SUBSCRIPTION POLICY

ELECTRONIC DESIGN is circulated only to qualified electronic design engineers of U.S. manufacturing companies, industrial consultants, and government agencies. If design for manufacturing is your responsibility, you qualify for subscription without charge provided you send us the following information on your company’s letterhead: Your name and engineering title, your company’s main products, and description of your design duties. The letter must be signed by you personally.

ANY ADDRESS CHANGES FOR OLD SUBSCRIBERS NECESSITATES A RESTATEMENT OF THESE QUALIFICATIONS. Subscription rate for non-qualified subscribers—$15.00 for 1 year only.

Hayden Publishing Co., Inc., 830 Third Avenue, New York 22, N.Y.

CONTENTS

Editorial

19 Dishonest Bidding Must Go

Behind the News

3 AM Stereo Broadcasting Techniques Vie for Attention

Washington Report

Features

16 NASA's Policies

16 Improve Circuit Reliability, C. A. Krohn

26 Degauss Pulse Transformers, J. J. Wall

28 Spring Spins Gyro

28 Flat Rotary Switch Saves Space

Designing Zener Diode Voltage Regulators, R. G. McKenna

34 Improving the Emitter-Coupled Phase Splitter, M. Price

36 Rescue Millivolts of Signal from Volts of Noise, W. G. Royce

40 Improving Cable Design, W. J. Strauss

Frequency Sensitivity without Reactors

98 Russian Translations

112 Nonlinear and Parametric Phenomena in Radio Engineering, Part 15, A. A. Kharkovich

German Abstracts

122 Bandwidth Reduction for Transmission of Radar Signals

Transmission of Speech

124 Automatic Speech Recognition

Declarations

44 New Products

76 Production Products

106 Report Briefs

80 Services for Designers

126 Meetings

82 New Literature

129 Careers Section

132 Advertisers’ Index

G-V thermal time delay relays...

protect cathodes in RCA's

TV microwave relay system

When the industry required a portable microwave repeater station that behaved like a permanently installed, unattended unit, RCA developed its Television Microwave Relay Station, Type TVM-1A. In it, to protect the unit's cathodes, RCA design engineers rely on G-V thermal time delay relays to delay the application of plate voltage.

In both industrial and military equipment, G-V thermal relays are providing long, dependable, proven service in time delay applications, voltage and current sensing functions and circuit protection.

Write for extensive application data and catalog material.

G-V CONTROLS INC.
LIVINGSTON, NEW JERSEY
NOTICE

to designers of missiles, computers, scalers, communications equipment, etc.

RAYTHEON

Filamentary

SUBMINIATURE TUBES offer:

- small size — as small as 0.06 cubic inches
- low operating power — total input as little as 6.5 mw
- low supply voltage — many types suitable for 28V operation
- low microphonics
- quick heating — well under one-half second
- negligible heat dissipation

- ruggedness — up to 500 G shock
- reliability — tests show only one filament failure per 500,000 on-off cycles
- long life — tests on all types average 58,000 tube-hours per failure
- high efficiency — mutual conductance as much as 4 times greater per watt of filament power than in comparable heater-cathode tubes

RAYTHEON SUBMINIATURE FILAMENTARY PENTODES

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>I at rated E1 = 1.25V mA</th>
<th>Plate and screen Volts</th>
<th>Plate Current mA</th>
<th>Sm amhos</th>
<th>Output Power milliwatts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1AD4</td>
<td>RF Amplifier up to 200 Mc (1)</td>
<td>100</td>
<td>45</td>
<td>3.0</td>
<td>2000</td>
<td>—</td>
</tr>
<tr>
<td>1AG4</td>
<td>AF Power Amplifier</td>
<td>40</td>
<td>41.4</td>
<td>2.4</td>
<td>1000</td>
<td>35</td>
</tr>
<tr>
<td>CK512AX</td>
<td>Voltage Amplifier low microphonic</td>
<td>*20</td>
<td>15</td>
<td>0.05</td>
<td>105</td>
<td>37 (2)</td>
</tr>
<tr>
<td>CK678</td>
<td>RF Amplifier up to 60 Mc (1)</td>
<td>50</td>
<td>67.5</td>
<td>1.8</td>
<td>1100</td>
<td>—</td>
</tr>
<tr>
<td>CK5886</td>
<td>Electrometer Voltage Amplifier with high input impedance</td>
<td>10</td>
<td>10.5</td>
<td>0.2</td>
<td>175 (3)</td>
<td>max I, 2.5 x 10^-9A</td>
</tr>
<tr>
<td>CK6088</td>
<td>AF Power Amplifier</td>
<td>20</td>
<td>45</td>
<td>0.65</td>
<td>560</td>
<td>10.5</td>
</tr>
<tr>
<td>CK6397</td>
<td>RF Power Amplifier to 200 Mc or Doubler from 200 to 400 Mc</td>
<td>**125</td>
<td>125</td>
<td>7.25</td>
<td>1950</td>
<td>140 mW doubling to 225 Mc</td>
</tr>
<tr>
<td>CK6418</td>
<td>AF Power Amplifier</td>
<td>10</td>
<td>22.5</td>
<td>0.24</td>
<td>300</td>
<td>2.2</td>
</tr>
<tr>
<td>CK526</td>
<td>AF Power Amplifier</td>
<td>125</td>
<td>110</td>
<td>6.5</td>
<td>1900</td>
<td>375</td>
</tr>
<tr>
<td>CK611</td>
<td>RF Amplifier to 100 Mc (1)</td>
<td>20</td>
<td>30</td>
<td>1.0</td>
<td>1000</td>
<td>—</td>
</tr>
<tr>
<td>CK612</td>
<td>RF Amplifier up to 200 Mc (1)</td>
<td>80</td>
<td>30</td>
<td>3.0</td>
<td>3000</td>
<td>—</td>
</tr>
<tr>
<td>CK6999</td>
<td>AF Power Amplifier</td>
<td>**100</td>
<td>67.5</td>
<td>4.0</td>
<td>1650</td>
<td>150</td>
</tr>
</tbody>
</table>

(1) Fully shielded by metallic coating. (2) Voltage gain ratio. (3) Triode connected. *Rated filament voltage for CK512AX is 0.625 volts.
**Filament center tap also permits 2.5 volt ohm operation at half the indicated current.

INDUSTRIAL TUBE DIVISION

RAYTHEON MANUFACTURING CO.

Reliable Miniature and Subminiature Tubes • Filamentary Tubes • VR Tubes • Rectifiers • Thyatrons • Cathode Ray Tubes

New York, Plaza 1-5530 • Boston, Rigby 4-7500 • Chicago, National 5-4000 • Los Angeles, Normandy 5-4221
Baltimore, Southfield 1-1237 • Cleveland, Whitm 1-7003 • Kansas City, Plaza 3-3330

CIRCLE 3 ON READER-SERVICE CARD

STAFF

Editor Edward E. Grazda
Managing Editor J. A. Lippke
Associate Editors L. D. Shergalis
G. H. Posky
H. Bierman
Assistant Editors T. E. Mount
D. S. Viebig
L. N. Tolapko
M. M. Robinson
A. E. Tokacs
F. Muehleck
Contributing Editors S. H. Hubelbank
E. Brenner
B. Bernstein
E. Kahn
Editorial Assistants M. S. Buckley
J. R. Feder
A. M. Sickler
Art Director R. A. Schulze
Technical Illustrator B. L. Armstrong
Art Assistant C. Bank
Production Manager V. V. Sedlin
Asst. Prod. Manager M. P. Hadrick
Production Assistant M. C. Alexich
Circulation Manager N. M. Elston
Asst. Circ. Manager A. C. Lovett
Reader Service J. E. Medina

CO-PUBLISHERS

T. Richard Gascogne
James S. Mulhallen, Jr.

ADVERTISING REPRESENTATIVES

Advertising Sales Manager
Bryce Gray, Jr.

New York: Owen A. Kean
830 Third Avenue
Plaza 1-5530
Richard Parker
Blair McClenachan
James P. Quinn

Chicago: Thomas P. Kovaoras
664 N. Michigan Ave.
Sklperior 7-8054
Fred T. Bruce

Los Angeles: Robert E. Ahrensdorf
3775 Wilshire Blvd.
Dunken 7-3373
Stanley J. Ehrenclou

Southeastern: Lucien Neill
2808 Middle River Dr.
Ft. Lauderdale, Fla.
1000n 6-5656

London, W. 1: Michael B. Harne
24 Baker Street
England

ELECTRONIC DESIGN • April 1, 1959
BEHIND THE NEWS

AM Stereo Broadcasting Techniques
Vie for Attention

At the last count, fifteen different methods have been designed and developed for broadcasting stereo programs. Techniques range from multiplex FM systems to separate sideband AM to combinations of FM-AM.

In the past month alone, four systems (two described below) have been demonstrated to members of the industry. Are the demonstrations and press notices aimed at pointing to latest advancements in the state of the art? Or are the manufacturers revealing slightly-modified techniques in their desire to join the stereo-publicity bandwagon? Engineers and bystanders in attendance are tending to sense a message to the effect—"To prove that we are not napping, here is our method of stereo broadcasting."

NSRC Formed

To evaluate and study the rising number of stereo broadcasting schemes, Electronic Industries Association (EIA) has recently formed the National Stereophonic Radio Committee (NSRC). Six panels have been set up to investigate the following points prior to submission of proposals to the FCC:

- System specifications—consider and investigate system proposals and set up initial transmission specifications.
- Interconnecting facilities—recommend characteristics for lines, networks, studio links, and related facilities between program origination and transmitter sites.
- Broadcast transmitters—study feasibility of proposed transmission methods and means of adopting proposals to existing equipment.
- Broadcast receivers—carefully check compatibility (how will existing monophonic receiver sound when tuned to stereo program), reverse compatibility (how will stereo receiver sound when tuned to monophonic signal), and stereo performance.
- Field testing—examination of coverage, interference, channel utilization, and other field problems.
- Subjective aspect—provide scientific information on subjective aspects of stereo reproduction to the other panels.

Primary aims of the various schemes include low-cost equipment investment for the listener as well as the broadcaster, entertaining listening for the stereo and monophonic consumer with a minimum of compromise, and compatibility with existing F. C. C. standards for AM broadcasting.

Two methods, recently demonstrated to industry representatives, offer fine examples of the trend towards simplification and economy although approached from different viewpoints.

A.T.T. System

Stereo broadcasting techniques, when striving for utmost stereo effect, generally make use of two widely-spaced microphone pickups. While the stereo listener can then derive full depth and realism, the single channel listener hears the output of only one of the pickups and thus effec-
TRANSISTOR EXPERTS... are betting that this is the winning combination:

FAIRCHILD SILICON TRANSISTORS come through, fulfilling the extraordinary promises you've heard rumored about the new solid-state diffusion devices.

- **SPEED** — 80 milli-micro-second rise time affords the fastest switching yet available with silicon.
- **POWER** — 2 watts dissipation at 25° C. leaves plenty of power handling capability at higher temperatures too.
- **RELIABILITY** — Storage at 300° C. for 350 hours caused no serious changes, assuring a large safety factor at operating temperatures. Mesa construction provides extraordinary ruggedness too.
- **AVAILABILITY** — Thousands of the 2N696 and 2N697 transistors have been delivered in the first months after announcement. Stock is available for immediate shipment.

Look to the future

Existence of Fairchild's multiple-diffused transistors is already having a profound effect on the breadboard designs of today. It means competitive improvements in the quantity production of tomorrow — both in the race for military superiority and in various commercial bids for sales leadership. May we send you specifications?

BEHIND THE NEWS

ELECTRONIC DESIGN • April 1, 1959

...tively misses a portion of the program material. To preserve satisfactory reception for the single channel listener, the broadcaster would have to dilute the stereo effect.

Through the use of a new "compatibility" circuit, developed by F. K. Becker of Bell Telephone Laboratories, the single channel problem can be eliminated without affecting the stereo listener. The circuit depends for success on a psychoacoustic phenomenon known as the "Precedence Effect", discovered in 1933. This effect operates in such a manner that when a single sound is reproduced through two separate loudspeakers, but is delayed several milliseconds in one, the listener will "hear" the sound as if it came only from the speaker from which he heard it first. He will judge the second loudspeaker to be silent.

In the new development, the circuits between the microphone pickups and their corresponding radio or TV transmitters are cross connected through two delay lines, each with its own buffer amplifier see Fig. 1. Because of these cross connections, music or voice signals from the left microphone are transmitted directly to the left loudspeaker in the listener's home, while the same signal is slightly delayed before reaching the speaker to his right. The stereo listener will hear the sound as if it came only from the left loudspeaker because of the Precedence Effect.

Fig. 2. Block diagram of Westinghouse AM compatible stereophonic transmitter.
Conversely, the sound from the right microphone goes direct to the right speaker, but is delayed before reaching the left speaker, and is therefore unheard. Thus, the brain of the stereo listener localizes the sound he hears as coming direct from each of his two speakers, and full stereophonic effect is maintained.

However, monophonic reception is completely compatible, since a listener to each single channel hears the total sound from both microphones in a balanced reproduction. The slight delay built in apparently does not affect his reception at all, according to subjective tests performed at Bell Laboratories.

This development should make it possible for many more broadcasters to offer double-channel stereo programming without diluting the stereo effect or penalizing the single channel listener, who will make up the majority of their audience.

Westinghouse Technique

Westinghouse's approach to simple, economical stereo broadcasting involves simultaneous amplitude and frequency modulation of the carrier. It is interesting to note that the initial patent for the present scheme was filed in 1925 by Dr. Frank Conrad, former research director of Westinghouse.

The amplitude modulation is predominately proportional to the algebraic sum of the two stereophonic signals (L-left microphone + R-right microphone) but includes a smaller signal that is a function of the stereophonic difference signal (L-R). This function to be developed by a compensating system.

The frequency modulation consists of components of the stereophonic difference signals between 300 and 3000 cycles per second. The filter cut-off rate is 6 decibels per octave, the maximum deviation is 3 kilocycles.

In the transmitter block diagram, the compensation network shown in Fig. 2, operates to modify the AM modulation as a function of the stereophonic signal. As a result, the envelope of the signal leaving the transmitter is precorrected so that a standard AM radio will receive and reproduce monophonic sound substantially independent of the stereophonic difference signals.

Basically, the monophonic listener would tune exactly on station and receive the sum of both (L + R) microphone signals. For stereophonic reception, two inexpensive AM radios would be used, one would be tuned to a frequency about two kc above the carrier with the other set about two kc below the carrier. A combination of amplitude modulation and slope-type frequency modulation would produce the separate left and right channel signals. Tuning of the receivers, it is claimed, would not require exact settings—rather broad tuning would still reproduce stereo effects.

Burnell & Co. may not be experts in the art of head shrinking. But when it comes to toroids, filters and related networks, Burnell has the know-how to solve an infinite variety of small space problems. The new MicroID filters by Burnell & Co. are a notable achievement in the shrinking of filters which can be designed for low pass or band pass applications.

For example, as a low pass filter. Type TCLJ starts at 400 cps. Physical size is 11/16" x 1-11/16" x 1 1/2" max. For higher frequencies from 7,500 cycles up to 100 kc, size is 3/4" x 1 1/2".

The band pass filter, Type TTJ pictured here, ranges from 7,350 cycles up to 100 kc. Physical size is 1/2" x 19/32" x 15/16", weight 3 ounces, band width 15% at 3 db and + 60% - 40% at 40 db. Wherever space and performance are critical requirements, miniaturized MicroID low pass and band pass filters provide utmost reliability as well as more unit surface economy on printed circuit boards. Completely encapsulated, they are ideally suited to withstand high acceleration, shock and vibration environment. Write for special filter bulletin to help solve your circuit problems.
Russian Oil Lamp Powers Radio

Tens of thousands of low-power thermionic generators are being put into service in the U.S.S.R., according to latest reports. The Russians have encouraged the development in their efforts to provide radio reception at low cost for their "educational" broadcasting programs.

Principally intended for use in rural areas devoid of electricity, the power generator (originally described—ED, May, 1956) makes use of the heat generated by a light-supplying oil-lamp. Enough energy is developed, from otherwise wasted calories, to operate a five or six tube radio receiver, according to Dr. A. V. J. Martin of the Carnegie Institute of Technology.

Construction

The usual glass chimney of the oil lamp is replaced by an aluminum tube carrying internal partitions so as to absorb a maximum of calories, see Figs. 1 and 2. Around this tube are positioned two 3.2 millim. diam. thermocouples, of zirconium and aluminum, in a spiral arrangement. The layout is shown in Fig. 4, where the lamp, generator, and connecting plug to a radio receiver are shown. This generator can be taken apart for field maintenance or repair even by unskilled manpower.

Specifications

- **Tape Speed:** 10 to 100 ips
- **Tape Width:** Any Standard Width
- **Power Requirements:** 115V, 60 Cycle, 1 Phase
- **Control:** Remote/Level Inputs

Fig. 1. Thermoelectric generator installed on a lamp, with the connecting plug to a radio receiver.

Fig. 2. Method of assembling the lamp and the generator.

Fig. 3. Output voltage as a function of current drain.

Fig. 4. Generator can be taken apart for field maintenance or repair even by unskilled manpower.
are placed 14 thermocouple blocks, one of their faces being in intimate contact with the aluminum and hence at high temperature. The opposite face carries a U-shaped aluminum cooling plate. Each of its two fins measure approximately 100 x 75 mm, that is 4 x 3 inches. The total cooling area per block is then about 150 square centimeters.

The temperature difference between the two opposite faces of the thermocouple block is of the order of 233 C, providing the electrical power. The inner face of the blocks is at 295 C, and the outer face is at 62 C for normal room temperature. Of the 14 blocks, 1 is eventually used for bias, 3 for heaters voltage, and the remaining 10 for B+.

The heater supply voltage blocks measure 94 x 25 x 7 mm, and each contains 18 elements. Each element has a cross section of 7 x 5 mm. There are in all 54 elements, providing a current of 0.4 ampere under 1.4 volt. At no-load, the voltage goes up to 2.45 volts, so that if the required heater current is lower than 0.4 ampere, provision must be made for some limiting device, two selenium cells being commonly used.

The high-voltage blocks measure 94 x 25 x 11 mm. Each contains six vertical rows of 45 elements. The 10 blocks in series then represent 2700 thermocouples, and provide a no-load voltage of 111.5 volts. When loaded, voltage goes down as shown (Fig. 3).

The bias block measures 94 x 25 x 11 mm and contains 4 rows of 45 elements. If no bias is necessary, this block is connected in series with the 10 high voltage blocks.

Thermocouple Composition

The thermocouples used have a positive element made of an alloy of zinc and antimony with a small proportion of lead. The negative element is either constantan or magnesium, tinned for the ease of assembly. The unit has no moving part, is not subjected to wear, and is exceptionally rugged and trouble-free, with an unlimited useful life, see Fig. 4. It uses only common metals readily available in USSR.

PHILCO Transistors operate

51,614,343 **SERVICE HOURS**

in High-Speed Computer Circuits **with only 8 Failures!**

<table>
<thead>
<tr>
<th>Total Transistor Service Hours To Date</th>
<th>Total Transistors</th>
<th>Total Failures‡</th>
<th>Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,068,111</td>
<td>99</td>
<td>0</td>
<td>ELECTRONICS, Oct. 1, 1957, pg. 167</td>
</tr>
<tr>
<td>5,460,000</td>
<td>600</td>
<td>1</td>
<td>ELECTRONICS, Oct. 1, 1957, pg. 167</td>
</tr>
<tr>
<td>1,250,000</td>
<td>125</td>
<td>0</td>
<td>PHILCO REPORT, Feb. 10, 1959</td>
</tr>
<tr>
<td>16,000,000</td>
<td>10,192</td>
<td>2</td>
<td>WJCC REPORT, Feb. 1957</td>
</tr>
<tr>
<td>8,640,000</td>
<td>8,000</td>
<td>2</td>
<td>PHILCO REPORT, Feb. 12, 1959</td>
</tr>
<tr>
<td>19,196,232</td>
<td>18,601</td>
<td>3</td>
<td>PHILCO REPORT, Nov. 19, 1958</td>
</tr>
</tbody>
</table>

‡Failures due to all causes including human error.

Carefully documented reports now reveal that Philco electro-chemical transistors have amassed more than fifty-million hours of operation in six computers under actual field conditions. Here is proof of the outstanding performance and reliability that electronics engineers and designers have come to expect from Transistor Center, U.S.A. Of course, these transistors are still operating in their original high speed computer switching circuits... extending service life data on these transistors beyond the limits of any previously published information.

When you think of transistors, think first of Philco. Make Philco your prime source for all transistor information.

Write to Lansdale Tube Company, Division of Philco Corporation, Lansdale, Pa., Dept. ED 459

Documented service hours in these six computers only. Total transistors hours in similar circuits are many times this amount.
For jobs that demand utmost dependability...

NEW SOLID-STATE FREQUENCY COUNTER

Built exclusively of solid-state components, this new Beckman/Berkeley Eput® Meter exhibits dependable operation at temperatures from −5°F to 150°F, under actual test—meets the most stringent requirements for both military and industrial use.

All circuits except the power supply are mounted on easily replaceable plug-in modules of only six different types. The time base is generated by digital circuits requiring no adjustment.

OTHER IMPORTANT FEATURES INCLUDE:
- Adapted to systems use by means of a 1-2-4-8 coded output supplied at a rear connector.
- Accurate determination of low frequencies, such as 60 or 400 cps, by making period measurements.
- Compact, lightweight, takes only 5½" rack space.
- Battery powered model available for use where line power is not always handy.

Write for technical Bulletin 5310.

BEHIND THE NEWS

Sitting Pretty in $7,000 Electronic Super-Bed

The latest furniture invention, a 2,500 ($7,000) electronic bed, made its bow at London's Furniture Exhibition. A push of a button from either side of this twin super-bed will accomplish electronic wonders. It will open and shut the bedroom window curtains; control the room lights; change the TV set at the end of the bed on and off; control the mattress heating units; adjust either mattress to any position; and connect the occupants by intercommunication system with the other room or the outside telephone.

According to its manufacturers, Shumberland Ltd. (Redfern Rd., Tysley, Birmingham 2, England), the bed has been created 'to herald the emancipation of the bedroom and a new era in relaxed living.'

Additional items incorporated are—tape recorder for dictation or music, electric razor, built-in radio, and automatic tea (or coffee) maker.

Did someone ask if it will sell? It was purchased by a Frenchman on the first day of the exhibition.

Compact Geiger Counter Tubes

Thousands of average-size hospitals, industrial and medical laboratories can undertake research with radioactive tracers using reduced amounts of radioactive materials due to the development of two new Geiger tubes. A system, using two new Amperex tubes, weighs only 400 pounds as compared to 4,000 pounds for a conventional unit; only two tubes are needed whereas a conventional system may require as many as thirty. The Amperex type 18515 Geiger tube (bottom) is the beta radiation detector tube and fits into the cup-shaped anode of the Amperex type 18517 (top) cosmic-ray guard tube.
20,000,000th Tube

RCA's 20 millionth black and white television picture tube came off the assembly line Feb. 6 at the company's plant in Marion, Ind. D. Y. Smith (left) Vice President and General Manager, RCA Electron Tube Division, and L. Gillon, Plant Manager at Marion, examine the milestone tube.

High Altitude Simulated in Plastic Balloon

High-altitude antenna studies are being made at Boeing Aircraft Co., Seattle, Wash. in this 4-foot-diameter plastic globe. The air-evacuation system can simulate altitudes up to 300,000 feet.

The amount of energy which can be radiated from an antenna is limited by corona discharge. When too much power is fed into an antenna, the insulating properties of the air break down and part of the energy is dissipated as heat and light around the antenna. As the air pressure is lowered, its insulating properties decrease—an important consideration in antenna design and development.

Cera-Mite Ceramic Capacitors are now smaller, more stable... thanks to Sprague’s new ceramic body Formulation 40. The increased dielectric constant of this newly developed ceramic body gives Cera-Mite Capacitors three times the capacitance per unit size than heretofore possible. Capacitance change with temperature over the operating temperature range is negligible.

Cera-Mite Capacitors are now available in Formulation 40 from .001 to .02 μF, 250, 500 and 1000 volts d-c. Engineering Data Sheets 6106 and 6120 list complete ratings and specifications.

Address literature requests to Technical Literature Section, Sprague Electric Company, 347 Marshall St., North Adams, Massachusetts.
WIDE TUNING RANGE • AIR COOLED

The highly efficient VA-802 has been designed to meet the rigid demands of both fixed station installations and portable service. Simple to install and operate, it provides rugged reliability at low operating cost—with power output of 1 kW, tuning range of 1.7 to 2.4 kMc. Features of this 18" Klystron with permanent magnet include: Trouble-free internal cavities, low noise and long life.

Varian makes a wide variety of Klystrons and Wave Tubes for use in Radar, Communications, Test and Instrumentation, and for other Service Applications. Over 100 are described and pictured in our new catalog. Write for your copy—address, Tube Division.

VARIAN associates
PALO ALTO 21, CALIFORNIA
Representatives throughout the world

VARIAN

VA-802
1.7 to 2.4 kMc
1 kW cw

WAVE TUNING RANGE • AIR COOLED

The highly efficient VA-802 has been designed to meet the rigid demands of both fixed station installations and portable service. Simple to install and operate, it provides rugged reliability at low operating cost—with power output of 1 kW, tuning range of 1.7 to 2.4 kMc. Features of this 18" Klystron with permanent magnet include: Trouble-free internal cavities, low noise and long life.

Varian makes a wide variety of Klystrons and Wave Tubes for use in Radar, Communications, Test and Instrumentation, and for other Service Applications. Over 100 are described and pictured in our new catalog. Write for your copy—address, Tube Division.

VARIAN associates
PALO ALTO 21, CALIFORNIA
Representatives throughout the world

VARIAN

VA-802
1.7 to 2.4 kMc
1 kW cw

For Communications
AND CW RADAR

VARIAN KLYSTRONS

VA-802
1.7 to 2.4 kMc
1 kW cw

Mountain to Mole Hill

The four-foot stack of papers at right represents the manufacturing data that was needed to bring the Navy's Aero 13 fire control system, for all weather interceptors, from blueprints to actual production at Westinghouse Electric Corporation's Air Arm Division. However, after completion of a unique program, the same work could be completed today with just the information being held here by R. J. Rattell, manager of manufacturing for the division.

Radioisotope Thermionic Converter

Electricity was directly produced from a radioisotope using a thermionic converter under gamma radiation conditions in an experiment conducted at the General Electric Atomic Power Equipment (APED).

This announcement follows closely the disclosure by the Atomic Energy Commission of the development of a small atomic generator which uses polonium as its radioisotope and thermoelectric energy conversion device.

General Electric engineers said that, like thermoelectric device, their thermionic converter demonstration was designed primarily for space vehicle auxiliary electric power applications. Results indicate that the system has the potential to produce an extremely high ratio of power to weight.

A power pack generating more than 100 watts of electricity, and lasting more than a year, could weigh less than 25 pounds.

The General Electric device operated at temperatures as high as 1600°F and was claimed to produce 1500 volts output, generating 100 watts of power at a rate of 100 mv. This yields a power-to-weight ratio of 1 watt per pound at 35°F.

The thermoelectric device uses helium, which is claimed to have no adverse effect on radioisotope activity.
temperatures up to 1700 degrees fahrenheit on the hot side” and 800 degrees F on the “cool side.”

Gold, used as the radioactive material, consisted of a small strip about one-sixteenth of an inch thick, four inches wide and six inches long. Gold was selected as the radioisotope because it permitted an accelerated feasibility test under gamma radiation atmosphere.

The thermionic converter employs two small discs about the size of half dollars to “boil” electrons off a hot metal surface to produce an electric current. It has no moving parts and operates in a manner similar to the vacuum tube.

Anti-Collision Alert for Autos

Efforts to reduce the growing number of auto accidents on turnpikes, super-highways, and expressways will be implemented by radar warning devices in cars of the future. Drivers will be warned when approaching another car too rapidly or when an obstruction or stalled vehicle lies ahead.

Developed by the Delco Radio Division of General Motors, the device consists of two 10 in. diameter reflectors mounted behind nose cones four feet apart on the front of the car. A transmitter and receiver are concealed in the front fenders of the car.

Microwave power, at 16.14 mc, is generated by a reflex klystron and piped through waveguides to one reflector; it is then beamed out ahead of the car. Reflected signals are collected by the other reflector and piped through waveguides to a crystal diode for comparison of outgoing and incoming signals. Doppler frequency shift depends on the relative motion and spacing between the device and an object ahead. The difference is detected and amplified to a level sufficient to actuate a speaker or light-flashing device.

The equipment is sensitive to objects up to 1000 feet ahead of the car and the intensity of warning increases with increasing rate of approach. It is presently being tested on the Cadillac Cyclone, GM’s latest advanced design experimental car.

Note nose cones which house part of the experimental proximity warning device.
HOW TO INCREASE DIFFERENTIAL DC AMPLIFIER STABILITY WITH *SENSISTOR* SILICON RESISTORS

Low drift transistor amplifier circuit using *SENSISTOR* silicon resistor gives drift performance superior to vacuum tube amplifiers for low source impedance applications.

The *SENSISTOR* silicon resistor has a unique positive temperature coefficient of +0.7%/°C plus a constant rate of change as shown in the graph to the right. Over a 15°C temperature range, the *SENSISTOR* silicon resistor's temperature-resistance curve approaches linearity to an extent that allows its use as a compensating component in a differential D-C amplifier.

This low drift amplifier finds a wide range of low source impedance applications in airborne telemetry where the performance of other types of D-C amplifiers is limited by weight requirements, acceleration, shock, and vibration. It is particularly useful with low level transducers such as thermocouples, strain gages and accelerometers.

DESIGN CONSIDERATIONS

TI 2N338 silicon transistor provides excellent performance as a low drift DC amplifier when used in circuits such as the one shown above.

For optimum performance keep \((2R_s + R_e) \) as small as possible, preferably less than 20000, and the collector currents of \(Q_s \) and \(Q_e \) should remain below 100 \(\mu \)A.

*TRADEMARK OF TEXAS INSTRUMENTS

Drift cancellation featured in an uncompensated differential configuration provides an amplifier with an equivalent input drift of 400 \(\mu \)V/°C or less with standard production transistors.

Drifts as low as 6\(\mu \)V/°C will result if the compensating circuit composed of \(Q_s \), *SENSISTOR* resistor \(S \) and their biasing resistors is used with a matched pair of transistors.

CIRCUIT OPERATION

Sensistor resistor \(S \) and its biasing resistor \(R_e \) serve as a voltage source which has an output linearly related to temperature... level potentiometer \(R_e \) adjusts output voltage \(E_s \), to zero when \(E_s = 0 \) level. Potentiometer \(R_e \) adjusts for minimum output drift due to ambient temperature changes.

As temperature increases, the resistance value of \(S \) also increases causing the base of \(Q_s \) to go more negative, thereby reducing the collector current of \(Q_s \). This temperature-dependent current is fed into the differential amplifier through \(R_e \).

Depending on the wiper position of \(R_e \), the correcting signal may be positive, negative or zero. When the wiper is centered, zero correction results. As temperature increases, output voltage \(E_s \) tends to go more positive if the \(R_e \) wiper is placed nearer the \(Q_s \) emitter and negative if the wiper is placed nearer \(Q_s \). The optimum setting for \(R_e \) can be determined by cycling over the desired temperature range to give a minimum drift for changes in ambient temperature.

BEHIND THE NEWS

Radar for Jet Airliners

A self-contained long-range navigation device for jet and turbo-prop airliners, providing for the first time a navigation system that operates anywhere in the world and requires no ground facilities, has been successfully flight-tested.

The new device, developed by the Radio Division of Bendix Aviation Corp., is a lightweight, compact system based on the Doppler radar principle that has been successfully used on military planes. The system provides the airliner pilot with a direct reading of his true ground speed (as contrasted with air speed), true direction, actual course over the ground, and distance-to-go to his destination.

By directing four beams of radar energy toward the earth from an airplane and measuring the Doppler effect in each beam, it is possible to solve several complex equations with an electronic computer to determine exactly how fast an airplane is moving, both horizontally and vertically.

Global Weather Probe

New details of a global undertaking to unlock secrets of weather were revealed by Bendix Aviation Corporation.

The project, to be carried out for the U.S. Air Force, will test the latest inventions in scientific sensing with electronic equipment mounted in a Boeing 707 jet transport plane. Weather data from the ground up to 150,000 feet will be continuously collected, analyzed and transmitted to the ground.

The cabin of the 707 test plane is to be a flying laboratory. In their atmospheric search around the world, the observers of the Air Weather Service of the U.S. Air Force will maintain a flight plan of up to 55,000 feet. They will probe the weather below the plane with parachuted "dropsondes" and the weather above with rockets to carry an instrument package to the upper atmosphere.

These expendable instruments...
All new Series 2 lighted display and pushbutton switch devices offer new modular versatility in lighted display

The modular concept of Series 2 devices opens a new approach to design freedom in both front-of-panel lighted display and back-of-panel precision pushbutton switching. The demonstration panel shown above illustrates some of the variety in arrangement and color and labeling offered by these new devices.

Principal advantages of Series 2 units include these:

Operator-indicator and indicator units are assembled quickly and easily, without tools. Even the switching units simply snap into place as shown on the next page.

Units are available, flange mounted or barrier mounted, in long-flange, short-flange, long-barrier and short-barrier types. All types can be combined in either rows or columns to provide eight group-mounting schemes.

Five colors of display screens are available—red, yellow, blue, green, and white. Two, three, or four lamps can be used in each unit. Color filter caps for the lamps are available to provide projected color on white frosted screens.

Two-color display screens may be split laterally or longitudinally, in any combination of the five colors. Assemblies built up of the desired number and type of units, snap into pre-cut rectangular slots in the mounting panels, also without tools.

Panels may be from 1 16" to 5 16" thick. Flange-mount units can be used with a mounting panel and overlay panel, or with mounting panel only.

Here is a new dimension of design freedom in illuminated switching equipment... an all-new system compatible with good human-factors engineering.
All new Series 2
lighted display and
pushbutton switch
devices offer new
modular versatility
in pushbutton
switching

Yes, you can have the panel arrangement you
want (preceding page) and the switch unit
the application requires. At right you see a few of
the hundreds of available combinations of Series
2 switch units and operator-indicator units. To
attach an operator-indicator unit with a switch
unit, just snap them together. All such
combinations are available with or without magnetic
d-c holding coil. Switch units are offered with
switches from eight different MICRO SWITCH
series of basic switches—“TB”, “SM”, “HS”,
Type “A”, “MT”, “DT”, Type “Z”, and “V3”.
Included are switches for low-energy circuits,
switches for handling d-c loads of up to 10
amperes, 125 volts, and for direct control of a-c
motors of up to two horsepower . . . alternate-
action units, momentary-contact units, and units
for control of multiple circuits.

Display screen, in four
colors and white. Also
available split lengthwise
or across.

Two, three, or four lamps
can be used in operator-
indicator or indicator units.

Operator-indicator unit, barrier
type. Unit shown has long (side)
barriers. Also available are short
(end) barriers, and flange-type
units without barriers.

Color filters in red, yellow, green,
or blue fit over lamps, permit
projected-color lighting.

“SM” switch unit—one of many
Series 2 switch units—snaps onto
base of operator-indicator unit.

Indicator unit, long flange
type. Short flange and
barrier types are also available.

New Catalog 67 describes Series 2
devices in detail. Split pages aid
selection of components. Contains
detailed switch unit data
and helpful ordering and color
selection information. Sent
free on request.

MICRO SWITCH . . . FREEPORT, ILL.
A division of Honeywell
In Canada: Honeywell Controls Limited, Toronto 17, Ontario

Honeywell
MICRO SWITCH PRECISION SWITCHES
Automation for Small-Lot Manufacturers

A versatile, automatic-tool-changing, tape-controlled combination machine that makes automation economically feasible for small-lot manufacturers has been developed by Kearney & Trecker Corp. with General Electric Co. supplying the electronic program controls.

The new combination machine, called the KTNC Milwaukee-Matic, performs milling, drilling, reaming, tapping, and boring operations to bridge the gap between job shop mechanization and automation. By reducing setup time, production time, labor costs, and inventory, the machine can pay for itself in one to three years for any manufacturer producing goods in small or medium lots.

As many as 31 different tools can be loaded into the machine simultaneously—30 in a specially designed revolving storage drum and one in the spindle. There are 31 different combinations of 31 tools, ranging in size up to 2-5/8 inches in diameter, that can be utilized by the machine, making a total of 961 tools.

SILICON PNPN CONTROLLED SWITCH

...A completely new semiconductor component with thyratron-like characteristics for high speed medium power switching

- OPERATING CURRENT RANGE 10 - 1000 mA
- LESS THAN 2 mA GATE CURRENT TO "FIRE"
- VOLTAGE RATINGS TO 200 V
- "TURN ON" TIME TYPICALLY UNDER 0.2 /SEC
- LOW "ON" VOLTAGE, TYPICALLY UNDER 2 V
- OPERATION TO 150°C
- MINIATURE SIZE, IN TO-9 PACKAGE
- MECHANICALLY RUGGED

WHAT THE PNPN SWITCH WILL DO....

Within their power ratings, the PNPN switches can replace thyratrons, magnetic amplifiers, relays, vibrators, mechanical switches, diodes, transistors and unijunction transistors in a wide variety of applications, including:

- Core switching
- Signal gating
- Pulse generators
- Modulators
- Static switching
- D.C. to D.C. converters
- D.C. motor control
- Controlled rectification
- Servo systems
- Power supplies
- Power regulation
- Choppers
- Generator field control

Available now through your local SSPI representative or by contacting the factory direct.

The E-I curve above shows the "on" and "off" conditions of the forward characteristic. The switch is turned "on" when a small gate current is applied. When "on" the anode current is limited only by the external load and is independent of the gate current. The inverse characteristic is similar to that of a conventional silicon diode.

A high ratio (up to 500:1) of load current to control current permits high equivalent circuit gain and simplifies control circuitry. Switching efficiencies as high as 98% are possible.

Write for Bulletin C430-01
BEHIND THE NEWS

Combustion Checker

Knock, pre-ignition, rumble, and thud—odd sounding names for abnormal combustion processes that occur deep inside modern high compression engines—are ferreted out by this precision electronic equipment developed by DuPont Company scientists and installed recently in the company's Petroleum Laboratory. The unique instrument permits instantaneous detection and recording of combustion phenomena simply by replacing the conventional spark plugs in the engine with special instrument plugs equipped with built-in, pressure-sensitive, piezoelectric crystals. The crystals transmit electronic signals which the instrument translates into accurate data on engine performance.

Thermoelectrically Cooled Diode Breaks All Barriers

Anybody can get excited about a small diode that can switch 54 amperes. With an average forward conduction of 17 amperes from -55 C to +385 C (without derating), this diode may well revolutionize the industry—especially with its 0.002 usec recovery time.

Clinging to his production secrets, the manufacturer, Bare Avis Co. (Dept EEG), of 39-21 222 St., Bayside, N.Y., refuses to divulge the nature of the junction materials in the diode. He refuses, also, to disclose how the rapid switching is accomplished.

He does explain how the diode achieves its remarkable temperature range. Thermoelectric cooling is employed to remove heat from the main diode junction. Part of the diode's forward current is forced through an auxiliary thermoelectric junction. As the current rises, so does the rate of thermoelectric cooling.

At temperatures up to about 175 C, no external heat sink is required, but beyond this level, an auxiliary heat sink will help prolong diode life.

After a prolonged discussion with editors of Electronic Design, the manufacturer agreed to make more information available on next April 1st.

NEW TECHNIQUES, NEW INSTRUMENTATION, FACTUALLY REPORTED FOR YOU IN THE

HEWLETT-PACKARD

JOURNAL

Typical subjects:

MICROWAVE DEVICE NOISE FIGURE. What it means, how to measure it; automatic noise figure recording, new meters and noise sources.

MEASURING DC VOLTAGES DOWN TO 1 µV. New techniques, new instruments permit direct readings of extremely small voltages.

TESTING QUARTZ PLATES FOR 5 x 10⁻⁸ WEEK ACCURACY in new 10 MC electronic counter.

"NO-CONNECTION" MEASUREMENTS OF DC CURRENTS. New milliammeter approach requires no soldering; doesn't load circuit.

AUTOMATIC PRINTED RECORDS FROM DIGITAL VOLTMETERS; straightforward method of recording; new equipment available.

YOUR'S WITHOUT CHARGE FROM HP

The HP Journal, reporting throughout the year on measuring developments in all spectra, is sent without charge to engineers in electronics and allied fields. Simply write:

EDITOR,
Hewlett-Packard Journal
5222K Page Mill Road
Palo Alto, California
High-Speed French Computer

A top French industrialist declared recently that France is in the midst of an electronics revolution which has immeasurably strengthened the scientific and technical structure of Western Europe. Mr. Georges Vieillard, founder and general manager of the Campagnie des Machines Bull, Paris, largest producer of electronic computing equipment in Europe, said that "this revolution has helped France expand its plant and equipment at the highest rate on the continent."

The company's Gamma 60 computer, expected to be in production within a year, is understood to be the first data processing machine in the world which can handle several independent problems at the same time.

It can read 300 punched cards a minute, print 120-character lines at 300 per minute. Printing speed can be increased by using more than one printing unit. The Gamma 60 comprises ten types of units: arithmetic, logic, comparator, translator, printer, card reader, paper tape, magnetic tape, magnetic drum, and card punch.

Time Reversal Studies

Engineers at Case Institute of Technology are attempting to turn back split seconds of time in order to improve long distance communication techniques. Their experiments depend on reversing the order of a series of signals sent over wires to improve the fidelity of transmission.

A contract in the amount of $29,600 for a year study of "Time Reversal Techniques" has been awarded to Dr. Harry M. Mergler by the Rome Air Development Center. Under his direction, the scientists will attempt to implement the theory that signals transmitted over long distances, if reversed in direction of flow at the midpoint of the distance from transmitter to receiver, will retain their fidelity over the entire route of transmission.

New Product Announcement

STEMCO TYPE MX* THERMOSTATS

especially designed for missile, avionic and electronic applications

New Stemco Type MX Thermostats are miniature snap-acting units designed to open on a temperature rise. Being compact, lightweight units able to withstand high G's under wide ambient temperature ranges, Type MX thermostats are ideal for missile, avionic and other electronic applications where close temperature control is mandatory.

Basic design flexibility of the Stemco Type MX Series means the units can be supplied from regular production runs in a wide variety of models, both semi-enclosed or hermetically sealed. Ceramic or metal bases for semi-enclosed units, round enclosures or CR-7 crystal cans for hermetically sealed units. Several types of terminal arrangements, mounting provisions, brackets, etc., are available.

Stemco Type MX thermostats give you performance... small cubage... rugged reliability... at a production price.

* 2° to 6°F differentials available

STEMCO manufacturing company, inc.
Mansfield, Ohio
WASHINGTON REPORT

Ephraim Kahn

NASA's Policies

Engineering ingenuity will be a major by-product of U. S. efforts to explore space. As things stand, it is not likely that a large "space industry" will grow up in the near future. But the skills of electronic design engineers and technicians will be drawn upon heavily.

As progress is made, costs of the payloads—the instrument packages—carried by space-probing vehicles may become as large or even larger than the basic vehicle costs, according to space experts.

The technical qualities of these far-ranging measuring and reporting devices, mostly electronic, will be "extremely advanced"—but production is "more likely in the dozens than in the hundreds."

Though costs of space exploration pale when compared with the billions spent through the Department of Defense, they are far from picayune in terms of individual company activity. In the current fiscal year, National Aeronautics and Space Administration is committing $220 million for procurement. It already knows where the "great bulk" of this is going, and has let contracts for more than half. In the coming fiscal year, it hopes to get another $333 million from Congress for new procurement—and the legislators may vote more.

Fund Allocation

Tentative allocation of fiscal 1960 funds indicates: 50 percent, procurement of instruments, vehicles, and scientific investigations of space; 20 percent, space propulsion technology; 20 percent, development of technology for manned space flight; 6 percent, specific investigations of satellite applications in the fields of communications and meteorology; and 1 percent, contracts for tracking and data acquisition and advanced space technology.

This subdivision of funds reveals that the electronics industry's share is small. How much of the 50 per cent is pure electronics is hard to determine. One of NASA's future space explorers, Vega—a combination of Atlas, Vanguard and 6000 lb final thrust—is expected to cost $10 million; half of the dollars will go for electronics.

Design Extra Performance

LONG SHELF LIFE

Tests recently completed prove that storage for as long as six years causes only slight loss of capacity of the unique Mallory mercury battery system. The curves shown here represent data on a typical group of RM-3 cells. Note how closely the milliampere-hour life stays to the "newly made" value for up to 72 months.

LONG SERVICE LIFE

Because of their high energy content and small size, Mallory Mercury Batteries have been used in U. S. satellites. Above is a battery pack for one of the Vanguard projects. In Explorer I, the mercury batteries for the tracking transmitter functioned for 112 days . . . far beyond the 60 days minimum life expectancy.

DEPENDABILITY

Mallory Mercury Batteries supply life-saving power for emergency beacon transmitter made by Telephonic Corporation. Carried by fliers, the transmitter turns on when the flier parachutes out . . . sends signals up to 100 miles to rescue crews. Compact battery pack operates up to 8 hours . . . stays at full strength for months, always ready to deliver power.

STABILITY

In the Megatronometer (insulation resistance tester by Mid-Eastern Electronics, Inc.), they give voltage stability better than 0.0005%, change per hour. Ten RM-12 cells power tube filaments and the 1000-volt transistorized variable power supply. Some stability gives high precision in telemetering and industrial potentiometers.
Into Battery-Powered Products

... by using the unique qualities of Mallory Mercury Batteries

Looking for ways to make battery-operated electronic equipment more miniature, more dependable, more stable, more convenient to use? Put the unusual properties of Mallory Mercury Batteries to work ... in your new designs, and in improvement programs on your present products.

Mercury Batteries—pioneered and perfected by Mallory—do things that no other commercial dry cell can. Their unique chemical system gives them shelf and service life several times that of ordinary batteries. They have high energy per unit volume, and broad temperature range. Their constant energy discharge exactly matches transistor requirements ... makes them suitable for use as high-stability reference voltage standards.

A constantly growing list of new electronic products is making use of these batteries. A few typical examples are shown here. Our application engineers will welcome the opportunity to discuss how you can capitalize on them in your own equipment. An extensive line of standard single and multiple voltage batteries is available. Individually-designed packs can be engineered to your specifications. Write today for a consultation, and for latest engineering data.

An additional supplemental $18 million for 1959 is expected to come through. Of this $12 million will be spent on tracking; $3.4 million for minitrack stations, $3.35 million for basic precision radar, $5.25 million for precision radar and other tracking means.

Patent ownership for inventions made under contracts with the National Aeronautics and Space Administration is slowly becoming clearer. Though the law allows NASA to take title to such patents, the agency realizes that industry would be under a heavy burden if the fruits of its efforts were invariably grabbed automatically by the government. This, in turn, would place NASA in a bad light. Many companies, hoping to achieve scientific breakthrough—or seeing them in the offing—might elect to avoid working under NASA contracts. They could decide to pay for exploratory research themselves or seek contracts with other agencies that have more liberal patent rules.

NASA Plans "Reasonable Interpretation"

To avoid finding itself in an "unworkable situation," NASA is planning a "reasonable interpretation" of the law. Thus, the mere purchase of a standard component with NASA funds will not involve any question of the possible loss or patent rights. On the other hand, much creative engineering, scientific, and technical work will be covered by the agency’s sweeping powers to take title to patents. Even here, however, NASA will not exercise its authority to the fullest extent. As things stand, it is planned to have some, but not necessarily all, contractors make complete and prompt technical reports when an invention, discovery, improvement, or innovation is made. Most likely to be subject to this requirement are firms working under contracts with NASA (or financed by NASA) which contemplate that the contractor will work in accordance with the agency's specifications or special requirements.

Property rights in patents are to be decided on an individual basis. When a contractor files required information concerning new data, the agency will decide whether to exercise its legal right to take title. Officials say that NASA "will make every effort to administer its legal requirement concerning patents fairly and objectively with due consideration to the interests of both government and private industry."

Criteria For Granting Waivers

Some of the rules that will be discussed at a Waiver Regulations Meeting May 18 include these prima facie cases for waiver:

- invention conceived prior to contract.
- invention has only incidental utility to NASA and has promise of commercial utility.
- contractor has spent considerably more of his own funds on the work than did NASA.

SPECIAL BATTERY DESIGNS for MILITARY PROJECTS

Mallory engineers specialize in developing and manufacturing mercury battery packs for military equipment such as beacon transmitters, missile telemetering, portable communications, sonar equipment, and similar devices. Our extensive experience, and facilities for design, testing and pilot manufacturing are at your service. Call or write for a consultation.
The HYFEN method provides the minimum number of contacts—3—thereby reducing reliability problems. Exceeds the requirements of MIL-C-5015C and MIL-C-8384A.

HYFEN® connectors with crimp-type snap-locked contacts

BURNDY's HYFEN method, already widely accepted in the industry, speeds the wiring of electronic harnesses and systems, and achieves greater dependability and versatility than has heretofore been possible. Crimp-type connections eliminate time-consuming solder operations and the disadvantages in the use of solder.

For complete information, write: OMATON DIVISION

BURNDY

Norwalk, Conn.

In Europe: Antwerp, Belgium

CIRCLE 17 ON READER-SERVICE CARD

Toronto, Canada

CIRCLE 18 ON READER-SERVICE CARD

NEW PRODUCT

Printed Circuit Connector With Crimped, Snap-locked Contacts

A new addition to the HYFEN® line—a printed circuit connector, has been announced by the Omaton Division of the Burndy Corp.

This connector, type VC, was designed to combine the high reliability and the wiring techniques embodied in the HYFEN principle for use with printed circuits. This principle allows crimping to be done before or after the harness or wires are in place. It also allows sockets to be easily and quickly snapped in, to be removed with a simple extraction tool for circuit changes or checks, and to be reinserted.

The printed circuit HYFEN is available in 31 and 45 place configurations. The male side of the connector utilizes right angle pins with one side assembled to the board and the other to the receptacle. The side assembled to the board is held in place mechanically and the connection to the circuit is usually dip soldered with the other components on the board. Guide pins align the plug and receptacle, which is mounted on the chassis. Three sizes of HYFEN solderless crimp-type snap-locked sockets, accommodating wire sizes #28, #14 and combinations of these sizes, are available for the receptacles. These crimped connections eliminate time-consuming solder operations and the high rejection rate inherent in the use of fluxes and dissimilar metals characteristic of solder.

Both hand-operated and semi-automatic installation tooling can be used for crimping these sockets. The blocks are made of dialyphthalate...
Dishonest Bidding Must Go

Many engineers know that the only way to get a cost plus fixed fee (CPFF) contract from the government is to underbid. This is because it is usually the lowest reasonable bid that gets the contract. You bid low knowing that later you will ask for the additional funds to meet your costs.

It is therefore calculated dishonesty that pays off. Such dishonesty is so prevalent that it is unfortunately becoming recognized as normal procedure.

You know you can get money if needed and so does your competition. You also know that if you bid too low, your bid can be tossed out as irresponsible. You therefore bid to outguess your competition knowing that if you come in with a "just-lower" price and have a justifiable technical approach, you get the job. What you finally are paid for this job may be far higher than the honest bids that were refused.

The government knows this practice is going on and decries it but so far they have been unable to curb it.

Elimination of CPFF contracts in favor of fixed price contracts is often recommended by contracting officers and Congressmen but engineers know that such contracts do not offer the flexibility so often needed. The answer would seem to be to award a CPFF contract more on the basis of technical soundness and less on price.

One solution is to put a weighting on all the various points that are supposedly considered before a contract is awarded. With every factor, including price, worth only a few points, the more honest, straightforward and clear the proposal, the better are its chances of being accepted.

Admittedly it is no simple task to come up with a point system for evaluating a bid. But here engineers and only engineers can point the way. Who else can judge?

It may be that we need a panel of several technical judges to determine who is the winner of this best technical proposal contest. With rules for playing the game allowing, say only 25% of the total points to be influenced by price, such things as technical considerations and past performance of the contractor will assume their necessary importance.

Everyone will gain by an improvement in CPFF negotiations. Let's encourage our managements to press for a solution that would meet the approval of an engineer.
Circuit failures result from either catastrophic failure of components, or from components changing their values. By realistically analyzing value changes during the design of a circuit you . . .

Improve Circuit Reliability

Charles A. Krohn
Senior Electronic Engineer
Motorola Inc.
Phoenix, Arizona

CHANCES are very remote that all component parts in a circuit will simultaneously exist at their maximum tolerance. This point forms the basis for a scientific rather than artistic approach to handling component value variations in circuit design. The approach involves using some simple statistical techniques.

Overall variations in component part values under operating conditions are caused by factors such as environment and aging. Changes will result from unidirectional tolerances (coefficients) and from plus-or-minus tolerances (distributions).

Component Part Value Distribution
A manufacturing process typically produces component parts whose values are distributed. Most of the components will have values near some nominal value. And a few will have large deviations from the nominal value. Suppose that measurements were made of a large quantity of resistors of the same nominal value and ±10 per cent tolerance. Plotting vertically the number of resistors in each 1 per cent interval of resistance will usually result in a configuration shown in Fig. 1. It is called a frequency distribution or histogram. As the number of resistors measured increases and the resistance interval is narrowed, the envelope of the histogram will form a normal or Gaussian distribution curve as shown in Fig. 2. This curve is symmetrical about the average and asymptotic at the base.

Total area under the curve represents all the

<table>
<thead>
<tr>
<th>Table 1. Variations to be expected in Resistors and Capacitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistors</td>
</tr>
<tr>
<td>Deposited Carbon</td>
</tr>
<tr>
<td>Typical tolerance</td>
</tr>
<tr>
<td>Change at +125°C</td>
</tr>
<tr>
<td>Change at +85°C</td>
</tr>
<tr>
<td>Change at -54°C</td>
</tr>
<tr>
<td>Aging change</td>
</tr>
<tr>
<td>Change with heavy loading (near max rating)</td>
</tr>
<tr>
<td>Change due to voltage coefficient (100 v dc applied)</td>
</tr>
<tr>
<td>Soldering change</td>
</tr>
<tr>
<td>Change with high frequency operation</td>
</tr>
</tbody>
</table>

*Composition resistors may suffer a +10% additional change if exposed to 95% relative humidity, 55°C, for 100 hours.
resistors. Sigma (σ), the standard deviation, is the measure of variation of the distribution. The area bounded by ±1 sigma covers 68.3 per cent of the total area. That is, 68.3 per cent of the resistors are included by ±1 sigma. Ninetyfive and one-half per cent of the resistors are included by ±2 sigma. And 99.7 per cent are included by ±3 sigma. Manufacturing tolerance will usually correspond to ±3 sigma, or greater, depending upon the degree of production control.

Variations in Component Values

An estimate of resistance and capacitance value changes that may be expected of some most common component parts are presented in Table 1. Typical manufacturing tolerances have been listed to permit calculation of examples. Other values of manufacturing tolerances will be applicable when different from those shown. The reference value is that given by the manufacturer. The variations tabulated are not applicable to all component part manufacturers.

Effects of a given situation are combined by adding the portion of each appropriate change which has a single sign, and by combining each portion which has a ± sign according to the square root of the sum of the squares. This method of handling component part value variations will be used in all examples given here.

Resistors. As an example, consider a precision wirewound resistor that has a varying and occasionally heavy load, and must work at any temperature between -54 and +125 C. The drop in value will include:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing tolerance</td>
<td>±0.25%</td>
</tr>
<tr>
<td>Temperature effect (-54 C)</td>
<td>-0.20%</td>
</tr>
<tr>
<td>Aging effect</td>
<td>±0.20%</td>
</tr>
<tr>
<td>Loading effect (lightly loaded)</td>
<td></td>
</tr>
<tr>
<td>Total drop</td>
<td>-0.20% ±0.32%</td>
</tr>
</tbody>
</table>

Further, the rise in value will include:

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing tolerance</td>
<td>±0.25%</td>
</tr>
<tr>
<td>Temperature effect</td>
<td>+0.25%</td>
</tr>
<tr>
<td>Aging effect</td>
<td>±0.20%</td>
</tr>
<tr>
<td>Loading effect (fixed heavily loaded)</td>
<td>+0.10%</td>
</tr>
<tr>
<td>Total rise</td>
<td>+0.35% ±0.32%</td>
</tr>
</tbody>
</table>

The extreme values encountered will be -0.52 per cent and +0.67 per cent. For any component part, if the manufacturing tolerance is adjusted out or compensated, it can be omitted from the combined tolerance.

Tubes. An estimate of changes in vacuum tube parameters is given in Table 2. It is assumed that environmental high temperatures will be compensated by operating the tubes at no more than and preferably less than 70 per cent of

If you have this problem, investigate

GRIP-EZE®
—an example of Phelps Dodge's realistic approach to Magnet Wire research

To develop a solderable film-coated wire without fabric for winding universal lattice-wound coils without adhesive application.

Phelps Dodge Grip-eze—a solderable film wire with controlled surface friction for lattice-wound coils that provides mechanical gripping between turns and keeps wire in place.

Example
Coils wound with (a) conventional film wire; (b) Grip-eze. Note clean pattern of Grip-eze as compared to fall-down of conventional film wire.

Anytime your problem is magnet wire, consult Phelps Dodge...!
normal rated plate dissipation. It is also assumed that the tubes are used near their design center values. This data is pertinent to tubes procured to the MIL-E-1 specifications. If the manufacturing tolerance is adjusted out, it can be omitted from the combined tolerance.

Suppose you want to know the lowest and highest values of plate current to be expected when the manufacturing tolerance will not be compensated and the filament voltage may vary ±10 per cent. The drop in plate current will be:

\[
\begin{array}{c|c|c}
\text{Manufacturing tolerance} & -15\% & \pm 20\% \\
\text{Filament voltage effect} & -5\% & \pm 3\% \\
\text{Aging effect} & -10\% & \pm 5\% \\
\text{Random change} & \pm 10\% \\
\hline
\text{Total drop} & -30\% & \pm 23\%
\end{array}
\]

Plate current rise will be:

\[
\begin{array}{c|c|c}
\text{Manufacturing tolerance} & +15\% & \pm 20\% \\
\text{Filament voltage effect} & +5\% & \pm 3\% \\
\text{Aging effect (new tube)} & \pm 10\% \\
\text{Random change} & \pm 10\% \\
\hline
\text{Total rise} & +20\% & \pm 23\%
\end{array}
\]

As indicated, sizeable variations in tube performance may be expected and should be anticipated early in circuit design.

Circuit Design

Circuits must be designed to properly perform when the coefficient effects combine to produce the greatest deviation in the component part's nominal value. The discussion and examples below show several of the common types of tolerance calculations needed for electronic circuit design.

Most circuits can be represented by an analytical expression that relates the performance variable to the various component part values. The performance variable and the component part values in this type of analytical expression are continuous variables. When the component part values have a normal frequency distribution and are randomly combined in production to form circuits, the performance variable will also have a normal frequency distribution. Applying statistical methods for tolerances to the analytical expression will yield a realistic tolerance for the performance variable that will be obtained in production and usage.

The assumptions are that the component part values are normally distributed, that the component part tolerances are not large relative to the component part's nominal value, and that the component part values are not dependent or interacting.

Sum (or Difference) Tolerance. Tolerances of sums can be combined directly if the tolerances contain the same number of sigmas, then:

\[
(l_n)^2 = (l_{n1})^2 + (l_{n2})^2 + \ldots + (l_{nk})^2
\]

When items are combined in series, the familiar expression "square root of the sum of the squares" refers to actual values of the distribution and not the percentages of the nominal value.

Tolerances of differences or combinations of sums and differences are similarly combined.

Consider resistors combined in series as in Fig. 3. The resistor values have normal distributions, and the tolerances are the limits of the 3 sigma distribution.

The nominal resistance sum is:

\[
R_i = R_1 + R_2
\]

\[
= 150 \text{ K} + 100 \text{ K} = 250 \text{ K}
\]

and the distribution of the sum is:

\[
(l_{R_i})^2 = (l_{R_1})^2 + (l_{R_2})^2
\]

Product (or Quotient) Tolerance. Tolerances of products can be combined directly if the tolerances contain the same number of sigmas and are expressed as percentages. The basic equation for products is:

\[
(T_A)^2 = (T_{A1})^2 + (T_{A2})^2 + \ldots + (T_{An})^2
\]

For products the familiar expression "square root of the sum of the squares" refers to the tolerances expressed as percentages and should not be confused with the case of sums in which the terms are additive.

Example

Consider two resistors with tolerances:

<table>
<thead>
<tr>
<th>Resistor, Composition</th>
<th>Manufacture Tolerance</th>
<th>Change at +85°C</th>
<th>Change at -54°C</th>
<th>Aging Change</th>
<th>Change with heavy loading</th>
<th>Soldering Change</th>
<th>High frequency change</th>
<th>Filament voltage change</th>
<th>Random change when first energized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10% ± 10%</td>
<td>-5% + 2%</td>
<td>-5% - 3%</td>
<td>-10% - 5%</td>
<td>+7% + 6%</td>
<td>-2% - 3%</td>
<td>-5% - 3%</td>
<td>-5% - 3%</td>
<td>-5% + 12% - 10% + 12% + 5%</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

\[
l_{R_i} = 1800 \text{ ohms}
\]

The nominal value and 3 sigma distribution limits of the sum are 250 K ± 1.5 K or ±0.72 per cent. This example illustrates that when items having a normal distribution are combined in series, the resultant sum distribution will exhibit a tolerance advantage. Resistors with a ±1 per cent tolerance combined in the example with a ±0.72 tolerance.

Expected Changes for Realistic Example

<table>
<thead>
<tr>
<th>Component, Composition</th>
<th>Resistors</th>
<th>Tube, Transconductance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacture Tolerance</td>
<td>-10% - 10%</td>
<td>+10% + 10%</td>
</tr>
<tr>
<td>Change at +85°C</td>
<td>-6% - 5%</td>
<td>-6% - 5%</td>
</tr>
<tr>
<td>Change at -54°C</td>
<td>-6% - 3%</td>
<td>-6% - 3%</td>
</tr>
<tr>
<td>Aging Change</td>
<td>+7% + 3%</td>
<td>+7% + 3%</td>
</tr>
<tr>
<td>Soldering Change</td>
<td>-2% - 3%</td>
<td>-2% - 3%</td>
</tr>
<tr>
<td>High frequency change</td>
<td>-5% - 3%</td>
<td>-5% - 3%</td>
</tr>
<tr>
<td>Filament voltage change</td>
<td>-5% - 3%</td>
<td>-5% - 3%</td>
</tr>
<tr>
<td>Random change when first energized</td>
<td>-5% - 5%</td>
<td>-5% - 5%</td>
</tr>
<tr>
<td>Totals</td>
<td>-5% + 7%</td>
<td>+10% + 10%</td>
</tr>
</tbody>
</table>

A fixed change that will affect both the low and high conditions.
The tolerances are the actual values. Tolerances of quotients or combinations of products and quotients are similarly combined.

The tolerance of the output of an idealized transformer is used as an example of this technique. Values and tolerances are as shown in Fig. 4; the tolerances are the 3 sigma normal distribution limits.

The nominal output voltage is:
\[E_v = N E_1 \]
\[= 4 \times 110 = 440 \text{ v} \]
and the distribution of the output voltage is:
\[(T_e)^2 = (T_N)^2 + (T_R)^2 \]
\[= 4^2 + 15^2 \]
\[= 15.8 \% \]

The nominal value and 3 sigma distribution limits of the output voltage are 440 \(\pm 69.5 \text{ v} \) or 440 \(\pm 15.8 \% \) per cent.

Tolerances of Other Expressions. When the analytical expression relating the performance variable to the various component part values is of a different form from the situations just discussed, the general expression:
\[\sigma_y^2 = \left(\frac{\partial y}{\partial x_1} \right)^2 \sigma_{x_1}^2 + \left(\frac{\partial y}{\partial x_2} \right)^2 \sigma_{x_2}^2 + \cdots \left(\frac{\partial y}{\partial x_n} \right)^2 \sigma_{x_n}^2 \]

must be used to obtain the distribution limits of the performance variable.

For example, consider the tuned resonant circuit shown in Fig. 5. The resonant frequency is:
\[f = \frac{1}{2\pi} \sqrt{LC} \]

The tolerances are the 3 sigma normal distribution limits.

The nominal resonant frequency is:
\[f = 1.28 \sqrt{50 \times 10^{-6} \times 30 \times 10^{-6}} \]
\[= 4.12 \times 10^6 \text{ cps} \]
To determine the tolerance of the frequencies the general expression is used:
\[(\sigma_f)^2 = \left(\frac{\partial f}{\partial L} \right)^2 \sigma_L^2 + \left(\frac{\partial f}{\partial C} \right)^2 \sigma_C^2 \]
\[= \frac{1}{4\pi} \right \sqrt{LC} \left(\sigma_L^2 \right) + \left(\frac{1}{2\pi} \right) \sqrt{LC} \left(\sigma_C^2 \right) \]
\[= 4.1 \times 10^6 \]

The nominal voltage and 3 sigma limits of the resonant frequency are \(4.12 \times 10^6 \pm 0.23 \times 10^6 \) or \(4.12 \times 10^6 \) cps \(\pm 5.6 \% \).

Tolerance of Realistic Situations. Examples illustrated thus far consider only initial variations due to tolerance distributions. Under realistic operating conditions component part value variations will result from both negative and positive coefficient effects, in addition to distribution variations. In these situations the low and high conditions resulting from coefficient effects in the range of operation conditions are separately treated. And distributions are computed around each condition.

For example, take a high frequency amplifier with a large output signal range for gain limits under conditions encountered in military applications. Changes to be expected in the tube and resistor in operating conditions are shown in Table 3. All tolerances cited are in the 3 sigma normal distribution limits.

For low conditions:
Tube contribution:
\[G_m \text{ low by } 21\% \pm 15\%, G_m = 4000 \ (0.79 \pm 0.15) \]
\[= 3160 \pm 600 \text{ micronhos} \]
\[R_1 \text{ low by } 5\% \pm 6.7\%, R_1 = 1800 \ (0.95 \pm 0.067) \]
\[= 1710 \pm 121 \text{ ohms} \]
Nominal gain is:
\[A = \frac{G_m}{R_1} \]
\[= \frac{3160}{1200} = 10^{-4} \ (1710) = 5.4 \]
Gain distribution is:
\[T_A = \sqrt{(T_{G_m})^2 + (T_{R_1})^2} \]
\[= \sqrt{3160^2 \times 100 + 1710^2 \times 100} \]
\[= \sqrt{10^2 + 7.08^2} = 20.2 \% \]

For high conditions:
Transformer:
\[G_m \text{ high by } 15\% \pm 15\%, G_m = 4000 \ (1.15 \pm 0.15) \]
\[= 4600 \pm 600 \text{ micronhos} \]
\[R_1 \text{ high by } 12\% \pm 5\%, R_1 = 1800 \ (1.12 \pm 0.05) \]
\[= 2020 \pm 90 \text{ ohms} \]
Nominal gain is:
\[A = (4600 \times 10^{-4}) 2020 = 9.29 \]

Gain distribution is:
\[T_A = \sqrt{(600 \times 100)^2 + (121 \times 1710 \times 100)^2} \]
\[= \sqrt{10^2 + 7.08^2} = 20.2 \% \]

The gain nominal values and 3 sigma distribution limits at the low conditions are 5.4 \(\pm 1.09 \) and at the high conditions are 9.29 \(\pm 1.28 \). Therefore, the gain of this amplifier under production and operating conditions will be between 4.31 and 19.57.

Non-Normal Distributions. Occasionally component part values are not normally distributed. This condition exists when component parts are selected to small tolerances from a manufacturing process that has large tolerances. If component part value distributions are very nonsymmetrical
they will result in performance value distributions that are non-normal. This is particularly
true if the component part values are all distributed in the same lopsided manner. Such a
condition exists when oversized values representing half or more of a normal distribution are
screened out. The method of handling this type of component part value distribution will depend
on the factors present in the particular situation.

When the component part value distributions are rectangular, or near rectangular, the standard
deviation, sigma, of the part value to be used in the general expression for finding the standard
deviation of the performance is computed from:

$$\sigma = \frac{B}{\sqrt{3}}$$ (12)

where B is as indicated in Fig. 7.

The rectangular distribution has statistical properties that are far from the normal distribution.
Certain precautions must be taken to get reasonable results. As a general rule, if there are
only 2 component parts represented in the analytical expression and either or both has a
rectangular distribution, design for both component parts simultaneously at their tolerance
limits and in such a direction as to produce the greatest deviation in the performance variable.
If there are 3 or more component parts, and any of the parts have rectangular distributions, the
general technique shown previously for obtaining the standard deviation of the performance
variable can still be used.

The 3 sigma normal distribution limits obtained from application of the general technique
will actually be close to the worst possible deviations when there are only in the order of 3 or 4
component parts and most of these have rectangular distribution. However, the fact that the
performance variable will be nearly normally distributed should be reflected in subsequent
calculations and advantageously used.

As an example, the scaling factors of the 2-tap voltage divider shown in Fig. 8 are obtained at
the upper tap from:

$$S_2 = \frac{E_{o2}}{E_1} = \frac{R_2 + R_3}{R_1 + R_2 + R_3}$$ (13)

and at the lower tap from:

$$S_1 = \frac{E_{o1}}{E_1} = \frac{R_1}{R_1 + R_2 + R_3}$$ (14)

The tolerance limits shown in Fig. 8 are the absolute tolerances (beyond which no value shall
exceed) of the rectangular distribution. Considering only the smaller scaling factor of the lower
tap, the nominal scaling factor is:

$$S = \frac{22,000}{(56,000 + 27,000 + 22,000)}$$

$$S = 0.2095$$

The standard deviation of the resistor's rectangular distributions are:

$$\sigma_{R_1} = \frac{B}{\sqrt{3}} = \frac{280}{\sqrt{3}} = 162 \text{ ohms},$$

$$\sigma_{R_2} = 77.9 \text{ ohms}, \text{ and } R_3 = 63.5 \text{ ohms}.$$
\[
\begin{align*}
3\sigma = & 17.9 \times 10^{-1} \\
The \text{nominal value and 3 sigma limits of the smaller scaling factor are } & 0.2095 \pm 0.00179 \text{ or } 0.2095 \pm 0.86\%. \text{ Similar calculations on the larger scaling factor yield } 0.4667 \pm 0.57\%.
\end{align*}
\]

Empirical Techniques

Electronic circuit or system design problems occasionally occur where the analytical expression or model is unknown. Situations also arise where the analytical expression used is a gross approximation and little reliance can be placed on it. Another similar situation occurs when an analytical expression is known but is complex, and obtaining the partial derivative of the performance variable with respect to the various part values by analytical techniques is difficult. One approach is the use of a simple technique that yields limited but useful results.

The technique is simply to vary a single component part's value over the range of typical variations and at various values of this component part to simultaneously measure the component part’s value and the performance variable's value while holding all other component part values constant. An approximation of the partial derivative of the performance variable with respect to the component part that is being varied can be obtained in this manner. If all other component part values were at their nominal value and remained stable, an accurate estimate would be obtained. Therefore, the approximation error is determined by the deviation of the values of the remainder of the component part values, will yield an approximation of the performance variable's standard deviation.

Acknowledgment

The author is indebted to other Motorola Reliability and Components Group staff members who assisted in collecting the component part variation information discussed in this paper.

References

Tung-Sol moves ahead!

High power transistors with new cold-weld seal

Improved cold-weld seal gives new Tung-Sol high-power transistors three-way quality boost

- True hermetic, copper-to-copper seal improves transistor thermal characteristics.
- Elimination of heat-damage, heat-caused moisture and “splash” increase reliability.
- Vacuum-tight, moisture-proof cold-weld seal lasts even through “breathing” over long life operation.

Once again Tung-Sol shows the way. Now, for the first time, Tung-Sol brings designers high-power germanium transistors with quality benefits of the advanced cold-weld seal.

The new Tung-Sol types feature a stud-mounted package and maximum collector current of 13 amps. Military environmental tests combine with the radioactive gas leak detection test to assure maximum reliability.

Technological advancements such as this keep Tung-Sol ahead of the field. For full data on the new high-power switching transistors . . . to meet any need with the latest in transistor design and efficiency, contact: Semiconductor Division, Tung-Sol Electric Inc., Newark 4, New Jersey.
For Better Circuit Performance:

Degauss Pulse Transformers

Edward J. Watt
PCA Electronics, Inc.
Sepulveda, Calif.

Although useful and necessary in many applications, residual magnetism is undesirable in pulse transformers. In this article, E. J. Watt provides some background on the polarization of pulse transformers and how to get rid of it. In a succeeding article the author explains how to measure pulse transformer parameters.

RESIDUAL magnetism in pulse transformers often results in poor circuit performances; degaussing the transformers will remedy this situation.

Residual magnetism can be of a plus or minus polarity. The polarity depends on the direction of current which previously passed through the transformer. This current also determines at what point on a magnetization curve the residual magnetism is located.

An ideal magnetization curve, or hysteresis loop, is shown in Fig. 1. The narrower the curve, the better the transformer. A more typical magnetization curve is shown in Fig. 2.

Fig. 1. An ideal magnetization curve.

Fig. 2. A typical magnetization curve.
Causes of residual magnetism are many. Checking the continuity of a transformer with a meter will do it. Frequently, incoming inspection places the transformer into some sort of text fixture for an electrical test. High powered radar antennas in the immediate vicinity may sweep their beam across a transformer lying on a bench. Also, a transformer may be placed next to some stable through which a large amount of 60 cycle current is flowing.

The inductance of a transformer depends on the number coil turns and the amount of core. There is a limit to how much each can be varied. In certain applications, more core and less turns may be necessary for a given quantity of inductance. More core and less turns will (1) raise the saturation point, (2) decrease the core losses, (3) decrease interwinding capacitance, (4) increase interwinding capacitance, and (5) increase the voltage breakdown between turns, as each turn will increase its potential gradient with respect to an adjacent turn. Somewhere optimum compromises are made.

Effects of Residual Magnetism

When a transformer is placed in a circuit and subjected to a current flow in a given direction, the core will maintain a certain amount of residual magnetism after the current source is removed. If this same current is reapplied, the transformer will continue to give repeatable performance.

If this-same transformer should then be used in a different circuit, it will receive a new magnetic set. Returned to its original circuit, the performance of the transformer will not be the same as it first was.

In blocking oscillator applications slight magnetization of the transformer can cause 50 to 200 per cent variations in performance. When used as a coupling transformer, the difference in performance is not so noticeable.

The Solution

Frequently it may solve an engineer’s blocking oscillator problem to polarize a transformer; positive if he wants to decrease output pulse width, and negative to increase pulse width. This is a short-cut solution, as little guarantee is had that the transformers assembled into a production item will be polarized in the proper direction and in the desired amount.

Using depolarized pulse transformers will provide consistent performance in every circuit. Depolarization will insure the transformer starting out from a neutral condition and establishing a residual magnetic set which it will maintain from the balance of its life.

Degaussing A Transformer

To depolarize, or degauss a transformer, the transformer is subjected to an alternating voltage of magnitude sufficient to saturate the core in each direction. The signal is gradually reduced to zero before the transformer is disconnected.

The basic magnetics formula is

\[E = 4.44 \times f \cdot B \cdot A \cdot N \times 10^{-8} \]

where \(E \) is volts maximum; \(f \) is applied frequency in cps; \(N \) is number of turns on winding being energized; \(B \) is saturation flux density (20,000 lines per cm\(^2\)) for grain oriented silicon steel; and \(A \) is the cross section area of core in cm\(^2\).

Values of voltage \(E \) sufficient to saturate the various transformers at 60 cps (primary windings) are as follows:

<table>
<thead>
<tr>
<th>(N)</th>
<th>(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.18 v</td>
</tr>
<tr>
<td>4</td>
<td>0.66 v</td>
</tr>
<tr>
<td>7</td>
<td>1.08 v</td>
</tr>
<tr>
<td>10</td>
<td>1.50 v</td>
</tr>
<tr>
<td>16</td>
<td>2.28 v</td>
</tr>
<tr>
<td>25</td>
<td>2.88 v</td>
</tr>
</tbody>
</table>

Values in between the above numbers can be extrapolated.

A simple degaussing jig is shown in Fig. 3. It is only necessary to have the Variac at zero volts when the primary winding is connected across the output of the filament transformer. The Variac is then turned by hand to near 100 v and back down to zero. This should be done in 1/2 to 2 seconds total time. •

Fig. 3. A degaussing jig.
Spring Spins Gyro

A spiral "clock" spring spins the rotor of this roll reference gyro into action. Use of the spring as an energizing element reduces the weight of the gyro, which was designed for missiles and drones that must be maintained in operational readiness for long periods of time.

Advance energizing of the gyro is not necessary. Once wound and armed at the factory, the unit is capable of being stored in this condition for an indefinite time without loss of accuracy.

The frame-mounted spring brings the rotor to operational velocity in less than 10 msec after launching. Then the spring disengages and permits the gyro to function as an inertial reference. The units were developed by Telecomputing Corp., Whittaker Gyro Div., 16217 Lindbergh St., Van Nuys, Calif.

Weighing 3.5 lb, the gyro is hermetically sealed, but is available in a tape dust-seal for proving tests. Control period for the unit is 30 sec.

Flat Rotary Switch Saves Space

Fig. 1. Using a printed circuit element, this flat rotary switch converts visual decimal numbers to binary or octal codes.

Yes, another Sealectro "First"! Here's a flat-mount subminiature jack (SKT-PC Series) for printed-wiring boards. Mounts in three holes forming a triangle. Takes standard 0.080" probe or matching plug. Simply dip-soldered from under side of board for rugged mechanical and electrical installation.

- Mounts flat on top side of printed-wiring board.
- For dip soldering in grid coordinate spacings.
- Matching subminiature plug available.

Long-life contacts of heat-treated Beryllium copper.
- In ten different code colors.
- Takes standard 0.080" probe or matching plug. Teflon*-centered entry relieves contacts from mechanical strain.

New Manual containing the up-to-date listings of hundreds of "Press-Fit" terminals, jacks and plugs, sent on request.

Solenoid Triggers Gyro

A solenoid, when energized, triggers the gyro into operation. The solenoid releases a trip hammer that lifts the latch holding the main accelerating spring. The action of the trip hammer is strong enough to overcome any cold-flow welds between the latch and the restraining mechanism. A cold-flow weld may result from the tremendous force exerted by the spring on the latch over a long time.

The gyro is available in a cylindrical shape measuring 4 in. in diameter and 7.3 in. in length, and a rectangular shape measuring 3.5 x 4 x 3.5 in. And its operating temperature range is −65 or +180 F.

Drift rate of the gyro is within 0.625 deg per min, averaged over a 10 min period. It can withstand a shock of 10 g and has been able to take a vibration of 5 to 55 cps at 10 g during a sweep frequency of 1 min. Long storage periods have negligible effects on the power of the spring to perform as intended.

For more information on this spring-driven gyro turn to the Reader-Service card and circle 101.

Flat and small in construction, easy to set and read, simple conversion of visual decimal numbers into binary or octal code—all these properties characterize this rotary switch.

Called the Digiswitch, Series 7300, the unit was primarily designed for computer and control systems by the Digitran Co., 45 West Union St., Pasadena, Calif.

The switch can be used in place of a 10-position or octal switch unit of the conventional rotary construction. And, because a printed circuit board is used, the unit permits binary code (1, 2, 4, 8) or octal code (1, 2, 4, 7) to be set from a visual decimal number.

Attached to the rotating wheel of the switch is either one or four brushes, depending on whether the switch is designed for decimal, binary or octal operation. For decimal operation one brush is used, but there are four for binary or octal units.

The brushes rotate across a printed circuit board. On the rear of the board are plated-through holes to which wires are soldered for connection purposes. There are 11 connections for decimal operation, 5 for both binary and octal.

Ganging Possible

The switch is designed on a modular basis which permits ganging. Number of modules that can be ganged is limited only by panel space. Twenty switches can be mounted in the normal space required for five conventional rotary switch units.

Contacts on the switches are rated for 200 v at 1 amp. And contact resistance is 0.5 ohm. For decimal operation the 10 contact positions can be either single or double pole. The unit can operate in an ambient temperature of up to about 125 C.

Overall height of the switch is 2.32 in. as viewed from the panel side. Width per section is 1/2 in. Behind the panel the switch extends 1.61 in. and is 1.86 in. high. Overall extension in front of the panel is 0.2 in. Detents hold the switch securely in each position.

For more information of this switch, turn to the Reader-Service card and circle 102.

Fig. 1. Caging and winding of the gyro is done with a removable key at the factory. The unit is capable of being stored for an indefinite period in this condition.

Vital Component in Sage Air Defense Computers

The Sage System, vital to our nation's security, relies on IBM-built computers to display accurate pictures of hostile and friendly aerial action.

IBM uses printed circuit cards with plated-thru holes by PHOTOCIRCUITS to help do the job. IBM experience indicates that through-circuitry—using both sides of a printed card—saves space and costly assembly time.

Printed circuit cards by PHOTOCIRCUITS have plated-thru holes that help eliminate troublesome interments caused by vibration and temperature changes...increase solderability, too.

PHOTOCIRCUITS produces reliable printed circuit cards...builds them with strength to spare for all applications.

"Bonus" copper, on the right-size hole wall, is just one of the reasons you can depend on PHOTOCIRCUITS printed circuit cards. Proper design, precision production, and advanced quality control techniques are others. All add up to outstanding reliability...often at lower cost.

Check the advantages of printed circuit cards with plated-thru holes by PHOTOCIRCUITS...the largest and most experienced manufacturer in Printed Circuitry. For full information, write our Engineering Department PS-1 today.
ZENER DIODES are well suited for shunt regulator applications. The power regulator diode provides a wider choice of voltages and larger current ranges than do gas-tube regulators. In addition to these advantages, it does not require a firing voltage higher than the regulating voltage, as does a gas-tube regulator.

A voltage regulator circuit employing a power regulator diode is shown in Fig. 1. The diode is connected across the load, \(R_L \). This combination is fed from the unregulated supply voltage, \(V_o \), through a series dropping resistor, \(R_s \). The flat voltage characteristic of the diode holds the load voltage essentially constant as the load current or supply voltage changes. A change in load current results in a corresponding change in diode current. Therefore, the voltage drop across \(R_s \) remains unchanged with variations in load current. A change in input voltage, \(V_o \), produces a corresponding change in diode current which causes the change in voltage drop across \(R_s \) necessary to cancel the change in input voltage, thus holding the load voltage constant.

Designing Zener Diode Regulators

For a specific regulator application, the load voltage and current requirements are known. The percentage variation in the unregulated supply voltage is estimated. The design of the regulator is accomplished by selecting the proper regulator diode and determining an input voltage and series resistance that will provide regulation over the required load current and input voltage changes without overloading the diode.

The diode voltage is determined by the load requirement. It must have a larger range between its maximum and minimum current limits than the expected range of load current variations. The maximum diode current is determined by the dissipation rating and is a function of case temperature. A curve of the maximum dissipation vs case temperature is obtainable from the diode data sheet. The maximum current may be expressed as:

\[
P_{\text{max}} = \frac{P_{\text{max}}}{V_L}
\]

where

- \(P_{\text{max}} \) = maximum dissipation rating of the diode.
- \(V_L \) = load voltage

The minimum diode current, for regulator design, is the current at which avalanche breakdown occurs, and is also a function of temperature. A practical minimum for most applications is approximately 1 ma.

An equivalent circuit for the voltage regulator of Fig. 1 is shown in Fig. 2. The fundamental equations involved in the operation of the regulator are:

\[
V_i = (R_s + r_d)I_d + R_s I_L + V_{j}
\]

(2)

\[
V_L = V_o + r_d I_d + V_{j}
\]

(3)

\[
P_d = V_d I_d
\]

(4)

\[
P_L = V_L I_L
\]

(5)

where

- \(V_i \) is the unregulated input voltage
- \(R_s \) is the series resistance
- \(r_d \) is the resistance in series with the fixed voltage, \(V_o \), constituting the equivalent circuit of the diode
- \(I_d \) is the diode current
- \(I_L \) is the load current
- \(V_L \) is the output, or load, voltage
- \(P_d \) is the load power

To calculate the proper values for \(V_i \) and \(R_s \), from these equations, refer to the operating region of the regulator shown in Fig. 3. It is assumed that the full current range of the diode will be utilized in providing regulation over the entire operating region, bounded by the maximum and minimum load currents and by the maximum and minimum input voltages. This region is contained between the load lines, representing the series resistance, \(R_s \), drawn through the maximum allowable diode current and the minimum diode current required for regulation. The input voltage may be any value within the range of \(V_o = \pm \Delta V_i \). If the ratio, \(\Delta V_o/V_o \), is defined as \(k \), permissible input voltages are:

\[
V_i = V_o [1 + k]
\]

(6)

It is clear from Fig. 3 that a compromise between load current variations and input voltage range must be made for a particular diode (i.e. a reduction in load current range, from that shown in Fig. 3, will provide a wider input voltage range or a reduction in input voltage range will provide a larger current range).

The important points in the operating region are the two corners through which the series resistance load line passes. The point representing the maximum input voltage and minimum load current determines the maximum diode current and the point representing the minimum input voltage and maximum load current determines the minimum diode current. An expression for

R. G. McKenna

Texas Instruments Inc.
Dallas, Tex.

A few equations, a set of curves make the design of a zener diode voltage regulator easier. And too, they help predict the regulator's performance.
the ratio, \(k \), in terms of the coordinates of these two points may be obtained from Eq (2) as follows:

\[
2 \left(V_{ak} - (R_s + \tau_d) \left(I_{dmax} - I_{dmin} \right) - R_s (I_{dmax} - I_{dmin}) \right) = 0 \tag{7}
\]

Since the nominal input voltage, \(V_{in} \), is the average of the maximum and minimum input voltages, a second expression may be obtained from Eq (2), involving these quantities. It is:

\[
2 V_{in} = (R_s + \tau_d) \left(I_{dmax} + I_{dmin} \right) + R_s i_d (I_{dmax} + I_{dmin}) + 2 V_d \tag{8}
\]

The values of input voltage, \(V_{in} \), and series resistance, \(R_s \), calculated from Eqs (7) and (8), are:

\[
V_{in} = \frac{V_a}{2} \left[a - k \right] = \beta \tag{9}
\]

\[
R_s = \frac{2 V_{in} - \left[\tau_d (I_{dmax} + I_{dmin}) + 2 V_d \right]}{I_{dmax} + I_{dmin}} \tag{10}
\]

where

\[
a = \frac{I_{dmax} - I_{dmin}}{I_{dmax} + I_{dmin}}, \quad \beta = \frac{1}{2} \left[\alpha \left(I_{dmax} + I_{dmin} \right) + 2 V_d \right] - \alpha \left(I_{dmax} - I_{dmin} \right)
\]

The maximum and minimum diode currents are determined by the design and rating of the diode. For fixed values of maximum and minimum load currents, the only variables in Eq (9) are \(V_{in} \) and \(k \). This is the equation of a hyperbola, in standard form, with asymptotes of \(V_{in} = 0 \) and \(k = \pm \alpha \). Since the load current excursions, \(I_{dmax} \) and \(I_{dmin} \), and the percentage input voltage changes, \(k = 100 \), are known, the nominal input voltage, \(V_{in} \), is determined by Eq (9). Its value may therefore be directly calculated from known quantities. The series resistance may then be calculated from Eq (10).

It will be observed, from Fig. 3, that low values of series resistance and input voltage are desirable for large load current changes, provided there is no change in input voltage. However, in this case, no regulator is needed. On the other hand, large values of input voltage and series resistance are desirable for wide input voltage changes. The values of \(V_{in} \) and \(R_s \), calculated from Eqs (9) and (10) are the lowest input voltage and series resistance that will provide regulation for simultaneous changes in load current and input voltage specified by \(I_{dmax} \), \(I_{dmin} \), and \(k \). Therefore, these values represent the most efficient and economical diode regulator that can be designed to satisfy the load and input voltage requirements. It should be noted that \(R_s \), calculated from Eq (10) includes the effective internal resistance of the input voltage source. The actual series resistance inserted in the circuit should be reduced in an amount equal to the internal resistance of the input voltage source.

Design Curves and Equations

If both sides of Eq (9) are divided by the load voltage, \(V_L \), a dimensionless equation is obtained. Eq (10) may be reduced to a dimensionless form by following a similar procedure. The constants associated with these equations may be expressed in terms of voltage and power ratios, thus obtaining a set of generalized diode regulator equations that may be used for a wide range of zener diode voltages and power ratings. They are as follows:

\[
\frac{V_{in}}{V_L} [a - k] = \beta \tag{11}
\]

\[
R_s P_{dmax} = \frac{2 \left[V_{in} - \frac{1}{V_L} \right] + \frac{1}{V_L}}{1 + P_{max} + P_{min}} \tag{12}
\]

where

\[
\alpha = \frac{P_{dmax} - P_{dmin}}{P_{dmax}} \quad \beta = \left[\alpha \left(1 + \alpha \right) \right] \Delta V_L \tag{13}
\]

These equations neglect the minimum diode current which is very small (1 ma or less). \(V_i \) is the voltage across the diode for maximum diode current and \(\Delta V_L \) is the change in diode voltage for the full diode current swing, from \(I_{dmax} \) to \(I_{dmin} \). While the ratio \(\Delta V_L / V_L \) is not quite constant for all diodes, an error of only about 1 or 2 per cent is introduced by assuming an average value for this term.

Generalized design curves, for zener diode regulators, are shown in Figs. 4 and 5. The curves of Fig. 4 are obtained from Eq (11) and represent a minimum load power of zero. The input voltage regulation, \(k \), is shown as a function of \(V_{in} / V_L \) for maximum load powers of 0.1 through 0.9 times rated diode power. Similar curves, obtained from Eq (12), representing \(R_s P_{dmax} / V_L^2 \), as a function of \(V_{in} / V_L \), are shown in Fig. 5.

Example

A regulated dc voltage of approximately 45 v and 35 ma peak current is required. The input voltage regulation, including ripple, is 20 per cent. It is desired to determine the nominal input voltage, \(V_{in} \), and the series resistance, \(R_s \). A zener diode, having a voltage of 46.85 v at \(I_{dmax} = 110 \) ma was selected for this application.
The performance of the regulator was pretty much as predicted. For \(V_i = 57.12 \text{ v and } I_i = 35 \text{ ma, the calculated and measured values of the diode current agreed, 0.1 ma. For } V_i = 85.68 \text{ v and } I_i = 0, \) the calculated diode current was 110 ma, while the measured diode current was 108.5 ma.

A small series resistance is indicated, from Fig. 6, for \(V_{in}/V_i = 1. \) This resistance is necessary to protect the diode when the maximum input voltage, \(V_{in}(1 + k), \) is obtained with no

For your further enlightenment...

- **resistance range**: 25 to 125,000 ohms
- **power rating**: 1.5 watts at 40°C
- **noise**: 100 mv maximum
- **starting torque**: 0.6 oz. in. maximum
- **moment of inertia**: 0.2 gm. cm².

Applicable sections of NAS 710, MIL-R-19, JAN-R-19 and MIL-R-19518 are met or exceeded... and we have certified test data to prove our every claim. To enrich your leisure hours, write for Data File C42.

For your further enlightenment...

- **resistance range**: 25 to 125,000 ohms
- **power rating**: 1.5 watts at 40°C
- **noise**: 100 mv maximum
- **starting torque**: 0.6 oz. in. maximum
- **moment of inertia**: 0.2 gm. cm².

Applicable sections of NAS 710, MIL-R-19, JAN-R-19 and MIL-R-19518 are met or exceeded... and we have certified test data to prove our every claim. To enrich your leisure hours, write for Data File C42.

Fig. 5. Generalized design curves. \(R_s P_{nom}/V_i^2 \) is a function of \(V_{in}/V_i. \)

Fig. 4. [below] Generalized zener diode regulator curves. Voltage regulation, \(k, \) is a function of \(V_{in}/V_i \) for maximum load powers of 0.1 through 0.9 times rated diode power.
Fig. 6. Effect of low or high diode voltage on operating region.

The smallest value of \(k \) associated with these curves is about 0.025.

Since the regulator components are selected to utilize the full operating range of the diode, it is desirable to evaluate the operation of a circuit designed for a nominal value. The effect on the regulator operating region of this condition is shown in Fig. 6.

For nominal diode voltage the operating region will cover the area \(abc \), in Fig. 6. This area is bounded by the maximum load current, on the top, the minimum load current, on the bottom, and the maximum and minimum input voltages, \(V_{\text{in}} \), on the sides.

If the diode voltage is too high, say by 10 per cent, the maximum input voltage that will provide regulation will be reduced from point \(b \) to point \(d \). This point is reached when the diode current drops to the smallest value that will provide regulation. If the input voltage drops below the point \(d \), the circuit ceases to function as a regulator.

If the diode voltage is too low, the maximum input voltage, that produces maximum diode current, will be reduced from point \(e \) to point \(a \). This condition may not be too serious, since the diode current rating is based on power dissipation. A low voltage diode can therefore tolerate a higher current than one of nominal voltage. The effect of high or low voltage diodes, representing the normal manufacturing spread, is to reduce the effective input voltage regulation from \(b \) to \(b'-c' \). The estimated input voltage regulation should therefore be increased to allow for spread in diode voltages. The reduction in allowable input voltage change is an exact proportion of the deviation in diode voltage from its nominal value. Thus, the allowance in input voltage regulation for diode spread will depend upon the ratio of input voltage to diode voltage. For example, if \(V_{\text{diode}} = \frac{1}{2} \), ±5 per cent should be added to the estimated input voltage regulation to allow for ±10 per cent diode voltage spread. This allowance should be determined for each application and will always be less than the percentage diode spread.
Improving the Emitter-Coupled Phase Splitter

An efficient phase-splitter using transistors can be designed with well stabilized operating points. The difficult problem of drift is solved by only a slight modification of the conventional phase-splitter circuit.

Maurice Price
Computing Devices of Canada Ltd.
Comdevcan, Ottawa

DESIGNING a phase-splitter with transistors, the engineer is faced with the problem of stabilizing the operating points. This is the source of most of the difficulty. In this article an efficient phase-splitter is described having a voltage gain of about 8000 and a power output of 10 mv. It can be designed with well stabilized operating points.

Conventional Phase-splitter Circuit

A convenient starting point for developing a well-stabilized circuit is the emitter-coupled pair shown in Fig. 1. Transistor Q₂ is driven from the single-ended first stage, while Q₃ is fed from the common emitter resistor Rₑ. The base of Q₃ is bypassed to ground by capacitor C₂ to achieve this feed. Both transistors Q₂ and Q₃ are shown with identical bias networks R₂, R₃ and R₆, R₇. The efficiency is adversely affected by the shunting effect of these networks on the signal and by the loss of dc power in them.

Fig. 1. An emitter-coupled phase splitter.
Fig. 2. Transistor Q₂ has been directly coupled to Q₁.
Fig. 3. Improved circuit has both Q₂ and Q₃ supplied with bias from the Q₁ collector circuit. The bypass capacitor C₁ may be omitted with an attendant loss of gain.
Improving Operating Point Stabilities

An improvement can be made by coupling Q1 directly to the single-ended driver, as shown in Fig. 2. The disadvantage of this scheme is that Q2 and Q3 do not operate under identical conditions as far as the dc circuit is concerned. The operating point stabilities will be different and the power is still wasted in the bias network R_2, R_5.

A further improvement is suggested in Fig. 3. The collector load of Q1 has been split into a bridge arrangement of the four resistors R_1 through R_4. These four resistors may be made equal, although the only rigid requirement is that $R_1 = R_6$ and $R_5 = R_7$. The bases of Q2 and Q3 are then at the same dc potential as required for their biasing. Capacitor C_3 bypasses the base of Q3 to the positive supply bus and thence to ground. For signal frequencies, resistor R_2 acts only as an undesired attenuator in series with the base of Q2, and is therefore bypassed by capacitor C_3. If the loss of gain can be tolerated, C_3 may be omitted.

Note that the direct coupling of the two push-pull transistors to the first stage enables both their operating points to be equally stabilized. In this type of connection, the resistor values may be so chosen that the first stage compensates for the operating point drift of the second stage. There is no loss of signal through the shunting effect of the bias arrangements. The scheme of Fig. 3 will operate satisfactorily down to that frequency at which C_1 and C_3 fail to act as effective bypasses. The operating point stability factors are given by:

$$S_1 = \frac{\partial I_1}{\partial I_0} = \frac{1 + \frac{R_3}{R_1 + R_2}}{1 - \alpha} + \frac{R_3}{R_1 + R_2}$$

$$S_2 = \frac{\partial I_2}{\partial I_0} = \frac{\partial I_3}{\partial I_0} = \frac{2 R_3}{(1 - \alpha) + 2 R_2 R_4}$$

It has been assumed in these equations that all three transistors have identical I_0 and α.

Sample Design

A sample circuit is shown in Fig. 3 using type 2N479 silicon transistors with an u of about 0.98. The output collectors are transformer coupled to a load measuring 7.2 K collector-to-collector.

No attempt was made to maximize gain or power output. The stability factors are $S_1 = 5.4$ and $S_2 = -4.3$. The two push-pull transistors have thus been slightly over-compensated. The voltage gain of the circuit measures about 8000, and some 10 mw of power output is available.

Clevite offers new types with improved reliability and power handling capacity.

EIA REGISTERED TYPES WITH:

- Improved seal for long life.
- Saturation voltage less than 1 Volt at increased maximum rated current of 15 amperes.
- Average thermal resistance 0.7°C per watt.
- Current gain controls: 60-150 at 5 amperes.
- 100% test for resistance to transient burn out.
- Either standard pins or solder lugs.

TECHNICAL DATA

Typical Electrical Characteristics at 25°C

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector to Emitter Voltage</td>
<td>30V</td>
<td>40V</td>
<td>60V</td>
<td>75V</td>
<td></td>
</tr>
<tr>
<td>Shorted Base (IC = 1 amp)</td>
<td>(Max)</td>
<td>(Min)</td>
<td>(Max)</td>
<td>(Min)</td>
<td></td>
</tr>
<tr>
<td>Saturation Voltage (IC = 15 amps)</td>
<td>1.0V</td>
<td>1.0V</td>
<td>1.0V</td>
<td>1.0V</td>
<td></td>
</tr>
<tr>
<td>DC Current Gain (IC = 5 amps)</td>
<td>60-150</td>
<td>60-150</td>
<td>60-150</td>
<td>60-150</td>
<td></td>
</tr>
<tr>
<td>DC Current Gain (IC = 15 amps)</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Absolute Maximum Ratings</td>
<td>Collector Current</td>
<td>15 amps</td>
<td>15 amps</td>
<td>15 amps</td>
<td>15 amps</td>
</tr>
<tr>
<td>Collector to Base Voltage</td>
<td>40V</td>
<td>40V</td>
<td>40V</td>
<td>40V</td>
<td></td>
</tr>
<tr>
<td>Collector to Emitter Voltage</td>
<td>60V</td>
<td>60V</td>
<td>60V</td>
<td>60V</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation at 70°C</td>
<td>80W</td>
<td>80W</td>
<td>80W</td>
<td>80W</td>
<td></td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>95°C</td>
<td>95°C</td>
<td>95°C</td>
<td>95°C</td>
<td></td>
</tr>
</tbody>
</table>

CLEVITE TRANSISTOR PRODUCTS

241 Crescent St., Waltham 54, Mass. TWinbrook 4-9330

CLEVITE

A DIVISION OF

CLEVITE

Now from CLEVITE...
Differential amplifiers can...

Rescue Millivolts of Signal From Volts of Noise

William G. Royce
Project Engineer
Kin Tel Division of Cohn Electronics
San Diego, Calif.

FLOATING differential dc amplifiers are better than single-ended amplifiers for rejecting noise in an instrumentation system. The differential amplifier can distinguish between millivolts of signal and volts of noise.

The disadvantage of the single-ended amplifier is that it needs a filter in its input to reject noise. The filter attenuates noise, but it also attenuates the signal.

In the system shown in Fig. 1, the signal output of the transducer might be 10 mV peak-to-peak. If the system is to have an overall resolution of 0.1 per cent, which is not unreasonable today, then the total allowable error can not exceed 10 mV peak-to-peak at the amplifier input. This error includes noise introduced into the system prior to the amplifier, amplifier performance, and other miscellaneous contributions.

If the amplifier is a good one, it will probably have an error equivalent to slightly less than 5 mV peak-to-peak input. This error within the amplifier is caused by drift, low frequency noise, and hum. The remaining contribution of approximately 5 mV peak-to-peak comes primarily from hum picked up in the wiring of the instrumentation circuit exterior to the amplifier.

To reject unwanted noise in such a system so that less than 5.6 mV peak-to-peak gets to the input terminals of the amplifier, the instrumentation wiring must be installed so that maximum ground loop impedance exists, with accompanying minimum ground loop current. Such precautions are mandatory; but even when grounding is properly taken care of, noise amplitudes of several volts often appear on the wires leading to an instrumentation dc amplifier. This noise is caused by ground loop current, which inevitably exists in the system. Sometimes the system lends itself to the inclusion of a series filter, but unfortunately, a noise filter always limits the band pass or frequency response of the circuit. Therefore, in many dynamic instrumentation installations a filter is not practical. In these cases the amplifier itself must be able to reject noise.

Ground Loops and Common Mode Voltage

The consideration of grounds involves comparing the relative merits of single-ended and differential amplifiers. A typical, conventional single-ended amplifier has one of its input terminals and one of its output terminals joined as a common ground connection. This ground terminal is usually connected to the amplifier frame. Such an arrangement results in a good amplifier, but often provides many headaches when either the transducer or the recorder, or both, must be tied to system ground. In a differential amplifier, the input and output terminals may be floating with respect to system ground, providing greater flexibility in wiring the instrumentation system.

One way to keep the noise low in the system shown in Fig. 1 is to keep the common mode voltage as low as possible. Common mode voltage is the difference in potential between widely separated ground points. Any grounding material connecting two points has some finite impedance—even so-called buss bars. Unfortunately, the use of heavy wire in the connecting cable does very little good. The reason for this is that the thermocouple resistance is relatively high.

The scheme shown in the illustration reduces noise considerably. The shield of the connecting cable is connected to ground at two points, providing a shunt circuit for the ground loop current \(I_1 \). The amplifier and the load are well isolated from ground. In addition, it is significant that the reference cold junction is in the line connected to the high side of the circuit; such placement is
made because this line has more impedance than the other wire emanating from the thermocouple. The low-impedance line is chosen for the low or ground side.

With the circuit arrangement shown in Fig. 1, the ground loop current I_2 flows through the parallel paths of the cable shield and the low side of the thermocouple output wire. Since the shield has a much lower impedance than the instrument lead, most of the unwanted ground loop current flows through the shield. Such an arrangement will provide noise figures within the 50 μV peak-to-peak limitation mentioned above. The only rule of thumb broken by the circuit shown is that the shield is not unipotential; that is, the shield shown is grounded at both ends. This difficulty can be circumvented by using a double-shielded connector cable. The outer shield can be used for the ground connection, while the inner shield is connected at the amplifier end only.

Differential Amplifier Limitations

To make such a precision instrumentation system possible, a well-designed differential amplifier is highly desirable. A basic differential amplifier is shown in Fig. 2. In this theoretical circuit, the output voltage is proportional only to the difference between the two input voltages. These input voltages are referred to a common, unvarying ground potential, which is entirely arbitrary.

However, such a theoretical circuit cannot be converted into actual hardware. A practical differential amplifier becomes the circuit shown in Fig. 3. Common mode voltage appears in this actual equipment, since there is a finite isolation impedance to ground inherent in any amplifier. In practice, though, this impedance can be made as high as 10^15 ohms and 0.6 μf.

The biggest advantage a differential amplifier possesses over a single-ended amplifier in many installations is its inherent ability to reject noise better than a single-ended amplifier. The principle of noise rejection is illustrated in Fig. 4. Assuming that two wires emanate from the transmitter, and that both wires have identical impedances, the noise that is induced by electromagnetic pickup travels along both wires. This noise enters the amplifier via two terminals. The two terminals are connected so that the net difference in voltage between them is amplified. Since the noise voltage on each wire is the same, the net difference between the two is zero, and no noise passes through the amplifier.

Another way to look at what is happening is illustrated in Fig. 5. The currents i_1 and i_2 in Fig. 5 are noise currents. Each flows to ground through what amounts to a center-tapped transformer primary winding. The secondary of the amplifier becomes the secondary, and the amplifier input is the primary of the transformer. Since the primary load is the amplifier, the primary and secondary are effectively isolated from each other.

Newest trend in electronic testing is development of "universal" equipment adaptable with minor modifications to many different systems. This "building block" concept is encouraged by the armed services to eliminate the need for expensive test equipment designed exclusively for a single weapon system.

TEST ANY ELECTRONIC SYSTEM

Ready with the answer is Sperry's Microwave Electronics Company which has developed a wide range of standardized test components of the modular type. Physically and electronically compatible with each other, these advanced modules combine to form precision testing equipment capable of checking any kind of electronic system—either the over-all system or subsystems and components.

FOR LAB, BENCH OR FIELD

These Sperry modules require only minimum adaptation to tailor them to even the most advanced radar or electronic system. Sperry is also ready to take on the design and development of test modules to fit specific or unusual needs.

Write for more information on this latest Sperry contribution to more effective and reliable operation of electronic systems.
mythical transformer has no signal induced by the equal and opposite input noise currents. Meanwhile, a signal current flows through the entire primary winding of the mythical transformer, resulting in output signals.

High Noise Rejection

Because of the line unbalances and incomplete isolation from ground of the amplifier, the two circuits into a differential amplifier are not identical, and some noise always comes through. The measure of the ability of the amplifier to reject such noise or keep it to a minimum is termed the common mode rejection of the amplifier. Common mode rejection is the principal figure of merit of a differential amplifier. A very good dc differential amplifier will have a common mode rejection of 120 db for noise at a frequency of 60 cps. This means that the ratio of rejection is a million to one. The same amplifier can have a dc common mode rejection of 160 db. With such rejection figures, it is possible to rescue microvolts of signal from volts of noise. If, for example, a 5 v peak-to-peak noise signal is induced on the lines in Fig. 5, the output of the amplifier reproduces noise that looks like only 5 μv peak-to-peak of input added to the actual wanted information.

Suppose a 0.1 per cent accuracy system contains a transducer that provides a 10 μv peak-to-peak usable signal. The resolution required, then, is 10 μv peak-to-peak. Assume further that noise and drift generated within the amplifier account for half the system inaccuracy, or 5 μv peak-to-peak equivalent input signal. The noise induced on the line can be 5 v peak-to-peak in amplitude, and the amplifier will reject it satisfactorily if it has a common mode rejection of 120 db. If the amplifier used in the system has a common mode rejection of only 60 db (representing a thousand-to-one ratio), then a 5 μv peak-to-peak noise amplitude induced on the lines will not be seen in the 0.1 per cent system. However, it is quite difficult to extend long cables and have only 5 μv peak-to-peak of noise induced in the lines. In most practical installations, the induced hum is much higher. In these circuits, 60 db of common mode rejection would not be enough if 0.1 per cent accuracy is the overall target. Therefore, a very high common mode rejection is essential in a dc instrumentation amplifier where high precision is a requirement.

Gain Stability Considerations

If gain settings in a dc instrumentation amplifier are to be significant, the source and line resistances must be considered in great detail. In the case of a typical chopper-stabilized dc amplifier with 100,000 ohms input impedance, if the gain settings must be stable to 0.1 per cent accuracy, then the combined source and line resistances must not vary more than 100 ohms. This requirement may not be too stringent under any given set of static ambient conditions; but when temperature and humidity changes are brought into the picture, the 100 ohm figure may become a severe handicap. For this reason, it is generally better to provide an amplifier with as high an input impedance as possible for any given circuit under consideration. The higher the input resistance of the amplifier, the higher can be the source and line resistances—and the changes in them—without affecting the gain of the amplifier too severely.

Of course, the gain of the amplifier itself is a
function of many components. The effect of gain changes during operation, however, can be considerably reduced by utilizing a large amount of negative feedback around the amplifier. If the gain of the basic amplifier is high, and a large amount of inverse feedback is used, then the gain of the combined amplifier plus feedback circuit is, of course, primarily dependent upon the values of the circuit components within the feedback circuit.

Precision components, carefully aged and matched with care during the construction of a differential amplifier, go a long way toward insuring gain stability of the amplifier under field operating conditions. In some cases, the feedback circuit is external and housed in a separate area under carefully controlled environmental conditions. Many commercially-available amplifiers have provisions for switching from internal feedback to external feedback circuits, for flexibility in various instrumentation situations. In any case it is the feedback circuit that must be controlled in order to maintain a true precision system.

DC Drift

Even when source impedance is kept as low as possible, the amplifier input impedance is made extremely high, a margin of safety must be left in the design of an instrumentation system to allow for inevitable drift. This change in impedance values for practically all components within the system occurs, for the most part, because of changes in temperature. However, vibration and humidity can also affect the many parameters in an instrumentation circuit. Add to these the possibility of unregulated power supply voltages, and the drift picture is complete.

If the transducers in a dc installation require isolation from the recording equipment, and especially if voltage gain is required, the dc differential amplifier becomes the logical item to perform the task.

Chopper-stabilized, as shown in Fig. 6, a dc amplifier is a dependable link in the instrumentation chain. Zero drift is minimized by the use of the chopper to electromechanically convert dc into ac. The ac signal is amplified with all the efficiency of an ac amplifier. Then the amplified signal is demodulated with carefully balanced semiconductor circuitry to provide an output dc signal proportional to the input ac signal, and completely isolated from it. This isolation is achieved by shielding the input circuits and separately shielding the output circuits. In this manner, stray voltage effects are reduced to a minimum, and ground current problems depend entirely upon the circuit configuration of the instrumentation system external to the amplifier.

New "Custom Quality" Family By

GENERAL TRANSISTOR

RESEARCH ACTIVITIES APPROACH IDEALIZED TRANSISTOR RELIABILITY

A bright new chapter in transistor history is being recorded at GT's research laboratories, resulting in progressive transistor design of unprecedented reliability, performance and stability. Advanced production control techniques have made possible the New "A-Types" with specification refinements providing...

TIGHTER PARAMETER CONTROL

HIGHER SWITCHING SPEEDS

HIGHER OPERATING VOLTAGES

WIDER APPLICATION RANGES

New process controls highlighted by high sensitivity hermetic seal testing, pre-tinning of internal parts, automatic welding of the hermetic seal case and individual handling of units in process insure improved reliability, uniformity of electrical properties, high mechanical strength and superior hermetic seal. All transistors are pre-aged for 100 hours at 100°C.

<table>
<thead>
<tr>
<th>TRANSISTOR TYPE (EIA)</th>
<th>POLARITY</th>
<th>CUT-OFF STATE</th>
<th>CONDUCTING STATE (SATURATED)</th>
<th>TYPICAL SWITCHING CHARACTERISTICS</th>
<th>ALPHAP Cut-Off</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>D.C. Current Gain</td>
<td>WITH CIRCU IT GAIN OF 20 AT 10 LISTED UNDER CURRENT GAIN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pre</td>
<td>Delay Rise Time</td>
<td>Storage Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r = 9, 15, USEC</td>
<td>r = 9, 15, USEC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2N317A</td>
<td>PNP</td>
<td>25V</td>
<td>12V</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>2N316A</td>
<td>PNP</td>
<td>30V</td>
<td>18V</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>2N358A</td>
<td>NPN</td>
<td>30V</td>
<td>20V</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>2N357A</td>
<td>NPN</td>
<td>30V</td>
<td>25V</td>
<td>0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>2N523A</td>
<td>PNP</td>
<td>20V</td>
<td>10V</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>2N522A</td>
<td>PNP</td>
<td>25V</td>
<td>12V</td>
<td>0.3</td>
<td>0.8</td>
</tr>
<tr>
<td>2N521A</td>
<td>PNP</td>
<td>25V</td>
<td>15V</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>2N447A</td>
<td>NPN</td>
<td>30V</td>
<td>15V</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>2N446A</td>
<td>NPN</td>
<td>30V</td>
<td>20V</td>
<td>0.7</td>
<td>1.0</td>
</tr>
<tr>
<td>2N454A</td>
<td>NPN</td>
<td>30V</td>
<td>25V</td>
<td>1.0</td>
<td>1.3</td>
</tr>
</tbody>
</table>

WRITE FOR BROCHURES G-140A AND G-150A

NEW ENGLAND TRANSISTOR CORPORATION
JAMAICA, NEW YORK
CIRCLE 31 ON READER-SERVICE CARD

ELECTRONIC DESIGN • April 1, 1959
improving cable design

A handy nomograph and a handful of working equations make cable design easy.

A KNOWLEDGE of cable characteristics like flexibility, tension loading and sheathing facilitates proper cable design. Knowing the "hows" and "whys," the engineer can then meet any rigid electrical, mechanical and environmental requirement.

Cable Flexibility

Unfortunately, there are no definite standards for flexibility or cables. Environmental and performance standards such as temperature, size, content, chemical resistance or current rating can be specified with precision. However, the terms "flexible" and "extra-flexible" are not precise and depend on their usage.

Nevertheless, flexibility can be engineered into a cable. The force required to bend a cable is lessened by winding individual conductors in a helical pattern along the length of the cable. The ratio of the length of one spiral turn to the diameter of the turn is defined as the lay ratio and is illustrated in Fig. 1. The lay ratio of cable generally ranges from 10 to 15. This results in an increase in wire length of from 2 to 5 per cent. The curve of Fig. 2 indicates the increase of wire length as the lay ratio decreases. In practically all cases, the increase in length, and consequently resistance, is either negligible or within the range of acceptable tolerance.

The outer lay of conductors in a multilayer cable will always have a left-hand lay, that is, the conductors spiral around the core in a left-hand direction. The next succeeding layer will have the opposite, or right-hand lay, with the third layer again reversing direction resulting in a left-hand lay. The actual lay ratio of each layer will depend on the number of conductors in each layer, but will, in general, remain constant from lay to lay within a cable.

Cable Tension Loading

Cable tension loads are limited by the allowable elongation of the individual conductors. For example, the permissible elongation of annealed copper conductors is 0.2 per cent. The maximum safe load in tension per conductor is equal to five times the wire weight per 1000 feet. For multiple conductor cables, the maximum allowable pulling force is given by the product of the number of conductors in the cable and the allowable force per conductor. In these calculations, the wire insulation has been excluded to provide a safety factor of approximately 15 per cent. The factor of wire weight has been reduced from 7.7 to 5.0 to provide an additional safety margin of 15 per cent for pulling loads only.

For vertically suspended loads on cables, the weight of wire insulation and jacketing must be added to the load weight of the wire. Insulation weight is approximately 20 per cent of the wire weight for conductors conforming to MIL-W-16878C, Type B, and MIL-W-5086A, Type I; 35 per cent of the wire weight for conductors conforming to MIL-W-16878C, Type C, and MIL-W-5086A, Type II; and 60 per cent of the
wire weight for conductors conforming to MIL-W-16878C, Type D.

Neoprene jackets conforming to MIL-R-6855 will not significantly affect these figures since neoprene has a Young's modulus close to that of copper. Neoprene jackets for cables made in accordance with MIL-R-6855 have a density ratio to the amount of copper in the cable of approximately 75 per cent.

Resistance and Voltage Drop

Wire resistance varies with temperature and stranding as well as length. Table 1 lists the characteristics of number 10 AWG wire at 68°F.

These values are approximate because of the wide variation in data available from wire manufacturers, but they serve to illustrate that considerable difference does exist in the values for a given size wire.

Where cable operation takes place at other than standard temperature, correction must be made to compensate for the difference in resistance at the operating temperature. These factors can only be determined after analysis of a particular situation. But in general they become more critical as the current rating of the conductor is approached or the voltage drop becomes excessive because of long cable runs.

The nomograph of Fig. 3 has been prepared to assist the designer in voltage drop determinations and is based on stranded copper conductors operating at 68°F. For example, let us determine the voltage drop in a cable run of 200 ft carrying 50 amps in a 1/0 conductor. First place a straight edge along the line joining 200 ft on the left-hand scale and 50 amps on the second scale from the right. Then rotate the straight edge about the pivot line until it lies on the conductor size of 1/0 on the right-hand scale. The intersection of the straight edge and the voltage drop scale gives the result directly as 1.3 volts drop. This nomograph can be used to determine any of the four values when the other three are known or assumed.

Jacketing or Sheathing

Cable jacketing may be supplied in any material required to meet the environmental conditions of the system into which the cable is installed. However, certain neoprene compounds have been found to provide the best all-around resistance to the severe environmental conditions encountered in the field. They are better than either rubber compounds or other plastics. It is a matter of record that neoprene jacketed umbilical cables for missile launching, normally considered expendable items, have been successfully used for several firings.

Paprene, the proprietary neoprene compound used in combination with the unique technique of cable fabrication employed, results in a compact, flexible cable with properties that assure optimum performance and maximum reliability. Among the advantages of this combination is the ease with which "breakout" cables are fabricated. Breakout cable, illustrated in Fig. 4, provide systems engineers with greatest flexibility of design and maximum economy of hardware.

A further improvement in breakout cable design is provided by the "clamshell" joint shown in Fig. 5. This exclusive design produces a smaller, stronger, lighter joint than the former.
TENNEY OFFERS WIDEST RANGE OF ENVIRONMENTAL TEST EQUIPMENT

Picture a test chamber as large as a house; imagine another as small as a typewriter; then think of the range of sizes between these extremes. Now you have an idea of the tremendous size-range of environmental chambers that Tenney has produced for companies all over the world.

The range of uses is just as wide! Altitude, temperature, humidity, alone or in combinations, as well as explosion, sand, dust, fog and any other possible environment, can and have been accurately simulated in Tenney chambers. No wonder Tenney produces more chambers than any other company in the field!

Temperatures from -150°F to 1250°F
Altitudes to 350,000 feet

Write for a descriptive catalog and complete information on Tenney's research and development, engineering consultation, and design services.

Table 1. 10 AWG Wire Characteristics

<table>
<thead>
<tr>
<th>Stranding</th>
<th>Diameter</th>
<th>Circular Mil Area</th>
<th>Weight/M Ft.</th>
<th>Resistance/M Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>0.1019</td>
<td>10380</td>
<td>31.52</td>
<td>1.04</td>
</tr>
<tr>
<td>105 × 30</td>
<td>0.132</td>
<td>10553</td>
<td>32.99</td>
<td>1.10</td>
</tr>
<tr>
<td>65 × 28</td>
<td>0.119</td>
<td>10322</td>
<td>32.37</td>
<td>1.10</td>
</tr>
<tr>
<td>57 × 26</td>
<td>0.1113</td>
<td>9402</td>
<td>28.89</td>
<td>1.17</td>
</tr>
</tbody>
</table>

Method provided and affords greater flexibility in the area near the joint. The clamshell joint consists of two cast pieces of neoprene filled with a potting compound that has the same compositions as the cable jacket.

Of the many materials used as cable jacketing, each possesses certain physical and chemical properties for certain advantages in application. For example, some jacketing materials have excellent resistance to sunlight, while others are seriously deteriorated by sunlight's effects. Temperature, corrosion, contamination and radiation, as well as numerous other environmental factors, affect each material differently. For this reason, consideration must be given to the actual environment to be encountered in service when specifications are being prepared, and to materials which will withstand these environmental conditions.

Shielded and Coaxial Cables

Shielded and coaxial conductors can be fabricated into special cables or used with other conductors in any combination. Although coaxial cables are less flexible than other cables, this is normally not a problem unless extreme flexibility is required.

Low capacitance signal leads are often used to advantage in long signal runs. To determine the capacitance between signal conductor and
Fig. 5. Clamshell joint.

To determine the capcitance between wires of two conductor shields pairs, the following formula is used:

\[
\text{Capacitance per ft} = \frac{3.677 \times 10^{-3}}{\log \left(\frac{D}{d} \right)} \mu\text{fd/1000 ft}
\]

where:
- \(D \) = ID of shield
- \(d \) = OD of bare wire
- \(k \) = Dielectric constant of insulation

When shielded or coax wire is used, signal loss can be determined from the formula for attenuation:

\[
\text{Attenuation} = 4.6f(d_1 + d_2) \times 10^{-4} \text{db/ft}
\]

where:
- \(d_1 \) = ID of shield
- \(d_2 \) = OD of shield
- \(f \) = frequency (mc).

Cable Testing

To guarantee performance and reliability, cables or shields should be subjected to a wide variety of electrical and mechanical tests, such as impact, tension, twist, bend, high and low temperature, static, as well as a number of other chemical and electrical testing procedures. ■ ■
NEW PRODUCTS

VIBRATION SYSTEM

Power generator of this vibration testing system is rated at 175,000 va output and the model A-182 shaker has a force output of 25,000 lb from 5 to 2000 cps. Model FP-175/240 amplifier is a 4-cubicle assembly that measures 18 ft in length and is 5 ft in depth while the shaker is almost 6 ft high. The system is completely self-contained and all control circuitry is included in the power generator cabinets. But all important controls and meters can be duplicated on a control console for remote control. The same basic power generator and control assembly can be applied to driving acoustic transducers.

Ling Electronics Inc., Dept. ED, 9937 W. Jefferson Blvd., Culver City, Calif.

CIRCLE 34 ON READER-SERVICE CARD

PRECISION FILM RESISTORS

These precision film resistors are epoxy coated and are applicable to transistorized circuitry. Model N65 is rated at 1/4 w and has resistance values from 10 to 500,000 ohms. Voltage rating is 300 v. The N70 is rated at 1/2 w and has resistance values from 10 ohms to 1 meg. Voltage rating is 350 v. The N style resistors will meet MIL-R-10509C, characteristic B. The coating will withstand chlorinated hydrocarbon solvents used in cleaning flux from printed circuit boards.

CIRCLE 35 ON READER-SERVICE CARD

SILICON ZENER DIODES

These silicon zener regulator diodes are available in four nominal basic power ratings: Series B.750 mw; Series T, 1 w; Series G, 3.5 w; and Series K, 10 w. The first two come in an axial pigtail top hat package and the higher power devices in 10-32 stud-mounted cases. Zener breakdown voltage ranges cover from 3.6 to 30 v in each power rating.

International Telephone and Telegraph Corp., ITT Components Div., Dept. ED, 100 Kingsland Road, Clifton, N.J.

CIRCLE 36 ON READER-SERVICE CARD

Covering all new products that might generally be specified by an electronics engineer engaged in the design of original equipment.
SUBMINIATURE TRANSFORMERS

The Weecol H. F. line consists of a single tuned coil and an oscillator coil for transistorized printed circuit use in frequencies from 1 to above 10.7 MHz. Overall height is 0.5 in. and base dimensions are 0.55 square. Both top and bottom tuning are possible. Normally-treated units stand 95% relative humidity at 120 F for 500 hr, and are suitable for use between 40 to 185 F. Fully encapsulated units are available for military applications. Q's of up to 100 are possible in shielded versions.

Wells Electronics Co., Dept. ED, 1701 South Main St., South Bend 23, Ind.

CIRCLE 37 ON READER-SERVICE CARD

PHOTO-DUO-DIODE

Model 1N2175 photo-duo-diode passes up to 1200 µamp when exposed to 1200 ft-c. In darkness the unit passes less than 0.5 µamp. Dissipation is rated at 250 mw at 25 C, and any biasing voltage up to 50 v will operate the device. It will operate equally well on either ac or dc, and is rated to 125 C with a minimum operating temperature of -55 C. The single-ended glass case measures 0.5 in., and has a diameter of 0.085 in.

Texas Instruments Inc., Dept. ED, Post Office Bd, Dallas, Tex.

CIRCLE 38 ON READER-SERVICE CARD

Kepco

Kepco introduces a new dimension in power supplies with voltage range of 125-325 Volts and regulation of ±0.1%. All this adds up to MAXIMUM:

- SPACE ECONOMY
- OUTPUT CAPACITY
- QUALITY PERFORMANCE

Write for complete specifications.

Kepco 131-38 Sanford Avenue • Flushing 55, N.Y. • Independence 1-7000

CIRCLE 39 ON READER-SERVICE CARD
300% MORE FLEXIBLE
THAN SILICONE VARNISHED GLASS SLEEVING

Ben-Har "1258", a completely new extruded silicone rubber insulating tubing, uses a new formula and a new (patent pending) extrusion process that permits accurate dimensional control.

700% MORE FLEXIBLE
THAN TEFLOF TUBING

Ben-Har "1258" is the toughest, most flexible, most resistant and resilient unsupported tubing ever developed. It has high tensile strength — over 1200 pounds per square inch. It will withstand continuous operation from —85°C through 260°C. Ben-Har "1258" has a higher rated temperature performance than conventional Class H tubings that cost more. It is highly resistant to heat-aging, never losing its flexibility. Its elasticity permits a snug fit over wires and connections. Ben-Har "1258" is resistant to

1) abrasion
2) cut-through
3) corona attack
4) harmful radiation

Available in standard wall thicknesses of .015 and .035 in a complete color range. Special dimensions can be custom engineered. Write for samples and data — or ask to see a Bentley, Harris representative.

NEW PRODUCTS

High Fidelity Speakers
Use Ticonal steel magnets

Series T-7 twin-cone loudspeakers use Ticonal steel voice coil magnets and have a long air gap so that the coil is completely enclosed by a homogeneous magnetic field even at peak amplitudes. The Ticonal 7 magnet provides a high concentration of flux densities in the voice coil air gap and is about 30% more powerful than conventional magnets. Besides the cone for middle and low notes, the speakers are equipped with a high note cone which extends the frequency range to about 20 kc.

CIRCLE 71 ON READER-SERVICE CARD

Silicon PNPN Controlled Switches
Replace thyristors

Series 3A silicon pnpn controlled switches have electrical characteristics similar to those of thyristors and provide high speed medium power switching in a wide variety of applications. They have three junctions and can replace magnetic amplifiers, thyristors, tubes, semiconductor diodes, rectifiers, and transistors. Particularly suited to static switching and control circuits, they may also be used in magnetic core switching, logic circuits, pulse generation and shaping, inverters, motor controls, power supplies, servo systems, and high level demodulators. The units have voltage ratings to 200 v, peak current ratings to 1 amp, and a typical turn-on time of 0.2 usec. In the forward direction they will either conduct heavily or block depending on whether or not a gate current is applied. The reverse characteristic is similar to that of a conventional silicon diode.

CIRCLE 72 ON READER-SERVICE CARD

BENTLEY, HARRIS FLEXIBLE SLEEVINGS

BENTLEY, HARRIS MANUFACTURING CO.
400 BARCLAY STREET CONSHOHOCKEN 3, PA.
Telephone, Norristown, Pa.: Taylort 8-7600
CIRCLE 70 ON READER-SERVICE CARD
Transistorized Power Supply

0 to 1 amp range

Supplied with or without a meter, the LT 1095 transistorized power supply has a range of 0 to 1 amp and 0 to 32 v dc. Convection cooled, it has no moving parts or internal blowers.

Lambda Electronics Corp., Dept. ED, 11-11 131st St., College Point 56, N.Y.

CIRCLE 44 ON READER-SERVICE CARD

DC Insulation Testers
Portable

Series VON portable high voltage dc insulation test instruments and power supplies have ranges from 30 kv at 40 ma to 250 kv at 5 ma. All models are sectionalized to provide maximum portability and minimum weight, and supplemental stages may be added to the base power units to increase voltage ratings.

The Hewson Co., Inc., Dept. ED, 611 Broad St., Newark 2, N.J.

CIRCLE 45 ON READER-SERVICE CARD

Circuit Breaker

For 220 or 440 v ac systems

A thermal type, three phase circuit breaker, Klixon model D6760-5 operates on 220 or 440 v ac at 60 or 100 cps. With ratings of 5 to 60 amp, it will handle short circuits between 800 and 1000 amp at 440 cps. Trip time is 2 to 6 msec on short circuit interruption.

CIRCLE 46 ON READER-SERVICE CARD

CIRCLE 47 ON READER-SERVICE CARD

ESC delay lines
take off with America's talking satellite

On December 18, 1958, the world entered a new era of communications with the successful orbiting of an Atlas ICBM—the Talking Satellite that broadcast President Dwight D. Eisenhower's Christmas message to the world. Circling the earth at a speed of more than 17,000 mph, the Talking Satellite repeated the President's message, erased it, and received and rebroadcast new messages in both voice and code.

ESC Corporation is justifiably proud that its delay lines were selected to aid in this electrifying triumph for America and her electronics industry. Especially designed by ESC, these delay lines were used in the timing sequence for propulsion, the guidance system and the telemetering system.

As America's largest manufacturer of custom-built and stock delay lines, ESC has continually met the responsibility of leadership by providing virtually every type of delay line needed by defense and industry. If you have a delay line problem, let ESC's design staff suggest a custom-built answer.

WRITE TODAY FOR COMPLETE TECHNICAL DATA

excellent profit-sharing plan

CIRCUIT CORPORATION 534 BERGEN BOULEVARD, PALISADES PARK, NEW JERSEY

Distributed constant delay lines • Lumped constant delay lines • Variable delay networks • Continuously variable delay lines • Pushbutton decade delay lines • Shift registers • Pulse transformers • Medium and low power transformers • Filters of all types • Pulse forming networks • Miniature plug-in encapsulated circuit assemblies
Find the missing memory plane

The seven memory planes above each solved some special memory problem. There is one plane missing. It's the one which will solve your problem. You'll find the plane at General Ceramics which offers a complete memory plane service, backed by broad experience in the design, engineering and mass production of planes, frames and cores.

DESIGN SERVICE—An experienced design engineering staff stands ready to analyze your memory plane requirement, recommend and develop the plane that will meet your application in the most efficient and least expensive manner.

MANUFACTURE—Skilled factory personnel, utilizing the most advanced equipment and techniques and continually working in all phases of memory plane development and manufacture will produce the plane. General Ceramics has developed and wired memory planes containing from 64 to 16,384 cores each. (Core sizes range from 50 mil OD to 80 mil OD.)

QUALITY CONTROL—An expanded testing department with fully automatic and semi-automatic testing equipment, developed at General Ceramics, assures you complete quality control and the highest standards of manufacture.

STANDARD LINE—Perhaps some of General Ceramics' line of standard memory frames will meet your requirements. Write for literature on General Ceramics standard planes. Address inquiries to General Ceramics Corporation, Keasbey, N. J.—Dept. ED.

GENERAL CERAMICS

Originator of the Square Loop Ferrite

Manufacturers of FERRAMIC CORES, MAGNETIC MEMORY CORES, MEMORY PLANES, MICROWAVE FERRITES, SOLDERSEAL TERMINALS, HIGH TEMPERATURE SEALS, STEATITE, ALUMINA and CHEMICAL STONEWARE

NEW PRODUCTS

Stabilized Amplifier

Provides outputs to ±100 v

Using no electrolytic capacitors or glow tubes, this modular stabilized amplifier provides an average open loop dc gain of over 50 million, with a minimum of 10 million. Long and short term drift is under 100 μv and output voltage is up to ±100 v. The unit requires a plus and minus 300 v dc supply and a 6.3 v ac filament source.

Applied Technology Corp., Dept. ED, 475 Fifth Ave., New York 17, N.Y.

CIRCLE 49 ON READER-SERVICE CARD

Shielded Trailers and Trucks

For on the spot interference testing

Completely self-contained, these shielded trucks and trailers are custom designed for radio interference testing. With one, two, or three shields, they provide over 100 db attenuation at all frequencies from 15 kc through 1000 mc. They will closely approximate 100 db at 1000 mc, exceeding the attenuation requirements of MIL-E-4957A Provisions can be made for mounting antennas, shock-mounting test equipment, and installing intercommunication systems and coaxial connector panels. The units can be equipped with a power control panel and a diesel driven generator with outputs up to 20 kw. External power connections can also be furnished. The trucks can be built with living quarters that have all the facilities necessary for the comfort of operating personnel, including heating and air conditioning. Engineered to provide high attenuation and efficient performance, the units are also designed to meet legal specifications of all states.

CIRCLE 50 ON READER-SERVICE CARD

CIRCLE 49 ON READER-SERVICE CARD
Power Supplies
0 to 60 v
Transistorized and short circuit proof, these power supplies can be used from less than 1 v up to 60 v without loss of regulation or stability. Three models are available with maximum ratings of 2.5, 5, and 7.5 amp. Regulation is 0.1 per cent or 0.01 v no load to full load with 105 to 125 v lines.
Electronic Measurements Company, Red Bank, Dept. ED, Middletown, N.J.
CIRCLE 51 ON READER-SERVICE CARD

Miniature Chopper
Shock resistant
This miniature dpdt Syncroverter chopper affords good tracking and is resistant to shock and vibration. It has a contact rating from dry circuit to 100 v, and its phase angle is virtually unaffected by temperatures from 65 to +125 C.
The Bristol Co., Dept. ED, Waterbury, 20, Conn.
CIRCLE 52 ON READER-SERVICE CARD

Twin-Triode Tube
Low-level
A one-pin miniature twin-triode tube, type WL-7025 is designed for use as a low-level input voltage amplifier for tape recorders and audio preamplifiers. Interchangeable with tube types 12AX7, 12DF7, ECC83, it can withstand high surge.
Westinghouse Electric Corp., Electronic Tube Div., Dept. ED, Box 284, Elmira, N.Y.
CIRCLE 53 ON READER-SERVICE CARD

Electro Snap
basic snap-action switches
FOR AIRCRAFT, MISSILE, ELECTRONIC AND INDUSTRIAL APPLICATIONS

- quality engineered designed to meet human factors
- over 60,000 switch and actuator variations available
- adaptions can be made to fit your requirements

more answers to Switching problems

single pole

S series
SPDT
106 ON READER-SERVICE CARD

single pole

F series
SPDT
CIRCLE 107 ON READER-SERVICE CARD

heavy duty

G series
SPDT, 2 CKT.
CIRCLE 108 ON READER-SERVICE CARD

Need a special switch?
Often standard switches can be modified to do the job. If a special switch is required, Electro snap engineering can create new switches in any quantity to your specifications. Send us your problems...our answer can save you time and money.

Call Or Write For Specific Details On Any Switch Type

Electro SNAP CORPORATION
SWITCH DIVISION • 4216 W. Lake Street, Chicago 24, Illinois
Telephone: VAn Buren 6-3100, TWX No. CG-1400

ACTRONIC DESIGN • April 1, 1959
SELF-EXTINGUISHING G-11 EPOXY-GLASS LAMINATE RETAINS HIGH FLEXURAL STRENGTH AT 150°C.

New high-temperature transparent General Electric Textolite® 11559 has exceptional mechanical and electrical properties...developed especially for computer and military electronic printed circuits.

High insulation resistance and flexural strength even at 150°C—that's what you get with new General Electric Textolite Grade 11559 epoxy-glass electrical laminate. Self-extinguishing 11559 exceeds NEMA G-11 requirements and Specification MIL-P-18177. Type GEB. Here's how Grade 11559 performs:

- Insulation resistance: 20,000,000 megohms at 50°C; 500,000 megohms at 165°C.
- Flexural strength: retains 65% of room temperature strength at 150°C.
- High peel strength: 9 lbs. in. for 1 oz. copper-clad; no blistering after 30 seconds in molten solder at 500°F.

The base laminate withstands the effects of concentrated nitric acid and all conventional etching and plating solutions. In addition, 11559 is the only G-11 laminate that is self-extinguishing—has approximately 2-second flame-out time. Textolite Grade 11559 is available unclad or clad with 1 or 2 oz. copper.

Consult Sweet's Product Design File, Cat. 2b Gen., for technical information on the complete line of Textolite laminates. Or for a brochure showing test data on Grade 11559—or engineering assistance for special problems—call or write: Technical Service, Laminated Products Dept., General Electric Company, Coshocton, Ohio.
Strain Gages

For medical and other electronic use

Initially designed for viewing the waveform of arterial blood pressure during heart surgery, these strain gages have many other uses. They are made from polycrystalline nickel alloys and permit the reading of very small tension changes on simple instruments.

Clark Electronic Labs. Dept. ED, P.O. Box 185, Palm Springs, Calif.

CIRCLE 59 ON READER-SERVICE CARD

Epoxy Resins

Have high heat resistance

For casting, laminating, and adhesive uses, these liquid epoxy resin systems come in two formulations. 617-A is aluminum-filled and 617-C is clear. Both have low viscosity, which can be maintained at room temperature for as long as 30 minutes after mixture with a hardener. They have a heat distortion point of 425°F and show heat resistance at operating temperatures up to 500°F. At higher temperatures, they retain elasticity and have a maximum deformation of 0.01 in. per in., which is partially recoverable.

Marquette Corp., Dept. ED, 37-31 40th St., Long Island City, N.Y.

CIRCLE 60 ON READER-SERVICE CARD

Capacitor Clip

Vibration proof

For use with any capacitor that has a diam between 31/32 and 1 1/8 in., these clips provide vibration proof retention that cannot vibrate or damage the capacitor. Each clip can retam capacitors of varying sizes with no loss of holding power, and all mounting is done quickly and from the top of the chassis, without the aid of special tools. The clips can be used for cable, tube, or chassis retention.

Proform Products, Inc., Dept. E, O Box 6688, Cleveland, Ohio.

CIRCLE 61 ON READER-SERVICE CARD

That's all the time we need to tell you about the NEW RCA-6DE4 damper tube and its extraordinary reliability

The new RCA-6DE4, half-wave rectifier tube uses a new cathode coating assuring uniform emission. It has a plate-to-cathode structure with a very low and uniform voltage gradient. In addition, the 6DE4 offers improved performance at lower cost in 110° black-and-white TV. Interested?

Well, here's why RCA thinks so much of the new 6DE4. A new technique of cathode processing is the chief answer. A smooth, hard, low impedance coating is applied that assures negligible heating effects from the high-voltage pulses and provides uniform emission and reduced sputterling. Too, the emissive cathode material operates at lower than usual temperature...heater needs less power...the cathode has the lowest current density for its rating of any damper tube. The plate-to-cathode structure and special styling of the mica reduce voltage gradients...insure against high voltage breakdown.

Slots in plate surrounding cathode minimize possibility of sustained arcs. It is such an unusual tube that you might also be interested in its companion type, RCA-17DE4, which has a controlled warm-up time for series-string use.

Now, take just 1 minute more. Call your RCA Field Representative for full details on how the unusual new RCA-6DE4 can cut costs and improve reliability of your TV damper designs. Technical data? Write RCA Commercial Engineering, Section D-18-DE-1, Harrison, N. J.

RCA FIELD OFFICES

EAST: 744 Broad St., Newark 2, N. J.

Humboldt 3-3900

MIDWEST: Suite 1154, Merchandise Mart

Plaza, Chicago 54, Ill.

Whitehall 4-2900

WEST: 6355 E. Washington Blvd.

Los Angeles 22, Calif.

Raymond 3-8361
NEW PRODUCTS

Transistorized Tachometer

Measures speeds to 60,000 rpm

The Transi-Tach transistorized tachometer is available in a 19 in. rack panel version, a portable version, or a remote indicator version. All units are self-powered by a 9 V battery and can also be used with 115 V ac, 60 cps. Speeds up to 60,000 rpm can be accurately measured, and rpm is read directly on a large meter scale which can be calibrated in any speed range with up to 1/20 linear scale divisions. Essentially a frequency meter, the unit can be supplied for audio or ultrasonic frequency measurement and may also be adapted for use with any transducer which converts flows, pressures, or other physical forces into electrical signals of variable frequency. Accuracy is ± 2% of full scale.

Kahn and Co., Inc. Dept. ED 317, Windsor St., Hartford 1, Conn.

I-F Filter

Highly selective

Weighing less than 12 oz, this highly selective I-F filter has a center frequency of 460 ke and passes MIL-T-27A vibrational, shock, and humidity specifications. Insertion loss is about 14 db. The filter permits a high degree of selectivity before appreciable signal amplification with resultant reduction in intermodulation effects. Change in selectivity due to regeneration in the i-f amplifier or to Miller effect, are readily corrected by retriming. Temperature stability equals 0.1% or better. The unit provides 100 to 6 db bandwidth ratio of less than 2, depending on shape and impedance mismatch of from about 5 to 25% of center frequency. At 500 ke center frequency, there is less than 1 db per section insertion loss. Peak to valley ratio is less than 0.5 db, and the unit can be used above 50,000 ft.

Hermetic Seal Transformer Co., Dept. ED 139, 555 N. Fifth St., Garland, Tex.
Altitude Simulation Chambers

Ranges to 100 miles

Available in sizes from small laboratory units to large walk-in chambers, series 900 high-altitude simulation chambers simulate altitudes up to 100 miles. They incorporate automatic systems for recording and controlling at constant altitude or programmed climb and descent; full-throats for power, instrumentation, gas and liquid sampling; locks for specimen introduction or removal; and high-capacity high-vacuum pumping systems.

CIRCLE 66 ON READER-SERVICE CARD

Relay Life Test Generator

Provides pulses to 4 amp peak

The model 25 relay tester operates relays and other magnetic actuators under life test. In operation, a cycling transistor switch is combined with a dc supply to generate pulses of up to 4 amp peak. Three square wave frequencies and one short duty pulse wave are available. The peak output voltage is adjustable from 6 to 35 v, and input is 115 v, 60 cps. The unit is housed in a hardwood case 11-1/2 x 9 x 9 in.

Grande Electronics Co., Dept. ED, 4345 Hollister Ave., Santa Barbara, Calif.

CIRCLE 67 ON READER-SERVICE CARD

Resistance Ratio Recorders

Operate with 1 to 10 K transducers

Using a ratio form of Wheatstone bridge circuit, the Speedomax Type H indicates and records measurements of pressure, flow, and other variables detected by three-terminal potentiometer type transducers. Designed to operate with 1 to 10 K transducers, it is supplied in round or strip chart models and can be equipped with any of the company’s automatic control systems.

CIRCLE 68 ON READER-SERVICE CARD

COAXICON—brand new. One stroke of the A-MP precision tool does it.

Two strokes and you have the pin and receptacle units permanently attached to coaxial cable. For low level circuitry, either panel mounted or free hanging.

• Reliability—the highest. Cost—lower than anything you’re now using.
• Further, coaxial cable is fully supported against vibration.
• All this in seconds . . . no more burned insulation . . . no more tedious soldering . . . no more doubtful connections. Attachments at unbeatable speed that give you the finest termination at the lowest total installed cost.

Write for more information today.
The smallest rotary switch ever made!

Daven's New Series G Sub-Miniature Switch...1/2" Diameter!

A new sub-miniature rotary selector switch, developed by DAVEN, is specifically suited for application in missiles, aircraft, handy talkies, field pack sets, frog-man communication equipment, and all types of mobile apparatus. This explosion-proof, waterproof switch has the same reliability as its bigger brothers...but in a fraction of the space. It meets applicable military specifications on temperature, humidity, corrosion, vibration, acceleration, shock and immersion.

This unit is available as a single pole, 10 position switch and can be obtained with up to four poles on a single deck.

Contact Resistance: Less than .008 ohm.
Contact Rating: 1 ampere, 250V D. C. into resistive load; 350 MA, 100V D. C. into inductive load.
Insulation Resistance: 200,000 megohms between any two terminals or between any terminal and shell. Measured at 25°C, 50% RH, at sea level.
Life Expectancy: 50,000 cycles minimum
Shaft and case: Stainless steel
Panel and hub: Glass filled epoxy
Contacts and terminals: Silver alloy
Rotors: Rhodium plated beryllium copper

Write today for comprehensive technical report on the new Series G Sub-Miniature Rotary Switch.

NEW PRODUCTS

Insulation Resistance Tester

Range of 0 to 10,000 meg for 6 voltages

Rectifier operated, this Megger insulation resistance tester has a single range of 0 to 10,000 meg for output voltages of 500, 750, 1000, 1500, 2000, and 2500 v.

James G. Biddle Co., Dept. ED, 1316 Arch St., Philadelphia 7, Pa.
CIRCLE 41 ON READER-SERVICE CARD

Resin Fluxes

For printed circuits

Finely demarcated for increased solderability and low corrosion potential. Lonco resin fluxes are designed for printed circuit production. They permit the soldering of badly oxidized surfaces and become active at heats ranging from below the melting point of solder to any higher temperature desired. Maintaining properly balanced-wetting for low temperature soldering, these fluxes permit filleting of the solder in and up the holes for reliable connections. They are available in five grades of solderability value, corrosion potential, and specific gravity.

London Chemical Co., Dept. F.D., 1535 N. 31st Ave., Melrose Park, Ill.
CIRCLE 42 ON READER-SERVICE CARD

Transistorized Motor Operator

For control application

This transistorized motor operator is designed for damper and valve control in heating, ventilating and air conditioning systems. It affords a choice of sensing elements, selection of compensated control and wide adjustability of range and ratio settings.

Barber-Colman Co., Dept. I.D., 1300 Rock St., Rockford, Ill.
CIRCLE 43 ON READER-SERVICE CARD
(below) One of the Santa Cruz test stands with dynamic thrust mount to simulate flight environment. Vibration oscillator functions during the static firings.

(above) Navy Polaris AX-1 flight test vehicle at beginning of launch. Lockheed's Polaris fleet ballistic missile is more than a year ahead of original schedule.

(right) Large centrifuge for environmental testing has unique shaker attachment to provide vibration simultaneously with high G-loadings.

TEST Expanding the Frontiers of Space Technology

Testing is a vital part of every stage in the development of missile and space programs at Lockheed Missiles and Space Division.

The Division maintains one of the most completely equipped missile and space test laboratories in the world. Equipment includes: altitude, temperature and humidity chambers; shaker and vibration systems; G-accelerators; and apparatus capable of performing chemical, metallurgical, plastic, heat transfer, hydraulic, pneumatic, shock, acceleration, sinusoidal and random vibration, structural, electrical, and electronic tests. Static field testing; research and development testing on controls; testing in ordnance and hydraulics and high-pressure gas and propulsion systems are conducted at the 4,000 acre, company-owned test base in the Ben Lomond mountains near Santa Cruz, California.

As weapon systems manager for such major, long-term projects as the Navy Polaris FBM; Discoverer Satellite; Army Kingfisher; Air Force Q-5 and X-7; and other important research and development programs, Lockheed is engaged in expanding the frontiers of technology in all areas.

Flight testing is conducted at Cape Canaveral, Florida; Alamogordo, New Mexico; and Vandenberg AFB near Santa Maria, California; in a unique manner. All components and sub-systems of a new project are initially tested on known-performance, production missiles. Thus, when the final system is ready for first flight, its individual components already have flight-tested reliability. This new concept of flight testing is a major contribution and has enabled Lockheed to produce extremely complex missile systems in record time and at greatly reduced expense.

Underwater launch tests—including studies of cavitation, wave simulation and skip motion—are carried on at the Sunnyvale facility and at the Navy test base on San Clemente Island. Structural and other tests are performed at Hunter's Point Naval Shipyard, California.

If you are experienced in any of the various phases of testing, we invite your inquiry. Positions also are available in physics, mathematics, chemistry, or one of the engineering sciences. Write: Research and Development Staff, Dept. D-21, 962 W. El Camino Real, Sunnyvale, California.

"The organization that contributed most in the past year to the advancement of the art of missiles and astronautics." NATIONAL MISSILE INDUSTRY CONFERENCE AWARD
Builder Quality in Your Line with BISHOP TUBING AND PLATINUM PRODUCTS

Quality begets quality—it's an established axiom that premium products must begin with quality components. Bishop has been producing platinum and precious metal products since 1842...precision stainless steel tubing since 1931. The Bishop family of metal products includes a broad variety of components for the designer, engineer...just to mention a few:

- Capillary Tubing—stainless grades, standard sizes up to .130" OD
- Platinum & Platinum Alloy Wire—#50 to #3 B & S Gauge
- Clad Metals—base and precious metals in various combinations
- Glass-To-Metal Sealing Alloys—low expansion alloys
- Thermocouple Wire—noble metal and noble metal alloys
- Tubing—nickel, stainless, platinum, special alloys up to 1" OD
- Tubular Fabricated Parts—all varieties—conventional forming operations
- Composite Wires—base and precious metals in various combinations
- Platinum Contacts, Discs, Laboratory Apparatus

CATALOGS, DATA SHEETS SENT PROMPTLY ON REQUEST

Begin your next design with unexcelled quality Bishop component materials. Write, wire or phone Malvern 3100.

J. BISHOP & CO.
platinum works
MALVERN, PENNSYLVANIA

NEW PRODUCTS

Modular A/D Converter
Weighs seven pounds

Designed mainly for airborne use, the model CG 591 analog to digital converter can scan 12 input channels at a 120 cps rate, or as many as 50 channels at a slower rate. This completely solid state system uses PCM to provide accuracies of 0.2 per cent. Output, from a three digit, decimal coded binary register, can drive Nixie readout tubes, punched tape or cards, or can be used for telemetry transmission. The miniaturized system is completely modular, using 2 in. by 3 in. plug-in etched circuit cards.

50 Ohm Coaxial Terminations
Have type TNC connectors

Model 535 50-ohm coaxial terminations are available with type TNC male or female connectors. They can also be supplied with types N, C, SC, and BNC connectors. The units have a 10 kmc frequency range; 1 w average and 1 peak power handling capacity; and individual vswr calibrations of dc, 400, 1000, 2000, 4000, 7500, and 10,000 mc. The film resistors used are artificially aged for maximum stability.

Weinschel Engineering, Dept. ED, 10503 Metropolitan Ave., Kensington, Md.

Electrical Design • April 1, 1939
AiResearch creating central air data system for USAF F-108

Also latest data control concepts for missile and undersea applications

The AiResearch Centralized Air Data Computing System will sense, measure and automatically correct for air parameters affecting flight of the North American-Air Force F-108 Interceptor and will supply simplified air data to the pilot. Eliminating duplication of components, the system will cut down space and weight requirements over decentralized systems by many times.

The centralized combination of transducers, computers and indicators represents an integrated system concept combining electrical, electronic, pneumatic, hydraulic, electro-mechanical and mechanical servo capabilities. Technical experience in each of these fields enables AiResearch to achieve optimized systems covering a wide range of functions while meeting the most rigid specifications. System management is an integral part of each Central Air Data program enabling AiResearch to assume the overall responsibility for systems or subsystems.

The first fully optimized central air data system is already operational aboard the Navy’s supersonic F4H-1, the first aircraft to fly with such a system. Similar equipment is on the Navy’s first weapon system, the A3J “Vigilante.” This broad AiResearch systems capability is now being applied in the fields of military aircraft, commercial jet transports, missiles and submarines.

THE GARRETT CORPORATION
AiResearch Manufacturing Divisions
Los Angeles 45, California • Phoenix, Arizona

Systems, Packages and Components for: AIRCRAFT, MISSILE, ELECTRONIC, NUCLEAR AND INDUSTRIAL APPLICATIONS

CIRCLE 76 ON READER-SERVICE CARD
 Recently, a university research laboratory† used LINDE single-crystal synthetic ruby (Al₂O₃ with Cr₂O₃ additive) in a three-level solid-state Maser. The ruby crystal was placed in the Maser's tuned cavity and a magnetic field of 4200 gauss was applied. To bring electrons from a ground state into a permissible higher energy level, a pumping frequency of 24 kMc was used and the Maser amplified signals at 9.3 kMc.

LINDE supplies other crystals, including rutile, spinel, and sapphire. (Al₂O₃). Sapphire is used in infrared optical systems, windows for higher power microwave tubes, spacers and supports in vacuum tubes, radiation pipes. It has strength at elevated temperatures, melts at 2040°C., is hard, inert, non-porous, and can be sealed to metals and glasses. Sapphire is available in the shape of domes, windows to 4½ inches in diameter, rods and special configurations.

For more information, write Crystal Products Department, LINDE COMPANY, Division of Union Carbide Corporation, 50 East 42nd Street, New York 17, N. Y.

"Linde" and "Union Carbide" are registered trade marks of Union Carbide Corporation.

NEW PRODUCTS

Automatic Spectrometer
Scans between any two levels from 0 to 85 v

The model 50-1 automatic spectrometer consists of the company's model 33-1 single channel pulse height analyzer; its model 39-2 electronic sweep-count rate meter; a high voltage supply; and a Brown Elektronik recorder. An electronic sweep circuit automatically scans the spectrum between any two predetermined levels from 0 to 85 v and then resets and repeats the cycle. The data is automatically plotted on the recorder. An automatic sample changer, the model 48-1, can be used to change the sample when the sweep circuit resets. The system may also be operated as a manual spectrometer.

Radiation Instrument Development Lab, Inc., Dept. ED, 5735 S. Halsted St., Chicago 21, Ill.
CIRCLE 78 ON READER-SERVICE CARD

Analog Computer Kit
For educational and industrial use

This kit contains parts for the model EC-1, an analog computer designed for educational and industrial laboratory use. The computer is completely self-contained with nine dc operational amplifiers, three initial condition power supplies, five coefficient potentiometers, four sets of relay contacts, an electronically regulated power supply, and a repetitive oscillator for automatic operation. Included with the kit are assorted precision resistors, Mylar capacitors, special silicon diodes, and patch cords for setting up complex problems. Problem results are read directly from the meter supplied or with an external readout device.

CIRCLE 79 ON READER-SERVICE CARD

ELECTRONIC DESIGN • April 1, 1959
256-Channel Analyzer
Has interchangeable logic units

Completely transistorized, the model CN-110 256-channel analyzer has interchangeable plug-in logic units for pulse height analysis, neutron time of flight studies, and counting as a function of time. It has a complete magnetic core data storage system, a 3 in. c.r.t. display, analog address and arithmetic readout, and preset count. Average dead time with the pulse height analyzer unit is 42 nsec. The unit is 19 x 20 x 8-3/4 in. and weighs 40 lb.

Technical Measurement Corp., Dept. ED, 441 Washington Ave., North Haven, Conn.

CIRCLE 80 ON READER-SERVICE CARD

Crossbar Scanner
Self-stepping

The model SC-4 self-stepping crossbar scanner sequentially connects a six-wire circuit with each of 100 sets of six-wire terminals at speeds of up to 50 sets per sec. It also has a facility for random access. It has a life of 20 million operations per crosspoint without adjustment and offers low cross-talk between adjacent circuits at frequencies up to 10 mc. Insulation resistance is 10,000 meg; conductor resistance is 0.3 ohm through the longest path; and current carrying capacity is 100 ma non-inductive at 50 v dc. Contact bounce is less than 200 usec on make, none on break. For scanning, the SC-4 needs two mercury-wetted contact relays besides the crossbar switch. One drives the select magnet chain, the other the hold magnet chain. Self-stepping of these chains is effected by a set of control contacts on each magnet.

James Cunningham, Son & Co., Inc., Dept. ED, P.O. Box 516, Rochester 2, N.Y.

CIRCLE 81 ON READER-SERVICE CARD
NEW PRODUCTS

Elapsed Time Indicator

Measures missile component reliability

This elapsed time indicator is designed to measure equipment reliability. It is 0.665 in. in diameter and 1.415 in. long, weighs 1.2 oz., and draws 0.018 amp at less than 1 v. The unit contains an electric motor that operates for 115 v., 400 cps. single phase and a jeweled gear train with a 150 million to one ratio. It records up to 1000 hr. Suited for inclusion in the black boxes of missile and aircraft components, it stands vibration up to 10 g to 500 cps, shock up to 15 g, and temperatures from -40 to +165 F. It contains an internal reset and is enclosed in a hermetically sealed case with solder pin terminals.

Panel Instruments

For ac and dc use

These panel instruments feature the Cornag mechanism for positive shielding from external magnetic fields. Model 1741 is a 4.5 in. dc unit and model 1724 is a 2.5 in. ac unit. Also available are three ac moving iron type instruments capable of obtaining controlled ballistics characteristics.

Weston Instruments, Div. of Daystrom, Inc., Dept. ED, 614 Frelinghuysen Ave., Newark 12, N.J.

SEND FOR NEW DESIGN BOOKLET

"Design Tips on Liquid Cooling with Coolanol 45" describes cooling approaches, fluid properties essential to equipment reliability, a typical design, and other important design aspects. For your copy of this new booklet, circle the reader-service number . . . or write:

MONSANTO CHEMICAL COMPANY, Organic Chemicals Division

Aviation Fluids Department, St. Louis 66, Missouri

When you need a synthetic fluid, come to Monsanto — creator of fluids for the future

CIRCLE 83 ON READER-SERVICE CARD

PROBLEM: Cool magnetron tube, power supply, pulse forming network, pulse forming transformer, and supply hydraulic power for tuning.

SOLUTION: Use Coolanol 45 as the coolant-dielectric for all components and also as the hydraulic fluid.

DESIGN EXAMPLE:

Standardize! Miniaturize! Simplify! Liquid-cooling with Coolanol 45 can help you do all three. The above system design shows one way these three goals can be achieved when you rely on the fluid properties of Coolanol 45: efficient heat transfer for accurate temperature control... dielectric properties for safe operation... dependable power transmission for the hydraulic tuning circuit. Its complete compatibility with standard materials keeps costs down.

By standardizing on Coolanol 45, you can liquid-cool all the components with one heat transfer system and tie in a Coolanol 45 hydraulic system for tuning. One fluid instead of two or three means less complexity... greater reliability for your system's operation.

TUBE PROBLEM:

The Armed Forces needed a new version of the 6J4 reliable tube type which would provide a tube life of almost 1000 hours. Existing tubes of this type had an average life of only 250 hours. In addition, this new tube had to be produced under ultra-high quality control standards.

SONOTONE SOLVES IT:

By making improvements in the cathode alloy and setting up extremely tight controls in precision, manufacture and checking, Sonotone engineers produced a 6J4WA with a minimum life of 1000 hours... most running much longer.

RESULTS:

The Sonotone 6J4WA is one of three reliable tubes now being manufactured under U.S. Army Signal Corps RQAP (Reduced Inspection Quality Assurance Program), monitored by the U.S. Army Signal Supply Agency. And the same rigid quality standards apply to Sonotone's entertainment type tubes as well.

Let Sonotone help solve your tube problems, too.
Tachometers and Frequency Counters
Accuracy of ±1 count

The 1300 series of electronic tachometers and frequency counters includes types for remote indication, for explosion-proof installation, and for dual readout requirements. Time bases available have fixed selectable times of 0.1, 0.5, and 1 sec. The units have an accuracy of ±1 count, a display time that is adjustable from 0.1 to 10 sec, and a sensitivity of 50 mv rms. They have an input impedance of 1 meg and automatic or manual reset.

Impact Recorder
Measures up to 7 g

Designed for use in the carrying cases of various missiles, this impact recorder is adaptable for all types of ground and air transportation. It measures and records on-off digitized acceleration data from impacts, shocks, or gravity loads up to 7 g in temperature ranges from 0 to 160 F and at altitudes to 20,000 ft. The unit can operate for 30 days or for 36,000 impacts on its integral rechargeable battery and can respond to 30 discreet shocks or impacts per sec. It is housed in a portable aluminum case 14-1/2 x 11-3/4 x 8-3/4 in.

Tape specs are getting tougher every year

* higher recording densities (up to 2,000 bits per inch)
* more tracks (16 channels per inch)
* greater accuracy (1 error per 40 million)

...but not too tough for Audiotape

Keeping ahead of its customers is the only way a magnetic tape manufacturer can meet the rapidly rising standards being set for its product. And often the standards are as varied as they are exacting. Special slitting tolerances, coating thicknesses, base materials and magnetic oxides are rapidly becoming more usual than novel. Audio Devices' battery of Automatic Certifiers is one of the unique means used to make sure EP Audiotape always meets customer specifications.

Type EP Audiotape is the extra precision magnetic recording tape for applications in computing, automation, telemetering and seismography. The Automatic Certifier records and plays back every inch of the EP Audiotape under test. These tests can be so demanding that if the tape fails to reproduce a single test pulse out of the 40 million put on a single reel, the entire reel is rejected. There are no ifs, ands or buts.

This is one of many special quality-control operations to which EP Audiotape is subjected. From raw materials to hermetically sealed containers, every reel gets individual attention.

EP Audiotape quality is so well verified by instruments like the Automatic Certifier that every reel is guaranteed to be defect-free! For more information write for free Bulletin T112A. Write Dept. TD, Audio Devices, Inc., 444 Madison Avenue, New York 22, N.Y.
Easier to assemble...easier to operate...

SPEED CLIP costs 50% less, too!

Assembly of the Super-Filer** Divide-a-File** mechanism was considerably simplified when the General Fireproofing Company switched to a special Speed Clip design. Sightless people do the assembling without former difficulties of fitting spring wires into non-uniform stampings.

With this Speed Clip, the "self-adjusting" Divide-a-File slides more smoothly back and forth in the channel. Locking in the desired position is more positive, too.

This is another example of how Tinnerman Engineering goes far beyond the original fastening idea—how we work with customer engineering departments to produce better working units. And in the above case, a per-part cost reduction of 50% was achieved. In only 4 months, General Fireproofing had saved enough through lower assembly and parts costs to write-off new tooling needed to produce the Speed Clip.

You, too, can achieve savings and improvements like these on your assemblies. Invite your local Tinnerman sales representative in for a discussion of the Speed Nut methods of better fastening at lower cost. He's listed in most Yellow Pages, under "Fasteners". Or write to:

TINNERMAN PRODUCTS, INC.
Dept. 12 • P.O. Box 6688 • Cleveland 1, Ohio

TINNERMAN

Speed Nuts

FASTEST THING IN FASTENINGS

NEW PRODUCTS

Signal Source

Provides remote tuning

A remotely tuned signal source, the model 301 is especially suited for antenna test applications. It consists of the company's model 301 carcinotron power supply; a series C rf head; and a model 301R remote tuning panel. The power supply is designed for cw operation and the carcinotron backward-wave oscillator is voltage tunable over its full frequency range. The weatherproof rf heads are available for the 100 to 16,000 mc range, and power output varies from 500 to 5 mw.

Scientific-Atlanta, Inc., Dept. ED, 2162 Piedmont Rd., N.E., Atlanta 9, Ga.

CIRCLE 92 ON READER-SERVICE CARD

Magnetometer

Portable

Model M-6 magnetometer measures strength, direction, and polarity of weak magnetic fields. The portable unit is ruggedly built for field use, with the magnetometer element hermetically sealed in plastic. It can be used for magnetization of steel studies, measurements of magnetic pole strengths, determinations of current flow through conductors, and factory inspection of aircraft parts for residual magnetism. The 8 lb unit is calibrated on the strength of the earth's magnetic field. Its power requirements are 40 w, 115 v, 60 cps.

Irwin Labs, Inc., Dept. ED, 1238 S. Gerhart Ave., Los Angeles 22, Calif.

CIRCLE 93 ON READER-SERVICE CARD
AC and DC Voltmeters
Expanded scale

These expanded scale ac and dc voltimeters linearly expand a selected, narrow voltage range with 0.35% accuracy. They are available with up to three separate ranges in one meter. The ac meters read true rms regardless of input waveform and may have any center scale value between 5 and 230 v. The voltage range that can be expanded across the full meter scale is 5 to 17% to each side. The dc multirange models are completely self-contained and may have any center scale value between 5 and 300 v. Voltage range is 5 to 20% of center scale value to each side. The units are available in 2.5, 3.5, and 4.5 in. diameter round models, in 2.5 and 3.5 in. square models, and in 4 x 6 in. rectangular models.

Beckman Instruments, Inc., Helipot Div., Dept. ED, 2500 Fullerton Rd., Fullerton, Calif.
CIRCLE 94 ON READER-SERVICE CARD

10,000 Watt Ceramic Tetrode
Water cooled

The model 4CW10000A 10,000 w ceramic and metal tetrode is a water cooled version of the company's model 4CX50000A. Maximum plate ratings of 7500 v and 3 amp apply to 30 mc. From 30 to 110 mc, 5500 v and 2 amp may be used. The unit is 11.4 in. long and 4.7 in. in diameter.

Eltell-McCullough, Inc., Dept. ED, San Carlos, Calif.
CIRCLE 95 ON READER-SERVICE CARD

Now...
262 Square Inches of information in 1/20 Square Inch!

New CBS-Hytron ultrahigh-resolution tubes, for example, can compress into 0.047 square inch all the detail on a 21-inch picture tube screen. This is twice the resolution previously attainable, resolution far beyond the capabilities of the unaided human eye and modern printing. And the closest yet to the resolution of modern photographic film.

MANY APPLICATIONS NOW POSSIBLE Many new and advanced applications become practical in strip radar • photo reconnaissance • visual indication • photo reproduction • information transfer • industrial and medical closed circuit TV • remote data pick-up • information conversion • etc.

More reliable products through Advanced-Engineering tubes

CBS-HYTRON, Danvers, Massachusetts
A Division of Columbia Broadcasting System, Inc.
CIRCLE 96 ON READER-SERVICE CARD
NEW PRODUCTS

Vibration Indicator
Hand instrument

The Vibrometer is a light hand-held instrument which can be used to measure vibration frequency and amplitude; to determine the direction of maximum transmitted disturbances; to locate the cause of unwanted noise due to resonant vibration; and to measure the speeds of rotating equipment where shafts or rotors are not readily accessible by placing the probe against the machine housing. The unit can also be used to analyze component frequencies of complex vibrations. The output of the built-in pick-up can be attached to an oscilloscope or oscillograph. The Vibrometer achieves a full range from 120 to 15,000 cpm by using a weighted reed up to 600 cpm and a free reed above. Accuracy is within 10% with a weighted reed and within 3% with a free reed.

The Korfund Co., Inc., Dept. ED, 48-22H 32nd Place, Long Island City 1, N.Y.
CIRCLE 98 ON READER-SERVICE CARD

Transistor Tester
In-circuit

The model 219 A transistor tester permits the measurement of transistor beta parameters with transistors in the circuit. Beta and collector leakage current parameters may be measured with the transistors removed from the circuit. The unit is packaged in a compact carrying case and operates from either a self-contained battery supply or 110 v, 50 to 60 cps.

Sierra Electronic Corp., Dept. ED, 3885 Bohannon Dr., Menlo Park, Calif.
CIRCLE 99 ON READER-SERVICE CARD
Measure Resistance Quickly—Easily

CURTISS-WRIGHT
PORTABLE BRIDGES

Here are two bridges that are especially well suited for measuring resistances accurately when relatively unskilled workers must be used. And they're extremely handy for day-by-day measurements in the laboratory.

The Wheatstone Bridge covers a range of 0.05 to 50,000 ohms with only two knobs—a large scale calibrated from 0.5 to 50 and a smaller range selector with five positions: 0.1, 1, 10, 100 and 1000. A 4.5V battery provides power.

The Kelvin Bridge measures low resistances from 0.0001 to 2.1 ohms. Two dials, the larger calibrated from 0.0001 to 2.1 and a four position range switch provide readings.

For more information, write

CIRCLE 110 ON READER-SERVICE CARD

Frequency Sensor
Operates on go, no-go principle

The C-400FSI go, no-go frequency sensor provides automatic instrumention of frequency for aircraft, missiles, ground control installations, telemetering equipment, and industrial control equipment. The unit is accurate to 0.25% and has a red and green light readout. Several sensors may be connected to a logic circuit so that one readout will indicate the no-go condition if any one of the readings is out of tolerance. The unit operates at 115 v and has nominal frequency and tolerance limits made to customer specifications. The 2 w output drives 24 v lamps or relay drives and will also work with an annunciator system.

Magnetic Circuit Elements, Inc., Dept. ED, 3722 Park Place, Montrose, Calif.

CIRCLE 111 ON READER-SERVICE CARD

Pulse Transformers
For varied applications

These permanent magnet pulse transformers are applicable in blocking oscillators; in triggering, low voltage, and counting circuits; for dc isolation; for pulse shaping; and for use as wide band input and output transformers. The units have a core of grain oriented silicon steel and a chamfered band 0.062 in. wide which keys it for automatic mounting by soldering into etched circuit boards. They are available in three sizes: 0.4 x 0.4 x 0.4; 0.562 x 0.562 x 0.5; and 0.7 x 0.7 x 0.65 in.

PCA Electronics, Inc., Dept. ED, 16799 Schoenborn St., Sepulveda, Calif.

CIRCLE 112 ON READER-SERVICE CARD

Aerovox CERAFIL® Capacitors

Remarkable new design concepts and modern construction features of Cerafil Capacitors make it possible to obtain extremely high capacities per unit volume. These ultra-miniature ceramic capacitors offer a logical solution to circuit designers concerned with extremely miniaturized assemblies and equipments.

Cerafil Capacitors are the smallest ceramic units manufactured in the electronic industry. They are designed specifically for airborne and space-borne equipments, computer circuits, hearing aids and other critical applications where space and weight requirements are at an absolute premium.

Cerafil capacitors are available in working voltages of 30, 50 and 100 VDC, and in capacities from 10 mmf to 100,000 mmf. Type C80 (100 VDC) of this rugged ceramic unit of high reliability is designed for operation at temperatures from -55°C to +85°C. Type C80T (50 VDC) is rated at 125°C. Types C80 and C80T will meet or surpass all the applicable requirements of MIL-C-11015A.

*Actual size of a 1000 mmf unit @ 100 vdc.

Now... Expanded facilities and improved production techniques make possible a 10% PRICE REDUCTION ON ALL VALUES! Effective February 1, 1959

Available at local Aerovox Parts Distributors nationally!

Write today for complete technical information of these ultra-miniature CERAFIL CAPACITORS...

CIRCLE 113 ON READER-SERVICE CARD
Miniature Soldiers. Army ants carry out intricate maneuvers of wheeling, ranking, and envelopment with faultless precision. Their columns are led by "majors", preceded by "scouts". Raids are conducted by "skirmishers". Between campaigns, they form "bivouacs". Army ants are nature's tiny troopers.

Miniature Ball Resolver, approximately 3 / 4" x 2 1 / 2" O.D. continuously calculates position of aircraft and missiles traveling at supersonic speeds. MPB bearings at critical points keep torque low, and help make possible an accuracy of 0.33 of 1%. This is another man-made miracle in miniaturization.

Man with Miracles. This is Jim Mitchell, one of MPB's technical representatives, whose close liaison with the manufacturer of the ball resolver facilitated its design and development. MPB's technical staff, most experienced in its field, can assist you with your own miniaturized miracles.

New Worlds for Miracles in Miniaturization

Every day man's advances, both on this planet and beyond, are opening new and challenging areas of application for miniature components and mechanisms. And at each step forward, MPB is ready to help with research, engineering and manufacturing facilities unsurpassed in the miniature bearing industry. MPB makes more than 500 types and sizes of bearings ranging from 3 / 4" O.D. down...designed to meet requirements of the most exacting nature. Specials are developed on request. For a confab on design problems or our latest catalog write Miniature Precision Bearings, Inc., 904 Precision Park, Keene, N. H.

CIRCLE 114 ON READER-SERVICE CARD

NEW PRODUCTS

Scaler-Analyser
Has 128 channels

A completely integrated system, the RCLiae-128 is a 128 channel scaler-analyzer that performs nuclear data processing operations from gross counting through scintillation spectroscopy. It is of plug-in modular construction and has a magnetic core memory capacity of 1 million counts per channel; an instant number or curve CRT display; preset time from 0.19 sec to 28 hr, and preset count from 21 to 221. Negative high voltage is 600 to 1500 v, stable to 50 ppm; overall amplifier gain is 1000; and integral linearity is ±1% for channels 5 through 128.

Radiation Counter Labs, Inc., Dept. ED, 5121 W. Grove, Skokie, Ill.

CIRCLE 115 ON READER-SERVICE CARD

Heat Sinks
For JETEC 30 transistors

The 1101-A is an insulated Stud mounted heat sink for medium power transistors in JETEC 30 round welded packages. It is easily attached to the transistor, converting it to a double ended package, and heat dissipated in the transistor is conducted to the chassis through the 10-32 stud. Electrical insulation is provided by the addition of a hard coat anodize finish which furnishes over 400 v breakdown and eliminates the electrical problems in heat sinking transistors which have the collector common to the case.

Jadaro Machine Products, Dept. ED, P.O. Box 155, Garland, Tex.

CIRCLE 116 ON READER-SERVICE CARD

ELECTRONIC DESIGN • April 1, 1959
The model RB4 transfer relay is designed for high voltage applications involving antenna switching, pulse forming networks, and similar rf and dc circuits. The 4pdt unit has a vacuum dielectric, sapphire actuating rods, and removable actuating coils for 26.5 or 115 v dc operation. Peak test voltage is 25 kv dc or rf and rated operating voltage is 20 kv at 2.5 mc and 10 kv at 16 mc. Contact resistance is under 0.01 ohm and current rating is 13 amp rms at 60 cps and 8 amp at 16 mc.

Jennings Radio Mfg. Corp., Dept. ED, P.O. Box 1278, San Jose, Calif.

CIRCLE 117 ON READER-SERVICE CARD

These indicators have built-in transistorized driver circuits that operate directly from low level signals. Filament type R-441 is a high gain unit using a low voltage, plug-in incandescent lamp that lights when the input level is 11 v. High temperature types R-561 and R-661 have silicon transistor circuits for -55 to +100 C operation. Also available are model R-901, a memory light; model R-1004, which has an encapsulated plug-in insert; and miniature models R-121 and R-221, which mount in a 3/8 in. hole.

Engineered Electronics Co., Dept. ED, 506 E. First St., Santa Ana, Calif.

CIRCLE 118 ON READER-SERVICE CARD

Edison Sealed Thermostats are widely used in crystal ovens, electronic oven and oscillator compartments—and many other electronic components adversely affected by temperature variations. Capable of maintaining temperatures within 0.2°C, Edison sealed thermostats offer these special features:

- Slow-make, slow-break principle, insures small temperature differential
- Protective gas atmosphere minimizes effects of contact arcing under heavy loads, resulting in high stability
- Radiant energy, and conducted or convected heat is rapidly transmitted to the bimetal by the highly conductive gas fill
- Long bimetal arm is highly sensitive to temperature changes and assures accurate control, predictable performance

For complete data on Edison Sealed Thermostats, write for Bulletin No. 3009B.

Thomas A. Edison Industries
INSTRUMENT DIVISION
55 LAKESIDE AVENUE, WEST ORANGE, N. J.

EDISON ENGINEERING OFFICES ARE LOCATED IN: WASHINGTON—BALTIMORE; CHICAGO; DALLAS; DAYTON; LOS ANGELES

CIRCLE 119 ON READER-SERVICE CARD

ELECTRONIC DESIGN • April 1, 1959
Dramatic Reduction in Gyro Drift...

Condensed Performance Data
- Trimmed drift rate: 0.1°/hr. rms
- Mass unbalance: 5.0°/hr./g
- Anisoelastic constant: 0.025°/hr./g² rms
- Maximum command turning rate: over 20°/sec.
- Dimensions: 2" dia., 4" long

IN NEWEST DESIGN 20 IG INTEGRATING GYROS

Representing a major breakthrough by Reeves' gyro research laboratories, these advanced instruments show a small fraction of the drift rate hitherto considered low for high-performance units in this class.

Other characteristics are also outstanding, including extremely low anisoelastic constant and high command turning rate.

Of equal importance is the fact that these instruments measure up in every way to well-known Reeves standards of precision, ruggedness and reliability in regular production models. They are now available, and we invite your inquiries for detailed information.

Other Reeves Gyros and Accelerometers meeting equally exacting standards for performance and reliability include a comprehensive series of 10 IG, 20 IG and HIG 5 Integrating Gyros; 20 PIG Pendulous Integrating Gyros and 10A and 20A Linear Accelerometers. Technical information on request.

Reeves Instrument Corporation
A Subsidiary of Dynamics Corporation of America
Roosevelt Field, Garden City, New York

NEW PRODUCTS

Contact Inserts
Push-in type

With Mod. 2 inserts, contacts are crimped automatically or semi-automatically to wires outside of the connector. A cross-hole in each contact permits ready inspection of the termination joint to determine the depth of the wire engagement. A special hand tool is available for inserting the contacts into the premounted resilient insulation within the connector barrel shell. Retention of the insulation exceeds the requirements of MIL-C-5015 D after many reassemblies. The units can be furnished with up to 100 poles for wire sizes 16, 12, or 10.

The Pyle-National Co., Dept ED, 1334 N. Kostner Ave., Chicago 51, Ill.

Microwave Power Meter

Has 0.001 to 10 mw range

Self-balancing and transistorized, the model 440 microwave power meter provides automatic direct-reading measurements of cw or pulsed power. It may be used with all 100 or 200 ohm bolometers or thermists, of positive or negative temperature coefficient, requiring any bias current up to 18 ma in any frequency range for which there are bolometer or thermistor mounts. It has 0.001 to 0.01 mw and 0.003 to 0.03 mw scales in addition to the five standard scales up to 10 mw.

Narda Microwave Corp., Dept. ED, 118-120 Herricks Rd., Mineola, N.Y.

CIRCLE 120 ON READER-SERVICE CARD

CIRCLE 121 ON READER-SERVICE CARD

CIRCLE 122 ON READER-SERVICE CARD

ELECTRONIC DESIGN • April 1, 1959
Silicon Logic Transistor

High speed

Typical total switching time of the 2N139 silicon logic transistor is under 30 nsec. Minimum alpha cutoff is 100 mc.

Transistor Electronics Corp., Dept. E.D., 168 Albion St., Wakefield, Mass.

CIRCLE 123 ON READER-SERVICE CARD

Ribbon Cable

Color coded

These color coded, multiconductor ribbon cables are available in single conductors, twisted pairs, and coaxial cables. A variety of widths and designs can be furnished.

Plastoid Corp., Dept. E.D., 42-41 24th St., Long Island City, N.Y.

CIRCLE 124 ON READER-SERVICE CARD

Digital Voltmeter

Covers 0 to 1 kv dc

General purpose digital voltmeter model 410 covers a range of 0 to 1 kv dc. It has 0.5% full scale accuracy and a three column vertical readout.

CIRCLE 125 ON READER-SERVICE CARD

Metallurgical Memo from General Electric

Why permanent magnets are only temporary

Magnetic Materials Section reports on a continuing search for better permanent magnets

... and on what this means to your new product designs

Permanent magnets are getting better. In fact, since the introduction of Alnico magnets by General Electric in 1934, there has been a constant flow of stronger, more efficient G-E magnetic materials. General Electric developed directional grained magnets to provide higher energy potential. Then, by sintering Alnico V and Alnico VII, General Electric was able to create magnets with better flux distribution and vastly improved tensile strength. P-series alloys, with consistently uniform flux for use in hysteresis motors, marked another step forward. And these are just part of the important advances that have come from General Electric in the past 25 years.

Watch General Electric for even more advanced magnetic materials that will soon give you a freer hand in bold new product design. If you would like the design assistance of a G-E engineer, write: Magnetic Materials Section, General Electric Company, 7820 N. Neff Street, Edmore, Michigan.

MAGNETIC MATERIALS SECTION

GENERAL ELECTRIC

CIRCLE 126 ON READER-SERVICE CARD
A NON-SNAP SWITCH FOR "KEYBOARDS"

Developed specifically for the keyboards of electronic computers, calculators, and other business machines, the Hetherington B5023 gives the smooth, yet precise action necessary for fast manipulation. Operating pressure is a scant ½ pound — just enough to retain the familiar "feel." The versatile 2-circuit, momentary-contact circuitry of the B5023 can also be used as SPST or SPDT. Recent tests have shown a life of better than 1.7 million operations at 5 amps, 30 volts dc. This is far greater than the conservative rating you'll find in Bulletin S-6 if you write for it.

CIRCLE 103 ON READER-SERVICE CARD

THUMB-OPERATED "TOGGLE" CONTROLS 4 SEPARATE SWITCHES

A familiar sight to helicopter pilots is the versatile Hetherington Type F441 Four-Way Switch. Here it is housed, along with other Hetherington Switches, in a handgrip which fastens to the flight control stick. Moving the Switch's thumb-type knob up or down, right or left, operates control motors for hoists or lateral trim.

Housed in the 1-1/64" by 7-8" phenolic case of the F441 are 4 separate momentary-contact switches arranged 90 degrees apart around the base of a thumb-controlled toggle lever. Normally, all switches are "open" and the toggle is centered.

Usually the switch is mounted so that the lever projects through a cloverleaf gate that restricts operation to one switch at a time. With this gate, however, any two adjacent switches may be closed simultaneously. The toggle may also be held outward and moved in an arc to actuate all 4 switches in succession.

Admittedly, the F441 Switch is rather specialized. However, it offers industrial users interesting opportunities to simplify equipment design and operation — by saving space, by "foolproofing" critical circuits, or by making operations easier to understand.

No bulletin is available on this switch as yet, but ratings and a dimension drawing will be sent on request. Ask about the F441.

CIRCLE 104 ON READER-SERVICE CARD

NEW PRODUCTS

CARRIAGE, MACHINE BOLTS.—Complete selection of hex head machine and carriage bolts in a range of 500 sizes. Machine bolts are supplied with or without finished hexagon nuts and have a minimum tensile strength of 55,000 psi. Stock sizes include diameters from 1/4 to 1-1/4 in., lengths from 1-1/2 to 24 in. Carriage bolts have no. 10 to 3/4 in. diameters, 1/2 to 18 in. lengths.

CIRCLE 128 ON READER-SERVICE CARD

PELLET TEMPERATURE INDICATORS.—These pellets melt at 525 and 650 F, filling the gap in a series covering 100 to 2700 F in 90 spaced intervals.

Tempil Corp., Dept. ED, 132 W. 22nd St., New York 11, N.Y.

CIRCLE 129 ON READER-SERVICE CARD

THIN SLIDES.—Designed to carry a 50 lb maximum load, these lightweight slides are 1.687 in. high. They are available in the nonlifting model 300S or the basic model 300-B.

Chassis-Trak, Inc., Dept. ED, 525 S. Webster St., Indianapolis, Ind.

CIRCLE 130 ON READER-SERVICE CARD

PULSE, SWEEP, AND TIME DELAY GENERATOR.—Type 1391-B generates pulses, time delays, and linear sweep voltages with wide ranges of operation. Pulse rise time is 15 usec.

CIRCLE 131 ON READER-SERVICE CARD

SOLDERING IRON TIPS.—These low cost tips are plated with a Tifeni alloy. They feature long life and high heat and come in all standard shapes and sizes.

Allmax Inc., Dept. ED, P.O. Box 20148, Indianapolis 30, Ind.

CIRCLE 132 ON READER-SERVICE CARD

MAGNESIUM OXIDE REAGENT.—Electronic grade M-300 features high purity, small particle size, and low reactivity. It can be used to cast tapes for winding magnetic amplifier cores, and also to prevent surface currents on mica punchings used to mount vacuum tube filaments.

CIRCLE 133 ON READER-SERVICE CARD

DOUBLE TRIODE.—Dissimilar-section type 704 combines in a single envelope the first two stages of preamplification for high fidelity disc or tape equipment.

CIRCLE 134 ON READER-SERVICE CARD
LANAR TRIODE.—Developed for use in telephone relay stations, type 6280 can be used in all types of microwave communications equipment. It operates in the 4 to 5 mc range and is a direct replacement for type 416B. Acorn sized, it has a gain of 9 db at 50 mw output and a transconductance of 50,000 umho.

Allen B. Du Mont Labs, Inc., Dept. ED, 750 Somerfield Ave., Clifton, N.J.
CIRCLE 135 ON READER-SERVICE CARD

PRECISION RC OSCILLATOR.—Model C-432 supplies sine and square wave output, balanced or unbalanced, plus a subsidiary control providing a small incremental frequency variation independent of the main dial. The main dial covers 25 cps to 250 kc in four decades and is calibrated to 1%. Furzehill Labs Ltd., Dept. ED, 550 Fifth Ave., New York 36, N.Y.
CIRCLE 136 ON READER-SERVICE CARD

CASTING RESIN ABSORBER.—For molding waveguide terminations, attenuators, and loads, Resorcor CR has, when cured, a high attenuation over the full microwave frequency range. Temperature range is -70 to +350 °F.
Emerson & Cuming, Inc., Dept. ED, 869 Washington St., Canton, Mass.
CIRCLE 137 ON READER-SERVICE CARD

UHF INSULATING MATERIAL.—An irradiated polyethylene, Ernol II has a dielectric strength of 1000 and a dissipation factor of 0.0005. It has good flame stability to 300 °C and can be used as a microwave strip line material and in electrical insulators, tube sockets, connectors, and wire insulation. It is available as a powder or as bars, rods, and sheets for readily machining.
Emiol Corp., Dept. ED, Fellowship Rd. and Rt. 73, Maple Shade, N.J.
CIRCLE 138 ON READER-SERVICE CARD

VANEAXIAL FAN.—This motor driven unit has an impeller less than 2 in. in diameter and provides a flow of 46 cfm under 2-1/2 in. water pressure and 37 in. vac. A 400 cpm three phase version delivers 75 cfm. The unit may be used as a direct cooling device or with a heat exchanger.
The Garrett Corp., Dept. ED, 9851 Sepulveda Blvd., Los Angeles 45, Calif.
CIRCLE 139 ON READER-SERVICE CARD

CONTACT CLEANING SPATULAS.—Covered with an abrasive surface of diamond particles, Diamond spatulas are designed specifically for cleaning edges and contacts. They do not become clogged or affect the normal gap between contact points.
CIRCLE 140 ON READER-SERVICE CARD

[Image of a furnace]

Nichrome ELEMENTS HEAT WORLD’S LARGEST MISSILE FURNACE
2500 feet of extra heavy Nichrome V Wire provides 5-zone heating up to 2050°F

This giant 500 KW gantry type Lindberg hardening furnace is the newest and largest ever built to meet the most exacting heat treating requirements of today’s, and tomorrow’s, missile metals. It accommodates an effective work load nearly 7 ft. in diameter and 24 ft. long.

Now in operation at Lindberg Steel Treating Company’s Melrose Park Plant, the controlled atmosphere installation is both bottom loading and bottom quenching. The 19’’ by 57’’ pit—28’’ deep, beneath the towering electrically heated furnace, houses the loading station, 2 quench tanks (atmosphere and salt) and water wash tank. Work loads pass from furnace to quench through an airtight seal, permitting complete control and precise duplication of atmospheres and treating cycles.

In the hardening furnace there are five control zones which operate between 250 °F and 2050 °F. Saturable core reactors automatically vary the voltage to the Nichrome®V heating elements between 2.2 and 220 volts, depending on temperature and load.

The selection of Nichrome V by Lindberg to supply reliable and closely controlled heat and temperature in this furnace is further evidence of the confidence that industrial leaders have in the quality and performance of Driver-Harris high-nickel alloys. Why not benefit from their experience. Tell us about your requirements.

DRIVER-HARRIS® COMPANY
HARRISON, NEW JERSEY • BRANCHES: Chicago, Detroit, Cleveland, Louisville
Distributor: ANGUS-CAMPBELL, INC., Los Angeles, San Francisco • in Canada: The B. GREENING WIRE COMPANY, Ltd., Hamilton, Ontario

MAKERS OF THE MOST COMPLETE LINE OF ALLOYS FOR THE ELECTRICAL, ELECTRONIC, AND HEAT TREATING INDUSTRIES
CIRCLE 141 ON READER-SERVICE CARD
NEW PRODUCTS

GUSSET MOUNTING ASSEMBLIES.—For front panel rack and cabinet mounting, these gussets are designed to fit all four of the company’s standard slides. They are furnished preassembled and can be quickly installed.

Chassis-Trak, Inc., Dept. ED, 525 S. Webster St., Indianapolis, Ind.

CIRCLE 332 ON READER-SERVICE CARD

VHF FREQUENCY METER.—Model LA-70 is available in a redesigned version. The unit has a 10 ke to 3 km range and is accurate to 1 pm from 20 mc to 3 km.

Lavoie Labs, Inc., Dept. ED, Mattawan-Freehold Rd., Morganville, N.J.

CIRCLE 333 ON READER-SERVICE CARD

LOW PASS FILTER.—The Microwind type TCL filters at 400 cps and measures 11/16 x 1-11/16 x 1-1/2 in. For frequencies from 7.5 to 100 kc, size is 3.4 x 1 1/2 in. The unit is fully encapsulated.

Barrett & Co., Inc., Dept. ED, 10 Pelham Pkwy., Pelham Manor, N.Y.

CIRCLE 334 ON READER-SERVICE CARD

LAMPHOLDERS.—In molded Bakelite housings with built-in wire leads, models 14-71 and 14-72 are designed for intermediate screw base lamps. They are UL and CSA approved for 75 w, 250 v and utilize a square shoulder as a permanent locking device. Other mountings are available, and wire leads can be supplied in any length with a variety of insulations.

Leecraft Mfg., Co., Inc., Dept. ED, 60 Greene St., New York 14, N.Y.

CIRCLE 335 ON READER-SERVICE CARD

OSCILLOSCOPE RECORDING CAMERA.—This has a 75 mm, F/1.9 lens and reduces linear distortion to less than 0.5%.

Beatrice-Coleman, Inc., Dept. ED, 1000 N. Olive St., Anaheim, Calif.

CIRCLE 336 ON READER-SERVICE CARD

FIXED COMPOSITION RESISTORS.—Model GBT-1/2 and GBT-1 are designed for trouble-free use in standard automation insertion equipment.

International Resistance Co., Dept. ED, 401 N. Broad St., Philadelphia 8, Pa.

CIRCLE 337 ON READER-SERVICE CARD

PERMANENT MAGNET.—A highly oriented ceramic permanent magnet material, Indox VI is especially suited for traveling wave tubes. It has a coercive force of 2550 oersteds, a residual reduction of 3200 gauss, and a peak energy product of 2.4 x 10^6.

The Indiana Steel Products Co., Dept. ED, Valparaiso, Ind.

CIRCLE 338 ON READER-SERVICE CARD

P.S. and don’t forget these other quality products at the
BENDIX
“SUPERMARKET”

With our greater variety and greater volume of the precision components listed below, we have become the “supermarket” of the industry. We feature fast delivery and mass-production economy—plus the highest precision quality.

400-CYCLE SYNCHROS

(For sizes: 8, 10, 11, 13, 22)

Control Transformers • Differentials • Receivers • Receivers
Transmitters

GYROS

Directional, Free, Rate, Roll and Vertical Gyro Transmitters
Stable Platforms

MOTORS AND GENERATORS

Gear Head Motors and Motor Generators • Low-Inertia Servo
Motors • Motor Generators • Precision Induction Tachometer
Generators • Rate Generators

PACKAGED COMPONENTS

Analog-Digital Converters • Azimuth Counters • Cam
Compensators • Clutched Synchros • Dual-Speed Synchros • External
Slip Ring Synchros • Follow-Up Mechanisms • Miniature
Differential Gear Assemblies • Servo Assemblies

Radar Devices

Airborne Radar Antennas

YCBBS

You Can’t Beat The Bendix
“Supermarket”. Try us.

Eclipse-Pioneer Division
VACUUM TUBE BRIDGE.—For precision measurement of vacuum tube and transistor parameters, the type 1661-A can be used to measure twin triodes and pentodes without change in external connections.

CIRCLE 340 ON READER-SERVICE CARD

EPOXY RESIN SYSTEM.—A flexible system with a wide range of possible cures, Hysol 6621 can be used for potting transistorized circuits and transformers with strain sensitive cores. It is also adapted to the casting of large masses.

Houghton Labs, Inc., Dept. ED, Houghton Ave., Okin, N.Y.

CIRCLE 341 ON READER-SERVICE CARD

SCANNER AND PLOTTING.—Model 115 converts the uncorrelated information collected on IBM punched cards into visual plotted form. It can be used for structural test work where strain gage data can be plotted as strain vs load; for wind tunnel data such as temperature vs time; and for proper evaluation of data against design specifications and limits.

Gilmore Industries, Inc., Dept. ED, 10015 Woodland Ave., Cleveland 20, Ohio.

CIRCLE 342 ON READER-SERVICE CARD

MOBILE POWER SUPPLY KIT.—Model MP-1 contains everything required for complete installation of any duty transistorized dc supply that delivers 120 w. The unit furnishes all power required to operate the company's MT-1 transmitter and MR-1 receiver. Chassis size is 9-1/16 x 4-3/4 x 2 in.

CIRCLE 343 ON READER-SERVICE CARD

DIRECT-READING COUNTER.—Designed for continuous operation at 6000 rpm, this unit is resistant to corrosion, humidity and vibration. Case size is 2-3/4 x 2 x 1-1/2 in.; figures are 0.25 in. high.

Veedol-Roost., Inc., Dept. ED, 70 Sargeant St., Hartford 2, Conn.

CIRCLE 344 ON READER-SERVICE CARD

FOOT SWITCH.—Cast iron model VH is available with a guard and comes in ratings from 15 to 40 amperes.

Vermaleine Products Co., Dept. ED, Hawthorne, N.J.

CIRCLE 345 ON READER-SERVICE CARD

SIGNAL GENERATORS.—These units feature direct digital readout of frequency, accuracy to ±1%, and a wide range of modulation capabilities, both am and fm.

Eaton Electronics Corp., Dept. ED, 40-20 34th St., Long Island City 1, N.Y.

CIRCLE 346 ON READER-SERVICE CARD

Is there a thinner pressure-sensitive tape that's better-performing...and at a lower cost?

Yes, there is such a tape, and it's made with Du Pont Mylar polyester film. For most applications, tough, durable pressure-sensitive tape of Mylar actually costs less, per linear foot or yard, than tapes made of other materials. That's because Mylar permits tape manufacturers to use thinner gauges without any loss in performance.

And what about performance? Here are some of the outstanding properties of Mylar found in pressure-sensitive tapes:

- **Thin, yet strong**
- **Durable**
- **Flexible**
- **High dielectric strength**
- **Dimensionally stable**
- ** Moisture-resistant**
- **Resists edge fraying**
- **Resists heat and cold**
- **No plasticizer**
- **Resists mold and mildew**

You name the job...electrical insulating, color coding, masking for electroplating, harness-wrapping coils...and you're sure to find pressure-sensitive tape of Mylar can improve performance while lowering costs. What's more, this thinner tape can help decrease weight and size of finished products without any loss in performance!

Pressure-sensitive tapes of Mylar can now be obtained in a wide variety of gauges, widths, colors, and with different adhesives. Ask your supplier to help you evaluate all the factors involved in cost and performance of tape made with Mylar. Or, send today for a list of tape manufacturers and a booklet on properties and applications.

MYLAR offers a unique combination of properties valuable for electrical design.

- **High tensile strength.** Mylar is the strongest plastic film. Extremes tester shows an average strength of 20,000 lbs. psi.

- **High dielectric strength.** Average of 4,000 volts per mil...average power factor of 0.001 at 60 cycles.

E. I. du Pont de Nemours & Co. (Inc.)
Film Dept., Room ED-4, Nemours Building, Wilmington 98, Delaware.

CIRCLE 347 ON READER-SERVICE CARD
NEW PRODUCTS

PRINTED CIRCUIT RESISTOR.—Type PC5 is a low operating temperature, 5 W unit for aircraft and missile applications. It has alloy coated leads secured to a resistance element uniformly wound on a glass fibre core and sealed in a rectangular ceramic case.

International Resistance Co., Dept. ED, 401 N. Broad St., Philadelphia 8, Pa.
CIRCLE 349 ON READER-SERVICE CARD

SELF-FASTENING DEVICE.—The Pushlock principle permits quick insertion and locking of a wide variety of plastic parts including standoff and feed through terminals, drawer glides, casters, bearings, cable support clamps, and tip jacks. Pushed through a punched or drilled hole, the parts lock into place by means of a series of molded flutes extending radially from a plastic stud.

Whitso, Inc., Dept. ED, 9330 Byron St., Schiller Park, Ill.
CIRCLE 350 ON READER-SERVICE CARD

HANDLES.—Die or sand cast of aluminum alloy, these handles have a chip resistant finish which passes a 1000 hr salt spray test and a 200 hr 100% humidity test.

Chassis-Trak, Inc., Dept. ED, 525 S. Webster St., Indianapolis, Ind.
CIRCLE 351 ON READER-SERVICE CARD

PLASTIC CONTROL KNOBS.—Made to conform with MS-91528 specifications, these knobs are available in round, pointer, and spinner types with or without skirts, and also with the dial skirted round. Each type comes in three shaft sizes and a variety of colors and finishes.

CIRCLE 352 ON READER-SERVICE CARD

SERVO ACTUATOR.—Designed for use in hydraulic or pneumatic servo systems, the Roto-Drive provides direct rotary drive without the use of bell cranks or other mechanical linkages. In a range of sizes with power ratings from less than 1 W to 10 HP, the unit has a frequency response up to 100 CPS and positioning accuracy within 1 min of arc.

CIRCLE 353 ON READER-SERVICE CARD

PHASE SEQUENCE INDICATOR.—Panel mounted model VA7 provides a means of rapidly determining the order in which the voltage peaks occur in a three phase power source. Voltage and frequency ranges are 104 to 480 V and 30 to 1000 cps. The unit has two pilot lamps for both 1-2-3 and 3-2-1 sequence and will operate continuously at maximum rated voltage in -65° to +160 F temperatures.

Opad Electric Co., Dept. ED, 69 Murray St., New York 7, N.Y.
CIRCLE 354 ON READER-SERVICE CARD

“Honestly didn’t think it could be done,” said our customer when we delivered the 2”, 4-wiper sine-cosine potentiometer with .35% peak-to-peak conformity.

We’ve heard these flattering words so many times before, we’re beginning to think that designing “firsts” is second nature to us. Here’s what we mean:

We designed the first 2” pot in which the user can install taps and bus bars in the field—we produced the first complete do-it-yourself Kit for pot modifications—the first switch in a pot housing for ganging with pots—the first 2” sine-cosine pot with .5% peak-to-peak accuracy—the first 2” sine-cosine pot with .25% peak-to-peak accuracy—the first 500K single turn in a 2” pot.

We created the first gear reduction unit in a 2” pot housing that permits variable speeds in a gang of pots. These, plus our 4-wiper pot, give us a record total of 8 “firsts.”

Next time you require a precision component that “can’t be done,” let us know and perhaps we can develop another first for you.

MICROLECTRIC DIVISION
OF MICRO MACHINE WORKS

CIRCLE 355 ON READER-SERVICE CARD

ELECTRONIC DESIGN • April 1, 1959
TIME DELAY GENERATOR.—Type 1392-A produces an accurately known time delay continuously adjustable over a range from 0 to 1.1 see with a frequency from 0 to over 300 kc. It can be used as a range calibrator for radar, sonar, and radio navigation systems.

CIRCLE 356 ON READER-SERVICE CARD

STANDARD RESISTORS.—For use with the company’s Megatron meter, these units are available in values of 10, 100, 1000, and 10,000 meg. Each is certified to 0.2% and is supplied with a temperature curve. They are mounted in a Faraday box which allows direct reading by the megatron meter.

Mid-Eastern Electronics, Inc., Dept. ED, 32 Commerce St., Springfield, N.J.

CIRCLE 357 ON READER-SERVICE CARD

PHONE AND PHONO PLUGS.—Designed for high fidelity, steroophone, tape recorder, and audio use, this line includes the M-1054 straight phone plug; the M-1058 right angle phone plug; the M-1059 straight phone plug; and the M-1060 right angle phone plug.

Philo Plastics Corp., Dept. ED, Shrewsbury, Mass.

CIRCLE 358 ON READER-SERVICE CARD

MULTIFREQUENCY OSCILLATOR.—This thermostable oscillator has up to six different switch selected frequencies in the 4 to 16 mc range. Warmup time is less than 2 minutes and thermal stability is 5 parts in 10⁶ per deg C.

Marconi Instruments, Dept. ED, 111 Cedar Lane, Englewood, N.J.

CIRCLE 359 ON READER-SERVICE CARD

SPECTRUM ANALYZER.—Model SA-84W covers 10 to 40,000 mc in one self-contained unit and offers the choice of dispersion bandwidths for wide and narrow pulse analysis.

Polytron Electronics Corp., Dept. ED, 43-20 34th St., Long Island City 1, N.Y.

CIRCLE 360 ON READER-SERVICE CARD

TUNGSTEN WIRE FORMS.—These preformed shapes and coils include all types of heaters for cathode ray tubes and electron tubes and coils for vacuum metallizing.

Manuel Ceramics Co., Dept. ED, 104 Little St., Belleville, N.J.

CIRCLE 361 ON READER-SERVICE CARD

CHOPPER CONVERSION KIT.—For modernizing the company’s old dc vacuum tube voltmeters, this kit contains a 60 cps untuned chopper with low contact noise characteristics and a 10,000 hr life expectancy.

Millivac Instruments, Div. of Cohn Electronics, Inc., Dept. ED, Box 997, Schenectady, N.Y.

CIRCLE 362 ON READER-SERVICE CARD

What every E. E. should know about Thermistor Stability.

... it's a constant in Fenwal Electronics Thermistors.

You can always precisely predict the operating characteristics of a Fenwal Electronics Thermistor throughout its working range. Reason: it’s stable. What’s more, you get identical thermistors, whether in lots of 10 or 10,000.

This stability is the result of the modern processing and quality control methods employed at every stage in the manufacture of these advanced “thermistor” units. And it’s the reason they permit such precise measurement and/or control of temperature.

Here’s a graphic proof. Fenwal Electronics Bead Type Thermistors used with the Fenwal Electronics Model 121 Temperature Indicator measure temperatures at 10 different locations over a range from 60 to 90°C with an accuracy of 0.1°C! Why not let us solve your design and development problems with equal precision? FENWAL ELECTRONICS, INC., 33 Mellon Street, Framingham, Mass.
Quick-Opening Fasteners: Screw Type or 1/4 Turn?

Know the features of each before you specify.

M. R. TUOZZO

The selection of a quick-operating door fastener usually involves a choice between two basic designs: the quick-acting screw fastener and the 1/4 turn fastener. Both are relatively inexpensive. Each has advantages that make it the logical choice for certain applications.

THE SCREW FASTENER is a rugged, square threaded screw assembly engaging in a special heavy stamped nut. The nut is clipped, riveted, or welded to the door frame. A special washer behind the thread captures the screw in an oversized hole in the door. Because of its exceptional “float,” it is installed without precision measurements and will always line up with ease. Where a variation in material thickness may occur or a gasket must be compressed, the screw fastener is preferred, since a single grip length can be used throughout. Under most conditions it will completely disengage in two to four turns. It offers excellent resistance to vibration and forms a solid joint with no "give." The screw fastener can be backed all the way out of the door frame without moving the door. If required, it can be installed so as to jack the door open as it is unscrewed.

THE QUARTER-TURN FASTENER is usually selected for application on aircraft (under Army-Navy-Air Force specification MIL-F-5591A) where instantaneous removal of fastened parts is required. As the name implies, it is quickly locked or unlocked by a fractional turn.

Its strength characteristics also are very high when the stud is formed from a single piece and no thin springs, wires, or cross pins exist in the assembly. The stud is retained in the door panel by a metal grommet, and engages in a full floating spring-loaded receptacle, riveted or welded to the door frame. Where the thickness of door and frame are fairly constant through an entire production run, the quarter-turn fastener is a wise choice. Its design affords maximum speed in fastening, and excellent vibration resistance.

COMPARISON OF STANDARD QUICK-OPENING FASTENERS

<table>
<thead>
<tr>
<th>SOUTHCOR SCREW FASTENER</th>
<th>LION QUARTER-TURN FASTENER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nut</td>
<td>Stud</td>
</tr>
<tr>
<td>Screw</td>
<td>Grommet</td>
</tr>
<tr>
<td>Washer</td>
<td>Receptacle</td>
</tr>
<tr>
<td>Through Thick Materials</td>
<td>Fastener in Position Ready for Locking</td>
</tr>
<tr>
<td>Through Thin Materials</td>
<td>Fastener Locked with a Quarter-Turn</td>
</tr>
<tr>
<td>Will Compress Gasket as Tightly as Required</td>
<td>Spring Loading Holds Panels in Compression</td>
</tr>
<tr>
<td>Can Be Used to Back Off Door Panel</td>
<td></td>
</tr>
</tbody>
</table>

Model BM-4 is a bench type punch press with a capacity of 4 tons. Originally designed for automatic electrical terminal crimping, it can be used for any standard punch press operation such as shearing, blanking, forming, drawing, riveting, and cutting. Die space is 6-1/2 in. open height and 4 in. throat space. The opening in the bed is 2 x 2 in. and the opening between uprights is 4 x 3 in. The ram has adjustable, replaceable V-type gibs and easily adjusts for die setting. The punch chuck hole in the ram is 1 in. in diameter. Standard stroke is 1 in. The unit weighs 223 lb and measures 10-5/8 x 17-1/2 x 24-5/8 in.

Alva Allen Industries, Dept. ED, 1001-15 N. Third St., Clinton, Mo.

CIRCLE 145 ON READER-SERVICE CARD

Automatic Memory Core Handler

For testing 80 mil ferrite cores

Model 4012 core handler is designed for fully automatic or manual rate feeding of standard 0.08 in. OD ferrite memory cores to a testing point. It has a maximum handling rate of 3600 cores per hr and provides for the separation of the tested cores in five different grades.
What every E.E. should know about Thermistor Applications

... they're trouble-free using Fenwal Electronics Thermistors

Stable, high-accuracy performance is a lasting quality of Fenwal Electronics Thermistors. Completely free from "drift" and capable of operating with compact, rugged control units, they provide practically limitless life in permanent fixtures or installations.

Typical use is as a liquid level sensing probe assembly (left). When liquid reaches probe, its higher thermal conductivity cools thermistor, increasing its electrical resistance and triggering alarm or control action. Such action can occur in fractions of a second after liquid touches probe!

Fenwal Electronics Thermistor Probe Assemblies give you the advantages of complete, ready-to-mount packages for measurement and control of ambient temperatures, "skin" temperatures, liquid level and flow, gas analysis, and hundreds of other variables. Fenwal Electronics, Inc., 33 Mellen Street, Framingham, Mass.

Inductance Comparator
For toroidal coil winding

Designed as an attachment for the company's Series winding machines, the IC-601 inductance comparator provides a means of winding toroidal coils to preset inductances on permalloy powdered or ferrite cores. The unit eliminates core grading and inductance adjustments and permits accuracies of 0.5%. It has built-in decade inductances which allow a setup range and provides continuous monitoring of the winding process.

Universal Mfg. Co., Inc., Dept. ED, 1168 Grove St., Irvington, N.J.

CIRCLE 148 ON READER-SERVICE CARD

PRODUCTION DIODE TESTING WITH LABORATORY PRECISION

DIODE TESTER
MODEL DT-257 $29500

• Rapid and accurate measurement of static characteristics of germanium and low-power selenium diodes.
• Transfer control switches pre-set forward and reverse operating points for rapid checking.
• Reverse voltage to 150 volts.
Forward current to 500 ma.
• Meter accuracy 2%.
• 2/3 size module of TLI Modular Instrumentation System.

TELETRONICS LABORATORY, INC.
54 KINNET STREET, WESTBURY, LONG ISLAND, NEW YORK

CIRCLE 150 ON READER-SERVICE CARD
News from Raytheon's Semiconductor Division...

ELECTROLYTIC SLICING—
This engineer is slicing a germanium crystal by electrolytic means. Up to now semiconductor wafers have been formed by mechanical processes, such as cutting with diamond saws or lapping with abrasive powders. The resulting mechanical damage to the critical surfaces reduces the quality and effectiveness of finished semiconductor devices. Electrolytic slicing of crystals, producing surfaces which are free from the mechanical damage resulting from other methods, is one of the many pioneering activities initiated and carried forward by the scientists and engineers of Raytheon's Semiconductor Division.

THE PLACE FOR THE MAN WHO IS GROWING FASTER THAN HIS ASSOCIATES

There are openings at Raytheon's Semiconductor Division for scientists and engineers with semiconductor experience and a desire to find more room for personal and career growth. Opportunities exist in the following areas:

Device Design and Development
Material Development
Mechanization
Circuit Design
Application Engineering

You are invited to explore the advantages for yourself in associating with Raytheon's Semiconductor Division. Write to Mr. Allen D. Moorhead, RAYTHEON MANUFACTURING COMPANY, Semiconductor Division, 150 California Street, Newton 58, Massachusetts.

The place for the man who is growing faster...

SEMICONDUCTOR DIVISION of RAYTHEON

Excellence in Electronics
Diffusion Pumps

For low pressure use

Handling large gas loads at low pressures, these oil and mercury diffusion pumps can be used in particle accelerator work, environmental test chambers, and jet propulsion work. Maximum pumping capacity of the MCF oil pump is 4,000 micron liters per sec at 4 \times 10^-4 mm Hg. Air speed is about 45,000 liters per sec in the 10^-3 to 10^-4 mm Hg pressure region with an ultimate pressure of 4 \times 10^-5 mm Hg. The MHG mercury pump has an air speed of 53,500 liters per sec at 7 x 10^-4 mm Hg.

Consolidated Electrodynamics Corp., Rochester Div., Dept. ED, 1775 Mt. Read Blvd., Rochester 3, N.Y.

CIRCLE 153 ON READER-SERVICE CARD

Welding Probe

Designed for thermocouples

Model HP-3030 pressure-sensitive resistance welding probe is designed for welding thermocouples. A handpiece, it consists of a welding lead with a pressure-sensing mechanism and a separate ground lead. The probe fires at a preset pressure from 1 to 25 lb, producing a heavy current for millisecond durations of exact repeatability. The unit may be plugged into any of the company's power supplies or welders. It has a maximum power capacity of 500 w-sec. Besides thermocouples, it may be used to weld honeycomb sections and special electrical and electronic assemblies.

CIRCLE 154 ON READER-SERVICE CARD

What every E. E. should know about Thermistor Variety

... it's greater in the Fenwal Electronics Thermistor line

Designers can easily select the thermistor most suitable to space, shape, and operating requirements from the wide variety of Fenwal Electronics Thermistors. In addition to beads and probe assemblies, they're available as washers, discs, and rods in a broad range of sizes and resistances. For example, one "standard" thermistor is only .014" in diameter!

Fenwal Electronics Thermistors are widely used in electronic equipment for temperature compensation, volume limiting and surge suppression. They're available with time constant ratings ranging from 2 to 350 seconds.

Simplify your design and circuit problems with Fenwal Electronics Thermistors. Get complete details on this full line. Fenwal Electronics, Inc., 33 Mellen Street, Framingham, Mass.

Fenwal Electronics

MAKING PRECISION THERMISTORS
TO MAKE YOUR DESIGN IDEAS COME TRUE

CIRCLE 155 ON READER-SERVICE CARD

NEW
MINIATURE
LIGHTED
Push Button Switch

With independent lamp circuit. Normally open, momentary contact. NE28 neon lamp circuit independent of switch for maximum flexibility. Rated 1 amp. 115 V. AC. Life expectancy 500,000 operations. 1/4" dia. — 1/4" behind panel. 1/4-32 threaded bushing. Nut and housing anodized aluminum — contacts, fine silver.

Write For Complete Details

Grayhill

Grayhill Series 40-1

NEW

Universal
IMPEDANCE BRIDGE

Replaces the famous Type 650-A Impedance Bridge with many improvements and greatly increased ranges

New Orthovolt® Balancing Mechanism eliminates sliding null effect; greatly simplifies rapid balancing; avoids false nulls.

Ranges: most increased 10-fold.

R: 1 milliohm to 10 megohms

C: 1 uf to 1,000 uf

L: 1 pH to 1,000 henries

D (series capacitance): 0.001 to 1 at 1 kc

D (parallel capacitance): 0.1 to 50 at 1 kc

D (series inductance): 0.02 to 10 at 1 kc

D (parallel inductance): 1 to 1000 at 1 kc

Accuracy: R, L and C ± 1%.

Power Supply self-contained dry cells for d-c and 1 km oscillator for a-c. Panel-meter null indicator for both d-c and a-c measurements.

Type 1650-A Impedance Bridge $440

Write for Complete Data
...between the
Limitations of Single Metals with
GENERAL PLATE CLAD METALS

The performance of a single metal will go so far... but frequently not far enough. And to bridge the gap between the limitations of single metals and the desired results, clad metals are used to obtain the requirements, or to do the job better... often at lower cost. That's why manufacturers of all types of products turn to General Plate for recommendations on their metal requirements. For instance... for electrical spring manufacturers, General Plate has developed:

Bronco®, phosphor bronze double-clad on copper to provide higher electrical conductivity without increasing cross-sectional area of spring blades.

Conflex® hardenable steel clad on one or both sides with sheet copper to obtain a superior spring material with better electrical conductivity and greater strength — at lower cost — than comparable copper alloys. And the copper surface is excellent for electroplated finishes.

Spring Tempered Stainless Clad Copper® for spring blade service in applications requiring high electrical conductivity and excellent resistance to various types of corrosion.

If you are seeking metals with useful characteristics that can't be found in a single metal or alloy, investigate clad metals. If you want stronger or lighter components — or better electrical and mechanical properties — or fewer corrosion problems — or if you are interested in conserving critical metals or reducing parts costs, you can profit by using General Plate Clad Metals.

Write for a General Plate catalog today. Or better yet, why not talk over your requirements with a competent field engineer. His knowledge of the applications of clad metals is yours for the asking. No obligation, of course.

SERVICES FOR DESIGNERS

Coils Built to Your Specifications
The new fine wire plant of Deluxe Coils, Inc. will supply the miniature 48-56 gage wire coils you need for applications from hearing aids to missile systems. The coils will be built to your specifications for precision and accuracy. New facility of this company, spanning 15,000 sq. ft., is air and sound conditioned and completely equipped to produce all types of miniature fine wire coils, 40-47 gage, ultra fine wire coils, 48-56 gage, and components.

Information on the firm's fine wire production capabilities will be supplied by Deluxe Coils, Inc., P.O. Box 318, Wabash, Ind.

Reliability Laboratory
Forces as high as 500 g will be hurled against missile components and systems in a deliberate effort to destroy them in a new reliability center established in Los Angeles, Calif., by Leach Corporation. Goal of the laboratory is plus 99.9% performance under space operating conditions to meet the increasingly higher reliability demands of jet and rocket airplanes and missiles and space satellites. The destruction laboratory, now in the final stages of completion, will be made available to all manufacturers including component companies. Extremes of both heat and cold in environmental chambers, vibrational intensities of 70 g and shock up to 120 g are some of the other trials to which systems and components will be subjected.

Leach Corporation, Dept. ED, 18435 Susana Rd., Compton, Calif.

CIRCLE 159 ON READER-SERVICE CARD

Testing Facilities
The Electronics Laboratory of the United States Testing Company conducts tests and evaluations on electronic components, units, systems and products. Typical of these operations is the ASEE program where components are tested in strict conformance to MIL specifications. Automated facilities for reliability testing and failure analysis include a high-speed digital, self-balancing readout system which automatically measures and records resistance or voltage values, either ac or dc, to within 0.1 of 1% or better.

United States Testing Co., Inc., Dept. ED, 1415 Park Ave., Hoboken, N.J.

CIRCLE 160 ON READER-SERVICE CARD

METALS & CONTROLS
CORPORATION
General Plate Division
704 Forest St., Attleboro, Mass.

FIELD OFFICES: NEW YORK • CHICAGO • DETROIT • INDIANAPOLIS • MILWAUKEE • PASENA

CIRCLE 158 ON READER-SERVICE CARD

ELECTRONIC DESIGN • April 1, 1961
What every Thermistor user should know about Fenwal Electronics

... it provides complete thermistor engineering service

You can solve circuit problems involving thermistors with maximum efficiency and economy by calling on the extensive facilities of Fenwal Electronics, Inc., for assistance.

As background material on thermistor problems, Fenwal Electronics offers a wide variety of literature such as catalogs, nomographs, and reprints of articles by leading authorities on thermistors. In addition, Fenwal Electronics Thermistor Experimental Kits are available to expedite operations at the "breadboard" stage. Finally, Fenwal Sales Engineers are ready to lend a hand personally whenever called upon. There's one handy to your plant.

In short, everything you need to help in the selection of the best Fenwal Electronics Thermistor for the application at hand can be obtained from Fenwal. Of course, if you prefer, we'll handle the whole research and development job ourselves. For any of the above material or a list of factory representatives strategically located from coast to coast, just drop a line to FENWAL ELECTRONICS, INC., 33 Mellen Street, Framingham, Mass.

NEW MINIATURE AGASTAT®
time delay relay

for missile, aircraft and electronic applications

INSTANTANEOUS RECYCLING...
reset time—less than .020 seconds
UNAFFECTED BY VOLTAGE VARIATIONS...
time delay remains constant from 18 to 30 volts DC
ADJUSTABLE...
time delays from .030 to 120 seconds

CHOICE OF OPERATION...
for either energizing or de-energizing

SMALL...height—4½"...width—2½"...depth—1½"
LIGHT...
maximum weight—15 ounces

MEETS ENVIRONMENTAL REQUIREMENTS OF MIL-E-5272A

This new AGASTAT time delay relay is an externally adjustable, double-pole, double-throw unit. It incorporates the basic AGASTAT timing principle, proved by a half-century of reliable operation on automatic aids to navigation, in a space-saving miniature unit built to withstand the rugged environmental conditions of missile and aircraft applications.

For specific information on the new AGASTAT relay for your application, write to Dept. A30-424.

There's a HOWARD fractional h.p. gear motor for every application!

There's a HOWARD fractional h.p. gear motor for every application!
The EG&G Type 2236A Milli-Mike Oscilloscope...

The only oscilloscope capable of measuring the performance of high-speed semiconductors.

The Milli-Mike Oscilloscope reproduces pulse rise time on the order of a tenth of a millimicrosecond at relatively low signal voltages without the use of amplifiers. Frequencies as high as 3,000 megacycles and voltage levels of 40 to 50 millivolts can be detected and recorded.

PERFORMANCE DATA

Sensitivity	Vertical (TV)	0.054 v/trace width
Nominal Spot Size (trace width)	0.002 inch	
Deflection	27 v/inch (nominal)	
Frequency Response	DC to greater than 3,000 mc; (−3db at approx. 2,000 mc)	
Input Impedance	50 or 100 ohms	
Writing Speed	3 x 10−6 trace width/sec.	

Let EG&G's experience in sub-millimicrosecond measurements assist you in the development, inspection and quality control of high-speed semiconductors.

The EG&G Milli-Mike Oscilloscope—one of a family of millimicrosecond instruments—is now being used to solve problems in measurement of recovery time of diodes, decay times of scintillators, discontinuities in transmission lines and as a synchronous scope in high resolution radar systems.

EDGERTON, GERMESHAUSEN & GRIER, INC.

160 BROOKLINE AVENUE, BOSTON 15, MASS.
1622 SOUTH "A" STREET, LAS VEGAS, NEV.

CIRCLE 200 ON READER-SERVICE CARD

NEW LITERATURE

Computer Services

General Electric Co.'s Computer Dept. with headquarters in Phoenix, Ariz. and its specialized Computing Services Center, are described and illustrated in two attractively illustrated brochures. "Computing Services" is a 12-page brochure presenting the computing services offered to clients in business, military, or government, including programming, coding, machine time, training, and full operation of customer's computer facility. Personnel details of services and applications, and advantages of computing services are covered. "Military Competence," 14 pages and photographically illustrated, discusses plant facilities, personnel, manufacturing facilities, computing services center, and products of the Computer Department. Military projects undertaken by the Department are emphasized and products and services available from the Computer Department are briefly described. General Electric Co., Computer Dept., 1103 N. Central Ave., Phoenix, Ariz.

Electronic Equipment

In 34 pages, and with pictures, this catalog provides the specifications and dimensions of such units as alternators, potentiometers, matching networks, decade units, bridge units, switches and other miscellaneous equipment. Tech Laboratories Inc., Bergen and Edsall Boulevards, Palisades Park, N. J.

Wire Cloth and Mesh

Fully illustrated, this booklet describes the many uses of nickel alloy wire cloth and mesh in 15 pages. It describes the physical advantages of wire cloth and indicates the range of weaves and sizes available for various purposes including microwave applications where it is used to minimize electrical harmonic interference. The International Nickel Co., Inc., 67 Wall St., New York 5, N. Y.

Semiconductor Catalog

Included in this semiconductor products catalog are a transistor chart, a transistor replacement chart, price lists, as well as data sheets on many germanium transistors and silicon rectifiers. Bendix Aviation Corp., Red Bank Div., 201 Westwood Ave., Long Branch, N. J.

Design Data

This 2-page data sheet, with graphs, provides practical data for the dimensional design of quarterwave coaxial (TEM) cavities. The data is simplified for rapid use and theoretical relationships have been altered to conform with observed results. Radar Design Corp., P. O. Box 38, Pickard Dr., Syracuse, N. Y.

Ultrasonic Delay Lines

Bulletin TD58, 35 pages, is a micrographed manual entitled "Procedures For Testing Ultrasonic Delay Lines." It covers basic inspection, single terminal impedance, overall insertion loss, bandwidth, ripples in the band pass, secondary signals, multiple travel signals, direct feed through, sum of secondaries, delay time, absorption in medium, temperature effects and other variables. Applications to high speed computers, radar MTI and integration kits, as well as timing devices are considered. Arenberg Ultrasonic Laboratory, Inc., 94 Green St., Jamaica Plain 30, Mass. Cost is 25¢.

Pushbutton Actuators

Data Sheet 155, with pictures, mounting information, and electrical specifications, describes the 122MA series of pushbutton actuators. Micro Switch, Division of Minneapolis-Honeywell Regulator Co., Freeport, Ill.
Motor Controls 209

Motor Controls Catalog No. 14, 50 pages, is illustrated with product pictures and contains wiring diagrams, dimensional drawings and prices. It gives complete size, weight and rating information in the manufacturer's complete line of motor controls and accessories. The catalog includes an index which lists catalog numbers and type identifications about the equipment. One section lists and describes replacement parts available and another section contains heater tables and motor charts. Industrial Control Div., The Arrow-Hart & Hegeman Electric Co., 103 Hawthorne St., Hartford 6, Conn.

Equipment Data Sheets 210

Containing pictures, block diagrams, operating specifications and descriptive text, Bulletins 7004A, 7006A, 7003A, and 1500A cover the following, respectively: Model 15A ac Electronic Voltmeter, Model 21A Test Oscillator, Model 14A True root mean square Voltmeter, and Ceramicite, a high-temperature ceramic insulator. Consolidated Electrodynamics Corp., 300 North Sierra Madre Villa, Pasadena, Calif.

Silicone Rubber 211

Bulletin CDS 170 describes RTV (room temperature vulcanizing) silicone rubber, used in electrical potting and encapsulating. The material is also used for flexible mold-making and for high and low temperature sealing and caulking. Complete product and application data for these new RTV compounds is included in the bulletin. Silicone Products Dept., General Electric Co., Waterford, N. Y.

Potentiometers 212

This catalog covers single turn, wired and precision potentiometers from 1/2 10 in. diameter. Complete specifications such as size and dimensions, mechanical requirement and electrical properties are given. These high reliability units are listed to applicable requirements of MIL-R-1, NAS 710, MIl-H-19518, MIL-E-522A, MIL-R-12934B. Maury Instrument Co., 7924 S. Exchange Ave., Chicago 7, III

Fitted Teflon Bearings 213

Bulletin CP-558 covers the Chempro line of fitted Teflon bearings. These filled materials have electrical and electronic applications, including molded and machined spacers, inserts, connectors and other parts for use in high voltage, high temperature and high frequency. Chemical & Power Products, Inc., 11 Broadway, New York 4, N. Y.

Antenna Coupler 214

In 14 pages, this illustrated booklet describes the operation of the CU-483 Antenna Coupler. The coupler is designed for the 2 to 32 mc range. The booklet contains pictures, schematic diagrams and a table of operating specifications. Analysis of the circuits is also given. CCG Laboratories, Inc., 391 Ludlow St., Stamford, Conn.

Logis Modules 215

Strain Gages 216

A new catalog of SR-4 Strain Gages, Instruments and Accessories contains over 250 types. This latest catalog is a complete and authoritative listing of bonded filament resistance strain gages. Complete electrical and physical specifications of each gage type are included, together with prices and quantity discounts. A separate section provides data useful in the selection of gages for various applications. A wide variety of etched foil gages for high, intermediate and room temperature applications are listed, as well as all standard, semi-standard and special purpose SR-4 Wire Gages. In addition to strain gages, the new publication lists strain gage instruments and a variety of strain gage kits and accessories. Baldwin-Lima-Hamilton Corp., Electronics & Instrumentation Div., 42 Fourth Ave., Waltham, Mass.

Bendix Red Bank “Spark Gap” Tubes are specially designed to do two big jobs in electronic circuits.

First, to act as a “triggering” switch—as on jet ignition systems. Here, Bendix Spark Gaps pass high currents with relatively low voltage drop and have the advantage of being able to handle high voltages in small space. Further, these tubes can be made insensitive to ambient temperature variations and are not normally affected by pressure, altitude, or humidity changes.

The second function of Bendix Spark Gaps is as a protective element—guarding radar equipment against voltage overload, to name one example. Here, Bendix Spark Gaps keep high voltage surges from getting through to damage circuit components.

Our design and manufacturing experience with spark gap tubes is extremely broad. If our extensive line of these tubes . . . ranging from 750V to 50KV in DC breakdown voltages . . . does not already contain a type to fit your needs, we are in a position to design one to handle the job with the exact degree of efficiency that you require.

To find out more about what we can do to help you with your spark gap problems, get in touch with RED BANK DIVISION, BENDIX AVIATION CORPORATION, EATONTOWN, NEW JERSEY.

West Coast Sales and Service, 117 E. Providence Ave., Burbank, Calif.
Canadian Affiliate: Computing Devices of Canada, Ltd., P.O. Box 309, Ottawa 4, Ont.
Export Sales & Service, Bendix International, 205 E. 42nd St., New York 17, N. Y.

Red Bank Division, Bendix Aviation Corporation

CIRCLE 217 ON READER-SERVICE CARD
New Literature

Constant-Temperature 219

A new 60-page, fully illustrated, Constant-Temperature Catalog describes a complete line of baths, conditioned-air devices, and temperature-humidity cabinets. The new two-color catalog lists over 100 constant-temperature laboratory instruments applicable to every field of research, materials testing, quality control and production. Included in the new catalog are baths, ovens, sterilizers, incubators, environmental test equipment, steam-generating humidifiers, dry-ice cabinets and various types of thermometers, as well as many unique accessory items designed to provide utmost flexibility. A convenient temperature-conversion table (Centigrade to Fahrenheit) is incorporated. American Instrument Co., Inc., 5030 Georgia Ave., Silver Spring, Md.

Flexible Shafting 220

A new bulletin on their Circle Ess flexible shafting explains briefly the advantages and the simplicity of designing a flexible shaft into products having an application which requires control from remote places. Included within the pages of this bulletin are the latest specification charts on both remote control and power drive cables plus complete data charts of the Circle Ess casing materials. A brief explanation of the uses of adapters for flexible shafting and illustrations of a number of these adapters are also given. F. W. Stewart Corp., 4311-13 Ravenswood Ave., Chicago 13, Ill.

Button Cell Batteries 221

Publication of a brochure on the smallest, most complete line of button cell batteries, is announced by Gulton Industries, Inc. This four-page, colored and illustrated bulletin on button cell batteries, highlights the features, design potentials and specifications of the VO-Series, nickel cadmium, button cell battery line which includes types from 100 MAH to 1750 MAH capacities in more than 50 distinct sizes and voltages. Specify request for bulletin No. VO-110, Sales Manager, Alkaline Battery Div., Gulton Ind., Inc., Metuchen, N.J.

Fan and Blower Catalog 223

The 1959 McLean catalog features packaged fans, blowers, and accessory equipment used in conjunction with the cooling of electronic or electrical apparatus. Many new and improved models, construction features and specifications are included in the new 36-page catalog. Shown are ready-to-use cabinet cooling units available in panel heights ranging from 1 to 10'/2 in., and with air deliveries ranging from 100 to 1200 cfm. Prices, quantity discounts and terms on all models are included as well as complete price information on accessories. McLean Engineering Laboratories. P.O. Box 228, Princeton, N.J.

Contact Switches 224

In this specification sheet are details of design, construction and operation of the 1901 Series 30 amp momentary contact switches. McGill Mfg. Co., Inc., Electrical Div., Valparaiso, Ind.

Potentiometer Definitions 225

In this illustrated, 6-page brochure are functional definitions as a guide to users of Clarostat products. Included in the brochure are diagrams and graphs to clarify concepts. Clarostat Mfg. Co., Inc., Dover, N. H.

Wires and Cables 226

A six-page folder on "Plasticote" wires and cables for military and commercial electronic service is a condensed catalog listing coaxial cables, military hook-up wire, multi-conductor cables, appliance wire, miniature and audio wires and cables, high voltage and frequency wires, antenna loop, rvc-300 apparatus and annunciator (bell) wire, also television transmission lines—primary and secondary lead-in cable, "parallel" and "per- sac" lead-in wire and TV rotor cables. These cables are available in a variety of conducting, insulating, jacketing, shielding and armorizing materials. Chester Cable Corp., 159 Oakland Ave, Chester, N.Y.
Welding Equipment 227

Bulletin 2-100 covers, in 16 pages, welding heads, controls and power supplies and welding accessories. Applications of this equipment include use with vacuum tubes, relays, capacitors, meters, resistors, instruments, transistors, and electronic chassis. Raytheon Mfg. Co., 100 River St., Waltham 51, Mass.

Electronic Equipment 228

In condensed form, this catalog provides the essential operating characteristics in 12 pages, of such units as pulse equipment, oscillators, signal generators, bridges, filters, meters, amplifiers, vhf, uhf measuring equipment, coaxial elements, frequency standards and RLC components. General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass.

Polyester Glass Laminates 229

Titled "Polyester Glass Dilecto and Coloron," this four-page, two-color bulletin completely describes the various grades and properties of CDF polyester glass Dilecto and suggests applications. The bulletin also describes custom molding available with CDF Coloron Polyester Glass, and presents in tabular form all physical, mechanical, and electrical properties of polyester glass Dilecto. Continental-Diamond Fibre Corp., Newark, Del.

Power Supplies 231

Information and specifications on the company's full line of transistor-regulated and tube regulated power supplies is contained in this 36-page catalog. In addition, the brochure explains the background of firm's exclusive five-year guarantee, gives detailed outline drawings of the equipment and pictures various company power supplies in use. The catalog is available from Lambda Electronics Corp., 11-11 131 St., College Point 56, N.Y.

Electronic Catalog 232

A new 1959 catalog of electronic parts and equipment contains 244 pages devoted to complete details on company's comprehensive selection of electronic parts and equipment for industrial replacement, high fidelity, audio, and ham applications. Herrlinger Distributing Co., 15th and Vine St., Cincinnati 10, Ohio.

APPCCO Certified Stock Gears

32 to 120 Pitch... A.G.M.A. Precision #1, 2 & 3

Every tooth a masterpiece in finish and motion... every gear to the most exacting A. G. M. A. precision standards... all meet Government specifications—that's the quality of APPCCO Certified Precision Stock Gears. The precision of every gear Certified to assure engineers and production men of their exact requirements for every precision product.

APPCCO Certified Precision Stock Gears are available for quick delivery in 32, 48, 64, 72, 96 and 120 di- mensional pitches of 14½° and 20° pressure angles. Each gear designed with dimensions proportional to their dimensional pitch for minimum weights and space considerations.

The fine precision and certified testing permits the use of APPCCO Gears in precision assemblies of all types—airborne, shipboard, missile or stationary. APPCCO Gears are usable in the engineering prototypes or breadboard design... will qualify uniformly for use in actual model pre-production or production manufacturing areas. Each gear is completely sealed on a shipping tray with plastic cover... always "factory fresh" and free of dust, corrosion and scratches.

... back in 1911 Magnavox developed and patented the first loudspeaker. Since then, the name Magnavox has been synonymous with sight and sound the world over. Today, Magnavox is a dynamic, moving force in government and industrial electronics and would like to hear from engineers who qualify in these expanding activities.

HERE is where you come in...

on the ground floor of these exciting, long-range projects. Write now... arrange for confidential interview with R. E. Eary, Technical Staffing Director, The Magnavox Company, 2131 Bueter Road, Fort Wayne, Indiana.

Magnavox

CIRCLE 237 ON READER-SERVICE CARD

NEW LITERATURE

Electronic Tubes

Specifications on the company's complete line of electronic tubes for industry and communications are given in a six-page brochure. Illustrated in two colors, the brochure contains detailed applications and performance data covering power triodes, rectifier and clipping diodes, gas noise source tubes, TR tubes, pressurized waveguide windows and ionization gauge tubes. Data on the company's model 3050 vacuum gauge, designed to measure pressures of 1/1000 to 1/10,000,000 mm. of mercury, are also included. Central Electronic Manufacturers, Denville, N.J.

Keyer

Providing the essential electrical characteristics, this 2-page data sheet describes the F-1B Keyer. It is designed for use with one or two warning lights and when energized, a flashing signal is given. General Electronics Co., Inc., 4200 Mobile Road, Montgomery, Ala.

Automatic Testing

This delightful, illustrated booklet describes a new approach to the problem of checking complex electronic systems. An automatic electronic tester denotes by means of red and green lights whether the equipment is operating properly. The booklet includes a humorous presentation of equipment check-out problems and their solution. Brochure is called "Fourteen Men in a Box" Checkmate Automatic Test Equipment Co., Ridgefield, Conn.

Components Catalog

A new 24-page catalog, containing hundreds of products and components for use in electronics, science, engineering, also includes telephone, radio and inter-communication equipment for use in plants, warehouses and offices. Copies may be had by writing to the Industrial Products Div., Herbach & Bademan Inc., 1204 Arch St., Philadelphia 7, Pa.

DEVIATION MEASURED

10cps to 125kc

New FM Deviation Meter has carrier frequency range 4–1024Mc; crystal controlled LO enables measurement down to 10cps deviation. Used with a 'scope, it measures peak deviation of complex wave-forms. Very easy to operate. Model 791D speeds deviation measurements.

- **Carrier Freq. Range:** 4–1024Mc, stabil locked
- **Mod Freq. Range:** 25cps to 35kc
- **Deviation Ranges:** 5, 15, 55, 125kc
- **Accuracy:** 3% Xtal standardized
- **Distortion:** Less than 0.5%
- **Power Sources:** 6AH5, 6FC, 6FB2, 5651, 6CDG6, 5Z4G, 5647, 6A56

M ARCONI INSTRUMENTS

111 CEDAR LANE • ENGLEWOOD, NEW JERSEY

CIRCLE 242 ON READER-SERVICE CARD

ELECTRONIC DESIGN • April 1, 19
Stroboscopes

Two-color data sheet describes a small-size, high-intensity stroboscopic lamp and power unit for visual and photographic strobe work. Unit is used for continuous slow-motion observation of vibrating or rotating specimens for precise measurement of rotary or oscillatory speed, or as uniform, fast illumination in photographing high-speed objects. The unit can use a wide variety of triggering modes as input. The lamp produces 0-100 flashes per sec, and is visually effective even in a normally lighted room.

Chadwick-Helmuth Co., 472 E. Duarte Road, Monrovia, Calif.

Saturable Reactors

Proportional reactors, transducers, switching reactors and preamplifiers are described in this 4-page bulletin (C-15-S). Physical and electrical characteristics of the four product lines are covered. Also, complete dimensional outlines and tables are provided, in addition to instructions for ordering Control, Magnetics, Inc., Butler, Pa.

Electronic Chopper

Model 50 transistorized chopper is described in this 4-page data sheet. Topics covered include electrical operating characteristics, various applications and a general description. Block diagrams are provided. Solid State Electronics Co., 8158 Orion Ave., Van Nuys, Calif.

Cold Drawn Wires

A new booklet describing the properties and applications of a wide variety of cold drawn fine wires lists both the physical and chemical properties of the company's alloy, plated and clad wires. The booklet analyzes factors which determine the most economical and efficient wires for specific applications. In addition to cold drawn wires, the division manufactures formed metal parts, strip material for electronic tubes, radio tube and fluorescent lamp bases and sockets, plastic closures, tools, dies and many other electronic component parts. Copies of the brochure may be obtained from Sylvania Electric Products Inc., Warren, Pa.

Now you can pick the right handle design from Chassis-Trak

If you want panel handles solely for pulling your equipment from its cabinet, Chassis-Trak plain blank handles are just the ticket. But don't forget that Chassis-Trak also offers eight other handle designs to meet any tilting, locking and special installation needs.

The complete Chassis-Trak line includes handles with push button panel locks, trigger tilt controls plus positive clamp-type models for installation where extreme shock and vibration are encountered. In short, there's a Chassis-Trak handle design that fits the bill exactly no matter where or how your equipment is mounted.

Chassis-Trak handles are die cast or sand cast of aluminum alloy. Chip resistant finish is anodized or colors baked on over a clear lacquer-base sealer. Finish has successfully passed salt spray (1,000 hours) and humidity (200 hours at 100%) tests. Offset design permits maximum use of panel space. All handles furnished complete with hardware and mounting instructions.

All models can be finished to your specification. Get details from Chassis-Trak engineers.

Chassis-Trak "Detent" slide, shown in one of seven different tilting positions.

MONITOR PRODUCTS COMPANY
815 Fremont Ave. • South Pasadena, Calif.
RYan 1-1174

CIRCLE 247 ON READER-SERVICE CARD

525 South Webster, Indianapolis 19, Indiana
CIRCLE 248 ON READER-SERVICE CARD

87
Where only the best is good enough...

Krohn-Hite oscillators are used

In basic electronic instruments for lab or test work, less than the best may be a dangerously bad bargain. Unexpected limitations — of reliability, range, precision — can throw out weeks of work on today's jobs, and can make tomorrow's tougher jobs untouchable.

The best instrument of its type is probably a bit more expensive, but it's worth buying... because you can believe in it today, and will rely on it tomorrow. An example is the Krohn-Hite Model 440-A wide range push-button oscillator. Here are some facts about it.

- **Frequency Range:** 0.001 cps to 100 kc, continuous coverage.
- **Calibration Accuracy:** ±1% from 1 cps to 10 kc, ±0.1% from 0.1 to 1 cps and from 10 kc to 100 kc.
- **Resetability:** exact for push-button resetting, subject only to drift of less than 0.05% per hour.
- **Sine Wave Output:** 10 volts rms open circuit, 100 milliwatts into 1000 ohms; amplitude constant within ±0.25 db from 0.1 cps to 10 kc.
- **Sine Wave Distortion:** less than 0.1% from 1 cps to 10 kc, less than 0.2% from 0.01 to 1 cps and from 10 kc to 100 kc.
- **Square Wave Output:** 10 volts peak to peak open circuit, 5 volts peak to peak across 1500 ohms; amplitude constant within ±1% at any frequency; rise time less than 0.5 microsecond.

There's a lot more you should know about the 440-A... and about the other Krohn-Hite oscillators, tunable electronic filters, power supplies and amplifiers. In all of them, you'll find the same far-ahead engineering, design and construction. Because K-H instruments are good enough even for tomorrow's most critical work, they are increasingly chosen today where reliability and precision are needed.

Write for your free copy of the new Krohn-Hite Catalog.

Krohn-Hite CORPORATION

580 Massachusetts Avenue, Cambridge 39, Mass.
CIRCLE 249 ON READER-SERVICE CARD

NEW LITERATURE

Electronic Equipment

With pictures, prices and technical specifications, this bound catalog covers the principal products which Scientific-Atlanta offers as standard items. A number of products for industrial and military applications are also covered. Units include: antenna pattern recorders, recording consoles, plug-in balancing potentiometers, wide range receiving system and signal level monitor. Scientific-Atlanta, Inc., 2162 Piedmont Rd., N. E., Atlanta 9, Ga.

Lamps

A 24-page industry-wide booklet, provides listings of all available panel, flashlight, neon glow, automotive and multipurpose lamps. The new booklet is a composite listing, arranged numerically, of lamps manufactured by Chicago Miniature Lamp Works, General Electric, National Carbon (Eveready), Oxford Components (Hudson), Radio Corp. of America, Raytheon, Tung-Sol and Westinghouse. Simply by checking the lamp number the user can determine at a glance the respective manufacturers, bulb type, base, volts, amps and bead color. All bulb types are illustrated with physical dimensions. Send 10¢ to cover the cost of handling to The Radio-Electronic Master, Dept. ED, 90 Madison Ave., Hempstead, L. I., N. Y.

Plug/Harness Systems

These Plug/Harness Systems (special lengths of cable, custom-made for specific applications, terminating at each end with one or more electrical plugs) are used in missile circuitry and other applications where unusual ruggedness and reliability are required. Catalog 11C-1, illustrated, describes the tangible and intangible factors that go into the system, such as plugs and connectors, soldering, cable lay, jacketing and junctions. Cannon Electric Co., P.O. Box 3765, Terminal Annex, Los Angeles 54, Calif.

NOW... VTVM's for all applications

... panel-mounted... small-size... ELECTRONIC VOLTMETERS

SEND FOR CATALOG 10A which gives complete specifications and prices on panel-mounting, relay-rack and plug-in models.

Build accuracy into all your equipment, test and production alike, with Metronix DC and AC Electronic Voltmeters.

These Metronix instruments are no larger than conventional voltmeters, cost little more. They offer higher accuracy because they don't load the circuit. In AC applications, they respond accurately over a frequency range of 20 CPS to 100 KC.

Selective, step-ranges run from 0-10MV, to 0-300V AC, and 0-1 to 0-1000V DC. Metronix Electronic Voltmeters can be furnished in MIL-spec. rack-mounting and plug-in models.
Data Sheets RF-1 through RF-7 cover such topics as: What is RFI; Standard RFI strips available with models and dimensions shown; Formed Gaskets; RFI Fioogaskets and Duostrips. Technical Wire Products, Inc., 48 Brown Ave., Springfield, N.J.

Ceramic Magnets

This 4-page, two-color bulletin (21-59) describes Barium Ferrite material F-300. Magnetic data, curves, design information are given. D. M. Steward Mfg. Co., Chattanooga, Tenn.

Footswitches

The 1959 Footswitch catalog shows a complete line of 40 footswitches from light application to heavy duty cast iron models. Ratings are from 3 to 40 amperes. Over fifteen new models have been added and are shown for the first time in this new catalog. Price list included. Vemaline Products Co., P.O. Box 222, Hawthorne, N.J.

Selenium Rectifiers

This 10-page catalog describes selenium rectifiers designed for efficient, economical ac to dc rectification in the widest range of sizes in industry. The illustrated catalog presents complete data and specifications for cell sizes in a range from 1/4 inch square to 12 x 16 in. and for stacks of practically any size. Also illustrates rectifier circuits and gives four pages of continuous dc current ratings for 26, 33, 36, 40, 45 and 52 v rms cells. Syntron Co., 1186 Lexington Ave., Homer City, Pa.

Differential Transformers

Literature on the applications of linear variable differential transformers include information on the use of LVDT's with universal analyzers, null balance systems, rectifier diodes, strain gage amplifiers, and in the measurement of very small displacements. The publications issued include application notes and bulletins summarizing standard LVDT's and rotary motor specifications. Schaeftz Engineering, Route 130 & Schaeftz Blvd., Pennsauken, N.J.
NEW LITERATURE

Laboratory Furnaces 261

A data sheet briefly describes various heating, treating, processing, production and laboratory furnaces and two series of forced convection ovens for laboratory and production use. This literature is a guide on the various types of heating equipment available for the modern processes. L. & L. Manufacturing Co., 202 8th Street, Upland 43, Delaware Co., Pa.

Resistors and Capacitors 262

Bulletin 162 describes three assortments of precision resistors and tantalum capacitors. One assortment consists of tantalum wire capacitors in a variety of case sizes, capacitance and voltage values. Another consists of power type precision resistors and another of metal film precision resistors. Each assortment is offered in a handy 3-drawer, 40-compartment plastic case in values most commonly encountered in modern circuitry. Ohmite Mfg. Co., 8670 Howard St., Skokie, Ill.

Rectifier Catalog

This 16-page catalog gives ratings, electrical characteristics and descriptive data on 403 types of silicon and selenium rectifiers and diodes. Specifications cover more than 140 types of silicon rectifiers (including 63 zener diode types), 47 silicon cartridge rectifiers, and more than 130 selenium rectifier and contact protector types. Write on letterhead for "Short Form Catalog," International Rectifier Corp., Dept. E.D., El Segundo, Calif.

Phenolic Products 263

Booklet CDC-358, 8-pages, describes a complete line of phenolic resins, varnishes and molding powders. The catalog includes product features, special properties, and detailed technical data on GE phenolic molding powders, phenolic laminating varnishes and phenolic foundry resins. General Electric Co., Chemical Materials Dept., One Plastics Ave., Pittsfield, Mass.
Tubing

FORMING PROBLEM

UNUSUAL CONTOURS ? CLOSE TOLERANCES

MULTIPLE BENDS SHARP RADIUS

Before you say it can't be solved . . . see KENT

Kent has a solid record for producing formed sections that others have called "impractical" or plain "impossible." Chances are Kent can apply its 40 years of specialized experience in bending and forming tubes to precision standards to solve some knotty problem of your own.

Do you need tube forming with seven or eight different bends in a single tubing length in different planes and with sharp radii? Do your assemblies call for tubing to be twisted, offset, tapered, expanded? Or for transitions from rectangular to round?

Kent works with tubing in sizes from .000" x .250" O.D. to 6.660" x 3.410" O.D. in brass, stainless-steel, aluminum, copper, stainless steel and magnesium. Kent customers include leaders in military radar, missile guidance, test equipment, and commercial tele-communications equipment. Kent facilities are available for experimental and prototype quantities as well as production runs.

Technical inquiries welcomed. Write for illustrated catalog of representative parts.

F. C. KENT CORPORATION
135 Manchester Place, Dept. E, Newark 4, New Jersey

ELECTRONIC DESIGN • April 1, 1959

THE MOSELEY

AUTOGRAF

X-Y-T RECORDER

A direct writing, low frequency oscillograph for:
• X-Y RECORDING
• PLOTTING ONE VARIABLE VS TIME
With appropriate accessories will:
• PLOT IDENTIFIED POINTS FROM TAPE OR CARDS
• READ OUT CONDUCTING CURVES
• AUTOMATICALLY PRODUCE GAIN-FREQUENCY RECORDS

MODEL 3 S 8½" x 11" Recording Area

$1300

MODEL 2 S 11" x 17" Recording Area

$1325

MODEL 6 S 10" x 10" Recording Area

$2750

All models illustrated feature:
• Isolated servo-actuated drives for each axis
• Full range zero set and zero suppression
• Input filters and stepless range controls
• 200,000 ohms; volt input resistance
• One second or less for full scale deflection
• Better than 0.25% accuracy with 0.1% repeatability

All prices f.a.s. factory. Prices and specifications subject to change without notice.

Call our sales representative in your area or write direct for additional information.

F. L. MOSELEY CO.
409 N. FAIR OAKS AVE., PASADENA, CALIFORNIA

CIRCLE 270 ON READER-SERVICE CARD
The drop temperatures conditions 80

Piezoresistive shorter shields complete

DESIGN to cooling help

Here is a significant advance in the fight against equipment failure even under conservative operating conditions. Further, where tubes must operate close to maximum ratings, it means a real reduction in the inevitable penalty of shorter tube life.

DESIGN FOR RELIABILITY WITH atlee — a complete line of dependable heat-dissipating holders and shields of all types, plus the experience and skill to help you solve unusual problems of holding and cooling electronic components.

ATLAS E-E CORPORATION
47 PROSPECT STREET • WOBURN, MASS.
CIRCLE 271 ON READER-SERVICE CARD

Pulse Generator

Patent No. 2,863,072, Mathew Arnold Alexander (Assigned to Telemeter Magnetics Inc.)

By discharging a delay line into a matched line terminated by its characteristic impedance, a truly flat-top pulse is generated.

In the schematic shown, the two delay lines may comprise equal sections of a line having twice the desired delay time. Delay line 1 is charged by voltage source 12 and then microswitch 16 connects this line to delay line 2. An impulse travels back along line 1 and is reflected back to junctions 20 terminating the pulse. There is no reflected wave along delay line 2 since the line is matched by the load.

Stabilized Signal Translating Circuits

Patent No. 2,866,017, John Paul Jones, Jr. (Assigned to Navigation Computer Corp.)

Temperature stabilization in a common-emitter circuit. The tap, located experimentally, depends upon the desired stability. In operation, as the temperature increases, a larger fraction of the input signal is diverted to ground to maintain the output current independent of temperature.

Piezoresistive Acoustic Transducer

Patent No. 2,866,014, Fred F. Burns (Assigned to Bell Telephone Labs, Inc.)

Change of resistance in a semiconductor due to applied stress is used in a microphone to convert acoustical energy linearly to a change in electrical current. For N-type germanium, an example, resistance increases with compression; P-type germanium shows the opposite effect. Hence, when complementary type
semiconductor elements are clamped in pairs to opposite sides of the vibratory member, a large change in resistance results.

In a practical application, a transistor acts as the piezoresistive element and, in addition, produces amplification. As beam 82 bends, the current through the elongated emitter S_3 varies substantially and the change in collector current flowing through the primary of transformer S_3 is coupled to the output circuit.

Transistor Gating Circuit

Patent No. 2,848,633. Luther W. Hussey. (Assigned to Bell Telephone Laboratories, Inc.)

Complementary transistors, used as a switch and as current limiters, improve the characteristics of gas tube circuits and protect the tube against damage.

Npn transistor T_1 and npn transistor T_2 are in series with the power supply applied to gas tube 22. Initially, the transistors are nonconducting and the gas tube is off. A negative pulse to terminal 17 causes transistors F_1 and F_2 to flip with transistor F_1 now conducting. The base of T_1 is now positive and the base of T_2 is negative such that the two transistors carry saturation current and the gas tube fires. To extinguish the gas tubes, a negative pulse applied to lead 18 reestablishes the original condition by shifting transistors T_1 and T_2 to cut off.
Optimizes electronic component and system design!

Operating from any convenient wall outlet, the LGP-30 helps you increase your productivity by taking the tedium out of mathematical analyses. It facilitates the optimum design of electronic tubes and circuitry, servo systems, radar and antennae... is an important Research and Development tool in magnetic field applications, microwave and semi-conductor studies.

The lowest-priced complete computer your company can buy, the LGP-30 gives you memory (4096 words) and capacity comparable to computers many times its size and cost—yet it is by far the easiest to program in basic machine language. What's more, you operate the LGP-30 yourself. Solutions are printed out in any desired alpha-numeric format—require no deciphering. Auxiliary high-speed input-output equipment is available for system expansion.

No expensive installation or air-conditioning. Sales and service available coast-to-coast. Customer training is free. An extensive library of programs and subroutines is available—as well as membership in an active users organization.

For further information and specifications, write Royal McBee Corporation, Data Processing Division, Port Chester, N. Y. In Canada: The McBee Company, Ltd., 179 Bartley Drive, Toronto 16.

PATENTS

Inductive Tuning Device

Radio frequency coils are tuned by adjusting the reluctance of the cores on which the coils are wound. The variation in inductance may be 50 to 1, which is equivalent to a 7 to 1 change in frequency in the broadcast band. Various mechanical arrangements are suggested to make the tracking linear.

To tune a single coil 12, mounted on core 11, magnetic pole pieces are attached to the core and a bar magnet 17 is rotated in the vicinity of the pole pieces. With the maximum area of the magnet opposite the ends of the pole pieces, a large magnetomotive force develops, producing a large steady flux through the core and minimum inductance results. Rotation increases the air gap, less flux passes through the core and the inductance increases.

Oscillator-Modulator Circuit

Phase modulation occurs in the inductive plate load of an oscillator-modulator pantode stage when constant-ampli-
the inductively reed.

Kosen, ampli-modulated pole film air

electrons stream to plate 12 is amplitude modulated by the signal applied to high transconductance suppressor 14. Capacitor 41 couples the constant amplitude signal from grid 18 to plate 12. Since the ac signal lags the signal on the control grid 18 by substantially 90 deg, and the signal coupled by capacitor 41 leads by about 180 deg, the vector addition of these voltages is a signal phase modulated with the modulating voltage.

NOW - 48-56 Gauge Wire Coils
built to YOUR specifications

Whatever your application—from hearing aids to missile systems—Deluxe Coils' new fine wire plant can supply the miniature coils you need... built to your specifications for precision and accuracy.

Deluxe Coils' newest facility spans 15,000 sq. ft. It is air and sound conditioned and completely equipped to produce all types of miniature fine wire coils, 40-47 gauge, ultra fine wire coils, 48-56 gauge, and components.

Write for information on Deluxe Coils' fine wire production capabilities—and how they can be put to work for you, right away.

DELUXE COILS, INC.
POST OFFICE BOX 318
WABASH, INDIANA

BENDIX ANNOUNCES NEW
15-AMP POWER TRANSISTOR SERIES

Now in production by Bendix are eight new 15-ampere power transistors capable of switching up to 1000 watts—and you can get immediate delivery on all eight types.

New in design, the transistors have a higher gain and flatter beta curve. The series are categorized in gain and voltage breakdown to provide optimum matching and to eliminate burn-out. Straight pins or flying leads can be supplied on request.

Ask for complete details on this new Bendix transistor series... and on the complete Bendix line of power rectifiers and power transistors. Write SEMICONDUCTOR PRODUCTS, BENDIX AVIATION CORPORATION, LONG BRANCH, NEW JERSEY.

<table>
<thead>
<tr>
<th>Current Gain at 10 Adc</th>
<th>Collector-to-Emitter Voltage Rating*</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-60</td>
<td>2N1031 2N1031A 2N1031B 2N1031C</td>
</tr>
<tr>
<td>50-100</td>
<td>2N1032 2N1032A 2N1032B 2N1032C</td>
</tr>
</tbody>
</table>

*Comparable collector-to-base breakdowns range 20-50% higher.

West Coast Sales: 117 E. Providence Ave., Burbank, Calif.
Midwest Sales: 4104 N. Harlem Ave., Chicago 34, Ill.
Export Sales: Bendix International, 205 E. 42nd St., New York 17, N.Y.
Canadian Affiliate, Computing Devices of Canada, Ltd., P. O. Box 508, Ottawa 4, Ont.
test... test... test...

If you feel you must make your own pots to get exactly what you need, don’t overlook quality control along the way! And this can be a messy business, what with special, elaborate techniques to quality-check every production stage! Oh, you’ll get involved in maddening bouts with visual comparators, ratiometers, environmental testing labs — and when you’ve finished — and made a few hundred revisions — you might have the quality you want!

So, before you go fly a kite — consider Ace. We’ve been all through this before, and have what is regarded to be the finest quality control system in the industry. It enables us to keep our final costs down by rejecting sub-standard parts at each stage, without waiting for the final inspection. Although it’s more work this way, we can offer a higher degree of resolution and linearity at a lower price. So, for precision-at-price, see your ACErep!

Here’s 0.3% linearity in a 1/2” pot, the Series 500 ACEPT®. Single-turn, -55° to 125°C range. As with all Ace components, tested in every stage of its manufacture.

PATENTS

High Input Impedance Transistor Amplifier Circuits

A transistor amplifier, comprising a common collector stage in cascade with a common emitter stage, exhibits an input impedance of 500,000 ohms. The bias network and collector of the first transistor stage are driven essentially by the input voltage such that loading of the input circuit is reduced.

The bias network of resistors 42 and 44 in series, as well as collector 17, are driven at signal frequency by emitter 13 by the voltage developed across resistor 24. As a result, the currents of collector 13 bias network are both kept small and the input current therefore consists only of the emitter-base current of transistor 19. An additional improvement is obtained by coupling to the output through collector 18.

Note: An identical circuit using a 12AT7 tube gives an input impedance of 10 megohms (see Patent 2,839,613 as reported in Electronic Design, Oct. 29, 1958, page 86).

Transistor Bistable Circuit

Binary counters, comprising a single transistor are triggered alternately from low conduction to high conduction by negative pulses.

If the transistor is in the low conduction state, the next input pulse through diode D drives the base below ground, while the emitter voltage is fixed by capacitor 17; this causes the transistor to turn on or off, depending on the state of the input. The collector current is then directed through the impedance of the load.

ELECTRONIC DESIGN BINDER

. . . keeps your back copies for handy reference

These strong, 12¼, 12¼ x 5” binders offer an easy means of filing your back copies of Electronic Design. Each binder holds 13 normal size issues, and permits substitution of magazines if desired. Cost to Electronic Design subscribers is only $3.25.

TO OBTAIN YOUR BINDER . . . SIMPLY CIRCLE ED NO. 596
(We will bill you later)

If you wish more than one binder, write to “Binders,” Hayden Publishing Company, Inc., 830 Third Avenue, New York 22, NY, enclosing check or money order. Binders will be sent to you postpaid.

CIRCLE 280 ON READER-SERVICE CARD

ELECTRONIC DESIGN • April 1, 1959
Diode Gate and Sampling Circuit

In the logical AND device, diodes in series-shunt configuration control passage of signal to the load. A floating inductance accelerates the switching action.

Initially, the gate is open since battery 20 sends current through diodes 13 and 12 in series with inductance 16. To set P_1 and P_2 voltages to cut off diodes 11 and 14. However, a positive-going pulse from source 23 cuts off diode 12 and 13 and the voltage across inductance 16 reverses to quickly bias diodes 11 and 14 to conduction. As long as the control pulses are present, a positive going voltage from generator 17 will pass to load 19 by the path including diodes 13 and 17 plus inductance 16. A negative-going voltage will pass through inductance 16 by means of diodes 10 and 14 in series.
Ideas for Design

Frequency Sensitivity without Reactors

Circuits which are frequency sensitive can be built without reactive elements by employing the phenomenon of minority carrier storage time that exists in semiconductor diodes and transistors. Storage time results from the fact that minority carriers injected during the forward conduction of a diode cannot be dispersed instantaneously when the junction is reverse biased.

If a "storage" diode is subjected to an alternating potential, current flows in the reverse direction until the net charge injected during forward conduction has been removed, at which time the diode assumes an open state. Somewhat idealized sketches of the current and voltage waveforms obtained with such a diode are shown in Fig. 1.

If the recovery time constant is negligible compared to the excitation period, then the storage time, \(\Delta \), is given by \(\Delta = S I^+ \), where \(I^+ \) is the magnitude of the forward conduction current, and \(S \) is a constant which is a function of diode properties and temperature.

For the circuit of Fig. 1, with fixed values of \(I^+ \), the average value of output voltage, \(e \), varies with excitation frequency as shown in Fig. 2.

Ideally, the drop-off in average voltage should be a linearly decreasing function of excitation period and consequently an inverse function of frequency. In actual practice however, the curvature indicated by dotted lines is obtained because of device nonlinearities and non-zero recovery time.

This effect can be used in a number of circuit configurations to provide interesting and useful circuit responses. Some of these applications are described in the following paragraphs.

A Null Discriminator

This circuit uses a storage diode such as a 1N91.
HOW HIGH RELIABILITY

Unique Leach Production Reliability Center offers the ultimate in active component testing

The new $100,000 Leach Production Reliability Center — first in the relay industry — is designed as an integral part of the Leach assembly operation.

Its purpose: testing to customer requirements — up to a checkout of 100% of the total production run of components.

This laboratory checkout system was created to meet the ultimate in critical reliability requirements. Its facilities and equipment are available for testing to exacting customer specifications. Any customer may specify the types of testing and the sequence of testing procedures he requires within the tolerances and limits of the capability of the Leach equipment described and pictured here.

Write today for information and design and construction details on Leach Balanced-Armature Relays. Ask for Reliability Brochure.

RELIABILITY TEST

COLD TEST is conducted in a chamber where temperatures may be specified in a range of -100°C to +25°C.

HEAT TEST subjects components to specified temperatures ranging from -25°C to +550°C in a heat chamber.

SHOCK TEST in each of three mutually perpendicular planes is available up to 150 G's — with concurrent electrical testing.

LEAK DETECTION TEST subjects components to minute inspection of hermetic sealing with a mass spectrometer type leak detector.

VIBRATION TEST checks units from 5 cps to 3,500 cps up to 50 G’s. This test normally is performed with direction of vibration applied through each of three mutually perpendicular axes.

ELECTRICAL TESTS fall into many categories. These are typical: measuring coil resistance, testing pickup and dropout current, checking dielectric characteristics, and testing millivolt drop across contacts.

COLD TEST

VIBRATION TEST

ELECTRICAL TESTS

LOOK TO LEACH

RELAY DIVISION LEACH CORPORATION

5915 AVALON BOULEVARD, LOS ANGELES 3

DISTRICT OFFICES AND FIELD REPRESENTATIVES IN PRINCIPAL CITIES OF U.S. AND CANADA . EXPORT: LEACH CORPORATION, INTERNATIONAL DIVISION

CIRCLE 283 ON READER-SERVICE CARD

ELECTRONIC DESIGN • April 1, 1959
IDEAS FOR DESIGN

and a high frequency diode such as a 1N100 (one having break frequencies much greater than those in the desired operating range) to produce a diode output voltage which varies with frequency, as shown in Fig. 3.

This characteristic is produced by the circuit of Fig. 4a by taking the difference of the two bridge arm outputs shown in Fig. 4b.

A limiter must precede the circuit to prevent peak frequency shift. This is, of course, also necessary for a conventional discriminator, though for a different reason.

A Low Pass Network

As in the previous case, this network normally requires limiters. Two configurations have been developed, one a series circuit similar to Fig. 1 and the other a bridge. The circuits, together with their characteristics are shown in Figs. 5a and 5b. It is evident that the sensitivity of the latter circuit is twice that of the former, and that it can be modified as shown in dotted lines to give an identical response.

A High Pass Network

A simple modification of the network in Fig. 4b results in the circuit of Fig. 6 having the high pass characteristic shown. This circuit can also be modified for greater sensitivity.

Donald W. Boensel, Electronic Research Engineer, La Crescenta, Calif.

Network to Pass 30, Stop 60 Cps

Quite often a designer encounters a problem with a low frequency amplifier when he needs flat response to say 30 cps but must attenuate 60 cps because of hum pickup. The big problem is to design a circuit which will attenuate 60 cps but pass 30 cps without attenuation. It can't be done using conventional components because of the low Q of most components at that frequency.

The circuit shown really works. When R is adjusted for minimum output at 60 cps, it is difficult to measure the amount of 60 cycle voltage on INPUT

Resistor in center leg of T network allows relatively flat low frequency response, yet attenuates 60 cps

ELECTRONIC DESIGN • April 1, 195
Solving switch problems fast...

Making a Log Scale On Linear Paper

Without a slide rule, one can easily construct a logarithmic scale from uniform squared graph paper.

The whole trick rests in the fact that the logarithm of 2 is pretty close to 0.3. If 10 equal spaces represent a factor of 10, then 3 spaces represent a factor of 2. This permits dividing the scale for points 1, 2, 4, 5, 8, and 10 as in Fig. 1.

It remains to place 3, 6, 7, and 9 on the scale. 9 can be placed midway between 8 and 10, or at 9.5 spaces from 1.

Since 3 x 3 = 9, 3 should occur midway between 1 and 9 on the scale, or at 4.75 spaces from 1.

Number 7 is placed just slightly to the right of midway between 6 and 8, as shown in Fig. 2.

This method may appear crude, but reference to a log table shows that the method is correct to better than one per cent. It is also easy to memorize.

Elliott Barr, Taylor Instrument Co., Rochester, N.Y.

Fig. 1. Since the logarithm of 2 is 0.3, it is easy to divide linear paper into three-part divisions and insert 1, 4, 5, 8, and 10.

Fig. 2. Remaining numbers 3, 6, 7, and 9 are easily inserted.

DESIGN AIDS FOR ENGINEERS

Centralab's unique Switch Visualizer, which simulates actual switch operation, will help you simplify and speed up switch design. Used in conjunction with our detailed layout sheets (available for all Centralab switch types), they greatly facilitate your job in switch design (and ours, too). Write for them today—along with a copy of Centralab Switch Catalog 42-405.

A Division of Globe-Union Inc.
9600 E. KEEFE AVE. • MILWAUKEE 1, WIS.
In Canada: 669 Bayview Ave., Toronto 17, Ont.
Ideas for Design

Near-Perfect Output From Fast, One-Shot Multi

RC timing is far more popular than RL timing. Yet, it’s possible to get faster rise times if inductors are used instead of capacitors. In the circuit shown, the capacitor can be used to compensate for the load, and make the load look like an almost pure resistance.

McKenny W. Egerton, Jr., Hoover Electronics, Timonium, Md.

Using RL timing instead of RC allows the capacitor to be used to compensate for the load at the collector of Q2.

3-in-1 Meter. The French firm Le Boeuf hit upon a good idea when it decided to produce this triple meter.

It is more economical and a good deal less ungainly than three separate meters. Moreover, the close grouping of the dials gives, at a glance, a complete indication of the operation of an entire stage.

Of course, all combinations of units and ranges are available, a number having been standardized.

Dr. A. V. J. Martin, Carnegie Institute of Technology, Pittsburgh 13, Pa.

If it has to be heated (and the “it” can be just about anything), you can rely on SAFEWAY engineers to study your problems and — without any obligation — submit an appropriate recommendation.

Safeway Heat Elements Inc.
680 Newfield Street • Middletown, Connecticut

For your copy of a fact-filled folder, please write:
Wet Felt Sinks Heat

Everybody knows that when components are soldered into a circuit, heat is conducted along the soldered joint to the component. Heat-sensitive components, like transistors and diodes, can be ruined if precautions are not taken.

The latest suggestion for preventing such damage comes from a manufacturing research engineer at the Boeing Airplane Co. in Seattle, Wash. He uses a standard metal clamp (alligator clip) lined with felt (Fig. 1). He saturates it with water and attaches the clamp to the lead wire between the soldered joint and the component (Fig. 2).

Heat traveling along the lead wire is dissipated by evaporation of water from the felt, thus protecting the component.

Fig. 1. Simple, effective, wet-felt heat sink.

Fig. 2. The wet-felt heat sinks, to the right of the soldering iron, protect the diode from thermal damage during soldering.

TIME DELAY TOLERANCES AS TIGHT AS 1/10th OF 1% with DELAY LINES BY PCA

Time Delay: 40 ±.04 microseconds @ 25°C.
Temperature coefficient of delay: <20 P.P.M./°C.
Attenuation: 4 db.
Rise time: 0.4 microseconds (10% to 90%).
Size: 50 cubic inches.

Design engineers are specialists in the research and development of delay lines custom built to meet the most exacting military specifications. The above example is only one of hundreds of difficult delay line problems cracked by PCA engineers. When stability, low attenuation, minimum size, and high ratio of delay to rise time are critical requirements for your delay line—let PCA engineers give you technical data and specifications.

PCA Electronics, Inc. is also a leading manufacturer of pulse transformers.

PCA ELECTRONICS, INC.
16799 Schoenborn Street Sepulveda, California, U.S.A.

To: PCA ELECTRONICS, INC.
16799 Schoenborn Street Sepulveda California, U.S.A.
Please send data on Delay Lines:
Complete Catalogue
Specification sheet on which we will indicate our special requirements

Name
Company
Street
City
State

CIRCLE 287 ON READER-SERVICE CARD

103
Two of the four Sel-Rex Jet Platers—complete electrophoretical facilities in 34 x 28 x 33 cabinets. This equipment is used as a step in the process of producing some of the printed wiring boards for the SAGE computer, and for experimental equipment currently under development.

IBM Plating operator removes printed wiring board from Sel-Rex Jet Plater where it has been plated with Sel-Rex Bright Gold. The Jet Platers assure optimum conditions for the electrodeposition of Sel-Rex Bright Gold for this exacting application.

Heart of the SAGE System is the 275 ton IBM computer, one of the world’s largest and most reliable. Shown here are some of the computer frames containing pluggable electronic units that perform the data processing involved in solving air defense problems.

SEL-REX BRIGHT GOLD AND 4 JET PLATERS HELP PROVIDE “BUILT-IN” RELIABILITY TO IBM SAGE COMPUTER

When it comes to protecting our country from possible surprise air-attack, only the best, most reliable instruments and equipment will do. Understandably, IBM was chosen to build the 275 ton computer pictured in part at the lower left, which is the heart of our SAGE System. The SAGE computer performs millions of calculations at lightning speed, and continuously checks them—automatically.

Approximately 7,300 pluggable units containing printed card assemblies are used in this computer. Needless to state, the proper functioning of these units is essential. Sel-Rex Bright Gold, in four Jet Platers, is used in the manufacture of the IBM SAGE computer, and other military equipment under development. Built-in reliability—for which IBM equipment is famous the world over—assures us all of constant electronic watchfulness 24 hours a day.

Sel-Rex can offer built-in reliability to your product through the unique metallurgical properties of a precious metal—or by designing plating or metal finishing equipment to your specific requirements...from a single piece of equipment to a complete facility. Our latest catalog—#CHP—gives details.

IDEAS FOR DESIGN

Sensitive, Stable Bridge with Reversible Polarity and Low Output Impedance

In regulating and servo systems it is necessary to have an error detector to compare the measured or detected signal with a reference source and provide an error signal proportional to the difference.

The internal resistance of the detector determines the power that will be available at the output terminals without distortion introducing nonlinearity in the output.

By inserting double-ended silicon voltage regulating diodes in two legs of the bridge, two objectives are attained.

1. The diodes feature a low dynamic impedance (approximately two ohms), and provide the voltage reference.
2. By proper choice of diodes, the temperature drift of the bridge can be minimized.

Efficiency, economics, power availability and specific system dynamics will determine the input impedance to the bridge, R_i.

If the diodes d are operated at approximately 10 per cent of their rating, their self-heating will be low and so will the initial drift of the bridge output. The diodes, though, should be operated above their V-I knee. The bridge resistors r should be selected to limit diode current. As an example, a bridge for a 28 v dc line is computed here.

The source impedance R_s is small compared with r. The equivalent Thévenin resistance of the bridge R_t with R_id about 50 ohm is

\[
R_t = 2 R_d = 4
\]

For ±0.05 per cent regulation of the 28 v dc line, the error voltage available will be ±0.007 v dc = V_{err}.
It can easily be seen from the figure that the
magnitude of V_{ac} will depend on whether the input
is above or below rated input. With the line
being $28 + 0.014$ v, the voltage V_{ac} is positive
at point 3 and negative at 4; with $28 - 0.014$ v,
V_{ac} is positive at terminal 4.

To prevent loading of the bridge circuit the
input current I_{in} required to swing the load from
minimum to maximum, should be made low. The
input impedance to the load should be high.

$$\frac{dV_{ac}}{dI_{in}} = R_c$$
$$\frac{dV_{ac}}{dI_{in}} = R_c$$

Baruch Berman, Group Engineer, Action, Div.
ACF, Paramus, N.J.

Stable Pulse Generators

It's easy to build a pulse generator whose output
frequency is constant within one per cent
with power supply variations of 50 per cent and
with operation at temperatures up to 70 °C.

Any transistorized relaxation oscillator, blocking
oscillator or multivibrator is good for a
frequency stability of two to three per cent, but if
special care is taken, one per cent is a practical
limit—even with 50 per cent power supply fluctuations.

In the blocking oscillator shown in the figure,
a single power supply is used. The negative
swing of the base varies with B plus changes.
The silicon diode raises the back resistance of
the base junction. Since the period of oscillation
is a function of the RC time constant, it is not
affected by B plus.

David H. Bryan, Project Engineer, Emske,
Fedrick and Miller, Inc., Los Angeles, Calif.

In the Honeywell A-C Linear Accelerometer, Type LA-600, friction
introduced through bearings and potentiometer slide wires is eliminated. This unit consists of a non-pendulous seismic mass supported on a frictionless
spring suspension and incorporates an a-c variable reluctance type
pick-off.

Inherently insensitive to cross-coupling accelerations both when at
null and when at an acceleration along its sensitive axis, the Type LA-600
also features magnetic damping for near-constant damping ratio through-
out its wide range of operating temperatures. Mechanical stops prevent
damage from input accelerations beyond the specified full scale range. Write
for Bulletin LA-600, Minneapolis-Honeywell, Boston Division, Dept. 10,
40 Life Street, Boston 35, Mass.

NEW LINEAR ACCELEROMETER
FEATURES FRICTIONLESS OPERATION
for greater accuracy, ruggedness and reliability

In the Honeywell A-C Linear Accelerometer, Type LA-600, friction
introduced through bearings and potentiometer slide wires is eliminated. This unit consists of a non-pendulous seismic mass supported on a frictionless
spring suspension and incorporates an a-c variable reluctance type pick-off.

Inherently insensitive to cross-coupling accelerations both when at
null and when at an acceleration along its sensitive axis, the Type LA-600
also features magnetic damping for near-constant damping ratio through-
out its wide range of operating temperatures. Mechanical stops prevent
damage from input accelerations beyond the specified full scale range. Write
for Bulletin LA-600, Minneapolis-Honeywell, Boston Division, Dept. 10,
40 Life Street, Boston 35, Mass.
U.S. Army Signal Laboratory designs computer to measure wind effects on missile launchings...

...and Vernistat* is there!

Since different types of pilot balloons have different rates of rise, and wind effects vary with each type of missile, signal inputs to the computer must be easily and quickly adjusted. That's one reason why USAERO engineers chose two Vernistat Adjustable Function Generators. Only seconds are required to change from one function to another.

Doesn't Vernistat thinking belong in your system design too?

Nonlinear servo system and computer inputs are easily adjusted with the Vernistat Adjustable Function Generator. In addition, the Function Generator enables nonlinear system characteristics to be corrected with a minimum of time and effort. The Function Generator, a variation of the unique Vernistat a.c. potentiometer, can generate mathematical or empirical functions, even those with multiple slope reversals. The function is displayed graphically on a 6 x 8 inch panel which allows for instant visualization and adjustment.

Connected to a 34-pole printed circuit switch are 101 voltage levels. Any of the 34 poles can be connected to any desired voltage level to within 0.5%. The Generator's Y-axis represents shaft position of an interpolating Vernistat potentiometer, and the Y-axis represents percentage of input voltage.

Linear interpolation between each adjacent pair of the 34 selected voltage levels is provided by a Vernistat interpolating potentiometer. Minimum slope of voltage output curve is zero, with a 20-volt maximum between adjacent poles. Maximum output impedance is 150 or 470 ohms. Units are designed for operation over a wide range of frequencies.

vernistat - a new design concept that unites in one compact device the best features of both the precision autotransformer and the multiturn potentiometer.

Perkin-Elmer Corporation

CIRCLE 290 ON READER-SERVICE CARD

765 Main Avenue, Norwalk, Conn.

REPORT BRIEFS

Solid Electrolyte Battery Systems

This report describes the work leading to the development of the Ag/AgCl/KCl, cell system and the cup-shaped cell configuration. This combination results in a cell of outstanding properties which appears to be capable of meeting the original goals of the contract. The various cell systems studied and the important features of each of these reported in detail in the main text. Supplementary material is discussed in the various Appendices: (a) Detailed discussion of current-voltage relations in mixed conductors. (b) Discussion of the silver-iodine tarnishing experiments. (c) Reaction with iodine and chlorine of silver containing cadmium. (d) Effect of ultraviolet radiation on the tarnishing reaction. (e) Effect of small additions of cadmium chloride on the protective action of silver chloride. (f) Anodized films of silver chloride as the solid electrolyte. (g) Electrical contacts at the silver-silver chloride interface. (h) Test results of Ag/AgCl/Agl, batteries. (i) Shorting of solid electrolyte batteries by a common electrolyte. (j) Modification in cup-shaped cell assembly. (k) Fluoride cell systems. Solid Electrolyte Battery Systems, Donald Smyth, Sprague Electric Co., North Adams, Mass. Final report. June 1, 1954-Nov. 30, 1956. December 26, 282 pp., $4.00. Order PB 131796 from OTS, U. S. Department of Commerce, Washington 25, D. C.

Germanium-Silicon Alloys

An isothermal solidification technique was developed for preparing homogeneous germanium-silicon alloys in polycrystalline form for all the compositions and in single crystal form for the low silicon alloys. Theoretical studies were made on the rate of solidification and furnace conditions necessary to make homogeneous alloys. The energy gaps of the alloys were calculated from data on the temperature dependence of resistivity and infra-red absorption measurements. Calculations showed the energy gap to increase rapidly with the addition of silicon and approach the value for pure silicon at about 50 atomic per cent silicon. The mobilities of the low silicon alloys were found comparable to germanium, while those of polycrystalline, high silicon alloys were low. Alloy life times were low as compared with germanium. Semiconductor devices made of germanium-silicon alloys were shown to operate at temperatures higher than those of germanium. Investigation of Germanium-Silicon Alloys: Final Report, C. C. Wang, Syconics Electric Products Co., for Bureau of Ships, U. S. Navy, Feb. 1955. 49 pp., $1.50. Order PB 131422 from OTS, U. S. Department of Commerce, Washington 25, D. C.

ELECTRONIC DESIGN • April 1, 1959
Semiconductors Devices Research Program

Silicon power transistors can be fabricated by diffusing impurities in from the surface to form the base and emitter regions. Of the number of impurities which can be used to form transistor structure, gallium and phosphorus were most thoroughly studied. The simultaneous diffusion process was used for transistor fabrication in pilot experiments, and the effects of external variables upon this process were determined. Emitter, base, and collector contacts were made using titanium or tungsten support plates. The transistors were mounted in a hermetically sealed, welded package of low thermal resistance. The fabrication process, consisting of diffusion, lead attachment, etching, and packaging, is described. The characteristics of preliminary laboratory units and of twenty production prototype units made by the process are given, and the performance of the units in typical circuits is shown. The transistors are said to be capable of dissipating over 25 watts at a mounting base temperature of 85°C and delivering large power at relatively high temperatures. Semiconductors Devices Research Program, J. E. Keister, General Electric Co. for Wright Air Development Center U.S. Air Force, July 1958, 151 pp, $3.00. Order PB 131201 from OTS, U.S. Department of Commerce, Washington 25, D.C.

Antennas and Radomes

Analysis of Junction-Diode Capacitance

This paper is the result of an attempt to explore the possible uses for the capacitance found in junctions, and to analyze the various parameters which might be controllable in the design of manufacture of these junctions. The circuits used in obtaining data are but one of many possible arrangements for which the capacitance of the junction can be used. Analysis and Application of a Variable Capacitance Junction Diode, Lawrence Roessler, Air Force Institute of Technology, Dayton, Ohio. Thesis, Mar. 1958, 36 pp, microfilm $3.90, photocopy $10.50. Order PB 13125 from Library of Congress, Photoduplication Service, Publications Board Project, Washington 25, D.C.

We promise you will receive a reply within one week!

NEW OPENINGS
AT HUGHES
RESEARCH &
DEVELOPMENT
LABORATORIES

Please airmail to:
Mr. Robert A. Martin, Supervisor, Scientific Employment
Hughes Research and Development Laboratories
Culver City, California

Name

Address

City

Zone

State

College

Degree

Year

I am interested in one of the following types of assignment:

[] RESEARCH
[] PRODUCT ENGINEERING
[] SYSTEMS
[] OTHER:

[] DEVELOPMENT
[] TECH. ADMIN.
[] FIELD TEST

I have had professional experience in the following specific areas:

[] CIRCUIT ANALYSIS AND DESIGN
[] STRESS ANALYSIS
[] R-F CIRCUITS
[] ELECTRO-MECHANICAL DESIGN

[] DIGITAL COMPUTERS
[] INDUSTRIAL DYNAMICS
[] RELIABILITY
[] OTHER:

[] GUIDANCE DEVICES
[] MATERIALS
[] ATOMIC AND/OR SOLID STATE PHYSICS

[] MICROWAVES
[] SYSTEMS ANALYSIS
[] INSTRUMENTATION

I have had a total of _________ years of experience.
How to keep your cut-off sharp!

Audio filter designers use molybdenum permalloy powder cores when they want razor sharp attenuation that will hold

Audio filter designers, faced with a crowded frequency spectrum, specify molybdenum permalloy powder cores to rigidly define channel cut-offs . . . with sharp, permanent attenuation at channel cross-overs.

Moly-permalloy, with virtually no resistive component, makes a core with almost no core loss. The resultant high Q means sharp attenuation of blocked frequencies in both the high and low band pass ranges. This is permanent—moly-permalloy cores were developed specifically to provide a very long term inductance stability.

Compare molybdenum permalloy to powdered iron. See the smaller size and the superior stability despite unusual fluctuations in current or temperature. Even unstabilized permalloy powder cores are more stable with temperature swings than cores made of any other material. And . . . stabilized cores are at least four times more inductance-stable than unstabilized cores.

What's more, there's no longer any guesswork! We have published limits within which the designer can depend on core performance. These limits—and full information on our Performance-Guaranteed permalloy powder cores—await your inquiry. Magnetics, Inc., Dept. ED 61, Butler, Pa.

REPORT BRIEFS

Directional Glide Path

"Encouraging results" are reported from tests of a directional glide path which provides pilots with vertical guidance during an approach over rough terrain under the Instrument Landing System. In operation, the glide path utilizes a transmitter which energizes an antenna system from which a carrier and sidebands of 90 cps and 150 cps are radiated. Airborne equipment presents an indication for on-path, above-path, or below-path which is a function of difference in depth of modulation. The system was developed specifically to produce a straight path where rough terrain prevented effective use of either the equisignal or the null-reference glide paths. The system performed satisfactorily in tests over rough terrain, providing a path which terminates essentially when the aircraft reaches an altitude of about 30 feet above the runway. Long-term stability of path position was found acceptable. A Directional Glide Path. (CAA Technical Development Report No. 336.) T. H. Bottoms, H. C. Hurley, L. N. Spinner, and J. W. Watt, Technical Development Center, Civil Aeronautics Administration, Feb. 1958, 23 pp, $0.75. Order PB 131742 from OTS, U. S. Department of Commerce, Washington 25, D. C.

Study of Universal Function Generator

Transistor Admittance Measurements

This report covers the modifications of the Wayne Kerr B. F. Admittance Bridge Type B-601, the test used, and precautions found necessary to measure transistor short-circuit admittance parameters. Measurements were made of several transistor types for their complex admittance parameters over the frequency range of 100 kc to 5 Mc/s. Transistor Admittance Measurements in the 0.1 to 5 Mc Range Using the Type B-601 Wayne Kerr B. F. Bridge. G. N. Kambouris, Diamond Ordnance Fuze Labs, Washington, D. C., May 1958, 23 pp, microfilm $2.70, photocopy $4.00. Order PB 134634 from Library of Congress, Photoduplication Service, Publications Board Project, Washington 25, D. C.
Defocus Characteristics of Microwave Reflectors and Lenses

The initial purpose of this contract was to investigate the on-axis and off-axis defocus characteristics of microwave reflectors with apertures of both the circular and the rectangular types. The investigation developed into three major tasks, namely: (1) Simulation of Fraunhofer radiation patterns in the Fresnel region by a defocusing technique; (2) Determination of phase errors in an aperture plane of any given reflector with an arbitrarily located primary source; (3) Determination of aperture-field distributions for defocused microwave lenses which included metal-plate lenses, homogeneous dielectric lenses, and the Luneberg lens. Defocus Characteristics of Microwave Reflectors and Lenses. David K. Cheng, Syracuse University Research Institute, N. Y., Final Report, July 1, 1954—Sept. 30, 1956, Nov. 1956, 42 pp., microfilm $3.90, photocopy $10.80. Order PB 135189 from the Library of Congress, Washington 25, N. Y.

Field Emission Cathode Ray Tube Development

The design, construction and preliminary testing of a cathode ray tube utilizing a field emission cathode constitute the subject matter of this report. Magnetic focusing of the field emission beam was investigated and experimentally demonstrated. The chief emphasis of the work was placed upon electrostatic focusing. A detailed analysis of the corresponding electron optical problem was made. Based upon this analysis, a tube was designed, built, tested and demonstrated. Its performance indicates favorable possibilities for further development of such tubes, taking advantage of the attractive features of the field emission source. Field Emission Cathode Ray Tube Development, Joseph W. Griffith, Winthrop W. Bolin, Linfield Research Institute, McMinnville, Ore., July 1958, 37 pp., $1.00. Order PB 151246 from OTS, U. S. Department of Commerce, Washington 25, D.C.

VHF and UHF Balun Transformer

A transformer is described which may be used as a phase inverter, differential transformer, or as a balun transformer. Practical models have been built which operate nearly three decades of frequency with bandwidths approaching one kilohertz. Very Wide Band Balun Transformer For VHF and UHF, T. R. O'Meara, R. L. Sydnor University of Illinois, Electrical Engineering Research Laboratory, Urbana, Ill., July 1957, 55 pp., microfilm $3.60, photocopy $9.30. Order PB 14963 from Library of Congress, Washington 25, D.C.
New G-E Glow Lamp permits less critical biasing ... provides wider margin in circuit designs

This General Electric NE-97 (and its first cousin, the NE-96) look exactly like the familiar NE-2 ... but each of these General Electric Glow Lamps has a wider differential between starting and operating voltage. This feature provides a margin of safety against false starting caused by transients in the circuit, since at least a 30-volt pulse is needed to put the lamp in operation.

DIRECT CURRENT CHARACTERISTICS

<table>
<thead>
<tr>
<th></th>
<th>NE-97</th>
<th>NE-96</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting Volts</td>
<td>125 ± 15</td>
<td>135 ± 15</td>
</tr>
<tr>
<td>Operating Volts</td>
<td>70 ± 10</td>
<td>70 ± 10</td>
</tr>
<tr>
<td>Design Current</td>
<td>0.5 m.a.</td>
<td>0.5 m.a.</td>
</tr>
<tr>
<td>Life—Change in Starting and Operating Volts at 0.5 m.a.—5 Volts in 1,500 hrs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APPLICATIONS—Because of the wide spread between starting and operating voltage, the General Electric NE-96 and NE-97 are well suited for use in switching circuits and counters, where the lamp may function both as the transfer element and an indicator of state or sequence. For full information on G-E Glow Lamps, write for “G-E Glow Lamps As Circuit Control Components”. General Electric Co., Miniature Lamp Dept., Nela Park, Cleveland 12, Ohio.

REPORT BRIEFS

Phase Plane Analysis in Missile Control System

The application of phase plane analysis to a missile jet relay control system is reviewed, explained, and illustrated. Only a single lead network is considered under conditions in which aerodynamic damping is negligible. The assumption that all forces occur as step inputs is used to simplify analysis techniques and does not constitute a significant limitation on the application of this method for design purposes. An analytic method for the solution of phase plane plots is developed which reduces the time necessary to evaluate a system design by minimizing the necessity for construction of phase plane diagrams. A summary of general principles which may be used to optimize a jet relay control system is presented. Project Vanguard Report No. 34: Application of the Simplified Phase Plane to the Analysis and Design of Missile Jet-Relay Control Systems, J. L. Hiett, U. S. Naval Research Laboratory, Sept. 1956, 34 pp., $1.00. Order PB 151-039 from OTS, U. S. Department of Commerce, Washington 25, D. C.

Heterodyne Generation of UHF Local Oscillator Signals

Investigation of the possibility of heterodyning a BFO with a fixed frequency oscillator to obtain a beat frequency signal in the 400-1000-nc range (for use as a local oscillator in a superheterodyne receiver). Intermediate frequencies of 30 nc and 350 nc are considered. The results have shown that spurious responses from the mixer operation make this method impracticable for receivers of sensitivity greater than about minus 75 dbm. Heterodyne Generation of UHF Local Oscillator Signals, Hugh Gottfried, Syconia Electric Prod Inc., Electronic Defense Lab., Mountain View, Calif., May 1956, 17 pp. Order PB 134833, from Library of Congress, Washington 25, D.C., microfilm $2.40, photocopy $3.30.

Pulsed Traveling Wave Tubes

Two cases are considered in this study. The first is the case where rf is pulsed and the electron beam kept on for a period considerably longer than the length of the pulse. The second is the case where the beam is pulsed and the input rf signal applied for a considerably longer time than the pulse width required. Pulsed Traveling Wave Tubes, Gordon S. Kino, Levinthal Electronic Products, Inc., Palo Alto, Calif., Oct. 1955, 17 pp., microfilm $2.40, photocopy $3.30. Order PB 135270 from Library of Congress, Washington 25, D.C.
"L" and "T" Type Dissipative Network Design

An arbitrary load is perfectly matched over a prescribed broad frequency-band to a constant-resistance generator by means of a linear, passive, reciprocal, dissipative two-terminal pair network which is composed of an ideal transformer in tandem with an L-, π-, or T-pad of lumped elements. The problem of designing the matching network to dissipate a minimum of power is considered and solved in a number of cases. An analytic method of determining the limitation on the optimum matching is presented in the case of an L-type matching network employed so that a designer is able to predict the best possible performance for any given load. Design of "L" and "T" Type Dissipative Networks for Broadband Matching of an Arbitrary Load, Marian Tsai Wang, Microwave Research Institute, Polytechnic Institute of Brooklyn, N.Y., Thesis, Aug. 1957, 57 pp, microfilm $4.50, photocopy $13.50. Order PB 135085 from Library of Congress, Washington 25, D.C.

Lost Days of Sputnik II

The track of Russia's Sputnik II, or Earth Satellite 1957 Beta, between April 1, 1958 and April 14, 1958, the day of its disintegration, is traced in an Air Force report which analyzes the Soviet artificial earth satellite's final two weeks of orbit. This preliminary study is based on all positional observations available to Project Space Track prior to May 22, 1958. The purpose of this Air Force activity is to track artificial earth satellites and space vehicles. Observations were collected from observers and stations in all parts of the world. They include such data as positions of the satellite on the celestial sphere and velocity in the line of sight, obtained with direction-finding antennas and Doppler-effect measuring radio receivers used while the satellite transmitters were active; visual observations made with and without optical equipment; and radar and photographic reports. In addition to these observations, which are presented in catalog form, the study includes descriptive reports dealing with the decay-phenomena observed during the last phase of the re-entry from ships and islands in the Caribbean. Added in an appendix is a short summary on the decay of Sputnik I (Satellite 197 Alpha) produced in December 1957, shortly after the satellite's end. Project Space Tracks The Orbital Motion of the Earth Satellite 1957. From 1 April 1958 to its Decay 14 April 1958, G. R. Merzack, E. W. Wahl, Air Research and Development Command, U. S. Air Force, June, 1958, 47 pp, $1.25. PB 151249 from OTS, U. S. Department of Commerce, Washington 25, D.C.
The Permachon is a new class of tube which will store an image written optically or electrically, and will scan out many copies of that image. Stored resolution is extremely high for the size of target, and is not limited by storage mesh as in conventional storage tubes.

The WL-7383 1" Permachon stores a resolution of 500 lines per diameter (by shrunken raster method) and eight shades of gray. It will operate in a standard vidicon camera. Optical images of vidicon quality can be stored and over 10,000 copies read out at 30 copies per second.

The WL-7411 3" Permachon stores an image exceeding the resolution of the image orthicon, and eight shades of gray. It will operate with standard image orthicon components. Storage and read-out are comparable to the WL-7383.

YOU CAN BE SURE... IF IT'S

Westinghouse

Electronic Tube Division Elmira, N.Y.

SAMPLE ORDERS INVITED. WRITE FOR DATA.
FIELD-PROVED HONEYWELL COMPONENTS

for measuring, balancing and positioning applications

CONVERTERS

These synchronously driven choppers handle d-c signals as small as 10⁻⁸ volt. Sensitive, stable performance. Available with special features such as fungus proofing, grounded housing, mica-filled base, various contact percentages. Weight: 10 oz. Prices from $30.

MOTORS

Designed for chart drives, servos and balancing circuits, these motors are available in three general types: Stack type, with easily maintained sectional housing; self-lubricated oil sealed type; and fungus proofed, oil sealed military motors. Prices from $40.

AMPLIFIERS

They amplify a d-c or a-c microvolt input signal sufficiently to drive one field of a two-phase balancing motor. Three stages of voltage amplification are followed by the power-output phase discriminator stage, which supplies power for the motor. Extremely low stray pickup . . . adjustable sensitivity . . . fast response. Prices from $110 to $250.

CIRCLE 302 ON READER-SERVICE CARD
BURROUGHS COMPUTER SYSTEM COMPONENTS

MANUAL TAPE PUNCH
Eliminates the problem of re-inserting perforated tape for repunching in the main perforating unit. A precision unit with particular application as a method for insertion of information into an already prepared tape. It accommodates standard Teletype and Commercial Controls Flexwriter tapes, and corrects up to an 8-hole code. Tape is easily inserted through a guided slot and held in perfect register.

PINBOARD PROGRAMMING ASSEMBLIES
Used in the Burroughs 1101 desk size computer, now individually available as a basic control unit or stored program device. Simple and versatile, a single pin completes a circuit. Complete programs can be quickly changed by inserting previously prepared plugs in units. Expandable, with three types of pinboard receptacle units. Compact, 11¾" by 3½".

DIGITAL MAGNETIC TAPE TRANSPORTS
Several transports are offered to meet a variety of tape speed and tape width requirements. Bi-directional units operate at speeds up to 75 inches per second. Multiple speed units are also available. Ten-speed transport handles tape at speeds from 1½ to 90 inches per second. All transports incorporate vacuum controlled reel servo systems for gentle tape handling, end of tape sensing, fast start and stop, remote and local control, easy threading and dust free operation. A file protection device and air conditioning manifolds are available. Years of proven reliability in Burroughs computer systems and other digital applications.

DECIMAL KEYBOARDS
The answer to the widespread need for a modestly priced, versatile manual input device. Thoroughly proven with the Burroughs 205 and 220 computing systems, the Decimal Keyboard is a 13 key unit that can be readily integrated into a wide variety of data processing and communications systems. Compact, with feather-light touch which provides high speed of input. A 16 key unit is also available.

MAGNETIC STORAGE DRUM
A small, high-speed magnetic drum for intermediate storage—proven in use with Burroughs 205 and 220 computing systems. It buffers information between the computer and various input-output units. Revolves at 21,600 rpm, permitting access to stored data in average time of 14 milliseconds. Easy matching, with either transistor or vacuum tube circuitry. Furnished complete, including 10 dual read-write head assemblies and drive motor.

PHOTOREADER
Reads 1,000 characters per second stops on a single character, then reads the next within five milliseconds after restart. The finest and fastest precision perforated paper tape reader commercially available as a component. Developed as an input unit for the Burroughs 220 computing system, the Photoreader may be mounted in any standard 19" cabinet—or ordered already housed in the 220 cabinet, as pictured.

Burroughs Corporation
"NEW DIMENSIONS in electronics and data processing systems"

CIRCLE 303 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

Fig. 74. The steady state amplitude of oscillations in a tank circuit using a thermistor can be determined with a graph like this one: R_T represents the equivalent series resistance of the tank and R_{T0} is the thermistor resistance in the absence of oscillations.

| Linear equation of Sec. 20, rewriting it as |
| $\omega_t^2 - \omega_0^2 + \frac{j}{L} \left(R_T - \frac{M S}{C} \right) = 0$ |

The frequency of an oscillator containing a thermistor described by this relation is always ω_0 for all amplitudes. It consequently does not change while the oscillations are being established. The self-excitation condition is written as

$R_T(0) < \frac{M S}{C}$

where $R_T(0)$ is the thermistor resistance in the absence of oscillations. This resistance depends only on the ambient temperature. The steady-state amplitude is found from the equation.

$R_T(U_m) = \frac{M S}{C}$

The thermistor characteristic $R_T(U_m)$ must naturally be known. The equation can be solved graphically as shown in Fig. 74. The fact that it is possible to obtain steady-state sinusoidal oscillations with the aid of a delay nonlinearity is of great importance.

First, in many cases it is essential to have a good waveform, free of harmonics. Second, the presence of harmonics causes frequency shifts. The smaller the Q factor of the tank circuit, the more noticeable this effect. The use of delay nonlinearity makes it possible to obtain sinusoidal oscillations even in the case of a low-Q tank circuit. The latter is particularly important in RF oscillators (see Sec. 27), in which combinations of capacitances and resistances only are made equivalent to aperiodic tank circuits.

23. The Phase Plane

In the usual graphic representation of oscillatory
phenomena in any system, all the time varying quantities (such as currents and voltages) are expressed by suitable time functions. Plots of these functions are called oscillograms.

It is possible, however, to proceed in a different manner, namely to choose as the rectangular coordinates the instantaneous values of the variable quantities which jointly define the state of the system. We thus define a certain space, in which each point represents the state of the system at a given instant of time. This space is called the phase space.

The number of dimensions of the phase space depends on the number of differential equations of the system. We know that to solve an nth order equation it is necessary to specify, as initial conditions, the values of the function and of its derivatives up to order $n-1$, i.e., a total of n independent quantities.

We shall deal essentially with second-order equations. In this case, the number of dimensions of the phase space is two, i.e., the phase space becomes in this case a phase plane. Oscillating phenomena in a system described by a second-order equation can be represented by diagrams in the phase plane.

Let us examine by way of an example the free oscillations in a linear lossless tank circuit. The differential equation for this case is

$$\frac{d^2q}{dt^2} + \omega_0^2 q = 0$$

The solution of this equation is

$$q = M \sin \omega t + N \cos \omega t$$

where M and N are arbitrary constants determined from the initial conditions. For the current we have

$$I = \frac{dq}{dt} = M \omega \cos \omega t - N \omega \sin \omega t$$

Let us take the current and the charge to be coordinates of the phase plane, and let us express one quantity directly in terms of the other.

Materials used in the quality-controlled manufacture of CAMBION handles include aluminum, brass and stainless steel. Finishes are of polished nickel, black oxide, and black aluminite. Types available are rigid, adjustable and folding. Folding types are in two different models — designed to fold against the panel in either one or two directions.

How to handle things better — 28 ways

Made in 28 different standard combinations, CAMBION panel handles are also custom-made to any specifications, in any quantity. All are of quality materials which meet or better government specifications. In addition to a firm grip, all have an attractive appearance. Polishing before plating removes all surface imperfection, and color buffing after plating adds lasting luster.

Expert engineering and manufacturing skill control production of the complete CAMBION line — terminal boards, solder terminals, insulated terminals, coils, coil forms, capacitors, swagers and hardware. In any quantity of CAMBION components you order you get top quality — with every component guaranteed.

Available locally through Authorized CAMBION Distributors. Or write to Cambridge Thermionic Corporation.
New Humphrey free gyro has stainless steel gimbals and spindle to resist shock

For attitude sensing applications in missiles and torpedoes where severe shock and vibration are a problem, this new Humphrey FG01-1300 series free gyro is recommended. High strength stainless steel is used in the one-piece spindle and gimbal assembly. This construction is stronger and more rigid than conventional construction.

In the torpedo application in which this model is now being used, it was easily able to meet the customer’s requirements of resistance to severe vibration and 60G shock. The all-steel design also eliminates differences in coefficients of expansion, eliminating balance and bearing fit changes.

Other important features of this new ruggedized free gyro are:
• Extremely small size—only 2 3/4” diameter by 5 1/4” long.
• Extra high angular moment to static weight ratio.
• Heavy duty gimbal bearings.
• Choice of motors for 28 vdc: 115 v, 400-cycle ac, or special 800-cycle ac. For 800-cycle motor, Humphrey, Inc. can furnish a transistorized power supply suitable for operating one or two gyro.

- Available with either electrical caging and uncaging or manual caging and electrical uncaging.
- Precision potentiometer or outer-gimbal synchro pick-off.
- Choice of electrical connectors for convenient installation. If your free gyro application requires high performance under extra severe shock and vibration, it will pay you to look into the Humphrey FG01-1300 instrument. Humphrey welcomes the opportunity to discuss your gyro, accelerometer or precision potentiometer requirements with you. Write or phone today.

RUSSIAN TRANSLATIONS

Fig. 76. Charge and current oscillograms (a) of a linear, lossless tank circuit, and how the phase trajectory is derived from them (b).

other, i.e., let us eliminate the parameter \(t \). For this purpose we divide eq (4) by \(\omega_0 \), square it, and add it to the square of (3). This yields the equation

\[
\frac{1}{\omega_0^2} I^2 + Q^2 = M^2 + N^2
\]

which is the equation of a family of ellipses (Fig. 75). Note that by changing the scale, for example, by plotting \(\omega_0 Q \) instead of \(Q \) along the abscissa, we can obtain a family of circles. Each point on one of the ellipses represents the state of the system at a given instant of time (since the coordinates of the point are instantaneous values of the current and voltage). This is why the point on the diagram is called the representative point.

This point moves with time, describing a line called the phase trajectory. If a periodic process is plotted in the phase plane, the phase trajectory will be the closed contour covered by the representative point during one period.

A family of phase trajectories representing the oscillations possible in a given system, is called the "phase portrait" of a given system. Thus, Fig. 75 is the phase portrait of a linear lossless tank circuit.

The coordinates used in Fig. 75 are \(Q \) and \(t = dQ/dt \). With such a choice of coordinates the representative point moves clockwise, as noted in Fig. 75.

The phase portrait of Fig. 75 was obtained analytically. Let us show how to plot the phase portrait from oscillograms.

Fig. 76a shows the charge and current oscillo-
The phase portrait of a lossy tank circuit with damped oscillations.

If we read the instantaneous values of \(Q \) and \(I \) (i.e., the ordinates of the corresponding curves) at the specific instants marked on the diagram and use these ordinates as coordinates of the representative point on Fig. 76b, we can plot the phase trajectory:

\[
\omega_i = \sqrt{\omega_0^2 - \omega^2}
\]

where \(\omega_i = \sqrt{\omega_0^2 - \omega^2} \) is the natural frequency.

Let us determine the current

\[
I = \frac{I_0}{\omega_i} e^{-\alpha t} \left(-\alpha \sin \omega_i t + \omega_i \cos \omega_i t \right)
\]

If the damping factor \(\alpha \) is small, it is possible to neglect the first term in the parenthesis and assume

\[
I = I_0 e^{-\alpha t} \cos \omega_i t
\]

To eliminate the time \(t \) from (6) and (7), we write the relation between the current and the charge in polar coordinates. We put

\[
I = I_0 e^{-\alpha t} \cos \omega_i t = \rho \cos \theta
\]

\[
\omega_i Q = I_0 e^{-\alpha t} \sin \omega_i t = \rho \sin \theta
\]

By division, we get

\[
\rho = I_0 e^{-\alpha t} \quad \theta = \omega_i t
\]

Hence

\[
\rho = I_0 e^{-\alpha t}
\]

This indeed is the polar equation of a phase trajectory that represents a converging logarithmic spiral (Fig. 77). For other initial conditions we obtain other spirals. All these will converge to the spiral at the point \(I = Q = 0 \). Each spiral represents a damped oscillation. A family of spirals with different initial conditions forms the phase portrait of a lossy tank circuit. The construction confirms that the representative point moves clockwise.

We shall now explain the role of the initial conditions. As is known, the initial conditions of a second-order equation of type (2) are the values of the function \(Q \) and of its first derivative \(dQ/dt \) at the instant assumed to be the start of the time reference (in particular, at \(t = 0 \)). Consequently, a specification of the initial conditions.

ALL NEW, the CMC Model 400C is a reliable, economical instrument for permanently recording digital data from counting, timing, frequency measuring, and data handling systems.

EIGHT OPTIONS OFFERED

Optional features which broaden the area of application for the CMC digital printer:

- 10 line output for operating punches and electric typewriters
- Analog output for driving strip chart and other pen type recorders
- Built-in inline readout for visual monitoring at a distance
- Accumulator for totalizing
- Code converter to accept any digital code
- Model 400C is compatible with any make of counting equipment
- Transistorized drive which accepts low voltage input
- An add-subtract solenoid which prints plus and minus numbers
- Print-line identification for coding printout.

New Standard Features

Standard features designed to improve reliability and flexibility include elimination of stepping switches, 4 line per second printout, parallel entry, and rugged unitized construction.

Key Specifications

Print-out capacity 6 digits standard, up to 12 on special order
- Accuracy determined by basic counting instrument
- Display time 0.2 seconds
- Minimum, maximum controlled by the counter
- Weight 64 lbs.
- Price $950. Add $10 for rack mount.

CMC computer-identification representatives are located in principal cities. For more information on this versatile instrument, phone your nearby representative or write directly to CMC Computer-Measurements Corporation.
RUSSIAN TRANSLATIONS

Fig. 78. The phase portrait of a tank circuit with negative damping.

tions determines the initial coordinates of the representative point. Fig. 75 shows the free oscillations in the form of an ellipse passing through the point whose coordinates \(Q_0 \) and \(L_0 \) represent the initial conditions.

Let us turn now to a lossy tank circuit. The equation of such a tank circuit is of the form

\[
\frac{d^2 Q}{dt^2} + 2 \alpha \frac{dQ}{dt} + \omega^2 Q = 0
\]

A solution of this equation for the initial conditions

\[
Q(0) = 0, \quad I(0) = I_0
\]

is of the following form

\[
Q = \frac{I_0}{\omega} e^{-\alpha t} \sin \omega t
\]

To conclude this section, let us consider still another tank circuit in which the damping becomes negative as the consequence of feedback. Such a system is described by an equation that differs from (5) only in the sign of the term for the first derivative of the charge with respect to time. A solution of the equation is given by (6) and (7), and the equation of the first trajectory is given by (8); it is merely necessary to reverse the signs in all three formulas.

This means that we have oscillations with exponentially rising amplitudes, and the phase trajectory is an evolving unwinding spiral (Fig. 78). Were the system really linear, the amplitude would increase without limit. This would correspond to an unbounded increase in the radius of the spiral.

24. Phase Portraits of Oscillators

In the preceding section we used examples of linear systems. Yet we are interested in the phenomena occurring in oscillators which are known to be nonlinear systems, since no steady state self-oscillations are possible in a linear system.
Our next task is to plot the phase portraits of oscillators. We start with an oscillator with soft excitation, this being the simplest case. The phase portrait should give a complete picture of the possible operating modes of the oscillator, both steady state and transient under all initial conditions.

We shall not derive the equations of the phase trajectories. We shall confine ourselves merely to a qualitative discussion. For this purpose we explain first how attenuation can be represented on the phase plots.

For a simple tank circuit we have the following quation of a spiral

\[\rho = L_0 e^{-\alpha t} \]

Let us take two values of the radius \(\rho \) corresponding to a change of 2\(\pi \) in the value of \(\phi \) i.e.,

radius of two neighboring turns of the spiral (Fig. 79)

\[\rho_1 = L_0 e^{-\alpha t_1}, \quad \rho_2 = L_0 e^{-\alpha t_2} \]

and let us determine the ratio of these radii

\[\frac{\rho_2}{\rho_1} = e^{\alpha (t_2 - t_1)} = e^{\alpha \Delta t} \]

where \(\Delta t \) is the attenuation of the tank circuit.

Thus the radius of the spiral changes from turn to turn as a geometric progression, whose denominator depends on the attenuation. The same applies also to an evolving spiral. (This is the property of a logarithmic spiral. In the case of an Archimedean spiral, the radius varies as an arithmetic progression.)

Let us now consider the phenomena in a soft generator. In the initial self-excitation stage, when the oscillations are still small, the phenomena can be described with satisfactory accuracy by the linear equation (2) of Sec. 17. If the self-excitation condition is satisfied, the attenuation factor is negative and the self excitation process
Expanded Research programs to meet the most complex technological requirements of the Space Age are only one of the far-reaching objectives of the new multi-million-dollar Lockheed Research Center, near Los Angeles. Destined to become one of the nation's major research installations, its programs are broad in scope and designed to investigate new frontiers of space flight.

A primary consideration in planning the new Research Center was to provide environment for scientific freedom and ideal research conditions—using the most advanced equipment available. This modern, integrated research facility will touch almost every aspect of aviation and transportation—leading toward exploration into completely new or relatively undeveloped fields of science and industry.

On completion, most of Lockheed's California Division's research facilities will be located in this single area. The Center will provide complete research facilities in all fields related to both atmospheric and space flight—including propulsion, physiology, aerodynamics and space dynamics; advanced electronics in microwave propagation and infrared; acoustics; mechanical and chemical engineering and plasma/magneto-hydrodynamics; thermal electricity; optics; data communications; test and servo-mechanisms.

The first phase of the advanced research building program has already begun—with initial construction of a $5,000,000 supersonic wind tunnel and high-altitude environmental test facilities.

Scientists and engineers of high caliber are invited to take advantage of outstanding career opportunities in this new Lockheed Research Center. Openings now exist for thoroughly qualified personnel in: Electronics; aero and thermo dynamics; propulsion; servo-mechanisms; materials and processes; structures and stress; operations research; research in optics, infrared, acoustics, magneto-hydrodynamics, instrumentation, mechanics and hydraulics; mathematics and in all phases of design.

Write today to: Mr. E. W. Des Lauriers, Manager Professional Placement Staff, Dept. 13041, 1708 Empire Avenue, Burbank, California.
Air-Marine's new S frame motor offers outstanding reliability even at extremes of temperatures and altitude. Two models are available: the Hi-Slip which increases speed with altitude lower densities, and a CONSTANT SPEED, 11,000 rpm or 20,000 rpm.

Both models are available in 2 or 4 pole units up to 1/150 h.p. These rugged design, epoxy-potted, 400 cps induction motors are obtainable for 115 V, 10 or 208 V, 30 operation.

Outstanding RELIABILITY from -60°C to +125°C, sea level to 70,000 ft.

Fig. 81. The phase portrait of a hard oscillator showing the regions—inside the unstable cycle (I), between the stable and unstable cycles (II), and outside the stable cycles (III).

differs from the one just considered only in that the attenuation is positive with small amplitudes and the phase trajectories wind towards the origin. There exists an amplitude for which the attenuation vanishes the first time. This value of the amplitude corresponds to its own limit cycle.

However this cycle is unstable. The phase trajectories do not wind towards it, they evolve away from the limit cycle, either inside towards the origin or to the region outside the unstable limit cycle. In this region the attenuation is negative and the amplitude increases until the attenuation again vanishes. There, a second limit cycle is produced, which now is stable.

The difference between the stable limit cycle and the unstable one, from the point of view of the phase plots, is that the phase trajectories move towards the stable cycle and move away from the unstable one. This is illustrated by the phase portrait of a hard generator shown in Fig. 81.

The phase plane can be broken up into three regions; I—inside the unstable cycle, II—between the stable and unstable cycles, and III—outside the stable cycles. No self-excited oscillations will be launched if the initial conditions are represented by a point in region I. They will be launched, however, if the initial point lies in region II or III.

The difference between the last two cases is that in the former case the amplitude will build up to a steady-state value, and in the second it will diminish to this value. The difference between a soft and hard oscillator, represented by Figs. 80 and 81, was explained previously by Figs. 70 and 71 and by Figs. 56 and 57. It is useful to compare all three pairs of diagrams, for they are different representations of the same relations.

(To be continued)
GERMAN ABSTRACTS

E. Brenner

Bandwidth Reduction for Transmission of Radar Signals

Using storage techniques, it has already been shown that the bandwidth for the transmission of signals from panorama radars can be reduced by a factor of about 100 to 200 kc for harbor control and to 50 kc for air communication safety. These techniques are based on the recognition of the information content of the radar signal (See ED, German Abstracts, Sept. 1, 1957). It is possible to compress the information into an even narrower band, the eventual goal being 4 kc, the band of ordinary telephone channels.

The information of the radar signals is contained in the duration and spacing of pulses.

Fig. 1. (a) Pulse train of a radar signal (b) Effect of frequency compression in (a)

Fig. 2. Scheme for pulse stretching using a storage tube and a scanning beam with variable-slope deflection voltage.
The lowest frequency component of the signal, \(f_{\text{max}} \), is the reciprocal of the natural speed of the antenna. The largest frequency, \(f_{\text{max}} \), is determined either through the duration of the shortest pulse or the shortest "no pulse" interval, whichever is the shorter. Stretching this interval by \(\tau_{\text{min}} \), the maximum frequency, \(f_{\text{max}} = \frac{1}{2\tau_{\text{min}}} \).

The compression of the bandwidth beyond that has already been described above, depends on stretching the shortest pulse (or "silent") interval to \(\tau_{\text{min}} \) as shown in Fig. 1b. Choosing the linear relationship

\[
\tau^* = a\tau + b
\]

where \(\tau^* \) is the transmission time of a line and \(\tau \) is the picture and defining the compression ratio results in

\[
p = T_{\text{c}}\tau_{\text{min}}.
\]

and

\[
k = \tau_{\text{min}}^2 T_{\text{c}}.
\]

where \(m \) is the number of picture elements per line. Evidently \(k_{\text{max}} = p/m \), corresponding to \(a = 0 \) and \(b = T_{\text{c}}/m \), represents the limiting value of the compression ratio since in that case all pulses are equal in length, all information is lost and checkerboard pattern is obtained.

The linear transformation from \(\tau \) to \(\tau^* \) can be accomplished by using a scanning beam whose horizontal deflection is controlled by two speeds \(p \) and \(k \), as shown in Fig. 2. During the writing interval there exists on the storage line a charge distribution which in the x-coordinate corresponds to the original, uncompressed signal. A pulse of length \(\tau_{\text{min}} \) is transformed into a pulse of duration \(\tau^* \), by controlling the speed of the scanning beam as indicated in Fig. 2b.

The maximum frequency compression which appears to be practical is below 10, the value 8 being typical.

The original paper also includes detailed description of the apparatus used for the signal compression.

Some Ideas

for your file of practical information on drafting and reproduction from

KEUFFEL & ESSER CO.

One of the ways to judge a skilled craftsman is by the tools he uses. They're invariably the best he can find - chosen to lighten his work, sharpen his skills. And, if the craftsman is a draftsman, they are, more often than not, products of K&E.

It may be that some of these products have escaped your attention (after all, we offer something over 8000 items). That's why we suggest you pay a visit to your K&E dealer whenever you can. It's a liberal education on what's new - as well as what's tried and true - in drafting equipment.

You'll find many products like these which can be highly useful in your work . . .

K&E "Quick Set" Bow Compass

The most remarkable feature of this compass is the speed and ease with which you can change settings - from diameters of 12 inches to 1/16 inch. With one hand, you can increase or decrease radii instantly and exactly. To go from small to larger radius, just press a spring release, and the legs will expand automatically. Stop approximately where you want, and make precise adjustments with a micrometer screw. To go from large to small, simply squeeze the legs of the compass together, then adjust precisely.

The K&E Quick Set combines the rigidity and precise adjustment of a standard bow compass, the simplicity and speed of a friction type compass, plus the full slip control of K&E's unique design. You have to try the Quick Set to appreciate it fully. Two types are available. The N1071 fixed leg pencil compass, and the N1070 combination with interchangeable pen and pencil inserts. Both come with a box containing leads and spare needles. And with the N1070, a pen handle is provided for the pen insert which permits its use as a ruling pen. The compass can also be used as a divider by substituting one of the spare needle points for the lead in the pencil insert.

Marathon® Ruling Pens

K&E Marathon Long Line and Wide Line Ruling Pens (1092) hold an extra large ink supply - draw lines up to eight times longer than ordinary ruling pens. And because they are pre-set, line widths are always uniform, easy to match with complete accuracy. Ink flow is regular and even, lines are always sharp and clean edged.

An important feature of K&E Marathon Ruling Pens is that they will not leak. They can be laid on the work surface without risk of ink flowing out. That means you can fill several pens of different widths, use them as freely as you'd use pencils. They're easy to clean, too.

K&E Marathon Long Line Ruling Pens are available individually in line widths of 0.006, 0.009, 0.015, 0.020 inch - or in sets of three pens in line widths of 0.009, 0.015, 0.020 inch in a Leatherette case. Marathon Wide Line Ruling Pens come in line widths of 0.030 and 0.060 inch.

Leroy® Height and Slant Control Scriber

A versatile new Leroy scriber is now available which greatly expands the variety of lettering possible from a standard Leroy template.

Now, with the new Height and Slant Control Scriber (3237-12), you can form characters from vertical to slanting at any angle up to 45° forward. You can vary height from 50% to 150% of the size of letters on the template used. The width of letters remains the same.

Combinations of height and slant can be set quickly and easily. You just loosen the knob, move the scriber arm to the desired combination of height and slant, and tighten. That's all there is to it.

Stop in to see your nearest K&E dealer and ask to see these three products - small, perhaps, but mighty handy in the drafting room. Or drop us a line by mailing the coupon below . . .

KEUFFEL & ESSER CO., Dept. E0-4, Hoboken, N.J.

I'd like more information on:

- [] K&E Quick Set Compass
- [] Marathon Ruling Pens
- [] Leroy Height and Slant Control Scriber
- [] Please send me the name and address of my nearest K&E Dealer.

Name & Title

Company & Address

CIRCLE 316 ON READER-SERVICE CARD
TRANSMISSION OF SPEECH

When a message is transmitted by means of pulse-amplitude modulation (PAM), a train of pulses with pulse spacing 2T is used to represent the signal if the highest significant frequency component in the message is 1/2T. The message is reconstructed without distortion when the PAM signal is passed through a distortionless low-pass filter with cut-off frequency 1/2T. Since transmission using pulse code modulation (PCM) is particularly insensitive to noise in the communication channel, information from the PAM is encoded into binary signals. For this purpose it is necessary to subdivide the amplitudes into discrete levels and transmit the PCM signal through a channel whose cut-off frequency is at least (log_m)/2T if m levels are used. The use of discrete steps results in signal distortion which is generally described by a distortion factor k, where

\[k = \frac{1}{(m^2 - 1)^{1/2}} \]

if it is assumed that all amplitudes in the original message are equally probable.

While a small value of m, when used in Eq. 1, results in a large value of k, the case with which speech can be understood is not related to this "distortion factor" in a simple manner.

In order to investigate this feature of PCM, a device with the step-type transfer characteristics shown in Fig. 1 can be constructed. Even if only one step is used, words and sentences can be understood with surprising consistency. While this has been explained by noting that the information contained in the zero crossings of the speech signal (frequency modulation) is preserved with the one-step transfer characteristics, it is also true that the harmonic amplitudes in the output due to the signal are larger than the distortion components generated by the limiting.

If more than one step is used, it is found that optimum values of step intervals \(t_1, t_2, \ldots, t_n, t_{n+1}, \ldots\) correspond to each situation. These values become less critical as the number of steps is increased. In general, an even number of steps gives better results than does an odd number. When the

Fig. 1. Step-type transfer characteristics used to investigate the effect of levels of PAM signals which represent a spoken message.

step transfer curve has only four steps (see Fig. 1) even meaningless syllables are understood with 65 per cent success, although Eq. 1 indicates a distortion factor of 26 per cent.

GERMAN ABSTRACTS

E. Brenner

Transmission of Speech

When a message is transmitted by means of pulse-amplitude modulation (PAM), a train of pulses with pulse spacing 2T is used to represent the signal if the highest significant frequency component in the message is 1/2T. The message is reconstructed without distortion when the PAM signal is passed through a distortionless low-pass filter with cut-off frequency 1/2T. Since transmission using pulse code modulation (PCM) is particularly insensitive to noise in the communication channel, information from the PAM is encoded into binary signals. For this purpose it is necessary to subdivide the amplitudes into discrete levels and transmit the PCM signal through a channel whose cut-off frequency is at least (log_m)/2T if m levels are used. The use of discrete steps results in signal distortion which is generally described by a distortion factor k, where

\[k = \frac{1}{(m^2 - 1)^{1/2}} \]

if it is assumed that all amplitudes in the original message are equally probable.

While a small value of m, when used in Eq. 1, results in a large value of k, the case with which speech can be understood is not related to this "distortion factor" in a simple manner.

In order to investigate this feature of PCM, a device with the step-type transfer characteristics shown in Fig. 1 can be constructed. Even if only one step is used, words and sentences can be understood with surprising consistency. While this has been explained by noting that the information contained in the zero crossings of the speech signal (frequency modulation) is preserved with the one-step transfer characteristics, it is also true that the harmonic amplitudes in the output due to the signal are larger than the distortion components generated by the limiting.

If more than one step is used, it is found that optimum values of step intervals \(t_1, t_2, \ldots, t_n, t_{n+1}, \ldots\) correspond to each situation. These values become less critical as the number of steps is increased. In general, an even number of steps gives better results than does an odd number. When the

Fig. 1. Step-type transfer characteristics used to investigate the effect of levels of PAM signals which represent a spoken message.

step transfer curve has only four steps (see Fig. 1) even meaningless syllables are understood with 65 per cent success, although Eq. 1 indicates a distortion factor of 26 per cent.

Why the new interest in flame retardance of plastic laminates?

While it is unlikely you will ever take up your blowtorch to sample the flame resistance of laminated plastics, this property emerges as a lively topic for discussion among engineers.

Admittedly its import is for the councils of those whose equipment is flame-exposed or is powered, amplified or controlled by vacuum tubes and upon which, clustered or confined, you could properly fry an egg.

Under the circumstances, it is appropriate to ask what laminated plastics (or Synthane, to name our choice) have to offer in the way of flame retardance, and how this property relates to the other, and more widely used, advantages of laminates.

Two Specific Flame Retardant Laminates

There are two grades of Synthane laminates specifically earmarked for flame retardance—Grades FR-1 and FR-2. Except for its flame retardance, Grade FR-1 closely resembles standard paper base phenolic Grade XX. Synthane Grade FR-2 is similar to Grade FR-1, but may be readily hot punched and would be used where flame retardance with emphasis on punchability was desired.

Many Grades of Synthane Self Extinguishing

Many standard grades of laminates—though they contain no flame retardant additives—are self extinguishing. That is, they do not support combustion when the flame is removed.

For example, the fabric and glass melamine grades are excellent for their self-extinguishing characteristics. The same is true of the asbestos grades. Why, then, special flame retarding grades? The answer is partly financial.

The flame retardant grades FR-1 and FR-2 offer good electrical and mechanical properties (similar to Grade XX) plus excellent flame retardance and at a moderate cost. When the electrical or mechanical requirements are severe it is they that may control the choice of laminate even though flame retardance is still necessary. And it just so happens that the cost of producing grades with superior electrical and mechanical properties tops the cost of producing flame-retardant Grades FR-1 and FR-2.

Comparison of Properties of Synthane Laminates with Relation to Flame Retardance

<table>
<thead>
<tr>
<th>GRADES</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR-1, FR-2, XX</td>
<td>Flame Retardance</td>
</tr>
<tr>
<td>-</td>
<td>E</td>
</tr>
<tr>
<td>-</td>
<td>F</td>
</tr>
<tr>
<td>-</td>
<td>R</td>
</tr>
<tr>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>-</td>
<td>D</td>
</tr>
<tr>
<td>-</td>
<td>L</td>
</tr>
<tr>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>-</td>
<td>G</td>
</tr>
<tr>
<td>-</td>
<td>H</td>
</tr>
<tr>
<td>-</td>
<td>I</td>
</tr>
<tr>
<td>-</td>
<td>J</td>
</tr>
<tr>
<td>-</td>
<td>K</td>
</tr>
<tr>
<td>-</td>
<td>L</td>
</tr>
<tr>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>-</td>
<td>N</td>
</tr>
<tr>
<td>-</td>
<td>O</td>
</tr>
<tr>
<td>-</td>
<td>P</td>
</tr>
<tr>
<td>-</td>
<td>Q</td>
</tr>
<tr>
<td>-</td>
<td>R</td>
</tr>
<tr>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>-</td>
<td>T</td>
</tr>
<tr>
<td>-</td>
<td>U</td>
</tr>
<tr>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>-</td>
<td>W</td>
</tr>
<tr>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>-</td>
<td>Y</td>
</tr>
<tr>
<td>-</td>
<td>Z</td>
</tr>
</tbody>
</table>

Obviously there is more to this business of selecting an electrical insulation than flame retardance. In any spot where flame retardance is a factor it is prudent to counsel with us, directly or through our representatives, to secure for yourself the Synthane Grade which supplies all of the properties you need in combination and at a reasonable cost.

Our aim is to help you obtain the most for your money so that you may find coming to us a profitable habit.

For further information about Synthane standard or flame retardant grades write Synthane Corporation, 42 River Road, Oak, Pa.
EIMAC KLYSTRONS performance proved in original Tropo-Scatter systems

Eimac klystrons are used in nearly every major military and commercial tropo-scatter system in the world. The list is impressive: Pole Vault, Texas Towers, Dew Line, White Alice, SAGE, NATO, Florida-Cuba TV, and numerous commercial networks. They have been selected for systems from Norway to North Africa, from the Arctic Circle to the Andes, from the United States to the Far East.

In most of these systems Eimac klystrons are used exclusively. The reason is simple: Eimac-pioneered external-cavity klystrons make it possible to generate high power at ultra-high frequencies simply, reliably and at low cost. With the Eimac external-cavity system, tuning cavities, couplers and magnetic circuitry are all external to and separate from the tube. This permits exceptionally wide tuning range and simplifies equipment design. Cost is lowered because this external circuitry is a permanent part of the transmitter and is not repurchased when tubes are replaced.

The reliability of these high-performance devices is exceptional. Some of the original Eimac klystrons installed in Project Pole Vault—the first major tropo-scatter network ever established—are still going strong with more than 25,000 hours of air time logged to their credit.

Eimac manufactures a complete line of amplifier and pulse klystrons covering the most important areas of the UHF spectrum. Write our Application Engineering Department for specific information.

EITEL-McCULLOUGH, INC. SAN CARLOS, CALIFORNIA
Eimac First with ceramic tubes that can take it
CABLE ADDRESS EIMAC San Carlos

ELECTRONIC DESIGN • April 1, 1959
9th Symposium on Millimeter Waves, March 31-April 2

Sponsored by IRE with the support of the AFOSR, Office of Naval Research, and the U.S. Army Signal Research & Development Laboratory, the symposium will be held without a charge for admission or registration. As in the past, recognized authorities will summarize the present state of the art and recent outstanding advances will be presented by research workers from university, industrial, and government laboratories throughout the world. Further information may be obtained from: The Microwave Research Institute, Polytechnic Institute of Brooklyn, 55 Johnson Street, Brooklyn 1, N.Y.
How do you suppress R.F. interference without complicating design?

At Metal Textile, we've been helping design engineers do just that since 1943! We've tackled RF suppression problems in applications ranging from radar cabinets to highly sensitive navigational guidance systems—and we solved them all... without complicating the design factor. With over 600 proven electronic weather-stripping materials already to their credit—our engineers are equipped and ready to take on your particular shielding problem. For best results, of course, we prefer to be called in during the development stage where shielding can be conveniently integrated into overall design. Yet even when RF leakage is detected in the actual production model—our experience can often help you solve the problem quickly, economically and without major redesign. Write or call without obligation: Metal Textile Corporation, Electronics Division, 647 East First St., Roselle, New Jersey.

MEETINGS

5th Nuclear Congress, April 5-10
Public Auditorium in Cleveland, Ohio. Theme: For Mankind's Progress. Sponsored by more than thirty leading engineering, scientific and management groups, forty sessions are to be held. Features of the meeting will be engineering papers dealing with advances in reactor technology and the use of radioactive materials, a trade show, the ATOMFAIR, talks devoted to problems of industrial management in the nuclear field and papers devoted to laboratory problems in radioactive materials. For information: Engineers Joint Council, 29 West 39th St., New York 18, N.Y.

Technical Conference on Electronic Data Processing, April 21-22
Engineering Society Bldg., Cincinnati, Ohio. Conference Theme: Electronic Data Processing. Papers to be presented on applications of data processing to such fields as communications, radar, computers, missile technology, chemical engineering, machine tools, and nuclearics.

AIEE East-Central District Meeting, April 22-24
Sheraton Hotel, Akron, Ohio. To be held in conjunction with the 11th Annual AIEE Rubber and Plastics Technical Conference, there will be a program of more than 50 technical papers and discussions. A special symposium on "Heating for Plastics Extrusion" has been scheduled together with such topics as: industrial heating and lighting; automation, computers; communications; high voltage cables and transmission; electric drive equipment; relaying and distribution; static components; nylon tire cord processing; rubber processing; standards for the rubber and plastics industry; its atmospheric contamination problems; and its use of new machines and processes; magnetic amplifiers, transistors, and semiconductors.

Paper Deadlines
May 1: Deadline for papers to be presented at WESCON, Aug. 18-21 to be held in San Francisco, Calif. Required are 100-200 word abstracts, together with complete texts or detailed summaries which should be sent to Dr. Karl R. Spangenberg, WESCON, 60 West 41st Ave., San Mateo, Calif.

ENGINEERS
Junior • Senior Project
YOU won't get lost at LEAR

Lear offers unlimited opportunities for advancement and greater responsibilities to creative minded, electronic engineers because

You aren't submerged in a "chain of command." You are in direct contact with the decision makers.

Lear, for twenty-eight years a pioneer in precision flight equipment, is moving ahead in many new fields. Investment companies recognize Lear as a prime "growth" company.

If you are experienced in the design and development of air and/or ground based communication and navigation equipment, you can look for immediate recognition.

If you would like to work in sunny Southern California (just minutes from world famous Santa Monica beaches); write to:

L. S. PECK, Manager
Industrial Relations

LEAR INC., Dept. ED-4
3171 South Bundy Drive, Santa Monica, Calif.
CIRCLE 877 ON READER-SERVICE CARD
Bendix YORK

offers the opportunity and the challenge of key assignments in...

GUIDED MISSILE ELECTRONICS

ELECTRONIC ENGINEERS

MECHANICAL ENGINEERS

Here is your chance to prove your ability doing important work on missile fusing, beacons, guidance, packaging and related test equipment. We have key openings that offer you the opportunity to move ahead rapidly in your profession. At Bendix York, you benefit from the advantages of a small company atmosphere in a growing division of one of the nation's largest engineering and manufacturing corporations. Also, you'll enjoy the "good life" in our beautiful suburban community. Good salaries, all employee benefits.

Drop us a card, briefly stating your education & experience. We'll act immediately to get together with you and talk it over.

Bendix AVIATION CORPORATION
York Division
York, Penna. 17-2511

It's great to be proud of the place you work

To some engineers, a job is a job is a job. But it doesn't have to be. It can be a career to take pride in, the way the engineers and scientists at Autonetics do.

These young men have already made Autonetics a leader in electronics and electromechanics. For example, they designed the inertial navigation systems for the USS Nautilus and Skate and the monopulse radar system for the Air Force's F-105.

These same young men are working on new developments—an even more advanced inertial navigation system; for the first nuclear-powered Polaris-carrying submarines; the guidance and control systems for the Minuteman and GAM-77 missiles...and many more.

Today at Autonetics there is room for engineers and scientists who want to have a part in these history-making activities. Please send your resume to Mr. V. D. Benning, 9150 East Imperial Highway, Downey, California.

Autonetics
A DIVISION OF NORTH AMERICAN AVIATION, INC.
Downey, California

INERTIAL NAVIGATION / ARMAMENT CONTROL / FLIGHT CONTROL / DATA PROCESSING

Among the achievements of Autonetics' young men: the first successful airborne all-inertial navigation system...first navigation system accurate enough to guide the USS Nautilus and Skate on their historic voyages beneath Arctic ice...first successful automatic star tracking by an inertial navigation system during daylight flight...first completely manueverable, inertially stabilized gyro platform...first successful completely automatic landing system for supersonic missiles and aircraft...first transistorized portable digital computer with "big computer" capabilities.
You can explore new areas at IBM in

Creative people at IBM are hard at work on a problem that has vexed man since the dawn of history—communication with his fellow beings. The rapid transmission of precise data is vital in this fast-moving age. One group of engineers and scientists at IBM is working on multiplexing techniques to channel data. This data has to be made available at maximum speed at desired times and places. Another group is developing computer systems that will control complete warehousing or industrial operations. For the military, IBM is designing a computer that will make available in real time, data concerning troop strength and dispositions. This important work needs imaginative people. If you want to be a part of this world of discovery and development, there are many opportunities at IBM.

A NEW WORLD OF OPPORTUNITY. Both technical and administrative engineering careers offer parallel advancement opportunities and rewards at IBM. You will enjoy unusual professional freedom, comprehensive education programs, the assistance of specialists of diverse disciplines, and IBM’s wealth of systems know-how. Working independently or as a member of a small team, your individual contributions are quickly recognized and rewarded. This is a unique opportunity for a career with a company that has an outstanding growth record.

For details, write, outlining background and interests, to:
Mr. R. E. Rodgers, Dept. 555 D I
IBM Corporation
590 Madison Avenue
New York 22, N. Y.

While in New York for the I.R.E. Show, you are cordially invited to visit the IBM booth and the IBM Product Display Center at IBM Headquarters, 590 Madison Avenue at East 57th Street.
Qualifications: B.S., M.S., or Ph.D. in Electrical or Mechanical Engineering, Physics, or Mathematics— and proven ability to assume a high degree of technical responsibility in your sphere of interest.

INDUSTRIAL CONTROL ENGINEERS to perform precision AC and DC electric measurements. Assignments in amplifier design, relay circuit logic, test equipment development, analog to digital conversion, and noise reduction.

CIRCUIT DESIGNERS to design transistor amplifiers, relay lines, transistor tube conversion circuits. Develop systems circuit specifications, perform circuit evaluation experiments and reliability criteria. Other openings in circuit design for magnetic devices.

MATHEMATICIANS to do digital computer programming, handle analysis of variance and multiple-regression type problems. Design experiments for wide variation of engineering applications. Knowledge of application of probability or game theory desirable.

GENERAL DESCRIPTIONS OF SOME ASSIGNMENTS:

SYSTEMS ENGINEERS to analyze and design computer systems. Backgrounds required include analog to digital conversion; analyses and preparation of diagnostic programs; development of complex devices in servo-mechanisms or radar for advanced systems.

LOGICAL DESIGNERS with two to four years' experience outlining logical blocks. Previous computer experience desirable. Some experience in transistorized equipment specification helpful. Must have strong interest in the theoretical and practical aspects of checking means and various codes, redundancy, error detection and correction, information flow, and other factors.

SOLID STATE ENGINEERS AND SCIENTISTS to do applied research on precision linear circuitry employing solid state devices using analog to digital conversion techniques and sample data. Experience in feedback amplifier design desirable. Also, openings for engineers with experience in precision, low-level linear circuits employing solid state, to work on analog to digital conversion techniques.

Ideas are the life-blood of an operation devoted exclusively to diversified electronics research, development, and production. So it's logical, we think, for the project engineer to see his idea to completion—from design through construction through field testing (and sometimes, alas, back to the drawing board). The effectiveness of this project approach is illustrated by our achievements in military and industrial electronics. If you generate sound ideas and would like the opportunity to follow through on them... and if you like the idea of living beneath bright, sunny skies the year around... write to Mr. Kel Rowan, Department B-4
Sir Francis Drake Cracks a Case

One foggy day in 1588, a single ship of the Spanish Armada
managed to sneak behind Drake's entire British fleet lying in the English
Channel off Plymouth Hoe, and drop a 10 pounder smack in the middle of
a bowling match between Sir Francis and his friend Walter Raleigh.

The new radar was caught completely by surprise. Had the IFF
Identification: Francis or Foe?) system failed? Was the operator
turned to the wrong Channel? Was there something wrong with the
tubes? Drake was determined to find out. He was inside the ship in a
trice, whatever that is. "Avast!" he roared at the radarmen, "I must
inspect those tubes!"

Drake picked up a magnetron and looked at it. "Ah!" he ex-
claimed. "Just as my razor-keen mind suspected!" With that, he
seized the hapless operator by the throat and shook him like a tumblerful
of sideshells. "I arrest you for stealing Bomac tubes* and substituting
these inferior substitutes, WILLIAM SHAKESPEARE!"

"I confess, how'd you guess?" said Shakespeare, ever the poet.

"Elementary for a razor-keen mind like mine," answered Drake.

"Only you could have conceived the cunning scheme of replacing Bomac
tubes with factory seconds labeled "βθμαν" as a publicity stunt for
your new play — Macbeth!"

"Yours is a razor-keen mind indeed!" marveled Shakespeare as
they led him away. "I haven’t even written Macbeth yet!

"Plenty of time where you’re going," said Drake — and went off
to bowl over the Armada.

* Bomac makes the finest microwave tubes and components either side of the English Channel

Bomac

Leaders in the design, development and manufacture of TR, ATR, Pre-TR tubes; shutters;
reference cavities; crystal protectors; silicon diodes; magnets; klystrons; duplexer;
pressurizing windows; noise source tubes; high frequency induce oscillators; surge protectors.

Officers in major cities — Chicago • Kansas City • Los Angeles • Dallas • Dayton • Washington •
Seattle • San Francisco • Canada: R.G.R Associates Limited, 1470 One Mills Road, One Mills,
Ontario • Export: Maurice J. Parson, 441-142 Washington St., N. Y. C. 14, N. Y.

Bomac looks at radar through the ages

ADVERTISERS’ INDEX

April 1, 1959

Advertiser

AGA Div. of Elestic Stop Nut Corp.
AMP, Inc.
Aero-Electric Co.
Aerovox Corp.
Air Marine Mfg., Inc.
Allied Radio Corp.
Alston Laboratories, Inc.
Amperex Electronic Corp.
Anchor Corp.
Atlas E-E Corp.
Atlas Precision Products
Audio Devices, Inc.

Belden Mfg. Company
Bendix Aviation Corp., Red Bank Div., Tubes
Bendix Aviation Corp., York Div.
Bently-Harris Mfg. Co.
Berkeley, Div. of Beckman Instruments, Inc.
Biagio & Co., E. Platinum Works
Bomac Laboratories, Inc.
Bomax Radio Corp.
Broad Clocking Grindee Co.
Brentwood Corporation
Burwell & Co., Inc.
Burroughs Corp., Industrial Relations

CBS-Hytron
Cambridge Thermionic Corp.
Centralab, Div. of Glove-Union, Inc.
Ceramaglas Co., Inc.
Chase-Track Corp.
Cleaver, Transformer Products
Computer Instruments Corp.
Computer-Measurement Corp.
Curtiss-Wright Corp.

Davey Co., Inc.
Decca Co., Inc.
Denny-Harris Company
De Font, E. F. de Semouras & Co.

Mylar Div.

ESC Corporation
Edgerton, General Electric & Grier, Inc.
Edison-McCollough
Electric Data Div. of Burroughs Corp.
Electro-Motive Mfg. Co.
Electronap Corp.
Engineered Electronics Company
Epeco, Inc. (Components)

Fairchild Semiconductor Corp.
Fenwal Electronics, Inc.
75, 77, 78-
Freed Transformer Co., Inc.

G-V Controls, Inc.
Gannaw Company
Gateway Corp.
General Ceramics Corp.
General Electric Co., Laminated Product Dept.

Haydon, A. W. Co., Inc.
Hendrick Div. of Beckman Instruments
Hetherington, Inc.
Hewlett-Packard Company
Howard Industries
Hughes Aircraft Co.
Humphrey, Inc.

Industrial Electronic Engineers
International Business Machines Corp.

Kearfott Co., Inc. Microwave Div.
Kent, F. E., Corp.
Kepco Laboratories
Krell & Kever
Krell & Kever

Kromer-Hore Corp.

CIRCLE 326 ON RADER-SERVICE CARD
UTC stock hermetic units have been fully proved to MIL-T-27A, eliminating the costs and delays normally related to initial MIL-T-27A tests. These rugged, drawn case, units have safety factors far above MIL requirements, and are ideal for high reliability industrial applications. Listed below are a few of the hundred stock types available for every application. Industrial ratings in bold.

Typical Miniature Audios

RC-25 Case

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Application</th>
<th>MIL Type</th>
<th>Pri. Imp.</th>
<th>Sec. Imp.</th>
<th>Unbal. DC in Pri. MA</th>
<th>Response 2 db (Cyc.)</th>
<th>Max. long term</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-20</td>
<td>Single plate to 2 grids, can also be used for P.P. plates</td>
<td>TF4RX15YY</td>
<td>15,000 split</td>
<td>80,000 split</td>
<td>0</td>
<td>30-20,000</td>
<td>+12</td>
</tr>
<tr>
<td>H-21</td>
<td>Single plate to P.P. grids, DC in Pri.</td>
<td>TF4RX15YY</td>
<td>15,000</td>
<td>80,000 split</td>
<td>8</td>
<td>100-20,000</td>
<td>+23</td>
</tr>
<tr>
<td>H-22</td>
<td>Single plate to multiple line</td>
<td>TF4RX15YY</td>
<td>15,000</td>
<td>50/2,000, 125/500</td>
<td>8</td>
<td>50-20,000</td>
<td>+23</td>
</tr>
<tr>
<td>H-23</td>
<td>P.P. plates to multiple line</td>
<td>TF4RX15YY</td>
<td>30,000 split</td>
<td>50/2,000, 125/500</td>
<td>a</td>
<td>30-20,000</td>
<td>+19</td>
</tr>
<tr>
<td>H-24</td>
<td>Reactor</td>
<td>TF4RX07YY</td>
<td>450 Volts, 300, 0 DC, 250 Volts, 300, 0 MA, 4000 ohms</td>
<td>65 Volts, 1000 MA, 1500 ohms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Typical Subminiature Audios

SM Case

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Application</th>
<th>MIL Type</th>
<th>Pri. Imp.</th>
<th>Sec. Imp.</th>
<th>Unbal. DC in Pri. MA</th>
<th>Response 2 db (Cyc.)</th>
<th>Max. long term</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-31</td>
<td>Single plate to 1 grid, 3-1</td>
<td>TF4RX15YY</td>
<td>10,000</td>
<td>90,000</td>
<td>0</td>
<td>300-10,000</td>
<td>+13</td>
</tr>
<tr>
<td>H-32</td>
<td>Single plate to line</td>
<td>TF4RX15YY</td>
<td>10,000</td>
<td>200</td>
<td>3</td>
<td>300-10,000</td>
<td>+13</td>
</tr>
<tr>
<td>H-33</td>
<td>Single plate to low imp.</td>
<td>TF4RX15YY</td>
<td>10,000</td>
<td>50/500, 125/1250</td>
<td>8</td>
<td>300-10,000</td>
<td>+13</td>
</tr>
<tr>
<td>H-35</td>
<td>Reactor</td>
<td>TF4RX20YY</td>
<td>100 Volts, 1200, 0 DC, 2000 Volts, 1200, 0 MA, 5000 ohms</td>
<td>400-1200, 0 MA, 5000 ohms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-36</td>
<td>Transistor Interstage</td>
<td>TF4RX15YY</td>
<td>25,000</td>
<td>1,000</td>
<td>300-10,000</td>
<td>+10</td>
<td></td>
</tr>
<tr>
<td>H-39</td>
<td>Transistor output</td>
<td>TF4RX15YY</td>
<td>10,000</td>
<td>200</td>
<td>2</td>
<td>300-10,000</td>
<td>+10</td>
</tr>
<tr>
<td>H-40A</td>
<td>Transistor output</td>
<td>TF4RX17YY</td>
<td>500 Volts, 1200, 0 DC, 2000 Volts, 1200, 0 MA, 5000 ohms</td>
<td>400-1200, 0 MA, 5000 ohms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Typical Power Transformers

Typical Filament Transformers

Pri: 105/115/210/220V except H-130 (115) and H-131 (115/220) 50/60 Cyc.

And Special Units to Your Specifications

UNITED TRANSFORMER CORPORATION

150 Varick Street, New York 13, N.Y.

PACIFIC MFG. DIVISION: 4008 W. JEFFERSON BLVD., LOS ANGELES 16, CALIF.

EXPORT DIVISION: 13 EAST 40TH STREET, NEW YORK 16, N.Y. CABLES: "ARLAB"
RCA Ceramic-Metal Power Tubes

Known throughout industry and military services for high-efficiency operation and ability to withstand high voltages at ultra-high frequencies, RCA Ceramic-Metal Power Tubes are the answer for the designer who requires higher power in a smaller, compact tube design. No other power tubes in this class combine features such as: coaxial-electrode design; low-loss ceramic bushings between electrode contact surfaces; matrix-type cathode; extra-sturdy heater, low screen current, virtually no primary screen grid or control grid emission!

RCA Ceramic-Metal Power Tubes merit the attention of new equipment designers for a wide variety of applications. Your RCA Representative will be glad to discuss with you your requirements for RCA Ceramic-Metal Tubes and the availability of developmental types on a sampling basis.

Typical RCA Ceramic-Metal Power Tubes

<table>
<thead>
<tr>
<th>Type No.</th>
<th>Type</th>
<th>CW Service Plate Input (Watts)</th>
<th>Pulse Service Peak Plate Input (Watts)</th>
<th>Max Frequency for Full Plate Input (MC)</th>
<th>Max Plate Dissipation (Watts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-2587*</td>
<td>A-2587*</td>
<td>30</td>
<td>1215</td>
<td>1215</td>
<td>75</td>
</tr>
<tr>
<td>6815</td>
<td>A-2587*</td>
<td>180</td>
<td>1215</td>
<td>1215</td>
<td>115</td>
</tr>
<tr>
<td>6575</td>
<td>A-2587*</td>
<td>120</td>
<td>64000</td>
<td>1215</td>
<td>600</td>
</tr>
<tr>
<td>A-2572*</td>
<td>A-2587*</td>
<td>2500</td>
<td>180000</td>
<td>1215</td>
<td>1500</td>
</tr>
<tr>
<td>A-2576*</td>
<td>A-2587*</td>
<td>200000</td>
<td>200000</td>
<td>1215</td>
<td>1500</td>
</tr>
<tr>
<td>A-2581*</td>
<td>A-2581*</td>
<td>200000</td>
<td>200000</td>
<td>1215</td>
<td>1500</td>
</tr>
</tbody>
</table>

*RCA Developmental Type. Available on Sampling Basis

RCA Ceramic-Metal Power Tubes utilize beam power design, and feature high-efficiency forced-air cooling.

RADIO CORPORATION OF AMERICA
Electron Tube Division
Harrison, N. J.