More reliability and better performance with Freed Quality

MINIATURE PULSE TRANSFORMERS
- Meets all requirements of MIL-T-27A
- Small size and weight
- Ideal for computer applications

LOW FREQUENCY HIGH ‘Q’ REACTORS
Solve your low frequency selective problems by using Freed QGC Reactors
- Available from stock
- Meets MIL-T-27A specifications
- Low hum pick-up
- Low voltage coefficient
- Low temperature coefficient
- High self resonant frequency

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Inductance (mH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QGC-1</td>
<td>100</td>
</tr>
<tr>
<td>QGC-2</td>
<td>75</td>
</tr>
<tr>
<td>QGC-3</td>
<td>50</td>
</tr>
<tr>
<td>QGC-4</td>
<td>35</td>
</tr>
<tr>
<td>QGC-5</td>
<td>25</td>
</tr>
<tr>
<td>QGC-6</td>
<td>15</td>
</tr>
<tr>
<td>QGC-7</td>
<td>10</td>
</tr>
<tr>
<td>QGC-8</td>
<td>7.5</td>
</tr>
<tr>
<td>QGC-9</td>
<td>5.0</td>
</tr>
<tr>
<td>QGC-10</td>
<td>2.5</td>
</tr>
<tr>
<td>QGC-11</td>
<td>1.0</td>
</tr>
<tr>
<td>QGC-12</td>
<td>0.5</td>
</tr>
</tbody>
</table>

NEW MINIATURE VARIABLE HIGH FREQUENCY INDUCTORS
- Continuous Inductance Variation
- Hermetically Sealed Constructions
- Frequency Range 20 KC to 500 KC
- High Q
- Exact Tuning Without Trimmers
- High Self Resonant Frequency

NEW HERMETICALLY SEALED CONSTANT VOLTAGE TRANSFORMERS.
- Meets Military Specifications
- Accurate Regulations
- Fast Response
- Fully Automatic

FREED QUALITY INSTRUMENTS FOR PRECISION LABORATORY TESTING
- For 110-48 Incremental Inductance Bridge
- Variable Test Voltage Megohmmeter

- Supplied either MIL. or COMMERCIAL

- Insulation: 1 Millihenry to 1000 Henries
- Resistance: 1 Megaohm to 4,000,000 megohms

- Insulation: 1 Millihenry to 1000 Henries
- Resistance: 1 Megaohm to 4,000,000 megohms

HIGHLIGHTS OF ISSUE

- Multigun, Versatile Storage Tube Writes PPI, TV Raster At Same Time 98
- Storatron, a multigun 10-inch storage tube with electrostatic focus and deflection, writes radial PPI scans and horizontal TV scans simultaneously. Storage time can be measured in hours.

- Oscilloscope Trace Recording With Polaroid Land Photography 28
- Here, in the first of a three-part series, an expert on film joins an expert on oscilloscopes to present an authoritative review of films and cameras for capturing scope traces on Land film.

- Design of Transistorized DC-to-DC Converters 40
- Here is all the information needed and a straightforward procedure for designing ringing-choke type dc-to-dc converters.

- Use Current-Mode Flip-Flops For Really High-Speed Switching 52
- For many applications, conventional transistorized switches just aren’t fast enough. Author William Sick gives circuits to take full advantage of the switching speeds available with new high-speed mesa transistors.

* Circle 1 on Reader-Service Card
Dependability and long life previously available only in high-cost relays...

G-V RED LINE

low-cost thermal timing relays

The sound design, sturdy construction and reliable operation long associated with G-V Hermetically Sealed Thermal Relays is available in a low-cost form, fully qualified for industrial control...light and inexpensive enough for electronic and communications circuits. Delays of 2 seconds to 3 minutes • Energizing voltages - 6.3 to 230 AC or DC.

- **RUGGED STAINLESS STEEL MECHANISM**
 Relay mechanism is of stainless steel, differential expansion type, used in all G-V Thermal Relays. All parts are welded into a single integral structure.

- **SHATTERPROOF—NO GLASS**
 No glass is used in mechanism, encasing shell, or base. This avoids the danger of cracking or breakage in handling and use.

- **STEEL ENCASED HEATERS**
 Heating elements are conservatively designed, wound with Nichrome wire on mica and encased in stainless steel, insuring long heater life even when energized continuously.

- **DUST TIGHT ENCLOSURE**
 A dust tight metal shell completely enclosing the relay mechanism and contacts, crimped tightly to the base, provides complete protection for the structure.

- **TAMPER PROOF**
 Time delay intervals are preset at the factory. Thus changes of delay interval in the field which might damage associated equipment are avoided.

- **DIRECTLY INTERCHANGEABLE**
 Directly interchangeable with all other octal-size relays.

Available through Selected Distributors

G-V.

G-V CONTROLS INC.
LIVINGSTON, NEW JERSEY

Write for Publication 131
U. S. PAT. 2,700,094 OTHER U. S. & FOREIGN PATENTS PENDING
CIRCLE 2 ON READER-SERVICE CARD
For Portable Communication...

NEW RAYTHEON CK7246

1.25 VOLT SUBMIN TRIODE

OPERAIE TO 500 MC.

This Raytheon filamentary subminiature triode was developed under U.S. Signal Corps contract, and is now commercially available for use in battery-operated communications equipment. Circuit applications include:

- Superregenerative detector
- High frequency oscillator
- Class C amplifier
- Frequency multiplier
- Mixer

TYPICAL OPERATING CHARACTERISTICS

Class A Amplifier

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament voltage (dc)</td>
<td>1.25 v</td>
</tr>
<tr>
<td>Filament current</td>
<td>150 ma</td>
</tr>
<tr>
<td>Plate voltage</td>
<td>105 v</td>
</tr>
<tr>
<td>Plate current</td>
<td>4.5 ma</td>
</tr>
<tr>
<td>Grid voltage</td>
<td>-2.5 v</td>
</tr>
<tr>
<td>Transconductance</td>
<td>2700 μhos</td>
</tr>
<tr>
<td>Amplification factor</td>
<td>22</td>
</tr>
</tbody>
</table>

Class C Oscillator (465 mc)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filament voltage (dc)</td>
<td>1.25 v</td>
</tr>
<tr>
<td>Filament current</td>
<td>150 ma</td>
</tr>
<tr>
<td>Plate voltage</td>
<td>105 v</td>
</tr>
<tr>
<td>Plate current</td>
<td>6 ma</td>
</tr>
<tr>
<td>Grid current</td>
<td>0.9 ma</td>
</tr>
<tr>
<td>Power output</td>
<td>60 mw</td>
</tr>
</tbody>
</table>

Typical CK7246 Circuit

465 mc. Class C Oscillator

L: 1 turn No. 12 copper, ¾ inch O.D.

RFC: bifilar wound

8 turns #26 En. 5/8" I.D., 1" long

C₁, C₂, C₃: 250 μf feed-thru button type

R₁: 4.7K 1/2 w.

R₂: 10K 2w pot.
Products, Papers Share Honors at WESCON

Products for tomorrow’s circuits and papers presaging systems for the “day after tomorrow” evenly split the attention of designers at WESCON 1959, held last month in San Francisco’s Cow Palace.

The Products

COMPONENTS and equipment at the almost 1000 exhibits reflected the demands of the space age. Visitors heard manufacturers tell designers about new levels of ruggedness, reliability, miniaturization, and extreme-environment tolerance. Some of the highlighted products:

- Binary computer modules by the Walkirt Co. that are built to a density of somewhat more than a million parts per cubic foot, yet use standard parts. The units are 0.37 inches in diameter, 0.4 inches long and contain 23 standard parts. These newly announced modules added fuel to the continuing question of who is packaging parts to the greatest density.
- Biax magnetic computer components, shown by Ford’s Aeronutronic Division, use interfering orthogonal fields to allow “multimegacycle” memory and logic operations. Signal-to-noise frequency of the device is about 100 to 1 in AND-gate use.

WESCON Show Stoppers: A Sampling of Highlights

Sputtered thin-film resistors made from tantalum or titanium can be formed in lines as narrow as 1 mil spaced 1 mil apart, make possible order of size reduction in printed circuit board shown by Bell Labs developer D. A. McLean.

Dr. Smoot Horsley, holding compensated avalanche diode he developed, discusses components’ operation with Dr. William Shockley. The new diode is said to have an average voltage change of 0.043 per cent per degree C.

Micromin transmitter, pointed to at right, is powered by cells, left. Voice enters input at center. Varo Mfg. makes the 700 kc, 0.001-cu-in. unit using deposited circuitry equaling density of 10 million parts per cubic foot.

Lumatron instrument that permits viewing of repetitive millisecond pulses on conventional scopes has rise time of better than 0.6 millisecond, sensitivity of 30 mv per cm. Calibrated sweep speeds reach 0.5×10^9 sec.

H. Leslie Hoffman, of Hoffman Electronics, received first annual WEMA medal of achievement from J. E. Chartz, WEMA president, and made a noteworthy speech pointing up need for better marketing techniques.

Japanese Parametrons make up Paramistor magnetic logical computing and memory modules that drew much attention at TDK Electronics Co. booth. Bi-stable ferrite Parametrons are capable of self limiting amplification.
Now, from Fairchild

PNP SILICON MESA TRANSISTORS

A “MIRROR IMAGE” OF AVAILABLE NPN CHARACTERISTICS

Same high-speed switching capabilities with which Fairchild startled the industry are now available in PNP – 80 milli-micro-second rise time, 2 watts dissipation, 300° C survival. Fairchild Silicon Transistors are multiple solid-state diffused. Their mesa construction affords excellent heat dissipation and extraordinary ruggedness.

Complementary symmetry within computer circuit designs now affords another technique for reducing number of components and increasing reliability. The advantages of complementary symmetry have been well known, but the high performance silicon transistors that could take advantage of the technique have not been available.

Direct replacement of germanium by silicon is feasible now that high performance silicon PNP mesa transistors are readily available. In silicon transistor circuits, you need no longer hesitate to make use of the particular advantages of PNP polarity. Availability is firmly assured.

COMPETITIVE ADVANTAGES FOR YOUR DESIGNS either in terms of price or functional efficiency are a likelihood that you should investigate. PNP silicon transistors with these speed-power characteristics have not been generally available, hence until now it has not been possible to design circuits using the complementary symmetry concept. Special attention will be given to inquiries received on company letterhead.

545 WHISMAN ROAD • MOUNTAIN VIEW, CALIFORNIA YORKSHIRE 8-8161

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Specification</th>
<th>Rating</th>
<th>Characteristics</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_CE</td>
<td>Collector to Emitter voltage (25°C)</td>
<td>30v</td>
<td>2 watts</td>
<td>2N1131-15 to 45</td>
</tr>
<tr>
<td>P_C</td>
<td>Collector current gain</td>
<td>10n</td>
<td>2N1132-30 to 90</td>
<td></td>
</tr>
<tr>
<td>h_FE</td>
<td>Collector saturation resistance at 1—20Mc</td>
<td>10n</td>
<td>2N1133-20 to 60</td>
<td></td>
</tr>
<tr>
<td>h_CS</td>
<td>Collector saturation resistance</td>
<td>2.5 typical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_fe</td>
<td>Small signal current gain at 1—20Mc</td>
<td>2.5 typical</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Specification</th>
<th>Rating</th>
<th>Characteristics</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_CE</td>
<td>Collector to Emitter voltage (25°C)</td>
<td>40v</td>
<td>2 watts</td>
<td>2N696-20 to 60</td>
</tr>
<tr>
<td>P_C</td>
<td>Collector current gain</td>
<td>10n</td>
<td>2N697-40 to 120</td>
<td></td>
</tr>
<tr>
<td>h_FE</td>
<td>Collector saturation resistance</td>
<td>3.5 typical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_CS</td>
<td>Collector saturation resistance</td>
<td>2.5 typical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_fe</td>
<td>Small signal current gain at 1—20Mc</td>
<td>2.5 typical</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NEWS

It Happened at WESCON

A truck strike during the San Francisco show made the delivery of product displays touch and go for many exhibitors, but after efforts approaching the heroic, all but a few booths opened on time at the Cow Palace.

An elaborate opening ceremony, organized around a signal relayed from Explorer VI to Jodrell Bank in Great Britain to Los Angeles to the Cow Palace, was fouled when the signal couldn’t make the last few miles from downtown San Francisco to the ceremony. The wrong type plug was pulled.

Every morning during WESCON early-bird TV viewers could watch a panel show carried by a network station and offering electronic news makers, such as Dr. William Shockley of the Shockley Transistor Corp., Edward E. Grazda, editor of Electronic Design, and others. The program, sponsored by International Resistance Co., was so popular that the company is considering a similar show during the New York IRE Convention.

- An advanced telemetry system developed by Lockheed showed how 40,000 bits per second could be multiplexed over a single channel. The system is called PAM-FM (for pulse amplitude modulated-frequency modulated system).
- An attention-hogging, noise-generating tube for jamming systems, unveiled by Litton Industries. Called the Barratron and available in hydraulically tunable and fixed-frequency versions, the tube is a self-modulating device interchangealbe with tunable magnetrons. Litton says that white noise coming from the Barratron is at least 10 times as effective for jamming as the power from a magnetron.

The Papers

Though semiconductors, microwaves, and circuit theory accounted for most of the papers delivered and developments reported, outstanding advances were described in many other fields. Some highlight papers:

- B. M. Sifford of the Stanford Research Institute, discussing air-ground, meteor-burst military communications systems, pointed to design considerations for a low-power, vhf system. A reliable vhf system has been built with a range of 1300 miles, he said.
The Future Engineers Show, popular last year when first made a part of WESCON, was even more popular this year and will be continued.

The Industrial Design Competition, a new WESCON feature, was very well-received, drawing heavy traffic to a colorful exhibit of award-winning products.

The "new look" technical sessions, though not always heavily attended, moved fast because of the three-paper limit. They were reported more generally informative because of the panels of experts and will probably be continued next year, say WESCON officials.

Quotable quotes: "Interconnection is the main bottleneck in solid-circuit development"—N. J. Doctor, Diamond Ordnance Fuze Labs. . . "Sonar is going to higher power, lower frequencies to catch up with submarine capability"—D. R. Church, Acoustica Associates. . . "The self-adapting computer could be with us in a decade"—J. H. Brick, W. L. Maxson Corp.

- R. O. Stone of the National Bureau of Standards told a session on reliability that design trends in miniaturization, printed circuitry, encapsulation and modular construction all pointed toward disposal-at-failure maintenance. Cost comparisons from a Navy aviation standard maintenance program and from a system based on expendable modules were cited to show that it is time for engineers to think about disposal-at-failure.
- N. L. Kruder of Burroughs, in another reliability paper, proposed a method of blending two design philosophies, each of which has successfully produced equipment. He proposed a method of finding the optimum compromise between two design philosophies: (1) By using parts conservatively, even though the parts count might be high, and (2) Keeping the part count down, even though parts might be worked hard.
- In a vacuum tube paper, two Hughes researchers, E. G. Todd and G. R. Brewer, reported that magnetron-type electron guns could produce a high-density hollow beam and offered advantages over other hollow-beam guns. They felt the disadvantage of the relatively strong magnetic field needed with magnetron-type guns could be compensated for by simplicity of design and construction of magnetic-field-system designs.

The new Burnell & Co. MT 34 and MT 35 microminiature Toroidal Inductors are made for orders that the engineer who isn't content with outer husk solutions but gets right to the core of second generation missile communication problems.

MT 34 microminiature Kernels can be supplied with inductances up to 500 mhs and the MT 35 is available in inductances up to 100 mhs. MT 34 Kernels are recommended for frequencies to 30 kcs and the MT 35 is applicable to frequencies up to 100 kcs depending on inductance values. Q for the MT 34 is greater than 55 at 25 kc and for the MT 35 more than 60 at 100 kcs.

Size of the MT 34 is .437" OD x 9/32", spacing between leads .3" x 1" with a weight of .06 ounces.

The new microminiature Burnell MT 34 and MT 35 Kernels provide maximum reliability as well as considerable economy in put circuit use. Completely encapsulated, the Kernels will withstand unusually high acceleration, shock and vibration environments.

Write for special filter bulletin MTF to help solve your circuit problems.
Reflectivity Tests to Affect Design of Future Radars

The Navy is sponsoring studies of the reflectivity characteristics of various types of terrain to develop better radars and better radar mapping techniques.

The photo above, taken from a radar strip film made by Goodyear Aircraft for the Navy's Airborne Terrain Measurement Project, shows the types of radar returns that are being analyzed.

Goodyear Aircraft, which developed the ANTRAN and Pinpoint map-matching and guidance systems, is prevented by security restrictions from discussing the complete scope of the terrain measurement program—even such obvious goals as the generation of synthetic maps by prediction of radar returns from known types of terrain, and calibration of guidance systems.

The company hopes to develop radar mapping to the point where...
it proves a suitable substitute for
photography. Goodyear has
revealed some of its procedures and
analysis techniques, made mostly

Data-gathering system is built
around a calibrated strip-mapping
radar, several radar recorders and a
conventional aerial-mapping camera.
The radar system transmits and receives
through a three-axis stabilized antenna.
Before each run, the automatic cali-
trator is programmed to inject signals
into the waveguide system. The video
is recorded on both recorders. Aerial
photos are taken to establish the true
aircraft ground track and thus the ter-
in covered by the radar.

PHILCO MADT*
TRANSISTORS
MAKE POSSIBLE THE
WORLD'S FIRST
BATTERY-POWERED
PORTABLE TV

High Frequency MADTs*
for tuner, video IF, sound IF

Alloy Junction Units
for sweep, synchronizing and audio stages

Special MADTs*
(with revolutionary Philco cath-
ode ray tube) for display circuits

Television breaks free from the electrical outlet! Philco's sensa-
tional new Safari plays anywhere without plugging in...and
only Philco Transistors make it possible.

Philco Micro Alloy Diffused-base Transistors (MADT*) for the
tuner and IF stages are products of Philco's famous FAT Lines
(Fast Automatic Transfer)...the first automatic transistor pro-
duction lines in the world. They are the only transistors manu-
factured by mass production methods to meet the exacting
standards of performance, uniformity and economy to make
transistorized television a practical reality. Their excellent high
frequency capabilities provide sensitivity and low noise per-
formance comparable with conventional vacuum tube receivers.

This is another example of Philco's leadership in Transistor
engineering and production. To meet your transistor requirements,
consult Philco first. For complete information, write Dept. ED-859.

*Trademark Philco Corp. for Micro Alloy Diffused-base Transistor

PHILCO
LANSDALE TUBE COMPANY DIVISION • LANSDALE, PENNSYLVANIA
10 Mc COUNTER
does everything without plug-ins

Add this heterodyne unit (Model 7570 Series) to measure frequencies up to 1000 Mc.

Or add this computing transfer oscillator (Model 7580) to get a counter display of frequencies up to 15,000 Mc.

Complete specifications on Models 7570, 7570 and 7580 will be sent on request.

Beckman

Berkeley Division
200 Wright Avenue, Richmond 3, California
a division of Beckman Instruments, Inc.

NEWS
(continued from p. 7)

with standard sensing, guidance, recording, and data-handling equipment instrumented to provide exceptional performance.

All data-gathering flights for the terrain-return program are made over carefully determined paths, so that terrain of specific characteristics comes within recording range. The radar strip map is recorded on film synchronized with the aircraft speed, and video recordings are made with a high-speed, line-to-line video recorder and a strip-map recorder for terrain identification.

Calibration signals of the same strength as return signals are generated in the microwave portion of the system and registered on each end of the video recordings. These are automatically inserted before and after each run.

The position of the aircraft during data runs is known at all times through films taken by an aerial mapping camera and through identifying pulses registered on the video recorders. Because the radar return is synchronized with the photographic strip, a radar mosaic that matches the aerial camera's photo mosaic is available for analysis. All data thus can be correlated in the laboratory by simply matching the identifying pulses as they appear on the video record with the corresponding aerial photos.

Data analysis is performed on copies of the original mapping film. Aerial photographs are plotted on large-scale topographical maps. Patches of terrain of similar nature are selected for analysis.

The first step in reducing the data in the laboratory is to read out the recorded video film line by line with a transmission-measuring device that incorporates a flying-spot scanner feeding a photomultiplier from a cathode-ray-tube light source.

The cathode-ray tube, sweep circuits, and film drive of the flying spot scanner are very similar to those used in the aerial recording system.

The video signal is range gated, corresponding to the particular depression angle desired. This circuit stores the amplitude of each pulse until the next arrives, resulting in a large bandwidth compression.

The output from the boxcar circuit is still the pulse-to-pulse variation of the radar return from a specific depression angle, but it now can be recorded on a conventional chart recorder.

The data gathered by the airborne equipment, which is converted to a video output signal in the laboratory readout system, represents the ratio of power received from the terrain to transmitted power. It now becomes possible to compare the power ratio of a specific patch of terrain to the calculated power ratio recorded on the data film. In this manner an accurate power ratio for the patch is obtained.
Two Goodyear GEDA computers are programmed to perform the statistical description of the radar return. Information is fed directly to the computers from the video-sampling equipment.

Information developed by these techniques, according to Goodyear, will be added to information gained from other research and development programs to achieve the immediate goals of the terrain measurement project, which should lead to better mapping radars.

5-Kilowatt British Fuel Cell Now in Production

An 800-pound array of Hydrox fuel cells stacked to provide a 5-kw, 24-v source of power is now in production in Great Britain.

The basic cell uses porous sintered nickel electrodes separated by a potassium hydroxide electrolyte to convert gas combustion directly to electricity. Charge gases are oxygen and hydrogen, fed in at a rate of 20 cubic feet per kilowatt hour for oxygen and half that rate for hydrogen.

The Cambridge University researcher who developed the cell, Prof. F. T. Bacon, reports that efficiencies range to 65 per cent at outputs that equal from 7 to 20 hp. Operating temperature and pressure are 390 F and 400 pounds per square inch.

The Bacon cell, licensed to the Patterson Moos Division of Universal Winding Co., New York, for U.S. development, is being considered as an in-flight fuel source for the first manned U.S. space vehicle.

Miniature PROKAR 'D' Molded Capacitors

---with improved moisture resistance and a new dual dielectric for 125 C operation without voltage derating

Sprague's new and improved PROKAR 'D' Molded Tubular Capacitors meet the need for ever smaller molded capacitors capable of withstanding 125 C operation in military, commercial, and industrial electronics.

Key to the new design is an improved processing technique which greatly increases moisture resistance. The new dual dielectric used in Type 150P Capacitors combines the dielectric strength of the highest grade capacitor tissue with the effective moisture resistance of plastic film, giving these miniature units high insulation resistance plus extended life at 125 C. The impregnant used is still the same exclusive high temperature organic material which marked a milestone in molded capacitor development for the original Prokar series.

The improved performance of PROKAR 'D' Capacitors is worth investigating—greater resistance to humidity, high insulation resistance (minimum of 10 megohm-microfarads at 125 C), moderate capacitance change with temperature, longer life, and improved reliability.

PROKAR COMPONENTS:

- Capacitors
- Resistors
- Magnetic Components
- Transistors
- Interference Filters
- Pulse Networks
- High Temperature Magnet Wire
- Ceramic-Base Printed Networks
- Packaged Component Assemblies

CIRCLE 9 ON READER-SERVICE CARD
Longitudinal Baffling Improves Microwave Anechoic Chamber

An anechoic chamber designed primarily for testing uhf-absorbing materials has been built with its baffle edges parallel to its longitudinal center line. This design contrasts with more conventional darkrooms, in which the diffracting edges of transverse baffles lie in planes normal to the long axis of the room.

This design, according to the builders, Emerson & Cuming, Inc., of Canton, Mass., provides two major electrical advantages.

Anechoic chamber is about 120 feet long, 45 feet wide and 25 feet high. The room's frequency range is 900 mc through 50 kmc.

First, baffle-edge-diffraction effects are minimized, because the edges are parallel to the axial field components, which are relatively small in most instances. Unless a conventional transversely baffled room is excessively large in cross-section, several of the baffle edges are invariably illuminated by parallel fields comparable in amplitude to those illuminating the target area. The company reports that recent theoretical and experimental work indicates that under typical chamber illumination conditions the very existence of baffle edges parallel to radiation fields imposes a severe limitation upon the "darkness" of a darkroom. The quality of the absorbing material covering these edges is theoretically of little consequence. The longitudinal-baffle design significantly minimizes these limitations by making the baffle edges parallel to the weak axial field components.

Secondly, the residual and unavoidable reflections from longitudinal baffles impose no limitation on the distance between transmitter and target. A uniformly "quiet" volume, having dimensions subject to design control, surrounds the long axis of the chamber and extends to within a few miles of the transmitter.

Direct, automatic power readings

CW or pulsed power
Wide frequency range
No calculations
Assured accuracy
Operates with wide variety of bolometers

-hp- 430C Microwave Power Meter

Here is the finest, most dependable source of instantaneous microwave power readings available today. The -hp- 430C gives you power readings directly in dbw or mw and completely eliminates tedious computations or troublesome adjustment during operation. The instrument measures either pulsed or CW power on either waveguide or coaxial systems. Operation is entirely automatic, stability is extremely high, and meter may be used with a wide variety of bolometer mounts having either positive or negative temperature coefficients. The broad nominal measuring range may be extended to higher powers by means of direction couplers and attenuators.

For measurements of CW or pulsed power, -hp- 430C uses either an instrument fuse, barretter or thermistor as a bolometer element. Operation may be at or near 100 or 200 ohms. Power is read direct in milliwatts from 0.02 to 10 mw, or in dbw from -20 to +100 dbw.

SPECIFICATIONS

Power Range: 5 ranges, front panel selector. Full scale readings of .1, 1, 5 and 10 mw. Also continuous readings from -20 to +10 dbw (10 dbw = .001 watt). Power range may be extended with attenuators or directional couplers in microwave system.

External Bolometer: Frequency range depends on bolometer mount. Bolometers can operate at resistance levels of 100 or 200 ohms and can have positive or negative temperature coefficients. Any dc bias current up to 16 ma is available for biasing positive or negative temperature coefficient bolometers. Dc bias current is continuously adjustable and independent of bolometer resistance and power level range.

Suitable bolometers:
- Barretters: Sperry 821, Narda N821B or N610B, FRD 610A, 614, 617 or 631C.
- Thermistors: Western Electric D166382, Victory Engineering Co. 32A3, 32A5, Narda 333, 334.

Accuracy: ±5% of full scale reading.

Power: 150/230 v ±10%, 50/1000 cps, 75 watts.

Dimensions: Cabinet Mount: 7/8" wide, 113/8" high, 14" deep.
- Rack Mount. 19" wide, 7" high, 123/8" deep.

Weights: Net 14 lbs. Shipping 32 lbs. (cabinet mount).

Price: $250.00.

Data subject to change without notice.

Electronic Test Instruments for Microwave Compatibility
Use these precision -hp- instruments with
-hp- 430C for greater coverage, convenience

-hp- 752 Multi-Hole Couplers—For measuring average power 1 watt to 1 kw (with attenuator) in waveguide systems. Models cover all frequencies 2.6 to 40 KMC. Coupling factors of 3, 10 and 20 db available most bands. Directivity better than 40 db full range; accuracy of mean coupling ± 0.4 to ± 0.7 db, full range. Primary guide SWR less than 1.10. $375.00 to $100.00.

-hp- 764-767D Dual Directional Couplers—For wide band coax reflectometer and power measurements. Four models cover frequencies 216 to 4000 MC. 20 db attenuation, coupling accuracy 1 db, max. primary SWR 1.1 to 1.5; secondary SWR 1.2 to 1.5. Minimum directivity (216 to 940 MC) 30db; 26 db at higher frequencies. 50 watts CW capacity, 10 kw peak. Low insertion loss. $160.00 to $150.00.

-hp- 382A Precision Attenuators—For measurements up to 5, 10 and 15 watts, this revolutionary new broad band instrument may be employed. -hp- 382A attenuates from 0 to 50 db, full range, independent of frequency. Phase shift constant with attenuation. Accuracy within ± 2% of db reading. Models cover frequencies 3.95 to 40.0 KMC, maximum dissipation 5 to 15 watts. SWR less than 1.15. $500.00 to $275.00.

-hp- 370 Waveguide Attenuators — Waveguide sections providing fixed amounts of attenuation. Used to extend power range of -hp- 430C. Models for frequencies 2.6 to 18.0 KMC, power dissipation 1.0 watts (1 kw peak), SWR 1.15; 3, 6, 10 or 20 db attenuation. $75.00 to $55.00.

-hp- 4878 Thermistor Mounts—Simplify setups, save time and insure maximum accuracy in waveguide power measurements. Models cover frequencies 3.95 to 40.0 KMC with full range SWR of less than 1.5 (except K,R band, 2.0). Permanently installed negative temperature coefficient thermistors. No tuning, large overload factor makes burnout virtually impossible. $225.00 to $75.00.

-hp- 476A Bolometer Mount — Thermistor mount providing full frequency coverage 10 MC to 10 KMC with SWR less than 1.5. Requires no tuning, uses long time constant elements for accuracy even on low duty cycle pulses. For use with 430C or other bolometer bridges providing negative temperature coefficient operation at 200 ohms. Requires 15 ma bias. Power range 0.02 to 10 mw. Uses Type N rf connector. $75.00.

-hp- 485 Detector Mounts — Single tuning control accurately matches waveguide section to bolometer element; instrument also detects rf energy with crystal substituted for bolometer element. Models for frequencies 2.6 to 12.4 KMC, SWR 1.25 to 1.5. All models employ crystal or barretter except P485 (thermistor only) and S485 (crystal only). $170.00 to $75.00.

-hp- 476A Bolometer Mount — Universal bolometer mount requiring no tuning, no adjustment. Frequencies 10 to 1,000 MC, instantaneous, automatic power readings 0.02 to 10 mw. SWR less than 1.15, 20 to 500 MC; less than 1.25, 10 to 1,000 MC. Uses four 1/100 amp fuses. Uses Type N rf connectors. $85.00.

Ray pattern in anechoic chamber shows that energy originating on or near the room's long axis does not return to a central six-foot-diameter cylinder except after being bounced three times from microwave absorbing material.

feet of either end. In a transversely baffle room, an axially short quiet volume exists close to one end, and very elaborate baffling is required to permit a range of transmitter-to-target distances. Additional elaboration of shape and number of transverse baffles is necessary if the room is to be used for transmission in either direction, and still further design complications result if the room is used for both reflectivity and pattern work. In sharp contrast, the much simpler longitudinal-baffle chamber is equally good for transmission in either direction, and it is inherently satisfactory for both reflectivity measurement and pattern recording.

NSF Translating Back Issues Of Soviet Technical Journals

The National Science Foundation has arranged with the Program for Scientific Translations, an Israeli group, for the translation of back issues of Soviet publications.

Acting as a consultant for NSF in Israel is J. George Adhashko, a contributing editor of Electronic Design and editor and translator of the ED Russian translations department.

Magnesium Fluoride Material Improves Infrared Sensing

A new material being developed for lenses and windows in infrared systems promised to pass up to 90 per cent of the energy directed at it.

The magnesium-fluoride material, called Irtran by its developer, Eastman Kodak, is translucent and is said to have such low surface-reflection losses that coating is unnecessary.

Kodak also reports that Irtran retains infrared transparency to 1200 F and should eliminate "hot window effect," which occurs when optical parts pass through atmosphere at high speed.
NEWS

Calibration Lag Shown by AF-Sponsored Survey

United States industry—electronics included—is being hindered by a "measurement pinch," a new survey has revealed.

The Industry Calibration Survey points to specific areas—microwave measurement techniques, rf interference standards, electrical standards—where calibration methods trail both the state of the electronics art and the needs of the military services.

Sperry Gyroscope made the study for the quality control committee of the Aerospace Industries Association, under the sponsorship of the Air Force Materiel Command and with the cooperation of the National Bureau of Standards.

Some suggestions made in the survey:

- Nationally uniform calibration methods should be adopted.
- NBS calibration services should be expanded.
- Better communications and education in measurements and standards should be established.

C-Band Radar Beacon Designed for Lightness

A 400-watt, C-band beacon for airborne tracking and identification applications has been designed into a 9.8-pound package that occupies only one-seventh of a cubic foot.

Except for a tunable magnetron and local oscillator, all stages in the device are transistorized, including a tunable duplexer, crystal mixer, if amplifier and detector, video decoder, modulator and power supply.

The beacon transmits a single rf pulse when it recognizes the correct radar-originated, coded interrogation signal. The unit ignores both off-frequency and incorrectly coded signals.

Anaconda’s

ready to solder magnet wire...is saving time and cost

A superior product is known by the companies that keep it. And many companies—from coast to coast—are doing just that with Anaconda Analac.

Here's why: Analac* film-insulated, solderable magnet wire can be used similarly to Formvar or Plain Enamel—except that it is solderable without stripping!

Soldering by dipping, iron or gun produces a perfect joint—in just one second in finer sizes—without removing the insulation. Analac reduces labor, saves time and money wherever many soldered connections are made, or where insulation removal is hazardous.

Not only this, Analac has the excellent abrasion resistance and other good mechanical properties of the enamel wire you're now using. It handles readily, performs well in high-speed winding.

Analac is colored a bright red with stable dye used many years for identical applications—making it highly visible even in finest sizes. This helps operators feel more secure, results in higher quality work. Distinctive color simplifies its identification, too, from nonsolderable wires.

Analac is available in an exceptionally large range of sizes. The Man from Anaconda will be glad to give you more information and help with a production run in your plant. See "Anaconda" in your phone book—in most principal cities—or write: Anaconda Wire & Cable Company, Magnet Wire Headquarters, Muskegon, Michigan.
Micromodule Program Expanded by Army

The Signal Corps has awarded the Radio Corporation of America a $2,388,939 contract to expand the company's miniaturization program by extending the range of element values and widening the variety of micro-elements.

Tunnel diodes and unipolar transistors are included in the expanded miniaturization program, which is based on RCA's micromodule concept.

Navy Reissues Tips For Equipment Design

A revised check list for electronic designers is being offered by the Navy Electronics Lab. Handy tips on common design faults, the human factor and common causes of equipment failure are given in the 1959-60 edition of "Suggestions for Designers of Electronic Equipment."

Copies of the new edition, little changed from last year's but listing the latest documents for specifications and standards, may be obtained from the Commanding Officer and Director (Code 2460), U.S.N.E.L., San Diego 52, Calif.

NEW CATALOG ON ANALAC
Yours for the asking.
Mail coupon

ANAconda WIRE & CABLE COMPANY
Magnet Wire Headquarters,
Muskegon, Michigan.
Please send me catalog C-95A on Analac ready-to-solder magnet wire.

NAME & TITLE: ____________________________
COMPANY: ______________________________
ADDRESS: ______________________________
CITY, ZONE, STATE: ______________________
announcing

A "CIRCUIT EQUIVALENT" COMPONENT with flip-flop characteristics

THE SILICON TRIGISTOR

Advanced diffusion techniques at SSPI have produced the Silicon Trigistor — the first commercially available "Circuit Equivalent" semiconductor component, with characteristics comparable to the flip-flop or bistable multivibrator.

The Trigistor is a silicon PNPN device with triggered turn off as well as triggered turn on control at its base. A low level positive trigger pulse applied to the base turns it on, and it remains on without sustaining base current. A negative trigger pulse on the base turns it off. The 3C Series is designed for bistable switching in the range of 1 to 8 mA collector current with collector voltage ratings to 60V.

Usually the Trigistor will perform the same function as two transistors plus several associated capacitors and resistors. Thus through circuit simplification both smaller size and higher reliability can be achieved.

Available now through your local SSPI representative or by contacting the factory direct.

Write for Bulletin C410-01

NEWS

British Transmitter Has Wideband Amplification Over Entire HF Band

A radical hf transmitter has been designed around a distributed amplifier that provides wideband amplification over a whole hf band and permits two or more simultaneous transmissions from one transmitter.

Solved by the design is the problem of stage-by-stage retuning of the hf amplifier to change frequencies — operational tuning is eliminated.

The design breakthrough was

Wideband Amplification and Distributed Amplifiers

Wideband amplification is not in itself new. For many years amplifiers have been built having bandwidths of several hundred megacycles. But these normally represent only a small proportion of the mean frequency of operation. At the lower frequencies, television baseband signal amplifiers cover bandwidths of very low frequencies up to 5 or even 10 megacycles, at fairly high power levels.

To cover the hf band from 2 to 24 megacycles is not so easy, and when powers of the order of 1 kilowatt are required, sufficient freedom from spurious radiation is not easy to obtain. Such an amplifier will, for the lower frequencies of operation, amplify all harmonics generated at any point in the transmitter up to and including the twelfth harmonic — with no significant attenuation. Exceptional linearity is therefore required, since an harmonic content of — 40 db corresponds to a distortion of one per cent, which is considered exceptionally good.

Though distributed amplifiers are common in low-voltage applications, (oscilloscopes, for instance), their use in wideband hf transmission is unusual. According to Marconi, the principle of distributed amplification has never before been successfully used in this type of application.

The artificial capacitance at the input of each driven transistor permits the insertion losses to be smaller than would be the case with a conventional amplifier design.

The line has...
Transmitter with distributed, wideband power amplifier is claimed to be only one in the world capable of transmitting on two or more different wavelengths at the same time.

achieved by engineers of Marconi's Wireless Telegraph Co. Ltd., England, and is incorporated in the company's HS113 transmitter, a 1 kw, hf unit consisting essentially of the distributed amplifier and its drive equipment.

The key problem that had to be solved to achieve wideband amplification from 2 to 24 mc was finding a way to get a high ratio of available current to effective anode capacitance; and the ratio had to be virtually independent of the load presented to the amplifier.

The solution was distributive amplification using an artificial transmission line in which the shunt capacitances were replaced by the tube capacitances.

In the distributed amplifier used in the HS113 transmitter, the inductance separating individual tubes (see schematic) effectively isolates the tube interelectrode capacitances while the anode currents contributed by individual tubes add up.

The input signal is applied to an artificial line in which the shunt capacitance is provided by the tube input capacitance. Each tube is thus driven in succession, the time delay depending on the properties of the artificial line.

The anodes feed a transmission line having characteristics identical

(Continued on p. 16)
Daven precision wire wound resistor...

Type 1282 actual size

makes other miniatures look like giants!

DOWN, DOWN, DOWN go the dimensions of Daven precision wire wound resistors. The latest: a miniature resistor that is the smallest ever made! Developed for a major missile program to meet stringent space requirements without sacrificing reliability, this Type 1282 meets all specifications of MIL-R-93B, Amendment 3, except physical size.

Specify Type 1282, or other units in the Daven miniature family, for all of your small-size, high-reliability wire wound resistor requirements. Available in all tolerances and temperature coefficients.

<table>
<thead>
<tr>
<th>Type</th>
<th>Diam</th>
<th>Length</th>
<th>Max Watts</th>
<th>Max Ohms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1250</td>
<td>1/4</td>
<td>1/2</td>
<td>.33</td>
<td>1 megohm</td>
</tr>
<tr>
<td>1273</td>
<td>1/4</td>
<td>5/16</td>
<td>.25</td>
<td>400K</td>
</tr>
<tr>
<td>1274</td>
<td>3/16</td>
<td>3/8</td>
<td>.25</td>
<td>250K</td>
</tr>
<tr>
<td>1282</td>
<td>1/8</td>
<td>1/5</td>
<td>.05</td>
<td>100K</td>
</tr>
<tr>
<td>1284</td>
<td>1/4</td>
<td>27/64</td>
<td>.25</td>
<td>1 megohm</td>
</tr>
</tbody>
</table>

Write today for complete information!

THE DAVEN CO. LIVINGSTON, NEW JERSEY

TODAY, MORE THAN EVER, THE DAVEN © STANDS FOR DEPENDABILITY

NEWS

(continued from p. 15)

to the artificial line; half the anode current of each tube contributes to the output load, the other half travels to a terminating resistor (Rt in the schematic) where it is dissipated.

The number of tubes and the anode voltage used are adjusted to permit optimum operation at the low-frequency end of the band

The Simplified version of the distributed amplifier that makes possible unusual performance new transmitter. Amplifier uses low-impedance tubes in parallel to handle considerable current swing with low-anode capacitance. Successful application of this technique is why...

where half the developed power is dissipated in the terminating resistor.

Two stages of this amplifier are used in the HS113 transmitter; the next to last operates Class A with a 26-db gain, the final stage operates Class AB with a 25-db gain.

In each stage two distributed amplifiers operate in push-pull to offset development of even harmonics and to improve over-all efficiency. The push-pull operation is gained by...
feeding two single-ended amplifiers from an unbalanced-to-balanced transformer. Special matching techniques eliminate out-of-step operation.

According to the manufacturer, the unit's multiple transmission capability permits transmission on a new frequency before the old one is cut off. Frequency is changed by switch; aerial commutation in the transmitter automatically selects the proper array.

Back Scatter Radar Tracks Missiles Anywhere

The Navy has tracked Soviet missiles from the United States and detected nuclear blasts at ranges of thousands of miles by applying ionospheric back scatter techniques to radar tracking.

The experimental long-range tracking technique, developed by the Office of Naval Research, may make possible detection of 95 per cent of missile launchings and nuclear blasts occurring anywhere in the world.

Key to the research achievement is the fact that ionized exhaust gases in rocket trails reflect radar signals. High-frequency pulses bounced off hot exhaust gases can be picked up after scattering back between the earth and the ionosphere to a monitoring receiver. Main difficulties are signal identification and determination of accuracy.

Nuclear explosions, which also generate reflecting clouds of ionized particles, can be detected in the same way.

The Navy reports that detection stations with outputs as low as 15 to 50 kilowatts have given excellent results. However, more power gives better resolution and detail, and stations more than twice as powerful as the largest in operation are under construction or planned.

First successful trackings were made in 1957. But a complete tracking system based on the radar backscatter technique is at least a year away—and then only if research moves as fast as it has been moving.

HOW RCA S-311 PLATE MATERIAL IMPROVES TUBE PERFORMANCE

- Reduces possibility of gas runaway
- Lengthens shelf life
- Lengthens operating life
- Reduces interelectrode leakage
- Assumes more stable operation
- Improves heat dissipation
- Reduces secondary emission

here's why:

- S-311 is pure carbonyl-nickel having very low gas and contaminant levels.
- S-311 plate material has virtual dull-black-body characteristics and makes possible the design of plate structures having extremely efficient heat dissipation.

Give your designs the benefit of this combination of plate qualities. Get full information about the RCA tubes utilizing S-311 plate material from your local RCA Field Representative today.
The growing family of instrument servo components

How detection range of various airborne systems will be extended over the next 10 years, according to Aerospace Industries Associates. Systems reaching 200,000 miles are predicted for 1970, provided progress is made in determining effects on signals of gases, aurorae, and cosmic interference.

ITT infrared tracker for satellites uses 19-inch collecting mirror focusing on a detector cell chilled to -300 F. Cell is mounted halfway up tube, which oscillates until tracking mechanism locks onto satellite.
Polaris-launching switchboard, designed by Burroughs and being installed aboard nuclear submarine George Washington, will switch data and power to and from fire-control panel.

Russian engineers, members of the Computing Center of the Soviet Academy of Sciences, are told how IBM 305 operates at Moscow fair.

18-foot dish at the University of Texas has picked up moon-bounce signals originating in Great Britain.

MAXWELL MAGNETICS and MICROWAVE

Creative Imagination was for James Clerk Maxwell the catalyst that united a profound physical intuition and a formidable mathematical capacity in a brilliant formulation of electromagnetics—the basis of all today's practical electromagnetic applications.

At National Co., creative imagination is transmuting observed physical phenomena and mathematically formulated theory in such applications as long range microwave transmission—extending further our practical control of physical phenomena.

The implications of these new means of communications are manifold and the applications multitudinous.

National Co. is a community of minds and talents that enjoys the challenge and the prestige of success in such advanced fields as multipath transmission, noise reduction, correlation techniques for signal processing, Tropospheric scatter systems, Ionospheric scatter systems, molecular beam techniques, long range microwave transmission and missile checkout equipment using microwave and digital techniques.

National Co. has grown with the Tradition of New England electronics. Your needs and problems receive exceptional attention at National Co., because, here, creativity is required, recognized and rewarded.

Write or phone

MANUFACTURERS OF MATERIEL AND EQUIPMENT FOR U.S. DEFENSE
Tung-Sol tubes and transistors help MAXITROL provide non-cycling home heating

Maxitrol Company's new Selectra electronic gas furnace control does away with fluctuations in room temperature. It continually adjusts the burner flame to exactly compensate for the heat loss in the home and it responds to temperature changes as low as 1/10 degree F. Selectra controls are available with either tube type or transistorized amplifiers which boost the signal from a thermistor in the wall unit to selectively energize a solenoid in the furnace modulator valve.

Depending on their design some gas burners must be ignited at maximum flame. On such burners the tube type amplifier using a Tung-Sol 2D21 thyratron is recommended. The tube warm-up period provides a 10-15 second delay during which time the solenoid cannot be energized, insuring ignition at maximum flame.

Transistorized Selectra amplifiers are recommended for burners which can be successfully ignited at less than maximum flame. Since there is no warm-up delay with the transistorized circuit, ignition may occur as low as 1/3 of full fire. For this unit, Tung-Sol supplies TS757, a high power transistor selectively inspected to provide extremely tight characteristics. The high reliability of these Tung-Sol transistors, say Selectra's designers, was largely responsible for this type of control being in production.

Do you have an unusually demanding tube or transistor requirement? Tung-Sol applications engineers stand ready to help you. You'll get utmost benefit from their experience by consulting them while your equipment is in the planning stage. Just call or write: Tung-Sol Electric Inc., Newark 4, N. J. TWX: NK193

NEWS

New Navy-Civilian Board Mapping Air Standards

A new advisory board composed of civilian engineers and Navy officers is helping the Navy set up standards for reliable aeronautical equipment.

The unit, sponsored by the Navy Bureau of Aeronautics, is called BuAer-Industry Advisory Board on Reliability and Operational Design Requirements of Aeronautical Material. Rear Adm. L. D. Coates, assistant chief for research and development, is chairman of the board.

Standing committees were formed recently, and the group has begun full-scale operations. Among its goals are the mapping of:
- Requirements for maximum operational efficiency.
- Procedures for analyzing, testing, demonstrating and maintaining equipment.
- Interchange of technical information between military and operational forces and industry.

The Navy has announced that it aims to have "a fair representation on the board of independent, small, medium and large business enterprises from different geographical areas and of different segments of the industry."

Radar Suggested to Help Helicopters Fly 'Blind'

An advanced, pulsed radar in the millimeter wavelength range has been tentatively proposed as an obstacle sensor to permit helicopter flights in "blind weather."

This suggestion has resulted from a continuing study by Allen B. DuMont Labs, Inc., of Clifton, N.J., as part of the Army-Navy Instrumentation Program. Cooperating with DuMont is T.R.G., Inc., of Syosset, N.Y.

The helicopter radar sensor would have a very narrow antenna beam width and a field of view approach-
ing a hemisphere. Describing its anticipated operation, DuMont says:

"If the elements in the field of view are examined sequentially in time, the frame time required, due to the finite velocity of propagation, is approximately one second. Geometric distortion in the radar information will be introduced by translation and rotation of the aircraft during a single frame time, which distortion can be reduced through using information about the aircraft's motion to correct the data or by using a partially simultaneous scan to increase the frame rate."

The system would use a new type of radar display called ranged perspective. In such a display, intensity is varied as a function of the range to the object, so that depth perception is achieved.

Ordinarily helicopters encounter greater ground hazards than fixed-wing aircraft because of their low flights and landings in tight spots away from airports. Noting that planes other than helicopters might require sensors of different capability, the study recommends investigation of a building-block approach to instrumentation. This would provide a basic obstacle sensor for aircraft of limited performance, with supplemental components for the basic system in craft of higher performance.

American Paper Wins British IRE Award

Two American scientists have made the "outstanding contribution on an engineering subject" published in the British IRE Journal during 1958.

For their paper, "New Developments in Silicon Photo-Voltaic Devices," Dr. Morton Prince and Martin Wolf will receive the Marconi Premium.

Dr. Prince is vice-president of research in the semiconductor division of Hoffman Electronics, and Mr. Wolf is the company's design head for solar cell products.

Circle 19 on Reader-Service Card

Precision Is The Standard At Coors

Micro-Module Wafers

The hottest news in extreme miniaturization of electronic equipment is the micro-module— an amazingly small combination of sub-miniature electronic circuit components. The fundamental unit of a micro-module is the high alumina ceramic base plate—a tiny ceramic wafer, approximately 0.300" square x 0.010" thick. Upon this is deposited or metalized a component of a circuit—a resistor, capacitor, transistor, diode, etc. The micro-module is a combination of several of these elements in a small space to serve a specific circuit function—amplifier, oscillator, etc.

Coors is manufacturing these precision wafers in large quantity production runs for several manufacturers working on the same project. Coors holds all dimensions of the tiny ceramic wafer to extremely close tolerances so that the micro-elements produced from them are entirely interchangeable from manufacturer to manufacturer.

Tube Envelopes

Coors makes high strength ceramic envelopes to extremely close dimensional tolerances and in a wide range of sizes for use in modern electron tubes. Certain of the Coors ceramic compositions were developed specifically to meet the rigorous operating conditions and reliability requirements to which high power, high frequency tubes are subjected.

Illustrated here is one of the miniature ceramic envelopes in regular production. Coors regularly produces many other sizes up to 10" O.D. Larger sizes can be manufactured.

Coors ceramics have outstanding electrical and physical characteristics. These properties are not affected by high outgassing or high operating temperatures.

LOWER COSTS for Precision Ceramic Parts Through Quantity Production—Coors has been able to make substantial reductions in manufacturing costs by stepping up production of high precision parts through automation.

All this adds up to these advantages for you: 1. Faster delivery on large quantity orders. 2. Precision parts—uniform and interchangeable, permitting you to use them on a production basis. 3. Prices that are correspondingly low.

For further information about Coors Space Age Ceramics and for a complete description of physical properties, write for Bulletin 898.
Still Another Review Procedure for Procurement Programs

New communications programs proposed by the Armed Services are to be reviewed more intensively before being given a green light. The new review procedure will apply to all programs slated to cost $100,000 or more, but research, development, test and evaluation projects are exempt, as are communications programs designed to serve tactical units, an aircraft, or a ship. Exemption in these cases appears to be based on the notion that the Assistant Secretary of Defense (Supply and Logistics), who has over-all charge of the review, should not have to concern himself with things that can properly be decided by lower-level executives.

New communications reviewers are "all interested elements" in the Office of the Secretary of Defense. If more than one Service is to be involved in the program, the Office of the Joint Chiefs of Staff will also participate, doubtless though its Communications-Electronics Directorate.

Rigorous screening by the individual Services can be expected before new communications programs are passed upward for high-level approval or disapproval. The reason for this is that the Service which makes the proposal must also undertake to commit funds to bring it into being.

Emergencies Provide a Loophole

In an emergency, the Services can still jump the gun and undertake communications programs before final action by the Assistant Secretary. "Emergency conditions" are not to include "budgetary deadlines, inadequate advance planning, or normal expansions," declares the Defense Department Directive (No. 4630.1) that sets up the more elaborate review procedure.

When a new proposal is turned in to the Assistant Secretary, information will have to be given concerning its relationship to the communications facilities either planned by the Department or in existence. Time required for each phase of multi-phase programs must be stated, and the estimated cost of completing the program must be given.

Review in the Office of the Secretary will
"determine conformance with policies, feasibility, efficiency, and economy." If referral to the Joint Chiefs is necessary, they will concentrate on these points: (1) Does the proposal conform to strategic military needs? (2) Can an existing or planned Defense Department communications system do the job intended for the proposed program? (3) Should the program be revised, modified, or expanded so that it will meet needs of other organizations within the Defense Department? (4) Does the program fit in with the objectives of a joint communications network? (5) What economic and military factors must be considered in an assessment of the proposal?

More Lead Time Coming to Permit Qualifying for Approved Lists

Makers of standard components and other items that are bought off the shelf or out of a manufacturers' stock should benefit from a change in the Armed Services Procurement Regulation that is supposed to help broaden participation by interested manufacturers in purchases from qualified product lists. Basic to this is provision for more publicity prior to issuance of invitations to bid. This is intended to enable suppliers to arrange to have their lines qualified, through tests, if they are not already listed.

Aircraft Companies Still Getting Largest Share of Missile Money

Funds for missiles are flowing heavily into the coffers of the aircraft manufacturers, according to the Defense Department. In each of the past two fiscal years, about 50 per cent of each missile dollar has gone to an airplane company. In fiscal 1958, the Pentagon committed $2,621.1 million for missiles; aircraft companies got $1,334.8 million. In fiscal 1959, the proportion of funds received by aircraft makers held just about steady, but the dollar figure zoomed. The Defense Department's funding commitments for missiles came to $3,477.7 million and aircraft firms shared $1,788.2 million.

In the current year, a still greater increase is being made in missile funds. In fiscal 1960, missile defense, for example, will get twice as much as it did last year. Actual appropriation for procurement of missiles in fiscal 1960 is $3.6 billion (about $500 million less than last year). This money will be split among fewer programs, since some "which no longer appear technologically promising or which have been overtaken by events, will require less funding or no funds at all." Note, too, that missiles will get almost $1.5 billion—or 40 per cent—of the total appropriation of $3.8 billion for research, development, test, and evaluation.
For most applications, solid 446 stainless alloy electrodes are best suited to our users needs. They are ideally suited to the perfect mating between our V24M glass and the pin. This fusion of glass and metal together with compression accounts for the rugged leak-proof character of Fusite Terminals under rough production handling and makes for easy solderability.

CONSIDER THE PLUS OF COPPER CORED ELECTRODES

When your application indicates the need for greatly improved electrical or thermal conductivity, you still need not sacrifice these inherent Fusite advantages. At slight additional cost, any of our terminals can be ordered with electrodes that have a copper core of as much as 25% of the total electrode area. Copper cored wire has up to 10 times increased current carrying capacity, yet, you maintain nearly all the advantages of solid 446 stainless.

Would you like to make tests?

Write Department C-5

THE FUSITE CORPORATION

6000 FERNVIEW AVE., CINCINNATI 13, OHIO

CIRCLE 21 ON READER-SERVICE CARD

MEETINGS

Calendar of Events

October
6-9 High Temperature Symposium, Stanford Research Institute, Asilomar Conference Grounds, Calif.
7-9 IRE Canadian Convention on Electronics and Nuclearronics, Exhibition Park, Toronto, Canada.
12-14 Fifteenth National Electronics Conference, AIEE, Illinois Institute of Technology, IRE, Northwestern University, and University of Illinois, Hotel Sherman, Chicago, Ill.
13-14 National Technical Conference, Society of Plastics Engineers, Ambassador Hotel, Los Angeles, Calif.
22-23 Fifteenth Annual National Conference on Industrial Hydraulics, Illinois Institute of Technology and Armour Research Foundation, Hotel Sherman, Chicago, III.
26-28 Sixth Annual East Coast Conference, IRE Professional Group on Aeronautical and Navigational Electronics, Baltimore, Md.
28-30 Annual Industry Display, Aircraft Electrical Society, Pan Pacific Auditorium, Los Angeles, Calif.

* Includes meetings described herewith.

5th National Communications Symposium, October 5-7

The requirements, progress, and challenge of communications will be stressed at the 1959 symposium. Sponsored by the IRE PGCS, the sessions will cover two major areas: (1) communications systems and (2) communications equipment and related techniques. Approximately 50 engineering and manufacturing concerns from the communications field will exhibit their products during the three-day meeting. The symposium will be held at the Hotel Utica, Utica, N.Y. Technical program chairman is Ralph L. Marks, Griffiss Air Force Base, Rome, N.Y.

Value Engineering Symposium, October 6-7

The Electronic Industries Assoc. will sponsor this symposium at the University of Pennsylvania. Participating will be those industry members and military personnel acquainted with the successful use of value engineering tools. R. S. Mandelkorn of Lansdale Tube Co., a subsidiary of Philco Corp., is general chairman of the symposium.

4th IRE Canadian Convention, October 7-9

The Automotive Building at Exhibition Park, Toronto, Canada, will be the site of this convention. Over 100 papers covering the latest developments...
ments and techniques in electronics and nuclearics will be presented. Among the branches of the industry to be represented will be audio, components, computers, industrial electronics, transistors, and tubes. The Canadian Sections of the IRE are sponsoring the show. Eric L. Pain at Exhibition Park is general chairman.

15th National Electronics Conference, October 12-14

Virgil H. Disney, president, reports that the NEC will hold its sessions at the Hotel Sherman in Chicago, III. Sponsored by the AIEE, Illinois Institute of Technology, IRE, Northwestern Univ., and Univ. of Illinois, the conference will include discussions on circuit theory, communications systems, microminiaturization, servo mechanisms, value engineering, and other topics.

Michigan Industrial Electronics Exposition, October 26-29

Electronic Representatives, Inc. will sponsor this show at the Detroit Artillery Armory, Oak Park, Mich. Exhibitors will include manufacturers of industrial electronic equipment and components as well as Michigan electronics representatives. Technical papers will be presented at sessions scheduled to run concurrently with the exhibitions. Show manager is R. G. Wood, 830 W. Vernor, Detroit 1, Mich.

6th Annual East Coast IRE Aero-Electronics Conference, October 26-28

The classified sessions of the IRE PGANE conference, sponsored by the Air Research and Development Command, will cover: "Correlation Techniques of Data Processing," "Advanced Radar Techniques," and "Phased-Array Radars." Correspondence concerning clearance may be addressed to T. M. O'Connor, Security Coordinator, IRE ECCANE, Bendix Radio, Baltimore 4, Md. Unclassified sessions will be held concurrent with the classified presentations. The location of all sessions will be the Lord Baltimore Hotel, Baltimore, Md. Dr. R. C. Spencer of the Glenn L. Martin Co., Baltimore 3, Md, is Papers Chairman.

5th Electron Devices Meeting, October 29-30

To be held at the Shoreham Hotel, Washington, D.C. The conference, sponsored by the IRE PGED, will present papers dealing with material of an applied or developmental nature in the field of electron devices. This should include electron tubes, semiconductor devices, lasers, parametric amplifiers, and other solid state device configurations. John A. Hornbeck of Bell Telephone Labs, Murray Hill, N.J., is technical program chairman for the meeting.

This new broadband, high gain cw traveling wave amplifier is the only tube in S-band delivering 300 watts nominal — service in microwave systems, high performance tracking radars, high frequency communications networks and other applications where high power and high gain in the 2.0 to 4.0 kmc frequency range are desirable. This tube features rugged, all metal-ceramic construction for high performance aircraft environments and is short-circuit stable. The STS-101 may well be suited to projects or problems you are working with now. Write for data regarding your application.
CRIMP at bench...or at equipment

Precision hand, pneumatic, or automatic tooling guarantees uniform and complete crimp for each connection — a measurable quality control — at a high speed production rate.

SNAP-LOCK ... in or out

Pins and sockets are easily and quickly snap-locked into plugs and receptacles. They may be removed with a simple extraction tool for circuit changes or checks.

CONNECT ... only 3 points of contact

The HYFEN method provides the minimum number of contacts — 3 — thereby reducing reliability problems. Exceeds the requirements of MIL-C-5015C and MIL-C-8384A.

HYFEN® connectors with crimp-type snap-locked contacts

[BURNDY's HYFEN method, already widely accepted in the industry, speeds the wiring of electronic harnesses and systems, and achieves greater dependability and versatility than has heretofore been possible. Crimp-type connections eliminate time-consuming solder operations and the disadvantages in the use of solder.

For complete information, write: OMATON DIVISION

BURNODY CORPORATION, Norwalk, Connect.

In Europe: Antwerp, Belgium

Toronto, Canada

CIRCLE 25 ON READER-SERVICE CARD
The Difference That May Not Be Worthwhile

We live in an age of superlatives. Every new thing, it seems, including the latest electronic device, is the world's smallest fastest, most accurate, and most reliable. It is hardly enough to get there first with the mostest; today only the mostest mostest is accepted.

If anyone can see through such smokescreens and get to the substantial, it should be the engineer. By nature and training, he is a discriminating person. It is alarming, therefore, to see engineers caught in a race to design something just to claim a world's record.

We need top performance, yes, but the cost of winning by a nose may be wrecking our orderly processes for achieving progress. An example is provided by Mr. Harper O. North, president of Pacific Semiconductors, Inc. In telling why it might be difficult to standardize diodes (see p. 92 of this issue), Mr. North notes:

"Circuit designers these days are called upon to produce circuits which will out-perform their predecessors, and they call upon diode manufacturers for faster recovery time, increased power handling capacity, higher maximum temperature ratings and the like. Small improvements are gratefully received, and a new number is frequently generated as a result of improvement in any one of the areas specified."

Mr. North may or may not agree, but this editor thinks "small improvements" should not, as a rule, "be gratefully received."

We need significant or substantial improvements—preferably gains by an order of magnitude. A new circuit should show a quantum-like jump in performance, not an improvement discernible only with finely calibrated instruments.

Although engineers are not to blame for competing in design races that require photo finishes (they only follow orders), they should question their validity. The likely benefits of running the race at all should be questioned. Sponsors of such contests (mainly the military—most commercial product managers know what engineering isn't profitable) should be apprised in advance of the probable significance of the improvement, especially if the odds are against large gains being made. If special components and hairline adjustments are needed to produce the difference, the benefits are certainly suspect.

Engineers should constantly ask whether the difference is worthwhile.
This is the first of a three-part series on oscilloscope trace recording. This series should answer almost any question on scope trace photography.

Kemon P. Taschioglou
Polaroid Corp.
Cambridge, Mass.

Hy P. Mansberg
Airborne Instruments Lab.
Mineola, L.I., N.Y.

Table 1. Land Films and Their Characteristics for Oscilloscope Trace Photography.

<table>
<thead>
<tr>
<th>Film Type</th>
<th>Picture Size (Inches)</th>
<th>Base Stock</th>
<th>Description</th>
<th>Trace Recording Applications</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>3-1/4 x 4-1/4</td>
<td>Paper print</td>
<td>ASA 200</td>
<td>Stationary traces.</td>
<td>Most economical, but recommended only for steady state traces.</td>
</tr>
<tr>
<td>46-L</td>
<td>3-1/4 x 4 (lantern slides)</td>
<td>Paper print</td>
<td>Wide range ASA 600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>3-1/4 x 4-1/4</td>
<td>Paper print</td>
<td>ASA 3000</td>
<td>High speed transients and stationary traces.</td>
<td>Fastest photographic material for cro trace recording.</td>
</tr>
</tbody>
</table>

*Type 44, with the same size as Type 42 and with ASA 400, is no longer manufactured. Type 32, which formerly had the same characteristics as Type 42, except for its 2-3/4 x 3-1/2 in. size, now has an ASA rating of 400. Few cameras are in use for this film size.

*All types: Medium contrast, panchromatic, eight exposures per roll. ASA rating is equivalent daylight exposure index.
Part 1.
Films and Cameras

THE POLAROID* LAND photographic process is the most commonly used for oscilloscope trace recording for three important reasons: First, the finished picture comes right out of the back of the camera—no darkroom or processing facilities are needed. Second, the results are available in one minute. Third, it is easy to learn how to take the pictures.

At one time, the most common use of the Land Photographic process was in recording low frequency steady-state patterns as an aid to circuit development. Today, cameras and film are available for capturing millimicrosecond transients.

Films

Table 1 lists all available Land films and their characteristics which are important for trace recording. There are two base materials used: (1) paper, which produces opaque positive pictures, and (2) transparent film, which produces slides for projection.

The paper prints are developed in the Land camera back in 60 seconds. After development for permanent protection, they require a plastic coating with a print coater enclosed in each package.

Transparencies require two minutes' development time in the back of the camera and require a 20-second bath in a hardening solution contained in a "Dip" kit, which is sold with the film. The transparencies are placed in plastic mounts for projection.

Positive prints are the most suitable materials for publication, although some journals will accept transparencies. For slides at lectures or seminars, the transparency film is ideal. However, for general work, positive prints have shorter development time, are easier to handle, and are more economical.

Sensitivity vs. Writing Rate

Notice in Table 1 that all the films are panchromatic, so they can be used with all phosphors emitting light in the visible light range. The ASA exposure index is only an approximate indication of the relative sensitivity of each film for trace recording. "Maximum writing rate" is a more useful concept. It describes a film's ability to...

*Polaroid is a registered trademark of the Polaroid Corporation.

AMP Incorporated

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA

A-MP products and engineering assistance are available through subsidiary companies in: Australia • Canada • England • France • Holland • Japan

CIRCLE 27 ON READER-SERVICE CARD
record the fastest possible transients, and is discussed in more detail in Part 2 of this article.

Type 42 is the most economical of all the Land films and has the lowest maximum writing rate. It is largely used for recording stationary traces. With its high resolution, it can produce sharp records of complex waveforms or intensity modulated traces.

Type 47, ASA exposure index 3000, is the most versatile of all Land films in trace recording because its extra high speed permits shorter exposures, lower intensity light settings, and smaller lens apertures. The results are sharper pictures containing more information.

Oscilloscope Record Cameras

Seven major manufacturers produce specialized cameras using Land camera backs for high speed work. Table 2 lists these manufacturers, the model numbers, and general features of the various cameras. Each manufacturer distributes cameras through his own distribution channels.

The cameras mount directly onto the standard five inch cro. They are designed to solve the problems of low light level and close-up photography. They provide accurate centering, maintain focus, and control stray light.

Camera Backs and Viewing Systems

Basic considerations in choosing oscilloscope record cameras are the positions of the camera back and the viewing system. Three systems are commonly used.

1. Film plane parallel to the tube face with viewing at slight angle to the tube face. The major advantage of this system is that the picture is correctly oriented with no image reversal. On the other hand, viewing at an angle causes visual parallax and slight difficulty in seeing the edges of the CRT screen. This system is found on DuMont's Model 353 and the cameras of Hewlett-Packard, Fairchild Camera and Instrument, Electronic Tube, Telechrome, and the Beattie-Coleman 12365.

2. Film plane perpendicular to the tube face with a beam splitter mirror permitting direct head-on view. This system is found on DuMont's Model 302 and Beattie-Coleman's Model 12445. Both cameras have comfortable binocular viewing. The mirror, however, reverses the image on the film.

3. Film plane parallel to the tube face with a swinging assembly so the camera back can be swung away from the CRT face. The Edgerton, Gernsheim, and Grier cro-camera system using this technique employs a traveling wave CRT. It is designed to display transients and repetitive phenomena in the millimicrosecond region. The trace is displayed on a 0.4 x 0.6 in. area and is viewed through a built-in 5X viewing lens when the camera back is swung out of the way.

The other camera using this system, Beattie-Coleman's Model 12365, has binocular angle viewing with the camera back swung into place, and direct head-on viewing when the camera and lens are swung away from the CRT.

Camera backs are mounted with the long film dimension parallel, either to the horizontal axis of the CRT, or to the vertical axis. The former mounting permits recording full width images, as with the picture in Fig. 1, made on Hewlett-Packard's Model 196-A. The latter mounting is combined with optical reduction, producing a format as shown in Fig. 2, which was made on DuMont's Model 302.

The beam splitter mirror found on some cameras separates the highly actinic blue from the yellow portions of light energy emitted by the CRT. Only a negligible amount of actinic light is lost by sending some energy through the beam splitter to the observer.

Image Reduction and Moving Backs

Some cameras have optical systems which reduce the image size on the film. Image reduction has two primary advantages: First, film usage is more economical, for more images can be recorded per frame. And second, there is a gain in the trace image illumination reaching the film for a given exposure and a favorable lowering of the effective writing speed on the film.

On the other hand, those cameras with no reduction (1:1 reduction ratio) make calibration on the picture much easier.

To take full advantage of the picture area available on each frame, Beattie-Coleman, DuMont, Fairchild, and Hewlett-Packard have designed cameras which permit multiple exposures. The first three manufacturers provide movable cam-
era backs. The Hewlett-Packard camera provides the same effect with a movable lens mount, recording multiple exposures as shown in Fig. 1.

Mounting and Focusing

All the cameras listed either mount securely to a flange provided on standard five-inch scopes or to a standard bezel which can be easily attached to the scope panel. Although the cro cameras are basically fixed focus types, adjustments are provided for positioning parts of the camera to compensate for variation in the exact position of the CRT face. Such requirements arise from different CRT face configurations, different CRT positions in the cro, and the position of filters and graticules.

Precise focusing is important for recording detail in a complex trace or for recording highest possible writing speeds.

A sheet of ground glass in the back of an empty camera provides means for focusing. However, judgment must be used. The trace itself, lacking sharpness, is difficult to focus on, and the graticule scale is not precisely in the same plane as the trace. Hence, the engineer must decide whether to focus on the trace or the graticule, or he must compromise.

For focusing on the trace, a convenient trick consists of scribbling fine pencil lines on the ground glass, then illuminating the glass from behind with a lamp or sunlight. This projects the image of the scribed line right onto the CRT phosphor and provides an excellent image on which to focus.

Camera Settings

Settings for aperture and shutter speed are performed at the lens of the cameras, usually through trap doors, which must be closed during exposure. The camera of Electronic Tube Corp. is an exception. It provides a system for making settings outside of the camera. Some cameras require removal of the entire camera from the cro to make changes.

In this way, the camera lens is used in reverse; it projects the film plane onto the CRT screen. Of course, any filter in front of the CRT must first be removed.

Lenses

All the cameras, except for the specialized Edgerton, Germeshausen, and Grier camera, employ a lens-shutter combination with 75 mm Wollensak lenses. The low light levels of high speed transients usually require wide open apertures of f1.9 and f2.8. The Hewlett-Packard camera uses a Wollensak lens with additional field correction and edge resolution.

(See following page for tabulation of cameras.)
<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Lens</th>
<th>Shutter</th>
<th>Camera Back Position</th>
<th>Orientation of Film's Long Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beattie-Coleman, Inc.</td>
<td>12445</td>
<td>Wollensak Raptor 75 mm, f/1.9</td>
<td>Alphax #3, 1 sec. to 1/100 sec., Time and Bulb.</td>
<td>Above line of view, perpendicular to crt</td>
<td>Parallel to crt horizontal axis</td>
</tr>
<tr>
<td></td>
<td>12365</td>
<td>Wollensak Raptor 75 mm, f/1.9</td>
<td>Alphax #3, 1 sec. to 1/100 sec., Time and Bulb.</td>
<td>Parallel to crt, with swing-away assembly</td>
<td>Parallel to crt horizontal axis</td>
</tr>
<tr>
<td>Allen B. Du Mont Laboratories, Inc.</td>
<td>302 (f/2.8)</td>
<td>Wollensak Raptor 75 mm, f/2.8</td>
<td>Alphax #2, 1/25 to 1/100 sec. and Bulb</td>
<td>Above line of view, perpendicular to crt</td>
<td>Parallel to crt vertical axis</td>
</tr>
<tr>
<td></td>
<td>302 (f/2.8)</td>
<td>Wollensak Raptor 75 mm, f/1.9</td>
<td>Alphax #3, 1 sec. to 1/100 sec., Time and Bulb.</td>
<td>Parallel to crt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>353 (f/2.8)</td>
<td>Wollensak Raptor 75 mm, f/2.8</td>
<td>Alphax #2, 1/25 to 1/100 sec. and Bulb</td>
<td>Parallel to crt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>353 (f/1.9)</td>
<td>Wollensak Raptor 75 mm, f/1.9</td>
<td>Alphax #3, 1 sec. to 1/100 sec. and Bulb.</td>
<td>Parallel to crt</td>
<td>Camera can be rotated 90 deg. for recording on both axes.</td>
</tr>
<tr>
<td>Edgerton, Germeshausen & Grier, Inc.</td>
<td>710 with Type CA-3 Polaroid Adaptor</td>
<td>Effective f/0.7</td>
<td>Manual movement of dark slide</td>
<td>Parallel to crt, with swing-away assembly</td>
<td>Parallel to crt vertical axis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Tube Corp.</td>
<td>SM-200</td>
<td>Wollensak Raptor 75 mm, f/1.9</td>
<td>Alphax #3, 1 sec. to 1/100 sec., Time and Bulb.</td>
<td>Parallel to crt</td>
<td>Parallel to crt vertical axis</td>
</tr>
<tr>
<td></td>
<td>F-296</td>
<td>Wollensak Raptor 75 mm, f/1.9</td>
<td>Alphax #3, 1 sec. to 1/100 sec., Time and Bulb.</td>
<td>Parallel to crt</td>
<td>Parallel to ctt vertical axis</td>
</tr>
<tr>
<td></td>
<td>F-286</td>
<td>Wollensak Raptor 75 mm, f/1.9</td>
<td>Alphax #3, 1 sec. to 1/100 sec., Time and Bulb.</td>
<td>Parallel to crt</td>
<td>Parallel to ctt vertical axis</td>
</tr>
<tr>
<td>Hewlett-Packard Co.</td>
<td>196-A</td>
<td>Wollensak Oscillo-Raptor 75 mm, f/1.9</td>
<td>Alphax #3, 1 sec. to 1/100 sec., Time and Bulb.</td>
<td>Parallel to crt</td>
<td>Parallel to ctt horizontal axis</td>
</tr>
<tr>
<td></td>
<td>1521-A</td>
<td>Wollensak Oscillo-Anastigmat 75 mm, f/1.9</td>
<td>Alphax #3, 1 sec. to 1/100 sec., Time and Bulb.</td>
<td>Parallel to crt</td>
<td>Parallel to ctt vertical axis</td>
</tr>
<tr>
<td>Method of Viewing</td>
<td>Image Orientation Reduction Ratio</td>
<td>Multiple Exposures Possible</td>
<td>Other Features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocular, direct view peep</td>
<td>Normal</td>
<td>1:1</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>None</td>
<td>1:0.9</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>None</td>
<td>1:1</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>None</td>
<td>1:1</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>Inverted</td>
<td>1:1</td>
<td>Sliding back with either 3 or 10 equally spaced exposures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>Inverted</td>
<td>2:251</td>
<td>Sliding back with either 3 or 10 equally spaced exposures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>Inverted</td>
<td>1:1</td>
<td>Sliding back with either 3 or 10 equally spaced exposures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>None</td>
<td>1:1</td>
<td>Mounts on E.G.&G.'s Traveling Wave Oscilloscope for recording extremely short pulses in the millimicrosecond range.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>None</td>
<td>1:1</td>
<td>Interchangeable camera back.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>None</td>
<td>1:1</td>
<td>Designed for use with E.G.&G.'s Telechrome Model 1521-A or Hewlett-Packard Model 5816-A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>None</td>
<td>1:1</td>
<td>Data card recording possible.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Features:
- Interchangeable camera back.
- Designed for use with E.G.&G.'s Telechrome Model 1521-A or Hewlett-Packard Model 5816-A.
- Data card recording possible.

Camera Backs:
- Telechrome Model 1521-A
- Hewlett-Packard Model 5816-A
- Fairchild Model F-248
- Fairchild Model F-250
- E.G. Model SW-200
- Telechrome Model 1521-A
- Hewlett-Packard Model 5816-A
- Fairchild Model F-248
- Fairchild Model F-250
- E.G. Model SW-200

Notes:
- Camera back rigid. Two 6 cm x 10 cm grid scales can be recorded on one frame.
Transistorized Phantastron Circuit

Compact size and low weight can be achieved with a transistorized version of the phantastron circuit.

In addition to the obvious savings in size and weight, transistorized phantastron circuits offer better cycle-to-cycle time stability than conventional tube circuits. Less than one µsec time jitter can be achieved, over a half-hour period, for a 200 µsec gate an improvement in stability over the vacuum tube equivalent.

Circuit Operation

When a negative pulse is applied to the trigger input, terminal A (Fig. 1), the voltage at terminal C becomes a linear, positive-going waveform and the output at terminal B a negative gate. The durations of the positive-going waveform and the gate are the same and are a function of the voltage V_1. The relationship between the gate length and voltage V_1 is fairly linear for the circuit in Fig. 1. Improved linearity is achieved by using the Darlington connection, illustrated in Fig. 2. Graphs of these characteristics are illustrated in Figs. 4 and 5.

During the time just preceding the trigger pulse, for the circuit in Fig. 1, there is zero current flowing through R_2 except for the I_n current of T_1. The positive bias (+3 v) is necessary to prevent the IR drop, caused by the I_n of T_1, flowing through R_n and R_b, from exceeding the cut off level and turning on T_1. There exists a base current in T_2 which is approximately equal to E_b/R_t; however, the collector current of T_2 is zero except for the reverse emitter current of T_1. During this time interval, just preceding the trigger pulse, the voltage at terminal B will be close to ground potential since T_2 is collector saturated. The voltage at terminal C will be V_1 minus the I_nR_2 drop of T_1.

Upon the application of a negative trigger to A, T_1 begins to conduct; however, the conduction level is governed by the feedback to the base of T_2 through C_1. The feedback is typical Miller feedback which is set to produce a linear increase in current through R_2, similar to that of the vacuum tube circuit. The waveform of terminal C is differentiated by C_2 and R_6 to produce a positive-gate voltage which turns off T_2. T_3 being gated off produces a negative voltage at terminal B. This negative voltage, in addition to furnishing an output gate, is used to maintain T_1 in the "turned on" state after the triggering voltage is removed.

When the combination of T_1 and T_2 both reach collector saturation, which is approximately...
ground potential, T_3 turns back on; this removes the negative gate at terminal B and returns the circuit to its original state.

Test Results

The circuit illustrated in Fig. 2 was tested for variations of V_1 vs gate length. The data is illustrated in Fig. 4. The sweep voltage produced of terminal C was estimated to have a linearity of approximately 1 per cent.

Fig. 5 illustrates the effect of variations in E_b on gate length with V_1 and E_b tied together.

The simplified circuit illustrated in Fig. 3 provides a linear sweep in the case where a gate voltage is available; the length of the sweep is controlled by the gate length.

Fig. 4. Gate length vs. supply voltage V_1, for circuit of Fig. 2.

Fig. 5. Gate length and change of gate length vs. supply voltage for circuit shown in Fig. 3.
Helpful Tips on
...Liquid Cooling

Alan G. Eades
Monsanto Chemical Corp.,
St. Louis, Mo.

Military specifications or contracts sometimes dictate the requirements the cooling systems must meet. More often, the design engineer is on his own with neither examples to follow nor precedents to draw upon. In this article, author Alan Eades outlines an approach to liquid cooling intended to help the design engineer avoid trial and error in equipment design.

END USE of electronic equipment stipulates many of the cooling system's requirements. Components for aircraft or missiles will differ from ground support equipment. Operational time must be known—whether continuous or intermittent operation is required. Service life required is important. Heat from other related or nonrelated components could aggravate the heat dissipation problem so location of other components must be considered.

The design engineer will want to know:
- Atmospheric and climatic conditions
- Temperature extremes for both storage and operation.
- Maximum altitudes the equipment will reach.

A radar station in the desert may require different equipment design than one operating in the arctic.

Initial System Evaluation

During initial evaluation, standards established for electronic operation should be correlated with those for the cooling system.

The most important consideration is the temperature profile for equipment operation, because from these profiles, the heat transfer required can be calculated. By specifying highest and lowest temperatures the equipment can tolerate, the engineer will know what is required of the cooling system to maintain safe operating temperatures.

Possibility of "hot spot" areas should not be overlooked, because heat transfer efficiency in these areas can determine the success or failure of the over-all cooling system. Weight and space allowance should be definitely established before the cooling method is selected. Since they will be considered along with the calculated load, weight and space requirements bear heavily on the ultimate selection of cooling methods.

Static Cooling

Static cooling is the dissipation of heat generated in an electronic component by normal convection flow. The fluid picks up heat from the component and transfers it to the outside case of the unit. Finally, the heat is conducted through the case into the main chassis or air frame and eventually to the surrounding air.

In a static cooling design, the object is to dissipate efficiently the heat from hot spots. If the fluid surrounds all the components, the heat from hot spot areas can be transferred immediately and uniformly to the fluid to give an efficient control of hot spot temperature. Static cooling will suffice, however, only if the heat transfer requirements are not too high.

Certain synthetic fluids do not remain liquid at temperatures much above 200°F, and enter what is called the "vapor phase." These liquids accomplish heat transfer through boiling and require sufficient space within the container for vapor condensation and heat transfer to the case. The condensate then runs back down the sides and goes through the reflux phase again. This design usually requires more space and weight than a "liquid-phase" system.

Changing flight attitudes will affect the selection of liquid coolants in static applications. In static cooling, the liquid phase of the coolant must surround the heat source at all times. If the component tilts to an angle or enters a horizontal or upside-down position, the liquid falls to the bottom of the container and leaves the vital areas exposed. As a result, the component may overheat or even burn out. To use a liquid-vapor phase coolant in this manner requires more sophisticated design so that the unit remains in an upright position.

Straight liquid-phase coolants are generally used as a complete fill in static systems so that flight attitudes present no problems.
Designing for Static Cooling

Heat-load and heat-transfer calculations. The first step in the design of any cooling system is the calculation of heat load and a determination of rate of the heat transfer required to dissipate it. In static systems, this is not as critical as in dynamic systems. Hot spot areas deserve special consideration. Sometimes the parts that produce the most heat can be spaced within the container to avoid an unnecessary heat build-up in any given area. When the heat load and desired temperature of operation are known, the container dimensions and a fluid volume can be specified.

Container design. A good container takes into account the volume of fluid needed to dissipate the heat load and how that volume will change with temperature or pressure. The container obviously must withstand the maximum temperatures and pressures that the system will develop. The ambient temperatures and pressures also must not be overlooked. Simple bellows, diaphragms, or a relief valve can be used to compensate for volume changes.

In systems containing relief valves or in those vented to the air, special care must be taken to prevent water or other contaminants from entering the system. To control moisture, a desiccant may be used as part of the relief system. Rather than a vented relief system which complicates the container design, internal bellows or diaphragms generally are used to compensate for changes in fluid volume. A blow-out plug in the container is a good safety precaution should electronic failure cause extreme heat generation.

Heat Sinks. The metal chassis itself is the basic heat sink for the container. Additional heat transfer may be obtained by placing fins on the exterior of the container. Some containers may have channels designed into the case exterior for forced air "cold plate" cooling.

Prototype Production and Testing. Heat transfer efficiency should be tested over the entire operating temperature range and under all anticipated conditions. If adequate heat transfer is lacking, the container dimensions and fluid volume may need modification. Minor design changes often are required before a static cooling unit is proven satisfactory. In this respect, static cooling is less advantageous than a dynamic system in which the effect of many variables can be predicted more accurately.

Dynamic Cooling

In a dynamic system, the fluid is pumped in and around components through a sealed system of jackets and tubes. The fluid picks up heat from the components and carries it to the heat exchanger for dissipation. The precise temperature control makes dynamic cooling the most reliable system and, thus, the one to be used when the

In all phases of planning for ceramic-to-metal seals—from design to finished assembly—you can rely on ALITE for the know-how and "do-how" required to produce highest quality ceramic-metal components for critical applications.

High alumina Alite is the ideal material for making rugged, high performance hermetic seals and bushings. It has superior mechanical strength, high temperature and thermal shock resistance, plus reliable electrical characteristics. Our complete high temperature metalizing and bonding facilities assure delivery of the finest seals available—mass-spectrometer tested for vacuum-tightness.

Please contact us for valuable performance data and information regarding ceramic-to-metal applications . . . no obligation.

INSIDE LOOK AT ALITE—
Fact-packed, illustrated Bulletin A-40 gives vital technical data and product information. Write today.

ALITE DIVISION
AKRON 9, OHIO
New York Office
40 East 42nd St.

U. S. STONEWARE

12F-1
CIRCLE 30 ON READER-SERVICE CARD
When it must not fail

Specify: BREEZE SLIP RINGS

For military or other critical uses, BREEZE Slip Rings are custom designed and built to "perfectionist" standards. They offer high performance in the most exacting service.

From 2-ring to 500-ring assemblies...currents as high as 350 amps continuous at 220 volts and 700 amps overload at 220 volts. Special high voltage designs...radio frequency assemblies...high speed rotation for thermocouple and strain gage applications. Also segmented ring assemblies for accurate sequencing and timing. Consult us or write for literature.

BREEZE
CORPORATIONS, INC.
700 LIBERTY AVE., UNION, N. J.

BREEZE PRODUCTS: ACTUATORS • HOISTS • TRANSMISSIONS
GENERATORS • STARTERS • STARTER GENERATORS • BELLOWS
SLIP RINGS • HOSE CLAMPS • HITEMP FLEXIBLE TUBING

Heat load is high or critical. When severe hot spots exist, dynamic fluid flow through the sensitive areas is especially effective in controlling temperatures.

In a dynamic system, the heat load in each area can be calculated and the system mechanically designed to dissipate the heat as required. Through mechanical design, all of the system’s hot spot temperatures can be more reliably controlled—a significant improvement over static or forced air cooling. When constant temperature operation is required, or the equipment is large, or consists of a number of units, dynamic cooling is the most practical method.

A dynamic system can have two types of flow—turbulent or laminar. Turbulent flow imparts the best heat transfer efficiency and is used particularly for temperature control in hot spot areas. Vanes and fins designed into the equipment help give turbulence to the fluid and minimize contact time and temperature build-up in the fluid.

Designing for Dynamic Cooling

As with static cooling, the first step is an accurate definition of heat load and the heat transfer requirements for each section of the component. Hot spot determinations should be exact, for, with this system, they can be precisely controlled.

Three factors—fluid film coefficient, temperature driving force, and surface area—are important to an evaluation of total heat transfer capacity as shown by the general heat transfer equation:

$$ Q = hA\Delta T $$

where:
- \(Q \) = total heat dissipation (Btu/hr)
- \(h \) = fluid film coefficient
- \(A \) = surface area
- \(\Delta T \) = temperature driving force

$$ W = \text{flow rate of coolant (lb/hr)} $$
$$ C = \text{specific heat of coolant (Btu/lb/F)} $$
$$ \Delta t = \text{temperature rise of coolant (F)} $$

Fluid Film Coefficient. The fluid film coefficient determines the heat transfer that takes place in a given area. With other factors constant, the higher a fluid film coefficient, the better the heat transfer of the system. Fluid properties, fluid temperature, flow rates, and mechanical design all affect the film coefficient.

Temperature Driving Force. The temperature driving force is the mean temperature difference between the average skin temperature of the heat transfer area and the fluid temperatures at inlet and outlet. This can be measured for a whole system or for segments of the system.

Surface Area. The design engineer may have less leeway with surface area than with the fluid film coefficient and the temperature driving force. Though he usually cannot increase the system dimensions after the specifications have been drawn, he can use fins or grooves to increase the amount of area that the fluid will contact. In the heat transfer region, increasing the surface area will keep hot spot temperatures to a minimum and lower the amount of heat per unit area.

When calculations reveal that the three factors are properly balanced to dissipate the heat load, the cooling system characteristics (e.g., flow rates, pressure drops, necessary heat exchanger capacity) and the accessory system requirements will be defined. The design engineer can now integrate the unit into a complete cooling system.

Selecting Accessories. The complete system will contain the electronics to be cooled, a heat exchanger, reservoir, pump, motor, and such other accessories as relief mechanisms, interlock systems, and filters, for airborne applications the entire cooling system can be produced as a complete package, easily removed for servicing or replaced.
ment by quick-disconnect couplings. Synthetic liquids lend themselves especially to this "package concept" of electronic design, making possible much smaller, lighter units which, at the same time, are three to five times more efficient than forced air cooling systems.

In selecting the heat exchanger, it is important to be certain that it can accommodate the maximum heat load. The flow rate and pressure drop calculated for the system are the primary influences in pump selection. There must be adequate power available for the pump at all operating temperatures.

In reservoir design, it is important to avoid unnecessary foaming or air entrainment in the synthetic coolant since these cause inefficient heat transfer and ultimate system failure. Fig. 1 illustrates principles of a reservoir system design that apply to large systems as well as small packaged systems.

In Fig. 1, the dry nitrogen blanket at one or two psi above atmospheric pressure controls water contamination and entrainment of oxygen in the fluid—two main causes of trouble. Entrained air supplies an oxygen source to cause oxidation of metals; and at high temperatures, the metals are especially vulnerable. Nitrogen gas prevents any oxidation build-up of scale that could clog the system or slow down heat transfer. The dry nitrogen purge also keeps out water which might cause fluid degradation.

Fluid volume in the reservoir should be approximately three times the volume flow per minute. The return line should be well below the fluid level to keep foaming at a minimum. A line with a long scarf end controls the fluid's entry into the reservoir and prevents unnecessary fluid turbulence.

Perforated baffle plates provide a "residence time" for a given unit of fluid volume which allows the fluid to reject entrained air or foam before returning to the pump line.

The pump feed line should be near the bottom edge of the reservoir and so placed that there is no direct fluid channel to the suction line from the return line.

Component Positioning. There are no standard arrangements for components; each complete system is laid out according to its own requirements. When the reservoir design is finished, the design engineer positions all components and specifies the connecting tube arrangement for all parts of the system.

The package concept might be applied to the large system just discussed, but it is more often used for miniaturized components. In applying the package concept, the design layout is basically the same. The only additional requirement is the integration of all the components into a single unit.

Audio, telemetry and low frequency oscillators

Pictured here are six of the most widely used oscillators in electronics. All employ the highly stable, dependable, accurate resistance-capacitance circuit. They require no zero setting. Output is constant, distortion is low and frequency range is wide. Scales are logarithmic for easy reading; all are compact, rugged and broadly useful basic instruments. Brief specifications are given below; call your HP rep for demonstration or write direct for complete data on any instrument.

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency Range</th>
<th>Calibration Accuracy</th>
<th>Output to 600 Ohms</th>
<th>Recommended Load</th>
<th>Maximum Distortion</th>
<th>Max. Hum & Noise</th>
<th>Input Power</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>200AB</td>
<td>20 cps to 40 KC (4 bands)</td>
<td>±2%</td>
<td>1 watt (24.5 v)</td>
<td>600 ohms</td>
<td>1% 20 cps to 20 KC</td>
<td>5% 20 KC to 40 KC</td>
<td>0.5% below</td>
<td>85 watts</td>
</tr>
<tr>
<td>200CD</td>
<td>5 cps to 600 KC (5 bands)</td>
<td>±2%</td>
<td>160 mw 10 volts</td>
<td>600 ohms*</td>
<td>500 KC 1% 500 KC and above</td>
<td>0.1%</td>
<td>75 watts</td>
<td>$170.00</td>
</tr>
<tr>
<td>200T</td>
<td>6 cps to 6 KC (6 bands)</td>
<td>±1%+1</td>
<td>160 mw 10 volts</td>
<td>600 ohms*</td>
<td>0.5%</td>
<td>0.1%</td>
<td>100 watts</td>
<td>$300.00</td>
</tr>
<tr>
<td>200J</td>
<td>250 cps to 100 KC (5 bands)</td>
<td>±1%+1</td>
<td>32 watts</td>
<td>600 ohms*</td>
<td>0.5%</td>
<td>0.03%</td>
<td>100 watts</td>
<td>$450.00</td>
</tr>
<tr>
<td>201C</td>
<td>70 cps to 20 KC (3 bands)</td>
<td>±2%</td>
<td>160 mw 10 volts</td>
<td>600 ohms</td>
<td>0.5%</td>
<td>0.1%</td>
<td>75 watts</td>
<td>$225.00</td>
</tr>
<tr>
<td>202C</td>
<td>1 cps to 100 KC (5 bands)</td>
<td>±2%</td>
<td>160 mw 10 volts</td>
<td>600 ohms*</td>
<td>0.5%+1</td>
<td>0.1%</td>
<td>75 watts</td>
<td>$300.00</td>
</tr>
</tbody>
</table>

*Internal impedance is 600 ohms. Frequency and distortion unaffected by load resistance. Balanced output with amplitude control at 100. Use line matching transformer or other control settings. **Internal impedance 600 ohms with output attenuator at 10 dB or more. Approximately 75 ohms below 50. 50 ohms with attenuator at zero. Internal, non-operating controls permit precise calibration of each band. 10%, 50 cps to 20 KC at 1 watt output. 1.0% over full range at 3 watts output. 50%, 10 cps to 100 KC, 1.0% to 10 cps, 2.0% at 0.1%, 3.0% at 1 dB. Measured with respect to full rated output.

HEWLETT-PACKARD COMPANY

1015K Page Mill Road • Palo Alto, California, U.S.A.
Cable "HEWIPACK" • Davenport 5-4451
Hewlett-Packard S.A., Rue du Vieux Billard No. 1, Geneva, Switzerland
Cable "HEWIPACKSA" • Tel. No. (022) 26. 43. 36
Field representatives in all principal areas

CIRCLE 32 ON READER-SERVICE CARD

pioneered the world-famous resistance-capacitance oscillator circuit
Design of Transistorized DC-to-DC Converters

Part I — Ringing-Choke Circuit

A presentation of all necessary data and procedures required for the design of transistorized ringing-choke dc-to-dc converters. Typical values of magnetic parameters are tabulated and a step-by-step design example is covered. Also included is a section devoted to all necessary equations with their derivations. Part II will include design information for Transformer Coupled Converters.

Fig. 1. (above) Basic circuit of ringing-choke-type dc-to-dc converter.

Fig. 2. (right) Typical operating waveforms in the ringing-choke-type converter circuit: (A) primary voltage; (B) primary current; (C) base-to-emitter voltage; (D) secondary current; (E) flux in transformer core.

Carl Turner is presently engaged in circuit and device development of industrial power transistors with special emphasis on silicon types. He also serves as RCA’s representative on the JEDEC Committee on Power Transistors.

He believes the information presented will enable the circuit engineer, with a minimum of experience in dc-to-dc converters, to achieve a good design in a minimum of time.

Carl R. Turner
Semiconductor and Materials Division
Radio Corporation of America
Somerville, N. J.

A ll necessary design tools, plus a logical sequence of design steps, are presented to enable a circuit engineer to successfully complete a transistorized ringing-choke dc-to-dc converter project. Transistor requirements, suggested operating frequencies, transformer-core parameters and predicted circuit efficiencies are tabulated for a wide range of input and output conditions.

Operation of Ringing-Choke Converter

Fig. 1 shows the basic circuit of a ringing-choke-type converter using a transistor and Fig. 2 illustrates waveforms obtained during an operating cycle.

Energy is drawn from the battery and stored in the inductance of the transformer during the conduction period (t_{on}); this energy is delivered to the load during the “off” period (t_{off}). At the start of t_{on}, the transistor is driven into saturation (bottomed) and a substantially constant voltage (Fig. 2A) is impressed across the primary by the battery. This primary voltage produces a linearly increasing current (Fig. 2B) in the collector-primary circuit. This current induces substantially constant voltages in the base winding (Fig. 2C) and secondary winding.

The resulting base current, like the primary current, increases linearly and has a maximum...
value determined by the base-winding voltage, the external base resistance R_b, and the dc input conductance of the transistor. Because the polarity of the secondary voltage does not permit the rectifier diode to conduct, the secondary is open circuited. During t_{on}, therefore, the load is supplied only by energy stored in capacitor C_{ouf}.

The collector-primary current increases until it reaches a maximum value I_c, which is limited by the maximum base current and base voltage supplied to the transistor. At this instant, the transistor starts to move out of its saturated condition with the result that the collector-primary current and the voltage across the transformer windings rapidly decrease, and switch-off occurs.

At switch-off the circuit starts to "ring"—i.e., the energy stored in the transformer inductance starts to discharge into the stray capacitance of the circuit—very rapidly until the voltages across the primary, base and secondary windings reverse polarity. These reverse voltages rapidly increase until the voltage across the secondary winding exceeds the voltage across the output capacitor C. At this instant the diode rectifier starts to conduct and to transfer the energy stored in the inductance of the transformer to the output capacitor and load. Because the output capacitor tends to hold the secondary voltage substantially constant, the secondary current decreases at a substantially constant rate (see Fig. 2D). When this current reaches zero the transistor switches on again, and the cycle of operation repeats.1,2

Design Procedure

Following is a step-by-step procedure for the design of practical dc-to-dc converters of the ringing-choke type. The equations referred to are given in the Derivation section.

1. From the data given in Table I for the desired dc output voltage V_{out}, output power P_{out}, and dc input voltage V_{in}, select a transistor type having the required maximum saturation resistance R_{sat}, and the required minimum ratings for collector-to-base breakdown voltage V_{CBmax}, peak collector current I_c, and dissipation P_T. Also select a material, cross-sectional area A, and magnetic-path length l, for the transformer core, and a suitable operating frequency f, and note the expected circuit-efficiency factor, η.

2. Determine the required secondary-to-primary turns ratio N_s/N_p (Eq. A16).

3. Determine the required primary inductance L_p (Eq. A9).

4. Determine the required number of turns for the primary N_p (Eq. A11).

5. Determine the ratio of conduction time t_{on} to total period of oscillation T (Eq. A7).

6. Determine the peak primary current I_p (Eq. A2).

Delco Radio

Delco Radio rounds out its power transistor line with this new 5-ampere germanium PNP series. Types 2N1168 and 2N392 are specially designed for low-distortion linear applications, while 2N1159 and 2N1160 are outstanding in reliable switching mode operations.

Type 2N1011 is designed to meet MIL-T-19500/67 (Sig. C). It joins 2N665, MIL-T-19500/67 (Sig. C); 2N297A, MIL-T-19500/36 (Sig. C) and JAN2N174, MIL-T-19500/13A to provide a selection for military uses.

Write today for engineering data on Delco Radio’s line of High Power Transistors.
CONVERTER EQUATIONS

All references to transformer windings, circuit components, voltages and currents are for the circuit shown in Fig. 1. All references to time periods and waveforms are to those shown in Fig. 2.

The average value of the current in the transformer primary is:

\[i_{PAV} = I_{OUT} \left(\frac{V_{OUT}}{V_{IN}} \right) \]

(A1)

Where \(I_{OUT} \) is the load current in amp

\(V_{OUT} \) is the dc output voltage in volts

\(\eta \) is the circuit-efficiency factor as given in Table 1

\(V_{IN} \) is the dc input voltage in volts.

Because of the triangular waveform of the primary current (see Fig. 2), the peak value of the primary current is:

\[\dot{i}_p = 2 i_{PAV} \left(\frac{T}{t_{ON}} \right) \]

(A2)

or

\[\dot{i}_p = \frac{2T}{t_{ON}} \left(\frac{V_{OUT}}{V_{IN}} \right) I_{OUT} \]

(A3)

where \(T = t_{ON} + t_{OFF} \) are expressed in seconds.

If the saturation resistance of the transistor \((R_{SAT}) \) and the resistance of the primary winding \((R_{P_WINDD}) \) are sufficiently small to permit the assumption that the full dc input voltage \(V_{IN} \) is impressed across the primary during \(t_{ON} \), the required primary inductance in henries may be determined from:

\[L_p \left(\frac{d\dot{i}_p}{dt} \right) = V_{IN} \]

For the triangular current waveform shown in Fig. 2b:

\[\frac{d\dot{i}_p}{dt} = \frac{\dot{i}_p}{t_{ON}} \]

(A4a)

Therefore,

\[L_p = \left(\frac{V_{IN}}{\dot{i}_p} \right) \left(\frac{t_{ON}}{t_{ON}} \right) \]

(A5)

or, in terms of Eqs. A3 and A5:

\[L_p = \frac{\eta V_{IN}^2 t_{ON}^2}{2 V_{OUT} I_{OUT} T} \]

The required primary inductance \(L_p \) can also be expressed in terms of the maximum permissible flux-density swing in the transformer core and other core parameters. The maximum permissible flux-density swing is given by:

\[\Delta \phi = \frac{4 \pi N_p}{A} \left[\frac{1}{I_{p}/\mu_A} + \frac{1}{I_{p}/\mu_{CORE}} \right] \]

(A10)

The required primary inductance \(L_p \), can thus be obtained by Eq. A10.

\[L_p = \frac{4 \pi N_p}{A} \left[\frac{1}{I_{p}/\mu_A} + \frac{1}{I_{p}/\mu_{CORE}} \right] \]

(A12)

The length of the air gap \(l_g \) should be adjusted to assure operation of the core near but not in the saturation region—i.e., at a maximum flux density slightly less than the saturation value for the core material used. The value of the flux density can be checked by means of Eq. A11.

The induced voltage in the base winding must provide a base-to-emitter voltage sufficiently large to supply the required peak primary current for any transistor of the type to be used in the circuit. The primary voltage at the end of \(t_{on} \) is:

\[V_p = V_{IN} \left(1 + \left[R_{SAT} + R_{P_WINDD} + R_{SUPPLY} \right] \right) \]

(A13)

The required number of turns for the base winding is:

\[N_p = \frac{(N_p/N_s)^2 V_{OUT}^2 + V_{IN} V_{OUT} (N_p/N_s)}{(V_{OUT}^2 - V_{IN}^2) + (N_p/N_s)^2 V_{OUT}^2 + V_{IN} V_{OUT} (N_p/N_s)} \]

(A13)

The required primary inductance \(L_p \) can also be expressed in terms of the maximum permissible flux-density swing in the transformer core and other core parameters. The maximum permissible flux-density swing is given by:

\[\Delta \phi = \frac{4 \pi N_p}{A} \left[\frac{1}{I_{p}/\mu_A} + \frac{1}{I_{p}/\mu_{CORE}} \right] \]

(A10)

The required primary inductance \(L_p \), can thus be obtained by Eq. A10.

\[L_p = \frac{4 \pi N_p}{A} \left[\frac{1}{I_{p}/\mu_A} + \frac{1}{I_{p}/\mu_{CORE}} \right] \]

(A12)

The length of the air gap \(l_g \) should be adjusted to assure operation of the core near but not in the saturation region—i.e., at a maximum flux density slightly less than the saturation value for the core material used. The value of the flux density can be checked by means of Eq. A11.

The induced voltage in the base winding must provide a base-to-emitter voltage sufficiently large to supply the required peak primary current for any transistor of the type to be used in the circuit. The primary voltage at the end of \(t_{on} \) is:

\[V_p = V_{IN} \left(1 + \left[R_{SAT} + R_{P_WINDD} + R_{SUPPLY} \right] \right) \]

(A13)

The required number of turns for the base winding is:

\[N_p = \frac{(N_p/N_s)^2 V_{OUT}^2 + V_{IN} V_{OUT} (N_p/N_s)}{(V_{OUT}^2 - V_{IN}^2) + (N_p/N_s)^2 V_{OUT}^2 + V_{IN} V_{OUT} (N_p/N_s)} \]

(A13)
The required number of turns for the secondary \(N_2 \) is determined from the input voltage \(V_{IN} \), output voltage \(V_{OUT} \), number of turns on the primary \(N_p \), and maximum allowable collector-to-base voltage \(V_{CBmax} \) (the value during \(I_{off} \) for the transistor):

\[
N_2 = \frac{N_p V_{OUT}}{V_{CBmax} - V_{IN}} \tag{A15}
\]

The required number of turns for the secondary is, therefore:

\[
N_2 = \frac{N_p V_{OUT}}{V_{CBmax} - V_{IN}} \tag{A17}
\]

The external base resistance \(R_B \) is necessary to compensate for differences in base-to-emitter voltage \(V_{BE} \) among individual transistors of the type used. The required value for this resistance is:

\[
R_B = \frac{V_{BEmax} - V_{BE}}{I_B} \tag{A18}
\]

where \(V_{BE} \) is the typical value of the base-to-emitter voltage required to provide the peak primary current \(I_p \) at a base current \(I_B \) for the transistor type used.

\(V_{BE} \) is the typical value of the base-to-emitter voltage required to provide the peak primary current \(I_p \) at a base current \(I_B \) for the transistor type used.

\(V_{BEmax} \) is the maximum of \(V_{BE} \) for the transistor type, \(I_p \) is the typical value of base current required to provide the peak primary current \(I_p \) at a base-to-emitter voltage \(V_{BE} \).

To minimize transient losses during switch-off due to hole storage effects, \(R_B \) should be kept as small as possible.

The peak secondary current is given by:

\[
I^p = I_p (N_p / N_s) \tag{A19}
\]

The peak secondary voltage is given by:

\[
V_s = V_{OUT} + V_{IN} (N_s / N_p) \tag{A20}
\]

To assure a substantially constant output voltage \(V_{OUT} \), the output capacitor \(C_{OUT} \) should have a capacitance such that the time constant \(C_{OUT} R_L \) is at least 10 times larger than \(t_{on} \).

\[
R_L = \frac{V_{OUT}^2}{P_{OUT}} \tag{A21}
\]

\[
C_{OUT} \geq \frac{10 I_{ON} P_{OUT}}{V_{OUT}^2} \tag{A21}
\]

The optimum ratio of primary-to-secondary winding space \(K \) for the transformer is:

\[
K = \frac{1}{\sqrt{(N_s/N_p) (V_{IN}/V_{OUT})} + 1} \tag{A22}
\]

These synchronously-driven choppers handle d-c signals as small as 10 volt. SPDT switching action. Sensitive, stable performance. Ideal for computers, servomechanisms, balancing circuits. Available with special features such as: fungus proofing, grounded housing, mica-filled base, various contact percentages. Weight: 10 ounces. Prices from $36.

Driving coils in 60-50, 40 and 25-cycle converters are energized by 6.3 volt a-c. 400-cycle converters use 18 volts. Other specifications on chart at right.

Brown Converters

put stable performance in your measuring and servo loops

Electrical Characteristics

<table>
<thead>
<tr>
<th>Part No.</th>
<th>354210-2</th>
<th>354210-3</th>
<th>354210-1</th>
<th>354210-4</th>
<th>355081</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation Frequency</td>
<td>20-30 cycles</td>
<td>40-45 cycles</td>
<td>50-65 cycles</td>
<td>50-65 cycles</td>
<td>350-440 cycles</td>
</tr>
<tr>
<td>Switching Action (SPDT)</td>
<td>(Make-before-break)</td>
<td>(Break-before-make)</td>
<td>(Break-before-make)</td>
<td>Each contact closed 55% of each cycle</td>
<td>Each contact closed 47% of each cycle</td>
</tr>
<tr>
<td>Driving Coil Requirements</td>
<td>6.3 v, 60 ma at rated frequency</td>
<td>18 v, 94 ma at rated frequency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Rating</td>
<td>100 microamperes at 6 v max.</td>
<td>10 ma max.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electromagnetic Stray Pickup</td>
<td>2 x 10^-2 volts per ohm of input circuit impedance</td>
<td>2 x 10^-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electromagnetic Stray Pickup</td>
<td>Less than 2 x 10^-2 volts constant to 2 x 10^-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Shift</td>
<td>Output voltage lags driving phase by 17° ± 5°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Shift</td>
<td>Lags driving phase by 45° to 56°</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symmetry</td>
<td>Within ±5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symmetry</td>
<td>Within ±5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shielding</td>
<td>Frame and coil shield, grounded through pin No. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shielding</td>
<td>Shell and coil shield, grounded through pin No. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Characteristics</td>
<td>Resistor or inductive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load Characteristics</td>
<td>Output voltage varies less than 2% with rates of vibration from 0 to 10g</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>10 oz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>8.5 oz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Features</td>
<td>Specify 55-816-A for anti-fungus treated, vibration resistant, hermetically sealed case. Also available with side plug for easier coil connection.</td>
<td>All 400-cycle converters are treated as shown at left.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Honeywell

First in Control

CIRCLE 34 ON READER-SERVICE CARD

ELECTRONIC DESIGN • September 16, 1959
The transistor used should have a saturation resistance R_{SAT} of not less than two ohms, a collector-to-base breakdown voltage $V_{CBM_{MAX}}$ of at least 35 v, at peak collector-current rating I_{C} of at least 400 ma, and a dissipation rating P_{R} at 55 C of at least 80 mw. A transistor meeting these requirements is the RCA 2N586. This transistor has a peak collector-current rating of 500 ma, a maximum saturation resistance of 2 ohms, a maximum collector-to-base voltage rating of 45 and a maximum dissipation at a case temperature of 55 C of 125 mw. The peak collector-current rating is not given in the published data for the RCA-2N586, and was obtained from the manufacturer. The maximum saturation resistance is not given specifically in the published data, but is easily determined from the maximum ratings for collector-to-emitter saturation voltage V_{CE} (-0.5) and collector current I_{C} (-250 ma).

6. From Eq. A1 and A2, the peak primary current is:

$$I_{p} = \left(\frac{2P_{OUT}}{V_{IN}} \right) \left(\frac{T}{T_{ON}} \right) = \left(\frac{0.7}{(0.7) \times 0.375} \right) = 0.327 \text{ amp}$$

7. From Eq. A1, the maximum flux density in the transformer core is:

$$B_{M} = \phi / A = \left(\frac{L_{p} I_{p}}{N_{P} A} \right) = \left(\frac{(38.5) \times 10^{-3}}{0.327} \right) \times \frac{(207 \times 1.3)}{4600 \text{ gausses}}$$

this density does not exceed the saturation value of 4600 gauss for the type 3C ferrite used in the Ferroxcube 9F520 core.

8. From information provided for RCA transistor type 2N586, the typical values of V_{BE} and I_{C} required peak primary current I_{p} of 0.327 amp are, respectively, 0.9 v and 6.2 ma. The maximum values for these parameters are 1.3 v and 11 ma respectively, and are within the maximum ratings for the 2N586.

9. From Eq. A14, the required number of turns for the base winding is:

$$N_{B} = \frac{N_{P} V_{BE_{MAX}}}{V_{IN} - I_{p} (R_{SAT} + R_{WIND} + R_{SUPPLY})}$$

Assuming that $R_{WIND} + R_{SUPPLY} = R_{SAT}$, which is generally the case, the maximum value of R_{SAT} would be four ohms. Consequently,

$$N_{B} = \left(\frac{207 \times 1.3}{12 - 0.3 \times 4} \right) = 25.2 \text{ turns (use 26 turns)}$$

10. From Eq. A18, the required value of the external base resistance is:

$$R_{B} = \frac{V_{BE_{MAX}} - V_{BE}}{I_{p}} = \frac{1.3 - 0.8}{0.327} = 80.6 \text{ ohms (use 82 ohms)}$$

11. From Eq. A17, the required number of turns for the secondary winding is:

$$N_{S} = \frac{N_{P} V_{OUT}}{V_{CBM_{MAX}} - V_{IN}} = \left(\frac{207 \times 150}{45 - 12} \right) = 940.5$$

12. From Eq. A19, the peak secondary voltage is:

$$I_{p} = \left(\frac{V_{OUT} (N_{P} / N_{S})}{V_{IN}} \right) = 0.327 \times 4.5 = 0.727 \text{ amp}$$

and from Eq. A20, the peak secondary voltage is:

$$V_{S_{MAX}} = V_{OUT} + V_{IN} (N_{P} / N_{S}) = 150 + 12 \times 4.5 = 204 \text{ v}$$

13. A diode rectifier capable of handling a peak secondary current of 0.727 amp and a peak inverse voltage rating of more than 204 v is the RCA IN1763 silicon rectifier. The IN1763 has a maximum peak inverse voltage rating of 400 v and a maximum dc forward current rating of 0.5 amp.
Table 1. Typical design parameters for ringing-choke-type dc-to-dc converters having output ratings up to 50 w.

<table>
<thead>
<tr>
<th>Application Requirements</th>
<th>Transformer Requirements</th>
<th>Recommended Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Output (P, WATTS)</td>
<td>Max. Output Voltage (V_{OUT})</td>
<td>Collector-to-Base Break-down Voltage (V_{CB,MAX})</td>
</tr>
<tr>
<td>1</td>
<td>500</td>
<td>10-15</td>
</tr>
<tr>
<td>750</td>
<td>15-20</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
<td>6-10</td>
</tr>
<tr>
<td>750</td>
<td>15-20</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
<td>10-15</td>
</tr>
<tr>
<td>750</td>
<td>20-28</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>300</td>
<td>6-12</td>
</tr>
<tr>
<td>750</td>
<td>18-28</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>600</td>
<td>18-26</td>
</tr>
<tr>
<td>750</td>
<td>26-36</td>
<td>0.5</td>
</tr>
<tr>
<td>50</td>
<td>500</td>
<td>12-24</td>
</tr>
<tr>
<td>750</td>
<td>24-36</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Transformer Core

- Material: CROSS-SECTIONAL AREA (A) | MAGNETIC PATH LENGTH (L) | OPERATING FREQUENCY (F) | EXPECTED CIRCUIT EFFICIENCY FACTOR (n)
- Ferrite: 0.5-1.5 | 2.5-10 | 1-8 | 0.75
- Ferrite: 0.5-5 | 2.5-12 | 1-5 | 0.75
- S. iron or grain-oriented S. steel: 0.5-5 | 2.5-12 | 0.1-0.8 | 0.7
- S. iron or grain-oriented S. steel: 1-7.5 | 2.5-15 | 0.1-0.8 | 0.7
- S. iron or grain-oriented S. steel: 1-10 | 5-15 | 0.1-0.8 | 0.65
- S. iron or grain-oriented S. steel: 2-15 | 7.5-20 | 0.1-0.8 | 0.6

14. From Eq. A21, an output capacitor C_{OUT} capable of storing the energy required by the load and delivering this energy to the load during the conduction period t_{in} at a substantially constant voltage would be one having a capacitance

C_{OUT} \geq \frac{10 t_{in} P_{OUT}}{V_{OUT}^2}

From Step 5

t_{in} = 0.735 T = \frac{735 \times 10^{-3}}{8 \times 10^3} = 92 \times 10^{-6} sec

From the initial conditions

P_{OUT} = 1 w \quad V_{OUT} = 150 v

C_{OUT} \geq \frac{10 (92 \times 10^{-6})\times 10^4}{225 \times 10^6} = 4 \times 10^{-7} = 0.04 \mu F

A RETMA standard value of 0.047 \mu F would be suitable.

15. From the peak currents in the primary, secondary, and base windings, (the peak base current I_{B} is the maximum I_{B} required to produce the necessary value of I_{p}, the wire sizes based on the conservative rating of 700 circular mils per ampere are:

- Primary — No. 26 \quad I_{B} = 0.327 amp
- Secondary — No. 32 \quad I_{B} = 0.0275 amp
- Base — No. 36 \quad I_{B} = 0.011 amp

16. From Eq. A22, the optimum ratio of primary-to-secondary winding space would be:

K = \frac{1}{\sqrt{(N_{P}/N_{S}) (V_{TS}/V_{OUT}) + 1}}

K = \frac{1}{\sqrt{(4.5)(12.15)}} = 0.86

Table 2. Typical values of magnetic parameters for commercial transformer-core materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Max. Permeability (\mu_a)</th>
<th>Maximum Flux Density (B_B) — Gausses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrite</td>
<td>1000</td>
<td>2000—5000</td>
</tr>
<tr>
<td>Silicon Iron</td>
<td>850</td>
<td>10,000—15,000</td>
</tr>
<tr>
<td>Grain-Oriented Steel</td>
<td>30,000</td>
<td>15,000—20,000</td>
</tr>
<tr>
<td>Silicon Steel</td>
<td>70,000</td>
<td>15,000—20,000</td>
</tr>
</tbody>
</table>

To achieve the best coupling, the winding order with respect to the core should be: primary, base, secondary.

The foregoing design could have been improved by the use of a transformer core having a cross-sectional area greater than 1.3 sq. cm. Because such a core would have permitted the use of fewer turns on the primary, base, and secondary windings, and a larger window area or winding space, it would have been possible to use wires of larger sizes, and thus achieve a substantial reduction in copper loss with only a slight increase in core losses due to the larger core.

References

How the Inertia Damper Improves Servo Performance

Frank E. Hagen
Daystrom Transicoil Corp.

The inertia damper, so often used, so little understood, is the subject of Frank Hagen's third article in the servo series he is preparing for ELECTRONIC DESIGN. These articles are reprinted in Daystrom Transicoil Corp.'s "Servo Slants." Interested readers may write to the company for copies.

INERTIA DAMPERS can increase the frequency response of servomotors without some of the drawbacks of drag-cup type viscous dampers. The inertially damped motor has the great advantage of circuit simplicity; it requires no special network to insure high frequency stability.

But inertia dampers are not unmixed blessings. They have their disadvantages. To see them in full light, one must first understand the role of damping in a servo system.

Fig. 1 is a simplified block diagram of an instrument servo. Here, \(a \) is the sensitivity of the error detector, \(A \) is the amplifier gain, \(N \) is the gear ratio, and \(\frac{K_T}{Js^2 + fs} \) is the transfer function of the control motor.

With a given set of performance specifications, the systems engineer would select a group of these building blocks to perform as required. If the required small signal frequency response is not too high, stability is no problem.

However, in a more sophisticated system, where very rapid response is necessary, mechanical oscillation may result. The limiting parameters establishing the frequency response ceiling with stable operation are the motor rotor inertia \(J \), and its inherent viscous damping \(f \). The ratio \(J/f \) represents the time constant of the motor. Any decrease in its value allows the system frequency response to be increased.

Viscous Damper Adds Friction

A method used to improve the frequency characteristics of a given motor is the application of viscous damper. This usually involves coupling a drag cup to the rotor and placing it in the field of a permanent magnet. It establishes a friction term, proportional to speed, which adds directly to the inherent viscous damping of the motor.

Unfortunately, extending the frequency realm of the control motor by this method also introduces some negative results. The viscous damper takes mechanical power from the motor. This loss in power results in greater heat rise in the motor along with reduced free speed. Motor stall torque, of course, is not affected.

Inertia Damper Is Selective

These shortcomings in viscous damper performance led to the inertia damper. If the permanent magnet itself is allowed to rotate on bearings, and is designed to have a high moment of inertia with respect to the motor rotor, it introduces a more selective type of damping.

To rapidly changing signals, or step functions, the high inertia magnet appears fixed, introducing a large viscous drag. However, with a fixed velocity input, the cup has sufficient time to drag the magnet around with it, removing the viscous term and allowing the motor to operate at higher free speed. In other words, viscous damping is introduced only when it is required.

This description of inertia damper operation is an oversimplification. To be of value to the servomechanism engineer, it must be analyzed mathematically.

Referring to Fig. 1, the motor transfer function is an outgrowth of the torque equation,

\[K_T e = J \frac{d^2 \theta}{dt^2} + f \frac{d \theta}{dt} \]

where \(e \) is the servomotor control windings voltage and \(\theta \) is the position of its rotor. If the inertia damper is added to the motor with drag cup damping coefficient \(D \) and motor inertia \(I \), Eq. (1) becomes:

![Fig. 1. Basic block diagram of an instrument servo.]

![Fig. 2. Servomotor frequency response with inertia damping (solid line) and without (dotted line).]
The All-Transistorized NLS V-35

Here for the first time is a true five-digit voltmeter with a factual fifth figure. Increased accuracy of full five-digit resolution—0.001%—results from the new mathematically perfect logic of the NLS V-35.

Other five-digit digital voltmeters require "desensitizing" to prevent oscillation of the least significant digit. This results in a resolution error of three to nine digits in the upper portions of each range as graphically displayed in the chart to the left. This comparison clearly shows the increased accuracy of the NLS V-35, made possible by full five-digit resolution.

In new logic... in all-transistorized circuitry, including logic... in new simplified design with plug-in circuit boards, plug-in oil-bathed stepping switches, and snap-in readout... the NLS V-35 leads its field. Write today for complete information.

NLS V-35 Specifications

- Measures Voltage from ±0.0001 to ±999.99, Ratio from ±0.00001 to ±99999...
- 10 Megohm Input Impedance...
- 0.01% Accuracy...
- Automatic Selection of Range and Polarity...
- And Measures Three Times Faster Than Any Other Stepping Switch Instrument.

Originators of the Digital Voltmeter

n-1inear systems, inc.*

DEL MAR (San Diego), California

NLS — The Digital Voltmeter That Works... And Works... And Works!
Zero-Crossing Detector Generates Pulses Every 180 Degrees

John S. Denelsbeck
U.S. Naval Air Development Center
Johnsville, Pa.

Combination of two transistors can produce a pulse whenever the input waveform passes through zero. Called a zero-crossing detector, the circuit can be used as an encoder, a pulse generator or a frequency doubler.

UNIQUELY combining a center-tapped transformer and a logical transistor OR gate, a zero-crossing detector can generate two pulses, accurately spaced 180 deg apart, for each cycle of a sinusoidal input signal. The device is called a zero-crossing detector because it generates a pulse whenever the input waveform passes through zero. The detector utilizes a combination of two grounded-emitter amplifiers which are fed by input signals of opposite phase relationship. It was originally designed for use in a synchro-shaft position encoder. However, the detector also has application as a composite pulse generator and as a frequency doubler.

Generating Negative Pulses

A transistor zero-crossing detector, which will generate a negative pulse at each zero crossing of a sinusoidal input signal, is shown in Fig. 1. Negative pulses are obtained with npn transistors and a negative power supply, while positive pulses may be obtained with pnp transistors and a positive power supply.

The input signal is applied to the primary winding of transformer T1. The center-tapped secondary winding provides two output signals 180 deg out of phase. The instantaneous voltages of these signals are therefore always opposite in sign, the negative excursions alternately providing base drive to either Q1 or Q2. The transistors are connected in the grounded emitter configuration and will conduct when the base is more negative than the emitter. This permits each transistor to conduct for slightly less than one-half cycle.

Current flows constantly in the common-load resistor, R3, alternately fed by transistors Q1 and Q2, except when the signals pass through zero. During this short interval, one transistor will cease conducting immediately before zero is reached, while the other will commence immediately after.

Transistors Q1 and Q2 are connected in the grounded emitter configuration with the base-emitter junctions connected in series with the respective transformer output windings. See Fig. 1. Connected in this manner, Q1 and Q2 act as diodes if only the base-emitter junction is considered. Performing the diode function, they provide the secondary windings of the transformer with a low-impedance path to ground during the time that the base is biased negative with respect to the emitter. Therefore, each output winding will be returned to ground through the series path of a load-resistor and base-emitter junction during its respective negative half-cycles of operation. The resistors R1 and R2 provide constant load for the transformer output windings and also serve to limit the base current in the transistors. During the positive half-cycles, the reverse diode characteristics of the base-emitter junctions block the flow of current in the output windings. Diodes D1 and D2 are connected opposite in polarity to the base-emitter junction to limit the reverse diode requirement of this junction, and to provide a more uniform loading of the transformer by permitting constant current flow in each output winding during the positive and negative half-cycles of operation.

In the circuit shown in Fig. 1, transistors Q1 and Q2 are operated in a saturated condition. Saturation, in this case, is defined in terms of the I1, R5 drop relative to the collector supply voltage, Vcc. When either Q1 or Q2 is supplying sufficient collector current so that the I1, R5 drop is approximately equal to the Vcc, and when any additional increase in base current, Ib, has no effect on the I1, R5 drop, then the transistor is operating in saturated condition. Fig. 2 illustrates the saturation characteristics of the transistor zero-crossing detector of Fig. 1. Transistors Q1 and Q2 are connected to form a logical OR gate and due to the nature of the inputs, Q1 and Q2 are alternately operated in the saturated condition for a half-cycle except for a small interval about the zero-crossing. The negative pulse is generated in this interval.

Zero Crossing

A small portion of a sinusoidal input to the base of transistor Q1 is illustrated in Fig. 3. The varying input to Q1 is defined by K10, K11, K12, and Z. Transistor Q1 is in the saturated condition during the K11 to K12 interval. The output of the circuit during this interval is represented by K11 to K22. K11 represents the minimum amplitude of base-emitter voltage required to saturate transistor Q1. This minimum voltage (0.3 v) is a function of the supply voltage, the load resistance, and the transistor characteristics. Transistor Q1 is conducting but not saturated during the K11 to K12 interval. This defines the rise time of the output pulse K11 to K12. K12 defines the cutoff point of the transistor, that is, collector current will

FLOW WILL PROCEED PROPERLY, BUT THE CURRENT WAVEFORMS FOR K11 TO K12 INTERVALS ARE NOT SHOWN.

This procedure of zero-crossing detector illustrates how the positive and negative cycles can be separated. This is done by connecting Q1 and Q2 in a manner so that one always conducts and the other does not.

The circuit shown in Fig. 1, therefore, is a zero-crossing detector that provides negative and positive pulses every 180 deg.

It is obvious that the arrangement of the circuit will allow the zero-crossing detector to be used for a wide variety of applications. It may be used as a circuit to determine the phase of the input signal or as a pulse generator. However, the circuit shown in Fig. 1, utilizes only negative and positive pulses, and cannot provide a symmetrical output voltage waveform. It can, however, be used as an encoder, a frequency doubler or a pulse generator.
flow for any voltage below K_{12}. Neither transistor will conduct during the K_{12} to K_{13} interval, during which the output pulse amplitude will be approximately at the supply, represented by K_{12} to K_{13} in Fig. 3. Transistor Q_1 will then remain cut off for approximately one-half cycle. At point K_{13}, transistor Q_2 will begin to conduct and will do so until it reaches saturation at point K_{14}. This interval defines the fall time of the pulse K_{12} to K_{14}. Transistor Q_2 will be in a saturated condition for approximately one-half cycle. The operation will repeat, with Q_2 cutting off and Q_1 turning on. Hence, two pulses are generated for each cycle of a sinusoidal input.

Hole Storage Effect

It can be seen from Fig. 3 and the previous explanation that the center of the output pulse represents the position of the zero-crossing, and the width of the output pulse is inversely proportional to the slope of the input. If the amplitude of the input sinusoid is increased as defined by K_{21}, K_{22}, Z, K_{23}, and K_{24} of Fig. 3, it is reasonable to assume that a narrower pulse (see K_{21}, K_{22}, K_{23}, and K_{24} of Fig. 3) with the same amplitude would be generated. As the amplitude of the input signal is increased, it would also be expected that the rise and fall times of the output pulse would approach the zero-crossing as a limit. Actually, however, as the amplitude of the input sinusoid is increased, the resultant output pulse does become narrower, but at the same time, it decreases in amplitude. This phenomena can be explained by the hole storage effect in transistors. The hole storage effect is, in short, the ability of a transistor to conduct collector current for a short interval of time after the removal of the base drive.

Consider that the input to Q_1 is defined by K_{30}, K_{21}, K_{22} and Z in Fig. 3. Q_1 is in a saturated condition in the K_{30} to K_{21} interval. At K_{21}, the input to transistor Q_1 goes below the voltage

"YOU CAN'T PUT NIAGARA FALLS IN A SPACE SHIP."

Yet the power output of Niagara approximates that which is needed for an "Astronaut" to communicate with earth as he is millions of miles away heading for another planet. Challenging problems such as the development of an alternate source of power for communications are typical of the exciting work now being undertaken at Convair-Astronautics. The enormity and variety of these problems afford electronic engineers at Astronautics an opportunity to pursue tasks that are truly their own, providing an abundance of personal and professional satisfaction.

If you are an **ELECTRONIC ENGINEER** with a record of professional accomplishment there is an important position awaiting you at Convair-Astronautics — where the perimeter of man's knowledge is steadily being advanced.

Write now to: Mr. T. W. Wills, Engineering Personnel Administrator, Dept. 130-90

CONVAIR / ASTRONAUTICS

Convair Division of GENERAL DYNAMICS

5625 Kearny Villa Road, San Diego, Calif.

ELECTRONIC DESIGN • September 16, 1959
necessary to keep the transistor in saturation. Because of the hole storage effect, \(Q_1 \) remains in saturation for a period of time illustrated in Fig. 3b by \(K_{31} \) to \(T_1 \). The rise time of the output pulse, \(T_1 \) to \(T_2 \), is illustrated on Fig. 3b. It can therefore be seen that the cutoff point of transistor \(Q_1 \) is obscured in the output pulse and that the fall time, \(T_2 \) to \(K_{24} \), is realized at a lower amplitude because transistor \(Q_2 \) is conducting \(K_{23} \) and reaches saturation at \(K_{24} \). At higher amplitude input signals, the zero-crossing will not be in the exact center of the output pulse because of hole storage, but will be located closer to the rise time of the output pulse. This holds true until the slope of the input voltages becomes greater than the turnoff time of the transistors and the second transistor starts conducting before the first has been cut off. If the turnoff time equals the turn-on time of the transistor, the delays would cancel and the result would be that the center of the pulse would be the zero-crossing plus the delay in turnoff. The majority of transistors have a larger turnoff time than turn-on because of the storage of minority carriers in the base region or hole storage.

With high-frequency transistors, the errors introduced correspond to approximately 0.2 microsec or 0.03 deg. It is expected that the error introduced by hole storage will not be appreciable since zero-crossing will always occur within the rise time of the output pulse. The initiation of the logical function performed by the output pulse will relate to threshold voltage level on the rise time. The error in defining zero-crossing is the difference between this threshold voltage point and actual zero.

Phase Shift

The circuit as described detects the zero-crossing of the transformer secondary or output windings. This would also represent the zero-crossing of the input signal if no phase shift existed between the transformer input and output windings. A phase shift is caused by reflected impedance presented by the nonlinear impedances presented by the diodes and the transistor base-emitter junctions and the inductive reactance of the output windings. The nonlinearity of the diodes and the transistor base-emitter junctions exists primarily during the time that the pulse is being generated. At all other times the nonlinearity approaches a constant and provides a pure resistive load for the output windings. If the input frequency is constant, the inductive reactance of the output windings remains constant. Therefore, the phase angle between the input and output windings is a constant for identical transformers. This constant phase angle may be reduced to zero by adding series capacitors \(C_1 \) and \(C_2 \), as indicated in Fig. 1, to each output winding where the capacitive reactance is made equal to the inductive reactance, thus the reflected impedance is resistive.

Selecting the Transformer and Diodes

The transformer for this circuit is selected to match the required input impedances. The only requirement on the transformer output windings is to supply the base current necessary to saturate the transistors. The original circuit contained a transformer with a low-impedance input and a 3:1 turn ratio. An identical transformer and a typical filament transformer were tested in this circuit and the output pulses were essentially the same.

Diodes \(D_1 \) and \(D_2 \) in Fig. 1 should have optimum forward characteristics. The original circuit contained zener-type silicon diodes. Zener diodes provide a constant loading for the output windings, and the zener breakdown voltage in the reverse direction serves to limit the transistor base

Fig. 2. Circuit saturation characteristics.

Fig. 3. Transformer output at zero crossing (a); output pulse (b) corresponding to transformer output; nominal 1 V pulse (c).
The virtual elimination of friction in both these new Honeywell linear accelerometers is made possible by a unique web spring suspension. This feature combined with an electro-magnetic pick-off permits resolutions of extremely low level inputs.

These two instruments span the entire range of dynamic performance.

The LA-600 with its magnetic damping is used for higher natural frequency applications. The LA-700 with its compensated fluid damping is designed for lower natural frequency applications. Write for Bulletins LA-600 and LA-700 to Minneapolis-Honeywell, Boston Division, 40 Life Street, Boston 35, Mass.

Feedback to manufacturer...
Use Current-Mode Flip-Flops
For Really High-Speed Switching

William N. Sick, Jr.
Texas Instruments Inc.
Semiconductor Components Div.
Dallas, Texas

William Sick needed fast—very fast transistor switching circuits. He tried some of the fastest switching transistors available but found that, in conventional circuits, they just weren't fast enough. His solution, current-mode switching, is presented here.

Because they're thin, flexible, and can be molded in any single plane shape, new WATLOW Flexible Silicone Rubber Heaters are the ultimate in versatility . . . applicable wherever heat up to 450°F is needed.

ADAPTABLE TO ANY APPLICATION
Can be bonded to any surface to which rubber will adhere. Aluminum backing also available for unusual attachments.

A SHAPE FOR EVERY NEED
Round, square, long, short, with or without inside die-cuts — you name it and Watlow will make it.

LEAD WIRES WHEREVER YOU WANT THEM
Teflon-insulated, or any other, can be had from any edge or surface of heater.

DEPENDABLE HEAT
Finely wound nickel-chromium resistance wires are embedded in durable silicone rubber that's reinforced with fiberglass. It will last and last, and is waterproof, too!

WRITE for Illustrated Literature

Manufacturers of all types of electric heating units:
Immersion • Cartridge • Cylindrical • Tubular • Strip

WATLOW ELECTRIC MANUFACTURING CO.
1368 Ferguson Ave., St. Louis 14, Mo.
Mfd. by Watlow Electric Co. of California, a subsidiary

CIRCLE 37 ON READER-SERVICE CARD

Fig. 1. Simplified current-mode switch (a), and the corresponding voltage waveforms (b).
CONVENTIONAL transistorized switching circuits just aren't fast enough. Present requirements for high-speed transistor switching circuits demand new techniques in switching circuit design.

The speed of conventional saturated transistor switching circuits is limited by:

- Carrier storage times in the transistor,
- Transistor output and input capacitance and stray circuit capacitance,
- Recovery time of diodes in the circuit,
- Alpha cutoff frequency of the transistor.

The switching speed of saturated circuits with new high-speed mesa switching transistors is almost always limited by a combination of the first three factors; so the full potential speed of these units is realized only in a different type circuit.

Current-Mode Switching

Fig. 1 shows a simplified current-mode switching circuit with its waveforms. Before time $t = t_i$, transistor $Q2$ conducts 10 ma, V_B is approximately $+0.2$ v (assuming 0.2 v V_{BE} for germanium), and $Q1$ is biased off.

At $t = t_i$, V_B falls from $+0.5$ v to -0.5 v. The base-emitter junction of $Q1$ becomes forward biased, and $Q1$ starts conducting. The emitter of $Q1$ (point E) follows $B1$ down to about -0.3 v. This action cuts $Q2$ off, causing the full 10 ma current to suddenly switch from $Q2$ to $Q1$.

Current-mode switching circuits use the full potential speed of switching transistors. The collector voltage of the transistor remains high enough to prevent saturation; thus minority carrier storage time is eliminated. The operating collector voltage can be chosen to give minimum output capacitance and maximum alpha cutoff frequency for the transistor.

No fast-recovery diodes are necessary. The input and output voltage swings are small, so the effects of transistor and stray circuit capacitances are minimized.

Since the transient response of the transistor is approximately the same as for common-base operation with a current step into the emitter, the full common-base frequency response of the transistor is realized. In addition, the current-mode circuits are highly immune to noise voltages and are insensitive to transistor parameter spreads and variations.

The current-mode technique can be applied to flip-flop design. If the bases of $Q1$ and $Q2$ in Fig. 1A are coupled to the opposite collectors, the resulting circuit will be a bistable flip-flop. Pull-over transistors can be added in parallel with $Q1$ and $Q2$ for inputs. Two current-mode flip-flops are described here.

50 Mc Current-Mode Flip-Flop With 2N705's

Fig. 2A shows a 50 mc current-mode flip-flop...
Fig. 2. 50 mc current-mode flip-flop using germanium 2N705's. (a) Schematic of the 50 mc flip-flop. (b) Equivalent circuit of the 50 mc flip-flop. (c) Waveforms for 2 mc operations at a temperature of 25 C. Reading from top to bottom, waveforms are at Output 2, Output 1, Input 2, and Input 1. Scope is a Tektronix 545 with 100 msec/cm on the time scale and 2 v/cm on the vertical scale. (d) Waveforms for 50 mc operation at a temperature of 25 C. Reading from top to bottom, waveforms are at Output 2, Output 1, Input 2, and Input 1. Scope is a Tektronix 517A with 10 msec/cm and 1 v/cm.

Fig. 3. (right) 25 mc current-mode flip-flop using silicon 2N702's. (a) Schematic of the 25 mc flip-flop. (b) 10 mc operation at 25 C showing, top to bottom, waveforms at Input 1, Input 2, Output 1, and Output 2. Scope is Tektronix 517A with H scale set at 25 msec/cm, V scale at 1 v/cm. (c) 25 mc operation at 25 C showing, top to bottom, Input 1, Input 2, Output 1, and Output 2. Scope is 517A with H = 10 msec/cm, V = 1 v/cm.
using four 2N705 germanium high-speed switching transistors. An equivalent circuit is given in Fig. 2B and photographs of the input and output waveforms in Fig. 2C.

Both the input and output voltages swing symmetrically, one volt about zero, so the output of one stage can be coupled directly to the input of the next stage. This is accomplished by using reference diodes as a voltage source to couple the collectors to their respective loads and by using two 5 ma current sources to provide a negative bias for the output of the off transistor.

The diodes are chosen to give the optimum operating collector voltage. The waveforms in Fig. 2C show operation of the circuit at 2 mc (300 usec separation of input pulses) and at 10 mc (20 usec separation of input pulses). The input pulses are about 10 usec wide and have rise and fall times of one to two usec. The switching time of the circuit is somewhat better than shown in the photographs due to the 7 usec rise time limitation of the Tektronix 517A.

25 Mc Current-Mode Flip-Flop With 2N702's

The schematic for a 25 mc current-mode flip-flop using four 2N702 silicon transistors is given in Fig. 3A. The operation of the circuit is essentially the same as that of the 50 mc flip-flop. The load resistors have been increased slightly from the values used in the 50 mc flip-flop to give the larger output voltage necessary to accommodate the larger V_{BE} spread in silicon units.

The input and output voltages swing 1.3 v about a zero volt center. Two 1.2 μh peaking coils have been added to give sharp switching waveforms. Waveforms for operation at 10 mc and 25 mc (100 and 40 usec separations of input pulses) are shown in Fig. 3B and Fig. 3C respectively. Input pulses are about 30 usec wide with rise time of one to two usec.

The circuit operated reliably at room temperature with a distribution of 2N702 standard production units. If operation over a wide temperature range is desired, the collector load resistors should be increased to give slightly more output voltage; this will allow for variations in V_{BE} over the temperature range.

These circuits were tested at no load, but their design allows for the input of an additional flip-flop to be connected to each output node.

If larger fan-out, operation over a wide temperature range, or appreciable variation in supply voltages is required, the load resistors should be increased and the maximum frequency reduced.

The two circuits described illustrate the very high-speed switching performance that can be obtained from current-mode circuits. These techniques have become a necessity to realize the full speed of diffused-base mesa transistors.

Compact, $145, 150 ma

TRANSISTOR POWER SUPPLY

Prevents overload damage to transistors!

Model 721A

- 150 ma, 0 to 30 v dc, variable
- Less than 0.3% or 30 mv change
- Ripple less than 150 μv rms

Metered output and current limiter prevent transistor damage

Model 721A was designed from the chassis to provide safe, precision test voltages for almost all types of transistors in use today.

An outstanding feature is an output limiter, holding current to 25, 50, 100 or 225 ma as selected on the front panel. Accidental overloads are eliminated.

Model 721A has a 3-terminal output for grounding either positive or negative terminals. It may be "stacked" on another voltage, and a front panel meter monitors either output voltage or current, eliminating extra equipment.

Other -hp- regulated and klystron supplies

<table>
<thead>
<tr>
<th>Model</th>
<th>Characteristics</th>
<th>Regulation</th>
<th>Current</th>
<th>Voltage Range</th>
<th>Hum & Noise Level</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>711A</td>
<td>General purpose</td>
<td>Less than 0.5%</td>
<td>100 ma</td>
<td>0 to 500 v dc; 6.3 v ac</td>
<td>Ripple less than 0.1%</td>
<td>$250.00</td>
</tr>
<tr>
<td>712K</td>
<td>Heavy duty, 4 out, no. 1</td>
<td>Less than 50 v no load</td>
<td>200 ma</td>
<td>0 to 300 v ac; 6.3 v fixed bias</td>
<td>Ripple less than 500 μv</td>
<td>$365.00</td>
</tr>
<tr>
<td>715K</td>
<td>Klystron supply, square wave, external modulation</td>
<td>Less than 1%, no load</td>
<td>50 ma</td>
<td>250 to 700 v dc</td>
<td>Ripple less than 7 mv</td>
<td>$300.00</td>
</tr>
</tbody>
</table>

Data subject to change without notice. Prices f.o.b. factory.

HEWLETT-PACKARD COMPANY

1011 K PAGE MILL ROAD • PALO ALTO, CALIFORNIA, U.S.A. • CABLE: "NEWPACK" • DAVENPORT 6-4451

Field Representatives in all Principal Areas

Investigate hp 122A Dual Trace Scope, just $625

CIRCLE 39 ON READER SERVICE CARD

ELECTRONIC DESIGN • September 16, 1959
Simple Test Jig

Converts Curve Tracer For Use With Tetrode Transistors

TETRODE TRANSISTORS are becoming increasingly popular because they allow increase of f_{max} by application of a bias current through the base.

A method of converting a type 575 Tektronix transistor curve tracer to enable its use with tetrodes is described here.

A typical transistor is shown in Fig. 1. Transistor action is obtained by biasing the emitter-base junction in the forward direction.

The n type emitter injects into the p type base minority carriers or electrons which do not combine with holes in the p type base. These electrons cross into the collector, supplying the carriers needed for the reverse biased base-collector junction. The dotted lines in the figure show the electron path distribution in a typical triode transistor.

In an npn tetrode, Fig. 1, a second base terminal, B_2, is on the opposite side of the base from the normal first base terminal, B_1. Transistor action is identical with that of a triode connected transistor.

However, by applying a voltage across terminals B_1-B_2, an auxiliary current, I_{b2}, flows through the base, setting up a transverse voltage drop. This concentrates the base activity at base terminal I, causing the electron path to be displaced as shown in Fig. 1.

In a tetrode transistor, as I_{b2} increases, both r_b, the ohmic base resistance, and C_o, the collector diode barrier capacity, decrease. The output time constant r_bC_o is decreased, thereby increasing f_{max} and producing better high frequency performance. However, the low frequency beta decreases. The overall effect is to shift the gain versus frequency curve to the right as shown in Fig. 2.

Simple Test Jig for Tektronix 575

The test jig shown in Figs. 3 and 4 can be used with the Tektronix 575 curve tracer to measure a tetrode's beta, and to observe its change as I_{b2} is varied.

A 3313 Elco 5-pin transistor socket was used in the test jig. Four of the pins are distributed equally on a circle, and the fifth is located next to one of the evenly distributed pins. As shown in Fig. 5, the inner pin and the pin directly opposite are bent 90 deg flat against the face of the bakelite form.

The base 1 connection is made up of the bent pin and the one adjoining it. The base 2 connection is the other bent pin. The three remaining upright pins are filed down to fit into the curve tracer's transistor socket.

The external circuit supplies a variable bias current and provides monitoring of I_{b2}. The bypass capacitors are valued at 1000 μf. Use of short leads in the external circuit is imperative to reduce 60-cycle pickup which may show up on the curve tracer.

The change in beta is easily observed on the curve tracer as R_a is varied. Beta is readily obtained by dividing collector current by base current for a specified operating point and value of I_{b2}.

The circuit can be applied to any type of curve tracer with slight modifications in mechanical construction of the jig.

for reliability in heavy-duty power control...specify new

LEACH POWER CONTACTORS

Your airborne and electronic high performance requirements dictated the design and construction of Leach Rotary Contactors—the new power control devices that operate with unequaled reliability under extremes of high temperature, altitude, shock and vibration.

These bi-polar, rotary mechanisms incorporate the balanced armature principle to help solve application problems of inverter control, motor control, motor reversal, and power transfer. Compact design achieves the advantages of small size and lightweight to meet the needs of the aircraft, missile and electronic industries.

Leach Rotary Contactors meet and, in many cases, surpass the stringent requirements of MIL-R-6106.

Write today for specifications and a complete description of operating characteristics. Ask for the new Leach Power Contactors Brochure.

Double-break contacts guarantee maximum circuit-breaking capacity.
Lightweight, high dielectric strength materials are used throughout.
Positive lock terminals guard against faulty operation caused by movement of terminals.
Bi-polar rotary design.
Balanced armature construction and dual coil design provide the most efficient magnetic circuit for maximum resistance to shock and vibration.

LEACH CORPORATION
5915 AVALON BOULEVARD, LOS ANGELES 3

DISTRICT OFFICES AND FIELD REPRESENTATIVES IN PRINCIPAL CITIES OF U.S. AND CANADA • EXPORT: LEACH CORP., INTERNATIONAL DIVISION
CIRCLE 40 ON READER-SERVICE CARD
Some design engineers specify PNP switching transistors because they consider them inherently more reliable. Actually NPN transistors can give you superior reliability along with their well-known higher speed. Life tests covering hundreds of thousands of CBS NPN alloy-junction germanium switching transistors proved this during the past year. See graphs comparing these transistors with typical military-approved PNP transistors.

The superiority of CBS NPN transistors is achieved by special processing: For example, advanced surface chemistry techniques seal out moisture and contamination. Precise control of alloying produces high back voltages. Thorough bake-out stabilizes gain. The result is reliable NPN computer-type switching transistors featuring fast switching... high voltage... low cutoff current... and low saturation resistance... in a welded JETEC TO-9 package.

A comprehensive line of these reliable CBS NPN high-speed switching transistors is available now in production quantities. Check the table. Order types you need... or write for Bulletin E-353 giving complete data . . . today.

More reliable products through Advanced Engineering

IDEAS FOR DESIGN

Frequency Stabilized Oscillator Features Wide Range Tuning

Electronic oscillators can be stabilized by mechanical standards, such as quartz or tuning fork. But these standards have the disadvantage of being adjustable in frequency, only over very narrow limits. For many engineering applications, it would be desirable to have a frequency stabilized oscillator which can be continuously tuned over a very wide range.

Such an oscillator is feasible if the mechanical standard is a continuously variable magnetostrictive delay line. The block diagram illustrates this. The sine wave oscillator, whose frequency is to be stabilized, generates a narrow pulse which feeds the input coil of the delay line.

The main tuning control of the oscillator is ganged to a mechanism which can vary the time delay of the line by varying the spacing between the coils. At any position of the tuning control the time delay of the line is equal to the period of the oscillator. For example, at a frequency of 10 ke, the time delay is 100 usec and the spacing between coils is about 20 in.

More reliable products through Advanced Engineering

CIRCLE 41 ON READER-SERVICE CARD

CBS ELECTRONICS, Semiconductor Operations
A Division of Columbia Broadcasting System, Inc.
Monostable Multi With Near-Zero Recovery Time

Usually, the minimum recovery time for a monostable multivibrator is equal to the generated pulse width. The recovery time of the circuit shown here will be practically zero. It will also be independent of the generated pulse width.

This monostable multi consists of four major parts: two conventional type monostable multivibrators, a bistable multivibrator, and an “OR” circuit.

The circuit is based on the principle of alternate operation of B1 and B3. After each operation, B2, a bistable multivibrator, alternates the power from B1 to B3 and vice versa. The starting trigger is applied to B1 and B3. Assuming the initial condition is as shown in the figure, B1 will generate the pulse, which will be applied to the “OR” circuit and the differentiator.

Bistable multivibrator, B2, helps monostable multis, B1 and B3, recover in tenths of a microsecond.

The negative pulse from the differentiator will “flip” B2, the bistable multivibrator. This action will remove power from B1 and apply it to B3. The next pulse, generated by B3, will operate B2 in the same manner as B1 did. Both outputs will be added in the “OR” circuit.

The recovery time of such a circuit is practically zero. It depends solely upon the switching of B2, which usually is only a few tenths of a microsecond.

Gleb Demjanenko, Electronic Design Engineer, Bell Aircraft, Inc., Buffalo, N. Y.
PATENTS

Semiconductive Switch

The switch is essentially a back-biased diode element of monocrystalline silicon with four zones; adjacent zones have opposite conductivities. A pulse from the control source or light incident upon the middle junction causes the element to break down and the impedance changes to that of a pn junction in the forward direction.

The figure shows the pnpn element in series with battery 12A and the utilization circuit 13. The intermediate zones 15 and 16 are floating and have inherent alphas which are low at low current density. One zone has an inherent alpha which increases with current density. Junction 19 breaks down when control source 12B delivers a signal pulse or when light is incident upon junction 19. The current density increases until the effective alpha of the element becomes unity. Low impedance is maintained until the applied voltage is decreased below breakdown. At this point the switch opens.

Audio Frequency Amplifier

Distortion in an amplifier driving a direct radiator loudspeaker is reduced when the amplifier output impedance is the complement of the blocked voice-coil impedance. The blocked voice-coil im-
pedance is cancelled and, with proper mechanical loading, the speaker velocity is faithful reproduction of the applied signal. The cancellation is achieved by means of positive current and negative voltage feedback.

A bridge circuit is placed across the secondary of the output transformer. The elements of the bridge are resistors 88, 90 and 92 and the impedance of voice coil 84. With the bridge balanced against the voice coil impedance, the voice coil impedance is cancelled. Mechanical motion of the speaker may be properly damped and the overall frequency response improved by capacitor 98 and resistor 100 connected in series as a single loop feedback across the phase inverter stage. The combination of capacitor 94 and resistor 96 in the overall feedback loop also improves the overall frequency response.

JORDAN
frequency band
and voltage band
SENSORS
—with solid state switches or miniature relays

- "fail safe"
- low operating power
- reverse polarity protection
- instant warm-up

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>AC VOLTAGE</th>
<th>DC VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SENSITIVE RELAY</td>
<td>SENSITIVE RELAY</td>
<td>SENSITIVE RELAY</td>
</tr>
<tr>
<td>part No. AU-0158</td>
<td>part No. AU-0159</td>
<td>part No. AU-0160</td>
</tr>
<tr>
<td>Sensing band</td>
<td>390 to 410 cps</td>
<td>113 to 118 volts</td>
</tr>
<tr>
<td>Accuracy</td>
<td>± 5%</td>
<td>± 3 volts</td>
</tr>
<tr>
<td>(Tighter tolerances also available)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input</td>
<td>115 volts 400 cps</td>
<td>115 volts 400 cps</td>
</tr>
<tr>
<td>Contact rating</td>
<td>2 amps</td>
<td>2 amps</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-55°C to +71°C</td>
<td>-55°C to +71°C</td>
</tr>
<tr>
<td>(Wider operating temperature ranges also available)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td>MIL-E-5272B</td>
<td>MIL-E-5272B</td>
</tr>
<tr>
<td>Weight</td>
<td>6.5 oz.</td>
<td>6.5 oz.</td>
</tr>
<tr>
<td>Write for:</td>
<td>Bulletin 201</td>
<td>Bulletin 202</td>
</tr>
</tbody>
</table>

Other solid state devices, DC to DC converters, DC-AC sine wave inverters, programmers, time delays, static switches, timers, etc.
RUSSIAN TRANSLATIONS

Calculation of Errors When Using Lissajous Figures for Frequency Comparison

M. I. Shatalov

Lissajous figures are used extensively for comparison of frequencies in electronic measurements. The two principal uses of Lissajous figures are:

- To tune a generator to a frequency that is in a fixed ratio to another frequency used as a comparison standard.
- To determine the frequency deviation from standard frequency, when the ratio of the compared frequencies is not equal to an integer.

The former case is the best known. In the second case, absolute accuracy is attainable only at the simplest frequency ratio, 1:1. For this ratio, the error is the number of total cycles \(k \) of the variation of the figure divided by the time \(t \) in seconds during which the number of cycles is counted.

\[
\Delta f = \frac{k}{t} \text{ cps}
\]

At more complicated frequency ratios, difficulties frequently arise and errors are introduced in the calculation of the frequency error. One of the causes of these errors is that the chapters devoted to the use of Lissajous figures in several texts on radio measurements contain inaccuracies.

The table shows the Lissajous figures for the most frequently employed frequency ratios. The instantaneous values of the lower frequency voltages are measured along the abscissa, and those of the higher frequency along the ordinate. All the figures are plotted for the case when the second oscillation leads the first. The phase shift corresponding to those figures, expressed in fractions of a cycle (degrees) of the higher frequency, is indicated for each group of figures. Under each group of figures is indicated the absolute phase shift, expressed in fractions of a period (degrees) of the lower frequency.

From this point on, the frequency ratio will be expressed in the form of a fraction \(m/n \), where \(m \) and \(n \) are integers greater than 1. A ratio in the form \(1/1 \) will be the particular case for which \(m = n = 1 \).

The Lissajous figures go through a complete frequency ratio, when the phase \(\phi \) of the frequency proportional to \(m \) is changed by an angle

\[
\phi_m = \frac{360^\circ}{n}
\]

For the second oscillations we have

\[
\phi_n = \frac{360^\circ}{m}
\]

Consequently, a 360 deg change in the phase of the frequency proportional to \(m \) corresponds to a cycle of change in the shape of the figure, while a 360 deg change in the phase of the second frequency (proportional to \(n \)) corresponds to \(n \) cycles of variation of the shape of the figure.

This makes it possible to find the general expression for the frequency error for any ratio \(m/n \). If the frequency proportional to \(n \) is standard, then the number of cycles of variation of the figure divided by the time should also be divided by \(n \). Eq. 1 becomes

\[
\Delta f_m = \frac{k}{tn} \text{ cps}
\]

For the case where the frequency proportional to \(m \) is the standard, Eq. 1 becomes

\[
\Delta f_n = \frac{k}{tn} \text{ cps}
\]

For example, let us consider the use of Lissajous figures corresponding to a frequency ratio \(2/3 \), and determine the error in a frequency of 60 cps, measured against a standard frequency of 100 cps. If \(k/t = 1 \) change per second, \(\Delta f_{60} = 0.33 \text{ cps} \).

If this frequency ratio is used to determine the errors in a frequency of approximately 150 cps against a standard frequency of 100 cps, the error for the same ratio \(k/t = 1 \) becomes \(\Delta f_{150} = 0.53 \text{ cps} \).

The cycle of the figure is usually timed from
Lissajous figures for the most often used frequency ratios.

Designers of transistorized high-frequency electronic equipment now have the advantages of local sources of supply for RCA semiconductor devices. Of particular interest is the news that RCA-2N384 VHF DRIFT TRANSISTORS of the germanium p-n-p type are immediately available through your local RCA Semiconductor Distributor.

RCA-2N384 features high collector dissipation, high transconductance, low input and output capacitance, and excellent high-frequency response. RCA-2N384 is especially popular for service in either linear-type or pulse-type video-amplifiers featuring fast rise time. Typical circuits and technical data for this outstanding unit are shown here.

- Efficient operation up to 100 Mc. in rf-amplifier service and up to 125 Mc. in oscillator service.
- Enables practical design of rf, oscillator, video, and if circuits of transistorized radio, radar, marker-beacon and navigation receivers, and other electronic equipment.

Performance

Proved by more than 2 years of dependable service

RCA-2N384 VHF DRIFT TRANSISTOR

...available from your local RCA SEMICONDUCTOR DISTRIBUTOR

Performance

- Efficient operation up to 100 Mc. in rf-amplifier service and up to 125 Mc. in oscillator service.
- Enables practical design of rf, oscillator, video, and if circuits of transistorized radio, radar, marker-beacon and navigation receivers, and other electronic equipment.

RCA-2N384 VHF DRIFT TRANSISTOR

For other information on RCA-2N384 DRIFT TRANSISTOR—or on any RCA TRANSISTORS or SILICON RECTIFIERS—contact your local RCA SEMICONDUCTOR DISTRIBUTOR.
The greatest possible potentiometer reliability because it's sealed!

The greatest enemy of potentiometers is water vapor or humidity. In aircraft or missiles, where the equipment can breathe due to altitude and pressure changes, exclusion of water vapor is especially vital. Because Waters APW½ and WPW½ Potentiometers are completely sealed — absolutely watertight — they eliminate this common cause of failure. In addition, of course, the watertight construction seals out dust and other foreign particles. That's why more and more engineers are finding out that Waters watertight potentiometers are the best possible guarantee of potentiometer reliability.

Designed specifically to be leak-proof in boiling water! Sealed against water immersion as specified in MIL-E-5272A and other military specifications by means of a double 'O' ring shaft seal. The glass-to-metal terminal board is solder-sealed to the case. Available with 125°C or 150°C construction, mechanical rotation stop, special winding angles, values to 10W and higher linearity tolerances. Can be supplied with optional split bushings and various shaft lengths. The WPW ½ features the same construction, but with a servo face. Write for Bulletin APW-359.

GERMAN ABSTRACTS

E. Brenner

Applications of Switching Transistors

Three regions of operation may be defined for the thyatron-like characteristics of a switching transistor (Fig. 1). The high resistance portion of the characteristics is independent of external elements while the slope and the peak of the "active" portion (negative differential resistance) can be controlled with an external base resistance R_b. The low resistance region can be controlled by the collector voltage V_C and the external collector circuit resistance R_C.

The three fundamental pulse operations correspond to the three types of load lines sketched on Fig. 1b. Bistable operation at A_1-A_2 occurs for line I. Lines IIa and IIb result in monostable operation to A_1 and A_2 respectively. When the load line intersects the characteristics in the negative slope region, a stable operation results (Line III).

For bistable operation, the emitter circuit resistance R_e must be less than the differential resistance in the "active" region and a load line...
similar to I is chosen. Transitions from the high to the low resistance region are effected by using short (approx 10⁻²₇ sec) negative pulses, emitter to base; with opposite polarity required to produce the reverse transition. Particularly high sensitivity is achieved if a diode circuit is connected on the emitter side as shown in Fig. 2.

In a typical monostable circuit, (Fig. 3), negative pulses produce the output gate since the load line intersection is in the high resistance region. The transistor moves in the V_{be}-I_e plane along the path 1-2-3-4-1 in sequence as indicated. When the external collector resistance R_{ce} is much larger than the transistor resistance in the low resistance region but much smaller than R_e, the gate duration is approximated by

$$ t_2 = R_{ce} C_e \ln \left(\frac{I_2}{I_3} \right) $$

In the original paper a variety of applications are cited. These include triangular and square wave generators, a temperature sensitive relay, a counter, a shift register and other pulse circuits.

Abstracted from an article by W. V. Muench and H. Salow, Nachrichtentechnische Zeitschrift, Vol. 12, No. 6, June 1959, pp 301-310.

Ten different ways to actuate this small, dependable switch

Here are ten "SM" subminiature switches equipped with ten different integral and auxiliary actuators that contribute to the great versatility of these dependable, small switches. For ten years MICRO SWITCH subminiature switches have been the choice of designers who require switches of high electrical capacity which can be mounted in small space.

For complete information on the MICRO SWITCH lines of subminiature and sub-subminiature switches, we invite you to contact your nearby MICRO SWITCH branch office, or send for Catalog 63.

MICRO SWITCH...FREEPORT, ILLINOIS
A division of Honeywell
In Canada: Honeywell Controls Limited, Toronto 17, Ontario
REPORT BRIEFS

Intensity Discrimination For Narrow Noise Bandwidths

Upon the assumption that the auditory system acts as an envelope detector, a series of hypotheses was stated predicting how intensity discrimination would be influenced by the variations in the stimulus envelope. The results indicate that discrimination was the same for stimuli whose envelopes are smoothed by the auditory system despite differences in frequency spectrum. For stimuli whose envelope fluctuations occur at a rate less than the integrating time of the auditory system, discrimination is degraded, increasingly so as bandwidth is reduced. However, differences in discrimination among bandwidths were eliminated when pulse duration was reduced sufficiently to preclude envelope variations. The results, in general, indicate that the envelope detects or model is a reasonable description of auditory discrimination. "Intensity Discrimination For Narrow Bandwidths of Noise," R. M. Michaels, Naval Research Laboratory, Washington, D. C., Oct. 1958, 31 pp. Microfilm $3.00, Photocopy $8.30. Order PB 134206 from Library of Congress, Washington 25, D.C.

RF Cable Power Ratings

An analysis is made of various methods of measuring power input to coaxial cables. A substitution calorimetric method was selected as the most suitable for determining the power rating of coaxial cables. Experimental power rating data is presented for selected polyethylene and particularly for Teflon coaxial cables. Curves of power handling capacity versus frequency over the range of 100 to 10,000 mc are given at standard conditions of ambient temperature of 104 F, sea level and unity standing wave ratio. These power ratings were established at a center conductor temperature of 175 F for polyethylene cables and 482 F for Teflon cables. This power rating data for standard conditions is further extended through charts and formulae to conditions of ambient temperature from -85 to 175 F for polyethylene and 482 F for Teflon, to conditions of altitude from sea level to 70,000 feet, and to conditions of vswr from 1:1 to 2:1. "Cable, Radio Frequency: Study of Power Ratings," G. J. Mares, American Phenolic Corp., Chicago, III., Nov. 1955, 75 pp, Microfilm $4.50, Photocopy $12.30. Order PB 139924 from Library of Congress, Washington 25, D.C.
Diodes in Switching Circuits—II

This report is concerned with the study and investigation of negative resistance devices and the following subjects have been covered. Measurements of switching time as a function of load resistance and of carrier storage time are presented. Some of the capabilities of negative resistance multivibrators are investigated. Modification of a negative resistance diode characteristic with a transistor is discussed. Determination of the $V_T = I_T$ and $V_r = I_r$ characteristic of a transistor having a negative resistance in the base circuit is explained. Measurements of actual $V - I$ characteristics are presented. A four-layer diode flip-flop, having a great deal of tolerance to diode parameter and supply voltage variation, is described. *Investigation of the Applications of Negative Resistance Diodes for Switching Circuits, Transistor Applications, Inc., Boston, Mass., Dec. 1958, 18 pp, Microfilm $3.00, Photocopy $6.30. Order PB 139220 from Library of Congress, Washington 25, D.C.*

Use of Physical Phenomena in Communications

The extensive development of radio communication has overcrowded existing facilities. This paper proposes a solution to relieve this condition through the use of phenomena other than present day radio for communications. The paper investigates communication through natural ducts by the use of low frequency radio, sound, light, heat and gamma rays. Areas in which experimental work is required are summarized. Estimates are made of the probable speed rates with which information may be transmitted by use of the cited phenomena. *Exploitation of Physical Phenomena for Communications, Joseph L. Ryerson, Rome Air Development Center, Griffiss AFB, N.Y., Oct. 1958, 19 pp, Microfilm $2.40, Photocopy $3.30. Order PB 138493 from Library of Congress, Washington 25, D.C.*
If you have this problem, investigate

GRIP-EZE
—an example of Phelps Dodge's realistic approach to Magnet Wire research

THE PROBLEM: To develop a solderable film-coated wire without fabric for winding universal lattice-wound coils without adhesive application.

THE SOLUTION: Phelps Dodge Grip-eze—a solderable film wire with controlled surface friction for lattice-wound coils that provides mechanical gripping between turns and keeps wire in place.

EXAMPLE: Coils wound with (a) conventional film wire; (b) Grip-eze. Note clean pattern of Grip-eze as compared to fall-down of conventional film wire.

Any time your problem is magnet wire, consult Phelps Dodge for the quickest, surest answer!

REPORT BRIEFS

Tropospheric Radio Wave Propagation
This report describes the results of an experimental investigation of the short-time statistics which characterize beyond-the-horizon radio wave propagation. Specifically, the probability distribution and the period of stationarity of the received signal are treated. The data were analyzed by means of statistical techniques, including an F test and a goodness-of-fit test. Experimental and analytical procedures are described in detail, as are the results obtained. A tabulation of the basic data and a complete sample calculation are also included. Short-Time Statistics of Tropospheric Radio Wave Propagation, R. G. Finney, General Electric Research Laboratory, Schenectady, N.Y., June 1958, 47 pp, Microfilm $3.30, Photocopy $7.80. Order PB 13803 from Library of Congress, Washington 25, D.C.

Ruby Maser Action
In an endeavor to find paramagnetic materials suitable for maser applications, the electron-spin resonance properties of ruby (Al₂O₃:Cr) were investigated. Evidence of oscillations and amplifications was obtained. Maser Action In Ruby, G. Makrov, C. Kikuchi and others, University of Michigan, Ypsilanti, June 1958, 8 pp, Microfilm $1.80, Photocopy $1.80. Order PB 138068 from Library of Congress, Washington 25, D.C.

Electron Dynamics
The object of this report is to demonstrate the value of the hydrodynamical approach to electron dynamics (as opposed to the individual-particle approach) and to furnish a hydrodynamical "unified electron tube theory." By "tube" is meant any system in which the unperturbed electron beam or cloud, and the electromagnetic fields, have cylindrical or planar symmetry. This definition covers a large variety of devices. Because of the hydrodynamical approach, the theory can cope with solid beams, not only filaments or sheets of electrons. Also, strong coupling is covered by the theory. Qualitatively, the generative properties of electron clouds or beams are readily demonstrated, while qualitative analysis is reduced to the integrand of a single first-order differential equation for the electron admittance across the beam or cloud. Electron Dynamics, O. Buneman, Stanford Electronics Laboratories, Stanford University, Calif., Aug 1958, 25 pp, Microfilm $2.70, Photocopy $4.80. Order PB 136558 from Library of Congress, Washington 25, D.C.
Symmetric Spherical Antenna

Equations suitable for numerical calculation of the characteristics of a symmetric spherical antenna have been detailed using the basic theory developed by S. A. Schelkunoff for a biconical antenna. Equations for ohmic loss in the antenna region and over the hemispherical caps have been developed. Calculations of input impedance, radiated power, and radiation efficiency for an electrically small antenna have been made, and the results shown in graphical form. Method of Computing The Characteristics of a Symmetric Spherical Antenna, J. Herman, Diamond Ordnance Fuze Laboratories, Washington, D. C., Aug. 1957, 19 pp, Microfilm $2.40, Photocopy $3.30. Order PB 137402 from Library of Congress, Washington 25, D. C.

Tropospheric Scatter

A primary task of the project has been the recording of the signal strengths received at Syracuse, N. Y., from a transmitter at Lexington, Mass., 248.9 miles away. The transmitter operated at a carrier frequency of 915 mc. A study was made of the correlation between propagation data and meteorological conditions in the transmission path. The relative behavior of certain antennas for scattered signals and line-of-sight signals was compared. The Lexington-Syracuse Tropospheric Scatter Propagation link, J. Dienst, L. A. Mullin and others, Syracuse University Research Institute, N.Y., Nov. 1957, 59 pp, Microfilm $4.90, Photocopy $13.80. Order PB 136470 from Library of Congress, Washington 25, D. C.

Meteor Scatter

This report is divided into three main parts. The first is a review, extension and discussion of the mechanism of radio scattering from meteor ionization trails under all combinations of low and high electron line density, long and short radio wavelength, and back and forward scattering. The second part consists of a review and discussion of the number distributions of echo amplitudes and durations, and a discussion of the diurnal and seasonal variations in the number and directions of arrival of meteor particles. In the final part the information on echo characteristics and meteor rate and radiant variations is used to obtain a description of the total fluctuating signal propagated over various paths by means of scattering from numerous meteors ionization trails. Meteor Scatter, V. R. Eshleman, Stanford Electronics Laboratories, Stanford University, Calif., Aug. 1958, 48 pp, Microfilm $3.30, Photocopy $7.80. Order PB 138788 from Library of Congress, Washington 25, D. C.

Symmetric Spherical Antenna

Equations suitable for numerical calculation of the characteristics of a symmetric spherical antenna have been detailed using the basic theory developed by S. A. Schelkunoff for a biconical antenna. Equations for ohmic loss in the antenna region and over the hemispherical caps have been developed. Calculations of input impedance, radiated power, and radiation efficiency for an electrically small antenna have been made, and the results shown in graphical form. Method of Computing The Characteristics of a Symmetric Spherical Antenna, J. Herman, Diamond Ordnance Fuze Laboratories, Washington, D. C., Aug. 1957, 19 pp, Microfilm $2.40, Photocopy $3.30. Order PB 137402 from Library of Congress, Washington 25, D. C.

Tropospheric Scatter

A primary task of the project has been the recording of the signal strengths received at Syracuse, N. Y., from a transmitter at Lexington, Mass., 248.9 miles away. The transmitter operated at a carrier frequency of 915 mc. A study was made of the correlation between propagation data and meteorological conditions in the transmission path. The relative behavior of certain antennas for scattered signals and line-of-sight signals was compared. The Lexington-Syracuse Tropospheric Scatter Propagation link, J. Dienst, L. A. Mullin and others, Syracuse University Research Institute, N.Y., Nov. 1957, 59 pp, Microfilm $4.90, Photocopy $13.80. Order PB 136470 from Library of Congress, Washington 25, D. C.

Meteor Scatter

This report is divided into three main parts. The first is a review, extension and discussion of the mechanism of radio scattering from meteor ionization trails under all combinations of low and high electron line density, long and short radio wavelength, and back and forward scattering. The second part consists of a review and discussion of the number distributions of echo amplitudes and durations, and a discussion of the diurnal and seasonal variations in the number and directions of arrival of meteor particles. In the final part the information on echo characteristics and meteor rate and radiant variations is used to obtain a description of the total fluctuating signal propagated over various paths by means of scattering from numerous meteors ionization trails. Meteor Scatter, V. R. Eshleman, Stanford Electronics Laboratories, Stanford University, Calif., Aug. 1958, 48 pp, Microfilm $3.30, Photocopy $7.80. Order PB 138788 from Library of Congress, Washington 25, D. C.
Tachistoscope

A multi-field electronic tachistoscope is described which has variable duration, sequence, and intensity controls. In addition, the device may be cycled automatically, or be made to run through a single cycle manually. Each viewing field can be illuminated for durations ranging from 1 msec to 3 sec during automatic operation. The upper limit of the exposure duration may be increased to any desired value greater than 3 sec by means of a manually operated switch. Other provisions are described which control intensity of the illuminated or trans-illuminated stimulus materials. A Multi-Field Electronic Tachistoscope, Paul A. Kolers, Aero Medical Lab., Wright-Patterson AFB, Ohio, Dec. 1958, 11 pp. $0. Order PB 151689 from OTS, Washington 25, D.C.

Limited Clipped Integration

Limited clipped integration is a method for improving radar video presentation. It effectively eliminates noise and interference from the video output, working ideally on signals from which ground clutter has been removed. With a feedback gain of one and a memory of three it is especially valuable for use with automatic computers. In an area where jamming is most severe, its reliability has been proved by three years of operation. Economical and practical, its addition to existing radars is a simple matter. Limited Clipped Integration, John P. Castelli, Air Force Cambridge Research Center, Bedford, Mass., July 1958, 20 pp. Microfilm $2.40, Photocopy $3.30. Order PB 140163 from Library of Congress, Washington 25, D.C.

Transistor Test Set

A small versatile transistor test set was designed to measure collector cutoff current (I_{CE}), emitter cutoff current (I_{BE}), and the dc large-signal common-emitter current gain (H_{FE}). A wafer polarity switch is included to accommodate both npn and pnp transistors. I_{CE} and I_{BE} are measured at 2.68 v which are supplied by 2 mercury cells, the only power source of the instrument. In measuring H_{FE}, the 2.68 v are included in the collector-to-emitter circuit as the collector supply voltage. A 134 K resistor, in series with the 2.68 v, supplies a 20-μA constant base current. A 20-μA meter is used in measuring I_{CE} and I_{BE}. A shunt resistor, used when H_{FE} is being measured, converts 20 μA to 2 ma. A Simple Transistor Test Set, Harry V. Wood, Army Signal Engineering Laboratories, Fort Monmouth, N.J., Aug. 1957, 9 pp. $0.50. Order PB 151300 from OTS, Washington 25, D.C.
Properties of Semiconductors, I

The temperature dependences of lifetime, injection ratio, and resistivity in p-type silicon crystals were measured by the use of the pulse decay method. At high temperatures the dependence of lifetime and injection ratio on emitter current and sweeping field is identical with that which one observes at room temperature. Electronic Properties of Semiconductor Materials, J. Maczuk, B. P. Fabricand, Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia, Pa., June 1957, 31 pp, Microfilm $3.00, Photocopy $6.30. Order PB 136089 from Library of Congress, Washington 25, D.C.

Properties of Semiconductors, II

Results are obtained which show the dependence of surface state energy levels under a point contact on temperature, injecting voltage, and sweeping field in a p-type 250 ohm-cm crystal. Time constants for the filling and emptying of surface states for different voltages are also found. These results are obtained by observing the carrier disturbances under a point contact by a pulse method previously described. A theory of the behavior observed is presented. Electronic Properties of Semiconductor Materials, J. Maczuk, B. P. Fabricand, Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia, Pa., Sept. 1957, 23 pp, Microfilm $2.70, Photocopy $4.80. Order PB 136089 from Library of Congress, Washington 25, D.C.

Properties of Semiconductors, III

Transistor Measurements

A method is shown whereby four measurements made directly on commercial bridges may be used to find the admittance parameters of a transistor in any orientation, common-base, common-emitter, or common collector, merely by taking appropriate sums of the measured quantities. Transistor Measurements Using the Indefinite Admittance Matrix, J. P. Paddock, Stanford Electronics Laboratories, Stanford University, Calif., Aug. 1957, 31 pp, Microfilm $3.00, Photocopy $6.30. Order PB 136434 from Library of Congress, Washington 25, D.C.
Meteor-Scattering Communication

This report is divided into two sections. The first describes a type of antenna mount which ensures that both the transmitting and the receiving antennas have the optimum polarization for radio transmission via radio waves scattered from a small region of ionization, such as a meteor trail. The mount is an equatorial form with the polar axis along the line joining the two stations, and the antenna should be polarized parallel to the declination axis. The second section of the report describes a mechanical analog for predicting the optimum directions for pointing the antennas used in meteor scattering communication, subject to the assumption that there is some ecliptic concentration of meteor radiants. Research in Meteor-Scattering Communication, W. E. Deeds, Tennessee University, Engineering Experiment Station, Knoxville, Tenn., Sept. 1957, 16 pp, Microfilm $2.40, Photocopy $3.30. Order PB 13589 from Library of Congress, Washington 25, D. C.

Trough Waveguide Radiators

In a trough waveguide loaded by equi-spaced posts on its center fin, the phase velocity of the dominant mode can have a phase velocity greater or less than that in free space. The radiation from this periodic structure can be controlled by lowering the sidewall of the trough waveguide until the tops of the posts protrude above it. At any phase velocity close to that of free space, radiation patterns are endfire, with polarization parallel to the center fin. Under conditions of large post spacing, the phase velocity in the postloaded trough waveguide can be predicted to a good approximation on the basis of the analysis presented. Measurements show that the phase velocity is essentially independent of the height of the sidewalls and that the attenuation constant (not evaluated in the theory) is a function of both the wall height and the number of posts per unit length of guide. Measured patterns of a post-loaded trough waveguide show the expected endfire characteristics over a wide frequency range. The combination of two trough waveguide radiators and a stripline hybrid junction produce a monopole antenna with endfire sum and difference patterns. Trough Waveguide Radiators with Periodic Posts, Walter Rotman and Nicholas Karas, Air Force Cambridge Research Center, Bedford, Mass., Dec. 1958, 32 pp, Microfilm $3.00, Photocopy $6.30. Order PB 140158 from Library of Congress, Washington 25, D. C.
Coil Redesign Nomograph

In the course of his design and development work, Paul Shapiro has often been burdened by tedious computations involved in coil redesign. He therefore undertook, and successfully completed, the presented nomograph project to enable quick and accurate determination of wire size during coil redesign.

When coil redesign is necessary, keeping size constant, the following nomograph offers a quick and accurate solution provided one new parameter is known as a function of an existing parameter. The need to consult tables, find absolute values of wire area or diameter, and calculate ratios from known values is eliminated.

Typical Example

As an example, let us consider a coil to be redesigned for ten times its present resistance. Let the present resistance be 40 ohms; the wire size be #37; the number of turns be 700. The point is noted where the resistance per coil line crosses the ratio 10. This point is on the number increase line of +5. Therefore #37 +5 = #42 wire.

For +5, the number of turns has a ratio of approximately 3.1 as shown by the nomograph. Therefore the new number of turns shall be 700 x 3.1 = 2170 turns. If the original wire area, diameter, or resistance per unit length is known, and the new values are required, these also can be obtained by noting where the respective lines cross +5.
REPORT BRIEFS

Single Sideband Carrier Telephone Channels

Polyphase modulation is shown to be a technique suitable for producing single sideband telephone channels. This technique is capable of providing superior channel bandwidth and envelope distortion characteristics. In this report the main limitations of polyphase modulation are analyzed, and the characteristics obtained from an experimental channel are discussed. The generation of Single Sideband Carrier Telephone Channels by Polyphase Modulation, Joseph Mensch, Rome Air Development Center, Griffiss AFB, N.Y., June 1958, 17 pp, Microfilm $2.40, Photocopy $3.30. Order PB 137673 from Library of Congress, Washington 25, D.C.

Transistor High-Frequency Equivalent Circuits

The conclusion is reached that a simple equivalent circuit can serve as a valuable link between transistor device parameters and the quadripole parameters often sought by circuit designers. It has been demonstrated that it is feasible to characterize a group of transistors by means of a set of mean device parameter values, although the study has also shown that the variability of the device parameters is such that to include 95 percent of all transistors in a group, the range of parameters is usually three to one. Statistical Study of Transistor High-Frequency Equivalent Circuits, R. L. Walker, Stanford Electronics Laboratories, Stanford University, Calif., Sept. 1957, 90 pp, Microfilm $4.80, Photocopy $13.80. Order PB 138433 from Library of Congress, Washington 25, D.C.

Thermal-Velocity Effects in Electron Beams

The design of convergent Pierce-type electron guns has been well systematized, for the solid pencil-beam case, by Pierce and other workers. Because of the growing importance of two-dimensional sheet or strip beams and hollow beams in microwave devices, a need has arisen for design data applicable to these cases. The purpose of this report is to present data on space-charge-limited flow, applicable to the design of convergent Pierce guns for strip beams. Thermal-Velocity Effects in Two-Dimensional Electron Beams, C. B. Crumly, Stanford Electronics Laboratories, Stanford University, Calif., Feb. 1958, 33 pp, Microfilm $3.60, Photocopy $9.30. Order PB 138515 from Library of Congress, Washington 25, D.C.
Coaxial Attenuators

This report describes the design and development of a set of four ruggedized attenuators rated at 3, 6, 10, and 20 db, and designated as CN-333 (XW-1), CN-334 (XW-1), CN-336 (XW-1), and CN-335 (XW-1) respectively. The attenuators fit directly into a 7/8 in. coaxial line and may be used with military summation bridges AN-URM-22 and AN-URM-23 for field measurements of radar system power. The frequency range covered is from dc to 4.0 kmc, and power up to 10 kw peak and 5 w average can be handled by using the appropriate attenuator. The voltage standing wave ratio is 1.30 or less throughout the operating range. Design and Development of Ruggedized Coaxial Attenuators, Vincent Kapfer, Rome Air Development Center, Griffiss AFB, N.Y., July 1958, 35 pp, Microfilm $3.00, Photocopy $6.30. Order PB 137533 from Library of Congress, Washington 25, D.C.

Single Sideband Generation: 1.5 to 30 Mc

This manuscript is the fourth and final report covering an engineering research study of high-level single sideband generation and the construction of two experimental models of a radio transmitter providing single sideband operation over the frequency range of 1.5 to 30 mc and having a peak power capability of 300 w. The report consists, in the main, of an instruction manual. The operation of the high-level transmitter is described, and a detailed description of its component parts, including all circuit diagrams, is given. Instructions are outlined for installation and for initial and frequency-change tune-up. The results of various tests, together with test techniques, are presented. Methods and Equipment for High Level Single Sideband Generation in the Frequency Range of 1.5 to 30 Mc, Stanford Research Institute, Calif., Mar. 1950, 134 pp, Microfilm $6.90, Photocopy $21.30. Order PB 139285 from Library of Congress, Washington 25, D.C.

Transverse-Field Klystron

The need for improved low-noise beam amplifiers makes desirable the investigation of new types of beam devices. The work reported here concerns the noise characteristics of a transverse-field klystron. A theory of operation is developed which includes expressions for tube conductance, beam loading, and noise figure. Three low-frequency experimental klystrons were built to test the theory. Investigation of the Transverse-Field Klystron, B. Frank, Stanford Electronics Laboratories, Stanford University, Calif., May 1958, 84 pp, Microfilm $4.90, Photocopy $13.90. Order PB 138514 from Library of Congress, Washington 25, D.C.
Where only the best is good enough...

Krohn-Hite oscillators are used

In basic electronic instruments for lab or test work, less than the best may be a dangerously bad bargain. Unexpected limitations — of reliability, range, precision — can throw out weeks of work on today's jobs, and can make tomorrow's tougher jobs untouchable. The best instrument of its type is probably a bit more expensive, but it's worth buying... because you can believe in it today, and will rely on it tomorrow. An example is the Krohn-Hite Model 440-A wide range push-button oscillator. Here are some facts about it.

FREQUENCY RANGE: 0.001 cps to 100 kc, continuous coverage.

CALIBRATION ACCURACY: ± 1% from 1 cps to 10 kc, ± 3% from 0.01 to 1 cps and from 10 kc to 100 kc.

RESETABILITY: exact for push-button resetting, subject only to drift of less than 0.05% per hour.

SINE WAVE OUTPUT: 10 volts rms open circuit, 100 milliwatts into 1000 ohms; amplitude constant within ± 0.25 db from 0.1 cps to 10 kc.

SINE WAVE DISTORTION: less than 0.1% from 1 cps to 10 kc, less than 1% from 0.01 to 1 cps and from 10 kc to 100 kc.

SQUARE WAVE OUTPUT: 10 volts peak to peak open circuit, 5 volts peak to peak across 1500 ohms; amplitude constant within ± 1% at any frequency; rise time less than 0.5 microsecond.

There's a lot more you should know about the 440-A... and about the other Krohn-Hite oscillators, tunable electronic filters, power supplies and amplifiers. In all of them, you'll find the same far-ahead engineering, design and construction. Because K-H instruments are good enough even for tomorrow's most critical work, they are increasingly chosen today where reliability and precision are needed.

Write for your free copy of the new Krohn-Hite Catalog.

Krohn-Hite CORPORATION

580 Massachusetts Avenue, Cambridge 39, Mass.
CIRCLE 68 ON READER-SERVICE CARD

BOOKS

Advances in Semiconductor Science

Papers presented at the Third International Conference on Semiconductors held at the University of Rochester, Aug. 18-22, 1958, have been logically arranged according to sessions in this book.

The opening session deals with trends in semiconductor research and properties of various semiconductors. A discussion of band theory, recombination and impurity centers, and surfaces follows. Dislocations, excitons, and transport are then considered.

A section entitled "General" covers the effect of pressure on the properties of germanium and silicon and the magnetic susceptibility of semiconductors. The sections that follow discuss optical properties, ionic crystals, thermal conduction and thermomagnetic effects, semiconducting compounds, and large hand gap semiconductors.

Technology of Printed Circuits

Special emphasis is given to the production of electronic circuits by the foil

DIMCO-GRAY SNAPSLIDE FASTENERS

PROVIDE VIBRATION-PROOF HOLDING AND QUICK, FOOL-PROOF RELEASE!

APPROVED UNDER ARMY-NAVY STANDARDS

Here's a simple, easy means of securely fastening assemblies to withstand shock or vibration, and yet allow quick removal for inspection or repair. Instant snap action engages or releases fastener... no tools are required! After installation, fasteners never need adjustment... even with repeated use.

Three sizes available for different load requirements. Large and medium sizes are made of corrosion-resistant stainless steel. Small size is made of nickel-plated brass. Stock parts fit various thicknesses of flanges and mounting plates... special parts can also be supplied.

WRITE FOR FULL DETAILS TODAY!

DIMCO-GRAY COMPANY

201 E. SIXTH STREET DAYTON, OHIO
CIRCLE 69 ON READER-SERVICE CARD

ELECTRONIC DESIGN • September 16, 1959
The book opens with an account of the invention and development of printed circuit techniques and the principles of method selection. A detailed explanation of printed circuit production follows with a description of a typical production line. Suitable printing methods, plating and the foil technique, protective coatings, flow- and dip-soldering and potting are discussed. Chapters are also devoted to laboratory routine and the design of printed circuits. The completion of the circuit by the insertion of conventional components is followed by details of the detection and tracing of faults and an account of automatic assembly in the electronics industry.

Miniaturization, an outline of printed components, a survey of microwave printed circuits and an assessment of the place of printed circuits in the electronics industry complete the main text.

Mathematics Dictionary
Glenn James, Robert C. James, Editors,

This revised and enlarged edition is essentially two books in one—explicit definitions entirely in English of more than 7000 mathematical terms, concepts and relationships, and multilingual indexes giving their Russian, German, French and Spanish equivalents. You can find the English meaning of a term in another language in these indexes and then its definition in the body of the book.

The coverage of terms is broad, ranging from elementary terms in arithmetic through calculus, basic terms in differential geometry, theory of functions of real and complex variables, advanced calculus, differential equations, to the theory of groups and matrices, theory of summability, point-set topology, integral equations, calculus of variations, analytic mechanics, theory of potential and statistics.

Tables and an extensive list of mathematical symbols appear in the appendix, while formulas of many kinds are given in the context.

5 x 10^-10/Day
With Laboratory Standard JKFS-1100T

FREQUENCY STANDARDS
Fully Transistorized, with Double Proportional Control Oven

Today's most advanced design, with each unit aged in and calibrated directly with WWV at Washington, D.C.
Input: 24 to 32V DC. Output: 1V into 50 ohms at 1 MC and 100 KC.
Dimensions: 6.0"H x 4.1/4"W x 12½"D.
Power Supply Unit: operates from 115V AC, with 12-hour self-contained stand-by batteries. Fully automatic switch-over. Dimensions: 6.0"H x 3¾"W x 12½"D. Write for literature on JKFS-1100T

THE JAMES KNIGHTS COMPANY, Sandwich, Illinois

IMPLUSE
A DIGEST OF NEW DEVELOPMENTS IN ELECTRONICS AND AUTOMATION

PUBLISHED BY ROME CABLE CORPORATION, ROME, N.Y.
PIONEERS IN INSTRUMENTATION CABLE ENGINEERING

ELECTRONIC AUTO MECHANIC. The toughest of all automotive problems—servicing—is close to being solved! Ordnance control engineers are conducting a study of automatic checkout equipment that will inspect the engine, transmission and other vital parts of Army tanks. That means that some day you may be able to take your car to a neighborhood garage for a check-up and get a reading from an electronic computer which indicates what should be replaced. The computer will interrogate the vehicle with a number of stimuli and use logic and computer circuitry to isolate specific faults.

FIFTH LARGEST INDUSTRY. Still the fifth largest manufacturing group in the U.S. during 1958, the electronics industry totaled $7.9 billion in aggregate sales for the year, $133.3 billion when distribution, servicing and broadcasting are included. Some 1500 manufacturers are major equipment assemblers, 2400 are component manufacturers and 700 are producers of switches, wire and other electronic hardware. Military electronic equipment accounted for $4.1 billion of the $7.9 billion total—an increase of $200 million over 1957. Industrial users bought $80 million more than in 1957 for a total of $1.6 billion. The industry as a whole now employs 700,000 persons, 100,000 of whom are engineers.

MIGHTIER MITES NEEDED. Miniaturization alone is not enough, engineers were told at a recent conference. Micromodules must be made more reliable than present construction permits—"to achieve an average part failure rate of 0.1 percent per 1000 hours," as it was stated. Now it's reported that a push will be made toward greater use of molecular electronics, which might accomplish this. Molecular electronics ideas center around construction of electronic systems by building homogeneities in various materials into discrete electronic functions. Work is already in progress on growing germanium crystals as flat ribbon-type units and doing the same with silicon.

193 CONDUCTORS IN ONE JACKET! That's just one of the cables Rome lists among its "typical" multi-conductor cable constructions, now available to answer "special" needs. A wide range of cable constructions, from 2-conductor to 193-conductor, is charted in the new Rome Cable Bulletin on Instrumentation Cables, RCD-400. You'll want to check this list before placing special orders. Get your copy by writing IMPULSE, c/o Rome Cable Corp., Dept. 11-9, Rome, New York.

MEASURING THE MOON. Researchers at one large university have blueprinted their version of a radar space observatory for measuring the surface of the moon. The vehicle would be 150 feet long, six feet in diameter, weigh less than two tons, and orbit about 100 miles above the moon's surface. A nuclear power source would supply three to five kilowatts of power. Radar would transmit ten signals of varying frequencies to probe depth of moon's top layer, determine firmness of second layer and compose an electronic picture of the contour of the moon.

CABLEMAN'S CORNER. The words "They said it couldn't be done" are as applicable to the wire and cable industry as they are to other fields. Each day we find ourselves confronted with new, and in most cases more complex, problems. As new materials and manufacturing techniques are developed, we find that the complex problems of today are solved and in production tomorrow. As an example, for years it was stated that the application of an extruded, tight-fitting, lead-cured neoprene jacket over a cable assembly composed of polyethylene-insulated conductors was an impossibility. The curing temperatures for neoprene were far above the melting point of polyethylene. Yet today many thousands of feet of this type of cable construction are in actual use, performing under all types of environmental conditions. Keep in touch with your Rome Cable Specialist for new developments. Our number is Rome 3000.

These news items represent a digest of information found in many of the publications and periodicals of the electronics industry or related industries. They appear in brief here for easy and concentrated reading. Further information on each can be found in the original source material. Sources will be forwarded on request.

CIRCLE 71 ON READER-SERVICE CARD

ELECTRONIC DESIGN • September 16, 1959
A RADICALLY NEW LAMINATE
UNIQUE COMBINATION OF PROPERTIES

Exclusive New Resin Formulation (Patent Applied For) Developed by the Richardson Research Laboratory

Here is a radically new and different series of laminated insulating materials known as the "MARK TEN" series. This series of laminates has unique properties which are chemically built-in and are not degraded during normal manufacturing processes. Rigidity and flexural strength are high as compared with other cold press laminates. Intricate shapes can be punched at room temperatures and lower.

Now a true cold punch laminate, the first grade in this series and identified as "MARK TEN" 10-01, is available both plain and copper-clad. Exceeding NEMA XXXP and MIL-P-3115B Type PBE-P requirements, "MARK TEN" 10-01 has excellent stability in both dimensions and electrical properties over a wide temperature range.

Outstanding Combination of Properties for Copper-Clad

As a copper-clad laminate, "MARK TEN" 10-01 introduces the most unusual combination of properties ever known to the laminated plastics field. Besides being a true cold punch material it has unusual resistance to organic cleaning compounds... it withstands blistering at solder at 500°F for 40-60 seconds or at 550°F for 10-20 seconds... and it averages 7-9 lbs. bond strength.

This "MARK TEN" laminate is chemically engineered with the printed circuit manufacturing process in mind and is designed for most efficient production of printed circuits as well as other products.

"MARK TEN" 10-01 is Richardson's latest addition to its well known line of INSUROK® laminates.

You are invited to request further information and a sample. Write... or phone today... Chicago phone MA 6-8000.

NEW LITERATURE:

Ferrite Devices

These two catalog sheets summarize electrical and physical data on ferrite isolators and ferrite circulators. One of the sheets describes 23 types of ferrite isolators covering frequencies from 1 to 11 kmc. Sylvania Electric Products, Inc., Central Advertising Distribution Dept., 1100 Main St., Buffalo, N.Y.

Potentiometer Catalog

This is a catalog of single turn, wire-wound precision potentiometers from 1/2 to 3 in. diam. Complete specifications such as size and dimensions, mechanical and electrical properties, are given. Maurey Instrument Corp., 7924 S. Exchange Ave., Chicago 17, Ill.

Transformer Brackets

Hypersil core brackets of extruded aircraft aluminum are described in this two-page data sheet. Included are complete sizes and combinations available from stock, and a quantity price list. The brackets fit all standard hypersil core transformers and have holes sizes ranging from 0.157 to 0.213 in. Olympic Products Co., Inc., Alpha, N.J.

Mercury Switches

Newly revised Catalog 90b describes the standard line of mercury switches. Included are photographs, dimensions, electrical ratings, drawings, application information and complete technical data. Data is given in tabular form. Micro Switch, Div. of Minneapolis-Honeywell Regulator Co., Freeport, Ill.

Pulse Generator

One-page bulletin 3022-9 describes a 256-step precision pulse generator model PPG-256. Included are specifications and performance data, principle of operation, suggested uses, and features of this instrument. Victoreen Instrument Co., 5806 Hough Ave., Cleveland 3, Ohio.

Shock and Vibration Isolators

Bulletin 59-04, four pages, discusses the factors involved in choosing shock and vibration isolators. Pictures of the various types, graphs, and a table of load ratings are included. Barry Controls, Inc., 700 Pleasant St., Watertown 72, Mass.
Transistor, TV, and Radio Coils

Catalog 60, 44 pages, offers specifications and pricing information on 1300 standard transistor, TV, and radio coils, plus an expanded listing of industrial coils and chokes. Fully illustrated, it includes a separate part-number index and price list, a cross-reference of original parts to the firm's equivalents, and 117 if and rf schematic diagrams. Listings on color TV items also appear. J. W. Miller Co., 5917 S. Main St., Los Angeles 3, Calif.

Transformer

A small 50 w transformer that meets military environmental specs is described in this data sheet. Technical specifications and dimensional drawings are included. Arnold Magnetics Corp., 4613 W. Jefferson Blvd., Los Angeles 16, Calif.

Power Inverter

Two-page data sheet gives specifications for the firm's transistorized regulated power inverter which is used to drive ac gyros and other ac devices from a battery source. A unique circuit which creates an anti-hunting effect is described. Dimensional diagrams and a picture of the model also appear. Arnold Magnetics Corp., 4613 W. Jefferson Blvd., Los Angeles 16, Calif.

Microwave Equipment

A 320-page, hard-cover book, this catalog discusses microwave measurements. It provides comprehensive theory, plus practical help on applications. Drawings of test setups are supplied, together with instructions on test procedures using units in the firm's line of precision test equipment. The catalog contains an expanded handbook section giving the latest tabulations on available microwave tubes and their characteristics, on conversion factors and other pertinent data. Write on company letterhead to DeMornay-Ronard, Dept. ED, 780 S. Arroyo Parkway, Pasadena, Calif.

Marking Equipment

This 12-page catalog describes methods and equipment for marking all types of electrical and electronic products. A product index, ranging from wire lead components to panels and chassis, guides the manufacturer to the best marking method. Equipment described in this illustrated catalog ranges from high production machines with marking speeds up to 6000 units per hr to a compact, economical, hand-operated marker. Markem Machine Co., Keene 45, N.H.

From the aluminum extrusions, to the stainless steel balls, the patented "ball retainer" the exclusive "Shok-Loks" and the precision assembling and fitting, Grant Slides are constructed with an absolute maximum of strength and serviceability. Pilot windows on the Sikorsky helicopters are mounted on Grant Slides - which operate continuously well under the most severe vibratory conditions.

We'll be pleased to send you your complete Grant Catalogue.
GOLD-CLAD STAINLESS TUBING CURBS CORROSION IN REACTOR

Photo pictures insertion of gold-clad stainless steel heat exchanger into gold-clad power reactor at AEC's Los Alamos Scientific Laboratory. Completely successful in recent operational tests, the unique reactor is designed to produce superheated steam in a single pass. This is the second experimental reactor using uranyl phosphate fuel—the first unit failed because of excessive corrosion in the heat exchanger. Goldcladding now protects all structural parts in contact with the extremely corrosive solution.

Will clad metals solve your corrosion problems? Investigate the BISHOP line of clad metals. BISHOP was the first company to successfully produce gold-clad stainless tubing...

NEW BISHOP TUBE MILL OPENS

Sketch shows new BISHOP facilities adjacent to the present tube mill in East Whiteland Township, west of Paoli, Penna.—completing the first stage in Bishop's long range expansion program. This two-story structure will contain over 165,000 square feet of floor space. Bishop platinum mechanical manufacturing operations also move to the East Whiteland plant.

NEW LITERATURE

Diodes

Four-page article “Two Terminal PNPN Switches” describes a pnpn semiconductor diode which functions as a regenerative switch that can be either reverse or forward biased with the same direction of current flow. This device has application as a talking path in an electronic telephone switching system, or in pulse generators, logic elements, and photosensitive devices. Bell Telephone Laboratories, Inc., 463 W. Street, New York, N.Y.

Numerical Positioning Control

Bulletin 1531, six pages, describes the firm’s line of pre-engineered point-to-point numerical positioning control packages. Specifications, performance, and auxiliary functions are given, and dimensions and internal structure are illustrated by drawings and photographs. General Electric Co., Schenectady 5, N.Y.

Printed Circuit Connectors

This double-fold catalog SF156UPCC describes a series of two-unit connectors for use in printed circuitry. It contains electrical and mechanical specifications, dimensional drawings, and basic design features on draw-pull type and screwlocking type connectors. U. S. Components, Inc., 451 E. 148 St., New York 55, N.Y.

Synchro Differential

Two-page data sheet 801-D4 describes a size 8 synchro differential line. Information include dimensional and schematic drawings, photos, and tables of electrical and mechanical specifications. These synchro differentials weigh less than half an ounce. Daystrom, Inc., Daystrom Transciso Div., Worcester, Montgomery County, Pa.

Crucibles

Four-page illustrated brochure KTM-9 presents information on tungsten and molybdenum crucibles. These crucibles are designed for high temperature research where a high melting point metallic container is required. Kulite Tungsten Co., 1040 Hoyt Ave., Ridgefield, N.J.

Thyratrons

Four-page bulletin PA-223 explains how thyratrons differ from conventional amplifier types. The mechanism of ionization, the critical characteristic curve, and the effects of temperature on ionization time and tube life are discussed. Installation precautions are also given. CBS-Electronics Advertising Service, Parker St., Newburyport, Mass.
Electric Motors

Four-page brochure SB 186 describes the firm's drip-proof, weather-proof integral horsepower electric motors. Included are ratings, dimensions, construction features of the motors, and motor breakdown illustrations. Write on company letterhead to Marathon Electric Mfg. Corp., Dept. ED, Randolph and Cherry Sts., P.O. Box 630, Wausau, Wisconsin.

Coil Winding Machines

This two-page illustrated catalog sheet describes four coil winding machines. Included are a high production multiple deflection yoke winder, a multiple flyback winder, a gearless multiple transformer winder, and an electrically controlled precision high speed bobbin winder. Geo. Stevens Mfg. Co., Inc., Pulaski Rd. at Peterson, Chicago 46, Ill.

Time Savers

This 34-page illustrated booklet lists 59 ideas to increase drafting and engineering efficiency. "Time Saving Tips for the Draftsman and the Engineer" contains drafting shortcuts, engineering data tips, board timesavers and calculating ideas. Frederick Post Co., Reader-Service Div., 3650 N. Avondale Ave., Chicago 18, Ill.

Count Rate Meters

Four-page bulletin 3025-9 describes the firm's line of count rate meters. Electrical and physical specifications are given for linear, log, and differential count rate meters. Included are suggested uses and applications, and circuit descriptions. Write on company letterhead to Victoreen Instrument Co., Dept. ED, 5806 Hough Ave., Cleveland 3, Ohio.

Selenium Rectifiers

This illustrated eight-page catalog, "Selenium Slugs," contains descriptions, data, and electrical and physical specifications for the firm's line of glass or phenolic tube cartridge rectifiers. Included are dimensional outlines and circuit diagrams. Sytron Co., 283 Lexington Ave., Homer City, Pa.

Potting Compounds

Two-page data sheet 110-B describes the uses of the company's line of epoxy resin potting compounds. Also included is information on typical physical properties of five P-series compounds. Bason Industries, Inc., 192 Pleasant St., Watertown 72, Mass.

SMALL A.C. MOTORS

Consider the many advantages of using precision miniature a.c. motors. Output performance equals that of larger conventional motors—so you can offer smaller, lighter, more compact designs than your competitor. And you can offer superb reliability. When you design around precision miniature motors, their price in quantity is competitive with larger ordinary motors. Globe is the largest precision miniature motor specialist and is working with people like you right now to gain these benefits.

Get in touch with Globe early in the design stage. Very probably Globe has already made a motor close to your requirements. You'll receive a recommendation for your specific job, and get custom prototypes promptly.

Globe's induction and hysteresis-synchronous a.c. motors provide up to 4.5 oz. in. of torque—up to 200 in. lbs. with a planetary gear reducer! Sizes start at one inch in diameter, and can include such special features as integral brakes, clutches, speed reducers, etc. Please request Bulletin ACM. GLOBE INDUSTRIES, INC., 1784 Stanley Avenue, Dayton 4, Ohio. BAldwin 2-3741.

GLOBE INDUSTRIES, INC.
PRECISION MINIATURE A.C. & D.C. MOTORS, ACTUATORS, TIMERS, HYDRS, STEPPERS, BLOWERS, MOTORIZED DEVICES

CIRCLE 97 ON READER-SERVICE CARD

1959
The Second Annual
INSTRUMENT
MOTOR
SYMPOSIUM
sponsored by
Holtzer-Cabot
Motor Division
National Pneumatic Co., Inc.
will be held in Chicago during
the week of the ISA Instrument-
Automation Conference and
Exhibit.

Theme: "Today's Trends —
Tomorrow's Motors"

Speakers: Nationally-known
instrument and motor design
specialists. Open discussion
will follow the prepared
remarks.

When: 8:00-10:00 p.m., Tues-
day, September 22.

Where: Palmer House, Chicago

How to Register: Members
and guests of the ISA may
register at Holtzer-Cabot's
exhibit (#368) at the Interna-
tional Amphitheatre on Mon-
day or Tuesday or by writing
earlier to the Symposium
Chairman: R. H. Matthews,
Chief Engineer, Holtzer-Cabot
Motor Division, National
Pneumatic Co., Inc., 125 Amory
Street, Boston, Massachusetts.

NEW LITERATURE

Low Temperature Field

This 44-page book discusses develop-
ments in low temperature chemistry, solid
state physics, superconductivity, metal-
lurgical research, maser research, and mi-
crowave spectrometry. Included in this
illustrated book are engineering drawings
and performance curves of a line of de-
wars and containers. Technical data on
liquid helium, hydrogen, and nitrogen are
also presented. Hofman Laboratories,
Inc., 5 Evans Terminal, Hillside, N.J.

Electrodes

These data sheets describe a line of
electrodes, including mild steel, low-
hydrogen, and iron powder types. Informa-
tion is given on welding characteristics,
current, welding procedures, physical
properties and chemical analysis of
deposited metal, and typical applications
for each electrode. Chemetron Corp.,
National Cylinder Gas Div., 840 N.
Michigan Ave., Chicago 11, Ill.

Computer

The Univac solid-state computer is
fully explained and described in this 12
page booklet, U1770. This system pro-
vides high-speed processing, compactness
accuracy, and reliability. It can be oper-
at ed in an area of 575 sq ft. Remington
Rand, Div. of Sperry Rand Corp., 315
Park Ave. S., New York 10, N.Y.

Potentiometer

Performance characteristics and elec-
trical and mechanical specifications of a
precision ac potentiometer are given in
this two-page illustrated data sheet. A
schematic of a computing circuit is also
given as an example of the application
of this unit. Perkin-Elmer Corp., Verni-
stat Div., Norwalk, Conn.

Cryogenators

This six-page illustrated folder de-
scribes four types of cryogenators. In-
cluded are dimensional information, op-
erating principles, refrigeration capacity
vs condensing temperature curves, and
applications. North American Philips
Co., Inc., Cryogenics Div., 100 Stevens
Ave., Mount Vernon, N.Y.
Waveguide Chart 105

A circular adjustable waveguide chart indicates RETMA and JAN standards for rectangular waveguides and flanges. One side of the chart indicates all RETMA specifications for the frequency range of 200 mc to 110 kmc. The other side shows JAN specifications for 1.12 to 90 kmc. Information such as waveguide type, flange number, and type of material is automatically shown in an indicator window. Polytechnic Research & Development Co., 202 Tillary St., Brooklyn 1, N.Y.

Void-Free Encapsulation 106

Technical bulletin 101 discusses improved casting techniques for void-free encapsulation of electrical components. This six-page booklet describes problems encountered in evacuation systems, problems caused by improper mold design, and problems arising from poorly selected resin systems. Solutions treated are: degassing of atmospherically filled units, degassing vacuum casting, and pressure stalling. Automatic Process Control, 1170 Morris Ave., Union, N.J.

Electroplating 107

"Selective Plating with the Dalic Process" is a four-page illustrated brochure which describes a process of electroplating selected areas without using immersion tanks. Applications are included. Sifeo Metachemical, Inc., 935 E. 63 St., Cleveland 3, Ohio.

Multi-Channel Amplifier 108

A six-channel amplifier for use in vibration analysis systems is described in this two-page bulletin. Complete operating specifications, a plot of response vs. frequency, and a discussion of special applications are included. Columbia Research Laboratories, MacDade Blvd. and Bullens Lane, Woodlyn, Pa.

Potentiometers 109

This catalog describes single turn, wire-wound precision potentiometers from 0.5 to 3 in. diameter. Size, mechanical requirements and electrical properties are covered. The units are useful for high reliability applications in aircraft, missile and ground support equipment. Maury Instrument Corp., 7924 S. Exchange Ave., Chicago 17, Ill.

Dependable...long-lived...rechargeable

This child holds a voice in her hand... the Kett Electro-Larynx. A push of a button sets a column of air vibrating in her throat, gives sound to words formed with mute lips.

The Electro-Larynx will prove a boon to thousands of people who cannot speak for one reason or another. To give it a reliable, long lasting, sealed rechargeable source of power, Kett Engineering Corp. chose a Gulton "VO" series sealed nickel cadmium button cell battery.

How Can You Use These Batteries?

Here is a partial list of the many ways imaginative engineers are employing Gulton button cell batteries: transistorized radios, prosthetic devices, missiles, flashlights, photoflash power packs—wherever small size, large capacity, light weight, long life, no maintenance, complete reliability, and easy recharging are desired.

Most Complete Line Available

"VO" cells are available in capacities of 100, 180, 250, 500 and 1750 mah; have a nominal 1.2 voltage; can be packaged in any combination to meet your voltage specs. Patented sintered plate construction provides exceptional cycling characteristics; highest capacity per unit size. Like more information? Write us for Bulletin No. VO-110.

Available from stock—
GLENNITE BATTERY DISTRIBUTORS
92-15 172nd Street, Jamaica, New York
Effective component protection is hard to supply under conditions of violent acceleration, high ambient temperature, and vicious vibration. But in military electronic gear, transistors must get unfailing protection against these threats to reliable operation. They get it most fully, with atlee mounting clips.

atlee clips are provably better in three ways:

HOLDING POWER. Under severe shock and vibration, these clips actually mold themselves tighter to the transistors. There's no visible shifting or twisting, no lead-breaking resonance, and the dislodging force actually increases.

COOLING EFFICIENCY. With atlee clips, this approaches to within 10% of "infinity" — the ideal derating curve for a transistor with an infinite heat sink which keeps the case temperature from rising above the ambient level.

ELECTRICAL INSULATION. When required, these clips can be coated with Dalcoat B — an exclusive high-dielectric enamel that has twice the dielectric strength of Teflon but conducts heat as well as mica.

There are still more reasons why engineers who seek perfection choose atlee transistor clips. They know that Atlas E-E is the pioneering company in the development of component holders of all types, with unequalled years of specialized experience, and a complete line of clips for all case sizes and mounting requirements. They have learned it costs no more to get the best ... and that Atlas E-E makes these "little things" as though they were the biggest things in the circuit.

DESIGN FOR RELIABILITY WITH atlee — a complete line of superior heat-dissipating holders and shields, plus the experience and skill to help you solve unusual problems of holding and cooling electronic components.

NEW LITERATURE

Magnetic Recording

Methods of reducing signal dropouts in magnetic tape are discussed in bulletin No. 37. The four-page bulletin is called Sound Talk, illustrated with photo-micrographs of common types of coated-in tape flaws and photographs showing the effect of small dust specks on recorded data tracks. Minnesota Mining and Manufacturing Co., 900 Bush Ave., St. Paul 6, Minn.

Electric Eyes

Applications for electric eyes in the process industries are given in bulletin No. 522. Using the problem and solution technique, the bulletin covers usual and unusual installations that have been made for instant and accurate monitoring of process flows. Descriptions of standard and special instruments, and drawings of sample tanks and box are included. Photomation, Inc., 96 S. Washington Ave., Bergenfield, N.J.

Tape Vault

Illustrated data sheet 147 provides complete technical specifications on walk-in Netic Co-Netic magnetically shielded recording tape storage vault. This vault prevents stray magnetic fields from damaging magnetic tape recordings. Performance Mica Co., Magnetic Shield Div., 1322 N. Elston Ave., Chicago 22, Ill.

Encoders

Illustrated bulletin No. 319 fully describes the C-100 and C-200 series of shaft position encoders. Mechanical, physical, and electrical specifications are given, as well as installation and adjustment instructions. Dimensional diagrams are also provided. Datex Corp., 1307 S. Myrtle Ave., Monrovia, Calif.

Circuit Board

Catalog sheet 901-B, 2 pages, describes a circuit board for circuit analysis and electronic training. Physical and dimensional specifications are given, as well as instructions on assembly and applications. Plastic Associates, 185 Mountain Rd., Laguna Beach, Calif.

MILLER

small, adjustable

R. F. COILS

— built with top quality materials, impregnated with moisture-resistant varnish, and 100% tested to exacting specifications.

SUB-MINIATURE RANGE:
- 15 items, with inductances from .17 to 300 microhenries. Form dimensions: 3/16" diameter x 5/8" long. Mounting hole: 11/64".

MINIATURE RANGE:
- 15 items, from .4 to 800 microhenries. Form dimensions: 1/4" diameter x 7/8" long. Mounting hole: 3/16".

STANDARD RANGE:
- 13 items, from .9 to 2100 microhenries. Form dimensions: 3/8" diameter x 1-1/16" long. Mounting hole: 1/4".

Immediate deliveries on larger quantities from the factory. Over 400,000 catalog items carried regularly in stock. Smaller quantities from any leading parts distributor. Miller R.F. coils are competitively priced.

Specials — send us your requirements for a prompt quotation. We also build to Military Specifications. Write for the Miller industrial catalog.

J. W. MILLER COMPANY

5917 S. Main St., Los Angeles 3, Calif.

ATLAS E-E CORPORATION

47 PROSPECT STREET • WOBURN, MASS.
Microwave Equipment

This 12-page booklet illustrates and describes a line of millimeter wave components and instruments which generate, detect and measure microwave frequencies up to 140 kmc. Performance characteristics, precision construction features, and dimensional drawings are supplied for transmission line components, detectors, power absorbing units, phase shifters, and accessories. DeMornay-Bonardi, 780 S. Arroyo Parkway, Pasadena, Calif.

Amplifiers

Five two-page bulletins describe a complete line of miniature, lightweight amplifiers and power supply for magnetic tape recording. Electrical, environmental, dimensional, and mechanical specifications are given on: a miniature analog record amplifier, bulletin 1592; an analog record amplifier with microphone preamplifier, bulletin 1593A; a pmn record amplifier, bulletin 1594A; an fm record amplifier, bulletin 1595; and a power supply, bulletin 1597. Consolidated Electrodynamics Corp., 360 Sierra Madre Villa, Pasadena, Calif.

Iron Tubing

Ingot iron tubing is described in two-page bulletin No. 18. Tables are provided which list the nominal chemical analysis, mechanical and physical properties, standard production limits and standard tubing tolerances. Applications for this tubing include magnetrons and other power tubes, cold cathodes, pencil-type thermocouple protection tubes and low temperature muffle tubes for strand annealing wire. Superior Tube Co., 1521 Germantown Ave., Norristown, Pa.

Wire Markers

This four-page brochure describes a line of self-adhering markers for all size wire, cable and harness identification. Included are descriptions of a variety of stock and special markers for use in high temperature applications, or markers which are resistant to water, oils, solvents, and fungus. Descriptions are also given of preprinted insulation sheathing and tubing. Western Lithograph Co., Westline Products Div., 800 E. Second St., P.O. Box 2980, Term. Annex, Los Angeles 54, Calif.

Engineers! Designers!

THERE IS NO SUBSTITUTE FOR RELIABILITY!
Specify—
PERFORMANCE PROVEN "MAG MOD"

MAGNETIC MODULATORS

Miniaturized design permits engineers to employ these new components in transistorized printed circuit assemblies and wafer type structures. All models offer maximum reliability, fully ruggedized construction and conform to MIL-T-27A specifications.

- COMPLETE RELIABILITY
- INFINITE LIFE
- FASTER RESPONSE TIME
- NEGLIGIBLE HYSTERESIS
- EXTREME STABILITY
 (Ambient Temp. Range from -75° to +135°C)
- COMPACT SIZE
- LIGHTWEIGHT

Typical circuit applications for Magnetic Modulators are algebraic addition, subtraction, multiplication, raising to a power, controlling amplifier gains, mechanical chopper replacement in DC to fundamental frequency conversion, filtering and low signal level amplification.

GENERAL MAGNETICS INC
135 BLOOMFIELD AVENUE
BLOOMFIELD, NEW JERSEY
Telephone: Pilgrim B-2400

One source for all types of nylon rod

Choose exactly the properties you need. Garlock's Plastics Division, The United States Gasket Company, makes many varieties of Chemicals & Nylon Rod, each with different qualities for different applications. For example:

Types

- General purpose nylon, High Melting Point, Good Machinability.
- Excellent weather-resistant nylon; Maximum Stiffness.
- Nylon with low melting point, Low Moisture Absorption for special mechanical and electrical parts.
- Nylon with high impact strength and resilience for parts requiring exceptional toughness.

Guaranteed bubble-free. Chemical Nylon Rod greatly reduces rejects...costs no more than ordinary nylon. Available in diameters 3/32" through 3".

It's to your advantage to use this one source for all nylon rod. Find out why by contacting your local Garlock representative, or write

THE GARLOCK PACKING COMPANY, Palmyra, N.Y.

For Prompt Service, contact one of our 26 sales offices and warehouses throughout the U.S. and Canada.

United States Gasket

Plastics Division of GARLOCK

CIRCLE 123 ON READER-SERVICE CARD

ELECTRONIC DESIGN • September 16, 1959
NEW LITERATURE

Welded Assemblies 127

Eight-page brochure "Welded Assemblies" describes the firm's welded assembly technique for high density packaging of electronic components. The packaged assemblies, miniaturized into modular sticks, are encapsulated with plug-in terminals. Illustrations of various types are provided. Raytheon Co., Industrial Tube Div., 55 Chapel St., Newton 58, Mass.

Thermocouples 128

This three-page reprint, "Thermocouples Made Practical," describes the origin of common mode voltages and the errors these signals introduce into typical measuring systems. A method of reducing common mode voltage by increasing the rejection ratio via a low impedance bus bar is discussed. Cohn Electronics, Inc., 5725 Kearny Villa Rd., San Diego 11, Calif.

Wire and Cable Terms 129

A pocket-sized booklet, "Glossary of Wire and Cable Terms," lists alphabetically common terms, expressions, and units used in the electrical wire and cable industry. Write on company letterhead to Standard Wire and Cable Co., Dept. ED, 3440 Overland Ave., Los Angeles 34, Calif.

Random Signal Meter 130

Bulletin No. 55 describes model TBM-2 random signal meter, a true r.m.s. voltmeter with long averaging time, high peak factor, and extended frequency response. This meter is used for high accuracy random signal power measurement, filtered or broadband. Flow Corp., Mystic St., Arlington 74, Mass.

Knob Catalog 131

Four-page bulletin 59-3 illustrates and describes a line of knobs for military and commercial applications. Complete specifications are given on five sizes, six styles, three shaft diameters and two finishes. National Radio Co., Inc., Melrose 76, Mass.
Magnetic Clutches

A line of magnetic clutches and clutch brakes is described in this four-page catalog. Environmental, electrical, and mechanical specifications are given, along with short descriptions of each model. Dimensional diagrams and illustrations are also provided. Dynamic Instrument Corp., 59 New York Ave., Westbury, N.Y.

Control Systems

"Instrumentation and Control," eight pages, describes and illustrates instruments for five process variables: pressure, flow, temperature, level, and gas analysis. A universal electronic recorder and all-electric combustion control systems are also described. The Hays Corp., Michigan City, Ind.

Transistor Mounting Kits

This one-page data sheet describes transistor mounting kits. Dimensional diagrams and exploded-view drawings are provided. Kits are available with anodized aluminum or Teflon-coated fiberglass insulators. Bendix Aviation Corp., Semiconductor Products, Red Bank Div., Long Branch, N.J.

Test Systems

Automatic testing, microwave and antenna test instrumentation, radome testing systems, and flight simulation equipment are covered in this 12-page illustrated catalog. Electrical and physical specifications are provided for a variety of testers, including tape-programmed circuit, card-programmed component, and cable testers. California Technical Industries, 1421 Old County Rd., Belmont, Calif.

Packaged Circuits for Hi-Fi

Bulletin 42-739, four pages, describes 29 packaged circuits that the firm has designed and produced specifically for stereo and monophonic high-fidelity applications. Included are rumble and scratch filters, phono equalizers, compensation and tone circuits, as well as amplifiers and output stage circuits. The schematic drawing of each packaged circuit shows the values and tolerances of the components in it. Performance curves are shown where applicable. Globe-Union, Inc., Centralab Div., 900 E. Keefe Ave., Milwaukee 1, Wis.

"Is seat of pants Amerikan spacemen is flying by. Is not knowing of Reeves-Hoffman's . . .

NEW HIGH PRECISION CRYSTAL FOR FREQUENCY MEASUREMENT

Designed for use as frequency standards, Reeves-Hoffman's new 5mc, high precision crystals offer exceptionally long term frequency stability, ±0.0015%, with aging of less than one part per 10^8 a week! These units are available in hermetically sealed glass T5 1/2 enclosures with pigtail leads or 9-pin Bakelite bases. They are manufactured to meet the most exacting military and commercial standards for frequency measurement. Division of Dynamics Corporation of America CARLISLE, PENNSYLVANIA

Write for bulletin RH-5MC.

BRADLEY SEMICONDUCTOR CORPORATION
Formerly Bradley Laboratories Inc.
275 WELTON STREET, NEW HAVEN 11, CONNECTICUT
CIRCLE 139 ON READER-SERVICE CARD

Proving one man's maximum is another man's minimum

Coy modesty may be a becoming trait, but not if you want to sell rectifiers—so we boldly take aim with a few revealing contrasts . . . Brand "U" boasts their 1.5 amp rectifier leaks only 2000 µamps at 400 volts, whereas we scrap any 6 amp diode that leaks 5000 µamps at 600 volts (150°C). It will pay you to look closely at the typical comparisons sampled below, especially since you can buy such superior Bradley rectifiers at lower prices than the also-rans. Why not get the extra Bradley margin of reliability?

Write us your diode requirements: We will send you applicable data sheets.

LEAKAGE

- Bradley 6 amp: 100 µa @ 600 v (150°C)
- Bradley 1.5 amp: 2000 µa @ 400v
- Brand V 1.5 amp: 300 µa @ 400v
- Brand W 1.5 amp: 150 µa @ 400v
- Brand W 3 amp: 500 µa @ 400v

- Bradley 6 amp: 10 µa @ 600 v (25°C)
- Brand W 1.5 amp: 25 µa @ 400v
- Brand W 3 amp: 50 µa @ 400v
- Brand X 3 amp: 10 µa @ 700-600v
- Brand Y 1 amp: 2 µa @ 500v

SWITCHING TIME (Recovery Time)

- Bradley 6 amp: 6 µsec
- Brand X — 1200 µa: 2 µsec

1959 ELECTRONIC DESIGN • September 16, 1959
NEW LITERATURE

Step-Servo Motors 141
This data sheet provides mechanical and electrical specifications for ten different step-servo motors. Sizes 5, 8, 11, 15 and 23 are included. These motors are designed for digital-to-analog conversion in 45 deg reversible increments up to 120 pulses per sec. Induction Motors of California, 6058 Walker Ave., Maywood, Calif.

Frequency Converter 142
Four-page bulletin 2024 describes a broad range frequency converter for 15 to 40,000 cps inputs. Complete electrical and dimensional specifications are given, including frequency ranges and lineabilities at various output ratios, output current at various linearities, accuracies, filtering, time constants, and power requirements. George L. Nankervis Co., 15300 Fullerton, Detroit 27, Mich.

Rectangular Connectors 143
Specifications, outline dimensions and general information on miniature rectangular connectors for heavy duty power applications are given in this series 200 four-page brochure. Contact arrangements include coaxial, No. 16 and No. 18 awg wires. DeJur-Amresco Corp., Electronic Sales Div., 45-01 Northern Blvd., Long Island City 1, N.Y.

Power Amplifier 144
This two-page illustrated bulletin describes the firm's model 1012 power amplifier. Electrical and physical specifications are given, including a graph of output voltage vs. load impedance. The frequency range of the amplifier is from 0 to 12.5 meg, with a drop-off of 6 db at the upper limit. Technitrol Engineering Co., 1952 E. Allegheny Ave., Philadelphia 34, Pa.

Magnetic Clutch 148
This two-page data sheet describes the C-18 magnetic clutch. General specifications, average characteristics, and special requirements of this unit are given. The clutch has as much as 400 per cent more output torque than conventional clutches of comparable size. Guidance Controls Corp., 110 Duffy Ave., Hicksville, N.Y.

Power Supply 149
Detailed electrical and physical specifications on a transistorized power supply are offered in two-page bulletin No. S-2-19. The unit is designed to develop from 26 to 2000 v dc at 100 w output power from an input of 28 v dc. Included are dimensional drawings and ordering information. Arnold Magnetics Corp., 4613 W. Jefferson Blvd., Los Angeles 16, Calif.

Soldering Guide 150
"A Guide to Preform Soldering," 8 pages, provides information on solder preforms and their use. Included are data on the range of preform shapes, the alloys from which they are made, and their use in automated production processes. Also described are heating methods, flux selection, metals characteristics and alloy selection. Alloys Unlimited, Inc., 21-01 43 Ave., Long Island City 1, N.Y.
Plastic Resins

Power Supplies

Bulletin HVVC-95, two pages, describes constant current and constant voltage switch-over regulated power supplies. Electrical and mechanical data are provided. Matthew Labs, 3344 Fort Independence St., New York 63, N.Y.

Film Capacitors

Six-page bulletin 2036A provides electrical and dimensional characteristics of miniature capacitors which use a polyester film dielectric. Included are capacitance change and dissipation factor vs temperature graphs. Sprague Electric Co., North Adams, Mass.

Conversion Factors

This wall chart of conversion factors includes common conversions as well as some that are difficult to locate in manuals. Examples are atmospheres to kg/cm², cm/sec to mi/hr, and quintals to pounds. Precision Equipment Co., 4411E Ravenswood Ave., Chicago 40, Ill.

Fasteners

Technical file folder describes aircraft, missile, and electronic fasteners. It provides data on the precision, accuracy, and dependable service of screws, bolts, and stop-nuts. Century Fasteners Corp., 88 Sanford St., Brooklyn 5, N.Y.

Transistor Choppers

Transistor chopper applications are discussed in this two-page bulletin. An equivalent switching circuit and two coupling circuits are given, as well as circuits showing the use of choppers in a stable dc amplifier and a fast response position servo system. Solid State Electronics Co., 8158 Orion Ave., Van Nuys, Calif.

Transistor Chopper

This two-page data sheet describes model 70 silicon transistor electronic chopper for high temperature applications. Mechanical and electrical information and typical applications are provided. Solid State Electronics Co., 8158 Orion Ave., Van Nuys, Calif.

THE RELATIONSHIP between torque, rpm, and hp for motors is given by:

\[
hp = \frac{rpm \times \text{torque (lb-ft)}}{5252}
\]

\[
hp = \frac{rpm \times \text{torque (lb-in.)}}{63,025}
\]

The accompanying nomogram is useful as a time-saver during design work involving fractional horsepower motors and transmissions.

For additional copies, turn to the Reader-Service Card and circle 716.
The AEL "138"... A TRULY UNIVERSAL PULSER
- SINGLE OR RECURRENT PULSES
- PULSE PAIRS OR PULSE TRAINS
- PULSE WIDTHS FROM 1 µSEC. TO 1 SEC.
- REVERSIBLE POLARITY
- 35 VOLTS INTO A 50 OHM LOAD
- ALL TYPES OF SYNCHRONIZATION
- REPETITION RATES FROM 15 CYCLE PER SEC.
 TO 250 KC/SEC.

Industry leaders were quick to praise ELECTRONIC DESIGN's recent diode report as accurately describing the imbroglio over too many types ("Diodes--Choice Performance, but Difficult Choice," June 10, 1959). They were equally quick to express confidence that the industry's associations, the Electronic Industries Association (EIA) and the National Electrical Manufacturers Association (NEMA), would tighten requirements in registering new diodes. And the user is certainly not blameless for encouraging too many diode types, according to manufacturers.

In describing the situation that has led to the present mammoth list of diode types for designers, ELECTRONIC DESIGN editors found the problem too complex technically and too fraught with economic and political ramifications to be solved readily. But an analysis of the problem has made it clear that industry will have to take forthright steps to unscramble the diode classification or the military may move in.

The Problem Again In Brief...

Here is the problem, as originally reported in ELECTRONIC DESIGN:
- The introduction of over 1500 new diodes last year brings the total to an unwieldy 4000.
- Of the 4000 types, many are too much like previously announced units to warrant a new number.
- Of those that are different, the degree of difference of many is still too slight to justify their existence as separate types.
- Published characteristics are unreliable guides to diode selection, since manufacturers do not measure characteristics alike.
- Industry's progress in standardizing test procedures has been lagging.
- Spokesmen for leading companies admit they have not been submitting data to EIA in the recommended form that would permit comparison.

Industry executives expect Electronic Industries Association to get cooperation so that new diode type numbers are not issued indiscriminately. EIA has established a new Standards Lab to comparison-test diodes.

Top executives in the diode industry and top civilian authorities in the Department of Defense were asked by the magazine what they thought could be done. Their replies are presented here in summary form; detailed letters follow in full.

The problem was posed to executives in the diode industry in the following manner:
"In the enclosed issue we recommend that industry move forward with more deliberate speed in establishing standard test conditions and parameter definitions. This will mean that one diode can be compared to another and a realistic interchangeability list can be compiled. It will also mean that fewer new type numbers need be assigned. We also recommend that EIA be given the power to refuse to list new types if they do not differ significantly from older registered types and that the standardization of common types be encouraged. We would like to know how you feel about our description of the problem and what solutions you recommend."

Suggestions and Answers...
- The new EIA Standards Lab and current activity of the Joint Electron Device Engineering Council (JEDEC) may lead to elimination of many types. Government may have to take the initiative and standardize some diodes and rectifiers.
- Standard formats for registering and registering types will clear up confusion. The JS committees of JEDEC are working on this. Formats are in existence for some types. EIA reports "good cooperation" from manufacturers.
- EIA should tighten registration procedure sufficiently to preclude attempts by less reputable diode manufacturers to use EIA numbers as sales gimmicks.
- Periodic reviews of diode lists by member companies might result in agreement to drop certain types.
- Military practice of updating preferred list...
is a step in the right direction.
- Registration rules should be revised, so that minor product variations use existing numbers. Differences can be noted by letter suffixes.
- Users will have to accept JEDEC's standardized formats and recommended test procedures in writing specifications for diodes.
- Users should work with manufacturers in using types suggested by manufacturers as "standards."
- Users should specify EIA registered types and not demand specials that require separate "house" numbers.
- Small quantity users should follow the lead of large companies and accept their standard types.

Recent Activity

Last month the nation's two major trade associations with an interest in the semiconductor industry, EIA and NEMA, announced an integrated program to tackle the areas of technical standards. The cooperative standardization program will be conducted through JEDEC.

The Armed Services Electro Standards Agency (ASESA) sends representatives to JEDEC committee meetings. ASEA guides and assists industrial efforts to develop semiconductor devices for military applications.

Since May, EIA has been operating a Standards Lab under the direction of G. F. Hohn. The Standards Lab is concerned with coding systems, comparisons of different diode types, and standardized test measurements. Mr. Hohn reports that manufacturers are now following the standard formats for submitting data and that standardized test methods may soon evolve.

Civilian spokesman for the Department of Defense told ELECTRONIC DESIGN, in a meeting called by the Office of the Director of Defense Research and Engineering, that they are now working up a list of standardized semiconductors, which include diodes. To keep abreast of rapid developments in the field they will also publish lists of latest types which show promise of replacing earlier types.

Faced with the problem of evaluating new devices while also reducing the total number of parts being used in military equipment, the military is looking into the problem of revising its method of managing the preparation of specifications. Of great concern to it is the problem of reducing the cost of getting reliable data, and new specifications call for standard test methods.

Despite signs of progress to make the diode
The development of Systron's new Model 1230 now makes it possible to convert any existing period or time counter into a precision high speed digital voltmeter. Connects directly to Systron Models 1010, 1040, 1043 and 1031 to provide an IN-LINE readout (±10,000) of DC voltages.

Systron manufactures IN-LINE Counters for laboratory, military and industrial applications, as well as complete Data Processing and Control Systems tailored to meet individual specifications.

Write today for complete specifications of Model 1230 and your free copy of our new Short Form Catalog...

USE ELECTRONIC COUNTERS AS DIGITAL VOLTMETERS

with SYSTRON'S NEW MODEL 1230 VOLTAGE TO TIME CONVERTER

FEATURES:

- Provides:
- Tailored specifications.
- Conversion errors are typically within ±0.05% of full scale.
- Input impedance is 1 Megohm standard range.
- Polarity: Automatic, polarity sensing.
- Digital conversion time is 0.1 seconds between pulses.
- Option A: -10 to -100 millivolts full scale.
- Option B: -1000 volts full scale.
- Option C: 100MC full scale.

SPECIFICATIONS

- Model 1230
- Input Voltage Ranges: 0 to -10 and -100 to -1000 volts full scale.
- Errors: Conversion: ±0.05% of full scale.
- Input Impedance: 1 Megohm standard range.
- Polarity: Automatic, polarity sensing.
- Conversion Time: Typically 0.1 seconds between pulses.
- Option A: -10 to -100 millivolts full scale.
- Option B: -1000 volts full scale.
- Option C: 100MC full scale.

BENDIX SR RACK AND PANEL CONNECTOR

with outstanding resistance to vibration

The Bendix type SR rack and panel electrical connector provides exceptional resistance to vibration. The low engagement force gives it a decided advantage over existing connectors of this type.

Adding to the efficiency of this rack and panel connector is the performance-proven Bendix "clip-type" closed entry socket. Insert patterns are available to mate with existing equipment in the field.

Available in general duty, pressurized or potted types, each with temperature range of -67°F to +257°F.

Here, indeed, is another outstanding Bendix product that should be your first choice in rack and panel connectors.

FEATURES:

- Resilient Insert
- Solid Shell Construction
- Low Engagement Forces
- Positive Contact Alignment
- Gold Plated Contacts
- Cadmium Plate—clear iridite finish
- Easily Pressurized to latest MIL Specifications.

Letters Received

Standard Needed Says NEMA

Dear Sir:

I am writing this letter to discuss the problem of diode selection which you described in the June 10, 1959 issue of ELECTRONIC DESIGN.

In the 4000 available types there are three separate devices: diodes, rectifiers, and Zener diodes. Before going further it is necessary to distinguish between a semiconductor diode and a semiconductor rectifier. While it could be argued that any two terminal asymmetrical semiconductor is a diode, in defining the scopes of the JEDEC (Joint Electron Device Engineering Council) Committees, the JEDEC Semiconductor Council found it necessary to write two pragmatic definitions which would distinguish between the two.

Essentially, a diode is used to handle information, a rectifier is used to convert ac to dc. While some devices can be used for both purposes, over 90 per cent of all types fall into one or the other category.

Twenty four per cent of all JEDEC registered devices are diodes; 37 per cent are rectifiers; 30 per cent are Zener diodes. The basic cause of confusion is the lack of standardization. The semiconductor industry recognizes this and is taking steps to solve it through JEDEC. The National Electrical Manufacturers Assoc. (NEMA) and Electronic Industries Assoc. (EIA) Semiconductor Sections have asked the JS Committees to develop standard registration formats for all semiconductor devices. At present, a manufacturer can register a device by submitting his own commercial data sheets to the EIA Engineering Office which administers JEDEC for EIA and NEMA. It is anticipated that in the future, all devices will be registered on standard formats using the same definitions and basis of ratings.

To clarify the confusion that exists concerning rectifiers, three things are needed: (1) standard format, (2) standard voltage and current ratings, (3) mechanical standardization. The JS-1 Commit-
ee on Power Rectifiers is working on a standard format. By using a standard current and voltage rating, the entire industry could use the same series of ratings of current and voltage. For example, all devices might be rated at 5, 10, 25, 50, 75, 100 v, etc. The manufacturer could specify his devices in one of these voltages and the designer could use the devices in accordance with his requirements. This is also on the agenda of JS-1. The JS-10 Committee on Mechanical Rectifiers has started a mechanical standardization program on rectifiers. These programs are being co-ordinated with ASES (Armed Services Electro Standards Agency) and the Industrial Control, Industrial Automatic Systems, and Power Rectifier Equipment Sections of NEMA. In this way, user and manufacturer are working together to develop realistic standards satisfactory to all.

Another reason why there are so many type numbers is because of the large number of regulating devices (mistakenly called Zener Diodes), which are on the market. Standardized formats and packages will minimize JEDEC registrations, but the problem with regulating devices is that the voltage rating of a number of devices with nearly the same avalanche voltage cannot be grouped together. For example, any rectifier with a peak inverse voltage over 0 v may be rated at 10 v. However, a given Zener diode has a unique avalanche voltage and can be used at only one voltage. A manufacturer must have a code for identifying his product. It requires 38 voltage ratings and 38 numbers to market a line of regulating diodes in a given package to cover the range from 5 to 200 v in 10 per cent steps.

The basic problem with diodes is again lack of standardized forms and method of specification, but it is further complicated by the lack of standardization among the users. Most large users of diodes have their own internal standards department, and each one has his own definitions and symbols. The JS-2 Committee on Signal Diodes has also been asked to prepare a standard format. Here, however, unless the users use this format also, the number of types and overlapping specifications will continue to increase because no diode manufacturer will turn down business because a customer hasn't written the specification on a standard format.

The only way the number and type of diodes and rectifiers will be minimized is through joint co-operation between the manufacturers and users. Standardization of definitions, ratings, and packages will benefit the entire industry and is the only solution to the confusion described in your article.

Philip D. Goodman, Chairman NEMA
Power Semiconductor Components Section
(Continued on p. 94)
No Clear Cut Solution

Dear Sir:

As a member of the diode and transistor manufacturing fraternity, I have read with considerable interest the article in the June 10, 1959 issue of ELECTRONIC DESIGN entitled, "Diodes—Choice Performance . . . But Difficult Choice." I would say that you have described the problem well but intentionally more from the point of the user than from that of the supplier. A reputable and more responsible diode manufacturer depends more upon technological advancement in the registration of new types than upon sales gimmicks designed to deceive, to confuse, and to represent his product as something different. He, too, deplores the existence of the array of diode types from the standpoint of inventory and the high cost of testing diodes to unusual specifications, to say nothing of the wide variety of equipment required and the investment it represents.

Aside from lacking the time required to push vigorously for standardization, however, a diode manufacturer sees several basic facts which work against such standardization. They are the following:

1. Semiconductor device technology is still in the growth stage, and today's premium diode is tomorrow's reject. The rate of growth of the technology is increasing perceptibly, but new materials and techniques can set it climbing once more. Really new devices require new numbers. The problem lies in how to get rid of the old ones.

2. Premium diodes cannot yet be made with high yield to difficult specifications. In some cases, to meet the specifications of the user, the diode manufacturer must be satisfied with yields as low as twenty per cent. Those units failing to meet the tight specification must then either be charged to the premium spec customer or sold under another number. This procedure is perfectly legitimate inasmuch as the majority of the "rejects" may be highly reliable and comparable with diodes which are "premium" by other standards. In short, the analogy to 6v6 tubes is a poor one, at least for the foreseeable future.

3. At the request of major customers, even reputable diode manufacturers will register units only slightly different from existing types if a major customer requires large numbers of units and wishes to establish a second source for the identical type.

4. Circuit designers these days are called upon to produce circuits which will out-perform their predecessors, and they call upon diode manufacturers for faster recovery time, increased power handling capacity, higher maximum temperature ratings, and the like. Small improvements are gratefully received, and a new number is frequently generated as a result of improvement in

The issue of June 3, 1959

The issue of June 10, 1959

The issue of June 17, 1959

The issue of June 24, 1959

The issue of July 1, 1959

The issue of July 8, 1959

The issue of July 15, 1959

The issue of July 22, 1959

The issue of July 29, 1959

The issue of August 5, 1959

The issue of August 12, 1959

The issue of August 19, 1959

The issue of August 26, 1959

The issue of September 2, 1959

The issue of September 9, 1959

The issue of September 16, 1959

The issue of September 23, 1959

The issue of September 30, 1959

The issue of October 7, 1959

The issue of October 14, 1959

The issue of October 21, 1959

The issue of October 28, 1959

The issue of November 4, 1959

The issue of November 11, 1959

The issue of November 18, 1959

The issue of November 25, 1959

The issue of December 2, 1959

The issue of December 9, 1959

The issue of December 16, 1959

The issue of December 23, 1959

The issue of December 30, 1959

The issue of January 6, 1960

The issue of January 13, 1960

The issue of January 20, 1960

The issue of January 27, 1960

The issue of February 3, 1960

The issue of February 10, 1960

The issue of February 17, 1960

The issue of February 24, 1960

The issue of March 3, 1960

The issue of March 10, 1960

The issue of March 17, 1960

The issue of March 24, 1960

The issue of April 7, 1960

The issue of April 14, 1960

The issue of April 21, 1960

The issue of April 28, 1960

The issue of May 5, 1960

The issue of May 12, 1960

The issue of May 19, 1960

The issue of May 26, 1960

The issue of June 2, 1960

The issue of June 9, 1960

The issue of June 16, 1960

The issue of June 23, 1960

The issue of June 30, 1960

The issue of July 7, 1960

The issue of July 14, 1960

The issue of July 21, 1960

The issue of July 28, 1960

The issue of August 4, 1960

The issue of August 11, 1960

The issue of August 18, 1960

The issue of August 25, 1960

The issue of September 1, 1960

The issue of September 8, 1960

The issue of September 15, 1960

The issue of September 22, 1960

The issue of September 29, 1960

The issue of October 6, 1960

The issue of October 13, 1960

The issue of October 20, 1960

The issue of October 27, 1960

The issue of November 3, 1960

The issue of November 10, 1960

The issue of November 17, 1960

The issue of November 24, 1960

The issue of December 1, 1960

The issue of December 8, 1960

The issue of December 15, 1960

The issue of December 22, 1960

The issue of December 29, 1960

The issue of January 5, 1961

The issue of January 12, 1961

The issue of January 19, 1961

The issue of January 26, 1961

The issue of February 2, 1961

The issue of February 9, 1961

The issue of February 16, 1961

The issue of February 23, 1961

The issue of March 2, 1961

The issue of March 9, 1961

The issue of March 16, 1961

The issue of March 23, 1961

The issue of March 30, 1961

The issue of April 6, 1961

The issue of April 13, 1961

The issue of April 20, 1961

The issue of April 27, 1961

The issue of May 4, 1961

The issue of May 11, 1961

The issue of May 18, 1961

The issue of May 25, 1961

The issue of June 1, 1961

The issue of June 8, 1961

The issue of June 15, 1961
any one of the areas specified.

5. A retention of old types on procurement lists of the military poses a problem, but the logistics and supply problem of the military is an even greater one, and spares have a habit of perpetuating themselves.

I can offer no dramatic solution to the problem. Having been on past EIA standardization committees for diodes, I am aware of the difficulties which that organization faces in attempting to establish consistency among manufacturers without creating very serious and costly problems for certain member companies. The industry is experiencing growth pains, and cleaning house completely seems out of the question. EIA has tightened and should tighten registration procedures sufficiently to preclude attempts by the less reputable diode manufacturers to employ EIA numbers as sales gimmicks. Perhaps periodic reviews of diode lists by member companies would result in agreement to drop certain types. Without a change in EIA rules, however, the vote must be unanimous. The military practice of updating JAN and preferred lists is certainly a step in the right direction.

Harper Q. North, President
Pacific Semiconductors, Inc.

The User is Responsible Too

Dear Sir:
The diode problem covered in your June 10th issue of ELECTRONIC DESIGN has been one of increasing concern to me for quite some time. The rapid advance of the "state of the art" in semiconductors coupled with increased reliability, conductance, speed, and miniaturization demands from industry have necessitated a rapid successive introduction of many new diode types.

I am confident that these necessary types could be capably dealt with by the user through industry standardization of test procedures and parameters.

Through JEDEC, the industry has recently taken two steps that I am certain will be of assistance in this matter:

1. It has evolved a standard registration format for diodes, and EIA will have the authority to refuse registration unless registration is requested in accordance with this format. Accordingly, all diodes registered in the future will be more easily cross-referenced because of their being categorized to the same format and test procedures.

2. It will require that EIA charge both members and nonmembers for the service of registration. The amount of the charge has not yet been decided upon, but it is their desire to make it sufficient to deter manufacturers from indiscriminate registration of devices that are not unique.

The problem that we have been incapable of

(Continued on p. 96)
Kleinschmidt teletypewriters move up with the U.S. Army, operating without interruption under combat conditions

Constant contact, in print, between combat headquarters and widely-dispersed field units! Developed in cooperation with the U. S. Army Signal Corps, Kleinschmidt teletypewriters in this mobile communications center are capable of sending and receiving thousands of teleprinted messages a day. Operation is fast, accurate, dependable, simple. In recognition of proved performance, Kleinschmidt equipment for the U. S. Army is manufactured under the Reduced Inspection Quality Assurance Plan. Now Kleinschmidt experience points toward new accomplishments in electronic communications for business and industry. The new concepts, new applications are virtually unlimited.

KLEINSCHMIDT

DIVISION OF SMITH-CORONA MARCHANT INC., DEERFIELD, ILLINOIS

Pioneer in teleprinted communications systems and equipment since 1911

CIRCLE 190 ON READER-SERVICE CARD

handling is that of the usage of non-EIA or "House Numbers", and the blame here may well lie more with the user than with the diode manufacturer. In order to do business, the supplier conforms to the demands of his customers and a multiplicity of specific "House Number" devices are born.

Texas Instruments has consistently urged usage of standard products.

True standardization, therefore, will not come from the supplier alone but can only come from the user. We have consistently striven for standardization by introducing such types as the five-device IN645 series, that effectively replaces over five hundred earlier types of glass diodes. In this instance, we have widely circulated information on this series' replacement capability and stressed to our customers the advantages of standardization on as few types as possible. I feel it is now clearly up to the component users to take positive action: to build strong component standards groups, approve only EIA registered types, and demand conformance within their organizations.

This, coupled with efforts of the industry through JEDEC as previously outlined, can bring the situation under control. It would immediately reduce the choice to EIA registered types, eliminating over half of the presently available type numbers, and standards could concentrate upon the selection of the most versatile of EIA types for standardization. As this "large user" standardization progressed, their heavy demands for only the few most versatile types would force manufacturing obsolescence of the remaining non-competitive devices by the industry. The small user who cannot afford a large standards group would then find that only those types standardized upon by the large companies would be available for his use, and his present dilemma would cease to exist.

Standardization is certainly in the best interest of our company and our entire industry...

Clyde Rockland,
Head of Marketing, Texas Instruments,
Dallas, Texas

No New Number For Variations

Dear Sir:

We would like you to know that your issue of June 10 has received considerable attention in our Engineering and Marketing Departments. The problem of diode standardization is acknowledged as a most important problem in our industry, and we are among those seeking a satisfactory solution. We might add that publicizing the problem, as you have done, may be one of the most important contributions to greater standardization.

Your recommendations in paragraph two of your letter of June 11 are appropriate and their acceptance would undoubtedly contribute to

It

In

true

that

are

found.

We

We

in

the

We

We
solution of the problem.
In line with your recommendation on EIA registrations, we are of the opinion that EIA registration rules need revision to encourage use of a given number for minor product variations, to permit judicious use of letter suffixes, etc.

We do not concur with one statement regarding EIA registration of new types. The statement is: "When questioned on this, (deliberately aim at registering new types), marketing and sales executives have asserted that late type numbers signify advances and better products. To list old types in the new brochure would be poor practice, they argued."

Upon release of new CBS types we do use existing numbers where possible in recognition of the standardization problem, of customer acceptance of types where more than one source exists, and general concurrence with EIA policy. We do not agree that new numbers alone will sell a product. It is our additional experience, however, that the customer often requests modifications to existing types, perhaps tightening some parameter. Some of this is state of the art development, as you indicated, and is a healthy condition. In some cases, however, the sales engineer should urge further consideration on the part of the customer, selling the standardization, manufacturing experience, and proven reliability.

We feel your issue of June 10 has been of service to the industry, and we hope that our comments will be of assistance to you in your future efforts.

Robert G. Marclusio
CBS Electronics

(Letter previously published ED, July 22)

Dear Sir:
I certainly agree with the comments you have made in your letter of June 11th, relating to the problem of nonstandardization of diode types. The staff report on diodes in the June 10th issue of ELECTRONIC DESIGN has certainly emphasized the complexity of the problem.

The EIA Standards Laboratory and the JEDEC activity are both turning their attention to the matter of standardizing test characteristics and tightening requirements for registering diode types. I hope that this activity will result in the elimination of many of the diodes currently on the market. Because of the nature of the support that EIA enjoys, it may be difficult for EIA to exercise direct veto power in this activity. It may be necessary for the Government to take the initiative of standardizing a very small number of diodes and rectifiers.

The need for standardization is obvious, and we have seen it done in many other component fields. You are to be commended for this initiative. I hope these efforts prove to be fruitful.

Charles Weyl, President
International Resistance Co.

All of the CAMBION Shielded Coil Forms shown above are available unwound, or wound precisely to your specifications.

New fields to conquer?

Running into increasingly severe requirements for electrostatic and electromagnetic shielding of coils? You can meet them precisely and save space at the same time with CAMBION® Shielded Coil Forms. Extremely compact, these rugged unitized forms provide complete protection against interference in miniature circuits. They're particularly effective where interaction of adjacent fields must be prevented. You can really pack'em into tight spots!

CAMBION Shielded Coil Forms are available from stock to cover a broad range of fixed and variable types for both conventional and printed circuits. Variable types have advanced-design locking arrangement for positive protection against detuning. Chassis-mounted and flange-mounted types with choice of paper base phenolic, Polyphen, or Kel-F forms. Single and double-tuned types. "Top-hat" type forms have rugged, lightweight alodized aluminum housings for flange mounting. Other types have nickel-plated brass housings; the completely dependable shielded coil forms for today's rigorous service conditions.

CAMBION Capacitors are subminiature units with advanced design tuning that permits wide capacity ranges. Supplied complete with single mounting studs and lock for tuning element. Stand-off type capacity elements are epoxy-embbeded for maximum resistance to moisture.
now... capacitors as dependable as the time and tides

now... capacitors as dependable as the time and tides

Cornell-Dubilier Certified High-Reliability Capacitors meet performance expectations for new environments and new complex military and industrial electronic equipment. These capacitors meet or surpass the exacting requirements of MIL-C-14157A and MIL-C-26244 (USAF). Each production lot is furnished with certified test data covering the stringent test program detailed in the specification.

When designing electronic equipment where failure can't be tolerated specify Cornell-Dubilier High-Reliability Capacitors. Write on your company letterhead for High-Reliability Bulletins 188A-1 and 188A-2 to Dept. ED-1, Cornell-Dubilier Electric Corporation, South Plainfield, New Jersey.

Storage Tube Writes

PPI and TV Raster at Same Time

This 10-inch storage tube, incorporating two guns that write simultaneously, a PPI scan and a TV raster, can store signals for as long as several hours and can be adjusted for highlight brilliance exceeding 500 foot lamberts.

Designed originally for missile-tracking and air-traffic operations, the Storatron can be engineered into a wide variety of circuits to record non-recurring events or to assemble either sequential or random data on a programmed basis.

For instance, one gun of the Storatron may be used to integrate the echoes from a radar and to display them as high-intensity images on the face of the tube with a marked improvement in signal-to-noise ratio.

This improvement would result from the tube's ability to display a wide range of line-tones. The noise would be random and would be displayed in an rms fashion. The echoes proper would always appear at the same place and would build up with each scan of the target. The half-tone capability would improve an essentially all-black and all-white picture.

Tubeface of Storatron has 42-inch radius of curvature. Neck can be thickened to house up to 15 writing guns.

Two guns of charge-loss storage tube are deflected in parallel.
The second gun could write in information from other sources, such as another radar, a fire-control computer, written instructions locally inserted for target identification; or past history, such as flight path of the target under surveillance.

From time to time additional information might be written in by one or both guns in tabular form to indicate linear or angular velocity, momentum, or acceleration of particular targets.

Developed by the Electronic Tube Division of Allen B. DuMont Labs, Inc., of Clifton, N.J., the K1578 tube has electrostatic focus and deflection, 500-line resolution, and a half-tone range of six discernible shades.

The Storatron operates as a charged-loss, electrical-in, optical-out tube, using a flood gun to charge its grid. Electrostatic focus and deflection are used to provide the flexibility to display waveforms of any type or shape. For other applications, magnetic versions are available.

Two examples show how the Storatron might be used to solve radiation problems in medical electronics:

A short burst of high-intensity X-rays could be picked up by an X-ray-sensitive, photo-conductive camera mounted on an aluminum window. The resulting image could then be written into storage on the tube for long-time review without exposing the patient to extensive X-rays.

A second method of studying radioactivity could be used with a patient who had been given a tracer material, such as radio-iodine. All parts of the patient's body could be scanned mechanically with a scintillation scanner. The output of the scanner's multiplier could be written into the Storatron to display a complete picture of the patient's radioactivity.

Applications Are Many

Other applications suggested by DuMont engineers include:

Study of frequency response of quadripoles, characteristics of vacuum tubes and semiconductor devices, transient behavior of regulated power supplies, voltage variations across relay coils and switching contacts, relay operating times, and load variations in power lines.

In computer work the Storatron could be used to study pulse distortion in binary storage registers, to plot data on analog computers, and to compare various solutions directly.

The tube is available now in 10-inch versions, with a tube face radius of curvature of 42 inches. It is being developed in a 21-inch version, with a radius of curvature of 32 inches.

Through present models include only two guns, the company reports that as many as 15 could be incorporated in thicker-necked tubes.

For more information on this device, turn to the Reader-Service Card and circle 100.

How analog techniques assure accuracy in vibration test systems

MB Electronics, manufacturer of complete complex motion testing systems, uses modern analog computer techniques to reproduce actual vibrational environments met in the operation of aircraft and missiles.

The MB Model T88 Complex Motion Console, which puts all the system controls within easy reach of a single operator, utilizes 10 Peak & Notch Equalizers — each containing 8 K2-W analog DC amplifiers by Philbrick. The equalizers are the key to test system accuracy. They adjust to the exact inverse electrical equivalence of the mechanical system resonance, and automatically provide the mass offset required for any table loading condition by assuring a flat frequency response identical to that of the input voltage.

This is a special application, true. But it may provide the spark of an idea as to how you can use analog techniques — and efficient Philbrick plug-ins — to your advantage. Write for freely given opinions on your particular problem.

The analog way is the model way

ALL K2 PLUG-INS RUN ON PLUS AND MINUS 300 VDC AND 6.3 VAC. SOCKET WIRING IS SIMPLE AND STANDARDIZED.

CIRCLE 193 ON READER-SERVICE CARD

99
NEW PRODUCTS

Secondary-Emission Pulse Tube
Has 5 µsec Rise Time

A rise time of less than 5 µsec with a 1-amp pulse is obtained with this secondary emission pulse tube. Currents as high as 1 amp and rep rates up to 300 kc are possible as a result of its high dissipation capabilities. Designated 7548, this 9-pin miniature tube has a transconductance of 25,000 µmhos at 18 ma, and a gain-bandwidth product of 350. A maximum plate voltage in pulse service of 1000 v dc is possible. This tube has a life expectancy of 5000 hr.

CBS Electronics, Dept. ED, 100 Endicott St., Danvers, Mass.

CIRCLE 194 ON READER-SERVICE CARD

Motion Sensing Device Measures 10⁻⁷ in.
The Metrisite motion sensing device allows measurements as small as 10⁻⁷ in. Reactive force of the instrument is a fraction of a milligram; linearity from zero to full range is 0.1%. Outputs as high as 100 v are available; full-scale operation of a rectified-type meter is possible without use of an amplifier. Units are produced which measure directly either angular or linear movement, eliminating complex mechanical linkages. These devices meet military environmental shock and vibration tests, and may be adapted to a variety of configurations from subminiature to sizes capable of measuring over 4 in. of linear motion.

Brush Instruments, Dept. ED, 37 and Perkins, Cleveland 14, Ohio.

CIRCLE 195 ON READER-SERVICE CARD

Metal Film Mica Attenuator Elements

Metal film mica attenuator elements have electrical and environmental characteristics that compare favorably with metallized glass elements. They are made of thin mica, upon which is deposited a pure metal film 6 millionths of an inch thick. The elements are used in variable attenuators above 18 kmc. They minimize slot width, reducing rf leakage. Standard mica sheets are available from 0.001 to 0.005 in. thick, with resistivities from 24 to 400 ohms per square. Elements can be hand cut to customer requirements.

Filmohm Corp., Dept. ED, 48 W. 25th St., New York 10, N.Y.

CIRCLE 196 ON READER-SERVICE CARD

Covering all new products that might generally be specified by an electronics engineer engaged in the design of original equipment.
Germanium alloy junction transistors are available for as low as 80.50. These general-purpose units have a direct glass-to-metal seal between the case and the header. Pnp types 2N1372 through 2N1381 dissipate 250 mw, have a 200 ma collector current, and operate to 100 C. The 2N1380 and the 2N1381 have a typical dc beta of 100; 2N1372 through 2N1379 have dc betas ranging from 30 to 300. The transistors are available with collector-to-base voltage ratings of 12, 25, or 45 v. Six pnp entertainment types include 2N1273 and 2N1274 with collector dissipation of 150 mw, collector current of 150 ma, and a typical beta of 50; the 25-v 2N1370 and the 45-v 2N1371 with betas of 80; and 2N1382 and 2N1383 with collector dissipation of 200 mw and 200 ma collector current. The entertainment types have a maximum junction temperature rating of 85 C.

Texas Instruments, Inc., Semiconductor Components Div., Dept. ED, P.O. Box 312, Dallas, Tex.

Tape Recorder Occupies 14 cu in.

This airborne tape recorder weighs 10-1/2 oz, and occupies 14 cu in. It will register information on 1 to 16 channels on a continuous tape. Able to withstand over 2000 g of shock, it consumes 1-1/2 w. This unit may be used to record space flight data and transmit it back to earth receivers. Electronic accessories, including transistor timing oscillators, bias oscillators, dc amplifiers, and battery packs are available.

Leach Corp., Dept. ED, Los Angeles, Calif.
Tiny, Self-Torquing Accelerometer Takes 100 G Shock

The smallest linear accelerometer on the market certainly has a claim to fame. But this unit, Fairchild’s TA-400, boasts more than size alone. Even in its most sensitive range of 1/4 g, it can withstand 100 g shock, and vibration of 20 g from 50 to 2000 cps.

Only 7/8 inch long and 15/16 inch in diameter, the hermetically-sealed TA-400 weighs less than 2.5 ounces. A product of Fairchild Controls Corp., 225 Park Ave., Hicksville, N.Y., it claims high sensitivity, low null, low friction levels, and very small cross talk, in addition to its other important features.

"Don't Rock the Boat"

Perhaps most unusual is its self-torquing feature. Additional taps on the pickoff windings allow a small external voltage to be superimposed on the pickoff. This voltage allows one to check the operation and calibration of the accelerometer easily and quickly.

Previously, to check accelerometers and gyros mounted in planes and missiles, it was necessary to actually rock or tilt the entire vehicle.
Linear accelerometer (shown almost twice actual size) has unusual resistance to shock and vibration.

The accelerometer's unusual shock and vibration resistance is due to several factors. Most important is the fact that the gimbal axis is supported by two pivots and jewel bearings rather than one.

The pivots and jewels absorb all but the compression and tension forces, which the torsion bar can well handle. (Most accelerometers use only one bearing and the torsion bar for supporting the mass.)

Cross talk, which depends on the range and the percent of full range used, is never more than 4.5 per cent of full scale. This low level is due to the design which limits the maximum displacement of the mass to a mere 2-1/2 degrees.

A null as low as 15 mv, a friction level no more than 0.3 per cent of full scale, and a husky output of 6 v into a 10 K load help round out the unusual features of this accelerometer.

Leaving nothing undone, Fairchild engineers have turned the pickoff inside out. In essence, it is a variable transformer with the windings static, and thus, easier and cheaper to manufacture. The iron mass rotates around the windings.

For more information on this unusual component, turn to the Reader-Service Card and circle 101.
Barratron ECM Tube
Jams Radar

WHITE NOISE generated by the Barratron tube is at least ten times as effective as that produced by the magnetron.

Barratron tubes are high-power transmitting tubes capable of supplying broad-band white noise. Available in either tunable or fixed frequency models, their main application is in enemy counter-measure (ECM) jammers. Produced by Litton Industries of Beverly Hills, Calif., these tubes have many advantages over tubes presently available for this application.

The majority of systems now operational use tunable cw magnetrons. Although the magnetron itself is an efficient, compact device, the required associated circuitry and
equipment to control it, produce an efficient and complexjammer. The tunable Barratron requires no modulator or noise generator chassis and the fixed frequency tube requires no tuning circuitry or modulator. Since the Barratron tube efficiency is comparable to that of the magnetron, the elimination of the associated equipment results in a compact and reliable jammer. The most important advantage over the magnetron is in the quality of the jamming signal—the white noise is ten times as effective as that produced by the magnetron.

Although other tube types are being developed that will be more effective as jamming tubes, they are less efficient than the magnetron or the Barratron. They also require several power supplies and external modulating circuitry. Some of these tubes are difficult to manufacture. The Barratron, however, is very similar to the cw magnetrons now in production, so that tested techniques, trained personnel and available tools can be used. This should result in a unit cost less than that of the magnetron and considerably less than that of the other tubes.

The tunable Barratrons are designed so that they are physically and electrically interchangeable with the tunable magnetrons now in use. They may be used in jammers now in use with a minimum of adjustment and/or modification. Units can be supplied to cover from uhf to well into the microwave frequencies.

The fixed frequency tubes are intended for applications in new equipment. For the first time, barrage jamming power may be developed in useful amounts from a small unit.

The Barratron tubes may be used in jammers that can be automatically or operator-controlled, depending on the nature of the mission or the space allowed for equipment. Both versions of the tube can be used in either spot or barrage jammers.

For more information on this tube, turn to the Reader-Service Card and circle 717.
ESSEX EPOXY-ENCAPSULATED, HIGH RELIABILITY

MODULAR

DELAY LINES

ESSEX DELAY LINES ARE NON-FLAMMABLE!

New line of circulators operating on a field displacement principle are smaller, lighter, give better isolation and less insertion loss than conventional circulators.

Get Better Insulation with

Lighter, Smaller Circulators

A TENTH THE SIZE and weight of conventional microwave circulators, a new line of Y, T and Cross type circulators give 0.5 db insertion loss and 20 db isolation—with 60 db isolation often achievable.

While conventional circulators operating at X band may weigh as much as five pounds and occupy a volume of 40 cu in., the Cascade Y model weighs one pound and takes up about four cu in.

The configuration of these circulators is simpler—no transitions are needed—and leads to lower costs and greater reliability. No precision cast folded hybrid Ts are required.

Circulators now available on the shelves of Cascade Research Div. of Monogram Precision Industries, 5245 San Fernando Road, Los Angeles 39, Calif., cover X and S bands. Custom designs are available at all frequencies from 1000 to 75,000 mc. The field displacement units can handle power peaks of 100 kw and average powers of 100 w over a frequency band of five per cent or more. Maximum vswr is 1.2.

Particularly suited to parametric-amplifier and maser applications because of their small size and weight, the circulators are useful in other areas: airborne attenuators, directional couplers for antennas,
fast nonreciprocal switches and
dual duplexer. They can be used
in place of high power cw isolators,
since one port can be terminated in
a matched load.

Design is New

Former circulators depended on
Faraday rotation or the nonreciproc-
cal propagation obtainable in wave-
guides partially loaded with ferrite.
Disadvantages of the first type are
that they require transitions from
circular to rectangular waveguide,
a longitudinal magnetic field and
are very lossy at high peak power
levels. Bandwidths are comparati-
vely narrow. In the second case
two hybrids and a large transverse
magnet are required—making the
circulator large and heavy, particu-
larly at the lower frequencies.

Herman Chait of Cascade Re-
search and Thornton Curry, both
working at the Naval Research
Laboratory, recently discovered the
principles used to build the new
circulators. Called the field dis-
placement method to distinguish it
from Faraday rotation or differen-
tial phase shift, it is used to design
symmetrical Y or Cross, or asym-
metrical T circulators. See Fig. 1.

The Y type consists of an H-
plane junction—three identical
waveguides joined to form a sym-
metrical Y-shaped figure. The Cross
type is similar to the Y, except the
angle of intersection of the guide is
90 deg instead of 120 deg.

The junction region contains a
symmetrical distribution of trans-
versely magnetized ferrite. Since
the magnetized ferrite is an aniso-
 trope medium, the junction is not
symmetrical electrically. The asym-
metrical field distribution occurs
because the rf magnetic field is
e elliptically polarized in planes
parallel to the broad faces of the
guide and in opposite sense to
either side. Since the effective
true permeability of the magnetized
e ferrite depends on the strength of
polarization, the two sides of the
loaded waveguide are electrically
dissimilar.

For further information on these
microwave circulators, turn to the
leader-Service card and circle 715.
The way to know – An ominous shadow over ocean or wasteland…an unidentified “blip” on a radar scope! A challenge from an airborne AN/APX-7 interrogating unit spurs into the ether. In microseconds a reply identifies the potential marauder as friendly. The absence of such a reply alerts the protective and retaliatory might of the nation.

ENGINEERING BEYOND THE EXPECTED

Packard Bell’s reputation as a leading designer and foremost producer of IFF (identification, friend or foe) equipment is indicated by the fact that both the AN/APX-7 and the AN/APX-6, which returns the reply, are products of our Technical Products Division. Advanced development, company-sponsored, has recently produced miniaturized IFF modules which operate up to 200°C.

PACKARD BELL ELECTRONICS
Technical Products Division
12333 W. Olympic Blvd.
Los Angeles 64, Calif. • BR. 24141
CIRCLE 743 ON READER-SERVICE CARD
Convection Ovens
Temperature range is 150 to 1200 F

These mechanical convection ovens have a temperature range of 150 to 1200 F and maintain an actual control point of ±2 deg F. Interiors are stainless steel construction. Four standard sizes, from 1 to 11 cu ft, are available. The requirements of MIL-H-6088A are met.

Blue M Electric Co., Dept. ED, 138th and Chatham St., Blue Island, Ill.
CIRCLE 746 ON READER-SERVICE CARD

Terminal Blocks
Available in six- and ten-terminal sizes

Designed for connection between printed circuits and external wiring, type 399 six- and ten-terminal blocks are made of glass-fiber-filled diallyl phthalate as specified in MIL-L-19833. The insulation resistance is 5×10^6 meg, 2×10^5 meg after 3 hr at 280 F, or 2×10^6 meg after 30 days at 80 F. Working voltage is 1550 v dc.

Kulka Electric Corp., Dept. ED, 633-643 S. Fulton Ave., Mt. Vernon, N.Y.
CIRCLE 747 ON READER-SERVICE CARD

DC Motor
Has 1-3/4 hp

Designed for actuator service, model 49EC1, a 26 v dc motor, has 1-3/4 hp and is compound wound, reversible type. Its speed is 10,500 rpm and the brake has a static torque of 500 oz-in. It conforms to MIL-M-H609A. Dimensions are 7 in. length and 4 in. diam.

Western Gear Corp., Dept. ED, 132 W. Colorado Blvd., Pasadena, Calif.
CIRCLE 748 ON READER-SERVICE CARD

ESC was the first to provide complete laboratory reports with each delay line prototype—containing submitted electrical requirements, photo-oscillograms (which indicate input and output pulse shape and output rise time), the test equipment used, and an evaluation of the electrical characteristics of the prototype. ESC was also the first company devoted exclusively to the design and manufacture of custom-built and stock delay lines...for all military and industrial applications.

Whatever the application, ESC can design and build precisely the delay line you need—easily, efficiently and exactly as specified.

WRITE TODAY FOR COMPLETE TECHNICAL DATA.
exceptional employment opportunities for engineers experienced in computer components...excellent profit-sharing plan.

ESC CORPORATION 534 Bergen Boulevard, Palisades Park, New Jersey
Distributed constant delay lines • Lumped constant delay lines • Variable delay networks • Continuously variable delay lines • Pushbutton decade delay lines • Shift registers • Pulse transformers • Medium and low power transformers • Filters of all types • Pulse-forming networks • Miniature plug-in encapsulated cutout assemblies
CIRCLE 749 ON READER-SERVICE CARD
Resistance Comparator
Has an accuracy of ±0.2%

The resistance comparator checks the values of resistors for sorting or matching purposes. It has an operating range of 50 ohms to 2 meg and an accuracy of ±0.2% or better. The types of measurements possible with this unit include reading the per-cent deviation from a standard value, checking unknowns against upper and lower limits, and trimming series resistors to a standard value.

CIRCLE 753 ON READER-SERVICE CARD

Digital Indicator and Printer
Records liquid fuel weights

Model 177 digital indicator and printer records liquid fuel weights in missiles. The instrument gives continuous monitoring and permanent periodic recording at rates up to two readings per sec. Controls are provided for run and calibration selection. Accuracy is better than 0.1% of reading.

Gilmore Industries, Inc., Dept. ED, 13015 Woodland Ave., Cleveland 20, Ohio.
CIRCLE 754 ON READER-SERVICE CARD

Correction Notice
It was erroneously reported in the August 19 issue, p. 121, that the three-range analog frequency meter, model T-4, had an accuracy of ±17%. This instrument, manufactured by Jones-Porter Instrument Co., Inc., of Milburn, N.J., has, in fact, an exceptional ±0.25% accuracy.

CIRCLE 755 ON READER-SERVICE CARD

CLARE relays and stepping switches

INSURE ACCURACY,
INCREASE RELIABILITY,
REDUCE SIZE of
PRATT & WHITNEY'S
Numerical Control...

Pratt & Whitney's Numerical Control is a fully automatic, ultra-precise means of translating blueprint data into a series of machine positions. Applied to jig borers and other precision Pratt & Whitney machine tools, settings are made quickly, with high reliability to .0001" accuracy.

In operation, the Planning Engineer transfers to a Numerical Planning Chart all dimensional data from the blueprints which are necessary to determine the positions. Ordinary clerical help then punch these data into a tape. Machine positionings are then controlled by the tape or, when required, by a dial on the Operator's Console.

Here is what P&W's Mark H. Sluis has to say about the vital part played by Clare Relays and Stepping Switches:

"In the 4EA Numerically Controlled Jig Borer, punched-tape information is decoded by Clare Type J Relays and fed to a storage bank of 25 Clare Type 11 Stepping Switches. The selection of the proper storage switch is accomplished by a distributor—a Clare Type 26 Stepping Switch. In addition to storing the required command data for the slide positioning of this machine, logic circuitry comprises some 115 Clare Type J Relays.

"For ultra-reliability of the digit-selection circuitry, a dozen Clare Type HG4 four-pole Mercury-wetted Contact Relays are utilized.

"Through use of the Clare relays and stepping switches, our circuitry has increased in reliability, and a large contribution was made which enabled us to realize a 6:1 size reduction of the control system."

For complete information on Clare Relays and Stepping Switches, contact C. P. Clare & Co., 3101 Pratt Blvd., Chicago 45, Illinois. In Canada: C. P. Clare Canada Ltd., P. O. Box 134, Downsview, Ontario. Canada. Address: CLARELAY
TWO COMPLETELY NEW LINES ADDED IN STEEL AND ALUMINUM TO GIVE
3 COMPLETE MODULAR FRAME LINES IN ONE OVER-ALL SYSTEM

B Amco Semi-Custom Line. Removable multi-width cowlings provide a semi-custom, single-unit appearance for frames mounted in series. Extra rugged, wide box-type channel frames provide greater internal mounting area. 19" wide panels of any thickness can be recessed—from a flush-mounted position to any desired depth. Box type channel construction of 14 gauge cold-rolled steel. Conforms to EIA mounting standards.

C Amco Aluminum Line. This system of aluminum box extrusions and cast corners allows easy assembly of cabinets in any size from 7" to 20" in height, width or depth. Corners and extrusions lock together by hand with built-in locking device. All sizes are standard. Ideal for stock ordering and odd-ball sizes. Cast and hardened corners of 358-T6 aluminum as described in Federal Spec. QQ-A-596A. Extrusions of 6061-T6 aluminum as described in Federal Spec. QQ-A-270a.

D Amco Accessories. A full line of Amco integrated accessories such as blowers, chassis slides and mounts, lighting, doors, drawers, dollies and many more available for A, B and C shown.

Cost savings. All the above—or any part thereof—may be ordered under one combined discount schedule base determined by order dollar value. Orders received at one time with one delivery date may also be combined. Free pre-assembly by Amco provides additional savings in time and installation.

3 week delivery on all standard parts. We welcome inspection of our plant and facilities. Send for your free literature now.

SEE US IN BOOTH # 3616-3618
AMCO ENGINEERING CO.
7333 W. Ainslie Street, Chicago 31, Illinois
CIRCLE 755 ON READER-SERVICE CARD

NEW PRODUCTS

Pressure Transducers
Ratings are 0 to 100 through 0 to 5000 psig

Used to measure full system differential pressures at each port, models SP2-399 and SP2-517 pressure transducers have ratings from 0 to 100 through 0 to 5000 psig. The sensitivity is 2 to 4 mv per volt. The temperature range is -25 to +75°C and compensation can hold the thermal zero shift to less than ±0.01% of full scale per deg F. Model SP2-399 has a four-conductor pigtail and model SP2-517 is furnished with a piggy connector. The units use two half-bridge elements connected in a full bridge with all active legs. Errors from non-linearity and hysteresis combined are less than 1%. Nominal bridge impedances are 350 to 900 ohms.

Standard Controls, Inc., Dept. ED, 1130 Poplar Place, Seattle 44, Wash.
CIRCLE 756 ON READER-SERVICE CARD

Linear Motion Potentiometer
Operates at -65 to +500 F

Model 113 linear motion potentiometer operates at temperatures of -65 to +500 F. It gives precise electrical indication of mechanical position when used with hydraulic actuators, pneumatic valves, and linkage components. The unit operates with a high level ac or dc signal, requiring no amplification for use in recording, control, and telemetering circuits. The resistance element termination, designated Silverweld, is a metal-to-metal bond. Resistances available are: 1000, 2000, 5000, 10,000, and 20,000 ohms. Resolution is from 0.0013 to 0.0053 in., travel range is 1.31 in., and power rating is 4 w at 40 C. Dimensions are 1/2 x 5.8 x 2-1/2 in.

Bourns, Inc., Dept. ED, P.O. Box 2112, Riverside, Calif.
CIRCLE 757 ON READER-SERVICE CARD

Lafayette Radio
YOUR AUTHORIZED TEXAS INST.
DISTRIBUTOR

125°C operation
standard ±10% tolerance

SRM capacitors meeting the most exacting reliability standards are now yours through advanced T1 processing techniques and 100% testing of pre-aged units.

134 ratings from 1-330 uF, 6-35 v. Exceeding all existing MIL specs over a full range of industry-standard ratings and case sizes, the subminiature SRM series features...new low dc leakage limits and long operating and storage life...standard ±10% tolerance...operation from -80°C to +125°C...ruggedized construction...reverse voltage capabilities...nominal voltage derating required at 125°C.

For your highest reliability requirements, specify Texas Instruments premium performance solid tantalum capacitors.

TI semiconductors and components are available off-the-shelf at factory prices in the following quantities:

- 1-999 small silicon transistors silver wire, tantalum capacitors.
in-499 germanium diode diodes and rectifiers. carbon film resistors.
90 titan-ti-cap tantalum capacitors: 1-999.

Lafayette Radio

Department TI-O
BOSTON 10, Mass.
110 Federal St.
HU 2-7650
JAMAICA 33, N.Y.
165-08 Liberty Ave.
AX 1-7500
PLAINFIELD, New Jersey
139 W. 2nd St.
PL 6-4718
NEWARK 2, New Jersey
24 Central Ave.
MA 2-1661
NEW YORK 13, N.Y.
106 6th Ave.
WG 6-5200

CIRCLE 758 ON READER-SERVICE CARD
Pressure Switch

Weighs 4 oz

The 1580 pressure switch weighs 4 oz max, and is 3 in. long by 1.5 in. at its widest diameter. Ambient operating temperature range is -65 to +300 F. It is factory-set to actuate at any desired pressure level within the range of 0.5 to 4000 psi. The unit is environmentally sealed by O-rings at each end of the aluminum housing.

Haydon Switch, Inc., Dept. ED, Waterbury 20, Conn.

CIRCLE 334 ON READER-SERVICE CARD

Servo Amplifier and Power Supply

Control wide range of ac servo motors

These servo amplifier and power supply units control a wide range of ac servo motors with mechanical power outputs up to 10 W. The amplifier accepts low level ac signals from transducers and from an ac feedback tachometer. Output power is available at various impedance levels through a combined matching and isolation transformer. Pilot lights indicate input and output voltage, and separate fuses protect the ac supply line from filament and dc voltage circuit overloads.

Seneca Falls Machine Co., Electronics Div., Dept. ED, 19 Fyfe Bldg., Seneca Falls, N.Y.

CIRCLE 335 ON READER-SERVICE CARD

Epoxy Resin Kit

Requires no refrigeration

Model PPC kit contains TC-459 flexible epoxy resin in preproportioned cartridges for use in potting junctions and connectors. Requiring no refrigeration, the resin is mixed in the cartridge prior to use in either standard Semo or Pyle sealant guns. The resin is non-toxic and practically odorless. Cartridge resin capacity is 175 g. The kit weighs 8 oz.

Electronic Production & Development, Inc., Chemical Div., Dept. ED, 205 S. Beverly Drive, Beverly Hills, Calif.

CIRCLE 336 ON READER-SERVICE CARD

CIRCLE 337 ON READER-SERVICE CARD

Engineers tuning EIMAC klystron amplifier at WESCON find it non-critical, reliable

For one of the few times outside field applications and test installations, engineers had an opportunity to tune an Eimac Klystron amplifier on the air during WESCON in San Francisco in August.

The klystron amplifier was operated at 800 megacycles with output power of one kilowatt. Engineers tuning this equipment were impressed with the simplicity of its non-critical operation. Participants found Eimac’s external cavity klystrons as easy to tune as a lower frequency negative-grid amplifier.

This dramatic demonstration featured the same type of Eimac Klystron already famous for outstanding long-life, reliability and performance in such tropo-scatter systems as Dew Line, White Alice and Texas Towers.

An animated display depicting the effect of velocity modulation on electron flow illustrated the circuit isolation and thermal safety factors that make klystrons ideal for UHF microwave applications.

A wide selection of Eimac klystrons, reflex klystrons, traveling wave tubes and negative grid tubes were displayed. Exhibits of Eimac’s advanced work in traveling wave tubes were of particular interest to engineers confronted with rugged environmental applications.

For detailed information on latest Eimac developments, write to our Amateur Service Department for your copy of “What’s New With The Electron... 1959.”

EITEL-McCULLOUGH, INC.

SAN CARLOS, CALIFORNIA
GET DUAL POSITION OPERATION FOR QUALITY CONTROL TESTING OF FAST RECOVERY DIODES WITH THE EG&G MILLI-MIKE OSCILLOSCOPE

Now two operators can use the same EG&G Type 2236A Milli-Mike Oscilloscope at the same time. It's like getting two oscilloscopes—(EG&G Oscilloscopes)—for the price of one!

NEW PRODUCTS

Oscilloscope

Displays to 24 channels

Model RM-24 oscilloscope uses a 17 in. persistent cathode ray tube to display up to 24 channels simultaneously. Applications for the unit are studies in time and motion, stress, strain, vibration, pressures, and analog functions. All input circuits are dc with 10 mv per in. sensitivity. Response is from dc to 3500 cps. Time is calibrated from 100 μsec per cm to 1 sec per cm; the time base features both recurrent and triggered sweep. An external power supply with regulated dc sources is provided either for external mounting with rack model or internal mounting with console model.

Rycom Instruments, Div. of Railway Communications, Inc., Dept. ED, 9351 E. 59th St., Raytown, Mo.

CIRCLE 340 ON READER-SERVICE CARD

Direct Current Solenoids

Both pull and push types

This line of dc solenoids consists of the P series comprising the pull type and the Q series comprising the push type. The pull capacity when used without protective switch ranges from 4 lb at 0.5 in. stroke to 100 lb at 7 in. stroke. The pull with protective switch ranges from 10 lb at 1-1/4 in. stroke to 600 lb at 7 in. stroke. These units are available bottom mounted, top mounted, or wall mounted. Rated up to 750 v, their diameters range from 2.25 to 12 in. with overall height from 3-3/16 to 17-3/16 in.

Trombetta Solenoid Corp., Dept. ED, 329 N. Milwaukee St., Milwaukee 2, Wis.

CIRCLE 339 ON READER-SERVICE CARD
PUTTING MAGNETICS TO WORK

Vive la différence in Hy Mu 80!

For greater sensitivity—Magnetics, Inc. makes Round Hy Mu 80 for more output at low flux densities
For greater gain—Magnetics, Inc. makes Square Hy Mu 80 for more voltage amplification

There's an important difference in the two basic kinds of Hy Mu 80, Round Loop and Square Loop. By taking advantage of it, you design magnetic amplifiers with better performance and efficiency characteristics. We stock standard tape wound cores made of both, to be sold at non-premium prices. We want you to order the right kind.

Round Hy Mu 80 is demanded when flux densities are down around the 10 to 50-gauss level. Its high initial permeability results in great sensitivity. It also means fewer windings, thus smaller sizes. Combine higher inductance, great sensitivity and small size, and if you are a designer of devices like low level transformers or thermocouple amplifiers, then you want Round Hy Mu 80 tape cores.

On the other hand, if you design sensitive high gain magnetic amplifiers you need Square Hy Mu 80. The transfer curve is so linear and so nearly vertical that a minute change in input produces an extremely sharp response. When only a small bias supply is available, you get a lot more amplifier per dollar. Preamplifier designers are among our best customers.

So vive la différence! Order the right Hy Mu 80 for your needs. We'll supply either, and what's more, we'll supply them quickly. Want the full story? Write Magnetics, Inc., Dept. ED-71, Butler, Pennsylvania.
NEW PRODUCTS

Power Supply

Has 130 to 500 v dc output

Model UHR-211 power supply has an output voltage of 130 to 500 v dc at 0 to 1000 ma at any voltage setting and at any line voltage over the operating range. Regulation is less than 0.004% plus 0.004 v. Ripple is less than 0.2 mv rms.

CIRCLE 346 ON READER-SERVICE CARD

Inverter Test Console

Checks out missile and aircraft equipment

Built on a movable dolly relay rack with two 19 in. rack panels 53 in. high, the model W-1400 inverter test console monitors dc input, current, voltage, and ripple and ac current, voltage, power, distortion, and phase rotation. Its nominal 28 v dc output, which can be varied from 0 to 36 v, will operate any piece of aircraft or missile equipment up to 50 amp. The unit contains a load bank section that can load inverters up to 750 va, three-phase at 400 cps or 375 va, single-phase at 800 cps.

Electrosolids Corp., Dept. ED, 13745 Saticoy St., Panorama City, Calif.

CIRCLE 347 ON READER-SERVICE CARD

Amplifiers

Ac transistor type

Available in four models, these germanium transistor plug-in ac amplifiers have gains of 300 or 1000. Frequency response is flat from 60 cps to 10 kc or 1 to 50 kc. Input impedance is greater than 50 k, temperature range is 32 to 140 F, and gain is adjustable externally over a ±20% range. Model S-10001-P, pictured here, is typical of this series. Other models are available with frequency response flat from 60 cps to 200 kc.

Plug-in Instruments, Inc., Dept. ED, 1416 Lebanon Rd., Nashville, Tenn.

CIRCLE 348 ON READER-SERVICE CARD

Design around Mallory

for new

For Miniaturization—Small and light enough to carry anywhere, the Comptometer Coronet enables business men on the go to dictate wherever they travel. Six long-lasting RM-12R Mallory mercury batteries provide portable power, in compact space, for as much as 24 hours of continuous dictation.

For Steady Output—Highly constant output voltage of mercury batteries makes them valuable as reference sources in instrument circuits. The curve shows how open circuit voltage keeps within 1% of original value during 36 months storage. Exceptionally high accuracy can be obtained for short run service under load, as in missile telemetering, by calibration prior to use in the intended circuit.

![Graph showing Open Circuit Voltage Stability for Mallory Mercury Reference Cells]
Mercury Batteries

miniaturization, stability, dependability

You can put extra performance in your battery-powered products by applying the unique performance of Mallory mercury batteries in your new designs. Pioneered and perfected by Mallory, mercury batteries give you features unequalled by any commercial dry cell.

Want smaller size? Mercury batteries have high energy-to-volume ratio, can be miniaturized without loss of performance.

Want greater convenience? Long lasting mercury batteries greatly reduce frequency of battery change.

Want dependability? Mallory mercury batteries last up to four times longer in service than conventional types...can be stored for up to six years without appreciable loss of capacity. They operate over wide temperature ranges.

Want stability? Output stays so constant that they can be used as reference voltage standards. Constant voltage discharge is ideal for transistor circuitry.

The applications pictured here are typical of the ways that Mallory mercury batteries are adding new values to self-powered products. Let's get together on how we may help you, too...either by applying our line of standard batteries or by developing custom-made packs for you.

Mallory Battery Co., Cleveland, Ohio

a division of

Mallory

PR Mallory & Co. Inc.

In Canada, Mallory Battery Company of Canada, Ltd., Toronto 4, Ontario

For Dependability—"Atronic Pacer/Monitor"—pocket-size electronic heart stimulator, made by Atronic Products, Inc., supplies pulses that prevent heart slowdown in cardiac patients...lets them live useful lives away from a hospital bed. Life-saving impulses are powered by Mallory mercury batteries, which deliver constant power for months in this critical service.

CIRCLE 349 ON READER-SERVICE CARD

For Long Life—Mallory mercury batteries have been used as a primary power source for the telemetering transmitters in the U. S. satellite program. In the Pioneer IV space probe, they powered radio transmission up to 407,000 miles, the greatest distance over which a radio signal has ever been received...and they far exceeded life expectations in Explorer and Vanguard flights.

CIRCLE 350 ON READER-SERVICE CARD

Synchronous Motors

Permanent magnet type

Series 500 permanent magnet type synchronous motors are available in speeds from 1/60 to 10 rpm and in clockwise or counterclockwise models. They are offered with two different lubricating systems. In the standard type, the pinion rotates on a fixed shaft and is lubricated by an oil reservoir in the pinion. In the instrument type, a reservoir lubricating system in the core of the motor continuously bathes the rotor shaft in oil. The units are designed for 115 v, 60 cps operation.

Controls Company of America, Industrial and Commercial Controls Div., Dept. ED, 9555 Soreng Ave., Schiller Park, Ill.

CIRCLE 350 ON READER-SERVICE CARD

Rate Gyro

Withstands temperatures from -50 to +400 F

This sub-miniature rate gyro, embodying eddy current damping, withstands a range of temperature ambient from -65 to +400 F. This single degree of freedom instrument has an output governed by the rate range and the natural frequency. Rate ranges of 10 to 200 deg per sec are available. Power requirement for the three phase hysteresis motor and the single phase microsyn is 26 v. Frequency range is 400 to 1000 cps. The unit is 2 in. long and 3/4 in. in diam, and is hermetically sealed.

Telecomputing Corp., Whittaker Gyro Div., Dept. ED, 16217 Lindbergh St., Van Nuys, Calif.

CIRCLE 351 ON READER-SERVICE CARD

Power Supplies

Stepping type

These power supplies provide 115 v or line voltage automatically stepped in plus and minus steps. The time cycle is adjustable from 1 to 60 min; the step voltage is adjustable from 1 to 20v. Operation is on 50 to 60 cps power. The output is metered for continuous voltage readings. Three models are available with the following capacities: model 250, 500 w; model 251, 1500 w; and model 252, 2500 w.

Research Industrial Laboratory of Electronics, Dept. ED, Roslyn, Pa.

CIRCLE 352 ON READER-SERVICE CARD
NEW PRODUCTS

Swinging Inductors
172 different models

Each of 172 different models of swinging inductors is available in these three basic forms: open construction, encapsulated and can-type. Encapsulated and can-type are designed to meet or exceed MIL-T-27A.

Magnetic Circuit Elements, Inc.,
Dept. ED, 3722 Park Place, Montrose, Calif.
CIRCLE 354 ON READER-SERVICE CARD

Switch

Has under 0.2 cu in. static volume

Model 6205 switch has a static volume of less than 0.2 cu in. Factory preset range of the unit is 0.4 to 1 mach; other models are available with up to 3 mach. Electrical contact rating is 2 amp at 30 v dc and 3 amp at 115 v ac. The switch operates on 28 v dc at 35 ma. It is hermetically sealed, weighs 0.75 lb, and measures 2 in. in diam and 3 in. in length.

Aero Mechanism, Inc., Dept. ED, 13918 Saticoy St., Van Nuys, Calif.
CIRCLE 355 ON READER-SERVICE CARD

C-Band Transmitter System

Has 2 kw min rf power output

Combined with various klystrons, the model 208T self-contained power amplifier covers an extensive frequency range. With the company's VA804 klystron, it covers 4400 to 5875 mc; with the VA805, 5875 to 6425 mc; and with the VA806, 7125 to 8500 mc. In standard units, rf power output is 2 kw cw min and rf power input is 10 to 100 mw. Modifications can be produced to give higher output powers. The amplifier is housed in a compact, three-door cubicle.

Levinthal Electronic Products,
Dept. ED, Stanford Industrial Park,
Palo Alto, Calif.
CIRCLE 712 ON READER-SERVICE CARD
How to put wings on a warehouse

Giving overseas air bases what amounts to local warehouse service on important parts is an Air Force objective. Its present system has slashed delivery schedules up to 20 times...saved taxpayers several billion dollars over the past decade. To improve it further, Douglas has been selected to develop specifications for a comprehensive Material Handling Support System involving better communications, control, cargo handling and loading, packaging and air terminal design. Douglas is well qualified for this program by its more than 20 years in all phases of cargo transport.

Schuyler Kleinhaus and Charles Glasgow, Chief Engineers of the Santa Monica and Long Beach Divisions, go over air transport needs relating to advanced cargo loading techniques with

Donald W. Douglas, Jr., President of DOUGLAS
NEW PRODUCTS

Thermal Circuit Breaker
Reacts to ambient temperature only

Designed to eliminate the danger of open circulating due to current generated heat, the Fil-Therm protector interrupts line current to an equipment when the ambient temperature at the installation point reaches a preselected level. Unaffected by the current passing through it, the 0.15 oz unit senses the ambient cutoff temperature from its mounting structure or by convection. Its nonmetallic, nonconductive sensing element has operation sensitivities up to ±3% of the rated temperature. The unit is available in a range from 100 to 2500 F and is good for ac or dc circuitry of any voltage or frequency. It meets MIL-E-5272A and can carry continuous currents to 10 amp, surge currents to 25 amp.

Filtron Co., Inc., Dept. ED, 131-15 Fowler Ave., Flushing 55, N.Y.
CIRCLE 358 ON READER-SERVICE CARD

Ceramic Receiving Tubes
Four types available

These ceramic receiving tubes are available in four types. For use as detector, mixer, or instrument probe, type 7266 high frequency diode has 600 v peak inverse voltage rating and 10 ma steady-state peak plate current. Output is 1 v dc min. Type 7486 triode, for uhf oscillator and class C power amplifier, has the following maximum ratings: 1 w plate dissipation, 250 plate v, 2 ma dc grid current, and 10 ma dc cathode current. Type 7462, a print board version of the 7707 high amplification uhf triode, has these maximum ratings: 250 plate volts, 50 v negative dc grid, 1 w plate dissipation, and 10 ma dc cathode current. Type 7296 high amplification triode is for vhf and low uhf oscillator, mixer or amplifier service and has these maximum ratings: 3.3 w plate dissipation, 330 v plate voltage, 100 v peak negative grid voltage, and 5 ma dc grid current.

General Electric, Receiving Tube Dept., Dept.
ED, Owensboro, Ky.
CIRCLE 359 ON READER-SERVICE CARD

NORTH ATLANTIC SERVO INDICATORS
are self-contained null-balancing measurement systems designed to indicate or monitor virtually any quantity that can be expressed as a voltage. Their high accuracy (to 0.05%) and fast response (as little as 0.2 second full scale) meet the most critical ground support requirements.

Ratio indication is unaffected by changes in transducer excitation. Compact, single-package design permits remote dolly, console, or rack mounting, maximum application flexibility.

Available, to specifications, for particular function, range or input signal, with dial, counter or dual pointer display, auxiliary output for repeating, signaling or control. For full data, write for bulletin.

NORTH ATLANTIC INDUSTRIES, INC.
603 Main Street, Westbury, N.Y.
CIRCLE 360 ON READER-SERVICE CARD
Capacitance Standards
Three-terminal type

These three-terminal capacitance standards are available in both fixed and variable types. The fixed units, types 1403 standard air capacitors, are rated at 0.01, 0.1, 1, 10, 100, or 1000 μf. The following models of variable capacitors are also available: type 722-CB, rated at 50 to 1100 μf; 722-CC, rated at 5 to 100 μf; and 722-CD, rated at 0.5 to 11 μf and 0.05 to 1.1 μf. The capacitors are equipped with coaxial connectors and mating connectors.

CIRCLE 361 ON READER-SERVICE CARD

Epoxy Laminating Resin
Suited for potting and encapsulating

Used with Hardener 9012, Epcast 28 forms a structural resin for laminating glass fibers or a casting resin suited for potting and encapsulating electrical components. The resin and hardener mixture has a pot life of three days at 75 to 80 F. It displays good thermal stability and uniform dielectric properties over a broad range of temperatures.

Furane Plastics, Inc., Dept. ED, 4516 Brazil St., Los Angeles 39, Calif.
CIRCLE 362 ON READER-SERVICE CARD

Precision Potentiometer
Wirewound

Designed for operation to 165 C, this precision wirewound potentiometer measures 3/4 in. and is for standard servo mounting. Its features include: power rating of 3 w at 65 C, standard linearity of 0.3% to 0.25%, completely welded construction, flush glass sealed terminals, and stainless steel front and rear ball bearings.

CIRCLE 363 ON READER-SERVICE CARD

New line of X-band magnetrons, servo-tunable over 1100 mc
M4164, M4193, M4163
cold without special ducts

These three rugged new magnetrons, like the familiar 6874 and 7006, feature the same size, accessible mounting points, and high reliability of the fixed-frequency 4J50. The unique tapered-pin tuner, already proven highly successful in severe applications of the 6874 and 7006, has been incorporated in this line. Servo-tuning without a special oversized gear box and no change in outline is available in all five types on request. Easy tuner-dial readability and ruggedness, flexibility of tuner location, and standard through-bolt lug mounting from the top are regular benefits featured by Sylvania. 1.5 mismatch at full power and atmospheric pressure is made possible by a new window design. Fin placement permits cooling without special ducting.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>TYPE</th>
<th>FREQUENCY RANGE, MC</th>
<th>AV. POWER AT 1 US</th>
<th>RVV, KV/US</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4163</td>
<td>8500-9600</td>
<td>190</td>
<td>180</td>
<td>Pilot production</td>
</tr>
<tr>
<td>M4164</td>
<td>8500-9600</td>
<td>200</td>
<td>200</td>
<td>Pilot production</td>
</tr>
<tr>
<td>M4193*</td>
<td>8500-9600</td>
<td>200</td>
<td>225</td>
<td>Pilot production</td>
</tr>
<tr>
<td>6874</td>
<td>8800-9400</td>
<td>190</td>
<td>180</td>
<td>In production</td>
</tr>
<tr>
<td>7006</td>
<td>9000-9600</td>
<td>190</td>
<td>225</td>
<td>In production</td>
</tr>
</tbody>
</table>

*Has leading edge mode stability specification.

New ruggedized beacon magnetron delivers 100 watts peak power

Addition of TNC connector improves output

Sylvania type 7503 is a beacon magnetron specially ruggedized for missile applications. An advanced design version of the 7098, the new tube delivers a minimum peak power of 100 watts and employs a TNC output connector which increases efficiency. Since the connector feeds into a broad-band coupler, it eliminates the need for adjusting for optimum power when the frequency is changed. The tubes withstand a 500 g, 1 millisecond shock. Additional ruggedness has been designed into the mounting bracket and tuner structure to increase the outstanding reliability of the tube.

For more information write your nearest Sylvania tube sales office or Sylvania Electric Products Inc., Special Tube Operations, 500 Evelyn Ave., Mountain View, Calif.
...and now for
a spot of welding!

Still at it? Trying to improve potentiometer reliability by building 'em yourself? Well, you're on the right track about one thing — welding's a sure way to eliminate a lot of operational headaches — like gassing contamination of contact metals at high temperature, from organic solder flux. No chance of "cold joints", either, to increase circuit resistance. No soldered connections to come loose under vibration and shock. Welding is the way to reliability!

But why set the wife's drapes afire to get a reliable, all-welded pot? Utilizing welding techniques, Are produces reliable potentiometers operable at temperatures exceeding 150°C and able to withstand 50 G's at 2000 cycles. All this, plus extremely low contact resistance and longer rated life. All taps, end connections, resistance elements, contact assemblies and terminal leads are specially prepared beforehand — then welded with pure nickel or palladium silver. So, for built-in reliability through sounder construction techniques, see your ACEep!

This 2" AIA Acepot® (shown 1/2-scale) incorporates all these exclusive welding construction features, for superior reliability.

NEW PRODUCTS

Discriminator Filter
Weights 11 oz

Type MR 3.1-100-10 pulse width discriminator filter weighs 11 oz and measures 1-5/8 x 1-7/8 x 2-3/4 in. The unit is designed for use as an anti-jamming component for pulse sensory radar and beacon type systems, and in systems requiring pulse width encoding, decoding, and pulse go/no-go operation. An input pulse which lasts for a specified time produces an output of maximum amplitude. For example, for a pulse length of 3.1 μsec the output is 3.1 v and the input is 1.5 v. Pulses shorter than 2.5 μsec and longer than 3.7 μsec are attenuated by a minimum of 15 db. Solid state components are incorporated in the unit.

Mini-Rad, Inc., Dept. ED, 7416 E. Varna St., N. Hollywood, Calif.

CIRCLE 366 ON READER-SERVICE CARD

Delay Lines
Epoxy encapsulated

Designed for missile and airborne applications as well as for commercial use, these tapped delay lines are epoxy encapsulated. Series C has a rise time of 1/30 of delay time; series K, 1/14 of delay time. For the two types, delay tolerance is ±2% or ±0.01 μsec. Thermal coefficient of delay is 0.005% per deg C, working voltage is 300 v dc, and temperature range is -65 to +125 C. Standard units have 10 taps equally spaced, but the taps may be arranged as required. These units meet the requirements of MIL-STD-202A.

The Artronic Instrument Co., Dept. ED, 11232 Triangle Lane, Silver Spring, Md.

CIRCLE 367 ON READER-SERVICE CARD

TEST INSTRUMENTS for LABORATORY/PRODUCTION

Sensitive Detection of Microwave Energy

PRECISION TEST RECEIVER

The AIL Type 130 Precision Test Receiver (30 and 60 Mc standard units available) is a versatile instrument combining a high gain, low-noise figure receiver and a secondary standard of attenuation. It can be used wherever accurate measurements of the differences of r-f and i-f power levels are required. A few typical applications are: noise-figure measurement, measuring characteristics of directional couplers, calibration of r-f attenuators and measurement of selectivity characteristics.

Detailed literature is available on request.
Signal Conditioning System

Has plug-in etched circuits

The NE-10 signal conditioning and balance panel system has an etched plug-in for each transducer channel. In addition to plug-ins for strain gage type transducers, units can be supplied for signal conditioning other types of transducer outputs including thermocouples and potentiometers, for entry into either oscillograph or tape recording systems. Unit measures 3-5/16 x 6 x 8 in. and contains provisions for 10 channels.

Kanke and Co., Inc. Dept. ED, 1632 Euclid St., Santa Monica, Calif.

CIRCLE 369 ON READER-SERVICE CARD

Silicon Rectifiers

Have 2.5 and 12 amp ratings

These Redtop insulated base silicon rectifiers have 2.5 and 12 amp ratings. They meet military environmental specs and can withstand vibration of 20 g to 2000 cps and 50 g shock. The 12 amp rectifier has a surge rating of 240 amp and a leakage of 2 ma at 25 C, and is 1-5-64 in. long.

Bradley Semiconductor Corp., Dept. ED, New Haven 11, Conn.

CIRCLE 370 ON READER-SERVICE CARD

High Voltage Test Set

Provides 50 kv ac at 2 kva

Model KB50-2AC high voltage test set provides 50 kv ac at 2 kva. Used for dielectric testing, this two-piece set has low waveform distortion and direct metering at high voltage output for high accuracy regardless of regulation or type of load. The main unit weighs 140 lb and measures 14 x 21 x 23 in. The single high voltage bushing protrudes 9 in. to facilitate entrance into test cage. The control cabinet weighs 38 lb and measures 17 x 9 x 12 in.

Peschel Electronics, Inc., Dept. ED, R.F.D. 1, Patterson, N.Y.

CIRCLE 371 ON READER-SERVICE CARD

CIRCLE 372 ON READER-SERVICE CARD

this rugged Video Telemetering System

THIRD REMARKABLE NEW television system gives you the power of sight where human eyes cannot go. It can be directed outward for observation, or inward to "watch" internal operation from a range of 1,000 miles line-of-sight.

Capable of operation under extreme environmental conditions, and packaged for use under conditions requiring limited space, weight, and power, the Model 701 includes such features as: transistorized circuitry, 525 line, 30-frame fully interlaced picture, crystal controlled EIA synch, and high sensitivity.

Weight of the complete unit is under nine pounds. Total volume is less than 119 cubic inches. Its critical-design requirements are typical of all LEAD products. Each can be modified to meet many different requirements. Tell us what yours are. Contact our Marketing Branch, Lockheed Electronics & Avionics Division, 6201 E. Randolph St., Los Angeles 22...Overbrook 5-7070.

Requirements exist for staff and supervisory engineers

LOCKHEED ELECTRONICS & AVIONICS DIVISION

Look to Lockheed for LEADership in Electronics
NEW PRODUCTS

Regulator Amplifier
For power supplies

Model S-2004-E plug-in germanium transistor regulator amplifier is used in power supplies with outputs of 11 to 15 v and with currents from 0 to 2 amp. Power supplies using this regulator amplifier have better than 0.1% line and load regulation and ripple is less than 2 mv peak-to-peak. The amplifier delivers 150 ma min and operates in a circuit with 15 to 35 dc unregulated. The basic current drain is less than 30 ma, the gain is greater than 2000, and the operating temperature is 32 to 135 C. Other models are available for use with 24 v power supplies.

Plug-In Instruments, Inc., Dept. ED, 1416 Lebanon Rd., Nashville, Tenn.
CIRCLE 373 ON READER-SERVICE CARD

Plugboards
Made of 1/16 in. epoxy paper

These plugboards are made of 1/16 in. epoxy paper material with 0.062 in. holes on alternate intersections of a 0.1 in. grid. A 16-pin connector attached to the leading edge mates with a contact receptacle. The plugboards may be hand wired to provide prototypes for final printed circuit cards.

Vector Electronic Co., Dept. ED, 1100 Flower St., Glendale 1, Calif.
CIRCLE 374 ON READER-SERVICE CARD

Variable Resistors
Have metal ceramic resistance element

Series 600 variable resistors employ a metal ceramic resistance element. These units offer a resistance range of 100 ohms to 5 meg, linear taper. Power ratings are 3/4 w at 85 C, 1/2 w at 125 C, and zero load at 175 C. Temperature range is −63 to +175 C; temperature coefficient is 250 to 500 ppm per deg C. Load life is 1000 hr for 3/4 w at 85 C or 1/2 w at 125 C, 350 v max. Rotational life, after 25,000 cycles is 7.5%. The requirements of MIL-R-94B are exceeded.

Chicago Telephone Supply Corp., Dept. ED, 1142 W. Beardsley Ave., Elkhart, Ind.
CIRCLE 375 ON READER-SERVICE CARD

FAIRCHILD SENSING DEVICES
...proven in flight

FAIRCHILD CONTROLS CORPORATION
COMPONENTS DIVISION
225 Park Ave., Hicksville, L. I., N. Y. • 6111 E. Washington Blvd., Los Angeles, Cal.
A Subsidiary of Fairchild Camera and Instrument Corporation
High performance aircraft and missiles require thousands of separate components. As the tempo of technology increases, higher speeds, higher temperatures, higher stresses make it mandatory that each component have higher Reliability.

Fairchild Reliability is fast becoming an industry standard. Fairchild sensing devices are built with close dimensional and design control for reliability under shock and vibration. Fairchild quality control continuously samples production for compliance with engineering specified standards. In addition there is 100% incoming, line, and final inspection.

The Reliability, or in a phrase, predicted excellence, of Fairchild's sensors is documented and data can be furnished with each production lot covering the stringent test program detailed to the specs and beyond.

For more information write Dept. 27 ED.

Testing beyond the specs is Fairchild's Safety Factor for Reliability in performance.

Environmental Test Chambers

Measure 18 x 18 x 18 in.

Model 3 environmental test chambers offer 18 x 18 x 18 in. clear specimen space. Temperature ranges are -100 to +240 or to +350 F and can be extended down to -120 and up to +500 F. Humidity can be included.

Tenney Engineering, Inc., Dept. ED, Union, N.J.

CIRCLE 377 ON READER-SERVICE CARD

Power Supply

Transistorized

Model 62AR transistorized power supply has a stability of ±0.1% regulation for six months, a reliability of better than 0.95 for one year when used 8 hr per day, and a life expectancy of ten years. Input is 115 v ac, 60 or 400 cps, 1 phase. Output is 26 v dc at 1 to 0.5 amp. Load regulation is 1 mv max for load changes of zero to full load and line regulation is 0.5 max for ±10% variations in line voltage or frequency. Ripple is less than 1 mv rms. The output is floating. Also available are dc to dc units and three phase input units.

The Daven Co., Dept. ED, Livingston, N.J.

CIRCLE 378 ON READER-SERVICE CARD

Function Generator

Provides over 37 waveforms

Model LF 51 function generator provides over 37 different waveforms for testing servomechanisms, vibration studies, and for programming automatic systems and analogue computation. Sine waves with frequencies from 500 to 0.0005 cps are generated with less than 1% harmonic distortion. Maximum voltages are 150 v peak to peak. Ramps, triangular waves, sawtooth, and trapezoidal functions are available singly or repetitively. One-half or one complete cycle may be obtained. A prepulse may be used to start recording equipment. The unit withstands 40 g in any direction. It includes 16 modules plus a power supply housed in a rack mounting cabinet.

Marconi Instruments, Dept. ED, 111 Cedar Lane, Englewood, N.J.

CIRCLE 379 ON READER-SERVICE CARD
This line of two-speed servomechanism repeaters have size 15, 11, and 8 components. The overall servo package comprises three sections: the mechanism, the amplifier, and the chassis. The first section includes motor, feedback elements, output transducer, and gearing. The amplifier is selected from the basic types to suit size, weight, and performance requirements. The chassis contains all special purpose parts. Accuracies to 4 ft, temperatures to 125 C, and damping and slow speeds to suit the application are typical performance characteristics. MIL-E-5272 environmental specs are met.

Superior Mfg. & Instrument Corp., Dept. ED, 154-01 Barclay Ave., Flushing 55, N.Y.

CIRCLE 381 ON READER-SERVICE CARD

Circuits Modules
Resistive type

Types P-202 and P-201 resistive type circuit modules are designed for use in transformation ratio measurements, servo system alignment, synchro bridge nulling, and transducer calibration. For use in ac ratio measurements, the P-202 module is a self-contained resistance summing network. Resistances available are 10,000 ohms to 1 meg with ac match between arms from 0.01 to 0.002%. Arms are matched at 400 cps for total or combined effects of both real and reactive components. Power rating is 0.25 w. The unit is a plug-in type, has four binding terminals, and measures 2-3/4 x 1-7/8 x 1-1/2 in. Type P-201 reference isolation module will accommodate signals from 1.25 to 150 v and has an input impedance of 100,000 ohms.

North Atlantic Industries, Inc., Instrument Div., Dept. ED, 603 Main St., Westbury, N. Y.

CIRCLE 382 ON READER-SERVICE CARD
Limit Signalling Comparator

Nine gage heads available

Limit signalling comparator model 765 is used for small lot inspection or spot checking of production runs. Nine different gage heads are available permitting direct readings ranging from 0.00005 in. per dimension with the A-1 to 0.001 in. per dimension with the A-20. Full scale deflection of the meter is a direct 20 v change in the gage output, providing for greater accuracy and repeatability than circuits requiring signal amplification.

Radio Corp. of America, Industrial and Automation Div., Dept. ED, 12605 Arnold Ave., Detroit, Mich.

CIRCLE 384 ON READER-SERVICE CARD

Continuity and Leakage Tester

Uses audio signal

Audiotone continuity and leakage tester produces an audio tone, the frequency of which depends on the resistance of the element being tested. It has a range of from 0 to 100 meg; maximum current is 300 ma. Self contained, it has a shelf-life battery, no vibrating contacts, no adjustments.

Peschel Electronics, Inc., Dept. ED, R.F.D. 1, Patterson, N.Y.

CIRCLE 385 ON READER-SERVICE CARD

Analyzer

Has high resolution

Model TA-18 high resolution analyzer produces an instantaneous spectral display of all telemetering subcarrier channels at one time. A three point marker shows center frequency and end frequency on each channel. A separate camera mount can be slaved to any of the 18 channels for a permanent record. This unit has automatic optimum resolution on each channel and a 40 db dynamic range. Resolution is 2 to 500 cycles.

Probescope Co., Inc., Dept. ED, 8 Sagamore Hill Drive, Port Washington, N.Y.

CIRCLE 386 ON READER-SERVICE CARD

CIRCLE 417 ON READER-SERVICE CARD

213,149,873 cycles

Test proves reliability of P&B’s LS telephone type relay

These 16 LS relays, wired into a self-cycling chain, each operated 213,149,873 times before the test was discontinued. This test was made for a nationally prominent manufacturer and the certified results are available upon request. Here is proof of the inherent reliability of P&B telephone type relays... and of the kind of performance you can expect when you specify them. LS relays are available with up to 20 springs (10 per stack) and are adaptable for printed circuit mounting.

Whenever multiple switching of loads up to 4 amperes is required, the LS can usually meet space, weight and—importantly—price considerations. Get full information today by calling or writing Zeke R. Smith, vice president, Engineering, or contact your nearest P&B representative.

LS ENGINEERING DATA

GENERAL:
Breakdown Voltage: 1,000 volts rms 60 cy.
Ambient Temperature: -55° to +85° C.
Weight: 3 to 4 oz.
Dimensions: 1½" W. x 2¼" L x 1½" H.
Enclosures: Sealed or dust cover (W can)
Mountings: Four #6-32 tapped holes ¼" x ¾" o.c. Other mountings available.

CONTACTS:
Arrangements: 20 springs (10 per stack) max.
Material: ¼" dia. twin palladium. Other materials available for specific applications.
Load: 4 amps @ 115 volts 60 cy. resistive.

COIL:
Resistance: 55,000 ohms max.
Power: 65 mw DC per movable standard (50 mw possible); 3.5 watts max. at 25°C.
Voltage: Up to 200 volts DC.

TERMINALS:
Contacts: Three #18 AWG wires.
Coil: Three #20 AWG wires.
Available with octal plug, taper tabs or printed circuit pins.

P&B STANDARD RELAYS ARE AVAILABLE AT YOUR LOCAL ELECTRONIC PARTS DISTRIBUTOR

FREE

LS DETERMINATION DATA
Send today for booklet containing certified results of recent test described above. Data includes test circuit, interim and final measurements.

POTTER & BRUMFIELD
DIVISION OF AMERICAN MACHINE & FOUNDRY COMPANY, PRINCETON, INDIANA
IN CANADA: POTTER & BRUMFIELD CANADA LTD., GUELPH, ONTARIO
NEW PRODUCTS

Differential Amplifier
Completely solid state

Designed for use with strain gages, thermocouples, and other low signal level devices. Redcor model 261 differential amplifier is completely solid state. Noise from all sources is less than 10 μV at a 200 kc bandwidth. Input impedance is as high as 100 meg and common mode rejection is 120 db. The unit has no moving parts.

Packard Bell Computing Corp., Dept. ED, 12333 W. Olympic Blvd., Los Angeles 64, Calif.

CIRCLE 388 ON READER-SERVICE CARD

Delay Line
Lumped constant type

Designed for missile application, model 31-8 lumped constant delay line has a time delay of 3 μsec. Its delay-to-rise time ratio is 15:1 and characteristic impedance is 1200 ohms. Operating temperature range is -55 to +125 C. The unit measures 3 x 1 x 1 in.

ESC Corp., Dept. ED, 534 Bergen Blvd., Palisades Park, N.J.

CIRCLE 389 ON READER-SERVICE CARD

Pressure Pickup
Retains accuracy at 10,000 psi

A chamber type, unbonded strain gage pressure pickup, the model 4-326 retains its accuracy up to 10,000 psi absolute or sealed gage. It has provisions for adjustment of bridge balance, temperature compensation, and sensitivity in a chamber isolated from the sensing element. The unit operates from -320 to +300 F, withstands severe shock, and retains good output characteristics through acceleration, linear vibration, acoustical noise, and varying altitude. Transducers with nominal output sensitivity of 40 mv are obtainable for ranges between 0 to 100 psi and 0 to 10,000 psi.

Consolidated Electrodynamics Corp., Transducer Div., Dept. ED, 360 Sierra Madre Villa, Pasadena, Calif.

CIRCLE 390 ON READER-SERVICE CARD

Get the Facts About These Cost Saving Terminals and Cable Clamps

STANDOFF AND FEED THROUGH TERMINALS

Low cost and high electrical specs. have made these the most popular in the industry. Choice of over 100 varieties—fork, single and double turret, post... standard, miniature, sub-miniature...molded or metal base...wide variety of body materials and plating combinations.

Request Catalog SFT-1

CIRCLE 709 ON READER-SERVICE CARD

STRAPLOCK® CABLE CLAMPS

“Straplocks” reduce installation time to a minimum, reduce inventories and simplify production. Special self-locking stud eliminates nuts, bolts, lockwashers. Tough molded Nylon construction assures excellent electrical and mechanical performance. “Straplocks” provide a positive, vibration-proof, insulat ed and heat-resistant support for fastening electrical cables to either wood or metal cabinets and panels. Simply push “Straplocks” into a ½” hole, lay in cables and fasten adjustable strap to fit.

Request details

CIRCLE 710 ON READER-SERVICE CARD

POINTER KNOBS

A military and industrial favorite by reason of price and practicability. Supplied in attractive black, satin-finished phenolic.

Request details

CIRCLE 711
Solder Dispensing Tool
For hard-to-reach wiring locations

Designed for applications in deep chassis and in crowded, hard-to-reach wiring locations, this solder dispensing tool is operated by a fingertip, knurled control. The probe tip provides the back-up for the solder at the point of application and provides for retraction of wire solder. Interchangeable probes in straight and angle-form are available; probes are interchangeable by a bayonet-type attachment. The main body of the unit contains a supply of wire solder for several hours plus all working parts. Entire assembly is put together with a single screw.

Tape Reader
Uses a latch-interlocked cam system

The FR-2 tape reader uses a latch-interlocked cam system for read and feed, achieving long life whether character-by-character or continuous reading is employed. The unit will operate at -65 F, with shock and vibration forces up to 20 g. It operates at rates up to 60 codes per sec; slewing is possible at speeds up to 300 codes per sec. Reader contact closures of up to 240 deg of drive shaft rotation are provided for readers operated at speeds up to 30 codes per sec; up to 180 deg are provided for readers operated up to 60 codes per sec. The unit is cable of 5, 6, 7, or 8 level operation.

Soroban Engineering, Inc., Dept. ED, Box 1717, Melbourne, Fla.

Tape Programmer
Has bidirectional drive

Made for use in military check-out systems, model 3277 tape programmer has bidirectional drive. Character reading rates are up to 200 per sec. Tapes are up to 1 in. wide; the 6 in. reels can hold 500 ft of Mylar tape or 300 ft of paper tape. Input power requirements are 28 v dc and 115 v 400 cps. The controls for data playback are self-contained in the unit. Its dimensions are 11 x 17 x 11 in. and its weight is about 50 lb. It meets the requirements of MIL-E-16400.

Potter Instrument Co., Inc., Dept. ED, Sunny side Blvd., Plainview, N.Y.

Glenellite* Thermistor Design Ideas No.

HOW TO KEEP POWER GAIN CONSTANT ON TRANSISTORIZED AMPLIFIERS

Maintaining constant power gain on transistorized amplifiers has always been a problem for computer design engineers. Recent work with Glenellite Thermistors has provided a simple yet effective solution.

Glenellite Thermistors are temperature-sensitive resistors with high negative coefficients of resistance. When a temperature increase in the amplifier circuit above causes increase in power gain, a wafer type thermistor in feedback circuit serves to maintain constant power gain.

The negative temperature coefficient of the thermistor results in decreased resistance as temperature increases. The resulting degenerative feedback compensates for power gain, maintains constant voltage output.

Transistor gain control in computers is only one of many interesting ways in which versatile Glenellite Thermistors are used as economical solutions to problems of temperature control, time delay, measurements and analyses.

Glenellite wafer, bead and rod thermistors are available in a variety of resistance values, temperature coefficients and sizes to help you evaluate circuit problems. They may be obtained from your local distributor, or from Glenellite Industries in bulk quantities.

Test Your Ideas With A Glenellite Experimenters' Thermistor Kit

An inquiry on your company letterhead will make available to you a Glenellite Experimenters' kit for $14.95. For those engineers who have had some experience with thermistors, comprehensive kits are available for $49.95. For complete information, write directly to Glenellite Industries, Inc.

Custom Made Thermistors To Your Specifications

Gulton will supply thermistors to your specifications with resistance values from 1 ohm to 10 megohms and temperature coefficients of resistance to -6.8% per degree C. Temperature range: -60° to +150° C.

MATERIALS & CERAMICS DIVISION

Gulton Industries, Inc.
Metuchen, New Jersey
In Canada: Titania Electric Corp. of Canada Ltd., Gananoque, Ont.

L&N's 4232-B High Precision Guarded Wheatstone Bridge measures to 11,111 megohms

Already, standardizing laboratories are using this L&N Wheatstone Bridge as their prime measuring instrument for all d-c resistance measurements. In the manufacture of high quality resistors, it is being used for making accurate measurements on a semi-production basis.

Unique design features, never before obtainable in a bridge of this accuracy, include guarding to prevent errors resulting from leakage due to adverse humidity conditions, and rheostat dial values direct-reading in digits.

List No.—4232-B High Precision Guarded Wheatstone Bridge.

Range—1 ohm to 11,111 megohms.

Ratio Arms—Plug and block controlled.

Values: 1, 10, 100, 1000, 10,000, 100,000, 1,000,000 ohms.

Rheostat—10(10,000 + 1000 + 100 + 10 + 1 + 0.1) ohms.

Certificate—L&N Certificate, supplied with each bridge, gives following data: Ratio Resistors: measured values of each resistor given to 0.001% at 25 C. Values will give ratios that are correct to within 0.005%, except 100,000 ohms and 1 ohm, which provide ratio correct to within 0.01%. Rheostat Dials: measured values for each position of 10,000, 1000, 100, 10, 1 and 0.1 ohm dials given at 25 C. Rheostat settings of 200 ohms or more are correct to within 0.005%; below 200 ohms, correct to 0.01 ohm.

Limits of Error—Overall error at 25 C with minimum of 1000 ohms in rheostat arm: ±(0.01% + 0.001% ohm) up to 111 megohms, ±0.03% above 111 megohms, ±0.2% above 111 megohms to 1111 megohms, ±0.5% above 1111 megohms to 11,111 megohms.

Case—Metal: 19” x 10 1/2” x 9 1/4” for 19” relay rack mounting. Wt. is 33/5 lbs.

NEW PRODUCTS

Connector
Non-reversing hermaphrodite

This non-reversing hermaphrodite connector acts as both plug and socket at either end. Any connector of this type can be plugged into another regardless of polarity or change in conductor path. The unit is designed to handle up to 26 circuits. Of waterproof construction, it measures 2.5 in. in diam. and 7 in. long. All electrical contacts are gold-plated.

Specialty Electronics Development Corp., Dept ED, Syosset, N.Y.
CIRCLE 397 ON READER-SERVICE CARD

Relays
Polarized, dpdt

Series 32 polarized, dpdt relays measure 0.8 x 0.4 x 0.9 in and weigh 18 g. These units employ magnetic latching and are hermetically sealed. The vibration rating is 30 g to 5000 cps and the temperature range is -65 to +125 C. Standard operating sensitivities are 50 mw for the single coil units and 100 wm for each coil of the dual coil units. Operating time is from 2 to 20 msec, depending on overdrive. Contact ratings are 2 amp for silver contacts and 0.5 amp for gold alloy contacts. Mounting styles include plain can, stud, flange or plate mounting. Connections can be J hook solder terminals, 8 pin plugs for single coil or 10 pin plugs for dual coil, or 3 in. connecting wires.

Sigma Instruments, Inc., Dept. ED, 170 Pearl St., S. Braintree 85, Mass.
CIRCLE 398 ON READER-SERVICE CARD

Relay Control Amplifier
Has go/no-go control system

Made for industrial process control and monitor systems, this relay control amplifier has a high accuracy go-no-go control system. Its sensitivity is 1 µv. Stability is ±1 µv. It contains a circuit that offers protection against open input circuits or failure of any amplifier component. Operating power supply is 115 ±10v., 50 to 60 cps. The unit weighs 6.5 lb and measures 4.5 x 3.75 x 6 in.

Thermo Electric Co., Inc., Dept. ED, Saddle Brook, N.J.
CIRCLE 399 ON READER-SERVICE CARD

OUR AGE OF MINIATUREIZATION DROPS A CHALLENGE TO THE MAKERS OF ELECTRICAL COMPONENTS—SIZE AND WEIGHT MUST GO DOWN.

By using a 3M fluorochemical inert fluid, FC 75, as a dielectric coolant, the Raytheon Manufacturing Company has developed a transformer of improved electrical performance—reduced in volume by 75% and by 50% in weight. The miniaturized transformer is shown above, dwarfed by its old-fashioned counterpart. The reason? FC 75 permits the use of a much smaller transformer core and coils. And it reduces the space needed for insulation.

It has high dielectric strength, high heat transfer capability, is self-healing. It has wide liquid range with a pour point of -148°F and low viscosity. It is thermally stable in excess of 800°F. As an evaporative coolant it is a nontoxic, nonflammable, nontoxic, odorous, non-corrosive. Check the other properties at the right—then investigate FC 75, as well as the other 3M Chemicals made for the electronics industry: KEL-F® Molding Powders, KEL-F® Dispersions, KEL-F® Elastomers, Cardolite NC 513, KEL-F® Oils, Waxes and Greases, Acids and Alkanes.

CHEMICAL DIVISION

MINNESOTA MINING AND MANUFACTURING COMPANY

WHERE RESEARCH IS THE KEY TO TOMORROW

ELECTRONIC DESIGN • September 16, 1959
DOUBLE BLOWER.—Model B3-32 is powered by a 115 v ac, single phase 60 cps motor. Its output is 100 cfm per blower at 3300 rpm. Overall length is 8 in., greatest diameter is 5 in.

CIRCLE 401 ON READER-SERVICE CARD

VERTICAL FILE.—Combines the advantages of vertical filing with convenience of handling one sheet at a time. Each sheet is attached to an aluminum hanger and 150 sheets, up to 42 in. wide, can be filed in one linear foot. It is available in a wall-mounted unit or steel cabinet.

Plan Hold Corp., Dept. ED, 5302 Chakemco St., South Gate, Calif.

CIRCLE 402 ON READER-SERVICE CARD

BACK CONNECTED POWER SWITCH.—No. 4201-V-12 series is rated at 15 amp plus at both 125 v ac at 3/4 hp and 250 v ac at 1 hp. Switches are available in screw, solder, and spade quick disconnect terminals.

Sargent Electric Corp., Dept. ED, 630 Merrick Rd., Lynbrook, N.Y.

CIRCLE 403 ON READER-SERVICE CARD

SILVER-Cadmium BATTERIES.—Have 0.1 to 300 ampere-hour-capacity. The Silcad cell may be used for television receivers and transmitters, portable lighting, and missile and satellite electronic facilities.

Yardney Electric Corp., Dept. ED, 40-50 Leonard St., New York 13, N.Y.

CIRCLE 404 ON READER-SERVICE CARD

SPRING-LOADED CONTACT PLUG.—Series PL-20 probe provides positive through-connection from practically zero to a maximum of 2.5 oz, necessary for its full travel of 0.187 in. Contact probe is of plunger type and is activated by axially applied pressure.

Sealec Corp., Dept. ED, 610 Fayette Ave., Mamaroneck, N.Y.

CIRCLE 405 ON READER-SERVICE CARD

SNAP SWITCH.—Cam-Flip switch operates under severe conditions of vibration as high as 20 g over a frequency range of 10 to 4000 cps. Mechanically, it can take over 3 x 108 actuations; for silver contacts passing 10 amp, it can take over 25 x 108 electrical actuations.

Torres Engineering Co., Inc., Dept. ED, South Hackensack, N.J.

CIRCLE 406 ON READER-SERVICE CARD

SPEED REDUCERS.—Designed for torques up to 350 oz-in., in ratios from 1:1 to 360:1, they are equipped with precision ball bearings or oilless bronze bearings. Shaft sizes are 1/8, 3/16 and 1/4 in.

PIC Design Corp., Dept. ED, 377 Atlantic Ave., East Rockaway, N.Y.

CIRCLE 407 ON READER-SERVICE CARD

AUTOMATIC VOLTAGE REGULATORS.—Series IET Stabiline regulators are completely transistorized and have no moving parts.

Superior Electric Co., Dept. ED, Bristol, Conn.

CIRCLE 408 ON READER-SERVICE CARD

Two G-E Glow Lamps that give you a choice of CRITICAL OPERATING VOLTAGES

Here are two pre-tested and stable components engineered by G.E. for your circuit requirements

G-E NE-68—This pre-aged glow lamp has an operating voltage range of from 52 to 65 volts d-c. Its leads are plated to insure easier soldering and its performance in darkened areas is improved by a mildly radioactive additive. The lamps are also treated by the G-E Dri-film process for high leakage resistance under humid conditions. Polarity is indicated by a blue dot adjacent to the anode lead.

G-E NE-80—(Similar to the G-E NE-68) — Pre-aged, stabilized glow lamp with a narrower operating voltage tolerance than the NE-68 (range: 50-58 volts d-c). This glow lamp offers uniform operation within predetermined limits. It employs a mildly radioactive additive and has been treated by the G-E Dri-film process, providing a leakage resistance of 100 megohms or greater under humid conditions. G-E NE-80 serves well in circuitry requiring a close tolerance on operating voltage, such as voltage regulators and voltage references. Polarity is indicated by a yellow dot next to the anode lead.

Progress Is Our Most Important Product
NEW PRODUCTS

Linear Accelerometer
Has range of ±0.5 g to ±50 g

Having a range of ±0.5 g to ±50 g, this linear accelerometer operates on ac power and provides an ac output proportional to the applied acceleration. The unit is gas damped with the nominal damping ratio between 0.1 and 2; the damping ratio changes less than 2% per 10 deg F. The operating temperature is -60 to +160 F. Output impedance is 500 ohms max. The total accuracy envelope is better than ±2% of full scale output. The unit meets applicable requirements of MIL-E-5272A. It measures 2.75 in. by 2 in. in diam and weighs less than 1 lb.

Genisco, Inc., Dept. ED, 2233 Federal Ave., Los Angeles 64, Calif.
CIRCLE 410 ON READER-SERVICE CARD

Galvanometer
Electronic

For use as a dc null detector, linear deflection indicator, microvolt-ammeter or inverting dc amplifier, model 204A electronic galvanometer is capable of measuring voltages from 1 µv to 10 v or currents from 100 µa to 1 ma. Input impedance is 10 K on all ranges. Inverse feedback is 50 db. The unit includes a chopper stabilized amplifier. Transistors and printed circuits are used throughout. This portable unit measures 9.5 in. high, 6.5 lb. long, and 12 in. in diam. Model 204AR, for rack-mounting, measures 5.25 in. high, 19 in. wide, and 11 in. in diam.

Kin Tel, Div. of C&H Electronics, Inc., Dept. ED, 5725 Kearny Villa Rd., San Diego 12, Calif.
CIRCLE 411 ON READER-SERVICE CARD

Monitor Kinescope
Has aluminized screen

Type 8HP4 glass monitor kinescope has a 7-3/16 x 5-3/8 in. aluminized screen and a filterglass faceplate. Employing 90 deg deflection, the unit has an over-all length of 10.25 in. and weighs about 2.5 lb. Made for TV monitor equipment, this unit has an electron gun which employs electrostatic focus and does not require an ion-trap magnet. The projected screen area is 35.5 sq in. Radio Corp. of America, Electron Tube Div., Dept. ED, Harrison, N.J.
CIRCLE 412 ON READER-SERVICE CARD

The Keithley 150 sets a new standard of sensitivity for dc voltmeters. Typical uses include output measurements from strain gages, thermopiles and ion chambers, as well as Hall effect studies, corrosion work and molecular weight analysis.

Functions and measurement spans of the 150 are: dc voltmeter, 1 microvolt to 1 volt full scale; ammeter, 10⁻² to 10⁻¹² amperes full scale; ohmmeter, gains of 10 to 10⁶, and null detector, with 0.5 to 2 second response. Features include:

- zero stability as a voltmeter within 0.1 microvolt per day; as an ammeter, within 2 x 10⁻¹² amperes per day.
- zero suppression up to 100 times full scale.
- optional floating or grounded input.
- short term noise within 0.03 microvolt peak to peak (0.006 microvolt RMS).
- rugged construction, relative insensitivity to vibration, 60-cycle fields, or thermal EMF’s.

Write today for your copy of Keithley Engineering Notes, Vol. 7 No. 1 describing the Model 150.

Keithley Instruments, Inc.
12415 Euclid Ave., Cleveland 6, Ohio
CIRCLE 413 ON READER-SERVICE CARD

Electronic Design • September 16, 1959
Power Supply
Regulated
This power supply converts 3 phase, 115 v ±10%, 400 ±5% to 25 v dc with ±0.5 v regulation, at any combination of loads with magnetic amplifiers. Continuous full load capacity is 200 amp; maximum ripple is 1.5 v peak-to-peak. It will sustain high overloads and complete short circuits for about 2 sec with a recovery response in 2 sec. The unit complies with Procedure 1 of MIL-E-5272A without shock mounts or vibration isolators. Its size is 12-7/8 x 11-1/4 x 8-1/2 in., its weight, 51.5 lb.
Aerotronics Controls Co., Dept. ED, 3424 W. 48th Place, Chicago 32, Ill.
CIRCLE 414 ON READER-SERVICE CARD
Electrolytic Capacitors
Miniature, tubular
Designed for use in industrial equipment and limited space assemblies, type FTT electrolytic capacitors operate at a temperature range of -30 to +65 C. Ratings of 3, 6, 10, 12, 15, 25, and 50 wvde are available. Protection against humidity is provided.
CIRCLE 415 ON READER-SERVICE CARD
Delay Line
Magnetostrictive
Model MF-40 solid state, magnetostrictive delay line has a delay of 40 psec. Other models in the same series have from 5 to 200 psec delay. All models withstand vibration to 500 cps at 15 g and shock to 50 g. Operating temperature is -55 to +100 C with a coefficient of less than 200 ppm per deg C. Input-output impedances are from 5 to 200 ohms with carrier or pulse frequencies to 1 mc. Insertion loss is 54 db. Taps can be supplied and spaced as close as 3 µsec with or without an adjustment feature.
Control Electronics Co., Inc., Dept. ED, 10 Stepar Place, Huntington Sta., L.I., N.Y.
CIRCLE 416 ON READER-SERVICE CARD

Engineers seeking stimulating careers set a course to Link ... in Binghamton, New York

Set sail on a well-charted course! Engineers with a circumspect eye on the future choose their place of employment only after careful, soul-searching deliberation. Link Aviation, Inc., Binghamton, N.Y., has all the necessary ingredients for stimulating careers:

The company - As the pioneer and leading producer of electronic flight simulators, Link has greatly expanded its capabilities in fields such as automatic control, optical and visual display systems and data processing. For example, Link is now the world's largest producer of analog computing equipment.

Working environment - Management men are engineers. They understand your work and point of view. This kind of administration provides engineering thinking right up to policy level.

Living environment - Binghamton, N.Y. is a delightful place to live. Located at the tips of the famous Finger Lakes, Link-Binghamton abounds in year-round recreation—boating, fishing, hunting, water skiing and camping. Charming homes, modern schools, and convenient shopping centers are in abundance.

Additional benefits - include excellent salaries, generous hospital, health, retirement and profit-sharing benefits, and graduate level courses underwritten by Link.

The positions - Openings exist for engineers qualified in the following fields: analog and digital computer components and systems, radar simulation, advanced circuit development. ASW/AEW systems simulation, fire control computer design, optical systems development.

Hoist anchor now! Write to Mr. A. J. Darrah, Link Aviation, Inc., Binghamton, N.Y.
NEW PRODUCTS

Ultrasonic Cleaner

Operates at 400 kc

Model VT-700 ultrasonic cleaner operates at 400 kc with frequencies ranging down to 20 kc. Its applications include cleaning assembled tele-type mechanisms, gear trains, valves, porous metal filters, blind holes, and potentiometer parts. The cleaning containers are 12 in. in diam and 12 in. deep with a 24 qt capacity. Barium titanate transducers are alternately driven by a 700 w rf generator. The unit is made of stainless steel.

McKenna Laboratories, Dept. ED, 2503 Main St., Santa Monica, Calif.

CIRCLE 420 ON READER-SERVICE CARD

Power Supply

Has 0 to 20 v output

Model 806A rack-mounted power supply has an adjustable output of 0 to 20 v at load currents to 2 amp. Input power is 105 to 120 v, 50 to 440 cps. Error sensing is possible from either front or rear terminals; remote error sensing is available on the rear terminal strip. Remote programming is provided. The unit employs a wideband transistorized feedback amplifier. The transient recovery time is 50 usec max for a 100% step change in load current. Protection against short circuits and overloads is included.

CIRCLE 421 ON READER-SERVICE CARD

Fuse

Current-sensitive

This current-sensitive fuse withstands temperatures from -100 to +400 F, vibration of 10 to 500 cps at 15 g max, and shock of 50 g for 11 msec. Glass-enclosed and hermetically sealed, the fuse is humidity proof. Units are filled with nitrogen or other specified gases. Outside ends of the terminals are flexible copper alloy leads, straight cut-offs, or flattened and pierced lugs. Fast, medium or slow blowing-operating time is provided.

Networks Electronic Corp., Dept. ED, Van Nuys, Calif.

CIRCLE 422 ON READER-SERVICE CARD

NEW FROM NARDA

High Power MODULATOR

accepts over 40 magnetrons!

Here's the first of a series of new products from Narda's recently-established High Power Electronics Division! A high power Microwave Modulator that permits installation inside the unit of any of more than 40 magnetrons! Complete, compact and self-contained, it accepts magnetrons covering 3,200 mc to 35,000 mc, with peak outputs from 6 KW to 120 KW. Model 10001 features a completely interlocked circuit, with all high voltage leads and connections internal, for maximum safety; solid state high voltage bridge rectifiers for longer life and reduced heat output (prolonging life of other components, too); and built-in meters and viewing connectors for all principal parameters.

Other features are shown below. For complete specs and a list of at least 40 magnetrons suitable for use with the 10001, write Narda's High Power Electronics Division (HPED) at Dept. ED-7.

SPECIFICATIONS

High voltage supply: Continuously variable from 0 to 4 KW at 100 ma; Magnetron filament supply: Cont. variable from 0 to 13 volts at 3 A; Rep. rate generator range: Cont. variable from 180 to 3000 pps; Pulse width: 1 microsecond at 70% points, rise time 0.15 microseconds, max. slope 5% (other pulse widths available); Size: 38" h., 22" w., 18" d. Weight: 150 lbs.

Complete 1959 catalog available on request.
NEW FROM NARDA

Wide Range

KLYSTRON POWER SUPPLY—$475.00

Operates more Klystrons than any comparable unit!

This new Narda Wide Range Klystron Power Supply operates virtually all medium and low voltage Klystrons, as well as some high voltage tubes (at reduced power output). It literally operates more Klystrons, including Sperry and Varian tubes, than any other unit in its price range! What's more, all components, including tube sockets, are operated within manufacturers' ratings. (Many other supplies exceed plate-cathode, cathode-filament or socket-ground voltage ratings.)

Want more information about this new Power Supply that gives you greater versatility and longer trouble-free service at lower cost? Then write us for complete spec sheets. Ask, too, for your free copy of our complete catalog. Address: Dept. ED-6.

FEATURES

- 250-700 volt Beam Supply, 0-65 ma.
- 0-1000 volt Reflector Supply
- Accurate Ten-Turn Dial Calibration
- 5 mv max. Reflector Ripple
- Diode Protection Circuit

- Oil Filled Capacitors in High Voltage Filters
- Square Wave Modulation 0-150 Volts, 300 to 3000 cps.
- Saw Tooth Modulation 0-150 Volts, 30 to 180 cps.
- Sine Wave Modulation 0-150 Volts, 60 cps.

Radio Interference Filter

Carries 150 amp continuously

Designed for use in missile systems, this 100 v dc radio interference filter has a continuous current rating of 150 amp and will carry 300 amp for 1 hr at 125 C. Its mechanical and electrical characteristics fit MIL-M-8069 for dc aircraft, and its radio interference characteristics meet MIL-I-6181B. The unit will withstand 125 C continuously, 150 C for 24 hr, and 250 C for 15 min.

Genistron, Inc., Dept. ED, 2301 Federal Ave., Los Angeles 64, Calif.

CIRCLE 425 ON READER-SERVICE CARD

Power Supplies

Two types available

Designed for airborne use, these two types of power supplies are transistorized. For type 150S003-2, input is 102 to 124 v ac at 400 ± 20 cps, output is 150 v dc, and ripple is 150 mv peak-to-peak. It measures 2.31 x 2.06 x 3.13 in. and weighs 13 oz. For type PS 272, input is 24 to 32 v dc, output is 180 v dc, and ripple is 0.5% rms. This unit measures 1.85 x 1.85 x 2.75 in. and weighs 16 oz. Both models meet MIL-E-5272A requirements.

CIRCLE 426 ON READER-SERVICE CARD

Converter

Doubles plotting speeds

This converter permits the direct use of digital magnetic tape as input to automatic graph plotters and similar voltage devices. It eliminates the necessity of transferring data from tape to punched cards, and doubles plotting speeds. The unit has solid-state circuitry, a point density selector, parity check, automatic file and record run-up, and provision for omitting records which contain specified characters.

Benson-Lehner Corp., Dept. ED, 11950 W. Olympic Blvd., Los Angeles 64, Calif.

CIRCLE 427 ON READER-SERVICE CARD
NEW PRODUCTS

Mil Counter
Weighs under 4 oz

Designed for use in guidance systems and navigation equipment, this mil counter weighs under 4 oz and measures about 2.2 in. in length. One revolution of the driveshaft registers 10 mils in 1/4 mil increments on the face of the instrument. The numerals, available in standard enamel or fluorescent, count to 6399. Minimum life of the counter is 1,000,000 rotations at 1200 rpm. It operates over a temperature range of -55 to +85 C. At minimum temperature, 1 oz-in. torque is required; at room temperature, 0.5 oz-in. It passes humidity and standard 50 hr salt spray tests and meets military requirements for shock, vibration, and corrosion resistance.

Veeber-Root, Inc., Dept. ED, 70 Sargeant St., Hartford 2, Conn.

CIRCLE 429 ON READER-SERVICE CARD

Microwave Wattmeter
For 10 to 10,250 mc range

Designed for power measurements in the 10 to 10,250 mc range, model 1300 wattmeter is powered by a mercury cell battery. It provides power measurement ranges of 0 to 1 mw and 0 to 10 mw, or -10 to 0 dbm and 0 to 10 dbm. Its accuracy is ±5% of full scale and rated battery life is over 100 hr. Its dimensions are 6 x 2-3/4 x 2-1/8 in.; its weight is approximately 1 lb. Input to the unit is a male type N connector.

Radar Measurements Corp., Dept. ED, 190 Duffy Ave., Hicksville, N.Y.

CIRCLE 430 ON READER-SERVICE CARD

Germanium Photodiode
Has integral lens

TP-55 germanium photodiode features an integral lens which concentrates light on the sensitive portion of the junction area. Made for use in either the visible or infrared portions of the spectrum, it has applications such as punched-card or tape reading in either computing or control systems and continuous-process monitoring. Sensitivity is approximately 30 ma per lumen at 20 C ambient temperature. Operation is to 50 C max ambient temperature, and working voltage is 50 v max. Dark current is less than 5 μa. The sensitive surface is less than 1 mm², and the overall dimensions are 0.087 x 0.394 in. with leads approximately 19/32 in. It is hermetically sealed.

Nucleonic Products Co., Dept. ED, 1601 Grande Vista Ave., Los Angeles 23, Calif.

CIRCLE 431 ON READER-SERVICE CARD

... As versatile as the tools we use. Yesterday's youth, to whom the utility knife represented the ultimate in a wondrous tool of versatility, is today's scientist, engineer, technician ... requiring comparable versatility in instrumentation to help him do his job. No tools are more versatile than dependable Cubic digital instruments — the line with measurement applications limited only to the imagination.

Every phenomenon of science and nature that can be converted to a usable DC voltage level — pressure, temperature, depth, volume, salinity — every electronic and electrical phenomenon, countless weights and measures and elements of time and space ... all provide realistic applications for Cubic instrumentation. For fast, accurate, dependable measurement, combined with superior versatility — you can rely on Cubic digital systems.

Incoming inspection, quality control, environmental performance testing, chemical and other process control monitoring, strain system measurement, production line testing, telemetering system calibration, electronic instrument calibration, research and development laboratory work are among the countless uses for a Cubic digital system.

DC Voltmeters, Control Units, DC Pre-Amplifiers, AC Converters, Ohmmeters, Scanning Systems, Ratiometers, Printer Controls and Chronometers, all with Cubic's superior design and construction features, are available for easy insertion into "systems that design themselves."

Clear visual display, outputs for printed records of measurement, remote readouts and the new "voice" dimension of the Cubic Talking Meter combine for even greater versatility. And each Cubic unit is a fine instrument of superior design and construction with unique features that provide dependable operation, long life and easy routine maintenance.

The skill and experience responsible for the superiority of Cubic's Space Age electronic tracking systems are also important components of Cubic's digital instruments ... yours for an easier job — done faster, better and with greater assurance.

CUBIC CORPORATION
5575 Kearny Villa Road, San Diego 11, California

CIRCLE 428 ON READER-SERVICE CARD
MINIATURE BEAM POWER PENTODE.—Type 7189 has maximum plate voltage rating of 450 v, 9-pin miniature base, and 6.3 v heater that draws 760 ma. Mounts in any position. Two units operating in push-pull with peak of 29 v provide 24 w with under 4% distortion.

CIRCLE 713 ON READER-SERVICE CARD

VINYL INSULATION SLEEVING.—Transparent Resite EP-69C is fungus resistant, stays flexible to -75 F and stable to +185 F. Self-extinguishing in 6 sec.

Bordon Chemical Co., Resinite Dept., Dept. ED, Santa Barbara, Calif.
CIRCLE 432 ON READER-SERVICE CARD

MINIATURE TRANSISTOR TRANSFORMERS.—About 1/2 cu. in., Veri-Miniatures weigh 0.16 to 0.25 oz. Available in molded, open frame, or plug-in tab mounted construction.

Microtran Co., Inc., Dept. ED, 145 E. Mineola Ave., Valley Stream, N.Y.
CIRCLE 433 ON READER-SERVICE CARD

MYLAR TUBES.—Thick-wall coil forms bonded with cement that holds when the Mylar shrinks at 400 F. Suitable for shrinking onto coils, heavy wires, bus bars, and capacitor cans. In 0.002 to 0.006 in. wall thicknesses and any ID, OD, or length.

Precision Paper Tube Co., Dept. ED, 2035 W. Charleston St., Chicago 44, III.
CIRCLE 434 ON READER-SERVICE CARD

CABLE FAULT LOCATING SET.—Accurate to within 1/8 in. Available in several ranges for shielded multiconductor cables that normally require dielectric test of from 3 kv or less to 25 kv or higher.

Peschel Electronics, Inc., Dept. ED, Towerns, Patterson, N.Y.
CIRCLE 435 ON READER-SERVICE CARD

MULTIMETER.—Model 102F has fused meter, five ac and dc ranges to 3000 v, 3 ac and 3 dc current ranges, and 2 resistance ranges to 1 meg. A 4-1/2 in. model, model 103F, is also available.

Electronic Measurements Corp., Dept. ED, 625 Broadway, New York 12, N.Y.
CIRCLE 436 ON READER-SERVICE CARD

MOBILE INDUSTRIAL ULTRASONIC CLEANERS.—Wheel mounted systems with 1 to 75 gal tank capacities and 50 to 2500 power ratings. Operate on 115 or 220 v ac.

Acoustica Associates, Inc., Dept. ED, 26 Windsor Ave., Mineola, N.Y.
CIRCLE 437 ON READER-SERVICE CARD

POTENTIOMETER CHECKER AND CALIBRATOR.—Portable, self-contained Treasure Chest has 0.1% accuracy over range of 0 to 1.01 v as well as standard range of 0 to 101 mv.

CIRCLE 438 ON READER-SERVICE CARD

CIRCLE 439 ON READER-SERVICE CARD

Some Ideas

for your file of practical information on drafting and reproduction from

KEUFFEL & ESSER CO.

Wet That Eraser!

The erasing qualities of HERCULENE Drafting Film are excellent, but (as with the pencils) we've discovered it's a new type of vinyl eraser that gives the best results. Examples of these non-shiny type erasers are the Richard Best "TAD" and the Eberhard Faber "RACE KLEEN" both available from your K&E dealer. With vinyl eraser, pencil lines will not be removed easily, with no damage to the surface. Here's a tip on how to do this:

After Typing, Please Pounce

Typed impressions on HERCULENE Drafting Film are crisp and sharp, but may take a while to dry because the film's surface doesn't "swallow" ink readily. A light pouncing right after typing will dry the ink and fix the lines—giving you uniform permanent contrast.

A new typewriter ribbon will produce the best impressions. At K&E we've tested a healthy variety of ribbons and we're pleased to send you the results on request.

Outstanding Advantages

Proved in Tests

We're pleasantly amazed at the short time it took for HERCULENE Drafting Film to become an accepted "stable"—along with ALBANESE® Tracing Paper and PHOENIX® Tracing Cloth. Actually, it's a rare drafting room by now that has not tested HERCULENE during its first year on the market. The findings? All properties considered, HERCULENE stands up better than any other drafting film. It has great resistance to heat, aging and abuse. Its exclusive "engineered surface" plus its tough, durable Mylar® base produce superior pencil and ink take, fine erasability, remarkable dimensional stability...a combination we're proud to call unbeatable!

The K&E dealer near you has HERCULENE now. Stop in and see him.

Note sharp clear lines made by Duralar pencil on HERCULENE Drafting Film.

Plastic Pencils and the HERCULENE Surface

Not just a handy catchphrase, when K&E puts its exclusive "engineered surface" on a drafting material, the result is an exact, uniform tooth for sharp pencil drawing, inking and typing. With HERCULENE Drafting Film, however, an entirely new type of plastic (non-graphite) pencil yields especially good results. Quite a few of our customers have reported favorably on the well-known Staedtler "Duralar" brand. Duralar pencils come in five hardnesses, are non-smudging and have generally good covering power, sharpness and erasability. After about 20 prints, the Duralar lines show up consistently better than those made by a regular pencil, since graphite lines tend to lose density.

A year of relentless testing has produced a small library of interesting facts about HERCULENE (T.M.) Drafting Film. What follows is a consensus of drafting-room experience with HERCULENE—by K&E and its customers—with some up-to-date recommendations for using it. Take the matter of...

Shiny Back vs. Pencil Back

A basic question is: do you need a double-surfaced drafting film? We make HERCULENE Drafting Film both ways, of course—with a single surface (shiny back) and double surface (pencil back). It's our recommendation that you use pencil back HERCULENE only if it's your practice to make basic drawings on one side, changes on the other. For most other uses, shiny back is preferable. (At first, the double-surface film was chosen by many drafting rooms because it lay flatter on the board than shiny back. This is no longer true. K&E research labs have come up with a fully effective anti-curl treatment.) Especially in filing, shiny back HERCULENE presents fewer problems. The clean non-abrasive back won't smudge the face of the sheet underneath, even in a heavy stack of tracings. If you'd like to compare a few sheets, please let us know.

Moisten the eraser slightly. It becomes no more abrasive, but a lot more "erasing." Moistening is a must when removing Duralar lines or typing after exposure to heat. (Incidentally, don't use electric erasing machines, steel erasers or typewriter erasers.) When erasing large areas, certain chemical eradicators work fine too. Our suggestion: use Vtibene or a very light application of a denatured alcohol such as Solox, both of which can be applied with a cotton swab or clean cloth.

The Cleaner the Better

HERCULENE Drafting Film was designed for ink work, and its ink take is unexcelled. But like all films, its non-absorbency makes a few preparations advisable. The surface should be cleaned thoroughly before inking. Quickest and most effective way to do this is with the ABC Draftman's Dry-Clean Pad, which will remove finger marks and "traffic film" simply by rubbing the pad over the surface. Poucing will also work well. A damp cloth is all right for general cleaning, but do not do the best job of preparing the surface for ink.

MINIATURE BEAM POWER PENTODE.—Type 7189 has maximum plate voltage rating of 450 v, 9-pin miniature base, and 6.3 v heater that draws 760 ma. Mounts in any position. Two units operating in push-pull with peak of 29 v provide 24 w with under 4% distortion.

CIRCLE 439 ON READER-SERVICE CARD

Electronic Design • September 16, 1959
NEW PRODUCTS

Primary Battery
Silver-zinc

Type 20xPA50 silver-zinc primary battery is capable of 31 w-hr per lb and 1.7 w-hr per cu in. It can be activated and readied to meet specification voltage within three sec, and can be discharged at rates ranging from less than 50 amp, at 37 v for 90 min, to 350 amp, at 28 v for 11 min. It weighs 72 lb and has a volume of 1290 cu in., without external mountings. Its shelf life, in the dry condition, is about 5 yr; in the activated condition, 8 hr.

Yardney Electric Corp., Dept. ED, 40-50 Leonard St., New York, N.Y.
CIRCLE 441 ON READER-SERVICE CARD

Time Delay Relays
Have silicon transistors

These time delay relays with silicon transistors are available in seven different models. A preset time delay from 0.05 to 950 sec can be provided in each model. Types 50-064, 50-065, 50-069, and 50-070 operate at 28 v dc; type 50-079 operates at 100 v ac, and type 50-081 operates at 130 v dc. Type 50-075 offers independent triggering for such applications as photo timing and computer data input. Maximum current required for all units is 50 ma. Life is 100,000 operations at rated contact load. Temperature limits cover -55 to +71 C; units with limits to 150 C are available. Rated contact loads are 2.5 or 10 amp. Insulation resistance is 100 meg, contacts to case. All models are hermetically sealed and encapsulated in rubber.

Hydro-Aire Co., Dept. ED, 300 Winona Ave., Burbank, Calif.
CIRCLE 442 ON READER-SERVICE CARD

Backshells
For cable connectors

These cable connector backshells reduce cable strain and provide for a 5 in. maximum cable stripback with positive clamping action maintained. Of split-shell design, they are easily removed for inspection and allow for installation after wiring of the connector. They may be used as potting enclosures. The units fit DDP and DDP-2 series 33 or 34 connectors and are available in 90 deg, 45 deg, and straight-in configurations.

Glenair, Inc., Dept. ED, 1211 Airway, Glendale, Calif.
CIRCLE 443 ON READER-SERVICE CARD

MAGNETIC AMPLIFIERS

Complete, from Design
to Finished Product,
by FORBES and WAGNER

Our modern facilities comprise precision toroid winding, impregnating, assembling, encapsulation and testing to provide completely matched units for use in magnetic amplifiers.

Illustration shows a miniaturized magnetic amplifier with matched cores. The larger amplifier with matched units has been only partially painted to show the Toroidal Coils. As in all Forbes and Wagner components, great emphasis is placed on quality—quality in design, materials and fabrication. Write for brochure giving the complete F & W story.

Forbes and Wagner, Inc.
349 Central Avenue
Silver Creek, N. Y. • Phone FR-7202
CIRCLE 444 ON READER-SERVICE CARD

ELECTRONIC DESIGN • September 16, 1959
WHEN YOU'RE REACHING FOR THE MOON

When you're designing a new missile gyroscope ... a new computer ... a new telemetering device ... a new anything that calls for precision instrument ball bearings ... you do well to turn to Fafnir. For no matter what your problem is ... temperature extremes, low torque, load-life, low vibration or noise levels ... Fafnir can help you solve it. Fafnir has the diversity — a wide variety of ball bearing types, designs, materials, and tolerances — and the uniformly high standards of quality to meet your needs precisely. The Fafnir Bearing Company, New Britain, Conn.
Dual Beam

Type 502 Tektronix Oscilloscope

TWO-GUN CATHODE-RAY TUBE.
200 µV/cm SENSITIVITY, BOTH BEAMS.
DIFFERENTIAL INPUT, ALL SENSITIVITIES.
2, 5, 10, and 20 TIMES SWEEP MAGNIFICATION.
X-Y CURVE TRACING with TWO BEAMS—(horizontal input sensitivity to 0.1 v/cm).
SINGLE-BEAM X-Y CURVE TRACING at 200 µV/cm, BOTH AXES.
EXTRA FEATURE—Both amplifiers have transistor-regulated parallel heater supply.

Here are a few uses for the Type 502:

IN ELECTRONICS—Use the Type 502 as a general-purpose oscilloscope and also to show simultaneously the waveforms at any two points in a circuit, e.g. input and output, opposite sides of a push-pull circuit, trigger and triggered waveform, etc.

IN MECHANICS—Display, compare, and measure outputs of two transducers on the same time base; plot one transducer output against another—pressure against volume or temperature for instance; measure phase angles, frequency differences, etc.

IN MEDICINE—Display, compare, and measure stimulus and reaction, or the outputs of two probes, on the same time base; use differential input to cancel out common-mode signals, or to eliminate the need for a common terminal; use in routine investigations, etc.

IN ALL FIELDS—The Type 502 can save you more than its cost in time—in as little as one application!

Tektronix, Inc.
P.O. Box 831 • Portland, 7, Oregon
Phone C.Press 2-2611 • TWX-PO 311 • Cable: TEKTRONIX

NEW PRODUCTS

Power Supplies
12 models available

These power supplies are available in 12 different models with voltage ranges to 125 v dc and current ranges to 5 amp. Output of each unit is continuously variable over full range. Regulation and stability are better than 0.05% and ripple is 1 mv rms or less. Voltage sensing is furnished on all models. The units are available in steel cabinet or rack mounted models.

Kaiser Electronics, Inc., Dept. ED, 2 Monroe St., Union, N.J.
CIRCLE 454 ON READER-SERVICE CARD

Pulse Transformer

Provides 100 kv

This high power pulse transformer operates a transmitter tube at 100 kv with pulse durations up to 6 µsec. The bifilar secondary carries 5 amp. Power output is 15 megawatts at 100 kv; step-up ratio is 1:7. Primary impedance is 13 ohms and the pulse repetition frequency is up to 600 pps. The unit weighs 40 lb and measures 9 x 9 x 9 in.

Stavid Engineering, Inc., Dept. ED, Plainfield, N.J.
CIRCLE 455 ON READER-SERVICE CARD

Power Supply

Short circuit proof

Model ME 36-5M power supply has a fast-acting relay that energizes an internal circuit breaker when the current reaches a preset value. It is set at the factory at 120% of rated current. The supply operates from a source of 95 to 125 v, 60 cps power, regulated to ±0.5%. Output voltage is continuously variable from 0 to 36 v dc with regulation of 0.1% or 0.01%. The unit is designed for continuous duty at full load. Ripple is 1 mv rms max.

Mid-Eastern Electronics, Inc., Dept. ED, 32 Commerce St, Springfield, N.J.
CIRCLE 456 ON READER-SERVICE CARD
THERMISTOR THERMOMETERS.—Have accuracies up to ± 0.14°C or ± 0.25°F. Their response times are less than 1 sec in liquids and 2.2 sec on surfaces. Ranges covered are from -328 to +845°F. Thermophils operate on standard ac lines. Probes are available in lengths up to 5 ft, 3 in.
Atkins Technical, Inc., Dept. ED, 1276 W. Third St., Cleveland 13, Ohio.
CIRCLE 457 ON READER-SERVICE CARD

SELF-STICKING CIRCULAR MASKS.—Are used to mask off index holes, component mounting holes and areas on printed circuits where solder is unwanted. From 1/4 in. to 3/4 in. OD, they are made from pressure-sensitive B-540 tape and can withstand a 700°F dip soldering temperature for 6 sec.
W. H. Brady Co., Dept. ED, 727 W. Glendale Ave., Milwaukee 9, Wis.
CIRCLE 458 ON READER-SERVICE CARD

DRAFTING MACHINE.—Neoglide is designed for use on any board at any angle without need of adjustment. It has an enclosed counterweight unit which provides positive counterbalancing at all angles. Major moving parts have nylon wheels.
Charles Bruning Co., Dept. ED, Mount Prospect, Ill.
CIRCLE 459 ON READER-SERVICE CARD

DIGITAL CHRONOMETERS.—Give real and relative time, direct time readout in 1 in. edge-lighted numerals, and output contact closures for systems control, printers and recorders or total systems programming. They are available in 12, 24, 100 and 1000 hr models.
CIRCLE 460 ON READER-SERVICE CARD

TEMPLATE COMPASS.—D-1 ball bearing action compass is used to make circles from 1/4 to 2 in. There is a row of template holes from 1/16 to 1/15/16 in. diam.
CIRCLE 461 ON READER-SERVICE CARD

VACUUM CABINETS.—Series 600 are used for storage of electronic sub-assemblies, where they are protected from dust or moisture. They are available in complete assemblies from two to eight with controls and single vacuum pump, and have racks for eight 12 x 18 in. trays of parts.
General Vacuum Corp., Dept. ED, 400 Border St., East Boston 28, Mass.
CIRCLE 462 ON READER-SERVICE CARD

HIGH VOLTAGE POWER SUPPLY.—N-413 provides 100 to 5000 v dc continuous, 10 ma Maximum. It is standard cell referenced; combined noise and ripple is less than 50 mv peak to peak.
Hammer Electronics Co., Inc., Dept. ED, Princeton, N.J.
CIRCLE 463 ON READER-SERVICE CARD

LABORATORY STOP CLOCKS.—Models K15110, K15120 have timed outlets on front panel, permitting the automatic timing of any 115 v, 60 cps load up to 3 amp. K15120 has socket which permits remote, manual, or automatic control. Both models have 1-1/4 x 4-9/32 x 4-1/2 in. instrument cases.
A. W. Haydon Co., Dept. ED, Waterbury, Conn.
CIRCLE 464 ON READER-SERVICE CARD
transistorized power supplies

NEW PRODUCTS

Programming Systems

Offer from 110 to 5500 contacts

These circuit programming systems have modular construction which permits expansion of the system in two directions, offering from 110 to 5500 contacts in a variety of contact configurations. Patchcord, permanent, or multiple contact patchcord programming is possible.

Virginia Electronics Co., Inc., Dept. ED, River Rd. and B & O Railroad, Washington 16, D.C.

CIRCLE 468 ON READER-SERVICE CARD

Silicon Power Rectifier

Has voltage ratings to 600 piv

This silicon power rectifier has voltage ratings up to 600 piv and current ratings to 18 amp dc at 100 C ambient with a forward voltage drop of less than 0.8 v. Hermetically sealed, it has a silver anode lead and solid copper base for high thermal and electrical conductivity.

Semiconductor Corp. of America, Dept. ED, 16629 Gramercy Place, Gardena, Calif.

CIRCLE 469 ON READER-SERVICE CARD

Breadboard Kit

Contains 10 printed boards

Used to construct prototype circuitry, the Circlet contains 10 basic printed boards which cover all circuit functions for analog and digital circuitry. It provides increased flexibility and permits rapid circuit tracing. The boards may be used in temperature testing.

Dynex Inc., Dept. ED, 324 Langton Ave., Los Altos, Calif.

CIRCLE 470 ON READER-SERVICE CARD

Heat Sink

For silicon rectifiers

This insulated heat sink provides heat dissipation in silicon rectifiers. It consists of an oxygen-free copper tab brazed to an alumina insulator which is, in turn, brazed to any oxygen-free copper stud. The rectifier is soft-soldered to the tab. The capability of the heat sink exceeds the maximum temperature requirements of -60 to +200 C. It can handle up to 2000 v.

Advanced Vacuum Products, Inc., Dept. ED, Stamford, Conn.

CIRCLE 471 ON READER-SERVICE CARD

For centuries angles have been read directly

...Now they can be read photoelectrically and the information transmitted in digital form.

W. & L. E. Gurley, Troy, N.Y.

The Gurley Shaft Position Encoder

CIRCLE 472 ON READER-SERVICE CARD

Newest MINIATURE FLEXIBLE COUPLING

Life Saver size - only 7/16"x 5/16"

Renbrandt offers a complete line of ultra-compact, precision-made couplings featuring zero backlash, low inertia and high flexibility. Typical is the newest shown above which in Life Saver size. Specifications: bores in any diameter from 0.125 through 0.5", compensates for misalignments of +5/16 angular and ±0.015" linear, torque 30 inch ounces, weight 19 ounce, moment of inertia as low as 0.006 ounce inchfts, materials and finishes to applicable government or MIL specs. Long-life Renbrandt Couplings will solve many problems where space and weight are at a premium. Others available in a wide variety of sizes for ¼" through ½" shafs.

Send for catalog or send your requirements for quotes. Prompt delivery.

Renbrandt, Inc., 6-B Parmele St., Boston 18, Mass.

CIRCLE 473 ON READER-SERVICE CARD

ELECTRONIC DESIGN • September 16, 1959
TEAM POWER TUBE.—Withstands shock, fatigue, low-frequency vibration, and variable-frequency vibration tests. Designed for pulse-modulator applications, type 7358 delivers a peak plate current of 3 amp during a pulse length of 30 usec with a duty factor of 0.003 and a plate-supply voltage of 2000 v.

Radio Corp. of America, Electron Tube Div., Dept. ED, Harrison, N.J.

CIRCLE 474 ON READER-SERVICE CARD

DOUBLE CIRCUIT SWITCH.—Is rated at 15 amp, 125 v ac; 10 amp, 250 v ac. This series 755 switch makes or breaks two circuits simultaneously, and is not sensitive to vibration or shock. The case and plunger are molded phenolic, and the switch blades are brass.

Controls Co. of America, Industrial & Commercial Controls Div., Dept. ED, 9555 Soreng Ave., Schiller Park, Ill.

CIRCLE 475 ON READER-SERVICE CARD

CAP NUTS.—Are available in steel, brass and aluminum in sizes No. 4 through 1/2 in.

Jacobson Nut Manufacturing Corp., Dept. ED, Kenilworth, N.J.

CIRCLE 476 ON READER-SERVICE CARD

VIBRATION INTERFEROMETER.—Is used for precision calibration of accelerometers. It consists of an interferometer, multi-beam stroboscopic slit assembly with white light source, and a vibrator. Frequency range is 450 to 10,000 cps. Double amplitudes over a range of 1 to 1000 µm can be determined to an accuracy of 10⁻⁴ in. or 1%.

Gaertner Scientific Corp., Dept. ED, 1201 Wrightwood Ave., Chicago 14, Ill.

CIRCLE 477 ON READER-SERVICE CARD

PRESSURE SENSITIVE TAPE.—Is available in 0.002, 0.003, or 0.004 in. thick Teflon film with a 0.004 in. adhesive covering, in widths from 1/4 to 12 in. Known as type LT, it is unaffected by temperatures up to 250 F.

Dilectrix Corp., Dept. ED, Allen Blvd., Farmingdale, N.Y.

CIRCLE 478 ON READER-SERVICE CARD

POTENTIOMETER.—Has a power rating of 1 w and a maximum operating temperature of 175 C. Wound, model 220 is available in resistances from 100 ohms to 20 k and measures 3/16 x 5/16 x 1 in.

Bourns, Inc., Dept. ED, P.O. Box 2112, Riverside, Calif.

CIRCLE 479 ON READER-SERVICE CARD

SOLDER BALLS.—Can be loaded into jigs and rolled into place automatically. Available in diameters from 0.002 through 0.125 in. and dimensionally accurate to ± 0.001 in., these spheres assure a correct volume of solder.

Alloys Unlimited, Inc., Dept. ED, 21-01 43 Ave., Long Island City 1, N.Y.

CIRCLE 480 ON READER-SERVICE CARD

ELECTROLYTIC CAPACITOR.—This electrolytic capacitor is a multi-section, common-positive type. It offers high-purity materials, all-welded construction, low leakage and power factor.

Syncro Corp., Electronic Div., Dept. ED, Hicksville, Ohio.

CIRCLE 481 ON READER-SERVICE CARD

BASIC REQUIREMENTS for outer space

The space/missile era has made it essential for today's components and systems to function precisely in environments that are literally out-of-this-world. Such stringent requirements can only be met by companies long experienced in component design and with proved records of imaginative engineering. Kearfott, long the leader in servo component design and production, has consistently looked into the future to anticipate the increased performance characteristics missile components must supply. As a result, it has not only developed an entirely new generation of precision components but established the ability to create radically new concepts in sensors and control elements.

THE PROBLEM: HIGH ACCURACY
THE SOLUTION: Synchros with maximum error from electrical zero of 20 seconds. Tachometers with linearity 0.05% over the speed and temperature range.

THE PROBLEM: HIGH AND LOW TEMPERATURE
THE SOLUTION: Servomotors, synchros and tachometers are now available for the temperature range of −54°C to 200°C with new developments soon to increase the range to 400°C.

THE PROBLEM: RADIATION RESISTANCE
THE SOLUTION: Kearfott servomotors, synchros and tachometers operate at 200°C and can withstand radiation of 10¹⁰ through 10¹¹ roentgens.

THE PROBLEM: SHOCK AND VIBRATION
THE SOLUTION: All Kearfott components can be supplied to function as required during or after 20 g's shock or 2000 cps vibration.

THE PROBLEM: MINIATURIZATION
THE SOLUTION: Size 5 synchros and servomotors. Size 8 components are outstanding examples of Kearfott's ability to combine miniaturization with precise performance.

THE PROBLEM: LONG LIFE
THE SOLUTION: Components are being developed which will operate continuously for 12 months in a total vacuum, the environment of outer space.

Representative of Kearfott's ability to look ahead are such current areas of development as Solid State Transducers and Control System Components. You can take advantage of Kearfott's long-established know how in developing precision components for today—and tomorrow—by writing for details concerning your specific requirements.

Engineers: Kearfott offers challenging opportunities in advanced component and system development.
NEW PRODUCTS

Strain Gage Preamplifier

Has 25 kc carrier frequency

Designed for use with strain gages and other transducers, type Q preamplifier has carrier frequency of 25 kc, frequency response of dc to 6 kc, and rise time of about 60 μsec. Strain sensitivity, with a gage factor of about 2, is continuously variable from 10 μin. per in. per major graticule division to 10,000 μin. per in. per division. The maximum sensitivity with four active arms and a gage factor of 2 is 2.5 μin. per in. per division. One of four external bridge arms can be used with the unit. A total load capacity unbalance of 300 μf across any bridge-arm can be balanced out with a front panel control.

Tektronix, Inc., Dept. ED, P.O. Box 831, Portland 7, Ore.

CIRCLE 485 ON READER-SERVICE CARD

Sweep Generators

Four models available

These sweep generators are available with the following frequency ranges: model SP-99, 1400 to 1900 mc; SP-100, 1000 to 1500 mc; SP-101, 1500 to 2000 mc; and SP-102, 1700 to 2300 mc. In each case, the sweep width may be varied from 100 to 0.25 mc. Sweep rate is 50 or 60 cps. The swept output is flat within ±10% over the entire frequency range. Power output is approximately 1 v, peak to peak, into 50 ohms. A 0 to 10 db attenuator is provided.

Telonic Industries, Inc., Dept. ED, Beech Grove, Calif.

CIRCLE 486 ON READER-SERVICE CARD

Tube and Transistor Tester

Has snap-in socket panels

The portable model 6000 tube and transistor tester has a snap-in master socket panel that accepts types normally encountered in electronic service work. An 11-pin socket that accommodates special tubes is located beneath the master plate, and alternate plates for foreign tubes can be provided. Tube quality evaluations are read directly on scales of 0 to 3000, 0 to 6000, and 0 to 15,000 μhos, and tube reserve capacities can be determined by turning a selector control on the panel. Five neon lights automatically indicate shorts and leakage, while pushbuttons can be depressed to show gas content in microamperes and filament continuity. Line voltage is constantly indicated and quickly adjusted.

Hickok Electrical Instrument Co., Dept. ED, 10525 Du Pont Ave., Cleveland, Ohio.

CIRCLE 487 ON READER-SERVICE CARD

new way to make products better, more efficient...

ACE PRECISION NYLON BALLS

Precision manufactured from DuPont Nylon Resin to close tolerance of ±.0001 on diameters and .001 on sphericity. Ace Nylon Balls give design flexibility and production economy. Light weight ... tough at low temperatures ... stable at high temperatures ... resistant to corroding chemicals such as sulfuric acid, etc. ... almost abrasionproof.... these mass-produced balls have hundreds of industrial applications. Come in 14 standard sizes from 1/16" to 1".

Complete facilities for fabrication of plastic parts for all industries. Estimates submitted promptly on receipt of blueprints or specifications.

Write for samples. Bulletin N, price list. TODAY.

EXTRUSION MOLDERS AND FABRICATORS

ACE PLASTIC COMPANY
91-38 Van Wyck Expwy., Jamaica 35, N.Y. Jamaica 3-5500

CIRCLE 488 ON READER-SERVICE CARD

Let's get clear on— WHAT ENGINEERS DO

Simply stated, engineers apply the sciences to give people use of nature's materials, forces.

Scientists make it known. Engineers make it useful.

Scientists split the atom; engineers design and build the atomic power plants.

All science known would benefit nobody if not applied by engineers to manufacturing, construction, mining, agriculture or the generation of power.

These are the great engineered industries—all based on scientific knowledge.

Engineers plan, design, produce, maintain and operate. To repeat: Scientists make it known. Engineers make it useful.

Engineers Joint Council
29 West 39th St., N.Y. 18, N.Y.
For information call Pennsylvania 6-9220

ELECTRONIC DESIGN • September 16, 1959

ELE
INSULATING COMPOUNDS.—Are used for potting, encapsulating, and insulating electronic components. They can be cured at temperatures ranging from 250 to 300°F and require no catalyst. These compounds are available filled or unfilled, and have low viscosity.

Viking Resin Products, Inc., Dept. ED, 115 Broad St., Waverly, N.Y.

CIRCLE 489 ON READER-SERVICE CARD

HEAT GENERATORS.—Model LAC induction generator provides 1/2 kw to heat metals. Model C-63 dielectric generator provides 1/2 kw to heat nonconductors. Both are available with control over power output and time cycles. They operate from 110 v ac, and weigh less than 80 lb each.

Reeve Electronics, Inc., Dept. ED, 609 W. Lake St., Chicago 6, Ill.

CIRCLE 490 ON READER-SERVICE CARD

CLAMP.—Is used to mount motors, potentiometers, synchros, and other servo-type components. Called No. 2014, it is available in two sizes, and meets MIL-E-5400 specs.

Precision Mechanisms Corp., 577 Newbridge Ave., East Meadow, N.Y.

CIRCLE 491 ON READER-SERVICE CARD

READOUT.—Displays word messages. Operating on a rear projection principle, it contains a condensing lens which has twelve messages, determined by the user, printed on it. The unit measures 3-1/4 x 5-1/4 x 11-1/2 in.

CIRCLE 492 ON READER-SERVICE CARD

SILICON RUBBER COMPOUNDS.—Used for void filling, cushioning and vibration damping. Sponge compounds RTV-120 and RTV-160 cure at room temperature and are resistant to temperature extremes, weather, ozone and sunlight.

General Electric Corp., Silicone Products Dept., Dept. ED, Waterford, N.Y.

CIRCLE 493 ON READER-SERVICE CARD

MINIATURE CLAMPS.—Used to secure or separate wire groups. Its components are a nylon cradle and a Neoprene clip. These cradlecil units will accommodate diameters of 5/32 to 1/4 in.

Electrovert Inc., Dept. ED, 124 E. 40 St., New York, N.Y.

CIRCLE 494 ON READER-SERVICE CARD

THREE-GEAR DIFFERENTIAL.—Has a backlash of 8 min of arc and breakaway torque of 0.3 oz-in. Its tumbling circle is 1.380 in., and maximum recommended load at 2500 rpm is 75 oz-in. Overall length is 1.888 in. and shaft diameter is 0.1847 in.

Dynamic Gear Co., Dept. ED, 20 Merrick Road, Amityville, N.Y.

CIRCLE 495 ON READER-SERVICE CARD

AVC AMPLIFIER.—Maintains a constant output within ±1 db with input changes of 30 db. Its frequency response is ±1 db from 20 to 20,000 cps; overall gain is 35 to 36 db with a signal-to-noise ratio of 60 db. It measures 19 x 7 x 8-3/4 in.

Amplifier Corp. of America, Dept. ED, 398 Broadway, New York 13, N.Y.

CIRCLE 496 ON READER-SERVICE CARD

GENERAL PLATE TOPLAY MATERIAL

ENABLES KING-SEELEY CORPORATION TO

Increase Contact Assembly
Production 900%

Recently King-Seeley Corporation, long a leading manufacturer of instrument panel gauges and other automotive equipment, redesigned the contact assembly in the constant voltage “CV” voltage regulator, a component of their constant voltage gauge systems. The old design called for blanking of a phosphor bronze spring, cleaning and finally staking of a General Plate rivet. By changing to General Plate toplay contact material the operation called for simply cutting off and cleaning. Expensive assembly operations were eliminated. The result . . . an increase in production of contact assemblies by 900%.

General Plate clad contact materials make it possible to manufacture complete contact assemblies to close tolerances by single blanking and forming operations. Compare this to other methods whereby the contacts and supporting members are fabricated separately and then assembled.

Let us make an electrical contact cost analysis on products you want to automate. Find out how General Plate clad electrical contact materials can be put to work for you. Write now.

General Plate Product: Clad Metals • Electrical Contacts • Truflex® Thermostal Metal • Platinum Metals • Reactor Metals • Radio Tube & Transistor Metals

CIRCLE 497 ON READER-SERVICE CARD
NEW PRODUCTS

Oven
Transistorized

For crystals and components, type BPCO-I transistORIZED proportional oven has a temperature stability of \(\pm 0.02 \) C over the ambient range of 10 to 50 C. The oven operates on a 26 v supply and can be furnished with operating temperatures of 70 to 85 C. The heat chamber measures 1-1/8 in. in diameter and 2 in. long. Seated height is 4-3/4 in. above octal base; the cross section is 2-1/8 x 2-1/8 in.

Billey Electric Co., Dept. ED, Union Station Bldg., Erie, Pa.

CIRCLE 499 ON READER-SERVICE CARD

ADAPTERS.—Permit exact tube circuit current measurement in operating equipment without cutting leads. Available in 7, 8, and 9 pin types, they are inserted in the tube socket between chassis and tube. A test prod is provided.

Vector Electronic Co., Dept. ED, 1100 Flower St., Glendale 1, Calif.

CIRCLE 500 ON READER-SERVICE CARD

LEAD EXTRACTOR.—Removes insulated lead wire from braided shields. Similar to a hypodermic needle, it ejects the wire from a breakout in the shield produced by the tube point. It is available in five sizes to process shielded wires from 30 to 14 AWG.

Technical Devices Co., Dept. ED, 2340 Centinela Ave., Los Angeles 64, Calif.

CIRCLE 501 ON READER-SERVICE CARD

FM TUNER.—Has an ave sensitivity of better than 2.5 \(\mu \)V for 20 db quieting. Completely shielded, model FA-331 BB has an amplification of 450, and a noise figure of 3 db. It features printed circuits and can be supplied with fc.

Sales Engineering Associates, Dept. ED, 46 N. Second Ave., Mount Vernon, N.Y.

CIRCLE 502 ON READER-SERVICE CARD

PICTURE TUBE.—For cathode-drive applications. Type 24BAP4, 24 in. 110 deg, has an electron gun with improved cathode-drive sensitivity, and requires no ion-trap magnet. This directly viewed, rectangular glass tube has a spherical Filterglass faceplate, an aluminized screen, and a 1-1/8 in. diameter.

Radio Corp. of America, Electron Tube Div., Dept. ED, Harrison, N.J.

CIRCLE 503 ON READER-SERVICE CARD

Baldwin Shaft Angle Encoders

To process data from shaft angles into electrical digital form, Baldwin produces 13, 16 and 18 digit encoders of highly advanced designs. These encoders employ photoelectric readout and give complete information in one revolution of the input shaft, without the use of gearing.

Contact our Encoder Engineering Department for detailed information on models to meet your requirements.

Baldwin 16-digit, 9-1/16" dia. encoder having accuracy of \(\pm 1 \) part in 65,536. Data in Bulletin No. 1158.

Baldwin 18-digit, 21" dia. encoder having accuracy of \(\pm 1 \) part in 263,144. Data in Bulletin No. 1258.

Baldwin Model B/MM07 -10 Programmer and Power Supply is available for supplying power and programming signals to the encoder models shown. This unit meets military requirements.

Baldwin 146
MARKING PENCIL.—Writes on any surface. Available in seven colors, it is the same size as a standard writing pencil, and may be used in laboratories, manufacturing and drafting.

J. S. Staedler, Inc., Dept. ED, 340 DiCarolis Court, Hackensack, N.J.

CIRCLE 506 ON READER-SERVICE CARD

SWITCHING JACK.—Has glass melamine insulation. Called type 317G, this jack retains its rigidity and maintains spring tension under adverse humidity conditions.

National Tel-Tronics Corp., Dept. ED, 52 St. Casimir Ave., Yonkers, N.Y.

CIRCLE 507 ON READER-SERVICE CARD

STEPPING-TYPE PROGRAMMER.—Available on 35 mm film with photo-electric readout. More than 50,000 characters in eight channels are available on a 100 ft roll. No external tape punch is required.

Ameco Electronics Corp., Dept. ED, 37 E. 18 St., New York 3, N.Y.

CIRCLE 508 ON READER-SERVICE CARD

TIME DELAY SWITCH.—Is rated at 8 amp, 125 v ac; 4 amp, 250 v ac. Called type 700, its time delay is pneumatically controlled and can be adjusted from 3 to 40 sec. Contacts are silver; the case is molded phenolic and the switch blades are beryllium copper.

Controls Co. of America, Industrial & Commercial Controls Div., Dept. ED, 9535 Soreng Ave., Schiller Park, Ill.

CIRCLE 509 ON READER-SERVICE CARD

CHASSIS SLIDE.—Has extended-position locking, a quick-disconnect mechanism, and 150 lb load rating. This three-section steel ball bearing slide, model 324, meets military specs.

Grant Fulley & Hardware Corp., Dept. ED, 944 Long Beach Ave., Los Angeles, Calif.

CIRCLE 510 ON READER-SERVICE CARD

CONSOLE.—Provides convenient housing for service equipment, and working surface for use as a plotting desk. Among the items it can house are a decade oscillator, a components indicator, converters, and a mechanical reference generator.

CIRCLE 511 ON READER-SERVICE CARD

BEAM POWER TUBE.—Has a 265 v heater, and is used in aircraft service as an rf power amplifier and oscillator, af power amplifier, and modulator. Called the 7357, it has a maximum plate dissipation rating of 25 w, and can withstand severe shock and vibrations.

Radio Corp. of America, Electron Tube Div., Dept. ED, Harrison, N.J.

CIRCLE 512 ON READER-SERVICE CARD

OPEN AND SHORT CIRCUIT TERMINATIONS.—Known as TO and TS series, respectively, they present identical electrical lengths. Phase difference is less than 0.1 cm over the frequency range from dc to 13,000 mc. They are provided with male or female connectors of type N, BNC, TNC, C, or HN. Overall length is 1.2 in.; weight is 0.6 to 1.6 oz.

Microlab, Dept. ED, 71 Okner Pkwy., Livingston, N.J.

CIRCLE 513 ON READER-SERVICE CARD

With all due apologies to Topsy of Uncle Tom's Cabin, that is. But grown we have until today Kintronic possesses one of the most complete facilities for the production of potentiometers. Equipment, engineers, assemblers, quality control standards that add up to development and manufacture of precision potentiometers for every requirement. An almost unlimited variety of pots designed to accurately function under the severest of conditions.

Get complete information data sheets today. See how Kintronic wide range performance fits your individual needs.

kintronic*

* manufacturers of advanced design PRECISION POTENTIOMETERS

Standard lines, special to specific requirements from 1/8" up, single and multi-gang pots in all sizes and types, logarithmic and hyperbolic function units in all sizes and types, and more.

"Utilized Construction"... obtains smooth, accurate performance in the very high temperature classification... reliability even at 225°C!

"Dynamic Balance" potentiometers... advanced design highly successful pots providing low mass, low inertia, long life, exceptional stability under extreme shock, and exceptionally acceleration.

The "know-how" giant facilities and backing of Chicago Aerial Industries, Inc., Kintronic parent company.

division of Chicago Aerial Industries, Inc.

10134 PACIFIC AVENUE, FRANKLIN PARK, ILLINOIS

CIRCLE 514 ON READER-SERVICE CARD

1959
NEW PRODUCTS

Self-contained Recorders

For high acceleration applications

Multiple recording accelerometer MRA-440 and triaxial recording accelerometer TRA-200 are made for such uses as tests of rocket motors, impact sleds, and switch actuation. Having eight sensing elements, model MRA-440 directly senses and records data concerning the response spectrum of the motion. Its operating temperature is -50 to +300 F. It measures 2-1/2 x 7/16 in. and weighs 3 oz. Model TRA-200, having three sensing elements, directly senses and records data concerning the acceleration-time history of the motion along each of the mutually perpendicular axes. It has an operating temperature of -50 to +160 F, measures 2-1/16 x 11-1/16 x 1-7/8 in., and weighs 6 oz. No connections to external devices are required for either model, although model TRA-200 requires external power.

Leach Corp., Dept. ED, 8435 Susana Rd., Compton, Calif.

CIRCLE 516 ON READER-SERVICE CARD

Terminal

Four-in-one type

This multi-terminal has four separate terminals mounted in one base, cutting costs and installation time. It is 1 in. long and 3/8 in. in diameter. Other pin types are available.

Taurus Corp., Dept. ED, 8 Coryell St., Lambertville, N.J.

CIRCLE 517 ON READER-SERVICE CARD

Display Storage Tube

Has 3.8 in. display diam

Type 7448 direct view display storage tube has a 3.8 in. display diam, a maximum diameter of 5.38 in., and an over-all length of 13.64 in. The display has a brightness of about 2750 ft-L when the unit is operated with 10,000 v on the screen. Writing speed is about 300,000 in. per sec. The writing gun employs electrostatic focus and deflection; the viewing gun produces an electron stream which is neither focused nor deflected. All connections are made to the 14 pin base and to the four recessed caps on the envelope. Applications of the unit include fire-control radar, airplane-cockpit radar display, airport surveillance, transient studies, data transmission, and visual communications.

Radio Corp. of America, Electron Tube Div., Dept. ED, Harrison, N.J.

CIRCLE 518 ON READER-SERVICE CARD

G-R REACTANCE CHART

...It's For Free!

To two or three significant figures you can find:

Reactance of a given inductance and capacitance at a given frequency

<table>
<thead>
<tr>
<th>Range</th>
<th>1 cycle to 1,000,000 Mcs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 μuf to 10,000 μuf</td>
</tr>
<tr>
<td>Resonant Frequency of a given inductance and capacitance</td>
<td>1.0 μuf to 10,000 h</td>
</tr>
<tr>
<td></td>
<td>1.0 ohm to 10 megohms</td>
</tr>
</tbody>
</table>

Single decade enlarged 7 times for accuracy

Two Sizes: Wall Chart 22" x 17" Notebook Chart for standard 3-ring binder

Write for your copy. PLEASE specify size desired. With the Compliments of

GENERAL RADIO COMPANY

WILLIAMSTOWN, MASSACHUSETTS

CIRCLE 520 ON READER-SERVICE CARD

ELECTRONIC DESIGN • September 16, 1959
HIGH POWER SSB ADAPTER SYSTEM.—Permits standard high frequency, high level am transmitters to be converted to SSB operations without modification. Model SSB-58-1A is designed for high frequency voice, facsimile and multi-channel FSK teletype operation from 10 kw to 1 megawatt.

Kahn Research Labs., Inc., Dept. ED, 22 Pine St., Freeport, N.Y.

CIRCLE 521 ON READER-SERVICE CARD

AUDIO SWEEP GENERATOR.—Has precise logarithmic sweep, low noise, and negligible drift. Conventional markers are not used. The unit measures 14-1/2 x 8-1/4 x 8 in. and weighs 10 lb.

Star Valley Electronics, Inc., Dept. ED, 145 Social Hall Ave., Salt Lake City, Utah.

CIRCLE 522 ON READER-SERVICE CARD

BRUSH BLOCK ASSEMBLIES.—For digitalizers, encoders, switching commutators and slip ring assemblies. Brushes are grouped in tandem of three and six wires per track to assure electrical continuity. These molded, broom-type assemblies have spring temper gold alloy brush wires capable of carrying up to 100 ma per track.

Airflyte Electronics Co., Dept. ED, 535 Avenue A, Bayonne, N.J.

CIRCLE 523 ON READER-SERVICE CARD

INSTRUMENT TRANSLATOR.—Is used with linear variable differential transformers and other ac electro-mechanical transducers. This single-channel, phase selective translator, model 83F, operates from 115 v, 60 cps power, supplies a 3 kc carrier to the transducer, and presents a dc signal which may be used with an external indicator.

Crescent Engineering and Research Co., Dept. ED, 5440L N. Peck Rd., El Monte, Calif.

CIRCLE 524 ON READER-SERVICE CARD

PRINTING SYSTEMS.—Print numbers, letters or symbols at speeds up to 5000 lines per minute on preprinted forms. Called S-C 5200, these units use a shaped beam tube and a xerographic printing process in place of high speed mechanical parts.

General Dynamics Corp., Stromberg-Carlson Div., Dept. ED, San Diego 12, Calif.

CIRCLE 525 ON READER-SERVICE CARD

GEARS AND CLAMPS.—Are available in stainless steel and anodized aluminum in standard diametral pitches 48 through 120, with consecutive tooth selection range from 20 through 120 teeth. These clamp hub type precision gears are manufactured to AGMA precision class 1 and 2 tolerances in 1/8, 3/16 and 1/4 in. bore sizes.

U. S. Gear Corp., Dept. ED, 81 Bay State Road, Wakefield, Mass.

CIRCLE 526 ON READER-SERVICE CARD

SHAFT LOCKING DEVICES.—For bushing mounted controls with No. 1/4-32 or 3/8-32 threaded bushings. Variations of shaftlocks, and tapered, acorn, and jam nuts are available.

CIRCLE 527 ON READER-SERVICE CARD

NEW LORD BTR MOUNTINGS PROVIDE ALL-ATTITUDE PROTECTION FOR FIRE CONTROL SYSTEMS

New Lord BTR Mountings provide all the advantages of elastomeric mountings, plus . . .

- broad temperature operation from -65° to +300° F.
- extreme environmental resistance
- excellent all-attitude characteristics
- efficient isolation of frequencies to 2000 c.p.s.
- high internal damping

achieving the high component reliability specified for today's advanced aircraft and the need of control of severe vibration, shock and noise. Special techniques, materials and systems must be employed to keep vital equipment within their fragility envelopes.

Typical of the advanced materials required in mounting systems for the high-performance aircraft shown here is Lord's new BTR Elastomeric Mountings. These broad temperature range isolators provide excellent shock and vibration protection under extreme environmental conditions. Incorporation of BTR mountings in the suspension system simplifies design providing maximum economy and assures better performance and higher reliability.

Aircraft and missiles of the future will introduce new vibration and shock problems. Lord has the engineering background plus the research and production facilities to meet these challenges in mounting system design.

For further information contact your nearest Lord field engineer or the Home Office, Erie, Pa.

CIRCLE 528 ON READER-SERVICE CARD

LORD MANUFACTURING COMPANY • ERIE, PA.
NOW... VTVM's for all applications

... panel-mounted...
small-size
ELECTRONIC VOLTMETERS

SEND FOR CATALOG 10A which gives complete specifications and prices on panel-mounted, relay-rack and plug-in models.

Build accuracy into all your equipment, test and production alike, with Metronix DC and AC Electronic Voltmeters.

These Metronix instruments are no larger than conventional voltmeters, cost little more. They offer higher accuracy because they don't load the circuit. In AC applications, they respond accurately over a frequency range of 20 CPS to 100 KC. Our line of sweep ranges, run from 0-10MV to 0-300V AC, and 0-1 to 0-1000V DC. Metronix Electronic Voltmeters can be furnished in MIL-spec, rack-mounting and plug-in models.

Metronix INC
A SUBSIDIARY OF
ASSEMBLY PRODUCTS, INC.
Chesterland 17, Ohio
CIRCLE 530 ON READER-SERVICE CARD

NEW PRODUCTS

IF Amplifier
Has a gain of 85 db

Model A-107 transistorized if video amplifier has a center frequency of 30 mc, a gain of 85 db, and a bandwidth of 4.5 mc. The sensitivity time control is adjustable from 0 to 400 µsec, and the instantaneous automatic gain control has 30 db compression and a 2 µsec time constant. The noise figure is 8 db, and a 40 db manual gain control is provided. The unit measures 2 x 3 x 6 in.

Strand Engineering Co., Dept. ED, P.O. Box 76, Ann Arbor, Mich.
CIRCLE 531 ON READER-SERVICE CARD

Tape Perforator
Punches up to 300 coded characters per sec

The GP-2 super-speed tape perforator can punch up to 300 coded characters per sec in standard communication paper or Mylar tape. The basic recording cycle allows 1-3 of a cycle to tape transport and 2-3 to punch pin penetration of the tape. Models are available for perforating 5, 6, 7, or 8 hole tapes. All internal parts of the punch are lubricated by a splash of oil bath system.

Soroban Engineering, Inc., Dept. ED, Box 1717, Melbourne, Fla.
CIRCLE 532 ON READER-SERVICE CARD

Audio Line Amplifier
Handles up to 50 headsets

Adaptable to missile sites, rocket and ballistic firings sites, wind-tunnel experiments facilities, and environmental testing facilities, model CA-5 audio line amplifier handles up to 50 headsets in parallel. Audio impulses applied to any of the 50 microphones in parallel are transmitted to all connected headsets. A 20 db compression circuit provides for constant output in the headsets at all amplitude levels of speech.

Flite-Tronics, Inc., Dept. ED, 3314 Burton Ave., Burbank, Calif.
CIRCLE 533 ON READER-SERVICE CARD

Magnetic Tape
Moisture-resistant

Designed for computer use, this moisture-resistant magnetic tape is available in two thicknesses of mylar backing. Type C-1 has a 1 mil backing; and a length of 3600 ft. Available in shorter lengths, type C-2 has 1.5 mil backing. The tape is supplied on a precision reel.

Ampex Magnetic Tape, Dept. ED, 934 Charter St., Redwood City, Calif.
CIRCLE 534 ON READER-SERVICE CARD

SOMETHING NEW IN SLOTTED SECTIONS

Actually, this is a new kind of Standing Wave Detector, which completely makes obsolete the 8-foot monsters, for impedance and VSWR measurements from 100 to 1000 mc/s.

The PRD Type 219 is only 8 inches long and weighs a "pocketable" four and one-half pounds.

As if these facts were not startling enough, the 219 also features:
- Direct reading of VSWR
- Direct reading of angle of reflection coefficient
- Direct reading of reactive component sign
- Matched load for self-calibration supplied
- Adaptability to most coaxial lines, including the LT and new TNC series
- Low cost
- Rugged construction

Listed below are a few of the important specifications:

Frequency Range: 100 to 1000 mc/s
Residual VSWR: Less than 1.03
Minimum Input Signal: Approx. 3 V at 100 mc/s
Crystal Impedance: 0.1V at 1000 mc/s for measuring a matched load
Characteristic Impedance: 50 ohms
Detector: Crystal included
RF Input Connector: BNC jack
RF Output Connector: Type N jack supplied; Connector types available include types C, BNC, LT, TNC, ½" coax.
Audio Output Connector: BNC jack
Dimensions: 8" L x 5" W x 5½" H
Weight: 4½ pounds

Note to owners of the new PRD Catalog, E-9: Don't bother reading this ad. All these details and more can be found on page B-13. If you are unfortunate enough not to own a copy of this designer's workbook, send your request on your company letterhead.

If all you want are specifications on the 219, fill out the inquiry card in this magazine.

POLYTECNIC RESEARCH & DEVELOPMENT CO., INC.
Factory & General Office: 202 Tillary St., Brooklyn 1, N.Y.
Western Sales Office: 2839 So. La Cienega Blvd., Los Angeles 34, Calif.
Texas 0-1940

CIRCLE 535 ON READER-SERVICE CARD

ELECTRONIC DESIGN • September 16, 1959
RADIO ACTIVITY REPORT
CIVIL AIR PATROL

DUAL-CYCLE BALANCE CONTROLS.—Type AD47, 15.16 in. in diam. 1/2 w carbon controls are for insertion on the input side of an amplifier, or between preamplifier and amplifier. Panel and rear units are of same resistance value and taper. Balance is achieved by turning a single knob.

Clarostat Manufacturing Co., Inc., Dept ED, Dover, N.H.
CIRCLE 537 ON READER-SERVICE CARD

UHF COMMAND RECEIVER.—Model 2610 operates with 28 V dc input voltage at a preset frequency from 400 to 450 mc. Frequency modulation is ±350 kec at 50 cps to 15 kec. Sensitivity is 7.5 µv for 6 db signal plus noise-to-noise ratio with 15 kec audio bandwidth. Output is 3 v rms into 1500 ohms and image rejection is 50 db. Size is 2 x 7-3/4 x 2-5/8 in. Applications are in drone and missile guidance, range safety command, telemetering, and communications.

RS Electronics Corp., Dept ED, P.O. Box 368, Station A, Palo Alto, Calif.

CIRCLE 538 ON READER-SERVICE CARD

PLIERS.—Made for wiring electronic assemblies, four types are available. Type 219 is an oblique cutting plier. Type 325 is a spring adjusting plier for light work and type 326 is a spring adjusting plier for heavy work. Type 330 is a long nose plier for forming loops.

Mathias Klein & Sons, 7200 McCormick Rd., Chicago 45, Ill.
CIRCLE 539 ON READER-SERVICE CARD

TERMINAL BOARD.—Is used for high density packaging. It meets military vibration specs; its shock-absorbing characteristics reduce component failure. Solder or clip components may be used.

Beam-Tronics, Inc., Dept ED, P.O. Box 2333, Anaheim, Calif.
CIRCLE 540 ON READER-SERVICE CARD

TIME CYCLE CONTROLLER.—Model C1C500 has ten pilots which may be operated simultaneously or in any sequence. Each pilot performs up to 24 operations. Intervals between operations are 4 sec or more. Timing discs range from between 0 and 15 min to between 0 and 360 min.

The Bristol Co., Dept ED, Waterbury 20, Conn.
CIRCLE 541 ON READER-SERVICE CARD

PAPER TAPE UNIT.—Allows model E10 computer to accept data from either one of two readers. Coupled with model A531 input unit, it provides the programmer with completely automatic control of two tapes.

Burroughs Corp., ElectroData Div., Dept ED, 400 Sierra Madre Villa, Pasadena, Calif.
CIRCLE 542 ON READER-SERVICE CARD

RELAY.—Series SDIC has operating characteristics of series 51C. The unit is polystyrene enclosed; mounting is 8 pin. Operation is dc.

Kurman Electric Co., Dept ED, 191 Newel St., Brooklyn 22, N.Y.
CIRCLE 543 ON READER-SERVICE CARD
Suddenly...it's dark!

A pretty dark situation, indeed—when a single electron tube failure can shut down an entire production line test facility! Use IERC's new set of a, b, c's to help you get improved electronic equipment reliability. You can actually increase tube life up to 12 times by specifying and using IERC Heat-dissipating Electron Tube Shields! The full facts, in the form of complete product literature, test reports, engineering data and tube shield application guides, especially prepared to help you "see the light," are available on request—write today!

NEW PRODUCTS

Keyed Video Signal Generator
Covers 90 kc to 10 mc range

A keyed composite video signal generator, the model V-233A incorporates a phase-locked sine wave variable-frequency oscillator for all frequencies from 90 kc to 10 mc. The oscillator phase locks to horizontal blanking pulses and is followed by a keying amplifier which adds clean blanking and, if desired, sync pulses. The unit has an internal 15.75 kc square wave generator and also may be driven from external triggers. It has its own regulated power supply and a meter function switch that selects black-level to peak white or sync tip-to-peak white measurements.

Foto-Video Labs, Inc., Dept. ED, 36 Commerce Rd., Cedar Grove, N.J.
CIRCLE 547 ON READER-SERVICE CARD

Power Amplifier
Provides 10 w from dc to 1 mc

Power amplifier model DCA-10 delivers a continuous power output of 10 w from dc to 1 mc and has a frequency response that is flat within ±1 db over the full range. Voltage gain is continuously variable to a maximum of 10; harmonic distortion is less than 0.1%; and output hum and noise are less than 10 mv. The unit has good dc level stability, low output impedance, and good output regulation.

CIRCLE 548 ON READER-SERVICE CARD

Power Transistors
Rated to 100 V

These complementary pairs of npn-pnp germanium power transistors eliminate input and output transformers in push-pull circuits. They also simplify the application of negative feedback. Designed for audio, control, voltage regulation, servo, and computer use, they have ratings to 100 v and exceed MIL-T-19500A specifications. The npn types 2N235, LT-519, LT-519L, LT-5192, LT-5192L, LT-5193, and LT-5193L are available in the form of complete product literature, test reports, engineering data and tube shield application guides, especially prepared to help you "see the light," are available on request—write today!

CIRCLE 549 ON READER-SERVICE CARD

CIRCLE 550 ON READER-SERVICE CARD
PRECISION METERS.—Have bifilar-suspension movement. The following models are available: microammeters, milliammeters, ammeters, millivoltmeters, voltmeters, megameters, multi-range meters to 23 ranges, and voltammeters for current and voltage in the same instrument.

Greibach Instruments Corp., Dept. ED, 315 North Ave., New Rochelle, N.Y.

CIRCLE 552 ON READER-SERVICE CARD

VERTICAL GYROSCOPE.—Type NV3203 is for use in target and surveillance drone aircraft. Available in ac or dc, it provides potentiometer pick-offs on both roll and pitch axes to indicate displacements from vertical.

CIRCLE 553 ON READER-SERVICE CARD

FREQUENCY CALIBRATOR.—Has reference frequency accuracy of ±0.01%. Model 521 has frequency range of 1 to 80 kc, IRIG channels 5 to 13, A, C, and E inclusive. It measures 19 x 12-1/4 x 12 in.

Fenske, Fedrick & Miller, Inc., Dept. ED, 12820 Panama St., Los Angeles 66, Calif.

CIRCLE 554 ON READER-SERVICE CARD

POWER TRANSISTOR SOCKETS.—Solderless, they are available in several plug-in configurations on small fiberglass-epoxy insulators. Solder connections may be made to the socket before handling the transistor.

Grinnell-Harris Electronics, Inc., Dept. ED, 4130 Temple City Blvd., Rosemead, Calif.

CIRCLE 555 ON READER-SERVICE CARD

ALPHANUMERIC TYPEWRITER.—Is used with the firm's model G-15 digital computer. Data entering and leaving the computer via the typewriter can be identified with alphabetic information and special symbols.

Bendix Aviation Corp., Computer Div., Dept. ED, 5630 Arbor Vitae St., Los Angeles 45, Calif.

CIRCLE 556 ON READER-SERVICE CARD

ADHESIVE FELT DOTS AND WASHERS.—Are available in brown, and are 1/4 in. thick and 1 in. in diameter. Applications include cushioning, silencing, insulating, and dustproofing.

J. B. Dawn Products, Dept. ED, 3905 S. 64th Place, Chicago, Ill.

CIRCLE 557 ON READER-SERVICE CARD

THERMAL SWITCH.—Can be calibrated up to 1750 F; minimum calibration temperature is 20 F. Hermetically sealed but field-adjustable, the SpecStat is a probe type unit with an A/N 10 SLAP connector head. It is rated at 1.5 amp at 28 v dc, 110 v ac, resistive loading.

Control Products, Inc., Dept. ED, 306 Sussex St., Harrison, N. J.

CIRCLE 558 ON READER-SERVICE CARD

COAXIAL RF PLUGS.—Have vswr less than 1.1 up to 11 kmc. Series TNC plugs are available in aluminum and are 35% lighter than non-aluminum types.

Cannon Electric Co., Dept. ED, 3208 Humboldt St., Los Angeles 31, Calif.

CIRCLE 559 ON READER-SERVICE CARD

a time-delay relay and a load carrier, too

Kind of small, this Heinemann Type A Relay. Weighs only three ounces. Yet, it can do two jobs for you. In addition to providing a controlled time delay (anywhere from 1/4 to 120 seconds), it can serve as a load carrier, itself. The relay may be energized continuously. This simplifies things nicely. You don't have to use auxiliary lock-in circuits or load relays—not unless you need more than three amps' contact capacity.

D.P.D.T. switching is clean and decisive, just as it should be for healthy operation. The timing element is hermetically sealed, and this, too, keeps the relay in top form throughout its long service life.

Cost? Definitely calculated to win favor and influence your buying decision. Check on it, you'll see.

FOR DETAILED SPECIFICATIONS, REQUEST BULLETIN 5003.

HEINEMANN
ELECTRIC COMPANY
156 Plum St., Trenton 2, N. J.

CIRCLE 560 ON READER-SERVICE CARD

PRECISION METERS.—Have bifilar-suspension movement. The following models are available: microammeters, milliammeters, ammeters, millivoltmeters, voltmeters, megameters, multi-range meters to 23 ranges, and voltammeters for current and voltage in the same instrument.

Greibach Instruments Corp., Dept. ED, 315 North Ave., New Rochelle, N.Y.

CIRCLE 552 ON READER-SERVICE CARD

VERTICAL GYROSCOPE.—Type NV3203 is for use in target and surveillance drone aircraft. Available in ac or dc, it provides potentiometer pick-offs on both roll and pitch axes to indicate displacements from vertical.

CIRCLE 553 ON READER-SERVICE CARD

FREQUENCY CALIBRATOR.—Has reference frequency accuracy of ±0.01%. Model 521 has frequency range of 1 to 80 kc, IRIG channels 5 to 13, A, C, and E inclusive. It measures 19 x 12-1/4 x 12 in.

Fenske, Fedrick & Miller, Inc., Dept. ED, 12820 Panama St., Los Angeles 66, Calif.

CIRCLE 554 ON READER-SERVICE CARD

POWER TRANSISTOR SOCKETS.—Solderless, they are available in several plug-in configurations on small fiberglass-epoxy insulators. Solder connections may be made to the socket before handling the transistor.

Grinnell-Harris Electronics, Inc., Dept. ED, 4130 Temple City Blvd., Rosemead, Calif.

CIRCLE 555 ON READER-SERVICE CARD

ALPHANUMERIC TYPEWRITER.—Is used with the firm's model G-15 digital computer. Data entering and leaving the computer via the typewriter can be identified with alphabetic information and special symbols.

Bendix Aviation Corp., Computer Div., Dept. ED, 5630 Arbor Vitae St., Los Angeles 45, Calif.

CIRCLE 556 ON READER-SERVICE CARD

ADHESIVE FELT DOTS AND WASHERS.—Are available in brown, and are 1/4 in. thick and 1 in. in diameter. Applications include cushioning, silencing, insulating, and dustproofing.

J. B. Dawn Products, Dept. ED, 3905 S. 64th Place, Chicago, Ill.

CIRCLE 557 ON READER-SERVICE CARD

THERMAL SWITCH.—Can be calibrated up to 1750 F; minimum calibration temperature is 20 F. Hermetically sealed but field-adjustable, the SpecStat is a probe type unit with an A/N 10 SLAP connector head. It is rated at 1.5 amp at 28 v dc, 110 v ac, resistive loading.

Control Products, Inc., Dept. ED, 306 Sussex St., Harrison, N. J.

CIRCLE 558 ON READER-SERVICE CARD

COAXIAL RF PLUGS.—Have vswr less than 1.1 up to 11 kmc. Series TNC plugs are available in aluminum and are 35% lighter than non-aluminum types.

Cannon Electric Co., Dept. ED, 3208 Humboldt St., Los Angeles 31, Calif.

CIRCLE 559 ON READER-SERVICE CARD

a time-delay relay and a load carrier, too

Kind of small, this Heinemann Type A Relay. Weighs only three ounces. Yet, it can do two jobs for you. In addition to providing a controlled time delay (anywhere from 1/4 to 120 seconds), it can serve as a load carrier, itself. The relay may be energized continuously. This simplifies things nicely. You don't have to use auxiliary lock-in circuits or load relays—not unless you need more than three amps' contact capacity.

D.P.D.T. switching is clean and decisive, just as it should be for healthy operation. The timing element is hermetically sealed, and this, too, keeps the relay in top form throughout its long service life.

Cost? Definitely calculated to win favor and influence your buying decision. Check on it, you'll see.

FOR DETAILED SPECIFICATIONS, REQUEST BULLETIN 5003.
Quick-Opening Fasteners

Selecting Small Fastenings for Metal Closures

"Use captive fasteners wherever feasible... Avoid the use of loose washers and loose nuts... Fasteners on equipment covers should be operable either with no tools or with standard hand tools."*

(John D. Folley, Jr. & James W. Altman, Research Scientists, American Institute for Research)

Quarter-Turn Fastener

Lion Fasteners open and close with a \(\frac{1}{4} \) turn, hold sheets tightly under the compression of a rugged spring. Quickly operated and fully retained in the outer panel, they are approved under U.S. Government military specifications. Stud and receptacle float for easy alignment and simplified hole preparation. Flush, oval, wing, knurled, ring, and key head styles available. Sizes—No. 2, No. 5, and High Strength for extra heavy duty.

Spring Tension Latch

For fastening slide-out drawers and hinged panels the Southco Arrowhead Latch is recommended. It locks or opens with a quarter turn yet occupies less than \(\frac{1}{4} '' \) inside space.

Doors are held under spring tension—a push against the arrowhead knob relaxes this tension, allows operation with fingertip ease. Drill a single hole for installation—no fastening to the door is necessary. No striker plate is needed.

Pawl stop is eliminated—arrowhead shows at a glance exact position of pawl.

Cabinet Latch

Just drill a hole, push the fastener stem through, and slide the special push-on clip into place. No welds, screws, bolts or rivets: the fastener is permanently installed in seconds!

Adjustable to any grip length or panel thickness, the pawl is fixed in place by a single set screw. The fastener's brightly finished knob is set off by a plated washer. Also furnished with screwdriver operated flush head.

Adjustable Panel Latch

Small doors and panels can be fastened with greatest speed and lowest cost with the Southco Adjustable Latch.

The entire fastener is quickly installed through two holes punched in the door; no bolts or rivets are needed.

It operates with a quarter turn, requires no striker plate. An extra twist after the nylon pawl is engaged pulls up the door to form a seal and eliminate vibration.

Available with wing, knurled, or Phillips head.

NEW PRODUCTS

Infrared Transmitting Material

Retains high transparency at 800 C

Available in optically polished domes, prisms and flats sealed to metal, Irtran type AB-1 is an infrared transmitting material that offers enhanced transparency as far as 8 microns wavelength. Designed to withstand re-entry heating effects, it transmits over 90% of impinging energy from 3 to 6 microns and retains its high transparency at 800 C and beyond. It also withstands thermal shock, weathering, humidity, and abrasion. Refractive index is 1.301 at 6.7 microns, while microwave characteristics are close to those of natural mica for insertion losses and reflection in the 9 and 10 kmc range.

Eastman Kodak Co., Apparatus & Optical Div., Dept. ED, Rochester 4, N.Y.

CIRCLE 562 ON READER-SERVICE CARD

Signal Tracer Generator

For audio, if, or rf testing

A combination signal tracer and generator, the model 802 can generate its own signal for audio if or rf testing. It also incorporates a noise locater circuit for checking noisy components, a magic eye tube for visual signal detection, and a speaker for aural signal detection. It uses separate high gain rf and low gain audio input channels and generates a 400 cps signal for audio and a 455 kc modulated signal for if testing. This signal can also be used for an rf modulated signal of 910 kc.

Electronic Measuring Corp., Dept. ED, 629 Broadway, New York 12, N.Y.

CIRCLE 563 ON READER-SERVICE CARD

Silicon Transistors

Two npn types

Types 2N699 and 2N1252 are both npn diffused silicon mesa transistors. The 2N699 is a 2 w unit with a 120 v collector-to-base rating that permits wide voltage swings in amplifier and oscillator circuits. At 150 ma collector current, maximum base saturation voltage is 1.8, collector saturation voltage is 2 v, and dc current gain ranges from 40 to 120. A typical gain-bandwidth product of 120 mc gives good broadband video response. The 2N1252 is a low storage unit for use in high current saturated switching circuits. Storage plus fall times are 150 usec at 150 ma collector current and dc current gain range is 15 to 45. Five-megaphone operation is typical in rfi saturated circuitry.

CIRCLE 564 ON READER-SERVICE CARD
FULL RANGE SPEAKER.—Model SK-128 consists of an 8 in. woofer and a 2 in. tweeter mounted on dual axes. Frequency response is 40 to 16,000 cps, ±3 db. Power rating is 20 w integrated program material; impedance is 8 ohms; and cone resonance is 45 to 65 cps.

Lafayette Radio, Dept. ED, 165-08 Liberty Ave., Jamaica 33, New York, N.Y.

CIRCLE 565 ON READER-SERVICE CARD

ELECTRIC PUNCH PRESS.—This 15-lb portable unit is designed to punch any shape hole, by using a different punch and die. It can be used on stainless steel, brass, plastic, and laminated or welded sheets not exceeding 1/8 in. thickness.

CIRCLE 566 ON READER-SERVICE CARD

ENGRAVED DIALS.—Available in a variety of diameters, engravings, and shaft sizes, with pinned or split clamp type flubs, these M1 type dials are aluminum black anodized. All engraving is filled with Mil spec white filler. Standard diameters are 1-1/2, 3, and 4 in.; bores are from 0.12 to 0.25 in.

Pic Design Corp., Dept. ED, 477 Atlantic Ave., E. Rockaway, L.I., N.Y.

CIRCLE 567 ON READER-SERVICE CARD

RE-USEABLE CONNECTOR SEAL.—These one-piece seals provide metal-to-metal contact of faying surfaces. Low fastening torques are required. Distortion beyond elastic limits is prevented by controlled confinement of seal gland.

Parker Seal Co., Div. of Parker-Hannifin, Dept. ED, 10567 Jefferson Blvd., Culver City, Calif.

CIRCLE 568 ON READER-SERVICE CARD

LOOP CURRENT CONTROL.—These two models are for use as current normalizers in dc teleprinter signal loops. Type 238 model 1 is for use in loops requiring 60 ma, and model 2, for loops requiring 20 ma. Both models have a calibration control. Input impedance changes to maintain constant current.

Northern Radio Co., Inc., Dept. ED, 147 W. 22nd St., New York 11, N.Y.

CIRCLE 569 ON READER-SERVICE CARD

METRIC CIRCLES TEMPLATE.—Type 240 has 37 circles from 2 to 30 mm in diam. Circles from 2 to 10 mm are in increments of 0.5 mm, and from 11 to 30 mm in increments of 1 mm. Size is 7 x 4 in.

Rapidesign, Inc., Dept. ED, P.O. Box 429, Burbank, Calif.

CIRCLE 570 ON READER-SERVICE CARD

SONIC ANALYZER AUXILIARY.—Designated unit equips the LP-la analyzer with these factors: continuously adjustable if bandwidth from 10 cps to 1 k with 10 sec scan interval, adjustable if bandwidth in steps of 10, 30, 100, 300, and 1000 cps with continuously adjustable linear sweep width, adjustable smoothing filter, and voltage calibration meter.

Panoramic Radio Products, Inc., Dept. ED, 514 S. Fulton Ave., Mount Vernon, N.Y.

CIRCLE 571 ON READER-SERVICE CARD

Micro-Miniature Latching Relays by Iron Fireman

5 MS PULSE AT 300 MW:

This very short burst of power and the shock and vibration immunities shown above are features of the newest addition to the Iron Fireman line of micro-miniature relays. The model R650 relay was designed specifically to meet requirements when operating power is at a preci-
ERICKSON CUP TEST on 0.060" sheet demonstrates high ductility of new G-E "HD" Moly Sheet. Both test samples of molybdenum were at room temperature. Depth of the draw was increased by 1 millimeter at each progression. The ordinary moly sheet (at bottom) "exploded" at 6mm depth—while the new G-E "HD" sheet showed no evidence of a fissure until 9½mm. Note the reduced tendency of the "HD" sheet to explode. And there's less tendency, also, to delaminate on punching, stamping and shearing than with ordinary commercial grades of molybdenum.

DRAW IT! FORM IT! PUNCH IT!—all without preheating! General Electric's new "HD" Moly Sheet can take it—and you can do all these operations in thicknesses previously impossible... or requiring up to 1000°F preheating. Even in cases where small amounts of heat may be needed, it's always less than with ordinary molybdenum sheet.

TIME SAVER, MONEY SAVER! The improved ductility of General Electric's new "HD" Molybdenum Sheet is of particular significance in sheet thicknesses of 0.020" to 0.125"—as used in electronic tubes and semiconductor diodes, rectifiers and similar products. It has a high melting point (2622°C, 4752°F), low vapor pressure, and excellent strength at elevated temperatures. So it will be of great value to any company using refractory metals.

PLAN ON G-E "HD" SHEET Available in commercial quantities, so there's no better time than right now to get all the facts about this new kind of molybdenum. Write: General Electric Co., Lamp Metals and Components Dept. ED-9, 21800 Tungsten Road, Cleveland 17, Ohio.

BENDS WITHOUT CRACKING... EVEN WITH NO PREHEATING!
Ordinary 0.060" thick molybdenum broke at a 20° bend (see photo at left). The G-E "HD" Sheet of same thickness shows no sign of cracking at 90°. Actually this new G-E Moly Sheet is so ductile you can bend it up to 180° without damage!

Progress Is Our Most Important Product

NEW PRODUCTS

TV Stabilizing Amplifier
For monochrome signals

For monochrome signals, the model V-43A stabilizing and clamping amplifier mounts in 5-1/4 in. rack space and draws less than 200 mols of regulated B+. It provides two independent video signal outputs and a clipped sync output to drive a local genlock or sync slave. Input signal levels down to 0.25 v peak-to-peak can be used with the equipment. The stabilizing amplifier has a 10 MHz bandwidth and flat frequency response to 8 MHz. Differential gain is under 0.25 db and differential phase is less than 0.3 deg. A fast acting, noise immune keyed clamp maintains black level constant.

Foto-Video Labs., Inc., Dept. ED, 36 Commerce Rd., Cedar Grove, N.J.
CIRCLE 574 ON READER-SERVICE CARD

Tube Tester
Measures dynamic mutual conductance

Tube tester model 550 measures true dynamic mutual conductance under actual operating conditions. Equipped with a wide variety of sockets, it affords a quick check of most TV and radio tubes for shorts, grid emission, gas content, and leakage. It also shows tube condition in microhms and on a good-bad scale. The unit is 15-1/2 x 15 x 6-1/4 in., weighs 16 lb, and operates on 105 to 125 v ac, 50 to 60 cps. It has a 4-1/2 in. plastic meter, 7- and 9-pin straighteners on the panel, and a circuit for automatic line voltage compensation.

B & K Manufacturing Co., Dept. ED, 3726 N. Southport Ave., Chicago 13, III.
CIRCLE 575 ON READER-SERVICE CARD

Pressure Transducer
Measure 1 x 1 x 1 in.

Series 401 miniature pressure transducer measures 1 x 1 x 1 in. and weighs 2.25 oz. It withstands vibration of ±35 g at frequencies to 5000 cps. It employs a diaphragm capsule which actuates the wiper of a precision potentiometer. Both the transducer and the potentiometer are available for absolute, differential, and gage pressure from 0 to 5 and 0 to 400 psi, and for differential pressure from ±3 to ±200 psi. Standard nominal potentiometer resistances are 2000, 2500, 5000, 7500, and 10,000 ohms. Electrical connection is made either by soldering terminals or by piggyback receptacle.

Colvin Laboratories, Inc., Dept. ED, 360 Glenwood Ave., E. Orange, N.J.
CIRCLE 576 ON READER-SERVICE CARD
HEAT RADIATORS.—Reduce transistor temperatures by providing an increased radiating surface. The Transicool heat radiator is made of high conductivity copper for maximum conduction of heat; aluminum is also available. These units are available in sizes to fit all JEDEC-30 packaged transistors.

Mark Company, Dept. ED, Taunton, Mass.

CIRCLE 581 ON READER-SERVICE CARD

ZENER DIODE SUBSTITUTION BOX.—For use in breadboard circuitry, model B offers a selection of 11 basic 10 w silicon zener diodes covering 3.6 to 30 v range.

International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., El Segundo, Calif.

CIRCLE 582 ON READER-SERVICE CARD

CONTROL CONNECTORS.—Are available for applications up to 600 v. Constructed of Neoprene, they may be obtained in three styles: oval, round, and dual round, with from 2 to 12 poles. They are crush-proof, corrosion-proof, waterproof and dirt-proof.

CIRCLE 583 ON READER-SERVICE CARD

TEMPERATURE INDICATOR.—Is available in nine ranges covering -30 to +350 F. Called model 116, it is portable and thermistor actuated. The thermistor sensing probes are interchangeable and are accurate to 0.5 F under 100 F, and 0.5% of reading over 100 F. The indicator may be used with model 119 channel selector for readout of ten temperature points.

Fenwal Electronics, Inc., Dept. ED, Mellen St., Framingham, Mass.

CIRCLE 584 ON READER-SERVICE CARD

PRECISION POTENTIOMETER.—Has conductive plastic resistance element. It is environmentally protected against shock, vibration, acceleration, moisture and humidity. Models are available in standard sizes and configurations, linear and nonlinear.

CIRCLE 585 ON READER-SERVICE CARD

SOLDER WASHER.—Rosin flux-filled, this solder washer eliminates the need for separate fluxing. The solder-flux-solder construction provides instantaneous fluxing around the entire periphery of the washer. They are available in all standard combinations of tin, lead, cadmium, antimony, and silver.

Alpha Metals, Inc., Dept. ED, 56 Water St., Jersey City 4, N.J.

CIRCLE 586 ON READER-SERVICE CARD

PIEZOELECTRIC CERAMIC.—Type SS10 replaces SS9. Dielectric constant is 6000; Curie temperature is +145 C. Over temperature range of 13 to 45 C frequency changes less than 0.1%.

Solar Manufacturing Corp., Dept. ED, 4553 Seville Ave., Los Angeles 58, Calif.

CIRCLE 587 ON READER-SERVICE CARD

A new division of
The Dow Chemical Company—

THE DOW METAL PRODUCTS COMPANY

Here's significant news for everyone who has an interest in metals and metal fabrication. The Dow Chemical Company, pioneer developers of Magnesium and Magnesium products, is now broadening its activities in metal working. A new division, THE DOW METAL PRODUCTS COMPANY, has been formed to specialize in the semi-fabrication and fabrication of not only Magnesium, but aluminum and other metals. This new division has excellent production facilities, plus knowledge gained through Dow's many years' experience in the metal working field. Facilities include plants for the manufacture of rolled and extruded products, sand and permanent mold castings, die castings, and fabricated assemblies.
NEW PRODUCTS

Miniature Brakes

Three types available

These miniature brakes are available in three types. Type BA-130-E has 110 oz-in. static torque, 3.5 w power consumption, and 1.499 in. OD. Type BA-100-E has 30 oz-in. static torque, 2 w power consumption, and 1 in. OD. Type SAB-151-E as 15 lb-in. static torque, 4 w power consumption, and 1.812 in. OD. Speed is 4000 rpm for the three models. They can be supplied to brake either when energized or de-energized; coils are available for 6, 12, 28, 48, and 100 v dc. The units are made to be mounted directly to small motors and gear train housings.

Dial Products Co., Dept. ED, 19 Cottage St., Bayonne, N.J.

CIRCLE 590 ON READER-SERVICE CARD

Silver-Zinc Batteries

Have high environment resistance

Exceeding the environmental resistance requirements of MIL-E-5272A, P-Series silver-zinc primary batteries have temperature ranges from -85 to +225 F. Voltages range from 1.4 to 495 v, supplying current from 100 ma to over 1000 amp. The units operate in any position and have a cell construction that virtually eliminates gassing. They are hermetically sealed and incorporate a fail-safe detection circuit to warn of premature activation. Double ignition circuits prevent failures due to shorts or open circuits. Rectangular, circular, sector, or special shapes can be supplied.

Cook Batteries, Dept. ED, 3850 Olive St., Denver 7, Colo.

CIRCLE 591 ON READER-SERVICE CARD

Bench-model Oven

Temperatures to 1000 F

This bench-model oven provides temperatures from 125 to 1000 F. Electric resistance heaters are located in all six walls, including roof, floor, and door and are thermally weighted to produce temperature uniformity. Offering maximum work space of 4 cu ft and occupying minimum bench space of 34 x 33 in., this oven has readily-accessible front panel-mounted temperature controls. Operating at 230 v at 11 amp max, the oven will heat from room temperature to 1000 F in 3.5 hr. Two wire shelves are included.

American Instrument Co., Inc., Dept. ED, 8030 Georgia Ave., Silver Spring, Md.

CIRCLE 592 ON READER-SERVICE CARD
ANALOG INTEGRATOR.—Eliminates graphic analysis by automatic summation of the area under a curve being electrically recorded. The integral value can be read on the instrument meter and an output is provided to allow direct recording of the information.

Massey Dickinson Co., Dept. ED, 11 Coker St., Watertown, Mass.

CIRCLE 595 ON READER-SERVICE CARD

HIGH-VOLTAGE PROBE.—Is rated at 12 kv dc or rms, 250 kv peak. Designed for use with oscilloscopes, type P1000 has an attenuation ratio of 1000 to 1, a risetime of 12 usec, and a frequency response from dc to 30 mc. Input impedance is 2.5 muf paralleled by 100 meg. The probe is 12 in. long, and has a 12 ft cable.

Tektronix, Inc., Dept. ED, P.O. Box 831, Portland 7, Ore.

CIRCLE 596 ON READER-SERVICE CARD

RECEPTACLES.—Used with 3/32 and 1/8 in. printed circuit boards, Reli-Acon card receptacles are available with threaded mounting inserts and with vibration resistant card locking clips. The units meet the environmental requirements of MIL-C-21097.

CIRCLE 597 ON READER-SERVICE CARD

EDGE-LIGHTED PLASTIC PANELS.—Meet MIL-P-7788 specs. A coating process is used which makes these panels scratch-resistant and results in maximum visibility by day or night. Sizes, shapes and markings are made to specifications.

CIRCLE 598 ON READER-SERVICE CARD

TEFLON FILM.—Is used in waveguides of radar systems. Called Railon, it does not bulge, distort under pressure, or leak. This 5 mil film is bondable with conventional adhesives, has a burst strength in excess of 30 psig, a tensile strength of up to 40,000 psi, and an elongation of under 200%.

Radiation Applications, Inc., Dept. ED, 370 Lexington Ave., New York 17, N.Y.

CIRCLE 599 ON READER-SERVICE CARD

RIGID COAXIAL LINES.—Are made of aluminum and meet the 3 megawatt MIL-I-26600 spec for radio interference. They may be obtained in various standard designs or custom units.

Telerad Mfg. Corp., Dept. ED, 1440 Broadway, New York 18, N.Y.

CIRCLE 600 ON READER-SERVICE CARD

BRUSH COMMUTATOR.—Model 550A-1 has 30 shorting channels and a speed of 5 rps. It combines small size with ease of maintenance and simplicity of design.

General Devices, Inc., Dept. ED, P.O. Box 253, Princeton, N.J.

CIRCLE 601 ON READER-SERVICE CARD
NEW PRODUCTS

Miniature Thermostat
Has 1 F sensitivity

Designed for cooling and high limit control, the model 32411 thermostat makes contact on temperature rise. It is 1/3 the size of a common sugar cube and has exposure limits of -65 to +325 F with an inherent sensitivity to 1 F. The unit is hermetically sealed and withstands 500 cps vibration with 10 g acceleration. It is made of corrosion resistant stainless steel and has a current rating of 2.5 amp, 115 v ac or 2 amp, 28 v dc.

Fenwal Inc., Dept. ED, Pleasant St., Ashland, Mass.

CIRCLE 604 ON READER-SERVICE CARD

Pulse Power Calibrator
Has ±0.5 db accuracy

The model PCX-1 pulse power calibrator is a precise instrument for calibrating pulse power measuring devices in the 925 to 1225 mc frequency range and for measuring power between -10 and +63 dbm. It has an accuracy of ±0.5 db for power measurements and ±0.1 db per 30 db for attenuation measurement.

General Communication Co., Dept. ED, 677 Beacon St., Boston, Mass.

CIRCLE 605 ON READER-SERVICE CARD

Radar Tubes
Have fast sweep characteristics

Available in 10, 12, and 16 in. sizes, these fast sweep radar tubes provide high resolution, deflection uniformity, and reduced deflection defocusing. Their jump-sweep capabilities permit complete accurate surveillance of fast moving objects. The 16-in. unit, type K1754P, has a minimum useful screen diameter of 14-1/2 in. Typical operating conditions are: accelerator voltage, 10 kv; focusing electrode, 3 to 3.5 kv; grid No. 1, 150 to 260 v; modulation, 40; and line width, 0.015 in.

Allen B. Du Mont Labs, Inc., Electronic Tube Div., Dept. ED, 750 Bloomfield Ave., Clifton, N.J.

CIRCLE 606 ON READER-SERVICE CARD

Relay
Mercury-wetted

Type HG6F mercury-wetted relay has a flat, rectangular design and measures 3.64 x 3.125 x 1.046 in. Six switches are mounted on a printed circuit panel. The unit is protected against dust, corrosive fumes, and explosive atmospheres. Contacts are rated at 5 amp, 500 v dc or rms.

C. P. Clare & Co., Dept. ED, 3101 Pratt Blvd., Chicago 45, III.

CIRCLE 607 ON READER-SERVICE CARD

Using Thermistors

Edited by FENWAL ELECTRONICS, INC.

STABLE THERMISTORS PERMIT HIGH CONTROL ACCURACY WITH SIMPLE CIRCUITRY

Circuit shown for the Fenwal Electronics’ Model 150 Temperature Controller is typical. It has a sensitivity of 0.001°C throughout its working range! New, extremely stable, probes permit full exploitation of thermistors’ inherently high sensitivity to temperature change.

Fenwal Model 150 Thermostat Controller

Operating characteristics of the new probes are precisely predictable and repeatable over the entire control range. Furthermore, the large change in resistivity of a probe in response to a small temperature change greatly simplifies circuit design. (Resistance can change as much as 4000 ohms — or more — for a change of only 1° in temperature.) In most cases, a standard resistance bridge circuit is ample for measurement of signal output.

For full details on thermistors, send for Catalog EMC-2. Further details on Model 150 also available on request. Write FENWAL ELECTRONICS, Inc., 38 Mellen St., Framingham, Mass. And simplify your circuit design problems with a G200 Experimental Kit of thermistors. Available from Fenwal Distributors or the Framingham plant.

Fenwal Electronics

Making Precision Thermistors

to Make Your Design Ideas Come True

CIRCLE 608 ON READER-SERVICE CARD

ELECTRONIC DESIGN • September 16, 1959
FLAT-HEAD SOCKET SCREWS.—Are available with either hex or spline sockets in alloy or stainless steel, in sizes No. 0 through No. 3. Part of the Dyna-Mite line, they are recommended for precision applications.
Bristol Co., Dept. ED, Waterbury, Conn.
CIRCLE 616 ON READER-SERVICE CARD

BUTTON-HEAD SOCKET SCREWS.—Are available with either standard hex or spline sockets in alloy or stainless steel, in sizes No. 0 through No. 3. Part of the Dyna-Mite line, they are recommended for resistance to shock and vibration.
Bristol Co., Dept. ED, Waterbury, Conn.
CIRCLE 617 ON READER-SERVICE CARD

TRANSUDERS.—Variable reluctance pressure types, they are made in seven pressure ranges from 0-50 to 0-5000 psi. Type PDH-4 has a sensitivity of 100 mV per psi; PDH-6 has 50 mV per psi sensitivity.
Crescent Engineering & Research Co., Dept ED, 5440 N. Peck Rd., El Monte, Calif.
CIRCLE 618 ON READER-SERVICE CARD

DELAY LINES.—Have improved temperature stability. Temperature coefficient of delay is 5 ppm per deg C for the fixed and some of the adjustable magnetostriective delay models, and 25 ppm per deg C for other adjustable models.
Deltone, Inc., Dept. ED, 608 Fayette Ave., Mamaroneck, N.Y.
CIRCLE 619 ON READER-SERVICE CARD

RESETTABLE REVOLUTION COUNTER.—Forward shaft revolutions add 10 counts, reverse revolutions subtract 10 counts in this four-digit, knob reset counter. It is 1-3/4 in. wide, 2-3/4 in. long, 1-1/2 in. deep and can handle speeds up to 12,000 cpm.
General Controls Co., PIC Automation Controls Div., 8078D McCormick Blvd., Skokie, Ill.
CIRCLE 620 ON READER-SERVICE CARD

MINIATURE PRESSURE TRANSDUCER.—P series, variable reluctance diaphragm type. They are rugged, have high sensitivity, fast response, and can be used for both dynamic and static pressure measurements.
Hidyne Instrument & Engineering Co., Dept. ED, P.O. Box 257, Tullahoma, Tenn.
CIRCLE 621 ON READER-SERVICE CARD

SPEED CONTROLS.—Have infinitely variable speed drive with vernier dial for precision speed setting. Available with motors up to 1/4 hp, 115 v, 60 cps.
Humphrey, Inc., Humphrey Products Div., Dept. ED, 2805 Canon St., San Diego 6, Calif.
CIRCLE 622 ON READER-SERVICE CARD

CRYSTAL-CONTROLLED TUNERS.—XT series, pre-set to 12 frequencies in the 20 to 200 mc range. Can be used in monitoring am or fm broadcasts, network relaying, and scatter propagation studies.
Karg Laboratories, Inc., Dept. ED, 30 Meadow St., South Norwalk, Conn.
CIRCLE 623 ON READER-SERVICE CARD

general electric
voltage regulation
idea file
by C. A. Neumann

For radar engineers

General Electric Inductrol* regulators accurately control current to transmitter tube focus coils

Power input to transmitter tube focus coils on radar systems must be very closely regulated to assure proper operation of the tubes. The circuit below illustrates a typical application with a General Electric Inductrol voltage regulator accurately controlling the input to the focus coil line.

In low-voltage power supply circuits the Inductrol regulator functions to control voltage. In focus coil applications, however, the Inductrol regulator is now called upon to precisely control the d-c current.

Here again, the ability of an induction voltage regulator to perform this regulation function can best be shown by the following example:

Maintain constant d-c current at any level within range of 9.5 amps to 6.3 amps. Corresponding d-c voltage levels for these current limits are as follows: @ 9.5 amps DC—200 volts DC; @ 6.3 amps DC—98 volts DC; max. load—1.9 kw. Regulator must withstand 25 times normal current (for 2 sec.) and introduce no harmful waveform distortion.

Input line supply: three-phase, 60 cycles, 208Y volts, with ±10% voltage variation.
Rectifier: full wave, three-phase, silicon rectifier bridge, with system regulation of approximately 5%.

TO COMPENSATE FOR SYSTEM REGULATION, the regulator must be capable of delivering a maximum of 200 × 1.08 = 216 volts DC.

Using the proper conversion factors for a three-phase, bridge rectifier circuit, the corresponding d-c current and voltage values for the d-c counterparts will be as follows:
Voltage: @ 9.5 × .74 = 72.5 volts AC line to line
Current: 9.5 × .82 = 7.8 amps AC line to line

The range of regulation the Inductrol regulator must introduce into the circuit results in a requirement of plus and minus approximately ±40% voltage range from the mid-point level of the output voltage range required. This considers input line variations and system regulation. Since the range of voltage output of the regulator (72.5 to 160 volts AC) is below the input voltage of 208 volts, a unique design technique in winding construction must be used for best economy. The sketch shows the basic regulator schematic circuit.

Further calculation will show that the regulator rating required to meet this focus coil requirement will be approximately 44 volts × 7.8 amps × 3 = 0.6 kva

With this unique winding arrangement for these very special loads, it becomes possible to perform the desired voltage regulation without need for a separate stage of voltage transformation. In addition the Inductrol regulator will withstand 25 times normal current and does not introduce harmful waveform distortion.

For more information, write Section 425-22, General Electric Co., Schenectady 5, N.Y.

*Registered trademark of General Electric Co. for Induction Voltage Regulator.

Progress Is Our Most Important Product

general electric
CIRCLE 624 ON READER-SERVICE CARD
PRODUCTION PRODUCTS

Name, Numbering, and Lettering Head

For hot stamping

Hot stamping head model 441 is a 25 to 35 wheel numbering head that also does trademark and name stamping in any combination. It is supplied with a thermometer and a thermostatic heat control that provides proper stamping temperatures. The cartridge type heating element is mounted in the center shaft which is oversize to afford stamping strength under heat stress. This plugs into any ac line. An adjustable tape feed guide allows the use of roll leaf foil in any hot stamping press with automatic roll leaf feed. Overall size is 6 x 8 x 6 in.

The Acromark Co., Dept. ED, 411 Morrell St., Elizabeth, N. J.

CIRCLE 626 ON READER-SERVICE CARD

Resolver Test Stand

For precise shaft positioning

Designed for use in production tests of resolvers, synchros, potentiometers, and other such equipment, the model 7530 test stand is a precision shaft positioning device. It consists of an optical coincidence reading system with ±2 sec accuracy, a rack and gear for precise shaft positioning, and an adaptor plate and coupling. In use, the test unit is mounted on the adaptor plate and its shaft is connected to the positioning shaft by a miniature flexible coupling. The shaft system is then quickly adjusted to any approximate angular position by means of the rapid drive disc. Accurate final positioning is accomplished with a slow motion drive. The true angular position of the shaft is read directly to the nearest second of arc.

W. & L. E. Gurley, Dept. ED, 514 Fulton St., Troy, N.Y.

CIRCLE 627 ON READER-SERVICE CARD
REDUCE YOUR COMPONENT COSTS WITH ONE TI POWER TRANSISTOR!

Save on overall costs and up your circuit reliability by selecting one specific TI germanium power transistor for your high power circuitry job. The need for transistor paralleling is greatly reduced...and, in many applications, eliminated...with TI's newest high current alloy-junction power transistor series. If you are using two types in parallel for a 25-amp job, save by using one TI high current alloy-junction transistor! Ranging from 10 to 25 amps in 40, 60, or 80 volt types, all units feature guaranteed gain at maximum rated currents and 1.5 volts V_{ce}. For your high current switching applications, all types highlight typical switching times at 25°C of 12.0 usecs (t_{on}) and 7.0 usecs (t_{off}).

Contact your nearest Texas Instruments sales engineer for applications assistance or your nearby TI distributor for off-the-shelf delivery at factory prices. For high reliability, high performance, and a full year product guarantee, you can rely...on TI!

maximum ratings at 25°C

- Collector to Base Voltage $V_{CB} = -50$, $I_{C} = 0$
- Collector to Emitter Voltage $V_{CE} = +0.2$, $I_{C} = 0$
- Emitter to Base Voltage $V_{EB} = -50$, $I_{E} = 0$
- Collector Current I_{C}
- DC Collector Current I_{C}
- Base Current I_{B}
- Total Dissipation P_{D}
- Junction Temperature T_{J}

Germanium and silicon transistors
Silicon diodes and rectifiers
Solid tantalum capacitors
Precision carbon film resistors
Silicon resistors

Texas Instruments Incorporated
Semiconductor-Components Division
13800 N. Central Expressway
POST OFFICE BOX 312 - DALLAS, TEXAS
RECTIFICATION MAKES THE DIFFERENCE

- More than doubles count life
- Provides reliable operation from 25/40/50/60 cycles
- Broadens range of permissible line voltage variation

These great improvements, achieved through built-in rectification of AC models—

Make possible the unmatched count life ratings of CE-800 and PIC-600 from AC Service not even approached by non-rectified counters.

In addition to the above PIC manufactures
Endurance Rated counters for every purpose, including
- Stroke and Revolution Counters
- Automatic Batch Counters
- A complete line of Actuating Switches for Electric Counters.

Whatever your needs see your PIC Representative or Distributor or write for literature.

PRODUCTION PRODUCTS

Component Inserting Machine
For printed circuit assemblies
The model C bench machine inserts and clinches axial lead components into printed wiring boards. It can handle resistors and diodes as small as 1/4 w when the leads are taped and accommodates body lengths up to 1-1/8 in. and diameters up to 0.375 in.

United Shoe Machinery Corp., Dept. ED, 140 Federal St., Boston 7, Mass.
CIRCLE 632 ON READER-SERVICE CARD

Precision Furnaces
For semiconductor manufacture

Designed for the transistor and semiconductor industries, these precision furnaces are available with maximum temperature ranges of 1850, 2200, and 2600 F. Temperature uniformity is obtained through multiple zone heating and precise temperature selection can be provided with saturable reactor controls. The units may be supplied with controlled preheat and cooling zones.

Hevi-Duty Electric Co., Dept. ED, 2040 W. Wisconsin, Milwaukee 1, Wis.
CIRCLE 633 ON READER-SERVICE CARD

Scrubbing Machine
For printed circuits
In one operation, this machine scrubs, rinses, and dries printed circuits and laminates, preparing them for masking, etching, and soldering. At a rate of 5 to 15 ft per min, it removes all surface dirt and oxides, removes with a dip all photoresists after etching, prepares plates for effective soldering, and delivers the plates clean and dry.

The unit circulates pumice slurry continually and evenly over the working area and brushes without harming fine printing. It handles laminates 1/16 to 1/8 in. thick and up to 14 in. wide. It occupies a 3 x 4 ft area and comes in models that scrub one or both sides in one pass.

CIRCLE 634 ON READER-SERVICE CARD

99.99% functionally reliable, and 100% humidity proof

New NETWORKS current-sensitive sealed fuse

Hermetically sealed by Networks' patented metal-to-glass sealing process, this fuse is guaranteed to meet any specified resistance to atmospheric conditions. Unit, in addition, is built for high shock and vibration resistance, and long life.

Heat-dissipating, fuse is dimensioned to dissipate heat produced by the maximum rated current under any special blowing time and temperature conditions.

Fast or slow operation, units are supplied with quick, or medium blowing-operating time. Or you can get slow-burning fuses with high time-lag...fuses that withstand heavy surges and instantaneous peaks, but blow quickly under short circuits.

ENVIRONMENTAL CAPABILITIES:
Temperature: -100°F to +400°F
Vibration: 10 to 500 cps at 15 G's max.
Shock: 50 G's for 11 ms duration

Terminal ends (outside) are flexible copper alloy leads...straight cuts, or flattened-and-pierced lugs.

Our engineering department will be pleased to work with you on special fuse requirements.

David W. Marsh, Manager,讀者服务

CIRCLE 635 ON READER-SERVICE CARD
Dioxide Sealing Machine

Has six stations

For making the final seal on glass diodes, the model 3130 semiautomatic sealing machine has a production capacity of 300 to 500 diodes per hr. It measures 6 x 5 x 3 ft and consists of six complete individual sealing machines with pull-out sections for easy maintenance. A sensitive contact device indicates and stops the motion of the cat whisker.

Kahle Engineering Co., Dept. ED, 3322 Hudson Ave., Union City, N.J.
CIRCLE 637 ON READER-SERVICE CARD

Vacuum Oven

Dries printed circuits

Designed with ambient temperature ranges from 200 to 300 °C, this vacuum oven console can dry printed circuits, transistors and other electronic parts. Vacuum evacuation is as low as 1 micron. In less than 2 min it is down to 300 microns. The equipment includes a heavy duty vacuum pump, a micron gage and an indicating-controlling thermostat. Chamber measures 15 in. wide, 18 in. deep and 15 in. high.

CIRCLE 638 ON READER-SERVICE CARD

Electric Oven

Sets Teflon insulated wire markings

The model HS electric oven permanently sets markings on Teflon insulated wires and cables. It incorporates a variable speed motor drive that draws the wires through the oven into a self-coiling wire pan. This process permits safe low temperature marking with the company's dry Teflon foil. The heat setting operation subjects the wire to a minimum flash high temperature exposure above the gel and vaporization point of Teflon. The effective sintering action is confined to the outer skin of the insulation, thus protecting dielectric values.

CIRCLE 639 ON READER-SERVICE CARD

2 IMPORTANT TOOLS FOR HIGH VACUUM PRODUCTION—

PW-600
HIGH VACUUM PUMPING SYSTEMS

Speedy evacuation of chambers, tanks, bell jars, tubes, furnaces or other equipment to pressures in the low micron region plus maximum utility and flexibility in the micron region. Designed for use with the 10-4 torr range of high vacuum equipment. Will evacuate to the lowest pressures with ease. Complete data sheet available upon request.

Ask for Bulletin 4000-1

R-2H
HIGH VACUUM EVAPORATOR

A superior unit for performing highly specialized work in optical, chemical and research investigations. The conventional flat base plate is replaced by a cylindrical stainless steel chamber permitting introduction of many more and varied feed-throughs, such as: precise optical measuring equipment. This is an advanced design evaporator with an extended pumping capacity and liquid nitrogen cold trap, attaining ultimate pressures of 5 x 10^-6 mm Hg. It is capable of producing multiple-layer films under monitored control of reflection and transmission.

Ask for Bulletin 4100-1D

KINNEY MFG. DIVISION
THE NEW YORK AIR BRAKE COMPANY
3561 WASHINGTON STREET BOSTON 30 MASS.

Please send me □ Catalog on Kinney Pumps
□ Pumping System Bulletin 4000-1
□ Evaporator Bulletin 4100-1D

Name
Company
Address
City Zone State

WRITE FOR NEW LITERATURE ON KINNEY PUMPS AND EQUIPMENT
Another Tinnerman Original...

Cost-cutting Tubular **SPEED CLIP**
takes positive "bite" to hold assemblies tight!

In seconds, you can front-mount trim, name plates, grilles, knobs, insulation, with Tubular SPEED CLIPS. And at interesting savings in assembly time and costs!

Snap these quality spring-steel fasteners into holes in metal, plastic or wood. Then press the mounting studs, nails or rivets into the clips to complete the attachments...anywhere along your assembly line.

As the Speed Clip is inserted, spring fingers compress, then expand behind the panel to lock tight. The rolled-in end permits easy entrance, but bites hard into the stud to prevent back-off or vibration-loosening.

Tubular Speed Clips are available for a full range of stud sizes and panel thicknesses. Permanent lock or removable types.

Check your Sweet's Product Design File (Section 8/Ti) for data on Tubular Speed Clips and other Speed Nut brand fasteners. Then call your Tinnerman representative for samples and additional information. If he isn't listed under "Fasteners" in your Yellow Pages, write to:

TINNERMAN PRODUCTS, INC.
Dept. 12 • P.O. Box 6688 • Cleveland 1, Ohio

PRODUCTION PRODUCTS

Vibratory-Feed Staking Machine

Handles up to 115 solder terminals per min.

Designed for bench operation at 115 v ac, vibratory-feed machine positions and stakes up to 115 solder terminals per min in perforated panels.

It permits accurate lugging of flat panels with throat lengths of 3 in. or less. The unit has a nonjamming feed mechanism that delivers pins to an exact predetermined location and an infinite velocity control knob that assures constant pinning.

CIRCLE 642 ON READER-SERVICE CARD

Portable Cyclic Tester

Weighs 22 lb

The Test-All, a packaged universal test tool, weighs 22 lb. It is used to perform a variety of test functions, including life testing, duty cycle tests, temperature rise, or load tests. It provides a simple, reliable testing at any duty cycle from 0 to 100% on any time basis from seconds to 24 hours. Nine standard dial timing ranges are available.

CIRCLE 643 ON READER-SERVICE CARD

Vacuum Coater

For short run production

The model 3142 vacuum coater is designed for short run and small lot vacuum metallizing operations on plastic, glass, and metal parts. It consists of a horizontal coating chamber 24 in. in diameter and 30 in. long mounted on a cabinet which contains the electrical system, the controls, and the external pumping system. The 10-in. diffusion pump and the 30 cfm rotary gas ballast pumps provide high speeds so that cycle times are short.

CIRCLE 644 ON READER-SERVICE CARD
LET CANNON HELP YOU WITH YOUR DC SOLENOID PROBLEMS

Cannon is one of America's largest producers of dc solenoids...a pioneer in engineering a wide range of special types, including hermetically sealed and high-temperature models. Multiple-strip solenoids for keyboard operation—locking types requiring no holding current—and miniature and sub-miniatures as small as 1/2 inch in diameter are now in standard production. If you have a problem involving dc solenoids, Cannon offers a complete selection...for any application.

Cannon has prepared a new engineering catalog containing valuable information about dc solenoids. Theory, principles of operation, and advantages of dc solenoids are presented simply and authoritatively. Write for your free copy to:

CANNON ELECTRIC CO. 3208 HUMBOLDT STREET, LOS ANGELES 31, CALIFORNIA • PLEASE REFER TO DEPT. 000
CIRCLE 646 ON READER-SERVICE CARD

CANNON PLUGS
HUMBOLDT STREET, LOS ANGELES 31, CALIFORNIA • PLEASE REFER TO DEPT. 000
CIRCLE 646 ON READER-SERVICE CARD

2500
Yes! You can now order up to 2500 each of such popular Cannon Connector types as Miniature D, KO, DPD, DPA, DPX, etc. Immediate shipment at factory prices.

ELECTRONICS HERRICKS ROAD, MINEOLA, L.I., N.Y. PIONEER 6-6520 TWX 0-CY-NY-580 CIRCLE 645 ON READER-SERVICE CARD

Schweber
When Top Quality Capacitors Are Required
Specify Pyramid Mylar® or Tantalum

Miniaturized to provide maximum space economy.

New Pyramid Tantalum slug capacitors have cylindrical cases and contain a non-corrosive electrolyte. Due to the special construction of materials used in the manufacture of Pyramid Tantalum slug capacitors, these units are both good and vibration proof. In addition, this type of capacitor assures long service life and corrosion resistance—made to meet MIL-C-3966 specifications.

Commercially available immediately, these new Pyramid Tantalum capacitor units have an operating range between

\[-30° C \text{ to } +125° C\] with voltage de-ratings above +85° C. Pyramid wrapped Mylar capacitors—Series Nos.: 101, 103, 106 and 107 have the following characteristics:

<table>
<thead>
<tr>
<th>Construction Styles</th>
<th>Basic No.</th>
<th>Type Winding</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>101</td>
<td>Inserted Tabs</td>
<td>Flat</td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>Extended Foil</td>
<td>Flat</td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>Inserted Tabs</td>
<td>Round</td>
</tr>
<tr>
<td></td>
<td>107</td>
<td>Extended Foil</td>
<td>Round</td>
</tr>
</tbody>
</table>

Tolerance: The standard capacitance tolerance is ± 20%. Closer tolerances can be specified.

Electrical Characteristics: Operating range for Mylar capacitors—from

\[-55° C \text{ to } +85° C\] and to +125° C with voltage de-ratings.

Jisssipation Factor: The dissipation factor is less than 1% when measured at 25° C and 1000 CPS or referred to 1000 CPS.

<table>
<thead>
<tr>
<th>Insulation Resistance</th>
<th>Temperature</th>
<th>IR x mfd</th>
<th>Maximum IR Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>25° C</td>
<td>50,000</td>
<td>15,000 meghoms</td>
<td></td>
</tr>
<tr>
<td>85° C</td>
<td>1,000</td>
<td>6,000</td>
<td></td>
</tr>
<tr>
<td>125° C</td>
<td>50</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

Pyramid Mylar capacitors are subject to the following tests:

Test Voltage—Mylar capacitors shall withstand 200% of rated D.C. voltage for 1 minute at 25° C.

Life Test—Mylar capacitors shall withstand an accelerated life test of 500 hours with 140% of the voltage rating for the test temperature. 1 failure out of 12 is permitted.

Humidity Test—Mylar capacitors shall meet the humidity requirements of MIL-C-3966 specifications.

Complete engineering data and prices for Pyramid Mylar and Tantalum Capacitors may be obtained from Pyramid Research and Development Department.

When top quality capacitors are required, specify Pyramid Mylar® or Tantalum.

V168 TANTALUM CAPACITORS

Printed Circuit Etcher

Etches two sides at once

For prototype printed circuit work, the model 200 etcher has a variable spray nozzle pattern and a 7 to 12 gal etchant sump capacity. With ferric chloride or picric acid, it simultaneously etches both sides of boards up to 10-3/4 x 13-3/4 in. Line widths are obtainable to 0.003 in. The unit is 29 x 25 x 26 in. and operates from 115 v ac, 60 cps power. It is transparent so that work can be viewed in process. A quartz-cased immersion heater can be supplied as optional equipment.

Centre Circuits, Inc., Dept. ED, P.O. Box 165, State College, Pa.

CIRCLE 650 ON READER-SERVICE CARD

Ultrasonic Cleaner

For small parts

Ultrasonic cleaner model 200 provides high energy density for small part cleaning. Driving elements cover 43% of the bottom in the 1 gal stainless steel tank, and actual radiating surface is 12 sq in. The 115 v ac, single-phase, 60 cps generator is designed for continuous operation and delivers an average power output of 60 w, peaks of 340 w. The unit includes a 0 to 60 min timer and provision for remote control of equipment.

National Ultrasonic Corp., Dept. ED, 111 Montgomery Ave., Irvington 11, N.J.

CIRCLE 648 ON READER-SERVICE CARD

Etch-Cleaning Machine

For transistors, diodes, small parts

For etch-cleaning transistors, rectifiers, diodes, and other small parts, this machine will process 1200 to 2400 units per hr. It performs stream etching, quenching, and first rinse operations on the standard glass diode first-seal. The unit consists of a 12-station indexing wheel and an array of nine ball-socketed jet nozzles mounted in a tank with the manifolds and tubing connections all below the water level. The index mechanism is controlled by an adjustable timer so that the etching cycle can be varied at will. The unit requires 30 x 22 in. of table top and 115 v ac.

CIRCLE 649 ON READER-SERVICE CARD

PRODUCTION PRODUCTS

IDEAL PRECISION PANEL METERS

the complete line for every application

IDEAL Panel Meters are assembled in controlled atmospheric and climate conditions and 100% inspected at every stage of production to insure highest quality and dependability.

- D'Arsonval movements guarantee minimum accuracy of 2% (full scale).
- Rugged construction means trouble-free, long-lived service.
- Durable plastic meter cases provide greater clarity, easier readability.
- Beauty of design enhances your product.

For more information on the entire IDEAL line, write for Catalog No. 32.

Said to Electronic Parts Distributors exclusively through Waldam Electronics, Inc., 4627 West 53rd Street, Chicago 34, Illinois.

IDEAL

IDEAL PRECISION METER CO., INC.

126 Greenpoint Ave., Brooklyn 22, N.Y.

CIRCLE 651 ON READER-SERVICE CARD

CIRCLE 647 ON READER-SERVICE CARD

ELECTRONIC DESIGN • September 16, 1959
Wire Feeder
Handles 50 to 36 gage

With adjustable tensioning from 0.1 to 2.5 oz., the Kinetrol wire feeder speeds dereeling of 50 to 36 gage wire. Accurate tensioning is maintained despite winding speed variation, permitting irregular formers to be wound without breakage or strain.

Scopes Co., Inc., Dept. ED, P.O. Box 56, Monsey, N.Y.

CIRCLE 653 ON READER-SERVICE CARD

Tubular Riveting Machine
For small assemblies

An automatic, high-speed electric riveting machine, the model 500 feeds and sets all types of tubular rivets from the smallest sizes up to 5/16 in. in diam and 1/2 in. in length. Interchangeable feeding tracks and dies convert it into an eye-letting machine. Designed for light assemblies, the unit may be used for fabricating and fastening printed circuits and electronic components.

CIRCLE 654 ON READER-SERVICE CARD

Insulated Wire Printer
Marks up to 300 ft per min

The model 482 plastic tube and insulated wire printer accurately prints in color at speeds up to 300 ft per min and repeats markings at 9 in. intervals. It incorporates an adjustment lever for varied cable sizes, tube diameters, and flattened thicknesses. Dies are easily interchanged and fine printing adjustment is made by set-screw positioning of a hand lever. Screw adjustments also supply the proper ink feed.

The Acromark Co., Dept. ED, 403 Morrell St., Elizabeth, N.J.

CIRCLE 655 ON READER-SERVICE CARD

Circuit Board Power Drill
Leaves no burrs

Leaving no burrs, the model 100-26 circuit board drilling machine drills more than 24,000 holes a day. It allows holes with 0.004 in. walls, and each hole is within 0.001 in. of true position. Printed circuit boards can be drilled individually or in stacks of up to five. The unit has a 0.02 to 0.25 diam drill capacity, a 1-1/4 in. spindle travel, and a 0 to 450 lb drill thrust. It measures 2 x 3 x 4 ft and operates on 60 cps, 115 v ac current.

CIRCLE 656 ON READER-SERVICE CARD

The Standard
2"
BLOWER
you've been waiting for!

Dean & Benson

POW AIR
New HP & HF Series

- Lightweight Aluminum alloy construction for clean aerodynamic sur- faces and rigid construction.
- Square or round flange located at your option, anywhere along the blower housing.
- Slip out AC or DC motor allows for easy and inexpensive maintenance without replacing entire unit.

DEAN & BENSON RESEARCH
Division of Benson Manufacturing Co.
Kansas City 1, Mo.

CIRCLE 652 ON READER-SERVICE CARD

VOLTRON now offers
-a portable wattmeter for refined, low-power measurements of gyro's, synchros and servomotors

- Rugged Taut Band Suspension
- Voltage drop across current coil as low as 0.2% of input voltage
- Full-Scale Range: 0-1.2 Watt
- Low Power Factor

SPECIFICATIONS:
CONSTRUCTION Meter consists of d'Arsonval type D.C. milliammeter and one A.C. power to D.C. current transducer for each phase. Taut band suspension eliminates the static friction and the delicacy of conventional jewels and pivots. Solid state circuit components are used in the transducer.

INPUT VOLTAGE
26/115 ±10%

WATTAGE RANGE
26 volt input — 1.2/3/12/30
115 volt input — 1.2/3/12/30/120

FREQUENCY RANGE
Flat from 50 to 2000 cycles

ACCURACY
1.0% of full scale watts

PHASE
1, 2, or 3 phase. The 3-phase meter is suitable for 3-phase, 3-wire, or 3-phase 4-wire measurements.

POWER FACTOR
0.1 to 1.0 Lag or Lead.

WAVE FORM FACTOR
Calibrated for use with both sine and square wave. For distorted waveforms, the error will be less than 2% for 5% harmonic distortion.

VOLTAGE CIRCUIT: 0%

CURRENT CIRCUIT:
Max. Error (% Watts indicated) P.F.
0.2 1.0
2.0 0.1

ERROR DUE TO POWER
CONSUMED IN
linear between these values

VOLTAGE CIRCUIT:
0%

CURRENT CIRCUIT:

DELIVERY: From stock subject to prior sale.

TERMS: Net 30, FOB: South Pasadena, Calif.

CIRCLE 657 ON READER-SERVICE CARD
reprints

TO HELP YOU IN YOUR DESIGN WORK

These reprints are offered to you by Electronic Design.

In answer to the many requests of our readers, ELECTRONIC DESIGN offers these 2 valuable reprints for your files to keep you up-to-date on the most current developments.

CONNECTIONS

16 page comprehensive report from the Feb 18th issue concerning the latest advancements in the field: Connections Between Equipment • Connections Inside Equipment • RF Connections. Included are such items as cable connectors, connectors used with rack mounted equipment, printed circuited connectors, terminal blocks. Read ELECTRONIC DESIGN's finding on this enormous field of electrical connections.

Circle 250 on Reader Service Card

MICROELECTRONICS

ELECTRONIC DESIGN offers this important 12 page staff report from the April 29th issue to keep readers alerted to the newest techniques, processes and the current status of developments in microminiaturization. The growth is phenomenal—2 years ago microelectronics was in the laboratory stage. Now it is causing a revolution in electronic packaging.

Circle 251 on Reader Service Card

For single copies, circle the correct Reader Service Number and you will be sent a handy coin card for your remittance. For multiple copies fill out the coupon below.

MAIL TO DEPT. C-9/16 ELECTRONIC DESIGN, 830 THIRD AVENUE, NEW YORK 22, N. Y.

CONNECTIONS

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 copy</td>
<td>$0.50</td>
</tr>
<tr>
<td>5 copies</td>
<td>2.00</td>
</tr>
<tr>
<td>10 copies</td>
<td>3.50</td>
</tr>
<tr>
<td>25 copies</td>
<td>7.50</td>
</tr>
</tbody>
</table>

MICROELECTRONICS

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 copy</td>
<td>$0.50</td>
</tr>
<tr>
<td>5 copies</td>
<td>2.00</td>
</tr>
<tr>
<td>10 copies</td>
<td>3.50</td>
</tr>
<tr>
<td>25 copies</td>
<td>7.50</td>
</tr>
</tbody>
</table>

Please send me: copies of Connections Report copies of Microelectronics

NAME

ADDRESS

CITY Zone State

ELECTRONIC DESIGN • September 16, 1959

YOUR CAREER NEWS, NOTES, NOTIONS

Men competent to hire engineers are in a short supply as are engineers, according to the Cadillac Associates Inc., large recruiters of technical personnel. Because of inexperience and antiquated techniques in hiring, Cadillac reports the average cost of recruiting electronic engineers by company personnel is now in excess of $300 per man and is steadily rising.

To make the task of company recruiting easier, Cadillac is offering seminars for industry to improve efficiency. One firm reports greatly improved results.

Chief way of getting more engineers is not to bring up the subject of salary early in the interview.

According to Eugene B. Shea of Cadillac, salary is a secondary factor in an engineer's decision to accept or reject an offer. Shea puts it this way: "Salary is the most misunderstood and controversial subject in employment. Of the 17 factors in job satisfaction salary is eighth in importance among men happy with their jobs, but an employee who is unhappy with his job rates salary a first in importance. Of course all prospective employees have some dissatisfaction with their jobs or they would not be candidates."

Shea explains that salary is the most important tangible factor in a man's job picture. A candidate can never be sure a new company will provide the more important intangibles so the salary becomes the only factor capable of quantitative measurement.

For this reason Shea advises recruiters never to discuss salary until a candidate is assured of the hiring firm's ability to give him the type of work he wants and the recognition he needs.

It is no surprise to find that recruitment costs are high. One reason is the long time it takes to fill vacancies. In general, recruitment officers are reconciled to a very long lead time (six months or more) for filling high level openings. Thirty to forty-five days are more typical lead times for average engineering openings.

ECONOMICALLY THE "MIGHTY:"

The term is used in the military sense, for the most part, but in the electronics industry the term is used to mean the products, organizations and personnel which have won a position of great influence over a large part of the industry.

In the electronics industry the "Mighty" are those organizations and persons which are leaders in the industry and which, because of their size and importance, can influence the industry more than the 'little guys.'

These mighty organizations and persons are usually large companies, and large companies are the ones which are able to influence the industry. These mighty organizations and persons are usually large companies, and large companies are the ones which are able to influence the industry.
A regional employment office serving eight northeastern states has been opened in Elizabeth, N.J., by Texas Instruments, Inc. Harry Laur, former personnel administrator of the company's semiconductor components division in Dallas, heads the office at 1141 E. Jersey St. Being sought for positions in Texas are electronic, mechanical and industrial engineers, physicists, chemists and experts in business administration, marketing and finance. The states covered are New York, New Jersey, Connecticut, Massachusetts, Rhode Island, Pennsylvania, Delaware and Maryland, and the District of Columbia.

“Speaking and writing about creativity has almost become a national pastime during the last five years. You cannot pick up a magazine or a newspaper today without finding the word creativity mentioned somewhere . . . Books of all sorts have appeared which aim at fostering creativity. This is a new trend.”

With this broad observation, seven Harvard students plunge into their own broad summary of American industrial efforts to foster creativity (“Individual Creativity and the Corporation,” Manufacturing Group 29, Harvard Graduate School of Business Administration). Their report, described as “submitted in partial fulfillment of the requirements in Prof. George F. Doriot’s course in manufacturing,” covers theory of creativity, popular creative devices and the roles of business and education.

In an age in which many businesses lean toward conformity and group orientation, the individual survives handsomely in this study as the fount of creative thought. Examples:
- Brainstorming is not a substitute for individual thinking but a supplementary method for coaxing new ideas from the individual.
- Taking a problem away from the individual who has conceived it is risky, because it removes a major asset: the enthusiasm of the person who thought of the idea. “In many cases, the enthusiasm and drive of the man who considers the problem as his baby is more important than knowledge in the subject.”
- Mechanical aids for listing alternate approaches, such as morphological analysis (in which all possible attributes of a problem are set up in a table), only stimulate the imagination. The individual must still overcome all of the personal blocks to creativity.

The study lists tips for management to encourage creative output. Education comes in for its share of criticism, too.

The authors conclude that “action is possible within the [business] organization to increase creativity and that this can be done without breaking the organization apart.”

ADD A “NEW DIMENSION” TO YOUR CAREER!

Your career advances by degrees . . . professional degrees. At Westinghouse-Baltimore, you can enjoy stimulating project activities . . . plus the opportunity to advance your career in the Westinghouse Graduate Study Program. In affiliation with The Johns Hopkins University, the University of Maryland, and other leading universities, qualified engineers are assisted in their work toward graduate degrees. This program is described in “New Dimensions” . . . the story of Westinghouse-Baltimore.

Current Career Openings Include:

- Microwave Systems & Components
- Radar Systems
- Network Synthesis
- Analogue and Digital Computer Design
- Airborne Electronic
- Counter-Measures
- Infrared Systems
- Development
- Solid-State Devices & Systems
- Test Equipment Design
- Ferrite Reconnaissance
- Electronics Instructors
- Communications Circuitry
- Field Engineering
- Technical Writing
- Electronic Packaging
- Experimental Psychologists
- Other positions open for Electrical & Mechanical Engineers and Physicists

Write for “New Dimensions” . . . the informative brochure that takes you behind the scenes at Westinghouse-Baltimore today.

For a confidential interview, send a resume of your education and experience to: Mr. A. M. Johnston, Dept. 955, Westinghouse Electric Corporation, P. O. Box 746, Baltimore 3, Maryland.

Westinghouse

BALTIMORE

CIRCLE 903 ON CAREER INQUIRY FORM
WE MAKE THE SYSTEMS WORK

Almost unique in the world of the electronics industry, Federal Electric Corporation serves as a complete engineering service organization for the government, for industry and for its parent organization, International Telephone and Telegraph Corporation. A central engineering department, at Paramus, provides a professional staff for systems and application engineering, layout and installation planning, equipment and systems evaluation — and publications services.

Our job is "making the systems work". After complex electronic equipment or systems are designed and built, they must be installed by experts, properly aligned, tuned and tested to assure operation at peak performance. Then they must be continuously maintained to assure dependability. In some cases teams must be provided to operate the equipment, or to train the user to operate it. All this we do — exercising complete management responsibility.

Prime examples of Federal projects are the DEW Line of radar stations across Canada and Alaska and the White Alice communication system in Alaska. In many parts of the world FEC has installed and tested TACAN and ILS systems for military and commercial use. Today Federal is also engaged in engineering operations connected with missile test ranges in Florida and California. From the Arctic Circle to Spain Federal Electric is keeping systems working.

For further information regarding positions in our Systems Engineering staff, at Paramus, and field engineering assignments in the U.S. and abroad, write W. F. Duffy, Professional Placement.

FEDERAL ELECTRIC CORPORATION
An Associate of International Telephone and Telegraph Corporation
Paramus Industrial Park, Paramus, New Jersey

CIRCLE 904 ON CAREER INQUIRY FORM

CAREER OPPORTUNITIES BROCHURES

Hazeltine Corporation

The Hazeltine Corporation presents a brief company history and states its position in the fields of electronics and electro-mechanical technology in this 16-page illustrated brochure. Hazeltine's various commercial products include radio, nomochrome and color television, medical, office equipment, photographic and transportation. Designing, developing and producing equipment and systems in defense electronics—including airborne early warning, combat surveillance, navigational, IFF, anti-submarine warfare, data processing and computer—are covered.

An organization chart depicting company facilities and a pamphlet announcing the establishment of a new center and laboratories are given.

Vice President, Government & Commercial Dept., Hazeltine Electronics Div., Hazeltine Corp., Dept. ED, Little Neck 62, N.Y.

CIRCLE 870 ON READER-SERVICE CARD

Avco

The Avco Research Center at Wilmington, Mass., is the home of the Avco Research and Advanced Development Division. Its objective is to provide an integrated establishment, attractive to scientists and engineers. Facilities, present projects and future aims are illustrated and briefly discussed.

Avco Research Center, Dept. ED, Wilmington, Mass.

CIRCLE 871 ON READER-SERVICE CARD

ELECTRONIC DESIGN • September 16, 1959
Advancement Your Goal?
Use New Form To Speed Action

ELECTRONIC DESIGN's new Career Inquiry Service form is designed to help engineers advertise themselves. This new service speeds applicants to the jobs they seek. It is the first such service offered in the electronics field and is receiving high praise from personnel managers.

To present your qualifications immediately to the personnel managers of companies that interest you, simply fill in the attached standardized short resume.

Study the employment opportunity ads in this section, and circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.

ELECTRONIC DESIGN's Reader Service Department will act as your private secretary and type neat, duplicate copies of your standardized resume and send them to all companies you may select...the same day the resume is received. (**ELECTRONIC DESIGN** will detach the circle number portion of the form, so that no company will know how many numbers you circled.)

The standardized resume will permit personnel managers to inspect your qualifications rapidly. If they are interested, they will get in touch with you directly. In the past much time has been lost through personnel-manager requests for resumes from applicants who proved ineligible.

Mail Career Inquiry Service form to Reader Service, **ELECTRONIC DESIGN**, 830 Third Ave., New York 22, N. Y.

<table>
<thead>
<tr>
<th>College</th>
<th>Dates</th>
<th>Degree</th>
<th>Major</th>
<th>Honors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recent Special Training

Employment History

<table>
<thead>
<tr>
<th>Company</th>
<th>City and State</th>
<th>Dates</th>
<th>Title</th>
<th>Engineering Specialty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Outstanding Engineering and Administrative Experience

Professional Societies

Published Articles

Minimum Salary Requirements (Optional)

Use section below instead of Reader Service Card. Do not write personal data below this line. This section will be detached before processing.

Circle Career Inquiry numbers of companies that interest you

| 900 | 901 | 902 | 903 | 904 | 905 | 906 | 907 | 908 | 909 | 910 | 911 | 912 | 913 | 914 | 915 | 916 | 917 | 918 | 919 | 920 | 921 | 922 | 923 | 924 |
|-----|
| 925 | 926 | 927 | 928 | 929 | 930 | 931 | 932 | 933 | 934 | 935 | 936 | 937 | 938 | 939 | 940 | 941 | 942 | 943 | 944 | 945 | 946 | 947 | 948 | 949 |
Emerson emphasizes the systems approach, encouraging engineers to explore and contribute in many diversified areas. This climate of creative freedom has paid off in solid achievements.

Our Electronics and Avionics Division is daily influencing the "state of the art" in fire control systems. We are making extensive refinements in development and production of analog and digital computers, automatically programmed data processing systems, transistorization and other solid state electronic applications to advanced airborne and ground based projects.

Emerson's genuine atmosphere of creative freedom and diversification is augmented by excellent salaries, both undergraduate and graduate educational programs, beautiful and convenient suburban location, and other benefits. Moving expenses are fully paid.

If your talents can be better utilized by assuming greater responsibility with accompanying long-range and immediate opportunities — you owe it to your future to contact us at once! Send complete resume to Mr. R. L. Middleton.

The Activation Division is organized to provide the facilities for the design, development, testing, and maintenance of check out and launch complexes for space vehicles and weapon systems bases throughout the world.

It offers to a select group of engineers an opportunity that is indeed unique in today's engineering specialties. It offers the challenge of not only devising a plan, but also of developing, testing, and seeing that plan put into operation.

Among the qualifications for individuals we are seeking to relocate, the desire to create to participate in the development and production operation of the Martin Activation Division offers the opportunity for great personal advancement and recognition with a company which has proven technological ability.
The following engineering specialties are needed immediately:

Project Engineering
To provide project direction and coordination for activation installation and check-out launch programs.

Test Operation Engineering
To supervise and technically direct instrumentation programs implemented through instrumentation design and test experience.

Planning Engineering
Logistic integration support requirement for determining plans for accomplishment and integration of training facility and service requirements for immediate contractors at field sites.

Installation Design Engineers
For technical direction of engineers and designers in the preparation of schematics and specifications of electrical-electronic equipment including interconnection, cabling, raceways, or instrumentation installations.

Specification and Test Procedures Engineering
To investigate the design engineering of check-out and launch installation facilities and to compile electrical and electronic component information as well as provide additional study information necessary to produce test specifications and test procedures.

Electrical Engineering
Design Checkers
To be responsible for interpreting and checking electronic schematic designs concerning installations for checkout and launch systems and possess working knowledge of MIL specifications relating to console equipment, cabling, raceways for power control and signal circuits or instrumentation installation design.

Mechanical Design Engineering
To work in the design engineering categories pertaining to large hydraulic mechanical mechanisms. Cryogenic, propellant, and high pressure gas piping, and air-conditioning systems.

For detailed information regarding a position with Martin Activation write direct to: Mr. Dean Pearson, Manager of Employment, The Martin Company, Activation Division, P. O. Box 2371, Denver, Colorado.

CAREER OPPORTUNITIES

General Electric Company

"Career Counseling Guide For Engineers" provides some basic facts about the eight major engineering activities and about the people usually successful in each of them. Using this information as a guide, the engineer should be able to determine the area for which he is best suited.

An evaluation of personal attributes divided into four sections entitled Interest, Education, Experience, and Personal-Social Characteristics is included. At the close of each section the engineer is asked to evaluate his qualifications for each of the major engineering functions.

General Electric's aim in this brochure is to aid the engineering graduate in planning his career and to help the more experienced engineer to more thoroughly examine his present situation and possible future opportunities.

W. N. Mendell, Executive Placement Specialist, General Electric, Flight Propulsion Div., Bldg. 100, Dept. ED, Cincinnati 15, Ohio

CIRCLE 872 ON READER-SERVICE CARD

Lockheed

MISSELS AND SPACE DIVISION

Systems Manager for the Navy POLARIS FM:
DISCOVERER, SENTRY
and NIMBLE: group KINGSFISHER,
Air Force Q-5 and X-7

SUNNYVALE, PALO ALTO, VAN NUYS,
SANTA CRUZ, SAN DIEGO, CALIFORNIA
CAPE CANAVARAL, FLORIDA
ALAMOGORDO, NEW MEXICO • HAWAII

It's a new automatic flight control system.

This one isn't operational yet, but maybe you could lend us a hand in exchange for things like salary and the right combination for developing your career potential: "Long Range Career Potential."

Let's trade facts. Tell us about your education, experience and interests. We'll send you details about where you'll fit into the Armament and Control Section.

Write in confidence to:
Mr. R.C. MacMillan, Div. C221-2
Armament and Control Section
General Electric Company
600 Main Street
Johnson City, New York

CIRCLE 906 ON CAREER INQUIRY FORM

ELECTRONIC DESIGN • September 16, 1959

CIRCLE 907 ON CAREER INQUIRY FORM

CIRCLE 908 ON CAREER INQUIRY FORM
At MOTOROLA in PHOENIX...
There's an uncommon opportunity to BE RECOGNIZED in engineering circles

It's the nature of us humans to be stimulated... to do better work... when others in the same profession know about our accomplishments. At Motorola in Phoenix, the project approach assures the engineer that his spark will not be smothered by anonymity. Every Motorola engineer is provided responsibility commensurate with his ability; his contributions as a member of a project team form the basis for his career advancement. Motorola, heavily engaged in diversified electronics research and production, encourages each engineer to carry his idea through to practical reality. If you are attracted by a creative atmosphere such as this — and by the sunny atmosphere of the nation's most enjoyable climate — write to Mr. Kel Rowan, Department B-6.

MOTOROLA

Western Military Electronics Center / 8201 E. McDowell Rd., Scottsdale, Arizona

OPPORTUNITIES
Motorola also offers opportunities at Riverside, California and Chicago, Illinois

CIRCLE 909 ON CAREER INQUIRY FORM

New Phase of Programmed Expansion in R&D Affords Speeded Professional Development at SYLVANIA'S
WALTHAM LABORATORIES

TRADITIONALLY, professional growth parallels organizational expansion. Here at the Waltham Laboratories, engineers and scientists are afforded the opportunity to participate in advanced programs where professional advancement is as rapid as their ability to contribute to new areas of electronics technology. Working in small groups, individual contributions are quickly recognized.

The recent merger of Sylvania and General Telephone has further broadened the base for creative men to optimize their career potential at the Waltham Laboratories.

TYPICAL OF THE ADVANCED PROGRAMS OF INTEREST TO THE WALTHAM LABORATORIES ARE:
- ANALOG/DIGITAL DATA PROCESSING EQUIPMENTS
- METEOROLOGICAL SATELLITE SYSTEMS
- MISSILE DETECTION RADARS - SPACE VEHICLE COMMUNICATIONS
- MISSILE & SATELLITE DETECTION & TRACKING SYSTEMS
- ARTILLERY/MISSILE LAUNCHING SITE LOCATORS

IF YOU ARE EXPERIENCED IN ANY OF THE FOLLOWING AREAS CONTACT US IMMEDIATELY
- Advanced System Analysis - ECMs & Ground Support Equipment
- Radar Systems Design & Analysis - Micro-Electronics
- RF Circuit Design & Development - Plasma Physics
- Real-Time Data Processing - Electromagnetic Propagation
- Systems Guidance & Simulation Studies - Quality Control
- Electronic Systems Techniques - Product Engineering
- Operations Research & Mathematical Analysis
- Microwave & Antenna Advanced Development
- Electronic & Electromechanical Packaging - Reliability Engineering
- Transistorized Pulse & Digital Circuit Design

Send your resume in strict confidence to:
Mr. Brooks Fenno, Dept. 8F
Waltham Laboratories / Sylvania Electronic Systems
A Division of
SYLVANIA
Subsidiary of GENERAL TELEPHONE & ELECTRONICS
100 First Avenue - Waltham 54, Massachusetts

CIRCLE 910 ON CAREER INQUIRY FORM

ELECTRONIC DESIGN • September 16, 1959
MEMO FROM: Fred Pfeister
SUPERVISOR, SYSTEMS ANALYSIS SECTION
TO: George B. Callender, Technical Personnel
SUBJECT: Jobs Open for SYSTEMS ANALYSTS (12)

George:

Where are my analysts? They're urgently needed.

To work on systems analysis and feasibility studies, conception and development of new electronic systems, which must be optimum with respect to performance, manufacturability, and cost. (Current assignments applicable to AIR WEAPONS CONTROL SYSTEM 212L.)

P.S. Good, solid design experience is what we need—fresh, positive approaches to analysis of large scale, computer-based systems! Fred

SYSTEMS ANALYSTS
EE, Physics, Math, whose training and experience fit the above requirements, are invited to forward their resumes to George Callender, Div 76-SMK

HEAVY MILITARY ELECTRONICS DEPARTMENT

CIRCLE 911 ON CAREER INQUIRY FORM

FREE—$1,000
worth of professional service,
because you are an electronics engineer

CADILLAC, for thirty years the nation’s largest Executive and Professional Placement Service, represents every “Blue Book” Electronics firm in America, over 350 in all. Their BEST jobs, at salaries from $6,000 to $75,000, appear monthly in our Electronics Opportunities Bulletin. Because you are an Electronics Engineer, both the Bulletin and our COMPLETELY CONFIDENTIAL Placement Service are available to you absolutely FREE OF CHARGE.

For your free Bulletin, each month listing America's BEST Electronics jobs, send your name and address to:

EUGENE B. SHEA
Electronics Division
Cadillac Associates, Inc.
29 East Madison Building—Dept. E-2
Chicago 2, Ill.

CIRCLE 912 ON CAREER INQUIRY FORM

ENGINEERS AND SCIENTISTS
you can have your cake and eat it too . . .
in wonderful Minnesota

Do you now have a good position but feel as if you and your family would be happier in a more advantageous part of the country? At the Mechanical Division of General Mills in Minneapolis you can have both—a challenging, rewarding position in the field you like best and an environment renowned for its cultural, social, and recreational advantages.

Right now it's Indian summer here. Our people are enjoying myriad colors in the woods—and fall fishing. Soon they'll go hunting pheasants, ducks, geese, deer. Later they'll go skiing and on sleigh ride parties.

We have a fine school system with a low pupil-teacher ratio—and the University of Minnesota. We have a famous Symphony—and excellent art centers. We have beautiful stores, residences, parks—and an unhurried, friendly way of life.

Senior and associate level positions immediately available to you in these fields:
- Electronic Circuit Design
- Micro-wave Development
- Atmospheric Physics
- Digital Computer Logic
- Advanced Digital Computer Systems Design
- Advanced Pulse and Video Circuit Development
- Advanced Inertial Navigational System Development
- Optical and Infra-Red Equipment Engineering
- Research Physics
- Advanced Digital Computer Circuit Development
- Nuclear Handling Equipment
- Ballon Systems and Components

If you have 2 or more years experience in any of the above fields, send for more facts. We'd like to tell you about the people you'd work with—recognized leaders in fields of advanced technology. About our vital defense and industrial projects (where security permits), about our modern labs and about long-range security with one of the nation's most stable companies. We'll keep your inquiry in confidence.

G. P. Lambert, Manager
Professional Employment

CIRCLE 913 ON CAREER INQUIRY FORM

MECHANICAL DIVISION
General Mills

2003 E. Hennepin
Minneapolis 13, Minnesota

CIRCLE 914 ON CAREER INQUIRY FORM
ELECTRONIC DETECTION...

tremendous challenge to creative engineers in a field whose growth must parallel the space age

... At General Electric, detection system engineering has become a profession in itself—offering electronic engineers financial and career opportunities not found in many other electronics fields.

Advanced radar detection systems offer probably the most effective method of determining location, direction, and speed of in-flight missiles or aircraft. And the General Electric Company has played—and continues to play—a leadership role in the conception, design, and development of advanced radar detection systems for science and National Defense.

In line with this role General Electric needs more qualified personnel. Right now General Electric needs electronics engineers, mathematicians, data processing specialists with the capabilities to make positive contributions toward the solution of urgent defense problems.

But unlike many companies, General Electric offers qualified personnel—with a minimum of three years in radar design and development or related phases—career opportunities with the growth potential for which they have been looking.

If this challenge interests you compare General Electric's self-development opportunities in the privacy of your own home. Write for this brochure today.

Compare self-development opportunities at General Electric
☐ Please send me your brochure describing your self-development program.
☐ I am enclosing my resume for your consideration.

T. M. George, Supervisor
Personnel Administration
Section C228-5
Missile Detection Systems Section
General Electric Company
Syracuse, New York

NAME

DEGREE

ADDRESS

CITY STATE

MISSILE DETECTION SYSTEMS SECTION
HEAVY MILITARY ELECTRONICS DEPARTMENT

GENERAL ELECTRIC

TO WORK IN...

A FINER CLIMATE

TO LIVE IN

At Sylvania's Mountain View Operations in California (SAN FRANCISCO BAY AREA) you'll discover more than just one kind of climate. PROFESSIONAL CLIMATE—Advanced programs will challenge your technical creativity. You'll make major contributions in the fields of electronic defense, radar, communications and data processing systems. Because Sylvania is one of the nation's fastest growing electronics organizations, there are an unusual number of growth opportunities.

LIVING CLIMATE—You and your family will enjoy the healthful atmosphere and sunny climate of the San Francisco Peninsula. You'll find plentiful housing, excellent shops, fine schools and year round recreation.

Openings in:

You may communicate in confidence to Wayna L. Pearson
MOUNTAIN VIEW OPERATIONS

P.O. Box 158
Mountain View, California

CIRCLE 915 ON CAREER INQUIRY CARD
ADVANCED RECONNAISSANCE system developments at Melpar provide unusual opportunities for the technical advancement of participating professional personnel. Technological challenge in an area vital to our national defense assures our engineers and scientists that their contributions will have lasting significance. Melpar's reconnaissance systems engineering department has achieved national recognition for its outstanding accomplishments in the fields of acquisition, processing, and interpretation of intelligence. Techniques resulting from our deep probes into advanced aspects of electronics, optics, and physics are being quickly translated into operational equipment for the armed forces.

Positions in the following areas offer particular challenge at this time:

- Reconnaissance Systems
- Airborne Equipment
- Ground Data Handling Equipment
- Simulation & Training Systems
- Communication & Navigation Systems
- Ground Support Equipment
- Detection & Identification Systems
- Antenna & Radiation Systems
- Chemistry Laboratory
- Applied Physics Laboratory
- Production Engineering
- Quality Control

Melpar's remarkable growth continues to create attractive opportunities for the exceptional engineer and scientist. Your own intellectual dimensions govern remuneration and assignments.

INTERVIEWS ARRANGED IN YOUR LOCALE

For Details
Wire Collect or Write to:

MELPAR INC
A SUBSIDIARY OF WESTINGHOUSE AIR BRAKE COMPANY
3307 Arlington Boulevard, Falls Church, Virginia
In Historic Fairfax County
10 miles from Washington, D.C.

Address your resume in confidence to:
Mr. George R. Hickman
Engineering Employment Manager, Dept. 12J-3

REPUBLIC AVIATION
Farmingdale, Long Island, New York

Scheduled to open about the first of the year, Republic's new Research & Development Center at Farmingdale, Long Island, New York, will comprise seven different laboratory facilities. Included are an Electronic Development Laboratory and a Guidance and Control Systems Laboratory. These modern facilities will contain the most up-to-date equipment obtainable for the research, development and test of advanced astrionic and avionic systems, equipments and components.

ELECTRONIC ENGINEERS...

- You can be one of the R&D men who'll help guide exotic projects at Republic Aviation's new $14,000,000 Research and Development Center

IN-AT-THE-BEGINNING OPPORTUNITIES at Republic's new Research Center encompass the electronic aspects of a wide diversity of projects and investigations, from space probes to ballistic missiles, from high Mach aircraft to helicopters, from automatic ground control equipment to exotic detection systems. Today Republic's dynamic expansion in research and development activities offers you assignments where you can win technical renown — and rapid personal advancement — in any of these areas:

- INERTIAL GUIDANCE & NAVIGATION
- SYSTEMS ENGINEERING
- DIGITAL COMPUTER DEVELOPMENT
- INFORMATION THEORY
- TELEMETRY-SSB TECHNIQUE
- RECEIVER & TRANSMITTER DESIGN
- JAMMING & ANTIJAMMING
- RANGING SYSTEMS
- GROUND SUPPORT EQUIPMENT
- DOPPLER RADAR
- COUNTERMEASURES
- RADOME & ANTENNA DESIGN
- MICROWAVE CIRCUITRY & COMPONENTS
- AIRBORNE NAVIGATIONAL SYSTEMS
- MINIATURIZATION-TRANSISTORIZATION
- PROPAGATION STUDIES
- INFRARED & ULTRA-VIOLET TECHNIQUES

INQUIRY FOR MORE INFORMATION

CIRCLE 919 ON CAREER INQUIRY FORM

CIRCLE 920 ON CAREER INQUIRY FORM

ELECTRONIC DESIGN • September 16, 1955
ENGINEERS
RESEARCH
OPPORTUNITIES

Aeronutronic, a new division of Ford Motor Company, has immediate need for computer engineers to staff its new $22 million Research Center in Newport Beach, Southern California. Here, you have all the advantages of a stimulating environment, working with advanced equipment, located where you can enjoy California living at its finest.

Look into these ground floor opportunities in research and development work that is challenging and exceptionally rewarding to qualified men.

Positions now open:
- Systems Engineer
- Magnetic Memory Engineers
- Communications Engineers
- Digital Computer Programmers
- Transistorized Circuit Engineers
- Logical Designers
- Circuit Engineers
- Mechanical Engineers
- Optical Engineers

Qualified applicants are invited to send resumes or inquiries to Mr. R. E. Durant, Aeronutronic, Box NJ-486, Newport Beach, California.

How far can an engineer go at AC?

In a company so deeply involved in space age instrumentation projects . . . where you can grow through the finest “in house” training . . . where a new advanced R & D group is now operating—here, at AC, you can go as far as your imagination and initiative will take you.

Program C—For all engineering supervisors—Involves management training developed by a team of AC executives and University of Chicago industrial relations experts.

AC’s new R & D Group is devoted to the Research and Development of advanced systems and components. Current programs include many vital projects. Interplanetary navigation and guidance. Digital computer development. Advanced inertial sensors. Passive electromagnetic detection, surveillance and navigation systems. Guidance systems for ballistic missiles, space vehicles and aircraft.

If you are a graduate in the electronics, math, physics, electrical or mechanical fields, or if you have an advanced degree, you may be able to participate in these programs. For more details, write the Director of Scientific and Professional Employment, Mr. Robert Allen, Oak Creek Plant, Box 746, South Milwaukee, Wisconsin.

Program B—for experienced engineers—consists of upgrading studies in inertial guidance, servomechanisms, environmental problems, engineering math and physics, plus advanced state-of-the-art courses.

Program A—for recent graduate engineers—gives you a solid foundation in the theory and application of inertial guidance systems and servomechanisms.

Program A

Inertial Guidance Systems • Afterburner Fuel Controls • Bombing Navigational Computers • Gun-Bomb-Rocket Sights • Gyro-Accelerometers • Gyroscopes
Speed Sensitive Switches • Speed Sensors • Torquemeters • Vibocall • Skyphone

SPARK PLUG & THE ELECTRONICS DIVISION OF GENERAL MOTORS

CIRCLE 922 ON CAREER INQUIRY FORM
FOR FASTER ASSEMBLY!

One way to speed up production is to use solder that's prefabricated to the job... the right size, shape, alloy and flux. KESTER SOLDERFORMS are doing a big job in reducing labor and material costs in electronic and other applications... will greatly speed up production for you.

KESTER SOLDERFORMS

WRITE TODAY for sample assortment and full details on KESTER SOLDERFORMS.

CIRCLE 702 ON READER-SERVICE CARD

FOR YOUR COMPLEX MAGNESIUM ALLOY EXTRUSIONS

WHITE METAL... and WHITE METAL alone... has the engineering experience and integrated magnesium facilities to turn many "impossible" designs into reliable, spec-matching extrusions... at lower cost. Versatile WHITELIGHT magnesium gives you a virtually unlimited choice: any length, any shape, any alloy, any finish.

Call our Sales Engineers for help in solving your complex shape problems. No obligation, of course. WRITE, CALL TODAY!

Send for fact-filled brochure on properties, uses, etc. of WHITELIGHT MAGNESIUM.

HYTE METAL ROLLING & STAMPING CORPORATION
114 Meslin St., Brooklyn, N. Y. & Phone: EV 9-1199
Plants: Warsaw, Ind. & Brooklyn, N. Y.
One of the World's Largest Producers of Magnesium Alloy Mill & Finished Products.

CIRCLE 703 ON READER-SERVICE CARD
In *Electronic Design*, engineers find not only more new products, but *all* the new products of significance to electronic engineers in their work. 26-time publishing frequency brings this information quickly to the engineer's attention, timed to a fast-moving industry. *Electronic Design* is more up-to-the-minute, more complete, more helpful, and easier to read than any other electronic publication. No wonder more and more engineers read *Electronic Design* first!
The Landing of the Puritans

On the banks of Gitchie Goomie,
Lake the white men call Atlantic
Heap big redskins going frantic,
Radar got no Bomac tubes!

No. 15 of a series... BOMAC LOOKS AT RADAR THROUGH THE AGES

* Today, Bomac makes the finest microwave tubes and components since the Pilgrims landed

Bomac

Leaders in the design, development and manufacture of TR, ATR, Pre-TR tubes; shutters; reference cavities; crystal protectors; silicon diodes; magnetrons; klystrons; duplexer; pressurizing windows; nose source tubes; high frequency triode oscillators; surge protectors.

© BOMAC 1959