Precision Computing Resolvers

ACCURACY
Highest accuracy in rotating components is a CPPC fundamental. Our Precision Computing Resolvers are no exception. Without compensation, a recent production run of resolvers showed functional errors of \(0.06\%\) or less. Perpendicularity of axes was \(\pm 3^\circ\) in 360°. Due to extreme symmetry of rotor and stator, nulls are excellent in these resolvers. Low phase shifts are also a feature.

VERSATILITY
CPPC Precision Computing Resolvers can be had with any of the following features: corrosion resistant construction, stainless steel or aluminum housing. Units to resist temperatures up to 450° F. The following compensation is available in any or all units: resistive, feedback winding, thermistor. Types available for transistor circuitry. Pin or screw terminals or lead wires. BuOrd type shafts and BuOrd MK 4 Mod 0 brush block obtainable.

PRICE AND DELIVERY
We ask you to review what you are paying for precision computing resolvers. In the past CPPC has been able to lower traditional prices of rotary components.

We are already tooled for many types of these resolvers and can make quick delivery in quantity or short run. Whenever you need any rotary component, think of CPPC.

Call or write Sales Department, Hilltop 9-1200 (Suburban Philadelphia) or our Representatives.

CLIFTON PRECISION PRODUCTS CO., INC.
CLIFTON HEIGHTS, PENNSYLVANIA

HIGHLIGHTS OF ISSUE

High Speed Avalanche Switch .. 24
It takes the avalanche switch about 50 trillionths of a second to turn current on. This is a hundred times faster than the best semiconductor switch. And it has good current handling capabilities.

6 Systems for Tracking Down Vibration Resonance 20
W. A. Reinman presents a very down-to-earth discussion of vibration resonance and how to spot it. Six basic signs of resonance that can be observed directly are: failure, modulation of output signals, visible motion of equipment relative to its supporting fixture, high acceleration of one part in relation to another, loud noises, and large changes in power required to provide vibration at the desired level.

Starting This Issue 38
The first two of a series of papers presented at the Symposium on Microfabrication of Electronic Assemblies sponsored by Diamond Ordnance Fuze Laboratories late last year. Because symposium attendance was limited to government personnel only, ELECTRONIC DESIGN is publishing these papers as a special service to our readers.

CIRCLE 1 ON READER-SERVICE CARD
CONTENTS

Editorial 19 Conferences Are For Communicating

Behind The News 3 BOMARC To Join SAGE As Air Defense System's First Automated Missile

Washington Report 15 H-Hour for Decisions

Features 20 6 Symptoms for Tracking Down Vibration Resonance, W. A. Reinman
24 High Speed Avalanche Switch
26 The Flow Graph, G. V. Woodley
28 Test Complex Systems Rapidly With S.P.A.M.
30 Design Ideas At The Hi-Fi Show
34 Rugged Micro-Miniature Chopper
36 Flexibility Plus—With Two Scopes in One
38 Using Thin Films in Microminiaturization, H. G. Manfield
42 Miniaturizing Shipboard Simulators, A. P. Vigliotto
95 New Products Index, July-Dec. 1958

Ideas for Design 112 Tips for Machining Glass Base Laminates

Russian Translations 116 Nonlinear and Parametric Phenomena in Radio Engineering, Part 10, A. A. Kharkevich
120 What The Russians Are Writing

German Abstracts 122 Practical Two-Phase Networks

Departments 18 Letters 107 Production Products
46 New Products 110 New Literature
101 Patents 126 Standards and Specs
106 Books 129 Careers Section
132 Advertisers' Index

Kellogg's Type "L" Relay features—
High operating force: greater sensitivity, gram pressure, springs per pileup.
Rear mounting: for ease of wiring.
Wide coil variety: single or double wound, for any circuit needs.
Bifurcated stationary springs: for independent contact action and high reliability (single contacts available). Heavy duty bronze yoke and stainless steel bearing pins: for long life and stable adjustment.
Single or double arm type armatures available.
Hermetically sealed models, if desired.
Operation speed: minimum of 1-2 milliseconds.
Contact points: gold, silver, palladium, tungsten; others available.
Residual: adjustable.
Time delay: heel-end slugs and armature-end slugs for release time delay and operate time delay, respectively.
Terminals: slotted.
Weight: net, 2-1/4 oz.
Dimensions: 2-1/4" L x 1-1/8" W, height ranges from 17/32" to 1-1/16" (max.)
Operating voltages: up to 220 volts D.C.

Backed by Kellogg and International Telephone and Telegraph Corporation. Inquiries are invited. Send for a free catalog on Kellogg relays, components.

--KELLOGG--
CHICAGO, ILLINOIS

Kellogg Switchboard and Supply Company, 6630 South Cicero Avenue, Chicago 38, III. Communications division of International Telephone and Telegraph Corporation.
Manufacturers of Relays • Hermetically sealed relays • Switches • Solenoids

CIRCLE 2 ON READER-SERVICE CARD
ONLY **RAYTHEON** OFFERS BOTH

SILICON TRANSISTORS

PNP-NPN

for **COMPLEMENTARY CIRCUITS**

because characteristics are so similar as to permit full and confident use

Specify **RAYTHEON** and get these significant advantages:

- Higher, more constant beta
- Lower saturation voltage
- Low noise type available in both PNP and NPN

Made by the Raytheon reliable fusion alloy process which assures more constant characteristics over the entire temperature range

RAYTHEON FOR LARGE SIGNAL APPLICATIONS

<table>
<thead>
<tr>
<th>Type</th>
<th>Ile or Ico at Vce = 20 Vdc</th>
<th>Vce max. volts</th>
<th>Hz 1M ave.</th>
<th>fc 1M ohms</th>
<th>Noise Figure</th>
<th>f = 100K ohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N3277</td>
<td>0.005</td>
<td>-40</td>
<td>15</td>
<td>1200</td>
<td>500</td>
<td>30</td>
</tr>
<tr>
<td>2N3288</td>
<td>0.005</td>
<td>-35</td>
<td>30</td>
<td>1400</td>
<td>500</td>
<td>30</td>
</tr>
<tr>
<td>2N3299</td>
<td>0.005</td>
<td>-30</td>
<td>60</td>
<td>1500</td>
<td>500</td>
<td>30</td>
</tr>
<tr>
<td>2N3300</td>
<td>0.005</td>
<td>-30</td>
<td>25</td>
<td>1300</td>
<td>500</td>
<td>15</td>
</tr>
<tr>
<td>2N619</td>
<td>0.005</td>
<td>50</td>
<td>15</td>
<td>2000</td>
<td>500</td>
<td>30</td>
</tr>
<tr>
<td>2N620</td>
<td>0.005</td>
<td>40</td>
<td>30</td>
<td>2500</td>
<td>500</td>
<td>30</td>
</tr>
<tr>
<td>2N621</td>
<td>0.005</td>
<td>30</td>
<td>60</td>
<td>2700</td>
<td>500</td>
<td>30</td>
</tr>
<tr>
<td>2N622</td>
<td>0.005</td>
<td>30</td>
<td>25</td>
<td>2400</td>
<td>500</td>
<td>15</td>
</tr>
</tbody>
</table>

*For PNP, Ie = -0.1mA; Vce = -0.5V; for NPN, Ie = 0.5mA; Vce = 1.5V

RAYTHEON FOR SMALL SIGNAL APPLICATIONS

NEW YORK: 589 Fifth Ave., Plaza 9-3000
CHICAGO: 9501 Grand Ave., Franklin Park, National 5-4000
LOS ANGELES: 5236 Santa Monica Blvd, Normandy 5-4221

<table>
<thead>
<tr>
<th>Type</th>
<th>Ile or Ico at Vce = 20 Vdc</th>
<th>Vce max. volts</th>
<th>Hz 1M ave.</th>
<th>hfe*</th>
<th>hie*</th>
<th>Noise Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N1034</td>
<td>0.005</td>
<td>-40</td>
<td>15</td>
<td>3000</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>2N1035</td>
<td>0.005</td>
<td>-35</td>
<td>30</td>
<td>3000</td>
<td>85</td>
<td>30</td>
</tr>
<tr>
<td>2N1036</td>
<td>0.005</td>
<td>-35</td>
<td>60</td>
<td>3000</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>2N1037</td>
<td>0.005</td>
<td>-35</td>
<td>30</td>
<td>3000</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>2N1074</td>
<td>0.005</td>
<td>50</td>
<td>15</td>
<td>3500</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>2N1075</td>
<td>0.005</td>
<td>40</td>
<td>30</td>
<td>3500</td>
<td>85</td>
<td>30</td>
</tr>
<tr>
<td>2N1076</td>
<td>0.005</td>
<td>30</td>
<td>60</td>
<td>3500</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>2N1077</td>
<td>0.005</td>
<td>30</td>
<td>25</td>
<td>3500</td>
<td>85</td>
<td>15</td>
</tr>
</tbody>
</table>

*i = 5V; Ie = 3mA

RAYTHEON SEMICONDUCTOR DIVISION

upton Heights, Massachusetts

SILICON AND GERMANIUM DIODES AND TRANSISTORS + SILICON RECTIFIERS

CIRCLE 3 ON READER-SERVICE CARD
BEHIND THE NEWS

BOMARC To Join SAGE As Air Defense System's First Automated Missile

NEWEST WEAPON in America's air defense system is Boeing's BOMARC IM-99 supersonic missile, which will be the first automated surface-to-air missile integrated into the Semi-Automatic Ground Environment (SAGE) warning system.

Air Force Secretary James H. Douglas has revealed that the 15,000-lb. BOMARC will become operational this year. The first four of 14 planned BOMARC sites are being readied at McGuire Air Force Base, N.J. (where the first SAGE center has been operating 24 hours a day since July); Suffolk County AF Base, Long Island, N.Y.; Dow AF Base, Me., and Otis AF Base, Mass.

Douglas explained that the Army's 200 Nike batteries, several of them now equipped with the Hercules missile, are effective for point defense, but BOMARC is designed "to go as far out as possible from our borders to meet attacking bombers."

Remote Control Tests Successful

From an experimental IBM-SAGE center at Kingston, N.Y., BOMARC missiles 1500 miles away at Cape Canaveral, Fla., have been launched by remote control and have successfully downed drone targets more than 200 miles at sea. But Douglas reveals that an advance type "will have several times that range." And work is underway on a solid propellant propulsion system.

BOMARC, 47 feet long, 35 inches in diameter, with an 18-foot wing span, now combines the high thrust feature of a booster rocket with the

1. Radar detects approach of hostile aircraft. It obtains positional data on range and bearing. This information goes via telephone line to an IBM computer at the SAGE installation.

2. Nerve center of the system is the SAGE computer. It tracks the hostile aircraft; it distinguishes it from friendly aircraft; on command, it fires the missile automatically, and it guides the missile in flight to the intercept.

3. The BOMARC is launched automatically on a signal from the computer. During its supersonic flight to the target it is guided in course by the computer. Instructions from the computer go by land-line to a transmitter near the missile base and by radio to the missile.

4. When the BOMARC nears its flying target, it is tipped into a steep dive by the SAGE computer which then relinquishes control of the missile. Missile seeker system "locks on" the target and "home" the missile to intercept.

Integrated with SAGE, the supersonic BOMARC is America's first wholly automated air defense missile. An IBM computer at the SAGE center tracks the target, fires the missile automatically, guides it to the target.
Where abnormal conditions of vibration (25 to 2000 cps at 100) are encountered, such as in advanced airborne applications, this pulsed-type X-band (9245 ± 40 Mc) air-cooled RK697A/QK366A magnetron oscillator maintains exceptional frequency stability and operational reliability. Optimum performance is assured by a double-end supported cathode and aluminum-clad integral magnets. Nominal peak power output is 100 kw at typical pulse conditions of 0.5 μ sec. (.001 duty cycle). The tube operates at a peak anode voltage and current of 15 kv and 13.5 amp, respectively.

NEW DEVELOPMENTS IN ELECTRONIC TUBES AND CERAMICS

CIRCLE 209 Reader Service Card

* * *

Integrally insulated semiconductors can now be produced by using high-alumina ceramic stem assemblies. Heat dissipating ceramic wafer (arrow) in the base insulates up to 2000 volts dc and withstands soldering temperatures as high as 1100C. Bases can be directly mounted to chasses or cold plates. Stems are available to all semi-conductor manufacturers.

CIRCLE 210 Reader Service Card

* * *

Miniature gyro feed-throughs provide take-off points from gas-filled gimbal housings. These high-alumina, vacuum-tight, R-95 ceramic assemblies can be soldered to housings at temperatures up to 1000C. They also assure positive electrical insulation with leakage less than one microampere per 500 volts dc.

CIRCLE 211 Reader Service Card

Compiled as a Raytheon service to the field, new Consolidated Data Booklet contains comprehensive information about principal unclassified magnetrons, klystrons, backward wave oscillators and special purpose tubes manufactured by Raytheon. Characteristics presented include maximum ratings, typical operating values, band or frequency ranges and other essential data for microwave engineers and purchasing departments.

BEHIND THE NEWS

Fuel economy of twin ramjet engines to achieve altitudes above 70,000 feet and speeds over Mach 2.5. Carrying either nuclear or conventional warhead, it employs the latest electronic guidance systems, including the terminal guidance system in the missile itself. When integrated with SAGE it is fully automated; the target—subsonic or supersonic—is tracked automatically, the missile is launched and guided automatically.

The SAGE/BOMARC system consists of the missile plus two elements of the air defense ground environment: search and height-finding radar with a built-in data processor, and a giant IBM-SAGE computer which functions as the control center for the system.

Heart of the SAGE system is this IBM AN/FSQ-7 computer, which digests radar returns from all sources, plus ground observer reports, domestic flight plans and weather information. The computer automatically calculates the most effective employment of guided missiles, anti-aircraft batteries and jet interceptors.

A single BOMARC firing sequence, in which the computer must run through many thousands of individual steps in continuous sequence, is organized into four phases: target detection and reporting, target tracking, missile firing preparation, and missile guidance and intercept.

Target Detection and Reporting

The firing sequence begins when an AN/FPS-20 long-range search radar detects what may be a flying object in a sector screened by that radar. The return is passed along an AN/FST-2 coordinate data transmitter, which converts it to polar coordinates—range and azimuth—for transmission in digital form over leased lines to the nearest SAGE AN/FSQ-7.

This information is stored in “long range input” magnetic drums, where it is read by a “program” previously stored in the computer, then converted into “Car-
tesian coordinates." The "program" consists of detailed instructions fed into the computer by punched cards and by magnetic tapes, while the "Cartesian coordinates" supplant the range and azimuth relayed to the center from the radar site. These coordinates are referenced to the launch pad of the nearest BOMARC. Thus when the missile is launched, track information on the target and guidance information on the BOMARC are referenced to the same fixed point.

At this stage, the radar return is examined by the track correlation program to determine whether it is a new track, part of a previous track (as a regularly scheduled airliner), electronic "noise," or atmospheric interference.

Target Tracking

The computer checks subsequent radar returns at five-second intervals to determine if they correlate with the initial pickup. If this correlation is established, the computer automatically classifies the initial pickup as a "tentative" track and gives it speed and heading. Another return with the same correlation, and the "tentative" track becomes "established."

The program transmits the "Cartesian coordinates" of the target—for which height still must be calculated—to the output buffer drums of the computer, and the request for height data is transmitted by telephone lines to an AN/FPS-6 height finder radar at the radar site. This information returns to the SAGE center by the same AN/FST-2 data transmitter that carried the search radar data; the height information is automatically inserted into the computer along with other track data.

The program compares the new track with filed flight plans to determine if the target is "hostile" or "friendly." The blip on the tracking console appears with a three-letter symbol—a letter identifying the track, a letter indicating the "merit" of the track, and, when determined, a letter indicating whether it is friendly or hostile.

The "merit" of each track is constantly reviewed as all subsequent returns are correlated—"G" for good, "F" for fair, "P" for poor. If the merit rating of a track declines or the track disappears, it could indicate it was caused by interference. But if the track remains and the program determines it is a violator of the air space, the symbol for "enemy" appears on the console and BOMARC is called on to intercept it.

Missile Firing Preparation

The computer requests information from the nearest BOMARC base as to what stage the missile is in—Ready Storage, Warm-up, Standby, Fire-up, Launch, or Malfunction. This information is sent from a "launcher status multiplexer"...
BEHIND THE NEWS

close to the launch pad, and goes via telephone lines into a cross tell drum of the IBM computer at the SAGE center, appearing as a digital display at the console. Missiles ready for firing will show up in "Standby" status.

The console operator requests an "engagement prediction point"—the point at which the intercept would be made if the BOMARC were fired at this time. The computer, referring to its program, relates range, speed, heading and altitude of the target to the complex performance characteristics of the BOMARC.

The "engagement prediction point" appears on the scope in the form of a small square. The SAGE operator presses a FIRE button. The signal is relayed by telephone lines to the missile site. The "Standby" stage becomes the "Fire-up" stage, preparatory to launch. The computer continues to follow the target track.

Missile Guidance and Intercept

Pre-launch computations are initiated and transmitted to the guidance unit in the BOMARC. A few seconds after the FIRE button has been pressed, the BOMARC is boosted into a vertical climb by its rocket motor. The missile's ramjets cut in as soon as ignition speed is achieved. Computations, fed to the launch site by land-line from the SAGE center, go by radio to the missile. The square "engagement prediction point" on the SAGE console now is replaced by an "X" to mark the computed intercept point as the missile completes its climb to altitude and levels off for the midcourse phase.

Commands are transmitted to the BOMARC as required to maintain an intercept course. Commands concern missile azimuth, time remaining to dive, dive angle, and the pointing angle of the homing device built into the missile. All computations are programmed in the computer so the same program can be employed in firing other missiles of varying characteristics.

The flight path of the target appears on the SAGE scope as a line of tiny crosses; the path of the BOMARC is a succession of slants or slashes. When the missile is guided to within striking distance of the target, the IBM computer tips it into a steep dive. Soon after the dive begins, the computer cuts out; the missile track is dropped by the computer program and the BOMARC is on its own. The missile's seeker then "locks on" the target. The BOMARC "homes" to the target and makes the intercept. The enemy is destroyed before it gets within sight of land.

Says Secretary Douglas: "SAGE and its proven reliability provide a great step forward in air defense."

COAXICON—brand new. One stroke of the A-MP precision tool does it.

Two strokes and you have the pin and receptacle units permanently attached to coaxial cable. For low level circuitry, either panel mounted or free hanging.
- Reliability—the highest. Cost—lower than anything you're now using.
- Further, coaxial cable is fully supported against vibration.
- All this in seconds...no more burned insulation...no more tedious soldering...no more doubtful connections. Attachments at unbeatable speed that give you the finest termination at the lowest total installed cost.

Write for more information today.

AMP Incorporated

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA
A-MP products and engineering assistance are available through subsidiary companies in: Canada • England • France • Holland • Japan

CIRCLE 6 ON READER-SERVICE CARD

ELECTRONIC DESIGN • January 21, 1959
New Transducer Seen As Ultrasonic “Breakthrough”

The transducer, heart of any ultrasonic system, yet traditionally its weakest link, may now be at a stage of development justifying forecasts of abundant ultrasonic energy for the future.

Intensive research and development has scored successes possibly opening the door to a wide range of applications for which ultrasonic equipment long has been considered too costly, too inefficient and too low in usable power.

Latest advances in the field were made by Westinghouse. Using a new concept of “spaced laminations,” engineers in its new products department have developed a magnetostrictive ultrasonic transducer providing twice the normally usable power for the same electrical output.

Breakthrough in Design

“We consider this new transducer a significant breakthrough in transducer design for applications requiring sizable amounts of ultrasonic power,” said the department’s manager, Dr. B. A. Ramey. “A radical new design has resulted in a device that is twice as efficient and considerably more compact than any existing units of comparable power.”

Conventional transducers have plates that must be “tuned” by grinding them carefully to an exact thickness. This time-consuming, costly operation is eliminated in making the Westinghouse transducer, for the plate is an uncritical piece of metal requiring no grinding or machin-
IMMEDIATE "OFF THE SHELF" DELIVERY...

featuring highest capacitance in the smallest package yet!

Teaming creativity with unlimited capacity! U. S. Semcor advanced technology in the semiconductor field has imparted typically "over spec" standards to a new line of Solid Electrolyte Tantalum Capacitors.

What this means to you! A complete line of these all-new subminiature capacitors are immediately available "off the shelf" in quantity to fill your every requirement for a superior product... in coupling, by-pass, in high voltage filter, and similar applications... competitively priced as always. They surpass the entire production formerly offered by the U. S. Edcor Division.

These solid, inorganic, non-volatile electrolyte tantalum capacitors produce a low and linear temperature coefficient, low dissipation factor, long shelf life, wide operating temperature... and no liquid electrolyte to create leakage problems.

Extreme stability at low temperatures in typical U. S. Semcor "over spec" standards

STYLE 1 - .125" x .250" 1 mfd/35V to 4.7 mfd/6V
STYLE 2 - .172" x .439" 6.8 mfd/35V to 56 mfd/6V
STYLE 3 - .277" x .600" 22 mfd/35V to 150 mfd/6V
STYLE 4 - .241" x .750" 56 mfd/35V to 330 mfd/6V

Capacitance ranges from 15 mfd to 330 mfd; operating temperature -30°C to 125°C; capacitance ±20% of rated value at 25°C, 120 cps; dissipation factor not to exceed 0.06 at 25°C, 120 cps; leakage current not to exceed 0.03 microamps/mfd/volt or two micro-amps, whichever is greater; moisture resistance to Mil standard 202, method 106.

BEHIND THE NEWS

ing. Such a simple plate can be used because the transducer does not vibrate in a wavelike motion, as do conventional transducers. Dr. Ramey described the difference this way:

Stacked vs Spaced Laminations

In conventional magnetostrictive transducers, metal laminations are built into a stack wrapped lengthwise in wire through which flows current driving the entire assembly. Several stacks, placed end to end a few inches apart, are welded to a metal plate; any stack energizes the plate only at the spot to which it is attached. Driven at these scattered points, the plate vibrates in wavelike motion. It therefore must be "tuned" so vibrations reinforce instead of cancel out each other.

In the Westinghouse transducer the whole plate pulses in and out with a single piston-like movement, the most efficient motion for producing ultrasonic vibrations.

To obtain this motion, separate stacks of laminations are discarded. Instead the laminations are spaced in a latticework across the plate. Each lamination, attached individually to the plate, is a driving element working in unison with the others.

This "spaced laminaition," in addition to doubling usable power, distributes it over the plate instead of concentrating it in scattered "hot" and "dead" spots.

No More "Weak Link"

"Spaced lamination," said Dr. Ramey, "has proved so successful that we no longer consider the transducer as a 'weak link' in useful ultrasonic systems. Instead we view it as a component whose perfection will make ultrasonic energy abundantly available in the future."

Suggested applications include electroplating aluminum bus bars with silver, cleaning printed circuitry boards for TV and radio receivers, and decontaminating pieces of nuclear apparatus. In one application, manufacturing operations were reduced from 12 steps requiring 30 minutes to three steps taking only two-and-a-half minutes.

Cause of Atomic Clock Differences Discovered

Results of an investigation to discover the reasons for discrepancies between British and American atomic clocks have been announced. (See ELECTRONIC DESIGN, July 23, page 9.) The two standards were constructed quite independently and although they both employ the same spectral
line of the metal caesium they differ markedly in the methods of operation.

Comparisons made by means of radio transmissions indicate that the British clock was gaining relative to the American clock by seven parts in ten thousand million (less than a ten thousandth part of a second per day).

New Alternator Puts Out Steady Frequency At All Drive Speeds

Development of an electronically-controlled alternator that puts out a constant frequency regardless of the speed of its mechanical drive has put the Hallamore Electronics Division of the Siegler Corp. into the electrical power plant field.

Ultimately, when perfected and marketed, the device may account for $50,000,000 annually in new sales.

A unique feedback mechanism is used in the constant-frequency alternator, developed by Hallamore design engineers headed by Leo Johnson.

Exciter Counter-Rotates

An exciter feeds a rotating field into the alternator. If the alternator slows down, the exciter field counter-rotates in radio. The exciter is controlled by a demodulator or comparator, which receives information from a tuning-fork reference and a tachometer.

All parts are on the same shaft. The only maintenance required is on bearings and brushes.

Advantageous applications are numerous. In jet aircraft, plagued by variations in engine speed, mechanical hydraulic or pneumatic speed stabilizers could be done away with. Use of the Hallamore system here would save a third of the weight—roughly that of a man—and eliminate the relatively high maintenance of mechanical compensators.

Any Number—in Parallel

Present systems require that independent electrical systems be used in multijet aircraft, each working from a different engine. With the Hallamore variable-speed CFA, any number of alternators can be worked in parallel.

Also eliminated would be special stabilizers now used for aircraft electronic fire control, gyro and auto pilot. And any such reduction in flight equipment means a proportionate reduction in spare parts and maintenance. This means an increase in reliability.

The alternator was designed to hold any constant frequency—400 cycles for aircraft, or any other frequencies used by power utilities or industrial plants. (A complete technical description of the Hallamore CFA will be included in a future issue of **Electronic Design**.)
One integrated source
for Ceramic-to-Metal Seals

Standard types of Alite high voltage bushings are available in various sizes and configurations.

In all phases of planning for ceramic-to-metal seals—from design to finished assembly—you can rely on ALITE for the know-how and "do-how" required to produce highest quality ceramic-metal components for critical applications.

High alumina Alite is the ideal material for making rugged, high performance hermetic seals and bushings. It has superior mechanical strength, high temperature and thermal shock resistance, plus reliable electrical characteristics. Our complete high temperature metalizing and bonding facilities assure delivery of the finest seals available—mass-spectrometer tested for vacuum-tightness.

Please contact us for valuable performance data and information regarding ceramic-to-metal applications . . . no obligation.

Inside Look at Alite—

Fact-packed, illustrated Bulletins A-20 and A-7R just off the press. Give vital technical data and product information. Write today.

Alite Division
U. S. Stoneware
Cleveland, Ohio

Behind the News

New High Accuracy Transistor Tester Built

A new machine is automatically testing transistors, to a degree of accuracy hitherto unknown.

The Stromberg-Carlson equipment processes any type of transistor through seven successive tests, at rates up to 430 transistors per hour. The new machine was designed especially for the Sperry Gyroscope Co. Another similar machine, for the testing of diodes, also is being built for the same firm.

One feature of the original machine is a temperature chamber in which the transistors can be subjected to any one of the tests in the series, while being operated at any preselected temperature up to 200.

Transistors which fail any one of the tests are automatically ejected at the station at which they fail. Thus the machine sorts rejected transistors according to their defects.

The parameters in which the machine will test transistors are: dc beta (pulse test); ac beta (small signal); saturation, and leakage. The additional test positions provide for testing these parameters by more than one method, or for testing additional parameters, if desired.

Since this original machine will be used primarily to test transistors for military applications, the specifications for the various tests have been set to exceptionally close tolerance limits, with accuracy maintained to within ±2 per cent of the range, company official explained. However, the machine is modular in construction, and the tolerances can be changed easily, simply by the substitution of a few plug-in modules, officials noted.

Operation of the machine is completely automatic, requiring only one operator, for loading. An additional facility, called a "remote test table," provides for even greater output where less extensive tests are needed. With up to six operators, working at this table, as many as 2000 transistors can be tested per hour.

Accurate operation of the testing machine is assured by 60 built-in trouble indicators. These not only flash a light if any part of the equipment fails, but they also serve to indicate the exact location of any such trouble. In most cases trouble can be corrected by the substitution of a plug-in module, requiring only a few minutes. Additional development work is now in progress on different modules which will adapt the machine to testing other components, such as capacitors, resistors, and transformers.
NEWS BRIEFS . . .

. . . MARCONI OF ENGLAND is delivering for jet airliner use a completely crystal-controlled automatic direction finder in production quantities. The AD712, abandoning conventional tuning methods, has crystal control permitting simple switch selection of frequencies in the bands 100 to 415 kc/s, and 490 to 1799.5 kc/s in steps of 0.5 kc/s. The control is locked to within plus or minus 50 c/s of the indicated frequency under all normal working conditions, a degree of accuracy never before attained by radio compass designers.

. . . R. H. MACY, launching the "biggest automation program in department store history," by 1961 will put in operation a $1,000,000 National Cash Register system to prepare customers' statements at a rate of 50 a minute—25 times faster than present speed. An all-transistor NCR 304 computer and 40 other machines will automatically handle 750,000 customer accounts of Macy's six New York stores. In one hour the system will handle punched-tape data on 300,000 sales checks.

. . . SUPPLY PROCEDURES at the Philadelphia Army Quartermaster Depot have been streamlined by installation of the IBM 650 Tape RAMAC (Random Access Method of Accounting and Control). Unveiled at Dec. 3 ceremonies, the system was hailed as "the greatest advance yet made towards office automation by electronics." The computer, storing some 35,000 stock numbers and 120,000 stock records, provides more sensitive inventory control by automatically processing 115,000 requisition line items monthly. The basic IBM 650 magnetic drum processing system features four disk memory units providing storage capacity of 24,000,000 alpha-numeric characters. Darting arms locate dates, names or quantities instantly. Magnetic tape units provide daily input and output at the rate of 15,000 digits per sec.

. . . EXPERIMENTAL MICROWAVE SYSTEM will be set up between Dallas and Fort Worth, Tex., by Central Freight Lines if FCC approves application. Central and 12 other trucking firms will use microwave stations on nonprofit, cost-sharing basis, they told Dec. 15 FCC hearing. Voice and teleprinter communications would speed routing, administration and billing, while TV would help driver safety and salesman training, said spokesman, adding: "We see in microwave, with its admitted lower costs over wire line construction costs, the possible key that may provide the greatest forward step in trucking efficiency in the next 10 or 20 years." Long lines firms opposed the application.

Trial and error methods necessary to capture elusive transients on conventional scopes waste time, film, and precious research dollars. Never again need this happen. With the Hughes MEMO-SCOPE® oscilloscope you may instantly "freeze" wave forms with brilliant clarity for careful study, comparison and analysis. The Hughes MEMO-SCOPE® oscilloscope retains these frozen transients until intentionally erased. Selected transient information may be triggered externally or internally. Successive wave forms may be written above, below or directly over the original information.
The first two Motorola Mesa transistors, the 2N695 switch (with a rise time less than 3 μsec) and the 2N700 (a 200 mc amplifier), were announced in August, 1958. Our pilot line facility at that time had a capacity to produce several hundred devices per day and our plans were to move into full scale production during the first few months of 1959. We expected this capacity to be able to meet any possible demand which our customers might place on us. However, the reception of these devices surpassed all expectations and requests for samples far exceeded our pilot production. Naturally, we have been very happy with the response, but our main concern has been the integrity of our product, and we have steadfastly refused to proceed with expanded production until we satisfied ourselves that each new process would yield the extremely high quality and reliability which we intend to be synonymous with the name Motorola Mesa.

As many of you already know, the two Motorola Mesa transistors now available are unusual devices. The active region of these transistors covers an area less than that of a human hair. Yet they are manufactured by methods so precise that they do not need to be selected, as are most transistors today, but are made within extremely close tolerances to the electrical and mechanical characteristics desired. The elements which are used in their fabrication have been carefully selected so that each and every transistor can be baked out under high vacuum at 300°C before being hermetically sealed.

This is just one of the extra steps we at Motorola are taking to insure the integrity and reliability of these devices. The size of the transistor, the ultra-precise methods which we use in its fabrication, and the basic design of the Motorola Mesa itself all combine to give you the most reliable transistor the industry has yet seen. There is no doubt in our minds that the Mesa is "the" transistor of the future.

With this conviction guiding us we have been putting great emphasis on production tooling for Motorola Mesas and within a few weeks we shall swing into large scale manufacture of the Mesa transistor. At that time, we shall be in a position to accept production orders for these transistors of the future.

Even with this emphasis on production, basic research and development has not been neglected. Motorola's development team has expanded its study of the Mesas. Extensions of the design to higher power and higher frequency are ready for introduction in the very near future. Before long, we shall have a whole family of Motorola Mesas with the same integrity and reliability of these first two devices...a family of devices that will open up entirely new areas of transistor application.

A NEW electrostatic memory device has been proposed in France by E. Nazare. According to Dr. A. V. J. Martin of the Carnegie Institute of Technology, the new device uses the breakdown property of a thin sheet of dielectric material placed between two sets of electrodes. Claimed advantages are economy, ruggedness, compactness and high speed.

Principle

The sparkover voltage between two electrodes is greatly increased when a dielectric material fills the gap between the electrodes. This provides a simple way of determining two voltage levels.

![Diagram of Air Gap and Dielectric](image)

Fig. 1. The two basic states of the new electrostatic memory.

![Diagram of Voltage Levels](image)

Fig. 2. A voltage V_R, halfway between V_1 and V_2, will cause a current to flow if there is no dielectric. No current will flow if there is a dielectric.
If there is no dielectric, breakdown will occur for a voltage \(V_1 \) dependent on the electrode spacing. If there is a dielectric, breakdown will occur for a voltage \(V_2 \) much larger than \(V_1 \) (Fig. 1).

Hence, by applying across the electrodes a voltage \(V_R \) halfway between \(V_1 \) and \(V_2 \), either current will flow (no dielectric) or the circuit will stay open (dielectric). These only two possibilities, current or no-current, correspond to the yes-no or 0-1 positions of the basic binary system (Fig. 2). The readout function is thus easily obtained with a very wide tolerance, since \(V_2 > V_1 \).

Originally, there is a dielectric between the electrodes. Writing-in, that is in fact suppressing the dielectric in the air gap, is also a simple matter. A voltage \(V_R \) higher than \(V_2 \) is applied, and the spark jumps across the electrodes and burns a hole through the dielectric. This constitutes of course a permanent recording.

An erasure process might even be envisioned. Coating the erroneous hole with an appropriate varnish would cancel the recording.

There is then the simple and necessary

DESIGN TIPS... ON LIQUID COOLING

No. 1

Design Simplification

PROBLEM: Cool magnetron tube.
Supply hydraulic power for tuning. Keep design simple.

SOLUTION: Use one fluid, Coolanol 45, as coolant for tube and hydraulic fluid for power transmission.

EXAMPLE:

Engineers at Eastern Industries, Inc., Hamden, Connecticut, actually solved this problem by using two units: a liquid heat-dissipating unit (Model E/HT 200), shown at the left in the diagram, and a hydraulic tuning unit (Model E/HS 100), on the right. Sealed in both units, Coolanol 45 cools the magnetron tube and actuates the mechanical tuning mechanism.

Coolanol 45 was selected for this application because it fully met the rigid requirements. Consider its outstanding qualities: wide temperature range (-65° to 400° F.), excellent lubricity and material compatibility, good dielectric and heat-transfer properties, extreme purity (must pass 0.8u filter).

SEND FOR NEW DESIGN BOOKLET

“Design Tips on Liquid Cooling with Coolanol 45” describes cooling approaches, fluid properties essential to equipment reliability, a typical design, and other important design aspects. For your copy, circle the reader-service number ... or write:

Coolanol. Monsanto Trademark

MONSANTO CHEMICAL COMPANY
Organic Chemicals Division
Aviation Fluids Department
St. Louis 66, Missouri

When you need a synthetic fluid, come to Monsanto — creator of fluids for the future

CIRCLE 15 ON READER-SERVICE CARD
SPECIFICATIONS

- Size: ½" dia. Weight: ½ oz.
- Power rating: 1.5 watts at 40°C.
- Dielectric Strength: 1000 V AC for 1 minute at atmospheric pressure.
- Torque: Less than 0.5 oz-in.
- Completely enclosed to meet toughest environmental conditions. Applicable solder cannot get into potentiometer.
- Mountings: Servo and bushing. Also locking type.
- Rotation: Limited or continuous. High-frequency operation.
- Modifiable to your requirements.

HIGH RELIABILITY

½" PRECISION WIRE-WOUND POTENTIOMETERS

Designed to meet the ever-increasing demand for greater performance and highest reliability in less space, the Clarostat Series 57 Precision Potentiometers feature a new rotor and brush assembly for maximum stability and longest trouble-free service. Nickel-silver body. Thermally compatible cover with sturdy terminals molded in place. Write for details...

BEHIND THE NEWS

relationship between the various voltages

\[V_1 < V_R < V_2 < V_W \]

This multiple inequality is easily satisfied because of the wide gap between \(V_1 \) and \(V_2 \). In other words, neither \(V_R \) nor \(V_W \) is at all critical. These two voltages are in fact provided by capacitors discharging in the circuit.

Memory Sheet

Each pair of electrodes thus stores a bit of information, and any storage capacity can be obtained by multiplying the electrodes. A convenient arrangement is illustrated Fig. 3. It uses two orthogonal sets of wires 2 and 5, separated by the dielectric sheet 4 and a perforated matrix sheet 3. Mechanical protection is provided by the external insulating boards 1 and 6.

Such an arrangement is called a memory plane. Its dimensions can be quite small. The type represented has a 100 x 100 matrix of 0.4 mm diameter wire and can store 10,000 bits. For a wire spacing of 1 mm, this is obtained by a flat plane 10 x 10 cm.

Larger areas provide proportionately larger memories. Moreover, the small thickness of the planes makes it easy to stack a large number of them, as indicated in Fig. 4. The reference numbers have the same meaning as in Fig. 3.

Such a stack is called a memory block. One type, measuring 50 x 50 x 90 cm, or approximately 20 x 20 x 36 inches, has a capacity of 24 million bits. At 6 signals per letter, this is equivalent to 4 million letters. If numbers only are used, the equivalent capacity is 6 or 8 million numbers, according to whether the binary decade or pure binary system is used.

For comparison, such a memory block is equivalent to 60,000 perforated cards of 100 numerical columns, or 40,000 alpha-numerical cards.

Memory blocks in their turn are combined in memory racks. The small type contains 8 blocks and has a capacity of 192 million bits. The standard type contains 24 blocks and has a capacity of 576 million bits.

Notice that the data is accumulated only in the dielectric sheets. When starting anew, they are the only parts to be removed and replaced by virgin sheets in the memory planes.

The somewhat complex arrangement of Figs. 3 and 4 could be greatly simplified and made more economical by using printed circuit techniques. A saving in space and weight would also result.

It is claimed that, compared with the common perforated card system, the new memory increases the operating speed by a factor between 40 and 200.
H-Hour for Decisions

In the Pentagon, in the councils of America's military, executive and legislative leaders, this again is an hour of decision.

Right now must be made the judgments that will insure or lose the nation's security in the next five years, a half-decade that will see the coming of age of the intercontinental ballistic missile. For the 90,000 members of the Air Force ballistic missile team, this time of decision is a particularly critical one, and may be recorded by historians as the watershed hour when the tenets of America's defense philosophy began to flow through new channels.

If this sounds like an exaggerated view of the situation facing Washington decision-makers, listen to the words of Maj. Gen. Bernard A. Schriever, commander, USAF Ballistic Missile Division, ARDC:

"To get where we are today in our ballistic missiles and other space vehicles, we had to make basic, far-reaching, long-term decisions back in 1954. We had to make decisions on design, on investment in production and test and operational base facilities. Now we face a similar time of decision. We now have to make the same kind of basic, far-reaching, long-term decisions—looking toward 1963 and beyond—as we made in 1954. ... Otherwise, in this age of space weapons, we shall not be able to convince any potential enemy that he cannot hope to gain victory from any surprise assault."

The 1959 decisions cannot be made within the same frame of references as the 1954 decisions, anymore than World War III could be fought with World War II methods. Says a tough fighting man, Gen. Curtis LeMay, Vice Chief of Staff, USAF:

"Today Air Force readiness and capabilities are tied directly to the accomplishments and advancements of science. In this period of remarkable breakthroughs in all fields of scientific endeavor, we are hard pressed to keep up with these advances. Some of the things that were new to us five years ago are obsolete today. You can imagine the impact this must have not only on our hardware—our bombers, fighters, radars and so forth—but also on our concepts. In the
past, opportunities were lost when military leadership compromised the potentials of new weapons by measuring their worth in terms of old, time-worn concepts. We cannot run this risk today when time is so critical and the margin for error so slim."

So the decision-makers have their goals set for them—new hardware, but also new concepts.

The concept of readiness for both "brushfire" wars and nuclear wars seems fairly well accepted in Pentagon halls by now, so Army and Navy potentialities will not be neglected. But perhaps the most crucial decisions facing the military lie in the field of ICBM's, and the decisions to be made run the gamut, including choices between liquid fuel or solid, "soft" or "hard" bases, entrenched or mobile launching pads.

The liquid-fueled Atlas and Titan will remain star performers. Atlas, its propulsion capability so dramatically demonstrated when it became the largest satellite in orbit last December, will be tested at an accelerated pace. And Air Force Secretary James Douglas reveals that the first operational Atlas squadron will be equipped in 1959. Schriever meanwhile has announced that launching sites for later Atlases will be "toughened," that is, revetted with sheaths of steel and concrete, like Titan bases.

Titan, a back-up to Atlas, but more sophisticated—a true two-stage missile designed to be well dug in at "hardened" bases—already is getting final tests at Cape Canaveral. And Schriever adds: "As in the case with Atlas and Thor, every Titan flown—even in the earliest test flights—will be fabricated on a production line. There will be no costly time lag for tooling up and for converting blueprints into the finished product."

These liquid-fueled birds will get high priority. But in Pentagon councils an air of excitement pervades discussions of the new solid-fueled missile, the Minuteman ICBM. Schriever could not suppress that excitement when he said:

"The Minuteman promises to be a major economic breakthrough. The Minuteman will reverse the whole previous trend in modern weapon system development—a trend marked by the fact that the newer and more effective weapon has been invariably more complex and more costly than its ancestors."

Solid-fueled Minuteman can be operated and maintained with fewer personnel than can Atlas or Titan. Says Schriever: "Hundreds of Minuteman missiles can be placed in underground bomb-proof shelters, left unattended for long periods of time, ready to be fired from remote control centers on a few seconds notice."
Douglas shares his optimism. "The Minuteman missile," says the Secretary, "may be the most important of our Air Force developments. It will provide intercontinental range, with all the advantages of a solid-propellant system relative to ease of handling, quick reaction, dispersal, and hardening of launching sites."

So the trend would seem to be toward solid fuel and hardened bases. As for entrenchment versus mobility, the white hope for the future, at least in Navy circles, is Polaris. An IRBM in range, it will be an ICBM for tactical purposes, because its launching pad—a submerged submarine—can bring targets near. Even the air Force Secretary, though more restrained than Navy advocates, looks forward to the 1960 operational target date for Polaris, and says:

"We count on the successful development of the Navy Polaris missile, with an atomic submarine as its launching base, to provide a useful addition to our strategic weapons. Its mobility will present new and difficult problems of defense to an enemy."

Some Navy brass see Polaris as more than "a useful addition" to our arsenal. They see it ultimately making the easily-pinpointed pads of land-based ICBM's obsolete.

The first Polaris submarine will be launched this spring; some eight to 12 are currently programmed. One of the major decisions of our policy makers will be whether these eight to 12 should be reinforced fourfold in the next half decade.

For 1959—New Peaks

Importance to the industry of all this military preparedness effort is seen in the fact that electronic equipment and components now account for 28 per cent of all military purchasing for major production and procurement. In 1958, military electronics totaled $4.1 billion, more than half the record $7.7 billion total factory sales of electronics manufacturers. EIA anticipates $8.3 billion total sales for 1959, a year when military sales should top $4.4 billion.

EIA president David R. Hull points out that electronics emerged from the recession as one of the few industries to establish a new sales record in 1958 (up $100 million from the previous 1957 high). Although consumer goods declined from $1.5 to $1.3 billion, industrial electronic products rose from $1.3 to $1.4 billion, passing consumer goods in dollar volume for the first time.

For 1959, Hull predicts consumer sales, boosted by the growing popularity of hi-fi and stereo, will climb back to $1.5 billion or more. And industrial sales, spurred by computer and data processing advances, should total about the same.
New Year's Greeting

Dear Sir:

Please accept my thanks for publishing my "Idea for Design" in the May 28 issue, and for extending your invitation to submit more ideas for publication. I enclose two ideas that I have developed here in the design of ground electronic checkout equipment, which may prove of general usefulness. Each is on a separate sheet with the pertinent drawings attached.

Congratulations on an excellent year of publishing one of the most helpful of all technical journals, and best wishes for even better years to come.

George S. F. Orsten
Sr. Engineer
The Martin Co.
Denver, Colo.

Seeks Soldering Solution

Dear Sir:

I would greatly appreciate it if one of your other readers could enlighten me regarding one aspect of soldering iron design. I think most engineers will agree that, in the ideal case, the only hot portion of a soldering iron would be the extreme end. Having any other portion hot means that:

1. Wire insulation may be accidentally damaged by it; 2. Operator's fingers may be accidentally burned by it; and 3. Power paid for will be unnecessarily wasted in it.

It would seem to me that applying some heat insulator to soldering iron tips at the factory would present little problem and add only slightly to their cost. The resultant sales advantage should be considerable. It would seem that either I am overlooking an important consideration in this problem, or that soldering iron manufacturers are overlooking an opportunity for significant product improvement.

A. I. Tersoff
Chief Project Engineer
Intelligent Machines Research Corp.
Alexandria, Va.

CIRCLE 23 ON READER-SERVICE CARD

ELECTRONIC DESIGN • January 21, 1959
...and now Duralar*
joins this famous family of fine pencils

*The only pencil specifically designed for work on matte-surface tracing film of Mylar®, DURALAR is the newest in the complete line of fine MARS drafting products. All are imported from West Germany and made to meet the highest professional standards. Below • Bright-hued LUMOCHROM pencils in 24 colors for color-coded drafting and perfect reproduction • LUMOGRAPH graphite drawing pencils in 19 degrees; some degrees available with erasers, some with special chisel points • TECHNICO lead holders for color and black graphite drawing, with new sure-hold finger grips and degree markings for quick identification; also with clips, for pocket use • NON-PRINT pencil and leads make notes and sketches that will not reproduce • Pencil sharpeners in STANDARD and "DRAFTSMAN" models, latter with adjustable point-length feature.

MARS
J. S. STAEDTLER, INC.
HACK NSACK, NEW JERSEY
VITREOUS-ENAMELED RESISTORS Tremendous variety of types and sizes. Fixed, adjustable, tapped, noninductive, thin, and precision resistors available in a wide range of wattages and resistances. Also available to meet MIL-R-26C requirements.

METAL FILM RESISTORS Riteohm® metal film precision resistors feature full 1/4-watt rating at 150°C ambient; excellent high frequency characteristics; low temperature coefficient of resistance. Long-term load and shelf stability.

OHMITE® INDUSTRY'S MOST COMPLETE LINE OF QUALITY WIRE-WOUND RESISTORS

POWER RESISTORS Power-type resistors for high-current, low-resistance applications. Vitreous-enamed, edge-wound, corrugated ribbon Corrib® units and open-type, edge-wound ribbon or round-wire Pow-Rib® units handle a wide range of power resistor needs. Available in fixed or adjustable "DIVIDOHM®" types.

MOLDED PRECISION WIRE-WOUND POWER RESISTORS Insulated units with Silicone-Type molded covering. Available in 3-, 5-, and 10-watt sizes. Tolerances: 0.1%, 0.25%, 0.5%, 1%, and 3%. Maximum resistance: 3-watt, 10,000 ohms; 5-watt, 25,000 ohms; 10-watt, 50,000 ohms.

NONINDUCTIVE Tubular vitreous-enameded resistors with special winding. Dummy antennas consist of assemblies of several resistors. Watts, 5 to 1000; ohms, 1 to 5000.

SPECIAL VARIETIES Ohmite can provide toroids, flat strips, plaques, special-sized tubes, or tubes with mixed terminals, etc. Watt ratings and resistances available as required.

OHMITE HAS EXACTLY THE RESISTOR YOU NEED Ohmite offers the most complete line of high quality resistors on the market... fixed, adjustable, tapped, noninductive, and precision resistors in many sizes and types of terminals... in a wide range of wattages and resistances. All-welded construction. Ohmite application engineers will be pleased to help you in selecting the resistors for your job.

Write on company letterhead for Catalog 58.

OHMITE® Manufacturing Company | 3643 Howard Street
QUALITY COMPONENTS | Skokie, Illinois
RHEOSTATS RESISTORS RELAYS TAP SWITCHES TANTALUM CAPACITORS
R. F. CHOKES VARIABLE TRANSFORMERS DIODES
Conferences Are For Communicating

An unusual approach to the exchange of ideas was tried at the recent Third EIA Conference on Reliable Electrical Connections, held in Dallas, Texas, on December 2, 3 and 4, 1958. No technical papers were read. The three days were devoted entirely to discussion between the audience and the various panel members who had written papers. (Last week the Symposium on Reliability and Quality Control followed the same format.)

Technical papers prepared for the conference were published in book form. The books were distributed in advance of the meeting to those who desired them. This allowed the papers to be studied and questions formulated before the conference got under way.

A sampling of those who attended showed that the approach was a success. Minor suggestions were made for improving this type of conference, but the basic format was endorsed.

Actually, this round-table method of discussion, so to speak, is not new. Most companies have a conference room where engineers meet to review their problems. With ties unloosened and sleeves rolled up they try to arrive at some solutions of their problems. Maybe the answers aren’t established at the first discussion. What is important, though, is that there has been communications and understanding between the participants.

When the engineer leaves his company and attends a conference he goes through some sort of metamorphosis. Instead of communicating with others in the field at a technical session, he reverts into a shell. Fear that he might not be among peers but superiors (or just a downright fear of crowds), keeps him from venturing beyond a prepared script.

When the reading is over there is usually little time for questions and discussion. If the speaker is not button-holed in the corridor then the question the engineer had may go unanswered. And the long trip to the conference was not as fruitful as was originally anticipated.

The round-table type of conference does have weaknesses and can fall to pieces. As was mentioned at the conference, “large groups sometimes get too unruly.” Also, “people who take the floor should stick to the point.” And, “moderators need to be strong enough to cut off irrelevant discussion.”

Nevertheless, with some modifications, this format seems like the right step towards better communication at technical conferences. And that is what conferences are for.

Leon G. Topolko
6 symptoms

For Tracking Down Vibration Resonance

W. A. Reinman
Astronautics Div. of Convair
San Diego, Calif.

When an electronics engineer's design moves into the vibration laboratory for testing, he must be able to understand and interpret the various symptoms of vibration resonance. He must learn not only what they mean but what they don't mean.

The most consistent "killer" of electronic airborne equipment, in flight and in the laboratory, is vibration. Circuits open. Unwanted modulations develop. Parts break loose and smash around inside. Electro-mechanical parts slow down, chatter, or stop working. And arc-overs develop into fires.

However, vibration itself is not the true villain. The undesirable vibratory response of the equipment, commonly known as vibration resonance, really causes the damage. If all the parts of a device move together as a unit, no damage results from exposure to vibration.

Vibration resonance is usually thought of as local amplification of input vibration. This is the most common form of resonance, and the most dramatic. But in many cases, one part may stand still, while the rest of the assembly moves in response to the vibration input. Or two parts may move at comparable amplitudes but out of phase with one another. The various forms of resonance all have one thing in common—more stress exists in some part of the device than when no resonance occurs. Therefore, a more suitable definition of vibration resonance is "relative motion of parts of an object in response to a vibration stimulus."

There are six basic signs of resonance which can be detected during vibration testing of equipment:

1. Failure of a device in the equipment.
2. Modulation of equipment output or internal signals.
3. Visible Motion of the equipment relative to its supporting fixture, or of one part of the equipment relative to another.
4. High Acceleration of some part of the equipment relative to another part or to the supporting fixture.
5. Loud Noises emanating from the equipment, or changes of sound quality, especially harsh or shrill or random sounds.
6. Large Changes in Power Required to provide vibration at the desired g level.

Failure of a part of the equipment needs little explanation or comment. At least it's definite data. Only a foolish engineer would replace the part and not think twice about what might have caused the failure. And only a foolish engineer would fail to repeat the test to evaluate the fix he tried.

Many designers cringe at the very idea of a failure. Yet failure provides what a passed test never can yield—the limit of a sample of the design.

Modulation of the equipment outputs or internal signals is often the most important sign of resonance. Modulation itself may be objectionable in the quantity detected. Even when it is not undesirable in itself, it may indicate potential failure. Sometimes designers prefer to have a modulating vibration input continued or increased in amplitude during laboratory testing until the sensitive part fails. This makes pinpointing of failures easier in complex circuits, especially when other methods of identifying the sensitive part can't be used.

A fingertip (or a pencil's eraser tip, if the circuit is "hot") may be used to damp part vibration...
selectively, and thus to isolate the modulating part. When a sensitive part is found, it is wise to continue to search for excessive vibration in some other part which may be driving the sensitive part to significant amplitudes.

In one case, modulations of signal and open circuits in a receiver were traced to several different parts, all supposedly quite resistant to vibration. The true source of trouble was a small transformer on the other side of the chassis, mounted on a bracket which was a cantilever beam in itself. When this assembly resonated, it shook the whole chassis, causing malfunctions in parts which were reasonably vibration resistant in themselves.

Modulation may occur at the vibration frequency, at harmonics of this frequency, or as a beat between an operating frequency and the vibration frequency. In some instances an offset may appear in a dc signal or a long-term amplitude change will appear in an ac signal. In a recent test, an experimental amplifier showed all these forms of modulation during one run.

Visible Motion indicates resonance at low frequency, or extremely severe resonance at high frequency. The probability of physical breakage is high with large deflections.

Relative motion of various parts may be seen with the unaided eye if the motion is pronounced enough. Stroboscopic lighting aids in detection of the "sneaker" forms of resonance, such as out-of-phase motion. If a stroboscopic light is not available, a fluorescent lamp or an incandescent lamp shuttered by a fan or slotted rotating disc, may serve as well.

Photographic records of visible resonance can be made with motion picture cameras, with high-speed still cameras, or by deliberate use of the smearing effect of long exposures. The latter method proved most successful in obtaining proof of switch arm resonance, after an attempt to use high-speed motion pictures failed. A 1/25 second exposure with a still camera showed about 25 cycles of switch arm vibration, neatly documenting the maximum travel of the switch arm, the amplification ratio, and the mode of vibration, all in one picture. When the input g level and frequency were lettered on the picture, the story was complete.

High Acceleration, as measured by vibration pickups, is often the only clue to high frequency resonance. High g levels in themselves are not dangerous—they're only danger signs. It must be remembered that high vibratory acceleration at high frequency results in tiny displacements.

(Continued on following page)
Peak-to-peak displacement for 10 g vibration at 10 cps is two inches; at 100 cps it is 0.02 inch; and at 1000 cps it is only 0.0002 inch. So small a displacement as 200 microinches seldom causes any physical breakage, but it may produce modulation of signals in tubes, klystrons, and capacitors, or it may cause resistance variations in relay contacts or potentiometer wipers.

Often an oscilloscope study of vibration pickup output reveals that the high g levels are not occurring at the input vibration frequency, but at very high frequency or a scramble of frequencies. This display often accompanies loud, discordant noises coming from the equipment. It may indicate harmonics excited by the input vibration, vibratory transients excited by parts slapping together as they vibrate, or transients excited by impacts of a loose part rattling around. It may indicate a loose vibration fixture or some loose part in the vibration exciter, too. The “hash” thus produced can represent very tiny displacements of the portion of equipment upon which the vibration pickup is mounted. It can also represent a very-high-Q resonance of the pickup itself. Some crystal (piezoelectric) accelerometers are notorious for this “ringing.” It may be necessary to filter the accelerometer output to distinguish vibration at the frequencies of interest.

High g indications at higher frequencies sometimes are assumed to represent high accelerations of the whole equipment. As the vibration frequency goes up, the equipment behaves less and less as a single mass, and more as a collection of little spring-mass systems. Each has its own vibration spectrum, its own standing or traveling wave patterns, and with its neighbors, creates local reinforcements, beats, and cancellations.

After the first major resonance appears as the vibration frequency is increased, a given vibration pickup is less and less reliable as an indication of the vibration response of the equipment. Thorough quantitative vibration analysis soon becomes impossible, because the pickup’s mass and the structural effect of attachment of the pickup distort local vibration characteristics.

Fortunately for the designer, most circuits and circuit elements are relatively insensitive to vibration breakage at frequencies above 500 cps.

Loud Noises or Changes of Sound Quality

sometimes indicate vibration resonance in the equipment. Since loudness indicates good coupling of mechanical motion to air, the loudest racket usually occurs when an equipment cover or chassis plate vibrates, either directly or because some other vibrating element is driving it. This sort of resonance is often more annoying than serious, but it shouldn’t be overlooked. The vibrating cover may crack, or it may induce crippling vibration in a sensitive part. Many times a simple stiffener will cure a severe cover resonance.

Be sure, when tracing a noisy resonance, that the specimen is guilty. Vibration exciters sometimes howl like banshees when nothing is really wrong.

Raucous changes in tonal quality of noise may indicate loose parts, or slapping together of parts which don’t touch each other unless vibration of a certain amplitude is induced. This "velocity impact" often accounts for the sudden appearance of high-intensity, high-frequency "hash" on the pickup output. This "hash" frequency appears when some threshold level of vibration intensity is exceeded.

The hand is a useful damper to snub vibration of first one part and then another when tracking down noise sources. When the noisy part is damped, the sound diminishes.

The fingertips also serve as relative accelerometers. Since they are soft, they are "low-frequency elements" and do not interfere markedly with the motion of even small parts unless considerable pressure is applied. The fingertips can detect very small g levels, even at quite high frequency. Thus they can be used to determine which part of a complex structure is vibrating most, when installation of sufficient or small enough pickups would be impracticable.

Large Changes in Shaker Power

required to maintain a given vibration g level are significant only if the equipment being tested is an important part of the whole vibrating system—that is, if resonance in the equipment can affect the power required to drive the shaker. In many cases of supposed resonance, the equipment is just going along for the ride, and the vibration exciter or the fixture is the guilty member of the vibrating system.

The old $F = ma$ equation is a handy one for vibration work. It checks dimensionally with F as pounds of force, m as mass in pounds, and a as peak acceleration in g units. Without resonance—when shaker armature, fixture, and test specimen are moving as a unit—m is the sum of the three masses and a is the measured g level. Under any other condition, $F = ma + m_1a_1 + m_2a_2 + \ldots \ldots$, for as many parts as are mov-
ing in their own response to the induced vibration. Phase relationships among the various vibrations complicate matters further, so that the general equation is \(F = \Sigma (ma < z) \).

The series and parallel resonant circuit analog apply, helping to explain why at resonance the shaker power requirement may go up or down. In one case the system is absorbing power; in the other case, phase and amplitude relationships are such that overall power requirements are very low, while one part of the system may be excited to very high g levels.

In one classic example, internal resonance of a gyro mechanism created an effect similar to what would be expected if the weight of the gyro suddenly multiplied by about ten times. By the basic \(F = ma \) formula, the shaker should have been capable of producing an acceleration of 20 g, but the accelerometer on the fixture showed only 3 g at full applied power. When the gyro case was cut open for high-speed movies, it was seen that at this resonant frequency the internal mechanism was moving at very high amplitudes relative to the case. At a slightly different frequency, the opposite phenomenon occurred. It was difficult to hold shaker input power low enough to stay at the desired 10 g level on the fixture. The gyro mechanism then appeared to be standing still while everything else moved.

Often the two resonant conditions follow each other so closely during a frequency sweep that the shaker operator is unable to compensate in time for either condition. Manufacturers and users of vibration equipment have been working on this control problem for years, with only qualified success.

The caution must be repeated that this power-level symptom of resonance may, and often does, indicate a problem that hasn’t anything to do with the resonant characteristics of the equipment under test. The g levels induced in the equipment may cause malfunction or failure; therefore, control of resonances outside the equipment is important. But there may be no design problem in the equipment.

To Summarize: Of the six symptoms of vibration resonance, failure is the most positive evidence of vibration trouble in electronic equipment. Modulation is a common symptom, and often serious. Visible motion is significant because large relative motions mean high stresses and the possibility of physical breakage. High accelerations, loud noises, and unusual shaker power requirements frequently are misleading, since they may have little or no bearing on the behavior of the device under test. Systematic investigation of each symptom of resonance will allow the test engineer and the designer to locate the resonant condition and evaluate it. This is the first step in correcting vibration troubles.

NUMBER ONE SOURCE

in frequency control—components and systems

Today, an increasing number of electronic systems demand a degree of reliability heretofore unobtainable. That is why more and more manufacturers are specifying Bulova.

Bulova crystals, filters, ovens, packaged oscillators, and Bulova frequency control systems, custom-designed for either limited or mass production, meet and exceed military and industrial specifications.

Bulova's experience in mastering many of the most difficult problems involving component and system reliability has made it the **number one source** for frequency control devices. This experience can prove of immense value in your particular program. For more information write Dept. A-1183, today.

BULOVA WATCH COMPANY

ELECTRONICS DIVISION • WOODSIDE 77, NEW YORK

CIRCLE 22 ON READER-SERVICE CARD
This tiny avalanche switch operates in the trillionth second range. In “off” condition, the current entering section A is prevented from flowing to section C by an atomic mechanism contained within the joining layer, represented by fine line B, about four millionths of an inch thick. When voltage at input section A is raised slightly, the mechanism turns current “on” in less than 100 trillionths of a second.

Too Fast to Measure

High Speed Avalanche

This NEW semiconductor device switches current on and off in less than the time it takes light to travel one inch. The switch is 100 times faster than any previously available device—so fast its action cannot be timed with any accuracy. Use of the switch will increase the speed of computers measurably. With it, special purpose navigational and guidance computers for missiles and spacecraft can be built not only to operate faster, but to supply improved accuracy over long ranges.

Avalanche Effect Employed

Developed by the Semiconductor Division, Sperry Rand Corp., S. Norwalk, Conn., the tiny device has for its working element an alloy junction formed by fusing a speck of aluminum to a small piece of silicon. It operates by making use of a controlled avalanche effect.

Although this effect is an annoyance in other semiconductor devices, contributing to sudden breakdowns in transistors and rectifiers, it is put to good use in the Sperry device.

A slight increase in voltage accelerates one or more electrons to speeds sufficient to knock new electrons out of their atomic shells; these accelerate and free more electrons in a mounting avalanche. Each electron creates a microplasma which almost instantly spreads throughout the layer formed at the semiconductor alloy junction—a layer with a diameter of two-thousandths of an inch and a thickness of four-millionths of an inch.

Conversely, a slight decrease in voltage reduces electrons’ speeds so they no longer release other electrons, and the current-carrying microplasma is swept out of the layer. The action is almost instantaneous, for no measurable delays or recovery time constants have been found to accompany the slight voltage changes.

Switch Characteristics

Switching voltage of the devices produced to date ranges from 6 to 7.5 v.
Switch

Other characteristics:
- Current ratings: 20 to 50 milliamp.
- Dynamic resistance: 8 to 20 ohms at 10 milliamp.
- Junction capacitance: 1.8 μF typical.
- Power dissipation: 250 milliwatts.
- Maximum operating temperature: 150°C.

Its typical characteristic curve is illustrated in the accompanying figure.

The switches have been employed in new computer logic circuits operating at 100 mc clock speeds—and the switches proved very much faster than any of the computer's other components.

Working elements presently are sealed within relatively large glass capsules, 45 of which can be placed in a thimble. Production is being limited to the output of a pilot manufacturing line, but sample quantities will be made available for developmental models of advanced equipment.

For more information on this high speed semiconductor avalanche switch, turn to Reader-Service card, circle 103.

Why permanent magnets are only temporary

Magnetic Materials Section reports on a continuing search for better permanent magnets ... and on what this means to your new product designs

Permanent magnets are getting better. In fact, since the introduction of Alnico magnets by General Electric in 1934, there has been a constant flow of stronger, more efficient G-E magnetic materials. General Electric developed directional grained magnets to provide higher energy potential. Then, by sintering Alnico V and Alnico VII, General Electric was able to create magnets with better flux distribution and vastly improved tensile strength. P-series alloys, with consistently uniform flux for use in hysteresis motors, marked another step forward. And these are just part of the important advances that have come from General Electric in the past 25 years.

Watch General Electric for even more advanced magnetic materials that will soon give you a freer hand in bold new product design. If you would like the design assistance of a G-E engineer, write: Magnetic Materials Section, General Electric Company, 7820 N. Neff Blvd., Edmore, Michigan.
THE FLOW GRAPH
A Shortcut to Network Simulation

George V. Woodley
Raytheon Manufacturing Co.
Wayland, Mass.

George Woodley spends almost all his time at Raytheon's Surface Radar Dept. in circuit design. Looking for a simple way to analyze network behavior, he remembered the flow techniques taught at MIT by Professor Sam Mason. Applying these techniques, he developed this interesting way of setting up an analog computer with a flow graph.

SIMULATING networks with analog computers can be simplified by flow graph analysis. The beauty of this method lies in the fact that a block diagram of the computer setup can be drawn directly from the flow graph, providing a very simple configuration.

The rules for flow graphs are simple: Labeled circles represent currents and voltages. Impedances or coefficients are placed above arrow heads pointing to the solution. These arrows replace "equal" signs.

The method is best illustrated by the network of Fig. 1, which is to be set up on an analog computer. The loop equations are:

\[e_1 = e_2 - e_3 \]
\[i_1 = \frac{e_2}{Z_s} \]
\[e_5 = \frac{i_1}{s C_1} \]
\[i_2 = \frac{e_4}{s L_2} \]
\[e_4 = e_3 - e_5 \]

where:

\[Z_s = L_1 \left(\frac{s + R_z}{L_1} \right) \]
\[Z_L = \frac{1/C_2}{s + 1/R_L C_2} \]

If the differential equations are written this way, the complex frequency \(s \) appears only in the denominator. This allows the use of integrators throughout.

Equations appear also for the impedances \(Z_s \) and \(Z_L \). These two equations can be rewritten, breaking up the components in the impedances.

Eq (1) through (6) are readily transformed to the flow graph in Fig. 2. Since the branches are unilateral, this flow graph represents a block diagram of an analog computer setup of the network in Fig. 1.

Branches with \(s \) in the denominator can be replaced directly by an integrator. Branches with \(Z \) can be replaced by the configuration in Fig. 3. Caution must be used with signs, however, since active computer elements have an inherent inversion. Correctness of signs can be checked from the fact that any closed loop must have an odd number of amplifiers. Fig. 2 is then redrawn on the basis of the system block diagram as in Fig. 4. Note that only one element is redundant. The two potentiometers marked \(L/c \) can be combined following their associated integrator.

A note on the scaling of network coefficients: There are two variables which can be scaled at will in any linear network—the time base and the impedance level. To scale resistors, capacitors, and inductors:

Let:

\[R' = \frac{R}{n} \]
\[s' = \frac{s}{m} \]

where \(R' \) and \(s' \) are the scaled impedance level and complex frequency, respectively.

then:

\[\frac{1}{C'} = \frac{1}{mC} \]
\[\frac{1}{L'} = \frac{n}{mL} \]
\[\frac{R'}{L'} = \frac{R}{mL} \]
\[\frac{1}{R'C'} = \frac{1}{mR'C} \]

Eq (8a) lowers the impedance level of the circuit by a desired amount and eq (8b) slows the time base by a factor \(m \). These two factors can be balanced to give "reasonable" computer coefficients. The latter should be held between 0.1 and 10. Large coefficients should be avoided as much as possible so as not to overload the amplifiers. The time base should be slowed down sufficiently to fall within the capabilities of the computer.

References

Feedback Theory—Some properties of Signal Flow Graphs, S. J. Mason, Proceedings of the IRE, Sept. 1953. Only a few beginning paragraphs need be read to be able to draw Fig 2 from eq (1)–(6).
Fig. 1. This is the basic network which, for illustration, is to be set up on an analog computer.

Fig. 2. This flow graph for the network of Fig. 1 is the basis of the computer setup.

Fig. 3. The computer replacement for impedance branches in the flow graph.

Fig. 4. The system block diagram drawn from the flow graph in Fig. 2.

Now in production by Bendix are eight new 15-ampere power transistors capable of switching up to 1000 watts — and you can get immediate delivery on all eight types.

New in design, the transistors have a higher gain and flatter beta curve. The series are categorized in gain and voltage breakdown to provide optimum matching and to eliminate burn-out. Straight pins or flying leads can be supplied on request.

Ask for complete details on this new Bendix transistor series... and on the complete Bendix line of power rectifiers and power transistors. Write SEMICONDUCTOR PRODUCTS, BENDIX AVIATION CORPORATION, LONG BRANCH, NEW JERSEY.

BENDIX ANNOUNCES NEW 15-AMP POWER TRANSISTOR SERIES

Red Bank Division

CIRCLE 28 ON READER-SERVICE CARD
TEST COMPLEX SYSTEMS
RAPIDLY
WITH
S.P.A.M.

AN OPERATOR presses a button and S.P.A.M. starts measuring voltages—in almost any system. In less than five seconds, lights tell the operator if the reading is within prescribed tolerance, if it is too high, or too low. If the voltage is correct, S. P. A. M. (Selective Programmed Automatic Maintenance) starts measuring another voltage.

Developed as a universal tester by the Engineering Division of Taylor Engineering, Inc., 2100 St. Paul St., Baltimore, Md., S.P.A.M. can be used by unskilled personnel to check any system properly instrumented with test points.

The basic system includes a very high impedance voltmeter, a highly stable modified oscilloscope, and an automatic circuit tester or modified Lavoie Laboratories “Robotester.”

Since the voltmeter reads voltages in operating circuits, such as phantastrons, pulse modulators, and oscillators, with no disturbance to the circuit, it is called “Nodis.”

Critical waveshapes on film can be compared directly with scope patterns.

Sample of data on 120 mm film.
S.P.A.M. provides rapid “go—no go” check on voltage or resistance.

The oscilloscope displays video and rectified rf signals. Equipped with a “Film Data Comparator,” it becomes a “Video-Scope.” The “Film Data Comparator,” mounted in front of the CRT, has filmed information telling the operator exactly how to set up the equipment under test and how to set up the scope to view critical wave-shapes. An optical arrangement superimposes the filmed waveshapes on the scope pattern, allowing the operator to make a direct, exact comparison. One to two wave shape tests can be made per minute.

“The Automatic Circuit Tester” uses punched tape to program resistance or continuity tests at 60 to 120 per minute, or voltage tests at 20 to 40 per minute. The punched tape provides complete instructions. It tells the instrument
- between which two points to measure,
- what the voltage should be,
- if the voltage can be less than, higher than, or an either side of the prescribed voltage,
- if the tolerance can be 5, 10, or 20 per cent of the required value.
- if the measurement should be on a 5, 50, or 500 volt scale.

Illuminated digits show where S.P.A.M. is measuring at any time, what the voltage should be, and what type of check is being made. Illuminated buttons show if the actual voltage is all right, too high, or too low.

For further information on this almost universal tester, turn to the Reader-Service Card and circle 105.

A planning chart for designers who need both

From high-power audio types to high-stability switching types, both NPN and PNP germanium transistors are now available from Sylvania. With this wide range of types, electronic design engineers can take full advantage of the complementary aspects of NPN and PNP in every major circuit application.

Sylvania NPN and PNP transistors for switching applications exhibit the high Beta stability and fast rise time so important for data processing. NPN and PNP types for RF-IF applications feature high output resistance for increased gain. For your audio needs Sylvania offers one of the industry’s most complete lines.

The entire Sylvania line of NPN and PNP types incorporates hermetic seal construction for maximum protection against humidity and other environmental conditions that can affect performance. For complete information on NPN and PNP transistors, contact your Sylvania representative or write Sylvania directly.
WITH MORE than a hundred manufacturers showing their wares at New York's High Fidelity Music Show, one might well expect to find at least a few clever design ideas. Your editors combed the show for ideas electronic design engineers could use. They found a few—very few.

Show Theme—Stereo

Any visitor could see immediately that stereo is here. Manufacturers had stereo cartridges with two signal outputs; two loudspeaker systems for each program source; two amplifiers in one box— or, at least, two amplifiers side by side. Only turntables (and pickup arms) did not leave one with the impression of seeing double.

New Design Concepts—A Few

Stripped of all fanfare and tinsel, the show was very sparing in design ideas. Cartridges and records, of course, were different. Amplifiers and other equipment were different only in styling and front panel design.

Loudspeakers were the same—with very few exceptions. Outstanding perhaps, was the new Acoustic Research high frequency speaker (Fig. 1). It looks like no tweeter we've ever seen, using no spider, no horn, no cone, no dispersion device, no voice coil former, and no skiver. Yet this tweeter combines unusually wide dispersion with a very flat frequency response.

Stereo System Doesn't Demand Much

The almost universal adoption of the Westrex system of stereo disc recording and playback is most fortunate. Beyond the record playing equipment no basic changes are needed, except of course, that all components must appear in pairs.

The major change that stereo calls for is in the phonograph cartridge. It must have equal compliance in all directions so as to transfer the information recorded in each channel. Monaural cartridges need have no response to vertical stylus movement.

Fig. 1. Synthetic rubber in the gap of Acoustic Research's tweeter holds the self-supporting voice coil in the magnetic gap. The entire moving system (diaphragm, voice-coil, and rubber suspension) weighs slightly more than a gram.
New Indium-Bonded Computer Diode Design
Proves More Reliable

The diameter of the whisker in new CBS-Hytron indium-bonded diodes is 2.3 times that of other bonded diodes. And the sharp point of the whisker is pressed against the germanium under a force 32 times greater. This results in a contact pressure of about 400,000 pounds per square inch. More positive contact is assured during manufacture, installation and use.

Computer diodes must be reliable . . . with a small fraction of 1% failures. Opens and shorts usually account for the majority and CBS-Hytron indium-bonded junction diodes are designed to eliminate them. That they do is proved daily by CBS-Hytron shock and vibration tests more severe than military tests. And by freedom from failure in actual equipment.

Now 49 types

<table>
<thead>
<tr>
<th>Type</th>
<th>Min. Forward MA @ 1V</th>
<th>Reverse Recovery RD @ μS</th>
<th>Reverse Resistance Ohms — Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N270</td>
<td>40</td>
<td>50</td>
<td>50K</td>
</tr>
<tr>
<td>1N621</td>
<td>100</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>1N273</td>
<td>75</td>
<td>30</td>
<td>250K</td>
</tr>
<tr>
<td>1N631</td>
<td>150</td>
<td>25</td>
<td>50K</td>
</tr>
<tr>
<td>1N699</td>
<td>10</td>
<td>50</td>
<td>50K</td>
</tr>
<tr>
<td>1N770</td>
<td>15 @ 5V</td>
<td>15</td>
<td>250K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Min. Forward Peak Reverse MA @ 1V</th>
<th>Reverse Resistance Ohms — Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH REVERSE RESISTANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N95</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>1M00</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>1M289</td>
<td>20</td>
<td>85</td>
</tr>
<tr>
<td>1M649</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>1M652</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>1M497</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>1M498</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>1M499</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>1M500</td>
<td>100</td>
<td>75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Min. Forward Peak Reverse MA @ 1V</th>
<th>Reverse Resistance Ohms — Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH VOLTAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N97</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>1M10</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>1M291</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>1M648</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>1M650</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>1M653</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1M634</td>
<td>50</td>
<td>115</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Min. Forward Peak Reverse MA @ 1V</th>
<th>Reverse Resistance Ohms — Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEVATED TEMPERATURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1N277</td>
<td>100</td>
<td>125</td>
</tr>
<tr>
<td>1N278</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>LD-134</td>
<td>10 @ 45V</td>
<td>40</td>
</tr>
</tbody>
</table>

Many types have been added to meet growing demand for these inherently more rugged and reliable diodes. Check the 49 types in six major classifications. Order the ones you need . . . or write for Bulletin E-314 giving complete data . . . today.

CBS-HYTRON, Semiconductor Operations
A Division of Columbia Broadcasting System, Inc.

CIRCLE 32 ON READER-SERVICE CARD
DENSITE FILLING
MOTOR PU LL
ECCENTRIC BELT MCTcR
MOTOR COVER
MOTOR SPEED ADJ
WORM GEAR
SPINDLE
NEOPRENE DISK
STROBE DISK
STEP PULLEY
STROBE DISK
STEP PULLEY
STROBE DISK
STEP PULLEY
MOTOR
WORM GEAR
SPEED ADJ.
SPINDLE
NEOPRENE DISK
SERRATED ALUMINUM WHEEL

Fig. 3. Two belts drive Fairchild's table.

Fig. 4. No metal-to-metal contact in Metzner's "Starlight."

Fig. 5. Thorens uses a belt to drive a step-pulley.

Fig. 6. Two rubber couplers serve as torsional motor filters in H. H. Scott's table.

A disk magnet under the table repels another one on top of the motor board to support the table vertically, yet keeps the spindle at least 1/8 in. clear of the bottom of the bearing well.

Fairchild. Many factors contribute to the rumble-free operation of the "412 Series" turntables (Fig. 3). There are as few moving parts as possible. In the four-speed model, a four-frequency Wien bridge oscillator drives a single-speed hysteresis synchronous motor. This removes the need for additional mechanical parts for speed changing.

Most unusual in the "412" is the two-belt drive. One belt delivers rotation from the motor to a shock-mounted intermediate pulley. This pulley drives a second belt which drives the outer rim of the turntable. This two-stage speed reduction allows for a larger motor capstan whose diameter can be held to tighter tolerances. It also minimizes belt slippage.

The cast aluminum turntable is machined on its own shaft. Before machining, Densite is cast into the rim to eliminate table ringing and to provide a flywheel effect. The motor cradle rests on flexible Barry mounts whose axes are 45 degrees from the vertical.

For further noise reduction, the bottom of the babbit-lined bearing well is screwed to the bottom of the chassis.

Weathers. Like the Fairchild machine, the Weathers turntable uses electronic speed changing. Beyond that there is little similarity. This machine uses a small 12 pole synchronous motor, about the size you'd use to drive a clock. The light, stamped aluminum table is driven by a gum-rubber drive wheel.
A very unusual feature is the free-floating spindle which rides on Teflon bearings above and below. With a diameter of about 1/8 in., the spindle is at least four or five times smaller than most.

To eliminate acoustic feedback, the motor board sits on four conical springs tuned to resonate at 3 cps.

In spite of the use of direct rim drive from the motor, Weathers claims an unbelievably low rumble figure of --70 db.

Metzner. In the "Starlight" turntable (Fig. 4), the motor drive system uses no metal-to-metal contact. In this center-drive system, the motor drives a worm gear with a highly compressed felt center. Two pieces of aluminum are staked to the felt before the gear is hobbed.

This worm gear drives a neoprene disk whose surface drives a serrated aluminum wheel. This wheel, which drives the table spindle, can be moved across the radius of the neoprene disk to provide continuous speed variation from 16 to 84 rpm.

Thorens. The "TD 124" (Fig. 5), has a belt from the motor driving a step-pulley which, in turn, drives the rim through a soft rubber idler.

One of the tricks in this machine is the use of a "two-in-one" table. A light aluminum turntable proper is coupled to a heavy 10 lb rim-concentrated, cast iron flywheel, which is driven by the idler.

H. H. Scott. The motor drives a phenolic cone which drives a separate rubber-tired wheel for each speed in the "Stroboscopic Turntable 710 A" (Fig. 6). Moving any of the wheels along the cone provides a five per cent speed adjustment.

The engaged rubber wheel drives a dynamically-balanced metal drum. This drum drives a train of hardened steel and nylon helical gears through a shaft with two rubber isolation couplers. The gears which drive the spindle are housed in an oil bath.

To reduce noise even more, the motor and speed control drum are suspended on springs independent of the turntable and pickup board.

Rek-O-Kut. Rek-O-Kut's single speed machines use a crowned pulley integral with the motor shaft to drive the belt which drives the rim of the table. The pulley is ground on the motor shaft. Rek-O-Kut attributes very low noise levels to extreme care in machining. They keep the surface of a 12 in. table flat to 0.003 in. and the concentricity to within 0.002 in.

Other manufacturers didn't seem to use any "new" ideas. This does not mean other turntables are inferior—but rather that "new" ideas are not essential ingredients of quality. No turntable, no machine, no system can provide top quality performance without top quality workmanship, materials, and care.
ENGINEERING UNLIMITED

AT ONE OF THE WORLD'S MOST SUCCESSFUL CORPORATIONS

Select Openings at National's NEW Engineering-Research Center at Dayton, Ohio
Long-range non-military projects with exceptional stability

COMPUTER ENGINEERS

Senior Systems Analysts—Require Senior Systems Analysts with strong theoretical and design knowledge in the electronic engineering field including familiarity with electronic and electro-mechanical digital machines. Should possess minimum of 3 years' experience with commercial application digital data processing equipment, however, would consider experience with scientific or defense application systems. Operational experience with a large data processing system is a distinct asset. Will be required to analyse and direct product improvement on large general purpose computer or small special purpose desk computer series. Advanced degree desired.

Senior Circuit Designers—Experienced in the design, development and analysis of transistorized computer circuits. Familiar with the application of magnetic cores to computer high-speed memory design. Growth opportunities involving decision making, concerning reliability, cost and component selection are offered. Advanced degree desired.

Senior Circuit and Logical Designers—Similar experience and duties as noted for Senior Circuit Designer, plus evaluation and de-bugging arithmatic and control areas of computer systems. Advanced degree desired.

DATA PROCESSING ENGINEERS

Senior Electronic Design Engineers—Experienced in development of logical design using standard computer elements, must also evaluate and design transistorized circuits including voltage regulated power supplies and circuitry related to decimal to binary coding. This data processing system is concerned with bank automation.

SEND RÉSUMÉ TO:
Mr. K. M. Ross
Professional Personnel Section C,
The National Cash Register Co.
Dayton 9, Ohio

Heart of the chopper is the tiny reed with the multi-fingered moving contact. It is shown between the armature and the stationary contact assembly.

Rugged Microminiature Chopper

A DIME can almost conceal this rugged chopper. The edge of a dime conceals the reed and shorting contact assembly. The entire chopper, potted and encased in steel, weighs less than 1/4 oz.
Yet it withstands 50 g shock in any direction. Contacts, in operation, are de-ranged no more than 10 electrical degrees when subjected to 15 g vibration at any frequency from 10 to 2500 cps. Life at rated load is guaranteed to exceed 2000 hrs.

It takes unusual construction to build that kind of ruggedness into a tiny chopper. And this unit, by Rawco Instruments Inc., 3527 W. Rosedale, Fort Worth, Tex., certainly has unusual construction.

Construction

Most unusual is the moving contact assembly. The reed, made of fatigue-resistant elgiloy, supports a multi-fingered shorting contact. These fingers, arranged in a square cluster, alternately short pairs of contacts.
of fixed contacts. This configuration allows for a wide choice of contact materials for optimum life and performance.

The balanced armature, with a very low mass, travels only 0.025 in. Its slotted configuration shock mounts the vee jewel pivots. The armature springs open to compensate for pivot wear, and opens and closes to take up dimensional changes due to temperature variations. (The unit operates from -65 to 125 C.)

Solder grouting the sapphire vee jewels provides maximum support area for the pivots and eliminates the stresses usually incurred in conventional mountings. It also facilitates production, as no sizing of vee jewels is required to obtain a perfect fit. The pivot can take 500 times the armature weight.

The armature and contacts are fully isolated from the shielded and potted coil, and are hermetically sealed in one atmosphere of dry nitrogen. This eliminates oxidation and organic contamination of the contacts.

Performance

Despite its size, this chopper outperforms many larger units. It can supply resistive loads up to 10 v at 1 ma. In the 400 cycle unit, the coil requires only 25 ma at 6.3 v. Insulation resistance is at least 100 megs between all terminals and ground.

The noise level is normally less than 10 ìv rms across 1 meg, and is never greater than 100 ìv. The moving contact dwell on a pair of fixed contacts for at least 150 electrical degrees of the switching period, with a contact bounce never exceeding 4 degrees per period.

For more information, turn to the Reader-Service Card and circle 101.

For efficient medium-power rectification on land, at sea and in the air

Westinghouse types 304, 303, and 302 rectifiers offer a range of current and voltage ratings which are ideal for efficient medium-power rectification.

All three types are immediately available from stock—and at an attractive price! They are characterized by long life, high efficiency, low regulation, low cost, and operation at high ambient temperatures (up to 190°C junction temperature). They meet or exceed requirements of all applicable military tests. And they are available in a variety of rectifier assemblies.

Listed below are some suggested applications:

- DC power supplies for ground and airborne
- 6-12-24-48 volt AC-DC generator systems
- Battery chargers
- Small plating supplies for laboratory use
- Power supplies for business machines
- Computer power supplies
- Transistor power supplies
- Telephone exchange DC power supplies
- Power supplies for marine smallcraft
- Electronic tube filament supplies

For further design data, contact your Westinghouse representative or write to Westinghouse Electric Corporation, Semiconductor Department, Youngwood, Pennsylvania.

COMING SOON—HIGH-SPEED GERMANIUM DYNISTOR SWITCH

featuring low stand-by currents, low internal power loss, and switching time in the milli-microsecond range. Watch for announcement of availability.
Six rugged new capacitor types designed SPECIFICALLY to SAVE SPACE in compact, transistorized assemblies. Two temperature ranges to choose from. All types rated for 500-hours accelerated life testing.

Full Rated to 85°C

Types 626C - 627C (Extended foil)
Types 628G - 629G (Inserted tab)

Temperature Range—Full rating at 85°C — to 125°C with 50% derating.
Life Test—500 hours at 85°C and 125°C of rated voltage.
Capacity Tolerance—All tolerances to ± 1%
Insulation Resistance—50,000 meg x mfd at 25°C but need not exceed 10,000 megohms.
Case Styles—Available in all case style variations in MIL-C-25A.

50-VOLT DIMENSIONS

<table>
<thead>
<tr>
<th>Capacitance in Mfd.</th>
<th>626G*</th>
<th>627C</th>
<th>628G*</th>
<th>629G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>173 x 1/4</td>
<td>173 x 1/4</td>
<td>173 x 1/4</td>
<td>173 x 1/4</td>
</tr>
<tr>
<td>0.01</td>
<td>173 x 1/4</td>
<td>173 x 1/4</td>
<td>173 x 1/4</td>
<td>173 x 1/4</td>
</tr>
<tr>
<td>0.001</td>
<td>173 x 1/4</td>
<td>173 x 1/4</td>
<td>173 x 1/4</td>
<td>173 x 1/4</td>
</tr>
<tr>
<td>0.0001</td>
<td>173 x 1/4</td>
<td>173 x 1/4</td>
<td>173 x 1/4</td>
<td>173 x 1/4</td>
</tr>
<tr>
<td>0.00001</td>
<td>173 x 1/4</td>
<td>173 x 1/4</td>
<td>173 x 1/4</td>
<td>173 x 1/4</td>
</tr>
</tbody>
</table>

*These types have one lead extended to the case. Others have both leads extended.

Also available in 550V, 450V, 350V, and 600V ratings.

Engineer checks sawtooth with two-gun, dual-beam oscilloscope. Channel A is used here to show the sawtooth on the calibrated time base. Channel B shows an expanded part of the sawtooth.

Flexibility
Two Scopes

With a one-millivolt full-scale sensitivity for each amplifier this dual-beam two-gun scope has many unusual features. It can display X-Y plots and, simultaneously, either the X or Y signal against time. It has nine major modes of display. With Z axis modulation, 27 additional modes are possible. By plotting the

No beam splitting or electronic switching can provide the kind of trace shown on the screen of this cro.
Y signal against X, or Y against the variable time base in one channel while performing analogous feats in the other, a host of display combinations are possible.

Another innovation lies in the sweep circuitry. Both expanded and calibrated sweeps can be positioned independently while being displayed. Since the calibrated sweep is generated at a high level, it can be fed directly to the H deflection plates. Hence one gun of the CRT can be used as a single beam oscilloscope with identical amplifiers, while either the X or Y input can be displayed against time on the other channel.

Developed by Allen B. Du Mont Laboratories, Inc., 750 Bloomfield Ave., Clifton, N.J., the Type 411 provides completely independent control of each electron beam. Each channel has its own focus and intensity controls, and either beam can be switched off. "Pin-ball" indicator lights clearly show when a channel is in operation.

With a flat frequency response from dc to beyond 100 kc, the instrument provides a vertical resolution of 20 μv. Front panel controls offer 19 calibrated sweeps from 1 μsec/cm to 1 sec/cm, and 17 vertical full-scale measurements from 1 mv to 500 v.

The "Unusual" Is Built In

Both driven and recurrent sweeps are available with automatic beam brightening during trace time. On driven sweep the beam is brightened only when the sweep is triggered, so the shutter of a recording camera can be left open without fogging the film while waiting for the sweep.

For capturing transients, an unusual "electronic shutter" can be triggered to turn on the display for a predetermined time. All unwanted parts of the trace are invisible.

For more information on this dual-beam scope turn to the Reader-Service Card and circle 104.
SEVERAL new thin film techniques for making miniature components offer interesting approaches to miniature component production.

Thin film components have the advantage of high surface area to volume ratio. This leads to a substantial reduction in size for a given wattage rating. Three types of thin films are: (a) resistive, (b) capacitive and (c) inductive.

For resistive films of 200-500 ohms per square, thickness should be a few hundred Angstroms.

For high capacitive films greater than 0.1 pf, thickness required is about 0.0001 in.

For inductive films, thickness should not exceed 200-300 Angstroms, otherwise eddy current losses become appreciable.

Three classes of base material used are:
- Inorganic materials (ceramic, glass)
- Plastics (Teflon, etc.)
- Semiconductor materials (silicon, germanium)

Ceramics are probably the simplest to use. It is possible to deposit silver or other compositions by chemical means or by evaporation upon them. With material of suitable permittivity, high value capacitors may be obtained by metallizing both sides of the base.

Plastics do not make good bases. Although they have excellent electrical properties, their low resistance to heat precludes their use in "fired-on" processes, while their high vapor pressure and occluded gases make them difficult to use in vacuum systems.

The use of semiconducting material, such as silicon, as a base is very attractive. By suitable alloying and doping, the active elements can be produced directly on to the substrate instead of being added separately as is required when using other materials.

Preparation of Resistive Films

Resistors of platinum/gold alloy deposited on glass have been developed1 at the Royal Radar Establishment and are now in production.2 They have excellent temperature coefficient and are very stable. An alloy of 80 per cent gold and 20 per cent platinum gives a resistivity of 60 microhms per cm in a thickness of 1000 Angstroms with a temperature coefficient of 0.025 per cent. An alloy of 60/40 gold-platinum has a resistivity of 75 microhms per cm in the same thickness and its temperature coefficient is then 0.06 per cent.

Various stages in the process of manufacture are shown in Fig. 1. The final value of resistance is adjusted by cutting through the requisite number of trimming bars. By suitable design of the master an accuracy of 0.1 per cent is obtainable.

So far this process has only been applied to making actual resistors, but by scaling it down it can be adapted to making the complete circuit. The resolution that can be obtained by the photo-mechanical process has been demonstrated3 when it is applied to the making of transistors on a dice only 0.05 in. sq.

High resistivity is obtained from films of nickel chromium. Recent advances4 in the evaporation of this alloy make it attractive. Typical properties as used in resistors are shown in Table 1.

Because of its excellent temperature/resistance properties, nickel chromium is being carefully studied5 as, even in the microminiaturized subunits, a high order of stability will be required once the initial novelty of being able to make them at all has passed. However, the resistivity as given is not entirely satisfactory, because to make very small units would entail a line width of not more than 0.010 in. which, although practicable, in thin film form requires scrupulous care in processing with a probable high reject rate in production.

An alloy of chromium 20 per cent, iron 3 per cent, aluminum 3 per cent and nickel 74 per cent (Karma Alloy) looks interesting. Early experiments in evaporation of this alloy gave a resistivity...
ity of 400 ohms per square, and evaporation at 1650°C on a cold, glass substrate. The film showed good adherence and apparently good stability. Work on this material continues, but at the same time alloys with much higher resistivities are being sought.

Practical resistors have been made and values up to 1 megohm have been obtained by photo-mechanical processing. A circuit using Ni/Cr resistors and nickel electrodes is shown in Fig. 2.

Preparation of Capacitative Films

Dielectrics for capacitors can be made in the form of strips or films as thin as 0.00025 in. (glass) or 0.005 to 0.010 in. (ceramics). But it is probably more convenient to evaporate them on a metallic substrate which forms one electrode, with a further metal evaporated layer to provide the other. Repetition of this process can build up a stacked thin capacitor of high value of the type required in low impedance circuits.

Single thickness films of high permittivity are attractive and, if only a few molecules in thickness, high value capacitors can be realized. A useful formula for capacitance is: 1000 μf per cm² per micron in thickness (assuming K in air = 1.0). This formula results in a value which is about 10 per cent too high, and should be reduced accordingly.

In a proposed standard module of 0.31 in. sq, about 1 cm² could be considered as the working area, of which 5 mm² could be allowed as a maximum for one component.

If a high permittivity material such as barium titanate is used, a K of 1000 can be expected, and it would be possible to make a capacitor of 0.25 μf within the allotted area. Care would be necessary to insure that its ferroelectric properties and its low Curie point do not interfere with its operation as a capacitor. But for use with transistors with their inherent low operating temperature this is quite possible.

Experimental capacitors have been made by producing an oxide film on tantalum in a mixture to be sensitive to ultraviolet light. The film was then "etched" with a photolithographic process to produce the desired pattern. The evaporated film was then coated with a metal and photo-sensitive adhesive, and the two were separated by a photolithographic process. A thin metal film was then evaporated on the photo-sensitive adhesive, and the final metal conductor pattern was made by a photolithographic process. The final pattern was then etched into the metal film, and the entire process was repeated to produce the desired number of capacitors.

A circuit using Ni/Cr resistors and nickel electrodes is shown in Fig. 2. The circuit diagram shows how the capacitors are connected in parallel to produce a high value of capacitance. The capacitors are shown as small circles, and the Ni/Cr resistors are shown as larger circles. The nickel electrodes are shown as rectangular bars. The circuit diagram is shown in Fig. 2(b).

Fig. 2. Resistor and conductor pattern printed on glass (a), and its circuit diagram (b).
CAPTIVE CLOSURE HARDWARE

Complete captive assembly; all sizes. Comprised of slotted-head thumb screw, insert bushing, captive nut assembly, splash-proof seal.

FOR FREE FACTS on this stainless steel hardware, write:
RAYTHEON, Commercial Equipment Div., Dept. 6120, Waltham 54, Massachusetts

CUSTOM WAVEGUIDE ASSEMBLIES... to Precision Tolerances

BRASS OR ALUMINUM

- ALL MODERN JOINING AND PRODUCTION TECHNIQUES
- PIONEERS OF ALUMINUM FLUX DIP BRAZING
- COMPLETE MICROWAVE ELECTRICAL TEST FACILITIES
- DEPENDABLE ON-TIME DELIVERIES

Send for copy of "Report on Flux Dip Brazing"

WAVELINE INC.
Caldwell, New Jersey

Table 2—Characteristics of Ferrite and Metal Magnetic Films

<table>
<thead>
<tr>
<th>Operating Speed</th>
<th>Metal</th>
<th>Ferrite</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 msec</td>
<td>1 msec</td>
<td></td>
</tr>
<tr>
<td>Drive</td>
<td>400 mA into</td>
<td>800 mA into</td>
</tr>
<tr>
<td>Power</td>
<td>5 ohms (resistor)</td>
<td>50 ohms (tube)</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>5 mc</td>
<td>500 kc</td>
</tr>
</tbody>
</table>

Following the work by Bell Telephone Laboratories on cellulose-acetate-butrate, thin films have been made from high molecular weight polystyrene and copolymers of this with polystyrene or methylstylene. These films are cast on to a carrier of polyethylene-terephthalate (Mylar or Melinex) from a solvent solution. The carrier is subsequently stripped after the film has been metallized, is then demetallized and slit for the making of metallized capacitors. So far thin films have not been made—about 0.0002 in. or 5 microns being used to gain experience.

It is the necessity of handling on a substrate that makes it essential to use cast films; extruded films of this thickness would be far too thin and fragile to handle. A cast film limits the material to one which can be dissolved fairly readily. This is the reason that an otherwise ideal material—polyethylene-terephthalate—is unsuitable and polystyrene is preferred.

Capacitors have been made from these films but early models have been made from multilayer wound foils. As the final units will almost certainly be required in the form of single sheet “castellated” metallized capacitors, work has now been directed into making this type only.

The gain in capacitance-volume ratio is calculated as 5:1 over conventional metallized paper capacitors. It is unfortunate that polystyrene has a permittivity of only 2.5 but this is the price paid for an almost perfect dielectric material. Experiments have been made with high permittivity fillers and it has been found possible to achieve a permittivity of 5 with films less than 0.001 in. thick.

A novel method of making large value capacitors is by using differential solvents. On to a substrate of polyester film a layer of polystyrene is cast and dried as usual. It is metallized and another insulating layer of cellulose nitrate is cast on top. As the metallized layer is not a barrier for the styrene solvent, a material dissolving in a different solvent is needed. So far, cellulose nitrate has been used experimentally. Although this is by no means a good dielectric, it can be cast from solvents which do not attack the polystyrene. By building up multilayers, say ten, it...
is possible to strip off the substrate as the dielectrics are strong enough in the form of laminae to support themselves. By this technique it is hoped to produce capacitors of very high capacitance per unit volume.

On the whole, plastics do not seem to hold much promise for these techniques except as an interim measure for use in separate components until such time as all the components are made on the substrate which itself forms an integral part of the sub-unit.

Preparation of Magnetic Films

The choice between magnetic films of metal or of ferrite is in favor of the former because they have superior physical properties (Table 2). Also, they are easier to evaporate as an alloy.

Both have rectangular hysteresis loops and are suitable for use as memory devices. Eddy current losses are high for a thickness exceeding a micron or so, and interference between opposite domain walls can occur if the thickness falls as low as about 20 Angstroms. The usual thickness is between 300 and 1000 Angstroms.

Attempts are being made to deposit a conducting layer on top of the magnetic film with an intervening layer of an insulant, but so far great difficulty has been experienced with pinholes.

To be able to make a complete memory device by deposition would be a tremendous advance over the painstaking method of ferrite-core threading practiced at present. There is the additional advantage that the speed of operation can be improved by keeping down the conductor lengths.

Detailed information on the production procedures mentioned in this article will be found in the complete paper to be published in our proceedings of the Symposium on Microminiaturization of Electronic Assemblies. Further information on the proceedings, turn to the Reader Service Card and circle 100.

References

Engineered by Tinnerman...

On the assembly line...and in the field

plug-in SPEED CLIPS simplify rectifier installation

At General Electric, two variations on a single Speed Nut* principle are being used to make things easier for production-line assemblers and for electronics servicemen.

The basic idea of the Tinnerman front-mounting Speed Clip is incorporated into the sockets of GE germanium rectifiers made by GE's Semiconductor Products Department, Syracuse, for industrial electronics applications.

On the TV production line, the Tinnerman Speed Clip permits rapid, tight, and simple installation of rectifiers. In the field, merely by unplugging the original equipment rectifier and plugging in its germanium replacement, the serviceman can quickly get a unit back in service.

Working together, General Electric and Tinnerman engineers developed the two types of Speed Nut parts that are fabricated right into the rectifier shells.

Unusual applications of the Speed Nut principle to scores of different products are developed every day at Tinnerman. That's why over 9,000 different forms of Speed Nut Brand Fasteners have been designed for all leading manufacturers.

Your fastener problem can probably be solved quickly by a call to your Tinnerman sales representative. If his name isn't in your telephone directory, write to:

TINNERMAN PRODUCTS, INC.
Dept. 12 · P. O. Box 6688 · Cleveland 1, Ohio

TINNERMAN Speed Nuts

FASTEST THING IN FASTENINGS

Prominent Fasteners Ltd., Hamilton, Ont., GREAT BRITAIN: Siemens Aeronautic Ltd., Trefoist, Wales, FRANCE: Siemens S.A., 3 rue Solennes de Rothschild, Suresnes (Seine), GERMANY: Mecano-Boh" by GmbH, Heidelberg.

CIRCLE 51 ON READER-SERVICE CARD
THE NEW FANSTEEL
S-T-A
Solid Tantalum Capacitor

It's another step by Fansteel to provide a complete range of Solid Tantalum Capacitors designed to meet the ever-increasing needs for greater capacity in subminiature sizes.

It's available in capacity ranges of .0047 to 330 mfd from 6 to 60 volts (wvdc).

Assures unfailing reliability where extremely small size, higher capacitance and extended operating temperatures are required.

S-T-A CASE SIZE

<table>
<thead>
<tr>
<th>Series</th>
<th>Length</th>
<th>Dia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>.250</td>
<td>.125</td>
</tr>
<tr>
<td>6</td>
<td>.438</td>
<td>.175</td>
</tr>
<tr>
<td>7</td>
<td>.650</td>
<td>.279</td>
</tr>
<tr>
<td>8</td>
<td>.750</td>
<td>.341</td>
</tr>
</tbody>
</table>

Write for Latest Information

FANSTEEL METALLURGICAL CORPORATION North Chicago, Ill. U.S.A.

CIRCLE 52 ON READER-SERVICE CARD

EXTENSIVE and complex simulator systems have been developed for training of Armed Forces personnel at shorebased schools in the fields of Fleet Air Defense Weapon Systems and CIC training. With the advent of shipboard guided missile weapon systems, a new concept of installing simulator systems aboard Naval vessels has been implemented. This concept calls for miniaturization of equipment.

Due to the critical need for minimum weight, size and power requirements for shipboard installations, extensive redesign and new techniques have been investigated in the areas of transistorization and microminiaturization.

In the shipboard type trainer, the

Fig. 1. Typical transistorized assemblies used to reduce size.
tubular type transistorized assemblies (Fig. 1) are used extensively as compared to the molded card type. The advantages lie in greater maintainability and replacement. The disadvantages are larger size and weight. Since the units have to be capable of replacement, it was agreed that the use of the tubular transistorized type is preferred.

Change to 400 cps

When one considers that approximately 50 to 60 of these circuits are used, the size is quite appreciable. In addition, the console and chassis assembly are decreased in size. An obvious shrinkage was obtained in converting the system from a 60 cps power system to a 400 cps system (Fig. 2). The major weight saving was in transformers, filters and motor assemblies. Weight and size shrinkage ratio was approximately 4 to 1. Another area of miniaturization was the careful investigation of design techniques utilized and possible use of other techniques. Fig. 3 shows the electro-mechanical assembly which is utilized as a bearing gate simulator.

Replace Mechanical Assembly

After careful study, a design technique utilizing target input to the rotor of a control transformer and antenna position data fed to the stator leads was developed. The error signal was fed to a dc level comparator circuit (Fig. 4). Bearing width is readily adjustable by...
The most precise and flexible delay generator available, the 1392-A uses linear sawtooth waveforms and accurate amplitude comparators to produce two variable delays. Gating-on errors encountered in digital equipment are eliminated, yet the accuracy of delay is comparable with digital apparatus when the 1392-A is used with a source of quartz-crystal controlled pulses.

An external signal source establishes within the Time-Delay Generator a 0.1 μsec synchronizing pulse which serves as the time reference. Two independent variable delay circuits provide delays relative to this reference sync pulse from 0 to 1.1 seconds (Delay No. 1), and from 0.5 μsec to 0.5 seconds (Delay No. 2). These two delay circuits can be operated “in series,” (adding in delay times) or “in parallel,” producing two independent delays.

The DELAY NO. 1 circuit includes a passive variable delay line with a precisely calibrated dial to produce incremental delays from 0 to 1 μsec in 0.1 μsec divisions. This delay line can be used either as the first range (0-1 μsec) for Delay No. 1, or as a vernier on the 1-μsec to 1.1-second electronically produced delay. It can also be used to delay the sync pulse produced by Delay No. 2, or to delay an input signal.

DELAY NO. 2 is in principle similar to Delay No. 1, but its associated gate can be used to actuate a coincidence amplifier. In coincidence operation, the gate is opened by the Delay No. 1 sync, and its duration is set by the Delay No. 2 circuits. Delay No. 2 times the gate, and does not produce a sync output. In this way, pulses from a timing comb which are present while the gate is open can be selected. For example, the 0.5-μsec minimum setting of Delay No. 2 permits the selection of a single 1-μsec pulse from a 1-Mc train to provide 1-μsec steps of delay. In addition, the coincidence feature can be used to produce bursts of pulses from a timing comb.

Fig. 6. Large ring modulator type conical-spiral simulator that was replaced by smaller unit.
Smaller Power Supplies

Another extensive saving in weight and size is realized in power supply units utilized with transistors. Regulated power supply units as shown were decreased in voltage and current requirements. Power supply shrinkage ratio varied from 5 to 1 to as high as 10 to 1. A complete analysis showed that 80 to 85 per cent of the circuits in this design are capable of transistorization.

Shrinkage, then, of 50 per cent was accomplished by:
- Complete analysis of circuit design. Transistorize only when warranted and conforms with good design practices. In some specific cases it was found that conventional miniature tubes were better suited and more efficient.
- Using 400 cycle supply in lieu of 60 cycle whenever possible.
- Investigating alternate design techniques when possible and warranted.

It must be realized that transistorization and miniaturization are not the panacea for all design problems. Its application is usually expensive and time consuming. However when the ultimate requirement is a maximum shrinkage of size and weight, these factors can be realized using the above analytical approach without the sacrificing of good design practices and reliability.

More detailed information on the equipment described in this article will be found in the complete paper to be published in our Proceedings of the Symposium on Microminiaturization of Electronic Assemblies. For further information on the Proceedings, turn to the Reader-Service Card and circle 100.
NEW PRODUCTS

Covering all new products that might generally be specified by an electronics engineer engaged in the design of original equipment.

SYSTEM ERROR BRIDGE

With this bridge the angular position of any synchro or resolver can be measured directly without any mechanical coupling. The only connection is through electrical leads. Three dials display angular position digitally to three decimal places over a 360 degree range. Readability is 3.6 sec; accuracy within 10 sec. The unit's measurements are 19 x 10.5 x 8 in.

Theta Instrument Corp., Dept. ED, 4S Pine St., East Paterson, N.J.

CIRCLE 56 ON READER-SERVICE CARD

SILICON RECTIFIERS

Rated from 100 through 400 piv, the 1N1563A through 1N1566A silicon rectifiers were designed for military and industrial applications. Forward rectified currents are 1.5 amp and 250 ma at 25 and 150 C ambient temperature. One cycle average reverse current is limited to 150 μa max when rectified output is 250 ma and ambient temperature is 150 C. These diffused-junction units can be used with both printed circuit and chassis construction.

Motorola, Inc., Semiconductor Products Div., Dept. ED, 5005 East McDowell Road, Phoenix, Ariz.

CIRCLE 57 ON READER-SERVICE CARD

HIGH FREQUENCY GENERATOR

Suitable for a missile power supply, the Model D-1309 generator develops 100 w at 6000 cps with shaft speeds up to 60,000 rpm. It can be driven by a hot gas turbine or other suitable means. Featured in the design is low inertia and short circuit protection. The unit weighs 6.5 oz, and its measurements are 1.5 in. in diameter and 1.67 in. long.

D & R Ltd., Dept. ED, 402 East Gutierrez, P.O. Box 1500, Santa Barbara, Calif.

CIRCLE 58 ON READER-SERVICE CARD

METAL FILM RESISTORS

Standard tolerance of these metal film resistors is ±1 per cent. Their temperature coefficient is ±50 ppm per degree C over a temperature range of from −65 to +165 C, independent of resistance value. Type WHM, equivalent Mil style RN-75, measures 1.125 x 0.406 in. It has a maximum voltage rating of 500 v. Type WFH measures 0.781 x 0.25 in.

Resistance Products Co., Dept. ED, 914 S. 13th St., Harrisburg, Pa.

CIRCLE 59 ON READER-SERVICE CARD
MAGNETIC AMPLIFIERS

Each of the four magnetic amplifiers in the Preac 60-cps line can be used by itself or as a preamplifier for such devices as thermocouples, strain gages and bolometers. The four units provide a power gain greater than 50 db and a full linear output of 2 v into a 5000 ohm load with null drifts as low as 0.03 namp, 2.25 x 10^{-12} w, referred to the input. They are rated for operation from 60 ±6 cps power lines at 115 v ±11 mV.

Airpax Products Co., Seminole Div., Dept. ED; Fort Lauderdale, Fla.

CIRCLE 61 ON READER-SERVICE CARD

ONLY KIN TEL DIGITAL VOLTMETERS GIVE YOU ALL THESE ADVANTAGES

1. SINGLE-PLANE READOUT: KIN TEL digital voltmeters employ a simple projection system to present numbers on a readable single plane... no superimposed outlines of “off” digits... reduced possibility of error. Standard pilot lamps give extra long life.

2. ADVANCED CIRCUIT DESIGN: Transistors employed where they contribute to performance and reliability... relay drive coils energized with DC as in telephone type service to provide long, trouble-free operation... automatic, continuous standard cell calibration. No electronic circuitry in readout allows easy remote mounting. Sensitivity control permits stable reading of noisy signals.

3. MANUFACTURING EXPERIENCE: KIN TEL has manufactured over 10,000 “standard cell accuracy” DC instruments on a true production line basis. Only by this method, by years of repeated manufacturing experience, by an over-all awareness of the accuracies and tolerances involved, is it possible to guarantee consistent accuracy and reliability... to assure real value for every dollar you invest.

4. NATIONWIDE APPLICATION ENGINEERING FACILITIES: KIN TEL has engineering representatives in every major city. An experienced staff of over 200 field engineers is always immediately available to help solve your application problems, provide technical data, or prepare a detailed proposal. Factory level service is available in all areas.

5. DESIDERATE SPECIFICATIONS (MODEL 401B DC DIGITAL VOLTMETER): Display... 4 digit with automatic polarity indication and decimal placement. Total display area 2” high x 7½” long, internally illuminated. Each digit 1¾” high. Automatic Ranges... 0.001 to 999.9 volts covered in 4 automatic ranges. Sensitivity control provides gain +10 setting and least digit sensitivities of .1, 1, and 10 mv. Accuracy... 0.01% ±1 digit. Counting Rate... 20 counts per sec., providing average balance (reading) time of 1 sec. Reference Voltage... Chopper-stabilized supply, referenced to an unsaturated mercury-cadmium standard cell. Input Impedance... 10 megohms, on all ranges. Output... Visual display, plus print control. Automatic print impulse when the meter assumes balance. No accessories required to drive parallel input printers. Input... 115 volt, 60 cycle, single phase, approx. 75 VA. Dimensions... Control unit, 5¾” high x 19” wide x 18” deep. Readout display, 3¾” high x 19” wide x 9” deep. Weight... Approx. 40 lb. Price... $2,450.

6. WIDE RANGE OF MODELS—ACCESSORIES—SPECIAL SYSTEMS: Versatile “digital building blocks” permit measurement of AC, ohms, ratios of AC and DC, automatic scanning of multiple inputs... 4- or 5-digit models. Preamplifiers increase digital voltmeter sensitivity to 1 microvolt DC, 10 microvolts AC. Buffers permit driving typewriters, tape punches and printers. KIN TEL’s Special Products Department can design and manufacture digital instruments to meet special requirements... complete digital systems for data logging, missile checkout and automatic production line testing.

Write today for descriptive literature or demonstration. 5725 Kearny Villa Road, San Diego 11, California

CIRCLE 62 ON READER-SERVICE CARD
NEW PRODUCTS

Covering all new products that might generally be specified by an electronics engineer engaged in the design of original equipment.

SYSTEM ERROR BRIDGE

With this bridge the angular position of any synchro or resolver can be measured directly without any mechanical coupling. The only connection is through electrical leads. Three dials display angular position digitally to three decimal places over a 360 degree range. Readability is 3.6 sec; accuracy within 10 sec. The unit's measurements are 19 x 10.5 x 8 in.

Theta Instrument Corp., Dept. ED, 48 Pine St., East Paterson, N.J.

CIRCLE 56 ON READER-SERVICE CARD

HIGH FREQUENCY GENERATOR

Suitable for a missile power supply, the Model D-1309 generator develops 100 w at 6000 cps with shaft speeds up to 60,000 rpm. It can be driven by a hot gas turbine or other suitable means. Featured in the design is low inertia and short circuit protection. The unit weighs 6.5 oz, and its measurements are 1.5 in. in diameter and 1.67 in. long.

D & R Ltd., Dept. ED, 402 East Gutierrez, P.O. Box 1500, Santa Barbara, Calif.

CIRCLE 58 ON READER-SERVICE CARD

SILICON RECTIFIERS

Rated from 100 through 400 piv, the 1N1563A through 1N1566A silicon rectifiers were designed for military and industrial applications. Forward rectified currents are 1.5 amp and 250 ma at 25 C and 150 C ambient temperature. One cycle average reverse current is limited to 150 µa max when rectified output is 250 ma and ambient temperature is 150 C. These diffused-junction units can be used with both printed circuit and chassis construction.

Motorola, Inc., Semiconductor Products Div., Dept. ED, 5005 East McDowell Road, Phoenix, Ariz.

CIRCLE 57 ON READER-SERVICE CARD

METAL FILM RESISTORS

Standard tolerance of these metal film resistors is ±1 per cent. Their temperature coefficient is ±50 ppm per degree C over a temperature range of from −65 to +165 C, independent of resistance value. Type WHM, equivalent Mil style RN-75, measures 1.125 x 0.406 in. It has a maximum voltage rating of 500 v. Type WFH measures 0.781 x 0.25 in.

Resistance Products Co., Dept. ED, 914 S. 13th St., Harrisburg, Pa.

CIRCLE 59 ON READER-SERVICE CARD
COMMUTATOR

This commutator is spring-driven. Due to this drive mechanism the commutator has no rf noise generation, no gyroscopic effect, no heat generation and extremely low average power consumption. The unit is hand-wound and can be used for missile and space telemetering systems. Up to 100 or more sampling revolutions can be made before rewinding. Typical sampling speeds are 1/2 or 1/50 of a sec per revolution.

Applied Science Corp., of Princeton, Dept. ED, P.O. Box 44, Princeton, N.J.

CIRCLE 60 ON READER-SERVICE CARD

MAGNETIC AMPLIFIERS

Each of the four magnetic amplifiers in the Preac 60-cps line can be used by itself or as a preamplifier for such devices as thermocouples, strain gages and bolometers. The four units provide a power gain greater than 50 db and a full linear output of 2 v into a 5000 ohm load with null drifts as low as 0.03 namp, 2.25 x 10^{-12} w, referred to the input. They are rated for operation from 60 ± 6 cps power lines at 115 v ± 11 volts.

Airpax Products Co., Seminole Div., Dept. ED, Fort Lauderdale, Fla.

CIRCLE 61 ON READER-SERVICE CARD

1. SINGLE-PLANE READOUT: KIN TEL digital voltmeters employ a simple projection system to present numbers on a readable single plane...no superimposed outlines of "off" digits...reduced possibility of error. Standard pilot lamps give extra long life.

2. ADVANCED CIRCUIT DESIGN: Transistors employed where they contribute to performance and reliability...relay drive coils energized with DC as in telephone type service to provide long, trouble-free operation...automatic, continuous standard cell calibration. No electronic circuitry in readout allows easy remote mounting. Sensitivity control permits stable reading of noisy signals.

3. MANUFACTURING EXPERIENCE: KIN TEL has manufactured over 10,000 "standard cell accuracy" DC instruments on a true production line basis. Only by this method, by years of repeated manufacturing experience, by an over-all awareness of the accuracies and tolerances involved, is it possible to guarantee consistent accuracy and reliability...to assure real value for every dollar you invest.

4. NATIONWIDE APPLICATION ENGINEERING FACILITIES: KIN TEL has engineering representatives in every major city. An experienced staff of over 200 field engineers is always immediately available to help solve your application problems, provide technical data, or prepare a detailed proposal. Factory level service is available in all areas.

5. DESIDERATE SPECIFICATIONS (MODEL 401B DC DIGITAL VOLTMETER): Display...4 digit with automatic polarity indication and decimal placement. Total display area 2" high x 7½" long, internally illuminated. Each digit 1¼" high. Automatic Ranges...0001 to 999.9 volts covered in 4 automatic ranges. Sensitivity control provides gain +10 setting and least digit sensitivities of .1, 1, and 10 mv. Accuracy...0.01% ±1 digit. Counting Rate...20 counts per sec., providing average balance (reading) time of 1 sec. Reference Voltage...Chopper-stabilized supply, referenced to an unsaturated mercury-cadmium standard cell. Input Impedance...10 megohms, on all ranges. Output...Visual display, plus print control. Automatic print impulse when the meter assumes balance. No accessories required to drive parallel input printers. Input...115 volt, 60 cycle, single phase, approx. 75 VA. Dimensions...Control unit, 5¼" high x 19" wide x 18" deep. Readout display, 3½" high x 19" wide x 9" deep. Weight...Approx. 40 lb. Price...$2,400.

6. WIDE RANGE OF MODELS—ACCESSORIES—SPECIAL SYSTEMS: Versatile "digital building blocks" permit measurement of AC, ohms, ratios of AC and DC, automatic scanning of multiple inputs...4- or 5-digit models. Preamplifiers increase digital voltmeter sensitivity to 1 microvolt DC, 10 microvolts AC. Buffers permit driving typewriters, tape punches and printers. KIN TEL's Special Products Department can design and manufacture digital instruments to meet special requirements...complete digital systems for data logging, missile checkout and automatic production line testing.

Write today for descriptive literature or demonstration. 5725 Kearny Villa Road, San Diego 11, California

CIRCLE 62 ON READER-SERVICE CARD
The tube is exceptionally uniquely designed in the modern range. The Amperex® Type 5924A Triode and the Amperex® Type 6076* Tetrode in the design of their transmitting equipment.

THE REASONS:

- **High Power Amplification**
 - Type 5924A, anode capable of dissipating 6 kilowatts
 - Type 6076, anode capable of dissipating 3 kilowatts

- **Broad Frequency Range**
 - Ratings for both tube types apply up to 220 Mc.

- **Long Tube Life**
 - Average life in excess of 5000 hours of operation under normal load conditions

- **Compact Design**
 - Dimensions closely controlled for cavity operation

*Designates the air-cooled version. The water-cooled version bears the designation, Type 6075.

Rapid Heat Dissipation
- Extra-heavy copper wall anodes with high overload capacity
- All brazed cooler-fin radiator assembly

Proven Materials
- Thoriated tungsten filaments
- Platinum-clad molybdenum grids
- All external surfaces silver-plated

Unique Design Features
- Low-inductance coaxial grid terminals permit improved isolation of input and output circuitry
- Short electrode structure for economical and compact transmitter design

NEW PRODUCTS

Tube, Transistor, and Diode Tester

Portable

Model 10-60 Electronamic tester affords comprehensive tube, transistor, crystal diode, and TV picture tube testing for industrial and communications applications. In tube tests, the unit covers a complete path of operation and checks all elements. It has built-in pin straighteners for 7 and 9 pin tubes. On voltage regulator tubes, it performs picture tube beam current tests, ultrasonic gas tests, and functional tests. For transistor and crystal diode testing it has I_{dc} ranges to cover low, medium, and high power types. The I_{dc} readings are directly related to true collector current. Collector potential range is from 0.5 to 160 v dc in 22 steps. The direct-reading Beta ranges employ separate injection currents for low and high power types. The tester comes in a carrying case 20 x 15 x 7 in.

Precision Apparatus Co., Inc., Dept. ED, 70-31 84th St., Glendale, N.Y.

CIRCLE 64 ON READER-SERVICE CARD

Microwave Frequency Calibrator

Generates harmonics up to 25 kmc

Harmonics up to 25 kmc can be generated with the 101 microwave frequency calibrator. The 450 mc crystal controlled signal is designed to feed directly into a waveguide or coaxial crystal holder. A 5 mc fundamental crystal provides a means of calibrating the instrument against WWV. Lower intensity markers at 150 and 50 mc are present for wavemeter or receiver calibration.

Micro-Now Instrument Co., Dept. ED, 6340 N. Tripp Ave., Chicago 46, Ill.

CIRCLE 65 ON READER-SERVICE CARD

AMPEREX ELECTRONICS CORP., 230 Duffy Avenue, Hicksville, L. I., N.Y.

In Canada: Rogers Electronic Tubes & Components, 116 Vanderhoof Ave., Toronto, Ont.

< CIRCLE 63 ON READER-SERVICE CARD
Binary Scale

Has automatic reset

Binary scaler model GS-7 is designed for use with Geiger, scintillation, or proportional detectors. It has an automatic electric reset button which resets the register, timer, and binary scale indicators all at once. The unit contains a 5 digit Sodeco register and a 300 to 3000 v dc detector supply. For predetermined counts, there is a selector switch which automatically stops the scaling action after 1, 10, or 100 register counts.

CIRCLE 66 ON READER-SERVICE CARD

Tantalum Capacitors

Offer high capacitance at low voltage

Providing large capacitance for low voltage circuits, type 200D tantalum electrolytic capacitors operate from -55 to +125 C under severe vibration and shock. In rectangular cases and five sizes, they have maximum capacitances of 2400 µf, 15 v at 85 C or 10 v at 125 C; 1300 µf, 30 v at 85 C or 20 v at 125 C; 1100 µf, 45 v at 85 C or 30 v at 125 C; 1000 µf, 50 v at 85 C or 50 v at 125 C; 660 µf, 75 v at 85 C or 50 v at 125 C, and 300 µf, 110 v at 85 C or 75 v at 125 C. All units have glass-to-metal solder seal terminals and porous anode type internal construction.

CIRCLE 67 ON READER-SERVICE CARD

RESEARCH KEEPS ESC FIRST

in custom-built delay lines!

From the research laboratories of ESC come pathfinding prototypes that keep ESC first in custom-built delay lines. As America's largest producer of delay lines, ESC has constantly assumed leadership in the vital area of research and development, creating delay lines that have met the most stringent requirements of military and commercial applications.

But there is more to ESC leadership. Its production and quality control facilities are unequalled in the field. ESC submits complete and definitive laboratory reports with all custom-built prototypes which include submitted electrical requirements, photo-oscillograms, the test equipment used, and an evaluation of the electrical characteristics of the prototype.

WRITE TODAY FOR COMPLETE TECHNICAL DATA.

Exceptional employment opportunities for engineers experienced in computer components...excellent profit-sharing plan.

ESC CORPORATION 534 Bergen Boulevard, Palisades Park, New Jersey

Distributed constant delay lines • Lumped-constant delay lines • Variable delay networks • Continuously variable delay lines • Pushbutton decade delay lines • Shift registers • Pulse transformers • Medium and low-power transformers • Filters of all types • Pulse-forming networks • Miniature plug-in encapsulated circuit assemblies

CIRCLE 68 ON READER-SERVICE CARD
Filtors, the leading specialists in the development and manufacture of sub-miniature relays is proud to announce the addition of the new Powrmite micro-miniature relay to its existing line of traditionally outstanding relays.

In every field of achievement there is always one leader. In relays with highest available reliability the leader is Filtors, Incorporated. All of the experience and know how gained in attaining its position of leadership have gone into making Filtors new Powrmite micro-miniature relay truly reliable—again the leader in a field of many.

NEW PRODUCTS

Chart Recorder
For temperature and humidity
For indoor or outdoor use, model HGS-HYT-1SA temperature and humidity recorder consists of a sensing section and a signal cabinet which may be remotely located. From 32 to 130 F, it records relative humidity between 15 and 95% with ±3% accuracy. Temperature recordings are within ±1 deg F from 0 to 100 F. The unit incorporates a variable range limit alarm and has 6 in. daily or weekly recording charts. The sensing section is 12 x 15 x 6 in., and the signal cabinet is 8 cu in. Combined they weigh 20.75 lb.

CIRCLE 70 ON READER-SERVICE CARD

Encapsulated Silicon Rectifiers
Have pIV values from 350 to 3200

This line of encapsulated silicon rectifiers includes units with pIV values from 350 to 3200 and current ratings from 150 ma to 1 amp. Ambient temperature ratings are up to 140 C. Stock items include direct replacement types for 6X4, 5Y3, and other vacuum tubes. Also available are printed circuit and under-chassis types in full wave, full wave bridge, and half wave versions.

Control Circuits, Inc., Dept. ED, 5 Barton Hill, East Hampton, Conn.
CIRCLE 71 ON READER-SERVICE CARD
CIRCLE 69 ON READER-SERVICE CARD
Core Storage Buffer

Handles 100,000 characters per sec

Adaptable to printers and to paper tape, magnetic tape, and punched card units. Model 720-BA7 core storage buffer handles 100,000 characters per sec. It accepts any size block of data up to 720 characters of 6, 7, or 8 binary bits each. Marker pulses indicate the loading of a block, permitting more than one to be loaded at a time. The buffer provides parallel loading and unloading of all bits of each character, sequential loading and unloading of characters, and remote manual or electronic clearing. For mounting in a standard relay rack, it has all solid state elements and a self-contained power supply.

Telemeter Magnetics, Inc., Dept. ED, 2245 Pontius Ave., Los Angeles 64, Calif.

CIRCLE 72 ON READER-SERVICE CARD

Mylar Capacitors

No derating to 125 C

Epoxy encapsulated, type MD Mylar dielectric capacitors operate from -60 to +125 C without derating. For use in filters and couplings, they come in capacitances of 0.001 to 1 μf, for voltages from 100 to 800 v. They have a nonconductive case with a hard, thin outer shell that eliminates tube enclosure, end seals, tube fillers, and ground insulation.

Electronic Fabricators, Inc., Dept. ED, 682 Broadway, New York 12, N.Y.

CIRCLE 73 ON READER-SERVICE CARD

THE SUPERLATIVE PERFORMANCE OF THE 401-A SCOPE IS AVAILABLE IN RACKMOUNTED VERSION

We have made considerable comment recently concerning the gratifying success of our 401-A scope, which has become—in its relatively brief history—the most popular instrument in the low-frequency range. However, we have been needlessly silent regarding this noble scope’s brother instrument, the 401-AR, which also has been making a most enviable record for itself.

The 401-AR is electrically identical to the bench-type 401-A, and provides exactly the same high level of performance and dependability—the same high criteria of stability and accuracy—that characterize its much discussed counterpart. The only differences between the two units lie in the physical alterations required to adapt the scope for mounting in a standard 19-inch relay rack.

We would like to emphasize at this point that there is no difference in price between the rack-mounted and bench-type models. Both sell for $450.00 (FOB Clifton, New Jersey, U.S.A.)

For full information, call our representative in your area, or drop a line to us at the address below.

RESUME OF PERFORMANCE SPECIFICATIONS

<table>
<thead>
<tr>
<th>IDENTICAL X- AND Y- AMPLIFIERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity: 10 mv/cm (100 mv full scale).</td>
</tr>
<tr>
<td>Frequency Range: DC to 100 kc; down less than 3 db at 100 kc.</td>
</tr>
<tr>
<td>Calibration: Internal amplitude calibrator (both axes) with pre-set calibrated vernier detent points to eliminate need for recalibration after changing vernier gain control setting. Calibration accuracy, overall 5%.</td>
</tr>
</tbody>
</table>

CATHODE-RAY TUBES

- Tight tolerance Du Mont Type 5ADP, operated at acceleration of 3000 v.

POWER SUPPLY

- All operating potentials regulated. Choice of electronic regulation or self-regulating transformer. (No price differential)

DEPENDABILITY

- Stability: Drift does not exceed 1 cm from center in 8-hour period, including 10% variations in line voltage.

COMPONENTS

- All components tested to exceed specifications. Hand-crafted wiring used throughout.

MECHANICAL

- Dimensions: 8¾” high x 14¾” wide (behind panel) x 18¼” deep behind panel, 20¼” overall. Panel 19” wide.
- Weight: Approximately 45 pounds.

DU MONT® INSTRUMENT DIVISION, ALLEN B. DU MONT LABORATORIES, INC., CLIFTON, NEW JERSEY, U.S.A.
For all power supply needs through 1.5 amperes:

Lambda COM-PAK

POWER SUPPLIES

Less space! Improved performance!

Long, trouble-free service!

Transient free output!

Fills the need for compact, regulated DC power supplies. Economy of panel space, functional simplicity, new quick-service features.

Wiring, tubes and other components readily accessible. You can reach them easily, service them fast.

400 MA, 800 MA, and 1.5 ampere models include new, high-efficiency, long-life, hermetically-sealed semi-conductor rectifiers. All Com-Pak models are constructed with hermetically-sealed magnetic components and capacitors for long-trouble-free service.

Condensed Data

LINE REGULATION Better than 0.15% or 0.3 Volt, whichever is greater.

LOAD REGULATION Better than 0.25% or 0.5 Volt, whichever is greater.

INTERNAL IMPEDANCE

C-200 Series Less than 6 ohms.
C-400 Series Less than 3 ohms.
C-800 Series Less than 1.5 ohms.
C-1500 Series Less than 0.75 ohms.

RIPPLE AND NOISE Less than 3 millivolts rms.

POLARITY Either positive or negative may be grounded.

AMBIENT TEMPERATURE Continuous duty at full load up to 50°C (122°F) ambient.

AC OUTPUT (unregulated) 6.5 VAC (at 115 VAC Input).

C-200 Series 10 AMP
C-400 Series 15 AMP
C-800 Series 20 AMP
C-1500 Series 30 AMP

AC INPUT 105-125 VAC, 50-400 CPS

OVERLOAD PROTECTION AC and DC fuses; built-in blown-fuse indicators.

Terminal lugs on the T-1000 block are gold plated to meet environmental conditions of salt spray and humidity. Designed for use with ground support equipment, this terminal block is constructed of a molded phenolic base with reinforced barriers between terminal cavities. One cavity will accommodate four terminals. Up to 40 connections can be made with one block. The block measures 5 x 1-1/16 x 3/4 in.

Twin Lock Inc., Dept. ED, 1024 W. Hillcrest Blvd., Inglewood, Calif.

CIRCLE 76 ON READER-SERVICE CARD

Regulated DC Power Supply

0.04% ripple

Tubeless model KM-254 power supply delivers in two ranges: 30 to 60 v dc, 0 to 4 amp; and 60 to 90 v dc, 0 to 2.8 amp. Regulation for line or load is less than ±1% and ripple is less than 0.04%. The unit has a control for optimizing regulation at any given output voltage, short circuit and overload protection, and good line transient response and resolution. It is 19 in. wide, 5-1/4 in. high, and 13 in. deep.

Kepco Labs, Inc., Dept. ED, 131-38 Sanford Ave., Flushing 55, N.Y.

CIRCLE 77 ON READER-SERVICE CARD

NEW PRODUCTS

Terminal Block

Has gold plated lugs

NEW 1959 CATALOG NOW AVAILABLE

New 36-page edition contains information and specifications on Lambda’s full line of transistor-regulated and tube-regulated power supplies.

ALL LAMBDA POWER SUPPLIES ARE GUARANTEED FOR FIVE YEARS.
Decimal Selector

For transistorized binary counter

A decimal to four line binary code converting switch, model 319C can be used to preset the complement nine binary code directly into the company's model 190A or 312 transistorized binary decimal counters. The selector panel measures 2 7/8 x 3 1/4 in. and is mounted directly on a miniature 10 position switch which can in turn be mounted directly to a control panel in a 1 1/4 in. mounting hole. The selected decimal number is converted into four line binary code and is controlled by four diode gates at the output points. With complement nine presetting, the carry pulse from the last decade can be used as a stop pulse in a counting operation, and no resetting is needed.

CIRCLE 78 ON READER-SERVICE CARD

Silicon Power Diode

70 to 250 amp

These silicon power diodes provide up to 250 amp forward current and are rated from 50 to 500 piv. They are designed for high temperature use and can operate at a junction temperature of 190°C. Units are hermetically sealed and no soft solders or fluxes are used in sealing.

International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., El Segundo, Calif.

CIRCLE 79 ON READER-SERVICE CARD

Hermetically Sealed Industrial Silicon Diodes Provide 750ma Output Without Heat Sink

Diodes in this series have been designed to provide optimum reliability and efficiency to your industrial or commercial equipment circuits. By eliminating the space consuming heat sink, you can also realize economies in equipment size as well as assembly time and costs.

Rectified dc output current ratings to 750mA at 50°C can be obtained with PIV voltages ranging from 100 to 500v. The diode junction is hermetically sealed in an all-welded, shock-proof housing . . . a mechanical construction assuring physical strength and a positive safeguard against contaminants. This adds up to the really important feature - long term reliability! For complete specifications . . .

CIRCLE READER SERVICE CARD NO. 548

Military Type
High Temperature
Silicon Power Diodes
Operate to 165°C

For military or industrial applications where high temperature operation is a must, International Rectifier offers two series of axial lead, hermetically sealed power diodes. Both supply full rated power under convection cooling without a heat sink.

JETEC series 1N536-1N540 and 1N1095-96 operates at -65°C to +165°C with output currents to 750mA. PIV ratings from 50 to 600v. Bulletin SR-20A describes them.

For power supply or magnetic amplifier use, 16 JETEC types are listed in Bulletin SR-132E. Ratings: 50 to 600v PIV at 300mA. Temperature range: -65°C to +150°C.

The high forward conductance and extremely low leakage of these diodes permits rectification efficiencies to 99% at power frequencies; up to 90% at 50kc.

CIRCLE READER SERVICE CARD NO. 547

High Temperature Stud Mounted Silicon Diode Series Includes Nineteen JETEC and JAN Types.

These silicon power rectifiers are designed for conduction cooling by mounting directly onto the chassis. Ratings from 400ma to one amp. are possible at PIV ratings of from 50 to 600 volts.

Power supply types 1N807 thru 1N614 and magnetic amplifier types featuring low leakage current and high forward conductance are included in Bulletin SR-195C.

JAN types 1N253, 1N254, 1N255 for the military are in full production.

CIRCLE READER SERVICE CARD NO. 549
New "Custom Quality" Family By

GENERAL TRANSISTOR

RESEARCH ACTIVITIES APPROACH IDEALIZED TRANSISTOR RELIABILITY

A bright new chapter in transistor history is being recorded at GT's research laboratories, resulting in progressive transistor design of unprecedented reliability, performance and stability. Advanced production control techniques have made possible the New "A-Types" with specification refinements providing...

TIGHTER PARAMETER CONTROL HIGHER SWITCHING SPEEDS
HIGHER OPERATING VOLTAGES WIDER APPLICATION RANGES

New process controls highlighted by high sensitivity hermetic seal testing, precleaning of internal parts, automatic welding of the hermetic seal case and individual handling of units in process insure improved reliability, uniformity of electrical properties, high mechanical strength and superior hermetic seal. All transistors are pre-aged for 100 hours at 100°C.

PORTABLE MODEL 960 TRANSISTOR AND CRYSTAL DIODE TESTER

Portable model 960 transistor and crystal diode tester checks I\textsubscript{cm} gain, leakage, and shorts on low, medium and high power transistors. It handles tetrode, pnp, and npn types. In five I\textsubscript{cm} ranges, it provides direct readings in terms of true collector current on a wide angle 5-1/2 in., 100 \mu A meter. The unit also offers collector potentials from 0.5 to 100 v dc in 17 selected steps, and direct reading gain ranges with five separate injection currents for low, medium, and high power types. Leakage tests check emitter to collector current at fixed collector bias. All transistor test settings are on a high speed roller chart. The unit has a patchcord element selector system. A self-contained, ac operated unit, it comes in an 18 x 10-1/2 x 6-1/4 in. case.

Precision Apparatus Co., Inc., Dept. ED, Glendale, N.Y.

CIRCLE 81 ON READER-SERVICE CARD

TACHOMETER GENERATOR

Brush lasts over 10 years

The brush in this dc tachometer generator is guaranteed to last through 100,000 hours of continuous operation at 3600 rpm. From 0 to 12,000 rpm, the generator provides a linearity of better than 0.1% of the voltage output at 3600 rpm. The commutator is fabricated from an alloy containing more than 85% pure silver.

Servo-Tek Products Co., Dept. ED, 1086 Goffe Rd., Hawthorne, N.J.

CIRCLE 82 ON READER-SERVICE CARD

ELECTRONIC DESIGN • January 21, 1956
EXPANDING

THE FRONTIERS

OF SPACE

TECHNOLOGY

Lockheed's capability in the design and development of computers is contributing to the advancement of the state of the art. Research is being conducted in the building of machines capable of reading 5,000 characters a minute; in the development of high-speed digital plotters which will operate up to 5,000 points a second from magnetic tape input; in the improvement of library reference systems for the storing and retrieval of information; and in the study of self-organizing machines using variable threshold neurons that will operate essentially without programming.

The ACRE system developed by Lockheed combines outstanding performance at the lowest cost in the industry, and has broad applications to a number of other missile and space projects. Scientists and engineers of outstanding talent and inquiring mind are invited to join us in the nation's most interesting and challenging basic research and development programs.

Write: Research and Development Staff, Dept. AA-21, 962 W. El Camino Real, Sunnyvale, California, or 7701 Woodley Ave., Van Nuys, California. For the convenience of those living in the East and Midwest, offices are maintained at Suite 745, 405 Lexington Ave., New York 17, and Suite 300, 840 No. Michigan Ave., Chicago 11.

"The organization that contributed most in the past year to the advancement of the art of missiles and astronautics," NATIONAL MISSILE INDUSTRY CONFERENCE AWARD

Lockheed / MISSILE SYSTEMS DIVISION

SUNNYVALE, PALO ALTO, VAN NUYS, SANTA CRUZ, SANTA MARIA, CALIFORNIA
CAPE CANAVERAL, FLORIDA - ALAMOGORDO, NEW MEXICO
NEW PRODUCTS

Microwave Attenuator
Electronically variable

Called V Pad, this broadband coaxial attenuator is electronically variable from 10 to 25 db. Variation is continuous, being a function of solenoid current. Maximum attenuation requires 80 ma at S-Band and 70 ma at X-Band. Other models available with attenuation as low as 3 db over the 2 to 10 kmc range.

Microwave Control Corp., Dept. ED, 250 W. 57th St., New York 19, N.Y.
CIRCLE 83 ON READER-SERVICE CARD

SSB Transmission Tester
150 cps to 30 kc preset sweep widths

Made up of a spectrum analyzer, a tuning head, and a two-tone generator, the SSB-3 tester incorporates equipment needed to set up, adjust, monitor, and trouble-shoot ssb and a-m transmissions. It has preset sweep widths of 150, 500, 2000, 10,000, and 30,000 cps; a continuously variable sweep width to 100 kc; a dynamic range of 60 db; and hum sidebands of 60 cps measurable down to -60 db. The unit has linear and logarithmic amplitude scales, a standard 5 in. crt, and two auxiliary outputs for chart recorder or large screen crt. The tuning head spans the 2 to 39 mc spectrum with direct reading dial.

Panoramic Radio Products, Inc., Dept. ED, 514 S. Fulton Ave., Mt. Vernon, N.Y.
CIRCLE 84 ON READER-SERVICE CARD
The Visicorder charts pressure fluctuations in a supersonic inlet

A Model 906 Honeywell Visicorder wrote this record of pressure fluctuations..."buzz"...for the National Advisory Committee for Aeronautics at the Lewis Flight Propulsion Laboratory in Cleveland. Buzz is the term used to describe unsteady variation in pressure and airflow characteristics of a supersonic aircraft or missile inlet.

The purpose of these Visicorder studies is to define the buzz-free operating limits of the inlet, and to provide the designer with structural load information in case the inlet is inadvertently caused to operate on buzz during flight. This is particularly important because inlet buzz can result in fluctuating structural loads of the order of 1000 psf. Depending on the inlet design, this could cause structural failure of the inlet and loss of the airplane.

High response pressure transducers are used to measure these fluctuating pressures and the resulting electrical signal is fed into the Visicorder. Records such as this are also necessary in the determination of the inlet dynamics such as delay time. This information is then used to design inlet control systems.

is a record of "BUZZ"

The Honeywell Visicorder is the first high-frequency, high-sensitivity direct recording oscillograph. In laboratories and in the field everywhere, instantly-readable Visicorder records are pointing the way to new advances in product design, rocketry, computing, control, nucleonics ...in any field where high speed variables are under study.

To record high frequency variables — and monitor them as they are recorded — use the Visicorder Oscillograph. Call your nearest Minneapolis-Honeywell Industrial Sales Office for a demonstration.

Reference Data: Write for Visicorder Bulletin
Minneapolis-Honeywell Regulator Co.,
Industrial Products Group, Heiland Division
5200 E. Evans Ave., Denver 22, Colo.
Save design time, avoid assembly headaches with General Electric custom-designed DC power supplies

NO PROBLEM TOO GREAT...

...NO PROBLEM TOO SMALL!

Subcontract your power supply problems to General Electric! Whether your requirements can be met by the existing, completely engineered supplies we have on hand—or involve custom-packaging of "building blocks"—or call for altogether new designs—give us the power supply *system* responsibility! Consult your local Apparatus Sales Office, or write for bulletin GEA-6690 to Section G465-5, General Electric Co., Rectifier Dept., Lynchburg, Va.

Progress Is Our Most Important Product

GENERAL ELECTRIC

CIRCLE 88 ON READER-SERVICE CARD

NEW PRODUCTS

Microwave Oscillators

3950 to 11,000 mc range

Test oscillators G772A and X772A are self-contained power sources for the 3950 to 11,000 mc range. Their output is 10 to 100 mw. They have an integral regulated power supply and modulator, single knob direct reading frequency control, automatic reflector voltage tracking, and an rf attenuator.

F-R Machine Works, Inc., Dept. ED, 26-12 Borough Place, Woodside 77, N.Y.

CIRCLE 89 ON READER-SERVICE CARD

Servo Amplifier

Voltage gain of 2500 at 10 v output

Hermetically sealed model 1800-3300 is a plug-in, transistorized servo amplifier primarily intended to receive signals from a synchro control transformer and to operate a size 11, 400 cps, 3.5 w servo motor. The unit has a nominal voltage gain of 2500 at 10 v output and an input impedance of 5000 ohms. Input power is 28 v dc at 100 ma, and output is 20 v. Phase shift is essentially 90 deg., and carrier frequency is 380 to 420 cps. Designed to exceed MIL-E-5400A environmental requirements, the amplifier operates continuously between -55 and +100 C. and intermittently to 125 C. A 7-pin unit, it is 1-3/16 x 1-11/16 x 2-37/64 in. and weighs 4-1/2 oz.

M. Ten Bosch, Inc., Dept. ED, 80 Wheeler Ave., Pleasantville, N.Y.

CIRCLE 90 ON READER-SERVICE CARD

ELECTRONIC DESIGN • January 21, 1959
FLIGHT DATA and CONTROL ENGINEERS

Cross new frontiers in system electronics at The Garrett Corporation.
High-level assignments in the design and development of system electronics are available for engineers in the following specialties:

1. ELECTRONIC AND FLIGHT DATA SYSTEMS AND CONTROLS A wide choice of opportunities exists for creative R & D engineers having specialized experience with control devices such as: transducers, flight data computers, Mach sensors, servo-mechanisms, circuit and analog computer designs utilizing transistors, magamps and vacuum tubes.

2. SERVO-MECHANISMS AND ELECTRO-MAGNETICS Requires engineers with experience or academic training in the advanced design, development and application of magamp inductors and transformers.

3. FLIGHT INSTRUMENTS AND TRANSDUCERS
 1) DESIGN ANALYSIS Requires engineers capable of performance analysis throughout preliminary design with ability to prepare and coordinate related proposals.
 2) DEVELOPMENT Requires engineers skilled with the analysis and synthesis of dynamic systems including design of miniature mechanisms in which low friction freedom from vibration effects and compensation of thermo expansion are important.

4. PROPOSAL AND QUALTEST ENGINEER For specification review, proposal and qualtest analysis and report writing assignments. Three years electronic, electrical or mechanical experience required.

Forward resume to: Mr. G. D. Bradley
THE GARRETT CORPORATION
9851 S. Sepulveda Blvd., Los Angeles 45, Calif.

CIRCLE 725 ON READER-SERVICE CARD

THE NAVY'S FIRST WEAPON SYSTEM...

The A3J "Vigilante," equipped with vital AiResearch subsystems

North American Aviation's twin-jet A3J "Vigilante" is the Navy's newest attack weapon system... an all-weather, carrier-based, 30,000 lb. thrust aircraft which delivers both conventional and nuclear weapons from high or low altitudes at supersonic speeds.

Contributing to the success of the first aircraft produced under the Navy's weapon system management concept is the following AiResearch equipment:

AiResearch Centralized Air Data Computing System provides information for the major flight data subsystems dealing with bombing, navigation, engine inlet control, radar, automatic flight control and includes cockpit indicators showing true air speed, altitude and engine inlet air temperature.

AiResearch Environmental System Components for personnel and compartment air conditioning and pressurization include: cabin pressure regulators, safety valves, cabin refrigeration package, equipment compartment refrigeration package, primary heat exchangers, pressure suit heat exchangers and water-alcohol tanks for evaporative cooling.

AiResearch Ram Air Turbines provide power for operation of surface controls, instrumentation and landing gear in case of emergencies. Also included are miscellaneous valves and electro-mechanical equipment.

AiResearch Manufacturing Divisions
Los Angeles 45, California • Phoenix, Arizona

CIRCLE 91 ON READER-SERVICE CARD
NEW PRODUCTS

Tubular Capacitors
For high voltage use

In hermetically sealed steatite housing, these tubular capacitors are constructed of polyester film impregnated with a stable purified silicone fluid. They are designed to operate at full voltage from −60 to +125°C with no derating. Capacitances range up to 0.5 μF, and dc working voltages range from 2 to 15 kV for continuous operation at 125°C. The units are available with plain end caps for clip mountings; with axial threaded studs no. 8-32 x 3/8 in. long; or with axial tinned no. 20 copper wire leads 1-3/8 in. long at the ends.

Axel Bros., Inc., Axel Electronics Div., Dept. ED, 134-20 Jamaica Ave., Jamaica 18, N.Y.

CIRCLE 92 ON READER-SERVICE CARD

Time Delay Relays
Provide instantaneous reset

Available with multiple poles and various current ratings, type MTRH-6 time delay relays provide immediate reset at the completion of a delay cycle. In standard mounting arrangements, the units occupy 2.25 cu in. and weigh 3 oz.

Branson Corp., Dept. ED, 41 S. Jefferson Rd., Whippany, N.J.

CIRCLE 93 ON READER-SERVICE CARD

A SPECIAL REPORT ON SYLVANIA

MEN OF MICROWAVE ENGINEERING

TWT, BWO, BWM, TR, ATR—At Sylvania’s Special Tube Operations, vital microwave components like these are the products of dedicated scientists and integrated plant facilities

ADVANCED RESEARCH AND DEVELOPMENT

Today, nearly 500 scientists, engineers and technicians in three integrated facilities make up Sylvania’s Special Tube Operations. Sylvania scientists, physicists and mathematicians, all leaders in their fields, are making bold new investigations in the fields of magnetic ferrites, gaseous electron physics, electromagnetic wave propagation and microwave circuitry. Their findings are being applied to the development of advanced microwave devices to meet the increasing needs of industry and government.

Some of the important developments already made possible include PM Focus Traveling-Wave Tubes, Ka Band and Backward Wave Magnetrons, Coaxial Transmit-Receive Tubes, Four-port ferrite circulators and C-Band Klystrons.

TRAVELING-WAVE TUBES

PM Focus Traveling-Wave Tubes sharply reduce size, weight and eliminate the need of a power supply. Sylvania is producing over 15 Traveling-Wave Tube types, one of them is the most complete lines available in terms of frequency coverage and power levels.

MAGNETRONS AND KLYSTRONS

New Sylvania magnetrons range from six-ounce miniatures and rugged Ka band types to Backward Wave Magnetrons. New BWM’s have been developed for several frequency bands in medium to high power outputs. Current Klystron production includes over 20 types—from Disc Seal types to C-Band metal types.

TR-ATR TUBES AND FERRITE DEVICES

Transmit-Receive Tubes in the new coaxial construction are also in production at Sylvania, along with over 20 different ferrite devices.

Sylvania Microwave tubes, Mountain View, Calif.—one of the integrated facilities of the Special Tube Operations
LETTERS

Different types of Klystrons. A full commercial line of ferrite devices ranges from wave guide and coaxial isolators to variable attenuators and other ferrite devices.

MICROWAVE DIODES

Long an acknowledged leader in microwave crystal diodes, Sylvania is continuing to add new and improved versions to its extensive line. New mixer diodes are available that can extend radar coverage by as much as 18 per cent. New dual duty S and X band types that can be used in either forward or reverse applications are also available.

OTHER S.T.O. PRODUCTS

In addition to a full range of microwave components, Sylvania’s Special Tube Operations also produces a complete line of counter tubes, planar triodes and trigger thyratrons.

S.T.O. stands ready to meet the industry’s microwave components needs—for present production items in volume—for custom modifications—or for pure research and development in microwave electronics.

SYLVANIA

Sylvania Electric Products Inc.
Special Tube Operations
500 Evelyn Ave., Mountain View, Calif.

Connectors

Parallel insertion insured

The contacts cannot be overstressed when these Varicon connectors are put together because there is a guide pin or screw to insure parallel insertion. The pin type connectors are double tier with 10 to 42 contacts and one or two guide pins. The pins, which may be mounted either on the male or female member of the connector, are 0.19 in. in diameter and extend 13/16 in. ahead of the insulator. They are made of cadmium plated steel. The screw type Varicons have a spindle which is operated by a knob on top of the connector, and screws into a nut located in a bridge behind the mating member. Besides affording parallel insertion, this screw device acts as a vibration proof lock for mated connectors. These screw connectors are double tier with 20 to 44 contacts.

Transistorized Power Supply

0.1% regulation and stability

Transistorized power supply model SC-18-2 delivers 0 to 18 v, 0 to 2 amp. Regulation for line or load is under 0.1% or 0.003 v, whichever is greater. Ripple is 1 mv rms; recovery time is 50 μsec; and stability for 8 hours is 0.1% or 0.003 v, whichever is greater. The unit operates at a maximum of 50 C ambient and has a temperature coefficient of 0.05% per deg C and an output impedance of 0.01 ohm. It offers overtemperature protection and a continuously variable output voltage without switching. It is designed to operate continuously into a short circuit and is suitable for square wave pulsed loading. There are terminations on the front and rear of the unit, and either positive or negative can be grounded. Power requirements are 105 to 125 v, 50 to 65 cps. Dimensions are 8-1/4 x 4-5/32 x 13-5/8 in. The units can be series connected.

Kepco Labs, Inc., Dept. ED, 131-88 Sanford Ave., Flushing 55, N.Y.

SYLVANIA

Sylvania Electric Products Inc.
Special Tube Operations
500 Evelyn Ave., Mountain View, Calif.

Electronic Design - January 21, 1959
Now, Immediate Delivery from Stock on
GENERAL CERAMICS SPECIAL PURPOSE FERRITE CORES

Ferrite Cores available in various materials for development and design engineers to cover specific frequency bands of operation from 1 KC to 60 megacycles. General Ceramics provides extra-fast service on sample quantities for development and will make prompt delivery on production parts in reasonable quantities. Call wire or write General Ceramics Corporation, Keasby, New Jersey. Please direct inquiries to Dept. ED.

Rush service for designers — use this handy materials selector chart

NEW PRODUCTS

Rotary Mechanical Stops
Size 10

Regardless of turn setting, these rotary mechanical stops are all size 10. Standard units are set for 15 or 30 turns; others can be set for partial turns or any number of full turns from 1 through 30. Suited for use in instruments and gear trains, the stops have a total turn accuracy of ±5% deg. Starting torque is 0.04 in.-oz maximum; static torque, 200 in.-oz minimum; and rotor inertia, 0.68 gm cm². The units operate from —54 to +71 C.

Kearfott Co., Inc., Dept. ED, 1500 Main Ave., Clifton, N.J.

Coaxial Hybrid Junctions
Cover 460 to 4000 mc

For use in duplexers, mixers, and other circuits, these three coaxial hybrid junction models cover frequencies of 460 to 950, 950 to 2000, and 2000 to 4000 mc. They provide 3 db coupling, ±0.25% over the entire band and have a vswr of 1.2 with 20 db isolation. A signal into any terminal of the hybrid appears at the two opposite terminals. The two output signals are equal in amplitude but one is 90 deg out of phase with the other. Each unit consists of two coupled coaxial transmission lines with rectangular center conductors. Type N female terminals are standard, but types C, TNC, BNC, or SC may be ordered.

Narda Microwave Corp., Dept. ED, 118-160 Herricks Rd., Mineola, N.Y.

ELECTRONIC DESIGN • January 21, 1959
Teflon Terminals
For high voltage requirements

Teflon insulated, these Press-Fit terminals are available in nominal voltage ratings of 5500 or 13,000 flashover at sea level. The Teflon offers high surface resistivity and does not carbonize or form decomposition products during flashover or arcing. Thus there is no insulation loss with successive arcing.

Sealectro Corp., Dept. ED, 610 Fayette Ave., Mamaroneck, N.Y.
CIRCLE 106 ON READER-SERVICE CARD

Synchros
Indicate shaft rotation

These synchro transmitters indicate shaft rotation about a reference position in the form of a polarized voltage. Phase relationships indicate the direction of turn. Induction type, the potentiometers need no sliders to make electrical contacts, and thus eliminate circuit interruptions and the wear found in other potentiometer types. Outputs of shaft rotation are linear over a range of ±60 deg from electrical zero. Linearity of the unit is 0.28 to 1%; nominal output, 20.4 or 60 v; sensitivity, 0.34 to 1 v per deg. Input to output phase shift is 9 deg. The unit has a 2 gm cm² rotor moment of inertia and operates from -55 to +100 C. It weighs 4 oz.

Kearfott Co., Inc., Dept. ED, 1378 Main Ave., Clifton, N.J.
CIRCLE 107 ON READER-SERVICE CARD

Kleinschmidt super-speed teletypewriters provide world’s fastest printed combat communications for the U.S. Army!

Taking the jolts and jars of movement by air in stride, the new Kleinschmidt telecommunications units handle printed messages at speeds up to 750 words a minute! Using these machines, developed in cooperation with the U. S. Army Signal Corps, information on enemy movements could move accurately and rapidly to friendly units widely dispersed under nuclear battlefield conditions. In recognition of Kleinschmidt’s high standards of quality, equipment produced for the U. S. Army is manufactured under the Reduced Inspection Quality Assurance Plan. Today, the advanced commercial application of electronic communications is unlimited.

KLEINSCHMIDT
DIVISION OF SMITH-CORONA MARCHANT INC., DEERFIELD, ILLINOIS
Pioneer in teleprinted communications systems and equipment since 1911
GUARANTEED TO WITHSTAND 1,000 VOLTS!

GVB-finished tape wound core boxes drop your production costs

We have developed a radical new finish for aluminum boxes for tape wound cores. Your production department will glow with delight, for we guarantee this finish to withstand 1,000 volts (at 60 cycles) without taping!

GVB, for Guaranteed Voltage Breakdown (limits), is what we call this new finish. It is perfectly matched to our aluminum core boxes, for it will withstand temperatures from -70°F to 450°F. Potting techniques need not change, for GVB-finish lives happily with standard potting compounds.

By eliminating the need for taping the core box, you also eliminate a time consuming production step. By combining GVB-finish with our aluminum core box, we assure you a core capable of being vacuum impregnated down to 20 mm. of mercury.

And they are Performance-Guaranteed! Like all tape wound cores from Magnetics, Inc., aluminum-boxed or phenolic-boxed, you buy them with performance guaranteed to published limits. The maximum and minimum limits are for B_m, B_r/B_m, H_t and gain. This data is published for one, two, four and six mil Orthonol® and Hy Mu 80 tape cores.

GVB-finished cores are ready for you now. So are the published limits for all Magnetics, Inc. tape wound cores. Write today for more GVB details, and for your copy of the guaranteed performance limits: Dept. ED-51 Magnetics, Inc., Butler, Pennsylvania.

NEW PRODUCTS

Low Frequency Analyzer
2 to 22 cps resolution

Model SS-5 low frequency analyzer will give a fourier analysis of all signals in the 1 cps to 5.3 kc range, and simultaneously measure frequency and amplitude. The unit provides continuously variable tracked sweep width, sweep rate, and gain compensation. It has neon tube failure indicators, front end overload protection, a spurious rejection input filter, and a built in power supply. Center frequency is 0 to 5 kc; sweep width, 20 to 600 cps; sweep rate, 1 to 30 sec; resolution 2 to 22 cps; and full scale sensitivity, 5 mv to 500 v. Voltage scales are linear and 2 decade log. The SS-5 is suited for the design and harmonic analysis of servo and telemetering systems; for tape recorder wow and hum analysis; and for vibration and noise analysis of motors, generators, and electron tubes.

Probescope Co., Inc., Dept. ED, 8 Sagamore Hill Dr., Manhasset, N.Y.
CIRCLE 110 ON READER-SERVICE CARD

Voltage-Current Calibrator
0.3% accuracy

Designed to serve as either a comparator type calibrator or a secondary voltage standard, model 1080 voltage-current calibrator has better than 0.3% accuracy. As a voltage reference, it delivers calibrated positive or negative voltages continuously variable through four ranges between 1 mv and 100 v. The standard voltage is available either as a direct voltage or as a 5 msec level repeated at rates of 5 to 50 times per sec. In comparator type operation, the unit calibrates positive or negative voltages from 1 mv to 1000 v or currents from 1 ma to 10 amp, continuously variable through five and four ranges, respectively.

Rese Engineering, Inc., Dept. ED, 731 Arch St., Philadelphia 6, Pa.
CIRCLE 111 ON READER-SERVICE CARD

ELECTRONIC DESIGN • January 21, 1959
Antenna Multicoupler

45 db minimum isolation

This antenna multicoupler will pass the frequency range between 200 and 400 mc from a single wideband antenna to four separate-channel receivers. By cascading multicouplers, the same antenna will feed additional receivers. Used as a wideband amplifier, the unit will feed the signals of one generator to four independent rf amplifiers or receivers. Isolation between outputs is 45 db minimum; gain is 10 db for each channel; and uniformity of response is ±2 db. The unit has an integral power supply and is packaged for standard rack mounting.

CIRCLE 112 ON READER-SERVICE CARD

Digital Shaft Position Encoder

Has magnetic readout

With passive circuitry and no mechanical or optical contact, model EPD-3 shaft position encoder provides long life and resistance to heat, cold, humidity, and dirt. Its readout is magnetic.

The unit has a disc with magnetized code spots arranged in concentric tracks around the wheel. The spots are invisible and never wear out. Above the path of each track, a toroid is mounted close to the disc. As the disc turns and a magnetic spot passes beneath a toroid, the toroid is saturated and its impedance drops to zero. Readout is accomplished by interrogating the toroids with a constant current pulse. With a voltage pulse across the unsaturated toroids, and one across the saturated, a binary 1 or 0 is generated on demand. The angular position of the disc, whether it is still or turning at 10,000 rpm, is determined within 0.5 deg resolution by the output pulse code. The interrogation rate can be up to 5 million pulses per sec.

Applied Science Corporation of Princeton, Dept. ED, P.O. Box 44, Princeton, N.J.

CIRCLE 113 ON READER-SERVICE CARD

Handy & Harman Silver Brazing Alloys

...The COMPLETE line that meets all specifications and production needs

Need to join any combinations of metals—ferrous and nonferrous? Investigate the vast number of products, assemblies and parts that are being joined better by silver brazing alloys. Handy & Harman, the Number One Source of, and Authority On Brazing Alloys and Methods makes—and makes readily available—the following silver brazing alloys:

![Handy & Harman Silver Brazing Alloys](image)

GET THE FACTS FROM BULLETIN 20

This informative booklet gives a good picture of silver brazing and its benefits...includes details on alloys, heating methods, joint design and production techniques. Write for your copy.

CIRCLE 114 ON READER-SERVICE CARD

ELECTRONIC DESIGN • January, 21, 1959
GLOBE A.C. MOTORS / GEAR REDUCERS / PACKAGES

In precision miniature motors, gear reducers, and small-package devices using clutches, brakes, and other components, Globe Industries has the hardware to meet your requirement. From a single source you can get fast 2 to 4 week prototype delivery of standard units. Modular design, interchangeable precision parts, and an efficient special order department are specific, unique reasons why you get what you need before your design grows cold.

Three basic A.C. motors are shown above. With their integral gear reducers they reliably span the torque range to more than 2000 in. oz. Custom modifications are a specialty.

Globe motor packages were chosen for the Army's Jupiter C. and as you read this, at least one such package is circling the earth. Ask the largest precision miniature motor manufacturer first. Request the Globe A.C. Motor Catalog now. GLOBE INDUSTRIES, INC., 1784 Stanley Avenue, Dayton 4, Ohio. BAldwin 2-2741.

NEW PRODUCTS

Miniature Pulse Amplifier

Supplies 2 amp peak in 10 psec pulses

Miniature twin-triode type 6955 is a 9-pin, medium-mu amplifier suited for blocking oscillators, square wave modulators, and multivibrators. It can supply 2 amp of peak current in 10 psec pulses and warms up to 505 of steady state plate current within 10 sec. It has high resistance to the formation of cathode interface resistance and operates from -62 to +100 C. It is also vibration resistant. The unit has twin 175 ma heaters that can be connected in series or parallel for operation at 6.3 or 12.6 v.

CIRCLE 116 ON READER-SERVICE CARD

Precision Potentiometers

Linear and nonlinear

Single turn precision units, type 757 potentiometers are 1-3 4 in. in diameter and come in four basic design variations. Type 757C, potentiometers, for linear or nonlinear applications, use a card winding. They operate from -55 to +85 C and have a resistance range from 1 to 300 K. Standard linearity is ±0.5%, but values to ±0.25% are obtainable. Resolution varies between 0.035 and 0.15% depending on resistance.

Type 757M units use a mandrel winding for linear applications, and can be gauged with up to eight cups on a single shaft. The external clamp does not increase the diameter of the units. Temperature range is -55 to +85 C for standard units and up to +150 C for high temperature versions. Resistance range is 1 to 250 K, resolution is 0.0356 to 0.1%, according to resistance; and linearity is ±0.25% in standard models, ±0.15% in special models.

Fairchild Controls Corp., Components Div., Dept. ED, 225 Park Ave., Hicksville, N.Y.

CIRCLE 117 ON READER-SERVICE CARD
Operating without electronic tubes, series GX silicon power rectifiers have an output voltage of 30 v dc and output currents of 0 to 10, 0 to 15, and 0 to 20 amp. They consist of a double wound varnish impregnated step-down transformer, a full wave silicon rectifier, a varnish impregnated reactor, and a filtering network. Models 15GX and 20GX have a protection circuit with a front panel warning light which flashes when continuous ratings are exceeded. All models have several transformer taps so that the voltage output may be adjusted to 30 v dc for various values of line and load. The units operate from 110 to 125 v ac and have under 1% ripple. Their overload capacity is 400% for 1/2 minute; 200% for 2 minutes. Model 10GX is 19 x 8-3/4 x 10 in.; models 15GX and 20GX are 19 x 10-1/2 x 11 in. All are for rack mounting.

Gates Electronic Co., Dept. ED, 2090 Barnes Ave., Bronx 62, N.Y.

CIRCLE 118 ON READER-SERVICE CARD

Voltage-Controlled Oscillators
For airborne telemetry

Available in standard and miniature sizes, these voltage-controlled oscillators are designed for airborne telemetry. The standard unit has ±15 temperature stability from 20 to 100 C and withstands 100 g shock and 20 g vibration at 2000 cps. It supply variations of 10% produce less than 1% bandwidth frequency shift. The unit will drive most transmitters without a mixer amplifier. The miniaturized unit uses a single 18 v dc supply and has ±3% temperature stability from 20 to 100 C. It withstands the same shock and vibration as the standard unit. Bandwidth frequency shift is under 2% for 10% B supply variation, and distortion is less than 1%. Both standard and miniature units are also available with germanium transistors and temperature ranges to 70 C.

Data-Control Systems, Inc., Dept. ED, Danbury, Conn.

CIRCLE 119 ON READER-SERVICE CARD
new!...printed circuit

Continental Connector

designed for use in one of the country’s largest military data processing systems

Again, Continental Connector proves its reliability and engineering know-how with this remarkable new printed circuit connector. Overall length is actually 9%"...the longest, single piece precision molded connector known!

Standard molding compound is high impact reinforced glass Alkyd (other molding materials available on request). 34 contacts have .250" spacing including heavy barriers for extra protection and long creepage path. Patented "Bellows Action" contacts are conservatively rated to accept printed circuit board thickness of .054 to .072", while maintaining low contact resistance and positive spring action grip over entire printed circuit contact area. Maximum board length is 8%". Self-alignment of "Bellows" Contacts allows for any residual warpage of printed circuit board. An anodized aluminum shield for dissipating heat is available as an optional accessory when required (see illustration).

Our engineering staff is available for developing other unique design printed circuit connectors that may solve your special connector problems. For complete technical specifications, write to Electronic Sales Division, DeJUR-Amsec Corporation, 45-01 Northern Boulevard, Long Island City 1, New York.

NEW PRODUCTS

Tantalum Capacitors
Shock and vibration resistant

Improved type PP miniature tantalum capacitors have an anode base support for resistance to shock and vibration. Suited for airborne equipment, they operate at high altitudes and remain electrically stable from -55 to 85 C.

Fansteel Metallurgical Corp., Dept. ED, North Chicago, Ill.

CIRCLE 122 ON READER-SERVICE CARD

Volt-Ohmmeter
For TV and industrial testing

Supplied in kit form or factory-wired, the WV-77E VoltOhmyst can be used for television and industrial test applications. It measures ac rms sine wave voltages from 0.1 to 1500 v; dc voltages from 0.02 to 1500 v; peak to peak ac voltages from 0.2 to 4000 v; and resistance values from 0.2 ohm to 1000 meg. The ac voltmeter portion features an electron tube as the full wave signal rectifier. The unit has provision for zero center indication; separate scales for low ac voltage measurements; and protection against meter burnout. The resistors in the ohms divider network are protected by a separate fuse. Input impedance is high on all dc and ac voltage ranges.

Radio Corporation of America, Electron Tube Div., Dept. ED, Harrison, N.J.

CIRCLE 470 ON READER-SERVICE CARD

Electronic Tachometers
Accuracy of 1%

With transistorized circuitry and no moving parts except for a meter movement, series ET tachometers maintain 1% accuracy through variations from -30 to +160 F, 95 to 135 v ac, and 55 to 65 cps. They have a built in frequency test reference for calibration, and can be used to measure rotary or linear speeds of such devices as conveyors, motors, pumps, machine tools, and jet and reciprocating engines. Models are available with a variety of ranges from 0.1 to over 1 million rpm full scale. The units have deep-drawn aluminum cases and a can front that is extended and profiled to protect the panel meter and control knob.

Southwestern Industrial Electronics Co., Dept. ED, 2831 Post Oak Rd., Houston 19, Tex.

CIRCLE 123 ON READER-SERVICE CARD

ELECTRONIC DESIGN • January 21, 1959
Capacitors
Highly stable

For laboratory standards, compensating networks, rf filters, and general coupling use, these high stability polystyrene dielectric capacitors offer 0.03 to 0.01% retrace. Temperature coefficient is -100 ppm per degree C, ±20 ppm; insulation resistance is 1 million meg per uf at 25 C; dielectric absorption is 0.01 to 0.02%; and operating temperature range is 0 to +70 C. Dissipation factor at 1000 cps is 0.05%. Various capacitance and voltage ratings are available with tolerances of ±5, ±2, ±1, and ±0.5%.

Electronic Fabricators, Inc., Dept. ED 682 Broadway, New York 12, N.Y.
CIRCLE 124 ON READER-SERVICE CARD

Linear Potentiometer
Mounts inside hydraulic actuators

This linear potentiometer mounts to the piston inside a hydraulic cylinder. Built to withstand virtually all specified MIL and JAN environments, it operates effectively at high altitudes, under high humidity conditions, and at constant temperatures to 400 F. Linearities are 0.1% or more, depending on the stroke, and resistances start at 1 K with either center or functional taps on standard models. The potentiometer elements, made from precious metal alloys, are produced with OD's down to 0.5 in., and strokes from 0.1 to 8 in.

Edcliff Instruments Inc., Dept. ED, 1711 S. Mountain Ave., Monrovia, Calif.
CIRCLE 125 ON READER-SERVICE CARD

Now with General Plate Electrical Contact Tape...
You Can
SAVE UP TO 40%
On Contact Cost

In addition...
Contact Tape permits:
• Broader latitude in contact assembly design
• Smaller contacts for same electrical loads
• Weight-saving
• Simpler material handling

General Plate Electrical Contact Tape can be applied to any large-volume contact design, permitting the automatic assembly of two or more parts in a single operation.
Tape contacts are easily attached by spot welding methods. They are self-aligning...allow broader assembly tolerances. Because of this, tape contacts reduce assembly costs and eliminate or reduce adjustment time.

Tape contact material is supplied in long continuous lengths which simplify material handling.
In addition to supplying clad electrical contact tape material, General Plate is equipped to weld contact tape sub-assemblies for you.
Design engineers are invited to make use of General Plate contact engineering services...for material selection...parts design...samples.

Let us make an electrical contact cost analysis on products you want to automate. Find out how General Plate electrical contact tapes, as well as other clad contacts, can be put to work for you.

METALS & CONTROLS
General Plate Division
CORPORATION
701 Forest St., Attleboro, Mass.

CIRCLE 126 ON READER-SERVICE CARD
CUSTOMER PROBLEM:
Require test rig for measuring full scale aircraft turbine bearings. Test rig must simulate actual operating conditions.

SOLUTION:
N/D engineering, in cooperation with customer under the direction of a defense agency, developed the aircraft turbine bearing testing equipment shown above. The Test Rig Control Console, shown on the left, initiates and controls tests, and completely records all operating performance characteristics. The test stand itself, above right, simulates the actual conditions to which the bearings are subjected in flight. It develops radial loads of up to 25,000 lbs. . . . and thrust loads reaching a maximum 75,000 lbs. Bearings up to 110mm bore are tested at speeds as high as 20,000 r.p.m., in temperatures ranging up to 1200° F. Research facilities such as this are your assurance that New Departure stands ready to work closely with you on your bearing research problems. For information on New Departure precision Aircraft and Instrument ball bearings, or research facilities, call the New Departure Sales Engineer in your area or write Dept. J-1.

NEW PRODUCTS

Instrument Load
Suitable as a secondary standard

A stable instrument load, type 1108B provides a nearly reflectionless termination on a 50 ohm coaxial transmission line. For the 0 to 1100 mc frequency range, the unit is suitable for use as a secondary standard. It has a rated vswr below 1.02 and a maximum input power of 0.5 w. It is designed for use with type N connectors.

CIRCLE 128 ON READER-SERVICE CARD

Printed Circuit Sockets
Precision molded

Available in eight types, these precision molded printed circuit sockets come with 7 to 9 pins. All have center shields.

Waldom Electronics, Inc., Dept. ED, 4625 W. 53rd St., Chicago 32, Ill.

CIRCLE 129 ON READER-SERVICE CARD

VHF Silicon Power Transistors
Triple-diffused npn junction type

These six silicon power transistors are triple-diffused npn junction units with mesa configuration. Three are 70 mc oscillator transistors and three are 70 mc amplifier transistors. In each group, power capabilities at 70 mc are 1/4, 1/2, or 3/4 w. Collector power dissipation rating at 50 C case temperature is 2-1 4 w. All units operate at collector voltages up to 100 v dc. The three amplifier transistors have a typical gain of 10 db at 70 mc.

CIRCLE 130 ON READER-SERVICE CARD
Servo Analyzer
Covers 0.1 to 2 and 1 to 20 cps

Measuring phase, transient response, and gain, model H servo system analyzer facilitates the plotting of Nyquist, Bode, or Nichols diagrams. Covering the 0.1 to 2 and 1 to 20 cps ranges, it provides direct reading of amplitude, frequency, and phase lag. Phase measurements are accurate within ±1 deg, and frequency accuracy is ±5% of setting. The unit generates sine wave and modulated carrier waveforms. For standard 19 in. rack or bench use, it measures 19 x 8.75 x 12 in.

Servo Corporation of America, Dept. ED, 20-20 Jericho Turnpike, New Hyde Park, N.Y.
CIRCLE 131 ON READER-SERVICE CARD

Digital Components
Plug-in

This set of transistorized digital computer circuit packages includes flip-flops, diode logic boards, read amplifiers, write amplifiers, and blocking oscillators. Each component contains two identical circuits except the logic board. This contains 2-1, 2-2, 2-3, 2-4, and 2-5 function AND gates, and nine OR gates. DC pulse gating techniques permit operation of 75 pulse gates from each output of the flip-flop and read amplifier at frequencies up to 500 kc. The boards are supplied individually or with mounting racks, power supplies, magnetic drums, and other circuitry to serve as memory units, shift registers, buffer registers, counters, and logical control units.

Aeronutronic Systems, Inc., Computer Div., Dept. ED, P.O. Box 486, Newport Beach, Calif.
CIRCLE 132 ON READER-SERVICE CARD

This is a FOTOCERAM printed circuit
...an unusual new type of printed circuit board

Reliable through-plate holes • The good adhesion of the circuit runs applies also to the through-plate holes because both are produced with one plating operation.

Excellent resolderability • We have removed and resoldered components over twenty times on a FOTOCERAM board without damage to circuit runs or through-plate holes. And this is without using adhesives to bond the copper to the board.

Dimensional stability • Rigid structure of FOTOCERAM prevents unusual design considerations—eliminates problem of warp and twist.

Good adhesion • It takes 12-25 pounds to peel a one-inch copper strip from a FOTOCERAM board.

Exceptional pull strength • 1400 pounds per square inch.

No water absorption • FOTOCERAM's nonporous—zero water absorption.

Non-flammable

No blisters • FOTOCERAM never blister. We put it through repeated 15-second cycles of copper metallizing at 500°F. and could not find a single blister or sign of peeling or failure.

Other properties:
Dissipation factor
1 mc @ 20°C. 0.006
@ 200°C. 0.014

Dielectric constant
1 mc @ 20°C. 5.6
@ 200°C. 6.3

Loss factor 1 mc @ 20°C. 0.034
@ 200°C. 0.088

For more information, write for our Data Sheet on FOTOCERAM.

CORNING GLASS WORKS, Bradford, Pa.

CIRCLE 133 ON READER-SERVICE CARD

FOTOCERAM circuit board blanks are made photographically. All holes and shapes are produced by simple exposure to light, heat, and an etching operation.
Sola packs 6 amps of 300-watt regulated dc power into 5 1/4 inches of relay-rack space

Looking for a source of regulated dc power that fits into a small space? You'll probably find that the Sola Constant Voltage DC Power Supply offers what you want.

This compact unit has exceptional performance characteristics, too—it delivers current in the "ampere range," regulates within ±1% even under a ±10% variation in line voltage, has less than 1% rms ripple, and even tolerates dead shorts. It is 80% efficient and has a very low static output impedance.

How's it done? Sola managed it through a balanced assembly of three complementary components—a special Sola Constant Voltage Transformer is teamed up with a semiconductor rectifier and a high-capacitance filter. Electrical characteristics of the transformer maximize most of the advantages of the rectifier and filter, while virtually eliminating all their disadvantages. The resulting regulated dc power supply is simple, highly reliable, compact and moderately priced.

These benefits are exhibited by the entire line of Sola dc power supplies. Sola has designed and produced hundreds of ratings to meet requirements of equipment manufacturers. The company is set up to handle specific needs for custom-designed units in production quantities. A Sola sales engineer can supply all the facts. In addition to this custom service, Sola currently stocks six models ranging from 24 volts at six amps to 250 volts at one amp.

For complete data write for Bulletin 14A-CV-235

Sola Electric Co., 4633 W. 16th St., Chicago 50, Ill. Bishops 2-1414 • Offices in principal cities • In Canada, Sola Electric (Canada) Ltd., 24 Canmotor Ave., Toronto 18, Ont.
Servo Multiplier
0.25% static error

Miniaturized servo multiplier type SL-1024 consists of a servo loop that positions a shaft to follow a +de signal and a multisector potentiometer for computation. It uses a transistor-magnetic amplifier with all circuits sealed and operates directly from a 117 v, 400 cps line. Typical input signals are within ±100 v de, with static error under 0.25% and full scale travel within 0.5 sec. The output position is indicated on a calibrated dial. Four of the units fit into a 19 in. rack panel type 764-A. The computing potentiometer sections are customer specified. Other data elements, such as autosyns or resolvers can be coupled to the potentiometer.

Industrial Control Co., Dept. ED, 805 Albin Ave., Lindenhurst, N.Y.

CIRCLE 137 ON READER-SERVICE CARD

Transistorized Digital Totalizer
Accuracy of ±1 indicated count

Designed to perform independently or with the company's turbine-type flowmeters, model 521 digital totalizer is a fully transistorized modular plug-in subassembly. Its print wired circuitry is stabilized for operation up to 160 F. The counter will totalize any events, such as flow or revolutions, which can be converted to electrical impulses. Switch selected digital circuitry can extend its range by 10 or 100 times. Frequency range is 0 to 4000 cps for pulse input and 10 to 4000 cps for sinusoidal signal; sensitivity is 10 mv, rms 10 to 400 cps, 20 mv at 1 kc, and 50 mv at 4 kc. Count capacity is 999,999 and accuracy is ±1 indicated count, including the effects of line voltage from 105 to 130 v and of temperature to 160 F. Standard styles include portable, half-rack, explosion proof, and industrial panel mounted versions.

Potter Aeronautical Corp., Dept. ED, Route 22, Union, N.J.

CIRCLE 138 ON READER-SERVICE CARD

Five switches of special interest to Electronic Engineers
Three of them are NEW

NEW
ultra-small
super-sensitive
mercury switch AS603A1

This new switch, designed for vertical gyros, stable platforms, missiles and rockets, is the most precise mercury switch available. Differential angle—150° max. Mass shift—.085 gm. cm. SPDT. It operates reliably at temperatures as low as 65° F. Hermetically sealed contacts. Switch is unaffected by water vapor, dust, dirt, fungus and corrosive fumes. It is rated at .225 amps, 30 vac, 400 cps resistive load. Weight—3.5 grams (including leads). Ask for data sheet No. 153.

NEW
“SX” series
sub-subminiature
switches

These all-new switches combine extremely small size with regular size electrical capacity and excellent reliability. They present a new set of possibilities to the designer of compact devices. 5 amps, 250 vac, 30 vdc. Two mounting holes accept No. 2 screws. Weight—1.28 oz. Ask for data sheet No. 148.

NEW
“1PB600” series
“One Shot” switches

These new switch assemblies produce a one-and-only-one pulse output. Miniature package includes pushbutton switch and potted one-shot circuit. Eliminates need for designing special pulse input circuits for high speed electronic devices. The square wave pulse width is factory adjustable from .5 to 2.5 micro seconds, and the amplitude from 0.1 to 60 volts. Both width and amplitude are independent of speed of operation of switch. Ask for data sheet No. 150.

NEW
“SE” series environment-free subminiature switches

“SE” Series switches are the smallest and lightest environment-free switches available. Construction is completely sealed. Operate reliably from 65° to +450° F. Pin plunger actuation. Choice of contact arrangements. Rating 5 amps. 125 or 250 vac. 28 vdc—15 amps. inrush; 4 amps. resistive; 3 amps. inductive. Weight—24 oz. (without leads). Ask for Catalog 77.

Engineering assistance in switch applications is available from the MICRO SWITCH branch office near you. Consult the yellow pages of your telephone book.

MICRO SWITCH... FREEPORT, ILLINOIS
A division of Honeywell
In Canada: Honeywell Controls, Ltd., Toronto 17, Ontario

Honeywell
MICRO SWITCH PRECISION SWITCHES

CIRCLE 139 ON READER-SERVICE CARD
NEW PRODUCTS

Secondary Voltage Standards

Absolute accuracy of ±20 ppm for 8 hr

These two secondary standard reference power supplies have an absolute accuracy of ±20 ppm for 8 hr, and ±50 ppm for long terms over their entire load and line voltage ranges of 0 to 100 ma and 105 to 125 v. Model PVS-105A has a dual output of ±50 v, or 100 v if used end to end. Model PVS-105B provides ±36 v, or 72 v end to end. In dual channel application, the voltages track each other to within 20 ppm. Total adjustment range is ±120 mv around the nominal voltage rating, and thermal stability is better than 2 ppm per deg C in the region of 25 C. The units incorporate a cycled zener reference diode and a stable transistorized preamplifier, both mounted in an isothermal oven. Meters and controls are provided to permit calibrating the output against an internal reference cell, to ±20 ppm.

Julie Research Labs, Inc., Dept. ED, 556 W. 168th St., New York 32, N.Y.

CIRCLE 141 ON READER-SERVICE CARD

Crystal Can Relays

Sensitivities of 25 and 40 mw

Type RS800 spdt and RS800 dpdt crystal can relays provide sensitivities of 25 and 40 mw respectively, without the use of permanent magnets or polarized exciting power. The units measure 1.281 x 0.915 x 0.462 in. and withstand 20 g vibration to 2000 cps and 100 g shock. They have a minimum life of 100,000 operations at 125 C while carrying contact loads of 2 amp at 115 v rms and 28 v dc. Header terminals are arranged on a 0.2 in. modular basis for plug-in circuit applications. Solder hook terminals are also available.

CIRCLE 142 ON READER-SERVICE CARD

GUARANTEED PERMEABILITY...and at higher values than old average values in AL-4750

AL-4750 nickel-iron strip now has higher permeability values than ever before...and the new, higher values are guaranteed. For example, using the standard flux density test, at 40 induction gauss, AL-4750 now has 57% higher permeability than in the past. And permeability values are guaranteed.

This guaranteed permeability means greater consistency and better predictability for magnetic core performance...permits careful, high performance design.

The improvement in AL-4750 didn't just happen. It is the result of Allegheny's electrical alloy research and production program in nickel-bearing steels. A similar improvement has been made in AL Moly Permalloy.

And research is continuing on silicon steels including AL's famous Silelectron (grain oriented silicon steel), as well as on other magnetic alloys.

Another service of Allegheny Ludlum includes complete facilities for the fabrication and heat treatment of laminations. Years of experience in AL's lamination department means that Allegheny Ludlum has encountered and solved most problems common to core materials. This practical know-how is available to all. Call us for prompt technical assistance. Write for blue sheet EM-16 for complete data on AL-4750.

ALLEGHENY HUDALU

STEELMAKERS TO THE ELECTRICAL INDUSTRY

Experience—the added alloy in A-L Stainless, Electrical and Tool Steels

ELECTRONIC DESIGN • January 21, 1959
Multiconductor Cable Tester
Checks 150 circuits per minute

Fully automatic, model 50-A is a go-no-go cable test set that checks continuity, insulation resistance, and high potential of cables or junction boxes with up to 109 conductors. Each circuit under continuity test is isolated from all others; and each terminal in the leakage resistance and high potential test series is checked against all other terminals simultaneously tied to ground. Any no-go decision halts the testing, and the exact fault is located by the indicators. Parts of a test or one or more of the three functions can be by-passed. For continuity, test rate is 150 circuits per minute; for insulation resistance, 150 terminals per minute. High potential test duration is selectable from 2 to 120 sec per terminal.

Optimized Devices, Inc., Dept. ED, P.O. Box 38, Gedney Sta., White Plains, N.Y.
CIRCLE 143 ON READER-SERVICE CARD

Resistance-Capacity-Ratio Bridge
Portable

Resistance-capacity-ratio bridge model RC-1 is a portable tester with four resistance ranges from 0.5 ohms to 200 meg, four capacity ranges from 10 pf to 2000 pf, and ratio test ranges from 0.05 to 20. The unit incorporates a 3 volt amplifier for checking electrolytes used in miniaturized equipment such as transistor radios. It provides a 0 to 60% power factor test on capacitors from 0.1 to 2000 pf and a sensitive leakage test for all types of capacitors at rated voltages between 0 and 500 vdc. It also provides a quick reactance ratio between any two capacitors, inductors, or resistors within the ratio test range, and can be used to determine the turns ratio of transformer windings. Power requirements are 117 vac, 60 cps, 25 w; dimensions, 7 x 11-1/2 x 5 h.

Pyramid Electric Co., Dept. ED, 1445 Hudson Blvd., North Bergen, N.J.
CIRCLE 144 ON READER-SERVICE CARD

U.S. Army Signal Laboratory designs computer to measure wind effects on missile launchings...

...and Vernistat* is there!

Near-surface winds at a launching can easily force a missile off course; with the result that the missile lands outside the target area. To counter the effect of such surface winds, the missile launcher is tilted to a corrective angle. Calculating the wind effect and the proper angle of tilt of the launcher, however, can be mathematically quite complex and a time-consuming operation. The United States Army Signal Research and Development Laboratory at Ft. Monmouth, New Jersey has developed a compact computer for this job. Quickly and accurately, from pilot balloon data, the computer calculates both wind displacement on the missile and the proper tilt of the launching stand.

Doesn’t Vernistat thinking belong in your system design too?

Nonlinear servo system and computer inputs are easily adjusted with the Vernistat Adjustable Function Generator. In addition, the Function Generator enables nonlinear system characteristics to be corrected with a minimum of time and effort. The Function Generator, a variation of the unique Vernistat a. c. potentiometer, can generate mathematical or empirical functions, even those with multiple slope reversals. The function is displayed graphically on a 6 x 8 inch panel which allows for instant visualization and adjustment.

Connected to a 34-pole printed circuit switch are 101 voltage levels. Any of the 34 poles can be connected to any desired voltage level to within 0.5%. The Generator’s X-axis represents shaft position of an interpolating Vernistat potentiometer, and the Y-axis represents percentage of input voltage.

Linear interpolation between each adjacent pair of the 34 selected voltage levels is provided by a Vernistat interpolating potentiometer. Minimum slope of voltage output curve is zero, with a 20-volt maximum between adjacent poles. Maximum output impedance is 130 or 470 ohms. Units are designed for operation over a wide range of frequencies.

Write now for full details on Vernistat Adjustable Function Generators, a. c. potentiometers, and variable ratio transformers.

*Vernistat - a new design concept that unites in one compact device the best features of both the precision autotransformer and the multiturn potentiometer.

Perkin-Elmer Corporation

763 Main Avenue, Norwalk, Conn.
NEW PRODUCTS

Environment Cabinets

Temperature-humidity

"Weatherlab" temperature-humidity environmental cabinets can sustain temperatures from -120 to +350°F and humidities from 20 to 98%. Models range in size from 5 cu ft to large walk-in types. They are equipped with high pressure, large volume air blowers to assure uniform temperature throughout the chamber. Humidity is supplied and controlled through a water float, feed valve, and electrically heated steaming chamber or a separate, electrically heated steam generator that is mounted externally. All electrical or electronic controls are interlocked, and recorder-controller programmers are available for cycling operations according to military specifications. Of double wall construction, the units have Monel metal interiors for corrosion resistance and Fibreglas insulation a minimum of 6 in. thick. Thermopane windows in doors and penetrations in the walls can be supplied as required.

Hudson Bay Co., Dept. ED, 3070-82 W. Grand Ave., Chicago 22, III.

CIRCLE 147 ON READER-SERVICE CARD

Directional Couplers

Have high directivity

Designed for reflectometer measurements in waveguide systems, these dual directional couplers have flat coupling response, ±0.4, and high directivity, 40 db minimum. Coupling structures are placed on opposite broad walls of the primary line, and the output arm of each secondary line is an H-plane bend, brought out on a common side. Detector mounts can be readily attached to these arms for power monitoring or for measurement of reflection coefficients within systems. All models except the M band are constructed from precision waveguides; milled blocks of tellurium copper are used in the unit covering 50 to 75 kmc. Coupling holes are placed on thin metallic foils which form the common broad walls between the primary and secondary lines. Input and output arms of all models are terminated with standard cover flanges. Coupling value of all units is 20 db; primary line vswr is 1.1 maximum for the M band unit, 1.05 for all others; secondary line vswr is 1.15 maximum.

Narda Microwave Corp., Dept. ED, 118-160 Herricks Rd., Mineola, N.Y.

CIRCLE 148 ON READER-SERVICE CARD

Heat-Dissipating ELECTRON TUBE SHIELDS IMPROVE RAYTHEON'S CAA "FLIGHT TRACKER" RADAR!

IERC Heat-Dissipating Electron Tube Shield Solve Critical Thermal/Reliability Problem

Raytheon's thermal-conscious engineers were responsible for early recognition and localization of a detrimental heat problem caused by high operative temperatures of electron tubes. They overcame the problem in the "Flight Tracker" system quickly, easily and economically with IERC Heat-dissipating Electron Tube Shields — resulting in effective tube cooling, increased tube life and equipment reliability!

Effective Tube Cooling in Critical Circuits!

IERC TR-type shields are used (as shown) in the Video Integrator panel, a part of the moving target indicator (MTI) unit of Raytheon's "Flight Tracker" Radar System. IERC's Heat-dissipating Tube Shields play a leading role in dissipating heat from the tubes in these critical circuits.

International Electronic Research Corporation
145 West Magnolia Boulevard, Burbank, California

Heat-dissipating electron tube shields for miniature, subminiature and octal/power tubes.

CIRCLE 146 ON READER-SERVICE CARD
Polystyrene Capacitors

Tolerances of ±5 and ±2%

Reduced in length, these hermetically sealed polystyrene capacitors meet all existing military specifications in the 0.001 to 100 μf capacitance range for voltage ratings to 1200 vwd. They operate from -65 to +85 °C without derating. Standard tolerances are ±5 and ±2%, but tolerances closer than ±1% may be specified.

Electronic Fabricators, Inc., Dept. ED. 682 Broadway, New York 12, N.Y.
CIRCLE 150 ON READER-SERVICE CARD

Current Pulse Generator

Produces μsec pulses

Current pulse generator model 1051 produces jitter-free positive or negative pulses with durations of approximately 10, 20, 50, and 100 μsec. Pulse amplitudes are continuously variable from 0 to over 2 amp, and pulse repetition frequency is continuously variable from 100 pps to 10,000 pps. Rise time for 10 μsec pulse widths is approximately 5 μsec. The unit can be used for thin magnetic film studies, diode and transistor switching and recovery studies, and basic magnet switching research. In addition to periodic operation from internal clock timing, the 1051 may be triggered from an external source or manually operated from a front panel push button. Supplied in a cabinet 16-1/2 x 8-1/4 x 8 in., it consumes 75 w from a 115 v, 50 to 60 cps line.
Rese Engineering, Inc., Dept. ED, 731 Arch St., Philadelphia 6, Pa.
CIRCLE 151 ON READER-SERVICE CARD

New Humphrey dual-rate gyros do the work of two units

Now important reductions in the space required for instrument and control packages can be made with the introduction of a new Humphrey rate gyro that replaces two ordinary gyros. The new design utilizes a single motor to drive two separate wheels in one unit. With this new development, it is possible to measure rates about two different axes with an RG-18 Series Gyro or cover two different rate ranges about the same axis with a single RG-20 Series instrument.

RG-18 gyros should find widespread use for applications now requiring two instruments. For example, one unit could be used to measure both pitch and yaw. The RG-20 Series, with its two different rate ranges, may be applied to instrumentation systems where greater accuracy is required. For example, a single unit can be furnished to cover the rate ranges from 0–20 degrees/second and from 0–200 degrees/second. In effect, you expand the dynamic range of your instrumentation system from 100 to 1 to 500 to 1. This expanded scale gives you far greater accuracy.

The new rate gyros are built with two independent pickoffs—one for each axis or one for each range. They meet tough environmental conditions, such as temperature from -65°F to 180°F while operating, relative humidity 100%, unlimited altitude and excellent resistance to acceleration, vibration and shock. Phone or write today and let the kind of engineering that developed these new dual-rate gyros go to work for you.
Kennedy Introduces

a new

low-band
duplexer

for

755-985 mc range

NEW PRODUCTS

High Voltage Power Supplies

0.1% line or load regulation

High voltage, high current Magnitran power supplies combine the properties of a magnetic regulator with the fast transient characteristics of a transistor regulator. Two models are available: the TR160-1M which provides an adjustable output of 10 to 160 v dc at 0 to 1 amp, and the TR300-1M with an adjustable output of 150 to 300 v dc at 0 to 1 amp. The units operate from an input of 100 to 130 v ac, 60 cps with line or load regulation of 0.1% and ripple of 0.01% or 50 mv. maximum. Completely protected against short circuits, they feature instant warmup and minimum heat dissipation on all transistors, independent of line voltage variations. They incorporate differential dc amplifiers, compensated Zener references, and silicon rectifiers. Intended for bench or relay rack mounting, they occupy a minimum of space.

Electronic Research Associates, Inc., Dept. ED,
67 Factory Place, Cedar Grove, N.J.

CIRCLE 154 ON READER-SERVICE CARD

Lumped Constant Delay Lines

Custom built

Custom built to meet military specifications, these lumped constant delay lines have delay time tolerances to 0.1%. The illustrated unit has a delay time of 40 ± 0.04 usec at 25 C. Temperature coefficient of delay is 20 ppm per deg C; attenuation is 4 db, and rise time is 0.4 usec. The unit occupies 50 cu in.

PCA Electronics, Inc., Dept. ED, 16799
Schoenborn St., Sepulveda, Calif.

CIRCLE 155 ON READER-SERVICE CARD

1.2
Xmit-Rc've Separation... 78 mc/s
Weight, assembled... 333.5 lbs.

FEATURES:
Frequency
Band...755-985 megacycles
RF Power.......15 Kilowatts
Pass Band.........2 megacycles
Pass Band Insertion Loss... 0.5 db over pass band
Pass Band SWR... 1.2
Xmit-Rc've Separation... 78mc/s
Weight, assembled... 333.5 lbs.

Ford Instrument
Telesyn® Synchros
for extreme accuracy in transmission of shaft position data...

transmitters (1HG, 1HG400, 5HG, 5HG400)
...angle transmission units for torque transmission and servo control systems.
receivers (1F, 1F400, 5F, 5F400)
...used as receivers in torque transmission systems. Have shaft damping to prevent oscillation and overcome any tendency to spin.
control transformers (1HCT)
...produce an a-c voltage at the rotor terminals that depends on rotor shaft position and the voltages applied to windings.
differential transmitters (1HDG, 5HDG)
...“add-in” other shaft positions when connected between transmitter and receiver or control transformer.

FREE! Check coupon below for free literature on Ford Instrument’s complete synchro line!

[Complete Sales Division]
[Division of Sperry Rand Corp.
31-10 Thomson Ave., L.I.C., N.Y.
Please send me prices and characteristics of units checked below:
[1HG [5HG [1F400]
[1F [5F [5HG400]*
[1HCT [5HDG [5F400]*
[1HDG [1HG400]*
*Available to commercial specs only.
Other units meet both Mil and commercial specs.
Please send me FREE literature.
Name
Position
Company
Street
City State Zip

CIRCLE 156 ON READER-SERVICE CARD

ANTENNA EQUIPMENT

D. S. KENNEDY & CO.
Evergreen 3-1200, Cohasset, Mass.
The DST-900 double-standoff Teflon terminal provides separate connection points on both sides of a chassis. It consists of two straight shank lugs mounted in a single body, but electrically and physically separated.

Sealec Tor, Dept. ED, 610 Fayette Ave., Mamaroneck, N.Y.

CIRCLE 158 ON READER-SERVICE CARD

Digital Voltmeter

Accuracy of 0.01% ±1 digit

In four automatic ranges from 0.0001 to 1000 v dc, model 501 digital voltmeter maintains 0.01% ±1 digit accuracy. In range cross-over areas, it keeps this accuracy by adding a first-place 1 at the top of the range. Thus, the 0 to 9.999 range becomes 0 to 19.999, with millivolt accuracy retained well into the 0 to 99.999 v range. The unit has five windows for digit display and a sixth to show polarity. Range selection automatically places the decimal. The built-in printer drive can handle 10-line parallel input printers without accessories, and a print control allows either automatic drive when the unit comes to balance or remote operation by an external switch. Average balance time is 1 sec with transistor switches feeding voltages at about 20 steps per sec. Input impedance at null is 10 meg on all ranges. A switch selects 0.1, 1, or 10 mV sensitivities to facilitate the reading of noisy signals.

Kin Tel, Div., of Cohn Electronics, Inc., Dept. ED, 5725 Kearney Villa Rd., San Diego 12, Calif.

CIRCLE 159 ON READER-SERVICE CARD

Universal Atomics

A DIVISION OF UNIVERSAL TRANSITOR PRODUCTS CORP

200 S. 4th St., Minneapolis 15, Minn.

BUREAU OF ENGRAVING, Inc.
Industrial Division

CIRCLE 157 ON READER-SERVICE CARD

CIRCLE 159 ON READER-SERVICE CARD
The Airpax Type 6000 Transistor Chopper performs a switching operation over a frequency range of 0 (DC) to 100 KC with signal levels from a fraction of a millivolt to 5 volts.

Two percent linearity at signal levels as low as 1 millivolt and noise levels comparable to mechanical choppers, make this unit suitable for many null seeking applications.

Fully encapsulated, the transistor chopper is substantially immune to shock and vibration and its life is unlimited.

NEW PRODUCTS

Audio Response Plotter
Covers 20 cps to 20 kc range

With permanent, pen-written frequency response curves, audio response plotter ARP-2 gives immediate visual proof of the smoothness of performance and sound production of any audio system or component. The unit has a 20 cps to 20 kc audio oscillator which supplies an input to the system to be tested. As the oscillator sweeps its range, driven either manually or by a self-contained motor, output signals from the system or component under test are either fed directly to the plotter or detected by an accessory condenser microphone. Records are plotted automatically on a 40 db range logarithmic chart by a servo-controlled pen. An input attenuator network enables the instrument to accept voltages up to 10 v. The oscillator is directly connected to the recording drum to permit retracing or multiple recording of any portion of a curve. A single sweep of the drum covers 20 cps to 20 kc.

Southwestern Industrial Electronics Co., Dept. ED, 2831 S. Post Oak Rd., Houston, Tex.

CIRCLE 162 ON READER-SERVICE CARD

Electronic Chopper
Modulates 0.1 mv to 1 v signal amplitudes

Using matched transistors as switches, model M-1 electronic chopper modulates differential or ground referenced voltages into square waves at carrier frequencies from 60 to 2000 cps. It will modulate signal amplitudes from 0.1 mv to 1 v.

When operating from low signal source impedances, it achieves a null accuracy of 0.1 mv. The switching action is always in-phase and synchronous with the 6 ma excitation current. Epoxy encapsulated, the unit has no moving parts and is insensitive to vibration. The 0.5 cu in. package is suited for chassis or printed circuit mounting.

Servo Devices Co., Dept. ED, Box 244, Huntington Station, N.Y.

CIRCLE 163 ON READER-SERVICE CARD
Stake screws with LOCTITE...a retaining compound designed for thread locking!

Insulating varnishes and mechanical punching have been widely used for years for the lack of a better method. Now there is a retaining compound designed specifically for thread locking. Consider these advantages:

1. LOCTITE provides complete resistance to loosening under shock or vibration because it fills and locks engaging threads, providing both breakloose and prevailing torque.

2. LOCTITE has several times the holding power of locknuts or lockstuds because locking action extends over entire engaged surface and persists for several turns.

3. LOCTITE is easy to apply...not sticky...no mess...does not air dry! Hardens only in absence of air. Large batches of threaded parts can be treated and stored for days...lock only when assembled. No heating or mixing is necessary.

4. LOCTITE comes in different strengths which apply any required locking torque—ranging from a light drag suitable for adjustment screws to a locking force exceeding the torsional strength of the screw. Provides greater uniformity than mechanical staking.

Light and compact, these custom centrifugal blowers automatically vary their speeds inversely with density, thereby approaching constant cooling with a minimum of power drain and noise. The illustrated unit increases in speed three times from sea level to 50,000 ft. The blowers are available with a variety of operational frequencies, cfm outputs, blower housings, and mounting bases. Constant speed and other modified types may be provided.

Ashland Electric Products, Inc., Dept. ED, 32-02 Queens Blvd., Long Island City 1, N.Y.

CIRCLE 166 ON READER-SERVICE CARD

Centrifugal Blowers
For high altitudes

Aluminum Electrolytic Capacitors
Have long shelf life

Aluminum electrolytic capacitors in the PET series have a low-resistance electrolyte which affords a long shelf life at temperatures to 85 C. They have a temperature range of -30 to +85 C, and a capacitance stability of -15 to +10% within this range. Leakage current, power factor, and impedance are low. The units are encased in plastic with an epoxy end seal and vary in size from 3/8 x 5/8 in. to 5/8 x 1-7/8 in. At 25 C they have a capacitance tolerance of -10 to +25%. Their ratings cover voltages from 3 to 50 v and capacities of 1500 to 1 µf total per unit. Maximum capacity in the 5/8 x 1 in. size ranges from 550 µf at 3 v to 86 µf at 50 v.

P. R. Mallory & Co., Inc., Dept. ED, Indianapolis 6, Ind.

CIRCLE 167 ON READER-SERVICE CARD

New Taylor FIREBAN 321 Laminated Plastic is self-extinguishing in only 3 seconds

Electrical faults in appliances, TV sets, radios, motors and other electrical devices frequently lead to fires—and these fires lead to complete destruction of the equipment; sometimes extensive damage to the facilities surrounding it. Taylor FIREBAN 321 is designed to retard fire. Self-extinguishing in only 3 seconds—it is an effective barrier against the spread of flame. In addition, this flame-retardant laminated plastic has excellent moisture resistance, excellent electrical resistance after exposure to high humidity, and good mechanical properties; also offers low dielectric losses. These properties help prevent the electrical faults that lead to fires. Write TAYLOR FIBRE CO., Norristown 48, Pa., for complete details.

This can’t be FIREBAN...
Precision potentiometers capable of living up to toughest circuitry demands! Built-in immunity to extremes of vibration, shock and acceleration... and finest quality materials assure maximum precision, exceptionally long life. A new concept proved in both military and commercial applications. Available from 3/8” to 3”.

Precision single turn potentiometers featuring:
- Linear or functional windings - 0.1% standard linearity
- Rotational speeds to 3,500 R.P.M.
- 165°C standard... 225°C special
- Ball bearings, class 7 stainless
- No hygroscopic... no fungus supporting materials
- NAS 710, procedure III

New Products

Static Inverters

\[\pm 0.02\% \text{ frequency regulation}\]

For use in driving rate gyro's, inertial guidance equipment, and other missile and aircraft devices, these transistorized static inverters are available with single phase or three phase outputs. Operating from an input of 28 v dc, they provide 115 v, 400 and 2000 cps single phase and 115 v, 400 cps, three phase. Voltage regulation is \(\pm 1\%\); frequency regulation, \(\pm 0.02\%\); and distortion, 5 to 10%. The units weigh 5 to 15 lb, depending upon power requirements, and are designed to meet MIL-E-5272A specifications.

Gulton Industries, Inc, Dept. ED, 212 Durham Ave., Metuchen, N.J.

CIRCLE 170 ON READER-SERVICE CARD

Toroidal Inductors

Temperature stabilized

Type S toroidal inductors are small, temperature stabilized units with a range of -55 to +71°C. Inductance change can be as low as \(\pm 0.25\%\) in this range. Fully encapsulated and built with a stabilized and meet the specifications of MIL-E-5272A and MIL-T-27A. Units are available with inductance values from 0.1 mh to 17 h and useful
core, they withstand extreme shock frequency ranges from 60 cps to 500 kc. They are designed for printed circuit boards, or stacking on a single screw for chassis mounting.

CIRCLE 172 ON READER-SERVICE CARD

RF Head
Direct reading

For use with the company's model SA30 microwave spectrum analyzer, the 30X5 rf head covers the 8500 to 9700 mc range. Accurate to 0.05%, it has a direct reading frequency dial. The unit features automatically tracked reflector voltage for constant display centering and a precision 80 db rf input attenuator.

Itek Corp., Dept. ED, 1583 Trapelo Rd., Waltham 54, Mass.

CIRCLE 173 ON READER-SERVICE CARD

Mesa Germanium Transistors
Have millimicrosecond switching speeds

A diffused base mesa germanium transistor, the 2N559 meets and exceeds all reliability specifications outlined in MIL-T-19500A. It has switching speeds into the millimicrosecond range and a typical alpha cutoff frequency of 250 mc. It dissipates over 150 mw in free air and operates at temperatures to 100 C. The unit is provided in a miniature round-welded case that is less than half the size of the standard JETEC TO-5 unit. The case is compatible with the 100 mil grid mounting system. The 2N559 was originally developed and produced by Bell Telephone Labs for military missile and airborne electronic circuits.

Texas Instruments Incorporated, Semiconductor-Components Div., Dept. ED, P.O. Box 312, Dallas 9, Tex.

CIRCLE 174 ON READER-SERVICE CARD

TERMINAL BLOCK HDQRS!

Specializing in terminal blocks for over a quarter-century, Kulka offers the outstanding choice of types and sizes and "know-how." Kulka blocks are molded of high tensile strength Bakelite for general commercial use, or in other materials made in compliance with latest military specs. Plain or engraved or with marker strips. 1 to 28 terminals. Etc.

ASK FOR DATA. Catalog with listings, specs, dimensional drawings, sent on request.

Complete the wiring with

KULKA ELECTRIC CORP.
633-643 So. Fulton Avenue
Mount Vernon, N.Y.

CIRCLE 175 ON READER-SERVICE CARD

A SYNONYM FOR QUALITY, STABILITY AND DEPENDABILITY IN CRYSTALS

Regardless of size, weight, or shape, a McCoy crystal will deliver the utmost in stability under extreme conditions of shock and vibration.

Frequency range of M-1, M-4 and M-5;
200 kc. to 200 mc; M-20, M-21 and M-23;
3.0 mc. to 200 mc.

MCCOY

ELECTRONICS CO.
MT. HOLLY SPRINGS, PA.
Dept. EDI
Phone HUNter 6-3411

CIRCLE 176 ON READER-SERVICE CARD
Hickok Cracks The Friction Barrier With a New, Panel Meter Suspension

Eliminates...
Pivots, Jewels and Hairsprings

D'Arsenal, permanent magnet meter—Adaptable to all types of mounting

- **ULTRA SENSITIVE**—full scale sensitivities to as low as 0.5 microampere
- **FRICION FREE**—no pivots, jewels or hairsprings
- **RUGGED**—much more resistant to shock and more rugged than conventional pivot meters
- **HIGH DEGREE OF ACCURACY**—there is no friction error and suspension is free from fatigue effect
- **RELIABILITY**—the complete elimination of wearing parts has increased life indefinitely
- **HIGH OVERLOAD CAPACITY**—up to 5 times full scale current indefinitely and unharmed by surges up to 300 times normal current.

Write today for additional technical information.

THE HICKOK ELECTRICAL INSTRUMENT COMPANY

10514 DUPONT AVENUE • CLEVELAND 8, OHIO

CIRCLE 177 ON READER-SERVICE CARD

NEW PRODUCTS

Mercury-Wetted Contact Relay

Has 5 mw sensitivity

Type HBS mercury-wetted contact relay is biased with permanent magnets which are adjustable for single-side stable or bistable operation. Sensitivity may be ±2.5 mw for a bistable adjustment or 5 mw for a single-side stable adjustment. Operating speeds are up to 200 cps, and contact rating is 2 amp, 500 v, with a limit of 100 va. The units have no contact bounce and provide billions of trouble-free operations.

C. P. Clare & Co., Dept. ED, 3101 Pratt Blvd., Chicago 45, Ill.

CIRCLE 178 ON READER-SERVICE CARD

Transistor-Diode Tester

Needs no external power supply

For testing the dc characteristics of semiconductors, model TDT-200 transistor-diode tester contains no batteries and needs no auxiliary motor, pulse generator, oscilloscope, or external power supply. With a wide selection of voltage, current, and metering ranges, the unit checks current gain, voltage, and reverse and forward current.

Transistor Electronics Corp., Dept. ED, 3357 Republic Ave., Minneapolis 26, Minn.

CIRCLE 179 ON READER-SERVICE CARD

Pulse Forming Networks

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PEAK CHARGING VOLTAGE</th>
<th>TEMP. RANGE</th>
<th>CAPACITANCE</th>
<th>CHARACTERISTIC IMPEDANCE LOADS</th>
<th>SPURIOUS FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>1000 µv</td>
<td>50°C to 150°C</td>
<td>12 pF</td>
<td>5000 MΩ</td>
<td>100 MHz</td>
</tr>
<tr>
<td>N2</td>
<td>1500 µv</td>
<td>50°C to 150°C</td>
<td>12 pF</td>
<td>5000 MΩ</td>
<td>100 MHz</td>
</tr>
<tr>
<td>N3</td>
<td>2000 µv</td>
<td>50°C to 150°C</td>
<td>12 pF</td>
<td>5000 MΩ</td>
<td>100 MHz</td>
</tr>
<tr>
<td>N4</td>
<td>2500 µv</td>
<td>50°C to 150°C</td>
<td>12 pF</td>
<td>5000 MΩ</td>
<td>100 MHz</td>
</tr>
</tbody>
</table>

Meet Mil. Spec. for environmental conditions. Other matching impedance values available. High Power and Special Requirements invited.

Also Manufacturers of:

- **High Voltage Power Supplies**
- **Glass Cap, Tubular Glass Capacitors**

Plastic Capacitors, Inc.

2620 North Clybourn Avenue
Chicago 14, Illinois

Write for further information and our complete catalog.

CIRCLE 180 ON READER-SERVICE CARD

ELECTRONIC DESIGN • January 21, 1959
Trimmer Potentiometer
Operates up to 150°C

Trimmer potentiometer model H-0505-T operates at temperatures up to 150°C; and in ambient of 125°C, it can carry 4 ma of current through its brush contact on the winding. Available in resistances up to 100 kΩ, it is designed to withstand 30 g vibration from 50 to 2000 cps and 150 g shocks for 11 msec. It also passes the humidity requirements of MIL-STD 202. Method 106. The unit is 1/2 in. in diameter and has silver plated gold-flashed terminals which afford maximum corrosion resistance and installation and connection simplicity.

CIRCLE 181 ON READER-SERVICE CARD

Digitizer
For punched tape or telemetering

Designed for use with any of the company's Autronic transmitters or converters, model A9M indicating digitizer translates analog signals into a digital code for punched tape or telemetering. Operating on a 0 to 0.5 v ac signal, it can also be used in parallel with the company's controllers or recorders. The unit is housed in a standard case which fits into a panel cutout five inches square.

Swartwout Co., Dept. ED, 18511 Euclid Ave., Cleveland 12, Ohio
CIRCLE 182 ON READER-SERVICE CARD

REGATRAN TRANSISTORIZED

REGULATED POWER SUPPLIES

- short circuit proof
- compact • reliable

Compare the small size, light weight and absolute short circuit protection of a Regatran with any other transistorized power supply. You'll find that Regatrans combine all the advantages of semiconductor operation in one tough, power-packed package.

And there are special features too...like remote sensing terminals, front panel calibration, vernier as well as main voltage control (on wide range models), and many others. Ask for a copy of Preliminary Bulletin T for a complete description of wide range and narrow range models...Regatrans like to be compared.

WIDE RANGE MODELS

<table>
<thead>
<tr>
<th>D-C OUTPUT</th>
<th>MODEL NO.</th>
<th>DIMENSIONS IN INCHES</th>
<th>APPROX. WEIGHT IN LBS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLS</td>
<td>AMPS</td>
<td>TO7-15</td>
<td>8 1/8</td>
</tr>
<tr>
<td>0-7</td>
<td>0-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-7</td>
<td>0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-14</td>
<td>0-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-14</td>
<td>0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-32</td>
<td>0-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-32</td>
<td>0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-36</td>
<td>0-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-36</td>
<td>0-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-60</td>
<td>0-7-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-60</td>
<td>0-2-5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NARROW RANGE MODELS

Narrow range models covering most popular battery and dry cell voltages are available.

BRIEF SPECIFICATIONS

REGULATION...0.1% or 0.1 volt, no load to full load, 105 to 125 volt line.
RIPPLE...Less than 1 millivolt rms.
CIRCUIT PROTECTION...Short circuit proof.
OUTPUT POLARITY...Positive, negative, or floating ground.
REMOTE SENSING...Eliminate effect of voltage drop in power leads.

ELECTRONIC MEASUREMENTS
COMPANY OF RED BANK
EATONTOWN • NEW JERSEY

CIRCLE 184 ON READER-SERVICE CARD
NEW PRODUCTS

DC Microvoltmeter

100 meg input impedance on all ranges

Transistorized model 1362 dc microvoltmeter has over 100 meg input impedance on all ranges from ±0.001 to ±1000 v. It will operate for 12 consecutive hours from an integral storage battery which automatically recharges when the instrument is plugged into a power line. Intended for low level measurements in transistor circuits, the unit is chopper-stabilized to avoid drift problems. It provides total isolation from power lines.

Dynamics Instrumentation Co., Dept. ED, 1118 Mission St., South Pasadena, Calif.

CIRCLE 186 ON READER-SERVICE CARD

Flow Control Servo Valve

For missiles and aircraft

Series FC-30 flow control servo valves weigh 14.5 oz and measure 1.75 x 2 x 2.8 in. They cover the entire flow range from 0.15 to 13 gal per min and have a supply pressure range of 500 to 4000 psi. Internal leakage for a 4 gal per min valve at neutral position, using MIL-O-5666 hydraulic fluid at 90 F and 3000 psi supply pressure, is 0.09 gal per min maximum.

Cadillac Gage Co., West Coast Div., Dept. ED, Costa Mesa, Calif.

CIRCLE 187 ON READER-SERVICE CARD
Silicon Rectifiers
Diffused junction type

With pivot ratings ranging from 50 to 600 volts, type 1N1612 through 1N1616 diffused junction silicon rectifiers can deliver 5 amp of rectified current. They have an operating temperature range from −65 to +175 °C, a low forward drop, and a low reverse leakage current. Furnished in packages that conform to proposed JETEC Group 20 standards, they can be used in magnetic amplifier and dc blocking circuit applications as well as for power rectification.

CIRCLE 189 ON READER-SERVICE CARD

Tube Tester
Rejects burned out tubes instantly

On model 3414 tube tester, all switch settings can be made before the tube warms up, and burned out tubes are rejected instantly without waiting for the filaments to heat. It will test receiving tubes, gaseous rectifiers, series filament tubes, ballast tubes, and others. The continuity test circuit may be used to check electrical appliances for shorts or open circuits. The unit also provides a neon indicator short test.

The Triplett Electrical Instrument Co., Dept. ED, Bluffton, Ohio.
CIRCLE 190 ON READER-SERVICE CARD

Small Size - Big Performer

<table>
<thead>
<tr>
<th>CRT-3</th>
<th>CRT-4</th>
<th>CRT-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>our newest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RatioTran*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input voltage: 0.35 f/f in cgs or 140 volts max at 400 cgs • 0.005% linearity with continuous resolution • designed to meet mil spec • 4 place readout with 2 decades and 1 turn pot.

DecaTran
Co-Axial RatioTran*:

Kearfott components for missile and aircraft systems can provide optimum performance at temperatures as high as 200°C. Moreover, this peak performance is unaffected by 2000-cps vibration and 50-G shock. Kearfott's compact, light-weight and corrosion-resistant components provide this consistent record of accuracy:

Synchros: Sizes 8 through 25. Errors as low as 20 seconds from E. Z.
Motor-generators: Sizes 8 through 18. Linearity of 0.01%.
Servomotors: Sizes 8 through 25. Wound for transistorized amplifiers.

Kearfott research is continually developing even more accurate and more durable components... preparing for the needs of tomorrow. For details, write today or contact your nearest Kearfott sales office.

Engineers: Kearfott offers challenging opportunities in advanced component and system development.

Kearfott COMPANY, INC., LITTLE FALLS, N. J.
A Subsidiary of General Precision Equipment Corporation
Sales and Engineering Offices 1378 Main Ave., Clifton, N. J.
Midwest Office 23 W. Calender Ave., Abington, III. South Central Office 6211 Donut Drive, Dallas, Texas
West Coast Office 253 N. Vinedo Avenue, Pasadena, Calif.
CIRCLE 192 ON READER-SERVICE CARD
NOW! COMPLETE FACTS ABOUT EVERY CIRCUIT... RIGHT BEFORE YOUR EYES!

DIT-MCO FAULT LOCATION CIRCUIT ANALYZER AUTOMATICALLY PLOTS TEST SEQUENCE... PINPOINTS, IDENTIFIES AND PATTERNS CIRCUIT ERRORS.

DIT-MCO's exclusive cross-reference Matrix Chart automatically pinpoints each circuit flaw and puts clear, concise test information directly in front of the operator. Vertical and horizontal indicator lights cross-reference the matrix square corresponding to the circuit under test. This square details type of flaw, circuit number and exact error location. Once an error is detected, the operator immediately marks it on the matrix square, resets the Universal Automatic Circuit Analyzer and continues the test.

All corrections are made direct from the Matrix Chart after the test sequence has been completed. This saves up to 90% correction time by eliminating time consuming searches through diagrams, manuals or interpretive readout devices. Because the DIT-MCO Matrix Chart is a simple, concise representation of all test circuits, specifications, instructions and modifications, nothing is left to chance or guesswork! The comprehensive nature of the Matrix Chart system provides important data for statistical analysis and permits effective checks and balances. From the drafting board to obsolescence!

DIT-MCO, Inc. employs an experienced staff of sales engineers in the field. Contact your field engineer or write for important facts about DIT-MCO Electrical Test Equipment.

DIT-MCO, INC.

ELECTRONICS DIVISION • BOX 81-20
911 BROADWAY - KANSAS CITY, MO.

Partial List of DIT-MCO Users

Aircraft Radio Corp. • AlfaResearch Manufacturing Co. • American Bosch Arma Corp. • American Machine & Foundry Co. • American Motors Amphenol Electronics Corp. • Automotive, A Division of North American Aviation, Inc. • Bell Aircraft Corp. • Bendix Aviation Corp. • Boeing Airplane Co. • Cessna Aircraft Co. • Chance-Vought Aircraft, Inc. • Chrysler Corp. • Convair • Douglas Aircraft Co., Inc. • Dukane Corp. • Electronic Products Corp. • Fairchild Aircraft Division • Farnsworth Electronics Division, Malco Corp. • Hughes Aircraft • International Business Machines Corp. • Jefferson Electronic Products Corp. • Lockheed Aircraft Corp. • Missile Systems Division • Martin, Baltimore • Minneapolis-Honeywell, Aeronautical Division • Motorola, Inc. • Northrup Aircraft, Inc. • Pacific Mercury Television Mfg. Corp. • Radio Corp. of America • Radiophone Co. • Raytheon Manufacturing Co. • Servomechanisms, Inc. • Sikorsky Aircraft Corp. • Sperry Gyroscope Co. • Summers Gyroscope Co. • Sun Electric Co. • The Swartwood Co. • Ultronic Division • Tamco Aircraft Corp. • Thompson Products • Tapp Industries Inc. • Trans World Airlines • U. S. Naval Air Station Overhaul and Repair Depots • U. S. Naval Ordnance Laboratory • White Oak • Vertol Aircraft Corp. • Western Electric Co. • Westinghouse Electric Corp.

CIRCLE 193 ON READER-SERVICE CARD

NEW PRODUCTS

Strain Gage Recording System

Expandable

This expandable strain gage recording system has a wide choice of configurations for operating adding machines, printers, or Flexowriter typewriter and tape punch units. Standard rack mounted units can be assembled into a ten channel system which selects, measures, and converts each channel in sequence and automatically records the strain gage data in microinches per inch units. Additional modules in groups of ten channels, each with its own span and gage factor controls and a bank omit switch, may expand the system to accommodate 100 or more channels without rewiring or modification of the basic ten channel system. The record produced by the printer or typewriter-tape punch unit includes a 2 digit channel number, a 1 digit span number, a plus or minus sign, and 3 digits of strain gage data followed by a tens multiplier. The unit records at rates of 1 to 4 sec per channel with overall accuracy of 0.25% excluding the transducer. Linearities for any range are 0.1%

Datran Electronics, Dept. ED, 1836 Rosecrans Ave., Manhattan Beach, Calif.

CIRCLE 194 ON READER-SERVICE CARD

Coil Bobbin

For high temperature solenoids

For class H application, this double drawn glass silicone coil bobbin incorporates a lead wire extrusion in its flange. Designed for high temperature solenoids, the units are deep drawn from one piece. They have close tolerance and OD dimensions to fit precision made cases.

Stevens Products, Dept. ED, 86-88 Main St., East Orange, N.J.

CIRCLE 195 ON READER-SERVICE CARD

Vitramon capacitor will help you build WIDE TEMPERATURE RANGE... into your circuit systems

VITRAMON capacitors... fine-silver electrodes fused to pure porcelain enamel dielectric... operate predictably over a range of more than 300°F and come back from the extremes unaltered.

WIDE TEMPERATURE RANGE?

YES! PLUS...

RUGGED LOW LOSS STABLE VAPORPROOF LOW NOISE MINIATURE

The biggest names in electronics use VITRAMON capacitors in guided missiles, jet ignition, proximity fuses and in radar, servo, guidance, fire control, telemetering and carrier telephone systems.

If substitutes are not good enough... if you need the best... write today!

Vitramon Incorporated

BOX 544A • BRIDGEPORT 1 • CONN.

CIRCLE 196 ON READER-SERVICE CARD

ELECTRONIC DESIGN • January 21, 1959
Strip Resistors
Match copper conductors
Fitting directly into Stripline circuits, these two dimensional strip resistors are as thin as the copper-clad conductor and exactly match the shape and configuration of the circuit. The resistors consist of a base of natural mica and a pure metal alloy resistance film about 50 μm thick sealed with a coating of quartz. Fired silver terminations can be supplied for direct connection of the resistor to the copper center conductor of the Microstrip or Stripline circuit. Resistances are about 1 to 500 ohms depending upon shape, and standard tolerances are ±5 or ±10%. Closer tolerances can be provided. The units can be supplied as matched loads, fixed pads, variable attenuator elements, and terminations. They are available as straight rectangular or square sections, tapered rectangular sections, or curved sections. Several resistances with appropriate contact points can be supplied as one unit. Shapes not requiring silver terminations can be hand cut from sheets which are available in various thicknesses.

Firedhm Corp., Dept. ED, 48 W. 25th St., New York 10, N.Y.
CIRCLE 197 ON READER-SERVICE CARD

Plastic Ties
Made of nylon base
Made of nylon base. Molded ties looks and works like a miniature belt. It can be adjusted to a wide range of wire bundle diameters and held securely in place by ratchets on the leader and the buckle. Its inside has a V ridge to prevent side slip. It can be quickly tied by hand or with a special plier designed for the purpose.
CIRCLE 198 ON READER-SERVICE CARD

DIRECT READING
CALORIMETERS
DC to 12 KMC
Coaxial & Waveguide
20 watts full scale to 20,000 watts full scale. Simplest to operate, completely self-contained and self-cooled. No thermometers, no flow-meters, no valves to adjust. Only controls on front panel are the range switch and the on and off switch. Accuracy ±3%

MODEL CPM-500
FULL SCALE RANGE
50 watts
50 & 500 watts
100 & 1000 watts
500 & 5000 watts
1000 & 10,000 watts
2000 & 20,000 watts

WRITE for FULL PARTICULARS and FREE TRIAL OFFER!

ELECTRO IMPULSE Laboratory
DEPT. D, 200 RIVER STREET • RED BANK, NEW JERSEY • Phone: SHadyside 1-0404
CIRCLE 199 ON READER-SERVICE CARD

CHICAGO MILITARY STANDARD
TRANSFORMERS

Stocked for Immediate Delivery
Through your electronic parts distributor

These CHICAGO transformers are designed and built in accordance with MIL-T-27A, Grade 1, Class K specifications, maximum operating altitude 50,000 feet, minimum life expectancy 10,000 hours. They are housed in Military Standard Case size AJ (1 1/2” x 1 3/8” x 2 1/2”), weighing only 0.6 pounds.

M. S. AUDIO TRANSFORMERS

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>MIL-T-27A Part No.</th>
<th>Application</th>
<th>Impedance</th>
<th>Operating Level</th>
<th>Pri.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMS-1</td>
<td>MS-90000</td>
<td>P-P Plates to P-P Grids</td>
<td>10,000 ohms CT</td>
<td>15 db</td>
<td>10</td>
</tr>
<tr>
<td>AMS-2</td>
<td>MS-90001</td>
<td>Line to Voice Coil</td>
<td>150 ohms</td>
<td>2 W</td>
<td></td>
</tr>
<tr>
<td>AMS-3</td>
<td>MS-90002</td>
<td>Line to P-P Grids</td>
<td>150 ohms</td>
<td>2 W</td>
<td></td>
</tr>
<tr>
<td>AMS-4</td>
<td>MS-90003</td>
<td>Line to Line</td>
<td>150 ohms</td>
<td>15 db</td>
<td>10</td>
</tr>
<tr>
<td>AMS-5</td>
<td>MS-90004</td>
<td>Single Plate to Line</td>
<td>150 ohms</td>
<td>2 W</td>
<td>40</td>
</tr>
<tr>
<td>AMS-6</td>
<td>MS-90005</td>
<td>Single Plate to Voice Coil</td>
<td>150 ohms</td>
<td>2 W</td>
<td>40</td>
</tr>
<tr>
<td>AMS-7</td>
<td>MS-90006</td>
<td>P-P Plates to Line</td>
<td>150 ohms</td>
<td>5W</td>
<td></td>
</tr>
<tr>
<td>AMS-8</td>
<td>MS-90007</td>
<td>P-P Plates to Line</td>
<td>150 ohms</td>
<td>1 W</td>
<td></td>
</tr>
<tr>
<td>AMS-9</td>
<td>MS-90008</td>
<td>P-P Plates to Line</td>
<td>150 ohms</td>
<td>5W</td>
<td></td>
</tr>
</tbody>
</table>

An extensive line of transistor audio transformers, in MS cases are also available. For detailed information on these and many other CHICAGO Military Standard units, write for Catalog CT8-58

CHICAGO STANDARD Transformer Corporation
3518 West Addison Street • Chicago 18, Illinois
Export Sales: Roburn Agencies, Inc., 431 Greenwich St., New York 13, N.Y.
CIRCLE 200 ON READER-SERVICE CARD
FROM HEADQUARTERS

H-H RESISTORS

— all types for all applications — commercial or military

Design for Reliability with the Hardwick, Hindle "Gray Line"*

These high reliability components incorporate special design and construction features that assure the highest degree of dependability under the most adverse operating conditions. Non-crazing high temperature gray enamel, stronger core, welded wire connections, higher shock resistance, immunity to salt spray and humidity are advantages inherent in all H-H resistors. Fixed, ferrule and adjustable types comply with MIL-R-26 specifications and meet EIA standards.

"Where Space is a Factor" — specify H-H Blue Ribbon Space Saver Resistors. Sold through authorized H-H distributors nationwide. Call or write for catalog including both Gray Line and Blue Ribbon Resistors, MIL Types, mounting brackets and accessories. Ask for your copy, now!

HARDWICK, HINDLE · INC
40 HERMON ST., NEWARK 5, NEW JERSEY

NEW PRODUCTS

VIBRATING CAPACITORS.—Less expensive than its predecessor, model VC-713/500, the VC-1006/500 capacitor is insulated with ceramic instead of fused quartz. Minimum insulation resistance is 10^{12} ohms; contact potential, 30 mv maximum; drift, ± 2 mv per day.

CIRCLE 202 ON READER-SERVICE CARD

WIRE ALLOY.—Conductor base metal for insulated wire applications. Called Alloy 63, the material is designed to replace copper in the finer gages where high temperatures must be endured. Wires are available silver-coated, nickel-coated, or uncoated.

CIRCLE 203 ON READER-SERVICE CARD

110 DEGREE PICTURE TUBES.—Front-to-Back lengths of 17 in. model 17DKP4 and 21 in. model 21EQP4 are 10-11/16 and 12-9/16 in., respectively. Both aluminized, the units have nonion trap construction and use magnetic deflection.

Sylvania Electric Products Inc., Dept. ED, Seneca Falls, N.Y.

CIRCLE 204 ON READER-SERVICE CARD

FLAME-RETARDANT LAMINATE.—A Grade XXXP paper-base laminate made with phenolic resin, Fireban 321 extinguishes itself when set afire. In some instances it can substitute for melamine and silicone grades. In sheets 49 x 49 in. from 0.02 to 0.25 in. thick.

Taylor Fibre Co., Dept. ED, Norristown, Pa.

CIRCLE 205 ON READER-SERVICE CARD

ELECTRONIC MICROMETER.—Type B-721 distances between 0 and 45,000 in., with 1% accuracy and without physical contact. It is suited for making measurements on rotating objects and for monitoring distance with reference to a predetermined value. It can be used to determine temperature coefficient, elasticity, and other characteristics of fragile samples.

Wayne Kerr Corp., Dept. ED, P.O. Box 801, Philadelphia 5, Pa.

CIRCLE 206 ON READER-SERVICE CARD

SHORT LINE TELEPRINTER.—For wire communications and data processing systems, this unit offers two color printing; automatic answering and querying; automatic start and stop; end of line lock; reperforating; and a variety of keyboards, including standard typewriter. The size of an electric typewriter, it punches or reads five channel perforated tape.

Telaautograph Corp., Dept. ED, 8700 Bellingan Ave., Los Angeles 45, Calif.

CIRCLE 207 ON READER-SERVICE CARD

connections are easy with... AutoMatic connectors

Manufacturers of:
- COAXIAL CONNECTORS AND FITTINGS
- COAXIAL RELAYS AND SWITCHES
- BAYONET, PUSH-ON AND THREADED SUB-MINIATURE CONNECTORS
- MICRO-MINIATURE CONNECTORS
- DIRECTIONAL COUPLERS
- AUDIO AND POWER PLUGS

Write, wire or phone for further information.

FOR POSITIVE CONNECTIONS EVERY TIME, SPECIFY...

METAL PRODUCTS CORP.
319 Berry St., B'klyn, N.Y. • Evergreen 8-6057
CIRCLE 208 ON READER-SERVICE CARD
FIBER GLASS PUTTY.—Good insulating material, this semifluid resin can be used as an encapsulating agent or as a cement. Hardening speed can be controlled by the amount of setting agent added. Available in bulk, it is also supplied in a kit with a setting agent, glass cloth for reinforcing, and mixing and measuring tools. Sticks to metal, plastic and wood.

CIRCLE 215 ON READER-SERVICE CARD

TAPE TRANSPORTS.—Series 460 transports maintain exact synchronism between a recorded and a fixed reference frequency over wide speed and line variations. Portable model 460A has 2 ms start-stop time and handles 1/4 to 1 in. tape. Fixed model 461 has 30 ms start-stop time and accommodates tapes up to 2 in.

D. G. C. Hare Co., Dept. ED, New Canaan, Conn.

CIRCLE 216 ON READER-SERVICE CARD

POWER RELAY.—Heavy duty 25 amp model 2210-U is a 2pst normally open unit that meets UL specifications. Coil assembly can be removed and replaced in a few minutes. Contact assemblies can also be replaced.

Guardian Electric Mfg. Co., Dept. ED, 1621 W. Walnut St., Chicago 12, Ill.

CIRCLE 217 ON READER-SERVICE CARD

MINIATURE TEST CLIPS.—Designed to allow rapid connections without manual opening and closing of jaws. Units may be used for breadboarding, and for testing resistors, transistors, capacitors, and other pigtail components. Model 2-20 has threaded stud; model 2-24 has molded phenolic insulating washers. Clips have adjustable tension, extend 3/4 in. above the mounting surface.

Grayhill, Inc., Dept. ED, 561 Hillgrove Ave., La Grange, Ill.

CIRCLE 218 ON READER-SERVICE CARD

NYLON STRAIN RELIEF BUSHING.—Model 6S-1 protects wire from heat, vibration, pull, and torque. Hinged with a flexible nylon web, it snaps and locks in the chassis hole. A spring prevents sharp bending or excessive wire flexing and chafing at the chassis entrance.

Heyman Mfg. Co., Dept. ED, 100 Michigan Ave., Kenilworth, N.J.

CIRCLE 219 ON READER-SERVICE CARD

PORTABLE TACAN TESTER.—Model HLI-119 tests performance of TACAN and DMET air navigation equipment by simulating the operation of the TACAN ground beacon. Checks range and bearing operation, coding and decoding, and operating frequency. Permits measurement of peak power-and receiver sensitivity.

CIRCLE 220 ON READER-SERVICE CARD
THE PROBLEM:

Detection
Resolution
Identification

Today we rely on devices hardly dreamed of a few short years ago. The limits of man's theoretical knowledge are being pushed farther almost daily. Between the theory and the device lies the exciting zone of applied research and development—the application of new concepts, and the development of new products. This is the fascinating challenge of creative engineering.

Radar Ambiguity is just one example, but typical of the problems under intensive examination at Melpar. Important as the problems of radar are, they comprise but one part of the 110 different electronic research, development and production projects at Melpar.

Rewarding positions are presently available in the following areas of Melpar's activities:

- Reconnaissance Systems Engineering Department
- Airborne Equipment
- Ground Data Handling Equipment
- Ground Support Equipment
- Simulation & Training Systems
- Communication & Navigation Systems
- Detection & Identification Systems
- Chemistry Laboratory
- Antenna & Radiation Systems
- Applied Physics Laboratory
- Analysis & Computation Laboratory

Positions are also available in our Production Division and our Quality Control Department.

For details about opportunities at Melpar, address your inquiry to:

TECHNICAL PERSONNEL REPRESENTATIVE

MELPAR Incorporated
A Subsidiary of Westinghouse Air Brake Company
3331 Arlington Boulevard, Falls Church, Virginia
10 miles from Washington, D.C.

CIRCLE 726 ON READER-SERVICE CARD

NEW PRODUCTS

CONDUCTIVE COATING.—Based on epoxy resins, Hysol 6251 can rebuild areas worn away by sliding contacts or provide a conductive base for plating plastics. It cures in 48 hr at room temperature, in 7 min at 300 F. Volume resistivity at 25 C is 0.0008 ohm-cm.

Houghton Labs, Inc., Dept. ED, Olean, N.Y.
CIRCLE 724 ON READER-SERVICE CARD

EPXIDE RESINS.—Based on novolac-epichlorhydrin reactions, Epiphen resins are resistant to chemicals, salt spray, water, and heat distortion. They cure rapidly.

Hastings Plastics, Inc., Dept. ED, 1531 12th St., Santa Monica, Calif.
CIRCLE 725 ON READER-SERVICE CARD

THREE IN ONE NUT DRIVER.—The Atom pocket wrench consists of three nut drivers arranged as spokes and welded together at a central hub. While one size is being used, the other two provide leverage. The wrench handles no. 8, 10, and 12 nuts.

Hunter Tool, Dept. ED, P.O. Box 564, Whittier, Calif.
CIRCLE 726 ON READER-SERVICE CARD

HARD-TUBE PULSE MODULATOR.—For kilovolt and twf testing, model 70M has a 30 cps to 12 kc range with pulse lengths continuously variable from 0.5 to 30 nsec. As a cathode pulser, it operates from 0 to 35 kv at up to 10 amp; as a modulating anode pulser, from 0 to 35 kv into a 25 m load.

CIRCLE 727 ON READER-SERVICE CARD

SPEED CHANGER KIT.—Contains parts to make one of the company's Bantam speed changers in any one of 29 ratios between 1 to 1 and 41 to 1. Units are rated at 130 oz-in. torque at low speed shaft; 10,000 rpm at high speed shaft; and 0.1 hp at low speed shaft. Case hardened steel gears are 48 pitch, 20 deg pressure angle spur type.

Metron Instrument Co., Dept. ED, 432 Lincoln St., Denver 3, Colo.
CIRCLE 728 ON READER-SERVICE CARD

TEMPERATURE INDICATORS.—For measuring and recording, direct reading Metta-Thermers can be applied like decals or tied to cables. Numbers are distinct, and no color charts are needed.

Meta Engineering and Sales Co., Dept. ED, 252-262 E. 16th St., Paterson 4, N.J.
CIRCLE 729 ON READER-SERVICE CARD

DIRECT READING RATIO SET.—With a precision of 1 ppm, this 4 dial set provides a quick method of comparing high precision resistors against known standards.

Physics Research Labs, Inc., Dept. ED, P.O. Box 555, Hempstead, N.Y.
CIRCLE 730 ON READER-SERVICE CARD
ROTARY TEST HEAD.—For quick, accurate indexing of shaft position on rotary components, model THM 101 permits phasing to within 1/2 min. Repeatability of settings can be within 1 part in 200,000.

Milltest Corp., Dept. ED, 88 Madison Ave., Hempstead, N.Y.
CIRCLE 233 ON READER-SERVICE CARD

MINIATURE COAXIAL CONNECTOR.—This connector is 1/25 the size and 1/50 the weight of a standard BNC connector.

CIRCLE 234 ON READER-SERVICE CARD

PACKAGING FILM.—Poly-Ohm-Mylar has a high moisture and grease barrier, does not become brittle with age. By a 10 sec process, it can be put around electronic parts like a tight fitting skin.

Print-a-Tube Co., Dept. ED, 114 Essex St., Rochelle Park, N.J.
CIRCLE 235 ON READER-SERVICE CARD

MULTIPLIER PHOTOTUBE.—Model 7326 is a 10-stage, head-on type with an improved photocathode that provides high sensitivity, low thermionic dark current, and high conductivity at low temperatures. Spectral response is 3000 to 7500 angstroms. Minimum photocathode diameter is 1.68 in.; maximum length is 6.78 in.

Radio Corporation of America, Electron Tube Div., Dept. ED, Harrison, N.J.
CIRCLE 471 ON READER-SERVICE CARD

FLOW TRANSDUCER.—Sensing fluid flows down to 0.002 gal per min, the Mark X translates them into linear electrical signals. Maximum working pressure, 3500 psi; maximum fluid temperature, 250 F.

Ramapo Instrument Co., Inc., Dept. ED, Bloomington, N.J.
CIRCLE 236 ON READER-SERVICE CARD

CYCLING THERMOSTATS.—Shallow models C21 and C22 have side access to terminals and optional rotary circuit selector switches. Designed to operate air conditioners, compressors, strip heaters, and reverse cycle heat pumps under cross ambient conditions.

Ranco Inc., Dept. ED, Columbus 1, Ohio.
CIRCLE 237 ON READER-SERVICE CARD

TRANSISTORIZED TRANSCEIVER.—For serial binary data transmission, the Sebit-25 transmits digital data over voice communication circuits at speeds up to 2500 baud. Power consumption is less than 50 w.

Rixon Electronics, Inc., Dept. ED, 2414 Reelie Drive, Silver Spring, Md.
CIRCLE 238 ON READER-SERVICE CARD

The use of a thermo-plastic insulation material has resulted in an economically priced molded carbon resistor of markedly improved endurance and long term stability.

Type N resistors subjected to several one-hour cycles of immersion in boiling water — while DC polarized — have revealed only negligible changes in resistance. Continuous operations at 150°C caused no damage to the component.

The new Type N resistor, a deposited carbon film fired onto a porcelain rod, is first tropicalized with multiple coatings of panchromatic lacquers to give it long term moisture resistance, and is then molded in a thermo-plastic material.

This molded insulation has an effective resistance in the order of 10^14 ohms. Its inherent thermal conductivity is approximately ten times that of air, resulting in substantially improved load life under conditions involving excessive or high wattage dissipation. Similarly, Type N resistors may be soldered as close to the insulation as desired without fear of melting or deforming the cover.

One added advantage of the Type N is that the original markings on the resistor body remain visible and legible through the transparent molded material.

Welwyn Type N carbon resistors meet the requirements specified by MIL-R-10509B, and are available in all values, ranging from 10 ohms through 1 megohm. For complete data and specifications write to Welwyn International, Inc., 3355 Edgecliff Terrace, Cleveland 11, Ohio.

SAMPLES AVAILABLE ON REQUEST.
CIRCLE 239 ON READER-SERVICE CARD
New Products Index

New Products, new materials, and production products announced during the last half of last year are listed here by category. Following each category are issue and page numbers. The date corresponding to the issue number is given below.

A
absorbers, microwave—22:65, 23:117
accelerometers—14:94; 16:69, 109; 17:65, 54;
18:69, 92; 19:100; 22:63, 74; 23:62; 24:47;
26:54
actuators—14:94; 16:106; 23:92
air conditioning equipment—24:63, 66
amplifiers—14:53; 16:84; 17:49; 22:56
amplifiers, audio—23:95; 23:63
amplifiers, dc—15:50; 16:69, 112; 17:37, 42;
amplifiers, decade—14:82; 17:44; 23:95
amplifiers, differential—22:59
amplifiers, magnetic—15:67; 16:77, 102, 140;
23:96
amplifiers, pulse—14:93; 16:83
amplifiers, servo—14:57; 15:81; 16:144;
16:102; 19:100; 21:78, 89; 22:69; 24:91;
25:95
amplifiers, strain gage—16:150
amplifiers, transistor—14:44; 15:62; 16:91;
21:66; 26:64, 51
antennas—16:104
antennas, direction finding—26:63
antennas, marine—15:98
antennas, microwave—24:64; 24:64; 25:110
antennas, rotator—15:58
antennas, towers and supports—24:73
antennas, t-t—15:58; 16:148; 19:80; 20:46;
21:78
antennas, log—18:90
antennas, microwave—22:53; 22:60
antennas, r-f—14:14, 66, 94; 18:78;
25:109
audio equipment—24:56
bearings—15:54, 16:144; 21:170
bellow—17:45
bends, microwave—14:67
bezel—18:112
blowers—14:54; 17:91, 73; 19:106; 20:406;
22:51, 74; 23:96
blowers, fans—21:84, 90; 24:65; 28:63
boards, blocks—23:70
boards, plug—24:43
boards, terminal—22:71; 23:75; 25:76, 98;
26:49
bolts—17:49
bobbins, coil winding—14:80; 24:71
box, metal, plastic or waterproof—16:152
breadboard, kit—17:70
breakers, circuit—15:90; 17:63; 19:110; 20:44
bridges—17:42
bridges, capacitance—15:88; 20:49
bridges, impedance—15:65; 16:65; 20:46
bridges, microwave—24:86
bridges, resistance—16:68; 21:66; 22:45
bridges, wheatstone—19:94; 21:79
C
conductors—17:69; 22:95
cable assemblies—24:112, 133
cable, coaxial—15:80; 22:61
cable, insulated—15:67, 72; 19:80; 23:76; 24:64
cable—16:147
calibrators, pressure instruments—17:53
calibrators, voltage—20:58; 23:87
cameras, data recording—14:54; 20:59; 23:56;
92
cameras, oscilloscope—21:92
cameras, television—24:71
capacitors—16:120; 22:69, 79; 23:89; 24:63
capacitors, ceramic—17:58; 18:92; 19:154, 60;
77; 20:40
capacitors, electrolytic—15:87; 18:68; 19:82;
110; 20:58, 25:107
capacitors, energy storage—16:62; 24:54
capacitors, feed through—14:54; 19:70
capacitors, glass—21:45
capacitors, metallized—19:65
capacitors, metallized paper—19:63, 72; 23:189
capacitors, mica—24:66
capacitors, mylar—18:70, 98; 21:92
capacitors, paper—22:87
capacitors, polyester—15:98
capacitors, polystyrene—17:49, 57
capacitors, silvered mica—15:77
capacitors, tantalum—14:54; 148; 17:286;
18:67, 79, 80, 81, 85, 23:74, 23:91;
24:44, 47; 26:46
capacitors, variable piston—15:77
capacitors, variable trimmer—14:55; 15:101;
16:92, 19:80; 23:77

Which of these radar areas is yours?

Microwave Associates has long had a specialized and creative interest in lightweight, compact, high efficiency magnetrons with these features:

STABLE FREQUENCY OUTPUT
RUGGEDIZED CONSTRUCTION
FIXED TUNED AND TUNABLE TYPES
FREEDOM FROM PULSE TO PULSE JITTER
HIGH DUTY CYCLE CAPABILITIES
EXTENDED OPERATING LIFE
LONG SHELF LIFE

If you need to get the most from magnetrons, write or call for detailed specifications.

MICROWAVE ASSOCIATES, INC.
BURLINGTON, MASSACHUSETTS • BR 2-3000

CIRCLE 254 ON READER-SERVICE CARD
SPECIAL TERMINALS, SAPPHIRE-TO-METAL SEALS
AND MAGNETRON WELLS AVAILABLE

High alumina ceramic and metal parts are brazed together to form a high-
strength, long-life, molecular seal.

Stock sizes for up to 100 KV-DC operating voltages available for short delivery.

For complete information, brochure, spec sheets and price lists, write or phone: Ceramaseal, Inc., New Lebanon Center, N.Y. West Lebanon 3-S651.

CERAMASEAL, INC.
CIRCLE 221 ON READER-SERVICE CARD

1/3 the size...1/2 the cost!

Metronix
ELECTRONIC VOLTMETERS
Panel-mounted, single and multi-range

FROM 1/2 to 1/4 smaller than conven-
tional units, these METRONIX
instruments occupy no more panel
space than the meter.

METRONIX AC and DC models
are the smallest available with such a
wide choice of ranges. Single-range, mil-
itary, rack-mounted and plug-in types.

Ask for Bulletin M-602

MODEL 300 D. C. (Illustrated)
RANGES: 0.1/1/3/10/30/100/300/1000
volts D.C.

ACCURACY: ±3%, full scale deflection
INPUT RESISTANCE: 10 megohms

PRICE: $94.50

A SUBSIDIARY OF
Assembly Products Inc.
Chesterland 17, Ohio
CIRCLE 755 ON READER-SERVICE CARD

NEW PRODUCTS INDEX continued

controls, servo—15:96; 16:127; 17:79; 20:46; 61; 21:64; 24:91, 92
controls, speed—15:97
controls, temperature—14:68; 24:49
controls, timing—19:110; 24:48
converters—17:93; 95; 97; 99; 15:59
converters, analog—14:32; 16:67; 20:56, 60; 23:65
converters, digital—17:65; 18:100
converters, low—10:54
converters, power—21:92
converters, power frequency—14:47; 16:65; 23:105; 106; 24:54; 57
converters, rf—14:89
coolers—20:58
cores, tape wound—16:143
cores, toroidal—17:67; 21:14
counters—21:98
counters, electromagnetics—16:42; 26:66
counters, electronic—14:56; 88; 95; 16:65; 110
128: 17:42; 43; 18:75, 114; 19:83; 86; 104;
counters, frequency—16:85
counters, impulse—17:68; 19:72; 20:66
counters, mechanical—17:56, 21:70; 21:100
counters, radiation—24:71
counters, revolution—23:72
counters, scintillation—16:35; 24:24
counters, ovens—12:31
couplings, microwave—20:56
couplings, shaft rigid and flexible—15:71;
17:69; 18:76; 22:37; 23:94
crystal, mount—23:103
crystals, frequency control—19:66, 97
cutters, wire—20:19
data, recorders—18:100
data, reduction systems—11:49; 16:158
dc, power supply—22:42
decade boxes—17:72
decoders—16:116
delay lines, digital—21:63
delay lines, distributed constant—25:50
delay lines, distributed, constant variable—
23:67
delay lines, lumped constant—14:69; 18:10; 24:44
delay lines, lumped constant variable—14:71;
16:154
delay lines, ultrasonic—21:65
demagnetizers—15:73
demodulators—17:43; 21:72; 24:41
dials, instrument—14:90; 22:44; 23:95
dials, precision—18:115
diodes—15:65, 81; 16:131
diodes, germanium—17:49; 23:38; 24:14
diodes, selenium—25:106
diodes, silicon—15:65, 81; 23:61
diodes, surge—21:60, 86
diodes, silicon—25:106
diodes, selenium—25:106
diodes, silicon—15:65, 81; 23:61
diodes, surge—21:60, 86
diodes, silicon—25:106
diodes, selenium—25:106
E
Baldwin

precision shaft angle analog-to-digital encoders in 5 standard models:

13, 16 and 18 digit

photovoltaic readout / reflected binary code*

*Encoders with integral photovoltaic features and other non-linear codes are also available. All data is made available for Baldwin's use. Write for descriptive bulletins.

THE BALDWIN PIANO COMPANY

1841 Gilbert Avenue, Cincinnati 2, Ohio

CIRCLE 253 ON READER SERVICE CARD
NEW PRODUCTS INDEX continued

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-July 9</td>
<td>20-Sept. 10</td>
</tr>
<tr>
<td>15-July 23</td>
<td>21-Oct. 15</td>
</tr>
<tr>
<td>16-June 6</td>
<td>22-Oct. 29</td>
</tr>
<tr>
<td>17-Aug. 20</td>
<td>23-Nov. 12</td>
</tr>
<tr>
<td>18-Sept. 3</td>
<td>24-Nov. 26</td>
</tr>
<tr>
<td>19-Sept. 17</td>
<td>25-Dec. 10</td>
</tr>
</tbody>
</table>

- **Oscillators** - 14.72
- **Oscillators, audio** - 16.92, 98; 17.59; 21.88; 22.58; 23.61; 24.54
- **Oscillators, crystal** - 21.92
- **Oscillators, microwave** - 22.62
- **Oscillators, multichannel** - 16.89
- **Oscillators, power** - 22.77
- **Oscillators, rf** - 15.69; 21.14; 25.68
- **Oscillators, sweep** - 15.60; 16.11; 18.97
- **Oscillators, wide range** - 22.51
- **Oscillograph, multichannel** - 16.135
- **Oscillographs, recording** - 16.165; 19.86; 94
- **Oscilloscopes** - 16.65; 79; 18.111; 20.91; 25.105
- **Oscilloscopes, cathode ray** - 14.77; 15.62; 16.49; 149; 18.73; 23.64; 24.53; 72; 25.86; 106; 26.36
- **Oscilloscopes, cr, multiple channel** - 18.75; 104; 24.58
- **Ovens, crystal** - 15.89; 23.64
- **Ovens, electric** - 26.67

- **Packaging, materials** - 20.65
- **Paint, metallic** - 23.115
- **Panels** - 20.59
- **Panels, jack** - 25.73
- **Paper, recording** - 16.107
- **Photocells** - 22.74; 77
- **Photocytes and phototubes** - 16.123; 18.115; 24.56
- **Phototelegraphy, equipment** - 24.64
- **Photomicrographs** - 104.114; 26.58
- **Plastic materials** - 23.116
- **Plastic materials, epoxy resin** - 35.22
- **Plastic materials, teflon, rods, sheets, tubing** - 23.113, 114
- **Plating** - 23.106, 117
- **Plotters** - 20.62
- **Plotters, x-y** - 23.88; 26.65
- **Plugs** - 17.67; 19.109, 109, 111; 22.79; 26.64
- **Potentiometers** - 14.66, 68; 15.99; 16.67, 88; 20.121; 28.69; 21.43; 23.35; 24.75; 25.31, 91, 107; 26.58, 64
- **Potentiometers, portable instrument** - 25.64
- **Potentiometers, nonlinear** - 15.61, 21.88
- **Potentiometers, precision linear wirewound** - 15.78; 16.109
- **Potentiometers, trimmers** - 14.74; 16.117, 155, 156, 159; 17.54; 21.63; 22.41; 23.57; 24.62
- **Power** - 21.78
- **Power supplies** - 17.60; 21.63; 23.48, 70; 23.67, 83; 24.59
- **Power supplies, ac-dc** - 16.50; 16.88, 93; 17.52, 106, 18.52, 101, 106, 21.72, 81; 22.77; 23.57; 68; 24.56
- **Power supplies, high voltage** - 16.42; 16.50; 25.64; 26.51
- **Power supplies, klystron** - 15.79; 20.60
- **Power supplies, low voltage** - 14.62; 69, 75, 89; 15.60; 16.90; 18.72, 74, 82, 97, 96, 113, 119, 123, 124, 146, 105, 159; 17.44, 49, 52, 43, 68, 69, 71, 72; 19.07, 110; 20.48, 52, 60; 21.88; 22.53; 78, 79; 24.58; 25.78, 83, 105; 26.43, 47
- **Power supplies, microwave** - 16.125; 21.54, 86
- **Power supplies, miniature** - 24.59; 26.59
- **Power supplies, mobile** - 16.99; 25.93
- **Power supplies, regulated** - 16.117, 127; 19.02; 21.78; 66; 23.71; 83, 94; 24.56; 25.88, 106; 106; 26.44, 48, 83, 85
- **Power supplies, transistor** - 20.57; 21.71, 76, 84; 26.58
- **Power supplies, variable frequency** - 19.87; 29.03
- **Preamplifiers** - 17.41, 48; 18.110
- **Preamplifiers for communication receivers** - 14.97; 26.48
- **Pressure switch** - 22.69
- **Pressurizer** - 19.83

Barber-Colman Company

Dept. M, 1283 Rock Street, Rockford, Illinois

Small Motors • Automatic Controls • Industrial Instruments • Aircraft Controls

Electrical Components • Air Distribution Products • Overdoors and Operators

Molded Products • Metal Cutting Tools • Machine Tools • Textile Machinery

FREE CATALOG HELPS SELECT MOTOR NEEDED

Get the helpful condensed catalog of Barber-Colman shaded pole small motors. Contains complete descriptions of above motors, shows typical specifications performance characteristics, control circuit diagrams. Write for your copy.
Ultra-Sensitive Relays

the practical solution

to many complex
control problems

Across industry today, Barber-Colman ultra-sensitive d-c relays are solving control problems in a wide range of applications such as communications, electronics, instrumentals, process control, railway signal transmission, aircraft temperature control and remote positioning systems.

Polarized Micropositioner Relays — The Barber-Colman Micropositioner is an ultra-sensitive polarized relay capable of operating on input powers as low as 40 microvolts. Available in three types of adjustment: null-seeking...symmetrical magnetic-latching...or conventional form C snap-acting. Can be operated in excess of 100 cps. Selection of enclosures and mountings.

Transistorized Polar Relays — The Barber-Colman transistorized relay is an adaptation of the Micropositioner that features a built-in transistor pre-amplifier, which greatly reduces the input required for contact operation. Choice of null-seeking symmetrical magnetic-latching, or form C snap-acting contact operation.

Resonant Relays — Characterized especially by low operating power and narrow band width. Ultra-Sensitive Polarized Relays operating on input powers as low as 40 microvolts. 400 Cycle A-C Motors for aircraft and missile applications.

The wide line of Barber-Colman electrical components includes: D-C Motors for industrial equipment and aircraft control applications. Output up to 1/10 hp...permanent magnet and split series types...various mountings and speeds...also available with gearheads or blowers. Tach Generators for accurate speed indication and servo rate control applications. Choppers that require extremely low driving power. Resonant Relays characterized by low operating power, narrow band width. Ultra-Sensitive Polarized Relays operating on input powers as low as 40 microvolts. 400 Cycle A-C Motors for aircraft and missile applications.

Technical Bulletin Service on all Barber-Colman electrical components. Detailed specifications, performance data, circuitry drawings. Write for bulletins on any or all products.
PATENTS

Signal-Operated Switch

Signal power from the transistor switch is used to establish a low-impedance path for signal between its source and load. Complimentary transistors 1 and 2 are cross coupled by diodes D_4 and D_5 which are poled to impede the flow of base current. However, when the signal voltage exceeds the sum of the breakdown voltages of the diodes, the transistors saturate and the source to load circuit is closed. Distortion due to the switch is negligible since the variational resistance is small.
NEW high vibration-resistant
THERMAL TIME DELAY RELAY

"H" series withstands 5-500 cps

- For missiles, aircraft, electronic equipment
- Time delays - 3 to 180 seconds
- Miniature . . . AC or DC
- Hermetically sealed
- Fast reset

The "H" series is part of the Curtiss-Wright Thermal Time Delay Relay line which includes:

S-Snapper
- double-throw, snap-action contacts
IR, and STR
- instant reset, voltage compensated
MR and CR
- fast reset, no contact chatter
K, G and W
- economical, low-cost, stocked

For our new catalog, write or phone Electronics Division, Components Dept., Carlstadt, New Jersey, Geneva 8-4000.

CURTISS-WRIGHT

ELECTRONICS DIVISION

CORPORATION • CARLSTADT, N. J.

CIRCLE 262 ON READER-SERVICE CARD

DIMCO-GRAY

SNAPSLIDE FASTENERS

Provide vibration-proof holding and quick, fool-proof release!

Approved under Army-Navy Standards

Here's a simple, easy means of securely fastening assemblies to withstand shock or vibration, and yet allow quick removal for inspection or repair. Instant snap action engages or releases fastener . . . no tools are required! After installation, fasteners never need adjustment . . . even with repeated use.

Three sizes available for different load requirements. Large and medium sizes are made of corrosion-resistant stainless steel. Small sizes are made of nickel-plated brass. Stock parts fit various thicknesses of flanges and mounting plates . . . special parts can also be supplied.

WRITE FOR FULL DETAILS TODAY!

DIMCO-GRAY COMPANY

201 E. SIXTH STREET DAYTON, OHIO

CIRCLE 263 ON READER-SERVICE CARD

PATENTS

Counting Circuits Employing

Ferroelectric Capacitors

(Assigned to Bell Telephone Laboratories, Inc.)

Storage characteristics of ferroelectric capacitors are used to provide a counter which is immune to random or noise pulses. The counted pulses may be either closely spaced or separated by intervals measured in hours.

Briefly, ferroelectric capacitors have dielectrics in which electrical dipoles align themselves parallel to each other by mutual interaction such that the polarization versus applied field curves show hysteresis loops similar to the B-H curves for ferromagnetic materials. An

Unlimited Phasing with Extreme Compactness

Linearity determined dynamically on each unit on NEW Gamewell "LARTester"

("Linearity — Angle — Resolution — Tap location")

This special Gamewell Phasing Clamp design has two important extras: Extreme compactness and High Temperature compatibility. Check these features . . .

- Only ½" depth per section
- Continuous service up to 150°C available
- Stainless steel clamps give unlimited phasing
- Large number of taps, limited only by physical spacing
- Exclusive Gamewell high unit pressure contact give permanent, low resistance tap connection, no linearity distortion
- Will withstand High "G" and operation under severe vibration
- Three styles of mounting: Servo, Bushing and 3-hole
- Available in ball or sleeve bearings, shafts as specified

More information, prices and delivery available from Gamewell representatives or write: THE GAMEWELL COMPANY, Newton Upper Falls 64, Mass.

CIRCLE 264 ON READER-SERVICE CARD

ELECTRONIC DESIGN • January 21, 1959
applied voltage which shifts the polarization from one stable point to another produces a fixed charge depending upon the area of the electrodes.

The typical counter circuit shows ferroelectric capacitors 45, 50, and 52 connected to the monostable multivibrator comprising transistors 58 and 60. Capacitor 50 integrates the applied pulses while capacitor 52 performs resetting after a predetermined count. The relative area of the capacitor plates is as shown.

Assume, initially, that the remanent polarization of the capacitors is downward such that a negative pulse will reverse each capacitor and also that transistor 58 is conducting. The first negative pulse applied to capacitors 45 and 50, in series, produces a charge which is metered by capacitor 45 such that only a portion of the remanent polarization of capacitor 50 is reversed. A negative pulse does not affect capacitor 52 since diode 54 will not pass negative pulses to ground. Subsequent positive pulses reverse the remanent polarization of capacitor 45 through diode 48. Thus, negative pulses reverse the polarization of capacitor 45 to deliver consecutive discrete charges to capacitor 50 until the remanent polarization of capacitor 50 is reversed completely. This last pulse is transmitted through diode 56 to flip the multivibrator causing transistor 58 to cut off and to provide a positive bias on diode 77. Hence the next positive pulse switches the polarization of capacitor 52 through diode 53 and resets integrating capacitor 50. When the multivibrator flops back, transistor 58 is again conducting and the counter is restored to its initial condition.

Circuits for Producing Nonlinear Voltages

Patent No. 2,834,622, Homer G. Boyle. (Assigned to Arco Manufacturing Corp.)

In many applications, it is necessary to convert the linear rotation of a shaft into a nonlinear or complex electrical function. Rather than wind impedance elements on an odd-shaped form or convert the linear shaft rotation to a nonlinear motion by means of cams, linear...
MINIATURE AND SUB-MINIATURE

relays by **Hi-G**

Rugged and reliable relays are manufactured at Hi-G in a wide range of standard units... and to customer order with special designs to meet your particular requirements.

Complete experimental and prototype facilities permit Hi-G engineering personnel to study and evaluate your relay needs.

New, complete illustrated specification sheet available. Write for your free copy today.

And for information on special relay units, send your specifications to Hi-G for study and recommendations at no obligation.

rugged / reliable / shock and vibration resistant

A FEW OF THE WIDE RANGE OF Hi-G STANDARD RELAYS

Hi-G

BRADLEY FIELD WINDSOR LOCKS, CONN.

CIRCLE 267 ON READER-SERVICE CARD

PATENTS

Potentiometers are used to generate complex functions.

The basic network consists of linear potentiometer 1 connected to dual potentiometers 5 and 8; the dual potentiometer forms a first and second parallel branch both short-circuited by line 4. Depending on the complexity of the curve to be duplicated, any number of branches may be selected. With the second branch disconnected, parabolic or lambda functions can be obtained by selection of proper values for the network elements.

Use of all branches with proper component values will produce logarithmic or asymptotic functions. Finally, with all branches connected, and potentiometer taps 2, 6, and 9 arranged to move in unison or opposition, higher order effects can be realized.

An equation is derived for determining the total network impedance for \(n \) branches. A practical solution to match almost any curve can be accomplished quickly and accurately, using standard, commercial gaged potentiometers.

Diode Test Set

Patent No. 2,847,840. Frank C. Marino.

(Assigned to Bell Telephone Laboratories.)

Forward and reverse voltage-current conduction characteristics of a semiconductor are simultaneously displayed on the screen of a cathode ray tube oscilloscope. The apparatus likewise displays the diode reverse dynamic resistance to determine suitability of the diode in switching circuits.

response:

200 MSEC

TEMPERATURE TRANSDUCERS

The newest line of Arnoux temperature transducers — 100-ohm resistance, 200-millisecond response — permits accurate measurement of transient temperatures such as those in missile and aircraft applications. The output signal is 0.5 vdc for as small a span as 180°F, when Arnoux transistorized TME-1 or TME-2 systems or similar equipment is used.

The fluid-immersion transducer (4101L-11), for static or moving fluid, is LOX compatible and available in two calibration ranges: —302°F to —285°F, —320°F to +500°F.

The air transducer (4101H-10) is for static to high-velocity gases.

The surface transducer (2101H-15) is for materials of limited area and thickness and has great mounting versatility.

Both air and surface types are available in two calibration ranges: —100°F to +500°F, —100°F to +1200°F.

ARNOUX CORPORATION

11924 WEST WASHINGTON BLVD., LOS ANGELES 6, CALIF.

Sales Offices: Beverly Hills, Calif. • Dallas • Great Neck, N.Y. • Seattle • Bryn Mawr, Pa.

CIRCLE 269 ON READER-SERVICE CARD

ELECTRONIC DESIGN • January 21, 1959
A semiconductor diode characteristic has forward and reverse regions of low impedance and an intermediate region of high impedance. The forward bias for conduction is much greater than the reverse bias to be applied for conduction. The reverse breakdown point is important in switching circuit design.

The characteristic shown on the screen is generated as follows: The output of ac generator 13 is applied to the horizontal amplifier and the voltage across diode current sensing resistor 20 is connected to the vertical amplifier. For the forward half cycle the generator is across diode 10 and resistor 20 in series. During the reverse half cycle, mercury-wetted switch 22 places a preselected portion of battery 28 voltage in series aiding with ac generator 12. Diode 10 conducts the instant the combined voltage exceeds breakdown. The horizontal and vertical amplifier sensitivities are constant for the entire conduction characteristic in order that the actual slope at breakdown be displayed.

plan ahead!

To be really sure of getting your pot delivered on time, you could assemble your own! But just when you’re counting on sub-contractors to deliver the necessary parts—you might find they’re tied-up on someone else’s job! So if you must be sure, lay in a good supply of raw materials in quantity lots—metals, glass, wire, plastics, bearings—the works!

But before you load up the living-room with bar stock, check with Ace. You’ll find, to your relief, that Ace abundantly warehouses all their own raw materials—just for the express purpose of being able to make everything they need—when it's needed, for controlled delivery! So if delivery of precision pots is a prime consideration, talk to the company that does its own sub-assembly manufacture—see your Acerep!

From raw materials to completed pot—within the plant—our servo-mount A.I.A. size 7/8" ACEPOT®. As with all the others, from 1/4" to 6".
ALLIED'S NEW ADDITIONS TO THE KH SUBMINIATURE LINE

Types KHI and KHY

GENERAL FEATURES:
Contact Data:
Contact Arrangement—DPDT
Contact Rating—
Low-level up to 2 amps at 29 volts d-c,
1 amp at 115 volts a-c 400 cps
non-inductive or 0.5 amp inductive.
Life—100,000 minimum at 125°C
Also available 3 amps at 29 volts d-c
2 amps at 115 volts a-c 400 cps
non-inductive or 1 amp inductive.
Life—100,000 at 3 amps or 500,000
minimum at 2 amps at 125°C.
Initial Contact
Resistance—0.05 ohms maximum
Contact Drop—1 millivolt maximum
at low level rating, initial and during
low level miss test.
Operate Data:
D-C Coil Resistance—up to 10,000 ohms
Nominal Power—1.2 watts
Pull-in Power—240 milliwatts (standard)
100 milliwatts (special)
Operate Time—5 milliseconds max.
Release Time—3 milliseconds max.
Dielectric Strength:
1000 volts rms at sea level
500 volts rms at 70,000 feet
350 volts rms at 50,000 feet
Insulation Resistance:
10,000 megohms minimum at 125°C

ENVIRONMENTAL FEATURES
Vibration:
5 to 10 cps at 0.5 inch double amplitude
10 to 55 cps at 0.2 inch double amplitude
55 to 2000 cps at 0.01 g
Shock: 100 g's operational + 200 g’s mechanical
Ambient Temperature: —65°C to +125°C

MECHANICAL FEATURES
Weight: 0.5 ounce
Terminals: Hooked Solder + Plug-in + Printed Circuit
Mountings:
2 or 4 hole brackets at base or center of gravity
1 or 2 studs on top or side of housing

MILITARY SPECIFICATIONS
MIL-R-5018 + MIL-R-5757C

Allied's type KHI and KHY subminiature relays have a higher contact rating than Allied's original subminiature relay and are designed to meet the increased vibration and shock requirements of the latest MIL specs. In addition, the type KHY relay has incremental grid spaced terminals for application to "Automatic" assembly. Both relays are available with brackets for mounting interchangeable with that of Allied's type KH subminiature relay.

Books

Sampled-Data Control Systems

This book discusses analysis and design of sampled-data feedback and control systems. It presents a unified treatment of the material found in original papers, reports and recent research made by the authors and their colleagues, plus new material previously unpublished in any book.

While specifically directed to control systems, there is much material which has general application. This includes the transformation, data-reconstruction theory, applications of transform methods to numerical processes, and the theory of sampled random function.

The book is largely theoretical as applied mainly to the design of sampled-data control systems where such specifications as stability, response, and output ripple are of importance. Sampled-data theory serves as a common base for the analysis and synthesis of linear digital systems, pulse continuous systems, and their combinations often found in practice. In addition, the subject is broadly treated to include applications in the fields of communications, data processing, and filtering.

TINY KEY TO TOMORROW'S FUTURE NEW SEMICONDUCTOR DEVICE

Halltron

The HS-51 HALLTRON is based upon the Hall effect. Its output characteristics are related to the product of the input current and magnetic field, hence are useful in many new applications. The HS-51 Halltron is a fully developed production unit utilizing indium antimonide and is designed to work in the customer's magnetic circuit. The thin encapsulated unit provides the strength and durability necessary for circuit applications.
This escapement mechanism permits the winding of any number of connected series coils, depending upon wire size, coil size, winding speed, and mandrel weight. It will handle rotor, field, bobbin, repeater, solenoid, and single layer coils. Production is increased because pauses are eliminated, and no operator is needed to move wire from one series coil to another. Instead, the operator can prepare the next mandrel. Maintaining an exact turn count per coil, the unit handles wire sizes from 17 to 46 at winding speeds up to 1200 rpm. Winding pitch is determined by gear train and cam by coil length.

CIRCLE 274 ON READER-SERVICE CARD

Tension Analyzer

Helps make uniform wire coils

By recording both static tension level and dynamic tension variations, tension analyzer model BL-525 helps produce uniform wire coils at high winding speeds. Affording proper winding speed control, it reduces the overstretching of wire, thus eliminating overheating of the coil, variations in resistance, and breakdown of insulation. It can also control the electrical characteristics of a coil and the number of turns it has. Static and dynamic peaks in wire or fiber stress can be located on an oscillographic chart record.

Brush Instruments, Div. of Clevite Corp., Dept. ED, 37th and Perkins Ave., Cleveland 14, Ohio.

CIRCLE 275 ON READER-SERVICE CARD

It happened in the thirties! And in the early fifties! It's happening again today!

While others cut back and drag out the crying-towel, the fighters roll up their sleeves and go to work! Maybe it's a new sales pitch—or a harder one! Maybe it's a new and different promotion. Maybe it's as simple as re-arranging store displays and merchandise on the shelves. Maybe it's a new ad campaign! But some way... the smart boys go right on SELLING!

Look at the facts and figures! Between now and 1975, there will be more people, more jobs, more income, more production, more research, more savings, more needs of all sorts than ever before in our history! People will want... need... and buy! Somebody will do the selling... why not you?

FREE! Get going today! Write at once for illustrated "How To Turn the Tide" booklet offering valuable and vital selling ideas. The Advertising Council, 25 West 45th Street, New York 36, New York.

YOUR FUTURE IS GREAT IN A GROWING AMERICA
PRODUCTION PRODUCTS

Toroidal Winding Machine

Handles 20 to 40 AWG wire

From size 20 to 40 AWG wires, model L-7 toroidal winding machine produces coils that have a minimum ID of 9.16 in., a maximum height of 3 in., and an OD between 1 and 9.1/2 in. Wired for 110 v, 60 cps, ac operation, the unit incorporates a Variac speed control, a self-releasing shuttle to the magazine loading lock, a wire guiding device for uniform wire distribution in the magazine, and a high speed geared predetermining counter. One standard magazine is available in sizes of 1/8, 3/16, or 1/4 in. The machine measures 20 x 18-1/2 x 17 in.

Universal Mfg. Co., Inc., Dept. ED, 1168 Grove St., Irvington, N.J.

Floating Zone Fixture

For Crystal growing

This floating zone fixture produces high purity metals and semiconductor materials. Purification...
Continuous thinking...

...research and experience developed Magnetic Research Corporation's all new DC-DC CONVERTER...a converter whose versatility is adaptable to telemetering, guidance, control and communication groups...or any other application where the DC regulated power is required.

DC-DC CONVERTER specifications
- OUTPUT POWER: MULTIPLE 150 WATT MAX.
- SIZE: 5.0" X 3.5" X 3.7". WEIGHT: 3.5 lbs.
- EFFICIENCY: GREATER THAN 75%
- LINE REGULATION: LESS THAN ±1%
- SHORT CIRCUIT PROOF: 28V DC INPUT

Pacing the industry in Astro-Magnetics

MAGNETIC RESEARCH CORPORATION
3160 W El Segundo Boulevard, Hawthorne, California

CIRCLE 284 ON READER-SERVICE CARD
For airborne and missile cooling applications, the AXIMAX-3 when turning at 20,000 rpm will deliver 165 cfm at free delivery. This performance is possible although the fan is only 2.8” in diameter, 2.3” in length and weighs a mere 14 ounces.

Variation in driving motors include constant speed and Altivar designs. The latter automatically vary their speeds inversely with density and thereby approach constant cooling with a minimum of power drain and noise.

Mounting is simplified by the provision of “servo” clamping rims at either end of the barrel. Airflow can be reversed by turning the fan end-for-end. Electrical connection is made to a compact terminal block. Power requirement is 400 cps, 1 or 3 phase.

Write today for complete technical details to...

ROTRON mfg. co., inc.
WOODSTOCK, NEW YORK

In Canada: The Hoover Co., Ltd., Hamilton, Ont.

CIRCLE 285 ON READER-SERVICE CARD
Insulating Tapes

A 6-page, colored catalog folder showing the entire line of electrical insulating tapes with complete specification data charts for all friction tapes, splicing compounds, and plastic tapes prepared by Plymouth Rubber Co., Inc., Tape Div., Canton, Mass.

Overheat Protectors

Environmental Chambers

Latest 6-page brochure showing environmental chambers for temperature, altitude, and humidity also describes complete missile test facilities and components testing units. Conrad, Inc., Conrad Square, Holland, Mich.

Deflection Potentiometers

Data Sheet E-51(8) describing the Brooks Deflection Potentiometers lists complete specifications of both models 7 and 8 and their accessories and contains a schematic diagram of model 7. Leeds & Northrup Co., 4934 Stenton Ave., Philadelphia 44, Pa.

Thermoplastic Knobs

Standard thermoplastic knobs—available in polystyrene and acetate—are described with photographs, diagrams, and dimensions. Knobs range in size from 5.16 in. to 2.7/8 in. diam and have a wide variety of applications. Waterbury Companies, Inc., 528 Washington St., Waterbury 20, Conn.

Digital Indicator and Printer

Features, applications and specifications of Digital Indicator and Printer Model 176 are described in two-page bulletin. The Model 176 is designed for high accuracy and resolution indication and permanent recording of weight, strain, temperature, pressure, and other variables which can be measured by sensitive bridge-type transducers. Gilmore Industries, Inc., 13015 Woodland Ave., Cleveland 20, Ohio.
GLASS BASE laminates, with their high flame and heat resistance, mechanical strength, and moisture resistance, are extremely useful to printed circuit designers, but they often pose manufacturing problems.

Here are some basic recommendations for machining these laminates. It is important to remember that when machining parallel to the laminations, there is the danger of splitting. But if the piece is clamped firmly and machined carefully, the danger is very small.

Sawing

With a good exhaust system, good cutting will result at speeds of 3000 to 3600 rpm with a diamond impregnated wheel with copper body 1/16 in. thick by 12 in. in diameter. The material can be fed by hand without forcing. The work and wheel can be flooded with water to prevent overheating. Abrasive wheel cutting should be done under water to minimize the heat which is generated by friction.

Band sawing, one of the most difficult and expensive operations, should be performed with steel blades with hardened teeth and a soft back. The work should be fed lightly and the blade kept sharp. Diamond coated band saw blades are better than steel. A good exhaust system allows for dry sawing.

Punching

Punching glass base materials follows standard practices with other materials, though die life is shorter. But carboloy and special die steels help increase die life. Good punchings will result on sheets as thick as 3/32 in.

Drilling

A carbide drill should be used. The material can be drilled dry with a good exhaust system,
but water on the work and drill can be used to prevent overheating and dulling of drills. High speed drills, nitrate treated, must be sharpened more often. When sharpening, it is necessary to cut the drill back to the original body diameter. For quarter inch drills, the speed can be 4800 rpm.

Tapping

Tapping is the same as with paper base laminates. The abrassiveness may cause taps to cut very close to size, and there may be a tendency to bind when backing out.

Standard high speed steel taps are all right for short runs, but carbide taps should be used for long runs. The taps should be purchased oversize. Coolant can be used, but is not needed if a good exhaust system is used.

Threading

External and internal threads can be cut dry on a lathe with a carbide-tipped tool. Fine cuts give best results. A coolant can be used, but isn't essential.

Machining

Conventional turning, boring, facing, and milling can be performed on automatic screw machines, standard and production lathes, hand turret lathes, and standard millers. Carbide tipped tools and cutters should be used with slower surface speeds than those required for paper base laminates.

Tools should be ground with a zero rake, and a coolant can be used but isn't essential if the dust is exhausted.

More information is available from the National Vulcanized Fibre Co., 1038 Beech St., Wilmington, Del.

NOW Merck makes FOUR forms of ultra-pure SILICON for semiconductor applications

Merck Doped Single Crystal Silicon—offers doped single crystals of high quality. Yields of usable material are reported to be especially high when device diffusion techniques are used. Merck doped crystals are now available either in n or p types. Either type of crystal can be furnished in resistivities of 20 to 50 ohm cm., 50 to 100 ohm cm., 100-300 ohm cm., and higher. Minimum lifetime for Merck doped crystals—100 microseconds.

Merck Single Crystal Silicon—offers manufacturers without floating-zone equipment semiconductor silicon of a quality unobtainable elsewhere. No crucible-drawn crystals can match the reliability of Merck single crystal material in semiconductor devices. Merck Single Crystal Silicon is available with min. resistivity of 1000 ohm cm. p type. Other resistivities ranging from 1.0 ohm cm. p or n type up to 1000 ohm cm. will soon be available.

Merck Polycrystalline Billets—have not been previously melted in quartz, so that no contamination from this source is possible. Merck guarantees that single crystals drawn from these billets will yield minimum resistivities over 50 ohm cm. for n type material, and over 100 ohm cm. for p type material. Merck Silicon Billets give clean melts with no dross or oxides.

Merck Polycrystalline Rods—are ready for zone melting as received . . . are ideal for users who want to float-zone melting equipment. Merck Polycrystalline Rods (8½ to 10½ inches long and 18 to 20 mm. diameter—smaller diameters on special order) yield more usable material. In float-zone refining one can obtain minimum resistivities of 100 ohm cm. p type with minimum lifetime of 200 microseconds.

For additional information on specific applications and processes, write Merck & Co., Inc., Electronic Chemicals Division, Dept.ED-1, Rahway, N.J.

ULTRA-PURE SILICON—a product of MERCK

BASE BORON CONTENT BELOW ONE ATOM OF BORON PER SIX BILLION SILICON ATOMS

CIRCLE 300 ON READER-SERVICE CARD
New Miniature Sealed Wire-Wound Control For Service Up To 250° C

Need a high-reliability control for hot spots in military or missile circuits? Take a look at the new Mallory Type S miniature wire-wound.

Designed to meet MIL-E-5272, it can be used at ambients as high as 250°C. At 200°C ambient, it's rated at 2.5 watts.

Gold plating of the complete assembly ends corrosion problems, gives maximum heat transfer.

Hermetically sealed model (at top of illustration above) uses glass or ceramic feed-through terminals and high-temperature solder case seals to prevent entry of moisture.

Panel-Sealed Model (lower part of illustration) a unit is also available which has bushing-to-shaft seal plus provision for panel-to-control seal. This unit can be mounted in a sealed circuit container. Both models are supplied in linear tapers from 10 to 20,000 ohms. Standard tolerance is ±5%; other tolerances on request. All have a 1/8" shaft, with 1/8"-32 bushing.

Write today for data, and for a consultation with a Mallory resistor engineer on your particular circuit requirements.

Serving Industry with These Products:
Electromechanical—Resistors • Switches • Tuning Devices • Vibrators
Electrochemical—Capacitors • Mercury and Zinc-Carbon Batteries
Metallurgical—Contacts • Special Metals • Welding Materials

IDEAS FOR DESIGN

This constant current driver uses directly connected transistors to provide high input and output impedances.

Direct Connection of PNP and NPN For High Input, Output Impedance

A precisely controlled constant current drive was needed for a time-varying load impedance. Large load currents made transistors the obvious choice as regulator elements.

The regulator was to have a high output impedance to regulate against high frequency load changes; and a high input impedance, since a vacuum tube, chopper-stabilized, dc amplifier was to provide high loop gain.

The circuit shown here met the requirements simply. Here's how it works:

A voltage proportional to the load current develops across metering resistor \(R_m \). The difference between the metering voltage and a standard cell voltage is amplified to drive the regulator consisting of \(T_1 \), \(T_2 \), and \(T_3 \). This keeps the load current constant.

Npn transistor \(T_3 \), with a grounded base, provides the dynamically high output impedance. It is directly connected to pnp \(T_2 \), which has a grounded collector configuration. The compound connected npn transistor \(T_1 \) further increases the regulator's input impedance so as not to load down the vacuum tube amplifier.

The zener diode \(D_1 \) provides a voltage to keep \(T_1 \) and \(T_2 \) in their active regions and to keep the base circuit of \(T_3 \) low.

Robert B. Craven, Research Engineer, MIT Instrumentation Lab., Cambridge, Mass.

ELECTRONIC DESIGN • January 21, 1959
Thermists in bridge supply power to low impedance load gradually.

Slow Starts for Low Impedance Loads

A mechanical drive system was designed using a 28 vdc electromagnetic clutch which had a dc resistance of about 150 ohms. It was desired to energize the clutch gradually, starting at 0 v and reaching full voltage in about 3 to 5 seconds. RC timing circuits were impractical because of the low impedance of the load. Placing a thermistor in series with the clutch was not satisfactory since the “cold” resistance of suitable thermistors is not high enough to limit the initial clutch voltage to less than about 8 v.

A bridge circuit using thermistors in opposite arms solved the problem. The General Electric D-104 thermistors have a “cold” resistance (25 C) of 500 ohms, so the bridge is balanced initially, giving zero output. As the thermistors heat up due to bridge current, the bridge is unbalanced by the simultaneous decrease in resistance of the two thermistors. Since the resistance of the thermistors at 150 C is only 15 ohms, the output voltage levels off at about 80 percent of the input. The time constant is about 5 seconds.

Solder Blotter

To get excess solder out of those inaccessible corners in a chassis, dip a short strip of shielding braid (about 6 in. long) in solder paste flux; then hold it against the device containing the excess solder. Place a soldering iron in contact with the braid and the excess solder will be drawn into the braid by capillary action.

Phil Moser and Connie Yebes, Hughes Aircraft Co., Culver City, Calif.

Now you can pick the right handle design from Chassis-Trak

If you want panel handles solely for pulling your equipment from its cabinet, Chassis-Trak plain blank handles are just the ticket. But don’t forget that Chassis-Trak also offers eight other handle designs to meet any tilting, locking and special installation needs.

The complete Chassis-Trak line includes handles with push button panel locks, trigger tilt controls plus positive clamp-type models for installation where extreme shock and vibration are encountered. In short, there’s a Chassis-Trak handle design that fits the bill exactly no matter where or how your equipment is mounted.

Chassis-Trak handles are die cast or sand cast of aluminum alloy. Chip resistant finish is aluminum slurry baked on over a clear lacquer-base sealer. Finish has successfully passed salt spray (1,000 hours) and humidity (200 hours at 100%) tests. Offset design permits maximum use of panel space. All handles furnished complete with hardware and mounting instructions.

All models can be finished to your specification. Get details from Chassis-Trak engineers.

Electronics Design • January 21, 1959
Model 5 Radiohm®
1/4 watt multiple miniature variable resistor
(Component Density - 16.2 per cu. in.)*

Cost Savings
Higher Reliability
your job...
and Centralab’s

Centralab®

A DIVISION OF GLOBE-UNION INC.
960A EAST KEEFE AVE. MILWAUKEE, WIS.
In Canada: 804 Mt. Pleasant Rd., Toronto 12, Ont.

* Cubic inch, rather than cubic foot, is used to provide a more realistic and more readily visualized standard of comparison.

Nonlinear Circuits

13. Practical Modulation Circuits

Let us consider the simplest and the most frequently used modulator circuits.

A. Amplitude Modulation

For ordinary amplitude modulation the two schemes principally used are grid modulation and plate modulation. The grid modulation circuit is shown in Fig. 42. The carrier-frequency voltage U_1 and the modulating voltage U_2 are applied to the grid of a triode. A blocking capacitor C_1 bypasses the high frequency past the winding of the low frequency transformer.

The modulation is due to the nonlinearity of the triode characteristic, $I_f = f(U)$, The resultant plate current contains extraneous components which are filtered out by an LC circuit, tuned to the carrier frequency. The bandwidth of the circuit is made somewhat greater than the width of the modulation spectrum, i.e., more than double the width of the signal spectrum. Under this condition, the network will filter both the low frequency and dc components, and the high fre-

Fig. 42. The grid modulation circuit.
Parametric Phenomena in Engineering

A. A. Kharkevich
(Translated by J. George Adasko)

Chapter 1

and Fundamental Nonlinear Processes

frequency components that contaminate the modulation spectrum.

The plate modulation circuit is shown in Fig. 43. It differs from grid-modulation in that the carrier voltage U_c is applied directly to the grid, and the modulating voltage U_m is applied to the plate of tube T_1. Since the effect of the voltage in the plate circuit is roughly speaking, μ times weaker than the effect of the same voltage in the grid circuit, the modulating voltage is amplified by T_2.

From the point of view of operating principle, Fig. 42 and 43 are equivalent. However, the plate modulation circuit of Fig. 43 has several purely technical advantages which can usually be found in texts on transmitters.

B. Frequency Modulation

For frequency modulation it is necessary to change the frequency of the master oscillator. This is most simply done by varying the tuning of the tank circuit of the master oscillator. In the simplest modulation circuit this is accomplished by connecting a capacitor microphone directly in the master oscillator tank circuit. In modern equipment this is accomplished with a circuit based on the use of the so-called reactance tube. The input impedance of this tube, practically a pure reactance, changes magnitude in accordance with the changes in the applied modulating voltage. The theory of the reactance tube is really very simple and reduces to the following. Let us examine the circuit of Fig. 44 and write an expression for the current I.

$$I = \frac{U}{R + j\omega L}$$

If we choose the parameters R and L such that

$$R \gg \omega L,$$

then

$$I \approx \frac{U}{R}$$

The grid voltage is

$$U_g = j\omega LI \approx j\omega \frac{L}{R} U$$

(Continued on following page)

Fig. 43. The plate modulation circuit.

Fig. 44. The basic reactance tube.
Simplified Cables and Harnesses produced by these new Flexprint Wiring Techniques

FLAT SHIELDED CABLE
Flexprint conductors are laminated between insulated ground planes. Choice of dielectric, spacing and shield configuration provides desired electrical characteristics with good flexibility. This technique also produces exceptionally light weight multi-conductor shielded cables, simulated twisted conductors and simulated coaxial cables.

PRE-FORMED CABLES
Flexprint cables can be pre-shaped to resist deformation or return to a desired shape after deformation. For example, this accordion-pleated sliding drawer cable for rack-mounted instruments stretches to permit withdrawal of equipment... folds neatly out of the way when drawer is closed.

MAHTRIX WIRING
Complex harnesses having several feeder arms or conductors common to a termination, can be fabricated by the new spot-welded "T" forming technique. Fine conductors can be joined by this method to achieve a high density of interconnections. Crossing conductors are completely insulated.

REINFORCED CABLE
Flexprint cables and harnesses can be attached to rigid surfaces for extra strength and stiffness. Here, sections of the cable have been reinforced by bonding to epoxy board. Exposed copper conductors wrapped around the board's edge provide a standard printed circuit plug-in connection.

Can Sanders Flexprint Wiring simplify your complex Cables and Harnesses, too?

It will pay you to investigate! Using the new construction techniques illustrated above, Sanders can produce a wide variety of "3-dimensional" insulated printed flexible cables and harness. They have a combination of characteristics unmatched by ordinary wire and printed circuits. Flexprint wiring assemblies save up to 75% in weight... 60% in space... install in a fraction of the time required for conventional wiring...

![Diagram](image_url)

RUSSIAN TRANSLATIONS

Fig. 45. A basic fm modulator using T_2 as the reactance tube.

Fig. 46. The basis of pulse duration modulation. The trapezoidal pulses in (d) result from limiting the waveform in (c) which is derived from the triangular wave (b) generated by the modulating voltage (a).

The anode current (neglecting the reactance of the plate) is

$$I_a = S U_a = j \omega \frac{LS}{R} U$$

where S is the tube's transconductance.

Let us now assume that the parameters are so chosen that

$$I \ll I_a$$

i.e., that the input current depends only on the anode current I_a (the component I is neglected).

We can then find the admittance of the circuit between points 1 and 2 by dividing the input current by the applied voltage.

$$Y = \frac{I_a}{U} \cong j \omega \frac{LS}{R} = j \omega C_{eq}$$

where the equivalent capacitance is

$$C_{eq} = \frac{LS}{R}$$

It turns out therefore that under the assumptions made the input admittance of the circuit is purely capacitive, or, in brief, that the circuit behaves like a capacitor.

*By changing the phase-shifting RL network, it is possible to obtain inductive or any complex input admittance.

FLEXPRINT PRODUCTS DIVISION

Sanders Associates, Inc.

Nashua, New Hampshire; Dayton, Ohio; Inglewood, California; Washington, D.C.

Circle 305 on Reader-Service Card
It now remains to make this capacitance adjustable. This can be done readily, since the capacitance depends on the transconductance. Choosing the operating point on the quadratic portion of the triode characteristic, we obtain a variation in the transconductance, and consequently in the equivalent capacitance, proportional to the change in the voltage on the grid. In fact if

\[I_a = a_1 t + a_2 t^2 \]

then

\[S = \frac{dI_a}{dt} = a_1 + 2a_2 t \]

The basic circuit of a-m f-m modulator with a reactance tube is shown in Fig. 45. In this circuit \(T_1 \) is the oscillator tube, \(LC \) the master tank circuit, \(T_2 \) the reactance tube parallel to the tank circuit, \(U_2 \) the modulating voltage applied to the grid of the reactance tube, \(C_i \) the capacitance that blocks the plate voltage from the grid of the reactance tube, and \(E_o \) is the bias voltage to set the operating point.

C. Pulse Modulation

We shall not dwell on Pulse Amplitude Modulation since, first, the same methods are used for this type of modulation as for ordinary a-m, and second, because PAM is not used extensively at present because of its low interference immunity.

Most widely used are PDM and PPM, the mechanisms of which we shall now consider. A sequence of pulses, modulated in phase or in duration, is obtained most simply and most universally by superimposing a modulating voltage on a triangular periodic voltage whose fundamental frequency equals the repetition rate of the unmodulated pulse sequence. The resultant sum of voltages if then subjected to subsequent treatment such as limiting, differentiation, etc.

We shall start with pulse duration modulation. Fig. 46a shows the modulating voltage, Fig. 46b the triangular voltage, and Fig. 46c the superposition of the two. If we now limit the resultant voltage from above and from below, as shown by the dashed lines of Fig. 46c, we obtain trapezoidal pulses, modulated in duration. The slope of the wave fronts can be readily controlled by changing the relationship between the spread of the triangular voltage and the limiting band.

The block diagram of a PDM circuit consists of a triangular voltage generator (TVG on Fig. 47), a source of modulating voltage (SMV) and a limiter (L). The circuits of these elements contain no essential distinguishing features, so we shall restrict ourselves to the block diagram.

To obtain PPM it is possible to employ PDM first. Let us take a sequence of pulses, modulated in duration, as obtained by the method just described. Let us differentiate this sequence (Fig. 45b). We obtain rectangular pulses of opposite polarity; the positive pulses correspond to the leading edge of the differentiated trapezoidal pulses, and the negative ones to the trailing edge. If we now pass the resultant sequence through a detector which cuts off the negative pulses, we obtain (Fig. 45c) a sequence of rectangular pulses, modulated in phase, i.e., shifted with respect to the reference points, shown in Fig. 48 as vertical dashed lines.

Thus, the PPM block diagram differs from PDM in that the former contains a differentiating element (D) and a detector (Det, Fig. 49). The different versions and details of pulse-modulation circuits are considered in special texts.

(To be continued)

**In practice, the pulses cannot be rectangular. Their shape is also approximately trapezoidal, i.e., the edges of the pulses have finite slopes, determined by the width of the passband of the entire modulator circuit.
LOOK TO TOBE FOR PROGRESS

low-inductance energy-storage capacitors for instantaneous delivery of peak power

Through the development of high power capacitors having exceedingly low inductance and internal resistance, Tobe Capacitors meet today's instantaneous peak power requirements in fusion research, spot welding, shock tube excitation, photoflash, and similar applications.

In construction, the capacitor can be compared electrically and physically to a coaxial line of low impedance and short length in which a low ratio of outer to inner conductor diameters minimizes inductance. Because of their unique design, Tobe Capacitors have high energy storage per unit of volume, high operating efficiency, and can be discharged into a very low impedance load with complete safety.

Custom-designed to become an integral part of an overall system, these capacitors are available in energy storage voltage rating and internal inductance to suit the specific application. Stock designs now available.

For further technical information or engineering aid, write Tobe-Deutschmann Corporation, Norwood, Massachusetts.

specify TOBE PRODUCTS
Tobe Deutschmann - Capacitor Pioneers since 1922

CIRCLE 307 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

What the Russians Are Writing

J. George Adashko

The sensitivity and accuracy of measurements of weak signals having continuous spectra is limited essentially by the random noise in the measuring apparatus. Two basic methods are presently used to cope with this limitation. In one, the noise is measured separately and subtracted from the overall reading of the apparatus. In this method the null setting of the output instrument becomes dependent on the gain of the system and on the noise level of the output. Its effectiveness is therefore dependent on the degree with which the noise remains constant during the measurement time.

Another method (cf Dicke, Rev. Sci. Instr., 17, 268, 1946 or M. Ryle, Proc. Roy. Soc., Nov 4, 1948) involves low-frequency amplitude modulation of the measured weak signal prior to amplification. The weak sinusoidal variation of the modulation frequency, obtained at the detector output, is separated with a narrow-band filter. The amplitude of this sinusoidal variation is proportional to the signal intensity. Although this modulation method eliminates the null drift due to variation in noise level, fluctuations in the gain coefficient of the apparatus, which affect the calibration, are not eliminated.

Fig. 1 shows a measurement circuit free of the above shortcomings. A standard signal generator is used. A simple network produces the sum and the difference of the standard voltage \(v \) and the signal voltage \(u \). Since the order of the noise components in the product is lower than that of the signal components, the output is essentially proportional to \(u^2 - v^2 \) and vanishes identically when the two are equal.

Fig. 2 shows a modification of the same circuit in which the noise component of the signal is also eliminated. It involves the use of two identical antennas such that their signals are fully coherent. The apparatus was tested at signal voltages of 0.25 to 0.5 microvolts with high-gain amplifiers \((1.5 \text{ to } 2 \times 10^6 \text{ voltage gain})\) and found to be superior to previously employed schemes.

Calculation of Internal Noise of Transistor Receivers by V. V. Pavlov, RE 19/58, p 30-37, 5 figs, 1 table.

After deriving expressions for the noise

Fig. 1. The input signal \(E_i \) is compared with a standard signal generator output \(E_s \). The sum and difference of the two voltages are amplified (amplifiers 1 and 2) and multiplied (block 3). Block 4 is a square-law detector and filter combination. If \(u = v \), meter 5 reads zero.

Fig. 2. It is possible to eliminate the noise content of the signal itself by using two antennas \((E_{i1} \text{ and } E_{i2})\) so arranged that their outputs are coherent.
All-Union Scientific Session devoted to the "Day of Radio." RE 9/58, p 71-80.

The "Day of Radio" session is probably the counterpart of our IRE convention (although we have not been able to discover the ratio of personnel recruiters to participants or obtain statistical data on the flow of vodka in hotel suites). The variety and scope of the session is similar to that of last year.

Transients and Steady State in an Automatic Range Scope by F. M. Kilin, AT 10/58, pp 901-916, 6 figs.

The analysis used in this paper takes account of certain discontinuous processes that take place in some parts of the range scope, and variation of circuit parameters with the received pulses.

Servo Systems Containing Two Pulse Elements with Unequal Repetition Rates by Fan Chun-Wui, AT 10/58, p 917-930, 8 figs.

Servo systems with several pulse elements having equal repetition rates were investigated by Ragazzini and Zadeh (Trans. AIEE, Vol 71, pt. II, 1952), Glawyn and Truxal (ibid. vol 73, 1954), and by several Russian authors. Systems in which the repetition rates are common multiples have been investigated by Kranc (Application and Industry, July 1957), and others. This is the first thorough theoretical analysis of the case of unequal repetition periods.

It is concluded that, other conditions being equal, the stability margin of the system can be improved substantially by varying the ratio of T_1 to T_2, and that $T_1 = T_2$ does not necessarily produce optimum operating conditions.
TWO SINUSOIDAL outputs, different in phase by a prescribed angle, may be obtained from a sinusoidal input by means of a linear passive structure termed a “two-phase” network. While the special case of 90 deg phase shift has been solved rigorously (see e.g. German Abstracts, ED, Aug. 20, 1958, Vol. 6, No. 17), the solution does not lead to elementary functions. It is possible to design two-phase networks with tolerances which are adequate for many applications using elementary functions if the number of elements which are required in the realization is restricted.

Two classes of two-phase networks are defined. Class “A” is represented by the familiar scheme shown in Fig. 1a. In this network, two “all-pass” (lossless) two-ports are used so that two voltages of equal amplitude, which differ in phase by Δφ over the required band, are produced. In Fig. 1b

![Diagram](image-url)

Fig. 1. (a) The lossless “two channel” system results in equal amplitude outputs which have the required phase difference. This type of arrangement is referred to as Class “A” in the abstract. (b) An R-C two port. To obtain the required phase characteristics frequency dependent attenuation is allowed. This type of network is referred to as Class “B”.

![Diagram](image-url)

Fig. 2. “Prototype” all-pass phase shifter. When terminated in Rs, the driving point impedance is Zs. Each all pass of Fig. 1a consists of a cascade of prototypes, the last one terminated in Rs. It is assumed that the cascades are fed from a high impedance (”current”) source.

![Diagram](image-url)

Fig. 3. Phase characteristics for n = 2. The curve is symmetrical when the log of the normalized frequency is the abscissa.
IDEAS FOR DESIGN—ENTRY BLANK

To the Ideas-For-Design Editor of ELECTRONIC DESIGN —
836 3rd Ave., New York 22, N.Y. • PLaza 1-5530

Here is my design idea for possible publications in your Ideas For Design department. I can expect $10 for this idea if accepted for publication.

(Ideas suitable include: 1. new circuits or circuit modifications, 2. new design techniques, 3. designs for new production methods, 4. clever use of new materials or new components in design, 5. design or drafting aids, 6. new methods of packaging, 7. design short cuts, or 8. cost saving tips)

STATEMENT OF THE PROBLEM—

MY SOLUTION. AND WHY—(Please be explicit. Include sketches or photos that will help the idea across)

Signed
Title
Company
Address

(Place illustrations on separate sheet if necessary)
GERMAN ABSTRACTS

shift as a function of \(\log x \) is shown in Fig. 3.

The band ratio \(B \) is related to \(\theta \) through

\[
y_1 = \frac{2H/T}{x_1} + \frac{1}{x_1} \text{ or } x_1^2 = B = \left[\frac{H}{T} + \left(\frac{H^2}{T^2} - 1 \right)^{1/2} \right]^2
\]

The prototypes forming all pass No. 1 and No. 2 respectively are determined from \(\epsilon_1 \) and \(\epsilon_2 \) where

\[
\begin{align*}
\epsilon_1 &= (1 - \sin(\phi + \delta))/\cos(\phi + \delta) \\
\epsilon_2 &= 1/\epsilon_1 \text{ or } \epsilon_2 - \epsilon_1 = 2H
\end{align*}
\]

The two phase network has a phase shift of \(2\phi \), with tolerance \(\pm 2\delta \) in the normalized band \(x_1 \) to \(x_2 \) \((\omega_1 \text{ to } \omega_2)\). The factor of 2 appears for all Class “A” networks.

3. Case \(n = 3 \). This case (as for odd values of \(n \)) does not yield to analytical treatment except for special values of \(\epsilon_n \). A graphical procedure can be used in general. Assign two two-ports determined through \(\epsilon_1 \) and \(\epsilon_3 \) to all pass No. 1 and let all pass No. 2 be the two port determined through \(\epsilon_2 \). Let \(\epsilon_1 \epsilon_2 = 1 \). The phase-normalized frequency dependence is then

\[
\phi(x) = \frac{\tan^{-1} x/\epsilon_3 + \tan^{-1}(2Kx/(1 + x^2))}{2}
\]

The curve \(\tan^{-1} 2Kx/(1 + x^2) \) is the phase characteristic for \(n = 2 \) and is shown in Fig. 4 for several values of \(K \). Now one graphs the three curves \(\phi_0 \pm \delta = \frac{\tan^{-1} x/\epsilon_3}{2} \) and \(\phi_0 = \tan^{-1} x/\epsilon_3 \) as a function of \(\log x \) as in Fig. 5a. By trial and error a curve from Fig. 4 is superposed on Fig. 5b so that the equation \(\phi(x) = \phi_0 \pm \delta \) in the interval \(x_1 \) to \(x_2 \) is satisfied; result as shown in Fig. 5b. From Fig. 5a, \(\epsilon_3 \) is determined. The chosen value of \(K \) (determined by the curve of Fig. 4 used) and the relationship \(\epsilon_1 \epsilon_2 = 1 \) determines \(\epsilon_1 \) and \(\epsilon_2 \):

\[
K = (\epsilon_2 - \epsilon_1)/2
\]

If \(\phi_0 = 45 \) deg is required \((2\phi_0 = 90 \text{ deg})\) the special symmetry results in analytical expressions. The bandwidth tolerance relation is shown in Fig. 6. The maximum error \(\delta \) occurs at \(x = x_m \),

\[
x_1; T = x_m + 1; x_m \text{ to } x_m \text{ (} y_m = 2 \text{ gives monotonic phase response). Determine } u \text{ from } y_m^2 = 2 + u - 3/u; \text{ then } u = \epsilon_1 + 1/\epsilon_1 - 1. \text{ Choose } \epsilon_1 \epsilon_2 = 1, \epsilon_2 = 1.
\]

As before \(\epsilon_1 \) and \(\epsilon_2 \) determine cascade of the two prototypes in all pass No. 1. For all pass No. 2, \(\epsilon_1 = \epsilon_2 = 1 \).

4. Case \(n = 4 \). This case has symmetrical phase

\[
\phi(x) = \tan^{-1} x/\epsilon_3
\]

The curves of the function \(\phi = \tan^{-1} (2Kx/(1 + x^2)) \) for various values of \(K \). This function describes the two phase network \(n = 2 \) and is used in the graphical procedure for \(n = 3 \).

Fig. 4. Curves of the function \(\eta = \tan^{-1} (2Kx/(1 + x^2)) \) for various values of \(K \). This function describes the two phase network \(n = 2 \) and is used in the graphical procedure for \(n = 3 \).

Fig. 5. (a) The function \(\eta_0 - \tan^{-1} x/\epsilon_3 \) vs \(\log x \). (b) Graphical solution of the equation \(\eta_0 - \tan^{-1} x/\epsilon_3 = \tan^{-1} (2Kx/(1 + x^2)) \).

Fig. 6. Tolerance \(\delta \) as a function of \(B \) and ratio \(B = x_2/x_1 \) for \(\eta_0 = 45 \text{ deg} \) with \(n \) as a parameter. In networks of the type shown in Fig. 1a, the tolerance is \(2\delta \) and \(2\eta_0 = \eta_3 - \eta_1 = 90 \text{ deg} \). The case \(n = 1 \) is trivial.

Fig. 7. Phase as a function of \(\log x \) for the case \(n = 4 \).
characteristics (see Fig. 7). For \(\theta = 45 \) deg the
\[B - \delta \]
curve is shown in Fig. 6. The bandwidth

tolerance and the circuit elements are determined
from the following general formulas.

Let
\[D = (\sqrt{1 + T^2} - 1)/T \]

calculate
\[y_1 = \frac{2H^2}{D^2} \left[\left(1 - D^2 \right) + \sqrt{(1 - D^2)^2 - 4D^2} \right] \]
and
\[K = y_1 D/2 \]

then
\[y_1 = K \frac{y_1}{T} + \left[\left(\frac{K}{T} \right) y_1 + 4 \left(1 + K^2 \right) - y_1 \right] \]

and
\[x_1^2 = H = \left[\frac{1}{2} y_1 + \sqrt{\frac{y_1^2}{y_1^2} - 1} \right] \]

The all pass No. 1 is the cascade connection of
the two prototype sections determined by \(\epsilon_1 \) and
\(\epsilon_2 \) through \(x_1 \) and \(\delta \). Let \(\delta = \tan^{-1} K \) then
\[\epsilon_1 = \frac{x_1 \left(1 - \sin \theta \right)}{\cos \theta} \]
\[\epsilon_1 = \frac{\cos \theta}{x_1 \left(1 + \sin \theta \right)} \]

For the two prototye sections in all pass No. 2,
\(\epsilon_2 = 1/\epsilon_3 \) and \(\epsilon_4 = 1/\epsilon_1 \).

While this general procedure can be extended
to \(n = 5, 6, \) etc., the above cases are sufficient.
From a practical viewpoint, networks more elabora
te than \(n = 4 \) are unsatisfactory because the
element values in a cascade of prototypes are of
different orders of magnitude. This results in un
reasonable tolerance requirements on the \(L \) and
\(C \) values.

In the original paper, the \(R-C \) networks, Fig.
1b, for \(n = 1, 2, 3 \) and 4 are also examined. In
this case, \(n \) refers to the number of zeros and
poles which the network function has on the
negative real axis. The phase characteristics can
be immediately deduced by using the result of
the Class "A" networks: For the same pole-zero
pattern but with zeros restricted to the left half
\(p \)-plane, the phase shift is half of that obtained
for the corresponding \(L-C \) prototype case.
Consequently, \(R-C \) networks are used over smaller
frequency ranges and for smaller phase shifts
that all-pass networks. The attenuation change
over the effective frequency band is also given
for the \(RC \) networks \(n = 1 - 4 \), in the original
paper.

Abstracted from an article by G. Fritzsche,
Nachrichtentechnik, Vol. 8, No. 8, August 1958,
pp 365-370.
Reliability

Effective 20 September 1958, this standard is mandatory for use by the Department of Defense for the Army, Air Force, and the Navy. The purpose of this standard is to establish a procedure for the development and design of electronic equipment to insure required inherent reliability. This procedure is to be applied specifically to the development and design of all electronic equipment, whether for use in aircraft, shipboard, ground, or other categories of special use and expendability. Probability of mission accomplishment is the most important consideration for airborne electronic equipment. A low failure rate over a long period of time is the prime consideration in ground and shipboard equipment. Highly complex (from the standpoint of numbers of parts) equipment, such as computers and large complex systems, require ultraconservative circuit design in terms of parts application and may require controlled environments in order to meet a high operational reliability for continuous operation over extended periods. Some operational requirements can only be met by equipment which is extremely small, light weight and which, as a result may have a reduced inherent reliability. Included in the standard is a complete bibliography of design guidance for use in connection with this standard.

Resistors

MIL-R-10509C, Resistors, Fixed, Film (High Stability). 29 September 1958

Characteristics A and X have been deleted. Characteristic C has been added. This new characteristic provides a maximum ambient operating temperature of 125°C at rated wattage and tightened test requirements as compared to characteristic B. Resistance tolerance of 5% has been deleted. Requirements and test procedures have been added for acceleration, shock, and high-frequency vibration tests. The low-temperature exposure test has been deleted. Group B inspection tests have been modified.
MIL-R-11804C, Resistors, Fixed, Film (Power Type), 12 September 1958

Tests and requirements have been added for acceleration, shock, and high-frequency vibration applicable to the axial-wire-lead-terminal styles only. Group C inspection test has been modified. Detail specs have been issued for five tab-style resistors, and three axial-wire-lead terminal resistors.

Test Points

A system for providing test points and test facilities to be utilized in the testing of ground, shipboard, and airborne electronic equipment has been established by this standard. This standard is intended for use in the design of new equipment and may also be used with existing equipment. Test facilities are those built-in devices which are used to facilitate installation, maintenance, operation, and calibration of electronic equipment. A test point is a convenient, safe access to a circuit, which is to be used so that a significant quantity can be measured (or introduced) to facilitate maintenance, repair, calibration, alignment, or monitoring. In designing test points, techniques shall be included for assessment of overall performance of the entire equipment. The built-in test facilities shall utilize go-no-go devices to enable rapid performance evaluation by non-technical operating personnel. The degree of complexity of the built-in test features shall be held to a minimum. If possible, techniques incorporating anticipated failures by testing shall be used.

Transistors
MIL-STD-701(NAVY), Transistors, 15 August 1958

Included in this standard are transistor types approved by the Department of the Navy for use in the design and manufacture of electronic equipments under Navy jurisdiction. Also included are requirements for the application and utilization of transistors in Military equipment; requirements for the reporting of transistor complement information; and requirements for the reporting of the need for new transistor development. This standard as three primary purposes: (1) to provide the equipment designer with a list of transistor types considered by the Navy to be the best available for most military applications; (2) to restrict and minimize the variety of transistor types used; and (3) to outline criteria for the choice, use, and application of transistors.

BENDIX SR RACK AND PANEL CONNECTOR
with outstanding resistance to vibration

The Bendix type SR rack and panel electrical connector provides exceptional resistance to vibration. The low engagement force gives it a decided advantage over existing connectors of this type.

Adding to the efficiency of this rack and panel connector is the performance-proven Bendix “clip-type” closed entry socket. Insert patterns are available to mate with existing equipment in the field.

Available in general duty, pressurized or potted types, each with temperature range of -67°F to +257°F.

Here, indeed, is another outstanding Bendix product that should be your first choice in rack and panel connectors.
Electron Tubes

This supplement covers a listing of electron tubes and semiconductor devices, diodes, which have been selected by the Department of the Navy for use, in conjunction with MIL-STD-200D, by contractors of Navy designed equipment. The basic standard includes requirements for the application and utilization of electron tubes in military equipment; requirements for the reporting of tube complement information; and requirements for reporting the need for new electron tube developments.

Enclosures

An enclosure is defined as a mechanical item which wholly or partly surrounds some electrical or electronic item or group of items and is an integral part of them. Included in this standard are tests and definitions of failure to meet requirements, and an alphabetical listing of current standard and discontinued enclosures. Water tests other than submergence, gunblast tests, and submergence tests are included in tabular form.

Test Methods

This change notice adds a new medium impact shock test method 205. The purpose of this method is to insure that all users of the shock-testing apparatus will use the same procedure in performing medium-impact shock tests. Instructions are also given concerning additional weights that are to be added to the elevator table when required.

Guided Missiles

The philosophy of design and the general requirements for the design and manufacture of electronic systems and equipments for guided missiles are covered in this spec. All classes and types of missile-borne electronic equipment are covered by this spec. Also covered are all applicable phases of design, including research, service test, preproduction, and production.
More than 8 OUT OF 10 ENGINEERS say "yes" to an invitation to join Norden Laboratories

The ratio of 8.3 acceptances for every 10 engineers invited to join Norden Laboratories' professional staff is unusually high, especially in the opportunity-rich electronics industry. We went right to the source and checked new members of our engineering groups, who revealed these factors impelling their decision in favor of Norden:

- Pioneering Nature of the Work in Diversified Electronic Areas
- Small R&D Groups Fostering Individual Accomplishment
- Close Contact With Management
- Flexibility of Assignments
- 50-Year Company History of Achievement in Precision Electronics

If this partial description of the professional environment at Norden Laboratories appeals to you, look into these immediate openings on a variety of advanced projects at both White Plains, New York and Stamford, Connecticut locations:

- TELEVISION & PASSIVE DETECTION - Transistor Circuit Development
- High & Low Light Level TV Camera Design - Video Information Processing
- TV Monitors & Contact Analog Displays - Military Transistorized TV Systems
- Also openings for recent EE grade

- RADAR & COMMUNICATIONS - Design & Development of: Antennas - ECM
- Microwave Systems & Components - Receivers - Transmitter Modulators
- Displays - Pulse Circuits (VT & Transistors) - AMTI - Data Transmission

- DIGITAL - Digital (Senior) Design: Logical, Circuit, Magnetic Storage

- QUALITY ASSURANCE - Reliability Analysis - Standards - Environmental Test

- PROJECT ENGINEERING - SENIOR ENGINEERS - Engineering Program Management

- FUTURE PROGRAMS - SYSTEMS ENGINEER (SR) - Broad creative background, ability to communicate - experience in radar, TV systems - supervise R&D proposals.
- SENIOR ENGINEER - Cost development for R&D proposals. Require broad technical experience in electro-mechanical and electronic systems

- ENGINEERING DESIGN - Electronic Packaging

- STABILIZATION & NAVIGATION - Servo loops for gyro stabilization, antenna stabilization, accelerometer force balance, antenna scanning
- Repeater Servos - Transistorized Integrator, DC Amplifier, Servo Amplifier
- Magnetic Amplifiers - Transistorized DC & AC power supplies
- Gyro & Accelerometers

- SYSTEMS ENGINEERING - Synthesis, analysis & integration of electronic & electro-mechanical systems

- Send resume in confidence to: TECHNICAL EMPLOYMENT MANAGER

NORDEN LABORATORIES
NORDEN DIVISION - UNITED AIRCRAFT CORP.
121 Westmoreland Avenue - White Plains, New York
White Plains, New York Stamford, Connecticut
IBM offers a free hand to creative engineers and scientists in IBM's new Special Engineering Products Division

If you'd like to exercise a free hand in solving problems never encountered before ... if you want to work on small teams, where individual merit can be quickly recognized ... if you're looking for ground-floor opportunities plus the job stability accruing from employment with a well-established firm ... then you should consider the career opportunities now available at IBM's new Special Engineering Products Division.

S.E.P.D. was created to apply IBM's wealth of systems knowledge to the development of special-purpose precision equipment related to, but outside of, IBM's regular line of products. Immediately required are creative engineers and scientists — men who enjoy the challenge of working independently on a wide variety of unique assignments.

OPPORTUNITIES NOW AVAILABLE INCLUDE . . .
Advanced component design
Analog or digital computers
Automation
Data, conversion, transmission, processing or display systems
Design of intricate mechanisms
Electronic packaging
Industrial controls
Instrumentation
Optical systems and optical mechanisms
Servo systems
Solid-state devices and applications
Telemetering

QUALIFICATIONS:
B.S., M.S., or Ph.D. degree in E.E., M.E., Physics, or Mathematics. Industrial experience desirable.

At S.E.P.D., you will find all the ground-floor opportunities of a new company. You will work on small teams where individual merit is quickly recognized. Assignments are varied and far from routine, and you will have IBM's experienced specialists and technicians for support. In addition, you will enjoy all the advantages of IBM employment, including job stability, liberal company benefits, and excellent salaries.

WRITE, outlining qualifications and experience, to:
Mr. T. P. Bianco, Dept. 555A3
IBM Special Engineering Products Div.
North Hamilton Street
Poughkeepsie, N. Y.
ENGINEERS AND SCIENTISTS
RETURN TO THE MIDWEST

... where there's time and opportunity to enjoy yourself while climbing to the top in the field you like best.

Your friends in Minnesota are going sleigh riding! You remember what it's like—the smell of burning pine and birch. The sound of heavy runners and hoofs biting into the snow. Remember how bright the stars are in this winter wonderland and how the Northern lights whip across the sky. You should be here—with your wife and children—to enjoy Minnesota as you did before.

And you can be...

The Research and Engineering Laboratories at the Mechanical Division of General Mills—in Minneapolis—need senior level staff members for creative design, research and development work in the following fields:

- Electronic Circuit Design
- Microwave Development
- Atmospheric Physics
- Field Engineering
- Advanced Digital Computer Systems Design
- Advanced Digital Computer Circuit Development
- Advanced Pulse and Video Circuit Development
- Advanced Inertial Navigational System Development
- Aerodynamics
- Applied Mechanics
- Optical and Infra-Red Equipment Engineering
- Research Physics
- Telemetering Systems Engineering
- Test and Evaluation of Basic Electronic and Electromechanical Components

Positions available are for purely technical and technical-supervisory work—job titles and salary provide equal opportunity for advancement in both. Our people enjoy their associates, liberal company benefits and non-routine projects, as evidenced by our extremely low turnover rate.

If you have from three to five years experience in any of the above fields we'd like to tell you more about opportunities at General Mills. Send today for all the facts. We'll keep your inquiry in strict confidence.

G. P. Lambert, Manager
Professional Employment

MECHANICAL DIVISION
General Mills

CIRCLE 732 ON READER-SERVICE CARD

A PRIME SYSTEMS CONTRACTOR WILL SPEED YOUR PROFESSIONAL GROWTH

The wide latitude offered by Republic Aviation's new programs will enhance your career development...

BECAUSE...you will be working on electronics systems involved in all known parameters of flight—from the hypersonic velocities of ballistic missiles to the zero speed of helicopters.

BECAUSE...you will broaden your disciplinary background by seeing the total systems picture—from design to hardware. You will be able to communicate directly with the people who design the actual flight vehicle structures and related subsystems.

BECAUSE...you will be a "ground floor" participant in Republic's new $35 million R&D program, conceived to bring about revolutionary advances in aircraft, missile and space technology.

Investigate these electronic opportunities with Republic—

- Inertial Guidance
- Inertial Navigation
- Digital Computer Development
- Radar Design
- Microwave Circuity & Components
- Telemetry-SSB Technique
- Information Theory
- Countermesures
- Radome & Antenna Design
- Doppler Radar
- Receiver & Transmitter Design
- Airborne Navigational Systems
- Missile Check Out Systems

Please submit your qualifications to
Mr. R. L. Eddy, Dept. 200-1
Professional Placement

Please send resume in complete confidence to:
Mr. George R. Hickman, Engineering Employment Manager

Farmingdale, Long Island, New York

CIRCLE 733 ON READER-SERVICE CARD
NOW!

Constant output level
Constant modulation level
3 volt output into 50 ohms
Low envelope distortion

NEW -hp- 606A HF Signal Generator

Here at last is a compact, convenient, moderately-priced signal generator providing constant output and constant modulation level plus high output from 50 kc to 65 MC. Tedious, error-producing resetting of output level and % modulation are eliminated.

Covering the high frequency spectrum, (which includes the 30 and 60 MC radar IF bands) the new -hp- 606A is exceptionally useful in driving bridges, antennas and filters, and measuring gain, selectivity and image rejection of receivers and IF circuits.

Output is constant within ±1 db over the full frequency range, and is adjustable from +20 dbm (3 volts rms) to -110 dbm (0.1 µv rms). No level adjustments are required during operation; the instrument has a minimum of controls and high accuracy results are assured due to the constant internal impedance. The generator can be provided with a 10:1 voltage divider and dummy antenna lowering minimum output to 0.01 µv (from 5 ohms) and simulating IRE standards for precision receiver measurements. (See Accessories Available in Specifications.)

The new -hp- 606A may be modulated by sine waves and complex waveforms from dc to 20 KC. A meter indicates percent modulation. Distortion in sine waves is extremely low due to use of a feedback circuit.

To insure maximum accuracy of frequency setting, the 606A includes an internal crystal calibrator providing check points at 100 kc and 1 MC intervals with error less than 0.01%.
Specifications

Frequency Range: 50 kc to 65 MC in 6 bands.
- 50 to 170 kc
- 170 to 560 kc
- 560 to 1.76 MC
- 1.76 to 6.0 MC
- 6.0 to 19.2 MC
- 19.2 to 65 MC

Frequency Accuracy: Within ±1%.

Frequency Calibrator: Crystal oscillator provides check points at 100 kc and 1 MC intervals accurate within 0.1% from 0° to 50° C.

RF Output Level: Continuously adjustable from 0.1 µv to 3 volts into a 50 ohm resistive load. Calibration is in volts and dlm (0 dbm = 1 milliwatt).

Output Accuracy: Within ±1 db into 50 ohm resistive load.

Output Impedance: 50 ohms, SWR less than 1.1:1 at 0.3 v and below. BNC output connector mates with UE-88A/B/C/D.

Spurious Harmonic Output: Less than 3%.

Spurious: 0.0005% or 100 cps, whichever is greater, at an output of 1 x or less and 0% AM modulation.

Power: 115/230 volts ±10%, 50 to 1000 cps, 153 watts.

Accessories Available: hp-AC-606A-34 Output Voltage Divider with 50 and 5 ohms termination (1:1 volt divider) and IRE standard dummy antenna (1:1 voltage divider). $10.00.

Price: (cabinet) $1,200.00, (rack mount) $1,185.00.

Data subject to change without notice. Prices f.o.b. factory.

Other -hp- Signal Generators—10 to 21,000 MC

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Frequency Range</th>
<th>Characteristics</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>hp-60B</td>
<td>10 to 480 MC</td>
<td>Output 0.1 µv to 1 into 50 ohm load, AM, pulse, or CW modulation. Direct calibration.</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>hp-601D</td>
<td>10 to 420 MC</td>
<td>Output 0.1 µv to 0.5 v, Incidental FM 0.01% of range.</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>hp-612A</td>
<td>450 to 1,230 MC</td>
<td>Output 0.1 µv to 0.5 v into 50 ohm load, AM, pulse, CW or square wave modulation. Direct calibration.</td>
<td>$1,200.00</td>
</tr>
<tr>
<td>hp-614A</td>
<td>800 to 2,100 MC</td>
<td>Output 0.1 µv to 0.3 v into 50 ohm load, Pulse, CW or FM modulation. Direct calibration.</td>
<td>$1,950.00</td>
</tr>
<tr>
<td>hp-616A</td>
<td>1,800 to 4,000 MC</td>
<td>Output 0.1 µv to 0.23 v into 50 ohm load. Pulse, CW or FM modulation. Direct calibration.</td>
<td>$1,950.00</td>
</tr>
<tr>
<td>hp-618B</td>
<td>3,000 to 7,400 MC</td>
<td>Output 0.1 µv to 0.23 v into 50 ohm load. Pulse, CW, FM or square wave modulation. Direct calibration.</td>
<td>$2,250.00</td>
</tr>
<tr>
<td>hp-620A</td>
<td>7,000 to 11,000 MC</td>
<td>Output 0.1 µv to 0.23 v into 50 ohm load. Pulse, CW or square wave modulation. Direct calibration.</td>
<td>$2,250.00</td>
</tr>
<tr>
<td>hp-622B</td>
<td>5,925 to 7,725 MC</td>
<td>Output 0.1 µv to 0.23 v into 50 ohm load. Pulse, FM or square wave modulation. Separate power meter and wave meter section.</td>
<td>$1,900.00</td>
</tr>
<tr>
<td>hp-624C</td>
<td>8,500 to 10,000 MC</td>
<td>Output 0.1 µv to 0.23 v into 50 ohm load. Pulse, FM or square wave modulation. Separate power meter and wave meter section.</td>
<td>$2,250.00</td>
</tr>
<tr>
<td>hp-626A</td>
<td>10 to 15.5 KMC</td>
<td>Output 10 dbm into 10 dbm, Pulse, FM, or square wave modulation. Direct calibration.</td>
<td>$3,250.00</td>
</tr>
<tr>
<td>hp-628A</td>
<td>15 to 21 KMC</td>
<td>Output 10 dbm into 10 dbm, Pulse, FM, or square wave modulation. Direct calibration.</td>
<td>$3,250.00</td>
</tr>
</tbody>
</table>

-hp- 606D VHF Signal Generator

- Frequency: 10 to 420 MC.
- Stability: No incidental FM or frequency drift. Calibrated output 0.1 µv to 0.5 v throughout range. Built-in crystal oscillator provides frequency check accurate within 0.01% each 1 and 5 MC.
- Master-oscillator, intermediate and output amplifier circuit design. Maximum quality performance, direct calibration, ideal for aircraft communications equipment testing. $1,100.00.

-hp- 626A/E626A SHF Signal Generators

- New instruments, bringing high power, wide range, convenience and accuracy to 10 to 21 KMC range. Frequencies, output voltage directly set and read. Output 10 to 20 db better than previous spot-frequency sets up to 2300 MHz. $1,650.00.

- hp-606B VHF Signal Generator. High power (1 v max.) stable, accurate generator for lab or field use. 10 to 480 MC. For testing receivers, amplifiers, driving bridges, slotted lines, antennas, etc. $1,000.00.

- hp-626A, 15 to 21 KMC, $3,250.00.

- hp-626B, 10 to 15.5 KMC, $3,250.00.

- hp-626C, 8,500 to 10,000 MC, $2,250.00.

- hp-624C, 5,925 to 7,725 MC, $1,900.00.

- hp-622B, 3,000 to 7,400 MC, $2,250.00.

- hp-620A, 7,000 to 11,000 MC, $2,250.00.

- hp-618B, 3,000 to 7,400 MC, $2,250.00.

- hp-616A, 1,800 to 4,000 MC, $1,950.00.

- hp-614A, 800 to 2,100 MC, $1,950.00.

- hp-612A, 450 to 1,230 MC, $1,200.00.

- hp-601D, 10 to 420 MC, $1,000.00.

- hp-60B, 10 to 480 MC, $1,000.00.

- hp-626A, 10 to 15.5 KMC, $3,250.00.

- hp-628A, 15 to 21 KMC, $3,250.00.

- hp-626B, 8,500 to 10,000 MC, $2,250.00.

- hp-624C, 5,925 to 7,725 MC, $1,900.00.

- hp-622B, 3,000 to 7,400 MC, $2,250.00.

- hp-621B, 1,800 to 4,000 MC, $2,250.00.

- hp-620A, 7,000 to 11,000 MC, $2,250.00.

- hp-618B, 3,000 to 7,400 MC, $2,250.00.

- hp-616A, 1,800 to 4,000 MC, $1,950.00.

- hp-614A, 800 to 2,100 MC, $1,950.00.

- hp-612A, 450 to 1,230 MC, $1,200.00.

- hp-601D, 10 to 420 MC, $1,000.00.

- hp-60B, 10 to 480 MC, $1,000.00.
RCA offers superior-quality TRANSISTORS for these applications...

RCA's comprehensive line of TRANSISTORS offers you reliability, electrical uniformity, top performance, and mass-production availability! They are produced and controlled to meet the most critical performance requirements. Whatever your needs in transistors—from special one-of-a-kind projects to production-run apparatus...from dc to VHF—contact your RCA Field Representative or your local Authorized RCA Distributor for a discussion of the RCA TRANSISTORS best suited to your own designs. For technical data on specific types, write to RCA Commercial Engineering, Sec A-18-NN-2, Somerville, N. J.

RADIO CORPORATION OF AMERICA
Semiconductor & Materials Division
Somerville, N. J.