

Specify Epon ${ }^{\circledR}$ Resins...

Good-All Electric Manufacturing Co.
New Epon resin-molded 600 UE capacitors have superior moisture resistance. Offer
rugged, trouble-free performance because Epon resin assures high dielectric strength, low leakage.

for potting, molding, sealing, encapsulating

Suitch to Epon resin-based compounds for potting, molding, sealing and encapsulating to upgrade the performance of your electrical or elec tronic units . . . cut costs through design simplification

Why? Because the excellent physical properties of Epon resins eliminate the need for conventional containers and housings. Size, weight, and com-
plexit y of components are reduced.
To lower costs and speed up production, manufacturers have moved in the direction of automation. In the new mixing, metering and dispensing equipment, even the most heavily filled Epon resin formulations can be used for high-volume, rapid-curing potting, encapsulating, and sealing operations.

Epon resins can be adapted to a wide variety of formulations designed to ineet your specific needs. Write now for full information including a list of suppliers of Epon resin-based formulations and manufacturers of automatic mixing, metering, and dispensing equipment.

Shell Chemical Corporation 50 West 50th St., New York 20, N.Y.

HIGHLIGHTS OF THIS ISSUE

```
    ELECTG
```


Now in Design: A 200
kw Microwave Tube
3
By circulating cooling water under pressure through the slow-wave structure of an X -band generating tube, Raytheon designers have achieved current densities as high as 20 kw per sq cm. The breakthrough may make possible $200-\mathrm{kw}$ fubes for microwave generation. On our cover our artist has symbolized how the flow of cooling water takes heat from the glowing cathode to permit higher energy inputs and outputs.

Visual Engineering

mathematics
This first of four parts on flow graph analysis-a visual form of engineering miathematics-is in this issue of ELECTRONIC DESIGN. The value of the flow graph technique is its ability to provide both a general view of the interdependence of variables, and a particular view of any required aspect.

Acoustic Noise Its

Effects on Components .. 48 Missile components are subject to severe acoustic noise. This article shows how to simulate these noise environments and their effects upon the various components and assemblies.

Today's Electronic Toys
 Helping Build
 Tomorrow's Engineers .. 54

Several electronic toys on the Christmas counters this year have been designed with education in mind. Engineer-fathers who want to introduce their boys to electronics will do well to study various manufacturers' products before buying.

NEWS
Now In Design: A $200-+$ kw Microwave Tube
EDITORIAL
Relief From Measurement Pinch Found In Action

FEATURES

How To Design Deposited Film Coaxial Attenuators
For VHF
Design procedure for deposited film attenuators without trial and error ... A. Paolantonio
Visual Engineering Mathematics, A Self-Contained Course An introduction to the subject and some simple rules are given in this first part T. R. Nisbet, W. W. Happ
How To Drive The Beam Switching Tube
Design information for beam-switching tube input and output circuits .. A. Somlyody
IR As A Passive Method Of Target Detection And
Identification
Factors involved in choosing a spectral interval for operation of an IR passive target detection system G. Rayl
Embedment And Environmental Performance Of Elec-
tronic Components And Functional Circuits
Test results showing how embedment affects components and assemblies .. T. E. McDuffie
Acoustic Noise . . . Its Effects On Components Techniques for testing components and assemblies under conditions of acoustic noise and results that can be expected ... M. T. Anderson
Low Thermal Soldering Procedures For Copper Junctions Detailed procedure of soldering technique to minimize thermocouple potentials developed at solder junctions B. K. Smith
Today's Electronic Toys Helping Build Tomorrow's
Engineers
Many Christmas electronic toys are designed for experimenting.
New Wafer Modules . . . For Versatile Telemetry Systems Cylindrical telemetry package designed to be versatile and fit more easily into small rockets
Heavy-Duty A/D Converter Memorizes Shaft Position Non-ambiguous readout in any code from this encoder with " memory
Precison Thermistor Bridge Calibrates RF Generator
at 1.000 Mw
A highly precise calibrator for if signal generator output monitors
Blocks To Creativity-Part 3, Emotional Hazards
Thyratron Gates, Stores, And Drives Punched Paper-Tape
Output Ideas For Design
A Six-Stage, Low Frequency Logarithmic Amplifier 170 Russian Translations
Low Level Choppers
Peak Reading Voltmeter For Nonrecurrent Pulse Measurement German Abstracts
Variable Capacitance Paramp For Low Noise Without
Refrigeration
ELECTRONIC DESIGN Digest
DEPARTMENTS

Washington Report	22	Russian Translations	170
Meetings	24	German Abstracts	172
New Products	64	Digest	178
Report Briefs	130	Standards and Specs	192
Engineering Data	137	Letters	194
New Literature	141	Careers	202
Ideas for Design	150	Career Brochures	206
Patents	160	Your Career	208
Books	164	Advertisers ${ }^{\circ}$ Index	218

The F.102A all weather interceptor and many other planes in the U.S. and Canadian Air Defense Commands are fully equipped with this system developed and manufactured by the Hughes Aircraft Company. G-V thermal time delay relays are relied upon in all of these systems.

In both military and industrial equipment, G-V thermal relays are providing long, dependable, proven service in time delay applications, voltage and current sensing functions and circuit protection.

Write for extensive application data and catalog material.

G-V CONTROLS INC.
LIVINGSTON, NEW JERSEY

SUBMIN PNP GERMANIUM TRANSISTORS Of RAYTHEON RELIABILITY
－a complete line
－proved performance－over $1 / 1 / 2$ million in use
－new，attractive prices
AVAILABLE FROM STOCK in large production quantities

COMPUTER

 TRANSISTORSTemperature Range
$-65^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

$\underset{\substack{\text { SUbmin } \\ \text { Type }}}{\text { Ster }}$	JETEC－30 Electrical Equivalen	$\begin{aligned} & v_{c z} \\ & \text { moar. } \\ & \text { volis } \end{aligned}$	$\begin{aligned} & \text { 'ab } \\ & \text { ave. } \\ & \text { Mc. } \end{aligned}$			Rise Time max． usec
CK4	2N404	－24	12	30	－	
CK25	2N425	－20	4	30	18	1.0
CK26	2N426	－18	6	40	24	0.55
CK27	2N427	－15	11	55	30	0.44
CK28	2N428	－12	17	80	40	0.33

GENERAL PURPOSE

AUDIO

TRANSISTORS
Temperature Range
$-65^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SUBMIN Typ？	JETEC．30 Electrical Equivalent	$\mathbf{V}_{\text {CF }}$ max． volts	Beta ave． small signal	Power Gain Class A ave． db	$I_{\text {Co }}$ ave． $\mu \mathrm{a}$	Noise Factor ave． do．
CK22	$2 N 422$	-20	90	40	6	6 max．
CK64	2N464	-40	22	40	6	12
CK65	2N465	-30	45	42	6	12
CK66	2N466	-20	90	44	6	12
CK67	2N467	-15	180	45	6	12

GENERAL PURPOSE RADIO FREQUENCY TRANSISTORS
Temperature Range
$-65^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

$\begin{aligned} & \text { SUBMIN } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { JETEC-30 } \\ & \text { Electrical } \\ & \text { Equivalent } \end{aligned}$	$\begin{aligned} & \substack{\text { ce } \\ \text { cext } \\ \text { molits }} \end{aligned}$	$\begin{aligned} & \substack{\text { acb } \\ \text { are. } \\ \text { me }} \end{aligned}$	Beta ave．	$\begin{aligned} & \text { cub } \\ & \text { aupe. } \\ & \mu ⿰ 亻 ⿱ 丶 ⿻ 工 二 十 \end{aligned}$	$\begin{gathered} \text { ibv } \\ \text { ave } \\ \text { ohms } \end{gathered}$
CK13	2N413	－18	2.5	25	12	70
CK14	2N414	－15	6	40	12	80
CK16	2N416	－12	10	60	12	90
CK17	2N417	－10	20	80	12	100

SEMICONDUCTOR DIVISION

RAYTHEON COMPANY

SILICON AND GERMANIUM DIODES AND TRANSISTORS • SILICON RECTIFIERS－CIRCUIT－PAKS
New York，PLaza 9－3900－Bospon，Hillcrest 4－6700．Chicago，NAtional 5－4000．Les Angeles，NOrmandy 5－4221．Orlando，GArden 3－1553 Baltimore，SOuthfield 1．1237．Cleveland，WInton 1．7716．Kansas Ciry，Plaza 3．5330－San Francisco，Flreside 1．7711 Government Relations： 100016 th Street，N．W．，Washington，D．C．－MEtropolitan 8－5205 Government Relations： 100016 th Street，N．W．，Washington，D
CIRCLE 3 ON READER－SERVICE CARD

EDITOR：Edward E Grazda：MANAGING EDITOR：J．A．Lippke，ASSOCIATE EDITORS：L．D．Shergalis，G．H．Rotsky， EDITORS：L．D．Shergalis，G．H．Rotsky EDITORS：T．E．Mount，D．S．Viebig， EDITORS．T．E．Mount，D．S．Viebig ．N．CONTRIBUTING EDITORS S H lu，B．Bing ediror S， Hubelbank，E．Brenner，B．Bernstein E．Kahn，B．B．Daien，LDIORAL AS SISTANTS．M．S．Buckley，A．M．Sickler A．R．Abramoff，R．N．Ross，R．M．Moore I．Rosenfield：ART DIRECTOR：R．A Schulze：ART ASSISTANTS：C．Bank D．Ramos：PRODUCTION MANAGER： T．V．Sedita；ASST．PRODUCTION MANAGER：H．De Polo；PRODUCTION ASSISTANTS：M．C．Alexich，C．E． Moodhe；CIRCULATION MANAGER N．M．Elston，ASST．CIRCULATION MANAGER：A．C．Lovett；READER－ SERVICE：J．E．Medina．

CO－PUBLISHERS

T．Richard Gascoigne
James S．Mulholland．J

ACCURACY POLICY

Recognizing the power of the printed word to influence，it is ELECTRONIC DESIGN＇s policy
1．To make all reasonable efforts to in ure accuracy of editorial matter：
2．To publish promptly corrections brought to our attention
3．To not knowingly publish misleading dvertisements．
4．To reserve the right to refuse any advertisement．
Readers noting errors or mistatements of fact are encouraged to write the editor，

SUBSCRIPTION POLICY

ELECTRONIC DESIGN is circulated only to qualified electronic design engineers of U．S．manufacturing companies，industrial consultants，and government agencies．If design for manufacturing is your respon－ sibility，you qualify for subscription without charge provided you send us the following information on your company＇s letterhead：Your name and engineering title，your company＇s main products，and description of your design duties．The letter must be signed by you personally． ANY ADDRESS CHANGES FOR OLD SUBSCRIBERS NECESSITATE A RE－ STATEMENT OF THESE QUALIFICA－ TIONS．Subscription rate for non－quali－ fied subscribers－$\$ 25.00$ per year U．S．A．， $\$ 30.00$ per year all other countries．Single copy $\$ 1.50$ ．

BPA

Electronic desicn is pulished bi．weetly by Horcen Fublishng Compony，Inc．， 830 Thid Avenve．

 entry．New Yorth，N．Y．Copyright 1959 Horden publishing Company，inc． 37.000 copies this issue．

Now in Design:

A 200+ kw Microwave Tube

AMICROWAVE TUBE that will be able to transmit power by focused beam is now being developed. The tube, an S-Band Amplitron, has a predicted output of over 200 kw average power at an operating efficiency approaching 80 per cent. First units are expected to be ready in 12 months.
Ravtheon's W. C. Brown, who introduced the original Amplitron in 1955, reports that the predicted high performance of the tube is a result of a new method of anode heat dissipation. This new concept of microwave tube design makes possible a 10 -fold increase in the heat flux that can be removed from the anode of the device, permitting a 10 -fold increase in the tube's innut and rf output power levels.
"When this great increase in dissipation density is combined with the hish efficency property of the Amplitron," reports Mr. Brown, "truly starfthe amon nts of useful rf power may be obtained for each square centimeter of anode area. Figures of 10 kw per sq cm of anode area may be easily ob)tainecl, and figures of 20 kw per sq cm may be eventually realized. Since a

How S-band microwave generating fubes developed since the first magnetron. There might now be magnetrons of over 500 kw average power output had not requirements for sophisticated operation forced development of traveling-wave tubes, klystrons and Amplitrons.
typical S-band pulsed Amplitron may have 20 square centimeters of area, it is immediately evident that we are on the verge of a major breakthrough in power generation in the S-band region."
Raytheon has built an experimental X-band Amplitron in which the large anode dissipation densities were confirmed.
How was the heat dissipated?
Mr. Brown reports that the slow-wave structure of the experimental Ampli-

To test performance of the anode cooling method developed for super-power tubes, Raytheon built this experimental cw X -band Amplitron shown in artist's full and cross-sectional view. The tests, according to Raytheon, verified the high dissipation-density capability of the anode and cathode cooling structure. The pure tungsten cathode is cooled by water flowing at highvelocity through thin-wall, small-diameter tubes in the slow-wave structure of the tube.

RECENT RAYTHEON DEVELOPMENTS

THREE-POSITION FERRITE SWITCH

TYPICAL MICROWAVE CIRCUIT in which Raytheon ferrite switch s now being used. SWitch has three positions: antenna to main simultaneously.

FERRITE SWITCH IS ACTIVATED when fault is detected in sensing unit. Receiver fault causes switch to transfer to intermediate position for comparison of main and standby. Normal baseband receiver

FOR C-BAND

ADVANCED SWITCHOVER PROTECTION PERMITS MORE RAPID

AND FLEXIBLE OPERATION

THAN EVER BEFORE

A completely new ferrite switch has just been introduced by Raytheon. The device, which is controlled by a specially designed switchover unit, provides foolproof switchover protection. It has three positions, connecting:

1. antenna to main channel
2. antenna to standby channel
3. antenna to both channels simultaneously
In the third position, the received signal is divided equally between the arms feeding the main and standby receivers.
This allows an actual comparison of the two receiver signals before switching and eliminates the need for complex and unreliable signal injection systems.

To learn more about this significant development or other important Raytheon advances in microwave ferrite devices, please write to the address below stating your particular area of interest.

RAYTHEON COMPANY

 SPECIAL MICROWAVE DEVICES WALTHAM 54, MASSACHUSETTS| TYPICAL SPECIFICATIONS | |
| :--- | :---: |
| SCL2 | |
| Frequency range (mc) | $6.575-6.875$ |
| Isolation, minimum | 20 db |
| Isolation, maximum | 30 dh |
| Insertion loss, minimum | 0.5 db |
| Insertion loss, maximum | 0.8 db |
| Power, average | 10 watts |
| Power, peak | 1 kw |
| VSWR, minimum | 1.02 |
| VSWR. maximum | 1.28 |
| Type of swith | SPDT |
| Coil current | reciprocal |
| Coil resistance | 400 ma |
| Length | 60 ohms |
| Waveguide | 8 in. |
| | |

NEWS

The heaf-dissipation structure in an experimenta X-band tube. The high dissipation-density capability o the basic design is expected to make possible Ampli trons of 200 kw average power output
tron is made of very small tubing having an in side diameter of 0.018 in . through which water is circulated. The wall thickness of the tubing is only 0.006 in ., therefore heat generated by elec tron bombardment of the slow-wave structure is easily conducted to the water coolant.
"The water flow through the tubes composing the slow-wave structure is in parallel flow. Be cause the tubes are short, a difference of pressure between the input and output water headers of only 100 lb is sufficient to cause the water t flow through the tubes with high velocity. Th tube is so small there is no tendency for a layer ol steam to form between the tube wall and th water coolant, a condition that would brins about melting of the tube wall." [The assump tion is made that the bulk temperature of th water does not exceed its vaporization tempera ture.]
"In this small Amplitron, which has a totia projected anode area of only slightly more than 1 sq cm , it has been possible to dissipate 8 kvv the anode under conditions of close to 50 put cent operating efficiency." (Raytheon defines projected anode area as the product of the diameter of the vanes, the length over which they col lect anode current, and the number of vanes.)
"While this figure of dissipation density is value considerably higher than we would wis to use for design purposes at the present time there is good reason to believe that higher dissipation densities than those already acheven could result from the use of a larger pressure drop across the vanes with a resultant increase in flow velocity of the coolant," Mr Brown states "In view of dissipation-density values that have
,een obtained and the prospect of increasing hese values, we feel that a value of 3 kw per sq m is a conservative figure to use for future iesigns."
In discussing the effect of high efficiency on the power output of a tube with a given anode lissipation, Mr. Brown points out that a tube 50 per cent efficient will turn half of the de input power into useful rf output and half into anode dissipation.
In a tube 80 per cent efficient, 80 per cent of the de input is represented by useful rf and only 20 per cent by dissipated power in the anode. "In this case, the ratio of rf output power to dissipated power is four to one. By increasing the "fficiency from 50 to 80 percent, the power output has been increased four times, provided, of course, that the anode dissipation is the limiting factor."
What is the combined effect of large dissipation density and high efficiency?
If a dissipation density of 3 kw per sq cm is combined with 80 per cent efficiency, Mr. Brown states, " 12 kw of useful rf power may be (u)tained for each square centimeter of anode area." This table shows the dissipation-density figure of 12 kw per sq cm applied to an existing S-band Amplitron, which has an anode area of slightly over 20 sq cm , and which "might be modified to make use of the improved dissipation techniques."

Experimentally
obtained
Dissipation density
Dissipation density
for design purposes
Anode area
Anode dissipation at
$3 \mathrm{kw} / \mathrm{sq} \mathrm{cm}$
Efficiency
Useful rf out, predicted
Experimental S-band X-band tube QK622

7 kw/sq cm
3 kw/sq cm
$3 \mathrm{kw} / \mathrm{sq} \mathrm{cm}$
22 sq cm
66 kw
80\%
264 kw
(I)issipation density is the average dissipation divided by the projected area of the anode) According to Mr. Brown, operation of a tube the physical size of the existing QK622 at the 210 -kw average power level will require the cithode to be redesigned to absorb the increased bick-bombardment power.
"For cw tubes this can be effectively and si mply accomplished, as it has been for the Xbind cw Amplitron, by the introduction of a pure t Ingsten cathode. Such a cathode is directly heated t thermionic emitting temperature by the passage current through it. After the Amplitron has en started, the heater current is turned off and e back-bombardment power is thermally conicted through the tungsten cathode to wateroled supports at either end of the cathode." Raytheon expects that the average power-

SPACE SHRINKERS

MICROIDS AND MONKEYS -- Burnell \&

Co. welcomes the assistance of their simian friends in the task of gathering data vital to space shrinking. By shrinking toroids, filters and related networks for guidance and communication systems, Burnel helps space vehicles carry bigger payloads - more instrumentation, animals - eventually man. Typical of our accomplishments is the MTT MICROID ${ }^{\circledR}$ telemetering band pass filter. Significantly, the combined weight of 23 MICROIDS - plus the monkey - is less than the single non-miniaturized tele metering band pass filter pictured here. MICROID band width is 15% at $3 \mathrm{db}+60 \%-40 \%$ at 40 db . Frequency coverage is from .4 kcs to 70 kcs .

Sizes

Channels $1.6 \quad 2 \times 27 / 32 \times 1 / 2$
Channels 7.10 $1.5 / 16 \times 11 / 16 \times 11 / 16$ Channels $11-18 \quad 15 / 16 \times 19 / 32 \times 1 / 2$
Alternates A-E $\quad 15 / 16 \times 19 / 32 \times 1 / 2$

Write for Filter Bulletin MTT 23.

I ECTRONIC DESIGN • December 9, 1959

COMMPONENTS

New ULTRASONIC DELAY LINES

Low cost - Small size
Development engineers can now employ new concepts in existing and proposed applications. These Curtiss-Wright delay lines are extremely small, hermetically sealed and vibration proof. They are ideally suited for use in computers, coders and decoders, telemetering and navigational systems.

SPECIFICATIONS
Delay range5 to 6000 microseconds
Tolerance. $\ldots . . \pm 0.1$ microsecond Sıgnal to noise ratin., Greater than $10: 1$

DIGITAL MOTORS
For high reliability applications

These stepping motors meet the requirements of assured reliability and long life for aircraft, missile and automation systems.

FEATURES

Dynamically balanced
Bi-directional • Positive lock Simplicity of design High pulsing rate

Input \& output impedance . $50 \cdot 2000 \mathrm{ohms}$ Carrier frequency.......... $100 \mathrm{kc}-1 \mathrm{mc}$ Delay to pulse rise time.... UD to $800: 1$

TIME DELAY RELAYS For high vibration applications

"H" Series thermal time delay relays are designed to meet the high shock and vibration conditions of today's military applications.

features

Time delays from 3 to 180 seconds Temperature compensated Hermetically sealed - Miniature Meets rigid environmental
specifications

WRITE FOR COMPLETE COMPONENTS CATALOG 159
ELECTRONICS DIVISION
cubilis -WRIIGT
CORPORATION - WEST CALDWELL. N.J.

NEWS

What Beamed Super Power Could Mean

For one-way space communication, an earth installation of $200-\mathrm{kw}$ $10-\mathrm{cm}$ tubes could provide communication at costs shown in this table of trade-off between antenna size and power output. Assumed is a re ceiver gain of -40 db , a trans mitting antenna of $50-\mathrm{m}$ diameter and a 5 -m-diameter receiving antenna. Cost figures in left-hand column are for antennas, other figures are power cost and power plus antenna cost.

	moon	vevus	mans	Pluto	
30, $30 \times$		sion			
sioo k					
So dim			¢		
¢		¢			com
Stiod	$\begin{gathered} 3, \mathrm{k} \\ 3.00 \\ 300 \end{gathered}$,	$\begin{gathered} 3, k \\ \text { sit } \\ \text { sick } \end{gathered}$		
		$\begin{gathered} 31 \mathrm{x} \\ \text { s1.000 } \end{gathered}$	$\begin{gathered} \text { sik } \\ \text { s. } 1.00{ }^{2} \end{gathered}$		

The power needed for communication with a passive 100 -m-diam. eter reflecting satellite varies with altitude for continuous point-to point service. Two curves are plotted to show maximum and minimum pow. er because path length from point to satellite to point is not constant.

The proposed Raytheon sky platform can be maintained aloft in still air with super power provided it remains within a 5000 -foot segment of altitude, where it will not lose more than 20 per cent of the power beamed to it from the earth.
 tions rise steadily with distance and bandwidth. On deep space probes, power for communications rather than power for propulsion, becomes a limiting factor, according to Sundstrand Corp.'s I. J. Adleson.

I ndeling capability of the Ampliton can be increased ten-fold without increasing the physical size or the cost of the tube by a large factor. The company believes there are impritant economic and technical implications in the construction of such thibes.
In a paper delivered at the Northeast Electronics Research and Engincering Mecting (NEREM) sevcral weeks ago, Mr. Brown noted that the cost of a microwave tube does not go up in proportion to its power output rating.

He said "We may not be in error to thinh in terms of the availability within a few vears of tubes which cost from $\$ 10$ to $\$ 20$ per kw output. This reduction in cost will have a profound impact upon the conception of projects using large blocks of microwave power.
"No longer will the microwate tube represent the limiting cost of the system." This table from Mr. Brown's paper compares costs involved in a large installation of microwave power:

Cost per Kilowatt

Diesel power	$\$ 100$
Steam power	$\$ 130-\$ 200$
Hydroelectric power	$\$ 200-\$ 300$
Rectifiers and controls	$\$ 50-\$ 200$
Application	Probably over $\$ 500$
Tube cost	$\$ 10-\$ 20$

In powerful microwave installattions, the performance characteristic of efficiency becomes of major importance. Mr. Brown pointed out that a saving of $\$ 2.1$ million in the initial installation and a saving of $\$ 12.6$ million in operating costs over a twenty-year period would result from the use of an 80 per cent eff. cint tube instead of a 50 per cent eflicient tube in a $10,000-\mathrm{kw}$ installation. (See table on next page)
Mr. Brown and Raytheon feel thit we are on the verge of a breakthrough in the economic generation o. large quantities of microwave p wer. Because microwave tubes a) essentially amplifiers they can b driven in phase from a common st rrce, and the company believes It it there is no technical reason CIRCLE 7 ON READER-SERVICE CARD \rightarrow

infllionl tranistors ...the "HOT" line is

 PUILEO $7=$
all ELSH Te peratur Bommarcial and Milfary

.. High Speed Switches

Philco's full range of silicon high speed switching transistors, in both PNP and NPN types, provides the designer with a wide choice to meet the requirements of all high temperature applications. They are engineered and specified to permit simple, straightforward design of practical circuits up to 5 me pulse rates, using saturated configurations and up to 30 mc pulse rates with non-saturating techniques. Packaged in TO-1, TO-5 and TO-9 cases.
$D \boldsymbol{N}_{\substack{2 N 496 \\ 2 N 1119 \\ \text { 2N1429 }}}^{\substack{2 N}} \boldsymbol{N}_{2 N 1199}$

... High Frequency Amplifiers

Philco amplifying transistors are available in nine types, covering the complete high frequency range. The designer will find both PNP and NPN types that permit the design of communications systems at frequencies up to 60 mc . They have low collector capacitance and are available with restricted beta ranges to simplify design problems. All offer excellent performance at junction temperatures up to $+140^{\circ} \mathrm{C}$. Packaged in TO-1, TO-5 and TO-9 cases.

$D \|_{\mid}^{\mid}$| $2 N 495$ |
| :---: |
| $2 N 1118$ |
| $2 N 1428$ |\(N^{2 N} \left\lvert\, \begin{array}{ll}2 N 1267 \& 2 N 1270

2 N 1268 \& 2 N 1271

2 N 1269 \& 2 N 1272\end{array}\right.\)
All types environmenfally fested in accordance with MIL-T-19500A . . . and have been thoroughly field-proven in counfless critical military and industrial applications. For complete data and application information, write Dept. ED-1259

All Types Immediately Available in Production Ouantitios $1-99$ from your local phice and dustrial somiconductor Distributor

This data converter is no longer available

Alfonso Gotlentz, winner of the 1958 Data Conversion Competition, chalked up 16,792 Beckman counter readings in a record time of 7 hrs .23 min . Unfortunately, Alfonso developed digitized eyeballs, a common occupational disability of mammalian data converters. Undismayed by the untimely end of his conversion career, he speedily procured electroluminescent contact lenses; now performs as a two-digit in-line display.
replacing Alfonso, these more clever converters...

To put Beckman counter readings on punched IBM cards, you can get Nat

Model 3110 (for serial punch) or Model 3100 (for parallel punch)

To make a strip chart record of changing counter readings. you may procure -

Model 3120, a digital-toanalog converter with resistance ratio output

To make a punched paper tape of counter readings, ask for -

To print counter readings much faster than Alfonso, try
 punch

Model 1452, a digital redigits

Beckman

123

NEWS

Comparative Costs	$\begin{gathered} 50 \% \\ \text { Efficiency } \end{gathered}$	$\begin{gathered} 80 \% \\ \text { Efficien y } \end{gathered}$
Power Supply	\$ 2,000,000	\$1,250,0 0
Primary Power (Supply eff. 80\%	2,750,000	1,345,0 0
Total	4,750,000	2,595,0 10
Difference	$(2,155,000)$	2,155,0 0
Yearly Operating		
Cost at $0.01 / \mathrm{kw} \mathrm{Hr}$.	2,190,000	1,560,0:30
Cost Difference	$(630,000)$	630,010
20 Yr. Difference	12,600,000	12,600,010

Assumptions: RF output power: $10,000 \mathrm{kw}$; Cost of in. stalled primary power: $\$ 150 / \mathrm{kw}$; Cost of rectifier power supply: $\$ 100 / \mathrm{kw}$; Operating cost (fuel \& maintenance): $0.01 / \mathrm{kw} \mathrm{hr}$.

How useful if power is related to anode efficiency in a device limited by anode dissipation. A boost in efficiency from 50 to 80 per cent increases power output four times.
why powers of almost any magnitude can not be produced. Cost of this power would be only three times that of primary power.

Thinking in terms of horsepower cuantities of energy, the company is going forward with its RAMP (Raytheon Airborne Microwave Platform) project ($E D$. June $29,1959, \mathrm{p} 3$). This is a proposal for a helicopter kept aloft by microwave power beamed from the ground. Raytheon also feels there are important implications for very longrange communications in the generation of microwave super power.
A planning group at the company has developed figures that relate super power to the requirements of very-long-range communications. These are summarized on page 6 .
Harold Hart, of Raytheon, reported to a NEREM technical session that 500 superpower tubes, each of about 200 kw , operated in parallel could permit 1 cps-bandwidth communi-

Cost per rf kilowatt goes down with tube rating. The piot points represent two cw magnetrons that have been in sizable production for some time, a very inexpensive klystron in the sub-watt range and projected figures for a 200-kw cw Amplitron after several years' production.
caltion to the nearest star, transmitting from a 150-m antenna to a $5-\mathrm{m}$ receiving antenna.

When five production-model super-power tubes are available to produce 900 kw total output, a television link could be established with Mars for about $\$ 2$ million, Mr. Hart believes.

The sky platform proposed by Raytheon would require 60 tubes producing a total of $12,000 \mathrm{kw}$. The platform would be kept hovering by the ? 000 shaft hp that would survive the system's overall efficiency of 5.9 per cent. Payload would be 2000 lb .

Another application of beamed delivery of power was suggested last month by I. J. Adleson, Sundstrand Corp., at the Washington meeting of the American Rocket Society. Mr. Adleson propused an orbiting power station for delivery of power to satellites or other space vehicles. He called attention to the possibility of transferring power from the main space generating station to the customer vehicles by focused beam. - -

PRICES AND AVAILABILITY . . .

TRANSISTORS in 23 pnp and npn types have been cut in price by 5 to 35 per cent by Raytheon. Four pnp germanium types, 2N658 and 2N660-1-2, received the largest cuts.

SAMPLE TUNNEL DIODES priced at frum $\$ 50$ to $\$ 150$ each are now available from RCA in 12 types for operation at up to 1000 mc .

Is your company making changes in prices or availability of its products? Send the details to ELECTRONIC DESIGN, 830 Third Ave., New York 22, N.Y.

2

 333

HIGH-SPEED, HIGH-GAIN MICRO-ALLOY TRANSISTORS for modern digital computer circuitry

TYPE 2N893 Micro-Alloy Transistors combine high gain with excellent high frequency response to meet the demands of high-speed computer switching applications in the megacycle range. Low saturation resistance, low hole storage, and exceptionally good life characteristics make these transistors top performers in computer circuits as well as in general high-frequency applications.
D.C β is remarkably linear up to 50 milliamperes collector current. The design of the 2N393 is particularly well adapted to direct-coupled logic circuitry. The polarities of the emitter and collector voltages are similar to those of PNP junction-type transistors.

Made by electrochemical manufacturing techniques, Sprague Micro-Alloy Transistors are uniformly reliable and very reasonably priced.
Write for complete engineering data sheets to Sprague Electric Company, 347 Marshall Street, North Adams, Massachusetts.

* Sprague Type 2N393 micro-alloy transistors are fully licensed under Philco patents. All Sprague and Philco transistors having the same type numbers are manufactured to the same specifications and are fully interchangeable. You bave two sources of supply u'ben you use micro-alloy transistors!

MODEL 803

FEATURING

- Standard Cell Reference.
- Direct in-line readout
- Mirror Scale Meter
- Eight Search and four Null ranges

Hutik

AT YOUR FINGERTIPS

Precise measurements of either DC or AC voltages with this field proven if instrument.
Use the 803 as an AC Differential Voltmeter, DC Potentiometer or DC/AC VTVM.
3 INSTRUMENTS IN ONE

Accuracy: $.05 \%$ from .I volt to 500 volts Input Voltage Ranges: 500-50-5-.5v Null Ranges: 10-1-.1-.01v
Input Resistance: Infinite at Null
Resolution: . 005 v at 500 v to .00005 v at . Iv
Accuracy: $.2 \%$ from .5 volt to 500 volts from 30 CPS to 5 KC
AC
Input Voltage Ranges: 500-50-5v
Null Ranges: 10-1-.1-.01v
Imput Impedance: 1 Meg. shunted by approx. 25 mmf
Resolution: . 005 v of 500 v to .00005 v at . Iv

Cabinet Size: $93 / 4^{\prime \prime} \times 13^{\prime \prime} \times 17^{\prime \prime}-$ Net Weight: Cabinet Model-30 pounds
Price: \$845.00 F.O.B. Seaplle, Washingion
For complete details on the Model 803 or other John Fluke instruments write direct or contact our engineering representative in your area.
john fluke fi)

MANUFACTURING CO., INC. 1111 W. NICKERSON ST., SEATTLE 99, WASH.

New Directions in Space
 Record American Rocket Society Meeting Underlines New Scientific and Sociological Roles of Space Technology.

T- IIE United States may not have a cerntrally organized, long-range space program powered by the kind of support many Americans would like to see, but we do have a space effort drastically different trom, and probably healthier than, that of ouly a few months ago.

Instead of trying to justify their space programs by finding a link to defense goals, investigators are now directly attacking problems of space conguest. Current programs are aimed at systems to carry men rather than warheads. These programs outreach the needs of the military and establish a new climate for space effort.

This new climate for space activities was inescapable at the meeting. Evidence:

- Large-scale shifts from military missile programs to civilian scientific programs. Of the approximately 130 papers presented. about 70 covered manned and unmanned space flight, 55 , technology applicable to either scientific or military projects, and only 4 strictly the military.
- International cooperation: several noteworthy papers were contributed by a delegation of Russians and presented a hopeful promise for future cooperation.
- World and interplanetary peace as a goal: prestige speakers sounded some hopeful notes in 19 papers for winning humanity's long-cherished hope for peace.
- New stature of the space industry: there were 7000 attendees, commercial exhibit booths were sold out a year ago and top government and military leaders were speakers.

Several of the seven papers on spate communication were concerned with loss of telemetry signals cluring re-entering the atmosphere and also during certain critical periods while missiles were leas ing the atmosphere. Both GE and AVCO announced investigation into re-entr! communication systems.
Robert White of the Rescarch and Ad vanced Development Division of Aveo Corp. described the finding that the reentry blackout, that is, the loss of telemetry signals while a space vehicle is reentering the atmosphere, can be combatted by raising the transmission frequenc! to the 30 kmc to 50 kmc range. This indi cates one of the many new uses for millimetric transmission. Absolute reliability of communication during this critical phase will become very important with a man aboard the space vehicle.

Other papers falling under the category of scientific ranged all the way from frequency standards for use in space clocks for testing the gravitational frequency shift postulated by Einstein, (ED, July $22,19.9, p .6$), to several different approaches for providing auxiliary power supply in space vehicles. Also included were several papers on microminiaturization including a discussion of the molectronic program at Westinghouse. Several optical instruments described were an orbiting astronomical telescope, and some optical space navigation devices.

Man into Space

The problems that man brings with him into space travel are the foundation of several new branches of science. One of these is Bio-instrumentation. Several papers described the problems of instrumenting a man aboard a space vehicle.

I several ways of getting around them. One of t l most interesting of these papers was delivered b) Dr. Leslie Kaeburn, space laboratory consultant and researcher.

The paper, "Space Canaries-Implicit Biological Vanitoring." described the techmique of connectint sensor devices internally to the vital organs of a log. These sensors are connected to a transmitter. which is also mounted inside the rib) cage of the animal. The measurements made on the dog br implication. would also describe conditions in ide the body of the human astronaut. The ob ject is to free the human astronaut of the encumberances of many wires or other devices.

Other papers of this type describe the problems of maintaining suitable environment for the humam astronaut.

Space Cited as Boon to Peace

Among the most interesting series of papers were those describing the sociological and legal problems of man in space. Senators and Representatives of the U.S. delivered papers on space law and the prospects for hope and problems when man meets in space. Andrew G. Haley, general counsel of the American Rocket Society, described the problems of jurisdiction over territories on the planets of the solar system. He pointed out that there are no agreements to cover the situations brought about by manned and ummanned contact with other planets.

Dr. Frank O. Fiorio, editor of Missili e Razzi magazine, summarized the implications of space technology's activities:
"With the adoption of new giant booster rockets, the space projects will lose their immediate military usefulness and become mainly a scientific peaceful venture with only secondary military interests .
"Space exploration . . . is an excellent substitute for war in the process of blowing off political, and ideological steam ... The cost of space programs will . . . make impossible the waging of wars in the existence of military organizations except token forces.
"Future space programs will be of such magnitude as to require . . . the efforts of all scientists, technicians and industrial capacities existing in such close cooperation as to render absurd any idea of war on carth."
These expressions of hope were, of course, chiracteristic of the meeting's flavor.

Soviet Delegation Adds to Program

Headed by Professor Leonid Sedov, chairman of the Astronautics Commission of the U.S.S.R. A idemy of Sciences, and president of the Intern ional Astronautic Federation, five Soviet space

Improve quality at iower cost
 Increase production and speed assembly

Eliminate screw machine costs

Now a ball bearing race is being made for a textile machine by deep drawing 1050 CR steel to .843 within tolerances previously believed impossible. Savings of 75% are reported and the 25% reject rate experienced when this part was made on screw machines was eliminated.

This is only one of a host of examples where United's specialized skill in metal forming provides production economies on made-to-order eyelet-like and other metal specialties for many industries.

Special conveyor-type austempering furnaces are used when required to produce uniform toughness, with specified hardness. Parts are clean, free of quench cracks, and have minimum distortion. Call or write today for analysis and quotation on your most challenging problem.

United

UNITED SHOE MACHINERY CORPORATION
industrial sales division
140 Federal St., Boston. Massachusetts
Llberty 2.9100
BRANCHES
Atlanta. Ga. Chicaro. III. C.incinnati, Cleveland. Columbus. Ohio - Dailias, Texas. Harrisburg, Pa.

 through bold research. And such research at SIE has produced the Model R-3 Transistorized Voltmeter, which combines more desirable features than any other instrument in its class.

AC: 1 mv to 1000 v full scale in 14 ranges DC: 1 v to 1000 v full scale + or - in 7 ranges Electrometer: 0 to $1 \mathrm{vdc}+$ or -
Ask your SIE representative to dem onstrate the R-3 and the entire line of SIE Advanced Design Instruments. "Do itt zoon!"

Write today for prices and specifications.
SOUTHWESTERN INDUSTRIAL ELECTRONICS CO.
A DIVISION OF DRESSERINDUSTRIES. INC
10201 Westheimer • P. O. Box 22187 - Houston 27. Texas • HO mestead 5.3471
CABLE: BIECO MOUSTON
CIRCLE 12 ON READER-SERVICE CARD

NEWS

flight experts attended and contributed ts meeting.

Professor Sedov delivered a paper descr bin the orbit of cosmic rockets toward the noon which included a recount of the flight aroun 1 thi unseen side of the moon.
The Soviet delegates showed a movie o periments with animals in free fall.

One of the highlights of the meeting was P_{r} fessor Blagonravov's film report of the au im flights. This biological program was begun 1949. A typical flight lasted 12 minutes. The an mals, mice, rats and dogs, underwent acceleration of 6 g's during the power phase, zero gravity for the free-fall phase lasting up to 6 minutes, and g's during the parachute deceleration. (Othe flights proved that animals could survive flight involving as much as 20 g's of acceleration.
A very spirited question and ansiver sessia followed the film. Typical exchanges between th audience and Professor Blagonravov were:
Q. In view of these animal experiments, can you state where Russia stands in the effort to put a man into space?
A. It is possible right now, but it should be carried out only: 1 . when absolute safety is achieved; 2 . when a safe return is assured; and 3 . when there are some tasks to be performed by the man that could not be performed by automatic equipment.
Q. What tasks then, do you predict the astronaut might be required to perform? A. It's quite difficult to say, because all tasks facing Soviet scientists can be done by automation. When something occurs that can't be done by automation, we'll send a man into space.
Q. Is it true that astronauts have been in training in Russia for two years?
A. I believe that is ungrounded, and comes from the newspapers.
Q. Professor, you and Prof. Sedov were recently quoted in a West German paper as having commented on a forthcoming launch of two men and two women in an orbit around the moon, and that there is very small expectation of a successful return. Is this so?
A. This would not be the first time a news paper launched a fairy tale.
Q. Is there a man-in-space program under. way in Russia similar to our project Mercury?
A. We have no such program, only a program of research on safety in flight.
Q. Since it is obviously desirable to maintain continuous control with the Mercury capsule, would the Professor pass an opinion as to whether we (the U.S. and the Soviet Union) should use each other's voice-communication installations cooperatively and internationally?
A. It would be very desirable that such cooperation took place. It should first be discussed, regarding the type of equipment, frequency and so forth.

Space Industry Achieves New Stafure
There scems little doubt that the American space Industry, represented by the membership of the American Rocket Society, has achieved a new stature. This was evident from the attendance by 7000 obviously interested observers and contributors, and the fact that several of the talks were delivered by Senators, members of the House of Representatives and leading scientists from industry, the military and the Soviet Union.
The seventy booths available for commercial exhibits were sold out a year ago. This, plus the fact that a convention on the scale of the IRE national is planned for October, 1961, is already well on its way to filling the Coliseum with exlibits is another indication.

Do we Have a Space Program?

The question of whether or not we have a realistic space program was posed by Dr. William IH. Pickering, director of California Institute of Technology's Jet Propulsion Lab).
Dr. Pickering pointed out the reaction of the audience watching our efforts in space. At stake, as he put it, is the answer to the question, "Is it Russia, or is it the U.S. which is the technological leader."
At another point in his speech, Dr. Pickering stated, "As far as the rest of the world is concerned, it is perfectly clear that we are in a space race with Russia; we have clearly stated that we have undertaken space developments and space explorations." During an interview before his talk, 1)r. Pickering also stated that he would like very much to see the president of the U.S. make the statement that we actually are in a space race.
Brig. General H. A. Boushey, director, Advanced Technology HQ USAF, made the point that, "There is no conflict between peaceful purposes for the benefit of all mankind, for which space i. to be exploited under the National Aeronautics a id Space Act, and the use of space vehicles for wilitary purposes." This point was our military establishment devoted to maintenance of peace. Three uses of space important to the military ere mentioned: 1. a communication satellite; the early warning satellite; and 3 . The recondissance satellite.

TOP TEAM IN WAVE TUBES

 MMR A EPR SPECTROMETERS, MAGNETS MAGNETOMETERS STALOS, POWER AMPLIFIERS GRAPHIC RECORDERS, RESEARCM NMD DTVIDTMCY -IYICEI

NEWS

 (continued from p, 1.3)A full scale Titan ICBM, set up in front of the Sheraton Park hotel where the meeting was held, along with a launcher-full of Hawk missiles, were among the few military notes presented at the mecting. Others were among the commercial exhibits.

The contrast between the existing hardware and the projects in the planning stage lent emphasis to the new direction taken by space activity. Hardwarr-in-being is primarily for the military; projects in planning are primarily scientific and concerned with manned travel to other plamets. It may be, that this meeting of the American Rocket Secciety is also indicative of a turning point in history. - -

NEREM Now Third Largest Electronic Meeting in U.S.

With the lively support of a rapidly growing local electronic industry and a nearby complex of research institutions, the Northeast Electronics Research and Engineering Meeting (NEREM) passed the National Electronics Convention last month as the nation's third largest electronics show. Only the National IRE show and WESCON scored higher totals this year than NEREM's 12,000 registrants, more than 300 booths and more than 75 technical papers.

Here are some of the highlights of the meeting:

- General Radio's vice-president and chief engineer D. B. Sinclair reported on the Hungarian Colloquium on Microwave Communications, which he attended as the only guest invited from the U.S. Dr. Sinclair reported that Hungary is trying hard to establish an electronics inclustry and is finding it necessary to be self-sufficient. Although some equipment and parts are imported from Communist-bloc countries, many equipment plants in Hungary make their own parts. In one plant visited by Dr. Sinclair, some 70 of about 1000 workers were engaged in tooling. Another plant made its own cooling fans and ferrites. Hungarian products, said Dr. Sinclair, are designed to be rugged and to work well, but look old-fashioned and heavy. A Hungarian, Tibor

Over 300 NEREM booths filled three halls of Boston's Commonwealth Armory to make the show one of the most successful ever held in the area.

Raytheon Voltage Regulating PLATE-FILAMENT

TRANSFORMERS

Transformers that regulate voltage to within $\pm 3 \%$

CIRCUIT DIAGRAM shows Raytheon Voltage Regulating Transformer in typical full-wave rectifier circuit. Three standard models with ratings
up to 380 VDC @ 250 MA are im mediately available from stock.

THIS BOOKLET GIVES YOU COMPLETE SPECIFICATIONS. For your copy plus a companion data booklet write Raytheon, Manchester, N. H

RAYTHEON COMPANY Industrial Apparatus Division

Excellence in Electronics

Hoffmann, delivered what was said to be one of the best papers at the colloquium. The paper described an atomic-hydrogen maser with a noise ligure of 4 to 10 K at room temperature. A 6000 me microvave commonication system was described in a Soviet paper.

- The theory of a traveling-wave transformer was reported on at NEREM by Tramsitron's H. G. Rudenberg. In this device, now coming into use, the transmission line and transformer properties of helical windings are combined in distributed-apacitance circuits to provide wide bandwidth and reasonable transformation ratios. Freguency-bandwidth ratios of 10^{3} to 10^{-5} may be achieved, Dr. Rudenherg reported. He added that traveling-wave transformers may remove the high-frequency berrier to use of transformers in computers. With such devices, trade-off can be made between delay and rise time to give rise times of one tenth of a millimicrosecond.
- An experimental pentode with a gain-bandwidth figure of merit of 350 mc was described by C. R. Henderson, of CBS Electronics, who said the COS 7548 is a secondary-emission tube designed for fast rise time and a life longer than comparable tubes. Mr. Henderson attributed the tube's reported long life to its thick magnesiumovide dynode, which he said is not destroyed by normal tube temperatures, and which stands up muler short overloads
- N. E. Beverly, of IBM, described the circuit packaging being designed into the Stretch scientific computer now in construction for the AEC Double-sided etched wiring, plated-through holes and double layers of components are used in a basic $4.5 \times 6.5 \times 0.5-\mathrm{in}$. package to achieve a reported 5-to-15-per-cent better performance than previous IBM packanging techniques.
- The Circlotron amplifier was described by John Kline, of Sanders Associates, Nashua, N.H.;

it is a cross-field microwave amplifier designed to retain the efficiency and simplicity of the magnetron. The still-in development device is a one-port nonlinear. high-power amplifier that uses a magnetron as a negative resistance element much as a maser uses an active material, reported Mr. Kline. He said experimental models have given gains greater than 10 (b) over a 10 -per-cent bandwidth in the X -band at efficiencies between 30 and 60 per cent. Peak power output was 7.

Optional Chopper Stabilization

ONLY ${ }^{\circledR}$ REGATRON

PROGRAMMABLE POWER SUPPLIES
HAVE ITI
0.01% or 0.003 V from no load to full load . . . this is the conservative regulation specification for Regatron Programmable Power Supplies equipped with chopper stabilization. And just as important, chopper stabilization assures a higher order of regulation and stability at every output voltage, even at fractions of one volt.

There are other advantages too: Chopper stabilization provides for exceptionally high repeatability of voltage control settings . . . enhances
remote control operation.
And chopper stabilization can be specified at any time. The compact plug-in unit can be installed at the factory as an original accessory, or it can be installed in the field. A complete kit is available for field installations. Instructions and all hardware are included.

Ask your local E / M representative for more information, or write ...

- registered u.s. patent office. patents issued and pending.

Weather Satellite Will Send 500-Line Photos

Weather observations from space are scheduled to begin in early 1960 by means of a pair of U.S.bited 500 -line television cameras. The effort. called Project Tiros, vill scan cloud formations over a large portion of the earth. The information is to be relayed to stations in Hawaii and Fort Monmouth, N.J.

An Air Force Thor-Able rocket combination will hurl the Tiros vehicle into space. The cameras are designed to produce far greater detail than any yet flown in U.S. Sat-ellites-500 lines. One camera, aimed straight down, should cover about 490,000 square miles and show details one and a half miles or more in width. The other camera is to cover a smaller area but more in detail.
Shots taken by the cameras as the satellite whirls over the globe are to be stored on magnetic tape. Over the Hawaii or New Jersey stations, the images are to be broadcast on command. Pieced together, they will form a mosaic for the weatherman's reference.

NEWS BRIEFS . . .

.. DR. LEO ESAKI, of Ja par's Sony Corp. and inventor of the tunnel diode recently visited the U.S. During his visit Dr.
 Fsaki described plans for the $30-\mathrm{mc}$ tumel-diode computer he is helpinig design at Tokyo University.

WORLD's

largest solar-en ergy converter can be connected to provide 6 to 60 volts in 6-volt increments at from亏 to 5 amperes. The 4 by 8 foot mel holds 7800 silicon soliar cells, itomatically tracks sum.

RCA $=7025$. "low noise and low hum" characterize the performance of this .. high-mu twin triode-ideal for your pre-amplifier designs.
"versatility" keynotes the applications for this tube-a sharpRCA 17199 cutoff pentode and a medium-mu triode in one envelope-for low-level stages.
"compact, but powerful" can describe monophonic and stereoR月A 5072 phonic power amplifiers designed around this 9-pin miniature -a pair in Class AB1 can deliver up to 20 watts output.
"power deluxe"-up to 76 watts with only 2% distortion from
a pair in Class AB1 audio service-new structure design provides exceptional electrical stability and reliability.

ANOTHER WAY RCA SERVES YOU THROUGH ELECTRONICS

RADIO CORPORATION OF AMERICA
Electron Tube Division
Harrison, N.J.

From pre-amplifier to power amplifier, mono or stereo, you can design a comprehensive line of high-fidelity products around these 4 RCA tube types. And your designs with RCA tubes add up to recognition . . . for quality, performance, prestige. Contact your RCA Field Representative for details. For technical data, write RCA Commercial Engineering, Section L-18-DE-1, Harrison, N. J.

744 Broad St., Nowark 2, Now Jorsey. HUmboldt 5-3900

MIOWEST:
Sulte 1154. Merchandise Mart Plaza
Chicago 54, III., Whitehall 4-2900

C3ss East Weenington Boulevard Lo
Aneles 22 Calle RAymond 3-838

Exposed view of power supplies show battery of Tung-Sol/Chatham
6080 Series Regulator tubes in Budd Lewyt's AN/FST-1 Transmitter.

BUDD LEWYT links in SAGE system

use Tung.Sol tubes to regulate power supplies

Defending America against air attack is the staggering job of SAGE. Daily, our radar network must locate, identify and track more than 30,000 aircraft in flight.

The Budd Lewyt CDT (Coordinate Data Transmitter System) helps do it automatically. CDT transmitters at unmanned GapFiller sites pick up, interpret, convert and then relay signals over telephone lines to CDT monitor units at SAGE Control CDT m
Centers.

Handling 161,800 radar pulses per second, CDT verifies targets with 99.99% accuracy. Because this system must func tion with unfailing accuracy, Tung-Sol/ Chatham 6080 Series tubes are used to
regulate vital power supplies in both the transmitters and monitors.
Whether your equipment is a critical link in national defense, or a new idea for furthering automation in business or production, your Tung-Sol Applications Engineer can be a big help in the planning stages of your projects. Call him with confidence, because Tung-Sol impartially produces both tubes and semiconductors assuring you better quality, efficiency and dependability in your product. We'd welcome the chance to prove it to you. Tung-Sol Electric Inc., Newark 4, New Jersey. TWX: NK193.

NEWS

220-lb Satellite Reactor Develops 3 kw

The Atomic Energ! Commission has displayed what may well be the world's smallest nuclear reactor -a 220-pound unit, about the size of a five-gallon can. It will suppl? electrical power for advanced spaci vehicles.
Its output of three kilowatts is hundred times as high as that of the solar-powered paddle-wheel satel lite that the U.S. orbited last sum mer and hundreds of times in excess of a recently developed radioisotope power source.

The reactor, named SNAP II (Sys tems for Nuclear Auxiliary Power) uses enriched uranium fuel. Heat is carried by a liquid sodium to : mercury boiler, where vaporization occurs at high temperature. The mercury vapor turns a miniature turbine, which generates electricit! in conventional fashion.

A full-scale model of the reactor has been built and successfully tested, the AEC said. Regular oper ation is scheduled within a year. Atomics International, a division of North American Aviation. Inc., is the manufacturer.
The A.E.C. estimated that development of the reactor system had cost about $\$ 6.5$ million and that individual units would cost about $\$ 400,000$.
A generator weighing 30 addlitional pounds is included in the system.

NEWS BRIEFS

BERYLLI-

UM BALL will be electrostatically supported in MinneapolisHoneywell's Gy-stat-type gyroscope. A proto-
 type has been built and promises accuracies beyond the range of present devices, according to the company.
< CIRCLE 17 ON READER-SERVICE CARD

New Inertial System Uses Digital Computer 'Platform'

An airborne intertial navigation system decribed as "a considerable departure from tradiional concepts" is under development for the lir Force.
It shuns the use of a gimbal "platform" for acelerometers and gyros. The gimbal structure, "ith its large size and close tolerance parts, has loen supplanted by a digital computer.
Basic details of the system have been disclosed hy Ford Instrument Co. of Long Island City, X.Y., which announced receipt of a million-dollar (ontract to build and test an experimental model for the Weapons Guidance Laboratory at Wright Air Development Center. The system has been designated AJN-7.
Accelerometers and gyros, common to all inertial systems, are strapped down in this new version, the company reported. In conventional systems these units must have complete freedom of motion relative to the body of the airplane or missile. This calls for a "stable platform" inside a nest of free-swinging gimbal rings, in turn attached to a heavy base. In this arrangement the gros force the accelerometers to conform to a predetermined orientation, independent of changes in heading, pitch or roll of the vehicle.
In the AJN-7 the gyros have no control over the accelerometers. Instead the accelerometers are free to follow any movement of the vehicle, "hile the gyros merely measure the deviations of the vehicle from its initial orientation. Signals from the accelerometers and gyros are fed into a digital computer, which integrates the data and provides continuous information on speed, direction and location. This information cam be linkea In an autopilot to keep the vehicle on course.

Japanese Transistor Imports Called Threat to U.S. Research

Japanese transistor imports are viewed by the president of the Electronic Industries Assoc. as a long-range threat to American electronic research.
The trade leader, David R. Hull, told the MidAnerical Electronics Conference of the IRE that aithough Japanese sales were largely in the entert inment transistor field, that market "primarily his paid for the research and development proy ams which have been the industrys lifeblood." The American electronics industry, he said, ust support major expansion of research and oduction facilities to meet military transistor juirements. But, he warned, "This responsibility ys some day go by default to a foreign power."

INHERENT STABILITY Assured in a DALOHM RH Resistor

Even searing heat from a glowing bed of coals causes no deviation from the inherent stability that is standard in Dalohm resistors.
Stored on the shelf for months... or placed under continuous load... operating in severe environmental, shock, vibration and humidity
conditions ... Dalohm precision resistors retain their stability because it has been "firmly infixed" by Dalohm design and methods of manufacture.
For all applications demanding resistors that meet or surpass MIL specifications, you can depend on Dalohm.
high power - wire wound - miniature dalohm TYPE RH RESISTORS
Designed for specific application of high power requirements, coupled with precision tolerance. Mount on chassis for maximum heat dissipation.

- Rafed af $10,25,50,100$ and 250 watts
- Resistance range from 0.1 ohm to 175 K ohms, depending on type
- Tolerances $\pm 0.05 \%, \pm 0.1 \%, \pm 0.25 \%$ 。 $\pm 0.5 \%, \pm 1 \%, \pm 3 \%$
- Temperature coefficient 20 P.P.M
- Operating temperature range from Operating temperat
$-55^{\circ} \mathrm{C} .10+275^{\circ} \mathrm{C}$.
- Welded construction from ferminal to terminal.
- Ruggedly housed; sealed in silicone and inserted in radiator finned aluminum housing
- Smallest in size, ranging from $7 / 16^{\prime \prime} \times$ $3 / 4^{\prime \prime} 103^{\prime \prime} \times 4 \frac{1}{2}$
- Surpass applicable paragraphs of MIL-R. 18546B (Ships).

SPECIAL PROBLEMS?

You can depend on Dalohm, tom. for help in solving any special problem in the realm of development, engineering. design and production. Chancer are you can find the answer in our standard line of precision resistors (wire wound. metal film and deposited carbon); trimmer potentiometers; revistor networks; colletfitting knobs; and hysteresis motors. If not, just outline your specific situation.

from DALOHM
 Better things in

smaller packages
DALE PRODUCTS, INC.
1328 28th Ave., Columbus, Nebr.

[^0]
NEWS

Biomedical Conference Stresses Effects Of Nonionizing Rays

"We know of no injury and no deaths from microwave energy," George M. Knauf of the Air Force told the 12th Annual Conference on Electrical Techniques in Medicine and Biology. This was his reaction to recent "scare" stories that reported persons had suffered from working in microwave fields.
The Conference, held in Philadelphia on November 10, 11, and 12, was sponsored by the IRE, AIEE, and ISA. This year's Conference dealt primarily with the interaction of predominantly nonionizing radiation with biological matter, explained H. P. Schwan, conference chairman. Both acoustic and electromagnetic radiation (from radio frequencies to ultraviolet) were covered.
The biological effects of microwave energy are getting more and more attention because of their increased use in industrial and military installations. Fourteen of the more than 40 papers delivered at the Conference dealt with the subject.

Thomas Ely, of the Office of Health and Safety, AEC, explained in his paper that today's research in microwaves includes work with several fundamental frequencies (both pulsed and continuous wave), use of rabbits, dogs, and men, and various ways of looking for and evaluating biological effects. An average field density of 0.01 watt per square centimeter has been accepted by the Department of Defense as being completely safe for man, regardless of exposure time.

The eve is very sensitive to microwave energy. Animal experiments have proved the cataractogenic effects of microwaves. Goggles fitted with common window-wire screen provide an effective shield for those in hazardous areas. In very strong microwave fields, like those in BMEWSS, two layers of this screen are sufficient to protect the eye. Clothing coated with nichrome can be used to shield the body.

Some Highlights

- The use of nuclear magnetic resmance for the measurement of blood flow was described at the conference. According to Robert L. Bowman and V. Kudraveev of the National Heart Institute, "preliminary experimental results encourage a belief in the feasibility and relative simplicity of the projected method."
- The description of an instrument for measuring blood-cell concentration was provided by Robert H. Okada and Herman P. Schwan of the Moore School of Electrical Engincering, University of Pennsylvania. The instrument is based on

Features like these make Honeywell
first in Power Transistors!

Dynamically tested to insure highest quality

Listed minimum and maximum current gain specifications to aid designers

Stud-mounted for simple installation and reduced interface thermal resistance

Alloyed junction, germanium PNP transisturs

Will operate at junction temperatures up to $95^{\circ} \mathrm{C}$.

Solder terminals for wiring ease and high current carrying capabilityHermetically sealed for reliability and long life

For miniaturization and high power capabilities, Honeywell's complete line of power transistors is your best answer. Rugged, compact, versatile, Honeywell transistors give you smaller size per watt of power output. With a narrow span of character-
istics, you get superior electrical performance and high uniform power gain over a wide range of collector current values. For complete information. contact one of the Honeywell offices shown below, or write Honeywell, Dept. ED-12-152, Minneapolis s. Minn.

Honeywell Semiconductor Products Sales Offices
UNION, NEW JERSEY - ORLANDO, FLORIDA - BOSTON, MASSACHUSETTS - LOS ANGELES, CALIFORNIA - TORONTO, ONTARIO OTTAWA, ONTARIO • ChICAGO, ILLINOIS - MONTREAL, QUEBEC • GENERAL SALES, MINNEAPOLIS, MINN.

Honeywell Semiconductor Distributors

Peerless Radio Distributors, Inc. Jamaica, New York

Flight Electronics Supply Corp. Inglewood, Colif.

Kierulff Electronics, Inc. Los Angeles, Calif.

Stark Electronics Supply Co. Minneopolis, Minn.

Atlas Electronics, Inc
San Diego, Colif.

Electronic Industrial Sales, Inc Washington, D. C.

reliability and long transistor application!

High voltage, high current, low thermal resistance transistors. Designed for use in highpower amplifiers (servo, audio, etc.), power converters, switching circuits, voltage regulators, and other similar applications. Their small size and efficient means of attachment give these transistors a power rating (per unit volume) higher than any other commercially available units. $2 \mathrm{~N} 538,2 \mathrm{~N} 538 \mathrm{~A}, 2 \mathrm{~N} 539,2 \mathrm{~N} 539 \mathrm{~A}$, 2N540 and 2N540A; 2N1202, 2N1203, 2N1261 2N1262 and 2N1263. The latter three transistors are now rated 80 volts.

Highest current (30 amperes), lowest thermal resistance transistors. Designed for use in high-current voltage-regulators, high-powered DC converters and inverters, and other similar applications. Their low thermal resistance (typical: $0.36^{\circ} \mathrm{C}$ / watt; maximum: $0.7^{\circ} \mathrm{C} /$ watt) gives these transistors the highest dissipation rating of any commercially available units. 2N574, 2N574A, 2N575, 2N575A 2N1157, and 2N1157A

Tefrode power fransistors. Designed for use in applications where exceptional linearity or stability is required. These transistors have two connections to the base layer. 3 N 45 and 3 N 46 .
the fact that the resistivity of blood is a function of the volume concentration of the cells in the blood.

Rotating Anode in Line-Scan CRT

Line-scan tube uses an anode rotating at 1600 rpm to scan one line at a time with high resolution. CBS Labs asserts that tube's light source has pre-area brilliance comparable to brightesi man made light known.

Two Engineers Will Get Top Awards From IRE

The Institute of Radio Engineers will give its two highest awards in 1960 to Haraden Pratt and Dr. Harry Nyquist, consultant engineers.

Mr. Pratt, former telecommunications adviser to the President and now secretary of the IRE, has been named for the Founders Award "for outstanding contributions to the radio engineering profession and to the Institute of Radio Engineers through wise and courageous leadership in the planning and administration of technical developments, which have greatly increased the impact of electronics on the public welfare."

Dr. Nyquist, retired R\&D scientist of Bell Telephone Labs, will receive the Medal of Honor "for fundamental contributions to a quantitative understanding of thermal noise, data transmission and negative feedback."
The awards will be presented March 23 at the 1960 IRE International Convention in New York.

Low current transisfors ($1 / 2$ ampere). Designed for use in servo amplifiers, audio amplifiers, and all other relatively low-current power applications H3A and H 4 A .
Transistors approximatel) twice acthal size
Honeywell

More reliable products through Advanced Engineering

CBS NPN switching transistors have proved themselves in flight in many of our important "birds." They have been found to have the advantages of fast switching, high voltage, low cutoff current, and low saturation resistance. All 28 of these CBS transistors exceed the MIL-T-19500A specification.
This same proven reliability under the most adverse environmental conditions is yours for military or industrial core drivers, logic circuits or general switching functions. Write for complete data sheet E-353. Order from your local Manufacturers Warehousing Distributor.

Choose from. .

2N306	2N357	2N388	2N439A	2N445	2N558	2N 1000
2N312	2N358	2N438	2N440	2N446	2N634	2N1012
2N356	2N377	2N438A	2N440A	2N447	2N635	2N1090
2N356A	2N385	2N439	2N444	2N556	2N636	2N1091

CBS ELECTRONICS, Semiconductor Operations
Sales Offices: Lowell. Mass. 900 Chelmslord St. GLenview $\mathbf{4}$. 0446 . Newark, M. 1.132 Green St. Market 3.5832 - Metrose Park, III. 1990 N. Mannheim RA., EStebrook 9-2190 Les Angeles, Calit., 122 S . Garfield Ave., RAymond 3 -9081

NEWS BRIEFS ...

THE THERMIONIC CONVERTER being developed by RCA and Thiokol to convert waste rocket heat to electricity in solid propellant missiles is eventually expected to produce up to 175 watts per pound. Theoretical energy density is said to be more than 1000 watts per square centimeter.

AN EHF DATA LINK for communication at above 30 kmc is being developed by Avco to solve difficulty of communicating during reentry into the earth's atmosphere. A prototype now being built will have 40 kw peak power.

AIRCRAFT and electronic companies were briefed about the Army's long-range aviation needs at a meeting earlier this month at Ft. Monroe, Va. Among designs that the Army called for were improved surveillance aircraft heavily instrumented with electronic detection devices.

AN AUTOMATIC PILOT with no moving parts is being developed by the Bendix Aviation Corp. The device is expected to result in all-electronic solid-state flight-control systems for operation of airborne digital computing systems.

THE FIVE SCIENTISTS at Diamond Ordnance Fuze Labs who developed the Army's microminiaturization technique have been awarded $\$ 5,000$ each under the government's award program for money-saving ideas. The Army estimates that the scientist's technique will lead to a $\mathrm{S}=00,000$-per-year-saving

RESEARCH in physiological instrumentation will be conducted in a new laboratory to be built at Iowa State. The research program involves the use and development of electronic devices in the measurement of bodily functions. It also will involve application of principles of feedhack-controlled data systems.

TWO IDENTICAL GUIDANCE and control systems were carried in a recent launching of a Jupiter intermediate range ballistic missile. The test verified the accuracy and reliability of the system developed by the Guidance and Control Laboratory of the Army Ballistic Missile Agency.

APPLICATIONS for National Science Foundation Graduate Fellowships are being ac cepted now in subjects including information and communication theory, engineering sciences, and mathematical and physical sciences. Write: Fellowship Office, National Academy of Sciences. 2101 Constitution Ave. N.W., Washington 25 D.C., before 1960 .

MICROWAVE TRANSMISSION of computer data is now a reality. A communication system links together six large-scalle IBM computers at North American's Los Angeles plant and the Rocketdyne facility 39 miles away. IBM and Pacific Tel and Tel developed the system for North American, which claims this is the first time information has been transmitted from one computer to another without a direct wire link. Transmission rate is 3000 words per second.

THE AMERICAN ROCKET SOCIETY meeting, growing larger each year, will be held at the New York Coliseum in 1961.

THE CORNELL-DESIGNED 1000-ft radar dish to be built in a Puerto Rican limestone sink ($E D, 7 / 22 / 59, \mathrm{p} 8$) will operate at only 400 mc . The aluminum mesh antenna, an ARPA project, is expected to be completed in 1961. Some targets: electron-density measurements to a 4000 -mile height, radar echos from Mars and Venus and mapping of sum and moon areas, and probably studies on missiles using the Atlantic range

SCANNING SYSTEM in Samos (formerly Midas) surveillance satellite is being designed to take photos by starlight, and photos of seven-foot objects from 300-mile altitudes. Samos system will be ready in 1962. Advance versions, to be developed between 1965 and 1970 will photograph two-foot objects from same altitudes.

SIGNIFICANT CONTRACTS

TO BURROUGHS CORP., Detroit, Mich., $\$ 35,000,000$ from the Airborne Long Range Input (ALRI) for systems management work. ALRI is a radar station housed in an RC-121 reconnaissance aircraft to provide a seaward extension of SAGE.

TO SYLVANIA ELECTRIC PRODUCTS inC., New York, N.Y., $\$ 450,000$ from the Communication and Navigation Laboratory of Wright Lir Development Center for an experimental ultra-high-frequency receiver that will provide 0,000 hours (nearly 14 months) continuous operation and which will be adaptable to incorporation if micro-miniaturized electronic elements.

TO COLLINS RADIO CO., Dallas, Tex., wer $\$ 2,000,000$ from the Air Force for the engireering, manufacture and installation of a micro:ave communication system for Fairchild Air orce Base.

For high-accuracy data logging...to checkout

missiles or meters, to test transducers
or transistors...checkout a KinTel digital system
 experience, takes eight meas. urements at each of 7200 different data points. Outputs include visual readout, digital printer, $X \cdot Y$ recorder, and tape punch. Tape is perforated for direct entry into a digital computer. To provide 0.01% accuracy for low-level inputs. alternate channels scan calibra tion signals. These, with the unknown input signal, are fed to the computer and correction is made for any inaccuracy in the system itself. Cost: about $\$ 20,000$

This data system consists of a KIN TEL 453M scanner and 501 DC digital voltmeter, plus a parallel entry printer. Briefly, the system will accept 400 one-wire, 200 two-wire, or 100 four-wire inputs, and will provide both visual and printed indication of the channel being scanned and DC input signals from ± 100 microvolts to ± 1000 volts. Accuracy is $0.01 \% \pm 1$ digit, and ranging and polarity indication are automatic. The complete system costs approximately $\$ 6850$. At the present time, delivery is off the shelf.

You can have any number of channels: A single 453 M scanner ($\$ 2500$) accepts 400 one-wire, 200 two-wire or 100 four-wire inputs. Additional scanners can be added if more inputs are required

You can measure DC from $\pm 1 \mu \mathrm{~V}$ to 1000 voits: The KIN TEL 501 DC digital voltmeter (\$2995) measures from $\pm 100 \mu \mathrm{~V}$ to ± 1000 volts. Addition of a KIN TEL digital preamplifier increases sensitivity to $1 \mu \mathrm{~V}$ DC
You can measure AC from $10 \mu V$ to 1000 volts: Addition of a 452 AC converter ($\$ 850$) to the 501 DC digital voltmeter permits measurement of RMS AC voltages from 1 mv to 1000 volts in the frequency range of 30 cps to 10 kc A KIN TEl preamplifier can be added to increase AC measurement sensitivity to $10 \mu \mathrm{v}$ from 30 cps to 2 kc
You can measure voltage ratios: The 507B digital voltmeter ratiometer $\$ 3835$) measures DC voltages from $100 \mu \mathrm{v}$ to ± 1000 volts and DC/DC ratios from 0001 1 to 999.9:1. Accuracy is $0.01 \% \pm 1$ digit. AddiAccuracy is 0.01 of mits AC/DC and AC/AC ratio measmits AC/DC

You can get 0.01\% DC and 0.2\% AC accuracy: The KIN TEL 502 AC/DC digital voltmeter ($\$ 3845$) measures DC from $\pm 100 \mu \mathrm{v}$ to ± 1000 volts with $0.01 \% ~ \pm 1$ digit of reading accuracy, and AC from 1 mv to 1000 volts, 30 cps to 10 kc , with 0.2% of full scale accuracy.

You can have 10,000 megohm input impedance: The kIN tel 458A digital voltmeter preamplifier (\$1225) has gain positions of 100 (for DC and 30 cps to 2 kc AC measurement) and +1 HI Z (for DC only). On the +1 gain position input impedance is $>10,000$ megohms and gain accurracy is 0.001%. Input range for +1 operation is 0 to 40 volts.
You can have visual, printed, or any other form of output: KIN TEL digital other form of output: KIN TEL digital of the measured quantity indication pre measured quantity on a singleplane in-line readout. They are capally available 10 -line parallel input ally available 10 -line parallel input able for driving other types of print able for driving other typ of print and IBM card punches.

To find out how a RIN TEL, digital system can solve your particular data acquisition problem, send us all outline of your require-

5725 Kearny Villa Road, San Diego 12, California CIRCLE 21 ON READER-SERVICE CARD

...NEW LOW-COST

Transistorized Readout

"Trixie", new computer readout circuit design, utilizes Sylvania's new NPN transistor, Syl 1750, and the Nixie* indicator tube
Now, designers can meet direct readout requirements for computers, instrumentation and data display with new economy and efficiency. Sylvania, pioneer manufacturer of NPN transistors, has developed new parameters in the Syl 1750 to meet the need for a low voltage input driving circuit for the Nixie indicator tube.
"Trixie" (Transistors + Nixie tube)
comprises ten Sylvania NPN medium voltage switching transistors, Syl 1750, in a common emitter configuration. Each transistor drives one of the tube's ten cathodes. The result is the lowest power visual readout available. It can be designed in plug-in module form around a standard Nixie tube socket with terminals provided for electrical connections. A typical module, especially adaptable for direct panel mount. ing, has an over-all length of two inches and a nominal one-inch diameter.
The new Syl 1750, specially designed for "Trixie," is a 40 v (minimum) NPN germanium alloy junction tran-
sistor. Its low cost is a product of Sylvania's production know-how in NPN transistor manufacture and long experience in NPN design. Syl 1750 meets the reliability and performance criteria of other Sylvania switching transistors and matches their highquality standards. It is encased in a JEDEC TO-5 package with the Sylvania welded hermetic seal for full protection against humidity and other environmental conditions.
Call your Sylvania representative now for full details of the new low-cost transistorized readout components.
"Trixee" - "Nixte" are crade manks owned by Burroughe

- SYLVANIA:

GENERAL TELEPHONE \& ELECTRONICS circle 22 on reader-service card

Sylvania Semiconductor Division 100 Sylvan Rd., Woburn. Mass.

MEETINGS

Calendar of Events

December

26-30 American Association for the Advancement of Science, Chicago, III.

January
6-9 Institute of High Fidelity Manufacturers 1960 High Fidelity Music Show, Shrine Exposition Hall, Los Angeles, Calif.
11-13 6th National Symposium on Reliability and Quality Control, Statler-Hilton Hotel, Washing. ton, D.C.
12-15 Society of Plastics Engineers' 16th Annual Technical Conference, Conrad Hilton Hotel, Chicago, III.
25-29 Stress Measurement Symposium, Arizona State University. Tempe, Ariz.

February

2-4 15th SPI Reinforced Plastics Division Conference, Edgewater Beach Hotel, Chicago, III.
3-5 1960 Winter Convention on Military Electronics, PGME, Ambassador Hotel, Los Angeles, Calif.*
10-12 7th Annual Solid-State Circuits Conference IRE, ISA, AIEE, Engineering and Scientific CenPer, Cleveland, Ohio.
11-13 1st Annual Electronics Representatives Associa tion, Drake Hotel, Chicago, III.
19-23 3rd International Electronic Parts Show, Paris, France.
*Includes meetings described herewith

16th Annual Society of Plastic Engineers

Technical Conference, January 12-15
The theme of the 16th Annual Society of Plastic Engineers Technical Conference will be the professional achievements and approaching opportunities in the growth of plastic engineering. Several symposia based on the interests of the Professional Activities Groups of the society will include plastics in building, injection molding, polymer structure and properties, reinforced plastics, standards for reporting properties, fabricating, finishing, plastics in electrical insulation, casting and plastics tooling, forming, extrusion, thermosetting molding, metals for plastics molds, and vinyl plastics. Conference chairman is Mr Charles M. Wasugh of E. I. Du Pont de Nemours \& Co., Inc., 7250 North Cicero Ave., Lincolnwood, Ill.

3rd International Electronics Parts Show,

February 19-23, Paris, France

The 3rd International Electronic Parts Show. for electronic specialists, will present a full range of elements used in the construction of radioelectrical and electronic appliances. Many new exhibitors from all countries will be taking part alongside the larger international firms. The show is organized by the National Federation of French Electronics Industries, 23 rue de Lubeck. Paris 16, France.

CIRCLE 860 ON READER-SERVICE CARD \rightarrow ELECTRONIC DESIGN • December 9, 1959

Irstrument-Automation Conference and Exhibit ISA, Houston, Texas, February 1-4

The theme of the winter Instrument-Automation Conference and Exhibit will be "Process Control in the Electronic Era."

Technical sessions of the Conference will be de voted to the concepts, techniques and applications of the scientific equipment and methods utilized by various industries, with special attention being paid to the petroleum, chemical, aeronautical, missiles and electronic, and of process inclustries.
Papers scheduled for the technical sessions cover instrumentation progress and utilizing electrunic principles for flow measurement, control and feedback in the chemical and petroleum industries. Reliability, testing and standards in the aeronautical and missiles industry will be covered in other papers, while presentations will be made on the development and economic justification of control systems in the Management and Economic sessions.
The Exhibit will include computers, measuring devices, transmission and telemetering instruments, data processing and information display equipment, control instruments and other ele ments and components of the newest products and services in instrumentation and automatic control

The Conference Sessions will be held Feb. 1-4 at the Rice Hotel, while the Exhibit will be staged in the San Houston Coliseum, Feb. 2-4. For additional information write to: Instrument Society of America, 313 Sixth Ave., Pittsburgh 22, Pa.

1960 Winter Convention on Military Electronics,

 PGME, February 3-5Tours to the Pacific Missile Range and Naval Ordnance Laboratories, Corona, are among the many field trips offered to visitors at the 1960 Winter Convention on Military Electronics. The field trips are expected to offer a cross section view of the missile, defense and electronic industries in Southern California.

A visit to Space Technology Labs, Inc. will be held Wednesday, February 3. Visitors will be shown a film on current space probe activities and the company's Space Communications and Navigation Network (SpaN Net), headquarters for a lalt intercontinental tracking station network.
Jehruary 3 , from 7:30 to 10:00, an evening trip to the System Development Corp. of Santa Monica will be featured. Two tours will be offered Februans. 5 to include a visit to the Pacific Missile Range, Po int Mugu, Calif. to view a Regulus test launch and a tour to Consolidated Electrodynamics Corp. The convention to be held at the Biltmore H_{1} el, Los Angeles, Calif., is sponsored by the In itute of Radio Engineers Professional Group of Tilitary Electronics. Chairman: Dr. Lester C. Vil Atta, Hughes Aircraft Co., Los Angeles, Calif.

AC Seeks and Solves the Significant-Because of GM's large contribution in the international race for technological superiority, AC accepts a challenge. AC Research is on a scientific quest for solutions to significant problems . . . for accomplishments even more advanced than AChiever inertial guidance for Titan. / We call this creative challenge . . . AC QUESTMANSHIP. It's an exciting quest for new ideas, components and systems . . . to advance AC's many projects in guidance, navigation, control and detection. / Right now Dr. Joseph F. Shea, AC's Director of Advanced Systems Research and Development, is drawing a group of competent men around him to build "the greatest R \& D organization in the industry." And Dr. Shea adds strong support to the fact that AC offers "an excellent working atmosphere for a scientist or engineer who wishes to produce and progress." / You may qualify for our specially selected staff. . . if you have a B.S., M.S. or Ph.D. in the electronics, electrical or mechanical fields, plus related experience. If you are a "seeker and solver," write the Director of Scientific and Professional Employment, Mr. Robert Allen, Oak Creek Plant, Box 746, South Milwaukee, Wisconsin.

GUIDANCE/NAVIGATION / CONTROL/DETECTION/AC SPARK PLUG \& CIRCLE 924 ON CAREER INQUIRY FORM, PAGE 205
ELECRONIC DESIGN • December 9, 1959

with solderless contacts and interchangeable modules

Same flexibility as regular MODULOK Completely crimped contacts. Snap-in to insert. Press springloaded latch to release. Up to 30 modules (90 coax connections) per foot of track.
?
OMATON DIVISION BURNDY NORWALK, CONNECT.: IN EUROPE: ANTWERP, BELGIUM: TORONTO. CANADA

NEW PRODUCT

 Rack and Panel Type Solderless Connectır

Application of Burndy's HYFEN® principle to rack and panel type connectors has been ant nounced by the company's Omaton Division These comnectors are also used as cable discon nects between electronic cabinets.
In addition to the crimp-type snap-locked pins and sockets characteristic of all HYFENs, this new version, the ME type comector, offers these distinct advantages: (1) interchangeability and compatibility with existing rack and panel soldertype comnectors; (2) one-piece die calst aluminum shell and one-piece insulator block which eliminate one cause of moisture entrapment, reduce the possibility of lost parts, and allow inter changeability between shell and plug recepti cles; (3) diversified installation tooling which allows extremely fast assembly either at bench or at equipment; and (4) use of only the number of contacts needed rather than all the contacts in the panel.
The HYFEN technique allows pins and sock cts to be removed with a simple extraction tool. and then to be re-inserted or changed as required. The ME also features closed entry type socketh which prevent damage from oversize test probes. In addition pins and sockets can take multiples of wire combinations where needed, and coavial or shielded cable.
The crimp-type connection characteristic of HYFEN comnectors eliminates the weaknesses of solder comnections, including the introduction of corrosive elements in fluxes and dissimilar metals. The crimp provides a measurable indent for built-in quality control. In the assembly process. crimping means faster assembly. Dies are available for the M8ND HYTOOL ${ }^{\text {® }}$ and Y8.VD HYPRESS ${ }^{\text {B }}$ which are ideal for close confined areas.

Burndy Corporation, Norwalk, Connect. CIRCLE 24 on reader-service card ELECTRONIC DESIGN • December 9, 1959

EDITORIAL

Relief From Measurement Pinch Found in Action

Eighty-five per cent of today's precision measurement problems involve electronic and electric quantities. There are no national standards for many of these quantities. The lack of a standard for measuring microwave power to calibrate radars is but one example. This and other lags between measurement need and measurement capability were pinpointed recently for the Aerospace Industries Association in a survey by a team of engineers of the Sperry Gyroscope Co.

The conclusions and suggestions that L. B. Wilson of Sperry drew from the survey merit the support of every engineer. Mr. Wilson asserts that although the National Bureau of Standards has standards with accuracies adequate for today's problems, these accuracies should be ten times better to allow for deterioration in getting from NBS's primary laboratories to industry test benches. He warns, too, that the total of critical measurements is mushrooming and that minor problems now may plague the entire industry as advanced $\mathrm{R} \& \mathrm{D}$ go into production. Mr. Wilson concludes:

- There must be more basic research and accelerated research in the technical problems of measurement. NBS should lead the attack, but industry and academic institutions must help. - Training and education in calibration deserve attention; better dissemination of information is needed. A glossary of calibration terms and definitions should be drawn up and industry-wide calibration procedures circulated.
- Regional calibration standard centers should be set up throughout the U.S. to relieve the overload on current NBS facilities, to speed service, and to reduce the problem of transporting standards over long distances.
- Calibration and standards should be considered early in the design phase to ensure manufacturing capability and reliability.

Congratulations to all who have sounded this early warning on measurement standards! The Air Force, in particular, has been conspicuous in establishing this year many precision calibration laboratories across the country. Navy BuOrd has set many standards for equipment testing. NBS's facilities for radio frequency measurement at Boulder, Colo., are providing helpful knowledge. We applaud the Electronic Engineering Representatives for calling a symposium on this subject and the General Radio Company for conducting a three-and-a-half-day seminar last month on standards and measurements. Such action will enable us to master our problem.-JAL

EIECTRONIC DESICN is proud to act too. I ast month's Calibrating Frequency Standards by K. Jaensch (Nov. 11, ED, p.50) is but one example. Our Feb. 3 issue will carry a special report on control of radio frequency interference.

How to Design Deposited Film Coaxial Attenuators for VHF

Anthony Paolantonio wrote this article to help eliminate the trial-and-error approach which is so prevalent in the design of film attenuators. He proposes, instead, a simple yet practical design procedure.

Fig. 1. (right) The "pi" attenuator network, showing the equivalent circuit and a phantom view of the construction.

Fig. 2. (below) Assembly drawing of coaxial attenuator. (The film thickness is exaggerated for clarity).

sistor. A still further method calls for evaporating a metallic substance, say borocarbon, and depositing the condensate on an insulating surface.

With the improved techniques now available for depositing thin resistive films on glass and plastic materials, it is desirable, from a production standpoint, to be able to make a deposited film attenuator in "one piece" rather than several (as is the present practice). The advantages of such "one picce" construction are twofold: (1) Excellent high-frequency characteristics, and (2) Economical quantity manufacturing.

In the design procedure here, it is assumed that the deposited film attenuators will be fabricated by either the "paint-on" technique or by deposi-

Fig. 3. Variation of ϱ / R_{1} with D / d for a disc resistor.
tion of evaporated metal. ${ }^{4,5,6,7}$
The analysis will be carried out for a symmetrical "pi" type attenuator. Other network configurations can be analyzed in a similar fashion.

Equations for "Pi" Parameters

The equations for calculating the "pi" parameters (shown in Fig. 1) are:

$$
\begin{gather*}
R_{2}=\frac{(N-1) Z_{0}}{2 \sqrt{N}} \tag{1}\\
\frac{1}{R_{1}}=\frac{1}{Z_{0}}\left(\frac{N+1}{N-1}\right)-\frac{1}{R_{2}} \tag{2}
\end{gather*}
$$

Here \boldsymbol{R}_{1} and \boldsymbol{R}_{2} refer to the resistance in ohms of the shunt and series arms of the "pi" respectively. N is the ratio of the power at the attenuator input to that at the output. Z_{0} is the characte istic impedance of the transmission line.

The physical form for R_{1} and R_{2} is shown in (th. phantom view included in Fig. 1. A mechanical assembly of the completed attenuator is illustr. ed in Fig. 2. R_{1} assumes the shape of a disc

Constant reliability . . . duplicated in volume

Clevite diodes feature high forward conductance, fast pulse recovery, fast forward switching and extreme ruggedness to resist vibration and shock and to provide exceptional reliability

GOLD BONDED GERMANIUM GLASS DIODES SILICON GLASS DIODES

- Fast Suitching Types
- General Purpose Types
- Military Approved Types

TRANSISTORS

Low thermal resistance, low saturation resistance plus superior current gain and high reliability construction make Clevite transistors your first choice for such applications as power converters, audio amplifiers, power supplies and high current switching circuits.

GERMANIUM POWER TRANSISTORS

- $2 \& 4$ Wall Audio Types

- 5 Ampere Suitching Types
- High Pouer 65 Hatl\& 15 Amp Types

Available at leading electronic distributors in principal cities.

SEND FOR
Short Form Catalog 59

CLEVITE TRANSISTOR 254 CRESCENT STREET - WALTHAM 54. MASS. CIRCLE 26 ON READER-SERVICE CARD

NOW LEASE
 Kleinschmidt teletypewriter equipment at srbstanflal savings

From standard page printers to electronic switching systems, Kleinschmidt offers Industry the most complete quality line-at lower leasing costs

Kleinschmidt is a basic manufacturer of teletypewriter equipment for private wire systems. Now commercial users can effect significant savings over present common carrier rates by leasing directly from Kleinschmidt. This equipment has been proved superior in quality and reliability with the U.S. Army Signal Corps for over a
decade. Kleinschmidt is the world pioneer in the development and design of teleprinted systems for communication, data processing and production control applications. All Kleinschmidt products have the nationwide service facilities of Smith-Corona Marchant Inc.
Call or write, now, for complete information.

KLelschumore

DIVISION OF SMITH-CORONA MARCHANT INC., DEERFIELD, ILLINOIS
Pioneer in teleprinted communications systems and equipment since 1911
ton $=10 \log _{10} N$. Solving, $N=100$, which is the I wer ratio between input and output terminals $\mathrm{f}: \mathrm{r}$ an attenuation of 20 db .
Use Eq. (1) to find R_{2} :
$R_{2}=\frac{(N-1) Z_{0}}{2 \sqrt{N}}=\frac{(100-1) 70}{2 \sqrt{100}}=346.5 \mathrm{ohms}$
2. Using Eq. (2), find $R_{1}=85.5$ ohms.
3. Using Eq. (4) find $\rho=512$ ohms per square inch.
4. Using Eq. 5, find $L=0.331 \mathrm{in}$.

The complete design parameters and dimensions for the attenuator are:

$$
\begin{array}{ll}
Z_{10}=70 \text { ohms } & R_{2}=346.5 \text { ohms } \\
\text { Aitenuation }=20 \mathrm{db} & R_{1}=85.5 \mathrm{ohms} \\
J=1 / 2 \mathrm{in} . & \rho=512 \text { ohms per squar } \\
d=0.156 \mathrm{in} . & L=0.33 .
\end{array}
$$

The attenuator may now be fabricated. Either the "paint-on" techniques or the evaporation process may be used to deposit the resistive film material on the "spool" used for the "pi" network supporting form.

Power Dissipation

Because the deposited film resistance material is very thin, at most only a few thousandths of an inch thick, this device can only be used for low power applications. The power dissipation capability of deposited film attenuators is in the order of one watt or less, except for special designs.
In addition, it is shown ${ }^{8}$ that the distribution of the power dissipation between the several parts of the attenuator is not uniform. Other factors to be considered, to minimize hot spots caused by this non-uniform distribution of power dissipation, are the physical shape and size of the shunt and series arms, ambient temperature, and temperature characteristic of the deposited film resistance material. . .

References

1. Reference Data for Radio Engineers, Federal Telephone and Radio Corp., New York City, Fourth Edition, 1956, pp. 262-253.
2. C. G. Montgomery, Technique of Microwave Measurement, MIT Radiation Laboratory Series, Vol. II, pp. 752i57, McGraw-Hill, New York City, 1947. (Chaps. 11 and 12, pp. 679-803).
3. Ibid, pp. 756-757.
4. L. Holland, Vacuum Deposition of Thin Films, John Wiey and Sons, Inc., New York City, 1956.
5. Bell Laboratories Record, Vol. XXVI, No. 10, pp. 401410, October, 1948.
6. Bell System Technical Journal, Vol. 30, pp. 271-314, Ap il, 1951.
7. E. M. Davies, P. J. Franklin, and R. S. Marty, A New In ction Molding Process for Printed Resistors. Electrical M ufacturing, January-February, 1955.
8. D. T. Geiser, Dissipation Chart for T Attenuators, El tronics, June 20, 1958, pp. 92-93.

EL=CTRONIC DESIGN • December 9, 1959

Visual
 Engineering Mathematics

A Self-Contained Course
T. R. Nisbet and W. W. Happ Lockheed Missile System Div. Palo Alto, Calif.

Table
BASIC RULES

ADDITION		$y=e x+f z$
	00	$y=g x+h x$
SUBTRACTION	or	$y=f z-e x$
MULTIPLICATION	$\times \mathrm{O} \xrightarrow{\theta} \mathrm{O} y$	$y=e x$
DIVISION		$y=\frac{x}{8}$
IDENTITY OR UNIT TRANSMITTANCE		$\begin{aligned} & y=x \\ & y=x \end{aligned}$
NEGATIVE UNIT TRANSMITTANCE		

The authors wrote this serialized, self. contained course in flow graph analysisa visual form of engineering mathematics -"to provide a basic understanding of the subject after about two hours of study." The value of the flow graph technique is its ability to provide both a general view of the interdependence of variables, and a particular view of any required aspect. Rules are developed from the simplest possible mathematical structures. Although transistor engineering (to which flow graph analysis is particularly suited) is used in some specific examples, the main work is treated in general terms which are applicable in many branches of engineering. Flow graph analysis has been treated by many authors in many different ways. In many respects, this series differs from other writings on the subject, particularly with reference to the use of the topology equation which this series introduces for the first time. This course is divided into four parts.

ELOW GRAPH analysis is basically a way of writing equations. Flow graphs need not be related to any block diagram or circuit-though they often yield valuable benefits when so associated.
These benefits are similar, in nature, to those accruing from continued working with the equations of a particular system: for example, a
acuum-tube engineer may become so familiar with the standard equations relating μ, g_{m}, R_{a}, and R_{L} that, in considering any new question (ay the influence of output capacitance on voltage gain) he will select a suitable standard equat on for his analysis. Flow graphs yield this kind uf benefit because they simultancously display all the equations of a system. And a flow graph cam be read in a general way to get a broad picture of the functional dependence before it is read in detail for precise information.

A flow graph is not a kind of block diagram. Its main purpose is merely to list the equations in an orderly form. The equations themselves are the flow graph.
A flow graph is not reduced piece by piece until an elemental flow graph results. This operation can be performed; but much more commonly the flow graph is left intact, as originally drawn.

Flow Graph Notation

To understand the general method used in flow graph notation, assume that equations may be written either vertically or horizontally, so that:
$\left.\begin{array}{l}w=a x \\ x=b y \\ y=c z \\ z=d w\end{array}\right\}$

We may insert quantities to help illustrate the method, and replace the equal signs by arrows:

$$
1 \mathrm{ma}=10 \times 100 \mu \mathrm{t}
$$

$1 \mathrm{k} \Omega \quad 20 \times 10^{-6} \mathrm{mho}$

On the right the flow graph notation shows the rather strict distinction made between dependent an 1 independent variables.
n this particular case, a loop has been formed $a n$! the product of the transmittance around it ($a b \cdot c \cdot d \cdot$ or $1 \mathrm{~K} \cdot 10 \cdot 20 \cdot 10^{-6} \mathrm{mho} \times 5$) equals

THE MOST COMPLETE LINE OF STANDARD TERMINALS-

COMPRESSION SEALS MULTIPLE HEADERS SEALED TERMINALS CONDENSER END SEALS threaded seals TRANSISTOR CLOSURES miniature closures COLOR CODED TERMINALS CUSTOM SEALING

Specifying E-I sealed terminations means you are assured of the widest possible design latitude. E-I offers the engineer/designer the industry's most complete standard line of sealed terminals and miniature components . . . proven reliability in today's most critical applications...custom designing for unusual requirements... and custom sealing service on components of your manufacture. Call or write for illustrated bulletins and complete information on standard terminals, or send sketches and details for quotations on custom types you require.

unity. This is the general topological equation for a closed flow graph, and it can sometimes be used to advantage in writing a set of equations and solving them for a particular unknown.

Many subjects lend themselves to flow graph notation; some do not. The mathematical proof of the formula for an infinite series can be written in two lines from a simple flow graph. Transistor " h " parameters can be converted to " z " parameters by a single manipulation of the flow graph. Amperes, ohms, volts, and watts, however, cannot be embodied simultaneously in the same flow graph.

Flow Graph Rules Simply Stated

The various flow graph rules can be stated swiftly and simply. Almost the entire subject is covered by the rules shown in Tables 1 and 2. To yield a reasonable fluency, the subject should be covered in a series of steps, with some practice at each step and with some attention to the "don'ts" and "do's."

Addition, Multiplication, Path Inversion
A flow graph such as:

Salys that I multiplied by R equals E. I and E are the nodes, which are the variables in the equation. R is the transmittance, which represents the relationship between variables. The arrow's direction is important. It shows that the taking-off node, I, experiencing the influence of the transmittance, R, becomes the terminating node, E. If the direction of the arrow were reversed, the flow graphs would become:

Reversal of the arrow's direction means changing the transmittance to its reciprocal. Note the distinction made between the dependent and the independent variable in the two equations

$$
\begin{aligned}
& E=I(R) \\
& I=E(1 / R)
\end{aligned}
$$

This distinction is required in flow graph analysis more than in other mathematical methods.

Although any equation could be written as a flow graph, there is little advantage in this unless the equation can also be manipulated as a flow graph. (As an example, Eq. 3 can be manipulated to form Eq. 4.) To this end it is generally desirable to represent voltages and currents by nodes (dependent or independent, as the case may be) and the interrelating factors by transmittances. Most electronic circuits are concerned with the conditions when voltages and currents vary but trans-
mittances remain constant.
The transmittance is the ratio of the dependen to the independent variable. The relationshi between the nodes will usually be in ohms c mhos for transmittances which relate voltages an currents. Or, transmittances will be dimensionle: (amplification or attenuation factor) if they repre sent the relation between nodes of the sams dimension.
(Reactances-or immitances, generally-may tak the place of the ohms and mhos as the dimensional nature of transmittances. Also, Laplace transforms of voltage or current may be repr sented by nodes in a flow graph, with the related transfer functions represented by transmittances.)

When two transmittances terminate at a node the quantity represented by each of them contributes to the value of the node. To evaluate a particular node, the contributions by the various transmittances are added as in the following equation:

It is in this sense of "making a contribution that the idea of "signal flow" must be interpreted The description "oriented graphs," which is sometimes applied, also catches the idea of information being conveyed in one direction (that of the arrow) but not in the other. The strict distinction between dependent and independent variables, too. is in keeping with this concept.

Writing A Node Equation

In writing the equation for a node, we specify, by assumption, that the node in question is the dependent variable. The same node may also be an independent variable in some other area of the flow graph; i.e., arrows may enter and leave any node in a flow graph. Very often such a node can be omitted in describing the functional dependence (e.g., node y in Eq. 6 below).

In a flow graph such as Eq. 6, the siganl must not be thought of as being apportioned among the three branches. As far as p, q, and r are concerned, y is truly independent.

No matter what other variations may take place in r, there is no effect on y. One cannot travel, as it were, in a direction against the arrow. But an! variation in x will cause a variation in all three de-
pendent variables, for $p=a b x, q=a c x$, and $r=a d x$.
n Table 1 are shown the various rules which fo in the basis of flow graph construction and interpretation.

The equation for a node is the sum of all the transmittances entering it. In the following graph, x is a dependent variable equals es $+f t+g u$, while x as an independent variable makes a contrilution through h to the dependent variable, y. That is, $y=h x=h e s+h f t+h g u$.

Flow graphs may be open or closed. Most of those illustarted above are open and it is sometimes desirable to show this by drawing arrows entering and leaving the flow graph, thus:

Giving the symbols their conventional definitions, Eq. 6 is the flow graph of a vacuum-tube amplifier in which the anode current equals the grid voltage multiplied by the transconductance. This example illustrates a point which is not always so clearly in evidence. The input and output of a circuit are, respectively, the independent and dependent variables.
Remember: the INput, represented by an arrow INto the network, is the INdependent variable.
When looking at an open flow graph, mentally tie the vacant ends together; this helps provide the background for the flow-graph picture, since an open flow graph can always be transformed into) a closed one in this manner, should the need arise. Closing an open flow graph involves joining the output to the input by a transmittance $1 / T$, thus:

T represents the transmittance of the network involved.
Since the flow graph is now closed, we can make use of the topological fact that the product of the transmittances around the loop is unity. In a complicated flow graph, it is sometimes a neat mathematical trick to use this technique, solving the topological equation for T to establish an otl erwise elusive transfer function. - -
l'arts two, three, and four of this course will fol ow.

-patent pondine Foatures can be modified to solve your specific problems. Write us for details.

OTHER QUALITY INSTRUMENTS AND COMPONENTS

LOW COST HR-92 X-Y RECORDER (Standard unit less than $\$ 600$) Rugred $81 / 2^{\circ} \times 11^{-}$flat-bed X-Y Plotter provides $1 / 2 \%$,
accuracy. Sensitivities accuracy. Sensitivities to 1
millivolt per inch. Write for milivoir per inch. Write to
Bulletin on HR-92 Plotter. Bulletin on HR-92 Plotter.

TIME BASE FOR X-Y RECORDERS Multi-function accessory pro.
vides seven swees
 $X-Y$ recorder - Converts to
$M-10$
amplifier by
ootating M-lo amplifier by ortating
switch - Added filtering permits - Ade ased preamplifier
mor
for $x-y$ or other recorders. Send
for Bulletin on MRT-1.
WRITE FOR
LITERATURE TODAY!

MAGNETIC RECORDING HEADS

- DIRECT - Pulse Width - Flux Sensitive FM Playback Meads

Custom designed
recording recording
heads built to customer specification
Complete NO QUANTITM maintenan

GAS DETECTORS

- Portable units
- Meter - Siren - Light Alarms
- Multi-Channel units with individual alarm readings

MODEL 521
COMPLETE - LINE OF PRODUCTION MODELS
all PRODUCTS UNCONDITIONALLY GUARANTEED FOR ONE YEAR
houston instrument corporation
4950 TERMINAL AVENUE
HOUSTON 27, TEXAS
MOhawk 7.7405

How to Drive the Beam Switching Tube

Arpad Somlyody

Burroughs Corp.
Electronic Tube Div.
Plainfield, N. J.

The beam switching tube looks, at first glance, like a very complex device. In this article, Arpad Somlyody, shows how relatively easy it is to design the input and output circuit for this unusual tube.

THE BEAM switching tube, in the basic circuit shown in Fig. 1, forms a ten-position stepping device. It advances an electron beam sequentially or at random, one step for every negative voltage change applied, alternately, to the two inputs.
Applications of this type of circuit include decade counting, distributing, multiple: $\mathfrak{i g}$, sampling, dividing, gating, coding, memory, and other digital functions.

The basic circuit for use with beam switching tubes comprises six functional sections, the input circuit, the output circuit, the spade circuit, spade and cathode degeneration, the zero-set circuit, and the bias circuit. This article treats the two most important circuits, the input and output.

There are several variations of the basic circuit, the differences being either in the output circuit or in the input circuit.

he value of the resistors between the bias point V_{g} and either set of grids is 100 K . This val 1 e is not critical. However, a very low value of resistance causes too much attenuation through this differentiating network and loads the driving source unnecessarily. On the other hand, excessively high resistance values should be avoided to eliminate the effects of grid current thai tend to lower the grid potential and thereby canse switching instability.
The bean switching tube is gencrally considlered to have a high input impedance, but when the targets are at low potential, grid current of sevcral hundred microamperes may flow.
The value of the coupling capacitors is generally between $100 \mu \mu \mathrm{f}$ and $1000 \mu \mu \mathrm{f}$ or greater, depending on the rise time of the negative going edge of the driving waveform. A fast rising waveform requires smaller capacity to couple through with negligible loss in amplitude.
When the amplitude of the available driving waveform is known, the coupling capacitors are chosen to obtain an amplitude at the grids in excess of the minimum requirement of the beam switching tube. This minimum requirement is a direct function of counting frequency, spade time constant and "on target" potential. It should gencrally exceed 50 v .

Diodes As DC Restorers

The diodes across the two resistors serve as dc restorers. They are only required at high repetition rates, that is, when the period of input waveform T_{i} is less than $5 R C$ where R and C are the resistance from grid to the bias point and the coupling capacitance respectively.
When no diodes are used and the period of the input waveform is greater than $5 R C$, the time T_{i} is long enough to allow the capacitor to charge and discharge back to the grid bias level after every change in input voltage. (Fig. 3.) Therefore, the useful output amplitude E_{o} is very nearly equal to the amplitude of the input waveform E_{i}. If the period of the input waveform is less than ${ }^{5} R C$, and no diodes are used, a different condition exists. For an initial voltage step E_{i} at the input of the circuit in Fig. 4, the voltage appearing across R after time T_{i} is given by the equation

$$
e_{o}=E_{o} \epsilon^{-T_{i} / R C}
$$

By rearranging this equation, we can show that the percentage discharge of capacitor C is purely a function of the period of the input waveform and the time constant of the circuit.

$$
\frac{c_{0}}{E_{0}}=\epsilon^{-T_{i} / R C}
$$

In : similar manner

$$
\frac{e_{0}}{E_{o}}=\frac{e_{1}}{E_{1}}=\frac{e_{2}}{E_{2}}=\ldots \frac{e_{n}}{E_{n}}=\epsilon^{-T_{i} / R C}
$$

\qquad
 EVERYTHING

Low-Power Switches

ROTARY
MINIATURE: 8,10 , and 12 positions: up to 18 contacts per wafer.

GENERAL PURPOSE: Up 1012 positions; 30, 45. 60° Ihrow.

SIMPLE SWITCHING: Up to 5 positions combined with AC switch.

Series 52, 54

Endless Variety
 from

 Tools

SINGLE BUTTON-1 to 4 poles; spring
push-push.

Series 170, 175
LOW COST: Up 10 12 positions; staked or
screw construction. screw consiruction.
Seri

8-POSITION: Single or
double

of clips.

Series L

SOLENOID SWITCH: Oak type of Rotary Solenoid.

SIMPLE SWITCHING: Up to 4 positions; numerous variations.

LEVER OPERATED: 2 10 5 positions; numerous versions using sid. wofers.

SLID

2-POSITION: Shorting
type with hoating slider.
Series 70

COMPLICATED CIRCUITS: 1 to 18 buttons 1032 confacts each.

SMALL: Up 1012 positions in phenolic, Mycalex, or
steatite insulation.

ADAPTABLE: 8, 10, 12, and 14 positions; many variations; economical.
Series J, K, N

24-POSIIION: 15° throw handles complex circuits. Series MF

CONCENTRIC SHAFTS: Dual and triple shafts with many wafer types.

OW COST: 2 to 5 posifions; fils in limited space.

FOR PRINTED CIRCUITS: Special lug designs for direct insertions.

ROTARY SLIDE

COMPACT-2 104 positions; max. switching in min. space.

Series 160

1260 Clybourn Ave., Dept. D. Chicago 10, Illinois Phone: MOhawk 4-2222

Series 130

Designing a low-power switch can sometimes turn into a real lussle. Before this happens, call in Oak specialists. From a vast store of past designs and experience they are able, many fimes, to offer a readymade solution... whether it be for a standard unit, something unusual, or a complete package of circuitry. The result is the exact switch you need, representing top engineering and optimum economy.

CIRCLE 32 ON READER-SERVICE CARD
ElECTRONIC DESIGN • December 9, 1959

Fig. 3. With no input diode, at low repetition rates, there is ample time for the capacitor to return to the grid bias level.

Fig. 4. With no input diode, at high frequencies, the amplitude of the grid voltage waveform is a function of frequency.

Fig. 5. With a diode shunting the input resistor, the capacitor will discharge during every positive input swing.
where $n=0,1,2,3, \ldots$
But we can say

$$
\epsilon^{-T_{i} / R C}=K
$$

where K is constant as long as R, C, and T_{1} are constant.
Therefore

$$
e_{n}=K E_{n} \quad 0<K<1
$$

After the initial period, the input waveform changes in the positive direction and

$$
E_{1}=E_{0}-e_{0}
$$

In time $2 T_{i}, E_{1}$ decreases to

$$
e_{1}=K E_{1}
$$

The input waveform now changes in the negative direction again and

$$
E_{2}=E_{0}-e_{1}
$$

After time $3 T$,

$$
e_{2}=K E_{2}
$$

The amplitude of the successive negative swings,
as also seen in Fig. 4, diminishes

$$
\begin{aligned}
& E_{0} \cong E_{i} \\
& E_{2}=E_{0}-K\left(E_{o}-K E_{o}\right) \\
& E_{4}=E_{0}-K\left[E_{0}-K\left(E_{0}-K E_{o}\right)\right]
\end{aligned}
$$

until equilibrium is reached and the negative and positive swings at the output are equal in amplitude. This amplitude is a function of K and may be anywhere between E_{0} and $E_{0} / 2$.
Therefore, if diodes are not used and the operating frequency is high, then the amplitude of the driving waveform at the grids of the beam switching tube is a function of the frequency. The peak-to-peak amplitude of the driving waveform then exceeds twice the negative switching amplitude required by the beam switching tube.

If a diode is used across the resistor R, as in Fig. 5, with its cathode connected to the bias point V_{g}, the capacitor will discharge completely during every positive swing of the input waveform through the forward impedance of the diode.

The bias point V_{g} can be considered a low impedance point in this case.
As seen in Fig. 5, the input and output voltages remain nearly equal regardless of the period of the input waveform.

Input For Sinewave Drive

Another form of input circuit, shown in Fig. 6, is used when sine wave drive is available. The turns ratio of the transformer is selected to provide, across each half of the secondary, a peak-topeak amplitude greater than twice the minimum requirement. This gives a peak-to-peak amplitude, between the two sets of grids in excess of four times the minimum requirement. Grid bias voltage is applied at the center tap of the secondary.
A relay or a manually operated switch can also be used to produce the step waveform necessary to drive the beam switching tube. Fig. 7 is a circuit of this type where -20 v is applied alternately to the grids by a spdt switch.

The Output Circuit

The output circuit of the beam switching tube affords great flexibility of design. Voltage swings in excess of 200 v can be obtained from the ten targets, each reperesenting a 5.5 ma constant current source. In special tubes, this output voltage swing can exceed 1000 v .
Beam switching tubes exhibit a knee in their target characteristics as seen in the $I_{T}-E_{T}$ plane of Fig. 8. This knee in the Type 6700 tube begins approximately 50 v above cathode potential. Below this potential, part of the excess electrons are collected by the grid and part of them by the leading spade. This is the spade immediately fol. lowing the beam holding spade in the direction the beam advances. The resultant current flow lowers the potential of these two electrodes, causing the beam to switch to the next position.
If the same condition exists in all ten positions,

Fig. 8. The bst's target characteristics. Note the knee at about 50 v .
at is, the target potential drops below the knee the $I_{T}-E_{T}$ curve when target current flows, e beam will not be stable in any position and ill skip around the tube erratically. Therefore, designing the output circuit, the target poten11 should never be allowed to drop as low as the allue given by Eq. (1) and (2).

$$
\begin{equation*}
E_{T}=V_{T}-\left(I_{T} R_{T}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
E_{T}>V_{0} / 2 \tag{2}
\end{equation*}
$$

here $V_{T}=$ target supply voltage
$E_{T}=$ conducting target voltage (voltage etween the beam collecting target and the thode)

$I_{T}=$ target current

$R_{T}=$ target load resistance
$V_{s}=$ spade operating voltage (voltage beveen the spade buss and the cathode)
A wide variety of resistive load lines and suply voltages can be used if the relationships in (1) d (2) are observed.
The circuit in Fig. 1 yields approximately 26 v rtput across the 4.7 K target loads.
Relays requiring no more than 5 ma of pull-in urent can also be used in the target circuit. Byass capacitors or diodes are generally used to Fevent the inductive overshoot of the relay from using target switching instability by momentily driving the target below the knee of its haracteristic curve.
A negative transient may appear on adjacent pades every time the beam advances if the target vings more than 100 v . This is due to coupling rough interelectrode capacity and may cause ipping and erratic operation. A small by-pass pacitor across each spade resistor (5 upf or ore) will eliminate the effect of this coupling. mili r results are ootained by padding the tarts v ith somewhat larger capacity.
Using this basic circuit and the principles outned here, the beam switching tube can be hapt : d to the majority of its applications. © -

CONTENTS

Section I: techniques

- Survey of Equipment Adaptable to Microminiature Circuit Technology
- The Uses of Thin Films in Microminiaturization of Electronic Equipment
- The Application of Vacuum Evaporation Techniques to Fine-Line Etched Wiring
- Fine-Line Etched Wiring assemblies
Section II: SEMICONDUCTORS
- Two-Dimensional Transistor Packaging - The Role of Semiconductors in the Army Micromod-
- The Stability

Semiconductors in Microelectronic Assemblies

Section III: COMPONENTS

- Layerized High-Dielectric Constant Capacitors
- Layerized High-Dielectric Constant Capa
- Miniature Incandescent Indicator Lamps
- Development of Miniature Electric Detonators
- Antenna Mimiaturization
- Miniature Microwave Magnetrons

Explosive Trains for Miniature Electric Initiators

- Progress in the Army Micromodule Program

Section IV: CIRCUITS

- Some Circuit Techniques to Eliminate Large-Volume Components: A Literature Survey
- The Design of a Transistor NOR Circuit for Minimum Power Dissipation
- Design of a Two-Transistor Binary Counter
- A Family of Standard Transistor Switching Circuits

Section V: MISSILE SYSTEMS

- Study of the Electronic Parts and Assemblies of the Hawk, Lacrosse I, and Nike Hercules Missiles - Shipboard Guided Missile Weapon System Simularors Section VI: MICROELECTRONICS IN INDUSTRY

Mighominhatualization

The first and only volume of collected information on the important new developments and techniques of microelectronics

now $\$ 1100$

Full size: $61 / 4 \times 91 / 4$

Now hard bound for permanent addition to your technical book shelf. MICROMINIATURIZATION contains the complete proceedings of the "Symposium on Microminiaturization of Electronic Assemblies"•. Here is the latest work in the field of microelectronics, 21 papers in all, complete with all of the original text, charts, tables, and illustrations-plus an editorial analysis and commentary by Electronic Design's staff. A valuable reference volume and working tool, this is the only collection covering these important new developments in the state of the art. Take advantage of this offer today-simply fill in the order blank below.
${ }^{\circ}$ Sponsored by the Diamond Ordnance Fuze Laboratories

ORDERELANK
Please send 1 | copies of MICROMINIATURIZATION at $\$ 11.00$ plus $15 \$$ postage. (Postage paid if cash is received with order.)
NAME
ADDRESS
(CITY) Check enclosed () Bill me (,) Bill my Company

Author George Rayl feels there exists a need for understanding the physics involved in the detection of an object at a distance. In this article he discusses problems applying to infrared systems. A thorough understanding of these problems forms a sound basis for working with improved infrared components in the future.

IR As A Passive Method Of Target Detection And Identificatio

WHEN confronted with the problem of target detection and identification at a distance, the objective system design engineer must choose initially the spectral interval with which he intends to work in the design of a passive detection and identification system. This spectral interval might conceivably be in the ultraviolet, visible, infrared or microwave portions of the electromagnetic spec trum. Proper choice of one or more spectral inter vals is dependent on a thorough knowledge of:

- Spectral distribution of both target and background.
- Spatial distribution of the background if scanning is employed.
- Transmissivity of the intervening atmosphere
- Availability and transmissivity of optical ma terials.
- Limiting sensitivity (noise equivalent power of the detector in the spectral interval.
The post-detection data processing circuits are very similar for a given class of detection equip. ment; i.e., search or track, and will be covered in another article.

Targef Spectral Power

Spectral distribution of target radiant energy i. the first factor to be considered in most applications. Fig. 1 (top) shows the relative distribution of radiant energy as a function of wavelength fo several complete radiators (blackbody). Note the log scale on the ordinate. Fig. 1 also shows the desirability of matching the spectral response, or passband, of the detection equipment to the peak radiation of the target. It also excludes the use o photomultipliers for all but the 1000 K target.

Fig. 2 gives the radiant energy distribution o the carbon dioxide emission band at 4.3 microns and water vapor bank at 2.9 microns. This non-

Fig. 1. Typical infrared system parameters. Note how target radiation can be related to other system factors

ELECTRONIC DESIGN • December 9, 1959

George Rayl

Advanced Photics Engineering
Advanced Electronics Center at Cornell University Light Military Electronics Dept. General Electric Co.

Ithaca, N. Y.
complete radiation distribution arises from the products of combustion found in the exhaust of hydrocarbon fuel mixtures and as such represents the radiant energy emission from an important chass of targets.
Background radiation can be described by two characteristic parameters, spectral and spatial distribution. Both of these parameters are a function of the time of day, elevation and azimuth angle of line of sight, and the point of observation. Figs. 3 and 4 are a plot of these parameters for the cir(umstance indicated.

Sunlight and Sky Radiation

Fig. 3 is a spectral plot of the two sources of background radiation; i.e., scattered sunlight and sky radiation. The shape of the clear sky curve ilemonstrates two characteristics of scattered sunlight: (1) the increased ineffectiveness of scattering by air molecules, dust and haze with wavelength and, (2) the effective cutoff of scattered sunlight at approximately 3 microns. The notches in the curve at 1.4 and 1.9 microns represent alsorption by atmospheric water vapor. The curve on the right shows the distribution of sky radiant energy as recorded on the earth on a cloudy day. The curve is drawn smooth without the water vapor, carbon dioxide, or ozone absorption bands. Under these conditions, this radiant energy distribution approximates a complete radiator of a temperature of 22 C .

Cloud Background

Fig. 4 gives a typical spatial distribution for cloud background. The second curve of slope 2 is drawn in for comparison purposes. Average power d nsity from clouds then falls off approximately 41 db per decade. The abscissa units of waves per ridian imply that there is a measurable spatial fi equency associated with sky radiance. These two F rameters singularly and together point out the
advantages of working in the infrared as compared to the visible.

Atmospheric Aftenuation

Having defined the target and background radiation on a spectral and spatial basis, the next step is to quantitatively describe the transmissivity of the atmosphere. The Rayleigh theory of scattering by small particles is adequate for atmospheric scattering by particles less than or equal to $1 / 2$ the wavelength of the radiant energy involved. This theory indicates that the magnitude of the scattering loss is inversely proportional to λ^{4}. Fig. 5 shows that up to the critical Rayleigh wavelength, the scattering losses are constant and double, approximately 40 db per decade of particle size. This scattering loss relationship means that during conditions of fair weather scattering losses are down by 24 db at 1.0 from the visible. This course is again a strong argument for the infrared spectral interval.

The second factor in the atmospheric attenuation of radiant energy is the loss by molecular absorption. Fig. 6 shows the absorption bands contributed by the various atmospheric constituents. Examination of the 1-13 micron interval shows that the principal absorbers are water vapor, carbon dioxide, and ozone. Total absorption over a given range with a given altitude of observation, target altitude and water vapor, relative humidity is found by the super-position of narrow band spectra of the three major absorbers. Fig. 7 shows the resultant spectral transmission of a one-mile path at sea level.

External Systems Factors

The external systems factors then may be listed as follows: target spectral power, sky noise background, and atmospheric attenuation. A thorough quantitative knowledge of these factors enables the engineer to predict the spectral power density of radiation above the background falling on the irdome, or first element, of the receiving equipment. If we assign the symbol $H(\lambda)$ to the spectral power density on the irdome, the following relation can be set up:
$H(\lambda)=N(\lambda) A_{T} \tau_{A}(R, \lambda) r^{-2}=J(\lambda) \tau_{A}(R, \lambda) r^{-2}$ where
$H(\lambda)=$ radiant flux density per micron, (watts cm^{-2})
$N(\lambda)=$ radiance per micron, (watts cm^{-2} ster $^{-1}$) $A_{T}=$ area of the target, $\left(\mathrm{cm}^{2}\right)$
$J(\lambda)=$ radiant intensity watts ster ${ }^{-1}$
$\tau_{A}(\lambda)=$ radiant transmittance of the atmosphere $r=$ range, (cm)
Integrating over the spectral interval of interest $N E I=\int_{\lambda_{1}}^{\lambda_{2}} H(\lambda) d=A_{T} r^{-2} \int_{\lambda_{1}}^{\lambda_{2}} N(\lambda) \tau_{A}(\lambda) d \lambda(1)$ This quantity can also be considered as the noise

Fig. 2. CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ emission from combustion of hydrocarbons in air.

Fig. 3. Spectral plot of background radiation of scattered sunlight and clouds.
equivalent input (NEI) at the irdome for a signal to noise of one at the transducer. This statement assumes non-selective transmittance by the receiving optics, and generally is not the case.

Internal System Factors

All system factors from the first surface of the irdome to the final processing of the video signal may be called internal system factors. The first is the optical system transmission factor, $\tau_{0}(\lambda)$.

Optical System

A typical optical train will consist of reflecting surfaces, refracting surfaces, optical filters, and spatial filters. Total transmission is found by the convolution of the transmittance and/or reflectance curve for each surface besides the transmittance curve for each optical medium. Fig. 8 is a typical transmittance curve for a single element, two refracting surfaces, and one optical medium. This curve accounts for the Fresnel reflection and the absorption loss within the medium itself.

A final optical factor for consideration is image spread. This is usually specified as a certain percentage of the incident energy falling within a
blur circle of a given dimension. The exact meaning of this specification, of course, is dependent on the grid size in the spatial filter, if there is one, or the transducer element size. Any obscuration of the blur circle by the spatial filter during the "on" part of the cycle must be charged against the system as a loss. Similarly, if the coded, or uncoded energy "spills over" the sensitive area of the transducer, an energy loss will occur. The product of all these efficiencies is called the optical transmissivity.

Target to Background Noise

The second internal system factor is the target signal to background noise ratio at the transducer. Detection of a target in the presence of noise background is a statistical problem involving many factors. Analysis can be simplified by assuming that the noise associated with the transducer; shot noise, excess noise (f^{-1}) and Johnson noise, is the limiting noise of the entire detection system. All other noise sources such as background noise, tube shot noise, flicker noise, and ambient noise are to be considered of secondary importance.

The next step is to assign a noise distribution
to the transducer. With few exceptions, the tran ducing element will be of the photoconductis variety. Within the photoconductive class of tran ducers, the lead salts (lead sulfide, lead selenicie and lead telluride), are the most commonly usi i transducers. Limiting noise of this class of trat iducers is excess noise following a $1 / f$ dependen e. The output signal in volts to radiant flux in wa ts incident on the transducer is known as the esponsivity of the transducer. When the peak signal voltage is measured equal to the rms noise ove a particular bandwidth and center frequency, the incident radiant flux is designated as the no ise equivalent power ($N E P$) of the transducer. NI:P is a function of wavelength of the incident radiant flux, chopping frequency, area and temperature of the sensitive surface and follows the relationslip for $1 / f$ noise, for the previously named tralisducers:

$$
N E P(\lambda)=S(\lambda)\left(A_{d}\right)^{1 / 2}\left(\Delta \frac{f}{f}\right)^{1 / 2}
$$

$$
R(\lambda)=1 / N E P
$$

where
$S(\lambda)=$ constant for a given transducer in cm^{3}

Fig. 4. Average power density for clouds.

Fig. 5. Scattering coefficients for various particles.

$$
\begin{aligned}
A_{d} & =\text { sensitive area of the transducer } \\
\Delta f & =\text { passband in cps } \\
f & =\text { modulation frequency in } \mathrm{cps} \\
& \text { Transducer Time Constant }
\end{aligned}
$$

An equally important parameter involved in the pecification of an infrared transducer is the time constant of that transducer. By definition, the time constant is the time in seconds that it takes for the output voltage to reach $0.7(-3 \mathrm{db})$ of maximum after a step input irradiance. Similarly, a critical frequency is reached, as the modulation frequency is raised, when the output voltage falls (1) -3 db below maximum. This is the optimum modulation frequency for those tranducers exhibiting a single time constant and is related to the time constant by $f_{c}=1 / 2 \pi \tau$, where τ is the time constant in seconds.
Most systems are designed around this critical frequency or time constant limit by setting the dwell time, or time per instantaneous field of view in the case of a search set, equal to the time constant. The general case for responsivity as a function of frequency is found from the transfer function of an $R-C$ circuit:

$$
R=R_{\max }\left[1+\left(2 \pi f_{c} \tau\right)^{2}\right]^{-1 / 2}
$$

The dwell time, t_{d}, instantaneous field of view, ω, total field of view, Ω, are related to the scan time, t_{f}, as follows:
where

$$
t_{d}=t_{f}^{n \omega /(1+\gamma) \Omega}
$$

$N E I=\left[1+\left(2 \pi f_{c} t_{d}\right)^{2}\right]^{1 / 2}(S / N) A_{0}^{-1}$
$n=$ number of transducer elements
$\omega=$ instantaneous field per element in steradians
$\Omega=$ total field of view in steradians
$\gamma=$ scan redundancy factor
$t_{f}=$ time per complete scan in seconds
Experience has shown that signal to noise is maximum when the passband and dwell time of the video pulse are related as follows:

$$
\Delta f\left(t_{d}\right)=1.2
$$

With these internal systems factors in mind, it is then possible to write the relationship

$$
\int_{\lambda_{1}}^{\lambda_{2}} N E P(\lambda) \tau_{o}^{-1}(\lambda) d \lambda(2)
$$

where:
$A_{0}=$ effective area of the collecting optics
$S / N=$ peak signal to rms noise required to give the desired probability of detection and false alarm rate.

Practical Application

Using the procedure outlined in this article, the system designer can fix the parameters that enter into the problem of the remote detection of targets in the presence of background. There remain the problems of detail design to transform the specifications enumerated by these parameters into practical workable hardware. Equations 1 and 2 may be equated to solve for any one of the related factors. Two of the more common expressions are:

$$
\begin{aligned}
r= & {\left[A_{T} A_{0}(S / N)^{-1}\left[1+\left(2 \pi f_{\mathrm{c}} t_{d}\right)^{2}\right]^{-1 / 2}\right.} \\
& \left.\int_{\lambda_{1}}^{\lambda_{2}} N(\lambda) t_{A}(R, \lambda) t_{o}(\lambda) N E P^{-1}(\lambda) d \lambda\right]^{1 / 2}
\end{aligned}
$$

for range, r in centimeters, or,
$A_{o}=(S / N)\left[1+\left(2 \pi f_{c} t_{d}\right)^{2}\right]^{1 / 2} r^{2} A_{T}-1$

$$
\int_{\lambda_{1}}^{\lambda_{2}} N E P(\lambda) N^{-1}(\lambda) t_{A}^{-1}(R, \lambda) t_{0}^{-1} d \chi
$$

All of the preceding systems factors may be tabulated and organized for ease of calculation. A chart form may be easily devised for this purpose. - •

Fig. 1. How the 10 mc oscillator
 assembly was imbedded. Sample second from right shows thermocouple leads.

Embedment and Performance of Electronic Components

Thomas E. McDuffie
Supervisory Electronic Scientist
U. S. Naval Material Laboratory
Brooklyn, N.Y.

Embedment of components offers the greatest support to increased reliability, provided the peculiarities of the resins are understood. In this article, Tom McDuffie discusses test results of various embedded components and assemblies.

PREDICTIONS of failure-rate for embedded electronic components do not conform with predictions which have been evolved for standard unembedded components. Differences in environments for the two types of components alter the criteria by which deterioration of a component is promoted. Remove the environment, and a different set of conditions effecting component deterioration will appear. Embedment virtually effects displacement of natural environments for electronic components, leaving heat as the prime source of destruction. This heat, in the absence of air and moisture, becomes less violent in its role as a destructive agent.
Investigations indicate that by utilizing suitable embedding resins and proper embedding techniques, an embedded electronic assembly will excel in performance and reliability many of the conventional low and medium powered unembedded counterparts. The decrease in maintenance and shutdown time required for repair of an equiuipment using embedded assemblies seem likely to overcompensate any necessity for discarding a complete assembly when it becomes inoperative.
Failure of an embedded assembly to sustain continued reliable performance can often be attributed to peculiarities of the embedding resin,
in the light of its environmental usage. There is little correlation between these peculiarities and deviations of electrical performance for different types of electronic circuits. Electrical performances have been found to be related, more specifically, to the nature and functional requirements of the individual component parts of the embedded circuit.
Embedding resins should therefore be selected for stability of measured electrical and physical characteristics during and following exposure to adverse environments, since compensation for initial changes due to the presence of the resin can be accomplished by the design engineer.

Component Selection

Selection of suitable component parts to satisfy the design parameters of an embedded electronic circuit is an important phase of embedment procedures. Utilization of presently manufactured parts is most desirable in the light of economical procurement from existing production runs.
The compatibility of existing components with embedding resins arc hased on controlled studies of low and medium powered electronic circuits and components. They do not necessirily reflect the performance which may be encountered when other than the implied criteria are satisfied.

Carbon Composition Resistors

For general circuit applications, this type of resistor is preferable for embedment. Normal consideration required for conventional circuit design (e.g. noise, frequency and temperature coefficient of resistance) are the only prerequisites. Contrary to general opinion, derating of these resistors is unnecessary when they are embedded. Laboratory tests indicate that embedded resistors will outlast unembedded resistors even under conditions of severe overloads.
Embedded carbon composition resistors with values as high as 50,000 ohms at one-half watt power rating, have been operated at 600 per cent power overload at 25 C ambient for seventy hours. Other embedded resistors have been operated with overloads of 400 per cent in ambient temperatures from 100 C to 125 C for 90 hours.

The maximum changes in resistance during these investigations were approximately 15 per cent of nominal value as against open circuits which develop in unembedded resistors under similar conditions. These observations do not suggest the use of these components under such strenuous conditions; they are presented to support the contentions that derating of embedded carbon composition resistors under normal usage is not necessary.

Fixed Film Resistors

These resistors are equally suitable for embedment purposes where close resistance tolerances and stability are required. Electrical properties if these resistors are affected very little by the presence of the compound and the internal heat yenerated by embedded subminiature vacuum tubes. The necessity for derating film resistors nuder embedment has not been explored. How(ver, they may be more susceptible to excessive temperatures than the composition variety. This supposition is based on variations in the method of fabrication of the resistance element, where the mobility (migration) of the resist deposit is in question.

Capacitors

No special procedures have been required for embedding any of the ceramic, mica or paper varieties of capacitors. Abnormal leakage currents of embedded paper capacitors have been observed when they were exposed to ambient temperatures of 150 C and higher. This condition is inherent to the dielectric of these capacitors and as such become critical when they are used as dc blocking components which work into a high-impedance load. Abnormal leakage current tends to decrease under aging at elevated temperatures but is never completely eliminated. It occurs also in unembedded mica and ceramic type capacitors ${ }^{1}$ and is temporary in nature, since the insulation resistance returns to normal at room ambients. Under normally encountered equipment temperatures (85 C), conventional paper, mica, and ceramic capacitors are quite suitable for reliable circuit performance in embedded assembly applications.

RF Coils

In selecting these components for embedment, consideration must be given to the type of protective coating that is covering the winding. Molded type coils or uncoated coils are preferable, since it was found that certain other coatings react chemically with the embedding resin and inhibit "through-curing." Inductance and "Q" of coils are altered after embedment. Nevertheless, thise changes can be closely predetermined by experimental embedment of the coil in the associated (mbledding resin prior to fabrication of the prototype circuit assembly.

Vacuum Tubes

This component is the part most sensitive to er luedment. Variations in the degree of expansi n and contraction of the vacuum tube and the ir in invariably result in cracking of the tube. Pr coating the vacuum tube with silicone resins Ws effective for counteracting the effects of sl inkage of the compound during the curing

Fig. 2. Typical effects of embedment on 10 mc oscillator, effects of environment testing and final unembedded characteristics.
cycle. However, when the completed assembly was exposed to thermal shock, the majority of the embedded tubes would fracture. (Tube fracture can be ascertained by measurement of the tube's filament resistance: the value of resistance being related inversely to the degree of vacuum within the tube envelope).

The most effective method for protecting the embedded vacuum tube was accomplished by pre-coating the tube with an Engelhard Industries' type CA-9R silicone cement. This cement provides excellent cushioning and maintains its resilience under a wide range of temperatures (manufacturer's thermal shock specification: -320 to 950 F). Ten type 5719 subminiature vacuum tubes precoated with this cement, and each embedded in an epoxy resin, survived exposure to the thermal shock test: method 102, condition C (modified at the high temperature to 95 C) of MIL-STD-202, while maintaining normal emis sion current. The method of coating these tubes involves a single dip of the tube into the cement whereas the degree of coating is controlled by the cohesive action of the compound and its adhesion to the tube envelope. Although double dips have been performed, the single dip appears equally effective for the temperatures involved.

Fabricating the Circuit

Embedded circuit assemblies are designed to perform a primary function such as: sine wave generator, pulse generator, audio amplifier, if or rf amplifier, etc. Whenever possible, all of the components of a functional circuit are included in a single embedment; with this technique, simplification of dynamic testing of each completed unit is achieved. Each unit is also made to be plugged into a suitable polarized socket to facili-
tate maintenance and repair of equipments in which they are utilized. Preference in component placement is given to location of the vacuum tubes; utilization of the subminiature type of tube is preferred in order to minimize space requirements.

Generally, it will be unnecessary to use hookup wire, since the leads of the components provide adequate lengths for electrical connections within the assembly. Where an interconnecting lead is recquired, solid bare or enameled covered wire or its equivalent is preferable. Where insulation of any lead is required, materials highly inert to chemical and thermal reactions should be used. It has been observed that vinyl insulation reacts with some compounds so that "through-curing" of the resin is inhibited.
Electrical connections are made with conventional resin-cored solder; assurance being made that the exothermic reaction of the embedding resin does not caluse melting or undue softening of the solder. If the embedded assembly is to be exposed to temperatures above the melting point of conventional solder, the external pins of the mounting base should be sealed with high temperature solder to insure contact of the leads inserted within the pins. If solid pins are used, and connections to these pins are made within the embedded area, conventional solder is suitable since the cured resin will restrict its flow.

Selecting The Embedding Compound

Selection of a suitable embedding compound (cannot be overstressed. Quite frequently it will be found necessary to consult with the materials engineer on peculiarities of a particular assembly requirement, lest the purpose of embedment is defeated. The major concerns of prospective users of embedding resins generally involve its thermal conductivity, stability of physical dimensions in the curing cycle, insolubility, and dissipation properties. Over-emphasis on the foregoing characteristics arises more from academic thinking than from empirical determinations of prevailing reactional phenomena.
Embedding compounds should be basically assessed for:

- Stability of electrical parameters
- Resistance to moisture
- Resistance to attack by chemical agents of de terioration
- Resistance to heat and thermal shock
- Resistance to mechanical stresses

Having obtained a resin which satisfies these basic requirements, the circuit designer must then determine the compatibility of the resin with the circuit components and their electrical functions: pour temperature, exothermic reaction, and curing temperature may react either singly or in combination to mutate the components of the em-
bedded circuit. The shape of the mold for the assembly depends on several factors and as such is left to the discretion of the design engineer. Care should be taken, however, to keep the components as far from the surface of the embedment as possible, in order to retain the strength of the resin.

Effects of Embedment

Three prototype assemblies were used in a study of the effects of embedding resins on the performance of each circuit. These circuits were chosen in order that some concepts may be evolved regarding the effects of resins on representative circuits which are found in presently designed electronic equipments. Four Epoxy resins and three polyester resins were used to embed the assemblies for this study.
A ten-megacycle crystal controlled oscillator was tested to reveal effects of resins on high-fre(quency circuits (Fig. 1). Electrical measurements made prior to and following embedment of this circuit revealed changes in operating parameters which were fairly uniform for each of the resins employed. As expected, the amplitude of the generated rf voltage decreased subsequent to embedment. The magnitude of this reduced output (Fig. 2) was found predictable and satisfactory as an electrical function.
An Eccles-Jordan type bi-stable multivibrator, similar to designs used in computer applications, was checked in the same manner. The performance of this circuit is dependent on the maintenance of close tolerances on the embodied com-

Table 1 Environmental Test Requirements

Test	Procedure	Comment
Heat Test	Exposed to 85 C ambient for 24 Hrs.	Energized
Moisture Resistance	Method 106 of MIL-STD. 202A	Energized
Altitude	$1 / 2$ inch of mercury for 1 hour	Energized
Corrosion	50 hours per MIL SPEC QQ-M-151A	Unenergized
Shock	400 g at $3 / 4$ millisecond duration, (6 blows)	Energized
Vibration	Method 201, MIL-STD202A	Energized
Immersion	Method 104, Condition A, MIL-STD-202A	Unenergized
Accelerated Life	Para. 4.5.13, MIL-E-16400
Temperature Cycle	Thermal Shock Method 107, Condition A, MIL-STD-202A	Operated in final cycle

Fig. 3. Imbedded trigger amplifier assembly showing density and placement of components.
ponents of the system. Important parameters of the circuit are: pulse width, pulse rise-time, and capable switching rate of the system. Embedment of this circuit produced negligible effects on the aforementioned electrical parameters. Decreases in the minimum and maximum plate supply voltages by which the units could operate were obscrved. However, these changes never encroached upon the design-center value for the circuit.
A trigger amplifier circuit, similar to one used in the Navy type AN/PDR Radiac set, was also tested. This circuit is used to convert input pulses of variable amplitude and duration to output pulses of constant amplitude and duration. Included is an electronic voltage regulator which

Fig. 4. Accelerated life test was performed on the samples of two different resins. Components were not damaged.
compensates for aging of the $\mathrm{B}+$ supply battery. Embedment of these units (Fig. 3) was of little consequence to changes in the electrical functions which were measured prior to embedment.

Environmental Testing

Embedment of electronic circuit components is intended to provide protection against humid ambients, corrosive and fungus attack, and me-
chanical shock. In order to benefit fully from the embedment, the circuit must be highly reliable and free from the necessity of maintenance and repair. It is apparent that embedded components react differently than unembedded components when exposed to chemical and physical agents of deterioration. The deleterious effects of moisture on circuit components are known to be influenced by temperatures of the environment. Deterioration of components is also known to be accelerated by other environmental agents. A practical solution is to establish procedures whereby simulated environmental studies may be performed on functional embedded assembly circuits. This approach will reveal effects from which some ideas may be formulated for the proper use of embedment techniques.
Table 1 outlines procedures which were used for evaluating these embedded assemblies. It will be noted that each assembly is energized in every test where feasible; the purpose being to simulate as closely as possible, actual field usage of the units. Laboratory data reveal this approach to be the most reliable method for assessing the quality of an embedding resin and the reliability of its associated circuit elements.
Two of the seven resins used in this study were found to meet the environmental test requirements of Table 1. Stability of the electrical and physical characteristics of these two resins, and the degree of protection they provided for the embedded components, were evident by the acceptable performance of each assembly during and following exposure to each of the environmental tests. The remaining five resins were found unsuitable for embedment purposes after the assemblies, on which they were used, failed to meet the specified test requirements. Although the initial characteristics for each of these resins were found acceptable, the lack of stability of these characteristics under adverse environments
. dered them useless for embedment. 'eculiarities associated with unacceptable resins il istrate precaution which must be taken in order o avoid selection of other resins which may reac similarly when placed in actual field usage. O ie factor which accelerated changes in the cluracteristics of these resins was found to be the generation of heat internal to the compound. Sume of the resins were found to have physical characteristics whose stabilities are dependent upon whether the embedded circuits were energired or unenergized during an environmental exposure; cracking or softening of the resin being affected thereby. Another conclusion evolved from environmental testing of these assemblies is that internal heat accelerates the absorption of moisture in approximately four times greater in an energized state for the first 24 hours of exposure, this rate of absorption tapering off to comparable rate's for unenergized units.

Heat and Moisture Problems

A more aggravated condition of resin deterioration occurs if the input power of the energized units is cycled as required in the accelerated life test (Test 8, Table 1). Variations of input power apparently increase the effective breathing of the resin and readily reveal its resistance to the combined effects of heat and moisture. It was also established that this phenomenon predicates the source of heat originating from within the ussembly; exposing unenergized assemblies (at rqual humidities does not produce similar results ${ }^{2}$.
Changes in volume resistance of the resins in the presence of moisture was another factor which influenced the operation of some of the assemWies. There appears to be little correlation between the moisture absorption rate and the volume resistance change among the resins. With some resins, it was found that a small percentage of absorbed moisture effected a much larger percentage of moisture. The change in volume resistance had the effect of increasing the dissipation factor of the resin and effectively altering the performance of the embedded circuit. It is possible that this phenomenon is due to hydrolytic action or dissolution of the resin. If this is true, then the low moisture absorption characteristic, which is determined by per-cent of weight incrase, may be a false value resulting from the countereffect of loss in weight through hydrolysis or dissolution of the resin. This point, however, remains to be proved.
Structural stability of each resin was best revealed by the thermal shock test (Test 9, Table Two of the unacceptable resins invariably cricked when exposed to the temperature of this te t. Precluding the vacuum tube, the embedded co nponents were unaffected in spite of the structu al failure of these resins.

Supplementary Investigations
The resins of two of the 10 mc oscillator assemblies were successfully disintegrated without incurring physical damage to the embedded components, Fig. 4. Operation of these two units following unembedment revealed conclusively that changes in the electrical performance of each unit are due mainly to changes in the electrical characteristics of the embedding resin, and not to changes in electrical values of the embedded components (Fig. 2).

Four of the bistable multivibrators have operated over 15,000 hours under life test, and to the present time have shown negligible changes in electrical functions. The internal temperature of these assemblies is approximately 85 C as indicated by embedded thermocouple elements.

Five samples of the trigger amplifier assembly were stored in ambient temperatures from 100 C through 150 C for a combined total of 54 hours without incurring changes in normal operating characteristics. Short time exposure at 240 C produced fissures in the resins of four of the five samples; subsequent operations of the units revealed no deleterious effects to the embedded components except for a cracked vacuum tube in one of the voltage regulator circuits. Following this exposure, the remaining unfissured assembly was successfully operated in ambient temperatures from 100 C through $200 \mathrm{C}(24$ hours at 200 C) for a combined total of 52 hours.

A prototype embedded audio amplifier assembly was also operated in an ambient temperature of 175 C for 240 continuous hours; the only change observed was a slight loss in gain at the high frequency end of the response spectrum. This was attributed to changes in the characteristics of the resin, since separate measurement of component parameters revealed ineffectual deviations from nominal values.
None of the components of either of these assemblies possesses high-temperature design. They were obtained from stock and were rated at 85 C ambients. -

Referonces

1. Short-Time High-Temperature Evaluation of Paper, Mica, and Ceramic Capacitors . . . MAT LAB NAVSHIPYDNYK Project 4960-V-100, Progress Reports; 2 thru 6, 11 thru 14, 17 thru 22, and 26 thru 30. (Available via Bureau of Ships, Code 312, Washington 25, D.C.) 2. Evaluation of Trigger Amplifier Assemblies Used in the AN/PDR Radiac Sets . . MAT LAB NAVSHIPYD. NYK Project 4960-S-112, Basic Final Report; NE 110000 , April 1957. Thomas E. McDuffie

Acknowledgement

Acknowledgement is made to Messrs. Michael Pizzino and Phil Randino of the Materials Engineering section, whose cooperation and interest have contributed to the success of this study. Thanks are due to Messrs. George C. Neuschaefer, Albin M. Snadyc and Murray Silverman, of Electronic Components, Communications and Acoustics Branch, for their constructive criticism of this article.

mammoth narda Sonblaster

America's first mass-produced industrial-size ultrasonic cleaner!
SAVE y ways over costly solvent, alkaline or vapor degreasing:

- Clean faster, speed production! - Cut rejects, eliminate bottlenecks! © Save on chemicals \& solvents! - Eliminate expensive installation! \bullet Cut mainfenance and downtime! - Save on floor space! - Release labor for other work!

MAMMOTH 5-GALLON TANK 695

Other models from $\mathbf{\$ 1 7 5}$.
2-year guarantee on all units.
SPECIFICATIONS
Interior Tank size (in.), $10 \mathrm{~W} \times 14 \mathrm{~L} \times 91 / 2 \mathrm{H}$. Tank Capacity, 5 gallons. Submersible Transducers
Model NT. 604 - Hermetically sealed heli-arc welded stainless stee case. Radiating face: 27 sq . in. Effective plane of radiation: 40 to 50 sq. in. (approx. $10^{\prime \prime} \times 5^{\prime \prime}$). Effective cavitation of volumes: up to 1200
cu. in. at $24^{\prime \prime}$ tank height (5 gal.) and 2400 cu . in. at $48^{\prime \prime}$ tank height (10 gal.). Swagelok tube fitting on side or end for internal tank wiring. Model NT. 605 - Same as NT- 604 except for bulkhead fitting on back lor external wiring. Eliminates electrical conduits in solutions.
Now you can say goodbye to expensive chemicals, solvents, and degreasing equipment... reclaim valuable floor space ... eliminate high installation costs... just by installing a Narda Series 150 and you'll need fewer people to do the job!
Get the tremendous activity of the new 300 -watt Narda SonBlaster, with the largest transducerized tank ever made, at the lowest price in the industry! Choose from transducerized tanks or submersible ransducers for use in any arrangement in any shape tank you desire. same generator at one time; load selector switch provided - an exclusive Narda feature.
Simply plug the SonBlaster into any 110.115 V AC line, and flip the witch. In seconds, you'll clean most any mechanical, optical, electrical, medical or horological part or assembly you can think of. Perfect, ooo, for brightening, polishing, radioactive decontaminating, pickling, quenching and plating; emulsifying, mixing, sterilizing, impregnat ing, degassing, and other chemical process applications.

Mail the coupon for free help in detarmining the model that's bes for you.

CIRCLE 34 ON READER-SERVICE CARD

Acoustic Noise . . . Its Effects
 on Components

Electronic components in today's guided missiles are subject to severe dynamic environments during missile flight. One of the environments that can affect the component's performance is high-intensity acoustic noise. Merwin Anderson, section chief, reliability, at Avco, describes tests and discusses effects of acoustic noise on shock-mounted, rigidly mounted and foam-potted components.

ACOUSTIC testing facilities utilizing electromagnetic loudspeakers are capable of simulating the noise environments experienced by components in rocket powered missiles. Extremely high reliability is required for missile systems. Therefore, components, assemblies, and complete missile systems should be evaluated with this type of laboratory equipment to prove that acoustic noise environments will not affect the operation of the missile.
A typical test facility is a progressive wave tube (Fig. 1). In this facility, the acoustic energy, or sound wave produced by the loudspeakers, progresses down a long tube past the test specimen and is absorbed at the end. An exponential horn is used to couple the noise from the low frequency loudspeaker to the tube. A midrange or high frequency unit is mounted in the opening of the exponential horn where it joins the progressive wave tube so that the two loudspeakers form a coaxial drive unit for the facility.
The progressive wave tubes are used for testing small parts and assemblies because the noise in this type of facility is well defined with either sinusoidal or random excitation. It is an excellent facility for performing development tests since the angle of incidence of the noise can be specified for
one or more axes of the component. Progressive wave tubes are less practical for testing large specimens because of the large amount of power required to produce the desired noise levels.
Large specimens are tested in reverberant or enclosed chambers (Fig. 2) which are more efficient than progressive wave tubes with respect to sound pressure levels produced for a specific amount of power input. The angle of incidence of the noise in this type of facility is random. However, many of the internal parts of a missile
will be mounted in an enclosed compartment bounded by the missile's external structure and the bulkheads; therefore, the internal acoustic noise environment will be similar to the noise produced in a reverberant chamber.
A practical and economical laboratory arrangement for performing acoustic noise tests would include an 18 in . diameter progressive wave tube and a 200 cu ft reverberant chamber. The progressive wave facility can be used to perform development tests on components and small assemblies (less

Fig. 1. Typical test installation using progressive wave tube (a). Frequency response curve (b) of the Avco loudspeaker and on Altec-Lansing speaker in a 10 -in. dia tube. Maximum sound pressure level of 163 db is developed with 1000 w of acoustical power available.

Phan 100 sq in. cross-sectional area) to determine the behavior of the individual components in a oustic noise environments. The reverberant uamber can be used to perform qualification and aceptance tests on large assemblies, and complete systems (less than $27 \mathrm{cu} \mathrm{ft} \mathrm{in} \mathrm{volume)} \mathrm{to}$ demonstrate that the systems will operate propcly in acoustic noise environments.

With these two chambers, it is possible to satisfy requirements for testing the internal components and systems of most missiles. Sound pressure I c.vels from 152 to 155 db at frequencies to 10,000 (j)s can be produced in the chambers and the cost of the complete facility including both chambers is less than a 1500 g -lb vibration system.

Acoustic noise and mechanical vibration environments excite resonant frequencies to different levels. Since components will experience mechanicai vibrations from the structure to which they are attached simultaneously with acoustic noise environments, the best simulation of dynamic environments experienced in flight would be a combined acoustic noise-mechanical vibration environment.
This combined environment could be produced by utilizing a mechanical exciter with the reverberant facility described in the preceding paragraph. The exciter can be oriented so as to vibrate in a horizontal plane and the reverberant chamber positioned so that the exciter head extends through one wall of the reverberant chamber. Test specimens may be mounted directly to the exciter or suspended in the reverberant chamber and vibrated through push rods by the exciter. With this arrangement it is possible to vibrate the specimens in each of three mutually perpendicular axes while simultaneously subjecting them to an acoustic noise environment.

Results of Tests

During the past two years, there has not been a single failure in our laboratory of small parts such as subminiature relays and transistors when the parts were tested independently in a 155 db progressive wave field with a frequency spectrum as shown in Fig. 1. Since this type of part has a small surface area and a high mass density, vibratious induced by the acoustic noise are at a relatively low level, and the parts are not affected by the noise environment.
Malfunctions have occurred in electronic and electromechanical devices such as dc gyroscopes, dc accelerometers, power supplies and switch assemblies during acoustic noise tests. Intermittent operation, noise and high ripple voltage, and changes in operating levels are some of the failuris experienced with these components. A potel iometer wiper arm making intermittent contact with the potentiometer coil is a typical cause of the component's failure.

In many instances components that failed in acoustic noise environments were previously exposed to severe mechanical vibration tests without the failure occurring. This would be expected hecause of the difference in exciting forces between the two environments. Mechanical vibration is transmitted to the component through the mounting points. Any vibration isolation provided by shock mounts or structural members in the component would attenuate high-frequency excitations before they reached parts in the component.
Acoustic noise excites the component housing and each part in the component with a distributed force; the magnitude of the force is a function of the sound pressure level and the area of each part of the component. Vibration isolators that are effective for mechanical vibrations may be completely ineffective for acoustically induced vibrations.
Tests described in this article illustrate the effects of acoustic noise on a shock mounted component, and a foam potted component. Each of the components was evaluated in a 155 db acoustic noise environment and, for comparison, in a 5 g random vibration environment.
The acoustic noise tests were performed in the $8 \mathrm{cu}-\mathrm{ft}$ reverberation chamber and the noise spectrum was, as shown in Fig. 3, from 150 to 4000 cps . The frequency distribution of the mechanical vibration was essentially white from 20 to 2000 cps. All of the units evaluated were mounted on a cylindrical structure which simulated the internal structure of a missile.
During the acoustic noise tests, the cylindrical structure was suspended in a reverberation chamber and during the vibration tests the cylinder was mounted directly to an exciter. For each evaluation accelerometers were mounted on the cylinder in the vicinity of the assemblies. The vibration level at most points on the structural cylinder was approximately 5 g (rms) during the mechanical vibration test and between 1 and 3 g (rms) during the acoustic noise test.
Results of the tests are presented on a $\log -\log$ paper to show up resonant points which would not appear significant on a semi-log graph. For the tests, the excitation was random and the data is one-third octave plotted at the center frequencies. It should be noted that on a one-third octave band curve, the same level of spectral density at higher frequencies is equivalent to a much higher overall vibration level than at the lower frequencies because the over-all g level in each band is equal to the square root of the product of spectral density and the bandwidth.

Baroswitch (Shock-Mounted)

The baroswitch consists of four altitude sensitive switches mounted in a $1.5 \times 5 \times 6-\mathrm{in}$. housing

Fig. 2. Reverberant or enclosed chamber for testing large specimens (a). Noise spectrum produced (b) in this chamber is from 150 to 5000 cps .
which acts as a smoothing chamber for the pressure sensitive switches. The complete assembly, shown in Fig. 3, is shock mounted at three points.

As shown in the curve (Fig. 3) resulting from mechanical excitations, the natural frequency of the shock mounts is in the 200 cps frequency band and attenuation of the higher frequencies reduces the amplitude of the 1250 cps resonant frequency of the structure to a relatively low level.

The same resonant frequencies appear on the spectrum due to the acoustic excitation, however, the amplitudes developed at each resonance are very different. The component resonance at 1250 cps is the most predominant frequency component and the amplification of the shock mount resonance at 250 cps is at a relatively low level. The over-all rms vibration amplitudes due to the mechanical and acoustical excitation are 8.2 g and 27.5 g , respectively.

This data demonstrates the ineffectiveness of the shock mounts in an acoustic environment. Since the acoustic exciting force is applied directly to the structure, high-frequency resonances, which would be attenuated by the shock mounts in mechanical vibration environments, are excited to high amplitudes in acoustic environments. The most critical test for this component would consist of a combined vibration-acoustic noise environment since both the low-frequency resonance

Fig. 3. Baroswitch assembly tested and its response characteristics.

Fig. 4. Vacuum switch assembly with its test results.

and the high-frequency resonance would be excited simultaneously.

In this component, a material with a high damping coefficient such as a magnesium alloy should have been used to fabricate the housing in order to reduce the amplification factor associated with the high-frequency resonance. For the vibration isolators to be effective in the acoustic noise environments, they would have to be placed between the parts and the housing rather than between the housing and the structural member.

Vacuum Switch (Rigidly Mounted)

The vacuum switch assembly (Fig. 4) consists of two pressure sensitive elements mounted in a $3 \times 4 \times 5$-in. housing which acts as a smoothing chamber for the switches. The complete assembly is rigidly mounted at four points to the internal structure of the missile.

The results, which are shown in Fig. 4, demonstrate the different effects of the acoustic and mechanical excitation on the housing. During the mechanical excitation, the major portion of the energy was concentrated at the lower frequencies, whereas with acoustic noise, there was very little excitation below 500 cps . A predominant resonance occurred in the 2000 cps range. The change in closure altitude of the switches was only 6000 feet due to the mechanical vibration. However, due to the acoustic noise environment the closure altitude changed 45,000 feet. The large change
due to acoustic noise was probably caused by the high-amplitude resonances between 1500 cps to 2000 cps which is the range of the resonant frequencies of the pressure sensitive switches. The pressure fluctuations of the acoustic noise could also have affected the switches.

As in the previous case with the baroswitches, attenuation of the high-frequency excitation was present in the assembly structure when the vibration was applied at the base. However, the acoustic noise, which was applied at the housing, excited the high-frequency resonances leading to a large change in the operating point of the switches, which must be classified as a failure.
In this assembly, it would be necessary to rede-

Fig. 5. Relay chassis tested showing mounting of parts before potting.
sign the vacuum switch housing so that the highfrequency resonances in the structure would not affect the switching elements. This could be accomplished by changing the resonant frequency of the housing so that it does not coincide with any critical frequencies of the switches, or by using a material for the housing which has a high damping coefficient like a magnesium alloy, or each switching element could be mounted in the housing with suitable vibration isolators.

Relay Chassis (Foam Potted)

The relay chassis (Fig. 5) consists of thermal relays, and a sensitive relay mounted on printed circuit boards which are potted in the chassis. In addition, a time delay is mounted on the top of the sheet-metal chassis. The assembly is the control center for an operational missile system handling all the signals for the operation of the functional components in the system.

During the test program, the top plate of the chassis broke away from the potting compound resulting in high-amplitude vibrations. These vibrations caused the time delay relay to fail which resulted in the disqualification of the complete chassis. The remaining parts were unaffected by both the acoustic noise and mechanical vibration environments.

All the parts, except the time delay relay, were protected from acoustic noise as well as mechanical vibrations by the potting. The error in this
dt ign was in placing the time delay relay on the cl issis housing and the inability of the potting co mpound to adhere to the sheet metal plate. Siice the time delay relay was a thermal type, the relay was not placed in the potting because it wis necessary to dissipate heat from the relay housing. This thermal energy could have been di sipated by a suitable heat sink inside the chassis where the part would not have been subjected to the high-level vibrations of the top plate.

Recommendations

The majority of component failures due to actustic noise environments are caused by the acoustically induced vibrations on the housing and structural members of the component. Small integral parts of the component such as transistors or subminiature relays experience vibrations well above the design levels that result in erratic operation of the component or failure of an electrical or mechanical connection. This type of failure is due to poor packaging of the component and/or poor design of the component structural members. In the design of electronic components which must function in acoustic noise and mechanical vibration environments, the following should be considered in order to minimize the effects of the environments:

- Component assemblies should be subminiaturized and made as small as possible.
- Materials that have high damping properties should be used for the major assembly structure and for supporting members and housings of the component assemblies. By doing this, the vibration level on small parts due to both mechanical vilhration and acoustic noise environments would be minimized.
- Sandwiched printed circuit boards should be used in component assemblies. Conductors between terminals are subjected to much less stress on a sandwiched printed circuit board during vibration. Components mounted on the printed circuit board should be rigidly attached with an epoxy resin, or a suitable mechanical attachment. - Vibration isolators utilized in components should be attached so that any resonance vibrations excited by acoustic noise will be attenuated by the isolators.
- l'otting compounds should be used in the component if it is possible. The potting compound will reduce the intensity of the acoustic noise field inside a package and the assembly will be less suceptible to induced vibration.
If these items are considered during the design of an electronic component, the unit will be less sin ceptible to mechanically induced vibrations as will as acoustically induced vibrations. Failures thit might occur in the laboratory or during flight wil be "designed-out" of the component, resultin s in a more reliable unit. - -

No matter how you approach printed circuit problems-with single or multiple connector units, with board-edge or face attachments, with or without solder dipping, with or without eyeletting-AMP has just the product you'll need for low-cost top reliability.

Production and assembly speeds are miles ahead of most other techniques. Versatility is unbeatable, permitting A-MP products to be used on different applications and in combination with each other.

For complete information on electrical characteristics, application methods and other specifications, send for our new Printed Circuit Applications Catalog.

Low Thermal Soldering Procedures For Copper Junctions

Bruce K. Smith
Senior Technologist
Epsco, Inc.
Cambridge, Mass.

 Bruce K. Smith demonstrates his low-thermal sol-
dering technique to engineers and technicians. Al. though he has always been vitally concerned with packaging and electromechanical problems, Mr. Smith is primarily known for his development of advanced digital techniques and magnetic amplifier design. He did all of the logical design of the FLAC and RADAC digital computers, and was project engineer on the UNIVAC and LARC programs.

LOW THERMAL soldering techniques can reduce undesired thermo-potentials generated in solder junctions between copper wires. Such voltages created are inconsequential in most electronic circuits because they are usually in the order of μv and will cancel one another in circuits whose junctions are at equal temperature. However, in low-level circuits, such as found in data systems for example, the numerous thermocouple voltages may not be completely self-cancelling and can seriously affect the accuracy of the lowlevel signals being monitored.

Reducing Thermo-Potentials

If the copper conductor from a resistor is joined to the copper of a circuit board by ordinary lead solder, the two junctions (copper-to-solder and solder-to-copper) may not be at the same temperature due to the fact that heat from the resistor flows through the connection. If the connection is at room temperature, but the drop across it is 1 C , the difference voltage will be about $3 \mu \mathrm{v}$.

The three factors which can be controlled to minimize this voltage are:

- The amount of heat passed through the junction. It is often possible to provide alternate paths for heat condition, such that the thermal "current" at the junction is only a fraction of the total flowing to or from a component.
n The resistance of the solder path at the junction. The temperature drop in a circuit is directly
proportional to the thermal resistance of the circuit and may therefore be reduced by decreasing the length of the solder path or increasing the cross-section area of solder which is actually between the two conductors. This says, really, that the mechanical considerations which are ordinarily a part of good soldering technique have an additional significance in low thermal soldering in reducing the thermal gradient across the junction.
"The thermal electric potential of a coppersolder junction. Cadmium forms a thernocouple with copper which has only about one-tenth the output of a lead-copper junction. Consequently, the difference potential produced by a cadmium soldered joint will be lower than a lead solder joint for a given thermal gradient. A special solder is available for making low thermal connections. This consists of cadmium 70.44 per cent by weight and tin 29.56 per cent by weight. Note that this is a "thermal free" solder for copper wires, but is not necessarily useful for joining other metals.

Any of the procedures listed above may be sufficient for the requirements of a particular thermally sensitive connection. Part of the job of production engineering will be to find the way, or combination of ways, which does each job most (conomically. Until such times as procedures are more closely defined for each critical application, it will be assumed that any joint which is specified as thermally sensitive will be given all of the mechanical and metallurgical considerations noted
in the section on production practice.

Poor Joint Invisible

Observation of these procedures is especially important, inasmuch as an improper joint will usually be visually indistinguishable from one which is proper, and expensive areas of circuitry may have to be discarded when the circuits are tested.

These procedures apply only to the soldering of bare copper parts to one another, or to copper parts which have been electrolytically plated with tin, cadmium, gold, or other protective metals. Engineering must specifically interpret a thermally sensitive junction when it applies to metals other than copper, or to copper parts which have been tinned by dipping.

Production Practices
 Solder

- All low thermal soldering should be done with "thermal free solder," procured from Liston Becker or other approved source in $1 / 16$ th inch square wire stock.
- Immerse spare solder stock, i.e., that stored in the stockroom, in alcohol in a closely capped glass container. This is not required for solder in active line use, but the "open" supply should be minimized.

Flux

n The flux used must be pure resin mixed with sufficient isopropyl alcohol to form a free flowing fluid.

- Rplace alcohol lost through evaporation as neecied.
- Bock resin and alcohol reserved for making flux should be carefully contained to avoid contanination.
- The flux mixture should be contained in nonmet. llic bottles, and used for no other purpose than! low thermal soldering.
- Apply flux with a non-metallic applicator which is naintained free of contamination. Applicators which are integral to the flux bottle caps are ideal for this purpose.
- Flux bottles should be emptied, rinsed with alcohol, and replenished whenever the purity of their contents is suspect, or whenever three months lave elapsed since their last cleaning.

Iron

- Use only Weller 135 w soldering guns for low thermal soldering in production, and these should not be used for other purposes. If similar units are used elsewhere in the area for conventional soldermig, those reserved for low thermal work should hear boldly distinguishing markings.
- The soldering tips used on the Weller irons should be plain copper with reinforced chisel tips, tinned with thermal free solder using the rosin flux. Tips which are purchased pre-tinned. or which are tinned by any other method are not acceptable.
- File and re-tin tips after each 15 minutes "on" time of the iron, or whenever the tips show hbious signs of contamination.

Wire Preparation

- The wires and/or terminals must be of pure copper, and must not have been tinned by any method other than electrolytic plating. Gold or silver plating is acceptable.
- The areas to be soldered should be free of grease and present a bright, uncorroded appearance. Filing and/or scraping may be required on old stock items.
- Tin the parts with "thermal free" solder before they are joined together. The procedure for tinning is:
- Brush part with rosin flux.
- Heat the part with the Weller iron until the part (not the iron) will melt solder.
- Flow solder evenly over the area of interest Avoid excess solder.

Soldering

- Use tinned parts in production as soon as possible.
- Apply flux to the parts to be joined together.
- Wrap the wire around the terminal, lug, or joining wire; forming at least one complete turn. - Crimp the connection, using long nose pliers, so that the parts to be soldered are firmly together, over as much area as possible.
- Heat with the Weller iron until the tinning ınelts and presents a bright appearance. Remove heat immediately.
- Do not use additional solder to form a low thermal connection.
- Paint the finished joint with green lacquer. - a

Analysis of the thermocouple potential developed at the junction of a copper-to-solder-to-copper joint.

put your finger on

Yes-bigger profits from smaller parts are very possible when you engineer in Stampings-especially Advance Stampings. As Specialists in Small Stampings, Advance has been helping metal working industries of various kinds attain higher production at lower cost for over 35 years.

Here are typical Advance Stampings which have been fabricated in different materials to meet tolerance specifications, delivery and price.

[^1]Writa for Small Stamping Specialisfs Brochure
ADVANCE STAMPING CO.
12023 Dixie Ave., Detroit 39, Michigan

Higher Frequency Ratings
Higher Current Ratings
Higher Temperature Ratings

Radically different...HP Ceramic Dielectric Capacitors now make it possible to miniaturize large electronic equipments. Serving heavyduty applications previously limited to mica capacitors, HP units surpass the performance of micas in many characteristics and provide extraordinary space and weight reductions.

Designed for higher frequency operations, the ceramic dielectric retains its properties at frequencies above 1000 megacycles. HP units have much higher current ratings for a given size than comparable mica capacitors. They can be operated at higher temperatures without derating... $105^{\circ} \mathrm{C}$ versus $70^{\circ} \mathrm{C}$ for mica units before derating for voltage. $.45^{\circ} \mathrm{C}$ versus $30^{\circ} \mathrm{C}$ for mica before derating for current. They will meet all requirements of MIL-C-5A for moisture resistànce.

$\square=\underbrace{\circledR}$
 Division

Connecting two HPA units in series still Hords remarkabie savings in size and weigh when compared with a CM80 mica capacitor.

Write for complete technical literature to.
 CORPORATION
iffeen different circuits can be built with this Erec-Tronic tube kit featuring Jiffy connectors and text type schematics. Transistor Kit is described on opposite page

Today's Electronic Toys Helping Build Tomorrow's Engineers

Abstract

Christmas counters this year are displaying many toys that teach electronics. In addition to the one-shot construction projects, there are some well-thought-out kits designed to encourage experimenting. The engineer-father who gives one of the "learn electronics" toys instead of a six-shooter may find that he's a bigger hero in his son's eyes than even Hopalong Cassidy.

ᄃ LECTRONIC TOYS today are not E just boxed collections of surplus parts They are. for the most part, kits designed to teach the curious child. They range from the relatively simple-radios and other one-project kits-to the complexbreadboards, with quick connect-discon nect leads, that can form the basis for a veritable junior experimental "laboratory."

Improvements, paralleling somewhat progress in the adult electronic world, are evident in many of the kits. Radio building sets have transistors and various kinds of tubes. Some inexpensive experimental kits still use Fahnstock clips, but the specially designed connect-disconnect
cads are gaining in favor.
Which kit is best? It depends, of course on the child who is to use it. An easy-to build radio can be an excellent introduc tion to electronics for the youngster wh is inexperienced. And since the project completed once the set is built, it can als give him a feeling of achievement, whic can be the springboard for further es. ploration in electronics.
For the child interested in challenge. there are a variety of experimental kits A breadboard with a few component can give such a youngster a laboratory ob his own, where his scientific abilities and interests can begin to flourish.
ollowing is a sampling of kits representative of each category.

Erec-Tronic Transistor Set
instructive but easy to use, the No. 11051 ErecTionic Transistor Set comes with printed templites for four individual projects. The templates, which resemble actual schematics, are placed on a pegboard, and the youngster mounts the components in their designated spots. Electrical connections are made with Jiffy clips, which an inexperienced and not-so-strong hand will have no trouble using. Each template presents a more challenging circuit for the child to build. For each circuit, he mounts the components in different positions on the board.
After a little practice, an apt youngster will want to put away the templates and repeat the circuit designs by himself. Finally he may try projects of his own-a good test of how much he has learned.
The instruction manual, which gives actual schematics and some simple theory, also shows how to test the components for failure. The kit includes a crystal diode, a $250-\mu \mu \mathrm{f}$ capacitor, code-sending key, tuner, transistor, a one-and-ahalf volt battery and 25 feet of antenna wire. Priced at about $\$ 10.98$, the kit is made by A. C. Gillert Co., which also offers, at somewhat higher prices, models with more components, connectdisconnect leads and a pegboard for mounting.
10.Circuit Transistor Lab Kit

Offering more complex projects, the 10-Circuit Transistor Lab Kit made by Knight-Kits, Allied Radio Corp., requires a little more work. The youngster first learns how to solder with the aid of an instruction manual. Once he has the components in their places around the edge of the board, he can build different circuits by changing the wiring. A printed diagram on the board shows where the wires go. Electrical connections are made with connect-disconnect leads.
The 20-page manual gives schematic diagrams,

Allicd Radio Corp. experimental kit has wiring diagran to show how to interconnect fixed components.

AVAILABLE TYPES

AMPLIFIER	$\begin{aligned} & \text { Case } \\ & \text { Size } \end{aligned}$	AMPLIFIER ${ }^{\text {Co }}$	$\begin{aligned} & \text { Case } \\ & \text { Sixe } \end{aligned}$
Resolver Drive Amplifier	B	A-C Amplifier	A
A-C Summing Amplifier	A	D-C Amplifier	A
A-C Isolation Amplifier	A	Pulse Amplifier	A
AGC Amplifier	A	ADC Drive Amplifier	B
Relay Amplifier	A	Pulse Power Amplifier	r A
Servo Preamplifier	A	Accumulator Amplifier	or
Servo Power Amplifier	A	Electronic Differential	1 A

Diode Synchro Signal Selector

DESIGN FEATURES

- Completely encapsulated for continued reliability under extreme environmental conditions
- Plug-in modular design for rapid assembly and ease of maintenance
- Fully transistorized-Minimum Weight and Volume
- Cadmium-plated steel casings for electrical shielding
- Meet MIL specifications: MIL-E-8189 and MIL-E-5400, Classes I and II

Write on company letterhead for complete Data File No. 212.

FRICTION ELIMINATED TO ACHIEVE

 The Ultimate in Performance

TYPE LA-600
shown actual size

- Full Scale Range: ± 1 to $\pm 40 \mathrm{G}$
- Full Scale Output: to 25 volts
- Threshold-Resolution: 0.0001 G
- Damping Ratio: $0.6 \pm .2$ typical from $-65^{\circ} \mathrm{F}$ to $+\mathbf{2 5 0}{ }^{\circ} \mathrm{F}$
- Notural Frequency: 16 to 100 cps
- Cross-Axis Sensitivily: 0.005 G per G maximum
- Shock: 1060 G
- Vibration: 10 G to 2000 cps
- Size: 1% " diameler, $23 /{ }^{\prime \prime}$ long
- Weight: 1.2 lbs. maximum

The virtual elimination of friction in both these new Honeywell linear accelerometers is made possible by a unique web spring suspension. This

FULL SCALE RANGE feature combined with an electro-magnetic pick-off permits resolutions of extremely low level inputs.

These two instruments span the entire range of dynamic performance.

ACCELEROMETERS

- Full Scale Range: ± 1 10 ± 60 G
- Full Scale Outpur: 1025 volts
- Threshold-Resolution: $\mathbf{0 . 0 0 0 1} \mathbf{G}$
- Damping Ratio: 0.6 af $25^{\circ} \mathrm{C}$ typical
- Natural Frequency: 5 to 30 cps
- Cross-Axis Sensitivity: $0.005 \mathbf{G}$ per \mathbf{G} maximum
- Shock: 10 100 G
- Vibration: 15 G to 2000 cps
- Size: $21 / 32^{\prime \prime}$ diameter, $21 / 16^{\prime \prime}$ long
- Weight: 1.2 lbs . maximum

The LA-600 with its magnetic damping is used for higher natural frequency applications. The LA-700 with its compensated fluid damping is designed for lower natural frequency applications. Write for Bulletins LA-600 and LA-700 to Minneapolis-Honeywell, Boston Division, 40 Life Strect, Boston 35, Mass.

Honeywell

H Multany Pobuctac Graxp
an explanation of what each circuit does, a 1 step-by-step instructions. Such projects as n am radio, broadcaster and electronic timer te possible with the kit. Two transistors, a battiry and dual headphones that also serve as a mic ophone are provided. The kit sells for abrut $\$ 15.75$.
12-In-1 Electronics Lab Kit
The 12-In-1 Electronics Lab Kit, also made by Knight Kit, is aimed at the beginner who is w ill. ing to put more time into his experimenting. It provides for building 12 different circuits and in cludes a 40 -page book of instructions, diagra:ns and explanations. The components are soldered into place permanently, but the wiring must be resoldered for each new project. This kit sells at about $\$ 14.95$.

7-In-1 Multi-Circuit Electronic Kit
The 7-In-1 Multi-Circuit Electronic Kit made by Educational Electronics offers seven projects and also needs soldering. Made to operate from a 110 -volt outlet, the kit is said by the manufacturer to be safe to use. The price is about $\$ 15.95$. Company also has simpler pre-wired kits.
Heathkit EK-I Educational Kit
As a separate gift, or better still, with one of the experimental kits, the Heathkit EK-1 Educational Kit is a volt-ohm-milliammeter that first must be assembled, then can be used to measure voltage, resistance and current in circuits that the youngster has built. A detailed text-workbook is included. The kit sells for about $\$ 19.95$.

Simple Crystal Radios

Selling at about $\$ 3$, radio kits made by Aurora Plastics Corp. and Educational Electronics have crystal detectors and cat's whisker selection. Also made by Aurora, Model 1618 Crystal Diode Ra dio Kit uses a germanium diode and ball-type

Typical construction kit by Educational Electronic Company also makes simple experimental bread boards.

Crystal kit by Aurora for beginners. Company offers complete line of tube and transistor kits.
tuning. Included with the instructions in Aurora kits is a page of simple radio theory. Remco Industries also supplies a radio kit using a fixed crystal.

Radios With Transistors
Also offered are tube radios. Educational Electronics provides the No. 204 One-Tube Portable Radio Kit, pre-wired for building with screws. the list price is $\$ 12.98$.
turora's one- and two-tube radios (No. 1617 and No. 1615) mount with screws, washers, and Fahnstock clips. Furnished with plastic cases, these sell for about $\$ 9.98$ and $\$ 16.98$, respectively.
Among the many transistor radios available is the Philmore TR9 Portable Transistor Battery Kit, which uses one transistor and a germanium diocle. The radio is packaged in a transparent plastic case, which permits the child to recall visually how he put it together once it is completed. Connections are made with Fahnstock clips, and a printed template placed on the board shows where each part goes. This kit sells at about $\$ 9.75$.
Made for very easy construction, the Remco Transistor Radio No. 107 sells at about $\$ 6.98$. Components are placed directly in a plastic case and connected by color-coded wiring.
A complete line of transistor radio kits, with up to six transistors, is made by Superex. Prices rance from about $\$ 5.75$ to $\$ 25.95$. The sets come in varying degrees of difficulty: some require sollering, and others are made more quickly with nuts, screws and washers. All have attractive cases and booklets with pictorial diagrams, schematics and step-by-step instructions.
The Lafayette KT-1 35 Explor-Air receiver kit cor res from 550 kilocycles to 30 megacycles. This kit calls for soldering and includes a 110 -volt, $50-\mathrm{t}$-60-cycles-per-second power supply. It sells for about $\$ 18.50$. An instruction manual is furr ished. Arkay offers a five-tube broadcast rad $)$ - ■

ELI CTRONIC DESIGN • December 9, 1959

Nature's Tiny Flashllght. There's more to the surprisingly bright flashes of the firefly (Lampridae) than the body chemicals which it burns. In addition, a clear, curved section of the insect's skin acts as a magnifying lens and a layer of crystals as a reflector.

Minlature Angle Counter. Moving tape on this counter used in aircraft (approx. $31 / 2^{\prime \prime}$ long) shows horizontal angular deviation from pre-set point. MPB bearings on key shafts help keep torque at approximately 0.1 ounce-inch at tem. peratures from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ I

Man with Miracles. Chuck Sheridan is constantly helping industry and aviation to solve problems of friction and inertia with MPB bearings. Like all MPB Technical Representatives, he ll be glad to help you meet the challenge of miniaturization efficiently and economically.

New Miracles in Miniaturization

actual mizes or stanimas useo It Anole coumten miown neove

Today's accelerated processing programs (and space programs) demand that equipment operate continuously and faultlessly at high rates of speed and with maximum efficiency. The bearings which minimize frictional and inertial losses in such equipment must often be extremely small, but nonetheless depend able in every respect. MPB supplies industry
and the military with tiny, tough, reliable bearings from a line of 500 types and sizes ranging down to $1 / 10^{\prime \prime}$ O.D. "Specials" when necessary. For complete details, ask for our new catalog. Engineering assistance on request. Write MInlature Preclsion Bearings, Inc., 912 Precision Park. Keene, N. H.

CIRCLE 40 ON READER-SERVICE CARD

MINIATURE PRECISION

BEARINGS, INC.
Helps you perform miracles in miniaturization

New Wafer Modules . . . for

versatile telemetering systems

 frequency $A C$ power source of good amplitude and frequency stabilityThe Model 1410-8 is excellent for the checkout of many of the smaller components, gyros, etc. used in missile and aircraft control systems.
Featuring a frequency stability of $\pm 0.1 \%$ of the dial reading over on ambient temperature range of from ± 20 to ± 50 degrees C, the oscillator employed in the 1410-8 is one of the most stable variable frequency units available today.

Output voltage regulation from no-load to full load may be adjusted to within very close limits, frequently to essentially zero. The stability of the output voltage with imput line voltage changes from 110 to 125 volts is better than 0.5% with constant load. Harmonic content is well below 0.5% at rated power output.

With a standard nominal output voltage of 120 RMS, a range of from 90 to 125 volts of regulated voltage is ovailable. Other output voltages ovailable on special order. Size $5 \frac{1}{4} \times 19^{\prime \prime} \times 10^{\prime \prime}$ deep.

Model $1410-8-1$ Standard	Model $1410-8-2$
$350-450 \mathrm{cps}$	300 to 1060 cps

Other frequency ranges available on special order.
Write for our new catalog showing the complefe line of CML AC power supplies.
communication measurements labobatoay, inc.
350 leland avenue, plainfield, new jersey

WAFER-SHAPED telemetry components provide an unconventional, yet logical way of assembling a complete telemetry system. This new approach is inherently versatile and consequently more universal in application than standard mounting methods. Its cylindrical shape also facilitates mounting in small rockets or missiles.
Essentially, this wafer fm/fm telemetry system consists of a scries of individual plug-in modules with integral connectors. The connectors contain common bus lines required for system interconnections. Designed by. Vector Manufacturing Co.,

Inc., Southampton, Pa., the system is des

 ignated the XPS-26.The standard approach for intercon necting individual plug-in components is based upon the use of a mounting as. sembly or mounting brackets. This ap. proach has many severe limitations, notably the inability to readily expand or reduce an initial system design without replacement or addition of mounting as. semblies or brackets as requirements change. In addition, interconnecting harness changes become a costly process When replacement harnesses must be made, instruction book and wiring dia.

Complete cylindrical telemetry system, upper right, is made up of the wafer modules shown. Subcarrier oscillators can be readily added or removed as desired.

ELECTRONIC DESIGN • December 9, 1959
gr ms must also reflect these changes.
typical airborne telemetry transmitting system cor ists of a number of subcarrier oscillators, voltag regulator, mixer amplifier and a transmitter. Th number of subcarrier oscillators used in any one system is a function of the number of individual information functions which are telemeter d and transmitted
Since the subcarrier oscillators are identical in function, circuitry and size and are the basic building blocks for system integration, they proved to be readily adaptable for Vector's new design concept.

As shown in the photograph, the subcarrier oscillators were designed in a wafer-type form factor, 2.6 in . in diameter by $3 / 8 \mathrm{in}$. thick. Two floating connectors are provided, one on each face of the wafer, which have identical pin functions. One is a male and the other is a female. The center of the wafer contains a hub with 18 holes around the circumference of a master hole. Information input lead of each subcarrier oscillator is brought out through one hole in this center. The hub can be removed and the input lead can be fed through any one of eighteen holes. This feature enables any output lead to be rotated to another position to avoid interference with already occupied holes. Greater flexibility in assembly of a system is thus possible.
The common electrical connections to all of the subcarrier oscillators, such as $\mathrm{B}+$, ground and the mixed signal output are contained in the two connectors which are jumped together internally. The only variable electronic function is the information input signal for each of the subcarrier oscillators. Since there are only a total of eighteen diffcrent subcarrier oscillator center frequencies available for use in any one system, each channel is assigned one hole which is used for feeding through the information input lead.
To assemble a system the oscillator wafers are strung together, like beads, by feeding the information leads through the matching holes in the adjacently stacked wafers. Mechanical interconnection is then accomplished by the mating of the floating connectors, the interlocking of the lip and shoulder provided on each wafer, and finally by three through bolts. The result is one rigidly assembled cylinder which conforms to the configuration of the smaller rockets.
The eighteen information leads are then terminated in a connector for accepting the information inputs. In order to increase or decrease the number of subcarrier channels, it is only necesvan to unsolder the one master information input con ector and either add or remove the required mun ber of subcarrier oscillator wafers.
Fir further information on this Vector XPS-26 tele retry system, turn to the Reader-Service Card and circle 101.

STickpole Coldife 70
 an RESISTORS
 RC-42, RC-32 and RC-20 types

THESE 28

 DISTR1BUUTORS CAN FILL YOUR ORDERS emergencies or for hurry-up design and engineering projectsYou can get Stackpole Coldite 70+ resistors in any standard value or tolerance from the 28 distributors listed below.

SAN DIEGO, CALIF. SCRANTON, PA. SCRANTON, PA. SEATTLE, WASH SEARG, Radio Supply Co. ST. LOUIS, MO. stinterstote' supply co SYRACUSE, N. Y. Morris Electronics of Syracuse TACOMA, WASH. C \& G Radio Supply Co WASHINGTON, D.C. Electronic Wholosalore, Inc. WATEREURY, CONN Bond Rodio Supoly Co. In.

WEST PALM BEACH, FLA. Goddard Distributors, Inc. WICHITA, KANSAS Intorstote Electronic Sup. Corp. WILBRAHAM, MASS. Indualrial Components corp. WINSTON-SALEM, N. C. Dalton-Hoge Radio Supoly . and G-/STACKPOLE, TOOI Atractivoly packagod by G.C Eloctronics for rervice replacement vesor, Colditio 70+ Rosis. tors are olne ovailable

How Fansteel 77 Metal PLUS Fansteel Engineering

added up to a \$10,000 Saving!

Fansteel does more than just talk "customer savings." Take the case of these Fansteel 77 Metal contour parts, $3 / 4^{\prime \prime}$ thick $\times 91 / 2^{\prime \prime}$ high

neEd a metal 50% heavier than lead? Fansteel 77 is a metal produced especially for opplications requiring maximum density in limited space. It is twice as heavy as steel. 50% heovier than lead, yet-much stronger han cast iron. Non-magnetic 77 Metal is eosily machined and easily ioined to other odioactive requiring no special precoutions in handling. Avoilable in finished or semifinished parts to your specifications or in bars, rods, rings, disks, special shopes. $\times 15^{\prime \prime}$ developed length with a radius of $9^{\prime \prime}$
Fansteel engineers developed new fabrication techniques which cut the cost 30% over former methods of producing the part. To the customer this added up to a $\$ 10,000$ sating on this one order alone.
It's just one more example of how the constant search by Fansteel engineers for cost-cutting ways of fabricating Fansteel metals, pays off in big savings for the customer.
Investigate the possibilities of similar savings on your parts... whether it's made from 77 metal, tantalum, molybdenum, columbium or tungsten. Call in the Fansteel man.

K598A

[^2]

Heavy-Duty

A/D Converter

Memorizes Shaft Position

WITH ITS INPUT shaft rotating at up to 250 rpm , a new analog-digital converter, the Mem-O-Tizer, can read out a previous shaft position in the form of switch closures. Where very fast operation is not essential, this shaft-position encoder provides many advantages in addition to its memory feature.
Manufactured by the Automation Div. of Telechrome Manufacturing Corp., 26 Edison St, Amityville, N. Y., the Mem-O. Tizer was designed primarily for industrial environments. Hence, it should be rugged and reliable, if not particularly small and light.

Among its unusual features are:

- Memory of a previous shaft position.
- Low break-away torque require. ment-as low as 0.003 in . oz.
- Direct operation of external equip ment through one $\mathrm{amp}, 60 \mathrm{vdc}$ contacts.
- Nonambiguity with any available output code.
- High resolution-to one part in almost 2.1 million.

These features result from the unusual design of the encoder. It has an integral input shaft and first stage code drum. Additional drums, as required, are geared to the first drum.
Each drum is composed of concentric cams, profiled with a series of high, intermediate, and low faces. Solenoid-operated sensors, each with a simple, posi-
tion-locking device, follow the drum profile and close high- or low-position switches.
Sensors are positioned, switches operated and locked into position, and the sensors retracted in 50 milliseconds-regardless of the duration of the read signal. A half-second duty cycle allows plenty of time to actuate external devices.
An electromechanical interlock eliminates readout ambiguity by locking a detent between the teeth of a gear ring on the perimeter of the first code drum.
Unless this detent is positively seated and locked, no readout can result; an incremental movement is required. This positive definition works in either direction of rotation of the bidirectional Mem-O-Tizer.

The input shaft drives the main drum through a lost-motion coupler. Hence, the detent can stop the drum for a reading, on command, while the input shaft keeps turning. When the drum is released, the spring-action coupler helps it catch up with the shaft.
No brushes or other electrical contacts are made or broken during rotation. Switch contacts close only when the drum is stopped to read; the input shaft need not be stopped.
The converter is available with a wide variety of output codes: decimal, binary; modified binary, binary decimal, or Grey with five, six, seven, or eight bits. Through proper choice of output codes and numher of coding drums, input information can be resolved to one part in $2,097,152$.
For more information on this A D, shaft position encoder, turn to the ReaderService Card and circle 102.

Tol ch of a feather overcomes the breakaway torque of "his shaft position encoder with a memory.

ELICTRONIC DESIGN • December 9, 1959

1

Still using "old-fashioned"
methods for measuring non-recurring transients? If so, now is the time to investigate the easy way to solve your most difficult transient measurement problems with the latest model Hughes "Memo-Scope" oscilloscope

Why? Because new features, new advanced circuitry, new panel layout and new mechanical design now assure maximum accuracy in all your transient measurements-plus higher performance, greater dependability and easier operation!

For complete information on the new improved Hughes "Memo-Scope"
oscilloscope (Model 104E), detailed data sheets and application analysis
of your transient measurement problems, write or wire: HUGHES PRODUCTS
Industrial Systems Division, International Airport Station, Los Angeles 45, California

CIRCLE 44 ON READER-SERVICE CARD

OVER 500 HOURS AT HOT SPOT TEMPERATURES

$-55^{\circ} c+150^{\circ}$

High-temp, Single-turn POTS by FAIRCHILD

Conservatively rated for load life in excess of 500 hours' exposure to hot spot temperatures, Fairchild high temperature, high reliability precision potentiometers are designed for functional accuracy and reliability under operating ambient temperatures ranging from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.
The excellent life of these low-noise, high resolution pots is made possible by the following outstanding construction features
-Welded terminal and taps.

- Machined metal caso.
- Precious metal resistance wires.
- Precious metal contacts.
- One-piece wiper construction.
- Clamp bands capable of withstanding high torque.
- Precision stainless steal ball bearings.

These high temperature, high reliability pots are available in $7 / 8^{\prime \prime}, 1^{\prime \prime} 8^{\prime \prime}, 1^{\prime 3} / 4^{\prime \prime}$, and $2^{\prime \prime}$ diameter single-turns, and in $1 / 8^{\prime \prime}, 1^{\prime \prime}$ and $2^{\prime \prime}$ multi-turns. They are conservatively rated for load life in excess of 500
hours' exposure to hot spot temperatures. They meet or exceed Mil-E-5272A environmental specifications
This series is also available in standard models for temperatures up to $+85^{\circ} \mathrm{C}$. Fairchild also offers $7 / 8^{\prime \prime}, 11 / 8^{\prime \prime}$ and $2^{\prime \prime}$ diameter infinite resolution Film Pots with operating temperature ranges from -55 to $+225^{\circ} \mathrm{C}$.
For more information write to Dept.3ED

Precision Thermistor Bridge Calibrates RF Generators at 1.000 Mw

COMPLETELY self-contained except - for an external thermistor mount, the TB-2 thermistor bridge provides a precise calibration point for rf signalgenerator output monitors. Using only de for substituted power as well as bias power the bridge provides 1.000 milliwatt of substituted output power.
To provide this precision, the substituted de power is accurate to within 0.1 per cent for thermistor mount temperatures from 18 to 28 deg C
Manufactured by Weinschel Engineering. 10503 Metropolitan Ave., Kensington, Md., the bridge call serve as a companion instrument to relative rf
voltmeters like the Weinschel VM-1A, which can directly calibrate output attenuators of signal generators from -15 to -87 dbm .
Though the TB-2 measures only at a fixed level of 1.000 mw of average rf, it can be used for higher power levels as well. Higher powers must be applied to the thermistor mount through precisely calibrated attenuators or directional couplers.
The bridge uses dc power for biasing the two thermistors in the mount so their series resistance is 200 ohms, as well as for substitution in the absence of rf. Its single, self-contained pointer-

Thermistor bridge (upper left), in a typical application, calibrating the absolute output of one milliwatt of the signal generator beneath it. Centered in the photo is the VM-IA, used to calibrate the signal generator's output attenuator. Rf sources, at right, cover frequencies from 50 to $10,500 \mathrm{mc}$.

NEW PRODUCTS

Covering all new products that might gener ally be specified by an electronics engineer engaged in the design of original equipment

Slip Ring Assembly
Measures 0.777 in.
This slip ring micro-capsule, for use in miniature stable platforms, contains 61 gold slip rings in a total length of 0.777 in . The diameter of the assembly is 0.248 in . Currents up to 400 ma can be adequately handled. Hi-pot ratings exceed 500 v and circuit to circuit resistance is 100 meg , minimum. The unit has Teflon insulated leads.
Rotary Devices Corp., Dept. ED, 40 Jay St., Englewood, N. J.

Time Delay Relay Weighs $1 / 2 \mathrm{Oz}$

Weighing $1 / 2$ oz, the type $\mathrm{E} 40+$ time delay relay has an operating temperature range of -65 to -85 C or $\pm 125 \mathrm{C}$. The hermetically sealed unit has a voltage range of 18 to 32 v de; it can operate up to an altitude of $150,000 \mathrm{ft}$. The maximum reset time is $10 \mu \mathrm{sec}$ and the delay ranges from 0.1 to 10 sec . Output of the unit is spst, normally open. It will stand a shock of 100 g for $11 \pm 1 \mathrm{msec}$, and an acceleration of 100 g . It can be mounted in any position.

Wheaton Engineering Corp., Dept. ED, 920 Manchester Rd., Wheaton, Ill.

Tunnel Diodes Made Available For Engineering Evaluation

Twelve tumnel diodes designed for operation up to 1000 me with power consumption ranging from 0.75 to 3 mw are now available for engi neering evaluation purposes. Nominal peak on tunnel currents range from 1.8 to 6.8 ma . For maximum usefulness of the negative resistance characteristic, the ratio of peak current to mini mum current is maintained in excess of 4.5 to 1 . The diode consists of a pn junction $1 / 1000$ of an inch in diameter and 80 A in width. This unit is mounted in a miniature ceramic case that has an inductance of 0.4 mph .

Radio Corporation of America, Dept. ED Commercial Engineering Dept., Semiconductom Div., Somerville, N.J.

Volume Of Subcarrier Oscillator Is 1.5 Cu In .

The model TOE-30,() transistorized, voltage-controlled subcarrier uscillator has a volume of 1.5 cu in . It is applicable to FM/FM telemetering systems for missiles, space vehicles and aircraft. Total power required is 20 v dc at 5 ma ; input ranges from 1 v total min. to 5 v total max. The input impedance is 100,000 ohms per volt. Temperature range is 25 to 85 C and it can stand $\pm 25 \mathrm{~g}$. Its stability is $\mathbf{1 \%}$ and its linearity is 0.5%. The oscillator is available in all standard IRIG numbered and lettered bands.
Bendix Aviation Corp., BendixPacific Div., Dept. ED, 11600 Sherman Way, North Hollywood, Calif.

Commutator Designed For PAM Systems

Designed for use in PAM systems, this 30×10, 2 pole telemetering commutator measures 2.5 in . si by 4 in . long including a selfcontained motor, gear box and switching section. Total weight of the unit is less than 1.5 lb . Displaying less than 0.3% noise levels with millivolt input signals, the life of the switch is in excess of 1000 hr . It is powered by a 400 cycle, single c phase, 115 v motor. The com| lete unit is capable of meeting l issile environmental conditions. Instrument Development Labratories, Inc., Dept. ED, 67 lechanic St., Attleboro, Mass.

Creative Microwave Technology $10 \Omega O O N$

NEW RAYTHEON MICROWAVE TUBE DEVELOPMENTS

Miniature pulsed magnetrons for missile beacon applications are ruggedly constructed with integral magnets. The RK-7461 is tunable from 9,300 to $9,500 \mathrm{mc}$ and has minimum peak power output of 60 watts. It is $1 \frac{1}{4}{ }^{n}$ in diameter and $21 / 2^{n}$ long. and weighs only 6 ounces.

RK-7461

QK-735

The QK-735 is tunable from 5,400 to $5,900 \mathrm{mc}$ with minimum peak power output of 400 watts. $1 \frac{1}{2 \prime \prime}$ in diameter and $31 / 4^{\prime \prime}$ long, it weighs 8 ounces.

CIRCLE 771

Reader Service Card

Designed for electronic countermeasures and $F M / C W$ operations, the QK-625 BWO proviaes a minimum CW power output of 180 watts and a nominal CW power output of 250 to 350 watts over the 2,500 to 3,000 mc band. The tube is voltage tunable over the entire range with tuning sensitivity of approximate ly $0.4 \mathrm{mc} / \mathrm{volt}$. Liquidcooled, the QK-625 BWO is equipped with an integral

permanent magnet, and can be mounted in any position.

CIRCLE 772
Reader service Card

Small-signal gain of up to 35 db in microwave relay links is achieved by means of a new compact traveling wave tube amplifier -- the QK-542. This permanent-magnet focused CW tube has nominal saturated power output of 5 wat ts over 5,900 to 7,400 mc. An integral UG 344/U waveguide-type flange is supplied as standard. With an optional coaxial output coupler the QK-542 covers 4,000 to $8,000 \mathrm{mc}$.

CIRCLE 773
Reader Service Card

A Leader in Creative Microwave Technology

Ideal for linear accelerators and high-power radar systems. $\frac{\text { The } Q K-783 \text { and }}{}$ Systems. Amplitrons operate over the 2,700-2,900 mc and 2,900-3,100 mc bands, respectively, at a peak power of 3 megawatts and a typical efficiency of 75%. Because no heater is required, these tubes are capable of exceptionally long life. RF gain is 8 db under rated conditions, and as high as 12 db at lower peak power outputs. Phase pushing figure is less than 0.5 degrees for a 1% variation of anode current.

CIRCLE 774
Reader service Card

Compiled as a Raytheon Service to the pield 2 new Consolidated Data Booklet contains comprehensive information about principal unclassified magnetrons. klystrons, backward wave oscillators and special purpose tubes manufactured by Raytheon. Characteristics presented include maximum ratings, typical operating values, band or frequency ranges and other essential data for microwave engineers and purchasing departments.

CIRCLE 775
Reader Service Card

NEW PRODUCTS

Pulse Controllers

Adjust from 30 to $\mathbf{5 0 0} \mathbf{~ m s e c}$
Designed to extend or shorten the duration of an electrical impulse, models PC-600, PC-601, and PC-602 pulse controllers are all available in three ranges from 30 to 500 msec . Longer time periods are provided on special models. Other features are: an output pulse of up to 5 amp at 115 v ac, 15 msec recharging time, and 5 msec lag from start of input to start of output pulse. Typical uses are with counters and with hydraulic-pneumatic machinery.

Warco Industries, Inc., Dept. ED, 6625 Delmar Blvd., St. Louis, Mo.

Diode

For use at 1 to 12.4 kmc
Type 1N639 tripolar coaxial diode is a replacement for the 1 N358 diode in microwave video receivers used in the frequency range of 1 to 12.4 kmc . The input impedance is 65 ohms , the figure of merit is 15 , and the video impedance is 4500 to 18,000 ohms. The tangential signal sensitivity is -40 dbm min . The diode operates over the temperature range of -40 to +150 C
Microwave Associates, Inc., Dept. ED, Burlington, Mass.

Mixer Diode

Noise figure is 6 db max

Type 1N21F silicon microwave mixer diode has an over-all receiver noise figure of 6 db max when measured with a $1.5-\mathrm{db}, 30-\mathrm{mc}$ if amplifier. Made for use with superheterodyne receivers at 100 to 4000 mc , the diode has a vswr of 1.3 max and if impedance limits of 350 to 450 ohms. Reversed polarity and matched pairs can be supplied. Applications include use in mixers following parametric preamplifier stages, vhf-uhf scatter communications, and navigational receivers.
Microwave Associates, Inc., Dept. ED, Burlington, Mass.

Transitron offers...

INDUSTRY'S MOST COMPLETE LINE

SILICON TRANSISTORS

Jan transistor			chickivibu	cubutuememe		taruens
¢ ${ }^{\text {a }}$	Jmexis					Oithamicen
small signal		cumbe	${ }^{\text {combumme }}$	${ }^{\text {a }}$	为	fatuas
\square				$\frac{1}{10}$		
\square		$\frac{8}{36}$	${ }_{3}{ }_{3}$			mame

HIGH SPEED SWITCHIMG	cutime	comememu			Mrums
\bigcirc	150	${ }^{\frac{18}{15}}$			

medum Power	out	${ }^{\text {cosem }}$	\% mimicio	\cdots	\cdots	rexums
0				3	${ }^{5}$	

HIGH POWER		$\underbrace{\text { a }}$			comen	aturas
*) दer	Stroe	${ }^{85}$	15.2 zams	${ }^{15}$	6	
	$\underset{\substack{20389 \\ 2024}}{ }$	${ }_{85}^{85}$		35 60	${ }_{60}^{60}$	

SILICON DIODES

\rightarrow	Fast Switching and High Frequency Types Ratings (a $25^{\circ} \mathrm{C}$				Military and High Conductance Types Ratings © $150^{\circ} \mathrm{C}$			
features		$\begin{aligned} & \text { Max. Inverse } \\ & \text { Voltage (Volts) } \end{aligned}$	Max. Average Fwd. Current. (ma)	$\begin{gathered} \text { Inverse Recovery } \\ \text { Time }(\mu \mathrm{sec}) \end{gathered}$		$\begin{aligned} & \text { Max. Inverse } \\ & \text { Voltage (Volts) } \end{aligned}$	Max. Average Fwd. Current (ma)	Max. Inverse Current $(\mu \mathrm{a}) @(\mathbb{O}) \cup$
	1N808	100	100	3	JAN IN457	60	25	5 (3) 60
- Recovery Times Under $15 \mu \mathrm{sec}$	1N809	200	100	3	JAN IN458	125	25	5 (3) 125
- High Conductance Combined With Fast Switching	1N658	120	200	. 3	JAN IN459	175	25	5 (4) 175
- Subminiature Size	IN659	55	100	. 3	IN4858	180	50	5 (13) 175
- High Inverse Resistance	1 N643	110	100	3	IN488A	380	50	25 (3) 380
	JAN IN251	30	75	. 15	1N464	175	40	30 @ 125

SILICON RECTIFIERS

SILICON REGULATORS AND REFERENCES

		Voltage Range (Volts)	Maximum Dynamic Resistance (ohms)		features	
	Subminialure - SV-5	4.35 .4	55	50	- Long-term stability - Operation up to $150^{\circ} \mathrm{C}$ - Small size. assy mountine - Hermetically sealed	
	Miniature - SV - 815	13.5.18	120	40		
co	Power - SV. 924	20.27	8			
	Stabistor - SG-22	. 64	40	$150-25$		
	Reference - SV-3176	8.8.8	15	Temp. Coefficient		
	Rel-Amp - 3N44	8.3.9.8		$\pm .002 \% /{ }^{\circ} \mathrm{C}$		
				"Case temperature ratings Write for Bulletin TE-1352		
SILICON CAPACITORS						

	Uitra Hight Frequency Yypes - Ratings (${ }^{\text {a }} 25^{\circ} \mathrm{C}$							features
सank		$\begin{aligned} & \text { Cut-off } \\ & \text { Frieo. (mc) } \end{aligned}$			(1.) $50 \mathrm{Mc}^{(1)}$	${ }_{\text {(a) }}^{\text {al }} 100 \mathrm{Mc}$	$\begin{gathered} \text { Maximum } \\ \text { Working Voltage } \end{gathered}$	
	SCH-51	5000	35	2	100	50	10	
	SCH-52	5000	. 8	4	100	50	7	Subminiature Size
			High	ency Typ				- High Temperatura Operation
Clo					${ }_{\text {At }} 5 \mathrm{mc}{ }^{\text {e }}$ (e)	${ }_{\text {Al }}^{\text {Al }}$ 50me		
-	SC. 1		4.4	24	350	35	22	
	Sc. 5		25	120	${ }^{350}$	${ }^{35}$	11	
	SC.15		120	360	350	35	6	

GERMANIUM DIODES

Specifications and Ratings at $25^{\circ} \mathrm{C}$		$\begin{gathered} \hline \text { Forward Current } \\ (a+1 V \\ (\mathrm{ma}) \\ \hline \end{gathered}$	Inverse Current at Specified Voltage (μ © ©)	$\begin{gathered} \text { Max. Oper. } \\ \text { Voltage } \\ \text { (volts) } \\ \hline \end{gathered}$	Description
coll	JAN-1N270	200	100 (a) -50	80	JAN TYPES
	JAN-1N271	100	$\begin{aligned} & 250\left(\text { (uic) }-50 @ 75^{\circ} \mathrm{C}\right. \\ & 75(\mathrm{a}) \\ & \hline \end{aligned}$	100	
	JAN-1N281	40	$\begin{array}{r} 500\left(a_{2}\right)=50 \\ 30(a)=50 \end{array}$	60	
	JAN-IN126	5	$\begin{array}{r} 500(a)-50 \\ 30(a)-10 \\ \hline \end{array}$	60	
+8	JAN-IN198	5		50	
	1N283	200	20 (a) - 10	20	COMPUTER TYPES
	T16G	40	100 (a) -50	60	
features - Milli Microsecond Switching - Superior Forward Conductance - High Inverse Resistance - Uniformity and Stability - Gold Bonded Construction	1 1278	20	125 (a) -50 © 6 75 $5^{\circ} \mathrm{C}$	50	HI-TEMPERATURETYPES
	T226	40	20 (a) -10(a) 75 ${ }^{\circ} \mathrm{C}$	15	
	T9	100	$20(a)=50$	60	HI-RESISTANCETYPES
	1n67A	5	$\begin{gathered} 50(a,-50 \\ 5(a)-5 \\ \hline \end{gathered}$	80	
	T8G	100	$\begin{gathered} 20(a)-100 \\ 5(a)-10 \\ \hline \end{gathered}$	100	
	S570G	10	30 (3) 6	$\begin{aligned} & \text { Recovery Time } \\ & .002 \\ & \text { (usec) } \end{aligned}$	MILLI-MICROSECOND SWITCHING

GERMANIUM COMPUTER TRANSISTORS

		$\begin{gathered} \text { Minimum } \\ \text { Current Gain } \\ \text { (B) } \end{gathered}$	Maximum Collector Voltage (volts)	Typical Cutoff Freq. (MC)	FEATURES
	2N427	40	15	8	- High FrequencySwitchine - Low Saturation Resistance - Uniform Input Characteristics
	2Na28	60	12	13	

Your local authorized Transitron Distributor now carries in-stock inventories for immediate delivery.

Transitron's TD series of rectifier stacks offer a wide range of ratings in seven standard circuit configurations. High voltage cartridges, quads, plug-in assemblies, and many other special encapsulations are also available. Your inquiries are invited.

Write for Bulletin TE-1342.

Transitron

electronic corporation wakefield, massachusetts

Frequency Meters

Ranges are 48 to 62 cps and 338 to 412 cps
For measuring frequencies normally used in power distribution, these frequency meters have ranges of 48 to 62 cps and 388 to 412 cps . Other ranges can be furnished. The meters consist of a converter, which translates input frequencies into de signals, and an indicator, which uses the output of the converter to indicate corresponding frequencies on a linear scale. Input of the meter is 105 to 135 v ac of the frequency being measured; no auxiliary power is required. The temperature range is -65 to +130 F . Suitable for aircraft or missile support equipment, the meters meet Mil specs for shock and vibration.
Consolidated Controls Corp., Dept. ED, Bethel, Conn.

Metal Film Resistors

526
Range is to 2.5 meg.
These metal film resistors are available in 2-w units in semi- and full-cylindrical shapes with a range to 2.5 meg , and in a $0.25-\mathrm{w}$ unit measuring $5 / 8 \mathrm{in}$. long and $15 / 64$ in. in diam. Consisting of a thin film of metal alloy bonded to glass, these precision units have low reactance at high frequencies and operate in high ambient temperatures. They are sealed in a high temperature plastic case.
Ohmite Manufacturing Co., Dept. ED, 3655 W. Howard St., Skokie, III.

Grid Board

For prototype work
The Fotoceram grid board, designed for prototype work, is clad on both sides with copper that can be etched away as required. Components can be installed by hand or dip soldering. The $0.052-\mathrm{in}$. round holes are spaced 0.1 in . apart. The board is $1 / 16 \mathrm{in}$. thick and is offered in three sizes: $3 \times 5,6 \times 8$, $9 \times 12 \mathrm{in}$.

Corning Glass Works, Electronic Components Dept., Dept. ED, Bradford, Pa.
\& CIRCIE 48 ON READER-SERVICE CARD

LLREANNOUNCESTHE Type 211 Stepping Switch

 Clare Type 211 springdriven stepping switch longer service life, greater capacity and a freedom from maintenance hitherto unknown in an 11point switch. Rugged, compactly built, the 211 is available with a variety of enclosures and mounting assemblies to meet a wide range of design applications.
*LONGER LIFE EXPECTANCY-This new switch has a life expectancy of from 100 million steps at twelve levels to 300 million steps at three levels with proper relubrication and readjustment.

GREATER STEP CAPACITY-Up to twelve 11-point levels or four 33-point levels enable it to handle complex switching, counting, totalizing, selecting, and sequence control operations.

SIMPLIFIED MAINTENANCE-Fewer moving parts, due to the elimination of pawl bearings, and a more rigid armature arm simplify maintenance and increase service life.
OPERATING SPEEDS-Self-interrupt speed: 60 SPS at $25^{\circ} \mathrm{C}$ on nominal voltage. Remote impulse speed: 30 SPS at $25^{\circ} \mathrm{C}$ on nominal voltage with 66% make Impulse.
OPERATE \& RELEASE TIME-Operate time: $20 \mathrm{~ms} \mathrm{at} 25^{\circ} \mathrm{C}$ on nominal voltage. Release time: 10 ms at $25^{\circ} \mathrm{C}$ on nominal voltage.
OPERATE \& RELEASE VOLTAGE-Maximum pull-in at $25^{\circ} \mathrm{C}$ is 66% of nominal voltage. Minimum dropout at $25^{\circ} \mathrm{C}$ is 5% of nominal voltage.
BREAKDOWN TEST-1000 v, rms, 80 cps , is standard.
COILS-Coll resistances for typical voltages are shown below:

Voltage	1-8 Lovels	9.12 Levels
Vde	Ohms	Ohms
6	1.5	1.5
12	6	6
24	24	20
48	100	70
60	150	100
110	600	400

TYPE 211 sWITCH-MECHANICAL DATA
OVERALL DIMENSIONS-Length (maximum)-4-5/16 in. Height (IC interrupter. 1C O.N.S.)- $2 \% \mathrm{in}$. Width-from $1-5 / 18 \mathrm{in}$. for 3 levela to 2-13/16 in. for 12 levels.
NET WEIGHT-From one pound for 3 levols to $1 / \frac{1}{2}$ pounds for 12 levele
BANK CONTACT-Standard is phosphor bronze. Also avaliable are coin sillver or gold plated phosphor bronze.
maximum bank levels a pileups

Type of operation (points)
Bank levols maximum (olectrical)
Interruptor sprinos Oumber of ratches

WIPERS_Standard wipers are non-bridging phosphor bronze with coin
ellver and gold plated phosphor bronze avallable in elther non-bridg. silver and gold plated phosphor bronze avallable in elther non-bridg-
ing or bridging models.
 tha or bridging modele.

VARIETY OF ENCLOSURES-Hermetically sealed enclosures, filled with nitrogen or oil, are available with hook-type solder terminals. Dust cover enclosures are available with miniature or standard Amphenol Blue Ribbon connectors.
Write for bulletin CPC-3 to C. P. Clare \& Co., 3101 Pratt Blvd., Chicago 45, Illinois. In Canada: C. P. Clare Canada Ltd., P. O. Box 134, Downsview, Ontario. Cable Address: CLARELAY.

Chans RLELATYS

FIRST in the Industrial Field

NEW PRODUCTS

Metal Consoles
Come in modular units
These cabinet and desk assem blies come in the following modula types: single, double, or triple as semblies with short or full dept tabletops and with or without desk top control cabinets. A pedestal rack provides for panel mounting angles shelves, detachable side panels, and other accessories. The units are suitable for housing electronic equipment. Formica tabletops are used.
Par-Metals Products Corp., Dept. ED, 32-62 49th St., Long Island City 3, N.Y.

Two-Circuit Switches 530
Life is $10,000,000$ operations
Designed for use on machine tool limit and control mechanisms, series 3MN switches have a median me chanical life of over $10.000,000 \mathrm{op}$ erations at full overtravel. Three of these snap-action switches have a combined stacking width of 2.03 in . The arc-resistant plastic case allows extra space between the integral terminals to prevent shorting. A minimum of 0.08 overtravel is provided. The contact arrangement is single-pole two circuit, doublebreak. The switches are rated at 15 amp, for $120,240,480$, or 600 v ac.

Micro Switch. Div. of Minne-apolis-Honeywell Regulator Co., Dept. ED, Freeport, III.

Laminated Plastic

Heat resistant
Type N-104-84-2 laminated plastic, inade by impregnating graphite fabric with phenolic resin, is for use in missiles and in other applications requiring exceptional heat resistance. Available in sample quantitics to companies having a DX-A2 Ballistic Missile Program priority, it comes in two forms: laminated 6 -in. squares in thicknesses up to 0.5 in ., and 3 -in. diam cylindrical moldings, made from macerated impregnated fabric, in depths to 2 in.

Continental - Diamond Fibre Corp., Dept. ED, Newark, Del.

Fhotoconductive Cell

Handles to 100 v dc

The Mullard ORPIl cadmium sulphide photoconductive cell handles to 100 v dc and has maximum response in the red/infrared region. The temperature range is -40 to +70 C . At 10 v dc, 5 lumens per sq foot, and 2700 K , the average cell current is 6 ma and the minimum cell current is 3 ma .
International Electronics Corp., Dept. ED, 81 Spring St., New York 12, N.Y.

Flow-Control Servo Valve
517
Weighs $9-1 / 202$

Weighing 9-1/2 oz, model 40 electromechanical, flow-control servo valve is for airborne applications. It can be used as a connecting link b.tween the electrical system and the hydraulic sistem in rockets, missiles, and aircraft. It can also be used in test vehicles and other devices "here electrical signals are converted to hydronechanical action. The unit has a rated flow to 5 gal per min at $10(1)$ psi valve drop. The current r ting is 8 ma and the power, 0.06 w . The maxi12. um internal leakage is 0.09 gal per min and there is no external leakage. Linearity is $\pm 3 \%$ a id hysteresis is 2%.
Midwestern Instruments, Dept. ED, P.O. Box ־ 86, Tulsa, Okla.

Pulse transformers - Medium and low-power transformers - Filters of all types • Pulse-forming networks - Miniature plugin encapsulated circuit assemblies

Model 61-34 Perfected For Specialized Communications Application

PALISADES PARK, N. J.-An entirely new Lumped-Constant Delay Line, with a proven 170 to 1 delay time/rise time ratio, has been announced by the ESC Corporation, Palisades Park, N. J. The new delay line, known as Model 61-34, was specifically designed for a specialized communications application calling for the exceptionally high delay time/rise time ratio.

ESC, the world's leading manufacturer of custom built and stock delay lines, is already widely recognized in the electronics industry for its exceptional engineering advances. In October, 1958, ESC broke through an existing design barrier and produced a delay line with a 145 to 1 delay time/rise time ratio. It had been thought, prior to the announcement of the Model 61-34, that ESC had reached the ultimate in this type of delay line.

SPECIFICATIONS OF NEW DELAY LINE MODEL 61-34

Delay time/rise time ratio: 170/1
Delay: 200 usec.
Rise time: 1.16 usec.
Attenuation: less than 2 db
Frequency response: $3 \mathrm{db}=325 \mathrm{KC}$
50 taps with an accuracy of ± 0.2 usec. at each tap.

Complete technical data on the new unit can be obtained by writing to
ESC Corporation, 534 Bergen Boule. vard, Palisades Park, New Jersey.

How a 150 watt triode 25 years ago led to super power klystrons today

In 1934, two radio amateurs, unhappy with existing final amplifier tubes, formed a company to make their own. Their first tube. the Eimac 150T, established a new standard of electron tube performance and reliability.
Other important Eimac tube developments were:

180T-The first Eimac tube in 1934, was designed primarily for the amateur and established Eimac tube characteristics for the future - clean, hard vacuums, simplified design, lower driving power, high mutual conductance and superior overload capability.
480T-Only two years later practically every major airline was using Fimac tubes. The 450)' fulfilled the critical needs of aviation and was first choice in ground-to-air communications. 3x2500A3-By the time Major Armstrong had won his battle for FM, Eimac internal anode triodes were in nearly every experimental FM broadcast station. In 1945 the external an. ode triode 3X2500A3 was introduced and used in the world's most powerful FM transmitter. soat-In 1940 Eimac introduced multi-unit triodes - which operate efficiently up to 200 mc , and as high as 10 times rated voltage. The 304 T , four triodes in one. is still acclaimed as a top linear amplifier tube.
vT 127-In 1939, Eimac 100T triodes pow. ered the first Navy rallar. prototype of the first radar to see action in the Pacific. Eimac`s 15E met the higher frequency operation needs of airborne radar and made possible 26,000 Navy radar sets. Many of the renowned VT series ubes were other Eimac contributions.
4-125A Family (s eubes) - In 1945 Eimac introduced the $4-125 \mathrm{~A}$, first radial-bram tetrode. Today, Eimac's five internal anode
tetrodes are famous for low driving power re quirements, low grid emission. low gridplate capacitances, minimized neutralization re quirements and dependable VIIF performance. 4x150A-Compact, rugged external anorle radial-beam tetrones were introduced bis Eimac in 19.46. The 4X500A and 4X150. led to smaller, high power, high frequency erfuipment and coavial cable circuits.
Amplifier Klystron-Eimac saw the shortcomings of grid tuhes for UHF in 1948 , started developing amplifier klystrons. Today Eimac klystrons are the mosi widely used tubes in tropospheric communications.
$4 C \times 300 A, 4 C \times 250 B, 4 C \times 1000 A$. 4CX5000A - Tolday, over 40 Eimac tubes feature ceramic envelopes. More compact than glass, these advanced tubes can with. stand thermal and physical shock never before possible.
x626-Super power, 1.25 megawatts of long. pulse power, at UHF is now available with the Eimac X626. This tube powered the record $56,000,000$ mile radar contact with Venus. TWT-Now, microwave in the form of ceramic traveling wave tubes and reflex klys. trons. Eimac is engaged in the development and manufacture of new electron devices to proppayate the uncrowided spectrum at Super High Frequencies and above

The dependable tubes of yesteryear have not been forgotten. They are constantly improved. Most of the oldtimers on review here are still available and many are replacements for originals that have finally given in after sears and years of service.

EITEL-MCCULLOUGH, INC., San Carlos, California

NEW PRODUCTS

Gear Motor

Is 0.1 hp

Model 31R48R73 azimuth driv geared motor operates from 200 ac, 400 cps , three-phase, and pre vides 0.1 hp . The motor speed of $11,000 \mathrm{rpm}$ is geared down to 291) rpm continuous duty operation in accordance with M1L-N-969A. Th unit is 2 in . in diam and 4 in . long.

Western Gear Corp., Electro Products Div., 132 W. Colorado Blvd., Pasadena, Calif.

Insulation Material

520

Flame-retardant

Type 225 FR flame-retardant insulation material, using a cellulose base fiber, has a dielectric strength of up to 350 vpm when dry and to 200 vpm at 7% moisture content. The arc resistance is 75 to 100 sec . This material has a tensile strength of 17,000 psi lengthwise and 6000 psi crosswise. Standard thicknesses are $0.031,0.062,0.093$, and 0.125 in . Rogers Corp., Dept. ED, Rogers, Conn.

Nylon Film

Abrasion and vapor resistant
This nylon film is abrasion and vapor resistant and can be steam sterilized. It has a low coefficient of friction and a low permeability factor. Offered in thicknesses of 0.002 to 0.06 in ., and in widths to 18 in ., the sheets can be supplied in any length required.
U. S. Gasket Co., Dept. ED, Camden 1, N.J.

Zener Diodes

521
Have 5\% tolerance
For such uses as high power voltage regulators, limiting and clipping devices, and over-voltage protective devices, these $35-\mathrm{w}$ Zener diodes have a tolerance of 5% in single \& CIRCIE 51 ON READER-SERVICE CARD
u its. Zener voltages are from 8.2 to 100 v at 500 or 50 ma , dynamic it pedance is low, and breakdown is abrupt over the entire Zener volta!e range. Matched coefficients of expansion and the diffused silicon juruction provide resistance to vibration, plus thermal and mechanical shock. The units are reliable under adverse environmental conditions.
U. S. Semiconductor Products, Dept. ED, Phoenix, Ariz.

Bevel Gear Boxes

519
Shaft sizes are $1 / 8$ to $1 / 4 \mathrm{in}$. in diam
Type BA-5 heavy-duty gear boxes come in a variety of configurations and in shaft sizes from $1 / 8$ to $1 / 4$ in. in diam. Ball bearings or oil-less bearings or both are available. Ratios are from 1:1 to 3:1. The units can have variable shaft outputs and inputs.
Pic Design Corp., Dept. ED, 47% Atlantic Ave., E. Rockaway, L.I., N.Y.

Servo Valves

525
Consist of two moving parts
Type 6103 electrohydraulic servo valve consists of only two moving parts, a spool and a sliding fork integral with the armature of a torque motor. The input power is 300 mw , the rated current is ± 10 ma , and the dc coil resistance is 3000 ohms per coil. It operates over the temperature range of -65 to +275 F .
Kearfott Co., Inc., Dept. ED, 1500 Main Ave., Clifton, N.J.

Disc Capacitors

540
Have values from $3.3 \mu \mu$ to $0.05 \mu \mathrm{f}$
For industrial use, the ID series of 500 wvdc disc capacitors are offered in 86 capacitance values rangin from $3.3 \mu \mu$ to $0.05 \mu \mathrm{f}$. The size varies from $1 / 4$ to $7 / 8 \mathrm{in}$. in diam. Centralab, Div. of Globe-Union, Irı, Dept. ED, 900 E. Keefe Ave., I! I waukee 1, Wis.

CIRCLE 52 ON READER-SERVICE CARD $>$

- the Standard Line that's Deep-Drawn to Precision Standards*

HUDSON STANDARD CASES AND COVERS offer

 a quick, economical solution to your military and commercial closure problems. Components of mu metal, nickel-silver, aluminum, brass, copper, steel and stainless steel are available. in any required finish.HUDSON STANDARD TOOLING saves you time and money on all but the most unusual closure applications. Check your requirements with HUDSON engineers, now!

Hudson Tool \& Die Co - Inc 18-38 Malvern St., Newark 5, New Jersey

Telephone: MArket 4-1802 Teletype: NK 1066

Precision Metal Components for Electronics, Nucleonics, Avionics and General Industrial Applications

the du mont 403

Signals as low as 20 uvolts can be resolved with the Du Mont Type 403 Oscilloscope. The extreme sensitivity of this scope is more than enough to display non-preamplified outputs of most transducers for study. This sensitivity also makes it par. ticularly useful in medical application. All critical amplifier circuits of the 403 are transistorized for stability. Complele precision calibration has also been incorporated in the design to provide assurance of accuracy and preciseness during its use in very low level output studies-as well as at more normal voltage levels.

FEATURES

- Resolves signals as low as 20 uvolt
- Continuously variable. wide sensitivity range
- Critical amplifiers transistorized for stability
- 19 calibrated sweeps
- Rugged components throughout
- Hand crafted wiring
- dc to 300 kc frequency response

Write for complete fechnical details
PRICE $\$ 645.00$

DuMonro

fob clifton, N.J. USA

precision electronics is our business

ELECTRONIC TUBES/INDUSTRIAL TV/MILITARY ELECTRONICS/MOBILE COMMUNICATIONS/SCIENTIFIC INSTRUMENTS/AUTOMOTIVE TEST EQUIPMENT

ALLEN B. DU MONT LABORATORIES, INC., CLIFTON, N. J., U. S. A. INTERNATIONAL DIVISION • 515 MADISON AVENUE. NFW YORK 27. N. Y. CABLES: ALBEEDU, NEW YORK

DC Tester and Sorter

Handles 4000 pieces per hr

Model AB-6-2 dc resistance tester and sorter can sort resistors into nine groups automatically at the rate of 4000 pieces per hr. The instrument has an accuracy of $\pm 0.3 \%$ for 10 to 100 ohms, $\pm 0.1 \%$ for 100 ohms to $2 \mathrm{meg}, \pm 0.2 \%$ for 2 to 10 meg , and $\pm 0.3 \%$ for 10 to 100 meg . A built-in seven-dial resistance decade is set to the nominal value of resistance being tested. Tolerance limits for the nine bins are set by means of plug-in units. Electromechanical counters tally the number of pieces in each bin.

Industrial Instruments Automation Corp., Dept. ED, 89 Commerce Rd., Cedar Grove, Essex County, N.J.

Speaker Cross-over Network

478
Measures $1-5 / 8 \times 1-3 / 16 \times 7 / 8 \mathrm{in}$.

Designed for use with two-speaker installiations, type CN-8 crossover network measures $1-5 / 8 \times 1-3 / 16 \times 7 / 8 \mathrm{in}$. with two tabs for mounting. Insertion loss in the pass region is negligible. The unit may be used with 8 or 16 -ohm tweeters and woofers.
Vidaire Electronics Manufacturing Corp., Dept ED. 44 Church St., Baldwin, N.Y.

WIDEST

RANGE

Why other bridges can't match the accuracy, range or versatility of the
Wayne Kerr Universal Bridge, Type B-221

- Measures Capacitance to $0.1 \%-.0002 \mu \mu\{-11 \mu i$ - Meosures Conductance to $0.1 \%-10^{\circ}-10^{\circ}$ mhos $1100-100 \mathrm{ML}$
- Measures Inductance 100.1% - 1 mH -infinity - Frequency Range-50-2q000 cps internal osci lator and detector for operation or 1000 cps) Extended range using Low Impedance Adoptor: $1 \mu \mathrm{f}$ io
$250,000 \mu \mathrm{I}-50 \mu \mathrm{~L}$ to $100 \mathrm{U}-5 \mathrm{~m} \mu \mathrm{H}$ to 10 mH - Price-\$880 F.O.B. Philodelohia

Measures RC in Paral lol (other bridges
meosure C \& \quad or
Zu Measured in cirevir is \& Q)
Wayne Kerr Universal Bridge, Type B-221 is a highly accurate transformer ratio arm bridge providing 2, 3 or 4-terminal measurement of impedance or transfer admittance over an ex tremely wide range. An impedance between any two terminals may be easily measured regardless of other impedances from either or both terminals and a third point. Measurement is unaffected by impedance of test leads.

OTHER INSTRUMENTS: Audio to VHF Bridges: Oscillators; Attenuators; Microwave Equip. ment; Vibration and Distance Meters, Wave. form Analyzer.

Send for complete W-K-02 catalog showing other instruments.

WAYNE KERR CORPORATION
1633 Race St., Philadelphia 3, Po.
Representatives in major U.S.cities and Can. la
CIRCLE 54 ON READER-SERVICE CARD ELECTRONIC DESIGN • December 9, 1959

Strain Gages

Temperature range is -350 to +850 F

These temperature compensated strain gages operate over the range of -350 to +850 F . A platinum wire compensating element is contained in a prestabilized, strain sensing grid to minimize inaccuracies caused by rapidly changing temperatures and high thermal gradients. An external circuit permits adjustment of the temperature response characteristics of the gage. Model FNB-$50-12 \mathrm{E}$ is sealed in a phenolic carrier and may be bonded with epoxy or phenolic cements. Model FNH-50-12E has a strippable backing and uses ceramic cement. Both units have a gage length of 0.5 in .
Baldwin-Lima-Hamilton Corp., Electronics and Instrumentation Div., Dept. ED, 42 Fourth Ave., Waltham 54, Mass.

Dynamic Rectifier Analyzer
Has to 20 amp de forward current

For incoming inspection, on-line testing, and lahoratory testing, model 141A dynamic rectifier anlalyzer has a forward current range of 0 to 1 , 10. and 20 amp dc. The piv is 0 to 1000 v . The instrument measures a forward drop of 0 to $1 / 5 \mathrm{v}$ and a reverse current range of $0,0.05,0.5,5$, and ${ }_{5} 5$ ma. Forward current and reverse voltage controls are independently adjustable. An external oscilloscope provides for monitoring all four para neters. The power input is $120 \mathrm{v}, 60 \mathrm{cps}, 600 \mathrm{w}$. The unit measures $21.25 \times 20 \times 16 \mathrm{in}$., weighs 80 lb and needs no auxiliiary equipment.
Wallson Associates, Inc., Dept. ED, 912-914 II estfield Ave., Elizabeth, N.J.

E ECTRONIC DESIGN • December 9, 1959

FEATURES

- Eliminate need for extra gadgetry (no centering-beam magnets)
- Spot sizes are guaranteed to be no longer than advertised
- Spot size at beam currents higher than any comparable tube
- UNPRECEDENTED!-Offered in 3 phosphors: P1, P11, P16 for
Flying Spot Scanners, Precision Radar, Photographic and Intermediate Film Transmission Systems

Another first-Du Mont's high-resolution line of cathode-ray tubes is now available in three different phosphors. Du Mont, the pioneer in high-resolution cathode-ray tubes, is not only the leader in such developments-but the leader in producing a variety of such tubes to satisfy the many needs of industry. When spot sizes become smaller, and the useful variations in such tube types becomes greater-they will first come from Du Mont!

DU MONT HI-RESOLUTION TUBES FOR IMMEDIATE DELIVERY			
$\begin{aligned} & \text { Tulue } \\ & \text { Size } \end{aligned}$	Suot Size*	Typo	Phosphar Types (fine grainod)
3	0.8 mil	Magnetic deflection	P1, Pl1 or P16
5"	1 mil	and magnetic focus	"
7	1.5 mils	"	"
$3 \times$	0.8 mil	Magnetic deflection and electrostatic focus	"
$5{ }^{\prime \prime}$	1 mil		"
$7 \times$	1.5 mils	"	"

du mont Super hr-resolution tubes for immediate delivery			
3°	0.7 mil	Magnetic deflection and focus	P1, P11 or P16
5"	0.7 mil		
* We GUARANTEE that the specifications given are the maximum spol sizes (measured by shrinking raster method).			

puMonro

Write for complete technical details

ELECTRONIC TUBE SALES

precision electronics is our business

ELECTRONIC TUBES/INDUSTRIAL TV/MILTARY ELECTRONICS/MOBILE COMMUNICATIONS/SCIENTIFIC INSTRUMENTS/AUTOMOTIVE TEST EQUIPMENT

allen b. du mont laboratories, inc., Clifton, N. J., U. S. A.
international division - sis madison avenue, new york 22, n. y. - cables: albetou. new york CIRCLE 55 ON READER-SERVICE CARD

NEW PRODUCTS

Panel Meters

Movements range from $100 \mu \mathrm{atol} \mathrm{ma}$

These panel meters come in seven basic models, any of which can be modified to meet individual requirements. Movements range from $100 \mu \mathrm{a}$ to 1 ma with zero left or zero center. Sizes are 1, 1.5, and 2 in . A slip-on metal grip is used in mounting; no brackets or bolts are needed. The units are made in Japan.
Mura Corp., Dept. ED, P.O. Box 224, Great Neck, L.I., N.Y.

Radiators

506
For power transistors and rectifiers

Able to radiate surfaces of 3.5 to 65 sq in., these heat radiators are for power transistors and rectifiers. They can be used for both convection and forced-air cooling. No insulating washer is required for most applications. Of compact, lightweight aluminum construction, they have a hard, anodized insulating finish. Aluminum constructed manifolds are also available.

Relco Products, Dept. ED, Box 8327, University Park Sta., Denver 10, Colo.

Terminals

Dielectric strength is 5000 v

Designed for AWG wire sizes 10 to 22, these terminals meet commercial pull requirements and hold a dielectric strength test of 5000 v . Available in the standard ring and forked-tongue design, they have an internally serrated barrel section into which the conductor is permanently staked. When strip feeding is used, these terminals can be attached at speeds to 1200 per hr . The Thomas and Betts Co., Dept. ED, 36 Butler St., Elizabeth, N.J.

Instruments that Stay Accurate

Resistance Comparators

CIRCLE 56 ON READER-SERVICE CARD
EIECTRONIC DESIGN • December 9, 1959

THERE'S A

NORTH ATLANTIC INSTRUMENT TO MEET YOUR REQUIREMENTS, TOO...

Now - from North Atlantic - you get the complete answer to AC ratio instrumentation problems - in the laboratory, on the production line, in the field.
Specialists in ratiometry, North Atlantic offers the only complete line of precision instruments to handle any ratio measurement task. All are designed to meet the most demanding requirements of missile age electronics - provide high accuracy, flexibility, component compatability and service-proven perforformance. Some are shown above.

If your project demands total solution to ratio measure ment problems, write for Date File No. 10E. It provides complete specifications and application data and shows how North Atlantic's unparalleled experience in ratiometry can help you.

2. COMPLEX vOLTAGE RATIOMETERS Integrated, single-unit system for applica. tions where phase Accuracy to 0.0001%. unaffected by quadra. ture. Three frequency operation. Direct read. ing of phase shift in

PHASEANGLE	TESATIOT
Versatile readout system for all ratiometry	Ratio reference and readout in one con-
2oplications, providing direct reading of	diont machage for
hase, null, quadra-	similar ipplications,
voliage. Broad.	dosired combin
d. single., or	
ltiple-frequency operation.	phase angle voltmeler.

NORTH ATLANTICINDUSTRIES, INC.
603 MAIN STREET, WESTBURY, N. Y. - EDGEWOOD 4.1122

NEW PRODUCTS

DC Power Supplies
Cover a range of 18 to 300 v

The ME series of 60 power supplies covers the range of 18 to 300 v dc, including dual outputs. These transistorized units have a line regulation of 0.05% or 5 mv and a load regulation of 0.1% or 10 mv , from zero to full load. Down to 5 v , a 0.01% line and load regulation can be obtained on special units. Ripple is less than 0.01% for typical units having 1 mv rms. Recovery time is less than $50 \mu \mathrm{sec}$ and overshoot is less than $\mathbf{1}^{\%}$ af full current and voltage. All units are equipped for remote load change sensing and have completely floating outputs. Incorporated in this line are modular plug-in units.

Mid-Eastern Electronics, Inc., Dept. ED, 32 Commerce St., Springfield, N.J.

Go/No-Go Measuring Set

501
Handles to 1000 v dc input

Type DY-5344 go/no-go measuring set handles input voltages to 1000 v dc in four decade ranges. A complete testing system, it measures and compares dc voltages against preset limits, displays the measured value, and records the test results. The input signal is converted to frequency and is compared digitally with high and low limits determined by front panel controls. Indicating lamps show HI, GO, or LO, and a five-place display indicates the measured value. A digital recorder records the comparison result, the measured value, the channel number selected, and the test serial number. The over-all accuracy of measurement is 0.1% of the input 1 count.
Dymec, Dept. ED, 395 Page Mill Rd., Palo Alto, Calif.

THIS CARD IS AN ADDED SECRETARY

Air

읃

Like a good secretary, Electronic Design's reader service card works quickly and efficiently to obtain the information you request. Cards now bear Air Mall prepaid postage for western areas, but even more important, your requests are forwarded to advertisers within One Day of Ri: CEIPT. Special pre-typed labels also help to cut down the time required to get the data you want in the mail and on its way back to you.

Another Improved Reader Service Only Available in

ELECTRONIC DESIGN a HAYDEN publication
New York•Chicago•Los Angeles London
CIRCLE 58 ON READER-SERVICE CARD

Digital Test Equipment

Operates at speeds to 500 kc

The 3000 series digital test equipm ut is designed for operation at spreds to 500 kc . Included in the series are type 3101 inverter, type 3110 diode NOR, type 3201 flip-flop, type 3301 delay, type 3401 clock, type 3410 pulse generator, and type $36(1)$ pulse amplifier. The units have graphic front-panel construction and are packaged in aluminum housings. All logical interconnections are made with banana-jack patch cords on the front panels, and standard power connections are made through the plug-in back panels. Accessory equipment includes power supplies, power cables, mounting panels, and patch cords.

Digital Equipment Corp., Dept. ED, Maynard, Mass.

Aircraft Battery Substitutes

Delivers 0 to 30 v dc at 20 amp
Model KM88 aircraft battery substitute delivers from 0 to 30 v dc at the full load rating of 20 amp . The maximum rms ripple is 0.5% of the average de output. Input is 115 v ac, 60 cps. single-phase. The unit can be used for marginal checking, over-voltage testing as well as normal operation of 28-v airbome equipment.
Opad Electric Co., Dept. ED, 43 Walker St., New York 13, N.Y.

Test Chamber

390
Temperature range -100 to +250 F
For use in the missile component field, this environmental test chamber. called ValuMite, offers temperatures from -100 to +250 F . The temperature control is to within 1 deg C. Made of stainless steel, the ch imber has 2 cu ft of test space. In ut is 208 or $230 \mathrm{v}, 60 \mathrm{cps}$, singlepl ise. The unit is designed for borch mounting.

International Radiant Corp., Dept. F . 577 E. 156th St., New York 55, F). 1 . E. 156th St., New York 55 ,

DIFFUSEDJUNCTION

 UNIFORMITY

This pliotomierceraph shows the areeptional functicn fintioss serves the ontire pollot that ho typleat do silisem rectifiers prodicest by the lien amo. shon process. This junction thetiess is achieved by slow-rate diflusien, which permits precles centrol of atiosion dopth and Junction grodiont. mesaits -uniform curront density thmouctout the silleon, with consequent fracion from "hot spots"; improved olecatieat characteristics in both forword and reverse directions; and axeptional unifornity from mit to mait.

assures reliability, long life of

RGA SILICON RECTIFIERS

Advanced manufacturing techniques and extensive quality-control procedures are your assurance of reliability and long life when you specify RCA Silicon Rectifiers. Every RCA Silicom Rectifier you receive has been subjected to a 24 -hour seal test under pressures in excess of 5 atmospheres, and has been stabilized by repeated thermal cycling over the full operating-temperature range before final electrical testing. Every RCA Silicon Rectifier you receive has also been subjected to the following extra tests to insure dependable performance under extreme conditions: reverse (leakage) current at $25^{\circ} \mathrm{C}$; forward characteristics at $25^{\circ} \mathrm{C}$; high-temperature dynamic reverse (leakage) current test at full load current and maximum rated voltage. In addition, samples from every production lot of RCA Silicon Rectifiers are subjected to life tests under maximum rated conditions of temperature, current, and voltage to provide further assurance of RCA's high standards of quality.

7 Types for INDUSTRIAL and MILITARY Power Supplies				
Maximum Ratings, Absolute-Maximum Values: For supply frequency of 60 cycles and with resistive or inductive load				
$\begin{gathered} \text { RCA } \\ \text { Tyne } \end{gathered}$	$\begin{gathered} \text { Peak } \\ \text { Reverse } \\ \text { Volits } \end{gathered}$	$\underset{\text { Forward Ma }}{\text { DC }}$ at AmbientTemperature of $50^{\circ} \mathrm{C}$	Characteristics	
			$\begin{aligned} & \text { at Ambient } \\ & \text { Temperature of } 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { at Ambient } \\ & \text { Temperature of } 150^{\circ} \mathrm{C} \end{aligned}$
			Maximum Reverse Current (O C) at maximum peaz (!!a)	Maximum Reverse Current averaged over one complete cycle) at maximum (11a)
IN536	50	750	5	400
1 N537	100	750	5	400
in538	200	750	5	300
1 N539	300	750	5	300
1 N 540	400	750	5	300
1 11095	500	750	5	300
1 N547	600	750	5	350
6 Types for MAGNETIC-AMPLIFIER Applications requiring exceptionally low leakage current				
1 N 40 B	100	750	0.3	100
$1 \mathrm{~N} 441 . \mathrm{B}$	200	750	0.75	100
1 N 42 P B	300	750	1.0	200
1 N 443 B	400	750	1.5	200
1 N 444 B	500	650	1.75	200
$1 \mathrm{~N} 445 . \mathrm{B}$	600	650	2.0	200

Contact the RCA Field Office nearest you for information on types for your specific applications. For technical data see the new RCA HB-10 SEMICONDUCTOR PRODUCTS HANDBOOK. or write RCA Commercial Engineering, Section L-18-NN2。 Somerville, N.J.

east	WEST:	GOVERNMENT:
744 Broad Streer	6355 E. Woshingion Blvd.	224 N. Wilkinson Streel
Nework 2, New Jersoy	Los Angoles 22, Colif.	Doyton 2, Ohio
HUmboldt 5-3900	RAymond 3-8361	BAldwin 6-2366
ELST CENTRAL	NORTHEAST	
714 Now Conter Bldg. Detroit 2, Mich.	64 '"A" Streel Needham Heights 94, Mass. Hlllerest 4.7200	1625 "K' Street, N. W. Washington 6, D. C. Dlstrict 7.1260

RADIO CORPORATION OF AMERICA
semiconductor and materials division - somerville, n. J.

CEC's 5-119 Oscillograph with 3 interchangeable magazines

Here's the universal engineering research tool that provides unprecedented versatility in monitoring highfrequency, dynamic data. CEC's 5-119 Recording Oscillograph enables engineers to use the photographic recording process best suited to their specific test requirements.

The 5-119 converts quickly to:

A direct-print recorder using an internal high-actinic light source and a 5-051 Slot-Exit Magazine that clearly resolves writing speeds in excess of $50,000 \mathrm{ips} . .$. produces records on standard direct-print papers without chemical processing.
AN AUTOMATIC PROCESSING RAPID-ACCESS INSTRUMENT using a 5-036B DATARITE Magazine that processes standard photographic films or papers in the shortest time of any known oscillographic process . . . provides ready-to-read test results in 0.8 second after exposure.
a CONVENTIONAL OSCILLOGRAPH using a 5-006A Standard Magazine and 12 -inch recording films or papers that are processed following the record run.

The $5-119$ provides 36 or 50 independent data input channels and wide record-speed and frequency ranges. For complete details call your nearest CEC sales and service office, or write for Bulle tin CEC 1536-X10.

CONSOLIDATED ELECTRODYNAMICS 360 Sierra Madre Villa, Pasadena, California

NEW PRODUCTS

Encapsulation System

Consists of three parts

This mass-encapsulation system consists of these three parts: an all-epoxy header with embedded leads and, a round or rectangular molded, cured, epory shell, and pre-metered epoxy pellets. After the components are attached to the mounting board, the finished module and a pre-metered pellet are inserted into the shell and heated. The pellet melts and cures, embedding the module and forming a single, epooy-encapsulated unit. The entire sistem meets temperature cycling of -55 to +200 C , altitudes of $50,000 \mathrm{ft}$, and the salt spray; vibration, fungus, and humidity requirements of MIL 202 A and MIL-E-5.272A.
Epoxy Products, Inc., Dept. ED, 137 Coit St., Irvington, N.J.

DC Motors

354
Have ratings to $1 / 100 \mathrm{hp}$

Type GJ de motors have continuous duty ratings to $\mathrm{J} / 100 \mathrm{hp}$ and can be wound for series, splitseries, shunt, or universal operation. Torques to $6 \mathrm{oz}-\mathrm{in}$. can be obtained for intermittent duty. The integral brakes are capable of full load speed stops in 2.9 revolutions. Integral planetary gear speed reducers are available in many ratios. The motors can use from 6 to 75 v dc and provide output speeds from 6000 to $13,000 \mathrm{rpm}$. The unit shown is 5 in . long and weighs about 16 oz .

Globe Industries, Inc., Dept. ED, 1784 Stanley Ave., Dayton 4, Ohio.

AC-DC Comparator

355
Readings are within $\pm 0.05 \%$ of true value

This ac-dc comparator measures ac current ioltage, and power at $\pm 0.05 \%$ of true value at frequencies to 1000 cps . It offers a basic ac standard for calibration and testing with ranges to 125 amp, to 500 amp with special transformer; 600 v , to 1500 v with a special voltage divider; and power to 100 amp and 600 v . The double light spot scale gives direct readings of 1 part in 10,000 . Physics Research Labs., Inc., Dept. ED, P.O Box 555 , Hempstead, N.Y.

Metallized Paper CapacitorResistor

362

Copacitance is 0.25 uf
Type RC metallized paper capacitor-resistor has a capacitance rating of $0.25 \mu \mathrm{f}$ and has resistances of 200,250 , and 600 ohms. It is for operation to 200 v dc. The resistance is in the metal layer which is used as a series resistance to the capacitance. The package is molded in a humidity resistant thermosetting resin. The unit measures 1 in . in length and $1 / 2 \mathrm{in}$. in diam.
Presin Co.. Dept. ED, 2014 Broadway, Santa Iomica, Calif.

Microwave Tubes

356
For use at 67,000 to $73,000 \mathrm{mc}$

Types QKK837 and QKK838 mechanicallythed velocity variation oscillators are for use in the range of 67,000 to $73,000 \mathrm{mc}$ with a minimum utput of 10 mw . The rf output is through a wave, ide sealed by a mica window. The output flange ites with a standard UG385/U cover-flange. Kaytheon Co., Dept. ED, Waltham 54, Mass.

(1p) Audio, telemetry and
 low frequency oscillators

Pictured here are six of the most widely used oscillators in electronics. All employ the highly stable, dependable, accurate resistance-capacity circuit. They require no zero setting. Output is constant, distortion is low and frequency range is wide. Scales are logarithmic for easy reading; all are compact, rugged and broadly useful basic instruments. Brief specifications are given below; call your (4) rep for demonstration or write direct for complete data on any instrument.

Model	Frequency	Cali. bration Accuracy	Output to 600 Ohms	Recommended Load	Maximum Distortion	Max. Hum 2 Noise II	Input	Price
200AB	20 cps to 40 KC $(4 \mathrm{bands})$	$\pm 2 \%$	$\begin{gathered} 1 \\ (24.5 \\ \text { w } \end{gathered}$	600 ohms	$\begin{aligned} & 1 \% 20 \mathrm{cps} \\ & \text { to 20 KC } \\ & 2 \% 20 \mathrm{kC} \\ & 1040 \mathrm{KC} \end{aligned}$	0.05\%	$\begin{gathered} 65 \\ \text { watts } \end{gathered}$	\$150.00
200CD	$\begin{gathered} 500 \text { KC } \\ \text { (} 5 \text { bands) } \end{gathered}$	$\pm 2 \%$	$\begin{aligned} & 160 \mathrm{mw} \\ & 10 \text { volts } \end{aligned}$	600 ohms*	$\begin{aligned} & 0.5 \% \text { below } \\ & 500 \mathrm{KC} \\ & 1 \% 500 \mathrm{KC} \\ & \text { and above } \\ & \hline \end{aligned}$	0.1\%	$\begin{gathered} 75 \\ \text { watts } \end{gathered}$	\$170.00
200J	$\begin{aligned} & 6 \mathrm{cps} \text { to } \\ & 6 \mathrm{KC} \\ & (6 \text { bands }) \\ & \hline \end{aligned}$	$\pm 1 \% \dagger$	$\begin{aligned} & 160 \mathrm{mw} \\ & 10 \text { volts } \end{aligned}$	600 ohms*	0.5\%	0.1\%	$\begin{gathered} 100 \\ \text { watts } \end{gathered}$	\$300.00
2007	$\begin{gathered} 250 \text { cps to } \\ 100 \text { KC } \\ \text { (5 bands) } \end{gathered}$	$\pm 1 \% \dagger$	160 mw 10 volts	600 ohms ${ }^{\text {* }}$	0.5\%	0.03\%	$\begin{gathered} 100 \\ \text { watts } \end{gathered}$	\$450.00
201 C	$\begin{gathered} 20 \mathrm{csp} \text { to } \\ 20 \mathrm{KC} \\ \text { (3 bands) } \end{gathered}$	$\pm 1 \% \dagger$	$\begin{aligned} & 3 \text { watts } \\ & (42.5 \mathrm{v}) \end{aligned}$	600 ohms	0.5\% \ddagger	0.03\%	$\begin{gathered} 75 \\ \text { watts } \end{gathered}$	\$225.00
202C	1 cps to 100 KC (5 bands)	$\pm 2 \%$	$\begin{aligned} & 160 \mathrm{mw} \\ & 10 \text { volts } \end{aligned}$	600 ohms*	0.5\%§	0.1\%	$\begin{gathered} 75 \\ \text { watts } \end{gathered}$	\$300.00

-Internal impedance is 600 ohms. Firequency and distortion unaffected by load resistance.

 or more. Approximately 75 ohms below 5000 eps with attenuator at 2 ero. tinternal, non-op.
erating controls permit precise calibration of each band. $\ddagger 0.5 \%$, 50 cps to 20 KC at 1 watt

HEWLETT-PACKARD COMPANY

1015K Page Mill Rood - Polo Alto. Colifornia, U.S.A.
Cable "HEWPACK" - DAvenport 5-4451
Hewlet1-Packard S.A., Rue du Vieux Billard No. 1, Geneva, Switzerland Cable "HEWPACKSA" - Tel. No. (022) 26. 43. 36
field representatives in all principal areas

- 200AB

Audio Oscillator

- 200CD Wide Range Oscillator
- 200J Interpolation Oscillator

4.201C

Audio Audio
Oscillator

- 202 C

Low Frequency
Oscillator

This giant 500 KW gantry type Lindberg ${ }^{*}$ hardening furnace is the newest and largest ever built to meet the most exacting heat treating requirements of today's, and tomorrow's, missile metals. It accommodates an eqfective work load nearly 7 ft . in diameter and 24 ft . long.

Now in operation at Lindberg Steel Treating Commany's Melrose Park Plant, the controlled atmosphere installation is both bottom loading and bottom quenching. The 19^{\prime} by 57^{\prime} pit -28^{\prime} deep, beneath the towering electrically heated furnace, houses the loading station. 2 quench tanks (atmosphere and salt) and water wash tank. Work loads pass from furnace to quench through an airtight seal, permitting complete control and pres-
cise duplication of atmospheres and treating cycles. In the hardening furnace there are five control zones which operate between $250^{\circ} \mathrm{F}$ and $2050^{\circ} \mathrm{F}$. Saturable core reactors automatically vary the voltage to the Nichrome *V heating elements between 2.2 and 220 volts, depending on temperature and load.
The selection of Nichrome V by Lindberg to supply reliable and closely controlled heat and temperature in this furnace is further evidence of the confidence that industrial leaders have in the quality and performance of Driver-Harris high-nickel alloys. Why not benefit from their experience. Tell us about your requirements. -T.M Reg USs. Pit. of Thunders Engineering Company

DRIVER-HARRIS* COMPANY

HARRISON, NEW JERSEY - BRANCHES: Chicago, Detroit, Cleveland, Louisville
Distributor: ANGUS-CAMPBELL, INC., Los Angeles, San Francisco - in Canada: The B. GREENING WIRE COMPANY, Ltd., Hamilton, Ontario

NEW PRODUCTS

AC to DC Power Supplies

These ac to dc power supplies are available in 11 models with ratings from 85 to 300 v and from 10 to 40 ma . Required input is $117 \mathrm{v}, 60 \mathrm{cps}$. All models are housed in metal drawn cases and are furnished with filtering circuits. They are designed to be plugged into standard octal sockets.
Acopian Technical Co., Dept. ED, 927 Spruce St., Easton, Pa.

Beam Power Tubes

Have pir ratings of 24 w max

Types 7551 and 7558 beam power tubes have maximum pie ratings of 24 w for rf power-amplifier and oscillator service. Type 7551 is made for use in mobile communications equipment operating from 6-cell storage-battery systems; type 7558 is made for use in fixed-station and other communications equipment using 6.3-v heater supplies. Both tubes can be operated at full ratings to 175 mc . Each tube supplies a useful power output of about 10 w for a driver power of 1.5 w . Both types are of the nine-pin miniature design. Radio Corp. of America, Electron Tube Div., Dept. ED, Harrison, N.J.

Capacitors

Capacitances are 0.01 to $10 \mu \mathrm{f}$

Type 26 MM metallized Mylar capacitors are available in capacitances of 0.01 to $10 \mu \mathrm{f}$, with diameters from $3 / 8$ to 1 in ., and with lengths from $5 / 8$ to $2-1 / 3$ in. The temperature range is -55 to +125 with no derating. In addition to a moistureresistant phenolic case, epoxy resin encapsulation is used. Typical uses are in do filters and airborne equipment.
Wesco Electrical and Manufacturing Co., Dept. ED, 27 Olive St., Greenfield, Mass.

CANNON
Solnueber

2500

Yes: You can now
order up to 2500
each of such popular
Cannon Comerctor
types as Miniature D,
KO, I)PI), DPA.
I)PX, etc. Immediate
shipment at
factory prices.

ELECTRONICS 60 HERRICKS ROAD, WW GY PIONEER 6-6520 TWXG-C Y-N
CIRCLE 63 ON READER-SERVICE CARD

NEW

DEVICE TO SOLVE ULTRA-CRITICAL CONTROL-BY-LIGHT APPLICATIONS

FOR MAXIMUM LIGHT SENSITIVITY IN A
 MINIMUM SIZE

Hotfman Photo-Voltaic Detector Gell "Capsules" are the Answer

Hoffman's newly developed line of especially designed "silicon" photo-voltaic units provide maximum light sensitivity in a minimum size. Provided in a large variety of shapes, segmentations, configurations and encapsulations, the "Detector Cell Capsules" provide greatest possible design flexiwide
Wide number of ideal applications for these units include: computers (punched card and tape readouts), detector instrumentation, programming con-
trols, infrared sensors, counting devices, remote switching systems, and automatic "triggering" equipment.
This sub-miniature, hermatically sealed dovice has a storage temperature range of from $-65^{\circ} \mathrm{C}$ to
$+175^{\circ} \mathrm{C}$. illumination loval required 1250 ff . condles (fungsten light @ $2800^{\circ} \mathrm{K}$): peak spectral respone of 8500 ongstroms.
For design consultation and information, confact your nearest Hoffman semiconductor representayoure.

One of the series of now "dedicotion" products boing menufoctured in Hofmen's now El Monto, Colifornic plont.

Ifoffiman Ifectionics
SEMICONDUCTOR DIVISION

Plants in EI Monto, Californic and Evanston, III.

NEW PRODUCTS

Inductors

Provide 18 to $1000 \mu \mathrm{~h}$
This line of inductors, designate Mini-Stab, offers 22 standard indu tance values from 18 to $1000 \mu_{\text {, }}$ with tolerances of 2,5 , and 10 . High stability is obtained by mean ; of a powdered iron coil form wit, axial leads to form an open magnetic circuit. The typical induction variation with temperature is ± 2 from -55 to +125 C . Inductanci variation over the range from zero to rated current is a typical -1%. A molded thermosetting plastic jacket provides protection against environmental conditions and physical damage. The units stand a 300% overload for 5 min .
Speer Carbon Co., Jeffers Electronics Div., Dept. ED, DuBois, Pa.
Parametric Amplifier 366
Tunes from 220 to $\mathbf{4 0 0} \mathrm{mc}$
Model MA-1-350 parametric amplifier tunes from 220 to 400 mc . It has a noise figure below 2 db for up to 20 db gain and about $1 / 4 \%$ bandwidth. In typical operation, pump power of 100 mw is required at a pump frequency of about four times the signal frequency. The input and output impedance matches a 50 ohm line. In the non-amplifying condition, insertion loss of the cavity is about 0.2 db . Type \mathbf{N} fittings are provided for injection of rf pump power, and connection of signal input and output to receiver. The unit is supplied with two Varactor diodes and is also available with auxiliary equipment including pump oscillator, pump power supply, and interconnecting cables. The over-all cavity dimensions are $10-7 / 8 \mathrm{in}$. high and 4 in . in diam.

Microwave Associates, Inc., Dept. ED, Burlington, Mass.

Mesa Transistors

367
Dissipate 2 w at 25 C
For medium power and smallsignal amplifier use as well as switching applications, types TI 2N696 and TI 2N697 silicon mesa transistors dissipate 2 w at 95 C and
< CIRCLE 64 ON READER-SERVICE CARD
are availiable with a collector-base voltage of 60 v . Type 2 N 696 has a heta spread of 20 to 60 and type -N697 has 40 to 120. Both have a naximum saturation resistance of 10 ohms.
Texas Instruments Inc., Semiconductor Components Div., Dept. ED, I'O. Box 312, Dallas, Tex.

Strain Indicator

Direct Reading

Model DR- 20 direct reading strain indicator is for use with all commercial strain gages and strain gage transducers. The adjustable gage factor control is from 0.5 to 10 proviling the instrument with sensitivities of 2 to 100μ per v per division. For low strains, the sensitivity can be set to provide a radability of 1 uin. per in. Strains as high as $50,000 \mu \mathrm{in}$. per in. can be read directly. Transducers will drive the meter full scale for capacity output or for about 5% of capacity output to provide readability as high as 0.1%. Automatic polarity reversal permits reading from full tension to full compression with no adjustment. The instriument operates from four self-contained flashlight batteries and is housed in a case measuring $11 \times 8-1 / \underset{\sim}{2} \times 6 \mathrm{in}$. It weighs 9 ll .
Bytrex Corp., Dept. ED, 50 Hunt St., Newton 58, Mass.

Analog Computer
 369

Measures $35.5 \times 21 \times 23 \mathrm{in}$.
Measuring $35.5 \times 21 \times 23$ in., type AR-2 analog computer is furnished with 12 amplifiers, 16 potentiomcters, a pulse generator, and a stepping function generator. Six of the amplifiers can be used as integrators with three different ratios of integration. Impedance-matching design climinates the need to compensate for loading effects between amplifiers. The solution to physical and mathematical problems appears as a time-variable voltage curve that can lee viewed on any de oscilloscope ir direct-writing oscilloscope. An y plotter cam also be used to plot ne variable against another.
Boonshaft and Fuches, Inc., Dept. D, Hatboro Industrial Park, Hat(ro, Pa .

CIRCLE 65 ON READER-SERVICE CARD $>$

ANOTHER Amperex ${ }^{\circ}$ EXTRA IN SIX TETRODE DESIGNS

Whether intended for original equipment or as improved plug-in replacements, the 6 Amperex tetrodes shown offer the user optimum performance and maximum reliability, PLUS an unrivalled latitude of selection. Available either in a powdered glass base version or equipped with a standard metal base, these tubes feature massive zirconium treated graphite anodes to handle large temporary overloads. Ruggedized sintered glass bases provide lower lead inductance, excellent heat dissipation characteristics and dimensional compactness, while standard metal base types insure a complete range of replacement types to choose from.

Powdered Glass Base Types	Metal Base Types	Max. Diss. Watts
6155	$4.125 A$	125
6156	4.250 A	250
7527	$4-400 \mathrm{a}$	400

¿230 DUFFY AVENUE, HICKSVILLE, LONG ISLAND, NEW YORK:
In Canada:
: Rogers Electronic Tubes and Components, 116 Vanderhoof Avenue, Toronto 17, Canada:

Count Control compownt
 FOR AUTOMATING INDUSTRIAL PROCESSES

 featuringadjustable count
anfomatic resef 10 empere swifchos
model HZ4
MICROFLEX RESET COUNTER
Use to control an operation for a
preset number of counts. Has
spring reset to "O." Dial ranges 19,
400 and 1,000 counts.
Ask for bulletin 720.

NEW PRODUCTS

Connectors
For use to 1200 F
Using a boron-free ceramic, these connectors are for high temperature use to 1200 F . The pin and case are No. 303 stainless steel. Capacitance from one pin to ground is $2 \mu \mu \mathrm{f}$.
Technical Industries Corp., Dept. ED, 389 N Fair Oaks Ave., Pasadena, Calif.

EIR Meter

Has 5 dc voltage ranges

Model 109 volt-ohm-milliammeter has 5 dc voltage ranges to 3000 v at a sensitivity of 20,000 ohms per v , and 5 ac ranges to 3000 v at a sensitivity of 10,000 ohms per v. It has 3 ac and de current ranges and 3 resistance ranges to 20 meg. A $40-\mu \mathrm{a} ~ 4.5-\mathrm{in}$. meter is used. The unit is housed in a molded bakelite case and is available wired or as a kit.

Electronic Measurements Corp., Dept. ED, Eatontown, N.J.

Miniature Capacitors

Capacitances are $0.1 \mu \mu \mathrm{f}$ to $500 \mu \mathrm{f}$
Designed for applications where space is limited, these capacitors are available with capacitances from $0.1 \mu \mu \mathrm{f}$ to $500 \mu \mathrm{f}$ and in capacity tolerances from 0.1% to 20%. The following types can be furnished: paper, metallized paper, electrolytic, mica, ceramic, and film dielectrics such as Mylar, Teflon, polystyrene, and polyethylene. Voltages are 3 to 1000 v . The operating temperature ranges are from -65 to +350 C . Units can be supplied cased or uncased. flat, or round. Leads can be positioned radially, axially, for plug-in connections, and others. The leads in all types are plastic anchored. The capacitors are supplied in steatite, bakelite, plastic-treated paper, in metal tubes, cans, and plastic encapsulated, dipped, or molded.
Capcon, Inc., Dept. ED, 61 Stanton St., New York 2, N.Y.

352

Rheumatic Heart Disease

Tommy had an aftack of rheumatic fever, frequent forerunner of rheumatic heart disease. For tunately for him, his heart was not damaged.

Rheumatic fever, usually pre ceded by a "strep" infection, often strikes the same victim more than once. With each attack comes a new danger of heart damage.

Tommy's parents no longer live in fear of rheumatic heart disease, however. Through research, medical science has developed new methods of controlling "strep" infection and preventing recurrences of rheumatic fever.

For more facts about prevention, see your physician or ask your Heart Association.

For more research progress against the heart diseases . . .

Give

UNIVERSAL
 KLYSTRON POWER SUPPLY

We call it the PRD Type 812...vou'll call it the answer to all your klystron power supply problems.
This completely new unit consists of four. separate, regulated supplies: Inam. reflector. grid. and heater. and combines digital read-out of heam and reflector voltages plus outputs for operating two klystron tubes simultancously.
PLIS a special feature for the pre-vention-of-cruelty to klystrons: The grid and reflector modulation voltages are clamped to the cw level in suluare wave or pulse operation.
The Type 812 also features superinr regulation to reduce ripple and muise to an all-time low. Clean modulation characteristics assure a rise and decay time which will not exceed 2 microseconds.
You also get the following full set of l'Rll extras:

- digital read-out for beam and reflector voltages
- dual outputs for simultaneous operation of two klystrons
front-panel-check calibration of grid and reflector voltages
multirange overload protection for beam current
- safety lock when transferring from + to - grid voltage
external triggering of internal pulse
generator generator

Write for complete dalu.
POLYTECHNIC RESEARCH \& DEVELOPMENT CO., INC.
Factory \& General Office: 202 Tillary St., Brooklyn I, N.Y. ULster 2-6800
estern Sales Office
139 So. La Cienega Blvd., Los Angeles 34, Calif. TExas 0.1940
N READER-SERVICE CARD

Dinsity Meter

Covers the range of 200 to $10,000 \mathrm{mc}$
Covering from 200 to $10,000 \mathrm{mc}$, model 1200 battery-operated density field meter indicates the presence of radiated energy above or below the safe level of 10 mw per $\mathrm{s} ¢ \mathrm{~cm}$ as well as the intensity of the energy. The instrument provides direct readings. The accuracy and the sensitivity are $\pm 1 \mathrm{db}$. The frequency range is divided into five steps. Without antenna, the unit measures 5-3/4 x 2-7/8 x 2 in.
Radar Measurements Corp., Dept. ED, Hicksville, L.I., N.Y.

HF Filters

393
Miniature

These hf Minifilters are availalble in band pass types for frequencies of 50 kc to 1 mc , low pass types with cut-off freduencies from 75 kc to 1 mc , and high pass types with cut-off frequencies of 100 kc to 1 mc . The units weigh $1 / 3 \mathrm{oz}$, have a $1 / 2-\mathrm{in}$. diam, and are $1-3 / 8 \mathrm{in}$. long. The unit shown is a 15,000 -ohm band pass filter with a center frequency of 120 kc , flat within 3 ll from 9.5 to 145 kc . Attenuation is greater than 40 db below 60 kc and greater than 30 db above 375 kc .

United Transformer Corp., Dept. ED, 150 Varick St., New York 13, N.Y.

Thermocouple Wire

364
Temperature range is 1800 to 2300 F
This base metal thermocouple wire provides true temperature readings in the range of 1800 to 2300 F . The emf values meet standard emf curves. The oxidation-resistant negative leg is a nickel alloy containing about 2.5% silicon. This highly magnetic material has a negative emf against most other alloys and metals. The positive leg is a nickel alloy containing 10% chromium and controlled traces of other metals. It is non-magnetic and has a highly positive emf against other alloys and metals. Standard tolerances for these couples in the temperature range of 32 to 530 F is ± 4 $\operatorname{deg} \mathbf{F}$ or $\pm 0.089 \mathrm{mv}$; in the range of 531 to 2300 F , it is $\pm 3 / 4 \%$.

The Kanthal Corp., Dept. ED, Amelia Place, Stamford, Conn.

CIRCLE 69 ON READER-SERVICE CARD

CIRCLE 68 on reader-Service Card
ECTRONIC DESIGN • December 9, 1959

CONTINENTAL VOLTA토쿨 REFFRENCES

$\pm .0005 \% /{ }^{\circ} \mathrm{C}$

TIME

Continental Voltage References are the most versatile, rugged, and stable voltage reference units of any type yet developed, because

1. They operate over wide temperature ranges with ex tremely small voltage changes.
2. They allow circuit flexibility by operating around a nominal current value of 10 mA .
3. They are housed in a fusion-sealed glass envelope.
4. They are subminiature in size $1.300^{\circ \circ}$ long $x .120^{\prime \prime}$ dia. Max.).
5. They withstand environmental conditions such as are found in missile and airborne use
6. They are stabilized by "burning-in" for 200 hours at $200^{\circ} \mathrm{C}$.
Continental Voltage References optimize the inherent prop erties of silicon diode elements to provide exceptional temperature compensation. This degree of compensation is possi ble only with the intimate thermal bond between elements provided by the Controlled Fusion Technique of junction formation, used to produce the outstanding Continental gen-eral-purpose, fast-recovery, and regulator diodes. The dy.

NEW PRODUCTS

Phase Shifter
Range is 360 deg

These 360 -deg phase generators, designate models PG1-, PG-3, and PG-5, provide continu ous phase shift of a carrier without amplitud change. The units can be used as single-frequenc phase meters, references for demodulator circuits and position-phase translucers. The range is 360 deg, and the phase accuracy is 30 sec of arc. The input voltage is 115 v and the output voltage is 32 v .
Theta Instrument Corp., Dept. ED, 520 Victor St., Satdlle Brook, N.J

Pulse Delay Module

Has five delay circuits

Model 304 pulse delay module contains five independent, all semiconductor, delay circuits Each section provides a delayed pulse output and a square wave output for the delay duration. Each delay circuit includes a high gain regenerative delay stage, a de pulse amplifier which provides a square wave, and a differentiating circuit. For each delay section, the delay range is adjustable from 3 to $30 \mu \mathrm{sec}$. The delayed pulse output is a differentiated pulse of -3 v unloaded with a capability of 1 ma . The square wave output is -12 v switching to -2 v . Rise and fall times of $3 \mu \mathrm{sec}$ remain constant for the full range with adjustments. The unit is a 5×6-in. glass-epoxy printed circuit card, measuring $1 / 16$ in. thick. It is for use with an 18-pin P.C. receptable
Navigation Computer Corp., Dept. ED, 16:1 Snyder Ave., Philadelphia 45, Pa.
 a world of ideas . . . that work

ECTENF NEEDED SPECIALTY ENGINEERING...

 AND GOT IT...FROM BORG
A FEW BORG DEVELOPMENTS

-

FREQUENCY
 STANDARDS

-

AIRCRAFT
instruments
PRECI
PRECISION POTENTIOMETERS
-
MULTI-TURN
counting dials

FRACTIONAL

 H. P. MOTORSBoeing Airplane Co. needed special potentiometers for the guidance systems of their deadly Bomarc surface-to-air missiles. The necessary potentiometers had to withstand severe vibration and shock and still retain uncanny accuracy within extreme tolerances. The solution to this difficult reliability problem? The design, development and production facilities of the Borg Equipment Division of the Amphenol-Borg Electronics Corporation. The result? Specially designed potentiometers exceeding all required specifications. Many industry leaders have found that they can depend on Borg engineering skill and cooperation. Call on Borg when you are faced with difficult design, development or production problems. Chances are you'll save a good deal of time and money and find it makes good sense to call on Borg. Write for our new facilities brochure.

BORG EQUIPMENT DIVISION AMPHENOL-BORG ELECTRONICS CORPORATION JANESVILLE, WISCONSIN
circle 72 on reader-service caro

Servo Motor-Brake
Stall torque of motor is 0.48 oz -in.

This servo motor-brake combination has a stainless steel housing, end bells, and shaft, and can be made with size 10 , size 11 , or $1-\mathrm{in}$. mounting. The stall torque of the motor is 0.48 oz-in. A brake range of 0.03 to $0.1 \pm 0.01 \mathrm{oz}-\mathrm{in}$. is offered. It is designed for $115 \mathrm{v}, 400 \mathrm{cps}$ operation in both phases. The nominal impedance is 1450$)+\mathrm{j} 1600$. The brake does not change linearity of the speed torque characteristics. The unit meets MIL-E5272. A unit including an integrally mounted gear box with ratios to $8(0) 0: 1$ is also available.

Western Gear Corp., Electro Products Div., Dept. ED, 13: W. Colorado Blvd., Pasadena, C Calif.

Power Amplifier
Delivers 20 w from a $10-\mathrm{mw}$ input

Operating from an input signal of 10 mw , model ATMS-2001 power amplifier provides 20 w over the frequency range of 30 cps to 150 kc . Attenuation is 0.5 db . Input impedance is about 10 K and the input circuit is provided with a step attenuator to) control the amplitude of the input signal. The harmonic distortion is less than 1.5% and the output impedance is a balanced or unbalanced resistive load of 135 ohms. Model ATMS-2002 translormer is available for use with the amplifier per"nitting an output impedance selection of 4,16 , 64,600 , or 2400 ohms. Frequency response of the ansformer is 30 cps to $150 \mathrm{kc} \pm 2 \mathrm{db}$ at extreme upedance levels.
Technitrol Engineering Co., Dept. ED. 1952 E. llegheny Ave., Philadelphia 34, Pa.

Wright Servo Motors With Inertia Damping Eliminate Need For Tachometer Generator

These new Wright-designed motors eliminate the need in high response systems for tachometer generator feed-back. They have built-in damping to resist sharp acceleration or deceleration. They provide stabilization through reversible viscous torque which has no effect at constant speed, and only minute effect on small incremental changes in velocity.

Their fly-wheel, which contains a permanent magnet, is mounted on independent bearings in the motor. This is viscously coupled to the rotor via a drag cup carried by the rotor. The fly-wheel effect is not felt by the rotor until a significant velocity difference appears between rotor and fly-wheel.

Your inquiry is invited. Please specify the motor size and or torque output you require.

SIZE 15
 DIVISION OF SPERRY RAND CORPORATION

DURMAM, NORTH CAROLINA

CIRCIE 75 ON READER-SERVICE CARD

Quality is closely guarded in $|w|$ production. Heter opicial comparatur magnities helix for inspection.

> NOW 60DB GAIN IN L-BAND PPM FOCUSING NEW SPERRY TWT

. . cuts Space, Weight, Cost, Power Requirements - Sperry's new STL-222 provides twice the gain of ordinary L-Band tubes-actually takes the place of two tuhes in most applications - yet is only $20^{\prime \prime}$ long, weighs only 8.5 pounds. This important advantage suits this new CW amplifier and driver perfectly to airborne applications. Its excellent broadband stability recommends it for ground support and airborne radar equipment . . . communications . . . drone applications
. noise generators . . . switching devices and other I.-Band uses.
The STL-222 is periodic permanent magnet focused. Its tough metal and ceramic construction provides for high environmental capability, stable operation at high ambient temperatures and under extremes of vibration. This tube also features a high-mu modulating grid and high input-to-output isolation. It is short circuit stable.

The STL-222 is now in production at Sperry, which means lower unit cost and fast delivery schedules. Advanced performance and dependability result from Sperry's long experience in klystron and TWT research, development and production. Write for complete data, outlining the nature

STL-222

 spFERPYSPERRY ELECTRONIC TUBE DIVISION, SPERRY RAND COAPORATION GAINESVILLE.FLORIDA Address inquiries: Gainesville, or Sperry Offices in Brooklyn • Boston. Philadelphia • Chicayo • Los Angeles • Montreal. Export Dept. Great Neck. N. Y. CIRCLE 74 ON READER-SERVICE CARD

Miniature Acceleration Switch
40
Temperature range is -65 to +250 F

Operating in the temperature range of -6.5 to +250 F , type 174 miniature, unidirectional, single anis switch closes a circuit in response to a presel acceleration level and resets itself when the acceleration drops below a preset level. The unit consists of a gas-damped seismic system with a range of 5 to 60 g , an accuracy of $\pm 5 \%$, a repeat ability of $\pm 0.25 \mathrm{~g}$, and a damping ratio of 0.8 of critical. The switch is spst type, normally open with a contact rating of 100 ma. The unit is hermetically sealed, weighs 340%, and measures $1-3 / 16 \times 7 / 16 \mathrm{in}$. (OD. It is suitable for use in aircraft and missile control for measuring and indicating devices.
W. L. Masson Corp., Dept. EI), 475 Tenth Ave., New York 18, N.Y.

Transistor Sinusoidal Oscillator
401
Frequency range is 25 cps to 100 kc

Designed to create a sine wave signal source, model S-200 silicon transistor sinusoidal oscillator covers a frequency range of 400 cps to 70 kc or of 25 cps to 100 kc. The unit withstands 500 g shock for $11 \mathrm{msec}, 35 \mathrm{~g}$ vibration from zero to 2500 , and acceleration of 700 g . The required input is +28 v at 2 ma . Distortion is less than 5%. The output impedance is a nominal 2.5 K . Output amplitude is greater than 2 v rms for a load impedance of more than 35 K . Suitable for use in missile instrumentation, telemetering, carrier systems, guidance systems, magnetic tape biasing, and other uses, the unit weighs about 2 oz , depending on frequency of operation.
Solid State Electronics Co., Dept. ED, 153:21 Rayen St., Sepulveda, Calif.

Has adjustable output of 2.5 to 13 vdc

Operating from an input of 115 v ac $\pm 10 \%, 60$ ± 1 (p)s, single-phase, type 7197 power supply has an adjustable output of 2.5 to 1.3 v de. Load current is () to 10 amp , continnous duty. The dynamic regulation is provided for a $\pm 90 \%$ load change and a step function of $\pm 5 \%$ line change. Slow regulation is provided for no load to full load and $a \pm 10 \%$ line change. Total regulation including slow, dynamic, and ripple will not exceed $\pm 1 \%$. The ripple voltage is 10 mv max. The supply has short circuit protection over the entire range and meets all electrical specifications to 35 C . The voltage reference is stabilized in two stages. The pass circuit. consisting of six parallel transistors, is controlled by a current amplifier and a voltage amplifier transistor.
The Daven Co., Dept. ED, Livingston, N.J.

Sweep Generator

403
Flatness is ± 0.05

Model 707 sweep frequency generator has a flatness of $\pm 0.0 .5$ over its highest octave of coverage. The unit cam be furnished with plug-in oscillator heads covering any part of the spectrum fiom 0.5 to 2.50 mc . An electronic saturable reactor pennits a maximum deviation of about 4.5 to 1. with sweep rates adjustable from 0.5 sweeps per min to 60 sweeps per sec. The instrument can be nsed with X-Y recorders where permanent records are required. Salwtooth or pyramid sweep shapers may be selected by fromt panel controls. The sutput power exceeds $+\boldsymbol{2}$ (dhm and is monitor d by a front panel meter. The unit operates from a $115 \mathrm{v}, 50$ or 60 cps supply built on a $13 \quad 17$-in. chassis for cabinet or rack mounting J rrold Electronics Corp.. Industrial Products Dii Dept. ED, 15 th and Lehigh Ave., Philadelthi 32, Pat.

ELI OTRONIC DESIGN • December 9, 1959

under this semiconductor symbol...

a new standard of PNP silicon alloy transistors
 2N1440 series-now available

SEMICONDUCTOR CORPORATION•DANBURY, CONN.
West Coast Office: 690 N . Sepulveda Blvd., EL Segundo, Calif. CIRCLE 73 ON READER-SERVICE CARD

Advancing the solid-state
 minc POWER F...STEADY AS A ROCK!

> Mainfain Tight Regulation Despite Combined Effects of Time, Dynamic and Temperature, Static Line and Load Changes.

> You can solve your power supply problems overnight by selecting the appropriate set of our Transistorized Power Supplies, because we think of, design for, and test to all the requirements for truly rock-solid DC power.
> A certified report on 17 production tests accompanies each ARMOUR supply. Here is typical performance data:

NEW PRODUCTS

Switching Transistor
Dissipates 45 w at 25 C

397

Type 2 N 1120 switching transistor dissipates 45 w at 25 (c mounting base temperature. Maxi mum collector current rating is 10 amp de and collector-emitter voltage rating is 70 v de. Designed to meet MIL-T-19500 6S, the unit has a high relialility
Bendix Semiconductor Products, Dept. EiD I.ong Branchl, N.J.

Electromagnetic Counter
392
Measures $2.092 \times 2.401 \times 2.25 \mathrm{in}$.

Weasuring $2.092 \times 2.401 \times 2.25 \mathrm{in}$, this electromagnetic counter displays six digits. Characters are 0.188 in . hish. Operation may be on 11.5 v ac or other voltages, if requested. Power consumption is about 6 w . Maximum constant speed is 700 counts per min.

Veeder-Root Ine., Drpt. ED, Hartford 2. Com.
Synchro Control Transformer
402
Temperature range is -55 to +125 C

Type 4297-01 400-cps synchro control transformer has minimum error variations from -55 to +125 C . The input voltage is 11.8 v , the input current is 0.0 .3 amp , and the input wattage is 0.073 w . The output voltage is 22.5 w , the phase

RECHARGEABL:

ECONOMICAL

> YARDNEY SILCAD ${ }^{\circ}$ BATTERIES

You'll use and reuse your YARDNE SILCAD over 2,000 to 3,000 partial c) cles... 300 to 500 complete discharges Here is true year-in, year-out economy

This, among other factors, explains why the long-life, maintentance-fret YARDNEY SILCAD is being used more and more in military and commercia fields - as a compact, lightweight ano rugged power source in portable TV anc radio and tape recorders . . . in radio controlled models ...in electric cars and trucks . . . in photographic equipment such as lighting. photoflash and camera drives

YARDNEY ELECTRIC CORP.

Pioneers in Compact Power" 40-50 LEONARD STREET. NEW YORK 13, NEW YOM C Patents granted and pending CIRCLE 77 ON READER-SERVICE CARO
for your voice communications
STROMBERG-CARISOM TELEPHONE HANDSETS

MODELS FOR
 MANY INDUSTRIAL APPLICATIONS

No. 26: short, lightweight, sturdy. Comes with capsule-type receiver and transmitter.
No. 27: high-gain version of No. 26 handset.

No. 28: "push-to-talk" handset. Rocker bar switch; various spring combinations.
No. 29: high-gain version of No. 28 handset.
Typical applications: mobile radio intercom systems • carrier and microwave - aircraft and railroad.
Modern handset cradle for mobile or panel use fits any StrombergCarlson handset. Send for Bulletins T-5005 and T-5013. Write to Telecommunicati. n Industrial Sales, 116 Carlson R ad, Rochester 3, New York.

ST POMBERG-CARLSON

- … GENERAL DYNAMICS

CRCLE 78 ON READER-SERVICE CARD
shift is 8.5 deg , the rotor resistance is 316 ohms, and the stator resistance is 67 ohms. All molded parts are made from material with high impact strength, good dimensional stability, and heat resistance. The unit has stainless steel housing.

Jolm Oster Manufacturing Co., Avionic Div., Dept. EI, 1 Main St., Racine, Wis.

Cathode Ray Tube
400
Has 3000 lines

Type SC-2782 cathode ray tube is made for high resolution photographic recording and has a definition range of 3000 lines with a spot size of 0.0013 in . at currents of $5 \mu \mathrm{a}$. This $5-\mathrm{in}$. tube has a flat, clear non-browning optical glass faceplate. An integral encapsulated high voltage connector minimizes coronat at high altitudes. The tube is aluminized and uses a non-ion trap construction with magnetic deflection and focus.
Sylvania Electric Products, Inc., Dept. E1), 7.30 Third Ave., New York 17, N.Y.

PNP Germanium Alloy Junction Transistor

For military and industrial computer use

Type 2 N 1356 pnp gernanium alloy junction transistor is for military and industrial computer use where extreme reliability is required. Made to replace type 2 N 3596 A , the unit has a floating base construction with the three leads insulated from the case. Types $2 \mathrm{~N} 1353,2 \mathrm{~N} 1354,2 \mathrm{~N} 1355$, and 2N135\% are similar replacements for types 2N384, 2N395, 2N396, and 2N397. All units meet the requirements of MIL.-T-19.500A and MIL-S19500B.
Industro Transistor Corp., Dept. ED, 35-10 36th Ave.. Iong Island City 6, N.Y.

5806 Hough Avenue • Cleveland 3, Ohio circle 79 on reader-service card

You get an extra measure of design freedom with

... POWDERED PERMALLOY FILTOROID CORES*

The high permeability and low core loss of powdered permalloy Filtoroid cores can remove design roadblocks for you. You can build extra frequency stability into filter networks with these cores. Their permeability remains stable with changes in time and flux levels. Distortion factors are held to a bare minimum. Temperature coefficient of inductance is tightly controlled.

There's extral design flexibility for you, too, in
the broad range of Filtoroid cores available. They're made in three standard permeabilities 150,125 and 60 - in sizes up to $1.570^{\prime \prime}$ O.I)., all carried in stock for immediate shipment.

Our engineers: are ready right now to help you select the proper Filtoroid core for your filter circuits. Write or call for a discussion of your needs, or send for Bulletin G-1.

NEW PRODUCTS

Delay Line

Delay time is $0.5 \mu \mathrm{sec}$

Designed for printed wiring assembly tech niques, model 15-52 delay line has a delay time of $0.5 \mu \mathrm{sec}$, tapped at $0.1-\mu \mathrm{sec}$ intervals. The impedance is 100 ohms and the rise time is 0.1 usec, The unit has raised-bearing surfaces to prevent moisture trapping. Its dimensions are $0.375 \times 2 \times$ 2.28 in .

ESC Corp., Dept. ED, 5:34 Bergen Blvcl., Pali. sades Park, N.J.

Pulse Generator

Rise time is $0.4 \mathrm{~m} \mu \mathrm{sec}$

Model PG-3 pulse generator has a rise time better than (0.4 musec. Repetition rates can fixed at 60 cps , variable from 20 to 300 cps , externally triggered. The calibrated pulse amp tude is 0 to $\pm 100 \mathrm{v}$ and the calibrated pul widths are $1.7,5,10$, and 20 mpsec. Other puls widths can be procluced by using addition cables. Transistorized drive circuits provide fo stable operation. The unit measures $12-7 / 8 \times 7$ 10-1/2 in.
Lumatron Electronics, Inc., Dept. ED. Wes bury, L.I., N.Y,

Correction Notice

The magnetic tape transport described on pas 54 of the October 28th issue is model 906. Man II, and not model 908, Mark II, as reported. It manufactured by Potter Instriument (Corp. Plainville, L.I., N.Y.

Li itit Stop Assembly

371
o meet Mil specs, type X2 is available in ball 3 be rings or oil-less bronze bearings with a wide range of mechanical stop limits from 30 to 4530 deg. Male for stopping torques to $500 \mathrm{oz}-\mathrm{in}$., the units are self-adjustable for fine zero adjustment.
Pic Design Corp., Dept. ED, 477 Atlantic Ave., E. Rockaway, L.I., N.Y.

Gold

372
For silicon transistors and diodes used in computers, aircraft, and missiles, this gold contains 10 parts per million impurity.
American Silver Co., Inc., Dept. ED, 36-07 Prince St., Flushing 54, N.Y.

Hermetic Magnefic Wire

373
Made of a Formvar material, it has low extracioms, good blister-resistance, and does not soften in Freon-22. Called Hermeteze, it also has good resistance to heat and pressure at crossovers.
Plielps Dodge Copper Products Corp., Inca Mfg. ()iv., Dept. ED, Fort Wayne, Ind.

Resistance Paints

374
These seven types, offering from 10 to $\mathbf{1 0 , 0 0 0}$ meg. can replace resistors in mon-precision applications and can be applied directly to insulating surfaces. Kods or sheets can be coated by spraying, dipping, flooding, or brushing.
Micro-Circuits Co., Dept. ED, New Buffalo, Mich.

Switches

375
Types BZE6-2RN28 and BZXV6-2RN2S one-way roller arm actuators provide electrical actuation in ane direction and are made for either side or bottom mounting. Types BZE6-2RQ62 and BZV6-2RQ62 a side and bottom enclosed switches have a low force can hforin. rod actuator. Rattings are 1.5 amp at 120,240 cps, fond $480 \mathrm{vac}, 0.5 \mathrm{amp}$ at 125 v ace, and $1 / 4 \mathrm{amp}$ at amplit 250 vace
d puls
er pulse
Micro Switch 1)iv. of Mimeapolis-Honerwell Regilitor Co., Dept. ED), Freeport, III.

Neon Noise Sources

376
Designed to operate in the range of 1120 to 26,500 me, these neom tubes provide $18(\mathrm{dt}$ of excess noise. Kis Electric Co., Dept. E1), It Maple Ave., Pine Brock, N.J.

Cramic Bushings

377
For use in electrical insulators and semiconductor 1 ig , they withistand temperatures to 2000 F . Diif er sizes are from 0.028 to 12 im . Ol). Standard e inces are held to $\pm 0.5 \%$.
ramic Products, Ince, Dept. EI), 426 Commer al Twe., Palisades Park, N.J.

Model 500B is a rugged, precision instrument widely used for direct-reading laboratory or production line measurements of ac frequency from 3 cps to 100 KC . With -hp-508A-I) Tachometer Generators or -hp-506A Optical Tachometer Pickup, the 500ß also provides direct tachometry readings.

Typical applications include rf signal beat frequency comparisons, crystal frequency deviations, audio frequency and F'M measurements, oscillator stability, machinery rotational speed, average frequency of random events, checking vibration or torsion in gear trains, etc.
Model 500B has an expanded scale feature permitting
any 10% or 30% of selected range to be viewed full scale. It also offers a pulse output synchronous with an input pulse for measuring FM components of input signals or syncing a stroboscope or oscilloscope. Readings are independent.of line voltage, input signal or vacuum tube variations. $\$ 285.00$.
-hp-500C Electronic Tachometer Indicator
Model 500 C is identical to 500 B except for meter calibration which is in rpm for greater convenience in tachometry measurements. With appropriate -hp-transducers (506A or 508A-D series), -hp-500C will measure rpm from 15 to $6,000,000 \mathrm{rpm}$ in 9 ranges. $\$ 285.00$.

-hp-Rotational Speed Transducers

NO MECHANICAL CONNECTION
-hp- 506.1 Optical Tachometer Pickup measures speeds 300 to 300,000 rpm of moving parts which have small energy or can not be connected mechanically to measuring devices. Employing a phototulie and operated by reflectedlight interruptions from light and dark areas on a shaft, -hp-506A may be used with -hp500B Electronic Frequency Meter, -hp- 500C Elecrrnnic Tachometer Indicator, $\boldsymbol{- h} p$ - 521 and 522 Electronic Counters, and similar instruments. Output voltage is 1 volt rms minimum into 1 megohm; light source is a 21 candlepower, 6 volt automotive bulb; phototube is Type $1 \mathrm{P}+1 . \$ 125.00$.

HEWLETT.PACKARD COMPANY
 4870K PAGE MIt ROAD - Palo alto, CALIFORNIA, U.S.A

fieto representatives in all principal aleas

MECHANICAL CONNECTION
-hip-508A/B/C/D Tachometor Generators are for use with electronic count ers or frequency meters in rpm meas urements from 15 to $40,000 \mathrm{rpm}$ where direct mechanical connection can lie made to the rotating part under meas urement. -hp-508A produces 60 output pulses per shaft revolution. When connected to an indicating instrument calibrated in rps, it permits direct readings in rpm. Relationship between output voltage and shaft speed is virtually linear to $5,000 \mathrm{pps}$, simplify ing oscilloscope presentation of shaft speed as a function of time ing oscilloscope presentation of shaft speed as a funct
for analyzing clutches, brakes and acceleration rates. 120 and 360 pulses per revolution respectively, and ourput is 100 , 120 ar peaks ar successively slower shaft speeds. hp S08A, B, C or D.
$\$ 100.00$.

Data subject to change without notice. Prices f.o.b. factory

in microwave
design...

Put PERMANENT MAGNET SPECIALISTS

on your development feam

Application of permanent magnets in microwave devices has resulted in vastly improved performance, lower costs and greater stability. Since the early days of stability. Since the early days of
microwave research, The Indiana Steel Products Company magnet Steel Products Company magnet design engineers have worked
closely with leading manufacturclosely with leading manufactur-
ers, providing expert help in developing special-purpose permanent magnet assemblies for such applications as radar magnetrons, backward wave oscillators, pmfocus traveling wave tubes and load isolators.

A discussion with permanent magnet specialists at The Indiana Steel Products Company may be just the stimulus your new debign efforts need - or perhaps sign efforts need - or perhaps you ind a way to improve your
present products. In any case, you present products. In any case, you
can be sure of this-nobody knows can be sure of this-nobody knows
permanent magnets like Indiana. permanent magnets like Indiana.
And, because Indiana produces all permanent magnet materials, Indiana design engineers are well qualified to recommend the one best material for your design. Why not call in an Indiana man today?

free catalog

Write TODAY for important, free, new cololog for microwave design engineers - "Alnico Lood
Isololor Magnets." Isolator Magnets "," which describes shopes, sizes
ond characteristics of this complete line of Indionna
permanent magnels. Ask for Colalog No. M-12

THE INDIANA STEEL	NA
PRODUCTS COMPANY	
LPARAISO, INDIANA	
	MAGNE

IN CANADA: The Indiona Steel Products Company of CIRCLE 82 ON READER-SERVICE CARD

NEW PRODUCTS

Hydrogen-Thyratron
Average pulse power is 75 kw

Type GHT4 Genalex hydrogen-thyratron has a peak pulse power of 50 megawatts, and an average pulse power of 75 kw . Tube life is 3000 hr or more. Constant gas pressure can be maintained with variations of up to 7.5% of supply voltage. The ambient temperature range is -5 to +70 C . Jitter is less than 1 musec and pulse lengths are $5 \mu \mathrm{sec}$ at maximum peak current. The unit measures 15 in . long and 4.5 in . in diam.

British Industries Corp., Dept. ED, S0 Shore Rd., Port Washington, N.Y.

Servo Potentiometers

411
Operate from - 55 to +150 C

Designed for military applications under severe environmental conditions, the PVR serics of servo potentiometers operate over the temperature range of -55 to +150 C . Offered in diameter sizes from 0.5 to 3 in ., they have mandrel construction to provide maximum resolution and preloaded stainless steel ball bearings to eliminate end play.
Technology Instrument Corp., Dept. ED, 5:31 Main St., Acton. Mass.

Correction Notice

Model LS-2 focusing light source can provide a light spot at any distance from 12 ft to 5 in ., and not from 1 ft to 5 in . as reported in the July $2 \cdot 2 \mathrm{nd}$. issue. The light source is made by Farmer Electric Products Co., Inc., 2300) Washington St., Newton Lower Falls, Mass.

CIRCLE 83 ON READER-SERVICE CARD \geqslant

Now in mass production for more than 4 years...

TI2N331 SERIES USE-PROVED IN AOVANCED APPLLCATIONSS

Now get aivanced application information and complete reliability and life-test data on TI grown-junction silicon transistors-based on four years' experience.

	$\begin{gathered} \text { TISt } \\ \text { cowortions } \end{gathered}$	acceprance limit	
		MIN	max
'680	$\begin{aligned} \mathrm{v}_{\mathrm{CB}} & =20 \mathrm{rdk} \\ \mathrm{I}_{\mathrm{E}} & =0 \\ \mathrm{t}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \end{aligned}$	-	$2 \boldsymbol{\square}$

$\begin{aligned} & \hline \text { Parametir } \\ & \text { MEASURED } \end{aligned}$	$\begin{gathered} \text { TEST } \\ \text { CONDITIONS } \end{gathered}$	actaptace	
		MIM	max
$\mathrm{h}_{\mathrm{hft}}^{\text {pulse }}$	$\begin{aligned} & v_{\mathbf{C E}}=5 \mathrm{rdc} \\ & \mathbf{I}_{\mathbf{C}}=10 \mathrm{ma} \\ & \mathbf{T}_{\mathbf{A}}=25^{\circ} \mathrm{C} \end{aligned}$	45	150

$\mathrm{I}_{\text {CRO }}$ and $\mathrm{h}_{\mathrm{F} \text {. }}$ characteristics of a sample of 60 TI 2 N 337 and 2N338 unit. n over 6 -week period. These tests are conducted by TI's independently operated Quality Assurance Branch, and are representative of the complete parameter behavio test information in the Silicon Transistor Reliability Data brochure listed below

PUSH-PULL TRANSISTORIZED SERVO AMPLIFIER
Description of a 2-watt transistorized servo amplifier which, using unfiltered rectified a-c for the collector supply, has high collector efficiency.

TRANSISTORIZED VOLTAGE REGULATOR CIRCUIT
Description of a circuit which can regulate the voltage to loads demanding up to 600 ma .

HIGH-INPUT-IMPEDANCE AMPLIFIER USING SILICON TRANSISTORS
Amplifier described has input imped ance of 8 megohms, voltage gain of 40 db , and output impedance of 600 ohms.

HIGH-FREQUENCY CHARACTERISTICS OF GROWN-DIFFUSED SILICON TRANSISTORS Description of characteristics o 2N338 switching and general-purpose unit and 3 N34 and 3 N 35 very-highfrequency tetrodes.

SILICON TRANSISTOR RELIABILITY DATA
Complete parameter analysis of TI 2N332 through 2N343 - a graphic presentation of parameter behavior with time tests. The graphs above are representative of this data

These reports are available by writing on your letterhead to your nearest TI sales office, and are not available through magazine reader service cards.

MIEH SPEFE swirching

. . . with reliable T/I silicon transistors

New improved TI 2N337 and 2N338 specifications provide greater design flexibility for your switching circuits . . . nuclear counters . . . pre-amplifiers . . RF amplifiers. . . 455 KC IF amplifiers ... and many other high frequency applications.
You get high gain at low current levels with TI diffused silicon transistors. High alpha cutoff . . . 10 mc min for $2 \mathrm{~N} 337,20 \mathrm{mc} \mathrm{min}$ for $2 \mathrm{~N}: 338 \ldots$ and extremely low collector capacitance assure optimum
design characteristics at $25^{\circ} \mathrm{C}$ ambient (except where advanced lemperatures see inficitec)

performance in your switching and high frequency amplifier applications.
Over four years of mass production and successful use in the most advanced military and industrial applications have proved the value of the TI 2N337 series. Consider TI's guaranteed specs when you select devices for your next transistor circuit. These units are immediately available in production quantities or from large stocks at all authorized TI distributors.

- Measured at $1 \mathrm{mc} \quad \dagger$ Common Emitter $\quad I_{B}=1 \mathrm{~mA}$ for $2 \mathrm{~N} 337,0.5 \mathrm{~mA}$ for 2 N 338

WORLD'S LARGEST SEMICONDUCTOR PLANT

Texas Instruments INCORPORATED SEMICONDUCTOR.COMPONENTSDIVISION
POSTOFFFICEBOX 312 S 13 SOON. CENTRALEXPRESSWAY
DALLAS. TEXAS

TEXAS Instruments SEMICONDUCTORS

DELIVERED IMMEDIATELY

From

Lafayette Radio

Your Authorized TI Distributor

COMPLETE LINE AT FACTORY PRICES!
For fast, reliable delivery on all TI use-proved, guaranteed semiconductors and components just call Lafayette Radio and get off-the-shelf delicery.

CIRCLE 84 ON READER-SERVICE CARD < CIRCLE 85 ON READER-SERVICE CARD

With the appearance of Transipot ${ }^{D}$, Arnoux introduces a totally new concept in variable-reluctance transformers: very high sensitivity at low impedance levels, with excellent linearity over a wide input range. Available as ac/ac or ac dc. Other features: high efficiency...infinite resolution...inherent reliability.. insensitive to vibration... noise-free becanse brushes aren't used . . modular construction with standard servo mounting. Rated for operation to 12.5 C ; specials available to several hundred degrees Centigrade.
Can be used for telemetry, indication, data reduction, and as a tramsmitter and or receiver for detecting any combination of linear or rotary motion as part of a feedback control system-in fact. Wherceer the requirement is for smallmotion detection with infinite resolution and with high outputs.

Matching characteristics in both types of Tramsipot permit an interchange of linear and rotary motion without special gearing, giving the design engineer great new frecdom. Bulletin 90).

Arnoux Corporation
11924 W. Washington Bled., Los Angeles 66, California
ARNOUX
TRANSIPOTS ${ }^{\circ}$

NEW PRODUCTS

Nylon Screws

For use in electronic assemblies, these precision molded nylon screws come in these thread sizes: No. 0-80, No. 1-72, and No. 4-90.
Gries Reproducer Corp., Dept. ED, 125 Beechwood Ave., New Rochelle, N.Y.

Oscillator Packages

This complete line has a frequency range of 400 cps to over 100 mc . The units are transistorized and are made to withstand extreme environmental conditions.
Monitor Products Co., Dept. ED, 815 Fremont, S. Pasadena, Calif.

Silver Solder Preforms

For automatic soldering at 1600 to 1800 F , they are available as rings, dises, washers, pellets, castings, balls, and special shapes.
Alloys Unlimited, Inc., Dept. ED, $21-01$ 43rd Ave., Long Island City 1, N.Y.

FM Telemetry Radio Link

381
Operates in the 400 to $406-\mathrm{mc}$ band. Model KT transmitter has $2-\mathrm{w}$ rf output. Model KR receiver has a low noise rf stage and automatic frequency control. An airbome version is also available.

Amtron Corp., Dept. EI), 17 Felton St., Waltham 54, Mass.

Socket

382
For tube type 7462 , it occupies $27 / 32 \times 7 / 16 \times$ $11 / 64 \mathrm{in}$. Able to stand temperatures to 400 F , it has five contacts made of beryllium copper and plated with both silver and gold.
Jettren Products, Inc., Dept. ED, 56 Route 10, Hamover, N.J.

Winding Tube

383
Class H type, is made of silicone bonded glass cloth and mica mat. It has high dielectric chanacteristics, is low in moisture absorption, and is easily handled. Square, rectangular, and round tubes are available in sizes from $316 \times 3 / 16 \mathrm{in}$. to $10 \times 10 \mathrm{in}$. Accurate Paper Tube Co., Inc., Dept. ED, 806 N. Peorria St., Chicalgo 22, Ill.

Seismic Switches

Series 29000 senses any pattern of accelerations occurring in a missile. Made for use where two or more switches would ordinarily be required, they have a current capacity of 1 amp de resistive, a leakage resistance of 2.50 meg min , and operate in the ambient temperature range of -40 to +250 F .
Aerodyne Controls Corp., Dept. EID, 1783 New York Ave., Huntington Station, N.Y.

Model HCVS-250-20 power supply, providing a maximum output of 250 v at 20 amp , is used primarily for tantalum capacitor production, precision electroplating, and battery charging. When on constant current operation, the supply will automatically switch to constant voltage operation upon reaching a predetermined voltage duc to load resistance buildup.

Matthew Lalos., Dept. EI), 3344 Fort Independence St., New York 6:3, N.Y.

Cathode Ray Tube 398

For use at altitudes to $35,000 \mathrm{ft}$

Type 3ASP7 cathode ray tube is rated for use at altitudes to 35,000 ft . Designed to give good pulse display at low duty cycles, it has sensitivities of 33 v per in. vertical and 80 v per in. horizontal, under a typical anode voltage of 2000 v . The anode is brought out separately. Length is less than 9 in .

Waterman Products Co., Inc., Dept. ED. 2445 Emerald St., Philadelphia 25, Pa.

BENDIX SR RACK and panel connector

with outstanding resistance to vibration

The Bendix type SR rack and panel electrical connector provides exceptional resistance to vibration. The low engagement force gives it a decided advantage over existing connectors of this type.
Adding to the efficiency of this rack and panel connector is the performance-proven Bendix "clip-type" closed entry socket. Insert patterns are available to mate with existing equipment in the field.
Available in general duty, pressurized or potted types, each with temperature range of $-67^{\circ} \mathrm{F}$ to $+257^{\circ} \mathrm{F}$.
Here, indeed, is another outstanding Bendix product that should be your first choice in rack and panel connectors.

FEATURES:
Rosiliont Insert - Solid Shell Construction - Low Engagement Forces - Closed Entry Sockets - Positive Contact Alignment Contacts-heavily gold platad Cadmium Ploto-clear irridito finish - Easily Prose surized to latest MIL Specifications.

SCINTILLA DIVISION

 CIRCLE 89 ON READER-SERVICE CARD

schedule maintenance - study productivity Glass-1o-metal seoled ELAPSED TIME indicotors. Compact, low cost, tomper-proof.
Stondard ASA/MML dimensions, $21,2^{2}$ and Stondard ASA/MML dimensions, 21,2 and counter registers $1 / 10$ hour steps to 9999.9 or hour steps to 99999 . Hermeticolly seoled. Shielded. Starts, operotes continuously from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. For
110.125 or $220-250$ volis 60 cycle A.C. Bulletin on request. Marion Instrument Division, Minneopolis-Honoywell Regulato
Compony, Monchester, N. H., U. S. A.

marion

 metersCIRCLE 90 ON READER-SERVICE CARD

CIRCLE 91 ON READER-SERVICE CARD

NEW PRODUCTS

Spectrum Analyzers

Sweep linearity $\pm 1 \%$
These three models of transistorized spectru n analyzers cover frequency ranges of 25 to 10,000 cps , with bandwidth resolutions of 20,95 , ar d 290 cps , and a sweep linearity of $\pm 1 \%$. Made for use in airborne telemetry applications, they are compatible with IRIG telemetry systems. The re quirements of MILL-E-8189 for vibration, shock, and altitude are met and the operating tempera ture range is 0 to 160 F . The adjustable sweep period is 1 to 22 sec . Power required is 25 to 29 v . The devices occupy less than 25 cu in . and weigh less than 16 oz .
Gulton Industries, Inc., Ortholog Div., Dept. ED. 212 Durham Ave., Metuchen, N.J

Silicon Zener Diodes

405
Come in ratings of 500 mw and 1 w

Designed specifically for commercial equipment applications, these silicon Zener diodes are available in ratings of 500 mw and 1 w . They have standard RETMA 10% voltage steps from 5.6 to 27 v . A three-layer seal is used to provide resistance to humidity, shock, vibration, and temperature extremes. The diodes have low Zener im pedance values and sharp Zener knees.
International Rectifier Corp., Dept. ED, 1521
E. Grand Ave., El Segundo, Calif.

Permeance Transducers

387
Temperature range is -325 to +1000 F
These variable permeance transducers have a temperature range of -325 to +1000 F . The sensing slug is a high temperature compensated alloy with a Curie point of 1580 F . The phase change is 180 deg at the null point. Full scale senstivity is 0.2 to 0.4 v per v . The linearity is $\pm 0.3 \%$ to $\pm 0.75 \%$ and the linear ranges are ± 0.04 to $\pm 1 \mathrm{in}$. The thermal coefficient of sensitivity is less than 0.003% of full scale per deg F.
Technical Industries Corp., Dept. ED, 389 N Fair Oaks Ave., Pasadena, Calif.

CIRCLE 92 ON READER-SERVICE CARO * ELECTRONIC DESIGN • December 9, 1959

Gain is 6×10^{6}

Model 700 de leveler amplifier has a gain of 6×10^{6}. Used with an external crystal detector and directional coupler, it can hold rf output from single frequency or swept microwave sources constant to $\pm 0.1 \mathrm{db}$. With proper rf components, power varies less than $\pm 0.5 \mathrm{db}$ over $\mathrm{L}, \mathrm{S}, \mathrm{C}$, and X bands at slow and fast sweep speeds. The unit can also be used as a broadband attenuator with a $30-\mathrm{db}$ dynamic range. The unit operates with cw signals and an internal square wave generator will modulate the rf signal. Input is 3 mv to 1 l and output is 100 v max in the range of -50 to +100 v . Frequency response is dc to 100 kc . Alfred Electronics, Inc., Dept. ED, 897 Commercial St., Palo Alto, Calif.

Servo System

Designed to provide servo controlled attenuation of signal level for a specific input function, model 801 servo motor has a linearity of $\pm 0.1 \%$ Resistances are 1000 to 100,000 ohms, resolution is as low as 0.03%, and power rating is 1.5 w per el ment. The unit operates in the temperature raige of -65 to +200 F . Rotary potentiometers with straight windings instead of curved resistive elc ments are used. Each potentiometer can be su;plied with its own independent function so th t simultaneous control, feedback, and telemet signal can be provided. The instrument provi es a network of up to seven gangs of servo d en potentiometers. The environmental req rements of MIL-E-5272A are met.
bourns. Inc., Dept. ED, P.O. Box 2112, River, Calif.
4 IRCLE 92 on reader-service card
EI CTRONIC DESIGN • December 9, 1959

Lockheed for telemetry

Out of Lockheed creative engineering sessions such as this come advanced design and proven performance in the field of telemetry. L ockheed's pioneer work on the $\mathrm{X}-17$ project resulted in the first successful telemetering of vital data during reeentry. Research continues to provide even greater reliability of performance to meet present requirements.

The Lockheed Electronics and Avionics Division (LEAD) is currently conducting research in Frequency Modulated and Pulse Modulated Systems for industrial and military needs.

For proven reliability in telemetry components and systems, consider I.EAD

NEW PRODUCTS

Pressure Transducer
 45)

Delivers to 1.5 v ac or to 100 mv ç

The Compu-tran low pressure transducer delivers high level out put signals, up to 1.5 v ac or up th 100 mv dc, with accessory demodulator. Standard ranges are from 0 to 1.5 psi to from 0 to 60 psi , with four intermediate ranges. Accurit cies are to $\pm 0.15 \%$ of full range. The sensing element has excellent hysteresis characteristics, and al lows close-tolerance performance over a wide temperature range. The instrument is sealed in a NEMA class IV housing, permitting operation in humid or corrosive environments. Various forms of the instrument are available, for the measurement of gage, differential, and absolute pressure.
International Resistance Co, Dept. ED, 401 N. Broad St., Philadelphia 8, Pa

Voltage Standards
 448

Two standard models offered

The Evenvolt constant voltage unit can be a temperature-compensated model which replaces the dry cell, the standard cell, the stand\& CIRCLE 94 ON READER-SERVICE CARD
a lizing rheostat, and the standa dizing mechanism. Also available the non-compensated model is used tr replace the dry cell in instrumints having standardizing circuits It both models 110 v ac at 60 cps is converted to de with a 20% input voltage variation reflected in a maxintum output variation of $\pm 0.04 \%$, Potentiometers which ordinarily use dry cells are easily converted to utilize this unit. Since there are no tubes or other short-life components, the service life is estimated at 10 yr or more.
InstruLab, Dept. ED, 1205 Lamar St., Dayton 4, Ohio.

Microwave Switches 452
Cover the range of $\mathbf{8 . 2}$ to $\mathbf{1 2 . 4} \mathbf{k m c}$

Models X-160 and X-160R X band switches cover the frequency range of 8.2 to 12.4 kmc and provide, respectively, 40 and 50 db isolation over the entire band. Model X-160R also includes an internal relay that permits remote, low current energizing of the actuating solenoid. Both models meet a wide range of applications in microwilve systems, including the elimination of interference and ground returns in testing several radars at
the same location and insuring radar silence while a radar transmitter is in operation. Insertion loss is $\mathrm{e} ;$ than 0.2 db and vswr is 1.1:1 $m \times$. Peak power capacity is 350 kw at itmospheric pressure and switchin time is 0.05 sec . Both units m isure less than $6 \times 3 \mathrm{in}$. and w gh about 2 lb
ladar Measurements Corp., D itt. ED, 190 Duffy Ave., Hicksife, N.Y.

STABILITYGEETT BARRIER BROKEN

 with Metal-Ceramic Variable Resistor

RELIABILITY
STABILITY TEMPERATURE

CeraTrols' rugged, hard-surfaced metal-ceramic element, having been fired at temperatures exceeding $600^{\circ} \mathrm{C}$, meets temperatures up to $500^{\circ} \mathrm{C}$ with high safety factors at ratings listed high sa CeraTrolS with new metal-ceramic element

New Series 600 Characteris:ics:

- Infinite resolution.

100 ohms thru 5 meghoms (IInear taper) resistance

- $1 / 2^{\prime \prime}$ diameter: interchangeable with Style RV6
MIL.R.94B.

COMPARATIVE TEST DATA: NO carbonaceous variable resistors (either film or molded) can equal Series 600 performance. Ideal for critical applications requiring high stability and reliability. Far exceeds MIL.R-94B.

Newly developed $500^{\circ} \mathrm{C}$ Metal. Ceramic Resistance Element is separately available for other applications than variable re. sistors. Because the element is very stable to $500^{\circ} \mathrm{C}$, it is extremely reliable at the elevated temperatures currently de. manded and anticipated in military requirements. Ceramic bases can be made in a wide variety of shapes and sizes; the metal resistance film can be made to cover an entire sur. face or an accurately defined pattern. Consult CTS engineers on your requirements.

Tests	MIL-R-94B (Style RV6. Char. Y) Requirement	Series 600 CTS Maximum	Series 600 CTS Average
Load life 1000 hrs			
$1 / 2$ watt © $125^{\circ} \mathrm{C}, 350 \mathrm{~V}$ max.	$\pm 10 \%$ © $70^{\circ} \mathrm{C}$	$\pm 7 \%$ @ $125^{\circ} \mathrm{C}$	$\pm 4 \%$ @ $125^{\circ} \mathrm{C}$
3/4 watt @ $85^{\circ} \mathrm{C}$			
Thermal Stability (1000 hrs. @ $175^{\circ} \mathrm{C}$ no load)	No test in MIL.R.94B	$\pm 5 \%$	$\pm 3 \%$
Temperature Co.eff.* (Room to $-63^{\circ} \mathrm{C}$, room to $+175^{\circ} \mathrm{C}$)	No test in MIL-R.94B		
25 K and over		$\pm 250 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$	$\pm 150 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
under 25 K		± 500 PPM/ ${ }^{\circ} \mathrm{C}$	$\pm 30 \overline{0} \mathrm{PPM} /{ }^{\circ} \mathrm{C}$
Moisture Resistance	$\begin{aligned} & \pm 6 \% \text { avg. } \\ & +10 \% \text { max. } \end{aligned}$	$\begin{aligned} & \pm 2 \% \text { avg. } \\ & \pm \\ & \hline 1 \% \text { max. } \end{aligned}$	$\pm 1.3 \%$
Low Temp. Storage	$\pm 2 \%$	$\pm 1 \%$	$\pm .5 \%$
Low Temp. Operation	$\pm 3 \%$	$\pm 2 \%$	$\pm 1 \%$
Thermal Cycling	$\pm 6 \%$	$\pm 3 \%$	$\pm 2 \%$
Voltage Co-efficient	Notest in MIL-R-94B	$\pm .01 \%$ /Volt	$\pm .005 \% / \mathrm{volt}$
Rotational Life	$\begin{gathered} \pm 10 \% \\ \text { (after } \\ 25.00 \text { cycles) } \end{gathered}$	$\pm 10 \%$	$\pm 7.5 \%$
Acceieration	$\pm 3 \%$	$\pm 2 \%$	± 19
High Freq. Dibration	$\pm 2 \%$	$\pm 2 \%$	$\pm 1 \%$
Shock	$\pm 2 \%$	$\pm 2 \%$	$\pm 1 \%$

ote Exceostional Stability. Noto oxtent that MIL-R-MB is arceeded
Complete Series 600 CeraTrolS electrical and mechanical specs and dimensional draw. ings will be sent upon request.
CTS manufactures a complete line of composition and wirewound variable resistors for military, industrial and commercial applications. CTS specialists are willing to help solve our variable resistor problems. Contact your nearest CTS office today.

Factories in Elkhart \& Berne, Indiana, South Pasadena, California, Asheville, No. Carolina and Streetsville, Ontario. Sales Offices and Representatives conveniently located throughout the world.

ghigago telephone supply
 Coypiontion

ELKMART - IMOIAMA

NEW PRODUCTS

Slip Ring And Brush Assemblies 436
For rotary antennas

This line of slip ring and brush assemblies is made for use in rotary antenna arrays. Of modular construction, these units can be furnished with 3 to 40 circuits to fit shafts from 1/4 to 1 in . in diam. The assemblies include Teflon-insulated leads, silver graphite brushes, and stainless steel bores.
Rotary Devices Corp., Dept. ED, 40 Jay St., Englewood, N.J.

Totalizers
445

For applications such as multiple-lap coil winding, length cutting, and periodic thickness measurement, series 550 preset totalizers provide accuracies to $10(0), 000$ events per sec. Of modular construction, the units have in-line thumb-wheel switches for adjustment of count totals. Transistors and cold-cathode tubes are used throughout. A batching register is optional with the unit. Iconix, Inc., Dept. ED, 945 Industrial Ave. Palo Alto, Calif.

Ferrite Isolator

446
Frequency range is 2.1 to 4.3 kmc per sec

Made for use in telemetry, radar systems, and transponders, model WD)-2106 S-band ferrite iso-

Now meets and exceeds

OHMMTE

TAN-O-MITE ${ }^{\circ}$

Tantalum Capacitors

Ohmite's supremely equipped laboratory has been approved for official ASESA qualification testing purposes! Here, Ohmite's tantalum electrolytic capacitors are tested on the same type of equipment as used by the military. Furthermore, rigid quality control standards assure 100% testing of every capacitor for its rated parameters-capacitance value, power factor, and leakage current. To meet and surpass the severe military
tests, it is apparent that Ohmite capacitors must be more than adequate for
any demanding application.
More tantalum capacitor styles are under development at the Ohmite laboratories. Watch for them.

SINTERED SLUG TYPE: MIL-C-3965B, Grade 1, 2, or 3 (Case Size T1, Styles CL44 Uninsulated, CL45 Insulated)
The DC leakage current is less than 0.01 microamperes $/ \mathrm{mfd}$-volt at $25^{\circ} \mathrm{C}$. The DC surge voltage rating is 115% of the rated DC working voltage.

The anode, a porous slug of sintered tantalum, is sealed into a fine silver case which serves as the cathode and as a container for the wet electrolyte. Axial leads are $11 / 2^{\prime \prime}$ long and solderable.

Units are available for operating temperature ranges of $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, polar applications only. MIL values available from stock. Other values (which meet MIL requirements) Other values (which meet Mit requirements)
promptly made to order. Write for Bulletin 159

[^3]

PLAIN FOIL TYPE: MIL-C-3965B (Case Sizes C1, C2, C3; Styles CL34 Uninsulated, CL35 Insulated)
These capacitors now exceed the maximum vibration requirements (Grade 3,5 to 2000 cps) of MILtion requirements (Grade 3.5 to 2000 cps) of MIL-
C-3965B having been successfully tested at 30 gs , C-3965B having been successfully tested at 30 gs ,
twice the required acceleration. They also pass the twice the required acceleration. They also pass
50 g shock test of MIL-Std. 202A. Method 205 . DC leakage current is less than 0.035 microamperes mfd-volt at $25^{\circ} \mathrm{C}$; less than 0.20 microamperes/mfdvolt at $85^{\circ} \mathrm{C}$ (tested in MIL-approved fashion).
The DC surge voltage rating is 116% of the DC rated voltage and the power factor is substantially below the following limits (at $120 \mathrm{cps}, 25^{\circ} \mathrm{C}$):

Voltage Range	Power Factor
Less than 15 -volt rating	15%

$$
\begin{array}{l|c}
\hline \text { Less than } 15 \text {-volt rating } & 15 \% \\
15 \text {-Volt rating and above } & 10 \%
\end{array}
$$

Supplied in polar and nonpolar units although MIL specifications now list only the former. Polar units are protected from current reversals up to 3.75 volts. Operating temperature range is $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. In addition to MIL units, many non-MIL values (which meet MIL requirements) are available from (which meet Mol requirements) are available from . 25 to 140 microfarads and up to 150 working volts. MIL values in stock. Other values (which meet MIL
requirements) made to order. Write for Bulletin 152

MIL Specifications

Load life and temperature cycling tests are made in this oven under controlled conditions.

Production measurement of capacitance, power factor, and leakage current.

3

Ohmite also has extensive facilities for making such tests as low temperature exposure, high altitude performance, salt spray corrosion... almost everything needed to meet and surpass the most extreme operational and environmental conditions.

Available from Ohmite Distributors or direct from the factory.
WIRE TYPE: No MIL Speci
This Type of Unit af Present
These subminiature Ohmite units offer amazingly high capacitance for their small size. Price and size advantages have made them widely used in noncritical, nonresonant low voltage, and transistorized circuitry. Compared to aluminum electrolytics, they ffer small size, long shelf life, electrical stability ani superior performance under temperature extremes.

A specially processed tantalum wire serves as the anode. A silver case is the cathode and contains the electrolyte. The negative lead is connected directly 0 the end of the case. The open end of the case is sealed with a "Teflon" bushing, plus plastic embedment through which the welded anode lead wire projects.

Operating temperature range is $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Power factor is generally less than 50%. DC leakage current is less than .09 microamperes/mfd/volt for units of 0.5 mfd or more; less than 0.4 microamperes $/ \mathrm{mfd} /$ volt for units under 0.5 mfd .

Eleven case sizes satisfy virtually any need. Capacitances from .01 to 80 mfds ; voltage ratings to 150 . Many stock sizes and values are available.

Write for Bulletin 148
lator has a frequency range of 2.1 to 4.3 kmc per sec. Isolation is 20 db min, insertion loss is 2 db max, and the input vswr is 1.5 max with a type \mathbf{N} connector. Peak power is 1000 w max and average power is 5 w max. The unit operates in ambient temperatures to 65 C .

Kearfott Co., Microwave Div., Dept. ED, 14844 Oxnard St., Van Nuys, Calif.

Decimal Digitizer

Has 3, 4, 5, or 6 decades

Available in $3,4,5$, or 6 -decade units, this decimal digitizer is a nonambiguous electromechanical shaft position encoder of the absolute positional, multispeed type. It provides straight decimal contact output. Able to make $10,40,100,400$, and 1000 counts per rotation, the unit has continuous or demand readout. It operates parallel entry printers directly.

Coleman Electronics, Inc., Dept. ED, 133 E. 162nd St., Gardena, Calif.

High Temperature Capacitors
Size is $0.1 \times 0.1 \times 0.1 \mathrm{in}$.

The K2R and K2T capacitors measure $0.1 \times$ $0.1 \times 0.1 \mathrm{in}$. and offer good performance in temperatures to 150 C. Capacitances are from 10 to $18,000) \mu \mu$ with $5 \%, 10 \%$, and 20% guaranteed minimum values. The dielectric strength is tested to 800 v .

King Electronics, Iuc., Dept. ED, S. Pasadena, Calif.

MAGNETIC RESEARCH CORPORATION Pacing the Industry in Astro-Magnetics

> IGO WEST EL SEGUNDO BOULEYARD. HAWTHORNE. CALIFORNIA CIRCLE 97 ON READER-SERVICE CARD

NEW PRODUCTS

Temperature Chamber

Range is -100 to +500

Series 1060 portable temperature chamber offers temperatures of -100 to +500 F controlled to within $\pm 0.2 \mathrm{~F}$.
Control is maintained by a meter-relay in con junction with a copper-constantin thermocouple. The unit operates on 117 v ac and contains a centrifugal blower to assure temperature uniformity throughout the test space.
The series includes a rack mounted model with a test volume of $10 \times 7 \times 7 \mathrm{in}$., two bench models with the same test volume, and a wide drawer model with a test volume of $16 \times 7 \times 7 \mathrm{in}$.
Delta Design, Inc., Dept. ED, 7460 Girard Ave., La Jolla, Calif.

Rotary Cam Limit Switches

433
With 2 to 16 individual circuits

These rotary cam limit switches having from 2 to 16 individual circuits will operate at speeds up to 300 rpm . Of heavy duty construction, they have $3 / 8$-in. coin silver contacts rated at 15 amp , ball bearing supported cam shaft, nylon roller cam followers, and $2-\mathrm{in}$. diam nickel-plated cams with assured accuracies to 0.5%.
The $1 / 4-\mathrm{in}$. cam shaft extends beyond the bearing mounting for connection to an external drive.

Eagle Signal Co., Dept. ED, 202 Twentieth St., Moline, Ill.

Speaking of longevity..
M.R.C. offers a new series of Solid State Pulse Modulators for timing circuits, search radar, airborne radar and missile guidance.

One outstanding member of this group is the Model MP505 Airborne Pulse Modulator. This unit is used as a pulse modulator for high power missile beacons Using only 250 watts of power, this effi

cient unit provides 15 KV pulses into a MA206 magnetron load. The pulse width is .25 microseconds at a repetition rate of 2000 pps .

The MP505 is hermetically sealed and weighs less than 7.5 lbs . Solid statemagnetic pulse generator systems are available in ranges from . 1 to 10 megawatts, with repetition rates as high as 10,000 pps.
For complete information on the entire pulser series, write for Data File MP1 100

MAGNETIC RESEARCH CORP
Pacing the Industry in Astro-Magnetics 316O WESTEL SEGUNDO BOULEVARD CIRCLE 98 ON READER-SERVICE CARD

Our fast quote will tell you all about the extra economy of Electronic Enterprises' many MIL-type tubes. Prompt delivery is another feature. From a vast selection of gas or mercury rectifiers, vacuum rectifiers, grid controlled rectifiers, triodes, and hydrogen thyratrons, your prder is shipped fast And virtually order is shipped fast. And valable in short run quantities.
MIL-type tubes manufactured to military specifications include 576-A, 3B28, 371-B, 836, 811-A, 274-A, 274-B, 323-B, 3C23, FG-17, 394.A, 4B32. Write or call your nearest E.E. rep, listed below, for prices and specs:
Richard L. Gysan Co.
2 Foster St., Wenham, Mass.
Maine, New Hampshire, Vermon
setts, Rhode Island, Connecticut.
Kittleson Co.
416 LaBrea Ave., Los Angeles 36, Calit
California. Arizona. Nevada, New Mexico, and
Blair Sales Co., Inc.
45 S . Broadway, Yonkers, New York
Metropolitan New York Area
Harry 1. White Co., Inc.
21 Covered Bridge Rd.. Barclay Farm
Haddonfield, New Jersey
Pennsylvania, Willlamsport East, New Jersey, renton South Delaware, Maryland, Virginia,
West Virginia, North Carolina

ELECTRONIC ENTERPRISES, INC.

CIRCLE 99 ON READER-SERVICE CARD

Current Integrator

Current Range is 10^{-}to $10^{-\infty} \mathrm{amp}$ dc

Having a current range of 10^{-9} to $10^{-3} \mathrm{amp}$ dc, model CI-110 current integrator measures the amplitude of an input current or voltage and simultaneously integrates this input with respect to time. The charge range is from $0.045 \mu \mathrm{a}$-sec to $50 \mathrm{amp}-\mathrm{sec}$. The integrating capacity is 0 to 50 coulombs. Accuracy on all ranges is better than 1%. Modular packaging is used with all basic elements counted on plug-in circuit cards so the instrument can be modified to meet specific requirements.
Eldorado Electronics, Dept. ED, 2821 Tenth St., Berkeley 10, Calif.

Servo Indicator

Input impedance is 100,000 ohms to 1 meg

Model 20-200-4 aircraft servo indicator has an input impedance of 100,000 ohms to 1 meg . Completely contained in a MS-33639 hermeticallysealed case 2 in . in diam and 5 in . long, the indicator operates in a ambient temperature range of -55 to +70 C . Sensitivity is 0.1%, gain is 10,000 , and slewing time is about 4 sec for full scale. Silicon transistors are used and the selfcontained power supply requires an input of 115 v at 400 cps. The unit is suitable for use when it is necessary to drive several indicators from the output of a variable inductance transducer.

Servo Development Corp., Dept. ED, 567 Main St., Westbury, L.I., N.Y.

434

PRECISION TRIMMER POTENTIOMETERS byTIC
are standard in twelve different styles and each in a wide range of resistance values. The extensive use of timmers in such applications as airborne, shiploorne and ground based military electronic equipment for navigation, flight control, fucl control, radio transmission and reception, telemetcring, computers, fire coritrol and many others demands reliability and stable operation under severe environmental conditions. TIC: quality-control procedures and environmental testing assure the user of the ultimate in dependable trimmer potentiometers.

TWELVE IMPORTANT CHOICES - six box type and six rotary type multiturn and single turn with wirewound or metallic film resistance elements, high temperatureresistant construction, varied mounting methods, and
 sizes ranging from micro-miniature to the size of a quarter in diameter, permit the design enginece optimum freedom to select the unit best suited to his application. Special designs may be readily accommodated by TIC enginecrs.

Subsidiaries:

TECHNOLOGY INSTRUMENT CORPORATION

Technology Instrument Corp. of Calis North Hollywood. Calif.
Actorn Laboratories, Inc., Acton, Mass. Acton Laboratories, Inc., Acton, Mass.
Tucson Instrument Corp., Tucson, Ariz.
Servotrol. Inc., Chicaro ill Servotrol. Inc., Chicago. ill.
Altomac Corp., Canton, Mass.

CIRCLE 100 ON READER-SERVICE CARD
555 MAIN STREET
ACTON, MASS.

ECTRONIC DESIGN • December 9, 1959

Where only the best is good enough...

MODEL UHR-240

Krohn-Hite power supplies are used

In basic electronic instruments for lab or test work, less than the best may be a dangerously had bargain. Unexpected limitations - of reliahility, range. precision - can throw out weeks of work on today's jobs, and can make tomorrow's tougher jobs untouchable.
The hest instrument of its type is probably a bit more expensive, hut it's worth huying . . . hecause you can believe in it today. and will rely on it tomorrow. An example is the Krohn-Hite Model UHR-240 ultra-high-regulation power supply. Here are some facts about it.
main dc outpur: zero to 500 volts, continuously adjustable, at zero to 500 milliamperes.
regulation: less than 0.001% plus 0.002 volt from no load to full load.
Line stablization: less than 0.003% plus 0.003 volt, for $\mathbf{1 0 \%}$ change.
OUTPUT IMPEDANCE: DC - less than $(0.005+0.00002 \times$ out put volts) ohm: AC - less than 0.05 ohm plus 0.1 michrohenry. RIPPLE: less than 0.1 millivolt rms.
dC biAs Output: zero to minus 150 volts, continuously adjustable, at zero to 5 ma ; regulation less than 1%.

DC HEATER OUTPUTS: 5 to 12.6 volts, adjustable, at zero to 2.5 amperes.
ac heater outputs: two, each 6.3 volts at 10 amperes.
There's a lot more you should know about the UHR-240 and about the other Krohn-Hite power supplies, oscillators, tunable electronic filters and amplifiers. In all of them, you'll find the same far-ahead engineering, design and construction. Because K-H instruments are good enough even for tomorrow's most critical work, they are increasingly chosen today where true reliability and precision are needed.

Write for your free copy of the new Krohn-Hite Catalog.
Krohn-Hite corporation
580 Massachusetts Avenue, Cambridge 39, Mass.
CIRCLE 103 ON READER-SERVICE CARD

NEW PRODUCTS

DC Power Supply

Regulation is better than $\pm 0.1 \%$

Type PS4022 transistor-regulated power supply provides 4.5 to 9 v dc with load currents from 0 to 10 amp . Total regulation is better than $\pm 0.1 \%$ change in set output voltage for any combination of input voltage or load current conditions. Ripple and noise are less than $\boldsymbol{2} \mathbf{m v}$ rms. Input is 105 to $125 \mathrm{v}, 57$ to 63 cps or 380 to $420 \mathrm{cps}$. . Temperature stabilization insures minimum drift in the output for operating temperatures from -20 to +65 C . Output impedance is less than 0.02 ohms from de to 1000 cps . Voltage across the output is set by a three-step range switch and a vernier potentiometer

Power Sources, Inc., Dept. ED, Burlington, Mass.

Inertia Damper
435
Viscous-coupled

Designed for use where high velocity and high torque constants with good stability are required, this viscous-coupled inertia damper replaces tachometers, networks, and other servo stabilizers. Performance is not affected by line frequency shift. Two models are available with diameters of 1.52 or 1.79 in ., and with ten time constants ranging from 0.02 to 1.2 sec . Damping action is factory set.
Feedback Controls, Inc., Dept. ED, 8 Erie Drive, Natick, Mass.

: PLUG-IN Instruments SAVE
 - * design time * panel space
 - * fabrication time * cost
 * mainfenance

The efficient, flexible, trouble-- free performance of new PLUG - IN Instruments means SAVINGS

- for you! SAVE valuable time,
- SAVE valuable space, SAVE on
- installation cost and mainte-
- nance. Use Plug-ins . . . and
- profit!

standard transistor and vacuum tusi CIRCUITS AND MODULAR HARDWARE

CIRCLE 104 ON READER-SERVICE CARD ELECTRONIC DESIGN • December 9, 1959

Type Ma-12-L miniature leveractuated switch provides multi-circuit control for low power and electronic circuits. The assembly can be furnished in one or two sections, giving up to 12 -pole switching. The electrical ratings are: 3 amp continuous current at 115 vac ; interrupting rating. 1.2 amp at 115 \checkmark ac; and voltage breakdown, 1000
v rms. The insulation of both stationary and movable contacts is molded of alkyd type MAI-60 as per MIL-M-14E.
Electro Switch Corp., Dept. ED. 167 King Ave., Weymouth S8, Mass.

Refrigeration Equipment

 453Provides temperatures to -120 F
These one-piece mechanical refrigeration assemblies, called KoldPak, provide low temperature mediums to an enclosure through heat exchangers that can be connected to the required flow lines. They can be the direct expansion type, with freon refrigerants passing through a separate heat exchanger, or the brine chiller type with a liquid acting as a secondary cooling agent. Twelve standard models are offered with the following capacity s!an: at -40 F brine temperature
(.) -60 F evaporator temperature. the capacity is 3240 to $34,000 \mathrm{BTU}$ Pr hr ; at -100 F brine temperative or -120 F evaporator temp rature, capacity ranges from 660 (1. 7000 BTU per hr .

Tenney Engincering, Inc., Dept. I)), Union, N.J.

CIRCLE 105 ON READER-SERVICE CARD \rightarrow

After being blasted out of a shotgun into a telephone directory, these
International Rectifiers tested out to published specifications. Shock-resistant ruggedness like this is just one distinguishing feature of the reliability you can depend upon when you specify any International Rectifier.

* If you were wondering, they reached page 772 of the phone book. And if your curiosity about International Rectifiers goes even deeper than that, a note on your company letterhead will put you on our monthly Rectifier News mailing list.

INTERNATIONAL RECTIFIER CORPORATION

small encapsulated

 R.F.chokes100,000 to 1 Inductance range. Here is the widest range available $-0.1 \mu \mathrm{H}$ to 10 MH !
Miniature to subminiature slees. For example, a unit with an inductance of $100 \mu \mathrm{H}$ measures only .0122 cubic inches.
128°. - the operating temperature range of these units is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Excellont onvironmont foatures. ACDC chokes are epoxy encapsulated for resistance to moisture and immersion. All units are designed to meet MIL-C-15305A, Grade 1, Class B.
Do your applleation ongineoring with a minimum of experimental work. New technical and perform ance data including description of electrical para meters in Bulletin 125-A

Chokes now a vailable from stock
 ELECTRONICS, INC.
2979 N. Ontario St., Burbank, Calif. Nea nume fur NIT Electronics

NEW PRODUCTS

Inverter

Efficiency is $\mathbf{8 2 \%}$ at full load

This 2-kval static inverter has an efficiency of 82% at full load and of better than 77% at half load. Regulation is $\pm 2 \%$ from 30% of load to full load. A three-phase unit, it has no moving parts, vacuum tubes, or transistors in high current circuits. Silicon semiconductor elements are used. The output is a nearly perfect sine wave. The input voltage is 26 to 29 v dc and the output is 115 v ac $\pm 2 \%$. The power factor is unity to 0.85 . The inverter will supply 150% of rated current for 15 min and 200^{r} for 5 min . Designed for missile and aircraft use, it meets all the MIL-E-5272 requirements.
Kinetics Corp., Dept. El), 410 S. Cedros Ave. Solana Beach, Calif.

Microwave Cavities

441
For frequencies from 5925 to 7759 mc

These microwave cavities, tunable over a 10% frequency range, are available for frequencies from 592.5 to 7750 mc . They can also be designed for frequencies from L-band through Ku-band. When used with a waveguide discriminator, they control the frequency of transmitting klystrons to conform to FCC specs.
Portchester Instrument Corp., Dept. ED, 114 Wilkins Ave., Port Chester, N.Y.

As a thermocouple amplifier the new Type 1-102 eliminates ground problems. In strain gage applications the 1-102 prevents paralleling of active arms in bridge transducers. For data processing systems this DC amplifier prevents voltage drops caused by 60 -cycle current paths in poorly grounded installations. Not only that — the transistorized 1-102 provides 0.05% stability. WRITE for full information

Heart of the 1-102 is a totally shielded input module which guarantees high common-mode rejection through superior design.
instrument
corporation
2211 E. Foothill Blsd., Pasadena, Cullif

Offering a complete line of airborne and ground amplifiers and power supplies
CIRCLE 107 ON READER-SERVICE CARD ELECTRONIC DESIGN • December 9, 1959

Polystyrene Capacitors

454

Maximum drift is $\pm 0.1 \%$ These polystyrene dielectric apacitors have a maximum drift ,f $\pm 0.1 \%$ under long-term, fully rated operating conditions. The (alpacitance range is 0.002 to 5 uf at voltage ratings of 100 to 1000 wvdc. The operating temperature range is -55 to +85 C , and the dielectric absorption is 0.1% max. The dissipation factor is 0.02% at 1 kc , the temperature coefficient $-120 \pm 15 \mathrm{ppm}$ per deg C, and the standard tolerance $\pm 5 \%$.
Arco Electronics, Inc., Dept. EI),
64 White St., New York 13, N.Y.

Electromechanical Timer

455

Ranges are 100 to 1000 msec
Type TMC-PG-2 electromechanical timer is independently variable for both on and off time, with ontime ranges of 100 to 1000 msec and off-time ranges of 50 to 100 msec. This transistorized unit is designed for use with stepping motors and stepping switches, for sequence timing and as a high-power, squarewave generator. It is built for freerunning or triggered operation with a power requirement of 50 ma over an ambient temperature range of 55 to +125 C.
Timech Corp., Dept. ED. 13866 Saticoy St., Van Nuys, Calif.

Magnetic Amplifier

Furnishes 0 to 1 madc

Model 1533 magnetic amplifier furnishes 0 to 1 ma dc for ans signal input from 0 to 1μ a through 0 to $60 \mu \mathrm{a}$. The unit uses signals derived from a photo-multiplier thibe, thermocouple or other sensing device and drives an ink recording device. Ranges are overlapping to permit continuous adj 1 tment. Amplifier ranges can be si by adjusting the potentiometers. T eexcitation voltage is 115 v $10 \%, 60$ or 400 cps .
Lumen, Inc., Dept. ED. P.O. Box
M ; ; Joliet, Ill.
CIRCLE 108 ON READER-SERVICE CARD \rightarrow

IF INSTALLED-COST IS A DESIGN PROBLEM

Look at the KA general purpose RELAY

What do your relays cost installed? Initial cost is never the whole story.
Our KA Relays are engineered for modern production methods. They're available with printed circuit, taper tab, quick-disconnect or hook solder terminals . . . are simple, economical to install. This fact, combined with low original cost, keeps your total cost down.

Another source for savings! All standard KA ac relays bear U/L and Canadian Standard Association seals of approval.
Write or call for more information or see the complete $\mathrm{P}_{\&}$ B catalog in Sweet's Product Design File.

KA ENGINEERING DATA

GENERAL:

Insulation Resistance: 100 megohms min.
Breakdown Volloge: 1500 V . rms between
all elements.
Temperature Range:
$-55^{\circ} \mathrm{C} .10+85^{\circ} \mathrm{C} . \mathrm{DC}$
$-55^{\circ} \mathrm{C} .10+70^{\circ} \mathrm{C} . \mathrm{AC}$
Weight: 2.0 ozs.
Pull-In: DC 75% of nominal voltage
AC 78\% of nominal voltage.
Terminals: Toper tabs.
Printed cirruif.
Quick-disconne
Quick-disconnect.
Pierced solder lug:
Enclosures: Dust Cover
(max. 55° C. ambient for AC roloys) (max. $70^{\circ} \mathrm{C}$. ambient for DC relays)
CONTACTS:
Arrangements: 3 Form C (3PDT) max.
Material: Movable - $1 /{ }^{4}{ }^{4}$ silver; stationary -
呚" wide silver overlay.
Load: 5 amps (1) 115 V. AC 60 cps res
COILS:
Resistance: 16,500 ohms max.
Power: 1.2 woths (DC), 2 volt omps (AC)
Duty: Continuous AC or DC (DC coils will slond 4.5 watts of $25^{\circ} \mathrm{C}$.)

DIVISION OF AMERICAN MACHINE \& FOUNDRY COMPANY, PRINCETON, INDIANA
IN CANADA: POTTER \& BRUMFIELD CANADA LTD., GUELPH, ONTARIO

NEW PRODUCTS

DC Power Supply
Is rated at 40 kv at 1 ma

This de power supply is rated at 40 kv at 1 ma and 35 kv at 5 ma . The output is varied over the full range by varying the input. lipple is 0.5% per ma. The unit uses selenium rectifiers immersed in insulating oil. Filled with oil, the supply weighs 70 lb . Its dimensions are $10 \times 12 \times 11 \mathrm{in}$.
Del Electronics Corp., Dept. EI), 521 Homestead Ave., Mt. Vernon, N.Y.

Reversible Decade Counter
419
Rise time is less than $1 \mu \mathrm{sec}$

Applicable to industrial operations such as flow, tally, and computing, this reversible decade counter requires a positive input transistion of 2 to 3 v in amplitude with a rise time of less than $1 \mu s e c$ or a pulse greater than $0.25 \mu \mathrm{sec}$ in width. It operates at counting rates of 100 kc or better in either direction. The input pulse trains may be derived from a single source, or multiple sources for addition and subtraction. Isolated output signals are provided for driving external output devices such as printer drives, predetermined count detectors, and digital-to-analog converters. Binary coded decimal indication may be self-contained or separate in-line decimal indicators can be furnished. The components are

ELECTRONIC DESIGN • December 9, 1959

THE NEW BONDEZE ${ }^{\text {® }}$ WIRE FOR SELF-SUPPORTING COILS...PHELPS DODGE

Bondeze

A self-bonding wire-now with improved and added properties!

Improved in three important ways:

- Extra resistance of underlying film to temperature-pressure "cut-thru." Reduces shorts.
- Crazing negligible when solvent bonded.
- Underlying film gives better thermal life.
... and with this newly added property:
- Easy solderability . . . solders or dip-tins at low temperatures without cleaning or stripping. No damage to copper conductor.

Phelps Dodge S-Y Bondeze ${ }^{\text {© }}$ magnet wire bonds turn to turn with a single application of heat or solvent. This important property, combined with improved thermal characteristics and easy solderability, opens a new and wider range of applications for self-supporting coils or bobbin-less coils and windings.

Any time your problem is magnet wire, consult Phelps Dodge for the quickest, surest answer!

PHELPS DODGE COPPER PRODUCTS
CORPORATION

INCA MANUPACTURING DIVISION
FORT WAYNE, INDIANA
mounted on a card measuring $4-1 / 2 \times 8 \mathrm{in}$.
Victor Adding Machine Co., Dept. ED, Chicatgo 15.111 .
Neutron Detector Tube
Is photosensitive

Type K-1.578 nentron detector tube is used with standard multiplier phototube circuitry. It can be used as a quantitative detector and can differentiate between thermal neutrons, gamma radiation, and high speed neutrons. The cathode is a cascade type with a neutron sensitive coating deposited internally on the window. The tube is an end-window multiplier type having ten stages. Its diameter is 2 in .

Allen 13. Du Mont Labss., Inc., Dept. ED, 750 Bloomfield Ave., Cliften. N J.
DC Power Supplies
Provide 1000, 3000, and 5000 v

This line of de power supplies includes units which provide 1000,3000 , and 5000 v with current ratings at 2 ma. Required input is 10.5 to 125 1 ace, 6° or $f(0)$ cips. Line or load regulation is better than $\pm 0.5 \%$ and ripple is less than $1 / 6 \mathrm{rms}$. Units which operate from an input of 26 to 29 v dc are also available. Made for high voltage applications, including cathode ray indicators, klystron and microwatre tube powering, and scintillation counters, these power supplies employ static semiconductor designs.

Era Pacific, Inc., Dept. ED, 1760 Stanford St., Santa Monica, Calif.

GM

TACHOMETER-GENERATORS

Built to all applicable Government.Specifications.
In production-available for prompt delivery.

BuOrd Mark 12 Mod 0 SERVO MOTOR Tachometer Generator 115 volts / phase, 4500 RPM (min).

BuBnt Mark 16 Mod 0 SERVO MOTOR Tachometer

NEW PRODUCTS

Miniature Solenoid

Ac or dc type available

No. 28 Midget solenoid, ac or dc, intermittent or continuous duty, has over-all dimensions of $1-18 \times 1 \times 1-3 / 16 \mathrm{in}$. and weighs about 3.5 oz . It has a tapered plug and plunger for greater power. Plunger strokes are from $1 / 16$ to $1 / 2 \mathrm{in}$. with a lift of over 41 oz.
Guardian Electric Manufacturing Co., Dept. ED. 1621 W . Walmut St, Chicago 12, Ill.

Solenoid-Operated Switches

Hove up to five poles

Type MA-12-S solenoid-operated rotary switches provide for remote control of multiple circuits. Up to five poles, in a tap switch arrangement having 12 taps per pole, can be supplied. The solenoid coil is for de voltages from 6 to 230 v. Self-interrupting contacts as well as rectifiers for ac operation are also available. Insulation is molded alkyd type MAI-60 as per MIL-M-14E. The basic switch is designed to meet MIL-S-3786. The following characteristics are supplied to meet customer specifications: pulsing method, frequency of operation, number of operations, and ratio of energized time to de-energized time.

Electro Switch Corp., Dept. ED, 167 King Ave., Weymouth 88, Mass.

ACTUAL SIZE! . . O.8 V.C.O. All-silicon ACTUAL SIZE! ... 0.8 V.C.O. All-silicom
transistors. Circuit design offers extransistors. Circuit design ofiers ex-
cellent stability and linearify. Available in all standard RDB chonnels. In can or card configuration.

A. 25 RF Power Amplifier; 25 w output with 2 w or less input drive. 21/4
high by $5^{\prime \prime} \times 31 /{ }^{\prime \prime}$ plus connectors high by 5 . $3^{3 / 4}$ plus connectors.
PS-31 Power Supply and TR-4 and PS-12A Transmilters also have this configuration.

TMs-106, 10-channel, tube-type sys-Tems-106, 10 -channel, fube-type sys 25 watts outpuf, typical of the airborne package dosign ability The airborne package design abilin from Dorseft

For your felemeiering requirement, whethe missile, aircraft, drone, or balloon, DORSET provides proved facilifies for accurate evaluation, intensive research, rapid adaptation and final production.
Geared to meet quantity demands, DORSETT is still able to keep vital engineering liaison on a close, progressive basis. Specifications on standard felemelry components and typical systems available

DORSETT Electronics
Laboratories, Inc.
Box 862 Norman, Okla. CIRCLE 111 ON READER-SERVICE CARD ELECTRONIC DESIGN - December 9, 1959

Amazing, New, High Inductance

The R.F. Choke that's so small you can pack 200,000 to a cubic foot

Tiny, new, WEE-DUCTOR covers a full range of inductances from $0.10 \mu \mathrm{H}$ to $56,000 \mu \mathrm{H}$ yet it measures only $0.157{ }^{\prime \prime} \times 0.375^{\prime \prime}$
Unique ferrite sleeve and core construction provides 560,000 to 1 inductance range in a tiny package . . . and yet when assembled side-by-side, exhibit less than 2% coupling.
Essex WEE-DUCTORS are available immediately from stock. WEE-DUCTORS are the latest addition to Essex's broad line of Standard R.F. Choke Coils.
Essex Electronics Standard Line of R.F. Chokes

Essex	OUCETOR	${ }_{\text {RFC- }}^{\text {S }}$	RFC-	$\xrightarrow[L]{\text { arc- }}$
$1 \times \mathrm{H}$	1.56,000	.1-100	1.0.1,000	1.0-10,000
Mur. Res. n	. $035-499$.02-6.0	.04.21	.03-80
$1 \mathrm{max}$.	3000-26	$4000-220$	2700-125	4000.80
Dia.	. 157	. 188	. 250	. 310
Leng! 1 n	. 375	. 440	. 600	. 900

WRITE TODAY ree Descriptive Literature Available

EISSEX ERECTROMICS

 NETSONECS.SNC.) Springfield Ave., Berkeley Heights, N. J. CRestview 3.9300
C PCLE 112 ON READER-SERVICE CARD

These dual potentiometers have diameters from $7 / 8$ to 3 in . and are $53 / 64 \mathrm{in}$. thick. They are precision single-turn units with linearity to 0.05%, low torque, and a life in excess of $2,000,000$ operations. They operate to 150 C and have good electrical characteristics with a resistance of 200 K . Made to meet Mil specs, they are gangable to 30 units. A sixed-ganged unit is shown here.

Me-Mar Electronics Corp., Dept. ED, 2176 E. Huntington Drive, Duarte, Calif.

Magnetic Tape Tensiometer
443 For $1 / 2$ and $1 / 4$-in. tapes

Designed to measure and record steady-state and transient tensions of magnetic tape during use in tape recorder transports, model K-44 magnetic tape tensiometer handles $1 / 2$ and $1 / 4 \mathrm{in}$. tapes. The tensiometer may be inserted at any point in a tape path having a clear area of $3 / 4 \mathrm{x}$ $3 / 16 \mathrm{in}$., and a minimum clearance between the recorder deck and the inner tape edge of $1 / 4 \mathrm{in}$. The instrument has a useful range to 8 lb . When properly installed and balanced, the tensiometer has a useful dynamic range of better than 60 db . The instrument responds to tension transients having rise times of 1 msec or less.

General Kinetics, Inc., Dept. ED 555 23rd St. S., Arlington 2, Va.

Dual Potentiometers

[^4]
Tenobltés high temperature CABII CAPABIIITIILS "nt tom Print to Product

Complex 250 deg. C cable assemblies such as this one -involving over 150 Teflon ${ }^{(i n}$ insulated conductors -are typical of work Tensolite is doing in this exacting field. Our design engineers have the practical experience to work with you in translating your requirements into highly reliable jumbo cables and cable assemblies. Tensolite specializes in cables utilizing high temperature hook-up wire (large and small), coaxial cable, air dielectric coaxial cable, shielded and jacketed multiconductors - or any combination of these. And, we manufacture all cable components in our own plants your assurance of uniform high quality.
Many leading aircraft and electronic manufacturers are taking advantage of Tensolite's cable design and production facilities. We'd like to work with you on your cable problems. Contact your local Tensolite representative or write to:

Texpothe

insulated wire co., inc.
Asubaialary or carnule corporaction

CIRCLE 113 ON READER-SERVICE CARD

Static Inverter

For airborne use

Designed for airborne use, model 4312500 -va static inverter has special sealing for high altitudes. Operating from 28 v dc, it produces both single and three-phase power. Single-phase voltage output is regulated to $\pm 5 \%$ for input and load changes. A phase adapter converts some of the single phase output to three-phase power for operating gyros. The frequency regulation is $\pm 0.1 \%$ and the maximum harmonic content is 5%. The unit measures $5 \times 8 \times 10.5 \mathrm{in}$. and weighs 15 lb .
Varo Mfg. Co., Inc.., Dept. EID, 2201 W:alnut St., Garland, Texas.

Peak Accelerometer
With ranges to 1000 g

Designed to measure true peak gravity in shock and vibration tests, this accelerometer has four ranges for accelerations to 100() g . A barium titanate transducer is connected to an amplifier and an indicator unit. It retains the peak reading for 15 sec for shock measurements, or follows peak acceleration reading when the instrument is measuring vibration. The instrument has a 3.5 -in. meter with a mirror scale and a knife-edged pointer. Dimensions are $13.25 \times 10.25 \times 6.5$ and the weight is 15.75 ll .

Ferranti Electric Inc.., Electronics Div., Dept. ED, 95 Madison Ave., Hempstead, L.I., N.Y.

POWER...IN THE SPAN OF A MAN'S HAND..

This remarknbly small 1 KW linear power amplifier (entire unit is approximately the size of an $81 / 2$ cube) was developed by the Communications Division of Hughes Aircraft for the U. S. Air Force B-58 bomber.

With a blend of 3M Company's FC-75 and FC-43 as a dielectric coolant, the amplifier provides all the high-power output required by this huge aircraft's HF communications system, yet withstands all military environments at temperatures from $-55^{\circ} \mathrm{F}$. to $+200^{\circ} \mathrm{F}$. Here's why: the circuitry of the amplifier is immersed in this non-corrosive, non-flammable inert fluid which protects it against internally generated heat through a highly efficient evaporative
cooling process.There are no hot spots, and a uniform temperature is maintained throughout.
By using FC-75 and FC-43 in this way, Hughes Communications Division engineers were able to achieve a "compression in volume of a factor of 6 " when developing this amplifier for use in an area where space is at a premium. Other areas of application now under investigation include submarines and ground base systems.
Why not investigate the remarkable properties of 3 M Inert Fluids in terms of your product design, miniaturization or performance problems? For complete data, write: 3 M Chemical Division, Dept. KAP-129, St. Paul 6, Minn.

CHEMICAL DIVISION
DUINEESOTA DGINING AND MLANUFACTURING COMPANY

Grid Dip Meter Kif

Covers the range of 1.5 to 300 mc in six overlapping ranges. Called Kinight-Kit model G-30, its applications include adjusting wave traps, proming antennas to proper length, detecting parasitic oscil lations in transmitters, and modulation monitoring It operates from 110 to 120 v ace, 50 or 60 eps.
Allied Radio Corp, Dept, EID. 100 N. Westem Ave., Chicago 80, III.

Volt-Ohm Meter

385
No. 8.3 Y 708 Knight-Kit reads in 1.3 ranges at a sensitivity of 1000 ohms per v dc. Ranges are: 0 . 5 , $15,50,1.50$, and 500 vdc; $0,15,50,150$, and 500 v ac; $0,1,10$, and 100 ma de; and 0 to 30,000 ohms. Supplied with battery and test leads, the unit is portable.
Allied Ratdio Corp., Dept. ED, 100 N. Westem Ave., Chicago 80, Ill.
c. 43 IS PRESSURE TRANSFER MEDIUM IN statham transoucer Statham Instruments, Inc., Los Angelez, California, uses 3M Brand Fluorochemical Inert Liquid FC-43 in a transducer which measures differential line pressures of corrosive media. The stainless steel transducer contains FC-43 enclosed between two diatains phragms aga 12 's high bulk modulus forced. FC-43' his bulus weight per unit volume) helps in accurate measurement of bi-directional pressure of this medium in the presence of high line pressure. FC-43's thermal stability allows ransducer to be used in a temperature range of $-40^{\circ} \mathrm{F}$. to $+200^{\circ} \mathrm{F}$. And, it does not affect metals used in the construction of the transducer

FC-75 COOLED!

3M CHEMICAL DIVISION, MANUFACTURERS OF: ment has an accuracy of $=2 \%$ full scale. Torque readings are inclependent of shaft speeds from 50 to $24,000 \mathrm{rpm}$.

Metron Instrument Co., Dept. ED, 432 Lincoln St., Denver 3, Colo.
OILS, WAXES AND GREASES
dersion coatings

- FU ETIONAL FLUOROCHEMICALS
- SUl factants
- an inert liquios

No multiple relay contact arrangements

Octal or decimal configurations
Units can be stacked to form complete keyboards

THREE STANDARD MODELS -
DS-1 Ten button decimal bank with
$1-2.4 .8$ binary oulput contacts
OS-1 Seven butten octal bank with 1.2 .4 binary output contacts
os-2 Seven-button octal bank with-$1-2.4$ binary output contacts plus a single pole double throw switch
coupled to the zero (clear) pushbutton Special code arrangements available on request.

Have thin, optically-coated coverglass. They are claimed to provide optimum reflection properties and high thermal emissivity.
International Rectifier Corp., Dept. ED, 1521 E Grand Ave., El Segundo, Calif.

Torquemeter

424
Measures torque from several shafts on the same indicator. Up to five torque pichup heads are used. Covering the range of 0.1 to 500 oz-in., the instru-
direct conversion to Octal or BCD
with CODE BAR
-patent pending

Write for 4 -page
color bulletin CBS-1

Transistorized Interval Timer

Type 308 has heavy-duty dpdt control contact rated for 15 amp at 115 vac a 10 amp at $2: 30 \mathrm{v}$ ac, and 4 amp at 115 v dc. Made for industrial use, it requires no warm up time and mounts in a 3-3,16in. diam panel cut-out
Automatic Timing and Controls, Inc., Dept. ED, King of Prussia, Pa.

Electronic Thermometer

422
Provides direct readings in deg F and has push button selection of 12 ranges from -425 to +800 F Accuracy is $1 / 2$ deg F over most of the range. Power supply can be a self-contained C battery or a 110 v ac 60 cps source. The instrument weighs 12 lb and measures $10 \times 9 \times 6 \mathrm{in}$.

Trams-Sonics, Inc., Dept. ED, Burlington, Mass.

Silicon Solar Cells

23

SWITCHES*

SPECIALISTS IN DIGITAL ENGINEERING CIRCLE 115 ON READER-SERVICE CARD

underseas or
in outer space.

(G)
 comnectronics guarantees reliability

GENERAL DYNAMICS' Electric Boat Division specifies Gremar hull antenna fittings for our latest atomic powered, POLARIS armed, missile subs: George Washington and Patrick Henry. Why Gremar?
*BECAUSE GREMAR CONNECTRONICS ${ }^{\text {TM }}$ concentrates engineering, production and quality control on RF Connectors only ... guarantees 100% conformance to your most exacting specs.
BECAUSE GREMAR DELIVERS . . . by stocking America's most complete line of RF Connectors and Fittings ... by maintaining a shelf stock of more than 500,000 assembled units . . . of over 2,000 types . . . and 4,000,000 component parts ready for fast assembly!

SPECIFY GREMAR for top-level reliability and performance in RF Connectors. Write for literature on any series of standard RF Connectors or send us your specs on special requirements.

Helium mass spectrometer leak test performed on critical hermetic seal problems can detect a leak that
would pass only 1 oz. of fluid in 500 would pass only 1 oz. of fluid in 500
years! Just one of 142 separate yuality checks performed to make Gremar RF Connectors specifed for use in all major missile programs.

GREMAR
RELIABILITY THROUGH QUALITY CONTROL CIRCLE 116 ON READER-SERVICE CARD

NEW PRODUCTS

DC Power Supply
Ripple is $\mathbf{1 0 0} \mathbf{m v}$ rms max

Model KM75B power supply has a ripple of 100 mv rms max throughout the range of 0 to 32 v dc and 0 to 5 amp . Input is 115 v ac, 60 cps , singlephase. The voltage regulation provides a maximum change of 3 v when the load current changes from 0.5 to 5 amp .

Opad Electric Co., Dept. ED, 43 Walker St., New York 13, N.Y.

Paper Tape Perforator

Operates at 60 characters per sec
Designed to accept tape of varying widths up to 8 channels, this tape perforator punches tapes at rates of 60 characters per sec. It prepares tape from keyboards, tape reproducers, digital counters, and digital data handling systems. Two models are offered: model 420PF panel-mounted unit for fan fold tape handling, and model 420PR which uses reels.
Tally Register Corp., Dept. ED, 5300 14th Ave., N.W., Seattle 7, Wash.

Shift Register

Has 3 inputs and 8 outputs

Model 18014 -stage shift register has 3 inputs and 8 outputs and may be cascaded to form a multistage shift register. The unit replaces 4 standard flip-flop units.

Harvey-Wells Electronics, Inc., Research and Development Div., Dept. ED, E. Natick Industrial Park, Natick, Mass.

ARNOLD TOROIDAL COIL WINDER

sets up quickly...easy to operate takes wide range of wire sizes

SPECIFICATIONS:

- Min. finished hole size: 18 in. - Max. finished toroid O.D.: 4.0 in -Winding speed: 1500 turns/min - Wire range: AWG 44 to AWG 26 Dual, self-checking turns
counting system
Loading (wire length) counter
to $11 / 2^{n}$ high
includes all rings, counters and accessories
immediate delivery. literature on request
ARNOLD MAGNETICS CORP. REpublic 1-634
CIRCLE 117 ON READER-SERVICE CARD

Small
Custom
Thermosetting Parts
in Quantities of 50 to 200,000 at low cost

Development of a unique automatictransfer press, permitting a simplified mold design and greatly reduced mold cost. has exploded the high cost of small run, 50 to 200.000 parts are economically produced.
Precise control of the molding cycle permits closer than normal tolerances. This low cost molding operation, combined with specialized secondary equip. ment for drilling, tapping, insert assembly, erc. will give you economical custom-built components.

Request complete information
 SNOOLDTBONJS5, me SGS hlllgrove avenue - la grance, numois • P.o. bex 37 CIRCLE 323 ON READER-SERVICE CARD ELECTRONIC DESIGN • December 9, 195
ncicator Lights
eon and incandescent types

Type 1BG1, 3, and 4 neon and ype $1 \mathrm{BF} 1,3$, and 4 incandescent amps are available with round and with short or long flat lenses. The incandescent lamps are rated at 2.5 to 30 v . The neon units may have encapsulated resistors and can be supplied with or without insulated leads. All types mount in a 0.316 -in. diam hole in panels with up to $1 / 8$ m. maximum thickness.

Eldema Corp., Dept. ED, 1805 Belcroft Ave., El Monte, Calif.

Frequency Meter and 457

Counter

Has time periods of $0.1,1$, and 10 sec
 -O○○ \bigcirc

For production or laboratory use model WE-120L frequency meter and counter has time base periods of $0,1,1$, and 10 sec . It has a maximumı sensitivity of 75 mv over the range of 10 to $100,000 \mathrm{cps}$. Stahilit: is $\pm 0.001 \% \pm 1$ count. The hnit has a variable display time of 1.5105 sec . It uses cold-cathode tleca le glow transfer tubes for both digit ,l presentation and digital divisio, of the 100 -kc crystal controll 1 time base frequency. For fon ting on a 5-1/4 x 19 in . rack, he nit is $6-1 / 2 \mathrm{in}$. deep. Model
TE. 20 measures $6 \times 11 \times 9 \mathrm{in}$. and s pi table.
II stport Electric, Dept. ED, 149 - Lon a St., El Segundo, Calif.

SMALL APPETITE NOISE SOURCES

service-proved and available now

I ntil recenth signal simulator- for momitoring radar receivers or microwave relays were of (wo Iypes. One was a biy and heavy ampere eater with cumbersome auxiliary equipment; and the other was a sensitive though delicate instrument suitable only for the latoratory.
We call vour attention now to the Litton 2000 series of miniature gats noise sources. The Litton 2000 for wavequide use is pietured above. It has a first cousin. the Litton 200^{-} designed for coavial cable use. We call your attemtion because most tubes in this series are now in production and we suspert there are frustrated design engineers who will receive this ammonncement with heen interest.
Our gas noise sources may properly be called miniature Tluey reguire only inches of space. smaller. liphter ausiliary "quipment. and small voltagres and currentw. Around 500 volt- fires them: 100 milliamperes maintains them. These chararteristics, plus others, have raused them to find numer ous applications: for in-flight calibration and test of aircraft
microwave recreivers: as antomentic watelndogs on airborne radar systems: and in other systems which require various immunitios to vildration, shock, humidity, and temperature rycling.
The Litton family of miniature gas noises sources, like all Electron Tube Division productis. was designed to solve eperefife cond item functions. Wre have found that this philose ophy contributes to comsiaternt reliatility: tubers do their jobs more efliciently, for longer periods of times, and at lower overall cost to the huyer. Other advantages also resilt. For example, these noise sources require no ageing-in and the $\mathrm{I} .-2(00)$ is replaceable in the firld without changing the monnt.
Sperific frequency ranges in L., S. C. X and K bands are covered. If you are concerned with radar transmission, or with microwave data links of any hind, we ll gladly send you more information. Write to Litton Industries Electron Tubis Division, Salt Lahe Plant, Office E2-, Salt Lahe City 10. Utah.

[
LITTON INDUSTRIES EIeciron Tube Division

CAPABILITY THAT CAN CHANGE YOUR PLANNING

NEW PRODUCTS

Pump Motor

Sizes are 0.5 to 5 hp
Made in sizes from 0.5 to 5 hp , this stainless steel canned pump motor handles nuclear contaminated, highly corrosive, and highly volatile liquids. Typical characteristics for the $0.75-\mathrm{hp}$ motor are: rated speed, $1100 \mathrm{rpm} ;$ voltage, 220 v , three-phase; efficiency at full load, 60%; locked rotor torque, 180% at full load; and maximum breakdown, 250% of full load.
H. K. Porter Co., Inc., Pecrless Electric Div., Dept. ED, Warren, Ohio.

Blower

Delivers 51 cfm free air
Model BT2910B high pressure blower delivers 51 cfm of free air at 7.6 in . of water SP. It operates over the temperature range of -55 to +85 C and meets Mil spers for humidity, salt spray, sand, dust, shock, and viloration. Operating speed is $11,250 \mathrm{rpm}$ and input is 85 w at 0.33 amp . The standard unit is designed for an input of $208 \mathrm{v}, 400 \mathrm{cps}$, three-phase; a 115 v , 400 cps , single-phase unit is also available. The temperature range may be extended to 12.5 C . Weight of the unit is 3.1 lb .
Induction Motors Corp., Dept. ED, 570 Main St., Westhury, L.I., N.Y.

Circuit Breakers

Provide tripping action in 25 msec
Series 500-1 electromagnetic circuit breakers provide tripping action in 25 msec on overloads of 150% of rated current. Having current ratings of 50 ma to 10 amp , the units are miniature and hermetically sealed. Designed for use at 50 v de and 120 v ac rms max at 40 or 400 cps , they can be supplied in ganged assemblies to automatically trip two or three circuits when an overload occurs.

Airpax Electronics Inc., Cambridge Div., Dept. ED, Cambridge. Md.

Here is Aldrich Zmeskal, Manager of Balloon Engineering, observing the launching of another General Mills balloon -one of thousands which we and our customers have flown in the past few years. This routine flight was for the

purpose of obtaining samples of radioactive material from the stratosphere. Through our balloon research projects, we have amassed a considerable fund of knowledge valuable to future space flight.

General Mills know-how can help today

The Mechanical Division provides "floating laboratories," balloons carrying heavy payloads of equipment-and even men-to altitudes above 95\% of the earth's atmosphere. This is a relatively easy and inexpensive way to obtain the knowledge which will enable man to travel in space.
Our many research activities cover broad areas in physics, chemistry, mechanics, electronics and mathematics. Some of the
studies representative of these activities are: ions in vacuum, deuterium sputtering, dust erosion, magnetic materials, stress measurements, surface friction and phenomena, trajectory data and infrared surveillance.
In our engineering department, current projects include: specialized inflatable vehicles and structures, airborne early warning systems, micro wave radar test equipment, antennas and pedestals, infrared and optics,

Manned vehicle refueling in space. . illustration from book written for General Mills by Willy Ley.

to make space travel a fact tomorrow

nertial guidance and navigation, digital - omputers-and many other activities.

Jur entire manufacturing department is eared to produce systems, sub-systems and ssemblies to the most stringent military equirements. Our people have a wealth of
experience in the most complex military projects.

Write for free booklets: (1) Complete research, engineering and manufacturing capabilities of the Mechanical Division (2) New booklet on General Mills balloons.

MECHANICAL DIVISION

1620 Central Avenue, Minneapolis 13, Minnesota
General
Mills

Silicon Rectifiers

Are rated at 13.5 amp at 25 C
Type 21 silicon power rectifiers are rated at 13.5 amp avg at 2.5 C on a $3 \times 3 \times 1 / 16$-in. copper sink. The piv range is 50 to 400 v , in steps of 50 v : Typical forward dynamic resistance is 0.009 ohms.
Syntron Co., Dept. ED, Homer City, Pa.

FM Signal Generator
 464

Covers 1300 to 2500 mc

Developed for telemetry and data transmission applications, model 20113 fin signal generator covers the frequency range of 1300 to 2500 mc in one band. Having a 1% deviation lincarity, it can be frequency modulated by applying external signals with modulation bandwidths to 500 kc . A nominal deviation of 2 mc , peak-to-peak, is made by externalmoclulation signals having an amplitude of 1 r : peak-to-peak
Sierra Electronic Corp., Dept. ED, 3885 Buhannon Drise, Menlo Park, Calif.

Vibration Tester

Operates at 420 to 1200 rpm
Used to determine errors in vibrating assembled products as they come from the production lines, type $400-\mathrm{U}$-SP vibration tester operates at a fixed displacement of $1 / 8 \mathrm{in}$. in the speed range of 420 to 1200 rpm .
The vibrations delivered will dislodge solder splatters, separate poor electrical connections, and detect improperly tightened fasteners. Uses include testing radio and TV assemblies, instruments, and electronic equipment.
L. A. B. Corp., Dept. ED, P.O. Box 278, Skaneateles, N.Y

To be really sure of getting your pot deliveries on time, you could assemble your own! But just when you' re counting on sub-contractors to deliver the necessary parts - you might find they're tied-up on someone else's job! So if you must be sure, lay in a good supply of raw materials in quantity lots - metals, glass, wire, plastics, bearings -the works!

But before you load up the living-room with bar stock, check with Ace. You'll find. to your relief, that Ace abundantly warehouses all their own raw materials - just for the express purpose of being able to make everything they need - when it's needed, for controlled delivery! So if delivery of precision pots is a prime consideration. talk to the company that does its ourn sub-assembly manufacture - see your Acerep!

From raw materials to completed pot - within the plant - our servo-mount A.I.A. size $7 / s^{\prime \prime}$ ACEPOT®. As with all the others, from $1 / 2^{\prime \prime}$ to $6^{\prime \prime}$.

ACE
electronics associates, inc. 99 Dover Stroct, Somerville 44, Mass.
SOmerset 6.5130 TMX SMVL 181 West. Union wux

Acopot(R) Acotrime Acesolit Accoonm (R) Rog. Appl. for CIRCLE 120 ON READER-SERVICE CARD

NEW PRODUCTS

High-Vacuum Pumps

466
Produce vacuums below $1 \times 10^{-9} \mathrm{~mm} \mathrm{Hg}$
Able to produce clean vacuums below 1×10^{-9} mm Hg , the 150 series of vacuum pumps weigh 1.3 lb , including magnet, and measure $6-1 / 4 \times$ $7-3 / 4 \times 5$ in. For such applications as vacuumtube processing and thin-film work, they have a pumping speed of 5 liters per sec. Model 150E has a pumping speed of 10 liters per sec and contains a replaceable multifilament evaporator which permits the injection of additional titanium.

Ultek Corp., Dept. ED, 920 Commercial St., Palo Alto, Calif.

Telemetry Antenna
467
Covers 216 to 260 mc

This circularly-polarized, omni-directional telemetry antenna covers 216 to 260 mc . For both transmitting and receiving, it has an impedance of 51 ohms and less than 2:1 vswr. For airborne applications, the antenna is supplied with a fiberglass radome measuring $1 / 8 \mathrm{in}$. thick. It is suited for ground use as well.

Dynatronics, Inc., Dept. ED, Box 2566, Orlando, Fla.

Converters

Replace dynamotors

These transistorized dc to dc and dc to ac converters replace dynamotors in both military and commercial equipment. The input voltage is 22 to 30 v dc. Input current is less than 25 amp . The output voltage is 1000 v dc at 0.5 amp or any ac voltage with 1500 w max power. The operating temperature is -55 to +85 C . Ripple is less than 6 v rms and regulation is 14% max from zero to full load. The units withstand an overvoltage to 34 v dc for 5 min . Operation life is better than 2500 hr continuous duty.

The Daven Co., Dept. ED, Livingston, N.J.
a measuru of
peprecton.
IDEAL
RECISION

Panel Meters

the complete line for every application

Here's the demand line that's setting sales records across the nation .- engineered and produced to the highest standards . . . assembled in controlled atmospheric and climatic conditions . . . 100% inspected at highest quality and dependability.

- Accurate to within 2% of full scale
- All sizes and types available
- Scales to customers specifications

> For complete information on the Ideal line of precision-made panel meters, write to

ELECTRONIC DESIGN - December 9, 1959

METAL FILM RESISTORS

NEW: This preeislon low nolso motal

 Indepencent of resistaneo railes.
Standard toleranee pils er minis Standarct toleranee olss of minns
1 per cont. Type $W H M-1.125^{\prime \prime}$ long. $\begin{gathered}x .406^{\prime \prime} \\ \text { equivaliant to mil stylo RM } \\ 75\end{gathered}$ equivalent to MIL Style RM
75. max mum roltage rating
soov. Iym wiAn
 long $\times .250^{\prime \prime}$ diam.
equivalent to mil style equivalent to MIL Style
RM 70 , maximum voltage rating 350 V -

 roteet ureelsion
rps

RESISTANCE PRODUCTS OOMPANは
914 5. 13 58. Wio Wound - High Yollage - Hight Megel Presion Frequoncy. Our test equipment ond stiondards for chorking end celibrating ere metched only by leading laboratorises. Write for mers information.

HIGH MEGOHM RESISTORS

Epoxy Resin Equipment

For potting coils and assemblies
Called the Auto-Kez-Mixer, this unit proportions, meters, mixes, and dispenses multicomponent reactive resins. Sharp cut-off of highly viscous or filled resins is provided, adjustable meas ured shots are dispensed on signal, and short pot-life resins can be easily handled.
C.P.M. Special Machinery Corp., Dept. ED. 32 4 Butler St., Brooklyn 17, N.Y.

Delay Lines
Delay time is 0.05 to $10 \mu \mathrm{sec}$

Type 18H and 18L lumped-constant delay lines have a delay time of 0.05 to $10 \mu \mathrm{sec}$. Delay tolerance is $\pm 3 \%$ or $\pm 0.01 \mu \mathrm{sec}$ and rise time is 20% to 25% of delay time. Made to operate over the temperature range of -65 to +125 C , they have a temperature coefficient of delay of 0.005% per deg C. Offered in both high and low impedance types, they are designed for excellent pulse performance and for linear phase shift vs. frequency characteristics. Having leads of No. 22 gage wire and spaced on a $0.1-\mathrm{in}$. grid, the delay lines are to be plugged into printed circuit boards and dip-soldered into place. Test voltage is 600 vdc , working voltage is 300 v dc, and pulse voltage is 300 v peak. Epoxy resin construction is used and requirements of MIL-STD-202A are met.

Artronic Instrument Co., Dept. ED, 11232 Triangle Lane, Silver Spring, Md.

Silicon Rectifiers

Provide to 240 amp
Type 439 silicon power rectifiers provide up to 240 amp of forward current per cell with maximum piv ratings up to 600 v . The maximum reverse leakage current is 50 ma at rated piv. For operation to 190 C at the junction, they have solid copper bases and are a maximum of 3 in . long. A $3 / 4$-in. stud permits mounting the cell in any position.
Westinghouse Electric Corp., Dept. ED, P.O. Box 2088, Pittsburgh 30, Pa.

PRECISE COAXIAL TUNERS

TUNE TO VSWR $1.000_{200.5000 \mathrm{mcs}}$

MAKES YOUR LOAD A REFLECTIONLESS TERMINATION
DESIGNED FOR USE whenever extremely accurate RF power terminations are required. This laboratory type Coaxial Tuner will tune out discontinuities of 2 to 1 in coaxial transmission line systems or adjust residual VSWR to 1.000 of loads, antennas, etc. May also be used to introduce a mismatch into an otherwise matched system.
M. C. JONES COAXIAL TUNER is designed for extreme ease of operation, with no difficult laboratory techniques involved. Reduces tuning time to a matter of seconds. Graduations on carriage and probe permit resetting whenever reusing the same termination.

```
SPECIFICATIONS
Frequency Range 
pf Connectors
Power Rating
Range of Correction \/ l\WWatls high as 2 may be reduced to a volve of 1.000
```

FOR MORE INFORMATION ON TUNERS, DIRECTONAL COUPLERS, R. F. LOADS. ETC., PLEASE WRITE TO
M. C. JONES ELECTRONICS CO., INC.

185 N. MAIN STREET, BRISTOL, CONN.
SUBSIDIARY OF
 RCLE 122 ON READER-SERVICE CARD EL CTRONIC DESIGN • December 9, 1959

WHAT DID HAPPEN IN DESIGN IN THE FIFTIES?

READ the Dec. 23rd issue of ELECTRONIC DESIGN for the review of electronic progress in the fifties. This inclusive coverage shows the industry's growth, new develop. ments, controversies - all summarized to keen
you informed of the field. Highlights include: the birth of scatter communication systems; how industry met the need of better and reliable components, power supplies and other devices; a photo comparison of 1950 product models with 1960 models.

WHAT WILL HAPPEN IN DESIGN IN THE SIXTIES?

WATCH for the Jan. 6th issue of ELECTRONIC DESIGN. Covered for you are industry's pre. dictions for the coming decade, the problems that will te faced and suggestions to deal with these problems. Top industry men will forecast the developments and changes in design, the designers' problems, and the changes in the designers' role in the sixties.

For a review, for a preview-read ELECTRONIC DESIGN. And for complete design coverage, read every issue of ELECTRONIC DESIGN.

NEW PRODUCTS

Diode

Germanium alloy type
Type 1N2326 germanium, alloy-junction diode is designed to compensate for the effects of temperature and supply voltage changes in the operation of class B push-pull af power amplifiers. The diode matches such transistors as types 2N217, 2 N 270 and 2 N 408 . It withstands input variations up to $\pm 40 \%$ and ambient temperature changes within the range of -20 to +71 C. Sealed in a metal case, the diode has a length of 0.405 in . and a diameter of 0.24 in .

Radio Corp. of America, Semiconductor and Materials Div., Dept. ED, Somerville, N.J.

Voltage Comparator

476
Has go/no-go indication

For automatic component testing, system checkout, or process monitoring, type DLI-205 dc voltage comparator has go no-go indication. Operating time is 20 msec and absolute accuracy is 0.1%. The input voltage range is $\pm 1 \mathrm{mv}$ to $\pm 100 \mathrm{v}$. The power requirement is 11.5 v at 60 cps .

Electro Precision Corp., Dept. EI, P.O. Box 669, Arkadelphia, Ark.

Pressure Switch

Life is 100,000 cycles

Type 95000 pressure actuated switch incorporates a snap action switch mechanism that is actuated by a piston, spring loaded against the pressure system. High overload pressure will cause complete close-off to protect the switching element. The switch has a life operation of 100,000 hr . Suitable for aircraft and missile use, it is applicable in systems having to 4000 psi . The weight is less than 7 oz .
Hydraulic Research and Manufacturing Co., Dept. ED. 28.35 N . Naomi St.. Burbank, Calif.

JOHNSON MINIATUR CAPACITORS Compact Design! Rugged Construction

Save valuable space in RF equipment...

Johnson ministure and sub-miriature air vanuble capacitors are available ill a wide range of sizes, types, and capacitics- ner-
fect for use in compact RF applicatio:1s. The 3 types described below have soldered plate construction, oversize bearing, and heavily anchored stator supports to provide extreme rigidity. Inductance path to both stator supports is extremely low with bridge-type
stator terminal. Large compression rotor contact provides steady torque-rotor stays "put" where set. Rotor contact and all other metal parts are nickel-plated-stcatte in-
sulator is DC-200 treated. sular is DC-200 treated.
SUB-MINIATURES-In addition to the miniature air variables described below, the new
Johnson Type "T" and "U" sub-miniature capacitors are also available in production quantities. Write for our new components catalog 978 listing complete specifications

TYPE "M" - Peok voltoge 1250 volts on 017^{\prime} plate
spacing; 850 volts on 013^{\prime} spaced units. Shat sloted for fost srewdriver odiustmant-mounting buenhing Threaded with Aats to provent furning - mounting nut following footurses: locking beoringsi, 180° stop; vari-
 ings. Single
available.
TYPE "S""-Midway in physical size betwoen the Type "M" and "K" copacitors, the Type "S" hat of
olote spocing of 013 " with a peak voltage rating of 850 volts. Other spacings, single hole mount ing types,
straight shaft, sce awdriver shoft, or locking type krowdriver shaft ovaitoble on special order in production

TYPE "K" - Widaly used for many military and commercial applications, the Type " K " has a peot voitag: ratine of 1000 volts with o plate spacing of . 1 meot Mil-C. 922 A specifecations-other copacities and vari tions for spocializod militory and commercial applic
fiom ore also available in production quantitios.

New Catalog
For detailed specifications, including engineering drawings. on Johnson miniature and sub-
miniature capacitors, as well as
other other Johnson electronic com-
ponents. write for your free copy of our new
catalog No. 978 .
E. F. JOHNSON CO.

1920 Second Avenue S.W. - Woseco, Mint CIRCLE 124 ON READER-SERVICE CARD care and feeding
DOUGLAS AIRCRAFT COMPANY mISSILES AND SPACE SYSTEMS
has immediate openings in the following fields-

Electrical and Electronics:

Control System Analysis \& Design
Antenna \& Radome Design
Radar System Analysis and Design
Instrumentation
Equipment Installation
Test Procedures
Logic Design

Mechanical Engineering -

 Analysis and Design of the following:Servo Units
Hydraulic Power Systems Air Conditioning Systems Missile Launcher Systems Propulsion Units and Systems

Aeronautical Engineering:
Aerodynamic Design
Advanced Aerodynamic Study Aerodynamic Heating Structural Analysis
Strength Testing
Dynamic Analysis of Flutter and Vibration
Aeroelasticity
Aeroelasticity
Design of Complex Structure Trajectory Analysis
Space Mechanics
Welding
Metallurgy

Physics and Mathematics:

Experimental Thermodynamics General Advanced Analysis in all fields
Computer Application Analysis Imputer Programming and Analysis
3thematical Analysis
Fc full information
w. ee to

Mi C. C. LaVene
Bo: 601-E
Do şlas Aircraft Company, Inc.
Sal a Monica, Calif.

The care and feeding of a
missile system

It takes more than pressing a button to send a giant rocket on its way. Actually, almost as many man-hours go into the design and construction of the support equipment as into the missile itself. A leading factor in the reliability of Douglas missile systems is the company's practice of including all the necessary ground handling units, plus detailed procedures for system utilization and crew training. This complete job allows Douglas missiles like THOR, Nike HERCULES, Nike AJAX and others to move quickly from test to operational status and perform with outstanding dependability. Douglas is seeking qualified engineers and scientists for the design of missiles, space systems and their supporting equipment.

Alfred J. Carah, Chief Design Engineer, discusses the ground installation requirements for a series of THOR-boosted space 00 probes with Donald W. Douglas, Jr., President of 0 . probes with Donald W. Douglas, Jr., President of

NEW PRODUCTS
Ultrasonic Cleaner 487 Tank is $10.5 \times 8.5 \times 6$ in.

Model 120 ultrasonic cleaner has a 2-gal tank which measures 10.5 x $8.5 \times 6 \mathrm{in}$. and has rounded corners. For all standard applications, the unit has 24 sq in . of actual radiating surface and 27% of the tank bottom covered with driving elements. The generator is $115 \mathrm{v}, 60 \mathrm{cps}$, and is designed for continuous operation.
National Ultrasonic Corp., Dept ED, 111 Montgomery Ave., Irvington, N.J.
Silver-Zinc Battery 488
Provides two-level output voltage

The two sections in model P46A silver-zinc battery provide a heavy peak current as well as a steady power supply. A 2() -cell section provides 25 amp at 28 v . Maximum current is 100 amp with a discharge time of 3.5 min at 25 amp . Capacity is 15 amp-hr. The 4 -cell section supplies 6.3 vat 19 amp . Maximum current is 100 amp , discharge time is 35 min at 19 amp , and capacity is 11 amp -hr.
The temperature range is 40 to 80 F . The battery measures 7.25 $\times 9.75 \times 10 \mathrm{in}$. and weighs 30 lb . It is suitable for missile use.

Cook Batteries, Telecomputing Corp., Dept. ED, 3850) Olive St. Denver 7. Colo.

ELECTRO INSTRUMENTS

 can meet your systems needs now

Sub-system for the ground support equipment on the $\mathrm{B}-58$ Hustler program. Measures $A C$ and DC single-ended voltages and ratios, and AC
and DC differential voltages and transients. Chosen for its excellent operating characteristics under adverse environments.
tems shown here are typical of more than 200 designed 1 built by EI and now in use. They range in complexity III datal logging systems for automatic scamning, measenent and recording of data from multiple transducers.. high speed, automatic checkout systems for missile and craft ... to systems for automating industrial processes Because of the EI modular design approach, many of se systems can be delivered on virtually an off-the-shelf is, climinating the long delivery times usually associated Hisstem development. This approach also results in a cost system because the modules are manufactured in e quantities. Cost is almost a linear function of pernance calpabilities desired.

pu get MORE with EI systems!

ORE VERSATILITY

and DC voltages, AC and DC voltage ratios, ohmic stances. capacitance, frequency. phase, inductance, time, combinations of these basic input quantities can be epted by the EI system.

DRE RELIABILITY

ximum use is made of solid-state and MIL-type coments which are designed into conservatively-rated, fielden circuits. All vendor-supplied parts are exhaustively ed and evaluated.

RE FLEXIBILITY

ansion of the EI system can be made by simply adding ropriate new modules. This approach eliminates new inerring development costs cach time needs change ${ }_{i}$
imizes sustem obsolescence.
Why not talk ower your digital system requirements with
r Ei Sales Engineer? His system experience will be a
mal'e help in solving your problem.

Resistance measuring system - Used as a secondary standard to make accurate, resistance measurements required for checking linearity

Multi-purpose digital measuring and recording system measures AC volts, DC volts, ohms and ratios. Prints and punches information

Resistor scanning unit - Scans large numbers of resistors, measures values from 0.1% to 0.01% and records the information on punched cards. Operatio

leciro Insirumemis.Inc.

Sound and Vibration
Analyzer
Range is 2.5 cps to 25 kc

Type 1554-A portable sound and vibration analyzer has a range of 2.5 cps to 25 kc . It has a $10: 1 \mathrm{span}$ on each of four ranges, a $1 / 3$-octave bandwidth, a narrow bandwidth, and an all-pass response. It is used to measure both single-frequency and noise components. The narrowband maximum response is flat $\pm 2 \mathrm{db}$ over the tuning range, the $1 / 3$-octave maximum response is flat $\pm 4 \mathrm{db}$, and the all-pass response is flat from 2.5 to $25,000 \mathrm{cps}$ $\pm 2 \mathrm{db}$.

General Radio Co., Dept. ED, West Concord, Mass.

Decade Counter
Outputs are in binary code

Type 4XD decade counter has standard 1-2-4-8 binary code outputs. This plug-in, solid-state computer element consists of four binary flip-flops and a transistor gate, which resets at the tenth count. both outputs are provided from each flip-flop. Assembled on a standard $4.5 \times 5-\mathrm{in}$. printed card, the unit is provided with a $22-$ pin PC connector.

Ransom Research, Dept. ED, 323 W. Seventh St., San Pedro, Calif.
< CIRCLE 126 ON READER-SERVICE CARD

AN

EXTRAORDINARY
TRANSISTOR

This tiny silicon chip does something no other transistor can do. It achieves the speed of the fastest germanium plus having the superior temperature characteristics and reliability inherent to silicon. It is the Fairchild 2N706.

This extraordinary transistor was introduced to industry in August of 1959. Within two months, many thousands of units had been shipped and the 2N706 was being designed into highest performance computer circuits. No "blue sky" project, the 2 N 706 is applicable and extremely advantageous to all types of high speed computer logic.
The 2 N706 is also extraordinary as a success story in people-solid-state physicists, physical chemists, metallurgists, electrical engineers, mechanical engineers and industrial engineers. Free flow of ideas and enthusiasm produced an accumulation of advanced semiconductor technologies at an unprecedented rate. From the beginning. only two years ago, the 2 N 706 was the goal. En route. these technologies resulted in the production of
eight other silicon transistors. These devices have clearly established Fairchild as the leader in advanced semiconductor development.
Step by step, the Fairchild program was planned and held in focus by a top management team of advanced degree scientists. And now, this same program is being zeroed in on new targets, among them Esaki diodes and integrated solid-state circuitry. If yours is a relevant background and you like the way we work. why not drop us a line? We would like to hear from you.

NEW PRODUCTS

Contact Switch

Type HGX-1003 mercury-wettal contact switch is for use as a limit switch, float switch, pulse generator. stepping switch, time base, or in other applications where actuation is by means of a permanent magnet. The switch capsule is sealed in glass, pressurized with hydrogen and potted in an impregnated paper tube. It handles a contact load of 5 amp max, 500 v max, and 250 va
C. P. Clare and Co., Dept. EI) 3101 Pratt Blid., Chicago 45, Ill.

Chopper Input
 Transformer

For use with frequencies of 60 to 500 cps

Model G-24 chopper input trims former is for use with frequencies of 60 to 500 cps and with an imped ance ratio of 40,000 ohms, center tapped, to 40,000 ohms, centertapped. The primary and secondary coils are completely reversible. Each winding uses the box shielding method which reduces capacitive coupling to less than 0.05 puf.
Triad Transformer Corp., Dept ED, 4055 Redwood Ave., Venice Calif.
< CIRCLE 127 ON READER-SERVICE CARD

1.PN Silicon

Minimum cutoff is 15 mc

Designed for amplifier and switch ings use in military and industrial equipment, these npu silicon transistors have a minimum alphat cutoff lating of 15 mc . Type 2 N 1276 has atl ac gain of 9 to 22 ; type 2 N 1277 , 15 to 44 ; type 2 N1278. 37 to 90 ; and tepe $2 \mathrm{~N} 1279,76$ to 333.3. They have typical 1000 -cps power gain ratings of $37,39,44$, and 45 db .
General Electric Co., Semiconductor Products Dept., Dept. ED Charles Bldg., Liverpool, N.Y

Pulse Generator
 350

Regulation is $\pm 1 \%$

Model 402 laboratory pulse reguates line voltage within $\pm 1 \%$ for a = 10% line change. For such uses as - hish voltage power supply, a pulse forming network tester. a charging choke tester, and a pulse tramsformer tester, the unit provides 0 to 5 kv de at 120 ma and 2% max peak-topeak ripple. Voltages to 6 kv may be obtained at lower currents. Reyufed power is 95 to 130 o .60 cps , $10(0) w$
IIrmac Electronic's Co., Inc. De t. ED, 142 S. Long Beach Rd., Ro kville Center, L.I., N.Y.

RCLE 129 ON READER-SERVICE CARD \rightarrow

Engineers make great friends
Engineers make great friends because they are not merely sympathetic
but objective - yet understanding.
"Empathetic" is the word - and that's what engineers are
However personal or portentous the problem, an engineer doesn't lose perspective. He notes every detail of a problem, analyzes it, asks pertinent questions... and with intellectual honesty stays with the objective realities.

We know engineers make great friends, because our customers and associates are engineers. The friendships we have with them were built on objective realities.

We welcome new friendships, and we do our part to earn them. Your request for facts about GT components gives us this opportunity.

REPORT BRIEFS

Harmonic Generation and Frequency Mixing

The present report in part extends the earlier work of Pippin on second-harmonic generation and frequency mixing to include the effects of longitudinal components of rf magnetic fields. In addition, demagnetizing factors and loss in the Landau-L ifshitz form are simultaneously considered in the second-order calculations. A special case of third-harmonic generation is also treated. One result of importance has to do with the effectiveness of longitudinal components (in conjunction with the usual transverse components) of rf magnetic fields in producing magnetizations in second order and higher. Harmonic Generation and Frequency Mixing in Ferromagnetic Insulators, R. L. Jepsen, Gordon McKay Laboratory of Applied Science, Harvard Universit!, Cambridge, Mass., May 25, 19.58, 86 pl), Microfilm $\$ 4.80$, Photocopy $\$ 13.80$. Order PB 1:37479 from Library of Congress. Washingtom 25, D. C

Crystal Oscillator Circuits

A complete design method is presented for the grounded grid crystal oscillator, operating in the frequency range of 75 to 150 mc . Design information is presented in the form of graphs and tables. A reference circuit, having a single set of values for the frequence range covered has been devised, and by varying the circuit component values measurements of performance hatve been made and plotted. The resulting graphs are normalized with respect to the reference circuit component and performance figures. In this way, output and crystal drive voltage variations were determined for specific changes in circuit parameters. The atcouracy of performance prediction is 20 to 25 per cent for output voltage and 35 to 40 per cent for crystal drive voltage. A review and discussion of four crystal oscillators using subminiature fila-ment-type tubes is presented. These are the grounded grid, feedback, or Heegner, the capacitance transformer coupled and the bridged "T" circuits. Work on the capacitance transformer coupled oscillator at 75 mc has been completed and performance characteristic:s are given. Since this oscillator has more desirable performance figures than the other oscillators tested, futurework will be confined to obtaining information for this circuit at higher frequencies. Stud!y of Crystal Oscillator Circuits, H. E. Gruen and A. O. Plait, Armour Research Foumdation, Chicaso, Ill., Alg. -Noe. 19.56, 51 mp , Microfilm $\mathrm{s} 3 . \mathrm{fi}$), Photocop!! s9.30. Order PB 14216.9 from Library of Congress, Washington 2.5. D. C.

New silicon triodes dissipate

Power dissipation of the 2 N 332 A -through- 2 N 336 A silicon transistors (see chart below) ranges from 500 mw at $25^{\circ} \mathrm{C}$ to 83 mw of $150^{\circ} \mathrm{C}$ without heat sink. Note also (see chart
below, leff) the oxpremely low IcBo throughout 1000 hours of testing. Nearly 90% of别
units fall within 100 mua. Beta spread (chart above) is stable out to 1000 hours.

500 mw without heat sink at $25^{\circ} \mathrm{C}$

FIXED BED MOUNTED TRANSISTORS 2N332A-through-2N336A ALSO FEATURE:

4 VOLT $V_{E B} \ldots$... GUARANTEED 45 VOLT $V_{\text {CE }} \ldots .005$ ma MAX. $I_{\text {CBO }}$ AT $25^{\circ} \mathrm{C}$ AND 30 VOLTS ... PHYSICAL AND ELECTRICAL STABILITY

Abstract

The 2N332.-through-2N336A line of silicon NPN triodes is a new series of amplifier and switching transistors capalle of much higher performance than ever before achieved. Collector dissipation without heat sink is. 5010 mw at $9.5^{\circ} \mathrm{C} \ldots 8.3 \mathrm{mw}$ at $1.00^{\circ} \mathrm{C}$. Since reliability is related to junction temperature, even those designs which do not reguire maximum-rated power may be enhanced greatly by this device series because of the wide safety-factor potential provided. FOUR OTHER ADVANTAGES - Collector-toemitter voltage is guaranteed at 4.5 volts. Collector leakage current is a maximum of .j(0) maa at 30 volt and $\stackrel{3}{ } 5^{\circ} \mathrm{C}$. Collector-to-emitter leakage current is (i0) $\mu \mathrm{a}$ at $1.010^{\circ} \mathrm{C}$, Minimum cutoff freguency is 9.5 me, typical $f_{x 1}$ is 10 to 1.5 mc . FIXED BED MOUNTING - Fixed Bed Mounting is an exclusive (i-E construction technigue which contributes to the extreme stability obtained by

this series of transistors. Storage and operating tests have resulted in a performance rate of better than $99.2 e^{\circ}$ a after 1000 hours.
Besides the demonstrated electrical characteristics, General Electric's silicon transistors (an ah)sorb physical pumishment far berond normal specifications. All parts are soldily fixed together and react as a solid block in resisting shook and vibration. Test units have been fired from a shotgun. struck with a golf (dul) and rattled freely in an auto hubeap for $\mathbf{7 0}$ (1) miles-and worked afterward.
IMMEDIATELY AVAILABLE - . 111 types are available now from warehonse stock Call your Gencral Electric semiconductor Sales Representative for complete details on the "hot" transistor line that operates the coolest. (ieneral Electric Company, Semiconductor Products Dept., Eilectronics Park, Syracuse, N. Y:

TYPE 2N333-THROUGH-2N335 SILICON TRANSISTORS MEET MIL-T-19500/37A SPEC.
 supplied from warchonse stock to meet this specification.

SPECIFICATIONS

SPECIFICATIONS								
bsolute Maximum Ratings ($25^{\circ} \mathrm{C}$)								
Collector to Base Collector to Emitter Emitter to Base	$\begin{aligned} & \mathbf{V}_{C B} \\ & \mathbf{V}_{C E} \\ & \mathbf{V}_{E E} \end{aligned}$	45 volts 4 volts						
Current Collector	Ic	25 ma						
Power Cotilector Dissipation RMS	$\begin{aligned} & \mathbf{P}_{c} \\ & \mathbf{P}_{c} \end{aligned}$	500 mw @ $25^{\circ} \mathrm{C}$ (Free Air) $83 \mathrm{mw} @ 150^{\circ} \mathrm{C}$ (Free Air)						
Temperature Storage Operating Junction	$\mathbf{i}_{\mathbf{T}}^{\mathbf{T}} \mathbf{1}$	$\begin{aligned} & -65 \text { to } 200^{\circ} \mathrm{C} \mathrm{C} \\ & 65 \text { to } 175^{\circ} \mathrm{C} \end{aligned}$						
Wrrical Charactaristics (Typical at $25^{\circ} \mathrm{C}$)								
D C Charactaristics Forward Current Transfer Ratio (low current)			2N332A	2N333A	2N334A	2N335A	2N336A	
$(\mathrm{Ic}=1 \mathrm{ma}, \mathrm{VCE}=5 \mathrm{~V}$) Saturation Voltage		hfe	16	27	36	45	75	
$(18=1 \mathrm{ma}, \mathrm{lc}=5 \mathrm{ma})$		$\mathbf{V}_{\text {CE }}(\mathbf{5 a t})$. 5	. 45	. 42	. 4	. 4	volts
Culoff Characteristics								
		Ic®o	60	60	60	60	60	m $\mu \mathrm{a}$ $\mu \mathrm{a}$
Low Frequency Characteristics $\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}$; $\left.\mathrm{I}_{\mathrm{E}}=-1 \mathrm{ma} ; \mathrm{f}=1000 \mathrm{cps}\right)$								
Forward Current Transfer Ratio		ho.	16	130	${ }^{38}$	52	${ }^{95}$	
Outpur Admitance		h.e.	76 3.5	5	1700 6.0	2000 7.0	3700 8.0	${ }_{\text {O }}^{\text {Ohms }}$
Output Admittance		hat	. 25	. 2	. 18	. 15	. 13	${ }_{\mu \text { minhos }}$
Migh Frequency Characteristics Common Base) ($\left.\mathbf{V C l}_{\mathrm{ct}}=\left.\mathbf{5} \mathrm{V}_{\text {; }}\right\|_{\mathrm{E}}=\mathbf{- 1} \mathrm{ma}\right)$								
Ourp if Capacity ($f=1 \mathrm{mc}$) Cute ${ }^{\circ}$ Frequency		$\mathrm{Cob}_{\text {fob }}$	7	11	12	$\begin{gathered} 7 \\ 13 \end{gathered}$	15	$\mu \mu f$
		G.	11	11	12	12	12	dt

Active Networks

The Linvill configuration is used to synthesize scoond-order, nompositive-real, driving-point functions. Syinthesis is accomplished by the use of a surplus factor. With the arbitrariness of the surplus factor, one is able to control the drivingpoint function. The existence of the solution in all calses is demonstrated and the minimum number of elements property of the solution is proved. It is shown that only five clements are required besides the nesative impedance converters (NIC). RC networks are used in some cases and RL networks are used in the remaining cases. Synthesis of Active Neluorks With Nesative Impedance Comeerters, Robort T. Chion, Electrical Enginecring Rescarch Laboratory, Unitersity of Illinois, Urbana, Ill. 5 May 19.5s, 66 mp , Microfilm \$3.90. Photocopy \$10.80. Order PB 1370668 from Library of Congress, Washington 2.5, D.C.

Transistorized Radar Target Tracker

Airbome vehicles must be tracked in ground entiromment systems for areal defense, air traffic control, and terminal area control. When many aircraft are involsed, tracking radars is not practical, and the neceessary data must be obtained by automatic trackers from a scanning radar. All critical parts of a transistorized cartesian coordinate tracker have been designed and tested. The results indicate that it should perform as well as the latest vacumm-tube trackers, but with much greater reliability. A Transistorized Radar Target Tracker, Thomas C. Horth, Air Force Cambridge Research Center, Beelforl, Mass., Mar. 195.9, 42 pm, Microfilm \$3.30, Photocopy $\$ 7.80$. Order PB 142196; from Library of Congress, Washington 2.5, D. C.

Design Radomes

This report considers radome design requirements and construction and the manner in which absorption losses affect radome performance. Equations for lossy radomes are given, and a number of transmission curves are computed for lossy sandwich panels. The report also contains the design procedure for lossy high-incidence radomes, methods for obtaining optimum core thickness for maximum transmission, and a discussion of the effects of dimensional tolerances on transmission. Electrical Design of Lossy HighIncidence Radomes, S. Wolin, Acronautical Electronic and Electrical Laboratory, Naval Air Development Center, Johnsville, Pa., July 11, 19.5.9, 1.39 pl, Microfilm \$6.90, Photocopy \$21.30. Order PB 14201.5 from Library of Congress, Washing$1012.5, D . C$.

DOUBLE DIFFUSED SILICO RECTIFERS COLUMBUS ELECTRONICS/ OORPORATION DOUBLE DIFFUSED SILI JN RECTIFERS COLUMBUS ELECTRON S CORPORATION double dioused sicicon rectifiers COLUMPE CLECT OOTCS CORPRRATION DOUITE FUSL. ECON 退TIFERS
 DOUF/ DIFFUS.D SILICN TIFIERS COLOOBUS EL/STRONICS/ R RPORATION DOUBLE DIFF/SED SILI/ RECTIFIERS

Now . . . an extensive line of
high performance, hermetically sealed. silicon power rectifiers UP TO 35 AMPS.

JEDEC types exceeding MIL specifications.

NEW		NEW
SINGLE unit VERY HIGH VOLTAGE silicon rectifiers exhibiting these desirable characteristics...		INSULATED STUD silicon rectifiers offering these quality features...
HIGH VOLTAGE up to 2000 PIV	LOW ${ }_{\text {L }}$	- Simplify mounting - Save assembly parts deosts - Obtain efficient heat transfer - Give greater design flexibility
$\underbrace{}_{\substack{\text { EXTREMELY } \\ \text { LOW LAKAGE } \\ 1 \mu \mathrm{~A}}}$	($\begin{gathered}\text { FORWARD } \\ \text { CURENT } \\ \text { up to } \\ \text { 20 }\end{gathered}$	AVAILABLE UP TO 10 AMPS PER UNIT AND UP TO 2000 VOLTS PIV.
Write for full details		
COLUMBUS ELECTRONICS CORP. 1010 SAW MILL RIVER RD.. YONKERS. N. Y. YOnkers 8-1221 - TWX-Yonkers, NY-1369		

CIRCLE 320 ON READER-SERVICE CARO

REPORT BRIEFS

Pulse Width Modulated Relay Control

This report investigates the application of pulse width modulation as a control method for relay controlled systems with sampling. The limit cycles which occur in relay control systems with sampling are discussed and two methods of design employing pulse width control which eliminate these limit cycles are developed. Experimental results are presented for a second order system. Application and extension of the results are discussed. Pulse Width Modulated Relay Control of Systems Subject to Sampled Data, Winston L. Nelson, Columbia University, School of Engincering, New York, N. Y., 1957, 72 pp , Microfilm \$4.50, Photocopy $\$ 12.30$. Order PB 142367 from Library of Congress, Washington 25, D. C

Crystal Oscillator Circuits

Performance information for the cathoche coupled and grounded grid oscillators for the 10 to 75 mc frequency range is reported. Reference circuits and their performance as a function of frequency have been established. Effects of component variation have been determined, and shown to be adequately described by the normalized curves developed for higher frequency operation. Initial problems of frequency and crystal voltage correlation have been resolved. These are shown to be caused by the effect of the plate-to-cathode capacitance. Correction is obtained by the addition of an inductor in series with the erystal in the feedlack path. The design intornation for the grounded grid circuit in this frequency range has been found to be essentially an extension of the results oltained in the higher frequency range. A discussion of the problems encountered with the cathonle coupled circuit is given. However, its performance at the lower frequenciess is compared with that at the hisher frequency range and differences are noted. Temperature characteristics and oscillator output harmonic content measurements for the two series resomant circuits in the 75 to 150 me frequency range are reported. Extension of the antiresonant circuit design information to 20 me has been completed tor the Colpitts circuit. and work on the electron coupled Colpitts is in progress. The previonsly developed design information is shown to be useful to 20 me without any loss of aceuaty over that originally specified. A Study of Crustal Oscillator Circuits, H. E. Gruen and A. O Plait, Armour Research Foumdation, Chicayo, Ill., Ficb, 15-Man 15, 19.57, 35 pp , Microfilm 53.00 Photocopi, $\$ 6.30$. Order PB 142400 from Lillrary of Comgress, Washington 25, D. C.

You can do two things to guard yourself against cancer: Have an annual health checkup. Alert yourself to the seven danger signals that could mean cancer: 1. Unusual bleeding or discharge. 2. A lump or thickening in the breast or elsewhere. 3. A sore that does not heal. 4. Change in bowel or bladder habits. 5. Hoarseness or cough. 6. Indigestion or difficulty in swallowing. 7. Change in a wart or mole.

If your signal lasts longer than two weeks, go to your physician. Give him the chance to give you the chance of a lifetime.

UHF Amplifiers

This report will present the synthesis considerauns, design procedures, and constructional features of uhf amplifiers described in Technical I. (p)ort No. 11, "A 400-Mc IF Amplifier," June, (1) 5 2. The reader is referred to this report, which wes as an introduction to the present report anll indicates the results that can be obtained. The Synthesis and Design of Grounded-Grid Suggered-Triples at UHF, Donald O. Pederson, Electronic Research Laboratory, Stanford Universily, Calif., Sept. 30, 1952, 60 pp, Microfilm \$3.60, Photocopy $\$ 9.30$. Order PB 142433 from Library of Congress, Washington 25, D. C.

10-Kilowatt VHF Air Borne Transmitter

A general discussion is presented of the development of a $10-\mathrm{kw}$ VHF airborne radio communications transmitter occupying only 4 cubic feet of space. The transmitter may employ either frequency shift keying or frequency modulation. The transmitter may be remotely controlled. The system employs an external liquid cooling system. Decelopment of a 10-Kilowatt VHF Air Borne Rudio Communications Transmitter, Henry A. Tackett, Continental Electronics Mfg. Co., Dallas, Texas, Mar. 1959, 28 pp, Microfilm \$2.70, Photocoply \$4.80. Order PB 142349 from Library of C.ongress, Washington 25, D. C.

Electromagnetic Antenna Coupling

The properties of a dipole antenna coupled electromagnetically to a two-wire transmission line are studied experimentally. It is found that the coupling of the antenna to the transmission line can be maximized by a proper choice of (1) the angular position of the antenna with respect to the transmission line, (2) the length of the antenna, and (3) the separation of the antenna from the transmission line. The effect of the spacing between the wires of the transmission line on the optimum parameters is investigated. Measurements of (1) the current in the antenna as a function of its angular position and (2) the umbalanced component of current on the transmission line are also reported. It is found that the optimum angular position of the antenna is not noticeably altered if instead of a single antenna, an array of properly located antennas is used as the load. The ad antage of an antenna array built on this corpling principle is discussed. A Dipole Antenna Co pled Electromagnetically to a Two-Wire Tr asmission Linc, S. R. Seshadri and Keigo Iiz ka, Cruft Laboratory, Harvard University, Ca bridge, Mass., Oct. 31, 1958, 47 pp , Microfiln \$3.30, Photocopy \$7.80. Order PB 142139 fro Library of Congress, Washington 25, D. C.
 ZENER DIODES
from
Three new silicon diffused-junction zener diodes, produced to military specifications. are now available from Motorola. These precision components are designed for highest reliability under the toughest of environmental conditions

MOTOROLA

$\left.\begin{array}{c|c|l}\text { 1N1353 MIL-E. }\end{array} \begin{array}{c}10 \text { watts }\left(a 125^{\circ} \mathrm{C}\right. \\ \text { stud temperature }\end{array}\right)$ at nöminal 12 volts

Since these units meet or exceed MIL-E1/1236 specs. they make possible the utilization of versatile zener diodes in military equipment. Typical applications include

- regulation of vacuum tube heaters
- surge protection
- improved circuit fusing
- voltage regulation
- improved coupling and filtering

Useful in both AC and DC circuits, their small size and light weight make them particularly adaptable to miniature equipment.

TEMPERATURE COMPENSATED ZENERS
 ALSO AVAILABLE FROM MOTOROLA

 For applications demanding a high degree of stability under temperature extremes, Motorola now supplies zener diodes (types 1N2620 through 1N2624) with warranted temperature coefficients as low as $.0005 \%$ per ${ }^{\circ} \mathrm{C}$.FOR COMPLETE SPECIFICATIONS
on the more than 950 Motorola zener diode types contact your nearest Motorola Semiconductor office. Engineering quantities are available from the 22 authorized Motorola Semiconductor Distributors.

REPORT BRIEFS

Cascade-Circuit Traveling-Wave Tubes

A study is made of the saturation characteristics of cascade-circuit traveling-wave tubes. Measurements made on several tubes indicated that the saturation efficiency of these cascade-circuit tubes was much lower than that for comparable singlecircuit tubes. In order to explain these unusual results, a series of calculations is carried out using approximate expressions which are based on simple physical pictures of the interaction process. It is possible to explain the measured results by using these simple physical pictures. The low saturation efficiency of the cascalle-circuit back-ward-wave amplifier is found to tie due to the nature of the boundary conditions which must exist on the demodulator section. The cascadecircuit forward-wave amplifier, if properly designed, would appear to have a saturation efficiency approaching that of a single circuit tube. Some Results from the Laryc-Signal Behatior of Cascade-Circuit Traveling-Wave Tubes, W. II. Watson, Electronics Research Laboratory, University of California, Berkeley, Calif., Oct., 1958, 33 m, \$1.00. Order PB $1.516 i 617$ from OTS. Washington $25, D$. C.

Microwave Resonant Cavities

This report describes the design and testing of two types of resonant microwave cavities operating near 9435 megacyeles per second in which the end plates are replaced by terminations which leave the cross-sections of these cavities essentially unobstructed. Design of Open-Ended Microwace Resonant Cavities, Donald C. Thorn, Electrical Engincering Research Laboratory. Unicersity of Texas, Austin, Texas, Aus. 25, 19.58, 23 pp. Microfilm $\$ 2.70$, Photocopy $\$ 4.80$. Order PB 14203.5 from Library of Congress, Washington 2.5, D. C.

Traveling Wave Tube Devices

The work described includes theoretical and experimental studies on backward-wave interaction, light weight focusing systems and spacecharged waves in periodic beams. crossed-field interaction, and dc and rf tests on novel highdensity emitters. Supporting work on electron beams and large-signal studies is also described, as well as a preliminary study of variable parameter amplifiers. Electron Physics of Traveling Wave Tube Devices, J. R. Whinnery, D. H. Sloan and others, California University (Berkeley), Aug. 15, 1957, $24 \mathrm{pp}, \$ 0.75$. Order PB 151888 from OTS, Washington 25, D.C.

FLEXIBLE, FULLY INSULATED PRINTED CIRCUITS offer designers of electrical and electronic assemblies new opportunitic to make rewarding contributions to quality-improvement, cost-reduction and miniaturization programs.
> here's how to design more reliability per dollar per pound into less space!

Whether your design objective is to upgrade wired assemblies at the lowest total installed cost or to get the utmost reliability out of the least weight or space, FLEXPRINT ${ }^{\text {B }}$ wiring offers definite advantages over any other design concept.

Quality Improvement

Reliability is inherent in the unique construction of FLEXPRINT wiring. It consists of etched patterns of flat conductors permanently bonded between and to sheets of thin, flexible plastic insulation. Only the terminations are exposed . .. and they can be encapsulated if necessary. A closer look at each construction feature tells you why FLEXPRINT wiring is more reliable than either conventional wiring or hardboard printed circuits. All conductors maintain their positions in. relation to each other. All terminations are accurately positioned. No wiring errors! No disturbing cross-coupling effects, because they're known and con-
stant. All conductors are encapsulated. No penetration of moisture and gases! Each circuit is flexible. No short or open circuits due to vibration and shock.

Cost Reduction

If cost-reduction is your goal, FLEXPRINT wiring wipes out any initial cost advantage of conventional wiring by economies all along the line. As a result. total savings in wiring costs as high as 50% can often be realized. Let's see why.
FLEXPRINT wiring comes ready for attachment. No selecting colorcoded wires in assorted sizes, cutting them to length and lacing them in harnesses!

Every conductor and termination in its right place. No wasted time motion positioning them. Assemb time is minimum ... as little as $1 / 5$ the time required for convention wiring. Available automatic assemb and soldering techniques save additio al time.
There's only one way to connect FLEXPRINT circuit. No wiring erron Little or no trouble-shooting. Qualu control and rework costs are substa tially reduced,

Miniaturization

Substantial reductions in package s. and weight also stem from the uniq features of FLEXPRINT wiring.
Weight reductions of as much 50% have been obtained by switchi from conventional cables and harnest to FLEXPRINT wiring of equivala performance.
As a space saver, FLEXPRINT win has no equal. Savings in the
you equipment may run as high as 60 .That's because FLEXPRINT circuits can be twisted, folded, preformed cult can be twisted, folded, preformed
and interwoven in single or multiple

A Question And Answer Approach To The Use Of Flexprint Wiring

Making the transition to FLEXPRINT wiring poses no serious prob-

 lems. Designers already working with hardboard printed circuits merely project their know-how into the third dimension to take advantage of flexibility and multi-plane construction. Others will find the basic knowledge and skill easy to acquire.Fortunately, just about any question you could ask about FLEXPRINT wiring has already been asked by and answered for design engineers who are now successfully using it. Let's review a few:
Q. Does use of FLEXPRINT wiring epresent radical departures from conentional wiring routines?
A. In most respects, use of FLEXPRINT wiring involves nothing new. Through breadboard and early protoype or model stages, procedures are identical. At that point, a sketch translates wires into flat. flexible cables or harnesses. Then. it's just a drafting job to refine the pattern and produce arthork for photography and etching. Remember, at any stage, you can call on Sanders for design assistance.
Q. Does FLEXPRINT wiring create tough problems in terminations connectors?
A. No! An exposed pierced pad, placed ver a pin or wire and soldered with a 360 fillet, is the most common termifor FLEXPRINT wiring. Lap oider joints are also used. Termination ltip), bare on both sides, are used for trimpon connections. Many standard ce of soldered and mechanical conins are available . . . and connecnanufacturers are constantly Tea' ng new ones for FLEXPRINT aplica ions. Usual considerations deternine vour choice of the right connector-

Q. What is the best way to solder FLEXPRINT wiring?
A. It depends on your particular application. Hand, dip. fountain and wave soldering may be used, as long as excessive heating of the thermoplastic insulation is avoided. Techniques employing the correct cleaning fluxes. timing and temperatures have been developed for various insulations.

Q. Can FLEXPRINT wiring be effectively shielded without depriving it of its flexibility?
A. Yes! External shielding is accomplished with adjacent layers of solid or latticed shields on one or both sides of conductors. Grounding adjacent conductors in the same layers produces internal shielding. Multi-layer techniques provide for twisted pairs and triplets.

CIRCIE 132 ON READER-SERVICE CARD
9, 1959
layers. You make it conform to any housing geometry. With it, you can make valuable contributions to minia-
turization programs. turization programs.
Q. Can FLEXPRINT wiring be reinforced to add rigidity or meet environmental requirements?
A. Three methods are used to reinforce FLEXPRINT wiring: building up its insulation to add any degree of rigidity or thickness to any section; bonding glass cloth to its surface or molding it into its insulation; bonding FLEXPRINT wiring to such solid base materials as phenolic or epoxy glass
usually to replace combinations of printed hardboard and interconnecting wires with single pieces of FLEXPRINT wiring.
Q. Will lead time for delivery of FLEXPRINT wiring cause production delays?
A. No! Sanders production capacity is geared to match deliveries to your demands.
Q. How do I get started with FLEXPRINT wiring?
A. Your first step is to read the new bulletin, a "Designer's Digest," just off the press. It reviews several circuit design examples, shows other circuits now in use, lists new and tested applications and tells you just how to make the rewarding switch to modern flexible printed circuits.

For your copy, write:

FLEXPRINT

PRODUCTS DIVISION

SANDERS ASSOCIATES, INC.

95 CANAL STREET NASHUA, NEW HAMPSHIRE

Synthesis of Multipole Control Systems

This report is concerned with obtaining the optimum system in the Wiener sense for a multipole system. Earlier literature has shown how to obtain the mean-square value of the error when the multipole system transfer function has been specified, but thus far no published work has shown how to solve the synthesis problem, in general, for this case. The principal reason that this problem has appeared to be impossible of analytic solution for cross correlation between the inputs, is based on the fact that the usual variational approach results in a set of untractable simultaneous integral equations involving many complicated cross products of the desired weighting functions and the variational functions. On the Optimum Synthesis of Multipole Control Systems in the Wiener Sense, H. C. Hsich and C.T. Leondes, California University, Los Angeles, Calif., Mar. 19.59, 6.3 pr , Microfilm \$3.90, Photocopy $\$ 10.80$. Order PB 142298 from Library of Congress, Washington 25, D.C.

Designing Crystal Filters

A set of convenient insertion loss equations is derived, which is applicable to the design of multisection, reactive, symmetric filters. Specific network designs for quartz crystal bandpass filters with sharp, cutoff characteristics, and more than 60 db attenuation in the stop bands, are presented for two categories of fractional bandwidths: (1) less than or equal to 0.4 per cent; (2) equal to or larger than 1.5 per cent. Several network structures for each of these two categories are worked out and the corresponding insertion loss characteristics are plotted. Element values are given for a filter with a 6 db bandwidth of 40 kc with respect to a center frequency of 11.5 mc . A design for a filter with a bandwidth of 400 kc with respect to a center frequency of 24 mc is included. This design makes full allowance for the effects of coil dissipation. In an appendix, a general approach is outlined to the formation of lattice-type filters with 4,6 , and 8 peaks of infinite attenuation (i.e., zeros of transmission) and with image impedances suitable for (1) quartz crystal-capacitor filters possessing the maximum possible bandwidth for a given crystal cut and (2) quartz crystal-capacitor-inductor filters with a constant-k image impedance. Recent design progress is announced, which took place subsequent to the close of the first quarter and promises to lead to a very satisfactory filter design in the fractional-bandwidth region between 0.4 per cent and 1.5 per cent. High Frequency Crystal Filters, Leo Storch, Hughes Aircraft Co., Culver City, Calif., Oct. 1Dec. 31, 1956, 84 pp , Microfilm \$4.80, Photocopy $\$ 13.80$. Order PB 142388 from Library of Congress, Washington 25, D. C.

In addition to their regular stock and custom transformers for the electronic industry, ADC has long been a dependable source of transformers and filters to the telephone and telegraph industry. When Western Electric announced they would no longer supply these components to manufacturers, ADC put their 24 years of experience to use designing and tooling a series of "coils" which are electrically and physically interchangeable with similar components made by The Western Electric Company. Many of these are in stock. If you use such components, we suggest that you write for more information. We believe you'll be pleased with both the price and delivery.
write today for telephone coil literature

AUDIO DEVELOPMENT COMPANY
 TRANSFORMERS • REACTORS - FILTERS - JACKS \& PLUGS - JACK PANELS CIRCLE 321 ON READER-SERVICE CARD

REPORT BRIEFS

Detection of Signals in Noise

A detection criterion is formulated which leads to the design of detectors on the basis of much less a priori information. These non-parametric detectors are proposed as possible alternatives to the detectors studied in those situations where little a priori information is available. A concept known as asymptotic relative efficiency is employed to compare nonparametric detectors with some of the detectors investigated in the past. Using this criterion the efficiency of non-parametric detectors is found to be quite high. The application of the nonparametric detection criterion to the detection of nonstationary signals in noise is discussed. Nonparametric detectors are shown to possess certain advantages in detecting such signals. Nonparametric Methods for the Detection of Signals in Noise, Jack Capon, Columbia Uniceristy, School of Engincering, New York, N. Y., Mar. 12, 19.59, 234 pp , Microfilm \$10.20, Photocopy \$36.30. Oriler PB 142:327 from Library of Congress, Washinglon 25, D. C.

Crystal Oscillator Circuits

A complete design method is presented for the grounded grid crystal oscillator, operating in the frequency range of 75 to 150 mc . Design information is presented in the form of graphs and tables. A reference circuit, having a single set of values for the frequency range covered has been devised, and by varying the circuit component values, measurements of performance have been made and plotted. The resulting graphs are normalized with respect to the reference circuit component and performance figures. In this way, output and crystal drive voltage variations were determined for specific changes in circuit parameters. The accuracy of performance prediction is 20 to 25 per cent for output voltage and 35 to 40 per cent for crystal drive voltage. A review and discussion of four crystal oscillators using subminiature fila-ment-type tubes is presented. These are the grounded grid, feedback, or heegner, the capacitance transformer coupled and the bridged "T" circuits. Work on the capacitance transformer coupled oscillator at 75 mc has been completed and performance characteristics are given. Since this oscillator has more desirable performance figures than the other oscillators tested, future work will be confined to obtaining information for this circuit at higher frequencies. (Sce also P13 142168) Study of Crystal Oscillator Circuits, II. E. Gruen and A. O. Plait, Armour Kesearch ${ }^{\circ}$ Foundation, Chicago, Ill., Aug. 15-Nov. 15, 1959, 51 pp , Microfilm \$3.60, Photocopy \$9.30. Order PB 142169 from Library of Congress, Washington 25, D. C.

Precision,

transistor-regulated power supplies for critical industrial and military applications

- All "short-circuit protected" for opti. mum reliability.
- All available for standard 19" rack mounting.
- For input voltages from 105-125 VAC, 50.62 cps.

SPECIFICATIONS	$\begin{array}{\|c\|} \text { MODEL } \\ \text { PS } 4000 \mathrm{C} \end{array}$	MODEL PS4017	$\begin{aligned} & \text { MODEL } \\ & \text { PS4018 } \end{aligned}$	$\begin{gathered} \text { MODEL } \\ \text { PSAOI } \end{gathered}$	$\begin{aligned} & \text { MODEL } \\ & \text { PS4022 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { MODEL } \\ & \text { PSA023 } \end{aligned}\right.$
voltage range (VDC)	250.300	200.250	125-150	25-32	4.5-9.0	100.200
CURRENT RANGE (AMPS)	0.1.5	0.1.5	0-1.5	0-1.5	0-10.0	0-0.4
regulation	0.2\%	0.2\%	0.2\%	0.2\%	0.2\%	0.01\%
IMPEDANCE (OHMS (1) DC to 100 KC (2) DC to 1KC	$\begin{aligned} & 0.2 \\ & \text { (1) } \end{aligned}$	$\begin{aligned} & 0: 2 \\ & (1) \end{aligned}$	$\begin{aligned} & 0.2 \\ & (1) \end{aligned}$	$\begin{array}{\|l} \hline 0.2 \\ (1) \end{array}$	$\begin{aligned} & 0.02 \\ & \text { (2) } \end{aligned}$	$\begin{array}{\|l\|l} 0.8 \\ (2) \end{array}$
RIPPLE (RMS)	2 MV	2 MV	2 MV	2 MV	2MV	2.5MV
meters	1. output voltage 2. output current 3. transistor monitor voltage				1. output voltage 2. output current	
Panel height	$5^{\circ} / 4^{\prime \prime}$	5\%/4"	5', $4^{\prime \prime}$	$5^{\prime} / 4^{\prime \prime}$	9"	9"
[.E.PTH	12"	12"	12"	$12^{\prime \prime}$	$9{ }^{\prime \prime}$	$9 "$

C
Write for complete specifications
$\sum_{\text {Pecify POWER SOURCES }}$ POVVER SOURCLS, INC. Burlington, Massachusetts CIRCLE 133 ON READER-SERVICE CARD ELECTRONIC DESIGN - December 9, 1959

RC-RL Curves and Nomograms - II

Donald Moffat

Motorola, Inc.
Western Military Electronics Center
Phoenix, Ariz.
To simplify the time-consuming calculation of transfer function, Donald Moffat presents a series of nomograms. Many of the most common circuits have been analyzed, and their transfer functions, curves and nomograms are shown.

In Part I four single-section configurations were described. Some discussion on the effects of loading was included and exact equations used where approximations are not valid.

Part II continues with a discussion of phase manipulation.

Fig. 1. Single sections for varying phase response.

M
NNIPLLATION of the phase response of a ans simple RC 'iredut is often acromplished rie hatan of he single section, as shown in Fig. Ia. Phase response of this circuit is

$$
\begin{equation*}
\varphi=\arctan \frac{\omega R_{s} C_{s}}{1+x\left(1+\omega^{2} R_{s}^{2} C_{s}^{2}\right.} \tag{1}
\end{equation*}
$$

where $\quad x=R_{y} / R_{a}$.
There is zero phase shift at dre and at infinite
(Continued on following page)

Fig. 2. Phase shift of circuit of Fig. la. Parameter is resistance ratio.

ELECTRIC DESIGN DATA rc-RL Curves and Nomograms - II

Fig. 4. Phase response as a function of normalized impedance, with $k\left(R_{a} / r_{\mu}\right)$ as the parameter, for circuit of Fig. lb.

Every part that goes into a modern-day missile system must pass a rigid battery of tests and a thorough sta. tistical screening to insure highest possible reliability in action.

That's why we're pleased to announce that Bristol Syncroverter choppers play an important role in guidance of the U.S. Army HAWK missile, produced by Raytheon Company, Waltham, Mass., prime contractor for the complete HAWK weapons system.
Billions of operations. Bristol Syncroverter* choppers are ideal for applications requiring the utmost in statistical reliability. The Bristol life-test lab has now had miniature Syncroverter choppers running for years without failure - both with and without contact load. Just one sample: five choppers with 400-cycle drive and 12 v , 1 ma , resistive contact load have completed 26,000 hours (2.96 years) continuous operation-over 37 billion operations!

An extremely wide variety of standard models is available-including external coil low-noise types. For complete data, write: Aeronautical Components Division, The Bristol Company, 151 Bristol Road, Waterbury 20, Conn.
 *t.m. meg. u s. pat. off.

- 26

BRISTOL INE PRECISION INSTRUMEN FOR OVER SEVENTY YEARS

CIRCLE 134 ON READER-SERVICE CARD ELECTRONIC DESIGN • December 9, 1959

If you use OAPACITORS

, RESISTORS*

you need the new

 ERIE-CORNING CATALOG

* This catalog lists all types, sizes, capacities and values of fixed glass capacitors, midget trimmers, precision, C-42 and high power resistors.

Write for your copy today.
ERIE Electronics Distrihutor Division
ERIE RESISTOR CORPORATION Erie, Pennsylvania
circle 135 on reader-service card
EL:CTRONIC DESIGN - December 9, 1959

RC-RL Curves and Nomograms - II

frequency, and maximum phase shift when

$$
\omega=\left(1 / R_{n} C_{n}\right) \sqrt{(1+x) x} .
$$

(2)

Location of the maximum phase shift is seen to depend on all components. However the amplitude of the maximum depends only on the resistance ratios, arcording to

$$
\epsilon_{\max }=\arctan \sqrt{1 / x(1+x)} / 2
$$

Nomograms

The above results are shown graphically in Figs. 2 and 3, and as Nomograms 1 and 2. To use the nomograms, draw a line between the resistor values in Nomogram 1 and read $\phi_{\text {max }}$ where the line roosses the center scale
Nomogram 2 is used to find a value of capatritance to plare the maximum at a particular frequency. Extend a line from x (also found on the renter scale of Nomogram 1) through f, the frequency where $\phi_{\text {max }}$ is to orcur, to the Turning Scale. From that point on the Turning Scale draw a line to R_{s} and read C where the line crosses that scale.
(Comtinucd on folloncing page.)

1003	1007	Γ^{1}
80	$50=$	
60.	50	
-	20	-2
$40-$		-3
$30-$	$10-3$	
	5 -5	-4
$20-$	5 \%	
	2 F10	- 6
	2 -15	-
$10=$	$1-20$	E 10
8		
-	$0.5-30$	
$6=$	$\begin{aligned} & 35 \\ & -35 \\ & 40 \end{aligned}$	
7	$0.2=40$	-20
4 -	0.2	
$3-$	$0.1-55$	
$3-$	0.1. 60	
	$0.05=65$	- 40
2 -	0	
	$0.02=75$	
	- 75	E 80
$1-$	$0.01-$	E_{100}
R_{G}	$\chi=R_{G} / R_{s}$	$\mathrm{R}_{\text {S }}$
	maximum	
	PHASE SHIFT	

Nomogram 1. Given parallel and series resistances, find $\varphi_{\max }$ for circuit of Fig. la

				0.1

Nomogram 2. Use this to find a capacitance value to fix maximum phase shift at a desired frequency.

RC-RL Curves and Nomograms - II

Shunt Capacitance

Another circuit that has a peak in its phase response is shown in Fig. 1b. The phase response is

$$
\begin{equation*}
\varphi=\arctan \frac{\omega r_{p} C_{a}}{\omega^{2} r_{p}^{2} C_{a}^{2} k(k+1)+1} \tag{4}
\end{equation*}
$$

where $k=R_{a} / r_{p}$. Once again there is no phase shift at high and low frequencies. There is a maximum of

$$
\begin{equation*}
\varphi_{\max }=\arctan (1 / 2 \sqrt{k(k+1)} \tag{5}
\end{equation*}
$$

at

$$
\begin{equation*}
\omega=1 / r_{p} C_{a} \sqrt{k(k+1)} \tag{6}
\end{equation*}
$$

The phase response is plotted in Fig. 4, as a function of normalized impedance and with k as the parameter. Nomogram 3 is included so the designer can quickly select values to locate the phase maximum at any desired frequency. This nomogram is used in the same way as Nomo!frem 2; a straight line between r_{p} and f should cross the Turning sicale at the same point as a line between $\left({ }_{u}\right.$ and k.

Part III of this series will discuss multiple sections and the attendant non-negligible loading. The optimum number of sections for best phase response, minimum attenuation, selectivity and rate of change of phase will be described. A section on the RC differentiator will be included. -

MODEL IBION

ANALOG-TO-DIGITAL CONVERTERS

indefinite long-term stability

\pm one count accuracy
...two good reasons why Franklin's Series 1300 instruments are preferred in dozens of demanding applications. But there's more . .
Series 1300 Analog-to-Digital Converters are available in four basic configurations-off-the-shelf, ready-to-operate. Matching accessories perform additional functions-convert codes, extend sensitivity, provide for a-c input signals, furnish automatic features. give the engineer complete freedom in his data system design.

For all the facts, request Bulletin 606.

MODEL	- INPUT SIGNAL	READOUT	POLARITY AND DECIMAL INDICATION
1310	000.0 TO 120.0 V DC	vertical	NO
1310N	SAME AS MODEL 1310	IN-LINE (NIXIE)	Yes
1321	000.0 TO 120.0 V DC. 1 TO 100,000 MMF	vertical	NO
1321N	SAME AS MODEL 1321	IN-LINE (NIXIE)	YES

SEE THE FOLLOWING LISTING.

MODEL	GAIN RANGES	GAIN SWITCHING			AUTOMATIC POLARITY
		LOCAL	REM.	AUTO.	
319RA	1, 10, 100, 1000	YES	NO	YES	YES
319 R	1, 10, 100, 1000	YES	YES	NO	NO
319	1, 10, 100, 1000	YES	NO	NO	NO
318RA	1, 10, 100	YES	No	YES	YES
318 R	1, 10, 100	YES	YES	NO	NO
318	1. 10, 100	YES	NO	No	No

WhMん FREANIエIIN

BRIDGEPORT - PENNA.

CIRCLE 136 ON READER-SERVICE CARD
ELECTRONIC DESIGN • December 9, 1959

NEW LITERATURE

ulse Generator

137
One-page bulletin 3450C describes and illustates the firm's megacycle pulse generator which fratures modular plug-in design. Repetition rate, pulse delay, pulse output, power, accessories furiiished, standard modules, and a physical descrip tion of the device are included. Electro-Pulse, Inc., 11861 Teale St., Culver City, Calif.

Electric Motors

Features of the firm's extreme precision hysteresis synchronous electric motors, for use in such applications as transports, turntables drives, and missile and aircraft instrumentation, appear in this four-page illustrated brochure. A table of performance characteristics and dimensional diagrams is included. Construction, design features, and reliability are also covered. Hysyn Electromotive, Subsidiary of Telecomputing Corp., 915 N. Citrus Ave., Los Angeles 38, Calif.

Recording System

139
An automatic multipoint digital data recording system is described and illustrated in bulletin $350-8$, two pages. System components and specifications are given; operation of a typical system is discussed with the aid of a diagram. Datex Corp., 1307 S. Myrtle Ave., Monrovia, Calif.

Pulse Transformers

140
"The Design and Usage of Miniature Pulse Transformers," an 18-page catalog, covers the history of low-level pulse transformers, their chief differences compared to other transformer types, methods of measurement, and theory of application. Information on pulse transformer equivalent circuit, transformer polarization, and methods of degaussing a core is included. Circuit diagrams, pulse width charts, electrical specifications, and case types also appear. PCA Electronics, Inc., 16799 Schoenborn St., Sepulveda, Calif.

Precision Resistor Wire

141
This 12-page illustrated catalog introduces the firm's low-density high-resistivity precision resistor wire. A graphic evaluation of physical and el ctrical properties necessary for the manufacthre of precision wirewound resistors and poth tiometers is presented. Special tables and g phs cover the material's corrosion and wear resi ance properties, its strength and ductility, the ef cts of winding tension on electrical characteristic and the stability of resistance during a road li) test. Hoskins Manufacturing Co.. 4445 Lawto Ave.. Detroit, Mich.

svb-suba mionooture
 SWITCH

with amazing performance characteristics for miniaturized controls

Carries $71 / 2$ amp @ $125 / 250$ VAC... (U) U.L approved. Handles loads 50% greater than any switch in its size class. Perfect for office machines, etc.

Withstands 50 G Shock . . . Rugged enough for missile and aircraft applications.
Only .003" Movement Differential . . . Sensitive enough for the most delicate pressure switch controls.

No Measurable Dead-Break . . . Dependable switching even at very slow actuation speeds.
Only 2-Microsecond Switching Speed . . . Fast enough for high-speed computers and military controls.

Designed for Reliability . . . The only switch this small having only TWO moving parts.
Exclusive One-Hole Mounting . . . For faster, easier assembly and precision alignment. When stacking units, molded stud on case locks into matching hole on next unit. Single mounting screw passes through all units to form rigid gang. No second mounting hole tolerances to cause uneven alignment in critical assemblies. You save hardware costs, assembly time.

Write for full data on T-Series Switches.

ELECTROSNAP
 (O) (O) (O) incill (O)
 SWITCH DIVISION

4216 West Lake Street - Chicago 24, III.
Telephone VAn Buren 6.3100 - TWX CG 1400

actual size
E4. 100
series
Series
SPDT
sub-miniature
 Elec. 5 a mps (ic $125 / 250^{\circ}$ Rating: A amps Res. al 30
V.D.C. V.D.C.
2.5 amps Ind. $a 30$ v.D.C 2.5 amps ind. Ω 30 V.D.C.
Operating Force 150 grams max,
Amb. Temp. 65° to $+250^{\circ} \mathrm{F}$
 Variety of termination and op. erating characteristics. Military

environment free
 Elec. 5 amps we 125/250
Rating: 4 amps Res. (a) 30 V.D.C.
2.5 amps 2.5 amps Ind. $\pi 30$ V.O.C
peerating force 5 Operating force 5 to $17{ }^{02}{ }^{\circ} \mathrm{F}$
Amb. .emp $-65^{\circ} 10+180^{\circ} \mathrm{F}$
$\mathrm{EF} \cdot 105-65^{\circ}$ to $+350^{\circ} \mathrm{F}$. Enclosed basic switch conforms to MIL-S-6743. with entire unit
meeting MIL-E.5272A. CIRCLE 142 ON READER-SERVICE CARD

Operating force 7101202
Amb. Temp
Amb. Temp. ${ }^{\text {Scer }}$ or solder terminals Military and U.L. models

The vital need for uncommon new metals for nuclear applications is being met today by Precision Metals Division of Hamilton Watch Company. Now, even reactive and refractory metuls such as Hafnium, Zircaloy, Tantalum, Columbium and Titanium can be obtained in any form-from ingot to ultra-thin strip and foil -in production quantities.
The newly expanded and completely integrated facilities of Precision Metals Division are geared to produce ultra-thin strip and foil in any quantity and in a wide range of alloys, with these special advantages:
thicknesses from . $010^{\prime \prime}$ to $.0001^{\prime \prime}$ controlled metallurgical properties extremely close tolerances dimensional uniformity
For special requirements in development or production, Precision Metals can also furnish special alloys to your own specifications in the form you need. Write today for fully illustrated facilities booklet ED-12.

NEW LITERATURE

Electronic Instruments

Technical data on the firm's line of electronic instruments are contained in this two-page data sheet. Included are descriptions of a transistorized. regulated power supply series, a portable series, plug-in models, and a system-engineered sealed series. Two instruments for the accurate measurement of resistance up to 5000 million megohms with accessories for measuring volume resistivity at elevated temperatures are described. A wide range ohmmeter and an automatic relay tester are also covered. Mid-Eastern Electronics, Inc., 32 Commerce St., Springfield, N.J.

Cable Marker Tags

Bulletin $8(4$, two pages, describes the firm's cable marker tags. They are manufactured in light gage aluminum, brass, copper or zince. Illustrations in this bulletin show standard stock shapes and sizes arailable for prompt shipment. Seton Name Plate Co., 4.31 W. Rock Ave., New Haven 15, Com.

Functional Modules

This four-page brochure with ad litional data sheets describes and ill 15 trates the firm's line of functional modules. Features, applications, specifications, (ifcuit descriptions, and schematic diagra ns appear. Vitro Labs, 200) Pleasant Vales W'ay, W. Orange, N.J.

Subminiature Fuses

152
Complete technical information on subminiature fuses is provided in this twopage data sheet. Dimensional data and photographs are included, and the sheet is punched for insertion in any binder or file. Littelfuse, Inc., Des Plaines, III.

Preset Variable Resistors

153
A datal sheet is available illustrating ia new line of 34 in. diameter, miniature preset wirewound 12 to 500 ohm resistance range variable resistors. Chicagn Telephone Supply Corp., Elkhart, Ind.

256 resistors per cubic inch
 \author{ micro-miniature, wive-wound

}The newly-developed Kelvin Type 301•P precision, noninduc tive wire-wound resistor measures only $1 / 8^{\prime \prime}$ dia. $\times 1 / 4^{\prime \prime}$ long, with axial or axial/radial leads. Resistors are encapsulated to withstand extreme humidity, severe mechanical shock, and a temperature range of $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Temper. ature coefficient is $\pm .002 \% /$ deg. C; Wattage rating is 0.10 . 100 K ohms max., 1 ohm min., 100 v max. All connections are welded. Kelvin "relaxed winding" techniques produce tension-free windings . . . practically eliminating resistance drift with age and "shorts" or "opens" frequently caused by thermal shock. All units are temperature-cycled and tested, surpassing military requirements.

Send for complete literature on encapsulated and ceramic types.

LOW PASS FILTERS
 Builh to MIL-T-27A specifications. Re-
quests for special opplicotions invited

UNIVERSAL 90-0036 SERIES
All unirs hove a loss of less than 3 db at cutotf trequencry, ond attenuation of greater
thon 45 db of i .5 times the cutoff trequency. Mox. AC Operating Leval: 10 Milliwatis Mox. DC Operating Voltage: 200 VDC (10 Ma .) Vologoge Broakdown:
500 VRMS, 00 CPS. 500 VRMS, 60 CPS. Insulation Resistan
10,000 Megohms

Case: Hermetically Sase: Hermerically 6.32 studs Temperature:-400 10 $+85^{\circ} \mathrm{C}$ for a po bond tolerance
of $\pm 1 \mathrm{db}$

90-0229 SERIES FOR ETCHED CIRCUITRY Designed specifically for printed circuit opplications. Units have a loss of less than
1.5 db of 3500 CPS and an altenuation 1.5 db at 3500 CPS and an altenuation
of 40 db at 4500 CPS. AC Operating Levol:
${ }^{5}{ }^{5}$ Volts 0 Operating
Voltage: 0
Voltage: Breakdown: 300 VDC
Cose: Hermetically sealed
 Temporature: $-40^{\circ} \mathrm{C}$
$+85^{\circ} \mathrm{C}$ for a pass
bond tolerance
of $\pm 1 \mathrm{db}$

90-0145-00 AUDIO OUTPUT LOW PASS FILTER

 Designed to operate from tube plate, directlyto a 600 ohm line. Unit has a loss of less than 5 db . 350 CPS a loss of less Then 5 db of 3500 CPS and on
ollenuation of 40 db at 5700 CPS. Inpuut Impedance: 10,000 ohms Ouy pur Impedance: 600 oh Oplrating Level: 10 DBM
Voliage Breakdown: 500 VDC OC Input Current: io Mo.
Cose: Hermetically sealed
Ter perature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for a pass
ba 1 tolerance of $\pm 1 \mathrm{db}$
WRITE FOR COMPLETE CATALOG
OOMMUNICATION
ACCESSORIES COMPANY EE'S SUMMIT, MISSOUR

Aluminum Electrolytics

159
Illustrated bulletin 3441A, 12 pages, describes power supply filter capacitors which meet 85 C operating conditions. Dimensional diagrams, tables of standard ratings, typical curves of impedance, and a list of performance characteristics are included. A guide to application and operation also appears. Sprague Electric Co., North Adams, Mass.

Electrical Contacts

160
Materials, properties, forms, uses, and illustrations of the firm's line of electrical contacts appear in catalog 601, four pages. Discussed in the folder are contacts manufactured from fine silver. coin silver, palladium, gold, platinum, silver alloys, and many powdered metal compositions. Electrical contacts for various applications such as contactors, instruments, circuit breakers, and switches are shown in outline form. Gibson Electric Co., Box 596, Delmont, Pa.

Electronic Multiplier

This 16-page illustrated brochure includes a general description, features, and performance specifications of an electronic multiplier which provides four quadrant multiplication of input variables at 500 cps . In addition to a discussion of the theory of operation, a section is devoted to a new type of discriminator which provides an exactly linear relationship between am and fm outputs. Diagrams show how the multiplier can be converted to perform division and square root functions. Computer Systems, Inc., 611 Broadway, New York 12, N.Y.

Rotary Switch

An actual size photograph plus a dimensional diagram of the firm's high precision rotary switch appear in this one-page bulletin. In addition to a description of the switch, electrical, mechanical, and environmental specifications are also given. Waters Manufacturing, Inc., Wayland. Mass.

Power Connectors

Four series of miniature rectangular power connectors designed for heavy duty applications are covered in this 20-page catalog. Complete specifications, outline dimensions, illustrations, and general information are included. Among the power connectors featured are those with closed entry contacts, polarizing screwlock, aluminum hoods, and quick release. De-Jur Amsco Corp., Electronic Sales Div., 45-01 Northern Blvd., Long Island City 1, N.Y.

JFRHOITS'

versatile new

900A Sweep Generator Covers the Range of Three Regular Instruments!

It's the most versatile Sweep Generator in the electronics industry ... this one instrument covers all your needs from $1 / 2 \mathrm{MC}$ to 1200 MCS , for IF's, radar, video, telemetering and communlcations:
Specifications: In two ranges- 0.5 MC to 400 MC and 275 MC to 1200 MC the instrument supplies sweep signal with center at any frequency from 500 KC to 1000 MC and with sweep widths as broad as 400 MC and as narrow as 100 KC . The RF output carefully monitored by matched, crystal diodes feeding a two-stage, push-pull AGC amplifier - is flat within $\pm 0.5 \mathrm{db}$ at full sweep width up to 800 MCS and $\pm 1.5 \mathrm{db}$ from 800 MCS to 1200 MCS. When using sweep widths as narrow as 20 MCS flatness at $\$ 126000$
any center frequency is approximately $\pm 0.15 \mathrm{db}$.
NOW . . . FULL PRODUCTION ASSURES FAST DELIVERY!

JERROLD Electronics corporation
Industrial Products Division Dept. TED 59 The Jerrold Building, Philadelphia 32, Pa. Jerrold Electronics Corp., Ltd., Toronto, Conada
Export Representative: Rocke Internalional, New York 16, N. Y.
CIRCLE 164 ON READER-SERVICE CARD

NEW \$49.95 KIT MOVES YOU FROM SCHEMATIC TO CIRCUIT FAST \& RELIABLY!

Here's an all-in-one tool for prototype and small production runs that makes it simple to
organize and mount circuitry in compact, planes. It quickly swages Alden terminals, eyelets, brackets and tube sockets, and punches . $101^{\prime \prime}$ terminal holes in Alden XXP phenolic cards or any $1 / 16^{\prime \prime}$ cold punch card. You can make up circuitry turrets in minutes - complete with terminals, brackets

SAVE $\$ 10$ on kit over individual part prices. Contains Alden Universal Staking Tool and assortment of prepunched terminal cards, terminals, tube sockets, brackets and eyelets to get started immediately. Order Kit \#42 $\$ 49.95$ complete.
ALDEN PRODUCTS CO., 12139 N. Main Street Brockton, Mass.
CIRCLE 168 ON READER-SERVICE CARD

Tuke Types

170
This revised pamphlet on tube types, eight pages, lists entertainment types including TV picture tubes, vacuum types for of and af power applications, vacuum types for pulsed-power applications, volt-age-regulator, glow-discharge, and comuter types, thyratrons, power rectifiers, oscillograph tubes, storage tubes, phototubes, and photoconductive cells. Applications and descriptions are given. Radio Corp. of America, Electron Tube Div., Harrison, N.J.

Digital Tape Handler

A three-color, eight-page brochure is available which gives complete specifications on the FR-400 Digital Magnetic Tape Handler. Included also are illustrations showing the mechanical highlights and construction of the machines. Ampex Corp., Instrumentation Div.. 9:34 Charter St., Redwood City, Calif.

Wide Range Ohmmeter

A two-page bulletin gives application data and specifications on the Model $i 91$ Wide Range Ohmmeter. Applications in clude measurement of forward and back resistance of semiconductors, thermiste is low resistance copper paths, and deter. mination of resistance of moving coils in electrical indicating instroments. Mid Eastern Electronics, Inc., 32 Commerce St., Springfield, N.J.

High Temperature Connectors 173
A new catalog sheet is available describing the line of high temperature connectors. The technical bulletin points out the type of applications for which the connectors were designed and offers complete information regarding standari sizes, types, contact patterns, MS cross refernce numbers and insert data. Haren Laboratories, New Haven, Conn.

[^5]CIRCLE 174 ON READER-SERVICE CARD
ELECTRONIC DESIGN • December 9, 1959

apacitors

The firm's complete line of ceramic disc

C-Band Radar Beacon

179
Publication WCP59-0812, eight pages, describes General Electric's C-brand radar beacon, a 9.8 lb , airborne, pulse-type missile tracking and identification aid designed particularly for operation with IN/FPS-16 radar and also compatible with the AN/MPS-26 and several other C.-band radars. Beacon characteristics wh as its $400-w$ output capability, application, flevibility and compact size are discussed. A full product description, development history and complete specification are included. General Electric Co., schenectady 5, N.Y.

Precision Resistors

Performance data, net price, and military decade values of deposited carbon precision resistors appear in this sis-page bulletin. Illustrations, wattage, length, and diameter of various types of resistors are included. Campbell Industries, Inc., Dover, N.H.

Recorders

A 12-page, two color bulletin, No. GEA69:3:3, provides buying information on the complete line of the firm's recording instruments, including dimensions and chart speeds, operating specifications, ap)plications, features and accessories. Recorders are grouped by accuracy class for convenient selection. Photographs of all models discussed are included. The bulletin also describes specialized recording instruments available, such as spectrophotometers, recording vibrometers, autotomatic oscillographs, self-balancing potentiometers, and speed recording systems. General Electric Co., Schenectady 5, N.Y.

ray Rada-Sweep 300

Fundamental Sweeping Oscillator to Align Radar IF's Between 1 and 350 mc Center

Single Unir Sweeping Oscillator with Twelve Wide Bands of Cus tomer Specified Cente Frequencies

- 30 Crystal Marks Sel
io Your Specification
- Single Swirch Provides Sweep and Markers Simultaneously
- Highly Stoble; Low Harmonic Content; No Spurious Signals
Catalog No. 386-A
SPECIFICATIONS
Frequency Range: Any 12 fixed center fre- Markers: Up to 30 crystal-controlled positivepulse markers at customer-specified frequentween me and 350 me. Twelve switched
bands; fundamental
frequency;
all Sweep Wice Sweep: 70\% of eenter trequencie Sweep Width: 70\% of center frequencies
sclected between i and 100 mc; 60 to 70 sclected between 1 and $100 \mathrm{mc} ; 60$ to 70
me for frequencies between 100 and 350 Sweep Rote: Variable around 60 cps . Locks RF ${ }^{\text {to }}$ Output: 0.5 Req Ims into nom. 70 or 50 ohms, higher for lower frequency
Output held constont to within ± 0.5 db Zeror wefdest sweep by AGC circuif. A true zero-base line is pro Zero Reterence: A true zero-base line is pro
duced on oscilloscope during retrace, time. duced on oscillascope during retrace trime.
Aftenuators: 5 witched $20,20,10$ ond 3
db plus continuously variable 6 db. cies. Accurate to ($\pm \mathbf{0 . 0 5 \%} \%$. Up to three
markers per band (more on Iowe, frequen-
cies) ore ovailable; no individual switches cies) are oreailoble; no individual switches
on markers. Marker Amplit
Morker Amplitude: Continuously variable,
zero to 10 V peak. Sweep Output: Regular sawtooth synchronized with sweeping oscillator. 150 watts,
Power supply: Input approx.
 tronically regulated.
Dimensions: $83 / 4^{\prime \prime} \times 19^{\prime \prime}$ rack panel, $13^{\prime \prime}$ deep. Dimensions: $83 / 4$ x 19
Supphied with cabinet
Weight: 34 lbs. approx.
Weight: 34 los. opprox.
Price: $\$ 850.00$ f.0.b. foctory plus $\$ 17.00$ per Price: $\$ 850.00$ frystol morker.
crystal marke

Write for New Kay Cotalog 1959-A

KAM ELEGTRRIE COMMPRNT Dept. ED-12 . Maple Avenue . Pine Brook, N.J. . CApital 6-4000

Photo Courteesy Botarar Airolene Co.
Boeing selected Hickok-engineered meters for nearly 50\% of the instruments on the 707-engineer's flight panel .. to save panel space, reduce instrumentation weight and provide improved readability without sacrificing accuracy.

Air flow is measured with these two sub-miniature meters dual-mounted in a single, Standard AND-10412 case. Advantage . . . two instruments (each with 180° angular deflection) in a case normally intended to contain only one mechanism.

Jet engine operation is indicated on these HICKOK-pioneered 250° arc angle instruments. Long scale permits quick and accurate reading during flight.
Consult with a Hickok Engineer about your particular meter problems. Write for technical information.

THE HICKOK ELECTRICAL INSTRUMENT CO.
10525 Dupont A venue
Clevelend B, Ohie
10525 Dupont Aven
Clevolond B, Ohio It Makes You Stop and Think

Everywhere you turn, you see more and more Prodelin equipment being used for RF transmission. Coaxial cable, transmission line, connectors, antennas, and complete systems are all in heavy demand because of Prodelin's superior specs and performance . . . better price and delivery. Review your own needs and you'll see that Prodelin can do the job better for you!

Prodelin Spir © - line Spire: $10 k^{\circ}$ SEMI-FIEXIBLE ALUMINUM COAXIAL CABLE \& CONNECTORS

Ready to meet all demands, Prodelin rigid line is now available in Stand inum and in aluminum with the new Spir-O-lok connectors. All lines fea cure the electrically transparent com pensated pin supporting structure powers which approach theoretrical values. The $31{ }^{\prime \prime}$ " line can handle, at atmospheric pressures, peak powers of up to 3 megawatts with no addi tional pressurization.
New $41 / \mathrm{g}^{\prime \prime}$ line can handle 50 kW average power at 250 MCS, for grea savings through less weight and

Prodelin
2.war mobile antennas

To complement its already famous line of microwave antennas, Prodelin makes available its unique antenna package for 6 and 7 KMC . The package incorporates Spir-O-line semilexible coaxial cable and Spir-O-lok stallation. Available in 4, 6, 8 and 10 ft . antenna sizes the system is particularly recommended for use in passive reflector systems or on other reduces engineering time and com ponent expense.

Prodelin
microwave antennas

NEW LITERATURE

Alnico Permanent Magnets

An improved version of alnico permanent magnets, especially suited for core type meters and instruments, is the subject of this two-page bulletin. In addition to magnetic and material characteristics of the oriented and nonoriented forms, a demagnetization and energy product eurve also appears. Applications for this improved permanent magnet material are given. The Indiana Sted Products Co., Valparaiso, Ind.

Metal Housings

190
Catalog 600, 20 pages, describes standard metal housings for the electronics industry. It features the firm's new line of modular console systems including heavy duty transmitter racks, pedestals, writing desks, turrets, and other accessories. The regular line of chassis, cabinets, racks, and panels also appears. Premier Metal Products Co., New York 59, N.Y.

Current Generators

Two-channel and four-channel millimicrosecond current generators are featured in this one-page bulletin. Input, output, power, accessories, standard modules, and physical descriptions are included. A photograph of the two-channel model appears. Electro-Pulse, Inc., 11861 Teale St., Culver Cits, Calif.

Injection Molded Parts

192
Detailed engineering information on injection molded Delrin parts is provided in this eight-page bulletin. Outlines of established and potential uses are also included. Illustrated with photographs, charts and tables, the bulletin offers data on the mechanical, chemical and physical properties of Delrin. Performance datal for this plastic is compared with that of several cast ferrous and non-ferrous materials. Gries Reproducer Corp., for Beechwood Ave., New Rochelle, N.Y

Potentiometers

193
This supplement to the firm's current potentiomater catalog contains complete electrical, mechanical and environmental specifications and drawings of four new single-turn precision potentiometers. The 1-7 $16-\mathrm{in}$. diameter series 5410 and 5420 have standard temperature ranges of -65 to +125 C and -65 to +150 C , respectively. The $1-34 \mathrm{in}$. diameter series 5510 and 5520 also have the same choice of temperature range. Beckman Instruments, Inc., Helipot Div., 2500 Fullerton Road, Fullerton, Calif.

II's Easy

 In Write fia ELELCTRINI IIESIITAs a design engineer it's very likely many of the problems you have enc lered and sohed can lie of real hel thers. Why not tell eilectronic , of readers about it? This efloin oe of real, direct, immediate servi the industry. If you think you have deal for all article, send us an outhine with suggestions for the completed pi

FREE
This booklet desa hou pasy it is to for El.ECTRONIC omplete detais of articles needed, ment, payment elc. ment, mayment, ell hour copy simply ber shoutin leelou.
new rapid tests of SSB
transmissions with ONE compact multi-purpose spectrum analyzer

Electronic Gaging

A complete description of electronic gaging systems and of each of the modules comprising them is given in this 12 -page brochure. Typical applications are shown. The principal advantages of electronic gaging are 100 per cent repeatability, instantaneous response, high reliability and accuracy to 0.00005 in . Radio Corporation of America, Industrial and Automation Dis., 12605 Arnold Ave., Detroit 39, Mich.

Caps and Terminals

Bulletin No. 59-4, four pages, two colors, describes and gives specifications for many sockets, plate caps, grid grips, terminal components and assemblies available for numerous radio and electronic applications. Data is provided in tabular form and photographs are included. National Radio Co., Inc., 37 Washington St., Melrose 76, Mass.

Miniature Delay Lines

201
Two-page illustrated bulletin DL.1159 describes a standard line of miniature lumped constant delay lines. Electrical specifications, packaging, and the unique construction techniques are covered. Design factors that should be considered when establishing specifications for special delay lines are also explained. Valor Instruments, Inc., 13214 Crenshaw Blvel., Gardena, Calif.

Dials, Drives and Mechanisms

202
Descriptions and specifications of all assontment of dials, rim and planetary drives, and vemier mechanisms appear in this eight-page bulletin. Photographs show the dimensions of the various models. National Radio Co., Ince, 37 Washinerton St., Melrose 76, Mass.

Power Supplies

203
Featured in this two-page bulletin is the firm's complete line of transistorized power supplies, including more than 60 off-the-shelf models and dual output types. Design, special features, prices, and general specifications of standard models are given. One model is illustrated. Mid-eastern Electronics. Inc.. 32 Commerce St., Springfield, N.J.

Magnetic Shields

204
Data sheet 150 decribes the problems extremely low-level magnetic fields encounter with backward wave tubes. It explains how these problems can be eliminated by low-leakage magnetic shields. A photograph of the magnetic shield appears. Perfection Mica Co., Magnetic Shield Div., 1322 N. Elston Ave., Chicago 22, III.

0Bendix Craftsmanship at work for you

WIDEST RANGE OF MICROWAVE GAS NOISE SOURCES AVAILABLE ANYWHERE

Since accurate measurement of a receiver's inherent noise level is vital in determining a value for absolute signal level for a given signal-to-noise ratio, it stands to signal-to-noise ratio, it stands to
reason that the noise source tube used should fit the specific job requirements exactly.
The tremendous varietybiggest in the industry - of Bendix Microwave Gas Noise Source Tubes is your best guarantee of matching noise sources to the application-whether that
application be in the laboratory, in field service, or as a component of the system.
Our new improvements in design make Bendix tubes suitable for use in pulse circuits with an increase of one order of magnitude in life. And our improved manufacturing techniques have resulted in a smaller spread of excess noise output from tube to tube. Many Bendix types are now available to a tolerance of $\pm 0.1 \mathrm{db}$ on excess noise output.

Complete engineering data on the Bendix Microwave Noise Source Tube line and on auxiliary circuit designs can be obtained by writing

Wost Coast Salen \& Service: 117 E . Providencia Avo., Burbank, Calif.
Export Soles \& Sorvice: Bendix International Division, 205 E. 42nd S1., New York 17. N. Y. Conadian Distributor: Computing Devices of Canado, tid., P. O. Box 508. Oltawa 4. Ontorio CIRCLE 205 ON READER-SERVICE CARD

EDDYSTONE TUNES 19-500 Mc.

150.500 Mc Model 770U
EDDYSTONE Receivers have die-cast frames and turrets, condensers milled from solid, silky fly-wheel tuning with no backlash. Sensitivity, selectivity and image rejection are controlled and guaranteed. These precise laboratory instruments monitor telemetering, aircraft and mobile radio. They have been chosen for tracking "Explorer" and "Discoverer" Satellites.

* Continuous coverage in 6 bands
* Receive FM or AM
* Continuous duty cycle
* Accurate freq. cal. 34 foot vernier
* Effective noise limiter « IF and AF gain controls * Table-top or rack mounting

11 CEDAR LANE - ENGLEWOOD, NEW JERSEY CIRCLE 208 ON READER-SERVICE CARD

NEW LITERATURE

Power Supplies

210
Bulletin 422, 12 pages and three color, includes specifications on the Regatron Mark II series of high precision, chopperstabilized calibrators. Also covered is the entire line of Regatron programmable, nonprogrammable and general utility power supplies. Photographs are supplied and the data provided in tabular form. Ordering information is given. Electronic Measurements Co., Inc., Eatontown, N.J.

Pulse Discriminator Filter

211
A pulse width discriminator filter that is applicable to a wide variety of pulse and video type electronic systems is described in this six-page brochure. Graphs and photographs are included. One section of the brochure presents the electrical, mechanical and environmental features, including actual measured data such as wave forms and transfer characteristics of a typical unit. Mini-Rad, Inc., 7416-E Varna Ave., N. Hollywood, Calif.

Relay Definitions and Testing 21:

 ProceduresThis 70-page progress report cover dry circuits, measurements of electric l characteristics, contact life testing, ens ronmental testing, vibration testing, shoc acceleration and tumbling. The repot presents suggested definitions and teit procedures, discusses test equipment and precautions, outlines work yet to be dol e and solicits comments and suggestions (in work accomplished to date. National A_{1} sociation of Relay Manufacturers, P. () Box 6, Stillwater, Okla.

Chassis Punches

213
Information on chassis punches for electronic applications and other uses are provided in this four-page folder. It covers a line of more than 20 different sizes and types of punches which require 50) per cent less torquing effort than is customary due to an exclusive electrocoating process used on the cutting edges. Walsco Electronics Mfg. Co., Div of Textron Inc., 100 W. Green St., Rock ford, III.

ELECTRONIC DESIGN • December 9, 1959

A 166 db acoustic noise generator is described in this four-page bulletin. The generator uses an electro-mechanical translucer of moving-coil type producing 166 dh of random noise and 170 db at discrete frequencies. Photographs, graphs and applications are included. Avco Corp., Research and Advanced Development Div., 201 Lowell St., Wilmington, Mass.

Strip Conductor

Specifications, availability and descriptions are given in these data sheets on aluminum electrical strip conductor. The product description section provides a general explanation of the product, both bare and anodized, and the technique of its production. The availability section defines standard strip condactor items. manufacturing limits, minimum quantities, shipping tolerances, and standard packaging procedures. In the specified requirements portion, chemical composition limits are listed, plus electrical and anodic film properties and a description of testing which the product undergoes before shipment. Reynolds Metals Co., Richmond 18, Va.

DC Power Supplies

221
Features, speccifications, and a descriptiom of de power supplies appear in this two-page illustrated bulletin. A circuit for hot wire operation and a circuit for thermistor operation are also included. (oow-Mac Instrument Co. I(N) Kings Road, Madison. N.J.

RTS?
ETCHED
METALPA
TOLERANCES CRITICAL?

buckbee mears

Micron range tolerances are standard practice with B.M.C. photomechanica techniques. Storage tube, mesh, transistor evaporation masks. intricate metal parts, mechanical filte: screens, etched shaver combs, etehed orifice plates, all are produced more perfectly by electroforining or mechanical etching
adiantages:

1. No tool distortion and burrs.
2. Processing of parts 100 small or intricate for stamping or machining.

3. Ease of handling
4. Parts or sheets of parts furnished pre-fooled for final processing. BUCKBEE MEARS CO. ST. PAUL, MINNESOTA-CAPITOI 7.6371
 CIRCLE 222 on reader-service caro
EI CTRONIC DESIGN • December 9, 1959

NOW... VTVM's for all applications

```
... panel-
mounted...
small-size
ELECTRONIC VOLTMETERS
```

SEND FOR CATALOG 10A which gives complefe specif. cations and prices on panel mounting, relay-rack and plug-in models.

Build accuracy into all your equipment, test and production alike, with Metronix DC and AC Electronic Voltmeters.
These Metronix instruments are no larger than conventional voltmeters, cost little more. They offer higher accuracy because they don't load the circuit. In AC applica.

Metranix inc

> m

ASSEMBLY PRODUCTS, INC.
Chesterland 17, Ohlo
api
CIRCLE 224 ON READER-SERVICE CARD

IDEAS FOR DESIGN

TO ACCELERATE the nuclear research program at our laboratory, a system was designed to punch binary data from an RCL pulse-height analyzer (PHA) on paper tape concurrent with the printing of decimal information.
In the PHA, a 20 -bit word is stored in a magnetic core memory. There are $256\left(2^{8}\right)$ such words stored. When the PHA is in the print mode, the 20-bit word is read out of storage into a flip-flop register. The eight-bit address is available in a similar register. Approximately eight $\mu \mathrm{sec}$ after being read into the word register, a binary-to-

Fig. 1. Conventional circuit uses 56 gates, 28 月ip-flops and 6 punch drivers.

Thyratron Gates, Stores, And Drives Punched Paper-Tape Output

decimal conversion routine begins which destroys the binary data.

A total of 300 milliseconds is required to punch the 28 bits of data and address on paper tape, so that storage external to the PHA is necessary. In addition, 60 ma at 50 v are required to operate the punch coils.

The usual method of achieving the required results is shown in Fig. 1. Information is gated to storage flip-flops on store command. Storage flipflops are gated to punch drivers, which drive paper-tape punch coils. For this system 56 gates, 28 flip-flops, and 6 punch drivers are required.
Our requirement called for a minimum number of components, resulting in greater reliability and cconomy. The basic element in our solution is the tetrode thyratron, which has the following desirable characteristics:

1. Conduction may be inhibited by either grid (gating).
2. Once the thyratron conducts, grids lose control (storage).
3. Thyratrons may safely pass large amount of current (driver).
The final circuit is shown in Fig. 2. Twentycight thyratrons and a stepping switch are required. The output of a PHA flip-flop is connected to grid 2 of the thyratron; it is slightly positive for a " 1 " and at -40 v for a " 0 ."

When the 20 -bit word is set up in the PHA register, a $4-\mu s e c$ store pulse is applied to grid 1. Those thyratrons connected to flip-flops in the "l" position will not fire. Since grid 1 is normally biased negative, changes in the PHA flip-flops
before or after the store pulse will not affect the thyratrons.
These thyratrons conduct through a 50 K plate resistor until selected by a stepping switch connected to the punch coils. When this selection is made, five bits per cycle are punched. In six punch cycles, the binary word and address are punched. The thyratron memory is then cleared, and the unit is ready for another channel. The channel is advanced when both paper-tape punch and PHA printer have completed the cycle.

Robert M. Walker, Electronics Engineer, Lawrence Radiation Laboratory, University of California, Livermore, Calif.

Fig. 2. Thyratron circuit uses 28 thyratrons and a step ping switch to accomplish the same gating, storage and driving functions.

"never-fail" performance in electronic, missile, and aircraft applications

or shock and vibration significant reduction in size and weight. ..look to Balanced-Armature Relays from Leach.
These patented Balanced-Armature Relays can solve critical circuit control problems in $5-10-$ and $15-\mathrm{amp}$ applications requiring 2 , 4 or 6 poles. They are rectified for AC operation and meet or exceed military specifications MIL-R-25018, MIL-R-5757C, MIL-R-6106C (including the minimum current test requirements.) And Leach relays offer outstanding environmental characteristics.
Shock 50 G 's
Vibration . . . 15 G s to 2000 cps
Ambient Temperature
Range . . . -70 C. to +125 C.
Acceleration 15 G 's
Altitude 100.000 feet +

Leach relays can be tested to specific customer requirements -up to 100% of the total production run - in the Leach Production Reliability Center, the only reliability testing laboratory of its kind in the industry.

Leach "know-how" results from 40 years of designing and manufacturing for electronics -30 of these years spent in relay specialization. Today, many Leach designs are considered standard industry configurations. The Balanced-Armature series alone includes over 4,000 variations of 20 basic hermetically sealed, contaminant-free relays . . . standard designs and Magnetic Latch types . . . all available in a wide variety of mountings and terminals . . . a relay for nearly every electronic, missile, and aircraft application where components must not fail.

Write today for the new Leach BalancedArmature Relays brochure containing specifications, typical ratings, and other information on these unusually reliable relays! Or contact your nearest Leach sales representative to discuss your specific relay requirements.

CIRCUDESIGN ENGINEER NEEDED

IN SOUTHERN CALIFORNIA

$\mathcal{B e m d i j}_{\text {-Facific }}$

he major source for instrumentation systems and components, offers you a unique opportunity to fully use your ability with a rewarding future as a qualified engineer.
Have you had two or more years experience in the design of VHF or UHF transmitters?
. . in airborne packaging?
. in transistor circuitry?
If you have, we want to talk to you.
Please send resume to W. C. WALKER ENGINEERING EMPLOYMENT MANAGER

Other High-Level Electronic Engineering Positions Available
CIRCLE 919 ON CAREER INQUIRY FORM, PAGE 205

IDEAS FOR DESIGN

Diode Protects Transistor Junction in Monostable Circuit

In many transistorized monostable applications. the cut-off pulse applied to the base of the trinsistor $Q 2$ will exceed the maximum cut-off volt. age and destroy the junction. The use of diocies to solve this problem might be overlooked.
A diode CR having a peak inverse volta fe greater than the cut-off pulse will act as a voltage divider because of its high back resistance. In the normal conducting state of the transistor there will be no effect because of the low forward resistance of the diode.
Resistor R prevents $I_{\text {co }}$ from turning Q2 on.
Walter V. Billin, Engineer, The Martin Co. Baltimore 3, Md.

Diode in series with transistor base prevents destruction of Q2 junction by cut-off pulse.

Transistorize A One-Shot Phantastron Circuit

Transistorization of a phantastron circuit has often baffled designers. Here is a means by which it can be done.

Fig. \mathbf{l} is a simple one-shot pentode phantastron.

Fig. 1. A conventional pentode one-shot phantastron circuit.

Fig. 2. Transistorized version of the phantastron.

Fig. 2 is the transistorized version.
The circuit may be triggered at several points. During standby, the plate is cut off in the pentode circuit of Fig. 1. In the transistorized version of Fig. 2, Q2 is cut off during standby, by means of the drop across the $1-\mathrm{K}$ resistor. The sweep is initiated by momentarily cutting off Q1 or relieving the drop across the $1-\mathrm{K}$ resistor. The linearity of the sweep voltage is comparable or better than the pentode equivalent.
Tom Kitaguchi, Electrical Engineer, Martin Co., Baltimore 3, Md.

Zener Diodes Avert Transistor Derating

The high-voltage switching transients present in saturating-core-type transistorized power supplies frequently cause transistor failure. For this reason, the transistors must be operated at voltages lower than those for which they were designed.
This circuit allows operation at full ratings of the transistor. It also affords protection against any transients on the supply, E.
The Zener voltage of the diodes should be $2 E$. k is only necessary to limit the Zener current to safe values and will be very small ($1-2$ ohms). This circuit is also applicable to the grounded emitter and grounded base configurations.
Robert A. Durand, Electrical Enginecr, Martin Co., Baltimore 3, Md.

Symbol Dropped In Head

A symbol was dropped out of the head for an (eas For Design article by Charles Gage (ED, iv. 11, p. 174). The head should read "Power S pply Delivers Low Z, High I, Low Cost." Apolies to Mr. Gage and readers.

SELECT CLOSURE HARDWARE TO IMPROVE UTILITY, APPEARANCE, AND TO LOWER COST

QUICKLY INSTALLED SOUTHCO CAPTIVE PANEL SCREWS END MISALIGNMENT PROBLEM...

Simplicity of design contributes to clean, distinctive appearance and fast, low-cost installation. Stand-off is slipped into panel hole and secured by flaring. Screw is passed through standoff and made captive by vinyl o-ring.
"Floating" screw design eliminates costly close tolerance manufacture and permits easy engagement regardless of panel distortion encountered under adverse use conditions.

SPECIFICATIONS

Material: Screw is brass, chrome plated; can be supplied in stainless steel. O-ring is vinyl plastic.
Overall length of screw: $1^{3 / 61}$ Depth of screw head: $1 / 4{ }^{n}$

Sizes:

SCREW HEAD DIAMETER	THREAD SIZE
$3 / 4 " 1$	$1 / 4-20$
$3 / 4 "$	$1 / 4-20,12.24$
$3 / 46^{\prime \prime}$	$10.24,10.32$

Length of thread: $3 / 8^{\prime \prime}$
Screw head is supplied plain, as shown, or slotted for screw driver.

PRE-ASSEMBLED
PAWL ADJUSTS TO
DESIRED THICKNESS AND PRESSURE

This neat, compact Southco panel and door fastener is supplied assembled, requires but two rivets or bolts for low cost installation. It is available in three mod-els-large, intermediate and midget.
The unique feature of Southco Pawl Fasteners is the fact that, by merely turning the knob, the pawl is adjusted to a wide range of frame thicknesses. This assures a tight grip without precision setting regardless of variations in frame or door dimensions or changes that are produced by wear or warping of sheets.
Pressure exerted by the pawl on the frame is controlled in the same way, by merely turning the knob. Against gasketed frames, pressure can be easily applied to compress the gasket.

SPECIFICATIONS
Knob: Cadmium or chromium plated steel.
Head Styles: Protruding ribbed or knurled knob; flush screw driver slotted for large size only.

	WREE	IMTERMEDIATE	miocer
Knob diameter	\%"	\%6"	1/212"
Total width	$21 / 2^{\prime \prime}$	$13 / 4{ }^{1}$	11/8'
Total height	1\%6"	\%"	33/4, ${ }^{\text {n }}$
Back of panel depth	123/2"	11/4"	\%"
Knob length	$11 /{ }^{n}$	13/6"	1/20

FAST, HAMMER-
DRIVEN BLIND RIVETS CUT INSTALLATION TIME

You "hit-the-pin" and the rivet's in. No special tools to limit production or require maintenance, no bucking, no finishing. For blind or open applications, Southco Drive Rivets save time, reduce costs.

Automatic "pull-up" action assures uniform, tight grip.
Southco Rivets are made of aluminum or cadmium plated steel with cadmium plated or stainless steel pins. Diameters are from $1 / 8^{\prime \prime}$ to $1 / 1^{\prime \prime}$, grip range is from 1/6" to $\%$ " ${ }^{\prime \prime}$.

Increased widespread use is due to low installed cost and elimination of down time and maintenance associated with fasteners requiring special tools.

FREE!

Fastener Handbook

Send for your free copy of Handbook No. $リ$, just released. Gives complete data for designers on these and many other specialty fasteners. 48 pages, in two colors.
Write on your letterhead to Southco Division, South Chester Corporation, 235 Industrial Highway, Lester, Pa.

E ECTRONIC DESIGN • December 9, 1959

IDEAS FOR DESIGN

Modified Slide Rule Converts Volts to Logarithmic Scale

Voltage readings obtained from meters or from oscilloscopes must often be converted to logarithmic values in order to plot on semilog graph paper. A cheap slide rule can be quickly modified to perform these conversions with the help of a little graph paper.
First determine the maximum number of deci-

Graph paper past-ons modified this inexpensive slide rule to a handy lin-log converter.
mal digits in the numbers which you ever expect to convert (i.e., units, tens, hundreds, thousands, etc.). Select a semilog graph paper with this number of cycles.

Select a linear graph paper with lines that form integral increments of this \log scale. If an exact match is not available, hand rule the proper scale on plain paper. (Let the space between the numbers 1 and 2 of the \log scale equal six graduations on the linear scale).

Now calibrate the \log scale in volts and calibrate the linear scale in logarithmic units (decibels if the reference voltage is proper).
R. Fred Pfost, Ampex Corporation, Redwood City, Calif.

Special Glass Prevents RF Leakage Through Test Equipment Window

A problem existed in maintaining rf shielding across a glass window in test equipment. The application required viewing a tape transport unit and yet reduced radio noise emanating from the window area.
Successful results have been obtained using glass with a thin transparent conductive coating applied. Such glass is manufactured by Pittsburgh Plate Glass Co. The hardened glass window has

An Advertising Manager Asks Some Questions About

 Fansteel Developmentsl. . . and uncovers additional facts about new developments of interest to engineers concerned with product reliability. Joseph V. Di Masi, Fansteel Advertising Manager, turned reporter and here's what he found out from his company's Rectifier-Capacitor Division.

What do you feel was the most important Fansteel development in 1959?
The GOLD-CAP Tantalum Capacitor, beyond a doubt! Certified pre-testing of every single GOLD. CAP is a new concept that has set a pattern in the industry and has satisfied the increasing reliability demands of both military and civilian applications. But it's only one step in our program to achieve the ultimate in reliability for all Finstecl products.

What are the reports from the field on our GOLD-CAP?
All good! I think weive proved that engineers require the kind of reliability we're offering in the (GOLD-CAP Capacitor for two good reasons. They watn to be sure of getting 100 good. reliable capacitors out of every toil they buy we furnish completc. test results and. doubly important, they urgently need a product like the GOII)-(AP as a basis to achieve the overall reliability they're trying to build into their products.

Glen Ramses, V'ice President Fansteel Metallurgical Corporation and General Manager of the Rectifier-Ciapacitor Division

What about
our new
silicon controlled rectifier?
IIl tell you this...it's goin; to embody a brand new concept in rectifier encapsulation. It will be something different-something better than any controlled rectifier the industry has ever seen. Research and development is completed... laboratory and field testing is over. and we now know that this rectifier will perform exen better than experted and full production will be under way early in 1960

FANSTEEL

Hozard Brauci
Manager．（Lualiey Conerol
Paul llicirich
Gien Ramsey
Staff Engincer

When will our new silicon rectifier plant be in production？
By next month．the new plant will be supplementing our current silicon rectifier output by an additional 60,000 units per day．This will include our com－ plete line of new industrial power rectifiers and the plete line of new industrint power recticrs and eh rand new sitic on controlled rectifiers．The new facil ittes will also be used for producing our automotive incon recticr which，as you know．was I）USTRIES and the Ausust issue of INDUSTRIAL I．ABORATORIES amone other publications．

Are we expanding to keep up with solid tantalum capacitor demands？

Ces，we have recently completed the second phase of our S－T－A expansion program and the third phase is well under way We are now able io deliver wormal requirements from stock Our current expan ormak micipues protuction requirements in
 960 approarts existing when ion．I migh ．lso ex －T－A，that we actively participating in the micro modular program．

What steps were taken to further improve product reliability？

Enlargement．consolidation and．in general．improwe－ ment of our quality conted proctatn was the latest move －another complete step）in our long－range reliability plan．You know．quality control doesn＇t just meet reli－ ability requirements ．．．it leads．

We believe that the only purpose of quality control is to assure the reliability that is engineered and designed into the product．Folluwing this belief has always kept us years ahead of industry＇s reliability needs－and we intend keeping that lead．

FANSTEEL METALLURGICAL CORPORATION

an areal 12 in．$\times 10$ in．and a coating resistance of 15 ohms per inch square．
Connections are made to the glass by means of silver plating buss strips around the edge of the conductive coating．Attenuation figures range from 30 db at 30 mc to 20 db at $10,000 \mathrm{mc}$ ．At fre－ quencies below 30 mc the glass becomes more opaque．Best shielding properties are obtained with lowest resistance contings，but helow 15 ohms per inch square the reduction in transpar－ ency may become noticeable
J．R．Marchant，Electronics Engincering Dept．， Stromberg－Carlson Co．，Div．of General Dufnamics Corp．Rochester 3．NY

More On Dimensioning PC Boards

The thought had not occurred to us that the dimensioning of printed circuit boards plagued other companies as it has our own．After reading Mr．Baltayan＇s article on the subject（ED，Sept． 2．p．30）we would like to tell you of our solution to the problem，one which appreciably reduces the work involved on the part of everyone con－ nected with the drawings．

Stated briefly，we make our drawings to the same degree of accuracy as a layout and then lend our vellum to the printed circuit manufacturer， who may scale the vellum or even use it for a direct over－lay．This method eliminates the de－ signer＇s problems of creating and specifying dimensions and the manufacturer＇s problems of interpreting and applying them，all of which are burdensome jobs．At present we still dimension critical hole patterns，special cut－outs，and the out－ lines of the board itself．These dimensions are relatively few and fill three needs：
1．Control of critical dimensions is assured within specified limits．
2．Our file prints continue to show all dimen－ sions we are concerned with．
3．The printed board manufacturer has a method of detecting dimensional changes in the vellum and setting up his enlarger．
We protect our vellums in transit by use of cardboard mailing tubes．A reproducible copy is made of the vellum before it leaves the plant as insurance against possible loss or mutilation．This copy is destroyed when the original is returned．

So far，we have had no trouble of any kind with this extremely simple system nor can we detect any change in product quality．I might add that this system evolved from a discussion with the manufacturer and is as desirable to him as it is to us．
R．D．Reid，Flight Test Engineer，Dept．6－7， Zone 6，Box 5，Convair，Fort Worth，Tex．

4 ways to use General Electric Glow Lamps as Circuit Components

1. As a MEMORY DEVICE, becaluse of the differential between starting and operating voltages. Both the General Electric NE-96 and NE-97 are well suited for switching circuits and counters where they can function as transfer elements and as indicators of state or sequence.

2. As a VOLTAGE INDICATOR,

because of their critical starting voltage The G-E NE-76 and the NE-8I are stabilized and selected for close tolerance on starting voltage. Both find use in gating circuits. logic matrices, switching circuits
 or as an indicator of input or output levels.

3. As a VOLTAGE REGULATOR,

 because of their constant operating voltage range. The General Electric NE-68 and its "first cousin", the G-E NE-80 (closer tolerance), function effectively wherever voltage regulation is required. (Glow Lamps for higher current applications are also available.)

IDEAS FOR DESIGN

Idea For Design-True, But With Explanations

I Mear Nir
In the article on the modified cathode follower hy Mr. John A. Mooney (EI), June 24, 19.99 p50), there are some misleading conclusions which appear to be due to incomplete analysis of the rircuit. The following remarks may help to clarify the operation of the circuit
(1). The circuit cannot make the plate voltage look larger than the supply voltage. This can be seen by examining the last paragraph of the article for the case of a positive swing on the grid of V_{1} : "When the grid of V_{1} swings positive (away from cutoff) the cathode of V_{2} becomes more negative, thus lowering the effective plate volt age of V_{1} "
From this it will be noted that the apparent source voltage is being ratised for onc-half cerce and lowered for one-half cyele, so that the net de change is zero. As far as V_{1} is concerned, it thinks that the supply voltage has very poor regulation, since every time it draws less current the supply voltage rises, and vice versa for the attempt to draw more current. This, of course, is a direct consequence of the action by the cathode follower in reducing the voltage drop across $R L$ hy having the cathode follower supply some of the signal current drawn by l'1
(2). R (the parallel combination of the plate load and grid leak) is not affected in any way by the gain of the driver stage, since the driver gain does not appear in the feedback loop. For simplicity, let's assume that all capacitive reactances are small in comparison with the resistances comnected to them; circuit analysis then shows the gain of 1 '1 to be given by
$\underline{e_{p 1}}$

$$
1+\frac{r_{p 1}}{R_{c}}\left[1-\frac{1+R_{c} g_{m 2}}{1+R_{c}\left(g_{m 2}+\frac{1}{r_{p 2}}+\frac{1}{R_{r}}+\frac{1}{R_{2}}+\frac{1}{K}\right)}\right]
$$

while the gain of $V 1$ and $V 2$ combined is

$$
\frac{e_{c}}{e_{t}}=-\frac{\mu_{1}}{1+\frac{r_{p 1}+R_{e}}{1+g_{m 2} R_{c}}\left(\frac{1}{r_{p 2}}+\frac{1}{K}+\frac{1}{R_{s}}+\frac{1}{R_{2}}\right)}
$$

and the output impedance of the combined cir rulit is

Choose the General Electric Glow Lamp best for your circuit requirements. For further information, write for "Glow Lamps as Circuit Control Components"

General Electric Co., Miniature Lamp Dept. M-909, Nela Park. Cleveland 12, Ohio.

Progress /s Our Most Important Product GENERAL
electric
4. As a TRIGGERED SWITCH.

A low current signal applied to the trigger (third electrode) starts this lamp, permitting conductance of peak current surges up to 100 m .a. in the power circuit. It can be used in counting circuits or as a control device with photocells. thermostats or moisture sensors in trigger circuit.

G-E NE-77 in a Trigger Circuit

CIRCLE 233 ON READER-SERVICE CARD ELECTRONIC DESIGN • December 9, 1959
$R_{0}=$ resistor between R_{L} and supply voltage
$R 2=$ resistor between R_{g} and ground
$K=$ impedance of output transformer Subscripts on, ete, refer to $V^{\prime} 1$ and V_{2} as indicated.
If $\mathrm{E}_{1} .1$ is compared with the gain of a conventional driver stage, it is found that the apparent impedance that V_{1} sees is increased over its actual value (R) by the reciprocal of the coefficient of i_{ν} / R_{L} in Eq. 1 rather than being multiplied by the stage gain as stated in your article (actually stated as $A+1$). However, this circuit does provide improved gain over a conventional driver directcoupled to a cathode follower.
Using typical values for a 6 SL L driver and 6 SN 7 (athode follower, for example, and assuming 10 K impedance for the output transformer (it should be as high as reasonably practical) the circuit should produce an overall gain of 62 with an output impedance of 380 ohms whereas the conventional circuit yields a gain of 50 with an output imperdance of 308 ohms. The apparent load that I_{1} sees, using the same parameters. is about 11 times the artual value

Richard A. Wall Motorola, Inc Riverside, ('allif.

1) ear Sir:

I have to fully agree with Mr. Richard A. Wall on point (1) of his letter explaining why the de operating point does not change. However, since the dc operating point is the same and the loadline slope is much more nearly horizontal because the lube is looking into a high impedance, the effect is a much higher plate voltage feeding the driver through a much higher load resistor.
But the plate swing of the driver is limited to somewhat less than the supply voltage for peak-to-peak voltage output due to boundary conditions. On the extreme negative swing of the driver grid, the cathode follower cathode cannot go more positive than its plate or it would be cut off. On the extreme positive swing of the driver grid, the plate voltage cannot go below zero. So the effect is like a choke coupled stage feeding the cathode follower.

But this is enough swing, or at least very nearly "nough swing, to fully drive the cathode follower without the use of the driver transformer.
It is very interesting to note that a very similar circuit appeared in Electionic Design, July 8, 1959, by Andrew S. Williams at Stromberg Carlson. He was interested in getting high gain from a rentode by virtue of the high impedance. I am rimarily interested in a great voltage swing and an, of course, use a pentode as a driver, though inearity will suffer slightly.
Mr. Wall's formulas given on point (2) are very (Continued on p 158)

Designing in miniature? Here's how to save space-

90\% of it!

New G-C MICROSTACK* for coincident current memory systems has a physical volume just 10% that of conventional stack. MICROSTACK shown with 2560 cores measures only $1.125^{\prime \prime} \times 1.4^{\prime \prime} \times 1.4^{\prime \prime}$, a reduction in size from $3^{1 / 2^{\prime \prime}} \times 3^{1 / 2} 2^{\prime \prime} \times 5^{\prime \prime}$.
This miniature stack consists of an array of $16 \times 16 \times 10$. Solder connections are greatly reduced (from 1192 to 104), thereby substantially increasing reliability.

Noise level in the new MICROSTACK is as low as that of conventional types. The new MICROSTACK is available with all standard memory cores. Standard packages are available with coincident current wiring in $10 \times 10 \times 8,16 \times 16 \times 8$ and $32 \times$ 32×8 arrays.
For further information, please write on company letterhead-address inquiries to Dept. ED.

- Trademark

GENERAL CERAMICS
 comiseatoo or twe secuate coop ietenie
 General Ceramics Corporation
 KEASBEY, NEW JERSEY, U.S.A.
 CIRCLE 234 ON READER-SERVICE CARD

We suggest sending to you our latest wall chart on electrical properties on EPOCASTinsulating resins

furane plastics
4516 BRAZIL STREET los angeles 39, CALIF

CIRCLE 236 ON READER-SERVICE CARD

Renbrandt offers a complete line of ultracompact, precision-made couplings featuring zero backlash, low inertia and high flex-
ibility ibility Typical is the newest shown above which is Lifo Saver size. Specifications: lores in pensates for misalignments of $\pm 5^{\prime \prime}$ angular
and $\pm .015^{\prime \prime}$
linear, tomue 30 inch ounces weight. 19 ounce, moment of inertia as low as. 006 ounce inches ${ }^{2}$, materials and finishes to applicable government or MIL specs. Long-life Renbrandt Couplings will solve at a premium. Others available in a wide
 at a premim. Others available in a wide
variety of sizes for $10^{\prime \prime}$ through $1 / 2^{\prime \prime}$ ahafts.

Sond for catelog or send your requirements for quotes. Prompl dollivery.

Renbranal

Renbrandf, Ine 6-8 Parmelee St. Boston 18, Mass.

CIRCLE 237 ON READER-SERVICE CARD

IDEAS FOR DESIGN

(Continued from p 157)
helpful to determine gain and other parameters within the operating region and are admittingly more thorough than my analysis. They are presented in a very useful form.
There is one problem with this circuit: the stray capacitances associated with the driver plate to ground will have a greater effect than before hecause they see a high impedance.

John A. Mooney
Lockheed Aircraft (corp) Marietta, Ga

Reverse Two-Phase Ac Motors Without Power Waste

Occasionally, it becomes necessary to use a two-phase ac motor to provide a reversible source of rotary mechanical power. Conventional switching methods can cause over-heating and singlephasiing problems.
Reversing a two-phase motor is accomplished by reversing the electrical connections of one of the two field windings. This is usually done by using the circuitry shown in Fig. 1. In applications requiring only momentary power, switch " S " is a spring-loaded, momentary dpdt switch. By using the circuit of Fig. 1, electric power is always applied to the nonreversed winding. This causes undue heating during the periods when the motor is idle.
What can be more troublesome, when medium or larger sized two-phase servo motors are connected as shown in Fig. 1, single-phasing is possible. That is, after the motor has started, one phase winding is sufficient to keep the motor turning at reduced speed even though power in

Fig. 1. Conventional method for reversing a 2-phase motor. Power is always applied to one winding.

Fig. 2. Circuit showing a momentary dpdt switch used for motor reversal and power shut-off.

x-acto
SAFETY GUARD KNIFE

As comfortable to hold and use as a pencil... yet without the hazards of old-fashioned cutting instrumazor blades. Contact your electronic jobber.

SPECIAL! mail \$1 for SAFETY-GUARD KNIFE with blade.

handicraft tools, Inc. a division of X-ACTO, INC. 48-41H Van Dam Street, Long Island City I, N. Y. CIRCLE 238 ON READER-SERVICE CARD

- Another Weckesser "first" - Just introduced at the I.R.E. Show - First practical band clamp that locks and holds permanently - Solid DuPont Zytel 101 (Nylon) - Easy assembly with screwdriver or forked tool-One size for cable diameters !s" to $1{ }^{3} \mathrm{a}^{\prime \prime}$
Send for free samples and bulletin
Manufacturors of Nylon, Tofon and Ethocel Cable Clamps, Molded

Treckessercompanv

5703-05 Northwest Highway - Chicago 46, III. CIRCLE 239 ON READER-SERVICE CARD
ELECTRONIC DESIGN • December 9, 1959

tube

 PROBLEM:When the 6AF4 tube was replaced in UHF TV tuners, servicemen sometimes got a big surprise Reason: the tubes were not standardized. and a replacement was likely to bring in one channel where another should have been.

SONOTONE SOLVES IT:

First. Sonotone set up extremely tight controls on all materials going into the 6AF4 components. Second, Sonotone used a more thorough exhaust process.

RESULT:

The Sonotone AF4 family of reliable tubes has been accepted by the industry as standard industry as standard for initial product.
and replacement.

Let Sonotone help solve your tube problems, too.
the second winding is disconnected
The circuit shown in Fig. 2 can provide both reversible motor operation and complete power disconnection to both phases simply and without increasing the number of required parts. Here the reversing is accomplished by switching the motor capacitor "C" into either of the two-phase windings. When the dpdt switch returns to its center off position, power is then removed from both windings.

The motor rotational speed can be varied by opening the lead between points 1 and 2 . A variable voltage output power auto-transformer is connected between 1 and 3. Its variable output is connected to point 2. The motor speed is then changed by varying the voltage applied to one winding.

William B. Turner, Senior Enginecr, Fairchild Astrionics Div., Fairchild Engine and Airplane Corp., Wyandunch, L.I., N.Y.

Panel Light Intensity Varied By Duty-Cycle Control

A control was needed for varying the intensity of the back lighting of a display consisting of 60 electromechanical readouts. The lack of available space and the relatively large current involved (2.4 amp maximum), as well as the desirability of keeping dissipation to a minimum suggested that a unique solution was warranted.

In the solution illustrated, the lights are pulsed at a 60 cps rate by a power switching transistor.

Unusual approach to light intensity control employs this variable duty cycle circuit.

The duty cycle of the resulting square wave is varied by a potentiometer adjustment. The variation in intensity is controllable over a range from full brightness to complete extinction. Control is smooth and there is no flicker. Dissipation in the control circuit is kept to a minimum and the circuit occupies a small space.

Jim Curry, Engineer, Tasker Instruments Corp., Hollywood 28, Calif.

GLENNITE THERMISTOR DESIGN IDEAS

How to take the heat off computers

Dissipation of heat in computers is a basic problem usually involving trouble-free blowers and a fool-proof safety system.
By employing Glennite Thermistors, some computer engineers have found a way of providing this protection with greater economy and security. Thermistors are temperature sensitive resistors with negative coefficients of resistance.

In this application, thermistors are operated in the self-heated range. As long as air flows past the thermistor, its resistance remains sufficiently high to keep the relay open. Should the blower system fail, the thermistor temperature would increase thereby decreasing in resistance. Increased current in the circuit would close the relay and turn on indicator light, turn off power or perform any other desired action.
Advantages: thermistor replaces more expensive switching device, eliminates use of moving parts-possibility of mechanical failure, proves safer, more economical.

Air flow detection is only one of many interesting applications for Glennite Thermistors. Other uses include time delay, temperature control, liquid measurement, fire control, etc.
Glennite wafer, bead and rod thermistors are available in a variety of resistance values, temperature coefficients and sizes to help you evaluate circuit problems. They may be obtained from your local distributor, or from Gulton Industries in bulk quantities.

MATERIALS \& CERAMICS DIVISION, Metuchen, New Jersey

Gulton Industries, Inc.

In Canada: Titania Electric Corp. of Canada Lid., Gananoque, Ont.
CIRCLE 241 ON READER-SERVICE CARD

Sonotone. : Electrontc Apolications Division, Dept. TGG129
ELMS FORD, MEW YORK ELMSFORD, NEW YORK eading makers, of fine corramic cartrideses, spewkers, mictoIn Connada, contuct Atlas Radio Corp., Lto., Toronto IRCLE 240 ON READER-SERVICE CARD

This is a brass "jewel" nut. A .100-100 shoulder nut used in precision electrical instruments, it is mass produced by FISCHER to Class 3 tolerances, countersunk both sides and supplied deburred, cleaned, ready to install.
FISCHER specializes in turned nuts . . . standards, specials, odd sizes and types . . . having diameters from $1 / 8^{\prime \prime}$ and standard or special threads from No. " 0 ". Each type is made to exacting specifications, delivered promptly, priced competitively. And these are the reasons FISCHER is your best source for dependable miniature nuts.

CIRCLE 242 ON READER-SERVICE CARD

PATENTS

Virtual Cathode Stabilization Means
Patent No. 2,903,580. George H. Robertson. (Assigned to Bell Tclephone Labs., Inc.)
A stabilized virtual cathode circuit permits the control grid to operate at low temperature and the output is substantially independent of aging, deterioration or movement of the cathode.

A virtual cathode exists between electrodes 1.3 and 17 since the triode comprising cathode 14 , grid 16 and grid 17 generates an electron beam subject to control by the negative potential applied to control grid 13. Flectrode 18 serves to focus the beam.
Triodes 20 and 21 stabilize the virtual cathode as follows: If screen grid 17 goes positive, the grid-cathode bias of amplifier 20 decreases, and the voltage applied to amplifier 21 is reduced. The cathode of this stage comples the lower voltage to grid 16 and thereby the current collected by screen grid 17 is made less. Should. be contrast, the voltage on
screen grid 17 decrease below the refe ence level, the degencrative network wil make the proper adjustment.

Phase Inverter
Patent No. 2,903,525. Claude W. Cooke, Jr. (Assigned to Hughes Aircraft Co.)

Equal values of plate impedance in a

Here's one that doesn't have to be "Mothered"

You gel continuous, trouble free service from this rugged, reliable, direct-writing RECORDING

D. C. MICROAMMETER by Esterline Angus

Built to "take it," this new D.C. Microammeter combines famous E/A excellence of design and ruggedness of construction with the extra-sensitivity of 0-50 microamperes at 200 ohms input resistance.
The simplicity of its direct-writing movement eliminates the complexity associated with servo or linkage driven writing systems.

It's a time-saver, too, with no un-
necessary adjustments-such as con-
tinually setting zero. You put this D.C. Microammeter into operation merely by connecting the input leads.
Here's the recording instrument of a thousand and one uses. Send for Catalog Section No. 41 and see how it can help you.

The Esterline-Angus Company
No. 1 in fine Graphic Instruments for more than 50 years.
thode-coupled phase inverter may be wed when tube circuits are balanced. In the schematic shown, cathode resistor 22 couples to amplifier 14 which contains feedback resistor 37 to correct distortion; similarly amplifier 12 contains feedback
through resistor 28. Cross-connecting resistor 40 modulates the voltage on grid 19 to compensate for the reduced grid to cathode swing due to resistor 31 and thereby allows equality of plate resistors 27 and 36.

galvanometers

 for Precise Null Indication

ELECTRONIC

Shallcross Electronic Galane mechanivanometers alectrically cally and rapid, maintedesigned for rapid, mand and nance-free laboratory. The production testing. extremely high sensitivity detects the balance point immediately . . . minute inflections are registered balstantly. Meter becomes bastantly. in less than one second. Adjustments are quickly made from front of panel.

Current sensitivity is greater than 1×10^{-10} amps. Vreater tage sensitivity is greater than $0.5 \mu \mathrm{v} /$ scale digision.
Electronic galvanometers Electronic available in both table are available inting models. and rack-mounting
Delivery is immediate. Ask Der Bulletin L-47.

Type 1965RM rack mounting model

MOVING COIL

These rugged Shallcross taut-suspension galvanometers are widely used in potentiometer and bridge circuits where precise bal. ance indication is needed low cost.
Complete instruments or their systems are avail or in sensitivities are availabl or 4 nsitivities of $0.5,1,2$ Complete specife division. in Bulletin L-47

Shalleross
SHALLCROSS MANUFACTURING CO., SeIma, N. C. CIRCIE 245 ON READER-SERVICE CARD

SERVICE: U. S. NAVY STATUS: Operational TYPE: Air to Air POWERPLANT: Solid Propellant SPEED: Supersonic LENGTH: 12 feet WEIGHT: 350 lbs . GUIDANCE: Radar homing
Developed by the Raytheon Company, the U.S. Navy's Sparrow III is notable for a new radar guidance system which insures effective attacks on evasive targets. For this highly advanced missile, Raytheon chose Couch Relays. Other leading missile builders also rely on Couch Relays . . . and for the same reason. Couch has coupled stringent quality control techniques with simple, rugged design to assure performance of proven reliability under severest environmental extremes. In the broad Couch line, there's a dependable relay ready to work for you. Write today for complete specifications.

shown. The transformer core consists of 1.25 in. toroid of Ferramic \mathbf{G} and he plate-grid, as well as the output wind ings, are wound bifilar to further red ice the capacitance. With a 500 v plate sup. ply, the oscillator output impedance 600 ohms for 35μ sec pulse repeated at 100 kc .

Measurement and Simulation of Transfer Parameters

Patent No. 2,907,950. Gordon Raisbeck (Assigned to Bell Telephone Labs, Inc.

A unity gain, zero phase shift cathode

> $V_{n=0}=\frac{\text { I }}{\circ}$ of DESIGNERS' ${ }^{\text {and }}$ EXPERIMENTORS' KITS

> CONTINUES TO MAKE GREAT ADVANCES!

There's nothing else like these kits for practical aid to designers and experimentors!
veco designers' kits
Three thermistor kits and one varistor kit include units covering a wide resistance range and physical size.

Thermistor Kit KP50, probe type
Thermistor Kit KD25, disc type
Thermistor Kit KR75, rod type Thermistor Kit KR7
Varistor Kit KV100 Varistor Kit KV100
$\$ 16.50^{*}$ $\$ 16.50^{*}$
$\$ 12.50^{*}$ $\$ 11.00^{*}$
$\$ 14.50^{*}$

VECO EXPERIMENTORS' KITS Designed to acquaint the experimentor, technician. engineer or designer with a wide variety of VECO thermistor and varistor applications.

$$
\text { M } 168-55.00^{*}
$$

M 168 A $-\$ 10.00^{\circ}$
VECO TAP-A-THERMS (Pat. applied for) A versatile single thermistor unit with a multiplicity of tapped resistance values for experimentation with thermistor parameters, variable range temperature compensation, and many other uses.

Write for free VECO literature No. SE101.
Cataoged in EEM Sec. 4700
-7ncimitum corponation
ineminting conporation MUrdock 8.7150
eprices post osid are for continental U.S.A and are subiect to change without notice
CIRCLE 247 ON READER-SERVICE CARD
ELECTRONIC DESIGN • December 9, 1959

Hlower amplifier simplifies measurement the transfer impedance of a four-pole t work.
As illustrated, amplifier 12 is connected

Magnetic Core Half Adder
atent No. 2,872,667. Mao Chao Chen Assigned to General Dynamics Corp.) The magnetic core device generates : orst output when either of two inputs is onlsed and a second output is developed then the two inputs are pulsed simulmeously.
In the array of cores physically dimentoned and polarized as shown, a pulse aplied to input 13 sufficient to switch core 10 develops an output across ter-

minals 17 and 18 . The flux linking core 12 is insufficient to flip this larger element; also, diodes 19 and 20 assure that core 11 does not reverse. A pulse separately applied to input 14 flips core 11 exclusively However, pulses to both inputs 13 and 14 , of the correct sense, change the magnetization of core 12 to flip coil 21.

Accurate Fine Wire Coils Can Be
Mass-Produced

Deluxe Coils is daily furning out self-supporting and bobbin wound miniature coils for electronics manufacturers. Temperature, humidity, lighting and sound are carefully controlled for extremely accurate winding of \#48 through \#56 gauge wire.
Deluxe Coils' engineers work with you on design to meet your specifications. Finished coils can be supplied with leads attached.
Write for information on production capabili ties and how they can be put to work for you.

CIRCLE 248 ON READER-SERVICE CARD
December 9, 1959

Chemelec
 STAND-OFF and FEED-THRU INSULATORS

A DEFENSE SYSTEM IS ONLY AS RELIABLE AS ITS SMALLEST COMPONENT

What better reason is there to choose Chemelec Stand Off and Feed-Thru Insulators! Reliability under any condition makes them ideal for missile guidance, fire control, tracking, and radar systems . . . nearly all crilical electronic circuits. DuPont, Terlon*-unmatched for electronic applications-is used as the insulatur body. Teflon has exceptional dielectric properties, is chemically inert, resists heat to extreme temperatures, won't break under severest shock or vibration. And, Chemelec Compression-Mounted StandOIf and Feed-Thru Insulators are designed for quick and easy installation and replacement without danger to supporting panel. You simply compress them into pre-drilled holes; they become self-fistening, requiring no additional hardware for adjustment. Available in compression-mounted, metal-base, miniature or subminiat ure ty pes . . . standard R.M.A. colors with a wide range of sizes and terminal designs.
-Hegistered Trademark +Dulont Trademark
Chemelec connectors - Teflon insulated for outstanding high-frequency service.
Chemelec T:FpLoN-inaulated malo and Cemale connectors are used

 nectras need no further adjustment or hard waro. Chemelec Connectora have all the fine
Tkruon characteristice, and are availablo in the .040, 0500 and 0.001 inin size. Femalo connectora are aleo available in the 080 aize.

AKREOCEX

Electronic Products

Canadian Division: The Garlock Packing Co. of Canada Ltd.
 CIRCLE 249 ON READER-SERVICE CARD

NOW! ALL YOUR FUSED QUARTZ REQUIREMENTS FROM 1 SOURCE

We manufacture and stock a complete range of: standard taper joints - ball and socket joints Caplliary tubing - combustion tubes - double bore tubing precision bore tubing - laboratory quartzware

CLEAR TUBING AND ROD

Can be secured from stock in a complete range of sizes-special sizes also available to meet your exact specifications.

TRANSLUCENT TUBING AND ROD In stock for immediate delivery in a wide range of sizes. Available in random or cut lengths to fit your requirements.

INGOTS, PLATES AND DISCS

Rough cut or ground and polisheci in diameters up to 1812 ". Lenses, windows, prisms supplied in a wide range of sizes-or finished to your needs.

FUSED QUARTZ COMPONENTS

High purity-in stock in a wide variety of semi-conductor grade crucibles, boats, test tubes and furnace tubes.

FREE BROCHURE. Yours for the asking. Illustrated . . . contains data on physical properties and transmission characteristics, plus complete prices on G-E Fused Quartz. Write: General Electric Co..Willoughby Quartz. Plant. Dept. ED-129, Willoughby, Ohio.

Progress /s Our Most Important Product GENERAL ELECTRIC

The Theory of Numbers and Diophantine Analysis
Robert D. Carmichael, Dover Publications, Inc., 180 Varick St., New York 14, N. Y., 212 pp, \$1.35

These are two complete works, bound together in one volume. Though no previous training is necessary beyond a firm foundation in high school mathematics, the material will be found useful by teachers and students at all levels of ability.
"Theory of Numbers" deals with one of the most extensive and elegant disciplines in the whole body of mathematics. It includes Prime Numbers, Eratosthenes' Sieve, the Fundamental Theorem of Euclid, the Unique Factorization Theorem, G.C.F. and L.C.M. of Two or More

Integers, the Indicator of an Integer, Con gruences, Theorems of Fermat and Wil. son, the Converse of Wilson's Theorem Linear Congruences, Primitive Root Modulo m, etc. The last chapter indicate directions of further studies, such Theory of Quadratic Residues, Analytical Theory of Numbers, Diophantine Equar tions, Pythagorean Triangles. Included the text are 76 carefully chosen exercise which further the collection of useful ri sults.
"Diophantine Analysis" is organizu around the notion of a multiplicative do main. The exposition is supplemented 222 exercises, on three levels of interest practice material for developing facilit an indication of special results already ol tained and problems found amenable t

Slides in only 2 minutes with this BEATTIE OSCILLOTRON

using a Polaroid ${ }^{\circledR}$ Land back

Now you can project transparent slides of Now you can praces iust minutes after recording with Polaroid \& Land Projection Film, Type 46 -L used in this new Beattie Direct View Oscillotron. Also produces 60 sec . paper prints with the new. very fast Polaroid ${ }^{\star} 3000$ Speed Film. Records up to 10 traces on a single frame and
offers these many other advantages:

- Direct binocular view of CRT while recording.
- Non-reversed image.
- Camera swings back for easy access to lens and shutter, or lifts off completely. Can be rotated.
- Electric shutter-actuator available.
- Attaches easily to bezel of $5^{\prime \prime}$ CRT Attaches easily to bezel of $5^{\prime \prime}$ CRT.
Adaptable to other sizes. No special tools.
"Polaroid" o by Polaroid Corp.

1000 N. Olive St.. Anaheim. California
Branch: 437 Fifth Ave. New York, N.Y.

Vrite today
for
full details
ck; and unsolved problems of particuinterest. Partial contents: Rational Tricles; Method of Infinite Descent; : hagorean Triangles; On Numbers of he Form $\mathrm{x}^{2}+\mathrm{axy}+\mathrm{by}^{2}$; Quadratic quations of the Second Degree in Two Gariables, in More Than Three Variables, of a Higher Degree; Equations of the Thind Degree, of the Fourth Degree, Hircher Than the Fourth Degree; the ermat Problem, the Method of Funcand wi. heorem indicate such a. naly ticial e Equas luded in exercised seful rid rganize Itive dol ented by interest
facilit eady of nable

pace Technology

dited by Howard S. Seifert, John Wiley Sons, Inc., 440 Fourth Ave., New York 6, N. Y., $1100 \mathrm{pp}, \$ 22.50$
This book is the first collection of rious analytical treatments of all phases If space technology ly 38 top men in veir resplective specialties. It is a thorugh quantitative exposition of those atural laws which are uniquely related space flight.
The subject of ballistics and flight
dynamics-the foundation of space travel -is treated in an especially complete and analytical way, with eleven authors presenting much new material.
The next most vital subject, propulsion, is treated by seven authors and covers both present-day and future systems. Major sections are also included on communications and guidance (six authors), man in space (four authors), and scientific uses of space (four authors).
To add to the completeness of the discussion, the same area of subject matter is occasionally treated from separate points of view by different authors. The book's 500 selected references form a guide to the significant parts of a vast literature.
The book is based on a series of lectures presented by the Department of Engineering and Physical Sciences, University Extension, University of California, in cooperation with Space Teclnology Lab oratories, Inc
This series codified significant laws and pointed out many important new problems with the enormous development of space technology yet to come.

Δ
This stepping motor, when suitably pulsed, has a torque output of 1 inch-ounce, in steps that are never more, never less than 18°. Each one is produced by a half cycle or a current reversal. Consequently it is very useful for converting electrical numbers to mechanical numbers, and has been sold for this purpose for some time (the Sigma "Cyclonome"*).

In the trick mirror is a servo motor which stops on command with perfect obedience, because it stops every little while anyway, delivering torque in 18° quanta. The 20 -tooth ratchet sensation is produced by a fiercely discontinuous permanent magnet field, which develops going and stopping torques of 1 inch-ounce.
So, here is a positioning servo motor which is synchronous and has a mechanical time constant of $1 / 4$ cycle. Effective ratio of torque to inertia, with regard to coasting, is infinite - as long as these parameters are respected: inertia $\left(\mathrm{gram}-\mathrm{cm}^{2}\right) \times(\mathrm{steps} / \mathrm{sec} .)^{2} \leqq 180,000$, and steps/second $\leqq 300$, assuming direct drive to mechanical load. (Otherwise, you have a synchronous motor of unspecified nature.)
Since any reduction ratio is squareable (we wish it were cubable) a ratio of $10: 1$ permits an inertia of $200 \mathrm{gram}-\mathrm{cm}^{2}$ to be driven at three-hundred 1.8° steps per second. Useful torque is then $700 \mathrm{gram}-\mathrm{cm}$. Think of it 6 inch-pounds per second, for only 10 or 15 watts. While there is a relation between power and speed, there is no relation between torque and speed. Torque is proportional to input current (up to saturation), speed to input frequency.

If you will write on your letterhead, you will receive an engineering bulletin describing the simple Cyclonome discussed above, as well as the reversible model.
iek Morry Chriatman - Art Dodet.
SIGMA INSTRUMENTS, INC. ${ }_{91}$ Pearl Street, So. Braintree 85, Massachusetts

An Afflliate of The Fisher-Pierce Co. (since 1939)

CIRCLE 253 ON READER-SERVICE CARD

DIMCO-GRAY SHAPSLIDE FA
 PROVIDE VIBRATION-PROOF HOLDING AND QUICK, FOOL-PROOF RELEASE!
 APPROVED UNDER ARMY-NAVY STANDARDS
 Here's a simple, easy means of securely fastening assemblies to withstand shock or vibration, and yet allow quick removal for inspection or repair. Instant snap action engages or releases fastener . . . no tools are requiredl After installation, fasteners never need adjustment . . . even with repeated use
 Three sizes available for different load requirements. Large and medium sizes are made of corrosion-resistant stainless steel. Small size is made of nickel-plated brass. Stock parts fit various thicknesses of flanges and mounting plates . . . special parts can also be supplied.

 2OIE. SIXTH STREET DAYTON. OHIO CIRCLE 252 ON READER-SERVICE CARD

ELE TRONIC DESIGN • December 9, 1959

inexpensive
POTENTIOMETER -TYPE MODEL 4205 ACCELEROMETER

Replacing another accelerometer twice its size in an air to air missile. this tiny new addition to pacific's family of accelerometers delivers 2 : accuracy over a - 10 to $0+30 \mathrm{G}$ range. and accuracy over a - 10 to +30 Grange . and eusuring only $1.1^{\prime} \mathrm{W} \times 15^{p} \mathrm{~L} \times 8^{\prime \prime} \mathrm{D}^{\prime}$ Desiened as an inexpensive instrument for clemetering andexpe feres silicon lluid amping for and Each of Pacific's basic models illustrated is epresentative of a series of similar units that vary only in output characteristics. They are fully tooled. tested and approved production models that can meet most acceleration measurement requirements In the design and production of accelerometers and other electro-mechanical components Pacific's creative ability, engincering skills. experience and production facilities. can save you money - and time!
 For complete information
on Pacific's standard accelerometers or or on specific models designed to your own req
ments. write today!

 with excerptionally rugecol, mechanism. Single of daral sowntenesprovide versatility.
Available in a wide saricty Arailable in at
of $(:$ ramses.

Lishtwerisht. Minimture combines wide fly xibility of charateristics with a proven. high production instrument. wide selection of GG raing .

our Incriased Accuracel to 1 or less uncler rugged Onvironmental conditions.
Orisinally lesigned for nee
an intimisile misule, this an anti-missile mis sile, thic anit features temperaty compensatted damping
mechaminem using silicon fluicl

PACIFIC SCIENTIFIC COMPANY
0. Box 22019, Los Angeles 22, Calif SAN DIEGO - SAN FRANCISCO SEATTLE - PORTLAND. O
representatives: Eastern u. S.--Aero Eng. Co. Canada-Garrett Mig. Corp.

CIRCLE 254 ON READER-SERVICE CARD

BOOKS

Classification and Definitions of Dia grams and Charts Used in Electrotech nology IIEC Publication, 113)
American Standards Association, 70 E 45 St., New York 17, N.Y., $\$ 1.20$
This new publication providing inter-nationally-accepted standard definitions and classifications of diagrams and charts in the field of electrotechnology has become available through the American Standards Association.
American interests in IEC work arc represented through the U. S. National Committee of the IEC, an arm of the American Standards Association.

There are 34 nations in the IEC, which was founded in 1904 to coordinate national standards in electrotechnology:
Diagrams and charts are defined and classified in this publication to explain or picture electrical and electronic connections.
Two kinds of classifications have been adopted: according to purpose, and according to method of presentation.

Handbook of Aufomation, Computa ion and Control
Drs. Eugene M. Grabbe, Simon Rimo and Dean E. Wooldridge, John Wiley d. Sons, Inc., 440 Fourth Ave., New York 16. N. Y., $1093 \mathrm{pp}, \$ 17.50$

Design and use of the computers is ex plored in detail in the second volume o this monumental "Handbook of Autr.ma. tion, Computation and Control.'
Contributors to the volume are high ranking scientist-engineers and educators affiliated with America's top electronic organizations. They have furnished prac tical material on design of computing ele ments and equipment operation; explored new developments such as magnetic core and transistors; functions of data process ing systems as well as techniques; equip ment and applications; an entire sectio on advanced programming and coding and many allied fields.
Under way for several years, the pro ect will be completed in 1960 with Vol ume 3 on Systems and Components.

n Rımo julian Lowell Coolidge, Dover PublicaWiley cilions, Inc., 180 Varick St., New York 14, York 16, N. Y., $513 p p, \$ 2.45$

The text treats such topics as the topoogical properties of curves, the Riemannhoch theorem, and all aspects of a wide variety of curves including real, covarint, polar, containing series of a given ort, elliptic, hyperelliptic, polygonal, relucible, rational, the pencil, two paramter nets, the Laguerre net, nonlinear ystems of curves; etc.
It is almost entirely confined to the roperties of the general curve rather han a detailed study of curves of the hird or fourth order. Algebraic procedure is generally used, with large portions vritten according to the spirit and nethods of the Italian geometers.
However, there is much use of geonetric methods, especially those involving the projective geometry of hyperspace.

The reader will find that this volume will carry him far enough to appreciate the symbolic notation of Aronhold and Clebsch.

Partial content:
The Fundamental Properties of Curves: Asymptotes; Real Circuits of Curves; Nesting Circuits; Elementary Invariant Theory; Projective Theory of Singular Points; Plucker's Equations; Klein's Equation; The Genus; Metrical Properties of Curves; The Singular Points; The Reduction of Singularities; Development in Series; Clustering Singularities; Systems of Points on a Curve; General Theory of Linear Series; Abelian Integrals, Moduli and Limiting Values; Singular Points of Correspondences; Nonlinear Series of Groups of Points on a Curve; Higher Theory of Correspondences; Parametric Representation of the General Curve; Postulation of Linear Systems by Points; Ternary Apolarity; The Cremona Transformation; much more.

TWO RELAYS IN ONE

a time-delay relay and a load carrier, too

Kind of small, this Heinemann Type A Relay. Weighs only three ounces. Yet, it can do two jobs for you. In addition to providing a controlled time delay (anywhere from $1 / 4$ to 120 seconds), it can serve as a load carricr. itself. The relay may be energized continuously. This simplifies things nicely. You don't have to use auxiliary lock-in circuits or load relays-not unless you need more than three amps. contact capacity.
D.P.D.T. switching is clean and decisive, just as it should be for healthy operation. The timing element is hermetically sealed. and this. too, keeps the relay in top form throughout its long service life.
Cost? Definitely calculated to win favor and influence your buying decision. Check on it, you'll sec.

$$
\text { FOR DETAILED SPECIFICATIONS, REQUEST BULLETIN } 5003 .
$$

FIINEMANN

ELECTRIC COMPANY
IS6 Plum St., Tronton 2, N. J. CIRCLE 256 ON READER-SERVICE CARD

Unmatched speed, unequalled sensitivity

EG\&G's 2236A TW Oscilloscope is the newest of a family of millimicrosecond instruments. This precision instrument has met the exacting requirements of nuclear weapon tests conducted for the AEC.

The 2236A's excellent record of performance is based on EG\&G's sensible approach to oscillography. All features of the 2236A design are matched to give the maximum flexibility to your high-speed, DC to 3000 MC, oscilloscopic problems.

Current applications of the EG\&G 2236A include its unprecedented performance in measurement of:

- Decay times of scintillators
- Reverse recovery time of high-speed semiconductor diodes
- Rise and fall times of high-speed switching transistors
- Discontinuities in transmission lines
- As a synchroscope in high-resolution radar systems

For additional technical data and information, call or write: Application Engineering Group.

EDGERTON, GERMESHAUSEN \& GRIER, INC.
160 BROOKLINE AVENUE, BOSTON 15. MASS.
1622 SOUTH "A" STREET, LAS VEGAS, NEV. CIRCLE 258 ON READER-SERVICE CARD

BOOKS

Processing of Thermoplastic Materials

E. C. Bernhardt, Reinhold Book Co., 430 Park Ave., New York 22, N.Y., 706 pp. \$18.00

Here is a definite, and extensive hand book on the engineering problems involved in extrusion, injection molding, calendering and other thermoplastics processing operations.

The book reviews the engincering fundamentals on which the design of plastics processing equipment is based and demonstrates the practical application of these fiundamental concepts in the analysis of thermoplastics processing problems.
The text is developed simply and clearly, and is designed to help fill the need for a basic book on processing of thermoplastics.
The book is aimed at engineers, but does not require the reader to possess previous knowledge of plastics processing technology.

Nineteen technical authorities have
contributed to this volume from first-h uit experience, and fourteen plastics firm and universities have supported it by providing information, editors and authors.

Contents of the book includes:

- Fundamentals of flow behavior, heal transfer and thermodynamics, mixing and dispersing.
- Applications including extrusion, in jection molding, sheet forming of hollow articles, sealing and welding.
- Processing properties.

Laplace Transforms For Electronic Engineers

James G. Holbrook, Pergamon Press, Inc. 122 E. 5.5 St., New York 22, N.Y., 238 m \$8.50

This book fills a long-felt need for graduate level text on the Laplace Trans formation that can be used either in class room instruction or for self study by thin practicing electronics engineer.

Now you can achieve continuous delay variations electrically. Particularly suited to defense applications, these (ieneral Electric Delay Lines provide total delays up to 12 microseconds (depending on frequence: and a variability range up to 50%. With spectial delay lines for carrier or pulse type applications at frepuencies to 30 megacycles, the electrical variation of delay provides a new method for solution of problems in:

- tronsmission time control
- pulse control and shaping
- high frequency phase control
- pulse position modulation
- phase or frequency modulation

Highly adaptable to transistorized circuitry . . . able to withstand extreme humidity, shock, vibration . . tailored to customers' needs in radar, computers and communications.
For complete specifications werite to: Defense Industries Programs Section 227-30.1

DEFENSE ELECTRONICS DIVISION
HEAVY MILITARY ELECTRONICS DEPT., SYRACUSE, NEW YORK CIRCLE 259 ON READER-SERVICE CARD

Though it has been carefully edited to eliminate the heavily abstract, non-electronic terminology of pure mathematics, it will be found rigorous and thorough enough to satisfy the most critical instrucior for classroom use.
This book will be particularly valuable (1) the graduate eiectronic engineer who wishes to develop and expand his knowledse of circuitry and networks by a careful program of study, formally or informally, of the modern methods of Laplace transform theory and applications.
The very complete set of Laplace transform tables, and transform function tables, together with a bibliography which includes references as recent as 1958, make this a valuable reference work.
Taking a new approach to the subject, the author begins with enough of the fundiamentals of complex variable theory to enable the engineer without previous
training in the theory to follow the more rigorous developments of the Laplace transform.
Recent advances covered, other than the formal Laplace transform theory itself, include much very recent material on modern filter networks and synthesis, oscillator networks, special integrating and differentiating networks and other feedback circuitry, methods of solving the transfer function of iterative networks by Pascal's triangle, and the new process of summing infinite series by using the Laplace transforn method.

Few of these topics have even been mentioned in previous treatments of the subject; their inclusion, and the chapters devoted to practical applications of the theory of today's problems, will be welcomed by electronic engineers who wish to familiarize themselves with modern developments in the field.

CIRCLE 260 ON READER-SERVICE CARD

WAVEGUIDE RF and

Let tecknir help you solve them!

Yes-take your waveguide RF problems to Tecknit Design Service. Only Tecknit offers a complete RF gasketing engineering service using new design concepts that's yours for the asking.

No matter what your problem might be...TR and ATR Tubes . Side Wall Hybrids ... Top Wall Hybrids ... Duplexer Sections ..Choke Flanges... Rectangular Flanges...Combination RF and Pressure Sealing Gaskets for L, S, C, X and K Bands... Tecknit engineering will give you the answer.
Write today for a free Problem Outline Shect that makes it easy to submit your specific problem to our engineers, or call and outline your problem by phone. In any case you'll get a prompt and complete recommendation . . . no charge or obliga. tion of course!

Technical Wire Products, Inc.

48 brown Avonue
Springfiold, N. J.
Phonei Drexel 6.3010 TWX: Millburn, N. J. 40

Technical Wire Products, Inc.
48 Erown Avonuo, Springfiold, N. J.
We've got a Waveguide RF Sealing Problem
\square Please send "Problem Outline Sheet"
\square Please have an engineer call.
Name_Tifle
Department
Company
ciry
C

RUSSIAN TRANSLATIONS

J. George Adashko

A Six-Stage, Low Frequency Logarithmic Amplifier

A. N. Sus and G. V. Ratanov

Saratov State University,
U.S.S.R.

T- HIS ARTICLE describes a six-stage low-frequency amplifier with a logarithmic relationship between the input and output voltages. Developed at the request of the Semiconductor Institute of the U.S.S.R. Academy of Sciences, the amplifier operates from 20 to 5,000 cycles.

It will accept input voltages from 10 microvolts to 10 volts. Its input impedance is one megohm.

To obtain a logarithmic relationship between the input and output voltages in an amplifier, use is usually made of the method of successive detection. This method, compared with others, is most effective with respect to the range of the input voltages within which logarithmic dependence can be insured.
The idea of the method of successive detection is based on the following:
A detector is used after each stage of amplification. The outputs of all the detectors flow through a common resistor, from which the output signal is picked off. As the input signal is increased, the last tube overloads first and its output voltage stops increasing with increasing input voltage.

Then, upon further increase in input voltage, the next-to-last tube saturates. As a result, the increase in output voltage is slower than the increase in input voltage.
It is difficult to carry out an exact quantitative analysis of such a circuit. The circuit characteristics are computed graphically, using an experimental curve of the dependence of the output voltage on the input voltage in a single stage. Such a calculation shows that the better the use of the amplifying stage and the less the gain of each stage, the closer to logarithmic is the characteris-

Fig. 1. Amplitude charac teristic of a single amplify ing stage.
tic of the amplifier. The amplitude characteristic of each stage should be similar to that shown in Fig. 1.

The upper limit of acceptable input voltages is determined by the value of the input voltage at which grid current starts flowing in the first tube. The lower limit of the input voltage is determined by the level at which the last stage of the amplifier overloads.

The limiting value of the minimum input signal is determined by the noise level of the amplifier. With a noise level of a broadband amplifier of about one microvolt, the minimum value of the input voltage is approximately 10 microvolts.
Thus, the method of successive detection, without using voltage dividers at the input, insures a continuous measurement of input voltages in a
range of five or six orders of magnitude. Measure ment of the voltages over so broad a range with out the need for any switching devices at the amplifier input is the principal advantage of this type of amplifier. It makes it possible to use it for continuous investigation of widely varying elec tronic quantities.

Description of the Amplifier

The amplifier circuit, shown in Fig. 2, consists of six identical stages, each built around the triode portion of a 6G2 double-diode triode. The gain of each stage is approximately 10 and the total gain is approximately 10^{6}. Decoupling filters are connected in the plate circuits and a 6 Kh 6 dual diode is connected at the output of each amplify ing stage.

Fig. 2. Schematic of the logarithmic amplifier.

Fig. 3. Calibration curves of the amplifier at 20 to $3000 \mathrm{cps}, 5 \mathrm{kc}$ and 10 kc .

Connected to the output of the amplifier is a microammeter or an EPP-09 automatic recording potentiometer. A voltage divider is connected to the input. With the voltage divider in position 1 , the amplifier makes it possible to measure input voltages from 10 microvolts to one volt, and in position 2, from 100 microvolts to 10 volts.
The filaments of the tubes are fed in series from a separate rectifier, consisting of DG-Ts 24 germanium diodes connected in a bridge circuit. The filter insures high ripple suppression. At a rectifier output of 80 volts, the ripple voltage is approximately 150 millivolts. The rectifier circuit is shown in the lower portion of Fig. 2.

Calibration of the Amplifier

The amplifier is calibrated in such a way that when an alternating voltage of 10 microvolts is applied to the input, the output instrument reads zero. This is done by passing a bucking signal through the output instrument when 10 microvolts appear at the input.
The compensation is effected by connecting the output instrument through a large resistor $R_{47} R_{48}$ at the terminals of the supply to the filament circuit.
Calibration curves for the amplifier for various frequencies are shown in Fig. 3. -

REfERENCES

1. C. Kron, Problems of Radar Engineering (Translated artic les), July, 1952, pp 30-50.
2. A. N. Sus and V. M. Didenko, Radiotekhnika, 1955,

Coll 10, No. 3.
3. A. G. Muratov, Logarithmic Amplifiers. ScientificTetmical Collection (Transactions of the Institute for Radio Reception and Acoustics), 1957, Vol. 8, pp 79-90. 4. Reich, Theory and Application of Vacuum Tubes R sian translation), 1948.

5. © Heiland, Z. Angen. Phys. 1953, Vol. 5, No. 5, pp	$16-17$.
1.	

Thi urticle was translated from Amplifier with Logarit) vic Characteristics in the January 1959 issue of Intrru int and Measurement Engineering (Pribori i Tekhhik. ksperimenta).

Build extra value

Citizens Band radios

with Mallory vibrators

Mobile, two-way Citizens Band radios bring new simplicity and convenience to communication for thousands, and open brand new markets for you.
If you're now building Citizens Band radios or planning to, Mallory vibrators deserve a place in your power supply design. Their exceptionally long life, quiet operation and constant output are the result of more than 25 years of Mallory pioneering in vibrator design. More Mallory vibrators have been used in mobile radios than all other makes combined. Mallory engineers have helped develop efficient, economical power supply circuits for many set manufacturers.
Make use of this experience. Let Mallory help you choose and apply the vibrator model that best fits your needs, as well as assist in the design of your power supply circuitry. Write today for a get-together with a Mallory vibrator specialist.

Series 1600 Vibrator
Contact buttons have been eliminated for far Contact buttons have been er rate of erosion greater contact area ower rate of erosion sticking. Light mechanical mass of vibrating reed assures quiet operation.

Elkon Division, Du Quoin, III. Electromagnetic Department

NEW!
 CRONAFLEX DRAFTING FILM

The best surface on the toughest base . . . made and controlled by Du Pont from start to finish.

2 Cronaflex Drafting Film erases easily, without ghosting,
yet there is less smudging. It comes matted one or two sides, and is available in either rolls or sheets.

Cronaflex Drafting Film is the first product of its kind which is made in its entirety by a single manufacturer. The benefits can be summed up in two words: quality control. We control the manufacture of hoth hase and surface, and we control the method by which they are made into the best drafting film you can buy.

This means that every sheet of Cmovifiex Drafting Film has the same excellent pencil acceptance. the same prasability, the superh matte surface. the .004" thickness which has been found ideal for drafting and filing.

1 Cronaflex Drafting Film has excellent pencil acceptance. Its superb matte surface accepts printing and drafting inks.

3 Cronaflex Drafting Film is .004" thick, which has been found to be ideal for drafting. Its rugged CRONAR* polyester film base will take repeated handling and countless rips through your reproduction machine and to and from your file drawer without cracking or becoming brittle. It lies flat, holds size. is flexible and impervious to moisture.

If drawings are made anywhere in your operation, you can use Crovaflex Drafting Film to great advantage. Crovarlex Drafting Film joins the widely acclaimed Crovaflex line of films: Direct Positive, Contact and Projection. You can go from original drawing to timal reproduction with the same product line on the same strong hase. For more information write: F.. I. du Pont de \emours \& Co. I Inc. I, Photo Products Department. Wilmington 9\%. Delaware. In Canada: Du Pont of Canada Limited, Toronto.

BETTER THINGS FOR BETTER LIVING . . THROUGH CHEMISTRY

* Dul Pont's trademark for its polvester photoaravhic film hase

CIRCLE 263 ON READER-SERVICE CARD

GERMAN ABSTRACTS

E. Brenner

Low Leve

IN MEASUREMENT and rontrol applications it is frequently uecessaly in convert low-lemel de voltages or currents into rorresponding ac signals for drift-free amplification, as indicated by the block diagram of Fig. 1. For the most part, the modulators (choppers) which are used for the purpose of inversion consist of a voltage divider in which one element varies synchronously with the carrier frequency. The characteristics of eight different types of modulators are shown in the accompanying table.
In mechanical choppers (Fig. 2a), drift arises from thermal and electrostatic noise as well as through capacitive and inductive coupling to the moving contact

For measurement of thermal voltages at extremely low frequencies, a thallium wire at the temperature of liquid helium is used. An ar magnetic field periodically modulates the superconductivity.

For high input impedance level, the voltage divider of Fig. 2h, where a mechanically driven time varying capacitor furnishes the carrier variations, is well suited. In this circuit, the average input time constant must be large compared with the carrier period. The rms ac output, V, is related to the de input, V, by the formula $\mathrm{V} / \mathrm{V}^{\circ}$ 。 $=0.71 \Delta C / C^{r}$, resulting in small values of transfer constants.
In modulators which employ photoresistors, Fig. 2c, drift is causediby the fact that not only does the modulated light source produce

Fig. 1. Block diagram of chopper stabilized dc amplifier.

ELECTRONIC DESIGN • December 9, 195
(e) Voltage compensated transistor circuit, resistance variation but it also produces temperature dependent photo-voltages. Further difficulty is encountered in attempting to modulate sufficiontly intense light sources. 'I his situation can be improved by using glow tubes whose spectral distribution matches the spectral sensitivity charateristics of the photoconductor (for example, argon is preferable to neon for cadmium sulfide) Diode modulators (lig. 2d), when compared to the preceding circuits, have the disadvantage of not isolating electrically the de signal circuit from

Fig. 2. Basic modulator circuits. (a) Mechanical chopper, (b) Driver capacitor type,

$\backsim \square-11$

(c) Photomodulator,
(d) Diode modulator

FASTER RISE TIME RUTHERFORD GENERATORS REQUIRE FASTER SCOPES

First in electronics means a lot of things. To be first in its field, Rutherford must be ahead in research, ahead in development, ahead in quality.
Being first also means recognizing achievement in others. Tektronix' new oscilloscope, capable of reading a rise time of only 3.5 millimicroseconds allows Rutherford to continue its advanced research into generators with faster rise times.
That's why Charles E. Rutherford proudly purchased the first Type 581 oscilloscope from Tektronix. That's why Rutherford will continue to hold its position as first in the pulse generator field.

Another example of Rutherford superiority. The B-5-A ten-megacycle pulse generator features a rise time of less than 8 millimicroseconds. It has an electronic pulse delay that can be set to zero or is continuously variable from 0.030 microseconds to 500 microseconds in five ranges. Pulse width is continuously variable from .02 to 12.5 microseconds in four ranges.
pulse generators • pulse systems accurate time delay generators

Engineers: If your field is pulse circuitry design,
a brighter future awaits you at Rutherford Electronics Company. Send resume to Charles E . Rutherford, president.

ELECTRONICS CO.
8944 LINDBLADE STREET, CULVER CITY, CALIFORNIA

Announcing...

High Quality High Performance Extreme Reliability

From the leading manufacturer of power transistors, new Silicon Power Rectifiers to meet your most exacting requirements. Even under conditions of extreme temperatures, humidity and mechanical shock, these diffused junction rectifiers continue to function at maximum capacity! Thoroughly dependable, completely reliable-new Delco Rectifiers are an important addition to Delco Radio's high quality semiconductor line.

Conservatively rated at 40 and 22 amperes for continuous duty up to case temperatures of $150^{\circ} \mathrm{C}$.

For full information and applications assistance, contact your Delco Radio representative.

$$
\begin{aligned}
& \text { Newark, New Jersey } \\
& 1180 \text { Raymond Boulevard } \\
& \text { Tel: Mitchell 2-6165 }
\end{aligned}
$$

Delco RADIO

Chicago, Illinois
5750 West 51 st Street 726 Santo Mirita Tel: Porismouth 7-3500 Tel: Exbrook 3-1465

Division of General Motors • Kokomo, Indiana

CIRCIE 265 ON READER-SERVICE CARD

Peak Reading Voltmet

IN LABORATORY work, nonrecurrent microsecond voltage waveforms may be analyzed by using cathode-ray oscillography with resistent screens. When peak values only are desired, this elaborate method can be replaced by use of a direct reading instrument which consists of cascaded peak detectors. Even with the use of electrometer tubes, a single stage peak detector cannot be used for mierosecond pulses; no special tubes or components are needed in the cascadel circuit, yet pulses as short lived as three μ sec call be measured with adequate precision.

The principle of the cathode-follower coupled cascade is shown in lig. 1. For the first stage, the charging time constant is $R_{L 1} C_{1}$ and the discharg time constant is $R_{E 1} C_{1}$; successive stages have progressively longer time constants ($R_{E 1}=R_{E}$ $C_{2}>C_{1}$). The peak output voltage of the secund stage, $V_{2 \max }$, is given approximately by $V_{2 \max }=$ $V_{0} \epsilon^{n{ }^{\ln } n}$ where $n=R_{l, 2} C_{2} / R_{E 1} C_{1} \ll 1$, and the cathode follower gains were taken as unity. The voltage v_{2} rises to this maximum in negligible shorl time and then decays with the time constall $R_{E 2} C_{2}$.
e ac circuit. Carrier suppression is achieved by pending on bridge balance. On the other hand, e possible use of high carrier frequencies permits istruction of relatively broadband dc amplifiers. A variety of switching transistor modulators possible. Either the residual voltage in the "witch closed" condition (Fig. 2e) or the residual urrent in the "switch open" condition (Fig. 2f) lay' be compensated
(On moving coil (induction) modulators (Fig. 2g), the zero-signal error is determined by the feasible teroupling between the exciting and moving coil. Magnetic modulators require comparatively large carrier power, are sensitive to stray fields and are comparatively bulky. In the example shown (Fig. 2h), the second and other even harmonics provide a measure of the de voltage; the presumed symmetry of the magnetic characteristics is relied on to balance out the fundamental frequency components.

Abstracted from an article by G. Meyer-Broetz Trlefunken Zeitung, Vol. 32, No. 125, September 19:59, pl 189-195. A 32-item bibliography, referring chicfly to the I's. literature, is included in the ariginal paper.
hr Nonrecurrent easurement

If more stages are used, a sufficiently long discharge time constant for the final stage can be prescribed together with a sufficiently short time constant for the input stage. Setting $n=R_{L(n+1)} C_{n} / R_{E_{n}} C_{n}$ and $a=R_{E_{n}} / R_{L n}$, the number of stages required for discharge time constant T_{m} is

$$
m=\frac{\lg \frac{R_{E} C_{m}}{R_{L-1} C_{1}} \cdot n}{\lg a \cdot n}
$$

1bstracted from an article by K.F. Heine, Elekronische Rundschan, Vol. 13, No. 10, Oct. 19:59, 14. $365-366$.

sig. 1. A cascade of peak detectors with गrogressively increasing time constants.

Miniaturization of electronic
components highlights need for Synthane plastic laminates

Yesterday

The tremendous increase in miniaturized electronic components emphasizes a need for the combined properties of Synthane laminated plastics.
Miniaturization, as you know, reduces the insulated path between terminals or conductors, placing a premium upon the insulation resistance of the laminate.
Printed Circuitry Adds to Problem Printed circuitry, the development that made so many miniature circuits possible, also magnifies the insulation resistance problem because there is n temptation to save space by shortening the distance between conductors And often the insulation resistance require ment is complicated by printing on both

Test for insulation resistance as conducted by Synthane Corporation.
sides of the laminated circuit board.
Other Properties Influence Choice of Laminates
There are many other properties of a laminate which help to make miniaturization practical. For example, miniaturization brings the holes for terminals closer together, a result usually accompanied by a reduction in the size of holes. Punchability of the laminate, therefore, becomes an important contherefore, becomes an important con-
sideration. Mechanical strength, after sideration. Mechanical strength, aft
punching, is also worth attention.
punching, is also worth attention.
In addition, climatic conditions In addition, climatic conditions
greatly affect electronic equipment. Frequently, laminated plastics must reFrequently, laminated plastics must re-
tain their excellent characteristics even tain their excellent characteristics even
under the influence of heat, cold and change of humidities.
Choice of a Synthane laminate with good insulation resistance will finally rest upon the atmospheric conditions of the application, mechanical, electrical and chemical properties required, and, to a degree, upon the economics of the situation.

Synthane Laminates

for Insulation Resistance
Usually high insulation resistant Synthane laminates for printed circuits are processed with selected core and surface sheets to obtain the proper balance of electrical and moisture resistance CIRCLE 266 ON READER-SERVICE CARD
values and to provide an excellent bonding surface for the metal foil.
Synthane Grades G-10 and G-11 (glass epoxy grades) are the top plastic laminates for insulation resistance. G-11 is the stronger flexurally at elevated temperatures. Synthane Grades XXXP, XXXP-IR and P-25 have very good insulation resistance, and are easier to machine and cost less than the epoxy grades. Grade P- 25 may be cold punched. Where there must be high impact strength as well as good insulation resistance Grade N-1 may be the logical choice.

Applications: Among the high insulation resistance applications of Synthane laminates are wiring cards for computers, printed circuits for television, puters, printed circuits for television, switch rotors, automation c
tomobile dashboard wiring.
You are urged to write directly to us or to call in a Synthane representative for help in choosing the proper grade for your application.

SYNTHANE

 CORPORATION, SAKS, PENNA. Laminated Plastics for Industry Sheets, Rods, Tubes, Fabricated Parls Molded-laminated, Molded-maceratedINTRODUCED AT WESCON

NTW

TRANSISTORIZED
DC POWER SUPPLIES

0.5 TO 32 vDC 5 AND 10 AMP

CALIBRATED ADJUSTABLE
OVERLOAD PROTECTION
PUSH BUTTONS FOR
METER RANGE SWITCHING
AND OVERLOAD TRIP RESET

MODEL 62-141 5 AMPERES

MODEL 62-142 10 AMPERES
dressen-barnes corporation
250 NORTH VINEDO AVENUE, PASADENA, CALIFORNIA MURRAY 1-0643 SYCAMORE 5.7731

ELECTRONIC DESIGN

DIGEST

of recent papers and literature of interest to design engineers

Variable Capacitance Paramp

For Low Noise Without Refrigeration

,
IN THE RACE for lower and lower noise, we presently find the maser far in the lead, since the noise associated with its basic amplifying mechanism is negligibly small. Many applications, however, do not require and cannot benefit from this ultimate in noise performance.
For these applications, the variable-capacitance "parametric" amplifier offers the advantage of simplicity: Its noise performance lies somewhere between that of vacuum tubes and masers yet, in contrast to masers, neither refrigeration nor a magnetic field are required. If we are willing to introduce a moderate amount of refrigeration, that is, refrigeration to licquid nitrogen temperature, further improvements in noise performance can be obtained.
There are two basic types of variable-capacitance amplifiers: the negative-resistance amplifier and the up-conversion amplifier. Both types were first demonstrated at Bell Laboratories.

The two types of amplifiers have in common the use of a variable-capacitance diode as the active element and a high frequency ("pump" signal as the principal energy source. They differ though, in their mode of operation, in the applicable frequency range, and in several other re spects.

Negative-Resistance Parametric Amplifier
Let us first examine the physical principles in. volved in the negative-resistance amplifier. Suppose we have at our disposal the simple resonant circuit of Fig. 1.
This circuit is unconventional only in that one of the plates of the capacitor is movable. A small sinusoidal signal voltage of frequency s (top left in drawing), applied to the terminals of this circuit, would cause the charge on the capacitor to vary sinusoidally also.

Next, imagine that the upper capacitor plate

Fig. 1. Mechanical analogy to variable-capacitance amplification. The top plate of the capacitor is "pumped" up and down at twice the signal frequency. Capacitance is decreased when voltage increases.

ELECTRONIC DESIGN - December 9, 1959
pulled upward a small amount whenever the charge is at a maximum, regardless of polarity. This maximum, of course, occurs twice every cycle. The plate is returned to its original position whenever the charge is zero-again twice every ycle.
In other words, we are performing, with the !pper capacitor plate, a square-wave "pumping" notion at twice the frequency of the applied signal. The phase relationship has been so chosen that the capacitance is always decreased during that part of the cycle which finds the charge relatively constant.
But for constant charge, the $Q=C V$ relation states that the voltage across the capacitor is inversely proportional to the capacitance. Hence, whenever we decrease the capacitance, we increase the voltage and obtain gain. This "pumping-up" of the signal voltage is shown as an amplified output signal at the bottom left in Fig. 1.
Another way to look at this amplification process is to note that we always have to do work on the circuit whenever we separate the plates in the charged condition, since we have to overcome the attractive force between the opposite charges on the capacitor plates.
No work is expended, however, in restoring the original plate-separation, since this occurs whenever the charge on the capacitor plates, and hence the attraction between them, is zero. The energy transferred from the external pump (not shown in sketch) to the circuit provides the signal gain and internal amplifier losses.
Why do we call this type of gain "negativeresistance" gain? Because, like a resistor, this type of parametric amplifier is a two-terminal or singleport device. In the case of positive resistance, the power reflected is always less than the incident power. Conversely, we speak of a negative resistance if the reflected power exceeds the incident.

Like a Child on a Swing

A well-known example of this kind of amplification is a child pumping-up the excursions of a swing. Twice during each complete cycle-that is, at hoth extremes of the swing-the child will raise his center of gravity and lower it during both downward phases of the swing.
Let us now turn to a practical high-frequency anulifier. Here, of course, our capacitance is varied electronically and the capacitance itself is nut a parallel-plate capacitor, but rather a special kind of semiconductor diode-one in which the teminal capacitance varies with the applied voitage.
Depending on the operating frequency, the en ironment of this diode may either be coaxial or stripline circuitry or, in the microwave range, a taveguide cavity.

MICRO SWITCHPFecisIonswilohes

Maintained 2-pole

Momentary 2-pole

Momentary 3-pole

Momentary 4-pole

COMPACT

Iong-life, snap-action pushbution switches

The high quality and dependability of these pushbutton switches make them ideal for use in such fields as aircraft, missile guidance, data processing, and office equipment. Features that contribute to excellent performance include:

1. Long-life, precision, snap-action basic switches; enclosed contacts prevent fouling by dust and dirt.
2. Choice of momentary or maintained-contact switching functions. Momentary types transfer circuit only while the button is depressed. The maintained type transfers circuit alternately from one position to the other with each push of the button.
3. Actuator on momentary types incorporates a pretravel/overtravel spring and an overcenter snap mechanism which provides optimum "feel" of operation and non-tease actuation of all the basic switches.
4. Buttons are of high-strength plastic, have concave surface for optimum finger control.
5. Switch terminals are of double turret design, provide for proper solder connections.
6. These switches are available with buttons in black, white or brilliant red or green.
7. These compact assemblies permit close spacing of buttons on panel, save panel costs and increase operator efficiency.
The complete micro switch line of pushbutton switches contains variations to meet almost any requirement. Additional information and application assistance are available from the micro switch branch office near you. For more information on the above four types, send for Data Sheet 167.

MICRO SWITCH . . . FREEPORT, ILLINOIS
A division of Honeywell
In Canada: Honeywell Controls Limited, Toronto 17, Ontario

CIRCLE 268 ON READER-SERVICE CARD 400 Cycle: Many for $125^{\circ} \mathrm{C}$ operation . . . Higher for speclal appllcations

Many Immediatelv Available From Stock in Small Quantities

SIZE 8

SYNCHROS

Highly Stable. Minimum Error
Variation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

$\begin{aligned} & \text { OSTER } \\ & \text { TYPE } \end{aligned}$	CLASS	INPUT VOLT. AGE	$\begin{aligned} & \hline \text { INPUT } \\ & \text { CUR. } \\ & \text { RENT } \\ & \text { AMPS } \end{aligned}$	INPUT WATTS	output VOLT. AGE	$\begin{aligned} & \text { PHASE } \\ & \text { SHIFT } \\ & \text { (OIEAO) } \end{aligned}$	$\begin{aligned} & \text { ROTOR } \\ & \text { RESSIST. } \\ & \text { ANCE } \\ & \text { OHM) } \end{aligned}$	$\begin{aligned} & \text { STATOR } \\ & \text { RESIITT. } \\ & \text { ANCE } \\ & \text { OHMS } \end{aligned}$	$\begin{gathered} z_{\text {ro }} \\ \text { OHMS } \end{gathered}$	$\begin{gathered} 2_{\text {so }} \\ \text { OHMS } \end{gathered}$	$\begin{aligned} & z_{\text {rss }} \\ & \text { HMMS } \end{aligned}$	$\begin{aligned} & \text { NULL } \\ & \text { VOLT. } \\ & \text { AME } \end{aligned}$ (MV)	$\begin{aligned} & \text { MAX. } \\ & \text { ERROR } \\ & \text { FROM E. } . \\ & \text { (MIN.). } \end{aligned}$ (MIN.)
4253.01*	LZ.CT	11.8	. 087	. 21	23.5	9.0	157.0	24.0	$212+\mathrm{j} 722$	28+j119	263+j69	30	± 7
4269-01*	Diff	11.8	. 087	. 21	11.8	9.0	35.0	24.0	$37+\mathrm{j} 139$	$28+\mathrm{j} 124$	$47+j 13$	30	± 7
4273.01**	XMTR	26.0	. 100	. 54	11.8	8.5	34.0	12.0	$48+\mathrm{j} 255$	12+i45	$82+$ j31	30	± 7
4277.01*	HZ.CT	11.8	. 030	. 073	22.5	8.5	316.0	67.0	500+i1937	79+j350	594+j182	30	± 7
4261.01**	Resolver	26.0	. 043	. 39	11.8	15.0	162.0	22.0	208+j612	34+j159	243+j77	30	± 7

Stator as Primary *Rotor as Primary

SIZE 8

$\begin{aligned} & \text { OSTER } \\ & \text { TYPE } \end{aligned}$	rated VOLTAGES	$z=R+j x$	$\begin{aligned} & \text { IN OZZ } \\ & \text { STALL } \\ & \text { TORQUE } \end{aligned}$	$\begin{gathered} \text { RPM NO } \\ \text { LOAD } \\ \text { SPEED } \end{gathered}$	$\begin{aligned} & \text { WATTS } \\ & \text { PER } \\ & \text { PASE } \end{aligned}$	GM. CM ROTOR INERTIA	$\begin{aligned} & \text { LENGTH } \\ & \text { IN. MAX. } \end{aligned}$	$\begin{aligned} & \text { WEIGHT } \\ & \text { OZ. } \end{aligned}$	$\begin{aligned} & \text { T/ RATIO RATIO } \\ & \text { RAD/SEC } \end{aligned}$
5004.01	$\begin{aligned} & 26 \mathrm{~V} \\ & 26 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 288=226+j 176 \\ & 294=238+174 \end{aligned}$. 15	6200	2.0	. 47	0.863	1.2	22,500
5004-02	$\begin{aligned} & 26 \mathrm{~V} \\ & 36 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 288=226+j 176 \\ & 526=409+j 332 \end{aligned}$. 15	6200	2.0	. 47	0.863	1.2	22,500
5004.03	$\begin{aligned} & 26 \mathrm{~V} \\ & 40 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 288=226+j 176 \\ & 715=582+j 415 \end{aligned}$. 15	6200	2.0	. 47	0.863	1.2	22,500
5004-09	$\begin{aligned} & 26 \mathrm{~V} \\ & 40 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 230=190+j 131 \\ & 519=399+j 332 \end{aligned}$. 20	6200	2.5	. 47	0.863	1.2	30,000

SIZE 8

MOTOR TACH-GENERATORS

OTHER PRODUCTS INCLUDE:

Resolvers

Computers
Indicators

Servo Mechanisms Servo Torque Units DC Motors

The Size 8400 Cycle Servo Motor Tach Generators listed above have 150° max. cont. frame temperature, 110 MA input current. $\pm 5^{\circ}$ phase shift and Null Voltage (Total R. M. S.) of 15 millivolts.

EASTERN 310 Northern Blvd. - Great Neck, Long Island, New York \mid wESTERN 5333 South Sepulveda Blvd, - Culver City, California OFFICE Phone: HUnter 7-9030 - TWX Great Neck N.Y. 2980 OFFICE Phone: EXmont 1-5742• UPton 0-1194•TWX S, Mon. 7671

Engineers For Advanced Projects: Interesting, varied work on designing transistor circuits and servo mechanisms. Contact Mr. Robert Burns, Personnel Manager, in confidence.

MANUFACTURING CO. Avionic Division
Racine, Wisconsin

The Pump and the Signal
Another important difference between the idealized analog treated earlier and a practical situation pertains to the pump and signal fiequencies.

For maximum energy transfer from pump to circuit, the signal frequency must precisely equal half the pump frequency and must bear a definite and fixed phase relation to the pump. This frequency and phase relation is very difficult, if rot impossible, to maintain, since the incoming signal ordinarily varies in both frequency and phase in a way which is beyond the control of the receiver. If, however, we are willing to settle for something less than maximum energy transfer, such exact control is not required. In part (a) of Fig. 2, the frequency of an incoming signal is marked s and the frequency of the pump is marked p. As shown, s is somewhat less than half the pump frequency, $p / 2$.
As a result of this frequency difference, the signal and pump will no longer interact favorably all the time, but rather will drift periodically into and out of the condition for favorable interaction.

Fig. 2. When the signal is displaced from half the pump frequency, as in (a), a modulated output, (b), re. sults with the components shown in (c) and (d). The image frequency is symmetrical around $p / 2$ as in $|e|$

Fig. 3. In the three-terminal ferrite circulator, the signal is introduced at 1 and enters the amplifier through 2. The amplified signal, together with its image, returns through terminal 2, and the output appears at terminal 3.

Hence, the amplified signal emerging from the amplifier will be modulated as shown in part (b). Separated into its component sinewaves, this mod ulated signal is the sum of two uniform signals, c) and (d)-one at the signal frequency, s, and the other at the frequency $p-s$.
In (c) we have repeated the frequency scale but have added the new frequency, p-s. We note that p-s is as far above $p / 2$ as s is below. Because of this symmetry, p-s is called the "image" of the signal.

The Inevitable Image

The generation of this third frequency is a very important characteristic of the negative-resistance amplifier: by introducing a signal which differs in frequency from half the pump frequency, we get back not only an amplified signal at the signal frequency but an equally strong signal at p-s.
Two important facts to bear in mind with this image signal-or as some call it, the "idler"-are these: First, the image signal is an inevitable byproduct of this type of amplification. Suppressing it would also suppress the desired amplification of the signal. Second, the closer the signal is to half the pump, the closer the image will be to the signal, and the more difficult it will become to separate signal and image by filtering. Consequently, the amplifier must have enough bandwidth to encompass both the signal and its image.
In contrast to conventional amplifiers, this type of variable-capacitance amplifier must have twice the bandwidth occupied by the signal. It therefore accepts and amplifies twice the normal input noise. All the more surprising that, in spite of this handicap, the over-all noise performance of the valiable-capacitance amplifier is still better in son te cases than the best we can do with vacuum tules. This is primarily due to the small amount of oise contributed by the semiconductor diode. he reader may justly wonder at this point how

EXTRA RUGGEDNESS

Anodized Aluminum Housing for Stability
Individual, High-Strength Terminals Resist Elevated Temperatures
High-Temperature Epoxy-Glass Insulation Protects Coil
Sturdy Shock-Proof Shaft Stops Won't Loosen

EXTRA PRECISION

Linearity (Independent) up to $\pm 0.05 \%$
Close Concentricity between Coil and Wiper Wiper Pigtailed to Terminal to Eliminate Sliding Contact
Exclusive Spring-Pressure Terminal-and-Tap Design Assures Positive Contact

EXTRA VERSATILITY

Operation Up to $150^{\circ} \mathrm{C}$
10, 5, or 3 Turn Units
Resistance Range from 250 ohms to 300 K ohms Tap Locations Limited Only by Physical Spacing 5.5 watts @ $85^{\circ} \mathrm{C}$ (derated to 0 @ $150^{\circ} \mathrm{C}$)

EXTRA SMOOTHNESS

Stainless-Steel Class 7 Ball Bearings
Wear-Compensating Slider for Zero Backlash
Wiper Pigtailed to Terminal to Eliminate Sliding Contact
Meets applicable sections of MIL-E-5272A and NAS-710. Write for detailed RVG-14-MT10 specifications.

A glance at the performance characteristics of this new Gamewell precision potentiometer tells the story! It fully meets applicable MIL specs - and much more In addition, it gives you important extras that permit you to do more with a standard potentiometer. In many cases you can save the cost of a "special."

Of course, Gamewell supplies special pots - both linear and non-linear whenever necessary. Extensive facilities for their design, development, and produc tion are constantly at your disposal.
Meet the challenge of shrinking component space . . . tougher environmental demands . . . tighter limits of precision. . economically with Gamewell Precision Potentiometers. Bring your pot problems to The Gamewell Company, Dept. 14C, 1396 Chestnut St., Newton Upper Falls 64, Massachusetts.
"Infegrals of High Performance"

PUTTING MAGNETICS TO WORK

DIGEST

the various signals we have encountered so fanamely the input signal, the amplified out ut signal, the image and the pump-are unscramb ed and put to use. One neat method makes use of another solid-state element, the ferrite circula or illustrated in Fig. 3.
The signal to be amplified is introduced at terminal 1 , and by the circulator action is guided to terminal 2. Here, it enters the parametric amplifier, is amplified and re-emerges at terminal 2, together with its image. Again, by the circulator action, these two signals are guided to terminal 3, which thereby becomes the effective output tir. minal.

Prior to detection, the two signals are separated in a suitable filter network. The pump signal is confined to the variable-capacitance diode and is prevented from leaking into the output by means of a sharp pump-rejection filter placed between the parametric amplifier and terminal 2 of the circulator.

Variable-Capacitance Effect
Until now we have assumed, without explani-

Fig. 4. Ar a p-n junction, the region swept free of charge carriers can be varied by changing bias voltage. This action is equivalent to varying the space between the plates of a copacitor.

Filter and inductor designers specify our 160 mu molypermalloy powder cores for low frequency applications. Where space is precious, such as in carrier equipment and telemetering filters, the high permeability of these 160 -mu cores cases the squeere.
In many cases, $160-\mathrm{mu}$ cores offer designers the choice of a smaller core. In others, because inductance is 28 percemt higher than that of $125-\mathrm{mu}$ cores, at least 10 percent fewer turns are needed to yield a given inductance.
If () is the major factor, 160 -mu cores permit the use of heavier wire with a resultant decrease in d-c resistance.

Like all of our moly-permalloy powder cores, the 160 's come with a guaranteed inductance. We can ship eight si/es from stock, with a choice of three finishes-standard enamel, guaranteed 1,000 -volt breakdown finish, or high temperature finish. Further information awaits your inquiry. Magnetics Inc., Dept. IN-j8, Butler, Pa.

MAGMETICS inc.

on, the existence of an electronically variable . pacitance. Since this really is the heart of the arametric amplifier, an explanation will next be iven of the variable-capacitance effect in semiinductor diodes.
At the top of Fig. 4, we see two sections of semicminductor material. In the n-type section on the If it, the circled plus signs represent fixed positive harges due to donor impurities, and the minus signs represent mobile negative charge-carriers or electrons. In the p-type section, the circled minus signs represent fixed negative charges due to acceptor impurities, and the plus signs represent mobile positive charge-carriers or holes.
By themselves both slabs are electrically neutral -that is, in the n-type material the fixed positive charges are neutralized by precisely the same number of electrons, and similarly in the p-type material the fixed negative charges are exactly neutralized by the same number of holes.
Liet us now go through the fictitious process of forming a $p-n$ junction by bringing the two slabs into contact, as in part (b) of the drawing, and observe in slow motion the events leading to the establishment of equilibrium.
With the p and n section in contact, electrons will diffuse from a region of high to one of low electron density-that is, from left to right. Similarly, holes will diffuse across the junction from right to left. As this diffusion proceeds, the loss of electrons will render the previously neutral n-type section increasingly positive.
Also, the diffusion of holes from the right to left will render the p-type section increasingly negative. The resulting potential difference between the two halves will set up an electric field at the interface, as shown by the solid curve in part (c). This field is so directed as to oppose and finally bring to a halt the diffusion of electrons and holes across the junction.
In addition, the field will sweep clear of electrons and holes a narrow region about the interface, thus giving rise to the equilibrium distribution of electrons and holes shown by the solid curve of (d).
The central layer-also called the depletion layer because it is devoid of mobile charge carriers -may be thought of as a nonconducting or dielectric region. Since it is bounded on both sides by regions containing mobile charge-carriers-that is, conducting regions-we may compare the diode to a parallel-plate capacitor with a plate separation equil to the width of the depletion layer.
Suppose, next, that the junction is given a tigit reverse bias-a bias so directed as to increise the potential difference between left and rigl :-the dashed curve in (c). The positive potential applied to the n-side will then urge the electrol distribution toward the left, and the negative pot ntial applied to the p-side will urge the hole

HGTHERINGOW
 SWITCHES • INDICATOR LIGHTS • SPECIAL ASSEMBLIES

SOLVE SPACE AND WIRING PROBLEMS wifh Swifch/Light Combinafions

You probably use these Hetherington Switch/Light combinations every time you travel via leading air lines. Here they are used as hostess call lights. As you may have suspected, however, this is just the beginning of their useful-ness-both in aircraft as well as in commercial instrumentation and control uses. Their unique combination of single- or double-pole switching action together with an illuminating push button offers illuminating push button offers definite advantages in terms of greatly reduced panel space and the elimination of switch-to-light
wiring. Usually the entire assembly wiring. Usually the entire assembly
takes no more space than a contakes no more space t
ventional switch alone.

Of particular importance for many applications, Hetherington Switch/Light combinations make it easier for operators to keep closer tabs on crowded panels without confusing control functions. By connecting the light to an externally controlled circuit the illuminated button virtually cries, "Push $M e$," to attract the operator's attention at the right time. In other models, lamp circuits are controlled by the main switch contacts or by a second set of auxiliary contacts.

Typical contact ratings are 15 amps at 30 volts ac-dc. Illuminated buttons can be made in virtually any color, shape or size.

HERE'S EXTRA SAFETY FOR WARNING LIGHT APPLICATIONS

JUST "PRESS TO TEST"

Ever wonder whether a warning light for a critical circuit was merely OFF or whether the bulb was burned-out?
If so, you'll appreciate the "Press-to-Test" feature of this tiny Hetherington Type L3200 light.
The lamp and its circuit can be "checked-out" simply by pressing on the spring-mounted plastic lens cap. This makes contact through a sepaThis makes contact through a sepais released the lamp functions through the regular circuit.
The long plastic lens of the L3200 gives wide, 180 -degree visibility with either standard or edge-lit panels. Uses AN3140 lamps. For more details, write for Bulletin L-2b. CIRCIE 717 ON READER-SERVICE CARJ

BETTER SWITCHES FOR BETTER APPLIANCES

A good electrical product deserves a good switch-and for types in the 5 to 50 ampere range that means Hetherington. Sturdy, good-looking switches -both push button, toggle, rotary, and other types-for unique operating or mounting requirements have long been a Hetherington specialty. Chances are, Hetherington switch engineers can recommend something out-of-the-ordinary that will enhance the appearance and saleability of your electrical products while assuring long, happy switch performance.

NEW PUSH BUTTON SWITCHES FOR AVIATION'S TOUGHEST JOBS . . . Designed fo MIL-S-6743 Specs

Performance of these rugged, fully moistureproof snap-action switches far exceeds the requirements of MIL-S-6743. Drawing MS25089. They take a full 50 G shock and 20 G vibration, 5 to 2.000 cps , without chatter.
The basic switch can be fitted with any of eight different anodized aluminum mounting adapters, such as those illustrated, to meet virtually
any mounting or design requirement. Two-circuit, three-terminal, SPDT, and other contact arrangements are available with ratings up to 10 amps, 28 volts dc. Ask for details on Hetherington Series W100.
Similar switches for non-MIL and industrial applications are available in over 1800 different types as Hetherington Series "JR."

CIRCLE 718 ON READER-SERVICE CARD

HETHERINGTON INC. DELMAR DRIVE, FOLCROFT, PA. - 139 Illinois St., El Segundo, Calif.
designed for use where one failure is one too many

DIGEST

distribution to the right.
This will cause a widening of the depletion layer and a decrease in terminal capacitan se Similarly, a forward bias (dash-dot curve) will u ge the electron and hole distributions toward each other, the depletion layer will shrink, and the capacitance will increase. Thus we have a capicitor, the terminal capacitance of which will viry with the applied voltage.

It is very important to note that this variation in capacitance results from a very minute motion of electron and hole distributions, and that an actual flow of these charge carriers across the junction is not involved. These are the principa reasons why both the high-frequency and low noise performance of the variable-capacitance diode are superior to that of the transistor.

Negligible Transit Time

In fact, the motion of charge carrier distribu tions under the influence of the applied voltage is so minute-only a few millionths of an inchthat transit-time effects are completely negligible These, of course, constitute basic limitations in the high-frequency response of transistors and man! other electron devices.
What does limit the high-frequency performance of the diode is an inevitable fixed capacitance, which appears in shunt with the useful variable capacitance. This fixed capacitance depends on the contact area of the diode, the width of the depletion layer, the type of encapsulation. and the applied bias. Together with the series resistance of the diode, it determines the upper frequency limit for amplification. At present, this limit lies in the $30-60 \mathrm{kmc}$ range for silicon $p-n$ junction diodes of good quality.
The series resistance of the diode, the value of which depends primarily on the composition and geometry of the bulk of the semiconductor material, is the principal source of internal noise in the parametric amplifier. Recent experiments at Bell Laboratories by Uenohara have shown that this noise can be considerably reduced by refrigeration of the diode to liquid nitrogen temperature.
An experimental amplifier combining these ideas and principles was built by M. Uenohara of Bell Laboratories. As illustrated in Fig. 5, it uses a variable-capacitance diode in a simple waveguide cavity. For this amplifier, Uenohara speci fies a useful signal band (thickened portion of re sponse curve) 4 mc wide with a midband gain of 20 db . This signal band is well separated from half the pump frequency.
Because of the presence of the image band there is no one number which fully describes th noise behavior of this amplifier. Rather, we mus

Fig. 5. Structure of a 5000 mc variable-capacitance paramp. The response curve shows that the operating region, slightly off the center frequency of 5000 mc , gives a 4 -mc bandwidth with a gain of 20 db .
know whether the signal is coherent, as in communications, or noise, as in radio astronomy.
Also we must have information on the source temperature. For instance, when a coherent signal originating from a room-temperature source is introduced in the signal band only, Uenohara's amplifier will exhibit sensitivity equall to that of traveling-wave tube having a 5 db noise figure.
However, when this same amplifier receives signals from the cold sky, such as from satellites, it will exhibit noise performance equal to that of a traveling-wave tube having a noise figure of 3.7 db .

In still another case when the signal itself is noise, as in radio astronomy, the same amplifier will have the sensitivity of a 2 db traveling-wave tube. Here, the "signal" may be introduced in both the signal and the image band, so that the effective bandwidth is now equal to the signal band, and not twice this band as in single-sideband reception.
By placing the diode in a resonant cavity, it is apparent that we can extract the highest gain per diode, but we are at the same time paying the penalty of a restricted bandwidth. This restriction can be eliminated by mounting the diode in a nonresonant environment.
Gain per diode is thereby sacrificed, but overall gain can be recovered by using large numbers of diodes in suitable arrays. These diodes then become part of a transmission line and interact with traveling signal and pump waves. R. Engelbrecht of Bell Laboratories has built such an "iterated" amplifier using 16 pairs of diodes in a modified coaxial line. This amplifier has a bandwidth of 210 mc at an operating frequency of 600 mc .

The Up-Conversion Amplifier

The second major type of parametric amplifier is the so-called "up-converter." It differs from the negative-resistance amplifier in these respects:
. The frequency involved here, in addition to the signal frequency, s, and the pump fre(f) ency, p, is the upper sideband, $p+s$. In con-

At this moment, 30,000 transistors are on test at General Electric

Among the more than 30,000 transistors you will find right now on General Electric's cycled lifetest racks are Series 2N13 PNP germanium devices dating back to 1952 .

Each of these 2 N 43 's has clocked at least 40,000 hours of operating life. This represents five years of "power-on" operation without failure. And the "old" 43 's still live on!
Since 1952. General Electric Company has produced and thoroughly tested well over 20 -million transistors. A quarter-million of these devices have been subjected to from 1000 to 10,000 hours of maximum-rated-power.

Life testing is hut one of many exacting product quality-assurance criteria all General Electric semiconductor products must meet. For example, on an average, 16 separate quality-level tests . . . electrical, mechanical, environmental. as well as life . . . are given every General Electric transistor.

Through its system of stringent quality control, General Electric strives to continuously raise the stability/long-life reliability goals for semiconductor products- 10 , the ultimate benefit of the user, the industry and the country at large.

Progress /s Our Most Important Product GENERAL ELECTRIC
 Semiconductor Products Department, Electronics Park, Syracuse, New York

 CIRCLE 274 ON READER-SERVICE CARD

DIGEST

trast, the negative-resistance amplifier uses of ly the lower sideband, $p-s$.
2. In a well-known theorem. J. M. Manley a id H. E. Rowe of the Bell Laboratories have sho in that gain in the up-converter is proportional to the frequency ratio $(\boldsymbol{p}+\boldsymbol{s}) / s$. Hence, to achit ve reasonable gain, the pump frequency must be many times greater than the signal frequency, whereas a ratio of only two was required for the negative-resistance amplifier. This requirem nt for a large ratio of pump to signal frequency lias restricted experimental up-converter work to sig. nal frequencies in the uhf band.
3. In the up-converter, the signal frequency is inevitably shifted in the amplification process, while in the negative-resistance amplifier the annplified signal may be used either at the original frequency or at the lower sideband frequency.
4. The up-converter is a true two-port amplifier having unconditional stability, whereas the negative-resistance amplifier, being a single-port amplifier, requires a circulator for stable operation.
With up-converters, over-all system noise figures of less than 2 db have been achieved in the uhf band. Such amplifiers have been built at Bell Laboratories by Uhlir and at Airborne Instruments Laboratories.
The Manley-Rowe theorem, incidentally, sug gests still another type of parametric amplifier.

Design Considerationr Powip

MANY FACTORS must be considered carefully when designing square-wave oscillators for use in power conversion. The relative importance of each factor must be weighed in the light of the specific application of the particular power converter. The relationship between efflciency, stability, reliability and cost must be kept in mind in any design.
The desired maximum power output level is probably the principal factor in the design of a power converter. Important considerations in this

It is a hebrid between the negative-resistance and the up-conversion types. In common with the former, it uses the lower sideband, $\mu-s$. In ontrast to the negative-resistance amplifier, how"ver, and in common with the up-converter, the pump frequency is chosen many times higher than s. The lower sideband signal at $(p-s)$-now also much higher in frequency than the input signal -is the useful amplified output.
This operation has the advantage of higher gain and better stability than the negative-resistance amplifier. Uhf amplifiers of this type have been built at Bell Laboratories by H. Seidel and G. F. Herrmann and also by Workers at Federal Telecommunication Laboratories. The application of these low-noise amplifiers in scatter propagation ustems should offer attractive economies.
This review of variable-capacitance amplifiers has been restricted to a description of broad principles and a small number of representative experiments. The intense industry-wide attention these amplifiers have received testifies to their ureat potential. It is only a matter of time before they will be extensively introduced into the communications industry:
Abstracted from The V'ariable-Capacitance Parametric Amplifier by E. D. Reed, which appeared in the October 19.59 Bell Laboratories Record.

Microwave Component News (Nu) from SYLVANIA funf

NOW IN PRODUCTION:

Widest Range of Backward-Wave Oscillators

With Frequencies to 75 kmc

Sylvania now offers the widest range of production backward-wave oscillators, featuring 3 rugged types at K -band and above.

Greatly simplified power supply design is made possible through use of the PM1757 and PM-6902 since their design permits grounding of either cathode or helix. These two BWO's have the following advantages:

Grounded cathode

Rugged metal-ceramic construction Permanent magnet focusing
Suitable for airborne applications
Rated for CW or pulse applications
For other requirements, Sylvania has classified tubes available at frequencies other than those shown.

	Pm.179	PM.1757	Pm.6902	Iw. 623	6496	7096	6699
Frequency ronge, kme	63.75	27.41	$18-27$	4.8	$2-4$	$2-4$	$1-2$
Power Output, mw	3	5	10	$15-135$	$20-700$	100	20.700

FSYLVANIA
 Subsidary of
 GENERAL TELEPHONE \& ELECTRONICS

Sylvania Electric Products Inc.,
Special Tube Operations 500 Evelyn Ave., Mountain View, Calif.
re-pect are available source current and source wlage. If the available dc source voltage is too hich for safe operation of the transistors, it may be necessary to use circuits with transistors conne ted in series. If the input voltage is low and the required output power is high, it may be newssary to operate transistors in parallel.

Efficiency and Rated Output

i or most power converters, the efficiency falls off rapidly as the output power level deviates

DIGEST

upwards or downwards from the rated maximum output power. In view of this, it is desirable that the output load be as constant as possible and preferably within 20 per cent of the rated output of the converter.

Fig. 1. Two types of square wave oscillators. The conventional common emitter circuit of (A) is more efficient than commen collector types, but the latter allow the advantage of mounting transistors directly on a metal heat sink. The grounded-collector, common emitter circuit of (B) provides both advantages, efficiency and direct grounding.

There are two basic modes of output transformer core operation in square wave oscillator applications. The output transformer itself may be excited to saturation, or a winding of the output transformer may drive a small additional transformer to saturation to switch the transistors. Although the first method is the more widely used, the second method has distinct advantages.

Single Transformer Square Wave Oscillators

The type of core material used in the transformer is important. The core configuration also has an effect on transformer performance from the standpoint of leakage inductance. Interleaved and bifilar windings will help reduce these flux losses. Leakage inductance should be minimized because it contributes to the formation of dangerous voltage spikes on the leading edge of the output waveform. Leakage inductance will also

5TEAP230

Thansidyne

 TRANSISTORIZED POWER CONVERTERS AND INVERTERSWhen you need something special in the way of small, extremely efficient (and possibly peculiarly-shaped) power supplies, Spectrol is your source.
Spectrol's Transidyne units offer more options, more exclusive features. Spectrol engineers will design to your specs, including size and shape. You can get these rugged converters or inverters with multiple outputs, high power ouputs, including sine wave .and up to 4 watts/cu. in. output!
You will find Spectrol uniquely qualified to meet your special needs for power sources. Transidyne units reflect the same know-how which has made Spectrol the leading supplier of precision potentiometers and mechanisms.

Using Fastex Plasti-Grommets to mount license plates demonstrates their use in blind applications, just one of their unique solutions to individual or mass-production easily, lock tight when the screw is driven.
FASTEX
A DIVISION OF ILLINOIS TOOL WORKS 195 Algonquin Road, Des Plaines, Illinois In Canada: SHAKEPROOF/FASTEX Division of Canadalllinois Tools Lid.

CIRCLE 278 ON READER-SERVICE CARD

another
 reader reports:

ELECTRONIC DESIGN is "Most Helpful"..

ELECTRONIC DESIGN's prompt Reader Service is by far the best I have seen. It gets the information to the user promptly and to the point. Thanks, ED, for an excellent job well done.
Engineer-
Allen Mfg. Co.

TO YOUR SPECS:

what is Thansidyne:?

Transidyne units are solid state devices which convert ac or dc input voltages to ac and/or dc outputs of different voltage levels or frequencies. Typically, a dc input voltage can be converted to ac sine wave output voltage having a frequency of $2,000 \mathrm{cps}$.
Small and lightweight, Transidyne equipment completely replaces motorgenerator and vibrator type devices. having greater efficiency. They are used in all types of military and commercial electronic and electrical devices requiring rugged. reliable power supplies.

Let us quote on your special power source requirements. Call your nearest Spectrol representative, or write us direct. Please address Dept. ___.

SPECTROL

ELECTRONICS CORPORATION COOA SOUTH DEL MAR AVENUE 1704 SOUTH DEL MAR AVENUE
SAN GABRIEL, CALIFORNIA

TRANSFORMER-FILTER manufacturer IS LOOKING FOR

CAN PROVIDE LAB and patent Meeds
send full information, in confidence BOX 15
Electronic Design
830 Third Ave.
New York 22, N.Y.

From start to

 synchronous speed in revolution!This new hysteresis motor has 300% starting torque and uses permanent magnet excitation to achieve up to 80% efficiency. It locks in at a fixed shaft position without hunting or drift. Damping can be adjusted to critical.

Ask for descriptive folder on the new Hyspersyn* motor. We can build it in any size, shape or speed.

2233 Federal Avenue - Los Angeles 64. Calif. CIRCLE 28I ON READER-SERVICE CARD
hinder load-current reversal.
Transformer core materials with narrow hysteresis loops give best efficiency because of lower core losses. Some of these materials have relatively low saturation flux densities which require that their cross-sectional areas be relatively large.

Transistor Operating Modes

In designing a square wave oscillator, one must consider the relative merits of the possible modes of transistor operation-common emitter, common collector, and common base. The overall circuit efficiency may change appreciably from one type of circuit to another because of the differing amounts of power which must be diverted from the output circuit and dissipated as copper losses in the feedback winding.
For example, the common emitter type of the square wave oscillator circuit shown in Fig. 1A requires less input power, for a given output power, than common collector types. This is because the transformer efficiency for the latter circuit may be lower due to greater copper loss in the additional turns of the feedback winding.

Offsetting this disadvantage, common collector operation will frequently permit mounting the transistors directly on the chassis or uninsulated heat sink. However, the same result can be achieved in the grounded-collector common-emitter circuit in Fig. 1B.

Transformer efficiency in a common base circuit is lower than that in a common emitter circuit because the same $V_{b e}$ at a higher current must be transformed. Most of this power is recovered because the supply voltage is effectively higher. The additional copper required to transform this current may not only increase copper losses, but can also require a larger core window to accommodate the additional bulk of the winding.

Feedback Windings

Considerable care must be taken in designing the feedback windings. When the transistor is forward biased, enough current must be supplied to maintain the transistor in the saturated condition under full load. Similarly, if the transistor is reverse biased, enough voltage must be supplied to bias the transistor to cutoff.
For Delco transistors a minimum value of two volts will be sufficient if the resistance of the drive circuit is small enough to allow proper base current for the collector current needed.
At the same time it is important that feedback voltage be as small as practical. In particular, high cutoff voltages (above four volts) will increase the possibility of secondary breakdown and should be avoided.
Excessively large base currents during conduction will increase the switching transients. These

GENERAL RADIO COMPANY

Broad Avenue al Linden. Ridgelield. N I NEw YORK AREA 1000 N . Seward St. LOS ANGELES 38 BOSS 131 h S., Silver Spring Md WAShing Ton, D C. 1150 Yorh Road Abington, Pa PHILADELPHIA In CANAOA: 99 floral Palkway ToRONTO is
CIRCLE 283 ON READER-SERVICE CARD

INDICATINGLAMPS
 Illuminated Engraved Message

hole diameter.
U / L Approved.

B08 King Street

\#170 S/P UNIT
Bright ehrome finish on screw-on tyoe lens-cap.
2. '96"" Overall diameter. Uses 5.6 bulb. Depth be
 mounting hole diameter, Moided socket with 6.32
terminal screws. U/L Approved.

Easy to Order Simply contact our
Mational Distributers Mational Distributors
See our listines in see our listings i. *graybar electric co. Pages \# 1259 10 1261 Alumilite machined lens- iNG LAMPS and MATCHING Alumilite machined lenscap ${ }^{\prime}$, screw-on type. ${ }^{1 .}$. verall dammer.
$11 / 1 / 2$, depth behind front of "1/" depth behind front of panel. $1.13 /="$ mounting
nole diameter.

SEND today for illustrated catalog describing complete line of Kirkland Indicating Lamps and Ultra-Modern "Domino" Units!

The H. R. KIRKLAND Company Manufacturers of complete Annunciator systems and components for utility and industrial applications. CIRCIE 284 ON READER-SERVICE CARD

Kirkland offers a wide variety of heavy-duty indicating lamps that feature specialy engraved lens surfaces fos sages or color backgrounds. Units are also available with standard lenses and all lamps are designed for single-hole panel mounting. Nationally distributed. -ares \# lass io 1261 GENERAL ELEC. SUPPLY CO, Pages \# 68810689 WESTINGHOUSE ELECTRIC crib
oday for illustrated

DIGEST

high-voltage switching tramsients constitute a major problem. A transistor switching off an inductive load is subjected to a very high voltage spike. This spike is generated when one transistor sivitches "off" while the other switches "on."

Fig. 2. Leading-edge voltage spikes across the primary of an oscillaior transformer can cause heating at the transistor junction.

An oscilloscope with good frequency response will show the coltage spike at the leading edge of square waves. It is believed that these spikes (Fig. 2), though of low energy. cause localized heating at the transistor junction.

Fig. 3. Push-pull oscillators tend to reduce voltage spikes due to collector clamping as at (A), but series diodes disable the clamping and the spikes remain, as at (B).

Ratios from 3:1 to 2700:1

Whether you require a Universal, Induction or Shaded Pole Gear Motor or individual Howard can fill your me. Howard can fill your me quirements from a complete line of standard models that assures you of minimum cost and delay. One of the many Howard models is shown be low. Check your specs first with Howard or write for our free complete catalog

MODEL 3000-2 Pole Shaded Pole with Gear Unit DIAMETER: $3^{77 / 16^{\prime \prime}}$ LENGTH: $35 / 8^{\prime \prime}$ to $41 / 2^{\prime \prime}$ MAX. CONT. TORQUE:* RPM (at $1 \frac{1}{2} 2^{\prime \prime}$ stacking length) 45 in . lbs.
MAX. INTER. TORQUE': I RPM (at $11 / 2^{\prime \prime}$ stacking length) 70 in . lbs.
BEARINGS: Porous bronze sleeve type with oil reservoir *With external fon. Torqueg at othor
speeds froml to 400 RPM also avail. speeds fromi to 400 RPM also avail

Pow meso br
 HOWARD

There's a HOWARD

fractional h.p. gear motor

> for every application!

HOWARD INDUSTRIES, INC. 725 State St., Racine, Wisconsin CIRCLE 285 ON READER-SERVICE CARD

KEEPS YOUR BACK COPIES FOR HANDY REFERENCE
These strong, $123 / 4,121 / 4 \times 5^{\prime \prime}$ binders offer on cosy meons of filing your bock copies of Electronic Design. Each binder holds 13 normal size issues, ond permits substitution of magozines if desired. Cost to Electronic Design subscribers is only $\$ 3.25$.

Push-Pull Oscillators

A push-pull square wave oscillator is self-procting to some extent since the voltage spikes are duced somewhat, as first one end of the collector inding, and then the other clamps itself to the ; supply by forward conduction through its colctor diode. Through transformer action, this uso reduces the spike at the other collector.
Fig. 3A shows how the voltage spikes normally appear across the collector leads of an oscillator. Note that in Fig. 3B, diodes in series with the (ollectors, prevent clamping. The spikes are increased, since the collector windings cannot clamp (1) the B supply:

Two-Transformer Square-Wave Oscillators

Another means of decreasing switching transients is by use of a two-transformer saturatingcore oscillator such as that shown in Fig. 4. In this circuit, the output transformer operates in thie nonsaturated region of the hysteresis loop of the core. Because the output transformer operates int this linear region, the coupling between halves of the primary and from primary to secondary is optimum. The total leakage flux and the inductance associated with it are reduced. Thus, the transient voltage generated during switching is reduced.

Fig. 4. The two-transformer saturating-core oscillator reduces switching transients by reducing leakage flux.

The switching in Fig. 4 is effected by means of a mall saturating transformer T_{2} with a series resistor R_{1} in the base drive circuit. T_{2} is designed to siturate before T_{1}. As T_{2} saturates, the magnetying force will first increase, dropping more voltage across R_{1} until all of the voltage appears there. Then it decreases, generating a voltage tral sient.
The amplitude of this transient can be much low than that developed in a single transformer circ it. This is because the leakage inductance of T_{2} can be made smaller, due to its reduced size as c mpared to that of the output transformer.

UPPER STRATA STRATEGY!

Friend of ours who always attends the sessions in the lecture halls, starts on the Fourth Floor with Production Items
and works his way down to Components on the First Floor. Says his feet tell him it's easier to come down than to go up! And he never misses a trick this way. Sounds like good engineering logic. Why don't you join him this year and see if it doesn't work for you!

Wm. C. Copp Show Manager

1959 IRE 60,052

 SHOW REGISTRATION: handle even more of you in 1960 looking for NEW IDEAS in RADIO-ELECTRONICS!
Yes. the ire national convention and radio engineer.

 ING SHOW is growing bigger every year, and drawing more people950 exhibitors representing 80% of the productive capacity of your industry-60,052 registramst last year! Yet, it's one of the most well planned. well execuled gatherings you'll ever see!There's room to move around, room to see all you want to sec because the IRE takes over all 4 fleors of the giant Coliseum in New York City to show what your huge, fart moving radio-electronics industry is coming up with. First and second floors for components; third for instruments and systems: and fourth for production items. Follow the engineers to the Coliscum for NEW IDEAS IN RADIO-ELECTRONICS, 1960!

The IRE NATIONAL CONVENTION
Waldorf-Astoria Hotel and The RADIO ENGINEERING SHOW

Coliseum, New York Cify
MARCH 21, 22, 23, 24
The Institute of Radio Engineers 1 East 79th St., New York 21, N. Y. CIRCLE 287 ON READER-SERVICE CARD

New Flip-Loc Fastener Cuts Costs" 80

- Distortion-free | - Solf-aligning |
| :--- |
| - High strongth |

SAVES you time and money in these ways

1. Cuts installation time

2. Cuts maintenance and inspection time
3. Cuts costly clamp replacement
4. Offers extra strength for heavier loads

The FLIP-LOC is a brand new TA exclusive. It is a completely self-contained fastener. You can open and close it quickly with just one hand. Integrated hinge makes the clamp stress-free, trouble-free, and simple to use. Made of 321 stainless steel, the Flip-Loc is ovailable in your choice of insulator cushion liners: Neoprene rubber (general purpose), AW (aromatic fuel and weather resistant), and corrugated stainlass (extreme high temperature). The Flip-loc is available in sizes from $1 / 4$ to $6^{\prime \prime}$ in diamefer.
Write for froe literature which describes the new TA Flip-Loc in detail. FL

general (g) ELECTRIC

CIRCLE 288 ON READER-SERVICE CARD

specily..-
 G-E 125 C TANTALYTIC* CAPACITORS

for high-temperature miniaturized electronic equipment in high-speed aircraft.
peratures fror -55C rated voltage.

- Rated for full 2000 -hour life at 125 C with not more than 25% loss of initial capacitance.
- Available in plain or etched foil, with both polar and non-polar construction. SPECIFYING INFORMATION on G-E's complete Tantalytic line is available from your nearest Apparatus Sales Office, or
write for GEA-6258B, to General Electric, Section 449-14, Schenectady 5, N.Y. *Registered rademark of Goneral Eloctric Co.

TR M/9. Corp.
 CIRCLE 289 ON READER-SERVICE CARD - on mion cano

HITD wart as BEST BUYS IN ELECTRONIC CIRCLE 290 ON READER-SERVICE CARD

WALDOM ELECTRONICS INC.
4623 WEST S3RD STREET, CHICAGO 32, Llunois CIRCLE 291 ON READER-SERVICE CARD

DIGEST

Other Methods of Transient Reduction

If a core shape other than toroidal is used, it may be necessary to use external components for despiking. As altematives to the use of special transformer core shapes, the following methods may be used to limit excessive switching voltages.

Fig. 5. A common-base despiking network.

Fig. 5 shows a despiking network consisting of a capacitor and a resistor in a common base circuit. As transistor Q_{1} switches off, the collector of Q_{2} tries to go positive. Current flows from collector to base and the capacitor absorbs this sudden voltage surge with a negligible increase in charge. By discharging through the bias network, the capacitor is then ready for the next voltage spike.

Fig. 6. A common-emitter despiking network.

Fig. 6 represents a similar common-emitter despiking network. As conduction of Q_{1} stops, Q_{1} collector tries to go positive. It is clamped to the voltage that appears across the capacitor. As the transistors switch, one collector diode clamps and then the other.

MINIATURE AGASTAT ${ }^{\circledR}$

time / delay / relays

This free folder contains complete specs on 24 models of the miniature AGASTAT Time Delay Relay for missile, aircraft, computer, electronic and industrial applications. They're small as $1-13 / 16^{\prime \prime} \times 4-7 / 16^{\prime \prime} \times 11 / 2^{\prime \prime}$, with adjustable timing ranges starting at .030 and as high as 120 seconds.
The folder gives operating and environmental specs. coil data, contact capacities, dimensions, diagrams of contact and wiring arrangements. Write: Dept. A33-1224.

AGA

ELASTIC STOP NUT CORPORATION OF AMERICA

 CIRCLE 292 ON READER-SERVICE CARD
URGENT

ELECTRONIC CIRCUIT and PACKAGING ENGINEERS

recent grads to seniors

NO FEES

TO \$14,000
PULSE RADAR-Mulri Channel, Peak Power, and CW DIGITAL COMPUTER-Logical Design, Analog to Digital Conversion
OUR CLIENT is a prime missile contractor in suburban New England.
ONE DAY!-These requirements are so urgent that you will hear from our client within one day after we receive your resume.

Please send two copies of your resume, in confidence, to:

Accreatied personnel

America's Oldest Electronic Placement Sorvico-
Dept. E, 12 South 12th St., Philadelphia 7, Pa.

New Trigger/Timer/Gap Tube Switches 1000 Ampere Pulses

The KP-130 is one of a family of subminiature, cold cathode, arc-discharge pulse tubes (Krytrons) for high-voltage, high-current switching applications. The KP-130 can control pulse discharges at voltages as high as 2500 v , with currents up to 1100 amperes. The anode delay time equals 0.2 usec . average, with "jitter" (variation in delay) averaging less than $0.05 u s e c$. The low, combined with the high hold-off voltages and short delay, make the KP-130 ideal for timing, triggering, and other pulse circuit uses. Unlike spark gaps, the KP-130 requires low trigger grid power, thereby eliminating large transformers. The KP-130 operates in light or total darkness and has exceptional environmental capabilities. The KP-130 has found application in pulse circuits, protective devices, pre-cision-timed high energy switching circuits, overload devices, etc. The KP-130 eliminates circuit components and reduces input power requirements, thereby contributing to improved equipment reliability. A similar tube KP. 130 is available for lower power circuits, and many of these tubes are supplied to military requirements. For details, data, etc., write:

KIP ELECTRONICS CORP.

Dept. 928, P.O. Box 562, Stamford, Connecticut CIRCLE 294 ON READER-SERVICE CARD

NEW! the mercury "lo" senies TRIODE CAVITIES

Fig. 7. A common-collector despiking network.

Fig. 7 shows the despiking network that might be used with a common collector circuit. As transistor Q_{1} switches off, the Q_{2} base tries to go negative with respect to ground. It is clamped through the collector diode to the despiking capacitor. Between spikes, the resistor bleeds off some charge from the capacitor and keeps the voltage from building up.
The magnitude of the capacitance used in these clamp circuits depends on the amount of leakage inductance and magnetizing force involved. For example, the capacitors used with high nickel toroidal cores would be smaller than a tenth of those used with silicon iron " C " cores.

Fig. 日. A diode will remove spikes across an inductive load.

Fig. 8 shows how the spike can be removed from an inductive load as it is switched off, by placing a diode across the load.

Abstracted from Application Note 9-A, Design Considerations for Square Wave Oscillator Power Supplies. Delco Radio Div., General Motors Corp., Kokomo, Ind.

- What is a Kodak Ektron Defector?

A: It is a semi-conductive resistor. The photosensitive area can be laid down in any pattern. Response extends to 3.5 microns in the infrared. Unaffected by vibration; high signal-to-noise ratio.

Q: What can it be used for?
A: for such applications as an infrared sensor in weapons systems, and in instrumentalion for process control, anal. y sis, and sofety.

Q: How can I get the facts about spectral response, iypes. ovailabilities, and the like?

A: By writing for a new bro. chure colled "Kodak Ekron Detectors.

Write to:
Apparatus and Optical Division
EASTMAN KODAK COMPANY, Rochester 4, N. Y. CIRCLE 296 ON READER-SERVICE CARD

PACE meters are custom produced in production quantities to meet Individual O.E.M. specifications. Rigid quality control and closely malntained atmospheric conditions assure the highest order of commercial panel instrument performance and reliability.

A wide selection of stock PACE meters is also conveniently avail able at leading electronic parts distributors for your laboratory models and prototypes.

- Illustrated: Model 45-P clear plastic $41 / 2^{\prime \prime}$ meter, one of a family of acrylic-eased instruments, directly interchangeable with standard acrylic-cased instruments, directly Interchangeable with standard range of phenolic-cased meters in $21 / 2^{\prime \prime}$ to $7^{\prime \prime}$ sizes.

Write for latest technical catalog. Prices quoted promptly upon receipl of your specifications.

Division of PRECISION Apporatus Co. Inc. 70-31 84th Street, Glendale 27, L. I., N. Y Exporit Morhon Experting Corp., 458 Broodway, New York i3, N. Y Conodar Atles Rodio Corp., Itd., so Wingold Avenue, Toronto 19, Ont.

紫:THE INDUSTRY'S FLATTEST COAX COUPLER!

Only 0.2 db variation over full octave!

What more is there to say? The new series of Narda Coaxial Couplers is absolutely the flattest on the market; the specs are here; the prices are here. And you know Narda's reputation for quality! If you need a really flat coupler, contact your
Narda representative, or write to us directly.

Coupling Characteristics
Frequency Response
$\pm 0.2 \mathrm{db}$
Deviation of Mean Value
from Nominal
Calibration Accuracy
$\pm 0.1 \mathrm{db}$
Calibration points at 5 frequencies
Connectors: Series N female;
others on special order.

send for free 1959 CATALOG
Write for your free copy of Narda's new 1959 catalog. Address: Dept. ED-14.

the narda
 microwave corporation

118-160 HERRICKS ROAD, MINEOLA, L. I., N. Y. • PIONEER 6-4650

STANDARDS
 AND
 SPECS

Sherman H. Hubelbank

Electronic Industries Standards
Six new standards have been released by the Engineering Department of the Electronic Industries Association. Copies of each may be obtained from EIA, 11 W. 42nd St., New York 36, N.Y.
RS-211-A, Dimensional Characteristics of Mono phonic and Stereophonic Disc Phonograph Records for Home Use, August 1959 (60 cents) RS-22.2, Structural Standards for Steel Transmitting Antennas, Supporting Towers, August 1959 (\$1.10)
RS- 226 , Television Picture Area-35mm and 16 mm Motion Picture Film, October 1959 (25 cents) RS-2.27, One-inch Perforated Paper Tape, October 1959 (25 cents)
RS-152-A, Minimum Standards for Land-Mobile Communications FM or PM Transmitters 25-470 mc, October 1959 (80 cents)
RS-228, Fixed. Tantalum Electrolytic Capacitors (Polarized), October 1959 (\$1.65)

Transistors

MILL-STD-701A, Preferred and Guidance Types of Transistors, dated 25 September 1959, super sedes limited coordination standard MIL-STD-701 (Navy). The newly issued standard consists of a list of preferred types and guidance types of transistors. These types have been chosen jointly by the Department of the Army, the Navy and the Air Force. These transistors are for use in the design and manufacture of military equipment. Seven preferred types and 43 guidance types of transistors are listed. Preferred types are those transistors that have been in production and on a QPL list. Guidance types are those that have general application for use in military equipment.

Nomenclature

Once again the Navy has revised the technique of requesting nomenclature. This spec applies to the procurement of electronic production systems. sets, groups, units, and accessories. It is also intenc!ed to cover equipment procured for research and development, application engineering, service test, and evaluation. The full title of this specification is: MIL-E-21981 (SHIPS), Requirement
for Electronics Type Designations, Identification Plates and Markings, 1 July 1959.

TV Luminance Signal Levels

Methods of measuring the significant levels of a monochrome or color TV signal, either composite or noncomposite are described in this standard. The standard is concerned with measure ments in transmission systems where the signals are at video frequency. These methods are limited to those involving the use of oscilloscopes Copies of this standard are available from the American Standard Association, 40 E. 45 St., New Y'ork 17, N.Y., at 60 cents per copy. Specify C.16.31-1959.

Relays

This ASA standard (C83.16-1959) covers definitions, classifications, terminology, notation, and performance characteristics of relays for general switching purposes. It also includes military relays, relays for use in electronic circuits, relays for unusual environmental conditions, and relays for airborne equipment. Copies may be obtained from the American Standards Association, 70 E. 45 St., New York 17, N.Y., at $\$ 2.00$ per copy.

Interelectrode Capacitance

A revision of American Standard Measurement of Direct Interelectrode Capacitance, C60.6-1959, has been approved and published by the American Standards Association. The Standard describes test methods used by manufacturers and laboratories for designing, testing, and controlling electron tube quality. It covers the measurement of direct interelectrode capacitance of five classes of tubes: receiving, cathode ray, gas, phototubes and multiplier phototubes, and high-power vacuum tubes. Included are definitions of parts and principles for making connections for measurements. Also included are standard test conditions and capacitance measuring circuits. Copies of this standard entitled Measurement of Direct Interelectrode Capacitance are available from American Standards Association, 70 E. 45 St., New York 17, N.Y., for $\$ 1.50$ per copy.

Measuring TV Receiver Interference

ASA has published a second supplement to the Ainerican Standard Methods of Measurement of Interference Output of Television Receivers in the Ronge of 300 to $10,000 \mathrm{kc}$. The supplement has be en issued to describe a new procedure for deliv ring an rf input signal to a TV or fm broadcast re civer to measure conducted interference. The network formerly used has been responsible for so te inconsistency. ASA C16.25b-1959 is available at i) cents per copy from the American Standards t. sciation, 70 E. 45 St., New York 17, N.Y.

FIELD-PROVED HONEYWELL COMPONENTS

for measuring, balancing and positioning applications

CONVERTERS

These synchronously driven choppers handle d-c signals as small as 10^{-8} volt. Sensitive, stable performance. Available with special features such as fungus proofing, grounded housing, mica-filled base, various contact percentages. Weight: 10 oz . Prices from $\$ 39$.

ELECTRICAL CHARACTERISTICS					
Port No.	354210-2	354210-3	354210.1	354210.4	355081
Modulation Frequency	20.30 cycles	$40-45$ cycles	50.65 cycles	50.65 cycles	360.440 cycles
Switching Action (SPDT)	(Make-before-break) Each contact closed 55% of each cycle ($\pm 2 \%$) Other actions, as specified			(Break-bofore make). Each contact closed 47% cycle	Each contact closed 57% ol each cycle ($\pm 7 \%$)
Driving Coil Requirements	$6.3 \mathrm{v}, 60 \mathrm{ma} \mathrm{at} \mathrm{rated} \mathrm{frequency}$				$18 \text { V. } 94 \text { ma }$ Prequency
Contact Rating	100 microwatts at 6 v max. 100 ma max.				
Electrostatic Stray Pickup	2×10^{-8} volts per ohm of input circuil impedance				2×10^{-10}
Electromagnetic Stray Pickup	Less than 2×10^{-6} volts, constant to within 2×10^{-7}				$\begin{gathered} 2 \times 10^{-4} \text { volts } \\ \text { constant to } \\ 2 \times 10^{-8} \\ \hline \end{gathered}$
Phase Shift	Output voltage lags driving phase by $17^{\circ} \pm 5^{\circ}$				$\begin{aligned} & \text { Lags driving } \\ & \text { phase by } \\ & \text { to } 55^{\circ} \end{aligned}$
Symmetry	Within 2\%				Within 7\%
Shielding	Frame and coil shield, grounded through pin No. 2				Shell and coil shield, grounded through pin No. 2
Load Characteristics	Resistive or Inductive				
Vibration Resistance	Output vollage varies less than 2% with rates of vibration from 0 to 10 g				

MOTORS

Designed for chart drives, servos and balancing circuits, these motors are available in three general types: Stack type, with easily maintained sectional housing; self-lubricated, oil-sealed type; and fungus-proofed, oil-sealed military motors. Prices from $\$ 40$.

Maminal Nob Leal A.P.M	RPM.	${ }_{\substack{\text { Gear } \\ \text { Raic }}}$					$\begin{aligned} & \text { Power } \\ & \substack{\text { withe } \\ \text { Woutad }} \end{aligned}$		
Two Phaso Induction Motor									
330		44:1	4	10			11.5	$0.11+$	70
144		10:1	5	20			11.5	$0.11+$	70
48		30:1	15	60			11.5	$0.11+$	70
23		60:1	30	110			11.5	$0.11 \dagger$	70
Synchronous									
					12		24		
	180	10:1			2.0	2.0	11.5	0.11	65
	90	20:1			14	12	11.5	0.11	65
	60	30:1			21	18	11.5	0.11	65
	30	60:1			42	36	11.5	0.11	65

- $1 / 6$ less at 50 cycles t Field winding 11.0 watts, balance in amplifier winding

Note: Some speeds available at 25 cycles
All motors are available in two phase and synchronous models

AMPLIFIERS

They amplify a d-c or a-c microvolt input signal sufficiently to drive one field of a two-phase balancing motor. Three stages of voltage amplification are followed by the power-output phase discriminator stage, which supplies power for the motor. Extremely low stray pickup . . . adjustable sensitivity . . . fast response. Priced from $\$ 110$ to $\$ 250$.

Gain	Sonsinvity (Microvalis)	Nominal Input Impodance (Ohm)		
10^{8}	4.0	400.	2,200.	50,000
4×10^{6}	1.0	400,	7,000,	50,000
12×10^{6}	0.4	400,	2,200,	7,000
40×10^{6}	0.1	2,200		

POWER SUPPLY- 115 v., 60 cycles (fused power line) OUTPUT-2 to 18 ma . into $12,000 \mathrm{ohm}$ load
SENSITIVITY-Continuously variable screwdriver adiustment. Recessed slot protects setting
MOUNTING-Operation unaffected by mounting position
OPTIONAL FEATURES-(a) thermocouple burnout protection, (b) without desensitizing adjustment, (c) parallel T feedback, (d) velocity damping, (e) special connecting cables and plugs, (f) without tubes, shields, and converter, (g) for 25 cycles.
Minneapolis-Honeywell, Wayne and Windrim Aves., Phila. 44, Pa.
Honeywell
H Fwit in Contral

(93)SR-220 New Silicone Varnish cures at low $\left(150^{\circ} \mathrm{C}\right)$ temperature

heat resistance superior to conventional silicone varnishes

SR-220 is a new silicone impregnating varnish by General Electric that cures in the same ovens used for organic varnishes. The customary advantages of silicone insulation are improved, too. For instance, thermal stability at elevated temperatures is far better than conventional silicone varnishes. Shelf life and tank stability are excellent.

With G-E SR-220 you have a new opportunity to improve the temperature resistance of insulation systems in all temperature classes. Silicone insulation means longer equipment life, high temperature resistance, extra overload capacity and smaller equipment size. With SR-220 you can have these features without investing in high temperature ovens. Call your G-E Silicone Sales Representative for further details, or write Section L1216, Silicone Products Department, General Electric Company, Waterford, N. Y.

GENERAL ELECTRIC

Silicone Products Department circle 300 on reader-service card

Switching Circuit Works, But Whose?

An article entitled "Switching Circuit Works, But How?" (ED, Oct. 14. p. 201) presented a simple neon-tube circuit whose principle of operation had eluded the contributor (and some of our editors). An appeal was made to the readers of Electronic Design to shed some light on how and why it worked as a flip-flop.
In the first two weeks following publication. dozens of letters were received. There was a remarkable basic agreement among the many circuit explanations, but an equally remarkable disagreement concerning its origin and use. To top it off, the circuit seems to be covered by a patent issued in 1955, 20 years after the first-mentioned application of the circuit!
The following extracts from letters give one circuit analysis, and a cross-section of the application and origin comments of our readers.

It Works Like This

Dear Sir:
The switching circuit (Fig. 1) discussed by M. D. Bedrossyan may be explained in the following manner.
When the supply voltage is initially applied, one of the neon bulbs will conduct first. Assume it is the one connected to point A. Since there is no initial charge on the capacitor, the firing of

Fig. 1. Switching circuit should not work-but does ELECTRONIC DESIGN • December 9, 1959
ulb A will clamp both points A and B to ap,roximately ground potential. (This neglects the inltage drop across bulb A.) Now the current hrough the conducting bulb will consist of one omponent passing directly through a resistor and second component passing through the other esistor and the capacitor. This second current component will tend to charge the capacitor to the supply voltage value and increase the voltage of point B. Eventually, the voltage at point B will be sufficient to fire the bulb connected to point B and point B will be clamped to ground potential. Since the capacitor had been charged to approximately one hundred volts and the capacitor voltuge cannot change instantaneously, point A will be driven to approximately minus one hundred volts and bulb A will cease conduction. Now point A will tend to charge to the supply voltage. The current path is through the conducting neon bulb. Thus, the circuit acts exactly like a monostable multivibrator.
R. Nitzberg, Development Engineer

Adv. Radar \& Countermeasures Engineering General Electric Co.
Advanced Electronics Center
Ithaca, N.Y.

It's Novel, And Clever

The switching circuit that Mr. Bedrossyan discovered is most certainly novel, but not imposiible to analyze.

Glen K. L. Mulligan
Polytechnic Institute of Brooklyn 333 Jay St.
Brooklyn 1, N.Y.

The circuit . . . is quite clever and probably useful. Its operation, apparently puzzling to the originator, is readily explained and easily designed for various on-off times.

Max Kramer
Senior Engineer
Equipment Development Div. Aluminum Co. of America
2210 Harvard Ave.
Cleveland 5, Ohio

The switching circuit . . . has every right to be considered legitimate and there is no reason why it should not work.

Eric Bajars
Simpson Electric Co. 5200 W. Kinzie St Chicago 44, Ill.
(Continued on following page)
 Oscilloscopes

to measure

transistor high-frequency characteristics by the pulse-response method

The Type R Transistor-Risetime Unit, when plugged into a Tektronix Oscilloscope, supplies a fast-rising pulse and the required supply and bias voltages for measurement of transistor rise, fall, delay, and storage times. The Type \mathbf{R} Unit can be used with all Tektronix Type 530 Series, Type 540 Series, and Type 550 Series Oscilloscopes.

When the Type R Unit is used with the Tcktronix Type 541A Oscilloscope, risetime of the combination is $12 \mathrm{~m} \mu \mathrm{sec}$. The Type 541 A is a fast-rise general-purpose oscilloscope that adapts to many specialized applications through its plug-in vertical preamplifier feature. Nine plug-in preamplifiers are presently available, others will be announced in the near future.

Please call your Tektronix Field Enginecr for complete details. If desired, he can arrange a demonstration in your own application.

ENGINEERS-interested in furthering the advancement of the oscilloscope? We have openings for men with creative ability in circuit and instrument research. Please write Richard Ropiequet, V.P., Eng.

Tektronix, Inc.

Phone CYpress 2-2011 - TWX.PD 311 - Cable: TEKTRONIX
 Go. - Bufolo - Clovelond - Dollos - Dorton - Endwell, N.Y. Houston - Lath up Villoge, Mich
 . Aix. Utomiord, Com. Stracus Fowson, md. Union, N.J. Wilowde. On. TEKTRONIX ENGINEERING REPRESENTATIVES: Howthorne Electronics, P
eektronix is represented in 20 ovesiseas countries by qualified engineerng organizations.

Engineering notes from the
 REPORTER

 3
 SMI

Report No. 2 TS 539 Test Set

Our new TS 539 Test Set answers the demand for simple, fast and accurate means of flight line testing of air data computers and a universal test device for the generation of accurate pneumatic pressures in a wide variety of applications. The critical sensing element within our TS 539 is an SMI force balance pressure transducer of extreme sensitivity and accuracy.
As two examples of widely different points in a typical flight envelope the TS 539 generates pitot and static pressures to simulate an aircraft flying at Mach 0.8 at sea level to an accuracy of $\pm 1 / 2$ millimach with an altitude accuracy of ± 7 feet; at a speed of Mach 3 at 70,000 feet. Mach accuracies are within ± 5 millimachs and altitude accuracies are within ± 90 feet.
The TS 539 also includes capability of simulating angle of attack and stagnation temperatures.
In the TS 539, a completely self-contained Precision Dual Pressure Generating System supplies the necessary inputs simulating the broadest range of flight conditions. Panel facilities are provided for read-out of selected signals and provision is made for routing of other signals to a digital multimeter. Comprehensive tests may be accurately and quickly performed by semi-skilled operators. Automatic and manual control is provided to select outputs which simulate conditions within aircraft flight envelopes. Unusual flexibility is inherent in this design that permits ready adaptation to any test requirement involving the need for precision control of pressure sources.

Typical Performance Specifications

Static Pressure, $\mathrm{P}_{\mathbf{s}}$	25 to $800 \mathrm{~mm} . \mathrm{Hg}$
Altitude, H_{p}	-1500 to 75,000 ft.
Total Pressure, $\mathrm{P}_{\mathbf{1}}$	50 to $1270 \mathrm{~mm} . \mathrm{Hg}$
Differential Pressure. $\mathbf{Q c}_{\mathbf{c}}$	25 to $1020 \mathrm{~mm} . \mathrm{Hg}$
Stagnation Temperature, $\boldsymbol{T}_{\mathbf{i}}$	-20 to 120 Deg.
Angle of Attack, α_{i}	Full 360 Degrees

What are your needs? If your requirements call for test equip. ment for accurate generation of pneumatic pressures, write or wire for complete information. Address your inquiries to Stanley M. Ingersoll, Capabilities Engineer.

SERVOMECHANISMS, INC.
Los Angeles Division
12500 Avlation Boulovard
Hawthorne, Callfornla

LETTERS

Mr. Bedrossyan's problem was indeed interesting and his circuit has many practical applications.
I. M. Salzberg C. L. Cohen Electrical Design Groups Nuclear Products-Erco Div. of ACF Industries Inc. Riverdale, Md.

But We Thought Of It Years Ago

We realized that the basic circuit (minus relay) was familiar to both of us but through completely independent work. Use as a waveform generator was investigated by Mr. Dowdell in 1955 with the voltage across the capacitor being used as a triangular wave generator of surprisingly good linearity. A novel use of this circuit by Mr. Rudin in 1956 was as a "decision maker" by adding a switch across the capacitor. Operating at a high repetition rate where both lamps appeared continuously on, the switch was closed, stopping the circuit but leaving one light on. With the lamps labeled YES \& NO, a decision was made, the ideal Christmas present for the harried executive.
V. L. Dowclell
N. A. Rudin

Electronics Div.
Stromberg-Carlson Co.
A Div. of General Dynamics Corp. Rochester 3. N.Y.

This basic circuit used in a tov appearing as a construction project in my article "Electronic Toys for Christmas" in the December, 19.55 issue of Popular Electromics. The article includes a description of how the circuit works.
terestingly enough, this type of circuit may be extended to include a number of interlocked "stages" which can be made to fire in order.
E. G. Louis
P. O. Box 1727

Wheaton, Md.

Some years ago I experimented with this circuit and found it possible to trigger with a pulse, as I recall, as narrow as 5 microseconds. As a matter of fact, the free running low frequency version of this circuit usually forms a Christmas decoration on my breadboard chassis.

Art Goldschmidt
506 Devon Road
Moorestown, N.J.

A sampling of the electronic industry shows mounting interest in new resistive elements and pulse probes produced only by the Internationa Resistance Company.
The new resistive elements are a special highly stable film type for observing or measuring pulse circuits. The resistive eleme when suitably mounted are The resistive elements. when surably mounted, are essms of fast rise times. Using a number of resistive elements in parallel allows greater power dissipa tion for a limited space than the conventional pulse viewing resistor. Resistance ranges below 0.22 ohms may also be achieved when mounted in parallel Resistance values from 0.22 to 150 ohms are avail able in ratings of 15 or 75 watts. Unique construc tion permits arrangements that cancel inductanc effect. eliminates transients and ringing.
Specifications 15 Watt Probe 75 Watt Probe Power Rating at 15 Watts 75 Watts $40^{\circ} \mathrm{C}$. Ambient. continuously. continuously. $40^{\circ} \mathrm{C}$. Ambient. continuously. continuously. Double load for approx.
1 hour. for 10.15 minute periods
Resistance Range: 0.22 ohms to 150 ohms Tolerances: Standard $\pm 20 \% ; \pm 1 \%$ to order Temperature Coefficient: Less than

5\%/Degree

IRC
 PULSE PROBE KIT

RESISTIVE ELEMENTS may be ordered separatel or in the laboratory experimental kit above. Kit ontains resistive elements, insulators, housings,
 wide variety of probes or resistor combinations. For further information, write for data bulletin S-4

International Resistance Company
COMPUTER COMPONENTS DIVISION Dept. 334, 401 N. Broad St., Philodelphia 8, Po. In Canada: International Resistance Co., Lid. Toronfo, Licensee
CIRCLE 303 ON READER-SERVICE CARD
ELECTRONIC DESIGN • December 9, 1959

YOKE DISTORTON

 your problem?

Uniform magnetic fields
Produced in Celco
Precision
Deflection
Yokes
Minimize
SPOT
DISTORTION
Exclusive Celce core materials make it possible to achieve faster recovery times, minimum hysteresis, high linearities and maximum sensitivities.
Contact Celco Engineering Department for a fast solution to all your yoke problems.

Celco produces a complete line of stand ard or special commercial and military precision deflection yokes.

Celco
 Pamstantine Engineering Laborataries Ca.

Main Plant: MAHWAK, M. J. DAvis 7-1123 - scific Division - Cucamonga, Calif. - Yukon 2-2688 - entral Division Cunestoro Pa - Yusses 3.3500 - Southern Division, Miami, Fla Wilson 5-2164 CIS LE 304 ON READER-SERVICE CARD

LETTERS

In Fact It's Quite Old, And Well-Known
Needless to say these circuits have been with us some time, having enjoyed their peak of application as desk ornaments during the 1940's. . .

T. C. Penn

Member of Technical Staff
Data Systems and Earth Science Research
Texas Instruments Inc.
Dallas 21, Tex.

The NE-2 circuit shown has been used for several years as an indicator. . . . This circuit is but the simplest of any many similar types. As many as six NE-2's can be arranged in a ring with careful selection of NE-2's.

August E. Munich
Engineer
Airborne Instruments Lab. 160 Old Country Road Mineola, N.Y.

The circuit is actually quite old when used

This manner of operation (using a pulse to turn off a device) is common in circuits involving thyratrons or silicon controlled rectifiers.

J. E. Rathke

Sperry Utah Engineering Lab. Salt Lake City, Utah
I had come upon this circuit about 10 years ago, and have used it several times since. . .
D. A. Kerr

235 S. Harrison
E. Orange, N.J

What's More, It's Patented!
In connection with the article . . . I be(Continued on p. 198)

advance mv series
offered in 3 terminal arrangements... 6 mounting arrangements, and 7 resistance values 130 to 10,000 ohms).
-available at
ADVANCE DISTRIBUTORS

Positive sealing. Advance's use of induction heating cuts rejects from faulty soldering to a negligible figure. Soldering is accomplished at high speed, hence damage to the relay due to heat transfer is eliminated

RADIFLO testing for leakage is used to detect leaks as small as $10^{-8} \mathrm{cc} / \mathrm{sec}$. All relays that pass this test will function after long shelf life.
RIQAP* program approval. Under RIQAP, the Signal Corps constantly checks Advance's quality control and inspection, to insure military standards of reliability for all Advance customers, both military and industrial.

SPECIFICATIONS

Coil resistance: Available in 7 values, from 30 10 to 34 cycles per second maximum excursions of $4^{\prime \prime}$ 34 to 2000 cps 20 G's acceleration.
Operating power: Pull in power 250 milliwatts $25^{\circ} \mathrm{C}$.
2 amps resistive at 32 VDC or 15 VAC.
00,000 operations minimum t rated current.
$7 / 8^{\prime \prime}$ high $\times 51 / 64^{\prime \prime}$ wide $\times 23 / 64^{\prime \prime}$ deep.

Applications Engineering Dept will be pleased to work with you on your special application problems.

Absolute reliability has been imperative in the Polaris. The extreme reliability designed into the Polaris Missile Program requires transistors which far exceed the operating and environmental conditions of MIL-T-19500A. Industro is proud of its contribution to the success of this vital military project.
Whether your transistor requirements are military or commercial you can depend on Industro. We invite your inquiries.

TRANSISTOR CORFORATION $35 \cdot 10$ 36th Avenue - Long Island City 6 , N. Y. CIRCLE 306 ON READER-SERVICE CARD

LETTERS

lieve the enclosures will be of interest. (ED, Sept. 1, 1956, p. 86.)

Frequency Divider Apparatus Patent No. 2,728,030. R. G. Green. (Assigned to North American Aciation, Inc.)

A circuit is described and illustrated which generates an oscillation or pulse by successive firing of two or more glow discharge tubes. The tubes fire in succession and at a constant frequency so that a frequency division or a pulse of

Fig. 2. Patented circuit dating from late 1955.
predetermined frequency may be secured.

The circuit in its simplest form is shown in the figure. The circuit parameters are selected so that the discharge tubes will not fire from the current applied by power source 7 alone. When switch 8 is closed, the full potential of the power source is applied to the discharge tubes. One tube only fires because of a lack of equal characteristics of each tube and its circuit.

Assume that tube 1 fires, whereupon the current is supplied from the power source through resistor 3 and also from capacitor 5. The current supplied from the capacitor passes through resistor 4, which reduces the potential across discharge tube 2 and assures that it does not fire. The current supplied to the discharge tube from the capacitor decreases exponentially so that a point is reached where the current is insufficient to support the discharge. Tube 1 then becomes extinguished. When this occurs the potential across discharge tube 2 becomes such that it fires and transmits current until the decrease in current is insufficient to support conduction. When this

THE STANDARD

 $2^{\prime \prime}$ BLOWER you've been waiting for!Dean \& Bensons

Flange location anywhere
Lightweight Aluminum alloy construction for clean aerodynan
faces and rigid construction.
Square or round flange located al your option, anywhere along the blower housing.
Slip out AC or DC molor allows for easy and inexpensive maint
a without replacing entire unit.

POWARR performance opons the door to a tighter system dosign for weight and size reduction.
DEAN \& BENSON

> RESEARCH
Division of Benson Manufactuaing Co.
CIRCLE 307 ON READER-SERVICE CAPD ELECTRONIC DESIGN - December 9, 195

Some of the many shapes extruded by Pennsylvania Fluorocarbon for the electrical and electronic industries include: shaped insulators, spacers, supporting channels and terminals.
These shopes offer:

- a dielectric strength from 500 to 2000 velis/mil.
- stability - ne change of electrical propertios with temperature (-25° C. $10+250^{\circ} \mathrm{C}$.) or frequency (60 cyeles to 100 me)
- zero moisture absorption
- a continuous service temperature range of $250^{\circ} \mathrm{C}$.-intermittent to $300^{\circ} \mathrm{C}$.
Exireme Dimensional Accuracy Assured On Any Appropriate Design
PF extruded shapes made from Tefion allow design engineers to incorporate the dielectric strength of Tefion into their products for electrical and elec. tronic applications, economically. PF extrudes intricate Tefion shapes 10 extremely close tolerances, cuts them to lengths, post forms to requirements and performs any auxiliary machining steps. Molds are eliminated, there is no additional Anishing operations, are necessary. Result? Tefon components of extreme accuracy at lower cost. Write, wire or call for a quotation our particular Tefion component requirements, regardless of the intricacy of the shape. Shapes ranging from 2500 feet per pound to 6 feet per ound can be extruded.

PENNSYLVANIA

FlUOROCARBON CO., INC.

 1115 N. 38th Street, Philo. A, Pa. EV ergreen 6-0603 TWX: PH 252 ,u Pont registered trademark
LETTERS

occurs, discharge tube 1 again fires and the cycle repeats.
W. C. Lane Staff Engineer ITT Federal Clifton, N.J.

- (Of probable interest to the Patent Office is a "search" made by Mr. Richard Wall, Project Engineer at Motorola Inc. Systems Research Lab, Riverside, Calif. Mr. Wall turned up eight references to this circuit in the literature, going back to 1951, and including the above patent in Electronic Design.)

I wish to express my sincere appreciation to the many engineers and others, including two college professors, who, in response to my query, took time and trouble to analyze my switching circuit and offered helpful explanations.

Mark D. Bedrossyan
Atlantic Electronics Labs. P. O. Box 918 Asbury Park, N.J.

How About This Puzzler?
Theoretically, extension may be made to n bulbs, as in Fig. 3. (In fact, the circuit of Fig. 1

Fig. 3. N-lamp version of switching circuit.
is the direct result of setting $n=2$.) However, the experimental fact is that odd numbers of bulbs can be made to fire in sequence, but even numbers seem to run at random.

Can anyone explain this?
William E. Koeblitz Keithley Instruments, Inc. 12415 Euclid Ave. Cleveland 6, Ohio

Any More Puzzlers?

\downarrow We are quite impressed with the response (Continued on p. 200)

only Markite
Potentionneters...
Limit Linearity Changes for more than $\mathbf{6 0}$ Million Cycles

Where performance is paramount and critical applications demand the ultimate in reliability Markite Potentiometers are specified.

The results of the quality control test charted above show why . . . linearity stability for more than 50 million cycles.
At Markite, achieving this high degree of reliability is nothing startling . . it's normal . . . it's inherent
. it's a product of Markite's program to surpass minimum requirements.
To complement reliable performance, Markite Conduc. tive Plastic Potentiometers also provide:

- Infinite resolution.
- Independent linearity to 0.05% in $15 / 16$ in dia. units.
* Operation in ambient temperatures up to $200^{\circ} \mathrm{C}$.
- Shock and acceleration resistance in excess of 100 g .
- Vibration resistance in excess of 70 g .
- Rotational speeds up to 1,000 rpm.
- Operation under all applicable Military Specifications.

Write for Design Data and Catalog for Rotary and Rectilinear Potentiometers

MAR W"TE PRODUCTS CORPORATION
 155 Waverly Place - New York 14, N. Y.

IT TAKES MODERN TEST EQUIPMENT TO EVALUATE MODERN INSULATION

ITT TERA-OHMMETER

MEASURES UP TO 5×10^{15} OHMS

TYPICAL
APPLICATIONS

- Leakage resistance of capacitors

Insulation qualities of resistors, tube sockets, switches, etc.

- Test and inspection of cables
- Purity of liquids
- Surface resistance of printed circuits
- Moisture content of paper

FEATURES

- Measures from 20 megohms to 5,000 tera-ohms in 6 ranges
Test voltage continuously varia ble from 100 to 1,000 volts dc
- $\pm 3 \%$ center-scale accuracy
- Permits grounded or off-ground measurements
- Two large 7" meter scales for easy simultaneous reading of voltage and resistance
- Charge button for measuring capacitors

Write, wire, or 'phone for complete Ecchnical information

Measuring today's special insulating ma terials, in the laboratory or on the line, calls for an advanced ohmmeter with fa: wider range and accuracy than provided by the relatively simple equipment considered satisfactory only a few vears ago Now, the ITT Type FT-H4 Tera-Ohmmeter permits measurements of insulation resistances up to 5,000 tera-ohms, at voltages up to 1,000 volts, with ease, accuracy, and extreme stability.
In addition, the ITT Tera-Ohmmeter indicates instantaneous changes in insulation resistance. This is a particularly important advantage, not available in instruments based on the bridge or galvanometer method of measurement. Since insulation resistance is generally not a fixed value, but varies readily as a function of time, temperature, humidity, voltage, pressure, etc., the slope of the resistance/time characteristic is of ten more interesting to the observer than the final value obtained.
The fast response, high accuracy, ex treme stability, and easy readability of the ITT Type FT-H4 Tera-Ohmmeter make it a practical necessity for production and research testing
*Manujactured by Richard Jahre

Industrial Products Division international telephone and telegraph corporation

CIRCLE 310 ON READER-SERVICE CARD

LETTERS

shown to this puzzle circuit, and would like to encourage this exchange of problems and solutions. If any of our readers have a circuit or design which has been mystifying him, send it along and we will submit it to our readers for a solu tion.

References Cited

Dear Sir:
With reference to the article on "Inside-Out Twin-T" p 198 in the October 14, 1959 issue of Electronic Design, I would like to point out that a complete analysis of this network was made in 1952 by Messrs. C. F. White and K. A. Morgan of the Naval Research Laboratory and a paper presented at the National Electronics Conference in Chicago. The paper entitled "The Dual-Input Parallel-T Network" can be found in the Proceedings of the NEC Vol. 81958 pp 588597.

A naval Research Report No. 4011 on the subject is also available.
K. A. Morgan

Convair
San Diego 12, Calif

Great at WESCON Too

Dear Sir:
The Electronic Circuit Tolerances article that appeared in the October 28 issue of Electronic Design is great, many thanks for the manner in which you treated it.
For the record, we feel that it should be mentioned that the article is based on a paper which was presented at WESCON in August, 1959.

Harold Hechtman
Director of Public Relations Airborne Instruments Lab. Mineola, N.Y.

Russians Denounce Plagiarism

Contrary to popular notions in the United States, the Russians have no more use for plagiarism than we do. The following letter was written by a leading member of the Russian Academy of Sciences to the editor of the authoritative journal Radiotekhnika i Elektronika (Radio Engineering and Electronics).
As background, it should be known that the author of the letter, Dr. V. A. Fok, had presented a paper by R. G. Mirimanov for publica-

COMPUTING COMPONENTS FROM Librascope

Shaft-to-digital
encoders meet
rigid requirements

Librascope shaft encoders meet and surpass rigid requirements of airborne analog-to-digital translation Shock, vibration and temperature extremes do not affect their continuous, noise-free operation.

THEY'RE DIRECT: A simple one-step means of digitizing analog data. they're reliable: Multi-million turns at high speeds with constan tact resistance.
THEY'RE VERSATILE: 14 basic models in wide range of capacities; special function codes built-in to simplify computer requirements

For full details on Librascope. encoders urite for Catalog E11-1

OUTPuT COOE	MODEL NO. @	$\begin{aligned} & \text { TOTAL } \\ & \text { CAPACITY } \end{aligned}$	RESOLUTION PER TURN
PARALIEL (LINEAR)	$\begin{aligned} & 740 \\ & 743 \end{aligned}$	$\begin{aligned} & 10 \text { bits (1024) } \\ & 13 \text { bits (8192) } \end{aligned}$	1024 128
SERIAL BINARY (LINEAR)	$\begin{aligned} & 707 \\ & 713 \\ & 717 \\ & 719 \end{aligned}$	7 bits (128) 13 bits (8192) 17 bits (131,072) 19 bits (524.288)	$\begin{aligned} & 128 \\ & 128 \\ & 128 \\ & 128 \end{aligned}$
SERIAL BINARY SIN-COS SIN-COS	7574	7 bits per quadrant (4 quararants on bits per quadrant- (4 quadrants)	512 1024
$\begin{aligned} & \text { 8INARY } \\ & \text { CODED } \\ & \text { DECIMAL } \\ & \text { (8-4-2-1) } \end{aligned}$	$\begin{aligned} & 723 \\ & 724 \\ & 733 \\ & 7334 \\ & 7354 \\ & 734 \end{aligned}$	$\begin{array}{r} 2,000 \\ 2,000 \\ 3,060 \\ 36,000 \\ 360,000 \end{array}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$
GRAY	708	8 bits (256)	256

©All models available with internally mounted isolation diodes
ing applications
ing applications.
Ayvailable in hermetically sealed servo-
driven package as Models 757 -S and 758.5 . Including limit 1 and polarity information Sine and cosine functions generated simul taneously and independently. One turn on
shaft generates 4 quadrants of information.

LIBRASCOPE INC Commercial
0 East Tuiunga Avenue • Burbank, Califur CIRCLE 311 ON READER-SERVICE CARD
ELECTRONIC DESIGN - December 9, 195

Push-button frequency selection is one reason why the TO-258 Telemetering Test Oscillator is a standard in several major missile programs. This standout performer provides extremely accurate, convenient calibration of sub-carrier units in FM/FM telemetering systems. The unique deviation control is calibrated directly in percent doing away with "slipstick" manipulation. High frequency stability makes the instrument ideal for production testing and other applications utilizing standard FM/FM test frequencies.

Model TO-258
Crosby-Teletronics
Telemetering Test Oscillator
Housed in a gray steel cabinet ($171 / 4^{\prime \prime}$ $\left.\times 83 / 4^{\prime \prime} \times 9^{\prime \prime}\right)$, the unit is a full size module in Crosby-Teletronics' Modular Instrumentation System. Rack-adapter RA. 81 available. (Bulletin 249)
Model TO. 258 - $\$ 425$. Special models can be supplied at extra cost with any 20 frequencies from 20 cycles to 100 KC . For complete information and specifica. tions, write:

Crosby-Telesronics Corporation

Sales Office:
54 <inkel Street, Westbury 4, L. I., N.Y. circle 312 on reader-service card

LETTERS

tion in the Transactions of the Academy of Sciences. Mr. Mirimanov could not present his paper for publication in that journal as he was not a member of the Academy.
In connection with the letter by R. G. Mirimanov, published in your journal, ${ }^{1}$ I consider it necessary to report the following.

Some time ago I obtained from Professor Keller (Joseph B. Keller, New York University, Institute of Mathematical Sciences) a letter in which he calls attention to a plagiarism, perpetrated by Mirimanov with respect to many works by Keller. Keller's letter was directed to me because one of the articles by Mirimanov, ${ }^{2}$ printed in the Doklady Akademii Nauk SSSR (Transactions of the Academy of Sciences, U.S.S.R.) was presented by myself (this article is also recalled in the letter by Mirimanov ${ }^{1}$).

Actually, after comparing the text in the formulas of Mirimanov's article, ${ }^{2}$ we detect some formulas of the article by Primakoff, Klein, Keller, and Carstensen ${ }^{3}$ (which Mirimanov naturally does not mention in his letter ${ }^{1}$). It can be established that all of Mirimanov's formulas and explanations of these formulas are contained in the work by Keller and his co-authors, with the only difference being, that the sought function is designated by the letter \oplus instead of p.

All that Mirimanov did was to replace (in the heading and in the text) sound waves by electromagnetic waves; he also thanked corresponding nember A. N. Tikhonov of the Academy of Sciences. Part of the material from the article by Keller et al. was omitted by Mirimanov.

Thus, Mirimanov's article is a plagiarism, and I regret that I was misled by Mirimanov when I presented it for publication.

As to the remaining publications of Mirimanov, listed by him in his letter to the editor, they are an unreadable set of formulas, a considerable portion of which was copied from Keller and his co-authors, and furthermore copied without understanding the remaining.

References

1. R. G. Mirimanov, Radiotcklınika i Elcktronika, 1958, No. 3, 7, 971.
2. R. C. Mirimanov, Doklay ANSSSR, 1948, Vol. 61, 4, 617 .
3. H. Primakoff, M. Klcin, J. Keller, E. Carstensen, Journal of Acoustic Socicty of America, 1947, Vol 19, No. 1, p. 132.

Low chopper drift and offset bring LAW AND ORDER

to • Computers • Servos

- Automation - Digital VMs

- VT VMs • System Amplifiers

Look no further for a chopper that completely rules out DC offsets, thereby eliminating the most disturbing yet actually avoidable cause for computer errors. Millivac's new, hermetically sealed, single pole, double throw, 60 cycle, DC MODULATOR has all the desirable features you've so long awaited. Each unit has a drift and offset better than 1 microvolt. Contact dwell time changes less than 2% during the first 1,000 hours . . . even less afterwards. Guaranteed life: 10,000 hours! Rigid production standards assure free chopper interchangeability . . . eliminate the need for re-zeroing. A new magnetic drive affords unprecedented freedom from magnetic and electrostatic contact interference.
Quality conscious designers specify Millivac's Type DCM-99K-1 DC MODULATOR for top performance of computer systems, servo mechanisms, automation, vacuum tube voltmeters - including digitals - DC system amplifiers and many other products.

tomorrow

MILLIVAG is our
yesterday

A DIVISION OF

ELECTRONICS, INO.
Box 997
Schenectady, New York
CIRCLE 313 ON READER-SERVICE CARD

"decision makers" at Motorola
are engineers like you...

At Motorola, friendly cooperation is a way of life. The "chain of command" (right to the top) talks your language - and backs you up with shirt-sleeve action. You'd be working in a truly professional climate that encourages you to explore, create and contribute.
These are some of the prime reasons why our project approach to military electronic assignments enjoys such solid success. Current expansion has created a number of diversified positions offering great opportunities for professional progress. And . . . if you also like the idea of living under sunny Arizona skies, write today to Mr. Bob Worcester, Professional Personnel Representative, Dept. B-12

ELECTRONIC ENGINEERS, MECHANICAL

 ENGINEERS, PHYSICISTSSystem Analysis, Design \& Test
Radar - Missile Guidance - Navigation
Combat Surveillance - Communications
Field Engineering - Data Processing and Display Circult Design, Development and Packaging Microwave - Pulse and Video Antenna - Transistor - R-F and I-F Servos - Digital and Analog
Technical Writers and Illustrators, Quality Control Engineers, Reliability Engineers

Weatorn Military Eloctronica Contor 8201 E. McDowell Rd., Scottsdale, Arizona

Motorola also offers opportunities at Riverside, California and Chicago, Illinois

B 4

0

This is the third of a series of articles on blocks to creativity. The first article discussed perceptual blocks, and the second, cultural (ED, Nov. 11 and 25). A final article will offer hints on overcoming the obstacles to creativity.

Fear of making a mistake or making a fool of yourself.
A. L. Simberg has lectured extensively on creativity before professional engineering and collegiate groups. At AC Spark Plug he is in charge of all research affecting the selection, training and morale of employes.

E- MOTIONAL BLOCKS to creativity lie within ourselves, partly determined by the stress of everyday living. To help understand their effect upon our creative thinking processes, picture a balance scale with emotions on the one side and clear thinking, or intellect, on the other. We find that as one side goes up, the other goes down. In other words, when emotion is maximum, the intellect is minimum Overpowering amounts of emotionssuch as fear, love, hate and anger-can be blinding, make us "freeze." They can be completely debilitating.
Probably at the root of most emotional hlocks is insecurity, whether on the job or in other areas. Whatever the cause however, their effects can be just a devastating as the perceptual and culturia blocks.

All individuals feel insecure to some extent. The main thing to keep in mind is that a good deal of insecurity is ground less. Most people are at least a littl apprehensive about tackling a new as signment, about trying to adjust to a ner situation. But most seem ultimately t meet the challenge fairly successfill! However, the fears and anxieties accompanying new situations are sometime
A. L. Simberg, Supervisor Personnel Research \& Development, AC Spark Plug Division, General Motors Corp., Flint, Mich.

o creativity
 Emotional Hazards

ELECTRONIC-ELECTRICAL CAREER BULLETIN

MARS VEHICLE. Drawing, based on Boeing stuily, of spacco vehicle designed for launching from orbiting platform for reconnaissance flight to Mars and return. Lunar, orhital and interplanctary system studies, and expanding programs such as the advanced Minuteman solid-propellant ICBM, are typical of challenging, lonis range assignments Boeing offers electronic-electrical engineers.

DARK TUNNEL. View in 100 -foot dark tunnel, part of extensive Bueing infrared research and development facilities. Boeing investigations include use of infrared, visible and ultra-violet technigues lor use in communication, navigation, detection and guidance at altitudes above tropopause. IR systems, inertial navigation, electrical power sytems for satellites, shockwave radiation and refraction ant irdome heating are other areas of assignments open at Bowing

Electronic-Electricai. engineers

 Write tuday for details of challenging. right now at Boeveng. Youll find al Rowing a dynamic professiona apid advancement and depplyrewarding achievem"'nt

Mr. Stanley M. Little, Boeing Airplane Company.
P.O. Box 3822 . FiSB, Seattle 24, \bar{W} ash.

Send ine details of electronic-plectrical positions, and the
booklet, "Envirunment for llynamic Carrer Corowth."
Name
Depree (s)
Address
City
Field of int.rer

Seattle - Wichita - Cape Canaveral

SEATTLE area, hoating capital of U.S., offers world-famous recre ational facilities. Fresh and salt water boating and fishing are only one hour from dramatic snow-capped mountains renowned for six months-a-vear skiing. Mild vear-round climate. Excellent school. and universities, cultural activities, modern housing and shopping centers. Wonderful Western living for the whole family!

ANTENNA PATTERN RANGE, with movalile tower: capable of handling models up to lOXO) pounds. Bucing has openings in ECM antenna development, and in gas. solid and liguid dielectric research, as well as largeaperture antemnas for A.SMs, ormital vehicles and air borne warning systems. Other openings are available in instrumentation, missile guidance and control.

ARE YOUR TALENTS

BEING RECOGNIZED?

Hughes Fullerton's unique, new Professional Capabilities Register insures recognition of all your abilities

Abstract

Most engineers have had to face an unpleasant fact. Often an employer will hire from outside to fill a supervisory position. Entirely qualified men "inside" are passed over. The problem is generally one of communication. The employer simply does not have adequate knowledge of his employees' abilities and promise.

We believe our new Professional Capabilities Register is the most carefully designed comprehensive plan ever devised to meet this critical problem. We expect it to pay many dividends in maximum utilization of our manpower resources. It reflects the complete engineeringorientation of this fastest-growing Hughes activity. (From 800 to nearly 6,000 people since 1957. Planned, scheduled growth.)

The Register makes instantly available a complete record of every individual's abilities, interestsandaccomplishments. Previously hidden talents can now be put to use. Often these can mean the difference when reassignments or promotions are being made. Your potentials become a very real resource of Hughes. Fullerton R \& D Staff.

Areas covered in the Register range from language skills through patents to books and articles published. It includes teaching experience, professional affiliations. All data is kept up-to-date and handled by automatic data processing equipment for utmost efficiency.

Hughes-Fullerton's philosophy of giving precedence to the needs of engineers has worked well. Hughes-Fullerton was first with threedimension radar ...a major breakthrough in the state of the art. Other vital areas of interest include advanced data processing and elec. tronic display systems.

You should investigate Hughes-Fullerton. Our mushrooming growth makes openings available at several experience levels for a variety of engineering specialties. Please telephone (collect) or write Mr. B. P. Ramstack, Director of Professional Placement at Hughes Aircraft Company, Hughes-Fullerton Research \& Development, Fullerton, California.

ELECTRONIC DESIGN's new Career Inquiry Service form is designed to help engineers advertise themselves. This new service speeds applicants to the jobs they seek. It is the first such service offered in the electronics field and is receiving high praise from personnel managers.
To present your qualifications immediately to the personnel managers of companies that interest you, simply fill in the attached standardized short resume.
Study the employment opportunity ads in this section, and circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.
ELECTRONIC DESIGN's Reader Service Department will act as your private secretary and type neat, duplicate copies of your standardized resume and send them to all companies you may select . . . the same day the resume is received. (ELECTRONIC DESIGN will detach the circle number portion of the form so that no company will know how many numbers you circled.)
The standardized resume will permit personnel managers to inspect your qualifications rapidly. If they are interested, they will get in touch with you directly. In the past much time has been lost through personnel-manager requests for resumes from applicants who proved ineligible.

MAIL CAREER INQUIRY SERVICE FORM TO READER SERVICE, ELECTRONIC DESIGN, 830 THIRD AVE. NEW YORK 22, N Y

After completing, mail career form to ELECTRONIC DESIGN, 830 Third Avenue, New York, N. Y. Our Reader Service Department will forward copies to the companies you select below
(Please print with a soft pencil or type.)

Recent Special Training \qquad

Employment History				
Company	City and State	Dates	Title	Engineering Specialty

Outstanding Engineering and Administrative Experience

Professional Societies
Published Articles
Minimum Salary Requirements (Optional)
Use section below instead of Reader Service Card. Do not write personal data below this line. This section will be detached before processing.

Circle Carcer Inquiry numbers of companies that interest you

$\begin{array}{lllllllllllllllllllllllllllllll}4 \times 1) & 901 & 912 & 903 & 904 & 905 & 906 & 907 & 908 & 909 & 910 & 911 & 912 & 913 & 914 & 915 & 916 & 917 & 918 & 919 & 920 & 921 & 922 & 923 & 924\end{array}$
$\begin{array}{lllllllllllllllllllllllllllllllllll}925 & 926 & 927 & 928 & 929 & 930 & 931 & 932 & 933 & 934 & 935 & 936 & 937 & 938 & 939 & 940 & 941 & 942 & 943 & 944 & 945 & 946 & 947 & 948 & 949\end{array}$

These reprints are offered to you by Electronic Design
In answer to the many requests of our readers, ELECTRONIC DESIGN offers these 2 valuable reprints for your files to keep you up-to-date on the most current developments.

CONNECTIONS

16 page comprehensive report from the Feb 18th issue concerning the latest advancements in the field : - Connections Between Equipment - Connections Inside Equipment - RFConnections. Included are such items as cable connectors, connectors used with rack mounted equipment, printed circuited connectors. terminal blocks. Read ELECTRONIC DESIGN's finding on this enormous field of electrical connections. Circle 749 on Reader Service Card

MICROELECTRONICS

ELECTRONIC IDESIGN offers this important 12 page staff report from the April 29th issue to keep readers alerted to the newest techniques, processes and the current status of developments in microminiaturization. The growth is phenomenal - 2 years ago microelectronics was in the laboratory stage. Now it is causing a revolution in electronic packaging. Circle 750 on Reader Service Card

For single copies, circle the correct Reader Service Number and with your reprint you will be sent a handy coin card for your remittance.

MICROELECTRONICS

\ldots	1	copy
\ldots	$\$ 0.50$	
\ldots	copies	2.00
10 copies	3.50	
25 copies	7.50	

1	copy
5	$\$ 0.50$
10 copies	2.00
25	copies
2.50	
	7.50

For multiple copies fill out the coupon below.
MAIL TO DEPT. C-9/16 ELECTRONIC DESIGN, 830 THIRD AVENUE, NEW YORK 22, N. Y.
Please send me:
copies of Connections ReportPlease BillCash Enclosed

Name

Address
City
Zone
State

CAREER OPPORTUNITIES BROCHURES

"Bendix And Your Future" is a 53 -page brochure, profusely illustrated and comprehensive, introducing the Bendix Corporation and its 25 divisions from New York to California. Engineering jobs at Bendix cover every phase of research, development and manufacturing from junior engineer to top management. Areas of responsibility include nucleonics, electronics, electromechanics, ultrasonics. computers, systems, automation and controls, radar, combustion, air navigation, hydraulics, instrumentation, propulsion, metallurgy, communications, carburetion, solid-state physics, aerophysics and structures.

A two-page division chart is given, designed to inform the applicant where his specialty is needed. Subsequent pages are devoted to brief histories, present projects and aims, products. available positions and community facilities for each Bendix division. Company policy and employe benefits, including education assistance, are listed.
Charles Cleveland, Director of Scientific Recruitment, Bendix Aviation, Dept. EI), Fisher Building, Detroit, Mich.

CIRCLE 870 ON READER-SERVICE CARD

Polarad

Engineers at l'olarad Electronics Corp. are (ill gaged in projects that cover antomatic checkoul equipment, classified electronic reconnaissance systems, countermeasures systems and systems ell gineering. Required skills for particular johs are outlined.

Ullman Rosenfield, Director of Industrial Relations, Polarad Electronics Corp., Dept. ED, 43 2) 34th St., Long Island City I, N.Y.

CIRCLE 87I ON READER-SERVICE CARD
ELECTRONIC DESIGN • December 9, 1959

ITT Laboratories

ITT, a research division of International Telephone and Telegraph Corp., has openings in all phases of electronic research and development. Areas covered in this brochure are missile and space systems, avionics, communications systems, phessical sciences, components and instrumentation and electronic countermeasures. Employe benefits are listed.
T. C. Allen, Manager, Professional Staff Relations Department, ITT Laboratories, Dept. ED, $5(x)$ Washington Ave., Nutley, N.J.

CIRCLE 872 ON READER-SERVICE CARD
(iutler-Hammer's achievements and present opcrations are outlined in a 25 -page illustrated brochure, "Cutler-Hammer and Your Career." Motor control and allied electrical equipment produced hy the company include systems control, magnetic breaks, lifting magnets, aircraft power reays. manual and magnetic starters, small motor witches, service control, refrigeration control, Mariue and Nary control, newspaper equipment, electronic control, electric heating devices and gas neasuring and mixing control.
Opportunities and company facilities, including
Cutler-Hammer
CUTLER-HAMMER AND -the-jol) training programs, are discussed under following headings: sales, development, sysens and production engineering and business adninn tration. The company's advertising program nd graph depicting sales growth are given. Emfon benefits and community facilities are listed.
C ther-Hammer, Inc., Dept. ED, 315 N. 12th ilwaukee 1, Wis.

CIRCLE 873 ON READER-SERVICE CARD

One thing

 you won't

The engineer working in the Missile Systems Division of Raytheon Company gets help not hindrance in improving his professional status. His ability is quickly recognized . . . his achievements rewarded. He grows constantly with fast growing RAYTHEON. If you can qualify for one of the following positions, why hesitate? Write Mr. Jerry Morris, Professional Employment, Raytheon Company, Missile Systems Division, Bedford, Massachusetts.

IMMEDIATE OPENINGS FOR:

Data Handling Engineers . . . with experience in highspeed, analog-to-digital conversion techniques, logic design, converter and buffer design. Should have thorough knowledge of tape recorder techniques and digital, servo, and digital-computer design.

Circuit Design Engineers . . . with experience in design of high-speed switching circuits, pulse techniques, and computer logic. Should be experienced in one or and computer logic. Should be experienced in one or
more of the following areas: navigation, guidance, control circuits, CCM, FM, PCM, PDM, and fusing circuitry.

Packaging Engineers . . . with a knowledge of packaging and production techniques in sheet metal and electronic equipment. Will design electronic portions of guided missiles, radars, computers, test equipment. Should have thorough knowledge of circuitry.

Electromechanical Designers . . . will design electromechanical equipment and electronic portions of guided missiles, including coordination of effort through the shop. Will work closely with Design Engineers in developing electronic packaging philosophies. Knowledge of electronics, electronic components, and ability to read schematics required. Should have experience in sheet metal equipment design and knowledge of current "state of the art" in electronic equipment.

MISSILE
SYSTEMS
OIVISIM DIVISION

CAREERS SOAR

An engineer soon learns that in order to make precise projections, he must start with precise facts. To predict the reactions of an airborne object.. even a kite...all known factors must be considered in its construction and launching.

How important it is, then, for the engineer to consider all the known factors when choosing a place of employment. At the Link-Palo Alto electronic development laboratory, (pioneers and leading producers of electronic flight simulators) all the facts are favorable.
Link has three distinct and diverse development departments:
Industrial products development... Military electronics...Advanced computer development.

This arrangement opens up a great diversity of assignments and excellent opportunity for advancement, as the lab is expanding rapidly
in all areas of development for both our commercial and military customers.
Palo Alto is a charming, suburban community located on the southern part of the San Francisco
Peninsula, its physical climate matched only by the benign professional atmosphere at the Laboratory.
There are many openings for engineers qualified in the following fields:

- video systems • electronic packaging
- IR techniques • engineering psychology
- advanced data processing systems
- advanced electro-mechanical design
- circuit analysis - computer design
- weapon system analysis

Move up! Write to
Mr. B. W. Rutman, Link Aviation, Inc.
P.O. Box 1318, Palo Alto, California

YOUR CAREER

NEWS AND NOTES

One way to better relations between management and scientists and technicians in research offered by E. H. Schulz of the Armour Researc 1 Foundation, Chicago, in a paper, "The Individu! Case in Research Management." He says:
"The research director must be careful to avoid the substitution of cookbook approaches for the realistic combination of a thorough understanding of the subject matter to be administered, a familiarity with management principles and an understanding of human behavior."

By "cookbook approaches" Mr. Schulz mears the use by management of mechanical devices"staff members are interviewed, psychoanalyzed, sent to AMA courses, appraised, and are made members of committees to study staff morale, working environments, incentives, Christmas parties and everything else under the sun"-in place of the human touch.
Mr. Schulz traces the evolution of company management policies in three stages:

1. Inadequate management control.
2. Excessive management control and paper work.
3. Minimum control and red tape consistent with company objectives.
"Our aim as managers in the research world of today," Mr. Schulz says, "must be to minimize the magnitude and duration of the second stage of this growth pattern and arrive at the mature third stage as rapidly as possible."

The paper notes several areas where managerial improvements can be achieved. Two sensitive areas: merit evaluation and salary administration.
"That people should be regularly evaluated as to their performance and that they should know where they stand cannot be denied," Mr. Schulz concedes. "However, the insertion of a formal sys tem including checks on printed forms followed by a formal interview with the man can be quite harmful, particularly when applied by the inexperienced.
"First, an inept job of discussing a man's so called good and bad points can do more ham than good. Further, the research supervisor can easily lull himself into the false feeling of having accomplished his staff development job well by filling out a form periodically and promptly for getting the subject, while he should actually be developing his staff in day-to-day contact-largely by example.
"Wasn't the supervisor put in his position firs and foremost because of his ability to guide he (Continued on p 210

your future:
a challenging opportunity with an industry leader

Now take advantage of maximum professional growth at Texas Instruments by participating in development of the most advanced Working with the newest facilities, take part in:

- device development Development of new devices by studies in solid-
state diffusion, alloying of metals and state dirusion, arloying of metalsitand of metals, surface chemistry, and
solid state
- SURFACE STUDIES Surface reactions and surface energy phenomena on
- adVanced componemt oesicu Development of new components by studies of deposition of thin films,
electrolytic studies such oxidation rates and film structures.
- nuclear radiation experiments on exp and devices.

With TI, receive liberal company paid benefits, including profit sharing (last year 15% of base salary). Interviews will be held in your area oon. If you have an Elecmical En Physics degree and experience in semiconductor or related development areas please send a resume to.
W. T. Hudson, Dept. 201-E-ED (for immediate Eastern appointment) 1141 E. Jersey Street, Elizabeth, New Jersey

> C. A. Besio,

Dept. 201-ED
Texas Instruments incorponated
"EnICONDUCTOR-COMPONENTE DIVIBION
"OAT OFFICE DOX SIB. DALLAS. TEXAB
CIRCLE 921 ON CAREER INQUIRY FORM IRCLE 905 ON CAREER INQUIRY FORM \geqslant

With The World Leader In Continuous Wave Doppler Navigation Systems

Twelve years of research and development in the field of continuous wave doppler has brought Ryan Electronics leadership in airborne electronics, ground velocity indicators and radar navigation systems.

This leadership has earned Ryan Electronics important multi-million dollar contracts for navition systems for America's major military air craft. In addition, systems utilizing Ryanpioneered C-W doppler techniques are in volved in some of the most advanced mis. siles in our nation's arsenal. These projects,
plus advanced study in future space application of the same principle, call for a continually growing staff of electronics engineers of exceptional skill and ambition.

Expanded facilities of Ryan Electronics at San Diego and Torrance in Southern California provide the optimum for working, living, educating your children and pursuing your own advanced
 studies. For immediate action, phone George Gerner, collect, BRowning 7-6450, San Diego, or send your resume to 5650 Kearny Mesa Road, San Diego, California.

RYAN ELECTRONICS
 division of ryan aeronautical company, 5650 kearny mesa road . world leader in continuous wave doppler navigation systems

CAREER NEWS

staff? Would it not be a more direct approach to correct the supervisor instead of applying more or less dangerous medicine to 5 or 25 confused subordinates?"
Of salary administration-"another process highly susceptible to over-mechanization"-Mr. Schulz comments:
"The average scientific manager feels uneasy in his role of playing God, so to speak, in determining what each individual's compensation should be. He would love to hide behind some mechanicall scheme where a man is given points for attitude, attendance record, potential, etc., and a score is arrived at which automatically determines his salary, while the significant factor is the supervisor's fair judgment of the contribution of the individual."
The hope for good management, Mr. Schulz concludes, lies in competent personnel rather than any "system."
"Unfortunately", he reminds management, "there is no approach short of: (1) understanding the sulbject matter to be administered; (2) a familiarity with management principles; (3) an understanding of human behavior, and (4) the realistic combination of this information in application to each individual management consideration.

Once upon a time, before man-made satellites went whizzing into space, engineering schools in this country began teeming with students. Young men were responding to the pleas of industrialists, educators, and patriots for more engineers to match the growing enrollments in the Soviet Union.
Then the Russians launched a "sputnik"-the world's first-and today the trend in American engineering schools may be reversing-at least temporarily-a Cornell University dean suggests.
"Sputnik fever," says Dean Dale R. Corson of Cornell's College of Engineering, drove many potential engineers to study science instead of engineering when it swept the country two years ago.
"In the fall of 1958 freshman engineering enrollments were down 11 per cent on the average all over the country." he reports. "This year the number of applications was down again."
Moreover, Dean Corson says, engineering schools are finding it increasingly vexing to attract and hold talented teachers.

But at least a couple bright spots remain Though the quantity of undergraduate engineering students is down," the quality is higher than normal this year," the dean says. And the graduate program has been increasing about 15 per cent a year.

ENGINEER-IMPROVEMENT COURSES AND SEMINARS

One-Day Course In Increasing Sales Through The Technical Staff, IEI, Boston, Philadelphia, New York

The IEI has developed this course for research and development men, technical specialists and project, application and sales engineers to show Jow the technical man can help increase his company's sales and what techniques improve customer relations and make the technical specialist i part of the marketing team. The program outline is as follows: The Technical Man's Role in Selling Function, Industrial Purchasing Habits, Practices and Policies, Analyzing the Customer's Requirements, Developing Sales Presentations, Negotiation and Following-up After the Sale. The program will be conducted by Louis J. De Rose, President of De Rose \& Associates, and Executive Director, Materials Management Institute. The seminar will be held Dec. 8, Sheraton-Plaza, Boston. Mass., Dec. 10, Hotel Sheraton, Philadelphia, Pa.., and Dec. 11, Hotel Park-Sheraton, New York, N.I: For further information write to: Industrial Filucation Institute, 25 Huntington Ave., Boston 16. Mass.

Research Administration Workshop Seminar,
IEI, December 14-16
This seminar is open to research administrators, particularly those charged with the administration of a research laboratory or laboratories. The key areas to be covered include: responsibilities of rescarch administrator; translating broad management objectives into specific research items; public relations; research facilities inside and outside company; laboratories, design and maintenance; libary; consultants and other outside sources; resaurch personnel; technical administrative functions; communications; assignment of problems; procedures for reporting results to all concerned; and problems in research administration.

Market Research Orientation Seminar, IEI,

 December 14-16, New YorkThe creative market researcher, product planbier. or product designer who attends this seminar will learn that certain approaches have proved mure effective than others in uncovering new porluct opportunities in which the consumergwels company can capitalize on its resources in a mofitable market. Far from being a pure analytical job, this is a quest that requires as much creative insight and conceptual ability as it does an litical skill. Topics under discussion will indude: (1) identifying product trends; (2) identifyinn market trends and latent market demands;
(Continuced on p. 212)
CIRCLE 907 ON CAREER INQUIRY FORM $>$
"ANTICIPATION ENGINEERING" N/
"Anticipation Engineering" is not a new science at
McDonnell Aircraft. It's a buill-in concept that has created
a lang lineage of aviation "firsts" during the company's
dynamic 20 -year history.
It was this anticipation that led to initial work on the first
U. S. manned Space capsule of fuil year betore the
competition was announced Desizned to carry a human
astronaut beyond the atmosphere into orbital space flight,
the Capsule is an integral part of N.A.SA.'s Profect Mercury. .
All facets of McDonnell engineering and research are
projected years into the future. Exploration of the
scientific uses of space vehicles and satellites is just
one of many such areas of strody.

MCDONNEL- AIRCRAFT

ELECTRONIC ENGINEERS

SYSTEMS:
Openings available for Department Managers, Group Leaders and Senior Electronic Engineers with a minimum of five years experience.
Flight Control Systems
Infra-red System
Guidance System Communications System Radar Systems
Senior Systems Engineers are needed for:

ADVANCED PROJECTS.DEPARTMENT

Creative engineers are needed with experience and interest in the areas of:
Establishment of Overall Approach
Definition of System Requirements
Definition of Optimum Equipment
Overall System Integration
CIRCUIT AND PRODUCT DESIGN:
Electronic Engineers are needed for assignments in the design and development of:
Electronic Packaging
Alectronic Packaging
Airborne Digital Computers
Airborne Radar
Electronic Instrumentation
Antennas
Beacons
Auto-pilots
Checkout Equipmen

CONTACT:
RAYMOND KALETTA
Supervisor Engineering Employment

类 McDONNELL AIRCRAFT

Bold plans revealed in Lockheed's program of total flight technology

Air/Space travel, whether the vehicle is manned or unmanned, poses vast problems. To expand the total technology of flight, Lockheed's California Division proposes bold new concepts for both military and commercial vehicles. In line with this, the Company has assumed major responsibility for Research and Development on future space vehicles. This responsibility extends from development of advanced components to major complex systems.

Advanced projects to spring from this broad base of Air/Space travel include: Limousine-Helicopters designed for shuttle service between large cities and suburbs, or to transit terminals; Mach 6-7 Air Transports able to take off and land vertically; Space Transports capable of transporting, to an orbit of more than 1000 miles, a pilot and 1000 pounds of payload, or three passengers equipped to work in space; advanced

Infrared Systems studies; and Solar Radiation studies.
This markedly expanded program into the total concept of flight creates urgent need for personnel with highlevel skills. The concept ranges from subsonic to hypersonic speeds; from atmospheric to outer space vehicles.

High-caliber scientists and engineers are invited to take advantage of this need; to investigate the many career opportunities Lockheed offers.

Immediate openings are available in: Aerothermodynamics; propulsion; armament; electronics research, systems, packaging; servomechanisms - flight controls; sound and vibration; operations research; physics - infrared, acoustics, electro-physical; antenna and telemetry; and underwater sound propagation.

Write today to: Mr. E. W. Des Lauriers, Manager Professional Placement Staff, Dept. 1312, 2400 North Hollywood Way, Burbank, California.

LOCKHEED

CALIFORNIA DIVISION

CAREER NEWS

(3) use of creative techniques to determine alter nate ways of "marrying" company resources wit] current market opportunities.

Course In Organizing The Engineering Project, IEI, December 14-16, New York

The objective of this workshop seminar is to show the importance of proper organization in project engineering and how to achieve it. Sound organization not only takes into consideration pre liminary planning but programs of controls and goals that extend through the life of the project as well as consideration of criteria that can be used to measure the results in the final analysis. This seminar will be of interest to those who are concerned with: execution of engineering projects; reviewing outside requests; determination of project personnel and facility requirements; balancing workload with capacity; establishment of controls; and evaluating performance.

Product And Package Design Forum, IEI, December 14-18, New York

Products and packages are inseparably linked together. This seminar will analyze the fundamentals of this relationship to help develop both products and packages that capitalize on inherent profit opportunities. From planning to promotion of the final product, opportunities for improving function and affecting savings will be explored. Emphasis will be placed on developing the ability to see the product and its package as a distinct design element throughout the planning, production and promotion process to the profit-producing phase. For additional information for this course and the following three write to: Industrial Education Institute, 25 Huntington Ave., Boston 16, Mass.

PAPER DEADLINES

Convention Program Chairmen have issued the following deadlines to authors wishing to have their papers considered for presentation.

December 15: Deadline for abstracts of 150-200 words for the 1960 Electronic Components Corference scheduled for May 10-12 in Washington, D.C. Please send in triplicate to: Gilbert B. Devey, Technical Program Chairman, Sprague Electric Co., N. Adams, Mass.

PAGES
MISSING ARE NOT
AVAILABLE

[^0]: Write for Bulletin R-21, with handy cross-reference file card.

[^1]: to improve your compothive position.

[^2]: Fansteal Metallurgical Corporation North Chicago, Illinois, U.S.A.

[^3]: New Slug Type, Straight-Cylindrical Shape
 There are no MIL specifications on this type unit at present, but it offers all the characteristics of the present, but it offers alt the characteristics of the slug-type units above with less bulk and more con-
 venient mounting.

[^4]: (14) Dunt

[^5]: 40 Second St., New Rochelle, N. Y. - NEw Rochelle 3-8600

