HIGHLIGHTS OF THE ISSUE

Design of the Fifties (Cover) 24
What have we done in 10 years? This overall view of the electronics industry reveals the progress we have made in about 20 areas. Outstanding in the past decade was the rush to take advantage of solid state devices. Our various developments leading towards microminiaturization can be clearly traced. Of particular interest is the way in which many of the so-called breakthroughs fit into the orderly progress of the 50's. Notice how cleverly the years on our cover are tied into the events listed in the calendar that runs across the top of the pages of our report.

How to Choose the Right Ferrite for the Right Job ... 64
The number of available ferrite types and their applications have grown at such a feverish pace in the last few years that engineers are often hard pressed to keep up with developments.

This clear presentation makes order out of apparent chaos. Dividing ferrites into four basic groups, with tables and charts, helps the engineer select the right ferrite.

Index of Articles, July 8 through December 23 ... 112
Semi-annual index of ELECTRONIC DESIGN articles, appearing in this issue. All titles are annotated so that readers can appraise the probable interest of an article. Extensive cross-references are used.
NEWS
Microminiaturized Designs Heading For Production 3

EDITORIAL
Peace From Space 23

DESIGN IN THE FIFTIES
An ELECTRONIC DESIGN progress report of the last 10 years in twenty technical areas of the electronics industry 24

Triple Rise in Sales Rung Up By Industry 25
Advances In Communications Design Dictated By Limited Equipment 25
Smaller, Tougher, Cheaper Components 30
Semiconductor Achievements Mushroom In 10 Short Years 32
Tube Industry Holds Its Own In Transistor-Dazzled Market 34
Drive For Electronic Reliability Touched Off By War In Korea 34
Modular Packaging Is Born, With Savings In Production 38
Ultrasonic Applications Spurt In Many Directions 40
Inner Secrets of Materials Probed For New Techniques 41
Basic Research In Microwaves Spawns New Families Of Devices And Systems 42
Air Navigation, Sorely In Need Of Automation, Gets Electronic Assist 45
Inertial-Quality Gyroscope Paces Gains In Guidance And Control 46
Infrared Manufacturers Improve Detectors, Trackers And Scanners 49
Earl Computers Come Of Age In A Decade: From Univac I to IBM And Remington Giants 50
Machine Replacing Man As System Engineering Pushes Out On 2 Fronts 54
Instrument Trade Blends Old With New; Solid States And Etched Circuits Used 56
Power Supplies Meet Challenge Of Military Needs 58
Medical Electronics Slashes Death Rate 59
Nuclear Instrumentation Shares Only Slightly In Upheaval of 1950's 61
Radio-Frequency Interference, Once A Scorned Imperfection, Looms As Peril To Progress 62

FEATURES
How To Choose The Right Ferrite For The Right Job 64
A practical organization of ferrites with useful charts and tables ... E. Albers-Schoenber, G. S. Bachman
Visual Engineering Mathematics: Part 2 68
Contributive and distributive nodes and loops are covered T. R. Nisbet, W. W. Happ
Companies Offer Technical Information For The Servo Engineer 72
Booklets on several levels of detail and a technical course are available from industry sources.
Linear Positioning Motor Has 0.01 in. Resolution 74
Specifications and features of the new unit are provided and discussed.
Potentiometer's Life Exceeds 85 Million Cycles 76
New design of pressure piece increases life of unit.
Advice To Frustrated Creators 138
Last of a series on blocks to innovating A. L. Simberg
Index of Articles, July 8 through December 23, 1959 112
Cross references and annotations included

DEPARTMENTS
Washington Report 16 Russian Translations 128
Meetings 18 Report Briefs 134
New Products 78 Careers 138
New Literature 108 Career Brochures 140
Ideas for Design 122 Your Career 142
Books 126 Advertisers' Index 144

SYSTEMS AND COMPONENTS FROM ITT'S COMMUNICATIONS DIVISION...
Complete ground communications for the Atlas and Titan Missiles ... data conversion and handling and numerical machine tool control ... automatic data switching systems ... communications for SAGE air defense ... these are some of the major projects designed, developed and produced by Kellogg.

Today, Kellogg systems and components play expanding roles in remote control, data and voice transmission, telemeasuring, microwave—for Kellogg is the communications division of International Telephone and Telegraph Corporation, pioneer in communications developments.

Whatever your needs, "call Kellogg" ... whether for research, for technical know-how, or for the unparalleled facilities of invention and production for which Kellogg has been famous for 60 years. You’ll find Kellogg uniquely qualified to tackle today's communications problems in industry and defense.
for voltage stabilizing...
rectifying...controlling...

THERE'S A RAYTHEON
GAS DIODE TO MATCH YOUR TOUGHEST
POWER-SUPPLY 'SPEC'

<table>
<thead>
<tr>
<th>VOLTAGE REGULATOR TUBES</th>
<th>D.C. Operating Voltage</th>
<th>Current Range</th>
<th>Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK6262, OA2WA</td>
<td>Miniature</td>
<td>150 v.</td>
<td>5 – 30 ma. 2 v.</td>
</tr>
<tr>
<td>CK6073, OA2</td>
<td>Miniature</td>
<td>105 v.</td>
<td>5 – 30 ma. 2 v.</td>
</tr>
<tr>
<td>CK6287, OA2</td>
<td>Miniature</td>
<td>75 v.</td>
<td>5 – 30 ma. 2 v.</td>
</tr>
<tr>
<td>CK5787</td>
<td>Subminiature</td>
<td>98 v.</td>
<td>5 – 25 ma. 2 v.</td>
</tr>
<tr>
<td>CK5787WA</td>
<td>Subminiature</td>
<td>98 v.</td>
<td>5 – 25 ma. 2 v.</td>
</tr>
<tr>
<td>CK6542</td>
<td>Subminiature</td>
<td>148 v.</td>
<td>5 – 25 ma. 2 v.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corona Voltage Regulators</th>
<th>D.C. Operating Voltage</th>
<th>Current Range</th>
<th>Regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK5962</td>
<td>Subminiature 1000 – 5000</td>
<td>5 – 55 µA.</td>
<td>15 v. max.</td>
</tr>
<tr>
<td>CK6437</td>
<td>Subminiature 700 – 1250</td>
<td>5 – 125 µA.</td>
<td>15 v. max.</td>
</tr>
<tr>
<td>CK6438</td>
<td>Subminiature 1200 – 1750</td>
<td>5 – 175 µA.</td>
<td>20 v. max.</td>
</tr>
</tbody>
</table>

| CIRCULAR 008 ON READER-SERVICE CARD |

<table>
<thead>
<tr>
<th>COLD CATHODE RECTIFIER TUBES</th>
<th>D.C. Operating Voltage</th>
<th>Current Range</th>
<th>Regulation</th>
<th>Voltage Jump</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK6071</td>
<td>Miniature</td>
<td>85 v.</td>
<td>1.5 – 3.5 ma.</td>
<td>1.5 v.</td>
<td>0.1 v.</td>
</tr>
<tr>
<td>CK5651</td>
<td>Subminiature</td>
<td>85 v.</td>
<td>1.5 – 3.5 ma.</td>
<td>1.5 v.</td>
<td>0.1 v.</td>
</tr>
<tr>
<td>CK5783</td>
<td>Subminiature</td>
<td>85 v.</td>
<td>1.5 – 3.5 ma.</td>
<td>3.0 v.</td>
<td>0.1 v.</td>
</tr>
<tr>
<td>CK5873WA</td>
<td>Subminiature</td>
<td>85 v.</td>
<td>1.5 – 3.5 ma.</td>
<td>2.4 v.</td>
<td>0.005 v.</td>
</tr>
<tr>
<td>CK6213</td>
<td>Subminiature</td>
<td>130 v.</td>
<td>1.0 – 1.5 ma.</td>
<td>1.0 v.</td>
<td>—</td>
</tr>
</tbody>
</table>

| CIRCLE 009 ON READER-SERVICE CARD |

Detailed technical data bulletin on any of these types are yours for the asking. Better yet, ask to have a Raytheon sales engineer drop in for a firsthand appraisal of your application and prototype needs — no obligation, of course. Write directly to Dept. 2528.

Small order and prototype quantities available directly from your local Raytheon electronics parts distributors.

Want to Receive Our Technical Data Regularly? We'll be happy to keep you informed of latest technical developments, new products, design tips, etc. An application for addition to our new Technical Information Mailing List is yours for the asking. Write on your company letterhead directly to: W. J. Davis, Dept. 2528, at division address listed.

Industrial Tube Subdivision

RAYTHEON

INDUSTRIAL COMPONENTS DIVISION

53 Chapel Street, Newton 58, Massachusetts

RELIABLE MINIATURE AND SUBMINIATURE TUBES • HARD-GLASS POWER TUBES • GAS TUBES • CATHODE RAY TUBES • STORAGE TUBES

LOS ANGELES, N Davenport 5-4221 • SAN FRANCISCO, Fairlawn 1-7711 • CHICAGO, N Hoosch 5 4000 • KANSAS CITY, Plaza 3-3300

Cleveland, New 1716 • BALTIMORE, Southfield 1-1237 • ORLANDO, Fl., Garden 3 1553 • NEW YORK, Plaza 3-9000 • BOSTON, Bigelow 4 7500

GOVERNMENT SALES: BOSTON, Bigelow 4-7500 • WASHINGTON, D. C., Metropolitan 8-5205 • DAYTON, Baldwin 3-8128

STAFF

CO-PUBLISHERS

T. Richard Gascoigne
James S. Mulholland, Jr.

ACCURACY POLICY

Recognizing the power of the printed word to influence, it is ELECTRONIC DESIGN's policy:

1. To make all reasonable efforts to insure accuracy of editorial matter.

2. To publish promptly corrections brought to our attention.

3. To not knowingly publish misleading advertisements.

4. To reserve the right to refuse any advertisement.

Readers noting errors or mistranslations of facts are encouraged to write the editor.

SUBSCRIPTION POLICY

ELECTRONIC DESIGN is circulated only to qualified electronic design engineers and other electronic engineers, consulting engineers, government agencies.

if design for manufacturing is your responsibility, you qualify for subscription without charge to you. It is your design duties. The letter must be signed by you personally.

ANY ADDRESS CHANGES FOR OLD SUBSCRIBERS NECESSITATE A RESTATEMENT OF THESE QUALIFICATIONS. Subscription rate for non-qualified subscribers—$25.00 per year U. S., $30.00 per year all other countries. Single copy $1.50.
Microminiaturized Designs
Heading for Production

SPURRED primarily by the needs of space technology, microelectronics made rapid strides in 1959. Now, for the most part, basic production techniques are well in the advanced development stage. Designers have been concentrating on delivering practical operating units.

Last spring Radio Corp. of America announced the availability of micromodule assemblies for computer applications (ED, April 15, p28). Since then, many of the companies working with RCA and the Signal Corps have developed components especially designed for the Army's micromodule program. Other concerns have developed their own microminiature devices.

While most of this work is concerned with miniature assemblies having standard components, interest in solid circuits has grown. Both Texas Instruments and Westinghouse Electric Corp. have active research projects underway in this area.

Standard Parts Made Smaller
Practical and reproducible microminiature devices made with standard components are close to reality. Allen-Bradley has developed a new carbon-composition resistor only 0.155 inches long and 0.025 inches in diameter. These small units have characteristics similar to Allen-Bradley's standard line. Reliability is reported the same as the company's standard units.

In addition to the resistors, Allen-Bradley has developed a line of ceramic capacitors of the same dimensions as the resistors. Capacity values are as high as 1500 microfarads. A ceramic capacitor 0.18 inches square and 0.03 of an inch thick will be available with capacity values as high as 0.33 of a microfarad. These capacitors, as well as the resistors, are still experimental and available only on that basis at this time.

General Instrument Co. has developed a gold-bonded germanium diode under the Signal Corps-RCA micromodule program. The units, now in production, are available in the complete range of the standard silicon and germanium diode type. They are made in the wafer configuration—0.31 of an inch square.

Pacific Semiconductors, Inc., announced a microdiode only 0.08 of an inch long and 0.035 of an inch in diameter (ED, Nov. 11, p74). Its ability to withstand extreme shock—20,000 g—and its small size make it suitable for microminiature applications.

Aerovox just announced several new component developments suitable for microminiature circuitry. The company's HP ceramic capacitors are designed specifically for power and transmitting applications. They save up to 70 per cent of the weight of comparable standard units. Space savings may range to 50 per cent.

Another development, CEROL, is a new concept in ceramic capacitors. It features extremely high capacities in ranges heretofore unavailable in a ceramic capacitor.

Aerovox has also developed carbon-deposited resistors with an epoxy coating. The coating is applied in the form of 100 per cent solids on automated equipment.

Two Ways to Make Assemblies
Microminiature assemblies take two forms. They can be assembled using standard components, without using deposited film techniques, or they can be made by using all the tricks of the vacuum-deposition and the printed-circuit art.

A binary counter containing 23 standard components, 0.038 of a cubic inch each, was disclosed recently by Walkirt Co. Inside the unit are two Raytheon CK28 transistors, Pacific Semiconductor diodes, Allen-Bradley resistors and Kavamil capacitors. Walkirt says the modules are cheaper than those using deposited-film techniques and more reliable. The company feels that deposited-film techniques are not as reliable as more conventional schemes at present.

Another module in the subminiature class has
PROBLEM:
Measure angular acceleration accurately

ANSWER:
The New Donner Angular Accelerometer

Light
Compact
High natural frequency

THE FACTS... As you are well aware, designing a good angular accelerometer is a tough technical task. Donner Scientific's new unit is another successful chapter in a record of creative engineering.

Chief applications for this unique force balance angular accelerometer are closing the servo loop on ground launching equipment for missiles and detecting the roll, pitch and yaw accelerations of missiles once they are airborne. In the latter application, the Model 4525 can replace some gyro and supplement others.

Donner's rugged new angular accelerometer weighs only 2 pounds.

The Specs
RANGES AVAILABLE
From ±1 rad/sec² to ±50 rad/sec² to any intermediate range.

FREQUENCY RESPONSES
±1 rad/sec² 30 cps natural frequency (90° lag)
±10 rad/sec² 100 cps natural frequency (90° lag)

OUTPUT, FULL SCALE
±20 volts across a 12,500 ohm load

RESOLUTION 0.01% full scale or better
LINEARITY 0.1% full scale
HYSTERESIS Less than 0.01% full scale
DAMPING 0.6 ± 0.1 of critical
SIZE 3.7" diameter x 3.7" high
WEIGHT 2 pounds

When completed, these International Resistance Corp. microcircuits will consist of four steps of film deposition on both sides of a glass substrate.

Single flip-flop wafer layout made by Centralab for ARMA's miniature computer.

been disclosed by the Arthur Ansley Mfg. Co. Again, standard components are used in a conventional flip-flop circuit. Two transistors and 16 other components are packaged in a module 0.35 by 0.35 by 1.16 inches. The module occupies 0.14 of a cubic inch. The printed circuits are conventional, with a minimum line width and spacing of 0.02 of an inch.

Extreme compactness is achieved by construction in which two interlocking printed circuits form the diagonals of a square cross-section. Transistors are mounted on end boards that can also be used for circuitry.

Another interesting microminiature device made from standard components is a digital electronic program timer. The entire assembly, being made by Cleveland Metal Specialties Co., is about the size of a cigarette package. It contains 49 transistors and 268 other components. Time can be varied between 0 and 200 seconds.

Many concerns are using their experience in vacuum deposition, thin-film and fine-line etch-
ing techniques in the construction of microminiature circuitry. International Resistance Corp. has announced a microcircuit using deposited thin-film resistors and capacitors. It has made for Arma Corp. some amplifier assemblies in which the wires, resistors and capacitors are evaporated on a glass substrate. Microminiature encapsulated diodes and transistors are integrated into the assembly by dropping them into holes in the wafer and soldering them into place.

International Resistance, experienced in vacuum deposition, has successfully deposited conductors 0.002 of an inch wide. The company can get, with a little difficulty, widths as narrow as 0.001 of an inch. Resistors have been deposited to tolerances of ±5 per cent up to 1000 ohms. Capacitors are manufactured to tolerances of ±10 per cent.

A microminiature amplifier circuit has been supplied to Arma by Centralab. It was made by depositing resistors and integrating capacitors and semiconductors. The circuit is 0.5 of an inch square and 0.03 of an inch thick. Transistors, supplied by Transitron, are inserted in 0.1-of-an-inch-diameter holes. Diodes go into 0.06-of-an-inch-diameter holes.

Using microminiature subassemblies, Arma has designed an airborne computer for space-guidance systems. It is to be intermediate between present computers and an all-solid-state machine. Wafer circuits using Diamond Ordnance Fuze Labs' 2-D concept were adopted for the final design, which used the previously-mentioned Centralab and International Resistance units. The final assembly combined the stacked-wafer assembly method with a welded wiring matrix to provide interconnections. The subassemblies can be easily removed for servicing.

A somewhat related assembly system has been developed by Burroughs Corp. The company's macromodule program involves assembly of a group of two-dimensional circuits of triangular shape. These are stacked and interconnected by back-plane wiring. Thus two-dimensional circuits are stacked to provide a three-dimensional device. Component density is about 250,000 per cubic foot.

Because heat is a problem in an assembly like this, Burroughs engineers inserted a central tube as a heat sink. The flat form of the circuit boards also provides a large surface area for heat removal.

Solid Circuits Moving Ahead

Molecular electronics, the ultimate in micro-miniaturization, is the complete merger of function and material. Work in this glamorous technology is progressing extremely rapidly. Some experts predict that an all-solid-circuit computer will be in operation in about five years. Present

TIGHTEN YOUR “SPECS” WITH HUGHES CRYSTAL FILTERS

Your difficult filtering problems solved with high-performance, precision crystal filters custom-designed and produced for you!

If you face tough filtering problems in: Single-Sideband, Doppler Systems, Missile Guidance, Radio Communications, Radar and Navigation, Spectrum Analyzers, Carrier and Multiplexing, Frequency Shift Systems, High Selectivity Amplifiers:

Check these advantages of Hughes precision crystal filters: Small size, light weight, low insertion loss, low passband ripple, precise selectivity, high frequency filtering, quick delivery in quantity, wide temperature stability, high reliability, rugged resistance to shock/vibration.

Experienced Hughes Application Engineers are available to work with you on your filtering problems. For additional information on crystal filters with center frequencies of 30 kc to 52 mc, and fractional bandwidths of 0.01%-6.0%, write: HUGHES PRODUCTS, Industrial Systems Division, International Airport Station, Los Angeles 45, California. For export information, write: HUGHES INTERNATIONAL, Culver City, California.
Molectron Light Telemetry Subsystem Developed

The circuitry shown in the schematic at right was reduced through molectronics to the simplicity shown in the ROOT system drawing. The Westinghouse-developed unit uses incident light to change the oscillation frequency of a multivibrator. In the conventional equivalent unit, phototubes and semiconductor photodiodes or phototransistors are used to respond to light with a changing dc level, which is chopped for telemetering. Sixteen components and 18 soldered connections are required to achieve this function. The molecular equivalent, exclusive of power supply and load, consists only of a single semiconductor occupying 0.001 cu in. Only two contacts to the silicon are necessary.

Laboratory work indicates that only a small fraction of the phenomena available have been used.

This device, excluding power supply and load, occupies only 0.001 cubic inch and weighs 0.02 gram, compared with 1 cubic inch and 7 grams for its conventional counterpart. Both germanium and silicon have been used as the active element, and other semiconductors can be used. Most of the devices tested to date were constructed of silicon and exhibited a dark frequency of oscillation from about 10 to 100 kc.

Commenting on the molecular light telemetry subsystem, Colonel C. H. Lewis, Director of ARDC's Electronics Directorate, said: "In going to the new concept, the number of component parts in the telemetry subsystem was cut from 14 to 1 and the number of soldered connections was reduced from 15 to 2, thereby offering a tremendous potential to reliability."

Westinghouse has also examined various representative military electronic systems, including an infrared seeker, a communications subsystem, a ferret reconnaissance receiver, a telemetry encoder and an adaptive flight control system, to evaluate necessary basic functions and determine the functional blocks needed to duplicate these functions. Monolithic blocks corresponding to such conventional circuits as multistage amplifiers, frequency-selective amplifiers, multivibrators and

SEMCOR

HIGH POWER ZENER

FIRST and ONLY 5% ZENER / 35 WATTS @ 25°C

U.S. SEMCOR produces the first and only compact 35-watt Zener with 5% Standard Tolerance in single units, rather than matched pairs. Special techniques in forming the single diffused silicon junction assure complete reliability...extremely low impedance...abrupt breakdown over the whole Zener voltage range...the first and only system of accurate delivery quotations. For production reproducibility of high power voltage regulators, limiting and clipping devices, and over-voltage protective devices...always specify U.S. SEMCOR 5% Standard Tolerance Zener Diodes!

SPECIFICATIONS IN BRIEF—

- **Ez:** 8.2 to 100 volts
- **IZ:** 50 to 50 ma
- **Zs:** 1.0 to 20.0 ohms

- **Maximum Dissipation @ 25°C:** 35 watts
- **Ez @ 25 amps, 1 volt:**
- **Te:** 0.04 to 0.99% per °C
- **Single Diffused Silicon Junction, ruggedly resistant to mechanical and thermal shock:**
- **Derate Linearly to 0 at 175°C:**

- **No. Types:** 27

A Division of [Topp Industries, Inc.](http://www.toppindustries.com)

CIRCLE 6 ON READER-SERVICE CARD
available from inventory for immediate delivery—
silicon transistors with

400 mw POWER
DISSIPATION

All electrodes completely insulated from the JEDEC-30 package (TO-5)

These Hughes PNP fused junction silicon transistors...which are especially recommended for small signal current gain, DC amplifier and other applications...offer you the following advantages over competitive types:

- BV_{CEO}, BV_{ESO}, and BV_{ESO} are symmetrical
- lower leakage current
- controlled gain band
- lower saturation resistance
- higher operating frequency

You receive still another benefit from these Hughes silicon transistors: proven reliability. Its reliability life tests at maximum operating temperature show a reliability factor of 4×10^{-6} or only one failure in 25,000 transistor hours of operating life.

Order today! These Hughes transistors are available from inventory at both the factory and at all Hughes distributors. Just call or write your nearest Hughes Semiconductor Sales office or distributor.

Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>BV_{CEO}</th>
<th>BV_{ESO}</th>
<th>H_{Min}</th>
<th>H_{Max}</th>
<th>V_{CEO}^{DC}</th>
<th>I_{C}</th>
<th>I_{E}</th>
<th>I_{C}</th>
<th>I_{E}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N1208</td>
<td>-10V</td>
<td>-10V</td>
<td>14</td>
<td>30</td>
<td>-0.2</td>
<td>-0.1</td>
<td>-0.1A</td>
<td>-0.1A</td>
<td>-0.1A</td>
</tr>
<tr>
<td>2N1209</td>
<td>-15V</td>
<td>-15V</td>
<td>14</td>
<td>30</td>
<td>-0.2</td>
<td>-0.1</td>
<td>-0.1A</td>
<td>-0.1A</td>
<td>-0.1A</td>
</tr>
<tr>
<td>2N1210</td>
<td>-15V</td>
<td>-15V</td>
<td>14</td>
<td>30</td>
<td>-0.2</td>
<td>-0.1</td>
<td>-0.1A</td>
<td>-0.1A</td>
<td>-0.1A</td>
</tr>
<tr>
<td>2N1211</td>
<td>-25V</td>
<td>-25V</td>
<td>20</td>
<td>65</td>
<td>-0.2</td>
<td>-0.1</td>
<td>-0.1A</td>
<td>-0.1A</td>
<td>-0.1A</td>
</tr>
<tr>
<td>2N1212</td>
<td>-25V</td>
<td>-25V</td>
<td>20</td>
<td>65</td>
<td>-0.2</td>
<td>-0.1</td>
<td>-0.1A</td>
<td>-0.1A</td>
<td>-0.1A</td>
</tr>
<tr>
<td>2N1213</td>
<td>-25V</td>
<td>-25V</td>
<td>20</td>
<td>65</td>
<td>-0.2</td>
<td>-0.1</td>
<td>-0.1A</td>
<td>-0.1A</td>
<td>-0.1A</td>
</tr>
<tr>
<td>2N1214</td>
<td>-150V</td>
<td>-150V</td>
<td>14</td>
<td>30</td>
<td>-0.2</td>
<td>-0.1</td>
<td>-0.1A</td>
<td>-0.1A</td>
<td>-0.1A</td>
</tr>
</tbody>
</table>

Also available with 3 watt power dissipation in ceramic package

At 0% of maximum voltage

Creating a new world with ELECTRONICS

CIRCLE 7 ON READER-SERVICE CARD
BULOVA CRYSTAL CONTROLLED VARIABLE FREQUENCY OSCILLATORS

Bulova Crystal Controlled Variable Frequency Oscillators are the advance in electronics most engineers have been seeking.

Why? ... Because Bulova VCF packages combine small size and high repeatability with automatic frequency control or with a variation of nominal frequency by application of external voltage.

The ranges available extend from 10kc to 20mc. Variation at 10kc is up to 6cps, at 20mc up to 12kc. Resolution on these shifts is infinite, it's dependent on stability and resolution of modulating voltage, only. Drift, after stabilization, can be kept to less than 1 pp 10⁻⁴.

These unique crystal controlled variable frequency oscillators are only one of many recent advances made by Bulova Electronics. For information on these units, or on how Bulova experience in mastering component and system reliability can help your program, write Department A-1231, today.

NEWS

rejection in the course of manufacture—and the more expensive it is to reject the circuit because of the failure of any given small section of it. A solution to this problem might be to restrict the total number of functions per solid circuit unit.

But this would defeat one of the purposes of microelectronic solid circuits, because of the now large number of interconnections necessary.

No decrease in interconnections would result from the use of microelectronic unit components instead of solid circuits. This is why the principle problem will be interconnection for a long time to come. With microdiodes (ED, Nov. 11, 1959, p74) and microresistors now or shortly available, circuits can be built many times smaller than connectors that put them in the equipment.

One solution to the interconnection problem may be the Planar Method. Here 50 mil holes are etched or punched into a 50 or 100-mil thick printed-circuit board—possibly made of Fotoceram—and shaped to fit the micropart. At least at first these boards would be hand assembled—the cost of micro components is such that assembly and testing is only about 5% of the total cost, automatic assembly is a not pressing problem.

The microminiature component, having been inserted, would show through both sides of the board. Notches would be cut in the board's edge, and solder made to flow into the notch. A simple sliding pressure contact made of a loop of metal designed to snap into a notch would permit boards to be interconnected in a parallel plane or at right angles.

With the Planar Method, unit assembly of components is preserved, and the components are accessible to repair. Some 100 components per square inch could be put together in this way—1000 per cubic inch if the boards are stacked and plugged into a connection matrix. All connections and components are integral with the board.

Microminiaturization must lead to greater reliability, claims Pacific Semiconductor's manager of R&D Dr. John W. Peterson. "It seems unlikely that microminiaturization will mean much reduction in the total size of equipment," he says, "but more complex circuitry in the same size." This being the case, reliability of each component must be high since with more components the overall reliability of equipment degrades.

Happily, signs point to microminiature components being more reliable than conventional units. PSTI's microdiode is claimed to have an-order-of-magnitude-higher reliability than conventional computer diodes, largely due to a new "chemical surface passivation" process, which uses the silicon of the semiconductor itself to build a molecular-

Enlarged photograph of raw crystal

BULOVA

ELECTRONICS DIVISION • WOODSIDE 77, NEW YORK

CIRCLE 6 ON READER-SERVICE CARD

ELECTRONIC DESIGN • December 23, 1959
High-vacuum measurement—all types
—one source

For your laboratory and production use, the world’s most complete line of vacuum measurement devices is available from Vacuum Tube Products.

Backed by over 13 years of research, development and production experience in the high-vacuum field, these precision instruments offer you the maximum in accuracy and reliability—plus long operating life!

Precise, dependable VTP vacuum gauge tubes are especially designed to give you extra-long life plus interchangeability in existing systems.

For detailed information on VTP’s complete line of vacuum gauge tubes and controls—or sound solutions to your particular vacuum measurement problems, write:

Vacuum Tube Products
P.O. Box 90427
International Airport Station
Los Angeles 45, California

For export information, write:
Hughes International
Culver City, California

Remote Unit Checks Aircraft

Remote RADFAC system developed by Republic Aviation Corp. speeds checking of electronic gear in the F-105. After a preflight mechanic in the plane’s cockpit activates his remote-control unit, the RADFAC locates the aircraft under test, locks onto it and proceeds through a preprogrammed series of preflight tests. All aircraft within RADFAC’s operational radius can query it and check out their own systems, either one at a time or simultaneously. The system can be adapted to other types of electronic equipment and aircraft, Republic engineers report.

Electrical engineers at Hughes Aeronautical Corp. have developed a new type of transistor that is lighter, smaller, and more reliable than any previously available.

The transistor is a five-region, all-metal structure. Applied voltage controls both the repetition rate and the pulse width. It is a stepping-transistor element.

Remote RADFAC system developed by Republic Aviation Corp. speeds checking of electronic gear in the F-105. After a preflight mechanic in the plane’s cockpit activates his remote-control unit, the RADFAC locates the aircraft under test, locks onto it and proceeds through a preprogrammed series of preflight tests. All aircraft within RADFAC’s operational radius can query it and check out their own systems, either one at a time or simultaneously. The system can be adapted to other types of electronic equipment and aircraft, Republic engineers report.

Electrical engineers at Hughes Aeronautical Corp. have developed a new type of transistor that is lighter, smaller, and more reliable than any previously available.

The transistor is a five-region, all-metal structure. Applied voltage controls both the repetition rate and the pulse width. It is a stepping-transistor element.

Remote RADFAC system developed by Republic Aviation Corp. speeds checking of electronic gear in the F-105. After a preflight mechanic in the plane’s cockpit activates his remote-control unit, the RADFAC locates the aircraft under test, locks onto it and proceeds through a preprogrammed series of preflight tests. All aircraft within RADFAC’s operational radius can query it and check out their own systems, either one at a time or simultaneously. The system can be adapted to other types of electronic equipment and aircraft, Republic engineers report.

Electrical engineers at Hughes Aeronautical Corp. have developed a new type of transistor that is lighter, smaller, and more reliable than any previously available.

The transistor is a five-region, all-metal structure. Applied voltage controls both the repetition rate and the pulse width. It is a stepping-transistor element.

Remote RADFAC system developed by Republic Aviation Corp. speeds checking of electronic gear in the F-105. After a preflight mechanic in the plane’s cockpit activates his remote-control unit, the RADFAC locates the aircraft under test, locks onto it and proceeds through a preprogrammed series of preflight tests. All aircraft within RADFAC’s operational radius can query it and check out their own systems, either one at a time or simultaneously. The system can be adapted to other types of electronic equipment and aircraft, Republic engineers report.

Electrical engineers at Hughes Aeronautical Corp. have developed a new type of transistor that is lighter, smaller, and more reliable than any previously available.

The transistor is a five-region, all-metal structure. Applied voltage controls both the repetition rate and the pulse width. It is a stepping-transistor element.

Remote RADFAC system developed by Republic Aviation Corp. speeds checking of electronic gear in the F-105. After a preflight mechanic in the plane’s cockpit activates his remote-control unit, the RADFAC locates the aircraft under test, locks onto it and proceeds through a preprogrammed series of preflight tests. All aircraft within RADFAC’s operational radius can query it and check out their own systems, either one at a time or simultaneously. The system can be adapted to other types of electronic equipment and aircraft, Republic engineers report.
A record in precision and reliability with 6 and 8 channel recording systems housed in...

Console-mounted recording systems manufactured by BRUSH INSTRUMENTS, Cleveland, Ohio, and housed in EMCOR Cabinets serve as readout stations for telemetry, testing, computer, ground control and other data processing systems.

EMCOR Cabinets offer a compact, versatile and functional housing for industrial or military recording systems. A combination of "human engineering" in cabinet design by EMCOR and instrumentation by Brush Instruments affords simplicity of operation. All controls are within easy reach and visibility of the operator. The flexibility, versatility and structural capabilities of over 600 basic frames in the EMCOR MODULAR ENCLOSURE SYSTEM bring advanced engineering and "imagination" to meet your packaging requirements. Write for details.

Condensed Version of Catalog 106 available upon request.

Originators of the Modular Enclosure System

EMCOR ELGIN METALFORMERS CORP. 630 CONGDON, DEPT. 1221 • ELGIN, ILLINOIS

*Registered Trademark of Elgin Metalformers Corporation

CIRCLE 10 ON READER-SERVICE CARD

How a conventional control circuit becomes part of a large information conversion system

Information Conversion Now Part of the Control Engineering Art

THE TASK of information conversion has been added to the functions of control engineering. To the control engineer, this means learning much of the language and technique of data processing. These points were made by Harold Chestnut and Walter Mikelson, of General Electric Co., Schenectady, N.Y., in a paper delivered at the National Automatic Control Conference, Dallas, Tex., last month.

"It is possible to divide manufactured products broadly into three primary functional categories that describe the job these products perform," reported Mr. Chestnut. "These categories are energy conversion, information conversion, and materials conversion."

"Information conversion pertains to the generation of signals and information which can be used to control energy conversion or materials processes as well as for the presentation of data or entertainment."

The authors cite nine basic functions that describe the complete information conversion process. These are sensing, converting, storing, communicating, computing, programing, regulating, actuating and presenting. Definitions of these basic functional tools and examples of their use in control and information handling systems are presented in the Table.

In the adjoining block diagram, the authors show how a conventional feedback control system can become part of a larger automatic system, which may include as supplements, a programer, a computer, and a data logger. Physically, the functions of programing, computing and data processing may all take place in one or more equipments, the authors report.

As indicated in the figure, the path from information reference to information-controlled variable may form an open-loop automatic control system. Although this outer loop may be closed for some systems, the analysis of such a system is generally much the same.

"It is to comprehensive systems such as these," say the authors, "where product quality, plant efficiency, or maximum yield are the true variables being controlled, that the newer control-system theories and their application may be increasingly..."
Nine Functions that Describe Information Conversion

<table>
<thead>
<tr>
<th>Function</th>
<th>Definition or Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensing</td>
<td>Generates primary data that describes phenomena or things.</td>
</tr>
<tr>
<td>Converting</td>
<td>Changes data from one form to another to facilitate its transmission, storage or manipulation.</td>
</tr>
<tr>
<td>Storing</td>
<td>Memorizes for short or long periods data, instructions, or programs.</td>
</tr>
<tr>
<td>Communicating</td>
<td>Transmits and receives data from one place to another.</td>
</tr>
<tr>
<td>Computing</td>
<td>Performs basic and more involved mathematical processes of comparing, adding, subtracting, multiplying, dividing, integrating, etc.</td>
</tr>
<tr>
<td>Programming</td>
<td>Schedules and directs an operation in accord with an overall plan.</td>
</tr>
<tr>
<td>Regulating</td>
<td>Operates on final control elements of a process to maintain its controlled variable in accord with a reference quantity.</td>
</tr>
<tr>
<td>Actuating</td>
<td>Initiates, interrupts, or varies the transmission of power for purposes of controlling "energy conversion" or "materials" conversion processes.</td>
</tr>
<tr>
<td>Presenting</td>
<td>Displays data in a form useful for human intelligence.</td>
</tr>
</tbody>
</table>

NEW CONCEPT IN MODULAR SYSTEM INTEGRATION FOR TELEMETRY

1959 ELECTRONIC DESIGN • December 23, 1959

CIRCLE 11 ON READER-SERVICE CARD
WHO MAKES FINE MOTORS THIS SMALL?

Globe Industries makes motors this small to make your design more compact, reliable and salable. If you make miniature instrument packages for space exploration—if you build airborne and ground support equipment—if you want to design smaller typewriters, computers, recorders or other products, look at these 3 motors:

TYPE VS—The smallest, most powerful precision miniature d.c. motor for its size. Only \(\frac{3}{8} \)" flat, four VS motors fit in a regular cigarette pack with room to spare. It has the power to lift its own weight to the top of the Empire State Building in 1 minute! Typical continuous torque—.25 oz. in.; typical intermittent torque—.5 oz. ins. We can design gear units, governors and brakes to meet MIL specs also.

TYPE SS—Only \(\frac{3}{8} \)" in diameter, Type SS d.c. motors typically produce continuous duty torques of .3 oz. in.; intermittent torques to .6 oz. ins. With the basic Type SS motor you can specify any of 21 planetary gear speed reducers or 28 spur gear speed reducers. Governors and brakes are available also. Designed to meet MIL specs.

TYPE MM—The most widely used precision \(\frac{1}{4} \)" d.c. motor in the world, MM motors typically produce .5 oz. in. in continuous duty applications—1.0 oz. in. intermittent duty. Choose from 101 ratios of planetary gear speed reductions. Brakes, governors and clutches can be included. MIL specs are invited.

For details about these motors request Bulletin VSM. Globe Industries, Inc., 1784 Stanley Ave., Dayton 4, Ohio.

GLOBE INDUSTRIES, INC.

GLOBE INDUSTRIES, INC.

CIRCLE 12 ON READER-SERVICE CARD
what is the difference between
dissipation factor and power factor?

Approximations, to the engineer, are useful and necessary because the solution of an equation can often be made less laborious in its computation by knowing the weight of each factor and its effect in the final answer. Those factors having little weight can be eliminated and the solution is more easily and readily obtainable, although the answer is a “ball-park” figure. Sometimes one forgets the significance of equality and because approximations are made, quantities become equal to each other under all conditions with no limits. The set of conditions under which the approximations were made, and for which the solution is valid is simply forgotten. Such is the case of Dissipation Factor and Power Factor with respect to capacitors.

By definition, the Power Factor of a capacitor is the ratio of the Equivalent Series Resistance (ESR) to the impedance (Z). In equation form it would be stated as:

\[\text{Power Factor} = \frac{R}{Z} \]
\[= \sqrt{X_c^2 + R^2} \]

(eq. 1)

Where:
- \(R \) = ESR in ohms
- \(X_c \) = Capacitive reactance in ohms
- \(f \) = frequency in cycles per second
- \(C \) = capacity in farads

Also, by definition, the Dissipation Factor of a capacitor is the ratio of the ESR to the capacitive reactance. In equation form it would be stated as:

\[\text{Dissipation Factor} = \frac{R}{|X_c|} = 2\pi f RC \]

(eq. 2)

\[|X_c| \]

Comparing the two graphically (See Fig. I), several things are apparent.

1. Power Factor = \(\frac{R}{Z} \) = Cosine \(\theta \); where \(\theta \) equals the phase angle.
2. Dissipation Factor = \(\frac{R}{|X_c|} \) = Tangent (90° - \(\theta \)); where (90° - \(\theta \)) equals the loss angle.
3. When \(\theta \) approaches 90° and 90° - \(\theta \) approaches 0°, Z approaches \(|X_c| \), and R approaches 0.

Now, after examining the graphic analysis of Dissipation Factor and Power Factor, certain approximations can be made.

1. If when \(\theta \) becomes very large, approaching 90°, and Z approaches \(|X_c| \), then Z can be considered to be equal to \(|X_c| \).
2. If this is assumed, then \(\frac{R}{Z} \approx \frac{R}{|X_c|} \) and Power Factor \(\approx \) Dissipation Factor.
The unseen enemy
How Summers Gyroscope guards against the invisible anti-missile

There is an invisible enemy operating in many plants producing the missile components, flight instruments, gyroscopes and other hyper-sensitive devices on which much of America's power for peace depends. The strength of this unseen foe is potentially as great as that of any anti-missile missile.

Destroyer Of Standards
This reliability destroying, efficiency reducing enemy is dust, lint and other foreign matter. The slightest air borne contaminant coming to rest unseen on sensitive mechanisms during assembly can cause serious, even fatal deviations in performance. Production was often slowed until tests showed the system to be free of dust.

Dust Moved But Not Removed
To combat the dust dilemma at the Summers Gyroscope Co. plant in Santa Monica, California, personnel donned lint-free jackets and hats—walked to their work benches in shoe bags. Temperature and humidity were controlled in an attempt to achieve an environment completely free of every possible contaminant ranging from stray hairs to perspiration. However, these precautions proved only partially successful when it was found that a manual dust gathering system in the final assembly "clean room" actually recirculated dust instead of removing it.

Double Duty Production Tool
For a solution to the dust menace, Summers called upon U.S. Hoffman Machinery Corp., pioneers in the use of air as a production tool. Hoffman engineers installed a permanent stationary vacuum cleaning system which provided for necessary cleaning operations at all of the 240 individual work benches in the 12,000 square foot final assembly area. Standard attachments made this same system available for cleaning overhead and underfoot, all over the plant.

Before And After
Prior to the installation of the Hoffman stationary system, relative cleanliness tests were conducted. A microscopic analysis of slides revealed lint, dust and other foreign matter in excess of quantities allowable to maintain Summers' high precision standards. A short time after the Hoffman equipment was placed in operation, the same tests showed a truly dust free "clean room".

How It Operates
Heart of the stationary cleaning system at the Summers plant is a 60 hp Hoffman centrifugal exhauster producing the vacuum. A centrally located dust separator outside the assembly rooms collects the material with large filtering area insuring thorough cleaning of the air. Hoses for cleaning are inserted into strategically located inlet valves in the piping system conveniently located throughout the areas to be vacuumeed.

Benefits And Advantages
Insuring spotlessly clean work in final assembly and calibration, the Hoffman stationary vacuum system already has paid for itself. It has helped Summers Gyroscope reduce rejects, maintain high reliability, increase production and improve employee morale. The Hoffman system enables Summers to meet and exceed specifications in supplying inertial guidance systems, flight instruments and gyroscopes to the U. S. Air Force, U. S. Navy, the Martin Co., McDonnell Aircraft, Douglas Aircraft and the Convair Div. of General Dynamics, among others.

If you have a special cleaning problem in your plant, ask for a free engineering survey to determine the most economical Hoffman system to prevent product contamination, salvage valuable materials, insure better housekeeping and encourage operating efficiency. Write for free booklet—How Stationary Vacuum Cleaning Systems Cut Costs, Increase Plant Efficiency.

U.S. Hoffman Machinery Corp.
Dept. EDI Air Appliance Division
103 Fourth Ave., New York 3, N. Y.

A final assembly area is kept dust-free by the Hoffman vacuum system.

Thermonic generator developed by RCA and Thiokol fits over flame tube of solid-propellant rocket engine and converts rocket heat to electric power.
Serious into the space between the two walls. The cesium vapor becomes ionized on contact with the hot cathode and encourages the easy flow of electrons to the outer wall. The electrical power generated by this process is fed to the test rocket's steering control mechanism or to electronic test apparatus by cables attached to the cathode and the second electrode.

According to RCA and Thiokol, tests show that it is feasible to use thermionic tubes as lightweight generators in large missiles and satellite vehicles during the critical launching and upward flight stages.

Color Scintillation Counter Would Separate Radiation

A scintillation counter that would use color to distinguish between gamma and beta radiations has been proposed by Dr. Frederick Reines of the Case Institute of Technology.

He would employ the new type of counter in differentiating between the normal gamma radiations present in the earth's environment and the fewer beta radiations present in studies of minute amounts of radioactivity.

Dr. Reines proposes to take advantage of the fact that gamma rays lose energy in collisions over relatively wide spaces, while beta radiations lose energy in a limited area. Thus a small counting volume would be embedded in the larger region. The small volume would detect beta particles, and the larger would spot gamma rays.

To distinguish between the signals from the two regions, Dr. Reines proposes two scintillator liquids. They would produce two different colors when the atomic collisions took place. The resulting light would be passed through appropriate filters, so that the two sources could be distinguished from each other. Equipment is being set up to test the feasibility of such a counter. Theoretical considerations suggest that the device might detect differences on the order of one in a million between the two kinds of radiation.

Tung-Sol transistors provide reliable punch control for National's 304 data processing system

The problems of high speed data processing, a requirement of modern business, have been solved by National. The 304 Data Processing System - first of its kind - provides an impressive combination of compact dependability and economy. It utilizes transistors and printed circuitry.

Typical of the efficiency of the entire system, the 370 High Speed Paper Tape Punch shown above is capable of an output of 3,600 characters per minute, coded for different reproduction methods. Energy for the punch operation is provided by Tung-Sol 2N459 Power Transistors.

National has designed this system for utmost dependability — a requirement for which the Tung-Sol transistors are specifically engineered.

While your equipment is in the planning stage — that is the time to call in a Tung-Sol applications engineer. Tung-Sol specializes impartially in the manufacture of both tubes and semiconductors. This assures Tung-Sol customers of the kind of advice and assistance that has resulted repeatedly in a better, more efficient and more salable product. We'd like to help you. Tung-Sol Electric Inc., Newark 4, New Jersey. TWX: NK193.
THE MOST COMPACT
LOW-PASS, HIGH-PASS
MICROWAVE FILTERS

Available for Rated Characteristics

Frequency Standards now introduces a standard line of low-pass and high-pass microwave filters, the smallest and lightest available for rated characteristics.

The filters can handle power capacities of up to 2 KW peak. All have a maximum insertion loss of 0.5 db in their pass-band. Input VSWR below the 0.1 db down point for low-pass filters and above it for high-pass filters is held to 1.5:1 or less.

Units are furnished with Type N RF connectors.

FILTERS

LOW-PASS
FILTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>1 db Down Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS 5L</td>
<td>500 MC</td>
</tr>
<tr>
<td>FS 12L</td>
<td>1200 MC</td>
</tr>
<tr>
<td>FS 23L</td>
<td>2300 MC</td>
</tr>
<tr>
<td>FS 31L</td>
<td>3100 MC</td>
</tr>
<tr>
<td>FS 60L</td>
<td>6000 MC</td>
</tr>
</tbody>
</table>

HIGH-PASS
FILTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>1 db Down Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS 4H</td>
<td>400 MC</td>
</tr>
<tr>
<td>FS 9H</td>
<td>900 MC</td>
</tr>
<tr>
<td>FS 20H</td>
<td>2000 MC</td>
</tr>
<tr>
<td>FS 27H</td>
<td>2700 MC</td>
</tr>
<tr>
<td>FS 54H</td>
<td>5400 MC</td>
</tr>
</tbody>
</table>

Filters having other 1 db down frequencies, different numbers of elements or other types of RF Connectors are available on special request.

WASHINGTON
REPORT

Air Traffic Control Future
Unclear But Important
to Electronics

Air traffic control, now firmly in the hands of the Federal Aviation Agency, promises to provide much work for the electronics industry over the next few years. Intensive development work is underway to produce equipment to handle fast-growing and fast-moving air traffic until 1980. First installations of this system are planned for 1963, with more to come speedily thereafter. Meantime, interim devices are being used as a first step toward automation.

Electronics firms' contribution to control of airspace and traffic will be widespread. The FAA's authority will require installations overseas as well as in the U.S. Furthermore, it is to be expected that Russia—which has grandiose plans for expansion of Aeroflot as an international carrier—will try to move in with its electronic gear, possibly offering very attractive financial terms to users. U.S. designers may have to hump to provide equipment that is so superior that it will sell itself on performance, even at a higher cost.

Congress has blown both hot and cold on the question of air traffic control. A number of shocking accidents during a single year were doubtless influential in speeding the establishment of a single agency to be responsible for the airways. This no doubt had a role, too, in the appropriation of $175 million for airways equipment in fiscal 1959. In the following year, however, FAA's budget request of $135 million was cut to $118 million. As a result, the agency had to shift $17 million of its funds for new equipment to pay for operating what was already in existence. Whether the

Write for Further Information

FREQUENCY STANDARDS
Division of Harvard Industries, Inc. Box 504, Ashbury Park, New Jersey
Phone: PROspect 4-0500 TWX A PK 568

< CIRCLE 16 ON READER-SERVICE CARD
It's clear that FAA faces many obstacles in developing a modern air traffic control system. The division of airspace, both military and commercial, has created problems that will require new approaches. The FAA has set out to develop an Integrated Traffic Control System (ITCS) that will integrate various radar and computer systems to improve safety and efficiency. This system will rely on electronic data processing to enable controllers to manage air traffic more effectively.

The ITCS will be designed to handle a variety of aircraft, including commercial jets, military planes, and general aviation aircraft. It will use advanced computer technology to process information from various sources, such as radar, transponders, and Global Positioning System (GPS) data. This will allow for more precise control of air traffic and reduce the risk of collisions and accidents.

However, the development of the ITCS has faced delays and funding issues. Congressional authorization for the project has been problematic, and funds have been slow to come. Critics argue that the FAA's plans are too ambitious and may not be practical given current technology. Some have questioned whether it is possible to control air traffic effectively with the current level of automation.

Despite these challenges, the FAA remains committed to developing the ITCS. The agency is working closely with industry partners to ensure that the system is fully tested and ready for implementation. Furthermore, the FAA is working on increasing public awareness and understanding of the importance of air traffic control to the nation's economy and safety.

In conclusion, the development of the ITCS is a complex and challenging task. Despite the many obstacles, the FAA and its partners are determined to create a system that will improve air traffic management and enhance safety. The success of this project will depend on continued investment, collaboration, and innovation in the field of aviation technology.
MEETINGS
Calendar of Events

December
26-30 American Association for the Advancement of Science, Chicago, Ill.

January
13-17 Institute of High Fidelity Manufacturers 1960 High Fidelity Music Show, Pan Pacific Auditorium, Los Angeles, Calif.
11-13 6th National Symposium on Reliability and Quality Control, Statler-Hilton Hotel, Washington, D.C.
25-29 Stress Measurement Symposium, Arizona State University, Tempe, Ariz.

February
*1-4 ISA Winter Instrument-Automation Conference & Exhibit, Rice Hotel and Sam Houston Coliseum, Houston, Tex.
2-4 19th SPI Reinforced Plastics Division Conference, Edgewater Beach Hotel, Chicago, Ill.
*3-5 1960 Winter Convention on Military Electronics, PGME, Ambassador Hotel, Los Angeles, Calif.
11-12 7th Annual Cleveland Electronics Conference, IRE, ISA, AIEE, Engineering and Scientific Center, Cleveland, Ohio.
11-13 1st Annual Electronics Representative Association, Drake Hotel, Chicago, Ill.
25-26 Scintillation Counter Symposium, PGNS, AIEE, AEC, NBS, Washington, D.C.

16th Annual Society of Plastic Engineers Technical Conference, January 12-15

The theme of the 16th Annual Society of Plastic Engineers Technical Conference will be the professional achievements and approaching opportunities in the growth of plastic engineering.

100% DEVICE TEST WITH 'CAT' AUTOMATIC TEST EQUIPMENT

100% test of the performance and uniformity built into TI 'mesa' units is conducted automatically by CAT—Centralized Automatic Test equipments. Designed and built by TI, these machines each have a capacity of 40,000 units a day.
2N697 MULTI-PURPOSE SILICON 'MESAS' NOW MASS-PRODUCED BY WORLD'S LARGEST TRANSISTOR MANUFACTURER

MEDIUM-POWER AMPLIFIERS • SMALL-SIGNAL AMPLIFIERS • SWITCHERS

FEATURE:
- Diffused-base 'mesa' construction
- 2-w maximum power dissipation at 25°C
- DC betas of 20-60 and 40-120

Available now in production quantities... TI 2N696 and TI 2N697 multi-purpose silicon 'mesa' units for amplifier, switching and medium-power applications.

Produced by the pioneer of the diffused-base process, these highly reliable 'mesa' units feature... 2-w maximum power dissipation... beta spreads of 20-60 (TI 2N696) and 40-120 (TI 2N697)... 10-ohm maximum saturation resistance.

Your full-year guarantee is backed by TI's proven production capabilities (largest in the world and currently being doubled) and a stringent quality assurance program.

Check these specs and contact your nearest distributor or TI sales office for immediate delivery.

3rd International Electronic Parts Show, February 19-23, Paris, France

The 3rd International Electronic Parts Show, for electronics specialists, will present a full range of elements used in the construction of radio-electrical and electronic appliances. Many new exhibitors from all countries will be taking part alongside the larger international firms. The show is organized by the National Federation of French Electronics Industries, 23 rue de Lubeck, Paris 16, France.

Instrument-Automation Conference and Exhibit ISA, Houston, Texas, February 1-4

The theme of the winter Instrument-Automation Conference and Exhibit will be "Process Control in the Electronic Era."

The Conference Sessions will be held Feb. 1-4 at the Rice Hotel, while the Exhibit will be staged in the San Houston Coliseum, Feb. 2-4. For additional information write to: Instrument Society of America, 313 Sixth Ave., Pittsburgh 22, Pa.

1960 Winter Convention on Military Electronics, PGME, February 3-5

The convention to be held at the Billmore Hotel, Los Angeles, Calif., is sponsored by the Institute of Radio Engineers Professional Group of Military Electronics. Chairman: Dr. Lester C. Van Atta, Hughes Aircraft Co., Los Angeles, Calif.

Several symposia based on the interests of the Professional Activities Groups of the Society will include plastics in building, injection molding, polymer structure and properties, reinforced plastics, standards for reporting properties, fabricating, finishing, plastics in electrical insulation, casting and plastic tooling, forming, extrusion, thermosetting molding, metals for plastic molds, and vinyl plastics. Conference Chairman is Mr. Charles M. Wasugh of E. I. DuPont de Nemours & Co., Inc., 7250 N. Cicero Ave., Lincolnwood, Ill.
More engineers specify Trimpot because:
Trimpot line is complete
Bourns offers you the largest selection of leadscrew actuated potentiometers...
20 basic models—4 terminal types—three mounting methods.
Trimpot is small
Space saving size and rectangular shape permit the installation of 12 to 17 units in one square inch of panel area.
Trimpot is accurate
Multi-turn screwdriver adjustment provides 9000° of rotation...you can make and repeat the finest adjustments.
Trimpot is stable
Adjustment shaft is self-locking...set-
tings are virtually immune to severe acceleration, vibration and shock.
Trimpot is fully tested
All instruments are 100% inspected before shipment to assure you of reliable performance.
Trimpot is proved
It is used in more military and commercial equipment than any other leadscrew actuated potentiometer.

Only Bourns Trimpot potentiometers give you these outstanding features

BODY—High-temperature, ther-
moinsulated plastic body is sealed,
 sealing potentiometer to meet Mil-Specs for humidity, sand,
dust, fungus, salt spray, etc.

COLLECTOR BAR—Precious metal
collector bar provides positive
electrical contact, improves po-
tentiometer performance and
tiability.

WIPER CARRIAGE—Special high-
temperature plastic carriage
with precious metal contact
spring permits exact settings and
stability under severe envi-
romental conditions.

SILVERWELD® TERMINATION—
This exclusive Bourns feature is
unequaled in ruggedness. There
is a metal-to-metal bond from
the terminal to the resistance
wire.

TUBING INSULATION—Tubing
around terminal eliminates possible short or electrical
cross-over.

TERMINALS—Three terminals are
bead-soldered copperweld wire or
Teflon-insulated leads.

ELEMENT—Special ceramic
mandrel is precision wound with
low temperature coefficient res-
sistance wire.

LEADScrew—Stainless steel
leadscrew is corrosion resistant, withstands salt spray.

This cutaway of Model 220 is typical of the design of all Bourns Trimpot potentiometers though some features may vary from model to model.

LARGEST SELECTION
Trimpot
the original leadscrew-
actuated potentiometer

2000
Yes! Schweber can sell up
to 2000 pieces of any model
of BOURNS TRIMPOT®
at factory prices.
Sizeable quantities are
available for immediate
shipment from stock from
Schweber's warehouse.

Schweber
ELECTRONICS
60 HERRICKS ROAD, MINEOLA, L.I., N.Y.
PIONEER 6-0520 TWX G-CY-NY-580
CIRCLE 19 ON READER-SERVICE CARD

ELECTRONIC DESIGN • December 23, 195
Longest record of reliability

General Purpose Wirewound Trimpot—Model 200. Operates at 105°C / L,S,P terminals / 1/4 watt / 10 ohms to 100K. Available as rheostat, Model 201.

High-Resistance Wirewound Hi-R® Trimpot—Model 207. Operates at 175°C / L terminal / 2 watts / 100 ohms to 20K. Available as rheostat, Model 206 Hi-R Trim R®.

Dual-Element Wirewound Trimpot®—Model 209. Operates at 175°C / L,S,P terminals / 1/4 watt / 10 ohms to 20K. Two potentiometer outputs with one adjustment shaft.

General-Purpose Carbon Trimpot—Model 215. Operates at 125°C / L,S,P terminals / 1/4 watt / 10 ohms to 1 Meg. Available as Mil-Spec humidity-proof unit, Model 235 (1k to 10 Meg).

Subminature Wirewound Trimpot—Model 220. Operates at 175°C / L & W terminals / 1 watt / 100 ohms to 20K. Meets Mil-Specs for humidity.

High-Temperature, Humidity-Proof Wirewound Trimpot—Model 224. Operates at 175°C / L,S,P terminals / 1 watt / 100 ohms to 100K. Meets Mil-Specs for humidity.

Humidity-Proof Wirewound Trimpot—Model 236. Operates at 135°C / L,S,P terminals / 0.8 watt / 10 ohms to 100K.

High-Temperature Wirewound Trimpot—Model 265. Operates at 175°C / L,S,P terminals / 1 watt / 100 ohms to 10K.

High-Quality Commercial Wirewound Trimit®—Models 271, 273, 275. Operates at 125°C / L,S,P terminals / 1/4 watt / 100 ohms to 10K.

High-Quality Commercial Carbon Trimit—Models 272, 274, 276. Operates at 85°C / L,S,P terminals / 0.2 watt / 20K to 1 Meg.

Panel-Mount Trimpot

All models are now available with the added convenience of panel mounting. Unique design permits quick factory attachment of rugged panel-mount assembly to standard "on-the-shelf" Trimpot potentiometers. The Panel Mount Trimpot takes as little as 1/12 sq. inch of panel space, meets Mil-Specs for vibration, shock, salt spray, etc. Recessed head prevents accidental changes of setting. Silicon rubber O-ring and Teflon washer provide moisture barrier.

Write for detailed specifications and list of stocking distributors.

BOURNS
Inc.
P.O. Box 2112R, Riverside, California
Plants: Riverside, California and Ames, Iowa

In Canada: Douglas Randall (Canada), Ltd., licensee

FOR IMMEDIATE LARGE QUANTITY DELIVERY AT FACTORY PRICES

Yes! Schweber can sell up to 2000 pieces of any model of BOURNS TRIMPOT® at factory prices.

Sizeable quantities are available for immediate shipment from stock from Schweber's warehouse.

Bourne
ELECTRONICS
50 HERRICKS ROAD, MINEOLA, L.I., N.Y.
PIONEER 6-6820 TWX G-CY-NY-680
CIRCLE 19 ON READER-SERVICE CARD
NEW PRINTED CIRCUIT RELAY... FEED-THRU CAPACITOR

MODULE RELAY 0.200 grid ■ maximum module height, 0.400 inches ■ 25 g vibration to 2000 cycles ■ integral part of printed circuit ■ ideal for dip soldering ■ long life. FEED-THROUGH CAPACITOR thermal shockproof ■ up to 2200 uuf ■ temperature range, -55°C to 150°C ■ 200 WVDC ■ 0.590 inches maximum height ■ 0.155 inches mounting diameter. Write, wire, or phone!
Peace From Space*

Fitting for this time of year when men hope for the fulfillment of the Christmas message of peace and good will to all men, the gentlemen of the American Rocket Society, at their annual meeting, tackled the problem of achieving peace in our time. They look to the space missile as the dove of peace. The very development of giant booster rockets make peace an alternative to war; human effort to establish space law may guarantee world peace.

Faced with the dilemma of preparing for war or preparing for peace, Dr. Franco Fiorio sees space exploration as a substitute for war. It offers promise for economic gain, adventure, and satisfies dreams of conquest. The struggle to conquer space instead of nations has added appeal because it doesn’t necessitate killing or destruction. Fiorio sees military budgets being converted to space projects, and, because of the vast cost, cooperation between nations in getting payloads into the universe. This scientific cooperation is also seen by Keith Glennon, Director of NASA, and Eilene Galloway, space consultant to the U. S. Senate. Noted lawyer William A. Hyman, after an exhaustive study of policies of major foreign powers, sees the creation of a world space law as possible and as a necessary step now to “...provide the surest means of achieving the goal of all human beings—world peace.”

U. S. House of Representatives, Peter W. Rodino, Jr., also addressing the ARS, envisioning the frontier of space in new perspective, believes that although national rivalries may be projected into space it may well be that new doors to international cooperation can be opened. He calls for the U. S. to take the lead in accepting the challenge posed by the U. N. ad hoc committee on Peaceful Uses of Outer Space. He calls for an international conference to promote an international cooperation and the establishment of international law. The new hope for this Christmas time can be Peace From Space.

*Title of Dr. Fiorio’s paper presented to the American Rocket Society’s 14th Annual Meeting.
Progress has been rapid in all areas of electronics in the last ten years. Every design engineer has been affected in some way by the increasing activity in space exploration and national defense. But because he is usually wrapped up in his own project, he seldom has time to be aware of all other developments.

Here, in one convenient package, is an excellent opportunity for an electronics designer to get a good perspective of the entire industry. He can also see where his own field now stands in the industry. This interesting history, by extrapolation, makes excellent crystal-ball material for future planning.

And for a first-hand report on how the experts predict the future, don't miss "Design in the Sixties" in the Jan. 6 issue of Electronic Design.
Advances in Communications Design

During the last 10 years, necessity has become the mother of invention for electronic communications. A shortage of adequate facilities has forced designers to utilize more efficiently the frequency spectrum; reduce the effects of interference caused by crowding; exploit the use of higher frequencies, and speed calling and switching.

In the early 1950’s pulse-code modulation became the subject of renewed interest. Its inherent freedom from interference and its accuracy of transmission appealed to designers of data-transmission systems. Complexity of coding and decoding equipment was then (and still is) one of its major drawbacks. Federal Telecommunications Labs announced in 1952 its system of delta modulation, by which some of this equipment could be simplified.

But progress in digital communications has not been characterized by great spurts of activity. Rather it has been slow and methodical. It was not until 1957 that Bendix Pacific announced Electro-Span, a digital telemetering system for remote process control. Also in 1957, Federal Telecommunications Labs announced a TACAN data link, designed to speed aircraft flight data to Civil Aeronautics Authority controllers. More recently Stromberg-Carlson has developed an automatic binary data link, which operates over existing voice channels.

Voice Links Give Way

In 1959 it became apparent that voice communications links were gradually giving way to automatic data-transmission links.

In 1952 the phenomenon now known as scatter

(Continued on page 27)
How the Electronics Industry Grew in the Fifties

Factory sales of electronic equipment tripled in 10 years, growing faster than the Gross National Product of the country.

In the Fifties, military electronics passed consumer electronics as the value leader.

The Fifties gave birth to missile electronics, which is about to pass aircraft electronics in value of equipment purchased.

The Fifties have seen the remarkable growth of semiconductor devices and the start of the decline of receiver-tube sales.

Installations and maintenance costs are rising as fast as equipment sales. Employment in manufacturing is rising, too, but higher productivity is slowing its rate of increase.

How the United States would look if state lines were marked according to the value of electronic products shipped by each state.

Military electronics spending accounts for a growing proportion of total military expenditures.

Business Highlights of the Fifties

1950 TV-set sales triple for second year in a row.
1951 Missile electronics becomes a business.
1952 Military electronics sales double in one year.
1953 Sales of static components reach a still-untopped high.
1954 First large-scale computer delivered to industry.
1955 Semiconductor sales exceed costs of research and development.
1956 One-third of radio-set manufacturers go out of business.
1957 Sales of TV receiving and picture tubes start decline.
1958 Electronics R & D becomes a billion dollar business.
1959 Computer sales to industry double previous year's record level.
Triple Rise in Sales (continued)

creased from $350 million in 1950 to about $1.5 billion this year. The sharpest growth of any of the four major segments of the industry was registered by military electronics. Sales moved from $500 million in 1950 to well over $4 billion in 1959.

Related to this figure are two of the most significant changes in the electronic industry during the Fifties: the growth of missile electronics from an insignificant business to one that sold over half a billion dollars worth of equipment in 1959; and the start of the decline of the military aircraft electronics. Spending by the military for aircraft electronics reached a peak of roughly $1.8 billion in 1958, from which it declined by about $100 million this year. Missile electronics will shortly account for a larger share of the Department of Defense budget than aircraft electronics.

Two developments of even more importance to the industry in general were the rise during the Fifties of semiconductor devices and of data-processing. The factory value of all types of semiconductor devices shipped in 1959 will exceed that of receiver-tube sales. This is the second successive year in which factory sales of receiver tubes declined. Sales of semiconductor devices are now valued at about $300 million, up approximately one-third from last year.

Sales of data-processing equipment, in the industrial market alone, have already passed $500 million. Shipments to the military and scientific markets will lift the total data-processing sales figure for 1959 to over $1 billion. In 1950 there was no data-processing market.

Advances in Communications Design (continued)

transmission was being investigated. One objective of the investigation was to determine if there was an orderly way to predict over-the-horizon uhf transmission. In 1955 Bell Labs and the Massachusetts Institute of Technology had succeeded in transmitting microwave signals 200 miles using a 10-kilowatt transmitter.

In 1956 Westinghouse had two experimental uhf scatter systems in operation between Baltimore and Verona, N.Y. They operated at 900 and 2000 mc. The year before, Syracuse University had operated a 250-mile experimental link at 915 mc.

Federal Telecommunication Labs disclosed in 1956 its proposed scatter link between San Juan, P. R., and Ciudad Trujillo, Dominican Republic, a distance of 237 miles. Federal placed a commercial scatter system in operation between Florida and Cuba in 1958.

Communication via meteor burst came into being in 1958.

Progress in uhf communications took a step forward in 1954 when Raytheon placed the first rural telephone microwave relay in operation. Frequency of operation was 6000 mc at transmitter powers of 100 mw.

Radio Corporation of America announced in 1956 that engineers had produced a record 4,500,000 watts of rf power in a uhf TV experiment. At a frequency of 537 mc, 100 kilowatts were fed into an antenna with a gain of 50.

General Electric designed a system of bouncing microwaves from "mirrors" instead of repeaters. The first commercial system using the technique was put into operation in Texas in 1957.

Travel Reservations by Electronics

In systems, 1955 began an era in which automatic electronic means were used to speed travel reservations. Several railroads and two airlines put into operation a scheme in which Teleregister equipment was tied into IBM automatic printers.

Two important military communications systems were disclosed in 1956. One was the Missile Master, an automatic remote control firing Nike missiles. Second was the SAGE network, which tied all the air defense radars together and fed their information into a single center. Also in 1956 several radio-controlled auto traffic control systems went into operation. Previously designed experimental systems became practical.

Several military systems consisting of complete communications packages were developed in the late Fifties. Motorola's AN/MRC-66 is a mobile communications control providing single-sideband radio telephone service with selective calling.

Crowding of the frequency spectrum resulted in single-sideband transmission becoming mandatory at frequencies under 25 mc in 1956. Federal Telecommunication Labs announced in 1958 a multichannel SSB transmitter providing 120 telephone channels, each 500 kc wide. The system operates at 900 mc.

Color Television Born

In the broadcast field, 1950 saw the birth of the tricolor kinescope tube. This development set off the famous battle between RCA and the Columbia Broadcasting System over the adoption of a color TV system. RCA won in 1953 when the
Smaller filters ease the squeeze!

Filter designers! First 160-mu moly-permalloy powder cores pack high performance into smaller space

Filter and inductor designers specify our 160-mu moly-permalloy powder cores for low frequency applications. Where space is precious, such as in carrier equipment and telemetering filters, the high permeability of these 160-mu cores eases the squeeze.

In many cases, 160-mu cores offer designers the choice of a smaller core. In others, because inductance is 28 percent higher than that of 125-mu cores, at least 10 percent fewer turns are needed to yield a given inductance.

If Q is the major factor, 160-mu cores permit the use of heavier wire with a resultant decrease in d-c resistance.

Like all of our moly-permalloy powder cores, the 160's come with a guaranteed inductance. We can ship eight sizes from stock, with a choice of three finishes—standard enamel, guaranteed 1,000-volt breakdown finish, or high temperature finish. Further information awaits your inquiry. Magnetics Inc., Dept. DN-78, Butler, Pa.

PUTTING MAGNETICS TO WORK

DESIGN IN THE FIFTIES

1952

Advances in Communications Design

(continued)

FCC approved the compatible system standards. But color television has progressed very little since. It has been used to advantage in the medical field in closed-circuit systems.

In the search for less expensive and better methods of TV broadcasting, DuMont introduced its Vitascan system in 1955. This method consisted of scanning a scene with light, with photo-cells picking up the light impulses and translating them into television signals. Cameras were not required. For some reason, the system never got beyond the stage of a technical novelty.

RCA introduced a miniature vidicon tube in 1956 to operate in conjunction with a portable transistorized TV transmitter. The unit consisted of a four-pound camera and a 15-pound transmitter. Power output was 0.5 watt at 2000 mc.

TV Antenna Introduced

GE made available in 1956 a single-bay helical television transmitting antenna. Intended for vhf use, the antenna enables power boosts to 100 kilowatts.

Translator stations for television came into being in 1956. Power output for these "satellite" stations was about 10 w.

Tape recording of TV signals was announced by several companies in 1957. Ampex produced a tape unit capable of recording good quality color signals. RCA demonstrated high-quality taped color broadcasts.

General Electric demonstrated 3-D color television system in 1957.

An attempt to broadcast two television signals simultaneously on one channel was made early in 1958. One successful system was demonstrated by Blonder-Tongue. Bell Telephone Labs disclosed a system of transmitting telephone and
television simultaneously.

In other areas of broadcasting, the first FM auto radio appeared in 1954. The same year several experimental transistor radios were shown to the public. In 1955 RCA demonstrated a transistor auto radio. Both GE and Admiral Corp. showed experimental solar-powered radios in 1956. And transistor auto radios became commercially available in quantity in 1956.

Gains for Mobile Radio

Mobile radio made a great deal of progress in the 1950's. This was mostly due to the advent of transistors and miniature components. In 1955 the Signal Corps showed an experimental voice-powered transistor transceiver with a range of 600 feet. Radio System Lab announced the availability of a five-pound aircraft transceiver. This homing system operated in the 24-52 mc range. In 1957 RCA produced for the New York City Police, a pocket FM receiver that operated at 150 mc. GE announced a 100-watt mobile transistorized transmitter in 1958.

Wire communications were in the limelight in 1956 with the inauguration of a transatlantic telephone cable. The late 1950's saw much progress in solid-state switching devices for telephone systems. These have been slowly replacing the relay.

Stromberg Carlson has developed since 1958 several military wire communications systems using four-wire switching systems. These incorporate the transistorized telephone set, using compound tone signaling with push-buttons. Bell System started direct long-distance dialing in 1955 in a few selected areas. In 1959 push-button dialing was started experimentally in a few areas.

Centralab \[PEC\]^* circuits have filled the bill!

Proof of Design Flexibility: in hearing aids, guided missiles, appliances, jet aircraft, tv sets, electronic organs, and countless other applications.

Centralab PEC^* circuits—combining capacitors, resistors, transistors, and wiring in one compact sub-assembly—have stood the test of time. Since their development during World War II, more than 100,000,000 of them have been used to guarantee circuit performance in a multitude of electronic projects.

During these fifteen years, Centralab has continued to refine and improve its PEC^* circuits, giving them even longer life and broader application. The basic concept, however, has remained intact: a packaged circuit adapted to your shape and contour requirements, offering you flexibility, versatility, and reliability. PEC^* packaged circuit combinations can be designed in an infinite number of sizes and shapes, and special circuits can be produced to meet your requirements and any applicable military specifications.

Consult the Centralab engineering department for further information.

Centralab

A DIVISION OF GLOBE-UNION INC.
9601 E. KEEFE AVENUE • MILWAUKEE 1, WISCONSIN
In Canada: 669 Bayview Avenue, Toronto 17, Ontario

TRADEMARK
Y-5975

VARIABLE RESISTORS • SWITCHES • PACKAGED ELECTRONIC CIRCUITS • CERAMIC CAPACITORS • ENGINEERED CERAMICS
CIRCLE 25 ON READER-SERVICE CARD
Smaller, Tougher, Cheaper Components
—and they perform better, too

SPURRED by vacuum deposition and molecular techniques, electronic components—often called the “backbone” of the industry—have progressed dramatically. They are smaller, tougher, cheaper and improved in performance. In some instances today's components are wholly unlike their predecessors of 10 years ago.

What has motivated this progress? “Military applications in the missile and rocket field,” explained a spokesman for Vitramon, Inc. “The military’s emphasis on reliability and small-volume, lightweight packages has catalyzed the development of new materials and miniaturized design configurations, especially in the field of solid-state physics.”

Examples of why improvements in components were essential in the last ten years were given by a representative of the Leach Corp. “Maximum operating temperatures of components have been generally raised from 71 to 135 C,” he said. “And vibration-resistance levels have increased from 1 to 10 g at 10 to 55 cps, up to 20 and 50 g over a frequency range of 10 to 2000 cps.”

Component Density Raised
One measure of progress is component density. In 1950 it was possible to get from 5000 to 6000 components in a cubic foot. After concerted efforts in miniaturization, it is possible today to get from 50,000 to 60,000 components in a cubic foot—or 10 times as many.

Miniaturization was made possible partly through improvements in tubes and transistors. At the same time passive components were reduced in size—a result of lower power, current and voltage demands of the active components.

Improvements in standard components—resistors, capacitors, inductors, transformers, tubes, and the like—have been essentially small. Many new varieties of moderately improved components appeared. Among them were metal film resistors, metallized plastic film capacitors, ferrite core inductors and transformers, ceramic tubes, plastic element potentiometers, precision wirewound resistors through the use of new encapsulating compounds. These units reflect the availability of new materials or new techniques of manufacture. The solid electrolyte tantalum...
COMPATIBLE COLOR TV

SURFACE BARRIER TRANSISTOR

capacitor, a Bell Telephone Labs accomplishment, is an example of an advance in the form of a new capacitor structure.

Solid-State Gains Made

The rapid growth in the application of the transistor, silicon rectifier and other related solid-state devices was another component trend of the last 10 years.

There was also progress in connectors and methods of connection. An important trend was the move toward solderless connections. Behind this was the need for higher and higher reliability, lower installation costs and ease of servicing. Crimp-type, snap-locked contacts got an increasingly big play.

“Connectors have become more vital components of electronic devices, because of more and more interconnecting of black boxes and other equipment,” a Burndy Corp. representative commented. “In addition the miniaturization of all other components necessitated miniaturization of connectors.” Better connectors for both missile and printed-circuit applications were made.

Printed Circuits Are Born

Instrumental in reducing the size of electronic equipment has been the growth of the printed-circuit branch of the industry. It grew from nothing in 1950 to a $50,000,000 trade in “platforms” for components by 1959, an engineer at Photocircuits Corp. explained. The printed-circuit board has developed from a single and double-sided eyelet board to a two-sided, plated-through board. More boards now being made with plated-through holes than eyelet holes, the engineer said. This is the result of progress in controlling the process used in making plated-through holes.

Miniaturization and military requirements made heat a problem in the 1950’s, and steps were taken to overcome it. Companies producing fans took up the challenge. The industry came out with better, more compact and easier-to-use devices.

In super-precision high speed gyro rotors for guidance systems . . . or in delicately precise instrumentation . . . more and more missile manufacturers are turning to New Departure for proven reliability!

N.D. reliability starts in design . . . constant research in bearing geometry, metallurgy and lubricants enables N.D. to create the new and unorthodox designs that are solving today’s speed, temperature and miniaturization problems.

N.D. reliability is maintained in manufacturing . . . where advanced methods and successive inspections pay off in unerring prototype precision and uniformity . . . to ASA and AFBMA standards.

N.D. reliability costs no more . . . the growing number of America’s leading missile manufacturers that are counting on N.D. reliability is proof in itself . . . it costs no more. In fact, many manufacturers find it costs less!

N.D. availability is added assurance . . . while original orders are delivered in quantity when and where they’re needed, strategically located inventories prevent lost time and shortages in vitally important missile projects.

For immediate information call or write Department L.S., New Departure Division, General Motors Corporation, Bristol, Connecticut.
You ADVANCE FASTER with ADVANCED PROJECTS and ADVANCED EDUCATION!

At the Baltimore Divisions of Westinghouse, your career can move ahead rapidly. Advanced work includes Moletronics, Advanced Weapons Systems, Electronic Counter-Measures and Reconnaissance. The Westinghouse Graduate Study Program gives you the opportunity to earn advanced degrees at The Johns Hopkins University and the University of Maryland.

Current Career Openings for Electrical Engineers, Mechanical Engineers and Physicists include:

- ADVANCED ANTENNA & MICROWAVE SYSTEMS
- RADAR SYSTEMS
- NETWORK SYNTHESIS
- DIGITAL COMPUTER DESIGN
- ELECTRONIC COUNTER-MEASURES
- SOLID STATE DEVICES & SYSTEMS
- AUTOMATIC CHECKOUT & FAULT ISOLATION
- RECONNAISSANCE & SURVEILLANCE
- LIAISON ENGINEERING
- ELECTRONICS INSTRUCTION
- TECHNICAL WRITING
- COMMUNICATIONS SYSTEMS
- HUMAN ENGINEERING
- ASTRONAUTICS SYSTEMS
- QUALIFICATION ENGINEERING

SEND RESUME TO: Mr. A. M. Johnston, Dept. 202

Westinghouse

Baltimore

P. O. Box 748
3, Maryland

CIRCLE 900 ON CAREER INQUIRY FORM, P. 141

DESIGN IN THE FIFTIES

1954

Semiconductor Achievements
Mushroom in 10 Short Years

ALTHOUGH major advances have been achieved in the last decade in many phases of electronics, perhaps the most remarkable have been in semiconductor devices.

Since the announcement of the point-contact transistor in 1948, Bell Telephone Labs and transistor manufacturers and research groups have produced outstanding advances in basic knowledge, fabrication, reliability and performance of semiconductor devices.

In 1951 Dr. William Shockley of Bell demonstrated the junction transistor, which he had predicted three years previously. He followed this in 1952 with descriptions of a number of unipolar or "field-effect" transistors offering promise of high-input impedance at high-operating frequency.

Thin-Base Controls Achieved

In 1953 Philco revealed its surface-barrier transistor, followed by a micro-alloy device in 1954. These types demonstrated the technique for accu-
rate control of thin-base layers using an electrolytic etching process.
During this period research produced the drift transistor, which permitted the control of impurity distribution in the thin-base area to further increase high-frequency possibilities.
Bell's zone-refining technique, reported in 1954, made it possible to produce silicon crystals with electrically active impurities reduced to less than one part in a billion. Raytheon announced experimental silicon transistors tested to 350°C. Sylvania developed devices with mixtures of germanium and silicon for operation up to 350°C.
A major advance in transistor fabrication, the diffusion process, was announced by Bell in 1954. By permitting controlled introduction of impurities into a crystal, extremely thin base layer regions became possible. The diffused transistor family offers the highest frequency capabilities of present types, with the mesa transistor combining high-speed and high-power advantages.

Intrinsic Barrier Transistor

The "intrinsic barrier" or p-n-p transistor, with a theoretical limit of 3000 mc, was developed by Bell early in 1954.
Dr. B. N. Hall of General Electric announced in 1955 the "meltdown" fabrication process, using wire-shaped crystals rather than sliced ingots for small-signal, high-frequency applications. In 1957 GE offered the silicon unijunction transistor, showing highly stable negative resistance characteristics for application in oscillator, timing and bistable circuits.

By combining the features of a surface barrier transistor with a diffused base layer, Philco produced in 1957 MADT (mico-alloy diffused base) units, which could operate above 100 mc. Raytheon introduced the "spacistor" device, using the space charge region in a reverse-bias pn junction.

New size 08 Ketay Resolver is stable over entire temperature range

This new Ketay Resolver provides stability over the entire temperature range of \(-55°C\) to \(+125°C\). This is accomplished without the size and weight of compensating circuitry.
The Resolver has superior electrical characteristics:
- **High Input Impedance**—almost twice that of any existing unit.
- **Lower Phase Shift**—half that of existing units.

These features permit cascading twice as many resolvers with less degradation.

Resolver accuracy is now available in this small 08 size because of superior Ketay design. This Resolver meets or surpasses applicable military specifications for shock, vibration and humidity.

These typical specifications tell the story—

<table>
<thead>
<tr>
<th>Input Impedance (ohms)</th>
<th>Transformation Ratio</th>
<th>Phase Shift (lead)</th>
<th>Null Voltage (total max.)</th>
<th>Rotor Interax Error (max.)</th>
<th>Stator Interax Error (max.)</th>
<th>Functional Accuracy (max.)</th>
<th>Frequency</th>
<th>Input Stator</th>
<th>Number of Phases</th>
<th>Rotor</th>
<th>Stator 2</th>
<th>Voltage Rating</th>
<th>MAXIMUM VARIATIONS Over Entire Temperature Range (Open Circuit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010 ± 10%</td>
<td>1.059 ± 1%</td>
<td>6.0 ± 1°</td>
<td>50.0 Mv</td>
<td>± 7°</td>
<td>± 7°</td>
<td>± 7°</td>
<td>400 cps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26V AC</td>
<td>(-55°C) to (+125°C) (±10)% (±1.0)% (±2)° (±15.0) MV (±2)° (±2)°</td>
</tr>
</tbody>
</table>

Please write for detailed specifications and outline drawings.

KETAY DEPARTMENT

Norden Division of United Aircraft Corporation
Commack, Long Island, New York

CIRCLE 27 ON READER-SERVICE CARD
NEW Corning wafer capacitors run from 1 to 10,000 uuf

Uuf for uuf the smallest, most stable capacitors you can get for printed circuits and high reliability components. Never has so much capacitance been crammed into so little space with so much ruggedness and reliability. The smallest gives from 1 to 560 uuf while resting in a space only 0.00204 cubic inch in volume. The largest runs from 4301 to 10,000 uuf and takes up only 0.02106 cubic inch.

You sacrifice nothing for size. The flat shape gives you more options in mounting, e.g., slot or flat mounting in printed circuits. When you need leads we can provide those too, in the W-5 and W-4 sizes as WL-5 and WL-4.

These capacitors are rugged and reliable. The dielectric and conductor layers are fused at high temperatures and need no encasement. You'd almost have to smash one completely to stop its operation. Meets or exceeds the performance requirements of MIL-C-11272A.

For complete specs write for a new 4-page bulletin to Corning Glass Works, Dept. 540, Bradford, Pa.

<table>
<thead>
<tr>
<th>Capacitor</th>
<th>Capacitance (uuf)</th>
<th>Volume (approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-5</td>
<td>1 to 560</td>
<td>0.00204 in.*</td>
</tr>
<tr>
<td>W-4</td>
<td>561 to 1000</td>
<td>0.00327</td>
</tr>
<tr>
<td>W-3</td>
<td>1001 to 2700</td>
<td>0.00702</td>
</tr>
<tr>
<td>W-2</td>
<td>2701 to 4300</td>
<td>0.01951</td>
</tr>
<tr>
<td>W-1</td>
<td>4301 to 10,000</td>
<td>0.02106</td>
</tr>
</tbody>
</table>

Improved Silicon Rectifiers

Silicon-controlled rectifiers were announced in 1958 by GE. These boast higher efficiency plus faster firing and recovery times than thyratrons. In early 1959 Texas Instruments and Fairchild Semiconductors offered mesa transistors as "off the shelf" items.

Now available or in production are the following diffused devices:

- Silicon rectifiers handling up to 100 amperes.
- Reference diodes with accurate breakdown voltages up to several hundred volts.
- Diffused-base silicon transistors with frequency cut-offs approaching 100 mc.
- Diffused base germanium devices with frequency cut-offs to 1000 mc.
- Power transistors which can dissipate 100 w.

Tube Industry Holds Its Own In Transistor-Dazzled Market

DESpite a tremendous spurt in the development, production and use of transistors, the tube industry has demonstrated advancements in quest of the lion's share of the electronic market.

An extremely rugged "stacked tube" was announced by Sylvania early in 1954. Considerable size reduction with temperature operation ranging from -195 to 540 C were claimed for the device. It used ceramic rather than mica spacers for improved shock and vibration characteristics. The assembly was packaged in a ceramic envelope for further protection against environmental failure.

In 1955 General Electric announced a micro-miniature ceramic tube, only three-eighths of an inch long and five-sixteenths of an inch in diameter. It operates in the uhf region and can be used for injection of carriers into the space charge region by the emitter.
Silicon devices useful up to 200 °C.

Tunnel Diode Stirrs Optimism

The focus of attention in semiconductors today is on the tunnel diode. A result of the research efforts of Dr. Leo Esaki of Sony Corp., the device derives its name from the quantum-mechanical tunneling of majority carriers in highly doped junctions.

Major manufacturers are engaged in the development of practical circuits and applications based on the negative-resistance characteristics of the device. Experts predict new types of oscillators, amplifiers, mixers, and computer elements with uses still to be unearthed.

Small, truly portable radios and TV receivers are expected as a direct application of tunnel-diode research. Computer companies have indicated plans to include the devices in units under development.

be used at temperatures in excess of 500 °C, GE said.

Three developments early this year showed promise of active competition with semiconductors. Tung-Sol's cold-cathode vacuum tube eliminates the need for a heater, the major cause of failure in receiving tubes. Reliability is drastically improved, and other features include ability to withstand nuclear radiation and temperature extremes ranging from liquid air to red heat.

Another step in reliability improvement was Sylvania's "sarong" cathode structure. A skin-tight, wrap-around cathode film replaces the conventional sprayed cathode coating used in receiving tube assembly. With more uniform cathode coating, thickness and diameter control, higher and closer-tolerance transconductance can be obtained in tubes, with reductions in noise and cathode-to-grid arcing.

RCA's Nuvistor, smaller than a thimble and particularly suited for mechanized production, represents a radical departure in the electron tube concept. Its electrodes are small, lightweight cylinders supported on a ceramic wafer base. A high degree of freedom from shock and vibration is achieved because of their shape and low mass. Stable performance is offered between 190 to 350 °C, and the tube is less susceptible to radiation damage than semiconductors.

For technical information on these transistors and other semiconductor devices, telephone your RCA SEMICONDUCTOR DISTRIBUTOR, or write RCA Commercial Engineering, Section L-18-SD4, Harrison, N. J.
Handy & Harman Silver Powder and Flake for Electronic Applications

The increased acceptance of silver powder and flake in electronic circuitry and components has created a demand for a source that can supply these materials at a consistently high level of quality.

Handy & Harman manufactures silver powder and flake in all types and forms, for use in formulations on printed circuitry and wiring, resistors, condensers, thermistors, printed terminal strips on glass, ceramics or plastic laminates, etc.

If you are working on conductive or resistive coatings where you require excellent electrical conductivity, Handy & Harman will welcome the opportunity to assist you in the choice — or discussion of any silver product that may interest you. Write for Technical Bulletin A-4 on Silver Conductive Coatings and Bulletin A-5 on Silver Powder and Flake.

Our technical service and field application experience are at your disposal...we welcome inquiries on products and product problems involving any form of silver.

Your NO. 1 Source of Supply and Authority on Silver Alloys

Handy & Harman
General Offices: 82 Fulton St., New York 22, N. Y.
Distributors in Principal Cities

1. CIRCLE 29 ON READER-SERVICE CARD

THE NEED for greater electronic reliability became clear in the last decade as equipment became more complex, environments more severe, miniaturization imperative, and space exploration a reality.

The Korean War probably started a "chain reaction" in reliability, Kurt Greene, engineer at United States Testing Co., explains. Electronic equipment used in the conflict often malfunctioned and failed. In general it was found unsatisfactory. Investigation led to the realization that too many operational factors had not been studied sufficiently prior to production and delivery.

The development and growth of the electronic industry was abruptly threatened.

Both industry and the Government tackled the problem. The Government, in 1952, sponsored the Advisory Group on Reliability of Electronic Equipment, which had nine task groups. Its purpose was to determine procedures for stating reliability requirements in procurement documents and to develop tests for verifying compliance with those requirements. Its report was delivered in June, 1957.

Military Evaluations Urged

Task Group 5 recommended that a permanent group, at Department of Defense level, be established, charged with developing military co...
component specifications, testing component parts for design capability, and developing inspection methods. To implement these recommendations, a group called the Ad Hoc Study on Parts Specifications Management for Reliability was formed. It is still evaluating the recommendations and is to issue a report in the near future.

Meanwhile companies, slowly at first, began forming reliability groups and departments. They tested their own components and equipment or sent them to testing laboratories. So much testing was going on that the Government’s Task Group 5 concluded:

“Fantastic amounts of engineering manpower and test facilities are being devoted by components and equipment producers and agencies to component reliability studies in complete duplication of work done elsewhere. This must stop.”

Two recent examples of industry’s concern with reliability are these developments:

Fansteel Metallurgical Corp. announced that it would seal tantalum capacitors with their reliability specified in writing. And General Electric reported that it was spending a million dollars to develop electrolytic capacitors 99.999 per cent reliable.

Professional Symposiums Sponsored

The IRE, EIA, ASQC and AIEE, aware of the problem, jointly sponsored symposia on reliability and quality control. Five have been held so far. A new terminology is heard at these symposia. Phrases such as “product assurance,” “confidence level,” and “mean time between failures” are now fluently bandied about.

Progress has also been made on the theoretical level. Statistical and mathematical methods for analysis and prediction were explored, proposed and adopted.

One result of all this work is that such phrasing as “best engineering practices shall be used” in military contracts are being replaced with specific reliability numbers. Some of the major
How Alden Basic Building Blocks assure reliability in service

From the design engineer's point of view, this electronics unit - designed and built from standard Alden off-the-shelf components - with its circuitry neatly subdivided, function by function into simple, plug-ins - is a model of efficiency, simplicity, and reliability.

But the really unique feature of this uncomplicated unit is the amount of serviceability that has been built in - every step of the way - through a system of modular construction so simple that the user's own, untrained personnel, can locate and correct most troubles on the spot. For instance: monitoring elements assigned to each plug-in unit, including tiny Alden tell-tales, pinpoint and isolate trouble instantly.

Through the use of spares, no plug-in need be out of operation more than 30 seconds. (Chassis plug in, lock and eject with a half-turn of the wrist).

Color-coding, fool-proof matching of mating components, and other thoughtful Alden innovations enable any layman to make first-level tests.

This kind of basic "service-ability" serves both the engineer and the user, and it provides maximum utility and reliability to any electronic control unit. Write now for Alden's 250-page handbook.

THE PLUG-IN COMPONENT IDEA - part of a continuing series

DESIGN
IN THE
FIFTIES

200 MILE
MICROWAVE LINK

1955

THE 1950's saw the introduction of modular packaging with accompanying production economies.

Project Tinkertoy, Government forerunner of modular construction schemes, came into being about 1953. Its objective was the automatic production of radio sets by a technique of assembling wafers. Each wafer contained a portion of the circuit, and many wafers were interconnected by a series of soldered wires.

In 1955 Maleo Tool and Mfg. Co. announced development of an automatic printed circuit machine. Minnesota Engineering Co. also announced weapons systems now have reliability requirements written into them.

Human Error Cited

That there has been progress is undisputed. "But it is difficult to be precise about the degree," explained Sydney D. Scott, an engineering staff assistant at Arinc Research Corp. "This is because equipment improvements are masked by other influences. In brief, the effect of more reliable equipment has been counteracted to a great extent by a corresponding deterioration in the cali-

Modular Packaging Is Born, With Savings in Production

You can relax. Mr. Design Engineer - Alden Basic Building Blocks make most servicing problems simple, even non-technical people can solve them on the spot.
There is some truth in this statement, a Department of Defense official commented. But there are also many career-dedicated and extremely competent men in the armed forces, he added.

Most specialists agree that industry and the Government have come a long way in achieving more reliable electronic equipment—but that both still have much work ahead. ■ ■

...in a high-current silicon switching diode. The 1N920-1N923 series is the latest result of Sperry Semiconductor's unique developments for the computer field.

The most advanced addition to the industry's most complete line of high conduction fast recovery diodes, this series meets the severe requirements of high current pulse circuits for high speed computer switching, pulse clamping, gating, blocking, and diode logic circuits.

Designed for high temperature operation (to 175°C), the 1N920 series features high forward conductance (500mA at 1.0V) and low leakage (50µA at 150°C). Peak dissipation is 800 mw.

All units feature a maximum recovery time of 0.3 microseconds to return to 10K ohms when switched from a forward current 2 microsecond pulse of 500mA to a reverse voltage of -50 volts (-30V for 1N920), with a loop impedance of 1K ohms. Faster switching speeds are obtained at lower currents.

<table>
<thead>
<tr>
<th>Type</th>
<th>Working In. DC Voltage (Volts)</th>
<th>Max. Forward Voltage Drop at 25°C (V)</th>
<th>Max. Inverse Current (mA)</th>
<th>Min. Saturation Voltage at 1000A (V)</th>
<th>Max. Recovery Time (µsec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N920</td>
<td>35</td>
<td>50</td>
<td>30.5</td>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>1N921</td>
<td>35</td>
<td>50</td>
<td>30.5</td>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>1N922</td>
<td>100</td>
<td>50</td>
<td>30.5</td>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>1N923</td>
<td>130</td>
<td>50</td>
<td>30.5</td>
<td>0.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

*Refer to Sperry Bulletin No. 2103

SPECIAL SAMPLE OFFER

Order a sample lot for your own application at the special price of only $50 for a lot of 10 1N921 diodes. Direct your order to the Sperry Semiconductor Office or the nearest Sperry sales office as listed below.

SPERRY SEMICONDUCTOR DIVISION, SPERRY RAND CORPORATION, SOUTH NORWALK, CONN.

Call or write: Sperry Semiconductor, Wilson Avenue, SOUTH NORWALK, Conn., Volunteer 6-1641; in NEW YORK: Plaza 2-0885; 1055 W. Peterson Ave., CHICAGO 45, Ill., Keystone 9-1176; 2200 East Imperial Highway, EL SEGUNDO, Calif., Oregon 8-6226.

CIRCLE 32 ON READER-SERVICE CARD

1959 ELECTRONIC DESIGN • December 23, 1959
prepared single-turn line
To write so ganged...and
These singular single-turns come in both economy and all-metal models...so name your temperature...to 80°C...to 125°C...to 150°C.
Most models allow 8 cups to be ganged...standard linearity is ±0.5%, with ±0.10% available for most...and, of course, you can have non-linears and spec models.
To help you single out the single-turn you need, we have prepared Data File C522. Write for it today.

ULTRASONICS is one of the fastest growing industries. With the development of less expensive, more efficient equipment, many new applications have evolved.

One of the most important was the development of Raytheon's ultrasonic machining equipment. Announced in 1954, it made possible precision machining of hard metals and materials such as quartz.

Another application of ultrasonics was announced by the Veterans' Administration in 1954. Certain types of cancer and some mental disorders responded to ultrasonic treatment.

Sheffield Corp. expanded its Caviton line of ultrasonic machine tools in 1954. Reed research in the same year perfected a system of nondestructive testing by ultrasonic means.

The year 1955 saw the development of an ultrasonic control for torpedoes by Westinghouse General Ultrasonics Co. announced a method of descaling metals using an ultrasonic device operating at 19,800 cps. Also in 1955 Mullard, Ltd. introduced a line of ultrasonic soldering irons.

Acoustica introduced a high-efficiency magnetostriction transducer in 1956. These 400-watt units operated at 25 kilocycles. They could be grouped to produce a total power of 150 kilowatts.

Ultrasonic inspection equipment for rotors of jet engines was announced by Electro-Circuits in 1956. About the same time General Electric announced an ultrasonic method for treating paper and cloth for processing as insulating material.

Because of the fast growth of the industry, the Ultrasonic Manufacturers Association was formed in 1956.

In 1957 off-the-shelf ultrasonic cleaning units became available from Narda Ultrasonics Corp. Narda announced in 1959 portable missile cleaning equipment.

Almost every conceivable cleaning job of complex delicate equipment has come within the province of ultrasonics in the last few years.

ULTRASONICS
TREMENDOUS effort was put forth in the last decade studying, applying and manufacturing electronic materials.

In the field of microwaves, for instance, the use of ferrite materials in such devices as isolators, circulators and switches, initiated a new art that has matured in 10 years. Underlying these advances have been the development of knowledge in the solid-state sciences and its application to the control of matter. New electronic functions have been achieved thereby. The maser is an example of what resulted when the properties of basic materials were explored.

Thin film techniques, micromodules, integrated functional circuit devices—these, too, were the products of investigating the nature of material.

Semiconductor Search Pressed

Semiconductor materials were the object of intensive research. Germanium, as a near-perfect physical and chemical properties were developed. And silicon, after much study, entered the field as an alloy junction diode; later it was used in transistors. Other research in semiconductor materials made the Hall-effect generator feasible.

The properties of ceramics were examined and then used to produce high-temperature components.

Intensive efforts were made to develop new insulation materials, based on new plastic and elastomeric resins, films and impregnants. These materials have contributed greatly to better performance, lower cost and miniaturization of components and equipment. Du Pont, for example, came out with such new materials as Mylar, Teflon and Viton, all synthetic rubbers. And the Rogers Corp. developed a copper-clad reinforced Teflon for high-temperature, low-loss circuitry.

Silicone for Insulation

Silicone was also introduced into the insulation field. Laminates, varnishes, resins, compounds and
IDEAS FOR DESIGN—ENTRY BLANK

To the Ideas-For-Design Editor of ELECTRONIC DESIGN —
830 3rd Ave., New York 22, N.Y. • PLaza 1-5530

Here is my design idea for possible publications in your Ideas For Design department.
I can expect $10 for this idea if accepted for publication.

(Ideas suitable include: 1. new circuits or circuit modifications, 2. new design techniques, 3. designs for new production methods, 4. clever use of new materials or new components in design, 5. design or drafting aids, 6. new methods of packaging, 7. design short cuts, or 8. cost saving tips)

STATEMENT OF THE PROBLEM—

MY SOLUTION. AND WHY—(Please be explicit. Include sketches or photos that will help the idea across)

Name ____________________________
Title ____________________________
Company __________________________
Address __________________________

(Place illustrations on separate sheet if necessary)
Among the many other areas of investigation was one to find conductive materials with much flatter temperature coefficients. Behind this was the wide range of temperatures in which some military equipment operated. Research in cryogenics holds promise of solving this problem.

The klystron started and ended the decade as the workhorse of microwave sources. Three developments made practical a power-handling capacity undreamed of before the 1950's.

The first was the convergent electron beam, which allows electrons from a large area cathode to be focused into a small, high-density electron beam. The second was the perfection of precision beam control, which prevents vaporization of the supporting tube structure by the beam itself. The third was the development of practical ceramic windows that permit the high-level energy to be coupled from the vacuum bottle to the pressurized transmission line.

These techniques are incorporated at the beginning of the decade first in Sperry's 40-kilowatt X-band SAX-22 and 4-megawatt L-band SAL-36. Since then, multi-megawatt sources have become practical and have made possible the enormous AEW radar systems and scatter propagation links.

Development of electrostatically focused klystrons brought the cost, power and heat losses of the klystron into line with many new applications, such as air-traffic control systems. Klystrons are now being developed with higher efficiency (in the order of 50 per cent), higher frequency (millimeter reflex klystrons and sub-

THESE WESTON RECTANGULARS LEAD THE FIELD

The well-balanced design, fine appearance and desirable features of these Weston instruments reflect a 70-year tradition of fine engineering and craftsmanship. If you're not already well acquainted with these notable models, look over this check list — you'll not find better value anywhere.

For full information, contact your local Weston representative... or write to Weston Instruments, Division of Daystrom, Inc., Newark 12, N. J.

In Canada: Daystrom Ltd., 840 Caledonia Rd., Toronto 19, Ont. Export: Daystrom International, 100 Empire St., Newark 12, N. J.
millimetric dielectric tubes), broader bandwidth (up to 5 per cent) and lower noise figure (as low as 6.7 decibels). New multi-cavity frequency multipliers, rugged klystrons for extreme airborne and missile applications, grid-less construction and parametric operation have been perfected. Developments of this type promise for the klystron a prominent position among microwave sources for some time to come.

The progress of the traveling wave tube from a curiosity to a leading contender among sources and amplifiers is one of the most significant microwave developments of the decade. The long interaction time between wave and electron beam leads to very broad bandwidths, low impedances, low IF voltage, voltage tunability and high gain. Problems with this type of tube are the need for great accuracy in alignment of the long beam, high power consumption of the electromagnets and fragility of the helix at higher frequency.

Many advances in these problem areas have shown great promise recently. Periodic permanent magnet focusing and several forms of electrostatically-focused TWT's were announced.

Several other new sources have been developed. The backward-wave oscillator resulted from an undesirable characteristic noted in TWT's. It has become a useful laboratory source and ECM component because of its broad and rapid voltage tunability. The Carchnotron, developed in France, remains of interest. The amplifer, developed by Raytheon in 1958, has attained remarkable efficiency in the order of 80 per cent. Because it acts as a low-loss waveguide transmission line when not oscillating, it affords simplification of microwave plumbing.

Ferrites Facilitate Designs

Ferrites—ferromagnetics with low conductivity—have had a tremendous impact on microwave plumbing design. This very useful material has led to the development of isolators, circulators, phase modulators and many anisotropic (loaded) waveguide devices. At the close of the decade, new materials, such as yttrium and gadolinium, showed promise to extend the effectiveness of gyromagnetic art built around ferrites.

Parametric Amplifiers and Masers

The concept of parametric amplification brought forward many contenders for the prime component to take advantage of this technique. Ferrites have so far been overshadowed by TWTs because of power and weight. Semiconductor diodes appear to promise longer reaching benefits of cost and size and are currently receiving consideration for this role.

Masers were of interest early in the decade because of their very low noise level. The development of parametric low-noise devices put masers in disfavor for most applications. However, for such uses as in radio astronomy, where noise is the most important consideration, masers, especially solid state types, are still the ultimate.

Solid-State Art Pressed

Much of the R&D work in microwaves toward the close of the decade has been devoted to solid-state microwave devices. The announcement this year of the tunnel diode has led to even greater interest in solid-state developments.

Among the systems most directly benefited by new component developments are high-power radars. As tactics demanded and tubes permitted, AEW radars increased their range and coverage until both coasts and the polar regions were protected by overlapping antenna patterns. Along with the new high power transmitters, advances were made in large search antennas, scatter propagation links and a variety of special purpose aircraft, Texas towers and arctic equipment.

But in spite of all these developments, there is still need for a new type of system to give reasonable warning of enemy ICBM's. A great deal of work is being done in phase-scanning stationary antennas and new detection and ranging philosophies of many types. Much has been learned from minitrack and other satellite tracking systems developed during the decade.

Along with new detection schemes, work is in progress on more efficient data-handling systems that will allow rapid identification and processing of many suspected targets. According to David B. Smith, vice-president for technical planning at Philco, the most significant achievement in microwaves has been the impact of information theory on the handling of information.

Doppler Navigation Radar Utilized

Doppler systems have become of great significance among navigation systems. One of the simplest and most versatile self-contained navigation systems, the Doppler radar has found favor in aircraft ranging from the B-58 Hustler jet to L-19 small observation planes and light helicopters. It is used as an aid to inertial systems in land and celestial-inertial systems because of its long-range stability.

Much interest and work has developed in the last few years in satellite communication links that would allow ocean hopping and emergency facsimile air mail. Progress has thus far been limited mostly to simulation work pending availability of satellite vehicles. A recent proposal by Raytheon for a helicopter platform, fed from the ground through a microwave power link, opened new fields for low power microwave communication links, as well as an entirely new use of microwave equipment.

Among the many other system developments of the 1950's are an array of crossed-baseline tracking systems, such as Convair's Azusa, Convair's DME and AME, and GE's system. These offer angular accuracies unattained before the start of the decade. Monopulse radar systems have accomplished almost equal advances in more mobile units. Work is in progress on the use of tunnel diodes and other components in microwave computing systems.
Air Navigation, Sorely In Need of Automation, Gets Electronic Assist

FEW FIELDS have required greater electronic progress in the last ten years than air navigation. Whether the progress made was sufficient for the needs is debatable.

In 1950 aircraft movement was controlled almost entirely by voice communications. In 1960 it will still be controlled by voice. But other aids have been developed and placed in operation.

In 1954 the Eclipse-Pioneer Div. of Bendix announced a transistorized autopilot. Its lighter weight and small size were important considerations for smaller aircraft. In the same year Bendix obtained manufacturing rights to the British Decca system of navigation. The Decca plots aircraft position on a map during flight. The system was demonstrated in the U.S. in 1956. A year later Sperry announced a transistorized autopilot for helicopters. It occupied only two cubic feet and weighed 60 pounds. In 1955 TACAN was demonstrated by the Air Force and made available for civilian use.

In 1955 Lear and Collins Radio participated in a flight in which vhf omni-range stations were automatically triangulated to determine positions.

Radio Web, a navigation system designed in France, was being promoted in the U.S. in 1957 by Stivad Engineering. Also in 1957, Laboratory

Greater permeability for Allegheny Ludlum's AL-4750...and it's guaranteed

promises more consistency, higher predictability for magnetic cores

AL-4750 nickel-iron strip now has higher guaranteed permeability values than ever before. For example, at 40 induction gauss AL-4750 now has 57% higher permeability than in the past, using the standard flux density test.

This greater permeability means better consistency and predictability for magnetic core users... and allows careful, high performance design.

This improvement in AL-4750 is the result of Allegheny Ludlum's continuing research on electrical alloys and nickel-bearing steels. Moly Permalloy has been similarly improved in permeability. A-L constantly researches silicon steels, including A-L's well-known grain-oriented silicon, Silelectron, and other magnetic alloys.

Complete facilities for the fabrication and heat treatment of laminations are available at Allegheny Ludlum. And A-L's technical know-how guarantees you close gage tolerance, uniformity of gage throughout the coil, and minimum spread of gage across the coil-width.

If you have a problem on electrical steels, laminations or magnetic material, call A-L for prompt technical assistance. Write for blue sheet EM-16 for complete data on AL-4750. Allegheny Ludlum Steel Corporation, Oliver Building, Pittsburgh 22, Pa. Address Dept. ED-24.
General Plate TRUFLEX Thermostat Metal Assures CONSISTENT SENSITIVITY AND ACCURACY...

In SIGNET CONTROLS

In designing its new attractive thermostat Signet Controls turned to General Plate for Truflex Thermostat Metal. Here's how Mr. W. D. Gibson, Manager of Signet Controls, puts it:

"The heart of a thermostat is the temperature-responsive element. In designing our new Model T500 we were careful to select a thermostatic material which would be consistently sensitive and accurate. Our previous experience assured us that we would obtain these vital characteristics with Truflex Thermostat material."

When you buy General Plate Truflex Thermostat Metal you can be sure that the first lot meets specifications 100% and every succeeding lot is a duplicate... has identical characteristics to the original... whether it be manufactured days, months or years later.

Advanced General Plate production methods insure positive consistency in tolerances, grain structures, expansion, hardness, etc. They assure maximum uniformity of materials which reduces costly rejects and guarantees highest quality performance.

Truflex Thermostat Metals are available as fabricated elements, assemblies and extra long coils or flat strip. Write for information.

Inertial-Quality Gyro Paces Gains Guid

If one component development is to be singled out as having the greatest impact on guidance and control in the last decade, it is unquestionably the inertial-quality gyroscope.

Just a design goal at the start of the decade, drift rates of less than 1 per cent of the 15-degree per hour have become rate of the earth reality.

In inertial components the big design problems have been balance and bearing friction. Machining tolerances in small fractions of thousandths were not enough to maintain the ultra-precise gimbal balance under operating conditions. Any change or imbalance in the flow from the heat sources (such as the wheel motor and TRF) through the gimbal structure to the heat sink...
Now available—a wide range of traveling wave tubes

ONLY SYLVANIA CAN OFFER YOU

AVAILABILITY—now in production, 16 types of traveling wave tubes covering the microwave spectrum from 1 to 11 kmc, and milliwatts to kilowatts. Backward wave oscillators are also available. Modifications and new designs for your special requirements are part of Sylvania's service.

HIGHEST GAIN—Sylvania's traveling wave tubes deliver 2 to 5 times the gain of competitive types. For example, TW-4002 delivers a minimum gain of 37 db over its full 2 to 4 kmc band.

GUARANTEED UNIFORMITY—Sylvania guarantees gain variations one-half those of other tubes; i.e. 2 to 3 db narrower limits. Other test limits are correspondingly more rigid.

PROVEN RUGGED DEPENDABILITY—Sylvania traveling wave tubes have proved their performance by meeting tough military standards and by being specified and used in modern supersonic aircraft.

For more information write your nearest Sylvania tube sales office or
Sylvania Electric Products Inc.,
Special Tube Operations,
500 Evelyn Ave., Mountain View, Calif.
Inertial-Quality Gyroscope PACes Gains in Guidance and Control (continued)

plane guided by an MIT-designed Schuler-tuned SPIRE system was flown across the U.S. to within a stone’s throw of its destination in California.

Another MIT-inspired inertial system, the SINS (Submarine Inertial Navigation System) gained attention during the first submerged crossing of the North Pole by the Atomic submarine Nautilus. Improved designs of this system will form the basis of navigation for a family of nuclear ballistic-missile submarines.

An air-bearing gyro, designed by ABMA and produced by Ford Instrument Div. of Sperry-Rand, constitutes the second approach to the gimbal-bearing problem. This design guided the Redstone, the nation’s first successful inertially guided ballistic missile. It also guided the Jupiter IRBM and the history-making Jupiter C, which put the first U.S. satellite into orbit.

Spin Bearings Improved

With the sizable reduction achieved in gimbal-bearing friction, spin-bearing friction, negligible up to this point, began to be a problem. New methods developed by MIT to select bearings improved the situation temporarily. Basic research in materials helped reduce the “ridge” in the metal race in front of each rolling ball, substantially reducing the problem.

Unusual approaches to these problems have been undertaken in the closing few years of the decade. Experimental work is in progress in electromagnetic bearings and electrostatic (Cystat) bearings. In these devices the spinning member is set in motion in a vacuum at the start of a flight by an external power source. It is then allowed to “coast” for the remainder of the trip. It is anticipated that friction levels will be so low that the loss of angular velocity will be insignifi-

of the decade. Its remarkable accuracy, primarily limited by anomalous propagation through the atmosphere, is supplemented by its ability to predict point of impact almost instantaneously.

A further development of this type of system was undertaken by General Electric in 1958. Simplified instrumentation, employing the same basic principal of operation, has been developed by Cubic Corp. over the last five years in several systems. These systems remain basically launch control and range safety instruments, because of the possibility of jamming and natural interference.

Optical Guidance Reconsidered

Celestial guidance reached a high-degree of precision in the Snark early in the decade and later in the Navaho. Because of the relatively slow cruise type of missiles then employed, errors in inertial guidance systems had time to build up to excessive values. The long-term accuracy of celestial systems led to their use as monitors. When missile speeds increased to the point that 20-minute flight time was near-maximum, celestial monitoring of the improved inertial systems became unnecessary. Now, with the advent of days-long space travel without benefit of Schuler-tuning, optical navigation systems are again receiving a great deal of attention.

The decade has been one of development of a remarkable array of guidance schemes. But more impressive than the variety of approaches has been the degree of success in developing working systems. The sight of a long, basically unstable ballistic missile standing on its fiery tail long enough to lift off the earth into space is awe-inspiring. ■ ■
Infrared Manufacturers Improve Detectors, Trackers and Scanners

Infrared (IR) progress in 10 years has made possible better detectors, tracking systems and scanning devices.

General Electric, from 1952 to 1954, developed an infrared air-to-air, search-track system for night fighter planes. Work along these lines led to an air-to-air IR-guided missile, the Sidewinder. In 1956 the missile became operational. Other companies engaged in the Sidewinder project included Philco, Kodak, ACF and Bulova.

Many new IR detectors were announced in the late 1950s. Greatly improved units were being made in 1957-1958. More efficient and sophisticated detector cooling systems were also developed.

IR applications covered aerial photography. In 1951 Servo Corp. made the first IR aerial photo of New York City. Also in 1951 two Purdue University researchers discovered that germanium and silicon make excellent IR filter materials.

In 1954 GE demonstrated a trackside hot-box detector system for railroads. The following year Servo showed a detector designed to spot overheated journal boxes on moving trains.

Most of the recent advances in infrared are classified. With increased sensitivities of detection equipment, some heretofore unheard of applications have been disclosed. One company showed in 1959 IR photos that were able to detect where objects had been. A recent advance noted that hour-old wakes of submarines could be detected.
Early Computers Come of Age in a Decade:

From Univac I to IBM and Remington Giants

The Fifties may well be called the decade of the computer. Certainly there were computers before 1950, but they were striplings compared with the full-grown machines of the middle and late fifties.

In the broadest sense, one may regard early desk calculators as computers. Certainly one can consider the punched-card system, designed by Dr. Herman Hollerith for the 1890 Government census, as a true computer. (Hollerith founded the Tabulating Machine Co., which became the International Business Machines Corp. in 1914.)

Later machines, like IBM's Harvard computer in 1944 and the University of Pennsylvania's Electronic Numerical Integrator and Computer (Eniac) in 1947 looked more like today's large-scale computers. But they were primitive by comparison.

The Harvard machine was electromechanical, using more than 3300 relays, 225 circuit breakers and 1210 ball bearings. With 1728 electromechanical counter wheels, it presented computations to 23 significant figures. Its program as well as logarithmic and other tables were stored on punched paper tape.

Eniac, with its 18,000 vacuum tubes, was the first large-scale electronic digital computer. It was internally programmed and used vacuum-tube, high-speed storage.

Gains Become Pronounced

The turn of the decade saw real strides in computer development. First came Remington Rand's Univac I, which was installed at the Bureau of Census in 1951. Then, in 1953, the IBM 701 offered 6250 times the capacity of the original Harvard machine.

Univac I used acoustic delay lines to store 12,000 binary digits. In its day it represented a giant step in the computer art. But with its arithmetic time, including access, of 525 usec for addition, 2150 usec for multiplying and 3950 usec for dividing, it was very slow by today's standards.

Its basic pulse rate was 2.25 usec, and it could read 12,800 characters per second from seven-channel magnetic tape. It used 5200 vacuum tubes of 15 types and 18,000 diodes.

The IBM 701 was the first large machine to use a floating decimal point. It used three types of storage: electrostatic cathode-ray tubes, magnetic drums and magnetic tape.

Its thousands of vacuum tubes and diodes allowed the machine to perform 16,000 additions or subtractions a second and 2000 multiplications or divisions. Its cathode-ray tubes stored the equivalent of 20,000 decimal digits; its drums the equivalent of 80,000 decimal digits, and each reel of magnetic tape 2,000,000 digits.

As the decade moved on, many different types of memory units were developed—each with its own advantages and limitations. Some were designed for very rapid access, others for large storage capacity.

Magnetic Tape Used

Punched cards and tape gave way to magnetic tape for speed. Magnetic drums provided much faster access than tapes, but they couldn't store as much data. Large arrays of vacuum tube flip-flops were a very popular choice. With the development of electronic drums, capacities continued to rise. A 1024 10,000-volt storage tube could hold 13,107 characters at the same time.
FERROMAGNETIC
AMPLIFIER

A view of the console of Ramac 305 (Rapid Access Method of Accounting and Control), looking past the disk-storage unit.

Complete ratings in these and many more tantalum capacitors comprising Sprague’s famous TANTALEX® line are all available on large-quantity, short-delivery schedules.

TANTALEX Capacitors are backed by thousands of test hours. They’re characterized by extremely low leakage current and unusually high capacitance stability even at low temperatures. Sprague’s many types cover a temperature range of from -55 C to +125 C; voltage ratings from ½ volt up to 150 volts.

WRITE FOR ENGINEERING BULLETINS on the Sprague TANTALEX Capacitors in which you're interested.

SPRAGUE®
The mark of reliability

SPRAGUE COMPONENTS:
CAPACITORS • RESISTORS • MAGNETIC COMPONENTS • TRANSISTORS • INTERFERENCE FILTERS • PULSE NETWORKS
HIGH TEMPERATURE MAGNET WIRE • CERAMIC-BASE PRINTED NETWORKS • PACKAGED COMPONENT ASSEMBLIES
CIRCLE 40 ON READER-SERVICE CARD

(Continued on following page)
One of the most obvious changes in computers during the Fifties has been the almost complete disappearance of vacuum tubes in favor of transistors. Today's transistorized computers can process far more information in far less time than could the computers of a decade ago.

Large Units on Market

Among the most modern large-scale computers on the market are Remington Rand's Univac Larc (Livermore Atomic Research Computer) a solid-state device, and the IBM 7090.

For speed alone, one can contrast the Larc's 4 µsec for repetitive additions with Univac's 525 µsec. Larc's coincident current core memory can store 1,200,000 bits with 4 µsec access, and the capacity is expandable to almost five times that number.

Larc uses 62,000 transistor amplifiers and a fifth of a million diodes in addition to thousands of tiny magnetic amplifiers and a handful of vacuum tubes.

Thousands of ferrite cores in the IBM 7090 can store almost 1,200,000 bits with an access time of 2.4 µsec. The 7090 can multiply two five-digit numbers in less than 21 µsec. That's almost 25 times faster than the multiplication speed in the 701.

The 7090 system uses as many as 80 magnetic tape units, and it can perform eight simultaneous read, write and compute operations.

Effects of Computers Cited

Looking back at the decade, one would find it difficult to select the most significant developments. IBM President Thomas J. Watson, Jr. believes that the significance lies in the profound changes that computers have brought about. He says:

"On one thing all are agreed—businessmen, scientists and economists alike—electronic business machines, and especially computers, are already beginning to change profoundly the ways in which we work, the ways in which we search for new knowledge and the ways in which we defend ourselves."

Remington Rand's vice president, Dr. Howard T. Engstrom, looks at another part of the picture—the fact that more people have learned to use computers.

"The uses of these equipments," he says, "are extremely varied. In certain areas, such as the solution of differential equations in hydrodynamics, it is fairly clear that these devices are necessary. In other areas, such as in the guidance of missiles, where real-time operation is required, it seems also clear that this type of equipment is necessary.

"In the commercial areas, such as payroll calculations or insurance premium notices, the need for these high-speed equipments is not as clear intuitively, and I think the last 10 years have demonstrated the value of high-speed equipment in these areas."

Development Called Illusory

Computer development is viewed as impressive by Dr. G. W. Petrie of IBM's advanced systems development division. He says:

An artist's view of the Larc (Livermore Atomic Research Computer). This modern machine adds or subtracts a quarter of a million 12-digit decimal numbers per second.

Engineers at work on one of IBM's proudest achievements, the 7090 Computer.
Main frame of the IBM 701.

"Some of the most competent to analyze the situation have estimated that each year during the past decade there has been a factor of improvement of ten in regard to computer speed, memory capacity, reliability and other significant factors."

Others in the industry see the modular principle employed in today's machines as most important. It allows computers to be expanded as the need arises.

Two divergent trends in the industry are apparent: one toward making specialized computers for special jobs, and the other greater versatility. Dr. Charles R. DeCarlo, assistant general manager of IBM's data systems division, notes the trend toward versatility in pointing out that originally computers were designed only for scientific and engineering work.

"But today," he notes, "there is no area of science or industry that cannot benefit from an electronic system. Recently, for example, a program was devised for translation of English text into Braille on an IBM 704. The same computer is used by industry for design of petroleum processing plants."

With years of specialized experience in the electronics field and complete facilities for the volume production of small metal stampings as well as the assembly of metal to plastic and ceramic components, Ucinite is fully equipped to supply you with special electrical parts and assemblies... designed, assembled, wired and marked to your specifications.

For complete design, engineering and production service, call your nearest Ucinite field engineer.

Manufactured by

The Ucinite Company
Division of United-Carr Fastener Corporation, Newtonville, Mass.
WHAT DID HAPPEN IN DESIGN IN THE FIFTIES?

READ the Dec. 23rd issue of ELECTRONIC DESIGN for the review of electronic progress in the fifties. This inclusive coverage shows the industry’s growth, new developments, controversies—all summarized to keep you informed of the field. Highlights include: the birth of scatter communication systems; how industry met the need of better and reliable components, power supplies and other devices; a photo comparison of 1950 product models with 1960 models.

WHAT WILL HAPPEN IN DESIGN IN THE SIXTIES?

WATCH for the Jan. 6th issue of ELECTRONIC DESIGN. Covered for you are industry’s predictions for the coming decade, the problems that will be faced and suggestions to deal with these problems. Top industry men will forecast the developments and changes in design, the designers’ role, and the changes in the designers’ role in the sixties.

Machine Replacing Man as System Engineering Pushes Out on 2 Fronts

SYSTEM engineering has exhibited at least two strong trends in the last decade.

The first is that of moving the dividing line between man-performed and machine-performed functions further in favor of the machine. The second is toward a closer alliance between design and long-distance objectives.

Man has been removed as a system component wherever possible, largely through automation of low-level decisions and through systematic study of his information requirements. This trend became necessary as reaction times shrank and decision complexity grew beyond the capability of the one-channel, low-band-pass characteristics of man.

Where 11 men were required to operate the many sub-systems of the B-52, operational in the mid-1950’s, a three-man crew operates the faster and more complex B-58 Hustler weapon system. The systems engineer that emerged during the decade was a result of the need for decision simplification, as well as greater control of the weapon design and production program. Great use of digital computing equipment in airborne applications—such as the Hughes fire control computer—was brought about in the mid-1950’s.
Since then flight-management computers have been developed recently by Litton and Librasecope, and the ASN-24 digital navigation computer, by Librasecope, promises to extend machine operations to non-decision functions for aircraft crews. Microminiature modules make the increased equipment complexity tolerable.

The contact-analog display concept, developed under the joint Army-Navy Instrumentation Program (ANIP), is an example of removing the human element from the control system. Extensive study determined the minimum of information needed by the pilot of a high-speed aircraft and the type of presentation most readily assimilated.

A control system for the aircraft was then designed by Bell Aircraft, Douglas, Kaiser Industries and others in view of these findings.

A similar program, Submarine Integrated Control (SUBIC), is in progress at Electric Boat. It is designed to accomplish a similar dehumanized control system for submarines.

These programs also typify the intensified effort to bring equipment design more completely in line with what it is supposed to accomplish. This is part of the second trend exhibited by systems during the decade—the greater use of operations research (O-R) before system design is undertaken. These techniques, born during World War II, have been employed to reduce design waste and increase ultimate effectiveness of systems.

O-R and feasibility study techniques have been applied to great advantage in designing the super systems that have appeared in the decade. The radar warning net as a system had to take into account the strategic defense objectives to be achieved. The SAGE equipment integrates this and many other sources of input information into a continental defense network. This multi-billion-dollar program is an example of equipment design oriented to a single system objective or the grand scale. Other systems of comparable scope are under consideration for other purposes, both military and civilian. ■ ■

WESTINGHOUSE SILICON POWER TRANSISTORS

2N1015

2N1016

TRUE VOLTAGE RATINGS

Guaranteed by 100% power testing

This Power-voltage Test consists of testing the transistor in common emitter configuration under all bias conditions in the area defined by the TRUE voltage rating of the transistor (\(V_{CE}\)); the constant power dissipation curve for the transistor (150 watts); and its rated current (2 amps for 2N1015 and 5 amps for 2N1016).

The voltage at which alpha equals one, and other voltage ratings commonly given for transistors such as \(V_{CEH}\), \(V_{CEF}\), \(V_{CEX}\) and \(V_{CEO}\), are above the voltage rating given to these transistors.

Each Westinghouse silicon power transistor has been completely tested throughout its rated voltage-power-current region before shipping. Thousands of transistors performing under all types of operating conditions have proved the validity of this method of TRUE voltage rating.

TRUE voltage ratings from 30 to 200 volts give you complete freedom in designing your equipment—you can operate Westinghouse silicon power transistors at the manufacturer's ratings without risking transistor failure. This TRUE voltage rating of Westinghouse silicon power transistors coupled with their still unequalled low saturation resistance and low thermal drop makes them an ideal first choice for military, industrial and commercial applications.

<table>
<thead>
<tr>
<th>Type</th>
<th>(V_{CE})</th>
<th>(B) (mm)</th>
<th>(R_0) (max)</th>
<th>(I_C) (A)</th>
<th>(I_T) max</th>
<th>Thermal drop to case (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N1015</td>
<td>30</td>
<td>10</td>
<td>75 ohms</td>
<td>2 amp</td>
<td>500 ma</td>
<td>150°C</td>
</tr>
<tr>
<td>2N1016</td>
<td>60</td>
<td>10</td>
<td>50 ohms</td>
<td>5 amp</td>
<td>750 ma</td>
<td>150°C</td>
</tr>
</tbody>
</table>

TRUE voltage rating (The transistors can be operated continuously at the VCC listed for each rating.)

AMPLITRON

SILICON-CONTROLLED RECTIFIERS

READER-SERVICE

Westinghouse Electric Corporation, Semiconductor Department, Youngwood, Pa.

CIRCLE 41 ON READER-SERVICE CARD

ELECTRONIC DESIGN • December 23, 1959
Instrument Trade Blends Old With New;

Solid States and Etched Circuits Used

In instrumentation one can see some of the decade’s evolutionary changes in electronics, as well as some of its most dramatic absence of changes. Many of the instruments in laboratories seem to have been around forever. Yet they continue to provide faithful and reliable service year after year.

An example of an instrument that has remained virtually unchanged for almost a generation is General Radio Company’s Type 650 Impedance Bridge. Known by many as the “old, reliable workhorse,” it continues in daily use on lab benches throughout the country.

But as the electronics industry moved forward in the last 10 years, so did requirements for wider measurement ranges, greater convenience in handling and measuring, and accuracies even better than what the 650 could provide.

Old and New Combined

The Type 1650-A Impedance Bridge was General Radio’s answer. It includes all the desirable features of the 650—and more. With the 1650-A, one can measure dissipation factor and Q with an accuracy of 5 per cent over the entire range of the bridge. That’s four times better than the 650 at the lower extreme of its range.

The new instrument includes a patented Orthonull feature, which permits measurement of low-Q inductors and high-D capacitors without a sliding balance. This permits much more rapid readings. The new bridge is housed in a case whose cover can be tilted to hold the instrument at any convenient angle.

Another example of change in instrumentation over the decade is Hewlett-Packard’s Harmonic Wave Analyzers. The 1950 Model 300A covered the frequency range of 30 to 15,000 cps. The newer Model 302A covers 20 to 50,000 cps. The 300A weighs twice as much as the transistorized 302A and consumes 35 times as much power.

Such improvements symbolize the changes in many instruments by many manufacturers to meet the growing challenges in the industry.

Three Leading Developments

It is difficult to pinpoint the single most significant development. Most authorities would
agree with the comment of General Radio's engineering manager, Ivan G. Easton, who said: "The most significant developments in the past 10 years are the growing use of transistors and other solid-state devices and the use of etched circuits. In the past five years the single most important development is probably the increasing use of digital techniques in instrumentation."

Hewlett-Packard’s director of development, John Cage, points to four developments he considers most significant:
- "The development of photoconductive modulators to measure a microvolt or so of dc voltage by converting it to an ac voltage."
- "The development of the 'clip on' concept, as exemplified in the clip-on dc milliammeter."
- "In the oscilloscope field, the development of the sampling scope for display of extremely fast repetitive pulses."
- "In the microwave field, the development of broadband, accurate attenuators and broadband couplers with improved directivity. Of equal significance is the development of a precision, broadband slotted line for waveguide measurements."

High Purity MgO Swaging Tubes for Thermocouple Insulation

Insulation of thermocouple wires, used in such equipment as gas turbines and nuclear reactors, involves stringing them through a tube of sintered magnesium oxide, inserting in a stainless steel sheath and then swaging.

For correct packing of the MgO insulation, which is crushed in the swaging operation, close tolerances apply to diameters and location of the holes in the swaging tubes. MgO must be of high purity, particularly for nuclear work.

These tubes are typical of the many examples of magnesia, alumina and zirconia insulating ware made by Carborundum and widely used in electronic components. For information, write Latrobe Plant, Refractories Division, Dept. EDS 129, Carborundum Co., Latrobe, Pa.

NEW BOOKLET AVAILABLE ON KOVAR® ALLOY

KOVAR is an iron-nickel-cobalt alloy used for making hermetic ceramic- or glass-to-metal seals. It has applications in many types of electronic equipment. This booklet is a complete catalog of specifications and applications. For your copy write Latrobe Plant, Refractories Division, Dept. EDS 129, Carborundum Co., Latrobe, Pa.

NEW HIGH TEMPERATURE RESISTORS

handle up to 25 watts at 1000°F. with no de-rating

Limited quantities of high temperature resistors developed by Carborundum are now available. These answer a definite need in many defense and possible commercial electronic applications. They may be well suited to equipment where nuclear radiation is present, since the materials from which they are made have relatively low sensitivity to induced radio activity.

<table>
<thead>
<tr>
<th>RESISTANCE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watts</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
</tr>
<tr>
<td>5.0</td>
</tr>
<tr>
<td>10.0</td>
</tr>
<tr>
<td>25.0</td>
</tr>
</tbody>
</table>

Terminations are suitable for spot welding or brazing. Fuse clip terminations are also offered in the larger sizes. Write to Globar Plant, Refractories Division, Dept. EDS 129, Carborundum Co., Niagara Falls, N.Y. Circle 805 on Reader-Service Card.

Circle 800 on Reader-Service Card

Circle 806 on Reader-Service Card

Circle 804 on Reader-Service Card
HITEMP wires are used to provide the necessary insulation and flexibility for the design and operation of airplanes and spacecraft. HITEMP is a leading manufacturer of high-performance insulation materials and cables, and has a long history of innovation and excellence in the aerospace industry.

CRUSADER

Operating from fast, far-ranging carriers, the new F8U-2N Crusader adds even greater strength to the U.S. Fleet. This all-weather fighter is fully instrumented and equipped to deliver the deadliest of air-to-air missiles... at speeds approaching Mach 2.

Chance Vought again specified Hitemp Teflon* wire and cable for use in the F8U-2N—their fourth operational version of this fighter to be delivered to the U.S. Fleet.

Hitemp Wires, Inc., as the leading specialist in high temperature insulated wire and cable, is justifiably proud of its contributions to the defense of our nation's shorelines.

HITEMP WIRES, INC.
1200 SHAMES DRIVE, WESTBURY, NEW YORK

*Registered trademark for Du Pont fluorcarbon resins.
CIRCLE 42 ON READER-SERVICE CARD

Power Supplies
Meet Challenge
Of Military Needs

Military needs and the availability of new and improved components have sparked substantial progress in electronic power supplies in the last 10 years.

The military needed power supplies that could operate in severe environments. And it needed smaller and smaller sizes, so more complex equipment could be installed in high-performance, cramped vehicles or carried by fewer personnel.

Referring to components used in power supplies, a representative of Leach Corp. said:

"In 1950 the majority of power supplies used vacuum tube rectifiers and regulation systems. During the last nine years a switch has been made to semiconductor elements and magnetic amplifier control and regulation systems."

Controlled Rectifier Advance

The advent of the silicon controlled rectifier last year produced a further improvement in power-supply performance, with minimum size and a minimum of components.

How much improvement was made? In the area of miniaturization, "factors better than an order of magnitude have been the rule rather than the exception," said a spokesman for Microwave Associates, Inc.

Regulation is another criterion. An engineer at Mid-Eastern, Inc., says: "Regulation has about reached the limit of practicability. That is, the regulation of 0.01 per cent achieved in today's models is sufficient for the foreseeable future and is not likely to increase, since there is no need for greater accuracy."

Improvements have also been made in... (Continued on page 60)
Medical Electronics Slashes Death Rate

MAN—whether in a hospital operating room, a dentist's chair, a physician's examination room or a test chamber for outer space—has been the beneficiary of remarkable advances in medical electronics in the decade.

One example of the progress was the introduction of cardiac monitoring and resuscitation equipment. "It saved at least 60 per cent of the approximate 10,000 deaths that occur each year in the operating rooms due to a condition known as 'cardiac arrest,'" a spokesman for Bircher Corp. explained.

The decade also saw advances in treating brain tumors with tracers and neutron beam surgery. Measurements in inaccessible body areas were also made possible. A "radio pill" that a person swallows was introduced; it transmits information on the alimentary canal. And miniature microphones were made for use inside a person's heart.

Ultrasound Aids Medicine

Much research went into the application of ultrasounds to medicine. This work was conducted in bacteriology, dentistry, and medical therapy and diagnosis.

Analysis of tumors for malignancy, particularly brain-tumor detection, is a diagnostic application of ultrasounds. In therapy, ultrasonic research was concerned with such areas as tissue diathermy, brain surgery and tumor inhibition. It is estimated by the Bircher Corp. that over 25,000 therapeutic ultrasonic units were sold in the United States from 1950 to 1959.

Some contend that most of the advances in medical electronics have occurred in the last three years. (Continued on page 60)
Power Supplies (Continued)

spoonse, recovery, overshoot and in the elimination of transients. These were prompted by the ever increasing use of transistors.

Ripple has been reduced, too. In most supplies it is around 1 millivolt. This has been the result of reduced noise levels in all types of receiving equipment.

Battery 'Revolution' Reported

Battery power sources have gone through a "revolution" in the last decade, according to a representative of Yardney Electric Corp. He said the major progress consisted of achieving high-energy, lightweight systems. There has also been a growth of battery systems previously known but not sufficiently explored—the silver-zinc, silver-cadmium and nickel-cadmium systems.

Development of the transistor prompted great advances in the battery industry. It was "the single most important advance," the Yardney representative said. The transistor reduced the power requirements of electronic equipment and allowed the broadening of battery-power applications to extents never thought possible in 1950. *

Medical Electronics (continued)

years—the period in which the possibility of sending a man into outer space has become more realistic.

Space Medical Equipment

Gulton Industries, Inc, has been particularly active in space medical work. It has developed simple devices for the safety of the space pilot and for finding out the physical effects that space has on man. These instruments include ones for measuring skin temperature; breathing flow, rate and volume; heart rate and sounds; systolic blood pressure; galvanic skin response; and brain waves.

How far medical electronics has come in the last decade was dramatically illustrated in May, 1958. Capt. Norman Lee Barr, chief of space medicine and surgery for the Navy, was in his office in Maryland. About 40,000 feet over Minnesota, 1200 miles away, a Navy balloonist swung in the air. By means of transducers and communication equipment, the captain discovered that the balloonist was developing a dangerous high-altitude reaction called Wolff-Parkinson-White syndrome. The captain ordered the balloonist down immediately—and probably saved him from becoming incapacitated. **
Nuclear Instrumentation Shares Only Slightly In Upheaval of 1950’s

OF ALL AREAS, nuclear instrumentation probably participated least in the electronic revolution of the Fifties. The character of nuclear electronic design was set in the 1940’s and it changed relatively little in the eventful decade now closing.

Though nuclear instruments today are more rugged, reliable, versatile and efficient, they are essentially the same ones developed for research over ten years ago. Only one significant device, the multichannel analyzer, is a development of the Fifties. This instrument, however, illustrates one of the two factors of the last decade that are influencing design of nuclear electronics—the growth of data processing. The other influence is the availability of transistors.

With the rise of data-processing techniques, more and more data collected by instruments in nuclear applications are being handled and analyzed automatically. The multichannel analyzer, particularly the 256-channel unit, is the first instrument designed specifically to take advantage of automatic data processing.

The transistor, with its low power requirements, has changed the design parameters for many instruments. This is true particularly in scalers and ratemeters, where the transistor is being used in switching circuits. But tubes are still good enough and often more reliable for many non-switching applications.

The growing use of plastic and liquid scintillator materials, especially sodium iodide, has
Philbrick introduces • OPERATIONAL AMPLIFIERS DESIGNED SPECIFICALLY FOR MILITARY APPLICATIONS

Philbrick now offers an array of dc operational amplifiers which use MIL-approved components. They are reliable and rugged to withstand all standard shock, vibration, and environmental conditions; they meet military requirements for land, sea, air, and space applications.

USA-4 series
- MIL-STD component parts
- Reduced internal dissipation density
- Filled-insulated stand-off terminals
- Machined aluminum plate with clear anodize finish
- Zero-adjust (balance) control is self-contained and does not normally require readjustment
- Amplifier runs cool; tubes, rectifiers operate at a fraction of their wattage ratings, capacities far below their voltage ratings

K2 series
- Very low internal dissipation
- Differential inputs provided
- MIL-STD component parts
- Special open frame construction provides optimum free-air ventilation
- Epoxy glass terminal board
- Structural parts are machined aluminum with MIL-iridite finish
- Amphenol Blue Ribbon type connector
- Previsions are made for secure mounting to the chassis

K2-PJ An accurate, low drift, low frequency chopper amplifier, the K2-PJ is ideally suited to stabilizing (swamping out the drift error in an unstabilized dc amplifier such as the K2-WJ, K2-VJ, etc. When used as a preamplifier for the K2-WJ, the pair typically exhibits a long term drift of less than 100 microvolts, zero grid current, and a dc gain of 10 million. Write for details. Price (1 thru 99) $85

K2-WJ An efficient, fool-proof, high gain, low cost operational amplifier for all feedback manipulations. Its differential inputs allow use either as a "follower" or as a positive sign amplifier featuring "infinite impedance" input (open grid). The guaranteed minimum gain figure of 10,000 (over 15,000 typical), ±50 volt output, and the low drift make possible a wide variety of dc and low frequency operations such as summing, amplification, function generation, integration, differentiation, voltage clipping, tripping, flipping, and the like at accuracies substantially better than 1/10%, $58

K2-VJ An operational amplifier identical in shape, size, and concept to the K2-WJ, but featuring twice the output voltage (±100v) and three times the output current (3 ma) at a sacrifice in gain. Most characteristics are also similar, including drift. Using the K2-PJ as a preamplifier for the K2-VJ, the pair becomes the closest-running, most compact operational amplifier available which can provide ±100 volts output, chopper stabilized. Price (1 thru 99) $82

USA-4 IX At the present moment these units are the highest performance, closest running operational amplifiers available in the world today, commercial or military. Drift, noise, grid current, gain, bandwidth, damping and like characteristics including predicted relability are so much improved that this series is now also a "best buy" for critical commercial instruments. Featuring ±100 volt output, and a guaranteed minimum dc gain of 100,000,000, there are plug-in models designed for slide mounting and others using turret terminals for permanently wired installations. Price $170

also affected design parameters. Sodium iodide flours are giving twice the light output of some organic materials.

Other developments include:
- The growth to maturity of scintillator design
- The development of versatile gamma-ray spectrometers.

Radio-Frequency Interference, Once a Scorned Imperfection, Looms as Peril to Progress

TEN YEARS ago most design engineers were unmindful of one of the most glaring weaknesses in electronic equipment and systems—radio-frequency interference (RFI). A sizeable percentage of the minority who considered the problem and its disastrous consequences were either too busy to act or reluctant to "clean up" their equipment when other devices would foul them anyway.

A small but devoted group of engineers had enough foresight to envision the chaos that would...
result from the multifold increase in electronic usage if RFI was not curbed.

Armour Research held the first conference on interference reduction in 1954. In the next two years other groups tried to form committees on the subject. Then, in 1957, IRE's Professional Group on Radio Frequency Interference was established.

Spearheaded by engineers in the military and the IRE group, a concentrated program has been hammering home the need to consider RFI during initial design stages of equipment and systems.

Independent companies have been set up as specialists in RFI control, and most large organizations have RFI groups busily examining new designs for compliance with military specifications. Experts all emphasize that filters, cable routing shielding and other forms of RFI relief can be applied best during equipment design. Tacked on as an afterthought, they increase size and costs substantially.

The rising use of prediction techniques, aided by high-speed computers, has made possible the planning and installation of large-scale military and industrial "electronic cities," with a minimum of interaction between equipment. Similar prediction techniques have been applied in "war games" to evaluate spectrum allocation and priority without loss of communications.

By combining prediction techniques, initial design considerations and proper selection of suppression techniques, RFI control can be successfully achieved, the experts say.
How to Choose
The Right Ferrite For the Right Job

Dr. Albers-Schoenberg and Dr. Bachman believe that the field of ferrites has grown so rapidly in the last few years that an up-to-date review of the field would be useful. Hence this article.

Dr. Albers-Schoenberg (seated) is deeply interested in ceramics of all kinds—from Dresden china to chemical stoneware, steatites, alumina, and last, but by no means least, ferrites. He was a member of the commission which decided upon the four-fold classification of ferrites which appears in this article.

One of Dr. Bachman's favorite possessions is an ashtay in which a barium ferrite disk, grooved to hold cigarettes, is suspended above a conventional ashtay by magnetic repulsion. Dr. Bachman likes to spin the disk. Incidentally, he is a non-smoker.

Dr. Albers-Schoenberg George S. Bachman
General Ceramics Corp. Keasbey, N. J.

The last decade has seen such a growth in the number of ferrite types available that the design engineer is often hard-pressed to determine which ferrite to use. The wide variety of applications, evident in the Ferrite Application Chart in this article, emphasizes the need for an up-to-date roundup.

Ferrites—as the term is used in electronics—may be defined as magnetic compounds containing iron oxide made by a ceramic manufacturing process. Most ferrites are combinations of one or more bivalent oxides with trivalent iron oxide.

They cover a wide range of electrical resistivity. At one end of the scale there are manganese-zinc ferrites with resistivities of only 10 to 100 ohm-cm; while at the other extreme, some manganese-magnesium ferrites have high resistivities, some as high as 109 ohm-cm.

All of them are much less conductive than the magnetic metal alloys. This relatively low conductivity suppresses eddy currents and favors the use of ferrites at high frequencies. Ferrites are generally used above 1000 cps, and metals below.

Ferrites became commercially available about 15 years ago. Since that time several groups have been developed for different purposes. A useful system of classification divides them into four main groups:

1. "Soft" magnetic ferrites,
2. Permanent (or "hard" magnetic ferrites),
3. Ferrites for the storage of information, and
4. Ferrites for gyromagnetic effects.

The terms "hard" and "soft" came into use many years ago when permanent magnetism was observed as a property of steel, and easily reversible magnetism a property of soft iron. These two terms are still useful, though they do not apply in a mechanical sense. The hysteresis loop of Fig. 1 illustrates terms describing various magnetic properties of ferrites.

1. Soft Ferrites

A "soft" material has a rounded, S-shaped hysteresis loop. The loop is narrow, indicating a low coercive force (Fig. 2). The two principal sub-groups of soft ferrites are the manganese-zinc ferrites and the nickel-zinc ferrites.

Fly-back transformer cores for television sets are manufactured from a manganese-zinc ferrite. Table 1 gives some typical values for this kind of ferrite.

As for the other sub-group, nickel-zinc ferrites, there are two types: One is dense-fired with a high permeability; the other is porous with a low permeability.

The dense-fired type, most of the members of which contain a small amount of copper oxide, is widely used for recording heads, pulse transformers, and tuning slugs for width control. Important property values for this ferrite are shown...
The porous type of nickel-zinc ferrite, with its reduced permeability and lower losses, is well known as an antenna material in broadcast receivers and is also used for cup cores in if transformers for transistor broadcast receivers. This material is made in several modifications to cover the entire frequency range from 1 to 300 million cycles. No single material can do this. Typical values appear in Table 3.

2. Hard Ferrites

This group comprises the ferrites used as permanent magnets. Although there are several ferrites that can be used as permanent magnets, only barium ferrite is made commercially.

The hysteresis loop for this material is shown in Fig. 3. The second-quadrant portion of the curve is called the "demagnetization curve," and the product of the coercive force (H) and induction (B) for each point along the curve yields the so-called "energy product" (BH). The maximum energy product is usually taken as a figure of merit characterizing the strength of a permanent magnetic material.

When barium ferrite magnets first appeared on the market they were of the unoriented type—i.e., they consisted of aggregates of hexagonal, plate- or rod-shaped particles, randomly directed. In this condition they produce relatively low-energy products of approximately one million gauss-oersteds. However, if the hexagonal plates are aligned before the final firing, energy products of 2.8 x 10^6 to 3.5 x 10^6 gauss-oersteds can be achieved. The alignment or orientation is carried out in a strong magnetic field.

Oriented barium ferrites are now available commercially. Table 4 compares unoriented and oriented barium ferrites with some magnetic alloys.

3. Square Loop Ferrites

The hysteresis loop for the third group of ferrites, useful for the storage of information, is characterized by a high-remanence point and two very distinct "corners." Such a loop is termed "rectangular" or "square" (Fig. 4). These ferrites are found predominantly in the three-oxide system of magnesium, manganese, and iron; some of these contain small additions of other oxides.

Because of its stability in the state of remanence, a toroidal core of square-hysteresis-loop material is a switching device in which the internal change of domain orientation takes the place of a moving mechanical part. An important use of this material is in the memory systems of electronic computers.

A significant property of ferrite memory cores is the speed with which they can switch. It is in the range of 0.3 to 6 µsec. Table 5 sets forth the values.
magnetic properties of some commercial square-loop materials.

Cores of the first type shown in Table 5 are used in coincident-current memory devices. Those of the other type, which have a much lower coercive force, find application predominantly as switch cores.

4. Ferrites for Gyromagnetic Effects

Some ferrites are useful in the microwave frequency range from 500 to 30,000 mc. The microwave beam interacts with the electrons which carry the magnetic moments in the ferrite, causing a rotation of the plane of polarization of the beam.

This effect is used in the microwave gyrator in which a microwave beam can pass through the device in one direction, but cannot pass through in the reverse direction (Fig. 5).

Other microwave ferrite devices use the absorbing ability of the electrons when they are in resonance with the incoming microwave beam. Table 6 gives the magnetic properties of some microwave ferrites.

The shape and position of the resonance line (Fig. 6) is important, particularly at low microwave frequencies (below 2000 mc) where a narrow line width is usually desired. However, the line width of polycrystalline ferrites, which is about 200 oersteds, is not the only property to be considered.

The absorption loss, which includes dielectric as well as magnetic losses, must also be taken into account. Ferrites with high volume resistivity (10^6 ohm-cm or higher) are required for low dielectric loss.

The saturation magnetization is important since it indicates the amount of interaction that can be expected between the microwave beam and the ferrite.

Outlook for the Future

Ferrites are so new and their development so rapid that the future should see many improvements. For the lower frequency range, ferrites with a higher saturation flux density should be developed. In the medium permeability range, ferrites with less variation of initial permeability

Table 4. Important Properties of Magnetic Metal Alloys and Ferrites

<table>
<thead>
<tr>
<th>Material</th>
<th>(BH_{max}) ((10^5)) (gauss-oersted)</th>
<th>(B_r) (kilogauss)</th>
<th>(H_c) (oersted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alnico II*</td>
<td>1.6</td>
<td>7.2</td>
<td>560</td>
</tr>
<tr>
<td>Alnico V*</td>
<td>5.25</td>
<td>12.5</td>
<td>600</td>
</tr>
<tr>
<td>Alnico XI*</td>
<td>1.6</td>
<td>5.5</td>
<td>950</td>
</tr>
<tr>
<td>Cunife I*</td>
<td>1.3</td>
<td>5.4</td>
<td>500</td>
</tr>
<tr>
<td>Platinum-cobalt</td>
<td>3.8</td>
<td>4.5</td>
<td>2600</td>
</tr>
<tr>
<td>Ferramic P2* (oriented)</td>
<td>1.0</td>
<td>2.2</td>
<td>1825</td>
</tr>
<tr>
<td>Ferramic P1* (oriented)</td>
<td>3.5</td>
<td>3.84</td>
<td>2000</td>
</tr>
</tbody>
</table>

*Indiana Steel Products, Inc.

Table 5. Typical Properties of Two Square-Loop Ferrites

<table>
<thead>
<tr>
<th>Ferrites</th>
<th>Initial Permeability (at 1 mc)</th>
<th>Maximum Permeability (ac)</th>
<th>DC Saturation Flux Density ((\text{gauss})) at (H=25\ \text{oersteds})</th>
<th>Coercive Force (oersteds)</th>
<th>Switching Time ((\mu\text{sec}))</th>
<th>(Br/Bm) Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squared Loop Ferrites</td>
<td>40</td>
<td>100</td>
<td>900</td>
<td>6000</td>
<td>2000</td>
<td>3500</td>
</tr>
<tr>
<td>Squared Loop Ferrites</td>
<td>1.4</td>
<td>0.20</td>
<td>1.0</td>
<td>Varies with driving current</td>
<td>0.90</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Fig. 4. Hysteresis loop of a “square” ferrite (Mg-Mn). The high, stable remanence makes “square-loop” ferrites ideal for storing information.

Fig. 5. Faraday rotation for a microwave ferrite (1/4 in. diam, 1 in. long) at X band (5.2-10.9 kmc).
with changing temperature may be anticipated, and their use in filters for military and telephone equipment should increase.

In the square-hysteresis-loop category, low-coercivity ferrites should find use with transistorized circuits. In the microwave field many more specialized materials may be expected. Single crystals may find use in certain cases.

Magnetostriuctive materials may be made commercially, thus adding another category of ferrites to the existing four. ■ ■

Reference

<table>
<thead>
<tr>
<th>Class</th>
<th>Application</th>
<th>Desirable Ferrite Properties</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft</td>
<td>Horizontal output (flyback) transformers</td>
<td>High mu and low losses at high operating flux densities and temperature. High saturation.</td>
<td>Principally 15.75 kc and 60 kc</td>
</tr>
<tr>
<td>Soft</td>
<td>Deflection yokes</td>
<td>Moderate mu, low losses.</td>
<td>Principally 60 cps, 15.75 kc and 60 kc</td>
</tr>
<tr>
<td>Soft</td>
<td>Antenna materials</td>
<td>High Q, moderate mu, magnetic stability, moderate mechanical strength.</td>
<td>0.5 to 225 mc</td>
</tr>
<tr>
<td>Soft</td>
<td>Tuners</td>
<td>Moderate to high Q, high mu, magnetic stability.</td>
<td>To 225 mc</td>
</tr>
<tr>
<td>Soft</td>
<td>RF coils</td>
<td>High Q, high mu, temperature stability.</td>
<td>To 225 mc</td>
</tr>
<tr>
<td>Soft</td>
<td>I-F transformers</td>
<td>Moderate Q, high mu, magnetic stability.</td>
<td>0.4 to 41.5 mc</td>
</tr>
<tr>
<td>Soft</td>
<td>Delay lines</td>
<td>Magnetic stability, high mu-Q product.</td>
<td>To 15 mc</td>
</tr>
<tr>
<td>Soft</td>
<td>Recording heads</td>
<td>High mu, low losses high saturation, resistance to wear.</td>
<td>To 15 mc</td>
</tr>
<tr>
<td>Soft</td>
<td>Loading coil cores</td>
<td>Magnetic stability, high mu-Q product.</td>
<td>To 600 kc</td>
</tr>
<tr>
<td>Soft</td>
<td>Filter inductors</td>
<td>High mu-Q product, magnetic stability.</td>
<td>To 80 mc</td>
</tr>
<tr>
<td>Soft</td>
<td>Wide band transformers</td>
<td>High mu, moderately low losses.</td>
<td>To 225 mc</td>
</tr>
<tr>
<td>Soft</td>
<td>Adjustable inductors</td>
<td>High mu, moderately low losses.</td>
<td>To 225 mc</td>
</tr>
<tr>
<td>Soft</td>
<td>Pulse transformers</td>
<td>High mu, low losses, high saturation, magnetic stability.</td>
<td>To 15 mc</td>
</tr>
<tr>
<td>Soft</td>
<td>Memory cores</td>
<td>Square hysteresis loop, fast switching times at low drive currents, high value (B_{mu} / B_{mu}) uniformity.</td>
<td>Switching time of 0.4 to 5 (\mu)scc</td>
</tr>
<tr>
<td>Soft</td>
<td>Switch cores</td>
<td>Square hysteresis loop, low coercive force, low losses, high ratio of (B_{mu} / B_{mu}) (greater than 0.95).</td>
<td>Not well defined</td>
</tr>
<tr>
<td>Soft</td>
<td>Microwave components</td>
<td>Low dielectric loss, high Curie temperature; power handling capacity, line width and saturation magnetization compatible with application.</td>
<td>500 to 75,000 mc</td>
</tr>
<tr>
<td>Hard</td>
<td>Holding devices (such as door catches)</td>
<td>Large change of total magnetic energy.</td>
<td>High energy product.</td>
</tr>
<tr>
<td>Hard</td>
<td>Loudspeakers</td>
<td>Large change of total magnetic energy, high air gap flux.</td>
<td></td>
</tr>
<tr>
<td>Hard</td>
<td>DC motors</td>
<td>High air gap flux, magnetic stability with wide temperature change.</td>
<td></td>
</tr>
<tr>
<td>Hard</td>
<td>Focusing magnets for traveling wave tubes</td>
<td>Properties are not critical.</td>
<td></td>
</tr>
<tr>
<td>Hard</td>
<td>Biasing magnets for cathode ray tubes</td>
<td>High electric resistivity, magnetic stability with wide temperature change, high energy product, high coercive force.</td>
<td></td>
</tr>
</tbody>
</table>
Some Basic Rules

Handling Nodes And Loops

Two-Port Networks, The Topology Equation

Interpretations And Examples

Visual Engineering Mathematics

A Self-Contained Course

T. R. Nisbet and W. W. Happ
Lockheed Missile System Div.
Palo Alto, Calif.

This second article on flow graph analysis—a visual form of engineering mathematics—discusses (1) contributive and distributive nodes, and (2) loops. What they are, rules on handling them, and examples are given. Reference is made in the beginning of this article to Equations 1 through 9 and Table 1. They appeared in Part I of this series (ED, p 32, 12/9/59).

The numbering of flow graphs as though they were equations is no accident; they are equations.

In effect, only addition and multiplication can be expressed in a flow graph. Subtraction becomes the addition of a negative quantity. And division becomes multiplication by a reciprocal. See Table 1.

Another way of expressing the process of dividing is that, if the roles of dependent and independent variables are interchanged, the flow graph path is inverted and the transmittance is then replaced by its reciprocal. The relationships expressed by Eqs. 3 and 4, for example, are identical. But the path of Eq. 3 is inverted in Eq. 4, and the transmittance R is replaced by its reciprocal 1/R.

Attention must be paid in constructing a flow graph so that every node has transmittances leaving it and entering it. In Eq. 2, for example, it is not permissible to replace the 1 K transmittance with a 10⁻³ mho transmittance joining the 1 v node to the 1 ma node, for these nodes would then appear with transmittances entering but not leaving them, or vice versa. The flow graph is then illogical.

Contributive And Distributive Nodes

It is often desirable, especially in the detailed examination of a constructional flow graph maneuver, to introduce a new node, separated from an existing one by a unit transmittance. In many cases, this does not mean that the two nodes are equal, for one of them may receive a contribution (transmittance) which the other does not. Consider, for example, the flow graph Eq. 10, and the new node x' which has been introduced into it to form Eq. 11, below:

\[x = x' + es = ft + es \]

The value of x is unchanged by the addition of the node x' in Eq. 11. But the transmittance e makes a contribution only to x, and not to x'. This can be seen by writing the equations for x and x', thus:

\[x = ft \]

A complicated node can always be split up into a series of simpler ones by the use of unit transmittances. An example, Eq. 14, is given below. The complex node y has been split into two nodes, y and y'.

In this case, the new and old nodes all equal each other. The importance of the operation, however, is that out of the complex node have been created two types of nodes that lend themselves to manipulation by these rules:

Distributive Node. A distributive node is one at which one transmittance terminates and two originate. The flow, as represented by the arrows, diverges as it passes through a distributive node.

Contributive Node. A contributive node is one at which two transmittances terminate and one originates. The flow, as represented by the arrows, converges as it passes through a contributive node.

Tributary Transmittance. The name "tributary transmittance" is given to the one transmittance of the three at a contributive or distributive node which is not considered to form part of the through path. Examples are given in Eqs. 15a and 15b.

In each case it is optional which of two paths is taken as the through path. For example, if \(s \rightarrow u \) is taken as the through path in Eq. 15a, then e is the tributary transmittance.

Any flow graph, however complicated, can always be broken down into a series of interconnected contributive and distributive nodes. In the manipulation of flow graphs, it is necessary to be able to invert paths where required. This is done by rules for path inversion at contributive and distributive nodes.

Path Inversion At A Distributive Node

The rule for path inversion at a distributive node is: Reverse the direction of the arrows in the through path. Replace each transmittance in the through path by its reciprocal. Leave the tributary transmittance unchanged. As an example,
inversion of the through path \(s \rightarrow u \) in Eq. 15a gives:

\[
\text{Note: (1) the node } v \text{ is unchanged; (2) the node } v' \text{ is still a distributive node; (3) the sign of the tributary transmittance, } e, \text{ is unchanged.}
\]

Path Inversion At A Contributive Node

The rule for path inversion at a contributive node is: Reverse the direction of the arrows in the through path. Replace each transmittance in the through path with its reciprocal. Change the sign of the tributary transmittance. As an example, inversion of the through \(y \rightarrow z \) in Eq. 15b gives:

\[
\text{Note: (1) the node } w \text{ has changed to a new value, } w'; (2) the node } w' \text{ is still a contributive node; (3) the tributary transmittance has changed from } a \text{ to } -a.
\]

Remember: A Contributive node implies a Change of sign.

In practice, it is usually found that the change in value of the contributive node is unimportant. This is not because it is small in amplitude, but because we are more often concerned with the overall transmittance along a path than with the value of a particular node.

The effect of path inversion can be studied by these numerical examples:

1. Reversal of path through a distributive node:

\[
\text{(15b)}
\]

2. Reversal of path through a contributive node:

\[
\text{(18)}
\]

When manipulating contributive and distributive nodes, it is desirable to think of the three external nodes (e.g., \(x, y, \) and \(z \)) as remaining fixed, while the paths between them are altered. The alteration may consist of inverting one of the two possible through paths, with attention paid to the sign of the tributary transmit-
reprints

TO HELP YOU IN YOUR DESIGN WORK

These reprints are offered to you by Electronic Design
In answer to the many requests of our readers, ELECTRONIC DESIGN offers these 2 valuable reprints for your files to keep you up-to-date on the most current developments.

CONNECTIONS
16 page comprehensive report from the Feb 18th issue concerning the latest advancements in the field: • Connections Between Equipment • Connections Inside Equipment • RF Connections. Included are such items as cable connectors, connectors used with rack mounted equipment, printed circuited connectors, terminal blocks. Read ELECTRONIC DESIGN's finding on this enormous field of electrical connections.

Circle 749 on Reader Service Card

MICROELECTRONICS
ELECTRONIC DESIGN offers this important 12 page staff report from the April 29th issue to keep readers alerted to the newest techniques, processes and the current status of developments in microminiaturization. The growth is phenomenal — 2 years ago microelectronics was in the laboratory stage. Now it is causing a revolution in electronic packaging.

Circle 750 on Reader Service Card

For single copies, circle the correct Reader Service Number and with your reprint you will be sent a handy coin card for your remittance.

CONNECTIONS

<table>
<thead>
<tr>
<th>1 copy</th>
<th>$0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 copies</td>
<td>2.00</td>
</tr>
<tr>
<td>.10 copies</td>
<td>3.50</td>
</tr>
<tr>
<td>.25 copies</td>
<td>7.50</td>
</tr>
</tbody>
</table>

MICROELECTRONICS

<table>
<thead>
<tr>
<th>1 copy</th>
<th>$0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 copies</td>
<td>2.00</td>
</tr>
<tr>
<td>.10 copies</td>
<td>3.50</td>
</tr>
<tr>
<td>.25 copies</td>
<td>7.50</td>
</tr>
</tbody>
</table>

For multiple copies fill out the coupon below.

MAIL TO DEPT. C-9/16 ELECTRONIC DESIGN, 830 THIRD AVENUE, NEW YORK 22, N. Y.

Please send me:

<table>
<thead>
<tr>
<th>copies of Connections Report</th>
<th>Please Bill</th>
<th>Cash Enclosed</th>
</tr>
</thead>
<tbody>
<tr>
<td>copies of Microelectronics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name
Address
City Zone State

tance and the value of the central node.

(If constructing a flow graph, remember that no path inversion is valid if it changes a contributive into a distributive node or vice versa.

Loops

In constructing a flow graph, all the individual equations may first be written in conventional form and then translated into flow graph form one at a time. In this kind of operation, watch for illogicalities—nodes in the final diagram which have transmittances entering but not leaving them or vice versa. When difficulties like this occur, one of the equations may be rewritten with a different dependent variable. Or the various flow graph rules may be applied to invert one of the offending paths.

The types of system which lend themselves to flow graph representation are often those which are conveniently evaluated by matrix algebra. The flow graph system, however, enables the operator to get answers without constructing and manipulating matrices.

The concept of feedback arises continually in flow graph analysis, sometimes in the most unlikely situations. Feedback, in the mathematical sense, occurs when an independent variable influences a dependent variable, which in turn influences the original variable. In flow graph language, this constitutes a loop.

The number of loops in a given system depends on how the equations are written or the flow graph drawn. Even in a simple system, such as a battery, a T-attenuator, and a load, there can be one, two, or no loops in the flow graph, depending on the selection of variables.

In the central portion of the following flow graph, we can have two alternate paths $w \to x$,

and from the definition of a node we can write that:

$$x = \frac{1}{c} \cdot w - k \cdot w$$

The overall transmittance $u \to z$, is, therefore:

$$\frac{z}{u} = \frac{1}{a} \cdot \frac{1}{b} \cdot \left(\frac{1}{c} - k \right) \cdot \frac{1}{d} \cdot \frac{1}{e}$$

and

$$\frac{u}{z} = a \cdot b \cdot \left[\frac{1}{c} - k \right] \cdot \frac{1}{d} \cdot \frac{1}{e}$$

ELECTRONIC DESIGN • December 23, 1959
Inverting the path \(u \rightarrow z \), we encounter a combinatorial node at \(z \) and a distributive node at \(w \). We have:

\[
\begin{align*}
\text{Node } u & \rightarrow \text{ Node } z \\
\text{Node } w & \rightarrow \text{ Node } z
\end{align*}
\]

Note the minus sign and the new node \(x' \).

Writing \(q \) for the transmittance \(y \rightarrow w \), we have:

\[
\frac{u}{z} = a \cdot b \cdot q \cdot c
\]

And, from a comparison of Eqs. 21 and 23:

\[
q = d \cdot \frac{c}{1 - k \cdot c}
\]

The transmittance \(d \) is part of the original flow graph, Eq. 22, and it has remained intact in spite of the change in the node \(x \) of Eq. 20 to \(x' \) of Eq. 22. The loop which has been formed in Eq. 22 has a transmittance of \(+k \cdot c \), and we can thus formulate a rule for evaluating a loop about a transmittance:

\[
\begin{align*}
\text{Loop } & = \frac{c}{1 - k \cdot c} \\
\text{node } & \rightarrow \text{ node }
\end{align*}
\]

A loop may also occur about a node, giving:

\[
\begin{align*}
\text{Node } & = \frac{1}{n - c} \\
\text{node } & \rightarrow \text{ node }
\end{align*}
\]

Eqs. 25 and 26 say that wherever a loop is formed, either about a transmittance or about a node, the path (defined in the next paragraph) is modified by a factor \(1/(1-L) \), where \(L \) is the loop transmittance. The loop transmittance includes any part of the path which may be necessary to complete the loop.

A path is substantially what its name implies, a route following a series of similarly directed arrows from one node to another. Note that in the evaluation of a path, no attention is paid to the fact that the various nodes it passes through may receive contributions from other transmittances not included in the path; these contributions are taken care of in the rules governing the use of paths (Table 2). It follows, then, that the value of a path is the product of the transmittances involved. It often happens that the word "path" is used loosely, in a general sense, but in the majority of cases the technical definition and the loose description are interchangeable, or at least do not conflict with each other.

The rules relating to paths and loops are included in Table 2.

Parts three and four of the course will follow.
Companies Offer Technical Information for the Engineer. This booklet presents a concise and slightly more detailed description of the theory involved with servo motors, tachometer generators and synchros. After the theory section describing each type of device, specifications for Kearfott components are presented. Information on this booklet can be obtained from Kearfott Co., Inc., 1500 Main Ave., Clifton, N.J.

A booklet prepared by The Helipot Div. of Beckman Instruments Inc. of Fullerton, Calif., entitled "Beckman Rotating Components," gets much deeper into the mathematics of servo motors. The booklet presents a general description of electromagnetic damping of the inertia and the velocity type. After this, the transfer function equations are developed for the servo motor, the servo motor generator, the velocity damped servo motor and the inertia damped servo motor. This treatment is quite mathematical. It is followed by some specifications of Beckman's components.

One of the most ambitious programs of upgrading the knowledge of the servo engineer is undertaken by the Norden Division of United Aircraft Corp. The Ketay Dept. of this company, located at Commack, L.I., presents an excellent five-day course once or twice a year. This course is designed to acquaint the industry, as well as United Aircraft's own personnel, with the latest techniques in the servo art. Ketay engineers act as instructors in this course.

The most recent course, given during the week of October 19th to 23rd, covered theory and application of servo motors and integrating tachometers, materials and environmental testing, quality control and other manufacturing techniques and a description of gyroscopes...
 resolver amplifiers, tools and hardware for the servo components. Also covered in the course were the significance of Ketay's metrology laboratory, and test equipment in the production of precision servo components. Present efforts toward standardization of servo components were described and current trends and future possibilities in the servo field are also presented.

Ketay has prepared a booklet entitled "Nomenclature for Rotating Servo Components." This booklet presents explanations of the terms used in connection with synchros, resolvers, servo motors and tachometer generators. The company also has prepared a Gyro Primer. This is an extremely basic and entertaining presentation of the principles that make a gyro operate the way it does. A price of $1.00 has been put on this booklet by Ketay.

"The United States Navy Synchros, Description and Operation Op 1303," the well-known standard of the servo field, has been revised as of last year. The new revision is an even more useful book than the original version. In addition to including up-to-date information on current synchro types, new material describing the mounting hardware for synchros and other rotating components has been added. The publication may be obtained from the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D.C., at a price of seventy cents.

If you earnestly feel the only way to get the kind of pots you need is to build 'em yourself — a word of caution. Don't start off alone — gather a few choice friends around to assist with the problems you might run into. There's the little matter of metals engineering, plastics, contact engineering, chemistry, metallurgy and other assorted engineering areas. Otherwise, you might never get through all these little details!

But don't waste time putting your friends through engineering school — Ace has a staff of specialists and consultants all recruited for just such design problems! They save us — and in turn — our customers, needless concern over the stumbling blocks which may arise. So if a unique design solution to your pot requirements is what you're after, don't hesitate! See your ACErep!

Here's a typical bit of ACE collaboration: Our A.I.A. 1-1/16" size ACEPOT®, servo-mount.

In the first revision of OP1303 is detailed mounting information such as fixing a pot to a standard synchro shaft. Drive washer mates with spline shaft and with two holes in gear. Socket wrench assembly is used to hold the shaft and tighten the shaft nut.

ELECTRONIC DESIGN • December 23, 1959
For 400 CPS Cooling Applications

For airborne and missile cooling applications, the AXIMAX-3 when turning at 20,000 rpm will deliver 165 cfm at free delivery. This performance is possible although the fan is only 2.8” in diameter, 2.3” in length and weighs a mere 14 ounces.

Variation in driving motors include constant speed and Altivar designs. The latter automatically vary their speeds inversely with density and thereby approach constant cooling with a minimum of power drain and noise.

Mounting is simplified by the provision of “servo” clamping rims at either end of the barrel. Airflow can be reversed by turning the fan end-for-end. Electrical connection is made to a compact terminal block. Power requirement is 400 cps, 1 or 3 phase.

Write today for complete technical details to...
positioning, such as a slide switch. Or it can be attached to a load that requires a linear positioning superimposed on an existing rotary motion, such as the face-plate of a clutch. A variety of couplings and internal bearings can be used for specific applications.

The motor responds to an input by an immediate acceleration of the shaft and load, followed by a deceleration as it approaches the control point (selected position), where it stops. The action of the motor can be compared to that of a piston controlled by an elaborate servo system. The motor, however, does not require external error detection or amplification, since these are inherent. By proper programming and other techniques, overshoot of the shaft can be held to a minimum, or even eliminated, depending on specific requirements.

Both coarse and fine positioning can be had in the motor. The coarse positioning is determined by input taps, and the fine positioning is accomplished by setting a potentiometer or decade resistance box.

Among the applications of the motor are: antenna orientation, computers, communication equipment, data recording, memory storage systems, servo mechanisms, telemetering and tuning.

For more information on this motor, turn to the Reader-Service Card and circle number 100.

Specifications

<table>
<thead>
<tr>
<th>Function</th>
<th>Continuous Duty</th>
<th>Intermittent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage</td>
<td>115 volts DC max</td>
<td>300 volts DC max</td>
</tr>
<tr>
<td>Power consumption</td>
<td>24 watts</td>
<td>162 watts</td>
</tr>
<tr>
<td>Stroke</td>
<td>2 1/4 inch</td>
<td>same</td>
</tr>
<tr>
<td>Number of positions</td>
<td>27</td>
<td>same</td>
</tr>
<tr>
<td>Capacitance</td>
<td>±0.003 inch</td>
<td>same</td>
</tr>
<tr>
<td>Spacing between positions</td>
<td>0.085 inch</td>
<td>same</td>
</tr>
<tr>
<td>Force Output</td>
<td>2 pounds</td>
<td>6 pounds</td>
</tr>
<tr>
<td>Temperature rise</td>
<td>70 C</td>
<td>Not to exceed 70 C above ambient of 50 C.</td>
</tr>
</tbody>
</table>

Proof of Computer Capacitor Reliability...

40,000 hours without failure

How well do Mallory computer grade capacitors stack up against the ten or more years life expectancy predicted for them? Here is the answer... and it's an outstanding demonstration of reliability.

A group of eight 2000 mfd., 30 volt computer grade capacitors taken at random from a standard production run have been operating for 40,000 hours in a 65°C test oven. Their capacity, equivalent series resistance and DC leakage were checked at 500 hours and every 1000 hours thereafter.

Not a single failure has occurred in all these years of continuous test! Furthermore, capacity, ESR and leakage values showed no appreciable change from initial readings, as testified by the curves shown above.

A similar 40,000-hour test on Mallory premium grade electrolytic capacitors (see curves below) proved comparable stability and reliability for these high quality components.

Keep this performance in mind whenever you need the utmost in electrolytic capacitor dependability. Mallory computer grade capacitors are available in ratings from 130,000 mfd. 3 volts, to 1000 mfd. 400 volts, in standardized cases which permit convenient parallel bank mounting. Call or write for a consultation and for Bulletin 4-34.

Mallory Capacitor Company,
Indianapolis 6, Indiana
a division of

CIRCLE 55 ON READER-SERVICE CARD
AFTER the wirewound Rotoflex precision potentiometer was tested for more than 85 million cycles, it showed no change in total resistance, no significant change in linearity, and the noise throughout the unit was less than 50 ohms. This high reliability is achieved with a rolling pressure piece—which can be either a microminiature ball bearing or sapphire disc mounted in pivot bearings.

The potentiometer—made by Technology Instrument Corp., Dept. ED, 531 Main St., Acton, Mass.—uses a capsule contact with a wirewound resistance element. The capsule contact consists of a gold foil contact diaphragm with a Teflon-impregnated backing suspended above the resistance element by concentric, insulated stand-off rings. The Teflon-backed foil is depressed to make contact with the resistance element by the dimpling effect of a small-diameter rolling pressure piece.

This dimpling action of the foil by the pressure piece eliminates sliding action between the contact and the resistance element. The absence of sliding-contact action eliminates wear of the resistance element, which can cause change in resistance and linearity. Wear particles, dust, and debris are not present, which could cause erratic contact and noise.

The gold foil acts not only as the winding contact—but also eliminates the need of slip ring contacts.

Wear of the diaphragm itself is prevented by use of the rolling pressure piece. The actuation torque of the potentiometer is low due to the low friction offered by the rolling pressure piece to the Teflon diaphragm. Ample pressure of the foil against the winding is thereby maintained, eliminating shock and vibration difficulties.

The capsule contact is normally sealed.
Now available—a new series of power transistors with the flattest beta curve in the industry, made possible by an exclusive Bendix process. This new series has very high current gains—up to 200 at 3 A dc—and a 10-ampere peak current rating.

Featuring ten-amp performance at a five-amp price, the 2N1136, A, B; 2N1137, A, B; and 2N1138, A, B series provide:

- **LOW BETA FALL-OFF**
- **LESS DRIVE AND LESS DISTORTION**
- **LOW SATURATION RESISTANCE**
- **GREATER CIRCUIT EFFICIENCY**
- **VOLTAGE BREAKDOWN RATINGS**
- **ELIMINATION OF BURN-OUT CURRENT GAIN MATCHING**
- **OPTIMUM CIRCUIT PERFORMANCE**

Ideally suited for use in static converters and regulators, these power transistors also have numerous applications in relay replacements and drivers for relays, magnetic clutches, solenoids and other loads requiring high current. In addition, their extremely high current gain and excellent hFE linearity make them practical and efficient television vertical output amplifiers and hi-fi amplifiers.

<table>
<thead>
<tr>
<th>Current Gain (hFE at ic = 3 A dc)</th>
<th>Maximum Voltage Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vcb 60</td>
<td>Vcb 90</td>
</tr>
<tr>
<td>Vce 40</td>
<td>2N1136</td>
</tr>
<tr>
<td>50-100</td>
<td>2N1137</td>
</tr>
<tr>
<td>75-150</td>
<td>2N1138</td>
</tr>
<tr>
<td>100-200</td>
<td></td>
</tr>
</tbody>
</table>

For complete information, contact SEMICONDUCTOR PRODUCTS, BENDIX AVIATION CORPORATION, LONG BRANCH, NEW JERSEY, or the nearest sales office.

| West Coast Sales Office: 117 E. Providencia Avenue, Burbank, California |
| Midwest Sales Office: 4104 N. Harlem Avenue, Chicago 34, Illinois |
| New England Sales Office: 4 Lloyd Road, Tewksbury, Massachusetts |
| Export Sales Office: Bendix International Division, 205 E. 42nd Street, New York 17, New York |
| Canadian Affiliate: Computing Devices of Canada, Ltd., P. O. Box 508, Ottawa 4, Ontario, Canada |
NEW PRODUCTS

Covering all new products that might generally be specified by an electronics engineer engaged in the design of original equipment.

Logic Switches Designed For Data Handling Systems

This line of electro-mechanical logic switches and decimal counters is designed for use in large and small data handling systems. They reduce to one-half the pulse times necessary to resolve systems logic. Three basic elements are combined in each switch: a delay element; a bi-stable element; and a number of AND gates associated either with the assert or negative side of the bi-stable element. The switches are suited for communication with high speed transistor counting elements. Some of the specifications are: electrical control requirements, 44 to 55 v pulse of 4.5 ms duration; speed, 0 to 60 pulses per sec; contact rotating, 2 amp dry switching and 5 ma live switching; dimensions, 3-1/2 x 3-1/2 x 5/8 in.; weight, 3 oz.

Tally Register Corp., Dept. ED, 5300-14th Ave., N.W., Seattle 7, Wash.

Infrared Detector Has All Metal Construction

The type QK748 infrared detector has all metal construction with hermetically sealed windows. The detector material is a p-type gold doped germanium. Its operating temperature is 78 deg Kelvin and the window material is an antireflection coated silicon or sapphire. Spectral sensitivity range is from 2 to 9 microns. Units with sapphire windows have a 6 micron longwave length cutoff; silicon windows cover the whole 2 to 9 micron range. Impedance range is 50,000 ohms to 1 meg; acceptance angle is about 100 deg. The time constant is less than 1 usec.

Raytheon Co., Dept. ED, Waltham 54, Mass.

Lamp For Transistorized Circuits

Measures 0.125 x 0.045 in.

Having applications in transistorized circuits in missiles, computers and electronic systems, the Mite-T-Lite incandescent lamp measures a maximum of 0.125 in. in length, a maximum of 0.045 in. in diameter and has a nominal lead length of 0.375 in. It operates on 1.3 v and passes a current of 35 ma at this voltage. Its resistance when cold is a minimum of 6.5 ohms. When 1.5 v is applied, the resistance is 38 ohms. The light output is 100 millilumens at 1.5 v dc; efficiency is 1.5 lumens per watt.

Inertial Platform System
Measures 2.75 x 4.5 in. 636

This non-servoed inertial platform system for short range ballistic missiles measures 2.75 in. in diameter and 4.5 in. in length. System components consist of a free gyro and two subminiature accelerometers that are mounted on the gimbals of the gyro with the sensitive axes orientated perpendicular to the gyro spin axis. The gyro spin axis describes the line space along which the rocket is guided. Within 5 sec after power is applied the system is fully operative. The unit has good threshold sensitivity with no measurable response to cross axis accelerations and vibrations which are present during the initial boost stage of flight.

Giannini Control Corp., Dept. ED, 918 E. Green St., Pasadena, Calif.

Power Resistors Are Rated At 5, 7, 10 and 25 W 637

Wattage ratings of these power, wirewound resistors are 5, 7, 10 and 25 w. The resistors are wound on ceramic cores with special alloy end caps attached. Lead wires and resistance wires are attached by spotwelding. All parts have thermal expansion characteristics matched. The resistance element is imbedded in vitreous enamel and is impervious to moisture. Low resistance units have coreless construction, and the resistance range is 0.05 to 0.09 ohms, ±10%, and 0.1 to 0.5 ohms ±5%. The resistance range of core construction is 5 through 25,000 ohms, ±3%.

Superior Resistor & Electronics Corp., Dept. ED, P.O. Box 274, Frankfort, Ind.

CIRCLE 58 ON READER-SERVICE CARD >

Creative Microwave Technology

NEW 5-WATT TRAVELING WAVE TUBE DESIGNED FOR MICROWAVE RELAY LINKS

The versatile modulation characteristics of this broadband power amplifier are particularly well suited for microwave communication applications. The tube, identified QK-542, is a permanent-magnet focused CW type, operates in the 5,900 to 7,400 Mc frequency range, and has a nominal saturated power output of 5 watts.

High amplification over a wide range of power levels results in small-signal gain of up to 35 db. A special control electrode facilitates low-voltage pulsed or amplitude modulation.

The tube is supplied with an integral waveguide coupler package which accommodates UG 344/U waveguide-type flanges. When supplied with an optional coaxial output coupler package, tube will operate over the 4,000 to 8,000 Mc range.

You can obtain detailed application information and special development services by contacting: Microwave and Power Tube Division, Raytheon Company, Waltham 54, Massachusetts
From Detroit, Camden, or L.A.
 TEXAS INSTRUMENTS SEMICONDUCTORS

DELIVERED OFF-THE-SHELF OVERNIGHT

RADIO PRODUCTS SALES
LOS ANGELES
FERGUSON ELECTRONIC SUPPLY CO.
DETROIT
GENERAL RADIO SUPPLY CO., INC.
CAMDEN

Ready to give you fast, time saving local service, these three authorized TI distributors are backed by the pioneering leader with the greatest semiconductor experience—Texas Instruments—to deliver to you the most advanced, dependable semiconductor and component products available anywhere.

If you have an electronic component requirement, contact one of these three listed distributors for overnight delivery at factory prices from his complete line of TI stock.

Order today in the following quantities:
1-999:
silicon transistors, germanium transistors, silicon diodes and rectifiers, carbon film resistors
1-499:
sensor silicon resistors
1-99:
tan-TI-cap tantalum capacitors

Your Authorized TI Distributor

ALLIED RADIO CORP.
100 N. WESTERN AVE.
CHICAGO 80, ILLINOIS
HAymarket 1-6800
TWX: CG-2898

Silicon Transistors: 1-999
Germanium Transistors: 1-999
Silicon Diodes and Rectifiers: 1-999
Carbon Film Resistors: 1-999
sensor silicon Resistors: 1-499
tan-TI-cap Tantalum Capacitors: 1-99
NEW PRODUCTS

Miniature Nut 427
Stands 160,000 psi

Measuring 0.095 in. in height, 0.172 in. in diam, and having a wrench hex sign of 3/32 in., the Kaylock H14-02 all metal nut withstands 160,000 psi. The weight is 0.02 lb per hundred. They are designed for use in electronic systems of missiles, rockets, and aircraft.

Beam-Power Pentode 422
Has a low-loss mica-filled base

Type 7581 30-w beam-power pentode, using a low-loss mica filled base, is primarily for audio power output, but also provides good rf performance. A rounded-top envelope reduces the possibility of microphonic action under vibration. A controlled-knee characteristic eliminates signal distortion from this source in properly designed circuits. A bonded metal anode of aluminum, copper, and iron prevents hot spots and permits exceptional heat dissipation. The zero-bias ratings are: plate voltage, 70 v; screen voltage, 300 v; control grid voltage, 0 v; plate current 210 ma; and screen current, 25 ma. The tube is interchangeable with types 8581, 6L6, and KT-66.

General Electric, Receiving Tube Dept., Dept. ED, Owensboro, Ky.

ESC DEVELOPS DELAY LINE WITH 170 to 1 DELAY TIME/RISE TIME RATIO

Model 61-34 Perfected
For Specialized Communications Application

PALISADES PARK, N. J.—An entirely new Lumped-Constant Delay Line, with a proven 170 to 1 delay time/rise time ratio, has been announced by the ESC Corporation, Palisades Park, N. J. The new delay line, known as Model 61-34, was specifically designed for a specialized communications application calling for the exceptionally high delay time/rise time ratio.

ESC, the world's leading manufacturer of custom built and stock delay lines, is already widely recognized in the electronics industry for its exceptional engineering advances. In October, 1958, ESC broke through an existing design barrier and produced a delay line with a 145 to 1 delay time/rise time ratio. It had been thought, prior to the announcement of the Model 61-34, that ESC had reached the ultimate in this type of delay line.

SPECIFICATIONS OF NEW DELAY LINE
MODEL 61-34
Delay time/rise time ratio: 170/1
Delay: 200 usec.
Rise time: 1.16 usec.
Attenuation: less than 2 db
Frequency response: 3 db = 325 KC
50 taps with an accuracy of ±0.2 usec. at each tap.

Complete technical data on the new unit can be obtained by writing to
ESC Corporation, 534 Bergen Boulevard, Palisades Park, New Jersey.
NEW PRODUCTS

Photoconductive Cells

Measure 0.5 in. long and 0.25 in. in diam

The 600 series of cadmium sulfide and cadmium selenide photoconductive cells are 0.5 in. long and 0.25 in. in diam. These glass-enclosed units are designed to withstand extreme shock and vibration conditions. Like the 400 series, they have a sensitivity 1,000,000 times greater than photomissive tubes. They are hermetically sealed.

Clairtex Corp., Dept. ED, 22 E. 17th St., New York 3, N.Y.

Inductor Coils

Have range from 0.1 μh to 56,000 μh

Measuring 0.16 in. in diam and 0.375 in. in length and occupying a volume of less than 0.0066 cu in., these coils, called Wee-Ductors, have a range in value from 0.1 μh to 56,000 μh. They are sealed in epoxy resin. Requirements of MIL-C-15305A are met.

Mylar Capacitors

For use to 200 C

These uncased Mylar, plastic film capacitors can be used over the temperature range of −65 to +200 C. Both round and flat types are offered, designated UR and UF. Tolerances of 0.5%, 1%, 2%, and 5% are available, capacitances are 1 μf to 10 μf, and working voltages are 50, 100, 150,

Here are SILICON SLICES more consistent than any others

When you come right down to it, in order to get good device yields, consistency is just about the most important characteristic of Silicon single crystal slices. And consistency can only be assured when you are able to trace the genesis of every slice (even production lots) all the way back to original raw materials.

This you can do with the above slices. They're from Allegheny—the only company now operating a completely integrated silicon production facility. Naturally, since we start from raw materials, we can also supply bulk, billets, rods, doping alloys, seeds or whatever special forms you might need.

And the slices? They come from vertically pulled or float zoned crystals doped to range with 99.999% group III and/or V elements. You get them in standard thicknesses from .005" to .020", with diameters from 1/10 to 1-1/2 inches. Lapping we do to your specs, preparing for diffusion if you wish. Otherwise, your slices are etched, cleaned and dried—ready for use when you get them.

Isn't now the right time to get all the facts?

Allegheny Electronic Chemicals Co.

ALLEGHENY

ELECTRONIC CHEMICALS CO.

Producers of semiconducting materials for the electronics industry

CIRCLE 63 ON READER-SERVICE CARD
240, 250, 300, 400, and 600 v. The units meet MIL-TMA spec 118-A, MIL-C-91A environmental test requirements, and most requirements of MIL-C-25A. The lead sizes are No. 18 and 20 AWG tin plated copper wire, 2.25 in. long. Applications include printed circuitry, potted or encapsulated components, guided missiles, computers, and delay lines.

Capcon, Inc., Dept. ED, 61 Stanton St., New York 2, N.Y.

Temperature Control

Indicating type

Series 6000 indicating temperature controller features a 12-in. circular readout based on a stable null balance servo system. The instrument is available with either time proportioning or on-off control, with or without an anticipating section. The control stability of the proportional model having an anticipating section is to ±0.1 deg F; for the on-off model with anticipation, control is ±0.5 deg F. Indication accuracy is ±1% of the scale range. Plug-in plastic encapsulated circuitry is used. Operation is ensured under conditions of shock and vibration as well as dust and moisture.

Electronic Process Corp. of Calif., Dept. ED, 436 Bryant St., San Francisco 7, Calif.

Switches

Are rated at 2 amp, inductive

Pushbutton switch type WC1506 and Switchlite type WC1501 are both rated at 2 amp, inductive, at 28 v dc. The switch is dpdt and has an over-all length of 1-5/8 in. with a behind-the-panel depth of 7/8 in. It comes with a choice of various adapters, some of which provide for engraving up to 20 characters. The Switchlite has an independent, isolated lamp circuit and comes with a 6, 14, or 28-v lamp. Its over-all length is 3-8 in. and it has a depth of 1/32 in. behind the panel. The lens is 5/8 in. in diam and provides space for an engraved legend. Both units are moistureproof.

Fetherington, Inc., Dept. ED, 1420 Delmar Drive, Folcroft, Pa.

If miniaturization has put your circuits in a tight spot, you can build reliability right into them with the AMP Taper Technique . . . formed taper pins or new solid, pre-insulated taper pins . . . two-piece or molded one-piece stackable blocks . . . plus a wide assortment of taper receptacles.

The AMP Taper Technique offers the most complete line of taper products available plus many extra features. A three-and-a-half degree taper assures the firmest fit of pin in block. A-AMP Pull-Test Insertion Tools assure the proper seating of pins. Hand and Automachine crimping tools assure uniformity of pin attachment to your circuit leads.

And—with the addition to the AMP Taper Technique of the new Solid Pre-Insulated Diamond Grip Taper Pin and the new one-piece warp-free block, you can have the greatest flexibility of product choice for your circuit design and manufacturing operations.

You can concentrate more circuits in a smaller space—and be sure of reliability when you use the AMP Taper Technique. Send for our new catalog today.
Chicago Aerial Industries has developed a camera control system that allows one jet pilot to do the job of ten expert aerial photographers... automatically.

Heart of this new unit is the CAX-12 servo power unit. It accurately synchronizes film speed with speed of the jet—changes lens openings in response to electronic signals—regulates shutter speed and controls driving motor on cameras.

Because this power unit is vital to the camera control system component reliability is a must. That's why CAI relies on Edison Thermal Time Relays exclusively for CAX-12.

Edison's line of miniature time delay relays are available for a wide range of electronic applications. They are light, small, rugged and offer these advantages:
- Designed to withstand vibration frequencies to 500 CPS
- Exceptionally high rate of contact closure
- Permanent calibration and hermetic seal
- Extremely rigid mechanical structure using high-strength, high-expansion alloys.

Edison's Thermal Time Delay Relay being inserted in the CAX-12 servo power unit.

NEW PRODUCTS

Plastic Laminate

Comes in thicknesses from 1/32 to 5/16 in.

Available in thicknesses ranging from 1/32 to 5/16 in., grade P-613 GS high pressure plastic laminate has a high impact strength and a low power factor. Minimum flatwise flexural strength is 16,000 psi with a minimum lengthwise tensile strength of 12,400 psi. Insulation resistance is 50,000 meg at 35 °C and 90% relative humidity. There is no blistering or delamination on soluble floating of etched patterns.

Air Conditioner

Distributes 2500 cfm of filtered air

This air conditioning unit maintains comfortable conditions at temperatures down to -65 F. It distributes 2500 cfm of filtered air, including 100 cfm of outside air through a perforated ceiling. On cooling cycle, the unit will develop a full five tons of capacity when the outside air temperature reaches 120 F. Under these conditions, it will keep the interior at 80 F dew point, 50% relative humidity. It is designed for trailer vans housing electronic equipment.

Carrier Corp., Machinery & Systems Div., Dept. ED, Syracuse, N.Y.

Instrument Pivots

Are 0.05 to 0.75 in. long

These pivots, shafts, and pins are available in a wide range of diameters: 0.16 to 0.125 in. and in lengths from 0.05 to 0.75 in. with radii from 0.0008 to 0.004 in. They are made from high grade carbon steel and are heat-treated for maximum hardness. Conical bearing point angles, from 45 to 70 deg, are turned for perfect centering and smooth operating performance.

John Gillen Co., Dept. ED, 2541 S. 50th Ave., Cicero, Ill.
Magnetic Converter 402

Records from 7 or 8-channel paper tape

This paper tape to magnetic tape converter records information on 7 or 8-channel paper tape on 1/2-in. oxide magnetic tape and prepares it for playback on an IBM transport. Eliminating the intermediate conversion of paper tape to cards, this system permits the off-line conversion of paper tape directly to IBM 650 and 704 magnetic tape at the rate of 300 characters per sec. Without special paper tape codes, the converter automatically generates the required magnetic tape format structure: longitudinal parity bits, record and file spaces, and end of file cards.

Gilliland-NRL, Dept. ED, 3124 E. 14th St., Oakland 1, Calif.

Spiraling Lathe 403

For film resistors

Model ABL-6 spiraling lathe is for production and testing of film resistors having the resistance range of 10 ohms to 10 meg. Operation is completely automatic once the parts are fed into the vibratory bowl feeder. Monitoring of the resistors throughout the spiraling cycle is provided by a sensitive automatic bridge. The unit includes a counter for presetting turns per inch and spindle rpm.

Industrial Instruments Automation Corp., Dept. ED, 89 Commerce Road, Cedar Grove, N.J.

Amplifier 408

Measures 1 x 1 x 1-1/8 in.

Measuring 1 x 1 x 1-1/8 in., model 200 transistorized amplifier can drive 2 or 3.5-w servo motors from low level 400 cps signals. The maximum gain, which may be adjusted by an external resistor is 2500. The gain stability is 3 db. Able to operate to 125 C, the unit meets MIL-E-5272 requirements. Internal limiting prevents overdrive or phase shift for high input signals. For computer, servo, and automation applications, the unit operates from an input of 25 v dc.

Control Technology, Dept. ED, 113 Broadway, New York 1, N.Y.
NEW PRODUCTS

RF Signal Generator
Operates over the range of 1800 to 4000 mc
Type TS-403 URM-61A rf signal generator is designed to operate over the range of 1800 to 4000 mc. It provides outputs of 1 mv to 0.1 µv. Internal or external pulse or fm modulation is available. The unit meets the requirements of MIL-T-945.
Radio City Products Co., Inc., Dept. ED, Centre and Glendale Sts., Easton, Pa.

Full-Wave Rectifier
Delivers 300 v dc
Type 5CU4 full-wave rectifier can be substituted for two rectifiers in TV and hi-fi design. A 425-ma, cathode type tube, it delivers 300 v dc. The tube voltage drop is 24 v. The unit offers improved regulation and replaces the SU4GB and the 5Y3GT.
Raytheon Co., Receiving Tube Div., Dept. ED, 465 Centre St., Quincy, Mass.

Binary-to-Tape Converter
Type ZA-25159 data converter will convert a 27-bit time code, one 20-bit data signal, and two 17-bit data signals into an IBM 704 magnetic tape. The unit will also supply signal outputs to seven central locations also in the IBM 704 coding without gaps between the blocks. The sampling rate of the input may be 10, 20, 40, 50, or 100 pps. Designed for the multiplexing and recording of range, azimuth, and elevation data from digital radar outputs together with a timing signal, the unit is transistorized.
Electronic Engineering Co. of Calif., Dept. ED, 1601 E. Chestnut Ave., Santa Ana, Calif.

SILICONE NEWS from Dow Corning

Plan For Uniform Performance

Low Power Factor and Constant Capacity Assured by Dow Corning Silicone Fluids
Here's an example of value engineering with silicone fluids:
The Filtron Co., Inc., of Flushing, N.Y., manufactures RF interference filters and capacitors for both military and commercial use. To assure an almost constant capacitance vs temperature relationship for their specialty capacitors...and the lowest possible power factor for their RF interference filters...Filtron engineers impregnate them with Dow Corning silicone fluids.
Silicone fluids are in themselves, excellent dielectrics. In capacitors and RF filters such as these, silicone fluids boost the performance of the paper dielectric...substantially increase permissible operating temperatures, decrease electrical losses. Highly stable to changing environments, silicones show little drift in electrical or physical properties over a broad range of temperature and frequency conditions. They add greatly to reliability...often eliminate costly compensating circuits.
Dielectric-Coolants...Silicone fluids also make highly effective heat transfer media. Because of their relatively constant viscosity, their pumping rate does not vary appreciably at differing temperatures. They're nonoxidizing, nongumming...can be sealed in for the life of the equipment. Electric grade fluids may be cycled directly over operating assemblies.

Typical Dielectric Properties of 200 Fluid, 100 CSTK.

<table>
<thead>
<tr>
<th>Property</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55°C</td>
</tr>
<tr>
<td>Dielectric Constant, 1.0 kcs</td>
<td>3.1</td>
</tr>
<tr>
<td>0.1 mc</td>
<td>3.1</td>
</tr>
<tr>
<td>Dissipation Factor, 1.0 kcs</td>
<td>0.0005</td>
</tr>
<tr>
<td>0.1 mc</td>
<td>0.0002</td>
</tr>
<tr>
<td>Resistivity, ohm-cm</td>
<td>10 x 10^4</td>
</tr>
<tr>
<td>Electric Strength, dc, 20 mil gap</td>
<td>v/mil</td>
</tr>
</tbody>
</table>

Your nearest Dow Corning office is the number one source for information and technical service on silicones.

Dow Corning Corporation
Silicones Division
Flushing, New York

CIRCLE 800 ON READER-SERVICE CARD
... engineer for value with silicones

Solventless Resin Fills A Void

This servo motor, made by G-M Laboratories, Inc., Chicago, must withstand high humidity and high temperatures in operation. On analyzing the requirements of size, weight and reliability, engineers at G-M Laboratories concluded that a silicone insulation system would permit the best design, so they impregnated the stator under vacuum with Dow Corning solventless silicone resin. This moistureproof, heat-resistant material fills the coil interstices and sets up to a solid, bubble-free mass. It protects against vibration, oxidation, corona and moisture... provides good heat transfer.

Investigate Dow Corning solventless silicone resins for use in rigid potting, filling, impregnating or encapsulating materials. They're radiation resistant... can be used with inorganic fillers.

CIRCLE 801 ON READER-SERVICE CARD

For Maximum Security: Silicone-Glass

Ground approach radar must provide the ultimate in reliability. That's why Gilfillan Brothers, Inc., of Los Angeles, use silicone-glass laminates in their Quadradar sets which are designed to provide vital flight information that facilitates ground controlled approach and landing of high speed aircraft.

Silicone laminates are specified because they have uniform dielectric properties under climatic and atmospheric conditions. Little affected by moisture, silicone-glass terminal boards prevent recurrent arcing even at high voltage and high humidity... provide low loss factor and low attenuation at RF frequencies. In addition, silicone laminates are strong and resist creep under pressure of fasteners; and, when needed, their heat resistance is exceptional... up to 250 C continuous for years on end.

CIRCLE 803 ON READER-SERVICE CARD

Soften Shock With Silastic RTV

This transistorized oscillator, produced by Delta-f, Inc., Geneva, Illinois, is designed for use in airborne and portable communications equipment. To protect against shock, Delta-f engineers use a flowed-on blanket of Silastic® RTV. It supplies needed cushioning, and is unaffected by a built-in heating element. Silastic RTV can withstand temperatures up to 260 C, down to -70 on the cold side. In addition, it resists moisture, oxidation, and other adverse conditions.

Silastic RTV is the Dow Corning fluid silicone rubber that hardens at room temperature. Easy to use, it can be applied by dipping, pouring or with a caulking gun. When used as a potting material, it flows into place, filling all voids... sets up to form silicone rubber with excellent dielectric properties.

CIRCLE 802 ON READER-SERVICE CARD

Electrical Tape

Has a backing of epoxy resin

No. X-1090 electrical tape has a backing of fully-cured, flexible, 100% solid, epoxy resin reinforced with a 0.002-in. glass cloth. It has a high resistance to cold flow, and is suited for applications requiring the electrical strength of a continuous film epoxy resin plus the physical strength of glass cloth at Class F operating temperatures.

Minnesota Mining and Manufacturing Co., 3M Co., Dept. ED, 900 Bush Ave., St. Paul 6, Minn.

Phasemeter

Absolute accuracy is 0.1 deg

Able to measure the phase angle difference between two sinusoidal voltages from 30 to 20,000 cps over a range of 0 to 360 deg, model 901 phasemeter has an absolute accuracy of 0.1 deg and an incremental accuracy of 0.01 deg. A phase detector bridge is used for phase comparison. The phase difference is read directly from a 2-deg step control with a vernier indicator. Capable of self-calibration, the instrument provides sense information to remove 180-deg ambiguity. The input impedance for both channels is 10 meg shunted by 25 µf. The input signal level varies from 0.5 to 100 v rms. The power requirements are 105 to 125 v at 50 to 60 cps, 200 w.

W. L. Maxson Corp., Dept. ED, 475 Tenth Ave., New York 18, N.Y.

Shielded Containers

For recording tapes

Made to accommodate recording tapes, these Netic Co-Netic magnetically shielded containers come in both round and square designs. They are available in single or multiple reel capacities. The tapes are protected against erasure or distortion caused by extraneous magnetic fields. The alloys used are shock resistant, nonretentive, and do not need periodic annealing.

An extremely versatile high precision DC measuring instrument, the new Hallamore Potentiometric Voltmeter, Model 0181, offers important advantages for application both in the laboratory and in systems calibration. It may be used as a null detector, quasi-deflection potentiometer, or galvanometer. Instrument may be removed from portable case for standard rack mounting. Unit may be used separately as a galvanometer. Direct readout is provided on 6 decade switch dials, as well as on the galvanometer. Operating range... 0-10 VDC, Accuracy... ±(0.025% + 3 microvolts). This exclusive Hallamore development affords high stability and resolution... operates from conventional power sources... will stabilize within 15 minutes. For detailed information concerning specifications, applications, and early delivery, write Hallamore Electronics Company, 714 North Brookhurst St., Anaheim, California Phone PR 4-1010: a division of The Siegler Corporation.

NEW PRODUCTS

Storage Register

Contains five transistorized flip-flops

Model 307 flip-flop storage register contains five independent transistorized flip-flops for storage of digital data. Set and reset inputs, and One and Zero outputs are available for each flip-flop. In addition, a common bus is provided for simultaneous resetting of all five flip-flops. The register is a 5 x 6 in. glass-epoxy printed circuit card 1.18 in. thick, and is used with an 18 pin PC receptacle. One voltage, -12 v, is required. Standard levels are -6.8 v for One and -0.2 v for Zero.

Furnaces

Have temperatures to 2000 F

The Stabel-Glow box type furnaces offer continuous temperatures to 2000 F. When the set temperature is reached, the wattage is automatically reduced to stabilize oven temperature. The units have pushbutton element switch controls. Of heavy-gage steel construction, the furnaces have a front plate measuring 3/4 in. thick. Double break contacts and solenoid type power contacts are used. The applications include annealing, as well as heat-treating of ferrous and nonferrous metals:

Torquemeters and Indicators 413

Have ranges to 30,000 lb-in.

This line of torquemeters and indicators, with models designed to meet specific needs, has standard ranges to 30,000 lb-in. full scale. Speeds to 50,000 rpm are provided. The torquemeters, equipped with high speed bearings, have variable inductance transducers to measure the angular twist proportional to torque in the torque shaft. The indicators have a sensitivity range about ten times that needed for standard torque assemblies. They have a calibrating circuit that standardizes over-all electrical gain to within ±1.5% of full scale.

YIG Spheres and Discs 412

Are highly polished

These highly polished YIG spheres measure 0.02 ±0.002 in. in diam and have a ferrimagnetic resonance linewidth of 0.65 ± 0.25 cycles. They can be used in power limiters, harmonic generators, cavity-tuned filters, and in other microwave devices. Also for microwave applications, YIG discs are available with diameters of 0.05 to 0.5 in. and heights of 0.002 to 0.1 in. The final polishing of the discs and spheres is done with Linde A aluminum oxide.

Microwave Chemicals Lab., Inc., Dept. ED, 282 Seventh Ave., New York 1, N.Y.

Terminals 406

Hermetic-seal type

These hermetic-seal terminals measure 11/64 in. in diam and are 13/64 to 1 1/4 in. in height. Made with an L-3 steatite, they meet AN-4-10 specs. They are supplied with a Neoprene or Silicone seal and come in four different head styles: notched lug, turret head, bow-turret, and lug with hole.

The Sphere Co., Inc., Dept. ED, 5 Amity St., Little Falls, N.J.

CIRCLE 68 ON READER-SERVICE CARD.

New MINIATURE BEAM SWITCHING TUBE ELIMINATES transistor HYSTERISTOR*

MINIATURE BEAM SWITCHING TUBE DECADE COUNTER WITH NIXIE® TUBE READOUT — Since transistors are "on-off" or binary devices, they require complex and multi-component circuitry to perform simple electronic distributing, switching, counting and other decimal functions.

*Hysterical Total Use of Transistors,

Resulting in Multi-Component Unreliability.

ANOTHER ELECTRONIC CONTRIBUTION BY
Burroughs Corporation

ELECTRONIC TUBE DIVISION
Plainsfield, New Jersey
NOW AVAILABLE FROM Transistor

NEW WIDE RANGE OF JAN SEMICONDUCTOR TYPES!

SIGNAL CORPES TYPES

USA 1N643 (MIL-E-1/1171)
USA 1N658 (MIL-E-1/1160)
USA 1N662 (MIL-E-1/1139)
USA 1N663 (MIL-E-1/1140)

FOR HIGHEST SPEED

Transistor is in volume production of the FASTEST silicon diode meeting military specifications. Typical recovery time: 15 usec measured with the EG & G scope. Their excellent high frequency properties make them particularly useful in detector, discriminator, and pulse circuitry.

For further information write for PB-66.

FOR LOW LEAKAGE AT HIGH TEMPERATURE

Low inverse leakage; low capacitance. Excellent inverse characteristics at 150°C.

See PB-66.

FOR HIGHEST SPEED

Transistor is in volume production of the FASTEST silicon diode meeting military specifications. Typical recovery time: 15 usec measured with the EG & G scope. Their excellent high frequency properties make them particularly useful in detector, discriminator, and pulse circuitry.

For further information write for PB-66.

SILICON TRANSISTORS

FIRST JAN silicon transistor on the market! And more types coming!

See TE-1353P.

SILICON RECTIFIERS

Identical except for Peak Recurrent Inverse Voltage.

See TE-1353F, 1353G.

GERMANIUM DIODES

SUBMINIATURE GLASS TRANSPARENT

Reliable under the most severe operating conditions. Rugged construction and 100% testing of electrical and mechanical characteristics insure excellent performance and long life.

See TE-1391M-1.

NEW PRODUCTS

Spectrograph

Provides analysis to 15 kc

Called the Missilizer, this audio and sub-audio spectrograph produces records of complex waveforms of frequencies to 15 kc, and provides three different analyses of their waveforms. The first relates frequency and intensity to time, the second relates intensity over a wider dynamic range to time at a particular instant of time, and the third shows the average amplitude vs. time. The unit is applicable to data reduction as well as analysis of vibration and noise on aircraft.

Kay Electric Co., Dept. EL
Maple Ave., Pine Brook, N.J.

Guidance System

For missile control

Type X-887 servo assembly program transmission determines whether the missile is on course and corrects for deviations by transmitting the proper signals to the guidance system. Able to meet operational requirements in a tactical missile, the assembly measures 2-1/2 x 2-1/4 x 8-1/8 in. and weighs about 34 oz. It meets the environmental requirements of MIL-T-5272 and operates in ambient temperatures of -55 to +100 C.

Bowmar Instrument Corp., Dept. ED, 8000 Bluffton Road, Fort Wayne, Ind.

Time Delay Relay

Range is 0.05 to 90 sec

Providing a range of 0.05 to 90 sec +5%, this time delay relay was made for a life of 50,000 operations. The contacts are spdt, 0.25 amp at 28 v. It operates over the temperature range of -55 to +85 C, withstands vibration of 10 g to 500 cpm, and has a dielectric strength of 1500 v rms. Standard units operate from 24 to 31 v dc; 18 to 50-v dc units can be furnished.

Hydro-Aire Co., Dept. ED, 4126 S. Bluffton Road, Winona Ave., Burbank, Calif.

Mixers

Circuitry

For further information write for PB-66.

Transistor electronic corporation * wakefield, massachusetts

"Leadership in semiconductors" SEE YOUR LOCAL AUTHORIZED TRANSISTRON DISTRIBUTOR FOR QUANTITIES FROM 1000.
Engineers Make the Best Fathers

Engineers make the best fathers because they encourage curiosity and experimentation—“pinning things down” to what they really are, instead of what somebody wants them to be. Engineers lead their children to the greater rewards of basing decisions in life on realities rather than wishes—facts rather than fiction.

We know engineers make the best fathers, because most of us at General Transistor are engineer-fathers...and so are most of our customers. Engineers practice what they preach. They base their decisions on facts, which explains why they write us asking for the facts about General Transistor products.

We encourage them.

...helping engineers make the best, by supplying the best

GENERAL TRANSISTOR CORPORATION
with TANSITOR TANTALUM CAPACITORS

Although all Tansitor capacitors tested to date have withstood the MIL-C-3966 vibration test, it is possible that one might fail sometime. Our replacement rate last year for all causes, however, was only 0.001%. Isn’t that the kind of reliability you want in your tantalum capacitors for shipboard or airborne electronic equipment?

TANSITOR FOIL CAPACITORS PROVIDE
- +55 to +125°C operating range at 150 volts or less in wide range of capacitance
- Leak-tight, vibration-proof
- Non-corrosive electrolyte
- Etched or plain, polar or non-polar
- Long shelf life at −65°C

DESIGNING TANTALUM CAPACITORS that give you the most capacitance in the least space is our only business. Try us for overnight deliveries on all MIL-C-3966 2A/3B ratings, any vibration level. Write or phone for complete data to TANSITOR ELECTRONICS, Inc., West Road, Bennington, Vermont. Tel. 5473

NEW PRODUCTS

True Airspeed Computers
€27

Three models available

These true airspeed computers, called Minta, consist of a balance transducer, a passive resistance network, and a follow-up servo. Model 620 has an accuracy of ±0.75 knots over the airspeed range of 125 to 450 knots in altitudes of 12,000 ft to 20,000 ft; model 620-1 has an accuracy of ±0.75 knots over the range of 100 to 200 knots from 0 to 10,000 ft; and model 620-2 has an accuracy of ±12 knots over the range of 300 to 1500 knots from 0 to 80,000 ft. The units meet the requirements for high speed aircraft, patrol planes, helicopters, artillery-directing aircraft, and missiles and conform to MIL-E-5400 and 5272. They weigh 6.5 lb and measure 5 x 8.25 in.

Servomechanisms, Inc., Dept. ED, 12500 Aviation Blvd., Hawthorne, Calif.

Delay Lines 622

Have delays of 0.1, 0.14, 0.2, 0.3, 0.5, and 0.7 μsec

Kit No. 122 provides six lumped constant delay lines with delays of 0.1, 0.14, 0.2, 0.3, 0.5, and 0.7 μsec. Each has a 3:1 delay-to-rise time ratio and is molded in a 0.4 x 1-in. hermetically-sealed brass tube. These phase and frequency compensated delay lines are made for use in4

ELECTRONIC DESIGN

Leading Electronics Magazine
The following Fairchild transistors are available from stock for same day shipment in quantities up to 1000 pieces per type.

GENERAL PURPOSE types suitable for switching RF and DC applications over a wide current range.

2N696 & 2N697

HIGH VOLTAGE type particularly suited to video amplifiers and RF oscillators.

2N699

PNP COMPLEMENT to the 2N696 and 2N697

2N1131 & 2N1132

HIGH STORAGE types optimized for high current saturated switching circuitry.

2N1252 & 2N1253

HIGH SPEED LOGIC transistor suitable for saturated switching circuitry without sacrificing speed.

2N706

AVAILABLE IN QUANTITIES OF 1-999 FROM DISTRIBUTOR STOCKS OR DIRECT FROM THE FACTORY FOR ORDERS OF 1,000 OR MORE. COMPLETE SPECIFICATIONS FROM EITHER SOURCE.

FAIRCHILD FIELD OFFICES: Garden City, N.Y., 1-4770 • Jenkintown, Pa., Turner 6-6623 • Los Angeles, Calif., El Monte 5-9508

545 Whisman Road / Mountain View, California / Yorkshire 8-8161

< CIRCLE 73 ON READER-SERVICE CARD

CIRCLE 74 ON READER-SERVICE CARD
Type TBP bandpass filters, designed for aircraft and missile applications, cover the frequency range of 200 to 2400 mc. The bandpass may be set from 5% to 25%. The number of sections is 2 to 4; insertion loss is 0.5 ±0.2 db per section. The electrical performance of the filters corresponds to resonant cavities or tank circuits having a quality factor of over 200, unloaded. Made for operation in temperatures higher than 100 C, they withstand shock, vibration, and temperature cycling. A lumped constant filter design is used. The diameter of the units is only slightly larger than that of the BNC connectors at each end.

Telonic Engineering Corp., Dept. ED, Laguna Beach, Calif.

Model 12 pulse modulator, with up to 500,000 w peak power, has repetition rates up to 4000 pps. A hydrogen thyratron line type, pulse modulator, it can be furnished with pulse amplifier and generator, or can operate from external power sources. The unit can accommodate pulse-forming networks furnishing 0.5 to 2-usec pulses. It operates into an output impedance of 50 ohms. Applications are in testing antenna systems or other radar devices.

Electro Powerpacs, Inc., Dept. ED, 5 Hadley St., Cambridge 40, Mass.
Amplifier-Resolver Module

Measures 3 in. long

Measuring only 3 in. long, this amplifier-resolver module consists of a size 8 winding compensated resolver and a dual channel buffer amplifier within a size 15 frame. The unit weighs 8 oz. Called the Amplisolver, it offers a transformation ratio of one with no phase shift over the temperature range of -55 to +125 C. It has a minimum input impedance of 1 meg and an output impedance of 270 + j400 ohms. The trim adjustment can be made in the field to ±2% of the unity transformation ratio. Cable connections are eliminated by direct drive from resolver to amplifier. The unit can be adapted to computing chain functions.

Printed Circuit Boards

Use special etching process

These printed circuit boards are made by a special etching process which provides tolerances of ±0.0005. Suitable for military applications, these circuit boards can be gold-plated, flash gold, tin plate, or solder coat plated, with nickel rhodium tips. Completely assembled and packaged boards, including terminal boards are available.

Spec-Tronics, Dept. ED, 13942 Saticoy St., Van Nuys, Calif.
NEW PRODUCTS

Power Supplies
Ripple is less than 8 mv

The 880 series and the 870 series of power supplies have less than 2 msec transient response and less than 8 mv ripple. The 880 is offered with a power rating of 0 to 1, 0 to 3, or 0 to 5 amp. Its output voltage range is 3 to 45 v dc, continuously variable. Regulation is 0.1% for combined variations in line and load. It has adjustable load current limiting and remote sensing for maximum regulation at load. The 870 has power ratings of 0 to 12, 0 to 5, and 0 to 3 amp. It provides an output of 3 to 36 v dc and has a regulation of 0.2% for variations in line and load.

Metrolog, Dept. ED, 169 N. Halstead St., Pasadena, Calif.

Insulation Tester
Detects leakages from 20 μA to 3 mA

The Megpot 570BP series of insulation testers provides for continuously variable leakage tests with settings from 20 μA to 3 mA. A relay cuts the current from components being tested in milliseconds. Variable ranges to 10,000 v can be supplied; standard models range from 0 to 3000 v or 0 to 5000 v ac. The voltage is read directly across the output leads. The accuracy is ±5% over the entire voltage range. Full scale output is available with a load capacitance of 0.0025 μF. Designed for modular installations in rack panels, the instrument can be used to test transformers, relays, capacitors, and complete electronic assemblies.

General Hermetic Sealing Corp., Dept. ED, 99 E. Hawthorne Ave., Valley Stream, L.I., N.Y.
SEALD RELAYS—unmatched for reliability

VIBRATION

HEAT

ACCELERATION

COLD

SHOCK

LIFE

To the moon and back without leaving our lab

Rapid acceleration, vibration, violent shock, extreme temperature—these are the environmental conditions found on a trip to the moon ... and in General Electric's relay-testing laboratory as well. Here, exhaustive tests—simulating operating and atmospheric conditions—are conducted to continually verify the reliability of G-E sealed relays.

Even in standard production testing, General Electric goes well beyond requirements to assure reliability. Each lot of G-E relays is subjected to 27 tests and measurements before being released for shipment. For example, every relay built is subjected to a 15-cycle dynamic contact-resistance check—the prime indicator of cleanliness.

For one demanding application, General Electric and the customer scheduled 109 tests for each unit. A 5% lot sample was subjected to destructive tests including monitored six-hour vibration and load-life tests. A single relay failure meant rejection of the entire lot. During this contract, 23 consecutive lots (over 4000 relays) were processed without a lot-sample failure!

But testing is only part of G.E.'s reliability story. Design leadership (such as produced the Unimite, the world's smallest 1-amp relay) and advanced manufacturing techniques (including new inert-arc welding to eliminate contact-contaminating solder and flux) consistently produce superior relays.

Obviously, all relays don't require the same testing—but whatever your needs—General Electric has the know-how and facilities to meet them. See your G-E Sales Engineer, or mail the coupon at right. General Electric Co., Specialty Control Dept., Waynesboro, Va.

Progress Is Our Most Important Product

GENERAL E ELECTRIC

CIRCLE 83 ON READER-SERVICE CARD

There's a G-E sealed relay for every circuit need—every reliability requirement

G-E miniature, sub-miniature, micro-miniature and Unimite relays combine small size with unusual reliability under severe temperature, shock, and vibration conditions to make them ideal for electronic jobs, both military and commercial. G.E.'s complete line of sealed relays includes these basic types:

MINIATURE: Long-life type; rated 5 amps at 28 volts d-c; in 2- or 4-pole double throw and 6-pole normally-open forms. Ideal for ground use.

SUB-MINIATURE: 2 amps at 28 volts d-c; 115 volts a-c; double-pole double-throw. Excellent thermal life.

MICRO-MINIATURE: Crystal-can type; double-pole and new welded 4-pole units. Rated 2 amps, 28 v d-c or 115 v a-c. Grid-space terminals available.

UNIMITE: The world's smallest 1-amp sealed relay; single-pole type. Isolated contact chamber, high speed 1.5 millisecond operation.

General Electric Co.
Section C752.11
Schenectady 5, N. Y.

Please send me a free copy of the 1959-60 Sealed Relay Catalog.

Name

Address

City

State
NEW PRODUCTS

Indicator Light 587

Legend area is 15/32 x 1-1/4 in.

The Roto-Tellite word indicator light has a visible legend area of 15/32 x 1-1/4 in. It will accommodate up to three rows of 0.125 in. high characters, fourteen per row. It may be used for feedback of information in man-machine systems on control panels at missile launch sites, in computers, and aircraft. Burned out bulbs are replaced from the front, and legends and circuitry are completely replaceable.

Master Specialties Co., Dept. ED, 956 E. 108th St., Los Angeles, Calif.

Plate Transformers 602

Voltage-regulated

These voltage-regulated plate and filament transformers are made for critical electron-tube power supplies. Regulation of dc plate voltage from input to filter is ±3% against line variations of 100 to 130 v ac. The units also provide filament voltages of 5 and 6.3 v ac regulated to ±3%. Model MVRP-40 supplies 275 v dc at 50 ma, 6.3 v ac at 2.5 amp, and 5 v ac at 2 amp. Model MVRP-70 provides 385 v dc at 110 ma, 6.3 v ac at 3 amp, and 5 v ac at 2 amp. Model MVRP-185 provides 390 v dc at 250 ma, 6.3 v ac at 4 amp regulated and 8 amp unregulated, and 5 v ac at 3 amp. All dc voltages are measured at the input to a capacitor-input filter following a type 5Y3GT rectifier for models MVRP-40 and 70 or a type 5U4GA GB for the MVRP-185.

Sorensen and Co., Dept. ED, Richards Ave., S. Norwalk, Conn.

THE FINEST ELECTRONIC COMPONENTS ALWAYS ON HAND... CALL YOUR RAYTHEON DISTRIBUTOR

RAYTHEON DISTRIBUTORS

- Radio Specialties Company, Inc., Alamogordo, New Mexico HElmlock 7-6307
- Radio Specialties Company, Inc., Albuquerque, New Mexico AM 8-3901
- Wedemeyer Electronic Supply Co., Ann Arbor, Michigan NOrmandy 2-4457
- Electronic Expeditors, Inc., Appleton, Wisconsin REgent 3-1755
- Forbes Distributing Company, Birmingham, Alabama
- Cramer Distributing Company, Inc., Boston, Massachusetts

DeMambro Radio Supply Co., Inc., Boston, Massachusetts AL 4-9000
- Marks Parts Company, Bradock, Pennsylvania EElectric 1-1314
- Valley Electronic Supply Co., Burbank, California VICToria 9-4641
- Electrical Supply Corporation, Cambridge, Massachusetts UNiversity 4-6300
- Allied Radio Corporation, Chicago, Illinois HAYmarket 1-6800
- Newark Electric Company, Chicago, Illinois EState 2-2950
- United Radio Inc., Cincinnati, Ohio CHERry 1-6530
- Main Line Cleveland, Inc., Cleveland, Ohio EXPRESS 1-1800
- Pioneer Electronic Supply Co., Cleveland, Ohio SUPERior 1-9411
- Buckeye Electronic Distributors, Inc., Columbus, Ohio
- Graybar Electric Company, Dallas, Texas RIVERSide 2-6451
- Sreco, Inc., Dayton, Ohio BAldwin 4-3871

RAYTHEON COMPANY

RECEIVING AND INDUSTRIAL TUBE SEMICONDUCTOR PRODUCTS MECHANICAL COMPONENTS
Insulation Tester

Has automatic operation

Model 8515 insulation life tester operates automatically for periods up to 12 hr and makes high voltage breakdown tests on as many as 50 individual components. The leakage current metering circuits have ranges of 0 to 10, 25, 100, and 250 ma. Automatic reject controls are adjustable from 0.5 µa to 250 ma. Testing can be done on transformers, capacitors, and other electronic components. The components or circuits are tested in sequence, at the pre-set potential. When leakage current in excess of the predetermined value develops, the unit sounds an alarm, shuts off completely, or continues checking but allows the test potential on the unit that has failed to drop to zero.

Associated Research, Inc., Dept. ED, 3777 W. Belmont Ave., Chicago, Ill.

Video Sweep Integrators

Increase radar range

The 800 Series video sweep integrators increase the radar range by adding up to 1000 sweeps. The units use super-regenerative amplifiers in conjunction with a solid ultrasonic delay line memory. Complete interchangeability of the delay line is possible without amplifier retuning. The integrator provides the high gain needed to compensate for the delay line loss in a single super-regenerative amplifier stage. Suitable for airborne use, the unit has applications such as the integration of hits across the beam in a large beam search radar and long-time integration in a pencil beam radar which searchlights an active target.

Atronic Products, Inc., Dept. ED, 1 Bala Ave., Bala-Cynwyd, Pa.
31 reasons why LAMBDA LT TRANSISTORIZED POWER SUPPLIES
GUARANTEED

NEW PRODUCTS

AC Voltage Regulator 590
Provides ±1% regulation, half load to full load

This miniature, plug-in type ac voltage regulator provides a regulation of ±1%, half load to full load. Completely transistorized, this compact unit can replace heavy, rack-size sources using magnetic amplifiers or frequency sensitive transformers in applications requiring small outputs. Model AR-1 has an output of 115 v ac at 1 amp; model AR-2 has an output of 6.3 v ac at 10 amp; and model AR-3, 12.6 v ac at 5 amp. Dimensions for all units are 4.75 x 5.74 x 5 in. The requirements of MIL-E-5292A are met.

Electronic Assembly Co., Dept. ED, 5 Prescott St., Roxbury, Mass.

Spectrum Analyzer 591
Bandwidth is 70 cps or 1 kc

Type 190 spectrum analyzer measures the power level in a 70-cps or 1-kc bandwidth in the frequency range of 500 cps to 90 kc. Power measurements may be obtained automatically using a swept

LAMBDAL T TRANSISTORIZED POWER SUPPLIES
IMMEDIATE DELIVERY FROM STOCK

CONVECTION COOLED
No internal blowers - No moving parts
0-32 VDC • 0-1 AMP • 0-2 AMP

- Ambient 50° C at full rating.
- High efficiency radiator heat sinks.
- Silicon rectifier.
- 50-400 cycles input.
- Special, high-purity foil, long-life electrolytics.
- Compact. Only 3½” panel height.
- Short-circuit proof.
- Protected by magnetic circuit breakers.
- Hermetically-sealed transformer. Designed to MIL-T27A.
- All transistor. No tubes.
- Fast transient response.
- Excess ambient thermal protection.
- Excellent regulation. Low output impedance. Low ripple.
- Remote sensing and DC vernier.

Model LT 1095 $285
Model LT 1095M (metered) $315
Model LT 2095 $365
Model LT 2095M (metered) $395

SEND FOR COMPLETE DATA
Write for information and specifications on Lambda’s full line of transistor-regulated and tube-regulated power supplies.

LAMBDA ELECTRONICS CORP.
11-11 131 STREET • COLLEGE POINT 56, N. Y. • INDEPENDENCE 1-8500
Lambda
Power Supplies are FOR 5 YEARS!

1. Thermal overload breaker for excess ambient temperature protection
2. High efficiency, convection heat sinks
3. Industrial type power transistors inherently protected against overload
4. Highly stable Zener voltage reference diode
5. Special, high-purity foil, hermetically sealed, long-life electrolytic capacitors
6. Silicon rectifier
7. Excellent regulation, low output, impedance, low ripple
8. Stable, low-noise wire-wound reference networks and multipliers
9. Unit welded chassis and frame
10. Every connection and solder joint individually inspected and checked
11. Sturdy gripping handles
12. Meters on “M” models
13. Magnetic circuit breaker
14. Fuses, internal failure protection
15. Thermal overload indicator light
16. Fast transient response
17. Every specification lab-checked before shipment
18. Rated for full load over entire voltage range
19. Advanced packaging for optimum thermal and mechanical design
20. Rated for 24-hour continuous duty
21. Compact — only 3½" panel height
22. Rated for operation from 50-400 cycle source
23. Hermetically-sealed transformer — designed to Mil-T 27A
24. Heavy-duty extra-length industrial cord
25. Harness wiring
26. Nylon jacketed vinyl wire
27. Sturdy cable clamp anchors
28. Remote DC vernier adjustment terminals
29. Remote sensing terminals
30. All controls clearly identified and marked
31. Heavy-duty barrier-type terminal block located for convenient rack cabling

oscilloscope or manually. Able to handle signals from 0.1 v to 1 mv, the instrument has a high sensitivity and an accuracy of ±2 db.
Ferranti Electric Inc., Electronics Div., Dept. ED, 95 Madison Ave., Hempstead, L.I., N.Y.

Accelerometers
Series LA34 accelerometers measure 1 in. in diam and 1.5 in. long, and weigh 4 oz. For missile control systems, missile and aircraft tests, and other applications requiring precision measurements, the units have a linearity and an accuracy of 1%. Of steel construction, they are hermetically-sealed and use a glass cylinder-carbon piston damper. Operation under severe environmental conditions is provided for.
Humphrey, Inc., Dept. ED, 2805 Canon St., San Diego, Calif.

Reader
For oscillograms and strip charts
The Oscar Model K reader is designed for use with oscillograms and strip chart records. The unit has motorized chart drive, channel and time counters patchboard programming, and a serial keyboard for manual data input. The reader can be used to automatically operate a typewriter and card punch.
Benson-Lehner Corp., Dept. ED, 1860 Franklin St., Santa Monica, Calif.

Correction Notice
The 15-me transistors made by General Electric Co. were reported in the December 9th issue as having a temperature range of 65 to 200 C. Actually, their temperature range is -65 to +200 C.

CIRCLE 86 ON READER-SERVICE CARD
ORM FREEDMAN is in charge of RCA's Chemical and Physical Laboratory for Industrial Receiving Tubes...and someone is always dumping troubles on Norm's shoulders. He doesn't mind. Matter of fact, he thrives on it! Manufacturing difficulty? Norm sends a man out to trouble shoot on the spot. Tube life or performance problem? The Lab goes to work on it...studying new materials, new processing methods. Every part of the tube is scrutinized from the heater to the glass bulb. Even when no one has a complaint, Norm and his staff go looking for trouble on their own. They're way out in front of the industry...developing materials and processing techniques for tubes that don't even exist yet.

Not long ago Norm and his group decided to concentrate on the problem of cathode emission. They studied emission coating preparation from every conceivable angle--especially such details as specific gravity, viscosity, particle-size distribution. The results are reflected across the board in RCA Industrial Receiving Tubes with greater uniformity of electrical characteristics and long and dependable performance.

The work of Norm Freedman and his laboratory staff is one more guarantee of quality when you design around RCA Industrial Receiving Tubes. For more information on this product line, get in touch with your RCA Field Representative.

RADIO CORPORATION OF AMERICA
Electron Tube Division
Harrison, N. J.

ANOTHER WAY RCA SERVES YOU THROUGH ELECTRONICS
Story of General Electric's Ion-membrane Fuel Cell

IT'S SIMPLE, RELIABLE AND EFFICIENT!

The quarter-inch thick wafer you see above is one of General Electric's new ion-membrane fuel cells. It is silent. It has no liquid electrolyte. It has high fuel efficiency. We'd like to tell you about it; but before we do, let's start at the beginning...

WHAT ARE FUEL CELLS?
A fuel cell is an electrochemical device in which energy, derived from a chemical reaction maintained by the continuous supply of chemical reactants, is converted directly to electricity. This means that, like a common battery, a fuel cell converts chemical to electrical energy. But, the fuel cell has two major differences:

1. The fuel is obtained from outside the cell, and only as needed to meet load demands. It is not stored within the cell.
2. The products of the reaction are dissolved and the cell, therefore, remains invariant. That is, no change takes place in the electrodes and the membrane-electrolyte.

Most low-temperature fuel cells are based on a hydrogen-oxygen reaction. Our ion-membrane cell operates on this principle...but with a difference. It is self-regulating...no external controls are required.

GENERAL ELECTRIC'S FUEL CELL
Hydrogen and oxygen (or air) are supplied to opposite sides of the cell and are separated by a solid plastic membrane. Hydrogen ionizes at the anode, forming ions that enter the membrane-electrolyte. The ions migrate through the membrane to the oxygen electrode. Simultaneously, electrons travel the external circuit to the cathode where they reduce the oxygen. Over-all result: the controlled chemical combining of hydrogen and oxygen to form water, and the release of useful electrical energy.

WHAT IT WILL DO
Open circuit voltages as high as 1.08 have been obtained. Large prototype cells have produced 42.5 amps per square foot (800w/ft²) when generating maximum power. Thermal efficiency under typical load is about 60 percent, and improves under light loads. Demonstrator cells (like the one shown above) have been operated for extended periods on an experimental basis—one around the clock for more than 300 days.

General Electric's cell is safe, compact, rugged. It is also reversible. That is, it can be used to electrolyze water, producing hydrogen and oxygen. Thus, it can also be used to store energy...from a solar generator, for example.

There is no limit to fuel cell size, or the applications for it. Right now, we are producing limited quantities of practical-sized cells daily. We are also developing prototype hardware...a portable power pack for the U. S. Marine Corps that will put out 200 watts of 22-28 volts d-c. An expendable hydrogen generator weighing about 5 lbs provides 14-hour operation.

If you would like to know more about G-E fuel cells, write for a free booklet.

General Electric Company, Section B231-32, Schenectady 5, N. Y.

Yes, please send me "Some Plain Talk About Fuel Cells" (GED-7041).
For immediate project □
For reference □

Name
Company
Address
Tops in reliability!

Union Miniature Relays

Used in seven successful missiles. Union Miniature Relays originally were developed for air-borne and guided missile electronic equipment; they meet or exceed the requirements of MIL-R-25018, MIL-R-6106C, and MIL-R-5757C. They are now being utilized in the following missiles: The Matador, Thor, Talos, Vanguard, Atlas, Titan, and the Jupiter C.

The excellent reliability and small size of the Union Miniature Relays have led to their use in traffic control systems, computers, resistance welders, and other equipment.

Outstanding Features

- **Hi-Lo Contacts**—Permit high and low load handling in same relay. Dry-circuit contacts available for extremely low-level loads.

- **Coil Resistance**—In standard case, from 0.9 to 8750 ohms; in long case, from 1.6 to 13,000 ohms.

- **Temperature Rating**—Class A -55 to +85°C; Class B -65 to +125°C.

- **AC or DC**—Nominal operating voltages from 1.5 to 160 volts, DC; 115 volts, 60 to 400 cps, AC. Built-in rectifiers in AC relays.

- **Types and Mountings**—6PDT or 4PDT; plug-in or solder-lug connections. All usual mountings.

- **Specials**—Slow-acting relays if you need a differential between operating time of various relays. Plate-circuit relays—operate on less than 8 milliamperes; double-coil relays—either coil operates relay. Write for complete information.

"Pioneers in Push-Button Science"

New Products

Signal Simulator

For telemetry and missile check-out uses

Model 52 PDM signal simulator generates pulse trains identical to the video data output of a standard telemetry receiver. Completely electronic and self-contained, the unit provides an accuracy which exceeds the requirements of IHRG No. 103-56. It can be used for conducting check-out before missile firing as well as setting up telemetry stations.

Instrument Corp. of Florida, Dept. ED, P.O. Box 1226, Melbourne, Fla.

Toroidal Transformers

Operate from -55 to +130°C

Suitable for transistorized power supplies, these toroidal transformers operate within the temperature range of -55 to +130°C. They have ratings of 25, 60, and 120 w and operate on 12 to 14 v dc. The units are encapsulated.

Barker and Williamson, Inc., Dept. ED, Bristol, Pa.

Count Rate Meter

Has ranges to 600,000 cpm

Model 502 count rate meter has eight scale ranges, extending to 600,000 cpm. Time constants of 1, 5, and 10 sec are selected by front panel switching. The input is sensitive to a 250-mv negative pulse. This instrument can drive a

New Circuitry Mounts Provide Standardization

New circuitry mounts are produced by U. S. Dielectric Products, Inc., provide an easy and convenient method for encapsulating small components including semi-conductors. The mounts offer good appearance, a standard 7 pin miniature base, and good protection for the enclosed circuitry. The case and header combination eliminates the need for expensive molds and also provides a standardized method for mounting circuitry. Flat area on one side allows mounts to be mounted horizontally as well as vertically.

The case is relatively easy to use. The method is simply to mount the circuitry on the top of the header, place the header into the case, in which it can only fit one way, and then insert epoxy through the larger hole in the top. Another hole on the top of the case serves as a vent. This method allows the use of room temperature curing epoxy encapsulating resins which will not damage delicate semi-conductor parts. The precision fit of the header into the case eliminates the necessity for any external sealing while the epoxy is curing.

Since the case and header are molded out of epoxy, the coefficient of expansion is the same as potted material, and the bond between the potted material and the case is excellent. Therefore, when the potting operation is completed, the unit consists of one solid fused unit, which is impervious to any but the most extreme of environmental conditions.

Custom-molding facilities are described in Bulletin No. 3.
Analog to Digital Converter

Readout time is 0.05 sec

Model 3500 analog to digital converter has a readout time of 0.05 sec. Twelve output codes allow application directly. The unit has a plug-in separable connector, bi-directional operation, and provides a high accuracy. Lost motion couplers permit dynamic readout when the input shaft is turning at speeds to 250 rpm. Guaranteed life of the unit is over 20,000,000 operations.

Telechrome Manufacturing Corp., Automation Div., Dept. ED, 26 Edison St., Amityville, N.Y.

DC Power Supplies

Operate from −55 to +60°C

Made to operate from −55 to +60°C, these transistorized power supplies have a steady dc output with a ripple of 0.4% max and excellent voltage regulation. Model CA-1263-12 has an output of 300 to 600 v dc at 260 to 400 ma and 120 w. Model CA-12105-10 has an output of 500 to 1000 v dc at 100 to 200 ma and 100 w. Both units operate from an input of 12.6 v dc. Heavy-anodized aluminum chassis and a perforated cover that helps dissipate heat are used. The CA-1263-12 measures 4-1/8 x 3-3/8 x 2-1/2 in. and the CA-12105-10 measures 4-3/8 x 4-1/2 x 2-1/2 in.

Kupfriar Manufacturing Corp., Dept. ED, 167 Prospect Ave., Binghamton, N.Y.
computer grade and telephone type ELECTROLYTICS

Available now from Aerovox . . . two types of long-life, high-quality electrolytic capacitors precisely engineered and manufactured for high reliability applications in telephone networks and computers. These units have a useful life expectancy of greater than 10 years when operated within ratings. Operating life will be further improved when ambient temperature is below 65°C. Units are rated for operation at temperatures from -20°C to +85°C. Precisely controlled manufacturing techniques and use of highest purity materials assure this outstanding high reliability.

TYPE TAF — features popular “twist-prong” mounting ears and pillar type mounting terminals. Rosset terminals and special vent construction are molded in can cover. All units coated with corrosion-resistant paint. Available in voltage ratings from 6 to 450 VDC and in a wide range of capacitance values including dual and triple sections.

TYPE QE — manufactured in drawn aluminum cases in four diameters and one standard 4½” height. Available in a wide range of capacitance values at voltage ratings from 6 to 450 VDC. Screw type terminals for bus bar connections. Ideal for ganging units in banks.

Write, wire or call today for complete technical literature on these units and quotations on any required quantities . . .

AERVOX CORPORATION

NEW BEDFORD, MASS.

CIRCLE 93 ON READER-SERVICE CARD

NEW PRODUCTS

Crystal Oven

Temperature control is to ±1 deg C

This quartz crystal oven maintains an even temperature to ±1 deg C over a 100 deg C ambient temperature range. It holds either one or two HC-6/U crystals. Contacts are made of platinum iridium.

Federated Electronics, Inc., Dept. ED, 139-14 Jamaica Ave., Jamaica 35, N.Y.

Sensing Element

Operates relays or counters

Made to operate relays or counters without amplifications, type P-CE solid state sensing element is a moisture-resistant cadmium sulfide cell. The coil resistance of the solenoid or relay should be about 2200 to 2800 ohms with a maximum current of 50 ma at 115 v ac. The unit has a threaded mounting hub for a 3/4-in. conduit.

Berkeley Dynamics, Dept. ED, 2831 Seventh St., Berkeley, Calif.

AF Filters

Insertion loss is less than 2 db

For multichannel band separation use, this
integral-motor generator 571

For control systems

Zone Melting Apparatus 504

Speed is 0.1 to 18 in. per hr

Model Z-52 zone melting apparatus can be set for speeds from 0.1 to 18 in. per hr and has a return of 2 in. per sec. Equipped with a vacuum system, including diffusion pump, vacuum valves, and mechanical pump bypass, it can provide a vacuum as high as 10⁻⁷ mm Hg. The automatic program drive permits zone refining, zone leveling, and crystal pulling without having to use controls.

Materials Research Corp., Dept. ED, 47 Buena Vista Ave., Yonkers, N.Y.

BEHIND THE NEUTRON CURTAIN. It may be that the Russians are planning to create an immense neutron cloud cover by setting off a series of high-altitude (300 miles and up) atom and hydrogen bomb blasts. Such a cloud cover would act as a sort of shield against atomic warheads, heating atomic missiles that travel at speeds of 15,000 mph and causing the uranium 235 or plutonium to melt. The atomic engines of planes would also be destroyed in this way. The destructive clouds would probably move in well-defined paths, the Russians theorize, and could also be used to destroy life aboard manned satellites.

WANTED: By the Air Force: a non-radiating range-measuring device capable of ranging 20,000 to 30,000 feet ahead of aircraft flying at 500-1000 feet absolute altitude. By the Navy: some sort of electronic device that can detect atomic submarines at long distance. Problems that must be overcome: subs are quiet, don’t surface, are fast. Some consider atomic subs to be the greatest menace of World War III. The jackpot could run to billions of dollars for the electronics company that solves the detection problem. By the Air Force: a means of identifying overstressed materials before failure occurs, to solve the problem of detecting impending failure in rotor blades and components.

FRIENDLY CHALLENGE. Perhaps the competition between the U. S. and the U. S. R. in the field of technology could be diverted to accommodate a new “race” in which the consequences for the loser are less ominous. This thought came to us with the announcement of the recent development in the U. S. of an electronic chess-playing computer, the third and most sophisticated of its kind yet developed, that is capable of giving a “fairly good player” a battle. The Russians, too, have developed a machine of equal merit, so... our machine will play your machine, Ivan—just name the date.

CHECK LIST FOR SPECIAL CABLE. As an aid to the engineer who has to design and use special electronic cables, we’ve printed the following check list which summarizes the desired requirements. Copies of this check list as a Cable Procurement Information Form will be sent at your request if you write to IMPULSE, c/o Rome Cable Corp., Dept. 1112, Rome, N. Y. When writing, ask for Bulletin RCD-400, a summary of special instrumentation cables available from Rome.

Number of conductors...conductor’s size and stranding...desired insulation...shielding...outer covering...desired cable construction...maximum and minimum O.D. upper operating-temperature limit...lower operating-temperature limit...bending radius...type of duty...electrical characteristics...special requirements...desired shipping lengths...specifications.

CABLEMAN’S CORNER. An important phase in multi-conductor cable manufacture is the manner and equipment used to “cable,” or “twist,” the various components together. The end use of the cable becomes an important factor in the assembly of a cable. Where flexibility is important, the length of lay, direction of lay, and the internal components all play important roles. Where connector fittings are employed, the sequential arrangement of the components may be important. Because of differing machine capabilities, even the selection of the specific piece of equipment for assembling your cable becomes important. To obtain the best results, consult a cable specialist—a man familiar with all the aspects of cable manufacture—your Rome Cable salesman.

These news items represent a digest of information found in many of the publications and periodicals of the electronics industry or related industries. They appear in brief here for easy and concentrated reading. Further information on each can be found in the original source material. Sources will be forwarded on request.
A NEW PERSPECTIVE ON THE NEWS

Look for the new news in ELECTRONIC DESIGN—news specially gathered and written, interpreted and edited for one group only, electronic design engineers.

The news section of ELECTRONIC DESIGN has been expanded and fortified to give design engineers news they cannot get elsewhere: first reports on design trends; developments that spell change for designers; news from Washington, from technical meetings, from military sources and from overseas—all written from the design point of view.

To report this ELECTRONIC DESIGN NEWS, two new editors have joined the staff:

Alan Corneretto
Interest in electronics started with military radio schools and service as radio technician. After journalism studies at Columbia, began 10 year career in technical writing on business papers, including Petroleum Processing and Product Engineering. Has traveled widely in industry writing news and feature articles.

Howard Bierman
B.E.E. from City College of New York. Former electronic design chief engineer in audio and hi-fi equipment at Mark Simpson Mfg. Co., senior engineer in TV design at Tech Master Corp., also presently a color TV instructor at RCA Institute. Author of "Handbook of 630-type TV Receivers" and other books.

Watch for, and read, ELECTRONIC DESIGN NEWS . . . in every issue of ELECTRONIC DESIGN.
Doppler Shift Calculator

A calculator that provides quick determination of doppler shift for a wide range of velocities and frequencies is available. Simple adjustment of this pocket-size device determines doppler shift in one operation. The calculator scale provides a direct reading converting knots to feet per second. A 12-page instruction booklet accompanies the calculator. Send 50 cents to Syllene Electric Products, Inc., 1100 Main St., Buffalo 9, N.Y.

Silicone Tape

Eight different samples of silicone tape are contained in this reference folder. It describes the properties of each tape sample and the outstanding electrical applications. This helps selection of elongation, dielectric strength and other properties for all winding needs. Thermoid Division, H. K. Porter Co., Inc., Tacony and Comly Sts., Philadelphia 24, Pa.

Fail-Safe Annunciator

Bulletin 108 illustrates and fully describes a fail-safe annunciator which differentiates immediately between its own component failure and an alarm in the system being protected. The design uses two lamps per annunciator point, one to signal field abnormality and one to signal annunciator component failure. Photographs, and cabinet dimensions are included in the four-page bulletin. Panalarm division of Panellit, Inc., 7401 N. Hamlin Ave., Skokie, Ill.

Signal Generator Specifications

This 28-page book contains complete specifications and prices of 152 signal generators made by 30 American and foreign companies. Specifications are arranged in tabular form using common headings. The instruments are arranged according to upper frequency range and run from 70 kc to 40 kmc. All instruments are indexed by manufacturer and function. Send $2.00 to Technical Information Corp., Dept ED, 41 Union Square, New York 3, N. Y.

Pushbutton Switch Assemblies

This eight-page data sheet covers three one-shot pushbutton assemblies that have a special circuit to produce one square wave pulse regardless of operating speed. Photographs, graphs, and diagrams are included. Variations are available with pulse widths from 0.1 to 10 usec. Application information, mounting dimensions, list prices and discounts are given. Micro Switch, a division of Minneapolis-Honeywell Regulator Co., Freeport, Ill.
NEW LITERATURE

Universal Impedance Bridges

Catalog sheet C-16, four pages, describes the firm's 250 series of portable universal impedance bridges. The sheet gives complete specifications and operating data on line-operated and battery portable models. In addition to usual component measurements, these bridges can be used for quality control testing, precise component matching and correlation of source and receiving inspection tests. Electro Measurements, Inc., 7524 S. W. Macadam Ave., Portland 19, Ore.

Voltmeter

This illustrated bulletin covers features of the firm's model R-2 voltmeter. The two-page bulletin specifies its applications—such as measuring the regulation of power supplies, the resolution of potentiometers, and the linearity of amplifiers. Specifications and a schematic diagram of the unit are given. Southwestern Industrial Electronics Co., a division of Dresser Industries, Inc., 10201 Westheimer, P. O. Box 22157, Houston 27, Tex.

Semiconductor Slicing Machine

Literature and an article reprint describe the model MTA-7 machine which can be used to slice semiconductor materials. Photographs, drawings and specifications are included. The DoAll Co., Des Plaines, Ill.

Insulation

Bulletin CDS-208 lists the outstanding insulation properties of the firm's Class 900 electrical grade silicone rubber. It also discusses the major application areas in which silicone insulated cable has proved its performance. A comparison of properties vital to cable applications is presented between silicone rubber, butyl, CR-S, and natural rubber. The bulletin has four pages. Silicone Products Dept., General Electric Co., Waterford, N. Y.

Zener Voltage Tester

Catalog sheet 115 describes the firm's Zener voltage tester, model DT100. The features and specifications of the unit are given. The tester is a self-contained ac operated instrument designed for direct reading of Zener voltage as well as testing for Zener diode impedance. It is designed for testing all types of semi-conductors including transistors and diodes. Electronic Research Associates, Inc., 67 Factory Place, Cedar Grove, N. J.
Glass-Epoxy Laminates

Glass-base, epoxy resin laminated plastic and copper-clad laminates are described in two bulletins, each two pages. Material, characteristics, and typical properties are covered in each bulletin. Thickness tolerances of copper foils and copper clad sheets are given; specifications are listed on each page. Taylor Fibre Co., Norristown, Pa.

Miniature Rotary Switches

Computer Typewriter

This two-page bulletin discusses an alphanumeric typewriter which is used in conjunction with the firm’s model G-15 digital computer. Every character on the typewriter has its own code for full and direct input, output, and control of the computer. In addition to a description of the digital computer, there is an illustration of the typewriter in operation. Bendix Aviation Corp., Computer Div., 5630 Arbor Vitae St., Los Angeles 45, Calif.

Connections

This catalog provides data on the firm’s Relicon receptacles, plugs, paired receptacles, paired plugs, paired plugs with shell, card receptacles, card plugs, plug with shell, Plyo-Duct cable plug and printed circuit card receptacle locking devices. It contains illustrations, schematics, technical information and other pertinent data. Methode Manufacturing Corp., 7447 W. Wilson Ave., Chicago 31, Ill.

Computer Control Systems

Complete details on solid state analog computer control systems are presented in bulletin MSP-163. Illustrated, it describes the entire system, including solid state controllers with operational magnetic amplifiers, interchangeable components, remote control stations and central patchboard networks that interconnect the system. The six-page bulletin has diagrams which show interchangeable circuits possible for various control functions, including addition, subtraction, multiplication, ratioing, differentiating, and integrating. Hagan Chemical & Controls, Inc., Controls Div., Hagan Bldg., Pittsburgh 30, Pa.

BASIC BUILDING BLOCKS FROM KEARFOTT

FLOATED RATE INTEGRATING GYROS

Specificaly designed for missile applications, these Kearfott miniature gyro operate efficiently at unlimited altitudes. Their outstanding accuracy and performance make them superior to any comparable sized units on the market. Hermetically sealed within a thermal jacket, these gyro are ruggedly designed and completely adaptable to production methods. Performance characteristics that are even more precise can be provided within the same dimensions.

TYPICAL CHARACTERISTICS

- Mass Unbalance: 1.0°/hr maximum untrimmed
- Standard Deviation (short term): 0.05°/hr Azimuth Position: 0.05°/hr Vertical Position: 0.03°/hr
- Drift Rate Due to Ansoelasticity: 0.015°/hr maximum
- Steady Acceleration: 0.015°/hr maximum
- Vibratory Acceleration: 0.008°/hr maximum
- Damping: Ratio of input angle to output angle is 0.2
- Characteristic Time: 0.008 seconds or less
- Weight: 0.7 lbs.
- Warm-Up Time: 10 minutes from +60°F
- Life: 1000 hours minimum

Write for complete data.

BASIC BUILDING BLOCKS FROM KEARFOTT

20 SECOND SYNCHRO

This synchro, just one of a broad line offered by Kearfott, provides the extreme accuracy required in today’s data transmission systems. Kearfott synchro resolvers enable system designers to achieve unusual accuracy without the need for 2-speed servos and elaborate electronics. By proper impedance, matches up to 64 resolver control transformers can also operate from one resolver transmitter.

TYPICAL CHARACTERISTICS

- Control:
 - Type: Resolver
 - Transmitter Transformer
 - Part Number: 25161-001
 - 25151-003
- Excit. Volts: Max. 115 90
- Frequency (cps): 400 400
- Primary Impedance: 400 0.000 8500 0.000
- Secondary Impedance: 260 0.000 14000 0.000
- Transform. Ratio: .7826 1.278
- Max. Error Freq.: E.Z. 20 seconds 20 seconds
- Primary Rotor: Stator

Write for complete data.

BASIC BUILDING BLOCKS FROM KEARFOTT

MINIATURE VERTICAL GYRO

Provides accurate vertical reference in the form of two 400 cps synchro signals proportional to sine of gimbal’s displacement about pitch and roll axes. Gravity-sensitive vertical reference device provides electrical signals directly to torque motors which maintain gyro spin axis perpendicular to earth’s surface. Hermetically sealed and impervious to sand, dust, rain, salt, spray, humidity or fungus as specified in MIL-E-5272A.

TYPICAL CHARACTERISTICS

- Free Drift Rate: Within 0.5° in one minute time.
- Shock: The gyro operates satisfactorily without damage after 0.50 sec shock of 0.15 seconds duration.
- Hermetically Sealed: These instruments are hermetically sealed and are not affected by sand, dust, sunshine, rain, humidity or fungus conditions.
- Operating Temperature Range: Gyros operate in ambient temperatures below -20°F to 100°F. A maximum of 3 minutes of operation at 400°F will not damage these gyro nor impair their accuracy.
- Weight: 5.5 lbs. approximately.

Write for complete data.

Kearfott

A GENERAL PRECISION COMPANY

KEARFOTT COMPANY, INC., LITTLE FALLS, N.J.
A subsidiary of General Precision Equipment Corporation
Sales and Engineering Offices: 1500 Main Ave., Clifton, N.J.
Midwest Office: 30 W. Wabasha Ave., La Grange, Ill.
South Central Office: 4011 Denver Drive, Dallas, Tex.
West Coast Office: 203 N. Vineyard Avenue, Pasadena, Calif.
Here is the newest, freshest meter styling idea in years: The A.P.I. Model 561—the slim, trim panel meter with the longer, larger dial you read like a book. Subtly recessed and correctly sloped at the natural reading angle, this meter gives you 30% more dial area in 15% less panel space. Back-of-panel mounting neatly conceals the meter movement; only the clean, crisp façade of the dial is exposed, a clear picture window.

Installation is easier done than said. The 5" x 2½" case frame is self-trimming, requires a simple panel cutout—no holes to drill, no stud alignment troubles. A window in the meter case provides for dial illumination; you can save a bit of work (and panel space) by using the dial light as a pilot.

For the man who needs a smaller meter, there’s the Model 361, an identical but diminutive companion to the Model 561. It measures just 3½" x 2½". Both models are molded of satin-finish Bakelite, and both can be had in ranges of 0-5 microamperes to 0-50 amperes or 0-5 millivolts to 0-500 volts.

NEW... FROM API
THE PANEL METER
WITH THE BUILT-IN
NATURAL READING ANGLE

MORE INFORMATION? SEND FOR DATA SHEET 10-A

ASSEMBLY PRODUCTS, INC.
Chesterland 17, Ohio

CIRCLE 124 ON READER-SERVICE CARD

INDEX
of ARTICLES
July 8 through December 23, 1959

Reference Keys

A
A Six-Stage, Low Frequency Logarithmic Amplifier
.. RT, p176, Dec. 9
A Transistorized Zero-Crossing Detector, J. S.
Denelbeck. Transistorized zero-crossing detector
generates a negative pulse each time a sinusoidal
input signal crosses zero ... p18, Sept. 18
Achieving Stable High-Frequency Design With
the Mesa Transistor, D. G. Patter. Design
details for achieving stability at high-frequency
with mesa transistor ... p174, Oct. 14
Acoustic Noise ... Its Effects on Components,
M. T. Anderson. Techniques for testing com-
ponents and assemblies under conditions of
acoustic noise and results that can be expected...
p48, Dec. 9
Advice To Frustrated Creators, A. L. Simberg.
Last of a series on blocks to innovating...
DYF, p158, Dec. 23
Aluminum, Simple Soldering ... p32, Sept. 30
Amplifiers, Interpointing Circuit For Precision
p64, Nov. 25
Amplifiers, Large Signal Transient Behavior of
Transistor Pulse ... p40, July 8
Amplifier, Voltage Controls This Variable Band-
width ... p64, Nov. 11
Amplifier, Low Frequency Logarithmic
p174, Dec. 9
An Organic Nonlinear Dielectric
GA, p184, Nov. 11
Antenna Array Patterns For Many Beams, P. Saf-
ran. Radiation patterns for as many as eight
beams ... p36, Aug. 5
Antenna, Modular, Pedestals ... p186, Aug. 19
Applications Of Switching Translators
GA, p184, Sept. 16
Attenuators, How To Design Depotted Film Co-
axial, for VHF ... p28, Dec. 9

Automatic Circuit Tolerance Tester For Checking
Reliability and Failure Trends, K. Package, M.
Goldstein, N. Stone, J. Cavallari. Automatic
switching of extreme limits for circuit compo-
nent value enables rapid evaluation of reliability...
p22, Oct. 24
Avoid Gear Reduction With Servo Driven Pot.
Leadcrew follows straight-line resistance.
(Sequoia, Inc.) ... pp, p76, Nov. 11

B
Basic Module Approach (Westinghouse Electric
C.). Using standard components as an approach
to automatic assembly of modules...
DYF, p36, July 8
Batteries, Cathodic Energized Types
DYF, p42, July 22
Beams, Antenna Array Patterns for Many
DYF, p76, Aug. 5
Blocks to Creativity—Part I: Perception Deception,
A. L. Simberg. First of a series on ob-
stacles within the self that stifle new ideas...
DYF, p22, Nov. 11
Blocks to Creativity—Part II: Cultural Barriers,
A. L. Simberg. Acquired attitudes that hobble
creativity ... p174, Dec. 9
Blocks to Creativity—Part III: Emotional Hazards,
A. L. Simberg. Fears and other feelings that
cloud clear thinking ... p174, Dec. 9
Building-Block Circuits For Transistorized Digital
Computers. Reliable Navy designs available to
engineers. Staff Group ... p18, Sept. 2
Bulbs, Light, For Special Applications
p36, Aug. 19
Business, Money to Start a Small
DYF, p236, Oct. 14

C
CADF Direction Finder Details Revealed
DYF, p236, Oct. 14

ELECTRONIC DESIGN • December 23, 1959
Cable, Flat Made in Many Styles
.. PF, p49, Aug. 9
Cable, Flat-Strip Coaxial........ PF, p36, Aug. 19
Cables, Making the Most of Flat, Part 1 .. p36, Oct. 28
Cables, Making the Most of Flat, Part 2 .. p56, Oct. 14
Calculation Of Errors When Using Lissajous Figures For Frequency Comparison .. RT, p62, Sept. 16
Calibrating Frequency Standards, K. Jaensch. Better techniques for calibrating frequency standards.. p56, Nov. 11
Calibration, Infrared Measurement and .. p78, Nov. 11
Can An Employment Agency Help You Find The Job? Two agency heads give the low-down .. DVF, p92, July 22
Can Research Be Organized Mathematically? .. News, p3, Nov. 25
Canadian Electronics Becoming Big Business .. News, p3, Nov. 11
Cathode Envelope Energizer (National Carbon Co.). New battery design offers high energy content at low cost per hour operation .. DF, p42, July 22
Cells, IR Coded Film .. DF, p32, Aug. 19
Cells, Using Photoconductive .. DF, p24, Sept. 30
Charts For Fast Checking of Guidance System Accuracy, R. F. Scharmann. Charts to determine the amount of error introduced into missile flight by various guidance components .. p22, July 22
Circuit, Automatic Tolerance Tester for Checking Reliability and Failure Trends .. p32, Oct. 28
Circuit, Transistorized Phantestron .. p34, Sept. 16
Circuits, Transistorized Flip Flop .. PF, p24, July 22
Circuits, Three Selected Semiconductor .. p44, July 22
Circulator Size and Weight Reduced (Raytheon Manufacturing Co.). Series CLL circuits are especially useful where size and weight are important considerations .. PF, p78, July 22
Communator, Low-Level Solid State Multiplexer .. PF, p78, Nov. 25
Companies Offer Technical Information For The Servo Engineer. Booklets on several levels of detail and a technical course are available from industry sources .. p72, Dec. 23
Components, Acoustic Noise Its Effects on .. p48, Dec. 9
Components, Embedment and Environmental Performance of Electronic, and Functional Circuits .. p44, Dec. 9
Components Must Meet New Environmental Requirements (AGEP). Requirements of components for military equipment .. ED, p97, Aug. 5
Computer, Plug-Board Logic .. PF, p80, Nov. 11
Computer, Paramatrix Cuts, Cost, .. PF, p42, Aug. 19
Computers, Magnetic Memory Element Shrinks and Speeds .. PF, p28, Aug. 5
Connection, How Methods Affect Capacitance Measurements .. p34, Aug. 19
Controlled Rectifier Power Supply Is Short-Circuit Protected .. ID, p168, Nov. 11
Converters, Design Of Transistorized DC-To-DC, Part 1 .. p40, Sept. 16
Converters, Design Of Transistorized DC-To-DC, Part 2 .. p36, Sept. 30
Cooling, Helpful Tips On Liquid .. p36, Sept. 16
Count Individual Electrons With High Z Voltmeter, New precision voltmeter counts 60 electrons per sec. .. PF, p78, Nov. 11
Counter, Solid State Diode Logic PF, p74, No. 9
Coupler, Using a Directional Coupler to Measure Impedance .. RT, p220, Oct. 14
Creativity, Blocks in I, Perception Deception .. DVF, p226, Nov. 16
Creativity, Blocks to Part II, Cultural Barriers .. DVF, p176, Nov. 25
Creativity, Blocks to Part III, Emotional Hurdars .. DVF, p302, Dec. 9
Creativity, Blocks to Part IV, Advice to Frustrated Creators .. DVF, p138, Dec. 23
Cross Modulation in High-Frequency Transistors .. GA, p184, Nov. 11
DC Stabilization Of Transistors .. GA, p169, Sept. 2
Damper, How The Inertia, Improves Servo Performance .. p46, Sept. 16
De-Soldering Techniques .. ID, p26, Aug. 3
Design In The 50's, Progress report of the last ten years in twenty technical areas of the electronics industry .. p24, Dec. 21
Design Of Low-Noise Transistor Amplifiers .. GA, p98, Aug. 19
Design Of Transistorized DC-to-DC Converters, C. R. Turner. Full design procedure and data for designing dc-to-dc converters .. p40, Sept. 16
Design Procedure For the Schmitt Trigger, Leonard L. Kleinberg. Detailed design procedure eliminates time-consuming trial and error method .. p24, Oct. 28
Detecting Thermal Run-Away of Power Transformers, J. Reese, W. W. Gramann. Description of a protection device which permits power transformers to be re-initiated in case of thermal runaway .. p60, Aug. 5
Detector, A Transistorized Zero-Crossing .. p46, Sept. 16
Digital Telemetering Helps Control London Ship Traffic .. News, p3, Aug. 5
Dimensional P C Board Holds This Easy Way .. ID, p30, Sept. 2
Diode, Microminiature .. PF, p74, Nov. 11
Diode in Feedback Loop Makes Stable Transistor Bias Circuit, G. F. Montgomery. Diode provides stability with no sacrifice in gain for dc transistor amplifier .. p34, Oct. 14
Diode, Tunnel for Many Purposes ..
Diode, Tunnel Oscillator at 3.5 G- MC ..
Direction Finder, Used by CADF .. News, p3, Sept. 2
Diverter, Multiphase, Uses Transformer Logic .. ID, p46, Sept. 30
Double Push-Pull Modulator .. GA, p76, Sept. 2
Double RC Integrator .. GA, p104, Nov. 25
Driving A Pair Of Pulses Through A Gain and Ring Of Triggered Multivibrators .. RT, p128, Dec. 23
Electromagnetic Thickness Gage .. ID, p44, Aug. 19
Electronic Filter Provides Linear Phase. A new filter provides constant time delay and optimum transient response .. DF, p46, Nov. 25
Electronic Toys, Today's Helping Build Tomorrow's Engineers .. p46, Dec. 9
Electronic Printing Process .. News, p3, July 22
Embedment And Environmental Performance Of Electronic Components and Functional Circuits, T. E. McArthur. Test results showing how embedding affects components and assemblies .. p48, Dec. 9
Engineer, Cathode Energizer .. DF, p42, July 22
Engineers Must Write Too, W. D. Bell. An engineer's tips on the written word .. p74, Aug. 5
Environmental, Components Must Meet New Requirements .. ED, p87, Aug. 5
Equipment, How to Keep Electronic Cool At High Transient Temperatures .. p46, Aug. 5
Error, Microphotography Solves the Case of Failure .. DF, p42, Aug. 5
(Continued on following page)
SPECIAL BALANCED MODULATORS

Custom-Engineered to Customer Requirements

APPLICATION: Used to impress a carrier frequency source upon a signal frequency source to generate signals of sum and difference frequencies while simultaneously suppressing the carrier from the input and the output circuits and also isolating the input and output circuits. See schematic below:

NOTE: By impressing a pulse signal on the carrier input terminals, the input signal is effectively switched (gated) on and off at the output circuit. Polarity of the switching pulse determines phase of the output signal.

INDEX OF ARTICLES cont.

F
Ferrite Isolators GA, p52, Sept. 30
Ferrite Converters Give High-Voltage AC, DC, News, p3, Sept. 30
Ferries, How to choose the Right Ferrite for the Right Job p64, Dec. 23
Film, For Recording Oscilloscope Transients PF, p22, Sept. 2
Filter, Electronic, Provides Linear Phase.............. p62, Nov. 25
Flat Cable Made in Many Styles (Gore Assoc.). Cables with various kinds of conductor construction are described PF, p46, Aug. 5
Flat-Strip Coaxial Cable (Sanders Assoc.). Flat multi-conductor cable provides many advantages over coax bundles PF, p58, Aug. 19
Flip-Flop Silicon Triistor (Solid State Products, Inc.). Distable multivibrator circuits can be reduced to a minimum number of components with the use of a “Triistor”, a planar silicon device GA, p74, July 22
Flyspeck Diode Stands 20,000 g. And 20,000,000 of them fit in a cubic inch... PF, p74, Nov. 11
Frequency Dependence GA, p190, Nov. 11
Frequency Measurement, With Lissajous Figures p62, Sept. 16
Frequency Modulation With Control Inductance GA, p68, July 19
Frequency Standards, Methods of Calibrating.... p50, Nov. 11
Gain Control Transistor GA, p224, Oct. 14

Galvanometers, High Current Driver.............. PF, p76, Nov. 25
Get Higher Torque from Multipole Hysteresis Motor (Bekey Electronic). Novel rotor design shrinks this multipole hysteresis motor to one tenth the conventional size... PF, p46, Oct. 28
Generator, Simple. Gives More F(x) Per Dollar. PF, p34, July 8
Guidance Systems, Charts for Fast Checking of Accuracy p22, July 8

H
Heavy-Duty A/D Converter Memories Shaft Position (Telechrome Inc.) Non-ambiguous readout in any code from this encoder with a memory... PF, p66, Dec. 9
Helpful Tips On Liquid Cooling, A. G. Edes. When and how to use liquid cooling... p36, Sept. 18
High-CURRENT Amplifier Drives Hi-Fi Galvanometers. (Video Instruments) New dc amplifier fills a gap in the supply of voltage units... PF, p76, Nov. 26
High Frequency Figure of Merit, R. E. Sieffert, A proposal for a realistic figure of merit for transistors based on power amplification... p32, July 22
High Frequency Measurement of Silicon Crystal Parameters... GA, p54, Nov. 25
High-Speed Photo Film Records Invariable Scope Traces (Polaroid Corp.). New horizons open in recording waves and transients... PF, p22, Sept. 2
History, Design in the 50’s... p24, Dec. 23
How Connection Methods Affect Capacitance Measurements John F. Hersh. Various connection methods and the precision they provide are covered... p34, Aug. 19

For Electronic Applications
Rack-Mounted • Compact
Ready-To-Use • Low Cost
High Efficiency • Quiet

McLEAN ENGINEERING LABORATORIES
World Leader in Packaged Cooling
Princeton, New Jersey — Walnut 4-4440
TWX Princeton, New Jersey 636

CIRCLE 126 ON READER-SERVICE CARD
114
How Full-Scale Models Aid Product Design (Amperex Corp.). How Ampex speeds product design using full-scale mockups .. DF, p60, Oct. 14

How Large Should A Module Be? W. V. A. Clark, Jr. An economist looks at module size .. p20, Nov. 25

How The Inertia Damper Improves Servo Performance. F. E. Hagen. A simple presentation of the advantages and disadvantages of the inertia damper, and how it works .. p46, Sept. 16

How To Choose A Servo Gear Ratio, R. H. Pavlin. Choosing a gear ratio that requires minimum driving torque is shown with graphs and formulae .. p56, Oct. 14

How To Choose The Right Ferrite For The Right Job. E. Albers-Schoenberg. A practical organization of ferrites with useful charts and tables .. p64, Dec. 23

How To Choose The Right Indicator. H. L. Williams. Factors in selecting the three basic kinds of symbolic indicators are covered .. p28, Sept. 2

How To Design A Sure-Starting Multi And Couple It To A Load. I. Duran. Graphical design information for transistor multipliers p46, Nov. 11

How To Design Deposited Film Coaxial Attenuators For VHF. A. Paolantonio. Design procedure for deposited film attenuators without trial and error .. p28, Dec. 9

How To Drive The Beam Switching Tube. A. Somlyody. Design information for beam-switching tube input and output circuits .. p36, Dec. 9

How To Generate Time Intervals With Transistors And Core. R. L. Van Allen. Basic circuits for generating time intervals with transistors and magnetic cores .. p28, Aug. 19

How To Invent. A review of a new book by Forrest E. Gilmore, an engineer .. DVF, p126, Oct. 28

How To Keep Electronic Equipment Cool At High Transient Temperatures. F. R. MacDonald. Background, equations, graphs and design procedures are given .. p46, Aug. 5

How To Measure Pulse Transformer Parameters, Part II. E. J. Watt. Pulse Techniques make for more accurate pulse transformer measurements .. p52, Aug. 5

How To Specify High Level Audio Transformers. W. W. Wahlgren. Three tables and text cover the subject in detail .. p60, Nov. 11

How To Specify Relays Realistically .. ABS, p203, Nov. 11

Improved Resistor Withstands More Heat And Humidity (International Resistance Co.). New manufacturing method and material makes it possible .. DF, p60, Oct. 14

Infrared Cells, Reads Coded Film DF, p32, Aug. 19

Infrared, Detection and Identification of Targets .. p70, Nov. 11

Infrared Measurement And Calibration, L. Ford. P. Mengens. Techniques and equipment for measuring IR system performance .. p70, Nov. 11

Inside-Out Twin-T Varies Rejection Frequency. Interpolating Circuit for Precision Amplifiers, G. H. Hall. A simple interstage circuit cuts size, weight, and cost in direct coupled amplifiers .. p64, Nov. 25

Invent, How To Invent DVF, p126, Oct. 28

IR As A Passive Method Of Target Detection And Identification, G. Reay. Factors involved in choosing a spectral interval for operation of an IR passive target detection system .. p40, Dec. 9

A topper in any language

It's better than the best XXXP grade, it's lighter and more economical than G-10, it's Taylor XY-1 Paper-Base Epoxy Laminate

When you want extremely high reliability in printed circuits, with the additional advantages of flame retardance, chemical resistance, good solderability and high bond strength—specify Taylor XY-1 copper-clad laminate. It is self-extinguishing in 1 second, has excellent resistance to alkalies, acids and solvents, has a solder time resistance at 500°F. of 30 seconds in 1-oz. copper and 50 seconds in 2-oz., and a bond strength of 10 lb. in 1-oz. copper and 13 lb. in 2-oz. Sheets available with copper on one or both sides.

Unclad Taylor XY-1 has many advantages, too. It can be substituted for glass-base epoxy laminates to reduce cost and weight. It has excellent electrical, mechanical and machining properties. Contact us for complete technical data and expert guidance in applying this new material. TAYLOR FIBRE Co., Norristown 48, Pa.
INDEX OF ARTICLES cont.

IR Cells Read Coded Film (Eastman Kodak Co.) .. DF, p32, Aug. 19
Impedance, Seven Rules For Scaling, Level And Frequency p26, Sept. 30
Improving The Uniterm Filing System, J. B. Meissner GA, p16, Aug. 5
Isolated Outputs From Twin Double-Plate Triode (General Electric Co.) GA, p16, Nov. 25
Japanese Electronic Imports Challenge American Designers News, p8, July 8
Large Signal Transient Behavior of Transistor Pulse Amplifiers, R. C. Dorf, Equations to determine performance p40, July 8
Light Bulbs For Special Applications, R. H. Jaensch p40, Aug. 19
Linear Positioning Motor (Tronics Corp.) ... PF, p74, Dec. 23
Look Before You Leap Into That Job, A guide to designing your career, R. N. DeFloria .. DYF, p38, Sept. 2
Low Level Choppers .. GA, p172, Dec. 9
Low Level Solid State Multiplexers, Replaces both mechanical commutators and signal conditioners .. PF, p78, Nov. 25
Low Thermal Soldering Procedures For Copper Junctions, R. K. Smith. Detailed procedure of soldering techniques to minimize thermocouple potentials developed at solder junctions PF, p5, Dec. 9
M
Magnetic Memory Element Shrinks and Speeds Computers (Ford Motor Co.), Measuring 50 x 50 x 85 mils, it works at speeds up to 20 mc ... PF, p24, Aug. 6
Making the Most of Flat Cables, Part 2, W. Richter. G. E. Smith. Shaping flat cables and some terminations that can be used are covered in this last article p36, Oct. 28
Making the Most of Flat Cables, Part I, G. E. Robert Smith, W. Richter. How to strip the cables, apply them, and distribute stress using strain reliefs .. p56, Oct. 14
Mathematics, Flow-Graph Analysis: A Self-Contained Course p32, Dec. 9
Measuring Capacity of Two-Conductor Cables ... ID, p42, July 8
Measuring Transistor Parameters With Wayne Kerr RF Bridges, R. M. Scarlett, Transistor parameters can be quickly and simply measured over a wide range with Wayne Kerr rf bridges ... p56, July 22
Mechanical Check-List: A Key To Reliable Electronic Equipment, H. L. Dwyer, Jr. Based on experiences with complete military electronic equipment ... p52, Sept. 2
Merit, High Frequency Figure for Transistors .. p52, July 22

NEW “STANDARD” with SPECIAL CAPABILITIES

- Rugged Anodized Aluminum Housing
- Operation Up to 150°C
- 5.5 watts @ 85°C (deteriorated to 0 @ 150°C)
- Resistance Range from 250 ohms to 300K ohms

Those are just a few of the important performance features you get with the new Gamewell RVG-14-MT10 multi-turn potentiometer. It fully meets applicable sections of MIL-E-5272A and NAS-710 — and much more. It gives you extras that often save you the cost of a “special.”

Available in 10, 5, or 3 turns, with tap locations limited only by physical spacing. Write for detailed specifications and catalog of other standard Gamewell potentiometers. Special pots supplied whenever necessary. Bring all your problems to THE GAMEWELL COMPANY, 1506 A Chestnut Street, Newton Upper Falls 64, Mass.

Gamewell
PRECISION POTENTIOMETERS

“Integrals of High Performance”

CIRCLE 131 ON READER-SERVICE CARD

ELECTRONIC DESIGN • December 23, 1959
New Approach to Transistor DC Bias, J. P. White
Straightforward design approach to single stage transistor amplifier stabilization ... p44, July 22
New Wafer Modules ... For Versatile Telemetry Systems. (Vector) Cylindrical telemetry package
designed to be versatile and fit more easily into
small rockets ... DF, p62, Dec. 9
Noise Acceleration For Tube Microphonics
Measurements. ... GA, p56, July 28
Novel LC Filter Using Mutual Inductance

Oscillator, Phase Multilock Receiver Needs No
Local Oscillator. ... DF, p43, Oct. 14
Oscilloscope Trace Recording With Polaroid Land
Photography, Part I, K. P. Tschangiqoulou, H. P.
Mansberg. A survey of Land films and cameras
for oscilloscope trace photography, p28, Sept. 16
Oscilloscope Trace Recording With Polaroid Land
Photography, Part II, K. P. Tschangiqoulou, H. P.
Mansberg. Proper camera and oscilloscope setting
to give the best exposure for trace recording
p44, Oct. 14
Oscilloscope Trace Recording With Polaroid Land
Photography, Part III, K. P. Tschangiqoulou, H. P.
Mansberg. Conclusion of a three-part series.
It deals with phosphor, filters and special
techniques ... p54, Nov. 1

Parameters, How To Measure Pulse Transformer.
p32, Aug. 5
Parameters, Measuring Transformer With Wayne
Kerr RF Bridges ... p38, July 22

442.2 MMF max capacity per section; 13.5 MMF min (1, 2, 3, or 4 sections).
Rugged frame has heavy tie-bars staked
to end plates and shields. Soldered or
braided joints optional ... MODEL 50

530 MMF max capacity per section; 14
MMF min (2 or 3 sections). High capa-
city in a medium size unit. Frame is
strong, one-piece cradle type with rein-
forcing tie-bars ... MODEL 240

BAND SPREAD, MODEL 240—One or
two sections only. Effective capacity of
main section is 455.8 MMF max; of band
spread section, 20.0 MMF max. Other
data same as regular Model 240.

Still Available
as Quality
Custom-Built
Units

Yes, you can still get these well-known vari-
able capacitors for your more demanding appli-
cations. Oak units meet today's most rigid
electrical and mechanical requirements—
including MIL specifications. They are widely
used in quality test equipment and receivers for
general communications. Designs are standard,
but many variations are possible with little or
no extra tooling. Call your Oak representa-
tive for a copy of the engineering bulletin shown at
right or request one direct.
NOW! Automatically Control and Test Complex Electro-Mechanical Systems with complete reliability!

If you’re having trouble testing complex electro-mechanical systems, it will pay you to investigate DIT-MCO’s 250F2M Electro-Mechanical Systems Analyzer. It is specially designed to control and test integrated devices and their associated wiring by simulating controlling assemblies and monitoring their action. Each of the Analyzer’s 200 test positions can perform up to 36 independent switching functions. Its capacity to control complex systems, therefore, is almost unlimited. In each test position the 250F2M will:

1. Actuate all necessary resistive devices and provide termination-to-termination tests of each circuit and continuity.
2. Simulate conditions which allow it to operate and test each resistive device in the circuit under test.
3. Provide for visual measurement of resistive values and time delay constants where desired.
4. Provide switching capabilities which enable monitoring of circuit conditions with external detecting devices.

These capabilities make it possible to achieve extremely high standards with complex relay chassis and similar systems, thus eliminating borderline errors which can lead to malfunction under operating conditions.

The 250F2M uses DIT-MCO’s exclusive Matrix Chart to put complete circuit information right in front of the operator’s eyes. The machine is easy to operate, easy to interpret, easy to adapt to any test. Write today for full details.

DIT MCO

ELECTRONICS DIVISION

Box 12-30, 911 Broadway

Kansas City, Missouri

In the Los Angeles area • In the New York City area

Ph. O’Brien 2-6196 Ph. Murray Hill 2-6648

Ph. O’Brien 2-6125 Home Office Kansas City

Ph. Harrison 1-6011

SPECIFICATIONS:

1. Continuity Test
 A. Test Voltage: 28 V.D.C.
 B. Continuity Current: 1 ampere
 C. Continuity Resistance: adjustable from 0.3 ohms to 10 ohms
2. Continuity-Discontinuity Test
 A. Test Voltage: 28 V.D.C.
 B. Continuity Current: 1 ampere
 C. Continuity Resistance: 0.3 ohms to 10 ohms
 D. Discontinuity Resistance: 2.5 megohms reject, 3 megohms accept
3. Short Test
 A. Test Voltage: 28 V.D.C.
 B. Test Current: 0.03 ma (max)
 C. Short Resistance Range: 0 to 200 megohms
4. Ohmmeter
 A. Range: 0 to 2000 megohms
 B. Accuracy: ±3%

5. Timer (Standard)
 A. 60 minute range, 0.2 second scale division
 B. Accuracy 0.1 sec. per operation or 60 cycles
 C. Timer (Optional)
 D. 60 minute range, 0.01 second scale division
 E. Accuracy 0.007% per operation or 1 second division

6. Power Requirements
 A. 100 to 125 V.A.C. 55 to 65 cycles (standard timer)
 B. 100 to 125 V.A.C. 50 to 60 cycles (optional timer)

7. External Energy
 A. 28 V.D.C. and 110 V.A.C. 60 cycles are supplied for external energization of relays or other resistive devices, isolated from test voltage.
 B. Other voltages may be supplied by external power supplies and switched as external energization or other test purposes.

INDEX OF ARTICLES cont.

- Parameter: Cuts Computer Costs (TDK Electronics Co.). Japanese built units simplify design. PP, p72, Aug. 19
- Parts, Polastics Positions Precision. PP, p42, Aug. 19
- PEG Boards Speed Breadboard Layout. ID, p34, Oct. 25

- Peak Reading Voltmeter For Nonrecurring Pulse Measurement. GA, p172, Dec. 9
- Pedals, Antenna Mounts. PP, p100, Aug. 19
- Phase Multimeter Receiver Needs No Local Oscillator. Robertshaw-Fulton Controls Co. Unusual receiver for good signal-to-noise ratio without phase shift. DF, p48, Oct. 14
- Photography, Osciloscope Trace Recording With Polaroid Land. Part II p44, Oct. 14; Part III p64, Nov. 11
- Photomultipliers, Thermoelectric Cooling of. RT, p110, Oct. 28
- Photon Detector Gain-Compensative Stabilizer. ID, p322, Dec. 23
- Picking A Potentiometer: Film Or Wire-Wound. H. H. Adair. The advantages and disadvantages of each type are listed and described. PP, p64, Nov. 11
- Plastic Positions Precision Parts, W. A. Fitz-Maurice. Plastics in a precision commutator. DF, p72, July 8
- Polars, Microwave Displays Polarization Directly. A. R. p279, July 8
- Potentiometer, For Servos. PP, p56, Nov. 11
- Potentiometer, Picking a Potentiometer: Film Or Wire-Wound. DF, p68, Nov. 11
- Precision Synchrony, Checked Faster (United Aircraft Corp.). Production device tests synchrono to within two seconds of accuracy. DF, p36, July 8

Problems in Selecting Ferrite Modulators. R. Rizzi. How to select the right ferrite modulator to do the right job. P32, Aug.

Products, Parts Share Honors At WESCON

Protect Transistors Against Destructive Transients. B. R. Daen. A simple low-cost solution to the problem of line transients. PP, Nov. 2

Protection Against Trade Secrets Disclosure. A. W. Gray. Protection for courts to recognize a property right in ideas. PP, Aug. 1

Quasilogarithmic Pulse Indicator. RT, p110, Oct. 28

Q

Reception, Speech Reception in the Presence of Noise. GA, p225, Oct. 14

Recording, Osciloscope Trace Recording With Polaroid Land. Part I p28, Sept. 16; Part II p44, Oct. 14; Part III p64, Nov. 11

Relays, Rectifier-Converter. PP, p322, Dec. 23

Relays, Synchronizing. PP, p203, Nov. 11

Reliable Relay Contact Systems: What To Consider Before Specifying Them. ABS, p329, Nov. 11

Relief from Measurement Pinch Pointed In Action. News, pp. 33, Dec. 9

Research, Can it be organized mathematically? News, pp. 33, Nov. 29

ELECTROCRAFT

Connectors and Switches

Steel reinforced black phenolic panels with 24, 48 or 52 telephone type jacks in a wide variety of circuits. Mounting brackets are slotted to fit standard 19" relay racks. Furnished with identification cards and clear plastic shields.

Have wide application for low level audio and military use. Interchangeable with telephone equipment manufacturers standard panels. Write for complete information.

JACK PANELS

Steel reinforced black phenolic panels with 24, 48 or 52 telephone type jacks in a wide variety of circuits. Mounting brackets are slotted to fit standard 19" relay racks. Furnished with identification cards and clear plastic shields.

All items in the entire line of Connectors and Switches are soundly engineered, sturdy constructed of high grade materials and designed to require minimum space. Design changes for other than standard applications readily supplied. Our engineering department will adapt such desired variations from standard items. Write for complete catalog.

ELECTROCRAFT, INC.

Division of GC-Textron Inc.

400 South Wyman Street

Rockford, Illinois

CIRCLE 134 ON READER-SERVICE CARD

ELECTRONIC DESIGN • December 23, 1956
HOPKINS

Polystyrene film capacitors

For critical circuits requiring high stability and close tolerances

In these Hopkins capacitors, you get a typical long-term stability to 0.1% per year, and a temperature coefficient of 120 PPM per degree C. Tolerances are available down to ±1%, with guaranteed accuracy.

High insulation resistance — 1,000,000 megohms is typical. Dielectric absorption is very low — only 0.05%. Units are manufactured under close quality control to assure utmost reliability.

Available as film-wrapped types, and in all case styles in hermetically sealed brass tubes, bathtubs, and decades. Rated 0.001 to 1.0 mfd.s., 100 to 600 VDC. Higher values to customer specifications. Send for catalog C-104A.

ADVANCED RECONNAISSANCE system developments at Melpar provide unusual opportunities for the technical advancement of participating professional personnel. Technological challenge in an area vital to our national defense assures our engineers and scientists that their contributions will have lasting significance.

Melpar’s reconnaissance systems engineering department has achieved national recognition for its outstanding accomplishments in the fields of acquisition, processing, and interpretation of intelligence. Techniques resulting from our deep probes into advanced aspects of electronics, optics, and physics are being quickly translated into operational equipment for the armed forces.

Positions in the following areas offer particular challenge at this time:

- Reconnaissance Systems
- Airborne Equipment
- Ground Data Handling Equipment
- Simulation & Training Systems
- Communication & Navigation Systems
- Ground Support Equipment

For Details
Wire Collect or Write to:
Professional Employment Supervisor

MELPAR INC
A SUBSIDIARY OF WESTINGHOUSE AIR BRAKE COMPANY
3307 Arlington Boulevard, Falls Church, Virginia
In Historic Fairfax County
10 miles from Washington, D.C.

CIRCLE 136 ON READER-SERVICE CARD

12900 Foothill Blvd., San Fernando, Calif. Tel Empire 1-6661

1959 ELECTRONIC DESIGN • December 23, 1959

CIRCLE 136 ON READER-SERVICE CARD

12900 Foothill Blvd., San Fernando, Calif. Tel Empire 1-6661

1959 ELECTRONIC DESIGN • December 23, 1959

CIRCLE 915 ON CAREER INQUIRY FORM, PAGE 141

119
Simpson 269

AC-DC VOLT-OMH-MICROAMMETER

Here's a VOM with so much capability, you'll find yourself using it more than any tester in the lab or shop. The 10 microamperemeter handles tests other VOMs can't touch... even outdoes a VTVM on some checks. And, because the movement in the 269 is built with springbacked jewels, you don't have to baby it. Through the toughest service, it's always accurate and sensitive. The 269 is handy, too. Being self-powered, there's no plug-in required. You can make tests anywhere. A big, w-i-d-e 7-inch scale makes the 33 ranges easy to read and you select them merely by turning a knob. Your Electronic Parts Distributor will be glad to demonstrate these and other features like the Adjust-A-Vue handle and explain the self-shielding of its rugged core-type movement. Call him up about this super-sensitive VOM today.

DC Volts: 1.6, 8, 40, 160, 400, 1600, 4000... 100,000 ohms per volt.
AC Volts: 3, 8, 40, 160, 800... 5000 ohms per volt.
AF Output Voltage: 3, 8, 40, 160 volts.
Volume Level in Decibels: -12 to +43.5 DB in 4 ranges.
DC Resistance: 0-2K ohms (18 ohms center), 0-20K ohms (180 ohms center), 0-200K ohms (1800 ohms center), 0-2 megohms (18K ohms center), 0-20 megohms (180K ohms center), 0-200 megohms (1.8 megohms center).

Simpson Electric Company
5020 W. Kinzie St., Chicago 44, Illinois
Phone: EStebrook 9-1121
In Canada: Bach-Simpson Ltd.
London, Ontario

VOMs and VTVMs

A complete line for every job. Shown here is the world-famous 260.

INDEX OF ARTICLES cont.

System, Charts for Fast Checking of Guidance Accuracy p.22, July 8
System, Improving the Uniform Filling .. p.68, Aug. 5

T
Tach Feedback for Site 5 Servo Loop (Daystrom Transistor). A. 5 servocontrol generates a servos beyond weight and size of the site's workhouse of miniatures servos .. p.64, Dec. 9
Target, IR As A Passive Method Of Target Detection and Identification p.160, Dec. 9
Telemetering, cylindrical modules: DF, p.58, Dec. 9
Telemetering, Low-Level Multiplier .. p.22, Oct. 24
Temperature Independent Ferrite Strips .. p.101, Aug. 5
Tester, Checks Circuit Values ... p.101, Jan. 22
Tester, Self-Oscillating Beta .. p.22, July 22
Tetrode Transistor Drives Rotary Solenoids ... p.101, July 22
The ABC Of Teaching Engineering: Key principles of learning and what good teachers should do. ... p.101, Nov. 11
Thermal Equivalent Circuit Of A Transistor .. p.22, Sept. 20
Thermoelectric Cooling of Multimeters .. p.22, Aug. 19
Three Tentative Definitions Given For Relay Contact Loading p.160, Nov. 11

Thyratron Gates, Stores, And Drives Punched Paper-Tape Output p.22, Dec. 9
Today's Electronic Toys Helping Build Tomorrow's Engineers. Many Christmas electronic toys are designed for experimentation ... p.22, Dec. 9
Transformers-Rectifiers, Specially Designed Components Cut Transformers-Rectifier size, weight, cost. ... p.22, Dec. 9
Transformers, How To Specify High Level Audio Transformers p.22, Nov. 11
Transistor, Achieving Stable High-Frequency Design With the Monolithic Transistor p.22, Oct. 24
Transistor, Flip-Flop Silicon Transistor .. p.22, Oct. 24
Transistor Cross Index. Cross-referencing on Seventh Annual Transistor Data Chart p.22, July 22
Transistor Data Chart Revisions. A list of corrections to be added to the July 22, 1959 Transistor Tables ... p.101, Oct. 24
Transistor Data Chart, Seventh Annual. Included in section following p.22, July 22
Transistor, Diode in Feedback Loop Makes Stable Transistor Bias Circuit p.101, Aug. 14
Transistor, Gain-Control Transistor .. p.22, May 21
Transistor Power Supply ... p.22, July 22
Transistor Tapes, 1959, W. C. Hittinger. Analysis of transistor fabrication techniques with comments on the present state of the art ... p.22, July 22
Transistor, Understanding Voltage Breakdown: ... p.22, June 22
Three Transistorized DC Millivoltmeter R, p.58, Sept. 22
Three Transistorized Phantastron Circuit, R. W. Cole. Improved stability and smaller size compared to the vacuum tube equivalent ... p.22, Oct. 22
Transistors: Detecting Thermal Run-Away of Power .. p.22, Aug. 22

HEATHKIT NEW! An ELECTRONIC ANALOG COMPUTER for $199.95

HEATHKIT EC-1 COMPUTER KIT
• Simulates Mechanical Problems, Processes and Conditions
• Solves Mathematical Problems (Add, Subtract, Divide, Multiply, Integrate, Differentiate, get Transfer Functions)
• In a Class By Itself, but Compares in Functions to Computers Costing Over $1000.00

Complete information is available; mail the coupon—or see your nearest authorized Heathkit dealer.

HEATH COMPANY
a subsidiary of Daystrom, Inc.
Benton Harbor 60, Michigan

Please send complete information on the EC-1 Computer and your latest Free Heathkit Catalog.

FREE CATALOG describes over 100 easy-to-build Heathkit products including test equipment, home radio gear, marine equipment and hi-fi components.

NAME ____________________________
ADDRESS ____________________________
CITY ______________________ ZONE STATE

All prices F.O.B. Benton Harbor, Mich. Prices and specifications subject to change without notice.

CIRCLE 128 ON READER-SERVICE CARD

ELECTRONIC DESIGN • December 23, 1959 • (EC-1)
Gertsch CRT-3 Subminiature Coaxial RatioTran®

—ONLY 2½" IN DIAMETER
—ACCURATE TO 0.001%
—QUALIFIED TO MIL SPECS

EXCELLENT PERFORMANCE. This Gertsch AC voltage divider, has inherent characteristics of high input impedance, low effective output impedance, and very low phase shift. Input voltage: 0.35 V (1 in caps) or 140 volt max at 400 cps.

Frequency range: 50 to 10,000 cps. Unit is ageless, requiring no calibration tests. Performance approaches that of the ideal divider.

MANY TYPES. Subminiature RatioTrans are available with 4-place, 5-, and 6-place resolution, and in a wide variety of decade arrangements. Available either servo mount or flange mount. Complete data sent on request. Bulletin CRT-3. Or contact your Gertsch representative.

Gertsch

GERTSCH PRODUCTS, INC. 3211 S. La Cienega Blvd., Los Angeles 16, Calif. • Upton 0-2761 • V(font 9-2201

CIRCLE 139 ON READER-SERVICE CARD

Video Pulse Cathode Follower, G. M. Walls. Increasing pulse definition with a cathode follower

Variable Capacitance Paramp For Low Noise Without Refrigeration

Tunnel Diode, Triode, Transistors, Transistors, Switching Applications

Tunnel Diode Oscillator Works At 5010 Mc, Uses Push-Pull Lumped Parameter Design

Tunnel Diode, For Many Purposes

Wanted: Fewer Dreamers, More Doers in Engineering, H. M. Gordon. Too much engineering talent is being wasted

Waveguide Flange Design for Better Microwave Performance, L. G. Virgile. Considerations for improving the waveguide flange

What You Should Know About Meter Relays, G. J. Crowle. Operating principles and typical applications are provided

You, Too Can Create, II—A look at the instructive approach to innovation

Tensolite Cable Rides the X-15

It's no small honor to be picked to ride the X-15—America's first space-craft. All components were carefully selected, then checked and re-checked for top performance and reliability. Tensolite is honored to have its multi-conductor cable included in this tremendous program.

Producing inherently reliable 250 deg. C. cable and cable assemblies is Tensolite's specialty. Cables utilizing the maximum number of conductors in a minimum of area—saving weight and space—are available as ribbon cable or standard round configurations.

"You write the specs—Tensolite does the rest." Or let our experienced cable design engineers assist you. Many leading aircraft and electronic manufacturers are taking advantage of Tensolite's new, expanded design and production facilities in the cable field. We'd like to work with you on your cabling problems. Contact your local Tensolite representative, or write to:

Tensolite INSULATED WIRE CO., INC.

A Subsidiary of Calimet Corporation
West Main Street, Tarrytown, N.Y.
Pacific Division: 1616 N. Gardner St., Los Angeles, California

CIRCLE 140 ON READER-SERVICE CARD
IDEAS FOR DESIGN

Photon Detector Gain-Compensates Itself

IN INFRARED experiments, the effect of atmospheric conditions on transmission must often be determined. Unfortunately, gain variation in the photon detector causes errors in these tests.

A technique was developed to monitor and compensate for variations in detector gain. A conventional system, Fig. 1, used to study atmospheric effects on radiation consists simply of a transmitter and receiver. The main elements of the transmitter are an amplitude modulated source of radiation and an optical radiating system. The receiver consists of an optical system, a detector, and associated electronics. The receiver is tuned by means of filters to the frequency of the amplitude modulated source, D. However, the photon detector requires a different approach.

If the size of the detector is large and the distance between the receiver and transmitter appreciable, the receiver's field of view covers an area many times larger than the receiver. The background radiation inherent in the field of view has a biasing effect on the detector which may cause it to operate in a nonlinear region. Secondary effects of age and changes in temperature tend to alter the characteristics of the detector.

Second Radiating Source Added

Variations in the gain of the detector are compensated for with the addition of a second "standard" modulated source. This source is placed behind the receiver's spherical mirror, Fig. 2.

Radiation at a frequency F1 from the distant source D, and radiation at a frequency of F2 from the monitoring source strike the detector. Frequency-selective circuitry direct F1 in Channel One and F2 into Channel Two. The gain of Channel One is controlled by the age voltage developed in Channel Two. Since the age voltage is now a function of the detector's gain, the overall Channel One gain of the receiver can be held constant. Also, any change in detector gain can be monitored by examining the output of the Channel Two amplifier.

Edward Kleist, Analyst, Ramo-Wooldridge, Los Angeles, Calif.

Fig. 1. Measurement of atmospheric effects on IR transmission are subject to detector gain errors.

Fig. 2. Self-compensating two-channel system eliminates gain variation errors.
A HERITAGE IN ELECTRONICS

Of Interest to the Electrical Industry

Since the establishment of our business in 1919 it has been our sincere desire to secure and maintain the good will of every customer using our equipment, by supplying relays of the finest quality—properly designed, accurately fabricated and carefully assembled. ... We are constantly designing, developing and testing, with two objectives in view: First, to make our relays superior in every respect, and Second, to have new types and designs ready for each new requirement as the electrical industry progresses. ... Realizing that an electrical control scheme is no better than any one relay used in it, we consider the design and materials first, and the cost last. Although we have many varieties of relays, we never sacrifice the quality of any type in meeting competition. ... We solicit your relay business and feel justified in saying that, "The more you use Leach Relays, the more you will be convinced that they have created new high standards in accuracy and dependable performance."

LEACH RELAY COMPANY
860 South Los Angeles Street
LOS ANGELES ... CALIFORNIA

For electronic sub-systems and electro-mechanical components to meet the requirements of the space age...

Val Leach, founder of Leach Corporation, wrote the advertisement, left, 27 years ago. In it Mr. Leach laid down a business philosophy that is as valid today as it was in 1933. He knew there would be no room for "yesterday's heroes" among the companies supplying the vital, growing electronics industry. He knew that success would be in direct ratio to uncompromising product reliability. And he also knew that technological progress could only be based on the solving of tomorrow's problems.

Today, Leach continues to provide the industry of flight with reliable, high performance relays and contactors in the tradition of the original Leach Relay Company. Over the years, Leach has also pioneered and developed many other advanced technical products and services. Today, their scope greatly enlarged, Leach designs, engineers and manufactures:

ELECTRO-MECHANICAL AND ELECTRONIC COMPONENTS—relays, contactors, solid state devices

INSTRUMENTS—tape recorders, accessory equipment, recording accelerometers

POWER CONVERSION EQUIPMENT—motor generator sets, DC and special purpose power supplies

CONTROL AND DISTRIBUTION EQUIPMENT—control and distribution centers, load banks, bench panels, test benches

... with the know-how to incorporate them into ELECTRONIC SUB-SYSTEMS AND SYSTEMS.

This year Leach Corporation celebrates its 40th anniversary in electronics with a reaffirmation of Val Leach's time honored principles:

Solving problems is the core of the Leach philosophy of doing business. Leach will continue to base its success on anticipating customer needs and meeting them with advancements tailored to specific requirements.

LOOK TO LEACH
Save Amplifier Components

Vacuum tube amplifiers usually require separate cathode resistors and capacitors in each stage because low frequency oscillations may occur unless the cathode capacitor is very large.

In constructing a phase shift oscillator and buffer amplifier it was found that the amplifier could share the cathode resistor and capacitor of the oscillator section because a fixed attenuator had to be used to prevent overdriving the amplifier. This suggests that very often a cathode resistor and capacitor can be shared whenever the loss in the interstage network is high at frequencies for which the bypass is necessary. This is often the case as in pulse, equalizing, and differentiating amplifiers.

Lawrence E. Coules, Electronic Design Engineer, The Superior Oil Company, P. O. Box 63, Bellaire, Tex.

Cathode resistor and capacitor can be shared.

Small Inductance for Faster Switching

Diode clamping is frequently used in transistor switching circuits to preserve voltage levels and decrease switching speeds. A typical application is shown in Fig. 1.

During the upward excursion of the input, the transistor cuts off and the output voltage heads toward -15 volts, but is clamped when it reaches -3 volts.

When the input returns to its negative level, the transistor begins to conduct, but the output will

Fig. 1. RCTL inverter with clamped output.

This remarkably small 1 KW linear power amplifier (entire unit is approximately the size of an 8 1/2" cube) was developed by the Communications Division of Hughes Aircraft for the U. S. Air Force B-58 bomber.

With a blend of 3M Company's FC-75 and FC-43 as a dielectric coolant, the amplifier provides all the high-power output required by this huge aircraft's HF communications system, yet withstands all military environments at temperatures from -55°F. to +200°F. Here's why: the circuitry of the amplifier is immersed in this non-corrosive, non-flammable inert fluid which protects it against internally generated heat through a highly efficient evaporative cooling process. There are no hot spots, and a uniform temperature is maintained throughout.

By using FC-75 and FC-43 in this way, Hughes Communications Division engineers were able to achieve a "compression in volume of a factor of 6" when developing this amplifier for use in an area where space is at a premium. Other areas of application now under investigation include submarines and ground base systems.

Why not investigate the remarkable properties of 3M Inert Fluids in terms of your product design, miniaturization or performance problems? For complete data, write: 3M Chemical Division, Dept. KAP-129, St. Paul 6, Minn.

Minnesota Mining and Manufacturing Company

... where research is the key to tomorrow

Circle 142 on reader-service card

Electronic Design • December 23, 1959
Fig. 2. "Notching" effect caused by large clamp current.

Fig. 3. Inverter w/ improved clamp eliminates notch, increases rise time.

not increase positively until the clamp diode cuts off. Eventually, the transistor saturates and holds the output at approximately ground potential.

To maintain fast switching speeds, it is often necessary to keep the collector load resistor as small as the dc current rating of the transistor permits. This results in a large clamping current which prevents the diode from turning off rapidly, and causes the "notching" effect shown in Fig. 2.

The "notch" can be removed and the output rise time substantially reduced if the clamp circuit shown in Fig. 3 is used.

As the input goes positive, the transistor cuts off; initially, the germanium diode will not conduct since the current through the inductance does not build up immediately. During this part of the transient, the output is clamped by the silicon diode and is more negative than -3 volts by the drop across the silicon diode.

Eventually, current builds up through the inductance and the germanium diode takes over the clamping action. The silicon diode then cuts off, since its conducting voltage drop is higher than that for the germanium.

When the input goes negative again, the transistor begins to conduct. Part of the inductor current then flows into the collector of the transistor and allows it to saturate rapidly. While the transistor remains saturated, the inductor current decays and the germanium diode cuts off.

Using this technique, improvements of 20 millimicroseconds on the rise time of the output have been observed.

The value of L used depends on the clamp current and the maximum pulse repetition rate. A value of 20 μH has been found satisfactory for most applications.

Two germanium diodes in series may be used in place of the silicon diode if desired.

Joseph L. Kozikowski, Associate Development Engineer, Burroughs Research Center, Paoli, Pa.
Principles of Analog Computation

Designed for the user of analog computers, this book presents those methods of analog computation which form the fundamental tools for the analyst working in the field. This has been done by emphasizing analog-computer techniques, rather than discussing the detailed design of analog-computer components.

In general, the plan has been to present only enough discussion of component principles to afford an understanding of their operation. In doing this, the component devices are introduced, and the mathematical operations performed by a particular device is stressed. Then the book goes on to present detailed information on circuitry and considers the types of problems which can be solved using the computer techniques. Several new techniques are introduced involving diodes, and a discussion of smoothing methods for diode function generators is also included.

Nuclear Electronics
Distributed by National Agency for International Publications, Inc., 801 Third Avenue, New York 22, N. Y., 452 pp., $4.00

This volume is a collection of scientific papers on nuclear electronics given at the 1955 International Symposium on Nuclear Electronics, France. The Symposium was divided into five sessions, the topics of which were:

- Instrumentation
- Nuclear Counting Techniques
- Analytical Techniques
- Nuclear Physics
- Nuclear Engineering

Welch TWO-STAGE DUO-SEAL®
High Vacuum PUMP

Run-In To Perfection

- DEPENDABLE PERFORMANCE
- QUIET OPERATION
- LONG LIFE

Choice of Two Speeds

<table>
<thead>
<tr>
<th>Revolutions per minute</th>
<th>300</th>
<th>525</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum, microns</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>(0.00005 mm)</td>
<td>0.001 mm</td>
<td></td>
</tr>
<tr>
<td>Capacity, liters/min.</td>
<td>32.4</td>
<td>58</td>
</tr>
<tr>
<td>Motor Horsepower</td>
<td>1/2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

WRITE FOR OUR PUMP CATALOG

Pat. No. 2,337,849
No. 1405B. DUO-SEAL VACUUM PUMP, Motor Driven, 525-RPM. For 115 volts 60 cycles, A.C. Each $255.00
No. 1405H. DUO-SEAL VACUUM PUMP, Motor Driven, 300-RPM. For 115 volts 60 cycles, A.C. Each $230.00
For attached Belt Guard add $17.50 to the above prices.

See our Pump Catalog for complete listing of this series high vacuum pumps.

W. M. WELCH SCIENTIFIC COMPANY
DIVISION OF W. M. WELCH MANUFACTURING COMPANY
ESTABLISHED 1880
1515 Sedgwick Street, Dept. ED, Chicago 10, Illinois, U. S. A.

CIRCLE 145 ON READER-SERVICE CARD

AMCO ENGINEERING CO.
7333 W. Ainslie Street, Chicago 31, Illinois

CIRCLE 144 ON READER-SERVICE CARD

THE AMCO MODULAR INSTRUMENT ENCLOSURE SYSTEM

A Amco Custom Line. Removable, multi-width panel construction provides a complete frame based on 19" increments of width. Custom, single-unit appearance for frames mounted in series—ideally suited for complex console arrangements. The 19" width of frame saves space in series mounting of frames. Constructed of double-channel 16 gauge cold-rolled steel. Conforms to EIA mounting standards.

B Amco Semi-Custom Line. Removable multi-width panel construction provides a semi-custom, single-unit appearance for frames in series. Extra rugged, wide box-type channel frames provide greater internal mounting area. 19" wide panels of any thickness can be recessed from a flush-mounted position to any desired depth. Box type channel construction of 14 gauge cold-rolled steel. Conforms to EIA mounting standards.

C Amco Aluminum Line. This system of aluminum box extrusions and cast corners allows easy assembly of cabinets in any size from 7" to 20" in height, width or depth. Corners and extrusions lock together by hand with built-in locking device. All sizes are standard. Ideal for stacking and odd-ball sizes. Cast and hardened corners of 356-T6 aluminum as described in Federal Spec. QQ-A-596a. Extrusions of 6061-T6 aluminum as described in Federal Spec. QQ-A-270a.

Amco Accessories. A full line of Amco integrated accessories such as blowers, chassisslides and mounts, lighting, doors, drawers, dollies and many more available for A, B and C shown.

Cost savings. All the above—or any part thereof—may be ordered under one combined discount schedule base determined by order dollar value. Orders received at one time with one delivery date may also be combined. Free pre-assembly by Amco provides additional savings in time and installation.

3 week delivery on all standard parts. We welcome inspection of our plant and facilities. Send for your free literature now.
which were: Scintillation Radiation Detectors, Radiation Detectors using Ionizing Methods, and Gamma-Ray Spectrometers, Pulse Technique: Fast Electronics, Pulse Technique: Classical Electronics and Reactor Control: Measurements. It is to be noted that about half of the papers presented are printed in French.

Nondestructive Testing Handbook

This handbook has been prepared under the auspices of the Society for Nondestructive Testing and tries to bring together all vital testing information in a single reference work. It is designed for all those who have an interest in the management, engineering, or research of testing in the production, processing, or maintenance phases of any industry. It presents treatments of all major methods of nondestructive testing, enabling the measurement of significant properties, the detection of discontinuities, and the prediction of performance capabilities without impairing serviceability.

Discussed also are the fundamental principles and policies of nondestructive testing, the evaluation of tests for specific applications, the detailed analysis of all basic methods and equipment, and the interpretation of test indications. Test selection charts furnish guidance on the best testing methods for given types of materials and defects. It is organized in 54 sections, is illustrated with charts, drawings, forms, and photographs, and supplies considerable standard data in tables and graphs.

Bodine Fractional-Horsepower Motor Handbook
Bodine Electric Co., 2500 W. Bradley Place, Chicago 18, Ill., 86 pp., $1.00.

This is a new technical information handbook on fractional horsepower motors. It contains the following information: definitions of classes of motors and of types of enclosures, general motor terms, application fundamentals such as selection considerations, performance characteristics, speed control, reversing, etc.; care and servicing of small motors, and formulas, charts and tables useful in motor application work.

NOW DROP TUBE TEMPERATURES AS MUCH AS 130°C prolong tube life—increase reliability

atlee FULL-CONTACT TUBE COOLING SHIELDS provide MAXIMUM tube cooling through

- FULL CONTACT with tube
- FULL CONTACT with shield
- FULL CONTACT with chassis

The new atlee FULL-CONTACT tube-cooling shield, with exclusive "delta-wave" S2S2S2 insert and flat-mounting shield base, provides a spectacular reduction of envelope temperatures even under extreme operating conditions. Tests prove a drop of 130°C below bare-bulb temperatures, and 80°C below levels reached with JAN shields and standard N.E.L. inserts.

Here is a significant advance in the fight against equipment failure even under conservative operating conditions. Further, where tubes must operate close to maximum ratings, it means a real reduction in the inevitable penalty of shorter tube life.

DESIGN FOR RELIABILITY WITH atlee — a complete line of dependable heat-dissipating holders and shields of all types, plus the experience and skill to help you solve unusual problems of holding and cooling electronic components.

ATLAS E-E CORPORATION
47 PROSPECT STREET • WOBURN, MASS.

Get the complete story in your free copy of this fact-filled Bulletin!
How to improve servo performance with Vernistat* a. c. potentiometers

Typical example shows how they increase servo reliability and accuracy, reduce system complexity and cost

Servos which utilize resistance potentiometers must also include several other components to achieve high accuracy. In addition, these components may increase cost, create reliability problems, and make the design more complex.

FOR EXAMPLE, a simple follow-up servo:

![Diagram of a conventional follow-up servo]

Here, to position a remote shaft in accordance with the position of the input shaft, resistance potentiometers and summing resistor networks are used. This requires an accurate center-tapped voltage source, so that the two potentiometers will be excited by equal voltages of opposite phase. When the shafts of the two potentiometers correspond, the input to the amplifier will be zero.

THIS TYPE OF CIRCUIT has inherent difficulties:

1. With usual high impedance impedances, pick-up from stray electrostatic fields may necessitate shielding of the remote signal leads. Shielding and its capacitance increases phase shift.

2. In the summing resistor network, half of the error voltage appears across each resistor, so that only half of the error voltage appears at the amplifier input. This means a loss of gain of one-half, which must be made up by the amplifier.

3. To achieve terminal linearity and resulting servo accuracy, it is often necessary to end-trim conventional potentiometers.

CONTRAST THIS CIRCUIT WITH one which includes the Vernistat a.c. Potentiometer, a fundamentally new, compact device which combines several desirable features not available in standard potentiometers.

Vernistat—a design concept that unites in one compact device the best features of the precision autotransformer and the multturn potentiometer

![Diagram of a Vernistat follow-up servo]

Here, a null transformer provides gain and transmits the error signal directly to the amplifier. Because of this, the amplifier gain requirements are reduced. The error signal is zero when the two Vernistat shafts correspond.

IN THE VERNISTAT CIRCUIT, all signals are transmitted over low impedance leads, which reduces the circuit's susceptibility to pickup and quadrature due to stray capacity. This is particularly important in high gain servos.

FEWER COMPONENTS ARE NEEDED with the Vernistat approach, and this reduces the system's complexity. Summing resistors are not necessary. Where conventional potentiometers must be end-trimmed to achieve terminal linearity, the Vernistat inherently provides terminal linearity by means of its design.

RUSSIAN TRANSLATIONS

J. George Adashko

Driving a Pair of Pulses Through a Chain and Ring of Triggered Multivibrators

A. F. Ivanov and V. R. Telesnin

Moscow State University

U. S. S. R.

A MULTIVIBRATOR with a positive grid, such as the one shown in Fig. 1, produces a nearly rectangular output pulse when a short starting pulse is applied to its input. The duration of this pulse \(t_a \) is determined by the equation:

\[
\tau_a = R_c C \ln \frac{U_o - I_{q2} R_h - I_{q1} R_h}{U_o + U_{c2} - I_{q1} R_h}
\]

In this equation, \(U_o \) is the supply voltage, \(I_{q1} \) and \(I_{q2} \) are the quiescent currents of tubes 1 and 2, \(U_{c2} \) is the cutoff voltage of tube 2, and the significance of \(R_h, R_{q1} \), and \(R_c \) is clear from Fig. 1.

The operating threshold of the multivibrator,
Fig. 1. A basic multivibrator with a trigger pulse applied to one grid.

...for operating temperatures up to 250°C

Teflon®, Mylar® and Polystyrene Film Dielectric Capacitors, as offered by the company with the most extensive experience in the industry, will meet your exact requirements. C-D types provide the widest choice of case styles, case materials and configurations to meet space, weight and cost limitations; and electrical ratings to meet your most exacting environmental, life and performance requirements. For complete specifications on any of the types listed to the right, request engineering bulletins from Cornell-Dubilier Electric Corporation, 4144 Glencoe Avenue, Venice, Calif.

(Continued on p 130)

Circuit designer's first choice ... from Cornell-Dubilier

film
dielectric
capacitors
an electronic engineer becomes an editor...

Leon Tolopko tells “Why I became an Editor of ELECTRONIC DESIGN”

Leon Tolopko, Assistant Editor of ELECTRONIC DESIGN joined Hayden Publishing Company in 1958. He was graduated (B.E.E.) from Polytechnic Institute of Brooklyn in 1953. A former engineer for Western Union, Mr. Tolopko tells why he gave up the role of engineer to become an engineer-editor.

“as an editor I have a double challenge. One must know a subject—but must also be able to be articulate explaining it.

“as an editor I have a horizontal and vertical view of electronics. I am not limited to knowing only one specific area of electronics down to the nuts and bolts used in a particular system, or knowing only the highlights and surface of everything happening in the field.

“as an editor I am able to discuss the electronic manufacturers’ needs and report them to those who may be able to fulfill them.

“as an editor I am able to travel, meet new people, and talk with them. I like to hear about their accomplishments and to report them.”

ELECTRONIC DESIGN OFFERS YOU A CAREER IN EDITORIAL WORK

For further details and description of editorial positions open, write to Edward E. Grazda, Editor, ELECTRONIC DESIGN, 830 Third Ave., New York 22, N.Y. Or begin at once, by sending us the Resume Form in the Career Opportunities Section of this issue and circling the Reader Service Number listed below. Each application will receive careful attention.

CIRCLE 916 ON CAREER INQUIRY CARD

RUSSIAN TRANSLATIONS

Fig. 2. Output voltage of the multivibrator varies as a function of the time interval between the applied pulses. The horizontal dashed line represents the limiting value of the operating threshold.

The value of U was determined at different time intervals between pulses, making it possible to determine the relationship

$$U = F(t_{12} - t_0)$$

One of the experimental curves for this relationship is shown in Fig. 2.

Processes in a Chain

Let us consider a chain of triggered multivibrators with approximately equal parameters. Each multivibrator is triggered by a pulse formed by differentiating the trailing edge of the negative pulse of the preceding multi.

The triggering pulses thus obtained have a leading front of finite length. Consequently the triggering of the multivibrator occurs with a delay τ relative to the rear front of the pulse from the preceding multi. This delay depends on the magnitude of the operating threshold.

Let us consider the case where two pulses are applied to the input of the triggered multivibrator, and the interval between them is greater than the duration of the multivibrator pulse, Fig. 3a. We assume that the operating threshold of the multivibrator has a limiting value U_0 at the instant of arrival of the first pulse.

In this case the multivibrator will be triggered by the first of the pulses of the pair at a certain instant t'. After a delay τ, the pulse of the multivibrator terminates and the threshold of its operation starts varying along a curve $U(t)$, shown in Fig. 3a.* By the instant that the second pulse is

*The voltages are relative to the dc voltage on the grid of T_1.

IF YOU USE BWOs & TWTs

you need the

NEW PRD 813

There is a "spanking" new BWO-TWT power supply that's really a work horse. PRD's latest contribution to the test equipment art, the Type 813 can supply just the right kind of power for driving a host of microwave tubes ranging from voltage-tune magnetrons to travelling-wave amplifiers.

Featuring the latest advances, the PRD Type 813 has built-in time delays for filament and grid, delay line and collector, and anode voltages... and includes other frustration inhibitors, such as:

1. Individual adjustments of delay line, collector, anode, grid, and heater elements
2. Provisions for both internal and external sweep and amplitude modulation
3. AGC at the grid when used with external detectors
4. Digital read-out for delay line supply.

In addition to these features and the (typical of all PRD equipment) bedrock stability and high sensitivity of the first tube, the universal BWO/TWT supply will provide the remainder of the features and full specs for the PRD Type 813 can be yours by writing to PRD—first in microwave.
applied $U(t)$ will be greater than U_c, which causes an additional delay of the instant t'' of operation of the multivibrator.

The latter leads to an increase in the distance between the pulses of the multivibrator by an amount Δt_0. The passage of the pulses to the second multivibrator leads to a further increase in the distance between them. This distance can be determined graphically using the construction of Fig. 3a and selecting on it an initial distance between pulses $t_{12} = t_{12} + t_0$. (See Fig. 3b.)

However, it is possible to avoid replotting the curve $U(t)$, and to follow the change in the distance between the pulses in the manner shown in Fig. 3c.

LOW-PASS FILTER-AMPLIFIER

Advanced circuitry provides extended operating range.

TEMPERATURE-COMPENSATED TACHOMETER GENERATORS

- SPECIFICALLY DESIGNED FOR RIGID AIRCRAFT AND MISSILE PACKAGING AND PERFORMANCE REQUIREMENTS
- ACCURACIES WITHIN 1/10 OF 1%
- TEMPERATURE RANGE FROM -55°C TO $+125^\circ\text{C}$.
- LIGHT WEIGHT—AS LOW AS 7 OZ.

Designed for use in computer circuits and velocity regulation systems, these integrating Bendix Tachometer Generators offer true laboratory quality at mass production prices. Generators are checked and calibrated by special Bendix-developed test equipment that measures speeds to an accuracy of 0.001% and voltage readings with an 0.005% accuracy.

Supplied in frame sizes 11, 15, 20, and 23—most sizes 10 now in development. Tailoring to customers’ needs also available—for example, with unitized construction requiring no external compensation and with pulse generators for direct indication of speed measurement.

TYPICAL UNIT CHARACTERISTICS:

<table>
<thead>
<tr>
<th>Excitation</th>
<th>115 volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>1.5 volts per 1000 RPM</td>
</tr>
<tr>
<td>Phase shift</td>
<td>6 minutes</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-55°C to $+125^\circ\text{C}$</td>
</tr>
<tr>
<td>In-phase position error</td>
<td>5 min.</td>
</tr>
<tr>
<td>Linearity</td>
<td>$0 = .1%$</td>
</tr>
</tbody>
</table>

In Fig. 3c the voltage is reckoned from the value U_0. Here the quantity Δt characterizes the increase in the interval between pulses after passing the voltage threshold.
RUSSIAN TRANSLATIONS

The failure. and tight equipment and glass-to-metal "V2" APWVs.

Processes in a Ring
Let us consider first a triggered multivibrator, the input of which is connected to its output by a delay line with a fixed delay time T. Let the multivibrator be triggered by the first pulse at the instant $t = 0$, and let the multivibrator operate at the instant $t = t_0 + \Delta t_0$ under the influence of the second pulse. Here Δt_0 is the delay in the operation as shown in Fig. 4a.

At the instant T the first pulse will again reach the multivibrator, and will cause operation at the instant $T + \Delta t_1$. The interval between the second and third instants of operation of the multivibrator is

$$t_1 = T + \Delta t_1 - t_0 - \Delta t_0$$

Continuing this process, it is easy to verify that, depending on the ratio of τ_{12} and $T/2$, the delays
\(\Delta t_0, \Delta t_2, \Delta t_4, \ldots \), will cause an increase (or reductions) while the delays \(\Delta t_1, \Delta t_3, \Delta t_5, \ldots \), will cause a decrease (or increase) in the time interval between pulses.

The process can be investigated as shown in Fig. 4.

The graphic construction proceeds in the following manner. The value of \(\Delta t_0 \) is found by the method indicated in Fig. 3a. Since the first pulse returns to the multivibrator at the instant \(T \), the interval between the second operation of the multivibrator and the return of the first pulse is \(T - t_0 - \Delta t_0 \).

This interval can be plotted (Fig. 4), after which the value of \(\Delta t_1 \) is found in the usual manner. Here, subtracting \(\Delta t_1 \) from \(\Delta t_0 \) it is possible to find a point on the curve \(U(t) \) corresponding to the second pulse.

Continuing this construction, we obtain the sequence \(t_0, t_1, \ldots, t_n, \ldots \) of the intervals between pulses. From the graph it is easy to see that this sequence tends to \(T/2 \) regardless of the magnitude of the initial distance between the pulses.

The foregoing arguments apply also to a ring of triggered multivibrators. In fact, the passage of a pair of pulses through the second multivibrator of the ring differs little from the second passage of the pair of pulses through the multivibrator of the equivalent circuit shown in Fig. 4.

Therefore, in the first approximation, we can assume that the ring of trigger multivibrators can be replaced by this circuit, considering the delay time to be \(T = mt_n \) (\(m \) is the number of multivibrators in the ring). We notice that the process of establishing the stationary state in the ring is faster than in the circuit consisting of a trigger multivibrator and a delay line.\footnote{A more detailed examination, which permits a more accurate determination of the time required to establish a steady state, can be made by using the construction of Figs. 3c and 4.}

The ring of multivibrators can be used for "normalization" of the time intervals between pulses, and may prove useful in certain applications. The "normalization" can be speeded, also, by tightening up the trailing front of the multivibrator pulse, or by increasing the time constant in establishing the operating threshold.

\begin{references}
\end{references}
REPORT BRIEFS

Search and Detection

This report is a study of how a detection system should operate to maximize detection in the absence of information regarding the signal to be detected. The results of this study indicate that the best methods of search can be developed for any transmitter without time cycle, or one whose time cycle is known. Philosophy of The General Problem Of Search And Detection, Patricia M. Langendorf, Rome Air Development Center, Griffiss AFB, N. Y., May 1959, 10 pp, Microfilm $1.80. Photocopy $1.80. Order PB 142153 from Library of Congress, Washington 25, D. C.

HF Ground-To-Air Voice Communications

This report describes an extensive series of tests which were conducted to obtain a practical comparison between (1) single sideband suppressed carrier (SSBSC); (2) double sideband amplitude modulated (DSB-AM); (3) double sideband suppressed carrier (DSBSC); and (4) pilot carrier or synchronous single sideband (SSSB). These tests were conducted by RADC, USAF, over a period of one year. Data were gathered by means of sequentially transmitting phonetically-balanced (PB) word lists via the various modes, and analyzing the recorded results for intelligibility. Comparison Testing Of Modulation Modes For High-Frequency Ground-To-Air Voice Communications, Donald E. LeBrun and Adolph J. Uryniak, Rome Air Development Center, Griffiss AFB, N. Y., May 1959, 19 pp, Microfilm $2.40. Photocopy $3.30. Order PB 142184 from Library of Congress, Washington 25, D. C.

Designing Video Interstages

This study presents a method of designing interstages for transistor video amplifiers. The transistors are represented by the hybrid-pi equivalent circuit. The problem of designing interstages is shown equivalent to the problem of synthesizing a transfer impedance function proportional to the stage gain where the resulting interstage network must have certain specified terminating impedances. These terminating impedances represent the effects of the transistors. The interstage synthesis technique developed emphasizes the importance of the interstage using a limited number of elements and providing a satisfactory gain-bandwidth product. Interstages For Transistor Video Amplifiers, J. J. Spilker, Stanford Electronics Laboratories, Stanford University, Calif., April 21, 1958, 139 pp, Microfilm $6.90. Photocopy $21.30. Order PB 139459 from Library of Congress, Washington 25, D. C.
new MINIATURE SWITCHING COMMUTATORS

Now, from Airflyte Electronics, comes lightweight, miniature switching commutators featuring low noise, low torque, long life and angular accuracy of 10 minutes of arc. Available either motor driven or hand detented, they meet MIL Spec. 5400 and 5572.

Ideal for programing, data processing, selecting, telemetering, high-speed sampling, analog-digital conversion, sync. drives, multi-pole and multi-throw switches and sinusoidal switches.

Write for Catalog #AE-16.

Airflyte ELECTRONICS COMPANY
535 Avenue A, Bayonna, New Jersey

CIRCLE 212 ON READER-SERVICE CARD

CW Solid State Masers

This report is concerned with several aspects of the theory of cw solid-state masers which use crystals containing paramagnetic ions as the active material. The density matrix describing a particular ion is calculated in the presence of the pump and signal fields. It is used to determine the engineering characteristics of various maser amplifiers. Theory Of CW Solid State Masers, P. N. Butcher, Stanford Electronics Laboratories, Stanford University, Calif., Dec. 16, 1957, 143 pp. Microfilm $7.50, Photocopy $22.80. Order PB 137591 from Library of Congress, Washington 25, D.C.

Traveling-Wave Amplifiers

The work presented in this report is concerned with the study of external-circuit traveling-wave amplifiers. It directly follows a series of earlier studies conducted in these laboratories on the theory of such tubes and their operation as backward-wave oscillators. The distinguishing feature of external-circuit traveling-wave tubes is that they consist of a combination of two separate parts: a vacuum interaction structure containing an array of equally spaced drift tubes through which the electron beam is sent, and a removable external slow-rate structure which is connected onto the interaction structure and which can be modified at will. Such an arrangement provides great flexibility in both experimentation and practical applications. The vacuum interaction structure utilized throughout this investigation is the one previously used by A. R. Matthews and it is not described here in detail. External-Circuit Traveling-Wave Amplifiers, G. A. Loew, Stanford Electronics Laboratories, Stanford University, Calif., Apr. 21, 1958, 172 pp. Microfilm $8.10, Photocopy $27.30. Order PB 139460 from Library of Congress, Washington 25, D.C.

Pulse-Type Magnetic Modulators

A summary is given of previous investigations of the all-magnetic, ac, resonant-type magnetic modulator. These investigations include (1) the measurement of core loss and saturated permeability of thin magnetic tapes under pulse excitation, (2) the development of a design procedure for magnetic modulators with either a pulse forming network or pulse clipper and a linear resistive or biased-diode load, (3) the design and construction of a 2-megawatt modulator, and (4) the paper design of an 8-megawatt modulator. Studies of Pulse-Type Magnetic Modulators, A Summary, E. J. Smith, Microwave Research Institute, Polytechnic Institute of Brooklyn, N.Y., July 9, 1957, 34 pp., Microfilm $3.00, Photocopy $6.30. Order PB 137378 from Library of Congress, Washington 25, D.C.
REPORT BRIEFS

Ceramic Capacitors

Techniques have been developed to measure temperature coefficients of capacitors to an increased degree of accuracy. Capacitance increments due to temperature variations can be measured to 0.0001 mmf or one per cent, whichever is greater, with the exception of a very small range of capacitors. A test-panel sample holder was developed with a maximum contributing error of 0.0001 mmf per degree C change over a 225 degree C total temperature variation. A switching mechanism to allow measurement of one hundred samples in a day was devised, utilizing statistical techniques to reduce resettability errors as small as desired. A capacitance sensitive device in the form of a variable oscillator and standard increment capacitors were designed and developed for detecting and recording 0.0001 mmf capacitance changes. A discussion of the specifications of temperature coefficients of capacitors and recommendations for their amendment are included. Details concerning the construction of a temperature coefficient test set and measurement techniques are also given. Design Study Toward Development Of A Test Set To Measure Temperature Characteristics Of Ceramic Capacitors, Joseph Seton Smith, New York University College of Engineering, N. Y., Aug. 15, 1950, Oct. 14, 1951, 87 pp., Microfilm $4.80, Photocopy $13.80. Order PB 142176 from Library of Congress, Washington 25, D. C.

High-Power Traveling-Wave and Hybrid Tubes

The work under this contract has resulted in a considerable advance in the high-power traveling-wave tube art. The last of the cloverleaf tubes built displayed quite satisfactory characteristics in gain, power output, and bandwidth; and it was quite free from the rather severe oscillation problems which had interfered with satisfactory operation of previous tubes which used the same general circuit. The performance characteristics of this satisfactory tube were reported in Scientific Report No. 7. Some of these are repeated in the present report for summary purposes. Preliminary results with the first hot-test tube built using the centipede circuit have also been encouraging. These are covered in the present report. (See also PB 139050) Development of High-Power, Traveling-Wave and Hybrid Tubes, M. Chodorow, Microwave Laboratory, Stanford University, California, Aug. 1958, 41 pp. Microfilm $3.30, Photocopy $7.50. Order PB 139396 from Library of Congress, Washington 25, D. C.
Corona Type Loudspeaker

This report describes the development of a high frequency (1-50 kc), high power (1.3 kw) speaker needed in a biological research. It includes a theoretical discussion of corona sound generation (thermal) and the reasons for upper (corona size) and lower (corona cooling rate) frequency limitations. Eleven speaker designs were tested. A 60 watt and a 1.3 kilowatt speaker system are described. Corona Type Loudspeaker, Fujio Oda, Pennsylvania State University, University Park, July 1958, 74 pp., Microfilm $4.50, Photocopy $12.30. Order PB 142024 from Library of Congress, Washington 25, D. C.

Periodic Structures In Trough Waveguide

A center fin in trough waveguide can be modified in a periodic fashion to alter the propagation characteristics of the guide. Two such periodic modifications, one an array of circular holes and the second a periodic array of teeth, have been measured fairly extensively and analyzed theoretically. These configurations are useful in connection with antenna scanning or waveguide filter applications. The array of holes produces only a mild slowing of the propagating wave, but the toothed structure, which may alternatively be described as a series of flat strips extending beyond the edge of the fin, can cause the propagating wave to vary from a very slow to a very fast wave. The periodic structures are theoretically treated by two methods, a transverse resonance procedure and a periodic cell approach. These theoretical results agree very well with each other and with the measured data. Periodic Structures In Trough Waveguide, A. A. Oliner and W. Rothman, Microwave Research Institute, Polytechnic Institute of Brooklyn, N. Y., July 9, 1958, 46 pp., Microfilm $3.30, Photocopy $7.30. Order PB 137482 from Library of Congress, Washington 25, D. C.

Radar Reception Problems

The problem of radar reception in the presence of jamming is treated by an application of the theory of games. The game formulated is as follows: assume the radar receiver employs a matched filter, matched to the radar echo signal, and let the choice of band-limited power spectral distributions for both the radar signal and the jamming noise constitute the respective strategy decisions for the radar designer and the jammer. Games with strategies of this type are known as function-space games. Application Of The Theory Of Games To Radar Reception Problems, Nils J. Nilsson, Rome Air Development Center, Griffiss AFB, N. Y., May 1959, 22 pp., Microfilm $2.70, Photocopy $4.90. Order PB 142182 from Library of Congress, Washington 25, D. C.

New Cold Cathode Thytrons

Stable, Rugged, Subminiature

The KP-96 is a high gain, grid controlled cold cathode tube for time delay, trigger, counter and energy transfer circuits. New design features include small size (T-2) subminiature envelope, only 0.3" in diameter, rugged construction and stable anode hold-off and grid-firing voltages. Within the anode supply voltage range of 100-300 v, the firing of the tube is controlled by application of voltage to the grid (95v). The transfer current is far lower than previously available, equaling less than 1.0 microampere. The KP-96 offers a higher ratio of anode hold-off voltage to grid-firing voltage than available before, smaller size, rugged structure, operation in both light and total darkness, high efficiency energy transfer. Since it requires no filament power supply, the KP-96 stands by at full sensitivity consuming no power. Radioactivity is included for operation in total darkness. Another model, type KP-96A, is available without radioactivity for use under ambient light conditions. For details on this and other special purpose electron tubes, write
Blocks to Creativity

A. L. Simberg, Supervisor
Personnel Research & Development
AC Spark Plug Div.
General Motors Corp.
Flint, Mich.

Part IV
Advice to
Frustrated Creators

This is the last of a series of articles discussing blocks to creativity.

THERE is no magic in removing the shackles that bind creative thinking. Essential at all times is a positive attitude, rooted in self-analysis and a desire to improve. The person who has been foiled in a creative problem must begin his new attempt by questioning: What caused the block? How can I remedy it?

Bearing in mind that there are three major blocks to creativity—perceptual, cultural and emotional—the frustrated innovator can assure himself that no matter what their cause, these blocks lie within his own mind.

The perceptual blocks obscure the problem as it really is. They frustrate recognition of the "need area." The cultural blocks, instilled by traditional upbringing in the home, teaching in the school and the pressures of society, restrain imagination, inquisitiveness, boldness. The emotional blocks are irrational fears and anxieties that make us reluctant to take appropriate action on our ideas and beliefs.

Recognize the Blocks

The first step toward a remedy therefore is to recognize these blocks. Certainly little can be done about personal shortcomings that you do not recognize and that others cannot or will not point out to you.

Sit down and analyze yourself. Think about the blocks to creativity. To which of these do you feel you are prone? If you are honest with yourself, you can isolate the ones that have been hindering your idea output. If you are having genuine difficulty in recognizing them, ask someone close to you who you respect—but do not ask unless you are willing to be open-minded.

Now that the blocks are out in the open, have been recognized for what they are and their effect upon you, take the next step—admit them. Go back to specific problem situations that were not solved because of blocks like these. Review them and decide how you might have acted had it not been for these blocks. Look for problems that were subsequently solved by someone else. What was it they saw that you missed? Question them about it. Try to see how you might have re-oriented your thinking or synthesized the facts to yield a different, unblocked view. Next look for new situations or problems where you can attempt solutions with your new "frame of mind."

Try a Check List

Many engineers have developed for themselves a little check list that they keep in front
of them when they are working on problems. Anyone can devise such a check list. Refer to it regularly when you are stumped on a problem. Do not, however, make the mistake of using it as a crutch. First let yourself go. Use your imagination. Use all of your creative faculties.

When you run into a roadblock—when you can go no further—then refer to your check list. Remember, its only function is to help ensure that you are not failing to solve the problem because of blocks within yourself, which are making you either:

1. Unable to see the problem.
2. Not able to take a different approach.
3. Afraid to come to grips with the situation.

Awareness is the key to overcoming creative obstacles. You must be constantly aware of all the different ways in which your thinking and idea output may be blocked.

Supervisors, Take Note

A word to those who supervise the activities of technical people is not amiss either. Give the innovators a chance! When making an assignment, do not be so overly specific in what you want done that no room is left for imagination on the part of individuals. State the problem in a general manner, ask them how they would go about solving it or what ideas they have about it.

Above all, have confidence. Everyone has within him not only these blocks but also the capacity to rid himself of them. If you think about it this way—that you are not going to become more creative but are going to try to use more of the ability you already have—the task confronting you may not seem so insurmountable after all.

Good luck! • • •

Your future: a challenging opportunity with an industry leader

At Texas Instruments, your future is filled with specific, stimulating growth assignments in evaluating and characterizing transistors and special semiconductor devices. You'll participate in such transistorization projects as:

- AM, FM, and TV receivers
- audio and video, I-f and r-f amplifiers
- hi-fi and electronic organs
- nonlinear and switching circuits
- computer system logic
- servo and power amplifiers

With TI... receive liberal company-paid benefits, including profit sharing (last year 15% of base salary)... enjoy premium living in a moderate climate with excellent neighborhoods, schools and shopping facilities... work in a plant selected as one of the 10 outstanding U. S. industrial buildings of 1958.

Interviews will be held in your area soon. If you have an Electrical Engineering degree and/or knowledge of transistor circuitry, please send a resume to

C. A. Besio, Dept. 200-ED

Texas Instruments Incorporated

SEMICONDUCTOR - COMPONENTS DIVISION
POST OFFICE BOX 312 + DALLAS, TEXAS

CIRCLE 901 ON CAREER INQUIRY FORM
CAREER OPPORTUNITIES BROCHURES

Leeds & Northrup Company

“Career Opportunities” is a 16-page brochure briefly presenting products, equipment, department functions and facilities and top management at Leeds & Northrup Co. On-the-job photos depict present projects in operation in the areas of instrumentation and automatic process control. Education assistance and other employee benefits are given.

CIRCLE 871 ON READER-SERVICE CARD

ELECTRONICS JOBS
$6,000 to $75,000
Go Begging

It’s true! Cadillac, the nation’s largest Executive and Professional placement service, has many more electronic positions available than we can fill.

We represent every “Blue Book” Electronics firm in America, over 350 in all. Because of this, Cadillac is able to offer Electronics Engineers a choice of positions unequalled by any other firm.

FREE MONTHLY BULLETIN
Because you are an Electronics Engineer, our monthly Electronics Opportunities Bulletin and our Completely Confidential Placement Service are available to you FREE OF CHARGE.

“For your free Bulletin, each month listing America’s BEST Electronics jobs, send your name and home address to:”

Eugene B. Shea
Executive Vice President
Cadillac Associates, Inc.
29 E. Madison Bldg., Dept. E2
Chicago 2, Ill.

CIRCLE 903 ON CAREER INQUIRY FORM

ELECTRONIC SYSTEMS PROGRAM ENGINEER

Will provide technical leadership in one or more of the following fields:

Data transmission
Infrared detection and tracking
Inertial guidance and navigation
Electromagnetic radiation and transmission
Digital computer controls

In addition, you will organize, direct and coordinate program activities on Defense Systems Programs. Provide liaison with customer and subcontractors. Contribute to integration of program documentation, cost estimating and planning.

If you are interested in systems management and have an advanced scientific degree, with extensive electronic project engineering experience in one or more of the fields mentioned, forward your resume in confidence to Mr. E. A. Smith, Dept. 12-C.

DSB DEFENSE SYSTEMS CORPORATION
A Department of the Defense Electronics Division
300 South Geddes Street, Syracuse, N.Y.

CIRCLE 904 ON CAREER INQUIRY FORM

Fire Control—Radar Engineers

The Equipment Systems Staff of Republic Aviation is now engaged in broad research and development in advanced fire control-radar systems. A number of openings now exist for engineers with an EE degree and 5 years’ experience in radar and/or fire control.

You will work on beautiful Long Island, less than one hour from New York City.

Send resume in confidence to:
Mr. George P. Hickman
Engineering Employment Mgr., Dept. 12M

REPUBLIC AVIATION
Farmingdale, Long Island, New York

CIRCLE 872 ON READER-SERVICE CARD
Advancement
Your Goal?
Use
New Form
To Speed
Action

ELECTRONIC DESIGN's new Career Inquiry Service form is designed to help engineers advertise themselves. This new service speeds applicants to the jobs they seek. It is the first such service offered in the electronics field and is receiving high praise from personnel managers.

To present your qualifications immediately to the personnel managers of companies that interest you, simply fill in the attached standardized short resume.

Study the employment opportunity ads in this section, and circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.

ELECTRONIC DESIGN's Reader Service Department will act as your private secretary and type neat, duplicate copies of your standardized resume and send them to all companies you may select . . . the same day the resume is received. (ELECTRONIC DESIGN will detach the circle number portion of the form so that no company will know how many numbers you circled.)

The standardized resume will permit personnel managers to inspect your qualifications rapidly. If they are interested, they will get in touch with you directly. In the past much time has been lost through personnel-manager requests for resumes from applicants who proved ineligible.

MAIL CAREER INQUIRY SERVICE FORM TO READER SERVICE, ELECTRONIC DESIGN, 830 THIRD AVE., NEW YORK 22, N. Y.
Write it Now!

It's Easy to Write an Article for ELECTRONIC DESIGN

As a design engineer it's very likely that many of the problems you have encountered and solved can be of real help to others. Why not tell ELECTRONIC Design's 32,000 readers about it? This effort can be of real, direct, immediate service to the industry. If you think you have an idea for an article, send us an abstract—we'll look it over and return with suggestions for the completed piece.

FREE — Information for Authors

This booklet describes how easy it is to write for ELECTRONIC Design. Complete details are included concerning types of articles needed, treatment, payment, etc. For your copy simply circle the reader service number shown below.

CIRCLE 224 ON READER-SERVICE CARD

Engineers and Physicists
Your talent and time go further in Minnesota, land of opportunity

Send for free booklet with all the facts

Even if you are not now planning a change in employment, you'll be interested in learning why it is that our engineers and physicists seem to accomplish so much more than many others. That's why we invite you to complete the coupon below and send today for the facts about employment opportunities in the Mechanical Division of General Mills.

Do you ask—have we hit upon some extra-ordinary motivational formula? No. Are our people geniuses with a super human devotion? Certainly not. But they, like you, are talented and creative. They appreciate professional freedom. Challenging, non-routine assignments in advanced military and industrial projects. Opportunity to progress according to their capabilities. And financial security with one of the nation's most stable companies.

Mr. G. P. Lambert
Manager Professional Employment
Mechanical Division General Mills
1670 Central Avenue, Dept. E12
Minneapolis 12, Minnesota

Name
Address
City Zone State
College Degree Year

MECHANICAL GENERAL DIVISION

CIRCLE 906 ON CAREER INQUIRY FORM

YOUR CAREER NEWS AND NOTES

Add painless ways to recruit engineers:

The Astronics Div. of Fairchild Engine and Airplane Corp., Wyandanch, L.I., N.Y., regales likely prospects with a 45-rpm phonograph record that sells off essential job information. No, phonographs are not distributed with the disks; enterprising prospects are expected to furnish their own if they want to hear the message.

But the same company gladly distributes $70 worth of technical books at a clip. It's part of another recruiting stunt. The books are offered as a door prize at lecture sessions that outline company advantages to prospective employees.

“A lot of people have been debating why Johnny can't read today, but a lot more should be concerned with why Dr. Johnson can't read.”

With this as a text, an editor delivered a sermon recently on scientific writing before a national technical group. He put the problem this way, according to the Publications Institute Newsletter:

“The inability of the Dr. Johnsons to report their scientific findings clearly in writing is posing an increasingly urgent problem to innumerable administrators, documentalists, editors and the general public.”

How does one write clearly when the subject—be it science or engineering—is so complex? The newsletter furnishes some clues. A few decades ago Edwin E. Slossom, the first director of Science Service, publishers, drew up a list of “don'ts” for science writers. Still valid, they include:

- Don't underestimate the reader's knowledge and don't underestimate the reader's intelligence.
- Don't leave out the human interest. Your reader is a human being, even if you are only a scientist.
- Don't forget that your reader is interrupting every 10 lines to ask “Why?” “What for?” or “Well, what of it?” and if you don't answer his tacit questions, he will soon stop reading.
- Don't say “this discovery is interesting” unless you can prove it is; and if you can prove it, you don't have to say it.
- Don't fail to put your best foot forward; otherwise you may not have a chance to use the other foot. Note the construction of the news story in any first-class paper. The opening paragraph gives succinctly the main point of interest—the gist of the story—just as the first movement of a musical composition expresses the theme or motif. But:

- Don't imagine that you must add a pretty but superfluous paragraph at the end, like the coda of a sonata. The most effective close is to quit when you get through.