

FRHBD

 affers for Drimediate Delivery

 affers for Drimediate Delivery}

MAGNETIC AMPLIFIERS AND SATURABLE TRANSFORMERS

FAST RESPONSE

 MAGNETIC AMPLIFIERS2 ~ response Phase reversible

Cat. No.	Supply Fran. in C.P.S.	Power out. Watts	Volt. Out. V. AC	AC or DC signal voltage req'e for full output.	
MAF-1	+0	13	110	1.0	-
MAF-S	400	5	57.5	1.2	0.4
	400	10	57.5	1.6	0.6
MAF-7	400	15	57.5	2.5	1.0

SINGLE ENDED
MAGNETIC AMPLIFIERS

Cat. Me.	Supaly Fres. C.P.S.	Power out. Watts	sig. req'd for full eutp. MA-DC	Total res. Contr. wde. n?	Load res. ohms
MAO.1	¢O	4.5	3.0	1.2	3800
MA0-2	60	20	1.8	1.3	700
MAO-4	¢0	400	9.0	10.0	25
MA0.5	60	575	6.0	10.0	25

PUSH.PULL
MAGNETIC AMPLIFIERS
Phase reversible

Cat.	Supply freq. c.P.S.	Power Out. Watts	$\begin{aligned} & \text { volt. } \\ & \text { out. } \\ & \text { v,Ac. } \end{aligned}$	Sig. req. ${ }^{\circ}$ for full eutp. MA-DC	Total res. conit. wals. n!
MAP. 1	¢0	5	115	1.2	1.2
MAP-2	$\triangle 1$	15	115	1.6	2.4
MAP. 3	∞	50	115	2.0	0.5
MAP.3-A	∞	50	115	7.0	2.9
MAPA	¢0	175	115	0.0	6.0
MAP.7	400	15	115	0.6	2.8
MAP-8	400	50	110	1.75	0.6

SATURABLE TRANSFORMERS
Phase roversible

Cat. Me.	suppiy Freg. C.P.S.	Power Out. Watts	Vole. out. V. AC	Sis. req.d for full outp. MA.OC	Total res. conts. wde. K!
MAS-1	∞	15	115	6.0	27
MAS 2	400	-	115	4.0	10
MAS. 5	400	2.7	26	4.0	3.2
MAS-6	400	30	115	4.0	8.0
MAS. 7	100	40	115	5.5	8.0

All units designed for 115 V - AC operation

VARIABLE TEST VOLTAGE MEGOHMMETER NO. 1620

The Freed Type 1620 Megohmmeler is tiument with a continuousty vorisoble oc test potential from 50 to 1000 volis
Components, wuch of trantiomers, condensen. motors, printed sitcuith cables and insulation roterial con be tewed bt theit roted voltoge and obove, for mutely locio
Resistance - 0.1 megohms to 4000000

Vollage

Accurate - olus or minus 5 th on oll carawe Simple
Safe - high voltage telay controlled
Self contained - AC operated
OTHER MEGOHMMETERS AVAILABLE
Yppe 1620 C Megohmmeter - a pype 1620 with
 TYpo

FOR PRECISION LABORATORY OR PRODUCTION TESTING

1110-AB INCREMENTAL INDUCTANCE BRIDGE AND ACCESSORIES
Accurate inductance measurement with or without superimposed D.C., for all types of on core components.

Inductance: ${ }^{1}$ Millihenry 101000 Henry
froquency: 20 to 10.000
Froquency: 20 to 10.000 Cycles
Acceracy: 1%, 10.000 Cycle. 2% 10 10 KC
Conductance:
Conductance:
Superimposed D
ACCESSORIS by unskilled operotors ACCESSORIES AVAILABLE:
1210 A Null Defector-V. V. V.M M
OUDolv

Write for detailed listing, or special requirements, and copies of complete Transformer and Laboratory Test Instrument Catalogs

MIL-T-27A POWER. FILAMENT, PULSE \& AUDIO TRANSFORMERS

POWER TRANSFORMERS -STANDARD All primaries $105 / 115 / 125 \mathrm{v}, 60$ c.p.s.									
					$\begin{gathered} \text { Filame } \\ \# 1 \end{gathered}$		Filam		
$\begin{aligned} & \text { Cot. } \\ & \text { No } \end{aligned}$	$\begin{gathered} \text { Hi } \\ \text { Volt } \\ \text { Sec. } \end{gathered}$	ct	- \square_{0}°	边会	$\frac{2}{0}$	$\stackrel{i}{\text { E }}$	$\stackrel{\square}{0}$		$\begin{gathered} \text { MIL } \\ \text { Case } \\ \text { Si2e } \end{gathered}$
MGP1	400200	V	185	. 070	6.3/5	2	63		Ha
MGP2	650	V	260	. 070	6.3/3	2	$6.1{ }^{\circ}$		18
MGP3'	850	V	245	. 150	6.3	5	5.0	3	KB
MGP4	800	V	311	, 775	5.0	3	6.3		LB
meps	900	V	345	250	5.0	3	13		MB
MCPG	700	V	255	250					KB
MEP7	1700	V	419	. 250					18
MGPB	1500	V	640	. 250					NB

FILAMENT TRANSFORMERS-STANDARD All primaries $105,115 / 125$ v., 60 c.p.s.				
$\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$	Secondary		Test VRMS	$\underset{\text { Case }}{\text { MIL }}$
	Volt	Amp		
MGFI	2.5	3.0	2,500	E8
MGF2	2.5	10.0	2,500	G8
MGF3	5.0	3.0	2,500	18
MGF4	5.0	10.0	2,500	H8
MGFS	6.3	2.6	2,500	F8
MGF6	6.3	5.0	2,500	68
MGF7	6.3	10.0	2,500	18
MGFP	6.3	20.0	2,500	KB
MGF9	2.5	10.0	10,000	18
MGF 10	5.0	10.0	10,000	KE

Contour Photocells (Cover)

A variely of voltage waveforms can be generated from pliable photo. cells by reshaping their contour. They
open the door to new design po
sibilities in photoelectric devices.

New Circuits for Better Diode Measurements

The hidden properties in semi-
conductor diodes can often wreck the performance of an apparently
well designed circuir. Fred Dickey shows three circuits to measure the most important diode parameter

Look for CONNECTIONS ISSUE

A special report on electrical co nections will be featured in the Feh 18 issue of ELECTRONIC DESIGN The report is an up.to-date evaluo rion of the latest trends in what types of connections are being used, and what types of connections are bell 9 made. Some of the outstanding con nection developments made in the last 15 months are included. The is port is divided into three section 1. Connections Made Between Equ 2 . ment; 2. Connections Made Ins It Equipment; and 3. RF Connections. n? legrated into the report is inforr a. fion garnered at the recent Third f A Conference on Reliable Electria Connections.

FREED TRANSFORMER CO., INC.
1727 Weirfield St., Brooklyn (Ridgewoed) 27, N.Y.

SUBSCRIPTION POLICY

ELECTRONIC DESIGN is circulated only to qualified electronic cesign engineers of U. S. manufacturing companies. Industria
consilltants, and government agencies. If tesign for manufactur collsiltants, and government agencies. If tesign for manufactur
ing is your responsibility, you qualify for subscription without charge provided you send us the following information on your company's letterhead: Your name and engineering title, you company's main products, and description of your design duties. The letter must be signed by you personally
ANY ADDRESS CHANGES FOR OLD SUBSCRIBERS NECES SITATES A RESTATEMENT OF THESE QUALIFICATIONS Subscription rate for non quallified subscribers- $\$ 15.00$ for 1 year

CONTENTS

Ediforial 17 The Pause That Refurbishes

Behind the News 3 Saler. More Efficient Air Traffic Control With Aulomatic Date Proc-

Washington Report 14 Better Statistical Reporting

Features 18 New Circuits for Betler Diode Meosurements, F. E. Dickey
22 Contour Photocells
24 Microwave Test Instruments, Part 4, D. Fidelman
32 Jectional Computer Module Mounts
34 Interconnecting Microminiature Modules, N. J. Docior, E. L. Hebb
38 Fine Line Elched Wiring, E D. Olson
42 Applying Vacuum Evaporation Techniques for Microminialurization, L. H. Bullis, W. E. Isler

Russian Translations 102 Nonlinear and Parametric Phenomena in Radio Engineering, Part ll, A A Kharkevich

Departments 46 New Products
80 New Literature
86 Patents
90 Books
94 Ideas for Design
100 Report Briefs
108 Letters
111 Meetings
112 Careers Section
116 Advertisers Index

ELECTRONIC DESIGN is published bi weekly by Hayden Fublishing Company, Inc., 830 Third Arenue. New York 22, N.Y., T. Richard Gascoigne, President; Jomes S. Mulholland, Jr.
Vice President \& Treasurer; and David B Landis, Secrelory. Printed at Hildieth Press, Bristol, conn. Accepted as controlled circulation publication at Bristol. Conn. Additional entry. Conn. Accepted as controlled Circulation publication of Bristod. Conn. Additional entry.
New York. N.Y. Copyright 1959 Hayden Publishing Company, Inc. 32.000 copies this issue

CIRCLE 2 ON READER-SERVICE CARD \rightarrow
E ECTRONIC DESIGN • February 4, 1959

Dependability and long life previously available only in high-cost relays...
 G-V RED/LINE
 low-cost thermal timing relays

The sound design, sturdy construction and reliable operation long associated with G.V Hermetically Sealed Thermal Relays is avallable in a low-cost form, fully qualified for industrial control .. light and inexpensive enough for electronic and communications circuits. Delays of 2 seconds to 3 minutes - Energizing voltages - 6.3 to 230 $A C$ or $D C$.

- rugged stainless steel mechanism

Relay mechanism is of stainless steel, differential expansion type. used in all G.V Thermal Relays. All parts are welded into a single integral structure.

- Shatterproof-no glass

No glass is used in mechanism, encasing shell, or base. This avoids the danger of cracking or breakage in handling and use

- Stfel encased heaters

Heating elements are conservatively designed, wound with N chrome wire on mica and encased in stainless steel, insuring long heater life even when energized continuously.

- dust jight enclosure

A dust tight metal shell completely enclosing the relay mechanism and contacts, crimped tightly to the base, provides complete protection for the structure.
tamper proof
Time delay intervals are preset at the factory. Thus changes of delay interval in the field which might damage associated equip ment are avoided.

- direcily interchangeable

Directly interchangeable with all other octal-size relays.

Available through Selected Distributors

G-V CONTROLS INC. luvingston, new jersey

Write for Publication 131
S PAT 2.700 .084 OTHER U S \& FOREIGN PATENTS PENDING

specify (RATTHEON SILICON RECTIFIERS

for missile and other highly critical applications

Raytheon Solid State Diffused Junction Silicon Rectifiers offer you:

- demonstrated dependability of performance throughout the industry
- precise junction gradient for specific applications
- flat junctions for uniform control of characteristics
- ready availability in production quantities
- minus $65^{\circ} \mathrm{C}$ to plus $165^{\circ} \mathrm{C}$ operating temperature
- storage temperature up to $175^{\circ} \mathrm{C}$
- welded hermetic seal

	TYPE	Peah Operating Voltage $-65^{\circ} \mathrm{C} 10+165^{\circ} \mathrm{C}$ Volts	Ave R Cur 25^{-C} Amps.	chified ent $150^{\circ} \mathrm{C}$ Amps	Reverse Current (Max.) al Specified PIV. $25^{\circ} \mathrm{C}$ $\mu \mathrm{A}$
	1 N253	95*	3.0	1.0*	10
	1 N254	190*	1.5	$0.4 *$	10
	1N255	380*	1.5	0.4*	10
	1 N256	570*	0.95	0.2*	20
	CK846	100	3.5	1.0	2
	CK847	200	3.5	1.0	2
	CK848	300	3.5	1.0	2
	CK849	400	3.5	1.0	2
	CK850	500	3.5	1.0	2
	CK85 1	600	3.5	1.0	2

WIRE-IN-TYPE

StAFF

Editor Edward E. Grazda
Managing Editor J. A. Lippke
Associate Editors L. D. Shergolis G. H. Rosthy

Assistant Editors T. E. Mount D. 5. Vieblg t. N. Tolooko
A. E. Tobo

Contributing Editors 5. H. Hubelb7nb
F) Brenner

B Benstein
Editorial Assistonts M. S. Buckley

Art Director R. A. Schulze
Technical illustrator B. L. Armstrona
Art Assistant C Bonk
Production Manager T, V, Sedito
Asst. Prod Manager M. P. Hedrick
Production Assistont M.C Alexich
Business Manager M.C. Young
Circulation Manager N. M. Elwon
Asst. Circ. Manager A C lovell
Reader Service), Medina

```
CO-PUBLISHERS
\({ }^{1}\) Pichard Gorcoigne
James 5. Mulholland, In
```

ADVERTISING REPRESENTATIVES
Advertising Sales Manager

> Bryce Gray. of

New York: Owen A. Keon
830 Third Avenue Robett w Cascoigne
PLozo I. 5530 Richard Porker Bloir McClenachon Bloir McClenacho
James P. Quinn

Chicago: Thomos P. Kovooros
664 N Michigon Ave. Berry Conner,
SUperior 7.8054 Fred T. Bruce
Los Angeles: Robett E. Ahrensdor
3275 Wilshire Blvd. John V. Quillman
DUnkirk 2.7337 Slonley 1. Ehrenclou
Southeastern: Lucien Neff
2808 Middle River Dr.
Ff. Louderdale. Flo.
LOgan 6.5656
London, W. 1: Michael B. Horne 24 Boker Streel

England

BEHIND THE NEWS

Safer, More Efficient Air Traffic Control

With Automatic Data Processing

PROPER wee of man and machime is antio pated to solve the mations knotty air traffic prohlem which becomes worse daily (take off and landings at the rate of one per minute). Gencral Precision Laboratories, Ine's proposal, acecepted by the Federal Aviation Agency last year, uses an automatic Data Processing Central and keeps man as the final decision maker (1) 'fue stions of eonflict involving either comroute or termimal traffic. In case of electronic failore, man (:in) immediately step) in asain. This reliability teature is considered by some experts as one of Hee chief reasons why GPL's proposal was ill eepted over fourteen others last year. (Another reason given is that the accepted system could be smoothly integrated with existing procedure.) There is a moral here for electronic engineers doing system planning-don't overlook man and
manual techniques.
Functions of the semi-automatic system include reception, correlation, computation, display, and routing of intormation necessary for air traffic control. The traffic controller, relieved of the heary burden of clerical duties, is then free to concentrate on his most important jol)-making decisions on air satety from datal supplied by the system.

Evolutionary, Not Revolutionary, Change

An outstanding design feature, aside from the maze of circuitry, is the ability of introducing the (uitomatic features into the existing setup gradwally rather than one full swoop. Currently used methods will be retained and replaced as operators become skilled in each phase of the new equipment. This feature avoids unnecessary in-

Engineers busy on mockup models of Enroute and Radar Sector Consoles for function and human engi neering studies (left).

Typical example of radar display showing airport surface details for aircraft routing on runways (right).

1, 2, TYPE C semi-enclosed (1), hermetically sealed (2). Small, positive acting with electrically independent bimetal strip for operation from -10° to $300^{\circ} \mathrm{F}$. Rated at approximately 3 amps, depending on application. Hermetically sealed type can be furnished as double thermostat "alarm" type. Various terminals and
mountings. Bulletin 5000. mountings. Bulletin 5000
3, 4, TYPE M semi-enclosed (3), hermetically sealed (4). Electrically independent bimetal disc types for appliance and electronic applications from -20° to $300^{\circ} \mathrm{F}$. Rating: 8 amps of $115 \mathrm{VAC}, 4$ amps of 230 VAC and 28 VDC . Semi-enclosed with virtually ony type terminal; hermetically sealed with pin or solder terminals, wire leads, various mounting brackets. Bulletin 6000.
5, 6, TYPE MX semi-enclosed (5), hermetically sealed (6). Snap acting miniature units to open on temperature rise for missile, avionic, elec.
tronic and similar uses. 2° to 6° differentials available. Rated at 3 amps to 1 amp , depending on duty cycle, of 115 VAC and 28 VDC for 250,000 cycles. Semi-enclosed types with metal or ceramic bases; hermetically sealed
in circular or CR7 cans. Various terminals, in circular or CR7 cans. Various terminals, mountings, brackets, etc. Bulletin 6100.
7, 8, TYPE S* adiustable (7), non-adiustable (8). Positive acting with single stud or nozzle mount-
ing. Operation to $600^{\circ} \mathrm{F}$. Rated at 15 amps of $115 \mathrm{VAC}, 7 \mathrm{amps}$ of 230 VAC . Spode, screw or elevated terminals, various adjusting stems, etc. Bulletin 1000.
9, TYPE SA* adjustable (9) or non-adiuslable. Snap acting with electrically independent bi-
metal. Also single-pole, double-throw. Single stud or nozzle mounting. Non-inductive-load rating: 15 amps at $115 \mathrm{VAC}, 10 \mathrm{amps}$ at 230 VAC. Spade or screw terminals. Bullelin 2000. 10, TYPE SM - manual resef (10). Ele cirically same as Type SA (above) except for manual reset feature. Bulletin 2000.
11, TYPE B adjustable (11) or non-adiustable. For uses where heal generated by passage Various terminals, single stud or nozzle mount. ing. Operation to $400^{\circ} \mathrm{F}$. Nominal rating: $5^{1 / 2}$ amps af 115 VAC of 40 cycles and higher.
Bulletin 9000 Bulletin 9000
12, 13, 14, TYPE A^{*} semi-enclosed (12, 13), hermetically sealed (14). Insulated, electrically and quick, snap action control for appliance, electronic and apparatus applications from $.20^{\circ}$ io $300^{\circ} \mathrm{F}$, or higher on special order. Rating: 3 to 4 amps, depending on duty cycle, of $115 \mathrm{VAC}, 2$ amps at 230 VAC and 28 VDC . Various enclosures and mountings, including brackets. Bulletin 3000.
15, TYPE R* sealed adiustable (15), seoled non adiustable. Positive acting for operation ic
$600^{\circ} \mathrm{F}$. Rated at 15 amps at 115 VAC 4 . 15000 of 230 VAC. Screw terminals. Bulletin 7000 16, TYPE W* adiustable (16), or non-adjustable Snap action bimetal strip type for operation to $300^{\circ} \mathrm{F}$. Rated at 5 amps af $115 \mathrm{VAC}, 3$ amps at 230 VAC . Screw or nozzle mountings;
spade, solder or screw terminals. Bulletin 4000 . 17, TYPE H \dagger adiustable. Positive acting for fry pans, skillets, sauce pans, etc. Fail-safe, open at 115 VAC in high. Rated at 1650 watt 18, TYPE D* outomatic (18), or manual resef. For laundry dryers or other surface and warm
air applications. Snap acting disc type U.L. air applications. Snap acting disc type U.L.
approved for operation to $350^{\circ} \mathrm{F}$. Open or approved for operation to $350^{\circ} \mathrm{F}$. Open or enclosed styles. Rated at 25 and 40 amps af
120.240 VAC Screw or spade terminals. Bul. 120.240 VAC . Screw or spade terminals. Bul.
letin 8000 . letin 8000.
Illustrations, for general information only, do not necessarily show size comparisons. Fully dimensioned and certifled prints on request. Manufacturer reserves right to alter specifications without notice.
*heler to fuise a00 thiont Amplied for.

BEHIND THE NEWS

terruption of air tratlic service and satety is not jeopardized during persombel traming period.
If exnipment in the system fails temporarily. the trallic controllers call immediatel! rewert to the cor con wontional methods.

Basic System Operation
The system hinges on the fact that flights and militar? missioms are pre-arranged and detailed Hight plans are filed at Xir Ronter Tralfic Control conters. 1 computer, Hus heart of the Datal Processing Contral. stores all proposed flight plame in its "memory.
shortls before :a plame is set to depart. He computer antomaticalls prepares and distributen Hisha proseress atripe to larime combtrolla. (omsoles. (Operatime persommel in sert these stripe in lwdelem on the ir consoles "ithin cant diowines distance. In the exent of tailures. key data is a a ailable for the ir immediate inspection.

The plane departure times set be the tower operator. is fed to the computer which probers for possible. conflicts with other plans stored in its memory. If a conflict exists. the controller is st adsised by the computer and several smitable alterna tives are presented for his selection. If mo conflict exists, takeoff approval is granted.
The computer is wext informed by the tower operator of exact takeoff times. It then calculates arrival time over tarions fis points alone the route, puts this data on Hight progress strips, and distribotes them to enroute control comsole's.

As the pilot passes ower the first fix point, he radios his exact time to the center. If the actual and estimated times differ, the computer calculates new estimates for arrival at following fix points and again probes for conflicts. As the aircraft flight continues, its control is passed from one enroute controller to the next.
When the aircratt approacher within 100 miles of its destination. it enters the transition area which
s the "revolving door" for the airport. The Data rocessing Central provides data to enable the "puence controller to assign proper time slots (1) tonchdown time to aircraft heading towards lee same terminal. If conflicts exist, the commiter calculates path-stretching manemers to be Mayed to pilots incolved. I.ong ratnge search wat monitors all aircraft in the transition area Is the plane approaches the terminal area, withim 30 miles of the airport, the computer prosides data for placine the aircraft in propere time sequence in the Instrument Landing Sistem. Finally, a Precision Approach Radar monitors the plane to tonchdown.

Handling Capabilities

The sistem. to be installed at fllewild lntermational Airport. N.I., takes into account the existence of a nearby military terminal handling , large number of combat-type jet aircraft. Proinions are being incorporated to handle peak military leach. such as the arrival of many aircraft from offshore carriers.

Human Makes Decision

Thee system relieves the controller of tedions tash, such ats hamdwritten ontries on flight strips. calculations, mumerous phone calls, and handling and comsering of strips. Dutomation will do this Ior him. It will displat its "thinking" to the lmman manater for his imspection. review, and firal judement. Man, mot machine. has the last word.

Lorac Tells Where That
 Missile Came From

A missile's performance cannot be evaluated or its llight tracked with any accuracy miless the "xact point of launch is known-and that information not always is casy to obtain when the lamehing pad is a ship bobbing in the Atlantic ()ceam. But soon Cape Canaweral test engineers will have the aid of Lorac (Long Range Accubacy) to pinpoint the locations of downrange tracking ships and offshore lamohing vessels at the moment missiles are fived.
Seismograph Service Corp, will install a fourtation Lorac network at the Missile Test Center. The transmitters will broadeast contimunus sigwh. which will establish two heperbolic patterns moming a grid. The Lorace recoivers. by phase (1)mparison, will convert these signals into acconate position information.
The network-three tramsmitting stations and se reference station-will cover 120 miles, and rovide accuracies on the order of 10 to 200 feet t distances of 10 to 200 miles.

Burnell Adjustoroids are always new because they are always being designed for newer and broader electronic and mechanical applications.
NEW Burnell:s complete line of encapsulated Adjustoroids are particularly adaptable to printed circuit use.
NEW A screw mount P'C type Adjustoroid for greater durabilit! in high acceleration. shock and wibration environments.
NEW 'Pot' mounting Adjustoroids for panel mounting and knob adjustment wherever slotted controls are difficult to reach.
NEW Continuous internal improvements including adjust. ment range. Q. size, etc. Burnell Adjustoroid engineers are constantly seeking solutions to space, accessibility and performance problems.
Burnell Adjustoroids and sub-miniature Adjustoroids are supplied hermetically sealed to meet gor. ermment specifications MILL E: 1.530.5A or encapsulated in many sizes and shapes to meet the application. If your Adjustoroid needs can't be met from our stock catalogue, we'll be glad to manufacture to your specifications. For additional information. write for Adjustoroid bulletin.

Leng	h Dia.	Width	Hgt	Wi. U	Useful Freq. Range	Max 0	Max 1 in hys
AT. 0	1116		1 "	202	1 kc 1020 kc	10 kc	3 hys
AT-1	$13 / 4$	$13 / 4$	11/4"	7.25 oz	z 2 kc 1010 kc	4 k :	15 hys
AT-2	$23 / 4$	$23 / 4$	21/4"	2402	Below 2.5 kc	2.5 kc	125 hys
AT-4	$1^{19 / 64}$		$11 /{ }^{\prime \prime}$	402	1 kc 1016 kc	6 kc	15 hys
AT. 6	$11 / 16$		1"	202	10 kc to 100 kc	30 kc	. 75 hys
AT-10	$1^{19 / 64}$		$11 / 4{ }^{\prime \prime}$	402	3 kc 1050 kc	20 kc	75 hys
- AT. 11	45/64	45.64	3/4"	. 83 oz	2 kc 1025 kc	15 kc	5 hys
- AT-12	45,64	45/64	\%"	. 8302	15 kc 10150 kc	60 kc	5 hys
AT-15	111/32		1\%/8	1402	Below 5 kc	4 kc	125 hys
AF. 51	19\%4		$2^{\prime \prime}$	502	30 cps 10500 cps	120 cps	1000 hys
AF. 52	$19 \% 4$		$2^{\prime \prime}$	502	50 cps 101 kc	250 cps	1000 hys
- AF. 87	45,64	45/64	$11 / 4^{\prime \prime}$	1.7 oz	90 cps 102 kc	400 cps	80 hys
- AF. 88	45/64	45/64	$11 / 4{ }^{\prime \prime}$	1.7 oz	. 16 kc 104 kc	800 cps	42 hys
tate. 11	3/4		$3 / 4{ }^{\prime \prime}$. 83 oz	2 kc 1025 kc	15 kc	5 hys
†ATE. 12	$3 / 4$		$3 / 4{ }^{\prime \prime}$. 8302	15 kc to 150 kc	60 kc	. 5 hys

"Special "pot" type sub-miniature Adjustoroids are nut arailuble with AT-11, AT-12, AF-87, AF-88.
Special screut monntings are arailable with the ATE:II and ATE:-12 in printed circuit applications for "plug in" types. "here vibration and shork are siknificant considerations, mounting screus serie a terminal runnections.
"Trade Name Pat. \#2.762.02"

CIRCLE 5 ON READER-SERVICE CARD

PACIFIC DIVISION DEPT. PS

T20 MISSION ST
SOUTH PASADENA. CALIF RYAN $1-2841$
TELETYPE PASACAI 7578

New Speed...Versatility... Reliability

TRANSISTORIZED DIGITAL MAGNETCC TAPE HANDLER MODEL 906

- Check these new standards of reliability and performance

Completely reliability

Trouble fres brushless moters
Over 50,000 passes of lape withoul signal degradation
Linear servo system
Life expectancy of pinchroll mechanism: over 100,000,000 operations
Skew $\pm 3 \mu \mathrm{Hec} 1 / 2^{\prime \prime}$ rape, center clock of 100 i.p.s.
Vacuum loop buffer
Continuous nutter free cycling 0 to 200 cps

Normal speed up to 100 i.p.s Rewind or search speed constant at 300 i.p.s.
six speed forward or reverso up 10 150 i.p.s.
Befter than 3 milliseconds start, 1.5 millisec stop
Front panal accessibility
In line threading
End of tape and tape break sensing All functions remotely controllable Tape widths to $11 / 4$

The 906 is usually supplied with the Potter 921 Pransistorized Record-Playback Am plifier; a unit that features:

> Pulse or level outputs Oufput gating 1 i.p.s. to 150 i.p.s.

Manual, relay, or

electronic function switching
Dual read-write operation
Pofter also manufactures a complete line of Perforated Tape Readers, High Speed Printers and Record-Playback Heads
or wrife direct for further information
POTTER INSTRUMENT COMPANY, INC.
Sunnyside Boulevard, Plainview, N. Y.
Engineeving Quality
OVerbrook 1-3200

Potter has career opportunities for qualified engincors who
like a challonge, and the froedom to meot it.

BEHIND THE NEWS

Electrostrictive Ceramics-

Substitutes for Electromagnets

NEW discoveries in the field of electrostrictive ceramics have come out of several years of re search conducted by the Mullenbach Dis. of Electric Machinery Mfg. Co., Los Angeles. I meter indicator is one such device: a ceramic andio driver tor a loudspeaker another.

Low Cost Meter Indicator
Becanse electrostrictive ceramic respond mechanically to an electric field, a low cost reliable indicator can be produced.
Such a meter, according to Mullenbach's Robert Cline, call be used economically "wherever you need an electrostatic-type meter and can tolerate a short term charsing current." To measure the charse of a capacitor, the meter is charged right alone with it. Insin-

Electrostrictive ceramics contract in electrical field, squeezing oil reservoir to give meter indication.
lation resistance is on the orter of 10^{12} ohms.
CTine, who headed the ceramice rescarch group), said, "it's a great high voltage de meter, which has been wanting in the fickl." While Mollentach made it for test por poses and has now platns for mame facturing it. the firm indicated would supply technical assistance to ath engineor devigning ath aplication of its coramics

Compressed Oil Reservoir

In the lab models of the meten indicator, two sensitive dises al close a reservoir of oi! or other Hoid. Each dise is composed of siher-conated ceramic bonded to reaction member of metal or slas When atn electrical potential applied across the coramice it con tracts radially. The ressult is a colp

New Mullenbach ceramic waf makes possible design of lightweiş radio loudspeaker
ing effect on the reaction memer. The oil reservoir is comressed, changing the oil level in a ansparent capillary tube
Up to 10 such indicators could e compressed into a six-inch-long ox. While extremely sensitive to inute changes in signal voltages. Ie visual indicators are highly reistant to shock and vibration.
The electromechanical response a instantaneous (within microsecuds), but the effective meter indiations are dependent upon the iscous resistance and inertia of the ystem.

Featherweight Loudspeaker

Low cost featherweight loudpeakers are another possibility. Ceramic audio devices eliminate the meed for heavy magnets or (wils. Dises, which produce the vilration. can be comenected directl? in the plate current of a push-puil implificer.
Stacked in parallel hookup, the wramics can be used as actuators " produce pressure peaks as high 4 30,000 lbs per square inch.

Thin Ceramic Sheets

Mullenbach ceramics are cast find fired in sheets a few thouw...ndths of an inch thick, with silver trits fused to each side to provide (apacitor structure. The ceramic is lownded to metal or glass with an (poxy adhesive to form an electromechanical device similar in con(eqpt to bimetallic reaction members used in thermostats.
The ceramic's principal ingrediont is barium titanate. Additives (mud processing techniques inhibited the piezoelectric effect and emphasized an. electrostrictive response wherent in the material. The effect of Curie-Point crystal changes was reduced, resulting in a material whstantially free of temperature limitations.
Mullenbach now is supplying the ceramics in experimental quantities , government agencies and indusirial firms interested in putting the - nique characteristics of its mate(als to work in specific applicai ons.

CIRCLE 7 ON READER-SERVICE CARD \rightarrow

High frequency, high gain Transistor offers excellent stability and operating efficiency in extensive environmental testing
Modern advances in electronics necessitate highest possible temperature performance from germanium transistors. Philco 2N501A transistors are designed for switching speeds of less than 18 millimicroseconds rise time, $12 \mathrm{~m} \mu \mathrm{sec}$. storage time and $10 \mathrm{~m}_{\mu \mathrm{sec}}$. fall time ... AND STORAGE TEMPERATURES UP TO $100^{\circ} \mathrm{C}$. (see curve at right for derating factor). In extensive life tests (see graphs at right) these transistors exhibit excellent parameter

stability at 7500 hours.

Philco's long and successful experience with electrochemical techniques and automatic transistor production, assures precise control of micro alloy diffused-base transistor performance. Philco know-how pays off for you . . . in outstanding uniformity and reliability of all transistors produced at Transistor Center, U.S.A.

Make Philco your prime source for all Transistor information.
Write to Lansdale Tube Company, Division of Philco Corporation, Lansdale, Pa., Dept. ED 259 *Trademark Philco Corporation for Micro Alloy Diffused-base Transistop
PHILCO, CORPORATION
LANSDALE TUBE COMPANY DIVISION
LANSDALE, PENNSYLVANIA

Improved Metal-To-Glass Alloy Holds Seals Tight Against Hydrogen
 at 250 Pounds Pressure

Development of Clare ${ }^{+}$Mercury-Wetted Contact Relays aided by special gas-free Driver-Harris \#152 Alloy

For all kinds of high-speed switching machines and device which demand accuraty and dependability of the highes order, this new Clare Type HG Relay offers a combination of high specd, high current-and-voltage capacity with re markatly uniform long-life performance. It has a con servative life expectancy of more than a billion operations when operated within its ratings and can be driven at peeds up to 100 operations per second.
In this cllaway view ($23, \mathrm{x}$) a magnetic switch. her metically vealed in a high-pressure hydrogen filled glass capsules and a coil, are enclosed in a steel vacuum tube whe envelope. The switch forms the core of the coil which provides the magnetomotive force for operating it
The glass enclosed witch is very compact and small ($5 / 16^{\prime \prime}$ diameter $\mathrm{x} 2^{\prime \prime}$ long) yet its handling capacities of 5 amperes and 500 volts maximum are truly remarhatle.
These features of its comeruction make this possible. In the switch segment, the platinum contact surtaces are wetted and protected fromi electrical and mechanical erosion with mercury hy means of a capillary connection to a mercury reservoir below the contacts. In addition, the high hydrogen pressure enahles the contact gap to with stand a high voltage gratient without breakdown.
Kecping the gas from leaking posed a production prohlem. The specifications for the lead wires at the top of the switch and the tuhular vacuum stem at the hotum were stiff. 1. Gas-tight seal against hydrogen at 250 PSI. This was difticult. 之. Perfiect match to thermal expansion char acteristics of the glass. 3. Good ferromaynetic properties 4. Exceptional surface bonding properties since the permissible maximum 5 ampere 500 volt limits are dictated rather by factors relating to heating of the metal-to-glass seal than the current handling capacities of the contacts.
Driver-Harris was called upon to produce such an alloy and succeeded in developing a special gas-free nickel-iron alloy No. 152 which meets all these requirements to the complete satisfaction of Clare Engineers.
Do your engineering and product development plans hinge upon a specialallor - why not dicusss it with DriverHarris. We have, vince 1899 , produced 132 special purpose allovs in just this fachion - in answer to a particular problem and extraordinary specifications, We have a special bulletin on Sealing Alloys if you care to hate one. Your inquiry is awaited.

DRIVER-HARRIS* COMPANY

HARRISON, NEW JERSEY • BRANCHES: Chicago, Detroit, Cleveland, Louisville

Distributor: AnGUs-CAMPBELL, INC., Los Angeles, San francisco - In Canada: The B. GREENING wIRE COMPANY, Lto., Hamilton, Ontario

Thanks to new system of insulating with inorganic naterials, this experimental Westinghouse electric motor does an efficient grinding job even when bathed in searing heat from jets of burning gas. The "red-hot motor" showed no insulation deterioration after oper aling continuously for more than 100 hours at 950 degrees F.

'Red Hot Motor" Operates

 At 950 Degrees FahrenheitW'estinghonsers development of a mew system of inorganic insulation means that motors. transformers. relays and other electrical equipment ath operate afliciently in space-age temperatures ot the low) (-小estere F ratnse
That is the clam made by a team of developeres headed by Dr. E. I. Croosp, manaser of insulattion and chemical development in the Westinghonse materials engineeringe departments-a laim substantiated by the results of severe tests. An electric moter was eperated at temperatures up to 1200 deerees F: for short periods of time. and at 950 degrees for more than $1(k)$ hours, sealed inside an oven
Inorganie insulation has been used for many ears in electric ranges. but the materials were ut mechanically strone emough to be used as usulation in moving, vibrating motors. Now the Vestinghouse team has found materials with usulating properties "well above the stability of ny known organic system" and at the same time flexible conough to be placed around an electrical onductor. The insulation has been prepared in number of forms, including insulated wire, vible sheet insulation, and laminated materials. In the so-called "red hot motor" used in the sts, there were four basic components: (1) phase sulation: (2) slot insulation: (3) wire insulation id (4) the potting and impregnating compound.

In Pulse nal TRANSFORMERS

THE RELIABILITY of Sprague Pulse Transformers is no "extra". Designed to meet military specifications, such as MIL-T-27, these hermetically sealed transformers serve the demands of high-speed computer circuits. pulse inversion circuits, impedance matching circuits, blocking oscillator circuits, memory core current drivers, current transformers, and many others.
Special designs for high acceleration, high ambient temperatures (above $85^{\circ} \mathrm{C}$), or minified circuits can be furnished to suit specific requirements. For typical commercial applications, units are available in lower cost housings. Special kits to aid prototype work and selection are also a a vailable.
fior camplete engineering data and application information on pulse transformers, sucitching transformers, and Inagnetic shift registers, write the Technical Literature Section, Sprague Electric Campany. 347 Marshall St., North Adams, Massachusetts.

the mark of reliability

SPRAGUE COMPONENTS
MAGNETIC COMPONENTS - TRANSISTORS - RESISTORS CAPACITORS • INTERFERENCE filters • pulse networks • high temperature magnet wire • printed circuits CIRCLE 9 ON READER-SERVICE CARD

TRANSISTOR EXPERTS...
 are betting that
 this is the
 winning combination:

FAIRCHILD SILICON TRANSISTORS

come through, fulfilling the extraordinary promises you've heard rumored about the new solid-state diffusion devices.
A 4 SPEED - 80 milli-micro-second rise time affords the fastest switching yet available with silicon.
A \vee POWER -2 watts dissipation at $25^{\circ} \mathrm{C}$. leaves plenty of power handling capability at higher temperatures too.
A $\&$ RELIABILITY - Storage at $300^{\circ} \mathrm{C}$. for 350 hours caused no serious changes, assuring a large safety factor at operating temperatures. Mesa construction provides extraordinary ruggedness too.
A AVAILABILITY - Thousands of the 2N696 and 2N697 transistors have been delivered in the first months after announcement. Stock is available for immediate shipment.
$2 \oplus$ LOWER PRICES - Fairchild is gearing for quantity sales and bringing prices down within reach of more users. A second large plant expansion is being made in response to demand.

Look to the future

Existence of Fairchild's multiple-diffused transistors is already having a profound effect on the breadboard designs of today. It means competitive improvements in the quantity production of tomorrowboth in the race for military superiority and in various commercial bids for sales leadershid. May we send you specifications?

844 CHARLESTON RD. • PALO ALTO, CALIF. • DA 6.6695

BEHIND THE NEWS

More Soviet Progress in Electronics

Recent reports from the Soviet Union indicat, that the Russians are not only up in the air, but they're making solid progress in down to earth matters. Here are some examples of their re cent efforts.
Computers in National Plamning. According to the Laboratory of Control Equipment of thr USSR Academy of Sciences, high-speed computers will be used in statistical planning of the national economy: Computing methods have al ready been worked out and experimental tables of relationships between various branches of the economy have been prepared.
With such tables. the Russians hope to work out the most afficient schemes for transporting goods. They also hope the computing techniques will help them determine the effects of new individual factors on the exomome of the combtry as a whole
In time, each ecomomic area is to have its own computing center. Information from cach center is to be sent to the centers of the varions Russian Republics, thence to the All-U'nion Computines Center. Here the information is to be used for planning and for operational leadership of the national economy
Power Network Control. (omputers are also to be used to organize and antomatically control the single power grid of the USSR. The European part of this network is to be completed by next year, at which time work will hegin on the power grid for Central Siberia. Both systems are to be combined in the future.
A high-speed central computer will make all the calculations necessary for planning, producing, and distributing the clectrical energy
Automatic Telegram Reculer. A team of scientists at the Odessa Electro-Technical Communications Institute has designed a machine to read the text of telegrams and transmit them. A pencil of light scans the telegram; computers identify the letters by the spatial distribution of white and black zones; then banks of relays translate the signals into telegraph code pulses.
These pulses are sent over communications lines, then punched onto the tape of the receivin? telegraph apparatus.
Reading for the Blind. The Technical Labori tory of the Institue of Defectology of the Acal emy of Sciences has machines to help blin people read ordinary printed matter. The m chines, no larger than radio receivers, use a optical system to scan the lines of a book fixe under glass. Magnified images on the glass ar picked up by photocells which are linked ele
cally to a sound generator. This generates unds corresponding to each letter or punctua" 1 sign.
In about 50 hours, a blind person can learn ese sounds and read ordinary books. For blind ople with impaired hearing, a different machine oduces Braille letters (a code of bulgine dots , the surface of a special tablet). The blind perin can this read a book with his fingers. lectronic Seeing-Eye Dog. The same Institutr Defectology has designed portable instruwents to gencrate sound signals corresponding to isible objects. These sond signals can warn a lind user of all obstacle in his path. More thath (x) such instruments are now mederquing pracical tests.

'What This Planet Needs Is A Good

NEWS ITEM: Five persons in the Kajana diswict of Finland obsersed a "Hying cigar" in the thy at 10:30 p.in. Nov: 15. The object, which mitted a lond moise and lit up a large area, wats isible for two or three minutes.
ED). N()TE: Clreer, these Martian aderresine an". But whon wants spurions noise in a cigar?

Ready for Shake-up
This walk-in environmental test chamber was designed to permit festing of military equipment, including missile omponents, with a vibration machine weighing 6,000 5. Constructed by Tenney Engineering, Union, N.J., the amber measures eight feet high and across and 12 thet deep in the inside. It has a temp range of - 120 $1+350$ F , humidity range of 20 to 95 per cent, and an 0 : itude ceiling of $100,000 \mathrm{ft}$. Proper isolation of vibrafon equipment has been achieved by pouring a contefe block weighing over 20 tons beneath the chamber. The unit, installed in the Electronics Center facility of - Stromberg-Carlson Division of General Dynamics Torp. in Rochester, N.Y., can dissipate 16 kw of eleccal energy, roughly $56,000 \mathrm{BTU}$, at minus 100 deg .

ILECTRONIC DESIGN • February 4, 1959

When a jet screams down the runway fully loaded with fuel and ammo ...reliability is the key to safety and "mission accomplished".

Here's where warning of system failures is vital... where Leach reliability proves itself again and again.

Look to Leach for packaged reliability!

A major airframe manufacturer relies on three types of Leach Relay assemblies in a single dimmer package to solve the problems of pilot safety, visual distraction and eye discomfort for pilots of two of its advanced jet trainers.
The assemblies switch on master caution lights, fire warning lights and other emergency warning lights...each requiring significant differences in intensity to catch the pilot's attention. Each of these assemblies has its own series of resistors and diodes; altogether they serve 27 different circuits.
Clear lamps of fixed light intensity are used behind green, amber and red colored elements. The resistors in the Leach Relay package permit varying degrees of light intensity for instrumentation illumination. They assure control of instrument panel lighting during ground taxiing, under extreme opaque conditions at high altitudes, during night missions and in the strong brightness of daytime flights.
Most important of all, they do not fail. For dependable relays...for packaged reliability, look to Leach!

SEE FOR YOURSELF how Leach relays surpass all others in electrical and environmental specifications. Write today for catalog and complete information.

> LEACH RELAY

> A division of LEACH 5915 Avalon Blud., Los Angeles 3 CORPORATION

> District Offices and Representutices in Principal Cities of L'. S. and Canada EXPORT: LEACH CORPORATION, INTERNATIONAL DIVISION CIRCIE II ON READER-SERVICE CARD

NEW TOOL FOR HIGF VACUUM SPECIALISTG Introducing a whole new series of ion pumps that will develop absolutely clean vacuum. better than $10^{-9} \mathrm{~mm} \mathrm{Hg}$. They are available in pumping capacities of 100 and 250 liters second. Larger sizes can be supplied on special order. They offer tremendous advantages in such applications as particle accelerators, space research chambers, fusion processes, mass spectrometers, electron microscopes, vacuum tube processing -- whenever uncontaminated ultra-high vacuums are required
HIGH CAPACITY - The VacIon High Vacuum Pump Hllustrated has a uniform pumping speed of over 250 liters second for room airover therange of 10^{-4} to $10^{-9} \mathrm{~mm}$ Hg Pumping speed for hydrogen is over 850 liters sec RUGGED - No damage to the pump will occur if the system is accidently opened to atmospheric pressure.
ULTRA-HIGH VACUUMS - In ordinary applications. Vacion Pumps will produce vacuums of up to $10^{16} \mathrm{~mm} \mathrm{Hg}$ Equal to space at approximately 120 miles above the earth NO MOVING PARTS - VacIon Pumps operate elec tronically
RUNS UNATTENDED - Does not require continuous personal attention. A distinct advantage in radiation or personal attention. A distin
other hazardous test areas

COMPLETELY CLEAN - Operates in a closed system - no vapors, no cold traps. If the power fails no damage occurs. The vacuum in the system will be retained MEASURES ITS OWN VACUUM - The current indi cation of the power supply meter provides a practical measurement of pressure. Accuracy is comparable with that of the best ion gauges.
SIMPLE INSTALLATION - Complete units consist of a Vaclon Pump, permanent magnet and power supply A mechanical roughing pump is necessary only to bring the vacuum in the system down to about $10^{-2} \mathrm{~mm} \mathrm{Hg}$ at which point the Vaclon Pump starts operating It will perform in any position.
LOW MAINTENANCE COSTS - If the pump becomes contaminated or at the end of its life, the internal elements can be easily removed and reconditioned or replaced LONG LIFE - Operating life of 20.000 hours at $10^{-6} \mathrm{~mm}$ Hg can be expected, Life expectancy is almost limitless at $10^{-9} \mathrm{~mm} \mathrm{Hg}$
ONLY FROM VARIAN - VacIon High Vacuum Pumps have no equal for simplicity, cleanliness and compactness Write for complete information today.

VARIAN associares

Representatives thruout the worla

HIGH CAPACITY HIGH VACUUM ION PUMPS
klystrons. traveling wave tubes. backward wave oscillators, high vacuum pumps, linear accelerators, microwave system components, KLYSTRONS. TRAVELING WAVE TUBES. BACKWARD WAVE OSCILLATORS, HIGH VACUUM PUMPS, LINEAR ACCELERATORS, MICROWAVE SYSTEM COMPONENTS,
R. F. SPECTROMETERS. MAGMETS. MAGNETOMETERS. STALOS. POWER AMPLIFIERS, GRAPHIC RECORDERS. RESEARCH AND DEVELOPMEMT SERVICES

BEHIND THE NEWS

Westinghouse lab model of ultrasonic seam welder completes a weld between two 10 -mil thick aluminum straps.

Ultrasonic Seam Welder Joins Dissimilar Metals Continuously

An experimental ultrasonic seam welder now is wedding sheets of dissimilar metals continuonsly without prion surface preparation. When perfected, say its Wiestinghonse developers, the device will brine to seam wedling the adrantages of ultrasomic weldine, diminatine the deformat tion of materials that results from cold weldine of dissimilar metals.
In tests, light silver toil was wedded to mbarter inch-thich (oppere strap) at a 20 -in.-per-min rate and two sheets of $0.010-\mathrm{in}$. aluminum wer joined at a 1.5 -int-per-min rate.
Sheets to be welded are passed between two wheels vibrating at 20 kc per seec, with the periphery of each wheel pressing against opposite sides of the sheets. Breaking up) the metals oxicle surface coating, the wheels by kneading action wedd the metal lattices on the surfaces of the metals
No electrical curremt is passed through the spot being welded, though in appearance the weld is similar to an electric weld.
The center of each vibrating whed is attached to a transducer assembly-a magnetostrictive tramsducer, compling ban and water-cooling en (losure-to convert electrical energy to high frequency mechanical vibrations. The wheel sur faces in contact with the sheets move in opposita directions, as the two transclucers work in op position.
CIRCLE 13 ON READER-SERVICE CARD * ELECTRONIC DESIGN • February 4, 1954

EPOXY-Anaconda Magnet Wire for outstanding compatibility at high temperature

Ifory: unique combination of dependable characteristics makes 11 sutced to we in such equipment as totally enclosed motors, aboue: hermeltally seated retays, encapselated dry-ype transformers, betow

Anaconda Epoxy Magnet Wire is particularly well suited to use in oiltilled transformers. Epoxy's excellent hehavior in transformer oils is hut one of its many outstanding chemical characteristics.

The compatibility. chemical stability, and thermal stability, of Anaconda Epory have been proted by some three years of actual liedd experience, plus seven years of research and development. in both military and civilian applications.

Anaconda Epoxy ($130^{\circ} \mathrm{C}$ AIEE Class B) magnet wire is compatible with most well known insulations. It offers excellent revistance to moisture, transformer oils, acids, and alkalies. Tests of Anaconda Epoxy magnet wire with all impregnating varnishes tried to date have resulted in chemically compatible systemswith no thermal deterioration of the Epoxy film.
Epory's unique combination of dependable characteristics makes it suited to a wide variety of difficult applications. Its outstanding dielectric strength, its heat-shock, adherence. and flexibility properties make it an "all around" magnet wire for use up to $130^{\circ} \mathrm{C}$ in either open or closed systems.
round, square and rectangular. Anaconda Epoxy magnet wire is available in the full range of round, square and rectangular sizes. It can also be furnished in combination with glass servings. If you have a difficult C'ass B application or a troublesome job at lower temperature that might benefit from some other characteristic of Epoxy, see the Man from Anaconda. Or write: Anaconda Wire \& Cable Company, 25 Broadway, New York 4. N. Y.

ask the man from AnACONDA about epoxy magnet wire

ANATHERM $M^{\circ} \mathrm{C}$ |AIEL Clat it

VITROTEX $150^{\circ} \mathrm{C}$ IAIEI ClOs BI

FORMVAR |OX" $|A| E L$ Cous A) proven vecenuoutily

MAGNET WIRE DATA SHEET

 fromAnaconda Wire \& Cable Co.

IMPORTANT FACTS FOR YOUR WORK...

Abstract

... about Anaconda Epoxy $130^{\circ} \mathrm{C}$ Anaconda Lpoxy film-coated magne wire is sutable for use is $1.30^{\circ} \mathrm{C}$ (Class Bi hottest spot operation. It meets M1L-W-105s? requirements. Epoxy is compatible with other insulations and periorms excellentiv in oils. It ollers unusual restatance to matioture and has a higher resistance to heat shock than other (lass B wires. This unique combination of properties makes it applicable to a wide variety of difticult applications.

Oil tilled transformers - Air conditioning sistems where moisture is a problem - Refrigeration machines for operation with fluorinated hydrocarbon refrigeramts. Totalls enclosed motors, transformers, alternators • Encapsulated winding of birtaalls any type.

Eposy ollers outvanding adherence and flevibilits it meets the exatcting demand of abrasion resstance called for in high-speed winding machines

Epoxy magnet wires exhibit high dielectric strength -a mimum of $200($) wats per mil under dry test condtions. The Following are dielectric constant and dissipation lactor measurements at $25^{\circ} \mathrm{C}$ and $50^{\circ} ; \mathrm{KH}$

Epory offers outstanding chemical characteristics. The Epoxs resins are characterized by their restance to attack by compounds they may come into contact with when used in electrical apparatus. Epoyy shows exceptional resistance to $5^{\prime \prime}$, potassium hidrovide. 5% sulphuric acid. VM\&P naphtha, ethyl alcohol. sifol, toluol. Epoxy wire hals giten excellent results in test programs designed to determine the effects of fluorinated hydrocarbon religigerants. Scrape abrasion resistance is high under Freon. Freon 22 does not blister and attack the coating. Epory does not hydroliee in closed swtems.
Epory is outstanding in its behastor in transformer oils. It will also withstand the actoon of lubricatong oils at high tem-

ANACONDA WIRE \& CABLE COMPANY 25 EROADWAY. NEW YORK 4. NEW YORK
Please send me a copy of wour Epoy! Mayne Wire Boohlet.

NAME \& title

COMPANY.
ADORESS.
perat:ere. In fact. such ols waked in glass tubes with Fpoxy wite and heated to $15 . \%^{\circ}$ do not damage the imsulatoon, ewen when tixe ols hale been contaminated by long we.

Eposy is a $130^{\circ} \mathrm{C}$ (Class B$)$ magnet wire. This rating is hased on AIEE 心est procedures. The wire is also intended for we at lower emperatures where the chorice mat be made to taine adtantage of vome other characteralic It aho can be used all higher temperatures for shorter lile er in some special applastioms Please reler to the thermal stability chart.
thermoplastic flow I poly magnet wire meets the zo() 0° minimum reyurement of Specilication M1L-M-1ys83 for $130)^{\circ}$ s.stems.
retention of flex:bility Epoly magnet ware can be heated for 168 hours at $125^{\circ} \mathrm{C}$ and then wound on its owndrameter "ithout craching.
heat shock. Epoxy magnet wire olfers outstanding heat shoch characteristics, as indicated by the following table

 (Wires are strected or nol strekhed, then woun. 1 on mandrels hating \backslash tome the dometer of the wire and placed in an oten at 155° (for one hour)

Prestrotch \%	\%	3*	5*	10x
${ }^{1}$	Pas,	Paw	Pass	Paw
10	1 ar	Pan	Paw	Pmin
15	fail	Pas*	Past	Paw
20	lail	Pass	Pas	Paw
25	Fail	fail	Pav	Patr

Fpoyy magnet wire can be used when sealed in electrical apparatus where water is contained in other materials. Small coil in water att room temperature for 18.000 hours (2.1 years) maintatned a very bigh insulation resistance between the copper and water. Epory wires sealed in glass tubes with a small amount of water can be heated for a month at $150^{\circ} \mathrm{C}$ without destruction of the enamel coating
All-Epoxy insulation systems. Matterials are now available to make posisble complete Epoxy systems that offer superior thermal and chemical stability and mavimum entironmental protection Detatled information alalable on request.

NEWS BRIEFS

NEW RAIOIOISOTOPE SOUBCE. Samar m-1.53, will be made atailable br (emeral Moans Researef Labe to licensed users of industrial id medieal isotopess. Called "a breakthrough in "- ficld of low conersy photon sonnces." promis(2pplications include radiograplos. liguid lewel - Mging. thickness Latuging. succific eratit! Gasurements mader miqume comditions, diagnors Dray and, possibly. experimental dental ray. Portabilite is a feature

PROTOTYPE OF FFLSING weather stat " hould be reads in 12 months. sat: Bendia hatton. Bendic is contracton for at malti-million -llar Vir Forer program to dedelop an dirtorne Wother recomatisamcer system (IN $1 \backslash(0)-1.5$ milt aromul four-onsime iets expipped with rat or and daborate seming empipment. As the?

 mbes. the three-mant weather recon crew in
 (1.) 10.50 .000$)$ fice
() TSTANDIN(: DESICN CONTEST Main heing sponsumed this year by Mars Pencils. mbies are insited in wiation. space trand. uls. traios. building. angincerines structures

 ehts. Projects will be selected tor appeal to bisu-minded readers, broad interest attractive asentations. Designs will bereproduced in : mimber of technical publications. Entrice on Stacdtler. Inc.. Hachensatck. N.J.

RCA ALREAISY IS FILIING ordem from muance, hanking, mamufacturing and military "atomers for the mewly amomered RC: 501 , the wit completely transistorized seneral purpose Iotronic dita processine equipment. The basic tem. which bridges the sap between electrodhanical accountine machimes and giant comHers. fits into al 1.5 x 20 ft room. Compared with ctron tube equipment requirements. BCA's "of transistors throughout anxiliary input and tpute equipment. as well as in the control comther. conts floom space by one half and air condining and power requirements by two-thirds. 'odular construction permits later addition of loer units as required. thus bringing full-scale. the processing within reach of the arerage-siza mpan! as well as the large corporation. Circle 13 on reader-service card
-ECTRONIC DESIGN • February 4, 1959

NEW lizgh-quality' SILICON TRECTIFIERS from MOTOROLA
 low back current limits
 high surge handling capacity

- Peak Inverse Voltages of $100,200,300$, and 400 are available.
Low back current at high temperature
150μ a maximum at $150^{\circ} \mathrm{C}$.
- High surge current capacity. . 70 amps at $25^{\circ} \mathrm{C}$.
- Low forward voltage drop.
- Operating temperature range -65 C to $175{ }^{\circ} \mathrm{C}$.
- Intended for applications, such as magnetic amplifiers, requiring high rectification ratios at high temperatures
- Hermetically sealed and constructed to meet Military environmental conditions.

- Single-ended package for efficient printed circuit or socket mounting.
- No heat sink required.
- Controlled processes assure high reliability Iong life.
for complete techmical information and immediate delivery contact the following distributors Boston Cramer Electronics, Inc.. CAmDEN General Radio Supply: Chicago Allied Radio, Inc, Newark Electric Co: Jamaica, N. Y. Radio-Wire-Television (Lafayette Radio): LOS ANGELES Kierulff Electronics, Inc NEW YORK MIIgray Electronics. Inc., Radio.Wire-Television (Lafayette Radio): washingion, D. C. Electronic Industrial Sales

MOTOROLA SEMICONDUCTORS

MOTOROLA INC., SOOS E. MCDOWELL, PHOENIX, ARIZONA
chicaco 44. Munois

HOUTWOOD 28. CALIBORMIA

CIRCLE 14 ON READER-SERVICE CARD

Metallurgical Memo from General Electric

How a tiny thermistor takes temperatures in outer space

Magnetic Materials Section reports on thermistors and on new production facilities that permit them to be tailor made for any application

One critical piece of information relayed from space by Explorer I was its external skin temperature as it orbited. This exacting job was assigned to a G-E high temperature thermistor RF-111.
Thermistors are thermal-sensitive semi-conductors with large negatice coefficients of resistance. In electrical circuits G-E thermistors measure and control temperatures, suppress initial current surges.
trip time delay devices, and regulate voltages. Now, G-E, through new production facilities, can tailor-make thermistors to your specifications with resistance values from 1 to $10,000,000$ ohms and temperature coefficients of resistance from -1% to -5% at 25 C . For more information-or the assistance of a G-E engineer-write: Magnetic Materials Section. i820 N. Neff Avenue. Edmore, Michigan.

MAGNETIC MATERIALS SECTION

GENERAL ELECTRIC

[^0]
WASHINGTON \$ REPORT

Better Statistical Reporting

Forrcant of 57.9 billion by the Busnesos. .nn Detemse Services Adminnistration an the factor value of electronic equipment and component for 1959, may be one of the most reliable vearls predictions yet made. In past vears. oractes haw missed the mark widdel for the simple reatom that there is mes was to sed acturate figures of part perthomatice let :shmu murkhet ditt. tor the Inture.
The tecturgume of anemblaine statistion wh

 wom manntacturing are apparently producinn

 conductor devices $\$ 0.250$ billion, and other elem tronic components $\$ 1.5$ billiom, they can be rethen upom with a ereat deal of condidencer. Uwhorth natele. B1DSA wenit redeate for publication a de tailed breakdown of predicted factor? wales ol compencuts. The dollar fienre for component inclucles the replacement market for mainte nancer. Which further obsemers the value quint intor new origital equipment
The reliabilite of figures tor origimal agminment is much peorecr. Theres is in survey mederwa similar to that made in the area of compenenent: BIDSA's figure of $\$ 3.5$ billion for cquipment ic cept tubes and componenti-and exclucive of ow warch and development-sonds low especiall -inee the fisure includes commercial and indus trial electronics. but it is believed to be as an thentic as an! in the field. Becanse a government aquenc: does not want to be aceused of spellin ont the dollairs suing into defense ellectronies. the sulbtraction of mendefense cupripment will haw to be made by others (Electromic Industries A sociation put commercial industrial sales at $\$ 1$. billion).
Actually, there is little diflerence betweem the F:lectronic Industries Association prediction ans the BBDS 1 outlonk when research and develon ment expenditures are subtracted ($\$ 8.3$ billio versus $\$ 7.9$ hilliom). This is not to imply separat rources corroborate each other but that the tw

Gallizations collaborated in evchangeng intol tion.
 before (incidentalls. the figures for 1958 whe last year were hish), they mias be better t for 19660.
By that time the Burean of the (Eenses will no wht have processed information gathered in 4. 193.5 survey of manufacturers. With the incated cooperation of industry to share their lou. fiemere (for the last threec yean the industry - been market-analysis comscions and realize Aterchange of information is essential). realistic tine may emerge some year won.

Extension of Renegotiation Act

The tontatise 1959) Department of Detcense uivatite program will include it proposals. wenty-three have already been submitted to ongress.
The major item affecting the electronies indusis is the antension of the Remerotiation Act of 1951. In considerine a recommended extemsion to Wectuber of 19 git) laut year the 50th Congress macted only a 6 -menthe atemsion-expiring thene 30. 1959. The Honse Wars and Means Comnittere then promisead to meldertake a broad re new of renequtation carly in the next Congress It is dombtful whether maior procedures of renc Entiation will be changed before the act expires Rewasm for extending the act was given by Wubert Dechert, Gemeral Comelel, Dept. of De -mse. Inefore the National Security Industrial As whation, Dechert said: ". . . we are today emLned in large-scale procurement programs in wing the purchase of many different typer of pecialized items, many of unprecedented nature. "ust production and cost experience are not alwisn available for accurately forecasting the inst of such items. Today, particularly, we are witnessine rapid developments in the aircraft nissile ayd space fields. Pricing policies and contheting techmiques of the procurims asencies tmot guarantee in all cases against evcessive rofits."
Although the military departments are fully vare of the criticisms which some branches of dustry have made of the ceffects of renegotiaonn onf them, they have been mable to see any ther feasible approach for now
Incentive contracts and the question of posWe appeal from decisions of the Tax Court are der spectial study. The industry: should see me new possibilities developing to alle viate (tir problems.

Smooth Close Control
OMMATE゚ RHEOSTATS

NOW 11 Sizes! $121 ⁄ 2$ to 1000 Watts

Ohmite offers you industry's most complete line of rheostats. All sizes are available from stock in a wide range of resistance values, including the NEW Model "E." Ten sizes are available to mee MIL-R-22A requirements in each of the 26 type designations.

16 Quality Engineoring Features:

Vitreous enamel bonds the core and base together into one integral unit.
2. The wire is wound over a solid porcelain core, and each turn is locked against shifting by vitreous enamel. Uniform or tapered winding.
3. Close graduation of control. Each turn of wire is a separate resistance step.
4. Large, flat surface upon which the contact brush rides

Metal-graphite contact brush (varied to fit current and resistance) insures good contact, with negligible wear on the resistance wire.
6. Shunt pigtail of ample size carries the current directly to the slip-ring.

Large slip-ring of high-current carrying
ability minimizes mechanical wear and provides connection from the moving contact to the terminal.
8. Potentiometer use. The rheostats are provided with three terminals so they can be used as potentiometers or volt age dividers.
9. High strength ceramic hub insulates the shaft and bushings from all live parts. All sizes will stand a 3000 volt a-c breakdown test to ground.
10. The contact arm is a long tempered steel spring which assures uniform contact pressure at all times. Cadmium plated for corrosion resistance.
11. Rounded pivot holds contact brush in flush-floating contact with wire.
12. Stops which are keyed to the shaft and

base limit the rotation-thus no torsional strain is imposed on the contact arm on stopping.
13. Compression spring maintains uniform pressure and electrical contact between slip-ring and center lead at all times.
14. Models H, J, G, K, and L: Phosphorbronze retaining ring takes end-thrust. Models P, N, R, T, and U : Stop washer takes end-thrust. Steel shaft in brass bushing provides a wear-resistant, wob-ble-free bearing.
15. Ohmite rheostats meet requirements of NEMA and EIA (formerly RETMA).
16. There are only ceramic and metal in the construction of Ohmite rheostatsthere is nothing to char, burn, shrink, or deteriorate.

BE RIGHT WITH

RHEOSTATS RESISTORS RELAYS

TAP SWITCHES TANTALUM CAPACITORS
R.f. CHOKES VARIABLE TRANSFORMERS

feed-thru, multiple insert HYFEN connector with crimp-type snap-locked contacts
Makes possible the design of
lighter and more compact equipment. Each insert holds 35 contacts.
Frames available for 5 or 8 inserts.

crimp-type

MODULAR

ELECTRICAL CONNECTORS

IN 3 NEW BASIC TYPES

Modular units by Burndy provide versatile, rapid and reliable answers to the problem of connecting a multiplicity of wires in relatively limited spaces. Crimped contacts installed with any of several hand, pneumatic, semi-automatic or automatic tools-can be removed, re-inserted or replaced, providing the most complete flexibility in the connector field. Computers, ground-based radar, missile ground controls, and instrumentation are typical applications for Burndy modular connectors.

> crimp-type, STAPIN ${ }^{\circ}$ taper pin
contacts
A not h e
Aurndy contri-
bution to the
modular con-
cept of assem-
bling standard
units to pro-
vide custom-
fitted end
products.

For complete information, write: OMATON DIVISION

NEW PRODUCTS

Versatile High Speed Crimping Tocl

The: ()maton Dis ision of the Burnels ((mponat

 lad portable pmematio (rimpine towl. Wpe. \1) "Which pron idach For (ontrolled erimping in whom production worh.

 1.OK' limes of commectors. Thia mates fori greatly simplifiod operation permittion highb? liable combections to be whicond at athish row of speerl.
The 1t IISPlitsse is antomatice mine ne spece that beyond the opecataton of loadime the tool and cocking the teed device , dter cach tom
 other operations. such as adtancine and position ing of the contacts. are accompliahed antomath call! be the tool
(Contacts to be installed with the 1) (we Im mished pre-loaded in colder conded plastice expern able carry strips carrsing fometeen contacts pr strip and packaged five strips to a masarime loan The plastice strips are antematically efected fre the tool after the contacts hase been wed.

The pewer unit of the Yo IthPliess is all c.linder which is controlled puemmaticall! mechanical ratchets) to pronide full eveling en trol which assures that cath contact is proper crimped. The toon is factore set to operate s(0-100) pai lime pressume and develops 2.50) It force when operated at (x) pai.

Burndy Corporation, Norwalh. Combect. CIRCLE 299 ON reader-SERVICE CARD

EDITORIAL

The Pause That Refurbishes

()ne of the greatest challenges facing the design engineer in 1959 will be to find time to thimk.

As we talked to engineers in gathering material for our Design $59-1$ Challenere report, the miversal state of affairs of too little time to do the things that should be done became sery apparent. Although buss congineers and bustling activit! seem to be healthe signs, we may be kidding ourselves.

Decisions are made every minute but are the made with due deliberation? Too often it appears the busy engineer's energetic pace is set by the erises that keep developing and need attention. The engineer, important becanse of his thinking ability, is called npon to lick the problems, but what kind of thinking does he do: There are misually only a few alternatives possible because of the mand constraints such as delivers on time cost. ete. The "thinking" is simple to arrive at the best compromise

Doine inst a bit of "thinking." several factors of the midtwentioth centur? come to mind that seem to portend arem more ballow thinking in the future
is computers become more available to do "thinking," alloeit routime or repectitise and as man is put in the role of merely making a choice of alternatives given to him by the computer, he may not know how to make a decision. Veser having been called upon to think for himself carlier, his judgment powers may be poor.

Wie sere evidence of erroneons judgment of this kind being made be these who rese too heavily on results of survers. For example advertisers making decisions on motivational research occasionally arr because they didnt study in depth a conflicting motivation that applied to their product Survers too often replace thorough original thinking.

The team approach poses dangers too: an individual is often absolved from thinking at all in some area-George was supposed to study that. No one person is cever responsible.

But to worry about 1959 first, how is the engincer who is overloaded with commitments to schedule his time to think? The undersigned hasn't had time to think about it enough-one solution might be to shorten the work week so there is more after-hour working time. Those of us who are railroad commuters can move further into the suburbs. That will give us time to finish such things as reports and editorials each morning before the hubbub of the plant or office starts.

It is a wise man who is not stampeded into making too many commitments. He alone can pause occasionally and refurbish his decision-making apparatus.

-oration FIRST IN FILM POTS

WITH CARBON FILM POTS Servo 100\% Faster.

FREOUENCY CPS

meovener ces

EIX-GANG POT MODEL 205

PROBLEM

Poor resolution and loss of output signal due to wiper bounce of its wire-wound pots limited the speed of servo multipliers in an Analog Computer. This poor dynamic performance, due to the use of wirewound pots, threatened to obsolete the entire Analog Computer.

SOLUTION

The substitution of the C.I.C. Carbon Film Pot, with its infinite resolufion, low torque, and zero wiper bounce at high speeds, permitfed a great increase in amplifier gain with a 100% improvement in dynamic response of the servo multipliers.

	OLD	NEW
	WIRE.WOUND	CARBON FILM
	1400 volis $/ \mathrm{sec}^{2}$	4000 volis $/ \mathrm{sec}^{2}$
Maximum Velocity	150000 volis $/ \mathrm{sec}^{2}$	
Maximum Acceleration	$56000 \mathrm{volis} / \mathrm{sec}^{3}$	$\pm .2 \%$
Multiplication Accuracy	$\pm .24 \%$	

The performance of your servo system will also be improved if you use C.I.C. Carbon Film Pois. Send us your specifications today.
MORE THAN 3 MILIION
C.I.C. CARBON

FILM POTS HAVE
BEEN MANUFACTUNED FOR MILITARY AND INDUSTRIAL USE.

CIRCLE 18 ON READER-SERVICE CARD

Semiconductor diodes are complex. They often fail to do what you want them to because of "hidden" properties. The clue to their better performance lies in unearthing these properties with better measurements. How to make these measurements is shown.

Author Fred Dickey, with GE almost 15 years, has worked extensively with diodes in general test equipment. fire control equipment. and special electronic test equipment for laboratory experiment.

New Circuits for Better Diode Measurements

Fred E. Dickey*
Research Laboratory
General Electric Co.
Schenectady, N. Y.

BETTER diode measurements are simplified with better test equipment. The three pieces of equipment described here measure three paranters-recowery time, static characteristics. and capacitance. These measurements are amone the most important to diode in-cirenit performance.

The diode's complex characteristics can lead to unexpected performance, In one case, diodes with a long recovery time worked better in magnetic core computer circuits than did some types with fast recovery. Theoretically, the latter should have done the better job. Testing rerealed that the shoretime diode had more capat citance.

Corrent through this capacitance cansed the peak current to be high. Though this current decayed more rapidly than in the slower recovery diode, its initial high value made the total area under the current-time curve worse than would be predicted from the difference in recovery time.

This effect was especially bad at low forward currents. Short-time diodes had capacitances of three to four !uf, while the long-time diode's capacitance was on the order of a half $\mu!1 \mathrm{f}$.

It appears that reverse courent through the diode is made up of at least two components: some flowing through the capacitance between anode and cathode, and some fowing because of carrier storage in the semiconductor medium. The total reverse current can be considered here, with no attempt to separate it into its components. From a practical standpoint, the

[^1]designer has as much trouble when his circuit malfunctions because the diodes pass reverse eurrent through anode-cathode capacitance as when they pass it because of carrier storage.

This difference in capacitance between diodes is especially serious in cases like that of a developmental digital computer which operates on a 150 kc sine wave. When the diodes are biased (1) hold off a sine wave the higher capacitance ones pass more reverse current than those with low capacitance and may cause erratic operation.

Diode Recovery

Recovery time is taken as the length of time a diode takes from the instant a nerative pulse is applied to the instant when it has recovered in resistance up to some certain value. This value of resistance is not standardized throughout the industry so any discussion of recovery time must mention the basis of measurement. In this case it is .50 kilohms.

Figs. 1 and 2 show recovery times of thre typical diodes under various conditions. Their (apacitances are listed in Table 1.

The capacitance effect can be seen in Fig. 1. where the three diodes recovery can be compared with zero forward current. The high capacitance diode 1 N64.4. has almost as much reverse current with no forward current as with 10 ma. The other two show ahmost wo reverse current at \%ero forward current

Recovery Time Test Set

In the past it has been customary to measure recovery with the system shown simplified in

Fig. 3. The reference diode is to prevent a large voltage buildup across R_{L}. This would put a charge on $C_{\text {}}$, that would have to be dissipated when the negative pulse comes along. This system has two serions limitations:

1. Modern diodes have short recovery fimes and the reference diode does not recover soom enough to "get out of the way." The effect is to upset the recovery time measurement.
2. The system has about 10 muf capacitance wross R_{l}. This increases the recovery time and therefore limits the maximum value of R_{l} which can be used.
The circuit of Fig, 4 overcomes these draw backs. The 2C40 lighthouse tube is used ats the cutput cathode follower because of its high G : and low input capacitance. It is momuted horicontally on insulators. Cathode and heater connections are soldered directly to the socket pins. Anode comenection, is made with a standard (lip).
To kerep imput capacitance down, ome end of the 2 K resistor is soldered directly to the grid flange. This must be done with extrembe care so the glass will not crack. The other resistor and the trimmer capacitor are soldered to this 2K resistor. The diode test clip is a timy spring type momented on a small locite sheet. The -K load resistor R_{L}, is soldered from the test dip to ground. This allows R_{2} to be changed casily.

Table 1. Capacitance of Three Diodes

HO2162	germanium (Hughes)		0.3 1!14
1N251	silicon	(Transitron)	0.8 ruf
1 N643	silicon	(Pacific)	3.0 ! ! ! f

Measurements made at 3 v inverse bias.

(A) IN251
(B) IN643
(C) HD 2162

Fig. 1. Diode current characteristics with 25 v in verse voltage, $0.1 \mu \mathrm{sec}$ per division on time axis, 150 kc rate, and 2 K load The bright horizontal bar in dicates the 50 K level
(A) 1 N 251 with forward currents of $0,5,10$, and

5 mo .
(B) IN643 with forward currents of 0,5, and 10
(C) HD2162 with forward currents of $0,2 \frac{1}{2}, 5$.
and 10 mo Gain is half that in (A) and (B)

Fig. 2. Diode voliage characteristics with 10 ma forward current, inverse voltages of 5 , 10,15 , and 25 v , and other parameters the same as in Fis.

Paration

The -2 value is commomly used, but tor certain circuits other values might be desired.

This part of the circnit and the components going to the gricl are latid out for least possible (apacitance. Measurements on a Q-meter show a capacitance of $1-1 \geq$ to 2 enif from the sensitive test (lip) to ground for the complete layout The potentioneter P_{2} adjust the output voltage to zero de. The output cable must be as short as possible.
The rest of the circuit is guite straight-forward. The HIDElfi2 and its associated circuit comprise a peak reading voltmeter to indicate the negative voltary of the pulse with respect to gromed. Meter M_{1} and its circuit read the forward current in the test diode. If the negat tive pulse is a square wave then the forward current is twice the average which the meter reads, so M_{1} is calibrated accordingly.

Fige Zat shows the fall time of the pulser, tester and ero system with a short circuit in the test clips. The $1.5-7$ mif capacitor is adjusted to give the best fall time withent owersheot.
Since this system has the mont complea ade justement of the equipment discenssed here. com plete operatine instructions follow

Recovery Time Measurement

1. I Tektremic 105 pulse semerator and at cro "ith the fastest rise time preamplifier are required. A de power supply of 250 a and 100 ma capacity is used.
$\xrightarrow{-}$. Let warm up 10 minutes
2. With de power supply ofl and ero on de eetting, put bass line on top line of screen. Tiun de power on and make sure diode test (lip) are compty. Adjust the batance pot P ? 2 on set

Fig. 6. (Above left) Static characteristics of the IN643, 1 N25), and HD 2162

base line back on the top line of screen. This adjusts output of circuit to 0 vde.
4. Put short circonit in test clips and set pulse gencrator to 150 ke and 2.5 v output. Set P_{1} to zero. Adjust sain of (ro so pulse from pulse generator can be sern. There should be no overshoot on the pulse and the fall time should bee less than 0.1 usece. If this is mot the calse adjust the \bar{t} !pef trimmer capacitor to make the pulse correct. Also. adjust the symmetry control on the pulse gencrator so the positive and negative times are erpual.
5. Recowery time is usually taken as the time the diode takes to return to some value of resistance. A value of 50 K is one standard. To calibrate, put the 50 K resistor in the test clips. Set P_{1} to zero and the pulse generator to 25 v
output. Set the gain of the cro to maximum and note the size of the negative pulse. When the diode has recovered to the point where it is that many divisions of the scale from the base line, then it has recovered to 50 k .
6. P'ut the test diode in the elips and adjust the forward corrent to the desired value and the inverse voltage to 2.51 . Of course, if other thatl 2.5 v are desired, then the calibration Step 5 must be done again with the desired voltage.
-. Recosery time call now be determined from the calibration in Step 5 and the cro settings.

Static Characteristic Plotter

Fig. 5 shows the static characteristic plotter and Fig. 6 gives the curves it made on the three
diocles discussed betore 1 one rpm motor drives a 1 k potentioneter so that voltages between 10 and +10 are applied to the dionde. I Woseley Autograf $\mathrm{X}-\mathrm{Y}$ recorder is used to make the permatment record.

Tion meters are used to indicate woltage and courrent so ranges call be set on the recouder. The voltage drop in the 20 mat meter is mot emongh to be significant but the voltmeter does draw enough current to be noticeable. so it is only in operation when the normally open button is pushed.

There are two unique features to this circuit. The first is the system whereby voltage and courrent ranges may be switched at will. With S_{3} in position "C" the voltage and current scales are on the in normal ranges wherein the recorder
full seato on 20 ma and 40 wolts.
However, on the reverse boltage vide of How ale the diode coment is onk microamps and

 - .lle. the reverse comenen seale is expanded by (${ }^{1}$ Hat leahats currout can be seen
Fosition " A " is supplied for wa " with the dioml. the eombucting direction. Here the eurrent mee is back to 20 mat full scale but the whetame ante is expanded five times. This cmablow Hu. monal voltage seale to be expanded and rean (1ime easily.
Thee operation of the systom is such that IIII is started on range " B " and on the reverse -llase part of the curve The motor is started nd the curve plotted. Then, inst as the whtaed anes through zero, the operator smaps S_{3} to the I" position and the curve is completed.
Another mique feature is that a means is applied wherche the corremt dramon be the curders wotage asis is whtrateded from the enveligg om the current axis so that if the diexte
 arm. This is donee with) $P_{\text {a }}$ and its circuit. The proper setting for P is deterntied hy putting Scill "S" setting and terning P_{1} so -30 v are

The ettembators switched ors sare calcombated for the loaling of the rovorder. They would hame th he changed if some nther recorder with different input impedaners is iseal

Capacitance Measurement

Hhe chernt of Fir. T measeres diode capaciLimee. It is a $1 . \overline{0} 0$ he oscillater which generates shont one-half wolt to driwe the reverse biased Chombe 1:3 batlery supplies power to the osvillatere and hias to the diesede. The output of the
 In . Hewhett-Packard $=400 \mathrm{l}) \mathrm{vtam}$.
Fis make a measurement. a 10 pulf capacitor in put in the test clips. The wtom is set ont the 10 mv scale and adjusted to full scale reading by P_{1}. The voltmeter now reads one ons per niff a) the diodes are placed in the clip and capacitance read directly. This calibration is linear lecanse the current flowing through the load msistor R_{r} is determined by the reactance of the diode as long as its capacitance is small thor example, 5 بuf at 150 kc gives about 200 k actance which determines the load current ompletely. The $\geq \mathrm{K} R_{\text {L }}$ has weffect when combined with so large a reactance. The capacitance iries with inverse bias so this system provides means of comparison between various diodes 13 volts hias.

The FIRST and ONLY standard line of tunable Microwave Filters

S BAND FILTERS			
Characteristics	Two (2) Section Resonator	Three(3) Section Resonator	Four(4) Section Resonator
Model No.	27-8W	27.CW	27-0W
Type of Resonator	TE ${ }_{101}$ mode rectangular	TE ${ }_{101}$ mode rectangular	TE E_{101} mode rectangular
Tuning Range	2700-3150 MCS	2700-2950 MCS	2700-2900 MCS
3 db Bandwidth	4.5-6.5 MCS	4.5-5.5 MCS	4.5-5.5 MCS
Max 30 db Bandwidth	36 MCS	18 MCS	13 MCS
Max Insertion Loss	. 9 db	1.3 db	1.8 db
Price	\$400.00	\$535.00	\$670.00
Model No.	27.BC	27-CC	27.0C
Type of Resonant Cavity	$\lambda / 4$ coax	1./4 coax	1./4 coax
Tuning Range	2700.3200 MCS	2700-3100 MCS	2700-2950 MCS
3 db Bondwidth	8.11 MCS	8.10 MCS	8.9 MCS
Max 30 db Bondwidth	60 MCS	32 MCS	21 MCS
Max Insertion loss	1.6 db	2.4 db	3.2 db
Price	\$350.00	\$475.00	\$600.00
C BAND FILTERS			
Characteristics	Two(2) Section Resonator	Three (3) Section Resonator	Four (4) Section Resonator
Model No.	54-BC	54-CC	54.DC
Type of Resonator	$\lambda / 4$ coax	$\lambda / 4$ coax	1./4 coox
Tuning Range	5400.5950 MCS	5400-5950 MCS	5400.5750 MCS
3 db Bandwidth	8.11 MCS	8.10 MCS	8.9 MCS
Max 30 db Bandwidth	60 MCS	32 MCS	21 MCS
Max Insertion loss	2 db	3 db	4 db
Price	\$360.00	\$485.00	\$610.00
L BAND FILTERS			
Characteristics	Two(2) Section Resonator	Three (3) Section Resonator	Four (4) Section Resonator
Model No.	96.BC	96.CC	96.DC
Type of Resonant Cavity	$\lambda / 4$ coax	$\lambda / 4$ coax	1./4 coox
Tuning Range	960.1150 MCS	960.1100 MCS	960.1050 MCS
3 db Bandwidth	8.11 MCS	8.10 MCS	8.9 MCS
Max 30 db Bandwidth	60 MCS	32 MCS	21 MCS
Max Insertion loss	1.2 db	1.8 db	2.5 db
Price	\$370.00	\$495.00	\$620.00
$\mathbf{X E A N D ~ F I L T E R S ~}$			
Characteristics	Two (2) Section Resonator	Three (3) Section Resonator	Four (4) Section Resonator
Model No.	75.8W	75.CW	75.DW
Type of Resonant Caviry	TE E_{11} mode cylindrical	TE ${ }_{111}$ mode cylindrical	TE E_{11} mode cylindrical
Tuning Range	7500.8500 MCS	7500-8250 MCS	7500.8000 MCS
3 db Bandwidth	8.11 MCS	8-10 MCS	8.9 MCS
Max 30 db Bandwidth	60 MCS	32 MCS	21 MCS
Max Insertion Loss	1.5 db	2.5 db	3.5 db
Price	\$475.00	\$625.00	\$775.00
Model No.	85-8W	85.CW	85-DW
Type of Resonant Cavity Tuning Range	$T E_{111}$ mode cylindrical 8500.9600 MCS	TE E_{11} mode cylindrical 8500-9300 MCS	$T E_{11}$, mode cylindrical 8500.9000 MCS
3 db Bondwidth	8.11 MCS	8.10 MCS	8.9 MCS
Max 30 db Bandwidth	60 MCS	32 MCS	21 MCS
Max Insertion loss	1.5 db	2.5 db	3.5 db
Price	\$475.00	\$625.00	\$775.00

All of the above filters hove Max VSWR of 1.5, and either a single shaft or counfer dial for Tuning Control. Depending uoon mode of operation, units ore supplied with either Type N Connectors or Waveguide Aanges.

DEIIVERY IN 90 DAYS

Frequency $S_{\text {tandards }}$
a division o
NATIONAL ELECTRIC PRODUCTS CORP

P. O. BOX 504, ASBURY PARK, N. J. Telephone: PRospec 4.0500 TWX A PK 588 CIRCLE 20 ON READER-SERVICE CARD

Contour

Photocells

A

 Wraping their contome Producell in pliathe stron

 twelectric derices. (imentor applications, prodm tion flow procomes. intomatic inspertion int

(© ontome phatucill-manntactured b! lutiom
 frecially-processed (wample of whominn phote. woltaic colls. Theree cells comsist of a metal bate
 are deposited. The agereegate is treated in bud "..ls as to be light-semsitio.

 photereells have in all othere mepects the samt propertias of the more typical photocedls. In thas past photocells had ome larree application-lis
 trial uses. contenn photucells can bre used for at tomatic setting of light (omentol for motion-p) thre cameras and built-in light metem for st it catheras

Producing Different Waveforms
Since these pliable phetecerlls are able to as shaped inter almost ally form. they (all b mominted on a rotating haft in a position cont il

The photocells, produced in pliable strips, are able to shaped into almost any form
monnechanimu. They may be nsed as a form on monlinear function generator. when formed into photosensitive cam. Different configurations srutuce different wavelorms. For example, if a Whedrical-shaped photocell is properly masked and then rotated in a beam of lisht, a splaare ...ne will be produced. The variety of wate turme produced in such a mamer is limited onls a the ingemity of the design engineer.
Some of the other applications visualized are: - Weasuring mean horizental candle power of mup. This is aceomplished by curving the light "nsitive surface inside around the lamp.

- Measuring illumination over an menem sur-
- Increasing the fichd of acceptance. The onter then of a flat-sirtaced photocell do not revive the same intensity of light as the center por"min. But by curving the light-sensitive surface If intensity will be equal at all angles.
- Monnting the photocell on a shaft to determere position.
- Producing photosensitive models such as nissiles and aircraft. Various tests conld be made , these miniaturized models which respond to Is from a light-ray gum. These models will be nsitive to a home-on light source.
These applications arise from the ability of lable selenium photocells to be produced any requirement (curved, cylindrical or other uffigurations). Cell sizes range from a minimum $0.25 \times 0.25 \mathrm{in}$. to a maximum of $10 \times 10 \mathrm{in}$. For ore information on these pliable photocells, turn the Readers-Service card and circle 103.

PRECISION POTENTIOMETER HEADOUARTERS

For over three and a half decades, CLAROSTAT has done just one job but that job thoroughly - turning out controls and resistors for electronic and electrical requirements. Millions upon millions of such CLAROSTAT components in daily use attest to the engineering and production skills of CLAROSTAT.

And now, with ever-growing and ever-more-critical demands for precision potentiometers, CLAROSTAT again is the specialist. A separate, super-specialized production entity - the Precision Control Division - now operates in the Dover plant. CLAROSTAT remains the world's leading winder of fine wire, with an output greater than all other winders combined. The resulting precision potentiometers are worthy products of "The House of Resistors."*

Therefore, specify CLAROSTAT. It always pays to deal with the specialist.

Consult HEADQUARTERS
Whatever your precision potentıometer requirements - standard or special. simple or intricate, single. or multi-section units, potted or encapsulated, large or small quantities - come to CLAROSTAT. Literature on request.

- Reg US. Pat. Ofl

Contiols and Resistors

 CLAROSTAT MFG. CO., INC., DOVER, NEW HAMPSHIRE In Canada: CANADIAN MARCONI CO., ITD., TORONTO 17, ONT.

Microwave Test Instruments,
 Part 4

POWER and FREQUENCY

David Fidelman
Roslyn Heights, N.Y

Different types of microwave instruments were described in the first part (ED, Dec. 10, 1958). Signal generators were taken up in part 2 (ED, Dec. 24. 1958). They were classified into different types and described both as a source of signal power and as an accessory to supply a calibrated signal for comparison. Microwave test sets were deseribed in the third part (ED, Jan. 7, 1959),

Power and frequency measuring instruments are mow taken up. Basic principles of operation of such units ats water calorimeter type of power meter, bolometers, and tuned cavity type of frequency meters are described. CROWADE peower is measured by com verting it inte heat and measuring the amoment generated be the signal meder test. There are two general methods of performing this op eration. For relatively large powers, the signal can be made to heat a constant flow of watere and the power determined trom the temperature rise of the water. For low powers. the signal can be made to heat a small resistion element (a herlometer) Whose resistance is a function of temb perature. Therefore the amonnt of peower ablo sorbed is indicated by the chement's resistance.

Power Meters

In the water calorimeter tope of power meter the waversuide or coanial line is temminated in at water load which absorth the microwate powser. maising the temperature of the water aceordingly Other liguids than water mat also be used in this type of instrument. but the principle of eperat tion is the sames Tomeasme the amome of power absorbed by the load, the water is made to How through it at a steady rate, then the flow rate and the temperatures of the water Howing inte and out of the load are measmed. From this data the amount of power being absorbed by the load can readily be computed. Water calorimeters are most inseful for measuring fairly large powers, where they are widely used as power standards.

Bolometers

The bolometer type of power meter is used for measurement of low powers from microwatts to
several hondred milliwatts. Bolometers 11.11 in of two general types: metallic wire or film whose temperiture coefficient of resistance is positive or thermistors whose temperature coefficient is nersative. In general, thermistors are mon meged. have a greater temperature-resistancr change for a siven power increment and how better encerload characteristics. The beskmeder

Table 1. Crystal and Bolometer Mounts

Table 2. Power Meters

Power Meter	Manufacturer	Model No.	Frequency Range	Power Range	Accuracy	Price	General Comments
Low-power (under 1 watt)	Airborne Instruments Lab.	50	(see note 1)	0.1 mw-10mw full scale	$\pm 5 \%$	\$ 199	Self-balancing direct-reading bolometer bridge.
	Federal Telephone \& Radio Corp.	NRD	0-3200 mc	$1-200 \mathrm{mw}$	$\begin{aligned} & \pm 2.5_{c}^{\sigma_{c}} \\ & \text { f.s.d. } \end{aligned}$	\$1180	Measures temperature rise in rerminating resistor; high powers can be measured by using suitable attenuators.
	F-R Machine Works Inc.	B830A	(see note 1)	$0.1 \mathrm{mw}-100 \mathrm{mw}$ full scale	$\pm 5^{\circ} \mathrm{c}$ f.s.d.	\$ 325	Bolometer bridge using substitution method; self-balancing direct reading bridge.
	General Radio Co.	1651-A	5-4000 mc	0-500 mw	$\pm 10^{\circ}{ }^{\circ}$	\$ 340	Bolometer bridge using substitution method.
	Hewleit-Packard Co.	430 C	(see note 1)	$0.1 \mathrm{mw}-10 \mathrm{mw}$ full scale	$\pm 5^{\sigma}{ }_{c} \mathrm{f}$ f.s.d.	\$ 250	Self-balancing direct-reading bolometer bridge.
	Narda Microwave Corp.	107	$\begin{aligned} & 500-1500 \mathrm{mc} \\ & \text { (coaxial) } \end{aligned}$	0.5 mw-2w	+1.5 db	\$1150	Includes attenuator and power measuring thermistor mount and bridge; unit also includes wavemeter.
	Polarad Elec. tronics Corp.	P. 3	(see note 1)	0.1 mw. 10 mw full scale	$\pm 5 \sigma_{c} \mathrm{f} . \mathrm{s} . \mathrm{d}$.	\$ 295	Self-balancing direct-reading thermistor bridge.
	Polytechnic Res. \& Dev. Co., Inc.	650-B	(see note 1)	$0.1 \mathrm{mw}-100 \mathrm{mw}$ full scale	$\pm 5^{\circ} \mathrm{c}$ f.s.d.	\$ 360	Self-balancing direct-reading bolometer bridge.
	Sperry Gyroscope Co.	$123 B$	(see note 1)	$0.1 \mathrm{mw}-10 \mathrm{mw}$ full scale	$\pm 3^{\circ} \mathrm{c}$ f.s.d.	-	Self-balancing direct-reading bolometer
High-power (over 1 watt)	Chemalloy Electronics	-	L to V band; al so Coax	$\begin{aligned} & 10 \mathrm{mw}-20,000 \\ & \mathrm{w} \end{aligned}$	$2{ }^{\sigma}$	$\begin{aligned} & \text { Calori- } \\ & \text { meter } \\ & \$ 1125 \\ & \text { Loads } \\ & \$ 100 \text { - } \\ & \$ 750 \end{aligned}$	Uses meter loads with calorimeter; different load for each band.
	Cubic Corp.	MC. 1 B	$2.6-26.5 \mathrm{kmc}$	0.600w	$\pm 0.2 \mathrm{db}$	\$1845	Calorimetric type; adopters required for each band above 3.95 kmc .
		MCX-1A	$\begin{aligned} & 100-3000 \mathrm{mc} \\ & \text { (coaxial) } \end{aligned}$	0-600w	$\pm 0.5 \mathrm{db}$	\$1850	Calorimetric type.
		MCL. IA	$1.12-1.70 \mathrm{kmc}$ (basic unit) 1.12-2.60 kmc (with adapter)	0-600w	$\pm 0.2 \mathrm{db}$	\$1850	Calorimetric type.
	Hewlett-Packard Co.	434A	DC- 10 kmc (coaxial)	$\begin{aligned} & 0.01 \text { w-10w } \\ & \text { full scale } \end{aligned}$	$\pm 5 \%$ f.s.d.	\$1115	Calorimetric type using comparison method with self balancing bridge to give direct reading of power.
	M.C. Jones Co., Inc.	(see comments)	20-2000 mc	$\begin{aligned} & 0.1 .2 w+0 \\ & 0-40,000 w \end{aligned}$	-	-	Consists of directional coupier units and indicating meters (do not absorb power); also used as VSWR meters; nine different units to cover the power range listed.

has $2,000-\mathrm{mc}$ tuning range combined with frequency stability under severe shock and vibration

- Requires less than 15 watts total power
- Non-axial motion of tuning shaft
- Low tuning torque

This new Sperry Klystron features superior electronic characteristics yet is so rugged it can withstand the severe environments encountered in missile and jet radar applications.
The SRU-216 not only has an extremely wide mechanical tuning range of $2,000 \mathrm{mc}$ but also offers a very wide electronic tuning range from 60 to 100 mc. Frequency remains stable even under severe pressure, vibration and shock environments.

SPERAY ELECTROMIC TUEE DIVISION. SPERRY RAND CORPORATION, GAINESVILLE, FLORIOA

element is contained in a cartridere which men be momeded in, and well matched to, the mica wave transmission system. A proper bolomet mount must be used for this purpose. The b lometer is comected to a power meter whin measures its resistance, and indicates the ammen of of power which the bolometer is absorthin and dissipating as heat.

Any mismatch between the meanurime elemen and the transmission line will result in cerrors in the measurement. Theretore great care must b taken to insure a low inwe. The water loads 1 , high-power measurements. and the bolometh mounts for low-power meaturements, are wer carefully designed for low whw ower a broand band withent recourse to tuming. A list of mamb facturess of bolometer mements for the varien frequency bands is giten in Table 1. Beolometer monits are primarily meaturement accessorio rather than instruments. Therefore their charac teristics are not listed in the same detail as the maijor types of microwian test instruments. The listime has arbitraril? been mestricted to mamban turers of test instrumenta listed in other tables in this serice
There are sencral difterent wath of measurint the power being abourbed by a bolometer. The most common is to nese the bolometer as one arm of a Wheatstome bridge. The briden is first bal anced with the microwathe current in the bolome ter. Then the microwatn pewer is removed ant the bridge rebalaneed be increasing the de bex lemeter current. Becanse the de Wheatstome bridese is not direct reading and is slow in use the self-balancing bolometer bridge has been de veloped. In this circnit the boldmenter is used one arm of the bridse A high-cain :mplifier connected acrons the bridere as a detector, and the ontput of the same amplifiow is comenected as the driving someres for the bridge. This circuit be, comes an audio oscillator whese output coltase automatically addinsts itself to maintain the bridene at a near balanced condition. When the rf power is applied to the bolometer, the amplitude of oscillation decreases by the amount necessary 10 keep the bolometer resistance constant and maintain the balance of the bridge. The voltmet which measures the audio voltage is calibrat in terms of microwave power.
There are a number of other types of pow meters besides the two which have been i scribed. These include a calorimetric type usi a comparison method with a self-balanci s bridge, and a double-vane torque-operated wa th meter. The basic principle of operation of ea instrument is included in the list of microwa power meters in Table 2.
The power meters which have been describ d

Table 2. Power Meters (continued)

Type of Power Meter	Manufacturer	Model No.	Frequency Range	Power Range	Accuracy	Price	General Comments
	Marconi Instruments (Wayne Kerr Labs, Lid)	U-182	$8.69-9.84 \mathrm{kmc}$	$\begin{aligned} & 10 w-200 w \\ & 0.5 w-10 w \end{aligned}$	$\begin{aligned} & \pm 2 \sigma_{c}^{c} \\ & \pm 10 \% \text { at } \\ & 0.5 w \end{aligned}$		Double-wave torque-operated feed-through watt-meter; does not absorb power insertion loss 0.1 db or 2.4%.
	Microwave Associates, Inc.	$\begin{aligned} & M A-101 A / B \\ & M A-102 \end{aligned}$	$26.5-40.0 \mathrm{kmc}$ $50.0-75.0 \mathrm{kmc}$	From $5 w$ to the max rating of the respective waveguide	$\pm 4 \%$	$\begin{aligned} & \$ 790 \\ & \$ 820 \end{aligned}$	Water load calorimeters; MA.563A (7.05 10 kmc) and MA-689 (8.2-12.4 kmc) are highpower water loads.
		MA - 564	$7.05-10.0 \mathrm{kmc}$			\$ 790	
		MA. 697	$8.2-12.4 \mathrm{kmc}$			\$ 790	
		MA. 103	-	-	-	\$ 350	Water load calibrator unit.
	Radio Corp of Americo	M1-31074	$1700-2000 \mathrm{mc}$	0-6w	-	-	Consists of directional coupler, crystal and meter; power indicated by calibration chart; also used as VSWR meter.
	Sierra Electronic Corp.	XB187A Water tood 190A Colorimerer	7.10 kmc	$\begin{aligned} & 300 \mathrm{w}-3000 \mathrm{w} \\ & \text { full scale } \\ & \text { (in four } \\ & \text { ranges) } \end{aligned}$	$\pm 2 \%$	$\begin{aligned} & \$ 145 \\ & \$ 495 \end{aligned}$	Calorimetric type.
Pulse peak power meters	Cubic Corp.	$100 x$	$8.5-9.6$ kmc	$0.01 \mathrm{mw}-3 \mathrm{mw}$ peak power	$+0.2 \mathrm{db}$	\$1150	Generates cw signals adjustable to the same peak amplitude as the unknown; requires an external synchroscope for comparison between reference and unknown signals; listed also as miscellaneous.
	General Communication Co	$\begin{aligned} & \text { PCX. } 1 \\ & \text { PCX. } 3 \end{aligned}$	$925-1225 \mathrm{mc}$ 3000 me band	-10 dbm to +63 dbm peak power	$\pm 0.5 \mathrm{dbm}$	-	Compares amplitude of signal to be measured with that of an internally-generated 1 mw r-f signal on a cathode-ray tube; measures attenuation of signal necessary to match 1 mw .
		PCX. 9	9000 mc band				

Nore 1. Frequency range depends upon bolometer mount.
Table 3. Frequency Meters Composed of Passive Circuit Elements

Manufacturer	Model No.	Type	Frequency Range	Accuracy	Price	General Comments
Admittance-Namco Corp.	WX-600	Absorption	8.2-12.4 kmc	0.1\%	\$ 100	Output reduced 20\% at resonance.
Amerac, Inc.	131	Transmission or absorption	2400-3400 mc	$\pm 1 / 2 \mathrm{mc}$	\$ 325	Includes diode detector and microammeter indicator.
	228	Iransmission or absorption	900-2400 mc	$\pm 0.02 \%$	\$ 525	Direct reading frequency control dial.

NEW PHOTOTRANSISTOR

FOR
 MILITARY AND INDUSTRIAL

 APPLICATIONS
G. T. EXCLUSIVE FEATURES

- Miniature Size
- End Viewing
- High Transistor Gain
- Low Leakage Current
- Improved Light Sensitivity

$\mathrm{E}_{\text {engineers }}$

 can broaden photoelectric equipment designs 0 with this new advance in phototransistor. Many applications in military and \square industrial electronic equipment, using light rays for activation, will utilize the

General Transistor PNP type 2N469
 actual size

This miniature, optically sensitive unit is extremely reliable and resistant to shock
 hermetically sealed in a metal case with glass headers- - light is applied through the glass top of the case. Tinned flexible leads may be soldered

or used with standard sockets.
Write today for illustrated folder, \square Bulletin 2N469, containing complete information,
 diagrams and engineering specification $\overline{\overline{1}}$ -please mention your application.

GENERAL TRANSISTOR CORPORATION

[^2]CIRCLE 24 ON READER-SERVICE CARD
me: ante average power. Peak power of pulse call be measured by comparison methods. This is done be comparing the peak amplitude of the moknown signal with that of a known ow signal on an oscilloscope screen. and measuring the power of the cow signal.

Frequency Meters

Microwave frequencies may be determined in (ithere of two w, IS. The first is to mater ne of the desorption or transmission properties of tamed resonators. The second compares the mbinown tregueney with the harmonic of a low-frequemes standard signal.
The thane can ty type of frepuemey meter is inserted in the microwave transmission system between the signal sombre and the detector-indi cater, and the Frequency indication may be ohs mature in different ways. Reaction and absorption types cause a decrease in level of the detector at resonance, anne are particularly unseal as sated frequency meters. The transmission 1 pe passes mils these frequencies "within the pass bated of the resonant canty. and is most consentient for monitoring or filtering purposes.
Drive screws are used to adjust the phomeder length and the frequent? to which the can it is
 function of planer position. Therefore when micrometer is based to indicate the position of the plunger, a frequency calibration chart mont be refereed to. When wasemeters are mode dire et readings. wither a linear drive merhamiom with a nonlinear frequency scale on the dial is wed. on ane Form of link ate or cam is med to limatria the scale.

The heterodyne method is used for mere e pres cine measurements of tregueney. I low treguene: crystal oscillator serves as the has ie frequent: standard. Maltip)! ing and heterodyning method are used to compare the frequency! of the un known signal with that of the crustal. A table oscillator is calibrated against the crustal stand ard frequency or a harmonic of it, then tuned to zero-beat with the unknown frequency. The matching of the two frequencies may be done aurally with earphones or a loudspeaker. or wis wally with an oscilloscope.

Another type of frequency meter includes wavemeter with an amplifier following the de sector, designed for measuring the frequency o low-level signals.

Reaction. absorption, and transmission types (wavemeter are listed in Table 3. Heterodyn frequency meters and those types which includ additional circuitry besides the basic resonant cavity are listed in Table 4. - =

Table 3. Frequency Meters Composed of Passive Circuit Elements (continued)

Manufacturer	Model No.	Type	Frequency Range	Accuracy	Price	General Comments
De Mornay-Bonardi Corp.	229	Transmission or absorption	2300-4500 mc	$\pm 0.05 \%$	\$ 490	Frequency calibration chart.
	230	Transmission or absorption	$3500-6500 \mathrm{mc}$	$\pm 0.02 \%$	\$ 490	Frequency calibration chart.
	232	Transmission or absorption	1800-3800 mc	$\pm 1 / 2 \mathrm{mc}$	\$ 270	Micrometer setting; frequency calibration chart.
	$\begin{aligned} & \text { DBA-715-1 to } \\ & \text { DBL-715-1 } \end{aligned}$	Reaction type	All bands S to E		$\begin{gathered} \$ 457 \\ \text { to } \\ \$ 864 \end{gathered}$	Gas-filled cavity wavemeters; micrometer setting with frequency calibration chart; each unit covers one microwave band.
	DBA-715-2 to DBL-715-2	Absorption type		(E band)		
	DBA-715-3 to DBL-715-3	Transmission type				
Diamond Antenna \& Microwave Corp.	$\begin{aligned} & 590-1 \\ & 590-2 \text { เo } \\ & 990-1 \\ & 990-2 \end{aligned}$	Absorption and Termination	CXN, XB, X, KU	$\pm 0.1{ }^{\circ} \mathrm{c}$	$\begin{array}{cc} \$ 248 \\ \text { to } \\ \$ 178 \end{array}$	Each unit covers $1 / 2$ of its microwave band (-1 for lower half of band and -2 for upper half of band)
	591-1 591-2 to 991-1 991-2	Absorption	CXN, XB, X, KU	$\pm 0.1 \%$	$\begin{array}{cc} \$ 248 \\ 10 \\ \$ & 178 \end{array}$	
	$\begin{aligned} & 592 \cdot 1 \\ & 592 \cdot 2 \text { to } \\ & 992 \cdot 1 \\ & 992-2 \end{aligned}$	Transmission	CXN, XB, X, KU	$\pm 0.01^{\circ}{ }_{c}$	$\begin{array}{cc} \$ 248 \\ 10 \\ 10 \\ \$ & 178 \end{array}$	
	$\begin{aligned} & 2090 \text { to } \\ & 2093 \end{aligned}$	Absorption termination	0.9 to 6.5 kmc	-	$\begin{gathered} \$ 290 \\ \text { to } \\ \$ 162 \end{gathered}$	A coaxile frequency meter; four units cover the frequency range listed.
Douglas Microwave Co., Inc.	430L; 430S; 430C	Transmission	$\begin{aligned} & 1.1-1.4 ; 2.7-3.3 ; \\ & 4-5.5 \mathrm{kmc} \end{aligned}$	-	-	Micrometer setting; uses crystal (not supplied).
	440L; 440S; 440C	Transmission or absorption	$\begin{aligned} & 1.1-1.4 ; 2.4-3.4 ; \\ & 4-5.85 \mathrm{kmc} \end{aligned}$	-	-	Micrometer tuning; includes diode and meter.
	$\begin{aligned} & 450 \mathrm{~A} ; 450 \mathrm{~B} ; 450 \mathrm{X} \\ & 450 \mathrm{G} ; 450 \mathrm{~K} \end{aligned}$	Absorption	XN to K bands	$\pm 0.03 \%$	-	Micrometer tuning; dip exceeds 20% of CW signal.
	$\begin{aligned} & \text { 451A; 451B; } 451 \mathrm{X} \\ & 451 \mathrm{G} ; 451 \mathrm{~K} \end{aligned}$	Transmission	$X N$ to K bands	$\pm 0.03 \%$	-	Micrometer tuning.
	460B; 460X	Absorption	8.5-9.6 kmc	$\pm 3 \mathrm{mc}$	-	Direct reading; type B for RG-51/U waveguide; type X for RG-52/U waveguide.
Federal Telephone \& Radio Co.	WAL	Transmission	500-2500 mc	$\pm 0.15 \%$	\$ 495	Direct reading; includes diode and meter.

ELECTRONIC DESIGN • February 4, 1959

Table 3. Frequency Meters Composed of Passive Circuit Elements (continued)

Table 3. Frequency Meters Composed of Passive Circuit Elements (continued)

Table 4. Frequency Meters which Contain Active Circuits

Manulacturar	Model No.	Trpe	Frequency Range	Accuracy	Price	General Comments
Federal Telophone $\&$ Radio Corp.	WID	Hotorodyne	30-3000 mc	10.003\%	\$2290	Direct measurement up to 300 mc , harmonic measurement above. Beat-note indication by magic eye and earphones. Includes 100 ke spandord erystal oscillotor for calibration.
General Radio Co.	720-A	Heterodyne	10-3000 mc	$\pm 0.1 \%$	\$ 440	Measures 100 to 200 mc on fundamentals, rest of frequency range on harmonics. Beat-note indicated visually by meter, aurally by loudspeaker or earo phones.
Lavdie Laboratales, Inc.	(A-6)	Hoterodyne	500-2000 me	10.001%	\$1975	Beat-note indication by earphones. Includes 2.5 mc standard crystal oscillator for calibration.
	LA - 1355 LA - 1365	Wovemeter with amplifier	$750-1500 \mathrm{mc}$ $1000-2000 \mathrm{mc}$	$\pm 0.1 \%$	\$ 395 eo.	Output indicated by mater; phones may be used as aural aid in identifying modulation or in centering of trequencies.
Nertheastern Enginoering, Inc.	$\begin{aligned} & \text { 7-18 } \\ & \text { (Mil rype TS-1860 N) } \end{aligned}$	Heterodyne	100-10,000 me	$\pm 0.01 \%$	-	Oscillator fundamental frequency 500 ro 1250 me . Beat-note indication by meter or earphones. Includes 20 mc crystal-contralled oscillator for calibration.
Polpeechnie Research \& Development Co., Inc.	504	Hoterodyne	$100-10,000 \mathrm{mc}$	$\pm 0.03 \%$	\$ 695	Oscillator fundamental frequency 500 to 900 mc . Beat-note indicated visually on 2 inch cathoderay pube, aurally by earphones. Includes 5 me and 50 mc crystal controlled ascillators for calibration.
	560. $560-51$	Wavameter with amplifiei	2.4 -3.4 kmc; 2.7-3.7 kmc	$\pm 0.8 \mathrm{mc}$	\$1300	Line-terminating frequency meter designed for measurement of low-power pulsed signals. Output indicored by meter.
Tolered Mig. Corp.	TFM-186 (Mil iype TS.1860/UP)	Hetarodyne	100-10,000 mc	$\pm 0.01 \%$	-	Oscillator fundamental frequency 500 ro 1250 mc . Beat-note indication by meter or earphones. Includes 20 me crystal-controlled ascillator for calibration.

Rugged Packaging

We is tar more rugged than its simple appeatrance would suguest.

Vodules. with two carch side los side alld printed circuites on both sides of the cards. are wailahle in a bariety of ofthe-shelf cmatommade circuit comfignirations. A modula might hale: for example, all the circuite! for an inputmotput bullere several gates. drivers. or Hip-flop)s. a segmencer. or a shitt rexister.
For special-purpose, fixed-program computens. this moklular arrangement prosides the lle xibility of amaloes approaches with the acenracy of digit.1 techmiques.

Fach card. with gold-plated, rhodimm-Hashed "irimes, has 32 terminals, one of which is given (川) (0) a keving arrangement. The key, a small block between two adjacent cards, prevents a card from being placed in the wrong module (7 mplartment.
Mochules are retained in the ir compartments by two methods.

- Two berrillium copper springs on each cast ahminmin module frame press against the sides of the compartment to provide vertical aligmment. - Two long, internally threaded rods mate with threaded pins above and below the floating comnectors at the rear of the compartment. This
 fisten it down securely.
This rugged package, though designed for a , ilitary application, also lends itself to use in fough industrial environments. It can be used sht on the production foor.
For more information on this package, turn to se Reader-Service card and circle 102.

Fig. 1. (left) Module using standard miniature pube and standard component (left) compared to transistorized version of the same circuit (second from left). Second from right is a "hearing. aid size" module, and right is DOFL's 2-D binary divider.

Fig. 2. (right) Ten transistorized circuits mounted (right) to make up a complete counter.

Interconnecting Microminiature

Norman J. Doctor and Emma L. Hebb
Diamond Ordnance Fuze Labs
Washington 25, DC

This is one of a series of papers presented af the Symposium on Microminiaturization of Electronic Assemblies sponsored by Diamond Ordnance Fuze Laboratories late last year. Because symposium aftendance was limited to government personnel only, ELECTRONIC DESIGN is publishing these papers as a special service to our readers. In addition, all of the symposium papers will be published in their entirety in bound form available only from ELECTRONIC DESIGN. For further information on these Proceedings, furn to Reader-Service Card and circle 100.

It is possible that connections made between microminiature modules could result in a final assembly much larger than the group of modules themselves. The problem is to be able to make these connections and yet keep the advantage of the small size subassemblies. In this article, the authors discuss various methods of interconnecting modules without adding substantially to the total volume.

METHODS for interconnecting extremely small modules, such as printed wafers having volumes of about 0.005 cu in ., are under in vestigation. The basic technique involves stacking wafers so that all leads protrude from one side of the assembly, encapsulating the assembly in resin, facing off the side containing the leads in order to expose the interconnection points as cross sections of the wires, and then interconnecting these points. Feasibility of interconnect ing these points either by chemically deposited copper or by printed silver wiring was demonstrated with modules larger than 0.005 cu in These techniques will be extended to the small printed-wafer modules as soon as sufficient numbers become available.
Fig. 1 (left) shows a module using a miniature vacuum tube. Other component parts are
mounted in the baseof the socket by conventional techniques and interconnection to the larger assembly is made by the octal plug upon which the entire circuit is constructed. This binary divider occupies a volume of about 2 cu in.
Fig. 1 (second from left) shows a transistorized lersion of the same circuit. Interconnection of modules of this size is accomplished by etched wiring connectors into which the individual subassemblies can be plugged. Many varieties of modularization at this size-level have appeared in the literature. In most cases, the printed or etched wiring that fits into the connector is plated with a hard, corrosion-resistant metal. In other cases, an auxiliary set of terminals is attached to the wiring board and these terminals plug into the connector.

Fig. 2 (left) shows again the transistorized

Fig. 3. How hearing-aid size modules (foreground) are mounted and interconnected using an etched board (left).

Modules

Welucd-beard module and a 10 -stage binary ammiter made from ten of these modules. ten whed wirines combectors and hook-开) wire. The comiter pachatsed by these techmigues erconpies whont 22 (ำ in.
Fige 3 shows the hearing-aid-sized module, an whed interemburetion beard, and the final 10 wise combler. This connter oscoppies about 1.6 (1) in. When this degree of miniaturization is werched. the guestion arises as to what should be cmasdered a module. This 10-stage binary comber occupsies lass volume than the 1-stage hinary dis ider hased on a miniature vacumm tube. If it were desired to make the 10 -stage comenter a module in itedf. the contire smbassemble might lor (oncap)sulated as is.
(11 the other hatred if reparabiality at the 1 at ere len! were desired, the individual stages cund be srparately concapsulated before inserting the in into the intercombection board. Commer(i)lly: the use of header monntings for modules it this level of miniaturization is popular alHugh they detract from the high component dinsities.
Fig. 4 shows the 1)(OFL-21) binary divider.' This water circuit. when mencapsulated, ocenPi a volume of approximately 0.00 .5 cm in. and " is electronically equivalent to the preceding tu) dules. Its tremendous volume efficiency is due In dimination of cases for individual parts, and th use of many printed-circuit techniques." If

what's behind the clouds?

Bemini the ciotos hides a cunning enems with ever-improving weapons to threaten our security. To deter these airborne agyressors is the job of the all-weather interceptor, our first line of defense.
Partaking in a giant chess game, a Hughes Airborne Systems Engineer is constandly fed intelligence information regarding the most recent enemy advances. He asks the question. "How effective are present interceptors against the new enemy capabilities, and how can we counter this challenge?"

The Hughes Airborne Systems Engineer
is concerned with the design of hardware but he does not design hardware. He is more interested in the broader systems aspects. Taking an analytical approach, he must solve the interacting problems of performance, reliability, maintainability: and operability
If this type of systems engineering interests you, investigate the assignments now open in:
SYSTFMS ANAI.YSIS • SYSTIMS FVAICATION SYSTEMS DESIGN • SYSTr.MS FlifiHI TFST

CIRCLE 877 ON READER-SERVICE CARD

The salary structure for these positions reflects the advanced nature of the assignments. Please inquire by writing directly (o) Dr. Allen Puckett, Associate Director. Hughes Systerns Development Laboratories.
HUGHES AIRCRAFT COMPANY CULVER CITY 10. CALIF.

HUGHES

Fig. 4. Stacking arrangemeni of the 2.D module.
such modules were momuted in headers. they could undoubtedly be intercomenected usine the secondar! etched-wiring-hoard technique already described.
Mounting of each binary divider in a header. however, would greatly reduce the volume efficiency at this level of microminiaturization. On the other hand, the mometing of several intercomnected stages within a single header would not only provide encasement for the uncased componemt parts but also allow high component densities.
Fig. 4 also shows a stack of tem of these modwhes required to produce a conunter egquivalent to those shown in Figs. 2 and 3. The volume of this combter is only 0.2 a 1 in. Note the 50 protruding lead wires which must be intercomected.
If comnectors comprising etched wiring boards are ruled out because their interconnecting wires would be spaced no more than 10 mils apart. two other possible techniques exist. The first would require welding the tiny wires, using procedures developed in the subminiature vacum tube field. The only demand which would be made on the DOFL-2l) water is that the material chosen for the lead wires be weldable. At least one orgatization ${ }^{3}$ is presently fabricating self-supporting modules at the hearing-aid level of miniaturization using welding techniques.
The second technique is one now under insestigation at DOFL becallse it appears to be especially suited to the ell-level of microminiaturzzation.
It involves (1) stacking wafer stages, (2) encapsulating the assembly in resin, (3) tacing off the side containing the wires on a lathe or milling machine so that the intercomection points appear as cross-sections of the lead wires. and (f) intercomereting these points.

Deposited-Metal Inferconnections

One procedure for making intercomections between these cross sections of wire involves

Table 1.-Types of wires successfully connected by deposited copper films.

Type	B \& S Gage
Columbium	20
Copper, bare	20
Copper, tinned	22
Gold	28
Nichrome	30
Silver	21
Tantalum	20

first depositing a metal orer the contire faced-off surtace. To date, copper deposited by chemical reductiont has been employed for this purpose Using photolithographic techniquess a resist would then be laid down on the copper surface, exposed through a mask of the desired interconmection pattern, developed and washed. The extrameons copper could then be etched away. Finally. the deposited intercomection wires would be protected bes a laver of plastic. This technique should yield a completely interconnected stack of waters. Fis. 5 shows sich a stack: the bottom plate is not a module but ser es onl? to hold the lead-ont wires.
In a variation of this procedare, intereomene tion paths have been milled in the faced-oll side of the encapsulated stack, metal deposited omer the entire side, and the metal not in the groonm then removed either with an abrasive or bo a second facing-operation.

Fig. 5. Stack of 2-D wafers completely interconnected. Assembly is encapsulated:

Before using either of these procedures build a counter, the feasibility of deposited-c. per intercomections was determined by to t specimens consisting of two wires encapsulatel, faced off, and joined at their cross sections by d. posited eopper.

After preparing the piecess alectrical contime ity between wires of each set was checked msines ail ohmmeter. The types of wires tested are listul in Table 1 and all made adeduate comertion. The test speecimens were next temperature evchal fiue times from - 5.5 ($: 0+3.5$ ($:$ and retestol) No conneretions tailed.
Nout, it "as decided to interesmmect ant operating circoit by deposited-copper technigums. Due to the lack of a sulficient momber of water modukes (these modules are still in themselom research models) it was deceded to sulbstitute "hearing-aid"-sized modules. Fiow NOR" circuits were chosen for interemenertion becanse together they would eonstitute a halt addere. The hall. adder prepared with deposited-metal intereme nections shawed opratation companalale to that of hamel-wired mits.

Screened-Silver Interconnections

()ther procedures for making interconnections between the eroms sections of the wires will read ily (eceror to thene tamiliar with the techniques of printedecircuitre: In obs ions ome: and ome which hats been employed in these latomatories, is the application of a siluer pattern b! "silk"-screening. The applicabilit! of this method was demomstrated on a frecermming multisibrator. All the component parts were encap)sulated with their leads protruding from a single side of the block. The hlock wis taced-off and the component parts were intercombected with screened-silver paint applied across exposed crons-sections of the leand wires by well-known screening technicques. The multivibrator operated in all respects as well as a solder-assembled mit.

The first method proposed here for making deponited copper intercomections involves the use of a photolithographic procedure. In quantity production, a photolithographic procedure should prove inexpensive and yield extremely fine lines. However, this procedure has not yet bern adapted to the application at hamed.

First, the technique itself has been proven be feasible and the details of its application the present problem were of secondary interat compared to the achievement of reliable elect ical contact between lead wires and deposit d copper. Secondly, the details of making an alissing pattern negatives for masking the intera inection patterns between the cross-sections of t ee wires in the encapsulated assembly have to e worked out but are needed only after feasibil y has been demonstrated.

Other Methods Also Possible
casibility of deposited and screened－metal in－ onections has also been demonstrated．This mique promises minimum－volume intercon－ tion for minimum－volume water subassem－ s．and places phenomenal component densi－ within reach．
iner interconnections can probably be pro－ al via the deposited－metal methoels than with ened－siluer mothods becallse imh forced mgh a stemeil will flow to some wetent before bardens．Patterns hating lines and spaces as row as 2.5 mils have been producerel hresist－masked and chemically－etched chemi－ ls－deposited－onpper．${ }^{7}$ Ten－mil－wide screcmed would be considered excellent at the press－ state of the screening art．
it should be moted that fine－line intereonnec－ ins have a finite resistance that must be taken ，accenme in circuit design．This resistance is the order of 1 whon which．for the circuits acribed in this work，is negligible．The thich－ ．of deporited copper is estimated between 0.3 10.6 mil．

Finture worh must include（1）development of theod for alignines plaotographice megatives on （apsulated ascombliess，（2）an eralnation of usterm torase aflects on deposited and remed interconnection＂ires，and（3）the con－ Ametion of intercommected stacks of water－type がは，－－21）module
Uore detailed intormation on the processes aribed in this article will be found in the com－ we paper to be published in our Proceedings of －Symposimm on Vicrominiaturization of Elec－ mic Assomblien．For further information on Proceedings turn to Reader－Service card and （1．100）

Acknowledgement

References
\backslash licrominiature Components for Electronic Awomblics Doctor and E．M．Davies，Eler．MgR．（i2，git HInst 19：8）．
 ＜11．1957，p． 5
High Denvity Electronic Packaging．Techuical Ah－ wit No．I，Francis Associates，Marion，Mass．
לummary of Directions for Sierra Kopper Kold，The Winlesale Supply Co．， 6500 Santa Monica Blud．，Los Celes 38，Calif．
Industrial L＇ses of Kolak Ploto Resist，Eastman Kodak Damany，Bulle tin 8－56－GL．P－C
Tramsistor WOR Circuit Design，W．D．Rowe，Erec．－ －itic Desice，6．No．3．February 5， 19.58 ． Fine－line Etched wiring．Edith H．Davies，a paper of rented hefore the Symposium on Microminiaturization If Electronic Assemblies，Diamond Ordnance Fuze Lah－ （ luries，September 30， 1958.

for all the

programming features you want．．．

Patchcord Systems by

In data processing and telemetering equipment，analog computer＇s and other low signal level circuits．A－MP Patchcord Programming Systems and Panels offer the precise features you need，many of them exclusice．Here are a few：
－shielded systems feature patchcords constructed of coaxial cable and boards of unique cellular design which provide complete isolation for all signal circuits and positive grounding for all shields
－patented wiping action pre－cleans all contact surfaces whenever pre－programmed removable boards are placed in service
－frame mechanism assures positive contact when closed yet opens easily for quick board changes
－for complete data on patchcord system sizes，patchcords，and specifications on electrical characteristics（including voltage and current ratings－leakage resistance，capacitance and inductance） send for AMP＇s all new Programming Systems Catalog．

AMP INCORPORATED

GENERALOFFICES：HARRISBURG，PENNSYLVANIA
A－MP products and engineering assistance are available through subsidiary companies in：Canada • England • France • Holland • Japan circle 30 on reader－service card

Studies were conducted at Diamond Ordnance Fuze Laboratories to determine the limitations of present techniques for making fine ecched lines. This artiele discusses several processes and the results of the study.

Fine Line Etched Wiring

Edith Davies Olson

Diamond Ordnance Fuze Laboratories
Washington 25, D. C.

cAREFUL control of certain of the variables present in the normal photo resist and etching process successfully reproduced a pattern consisting of 2.5 -mil-wide lines with a 2.5 -milwide spacing between the lines on copper-clad laminates. Undercostans reduced the line width (t) about 1 mil.

Copper films. 0.3 to 0.6 mil in thickness. were chemically deposited on plastic. Limes as narrow ats 2.5 mils with a 2.5 -mil-wide spacing between them were etched in these films with neegigible.
muder-contting, without breaks or bridges
Conductors 10 mils wide but havine t-mil. wide spacing had been produced be electronething precious metals deposited on glass. An elece troetching technique was mecessary because chemical etching of precions metals wonld require the use of strong ateds which would desrade the phote resist.

Preparation of Test Patterns

The orisinal lavout for the test pattern for

Takle 1-Effects of Varying Process Controls on Average Resistance of Conductors

Process Variation	Average Resistance-ohms					
Line Widths	10 mil	$10 \mathrm{mil}^{2}$	$5 \mathrm{mil}{ }^{\prime}$	$5 \mathrm{mil}^{2}$	2.5 mil ${ }^{1}$	2.5 mil ${ }^{\text {a }}$
Whirler Coating-rpm 50	1.7	1.7	1.9	1.9	-3	-3
100	1.6	1.6	1.9	1.9	-3	3.1
200	1.6	1.7	2.0	2.0	-3	${ }^{3}$
Dip Coating-Oven Type						
Gravity-convection	1.7	1.7	2.0	2.0	3.04	3.4
Mechanical-convection	1.7	1.7	2.1	2.1	$3.1{ }^{4}$	$3.1{ }^{4}$
Pressure During Exposure						
Weights Vacuum	1.6 1.9	1.6 1.9	$\begin{aligned} & 1.9^{4} \\ & 2.2 \end{aligned}$	$\begin{aligned} & 1.9^{4} \\ & 2.2 \end{aligned}$	$\overline{29}^{3}$	$-{ }^{3}$
Developer Type and Time-Min.					2.9	2.
Trichloroethylene 1 vapor	1.9	1.8	2.0	2.0	2.8	2.9
Trichloroethylene liquid	$1.8{ }^{\text {d }}$	1.84	$2.3{ }^{4}$	2.4	- ${ }^{3}$	$3.4{ }^{\text {s }}$
Trichloroethylene 2 vapor	1.9	1.9	2.3	2.3	3.4	3.2
Trichloroethylene 2 liquid	1.9	1.9	$2.3{ }^{4}$	$2.4{ }^{\text {4 }}$	$-^{3}$	-1
Conmercial developer	2.1	2.0	2.6	2.6	$4.3{ }^{\text {4 }}$	4.24

Outside line of pattern, length-to-width ratio of 2657:1.
2. Inside line of pattern, length-to-width ratio of 2647:1.
3. Infinite resistance due to breaks in conductors.
4. Only one of the two specimens was satisfactory
making fine lines in (opper wan made on at larese weet of stifl white Bristol board. Thirtyit atripe of blach adtuesiar tap) 11.2 .5 inch in "idth "ere latid down on this baterd in parallel strips 0.25 inch apart, and selected ands wern commected so als tor form two adjacent (onntimums lines which zis-zatused bach , dred forth .atere the honeth of the board.
The final lavout was theon photengraphed and reduced 25 , 5°) and 100 times to give negratises hatiner egmal lime-and-space widths of respece tively. 10 mils, 5 mils and 2.5 mils. These threne batterns are shown in Fis. 1.
Sincer the length-to-width ratios for vach of tho two limes remained constant. recearelless of the ver of the pattern, the resistance of the two lines also remained comstant and it was possible to compare etching resolts directly by ase of the following formula:

$R=L L$
 11%

"here $R=$ resistancer, $\varepsilon=$ resistivits, and L. W W. and T are the size parametems of the conductor. For example for patterms etched in "I-ǒ" (opper-clad laminates, the following values were substituted in the above equation: $p=1.72-1$ microohm-com (for copper). $T=1.35 \mathrm{mils}$ (for " 1 (w, " copperclad laminatess) and the appropriate length and width of the lines of one of the pattems. Then the theoretical resistance, R, was calcollated to be 1.3:36 ohms for the outside line of the pattern and $1.3: 31$ ohms for the shorter inside line: For deposited copper films onls 0.45 mil in thickness, the respective values were calculated to be 4.008 and 3.9993 ohms.

Another pattern hating lines and spaces of 10 and 4 mil widths had previonsly been prepared

Fig. 1. Some test patterns for fine line etching. Top, 10 mil lines with 10 mil spacing; lower right, 5 -mil lines with 5 mil spacings; lower left, 2.5 mil lines with 2.5 mul spacing
in forming alectrodes in precions metals on

Chemical Etching of Cu-Clad Laminates
Firer effort was made to keep the laminates amel neeqatives as tree of dust as possible. particolarly when the laminates were conated with wot wist or when the dried resist was being exposed tw light through the negative. The resist itself was (a)menerevial solution which was filtered prien to use to remove any sediment or other forcign muitter.
flesist films were applied by two mothorls. One methori involved covering the laminates with resist, then whirling them at 5() $.1(1)$ or $2(\mathcal{K})$ rpm. Another method involved dipping in resist aul drying in two different types of ovens.
Sensitized boards were exposed to a carbon are for 1 minute while held in contact with the megative either in a vacoum trame or with wighted glass. They were developed either by "uspending them in developer vapors or immerslin them in the developer (Table 1). Etching was actomplished in a bubble etcher using a 25 per the solution of ammonium persulfate at 70 C .
The dipping process of applying resist to comper-clad laminates produced a conating which "as slightly thicker at one edge of the plate than at the other due to the vertical draining position of the plates. Whirling produced a more uniform oviting which varied inversely in thickness with the speed of the turntable.
Is the line width was reduced. differences due to the method of application of the resist begath th) appear. The 2.5 -mil-wide lines and spaces If re more consistently etched without breaks in th lines, or bridges between conductors, when ro- ist was applied by dipping and draining than

[^3]increasing component density

MODEL 1
Component Density 9 per cu. in.* Diameter $0.625^{\prime \prime}$; Depth 0.371^{*} Rating $1 / 10$ watt

MODEL 6
Component Density 18 per cu. in.* Diameter $0.502^{\prime \prime} ;$ Depth $0.155^{\prime \prime} \neq 10 \%$ Rating 110 watt

MODEL 8
Component Density 158 per cu. in. * Diameter 0.286"; Depth $0.110 \pm 5^{\circ} \%$ Rating 110 watt

- your job . . and Centralab's

for military, commercial, transistor, and
communication applications
Here is a graphic illustration of how Centralab has met your needs for greater and greater miniaturization. Pictured (actual size) are three ultra-miniature Centralab Radiohms. ${ }^{\text {(8) }}$ When introduced, each was the smallest variable resistor on the market-and was superseded in that position only by the introduction of the next smaller Centralab unit.

These variable resistors are available in a variety of mounting styles, to meet the most stringent space requirements-further testimony of Centralab leadership in the development of ultra-miniature components. Increasing component density is your job . . and Centralab's.

SPECIFICATIONS:

Modol Radiohm ${ }^{2}$: 500 ohms to 10 megohms at 1/10 watt, wide range of tapers, 250° rotation minimum rotational life 25,000 cycles.
Model 6 Radiohm ${ }^{\text {s }}$: 500 ohms to 10 megohms at $1 / 10$ watt, wide range of tapers, 250° rotation, minimum rotational life 25,000 cycles. Also avail able with SPST switch.
Modol 1 Radiohm ${ }^{10} 500$ ohms to 10 megohms at $1 / 10$ watt, wide range of tapers, 260° rotation, minimum rotational life 25,000 cycles. Also avail able with SPST switch.
Detailed specifications are available in Centralab Technical Bulletins. Write for your free copies. Model 1 and Model 6 Radiohms ${ }^{\triangleright}$ are stocked by your Centralab distributor, availabl

Centralab,

* Cubic inch, rather than cubic foot, is used Cubio inch, rather than cubic foot, is used
to provide a morerealisticand more readily
visualized standard of comparison.

A DIVISION OF GLOBE-UNION INC.

960B EAST KEEFE AVE.• MILWAUKEE 1, WIS. In Canada: 804 Mt . Pleasant Rd., Toronto 12, Ont.

Variable resistors - electromic switches - ceramic capacitors - packaced electronic circuits - engineered ceramics CIRCLE 31 ON READER-SERVICE CARD
 CIRCLE 32 ON READER-SERVICE CARD
by whirling. Although one might expect the best pattern definition to be obtained with very thin coats of resist, actually the best definition was obtained with the thicker dip-and-drain coatings probably because these coatings had better physical strength and adherence to the copper.
Use of contact pressure during exposure of the sensitized plates did not yield as satisfactory results as the use of a vacuum frame. (Table 1). Although all the patterns applied under contact pressure appeared to develop satisfactorily, and the 1()-mil-wide limes also etched satisfactorils. the 2.5 -mil-wide lines were badly undercut after etching and une continuous conductors of this sire were obtained. Poor contact between the negattise and the laminate probably led to light scattering under the negative and, hence, to variations in the width of the lines being printed.
Table I also shows the results obtained bo varying the developer. The most acceptable rewits were ohtained with trichlorocth leme vapors as indicated by the fact that conductors etched with them sate the lowest values. i.e values Which most nearly approathed the theoretical value of about 1.3 ohms. With these vapors, developing-time of one minute was superior to one of two minutes.
The small bubble etcher containing bot ammonium persulfate provided very even etching of the copper. However, on some of the test piecees. the $\overline{\text { jand }}$-and 10 -mil wide limes were completely etched throngh in a matter of 10 to 1.5 seconds before the same condition was reached with the 2.5 -mil-wide lines probably due to the freere flow of etchant in the wider spaces. ThereFores. the comparatively slower method employing warm ferric chloride and mild agitation of the piece was preferred for fincline work in cases where close control of the temperature and time in the bath were necessary, as in etching the thin films of deposited copper.

In depositing such thin films of coppere disks of cured epoxy resin 2 inches in diameter and $1 / 4$ inch in thickness were sanded on one surface to produce a uniform matte finish and cleaned. Two solutions prepared the surface of the plastic for the reception of the copper. A third solution deposited the copper film which. after washing and drying. was a dull dark color. Because of the relatively porous nature of the deposited film, all resist was applied be dipeoating.

The procedures of exposure and development were the same as those described for the laminate samples. For etching. the pieces were immersed in warm 40 per cent ferric chloride because the time of etching of thin copper films could be more easily controlled with this simpler apparatus.

Average resistance of the 5 -mil-wide lines was

150 ohms and that of the 2.5 -mil-wide lines 195 ohms. Because of these unexpectedly 1 resistance values, one of the patterned disks sliced to reveal its cross section. Although thickness of the film was variable due to the matte finish of the disk, its thickness was mat ured under a microscope and fomend to be alom 0.3 to 0.6 mil .

An effort was made to improve the contimite of the deposited copper films with a thin copper plating The thickness of the plated film was unt appreciably greater than that of the umplater film hut the plated film appeared to be be poroms. Aerage resistance of the 2.5 mil lime wat 2-5-3.5 ohms: resistance of the 5 mil lines w 3.5-5.5 ohms.

For the 5 - and $2.5-\mathrm{mil}$ patterns, the lines etchen from the electroplated films had atn averary "idth of 4.9 and 2.4 mils, respectively. For the vame patterns, the liness etched trom the chami cally deposited umplated films averaged 4.5 and 2.3 mils. respectisels. Thas. the amoment of men clercutting was abone the sime for the two type of lines. Howerer. Hhe electroplated films hat fewer pinholes and lower resistance

Electroetching Precious Metals

Thee sulbetrate in this catre combists of a glase slide on which a thin film of palladium has been deposited by vacenme craparation technicues. Athengh pallactium is soluble in both aqua regia and hot nitric acid. previous experiencer in etching had shown that the revist temeded to break down in these acids, so meether of them was tested. Methods of electroctching rather that chemical methods were indicated.
In the electroetching process, the etchants used ont the film of palladium were based on those recommended' for stripping rhodium from nickel-plated lrass becanse of the similarities hee. tween rhoclium and palladium. The hedrochloric acid etching bath, however, had to be rejected due to the viquornus Lassing. When large bubble bumped repeatedly against the narrow bars of resist between adjaceent sections of the line to be etchecl, the adherence of the resist to the palla. dium weakened and the pattern broke down he. fore it was etched. Although the sulfuric acid bath also produced gas, the bubbles were generally smaller, and fewer in mumber and, heice less active against the surface of the slide.
Microsoopic examination of the finished, trodes showed that the average line width of be individual linese of palladium that formed the pattern was 10 mils. Microscopic measuremu its on the negative of the pattern sielderl a sin lir line-width value, thus indicating that under ut ting during etching was negligible.
This electroetching procedure was also fo ad applicable to the preparation of chromium e

Whes on glass. Such electrodes, suitably treated of lo a moisture-sensitive material², are now unis quing tests as humidity sensing elements in insimendes.

Future Needs
Ithough etched lines finer than those debed here may not be required, methods of Ling fine lines by other processes are needed. (xample, screened lines finer, and having re acemate edge-definition, than those mew Aheible are desired when workine with small onted ceramic wifers such as those nsed in bis work reported by Doctor and Hebb? (One wh wafer measures $0.5 \times 0.0 .5 \times 0.0$ en inch and iss screened resistors, sereened eonductors. Whiature capacitors', casclese transistors: and eless dionles", a total of 14 components exclu-- of the comductors. Becanse the conductors resistors oecupy the major pertion of the water, the ir reduction in wire now becemmes titical.
If it appears that such components are better do by bacemm erapmation technifues than screening techuigues, then pricedures for hing finc-line patterns be vactullu deposition ould be needed.
More detailed information on the processes de whed in this article will be fonnd in the comlete paper to be published in our Proceedings (the Symporium on Microminaturization of Electronic Assemblies. For further informaven on the Proceedings turn to the Reader-Sery(ard and circle low

References

Wetal Fimshing, 20th, al., n 230, Finishumg Publicaws Luc., New York, 1951.
Humndity Charatuerittics of Barium Fluoride Films, I:. Jones and A. Wealer, unpublished report of the S, May 195s
haterconnection of Microminiature Electronic Subwoblies, N. J. Dector and E:. L. Hebh, a paper prenited before the Symposium on Microminiaturization of luctronic Assomblies, Diamond Ordnance Fuze Lathoraofis, September 30), 1958.
Layerized High-Dielectric-Constant Capacitors, L. H. l.arwell, D). M. Freifelder, and P. J. Franklin, a paper rivented before the Symposium on Microminiaturization Electronic Assemblies, Diamond Ordnance Fuze LabAmries, October 1, 1958.
「wo-Dimensional Tramsistor Packaging, J. II Latlirop, J. R. Nall, and R. J. Anstead, a paper pre-- hed before the Symposium on Microminiaturization 1 Electronic Assemblies, Diamond Ordnance Fuze Labt. tories, September 30, 1958.

Thotolithographic Technigues as Applied in Microfaturization, J. R. Nall and J. W. Lathrop, a paper nonted at the 113 th Meeting of the Electrochemical Wity, Now York. N.Y., April 30. 1958
The Application of Vacminn Evaporation Techniques Aicrominiaturization, L. II. Bullis and W. E. Isler, a i presented before the Symposium on Microminiaation of Ellectronic Assemblies, Diamond Ordnance - Laboratories. September 30, 1958.

DIGITAL VOLTMETER, \$825

1

HIGH!

Automatic range and polarity selection. Just apply the probe and read voltage directly!

405AR DC DIGITAL VOLTMETER is a completely new instrument providing, literally, "touch-and-read" voltage measurements between 1 and 1,000 volts. Range, even polarity, are automatically selected. Readout is in-line, in bright, steady numerals. New, novel circuitry provides a stability of readings virtually eliminating jitter in the last digit. This reduces operator fatigue and avoids uncertainty.
Special features include a floating input, electronic analog-todigital conversion, digital recorder output and front-panel "hold" control permitting manual positioning of decimal. Voltage sampling rate is variable from 1 reading every 5 seconds to 5 per second; or can be controlled externally by a 20 v positive pulse.

BRIEF SPECIFICATIONS

Range: 0.001 to $999 \mathrm{vdc} ; 4$ ranges.
Presentation: 3 significant figures, polarity indicator
Accuracy: $\pm 0.2 \%$ full scale ± 1 count
Ranging time: $2 / 5 \mathrm{sec}$ to 2 sec
Raput impedance. 11 megohms
nput impedance: 11 megohms to dc , all ranges
Response time: Less than 1 sec
min. 50 db at 60 cps
Price: $\$ 825.00$

HEWLETT-PACKARD COMPANY

SIOOK PAGE MILL ROAD - PALO ALTO, CALIFORNIA, U.S.A.
CABLE HEWPACK

$$
\text { - DAVENPORT } 5.4451
$$

field representatives in all principal areas

Another article of the exclusive series on microminia turization. See note accompanyıng article p. 34 in this issue regarding the entire series

Two-dimensional thin films applied to extremely thin wafers are the most logical means for getting minimum circuit volume. In this article, the authors discuss problems in applying thin films and some of their important characteristics.

Applying Vacuum Evaporation Techniques for Microminiaturization

L. Harold Bullis and William E. Isler
Diamond Ordnance Fuze Laboratories
Washington 25, D. C

0NE OF the most aflective methoeds of prot lucing thin films of a larese variety of materials is that of high vacumm eraporation. It is mot difficult to visualize the use of this techmicque for the preduction of complete electronic circuits. and the formation of such circonts is one of the objectives of the valdomen esaporation program of the Diamond Ordnamee Fu\%e Laboratories.
Vacumon eraporation involves heatine a material in vacumm to such a temperature that a taper pressure of at least $10^{-*} \mathrm{~mm} \mathrm{Hg}$ is obtained. This vallue of vapor pressure was fomed to give a practical rate of vaporization for almominm': it is semerall! taken as a minimmon value for the baporization of most materials. whether metallic or diclectric.

Problems in Vacuum Evaporation

There are at least three different wats in Which the use of sacellm-deposited thin films (all inssist in reducing circuit volume. First, it is possible to deposit a thin-filn component in an area of a conventional printed circuit which misht otherwise be wasted. Seeond. the geometry of the thin film atn be used to adwantage. For example. the capacitance of a capacitor of given areal can be increased by making the dielectric extremely thin. Third, inse can be made of the inherent properties of thin films. For example. the resistivit! of man! thin metal films increases as the film thickness decreases. The second and third items are likely to be of more value in microminiaturization than the first item.

Considerable work has already been done in producing components by vacum exaporation.

Thus far. primary emphasis has been plated upon the development of thin-film resistoms Progeres hats been sufliciont to ematbe the come mereial prodenction of sexeral tepers of pure-metal thin-film resistors. Althongh these commereial resistors are tow large for use in micerominiature circuits. their desirable propertion canl be wpected in thin-film resistors deposited directls into such circuits.
Eqperimental. thin-film capacitors hate been produced be sereral lathoratories in the United States using vacumben evaporation techomicpues. Thus far the most promising results have been adhered usine diellectrics of silicon oxide and aluminum ovide. The best values ${ }^{-}$quoted, mot mecessarily values for a single capacitor. show a (apacitance per unit area of approximately 0.0 (N. 5 uf cm^{2}. ant insulation resistance of $1(0)$ kilomerewhms, and a loss factor of less thatn one percent.

In addition to resistors and capacitors. selenimen rectifiers are now beine made by vacumen exaporation techmiques. Thin-film inductors and
 contacts and wiring for intercomertine compor monts (äll ahos be deposited. it thons appeatis coll tirall pessible to deposit (omplete alectronic circuits in which the wirins. comtacts. and comspoments comsiot of thin films.

 able difficultices. (one weh difficult! lices int the fact that once eirenit walme hatse beon wetermined. (omponernts must be deposited in the circuit withon the tolerathere specified, in semeral. wo sortings selacting. or trimming processes are possible. Such deposition reguires great precision of the exaporation process and herowe precese control throushout the entire depensition peried of such variables as pressure, temperature and rate of charese-e aporation. It appears most feasible to assign a calcoulated atreat within a circont to a componemt and then to obtain the exact value desired by varsing the thichness of the component.

Table 1. Electrical Properties of Thin-Film Vacuum-Deposited Silicon-Monoxide-Dielectric Capacitors

Electrode metal	Capacitance per unit area, ! $1 \mathrm{f} / \mathrm{cm}^{2}$	Dissipation factor, \%	Resistance, megohms	Dielectric thickness, microns	Dielectric constant	Breakdown strength, kv/mil
Ag	0.0019	0.9	10,000	2.23	5	1.1
Au	0.0031	1.9	10,000	1.62	6	1.9
Mg	0.0060	5.1	-	1.07	7	-
Sn	0.0069	2.5	4,100	0.92	7	3.3
Zn	0.0098	4.3	230	0.47	5	3.5
Al	0.0099	3.9	40	0.46	5	-

wh a procedure requires the mse of a precimonitoring system to (mable deposition to atopered when the desired value has been herl.

Problems with Varied Materials

mother difficult! imolues the succession dep)(or. int a simgle evachation, of all the saried rials rempired tor a siven circont. Someral lems are likely to be concomentered
inst, at least one filament must be included ise batcollin chamber for cath material to be mated. It contact of the completed circonit air mast lxe a ovided, ann additional filament be reguired for deposition of a protectise renatines on the cercnit prion to admission of (1) the chamber. Ideall! cath filament mont centered below the substrate :and. failing ase of a multiphe chamber. she hatangement If conrse: impersibla.
second. wome of the sarioms materials to be perated will hatere to be hasated to cotremels Is temperatheres atele in the conerse of depenit whecessis. latyers of different materials. the sah surce-temperatures misht damatere pre mas depmented aloments of the circuit all of luch arn exponed th heat radiated from the
thirel, multiphe exaporations mathe mecessary " interchangine and moring of mashs within Whe ancmated damber. The merhanical manipuatron of such mashs ma! be wery complicated When small areas and intricate. configumations " imolocel.

Must be Clean

IWい other probleme are worthy of mention.
 -.pperation worh to assure aderplater adheremer I the deposited lasem to the subserate abled to wh wiflore Cores givantitios of contaminants atre *mosed from a substrate bs standard deaming
 mil alegreasing solutions. Howererer, the mavoidhas expensure of a substrate to air betweren the mal (leamines step) and the exacmation of the " 11 In! (hamber, is wifficiont to recontaminate W. 14 is thus uncersiatry to subject substrates to the loming effect of a low-pressome glow-discharese "N prion to film deposition.
Fecond. not coran the glow-discharge treatment - afficient to remore from a substrate all dust Fintickes. some of which mas produce pimboles Wher acoum-depensted films. Such pinholes. de(07eding ypon the ir location. might rum a particWhe component and force rejection of an contire (ind it Facters othere than the presence of dust (01) 1 substrate maty also be respomsible for pinWht s . No explamation an yet advanced has ade(In Idy accomuted for the formation of pinholes

The Human Eye, Nature's inspiration for the camera, can convert wavelengths of blue-green light measuring as little as 400 microns into visual perceptions that are truly life-size. Yet this entire human mechanism occupies space less than $1^{\prime \prime}$ in diameter.

Tiny New Potentlometer, shown actual size, is designed to add spacesaving precision to missile and aircraft servo mechanisms. Two MPB bearings in it assure accurate, low-torque shaft rotation - a vitally important benefit in subminiature components.

Man With Miracles. This is Maurice Hebert, one of MPB's Sales Engineers. He'll personally help you choose the cor rect MPB bearing to reduce friction and increase the precision of your instruments - while keeping your operating costs low with trouble free service

Miracles in Miniaturization

The Smaller The Better is often com. pletely true. Engineers now know that miniafurization is the surest method of developing new or improved components for many of the latest developments in modern industry. But, as components become smaller, the problems of maintaining high precision and long service life become larger - and the call for MPB bearings constantly increases. MPB answers
with the most experienced engineers in the miniature bearing industry, and advanced re search facilities ... producing over 500 types and sizes of bearings from $76^{\prime \prime}$ O.D. down with specials as required. We welcome your request for engineering advice, our catalog, or both.
Write Minlature Precision Bearings, inc., 902 Precision Park, Keene, N.H.

CIRCLE 34 ON READER-SERVICE CARD

15,000 WATTS P.E. P. New Ceramic Tetrode for SSB

Eimac's new, high-power 4CW10,000A is ideal for use in Class $A B$, single sideband service. This new tetrode is a water-cooled version of the widely-used Eimac 4CX5000A, with plate dissipation capability increased to 10,000 watts and a peak envelope power of 15,000 watts. Water-cooling makes the 4CW $10,000 \mathrm{~A}$ excellent for heavy duty applications where reserve plate dissipation is required.
Eimac offers the most complete line of tetrodes with the high-power gain, low distortion and excellent
stability required in Class $A B$, operation. Each has proved reserve ability to handle the high peak powers encountered in single sideband service. Efficient in-tegral-finned anode coolers on the air-cooled types keep blower requirements to a minimum, allowing compact equipment design.
Ceramic-metal design means compactness, ruggedness, high performance, and reliability. These proved advantages of Eimac ceramic tetrodes make possible more compact, efficient single sideband equipment.

Write our Application Engineering Department fo a copy of the technical bulletin "Single Sideband."

EITEL-MCCULLOUGH, INC.
 SANCARRLOS, CALIFORNIA Einac 7 irst with ceramic tubes that can take it

Driving Power 0 w 0 w 0 w
Peak Envelope Power
325 w

Fig. 1. Dielectric strength of silicon monoxide films d function of film thickness.
mim has a means becon den isad lom thair comple dimination.

Vacuum-Deposited Capacitors

lnitial work at DOFR imeolved the formation "ud study of thin-film capacitors havine vacum deposited silicon momoside as the dielectric. 'The (omplatatived wide attention this material hat receriued is largely dowe to the calse witl, whiel in call be exaporated and the awailability of em siderable information concomine it. ${ }^{3,45}$

Silicon Monoxide Dielectric

Initiallv: several gromps of capacitors "er made by depositing three successive film layers the contral laver was silieon monoxide, and the outer laters comsisted of a variety of metals Was possible to obtain values of capacitance mit aread. dissipation factor. direct-current sulation resistance, dielectric thickness, dieled constant, and breakdown streneth for mams the capacitors: average values are given in Th 1. In addition to the six electrocle metals shen copper was also used but in all cases films perled away from the dielectric.
It is evident from the data for dissipation fal and direct-current resistance that the best cap tors were those formed with electrode film woble metals. Gold is to be particularly rea imb mended for thin-film electrodes because o its high conductivity, inerthess to oxidation, atse of deposition.
oltage breakdown strength (Fig. 1) requires her explathation since the capacitors proad did not consist of perfece films but rather lifms containing minute pinholes. The pinis in the dielectric film sometimes became d with metal when the cominter electrode was died. therebey shorting the cappacitors. Such Its are amalengons to those fomud in metallized er capacitors. They were remosed and hemere capacitors cleared. bey sondines comer pulses math the (appactors. This procesen respuiered thl control to prexont damade to at (appacitor

Silicon Dioxide Dielectric

Mre dielectrice berakidown strensth in fissed
 hucts is amomes the highest hown. The me of * material as a cappacitor dielectric at nemmal mperature showld, theredore permit wayldent whener ratimes for thin-filun caplacitors. The whimety of thend vilica mender normal conditions Imuld remilt in anditiomal desirable caplaciten aracteristio
The vactum maporation of fused silica, howr. is difficult tor several reasons. First. silica atremely difficult to heat in vacinm becanse worbs little radiant eneres. Seconel. it must theated to a temperature in excess of 17000 (: liret it decomposes readily meder the condi-
 wation. It semed best however. to employ a lincet exapmation technicque deepite difficul-- Such a technigue represents a compromise wetween the desired high perceritalese of SiO_{2} in Ihe film and the peecel of formation.
In recent work. cemeentrations of silica up) to If percent lawe been obtained by the mothod. I is possible that with further development of uelmidues. Fused silica may be even mure sue cessfully eraporated in this manner.
Yore detailed information on the processeses lescribed in this article will be found in the (omplete paper to be published in our Proceed He of the Symposium on Microminiaturization if Electronic Assemblies. For further informaion on the Procectings, turn to Reader-Scrice ard and circls 100 .

References

 195, Prentice-HAll. Niew York. 19338.
Hicronic Conpucitor, R. F. Hoeckelman, C. W: Hoorn-
 fileon Momenile Fromt Surface Mirrors. G. Hass and II. Scolt. J. (1) St Sare Am. 3.9, 179 (1949).
reparation, structure and Application of Thin Films i() and TiO.. (G. HIss. J. Am. Cer. Soc, 33,353 (1950)). putical Properties of Sio in the Wavelength Region 10.24-14.0. Microns, (i. Mass and C. O. Salthere, 'MP. Soc. Am. 44. 181 (195-1).

BOOST PRODUCT EFFICIENCY and SALES APPEAL...

Sturdy little Stackpole Slide Switches provide almost any desired switching arrangement at rock-bottom cost. Features include $1 / 2,1$ and 3 ampere 125 volt ratings in U.L. Inspected types; 1 to 4 pole types with up to 4 positions; momentary or maintained contact designs; lug. printed wiring or wire wrapping terminals; and many special types such as plunger operated spring return, 4-gang SP-DT, and many more. WRITE FOR SLIDE SWITCH BULLETIN RC-11D to:
Electronic Components Division, STACKPOLE CARBON CO., St. Marys, Pa.
...WITH 13

Standard

 LOW COST TYPESthe most complete line

STACKPOLE
SLIDE SWITCHES

Coldite $70+$

NEW PRODUCTS

Corcring all wial prothets thet might sener-

UNIVERSAL AUTOMATIC TESTER

This automatic tester is (alpable of rapidl! लalloatting within assigned limits dynamic functional capabilities of a weapon ustem. sulb-sy stem, or combponents. (alled the Space system. if provides for antomatic IBMI card prosgramming and will accept 1000 inputs. It can be used to measure do $\sqrt[r]{ }$ truce rms of ace 1 , peak to peak ate $\begin{gathered}\text { a }\end{gathered}$ ohms, freg., time interial. or periods from test mit. Systron (orp). D) Dut. EI). (9) 50 Calindo St. Concord. Calif

POWER TRANSISTORS

Desigrated 2N1073, A, B, this diffused-alloy-powem (I)AP) tramsister series has collecter voltage ratinge
 ance. and collector currents up to 10 amp can be handled. Switching times are less thatn a usece. Power sain of the 1)AP transistor is 5 to 10 times Greatere than that of a standard allos type.

Bendia A iation Corp). Semiconductor Products Dept. EiD. Lone Branch, N. J.

CI?:L: 38 on reader-service card

NUCLEAR BATTERIES

These krypton batteries procluce a 5 k . (1perll circuit. ontput and have a whome of lew than 14 coin. Minimum comrent output of the Model
 Its weight is 1 wa and its useful life is approximately 10 yr. Operating temperature range is $-17.5 \mathrm{t} 0+16.5 \mathrm{~F}$.
Radiation Research Corpr. Dept. El), 1114 First Ave., New York 21, N. Y.

CIRCLE 39 on reader-service card

DIFFERENTIAL SWITCH

This differential switch is used to sense the displacement of two shafts. It can be used as all accurate time interval generator when used with - enchronous motor or as a driving source for the follow shaft. Operation: a desired shaft position is set into the (10.25 in . shaft, and this position , related to the 0.1205 shaft by a set of contacts which are spett. conter-olf. The ().125 shaft can be Iriven to the same position as the 0.2.5 shaft and III contacts will become center off.
 liester, Conn.

CIRCIE 40 ON READER-SERVICE CARD

MERCURY BATTERY

Measuring 0.3 in . in diam and 0.12 .5 in . high, thes mercury battery is designed to meet the ifec requirements of the military micro-module " Mgram. Its usen also include other miniaturized Wetronic devices. Designated 13\1-312, its energy If is approximately 36 mat he at a discharge of 2 ma, at 1.202 ats
Vallory Battery ((o. Dept. EDI), 13(M) A A thens \therefore Cleveland, Ohio.
circle 41 on reader-service card
EIECTRONIC DESIGN • February 4, 1959
0.01% Reguation

MODEL	DC OUTPUT VOLTS	OUTP AMPS
SC-32-0.5	0.32	0.0 .5
SC-32-1	0.32	0.1
SC-32-1.5	0.32	0.1 .5
2SC-32-1.5	0.32	0.1 .5
DUAL OUTPUT	0.32	0.1 .5
SC-32-2.5	0.32	0.2 .5
SC-32-5	0.32	0.5
SC-32-10	0.32	0.10
SC-32-15	0.32	0.15
SC-60-2	0.60	0.2
SC-60-5	0.60	0.5
2SC-100-0.2	0.100	0.0 .2
DUAL 0UTPUT	0.100	0.0 .2
SC-150-1	$0-150$	0.1
SC-300-1	0.300	0.1

0.02% Rediatow
COMPACT PACKAGE TYPE

MODEL	DC OUTPUT VOLTS	OUTPUT OMPS.
PSC- 5-2	$0 \cdot 7.5$	2
PSC-10-2	$7.5 \cdot 12.5$	2
PSC-15-2	$12.5 \cdot 17.5$	2
PSC-20-2	$17.5 \cdot 22.5$	2
PSC-28-1	$22.5 \cdot 32.5$	1
PSC-38-1	$32.5-42.5$	1

-pCoinc.

131.38 SANFORD AVENUE •FLUSHING 55, N.Y. - INDEPENDENCE 1.7000 CIRCLE 42 ON READER-SERVICE CARD
 finstic
Poflomenco
Reliattay
ad Quation

NEW PRODUCTS

NPN Junction Transistor

For large signal of applications
An alloy junction transistor germanium npu type -2 N 647 is espe cially designed for use with the company's pnp type 2 N 217 in port able radio receivers, phonographs, and audio amplifiers. It may also be used in conventional class 1 push pull circuits, and in class A audio amplifier circuits. Used to gether in the output stage of a typical class B complementary symmetry circuit and driven by a 2N217 class A driver, a 2 N 647 and a 2 N 217 can provide 100 mw power output at a power gain of 54 db . Used in the output stage of a typical push pull circuit and driven by another 2N647 class A driver, two 2N647's can provide a power output of 100 mw at a power gain of 66 db . The 2×6.47 has a large signal de current tramsfer ratio essentially constant oter the operating current range to insure circuit linearity. It has a collector cutoff current of 14 !at and operates in ambient temperatures to 71 C .

Radio Corporation of America Semiconductor Diva, Dept. ED, Somerville. N.J

CIRCLE 470 ON READER-SERVICE CARD

Synchros

Meet MIL-S-20708 specifications

Designed for 60 and 400 cps operation, these synchro receivers transmitters, and differentials have frame sizes from S to $2: 3$. They meet MIL-S-20708 specifications and are available for both torque and control systems.

United Aircraft Corp., Norden Dis., Dept. ED, Commack, N.I. circie 43 on reader-service card

PIONEERS OF THE THERMAL FRONTIER

all-atitude
 gyro

Wualable low. The LEAR 2171 all-attitude. two-gyro master platform is now in production-assuring early delivery schedule for all applications requiring highly accurate vertical and directional gyro signals.
Provere in 3.(x) hours of bench time-over $2 .(0) 0$ hours of Hight time - in eight tepe's of fighter and bomber jet aircraft.
Specified for operational use in high-performance fighter aircraft - (USAF) Republic F-10.5 and Convair F-1)6: (Navy) Douglas A4D-2 and McDonnell F4H

NEW PRODUCTS

Transistorized Servo Amplifier

Operates from 115 v, 60 cps
Model AB:300-01 transistoriz servo amplifier operates from 115 60) cps and is equipped with an in ternal de power supply. It provide 90 deg phase shift and outputs o 4) or 6.3 att 6 (0) (p)s. Fiffective gatin is easily adjusted from sol to $16(x)$ and input impedance is 5 to 100 h
Kearfott (o.. Inc.. Dept. ED 1.5(k) Main Ave., Clifton, N.J.

CIRCLE 49 ON READER-SERVICE CARD

Temperature Recorders

Multirange

Plug-in elements provide these temperature recorders with man! ranges. Typical spans are - 150 to +250 F and (1) to $22(x)$ F. Limit of error is l't $^{\text {to }}$ of span, and no externat temperature reforence is needed For each ratnce, J-in. F' or C calibrated chart paper is available. I wide choiere of chart speeds are offered in 1. 2, and 4 speed units.

Carian Associates. Instrument Div.. Dept. ED. 611 Hansen War. Palo Alto, Calif.
circle 50 on reader-service card

Analog Computer
 Has 2\% accuracy

A completely solid state device, the CM-2 analog computer con tains up to 12 operational amplifiers, 6 logarithmic motworks, a d s scaling potentiometers. It also his ant integral programming board side the cabinet to facili. ${ }^{\text {e }}$ programming of functions. It hermetically sealed and mount d

- CIRCLE 48 ON READER-SERVICE CARD
swing-out frames for quick ac - ibility and replacement. The "t meets Class 2, Section 1 con lit ons with an air purge and has III overall accuracy of better than 2 It is housed in a steel cabinct wh a door. Several units can be wed in banks with their programiii ig boards interconnected. southwestern Industrial Elecronics Co., Dept. ED, 10201 Weste mer Rd., Honston 19, Tex CIRCLE 5 I on reader-service card

Wirewound Potentiometers

$\pm 0.3 \%$ linearity

In ranges from 10 ohms to 7.5 k , model 5.50 (3 turn potentiometers have $=0.3 \%$ standard linearity and may be ordered with $=0.1 \%$ lincarity. The wirewound units may also be obtained with nonlinear unctions.
Spectrol Electronics Corp), Dept. E1), San Gabricl, Calif.
circle 52 on reader-service card

Servo Amplifier

Operates from -55 to +125 C
Fully potted and transistorized. the AMP-298 servo amplifier call deliver 40 v rms into a 160 ohm center-tapped load. Built for continuous operation between -55 and +125 C , it provides a voltage gain of 1000 at a constant input impedance of 50 K . This gain can he adjusted by an external resistor. Hequiring 28 v dc power and operating from a carrier of $4(0) \mathrm{cps} \pm 20$ (ps, the unit measures 1-7/16 x 1-7/8 x 3 in. and weighs a maximy m of $9 \mathrm{o} \%$. It is designed to meet M1L-E-5400 and MIL.-E-5272A spr cifications.
Bulova Watch Co., Electronics i $\%$ Dept. ED, Woodside 77, N.I. arcle 53 on reader-service card

CIRCLE 54 ON READER-SERVICE CARD $>$

KL-A VERSATILE, RELIABLE, LOW COST P \& B RELAY

for communications and automation

ECONOMY and versatility distinguish our KL series relays. Contact arrangements are available up to 4 pdt in either AC or DC versions. Sensitivity of 100 milliwatts per movable arm is available.
Stationary contacts and terminals are mounted on a phenolic front of high dielectric strength, thus adding to the utility of the relay. Conveniently located terminals and easy-to-mount base greatly simplify installation on long production runs.
KL relays may be hermetically sealed or furnished in metal dust covers.
This is one of a "family" of fine P\&B relays. Others, with similar configurations but various electrical and switching capacities, are shown below. Write or call for more information or see the complete P\&B catalog in Sweet's Product Design File.

phe standard relays are available at your local electronic parts distrieutor

KL ENGINEERING DATA

GENERAL: Broakdown Voltage: 500 volt rma, 60 cycle botwoen all olemon't sond on special 3 pdr roloy. $-45^{\circ} \mathrm{C}$. to $+85^{\circ} \mathrm{C}$.
Pull-In: Approx. $7^{75 \%}$ \%of nominol dc voltoge.
Torminals: Piecred solder lugs for two \$20 AWG wires. Encloouror: Metal can $2 \% / 6^{\text {nigh }} \times 2 \%{ }^{\circ}$ long $\times 21 / \mathrm{m}^{0}$ wido Th: A Hol
CONTACTS: Arrangoments: up to 4 pdr. Material: $1 / 0^{n}$ dia. gold-flashod silver. (OThers overilablo.) Load: 5 mps (19) 115 volts, 60 cycle cosistive loodi.
COILS: Resietance: 00,500 ohms max.
tS: Rotistanco: 60,500 ohms max.
power: 100 milliwatls por movable arm.
Powor: 100 miliworis por movoble orm. Volleges: up to 110 volits de.

KA SERIES: GENERAL PURPOSE
Compoct, light-dury reloy. U/L approved.
Meets 1500 volts rms breakdown requirement.

KR SERIES: SMALL, 5 AMP RELAY Rugoedly constructed for long
obility. Available up to 3 pdi.

KCP SERIES: SENSITIVE 3 PDT RELAY
For plate circuit upplicorions requíring low
cost, sensitive relay polyethylene dust cover.

NEW PRODUCTS

Direct Recording Oscillographs

8 and 14 channel

These direct recording oscille, graphs are designed to monitor and record a variety of electrical and mechamical phe momena during hieh speed testing operations. Model (9) (i.:-1 has miniature plug-ing gal. banometers which provide for if chamel recording from de to 5 he The gexid-2 hats solid-frame gall. vamometers that provide for os channel recording from de to 2 kc . Two accessories, a timing unit and a record latensifier are available.
Minneapolis-Honeywell Regul:for Co., Heiland Div., Dept. EI) 5200 F. Evans Ave. Demer 22 Colo.
circie so on reader-service card

thousands of hours...extra

the most dramatic development in indicator tube history

Another electronic achievement by Burroughs Corporation provides ex tended tube life, by thousands of hours or the new ultra long life Nixie indicating tube. This latest technical ad turing process and a special combina tion of inert gases in the tube bulb.
There are three distinct ultra long life Nixie tube sizes available - miniature standard and super. These complement the regular line of Nixie tubes where
extraordinary life is required.

Continued pioneering in the develop. ment of indicating tubes coupled with extensive production facilities has enabled Burroughs to develop the most "perfect" in-line indicating tube ever

The Nixie tubes are gas-filled, cold cathode, ten-digit ("0" thru " 9 ") numer cal indicator tubes having a commo anode. They are all electronic, in-line eadout devices which provide an idea means of converting electro-mechanica or electronic signals directly into read

NIXIE Tube Exclusive Features:

- All Electronic
- Lowest Cost
- Lowest Cost
- Lightest Weight
- Lightest Weight

Most Readable for Number Size

- Smallest Volume any Number Size
- Maximum Temperature, Shock and Vibration Specs

Telemetering Commutator
For pam systems
Four use in pulse amplitude mend ulation Ustems. this 3 polle telemeterime commmeters in alaptable th either airbonne or gromud «ating Each pole contains a fle xible mastor pulse which (all be externally in tercomencted to provide either pulse of 2 liarand 3 dead segments or 3 live and 4 dead segments. It addition. each pole has 28 break before-matec cont.acts. One pold hat
 poses. Tha wther two hate T0\%-3) duty eycles and are used for trans mitting either 0 to 5 v de or 100 be 500 us signals. Power is provided lọ a radio-moise-filtered. ungos crined de motor which rotates tha brushes all 10 rps through a ge if reduction system. In a hermetical scated case. the 28 v de unit wit stands $2(1)$ up +0 O(M) (p) and 5 shock. It has a life of $\overline{5}(x)$ hours hostrument Devolopment Lai llic., Dept. ED) (fic Mechanic: Attleboro. Mass.
CIRCLE 57 ON reader-Service card
\& CIRCLE 55 ON READER-SERVICE CARD

Servo Amplifier

8 w output
-pin, plug-in transistorized amplifier, model $1800(0)-300-2$ ves signals from a low impedbridge circuit and operates a (w) ps motor at 8 w maximum. InIt inpedance is 200 ohms; voltage 30,000 at 2 w . The unit meets II E-5400A specifications.

Ten Bosch, Inc., Dept. ED. 80 In cler Ave., Pleasantville, N.I.
CIRCLE 58 ON READER-SERVICE CARD

Digital Subtractor Converter

Accurate to 12 bits
Voudel DS-12-A digital subtrac - converter automatically comurs two digital input signals, subrus them, and presents an analog wernal output representing the lifterence between the two. Each (i) He input channels accepts (0) to a positive pulses at bit rates to B ke. Rupetition rates of 0 to (10.) pulses per block are accom firntated. with 30 blochs beir se fondled by the system. The dmatore atpot voltage is accurate to 12 bits I imput information, and may be and to operate semo (ontrolled attern followers and positioning "atems or perform digital mill de ection and prograth comparison Computer Equipment (orp) fupt. EI). 1933 Pontions \Ic.. Los luwerles 25, Calif

CIRCLE 59 ON READER-SERVICE CARD

Correction

The above blocks and plugs are an integral part of a patcheord pro fran ming system which is avail whe only from AMP, Inc. In the - 12 issue of $E D$, we incorfect y indicated that the blocks and plan s could be obtained separately in. Gries Reproducer Corp.

The smailest rotary switch ever made!

Daven's New Series G Sub-Miniature Suitch...1/2" Diameter!

A new sub-miniature rotary selector switch, developed by DAVEN, is specifically suited for application in missiles, aircraft, handy talkies, field pack sets, frog-man communication equipment, and all types of mobile apparatus. This explosion-proof, water proof switch has the same reliability as its bigger brothers . . . but in a fraction of the space. It meets applicable military specifications on temperature, humidity, corrosion, vibration, acceleration, shock and immersion

This unit is available as a single pole, 10 position switch and can be obtained with up to four poles on a single deck

Contact Resistance: Less than . 008 ohm .
Contact Rating: 1 ampere, 250 V D. C. into resistive load. 350 MA, 100V D. C. into inductive load.

Insulation Resistance: 200,000 megohms between any two terminals or between any terminal and shell. Measured at $25^{\circ} \mathrm{C}$., $50 \% \mathrm{RH}$, at sea level.

Life Expectancy: 50,000 cycles minimum Shaft and case: Stainless steel Panel and hub: Glass filled epoxy Contacts and terminals: Silver alloy Rotors: Rhodium plated beryllium copper

Write teday for comprehensive technical repurt (s) the neuc Series G Suls-Miniature Kotary Sucitch
this is Cable Systematics

NEW PRODUCTS

Miniature Shaft Couplinys
Have zero backlash

Ill int one pieces. these miniature Whatt (ompliness eliminate the med for solder joints, pions. serews, and bivels. Lbilu lor al I S int. shaft are 1 I in. in lenstlo and diameter and worigh $1: 30$ w. (O) helical design thees aftered smonth bearinge loads
 bathlash.
Helical Poothets (o., 1)ept. E:I)
 Calif.
circle 62 on reader-service card

Potentiometer

For panel mounting
Actuated by a lead screw, Trim pot model 223 is designed for pane monnting. Wieighine about 0.3 or and measuring $0.23 \times 1.32 \times 0.24 \mathrm{in}$. it can be mounted through :a simele 0.2 in. hole. The threaded adapter extemels therongh the pand hole and is sectured be a hex mut. Operating reliably from - 6.5 to +75 (o, the mit hacs a power rating of 1 is at 70) C and can be sumplied in revist ancers ramsime from l(k) ohoms to or k. It mesets all applicable recture ments of $1111 .-5 T 1)-2(1) .2$ inclualing the 10 (lay homidits of Met od 10 (f) and the ibration of Met od 204.

Bourns Lahs, luc., Dept. ID P.O. Box 2112 . Riverside, Calif.
circle 63 on reader-service car
< CIRCLE 61 ON READER-SERVICE CARD

Component Sockets
For printed circuit boards
)esisned to test printed (irconit monernt parts "ithout solder inHation, duce entry Vari-Grip) hets are easily erimped in plater -antomatic, bench, or hand tools beryllinm copper sprine band p locks the wire after insertion a. inits afford maximum lieat ik and are available for circonit fards $1 / 8$ to $1 / 6 \mathrm{in}$. thick
Grimuell-Harris Electronics. Inc: pt. ED) +1:30 Templo (Cit: Blad wemeat. Calif.
CIRCLE 64 on reader-service card

Band Pass Filters
Narrowband, tunable

Series BP band pass filters landede 100 W cw and come with amy cenur frequency from 100 to 2000 mc . Turing range is $\pm 3 \mathrm{mc}$; impedmuee, 50 ohms; bandwidth at the $\$ \mathrm{db}$ points, 6 to 8 me. At $f_{w,}$, insertom loss is 1 db ; vswr, 1.1. Up to (our units can be cascated to vary refection slope from 20 to tis dh at $=1.2 \mathrm{fo}$
Maury \& Associates, 1) (ptt. ED 437.3 Mills Ave., Pomona, Calit.
circle os on reader-service card

DC Power Supply
 Dual purpose

for servicing all tramsistor and Which circuits and 12 or 61 anto ratio recoivers. model PS-2 de pomer supply has two ontput
 is aradios and 0 to 16 (1 at 5 amp (intos radios.
1hectro Products Labse. Dept. 4. $(\mathrm{K}) \mathrm{N}$. Ravemsword the. (cago 40, III.
(rCLE 66 on reader-service card
CIRCLE 67 ON READER-SERVICE CARD $>$

THE
 REF-AMP FOR ULTRA-STABLE POWER SUPPLIES

Transitron's RLFF-AMP is a voltage reference zener diode and a silicon amplifying transistor, temperature compensated and thermally tied together to provide a total temperature coefficient as low as $.002 \% /{ }^{\circ} \mathrm{C}$. This single device, only two inches long, may be used to replace both the reference and the first stage transisistor amplifier in regulated power supplies. Thus it :ctually eliminates four components (resulting in lower cost), and reduces the temperature coefficient

The REF-AMP gives you these advantages: - Pruvides temperature coefficient as low as $.002 \% /{ }^{\circ} \mathrm{C}$ • Affords better tracking over entire temperature range - Produces higher nutput for given error signal . Reduces number of components and possibility of anomalous drift - Lowers cost

Type	Total Temp. Coeff. $\left(\% /{ }^{\circ} \mathrm{C}\right)$	Input Voltage (volts) Min. Max.	Operating Temp. Range $\left({ }^{\circ} \mathrm{C}\right)$	
3N39	.005	8.3	9.8	-20 to +71
3N40	.003	8.3	9.8	-20 to +71
3N41	.002	8.3	9.8	-20 to +71
3N42	.005	8.3	9.8	-55 to +100
3N43	.003	8.3	9.8	-55 to +100
3N44	.002	8.3	9.8	-55 to +100

TRANSISTORS • RECTIFIERS • DIODES • REGULATORS • VOLTAGE REFERENCES

Transitron

electronic corporation • wakefield, massachusetts

New accessory permits Genisco C181 Rate of Turn Table
to be operated at any angle from horizontal to vertical

Fred Davenport Lockheed radio-radar techmician tests pitch-yaw gyros used in the Electra, Lockheed's fast. new prop-jet, on the first filtable Genisco C181 Rate of Turn Table.
A new, vertical-drive accessory permits the C181 to oper ate in any position. Now, gyros or complete gyro packages can be tested at any angle up to 90° from horizontal, either side of center, without changing the test set-up. With the accessory installed, overall performance of the turntable is unaffected by its position. Rotation is infinitely variable from 0.01° to 1200° per second. Constancy of angular velocity is within 0.1 c ; . including wow and drift errors.
The new vertical drive accessory can be installed at the factory, and is also available in kit form for modification by users of machines already in the field. The new tilt stand (shown above) provides a convenient method of tilting and accurately positioning the matchine at any angle.
Detailed information on both the vertical drive accessorv and tilt stand is available and will be sent upon request.
Genisco

ACCESSORIES ADD TO aCCURACY AND CONVENIENCE OF THE C181
Braking System-Generates a step impulse of angular deceleration, damping characteristics of rate gyros and angular accelerometers Precision Strobe - For use in moni. toring rates where line frequency is racy is better than line frequency. Slip Clutch-Allows table to be stopped by hand for minor adjust ments to test package while
system Low Rate Readout - For accur rate indication below $10^{\circ} / \mathrm{sec}$. Mounting S:ands-Avallable in port. able, fixed and the new tilt models.
CIRCLE OB ON READER-SERVICE CARD

NEW PRODUCTS

Panel Meter
3-1/2 in.

Hwd in place by rear screw-on clamps, meter
 and profects 316 in . The dial and window an santed for casier readines and may be illuminatethrough a trimllucint ratar wiodaw. Sensition
 Im: to 0 to $5(x)$
Ssocmbly Products, tree Dept. ED. Chester band, Ohiom
circie to on reader.Service card
Inertia Switches
1 msec response time

 Inertia Switeh, Dis. of Safe Lighting, Ine Dept. EDJ. 527 Leviugton Ale., New York 17 Nis.

CIRCLE 70 On reader-Service card

Magnetic

 AmplifiersHave tapewound gapless core

In is sizes from 500 va to 322 kva , serices 190 pewer masuetic amplifiers have a tapewo nd Gapless cone which permits a minimum of con rol ampere turus and eliminates the irregular per formance cansed by air gaps.
Lickers luc.. Electric Products Dit., Dept. I D. 1s15 Locmst St., St. Louis 3, Mo.
circle 71 on reader-service card

Noise Tube Mount
Direct reading

besigned to extend the range of microwave rf (0) generating equipment, this K band direct ling noise tube mount provides quick measment of noise figures in systems eperating omin 18 to $26(6.5$ kme. For use with the company's und 2 20) or $2200-\mathrm{M}$ power mits. the assembly (omporates a precision calibrated attemuator Wedi is directly marked in noise figure values. Waveline, Jic. Dept, ED, P.O. Box 71S, West dwell, N.J.
circle 72 on reader-service card
Dimple Motor
Squib actuated

for use in missiles, weapons, and weapon sysins, this squib actuated dimple motor is 0.5 in . ane and 0.3 im . in diameter. Actuated by 7500 I2 c, it can provide 8 lb of thrust over a 0.1 in . dmumum stroke within 1 msec. The unit has a wulf life measurable in years. It will function roperly from - 65 to +165 F and withstand 1000 g acceleration and shock.
Mtlis Powder Co., Ordnance Materiel Dept., pot. ED, Wilmington 99, Del.
circle 73 on reader-service card

Correction

the story "Coramic Capacitors Made Her," which appeared in the Dece. 24 issue of the caption for Fig. 1 labels the upper cator as a paper one. It is a tubular ceramic uitor. Also, during their life test the capaciare subjected to 85 C instead of 200 C . Inis for these products should be sent to AcroGorp). Hi-() IDix.. Olean, N.Y.
-TRONIC DESIGN • February 4, 1959

ESC DELAY LINES are CUSTOM-BUILT, CUSTOM-CHECKED!

At ESC. America's leading producer of custom-built delay lines, the challenge of perfection is renewed with every prototype assignment. Each delay line must meet precise, individ. ual specs...each is painstakingly built under close engineering supervision...each is rigorously custom-checked against specially devised test standards.

In addition, complete and definitive laboratory reportswhich include submitted electrical requirements, photo-oscillo
grams (which indicate input and output pulse shape and out put rise-time), the test equipment used and an evaluation of the electrical characteristics are submitted with all prototypes.

This is the way ESC custom-builds and custom.checks every unit. Backed by exciting new developments at ESC's research laboratories, these facilities insure a steady flow of custom-built delay lines for the most stringent requirements of military and commercial applications

WRITE TODAY FOR COMPLETE TECHNICAL DATA.
 decade delay lines. Shift regislers. Pulse tianslormers. Madium and low. power fianslarmers. Fillers of ali lypes. Puise iorming networks. Miniature plug in encapsulated circuit assemblies

CIRCLE 74 ON READER-SERVICE CARD

PROPIMAX 2°

Air delivery of 120 cfm is obtained from a fan only $3^{\prime \prime}$ in diameter by $1.4^{\prime \prime}$ in depth and weighing only $61 / 2$ ounces. The Propimax 2 is the perfect answer for $400 \cdot \mathrm{cps}$ airborne or missile applications where maximum cooling with a minimum of space and weight loss is mandatory.

Variation in driving motors includes constant speed
$21,000-\mathrm{rpm}, 11,500-\mathrm{rpm}$ and Altivar ${ }^{8}$ versions. The latter
automatically vary their speeds directly with altitude and thereby approach constant cooling with a minimum of power drain and noise.

Simplicity of mounting is achieved by provision of "servo" type rims at either end of venturi. Airflow is reversible by turning fan end-for-end. Electrical connections made to compact terminal block. Power requirement is 400 cps , 1 or 3 phase, sinusoidal or square wave.

Write for complete technical information

ROTRON ${ }^{*}$

 In Canada: The Hoover Co., Ltd., Hamilton, Ont.CIRCLE 75 ON READER-SERVICE CARD

NEW PRODUCTS

Portable Tube Tester

 Has seven micromho ranges

Model 1575 portable tube tester accouratels evaluaten receiving. low power tramsmitting, woll age regulator. rectifier and other tube types. For mutual conductancer tests, it has serem full scale

 ages: $0.25 ; 0.5$: 1 : and 5 D .1 semsitive gas to. immediately indicates an! wats curvent.

The Hickok Electrical Instrimment (io. I) apt ED, 10525 Inpont Ave.. (ilveland S. ()hio. CIRCIE 76 ON READER-SERVICE CARD

Hex-Ohm ceramic wirewound resistors are made in 4. 5. 7. 10, and 10 w sizes within 10\%. tolerance. The resistance wire is miformls wound on a fiber slass core and saaled into the hexagonal ceramic case with a special moisture resistant siliconr coment. I good insulator. the case can withstand 12.50) breah-down tests, and its hexagonal design affords good heat dissipation. Resistancers are 0.5 ohm to 2.5 F for the 4 w size; 1 ohm to 3.5 K for the $5 \mathrm{w} ; 1.5$ ohms to 5.6 k for the - 11 : 2 o shms to 10 k for the 10 w ; and 2.5 ohms to 12 K for thele w. All 3 S in. wide. the units vary in length from $3 / 4$ to 2 in .
Bradford Components. Ince, Dept. ED, 65 South Ave, Salamanca, N.Y.

CIRCLE 77 ON READER-SERVICE CARD

Because of the rapid evolution of P'SI products, similar
advertisements containing latest product information will appear regularly in this and other leading electronic publications. Look to these comprehensive I'sI advertisements for up-to-date specifications on the most advanced family of senicoonductor devices a a ailabie today:
If this inuportant section has been removed from the magazine,
ohtain your own copy directly
from P'sl. Address Dept. A-11, 10451 West Jefferson Boulevard. Culver City, California.

General Purpose Diodes

Very High Frequency
 Silicon Power Transistors

Triple-diffused npn mesa structure

Six new types, three oscillator transistors and three amplifier transistors, are currently available in limited quantities for evaluation orders.

- Power capabilities at 70 megacycles of $1 / 4,1 / 2$, and 8/4 watts output.
- High voltage capability permitting operation at collector voltages up to 100) volts DC
- Collector power dissipation rating of $21 / 4$ watts at $50^{\circ} \mathrm{C}$ case temperature
- Typical amplifier gain of 10 db at 70 mc .

Specification sheets, curves, and additional information are available on written request. Address your inquiries to Department T-10.

Please Note:
All speethicathons and information combathed herein are coment as of Febriars 15, 19.99. Tha advertisement has been insorted in the Felonom心.

 compilect trom latest PSt yecticodtums. will .p pear resul.ark in this and uther henline da dome puldication

Silicon

High Conductance Diodes

Silicon

Subminiature Rectifiers

400 milliampera psi types

250 MILLIAMPERE PSI TYPES

Pacijic Semiconductors: Inc:

Silicon

Miniature Rectifiers

Silicon
HighVoltage Rectifiers

Silicon Very High Voltage

Varicap ${ }^{\circ}$

Voltage-Variable Capacitor

Non-Linear Resistors

Standard Encapsulations

A varnety of assemblies can low furnished tor matechecl p.urs , mend Huads. ring molulaturs, full In.my othluer ruplications
many other applications.
Numbrous lead arrangements are possible in these three basic configurations. Up to four diweses or rectiliers can be encapsulated in the " " s " or "T" packatges. (t) to 12 units cann le Contained in the "R package. The nomber of mits contained

Leads . $020^{\prime \prime}$ diamete
1 . minimum length.

paced on $1^{\prime \prime}$ grid center

Unusual Opportunities in
Semiconductor Electronics

Rapidly expanding programs in Very High Frequenes and Vers High Power silicon tramsistors. silicom mierocliodes, voltage-variahle capacitors and other advaneed diode types Lave created at mumber of exceptional techmical staff opportunities at Pacific Semiconductors, lice.

ELECTRICAL ENGINEERS diode and transistor applications and test equipment development
PHYSICISTSproduct research including develop ment of transistors, diodes, and other semiconduc tor components.
PHYSICAL SCIENTISTS ...challenging research pro grams in crystal growth and perfection studies em ploying the latest infrared and etch pit techniques solid state diffusion techniques and the study of surface phenomena.

Some of these positions encompass full supervisory responsibility. All offer an opportunity for growth and individual recognitoon that is maique in the semiconductor ficlel.
If you are interested in associating yourself and your future with a dynamic. growing compaths such as Pacific Semiconductors. Inc., you should investigate these opportunities at once.

For specific information in your particular field. write to Techmical Staff Placement. Pacific Semiconductors. Inc.. 10. 4.51 W . Jefferson Blved., Culver City, Calliformia

If FAST SWITCHING is your need and available germanium types wont
meet temperature and reliability requirements

Switch to Silicon

Choose from the widest line of Fast Recovery Silicon Diffusion Computer Diodes in the industry!

Fast Recovery Silicon Diffusion Computer Diodes

Many additional Fast
Recovery Silicon Diffusion
Computer Diodes to be announced next month.

Standard Packaging...
Immediate Delivery
"Off-the-shelf" delivery is available from the leading distributor in all major electronic centers
Call your nearest PSI sales office for delivers and price quotations on production quantities.

Normally supplied in the MIL Specification dimensions shown above On special request
dimensions shown below can be supplied

Physical Characteristics

MARKING Will e color band indication cothmente

 All dimensions shown in inches - Patented ni-
 (H)ur patents peratug

Pacific Semiconductors. Inc.

10451 West Jefferson Boulevard, Culver City, California TExas 0-4881, TExas 0.6113 - TWX: CULVER CITY CAL 7135

NEW YORK 2079 Wantagh Ave., Wantagh, Long Island. NY • SU 1 7470 • TWX: WANTA(iH NY 2320 ILlINOIS - 6957 W. North Ave., Oak Park, Ill • VIllage 8-9750 • TWX: OKI' 1547
CALIFORNIA - 8271 Melrose Ave., Los Angeles 46, ('alif - Olive 3-785()
export -Pacific Semiconductors, Inc., 431 Fifth Ave.. New York 16. NY.. US A
CABLE: TEITECHNAL, NY

DISTRIBUTORS: AKRON—Akron Electronic Supply, Inc. - ALAMOGORDO-Radio Specialties Co - BALTIMOREWholesale Radio Parts Company - BOSTON-Cramer Electronics. Thc. - BUFFALO-Genesee Radio \& Parts Co CHICAGO-Alled Radio - CLEVELAND -Pioneer Electronic Supply Co. D DALLAS -Wholesale Electronic Supply DAYTON-Srepco. Inc. . DENVER-Denver Electronic Supply Co. - DETROIT-Ferguson Electronic Supply Co HOUSTON -Sterling Radio Products, Inc. JAMAICA, N.Y. -Peerless Radio Distributors. Inc. - LOS ANGELESKierulff Electronics. Inc. - MELBORNE, FLA. -Electronic Supply - MINNEAPOLIS-Lew Bonn Co. - NEW YORK -Terminal Radio Corporation - OAKLAND-Elmar Electronics Supply, Inc. - PASADENA-Electronic Supply Corp PHILADELPHIA-AImo Radio Company - PHOENIX-Radio Specialties Corp. - SALT LAKE CITY-Stanaard Supply Company - SEATTLE -C \& H Supply Co. • SYRACUSE -Syracuse Radio Supply Co. - TORONTO-Electro Sonic Supply Co., Ltd. • WASHINGTON, D.C.-Electronic Industrial Sales

REGOHM
voltage regulation down to $\pm 0.05 \%$ EXTENDS TUBE LIFE

ine emative yer rucged Rtsonam controls
 arbations whinh caluse premature whe t.111 re dutumatic and prectee this plat-on fint .ssures comstant woltape inpur.
Stere and more deneners are encludine 6h,01101 in circuits. because ot its:

- IIPPIFSS (ONTINUOItS (ONTROI.
- WII)I ARF(DEENCY RANGE
- PGRMANENT atDITSTMENT
- brEEDOM FROM MAINTENANCE
- RI (igFi) D)ESIGN
- I.Icifi Werght
= I.ONG I.HFE - I.OW (os
Waten data, perlormance uxer athd case corse of those applattons you wish to fure will be sent on request.

LECTRIC REGULATOR CORPORATION IORWALK

CONNECTICUT
CIRCLE 80 ON READER-SERVICE CARD

- CIRCLE 79 ON READER-SERVICE CARD

Step Down Transformers

For remote control circuits

Moistare proof and mose freere these lons power strp) down transtomers are designed for remote control and signal circonits. Standard mits come: in two power ratings. IO (11 25 va. and in five outputs from 6 to $2 \underset{1}{ }$, Small in si\%e the units harre high temperature plastic and metal shalls with molded in serem temmats. The? feature low heat rise and are appowed by Einder"riters lats. The winding der imsulated from the core with mylon plastic.
 Pacific Ive.. Pranklin Park, Ill.

CIRCLE 81 ON READER-SERVICE CARD

Ferromagnetic Materials

For high temperature use

Ferrotron" mommemory inductise ferromagnetice corn materiahs are characterized by a positive () (enefficient and constant magnetic permeabilits: They hate a wolume resistivit! of ower 10'" ohmo-con. high dielsectric strength. and low dielectric lossen aceoss the frequences spectroms. The y alse hate high impact strength, with propeerties maftected by mostome and asinge. The cores hase been tested sucerestally ant antemma (omplers at intermittent service temperatures up)
 pherice comditions. thes changed less than lore in Q and permeabilits. Production quantitios anco normally supplied as molded parts.

The Polymer Corporation of P'omsthamian. Dept. ED, 2140 F'airmont Ave., Readines. I'a.

[^4]

Immediately available in production quantities! Ideal for limited space and low-voltage requirements of portable radios and a variety of other miniature battery-powered and linepowered equipment. Excellent for bypass and coupling. Tough phenolic coating affords excellent insulation while protecting against severe humidity and vibration. For further information, write for Bulletin SEB-2 to Cornell-Dubilier Electric Corp., So. Plainfield, N. J.

YOU CAN'T HEAR A 'SPEC’ SHEET!

Sonotone's stereo cartridge has more than just good specs...it gives brilliant performance! More phono makers specify Sonotone for the top of their line-here's why:

Only Sonotone gives true sound without distortion...high frequency response without record cutting! Sonotone steren gives a performance so superior you can truly hear the difference. The secret? Sonotone's four exclusive operating features:

1. Extremely high compliance.

2. Amazingly clean wide range frequency response.
3. Wide channel separation, due to Sonotone's pantagraph yoke.
4. Rumble filter to screen out vertical turntable noise.

SPECIFY...STOCK...SELL...
Sonotone:

NEW PRODUCTS

Synchro and Resolver Bridge

Automatic
 brielges are mechamized by a rotary solemoded. They step to a bew text point in response to all

 bint liatersom. N.I.

CIRCLE 85 ON READER-SERVICE CARD

Analog Computing Component

Features tangent parabolic rounding

Model FFF bunction fitter is a self-contatamed abalos computing compone ont for simulatines athitraty functions of all input woltages It has 10 straight lime wemments with adjustahle tangent parabolice romulines, and adjust.hbe vopers. break points. alld offset. Wominted onf a 10.5 in. rack pathel. the instrument mee 1001 mat it a 300 l .

(oeorge 1. Philbrick Ressatches. Ince. Depte

CIRCLE 86 ON READER-SERVICE CARD

Miniature Connectors

Have locating center pin
 mectors hate a conter guide pin to polarize the pluge Wailable ate a 12 Way tope ded two \& wat typen one with all small pins amol onfe with 4 mail and t latres. Surface and Hush mometime metal
 mectors prosiding a wide chorice at arramsements.
 lonk:36.N.Y.

TRIPLE

TRIPLE

L\&N's Stabilized 9835-B Microvolt Amplifier

 this anmpliter combtithe the fometcent o.

1. A bimat lionthe Indiathen that had
 ther ratme of athe Smadnanar leyme

Ranges
lill , 11 t all all! les + ill!

Accuracy - 1. recanter proumplifice,
 veading vallicular, - fl.Sh af rump 1"-

Response Time-II ithin I', If butleurr.

Switches-(1) Sire pusition, itm!! Ewitch (2) Thru-pmsition silo oton switch: "um lincur mulor rospomis. Sinear metor or
 connertur; (:) (ou-uffline pemerancitch
Amplifier Output af Recorder Connection-
 Imr arooss som! ! for mull ircorver: (

Power Input-115 rall.s. (1) (1) ,ill curle

LEEDS

MORTMRUP

CIRCLE 88 ON READER-SERVICE CARD

Quick-Opening Fasteners

 Selecting Small Fastenings for Metal Closures"Une iaption foteners wherever feasible. Avoid the we of lovie washers and love whis. Fasteners on equipmint covers should be operable eitber with no touls ur with "taiwhurl bund tonls"*
(Jaluin D. Folley, Ir, \& Jamee W. Altman, Research Saentrit), Amervanu Intituete for Romarch)

Solenoid Valves
For missiles and aircraft

Onn. of these solenoid valves featores small es: the other, high speed. Designed for specific nosile systems, they can be used for some airraft. Miniature model 872071 las an operating mant of 10 to 3001 pai, a temperature ramge of汸 $11-3.50 \mathrm{~F}$. and a flow equialent to 0.0 .5

 19 ll
High speed model ST2455 has a response lime cif 0.015 sec, an operating pressure range of 50 to [250 pi a pront pressume of 4575 mi, and a bums fim whr of sizs pai minimum. Ambient tomper athere ratue is -65 to +160 F : How factor. 1.35: entage range is to 30 v de; current. 1.2 amp at 2h s and 40 F , and coil resistance, 21.5 to 24 ohms (1) s) F: The unit wetugh 1.4 If .
 7t Butlluille:9, N1
circie 263 on reader-service card

Relays
Open or hermetically sealed

e
 .

W.,ilable open or hermetically sealed, these livs hime tapered arms and gold plated silver mencts. Type C.R. are rated at 5 amp with ul) f plt arrangements: type C.P. are rated at 10 ip. dpett: and type (:S. operate in vactum tilbe. A. circuits down to 50 min
 Din Britain, Comin
circie 264 on reader-service caro

Quarter-Turn Fastener Lion Fasteners open and close wath a $1 / 2$ turn, hold sheets tughty under the compression of a rugged sprug. Quickly operated and fully retaned in the outer panel, they are approved under U. S. Government military spectfications. Stud and receptacle float for easy alignment and simplified hole preparation. Flush, oval, wing, knurled, ring, and key head styles available. Sizes - No. 2, No. 5, and High Strength for extra heavy dury.

Cabinet Latch

Just drill a hole, push the fastener stem through, and slide the special push-on

[^5]Whe menplace Nowedts, screws, bolts or rivet: the fastener is permanently insalled in secends!
Adfustable to any grip length or panel thichness, the pawl is fixed in place by a sungle set screw. The fastener's brighty limished knob is set off by a plated washer. Also furnished with serewilriver operated tlush heads.

Spring Tension Latch
For fastening slide-out drawers and hinged panels the Southco Arrowhead Latch is recommended. It locks or opens with a quarter turn yet occupies less than ${ }^{\prime}$ " inside space.
Doors are held under spring tension a push aganst the arrowhead knob relakes this tension, allows operation with tingertup ease. Drill a single hole for installation-no fastening to the door is necessary. No striker plate is needed.
Pawl stop is eliminated-arrowhead shows at a glance exact position of pawl.

Adjustable Pancl Latch
Small doors and panels can be fastened with greatest speed and lowest cose with the Southoo Adjustable Latch.

The entire fastener is quickly installed through two holes punched in the door; no bolts or rivets are needed
It operates with a quarter turn, requires no striker plate. An extra twist after the nylon pawl is engaged pulls up the door to form a seal and eliminate vibration.
Available with wing, knurled, or Phillips head.

Free Fastener Handbook
Sund for your free copy of Fastener Handbork No. 8, just released. Gives complete enginecering data on these and many other special fasteners. Forty-cight pages, in two colors.
Write on your letterhead to Southou Division. South Chester Corporation. 235 Industrial Highway, Lester, Pat.

ECTRONIC DESIGN • February 4, 1959

CIRCLE 265 ON READER-SERVICE CARD

Improve Your

 Memory

with a standard multiple purpose off-the-shelf drum

The 512.A Bryant general purpose magnetic storage drum meets the exacting requirements of a production component, yet has the versatility necessary for laboratory work. This standard 5" dia. x $12^{\prime \prime}$ long drum is stocked for immediate shipment, complete with stand ard components such as general storage brackets, recirculating register brackets and magnetic read/record heads. Its low price reflects the benefits of Bryant's 25 years' experience in the efficient design and production of high speed precision spindles

Features:

- Guaranteed accuracy of drum run-out, .00010" T I.R. or less
- Integral drive - Bryant precision motor (1200 to 12,000 R.P. M.)
- Capacities to 625.000 bits
- Accommodates up to 240 magnetic read record heads
- High density ground magnetic oxide coating
- Super-precision ball bearing suspension
- Vertical mounting for trouble free operatıon

Special Models: If your storage requirements cannot be handled by standard units, Bryant will assist you in the design and manufacture of custom-made drums. Speeds from 60 to 120,000 R.P. M. can be attained, with frequencies from $20 \mathrm{C} . \mathrm{P} . \mathrm{S}$. to $5 \mathrm{M} . \mathrm{C}$. Sizes can range from $2^{\prime \prime}$ to $20^{\prime \prime}$ diameter, with storage up to 6,000,000 bits. Units include Bryant • built integral motors with ball or air bearings. Write for Model 512.A booklet, or for special information.

Remember . . you can't beaf a Bryant drum!

BRYANTCOMPUTER PRODUCTS DIVISION

BRYANT CHUCKING GRINDER CO
P. O. Box 620-M, Springfield, Vermont, U.S.A.

NEW PRODUCTS

Impedance Comparator

Has four sensitivity ranges
Imperdance comparator mexlel . 306 mall ber wed to trach potenti-
 coreflicionts. and to match ard wort componemes. It (omplater insistory capatcitors. or inductoms directls ."nd without adjustoment. Fions son
 impedance difleromeos trom at trac
 - itive detector indicaten the polarite as well as the matrnitude at imperd ance difterences. Becallose meatistre berents are taken withent adlustment of contros. the anit is wited tom production lime use. Standard mod els are anailable for indicatione I tu 1 and 2 tol 1 impedinnce rations.
Dytronics ((o.. Dept. Fil) is sumbside lame (iolumbur 11 . Ohio.

CIRCLE 91 ON READER-SERVICE CARD

Gyroscope

Spring driven

form use in short range missiles .md target drones, this gyroscope ,upplies a potentiometer signal to control roll with $\pm .50$ derg of freedown. It is energized by a spring "hich brings the rotor up to peak peeed in a fraction of a second.

Waltham Precision Instrument (O., Dept. Fil). Waltham, Mass.

Circie 92 on reader-service card

Silicon Power Rectifier

35 amp
Silicon power rectifier type 4.1 carrics : full 3.5 amp load in half "all service allel ॥1) to 100 amp in brielece circuits. With rations from
 units operate to 16.5 C

Fansteed Wetallargical Corpe, Dept. ED, 2コ(k) Sherridan Rd., North (hicanso. III.

CIRCLE 93 ON READER-SERVICE CARD

DIALL

FS-4 AND FS-5

...new insulator plastics hold strength at $500^{\circ} \mathrm{F}$

High heat resistance and high insulation resistance are now added to the superior electrical and structural properties of Diallyl Phthalate materials.
Diall FS-4 and FS-5 hehave like Silicones at $500^{\circ} \mathrm{F}$, showing excellent compressive, tensile and flexural strength. Diall can be molded like conventional general-purpose materials.
Two types of compounds are inailable: FS-4, long-fiber, glass-filled; and FS-5, short-fiber. glass-filled. Both are ineeting applicable Mil. Spees. Proof of military approval furmished on request.

Write for complete dutu in kulletin $F S$

MESA PLASTICS COMPANY
11751 Mississippi Ave., Los Angeles 25, Callf.

Printed Circuit

Have snap-in contacts
somies UPC: printed circuit re eptatcles are made with resilient neyllinm-copper shap-in contacts and polarizing snatp-in inserts that maition the board precisely
('.s. Components, Inc., Dept.
(1.1) 45. 4 E .148 th St. New York 55 N.1.

CIRCLE 95 ON READER-SERVICE CARD

Tubeaxial Flow Fan

Delivers up to 430 cfm
Suitable for cooliner electronic whicles and flushing racks and ahinets. model Yle.t1-3 tubeaxial How tan delivers 430 (6 m at 1.550 pern. It has a 1 150 hpe motor and -perates from a 11.5 , vingle phase. (ix) (p) sumese.

Dir- Vartime Votors. Ime. I Dept. F1), 369 Batwiow 1 I. Imityville. NY.

CIRCLE 96 ON READER-SERVICE CARD

Dual Pentode

Flexible design
With two identical pentodes in one envelope, tube tope 6i) $\%$ can take the place of two andio output tubes. Designed for use in stereor phonic allel monaural systoms, it (atl seme as wine bube with each rection operatinge class $1:$ as two tubes with each operating in push pull between its sections; or ats ome tube in push pull. or two tubes push pull in parallel. When operated class AB push pull between its (ewn pentede section at 250) conditions. it call deliser 11 w of output at 2.5\%, total harmonic disfortions. It $f(0)$ y conditions. it will deliser $\underbrace{(1)}$ "of output at ϑ^{\prime}, distortion. Operated class 1 . one section (ath deliver os an (miput at er. distontion
Silsantia flectric Prodncts lace.
 loork 19. N. Y

CIRCLE 97 ON READER-SERVICE CARD

THE MOSELEY

A DIRECT WRITING, LOW FREQUENCY OSCILLOGRAPH for:

```
X-Y RECORDING Automatically draws eurves directly from a
CURVE FOLLOWING With adaptor, regenerates functions from original curves traced with conducting ink.
POINT PLOTTING Plots points directly from Keyboard; with trans.
    lator, plots from Card Punch or Tape Reader.
FUNCTION vs TIME Automatically plots dependent variable against
    TIME. (5 Sweep Ranges)
    Send for detarled specificutions:
    F.L.MOSELESYO.
4O9 N FAIR OAKS AVENUE. PASADENA CALIFORNIA
CIRCLE 98 ON READER-SERVICE CARD
E =CTRONIC DESIGN • February 4, }195
```


MEET MIL SPEC E4970

Simplified magnetic amplifier Reguator
Meeting military specifications is practically an everyday occurrence at Raytheon. But each one has a special interest.

We thought you might be interested in how a magnetic-amplifier regulator met MIL SPEC E4970. The details are available to the more academically inclined. We will simply relate the results:

```
Service:
Power:
Input:
Output:
Harmonic distortion.
400 cycles
900 watts
95 to 125 volts
115 volts \(\pm \frac{1}{7}\)
\(\pm 3\) 名
```

The next time you have to meet military or your own rigid specifications, we'll be happy to go along.

Our slide rule and tuxedo are ready at a moment's notice. Simply contact:

VOLTAGE REGULATOR MAN
Raytheon Manufacturing Company Magnetic Components Department Section 6120
Waltham 54, Massachusetts

CIRCLE 99 ON READER-SERVICE CARD

Select Openings at Clationalis
NEW Engineering-Research Center at Dayton, Ohio
Long-range non-military projects with exceptional stability

COMPUTER ENGGIPEERS
Senior Systems Analysts - Require Senior Systems Analysts with strong theoretical and design knowledge in the electronic engineering field including familiarity with electronic and electro-mechanical digital machines. Should possess minimum of 3 years' experience with commercial application digital data processing equipment, however, would consider experienco with scientific or defense application systems. (Operational experiencer with a large data processing s.sstem is a distinct asset. Will be reguired to analyse and direct product improvement on large general purpose computer or small special purposie desk computer series. Advanced degree desired.
Senior Circuit Designers-Experienced in the design. development and analysis of transistorized computor circuits. Familiar with the application of magnetic cores to computer highspeed memory design. (irowth opportunities involving decision making, concerning reliability, cost and componemt selection are offered. Advanced degree desired.
Senior Circuit and Logical Designers-Similar experience and duties as noted for Senior Circuit Designer. plus evaluation and de-bugging arithmatic and control areas of computer systems. Advanced degree desired.

DATA PROCESSING ENGINEERS

Senior Electronic Design Engineers-Experienced in development of logical design using standard computer elements, must also evaluate and design transistorized circuits including voltage regulated power supplies and circuitry related to decimal to binary coding. This data processing system is concerned with bank automation.

SEND RÉSUMÉ TO:

Mr. K. N. Ross
Professional Personnel Section C, The National Cash Register Co. Dayton 9, Ohio

- mace mank neco u par ond.

CCCONWTING macrints COMWG MACMINES • CACM Exarts: mon mper (No Cancom memes)

NEW PRODUCTS

Solenoid

6 msec response

Model R.S. 5178 solenoid will operate with a 10 lb load. The stroke is 0.01 j in., starting at a maximum of 6 msec and finishing at under 13 msec from circuit closing. The mat reypuires 20 V de at is F and is designed to operate over
 ameter is 1.0683 in : herght, 1.41 in .

Telecomputing Corp). Dept. EI). 91.5N, (itrus Jre. l.os Angeles 3s. Calit.
circle 106 ON reader-service card

Power Oscillators
$\pm 0.05 \%$ regulation

Operatine from 25 v de, model P -30) 0 transistorized power oscillator (an deliser 40 va, 2 phase with all output frequency of $f(0) \mathrm{cps}$ and a regulation of $=0.05 \%$. The output remains constant with a line variation of up to $\mathbf{2 5 \%}$. Hermetically sealed, the unit has a temperature rance of -55 to +75 C . With a weight of 3-1/4 li) and dimensions of $3 \times 5 \times 3-1 / 2 \mathrm{in}$., it is suited for use as a power supply in missile, aircraft, and radar computers.

Westamp, Inc., Dept. EI), 112-7. Massachusetts Tice., Los Angeles 25, Calif.

CIRCLE 107 ON READER-SERVICE CARD

IT's A FACI

When we state that our sine-cosine potentiometer is 2° in diameter, deliv. ers $.5 \%$ or $.25 \%$ peak-to-peak accuracy and has a range of up to 70 K ohms per quadrant, we're stating precise facts. However, when we describe this unit as "modular," we're using a term that doesn't tell a factual story. For example, it's an important fact that the KFL-F coupling which we use is so light in weight that each unit stops shorter, starts faster and has less inertia than other types of "modular" potentiometers. Equally important is the fact that this "modular" or "uni sized" construction is a real time- and cost-saver in (1) Operation: You can use units individually or can rapidly assemble as many as 15 on one shaft. Cups can be added or removed as required...(2) Maintenance: N_{0} time wasted on factory repairs or modifications, for you yourself can easily replace or change any unit(s) in any stack at any time... (3) Intentory: Since units are replaced individually, you save on spares and simplify inventory control as well.

One fact that many people do not know is that our unitized pots can be used for Servo applications through the use of a simple universal mounting plate. And...one last fact that all of our customers do know...our unitized pots are ideal for breadboard work and multi-gang assemblies for experimental circuits.
W'e'd be happy to send you the data sheet facts on our 2^{n} double wiper pot or on our many other precision products which we design and manufacture for electronic equipment use.

MICRO-LECTRIC DIVISION OF MICRO MACHINE WORKS

19 debevoise avenue
1613t
ROOSEVELT, L.I., N.Y.
FReeport 8-3222

CIRCLE 108 ON READER-SERVICE CARD
ELECTRONIC DESIGN • February 4, 1959

INDUSTRIAL SALES, INC.

distributor

of electronics
to industry
offers you
all these
Texas
Instruments
semiconductors:
silicon transistors: 1-249
germanium transistors: 1.99
silicon diodes and rectifiers: 1.99
the industry's
widest line
off-the-shelf
at factory prices
for same day
or overnight delivery

Electanic

INDUSTRIAL
SALES, INC.
2345 Sherman Avo.. N.W.
Washington I, D.C.
Tol: HU 2-5200 • TWX: - WA - 603

ZIRCLE 300 ON READER-SERVICE CARD CIRCLE 109 ON READER-SERVICE CARD $>$

105 db gain in 60 mc I-F strip

Write on your company letterhead for 105 ab gain, eight stage. $60-\mathrm{mc}$ i.f amplifier applications brochure.
...with TI 3N35 silicon transistors

105 db I.F STRIP CHARACTERISTICS

Bandwidth: 20 mc at 3-db down
Center Frequency: $\mathbf{6 0} \mathbf{~ m c}$
No neutralization required
The high gain of TI 3 N 35 transistors at high frequencies permits mismatch in the interstage coupling networks to eliminate complicated neutralizing circuitry. You sare extra component costs, design with ease and gain added reliability
. because the mismatch in this application sacrifices only 2.55 db gain per stage!

Designed for your high frequency oscillators, i-f. $r-f$, and video amplifier circuits, the TI 3N35 features . . 20-db power gain at $70 \mathrm{mc} .$. typical $15(0)$-mc alpha cutoff . . operation to 150 C . These characteristics make transistorization feasible for radar', communications, missile, and other high reliability military applications.
In commercial production at Tl for two years, the 3 N35 has a product-proved record of high performance and high reliability. These units are in stock now! For immediate delivery, contact your nearby TI distributor for 1-249) quantities at factory prices... or call on your nearest TI sales office for production quantities.

Texas Instruments I NCORPORATED SEMICONDUCTOR-COMPONENTS DIVISION
POST OFFICE BOX 312 . 13500 N. CENTRAL EXPRESSWAY POST OFFICE BOX 312 DALLAS.TEXAS

NEW PRODUCTS

Electrostatic Voltmeter
Range of $\pm 1000 \mathrm{v}$

Model 107A feedback electrostatic voltmeter sermits the measurement of the free space slectrostatic potential of a small area without ouching it. Range of the unit is - IOMO) v and its sandwidth is from de to 50 cps. Inherent error n the instrument is under 0.2 if the probe does oot exceed $1 / 8 \mathrm{in}$. separation from surface. Drift s less than 5 v per day after a 2 hr warmup. A $\pm 10 \%$ line voltage chance produces a $\pm 2.5 \mathrm{v}$ lrift.

Monroe Electronic Labs. Inc:. Dept. EI). 5 Vernon St., Middleport, N.l:

CIRCLE 110 ON READER-SERVICE CARD

Silicon Transistors

Low noise

Type ST1050 and ST1051 npn silicon transisors feature low noise levels. Specified at frejuencie's from audio down to 1 cps, the ST1050 as equivalent input noise voltage of alout $1 \mu \mathrm{~N}$ ms when used with low source impedances. It an be used with thernocouples, strain gaces, tccelerometers, and other devices in the 100 to i00 Ha range. The ST1051 offers a low noise urrent of 0.0 .5 mua rms and is designed for use vith high source impedances. It is suited for 20 o 50μ a operation.
Transitron Electronic Corp)., Dept. E:I), Wakeield, Mass.

CIRCLE III ON READER-SERVICE CARD

There are no phenolic. plastic or other non-metallic materials in the type 9()y's mechanical components This rugged, precision ${ }^{7}$ " diametel 10-turn potentiometer offers the ut. most in reliability and performance

The design can be built with linear as well as non-linear functions. It has low noise, good shock and vibration characteristics and excellent linearity ($=0.5 \%$ to $\left.\pm .05{ }^{\circ} \mathrm{C}\right)$. Temperature range is - $55($ to +9() C standard and to +150 C in high temp version Several units can be ganged on a common shaft in from ? to 20 turn configurations.

3-TURN High Reliability POTENTIOMETERS
This $7 / \mathrm{s}^{\prime \prime}$ dia. type 905 is one of three sizes offered by Fairchild. All feature exclusive long-life wiper guide mechanism.

potentioneters

SINGLE-TURN LINEAR AND NON-LINEARS

Type $7517 / 8^{\prime \prime}$ dia. is one of 28 different types available in sizes up to $5^{\prime \prime}$. Functional accuracy over life is guaranteed - Fairchild's "Safety Factor" for reliability.

Having missiles fire as predicted is becoming more and more vital to the defense program. The reflection of this is the increased importance of the Reliability factur. or in a phrase the "Predictable Excellence". of components

In the future less business will go to the unproven though low priced producer. Management has learned that the lowest initial cost does not always result in the lowest end cost.

Fairchild's precision potentiometers are proven performers. They are flying with predicted excellence in the nation's most important missiles and aircraft, some of which are illustrated above. They have a reputation for sustained high accuracy, lowest noise level and long life. As a result, Fairchild Reliability is fast becoming an industry standard.

For example, Fairchild High Reliability pots contain only high temp stahilized materials, welded terminations, and precious metal contacts. They are built to close dimensional and design control. And they are subjected to a continuing inspection and quality control program which includes torture testing 1 out of every 100 production units.

For more information write Dept. 26ED

LINEAR MOTION POTENTIOMETERS

The flexibility of the type 910 design permits 1 or 2 resistance elements, and various stroke lengths. MIL-E-5272A environments are exceeded for the Fairchild Reliability Safety Factor".

SINGLE-TURN METAL FILMPOTS
Precious NOBL.OHM metal film resistance element offers infinite resolution, temperasure operation to $+225^{\circ} \mathrm{C}$ and low quadrature voltage

CIRCLE 112 ON READER-SERVICE CARD
ELI CTRONIC DESIGN • February 4, 1959

10-TURN High Reliability POTENTIOMETERS
Available in $7 / 8^{\prime \prime}$ to $113 / 6^{\prime \prime}$ dia. and in 3 different designs to suit your needs. The $1^{\prime \prime}$ dia. type 920 shown above takes 30 G 's at 2000 cps .

SINE-COSINE

 POTENTIOMETERSSizes $11 / 6^{\prime \prime}$ to $5^{\prime \prime}$ dia. Built with Fairchild High Reliability resistance elements featuring resistance elements featuring top-wiped, shaped card windings which provide higher res-
olution and conformity regardless of position.

MINIATURE TRIMMING POTENTIOMETERS

$3 / 2^{\prime \prime}$ dia. type 926 and $1 / 2^{\prime \prime}$ dia. type 927 exceeds MIL Std 202A, rated 150 C. Metal case and precious metal contacts are Fairchild's reliability "Safety Factor".

FILMPOT 28-TURN TRIMMERS

For rugged environments and temperatures when infinite resolution and unsurpassed reliability is required. Available from stock

Trimming Potentiometer
Operates at I w to 125 C

Comp-U-Trim model E trimming potentiometer is a wirewound linear unit with an internally positioned wiper contact and zero per cent end resistance. Fully encapsulated in a one piece aluminum housing $516 \times 1 / 4 \times 1-1 / 4 \mathrm{in}$., it can be mounted singly or stacked. Designed to operate at 1 w at temperatures up to 125 C , the unit is available in standard resistance values from 10 ohms to 30 K . It hats a temperature coefficient of 20 ppom.

Eastern Precision Resistor Corp.. Dept. ED, 67.5 Barbey St., Brooklyn 7, N.Y.

CIRCLE 113 ON READER-SERVICE CARO

Precision Power Oscillator

For airborne use

Designed for shock-mounted installation in aircratt and missiles, model DK1-102A precision power oscillator has a 2 w output. It call serve as a power supply for control equipment, gyroscopes. synchros, and servos. With an input source of 50 to $8(0)$ eps. 11.5 V ace it is also adaptable to ground support systems. Built to meet or exceed MIL-E-4158A specifications, the unit has a maximum total harmonic distortion of 0.1%, a frequency stability of 0.1%, and an amplitude regulation of 0.2% under all conditions of line and load. Dimensions are for standard $1 \underset{2}{2} \mathrm{ATR}$ rack installation.

Electronic:s International Co.. Dept. R:I), 14.5 II: Magnolia Blid. Burbank, Calif

CIRCLE 114 ON READER-SERVICE CARD

Aerovox CERAFIL Capacitors

NEW PRODUCTS

Digital Readout

In-line in-plane

U'sing selective gronp switching model SCis101 in-line in-plane dicital readent (onsish of at resistor matris and neon bulbs with printed dirconit plag-in commectors. ()ther terminations mat
 easily read in bright ambiont light and from
 all inpult rance of 1.50 (0) 350) dald comsmone a maximmon of 1 " per disit at 15001 . EAtch digit oncerpios 1 , $1-34 \mathrm{in}$. of pathel pace.
I.I).E.A. Inc., Electronic Equipmont Div., Dept. EI), Fene Pendleton Pike Indiamapolis 26. Ind.

CIRCLE 116 ON READER-SERVICE CARD

Transistorized Scaler
$0.5 \mu \mathrm{isec}$ resolving time

Tramsistorized scaler mockel f(9)-21 has a 0.5 wre resolving time. eveludiner register. Its manimom (o)nnt (ap)atcity is 10 . and its amplifier sensitivit! is 1 me with a gatu of for) The mithas a fived amplitude discriminator. a fully transistorired digital readout system. and a memonerloading dmplifier. The decades and register reset electrically and hate prosision for local or remote operation. Accessory tramsistorized preamplifiers are available to match the low input impedance of the amplifier to ane type of antector. Plag-in power supplies can be obtamed to operate the unit from any type of input power. The scaler has printed circuitry throughout.

Radiation lustrument Dewelopment L.ab)., Inc., Dept. ED, 57:37 S. Halsted St. Chicago 21, III.

direcel-curront

TACHOMETER GENERATOR permanemt-mangel

APPLICATIONS
O SERVOS The highly linear oulpul and wide speed range are ideal for velocity or integrating servos low driving torque permits its use as a damping or rate signal in all fypes of servos

O INDICATING TACHOMETER Malch ing indicating meters available from slock in various speed ranges

- SPEED PRANSDUCER Ideal for use as a speed transducer in connec fion with fast-response direct-wris ing ascillographs.

FEATURES
O SIZE Miniature. Approx. Dio. $11 / 8$
O OUTPUT Various models with out puts as high as $24 \mathrm{v} / 1000 \mathrm{rpm}$.

- LINEARITY Linearity from 0 10 $12,000 \mathrm{rpm}$ is better than $1 / 10$ of 1% of voltage output at 3600 rpm
O BRUSH LIFE Better than 100,000 hours (10 years) of continuous operation of 3600 rpm
O BIDIRECTIONAL OPERATION OUI put in either direction is held to a $1 / 4$ of 1% tolerance

RIPPLE The rms value will not ex ceed 3% of the $d \cdot c$ value at any speed in excess of 100 rpm

O CONSTRUCTION Aluminum hous ings with protective treatment; stainless steel shafts; fully shielded ball bearings; Mylar insulation.
$+$
SEND FOR COMPLETE DATA
SINGLE UNITS FROM \$ $2 \geq .50$
quantity discounts

CIRCLE 118 ON READER-SERVIDE CARC ELECTRONIC DESIGN • February 4, 195

The Keithley 502 Milliohmmeter ofler vecod. canc. and accuracy in the measureweat of low resistances. Dypical wes are - (b) matas, sembeconductors. printed circuit

Hatiors operathen. a rugegedmed meter and - Natine concer mathe the sol? deal for
 0tics éplosse dericos. I callures inclade:

- 13 overlapping ranges from 00101 ohm to Q:ohms full scale
- accuracy within 3% of full scale, a four ifiminal measuring system eliminates errors Whe to clip and lead resistance
- 2 microwatts maximum dissipation across inple
- no calibration or zero adjustments
- instantaneous indication of resistance Alliout zero drift or errors due to thermal
- lightweight and portable. Furnished with rective cover and set of four test leads

Details about the Model 502 Millohmmeter bit avallable in Keithley Engineering Notes. 6 No. 3. Write for your copy today

KEITHLEY

INSTRUMENTS, INC.
12.115 Euclid Ave., Cleveland (i, Ohio

Nickel Cadmium Button Cells

For minimum power use

Button cells for minimum power requirements, models VO. 180 and VO. 100 arr $\overline{6}$ is in. in diamcter and weigh $1 / 4 \mathrm{oz}$. Rechargeable and hermetically sealed, these sintered-plate nickel cadmium mits have a long, maintenance free life and are nongassing upon recharge. They reguire no filling or electrolyte and operate at momal temperature ranges. Of rugged construction, they have a low internal resistance which allows discharge currents up to 10 times capacity. Combined into compact cylindrical stacks, the cells can form batteries of any desired voltage. They are recharged hy a constant current equal to 110 of their mommall capacity: With proper charging vates, they (an be charged indefinitely "ithont damage.
(onlton Industries. Ine., Dept. 1:1), 212 Durham Wie. Metuchen, N.J.

CIRCLE 120 ON READER-SERVICE CARD

Miniature Thermostat

Hermetically sealed

Measuring $1.3 \times 0.594 \times 0.375 \mathrm{in}$., this hermetically sealed thermostat was designed to meet stringent aircraft and missile requirements. It will control non-inductive loads up to $\overline{5}$ amp at 115 v ac. For de application, a suitable capacitor must be placed across its terminals. Temminal and mounting arrangements are flexible to meet any particular requirements.

George Ulanet Co., Dept. ED), 41:3 Market St. Newark 5, N.J.

CIRCLE 121 ON READER-SERVICE CARD

DC-DC CONVERTER
All Items Designed for 13.6 V Except 8034 which is for
 28 V Input.

TYPICAL DC OC CONVERTER CIRCUIT

Part Number	Total V.A. Uütput	O. C. Output			
		F. W. Bridge		C. T Full Wave	
		Volts		Volts	Ma .
M8034	125	500	250	250	420
M8035	125	500	250	250	420
M8036	40	450	90	225	155
M8037	225	250	90	125	155

SILICON RECTIFIER HPOwer Supply

Circuitry Primary 105115125 Volts ${ }^{*}$ Hermetic sealed to MIL-T-27A See Catalog for additional information | | Secondary | Rectifier Circuit | | |
| :---: | :---: | :---: | :---: | :---: |
| Pait | A.C. | R.M. | C.I. | F.W. |
| Number | Volts | Amperes | Full Wave | Bridge | M8018* 185 CT Amperes Full Wave Bridge M8019 ${ }^{\circ} \quad 185$ CT M8020 M8021. M8022. M8023 M8024

$\begin{array}{ll}\text { - } 380.1600 \mathrm{Cy} & \cdots \\ .50-60 \mathrm{Cy} \text { outout volts statea are for resistive of } \\ \text { inductive loads Capacitor imput may be } \\ \text { used if RMS AMPS is not eaceeded }\end{array}$

TRANSISTOR DRIVER
Designed specifically to transistor, servo and audio Frequency response $70-20 \mathrm{~K}$ Size AF mill through AH Hermetically sealed to MIL T 27A
EPOXY MOLDED See catalog for exact sizes and weights ON SPECIAL

- Pri.ET

Part

Pri. Imp	Sec. Imp.	Pri. U.C Unbal Ma.	Level Watts

M802 ${ }^{\circ}$ Col rap Pan
M8002 ${ }^{\circ}$ Coll. to P. P Emit M8004 Coll to PP Emit 5400 100 CT 2015 M8005 Coll to P.P. Emit 7.000 320 C.T, $\quad 040$ M8006 Coll to P.P Emit 10,000 6.500 C.T . 15005

- Bi.filar wound to minimize switching transients

ULTRA MINIATURE

 TRANSISTORWt 0802 size $1_{8} \times x^{1 / 4} \times 11 / 32$
Nylon Bobbin. Nichel Alloy Core 4 color coded leads. resin impregnated Encapsulated on special urder

Part Number	Application	$\begin{aligned} & \text { Primary } \\ & \text { Impedance (} \mathrm{C} \text {) } \end{aligned}$	Secondary Impedance
UM 218	Input	100.000	1.000
UM 22 F	Driver	20.000	1.000
UM 23 F	Oriver	20.000	1.200 C F
UM 24 F	Output	1.000	50
UM 25 F	Output	400	50
UM 26F	Output	400	11
UM 27 F	Uutput	400 C T	11
UM 28 F	Choke	$10 \mathrm{Hy}(0 \mathrm{dc})$	$8 \mathrm{Hy}(5 \mathrm{ma}) 650$

Cambion terminal boards are available in standard all-set, minialure all-set, standard ceramic and custom-made types Materials include paper, cloth. nylon or glass laminates, bonded with phenolic, epoxy, melamine or silicone resins

Our "private eyes" protect you from delinquents

Abstract

Gou wont find a single weak spot in any (anblon" terminal board. We've already made sure there are no cracks on board or terminats: no stath, chaps or sunhursts: mo insecurely mounted ernest diseoverics ween in are the arest discoveries, even in our oun the sioct used in C'Ambion boards is certified wop grade. . . (cambion tooling is specialls engineered to prewent prodact damagre .. .and ('ambion workmansthip is true craftsmanship) Quality control like this is standard in every step) of Cambson production in any quantity. That's why you can count on the complete Ambion line sulated terminals coils coil forms ulated terminals. coils, coil forms, the trouble-free performance you expect and need. And every ('ambion component is guaromtond

Available locally through authorized ('ambion distributors. Or write to Cambridge Thermionic Corporation 45: Concord Avenue. Cambridge :38 Massachusetts. On the West Coast: Fe West Washington Blud Los Angeles Calitornia In ('anidia: Cambridere Thermionic of Canadal. Iimited. Mon|real, l'. (Q

Mnow solder turmmats are made of milver

The guaranteed electronic components
CIRCLE 123 ON READER-SERVICE CARD

NEW PRODUCTS

Solid Tantalum Capacitors

Operate at 125 C

Miniature STA solid tantalum (apacitors on now be supplied in ranges of (0.(X)47 to 3.30 if from 6 to 60 wode. Their operating temperatur range is -55 to 125 ($:$ The units come in for case sizes and a wide range of rattings with on decade. 20\% tolerance systems and 10 存 decant 10% tolerancer systems. Suited to transistor ar coutry: they may be used in computers, dat processing systems, Luidance systems, airbom electronice eypipment, and telemetoring device They consist of a porons tantalum anode with formed tantahum oxide dielectric. sealed in, silver-plated mettal case, A inlass-to-metal seal it fords protection against moisture or low pre wres. The mits (ontain mo) wotatile materials and no liquid or paste dectonkte. Electrical leakage sheld to a minimum. and merhanical leahan and corrosion are diminated
Fansteel Metallurgical Corp.. Dent. ED) Noul (hicasor II)

CIRCIE 124 ON READER-SERVICE CARD

Motor Generator
Size 11

Motor generator model 11GM152 is a size If 400 cps unit designed to operate betweren 6 ant $200) v$. It has an eflective resistance of 3750 ohme
 input of 3.5 w at 0.0 .53 amp . Limearits is $0.5 \mathrm{~m}^{\circ}$ anc ambient operating ramge is - 6.5 F to $+2(\mathrm{~K}) \mathrm{C}$. T) wencrator gradient is 0.5 v per 10 (k) rpon and a total mull of 0.012 2 . The mite is 1.575 in . I and ments M11.-T-5 +22 C and $1111 .-\mathrm{F}-5272 \mathrm{~A}$ virommental tests. It also) conforms to Bul specification MIL--s-150si. Output shafts designed to enstomer requirements.
Seron Demamics Corp., Dept. ED), Sorm worth. N.H

CIRCLE 125 ON READER-SERVICE CARD

0/1 TriswMrerwr MACNETICS, Inc.

HAS IMPORTANT AND Immediate openings FOR ENGINEERS.
If YOU QUALIFY AND ARE
INTERESTED IN A
REWARDING ASSOCIATION WITH A DYNAMIC, GROWING COMPANY, WE INVITE YOUR INQUIRY.

Electronic Packaging Specialists-B.S.E.E or B.S.M. E. with experience in modularized solid state electronic equipment
Magnetic Circuit Designers - To investigate and develop new memory systems. Experi ence in magnetic amplifiers, shift registers, magnetic logic, or non-linear pulse networks. Research Physicists - To assist physical research director in specific investigation of research director in specific investigation of
millimicrosecond ferrite, metal, and supermillimicrosecond ferrite, met
Application Engineers - Technical consultant to sales manager for core applications in digital computer field. Also customer contacts.
Senior Engineers - Project responsibility in data systems development for magnetic tape, paper tape, punched cards, A/D conversion, and data transmission
Test Supervisor - To supervise group testing small data handling systems. B.S.E.E. degree and 3 years or equivalent experience with digital test equipment. Ferrite core memory experience desirable
Telemeter Magnetics is the acknowledged leader in the field of magnetic cores and core storage products. You can help maintain this leadership and enjoy an exciting future by participating in one of the many projects now under way and planned.

Call collect or write to Mr. John Link
1 TEREWMETER MACNETICBIInc.
Ferrite Cores • Core Arrays
Buffers - Memories
245 Pontius Ave., Los Angeles 64, Calit. CIRCLE 878 ON READER-SERVICE CARD

CIRCIE 126 ON READER-SERVICE CARD $>$

TMI Type 1092-BO8A Core Storage Buffer

DATA SYSTEMS COMPATIBILITY - with the New TMI Core Storage Buffer

This fully transistorized unit stores up to 1092 eight-bit characters at 100 -kc rate The buffer is compactly designed for relay rack mounting and is complete with integral power supply. Ideally suited to synchronizing data systems operating at different speeds.
Features include: interlaced load and unload - capacity expansion - convenient clear control • internal checking circuits - ease of installation - economy - unit is priced 22% below previously available buffers of similar characteristics.
In addition to the Type 1092-BQ8A. TMI produces a full line of core storage buffers for an almost infinite variety of applications. Units are available in capacities from 80 to 2184 characters. Components, assemblies, and completed buffers each undergo rigorous tests. Request copy of specification \#191 containing complete data.

IMPORTANT JOB OPPORTUNITIES
Expansion to handle our increasing business activity plus research and development in new areas have created openings for qualified computer engineers. Investigate the wonderful opportunities offered by TMI in Southern California

0/1 TEI,EMETER MAGNERTOS /nє.

Manufacturers of Ferrite Cores • Core Arrays • Buffers • Memories
2245 pontius avenue, los angeles 64 , ralifornia - 306 "h" st., n.w. washington 13. d.e.

Guidance and Control Instruments by Humphrey

FREE AND
VERTICAL GYROS
New interchangeable motors make it posable when these instruments with dec. 400-cvele afc or 1500-cycle inverter Offered with a satiety of peekoffs. including potentiometer synchro or switch Electrical o manual caging.

RATE SWITCHES

These enceialized gyros operate switches when a puredetermmed rate of turn is reached Extremely light e weight Dry gas filled and employing die y gas dampers that iemanen constant over full temperature range. Wide selection of wastes available.
 and emp

RATE GYROS
The Humphrey design provides a wide dynamic range with presbison potentiometer or vatiatide tans former output Thee basic units available, all in liemeriocalla sealed cases with choice of atc or dec motor:

ACCELEROMETERS

These precision metal sensing devices older practically zero crosstalk, extra wide temperature range and precision potentiometer or magnetic pickers. Models arablathe for angular or linear measurement. Dry ga: damped, hermetically sealed

POTENTIOMETERS
$=3$
Paction rectilinear and rotary instruments Wire wound for direct minuting in arciaft or missiles Openatumal to $400^{\circ} \mathrm{F}$ Able to take tough emmenmental condutums, such a whatuon $25(9.10$ w 2.000 ops and hook of 1000 ; while operating

NEW INTEGRATING RATE GYRO WITH POTENTIOMETER OUTPUT
For many applications. a Humphry integrating rate sumo coll mplace a coth free ger o. This men instrument can be famished to comer the ranges from aero (10 $=10$ rotation up to 1090 to 100

Humphrey $_{\text {inc }}$

dept. ed -29. 2805 canon street san diego 6. California

WRITE TODAY FOR MORE INFORMATION ON ANY OF THESE PRODUCTS

NEW PRODUCTS

Precision Resistors
In matched sets
In at wide rather of values. these precision sister wets and outworks hater ratios matched within 0.(K)1: abel absolute r aloes matched wish in 0.01".
 BSd. Sill Mater), Cali

CIRCLE 128 on reader-SERVICE CARD

IINIGURE ADJUSTMENT POTENTOMETEE
Worded ? 1 , Dirk Trimpot has a fused dement: terminal lamed which is aiturills wedestructhole meme
 maximum operating temperature. 175 C. power nit

Booms Labs Ines (Dent. E1), I' (1) Box 21 Pionerside. Calif

Circle 129 on reader-service card
 57 (TS-913) Wi can be used to adjust simnal pow for the calimation of transmission arnipment. Fr

CIRCLE 130 ON READER-SERVICE CARD

 sales.
 2. SY
circle 131 on reader-service card

BAIIO N゙TERFERENCE FILTER- Prated to

 is 916 in . in diameter, 1 in is in. longe
(Double E. Prochucts Dept EI) 2015 Stand aral FOl Serumelo, (.alt

CIRCLE 285 ON READER-SERVICE CARD
DIGITAI TACHOMETER - The Dunacom in cores engine speeds from I is to 50.000 rpm reads speed to I revolution in (0.1 see, within rim in (0.()| sec. 1)irect digital read own, provided Nixie in-line neon tubes, is visible 7.5 ft away

Damar Corp., Dept. ED, 5150 Church Skokie, III.

CIRCLE 132 ON READER-SERVICE CARD
 mits hane t.untalun pions with nichel bame

 (h..t1..nmoge. 5, Teme

CIRCLE 133 ON READER-SERVICE CARO

 (..ntit.

CIRCLE 134 ON READER-SERVICE CARD

City, Calif.
circle 135 on reader-service card

puct it It.uftoral I. Comm.
CIRCLE 136 ON READER-SERVICE CARD

 llass.

CIRCLE 137 ON READER-SERVICE CARD

 ini mockes.
 phatioso, Ind.

CIRCLE 138 on reader-service card

FFERENTIAL PRESSURE: TRANSTITTER

 \checkmark ate outputs are 50 mide or 5 a ate or de.
atemational kesistance (a). Complemer Compo - Dis. Dept. ED), tol N. Brobald St., PhiladelS. Pa.

CIRCLE 139 on reader-service card

Quality begets guality it's an established axiom that premium products must begin with guality components. Bishor has beren producing platinum and preciou- matal products smee 1842 . . prectsion stainless sterel tubing since 19:31. The Besuop family of metal products includes a broad variety of components for the designer, engineer . . just to mention a few

Capillary Tubing—stainless grades, standard si\%es up to .130" OD Platinum \& Platinum Alloy Wire- \#50 to \#:3 I3\& S (ialug.
Clad Metals-base and precious metals in various combinations
Glass-To-Metal Sealing Alloys-low expansion alloys
Thermocouple Wire-nohle metal and nohle metal alloys
Tubing—nickel, stainless, platinum, special alloys up to $1^{\prime \prime}$ ()I) Tubular Fabricated Parts-all varieties conventional forming operationComposite Wires-base and precious metals in various combinations: Platinum Contacts, Discs, Laboratory Apparatus

CATALOGS, data sheets sent promptly on request
Bugin your next design with unexcelled quality Brsuop component materials. Write wire or phone Malvern 3100 .

Metals for Precision and Performance'

J. BISHOP \& CO.

platinum works
PENNSYLVANIA

IT'S ALWAYS "WINTER" SOMEWHERE

Heating Blankets
and other Woven Heating Elements by SAFEWAY can make your COLD problems OLD problems!

To keep sensitive equipment, fuels, propellants and lubricants at correct operational temperatures in any cold environment, controlled heat must be delivered with utmosit dependability. SAFEWAY delivers it - everywhere.

Among the wide variety of heating blankets and woven-wire heating elements successfully engineered by SAFEWAY to meet tailor-made specifications are:

- heating blankets for honeycomb and metal-to-metal bonding
- de-icing units for airfoil surfaces
- heating elements for launching equipment and for airborne gyros, cameras computers, servos and batteries - for missiles or aircraft
- radiant heating panels for industry
- defrosting units for industrial and commercial refrigeration
for your copy of a fact-filled folder, please write:

[^6]Safeway. .-.
680 Newfield Street - Middletown. Connecticut

NEW PRODUCTS

 whats of tem there-windine transtomers that pron

 Δ

CIRCLE 142 ON READER-SERVICE CARD

 ine voltates to 110 s do and switches up $t 01$ amp at $115 \mathrm{sac}, 60 \mathrm{cps}$, resistive leads.
 tint

CIRCIE 143 ON READER-SERVICE CARD

TEST POMVI JCh. Leos than I bill in di.uncole

 16, 11 bur 1 -
 Momaroneck, N. 1

Circle 144 on reader-Service card

BETANIV. RIVOS. These Thare ringe are medr of Annes 'Ispe PII 15-7 stamben sted alloy. The

 11. Iome Mand Caty 1. ©)

CIRCLE 145 on reader-Service card

PIBE SIICON. Wrailable from stowk. Tramen Grade is polyoystalline silion permits prodection ut sperial deveres om a puetioal hasis nsing stamban (T) stal growing techmigus

The Brestrich Co. Hic. Dept. ED), 216 Tromem St. Beston 16. Mase

CIRCLE 146 ©N READER-SERVICE CARD
--PIN POCER PENTODES.-Types 6-, 12-, 2 and 50 E 155 power amplifiers offer high power sem divity at tew plate and secrem supply vallages. Wi . 3 y peak if input, they provide 1.4 iw with 110 plate ane 115 v sereen supply voltage

CIRCLE 147 ON READER-SERVICE CARD

HOOK-LP WIRE--ETmuled polsimal chlom

 mal operate from - 5.5 to +10.5
American Smper-Temperatime Wiras. lac.. De (1), 2 W. Camal St.. Winoroshi. It

CIRCLE 148 ON READER-SERVICE CARD
 ad．drants．formed．solderad．hated．a

 mak．．unt tuncos．In I 16 t1） 10 in．Widths： 01001 25 in．Hichucぃか．

circle 149 on reader－service card

 ，ハitct．

CIRCLE ISO on reader－SERVICE Card

KIP FOR SMALL PABTS．The I．W L（iij）

CIrcle 151 on reader－service card

1．心
CIRCIE IS2 ON READER－SERVICE CARD

 nad（hamp）．It（an lxe mastallenl with the tightemins
 जいいいい

Mel．Fint II．anc．lucl．
CIRCLE 153 ON READER－SERVICE CARD
 cill be made inter void free moldings and alle lape．I mil thich．It provides maiform densit？ gehout comple molded parts．
 raburge W．Va

CIRCLE 154 ON READER－SERVICE CARD

II）FILM LUBRICANT．－Smiparoms \o．15：56 ios oil and acts as a resemoir against metal lo I contact muder high hards．
 ＂ood．Calif．

CIRCLE 155 ON READER－SERVICE CARD

See the air－gap on this new lamination for miniaturization

Look at the aitgap on this new performance－staran teed lamination we have developed and are stoking The F－187＇s fised air－gapp provides constant inductance or Tincar inductance，as needed，because it prevemts doc saturation of the stacked core
The F－187 tha＂wide center leg is designed for miniat turized filter circuits for commonication applications． It in ideal for carries equipment，and can be used mone successtully for microwave，computer or other applica tions where frequency control is critical．
Being an＂F＂shape，the new standard stacks more easily than E1－187，and thus offers welcome savings on the production line．There can be advantages to you，too，
in being able to order any quantity，prototupe or pro－ duction，directly from stock
Ihere＇s more detailed information on this new member of Magnetics，Inc．family of＂Performance Guaranteed＂ laminations－and all of our other standard laminations． Just write－Magnetics，Inc．，Dept．ED－AO，Butler，Pa．

MAEDETICS inc．

INSPIRATION

Think big has always been the order of the day in radio electronics. Galvani, Marconi and you either have changed or can change the world with a thought or an idea unheard of before. Seeing all that's new at the 1959 IRE Show can spark your new idea-can be your inspiration. Biy in number of manufacturers

IN RADIO ELECTRONICS

and suppliers exhibiting, big in number of top radio electronics experts, big in number of important developments on display-that summarizes this year's Convention and Show. Don't miss this once-a-year opportunity for man-(0)-man talk with the thinkers. plamers and doers in your field of specialty.

THE IRE NATIONAL CONVENTION
Waldorf-Astoria Hotel

AND THE RADIO ENGINEERING SHOW
Coliseum, New York City

THE INSTITUTE OF RADIO ENGINEERS
1 EAST $79 t h$ STREET, NEW YORK 21, N. Y.

NEW PRODUCTS

SIIIELDED COHL FORMS.-Serim 2585 and 2 in 1.urial)le apre and series 2685 and 2690 fixed 1 in
 kel-F cail fomes. The lemminal boads .11 the bun mon
 where terminals.

CIRCLE 158 on reader-service card

FILLED TEFLON BEARING: MATERIALS.-SU ahle for molded and mawhined spacem. insets, ow nectors, and ather parts meed in high wiltage, hem frepnency, and ligh temperattion electronic equip. ment, wires, und eables. Respectively, stoles FMdhrough, 5 and s through 10 are filled with glass, nat

Chemeal \& Proner Pronluck tow Dept. ED Broudera) Vew tork I, N:
circle 159 on reader-service card

PRECISION COMPRESSION SPIGNCS. FOH -
 -

 (1.1.!

Circle 100 on reader-service card

COPPER SEALING GI,ASS. - 'rossed and sintere Code T295 Multiform glass can be larnetiealls

 is 6.7 ohm-cm; at $350 \mathrm{C}, 5$ ohon-sm
Coming Glass Works, Dept. ED, Corning,
CIRCLLE 161 ON READER-SERVICE CARD

IIC:II VACULM VALVE,-1.coth rate of this 336 dianneter valve is less than 0.1 micron (al Her by The unit is suited for space emviromment test chm fors and production vacumm meltine furnaces
VRC: E:quipment (orp., 1)ent, E:I), Ifil) (han ment S1 vewtemfil Mass

CIRCLE 162 ON READER-SERVICE CARD

GREASELIESS BEARINGS.- Made of a Union (bide fabric impregnated with Bakelite phen plastic: Ruslon bearinges need no luhrication. An cations range from miniature instruments to her electric stations.
Russell Vifg. Co. Dept. ED, Middletown, Com Circle 163 on reader-service card

ELECTRONIC DESIGN • February 4, 1939

HTURELOCKING; DBIVE PINS.-Thest Imik

of of locking mintiature parts. With diannetere

 Rialectich!
circle 164 on reader-service card

 lows, ur gmich disemmed latos 12 and is

CIRCLE 165 ON READER-SERVICE CARD

CIRCLE 166 ON READER-SFRVICE CARD

tom. III.
CIRCLE 167 ON READER-SERVICE CARD

NE G.AIP PIABS - H.andlime vingle or moll

9, Calif.
circle 168 on reader-Service card
 loch for filamen amitmits, Wented elo - and catherle amission. For forid tulues ineluedhish fudelite, radios, and TV recerime topes, it anchets for $\overline{7}$:andy pin miniature, and inetal and

 Chicage so, III.
circle 169 on reader-service card

WItM FOLL.- Nommagnetic, comenton resisttwil in 0.01 to 0.0000125 in . Lages. Availathe in lis 105 in . in thimer gages; to 36 in . in magen (c) 0.000 O in.

Hanium Metals Comporation of America, Dept. Broadway, New York T, N.Y.
-TRONIC DESIGN • February 4, 1959

Textolite Grade 11574 exceeds every NEMA XXXP requirement

Self-extinguishing epoxy paper laminate for high-reliability computer circuits

General Electric Textolite Girade 11574 will not support combustion . . . has unsurpassed punchability at room temperatures
Textolite (irade 11574 was specifically designed for computer applications where very high reliability is demanded. Its superior electrical and mechanical properties easily out perform NEMA standards with out the high cost and difficult fabrication problems of glass-based laminates. Some of the outstanding properties of Crade 11574 include:

- Self-extinguishing - flame dies within 1 second
- Cold punches best-pierced and blanked holes are cleaner, more precise than any laminate tested in G-E laboratories.
- ('yanide resistant - maximum reliability in all etch ing and plating processes
- High insulation resistance - 1,000,000 megohms IR after 96 hours at 90% humidity and $35^{\circ} \mathrm{C}$.

CIRCIE 171 ON PEADER-SERVICE CARD

- High flexural strength - over 26,000 psi, twice the NEMA standard for XXXP grades
Consult Sweet's Product Design File, Cat. 2b Gen. for technical data on the complete line of Textolite laminates. Or for additional information-or expert help with special problems - call or write: Technical Service, Laminated Products Department, Section ED-9?. General Electric Company, Coshocton, Ohio.

Textolite
INDUSTRIAL LAMINATES
GENERAL

CUTS COMPUTER CAPACITY COSTS

The addition of one new can size to the Mallory line of computer grade capacitors . . . the broadest available anywhere . . now makes it possible for one capacitor to fill many applications that used to require two or more capacitors. The new case size tat extreme right of the picture above) (an contain up to $130,(0) 0$ mid. at 3 volts.
Mallory CG capacitors save you money . . . cut mounting costs up to 50^{\prime}, , save chassis space, give you up to '25', more microfarads per dollar.

Mallory CG capacitors assure performance. Equivalent series resistance is exceptionally low. CG's are backed by our experience of over 20 years in telephone grade capacitors and 15 years of production of capacitors for computer power supplies. Production samples constantly pass thousands of hours on life test.

The accompanying chart shows the extensive range of capacit y and voltage ratings now available. Write today for latest data, and for a consultation by a Mallory representative.

Case size		Rating range	
Dia.	Ht.	Capacity/VDC	
$3 \prime \prime$	55/8"	130,000/3V to	20,000/50V
3"	$41 / 8^{\prime \prime}$	$95,000 / 3 \mathrm{~V}$ to	3,500/100V
21/2"	41/8"	$45,000 / 3 \mathrm{~V}$ to	650/350V
2"	$41 / 8^{\prime \prime}$	27,000/3V to	200/400V
$13 / 4 \prime$	$41 / 8^{\prime \prime}$	20,000/3V to	150/400V
13/8"	$41 / 8^{\prime \prime}$	12,000/3V to	90/400V

Expect more...get more from v/ PR.MALLORY BCO.Inc.:
Electrochemical-Capacitors. Mercury and Zinc-Carbon Batleries Metallurgical-Contacts - Special Metals - Welding Materials

NEW PRODUCTS

DOUBLE: FOOTSWITCH. Wodel 1) IT (mom
 amp. Aailable in a variet! of arransement

CIRCLE 173 ON READER-SERVICE CARD
sot.II) STATE COMISt TATOR. For milm themetr. His mit las at temperaturn U.alibin

CIRCLE 174 ON READER-SERVICE CARD

 … Burrillow T. Mil
circle 175 on reader-service card

CURBELT NIDCATOR NND NTEGBATOR Designed particularls fas use with hagh-voltage po
 From 1 tha to 3 num in 12 switeh setings. If is
 can loe preset to mperate all alatin in other .mis

CIRCLE 176 ON READER-SERVICE CARD
 "hich antumaticalls matulain the proper (h.antme

 The Elentric Sturase Batten (© . E E ide Industh.
 (mphaia 20. P:

Circie 177 on reader-service card

PORT IBLEE FILII PBOCESSOR. The Mini-R 3.7 antematicall processes 3.5 mm film it vered

 tracking, data recording, and general engine photographes. it aperates in dallight and uses

Fairchild Camean and lustroment (omp). In trial Pronlucts Dit.. Dept. ED), 5. Aerial Wian.s set. N.Y.

EIRCLE 178 ON READER-SERVICE CARD

SET DRAWING KIT. Cance is $6.1+13-12$
1 contains 6 in. ben compass and 5 -1 2 in. divicler

CIRCLE 179 ON READER-SERVICE CARD
TBONIC DATA READER.- Wodel R-2I: f.A - the reading and samming of ascilloestoms. 15 amplitulas of ome or mome (hamme: foce
 thedes corrected by seale factors directly. It will timine lines into .men imminer of agmal interout can toe used as an XY rading system.
 mee St., Hartforl I. Comb.
CIRCLE 180 ON READER-SERVICE CARO

CL SON CABINETS.-Aluminum alloy mits built standard stock parts, these cabmets comply \IIL-T-1:11:3 and comparable veceificatioms. have built-in conling ducts, protected hamess muld thech memits on required.
liremift Amaments, Dies, Depl. E1), Cocherssille
CIRCLE 181 on reader-Service card
OIVECTOR-CABLE: BDAPTER SLEEVES n fil adapters can be used where there is insutfi-
 IS connector to any size AN type clamp.
 Clif.

Circle 182 on reader-Service card

OHGII IL INDICATOR AND PRINTER. Wodw
 Comre. and wher vamblas which com be meanmal hy semsitive bridge-type transdicers. Data ap-- ... a digital indicator and on printed t.pese.
 (Heveland ?ll). Ohio
circle 183 on reader-service card
IIIC.H-FIDELITY SPEAKER. For Hse in sterco-
 h V-sols hats to (p) to 12 he frequence re. whd handles 1.5 is of program material. It lue used as ant extension speather or an a replaceto improse fidelits of TV seth
 (hucage) 80 . III.

CIRCLE 184 ON READER-SERVICE CARD
 (ond for use in tomecometrol. phase-splitter, athed Luin coltage amplifier circuits. It combaims min-min trionde and a sharps colt-off pentede in welope. Pentode transemeluctance is $\overline{0}$ oon , and trionde amplification factor is 17 .
(io) Corperation of America, Electron Tubs. Dept. E:D. Harrisom. N.J. CIRCLE 471 on reader-Service card

LE TRONIC DESIGN • February 4, 1959

Now K\&E provides the ultimate "3-way" surface for super-tough HERCULENE ${ }^{T m}$ Drafting Film

Only K\&E Herculene Drafting Film has a surface perfectly engineered for pencil, ink and typing ... plus the extreme toughness and durability of Du Pont "Mylar E" film base. You get the absolute assurance of superior "take". And Herculene erases easily and quickly without the need for erasing or correcting fluids.
Virtually indestructible, Herculene is
so tough you can hardly tear it. It canit he damaged by moisture. And it's permanent . . your drawings are resist ant to damage by aging or handling. Herculene has "balanced" transparency... Ust the righ cominai of high actinic transparency for repro duction with essential visual opacity for drafting. You get sharp, legible repro ductions at high machine speeds. And
you can make prints from a Herculene Drawing indefinitely without its yellowing or tearing, cracking or becoming britlle
Herculene is economical too... now costs less than cloth. Prote these lacts for yourself by writing today for a ree sample. Just clip and mail the coupon below.

CIRCLE 187 ON READER-SERVICE CARD

NEW LITERATURE

Miniature Transformers
 188

$12 t$-page catalog describes line of miniature, suhminiature, tramsistor. Oll T-27A. and industrial transformers Featheres ned tramsister transformers in Cluding de to de conserters, silicon reco tifier-power dents. and driver. input output, and chopper transformers. Vr Harold Edelstein. Microtran (in. Ine
 N.).

Assembly Kit

189TISS 1110-I, a 16-page catalore provides completer featheres and specifications ont all Sernohoard electro-mechani(:al assombly components. Include-s menntines components, componcont hatros ars. componemt chams. batring hangor shalt componemts. Qears, worice mits limit stops.s. switch assemblies amd (hutchess and diflerentials. Servor Compe ration of America, 2()-20 forichor Tinmpike, Ni"n Hyde P'ark, ․)

Metal Cabinets

Features, description, and price modular and mobile consoles eharte P-page color Folder. Protection agant hock and vibration plas ellicient womb tion for edectronic instrumentation pirme aded be rack comsoles which contomon th RETMS and \IIS. Speces. Eiscon Enginat ime (on Po Bor 1si Broadkiow, Il

Capacitors

Three-color toldow describues lime of E
 (duden data (on 1) \ilis. Hee smallest mit (aplatedor in the world, ideal for extom miniaturizations: otheos designed for maindallorederigos and prontal circoll wime
 (1) El Wenco for Dur- Mia, Capaciton
 at Silsured Waca (inpracitors" and "b)
 lomasest lite: all from lilectro

NOW-48-56 Gauge Wire Coils built to YOUR specifications
Whatever your application--from hearing aids to missile sys-tems-Deluxe Coils' new fine wire plant can supply the miniature coils you need . . . built to your specifications for precision and accuracy.

Deluxe Coils' newest facility spans 15.000 sq . ft. It is air and sound conditioned and completely equipped to produce all types of miniature fine wire coils, $40-47$ gauge, ultra fine wire coils, $48-56$ gauge, and components.

Write for information on Deluxe Coils' fine wire production capabilities-and how they can be put to work for you, right away.

In ments 193
chure on instruments and instrufion systems. "Meastrements and小" is a 4 -pace. 2-color illustrated ation which highlights (emmite monts for shock. vibration, pres mertial (ontrol. temperature and devices for use as single comits or int complete systems. Sale (:ulton lustrmmentation D)iv. Industrime Inc: 212 1)nirlam Wollochern. N.J.

Waveguide Chart 194

 (1) WR2330) and emos reteromees Vorle Frequenc! Range: EIA \&nid. (oole Designations: JIV
 Onter Wincesuide I)imemsions with
 and Vilitams Standard Plames |tanmer mombers. Vacrowal Develop went Labmatorics. lace. Ye Brond st

Batteries
Use, design and construction of firm's standard line of Plasticiedl laad-antimony grid batteries for all statiomary battery applications covered in 12-paqe bulletin, (:P-532. Complete ce.ll data on line from (1) to $1(650)$ ampere hour ratinge: contes on discharge characteristics included. (\&) Batterios, Hace. (omshohocken, P'ia.

Retaining Rings

Ill correntl a a alable: IV aldes Jraare retamines rings ate deseril)ed and illos-
 Waterial comered includes "Sclector
 wrice and sol representatione "spercial rings" designed for individat contomer rexpirements. Purpese athel adsantages are detailed for cath rimes urtios, which art orsanizad according to tunction: antal assembls, radial assemble, (mal-plat! laher up, and self-loching I!pes. Triate Teabrical service. Walden Roblimens.
 (it) 1. 1.)

for all your
CLIP, BLOCK and
HARNESS STRAP needs!

ADEL offers the widest variety of LINE SUPPORTS in the World ... 19,000 different types and sizes for safe, vibration free. positive support in all types of aircraft. missiles, rockets, ordnance, automotive and original equipment of all kinds.
SAFETY . . FLEXIBILITY . . DURABILITY
ECONOMY . . SERVICE FITTED . . . SERVICE
TESTED . . . SERVICE APPROVED
Illustrated are but a few of the World's most complete line of Line Supports that meet or exceed all applicable specifications and or requirements. Whatever the application STANDARDIZE ON ADEL - the leader in completeness of line, service and reliability Peliability

A DEAL $\begin{gathered}\text { PRECISION } \\ \text { PROOUCTS }\end{gathered}$

SPECIFICATIONS ARE AVAILABLE TO AIRCRAFT MISSILE AND ORIGINAL EQUIPMENT MANUFAC. MISSILE AND ORIGINAL EQUIPMENT MANUFAC.
TURERS ... WHAT ARE YOUR REQUIREMENTS?
Direct inquiries to Huntington Division
1444 Washington Ave., Huntington 4, W. Virginia DISTRICT OFFICES: Burbank - Mineola Dayton - Wichita - Dallas - Toronto
CIRCLE 197 ON READER-SERVICE CARD
ELE TRONIC DESIGN • February 4, 1959

MINIATURE, STANDARD and DOUBLE SIZES!

MINIATURE RECORDERS
Square Model 85, in flush mount, weighs 16 lbs, and is $5 \mathrm{~s} / \mathrm{B}^{\prime \prime}$ square $\times 123 / 4^{\prime \prime}$ deep. Slim models 86 (portable) and 87 (flush) save half the width of standard recorders measure $3 \frac{3}{4} \times 7 \frac{1 / 8}{} \times 8 \frac{3}{4}$ and weigh only 9 lbs

CURTISS-WRIGHT

STANDARD RECORDERS
Model 81 (portable) and 82 (flush) are also available for wall and projection mounting lake up to 3 channels. Weigh only 19 lbs. and meas ure $7 \frac{1}{2 \prime \prime} \times 9^{13 / 16^{\prime \prime} \times 77 / 8}$

PRECISION RECTILINEAR

DOUBLE SIZE RECORDERS
Models 83 (porlable) and 84 (flush) lake up 106 channels Wall and projection mount ing available. Chart width is $9 \frac{1}{2}$ ". Measure $12 \frac{3}{4}{ }^{\text {" }}$.
 only 26 lbs .

STRIP CHART RECORDERS

Made under licensing agreements with one of Germany's leading instrument manufacturers . . .combine accuracy with ruggedness

Important features: Recriline err Recording with patented linkage that translates angular meter motion into proportional straight line - Inkless and Inh Recordines in (One Unit - Three-Speced Transmission plus 60: I Speed Change from hours to minutes; provides six interchangeable speeds in all - I\%o Accurcacy for moving coil move-

AC, DC, power and combination movements; wide choice of ranges and chart drives. Write for full information

Where reliability is critical...

Chemelec*

Compression-Mounted Type

Metal-Base Type

Potented Metal-8ase Type

Simple to install, resistant to heat and breakage, and-above all-reliable under any condition:. Chemelec Stand-()fir and Feed-Thru Insulators are the obvious choice in missile guidance, fire control, tracking, and radar sytems. nearly all critical electronic circuits. DuPont Teriont-ummatched for electronic applications -is used as the insulator body. Teflos has exceptional dielectric properties, is chemically inert. resists heat to extreme temperalures, won't break under severest shoch or vibration. And, Chemelec Compression- Mounted Stand-Off and Feed-Thru Insulators are designed for casy installation. Iou simply press them into pre-drilled holes: they become self-fastening, requiring mo additional hardware for adjustment. Ivailable in compres-sion-mounted, metal-base. miniature and subminiature types . . . standard R.M.A. colors with a wide range of sizes and terminal designs.
For further information, write for Catalog EC.-3.38. Fluorcoarbon Products, Inc., division of United States Gashel Cu, Camden I, New Jersey.

Chemelec connectors
-Teflon Insulated for Outstanding High Frequency Service

*Hegistered Trademark †DuPont Trademark

Chemeler Tefiov-inaulated male and female connectors are used mainly as breakaway connectors ... pluk-in crystal diodes. pluk-in coils and forms, test prothes. (Once compresurd into chassis holes. the connectors nemd no further adjustment or hardware. Chemelec Connectors have ull the tine Trifion characteristics, and are available in the . 0160 . 0501 , and . $106 t$ pin size. Fomale connectors are also available in the .080 size.

NEW LITERATURE

Counter-Controller

200
 illmstrated t-pasa folder are designed for coil "indings motor yperal control. shearing to lencth, hatchings. pachaging. and staching be momber. Computer

Power Resistor

()w-pase bulletin 15:3 deseriben rasistor hatine a siliconc-coramic mathe rial molded atomed them. The resis tors are mitorm, mosistare-prod. Iose high imsulation ressistance allel other ad
 arl St.. Shokit. III.

Control-Display Leyout Kits

Bowhlet (ont.än descriptis. indomon

plays Michalsom-P'Clom Combor plas. 15.53: Vimutara Blad. E! (alif

Nuts

1 mex catalene describing stmpm
 buts into shect metal for ascombly patit

 are folls comered in Hue catalose W alo
 11

Polarized Relays

(imitonl Applications Lon P'olamal
 balletion packeal with wirine diandane photesgaphs and ipplications which m.

 III

wiment data from the new Specifica-SIIL-S-20.0 (0s and the SAE Specifiil \RI' 461 are presented on a wall at Standardized definitions and con|ow data will simplity the task of (hore mambacturers and nsers. Theta bument Corp). is Pilu St.. Eatst P'at (in. V.I.

Oil-Filled Potentiometers

Hireer lignidflilleal potentionneters (as produced supply the whiect matter Data sheet 1452 a serem-page tech(at smmary: 1 Il workine parts of the "produce ane sealed in a hath of oil bueh conshions the mit against shoch and ibration. Helipot Technical Infor maton Sorvice. Fullerton, Calit.

Solder Terminals

208
1 14-pare catalus toatures specific:athon drawings, intormation on line of wher torminals and three new terminals hasued tor molding men plastic headis For we with printed circuits or with
miniature tube sockets Catalog 155, Section I. on Solder Terminals from: Mr. Richard H. Sceery, VP Sales, Apine Electronic Componients. Inc., Waterbur! Comin.

Phase Shifter

1pplication of lime of passivaly comatructore phases weneratoms detailed in s-pater bulleting. Derices are uned to me:atrer phase hift ${ }^{1}$ ith 30 mimute ate curatey proside reforence voltage to demodulator and modulator circuits. Theta lintrument (iorp). is Pine St., E. P'atemが, N.J.

Stepping Motors

 210Bulletin 958SM2 deseribes new Series 2 Syberamental steppinge motors which (0 mant digital intomation to allatogon , hatt displacerments and mat be used to rotate combters. potentiometers, rotar! witchess tape and ancer, and varions control mechanisms. (:. H. Leland, Juc., 12:3 Wibuter St. Dillton 2. (Ohios.

when only the best is good enough

ACCURATELY

 REPEATABLE TIMING

HEINEMANN'S

TRANSISTORIZED

TIME-DELAY RELAY

If your products call for reliable, accurately repeatable timing or sequencing . . . and if cost is a consideration (when isn't it?), then have a look at the new Heinemann Trans-O-Netic* Time-Delay Relay.

Built around a transistorized control circuit, this new type of relay offers exceptional performance capabilities at a surprisingly low cost. Time delay is adjustable from 0.5 to 30 seconds, with repeatability at any set delay better than $\pm 5 \%$. Reset is instantancous. These three features, alone, place the Trans-O-Netic way out in front of the field.

But there's more. The relay is inherently stable, so that there is only a negligible temperature effect on time delay over a tested operating range of 32° to $130^{\circ} \mathrm{F}$. Single-pole, double-throw switching is fast and clean; wiping action assures long contact life. The entire unit is enclosed in a phenolic case to protect it from dust and dirt.

More information? Certainly. Send for Bulletin 5300; it gives pertinent details and specifications.

Where only the best is good enough . . . you'll see

Krohn-Hite

electronic instruments

In basic electronic instruments for lab or test work, less than the best may be a dangerously bad bargain. Unexpected limitations of reliability, range, precision - can throw out weeks of work on today's jobs, and can make tomorrow's tougher jobs untouchable. The best instrument of its type is probably a bit more expensive. but it's worth buying . . . because you can believe in it today, and will rely on it tomorrow. An example is the Krohn-Hite Model 440-A wide range push-button oscillator illustrated here.
Exactly because K-H instruments are good enough even for tomorrow's most critical work, they are increasingly chosen today where true reliability and precision are needed.
Oscillators - . 001 cps to 100 kc , less than 0.1% distortion, pushbutton setting, sine wave and square wave outputs.
Power Supplies - to 600 volts dc, regulation $.001 \%$ from zero current to 1 ampere, noise less than $100 \mu \mathrm{v}$, internal impedance 0.1 ohm to 100 kc .
Power Amplifiers - 50 watts RC coupled from 20 cps to 20 kc with 0.005% distortion: 10 watts direct coupled from dc to 1 mc , with less than 0.1% drift per hour.
Tunable Electronic Filters - variable from .01 cps to 200 kc , band pass, band rejection and servo types.

Write for your free copy of the new Krohn-Hite Catalng

NEW LITERATURE

Compression Molding

Design and manufacturing facilities for constom compression molding pre(ision plastic parts from all themomer ting materials for use in clectrical, Nece tronice, medical and wemeral indenstrial applications illustratted in two colon. Fonn page folder. Dolta Plastion (io. Corek Rowad, Bellmawr. N.J.

Solenoid Actuator

Two color data sheet describes lime of solemoded controlled actater packages. Pressenth beinge used in the missile field. these patckages are atailable for mand hedramlic and premmatic applications. Pertanent sperefifations arre listed tor the Woded 10k-2 an the reverse side of the shect. Wakdort lastrument (ob. Huntineslon Station, N. Y.

Conductor Slide Rule

216
Hands hegarithmic comeluctor slide. rule desisned to aid selsection of dimen-
sions of alluminum foil or sheet for " in strip-wound electrical coils. The run provides a ready means of comvertiof from standard wire sizes in copper of aluminum to ath equivalent aluminn strip conductor. Aluminum Cor, of Ame ica, 1501 Alcoa Bldq. Pittshursh 19, 1

Swedged Washers

217
Nanufacturere of electrical appliances and dectronic componemts maty request list of the sizes of suedered or upent washers for which special tools are atail. able. Wilmington Fibre Specialty Cone Van (antlo. 1)

Fans
Catalog sheet illostrates and describes "sameer" shaped finn for cooling elece
 an chectrical drivinge meter built into the propeller holv reducing the asial length of the F.an to meme Ha,ln the thichness of the propechler. Cataleng $=501009-1$ from Roston Vambacturing Co, Schoon. maher I.allie. Woodhack. N.)

MANUFACTURERS of MESA TRANSISTORS

 NEED PECSIO in EVAPORATION MASKS
EWhC is the MAJOR PRODUCER

for the

answer to your need

[^7]For complete information call or wrife.
BUCKBEE.MEARS CO.
Toni Bullding • St. Paul 1, Minn CA 7-6371

gnesium in Electronics

220
watime thrececolor booklet "Magin in the Electronics Industry" dees the use of masmesium in air© and air-tramsportable electronic pement. The $2(0$-page brochare dis-- properties of masmesiom that , it useful athel shoms pictoriall! te magnesinm is being used in elece m todar. Poblice Radations Dept. ()nw (hnomical (.o.. Vidlaml Mich.

Tiansformers

daloge (.TS-2̈b carvies detailed listimes aser bor sock tramsormom. It pros. lis electrical and phessical percifica(om in military standard. Inlo.-T-27. ath excle athe matrs other lacrometically - Hed transtormers. There ate cetcosive

 time . wnl other inclastoal applications. : Hormance corver arr shown for matry 1 thor units. Chicaten Standard Trams-
 (hicago 18, II).

Frequency Computer

The "Calculaide Frequency Computer" correlates, in one setting, the matural Frequeney and wave length of a circenit (omprisinge a coil and condenser with the phossical dimensions of the coil and the capaacity of the comdenser. Induct-- wice balues can be determined for widely varime phesical dimensions of coils. Produced from Vimelite plastic, all markimss are heat-sealed inter the body of the plastic itscllf, it consts $\$ 4.95$.

Imerican Hydromath Corp., t2-17 Hanter St.. Dept. EI). Lomg Island City I, N.Y.

High Temperature Wire 222

Eight-page techacal bulletin om "Coratmatemp)" describes features. application and hathding characteristics, and mechamical and ellectrical properties of this reade-te-lse flevible ceramic-type inwhated wire rated for continuons operation .t loko P . (hats and graphos in(luded. Director at Techmical Service Hitemp Wires. Ince. 12000) Shames Drive. Westbury, N.Y.

CIRCLE 223 ON READER-SERVICE CARD

RELIABILITY and FLEXIBILITY

in the optimum package

These new 1) aystrom Pacific products round out a complete line that offers to instrumentation, project, research and automation engineers the full benefits of reliability and flexibility

With these additions, the I aystrom I'acitic potentiometer line now includes more than 32 basic models with over 252 variations. exclusive of resistance values. Basio models for military and industrial use include
"square:rbms"
subminiature multitulin potentiometers: high temperatire potentiometeirs
giangable potentiometers
LOW-COST, HIGH-PERFORMANCE MULTIDOTS
Users of Daystrom Pacific products obtain the many benefits of a single souree for all potentiometers. Among them is the convenience of an unusually offective and helpful field service and technical liaison organization.

For farther information contact the represesentative in your area or the factory direct.

PATENTS

Crystal Controlled Transistor Oscillator Systems
Palcull No. 2,8533,61.5. Raymumal). Kirchcr. Assignod to Hushes Aircraft ((o)

Tramsistor ascillator output is cmpli tude-modulated lincaty by a comotol sigmal applied to a tramsitor amplifier al fectisel! in shout with the ascillator

Tramsistor 14 and tanh circuit 12 (ommprise a Hartle! oscillator which is trequency stabilized by crystal $/ 1$ in the ferdback network. The collector and
base at thimsiatar ill are comblectat , hunt witl the ascillator tank since.
 fregurnct. Hence a control signal ap. pleded to terminals.is will camse tramsisters is tor dran additiondal comrent through the 1 .111h to incerease the amplitude at the (untput. II Le:" masinum lineat outpu: whtase is dositerl. the ascillator trat: sistor $/ f$ wombld be biased for the lowed emitter corrant at which the ascillator is stable.

RUGGEO and RELIABLE New! TRANSISTORIZED

A. W. HAYDON COMPANY'S TRANSISTORIZED SUB-MINIATURE ELECTRONIC TIME DELAY RELAYS!

SAVE SPACE AND WEIGHT!

	Miniature Series	$\underset{\substack{\text { Sub.Miniature } \\ \text { Series }}}{\text { and }}$
Cross Section	$17 / 10^{\prime \prime} \times 12 / 12{ }^{\prime \prime}$	$31 / 3 n^{\prime \prime} \times 1 \%{ }^{\circ}$
Length	21/4" long	$2^{\prime \prime}$ long
Weight	6 ounces	3 ounces
WRITE FOR:	Bulletin AWH TD.503	Bulletin AWH TD. 504

test-proved performance'
High Temperoture: $125^{\circ} \mathrm{C}\left(250^{\circ} \mathrm{F}\right)$
High Temperoture: $125^{\circ} \mathrm{C} 1250^{\circ}$
vibrotion 2000 CPS of is g
Vibration 2000 CPS ot is 9
Contatt arrangements up to 4 pole double throw
Contoct arrangements up to 4 pole double throw
Unique Honsistoriud $\& C$ time constant network
Time Deloys tiom So MS to 120 seconds Tonger Deloys ovailable
 Hermeticolly seoled housings

Frequency Control System
Pritent No. 2,545.f15. (eororer II. Rother m: J Joseph E. Slameck Jr. (Assignod 10 Phulion Corrp.
Therere exists at tembenes for the lexal mallator afe circnit of a turntable radar to lock on the vecond hatmenice of oms balt of the desiret difference trexpernes wht thereby selt-jam the recedore. I debe tor-amplifier circuit has beend devigned (ab make the ate amplifier insemsitiae to
this madesired frequency.
As shown in the diagram, network 41 , thaned to the rejection frequentey, is comsneected to the afe detertor. The signal developed in network 40 is amplified and rectified in network fo to rednce the gatin of the bandpass amplifier at this freeymber. Swerp qemerator 36 will cont tillite to there the local wscillator (sontres II until the desired freppene? difteremere "ith somices 1 is obtained.

FROM JUST ONE HEAD...TO A COMPLETE STEREO MONAURAL, ERASE

A dependable source serving the industry with precision quality magnetic heads created individually to your exact specifications and quantity requirements. Let our design engineers and production people solve your tape recording head problems . . . write, wire or call for details.

MICHIGAN MAGNETICS, INC.

Vermontville, Michigan
EXPORT DIV.. MORHAN EXPORTING CORP., NEW YORK CITY
ENTERTAINMENT E SPECIAL APPLICATION

El! ITRONIC DESIGN • February 4, 1959

ENGINEERS...

NEW opportunities at Motorola in Chicago

give yourself and your family all the big city advantages at a relaxed midwest pace, while you ADVANCE YOUR CAREER

Outstanding career opportunities are waiting at the many Motorola research and development laboratories in the Chicago area. This is your opportunity to advance your career with a swiftly expanding company, working in the most modern and well instrumented laboratories... with liberal employee benefits, including an attractive profit sharing plan and association with men of the highest technical competence.

You'll like living in one of the beautiful suburbs of the playground of the midwest, where there are endless social, cultural, and educational activities to choose from the year-round. Exciting life or quiet life-Chicago offers either.

MILITARY POSITIONS OPEN

- Radar transmitters and receivers
- Radar circuit design
- Antenna design
- Electronic countermeasure systems
- Military communications equipment design
- Pulse circuit design
- IF strip design
- Device using kylstron, traveling wave tube and backward wave oscillator
- Display and storage devices

CIVILIAN POSITIONS OPEN

2 WAY RADIO COMMUNICATIONS - VHF \& UHF Receiver - Transmitter design \& development - Power supply - Systems Engineering - Selective Signaling - Transistor Applications Crystal Engineering - Sales Engineers PORTABLE COMMUNICATIONS

- Design of VHF \& UHF FM Commu. nications in portable or subminiature development.
MICROWAVE FIELD ENGINEERS

Write to:
Mr.L.B.Wrenn Dept. B
MOTOROLA, INC.
4.501 Augusta Blvd., Chicago 51, Ill.

ALSO there are excellent opportunities in

PHOENIX, ARIZONA•RIVERSIDE, CALIFORNIA

PIV-up to 900v

ONE AMP AT ONE VOLT FORWARD!

u.s. semeor medium power... AXIAL LEAD RECTIFIER
with single DIFFUSED silicon junction

PEAK PRRFORMANCE WITH

AXIAL LEAD MOUNTING VERSATILITY

U. S. Semcor now offers outstanding new advantagea in high rectifier efficiency in a sub-miniature package, and the widest PIV range - 50 V to 500 V - with a single diffused junction. These axial lead diodes provide extremely high forward conduction combined with an absolute minimum saturation current. ideal where low hack current is required. For complete data write for Catalog DJR-401.

NEW STREAMLINED CONFIGURATION

$.250^{\circ} \times .250^{\circ}$ case size and elimination of top hat flange, allows more compact placement.

AXIAL LEADS-permit automatie machine insertion, for point to point-printed board wiring. MOUNTIME FLEXIBIITY - can be positioned in any attituve without impeding performance STAINLESS STEEL CASE-rugged, all welded construction, gives permanent cortosion resistance, protection from radiation effects. HIGH FORWARE CONDUCTANCE one amp at one wolt forward, with maximum forward current to back current ratio.
RELIARILITY is inherent in the design, to meet the most severe environmental tests CHARACTERISTICS--in any combination to fill your standard or special applications for high back resistance, quick recovery, high conductance and high temperature operation.

[^8] cechnical data - Witte or wire today wo salen Enginepring Idemartment.

PATENTS

Amplitude Modulation Limiting Circuit

 (Assigncel to Brell Talephomer L.aboratorices, Inc.)
Solf-calncerllation is pronided lon amm plitude modnlated moise which is im pressed on a frequence modnlated sir nal. For a carrier frequence of owne me the atem is suppressed t.5 dhe wherean the carrier signal loss is oml $-1 / 1$. The . 11 temation of the a-m sideband mas bre increased by using similar motuork in cascade.

The operation of the circuit is in fols
lows: A carrier and its sedehands applied to mesh l will flem in mesh 2 through resistor 1/. When the signal amplitude ancerds the bias leved of the diondes. wath diende demodulates one hall adele of the ighal. This produces a basibathel colrratl. "lome treguence is the difterence betwern the Pregurncies of the sidebabds dad the carrier This basebamed cormont flows thromels reasistor it and
 pair al modulated sidehameds. The new , idebands in mexh 2 flow in opposition to the original at-m sidehands. By proper se-

(1) resistors 1) and 1 f. (omplete lation of the a-m losise maty be (a).
wre (omplete amalysis of the cire
"iaco in the imacntor's paper lumede Ifodulation Suppression in

Mc netic Core Logical Device

 ((1110)

"ill witch trom one or two stahle. mext If Is states in respenme to mom(urrent cusiliars signals.
(1.) Femathent state of core 5 is se I Sh He polarite of the sional ap)1 16 in indine -. I chather in the wet If the conere iodhces at pulse in ontpont
 "gnal turns woumd in epposite di (4) mas throush holes 11 athel are sepmatias (ap)able of chamesime ther semse of amateret flas in the core when the
amsilary winding is commected to batters 16. Howerer, "hen both ausiliar! windings are operated simultancomsh, the fluxes callerel and the state of the core is mehanced.

for every lacing need . . .

BEN-HAR LACING TAPES

BEN-HAR DACRON 8 - excellent dimensional stability and heat resist. ance. Available plain, waxed, or synthefic rubber treated.
BEN-HAR NYION-meets Gov. Specs.
MIL-T-713A. Flat braided nylon available in same finishes as above.

BEN-HAR "TEFLONR GLASS"-fibers are Teflon coated before braiding for unique non-slip action. Knots hold. No heat shrinkage. Chemically inert. Flame-proof. Non-absorbent. Color fast. Practically indestructible.

$T_{\mathbf{c}} \leq .0005 \%$ per ${ }^{\circ} \mathbf{C}$

$-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$

4. S. semcor temperature compensated

REFERENCE ELEMENT

superior in performance to 1 N43O Series

TRIPLE DIFFUSED WAFER TECHNIQUE

 METS SMALLEST PACKAOE YTTIU. S. Semcor's completely new design

Axial Lead Reference Element has achieved performance heretofore uni ${ }^{1 /}$ teimable why for use in computers. reasuring instruments and controle-
wherever a reference voltage ind desired WWH- combines single difluned silicon junction advantages with a unique newly
developed triple wafer sandwiching method WWW- providea matched coefficients of expansion of internal lead wire and diode case, prohibits separation even under extreme shock may reaults in an impressive $.0005 \%$ per ${ }^{\circ} \mathrm{C}$ temperature coefficient $H W H$ over an operating range of $-85^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}-50$ degrees higher
than other available devicte \#u*
nutive $1^{\prime \prime}$ long $x y_{8}^{\prime \prime}$ O.D. package sise diminutive $1^{\prime \prime}$ long $x>/^{\prime \prime}$ O.D. package sise volts at 10 milliampe $\mathrm{Z}_{2}=15$ ohms wWW non-position sensitive for most compact placement WWW both axial lead and lug terminal atyles currently available.

Successful Vanguard equipped with Union miniature relays

March 17.1958-U nion Suitch \& Signal 6 PDI miniature relays functioned perfectly in the separation controls between the first and second, and the second and third statges . . . in the first stage propulsion unit . . . and in the third sage spin control assembly of the satellite-hearing Vanguard.

The Martin Company, builders of the Vanguard, chose these outstanding relays for their reliahility . . . for
their simple, rotary design and for the expert quality control asoociated with the established leader in electrical relay design-Union Suitch \& Signal.

The 6 PDI relay used in the Vanguard is just one of a complete line of dependable relays designed hy Union Switch \& Signal-"Pioncers in PushButton Science." Write today for complete technical information.
"Proneers in Push-Button Science"
BSUNION SWITCH \& SIGNAL DIVISION OF WESTINGHOUSE AIR BRAKE COMPANY PITTSBURGH 18, PENNSYLVANIA CIRCLE 233 ON READER-SERVICE CARD

flibooks

Logical Design of Electrical Circuits
R. I. Higomuct, R. A. Cren, MiCran Hill Book Co... 333 II. A2 S. Voru bork 36, NY. $220 \mathrm{pm}, \mathrm{slo} .0 \mathrm{~m}$.
Boolean methosk for analsmine relas diode: and sacumm tube circuits are pres sented with particular (rmphatsis on mas III design of ementol circuit in telephome. dialing systems. atutomation soteme computers and imilar applicatioms. This practical guide explation Beole an alsehma as at lital towl int circuit devion and is
 batckeromad it witchime dircolits

The present-day diremil desismer will find almost all field concred: combinat tional circuits (steady state - serpemtial circouts treated be a modern. simpler method, and shmet-down circuits (inhibi-

 monere thath 300 illastrattions. are an vided.

Handbook of Physics
E.ditsol b!! E. U. Condon and Hush (hit

 whinne (onnerotrate on primeiples, ides (whecepts. atal mathematical methork of all branchas of classical and modern physics.

In addition. il serves as a check for better urelerstanding of basic conceptes

Large Capacity - High Vacuum TWO-STAGE DUO-SEAL VACUUM PUMP

VENTED-EXHAUST eliminates Condensed Vapor Problems

* Eliminates Traps or Oil Separators
\star Reduces Number of Oil Changes \star Lessens Pumpdown Time

GUARANTEED VACUUM 00001 mm Hg or 01 Micron

FREE AIR CAPACITY
375 Liters Per Minute
Ideal for backing-up Diffusion Pumps

1397-B. DUO-SEAL VACUUM PUMP. Motor Driven. For 230 Volts. in Cuclew.
A C.

1397-C. DUO-STAL VACUUM PUMP.. MOtor Driven. For 230 Volts, 60 Cycles.
A.C.
$\mathbf{E 6 4 5 . 0 0}$

1397-D. DUO-SEAL VACUUM PUMP. Motor Driven. For 115 Volls, $\underset{\text { Each } \$ 749.00}{\text { D.C. }}$ A belt guard in included with the mounted. With pulles, but without motor, belt or base. Euhle. Eech $\$ 525.00$

[^9]homs. mathematical formulations. "quations, and oflers a meams of reme or eatuines an molerstanding of miliar arcats.
11. (emphasis is on the principles of acal swioner and the mathematical minues reguired for their exposition. lown this framework, the math sections 1 mathematios. mechamice of parand rigid bodies. mechanices of demoble botios. electricit? and magwor. Weat athed thomorlymathics, atomic phosics. physies of the 1 state: and muclear phensics.

Reuldom Vibration
II Cramblall Edilar. The Tichmolden!! "1 of M.IT\% (immbridere 3!, Mass., N10. $\$ 10.010$.
1 times colle etion of motes. Hai book Fars . 1 complact introchention to the fied

 Ambon vilmation Howe inte the field Wmolem shbatem are conerad. (arremt b.ate of the art of desimning and testines -ympment. Which must withstand ram(uIn ibration. is presemed broadl!.

Ordinary vibration theory is reviewed in a form which facilitates the tramsition to ramelom vibration. Treatment of basic concopts and batckeromed material in the first part is followed by sis chapters of pereifice material which discons: the proh)lom of measmring randem vibration, excitation from jet embines and recker metors the philosephy of emiromment simulation and problems of designing simulation equipment, and mechamical danign tor rambon loadine.

Closed-Circuit Television Systems

Coverrment Service Department of the RCA Serviere Compamy, C(umedron S, N.J., 315 pr. 51.50 peostpaid
The fomdamentals annl techmigues of dosent-circuit Tl-both black and white dand colon wsteme and the chatacteristics and thpical applications of wions
 plained.

Its supply of derails will permit engimers and plamers to determine in adbance the proper edpipment and system arrancement to best serve specific performance needs.

Unlimited Phasing with Extreme Compactness

Union Indicators help Hazeltine radar-display unit identify aircraft

The litlle her on the right side of the radar-display unit above warns of approachtng aireratt. IFF response is displayed hy Alpha-Numerical Indicators, made by Union Switch \& Signal. Hazeltine Corporation, I ittle Neck, N. Y.. builders of this unit. chose Union Indicators for their supreme reliability, compact design. and for the other features below:

I wo types of Data Display Indicators are made by Union Switch \& Signal: Digital, displaying 10, 12, or 16 characters, and Alphat-Nuncrical, displaying up 10 64.

Infinite Repentivity-Both indicators require power only during response time and retain data visually and electrically until a new code is transmitted.
Electrical and Visued Recet-Out-Electrical read-out of datat is provided in the same form as the input. Datal can be read out on a continuous basis without erasing the stored information. Visibility of digital read-out is excellent, even when indicators are mounted in rows. Hoth indicators operate directly on binary codes on a null-seeking basis, eliminating need forexternal translation equipment.

Write today for complete information on indicators and other electronic equipment manufactured by Union Switch \& Signal.
"Pioneers in Push-Button Science"

Control Electronics Co., Inc., is a leading designer and mass producer of electromagnetic Delay Lines. A representative group is shown here with the available ranges of delays, bandwidths and impedances. Further information is readily available from our Engineering Dept.
BUILT TO MIL SPECS. FAST PROTOTYPE SERVICE...DELIVERY 1 TO 3 WEEKS

Distributed Constant
Delay Lines

CEC DISTRIBUTED CONSTANT DELAY LINE FEATURES

- Lowest cost - reliable performance - Marimum delay to rise time ratios
- Marimum delay per cubic inch
- Delays to 30 secs.
- Impedances: 200 to 10.000 "

Bandwidits to 20 mc

- Linear phase shift

Variable Delay Lines

Infinite. incremental or decade variable delay lines available in any range of delays and impedances.

Multi-apped Lumped many configurations

DELAYS TO 20.000 MICROSECONDS BANDWIDTHS to 500 MCS Zo FROW 50 TO 10,000 OHMS

Over 275 standard Lumped Constant Delay Lines available

System Delay Lines

Complete delay and pulse systems designed to your needs.

Specialists in Microtime

BOOKS

Automation Systems

Ensinerering Publishers Dicision of the AC: Book Co. Ima. Vou Sork, ISO m S.5 (\%)

This book contains the precesedings of the second EIS conference on antomat tion systems for business and industr held this vear. At the conferencer emeimeers alone with leaders in the fiedds of economics, education, labor, and social work took a critical look al allomation as it exists today, and have attempted to evaluate it. Automation within the elecetronies inderstry and antomation outside the electronice industry are examined.

Magnetic Recording Techniques

W. Earl Stcuarl, Mc(Erum-Hill Book (io. Inc., 3:30 W'est temd Strear. Nou louk 36. N. Y. 2(8s 所, ss.0)

Recording and reprodncine processes. recording materials. the theors of fermmagnetism. recording mechanisms, and established standards are cowered in this
book. Design techmigues atre shown the various elements of masnetic reco 1 . ing wstems athel wats to obtain bet of pertomander in mans mew fields of por plicattion. Included are delinitions, tabls deriatations of her formulas, and praterio. al test circuits.
Recordine and reprodacing functiom are discussed separately to help atmals the offece thatt eath has ow the recoordieng mediat and on the over-all pertormane Sections are included oll some of the lesser hatown t? pes of recordines such is bomodary recording (computer memons work), the Facteol ustem (antomation) Hux-semsitive heats (sperecial applications tramsistor circonts. and TV recording prohlems. In addition, bew formulas are given for masnetic mide coatings.

Physical Acoustics and the Properties of Solids
W'arran P. Vasism, 1). Vian Xostramel Company, Inc: Primedon. V.J., 3.9:3 mp. S9. (17)

This intreduction to the enses of wand tramsmission in selids provides both emginerering applications and analytical unes.

at I discusses fundamentals of wave mation in solids. tramsducers used onerate such waves. instruments for wing attemation, velocity and uteristic impedances of solids, and - and low intemsits applications of 1. tramsmission.
int 11 deals in detail with the anabal unc of somud wave propagation. arers such topics as: phememenok.al models for wase propagation: |mal damplins: Erath eattering; doin motion effects: interstitial diflusion : ハ: hish and low ally) litulle distoc:a1 'ffects: sommed trammission in single tal (quart\% and slassm: ulomed (lamp)h lown dectrons.

Logic Machines and Diagrams
1/urlin Garducr. . Me Cirau-Hill Borok Cor.,
 (1015. s.5. (10)

The anthor liere sumber the mechaniif ated electrical mathimes desigmed to sube problems in Formal logic, and of 2ametrical methods for donime the same thing.

Much of this material is published for the first time including an explanation of all original notwork diagram for solving problems in the propositional calculus; a popular exposition of the new binary method of handling the calculus; and instructions for making car foroard devices that quickly identify valid syllogisms or show the formal fallacies of invalid ones.

A Comprehensive Bibliography on Operations Research

()perations.s Ressearch Ciroup) Cisse Instilule of Terchoology, John Wila! 道 Soms.
 155 mp . 85.50

Extensise bibliographer of the ()perattions Reseatch Society of tmerica contains listing of reterences for all the material published in operations research Whomal, Decomber. 1957. Approximately 3000 titlen of articlos, books, reports, proceredings and to speccialized bibliographice are compiled. Alphabetic organisation and serial cross-referencing comprise most of the text, followed by 40 ypectial subject bibliographies.

Do You Use Vacuum In This Range?

From millimeters to microns . . . in this region the significant economy of the KINNEY KMB Mechanical Booster Pump is self-evident as shown by the performance curve above. And, this high efficiency is doubly attractive because these KINNEY Pumps provide clean, dry Vacuum . . . no backstreaming . . . automatic operation . . . no stalling problems from gas bursts.

Tismey
 mechanical booster HIGH VACUUM PUMPS

The KINNEY KMB Pumps have proven themselves in the most difficult applications. They feature high pumping speed in the low micron range and their design provides for addition of interstage cold traps with minimum plumb. ing or other complications. Their performance, even where outgassing of materials renders other pumps inoperative, stamps them as the major contribution of the decade in High Vacuum service.

KMB $\mathbf{1 2 0 0}$ with free air displacement of 1230 cfm . Other models provide pumping speeds from 30 cfm to 5100 cfm .

WRITE

for Bulletin
No. 3180.1
It's FREE
NGMEMFG. DIVISION

Please send me copy of Bulletin No. 3180.1 describing KINNEY KMB High Vacuum Pumps.

Name

Company
Address
Zone \qquad State \qquad

CIRCLE 240 ON READER-SERVICE CARD

Radome designed and built by Long Sault Woodcraft Limited. St. Andrews East, Quebec, for the United States Air Force RADC

Looking upward from the inside of the world's largest
stressed skin sandwich radome built of translucent fiberglass panels securely joined by hundreds of DUAL-LOCK fasteners

Radar antennae along the upper perimeter of North America's defense system are enclosed by protective domes which stop ice, snow, and gales up to 150 mph . This precisely engineered pattern of fiberglass panels is erected quickly and surely, under the most adverse field conditions, using recessed Simmons DUAL-LOCK fasteners.

DUAL-LOCK is ideally adapted to panel fastening for military shelters, demountable shipping containers, aircraft cowlings and guided missiles.

Features:

- High load characteristics. The standard No. 1 DUAL-LOCK withstands $2500-\mathrm{lb}$. tension, and with modifications, tension loads of 7000 lbs . and over.
- Double-acting take-up provides great closing pressure, with minimum pressure on operating tool.
- Positive-locking. Trigger action insures fully open and fully closed positions
- Vibration-proof and impact-proof. Will not accidentally unlock or loosen.
Write for catalog "1257. Complete specifications, drawings, details of DUAL-LOCK and other Simmons Fasteners with unlimited money-saving applications.

 1763 North Broadway, Albany 1, New York
 See our catalog in Sweet's Product Design File

IDEAS FOR DESIGN

Three-electrode glow tubes are at the heart this simple repeat-cycle limer.

Repeat-Cycle Timer Uses Glow Tubes

The aecompanying cirenit nses the recent announced General Electric NE-77 three dee trode glow tubes in a repeat-cycle timer.
A Potter and Brumfield impulse type reta (AP17-4PDT) was used. Satisfactory operation resulted with 165 v on the outer clectrodes a
 betwork provides a minimmom period of when one second with 1 of cappacitors and 4 meng 1 vistens as the time comstant clements
The timing may be varisyl in fixed steps. of (an be made contimens by using potentioneter
Mark D. Bedrossyan. Athuntic Etectromu I.ahs.. Asturry Park. N.J.

DC Scope Amplifier

I) (amplifiers for oscilloscopes suffer from stability caused by drift in the supply voltages gooce way to circumvent this drawback is to a symmetrical amplifiers. The drifts then cancel the output, because of the symmetry. The sigul however. is applied in a nonsymmetrical or d fremential fashion, and appears amplified at the output.
If the amplifier has several stages, the necess for a direct comnection between plates and gri increases the B-plus requirements. The simp 2 -stage amplifier shown in the diagram appear in Elektronik of March 1957. It uses only H tubes, a $12 \mathrm{AX7}$ and a 12 AT 7 . The circuit's ss metry is evident.
An interesting point is that stahility increa

Orift free twe tube amplifier for oscilloscopes

The value of the cathode westons，hernere the mall hish valuen found in the diagram．
In．ID．17T＇s plates are directls commeded to Weflection plates of the cathode rat tollo． 1s a comtrolled be the input potentioncter in
 comene th the oppoceste erid．The small de ervel
 sarions supply soltages may consemiently be

a fonn its negatian end．
｜n． 1 I．小八imum Latin of this amplifior is about （8）．Its Faudwidth extends from 0 to $10,000 \mathrm{cps}$ ． 11 it can detiver 200 ，peak to peah withont dis－

> 1.1. I Martin. (armeis Imsilute of Terlt- 4．Pillsturr：h Pa

One Wire Carries AC and DC
llin circenit is useful in tramsistor circnits where ＂rice in at cable minst carre in de woltage as 1 an in an sigual wit the fice voltages must isulated．
Tha－resistors and capacitors are chosen to pro－ We the required isolation between the ac input sual and B plus，and between the output ac and －If udditional decoupling is necessary，RI can replaced by a low pass filter similar to the out－ in filter．
Ifred W：Zimn，Farrand Optical Co．，Inc．，The men $\mathrm{N}: \mathrm{Y}$

W h proper isolation at both ends，one wire can y dc and signal currents．
El CTRONIC DESIGN • February 4， 1959

NEW！

 all electronic A－D converters digital voltmetersfor medium and high speed applications

The $\mathbf{7 0 0 0}$ Series
for high－speed conversions． U＇p to 1000 second •1 megohm input impedance －Automatic polarity • 3－ and 4 －digit models • Sensi－ tivity and resolution 0.01 ＇
－Transistorized logic circuits • Transistorized direct－reading indicators

The $\mathbf{8 0 0 0}$ Series
for medium－speed conver－ sions • Maximum balance time 100 milliseconds • 1000 megohms input impedance at balance • Automatic langing • Automatic polarity
 and resolution $0.01^{\circ} \mathrm{c}$ 。 Totally transistorized．

Both the 7000 and somo Series develop cooltage state BCD outputs for data recorder entry．Standard code is 2，4，2，1：
other codes arailable on special order．
E 3540 Aero Court
Electro Instruments，Inc． 1

BE SURE BUY E-LITES

engineered especially for computers,

 control systems, military applicationsSon can monnt almost any E-lite in a s" hole. They 11 fit your sustem application exacth because the yre tailor-made for the joh by ststem engineers. Choose from mans replaceable-lamp or permanent.
lamp types. with or withent built-in resistorss and in a dariete of leus styles, colors and data readont capacitios. 10)'; electrical and mechanical imspection assures you of full E-lite quality in every uüt,

TWO-WEEK DELIVERY ON 1560 STANDARD VARIATIONS/SPECIAL

REPLACEABLE-LAMP TYPES
Single-lamp holders for neon or incan.
descent lamps With or without built-in resistors Variety of replaceable lens types Up to 3 digits avail. able on flat lenses.
$10 H$ holder shown patentap shown Cresistor models)

WRITE FOR

COMPLETE TECHNICAL INFORMATION
With photes. descriptions, dimension drawing for the complete line. Submit your upectial prohlem for our engineered solution. Information on our neon lamp) aging service alon sent on reguest.

TRANSISTOR CIRCUIT NEON LIGHTS
With built-in drode-resistor net work - no adapting needed Stable, preaged lamps fire on minimum voltage Several mod. els. Round or flat-faced lens. dual-resistor type (patented) shown

LOW-COST INDICATORS Neon and incandescen panel illumination. read out. etc. Round or flat
lens. Lens marking ayal lens. Lens marking avall.
able. Push-on re-
tainer for instantaneous installation Mod els $1 B^{\circ}$ (neon) and ik (incandescent) shown - Patents applied for

PERMANENT LAMP PERMANENT.LAMP READOUT TYPES With permanent or changeable lenses, and lenses taking up to 3 digits Neon or incan. descent lamps Mode
leg (neon) shown.

Sales representatives in principal cities

Trimmer capacitors help contro the switching 'imes in this binary adder

Controllable Switching Time In This Binary Adder

Ia thas lomary adtho. He witchame tome In

 mid till..

1/4 Per Cent Speed Regulation With Centrifugal Governors

Comontional centrifugal enowemom tor spead control of de motors sulter from the violent changes of speed rates caused by the \&overnow contacts switching a large part of the field power. the y suffer from the load hatnding limitations of the contact fingers; and thes sulter drift and inaccuracy due to contact arcing and pitting.
In the transistorized speed regulator shown in the figure the centrifugal governor is used onl? as a lightly loaded error detector. The problem of arcing and pitting does not wist: the drift is minimized: and the regulation is better thath 1 a per ceent.

The regulator shown is designed for a $1-2$ hp firko rpm motor, operated from a 24 , supply. which may vary from 20 to :30 vde. The regulator uses a preamp transistor (2 N 190) and a power transistor (H6).

The centrifugal governor controls the current through the preamp. It need handle only a few

B BEATTIE-

 1000 N Olive Si. Anaheim. Califo CIRCIE 244 ON READER-SERVICE CAR

FAST ACCURATE CALIBRATION Now possible with one completely self contained $A C-D C$ calibration standard requir ing a minimum of operator training and pre. vious instrument calibration experience.

> Compact Light Weight Model 829
> INSTRUMENT CALIBRATION STANDARD

QUICK CONVENIENT TESTING Portable AC-DC unit contains all power sup. plies and standards in one single cabinet.

Precise, practically error-prowe check ing of mont type of electrical indicating incruments in dail) use is a rowune conof qualies conerol br frequent calibration if instruments and alliced test equipment can be acoumplished within departments In as ailathle personnel. A mechanical inde: explains step-by-step test procedure.
 WESTON Special Meters E used as standarros have scales, knife edre pointers and are adusted to bet
than 0.2% accuracy

Calibration to full sale accuracy of 11.5C; can be accomplished for all instruments measuring d-c woltage (22 ranges) from 0.25 mv (t) 2000 volts, d-c current (22 age (19) ranges) from 1.5 miveres, 1500 volts, and $\mathrm{a} \cdot \mathrm{c}$ current (1.4 ranges) from 1.5 ma (1) 20 amperes. Net price $\$ 2(150$. f.o.b Boonton, New Jersel.
Write for Technical and Application Data

Radio Jrequency

LABORATORIES, INC.
Boonton, New Jersey, U. S. A.

Transistorized speed regulator uses governor onty
michwatts. The current through the preamp
 the power transistor which controls the chrrent Herongh the metors shant tiedel

The regulator can be used to comtrol larger and shiller molns, depernding on the power handing Wpabilition of asalable peower tramsistors. The fied power which must be haudled is a function of the difference power required by the motor fied between me losid and foll load.

Convenient Radiation Dosimeter
It is, ahas, 14 well-known fact that, abose a eot 1.1"1 . momont radiation can be dangerous .anl exell fatal. A most, for all people exposed to radiation, is smbe sort of commens-imeterations de. wee which com be permadicalls derched to ascert.ain that its weare las wet bayn whmitted to : dome of ratliation "xomedters 1
The Radien comenter hwow on the phentestaph has serveral advantases. It is tied to the wrist in all ordinat? Match. and is just as comonoment and
 indications. and can bre rexert at will athl manerd . ॥! w.
Dr. 1. 1: J Martin. Carneseir Insitule of Torsh molosy. Pittstmrah. P'ル

Wrist-borne dosimeter.

your own pots - 100% pure!
 Of course youill need an aur condturnme plant to keep the monsture controlled and the air dust free. And yonill have to work wow swme pretty elaborate assembly technuques tw keop tho whole works inn contaminated. Petty details

You could do all this - but you don't have tio and moret S_{0} why not take advantage ofir sealed room and our advanced techniques - and eliminate all the fussin'? You'll gel the accuraci and reliability you have a right to expert from Ace. So do it the ea your ACErep now'

Here's one of our pure pots the 500 Acepor ${ }^{88}$ Highest resolution. 03% independent linearty $1 / 2^{\prime \prime}$ stze. sub-muntature Spectal prototype seetion insures prompt delwery

ACE
ELECTRONICS ASSOCIATES, INC
Q9 Dover Stroer, Somaville 44, Moir.

circle 246 on reader-service card

15,000 hours of $55^{\circ} \mathrm{C}$ without servicing or oiling and satel gaing strong.
 Air-Marine Motors 90 to sea
SEAWOLF'S VITAL ELECTRONIC EQUIPMENT COOLED BY AIR - MARINE MOTORS

15,000

10,000 HOURS UNDER THE SEA:
When the U.S. Nayy's alomic-powered submarine - miracle of modern engineering - churns through the waters at 50 fathoms down, its vital electronic equipment is constams ever devised.
Incorporating into its design equipment never before mounted for undersea service, Navy engineers were confromer week after cooling problem, for the Seawolf was to stay subme must be dependweek and month afly cooled.
Tough project? Nol at all for Air Marine. It's highly trained staff of Tough project? Not at all for Air Marine. Ans intly designed, to rigid engineers pooled their knowedge could run continuously toward a Navy speciricalise - more that a solid year
Whatever your problem - small or large - this same experienced engineering staff is yours to command. Contact Air-Marine for your engineering sto the the best motors skill can produce - the finest money can buy.

Air-Marine's Seawolf Motor

air.marine motors, inc.
369 Bayview Avenue
Wout Coant Factory: 2721 sorry Ave.
Amityville, N. Y. tos Angelest coilit.

Above is on ait-marine motors advertise
rent which first appeared in July. 1957 See us al the IRE Show - Booth 2315

IDEAS FOR DESIGN

Hair trigger relay uses vacuum tube to speed ip relatively slow relay.

Hair Trigger Relay

imultamenemsly en that a mumber of cirenits be imnlameonsly switched at a high speed. The witching speed of the omll a a a ailable multiple pole rellay wis tom slon
While physical characteristico of a sealed relay cannot be changed, switching speed can be improved to a degree be wortening the enerent buildup and decay times,
The relay was incorponated in a vacmum tube ciremit mased so as to callse a current flow just shart of the minimum required to conergize tho relay. A positive going input to the tube gried energizes the relay. As som as the relay operates. One set of contacts comects a bias to the gricl return, lowering the current to a point barely suf-
ficient to keep the relan ficient to keep the relay encrgized. A negative going signal cuts off the tube, deefnergizing the
relay
The operating time of a six pole double throw relay was reduced by a factor of three in this cirw.
W. L. Godsey, Engineering Asst.. Applicd Plysics Lab., Silver Spring, Md.

Enlarge Small Holes

> In Thin Sheets

It's often necessary to enlarge a small hole in very thin sheet copper or other sheet material. Small drills won't do because they often twist the material. If they're used on printed circuit boards.
they can tear etched circuits off the they can tear etched circnits off the board.

VIBRATING CAPACITOR VIBrating CAPACITOR
 NEW

> STEVENS
> INORPORAED ARNOLD
etkins strest SOUTH BOSTON 27, MASS.

- new cabinet
- new circuits
- greater than ever performance
- smart appearance
- faster delivery schedules

Telonic Sweep, feature 5mathers less than 10 mucrowolt leakage Dependable for productorn. preche for emgincerng. Varmety of markers. Crusal comerolled simgle of harmonte plug-th with cetcraal marker prowstom on all models. Variable marhers availahle on many mowel
Telone Sweop-Line cabine features hinged top for casy accessubilty. Wher- raich mounting. perforated top and cooling vents. Dimensions $-20^{\circ} \times 10^{\circ} \times 15$ Altactive two-tome finish is satin black and aluminum gre
All models previously available are

model no swept range

H-3	1 mcto 300 mc
$\mathrm{H}-\mathrm{m}$	

H-D. Models $\quad 10 \mathrm{kc}$ to 100 mc
L.D Models $\quad 3.5 \mathrm{mc}$ to 140 mc

S- 0 models
85
Many other Telonic instruments are rates and WATTS variable sweep

Delivery of Telonic Sweeps is 3106 weeks Prices range from $\$ 645$ to $\$ 745$ - optional fixed marker plug ins and variable markers extra.

INDUSTRIES, INC. BEECH GROVE, INDIANA CIRCIE 249 ON READER-SERVICE CARD
needle file: chached in the drill in plate ol standard twist drill. does the joth casil!. The Him shee material is stowl fed ontu the rotating file till the howle has been collanged to the propere size. The file tikes small milling conts and is mot likely to grab and tear up the material
 torn. Int

Multi-Vaned Rectifier Package Takes Oil Bath

Resistant to electrical leakage, resistant to 30 g shock loads, and very durable the rectifier assemble in the photengraph operates in transformer oil at temperatures from - 6 fil to (9) (

The Ray theon Mambacturing Co, at Waymard. Mass. designed the compact. light-weight package for a high-voltace shipboard power supply Laminated formicat rods were machined and drilled to form the sames. The holes were purposely left rough to increase creep resistance.

In operation, sis of these assemblices are momeded on a sliding rack and lowered into the transformer wil. Electrical conmections with the rest of the perwer supply are established when a lid is holted down.

The arrangement permils quick smap-in replacement of an entire assembly in the event of rectifier failure

Compact rectifier package operates submerged in oil.

with Chassis-Trak slides

 chassis locks in seven positionsWith the touch of a finger on the han dles of the chassis. it can be tilted up or down ($45^{\circ}, 900^{*}$, or 1115°), and locked in any one of seven different positions.
This means you can remove tubes or This means you can remove tuhes or
chech circuitry on the chassis quickly check circuitry on the chassis quickly
and ciasily, even though the chassis is and easily, even though the chassis is
at the top or the hotlom of the rack. at the top or the holtum of the rack..
and the chassis will not swing or move and the chassis will not swing or move
during servicing. It is firmly locked in during servicing. It is firmly loched in
position! A spring mechanism allows position! A spring mechanism altows
instant removal of the chassis for cominstant removal of
Chassis-Trak stides are produced from cold rolled steel. and give smooth slide action because of a permanentdry, dust-repellant phenol epoxy for mulation . . . the more you use the slides, the smoother they operate
With the pencil-thin Chassis-Trak design, you can cut engincering costs by mounting $17^{\prime \prime}$ chassis in standard

For further information, contact:
525 South Webster. Indianapolis 19, Indiana CIRCLE 250 ON READER-SERVICE CARD

19" rachs. The slides (9 lengths, $10^{\prime \prime}$ to $24^{\prime \prime}$ "upporting up to 275 ths .), are available from stock, in either the "detent" model shown athove, and the haste" model. which tilts freely upwards but has no lock assembly Chassis-Trak enpineers will also cys tom-huild slides for any of your necial installations.

The artist has captured a rare expression on the face of Sigma's general manager - one of happy satisfaction and complete contentment. This is
because the sales dept. has just told him (1) about a new Machine of Pleasure which uses a Sigma product and (2) that the customer is overjoyed because the Signa product works right. His corporate corpulence is
enjoying every minute of it, while it lasts. By publicizing this latest application triumph, it is hoped that others will be spurred on to similar successes.

An enterprising consulting engineer on the W'est Coast recently took on the job of building a fully automatic machine for folding Chinese fortune cookies. The specs called for handling a piece of hot, flexible cookie dough every five seconds; folding it in two directions and getting the fortune inside the cookie between folds; using up 420 different fortunes before repeating. The machine slices printed fortunes as required from contintoous rolls. It was at this point that consulting cookie engineer

W'illiam E. Thomas asked his E. E. brother Frank how to keep the slice's
between the lines; since brother Frank reads Sigma ads, his immediate reply was "Sigma Photorelay" (we like to think). One was purchased and
rigged up to control the paper feed, by sensing black bars printed on the rolls. Brothers Thomas, their project engineer Charles A. Lindberg
(honest!!, their customer and Sigma are now all entranced by the results.

So one more banner should be raised for the unsung heroes whose accomplishments do not go up in three stages and a deafening roar, but simply "kerplunk" every few seconds as a new little item is unfailingly produced. If you have such a project, and light sensing can be put to a useful purpose, a Sigma Photorelay might be worth trying.

They come ready to plug in, switch 3 amps. resistive at 120 VAC, cost only about $\$ 12.00$, the cookie boys even went so far as to say "we certainly could not have installed anything else that worked properly so inexpensively." W'ho knows, maybe you could even build a machine to get the ordinate and abcissa straight on hot cross buns.

SIGMA INSTRUMENTS, INC.
91 Pearl St., So. Braintree 85, Mass.
AN AFPILIATE OR THE PIBMER. PIERCE CO. (0.neo ioso)

REPORT BRIEFS

Rotary Motion Control

1 mechamical decelderator developed to stow the spinming of a free-falling paratchutist man ahos hatere such practical wse as the positive de-
 turbine motors. A light mox seme sis teet lome "ith two sterel spheren contralls lecated and redrained be a triggering medathism. Hue laborat tor? model was conceriad on the pribeiple that dariations in the moment of enertian of a rotatines bods will brime high speed dhathese without a reaction on the support. In Tmalysis of "1) Drier for Combrol of Rotational Morionn. . 11 (arlsom.

 (1111 2.). 1). (

Beryllium Data Summary

The ratader who mirnt unichl whtain a widl.

 tion. Fabrication. propertios and applications.

 bicwed bricfly. In attempt is made Wo determime
 Ferces projects that envisage the possible use of berillimen as a structural material. Bralllitm for Sitructural Applications: I Rovie'l of the linrlassifical Litcrature. II: Hode: Dafenose Matals Information Conlar. Battelle Mamorial Instiluta for Assistant Secretary of Defonses for Ressearch
 Order PB 121648 from OTS, U.S. Department of (ommmarec. Washington 2.5.1).(

Encapsulation of Electronic Circuits

Qnantitative effects of the encapsulating dielectric upon the electrical charracteristics of the embedment are discussed. Of major interest is the work initiated on the elecetrical performance of resistors. capacitors inductors and simple cir(aits. at frecpuencies $\quad 11$) to 240 megacelcles. The imesestigation of the electrical and mechanical properties of barious resins was necessary in order that most suitable encapsulent be seleceted For the specific application. Encolpsulation of Elloctromic Circuits, Richard Calicchia, Criffiss Air Forcer Base. N.). Jan. 19.2s. 22p microfilm \$2.i0, photocopy \$4.s0. Order PB 13:347.5 from Library of Congress. Wiushington 2.5. I). (:

HUNTER INSTANT LIGHTING TORCHES

for milirary applications at sub-zero tomperaturpa

- developed in co-ordination with Engineer Research and Development Laboratories. Fit. Belvoir, Vat.
- unpowered. open flame burners - lighted instantly with a match at temperatures down to -ソ日 F .
- hurn any type gasoline or JP-i fuel.
- tor a wide range of sub-zero, spot heat applications: small engine starting: start-aid for bulldozers, snow plows. earthmovers. special-purpose equipment: de-icing bogie wheels. tracks, heavy-duty control equip. ment, etc.
- capacities: 15.0000 to 200,0000 BTU Hour at variable pressures.
Other Hunter military cquipment: space and personnel beaters; engine beaters; refrigeration units.

for complete specifications and details

heating and refrigeration systems CIRCLE 252 ON READER-SERVICE CARD

Ammeters - Microammeters Wiliammeters • Voltmeters - Millivoltmeters Megohmmeters - Multimeters
Combining the revolutionary BIFILAR ictionless movement with a weightless GHT-BEAM pointer, Greibach Precision Weters represent the most important adince in meter design in over 50 years. The ittented Bifilar Movement replaces ,ewels. livots and hair springs to provide virtually \& destructible accuracy and sensitivity

ONLY
 GREEBACH PRECISION METERS

offer these NEW STANDARDS of performance

- ACCURACY 100.25° o, indefinitely
- SENSITIVITY in : micioampere scale (25 x 10 amps.)
- OVERLOAD up to 100.000 。
- SHOCK UP to 500 g's on meter movement
- VOLTMETERS up 105000.000 ohms volt
- ENERGY DISSIPATION as low as $1.2 \times$
- 10 watts
- REPEATABILITY of 0.1° o or beller with. out tapping
TRUE direct measurement for even the most liypercritical uses and conditions. Exclu rue features now make GREIBACH Meters
THE most reliable way to
- check transistors, diodes, lubes, amplitiers
- test ionization and grid circuits
- meter extremely high voltages - control by light-beam photocell operation
firetbach Precision Meters, for portable, Wench or panel use, are available in 3 case minch or panel use, are available in 3 case mind multiple ranges. Write for complete and multiple range
CREIBACH INSTRUMENTS CORPORATION 315 NORTH AVE., NEW ROCHELLE, N.Y. - NE 3.7900

Complete Missile Simulator

Development of compenents for all all-clece tronic analoge (omputer facility described as meflicient to simulate modern guided missile sustems is rexiewed in this report. The proposed computer. desisned to epereate ofr al:l time scale and utilize a method in which programmines conld be dome oft the machine matere it possible to store problems solved in as complete a form as pessible. The computer. called the Dynamic Sbstems Synthesizer. utilizes a high precision eleceronic time division multiplier and all dectronic chopper which climinates the olectrochemical shatatems trom the de amplifiers. An dectronic function qemerator msing silicon diodes aminates the need for servo function \&emeration. Teest ressults indicate the practicabilit! of the alleloctronic antomaticalls programmed analose (omputer. I)!namic Systoms Syntluesizer. E. (Huller and otherss, Radio Corporation of America

 from ()TS. \& .S Dapartmont of (ommorece Itwsh-

Analysis of Redundancy Networks

Varions properties and characteristics al probabilistic redundance motworks can be med to represent reliabilit! relationships in (omples armipment contamine redundant eloments. Amal!sis is alse appliplathe to larese scalle sis stems (e)ntaining a multiplicit! of alternation subsestems of telecommmonication mets containing possibilitiess of alternation ronting. It hats beern shomen that such retworks are amemable to sersematic analysis: several methods and technigmes hate been suesested for dealine with such problems. Analysis of Redumelancy Noluorks, Fred Moskoucita, I.S. Air Force. (iriffiss Air foree Base.

 Eress. W'ushinstom 2.i. D. (

Visual Display Frequency Indicator For the 10 to 90 cps Range

I bew system has been designed and constructed which gives a smultameons visual displat of all frecquencies in an arbitrary periodic signal, in the range from 10 to 90 eps. This lowfrequency indicating system uses tom banks of vibrating reeds to accomplish the vismal displat. Vistual Display lirceguency Indicator for the 10 to (H) cp.s Rance, S. R. Curla!, F. II. Litley, and N. II. Gininard, U.S. Natal Ressearch Labooratory. Scpt. 19.5S, 20p, microfilm \$2.40, photocop! s:3.30). ()rder PB 1:3420.5 from Library of Congress. II ashington 2.5. D.C.
measure vibration
at 500 - F without cooling or correction in IG0) (l) high intensity noise fields

ENDEVCO
accelerometers
 'awhat tief?

Endeven Accelerometers, employing Piezite ${ }^{\text {F }}$ Element Type II, measure vibrations and sherek

 (©mplete cable alld cathode Followers stems to

 for making up Enderon u! जems for flight . mid labor.atery use
 ometer systems effectively measure 10 g of vibation in a 1 (i0) (ll) moise fichld "ith sicnal molise ration ol 20 lo 1 These intexalal acorleronneter-amplifier pachases h.se a temperature r.unce
 .lly sealed. elmanate (ab)le mose
 lex.ation of the implifier is mot mexessal?

Information on Endevco dynamic measuring instruments is contained in a new. Illustrated "Engineering Manual. Series 2200. Accelerometers." Included are general descriptions, specifications, performance data under environmental extremes. calibration procedure, maintenance and prices of the many types of Endevco accelerometers. pressure pickups and accessories. Mall coupon today for your copy. Better still, tell us your specific problem. Chances are we can be of help.

RUSSIAN TRANSLATIONS

Fig. 51. Block diagram tor the trequency

Frequence comersion means, in wemeral. : shift of the specetrom alome the Frempence sata into : higher or lower frepluence rathese. It is is

 ascillation to be comerted bo a smmadidal ancil
 lator. This procedure is alten called heetereshor ing.
 product of trigonometric fonctions of difterent arsuments contains two terms. one of which de-
 of the arsmments. For (wample.
 hifting the modulation upectrom from the vanes
 trequencies (om the order of wereal hamderd
 comsersion.
Fige gl shews a blech diaderam of aptipmont that pertorms all these operations, as a result of which the spectrom of the initial sistal is shilted

 Lect wo mote mow that if we vary the heterochme fregueney ing gradually. the tramsformed spere trom will be shifted eradmalls alones the tre quence: scale: , ince the middle frequernes of the spectromin is

The possibilit! of such a shitt umen or the basis for the operation of the supereneterodyme recober. The amplification is carried out at ant intermediate frequency and the intermediate. freguency amplifier (IF \backslash) has a large momber of vages that contain intermediate frepueney filters. The most importand factor in this circonit is that thee filters are tmerel to a single fived band. In the superheteroclyne recedere it is not the filters (or bank circuits) that are tumed to the frepuency of

Micro Miniature Electronic Packaged Assemblies

Based on "ork of the
Diamond Ordnance Fuze Laboratories, Ordnance Corps, Department of the Army

We design, engineer and manufacture micro-miniature modules for your products and to your specifications

c
ELECTRONICS DIVISION
Cleveland Mefal Specialfies Co. 1783 east 21st street cleveland, ohio CIRCIE 257 ON READER-SERVICE CARD

ELECTRONIC DESIGN - February 4, 195

new....improved
 IIT-LIINE
 DIGITAL DISPLAY

 with One-Plane Presentation

- Recently developed high-contrast viewing screen for utmost visual sharpness!
- Digit style of your choice!
- Colored digits of your choice! Suitable to environmental ambient room light.
- Digital presentation complementing manufacturer's original equipment!

Here's a new type of In-Line Digital Display: All numbers and/or characters appear on the fromt surface of the unit, and are of uniform size and in. Tensits: In addition to heing faster and casier to read, the numbers
may be quickly secn from any angle of siewing. The In Line Display is available as a single unit. or in assembled ready for panel mounting. The viewing screen extendis the full width of the individual unit so that final assembly presents a continu ous surface for fast. easy reading.
 HOW THE

IN-LINE
DIGITAL
DISPLAY
OPERATES

on a rear projection princi
De When the lamp (A) at rear of the unit is lighted. it projects, the corresponding character on the condensing screen (D) at the fromt of the unit.
WRITE TODAY FOR COMPLETE DETAILED SPECIFICATIONS Representatives in principal cities

INUUSTRIAL ELECTRONIC ENGINEERS
397s Lankershom Biva.. North Hollywood, Calit

$$
\begin{aligned}
& \text { Fig. 52. Block dia } \\
& \text { heterodyne receiver }
\end{aligned}
$$

the recerned humat, but the reveriod nglat that is tumed to the intermediate frequency by using the shift of the sigual alone the Frempency scale. Thii hat priceless advantages. First, the recwiter can be tuned with a single dial (which sets the frequency of the leveterodme oscillator) independently of the number of amplification stages. Second the filters of the i-f stages need not be made turable and can be huilt to chisure minimentin disturtion at masimum selectivity. It should be noted, ineidentally that the superIutwrodse receiver is usually made more complex by adding bigh frequency amplification (ahead of the mixer), but esen in this Form this eirenit makes the best receever. The block diastam of Fis. 5 ge shows, in addition to the elements mentioned, the deteretor (Det.) and low frequency amplifier (LFA).
In conclusion, het is note in addition that a special case of frequency conversion is possible, it which the hextwondse ascillator is tumed ex actly to the frempency "o. In this cass the modulation spectrum shifts tow ards the low frequency region $\left.(i)_{n}=0\right)$. This is the case of the socalled symhronons detection, which will be discussell later.

Chapier 2

Generation of Oscillations

15. Self Oscillations

baen hind of radio eynipment represents a fone chain of lincar and nonlinear links. Passing throush this chain are oscillations, transmitted from link to link in amplified or in converted form, depending on the purpose of the particular link. It is important that the oscillations in most links be produced only under the influence of the ascillations in the preceding link
Thus, for example, at the output of a given stage of amplification. the oscillations occur only if a varying voltage from the ontput of the preceding stage is applied to the input of the given

the

PULSE GENERATOR

with a

"BRAIN"

MODEL 138

- 1 us to 1.0 second (no sag!)
- Rise and fall fimes nominal af $0.15 \mathrm{\mu s}$.
- Less than 1 cps fo 250 kc
- Single PULSES, recurrent PULSES, aperiodic PULSES ${ }^{\text {d }}$
- Single PAIRS, recurrent PAIRS, aperiodic PAIRS
- Single TRAINS, recurrent TRANS, aperiodic TRAINS
- $\pm \mathbf{3 5}$ volis output info 50 ohms
- Calibrafed affenuafor to $70 \mathrm{db}, 1 \mathrm{db}$ sfeps
- Spike, sine or square wave sync accepted

CIRCLE 260 ON READER-SERVICE CARD

Phase Sensitive Demodulator

 and Power SupplyProvides three phase sensitive channels and one a-c reference channel. Units fo \quad ps, $1,200 \mathrm{cps}$, or special reference frequencies. All outputs limited.
Phase sensitive channels
Input: 1 to 3 volts rms, adj., at
megohm
Output: 0 volt in phase. 5 volts out of phase, referenced to input, at 100 ohms. Optional ± 2.5 volt output available
Ripple: Option of 40 mv peak-to-peak for modulation bandwidths of 25 cps ,
or 25 mv for bandwidths of 8 cps
Linearity.
Stability: 2% for line voltage variations from 105 to 125 volts
1% for $\pm 5 \%$ frequency change
REFERENCE CHANNEI.
Input: 100 to 130 volts
Output: 0 to ± 5 volts
POWER REQUIRED

HOOVER ELECTRONICS COMPANY

110 WEST TIMONIUM ROAD, TIMONIUM, MARYLAND
CIRCLE 261 ON READER-SERVICE CARD

ALLISON variable FILTERS

Proved dependable in years of service*
Allison Continuously Variable Passive Networh Audio Frequency Filters have been in constant use for a wide range of lathoratory and production applications for nearly a decade. Their reliahility through years of service and their high performance charateristics have led to improved operations and to the development of many valuable new applications.

Alliwon Fillers have no valuum tuber no power uuply a a wide dy namic range low lesel or high level operation: low paws, high pars. or band pass: and no ringing effect
*Allison Variable Filters have been used time and *Allison variable filters have been used time and dation of Illinois Institute of Technology, Chicago III. Harvard University. Cambridge Mass. Woods Hole Oceanographic Institution, Woods Hole. Mass.

ALLISON FILTER

 $2 C$
SPECIFICATIONS

- Frequency range from 9KC to 670 KC
- Designed for use in 600 ohm circuit
- Maximum input $21 / 2$ volls
- Passive network - No power supply
- Low loss-approximately 1 db in pass band
- Plug-in or built-in input--utput trans. formers available for other impedances
- 45 da attenuation in first octave
- Size-15 high. 7^{7} deep. $5^{1 / 9}$ wide
- Weight- $121 / 22$ pounds. Fully portable
- Model 2CR, rack panel also available
- Basic price for Model 2 C $\$ 345.00$ f.0.B
\qquad Write for Engineering Bulletin with complete technical data.
Allison Laboratories, Inc. LIB5 E. SKYIINE DRIVE , LA PUENTE, CALIFORNIA

BROWN
 CONVERTERS

put stable perform-
ance in your measur-
ing and servo loops

These synchronously-driven choppers handle d-c signals as small as 10 " volt. SPIOT switching action. sensitive, stable performance Ideal for computers. servomechanisms, balancing circuits. Available with special features such as fungus proofing. grounded housing, mica-filled base. various contact percentages. Weight: 10 ounces. Prices from \$36.

Driving coils in 6(1)-50, 4() and 25 eycle converters are energized by 6.3 volt a-c. 400 -cycle converter: use 18 volts. Other specifications on chart at right.

Minneapolis-Honeywell. Wayne and Windrim Avenues Philademphia 44. Pa.

Honeywell

H Fint in Control

Sories 2000
Grayhtll
Push Buthon Swirches

THINK BUG

From normal, conventional size to ultra-miniature - the Grayhill line of push button switches can meet vir-
ually every requirement Rated capatually every requirement. Rated capaV. AC resistive - and 10 amp . to $1 / 10 \mathrm{amp}$. throw, - silent or and single or double pole, solderless terminal style are available

Write for Catalog

Phone: Fleetwood 4-1040
565 Hillgrove Ave., LaGrange, Illinois
PIONEERS
CIRCLE 267 ON READER-SERVICE CARD

mark any wire faster, at lower cost!

BRADY PERMA-CODE WIRE MARKERS
Self-sticking - go on fast to any type wire. Tel which wire goes where. Cost less than $1 / 8 e$ pe lead All-vinsl, polvester film, glass cloth. alumi num foil. vind-cloth. Color coded to meet NEMA spectications
Write for

т.н. BRAD

787 West Glendale Avenue - Milwaukee 9 , Wisconsin - Est. 1914
CIRCLE 268 ON READER-SERVICE CARD
 \title{
题
}
 \title{
题
}

Visual Material Should Be Seen
Contlemen
What amovs you more as a listener? Poor delivery by the speaker or poor presentation of ristral material? Many a well-organized. wellpresented tectunical talk has been marred by slides and charts which did not illustrate what the were supposed to. could not be seeme or did not advance the theme of the talk
To) make a "pieture worth a thensand words." , lides. charts and other illustrations must present intormation collections. Vismal material should

1. Explain thromgh sight what man bo difficult to grasp throngh hearing.
2. Supplement your oral discussion graphically and reinforce important points.

Furnish a guide for the speaker. The illus trations become your motes.
Illustrations should be both simple, so that they are grasped easily. and larse enough. so that verome in the andience can see them. Fonn if cour subiect is complicated. wee simple illustriafinns. If !(m) make !our illustrations complen your listemers will apend torn much time decipher
 admally. each slide or chart would illustrate : single fact. The ken peoint in ants slide on chart must be grasped ynichly be the andience. If your information is tox) detailed for one chart, plan to loreak it ip into a suries to be shown in sequence. Remember that leaving the slide in view tor lone will canse the mollowkers to filget in their

Make a our titters shert. Cherose substitutes for long table's. such as live graphs, bar charts, percontage or volume "pic" charts, symbolic reprecontations or photographs. Plan on sizing charts to suit the number of persons expected to attend. I chart 24 be 36 in. shomld be easilv viewed bo a group of $50-100$ persons. Try a 36 by 40 in chart with letters at least four in. high for andicrices in a larger roem or small auditorium. For a larser auditorium. slides projected on a large creen are more practicable. You might want to see how your charts and slides will look from the back of the meectiny room. Professional projectors have cnowsh brichtuess to show clear slides in a

HIGH-SPEED, MINIATURE STEPPING SWITCH

For: Automatic switching, circuit selec tion, and timing.control

Featuring: - 80 steps per second on im pulse drive 30 contacts per bank pulse drive 12 banks -only 17 oz. in weight - unique sequence switching

Write today for complete technical data on the unique Miniature Uniselector - ALSO on the Two-Way and One.Way Stepping Switches

41 University Rd., Cambridge 38, Mass agents for general electric company, lto of england CIRCLE 269 ON READER-SERVICE CARD

your buying guide to the world's largest stocks of ELECTRONIC SUPPLIES FOR INDUSTRY

- Transistors \& Diode
- Relays 8 Switches
- Receiving \& Power Tubes. Transformers
- Receiving \& Power Tubes - Racks, Cabinets, Chassis - KNIGHT Public Address \& Paging Systems Simplify and speed your purchasing of electronic supplies and equipment at alilied. We make fast, expert hipment from the world's largest stocks of evervthing chases. Send today for your free 1959 ali.ied Catalog -the complete Buying Guide to Electronic supplies for Industrial and Communications use

One Complete Dependable Source for Everything in Electronics

CIRCLE 270 ON READER-SERVICE CARD ELECTRONIC DESIGN • February 4, 195

NO. 700 UNIVERSAL COMPONENT LEADS BENDING BLOCK

Quickly adjustable to any component body length from $0^{\prime \prime}$ to $1 \frac{13 " \prime}{\prime \prime}$. Leads can be bent within .070 of end of component and up to $3^{\prime \prime}$ centers. Handles any diam eter lead up to . 045
Dimensions 1 $\times 3^{1 / 6} \times 51$.
Weight: 10 or

A hand fool for bending leads on resistors, diodes, capacitors, etc., to accurately reg. ister with their holes in printed circuif panels.

Only \$19.80 each immediate delivery

Manufactured by.

BY-BUK COMPANY

4314 West Pico Boulevard - Los Angeles 19, California
CIRCLE 271 ON READER-SERVICE CARD

HI-POWER EFFIGIENGY

These operational configurations comprise a representative
adection of Tamar hardware" designed and tested to meet
all military and industrial specifications
TAMAR ELECTRONICS. INC. 2339 COTNER AVENUE - IOS ANGELES 64, CALIFORNIA CIRCLE 272 ON READER-SERVICE CARD
size viewable by persous in the last rows of the meeting hall
A fival bit of adsice. Nake sure the intermat tion in your illustrations allrees with what you will say. If you will have to apologize that the "chart doesnit exactly show," don't use it. Vistal material should help your talk, mot hinder it.

Fohn L. Kent. Manager
Advertisine and Public Relation
Datex Corp
Monrovia, Colis

- The author is past president of the Techurical Writing Improvement Socciety, and is well gralified to speak on this subject.

There's No Easy Way

 D) an Sir:1 teed comperled to write concermine statement made br Mr. Richards in "Printed (:irenit Art. "urh-The Eas Wia" (EI). sept. 3. 195s, p (i2).
"If a cheap and dirty" printed circuit will fill the need for an experiment, it is folly to propare artwork of top quality." Many good designs are rejected because of just such thinking. If a thing is worth doing it is worth doing right. The sat ing realized by doing things the way suguested is minur compared to the time needed to fulls analye the overall design
"Wagic Lantern or Opaque Proficetor पe theod. It seems Mr. Richards has orerlooked the matio reasons for doing the artwork at ant collared scale. The reasons for doing the artwork at farge seale are to reduce erroms. improwe definition and grality of the finisthed parts. The scale of the artwork is nut something to fit the size drawer that the artwork will have to be stored in. Dut rather a bunction of the ressults desired. If one wished to hold $=0.01 \mathrm{I}$ in. on the finisheed article, one may have to draw the antwork att ton times scale if the one preparing the artwork call only work to $\pm .015 \mathrm{in}$. on the artwork. In any cate some tollerance must be left for the fabricator.
Concerninim opayning negatives. If the artwork is of good quality, opaynuing on the negatives is confined to covering pin-holes in the emmulsion of the film, and is not intended to be nsed for drawing the artwork. The time ased in oparquing negatives can best be spent in drawing proper artwork in the begimning. The finished article will always be of lesser guality than the original artwork since the processing is of a degenerative mature.
"The tape and tab technigure produces the best artwork and is highly recommended where proper equipment is available." This is an er romeous statement not based on fact. The finest

MEDALIST* meters
Combine increored readobilily with
 Ionger scole in somene spoce as conven.

 NH.U. S.A.A.A Absisidiar of of imee. opolis Honerywell Regulotor Compony. marion meters

H

CIRCIE 273 ON READER-SERVICE CARD

SPECIAL

"Hot Melt" COMPOSITIONS

for electronic component dipping, impregnating and potting

- Controlled insulation resistance
- MIL and Industrial Specifications.
- Softening point range from $155^{\circ} \mathrm{F}$ to 290 F
- Stability at -70 C .
- Fungus resistant grades available.

Send for GENERAL SPECIFICATIONS CHART on INSULATING and SEALING COMPOUNDS

3446 HOWARD STREET SKOKIE, ILIINOIS
Telephonest \mid ORchard 3-1050
$\left\lvert\, \begin{aligned} & \text { ORchard 3-1050 } \\ & \text { AMbassador 2-3339 }\end{aligned}\right.$
BIWAX OVE 3 y years of BIWAX CORPORATION CIRCLE 274 ON READER-SERVICE CARD

ALL SIZES - SHAPES - MATERIALS Get Commercial Clamps for satisfaction! Fast installation, more secure, top-quality. No whant! Nol learing! No corrnsson! Need to hold wircs. cables, tubing, conduit, hose? CPC has the right size. shape, material, or will design a special clamp for you. toligh, pirmanent, safe. Write today.

Cominercial Plasicis Co.

Write for details.
CIRCLE 275 ON READER-SERVICE CARD

"TORQUE WRENCH" MANUAL

PA. STURTEVANTIco. ADDISON QUALITY/ ILLINOIS

LETTERS

artwork for printed circuit reproduction is pro duced with ink and quality illustration board such as Strathmore double weight, plate finish. This method competes very well with tape meth ods all things considered. It is foolhardy to con sider that tape artwork is cheaper if after reduc ing to final size in the camera, one must spend considerable time opaquing and repairing the negatives.
Sorry if I seem "Hard Nose" about this, but articles such as this lead to misunderstanding that ultimately mean the abandonment of printed circuits in many designs. With proper engineer ing and artwork printed circuits mean cost saving and better equipment in the manufactured articles.

Harry G. Bieker Industrial Designer Burbank, Calif.

Dear Sir
Frankly I think Mr. Bieker's artwork methods are about the type generally used two years ago. My article discussed improvements tested by experience

Regarding the holding of tolerances of $\pm .002$ in. In 99 per cent of printed circuit work the board is used for the mounting of components such as condensers and resistors whose tolerances vary $+1 / 64 \mathrm{in}$. so it would be folly to hold tight tolerances under such conditions. In the etching processes generally used variations of more than .002 in., nicks and pin holes are common. Furthermore, when holes are drilled, it is impossible to hold the entire pattern to $\pm .015 \mathrm{in}$. Therefore, the tolerances in the artwork must be generous and this is accomplished by using as large a tape and tab as the circuit will allow
"The tape and tab technique produces the best artwork and is highly recommended where proper equipment is available." This statement is NOT erroneous and IS based on fact. The basis of any board reproduction, whether it be by silk screen or photo is the negative. The camera will see black and white and will not differentiate between black tape and India ink.
The procedures outlined in my article have reduced the cost of artwork at Temco Aircraft to less than 25 per cent when compared to the old method which was precisely as recommended by Mr. Bieker. This method works and I have received many favorable comments on it.

Fred F. Richards
Sr. Producability Engineer Temco Aircraft Corp. Dallas, Texas

SPECTROL ANNOUNCES

Two New Precision Pots

 Data Sheets describing Series 5\%0
 Miniature 10-Tiurn
 and Series 2:31
 Single-turn
 Potentinmeters
 now available

KEY SPECIFICATIONS of the Series 570 are: diameter, 1 inch; maximum resistance range to $265 \mathrm{~h} \pm 3 \%$; and linearity tolerance to $=0.025 \%$. For the Series 230 diameter, $13 /$ inches; maximum resistance range to
$350 \mathrm{k}-3 \%$, and linearity tolerance : 01% $350 \mathrm{k}=3 \%$; and linearity tolerance $=01 \%$

RREE copies of inese new dala
sheets are yours tor the sheets are yours to the asking.
please adoress Dept 192
 ELECTRONICS CORPORATION 1704 South Del mar Avenue
SAN GABRIEL. CALIFoRNIA

CIRCLE 277 ON READER-SERVICE CARD

precision resistors

DMETER MANUFACTURING COMPANY
22-24 Larkin Plaza, Yonkers, New York
CIRCLE 278 ON READER-SERVICE CARD

CIRCLE 279 ON READER-SERVICE CARD

tan chaco

Lists over 8,000 Precision Instrument Parts and
Components FROM STOCK

Featuring the NEW Precision Standard PIC "Ultra-Precision"- Exceeds established standards, to provide the greater accuracy demanded by today's design, for the products of tomorrow

FREE "DESIGN-AID"

TEMPLATE KIT
Contains 14
Actual Size Templates A completely new design template system, created by working engineers, to assist
 you in the design and de Ideal for Breadboard Layout, Prototype Design Production Design, Technical Sketching and De.
tail Parts Drawing
Send for free Catalog and "Design Aid", Today.

PIC desion corp.

Subsidiary of BENRUS WATCH COMPANY, Inc.
477 Atlantic Avenue, East Rockaway, L. I., N. Y

MEETINGS

Calendar of Events
February
8-14 National Electrical Week, New York, N.Y
12.13 Transistor and Solid State Circuits Conference, Phila delphio, Po.
14 Short Range Navigational Aids, Montreal, Canada
17-20 6th Annual Western Convention, Audio Engineering Soc., Los Angeles, Calif
March
3-4 Western Joint Computer Conference, San Francisco, Colif.
5.6 Flight Propulsion Meeting, Inst. of Aeronautical Sel ences, Cleveland, Ohio
8-12 ASME Aviation Conference, Los Angeles, Calif
16-20 National Meeting American Inst. Chemical Engineers, Arlantic City, N.J.
17-21 8th Electrical Engineers' Exhibition, London
23-26 IRE National Convention, New York, N.Y
26 15th Annual Quality Control Clinic, Rochester, N Y 30.

April 1 Electrical Industry Show, Chicago, III
31.

April 2 21st American Power Conference, Chicago, III
31.

April 2 Symposium on Millimeter Waves, New York, N, Y
Courses and Seminars
Hodern Communications: Second series of lec tures being presented by IRE Philadelphia sec tion. Topies include: Cooling Theory; Trends in Digital Communication; and Communicating Through Analog Channels. Contact: F. Haber Moore School of Electrical Ensinecring, U'nitersity of Pennsyltania, Philadelphia 4, Pa

Technical Session

Feb. 10: Data Processing. Sponsored by IRE at IBM Corp., 590 Nadison Ave., New York, N.Y. Speakers to discnss: Automation in Machine Tool Control; Application of Data Process Equipment To Keeping Production Abreast of Design Change. The meeting is open to all

Paper Deadlines
March 1: Call for papers for possible publication in the July issue of IRE Transactions (PGME). Theme of issue will be "Simulation in Electronics," the subject being treated both as a research tool and as applied to training devices. An abstract is not required but it is requested you make known your intention to contribute a paper. Further information from Dr. J. G. Brantley, Jr., Radiation Lab Instrument Div., Orlando, Fla.
March 1: Deadline for abstracts and rough drafts of outlines of papers to be presented at the first congress of International Federation of Automatic Control in Moscow in 1960. July 15: deadline for completed papers. Agenda to cover three main areas: Theory; Components and Measurement; and Applications. Contact W. E. Vannah, American Automatic Control Council, 3.30 West 42 St., New York 36, N.Y.

MICROWAVE RESEARCH DEVELOPMENT • ENGINEERING

CUSTOM
 COAXIAL COMPONENTS

when time and technology demand a FAST-FIRST!

confact

Write for Cotalog• Phone GLenview 4 4418 • TWX SS437.U

Radar Design Corporation

Dept. D-2, P.O. Box 38,
Pickard Drive, Syracuse 11, New York CIRCLE 281 on reader-SERVICE CARD

* New Calibration Circuit - no Ionger requires a.c line for standardizing calibratıon
* Adjustable Microphone Sensitivity for use with special microphones when required
\star Upper Sound Level increased to 150 db
* Stability Greatly Improved - requires less frequent calibration adjustments

Type 1551-B Sound-Level Meter, \$395
Write for the GR Sound Level Bulletin
GENERAL RADIO Company
275 Massachuserts Avenue, Cambridge 39, Massachuserts, U.S.A.
drene. 1 New york area 1000 N Semard St tos anceles 3
 m CAMADA: 99 flotal Pathwory Toronto is
CIRCLE 282 ON READER-SERVICE CARD

EXAS INSTRUMENTS

I NCORPORATED

000 LEMMON AVENUE

DALLAS 9，TEXAS

Advanced facilities permit work of highest caliber

company＊

from over 800
to almost 8，000
and Sales
have increased

from under $\$ 5,000,000$

 to over $\$ 91,000,000$ ．

Six major resorts and fishing lakes are within one hour of Dallas． Dallasites uwn 38，700 outboards；are served by a dozen boat manufacturers
and 40 boat retailers
Houston，of course，is＂next door＂to Galveston，nationally known seaside resort．

Expand your professional potential where you and your work are recognized as vital．Enjoy a favorable engineering climate，major factor in the swift，steady growth of this dynamic company now in its 29th year and still expanding！ If you have a high order of ingenuity，technical skill and engineering ability，you can hit your stride at Texas Instruments－now one of the 500 largest industrial companies in the country．In association with outstanding colleagues，you can explore new horizons in any of a wide choice of fields：
apparatus division Design，development and manufacture of systems －reconnaissance，airways control，antisubmarine warfare，missile and anti－missile，countermeasures，airborne early warning，naviga－ tion，attack control，and engine control．Equipments，including： radar，infrared，sonar，magnetics，digital circuits，timers，telemeter－ ing，intercom，microwave，optics，detector cells，engine instruments， transformers，time standards，and other precision devices．
Please write J．R．Pinkston，Dept．E
semiconductor－components division Design，development and manu－ facture of semiconductors－transistors，diodes，rectifiers－and other electronic components including capacitors and resistors． Special studies in materials purification and analysis，surface treat－ ment．circuit design，and circuit applications．Iesign of mechanized production and test equipment．Supervisory positions in manufac－ turing engineering and production management．
Please write H．C．Laur，Dept．F
central research laboratory Rasic and applied research in solid state physics，materials，devices，data systems，and earth sciences with particular emphasis on semiconductors，electroluminescence．ferro－ magnetics，resonance，low temperature phenomena，dielectrics， infrared，geophysics，digital techniques，masers，memories，and tran－ sistors；physico－chemical studies of diffusion，alloying，crystal growth，and crystalline structure．
Please write A．E．Prescott，Dept．G
industrial instrumentation division Design，development and manu－ facture of commercial electronic and geophysical instrumentation including data gathering，recording and processing；circuit and instrument packaging；meter movements and transducer elements； remote measurement and control systems．（NOTE：This division is lucated in Houston．）
Please write D．G．Turner，Dept H
Come grow with us in the pleasant climate of highly sophisticated Southwestern cities，Dallas or Houston－ each large enough to be urbane，small enough to be neigh－ borly．Modern plants are within the city but away from downtown traffic ．．．near fine residential areas．You will live within minutes of year－around recreational，amuse－ ment and cultural activities．

Over 325 Million in New R\&D Contracts for SWALLOW Awarded Missile Systems Division of Republic Aviation

It has been the drean of exery combat commander to possess accurate information concernine tactical disposition of enemy tronpes and materiel, before, duringe and after the battle. One of the telling answers to this vital problem is the Swallow SD-4. Engineers joinine this program will find challenge in:
nere sensinge trehnigues (infrared, opptical, radar and other) soblhisticated, split second guldance
ontimum acrocl!!namic solutions for high celocit!, ground-controlled vehicles

The Swallow SD-4, and the SD-3 are two of many expanding programs - ECM, anti-ICBM and missile guidance-that offer umusual openinge in the following areas:

MICROWAVE ENGINEERS Design of microwave antennas and compo. nents for airborne navigation systems

COMPUTER ENGINEERS Digital data transmission, digital and pulse cir. cuitry, and digital computer logic and storage

FLIGHT CONTROL ENGINEERS Automatic flight control systems, iner. tial guidance and stable platforms

Send resume in complete confidence to:
Mr. Paul Hartman, Engineering Employment
MISSILE SYSTEMS DIVISION

223 Jericho Turnpike, Mineola, Long Island, New York

PHILCO

PALOALTO

on the beruntiful San Irancisco Peninsula urgemely meeds senior and projact engineers
for expanding operations

MISSILE TRACKING SYSTEMS

Pulse Tracking Radar C W Tracking Systems Conical Scan Tracking Inferferomefers
Doppler Receivers

GROUND-SPACE COMMUNICATIONS

Airborne Data Transmitters Ground Data Receivers Airborne Command Receivers Data Receiving Antennas Telemetry Microwave Relay System

DATA PROCESSING

PHILCO S-2000 Transac digital computer entirely transistorized central computer facility.

Dafa Recording Devices
Computer input, output equipment design

U S. citizenship required. Your inquiry confidential.

Send resume to Mr. H. C. Horsley, Dept. D
PHILCO
Government \& Industrial Div.
Western Development Laboratories
3875 Fabian Way
Palo Alto, California

Bendip YORK

 offers the opportunity and the challenge of key assignments in...
GUIDED MISSILE ELECTRONICS

ELECTRONIC

ENGINEERS
MECHANICAL
ENGINEERS

Here is your chance to prove your ability doing important work on missile fuzing, beacons, guidance, packaging and related test equipment. We have key openings that offer you the opportunity to move ahead rapidly in your profession. At Bendix York, you benefit from the advantages of a small company atmosphere in a growing division of one of the nation's largest engineering and manufacturing corporations. Also, you'll enjoy the "good life" in our beautiful suburban community. Good salaries, all employec benefits.

Drop us a card, briefly stating your education \& experience. We'll act immediately to get together with you and falk if over.

ADDRESS: PROFESSIONAL PLACEMENT DEPT. D

Engineering Opporfunities of a High Order in Creating Complex Identification \& Tracking Equipments at General Electric's Missile Detection Systems Section

To locate a $15,()(0)-$ mph missile despite complicating factors such as the varying refractive indes of the troposphere and ionosphere, a high degrec of systems sophistication is of paramont importance.
Cirowth opportunitics commensurate with the creative and analytical demands implicit in such reequirements are open now for experienced electronic engineers at C.E: $;$ Missile De. tection Systems Section in these areas:

- Research e Develomment of New Detection Techniques
- Initiation \& Development of Proposals
- Definition and Direction of Equipment Design
- Engineering Liaison with Military \& Engineering-Manufacturing

Positions at Several Levels for Electronic Engineers

SYSTEMS DEVELOPMENT ENGINEERING
(At least 4 years' experience)
RADAR SYSTEMS
SYSTEMS ANALYSIS DATA ANALYSIS ELECTRONIC COUNTERMEASURES SYSTEMS

SYSTEMS EQUIPMENT ENGINEERING ANTENNA DESIGN AND DEVELOPMENT RF COMPONENTS DEVELOPMENT UHF AND MICROWAVE RECEIVER DEVELOPMENT
DATA REDUCTION EQUIPMENT D \& D VIDEO DISPLAY DEVELOPMENT COMPUTER APPLICATIONS Sub-Contractors

Salaries fully competitive, commensurate with cepperience
Write in confilence to Mr. James P. Kinsella, Div. Gif-S.MF
Misslle Detection Systems Section
HEAVY MILITARY ELECTRONICS DEPT.

GENERAL ELECTRIC

Court Street, Syracuse, New Iork

ATMOTOROLAINPHOENIX... Engineers are given a NEW DEGREE

Engineers who join our staff are given the Degree of Responsibility that every idea-sparking engineer wants, but so few receive. Our men follow through on their ideas - from first inspiration through final field test evaluation. This mature approach results in sound designs that have helped Motorola attain world-recognized leadership in military and industrial electronics. At Motorola, you will be granted authority commensurate with your responsibilities. Your working environment will provide the best opportunity for your growth; Arizona's sunny climate the best opportunity for healthy, pleasant living. Write today to Mr. Kel Rowan, Dept. B-2.

The first dual TR tubes came from Bomac.
The first shutter tubes came from Bomac.
The first ceramic window TR's came from Bomac.
The first folded cylinder Pre-TR's came from Bomac.
The first phase control TR tubes (single and dual) came from Bomac.
The first miniaturized crystal protectors came from Bomac.
The first 4.3 mm duplexer, and 4.3 mm magnetron came from Bomac.
The first UHF hybrid duplexer came from Bomac.
The first phase control coaxial balanced duplexer came from Bomac.
Doesn't it make sense, then - when you have any problem whatever in microwave tube engineering, development, production To come to Bomac first?

I.ECTRONIC DESIGN

Title

ome Address

[^0]: CAkboloy cemented carbides - man made diamonds - magnetic materials e thermistors - thyrite - vacuum melted alloys

[^1]: * The work deseribed here was done White the author was with the Light Militars Vilectronic Equipment Dept. of tho Ceneral Electric Co.

[^2]: THE FASTEST GROWING NAME IN TRANSISTORS'

[^3]: EI ミCTRONIC DESIGN • February 4, 1959

[^4]: CIRCLE 82 ON reader-service card

[^5]: * Quotation from 'Designing Electronir Equip. sign, July 12, 1956.

[^6]: If it has to be heated land the it can be just about anything , you can rely on SAFEW'AY engineors to study your prohioms and withongineers to study your problems and with-
 out any obligation - submit an appropriate recommendation.

[^7]: * Buekbee Mears Company also manufor ures eiched forms and electroforms of un. usual accuracy-items used in electronic tubes, shaver heads, numerical indicator fubes, color relevision masks. Porhaps a component for your product could be made betrer and more quate from your specifications.

[^8]: For a call from our nomarest Fiold Fin ineering Representative - or for complete

[^9]: 1515 Sedgwick Street, Dept, ED, Chicago 10, Illinois, U. S. A

