 mw pull-in for 10 amp contacts, 80 mw for 2 amp contacts, lower for SPDT and special adjustments. Can size: $1.26 \times$ 1.07×0.56 in. Complete header arrangements, mounting methods BABCOCK RELAYS, INC., 1610 Morrovia Ave., Costa Mesa, Calif.

REGATRAN TRANSISTORIZED

REGULATED POWER SUPPLIES

- short circuit proof

- compact • reliable

Compare the small size, light weight and absolute short circuit protection of a Regatran with any other transistorized power supply. You'll find that Regatrans combine all the advantages of semiconductor operation in one tough, power-packed package.
And there are special features too... like remote sensing terminations, front panel calibration, vernier as well as main voltage control (on wide range models), and many others. Ask for a copy of Preliminary Bulletin T for a complete description of wide range and narrow range models . . . Regatrans like to be compared.

WIDE RANGE MODELS

d.C OUtput		MODEL NO.	DIMENSIONS IN INCHES			APPROX. WEIGHT in LBS.
volts	AMPS		H	w	D	
0.7	0.15	T07-15	83/4	19	15	40
0.7	0.5	T07.5	51/4	19	15	30
0.14	0.10	1014.10	$83 /$	19	15	40
0.14	0.5	TO14.5	51/4	19	15	30
0.32	0.15	TO32.15	83/4,	19	15	70
0.32	0.5	TO32.5	51/4	19	15	40
0.36	0.15	T036.15	83/4	19	15	70
0.36	0.5	TO36-5	51/4	19	15	40
0.60	0.7 .5	TO60.7.5	$83 / 4$	19	15	70
0.60	0-2.5	TO60-2.5	51/4	19	15	40

NARROW RANGE MODELS
Narrow range models covering most popular battery and dry cell voltages are available.

BRIEF SPECIFICATIONS

REGULATION . . 0.1% or 0.1 volt, no load to full load, 105 to 125 -volt line.
RIPPLE . . . Less than 1 millivolt rms.
CIRCUIT PROTECTION... Short circuit proof.
OUTPUT POLARITY... Positive, negative, or floating ground. REMOTE SENSING . . . Eliminates effect of voltage drop in power leads.

ELECTRONIC MEASUREMENTS
COMPANY OF RED B.ANK

EATONTOWN. NEW JERSEY

FOR CHARACTER DISPLAYS

YEARS AHEAD IN DESIGN PERFORMANCE

NEW PRODUCTS

DC Microvoltmeter
100 meg input impedance on all ranges

Transistorized model 1362 dc microvoltmeter has over 100 meg input impedance on all ranges from ± 0.001 to $\pm 1000 \mathrm{v}$. It will operate for 12 consecutive hours from an integral storage battery which automatically recharges when the instrument is plugged into a power
line. Intended for low level measurements in transistor circuits, the unit is chopper-stabilized to avoid drift problems. It provides total isolation from power lines.

Dynamics Instrumentation Co. Dept. ED, 1118 Mission St., South Pasadena, Calif.
CIRCLE 186 ON READER-SERVICE CARD

Flow Control Servo Valve

For missiles and aircraft
Series FC-30 flow control servo valves weigh 14.5 oz and measure $1.75 \times 2 \times 2.8 \mathrm{in}$. They cover the entire flow range from 0.15 to 13 gal per min and have a supply pressure range of $5(0)$ to 4000 psi. Internal leakage for a 4 gal per min valve at neutral position, using MIL-()-5606 hydraulic fluid at 90 F and 3000 psi supply pressure, is 0.09 gal per min maximum.

Cadillac Gage Co., West Coast Dir., Dept. ED, Costa Mesa, Calif. CIRCLE 187 ON READER-SERVICE Card

ARRATLINE

CONTINUOUSLY VARIABLE ATTENUATORS

Exclusive Features:

- Moad
- Min. VSWR for all values of
- Insertion loss: 0.2 db max.
- Colibration Accuracy: $\pm 0.2 \mathrm{db}$
- Drive: Micrometer for general use piston \& Shaft drives for systems \& Connectors: Type "N"" Female lothers - Size: $5^{\prime \prime}$ dia. $\times 1^{\prime \prime}$ high, excluding
- Power Rating: 10 watts average min
- Calibration freq.: midband

Continuously variable for all values of attenuation

Modol No.	Freq. KMC	Max. Apfon.	Max. VSWR	Unit Price
1414-10	.25-.50	10	1.5	\$290.
2414-20	.50-1.0	20	1.5	\$280.
2-3414-30	.8-2.5	30	1.5	\$290.
3414-30	1.0-2.0	30	1.4	\$270.
4414-30	2.0-4.0	30	1.3	\$215.
4-5414-30	2.0-6.0	30	1.3	\$225.
5414-30	4.0-7.0	30	1.3	\$250.
6414-30	7.0-11.0	30	1.3	\$280.

[^1]-Other ranges of continuously variable attenuation from a minimum of .2 db to a

- IT A ANTENNA and RADOME 1 Bond St., Westbury, N.Y. CIRCLE 188 ON READER-SERVICE CARD

Silicon Rectifiers
Diffused junction type

With piv ratings ranging from 50 to 600 v , type 1 N1612 through 1N1616 diffused junction silicon rectifiers can deliver 5 amp of rectified current. They have an operating temperature range from -65 to +175 C , a low forward drop, and a low reverse leakage current. Furnished in packages that conform to proposed JETEC Group 20 standards, they can be used in magnetic amplifier and de blocking cir-
cuits as well as for power rectification.

Bendix Aviation Corp., Semiconductor Products, Red Bank Div., Dept. ED, 201 Westwood Ave., Long Branch, N.J.
CIRCLE 189 ON READER-SERVICE CARD

Tube Tester

Rejects burned out tubes instantly
On model 3414 tube tester, all switch settings can be made before the tube warms up, and burned out tubes are rejected instantly without waiting for the filaments to heat. It will test receiving tubes, gaseous rectifiers, series filament tubes, ballast tubes, and others. The continuity test circuit may be used to check electrical appliances for shorts or open circuits. The unit also provides a neon indicator short test.

The Triplett Electrical Instrument Co., Dept. ED, Bluffton, Ohio.

CIRCLE 190 ON READER-SERVICE CARD

Small Size - Big Performer

DIT-MCO FAULT LOCATION CIRCUIT ANALYZER AUTOMATICALLY PLOTS TEST SEQUENCE... PINPOINTS, IDENTIFIES AND PATTERNS CIRCUIT ERRORS.

> DIT-MCO's exclusive cross-reference Matrix Chart automatically pinpoints each circuit flaw and puts clear, concise test information directly in front of the operatort Horizontal and vertical indicator lights cross-reference on the matrix square corresponding to the circuit under test. This square details type of flaw, circuit number and exact error location. Once an error is detected, the operator immediately marks it on the matrix square, resets the Universal Automatic Circuit Analyzer and continues the test. All corrections are made direct from the Matrix Chart after the test sequence has been completed. This saves up to 90% correction time by eliminating time consuming searches through diagrams, manuals or interpretive readout devices. Because the DIT-MCO Matrix Chart is a simple, concise representation of all test circuits, specifications, instructions and modifications, nothing is left to chance or guesswork! The comprehensive nature of the Matrix Chart system provides important data for statistical analysis and permits effective checks and balances. from the drafting board to obsolescence!

DIT-MCO, Inc. employs an experienced staff of sales engincers in the field. Contact your field enginoer or write for important facts abour DIT-MCO Electrical Test Equipment.

DIT-MCO, INC.

ELECTRONICS DIVISION • BOX 01-20 911 BROADWAY • KANSAS CITY, MO.

Jumper-wired plugboard programming utilizes simple, atraigh.forward adapter cables. Circuit modification problems vanish bocause all changes
are easily made by re-iumporing the readily are easily made by ro-iumporing the readily accessible plugboards.

Partial List of DIT-MCO Users
Aircraft Radio Corp. - AiResearch Manufacturing Co. American Bosch Arma Corp. American of North American Aviation, Inc. Bell Aircraft Corp. Eendix Aviation Corp. Boot A Division Co. Cossna Aireraft Co. Chance Vought Aireraft, Inc. Chrysler Corp. Conver Convo Douglos

 Aircaft Enginosing Corp. Mazoltine Electronics Division, Hazoline Corp. Mughe Grumman - International Business Mochines Corp. Jofferson Electronic Products Corp. Lockheod Aircraft Corp., Missile Systoms Division Martin, Bolfimore Minnoapalis.-Honoywallo Aoronautical Division e America, Radioplone Co. © Raythoon Manufacturing Co. Sorvomochanisms, Inc. Sikorkky Aircraft E Sperry Gyroscope Co. Summers Gyroscope Co. Sun Electric Co. © The Swartwout Co Airlines © U. S. Naval Air Station Overhaul and Repair Depots - U. S. Naval Ordnance Laboratory, Whito Ook - Vortol Aircraft Corp. - Westorn Electric Co. - Westinghouse Eloctric Corp.

NEW PRODUCTS

Strain Gage Recording System
 Expandable

This expandable strain gage recording system has a wide choice of configurations for operating adding machines, printers, or Flexowriter typewriter and tape punch units. Standard rack mounted units can be assembled into a ten channel system which selects, measures, and records each channel in sequence and automatically records the strain gage data in microinches per inch units. Additional modules in groups of ten channels, each with its own span and gage factor controls and a bank omit switch, may expand the system to accommodate 100 or more channels without rewiring or modification of the basic ten channel system. The record produced by the printer or type-writer-tape punch unit includes a 2 digit channel number, a 1 digit
span number, a plus or minus sign, and 3 digits of strain gage data followed by a tens multiplier. The unit records at rates of 1 to 4 sec per channel with overall accuracy of 0.25% excluding the transducer. Linearities for any range are 0.1%.
Datran Electronics, Dept. ED, 1836 Rosecrans Ave., Manhattan Beach, Calif.

CIRCLE 194 ON READER-SERVICE CARD

Coil Bobbin

For high temperature solenoids
For class H application, this double drawn glass silicone coil bobbin incorporates a lead wire extrusion in its flange. Designed for high temperature solenoids, the units are deep drawn from one piece. They have close tolerance ID and OD dimensions to fit precision made cases.
Stevens Products, Dept. ED, 86-88 Main St., East Orange, N.J. CIRCLE 195 ON READER-SERVICE CARD

CIRCLE 196 ON READER-SERVICE CARD

Strip Resistors

Match copper conductors
Fitting directly into Stripline circuits, these two dimensional strip resistors are as thin as the copperclad conductor and exactly match the shape and configuration of the circuit. The resistors consist of a base of natural mica and a pure metal alloy resistance film about $50 \mu \mathrm{in}$. thick sealed with a coating of quartz. Fired silver terminations can be supplied for dc connection of the resistor to the copper center conductor of the Microstrip or Stripline circuit. Resistances are about 1 to 500 ohms depending upon shape, and standard tolerances are ± 5 or $\pm 10 \%$. Closer tolerances can be provided. The units can be supplied as matched loads, fixed pads, variable attenuator elements, and terminations. They are available as straight rectangular or square sections, tapered rectangular sections, or curved sections. Several resistances with appropriate contact points can be supplied as
one unit. Shapes not requiring silver terminations can be hand cut from sheets which are available in various thicknesses.
Filmohm Corp., Dept. ED, 48 W 25 th St., New York 10, N.Y.
CIRCLE 197 ON READER-SERVICE CARD

Plastic Ties

Made of nylon base

Made of nylon base Moldarta material, this wire tie looks and works like a miniature belt. It can be adjusted to a wide range of wire bundle diameters and held securely in place by ratchets on the leader and the buckle. Its under side has a V ridge to prevent side slip. It can be quickly tied by hand or with a special plier designed for the purpose.
Westinghouse Electric Corp. Component Products Dept., Dept. ED, East Pittsburgh, Pa.
CIRCLE 198 ON READER-SERVICE CARD

DIRECT READING CALORIMETERS

DC to 12 KMC
Coaxial \& Waveguide
20 watts full scale to 20,000 watts full scale. Simplest to operate, completely self-contained and self-cooled. No thermometers, no flow-meters, no valves to adjusi. Only controls switch and the on and off switch. Accuracy $\pm 3 \%$.

MODEL CPM-50 CPM-500 CPM-1000 CPM 5000 CPM-10,000 CPM-20,000

WRITE for FULL PARTICULARS and FREE TRIAL OFFER!

ELECTRO IMPULSE Laboratory

DEPT. D, 200 RIVER STREET - RED BANK, NEW JERSEY - Phone: SHadyside 1.0404

E ECTRONIC DEGIGN • January 21, 1959

CHICAGO

MILITARY STANDARD

TRANSFORMERS

Stocked for Immediate Delivery

Through your electronic parts distributor

These Chicago transformers are designed and built in accordance with MIL-T-27A, Grade 1, Class R specifications, maximum operating altitude 50,000 feet, minimum life expectancy $\mathbf{1 0 , 0 0 0}$ hours. They are housed in Military Standard Case size AJ ($19 / \mathrm{k}^{\prime \prime}$ x $13 / 8^{\prime \prime} \times 23 / 8^{\prime \prime}$), weighing only 0.6 pounds.
M. S. AUDIO TRANSFORMERS

Catalog No.	$\begin{gathered} \text { MIL-9-27A } \\ \text { Parl Ne. } \end{gathered}$	Application	Impedance	$\begin{gathered} \text { Operafing } \\ \text { Level } \end{gathered}$	$\begin{aligned} & \text { Prib. } \\ & \text { DCMA } \end{aligned}$
AMS-1	MS 990000	$\begin{aligned} & \text { P-P Plotes to } \\ & \text { P-P Grids } \end{aligned}$	Pri: 10,000 ohms CT Sec: 90,000 ohms CT 22,500 ohms CT	15 dbm .	10
AMS-2	MS.90001	line to Voice Coil	Pri: 600 ohms $\mathbf{C T}$ 150 ohms Sect $4 / 8 / 16$ ohm	2 w	-
AMS-3	MS.90002	Line to P.P Grids	$\left\lvert\, \begin{array}{ll} \text { Priz } & 600 \text { ohm CT } \\ & 150 \text { ohms } \\ \text { Sect } & 135,000 \text { ohms CT } \end{array}\right.$	15 dbm .	-
AMS-4	MS-90003	Line to Line	$\begin{array}{\|l} \text { Prit } 600 \text { ohms CT } \\ 150 \text { ohms } \\ \text { Sec: } 600 \text { ohma CT } \\ 150 \text { ohms } \end{array}$	15 dbm .	-
AMS. 5	MS-90004	Single Plate to Line	Prit 7600/4800 ohms Sec: 600 ohms CT/ 150 ohms	2w	40
AMS-6	MS-90005	Single Plate to Voice Coil	Prit $7600 / 4800$ ohms Sect 4/8/16 ohms	2w	40
AMS.7	MS-90006	P-P Plates to line	Pri: 15,000 ohms CT Sec: 600 ohms CT/ 150 ohms	2 w	10
AMS-8	MS-90007	P.-P Platos to Line	Prit 24,000 ohms CT Sec: 600 ohms CT / 150 ohms	IW	20
AMS-9	MS-90008	P.P Plates to Line	Prit 60,000 ohms CT Sec: 600 ohms CT/ 150 ohms	sw	20

An extensive line of transistor audio transformers, in MS cases are also available. For detailed information on these and many other Chicago Military Standard units, write for Catalog CT8-58

 3518 West Addison Street • Chicago 18, Illinois

 Export Sales: Roburn Agencies, Inc., 431 Greenwich St., New York 13, N.Y. CIRCLE 200 ON READER-SERVICE CARD
FROM HEADQUARTEP:S

H-H RESISTORS

 applications commercial or military

FIXED RESISTORS
ADJUSTABLE TYPES
FERRULE TERMINALS
aXIAL LEAD RESISTORS
EDGEWOUND TYPES
CUSTOM AND SPECIALS

blue ribbon space savers

Design for Reliability with the Hardwick, Hindle

These high reliability components incorporate special design and construction features that assure the highest degree of dependability under the most adverse operating conditions. Non-crazing high temperature gray enamel, stronger core, welded wire connections, higher shock resistance, immunity to salt spray and humidity are advantages inherent in all H-H resistors. Fixed, ferrule and adjustable types comply with MIL-R-26 specifications and meet EIA standards.
*Where Space is a Factor -
specify H-H Blue Ribbon Space Saver Resistors. Sold through author ized H-H distributors nationwide. Call or write for catalog including both Gray Line and Blue Ribbon Resistors, MIL Types, mounting

NEW PRODUCTS

VIBRATING CAPACITORS.-Less expensive than its predecessor, model VC-713/500, the VC-1006/ 500 capacitor is insulated with ceramic instead of fused quartz. Minimum insulation resistance is 10^{13} ohms; contact potential, 30 mv maximum; drift, ± 2 mv per day.

Stevens-Arnold, Inc., Dept. ED, 22 Elkins St., South Boston, Mass.

CIRCLE 202 ON READER-SERVICE CARD
WIRE ALLOY.-Conductor base metal for insulated wire applications. Called Alloy 63, the material is designed to replace copper in the finer gages where high temperatures must be endured. Wires are available silver-coated, nickel-coated, or uncoated.

Surprenant Mfg. Co., Dept. ED. 172 Sterling St., Clinton, Mass

CIRCLE 203 ON READER-SERVICE CARD
110 DEGREE PICTURE TUBES.-Front-to-Back lengths of 17 in . model 17DKP4 and 21 in . model 21 EQP4 are $10-11$ / 16 and $12-9 / 16$ in., respectively. Both aluminized, the units have nonion trap construction and use magnetic deflection.
Sylvania Electric Products Inc., Dept. El), Senecat Falls, N.Y.

CIRCIE 204 ON READER-SERVICE CARD
FLAME-RETARDANT LAMINATE.-A Grade XXXP paper-base laminate made with phenolic resin, Fireban 321 extinguishes itself when set afire. In some instances it can substitute for melamine and silicone grades. In sheets $49 \times 49 \mathrm{in}$. from 0.02 to 0.25 in. thick.

Taylor Fibre Co., Dept. ED, Norristown, Pal CIRCLE 205 ON READER-SERVICE CARD

ELECTRONIC MICROMETER.-Type B-721 distances between 0 and $45,000 \mu \mathrm{in}$. with 1% accuracy and without physical contact. It is suited for making measurements on rotating objects and for monitoring distance with reference to a predetermined value. It can be used to determine temperature coefficient, elasticity, and other characteristics of fragile samples.
Wayne Kerr Corp., Dept. ED, P.O. Box 801, Philadelphia 5, Pa.

CIRCLE 206 ON READER-SERVICE CARD
SHORT LINE TELEPRINTER.-For wire communications and data processing systems, this unit offers two color printing; automatic answering and querying; automatic start and stop; end of line lock; reperforating; and a variety of keyboards, including standard typewriter. The size of an electric typewriter, it punches or reads five channel perforated tape.
TelAutograph Corp., Dept. ED, 8700 Bellanca Ave.. Los Angeles 45, Calif.

CIRCLE 207 ON READER-SERVICE CARD

connections are easy with... Outomatic connectors

Manufacturers of:

- COAXIAL COMNECTORS AND FITTIMGS
- coaxial relays and switches
- bayonet, push-ON AND THREADED

SUB-MINIATURE CONMECTORS

- micro-miniature connnectors
- DIRECTIONAL COUPLERS
- audio and power plugs

Write, wire or phone for further information.
FOR POSITIVE CONNECTIONS EVERY TIME, SPECIFY

Outomatic
 METAL PRODUCTS CORP

319 Berry St., B’klyn, N.Y. • EVergreen 8-605 CIRCLE 208 ON READER-SERVICE CARD ElECTRONIC DESIGN • January 21, 1959

WEINSCHEL

STABLE.
 PRECISION COAXIAL

 TERMINATIONSDC to 10 KMC
50 ohms
Made with Weinschel Film Resistors
Power: 1 watt, 1 KW peak
available with Type M, C. SC
BNC and TNC connectors
MANIMUM USWR of
Model 535 with male
or female Type N connectors DC to 1 KMC: 1.03 1 to 4 KMC:

We supply individual VSWR calibrations at seven frequencies: DC, . 4
$1,2,4,7.5$, and 10 KMC .

FIBER GLASS PUTTY.-Good insulating material, this semifluid resin can be used as an encapsulating agent or as a cement. Hardening speed can be controlled by the amount of setting agent added. Available in bulk, it is also supplied in a kit with a setting agent, glass cloth for reinforcing, and mixing and measuring tools. Sticks to metal, plastic and wood.

Fibre-Glass Evercoat Co., Inc., Dept. ED, Blue Ash and Kugler Mill Rds., Cincinnati 36, Ohio.

CIRCLE 215 ON READER-SERVICE CARD

TAPE TRANSPORTS.-Series 460 transports maintain exact synchronization between a recorded and a fixed reference frequency over wide speed and line variations. Portable model 460A has 2 ms start-stop time and handles $1 / 4$ to 1 in . tape. Fixed model 461 has 30 ms start-stop time and accommodates tapes up to 2 in .
D. G. C. Hare Co., Dept. ED, New Canaan, Conn. CIRCLE 216 ON READER-SERVICE CARD

POWER RELAY.-Heavy duty 25 amp model $2210-\mathrm{U}$ is a 2 pst normally open unit that meets UL specifications. Coil assembly can be removed and replaced in a few minutes. Contact assemblies can also be replaced.
Guardian Electric Mfg. Co., Dept. ED, 1621 W. Walnut St., Chicago 12, Ill.
circle 217 ON reader-service card

MINIATURE TEST CLIPS.-Designed to allow rapid connections without manual opening and closing of jaws. Units may be used for breadboarding, and for testing resistors, transistors, capacitors, and other pigtail components. Model $2-20$ has threaded stud; model 2-24 has molded phenolic insulating washers. Clips have adjustable tension, extend $3 / 4$ in. above the mounting surface.

Grayhill, Inc., Dept. ED, 561 Hillgrove Ave., La Crange, Ill.

CIRCLE 218 ON READER-SERVICE CARD

NYLON STRAIN RELIEF BUSHING.-Model 6S-1 protects wire from heat, vibration, pull, and torque. Hinged with a flexible nylon web, it snaps and locks in the chassis hole. A spring prevents sharp bending or excessive wire flexing and chafing at the chassis entrance.

Heyman Mfg. Co., Dept. ED, 100 Michigan Ave., Kenilworth, N.J.

CIRCLE 219 ON READER-SERVICE CARD

PORTABLE TACAN TESTER.-Model HLI-119 tests performance of TACAN and DMET air navigation equipment by simulating the operation of the TACAN ground beacon. Checks range and bearing operation, coding and decoding, and operating frequency. Permits measurement of peak power-and receiver sensitivity.
Hoffman Electronics Corp., Hoffman Labs Div., Dept. ED, 3740 S. Grand Ave., Los Angeles 7, Calif. circle 220 ON reader-service card

NUMBER TWO* in a series of candid camera studies planned, frankly, to impress you with the efficient service rendered by-

SERVING SCIENCE AND industry since 1928

510 S. FULTON AVE., MT. VERNON, N. Y. - MOUNT VERNON 4-7530

WASHIMGTON, D.C.• WALTHAM, MASS.•UPPER DARBY, PA. - SYRACUSE, M. Y. eastern field engineers for:
ADVANCED ELECTRONICS - ALLISON LABORATORIES - BRUSH INSTRUMENTS - CARDINAL INSTRUMENTS - DEMOLAB - DONNER SCIENTIFIC CO ELECTRO INSTRUMENTS ELECTRO.PULSE EMPIRE DEVICES PRODUCTS - HOLT INSTRUMENT LABORATORIES LEVINTHAL ELECTRONIC PRODUCTS MAGNETICS RESEARCH NARDA MICROWAVE NJE SYSTRON WAYNE-KERR LABORATORIES.
*An attractive corner of the technical literature library in our beautiful new main office building in Mt. Vernon. Miss Scott is stretching herself to maintain our just-about-perfect record of same-day service on all routine requests for catalogs, technical information and quotations. One more reason to "Get the Burlingame Habit"

THE PROBLEM:
Detection... Resolution... Identification

Today we rely on devices hardly dreamed of a few short years ago. The limits of man's theoretical knowledge are being pushed farther almost daily. Between the theory and the device lies the exciting zone of applied research and development-the application of new concepts, and the development of new products. This is the fascinating challenge of creative engineering.
Radar Ambiguity is just one example, but typical, of the problems under intensive examination at Melpar. Important as the problems of radar are, they comprise but one part of the 110 different electronic research, development and production projects at Melpar.

Rewarding positions are presently available in the following areas of Melpar's activities:
Roconnaissance Systems Engineoring

opartment

Ground Data Mandlin
Ground Support Eqing Equipment imulation 1 Training Syetem

Communication \& Navigation
Systoms
Defection $\frac{1}{l}$ Identification Sygrem
Chemistry Laboratory
Antenna \& Radiation Systom
Applied Physics Laboratory
Analysis \& Computation
Analysis \& Computation Labo
Positions are also available in our Production Division and our Quality Control Department

For details about opportunities at Melpar, oddress your inquiry to.

TECHNICAL PERSONNEL REPRESENTATIVE

MELPAR Incorporated
A Subsidiary of Westinghouse Air Brake Company 3331 Arlington Boulovard, Falls Church, Virginia 10 miles from Washington, D.C.

NEW PRODUCTS

CONDUCTIVE COATING.-Based on epoxy resins, Hysol 6251 can rebuild areas worn away by sliding contacts or provide a conductive base for plating plastic:s. It cures in 48 hr at room temperature, in 7 min at 300 FF . Vohme resistivity at 25 C is 0.000 s chim-cm.
Houghton Labs, Inc., Dept. ED, Olean, N.Y. CIRCLE 224 ON READER-SERVICE CARD

EPOXIDE RESINS.-Based on novolac-epichlorhy drin reactions, Epiphen resins are resistant to chemicals, salt spray, water, and heat distortion. They curre rapidly.
Hastings Plastics, Inc., Dept. ED, 1551 12th St. Samta Monica, Calif.

CIRCLE 225 ON READER-SERVICE CARD

THREE IN ONE NUT DRIVER.-The Atom pocket wrench consists of three nut drivers arranged as spokes and welded together at a central hub. While one size is being used, the other two provide leverage. The wrench handles no. 8,10 , and 12 nuts.
Humter Tool, Dept. ED, P.O. Box 564, Whittier Calif.

CIRCLE 226 ON READER-SERVICE CARD
HARISTUBE PULSE MODULATOR.-FOR W, stron and twit testing, model 70 M has a 30 c (ps to 12 kc range with pulse lengths continumsly variable from 0.5 to $30 \mu s e c$. As a cathode pulser, it operates from 0 to 3.5 kv at up to 10 amp ; as a modulating anode pulser, from 0 to 3.5 kv into a 2.5 muf load.
Levinthal Electronic Products, Inc., Dept. EI) Stanford Industrial Park, Palo Alto, Calif.

CIRCLE 227 ON READER-SERVICE CARD
SPEED CHANGER KIT.-Contains parts to make one of the company's Bantan speed changers in any one of 29 ratios between 1 to 1 and 44 to 1 . Units are rated at 1300%-in. torque at low speed shaft; $10,000 \mathrm{rpm}$ at high speed shaft; and 0.1 hp at low speed shaft. Case hardened steel gears are 48 pitch 20 deg pressure angle spur type.
Metron Instrument Co., I)ept. ED), 4:32 Lincoln t., Demver 3. Colo.

CIRCLE 228 ON READER-SERVICE CARD

TEMPERATURE INDICATORS.-For measuring and recording, direct reading Metta-Therms can be applied like decals or tied to cables. Numbers are distinct, and no color charts are needed.
Meta Engincering and Sales Co., Dept. EI), 2.5-2 262 F. 16th St., Paterson 4, N.J.

CIRCLE 229 ON READER-SERVICE CARD
DIRECT READING RATIO SET.-With a precisiom of 1 ppm , this 4 dial set provides a quick method of comparing high precision resistors against known stiandards.

Physics Research Labls, Inc., Dept. EI), P.O. Box 5.5, Hempstead, N.I.

CIRCLE 230 ON READER-SERVICE CARD

RELIABILITY. . THE SOLUTION TO YOUR ELECTRONIC COMPONENT PROBLEMS

Designing reliability into electronic components and instrumentation is Borg Equipment Division's business. Borg's reliable engineering, research and production facilities are at your service for commercial or military projects. Bring your componen reliability problems to Borg You'll enjoy working with our cooperative, creative engineering staff. The result will be a sound, practical and reliable solution at a considerable saving of time and money. Here are just a few of the products manufactured by BorgFREQUENCY STANDARDSAIRCRAFT INSTRUMENTSPOTENTIOMETERSMULTI-TURN COUNTING DIALS
FRACTIONAL H. P. MOTORS
SPECIAL DESIGNS
WRITE FOR COMPLETE ENGINEERING DATA

BORG EQUIPMENT DIVISION
The George W. Borg Corporation JANESVILLE, WISCONSIN CIRCLE 231 ON READER-SERVICE CARD ELECTRONIC DESIGN • January 21, 1959

EASE THE PROFIT SQUEEZE

 precision instruments at competitive prices

BORG $\frac{1100}{\text { SERIES }}$ MICROPOTS

Increase the quality of your precision instruments reduce your component costs
"Sure," you say, "but how?" Here's one way. Borg's 1100 Series Ten-Turn Micropots are truly quality potentio-
meters . . . gangable competitively priced. How is this possible? Precision inter-changeable parts and simplicity of design. Borg 1100 Series Micropots open new avenues of profitable production for your precision instruments. Get complete engineering data from Borg.

Get your copy of this new Borg Components catalog. Contains complete engineering data on all Borg Micropots, Microdials and Motors as well as the name of your nearest Borg "Tech-Rep.

BORG EQUIPMENT DIVISION
the george w. borg corporation JANESVILLE, WISCONSIN CIRCLE 232 ON READER-SERVICE CARD LECTRONIC DESIGN • January 21, 1959

ROTARY TEST HEAD.-For quick, accurate indeing of shaft position on rotary components, mode THM 101 permits phasing to within $1,2 \mathrm{~min}$. Re peatability of settings can he within 1 part in 200,000.
Millitest Corp., Dept. ED, is Madism Ame. Hempstead, N.Y.

CIRCLE 233 ON READER-SERVICE CARD

IINIATURE COAXIAL CONNECTOR.-This comnector is $1 / 25$ the size and $1 / 50$ the weight of a standard BNC connector.
Microdot, Inc., Dept. I:I), 2.20 Pasallena Air. South Pasadena, Calif.

CIRCLE 234 ON READER-SERVICE CARD

PACKAGING FILM.-Yoly-On-Mylar has a high moisture and grease barrier, does not become brittle with age. By a 10 sec process, it can be put around electronic parts like a tight fitting skin.

Print-A-Tube Co., Dept. ED, 114 Fsses St., Ro challe Park, N.J.

CIRCLE 235 ON READER-SERVICE CARD

MULTIPLIER PHOTOTUBE.- Moded 7326 is a 10 stage, head-on type with an improved photocathodethat provides high sensitivity, low thermionic dark current, and high conductivity at low temperatures. Spectral response is 3000 to 7500 angstroms. Mini mum photocathode diameter is 1.68 in .; maximun longth is 6.88 in
Radio Comporation of America, Electron Tube Div., Dept. EI), Harrison, N.J.

CIRCLE 471 ON READER-SERVICE CARD

FLOW TRANSIDUCER.-Sensing fluid flows down to 0.002 gal per min, the Mark X translates them into linear electrical signals. Maximum working pressure, 3500 psi ; maximum fluid temperature, 250 F .

Ramapo Instrument Co., Inc., Dept. ED), Bloomingdale, N.J.

CIRCLE 236 ON READER-SERVICE CARD

CYCLING THERMOSTATS.-shallow models (:2l and C22 have side access to terminals and optional rotary circuit selector switches. Designed to operate air conditioners, compressors, strip, heaters, and reverse cycle heat pumps under cross ambient come tions.

Ranco Juc., Dept. ED, Columbus 1. Ohio. CIRCLE 237 ON READER-SERVICE CARD

TRANSISTORIZED TRANSCEIVER.-For serial binary data transmission, the Sebit-25 transmits digital data over voice communication circuits at speeds up to 2.500 band. Power consumption is less than 50 w

Rixon Electronics, Luc., Dept. EII, 24t Reedic. Drive, Silver Spring, Md

CIRCLE 238 ON READER-SERVICE CARD

REDUCE BREAKDOWN FAILURES

The use of a thermo-plastic insulation material has resulted in an economically priced molded carton resistor of markedly improved endurance and long term stability.

Type \mathbf{N} resistors subjected to several one-hour cycles of immersion in boiling water - while DC polarized - have revealed only negligible changes in resistance. Continuous operations at $150^{\circ} \mathrm{C}$ caused no damage to the component.

The new Type N resistor, a deposited carbon film fired onto a porcelain rod, is first tropicalized with multiple coatings of panclimatic lacquers to give it long term moisture resistance, and is then molded in a thermo-plastic material.

This molded insulation has an effective resistance in the order of 10^{138} ohms. Its inherent thermal conductivity is approximately ten times that of air, resulting in substantially improved load life under conditions involving excessive or high wattage dissipation. Similarly, Type N resistors may be soldered as close to the insulation as desired without fear of melting or deforming the cover.

One added advantage of the Type N is that the original markings on the resistor body remain visible and legible through the transparent molded material.

Welwyn Type N carbon resistors meet the requirements specified by MIL-R-10509 B, and are available in all values, ranging from 10 ohms through 1 megohm. For complete data and specifications write to Welwyn International, Inc., 3355 Edgecliff Terrace, Cleveland 11, Ohio.

1\%

SAMPLES AVAILABLE ON REQUEST. CIRCLE 239 ON READER-SERVICE CARD

Available from this department within one week ARO, or sooner, if necessary, for small quantitics.
The men in this department are highly skilled instrument technicians using the best standards and equipment available.
Phone or wire Sun Electric Corporation. Instrument Division, Collect for your immediate requirements of either standard or military types of panel meters.
Phone-Newcastle 1-6000 XT293,306 • TWX-CG 2341 • FAX—Chicago, Ill.

< ELECTRIC CORPORATION
 CHICAGO 31, ILLINOIS, U.S.A

harlem and avondale
INSTRUMENT DIVISION
CIRCLE 241 ON READER-SERVICE CARD

NEW PRODUCTS

BUTTON GUARD.-For protection against accidental operation, these guards come in a choice of thread sizes to fit standard pushbutton switches.

Vemaline Products Co., Dept. ED, P.O. Box 2e2, IIawthorne, N.J.

CIRCIE 242 ON reader-service card

TAPE RECORDER SWITCH. - Rated at 3 : amp, 2.50 v ac, this switch automatically shuts off a tape recorder when the tape breaks. Body length is 1.5 in ., movement differential is 0.233 in . maximum, and operating force is as low as 6 g .

Robertshaw-Fulton Controls Co., Dept. ED, P.O. Box 449, Columbus 16, Ohio.

CIRCLE 243 ON READER-SERVICE CARD

INTEGRATOR.-The portable Planimeter integrates regular size strip chart records and the 3 or 4 in . charts used with pneumatic control systems. On square root charts, accuracy is 0.5% at the upper half of the scale and 1% at the lower. Linear accuracy is 0.5%.
Royson Engineering Co., Dept. ED, Hathor(o, Pa CIRCLE 244 ON READER-SERVICE CARD

FUNGICIDAL INSULATING VARNISII.-Type $642-\mathrm{AF}$ is designed to protect the surfaces of transformers, printed circuits, ceramic resistors, insulators, and other electronic equipment from fungus attack in hot, humid climates
Schenectady Varnish Co., Inc., Dept. EII), Sche nectady, N.Y.

CIRCLE 245 ON READER-SERVICE CARD

ADJUSTABLE-SPEED DRIVES.-In 17 models from $1 / 20$ to $3 / 4 \mathrm{hp}$, Motorformers provide smooth control from zero to maximum rated speed. The controlled rectifier is contained in a compact enclosure that is designed for either bench hise or wall mounting.

Servo-Tek Products Co., Dept. EI), los(Cooff. Rinarl. Hawthome, N.J.

CIRCLE 246 ON READER-SERVICE CARD

WIRE STRIPPING TOOL.-Strips mylon sheathing from plated conper braid wire without scoring the braid.
Stavid Fingineering, Inc., Dept. ED, Plainfictl, N.J.

CIRCIE 247 ON READER-SERVICE CARD
MULTIRANGE FREQUENCY GENERATOR. Model T868 supplies accurate frequency reference voltage to the company's T806 turntable rate motor drive amplifier, as well as other gyro test tables. A self-contained module, it incorporates tuning fork resonators and frequency dividing networks.
Sterling Precision Corp., Instrument Dis., Dept (I), if Matinecock Ave., Port Washington, N.Y. CIRCLE 248 ON READER-SERVICE CARD

STODDART

COAXIAL ATTENUATORS AND TERMINATIONS
made with exclusive Stoddart Filmistors for highly accurate and stable resistive values from dc to 3000 mc .

2, 6 and 10 -position TURRET ATTENUATORS
with simple "PULL-TURN-PUSH"
operation, small and rugged.

Protected under
Stoddart Patents

ATTENUATOR PADS

Available in any conceivable combination of male and female Type C and Type N connectors. Maximum length of GENEPAL SPECIFICATIONS GENERAL SPECIFICATIONS VSWR: Less than 1.2 to 3000 mc Characteristic impedance: 50 ohms. Attenuation Value: Any value from 0 Accuracy: $\pm 0.5 \mathrm{db}$; values above 50 have rated accuracy of attenuatio through 1000 mc only. Power Rating: 1.0 watt sine wave.

COAXIAL TERMINATIONS

Small-stable-50 or 70 ohms
$1 / 2$-Watt: 50 ohms impedance, TNC or BNC connectors, dc to 1000 mc , VSWR less than 1.2.
1-Watt: 50 ohms impedance, dc to 3000 mc or dc to 7000 mc , Type N or Type C connectors, male or female; VSWR less ,
the
Fast delivery on all items.
Send for complete literature

STODDART
 AIRCRAFT RADIO CO., INC

 6644 Santa Monica Blud., Hollywood 38. Calif. HOllywood 4-9292CIRCLE 249 ON READER-SERVICE CARD

New Products Index

New Products，new materials，and production products announced dur ing the last half of last year are listed here by category．Following each category are issue and page numbers．The date corresponding to
the issue number is given below．

14－July	20－Oct． 1
15－July 23	21－Oct． 15
16－Aug． 6	22－Oct． 29
17－Aug． 20	23－Nov．
18－Sept． 3	$24-\mathrm{Nov}$
19－Sept． 17	25－De

26－Dec． 24

A

absorbers，microwaves－22：65： $23: 117$ accele rometero－ $14: 94 ; 16: 60,108$ ；17：53，54 18：69，82：19：100； $22: 63,74 ; 23: 62$ ； 24 ：4i etuators－ $14: 84$ ； $16: 106 ; 23: 8$, adhesives－ $21: 89: 23: 114$ ： $24: 73: 25: 109,109$ air conditioning equipment－26：63， 66 a mplifiers－ $14: 53$ ； $16: 84$ ； $17: 40$ ； 22 ：î amplifiers，andio－ 23 ：95； 25 ：63
amplifiers，d饣－ $15: 50 ; 16: 69,112 ; 17: 37$ ，42 18：74，108；19：54； $21: 64 ; 23: 55 ; 25: 78$ mplifiers，decade－ $14: 82$ ； $17: 44$ ； $23: 95$ mplifiers，differential－22：5
mplifiers，i－f－14：74
amplifiers，linear－19：108： $21: 67 ; 24: 62: 25:$ ： 22 amplifiers，magnetic－ $15: 67$ ； $16: 77,102,140$ 17：64；18：97；19：94，107； 22 ：66 amplifers，microwave－ $17: 36$ ： $21: 68,69$ ： 22 ：$: 61$
amplifers，pulse－14：93；16：83
amplifiers，recording－15：83；19：106； $21: 45$
a mplifiers，servo－14：57；15：81；16：144
18：102：19：109；21：78，89；23：69； $24: 91$ 25：93
mplinera，strain gage－ $16: 150$
amplifiers，transistor－14：44； $15: 62 ; 16: 91$ ；
21：8． 26 ：31
16：131；17：55；18：74 23：87； $25: 102$
analyzers，irequency－14：51
analyzers，magnetic－17：67； $21: 55$
analyzers，noise－ $21: 91$
analyzers，spectrum－14：48，81；15：70： $16: 1333$ ；
17：38；22：52，71；24：93
analyzers，waveform－14：52： $16: 132$ ： $25: f_{i} 2$ antennas－ 16 ：104
antennas，direction finding－26： $6: 3$
antennas，marine－ $15: 88$
antennas，microwave－ $20: 44: 24: 61: 25: 111$
antennas，rotaioro－15：58
antennas，towers and supports－ $24: 73$
attennatorb－15：68；16：148；19：80： $20: 413$ ；
21：78
attenuator，logarithmic－18：80
attenuators，microwave－ 22 ：53； $25: 60$
25：109
audio equipment－24：56；
B
hatteries－18：8s
hatteries，dry－14：39，40： $26: 39$
hatteries，mercury－24：79
hatteries．nickel－eadmium－16：8
hatteries，nuclear－17：43
（ieacons－16：104
bearing－ 15 ：54： 16 ：144； 21 ：Til
bellowa－17：45
bends，microwave－14： 17
bezelo－18：112
blowers－14：54； $17: 7: 3.73 ; 19: 108 ; 20: 611$ 22：51， 74 ； 23 ：89
blowers，fans－21：84，90； 24 ：65： $26: 16: 3$ boards，block－23：70
boards，plug－20：43 $23: 73: 25: 76$ ，9x
boards，terminal－22：i1： $23: 73: 25: 76,98$ 26：49
bolto－17：48
bobbins，coil winding－14：30： $24: 71$
boxes，metal，plastic or waterproof－16：15： breadboard，kito－17：70 20 ：4t breakers，circuit－15：90
breakers，circuit－15：90；17：63：19：110： $20: 4$ bridgee－ $17: 12$
bridges．impedence－ $15: 65$ ； $16: 63: 20: 4 i$
bridges．microwave－ $24: 36$
bridges，resistance－ $16: 68 ; 21: 63: 22: 45$
bridges，wheatstone－19：93； 21 ：it

C

cabinets，metal－17：69： $23: 4$
cable assemblies－24：112，113 cable，coaxial－15：80； 22 ：61 cable，insulated－ $15: 67,72 ; 19: 89: 33: 76 ; 24: 164$ cables－16：147
calibratore－ $14: 38 ; 15: 61 ; 16: 111$
calibrators，pressure instruments－ $17: 5$
calibrators，voltage－ $20: 58 ; 25: 87$
cameras，data recording－14：34： $20: 59$ ； 23 ：5hi camer
cameras，oscilloscope－21：92
cameras，television－24：71
capacitors－ $16: 120 ; 22: 69,74: 23: 80: 24: 63$
capacitors，ceramic－17：68； $18: 82$ ； $19: 54$ ，（ill．
77； $26: 30$
capacitors，electrolytic－ $15: 87$ ； $18: 68 ; 19: \times \times$ ． 110；20：59， $25: 107$
capacitors，energy atorage－ $16: 62 ; 24: 5$
capacitore，feed through－14：64：19：70
capacitors，zlase－ $21: 45$
eapacitors，metalized－19：6
capacitorn，metallized paper－19：63，72： $23: \times 4$ eapacitors，mice一26：60
eapacitors，mylar－18：70，98： $21: 9$
capacitors，paper－ $22: 67$
capacitors，polyatyrene－ $17: 40$ ， 51
capacitors，silvered mica－15：77
rapacitors，centalum－16：84，148：17：316 18：67； 19 ：78： $21: 41,43,81,85$ ； $22: 74$ ； $23: 91$ 24：44．47； $26: 46$
capacitors，variable piston－18：77
capacitors，variable trimmer－14：35；15：101 16：92：19：85； 23 ：77

Which of these radar areas is yours？

Microwave Associates has long had a specialized and creative interest in lightweight，compact． high efficiency magnetrons with these features：

STABLE FREQUENCY OUTPUT RUGGEDIZED CONSTRUCTION FIXED TUNED AND TUNABLE TYPES FREEDOM FROM PULSE TO PULSE JITTER． high Duty cycle capabilities EXTENDED OPERATING LIFE LONG SHELF LIFE

If you need to get the most from magnetrons write or call for detailed specifications．

MICROVAVE ASSOCIATES，INC，
\square BURLINGTON，MASSACHUSETTS • BRowning 2－3000

SPECIAL TERMINALS, SAPPHIRE-TO-METAL SEALS AND MAGNETRON WELLS AVAILABLE
High alumina ceramic and metal parts are brazed together to form a high strength, long.life, molecular seal.
Stock sizes for up to 100 KV -DC operating voltages available for short delivery.
For complete information, brochure, spec sheets and price lists, write or phone: Ceramaseal, Inc., New Lebanon Center, N. Y. West Lebanon 3-5851.
CERAMASEAL, Inc.
CIRCLE 221 ON READER-SERVICE CARD

$1 / 3$ the size. . $1 / 2$ the cost!

Mestronix

ELECTRONIC VOLTMETERS

 Panel-mounted, single and multi-range$\mathrm{F}^{\text {ROM }} \frac{1 / 3}{}$ to $1 / \frac{1}{6}$ smaller than conveninstruments occupy no more pinc space than the meter.
METRONIX AC and DC models are the smallest available with such wide choice of ranges. Single-range, mili-A-mounted and plug-in type.
Ask for Bulletin M-602
MODEL 300 D. C. (illustrated) RANGES: $0.1 / 3 / 10 / 30 / 100 / 300 / 1000$ volis D. C
ACCURACY: $\pm 3 \%$, full scale deflection INPUT RESISTANCE: 10 megohms
PRICE: $\$ 94.50$

(\%)

Metronix inc

A SUBSIDIARY OF

Assembly Products Inc Chesterland 17, Ohlo CIRCLE 255 ON READER-SERVICE CARD

14--July 9	20-Oct.
15-July 23	21 Oct. 15
16-Aug. 6	22-Oct. ${ }^{2}$
?-f un 29	23
18-Sept. 3	24
10-Sept. 17	25

apacil

apacitors, vibrating- $20: 21$
ements, conductive-26:47
entrifuges-17:56: 18::9
chambers, acountic-14:94
chambers, environment $15: 78 ; 18: 81: 19: 10 \mathrm{~s}$ 21:88; $22: 73,76 ; 25: 84,103,106 ; 26: 55$ chargers, battery- $26: 63$, 6
chassis-16:98: 17:73:
hokes, filter- 17 :66
hoppers-14:53; $17: 70$; 19 : 73 ; $21: 14$; 22 :53
$26: 38,47$
rircaits, computer packs-11:45, 58:15:54, 86 23:76:24:59; $26: 34,40$
ircuits, plug-in-21:51:26
rircuits, plug-in-21:51
eireuits, printed-15:98: $20: 53$: $21: 53$
irculators- 23 :71
irculators, microwave- $16: 96,10: 3$: $18: 8$.
lampo-17:69
leaners, ultrasonic-25:9
lutches, brakes- $14: 56$; $19: 58,84 ; 20: 59$ 21:49; 26:44
Flutches, magnetic-20:42, 57
rode and tab markern-16:77, 99; $22: 78 ; 2.3: 95$. 1
oil assemblies- 22 .-
roil assemblies and forma-17:73; $26: 66$
roils- $21: 87$; $23: 6$
oils, focus- $15: 87$
rnils, magnet- $15: 73$
nils, solennid- 21 :49
enils, toroidal-14:35:25:8:
communication systems, carrier current-
communication systems, microwave- $26: 50$ rommunication systems. telemetering-23:40 24:58: $\mathbf{2 5}$:76
mmparatorn-19...91 18 :64, 22 ,61 romparators. voltage-18:...1, $22: 11$ ompensator, computer, input equipmen
romputer. input equipment- $15: 6$:
rnmputerx-16:138: $24: 7 \%$
romputera, analog-21:8K
computers, digital-19:
ronnectors-17:65
connectors. cable-16:96: 21 :5n: 21 :65, 89 monnertors. coax rable-18:8t: $19: 94: 23: 93$ 25:51
ennnectorn. feed through-23:72:25:105 ennnectors, high voltage-17:66
ronneetors. interlock-16:156, 21 :58; $25: 00$
monnectors. miniature-16:109. 141; 17:78
18:112:20:58: 22 :56
ennnectors, printed eireuit-16:79. 121: 19:71. 100: 23:5ヶ! : 25 :59. 97
ronnectors, rf-16:114: $22: 62,75,77$
ronnectors, solderlenm- $15: 70: 25: 103$
rontactors- 23 : 66
rontacta, electrical-17:73: $25: 103: 26: 183$
nontrole-16:10n; 22 :57, 75
$25: 66.110$
ontrols, machine rafety- $24: 70$
ontrols, positioning-23:86, 90
rontrols, power- 18 :77
rontrols, power level-15:62: 21 : Kz
ontrols. pressure-26:65
ontrols. servo- $15: 66$; $16: 127$; $17: 70 ; 20: 4$ 61: $21: 84: 24: 61,8.2$
controls, temperature-electronic-24: $6,8: 26: 49$ controls, timing-19:110; 26:48
converters-17:63. 6 : : $18: 95$: $25: 59$
converters, analog-digital-14:32:16:67 ; $20: 5$
60: $23: 65$
converters digital-analog-17:65: 18:100
ronverters, low frequency- $\mathbf{2 0}: 58$
onverters, power-21:92
onverters, power rrequeney. electronic-14:47

onverters. ri-1
coolera- 20 :58
ores. lape wound- $16: 11!$
counterm-21:88
counters, electromarnetic-16:4.\%: 26 :6f nunters, electronic-14:34, 88, 95: $16: 605,110$ 128: $17: 42,63: 18: 75,114: 19: 83,86,104$ $20: 51: 21: 87: 22: 79: 23: 50,92: 24: 87,88$ counters, frequency-16:105 rounters. impulse- $17: 68: 19: 12: 20: 60$ rounters. mechanical-17::ती: $21: 70: 20: 10 n$ ounters, radiation- $24: 11$
rounters, revolution- $23: 1,2$
rounters, scintillation- $16: 1.5: 28: 72$
coanters. scintillation-16:1
couplers. antenna-17:41
couplings, microwave- 20 :50
rouplings. shaft risid and flexible-15:71 17:69: $18: 76$: 22 :57: $23: 94$
rystal. mounts- 25 :103
crystals. frequency control-19:6ff, 97
culters, wire-20: 19
D
data. recorders-18:10n
data, reduction aystems- $18: n 0: 16: 138$
data. reduction systems-
de, power supply-22:42
decade boxen-17:72
delay lines- $14: 55: 19: 65,103: 21: 93: 26: 65$
delay lines, digital- $21: 53$
delay lines, digital- $21: 53$
delay lines. distribuied, constant fixed-25:50
delay lines, distributed. constant variable-
delay lines. lumped, constant fixed-14:89: 18:82: 24:44
delav lines. lumped constant variable-14:73 $16: 134$
delay lines, ultrasnnic- 21 : 1
demagnetizers- $15:: 13$
demodulators-11:43: $21:: 2: 21: 81$
dials, instrumen $-14: 95: 22: 58: 23=82$
dials, instrument-14:95: $22: 58: 23: 85$ dials, precision-18:115
diodes, germanium-17:49: $23: 78: 24: 44$
diodes, germanium-15
diodes, serienium-25: :10x
diodes. silicon- $15: 55: 18: \mathrm{A} 1: 21: 57$
diodes. silicon-19:55, zener-19:55, i1:21:5in: $23: 59$
diplexers, antenna-2.3.
diplexers, transmitter- 18
displays-20:57
distribution, amplifere-23:-1
dividers- 20 :55
dividers, voltage-15:74: $17: 55$
dollien-17:66: $23: 93$
drafting equipment-15:64: $16: 154$; 18:114 21:48: $23: 97: 25: 69: 26: 62$
drills and arcessorics-23:1\%9
drives- $23: 8 \mathrm{Rf}$
drives and drive mechanisms-15:89: $23: 68$;
duct, wiring-26:62
E
-lectro-marnetic-21:8io
electrometer. metern- 22 :i
-nclosures- 14 :86, 90 : 16 :1.5×: 21 :60, 90 : 23 : 97: $24: 68: 25: 108$
nelosures. cabinet-17
-neoders-16:152: $20: 47$: 2
encoders. position- $\mathbf{2 1}: 8 \mathrm{si}$,
engraving and profling. equipment and serv-
epaxy resins- $16: 67$
insulation compound., impresnatine-20:5s insulation compounds, silicone compounds$20: 59$
nsulation material-16:61;21:95
insulation material, asbestos-23:11 insulation material. ceramica- 16 : 6 insulation material, nica-25:110 insulation material, plastic-26:40 insulation parts-23:112, 116
insulation parts, insulating sleeres- $25: 103$ insulation parts, plastic-26:65 nsulation, plastic-24:73, 100
insulation testers-17:3:, $8 ;$
insulators- 21 :94
insulators. fabric-22: :T:5
integrators-17:59, $72: 21: 7!$
inverters-21:74 22 :54, i4, 24:4!! : $2.0:$: 2 $26: 5$
nverters, de-ac. dc-dc-14:95, 15:90; $16: 15:$ nolators, ferrite- $17: 45,64 ; 23: 62$
volators, microwave- $18: \times 11,41: 16$!91, 101: 26:46
jack 1 - 15:74: 16:107, 165, 168: 17: 70, 71 18:115; 24:69: $26: 65$
jointa, rotary mirroweve-14:48; 29: :7
aivanometero- $15: 66$; 24 :7
gears, gearheads- 17 :60
sears, precision-15:90; $16: 69,101 ;$; $17: 0,4$, f. 4 18: 79, 111, 112: $23: 65$; $25: 103$: $26: 16$ enerators- $23:$:07: $21: 14$

14:79; 15: 10 : 18:113 19:62; 24 :56
enerators, hall-18:97; $22: 62$ enerators, microwave- $18: 90$ generators, pulse- $15: 64 ; 16: 8 x: 18: 71,92$, 4n $19: x 7: 22: 44 ; 24: 62 ; 25: 75,91$ generators, signal, rf-16:65; 18:107; $26: 52$ generators, signal ssb- 24 :52 generators, signal uhf-vhf-25: :80 renerators, sweep-14:44; $16: 76 ; 24: 57$ enerators, timing marker一 16 : f : enerators, ultrasonic-24.il enerator, variable frequency-15:59: $20: 4 x$ 21 :65
nerators, waveform-24:
rescopes-21:4i 50.5

H

handles- $23: 92: 24: 111 ; 26: 64$
hardware-16:9

header - 14 :
headers-14:i8: 16:122; $20: 53 ; 23: 97$
heads, mannetic erasure-18:93
heads, recording-16:84, $10 \bar{\imath}$
heaters- $14: 80 ; 24: 56$, i0
heaters, heating-element-17:65
heat sinks-18:107
high voltage-23:90
holders-20:60
holders, battery-23:96
holders, battery components- $23: 92$
holders, chassis- $16: 14 \mathrm{i}$
hybrid junctions, microwave- $16: 118: 24: 58$
ixnition systems, elentanic-14:
indicators-16:142: 18:70
indicators, aliceraft fight panel- $25: 81$ indicators, linear displacemeni-2 $2: 54$
indicators, null- $\mathbf{2 2 : 4 6}$
indicators, siznal-14:90
indicators, signal electro-mechanical-16:149 indicators, temperature- $16: 94$; 17:57: 19 :60 indicators, timing-21:4i; $22:$: i indicators, torque-24:84 infrared equipment-25:89 inserte-17:71: 24:11 inaralating compoands, varnish-25:110 insulation compoonds-21:95
marhines $22: \times(1): 23: 108: 24: 10!$ 114
machinex, coil winding $22: \times 1: 23: 10 ;$ machines. coil winding toroidal $23: 107$ machines. cutting-23:110; 25:94. 116 machines, diode manufacturing-16: machines. forming-23:98, 109: $25: 99$ machines, impregnating-23:110, 111 machines, marking and numbering- $-25: 91$ machines, riveting-23:106
machines, vibration faitgue testing $23: 97$ machines, ire cutting etripping- 22 :9
 100
magnets, permanent-17:(67: 21 : 5 :
magnistors-24:45
mechanisms, tape $14: 87$
memory systems-14:62;16:147; 17:47: 18:S5
21:5ै4. 83: 22:46; $\mathbf{2 4 : 5 7 , 7 1 : 2 6 : 4 2}$
metaln, alloys, beryllium and bersllium alloyn24:69
metals, alloyn, oxides-23:114
metals. alloys, oxides, compounds 23 !!
metals, alloyn, oxides, silicon 21 :91
metaln, alloys, oxides, tantalum- $-23: 112$
metals, alloys, oxides, titanium $24: 6: 9: 25: 11$ metal, foil-16:158: $21: 89$, 4t meters-16:104, 155: 17:65. 20 . metern, mmeter-15:82, $1 / \mathrm{NH}: 16: 6 \overline{\mathrm{n}}$: $22: 5 \mathrm{~F}$ $25: 60$: 26 :53, 63
metern. calorimeter-14:42: $18: \times \mathrm{n}$
metera. decibel, andio- 20 : 50
meters, deviation-20:59
metern, distortion and noine- $25: 79$ meters, electrometer-16:124: $17:$:fic: $19: 57$
β SUBMINIATURE 13-DIGIT ENCODER for uirborne or other limited space applications. Detailed specificutions in Bulletin 0858. SIZEt 2^{9} ic" diu. $x^{3} 3^{3} 4^{\prime \prime}$ long; $1 / 4^{\prime \prime}$ dia. shaft, $7 \times \mathrm{s}^{\prime \prime}$ long. WEIGHT: $11 / \mathrm{lbw}$. OVERALI ACCURACY: ± 1 1'f quuntu in 8192. READOUT RATE: Model A, nominully 10 KC (50 microsecond pulse), max. of 100 KC (5 microsecond pulse). Model B, max. of 200 K C for element, 10 KC for sequence. MAXIMUM aNGULAR SPEED OF ROTATION AT FULL ACCURACY 2 rpm (6 rpm at 12-digit accuracy). 10 rpm with temperature control.

B4" DIA. 13-DIGIT ENCODER for yeneral purpose applications. Detailed specifications in Bulletin 0958. SIEE: $4^{\prime \prime}$ OD with protrusions on one side $x 7^{\prime \prime}$ long: $1_{4}^{\prime \prime}$ dic. shuft, $0.67^{\prime \prime}$ long. WEICHTs 9^{1} \& lbs. OVERALL ACCURACY: ± 1 quanta in 819\%. READOUT RATE 100 cps, mux. MAXIMUM ANGULAR SPEED OF ROTATION AT FULL ACCURACY: 720 rpm ; maximum rotation rate, 600 rpm.

E 6" DIA. 13-DIGIT ENCODER for general purpose applicutions. Specifications in Bulletin 1058. SIZE. 6,3 他 diu. with protrusions $x 7^{3} 4^{\prime \prime}$ long; $1 / 2^{\prime \prime}$ diu. shaft 1 " long. WEIGHTs 14 lbs. OVERALL ACCURACYs ± 1 yuantu in 8192. READOUT RATE: 100 cps , max. MAX. IMUM ANGULAR SPEED OF ROTATION AT FULL AC. CURACY: 720 rpmin (10 microsecond pulse).

Now from

Baldwin

precision shaft angle analog-to-digital encoders in 5 standard models:

13, 16 and 18 digit /
photoelectric readout / reflected binary code*.

Model A2.6SS13 (Parallel readout) Model B2.6SS13
(Sequential readout)

Model A4DP13

Model A6DP13

Emall Motors Molded Produc's

Automatic Controls
Industrial Instruments Air Distribution Products . CIRCLE 257 ON READER-SERVICE CARD

14-July	20-Oct. 1
15-July 23	21-Oct. 15
16-Aug. 6	22-Oct. 29
17-Aug. 20	23-Nov. 12
18-Sspt. 3	24-Nov. 26
19-Sept. 17	25-De

meters, flow, electronic- $18: 88$
meters, frequency-14:66, 78; $15: 83,17: 55$ 18:86; $19: 66,110 ; 21$:49; $22: 68 ; 23: 01$ meters, grid dip-26:53
meters, megatrometers-20:43
meters, microwave-18:98, $23: 91$
meters, modulation- $21: 55$
neters, modulation-21:65
$26: 56,57$,
meters, noise, electrical measurement-14:9 meters, ohm-16:115; $19: 78$; 22:53; $23: 74$
24:85
meters, panel-15:81: 16:155; 18:72, 79 19:106; $20: 17,59: 22: 60,79$
meters, panel vtvm-15:71
meters, phase angle- $14: 36,56,79 ; 19: 83,80$ 21:53, 66; 25:104
neters. 9-22:56
meters. radiation, nuclear-17:68; $20: 14$
meters, ratio- $20: 50 ; 21: 61: 24: 60$
meters, recording-22:75
meters, relay-18:88; $16: 93 ; 18: 102$
meters, tachometer- $23: 66$
meters, vacuum tube volt-15:69: $16:!2,138$ 18:85, 115; 19:61: $21: 68 ; 23: 48$
meters, vibration-24:59
meters. volt- $14: 86,91 ; 15: 75 ; 16: 65$. 86 , 89 118, $120 ; 18: 101 ; 19: 70,88 ; 21: 62,93 ; 22$:45
77; $23: 48,66,70,81,83: 21: 53$
meters, volt-ammeter- $23: 48$
meters, volt, digital-17:53
meters, volt-ohm-18:74; 21:52: 21 :511
meters, watt-16:90; 18:95; 21 :911
meters, Wave-23.55
microwave, terminations- $16: 73$
modulators, pulse- $21: 59 ; 23: 96 ; 26: 34$
modules-17:67: 20 :4n: 21 : :11. 86: $22: 38$ 23:54, 92
molding material- 25 :103
monitora-14:61: 23:75: 24 :70
monitor, modulation-14:92
motors. ac. de-14:63; 16:193: 18:76, 85
21 :62
motor alternators-26:49
motors. controle- $22: 50: 24: 57$. 1112
motors, fhp-16:129;21:56, 71:21:113: $25: 111$ motors, hystersis- 17 :37; 18 :71; 21 :ís
motors, \quad miniature- $16: 142 ;$
$23: 56 ; 24: 52: 25: 63: 26: 41$
motors, servo- $14: 95 ; 15: 86 ; 16: 76,78,80,122$.
motors, servo- $14: 95 ; 15: 86 ; 16: 76,78,80,122$
87: 23:52, 57, 69, 82: 21:70, 7:3; 25:55, 104:
26 :61, 62,64
motors, spring-25:107
motors, stepping-22:4:
motors, synchronous-14:37: $16:: 17,120 ; 17: 72$;
24:55
mounts-14:72, 78: 15:90: 19:99
mounts, shoek-17:63: 18:110
mounts, vibration-18:115
malticoders- 14 :87
maltipliers-24:66
multipliern, frequeney-16:111: ; 22:59: $21: 60$

N
net works, matching-22
noise analyzera-21:80
oscillatora-14:72
scillators, audio-16:92, 98; 17:59: $21: 88$ 22:58; 23 :61; 21 :54
oscillators. crystal-21:92
seillatora, mixers-22:62
seillators, multichannel-16:89
seiliators, power-22:77
seiliators, rI-15:69; $21: 44 ; 25: 68$
scillators, sweep-15:80; $16: 116$; $18: 87$
scillators, wide range- $22: 51$
oscillograph. multichannel-16:135
oseillographs, recording-16:155; $19: 86,94$ oscilloscopes- $16: 65,79: 18: 111 ; 20: 41 ; 25: 10$
oscilloseopes, cathode ray- $14: 77$; $15: 76$; $16: 91$
149; 18:78; $23: 64 ; 24: 53,73$; $25: 64,106$ $26: 36$
oscilloscopes, er, multiple channel-18:75. 104 24:58
vens, crystal-15:89; $23: 6$
vens, electric- -26 :67
packeging, materials-20:55
paint, metallic-23:115
paint, metallic
panels- $20: 59$
panels, jack-25:73
papers, recording-16:157
photocells- $22: 74,77$
photocells and phatotubes-16:123; 18:115 24 :56
photoelectric, equipment-26:64
photoheads-18:114: $26: 58$
plastic materials-23:116
plastic materials, epoxy resin-35:42
plastic materials, teflon, rods, sheets, tubing-
23:113, 114
plating-23:10\%,
plotters- 20 :42
ploters, $x-y$ and accessories- $23: 88$: 26 :65 plugs-17:67: 19:109, 109, 111; 22:79:26:64 potentiometers-14:66, 68; 15:99: $16: 67,88$
102, 123; $20: 60 ; 21$
91,$107 ; 26: 58,64$
potentiometers, portable instrument-25:64
potentiometers, nonlinear-15:61; 21 :88
potentiometers nonlinear, precision-16:137 18:66, 103
potentiometers, \quad precision- $14: 54,83, \quad 92$ 15:101; $16: 30,86,93,126 ; 17: 46,58,65$ $18: 75,108 ; 19: 59,72, ~ 91 ; ~ 21: 50 ; ~ 24: 45$
$25: 34,62,67,71$ 25:34, 62, 67, 71, 103
potentiometers, precision linear wirewound15:78: 16:109
potencometers, trimmers-14:74; $16: 117,155$ 156, 159; 17:54; $21: 63 ; 22: 41 ; 23: 57: 25: 42$ power suppliex-17:60;21:63;22:48, 70:23:57, 83: 25 :80
Dower supplies, ac-16:61, 126. 139
power supplies, dc-14:47; 15:55; 16:129 17:66: 18:68, 99, 113; 19:71, 101, 108; $21: 72$ 81; $22: 77: 23: 57,68 ; 24: 56$
power supplies, high voltage-11:42: $16: 9 n$ 17:66; $20: 55$; $24: 61$; $26: 61$
power supplies, klystron-15:79; 20 :60
power supplies, low voltage- $14: 62,69,75,89$, $95 ; 15: 61,90 ; 16: 72,74,82,87,96,113,118$ 123, 134, 146, 152, 159: $17: 44,49,52,63,68$, $22: 63,78,79 ; 21: 58 ; 25: 78,83,105 ; 26: 43$, 57 , 7, 7., 24.5n, 25.78, 83, 105, $26: 8$
power supplies, microwave-16:125: $21: 5$ power supplies, miniature-21:59; $26: 59$ power supplies, mobile-18:99: $25: 81$ power supplies, regulated- $16: 117,127: 19: 62$
$21: 78,86 ; 23: 71,93,94 ; 24: 60 ; 25: 88,106$. $21: 78,86 ; 23: 71,93$,
$106: 26: 44,48,53,55$
power supplies, transistor- $20: 57,21: 71,76$ 84: 26 :58
power supplien. variable frequency-19:87 20:51
preampliers-17:41. 48: 18:110
preamplifiers for communication receivers-
pressure aitch
pressure switch-22:69
printed-eircuits, plated-18:67 probes-22:76, 76
programmera-14:60:17:39; 21 :93 protectors, circuit-26:41 pumps-17:62; 19:108, 110 punched cerd equipment-15:78 pyrometer, metera-22:78

Q

quadrature rejection-16:75
readers- 20 :51
readers, card tape-18:103
readers, card tape-18:103
readers, readout devices- $16: 141 ; 23: 89 ; 24: 52$, 54, 101; 25:81; $26: 35$ readoute, digital-16:81, 115
readouts, printer-16:74
reamplifers for communication receivers16:132
receivers communication- $22: 78$
receivers, communication and amateur-22:69 receivers, whf- $25: 77$
recorders- $14: 45 ; 18: 83,87$: $20: 32 ; 21: 90$: recorders
$22: 67$
recorders, airborne-15:72; $18: 83$
recorders, chart-14:73, 91, 93; $15: 68 ; 16: 68$.
recorders, chart-14:73, 91, 93:15:68; 16 :
81, 126, 142, $145 ; 19: 75,89,111 ; 26: 43$ recorders, date-21:61, 92; $22: 64,79: 24: 65$ recorders, graphic-17:38
recorders, oscillograph-20:54; $21: 66$: 22 :50; 24:71
recorders, portable-15:89
recorders, reproducers- $15: 59,72: 19: 90,93$
recorders, strain-18:73: 19:91
recorders, tape- $16: 70 ; 17: 43 ; 18: 66$
recorders, tape- $16: 70 ; 17: 43 ; 1$
recorders, telemetering $-20: 60$
recorders, telemetering- $20: 60$
recorders, temperature-18:96
recorders, temperatare- $18: 96$
recorders, temperature electronic-22:44
recorders, temperature
recorders, timing-21:75
recorders, timing-21:75
rectifiers-16:83, 156; 18:91
rectifiers-16:83, 156: $18: 91$
rectifers, power units- $20: 50$
rectifiers, power units-20
rectifiers, selenium- $16: 64$:
reetifers. Belenium-16:64: $17: 510.69,70$
reetifers, silicon-14:65, 71: $15: 75,90: 16: 58$ $112,157: 17: 48: 18: 106: 19: 97: 20: 57: 21: 54$
$62: 22: 42,51,52,70,71: 23: 46,73,42: 24: 64$ 62: 22:42, 51, 52, 70, 71:23:46, 73, 82; $24: 64$, $112: 25: 50,51,68,97,104$
reflectors, passive-16:80
reflectors, passive-16:80
res'sters, shift computer- $23: 81$
regulators, voltage $14: 20,52,86,90: 16: 90$, 119: 17:44, 61, 64, 71, 73: 18:102: 20:48 53: 22:45; 23:58, 86
regulators, voltage and stabilizers-16:154 21:74: 24:57
relays—14:61:
relays-14:61: $16: 148$
19:63. 10k: $21: 85$
relays, differential-24:65
reiays, electronic- $18: 72 ; 21: 45,46$
relayn, latching-16:85, 128; 22:65
relays. mercury-16:82
relays, photoelectric-23:79; 24:51
relays, polarized-17:64
 $19: 73,107: ~ 21: 91,92, ~ 93: ~$
$26: 78, ~ 80, ~$
24 26:42, 67
relaye, rf-14:70; $23: 80$
relays, sensitive-16:99, 144; 19:64, 74, 81 $23: 86$
relays,
relays, subminiature-14:85: $16: 42$; $19: 88$ 21:73: $24: 40: 25: 44$
relays,
relays. telephone-14:79: $16: 94: 25: 105$
relay, time delay- $14: 51: 15: 94: 22: 50$, 23:53, $96 ; 25: 67$; $26: 64$
relays, vibrating reed type- $25: 77$
repeaters, regenerative-19:84
repeaters, regenerative-19:8
resins $-16: 72$; 18:113: $21: 95 ; 23: 93,93,112$, 115: $25: 117$
resintors- $14: 63: 18: 94: 19: 75,111: 20: 41$ resistors, carbon film-16:154:25:97 resintors, decade- 21 :57
resistors, deposited carbon- $24: 55$
resiators, eneapaulated- $14: 82: 24: 30$
resistors, marnetoreniator-25:28
resistors, precinion-15:74, 82: $16: 143,151$
$17: 61: 18: 70,93,97: 19: 58: 24: 96: 26: 10$
ELECTRONIC DESIGN • January. 21, 1959
reaistors, aubminiature- $26: 35$ resistors, temperature senaitive-24:69: $26: 67$ resistors, variable-17:57
resistors, wirewound- $25: 104$
resistors, wirewoven-16:75; 18:101; 19:59 21:45, 46
resolvers-16:89: 19 :89
rheostato-22:41
rings, retaining-14:74; 17:72 ringe, slip and brush assemblies-16:143 rooms, screen- 16 :64 rotators-17:46

s

scannera-18:114; 22 :80; $25: 86$ screws-16:154
seale, ceramic to metal-23:113, 115
seals, glass to metal-15:63
seals, hermetic-16:158: $21: 94$
seals, metal to glass-23:117
seals, rf-24:112
seals, shaft-23:95
seals, switch-17:72
shifters, phase- $20: 54$; $23: 51$ shifters, phase microwave-18:89 sensors-16:153
shells, encapsulating-17:66
shielding, magnetic-21:64, 69, 90 ; $23: 76$ shielding, wheet or screen-24:112
shielding, wire- $24: 112$
shutters, mierowave- 23 :87
silk screens and processing-25:115 simulators, flight-15:65: $25: 108,109$ simulators, signal-16:151, 152 simulators, table-16:136: 18:93 slides, chassis- 26 :68 slides. equipment. cabinet-24:68: $25: 108$ workets, crystal-17:72
sockets, lamp-15:89; $25: 108$
sockets, miniature一18:113
sockets, relay-14:41; $21: 87$
sockets, tube-17:64
sockets, wiring plug- $24: 111$
sockets, wiring plag-24:111
soldering, equipment-15:63 solenoids-15:56; 16:159:22:72:25:67 solvente-22:74
speakers, pm dynamic-24:70:26:63 spect rometers-18:109: $20: 46$
spectrometers, recorder-18:96 spectrometers, recorder-18:96 splicing, equipment-16:158 standards. frequency-14:50, 68, 94: 17:39 21:59: 23:53: 26 :51
standards, voltage-21:70: 22 :68 storage, energy-21:93
switches-14:47: $16: 108,110 ; 26: 59,67$
switches-14:47: $16: 108,110 ; 26: 59$,
switches, circuit breaker- $22: 74,78$ owitches, circuit breaker- $22: 24,78$
switches, coaxial cable- $24: 55,67,83 ; 25: \% 10$. 107
switches, electronic—17:56; $\quad 21: 89 ; \quad 22: 32$ $23: 49,81$

- witches, foot-26:66
switches, hermetically sealed-16:106
systems, isolation-17:41; 23 :93
nwitchen, key-24:88
switches, limit-22:76
nwitches, mercury-16:154: $21: 89,91$
switches, microwave- $14: 81: 23: 54$
switches, miniature-17:73: $20: 53 ; 21: 77$
switches, plunger-18:69
switches, pressuro-15:59; 16:154: 17:63: 18:98: 19:59: 21:87; 23:51, 63: $24: 92$ ewitches, pushbutton-16:101: 17:57; $19: 104$: 21:57, 87, 90 ; $22: 75,77$: $25: 108$
switches, rotary-17:70, 72: $21: 40,40,50$ switches, rotary and band change-16:97 switches, rotary sampling-24:54
switches, rotary selector-14:83; 15:76; $16: 60$, 62, 78, 157: 18:100; 19:76, 77, 99: $21: 49$: 22:67: 23:63; $24: 99$: 25:107; $26: 37$ awitches, sampling-14:60; 18:105: $19: 105$ switchen, snap action-14:95; $16: 154, \quad 159$:
$17: 57,69,70 ; 18: 76 ; 19: 110 ;$
$21: 88$, 17:57. 69, 19 : 110 : 21 :88. 91
itches,

Across industry today, Barber-Colman ultra-sensitive d-c relays are solving control problems in a wide range of applications such as communications, nucleonics, instrumentation, process control, railway signal transmission, ait craft temperature control and remote positioning systems.
Polarized Mlcropositionor Relaye - The Barber-Colman Micropositioner is an ultra. sensitive polarized d-c relay capable of operating on input powers as low as 40 microwatts. Available in three types of adjustment: null-seeking symmetrical magnetic-latching conventional form C snap-acting. \dot{C} an be operated in excess of 100 cps . Selec tion of enclosures and mountings.

Translstorized Polar Relays - The Barber-Colman transistorized relay is an adaptation of the Micropositioner that features a built-in transistor pre amplifier, which greatly reduces the input required for contact operation Choice of null-seeking . . .symmetrical Choice of null-seeking . . symmetrica
magnetic-latching, or form C snap magnetic-latching, or for
acting contact operation.

Resonant Relays - Characterized es pecially by low operating power and narrow band width. Standard units can be tuned to any frequency between 115 and 400 cps . Special units have been built to resonate as low as $162 / 3$ cps.

the wide line of carber-colman electrical COMPONENTS includes: D.C Motors for industrial equipment and aircraft control applications. Out put up to l/ series types parious mountings and speeds. . series types... vorious mountings and speeds...
also available with gearheads or blowers. Tach also available with gearheads or blowers. Tach
Generators for accurate speed indication and servo rate control applications. Choppers that require extremely low driving power. Resonant Relays characterized by low operating power, narrow band width. Ulira-Sensitive Polarized Relays operating on inpul powers os low as 40 miero. watts. 400 Cycle A.C Motors for aircraft and missile applications.
TECHNICAL BULLETIN SERVICE on all Barber.Colman electrical components. Detoiled specificafions, performance data, circuirry
drawings. Write for bulletins on drowings. Write for

BARBER-COLMANCOMPANY
Dept. M, 1883 Rock Street, Rockford, Illinois

[^2] Molded Products - Metal Culting Tools - Machine Tools - Textile Machinery CIRCLE 258 ON READER-SERVICE CARD

ANOTHER NEW ROSTER OF

 OPPORTUNITIES APLENTY AT BURROUGHSAgain we are stepping up our aggressive research and development programs．These have already made us a $\$ 300$－million－a－year force in advanced electronic and electro－mechanical information proces－ sing for both commerce and defense．Here are just a few of the many exceptional career opportunities open right now for exceptional men：

CALIFORNIA at our

ElectroData Division in Pasadena
Electronic Engineers with experience in areas such as logical design，com－ puter components，circuit design，elec tronic packaging，sub－miniaturization manufacturing costs and processes．

Electronic Data Processing Special－ ists with experience in areas such as applied programming，applied math－ ematics and technical sales consul－ tation，etc．

For Details．write Mr．C．J．Blades， Manager，Professional Employment， Dept． $20: \mathrm{A}$ ，Burroughs Corporation 1：lectroData Division， 460 Sierra Madre Villa，Pa＊adena，California．

PENNSYLVANIA at our

Research Center near Philadelphia
Systems Engineers with specific experience in systems analysis and design of digital data processors Should be trained in engineering physics or mathematics．Graduate training desirable．

Mathematicians，computer－oriented， with particular experience in problem formulation，numerical analysis，and applied mathematics－in connection with formulation and design of com－ putational procedures．Procedures in－ volved in problems of guidance and air defense，trajectory calculations，logical design，sampled data systems，circuit analysis and more．Advanced degree in mathematics preferred．

For Details，write Mr．Frank Gillen， Supervisor of Employment Services，

Dept． $20: 3$ B Burroughs Corporation Research Center，Paoli，Pennsylvania．

PENNSYLVANIA at our Mil－ itary Field Service Division in Phila． Field Engineers responsible for the direction of several field teams in installation and maintenance of digital computers and integrated data pro－ cessing systems．Required BSEE，with extensive field service experience in military electronic equipment
Site Engineers to attend formal lab and lecture training program of 16 weeks in electronic data processing equipment at full salary．Assignments after completion of formal program plus field training will involve direct supervision of a field team in installa－ tion and maintenance of data process－ ing equipment．BSEE preferred，or ing equipment．BSEE preferred，or
equivalent experience．Must be willing equivalent experience．
to travel and relocate．

For Details write Mr．A．J．Bellace Employment Supervisor，Burroughs Corporation Military Field Service Division，Dept． 202 C ， 511 North Broad Street，Philadelphia 23 ，Pennsylvania．

MICHIGAN at our Burroughs Division in the Detroit Area
Experienced Electronic，electrical and mechanical engineers to work in many areas of research and develop－ ment for information processing equip－ ment applicable to commercial and military use．
For Details，write Mr．A．L．Suzio， Administrator，Corporate Placement Services，Dept．202，Burroughs Corpo－ ration，Detroit 32，Michigan．
${ }^{3}$

Burroughs Corporation

＂new dimensions／in electronics and data processing systems＊＊＊ CIRCLE 729 ON READER－SERVICE CARD

14－July 9	20－Oct． 1
15－July 23	21－Oct． 15
16－Aug． 6	22－Oct． 29
17－Aug． 20	23－Nov． 12
18－Sept． 3	24－Nov． 26
19－Sept． 17	25－Dec．

witches，toggle－ 19.111 witches，waveguide－ $21: 60$ －ynchros－14：46，64：16：85： $21:$ ：66 systems，conling－14：41，65：16：110，1：55，151） systems，memory－21：48
achometers－17：64．71； $18:$ ：
lape magazines，continuous－ $24: 11$ tape mechanisms－16：146；18：112；22：75； $23:$ ：51 tapes－23：95
tapes．electrical insulation－23：96： $24: 67$
tapes．pressure sensitive－ 23 ：96．113； $25: 61$
telegraphy－16：158；25：109
elescopes，radio－ $22: 77$
elevision systems，closed circuit－17：66： $25: 10 x$
erminal，bushing－16：130
Cerminalo－14：64； $16: 66,132,157$ ； $18: 113$ erminaly，block 25 － $18: 114$
terminals，solderless－16：153：18：96，110， 115 $26: 36$
erminals，standoff－18：114：21：43： $23: 93$
terminals，terminal strips－18：06
lerminations．microwave－21：4！： 22 ：
test equipment，automatic－24：6a
testers－11：71．84：16：119，137： $17: 65: 20: 57$ $21: 71,8: 3,02: 24: 51,52,72: 25: 74,80,82$ $26: 1: 3$
esters，cable－16：82：17：46
lesters，circuit－11：i0．Sñ： $22: 45: 23: 0,8$ ，of $24: 55$
esters，coil－ $\mathbf{2 5}: 11$
lesters．diode－ $18: 86$ ： $19: 64 ; 21: 52$
testers，environment and performance－16：111
esters．insulation－15：89：16：1．57：19：111
23：50
esters．
lesters．meter－ 21 ：
testers，microwave－ $18: 113: 24: 71: 25: 106$
lesters．radar－ $11: 3 \mathrm{n}$
testers，relays－21：81： $23: 62,70$
texters，syncho error－14：5̄̄： $18: 10$ 令： $21: 5 \overline{5}$ ，\＆n lesters，torque－ 21 ：8
lesters，tranaformers－17：73
testers，transistor－14：55，59；16：100，134， 136 $18: 71$. if： $19:$ ：6f： $21: 56$ ： $24: 46: 25: 66,72$
esters．
testers，tube－ $15: 89: 22: 73: 23: 73: 24: 56$ ， 67
68： 25 ：90
texting．environmental and performance－ 11：7：－18：94： $24: 62$ ： $25: 104$
thermocouplen－ $15: 73$ ； $18: 84$ ； $19: 78$ ： $21: 42$ $25: 50: 26: 62$
thermostats，bimetal－26：f
timers，clock－15：80，89
timers．cyclic－14：95：17：157
timers，electronic－20：61； $26: 56$
timers．interval－14：57：16：111，121：17：73：
19：61：21：77： $23: 61: 24: 58 ; 26: 38$
timers，nequence－24：48， 79
tools．hand or mechanical－23：34
tranaducers－14：38，43，76，88： $15: 58,71,90$ $16: 70,102,112,121,125,145 ; 17: 43,66,68$
$71: 18: 80,83,114.115 ; 19: 108: 20: 58,59$ $71: 18: 80,83,114,115: 19: 108 ; 20: 58,59$
$21: 41,44,45,58,67,91: 22: 40,40,40,55$ $21: 41,44,45,58,67,91 ; 22: 40,40,40$,
$65: 23: 55,94,97: 24: 55,61 ; 26: 45,62$ tranaducers，temperature－ $17: 70$ transformers－15：98：17：58，71： 21 ：76 transformers，audio－15：100；17：62；21：79： 26：58
$20: 6$
transformers， 65；24：54： $26: 51$
Iransformers，filament－14：37；16：139；19：67 $25: 75$
transformers，microphone－24：16 \quad miniature－16：116，23：58 5 $25: 85$ た 25：85
transformers，power－
19：73；21：80； $24: 47$
tranaformers，pulse－14： 15 ； $15: 70 ; 16: 141$ 19：92
transformers．rfiif－14：72
21：88

ransformers，Transistor－16：1．5\％：17：56
19：106； $21: 64,93 ; 24: 57,68$
transformers，ultrasonic－19：10S
transformers，variable－18：113
ransformers，volage regulating－21： AT
19：111： $20: 24 ; 23: 49,-17: 40$, ती．1）； $18:$
19：111： $20: 24 ; 23: 49$ 88； 21 ： 69
transistors．power－16：69： $17: 62$ ： $19: 6 \mathrm{KX}: 21$ ：N：
$22: 60,78,79 ; 23: 79,90$
ransistors，silicon－16：63， $153: 22: 57$ ： 23 ：
ransistors．switching－15：57； $16: 7 \%$ ． 13 n $17: 50 ; 18: 96 ; 19: 85 ; 21: 86: 23: 67: 25: 100$ ranslators－25：79
ransmitters，radar－14：39： $26: 67$
ransmitters，telemetering－22：56； $23: 7.1$
ube parts，anodes－23：115
ube parts，bulbs and envelopes－24：11：，
ubes，cathode ray－17：72

ubes，cr．tv picture and color－1
tubes，electron multiplier－ $16: 61,15: 9$
tubes．geiger－mueller－ $22: 18$
ubes，image orthicon－19：98
lubes，klystron－14：42： $17: 47,52: 24: 57$
ubes，magnetron－19：96； $24: 61$
tubes，miniature－ $22: 76 ; 23: 51: 25: 70,110$
ubes，phototubes－ $22: 63: 24: 73: 25: 109$
ubes，power amplifier－14：511； $18: 10 x: 19: 107$
24：18．69：25：84： $26: 59$
tuber．receiving－15：54： $16: 5$ ． $159: 17: 6 \mathrm{~s}$
21：56：24：73： 26 ： 6.4
lubes，storage－ $24: 53: 25:$ ：
tubes，subminiature $16: 128$
bbes，subminiature－16：12x
ubes．television camera pickup－2．5．192， 11
ubes，thyratron－15：：in： $16: 87: 17: 5 \mathrm{~s}$
tubes．TR pre TR，anti TR－21：11：3
tubes，voltage reference or regulator－21：9
lubing，plastic－24：6？
tubing，wavequide－ 22 ：（6i）
tuners－17：511
tuners．microwave－16：1：11） $18: 955 \quad 23: \mathrm{x}$
24：66
tuning devices，recciver，mechanical－1．5：：？
vacuum equipment，production text－16：15： 26：37
valves－ $15: 77,85$ ： $16: 148$
忟es，servo一18：113： $22: 66: 23: 03$
vaives，solenoid－21：93； $24: 111$ ； $25: 11$
varistors－21：87
vibration exciting equipment－24：11：：25：10！

W
washers－ 21 ：$\cap \mathrm{n}$
wavezuides，rigid－ $22: 5$
welding equipment－16：77： $18: 68: \quad 24: 71$
25：99： 26 ：37
wheels，cutting－23：111
wire cats ${ }^{\circ}$ wiskers－21： si
wire，chrome－copper－23：116
wire，fine wire specialties－ $28: 4 \mathrm{~s}$
wire．hook－ap－16：114：18：11．，
wire woven－21：？1

PATENTS

Signal-Operated Switch
Patent No. 2,853,631. Robert L. Wallace Jr. (Assigned to Bell Telephone LaboraIoric's, Inc.)

Signal power from the transistor switch is used to establish a low-impedance path for signal between its source and load.

Complimentary transistors 1 and 2 are
cross coupled by diodes D_{1} and D_{2} which are poled to impede the flow of base current. However, when the signal voltage exceeds the sum of the breakdown voltages of the diodes, the transistors saturate and the source to load circuit is closed. Distortion due to the switch is negligible since the variational resistance is small.

Pamzian
F Series Silicon Rectifiers ...

. . . in Performance

$\begin{gathered} \text { S.t. } \\ \text { Type } \end{gathered}$	Max. Peok Inverse Volis	$\begin{aligned} & \text { Max. } \\ & \text { RMS } \\ & \text { Volts } \end{aligned}$	Current Retings-Ampares											
			Max. D.C. Load			Max. Rms			Max. Recurrent Peak			$\begin{aligned} & \text { Surge } \\ & \text { tms Mex. } \end{aligned}$		
			$3 s^{\circ} \mathrm{C}$	1005 C	150 C	ssuc	100 C	$150^{\circ} \mathrm{C}$	$33^{\prime \prime}$	$100 \cdot \mathrm{C}$	150	$35^{\circ} \mathrm{C}$	$100 \cdot \mathrm{C}$	$130 \cdot \mathrm{C}$
F. 2	200	140	. 75	. 5	. 25	1.875	1.25	. 625	7.5	5.	2.5	75	75	35
F. 4	400	280	. 75	. 5	. 25	1.875	1.25	. 625	7.5	5.	2.5	75	75	35
F. 6	600	420	. 75	. 5	. 25	1.875	1.25	. 625	7.5	5.	2.5	75	75	35

. . . in
Ultra Small Size

Low Price

research, engineering and production know-how have combined to develop the utmost" in a small size, very low cost silicon rectifier with giant performance. If your problem is miniaturization, or cost, or tough application, the solution is in the Tarzian F series.

Send for Design Note \#31
Sarkes Tarzian, Inc., Rectifier Division
DEPT. C-1, 415 NORTH COLLEGE AVE., BLOOMINGTON, INDIANA
IN CANADA: 700 WESTON RO., TORONTO 9, TEL. ROGER 2.753S EXPORTI AD AURIEMA, INC NE W YORK CITY CIRCLE 261 ON READER-SERVICE CARD

NEW high vibration-resistant THERMAL TIME DELAY RELAY "H"series withstands 5-500 cps

- For missiles, aircraft, electronic equipment
- Time delays - $\mathbf{3}$ to 180 seconds
- Miniature . . . AC or DC
- Hermetically sealed
- Fast reset

The " H " series is part of the Curtiss-Wright Thermal Time Delay Relay line which includes: S-Snapper

- double-throw, snap-action contacts IR, and STR
- instant reset, voltage compensated MR and CR
- fast reset, no contact chatter
K, G and \mathbf{W}
- economical, low-cost, stocked

For our new catalog, write or phone Electronics Division, Components Dept., Carlstadt, New Jersey, GEneva 8-4000.

ELECTRONICS DIVISION

CURTILS-WRIGHTE

CORPORATION • CARLSTADT, N. J.
CIRCLE 262 ON READER-SERVICE CARD

PATENTS

Counting Circuits Employing
Ferroelectric Capacitors
Patent No. 2,8:54,590. Robert M. Wolfe. (Assigned to Bell Telephone Laboratories, Inc.)
Storage characteristics of ferroelectric calacitors are used to provide a counter which is immune to random or noise pulses. The counted pulses may be either
closely spaced or separated by intervals measured in hours.
Briefly: ferroelectric capacitors have dielectrics in which electrical dipoles align themselves parallel to each other by mutual interaction such that the polarization versus applied field curves show hysteresis loops similar to the B-H curves for ferromagnetic materials. An

Uniminited Plasing with Extreme Compactness

Linearity determined dynamically on each unit on NEW Gamewell *LARTester ("Linearily - Angle - Resolution - Top location)
This special Gamewell Phasing Clamp design has two imporiant extras: Extreme compactness and High Temperature compatibility. Check thees features

- Only $\%$ depth per section. Continuous service up to 150 C available - Stainlesas steel clampa give unlimited phasing - Large number of taps, limited only by physical spacink . Excluave Gamewele hikh no linearity distortion. Will withstand High " G " and operation under severe vibration - Three atyles of mounting: Servo. Bushing and 3 -hole - Available in ball or sleeve bearings, shafts as specified - Comes in models RL-270A-1 $1 \xi^{\circ} \mathbf{s}^{\circ}$ RL-270A-2 and RL-270A-3. representatives or write: TMI OAMEWHLI COMPANY, Newton Upper Falls 64. Maes

CIRCLE 264 ON READER-SERVICE CARD
ELECTRONIC DESIGN • January 21, 1959
applied voltage which shifts the polarization from one stable point to another produces a fixed charge depending upon the area of the electrodes.
The typical counter circuit shows ferroelectric capacitors $4.5,50$, and 52 connected to the monostable multivibrator comprising transistors 58 and 60. Capacitor 50 integrates the applied pulses while capacitor 52 performs resetting after a predetermined count. The relative area of the capacitor plates is as shown.

Assume, initially, that the remanent polarization of the capacitors is downward such that a negative pulse will reverse each capacitor and also that transistor 58 is conducting. The first negative pulse applied to capacitors 45 and 50 , in series, produces a charge which is metered by capacitor 4.5 such that onl? a portion of the remanent polarization of capacitor $\tilde{5})$ is reversed. A negative pulse does not affect capacitor 52 since diode 54 will not pass negative pulses to ground. Subsecquent positive pulses reverse the remanent polarization of capacitor 45 through diode 45. Thus, negat tive pulses reverse the polarization of
capacitor 4.5 to deliver consecutive discrete charges to capacitor 50 until the remament polarization of capacitor 50 is reversed completely. This last pulse is transmitted through diode 56 to flip the multivibrator causing transistor 58 to cut off and to provide a positive bias on diode 77 . Hence the next positive pulse switches the polarization of capacitor 52 through diode 53 and resets integrating capacitor 50. When the multivibrator flops back, transistor 58 is again conducting and the counter is restored to its initial condition.

Circuits for Producing
 Nonlinear Voltages

Patent No. 2,854,62. Homer G. Boyle. Assigned to Avco Manufacturing Corp.) In many applications, it is necessary to convert the linear rotation of a shaft into a nonlinear or complex electrical function. Rather than wind impedance elements on an odd-shaped form or convert the linear shaft rotation to a nonlinear motion by means of cams, linear

ELECTRONIC DESIGN • January •21, 1959

NEW ...FROM EP THE PANEL METER WITH THE BUILT-IN

NATURAL READING ANGLE

Here is the newest, freshest meter styling idea in years: The A.P.I. Model 561 . . the slim, trim panel meter with the longer, larger dial you read like a book. Subtly recessed and correctly sloped at the natural reading angle, this meter gives you 30% more dial area in 15% less panel space. Back-of-panel mounting neatly conceals the meter movement; only the clean, crisp façade of the dial is exposed, a clear picture window.

Installation is easier done than said. The $5^{\prime \prime} \times 27 / 8^{\prime \prime}$ case frame is self-trimming, requires a simple panel cutout-no holes to drill, no stud alignment troubles. A window in the meter case provides for dial illumination; you can save a bit of work (and panel space) by using the dial light as a pilot.

For the man who needs a smaller meter, there's the Model 361, an identical but diminutive companion to the Model 561. It measures just $31 / 2^{\prime \prime} \times 2^{\prime \prime}$. Both models are molded of satin-finish Bakelite, and both can be had in ranges of $0-5$ microamperes to $0-50$ amperes or $0-5$ millivolts to $0-500$ volts.

MORE INFORMATION? SEND FOR DATA SHEET IO-A

ASSEMBLY PRODUCTS, INC. Chesterland 17, Ohio CIRCLE 266 ON READER-SERVICE CARD

MINIATURE AND SUB-MINIATURE

Rugged and reliable relays are manufactured at $\mathrm{Hi}-\mathrm{G}$ in a wide range of standard units. and to customer order with special designs to meet your particular requirements.
Complete experimental and prototype facilities permit Hi -G engineering personnel to study and evaluate your relay needs.
New, complete illustrated specification sheot ovailable. Write for your free copy today.

And for information on special relay units, send your specifications to Hi-G for study and recommendations at no obligation.
rugged/reliable/shock and vibration resistant a few of the wide range of hi.g standard relays

for maximum reliability

PREVENT THERMAL RUNAWAY

Prevent excessive heat from causing "thermal runaway" in power diodes by maintaining collector junction temperatures , or below, levels recommended by manufacturers, through the use of new Birtcher Diode Radiators. Cooling by conduction convection and radiation Birtcher Diode Radiators are inexpensive and easy to install in new or existing equipment. To fit all popularly used

for catalog
and
teat data write
power diodes

THE BIRTCHER CORPORATION industrial division 4371 Valley Blvd. Loe Angeles 82, California Sales engineering representativen in principal cities. CIRCLE 268 ON READER-SERVICE CARD

PATENTS

potentiometers are used to generate complex functions.

The basic network consists of linear potentiometer 1 connected to dual potentiometers 5 and 8 ; the dual pot forms a first and second parallel branch both short-circuited by line 4. Depending on the complexity of the curve to be duplicated, any number of branches may be selected. With the second branch disconnected, parabolic or lambda functions can be obtained by selection of
proper values for the network elements. Use of all branches with proper component values will produce logarithmic or asymptotic functions. Finally, with all branches connected, and potentiometer taps 2,6 , and 9 arranged to move in unison or opposition, higher order effects can be realized.
An equation is derived for determining the total network impedance for μ branches. A practical solution to match almost any curve can be accomplished quickly and accurately, using standard, commercial gaged potentiometers.

Diode Test Set

Patent No. 2,847,646. Frank C. Marino. (Assigned to Bell Telephone Laboratories.)

Forward and reverse voltage-current conduction characteristics of a semiconductor are simultaneously displayed on the screen of a cathode ray tube oscilloscope. The apparatus likewise displays the diode reverse dynamic resistance to determine suitability of the diode in switching circuits.

 TEMPERATURE TRANSDUCERS
 response: 200 Msic

Other Specifications:
Calibration accuracy: $0.1-1.0 \%$, depending on temperature range Repeatability and bysteresis:
within calibration accuracy Resistance al 32 F 100 ± 5 ohms Nominal temperatureresistunce coefficient. 0.0018 C

Output:
0.5 vdc , when Arnoux 100 -ohm TME is used.

The newest line of Arnoux temperature transducers - 100 -ohm resistance, 200 -millisecond response permits accurate measurement of transient temperatures such as those in missile and aircraft applications. The output signal is $0-5 \mathrm{vdc}$ for as small a span as 180 F , when Arnoux transistorized TME-1 or TME-2 systems or similar equipment is used.
The fluid-immersion transducer (4101L-11), for static or moving fluid, is LOX compatible and available in two calibration ranges: -302 F to -285 F , -320 F to +500 F .
The air transducer $(4101 \mathrm{H}-10)$ is for static to highvelocity gases.
The surface transducer $(2101 \mathrm{H}-15)$ is for materials of limited area and thickness, and has great mounting versatility.

Both air and surface types are available in two calibration ranges: -100 F to $+500 \mathrm{~F},-100 \mathrm{~F}$ to +1200 F.

A semiconductor diode characteristic has forward and reverse regions of low impedance and an intermediate region of high impedance. The revise bias for conduction is much greater than the forward bias to be applied for conduction. The reverse breakdown point is important in switching circuit design.
The characteristic shown on the screen is generated as follows: The output of ac generator 13 is applied to the horizontal amplifier and the voltage across diode current sensing resistor 20 is con-
nected to the vertical amplifier. For the forward half cycle the generator is across diode 10 and resistor 20 in series. During the reverse half cycle, mercury-wetted switch 22 places a preselected portion of battery 28 voltage in series aiding with ac generator 12. Diode 10 conducts the instant the combined voltage exceeds breakdown. The horizontal and vertical amplifier sensitivities are constant for the entire conduction characteristic in order that the actual slope at breakdown be displayed.

CIRCLE 270 ON READER-SERVICE CARD
E.ECTRONIC DESIGN • January 21, 1959

plan ahead!

To be really sure of getting your pot deliveries on time, you could assemble your own! But just when you're counting on sub-contractors to deliver the necessary parts - you might find they're tied-up on someone else's job! So if you must be sure, lay in a good supply of raw materials in quantity lots - metals, glass, wire, plastics, bearings - the works!

But before you load up the living-room with bar stock, check with Ace. You'll find, to your relief, that Ace abundantly warehouses all their own raw materials - just for the express purpose of being able to make everything they need - when it's needed, for controlled deliveryl So if delivery of precision pots is a prime consideration. talk to the company that does its own sub-assembly manufacture - see your Acerep!

From raw materials to completed pot - within the plant - our servo-mount A.I.A. size $7 / 8^{\prime \prime}$ ACEPOT®. As with all the others, from $1 / 2^{\prime \prime}$ to $6^{\prime \prime}$.

ELECTRONICS ASSOCIATES, IMC.
99 Dover Streal, Somerville 44, Mass.
somarnol 6.5130 TMX sMvL 181 Wost. Union Wux

CIRCLE 271 ON READER-SERVICE CARD

ALLIED'S NEW ADDITIONS TO THE KH SUBMINIATURE LINE

Types KHS and KHY GENERAL FEATURES:

Contaet Datas

Conlact Arrangement-DPDT Contact Rating-
tow-level up 102 amps af 29 volis d-c 1 amp af 115 volts a-c 400 cps Lifo- 100.000 minimum of $125^{\circ} \mathrm{C}$ Also availoble 3 amps af $29 \mathrm{vel} / \mathrm{s}$ Also availoble 3 amps af 29 rels d.
2 amps at 115 volis a-c 400 eps 2 amps af 115 voits a-c 400 sps Life- 100,000 of 3 amps or 500,000 minimum al 2 amps of $125^{\circ} \mathrm{E}$ Initial Confact

Resistance- 0.05 ohms maximum
Contact Drop-1 millivolt maximum of low lovel rafing, initial and durlhe low level miss test.
Oporafo Dafas
D-C Coil Resistance-up to 10,000 ohms Nominal Power- 1.2 walls
Pull-in Power- 240 milliwatts (standard) 100 milliwatts (spocial)
Operate Time- 5 milliseconds max. Release Time- 3 milliseconds max.
Dielectric Strengths
1000 volis rms af 3×0 level
500 volts rms at 70,000 feel
350 volts rms at 80,000 feel
Insulation Resisfances
10,000 megohms minimum al $125^{\circ} \mathrm{C}$
ENVIRONMENTAL FEATURES
Vibrefions
5 to 10 cps at 0.5 inch double amplitude 10 to 55 cps at 0.25 inch double amplifude 55 to 2000 cps af 20 g Shock: $100 \mathrm{~g}^{\prime}$ s oparational - 200 g 's mechanical Ambient Temperature: $-65^{\circ} \mathrm{C}$ 10 $+125^{\circ} \mathrm{C}$
MECHANICAL FEATURES
Woights 0.5 ounce
Torminalss
Hooked Solder - Plug-in - Printed Circuil Mountings?
2 or 4 hole brackels al base or contor of grovily 1 or 2 studs on fop or side of nousing MILITARY EPECIFICATIONS
MIL-R-25018 • MIL-R-5757C

ALLIED CONTROL COMPANY, INC, 2 EAST END AVENUE, NEW YORK 21, N. Y. CIRCLE 272 ON READER-SERVICE CARD

Sampled-Data Control Systems
John R. Ragazzini, Gene F. Franklin, McGraw-Hill Book Co., 327 West 41st St., New York 36, N.1. . $3: 31 \mathrm{pm}, 59.50$.
This book discusses analysis and design of sampled-data feedlback and control systems. It presents a unified treatment of the material found in original papers, reports and recent research made by the authors and their colleagues, plus new material previously moublished in any book.

While specifically directed to control systems, there is much material which has general application. This includes the transformation, data-reconstruction
theory, applications of transform methods to numerical processes, and the theory of sampled random function.
The book is largely theoretical as ap plied mainly to the design of sampled data control systems where such specifications as stability, response, and output ripple are of importance. Sampleddata theory serves as a common base for the analysis and synthesis of linear digital systems, pulsed continuous systems. and their combinations often found in practice. In addition, the subject is broadly treated to include applications in the fields of communications, data processing, and filtering.

PRODUCTION PRODUCTS

This escapement mechanism permits the winding of any number of comnected series coils, depending upon wire size, coil size, winding speed, and mandrel weight. It will handle rotor, field bobbin, repeater, solenoid, and single layer coils. Production is increased because pauses are eliminated, and no operator is needed to move wire from one series coil to another. Instead. the opcrator can prepare the next mandrel. Maintaining an exact turn count per coil, the unit handles wire sizes from 17 to 46 at winding speeds up to 1200 rpm . Winding pitch is determined by gear train and cam by coil length.
Geo. Stevens Mfg. Co., Inc., Dept. ED, Pulaski lid. at Peterson, Chicago 46, Ill.

CIRCLE 274 ON READER-SERVICE CARD

Tension Analyzer

Helps make uniform wire coils
By recording both static tension level and dyamic tension variations, tension analyzer model BL-S25 helps produce uniform wire coils at high winding speeds. Affording proper winding speed control, it reduces the overstretching of wire, thus eliminating overheating of the coil, variations in resistance, and breakdown of insulation. It can also control the electrical characterisics of a coil and the number of turns it has. tatic and dynamic peaks in wire or fiber stress in be located on an oscillographic chart record.
Brush Instruments, Div. of Clevite Corp., Dept
上D, 37th and Perkins Ave., Cleveland 14, Ohio
CIRCLE 275 ON READER-SERVICE CARD

SOMEBODY HAS DONE GREAT! this time why not you?

It happened in the thirties! And in the early fifties! It's happening again today!
While others cut back and drag out the crying-towel, the fighters roll up their sleeves and go to work! Maybe it's a new sales pitch-or a harder one! Maybe it's a new and different promotion. Maybe it's as simple as
re-arranging store displays and merchandise on the shelves. Maybe it's a new ad campaign! But some way .. the smart boys go right on SELLING!

Look at the facts and figures! Between now and 1975, there will be more people, more jobs, more income, more production, more research, more savings, more needs of all sorts than
ever before in our history! People will want . . . need . . . and buy! Somebody will do the selling . . . why not you?

气ै)FREE! Get going today! Write at once for illustrated "How To Turn the Tide" booklet offering valuable and vital selling ideas. The Advertising Council, 25 West 45th Street, New York 36, New York.

YOUR FUTURE IS GREAT IN A GROWING AMERICA

the first four-pole crystal can relay
 2000 cps
$125^{\circ} \mathrm{C}$
one tenth grid spacing Write for details.
\approx BRANSON \approx Cosp. 41 South Jefferson Road Whippany, New Jersey TUcker 7-1100 CIRCLE 277 ON READER-SERVICE CARD

The SG-25 is in use all over the World. Thousands have been furnished to the Armed Forces alone (as Military AN/URM25D) - and they keep coming back for more! The reason? - PROVEN Accuracy, Reliability and Stability. Covering the freReliability and Stabiliy. Covering the 25 quency range 10kc to 50 mc , the SG-25
features a 3 -Stage (MO-BUFFER-PA) R F sec-
tion entirely enclosed in a rugged aluminum casting, continuously adjustable output volt age (using the famous TRAD Precision Step Attenuator), internal and external modula tion, and an integral crystal calibrator Precision quality is combined with light. Precision quality is colity, with ligh weight, compact portability, making it ideal or both laboratory and field use.

[^3]
PRODUCTION PRODUCTS

Toroidal Winding Machine
Handles 20 to 40 AWG wire

From size 20 to 40 AWG wires, model L-7 toroidal winding machine produces coils that have a minimum ID of $9 / 16 \mathrm{in}$., a maximum height of 3 in ., and an OD between 1 and $9-1 / 2$ in. Wired for $110 \mathrm{v}, 60 \mathrm{cps}$, ac operation, the unit incorporates a Variac speed control, a self-releasing shuttle to the magazine loading lock, a wire guiding device for uniform wire distribution in the magazine, and a high speed geared predetermining counter. One standard magazine is available in sizes of $1 / 8,3 / 16$, or $1 / 4 \mathrm{in}$. The machine measures $20 \times 18-1 / 2 \times 17 \mathrm{in}$.
Universal Mifg. Co., Inc., Dept. ED, 1168 Grove St., Irvington, N.J.

CIRCLE 279 ON READER-SERVICE CARD

Floating Zone Fixture For Crystal growing

This floating zone fixture produces high purity metals and semiconductor materials. Purification

TELL YOUR PERSONNEL MANAGER ABOUT ELECTRONIC DESIGN'S "CAREER'S SECTION"

If your company is trying to attract skilled electronic design, development or research engineers, tell your Personnel Manager about ELECTRONIC DESIGN. Here is a concentrated audience of 27,000 engineers ready to read about the advantages offered by your plant.

Remember, more than 5,500 ELECTRONICDESIGN readers inquire every issue -many of them will be interested in your job opportunities.

You can efficiently reach them in ELECTRONIC DESIGN'S "Career's Section."

Stab-on terminals and a square hole for positive-lock mounting . . . typical of the special resistors available from General Electric. No matter what your needs, G-E resistors can be designed to your exact requirements. For your resistor catalog, follow reader service instructions below. General Electric Co., Roanoke, Virginia.

Progress /s Our Most Imparrant Product GENERAL (3) ELECTRIC
or crystal growing is achieved by traversing a narrow molten zone along the length of the process bar while it is being supported vertically in vacuum or inert gas. The unit has a mechanical drive system with continuously variable up, down, and rotational speeds, all independently controlled. The process bar can be quickly centered within a straight walled quartz tube that is supported between gas tight, water cooled end plates. Placement of the quartz tube is simple, and adapters can be used to accommodate larger diameter tubes for larger process bars. The outside of the quartz tube is continuously water cooled during operation.
Lepel High Frequency Labs, Inc., Dept. ED, 54-18 37th Ave., Woodside 77, N.Y.

CIRCLE 282 ON READER-SERVICE CARD

Hot Stamping Machine

Marks two colors at once

With dual hot stamping heads, model 2AH marking machine can stamp two separate colors at the same time. Each head has individual dwell and pressure controls. The machine is hand fed, but it may be automatically fed if the parts or products being marked lend themselves to automatic positioning. The dial feed has 20 stations, and up to 4500 parts can be handled in an hour. Each hot stamping head has its own temperature control and transfer foil automatic advance for marking in any color desired.

The Acromark Co., Dept. ED, 411 Morrell St., Elizabeth, N.J.

CIRCLE 283 ON READER-SERVICE CARD

...research and experience developed Magnetic Research Corporation's all new DC-DC CONVERTER . . . a converter whose versatility is adaptable to telemetering, guidance, control and communication groups ... or any other application where the DC regulated power is required.
DC-DC CONVERTER specifications
OUTPUT POWER: MULTIPLE 150 WATT MAX. SIZE: $5.0^{\prime \prime} \times 3.5^{\prime \prime} \times 3.7^{\prime \prime}$. WEIGHT: 3.5 lbs . EFFICIENCY: GREATER THAN 75% LINE REGULATION: LESS THAN $\pm 1 \%$ SHORT CIRCUIT PROOF . . . 28V DC INPUT

Pacing the industry in Astr()-Magnetics
MAGNETIC RESEARCH CORPORATION
3160 W. El Segundo Boulevard, Howihorne, Californio

For airborne and missile cooling applications, the AXIMAX-3 when turning at $20,000 \mathrm{rpm}$ will deliver 165 cfm at free delivery. This performance is possible although the fan is only $2.8^{\prime \prime}$ in diameter, $2.3^{\prime \prime}$ in length and weighs a mere 14 ounces.
Variation in driving motors include constant speed and Altivar designs. The latter automatically vary their speeds inversely with density and thereby approach constant cooling with a minimum of power drain and noise.
Mounting is simplified by the provision of "servo" clamping rims at either end of the barrel. Airflow can be reversed by turning the fan end-for-end. Electrical connection is made to a compact terminal block. Power requirement is 400 cps , 1 or 3 phase.
Write today for complete technical details to . . .

ROTRON $_{\text {mf: }, \text { o. inc. }}$
 WOODSTOCK, NEW YORK

In Canada: The Hoover Co., Ltd., Hamilton, Ont.

NEW LITERATURE

Miniaturized VTVM's

286
Miniaturized electronic voltmeters in four basic styles are described in 4-page, short form catalog, No. 10-A. Data includes performance specifications, dimensions, and prices. Catalog covers panel-mounted models and half-relay rack styles. Metronor, Inc., Chesterland, Ohio.

Electroplating

287
Series of newly available information bulletins on barrel and rack chromium plating of small parts includes an illustrated bulletin on firm's services and facilities and technical progress reports. Each issue planned to indicate progress and improvements in electroplating. Descriptions of services for burnishing, testing, laboratory work and research are included. Whico Chromium Co., Inc., U.S. Route 8, Thomaston, Conn.

Teflon Tapes

288
Leaflet describes in detail Temp-R-Tape pres-sure-sensitive Teflon tapes and thermal curing pressure-sensitive Teflon tapes for -100 F to 500 F electrical and mechanical applications. The Connecticut Hard Rubber Co., $40{ }^{7}$ East St., New Haven 9, Conn.

Insulation

Three illustrated booklets on electrical insulation products: No. 26 Standards is 16-page catalog providing a listing of pertinent insulation standards publications; No. 27 IMC Products List of Electrical Insulation is an 8-page booklet issued as an alphabetic guide to electrical insulating materials; and No. 28 INMANCO Electrical Insulation describes shaped wood and plastic wedges in 32-page bulletin. Insulation Manufacturers Corp., 565 West Washington Blvd., Chicago 6 , Ill.

Electronic Equipment

Short form catalog 1-58, 4 pages and in color, lists telemetering equipment, recording systems, test equipment and data processing equipment. Units covered include: fm transmitter, multicoupler for telemetry receivers, fixed styli recorder and super-regulated current and voltage standard. Radiation, Inc., P.O. Box 37, Melbourne, Fla.

HOW ABOUT YOU?

Do you know that many cancers can be cured if detected early? That an annual health checkup is your best protection against cancer?
Are you giving yourself this big advantage? Or are you taking chances with your life because of foolish attitudes about cancer like these?

DON'T EVEN MENTION THAT WORD!

Fear keeps some people from even learning cancer facts that can save their lives.

NEVER FELT BETTER!

Checkups help to detect cancer in its "silent" stage before you notice any symptom.

COSTS TOO MUCH!

Dollars you spend for the protection of your health can mean years of life.

Millions of Americans have made an annual checkup a habit... for life. How about you?
american cancer society

- designed and produced in accordance with military specifications for space, equipment and personnel heating requirements.
- 5 basic models - each customengineered for a wide variety of engineered for a wide variety of
applications - for ground control applications - for ground control
and maintenance equipment in misand maintenance equipment in mis-
sile systems, radar, microwave and sile systems, radar, microwave and
radio communication systems, etc.
- BTU/Hour range: from 15,000 to 60,000.
- multi-fuel-burning models; also models which burn any type gasoline.
- all models air-circulating, thermostatically controlled, all designed for cold starts as low as $-65^{\circ} \mathbf{F}$.
Other Hunter equipment for military applications: engine heaters; unpowered, instant lighting torches; refrig. eration units.

Insulating Tapes

293
A 6-page, colored catalog folder showing the entire line of electrical insulating tapes with complete specification data charts for all friction tapes, splicing compounds, and plastic tapes prepared by Plymouth Rubber Co., Inc., Tape Div., Canton, Mass.

Overheat Protectors

294
New product catalog, "Klixon Inherent Overheat Protectors for High Performance Motors" details construction, operation, electrical ratings, capacities, and weights of both open and hermetically sealed types. Complete dimensional drawings are included. Metals \& Controls Corp., Spencer Div., Attleboro, Mass.

Environmental Chambers

295
Latest 6-page brochure showing environmental chambers for temperature, altitude, and humidity also describes complete missile test facilities and components testing units. Conrad, Inc., Conrad Scquare, Holland, Mich.

Deflection Potentiometers

296
Data Sheet E-5l(8) describing the Brooks Deflection Potentiometers lists complete specifications of both models 7 and 8 and their accessories and contains a schematic diagram of model 7. Leeds \& Northrup Co., 4934 Stenton Ave., Philadelphia 44. Pa.

Thermoplastic Knobs

297
Standard thermoplastic knobs-available in polystyrene and acetate-are described with photographs, diagrams, and dimensions. Knobs range in size from $5 / 16 \mathrm{in}$. to $2-7 / 8 \mathrm{in}$. diam and have a wide variety of applications. Waterbury Companies, Inc., 528 Washington St., Waterbury 20. Conn.

Digital Indicator and Printer

298
Features, applications and specifications of Digital Indicator and Printer Model 176 are described in two-page bulletin. The Model 176 is designed for high accuracy and resolution indication and permanent recording of weight, strain, temperature, pressure, and other variables which can be measured by sensitive bridge-type transducers. Gilmore Industries, Inc., 13015 Woodland Ave., Cleveland 20, Ohio.

ESSEX EPOXY-ENCAPSULATED, hIGH RELIABILITY

MODULAR
 EFNES
 essex delay lines ane NON-fammable!

Essex modular Delay Lines provide greater freedom, versatility, and latitude because these compact units can be mounted both horizontally and vertically - stacked in series on common mounting screws for higher delays.
Essex provides lines from a fraction of a microsecond to several thousand microseconds delay . . . impedances from 50 to several thousand ohms . . . bandwidths up to 25 MC.

ESSEXI ELEGTROMICS

550 SPRINGFIELD AVE., BERKELEY HEIGHTS, N. J. - CRestview 3.9300 Manufactured in Canada by Essex Electronics of Canada, Ltd. Trenton, Ontario. Canada CIRCLE 299 ON READER-SERVICE CARD

Sawing a full sheet of glass base laminate

Punching the laminate.

Turning glass base tubing on a lathe.

Tips For Machining Glass Base Laminates

LASS BASE laminates, with their high flame and heat resistance, mechanical strength, and moisture resistance, are extremely useful to printed circuit designers, but they often pose manufacturing problems.
Here are some basic recommendations for machining these laminates. It is important to remember that when machining parallel to the laminations, there is the danger of splitting. But if the piece is clamped firmly and machined carefully, the danger is very small.

Sawing

With a good exhaust system, good cutting will result at speeds of 3000 to 3600 rpm with a diamond impregnated wheel with copper body $1 / 16$ in. thick by 12 in . in diameter. The material can be fed by hand without forcing. The work and wheel can be flooded with water to prevent overheating. Abrasive wheel culting should be
done under water to minimize the heat which is generated by friction.
Band sawing, one of the most difficult and expensive operations, should be performed with steel blades with hardened teeth and a soft back. The work should be fed lightly and the blade kept sharp. Diamond coated band saw blades are better than steel. A good exhaust system al lows for dry sawing.

Punching

Punching glass base materials follows standard practices with other materials, though die life is shorter. But carboloy and special die steels help, increase die life. Good punchings will result on sheets as thick as $3 / 32$ in.

Drilling

A carbide drill should be used. The material can be drilled dry with a good exhaust system,

Threading on a lathe.

Tapping the glass.
but water on the work and drill can be used to prevent overheating and dulling of drills. High speed drills, nitrate treated, must be sharpened more often. When sharpening, it is necessary to cut the drill back to the original body diameter. For quarter inch drills, the speed can be 4800 rpm.

Tapping

Tapping is the same as with paper base laminates. The abrasiveness may cause taps to cut very close to size, and there may be a tendency to bind when backing out.

Standard high speed steel taps are all right for short runs, but carbide taps should be used for long runs. The taps should be purchased oversize. Coolant can be used, but is not needed if a good exhaust system is used.

Threading

External and internal threads can be cut dry on a lathe with a carbide-tipped tool. Fine cuts give best results. A coolant can be used, but isn't essential.

Machining

Conventional turning, boring, facing, and milling can be performed on automatic screw machines, standard and production lathes, hand turret lathes, and standard millers. Carbide tipped tools and cutters should be used with slower surface speeds than those required for paper base laminates.
Tools should be ground with a zero rake, and a coolant can be used but isn't essential if the dust is exhausted.
More information is available from the National Vulcanized Fibre Co., 10.58 Beech St., Wilmington, Del.

ELECTRONIC DESIGN • January .21, 1959

NOW Merck makes FOUR forms of ultra-pure SILICON

for semiconductor applications

Merck Doped Single Crystal Silicon-offers doped single crystals of high quality. Yields of usable material are reported to be especially high when device diffusion techniques are used. Merck doped crystals are now available either in n or p types. Either type of crystal can be furnished in resistivities of 20 to $50 \mathrm{ohm} \mathrm{cm} ., 50$ to $100 \mathrm{ohm} \mathrm{cm} ., 100-300$ ohm cm. and higher. Minimum lifetime for Merck doped crystals- 100 microseconds.
Merck Single Crysfal Silicon-offers manufacturers without floating-zone equipment semiconductor silicon of a quality unobtainable elsewhere. No crucible-drawn crystals can match the reliability of Merck single crystal material in semiconductor devices. Merck Single Crystal Silicon is available with min. resistivity of 1000 ohm cm . p type. Other resistivities ranging from $1.0 \mathrm{ohm} \mathrm{cm} . \mathrm{p}$ or n type up to 1000 ohm cm . will soon be available.
Merck Polycrystalline Billets-have not been previously melted in quartz, so that no contamination from this source is possible. Merck guarantees that single crystals drawn from these billets will yield minimum resistivities over 50 ohm cm . for n type material, and over 100 ohm cm . for p type material. Merck Silicon Billets give clean melts with no dross or oxides.

Merck Polycrystalline Rods-are ready for zone melting as received . . . are ideal for users with floating-zone melting equipment. Merck Polycrystalline Rods ($81 / 2$ to $101 / 2$ inches long and 18 to 20 mm . diameter-smaller diameters on special order) yield more usable material. In float-zone refining one can obtain minimum resistivities of 100 ohm cm . p type with minimum lifetime of 200 microseconds.

For additional information on specific applications and processes, write Merck \& Co., Inc., Electronic Chemicals Division, Dept.ED-1,Rahway,N.J.

ULTRA-PURE
SILICON - a product of MERCK
base boron content below one atom OF BORON PER SIX BILLION SILICON ATOMS CIRCLE 300 ON READER-SERVICE CARD

New Miniature Sealed For Service Up To $250^{\circ} \mathrm{C}$

Need a high-reliability control for hot spots in military or missile circuits? Take a look at the new Mallory Type \mathbf{S} miniature wire-wound.
Designed to meet MIL-E-5272, it can be used at ambients as high as $250^{\circ} \mathrm{C}$. At $200^{\circ} \mathrm{C}$ ambient, it's rated at 2.5 watts.
Gold plating of the complete assembly ends corrosion problems, gives maximum heat transfer. Hermetically sealed model (at top of illustration above) uses glass or ceramic feed-through terminals and high-temperature solder case seals to prevent entry of moisture.

Panel-Sealed Model (lower part of illustration) a unit is also available which has bushing-to-shaft seal plus provision for panel-to-control seal. This unit can be mounted in a sealed circuit container. Both models are supplied in linear tapers from 10 to 20,000 ohms. Standard tolerance is $\pm 5 \%$; other tolerances on request. All have a $1 / s^{\prime \prime}$ shaft, with ${ }^{1}{ }^{\prime \prime}-32$ bushing.
Write today for data, and for a consultation with a Mallory resistor engineer on your particular circuit requirements.

MALLORY

[^4]
IDEAS FOR DESIGN

This constant current driver uses directly connected transistors to provide high input and output impedances.

Direct Connection of PNP and NPN
 For High Input, Output Impedance

A precisely controlled constant current drive was needed for a time-varying load impedance. Large load currents made transistors the obvious choice as regulator elements.
The regulator was to have a high output impedance to regulate against high frequency load changes; and a high input impedance, since a vacuum tube, chopper-stabilized, de amplifier was to provide high loop gain.
The circuit shown here met the requirements simply. Here's how it works.

A voltage proportional to the load current develops across metering resistor R_{m}. The difference between the metering voltage and a standard cell voltage is amplified to drive the regulator consisting of T_{1}, T_{2}, and T_{3}. This keeps the load current constant.
Npn transistor T_{3}, with a grounded base, provides the dynamically high output impedance It is directly connected to pnp T_{2}, which has a grounded collector configuration. The compound connected pnp transistor T_{1} further increases the regulator's input impedance so as not to load down the vacuum tube amplifier.
The zener diode D_{1} provides a voltage to keep T_{1} and T_{2} in their active regions and to keep the base circuit of T_{3} low.
Robert B. Craven, Research Enginecr, MIT Instrumentation Lalb., Cambridge, Mass.

Thermistors in bridge supply power to low impedance load gradually

Slow Starts for Low Impedance Loads

A mechanical drive system was designed using a 28 v de electromagnetic elutch which had a de resistance of about 150 ohms. It was desired to energize the clutch gradually, starting at 0 v and reaching full voltage in about 3 to 5 seconds. RC timing circonts were impractical because of the low impedance of the load. Placing a thermistor in series with the clutch was not satisfactory since the "cold" resistance of suitable thermistors is not high enough to limit the initial clutch voltage to less than about $8:$
A bridge circuit using thermistors in opposite arms solved the problem. The General Electric 1)-104 thermistors have a "cold" resistance (25 C) of 500 ohms, so the bridge is balanced initially, giving zero output. As the thermistors heat up due to bridge current, the bridge is unbalanced by the simultaneous decrease in resistance of the two thermistors. Since the resistance of the thermistors at 150 C is only 15 ohms, the output voltage levels off at about 80 per cent of the input. The time constant is about 5 seconds.

Thomas N. Tyler, Development Eng., Heiland Div., Minneapolis-Honeywell Regulator Co., Denver, Colo.

Solder Blotter

To get excess solder out of those inaccessible corners in a chassis, dip a short strip of shielding braid (about 6 in . long) in solder paste flux; then hold it against the device containing the excess solder. Place a soldering iron in contact with the braid and the excess solder will be drawn into the braid by capillary action.
Phil Moser and Connic Lubes, Hushes Aircraft Co., Culver City, Calif.

Now you can pick

 the right handle design from Chassis-TrakIf you want panel handles solely for pulling your equipment from its cabpulling your equipment from its cabinet, Chassis-Trak plain blank handles are just the ticket. But don't forget that
Chassis-Trak also offers eight other Chassis - Trak also offers eight other
handle designs to meet any tilting, lockhandle designs to meet any tilting,
ing and special installation needs.

The complete Chassis-Trak line includes handles with push button panel locks, trigger tilt controls plus positive clamp-type models for installation where extreme shock and vibration are encountered. In short, there's a Chassis-
for further information contact:

Trak handle design that fits the bill exactly no matter where or how your exactly no matter whe
quipment is mounted. Chassis-Trak handles are die cast or
sand cast of aluminum alloy. Chip resand cast of aluminum alloy. Chip re-
sistant finish is aluminum slurry baked on over a clear lacquer-base sealer. Finish has successfully passed salt spray (1,000 hours) and humidity (200 hours at 100% \%) tests. Offset design permits maximum use of panel space. All handles furnished complete with hardware and mounting instructions.

Chassis-Trak "Detent" slide, shown in one of seven different tilting positions.
525 SOUTH WEBSTER, INDIANAPOLIS 19. INDIANA CIRCLE 302 ON READER-SERVICE CARD

ELECTRONIC DESIGN • January 21, 1959

All models can be finished to your specification. Get details from ChassisTrak engineers.

115

A division of globe-union inc.

 960 EAST KEEFE AVE.• MILWAUKEE 1, WIS. in Canada: 804 Mt. Pleasant Rd., Toronto 12, Ont.[^5]
Nonlinear and

Radio

Part 10

Nonlinear Circuits

13. Practical Modulation CIrcuits

Let us consider the simplest and the most frequently used modulator circuits.

A. Amplitude Modulation

For ordinary amplitude modulation the two schemes principally used are grid modulation and plate modulation. The grid modulation circuit is shown in Fig. 42. The carrier-frequency voltage U_{1} and the modulating voltage U_{2} are applied to the grid of a triode. A blocking capacitor C_{1} bypasses the high frequency past the winding of the low frequency transformer.
The modulation is due to the nonlinearity of the triode characteristic, $I_{a}=f\left(U_{o}\right)$. The resultant plate current contains extraneous components which are filtered out by an $L C$ circuit, tuned to the carrier frequency. The bandwidth of the circuit is made somewhat greater than the width of the modulation spectrum, i.e., more than double the width of the signal spectrum. Under this condition, the network will filter both the low frequency and de components, and the high fre-

Fig. 42. The grid modulation circuit.

Fig. 43. The plate modulation circuit.
rectly in the master oscillator tank circuit. In modern equipment this is accomplished with a circuit based on the use of the so-called reactance tube. The input impedance of this tube, practically a pure reactance, changes magnitude in accordance with the changes in the applied modulating voltage. The theory of the reactance tube is really very simple and reduces to the following. Let us examine the circuit of Fig. 44 and write an expression for the current I.

$$
I=\frac{U}{R+j \omega L}
$$

If we choose the parameters R and L such that

$$
R \gg \omega L,
$$

then

$$
I \cong \frac{U}{R}
$$

The grid voltage is

$$
U_{u}=j \omega L I \cong j \omega \frac{L}{R} U
$$

(Continued on folloucing mage)

Fig. 44. The basic reactance iube.
 CIRCLE 313 ON READER-SERVICE CARD

Weckesser Cable Clamps offer superior insulating properties, high strength, light weight . . . with no rust or corrosion.
Non-circular shapes also available. Immediate de-
of economical Ethyl.
Cellulose for maximum
service at minimum cost. livery from on-hand stocks.

WRITE TODAY FOR FREE
SAMPLES AND PRICE SHEET

5703-05 Northwest Highway - Chicage 46, III.
CIRCLE 304 ON READER-SERVICE CARD

Simplified Cables and Harnesses produced by these new Flexprint Wiring Techniques

FLAT SHIELDED CABLE

Flexprint conductors are laminated between insulated ground planes Choice of dielectric, spacing and shield configuration provides desired electrical characteristics with good flexibility. This technique also produces exceptionally light weight multi-conductor shielded cables, simulated twisted conductors and simulated coaxial cables.

PRE-FORMED CABLES

Flexprint cables can be pre-shaped to resist deformation or return to a desired shape after deformation. For example, this accordion-pleated sliding drawer cable for rack-mounted instruments stretches to permit withdrawal of equip${ }_{\text {mhen }}$ ment drawer is closed.

MATRIX WIRING

 Complex harnesses having several feeder arms or conductors common to a termination, can be fabricated by the new spot elded "T" forming technique Fine conductors can be joined by this method to achieve high density of interconnections Crossing conductors are com pletely insulated.
Can Sanders Flexprint Wiring simplify your complex Cables and Harnesses, too?

It will pay you to investigate! Using the new construction techniques illustrated above, Sanders can produce a wide variety of 3 -dimensional insulated printed flexible cables and harness. They have a combination of characteristics unmatched by ordinary wire and printed circuits.
Flexprint Wiring assemblies save up to 75% in weight ... 65% in space ... install in a fraction of the time required for conventional wiring
are available in insulations to meet your environmental requirements . . . have been used and approved in military equipment.
For complete details about capabilities, prices and deliveries, write or call today

FLEXPRINT PRODUCTS DIVISION

RUSSIAN TRANSLATIONS

Fig. 45. A basic fm modulator using T_{2} as the reactance tube.

Fig. 46. The basis of pulse duration modula tion. The trapezoidal pulses in (d) result from limiting the waveform in (c) which is derived rom the triangular wave (b) generated by the modulating voltage (a).

The anode current (neglecting the reactance of the plate) is

$$
I_{a}=S C_{s}=j \omega \frac{L S}{R},
$$

where S is the tube's transconductance
Let us now assume that the parameters are so chosen that

$$
I \ll I_{\alpha}
$$

i.e., that the input current depends only on the anode current I_{a} (the component I is neglected) We can then find the admittance of the circuit between points 1 and 2 by dividing the input current by the applied voltage.

$$
Y=\frac{I_{a}}{\ell} \cong j \omega \frac{L S}{R}=j \omega C_{a}
$$

where the equivalent capacitance is

$$
C_{\cdot 4}=\frac{L S}{R}
$$

It turns out therefore that under the assumptions made the input admittance of the circuit is purely capacitive, or, in brief, that the circuit behaves like a capacitor. ${ }^{\circ}$
${ }^{\circ}$ By changing the phase-shifting $R L$ network, it is pos sible to obtain inductive or any complex input admit. tance.

It now remains to make this capacitance adjustable. This can be done readily, since the capacitance depends on the transconductance. Choosing the operating point on the quadratic portion of the triode characteristic, we obtain a variation in the transconductance, and consequently in the equivalent capacitance, proportional to the change in the voltage on the grid.

In fact if

$$
I_{a}=a_{o}+a_{1} U+a_{2} U^{\prime 2}
$$

thern

$$
\therefore=\frac{d I_{a}}{d l}=a_{1}+2 a_{2} U
$$

The basic circuit of $a-m \mathrm{~m}-\mathrm{m}$ modulator with a reactance tube is shown in Fig. 45. In this circuit T_{1} is the oscillator tube, $L C$ the master tank circuit, T_{2} the reactance tube parallel to the tank circuit, U_{2} the modulating voltage applied to the grid of the reactance tube, C_{1} the capacitance that blocks the plate voltage from the grid of the

Fig. 47. Block diagram of PDM consists of a Triangular Voltage Generator, a source of Modulating Voltage, and a Limiter.

Fig. 48. Pulse phase modulation can be derived from PDM (a), by differentiating (b), then cutling off the negative pulses. The pulses in (c) are of different phase with respect to the vertical reference markers.

Fig. 49. Block diagram of PPM includes the block diagram of PDM plus a Differentiator and Detector.
reactance tube, and E_{q} is the bias voltage to set the operating point.

C. Pulse Modulation

We shall not dwell on Pulse Amplitude Modulation since, first, the same methods are used for this type of modulation as for ordinary a-m, and second, because PAM is not used extensively at present because of its low interference immunity.
Most widely used are PDM and PPM, the mechanisms of which we shall now consider. A sequence of pulses, modulated in phase or in duration, is obtained most simply and most universally by superimposing a modulating voltage on a triangular periodic voltage whose fundamental frequency equals the repetition rate of the unmodulated pulse sequence. The resultant sum of voltages if then subjected to subsequent treatment such as limiting. differentiation, etc.

We shall start with pulse duration modulation. Fig. 46a shows the modulating voltage, Fig. 46b the triangular voltage, and Fig. 46c the superposition of the two. If we now limit the resultant voltage from above and from below, as shown by the dashed lines of Fig. 46c, we obtain trapezoidal pulses, modulated in duration. The slope of the wave fronts can be readily controlled by changing the relationship between the spread of the triangular voltage and the limiting band.
The block diagram of a PDM circuit consists of a triangular voltage generator (TVG on Fig. 47), a source of modulating voltage (SMV) and a limiter (L). The circuits of these elements contain no essential distinguishing features, so we shall restrict ourselves to the block diagram.
To obtain PPM it is possible to employ PDM first. Let us take a sequence of pulses, modulated in duration, as obtained by the method just described. Let us differentiate this sequence (Fig. 481). We obtain rectangular pulses of opposite polarity; the positive pulses correspond to the leading edge of the differentiated trapezoidal pulses, and the negative ones to the trailing edge. If we now pass the resultant sequence through a detector which cuts off the negative pulses, we obtain (Fig. 48c) a sequence of rectangular ${ }^{\circ \circ}$ pulses, modulated in phase, i.e., shifted with respect to the reference points, shown in Fig. 48 as vertical dashed lines.
Thus, the PPM block diagram differs from PDM in that the former contains a differentiating element (D) and a detector (Det, Fig. 49). The different versions and details of pulse-modulation circuits are considered in special texts.
(To be continued)
${ }^{\circ}$ In practice, the pulses cannot be rectangular. Their shape is also approximately trapezoidal, i.e., the edges of the pulses have finite slopes, determined by the width of the passhand of the entire modulator circuit.
$\$ 1064$ Overhauls Aircraft Generator at Factory $\$ 60$ To Rhodium Plate Commutator, Slip Rings

WHICH ONE WOULD YOU PREFER?
 some 3.0 hrs. For merly, time between mandatory overhauls was only about 70

SAVINGS: Twn or three overhauls. at $\$ 1,064$ each, plus cost of time and labor to remove and reinstall generator.
If you're concerned with military or civil aircraft, missile ontrol-. servos, high-quality electrical equipment, investigate rhodium plating with Dalic equipment. It offers the following advantages:

Longer commutator life - Reduced contart resistance
staticher and noisting and running torques endio and other electronic equipment of
static and noise in radio and other electronic equipment
Reduces temperature by as much as $80^{\circ} \mathrm{C}$. Increased
power /current ratio -
For further information on Dalic plating, write to:
MARLANE DEVELOPMENT $C O$.
153 East 26th Street
New York 10, N . Y.
OHIO METACHEMICAL. INC.
OH10 METACHEMICA
2742 second Street
Cuyahoga Falls, Olio
PIDDINGTON \& ASSOCIATES LTD. D \& S AVIATION CO 3219 Eost Foothi
Pasadena, Colif.

671 Lauretides Blvd
Pont Viau, Quebec
DALIC METACHEMICAL LTD.
121 Judge Road
Torento, Ontario
CIRCLE 314 ON READER-SERVICE CARD

"Fool-proof" CIRCUIT BREAKER E-T-A minicfure CIRCUT BREAKER
 SAFE-
 Overload protection for appliances, tools, motors, electronic equipment and other electrical devices. Breaker will not reset under prevailing overioad conditions. Depression of current wort breaker is closed
 POSITIVE-

Trip-free mechanism assures simultaneous contact break at two points. Breaker copes with surge current up to 5 times rated cur-

ACCURATE-

Wide range of precise calibrated
Ratings from 05 io 25 amps

Write for
literature ratings for standard applications. Characteristic vari
tom use available.

LOOK TO TOBE FOR PROGRESS

Through the development of high power capacitors having exceedingly low inductance and internal resist ance, Tobe Capacitors meet today's instantaneous peak power require ments in fusion research, spot welding, shock tube excitation, photoflash, and similar applications.

In construction, the capacitor can be compared electrically and physically to a coaxial line of low impedance and short length in which a low ratio of outer to inner conductor diameters minimizes inductance diameters minimizes inductance.
Because of their unique design, Tobe Because of their unique design, Tobe
Capacitors have high energy storage
per unit of volume, high operating efficiency, and can be discharged into a very low impedance load with complete safety.
Custom-designed to become an integral part of an overall system, these capacitors are available in energy storage voltage rating and internal inductance to suit the specific application. Stock designs now available.

For further technical information or engineering aid, write TobeDeutschmann Corporation, Norwood, Massachusetts.

RUSSIAN TRANSLATIONS

What the Russians

Are Writing

J. George Adashko

Measurement of Weak Signals Having Continuous Spectra by V. S. Voyutskiy and A. I. Slutskovskiy, RE 9/58, p 25-29, 3 figs.
The sensitivity and accuracy of measurements of weak signals having continuous spectra is limited essentially by the random noise in the measuring apparatus. Two basic methods are presently used to cope with this limitation. In one, the noise is measured separately and subtracted from the overall reading of the apparatus. In this method the null setting of the output instrument becomes dependent on the gain of the system and on the noise level of the output. Its effectiveness is therefore dependent on the degree with which the noise remains constant during the measurement time.
Another method (cf Dicke, Rcv. Sci. Instr., 17, 268, 1946 or M. Ryle, Proc. Roy. Soc., Nov 4, 1948) involves lowfrequency amplitude modulation of the measured weak signal prior to amplification. The weak sinusoidal variation of the modulation frequency, obtained at the detector output, is separated with a narrow-band filter. The amplitude of this sinusoidal variation is proportional

Fig. 1. The input signal E_{i} is compared with a standard signal generator output E_{s}. The sum and difference of the two voltages are amplified (amplifiers 1 and 2) and multiplied (block 3). Block 4 is a square-low detector and filter combination. If $u=v$, meter 5 reads zero.
to the signal intensity. Although this modulation method eliminates the null drift due to variation in noise level, fluctuations in the gain coefficient of the apparatus, which affect the calibration, are not eliminated.
Fig. 1 shows a measurement circuit free of the above shortcomings. A standard signal generator is used. A simple network produces the sum and the difference of the standard voltage c and the signal voltage u. Since the order of the noise components in the product is lower than that of the signal components, the output is essentially proportional to u^{2} v^{2} and vanishes identically when the two are equal.

Fig. 2 shows a modification of the same circuit in which the noise component of the signal is also eliminated. It involves the use of two identical antennas such that their signals are fully coherent. The apparatus was tested at signal voltages of 0.25 to 0.5 microvolts with highgain amplifiers (1.5 to 2×10^{6} voltage gain) and found to be superior to previously employed schemes.

Calculation of Internal Noise of Transistor Receivers by V. V. Pavlov, RE 19/58, p 30-37, 5 figs, 1 table.

After deriving expressions for the noise

Fig. 2. It is possible to eliminate the noise content of the signal itself by using two antennas $\left(E_{i_{1}}\right.$ and $\left.E_{i_{2}}\right)$ so arranged that their ouiputs are coherent.

Fig. 3. Test of single transistor stage. 1-noise generator (saturated diode), 2-vacuum tube amplifier with low internal noise, 3-bandpass filter. The setup is shielded against external noise.
factors of grounded-collector, groundedemitter, and grounded-base circuits, the author reports test results obtained with various types of Russian and foreign transistors. (See Fig. 3).

All-Union Scientific Session devoted to the "Day of Radio." RE 9/58, p 71-80.

The "Day of Radio" session is probably the counterpart of our IRE convention (although we have not been able to discover the ratio of personnel recruiters to participants or obtain statistical data on the flow of vodka in hotel suites). The variety and scope of the session is similar to that of last year.

Transients and Steady State in an Automatic Range Scope by F. M. Kilin, AT 10/58, pp 901-916, 6 figs.
The analysis used in this paper takes account of certain discontinuous processes that take place in some parts of the range scope, and variation of circuit parameters with the received pulses.

Servo Systems Containing Two Pulse Elements with Unequal Repetition Rates by Fan Chun-Wui, AT 10/58, p 917-930, 8 figs.
Servo systems with several pulse elements having equal repetition rates were investigated by Ragazzini and Zadeh (Trans. AIEE, Vol 71, pt. II, 1952), Glawyn and Truxal (ibid. vol 73, 1954), and by several Russian authors. Systems in which the repetition rates are common multiples have been investigated by Kranc (Application and Industry, July 1957), and others. This is the first thorough theoretical analysis of the case of unequal repetition periods.
It is concluded that, other conditions being equal, the stability margin of the system can be improved substantially by varying the ratio of T_{1} to T_{2}, and that $T_{1}=T_{2}$ does not necessarily produce optimum operating conditions.

TI 2N559 ULTRA-HIGH SPEED GERMANIUM SWITCHING TRANSISTORS

Now TI 2N559 diffused-base germanium transistors give you ultra-high frequency/high temperature operation. Precision manufacture makes possible ...switching times of 275 millimicroseconds and lower in saturating circuitry \ldots minimum of 150 mW at $25^{\circ} \mathrm{C} \ldots$ operation to $100^{\circ} \mathrm{C} \ldots$ meets or exceeds MIL-T-19500A specifications. All units stabilized at well over rated temperatures for utmost reliability.

CHARACTERISTICS \ddagger	Conditions	Sym	Min	Max	Units	maximum ratings						
Emitter Breakdown	$\mathrm{I}_{\mathrm{E}}=-100 \mu_{\mu \mathrm{AdC}}$	$\mathrm{BV}_{\text {Eb } 0}$		-	Vdc				TStG			
Collector Brea					Vdc	Vdc	Vdc	Vdc	${ }^{\circ} \mathrm{C}$	mAdc	mAdc	
Voltage	$\mathrm{I}_{\mathrm{E}}=0$					-15	-3.5	-15	-65 to +100	50	-50	00
Static Forward-Current	$\mathrm{I}_{\mathrm{C}}=-10 \mathrm{mAdc}$	$h_{\text {fe }}$	25	-	-							
Transfer Ratio	$\mathrm{V}_{\mathrm{CE}}=-0.3 \mathrm{Vdc}$											
Base Voltage	$\begin{aligned} & I_{\mathrm{c}}=-10 \mathrm{mAdc} \\ & \mathrm{I}_{\mathrm{B}}=-0.4 \mathrm{mAdc} \end{aligned}$	$V_{\text {BE }}$	0.34	0.44	Vds	These voltages may be exceeded (without permanently impairing the transistor) provided the current is limited to $100 \mu \mathrm{a}$.						
Collector Cut-Off Current	$\begin{aligned} & V_{C B}=-4.5 \mathrm{Vdc} \\ & \text { Tambient }=65^{\circ} \mathrm{C} \end{aligned}$	$I_{\text {cbo }}$	-	-50	$\mu \mathrm{Adc}$							
Delay and Rise Time	$\begin{aligned} & \mathrm{V}_{\mathrm{BE}}(0)=-0.5 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{B}}(1)=-1.0 \mathrm{mAdc} \\ & \mathrm{Ccc}_{\mathrm{L}}=300.5 \mathrm{hmsc} \end{aligned}$	$\left(t_{d}+t_{r}\right)$		75	mısec	\dagger Derate at $0.5^{\circ} \mathrm{C} / \mathrm{mw}$. This is equivalent to a maximum power rating of 150 mw at $25^{\circ} \mathrm{C}$ ambient.						
Storage Time	$\begin{aligned} & 1 \mathrm{~B}(1)-1 \mathrm{mAdc} \\ & 1 \mathrm{IB}_{\mathrm{B}}(2)=-0.25 \mathrm{mAdc} \\ & \mathrm{Vcc}^{2}=-3.5 \mathrm{Vdc} \\ & \mathrm{R}_{\mathrm{L}}=300 \mathrm{ohms} \end{aligned}$	t_{s}	-	100	m $\mu \mathrm{sec}$		er ratin specif	$\text { of } 150$	mw at $25^{\circ} \mathrm{C}$ covers the d	bient. ail req	ement	
Fall Time	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}(1)=-1 \mathrm{mAdc} \\ & \mathrm{I}_{\mathrm{g}}(2)=-0.25 \mathrm{mAdc} . \\ & \mathrm{V}_{\mathrm{L}}=300.3 .5 \mathrm{Vdc} \end{aligned}$		-		m $\mu \mathrm{sec}$		sistor peratu		following $3^{\circ} \mathrm{C}$, unless	aracte herwis	ics at pecifi	

Texas

CIRCLE 308 ON READER-SERVICE CARD

ELECTRONIC DESIGN • January 21, 1959

SEALED suminiturnsWITCH

A fiexible bushing compressed around the pin actuator combines with bonding of the case halves to provide a splashproof, dust-proof, explosion-proof (MIL-
E.5272) switch with improved reliability. E-5272) switch with improved reliability.
Ideal for use in miniaturized electronic and electrical apparatus.

- Mounting and outline dimensions meet MS-25085.1
- Furnished with pin, leaf, or leaf-roller actuators.
- Furnished with auxiliary actuating devices. - Electrical rating: 5 amp. 125, 250 v . ac Underwriters' Laboratory listed. assemblies using groups of these Type SS switches with unique actuating devices are furnished
to your requirements.

UNIMAX SWITCH
 IVES ROAD, WALLINGFORD, CONNECTICUT

CIRCLE 315 ON READER-SERVICE CARD

Screws
Stud $\begin{array}{l}\text { Solis } \\ \text { Toper } \\ \text { Ping }\end{array}$

- Toper Polins
- Woshers
Whood Sis

Sov
7.00 7000 sove money. This book lists over immediate delivery RIGHT OFF THE SHELF® Write for catalog on your letterhead TODAY
Star stainless screw co coniosion $\begin{gathered}663 \text { Union Blvd., Paterson 2, N.J. } \\ \text { Telephone Clifford } 6-2300\end{gathered}$ $\begin{array}{ll}\text { RESISTAMT }\end{array} 1=\begin{aligned} & \text { Telephone Clifford } \\ & \text { Direct New York City phone: WI sconsin } 7.90 \\ & \text { Direct Philodelphia phone WAInut } 5.3660\end{aligned}$ CIRCLE 309 ON READER-SERVICE CARD

GERMAN ABSTRACTS

Practical Two-Phase

E. Brenner

(b)

Fig. 1. (a) The lossless "two channel" system results in equal amplitude outputs which have the required phase difference. This type of arrangement is referred to as Class " A " in the abstract. (b) An R-C two port. To obtain the required phase characteristics frequency dependent attenuation is allowed. This type of network is referred to as Class " B "

TWO SINUSOIDAL outputs, different in phase by a prescribed angle, may be obtained from a sinusoidal input by means of a linear passive structure termed a "two-phase" network While the special case of 90 deg phase shift has been solved rigorously (see e.g. German Abstracts, ED, Aug. 20, 1958, Vol. 6, No. 17), the solution does not lead to elementary functions. It is possible to design two-phase networks with tolerances which are adequate for many applications using elementary functions if the number of elements which are required in the realization is restricted.
Two classes of two-phase networks are defined. Class " A " is represented by the familiar scheme shown in Fig. 1a. In this network, two "all-pass" (lossless) two-ports are used so that two voltages of equal amplitude, which differ in phase by $\Delta=$ over the required band, are produced. In Fig. 1b

Fig. 2. "Prototype" all-pass phase shifter. When terminared in $R_{\text {, }}$ the driving point impedance is $R_{\ldots \text {. }}$. Each all pass of Fig. la consists of a cascade of prototypes, the last one terminated in R_{n}. It is assumed that the cascades are fed from a high impedance ("current") source.

Fig. 3. Phase characteristics for $n=$ 2. The curve is symmetrical when the log of the normalized frequency is the abscissa.

se
 Networks

class " B " is indicated. An R-C two-port is used to produce the phase shift between V_{2} and V_{1}. In this case V_{2} / V_{1} is a function of frequency so that this scheme is generally used only when small phase differences are required.

To realize a network of Class A, it is assumed that the input is fed from a current source I_{o} (high impedance source) and that the all-pass phase shifters have the form of the prototype shown in Fig. 2. For this network, the driving point impedance at all frequencies is R_{o} if the termination is R_{o}, hence they can be cascaded. It can also be shown that for the prototype with termination R_{o}

$$
\begin{align*}
& I_{2} \tag{1}\\
& I_{1}
\end{align*}=\frac{\alpha-j \omega}{\alpha+j \omega}=1-2 \tan ^{-1} \omega \alpha
$$

where $\alpha^{2}=2 / L C, R_{o}=2 L / C$.
By the use of trigonometric identities, three practical designs cam be prescribed using two, three or four prototype sections. As the number of sections increases, the tolerance on phase shift within a prescribed band decreases. If the twophase network, realized as in Fig. 1a, is to furnish a phase shift of $2\left(\phi_{0} \pm \delta\right)$ within the band of radian frequencies ω_{1} to ω_{2}, then the band-ratio, $B=\omega_{2} / \omega_{1}$, depends on the half tolerance δ.

1. Design parameters (a) Define $\omega_{o}^{2}=\omega_{1} \omega_{2}$ and normalized $x=\omega / \omega_{0},\left(x_{2}=\omega_{2} / \omega_{0} ; x_{1}=\omega_{1} / \omega_{0}\right.$ etc.);
$B=\omega_{2} / \omega_{1}=\omega_{2}{ }^{2} / \omega_{102}=x_{2}{ }^{2}$
(b) Frequency parameter $y=x+1 / x,\left(y_{k}=x_{k}\right.$ $+1 / x_{k}$)
(c) Maximum and minimum phase shift in band: define H and T

$$
\mathbf{H}=\tan \left(\phi_{0}+\delta\right), T=\tan \left(\vartheta_{0}-\lambda\right)
$$

(d) Prototype parameters

Let $\varepsilon=v^{2} / \omega_{n}$ then $(L / 2)=R_{o} /\left(2\left(\omega_{n} \varepsilon\right)\right.$; $C=2\left(\omega_{0} \& R_{o}\right)$.
2. Case $n=2$. Each all pass of Fig. la consists of a single prototype. A typical curve of phase

IDEAS FOR DESIGN—entry blank

To the Ideas-For-Design Editor of ELECTRONIC DESIGN -
830 3rd Ave., New York 22, N.Y. • PLaza 1-5530

Here is my design idea for possible publications in your Ideas For Design department. I can expect $\$ 10$ for this idea if accepted for publication.
(Ideas suitable include: 1. new circuits or circuit modifications, 2. new design techniques, 3. designs for new production methods, 4. clever use of new materials or new components in design, 5. design or drafting aids, 6. new methods of packaging, 7. design short cuts, or 8. cost saving tips)

STATEMENT OF THE PROBLEM-

MY SOLUTION. AND WHY— (Please be explicit. Include sketches or photos that will help the idea across)

ELECTRONIC DESIGN • January 21, 1959

APPLICATIONS

Chatt Dives
Large Clochs
Alam Syslems
Alarm systems
Ralway Signaling

Raliway
Vollage Requilators

Vollage Requlators
Piocess Controls
Trafic Signals
Paging Systems
Alcraft Training Devices
A avalate at electnoncs and electmeal oistabutons Q 1 TOOL and mFE. co.

CIRCLE 316 ON READER-SERVICE CARD

Thin $1 /{ }^{\prime \prime}$ Slide
Carries 150 Lhs.
new Jonathan Thinline 150

Less than $1 / 2^{\prime \prime}$ wide. the sturdy Jonathan THHNLINE slide hand wide safety. factor. This full ball bearing slide fits all
standard racks and panels; is
available in any length. 6 " to $36^{\prime \prime}$. Meets applicable military specifications; attachments for any mounting application.
prototype delivery: 10 days; Production: 3 weeks

0
JONATHAN MFG. CO.
720 E. Walnut Avo Fulletion Calir
New York Offices: 51 Chambers Street, N.Y. I. M.Y.

GERMAN ABSTRACTS

shift as a function of $\log x$ is shown in Fig. 3. The band ratio B is related to δ through $y_{1}=$ $2 H / T=x_{1}+1 / x_{1}$ or $x_{1}{ }^{2}=B=\left[H / T+\left(H^{2} / T^{2}\right.\right.$ $\left.-1)^{1 / 2}\right]^{2}$
The prototypes forming all pass No. 1 and No. 2 respectively are determined from ε_{1} and ε_{2}, where

$$
\begin{aligned}
& \epsilon_{1}=\left(1-\sin \left(\phi_{o}+\delta\right) / \cos \left(\phi_{1}+\delta\right)\right. \\
& \epsilon_{2}=1 / \epsilon_{1} \text { or } \quad \epsilon_{2}-\epsilon_{1}=\underline{2} H
\end{aligned}
$$

The two phase network has a phase shift of $2 \geqslant$. with tolerance $\pm 2 \delta$ in the normalized band x_{1} to $x_{2}\left(\omega_{1}\right.$ to $\left.\omega_{2}\right)$. The factor of 2 appears for all Class "A" networks
3. Case $n=3$. This case (as for all odd values of n) does not yield to analytical treatment except for special values of ϕ_{0}. A graphical procedure can be used in general. Assign two two-ports determined through ε_{1} and ε_{3} to all pass No. 1 and let all pass No. 2 be the two port determined through ε_{2}. Let $\varepsilon_{1} \varepsilon_{2}=1$. The phase-normalized frequency dependence is then
$\phi(x)=\tan ^{-1} x / \epsilon_{3}+\tan ^{-1}\left(2 K x /\left(1+x^{2}\right)\right.$
The curve $\tan ^{-1} 2 K x /\left(1+x^{2}\right)$ is the phase characteristic for $n=2$ and is shown in Fig. 4 for several values of K. Now one graphs the three curves $\phi_{n} \pm \delta-\tan ^{-1} x / \varepsilon_{3} ;\left(\phi_{0}-\tan ^{-1} \downarrow / \varepsilon_{3}\right)$ as a function of $\log x$ as in Fig. 5a. By trial and error a curve from Fig. 4 is superposed on Fig. 5b so that the equation $\phi(x)=\phi_{0} \pm \delta$ in the interval x_{1} to x_{2} is satisfied; result as shown in Fig. 5b. From Fig. 5a, ε_{3} is determined. The chosen value of K (determined by the curve of Fig. 4 used) and the relationship $\varepsilon_{1} \varepsilon_{2}=1$ determines ε_{1} and $\varepsilon_{2}: K=$ $\left(\varepsilon_{2}-\varepsilon_{1}\right) / 2$.
If $\phi_{o}=45 \mathrm{deg}$ is required ($2_{\gamma_{0}}=90 \mathrm{deg}$) the special symmetry results in analytical expressions. The bandwidth tolerance relation is shown in Fig. 6. The maximum error δ occurs at $x=x_{m}$,

Fig. 4. Curves of the function $\varphi=\tan ^{-1}\left(2 K x /\left(1+x^{2}\right)\right)$ for various values of K. This function describes the two phase network $n=2$ and is used in the graphical procedure for $n=3$.
$x_{1}{ }^{4} T^{2}=x_{m}{ }^{2}=T^{2} B$. Corresponding to $x_{m}, y_{m}=$ $x_{m}+1 / x_{m}\left(y_{m}=2\right.$ gives monotonic phase response). Determine u from $y_{m}{ }^{2}=2+u-3 / u$ then $u=\varepsilon_{1}+1 / \varepsilon_{1}-1$. Choose $\varepsilon_{1} \varepsilon_{3}=1, \varepsilon_{2}=1$ As before ε_{1} and ε_{3} determine cascade of the two protoypes in all-pass No. 1. For all pass No. 2, $\varepsilon=\varepsilon_{2}=1$.
4. Case $n=4$. This case has symmetrical phase

Fig. 5. (a) The function $\varphi_{1}-\tan ^{-1} x / \varepsilon_{3}$ vs $\log x$. (b) Graphical solution of the equation $p_{0} \pm \delta--\tan ^{-1} x / \varepsilon_{s}=\tan ^{-1}\left(2 K x /\left(1+x^{2}\right)\right)$

Fig. 6. Tolerance δ as a function of B and ratio $B=x_{2} / x_{1}$ for $\varphi_{0}=45 \mathrm{deg}$ with n as a parameter. In networks of the type shown in Fig. la, the tolerance is 2δ and $2 \varphi_{0}=\varphi_{2}-\varphi_{1}=90 \mathrm{deg}$. The case $n=1$ is trivial.

Fig. 7. Phase as a function of $\log \mathrm{x}$ for the case $n=4$.

[^6]characteristics (see Fig. 7). For $\phi_{0}=45$ deg the $B-\delta$ curve is shown in Fig. 6. The bandwidthtolerance and the circuit elements are determined from the following general formulas.

Let $\quad D=\left(\sqrt{1+T^{2}}-1\right) / T$
calculate

$$
y_{A}=\frac{2 H^{2}}{D^{2}}\left[\left(1,-D^{2}\right)+\sqrt{\left(1-D^{2}\right)^{2}-\frac{4 D^{2}}{H^{2}}}\right]
$$

and $\quad K=y_{A} D / 2$
then
$y_{1}=\frac{K}{T} y_{A}+\left[\left(\frac{K}{T} y_{A}\right)^{2}+4\left(1+K^{2}\right)-y_{A}{ }^{2}\right]^{\frac{1}{2}}$ and

$$
x_{1}{ }^{2}=B=\left[\begin{array}{l}
1 \\
2
\end{array} y_{1}+\sqrt{\left(\frac{y_{1}}{2}\right)^{2}-1}\right]^{\frac{1}{2}}
$$

The all pass No. 1 is the cascade connection of the two prototype sections determined by ε_{1} and ε_{3} through x_{1} and O Let $O=\tan ^{-1} K$ then

$$
\begin{aligned}
& \epsilon_{3}=\frac{x_{A}(1-\sin \theta)}{\cos \theta} \\
& \epsilon_{1}=\frac{\cos \theta}{x_{A}(1+\sin \theta)}
\end{aligned}
$$

For the tivo protoype sections in all pass No. 2, $\varepsilon_{2}=1 / \varepsilon_{3}$ and $\varepsilon_{4}=1 / \varepsilon_{1}$.
While this general procedure can be extended to $n=5,6$, etc., the above cases are sufficient. From a practical viewpoint, networks more elaborate than $n=4$ are unsatisfactory because the element values in a cascade of prototypes are of different orders of magnitude. This results in unreasonable tolerance requirements on the L and C values.
In the original paper, the $R-C$ networks, Fig. lb , for $n=1,2,3$ and 4 are also examined. In this case, n refers to the number of zeroes and poles which the network function has on the negative real axis. The phase characteristics can be immediately deduced by using the result of the Class "A" networks: For the same pole-zero pattern but with zeroes restricted to the left half p-plane, the phase shift is half of that obtained for the corresponding $L-C$ prototype case. Consequently, $R-C$ networks are used over smaller frequency ranges and for smaller phase shifts that all-pass networks. The attenuation change over the effective frequency band is also given for the $R C$ networks $n=1-4$, in the original paper.
Abstracted from an article by G. Fritzsche, Nachrichtentechnik, Vol. 8, No. 8, August 1958, pp 365-370.

ELECTRONIC DESIGN • January' 21, 1959

WHEELOCK SIGNALS INTRODUCES ••••

TITILLATED MAN

A composite of design engineer, purchasing agent, production foreman, quality control supervisor, and executive defender of the company dividend.

Each individual need of his corporate personality is coddled and gratified by Wheelock's rational design concepts, space minimalization techniques, environmental stability, price, and delivery capabilities.
He is at once, and by himself . . . a family, and a divinely happy one. And he
sleeps the sleep of the self-assured because, stitched onto his chest in a place for from the prying eyes of alert competitors is the secret of his serenity:

"For reliable relays (miniature, subminiature and standard),
call Wheelock."

to be titillated too, write us of your relay needs

New in Printed CIRCUIT
 FLUXES THIS YEAR

 Greater Solderability
 the new INDUSTRY STANDARD
 Less Corrosion Potential
 Onco

, greatly improved solderability over stand ard fluxes available last year and, at the same time, less corrosion potential.

Prove these claims for yourself. If you have been using a "mild" rosin flux, test and compare LONCO RESIN-FLUX " 5141 . If you have been using a "somewhat activated" rosin flux, test and compare LONCO RESIN-FLUX \#5177... or if you have been using the most solderable rosin flux available", test and compare LONCO RESIN-FLUX \#5170.

STANDARDS AND

SPECS
Sherman H. Hubelbank

Reliability

Mil-STD-4tl, Reliability of Martary Eifec tronic Equipalent, 20 June 1958
Effective 20 September 1958, this standard is mandatory for use by the Department of Defense for the Army, Air Force, and the Navy, The purpose of this standard is to establish a procedure for the development and design of electronic equipment to insure required inherent reliability. This procedure is to be applied spe cifically to the development and design of all electronic equipment, whether for use in air craft, shipboard, ground, or other categories of special use and expendability. Probability of mission accomplishment is the most important consideration for airborne electronic equipment A low failure rate over a long period of time is the prime consideration in ground and shipboard equipment. Highly complex (from the standpoint of numbers of parts) equipment, such as computers and large complex systems, require ultraconservative circuit design in terms of part: application and may require controlled environments in order to meet a high operational reliability for continuous operation over extended periods. Some operational requirements can only be met by equipment which is extremely small, light weight and which, as a result may have a reduced inherent reliability. Included in the standard is a complete bibliography of design guidance for use in connection with this standard.

Resistors

MIL,-R-105()9C, Resistors, Fixed, Filai (Higil Stability), 29 September 1958

Characteristics A and X have been deleted Characteristic C has been added. This new characteristic provides a maximum ambient operating temperature of $125^{\circ} \mathrm{C}$ at rated wattage and tight ened test requirements as compared to characteristic B. Resistance tolerance of 5\% has been cleleted. Requirements and test procedures have been added for acceleration, shock, and high-frequency vibration tests. The low-temperature exposure test has been deleted. Croup 13 inspection tests have been modified.

most complete

- Design Forum
- Product Features
- Ideas for Design
- Engineering Review
- Standards and Specs
- Russian Translations
- Background for Design

More and more electronic engineers report: "I read Electronic Design first. It's complete, timely, easier to read, and I can depend upon getting all the new product information."
Electronic Design's 8 full time editors, plus staff of assistants, contributors, and correspondents scan the electronic horizons to bring you the complete design picture.
With reading time at a premium, ED's every-other-week frequency assures the prompt delivery of topical material; keeps up with this rapidly moving industry.

ELECTRONIC DESIGN

a HAYDEN publication 830 Third Ave., New York 22, N. Y. PLaza I-5530

MIL-R-11804C, Resistors, Fixed, Film (Power Type), 12 September 1958

Tests and requirements have been added for acceleration, shock, and high-frequency vibration applicable to the axial-wire-lead-terminal styles only. Group C inspection test has been modified. Detail specs have been issued for five tab-style resistors, and three axial-wire-lead terminal resistors.

Test Points

MiL-StD-415A, Test Points and Test Facilities, Design Standard for, 31 March 1958
A system for providing test points and test facilities to be utilized in the testing of ground, shipboard, and airborne electronic equipment has been established by this standard. This standard is intended for use in the design of new equipment and may also be used with existing equipments. Test facilities are those built-in devices which are used to facilitate installation, maintenance, operation, and calibration of electronic equipment. A test point is a convenient, safe access to a circuit, which is to be used so that a significant quantity can be measured (or introduced) to facilitate maintenance, repair, calibration, alignment, or monitoring. In designing test points, techniques shall be included for assessment of overall performance of the entire equipment. The built-in test facilities shall utilize go-no-go devices to enable rapid performance evaluation by nontechnical operating personnel. The degree of complexity of the built-in test features shall be held to a minimum. If possible, techniques incorporating anticipated failures by testing shall be used.

Transistors

MIL-STD-701(NAVY), Transistors, 15 August 1958
Included in this standard are transistor types approved by the Department of the Navy for use in the design and manufacture of electronic equipments under Navy jurisdiction. Also included are requirements for the application and utilization of transistors in Military equipment; requirements for the reporting of transistor complement information; and requirements for the reporting of the need for new transistor development. This standard as three primary purposes: (1) to provide the equipment designer with a list of transistor types considered by the Navy to be the best available for most military applications; (2) to restrict and minimize the variety of transistor types used; and (3) to outline criteria for the choice, use, and application of transistors.

BENDIX SR RACK and panel connector

with outstanding resistance to vibration

The Bendix type SR rack and panel electrical connector provides exceptional resistance to vibration. The low engagement force gives it a decided advantage over existing connectors of this type.

Adding to the efficiency of this rack and panel connector is the performance-proven Bendix "clip-type" closed entry socket. Insert patterns are available to mate with existing equipment in the field.
Available in general duty, pressurized or potted types, each with temperature range of $-67^{\circ} \mathrm{F}$ to $+257^{\circ} \mathrm{F}$.

Here, indeed, is another outstanding Bendix product that should be your first choice in rack and panel connectors.

Conodion Afflliotes: Aviotion Electric Lid., 200 Lourentien Blivd., Montrool 9, Quebere. CIRCLE 321 ON READER-SERVICE CARD

ELECTRONIC DESIGN • January•21, 1959

...with Positive Detent Action

This fully enclosed one inch diameter miniature
rap switch, designed for high reliability in mili-
tary and commercial applications, provides
One to 10 decks, 2 to 10 shorting or non-shorting
positions per deck. 36° indexing. Break 1 amp. 115 V. AC, or carry 5 amps. Has passed many military enviranmental tests including explosion test per MIL-E-5272A Procedure 1.

Write for Complete Specifications

Phone: Fleetwood 4-1040 565 Hillgrove Ave., LaGrange, Ill.
PIONEERSIN MINIATURIZATION.. CIRCLE 323 ON READER-SERVICE CARD

light that mounts in just 30 seconds!
Simply insert this indicator light in a $3 / \kappa^{\prime \prime}$ panel-hole, tighten the collar nut and plug in the taper pins. It's completely mounted
and hooked up in 30 seconds... no soldering needed! Enclosed and hooked 3 resistors can control the NE-2E neon lamp with a 3.0 volt signal. This brand new self-contained display light unit is available in a variety of circuits for computers, data processors, signal systems and transistorized automatic control devices. Body only $1 / 2^{\prime \prime}$ in diameter and $114^{\prime \prime}$ long. For complete data on the Mini-Lite and other control panel components, write us
बि TRANSISTOR ELECTRONICS
 CIRCLE 324 ON READER-SERVICE CARD

Electron Tubes

MIL-STID-200D, Electron Tubes and Semicon ductor Devices, Diode, 15 September 1958
This supplement covers a listing of electron tubes and semiconductor devices, diodes, which have been selected by the Department of the Navy for use, in conjunction with MIL-STD200D, by contractors of Navy designed equipment. The basic standard includes requirements for the application and utilization of electron tubes in military equipment; requirements for the reporting of tube complement information; and requirements for reporting the need for new electron tube developments.

Enclosures

MIL-STD-108D, Definitions of and Basic Requirements for Enclosures for Electric and Electronic Equipment, 27 June 1958

An enclosure is defined as a mechanical item which wholly or partly surrounds some electrical or electronic item or group of items and is an integral part of them. Included in this standard are tests and definitions of failure to meet requirements, and an alphabetical listing of current standard and discontinued enclosures. Water tests other than submergence, gunblast tests, and submergence tests are included in tabular form.

Test Methods

Mil-STD-202A, Test Methods for Electrical and Electrical Component Parts, 28 August 1958
This change notice adds a new medium impact shock test method 205. The purpose of this method is to insure that all users of the shocktesting apparatus will use the same procedure in performing medium-impact shock tests. Instructions are also given concerning additional weights that are to be added to the elevator table when required.

Guided Missiles
MlL-E-8189B(ASG), General Specification for Guided Missiles Electronic Equipment, 15 July 1958
The philosophy of design and the general requirements for the design and manufacture of electronic systems and equipments for guided missiles are covered in this spec. All classes and types of missile-borne electronic equipment are covered by this spec. Also covered are all applicable phases of design, including research. service test, preproduction, and production.

If's easy with the MINI-JECTOR!® No need to in.
vest heovily in costly machinery, expensive 1001 ing or skilled personnel. Develop and produce small parts in all thermoplastics, including Nylon. Catolog shows how simple plastic injiection molding is with
MINI. IECTOR. There's a model to fit your special MINI-JECTOR. There's a model to fit your special needs.

Write for free catalog today.

NEWBURY INDUSTRIES, INC.

CIRCLE 325 ON READER-SERVICE CARD

High Quality Coil Forms For All Electrical Applications

Sounk and rectangular tubes Choice of any dielectric material or combinafions. Any length, shape or size. Especially recommended for Class A, B and H temperature ranges.

ROUND TUBES-Any decimal size up to $8^{\prime \prime}$. Fabricated from dielectric kraff, fish paper, acetate, DuPont Mylar, Johns-Manville Quinterra, fibre glass, other materials or combinations.

RESINITE PHENOLIC IMPREGNATEDFeature the highest resistivily of any resinated product. Furnished in any shape or size-plain, embossed or internally threaded, also in flyback transformer forms.

BOBBIN ASSEMBLIES-Fabricated to specification in any dielectric material for Class A, B and H temperature ranges. Supplied with ela, asbestos, plastic or fibre flanges.
Request catalog and prices Ask about Procision's com plete coil form service.

[^7]More than
8 OUT OF 10 ENGINEERS say "yes" to an invitation to join

Norden Laboratories

The ratio of 8.3 acceptances for every 10 engineers invited to join Norden Laboratoriss' professional staff is unusually high, especially in the opportunity-rich electronics industry. We went right to the in the opportunity-rich electronics ind new members of oungeering groups, who revealed these factors impelling their decision in favor of Norden:

- Pionecring Nature of the Work in Diversified Electronic Areas
- Small R \& D Groups Fostcring Individual Accomplishment
- Close Contact With Management
- Flexibility of Assignments
- 30-Y'car Company History of Achicvement in Precision Electronics

If this partial description of the professional environment at Norden Laboratories appeals to you, look into these immediate openings on a variety of advanced projects at both White Plains, New York and Stamford, Connecticut locations:
TELEVISION a PASSIVE DETECTION - Transistor Circuit Development - High \& Low Light Level TV Camera Design - Video Information Processing - TV Monitors \& Contact Analog Displays • Military Transistorized TV Systems (Also openings for recent $E E$ grads)
RADAR \& COMmunications Design \& Development of: Antennas - ECM - Microwave Systems \& Components - Receivers - Transmitter Modulators DIGItal. Digital (Senior) Design: Logical, Circuit, Magnetic Storage Quality assurance • Reliability Analysis • Standards • Environmental Test project engineerina - Senior engineers - Engineering Program Management
FUTURE PROGRAMS. SYSTEMS ENGINEER (SR) - Broad creative background, ability to communicate - experience in radar, TV systems supeno mpinern

- Cost development for R\&D proposals Require broad technical experience in electro-mechanical and electronic systems engineering design - Electronic Packaging
Stabilization a mavication - Servo Loops for gyro atabilization antenna stabilization, accelerometer force balance, antenna scanning
- Repeater Servos- Transistorized Integrator, DC Amplifier, Servo Amplifer
- Magnetic Amplifiers - Transistorized DC \& AC power supplies
- Gyros \& Accelerometers

SYSTEMS EMaINEERINa - Synthesis, analysis \& integration of electronic \& electro-mechanical systems

- Descriptive Brochure Available Upon Request

After-hour interviews arranged at your convenience

Send resume in confidence to: technical employment manager

NORDEN LABORATORIES

NORDEN DIVISION - UNITED AIRCRAFT CORP 121 Westmoreland Avenue - White Plains, New York
White Plains, New York
Stamford, Connecticut

Opportunities to work on FIRE CONTROL AND GUIDANCE COMPUTER ELECTRONICS for the POLARIS MISSILE

High Priority Project Presents Unique Challenges to Computer Engineers

Design and development men at the Light Military Elec tronics Department of General Electric are now working on one of the most stimulating problems ever faced by computer engineers.

It is one of the functions of the fire control computer electronics to keep the Polaris missile - now under develop-ment-always battle-ready, with a freshly calculated trajectory toward its pre-programmed target. The compute electronics operate continuously, constantly plotting the sub marine's changing position, taking into account all para meters of speed, direction, angular disturbance, compas references, etc., and cranking new trajectory equations into the memory circuits of Polaris' guidance computer electronics

The Guidance Computer furnishes the commands which guide the missile to its pre-programmed target on the basis of inputs from the fire control computer, and its own iner. tial reference sensor.

Current assignmonts on Polaris Computer Design a Devolopment are representative of the professionally advanced work always in progress at Light Military. Engi neers chosen for these positions will find their own advance ment can be rapid. Promotion is fully based on individual contributions, backed by performance appraisals.

For prompt consideration, write in confidence to Mr. R. C. Kimm, Dept. 75-WC.

DMABID

light military electronics department

GENERAL ELECTRIC

IBM

offers a free hand
to creative engineers and scientists in IBM's new
Special Engineering Products Division

If you'd like to exercise a free hand in solving problems never encountered before . . . if you want to work on small teams, where individual merit can be quickly recognized . . . if you're looking for ground-floor opportunities plus the job stability accruing from employment with a well-established firm . . . then you should consider the career opportunities now available at IBM's new Special Engineering Products Division.
S.E.P.D. was created to apply IBM's wealth of systems knowledge to the development of special-purpose precision equipment related to, but outside of, IBM's regular line of products. Immediately required are creative engineers and scientists - men who enjoy the challenge of working independently on a wide variety of unique assignments.

OPPORTUNITIES NOW AVAILABLE INCLUDE...
Advanced component design
Analog or digital computers
Automation
Data, conversion, transmission, processing or display systems
Design of intricate mechanisms
Electronic packaging
Industrial controls
Instrumentation
Optical systems and optical mechanisms
Servo systems
Solid-state devices and applications
Telemetering

QUALIFICATIONS:

B.S., M.S., or Ph.D. degree in E.E., M.E., Physics, or Mathematics. Industrial experience desirable.

At S.E.P.D., you will find all the ground-floor opportunities of a new company. You will work on small teams where individual merit is quickly recognized. Assign. ments are varied and far from routine, and you will have IBM's experienced specialists and technicians for support. In addition, you will enjoy all the advantages of IBM employment, including job stability, liberal com. pany benefits, and excellent salaries.

IMPORTANT ANNOUNCEMENT TO ALL ENGINEERS-EE, ME, AE, CE:
A New
Organization
Now Forming at
General Electric
to Integrate and Direct
Systems Management of Prime Defense Programs

From within General Electric, and from industry at large, talented scientists and engineers from diverse disciplines are coming together to form the nucleus of the new Defense Systems Department.
The responsibilities of this new group encompass management of theoretical and applied research as well as advanced development on major terrestrial and space-age systems.
Engineers and scientists interested in exploring the broad new possibilities in the Defense Systems Department are invited to investigate current openings.

Direct your inquiry
in confidence to Mr. E. A. Smith Section C (..!!!!!)!)

Defense Systems Department GENERAL ELECTRIC

300 South Geddes St.
Syracuse, New York
CIRCLE 730 ON READER-SERVICE CARD

ENGINEERS AND SCIENTISTS RETURN TO THE MIDWEST

．where there＇s time and oppor－

 runity to enjoy yourself while climb－ ing to the top in the field you like bestYour friends in Minnesota are going sleigh riding！You remember what it＇s like－the smell of burning pine and birch．The sound of heavy runners and hoofs biting into the snow．Remember how bright the stars are in this winter wonderland and how the Northern lights whip across the sky．You should be here－with your wife and children－ to enjoy Minnesota as you did before． And you can be
The Research and Engineering Labora－ tories at the Mechanical Division of General Mills－in Minneapolis－need senior level staff members for creative design，research and development work in the following fields
－Electronic Circuit Design
－Micro－wave Development
－Atmospheric Physics
－Field Engineering
－Advanced Digital Computer Systems Design
Advanced Digital Computer Circuit Development
－Advanced Pulse and Video Circuit Development
Advanced Inertial Naviga－ tional System Development
Aerodynamics
－Applied Mechanics
－Optical and Infra－Red Equipment Engineering
－Research Physics
－Telemetering Systems Engi－ neering
Test and Evaluation of Basic Electronic and Electrome－ chanical Components
Positions available are for purely tech－ nical and technical－supervisory work－ job titles and salary provide equal op－ portunity for advancement in both．Our people enjoy their associates，liberal company benefits and non－routine proj－ ects，as evidenced by our extremely low turnover rate．
If you have from three to five years experience in any of the above fields we＇d like to tell you more about op－ portunities at General Mills．Send today for all the facts．We＇ll keep your inquiry in strict confidence．

G．P．Lambert，Manager
 Professional Employment

MECHANICAL DIVISION Mills 2003 E．Hersonnel Doppartm．nt CIRCIE 731 ON READER－SERIC
ELECTRONIC DESIGN • January 21， 1959

CIRCLE 732 ON READER－SERVICE CARD
ENGINEERS

GE＇s

MISSILE and SPACE VEHICLE department

offers

challenge and growth in the fiold of Transistors in the following categories：

COMPONENT ENGINEERS

Electronic Tube \＆ Transistors
To develop and implement pro－ grams involving the standardiza－ tion，availability，capability and application of electronic fubes and transistors．

ELECTRONICS DESIGN ENGINEERS

To design transistorized elec－ tronic circuits for low level AC／DC amplifiers and transis－ torized power supplies．

Please submit your qualifications to
Mr．R．L．Eddy，Dept．200－1 Professional Placement

YOUR PROFESSIONAL GROWTH

The wide latitude offered by Republic Aviation＇s new programs will enhance your career development．
BECAUSE．．．you will be working on electronics systems involved in all known parameters of flight－from the hypersonic velocities of ballistic missiles to the zero speed of helicopters
BECAUSE．．．you will broaden your disciplinary background by see－ ing the total systems picture－from design to hardware．You will be able to communicate directly with the people who design the actual flight vehicle structures and related subsystems
because ．．．you will be a＂ground floor＂participant in Republic＇s new $\$ 35$ million R\＆D program，conceived to bring about revolutionary advances in aircraft，missile and space technology

Investigate these electronic opportunities with Republic－

Inertial Guidance
Inertial Navigation
Digital Computer Development Radar Design
Microwave Circuitry \＆Components Telemetry－SSB Technique Information Theory
Countermeasures
Radome \＆Antenna Design
Doppler Radar
Receiver a Transmitter Design Receiver A Transmitter Design Missile Checkout Systems

Systems Engineering Missile Arming \＆Fusing Jamming \＆Anti－Jamming Infrared Ranging Systems Radio Altimeters Propagation Studies Ground Support Equipment Airborne Fire Control system \＆Component Packaging Automatic Airborne Flight Controls Miniaturisation Trameintorization Electronic Display \＆Plotting Boards

Please send resume in complete confidence to：
Mr．George R．Hickman，Engineering Employment Manager
REPMUELIE AMUAEITUN
Farmingdale，Long Island，New York

CIRCLE 733 ON READER－SERVICE CARD
\square

ADVERTISERS' INDEX
January 21, 1959

NOW!

Constant output level
Constant modulation level
3 volt output into 50 ohms
Low envelope distortion

50 kc to

 65MC
Specifications

Frequency Range: 50 kc to 65 MC in 6 bands.
$\begin{array}{rr}50-170 \mathrm{kc} & 1.76-6.0 \mathrm{MC} \\ 165-560 \mathrm{kc} & 5.8-19.2 \mathrm{MC}\end{array}$ $\begin{array}{lr}165--560 \mathrm{kc} & 5.8-19.2 \mathrm{MC} \\ 530-1800 \mathrm{kc} & 19.0-65.0 \mathrm{MC}\end{array}$

Internal Modulation: 0 to $100^{\prime \prime}$ s sinusoidal modulation at 400 cps $\pm 5 \%$ or $1000 \mathrm{cps} \pm 5 \%$.
Modulation Bandwidth: Dc to 20 kc maximum. depends on carrier frequency, f_{c}, and percent modulation as shown in the following table: 30% Mod. 70% Mod. Squarewave Mod. Max. Mod. Frequency $\left.0.06 \mathrm{f}_{e} \quad 0.02 \mathrm{f}_{r} \quad 0.003 \mathrm{f} .13 \mathrm{kc} \max \right)$ External Modulation: 0 to 100% sinusoidal modulation de to 20 kc . $4 . \overline{7}$ volts peak produces 100% modulation at modulating fregurn cies from de to 20 kc . Input impedance is 600 ohms . Nay alsu be modulated by square waves and other complex signals
Envelope Distortion: Less than 3% envelope distortion from 0 to
70% modulation at output levels of 1 volt or less.
Modulation Meter Accuracy: Within $\pm 5 \mathrm{c} / \mathrm{c}_{\text {of }}$ full scale reading from 0 to 90 \%/
Spurious FM: $0.002{ }^{5}$ r', or 100 cps , whichever is greater, at an output of 1 v or less and $30 \% / \mathrm{c}$ AM modulation.
Spurious AM: Hum and noise sideljands are 70 db below carrier.
Power: $115 / 230$ volts $\pm 10 \% / \% 50$ to $1000 \mathrm{cps}, 13.5$ watts.
Accessories Available: -hp. AC-606A-34 Output Voltage Divider with 50 and 5 ohms termination 10:1 voltaze divider) and IRE standard dummy antenna $110: 1$ voltage divider). \$.50.00
Price: (cabinet) \$1,200.00. (rack mount) \$1,18i. 00 .
Data subject to change without notice. Prices f.o.b. factory.

Frequency Accuracy: Within $\pm 1 \mathrm{c} / \mathrm{c}$
Frequency Calibrotor: Crystal oscillator provides check points at 100 kc and 1 MC intervals arcurate within 0.01 /ir from 0° to $50^{\circ} \mathrm{C}$.
RF Output Level: Continuously adjustable from 0.1μ v to 3 volts into a 50 ohm resistive luad. Calibration is in volts and dbm 10 dbm - 1 milliwatt).

Output Accuracy: Within $\pm 1 \mathrm{db}$ into 50 ohm resistive load
Frequency Response: Within $\pm 1 \mathrm{db}$ into 50 ohm resistive load over entire frequency range at any output level setting.
Output Impedance: 50 ohms. SWR less than 1.1:1 at 0.3 v and below. BNC Output connector mates with UC-88A/B/C/D.
Spurious Harmonic Output: Less than $3 \mathrm{~K} / \mathrm{\%}$
Leakage: Negligible; permits sensitivity measurements down to $0.1 \mu \mathrm{~V}$
Amplitude Modulation: Continuously adjustable from 0 to 100% Indicated by a panel meter. Modulation level is constant within $\pm 1 / 2 \mathrm{db}$ regardless of carrier frequency.

Adcertiser
Interis Condenser Co. M............... 103 International Business Machines Corp.
International Electronic Mesearch Corp. International Electronic Rese
International Rectifier Corp.

Jonathan Mfg. Co.
Kearfott Co., Inc., Little Falls Div.
ellogg Switchboard $\&$ Supply Co.

Kellogg Switchloard
Kennedy, 1. . \&
Kester Solder Co.

Kester Solder
Kintel

$\xrightarrow[\substack{\text { Kleinschmidt } \\ \text { Kulka } \\ \text { Electric Corp. }}]{ }$

McCoy Electronics Co.
Magnetic Research Corp.

Magnetics, Inc.
Mallory, P. R.
.

Merck \& Co., Inc.

Micro Switch

Oak Mrg., Co. 10
Ohio Semiconductors Inc.
10

Radio Corporation of America
Raytheon Mfg. Co., Microwave \& Power Raytheon Mig. Co., Microwave \& Power
Tubes Raytheon Mifg. Co., Semiconductor Div.
Raytheon Mfg. Co., Mechanical Components
Reeves-
Hific. Republic Aviation
Rotron Mfg. Co.

Sage Electronics Corp.
Sanders Associates, Inc
Sanders Associates, Inc
Sarkes Tarzian, Inc.
Simpson Electric Co.
Sola Electric Co.
Staedtler, J. S. Inc.
Star Stainless Srew C
Stoddart Aircratt
toddart Aircratt Hadio Co., İnc.
Sun Electric Corp.
Sylvania Electric Pdts., Electronic Div. ${ }^{29,}$ 60,
Systron Corp.

Uninax Suitch Div., W. L. Maxon Co. .
U.S. Stoneware

Universal Transistor Products
Vernistat Div., Perkin-Elmer Corp.
Vitramon,
$\mathbf{7 5}$
$\mathbf{8 8}$

Ward Leonard Electric Co.
Waveline, Inc.

Welwyn International. \& MIf., Corp. ...
Westinghouse Electric Corp., Semiconduc
Westinghouse Electric Corp., Semiconduc-
ther
Wheelock Signals, Inc.
Welok sian, Ina.
X-Acto. Inc.

FCA offers steerlop-Guallfy TRANSISTORS

 isINDUSTRIAL MILITARY COMPUTER AIRCRAFT MARINE MOBILE TV RADIO PHONOGRAPH

RCA's comprehensive line of TRANSISTORS offers you reliability, electrical uniformity, top performance, and mass-production availability! They are produced and controlled to meet the most critical performance requirements. Whatever your needs in transistors-from special one-of-a-kind projects to production-run apparatus... from dc to VHF-contact your RCA Field Representative or your local Authorized RCA Distributor for a discussion of the RCA TRANSISTORS best suited to your own designs. For technical data on specific types, write to RCA Commercial Engineering, Sec A-18-NN-2, Somerville, N. J.

[^0]: AVTHIED SEMICONDUCTOR DIVISION
 Needham Heights, Massochusetts
 sIICON AND GERMANIUM DIODES AND TRANSISTORS - SILICON RECTIFIERS
 NEW YORKs.................. . . 589 Fifth Ave., PLaza 9-3900 Chicago: 9501 Grand Ave., Franklin Park, NAtional 5-4000 LOS ANGELES: 5236 Santo Monica Blvd., NOrmandy 5-4221 CIRCLE 3 ON READER-SERVICE CARD

[^1]: Upon Special Request
 -Other frequency bands between 250 Mc . and 11 KMC

[^2]: Small Motors - Automatic Controls - Industrial Instruments Operators

[^3]: Wrife for details and specifications CIRCLE 278 ON READER-SERVICE CARD

[^4]: P. R. MALLORY \& CO. Inc., INDIANAPOLIS 6. INDIANA

[^5]: VARIABLE RESISTORS -- ELECTRONIC SWITCHES - CERAMIC CAPACITORS - PACKAGED ELECTRONIC CIRCUITS

 - ENGINEERED CERAMICS CIRCLE 303 ON READER-SERVICE CARD

[^6]: $n=$
 re-
 $3 / u ;$
 3
 $=1$
 $=1$

[^7]: PRECISION PAPER TUBE CO.
 2055 WEST CHARLESTON STREET - CHICAGO 47. ILI.
 CIRCLE 326 ON READER-SERVICE CARD
 ELECTRONIC DESIGN • January 21, 1959

