

MOUNTINE AND HOUSINO DIMEMSIONE TO ORDER. Mere are a fow gypleal configuramions obtalnablo in aluminum, stalnloas abol, baryllum or zlroonlum alloye.

-122: 23

S122 28
Tandem unit. Transmitter and Recolver.

A WIDE VARIETY OF BORES AND STACK HEIGHTS, widths and diameters

 available from existing laminations. Below are some examples. Let us know your needs.

engineers-Pioneer with a leader in the field. Write David D. Brown, Director of Personnel. Dept. A3.

CDDC

Selected Topics

 In This Issue
Components, Instrumentation

Solar Cell Efficiency p 52
Nuvistor Tube
Readout has self-contained
Memory
p 120
Multi-Headed Transistors p 125

Compufers

Computer Tasks vary at NBS p 42 Computers Will Assign
Frequencies
p 62
Digital Servo Loop p 90

Communications

Interference Prediction:

See Articles
 94, 98, 102

Design

Simplifying Line-Amp Design p 72 Voltage Divider Network Industrial Design
Design Miniafure Ovens
Pulse Transformer Design

Missiles

BMEWS for Missile Surveillance p
Radar Views Atlas Launch p Missile Test Chamber

A complexity of shapes symbolizes the maze of products found at this yecr's IRE Show. Included are: a comb structure transistor (p 116); a cable that takes more stresses (p 124); a Nuvistor that is now commercially available (p 118); and a new tube that prints on dielectric material (p 122). In addition, close to 300 products, most of which are being dis. played at the IRE show, are described in this issue's New Products Department.

Sidelights Of This Issue

A task force of ELECTRONIC DESIGN ϵ Jitors descended on Philadelphia to cover the recent Solid-State Circuits Conference. From the moment they arrived, six ED editors were kept busy in a whirl of activity . . . distributing reprints of an ELECTRONIC DESIGN Tunnel Diode Report . . . interviewing top engineers and physicists from various parts of the world . . . attending as many as five concurrent panel sessions held during the evenings, sessions at which the experts often let down their hair . . . and fulfilling requests for the much-in-demand exclusive ELECTRONIC DESIGN reprint, "Designing With Tunnel Diode.
One problem that the editors had envisioned failed to materialize. They feared that there would be some difficulty communicating with foreign visitors. It turned out that many of the gentlemen from other countries spoke impeccable English.
In a few cases, it was necessary for one ELECTRONIC DESIGN editor, a multi-lingual chap, to conduct interviews in German. Needless to say, he was quite successful.
Perhaps the most pleasant surprise for those attending the conference was the unexpected appearance of Dr. Leo Esaki, Japanese scientist of tunnel diode fame. The language barrier prevented any extensive interview with the smiling visitor, though it may be pointed out that, in his case his achievements speak for themselves. He certainly seems to speak the same language as IBM. at the conference. The editors were kept hopping at the evening sessions, many of which were held concurrently.
ELECTRONIC DESIGN's News Secfion contains a comprehensive round-up of the conference. Included are detailed presentations on tunnel diodes, magnetic films, and solid-state advances in microelectronics. The staff is indeed pleased to bring design engineers this most thorough coverage.
A preview of new products that IRE exhibitors recently announced appears in this issue. These products-some of them exclusive "firsts"-were sent to EL CTRONIC DESIGN on a special relecse basis. Over 200 of them appear in the New Products Department, in od lition to the regular products that yo always look for.

RAYTHEON METAL ENVELOPE 16" RADAR DISPLAY TUBES

> meet your design needs better... and faster

\star AVAILABLE immediately in production quantities
\star AVAILABLE with aluminized faceplates
\star AVAILABLE with all standard radar phosphors
\star AVAILABLE with special infrared-stimulable storage phosphors (for true-motion trail indication)

Every design advantage of metal-envelope CRT's is yours with Raytheon radar display tubes. You get more usable cabinet space and can cluster more components behind the tube. And Raytheon metal-envelope tubes are lighter, too - weigh five pounds less than equivalent $16^{\prime \prime}$ glass envelope CRT's. The rugged metal envelopes withstand plenty of rough handling and vibration, and provide a solid rim around the faceplate that simplifies mounting assembly design.

The faceplate of a Raytheon metalenvelope CRT is precision-curved plate glass, carefully controlled in production to assure absolute uniform thickness - more accurate for optical reflection plotting.

Chouse from stock tubes listed below available with all standard radar phosphors and special infrared-stimulable storage phosphors - or let Raytheon's custom engineering service assist you in developing or adapting a tube to meet specific new applications. Write direct to Dept. 2527.

TYPICAL CHARACTERISTICS										
Type	Focusing Method	Deffection Method	$\begin{aligned} & \text { Defeection } \\ & \text { Angle } \end{aligned}$	Collector Voltage	Grid ${ }^{32}$ Voltage	Grid 11	Focus Current (JETEC Coil (109)	$\begin{gathered} \text { Overall } \\ \text { Lenglt } \end{gathered}$	Overall Diameter Diameter	Screen Diameter Diameter
16ADP	magnetic	magnetic	53°	$12,000 \mathrm{Vdc}$	300 Vdc	-33 ${ }^{-30}$	95 ma .	21\%"	15\%"	14\%*
CK1382	high-voltage (3300 to 1300 Vdc)									
CK1353	$\begin{aligned} & \text { low-voltage } \\ & \text { (-135 to }+400 \end{aligned}$									

RAYTHEOM

INDUSTRIAL COMPONENTS DIVISION

53 Chapel Street, Mewton 58, Massachusetts
Los Anscles - Normandy 5.4221 Dallas - Fleetwood 1-4185 Chicage - National 5.4000 orlande - Garden 3.1553 Mew Yorth - Wisconsin 7-6t00

CIRCLE 2 ON READER-SERVICE CARD

KAY. . . The Most Complete Line of High Frequency Attenuators

KAY rotary switchable DKD IDIRECT READING DIGITALI Attenuators

Provides Digital Readout of Attenuation, 0-119 db

Standard Toggle Switch Models, 0-101 db

- Fixed Zero or 10 db Insertion Less
- Improved Accurocy-Reduced Maximum Error
- High Frequency Switches-Solid Silver Contacts Sot in Teflon - 1% Carbon Film Resistors The three models of Kay DRD Altenuators, listed at the right hand side of the table, offer the convenience of a direct-reading dial. Atenuation can be varied from 1 db to 119 db in one-db steps by operating two rotary swirches. The stondard Kay Alt. All models are set in light woight cast bronze housings and offer reduced maximum total error and a negligible Insertion loss.

	MODEL CAT. NO. 20° $430 \cdot \mathrm{~B}$ 21° $440 \cdot \mathrm{~B}$ $22^{\circ} \mathrm{ta}$ $450 \cdot \mathrm{~B}$	MOOEL CAT. NO 20.0° $431-\theta$ 21.0^{+} $441-日$ 22.0^{+} $451 \cdot \mathrm{~B}$	MOOEL CAT. NO. 300° $432 . \mathrm{C}$ 31.0° $442 . \mathrm{C}$ 32.0 $452 . \mathrm{C}$	MODEL CAT. NO. 400° $433-A$ 41.0^{+} $433-A$ 42.0 $453-A$
${ }^{\text {in }}$ I ${ }^{\text {out }}$	- 50 ohms nom. ${ }^{\text {a }} 70$ ohms nom. 190 ohm			nom.
DB Switched	41 db in 6 steps		$\begin{gathered} 101 \mathrm{db} \\ \text { in } 9 \text { steps } \end{gathered}$	$\begin{aligned} & 119 \mathrm{db} \text { total } \\ & \text { in } 1 \mathrm{db} \text { steps } \end{aligned}$
Steps	$20 \mathrm{db}, \underset{2}{10 \mathrm{db}, 5 \mathrm{db}, 3 \mathrm{db},}$		Same as 41 db units, plus 3 extra 20 db steps	1 db and 10 db
$\begin{gathered} \text { WSERTION } \\ \hline \text { LOSS } \end{gathered}$	10 db	Zere db at low frequencies; approx, 0.1 db at 250 mc ; approx. 0.2 db at 500 mc		
Maximum Total Error lincludes insertion less)				
frequency Range	OC to 500 mc : useful to 1000 mc			
SWR	1.2 max. up to 250 mc : 1.4 max.. 25010500 mc			
Maximum Power	$1 / 2$ watt			
Connectors	BNC type UG-185 U			
Dimensions	2" $\times 7$ " $\times 2$ "		$2^{\prime \prime} \times 9^{3 / 4}{ }^{\prime \prime} \times 2^{\prime \prime}$	$5^{\prime \prime}$ dia. $\times 2^{1 / 4}{ }^{\text {" }}$
Weight	2 lbs .		3 lbs .	41/4 lbs.
Prices	\$75.00	\$70.00	\$100.00	\$225.00

NOTE: Kay Atronuators can be made on special order in 0.5 db steps, and to customer's

Write for New Kay Catalog

EKAY ELEGTRIG COMIPAMY

Dopf. ED-3 - Maple Avonue - Pine Brook, New Jomey - CApital 6-4000 See us at the IRE Show-Booths 3512, 14, 16, 18
How To Get Your Money's Worth Out Of The IRE Convention 71
An Editorial
Resistance-Value Curves Simplify Line-Amplifier Design 72
Curves for designing a highly stable balanced amplifier
Graphical Solution Of The Resonance Equation Speeds Circuit Design 76Using graphical methods, solve resonance equation in seconds-P. R. Alminger
Amplitude-Modulation Techniques For Class-C RF Amplifiers 80
A roundup of the most popular AM system-N. Wesler, J. Fokins
How To Design A Voltage Divider Network With Constant Input Impedance 82Simple equations, tables and an illustrative example are included-G. Lang
An Industrial Designer Discusses, Part 3 86
Four examples illustrating the redesign of cases and housings-P. Wrablica
How A Digital Servo Loop Operates 90
Hybrid analog-digital device nulls shaft position error-H. B. SteinhouserA Methodology For Interference Prediction94Factors involved in interference prediction techniques-W. B. Floyd
Prediction Of Receiver Intermodulation From Simple Measurements 98
Extrapolation aids prediction-W. M. Rogers, H. L. McKinley, C. E. Blakely
Prediction Of Transmitter Intermodulation From Simple Measurements 102Technique to predetermine interference-R. N. Bailey, C. E. Blakely
Line-Type Modulator, Part 3 106
Procedure for designing high-powered pulse modulator circuitry-I. Limansky
Design Miniature Ovens With Close-Temperature Control 110
Theoretical and practical aspects of temperature control-F. J. CheliLiquid Cooling And Simpler Circuits Shrink Cost Of Microwave Oven114
Simple "tricks" can save money. Sometimes, complete redesign is necessary
Comb Structure Makes High-Frequency, High-Power Transistors 116
Unusual emitter structure gives this transistor high power at high frequencies11
Diverse applications include airborne and medical diagnostic equipment
Fast Readout Has Self-Contained Memory 120-
A flexible, visual readout using stroboscopic illumination of characters
Tube Prints Directly On Non-Sensitized, Dielectric Material 122
The tube has both commercial and military applications
Wires, Cables Take More Stress With Improved Insulation 124
Key to process is "fiber orientation."
Multi-Headed Transistors Help Miniaturize Circuits 125Combinations made of any transistor type or types now in use
Three-Dimensional Packaging Method Permits Quick Servicing 126
Has small and large-circuit programing applications
Improved Products And New Ones Await Inspection At The IRE Show 128Survey covers highlights of various product categories

ELECTRONIC DESIGN

Hayden Publishing Co., Inc.
830 Third Avenue, New York 22, N. Y.
ELECTRONIC DESIGN News .. 4Midas Satellite Project4
New Micromin Program

Hungarian Electronics Industry p Try This One,
Computer Designersp 51 Grid Design Improves Solar Cell p 52 Radar Views Atlas Launchp 53 Electrically Exploded Wires
As New Energy Source
...p 54
Missile Test Chamber Shielded ..p 55 15.6 Million Radios Made in '59 ..p 56 High-Temperature Capacitor ...p 56 Topside Study Of Ionosphere ...p 58 Germanium Transistor As 3-Kmc
Oscillator, 1-Kmc Amplifier ..p 59
Harvard Gets $\$ 265,000$ For
Weapons' Procurement Study p 60 Computer Slated To Figure
Target Of Enemy Missilesp 60 Computers Assign Frequencies op 61 Brighter Radar Display Tube ...p 62 L. I. Electronics Industry Expects

100 Per Cent Growth Pn Junctions From Vapor Phase p 66 IRE International Convention ..p 68

Suppressor Grid Voltage Varied For Constant Amplitude Pulse p 267 Cast Plastic Mounting Studp 268 Photostat Scope-Trace Copies ..p 268 Rubber-Core Terminals Hold Wires Securely \qquad Thyratron Delays Digital Pulse .p 270 Sponge Provides Flexible Short .p 270 LF Multivibrator Uses
Unijunction Transistorsp 271

Pulse Transformer Designp 290

Testing Networksp 295
Microwaves Dry Dielectricsp 294
ELECTRONIC DESIGN Digests 296
Measure AF Distortionsp 296
Phototransistors Circuitsp 302
Washington Report 64
Meetings 66
IRE Program 68
New Products 132
Services 246
Engineering Data 249
New Literature 252
Patents 272
Books 280
Report Briefs 306
Standards \& Specs 310
Letters 312
Careers 314
Career Brochures 320
Your Career 322
Advertisers' Index 328

(1) B

1311

ELECTRONIC DESIGN is published bi.weekly by Hayden Publishing Company, Inc., 830 Third Avanue, New York 22, N. Y T. Richord Goscoigne, President; James S. Mulholland, Jr., Vico-President \& Treasuror. Printed at mildrath Prose, Bristol, Conn. Acceppoded as controlled circulation at Bristol, Conn. Additional ontry, Now Yort, N. Y. Coprright 1960 Haydon Publishing Company, Inc.. 34,400 copies this issue.

ere is a "quicksilver" in all research
and development. This elusiveness is greater in the design of microwave ferrite components
than in any other electronic field.
The engineer must be able to say: "It works, but not
 consistently enough" or "It works, but not well
enough." It then becomes
a matter of knowledge, patience, originality.

time and testing until the device meets the necessities of its
application
and
them consistently.

Midas satellite nears top of missile gantry shortly before unsuccessful test shot from Cape Canaveral Feb. 26. IR detection of hostile missile launchings is the satellite's mission. Planned system calls for a network of surveillance satelliies in polar orbits at 100 to 200 mi altitude.

Air Force Pushing Midas Satellite Project With Hopes Pinned on New Tests and Budget Increase

Despite the failure of an initial Project Midas satellite test shot from Cape Canaveral, the Air Force hopes to step up activity on this program. As planned, Midas would consist of a network of infrared surveillance satellites capable of spotting hostile missiles seconds after launching.
The unsuccessful shot was the first in a planned series of attempts to orbit an instrumented test satellite from Canaveral, and later from the Pacific Missile Range. If the Midas vehicle reaches orbit and successfully spots a subsequent missile launch from the Cape, the program will undoubtedly gain stature in the eyes of Government budget planners, industry observers believe.
The Air Force is pinning its hopes on such a success and on a favorable reaction from the House Space Committee, which has been looking into Midas. Lt. Gen Bernard A. Schriever, commander of the Air Research and Development Command, has commented that the Pentagon will decide soon whether to ask for increased funds for the program. Congressional reaction to testimony on Midas (which stands for Missile Defense Alarm System) will be a major factor in this decision, an Air Force spokesman told Electronic Design.
"Less than $\$ 100$ million," has been appropriated for Midas for the present fiscal year, according to General Schriever. Unofficial estimates place the figure at about $\$ 60$ million, with $\$ 100$ million more presently earmarked for fiscal 1961.
Midas critics have attacked what appear to be some weaknesses in the infrared surveillance concept. Burning flares on railroad cars might be used as countermeasures against the detection net, they say. Another comment is that too many satellites will be required for effective continuous surveillance of all possible launch sites.
The ability to launch missiles from submarines complicates this surveillance problem, because vast ocean areas become possible launch sites.

Additional surveillance orbits may have to be added to the program to counter undersea launching capabilities.
Significantly the Polaris, this country's under-water-launched missile, was to be used as the first missile to be spotted by a Midas satellite in the unsuccessful test. But like the Midas, it also failed. The Midas shot failed presumably because the second-stage Agena-B rocket did not detach from the first-stage Atlas booster. The Polaris weaved erratically and was destroyed by the range safety officer
Secrecy surrounds infrared developments for Project Midas. Engineers working on the project are unwilling to discuss the problems involved because of the security consideration.

Other engineers and scientists working with infrared, however, explain that much of the work on Midas involves translating known principles into useful hardware. Although many tough problems face Midas instrumentation designers, the general approach to solutions is well-defined by the present state of the art, these IR workers feel.

Special Filtering Techniques Are Available

Various techniques are known for infrared surveillance of large areas with the ability to pinpoint intense heat sources. These spacial filtering methods include the use of mosaics, or groups of detectors, each covering a small portion of the angle of view. Scanning of the outputs of individual detectors, or selective cancellation of individual outputs from a total signal might be used to find a point of intense radiation.

Electronic scanning tubes are also a possibility for this purpose, although sources indicated that these are not planned for Midas satellites. Image orthicons are probably too fragile for launching shocks, but vidicons can be made very rugged. one engineer commented.
Positive identification of intense heat sources

Technicians check a Midas satellite which contains a $15,000-\mathrm{lb}$ thrust engine and reportedly carries a 3,000-lb instrument payload.
is a much tougher demand. The satellite must distinguish between missile flames and other sources, such as blast furnaces, chemical explosions or power plants. Possible countermeasures, such as burning flares on railroad cars, must also be considered.
Burning missile fuels have unique wavelength signatures, or distributions of radiated energy by frequency, so that spectral analysis is a logical approach to this problem, engineers pointed out. A received infrared signal could be split with gratings or optical filters, one IR designer said, and the energy distribution by frequency analyzed. Data processing techniques could be used to compare the received signal with the known characteristics of burning missile fuels, so that data from suspicious targets could be selected for telemetering to ground stations.

Infrarimetry Promises Identification

Very precise analysis of this type might result from work on a new technique, called infrarimetry, now being researched at General Electric Co. Principles of the well-developed science of colorimetry in the visible spectrum are being adapted to work in the infrared region.
In colorimetry a color being analyzed is broken up) into three components, or color channels, with bandpass filters. The channels are chosen mathematically by means of tri-stimulus coefficients, which have been optimized for use in the visible spectrum. Variations in any one of these three channels can then be used to detect extremely minute changes in the color under analysis.
Infrarimetry has not been developed to this degree of precision, although GE researchers beli ve further effort will be fruitful. Practical optics, detectors and filters to meet specific requirements are not always available, so that work is n. w in the stage of finding the best compromises, according to one project engineer.
Precision distinctions, such as might be pro-

For high-accuracy data logging...to checkout

missiles or meters, to test transducers or transistors... checkout a KinTel digital system
 KIN TEL'S digital system experience, takes eight meas urements at each of 7200 different data points. Outputs include visual readout digital printer, X-Y recorder, and tape punch. Tape is perforated for direct entry into a digital computer. To provide 0.01 \% accuracy for low-level inputs, alternate channels scan calibration signals. These, with the unknown input signal, are fed to the computer and correction is made for any inaccuracy in the system itself. Cost: about $\$ 20,000$.

This data system consists of a KIN TEL 453M scanner and 501 DC digital voltmeter, plus a parallel entry printer. Briefly, the system will accept 400 one-wire, 200 two-wire, or 100 four-wire inputs, and will provide both visual and printed indication of the channel being scanned and DC input signals from ± 100 microvolts to ± 1000 volts. Accuracy is $0.01 \% \pm 1$ digit, and ranging and polarity indication are automatic. The complete system costs approximately $\$ 6850$. At the present time, delivery is off the shelf.

KIN TEL
DIGITAL SYSTEM CAPABILITIES

You can have any number of channels: A single 453M scanner ($\$ 2500$) accepts 400 one-wire, 200 two-wire, or 100 four-wire inputs. Additional scanners can be added if more inputs are required.

You can measure DC from $\pm 1 \mu \mathrm{v}$ ta ± 1000 volts: The kin tel 501 DC digital voltmeter ($\$ 2995$) measures from $\pm 100 \mu \mathrm{v}$ to ± 1000 volts. Addition of a kin tel digital preamplifier increases sensitivity to $1 \mu \mathrm{~V}$ DC.
You can measure AC from $10 \mu \mathrm{~V}$ to 1000 volts: Addition of a 452 AC converter ($\$ 850$) to the 501 DC digital voltmeter permits measurement of RMS AC voltages from 1 mv to 1000 volts in the frequency range of 30 cps to 10 kc . A KIN TEL preamplifier can be added to increase AC measurement sensitivity to $10 \mu \mathrm{v}$ from 30 cps to 2 kc .
You can measure DC/DC and AC/DC voltage ratios: The 507B digital voltmeter/ratiometer ($\$ 3835$) measures DC voltages from $\pm 100 \mu \mathrm{v}$ to ± 1000 volts and DC/DC ratios from .0001:1 to 999.9:1. Accuracy is $0.01 \% \pm 1$ digit. Addition of an AC converter permits AC/DC ratio measurements.
You can get 0.01\% DC and 0.2\% AC accuracy: The KIN TEL 502 AC/DC digital voltmeter ($\$ 3845$) measures $D C$ from $\pm 100 \mu \mathrm{v}$ to ± 1000 volts with $0.01 \% \pm 1$ digit of reading accuracy; and AC from 1 mv to 1000 volts, 30 cps to 10 kc , with 0.2% of full scale accuracy.
You can have $\mathbf{1 0 , 0 0 0}$ megohm input impedance: The KIN TEL 458A digital voltmeter preamplifier ($\$ 1225$) has gain positions of 100 (for DC and 30 cps to 2 kc AC measurement) and +1 HIZ (for DC only). On the +1 gain position input impedance is $>10,000$ megohms and gain accurracy is 0.001%. Input range for +1 operation is 0 to 40 volts.
You can have visual, printed, or any other form of output: KIN TEL digital voltmeters provide visual indication of the measured quantity on a singleplane in-line readout. They are capable of directly driving commercially available 10 -line parallel input digital printers. Converters are available for driving other types of printers, paper tape punches, typewriters, and IBM card punches.

KINTEL
rEL
oofy

To find out how a KIN TEL digital system can solve your particular data acquisition problem. send us an outline of your requirements, or contact your nearest KIN TEL engineering representative

[^0] $-$

WITH THE NEW

RACK MOUNTING PRECISION
DC/AC DIFFERENTIAL VOLTMETER
A CONVENIENT COMBINATION OF...

3 instruments in one

1. DIFFERENTIAL DC VOLTMETER

The Model $803 R$ provides a precision measurement of DC voltages from 0 to 500 volts by comparing an adjustable known finise with the unknown voltage.
2. DIFFERENTIAI. AC VOLTMETER

Precision measurement of $A C$ voltapes is accomplished in the Model $803 R$ by utilizing the basic DC
measurement circuitry plus a special $A C$ to $D C$ converter. measurement circuitry plus a special $A C$ to $D C$ converter.
3. VACUUM TUBE VOLTMETER

The ff Model $803 R$ may be used as a convensional DC or AC VTVM, a feature frequently helpful when making precise measurements of voltage by locating the approximate value of unknown in the 500 :olt

DC

- Accuracy 0.05% of input voltage
- Four search ranges and four null sensitivities
- Infinite input resistance at null

> DIRECT IN-LINE READOUT
> STANDARD CELL REFERENCE
> AUTOMATIC LIGHTED DECIMAL

PRICE 8845.00 F.O.B. FACTORY, SEATTLE, WASHINGTON

SELECT THE MODEL BEST SUITED TO YOUR NEEDS
Rack mounting or portable; ease of operation, and inherent protection from accidental overload, plus high accuracy and resolution, assure equal suitability for production line testing or precision laboratory measurements.

Write for detailed specifcations, or contact our engineering representative in your area.

PORTABLE, PRECISION DCiAC DIPFERENTIAL VOLTMETER The Model 803 embodies the same features as the 803R.PRICE $\$ 845.00$

Prices and technical data subject to change withoul notice.

MANUFACTURING COMPANY, INC. P.O. BOX 7161 - SEATTLE 33, WASHINGTON

NEWS

vided by infrarimetry, might be used to distin guish between actual missile launches and similar hot sources used as countermeasures agains the satellite detection net. The technique might also provide precise data on fuels being used.
Lead-sulfide detectors operating in the 3 micron range seem a logical choice for Mida satellites, according to one IR physicist.
This wavelength offers the least atmospheric attenuation of any of the infrared windows, he commented. The 8 -to- 13 micron range is a wider atmospheric window, but peak radiation from very hot sources occurs at shorter wavelengths, the physicist explained. A handy figure for use here is $2880 / \mathrm{T}=$ wavelength in microns of peak radiation, where T is the temperature of the source in degrees K .
Thus a radiation source at $6,000 \mathrm{~K}$ would transmit peak radiation at 0.48 microns. An ocean or ground temperature of 300 K , or 27 C , would give peak radiation at about 9 microns.
Optical materials are well developed for this wavelength range, so this would not offer a problem.
Getting as much radiation as possible to the detector is an important phase of the Midas program, a West Coast engineer commented. He pointed out that infrared sensors received much more radiation from the rear than they do from the front of a jet engine. Similarly, he said, a missile flame will be directed away from the detection satellite, and the body of the missile will block much of the radiation.

3,000-lb Payload Must Orbit

Instrumentation for meeting these requirements of the Midas program has to be heavy, engineers commented. That's why the payload for the Canaveral test shots adds up to about 3,000 lb and the Atlas booster, supplying about 360 , 000 lbs of thrust, is being used to put the Agena-B satellites into orbit. Reliability of the Atlas-with 20 straight successful shots-is another important consideration.
The Agena rocket, similar to those used as Discoverer satellites, is produced by Lockheed Aircraft Corp.'s Missiles and Space Div., Sunnyvale, Calif. It uses a $15,000-\mathrm{lb}$ thrust engine produced by Bell Aircraft Co.
Operational Midas satellites will be launched into polar orbits from Vandenberg Air Force Base, Calif. A satellite test center, now being equipped by Radiation, Inc., Space Communications Div., Mountain View, Calif. under a $\$ 1.3$ million contract from Lockheed, will be used to

Major Contractors—Project Midas

Military Control: Headquarters, Air Force Ballistic Missile division, Inglewood, Cal.
Prime Contractor: Lockheed Aircraft Corp., Missiles and Space division, Sunnyvale, Cal.
Ground-Space Communications: Philco Corp. Western Development Laboratories, Palo Alto, Cal. IR Horizon Sensing System: General Electric Co. Light Military Electronics department, Utica, N. Y. Satellite Test Center Instrumentation: Radiation, Inc., Space Communications division, Mountain View, Cal. (about $\$ 1.3$ million)
coordinate tracking and telemetry equipment for the program. This test center is located near Lockheed's Sunnyvale plant.

Ground-space communications for the program will be handled by Philco Corp.'s Western Development Laboratories, Palo Alto, Calif.

An infrared horizon sensing system, developed by General Electric Co., will be used to establish a vertical from a satellite to the earth, so that the infrared detection system can be constantly directed toward the ground. This vertical reference, plus the precisely calculated orbit of a satellite, should permit missile launches spotted by the satellite to be located geographically by means of triangulation. A series of fixes on the hot source could establish motion and direction of the missile, engineers explained.

GE Horizon Sensing System Classified

Although the GE system designed for Midas is still under security wraps, industry sources believe that the concept of operation is similar to that used in a previous infrared horizon sensing system developed by Barnes Engineering Co., Stamford, Conn.
Two IR horizon sensing units are used in a satellite to maintain stability with the Barnes system. One of the units contains a reference roll axis, and the other a reference pitch axis.
The infrared optics are set to scan conically a narrow field of view. The conical scan is directed so that the scanning "beam" is directed toward the earth during part of each cycle. At the point where the beam crosses from the atmosphere to the earth, a sharp discontinuity in received radiation is sensed by the infrared detector. When the beam crosses from the earth to the atmosphere, another distinct change in received radiation is sensed.
These two points in the scan establish an angle. This angle is bisected and the resultant compared with the built-in reference angle. Differences are II: ed to trigger valving jets or reaction wheels to turn the satellite until it is again properly orier ted. - ■

BULOVA CRYSTAL CONTROLLED VARIABLE FREQUENCY OSCILLATORS

Bulova Crystal Controlled Variable Frequency Oscillators are the advance in electronics most engineers have been seeking.
Why? . . . Because Bulova VCF packages combine small size and high repeatability with automatic frequency control or with a variation of nominal frequency by application of external voltage.

The ranges available extend from 10 kc to 20 mc . Variation at 10 kc is up to 6 cps , at 20 mc up to 12 kc . Resolution on these shifts is infinite, it's dependent on stability and resolution of modulating voltage. only. Drift, after stabilization, can be kept to less than 1 pp 10".

These unique crystal controlled variable frequency oscillators are only one of many recent advances made by Bulova Electronics. For information on these units, or on how Bulova experience in mastering component and system reliability can help your program, write Department A-1231, today.

Bulova

ELECTRONICS DIVISION

THE AMCO MODULAR INSTRUMENT ENCLOSURE SYSTEM

TWO COMPLETELY NEW LINES ADDED IN STEEL AND ALUMINUM TO GIVE 3 COMPLETE MODULAR FRAME LINES IN ONE OVER-ALL SYSTEM

A Amso Custom Linc. Removable multipanels and cowlings based on 19 " multi ments of width. Custom, single-unit appearance for frames mounted in series deally suited for complex console ar rangements. The $19{ }^{1}{ }_{16}{ }^{\circ}$ width of frame saves space in series mounting of frames, cold-rolled steel. Conforms to EIA mounting standards.

- Amco Soml-Cusfom Line. Removabie multi-width cowlings provide a semicustom, single-unit appearance fo frames mounted in series. Extra rugged wide box-type channel frames provid panels of any thickness can be recessed - from a flush-mounted position to any desired depth. Box type channel con truction of 14 gauge cold-rolled steel Conforms to ELA mounting standards.
C Amce Aluminum Line. This system of aluminum box extrusions and cast
corners allows easy assembly of cabinets corners alows easy assembly of cabinets in any size from Corners and extrusions
ock together by hand with built-in lock ing device. All sizes are standard. Ideal and hardened corners of 356 -T6 aluminum as described in Federal Spec. QQ-A-596a. Extrusions of 6061-T6 QQuminum as described in Federal Spec. QQ-A-27a
- Amco Accessories. A full line of Amco integrated accessories such as blowers, drawers, dollies and many more available for A, B and C shown.
Cost sovings. All the above-or any part thereof - may be ordered under one combined discount schedule base determined by order dollar value. Orders received at one time with one delivery date may also be combined. Free presavings in time and installation.
3 week dellvery on all spandard parts. We welcome inspection of our plant and facilities. Send for your free literature now.

AMCO ENGINEERING CO.

7333 W. Ainslle Streot, Chicago 31, Illinois
Booth \#4412 and 4414
CIRCLE 8 ON READER-SERVICE CARD

5 Companies Pool Efforts In New Micromin Program

Microminiaturization, with component densi ties of up to 8 million per cu ft and reliable, off the-shelf components readily available to industr: -that's what five electronics companies are offer ing in a joint program called MICRAM. Thi program will be unveiled at the New York IRI show this month.
MICRAM means Microminiature Individua Component Reliable Assembled Modules.
All of the component parts used in the as. semblies are standard production items. Price; are "realistic," the companies report.
Raytheon Semiconductor Div. supplies the transistors. Pacific Semiconductors makes the diodes, and Aerovox Hi-Q Div. the capacitors. Sylvania Electric Products Lighting Div. supplies the microminiature lamps. Cleveland Metal Specialties assembles the modules.

Modules to be displayed at the companies' booths at the IRE exhibition include a flip-flop, a shift register, a binary divider and a multivibrator. The flip-flop modules have 18 components and occupy less than 0.015 cu in. This packing density can be translated into about 2 million parts per cu ft.

Pea-sized standard modules like these are being made available in a five-company program called MICRAM. Items will be in ready supply at "realistic" prices, the manufacturers say.

84-Bit Memory Plane

For Airhorne Computers

Thin film processes are used by CBS Laboratories to make this miniature memory plane for airborne computers.

Latest of a series of microminiature devices to come out of CBS Laboratories, Danvers, Mass., is a microminiature 84 -bit coincidence memory plane. Using thin-film processing techniques, the memory plane is designed for airborne computers.
In this application, it achieves a 25 -to-1 volume reduction, the company says. It makes possible a 100-to-1 volume reduction over present groundbased random access memories. Several of these memory planes can be grouped together to form a large unit. The unit is being made for a major electronics systems manufacturer.
Another CBS memory unit is a 2,500 -word, $40-$ bit-per-word memory pack. About the size of a slice of bread, the device has a storage capacity in excess of 10,000 bits, CBS reports. These bits can also be stacked in multiple units. CBS has developed a device called the CircuitDek. It consists of a high-temperature ceramic or glass substrate on which highly reliable electronic components are deposited photographically. A number of Circuit-Deks may be combined through an integral interconnecting m thod, thus requiring no hand wiring.

INTRODUCING a new time delay relay from Hi-G

Extensive relay design and electronic packaging experience have combined to make the line of Hi-G Time Delay Relays a product capable of fitting your specific requirements!

Utilizing faultless time delay circuitry with the existing wide selection of all types of its own rotary balanced armature relays, Hi-G can design a time delay prototype to your individual requirements quickly and accurately!
Every quotation is backed by laboratory tests for each application at no extra cost to you.

Specifications:

TIme Delay: $\quad 50$ MS to 3 minutes or more.
Accuracies: 10% and 5% or better.
Contacts: \quad Single to 4 pole, form C, standard; more poles available where required. Contacts may be rated from dry circuit through 10 amperes depending on life and load requirements.
Temperatures: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Vibration: 10 G or 20 G to 2000 CPS.
Shock: 30G or 50G.
There is no relay delay from Hi-G send your time delay requirements for engineering evaluation now!

See Hi-G at the IRE Show, Booth No. 2227.

BRADLEY FIELD, WINDSOR LOCKS, CONN.

PHILCO ANNOUNCES

THE FASTEST HICH-CURRENT SWITEHUYG TRANSISTORS!

MADT* 2N1495.2N1496 2N1204. 2N1494

These Diffused-base Transistors are capable of utilizing the full speed of new magnetic film memory planes

TYPICAL CHARACTERISTICS							
		PT		$\mathrm{V}_{\text {CE }}(S A T)$	$V_{\text {be }}$	$h_{\text {fe }}$	f_{T}
TYPE	CASE	@25면. (Max)	$\begin{gathered} V_{\text {ces }} \\ (\operatorname{Max}) \end{gathered}$	$\begin{aligned} & I_{c}=- \\ & I_{B}=- \end{aligned}$	00 ma Oma	$\begin{gathered} V_{C E}=-I v \\ I_{c}=-200 \mathrm{ma} \end{gathered}$	$\begin{aligned} & V_{C E}=-10 v \\ & U_{E}=25 \mathrm{ma} \end{aligned}$
2N1495	T0.9	250mw	-30v	$0.35 v$	0.60v	60	320 mc
2N1496	T0-31	*0.5w	-30v	0.35v	0.60v	60	320 mc
2N1204	T0.9	250 mw	-20v	$0.35 v$	0.60 v	60	320 mc
2N1494	T0-31	*0.5w	-20v	0.35v	0.60 v	60	320 mc

- $125^{\circ} \mathrm{C}$ caso tomp.

In Dosign Quantifies through
your Phico Industria
Semiconductor Distributo

IMME DIATELY AVAILABLE

LANSDALE DIVISION • LANSDALE, PENNSYLVANIA SEE US AT IRE...BOOTHS 1302-1308

 PHILCO

These new Philco MADTs are the result of a revolu tionary new development of the Precision-Etch process, which gives high switching speed at high currents. They are capable of switching 400 milliamperes of current at 10 mc clock-rate \ldots and are the only transistors available today that permit full utilization of high-speed magnetic film memory planes. The typical f_{T} of 120 mc at 100 ma makes these units particularly suitable for video drivers pulse line drivers and other high-current switching circuits. The ultra high-frequency response at the levels normally encountered in current-switching logic cir cuits, coupled with high dissipation capabilities, makes these units desirable for this class of circuit application. Both the 2N1495 and 2N1204 are available in studded versions for higher power applications. Typical char acteristics are shown in the accompanying table. For complete application data, write Dept. ED-360.

*Res. U. s. Pat. Oथ.

NEWS

Sees Manhattan at Night

Infrared photograph of Manhattan taken at night from 4,000 feet with a Reconoax camera, designed by HRB-Singet Inc. White spots on photo pinpoint in ense heat sources. Detection of ships wakes and sensing of small temperature differences are also possible with the IR equipment.

1960 IRE Convention to Mark Centennial of Signal Corps

The 100th anniversary of the founding of the Army Signal Cgrps will be marked at next week's IRE International Convention by manufacturers of military equipment. They plan to emphasize in their displays the steady development of military electronic equipment.
Products developed for the military will bear stickers at the convention citing the Signal Corps centennial. This is one of several new features of the meeting, which will be held March 21 through 24 in New York City.
Another change has resulted in the addition of the word "international" to the convention title. This is to emphasize that IRE has 22 sections and 6,000 members outside the United States.
This year's show will have more than the usual educational flavor. Many exhibiting companies have announced plans to increase the number of technical personnel who will dispense engineering advice at the booths.
The conference will be in New York,'s Coliseum and at the Waldorf-Astoria Hotel. The 275 papers planned for delivery at both sites will cover developments in all of the IRE's 28 professional groups. The papers will be delivered in 54 sessions. (See program index on p. 68)
About 850 exhibitors will fill four floors of the Coliseum and display an estimated $\$ 15$ million worth of the latest electronics equipment.

Planar-Structure Transistor Developed By Fairchild

A diffused planar-structure transistor, type 2N1613, will be introduced at the IRE show by Fairchild Semiconductor Corp. The device differs from mesa types in that both the collector-to-base and base-to-emitter junctions are embedded in the top surface of the planar structure.
A significant advantage of the planar structure, the company reports, is reduced reverse leakage: $0.0005 \mu \mathrm{I} I_{\text {cbo }}$ typically at 60 v . A typical noise figure of 5 db is said to allow it to be designed into infrared amplifiers, character recogaition preamplifiers, and low-noise video amplifiers. Guaranteed minimum beta of the device is put at 15 at 100μ a.
Fairchild has begun production on a line of ransistors that incorporate the planar structure. Detailed information will be presented in a subiequent issue of ELECTRONIC DESIGN.
new transistors from Sprague*

Also available as special type 2N501A for $100^{\circ} \mathrm{C}$. maximum storage and junction temperatures.

This table tells the story. Sprague Type 2N501 germanium micro-alloy diffused-base transistors are the fastest mass-produced transistors available anywhere! They are unexcelled for high-speed computer applications. The ultra-low rise, storage, and fall time cannot be matched by any other transistor.
Ultra-precise process control in manufacture results in superb and consistent high quality. The basic electrochemical process of fabrication takes the guesswork out of transistor manufacturing. The result is outstanding uniformity of product.
Because of the electrochemical process, Sprague is able to fabricate a graded-base transistor with no intrinsic base region. The Type 2N501 can thus maintain its super high-speed switching characteristics right down to its saturation voltage, providing all the advantages of direct-coupled circuitry with no impairment of switching speeds.
Type 2N501 Transistors are available from Sprague now at extremely reasonable prices. They are transistors you can use today! You need not delay your development work for the future when you design high-speed switching circuits with Type 2N501 Micro-Alloy Diffused-Base Transistors.
Write for complete engineering data sheet to the Technical Literature Section, Sprague Electric Company, 347 Marshall Street, North Adams, Massachusetts.

Sprague micro-alloy, micro-alloy diffused-base, and surface barrier transistors are fully licensed under Philco patents. All Sprague and Philco transistors having the same type numbers are manufactured to the same specifications and are fully interchangeable.

SPRAGUE COMPONENTS:
TRANSISTORS • CAPACITORS • RESISTORS MAGNETIC COMPONENTS • INTERFERENCE FILTERS PULSE NETWORKS - HIGH TEMPERATURE MAGNET WIRE - CERAMIC-BASE PRINTED NETWORKS
the mark of reliability

ミLECTRONIC DESIGN • March 16, 1960

NEW Couch Relay isolates

Contacts from Contamination

Organic material can't contaminate the contacts in the new Couch Type 2M micro-miniature relay. They're hermetically sealed in a separate chamber - and without rosin flux.
Also contributing to reliability is Couch's patented rotary armature, pivoted on two sapphire jewels and virtually immune to present day levels of shock and vibration.
Designs like this, produced within an unusually narrow range of manufacturing tolerances, help explain why Couch relays are being called on to provide reliability in many complex systems.

Write for additional information.
ENGINEERING DATA:

COUCH ORDNANCE, INC.

A Subsidiary of S. H. Couch Company, Inc.
3 Arlinpton St., North Quiuncy 71, Mass. Tel.: (Boston) BLuehills 8.4147 CIRCLE 12 ON READER-SERVICE CARD

NEWS

Gavin Bids Nation Fill Perilous Gap In Basic Research

"This country is not using its innovative potential in the most efficient way today -a concentrated attack on this problem would pay important dividends," said Gen. James M. Gavin in an Electronic Design interview. The general, recently appointed president of Arthur D. Little, Inc., added that the long period necessary before we can realize the pay-off on basic research does not fit the short-term planning in effect in industry.
"This," he said, "suggests that a new method of cooperation between government and industry for the sponsorship and use of basic research is indicated. The first steps in this direction are already apparent in such fields as space and nuclear technologies. But many problems still exist for more effective use of our brainpower. Until we can solve some of these problems, we are handicapped in our competition with monolithic state economies that can concentrate national efforts on centrally chosen objectives."

When asked how large an effort electronics companies should expend on basic research, Gen. Gavin said that only by constant additions to our scientific knowledge can the industry produce new ideas and radically new products.
"Basic research," he continued, "is not necessary to bring out a different combination of currently known devices, but a new device like the crybtron, diode, or maser must be preceded by new knowledge.
"Percentage of sales is not a satisfactory measure of the level of basic research, nor, even, as a rule, of research and development programs. A more useful approach, and one used by some companies today, is to undertake enough basic research to keep new ideas flowing into the development groups to maintain a steady flow of new products. This must

Gen. J. M. Gavin, new president of Arthur D. Little, Inc. believes that a new method of cooperation between government and industry for the sponsorship and use of basic research is needed.
be determined pragmatically, and errors on the high side are probably more desirable than the reverse.
"Without more basic research and the rapid conversion of its results into civilian products, our economy will not be able to grow fast enough to support the demands of this nation's role as leader of the free world."
In commenting on whether higher government expenditures for basic research should be made at the expense of items already in the military budget, Gen. Gavin said that such expenditures are not an alternative to the other activities covered by the military budget. "By its very nature, basic research is looking five to twenty years ahead. Most of the military budget is concemed with shorter-range needs such as the maintenance of adequate forces to deal with threats to our national security in the next three years. The one is not a substitute for the other, they are complementary parts of a total national plan."

Gen Gavin's answers to other questions of interest to the electronic industry are printed below.

In what areas would you say electronic research money is most needed and can be best spent?
"Research money is needed in all areas of electronics to improve efficiency, increase miniaturization, and develop new and better techniques. In tie area of defense needs, electronic research in anti-missile requirements and development of more sophisticated tracking techniques would prove especially useful."
Can the military electronics systems needed in the 1960's be developed within the existing state of the art, or will research "breakthroughs" be needed?
"As far as the needs of the coming decade can be foreseen (and they might change rapidly with the swift pace of technology today), an "economic breakthrough" for more research and development can produce hardware within the present state of the art that will meet these needs."
Do you think electronic equipment is accounting for a dangerously high proportion of total military equipment cost?
"The same question could have been asked during World War I of the internal-combustion engine. When a new technology assumes great importance, as is true of electronics today, the proportion of cost for it will increase in new proportions."
How can designers reduce the costs of military electronic equipment?
"Standardization, better methods of production, increased knowledge from research."
Do we need a new approach to the design of military electronic equipment?
"Industry and government are learning to coordinate simultaneous development of carrier and system to produce a single weapon. Such cooperation has come a long way. Similar developments in the management of R\&D of teams associated with a project from the beginning will increase efficiency."
In your opinion, are the armed forces getting their money's worth in electronics, both in the price they pay for the equipment and the use it is put to?
"Yes, the Government is scrupulously careful in checking into such matters."
Are you in favor of military or civilian control of our space program?
"Civilian."
Would civilian control of our space program assure adequate development of military space hardware?
"Unquestionably, yes."
What military needs could be achieved by satellites within the next five years?
"To name a few: quicker communications, elimin tion of line-of-sight limitations on radar, worldw de surveillance, weather knowledge and control, ard perhaps anti-missile or retaliatory stations.
(continued on following page)
a continuing series on technical topics
of specific interest to engineers
Folio 60-9

REFERENCE

 DATA FILE
capacitor

 characteristic designation

Tantal. and the story is told that Pelops was the son of Tantalus and the grandson of Jupiter. He was slain and served up beforc the gods by his own father. Who wished
to test the onmiscience of the olympians. They were not to test the onniscience of the olympians. They were not
deceived however, and would not touch the cannibal deceived, however, and would not touch the cannibal feast. But Demeter (Ceres), absorbed in grief for the before she discoverd what it was. Jupiter restored Pelops before she discoverd what it was. Jupiter restored Pelops
to life, and replaced his shoulder with one of ivory. whence the ivory shoulder of the sons of Pelops became a proverbial phrase for the distinguishing or distinctive mark of anyone, since all the descendants of Pelops bore this characteristic. - Greek Mythology

The word "Characteristic" can mean many things in the description of capacitors. This article is aimed at removing some of the jargon associated with the term and clarifying its meaning and application to various capacitor types.

An indicator for "characteristic" is found in the nomenclature of many types of capacitors. It does not mean the same "distinguishing or distinctive mark" for all types. This is sometimes a source of confusion for equipment design engineers.

Typical examples of

1. SBA1H04104
product nomenclatures
including a "characteristic" identifier are:
2. CBIINDIOIK
3. SMDA1K 04104 K
4. CE34CIOIE
5. CMISEIOIKO3

Items 1 and 3 are Sangamo nomenclatures for impregnated kraft tissue dielectric capacitors. Item 2 is a MIL type designation for a button style mica capacitor. Item 4 is a mil type designation for an electrolytic capacitor. Item 5 is a MiL type designation for a plastic encased, axial wire Thead mapacitor.
The important information meant to be conveyed by the characteristic letter is shown below for Paper, Electrolytic and Mica capacitors.

PAPER CAPACITORS
In the case of Sangamo products,
this letter tells us:

1. The specific impregnant used in the dielectric. "H" is Sangwax, and " K " is Etherm. Detailed information on these impregnants is set forth in Sangamo Reference Data File-Folio 59-2.
2. High and low ambient test temperatures.
3. Minimum insulation resistance at $25^{\circ} \mathrm{C}$., and at the high ambient test temperature
4. Maximum capacitance change (in per cent of the initial value) from $25^{\circ} \mathrm{C}$. to the low ambient test temperature.
5. Voltage (in per cent of rated) that can be applied to establish accelerated life performance capability.
6. Maximum and minimum allowable service operating temperatures consistent with normal life expectancy.

ELECTROLYTIC CAPACITORS
The identifier letter spells out the working temperature range of the product as maximum and minimum values in degrees Centigrade. The inherent capability to perform is adjusted by:
a. Selection of insulating separators.
b. Formulation and control of the conductive electrolyte.
c. Selected processing techniques.

The performance parameters affected are:
I. At reduced temperature :
a. DC leakage current.
b. Capacitance change (in per cent of the initial room temperature value).
c. Equivalent series resistance d. Impedance.
II. At high temperature:
a. Capacitance change (in per cent of the initial value)
b. Equivalent series resistance.

MICA CAPACITORS The characteristic letter defines the capacitance stability of the unit during one "round trip" excursion from room temperature to minimum and maximum temperatures specified for the capacitor, although it does not specify the operating temperature range. It further defines the maximum temperature coefficient of capacitance. In the case of transmitting types, certain characteristic letters will also be associated with a required fifty per cent derating of radio-frequency current specified for that type.

The design factors affecting the "characteristic" performance of mica capacitore are:
a. The physical configuration (style) of the product. Button style capacitors are most stable in the family of mica dielectric units.
b. The relative nominal capacitance value in the design range. High capacitance values are inherently more stable than low values.
c. The electrode design. Styles using electrodes of deposited metal bonded to the dielectric plates (silvered) are more stable than styles using independent metallic foil electrodes.
d. Selection of mica quality
e. Processing techniques.

It has been the purpose of this article to explore the meaning of the word "characteristic" as it applies to describing capacitor differences. While the term is used in a specific rather than a general sense, it serves its purpose to describe the "Ivory Shoulder" of the capacitor industry.

SANGAMO ELECTRIC COMPANY, Springfield, Illinois

CIRCLE 13 ON READER-SERVICE CARD

NEWS

Is our electronic technology adequate to meet these space needs?
Yes, we have the manpower with sufficient training to solve the problems involved. Realization of the need, courage to make the economic breakthrough, and the creativity to improve social systems for more efficient research management are what we need."

IR Electronic-Scan TV Pictures Produced by Two Methods

TV pictures from infrared images, using electronic rather than mechanical scanning methods, have been produced independently by Philco Corp. and Westinghouse Electric Corp.
The systems, using different approaches, both scan at 30 frames a sec compared with 1 frame a sec using mechanical scanners.

A novel selective signal cancellation principle allows the Philco system, called Filterscan, to operate at room temperatures with conventional sensitive, small-area IR detectors. The tube does not have the memory capability of a vidicon, however.
The phothermionic image converter developed by Westinghouse uses a new IR detector-photoemitter sandwich element, said to be sensitive and fast enough to reproduce moving objects differing from room temperature by about 20 F .

Semiconductor Window Used

Scanning of the infrared image in the Filterscan takes place in a tapered tube with a semiconductor window at one end and any suitable IR-transparent material as a second window at the other end. From this end the image is focused onto a detector.
An electron gun is placed in the tube at an angle to the optical path between the two windows, so that an electron beam can be scanned over the surface of the semiconductor window.

When this electron beam is off, the entire IR image is passed by the window. When the beam is directed at a particular point on the semiconductor, however, it partially cancels the IR image at that point. This causes a decrease in the amplitude of the voltage from the IR detector at this instant.
Scanning of the cancelling spot causes this amplitude decrease to vary with time in proportion to the amount of IR radiation at each point in the scanned image. This varying voltage decrease can be used to modulate the beam of a TV monitor, operating in synchronism with the cancelling spot to reproduce the IR image.
The cancellation takes place in the semiconductor because of the release of free carriers in-

Titramon

 SOLID STATE
Unique Construction Offers Superior Electrical And Mechanical Characteristics

The unexcelled reliability of Vitramon ${ }^{\circledR} \mathrm{Ca}$ pacitors is an inherent characteristic of their fundamental design, composition and manufacture - a unique process which chemically combines fine silver electrodes and dielectric into one self-contained homogeneous monolithic unit, requiring no case or hermetic seal.

The low dielectric loss (less than .0006 at 1 kc) and high resistivity of this dielectric are largely due to the fixation of lead ions in its glass matrix. The high fluxing power of lead oxide firmly binds the chemical constituents of the body, keeping dielectric loss from
elastic factors to a minimum.
The integral chemical fusion of stubby electrodes, dielectric and terminals assure these units a noise level below the threshold of conventional measurement techniques. The part's physical configuration guarantees a selfresonance point well into the UHF band.
Other performance characteristics deriving from this construction include a mean capacity drift of less than $.05 \%$ after cycling from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ when measured at 1 mc per MIL-C-11272A ; capacity change at $200^{\circ} \mathrm{C}$ is less than 4%. Capacitance to 6800 mmf .

micro-miniature CERAMIC CAPACITORS

47-10,000 mmf

200 vdc without derating
$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ operation

Square precision molded cases in only two sizes and a single standard $0.2^{\prime \prime}$ lead spacing for all values simplify circuit design, guarantee uniformity, facilitate handling, give greater mechanical stability. Package density:
432.000 parts per cubic foot @ 1000 mmf.

[^1]

TV picture produced from infrared image of the letter M with Philco's Filterscan system. The image was formed by placing an M-shaped aperture in front of a plate heated to 125 C above ambient. Thirty frames a sec can be electronically scanned with the detector at room temperature in this system.
side the material at the point struck by the electron beam. This changes the conductivity and thus the absorption coefficient at that point, partially cancelling the transmission of the image, according to M. E. Lasser, P. H. Cholet and R. B. Emmons of Philco.
An operating Filterscan tube was built, using beam current of 0.5 ma with $25-\mathrm{kv}$ anode potential to produce the cancelling spot. A $150-$ line TV image was produced, although a standard 525line picture could be used if desired, according to Philco.

New Defector Developed

A new three-layer IR detector was developed for the Westinghouse phothermionic image converter. In operation this element is cooled to about -180 F .

A layer of nickel, less than a millionth of an inch thick, is used as an infrared absorbent surface. The center supporting layer, about a millionth of an inch thick, is made of aluminum oxide. It is produced by chemically dissolving the aluminum away from a suitably treated piece of aluminum foil.

The third surface is a layer of cesium bismuth. Photoemissivity of this surface varies with temperature.

When an IR image is focused on the front surface of the detector, the resulting temperature pattern is transmitted to the photoemissive layer through the thin supporting film. Then this surface is scanned with a beam of light, causing electrons to be emitted in accordance with the temperature pattern on the surface. The emission variation is used to modulate a TV monitor beam in synchronism with the motion of the light beam, according to Dr. Max Garbuny, head of the Westinghouse research team that developed the system.

Up to 5 megohms in a $1 / 2$-watt resistor... and better operating characteristics, too!

Only the WESTON VAMISTOR ${ }^{\circ}$

offers performance like this!

Here, at last, is a precision metal film resistor which offers substantial advantages over all other types-wire wound, deposited film, etc. Look at this list of VAMISTOR capabilities and characteristics

- VAMISTOR HANDLES HIGHER WATTAGES. Up to 8 full watts at 40 C for Model 9849-2.
- VAMISTOR OFFERS HIGHEST RESISTANCE RANGES. For example, 1.5 megohms in $1 / 4$-watt size.. .5 megohms, $1 / 2$-watt
- VAMISTOR HAS OUSTANDING THERMAL CHARACTERISTICS. Runs
cooler . . . resists thermal shock. Standard temperature coefficient cooler... resists thermal shock. Standard temperature coefficient
doesn't exceed $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. -lower than Nichrome wire. Also availdoesn't exceed $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.-lower than Nichrome wire. Also available with maximum of 25 p
over the resistance range.
- VAMISTOR OFFERS UNUSUALLY LONG SHELF LIFE, STABILITY. Exclusive process of fusing element to inside of steatite tube assures long sive process of fusing element to inside of steatite tube
- VAMISTOR IS MORE RELIABLE; HAS GREATER MEAN-TIME-TO-FAILURE.
- VAMISTOR PRODUCES NO CORONA; IS AS NOISE-FREE AS BEST WIRE-WOUND RESISTORS.
- VAMISTOR OFFERS EXCEPTIONAL PERFORMANCE UNDER RADIATION.
- VAMISTOR ACCOMMODATES HIGHER MAXIMUM CONTINUOUS WORK. ING VOLTAGES.
- VAMISTOR IS VIRTUALLY NON-INDUCTIVE. Capacitance characteristics are superior to all other existing resistors.
- VAMISTOR IS SUBJECTED TO STRICTER QUALITY CONTROL THAN ANY OTHER RESISTORS.
- THE VAMISTOR LINE CONFORMS TO MIL-R 10509C CHAR. C. Styles RN-65, RN-70, RN-75 and RN-80.
For full information, contact your local Weston representative . . . or write to Daystrom-W eston Sales Division, Newark 12, N. J. In Canada: Daystrom Ltd., 840 Caledonia Rd., Toronto 19, Ont. Export: Daystrom

WESTON

WORLD LEADER IN MEASUREMENT AND CONTROL
CIRCLE 15 ON READER-SERVICE CARD

NEWS

Accessible Local Centers Needed, Measurements Symposium Hears

The electronics industry needs regional stand ards and measurements laboratories that are open to all companies in the industry-those makin commercial products as well as those producing military equipment. This need was described at a standards and measurements symposium by orie of the leading participants, I. G. Easton, engineering manager, General Radio Co.

In telling other symposium participants that the National Bureau of Standards has too great a load of routine measurements work, Mr. Easton asked whether "the present strong interest in standards is being overdone."
"We must be careful that standards do not become an end result rather than a means to an end," Mr. Easton said. "The present hysteria about traceability to NBS is disturbing . . . The concept that all calibrations be based ultimately on NBS certification is a commendable one, but the means of achieving this result requires scrutiny," he added. "It is clearly the responsibility of a manufacturer of standards to maintain the value of units with which he is concerned-but the end result is not assured by a simple statement regarding date of NBS certification of a particular standard in his possession. Little or nothing is gained by a traceability statement since it is already implicit in the manufacturer's warranty."
Mr. Easton added that "clarification and proper interpretation of traceability requirements is a problem for the immediate future at the commercial and operational level of our national standards program."
At the symposium, which was held at the Arma Div. of American Bosch Arma, Garden City, N.Y., the keynote speaker, Dr. James Thomas, section chief of the National Bureau of Standards reviewed the state of the measurements art and revealed that the bureau has developed a standard capacitor that is expected to lead to an absolute determination of frequency in terms of capacitance, the bureau also expects soon to measure resistance to an accuracy of 1 part per million, Dr. Thomas reported.

The traditional accuracy framework was compared to a transmisison line by W. M. Goodhue, of the Arma standards laboratory's technical stalf. The transmission line in the standards structure terminates at NBS, said Mr. Goodhue, and it is exhibiting attenuation and phase-shift characteristics. Space-age requirements are imposing a transient condition on the transmission line and
ELECTRONIC DESIGN • March 16, 1960

STYLE	WESTON MODEL	WESTON DIMENSIONS	
		LENGTH	diameter
$\text { RN. } 65 .$ $\text { R1. } 92$	9855-2	0.650	0.235
$\begin{aligned} & \text { RN.70, } \\ & \text { RI. } 94 \end{aligned}$	9852	0.866	0.312
$\begin{aligned} & \text { RN. } 75, \\ & \text { R1.96, } \end{aligned}$	9850.2	1.120	0.411
RN-80	9849-2	2.156	0.411

Visif us af the Daystrom Booths IRE Show Now York Colisoum March 21-24

Three participants in standards and measurements symposium current problems. Left to right, I. G. Easton, General Radio, John Cammarata, American Bosch Arms, and Dr. James Thomas, National Bureau of Standards. Representatives from 16 organizations attended the symposium.
threatening the traditional measurements organization. Evidence of change are quasi-accuracy in products and the abandonment of the traditional 10:1 accuracy attenuation occuring between the labs and the production line, Mr. Goodhue said.

Among other opinions expressed by Mr. Easton at the symposium were these:

- The standards situation is well under control at dc for resistance, and at audio frequency for inductance and capacitance. But "as we move up in frequency, the situation deteriorates rapidly, and at the still relatively low frequencies measured by tens of megacycles, we find ourselves talking in terms of parts per thousand or even of parts per hundred rather than parts per million or parts per ten thousand.
- "In the frequency area characterized by coaxial transmission lines, there is a definite need for improved methods of connection. Of the dozen or more different types of coaxial connectors in common use today, none is really suitable for precion measurements.
- "There is a growing recognition of the need for a precise, coaxial connector of the flange type using a tube diameter that is reasonably com patible with widely used connectors. The use of a coaxial connector with a flange, which provides a clearly defined reference plane for measurement purposes is also a valid and practical solution in the vhf range.
- "The status of the standards of frequency and resistance suggest quite obviously the challenge in our field. When all of our electrical s andards have been brought up to the level of these two, we can perhaps say that the problems of tomorrow have been solved-but then only t. mporarily."

Use the Only Voltmeter with the Factual Fifth Figure

WHEN FOUR-DIGIT ACCURACY JUST ISN'T ENOUGH, specify the five-digit NLS V35 - world's most accurate digital voltmeter. Only the V35 gives you the "factual fifth figure" . . . full five-digit resolution of 0.001%. Here is the instrument for your measuring jobs demanding maximum accuracy - automatic missile checkout, readout and printout in data logging and computer systems, critical production inspection. Only the V35 offers you the benefits of "no-needless-nines" logic greater reliability, increased speed, longer parts life. Contact NLS today for the full story.
$V 35$ Specifications: Measures $D C$ voltage from ± 0.0001 to $\pm 999.99 ; D C$ voltage ratio from $\pm 00.001 \%$ to $\pm 99.999 \%$... DC voltage accuracy is $\pm 0.01 \%$ of reading or ± 1 digir... overall accuracy for voltage ratio is $\pm 0.005 \%$ of reading or ± 1 digit. "factual
 connections for AC/DC converter, pre-amplifier and data logging accessories. ... one-package design $51 /{ }^{\prime \prime \prime}$ high for standard
rack mount . . automatic selection and indication of range and polarity . . interchangeable plug-in stepping switch-resistor assemblies sealed in oil $\$ 3,750.00$, complete. A vailable in four-digit model for $\$ 3,150.00$, complete.

Originator of the Digital Voltmeter
non-linear systems, inc. del mar (san diego), calfornia

NEWS

Pure Fluid Amplifier Joins Tubes, Transistors as Basic Element

A new principle of amplification, replacing vacuum tubes and transistors in some applici. tions, has been developed at Diamond Ordnance Fuse Laboratory, Washington.
The basic amplifier is nothing more than a block of metal or hard plastic, with passages for the flow of a fluid. There are no moving parts. Operation is possible in temperatures ranging from near cryogenic to white heat. Shock, vibration, shelf-like, humidity and operating life should be minor problems, the laboratory says.

Operates On Jet-Deflection Principle

The basic amplifier comprises a power jet in. put, corresponding to a tube cathode; output jets, corresponding to plates; and control jets, corresponding to control grids.

The operation is based on the ability to deflect the high-power, fluid stream by directing lowpower control jets at right angles to its flow. Amplification from 10 to 100 has been achieved.
Suitable design of feed-back passages yields bi-stable or tri-stable flip-flop units as well as

Looking for ways to improve infrared or micro wave systems designs? The unique advantages offered by these Alite-Sapphire assemblies may be just what you want!
Up to now, synthetic sapphire window units of this type required difficult, and often unreliable, metallizing methods. We've developed a high temperature non-metallic bonding technique that simplifies design problems, while assuring a high strength, vacuum-tight seal capable of withstanding extreme environmental conditions.
The similarity of the Alite body to sapphire (both are essentially aluminum oxide) offers distinct advantages. Since Alite and sapphire are nearly identical in composition, they have
virtually the same dielectric constant, loss factor, coefficient of expansion, mechanical strength, and other superior characteristics. Excellent design flexibility is achieved with Alite, too. For in addition to the Alite-Sapphire bond, if desired the Alite body can be metallized and brazed to metal components to make hermetic assemblies with integral feed-throughs. Likewise, sapphire-to-metal seals can be provided where required.
Possible applications include infrared domes for missiles, infrared spectrometry, fire detection equipment, microwave windows, ultraviolet devices. We offer our technical assistance on any applications where Alite-Sapphire assemblies may prove of value. Write for details.

Visit ALITE at the IRE Show-Booths 2205-2207

ALITE

DIVISION
U. S. STONEWARE

80× 119
ORRYILLE, OHIO

New York Office 60 East 42nd St.

Pure fluid flip-flop of the momentum-exchange type acts like an Eccles-Jordan Circuit. Power jet (center) is directed up into either of two output paths by the control jets (horizontal). Feed-back paths (curved) reinforce the control jets, lock flow in one of two stable paths.

ELECTRONIC DESIGN • March 16, 1960
o cillators. One flip-flop design, called the mo-mentum-exchange type, is strictly equivalent to a) Eccles-Jordan circuit. A second, or boundary layer type, depends on flow patterns within the p,ssages themselves. A wide variety of control and computing devices are possible.

Frequency Limited to $\mathbf{2 0} \mathbf{k c}$
Frequencies as high as 5 kc have been achieved, using air as the fluid. Use of helium would extend this to about 20 kc .
This frequency limitation bars the device's use in large-scale digital computers, where only data are handled. However, in the many controlcomputer applications, where relatively large masses must be moved, these frequencies are more than adequate. The probable cost in quantity is less than a tenth that of tubes or transistors.
Applications are vast. They include hot-gas servos powered by rocket exhausts; pitometer and altimeter computers (where no transducers would be needed); aerodynamic control-surface servos, where the power supply could be ramair; machine-tool control; and many others.
The three inventing scientists are Dr. R. E. Bowles, B. M. Horton and R. W. Warren.

Boundary-layer flip-flop depends on flow-patterns w thin the passages themselves. Low pressure between Whin the passages themselves. Low is ussed to help def_{l} at the power stream, which constitutes inherent posifi. e feedback.

A real heel might test a Fusite Terminal like this

but he won't make it leak!The adherence between glass and metal in a Fusite Hermetic Terminal is an easily demonstrated fact. There are several theories as to why our exclusive $V-24 \mathrm{M}$ glass actually chemically bonds to the metal components. Cobalt and certain other metallic oxides in the glass oxidize the iron in the metal which is taken into solution. It is believed that through the solution of iron, a gradual decrease of the difference of thermal expansion
 between the glass and metal takes place at the glass-metal
interface. This inter-fusion of the two dissimilar materials gives
Fusite Terminals their ability to withstand great mechanical and thermal shock and still pass Statiflux tests for glass cracks, hydrostatic pressure tests and helium mass spectrometer leak detection.
This fusion is reinforced by a strong compression of the metal ring around the glass made possible by a favorable thermal expansion balance of the glass, pins and housing.
The combination of fusion and compression provides a terminal so rugged that leaker rejection rate of components into which our terminal is fabricated is practically nil, even when roughly handled and subjected to extreme temperature changes.
Samples for your own testing are yours for the asking. Write Dept. C-2.

THE

CORPORATION 6000 FERNVIEW AVE., CINCINNATI 13, OHIO Woodford Mfy. Co., Vorsaillos, Kontucky.
in Europat fusite N. V. Konigswog 16, Almole. Holland
CIRCLE 18 ON READER-SERVICE CARD

NEWS

Army Missile Work Continues Despite Facilities Shift to NASA

Several missile programs will continue to be directed by the Army Ordnance Missile Command despite the shift of some Redstone Arsenal facilities and personnel to the National Aeronautics and Space Administration.
Nike-Zeus, that anti-missile missile, is the major missile project remaining under Army control. Test-firing facilities being built in the Pacific will be used to test the Nike-Zeus against the Jupiter, an Army-developed intermediate range ballistic missile now under Air Force control.

The Army still has responsibility for the Redstone, a short-range, liquid-fuel ballistic missile scheduled to go out of production next year. It will be replaced by the Pershing, a solid fuel missile with similar capabilities, which will be under Army supervision.
Other Army missile systems, mainly tactical and short range types, are:

Missile "A," a new type of projectile now under study.
A weapon system known only as T-273. It is being developed jointly by the Army, the Chemical Corps and the Ordnance Weapons Command.

Redeye, an anti-aircraft missile, in the early development stage.
The Mauler, another anti-aircraft missile.
Two French anti-tank missiles, SS-10 and SS-11.
The Shillelagh anti-tank missile. It is being developed for the Ordnance Tank Automotive Command, and will be used in a vehicle mounted tactical system.
Little John, a surface-to-surface missile. It is scheduled to enter production this year. Other surface-to-surface weapons already in production under Army Supervision are the Corporal, Sergeant, LaCrosse and Honest John.
Three air defense missiles under Army responsibility are now in production. They are the Hawk, Nike Ajax, and Nike Hercules.

Go-Ahead Decision Made on Joint Communications Net for Military

A policy decision to integrate the military's upper-echelon communications system has been taken. So far the Defense Department has decided where it wants to go in organizing its world-wide telecommunications, but it has not mapped out the route for getting there.
Traffic load of the new system apparently

Here's Why

The ORIGINAL

Tantalum Capacitor Is Still The Best.

Over 10 years of laboratory testing and millions of applications in the field prove that Fansteel's patented shoulder and curl design provides the best method of sealing a tantalum electrolytic capacitor.
.. because the shoulder and curl design of the silver case results in a spring action on the seal assembly at all times.
...because this downward pressure and tension remains constant throughout the capacitor's temperature range.
.... because two gaskets-one above, one below the tantalum disk-create an air space, the only effective barrier against capillary action.
... because part of the upper gasket is formed into the curl for a perfect seal between case and gasket unaffected by varying temperatures.
... because all gasket materials are carefully selected and controlled in their parameters so as not to interfere with the curl's spring action.
...because there can be no loosening of the seal due to compression set.

Fansteel tantalum capacitors . . . electrolytic and solid types . . . complete ratings for all temperatures. Write for latest technical bulletins.

Visit Us At Booths 4021-4022 IRE Show

Fansteel Rectifiers

SELENIUM

. . . products of almost 30 years of Fansteel research and development in adapting selenium to rectifiers and perfecting cell designs that are now standards for industry.
Fansteel Selenium Rectifiers offer practically unlimited life with no maintenance. Instantaneous power with negligible leakage. Over 400,000 different stack combinations readily available in almost unlimited power ratings, any standard cell size or circuit.
Fansteel selenium cells are produced in dust-free, conditioned-air surroundings and undergo rigid testing for work. manship, performance and reliability.

22 amp., 35 amp . and 75 amp . types, IN Series, individual or in stack assemblies with bridge, center tap or doubler circuits.
Write for Bulletins
fansteel metallurgical corporation
North Chicago. III. U.S.A.
\square FANSTEEL RELIABILITY
would be only a fraction of total military communications. Only long-distance high-level communications would be involved. The proposed all-Service communications net would get down as far as, but not below, a field army. The great bulk of military communications is handled at lower levels. These would be affected only indirectly, if at all, by the superimposition of the new agency.
Apparently, inter-service politics is still working against the eventual establishment of the new communications agency as an operating entity. The Army at first urged that its Signal Corps be given the huge communications job as a single manager. This met with opposition from both Navy and Air Force. The independent communications agency has the earmarks of being a barely acceptable compromise-individual services will continue to control communications terminals, subject to over-riding priorities of use to be laid down by the new agency.

One goal of the new group will be to avoid duplication of research projects.

300 KW Average Power Delivered By 150-pound VHF Tube

Producing a 5 -meg pulse of vhf power, type A-2346 super-power triode is reported the most powerful electron tube in its frequency range. Under development at RCA's Lancaster, Pa., plant, the tube is one of a family of super-power tubes designed by the Electron Tube Div.

Even more impressive than the multi-meg peak power is the average power output of 300 kw , which the company says, is generated by the 17 -inch high, 14 -inch diameter tube. This figure results from the 0.06 duty cycle at which the 2 millisecond pulse is generated.

Developmental super-power triode generates o $5-\mathrm{meg}$ pulse of vhf power. Rated at 300 kw average, the tube is reported the most powerful in this frequency band.

NEWS

Technical Education Assailed As Deaf to Industry Needs

"Schizophrenic" and "split-level" were am ing the labels pinned on technical education by speakers at the Control System Engineering Elucation Symposium in New York.
Too much to learn, too little time to learn i in and a failure to recognize the specific needs of industry were cited as the main reasons for the current shortage of adequately trained personnel.
Educators complained about the vague boundaries between professional and semi-professional requirements and between technicians and skilled workers. There was much doubt as to what type of education and educational institution would fill the need in each area.

'Over-Promoting' Charged

Some educators accused industry of "over-promoting" technicians and then complaining about a shortage. "A good technician is often promoted to engineer but continues doing laboratory work," the head of one technical institute said. "Some personnel man studies the figures and decides that there's a shortage of technicians because engi. neers are doing lab work."
Speakers included Lloyd Slater, head of the Foundation for Instrument Education and Research; Prof. Henry Summer of Auburn University, and Prof. John G. Truxal of Brooklyn Polytechnic Institute. Over 200 delegates representing education and industry attended.
Industry spokesmen, on the other hand, complained that the technical schools were turning out "TV repairmen, mostly."
As in many such conferences, the most valuable interchange of ideas came during the coffee klatches with day's speakers.
"In view of the rapid growth of technology," Prof. Summers commented, "the only thing we can teach are fundamentals. Equip the student with the capacity to learn the minutae of his industry after graduation."
The symposium was the first in a series on education planned and sponsored by Servo Corp. of America.

Loran-C Found Precise At 1800 Miles for Ships

An experimental Loran-C navigation system has furnished position fixes of "fantastic" accuracy for ships at daytime ranges up to 1800 nautical mi , according to a report to the Office of Naval

ELECTRONIC DESIGN • March 16, 1950
R search. At night the range of accuracy ext t Ided to 2300 mi .

The system is an outgrowth of Loran developed diring World War II and currently used by ships and transoceanic aircraft to determine their positicns.
The principle is the same. Radio pulses are transmitted by strategically situated radio stations known as "master" and "slave" stations. The pulses are synchronized by a timing signal generated at the master station and transmitted to the slaves. With special receiver equipment aboard ships or aircraft, the navigator measures the time lag between the radio signals of three or more stations, giving him an accurate fix.
The major advantage of the new system is its use of low frequency. Conventional Loran operates at about 2 mc . Loran-C transmits at about 100 kc . Low-frequency transmission makes it possible to synchronize much more widely separated master-slave pairs. Low frequency also allows transmission of signals over large land masses, extending service to areas that cannot be covered by conventional Loran.
Jansky \& Bailey, Inc., independent consultants of Washington, studied the Loran-C installations at Coast Guard stations in Massachusetts, North Carolina and Florida and reported the results to the Navy.
Using the North Carolina station as the master and Massachusetts and Florida stations as slaves, Jansky \& Bailey bounced off the ionosphere. At points 900 mi from the most distant of the transmitters, 95 per cent of the fixes were found accurate to within 800 ft of the correct geographical position.

Silicon Strain-Gage Elements Said To Have High Sensitivity

Silicon strain-sensing elements claimed to be 50 times more sensitive than metallic strain wires have been produced by Electro-Optical Systems, Inc. Top element is a vapor-grown silicon whisker with leads attached. Bottom element is a sliver of silicon that has been lapped and etched. The company says the ultimate gauge factor is $\mathbf{1 7 5}$ for the low-impedance elements, shown here with a needle for size comparison. Metallic elcments are said to have a gauge factor less than 5.

SEE... and HEAR...
 THE DIGITAL SYSTEMS THAT SPEAK FOR THEMSELVES!

At New York IRE: In practical application for industrial process control.

From the field, from a proved capability, Cubic's fine precision laboratory instrumentation is applied to the automation of industrial processes and given hitherto unknown dimensions with a "readout" you can hear.

In the field and at IRE,
Cubic Digital Systems speak for themselves ...
DC VOLTMETER: Proved stability of $.003 \%$ and noise rejection as high as 200%
AC CONVERTER: Proved operation to 90 kc , with accuracy exceeding specifications
OHMMETER: Proved shock-safe with controlled open-circuit test voltage
RATIOMETER: Proved $.003 \%$ attenuator accuracy for wide-range precision
SCANNING SYSTEMS. Proved reliability over weeks of automated transistor sampling
PRINTER CONTROL: Proved performance in data recording with every quality printer on the market.
. . And the human-engineered Talking Meter, for a vocal readout in any parameter.

Years-ahead engineering, factory production techniques inspired by pride in the end result, careful quality control and reliability testing . . . all these factors make Cubic's the truly fine instrumentation. . . Digital Systems that speak for themselves.
When you're at New York IRE, stop by Cubic's booth and see the unique Weather Board monitored by a Cubic Digital System to give you the weather story across the nation ... in digital and vocal report.

BOOTH 3235 CIRCLE 21 ON READER-SERVICE CARD

Higher-Temperature Capacitors:

New Dielectric Materials Help Break the Heat Barrier

By Marc F. Warmuth, Staff Engineer, Airborne Accessories Corporation

Special Mylar*, Tefont and mice constructions permit continuous operation up to 600° F

Three new types of special high-temperature motor-starting capacitors, utilizing Mylar, Teflon and mica dielectric respectively, have been developed recently by Airborne. The Mylar and Teflon types are wound of very thin metallized film for greatest possible miniaturization. The mica type is wound of a sandwich of aluminum foil and thin, pure mica ribbon, metallized mica not being procurable. All are encapsulated with thermoplastic polyamide or thermosetting epoxy resins (depending on temperature range) in sealed, colddrawn steel cans with fused glass terminals. This construction provides low inductance units of exceptional mechanical sturdiness and environmental resistance.
As an alternate construction for less demanding applications, encapsulation in epoxy sleeves, with leads brought out through potted ends, is also available.
Mica for highest temperatures
The great advantage of mica as a dielectric is its ability to maintain its physical and electrical characteristics at temperatures up to $1000^{\circ} \mathrm{F}$. All dielectric materials undergo severe reductions in
insulation resistance at high temperatures, but with mica the critical value is reached around $600^{\circ} \mathrm{F}$. Full voltage ratings up to this point are thus permitted. And with the right epoxy resin impregnant, mica capacitors are well able to withstand overtemperatures without damage... if not simultaneously subjected to full rated voltages.
Mica capacitors are three to four times larger than Mylar or Teflon units of comparable capacitance and voltage rating. This is because a greater thickness of dielectric must be used, as well as a separate layer of aluminum foil. Mylar and Teflon for intermediate high temperatures and small size Mylar can be worked continuously up to $300^{\circ} \mathrm{F}$ (derated to $250^{\circ} \mathrm{F}$ for a-c applications) and Teflon up to $400^{\circ} \mathrm{F}$. For applications below these limits, but above the normal $185^{\circ} \mathrm{F}$ limit of more conventional insulating materials, metallized Mylar and Teflon offer high dielectric strength. They make possible wound capacitors of very small size with good voltage ratings and excellent capacitance-to-volume ratios.

A further advantage of metallized Mylar and Teflon capacitors is their self-healing characteristic. The short occurring when the dielectric is ruptured
instantly burns the thin metallic coating back from the edges of the rupture, making further flashover impossible. Yet the amount of metallic coating burned away is so minute that hundreds of such self-healings have little effect on capacitance. Resistance to overvoltages can thus be considered excellent. Resistance to overtemperatures, on the other hand, is not an outstanding characteristic of Mylar or Teflon-a design factor to keep in mind.

Summary

MYLAR: For intermediate high temperaures, high voltage and smallest size. Continuous operation at $300^{\circ} \mathrm{F}$ with ratings up to 1000 WVDC. Capacitance variation with temperature good, but not as good as that of Teflon or mica types.
TEFLON: For intermediate high temperatures and small size. 600 WVDC up to $400^{\circ} \mathrm{F}$ without derating.
MICA: For highest temperatures. Continuous operation. 600 WVDC without derating up to $600^{\circ} \mathrm{F}$. Higher temperatures possible with derating. Larger in size than equivalent Mylar or Teflon capacitors. For further information, request Product Bulletin PS-6A from AIR BORNE ACCESSORIES CORPORATION, Marketing Dept., HILLSIDE 5, N.J.

- DuPont's tm for its polyester film
\dagger DuPont's im tor its tetrafluoroethylene resin

CIRCLE 22 ON READER-SERVICE CARD

NEWS BRIEFS

TUNNEL DIODE SAMPLES for use at v if frequencies are available from the transistor dix sion of Standard Telephones and Cables, Lt Footscray, England. These are believed the fiist sample tunnel diodes available from Europein sources.
. A 900-SAMPLE-PER-SEC commutating switch has been developed by Instrument Development Laboratories, Inc. The high-speed switch, installed in ICBM's that were test-fired as far as $6,300 \mathrm{mi}$, samples temperature and passes the data in serialized form to a telemetering system. The system transmits the signals at 900 samples per sec over a single umbilical cable to ground recording equipment.

A \$4.3-MILLION CONTRACT to extend range and high-altitude capabilities of the Sparrow III missile has been awarded to Raytheon Co. by the Bureau of Naval Weapons.

THE COAST GUARD has awarded Texas Instruments, Inc., a contract for 138 strip chart recorders and related components for use in Loran-C systems.

AN/ANP-130 DOPPLER RADAR navigation sets, spares, support equipment, and engineering support items will be produced by Ryan Aeronautical Co., under a $\$ 5.9$-million contract from the Navy.

THE SOLID-STATE 7080 large-scale business computer recently announced by IBM has a $109-\mu \mathrm{sec}$ rate of data transfer between tape units and main storage, a reading or writing rate of 312,500 bits per sec, and a main storage capacity of 160,000 bits. A basic 7080 system will sell for about $\$ 2.3$ million.

A COST-REDUCTION conference held at Eclipse-Pioneer of Teterboro, N.J., covered the metliuds and techniques that trimmed $\$ 3,166,400$ from the direct cost of instrumenting the supersonic fighter-bomber, the F-105.

A REVOLUTIONARY automobile ignition system being developed by a major electronics company would use microwave energy as the igniting agent. In this system, the ignition coil and condenser, distributor and timing drive, high-voltage wires and spark plugs would be replaced by a microwave pulser, waveguides and foolproof timing pickup. The microwave energy would ignite the combustible mixture in the cylinders of engines equipped with the system.

CIRCIE 23 ON READER-SERVICE CARD *
ELECTRONIC DESIGN • March 16, 1960

C HANGES IN PRICES AVD AVAILABILITY

. SILICON TRANSISTORS of the 2 N10242N1038 series have been reduced in price up to 27 per cent by Sperry Rand Corp. Price reductions include the 2N1025, 2N1028 and 2N1469 (formerly the 2 N 1026 A), which represent the first silicon mil-type pnp transistors offered to the industry.
. LOW-POWER ROTARY SWITCHES are in factory stock at Oak Manufacturing Co. Consisting of 125 types, the stock switches are offered as completely assembled units or as subassemblies. They are available in quantities from 1 to 249 units.

LECTROFILM B TUBULAR CAPACITORS have been increased in price from 21 to 25 per cent by General Electric Co. The increase was made necessary by manufacturing controls and testing standards required for the "high reliability" of the line, according to GE.
. GLASS RODS for fabrication of electron guns have been reduced in price by Mansol Ceramics Co. They are now available in round, square, D-shape and triangular cross-sections. The Mansol rods are ready for jigging and assembly to components of the gun structure upon delivery.
.. DIFFUSED SILICON TRANSISTORS have been reduced in price across the board by Fairchild Semiconductor Corp. Typical of the revised prices are the 2N696 and 2N697 all-purpose npn units, reduced from $\$ 28.50$ to $\$ 22.70$ in 1-99 quantities.
. LOW BORON MAGNESIUM oxide has been reduced in price by International Minerals \& Chemical Corp. It is now available at $\$ 155$ a ton in bulk and $\$ 160$ a ton in bagged carloads, 30 tons minimum. Former prices were $\$ 235$ a ton in bulk and $\$ 240$ in bagged carloads.
. . METALLIZED GLASS RESISTORS (LPI units) have been reduced in price by Corning Glass Works. Lowest unit prices for the resistors have been made available on orders of 10,000 pieces, instead of 25,000 . Price changes on perthousand basis, applicable to 3,000 -ohm LPI in quantities of 10,000 are as follows: LPI-3, was $\$ 58.50$, now is $\$ 53$; LPI-4 was $\$ 61$, now $\$ 54$; LPI- 5 , was $\$ 66$, now $\$ 55$, and LPI- 7 , was $\$ 66$, now $\$ 59$.

Is your company making changes in prices or availability of its products? Send the details to ELECTRONIC DESIGN, 830 Third Ave., New York 22, N.Y.
(C rCLE 23 ON READER-SERVICE CARD
ELf CTRONIC DESIGN • March 16, 1960

mos.t economical, most compact, most efficient cooling fan of its size!

ROTRON MUFFIN FAN

Unlike conventional or phonograph motor assemblies, the MUFFIN FAN boasts a high air performance of 100 CFM free delivery from a basic package only 4-11/16" square and $11 / 2^{\prime \prime}$ deep and weighing just 1.2 pounds.
Power requirement is 105 to 120 VAC. 60 cycles. single phase. Electrical connections made to convenient terminal lugs accepting standard 18 gauge lamp cord. Completely original aero-dynamic design permits operation through a dust filter and tightly packed electronic equipment. Airflow instantly reversible by turning fan end-for-end.

The MUFFIN FAN is a completely integrated cooling unit
consisting of propellor. stator assembly and venturi block. It is also available in combination with a grille assembly and all-purpose mounting clips to form a complete package. Unbelievably thin, the MUFFIN FAN can be installed in sec. onds in cabinet cutout, imposing practically no space requirement within the enclosure.
Cool economically...the MUFFIN FAN can be supplied at a price less than $\$ 8.00$ per unit in quantity. The low cost, high performance, compact size and maintenance-free design provide efficient air cooling previously unobtainable. Write for complete details...

NEWS

An overflow audience turned out to hear Dr. Leo Esaki and other panel members discuss funnel-diode applications. While specific applications were not outlined, the panel agreed that computers and communication equipment would soon be fitted with the Esaki device.
be prevented and amplification achieved. To separate input and output, a circulator may be used, he added

An rf amplifier, with $30-\mathrm{db}$ gain at 200 mc was discussed by E. Miller of RCA. An interesting characteristic of the amplifier, he said, is its decreasing gain as input signal is increased, caused by decreasing negative resistance as rf input is applied to the diode. The noise figure was said to be better than 4 db .

Semiconductor Growth Outlined

At the conference's formal opening, Dr. C. Guy Suits, GE's director of research, referred to the staggering growth of the semiconductor industry. In the last decade, he reported, the U.S. semiconductor market-diodes and transistors; not radios or equipment using these components-has doubled every year. An annual figure of $\$ 500$ million is forecast for 1960.

More than 10,000 scientists are engaged in world efforts to achieve greater solid-state developments, Dr. Suits said. He reported that 66 per cent of world research was done by four coun-tries-Soviet Union, 24 per cent; U.S., 21 per cent; Great Britain, 11 per cent, and Japan, 10 per cent. In the last seven years, solid-state research has increased by a factor of 2.5 , the speaker noted.
Dr. Suits indicated that the recent Soviet an nouncement of polymeric transistors might be an error, since the published technical reports de-
scribing the material did not point to a suitable device. However, he envisioned such possibilities in the near future through increased efforts by or ranic chemists in leading companies.
Finally Dr. Suits mentioned GE's gallium arseriide tunnel diode, recently announced, with oscillation obtainable at $10,000 \mathrm{mc}$.

European Efforts Described

Prof. M. J. O. Strutt of the Swiss Federal Institute of Technology outlined solid-state research in Europe. Since most European countries do not sponsor extensive programs, as is common in the U.S., Professor Strutt said, they cannot hope to achieve the rapid and wide progress reached here. Secrecy among countries, he said, precludes a combined European research program.
As the conference concluded, it was apparent that visitors had been impressed with the quality of the papers, the distribution of fully detailed abstracts in advance of talks, and the well-attended, active discussion sessions.
Copies of the "Digest of Technical Papers," are available at $\$ 5$ a copy from H. G. Sparks, the Moore School of Electrical Engineering, University of Pennsylvania, 200 S. 33d St., Philadelphia 4, Pa.

The Panel Sessions-

A Report to Designers
A group of ELECTRONIC DESIGN editors atrended the key panel sessions at the Solid-State Circuits Conference. Here are their seven reports.

TUNNEL DIODE APPLICATIONS:

Low-Noise Amplifiers, Computers May Use New Esaki Device

Panel members discussing tunnel-diode applications at the solid-state conference became slightly peeved after numerous questions aimed at pinning down exact frequency limits, switching speeds and circuit configurations for the Esaki diode. The experts conceded they had no precise answers at present.
However, in view of the high-speed switching capabilities of the device-speeds of $10^{-12} \mathrm{sec}$ theoretically-most specialists agreed that the derice would find initial widespread use in corlputer equipment. Three-phase pulse-clock systems, hybrid-T arrangements and other configurations are under investigation to achieve unilat ralization, the conference heard.
a Bell Laboratories scientist presented details
El:CTRONIC DESIGN • March 16, 1960

ARNOLD: YOUR H.O. FOR MAGNETIC MATERIALS AT THE IRE SHOW

NEWS

of a $4.5-\mathrm{kmc}$ amplifier using a germanium Esaki diode with a peak current of 1.1 ma and a peak-to-valley ratio of 2.5 . Stable power gain of 25 db was achieved, he said, with a noise figure of 8.4 db , and additional work is expected to reduce the noise figure to a value closer to the theoretical level of 5.5 db . The bandwidth was measured as 20 mc , and the diode capacitance was estimated to be about $2 \mu \mu \mathrm{f}$. The power output, with linear gain, was reported as only $1 \mu \mathrm{w}$, representing a swing of about 3 per cent of the negative resistance region.

magnetic logic

All-Magnetic Logic Challenges Semiconductor Systems

Better core materials were the principal topic at the magnetic logic panel session. The obvious advantages of an all-magnetic logic-no diodes, transistors or other active elements-have made it an industry-wide design goal. In practice, however, magnetic elements of considerable output are needed to drive succeeding logic stages.

Those attending the session were unanimous in expressing their requirements for higher-energy materials.
But, as one delegate noted, "magnetic properties under various conditions are not well-known; we are still in the pot-mixing stage." Since properties often cannot be predicted in advance, delegates reported that much of their time was devoted to trial-and-error work.
Even so, the prevailing attitude was one of general optimism. On a cost and reliability basis, all-magnetic logic was seen competitive with transistorized and diode-core logic systems in lower speed applications. Speed is presently limited to 1 mc , but films and thin-rolled sheets were mentioned as possible entries in the high-speed derby.

Do-lt-Yourself Logic Kit Possible

Designers predicted wide application of allmagnetic logic in special-purpose computers. Modular logic packages would be readily combined for a wide variety of logic functions. Do-ityourself kits of integrated logic packages would permit assembly of special computers directly from system logic diagrams. The time lag between logic design and a working circuit would be sharply reduced.

Bits from the Conference

"Help stamp out klystrons" was proposed by J. B. Angell of Philco as a battle cry for transistor designers trying to boost power and frequency. He thought it in much better taste than the "Help stamp out transistors" line of the early Fifties. Transistors are being stamped out even faster than automobile bodies these days.

Overheard between panel sessions: "Tunnel diodes? Most people can't even design a decent transistor circuit-what are they going to do with this monster?"

Are engineers plumbers? IBM Zurich Laboratories are awash in research on hydraulic computers, conferees heard. Hydraulic memory and logic systems could operate card punches and other low-speed, high-power systems directly. Components are said to be reasonably small, and speeds "considerably in excess of 100 cycles per sec" are hinted at.

Someone must be trying to lure Dr. Esaki away from IBM. Recruiting folders passed out by a major semiconductor company had covers printed in Japanese. The translation was "Opportunity." But no sake was poured at the various hospitality suites.
"Logic designers never did worry much about transistor circuitry," was one comment, "and now they won't have to."
The general optimism of the session was only somewhat dampened when the subject of microminiaturization was raised. With available and foreseeable magnetic materials, the energy to drive complex, self-powered logic systems requires cores of appreciable size. Not only does power output fall off with size, but the fine connecting wires in microminiaturized arrays would reduce available power still further. Nevertheless intelligent design and the inherently simpler circuitry of all-magnetic logic can make size competitive with other systems, it was brought out.

Bell Labs Shows Miniature Register

To illustrate, Bell Laboratories displayed a working model of a 10 -bit, all-core shift register of approximately 1 cu in . Available power permits considerable fan-out, and other integrated logic units are being designed on a similar scale.

For the cost-conscious, news of rolled-sheet panels being developed by RCA at Princeton was particularly welcome: Thin Permalloy sheet
is being applied to a base material, and cores are etched out. Printed wiring is then applied to the cores. Since this method is particularly suited to automatic production, cost could be a small fraction of that possible with wired ferrite cores.
The panel moderator, D. C. Engelbart, described work in progress at the Stanford Research Institute. Much of the pioneering work in all. magnetic logic was performed there and an experimental computer employing MAD (Multiple Aperture Device) magnetic elements is being built under joint Government and commercial sponsorship.

STORAGE TECHNIQUES

Magnetics and Speed Problems Noted
"Magnetism is one of the very few things $\mathrm{Na}-$ ture gives us without charge," the moderator of a solid-state conference panel, J. A. Rajchman of

The Air Force was reported doing tailspins over gallium arsenide tunnel diodes. While still tricky for transistors, it looks to be just the thing for high-temperature tunnel diodes.

What's missing . . . missing . . . missing . . from radar receivers? If it's parametric amplifiers, you'll never know. According to Dana Atchley of Microwave Associates, improvement with paramps was so slight that operators had to be told the device was in the line. High-quality receivers were involved in these tests, but the improvement in input noise from 9 db to $1-1 / 2$ or 3 db , believed possible with parametric amplifiers, is strictly academic.

Tunnel-diode enthusiasts predict a new generation of "real cheap" communications equipment, going to $1,000 \mathrm{mc}$. "With tunnel diodes and printed strip conductors," one said, "we can turn out hf equipment at the same price we're getting for the $100-\mathrm{mc}$ units."

When it comes to atomic radiation, the tunnel diode is said to be a glutton for punishment. Good prospects are seen for nuclear instrumentation amplifier application. Some designers think the Esaki device could be modified to detect radiation.

5左

KC A Princeton, commented. But a lively, sometin es heated discussion that followed showed that the practical application of this gift to computers involved design headaches.
Nevertheless ideas and developments reviewed at the session portrayed magnetics as the storage workhorse of today and the designer's best bet for tomorrow. Optical and electrostatic storage methods were, for the most part, devalued by those attending.
Interest in the well-known but little-applied technique of cross-field magnetization was renewed by the announcement of Burrough's Fluxlox. This device, now in advanced development, uses standard ferrite cores in which cross-field magnetization is said to result in a non-destructive, high-speed memory. Fluxlox developers noted that only at higher speed is the cross-field effect readily apparent and its application feasible. Delegates agreed that much exploratory work and research into new techniques and effects were needed. Certainly cross-field data in many a laboratory are due for a second, closer look.

Ferrite Plate Memories Considered

Ferrite plate memories also came in for a good deal of attention. In such memories, the usual array of cores is replaced by a thin, perforated ferrite sheet. Microsecond switching times and low cost were reported. This technique would seem ideal for miniaturization and automated production. Bell Laboratories and RCA are among those actively developing ferrite sheet units.
High-speed developments attracted much interest and criticism, the latter primarily because of high cost. Many designers, however, said final unit cost should be an incidental consideration in R\&D.
"If you're going to consider money," said one, "you'll never begin anything." This view was generally held by those whose projects were in the early stages of development. It was opposed, quite naturally, by designers whose work was within sight of the production line.

Accent on Speed Questioned

Though switching speeds on the order of millimicroseconds were reported for thin films and even cores, some designers challenged the praclical applications of such devices.
"Sure it's fast, but you "an feed what's left of the core through a sieve," was one doubtful observation.
a more telling point was scored by those who noted that the delay in peripheral equipment and lay necting wires exceeded that of many core armas already in use. Others questioned the capacity possible in a millimicrosecond memory

PUSH BUTTON PANEL controls opera
tions rapidly, even at remote locations.

FLAT VACUUM PLATEN assures positive
hold down of roll or sheet paper up to $12 \%{ }^{\circ}$ width. Plot area, standard $10 \times 15^{\circ}$.

PRINTING FEATURES: Multiple symbol printing head-12 symbols...self contained
ink supply. Pen System-capillary action; splatter-proof
Point joiner available. Point joiner available.

INTERCHANGEABLE MODULES add versatility....interchange with basic control section.

engineered for ease of operation...new
 point plotting or continuous trace

Slimmer, flatter, push-button fast...Librascope's newest, most advanced plotter is the result of per-sonally-conducted field research by Librascope engineers. Compact design permits rack mounting in groups, saves desk space. Many new conveniences have been added to answer your needs.

OPERATING INFORMATION

INPUT SENSITIVITY: 5 millivolts per inch to 50 volts per inch with calibrated push
button scales at $.5, .1,5.10$ and 50 milli. button scales at $.5,1,5,10$ and 50 milli-
volts per inch and. $1,5,5$ and 10 volls volts per inch and. $1, .5,1,5$ and 10 volts per
inch. Vernier controls permit continuous seninch. Vernier controls permit continuous sen-
sitivity adjustment between fixed scales, per.
mitting full scale plotting for any sensitivity mitting full scale plotting for any sensitivity.

POWER: 115 -volt, 60 cycle
-180 watts

- 180 watts

INPUT. X and Y induts isolated from eat
from ground.
INPUT RESISTANCE:
2 megohms nominal on
most scales. 1 megohm
most scales. 1 megohm per
volt on .5 millivolts per inch
volt on .5 millivolts per inch
to. 1 volts per inch scales.
per second.
PLOTTER CALIBRATION ACCURACY:
$.05 \%$ on all scales.
SLEWING SPEED: 20° per second.
For full details - dimensions, applications, list of accessory equipment, call our Sales Engineering Department or send for illustrated brochure on Model 210, XY Plotter.

For information on career opportunities at Librascope, write Glen Seltzer, Employment Manager.

LIBRABCOPE division GENERAL PRECIBION, INC. - BOB Western Ave., Glendale, Californla CIRCLE 26 ON READER-SERVICE CARD

how to pack

the performance of

6 Power Supplies in 6 Square Inches

of panel space

they're doing it with
 REGATRON PROGRAMMABLE POWER SUPPLIES

Panel space at a premium? You'll find a practical solution in the remote-control feature of a Regatron Programmable Power Supply. The power supply need not be installed in the main rack. It can be placed at any convenient location. Run a line between the programming terminals of the power supply and a variable resistor on the panel. Then, for every 1000 ohms, the power supply delivers one volt. (For example, 47,500 ohms of programming resistance sets the output to 47.5 volts.) The programming resistor carries no load current, and draws negligible current from the power supply.

For more information about the features of Regatron Programmable Power Supplies, ask for a copy of Bulletin 765D . . . A New Approach to Practical Control.
Models without the programmable feature also available.

NEWS

whose switching time approached the time r quired for light to travel only 1 ft . One possi) solution to this problem would be the dispers of small, high-speed memories within a lar ${ }^{5}$ e computer.

Discussion also centered on papers read b panel members at the general sessions. Subjec covered included tunnel-diode memories, suld millimicrosecond core memories using multip coincidence read-write and multiple apertur cores, and a fast, non-destructive memory wif two cores per bit developed by the United Kin dom Royal Radar Establishment.

PARAMETRIC APPLICATIONS

Harmonic Generators Held Key to Extension of Solid-State HF Limits

In a conference room shaped like a long wav guide section, the application of solid-state d vices to parametric amplifiers was discussed in spirited, informal way.
The use of varactors in parametric amplifie is saddled with a variety of problems, it becar obvious during the session. Speakers noted th the desire for an all-solid-state microwave par metric amplifier, independent of electron-tu pump sources, had led to experiments with he monic generators.
H. Hsu of General Electric discussed selecti of the best nonlinear device for a frequency m tiplication job. While a first-order nonlinearity preferred for other applications, a higher-ord nonlinearity is more suited for harmonic gene tors, he said. Since oscillators drop off as frequen becomes higher, he went on, the use of a h monic generator is expected to extend the upp frequency limit of solid-state sources.

Solid State T-R Devices Proved Successful

Varactor solid-state T-R tubes were mention as a very promising area of application. Sy devices, it was said, have been used successfu at 900 mc in protecting detectors from as mv pred as 20 kw . Insertion loss of less than 2 db y klystı reported achieved, and even lower figures anticipated. Such devices require a very high sistor for the higher frequencies and are presently II nitros ited to rather short pulses, the panel brought of New

Protection against tremendously large traition mitter power can be achieved, it was said, by deper
iny device, since the device does not absorb the nower but passes it, acting as a short-circuit. Robrt Rider of Bell Laboratories mentioned that varactors had withstood 100 -amp surge current.

Ferrites Found Disappointing

Ferrites were described by A. Berk of Hughes as a general disappointment so far. One type of ferrite parametric amplifier uses reasonably low power, he said, but does not work very well. Another type works very nicely, but requires $1-k w$ pump power. This was essentially the status a year ago. Progress since then has been nil, Mr. Berk said. Several laboratories have abandoned work on these devices, he noted, while several others have cut back their effort drastically.

Paramps Improve Pulse Radar Systems

How effective are parametric amplifiers when inserted in the input of a pulse radar system? Two views were put forward. Two "parametricians" cited cases in which input noise in S-band radars was cut from about 9 db to 3.5 db in one case and to 1.5 db in the other, with a corresponding increase in range of 20 per cent. Dana Atchley of Microwave Associates tagged such an improvement in radar as almost academic. His experience was that operators had to be told that the improvement was achieved before they could detect the difference. In radar, it can only be proved by photographs or careful measurement, he said, adding that this was not the case in radio-astronomy, where every db counts.

HIGH-FREQUENCY AMPLIFICATION AND GENERATING

Rises Predicted In Transistor Power And Frequency

High-frequency, solid-state components now showing promise for the circuit designer were discussed by a panel at the solid-state conference.
Researchers present expected that the powerhandling capability of the "injection triode," or transistor, would be considerably increased by new fabricating techniques and materials. In fact, J. B. Angell of Philco Corp. and the panel moderator as my predicted that transistors would soon be replacing db y klystrons in the $10-\mathrm{kme}, 10-20-\mathrm{mw}$ range.

With the fabrication methods to come, tranhigh sistor frequencies approaching 50 kmc (at a liquid ntly li nitrogen ambient temperature) were anticipated. ught of New advances were also expected in the fabricae tra tion and use of the field-effect transistor (which aid, by depends on the motion of only one type of car-

> 50% size reduction, plus improved characteristics, offered by new Molded Deposited Carbon Resistors.

IRC's Molded Deposited Carbon Resistors are now 50% smaller in size and weight, and improved in virtually every respect. The resistance element is a new extra hard deposited carbon alloy for added precision, stability and reliability. The resistance element is protected by two moisture resistant undercoats, both new. The case is new, heavy-duty, break-resistant. Even the terminating paint bonding cap to carbon film is a new highly-conductive type, a product of IRC research.
In short, IRC miniaturized Precision Film Resistors run cooler, withstand sudden overloads with little permanent change, and exhibit less change under load than her-metically-sealed resistors costing over 3 times as much.

$\begin{gathered} \text { MII } \\ \text { Type } \end{gathered}$	$\begin{aligned} & \text { IRC } \\ & \text { Type } \end{aligned}$	Length	Diom. Nominal	Min.Ohms	$\begin{aligned} & \text { Max. } \\ & \text { Ohmms } \end{aligned}$	$\begin{gathered} \text { Max. } \\ \text { Volts } \\ \text { Continuous } \end{gathered}$	wattage		
							$\begin{gathered} \text { M16 } \\ 70^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 1 \mathrm{RC} \\ & 70^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \hline \text { IRC } \\ 125^{\circ} \mathrm{C} \end{gathered}$
RN60	MDA	. 406	. 130	10	5M	300	1/8	$1 / 4$	1/8
RN65	MDB	. 594	. 203	10	5M	350	$1 / 4$	1/2	$1 / 4$
RN70	MDC	. 719	. 261	5	25M	500	1/2	1	$1 / 2$

IRC Molded Deposited Carbon Resistors are produced in 3 standard sizes: MDA- $1 / 4$ watt, MDB- $1 / 2$ watt, and MDC-1 watt, and in resistances from 10 ohms to 25 megohms. Standard tolerance is $\pm 1 \%$, with tolerances of 0.5% and 2% also available. Write for Bulletin B9-6, International Resistance Co., Dept. 331, 401 N. Broad St., Philadelphia 8, Pa.

Leading supplier to manufacturers of electronic equipment

FEATURES:

- A new low in noise levels - down to $0.007 \mathrm{\mu v}$ providing $0.02 \mu \mathrm{v}$ full scale sensitivity at minimum bandwidth.
- 5 db steps
- Attenuation range of 85 db
- FOUR regular VSWR scales plus one expanded
- All meter scales automatically normalized when switching ranges
- Large $53 / 4^{\prime \prime}$ meter with 1% linearity
- Continuous gain control over 15 db range
- Continuously variable bandwidth control
- Front panel meter monitors bolometer bias current

SPECIFICATIONS:

Frequency: $1,000 \mathrm{cps}$; adjustable over a 2% range.
Sensitivity: $0.02 \mu \mathrm{v}$ at minimum (4 cps) bandwidth. $0.1 \mu \mathrm{v}$ at maximum 140 cps) bandwidth.
Noise Level: 5 db below full scale $(0.007$ $\mu \mathrm{v}$ at minimum bandwidth)

Amplifier Q: 250 at $4 \mathrm{cps} ; 25$ at 40 cps . Bundu'id/h: Continuously variable from 4 to 40 cps .
Calihration: Square Law. Meter reads SWR, db.
Runte: 85 db . Input attenuator provides 70 db in 5 db steps. Gain control provides 15 db adjustable. Accuracy ± 0.1 db per 10 db . Maximum cumulative error of $\pm 0.2 \mathrm{db}$ at 40 cps bandwidth.
Scale Selector: Expanded, Regular, and Bolometer Current. Meter scale always normalized when switching from scale to scale or from expanded to regular.
Meter Scales: SWR: 1-4; SWR: 1.8-6; SWR: 3.2-10; SWR: 6-15; Expanded SWR: 1-1.3; db: 0-10; Expanded db: (0.2.3.

Inpui Selecior: 220,000 ohms; Crystal: Bolometer. Bias provided for high 8.4 ma bolometer or 4.3 ma low current bolometer. Bias adjustable $\pm 15 \%$. A bo'o eter protective circuit permit: anv switching operation or cable connectdisconnect without damage to bolom :ter. Oulpul: Jack for 1500 ohm recorder. I ma full scale deflection.
Inpur Connector: BNC Jack.
Power: $115 / 2.30 \mathrm{v} \pm 10 \%, 50-60$ cps. 40 watts.
Dimensions: Cabinet: 73/4" wide, $101 / 2^{\prime \prime}$ high, $11^{\prime \prime}$ deep.
Weigh:: 14 lbs. net.
See the PRD 277-8
Standing Wave Amplifier at the I.R.E. Show Booths 3602-3604-3606.

standing wave amplifier defies comparison

The new portable PRD 277-B Standing Wave Amplifier is designed to meet the present and fut ire needs of microwave test laboratories. Due to its extremely low inherent noise, $0.007 \mu \mathrm{~V}$, weak signals which once were undetectable by conventional instruments can now be measured. Attenuation in 5 db steps combined with 4 VSWR scaleo and a large meter permit VSWR measurements to be made with maximum resolution and accuracy.
To find out more about the new PRD 277-B Standing Wave Amplifier, contact your local PRD representative or phone, write, or wire:
POLYTECHNIC RESEARCH \& DEVELOPMENT CO., INC.
Factory and General office: 202 Tillary St., Brookityn 1, N. Y., Ulster 2.6800 Western Sales office: 2639 So. La Cienega Bivd., Los Angeles 24 . Calii., UPtonn 0.1940

NEWS

rier); the analog transistor, or spacistor (essentially a field-effect unit); the Read diode (a form o avalanche diode), and the diffusion-delay diode Gallium arsenide and indium antimonide wer named as two materials appearing to have ver interesting and fruitful possibilities. The Esak diode, panel members felt, would eventually op erate at frequencies of up to 100 kmc . However, no one would discuss the feasibility of designing, this device into a practical circuit.

Varactor Amplifier Figures Cited

Concerning linear amplification, it was felt that designs would soon be capable of achieving 30 db of gain at 100 mc . Present gain limits were placed at 20 db at 100 mc and 5 db at 200 mc . The variable capacitor amplifier was said to surpass the transistor amplifier by at least a gain factor of 10 . For low-noise amplification, the variable reactance amplifier was described as best.

Sample figures for currently designed reactance amplifiers were given as: $\underset{2}{ } \mathrm{kmc}$ at $1-3 \mathrm{db}$ noise, 6 kmc at $3-5 \mathrm{db}$ noise and 10 kmc at $5-10 \mathrm{db}$ noise.

Also reported was a harmonic generator circuit furnishing a power level of 5 mw at a frequency of 2.3 kmc . This was a fifth harmonic and had only 4.5 db attenuation. Reports of other harmonic amplifiers noted power levels of 2.4 w at 20 mc with 0.8 db loss, and 1 w at 400 mc with 1.6 db loss.

THIN FILMS FOR MEMORY

Production Problems of Layers Cited

Thin magnetic films, which may one day replace ferrite cores in computer memories, are today posing some rather severe production problems. Chief among these is how to make an array of thin-film spots and be sure that every spot is good.

Conferees at a panel session of the solid-state conference agreed that thin films could provide very fast read-write cycle times-of less than 1 usec-and that they had less power dissipation and were simpler and more compact than ferrite cores. But beyond this, the panelists appeared to "agree to disagree."
Where one advocated that film arrays be made by vapor deposition followed by photoetching, another suggested electroplating followed by photoetching.

Where one proposed an oxygen-free atmosphere during film production, another argued that
(xygen doesn't bother the films at all.
But all agreed that-however they are madethin films pose problems. The chances of prociucing a good thin-film spot on a substrate are ery high, it was said. With very uniform subtrates and films, yields of 90 per cent were reported.
But a 90 per cent yield is not adequate when plate of 2,500 spots per sq in . is to be produced, the panel reported. One bad spot can make the plane useless.

One approach advocated for this problem is to mount two planes back to back. Then, with a 90 per cent yield per plane, chances are excellent that a perfect array will result-that at each position there will be at least one good spot.

MICROELECTRONICS

Reliability Top Concern of Specialist

"Do we have standards of reliability?" asked an observer at a microelectronics session of the solid-state conference. "No," the panel agreed. "We must have a product before we can establish standards."

Perhaps improved system reliability would be best achieved by redundancy, one panel member suggested. The smaller size of microminiature circuits lend themselves to duplication as a "spare" in the event of failure, he noted.
The objectives of microminiaturization were given as reliability, low cost and simpler components. One panelist pointed out that reliability and cost were closely allied.
"We can reduce cost," he said, "by reducing the number of interconnections. Thus we also achieve greater reliability. Simplicity resulting from the solid-circuit approach should result in increased reliability."
Panel members were divided on the best approach to microminiaturization-the circuit assembled of conventional components or the solid circuit. Practical solid circuits, several panel members contended, are still many years away. However, a spokesman for Texas Instruments reported that TI had developed working practical computer circuits for four customers.
Solid-circuit researchers, namely Westinghouse ind Texas Instruments, feel that their best chance of a profitable course is to limit their objectives, he pinel was told. In other words, the companies igree that they cannot extend themselves in every rea. At present they are attacking computer ciruitry, with more complex functional blocks as he next likely step. ■ ■

Now...one microsecond

TMI pioneers again to make commercially available a newly devel oped advanced core memory product. Type LQ memory products provide a complete clear/write and read/restore memory cycle a rates to one megacycle, utilizing a new word-select design tech nique. These products are offered by Telemeter Magnetics in any form desired - from cores to complete memory systems.
Cores for those memory manufacturers who prefer to wire their own arrays. TMI word-select ferrite cores may be ordered now. These high speed cores provide extremely fast switching with low drive current.

Arrays and Stacks You may take advantage of the skill and production efficiency developed at TMI in manufacturing millions of cores. most of which have been assembled into arrays and memory stacks. This know-how is being applied to assembly of the new word-select cores into configurations to meet virtually any high speed computer design need.
Memories A new ultra-speed memory-the Type LQ-is available for commercial delivery in late 1960 . Operating speeds up to 1.0 microsecond random access cycle time are now economical and result from the development of special ferrite cores and advanced driving and sensing circuits. The LQ word-select memory permits application to a wide variety of speed and capacity requirements. TELEMETER MAGNETICS Inc
P. O. Box 329, Culver City, California

Data Equipment Division, 9937 Jefferson Blvd., Culver City, Calif. Components Division, 2245 Pontius Ave., Los Angeles, Calif.

VISIT US
AT THE
IRE SHOW
BOOTH 1900

PIONEERS IN DEVELOPMENT AND MANUFACTURE OF CORE MEMORY PRODUCTS

For complate spocificotions or to dis cuss your problem with a TMI applicalions engineer write or call

DALLONS spells		
-		
=		
	Lowa Life- unconotronnul	JEDEC
	Nomin	TYPES
4		
		600 PIV
	Low tewperaum piv exceos	$\begin{aligned} & \text { UP TO } \\ & 35 \text { AMPS } \end{aligned}$
	insuneo or avitive ouncir.	
	Tenpeartup crcleo --65. ¢o	
7	Youn destion mounires mvite.	
What makes the most reliable silicon rectifier? 1 st - THE PROPER ENGINEERING PHILOSOPHY AND HERITAGE 2nd - 10 YEARS OF SOLID STATE COMPONENT MANUFACTURING WITH COMPE 3rd - 100% ENVIRONMENTAL TESTING FOR ALL PRODUCTION TAKEN TOGETHER, THE RESULT IS A DALLONS SILICON RECTIFIER. BE A DISCRIMINATING CIRCUIT DESIGNER AND EXPERIENCE A NEW DEGREE OF RELIABILITY ON YOUR PROJECT. YOUR DALLONS ENGINEER IS READY TO ASSIST. YOUR MOST RIGID RECTIFICATION REQUIREMENTS ARE INVITED. WRITE TODAY FOR SPECIFICATIONS AND COMPLETE TECHNICAL INFORMATION.		
	ALLONS semicon 	CTORS

DALLONS spells

What makes the most reliable silicon rectifier?
1st - THE PROPER ENGINEERING PHILOSOPHY AND HERITAGE.
2nd - 10 YEARS OF SOLID STATE COMPONENT MANUFACTURING WITH COMPE 3rd - 100% ENVIRONMENTAL

ISA TOGETHER, THE RESULT IS A DALLONS SILICON RECTIFIER. RELIABILITY ON YOUR PROJECT. YOUR DALLONS ENGINEER IS READY TO ASSIST. YOUR MOST RIGID RECTIFICATION REQUIREMENTS ARE INVITED. WRITE TODAY FOR SPECIFICATIONS AND COMPLETE TECHNICAL INFORMATION.

DALLONS sEmiconductors a division of dallons laboratories inc LOS ANGELES 29, CALIF.

CIRCLE 31 ON READER-SERVICE CARD

A
N airborne visual recomaissance system based on a new scanning tube and other improvements reportedly can telemeter photos without losing detail. When fully developed, the Photoscan system is expected to be capable of transmitting to viewers on the ground a $2-1 / 2-$ by-2-1/2-in. aerial photo with a resolution approaching 40 'lines per mm. Transmission time would be less than 3 sec.

Heart of the system is a flying-spot line-scan tube of new design that scans at rates up to 20 kc . Also used is image enhancement in both vertical and horizontal directions, an electron gun built to extremely close tolerances, and a new photomultiplicr tube.
Photoscan is being developed by CBS Laboratorics of Stamford, Conn.

The system operates this way
Movie film exposed by an aerial camera is developed in scconds by a film processor and fed to a temporary storage unit to await scanning and transmission of its image.

The image is scanned by a flying spot focused through a lens that can be oscillated. Scanning can be done in two ways: with the film momentarily stopped and the horizontal and vertical scans provided by the flying spot and moving lens; or with the film moving and the two scans provided by the flying spot and the motion of the film.
Light from the flying spot passes through the film, after being modulated by the film's density, and is picked up by a photomultiplier. The electrical signal from the photomultiplier is fed to a

Line-scan tube on which Photoscan system is based has a phosphor-coated anode that rotates at $1,600 \mathrm{rpm}$ to provide a high-density flying spot for scanning of film. Anode, shown disassembled in foreground, has a motor rotor on its shaft.

Encapsulated line-scan tube is a production version for military environments.
video amplifier and processor and finally goes to a transmitter.
At the receiving station, the process is reversed. The video signal is processed in an amplifier, sync separator and enhancement circuitry. The signal modulates ancther line-scan tube that generates a spot, which exposes film. The film is rapidly processed and sent to a viewer.

Airborne Components Lightweight
CBS reports that the airborne comronents weigh less than 100 lb , including naking camera, film processor and transritting equipment rugged to specifica-
tions. Total power drain is about 100 w . An aircraft's standard wideband telemetering equipment may be used for the transmissions. CBS is still experimenting with equipment and has not developed a prototype ground unit. Receptions are being handled by a special laboratory unit with duplicated circuits and components.

Scanner Has Rotating Anode

The flying-spot, line-scan tube is capable of generating a high-intensity, smalldiameter spot of constant density. The tube has a rotating anode (see illustrations) driven by a motor within the tube envelope. CBS designers adopted a rotating anode to eliminate the phosphor burning that normally accompanies repetitive scanning of a single line.

To reduce irregularities in the phosphor surface, the phosphor is deposited electrically on the surface of the anode, which is a stainless steel drum. The drum is driven by a motor, the rotor of which is on the shaft of the drum and within the tube's glass envelope and vacuum. The rotor is powered by an external field that does not interfere with the normal fields of the tube. The stator is outside the vacuum.
Another advantage of a rotating anode, the designers report, is the fast dissipation of heat generated by the electron beam. Heat is dissipated over the entire drum volume.

TRicmey

UH-9 ULTRA HIGH VACUUM SYSTEM

 for Work in the $10^{-9} \mathbf{~ m m ~ H g}$ RangeA most significant advance in High Vacuum Technology, which brings yesterday's theoretical pressures to you in a practical working tool! The KINNEY UH-9, employing differential Pumping, gives you $1 \times 10^{-9} \mathrm{~mm} \mathrm{Hg}$ or better, enabling you to arrive at determinations that were, heretofore, unattainable. Write for full information today.
in operation AT THE KINNEY BOOTH 4309-11 BOOIN I. R.E. SHOW MARCH 21-24 N.Y. COLISEUM

RINREY vacuum dirision

\qquad
Name.
Company
Address_

City -

Call your Corning distributer for electronic components you need in a hurry. He'll ship them immediately . . . via messenger or taxicab if necessary. Resistors or other reliable Eorniag components can be in your hands within an hour ... or even a half-hour, depending on the distance.
This quick service from complete stocks, plus technical assistance when you need it, makes your local Corning distributor a valuable asset to your operation. Give him a call and watch the results.
If you don't know the name of your nearest Corning distributor, write to: Electronics Distributor Division ERIE RESISTOR CORPORATION Erie, Pennsylvania

GORNING
ELECTRONIC COMPONENTS
Distributed exclusively by
EBLE DISTRIBUTOR DIVISION

Al Corning rediders, like flis wifinished S. type, start mith PYREX brand glass. Wallic oxide bocomes an integul ity of the glass surface by banla at red heat. Result: rugged resistors accurate up to $200^{\circ} \mathrm{C}$ -impervious to moisture.

NEWS

Vertical aperture compensation circuit shows how signals for three scanning lines are processed to provide enhancement of final image. Equalizing signal representing the difference in information carried by adjoining scan lines is added to output. Video processor contains amplifying, compensating and other circuitry.

The drum rotates at $1,600 \mathrm{rpm}$, and its length is scanned by the spot in 0.00005 sec . If necessary, CBS says, the scanning rate can be pushed as high as 100 mc
The tube's design places the spot of light on the same side of the phosphor as the electron gun. This direct generation of light on the phosphor surface makes it possible, according to the company, to operate the tube with such efficiency that halo effect caused by multiple reflections in the tube face is eliminated.

Peak power supply for the tube is $25,000 \mathrm{v}$ at $100 \mu \mathrm{amp}$. Intensity of the electron beam is 100 ramp. Size of the spot on the phosphor is 1 circular mil. This spot eventually reaches the film surface as a spot 0.005 mm in diameter.

Standard and Novel Electronics Used

Standard electronics are used for most of the processing of the video signal that is to be transmitted. But while the signal is being amplified, and compensation and synchronization signals are added, an advanced type of gain control compensates for uneven film exposure across single frames and keeps the average signal level constant.

At the ground base the signal is reconstituted by more sophisticated techniques than can be used in the airborne equipment. Ground equipment applies vertical and horizontal aperture compensation, continuous and completely flexible gamma correction, highlight aperture compensation and crispening to the signal, which may vary in handwidth from 1 to 10 mc .
Circuit designers have developed special verCIRCLE 34 ON READER-SERVICE CARD \rightarrow ELECTRONIC DESIGN • March 16, 1960

tical aperture compensation techniques in Photoscan that provide enhancement for information that lies parallel to the scanning line. They believe the technique is adaptable to interlaced television.
The basic vertical aperture compensating circuit (see block diagram) processes three-line groups of adjacent scan lines. It uses the difference in information carried by two lines to generate an equalizing signal. Special ultrasonic quartz delay lines store individual lines of video information, so they can be compared.
If an individual spot in a line overlaps a dark and a light area, its signal is adjusted to give the spot either the dark or light tone of its adjacent spots, thus providing enhanced edge contrast.

Airborne components for Photoscan are miniaturized and made rugged. Total airborne package weighs less than 100 lb . Unit at left contains a high-gain video amplifier that provides phosphor-decay compensation and power supplies. It also houses a signal-level, controlled high-voltage source for the photomultiplier fube. At right is a completely solid-state synchronizing and scan generator. Silicon-jelly potting is used for insulafion and for suppression of arcing.

Electron Gun and Photomultiplier

The electron gun that generates the scanning beam has specially designed scanning and deflection coils mounted on the gun's glass tube, where they are aligned. The coils must be mounted externally to permit adjustment through the tube's encapsulation.
The photomultiplier tube developed for Photoscan has a dynode structure designed to reduce the transit time spread of the signal pulse. Because of the new structure, transit time spread in the tube is 2 to $3 \mu \mathrm{sec}$. This helps provide a bandwidth on the order of 3 to $5 \times 10^{8} \mathrm{cps}$.
The company, which is developing the system i nder a military contract, has not disclosed which service is sponsoring the project. CBS Laboratories i re known to be working on the Samos recon, aissance satellite program, however. - -

- CIRCLE 34 ON READER-SERVICE CARD

ILECTRONIC DESIGN • March 16, 1960

Higher permeability values now guaranteed for Allegheny Ludlum's Moly Permalloy

Means new, consistent and predictable magnetic core performance

Molybdenum Permalloy nickel-iron strip is now available from Allegheny Ludlum, with higher guaranteed permeability values than former typical values. For the buyer, this new high quality means greater uniformity . . . more consistent and predictable magnetic core performance.

This higher permeability is the result of Allegheny Ludlum's intensive research on nickel-bearing electrical alloys. A similar improvement has been made in AL-4750 strip steel. A-L continues its research on silicon steels,
including Silectron, well-known grain-oriented silicon steel, and other magnetic alloys.

Complete facilities for the fabrication and heat treatment of laminations are a vailable from Allegheny Ludlum. In addition, you can be assured of close gage tolerance, uniformity of gage throughout the coil, and minimum spread of gage across the coil-width.
If you have a problem relating to electrical steels, laminations or magnetic materials, call A-L. Prompt technical assistance will be yours. And write for more in. formation on Moly Permalloy. Allegheny Ludlum Steel Corporation, Oliver Building, Pittsburgh 22, Paw

Address Dept. ED- 27

ALLEGHENY LUDLUM
STEELMAKERS TO THE ELECTRICAL INDUSTRY
Export distribution, Electrical Matorials: AIRCO INTERMATIONAL INC., MYC 17

Export distribution, Leminations: AD. AURIEMA, MYC 4
Export distribution, Lominations: AD. AURIEMA, MYC
CIRCLE 35 ON READER-SERVICE CARD

CIRCLE 36 ON READER-SERVICE CARD

NEWS IN PICTURES

These spun aluminum bulkheads will be used in the $70-\mathrm{in}$. booster tanks to be used in the Saturn missile cluster. The $1,500,000-\mathrm{lb}$ pound thrust booster in the Saturn booster is shown in production. Aluminum Co. of America is supplying aluminum for the tanks.

Guidance of the Navy's Terrier missile is the function of these nine SPG-55 radar installations now in operation at Sperry Gyroscope's plant at MacArthur Field, L.I., N.Y.

Results of static-firing tests for the Saturn booster will be recorded in this instrumentation room at the Army Ballistic Missile Agency, Huntsville, Ala. The room is in the agency's test laboratory blockhouse. The tape and strip-chart recorders that circle the room will be controlled by the master control panel in the center. The Saturn is being developed for the National Aeronautics and Space Administration.

LOX tanks and other fuel tanks are shown under construction at Redstone Arsenal's fabrication and assembly engineering laboratory.

The skin for one of the 70 -in. tanks in the Saturn booster is shown in produc. tion. Aluminum Co. of America is supplying aluminum for the tanks.

The $\mathbf{1 7 5}$-ft-high Saturn static test stand at Redstone Arsenal, Ala. The ower was used previously for Redstone und Jupiter tests.

CIRCLE 37 ON READER-SERVICE CARD $>$

Model pictured is a unique design, developed by
Hydro-Aire Electronics for ground support equipment
which combines three AC /DC Power Suppllies in one package.

Characteristics Model \#50-121
Input: $120 \pm 5 \%$ VAC
Outputs: 28 VDC @ $2.5 \mathrm{amp} ; 120$ VDC @ $250 \mathrm{ma} ;$
250 VDC © 500 ma
Regulation: $\pm \mathbf{0 . 1 \%}$ for combined temperature, time and load variations
Temperature: $-10^{\circ} \mathrm{F}$ to $+125^{\circ} \mathrm{F}$ operating; $-54^{\circ} \mathrm{F}$ to $+165^{\circ} \mathrm{F}$ non-operating
Ripple: 5 millivolts RMS (maximum)
Size: $83 / 4 \times 17 \times 20$ (for $19^{\prime \prime}$ rack mounting)
Weight: approximately 70 lbs .
Write for Catalog Order your copy of our new Electronics catalog. It contains detailed facts, specifications. Send for your copy today - on your letterhead, please.

new DYKOR ${ }^{\circ}$ all-solid state photo-electric reader offers optimum reliability, faster stops and higher reading speeds..

For applications such as digital computers, machine tool control and tape conversion, the fastest, most accurate Tape Reader available is the unique DYKOR 3500. Built by pioneers in data processing technology, the 3500 provides high reliability at high tape speeds.

FEATURES . . .

- STOPS FASTER-Before the next character af 1,000 char./sec
- READS FASTER-1,500 char./sec. (or faster if required).

RELIABILITY ASSURED-By use of silicon photo-diodes, com
plotely transistorized circuitry on eiched circuit boards plotely transisterized eircuitry on etchod circuit boards
simple integrated opticol sysiom with regulated lamp currant

- VERSAPILITY-5, 6, 7 or 8-channel tapes handled intorchongeably. Reads any standard tope material including oiled
yellow Teloype poper. yellow Tolotype poper
sIMPLE MANDLING-In-line load and unload.
CHOIEE OF SINGLE OR DUAL SPEEDS. Spooler unit availoble.

D
DIGIMPROINICEB OOIRIP
103 Albertson Avenue - Albertson, L. I., N. Y. © Ploneer 7.5090

NEWS

An automatic transistor assembly system has been developed by International Business Machines Corp. Units of machine (clockwise from upper right): three turntables for loading collector dots, germanium disks and emitter dots into carbon cylinders, or "boats"; oven for alloying of parts; two turntables for positioning of base tabs and emitter wires; oven for bonding parts; turntable for positioning collector wire; and welding unit.

Miniature Assembly Line Producing 1,800 Computer Transistors

> Per Hr

AMINIATURE automatic assembly line is now turning out 1,800 computer transistors per hr. International Business Machines Corp. has developed the assembly system. Its machine for doing the work has just completed successfully its first test-month of production.
The 500 -sq-ft machine has nine units, joined by

Turntables of IBM's assembly system inject transistor parts into carbon boats for transport on system's conveyor. Photocell and mechanical devices at each turntable signal the machine to reject boats with missing or poorly positioned parts.

ElECTRONIC DESIGN • March 16, 1960

Plug and boat, shown being fitted together, serve to position and transport tiny parts through automatic transistor assembly system. Made of hard carbon, boats and plugs have tolerances as close as 0.0005 in . for precise positioning of transistor parts during alloying, bonding and welding.
conveyers. It automatically assembles six transistor parts. The machine is roughly five times faster than the semi-automatic assembly of transistors now in general use. It has by far the highest production rate of the few existing automatic methods, IBM reports.
Holding tolerances as close as 0.0005 in ., the IBM machine is reported able to produce transistors of greater uniformity than those made by previous methods.
IBM's system is the first automatic means of making the npn alloy junction transistor, a basic component of the company's powerful computers. With modification, the system can produce any type of alloyed transistor. -

1,800 transistors per hr are produced by IBM's system. It is the first automated means of making the npn alloy junction transistor.

ST
 IN
 CUSTOM POWER EQUIPMENT

The Industrial Products Division of ITT offers a complete facility for custom airborne, ground, and ground-support power equipment and systems. Backed by the research, development, manufacturing, and technical experience of the worldwide International Telephone and Telegraph Corporation, we can package power equipment with built-in reliability to your exact requirements. Our complete engineering staff and environmental testing facilities enable us to supply reliable, high-quality units and systems, both quickly and at reasonable cost -

- DC Transformers - Complete Systems - Magnetic Amplifiers - T/R units - High-voltage Supplies - Transistor-regulated
- Partial Systems
- Inverters Supplies

20-Amp Silicon T / R used on Chance.Vought F-8.U and Douglas A4D-2N

Launcher power supply for Lockneed's F-104 Starfighter

Static power unit for his nation's most advanced iet Domber.

Tymical ITT Power Units. More than 50 different models of ITT power equipment are proving themselves in use every day.

THE LATEST IN BTATIC POWER DESION

We have a complete line of fully qualified static power equipment, from 20 to 200 amps, in silicon or selenium. No moving parts. Long life - models up to $\mathbf{1 0 , 0 0 0}$ hours.

Let us knou your requirements... write, wire, or phone.

Industrial Products Division INTERNATIONAL TELEPHONE \& TELEGRAP CORPORATION 15191 Bledsoe St. - San Fernando, Calif. REGIONAL OFFICES: NEW YORK (LODI, N.1), PRescolt 3-1550. OALLAS, FLeetwood 1.4468 CHICAGO. LOng Beach 1-3936; LOS ANGELES (San Fernando). EMpire 7.6161 CHICAGO. LO

PROVEN RELIABLITY-SOLID-STATE POWER INVERTERS, over 260,000 logged operational hours-volitago-regulated, frequoney-coatrolled, for missile, tolemeter, ground support, $135^{\circ} \mathrm{C}$ all-silicon unifs avallable now-

 INTERVEATEA POWEE SUPPIC

Inforelectronies all-silicon thyratron-like gating eloments and eubic-grain toroidal magnotic components convert DC to any desired number of AC or DC oulpuls from 1 to 10,000 watts. Ultra-raliable in operation (over 260,000 logged hours), no moving parts, unharmed by shorting oufput of reversing input polarity. High conversion efficiency ($10 \mathbf{9 2 \%}$, including voltage regulation by Inferelectronics patented rofox high-efficiency magnetic amplifier cirevitry.)
Light weight (to 6 watts/oz.), compact (to 8 wats/cu. in.), low ripple (to 0.01 mv . p-p), oxcollent voltage regulation (to 0.1%), procise, frequency control (to 0.2% with Intorelectronics extreme environment magnetostrictive standardandards.)
Complies with MIL specs. for shock (100G 11 misc.), acceloration (100 G 15 min .), vibration (100 G 5 to 5,000 eps.), tomperafure (10 150 degrees C), RF noise (1-26600).

AC single and polyphase units supply sine wavoform output (to 2% harmonies), will deliver up to ten times rated line current into a short circuit or actuate MIL type magnotic circuif breakers or fuses, will start gyros and notors with starting curront surges up to ten imes normal operating line current.
Now in use in major missilos, powering Nomoter transmitrors, radar beacons, electronic equipment. Single and polyphase units now power airborne and marine missile gyros, synchros, sorvos, magnetic amplifiers.
Intorelectronics-first and most experienced in the solid-state power supply fiold produces ifs own all-silicon solid-state gating elements, high flux density magnetic components, and components, has complete facilities and know how-has designed and delivered more working KVA than any other firm!
For complete engineoring data, write Interelectronics today, or call LUdlow 4-6200 in Now York.

INTERELECTRONICS CORP.
2432 Gr. Coneourse, M. Y. 58, N. Y.
CIRCLE 40 ON READER-SERVICE CARD

Computer Tasks Vary at NBS

Laboratory Facilities Helping to Solve Problems Of Other Government Agencies

IBM 704 is used by NBS 10 tackle problems for other Government agencies. One project at this facility is the use of linear programing techniques in the selection of radio navigation frequencies for the Federal Aviation Agency.

COMPUTER solutions to problems of national interest, ranging from traffic jams to military strategy, are being sought by the National Bureau of Standards' Computation Laboratory.
Requests for assistance from Government agencies have led to the use of the NBS computation facilities for an odd assortment of tasks.

Battlefield strategy is the object of a war game, called Autotag, played on the Bureau's IBM 704. The "game" is designed to evaluate the
performance of anti-armor weapons systems under varying conditions. Two "sides" are formed, each with up to 31 mine fields and artillery pieces. The results of ensuing battles are stored on computer tape for statistical analysis.
Equations to predict traffic patterns are being formulated in another study. These equations will be used by the Bureau of Public Roads for more effective highway design.

Some of the other computer tasks assigned to NBS are illustrated on these pages. - -

Translation of Russian tech nical information into English is one of the continuing projects at NBS. Here Ida Rhodes of the bureau translates a sentence, showing how structure and syntax are included in transiation methods. Clauses and phrases along with puncruation, rather than individual words, are analyzed and interpreted.

Digital techniques to study heartbeat data are being leveloped by NBS. It is hoped that these techniques ill improve procedures used in diagnosing various heart ailments. At left are oscilloscope traces of the k, Y and Z components of a heart vector. Under present nethods, these are analyzed by two-dimensional proections of the space curve generated by the coordihate values, as shown at right. NBS is working on mathine methods for accomplishing this analysis.

Analog-fo-digital converfer to change heartbeat fala into digital form for analysis has been developed by the NBS Data Processing Systems Laboratory. Here Dr. H. L. Mason of the bureau watches Mrs. H. A. Pipperger, a medical technician from Georgetown Hospitcul, select a particular cardiac complex by monitoring oscilloscope signals.
 A COMPLETELY NEW KIND OF SHIFT REGISTER USING MAGNETIC ELEMENTS ONLY...

Here is the first commercially available line of allmagnetic shift registers. Now you can have both nondestructive dynamic and static output in the same register. Now you can have the minimum number of components, the minimum number bit to bit interconnections and any serial/parallel input and output combination. Made with AMP multiaperture ferrite cores and copper wire only (see schematic below),
the AMP Shift Register line has a number of other useful features:
$-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature operating range
-minor aperture output level up to 100 mw at several volts
immune to nuclear radiation
-small size-ideal for miniaturization requirements -ultimate in reliability and simplification

For complete information, including operating data, send for our AMP-MAD* Shift Register brochure. AMP INCORPORATED GENERAL OFFICES: HARRISBURG, PENNSYLVANIA
AMP products and engineering assistance are available through subsidiary companies in: Australia - Canada - England - France - Holland * Italy * Japan - West Germany

DO YOU?

DIFFUSED SILICON MESA TRANSISTORS
 germanium alloy junction transistors SILICON CONTROLLED RECTIFIERS SILICON RECTIFIERS tunnel diodes
Associate yourself with Industro for new opportunities in professionally fulfilling, creative engineering.

PROCESS

ENGINEERS: Minimum Requirements:
Two years semiconductor manufacturing experience.
B.S. in Electrical Engineering or Physics.

The Assignment: Developing high yield techniques for premium quality semiconductors.

APPLICATIONS
ENGINEERS: Minimum Requirements:
Two years of circuit design related to semiconductor product testing and applications.
B.S. in Electrical Engineering.

The Assignment: Liaison with sales organization involving customer application problems.

QUALITY CONTROL
ENGINEERS: Minimum Requirements:
Two years experience in establishing and maintaining the highest standards of quality and inspection methods for all phases of semiconductor manufacturing. Must have thorough knowledge of Military Quality Assurance Specifications.
B.S. in Electrical or Industrial Engineering.

The Assignment: To insure that Industro semiconductors continue to remain at the highest levels of quality in the industry.

OUR ASSOCIATES ENJOY full fringe bene-
fits, including stock options, hospitalization, group insurance . . . plus salaries fully commensurate with experience and ability.

Forward resumes or telephone:
mr. archie mcdougall, Executive Vice President \rightarrow All inguiries will be completely confidential.

INDUSTROTRANSISTOR CORPORATION
35-10 36th Avenue, Long Island City 6, N. Y.
CIRCLE 930 ON CAREER INQUIRY FORM, Page 317

BMEWS Installation Provides Missile Surveillance

Radar System Being Completed Transmits Multimillion Watts, Receives Millimicromicrowatts

High-speed scanning switch for surveillance radar in the Air Force's Ballistic Missile Early Warning System is her being installed at an arctic site. The rotary switch, used to distribute transmitter power in the multimillion-watt rang to radar feedhorns, is inside a housing 21 - ft in diameter and 16 - ft high.

Duplexers to protect receivers in the BMEWS radar subsystem are tested in a resonant ring set up at General Electric Co.'s high power radar laboratory in Syracuse, N. Y.

Antenna reflector towers over workman and bulldozer at Arctic BMEWS site. The reflectors are 165 ft high. The surface consists of 2,240 5-by-7-ft steel screen panels, each bolted to the truss structure. The reflectors are 400 ft wide. Transmitted pulses are directed at these antenna reflectors from 704 feed-horns. Each feedhorn must be set within 1/16-in. tolerance, so that the energy will bounce off the reflectors at the proper angle. To direct the if energy from the transmitter to these reflectors, 21 mi of waveguides are required. Special construction problems had to be solved because of the high winds and low temperatures at the site.

Aiftenna reflector supports, each of 42-in. diam, are used with 1,500-ton reflectors that go with the BMEWS surveillance radar. Each of the reflectors has twenty of these supports. D. S. Kennedy Co. of Cohasset, Mass., p oduced the reflectors to the design requirements of General Electric Co. GE's Heavy Military Electronics $D: p$. received the subcontract for the radar subsystem ir m Radio Corp. of America, prime BMEWS contractor.

HERE'S WHY CENTRICORES ARE PROBABLY THE MOST CONSISTENTLY UNIFORM CORES YOU CAN BUY:

The exceptional uniformity you get in tape-wound Centricores is not easy to come by. It's the result of painstaking precision at every stage of the manufacturing process -and, in fact, before manufacturing. Three principal factors help produce Centricore uniformity:
Careful classification of materials-Raw alloys are first "pedigreed"-meticulously selected, then tested for some 14 parameters, and classified by magnetic properties. We're the largest buyer of nickel alloy magnetic materials in the world...which permits us to choose material or Centricores from an unusually wide distribution of magnetic properties.
Special winding machines-We build our own machines, to die-making tolerances, for winding magnetic alloy tape into cores. We also build our own machines for applying insulating coating to the tape. These machines give us far greater uniformity in dimensions, insulation and ultimate performance of Centricores.

Closely-controlled annealing - Annealing-perhaps the most critical phase of the core-making process-is done under precisely regulated atmospheric and temperature stabilized conditions to hold Centricore magnetic performance to uniformly high levels.
Exceptional uniformity from core to core and lot to lot is further assured with Super Squaremu " 79 ", a new high-performance alloy we've developed. It has outstanding magnetic qualities and is remarkably uniform in squareness, thermal stability and gain. Super Squaremu " 79 " offers an effective solution to problems of variation in magnetic performance.
WRITE FOR BULLETIN C-3

SIZE	MATERIAL	THICKNESS
1	HIGH NICKEL Hymu 80 Squaremu 79 Super Squaremu 79	$.001^{\circ \circ}$
THRU	LOW NICKEL Squaremu 49 Carpenter 49	
GRAIN.ORIENTED SILICON		
Crystaligned		
Microsil		

Special sizes, shapes and thicknesses quoted on request.

Visit our booth-No. 1432-of the IRE Show,
March 21-24, The Coliseum, Now York City.

 (2) ELCALS

Magnetic Metale Company

CIRCLE 43 ON READER-SERVICE CARD

CIRCLE 44 ON READER-SERVICE CARD

NEWS

1.6 Million Pictures a Sec With New 35-Mm Camera

A N ultra-high-speed camera has been developed to take from 480 pictures a sec to 1.6 million at exposures down to $0.05 \mu \mathrm{sec}$. With the system, photos can be taken of wire explosions, arc discharges, ultrasonic flow patterns and other high-speed phenomena.
The camera was originally designed by A. T. Ellis of the California Institute of Technology and is now being made in a commercial version by Benson-Lehner Corp., Santa Monica, Calif.

To achieve its high speeds, the camera has a mirror mounted on the shaft of an air-driven turbine rotating at 100,000 rpm. The mirror reflects images onto stationary $35-\mathrm{mm}$ film, which can be either standard black-and-white or color.
Images are fed into the system by a Kerr-cell shutter activated and timed by a pulsing system. The shutter consists essentially of two polaroid filters, placed

Electronics of camera system provide timing, excitation and power supply. Kerr-cell shutter requires up to 18 kv and 20 amp for maximum generation of its field. Counter unit is optional.

Hitra-high-speed camera set up to take avitation photos has four units: (from left) ghting control, camera control, flash lamp end camera with circular film box. Film lies nside the periphery of the box, with emulsion locing a rotating mirror at the center axis. The nirror rotates at $100,000 \mathrm{rpm}$ to flash images onto film, which does not move.
block light, and a cell filled with pitrobenzene. When an electrical field is applied to the cell, its polarization vector s rotated 90 deg and light passes through the system.
The pulser includes a time-base oscilator that generates a spike-shaped wave with an amplitude of 25 v ; frequency is idjustable between 2 cps and 2 mc . The oscillator signal is fed to a pulse-forming fircuit containing modulator tubes and rapacitors. In this circuit the negative component of the wave is removed, amplitude is raised to 150 v , and the wave is integrated into a square pulse with a ise time of $2 \mu \mathrm{sec}$.
A gating circuit releases the signal into driver, whence it goes to the final output stage and the Kerr-cell shutter.
Light transmission through the cell is anon-linear function of the applied voltge , and minimum effective exposure time Is slightly less than half the rise time of the activating pulse. Benson-Lehner esfinates that a minimum effective exposure time of about $0.02 \mu \mathrm{sec}$ is theoretically possible with its Kerr-cell shutter. At meximum repetition rates, approximately 18 kv at 20 amp are used to generate the Kerr-cell field.
The system uses lighting equipment the provides $400,000,000$ lumens for 3 misec. - -

CAN NON ELECTRIC CO., 3208 Humboldt St, Los Angeles 31, Calif.

CIRCLE 45 ON READER-SERVICE CARD

THE SYMBOL OF A MOST UNUSUAL NEW DEVELOP. MENT BY CANNON

Meet MORPHO-he represents the most versatile plug you ever saw! MORPHO is Cannon Electric Com. pany's unusual new development for meeting many industrial and military requirements inexpensively. Check these featuresl-Crimp-type contacts supplied loose for crimping with a simple hand tool, or in belts for crimp. ing with a semi-automatic tool Easiest installation ever, just snap into insulators, module insulators designed for alternate positioning for maximum adaptability Hermaphrodite design, contacts and insulators can be used in either plug or receptaclel MORPHO plugs have been tested to severe requirements, are available in different configurations with a wide range of contact layouts. Write for Catalog MH-1 today and meet MORPHO for yourself...another reason why you should always consult the first name in plugs - why you should consult Cannon for all your plug requirements.

Meet MORPHO at the IRE show, booths $2628-32$

YOU WRITIE THE SPECS...

Ahove are tho examples of Alpha's diversified range of custom cahling capahilites - Io meet MIL or gour own specifications. There are virtualls ne minimum quantities required. In fact, the complete order for Cahle B called for 10 sections each of 13 -feet 4 -inch length

AN OPTICAL system for tracking objects in outer space is reported able to display moving-target information in one color against a background of stationary information in another color.

Called a celestial moving-target indicator by its developer, ACF Electronics of Paramus, N.J., the system is designed to satisfy "a requirement associated with satellite and missile tracking programs that cannot now be satisfied by any presently existing equipment."

How the Indicator Works

A telescope in the indicator views a sky field and directs the image onto a beam intensifier. The output stage of the intensifier is a P-7 phosphor screen of the type used by most radars and long-persistence scopes. Fixed objects in outer space fluoresce blue and phosphoresce yellow simultaneously on the screen, while moving objects phosphoresce yellow.

The blue-yellow light of fixed objects is separated and used to develop inde-
pendent electrical signals. The signal from the yellow light contains position infor mation on fixed and moving objects, while the signal from the blue light contain essentially only information on fixed ob jects.

A difference circuit compares the blut and yellow signals and yields a signa that describes the position of only the moving objects. This signal is combine with star reference material and displayed on a two-color crt. In practical use, ACF reports, the moving source can be repre sented in red, with the star background in blue.
The company reports that range "thousands of miles" and that the uni can operate from the surface of the earth despite dust and other atmospheric in terference. Best results, however, woul be obtained from an orbiting platform ACF says.
The technique is said to be applicable to the tracking of orbiting satellites, mis siles carrying flash bombs, and to rockets during their boost phase. - .

Indicator for tracking objects in space separates moving from fixed targets by color. System would give best results when operated outside earth's atmosphere.

Amateur Radio Pioneer Retires 'To Play with Amateur Radio'

John L. Reinartz, a pioneer in amateur radio, has retired from the Amateur Service Dept. of an electronics company-so he can have "more time to play with amateur radio."
Mr. Reinartz was lauded upon his retirement by prominent persons in the electronics industry and the military, including Herbert Hoover Jr. and Lt. Gen. Francis H. Griswold, vice commander of the Strategic Air Command.
Mr. Reinartz, who first theorized that short waves are reflected by the Heaviside layer of the atmosphere, holds 28 patents in radio communications with Radio Corp. of America and EitelMcCullough, the corporation from which he is retiring.
In 1908, when he was 14 years old, Mr. Reinartz got interested in radio and built a station from scrap parts.
As radio grew, so did his enthusiasm and abilities. In 1923 he participated in the first twoway contact between points in the United States and Europe. When Richard Byrd attempted his first flight over the North Pole, he chose Mr. Reinartz to handle the expedition's communications.

During World War II Mr. Reinartz was a captain in the Navy and participated in communications and radar developments.

John Reinartz examines a modern transmitter (CIRCLE 47 on reader-service card
ILECTRONIC DESIGN • March 16, 1960

Hughes
 MEMO-SCOPE ${ }^{\circ}$ Oscilloscope

For more precise measurement of transients

The new Hughes MEMO-SCOPE Oscilloscope offers you higher performance, greater dependability and easier operation in all of your transient measurements. Maximum accuracy is assured by new advanced circuitry, new panel layout, new mechanical design and many other added features. The MEMO-SCOPE Oscilloscope eliminates expensive "hit-or-miss" methods of measuring nonrecurring transients. It stores nonrepetitive events for an indefinite period-hours, or days-keeping them available for thorough study until intentionally erased. For full information on how the MEMO-SCOPE Oscilloscope can help solve your measurement problems, write today to: Hughes, Industrial Systems Division, International Airport Station, Los Angeles 45, California.
for export information.
please write: Hughes international, Culver City, California.

1

Hughes MEMO-SCOPE Oscillo. scope: The Hughes MEMO-SCOP Oscilloscope is one of the most versatile measuring and recording devices available to science and industry today. It is a dual service instrument-for storage or conventional oscilloscopy. Features: simplified panel layout and carefuly designed lrigger circuir $\begin{aligned} & \text { Ror ease of oper- }\end{aligned}$ circuit to avoid cluttered display: advanced mechanical desion for better cooling and easier maintenance. for better cooling and easier

Now Storage Tube Burn-Out Protection 1 A circuit designed to protect the delicate storage mesh surface is now incorporated in the Hughes MEMO-SCOPE Oscilloscope. This circuit renders it virtually impossible to burn the storage tube unintentionally as a result of improper operation of the intensity control on the instrument. The new protective circuit in the event the operator suddenly switches from the fastest sweep rate to the slowest without decreasing the intensity (an action which formerly might burn the tube), or in the event of similar operational errors.

Mughoes Multitracer Unit: Designed to operate in conjunction with the MEMO.SCOPE Oscilbles you to store and comHughes Multitracer enables you to store and compare up to 20 stepped-down traces in one display. intervals forming a raster type of display. The all-electronic Multitracer is a combined attenuator, gate amplifier and storage counter designed to be placed between the signal source and the regular MEMO-SCOPE Oscilloscope input.
venience in connecting equipment, ample drawer space, accessibility from both sides, pull-out writing board, full.swivel casters for ease of movement from one area to another.
with ELECTRONICS

HUGHES
-------------------INDUSTRIAL SYSTEMS DIVISION

See the MEMO-SCOPE Oscilloscope in operation at the Hughes exhibit. I.R.E. Show - Booth 1609-1615.

Turn up the thermostat! Cornell-Dubilier's Teflon* film dielectric capacitors can take the heat...up to operating temperatures of $250^{\circ} \mathrm{C}$ without a moment's discomfort. For that matter, C-D's Mylar* and polystyrene are almost equally immune to any environmental, life or performance ordeal to which you may want to put them. C-D film dielectrics also offer the widest selection of electrical ratings, case styles, materials and configura-
tions to satisfy space, weight and cost limitations. And they are immediately available in production quantities. Ask now for C-D engineering assistance and bulletins on all the film dielectrics shown here. Write to CornellDubilier Electric Corporation, South Plainfield, New Jersey. Manufacturers of consistently dependable capacitors, filters and networks for electronics, thermonucleonics, broadcasting and utility use for 50 years.

- Oupont Reg. T.M.

CD,

CORNELL-DUBILIER ELECTRIC CORPORATION AFFILIATED WITH FEDERAL PACIFIC ELECTRIC COMPANY CIRCLE 49 ON READER-SERVICE CARD

Named Fellow for Medical Electronics Work

Roland C. Bostrom, left, has been named a Fellow by the New York Academy of Science for his work in medical electronics. Here Mr. Bostrom, a supervisor in the Department of Medical and Biological Physics of Airborne Instruments Laboratory, discusses operation of All's Cytoanalyzer with Dr. Douglas Sprunt, head of the Tennessee Institute of Pathology. The instrument is used in the detection of cancer.

Hungarian Electronics Industry Concentrates On Home Market

The Hungarian electronic industry is a modern but do-it-yourself affair, according to reports reaching the Solid-State Circuits Conference. Transistors and other components are almost entirely of domestic origin; only high-precision items are imported, it was said.
Hungary's electronic industry was described by Dr. I. P. Valko of the Budapest Technical Institute and Dr. I. Szep of the Hungarian Federal Research Institute, here to survey developments in electronic plants and laboratories.
Hungarian electronic production consists primarily of entertainment devices for the home market. These were described as up-to-date in design and employing transistors and printed circuitry where feasible. A transistorized TV receiver is said to be in development.

Transistor Production

Transistors are mainly germanium alloy junction types, though Mesa and Drift transistors are being turned out in pilot quantities. Germanium is locally produced in Hungary and silicon will be available within the country "soon," it was said. Other semiconductor items listed as produced in Hungary included microwave diodes and crystal rectifiers-again for home consumption. Production figures were not given.
The balance of production consists of measur-
ng instruments, signal generators and equipment for national telephone, broadcasting and other ommunications systems, according to the reports. 1 4,000-me microwave link was described as comleted for TV transmission between Hungary and Czechoslovakia. Tubes of all kinds, including magnetrons, klystrons, traveling-wave and backwardwave units, were said to be needed locally.
Although manufacturing is essentially a state monopoly in Hungary, the visitors asserted that competition from imports kept quality high. As in many Eastern countries, they said, equipment tends to be overdesigned and rugged.
Exports of electronic equipment are small both to East and West, the visitors said, but tubes and instruments have been shipped to Western Europe. Increased trade with western countries would be welcomed, they added.

Research Limited

Hungarian research, like that in much of Europe, was reported limited by available funds. Hence independent basic research is on a small scale.
Dr. Valko and Dr. Szep were quite proud, however, of such limited basic research as did take place in Hungary. A cybernetics laboratory is under construction, they said, and a digital computer for research data processing is being completed. Mathematics has always been a Hungarian forte, the visitors declared, and much of the pioneer work in electroluminescence is of Hungarian origin. Work in these fields is being continued on a relatively large scale.
The visitors hoped that their tour of the U.S. would encourage American scientists to "come and see for themselves the work that we are doing."

Try This One, Computer Designers . . .

Air Force pilots, alarmed at growing missile stockpiles, can take solace in this thought of Mundy I. Peale, Republic Aviation Corp. president:

Until someone builds, for $\$ 100$ or less with unskilled labor, a computer no larger than a grapefruit, requiring only a tenth of a volt of electricity, yet capable of digesting and transmitting incoming data in a fraction of a second and storing $\mathbf{1 0 , 0 0 0}$ times as much data as today's largest computers, the pilots have nothing to worry about.

This is the competition offered to flight control designers by the human brain, according to Mr. Peale, whose company recently completed work on the all-weather F-105D near-automatic fighter-bomber.

He was addressing an American Legion Committee studying the future of manned aircraft.

ELECTRONIC DESIGN • March 16, 1960

Eliminate all connector soldering operations with Continental Connector's new, improved removable contact with crimp terminations. Extra wide, threetine spring clutch on pin and socket provides maximum holding area between contact and molded block. Contacts are supplied separately and are wired independently. This permits mounting of plug and socket connector units at any convenient time without waiting for completion of wiring operation.

Wire crimping is fast and easy with hand or power crimping tools readily available for small or quantity production. Contacts are quickly removed and replaced with a simple, low cost hand tool.

These removable contacts are designed for use with Continental Series 25 Miniature Rectangular Connectors in sizes of $14,26,34,50,75$ and 104 contacts. Both socket and pin contacts are made of phosphor bronze with gold plate over silver plate. Terminations accommodate any \#16 to \#22 AWG wire. Removable contact connectors are interchangeable with existing fixed contact types.

For complete technical data bulletin on Continental Removable Contact Connectors, write to Electronics Division, DeJUR-AMSCO CORPORATION, 45-01 Northern Boulevard, Long Island City 1, N. Y. (Exclusive Sales Agent.)

> Closed Entry Cartridge For Miniature Rectangular Connectors

Series 25 plug and socket connector with removable contacts and patented polarizing screwlocks. Plug is illustrated with side opening aluminum hood.

MANUFACTURED BY
CONTINENTAL CONNECTOR CORPORATION, AMERICA'S FASTEST GROWING LINE OF PRECISION CONNECTORS

SEE US AT THE IRE SHOW... BOOTHS 2307-2309

NEWS

Grid Design Improves Solar Cell Efficiency

By redesigning its solar cell to operate as three smaller cells in parallel, Hoffman Electronics Corp. of Los Angeles says it has increased cel efficiency "by a factor of 1.15 ." Former efficiencies were on the order of 10 per cent for good produc tion units, according to Martin Wolf, manager o the company's solar section.
In this type of energy converter, where maxi mum theoretical efficiency is only about 22.6 per cent, any small increase is proportionately great.
To achieve up to a 15 -per-cent increase in efficiency, Mr. Wolf made cells that measure 1×2 cm . Each has a three-wire grid of soft-soldercovered nickel plate. Since the current flows as a sheet on the surface of the cell, the grid lowers the high resistance of the p-layer. The three grids effectively provide several small cells in parallel.
"The calculated optimum," says Mr. Wolf, "would be five thinner lines. For practical reasons, the design uses only three."

He said the grid design had been attempted before, but there were so many other problems the cells never showed enough improvement. "Now we have better solar cells," he added, "and the improvement is worthwhile."
In the manufacture of solar cells a compromise must be struck between the thickness of the player, the amount of doping of the p-layer and the

Martin Wolf of Hoffman Electronics diagrams the operation of a solar-cell equivalent circuit. New design effectively decreases $R_{\text {a }}$, the series resistance of the cell.

Gridded solar cell is reported up to 15 per cent more efficient than former cells. Grid makes several small cells in parallel.
collector efficiency. In Hoffman's solar cells the thickness of the p-layer is about 2 microns. This is within the diffusion length from the surface necessary to collect all carriers.
Heavy doping is needed to decrease the resistance of so thin a layer. With the grid technique, the p-layer thickness can be reduced even more, and the total resistance is still kept low (two to three times lower, in the laboratory). Collector efficiency is improved.
Still looked for: breakthroughs to rid silicon of unwanted impurities, like gold.

Radar Views Atlas Launch

This composite photograph shows what the tracking radar used with the General Electric radio-command gsidance system for the Atlas missile views during the iritial stages of a launch.

1. Now you can get Stackpole Coldite $70+$ Resistors IMMEDIATELY through 28 strategically located distributors - at favorable prices for quantities up to 1,000 of a value! This makes an ideal set-up for obtaining resistors for small runs, production emergencies, military prototypes and "hurry-up" engineering projects. And it saves you money in their procurement!
2. No other resistors can match Coldite 70+ for production line efficiency - because they're far and away the easiest resistors to solder by any method. This saves your company money on their use!
Coldite $70+$ Resistors are the latest develop. ment of a firm which, since the early days of radio, has been one of the largest, most depend-
able resistor suppliers. Laid end to end, the resistors Stackpole has produced would extend around the world so many times you'd get dizzy counting them!

Coldite 70+ Resistors look good-and they're every bit as good as they look. They're unmatched for load life and moisture resistance. What's more, performance far exceeds MIL-R-11 requirements. And now, for the first time in resistor procurement history, you can get such resistors in a complete line of RC-42 (2-watt); RC-32 (1-watt) and RC-20 ($1 / 2$-watt) styles FROM STOCK from leading distributors!

FOR ECOMOMY AMD CONVEMIEMCE on your smaller lof purchases, write, wire or call for name of nearest Coldite $70+$ distributor with complete stocks of all 3 sizes, all 269 standard values, and all 3 standard tolerances.

Electronic Components Division
STACKPOLE CARBON COMPANY
St. Marys, Pa.

CIRCIE 52 ON READER-SERVICE CARD

TRAPPED BY A GRIP THAT WON'T LET GO!

See how Tinnerman "pinch-grips" hold front-mounting attachments; no special equipment needed

Typical of Tinnerman new approaches to old problems are "pinch-grip" Speed Clipspermitting front-of-panel applications in a second's time. Speed Cuips are simply inserted into mounting holes and a plier's pinch gives permanent retention.
Speed Clips can increase production rates, eliminate rejects, cut assembly costs as much as 50%. Many different features may be incorporated in the Speed Cuip design to fasten cables, wire harness, rubber feet, mouldings, and for scores of other assemblies.
You may have a fastening problem that can be solved-or a product which can be improved
-by this Speed Clip principle. Your Tinnerman specialist (see the Yellow Pages) can furnish samples and help you in many ways. Or write:
TINNERMAN PRODUCTS, INC. Dopt. 12 . P. O. Box 6688 - Cleveland 1, Ohlo

fastest thing in fasteningse

NEWS

Electrically Exploded Wires Studied as New Energy Source

Rockets theoretically could be propelled by exploding wires electrically, a group of Califori ia engineers has found.
The exploding wire conceivably could be used also as sources of high-intensity light (as fo searchlights) and as generators of hypervelocity particles for use in impact research.
The engineers, of Electro-Optical Systems, 170 North Daisy Ave., Pasadena, exploded the wires by injecting several thousand amperes into them The wires vaporized in 50 to $100 \mathrm{~m} \mu \mathrm{sec}$, their tem peratures exceeding $100,000 \mathrm{C}$. The pressures that developed measured in megabars.
The impulses obtained could provide a space vehicle with two to ten times the specific im pulses presently produced by chemical means.
The hypothetical propulsion system also offers a better thrust-to-power-consumption ratio than many proposed electrical systems, such as one using ions.
However, Electro-Optical scientists say, the problems in producing a practical exploding wire or exploding film system appear formidable.
Less formidable and more practical, they say, is using the technique to produce hypervelocitie in the laboratory for high-speed impact studies. Dense vapors, which have impact characteristics like those of solids, could be accelerated by ex ploding wires to 20 to 30 kilometers per sec. These

A charged aluminum wire, 1 mil diam by $1 / 4-\mathrm{in}$. long, as it explodes in Electro-Optical Systems laboratory. Camera has stopped action at 3, 8, 32 and 45 musec after the switching on of current.

velocities are higher than those presently attainable in the laboratory.
The high currents required to vaporize the wires were obtained by suddenly discharging a cilpacitor. The capacitor, of 0.002 to $0.02 \mu \mathrm{f}$, had been charged to 10 to 20 kv . The wires were 1 nil diam by $1 / 4-\mathrm{in}$. long. Hence the circuit inductance was small (from 0.03 to $0.1 \mu \mathrm{~h}$), and the rapid discharge of the capacitor was facilitated.
The switching required to produce the rapid discharge was obtained by using a hydrogen thyratron to drive a trigatron, a triggered air spark gap.

Experiments were performed with wires made of aluminum, iron, gold, copper, silver, nickel, tungsten, molybdenum, tin, titanium, zinc and cadmium. Specific impulses of 1000 sec were obtained with aluminum, and it is likely that the range will be extended to 5000 sec .

Missile Test Chamber Shielded From All Electrical Interference

This 100 - ft -high, completely shielded missile test station in Denver is protected against inferference from 60 cps to $10,000 \mathrm{mc}$. Shielding, Inc., of Riverton, N. J., which built the facility for Martin, reports that all electrical cevices entering the 40 - ft -square chamber are comfletely filtered.

conductive plastic precision potentiometer

INFINTE RESOLUTION

 LOWGEST LOIFE EXTREMELY HIGH RELIABILTYNow in a full range of sizes! the ACEMHO - Ace Elactronics Associatas, ise, suparler

Bolse is vital - the ACEAMII will prove to lee the answer - mhitever your dive remiromants! Tho ACEwHO - dovalopod by Ace Electronics Associatos, Mas, sparibists peead in iowest nolse and loncost life eheracteristics.
Lifo guerantee: 10 million eycles.
Lifo oxpectancy: Tosts indicato a 50 million cycio llfo with moise and residences change romatining within useful limits. No sudde failuro due to homegmanes etmductive Plastic aloment.
$1.5 / 16^{\prime \prime}$ size condensod spocifications: Noiso: loss than 25 ohmens at 1 K , loss than 50 olns at 100 K . Powor rathy: 2 W at $85^{\circ} \mathrm{C}, 2 \mathrm{~K}$ and up. 3 W at $5^{\circ} \mathrm{C}$, bolow 2 K . operating tomperature range: - $55 \circ \mathrm{C}$ so $125^{\circ} \mathrm{C}$. Resolution: essentinly imflite enso. Torque: 0.1 in .02 ruming and starting. Intependent fimoarly: dom to 0.1%.
 specs: completoly shock, viluration, humidity, molstime and aecoloration reslstant. in a sorlos of roilrtance rames frem 100 ohms to 1 mezolim.
Full ofiliferlige specifications upen request. Call, tolegraph of wrilo with your ongimoorin mamplo repuirements. Prompt delivery of prototypes.
See the full range of ACEMHO sizes at IRE - Booth 1811-1818
-Rer. rm. Patonta ponding

CIRCLE 54 ON READER-SERVICE CARD
ELECTRONIC DESIGN • March 16, 1960

$62 \cdot 121$ •

62-125

32-101

NEWS

15.6 Million Radios Made in '59,

Greatest U.S. Output Since ' 48

Production of radio receivers in the U.S. last year was the highest since 1948, the Electronics Industries Assoc. reports. But retail sales of se s were only slightly above those of 1958.

More than 15.6 million radios were manufastured in 1959, against 12.5 million in 1958. Retailers, however, sold less than 8.9 million sets, compared with about 8.6 million the previous year.
Of more than 6.3 million TV sets produced last year, 4.9 million TV receivers were produced and 5.1 million sold to consumers.

Phonograph sales at retail last year reached nearly 4.4 million units, of which more than 2.7 million were stereo. Factories sold more than 4.3 million phonographs, including 3 million stereo units.
EIA figures show that factory sales of receiving tubes last year totaled nearly $\$ 27$ million more than in 1958. Revenue from sales of TV picture tubes increased by more than $\$ 20$ million.

The EIA foials:

Production		
	1959	1958
TV	6,349,380	4,920,428
Total Radios	15,622,357	12,577,243
Auto Radios	5,555,155	3,715,362
Units Sold at Retail		
19591958		
TV	5,748,676	5,140,082
Radios	8,897,451	8,631,344
Monaural Phonographs	1,653,137	Not Available
Stereo		
Phonographs	2,744,720	Not Available
Units Sold by Factories		
19591958		
Phonographs		
	1,267,781	2,867,606
Stereo		
TV Picłure Tubes		
	9,522,546	8,252,480
Receiving		
Tubes	432,936,000	397,366,000

High-Temperature Capacitor Made With Thin-Film Dielectric

A miniature, high-temperature capacitor using a thin-film dielectric of electrically deposited plastic has been developed for low-voltage applications.

Called the "glow discharge film" capacitor, the
ELECTRONIC DESIGN • March 16, 1960

14
"Glow discharge film" capacitor uses micron-thin dielectric film for 1 uf at 25 v . Operation at 200 C is claimed.
device is 75 per cent smaller than foil-paper units and is said to operate at temperatures up to 200 C . As such, it should find ready use in transistor circuits.
The capacitor was developed by the Signal Corps Laboratory, Ft. Monmouth, N.J., and Radiation Research Corp. of New York City.
Micron-thin films of Teflon, Mylar or polystyrene are deposited and polymerized on an aluminized surface by a glow-discharge current. The aluminized surface is supported by a thin plastic substrate. Teflon films and substrates are employed for 200 C application; other materials permit somewhat lower operating temperatures.
Capacitances of up to $15 \mu \mathrm{f}$ at 100 v are attainable. At still higher voltages, the dielectric thickness necessary is available with conventional plastic tapes and does not warrant the new process.
Limited production of these capacitors should begin later this year. The price is expected to be competitive with conventional units.

English Prof and Computer Turn Out Index to Poetry

A Cornell University English professor has used a computer to analyze the vocabulary of Matthew Arnold, the poet.
The professor, Stephen Maxfield Parrish, used an IBM 704 Data Processing System to compile a 965-page volume, "A Concordance to the Poems of Matthew Arnold."

The concordance lists alphabetically the 10,097 principal words in Arnold's vocabulary and indicates where in his works they may be found. An appendix lists the words in the order of their frequency and shows the frequency of each word.
Professor Parrish, his three colleagues and two tr chnicians supplied by IBM saw printed copies o: the book 197 hours after beginning their work. Cards for the computer were punched in 149 h vurs. The computer operated for 38 hours, and 1) hours were required for the printing.

"FRIGID MIDGET" for electronic systems

Borg-Warner Corporation
EXPORT SALES: Borg-Warner International Corp., 36 South Wabash Avenue, Chicago 3, Illinois CIRCLE 56 ON READER-SERVICE CARD

5. Textolite

COPPER CLAD LAMINATES
Engineered cleanliness insures surface reliability for use in computer and military printed circuitry

G-E Textolite Copper-Clad Laminates are designed to meet or surpass stringent computer and military requirements. To do this, and assure superior performance with maximum circuit reliability and minimum rejects, engineered cleanliness is maintained in the entire production process. All G-E Textolite Copper-Clad Laminates are produced in the sterile atmosphere of the room pictured at left. Washed, filtered, conditioned air eliminates dust and dirt. Special cleaning techniques for copper and press pans assure a smooth continuous surface. Pits, dents, pinholes and scratches are virtually eliminated. And the G-E engineered cleaning process just before inspection completes the job.
Try these outstanding General Electric Textolite grades:
\#11574-NEMA FR3-Self extinguishing epoxy paper
\#11571-NEMA XXXPC-Highest IR phenolic paper
\#11559-NEMA G-11 - Self extinguishing epoxy glass
\#11558-NEMA G-10-Best machining epoxy glass
Write for samples to: Laminated Products Department, Section 60-4 General Electric Company, Coshocton, Ohio.

COSHOCTON, OHIO

NEWS

Topside Study of Ionosphere

Planned by U.S. and Canada

Radio soundings of the ionosphere from above, using a transmitting satellite sweeping its sounding frequencies through a range from 2 to 15 mc , are planned as a joint Canadian-United States experiment in 1961.
Information on ionization, densities and trans mitting characteristics as a function of frequency up to $700-\mathrm{mi}$ altitudes is expected from the experiment. The topside sounding satellite, to be launched in an elliptical polar orbit, will also gather data from geographical areas not covered by present ground-sounding stations. Of particular interest will be data from the auroral zones, which cause special communications problems at high latitudes.

Previous vertical and oblique incident reflec-tive-type soundings of the ionosphere from the ground have been limited to altitudes of about 200 mi .

Signals transmitted from the satellite will be monitored by tracking stations in Canada, the U. S. and South America. Transmissions at some of these frequencies will be reflected by the ionosphere and received by the satellite. Particular frequencies will depend on the time of the day and the position of the satellite in its orbit.
The reflected signals will be used to modulate a telemetry carrier transmitted by the satellite, according to-a National Aeronautics and Space Administration spokesman, so that both penetrating and reflected signals can be monitored by the ground tracking stations.

Recent evidence that the ionosphere has a continuously changing rather than a layered structure will also be checked by the satellite sound ings, according to the NASA spokesman. Canada's Defence Research Telecommunications Establishment is cooperating with NASA in the project by providing the satellite, its instrumentation and Canadian tracking facilities. NASA will provide the tracking stations outside of Canada, as well as launching facilities and equipment for testing Canadian prototypes.

Instrumentation for the experiment is presently in breadboard and design stages, the NASA spokesman added, and complete technical details have not yet been settled. Telemetry receiving equipment is currently available, he said, but other equipment will be required to monitor the sounding frequencies.
The satellite will be tracked with the 136 -137-mc telemetry tracking equipment now used by the U. S., he explained.

The joint effort with Canada is one in a continuing NASA program of international cooperation in space sciences.

Germanium Transistor Used

 As 3-Kmc Oscillator, 1-Kmc AmplifierA germanium pnp transistor that can be used as an oscillator at 3 kmc and as an amplifier at kme or lower has been developed.
High frequency was achieved by using very mall active-area dimensions and coaxial mounting to cut capacitance and inductance losses.
The mesa in the diffused-base, alloyed-emitter transistor is 1.8 -mils long and 1.5 -mils wide. Three metal stripes, each 0.3 -mil wide and 1.5 mils long, are evaporated onto the mesa plateau and alloyed into the semiconductor. Gold wires 0.2 -mil in diam are used as connections. The diffused base is 0.02 -mil thick.
The device, developed by Bell Telephone Laboratories, is mounted in a coaxial shell that electrically matches a 50 -ohin transmission line. The transistor's base stripes are connected to the center conductor of the coaxial input line; the emitter stripe is connected to an internal shield built into the encapsulating shell, and the germanium wafer is gold-bonded to the inner conductor of the output line.
Wide-band and narrow-band feedback amplifiers using the transistor have been built using transmission-line principles. The three-stage amplifiers are said to have gain of 18 db , flat within 1 db over the frequency band from below 1 mc to above 750 mc .
Work on the device at Bell by R. E. Davis, C. A. Bittmann and R. J. Gnaedinger has been supported in part by the Army Signal Research and Development Laboratories. The amplifier circuits were designed by Mr. Bittmann and Mr. Davis along with V. R. Saari and R. J. Kirkpatrick, also of Bell.

Germanium Esaki diodes on the center of a stripline waveguide provide amplification in this traveling-wave type 1 -kmc amplifier described at the Solid-State Circuits Conference. M. E. Hines of Bell Labs inspects the device, which uses ferrite attenuation to prevent selfoscillation. Three-kmc units should be possible with the technique.

Frequency Range Tunable Mode: 3 KC - 600 KC Flat Mode: 1 KC -600 KC

Measurement Range

 Tunable Mode: -90 dbm to +32 dbm Flat Mode: -30 dbm to +32 dbmselectivity
Narrow: down 3 db 125 cps of resonance
esonance 500 cps off reson Wide: down 3 db 1.25 KC off resonance down 45 db 5 KC off resonance

Construction

Modular with etched glass epoxy cir cuit boards
Data subject to change without notice

SPERRY MICROWAVE TUBE CLINIC-IRE SHOW-

March 21-24, Booths \# 2432-2438
Bring your problems involving microwave tubes and discuss them with our engineers at this Sperry Clinic.

NOW 60DB GAIN IN L-BAND PPM FOCUSING NEW SPERRY TWT

... cuts Space, Weight, Cost, Power Requirements - Sperry's new STL-222 provides twice the gain of ordinary L-Band tubes-actually takes the place of two tubes in most applications - yet is only $20^{\prime \prime}$ long, weighs only 8.5 pounds. This important advantage suits this new CW amplifier and driver perfectly to airborne applications. Its excellent broadband stability recommends it for ground support and airborne radar equipment . . . communications . . . drone applications . noise generators . . . switching devices and other L-Band uses.
The STL-222 is periodic permanent magnet focused. Its tough metal and ceramic construction provides for high environmental capability, stable operation at high ambient temperatures and under extremes of vibration. This tube also features a high-mu modulating grid and high input-to-output isolation. It is short circuit stable.
The STL-222 is now in production at Sperry, which means lower unit cost and fast delivery schedules. Advanced performance and dependability result from Sperry's long experience in klystron and TWT research, development and production. Write for complete data, outlining the nature of your application.

Frequency Range
Small-signal gain
Saturated Power Outp:
Beam Voltage.
Beam Current.
Grid Bias....
Grid Cut-off Signal .
Heater Voltage.
Heater Current
Input-Output Isolation

Specifications
\qquad

1.0 to $2.0 \mathrm{kmc}^{1}$

 $48 \mathrm{db} \mathrm{min}^{\prime}$ 48 db min .2 w nom ... 1000 ma .. .35 v -20 v max .. .6 .3 v 75 db min
STL-222

Solurated Powner va Froouency sFPARY

SPERRY ELECTRONIC TUBE DIVISION, SPERRY RAND CORPORATION. GAINESVILLE. FLORIDA
4ddress inquiries: Gainesville, or Sperry Offices in Brooklyn. Boston. Philadelphia. Chicago • Los Angeles • Montreal • Export Dept., Great Neck, N. Y. CIRCLE 59 ON READER-SERVICE CARD

NEWS

Harvard Gets \$265,000 Grant For Weapons Procurement Study

The Ford Foundation has granted the Harvard Business School \$265,000 to find out what it takes to develop weapons besides technology.

The research supported by the money will determine the administrative and economic characteristics of the development and procurement of advanced weapons. The study will explore the relationship between the buyer of weapons-the government-and the seller-the contractor.
Officials at the Harvard school hope the work will be completed by the end of this year. The school intends to publish as much of the findings as security regulations will permit.
Ultimately, it is expected, the research group will offer methods of improving the policies and practices associated with weapons procurement.

Exploratory work on the project began in 1958. The development of severa! non-defense products was studied to provide a basis for comparison with the development of advanced weapons.
In 195912 advanced weapons systems came under the research group's scrutiny. This phase of the study examined the following questions:

- How are prime and principal subcontractors chosen?
- How are responsibility and authority divided between the government and the contractors?
- What incentives are there for the contractor to do an outstanding job?

The members of the Harvard Business School Faculty engaged in the project are Prof. George P. Baker, senior faculty adviser; Prof. Paul W. Cherington, project director; Prof. Merton J. Peck; Charles Stein. Jr.; Gerald W. Siegel; Frederic M. Scherer, and George Harmon.
David Novick, head of the Cost Analysis Department of Rand Corp., is a consultant to the project.

Computer Slated to Figure Target of Enemy Missiles

The course, target and impact time of an enemy missile projected at the United States across the polar region would be computed in seconds with a data-processing system under development.

The system, which performs 200,000 mathematical operations per sec, is manufactured by Sylvania Electric Products Inc., New York. It is scheduled to monitor radars of the Air Force's Ballistic Missile Early Warning System.

Specialized computers in the system analyze radar echoes and decide whether or not the

Sylvania officials inspect data-processing apparatus to be used on conjunction with the radars of the Air Force's Ballistic Missile Early Warning System. At left is Richard W. Couch, Sylvania's BMEWS program manager. Eugene J. Vigneron, general manager of the data systems operation, looks on.
source of the echoes is a projectile. The computers then determine which among the projectiles are hostile missiles.
The points and times of impact, as well as the number of hostile missiles, are determined and transmitted in less than a second to operating personnel and to United States command centers.
The system checks its own internal performance, Sylvania said, and maintains contact with a standby computer to verify results. If the main computer does not function properly, the standby computer takes over.

Computers Will Assign Frequencies After Scientists Pick Best Method

Scientists at the National Bureau of Standards, will teach computers the best way to assign frequencies to radio transmitters that mark air routes-as soon as they learn how themselves.
The problem of assigning the frequencies belongs to the Federal Aviation Agency. Each year a substantial number of new transmitters, which help pilots fly a straight-line course, are added to the nation's network of commercial and military airlanes.
Signals from new transmitters should not interfere with those from existing transmitters. However, the FAA has available only 100 discrete frequencies for allocation.
When adding new transmitters, it is often necessary to change the frequency of existing tiansmitters. This could, however, create new a eas of interference.
The problem was turned over to L. Joel, G. M. (aller and A. J. Goldman of the NBS Applied Nathematics Div.

this new 113AR Clock is the ultimate

This new 113AR Frequency Divider and Clock makes possible precision time comparisons between stable oscillators and standard WWV or other transmitted time signals. This permits adjustment of frequency or time standards for greater absolute accuracy, and simplifies obtaining detailed records of drift rates, or time or frequency differences between oscillators in widely separated systems.
Propagation path errors can be averaged out and Doppler errors are virtually eliminated.
113AR's unique optical gate (no contacts, no wear. cannot add jitter) and a directly calibrated precision phase shifter make possible the unique accuracy of the Clock providing a time comparison capability of $\pm 10 \mu \mathrm{sec}$. Regenerative dividers, a phase-stable of m mor and precision gear train provide fail-safe operation not attained by pulse counting systems.
Model 113AR is conservatively designed from premium components, fully transistorized for longer standby battery operation, and meets performance requirements of MIL-E-16400. The unit is rugged, dependable and measures only $7^{\prime \prime}$ high.

HEWLETT-PACKARD COMPANY

1022K Page Mill Road • Palo Alto, California, U.S.A. Cable "HEWPACK" - DAvenport 5-4451 Hewlett-Packard S.A.
Rue du Vieux Billard No. 1, Geneva, Switzerland
Cable "HEWPACKSA" • Tel. No. (O22) 26. 43. 36

world's largest line of electronic measuring instruments

SPECIFICATIONS	
Input Frequency:	$100 \mathrm{KC} \pm 300 \mathrm{cps}$.
Input Voltage:	0.5105 r rms .
Input Impedance:	Approx, 300 ohms
Output Signals:	(1) 1 pps, $10 \mathrm{v}, 10$ $\mu \mathrm{sec}$ rise time, approx. $20 \pm 10 \mu \mathrm{sec}$ duration, into 5,000 ohms (2) I pps. 4 V . $10 \mu \mathrm{sec}$ rise time, $100 \pm 3 \mathrm{msec}$ duration, from 50 ohms (3) 1 KC pulses, pos and neg, 4 v peak, 8 $\mu \mathrm{sec}$ nominal duration from approx. 5,000 ohms.
Frequency Divider:	Regenerative; foil. sofe.
Time Reference:	Continuously adiustable, calibrated in $10 \mu \mathrm{sec}$ increments.
Clock:	Manual start, 24 hr dial.
Auxiliary Outpuf:	1, 10 and 100 KC sine waves, 0.25 r rms from 1,200 ohms.
Power Requirements:	$26 v \pm 2 v(1) 724 \mathrm{~A}$ Power Supply).
Size:	$7^{\prime \prime}$ high, $19^{\prime \prime}$ wide, 191/2" deep. WI. 35 lbs.
Price:	$\$ 2,500.00$ f.o.b. fac. lory.

NOW! 3-D PROGRAMED CIRCUITS!

 with "Put 'N Take" servicing of individual functionsHere's a major new concept in interconnecting circuitry that offers the most advanced approach to reliability and maintainability - the AMP MECA (Maintainable Electronic Component Assembly). With MECA, you simply encapsulate your components in replaceable AMP-CELLS which are then plugged into AMP's 3-D Circuit Boards. Result: Instant servicing by substitution and throwaway.
The AMP-CELLS can grow or shrink in 3 dimensions on the 0.1 or 0.2 grid system. Hand, semi, or completely automatic tape programming produces these simple 3-D circuits. The AMP-CELL contacts do not protrude, cannot be damaged by abusive handling. All AMP-CELLS are wholly contained within the 3-D Circuits-totally secured to resist vibration and physical damage.

For a complete description of this important new product, send for our MECA brochure.

AMP INCORPORATED

GENERAL OFFICES: HARRISBURG, PENNSYLVANIA
AMP products and engineering assistance are available through subsidiary companies in: Australia - Canada - England - France - Holland - Italy - Japan - West Germany CIRCLE 61 ON READER-SERVICE CARD

Daylight radar indicator shown here is said to be 1,000 times brighter than its predecessor, so that no hood is needed for viewing in sunlight. Sperry Gyroscope Co. developed the indicator tube for its APN-59 radar used in Air Force tankers, cargo and troop transports.

L.I. Electronics Industry Sets
 5-Year Goal of 100\% Growth

The future of a regional electronics industry occupied 1,000 engineers at a two-day exposition sponsored by the Long Island Electronic Manufacturers Council (LIEMC).

At the Futuronics Exposition, LIEMC announced a five-year goal: 100 per cent growth in sales of Long Island-manufactured electronic equipment. Growth in dollar value of sales during this period would be from $\$ 750$ million to $\$ 1.5$ billion. From 1954 to 1959, Long Island's electronic sales increased about 50 per cent, while sales of the total industry grew by 85 per cent. According to LIEMC executives, industry-wide electronic sales are expected to grow by only 65 per cent during the next five years.

The optimism of the regional group is based on achievement of these goals:

- Organized and cooperative effort to gain recognition of Long Island's capability as an integrated electronic research, development and production complex.
- Diversification of the area's electronics industry to include more of the growing fields of defense and civilian electronics.
- Educational and cooperative research facilities to insure long-term growth in the area's largest manufacturing industry.
At the exposition, progress of the area's tech-
ELECTRONIC DESIGN • March 16, 1960
rology was displayed in 47 booths exhibit and many exhibitors discussed ambitious plans for the future. Important work in progress and in planring was described in papers delivered at two morning technical sessions.

Faster Computers Under Study

A roadblock in the drive toward larger and faster computers-namely components of a size approaching wavelength of the frequencies used -is being attacked from two angles at Sperry Gyroscope. According to Dr. Peter Isaacs, the company is making the components smaller by using microminiature circuitry, and it is taking into account the dimensions of the components by applying microwave techniques to the computer.
In line with these approaches, thin magnetic films constituting single magnetic domains are being used to reverse magnetic state in a few millimicroseconds for logic and memory devices. Cryogenic switching, where thin films can be switched in or out of the cryogenic state in 10^{-10} sec , has also been demonstrated at Sperry. Microwave techniques have made possible switching times of $1,000 \mathrm{mc}$, as demonstrated in several computing devices.

Molecular Electronics Analyzed

Ralph Redemske, vice-president for research at Servomechanisms, Inc., gave his audience a fascinating look at what molecular electronics might do to component and circuit engineering. The virtual replacement of lumped components by chemical and atomic building blocks will require a new type of engineering team he said, adding that the familiar parts catalog would be replaced by a periodic table of chemicals.
Research and computer development at Servomechanisms is performed by a team of chemists, physical chemists, logical designers and circuit engineers who have learned to speak each other's technical language. The largest laboratory at Servomechanisms Research is the chemical.
Mr. Redemske observed that the day of woman assemblers was drawing to a close. Because of the size and environmental extremes involved in molecular electronics, he said, automatic forming and assembly machinery will be a must for molecular electronics.
Walter Tengelsen, Systems Research Engineer, described several approaches to space guidance by means of hybrid systems under way at Arma Div. of American Bosch Arma Corp. He said that in space vehicles, gyro drift and the absence of gravity for correction dictated the use of some aiding system to override the inertial guidance system. To save weight, he reported, components must be used in multiple roles. He cited the example of antennas used for communication, radar ranging and power transmission. $==$

Beldtherm is a polyester film-coated magnet wire with excellent thermal stability.

It is recommended for temperature ratings of $130^{\circ} \mathrm{C}$ to $155^{\circ} \mathrm{C}$-depending upon application, a most important point.

LARGE MOTORS Beldtherm is designed for use in stator windings operating at hottest spot temperatures
of $130^{\circ} \mathrm{C}$. This temperature may be exceeded provided there is minimum winding and forming abuse,
and factors such as radii of coil bends, wire turn crossvided there is minimum winding and forming abuse,
and factors such as radii of coil bends, wire turn crossovers and pressure between turns are favorable.

TRANSFORMERS Beldtherm, with other suitable material in the insulation system, is suitable for dry type transformers operating at temperatures up to $155^{\circ} \mathrm{C}$.

Other Belden Magnef Wires: Beldenamel*, oleoresinous - Formvar*, vinyl acetal
-Nylclad*, vinyl acetal-Nylon-Beldsol*, polyurethane
-Belden Trademark
Reg. U.S. Pot. Off
1.1 .0

[^2]

More channels

in less space af less cost

This is the revolutionary new Bendix-Pacific Voltage Controlled Telemetering Oscillator-contained in an envelope which is less than $1 / 3$ the size of a package of cigarettes and weighs 2.5 ounces!
The extremely small size of Model TOE-300 is only one of its features. Exceptional stability, linearity and life under extremes of shock, vibration and temperature are provided by silicon semi-conductors and precision passive components in advance circuitry.
New freedom from in-fight calibration is provided by stability of input inpedance and lack of sensitivity to change source impedance.
Let us send you complete details on the new Bendix-Pacific Mordel TOE-300 Oscillator.

CONDENSED SPECIFICATIONS

Available gands: All standard IRIG numbered and lettered bands.
OUTPUT: 4.0 V rms open circuit.
OUTPUT IMPEOANCE: 100 kilohms.
LINEARITY: $\pm 0.25 \%$ bandwidth deviation from best straight line.
STABLIITY: $\pm 1.0 \%$ of bandwidth, $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$; $\pm 0.25 \%-15 \mathrm{~min}$. to 8 hours at $25^{\circ} \mathrm{C}$.
POWER: 20 V at 6 milliamperes.

WEIGMT: Approx. 2.5 oz.

CIRCLE 63 ON READER-SERVICE CARD

WASHINGTON \& REPORT
 Ephraim Kahn

- . STATE TAXATION of property owned by the federal government and used by defense contractors - such as machinery and plant - should be imposed according to uniform rules established by Congress. Decisions of the Supreme Court permit states to engage in such taxation, but only four states have laws imposing this sort of tax. State officials, who would like the extra revenue, are fearful that they would give an edge to industries in other areas if they slap on such a tax. To prevent use of this tax as an element in cost competition for defense contracts, they are seeking a federal law on the point. Defense Department estimates that such a tax could hike the cost of military hardware alone by $\$ 500$ million a year or more.
- . PREFERENTIAL CONTRACTING by the Defense Department so as to allocate more prime business to labor-surplus areas is again being pushed in Congress. In an election year, chances of enactment of a new contracting law are improved, but it will still be an uphill fight. Sen. Jacob K. Javits (R., N.Y.) would give preference to small business and to labor-surplus areas under the present "set aside" program. A measure to do this has been introduced with the co-sponsorship of the entire New York Congressional delegation. The proposed law would also give a statutory basis to the policy of encouraging competitive bidding techniques in defense procurement. Where national security requirements preclude their use, it would provide for competitive negotiation to the maximum degree possible, involving two or more firms.
- . MANAGEMENT STUDY of Air Force weapons systems is being evaluated by Air Force Secretary Dudley C. Sharp. A major area covered by the study is the question of systems management by the Air Force itself as against management by contractors. Though the management study itself has not been made public, it is conceded that it will play a role in the formulation of recommendations for "future organization and Air Force-industry relationships" in space and ballistic missile programs.
. . . TITAN ICBM program is here to stay, says Lt. Gen. Bernard A. Schriever, chief of the Air Research and Development Command. Crucial decisions on Titan were made three years ago. If Titan were cancelled it would slash planned ICBM strength by one-third. Those who suggest dropping the Titan, he says, "simply are not familiar with all the facts and problems of bringing missiles into the operational inventory."
- . BID-BOND RULES, which were tightened by the Comptroller General last year, show no sign of easing. In fact, there is a disposition to enforce them literally, with no room for any sort of latitude. Last year, it was ruled that bonds must accompany
bids, and be received prior to the bid opening. It has now been held that a bidder fell short of meeting requirements in the following circumstances: the bidder, replying to an invitation which permitted telegraphic bids, wired his proposal along with the bond number and the name of the surety. This was held insufficient to meet the bid-bond requirement.
. . . EXPORT OUTLOOK for the U.S. electronics industry is good, says the Commerce Department. Electron tubes and semiconductors made in U.S.A. have a good reputation abroad and the "brisk market that has been established for products of specialized types and technically advanced design holds further promise." In a survey of European markets, the Department notes that Austria's electronics trade is largely oriented toward the Netherlands; Belgium offers a good market for transmitting and specialpurpose tubes; Denmark is a limited market for U.S. products; American producers have a "strong position" in the French market; prospects are good for expansion of U.S. sales to Italy; Norway buys power, special purpose, and transmitting tubes from the U.S. ; competition in the Swedish market is strong and U.S. tubes are generally priced about 20 per cent higher than those from other sources: U.S. products "should continue to compete successfully" in the Swiss market; and the United Kingdom tends to import "relatively specialized types" of tubes.
. . . PRICE REVISION CLAUSES in fixed-price contracts have been interpreted by the U.S. Court of Claims. In a case involving an electronics firm, the court held that existence of such clauses does not change the contract into a type banned by law, the "cost-plus-a-percentage-of-cost" contract. The court rejected the contractor's contention that price revision clauses are an incentive to pushing prices up, since lower costs would result in lower profits. In effect, the contractor asserted, a contract providing for price revision after completion is equivalent to the type that has been banned. The court, however, said that it did not agree. It noted that the law provides for cost-plus-a-fixed-fee contracts, and said that the specific authorization of this type is sufficient ground to justify the legality of a fixedprice contract that includes price revision clauses.
. . . CONTRACT POLICIES of the Defense Department will be probed by the Senate Small Business Committee. To be given special scrutiny is the handling of negotiated contracts, particularly where only one source is involved. Hearings, which will include an explanation by the three Armed Services of their contract negotiation procedures, are tentatively slated to begin about April 1.
. . SLOWER SPENDING for military procurement during the balance of fiscal 1960 - but the military will very likely step up the rate at which it awards new R\&D contracts and makes commitments for future buying. On an annual rate basis, the military overspent by $\$ 1$ billion during the first half of the fiscal year. Procurement was at an annual rate of $\$ 16$ billion in contrast to the budget's target of $\$ 13$ billion. Obligations, at an annual rate of $\$ 40.2$ billion, were under the budget estimate of $\$ 41.6$ billion. Significant shortfall was in RDT\&E which is budgeted at $\$ 4.2$ billion while obligations hit an annual rate of $\$ 2.7$ billion. This leaves plenty of room for new contracts during the next few months.

THE WORLD'S MOST

 VERSATILE OSCILLOSCOPESIwith Plug-ins for All Needed Ranges... All Needed Features . . . No Obsolescence.

2- and 4Channel Types

Modols K-270
and K-470 . .
Display multiple, high-speed sig. nals without switching. From DC to 5 megacycle bandwidths.

Here is true multi-channel oscillography with features, performance, and prices "tailored" to your exact needs. Versatile plug-in pre-amplifiers, sweeps, and marker-calibrator circuits need be purchased only as you need them . . . when you need them. No worries of having "too much" scope now . not enough scope flexibility a few years later.

From simple one-channel monitoring jobs to difficult medical, biophysical and lowlevel strain gauge recording involving two, three or four channels, you'll find no jobs too small or few too large for these versatile ETC instruments.

Writa for detailed specifications and prices.

CORPORATION
1200 E. MERMAID LANE
philadelphia 18, pa.
VISIT US AT THE I.R.E. SHOW-BOOTHS $3112-3113$
pioneers in multigun c.r tubes ang multichannel oscillography. CIRCLE 64 ON READER-SERVICE CARD

VISIT BOOTH 1727. A\&B AT I.R.E. SHOW
CIRCLE 65 ON READER-SERVICE CARD

NEWS

PN Junctions Produced Directly From Vapor Phase

Silicon pn junctions reportedly have been produced directly from the vapor phase.

The new technique for producing pn junctions, conventionally made by alloying or diffusion methods, is said to be applicable to molecula electronics. Current applicability of the deposited junctions in conventional component: depends on the evaluation of device producers, according to Merck. Laboratory samples are being prepared for evaluation.

The process, reported developed by Merck \& Co., Inc., Rahway, N. J., is said to permit close control of resistivity, thickness, and other junction factors. Complex junction configurations may be obtained with the technique.
Resistivity of a p or n layer can be varied from a degenerate level to several thousands ohm -cm . The nature of the material may be varied to produce a step-type junction similar to that resulting by alloying, or a graded junction like that obtained by diffusion.
Resistivity varies within 25 per cent and layer thickness within 10 per cent of desired vaines. according to Merck.
Junctions with reverse breakdown voltages above $1,500 \mathrm{v}$, and with reverse leakage currents of less than $5 \mu \mathrm{amp}$ were obtained with experimental devices produced at Merck using the vapor phase grown materials. Forward currents in test rectifiers made from the junctions were between 50 and 200 amp per sq in .

Europe Reported Deficient In Long-Range Basic Research

The popular notion of Europe as a mecca of basic research is somewhat overstated, according to reports by overseas delegates at the Solid-State Circuits Conference. In public addresses and private conversations, European scientists cited money-or the lack of it-as their main problem.

European electrical industries are relatively small and cannot muster large research staffs and budgets. Government support is likewise small by American standards. The result is greater stress on short-term applied research overseas, compared with the U.S.
These points were made by Dr. M. J. O. Strutt, chairman of the Swiss Federal Institute of Technology, in his remarks at the opening session of the conference.
"As most recent solid-state devices are U.S. inventions, copying takes a considerable place in European research," Dr. Strutt said.

ELECTRONIC DESIGN • March 16, 1960

Other visitors from abroad generally agreed ith Dr. Strutt and pinpointed other weaknesses in European research. Tight company secrecy and rational frontiers hinder the cross-fertilization of research ideas, it was said. Applied research was described as often parochial, aimed at solving an existing problem within a company rather than the development of devices and applications for wider use. Though the percentage of company incomes spent on research is probably equal to the percentage spent in the U.S., informants said, funds abroad are spent in tackling immediate research problems.
Papers of foreign origin read at the conference tended to confirm European de-emphasis of longterm basic research
On the other hand, visitors felt that European engineers were perhaps more productive than their American counterparts. This was not attributed to better training but to more rigid work discipline. Motivation of European engineers might well be stronger, it was suggested. Jobs are tighter and salaries are much lower, but an engineer commands high social prestige abroad.
Basic research takes place mostly in universities and government-sponsored research centers. The total effort is quite small but of high caliber, it was said. Principal areas of work include nuclear research, noise in semiconductors and photocells, characteristics of semiconductors, paramagnetics, and photoelectricity.

Fluorochemical Cools Airborne Amplifier

his linear power amplifier, designed by Hughes Airraft Co.'s communications division for the B-58 Hustler's -kw high frequency system, is fluorochemically cooled. he HC-105 amplifier is an $81 / 2$-in. cube.

CBS Indium-bonded Diodes Give You Missile Reliability

Near perfection is demanded of computer diodes used in missiles. CBS Reliable Indium-bonded Diodes meet this challenge with an Acceptable Quality Level of 0.015% . a degree of quality never before achieved. in semiconductor mass production. Only one diode out of 6500 can fail

This dependability is available for your computer applications in a wide line of new CBS Reliable Indium-bonded Diodes. Exceptionally rugged design, advanced processing techniques, severe mechanical
tests, and automatic electrical tests make the difference. Ask your Manufacturers Warehousing Distributor or your local sales office about these CBS Reliable Indiumbonded Diodes today. Get technical bulletin E-314R.

semiconductors

More Reliable Products through Advanced Engineering
CB8 ELECTRONIC8, Semiconductor Operations • A Division of Columbia Broadcasting System, Inc.
 Rd., EStebrook 9-2100 - Los Angeles, Calif., 2120 S. Garfield Ave., RAymond 3-9981 - Allanta, Ga., Cary Chapman \& Co., 672 Whitehall St., JAclaon 4-7388 Minneapolis, Minn., The Heimann Co., 1711 Hawthorne Ave., FEderal 2-5457 - Toronlo, Onl., Canadian General Electric Co., Ltd., LEnnox 4-8811 CIRCLE 66 ON READER-SERVICE CARD

*REGULATED POWER MODULE -

All design, development and production work has been completed for you in these RPM power modules. Buy them as catalog items, and get these advantages:
16 standard models - 125 to 425 volts... 50 to 400 milliamps, plus 30 standard modifications with extended voltage and current ranges.
Excellent regulation $-0.05 \% \mathrm{NL}$ to FL , or $\mathbf{1 0 \%}$ line change. Compactness - RPM units are custom desgined and built with our own transformers for most efficient use of space
Super-rugged construction includes one-piece, cast aluminum housings and MIL hardware. RPM modules can be mounted in any position.
High reliability-achieved by use of top quality components throughout, and rigid inspection during production.
All standard models or modifications thereof can be furnished to meet MIL-E-16400B.

Request $A C D C$ Bulletin 400- A.

IRE International Convention
 Technical Papers-Subject Index

All am sessions begin at 10:00; pm sessions at 2:30; eve. sessions at 8:00.
Abbreviation Key: At the Waldorf—Astor Gallery (A), Empire Room (E), Grand Ballroom (G), Jade Room (J), Sert Room (Se), Starlight Roof (St), At the Coliseum-Morse Hall (Mo), Marconi Hall (Ma), Faraday Hall (F).

Audio

Audio (12) Tues am-Se

Automation and Sound Control Systems

Control Theory (1)

Mon pm-St
Control Applications (9)
Tues am-St
Adaptive Networks (40)
Thur am-St

Broadcasting

Broadcasting-1 (11)
Tues am-J
Broadcasting-II (19)
Tues pm-J
Audio and Broadcast and TV
Receivers (20)
Tues pm-Se

Circuit Theory

Radar and Coding Theory (17)
Electronic Computers and Circuit
Theory: How Each Technology Can
Help the Other (33)
Wed pm-St
Circuit Theory: Current Contributions (41) Thur am-A Symposium on a Decade of
Progress in Network Theory (49)
Waveform Analysis and Random Vibration (54)

Thur pm-A

Thur pm-Mo

Communications

Panel: Electronics-
Out of This World (24)
Tues eve.-G
Seminar on 1959 ITU
Geneva Conference (29)
Wed am-G
Communication Systems Design (30) Wed am-F
Communication System Techniques (37) Wed pm-F
Satellite Communications (44) Thur am-E
Vehicular Communications
Thur am-E

Computers and Data Systems

Electronic Computers and Circuit
Theory: How Each Technology Can
Help the Other (33)
Equipment and Systems (43)
Satellite Communications (44)
Magnetic Recording (47)
Electronic Computers (48)

Electron Devices

Electronic Devices (8)
Direct Conversion (10)
Broadening Device Horizons (16)

Wed pm-St
Thur am--Se
Thur am-E
Thur am-Mo
Thur pm--St

Mon pm-Mo
Tues am-A
Tues am-Mo

Electronic Component Parts (27)	Wed am-1
Aspects of Component Reliability (31) \quad Wed am-Ma	
Component Parts (35)	Wed pm-1

Human Factors

Human Factors in Electronics (45) Thur am-F

Information Theory

Radar and Coding Theory (17)
Tues pm-St
Detection Theory and Applications to Physics (25)

Wed am-St
Symposium on a Decade of Progress in Network Theory (49)

Thur pm-A

Instrumentation

The Brookhaven Alternating Gradient Synchrotron; Transistorized Nuclear Instrumentation (2)

Mon pm-A
Advances in Aerospace Subsystems (6) Control Applications (9)

Mon pm-F
Modern Approaches for Improved Air Traffic Management (15) Tues am-Ma Industrial Electronic Instrumentation (18) Tues pm-A Design of Equipment Reliability (22) Tues pm-Ma Communication System Techniques (37) Wed pm-F Satellite Communications (44) Thur am-E Check-Out Instrumentation and Circuitry (51)

Interference

Radio Frequency Interference (4)
Mon pm-Se

Land and Space

Advances in Aerospace Subsystems (6)
Mon pm-F
Modern Approaches for Improved Air Traffic Management (15) Tues am-Ma
Panel: Electronics-
Out of This World (24)
Space Telemetry (28)
Satellite Communications (44)
Tues eve.--G Wed am-Se Space Electronics (50)

Thur am-E
Thur pm-1

Management

Engineering Management-I (5)
Engineering Management-II (13)

Mon pm-E
Tues am-G

Medical Electronics

Voried Views of Medical Electronics (14)
The Human as Originator of
signals and Schemes (21)

Microwaves

Microwave Tubes (23)
Microwave Filters (32)
Antenna Pattern Synthesis (38)
Microwave Interaction with Matter (39)
Scanning Antenna Arrays (46)
Tues am-F Tues pm-F Tues pm-Mo Wed am--Mo Wed pm-Ma Wed pm-Mo Thur am-Ma Thur pm—Ma

Military Electronics

Panel: Electronics-
Out of This World (24)
Tues eve-G

Navigation and Traffic Control

Modern Approaches for Improved Air Traffic Management (15)

Tues am—Ma
Production
Production Techniques (7)
Mon pm-Ma

Propagation

Seminar on 1959 ITU
Geneva Conferences (29) Antenna Pattern Synthesis (38)

Wed am-G Antenna Pattern Synthesis (38) Wed pm-Ma Scanning Antenna Arrays (46) Thur am-Ma
Antenna and Propagation Problems (53) Thur pm-Ma

Radio and TV Receivers

Audio and Broadcast and
Television Receivers (20)
Tues pm--Se
Broadcast and TV Receivers (26)
Wed am-A

Reliability

Aspects of Component Reliability (31) Wed am-Ma

Ultrasonics

Ultrasonics Engineering-I (34)
Wed pm-A Thur am-J

Writing and Speech

The Engineer Writes and Speaks (3) Mon pm-J

The opening meeting will be at 10:30 A.M., IIonday, March 21. Lloyd V. Verkner, president of Associated Universities, Inc., will discuss "Can the Social Sciences Be Made Exact?" The high print of the program will be a special symposium on "Electronic-Out of This World." It will be held Tuesday evening, March 22. The symposium will be conducted by Ernst Weber, president of the IRE for 1959, and a panel of space electronics es perts.
The convention will be held in New York City a! the Waldorf-Astoria Hotel and the New York C iliseum.

M-Q CERAMIC POWER AND TRANSMITTING CAPACITORS

Designed for wide applications in transmitting and communications equipments, industrial high frequency applications and medical apparatus, Hi-Q HP capacitors offer extraordinary space and weight reductions (5 to 70% of weight- $21 / 2$ to 50% of space volume) and performance characteristics superior to comparable mica capacitors.
Engineered for high frequency operations, the ceramic dielectric retains its properties at frequencies above 1000 megacycles. HP capacitors have much higher current ratings for a given size than comparable mica units. They can be operated at higher temperatures without derating... $105^{\circ} \mathrm{C}$ versus $70^{\circ} \mathrm{C}$ for mica before derating for voltage... $45^{\circ} \mathrm{C}$ versus $30^{\circ} \mathrm{C}$ before derating for current HP capacitors will meet all the requirements of MIL-C.SA for moisture resistance.

Write for complete technical information to...

Unique construction features give 6-E Miniature relays unmatched reliability in industrial electronics job;

LONGER MECHANICAL LIFE of G-E industrial relays is due-in part-to G.E.'s exclusive use of molded contact stacks which won't loosen or shift to the degradation of relay performance.

GREATER STABILITY of G-E relays i a result of G.E.'s unique support de sign with the relay actually supported by its can. Other relays use a cant lever support from the base only.

General Electric Company
 Section A 792-15

Schenectady, Now York
Please send me a free copy of Bulletin GEA-6665A, Sealed Relays for Industrial Application.
Name
Address
City
State
GENERAL (96) ELECTRIC

ENERAL ELECTRIC
$\begin{array}{ll}\text { We got tired of waiting for this General } & \begin{array}{l}\text { liable performance is confined to a me- } \\ \text { Electric Miniature sealed relay to stop. } \\ \text { chanical-life test. To the contrary, this }\end{array} \\ \text { It just kept switching . . and switching } \\ \text { rugged relay is pre-conditioned to a life } \\ \text { of "hard knocks." Built-in shock and vi- } \\ 750 \text { million no-load operations before } \\ \text { we finally gave up and took it off test. } & \begin{array}{l}\text { bration resistance (ranging to } 50 \mathrm{G} \text { 's } \\ \text { shock, and } 10 G \text { 's vibration at } 5-500 \\ \text { Frankly, we just don't have the time }\end{array} \\ \text { cps) mean that the G-E Miniature can } \\ \text { or patience to find out what its actual } & \text { cope with just about any industrial } \\ \text { mechanical life really is. We're too busy } \\ \text { demand. And, under typical conditions, }\end{array}$

Miniature's small size saves valuable panel space . . . that it's not position sensitive and can mount in any plane . . that wiring is convenient . . . tha the clearance and creepages on the header and socket meet NEMA requirements . . . and you know why the G-E Miniature sealed relay will out-perform any other type of relay in many industrial electronic applications.
Why not see your G-E Apparatus Sales Engineer today? He has all the details on the seven forms of General Electric Miniature sealed relays-each in a wide variety of terminations-for virtually every industrial switching need Or, if you prefer, mail the coupon at right. General Electric Co., Specialty Control Dept., Waynesboro, Virginia.

Progress Is Our Most Importiont Product
GENERAL (8) ELECTRIC

EDITORIAL

How to Get Your Money's Worth Out of the IRE International Convention

Industry leaders overwhelmingly endorse the desirability of technical conventions, but they are understandably becoming concerned about the growing number. A recent study of meetings in the field of flight sciences, prepared for the Daniel and Florence Guggenheim Foundation, found that industry leaders agreed, 2 to 1 , that there were too many gatherings. The study estimates that the 43 meetings on flight sciences last year had cost the industry 258,000 man-days of technical time and $\$ 21$,500,000 or more in man-costs. To this was added about $\$ 1,000$,000 to $\$ 3,000,000$ for the time and money to prepare papers, arrange the meetings, publish programs, create and install exhibits, etc.

Here are some suggestions for getting the most out of your time at the forthcoming IRE colossus, which features 15 simultaneous technical sessions each day and 850 exhibits on four floors:

1. Plan your attendance at the sessions by checking the advance program. (See tabulation of the sessions on p 68 of this issue.) Decide with other engineers from your company who will cover which sessions.
2. Be an aggressive listener. Before attending technical sessions, check the summaries in the IRE Guide. Make notes at the sessions. Evaluate the discussion. Question the speaker about his paper after the formal discussion period.
3. Plan your booth visits by checking the show product preview in this issue. It begins on p 128.
4. Get in touch in advance with those supplier company engineers with whom you wish to discuss new products or new developments. Breakfast, lunch, or dinner appointments can be handy ways to avoid conflicts with the technical program.
5. Absorb technical information as well as refreshments at hospitality suites.
6. If you are from out of town, plan contacts with companies in the Greater New York area as part of your trip.

When the convention is over, analyze your experiences and make suggestions for improvements directly to the IRE or to this magazine. Constructive ideas are needed and are always wel-comed.-EEG

ELECTRONIC DESIGN looks forward to meeting you at the show. Drop by and shoot the breeze with our editors at Booths 4404-4406particularly if you are planning to write an article. But whether you write or not, stop by and shake hands. Our pleasure.

CHR Temp-R-Tapes are easy to apply ...economical...dependable in service

Choose the right Temp-R-Tape for your job from a variety of types which combine some form of Teflon*, Fiberglas or Silicone Rubber backing with a silicone polymer adhesive. Temp-R-Tapes are all pressure-sensitive, even those which are thermal curing, and adhere securely to most materials, including Teflon, at extremely high temperatures. Each of these versatile tapes possess a superior combination of electrical, mechanical and physical properties suitable for a variety of applications where high dielectric strength, thermal stability, moisture resistance, durability, low coefficient of friction, non-stick properties, non-corrosiveness, non-aging characteristics or fuel resistance may be required.

TYPICAL USES:

Electrical - slot lining; interlayer and interphase insulation; harness bundling; splicing; wrapping for microwave components, transformer coils, capacitors and high voltage cables. Mechanical -facings for film guides in electronic instruments, heat sealing bars, forming dies, chutes, suide rails, and for protection for metals and other materials being chemically cleaned or coated.

AVAILABLE FROM STOCK:

$1 / 4^{\prime \prime}$ to $2^{\prime \prime}$ widths, 18 yd . and 36 yd . rolls and $12^{\prime \prime}$ width on liner by lineal yard. Special roll widths slit to order. Temp-R-Tape is sold nationally througn distributors.
FREE SAMPLE and folder - write, phone or use inquiry service.
ELECTRICAL AND INDUSTRIAL SPECIALTY TAPES
CHR CONNECTICUT HARD RUBBER CO.
-duPont TM
Main office: New Haven 9, Connecticut CIRCLE 70 ON READER-SERVICE CARD

Resistance-Value Curves Simplify Line-Amplifier Design

Jack Shirman

Stromberg-Carlson Div. General Dynamics Corp.

Rochester, N. Y.

Jack Shirman, tired of repeating calculations every time he needed a slightly different amplifier gain, developed a simple procedure and a handy set of curves. The curves take all the time-consuming slide-rule work out of designing a highlystable $\mathbf{6 0 0}$-ohm line amplifier.

BY SIMPLY changing resistor values, one can change the gain of the balanced audio amplifier of Fig. 1 over a range from 4 to 20 db . A set of curves in this article gives the required resistance values.
Without an input transformer or other auxiliary input circuitry, the amplifier is fed from a balanced 600 -ohm line or from a 600 -ohm line with

Fig. 1. Basic configuration of a balanced transistor amplifier for 600 -ohm lines.

Fig. 2. Design curves for determining resistance values for the balanced amplifier.
ne side grounded. Series feedback and shunt feedback around the transistors render the amplifier highly stable.
Its simple circuitry provides these advantages: - Very low noise level.

- Excellent frequency response, a function only of the output transformer.
- Good temperature stability.
- Operation with balanced or single-ended input. - Excellent gain stability with variation in transistor parameters and supply voltages.
- Absence of capacitors.

The circuit in Fig. 1 shows the two types of feedback used. Since this is a balanced circuit both values of Z_{e} are identical as are both values of Z_{l} and $R_{\text {in }}$. No balance is required in the transistors due to the biasing scheme which provides class AB operation.
The collector-to-base feedback Z_{1} is an important factor which allows better than a 3 to 1 un balance in beta. The primary impedance of the output transformer, selected as 10 K , reflects a $2.5-$ K load to each transistor and helps deliver maximum power out of a 2 N 43 . Both the output and input impedances are 600 ohms ± 10 per cent as required for most telephone systems.
The values of R_{1} and R_{z} give maximum peak-topeak output at a particular gain. The values of 3.3 K and 10 K for R_{1} and R_{2} respectively give best results for a $10-\mathrm{db}$ amplifier. Tests show, however, that these values give quite satisfactory results over the entire gain-spectrum of the circuit.
Fig. 2 shows curves for Z_{e}, Z_{f}, and $R_{i n}$ vs gain. It is a simple matter for the design engineer, requiring a particular amplifier gain to use these curves for the necessary resistance values. It is, of course, obvious that only a few values of gain can be achieved by using standard 5 -per-cent resistors.
However, since high stability is usually a requirement when using this circuit, 1-per-cent resistors are generally used. This allows the selection of nearly any desired gain. It should again be pointed out that the input and output impedances remain fixed at 600 ohms ± 10 per cent.
The amplifier gain stability for varying supply voltages and transistor betas is shown in Fig. 3. This set of curves shows why it is not worthwhile having a larger gain spread than 4 to 20 db .
As the gain is increased, the effect of transistor beta spread is an exponentially increasing function. That is, as the amount of negative feedback is decreased the effect of beta on gain stability increases exponentially. Above 20 db the reduced stability no longer justifies using this type circuit.
Fig. 3 also indicates that, at the low end of the gain curve, increasing the amount of negative feedback no longer improves the stability. The stability of the amplifier for supply voltage variation is a straight line plotted on semi-log paper as

*SHOCKLEY 4-LAYER DIODES used in simple and inexpensive multivibrator circuit for high speed operation over a wide range of temperatures.

A NEW FLIP-FLOP CIRCUIT

A new and simple method for building flip-flop or multivibrator circuits is to use two (just two!) Shockley 4-layer diodes. After all, the 4-layer diode is a solid-state switch...just what's needed in a flip-flop.
Because of low cost, wide range of power handling, and high speed, 4-layer diodes can be used for many flip-flop applications - handling currents from a few milliamperes to 20 amperes...repetition rates as low as 1 cps to hundreds of kc ...voltages from 20 to 200 ...temperature ranges from $-60^{\circ} \mathrm{C}$. to $+100^{\circ} \mathrm{C}$.
There is circuit versatility, too. It can be triggered or free running. It can be designed so positive pulses
drive it to one side, negative pulses to the other; or so each pulse drives it to one side for a specified time then reverts automatically to the other side until the next pulse. Best of all - only 9 components are required...the free running flip-flop has only 7!
Our new Multivibrator Data Sheet will tell you more. Or, maybe you're interested in how the 4-layer diode can simplify and solve other circuit problems, such as pulse modulators, ring counters, alarm circuits, magnetic memory driving, d-c to a-c inverters, oscillators, detonators, or pulse amplifiers. Call your local Shockley representative or write Dept. 7-2.

> Shockley transistor corpopation

Stanford Industrial Park, Palo Alto, Calif.
A SUBSIDIARY OF BECKMAN INSTRUMENTS, INC.

BECKMAN

Simplified A. C. Transfer Standard

RANGE .5 volts to 1200 volts three decade range multiplier.
NULL SENSITIVITY
.04\%/C.M. L \& N Type
2430A Galvo Provided

THERMO-COUPLE TEMPERATURE MEASUREMENT

 in percent of A.C. Input voltage. Calibration on operator to read frequency response in percent without D.C. transfer. Zener regulated supplies eliminate battery drift.FREQUENCY RESPONSE

THERMO-COUPLE
D. C. Reversal Error less than .02\%. Couples plug in replacable $\$ 40.00$. Couple operated in thermally balanced bridge to eliminate temperature drift.

> D. C. TRANSFER

Transfer measurement is made to a calibrated D. C. supply of the same voltage as the unknown A. C. being measured. This eliminates ratio errors in the high frequency multiplier resistors.

Write for complete information. See us in Booth No. 3814 at the IRE SHOW, or at main exhibit in 5 t. Moritz Hotel. volts .02\% to 10 KC Calibration curves provided to 5 megacycles with accuracy of 0.1%

Coaxial Design for Broad Frequency Response and Ease of Operation

The Thermo Couple Potentiometer is calibrated 2 decades switches and 10 turn pot. This allows

Fig. 4. The balanced transistor amplifier designed for a $10-\mathrm{db}$ gain.

- 0 N 0
function of the gain (i.e. the amount of negative eedback applied). The circuit's gain is highly table over a temperature range from -20 to +70 C. Several tests at -40 C show no appreciable hift in gain.
With the indicated values of R_{1} and R_{2}, the naximum output of the amplifier is 1.5 v rms to a 600 -ohm load for any selected gain. For a particular gain, adjustment of R_{1} and R_{8} will result in larger output voltages. Care should be taken not to exceed the dissipation rating of the transistors.

Design Procedure

Assume a $10-\mathrm{db}$ amplifier is required which is to deliver 2.2 v peak-to-peak (0 dbm) to a 600 ohm load.
Looking at Fig. 2, we see that for $10-\mathrm{db}$ gain $R_{e}=200 \mathrm{ohms}, R_{i n}=620 \mathrm{ohms}$ and $R_{c}=9.1 \mathrm{~K}$. These are all standard 5 per cent values but as mentioned before, 1 per cent tolerance resistors are used. Fig. 5 shows that for a β spread of 40 to 125 , we get a gain variation of $\pm 0.055 \mathrm{db}$ and for a battery range of $\pm 10.0 \mathrm{v}$ to $\pm 15.0 \mathrm{v}$, we get a variation of $\pm 0.10 \mathrm{db}$. Excluding resistor variations we now have a circuit designed to give a gain of $10 \mathrm{db} \pm 0.16 \mathrm{db}$.
The completed circuit shown in Fig. 4 has a noise level of -73 dbm with no input but including battery noise. Maximum output voltage is 2.0 v rms. There is no noticeable change in gain over a temperature range of -20 to +70 C .
The frequency response curve is given in Fig. 5. It should be noted that this response, in the lower frequency range, is entirely a function of the transformer used. Measurements show less than 0.5 per cent total distortion at 0.8 v rms and less than 1 per cent at 1.6 v rms with maximum transistor unbalance.

Circuif Limitations

Several limitations exist in the use of this circuit. The battery voltage range is $\pm 10.0 \mathrm{v}$ to $\pm 15.0 \mathrm{v}$. The design curves are given for only 600 ohm input and output impedance. Though the output transformer secondary can be designed for any desired impedance level the input must necessarily be 600 ohms. If an input transformer is used a large part of the circuit advantage is lost.
One other important design consideration is manufacturing tolerance on the transformer. Variations in insertion loss and dc resistance have not been considered in any of the curves or calculations. - ■

References

L. P. Hunter, Handbook of Semiconductor Electronics, \therefore 'cGraw-Hill Book Co.
R. F. Shea, Transistor Circuits, John Wiley \& Sons, Inc. H. Lefkowitz, Transistor AC Amplifier Uses Multiple Feedback, Electronics, May 23, 1958.

Q: Hi. Joe, you're supposed to be the expert on tubes. What's the best tube for a milli. microsecond pulse amplifier?
A: The new CBS 7548 secondary-emission tube. Nothing else can touch it. Do you read me?

Q: You're comin' in loud and clear. Now how about a high-voltage shunt regulator. Any ideas?
A: That's easy. The CBS 6792 is the only answer . . . and it'll handle up to 25 kv . That hold you?

Q: I'll say. Now what about these new framegrid tubes? Are they as good as I hear? And I've been hearing plenty. Is there a good twin triode?
A: Natch! Tune in on the new CBS ECC88/6DJ8; it's a honey.

Q: The boss has a weird idea he can get ten watts Class C out of a T- $61 / 2$ miniature. I don't believe it, even ICAS.
A: What you want, boy, is watts. And what I mean is . . . you want the new CBS 5763.

If you need answers on CBS tubes, call the answer man, your CBS tube representative. You can reach him at your Manufacturers Warehousing Distributor, or at your local CBS Electronics sales office. Call today.

Graphical Solution of the Resonance Equation Speeds Circuit Design

Dr. Phil R. Amlinger*
Epsco Worcester
Worcester, Mass.

"Graphical methods," says Phil Amlinger, "can solve many differential equations in a very simple way." He wrote this article, the first in a series on graphical solution of network problems, to show how easily vector diagrams can solve the resonance equation.

Fig. 1. Development of the vector diagram shows vector differential $\mathrm{df}(\mathrm{a})$ applied to point $f(a)=1$.

Fig. 2. Construction of vector $f(a)_{(a=1 / 8)}=1 /(1+$ il) from the inverse vector $1+i l$.

AT A GLANCE, graphical methods can present a complete picture of a complex function and can obviate tedious computations. Applied to the general resonance equation, one graph can show magnitude and phase angle, real and imaginary part, attenuation and bandwidth.

When Q is greater than 10 , the general resonance curve is closely approximated by

$$
\frac{Z}{Z_{0}}=\frac{1}{1+j \frac{2 \Delta f}{f_{0}} Q}=\frac{Y}{Y_{0}}
$$

where Z is the impedance of a parallel resonant circuit, Y is the admittance of a series resonant circuit, Z / Z_{0} and $\boldsymbol{Y} / \mathbf{Y}_{0}$ represent the normalized impedance and admittance, and the subscript 0 shows resonance.

One can introduce the term $a=\left(\Delta f / f_{0}\right) Q$ where Δf is half the $3-\mathrm{db}$ bandwidth and $Q=$ $\omega_{10} L / R$. In terms of a, one can express

$$
\frac{Z}{Z_{0}}=f(a)=\frac{1}{1+j 2 a}
$$

Vector Diagram Construction
 Needs Three Points On Circle

This expression represents a circle in the complex plane. Two points of the circle can be found easily for the extremes of the parameter $a=0$, and $a \rightarrow \infty: f(a)_{(a=0)}$ and $f(a)_{(a \rightarrow \infty)}=0$.

To obtain the third criterion for the circle one must see how the function behaves near point $f(a)_{(a=0)}=1$. Adding the infinitesimal value $d a$ to $a=0$, gives $d f(a)$, which represents the increase of the function at the desired point $f(a)_{(a=0)}=1$. Differentiating:

$$
\frac{d}{d a} f(a)=\frac{d}{d a}\left(\frac{1}{1+j 2 a}\right)=\frac{-j 2}{(1+j 2 a)^{2}}
$$

yields

$$
d f(a)=\frac{-j 2 d a}{(1+j 2 a)^{2}}
$$

and with $a=0$, one obtains

$$
d f(a)_{(a=0)}=j 2 d a
$$

which is an infinitesimal vector in the direction -i. (See Fig. 1.)
The function crosses the real (horizontal) axis at point $f(a)=1$ at a right angle and vector $-i 2 d a$ is tangent to the circle through points 1 and 0 , with the center at 0.5 on the real axis. Note that $d f(a)$ is considerably enlarged for clarity. For - da one finde $d f(a)_{(n=0)}=+j 2 d a$. The vector differential can be applied to any point $f(a)$, but the one chosen is most convenient. Choosing

$$
a=\frac{1}{2}
$$

gives

$$
f(a)_{(a=1 / 2)}=\frac{1}{1+j 1}
$$

First one draws the denominator, vector $1+i 1$, with magnitude $|1+j 1|=\sqrt{2}$ and phase angle $\varphi=\pi / 4$. (See Fig. 2.)
From Euler's Theorem one can write

$$
\begin{aligned}
1+j 1 & =\sqrt{2}(\cos \pi / 4+j \sin \pi / 4) \\
& =\sqrt{2} \epsilon^{j \pi / 4}=\sqrt{2} \underline{/ 45^{\circ}}
\end{aligned}
$$

which leads to
$f^{\prime}(a)_{(a=1 / 2)}=\frac{1}{1+j 1}=\frac{1}{\sqrt{2}} \epsilon^{-j \pi / 4}=\frac{1}{\sqrt{2}}$ with magnitude

$$
\left|\frac{1}{1+j 1}\right|=\frac{1}{\sqrt{2}}
$$

and phase angle $\varphi=-\pi / 4$. Hence, as the function $f(a)=1 /(1+j 2 a)$ is represented by the circle in Fig. 2, one finds any particular value by drawing vector $(1+j 2 a)$ and then swinging it around the real axis by the amount of its phase angle, thus reversing the sign of φ. The intersection with the circle represents vector $1 /(1+i 2 a)$.

Vector Diagram Shows
 Off-Resonance Effects

Fig. 3 shows a detailed construction of the resonance equation with different values of a. At resonance, $a=0$ and $f(a)=\mathrm{Z} / \mathrm{Z}_{0}=\mathrm{Y} / Y_{0}=1$. The circuit is resistive. Below resonance, $\omega<\omega_{0}$, so $a<0$. For example, $a=-1 / 2$ gives $\mathrm{Z} / \mathrm{Z}_{0}=$ $f(a)=1 /(1-j 1)=1 / 2+j 1 / 2=0.708 / 45^{\circ}$ This indicates that the magnitude $\mathrm{Z} / \mathrm{Z}_{0}=\overline{0.708}$, the real component $=0.5$, the imaginary component $=0.5$. Hence the circuit is inductive with phase angle $\varphi=45 \mathrm{deg}$.
${ }^{\circ}$ Dr. Amlinger is no longer with Epsco Worcester.

Fig．4．Parallel resonance curve shows the magnitude of the normalized impedance．

For $a=0$ and $d a$ in the negative direction， df $(a)_{(a=n)}=+j 2 d a$ which means that the func－ tion runs counterclockwise on the upper semicircle for all negative values of a representing $\omega<\omega_{0}$ ． Hence，below resonance $f(a)$ is inductive，and above resonance，with $a>0, f(a)$ is represented by the lower semicircle so the circuit is capacitive．
Fig． 3 shows immediately that the real compo－ nent is maximum at resonance and that it de－ creases off resonance．The imaginary component is zero at resonance and reaches its maximum for $a=$ $\pm 1 / 2$ where real and imaginary parts have equal magnitude and the phase angle is 45 deg ．At this point the magnitude of the impedance（or admit－ tance）is 0.708 of the resonance value，that is．it is 3 db down．

Design Application Gives Impedance，

Voltage，Phase，Bandwidth，and Q
The magnitude of the normalized impedance

$$
\frac{|Z|}{Z_{0}}=\frac{1}{\left|1+j \frac{2 \Delta f}{f_{0}} Q\right|}
$$

is read from Fig．3，is plotted separately in Fig．4， ogether with a db scale for the relative attenua－ ion．

This，of course，is the familiar resonance curve of a single－tuned LC circuit．The impedance，and therefore，the voltage－decrease off resonance is a function of the detuning $\pm \Delta f$ and the circuit Q ． The condition for $3-\mathrm{db}$ attenuation is a Q－band－ width product

$$
\frac{Q}{f_{0}} b w_{(3 d b)}=\frac{2 \Delta f}{f_{0}} Q=1
$$

where $2 \Delta f$ is the $3-\mathrm{db}$ bandwidth $(b w)$ between the specified impedance vectors，yielding

$$
\frac{Z}{Z_{0}}=\frac{1}{1 \pm j 1}=\frac{1 \mp j 1}{2}=0.708 / \mp 45^{\circ}
$$

One can now construct a chart for a specified attenuation．Again a circle through points 1 and 0 with the center at 0.5 on the real axis represents the function

$$
\frac{Z}{Z_{0}}=\frac{1}{1+j \frac{2 \Delta f}{f_{0}} Q}
$$

Along the real axis a db scale indicates the rela－ tive attenuation．
The particular value is transferred to the circle by means of a compass．The intersection repre－ sents the normalized impedance vector

$$
\frac{Z}{Z_{0}}=\frac{1}{1+j \frac{2 \Delta f}{f_{0}} Q}
$$

for the particular attenuation．
It is now necessary to find the Q－bandwidth product．The reciprocal vector

$$
\frac{Z_{0}}{Z}=1+j 2 \frac{\Delta f}{f_{0}} Q
$$

is found at the ordinate through point 1.0 on Fig． 5．Extending the impedance vector，for example， for $3-\mathrm{db}$ attenuation，till it intersects the ordinate， yields vector

$$
\frac{Z_{0}}{Z}=1+j 1
$$

One can simply read the Q－bandwidth product $2 Q \Delta f / f_{0}$ for the particular attenuation at the ordinate through point 1．0．For $6-\mathrm{db}$ attenuation one reads $|Z| / Z_{0}=0.5$ and $2 Q \Delta f / f_{0} \approx 1.73$ ．For $1-\mathrm{db}$ attenuation $|Z| / Z_{0} \approx 0.89$ and $2 Q \Delta f / f_{0}=$ $1 / 2$ ．The vectors

$$
\frac{1}{1+j \frac{2 \Delta f}{f_{0}} Q} \text { and } \frac{1}{1-j \frac{2 \Delta f}{f_{0}} Q}
$$

are conjugate values or mirror images of each

Why buy a weak link? GUARANTEE RELIABLE CONNECTIONS штн GBTMER:

HEWLETT-PACKARD and other top quality electronic test instrument makers who demand reliability and exceptional performance from their components, specify Gremar because:
GREMAR CONCENTRATES
on RF connectors only focusing unique engineering, production and quality control fa. cilities on standard and special connectors guaranteed to mee your specs.
GREMAR DELIVERS . . stocks America's most complete line of RF connectors and fittings... maintains a shelf stock of more than 500.000 assembled units ... of over 2000 types . . . and $4.000,000$ component parts ready for assemblyl

GREMAR INVITES YOU o evaluate its superior RF stock connectors and its unique ability to engineer units to your needs. Write for literature on all series . . BN, BNC. TNC. C. SC, N, QDL. QDS. SM, HN, LC IT, PULSE - or send us your specs on sp
cial requirements.

Gage calibration prior to checking thread dimensions is just one of 142 separate quality checks Gremar per forms to insure utmost reliability.

MANUFACTURING COMPANY, INC.
Dept. B, Wakefield. Mass., CRystal 9-4580
RELIABILITY THROUGH OUALITY CONTROL VISIT US AT IRE SHOW BOOTH 2217 CIRCLE 75 ON READER-SERVICE CARD

Fig. 5. Design chart and table giving resonant circuit parameters-phase angle, Qbandwidth product, normalized impedance, and attenuation.
other as reflected in the real axis, that is, their magnitudes and real parts are equal but their imaginary parts have opposite sign. Therefore, assuming good symmetry of the resonance curve, one needs only a semicircle to represent Z / Z_{0}.
The final chart, Fig. 5, enables one to determine quickly the bandwidth vs. Q for a specified relative attenuation or vice versa. The values for $2\left(\Delta f / f_{0}\right) Q>1$ are plotted along the abscissa through point 1.0 , to save space. Some examples will demonstrate the usefulness of the chart!

Design Examples With

Single And Cascaded Circuits

- For a single-tuned tank circuit with resonant frequency $f_{0}=1 \mathrm{mc}$ and $Q=150$, what is the 3-db bandwidth?
The chart in Fig. 6 gives the conditions for 3-db attenuation.

$$
\frac{2 \Delta f}{f_{0}} Q=1
$$

Hence

$$
b w_{(3 d b)}=2 \Delta f=\frac{f_{0}}{Q}=\frac{1 \times 10^{6}}{150}=6.66 \mathrm{kc}^{\prime}
$$

$=066$ per cent f_{0}

- For a single-tuned tank, resonant at 1 mc , a $6-\mathrm{db}$ bandwith of $20 \mathrm{kc}\left(2\right.$ per cent f_{0}) is required. What is the required Q ?
For 6-db attenuation, the chart in Fig. 6 shows

$$
2 \frac{\Delta f}{f_{0}} Q=1.73
$$

Hence

$$
Q=\frac{1.73}{2 \Delta f} f_{0}=1.73 \frac{1 \times 10^{6}}{2 \times 10^{4}} \approx 87
$$

- A multi-stage, single-tuned amplifier, resonant at 100 mc , is to have a $3-\mathrm{db}$ bandwidth of 1 mc (1 per cent f_{0}). It has n cascaded stages with $n=$ 3 . What is the necessary Q per stage, and what will be the attenuation and phase shift per stage and for the entire amplifier?

Since the overall attenuation is 3 db , the atenuation per stage is $3 / n \mathrm{db}=1 \mathrm{db}$. For $1-\mathrm{db}$ attenuation, the chart gives

$$
\begin{gathered}
\frac{2 \Delta f}{f_{0}} Q=\frac{1}{2} \\
Q_{\text {ctape }}=\frac{1}{2} \frac{f_{0}}{2 \Delta f}=\frac{1}{2} \frac{1(0)}{1}=50
\end{gathered}
$$

yielding

$$
\frac{Z}{Z_{0(s t a g e)}}=\frac{1}{1 \pm j \frac{1}{2}}=0.89 \angle \mp 26.5^{\circ}
$$

The overall voltage ratio

$$
\frac{E}{E_{0}}=\left(\frac{Z}{Z_{0}}\right)^{3}=\left(0.89 \epsilon^{\mp, 26.50}\right)^{3}=0.708 / \mp 79.5^{\circ}
$$

that is, total attenuation within the required bandwidth is 3 db , and total phase shift is $\pm 80 \mathrm{deg}$.

- Three-cascaded, single-tuned, identical stages have an f_{0} of 70 mc . At $f_{0} \pm 20 \mathrm{mc}$ the attenuation must be 80 db . What must the Q per stage be and the $3-\mathrm{db}$ bandwidth per stage?
The $80-\mathrm{db}$ bandwith is $2 \Delta f=40 \mathrm{mc}$. Hence, the attenuation per stage is $80 / 3=26.66 \mathrm{db}$.

$$
\begin{aligned}
26.66 d b & =20 \log X \\
X & =21.5
\end{aligned}
$$

This gives

$$
\frac{|Z|}{Z_{6(\text { etage })}}=\frac{1}{21.5}
$$

The table in Fig. 6 shows, for a relative attenuation $\geq 20 \mathrm{db}$,

$$
\frac{Z_{0}}{|Z|} \approx 2 \frac{\Delta f}{f_{0}} Q
$$

Hence

$$
\frac{2 \Delta f}{f_{0}} Q \approx 21.5
$$

yielding

$$
Q_{(s t a g e)}=21.5 \frac{70 \mathrm{mc}}{40 \mathrm{mc}}=37.5
$$

and, with the condition for $3-\mathrm{db}$ attenuation of a single stage,

$$
\frac{2 \Delta f}{f_{0}} Q=1
$$

per stage $b u_{(3 d b)}=2 \Delta f=\frac{f_{0}}{Q}=\frac{70 \mathrm{mc}}{37.5}=1.86 \mathrm{mc}$
For convenience, some values of the chart in Fig. 6 are tabulated below it. ■ ■

This dramatic "first" in the manufacture of nickel alloys by Driver-Harris has been achieved by expanded vacuum melting capacity. It is still another example of our continued leadership in producing electrical and electronic nickel alloys of the highest purity.
D-H vacuum melting produces alloys of higher ductility and tensile properties. These are achieved by greatly reducing inclusions, especially oxides and nitrides. Other direct bene-
fits are elimination of gas, not only from the surface but from the entire mass, and general improvement in the electrical, electronic and mechanical properties to meet critical specifications.
For additional information about Karma, Therlo and the other 130 high-nickel alloys manufactured by Driver-Harris, write for a copy of the D-H Alloy Manual.
-T.M. Reg. U.S. Pat, Off.

DRIVER-HARRIS COMPANY

HARRISON 26, NEW JERSEY - BRANCHES: Chicago, Detroit, Cleveland, Louisville

Distributor: ANGUS-CAMP日ELL, inc., Los Angeles, San Francisco - In Canada: The b. GREENiNG wire company, Lld., Hamilton, Ontario MAKERS OF THE MOST COMPLETE LINE OF ALLOYS FOR THE ELECTRICAL, ELECTRONIC, AND HEAT-TREATING INDUSTRIES CIRCLE 76 ON READER-SERVICE CARD

VACUUM MELTED KARMA* High Resistance Wire The temperature coefficient of superior KARMA resistance wire has been improved to less than n til parts per mily
from $-60^{\circ} \mathrm{C}$. to $+125^{\circ} \mathrm{C}$. Higher stability and linearity are added to these important properties.

- Low thermal EMF against copper requaled only by Manganin)
- Improved ductility
- Mish resistance to axidation
- 800 ohms per circular mil 100 t
 VACUUM MELTED THERLO* Glass Sooling Alloy Improved workability is the major result of vacuum molting
THERLO. Whe long established cobalt, nickel, iron alloy THERLO...the long established cobalt, nickel, iron alloy Tor sealing to hard or thermal shock resistant glass.
THERLO al so: THERLO also:
- Produces a permanent vacuum-tight seal with simple - Resisistion mercura
- Is readily machined and tormed-deep drawn or spun
- Can be wolded, soldered, trazed
- $\begin{gathered}\text { Is myailabile as } \\ \text { special shispes }\end{gathered}$

79

Amplitude-Modulation Techniques Class-C RF Amplifiers

N. Wesler and J. Fokine*

Design Engineers Ford Instrument Co. Long Island City, N.Y.

Amplitude-modulation techniques have not received the glamorous fanfare and publicity given to $\mathrm{fm}, \mathrm{ptm}$, pwm, and other more modern methods of impressing intelligence on a carrier. However, the comparatively ancient techniques are still being widely used by the military, industrial and amateur services with satisfactory performance and reliability.

Here is a roundup of the more popular am techniques currently in use.

Fig. 2. Combined plate-screen modulated stage.

Fig. 1. Plate-modulated output stage.

Fig. 3. Screen grid modulation using modulation transformer

Fig. 4. Screen grid modulation with clamp tube.

Fig. 5. Controlled-carrier modulation.

Norman Wesler (at right) and John Fokine (at left) are design engineers who feel that future communication trends will lean towards amplitude modulation techniques combined with single-sideband modes of transmission. ${ }^{\circ} \mathrm{N}$. Wesler is now principal engineer with Budd Lewyt Electronics, Inc., Long Island City, N. Y., and J. Fokine is with Loral Electronics, New York.

Fig. 6. Control-grid modulated stage.

Roundup of Most Popular Arrangements for Amplitude Modulation			
Type of Modulation	Circuif Description	Advantages	Disadvantages
Plate (Fig. 1)	Modulating signal is coupled to the rf load through the modulation transformer.	High plate efficiency	1. Large amount of modulator power required. 2. Bulky, expensive modulation transformer necessary.
Plate-Screen (Fig. 2)	Screen grid is fed from modulation transformer common to plate.	Improved linearity over plate modulation.	Same as plate modulation system.
Screen-Grid With Modulation Transformer (Fig. 3.)	Plate fed from dc supply. Modulation applied to screen electrode through modulation transformer.	1. Relatively low modulator power required. 2. Tank circuit tuning requires simple adjustment.	Low plate efficiency.
Screen-Grid With Clamp Tube (Fig. 4)	Clamp tube acts as dual modulator amplifier and coupling device. Modulating signal varies effective resistance of tube, which, together with resistor R_{d}, determines the screen potential.	1. Eliminates modulation transformer savings in size and expense. 2. Applicable to wideband transmission.	Low plate efficiency.
ControlledCarrier (Fig. 5)	A portion of the modulating signal is fed to the control amplifiers, which rectify, filter and apply to the screen a dc voltage proportional to the modulation level. With no modulation, screen voltage is at a minimum.	1. Low modulator power required. 2. Power is conserved during periods of no intelligence.	1. Low plate efficiency. 2. Additional components compared other screen grid methods.
Control-Grid (Fig. 6)	Modulation transformer secondary varies control grid voltage.	1. Exceptionally low modulation power required. 2. Commonly used in TV transmitters where low power, wide bandwidth signals are handled.	1. Tuning adjustments critical. 2. Low efficiency.

A NEW LINE OF AIE] MICROWAVE COMPONENTS

WAVEGUIDE CRYSTAL DETECTOR MOUNTS

$A E L$ proudly offers a new line of micro. wave WAVEGUIDE CRYSTAL VIDEO DETECTOR MOUNTS specifically designed for the High Tangential Sensitivity that has become the hallmark of A aila

In Canada contact: Conway Electronic Enterprises Regd., Toronto, Canada CIRCLE 77 ON READER-SERVICE CARD

How To Design A Voltage Divider Network Having Constant Input Impedance

Gerald Lang
Electronic Engineer
Airborne Instruments Laboratory
Long Island, N. Y.

Gerald Lang has been engaged In transistor circuit design since he Joined Alrborne Instruments Laboratory. This article is based on some of the work he has done there.

AVOLTAGE-divider network that provides a constant-input impedance can be designed (for many types of equipment) using a one-pole, one-deck, multi-range switch. The input-energy source connected to this network will be unaffected by load variations, and a linear voltage division will result when the switch is moved from range to range.
The switching circuit for n ranges is shown in Fig. 1. When designing the $n^{\text {th }}$ range, however, Fig. 2 is a more generalized diagram.
The input impedance seen by the source E is

$$
\begin{equation*}
Z_{i n}=r_{n}+\frac{R_{N}(R-R N+Z)}{R+\bar{Z}}=r_{v}+R^{\prime} \tag{1}
\end{equation*}
$$

where

$$
R^{\prime}=\frac{R_{N}(R-R N+Z)}{R+Z}
$$

If the following substitutions are made,

$$
\begin{equation*}
\alpha=\frac{R}{Z}, \beta=\frac{R_{N}}{Z} \text { and } \delta=\frac{r_{N}}{Z} \tag{2}
\end{equation*}
$$

then in normalized form:

$$
\frac{Z_{\text {in }}}{Z}=\frac{r_{N}+R^{\prime}}{Z}=\delta+\left[\frac{\beta(1+\alpha-\beta)}{1+\alpha}\right]
$$

On the most sensitive range (contact I^{\prime} connected to contact 1 in Fig. 1), the normalized impedance seen looking into the range switch is:

$$
\begin{equation*}
\frac{Z_{\text {in }}}{Z}=\frac{R}{R+Z}=\frac{\alpha}{1+\alpha} \tag{3}
\end{equation*}
$$

Since the same impedance is desired for any of the n ranges, Eqs. 2 and 3 must be equated. Therefore:

$$
\begin{equation*}
\frac{\alpha}{1+\alpha}=\delta+\left[\frac{\beta[1+\alpha-\beta]}{1+\alpha}\right] \tag{4}
\end{equation*}
$$

Normalizing the input voltage to the transistor amplifier,

$$
\begin{equation*}
\frac{e}{E}=\frac{R^{\prime}}{r_{N}+R^{\prime}} \times \frac{Z}{R-R_{N}+Z} \tag{5}
\end{equation*}
$$

where e / E will be called $1 / q$.
Solving Eqs. 4 and 5 , the values of β and δ can be found. They are:

$$
\begin{gather*}
\beta=\alpha / q \tag{6}\\
\delta=\frac{\alpha-(1+\alpha-\alpha / q) \alpha / q}{1+\alpha} \tag{7}
\end{gather*}
$$

These equations are valid only if $q \geqq \alpha$. If this inequality does not exist, then δ is negative and the solution is an absurdity.
For a four-position range switch with $\alpha=R / Z$ $=3$, the pertinent equations are solved and the normalized results are listed in Table 1.

Example

Suppose this switch is feeding a transistor which has the following hybrid parameters: $h_{t}=$ 1600 ohms, $h_{r}=2.1 \times 10^{-3}, h_{o}=50$ micromhos, $h_{f 0}=50$ and feeding a load of 1000 micromhos. The input impedance and current ratio into the base of this stage (common emitter configuration) are respectively:

$$
\begin{equation*}
Z=h_{1}-\frac{h_{r} h_{f_{e}}}{h_{\mathrm{o}}+G_{L}} \text { and } \frac{i_{b}}{i_{s}}=\frac{R_{\mathrm{s}}}{R_{\mathrm{t}}+Z} \tag{8}
\end{equation*}
$$

With reference to Fig. 3,

$$
\begin{equation*}
R_{s}=\frac{\left(\boldsymbol{Z}_{\text {in }}+r_{N}\right) R_{N}}{Z_{\text {in }}+r_{N}+R_{N}} \tag{9}
\end{equation*}
$$

ELECTRONIC DESIGN • March 16, 1960

SYNCHRONOUS D.C. MOTOR

Globe Industries has developed a control circuit for our d.c. permanent magnet motors which causes the motor to run synchronously with a reference frequency while getting full power from a d.c. source. Thus now you can have. in one package, the high torque per weight and size advantage of our d.c. motors combined with precise speed regulation. The system does not disturb the speed-torque performance of the motor even during starting.
The control is fully transistorized. No contacts or other moving parts are used, so that long reliable speed regulation is assured.
One version of this control, in a two cubic-inch package, provides speed regulation of $+.1 \% /-.5 \%$ over load and/or voltage variations. (The motor runs in exact synch with the built-in reference frequency but the frequency generator also has a $.1 \%$ error over the range $-20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.)

Speed regulation with accuracy measured in parts per million is being approached through development of a very stable separate frequency generator to be fitted into a five cubic-inch package.
We are ready to discuss your application problems. Our wide experience in making motors for literally thousands of military applications-involving the fullest range of environmental requirements-assures you of a quick solution to specific problems. Globe Industries. Inc., 1784 Stanley Avenue, Dayton 4, Ohio, Telephone BAldwin 2-3741.

GLOBE INDUSTRIES, INC. precision mimiature ac. e o.c. motors. actuators. timers. steppers. blowers fans. motorized devices

CIRCLE 78 ON READER-SERVICE CARD

Excitingly Uew!

another achievement of General Instrument Corporation

the industry's most practical package

 reduced to $1 / 10$ conventional size ... and priced as low as $63 ¢!$Here is the most convenient and reliable selenium bridge ever made. Check it over feature by feature and you'll see why..
SIZE $13 / 16^{\prime \prime} \times 78^{\circ} \times 15 / 32^{\prime \prime}$ making it the smallest bridge available $-1 / 5$ to $1 / 10$ the size of conventional devices.
PACKAGE Flat, compact and incredibly sturdy, it has a twist-on lug for solid and simple mounting.
RELIABILITY The selenium cells have no artificial barrier layer thereby reducing aging and high voltage drop.
VERSATILITY Designed to operate off line voltage, the bridge is rated at 155 V rms max., 90 ma Designed to operate of line voltage, the bridge is rated at 155 rms max., ${ }^{\text {D.C. Size, shape and dependability make it ideal for many commercial applications }}$.
PRICE Only 63 s in production quantities, the bridge is practical for many types of equipment where half-wave circuits are now used.

Further technical data is available upon request to Section ED-3

RADIO RECEPTOR COMPANY, INC.
Subsidiary of General Instrument Corporation
240 Wythe Avenue, Brooklyn 11, N. Y., EVergreen 8-6000
general instrument corporation includes f. w. sickles division. automatic MANUFACTURING DIVISION. SEMICONDUCTOR DIIVISION: RADIL RECEPTOR COMPANY, INC.
THE HARRIS TRANSOUCER CORPORATION, MICAMOLO ELECTRONICS MANUFACTURING COR: TME HARRIS TRANSOUCER CORPORATION. MICAMOLD ELECTRONICS MANUFACTURING COR
PORATION AND GENERAL INSTRUMENT- F. W. SICKLES OF CANADA, LTO. (SUBSIOIARIES) Viall un of the ine Show, looth 1210-24

CIRCLE 79 ON READER-SERVICE CARD

Fig. 5. Thévenin equivalent circuits. Range 1 is shown above, Range 2 is shown below.

For the typical small signal transistor selected,

$$
Z=1600-\frac{2.1 \times 10^{-3}(50)}{(.50+1000) 10^{-6}}=1.500 \Omega
$$

This means $R=4500$ ohms in this example. Working from Table 1, the remainder of the switch parameters are computed. These values are shown in Fig. 4
The current going into the base is determined from Eq. 8. Although the value of R_{s} changes for each range, the value of i_{s} correspondingly changes to keep the base current the same. This is seen in the two Thevenin equivalent circuits of Fig. 5, for ranges 1 and 4.

Of major concern is how this circuit would function if a transistor with a different β was substituted in the amplifier. Let us assume a β variation of ± 50 per cent and see how much error this introduces. With a β of 75,

$$
Z=1600-\frac{2.1 \times 10^{-3}(75)}{1050 \times 10^{-6}}=14.50 \Omega
$$

Table 1. For a 4-position range switch (with $a=R / Z=3$), the pertinent equations are solved and the normalized results listed here.

Range	\mathbf{q}	$\beta=\frac{\mathrm{Rn}}{\mathrm{Z}}$	$\delta=\frac{\mathrm{rn}}{\mathrm{Z}}$
1	1	3	0
3	3	1	0
10	10	0.3	0.4725
30	30	0.1	0.6525

Table 2. The pertinent changes due to β variation are shown here.

		β Values		
		25	50	75
Range 1	Zin	1150	1125	1095
	$\frac{\Delta \mathrm{Zin}}{\mathrm{Z}}$	2.22\%	0	2.66\%
	q	1	1	1
	$\Delta \mathrm{E}$	0.012 E	0	0.014 E
Range 2	Zin	1130	1125	1120
	$\frac{\Delta Z_{\text {in }}}{} \mathrm{Z}$	0.445\%	0	0.445\%
	q	2.94	3	3.07
	$\Delta \mathrm{E}$	0.004E	0	0.CO4E
Range 3	Zin	1127	1125	1126
	$\frac{\Delta Z_{\text {in }}}{Z}$	0.17\%	0	0.085\%
	9	9.8	10	10.25
	$\Delta \mathrm{E}$	± 0	0	± 0
Range 4	Zin	1125	1125	1125
	$\frac{\Delta \mathrm{Zin}}{2}$	0	0	0
	q	30	30	30
	$\Delta \mathrm{E}$	0	0	0

and with a β of 25 ,

$$
Z=1600-\frac{2.1 \times 10^{-3}(25)}{1050 \times 10^{-6}}=1550 \Omega
$$

Due to the feedback term, for a ± 50-per cent β variation, the input impedance has a variation of only ∓ 3.3 per cent.
In Table 2, the pertinent changes due to β variation are recorded. The largest change in E due to a change in transistor input impedance is 1.4 per cent and this occurs in Range 1. The values listed in this table are all within slide-rule accuracy and show that the magnitude of the errors introduced decrease as the number of switching stages are increased. ■ ■

3

Sam the design engineer is sure that nothing - but nothing - is going to leak into his treasure chest, because it is well sealed.
He may never have to design another product for Davy Jones locker, but Sam knows that when he's concerned about critical sealing he can rely on Constantin glass-to-metal "leak proof" seals for all his needs - and he is confident that no matter what his requirement - multi-headers, all-in-one assemblies, transistor mounts, covers, single terminals, crystal mounts or all standard type seals - he can specify Constantin for
"Quality with Confidence"

WRITE FOR ADDITIONAL INFORMATION

T:LECTRONIC DESIGN • March 16, 1960

An Industrial Designer Discusses ...

CASES and HOUSINGS

Functional and attractive styling in cases and housings externally reflect the aesthetic touch of the industrial designer. Clever internal schemes, sometimes overlooked, are illustrated and discussed.
(Knobs were discussed in the February 17th issue of ELECTRONIC DESIGN, p 56, Panels in March 2, p 32.)

Paul Wrablica

President
Paul Wrablica Associates
New York, N. Y.

Fig. 1a. The control knob of this thermostat tester is rather close to the heat unit, an undesirable operation factor.

Fig. Ib. By placing the control to the side, operator safety is achieved. An opening in the self-contained handle provides storage for the thermometer during transit.

LABORATORY and production equipment, concealed from all but the engineer and technician, have only recently emerged from the grim, "black-box" look to the sophisticated and functional package which proudly reflects the intricate circuit design enclosed. Consumer-product devices, on the other hand, have been housed in attractive enclosures for some time due to pressures exerted by furious competition.
Major efforts by industrial designers are responsible, to a great extent, for the "new look" in production and laboratory equipment.

Industrial Design Targets

Prime targets for the industrial designer faced with an assignment involving equipment housing are:

- Clean, distinctive styling.-A neat, uncluttered appearance inspires confidence to an unskilled or newly-assigned technician. It also conveys a sense of prestige to the manufacturer as well as the purchaser.
- Convenient accessibility to internal compo-nents.-In the event replacement, repair, or calibration is required, enclosure removal should be rapid and simple.
- Minimum tooling and production costs.-By carefully weighing the feasibility of mass-production techniques, thereby reducing assembly steps and hardware required, substantial cost savings can be realized.
To illustrate typical problems submitted to the industrial designer, several case histories are presented with "before and after" comparisons.

Thermostat Tester

Consider the assignment originally calling for a stainless-steel enclosure to serve as a carrying case for a thermostat tester manufactured by Spencer Thermostat Div., Metals and Controls Corp., Attleboro, Mass.

Minimum tooling costs, ease of assembly, and provisions for the storage of a glass thermometer were the original project goals. After careful study, a completely redesigned product housing was proposed which eliminated the need for a separate carrying case and, at the same time, fulfilled the original requirements.

All existing components were retained but regrouped for improved operator handling. As shown in Fig. 1a, the control knol) in the original

PRECIISON wihume POTENTIOMEIERS

For military and commercial applications. Resolution to 0.05%.
Dielectric strength: 1000 V . ac for one minute a atmospheric pressure

Resistance range: to 100 K ohms. Linearity: (Independent) - 2% standard
1% special
Rotation: Mechanical 360° with stops
available, electrical 320°, min standard, effective $300^{\circ}+5 \%$ standard Mountings: Servo and bushing.

For more performance in less space it's the new Ctarostat Series 57, 1, "precision potentiometers. A precise rotor and brush assemtly used in combination with the exclusive Clarostat "HıLoad" winding element results in a miniature potenti ometer of maximum resolution, stability and reliability. Nickel silver body with stable, thermally compatible cover. Termi nals are exclusive Clarostat positive mechanical internal lockıng type

WRITE FOR COMPLETE DETAILS
Series 57 units available froni your Clarostat Industrial Distributor

CLAROSTAT MFG. CO., INC.
DOVER, NEW HAMPSHIRE
In Canodo. CANADIAN MARCONI CO., LTD, Toronto 17, On•

design was not conveniently accessible and was located rather close to the heat unit. By transfering the control to the side of the case, as shown in Fig. 1b, simpler and safer operation is achieved.

The handle of the new housing is an integral part of the assembly and the hole in the upright provides the protective storage for the accessory thermometer. All wiring is routed through one side of the unit for an improved, uncluttered appearance.

The curve at the top of the housing permits reduction of over-all package height without sacri-

Fig. 2. The original antenna rotator control (a), has been redesigned (b) for ease in assembly (c) as well as styling.
fice in adequate gripping space. Perforations are included for ventilation.

Antenna Rotator

An antenna rotator control, (Fig. D_{a}) manufactured by Crown Controls Corp., New Breman, Ohio, was judged to be unattractive, costly to assemble, and poor in terms of accessibility for repair purposes. Industrial designers were consulted for overall package redesign.

Since the unit is intended for home use rather than laboratory or factory service, a two-tone color

Fig. 3. By shaping the power pack of (a) (left) to follow the body contour, as shown in (b), (right) portability was improved.

scheme in neutral shades of ivory-cream and terra cotta was selected to harmonize with most natural furniture woods.

The dial for the new design, Fig. 2h, is located so as to provide maximum visibility over a wide field of view. The face of the dial is decorative and non-technical to avoid confusion by the housewife and the company name has been given a distinctive and functional appearance. In addition, the new shape is easy to grasp and carry and offers a light, airy appearance when contrasted against the original styling.

Economy and convenience in production and assembly were effected by molding (1) an inexpensive bakelite cradle to support the internal components, Fig. 2c, and (2) a plastic cover permitting rapid accessibility and assembly.

Portable Power Pack

Field technicians complained of aches and bruises inflicted by a poorly packaged power pack. Constructed of heavy-gage metal, the uncompromising metal box, Fig. 3a, bounced uncomfortably against the body during transportation and was awkward to grip.
Goals for redesign included improved appearance, convenience and comfort for the operator, and climination of the dangling electric cord.

As shown in Fig. 3b, the newly styled case is molded of vinyl-type plastic in a modified kidneyshape to conform to the body's contour. No screws

Fig. 4 (a) and (b). The ultrasonic cleaner shown is suitable for d !play in a factory or atop the counier of a fine jewelry stcre.
we needed for assembly-parts snap together securely. The feed cord is neatly wrapped around a spool iacluded as an integral part of the case.

Ultrasonic Cleaner

The final case history illustrates the redesign of an enclosure for an ultrasonic cleaner and drier maker by Acoustica Associates, Plainview, N.Y.
Although primarily intended as an instrument for factories and repair shops engaged in jewelry and metal work, it was nevertheless decided that the finished product should be attractive enough to look well on the counter of a fine jewelry retail shop.

Since cleaning solutions must be replaced regularly without danger of spilling, it was mandatory to consider rapid and simple accessibility to internal components.

As shown in Figs. 4a and 4b, a three-section housing was conceived with the following sections:
(1) A base casting with ventilation slots.
(2) A casting for the control chamber, with a removable cover plate. All electrical components are mounted to the cover plate as a separate subassembly. The cover plate is then simply attached t) the control chamber casting.
(3) A sheet metal wrap-around base firmly lolds the cleaning solution jar and acts as a selfupporting unit when removed from the equipıent. ■ ■

HUGHES

FAMILY OF DIRECT-VIEW STORAGE TUBES

World's most complete line of storage tubes!

TONOTRON * TUBE: displays full range of grey scale images for daylight viewing. Ideal for weather radar, PPI presentations, "B" scan projections and other complex radar systems.
MEMOTRON ${ }^{\text {® }}$ TUBE: displays successive transients until intentionally erased. Permits direct comparison and analysis of wave forms without photography.
TYPOTRON ${ }^{\text {® }}$ TUBE: displays any combination of 63 symbols or characters at speeds to 25,000 per second. Retains presentation until intentionally erased.

	SCREEN DIAMETER	STANDARD PHOSPHOR	deflection
TONOTRON TUBES			
H1021	$3^{\prime \prime}$	P_{1}	Electrostatic
7221	5"	P20	Electrostatic
7222	5"	P20	Electrostatic
7033	5"	P20	Electromagnetic
H1044	$21^{\prime \prime}$	P20	Electromagnetic
H1028	$4^{\prime \prime}$	P1	Electrostatic
H1033	10^{*}	P20	Electromagnetic
H1034	$10^{\circ \prime}$	P20	Electrostatic
H1041	$7{ }^{\prime \prime}$	P20	Electrostatic
H1042	$7{ }^{\circ}$	P20	Electromaonetic
memotron tube			
TYPOTRON 6577	5"	P1	Electrostatic

10 additional TONOTRON tubes and 4 additional TYPOTRON tubes available.
For full and complete information on how Hughes storage tubes may fill your particular needs and applications. write or wire: HUGHES, Vacuum Tube Products Division, 2020 Short Street, Oceanside, California.
For export information, write: Hughes International, Culver City, California.

> Creating a new world with ELECTRONICS
> HUGHES

> ACraft compant
> *Trademark of Hughes Aircrat1 Company

CIRCIE 82 ON READER-SERVICE CARD

How a Digital Servo Loop Operates

Many times, fellow engineers have asked Hayes B. Steinhouser about the digital servo that he is developing.
He concluded that a basic description of just how one of these sampling servos operates would be of wide interest. In this article, Mr. Steinhouser considers a shaft angle repeater. Such a system might be part of a radio repeater link by which aircraft instrument readings could be simultaneously observed at a ground station.

ADIGITAL servo converts a digital number or code group into a corresponding position of an output shaft. This is accomplished by a servo loop which is partly analog (shaft position controller) and partly digital (special purpose computer serving as the comparison element of the loop).
In this device, digital data, representing the desired position of an output shaft, is received and compared with locally generated data representing the actual position of the shaft. The comparison allows control of the output shaft to make its actual position correspond with the desired position.

Actual and Desired Positions Are Compared

 Digitally, Adjustment Is Made by Analog DriveIn brief, register 1 (Fig. 1) receives and temporarily stores a binary code group representing the desired position of the output shaft. Register 2 performs the same function for the actual position of the output shaft. Adder 3 produces a binary number which is the difference between the two. This difference is temporarily stored in the result register 4.

The digital number in register 4 is converted into an equivalent voltage by a digital-to-voltage converter 6. Polarity control 5 makes sure that the polarity of this output from unit 6 corresponds to
the polarity of the digital difference stored in register 4.

The analog voltage from 6 is then amplified in servo amplifier 7 in order to drive servo motor 8 . This motor rotates the load and the digital shaft encoder 9 in a direction to make the position of output shaft 10 coincide with the command position, closing the loop.

Command and Actual Shaft Position Encoded af Sampling Rate

Let us look more closely at the operation of the special purpose digital computer that forms part of this servo system. The digital command received by register 1 is in the form of a natural binary code group. The code group of digital signals recurs at a chosen sampling or repetition rate. This sampling rate is governed by programming pulses. The register is thus periodically cleared to receive and temporarily store successive code groups. Each digital signal corresponds to an instantaneous position of the command.

Similarly register 2 receives and stores for an interval successive code groups of digit signals, each corresponding to an instantaneous position of the output shaft. The digit signals received from the digital shaft encoder might be either in natural binary code or in the cyclic binary code. The cyclic binary code (or a gray code) is fre-
quently used when encoding a shaft position to reduce reading errors. In this code, an additional unit for translating from cyclic into natural binary coding is required. The number in register 2 must be in natural binary, since the computer operations are performed in natural binary.

Difference is Defermined by Adding The
 \section*{Complement of Actual Shaft Position}

The difference between two numbers could be obtained in adder 3 either by subtracting the second from the first or by adding the complement of the second to the first. However, the process of addition is simpler to accomplish in a computer than that of subtraction. Consequently, an adder is used in unit 3 , and the number required in register 2 is the complement of the binary number representing the output shaft position.

One way of obtaining this complement would be by reading out of the digital encoder 9 the binary number representing the output shaft position and then complementing this number by an operation in a computer. However, it is usually simpler to arrange the shaft encoder 9 to read out the complement of the number representing output shaft position so that no additional complementing operation is required. Simply reversing the direction of rotation of the shaft encoder will give a complement read out.

ANALOG COMPONENTS

Digital servo loop is partly special-purpose digital computer, partly analog drive.

The addition operation is initiated and carried out by program pulses supplied to the adder and to registers 1,2 , and 4 . The difference or result produced by adder 3 is in the form of a code group of digits in natural binary code. This result is received by register 4.
The result represents the numerical value of the difference between the numbers which were in registers 1 and 2 at the start of the operation. The result is next transferred to a storage register in the digital-to-voltage converter (unit 6). This unit produces an output voltage proportional to the numerical value of the binary digital input fed into it.

Polarity Is Defermined By The Most Signifi-
cant Digit in the Difference
How the polarity is determined can be seen from two numerical examples. First let the number in the command register be 11 which corresponds to 1011 in the natural binary code. Let the number which represents the output shaft position be 6 . This is 0110 in natural binary. In this case, the cummand number is larger than the shaft position number.
Because the number required in register 2 is the complement we take the complement of the outp it shaft position 0110. This is done in binary a ithmetic by changing all ones to zero, all zeros
to ones and adding one as follows:

$$
\begin{array}{r}
1001 \\
0001 \\
\hline 1010
\end{array}
$$

This is the number which appears in register 2.
We next add the numbers in register 1 and register 2 to obtain a result for register 4 as follows:

$$
\begin{array}{r}
1011 \\
1010 \\
\hline 10101
\end{array}
$$

The numerical value of the result is obtained from the first four digits (starting from the right or least significant digit). In this case it is 0101 which corresponds to 5 in the decimal code, the correct difference between 6 and 11 .

The left hand or most significant digit in the result is a 1 in this five-bit word. A 1 always occurs in the furthermost left digit when a positive result occurs, corresponding to a command position higher than the shaft position number.

Difference Must be Complemented When Negafive Result Is Indicated

For the second example let the number in the command register be 6 (0110) and the number representing output shaft position be 11 (1011). Here the command number is lower than the shaft

\section*{| DOCROWAVE CO., Inc. |
| :--- | :--- | :--- | :--- |
 manufacturers of a complete variety of standard
 microwave test equipment and components.
 is pleased to announce
 the addition of a new and complete line of
 }

which include the following:

adapters	signal samplers	loads	tees
test horns	crystal detector	phase shifters	transitions
attenuators	mounts	slotted lines	tuners
bends	terminations	switches	wave meters
twists			
These units will be supplied in the following EIA designated tubing sizes:			
WR77, WR975, WR1150, WR1500, WR1800, WR2100, WR2300.			

SEE US AT THE I.R.E. SHOW—BOOTHS $2241-2243$

NEW DEVELOPMENTS of Spectra Electronics Corp.

 250 East Third Street, Mount Vernon, N. Y.(1) Ultraviolet pulsed energy systems fea. turing solar blind, millimicroseconds reso. Iution; (2) ultraviolet density meter featur. ing direct reading and high sensitivity; and (3) non-gyroscopic pitch and roll stabilizer featuring no moving parts, self-powered.
On view at the I.R.E. Show - booths 2241-2243

WRITE TODAY for your copy of the latest Douglas cata log featuring more than 1,500 standard microwave components-more than any other source in the field.

MICROWAVE CO.IINC.
Dept. c. 252 EAST THIRD ST, MT. VERNON, N. Y. CIRCLE 83 ON READER-SERVICE CARD

vcitage converter 6.
Alternatively the complement may be obtained by merely inverting all digits in the result register, (all l's to 0's and all 0's to l's) without adding a 1 . The 1 is then added effectively by inclining an additional voltage equivalent to one unit in the output of the digital voltage converter whenever the converter output is negative.

Shaft Position is Sampled, Corrected to One Significant Digit af Sampling Rate

In the special purpose digital computers, then, we have produced a voltage output which is proportional to the difference between the command position and the output shaft position, and whose polarity depends on whether the command position and the output shaft position and whose polarity depends on whether the command position number is greater or lesser than the shaft position number. This voltage, amplified servo amplifier 7, drives servo motor 8 . The motor turns the digital shaft encoder 9 and the output shaft 10 in a direction to correspond with the command. The complete program of operations is repeated at the chosen sampling rate. Typically this rate might be twenty times a second.
The command and existing positions are therefore compared say twenty times a second and a correcting voltage developed corresponding to their difference. As long as an error of even one least significant digit exists between the command and existing positions, a voltage is produced which will cause the servo to drive towards coincidence.

Shaff Encoder Reconverts Shaft Position To Digital Form for Computing
The digital shaft encoder 9 is geared to the output shaft which is being controlled. It represents shaft position by a digital number which varies from 0 to the 0 deg position up to a maximum number (just prior to the 360 deg shaft position) which is dependent on the number of digits used.
With eight digits this maximum is 255 , since with eight digits there are 2^{8} or 256 different increments or shaft positions and these are numbered from 0 to 255 (rather than 1 to 256). Similarly with a nine digit system $\left(2^{9}=512\right)$ the maximum number would be 511. The command number varies between the same limits as the indicated shaft position.
In a typical system the servo amplifier 7 , servo motor 8 , and digital shaft encoder 9 , might be packaged in an instrument case with the indicator dial mounted on the output shaft 10 . The remaining units shown in Fig. 1 would be part of a specal purpose computer. Time sharing techniques are usually employed so that one computer may te used to close the loop for digital servos. - =

RHEEM
one-source ordering convenience offers you industry's most complete line of high quality SILICON DIODES
selection broadest line of JEDEC subminiature glass silicon diodes including general purpose, high conductance, switching and low power rectifier types.

Military Types Offered

Jan Types: 1N457
1N458
1N459
Signal Corp Types: 1N643
1N658
1N662
1N663
Delivery Immediate from Stock

SEE RHEEM AT THE I.R.E. SHOW
BOOTHS 2925-2926
AISLE 900, SECOND FLOOR

RHEEM SEMICONDUCTOR CORPORATION
A SUBSIDIARY OF RHEEM MANUFACTURING COMPANY
Dept. B3, P. O. Box 1327, Mountain View, California - YOrkshire 8-9211
Regional Sales Offices
WESTERN: Los Angeles- 5150 Wilshire Boulevard San Francisco-327 Moffett BIvd., Mountain View, Calif. CENTRAL: Minneapolis-6519 Nicollet Avenue

Detroit-18450 Livernois Avenue
Chicago-1919 N. Harlem Avenue
Chicago-1919 N. Harlem Avenue
EASTERN: Englewood, N. J.-610 East Palisade Avenue

Rheem facilities totaling 150,000 sq. ft .
CIRCLE 85 ON READER-SERVICE CARD

ELECTRONIC DESIGN • March 16, 1960

A Methodology for Interference Prediction

W. B. Floyd
Branch Leader of Systems Research and Evaluation
Melpar, Inc.
Boston, Mass.

Abstract

A description of a methodology for defining interference, constructing a model, and then utilizing coarse data as a means of predicting interference.

Since Jolning the Mel par Research Division in 1956, Bill Floyd has been concerned walua the design and evaluation of communication, systems. He is currently involved with studies of interference problems plaguing airborne weapons systems.

THE ULTIMATE goal of interference-prediction techniques is to foresee the occurrence or absence of man-made interference in a system, prior to its development and construction, by evaluating its design characteristics. An ideal inter-ference-prediction technique should provide design and system engineers with a set of rules for placing devices in space and frequency and controlling their operation so that an interferencefree situation results. Although the current capability of interference specialists fall somewhat short of this target, several promising approaches, one of which is described, are being developed and steadily improved.

Definition of Interference

In attempting to predict the extent of interference which may occur in a system (or device), it is first necessary to determine an adequate definition of what is meant by the occurrence of interference in that system. A widely accepted general definition is that interference occurs at a particular point in a system when the performance at that point is degraded more than some tolerable amount. This basis for defining interference inherently involves some measure of system performance, so that there may be many different measures of interference which could be utilized in a given situation.

In a binary digital communication system, for instance, a conventional measure of performance is the probability of error in a single digit, and
when this probability reaches a certain level, say 10^{-3}, interference may be said to have occurred.
Once an acceptable definition of interference has been determined, it is convenient conceptually (if not mathematically) to construct a model of the system in terms of parameters which reflect the way in which the system behaves and its performance in the expected environment.
For a system of transmitters and receivers, the problem of determining this model could take the following general form. A function, f_{k}, of certain system and environmental characteristics, x_{1}, x_{2}, . . ., x_{n}, must be determined such that if f_{k} takes on any value within a region $R_{k r}$, then interference occurs in the $k^{t h}$ receiver; otherwise interference does not occur in the $k^{t h}$ receiver. In symbols,
$f_{k}\left(x_{1}, x_{2}, . ., x_{n}\right)\left\{\begin{aligned} & \epsilon R_{k I}= \text { Interference occurs in } \\ & \epsilon^{\prime} R_{k l}= \text { the } k^{\text {th }} \text { receiver } \\ & \text { occur in the } k^{\text {th }} \text { reces not } \\ & \text { not }\end{aligned}\right.$
Each region of interference, $\boldsymbol{R}_{k I}$, can be determined, as mentioned, from a designation of intolerable system degradation due to the presence of undesired signals at the output of the $k^{\text {th }}$ receiver. The characteristics $\left\{x_{i}\right\}(i=1,2, \ldots ., n)$ are parameters which describe portions of a system of transmitters, receivers, antennas, or the environment in which the system is operating. For convenience, the function f_{k} can be determined so that $R_{k I}$ consists of values of f_{k} less than some threshold, A_{k}. The parameter A_{k} is sometimes
called the "performance threshold," or "interference criterion."

Initial Prediction Steps

The parameters $\left\{x_{i}\right\}$ are the fundamental building blocks of the model and must be sought as soon as an acceptable definition of interference is determined. This quest must be conducted carefully; otherwise it may produce only a paper prediction capability, that is, a capability of answering interference questions only if certain things are known, which are never known in practice.
According to the example given above for a digital communication system, it is only necessary to determine the probability of single digit error and compare this figure with the performance threshold. Thus, the error probability is the only

Fig. 1. Idealized model of an interference problem encountered in a communications system.

Fig. 2. Probability of interference as a function of relative receiver gain.
parameter required for predicting interference. Naturally, this parameter is not known per se and therefore the search for parameters, the $x_{j}^{\prime} s$ in Eq. 1, must proceed under certain constraints; namely, each of the x_{j} 's should be determinable through either theoretical calculations, estimation on the basis of past experience, or measurement through some known technique. These "conditions of adequacy ${ }^{-1}$ which must be satisfied are many times quite difficult to meet.
Usually a detailed design of the system must be studied, and a long list of characteristics set up before the performance of the system can be determined. In addition to intimate knowledge of the way in which a system handles desired (and undesired) inputs, a rather detailed description of the undesired signals which could lead to interference must be obtained.

Idealized Model

As an illustration of a rather idealized model, consider the diagram in Fig. 1 which depicts a communication system consisting of a transmitter, transmitting antenna, receiving antenna, and receiver. Also shown in the diagram is an undesired transmitter with its antenna. Assume, for example, that interference will occur at the receiver whenever the total power measured at the output of the receiver, with the desired transmitter turned cff, exceeds by some stated amount the total output with the desired transmitter turned on. This definition of interference is widely used and can
be expressed in symbols as

$$
\begin{equation*}
\frac{\mathrm{S} \otimes I}{I}<A \Rightarrow \text { Interference Occurs } \tag{2}
\end{equation*}
$$

where

$S \otimes I=$ the power at the receiver output with the desired and undesired transmitters turned on.
$I=$ the power at the receiver output with the desired transmitter turned off.
$A=$ the threshold which defines the interference region.
As with the probability of single digit error, this power ratio can conveniently be learned prior to installation of the communications system in the presence of the undesired transmitter only through measurement or calculation of other subordinate parameters. If the passage of signals from the output of the two transmitters to the output of the receiver can be considered a linear operation, then the interference model in Eq. 2 can be written as

$$
\begin{equation*}
\frac{S}{I}<A=>\text { Interference Occurs } \tag{3}
\end{equation*}
$$

where

$$
S\left\{\begin{aligned}
= & \text { the total receiver output power with only } \\
& \text { the desired transmitter turned on. } \\
= & \int S_{D}(f) C_{D}(f) R(f) d f
\end{aligned}\right.
$$

$I\left\{\begin{array}{l}=\begin{array}{l}\text { the total receiver output power with only } \\ \text { the undesired transmitter turned on. }\end{array} \\ =\int S_{u}(f) C_{u}(f) R(f) d f\end{array}\right.$
The functions $S_{D}(f)$ and $S_{u}(f)$ denote desired and undesired transmitter output spectra, $C_{D}(f)$ and $C_{u}(f)$ denote the coupling between the output terminals of the receiving antenna and the input terminals of the desired and undesired transmitter antennas, respectively, and $R(f)$ represents the gain and selectivity curve for the receiver.

For many situations, these functions will be known or determined as a matter of course in system design. Of course, the assumption of linearity everywhere is a severe departure from reality and therefore subject to question. For ininstance, most receivers inherently involve nonlinear stages for detection. However, for certain types of undesired signals, the output signal-tonoise ratio will very nearly be the same as that of the last if stage, since this stage is narrow band. Therefore the linear model can reasonably be applied in some situations.

Classification of Data

Unfortunately, even when an adequate description of a system, its interference susceptibility and environment, are available in terms of appropriate parameters, the timely prediction of interference may still constitute a large problem. Some of the parameters, while determinable at some time in

PRECISION SWEEP FREQUENCY GENERATOR model 707-*

Featuring...variable-rate, all-electronic sweep with plug-in oscillators covering 2 to 265 mcs.

The ultra flat sweep generator model 707** is a precision instrument with an rf output that is flat within $\pm 5 / 100$ of a db over highest single octave. Particularly adaptable for use with an X-Y plotter, the 707-* features: plug-in oscillator heads; high output power (+20 dbm below 150 mcs .); variable sweep rate (60 per sec. to 1 per 2 min .); and harmonics down 40 db over highest single octave (down 30 db over the entire range).

*Order Model 707-1, 2 , or 3 shipped respectively with oscillator heads H-71 ($4-100$ mcs.), H-72 (12-220 mcs.), H-73 ${ }^{(2-50} \mathbf{5 9 5} \mathbf{~ m c s}$.)
Model 707-4 shipped with H-74 (any single octave $2-265 \mathrm{mcs}$.) special order
$\$ 845.00$ each
Additional oscillator heads for any model 707
H-71, H-72, and H-73.
$\$ 250.00$ each
H-74 special order
$\$ 275.00$ each
Write for catalog and technical Newsletter series on Measurements By Comparison using sweep frequency techniques. Prices and data subject to change without notice.
electronics corporation, Industrial Products Division Dept. ITE. 7

The Jerrold Building, Philadelphia 32, Pa Jerrold Electronics (Canada) Limited, Toronto Export Representative: Rocke International, New York 16, N. Y.

VISIT US AT THE IRE SHOW • BOOTH 3056 CIRCLE 86 ON READER-SERVICE CARD
the development of a system, may not becon e known precisely until a short time before interference would actually be experienced, that is, tno late to be of value except to indicate the poirts at which the interference could be controlled. It is important, therefore, to utilize whatever information may be available in the way which provides the best current estimate of the interference to be expected at any stage of design.
In order to simplify the treatment of equivocal or exiguous data, it may be possible to classify the different ways in which any member of the set of parameters $\left\{x_{i}\right\}$ may be known. One method is to partition the possible information which may be obtained on each of the parameters into three types:
(1) The value of the parameter given exactly.
(2) Probability distribution of the parameter given.
(3) Several (or a range of possible values of the parameter given.
Once the type of data available on each parameter is known, it is possible to state the questions which may be answered using this data. If considerable Type 1 information is available on the $\left\{x_{l}\right\}$ in a complicated model, then most questions dealing with interference (concerning the extent, transmitter source, particular transmitter harmonic, etc.) can be answered. If only Type 2 data is available, then questions can only be answered in probabilistic terms. Type 3 information, on the other hand, could be used to obtain accurate answers, but would require considerable effort to examine all possible combinations of values for the $\left\{x_{i}\right\}$.
In the design stage, mostly information of Types 2 and 3 is available; sometimes, decisions are reached on the basis of average or extreme values, using these values as if they actually represent Type 1 information. The use of conservative "worst case" values, or the well known "educated guess" for nominal parameter values is not uncommon at all. This approach has many pitfalls, notably the fact that the average value of a function of random variables is not the same as the function of the average values of the variables. Also the use of worst values can easily result in costly over-design. It is possible, however, to retain, and indeed emphasize, the equivocation of data when presenting an answer to a problem based on this data.

An estimate of a parameter, x_{j}, when accompanied by the estimated accuracy, sometimes constitutes enough information to ascribe to the true value of the x_{j} a particular random behavior. Once the particular random variation can be established for each x, represented by Type 2 information, in principle the random variation in the function f_{k} can be determined. A probability of interference can then be obtained by noting the CIRCIE 87 ON READER SERVIIE CARD ${ }^{7}$ ELECTRONIC DESIGN • March 16, 1960
parcentage of cases f_{k} exceeds the threshold, A_{k} As an illustration, consider again the linear nodel described by Eq. 3, with the assumptions

$$
\begin{aligned}
C_{D}(f) & =C_{D} \\
C_{u}(f) & =C_{u} \\
B_{D} & =S_{D}(f) R(f) d f \\
B_{u} & =S_{u}(f) R(f) d f
\end{aligned}
$$

Eq. 3 can now be rewritten as
$A B_{u} C_{u}>B_{D} C_{D}=>$ Interference Occurs (4) Suppose, for example, that the parameters A and C_{D} are known precisely, only the maximum and minimum values (C_{1} and C_{o}) of C_{u} are known, and it is desired that minimum value of the relative gain in the receiver, $G=B_{D} / B_{u}$, be determined such that the probability of interference is no more than α. Presuming that all values of C_{u} between C_{0} and C_{1} are considered equally likely to occur, then the probability of interference α, can be written as

$$
\left\{\begin{array}{l}
=P_{\cdot}\left\{C_{u}>\frac{C_{D} G}{A}\right\} \\
=1 \text { if } C_{0}>\frac{C_{D} G}{A} \\
=0 \text { if } C_{1}<\frac{C_{D} G}{A} \\
=\frac{1}{A}\left(\frac{A C_{1}-C_{D} G}{C_{1}-C_{0}}\right) \text { if } C_{0} \leqslant \frac{C_{D} G}{A} \leqslant C_{1}
\end{array}\right.
$$

The minimum acceptable relative gain in the receiver, G_{m}, can therefore be written as

$$
G_{m}=\frac{A}{C_{D}}\left[C_{1}(1-\alpha)+\alpha C_{\mathrm{D}}\right] .
$$

The curves in Fig. 2 show the relationship between the probability of interference and the relative gain in the receiver for certain values of the maximum and minimum undesired antenna coupling. The uncertainty attached to the parameter C_{u} is reflected in the way these curves answer the interference question initially stated.
This example, while idealized, serves to illustrate the methodology of defining interference, constructing a model, and utilizing coarse data as a means of predicting interference. Its application to several communications and radar systems has pointed up the current lack of adequate models for describing the passage of signals through devices and the predominance of equivocal and sketchy data on environment. Both of these areas are receiving more attention, and the current anxiety over potential interference probIf ms will very likely be alleviated through the development of new tools for analysis and des'ription. Meanwhile, coarse techniques such as the one outlined above can be used to avoid many stuations in which interference could arise. $=$.

"BLOWING YOUR STACIC" OVER ELECTRONIC CONTROL? LET UAP HELP YOU!

UAP has the specialized capabilities needed to analyze your over-all problem; apply the system technique; integrate components and subsystems into complete operational systems to achieve specific functions such as temperature, mechanical and mass flow control.

Example: UAP was assigned the expendable refrigerant system responsibility for an unmanned supersonic target drone built by Radioplane Division of Northrop Corporation. This cooling system consists of an electronic control assembly that maintains a constant mass air flow, regardless of pressure variations. It also schedules the quantity of anhydrous ammonia expendable refrigerant from the pressurized ammonia tank. Constant temperature is thus maintained to the compartments which house electronic flight-controlling equipment.

Send us your requirements.
UNITED AIRCRAFT PRODUCTS, INC., Dayton, Ohio
(Contractual Engineering Offices: California, Gardena FA I-4810; New York City MU 7-1283; Dayton, Ohio BA 4-3841; Canada, Montreal OX 7-0810) WESTERN DIVISION, UAP, INC., Box 20, Gardena, California

U-524133-1 Expendable Refrigerant System

CIRCLE 88 ON READER-SERVICE CARD
Electronic DESIGN • March 16, 1960

W. M. Rogers, H. L. McKinley, C. E. Blakely
Georgia Institute of Technology
Atlanta, Ga.

Nonlinearities in the input stages of a receiver produce intermodulation products when undesired signals are picked up. By inserting data from simple measurements into the nomographs presented, the frequency and tolerable limits of undesired signals can be determined to aid in the selection of operating frequencies for communication systems.

IN
NTERMODULATION is one of the most serious forms of internally generated interference in communications receivers. The seriousness of the problem results from the fact that reception of a desired signal may be obscured by the intermodulation of other signals which are several channels away. Therefore, the possibilities of intermodulation should be considered whenever operating frequencies are being selected for communications equipment, especially if the portion of the frequency spectrum under consideration is already crowded.

Theory and Prediction

Whenever two or more signals are mixed in a nonlinear device, additional frequency components are generated. The input stage, or stages,
or a radio receiver usually have sufficient nonlinear action to produce these new frequency components, or intermodulation products, from undesired signals entering the receiver. If the frequency of one of these products falls at the tuned frequency of the receiver, it is amplified and detected in exactly the same manner as if it were a cochannel signal. It is evident that an intermodulation product falling at or very close to the frequency of desired reception may render reception impossible due to heterodynes and cross-modulation with the desired signal.
The general frequency relationship that is fulfilled when intermodulation occurs at the tuned frequency of the receiver is

$$
f_{o}=\mid m f_{a} \pm n f_{b} \pm p f_{c} \pm \ldots .
$$

where f_{o} is the tuned frequency; $f_{a}, f_{b}, f_{c}, \ldots$ are the frequencies of the interfering signals present at the input; and the coefficients $m, n, p \ldots$ are integers ($0,1,2,3$, etc.). The order of the intermodulation product is defined as the sum of the coefficients ($m+n+p \ldots$. .
Intermodulation caused by only two signals is by far the most prevalent type. Furthermore, only second- and third-order intermodulation have been found to cause significant receiver interference, and these are significant only for the negative sign in the frequency expression shown above. Then the most important forms of intermodulation are defined by
$f_{o}=f_{b}-f_{a}$ (second order), and
$f_{0}=2 f_{a}-f_{b}$ (third order).
In these expressions f_{0} is taken to be the higher of the two interfering signal frequencies. The second-order expression shows that either f_{a} or f_{b}, but not both, may be close to f_{o}; but for thirdorder intermodulation it can be seen that both f_{o} and f_{b} may be near f_{o}.

Measurement Sefup

The conventional laboratory test for receiver intermodulation uses the setup shown in Fig. 1. With the receiver tuned to a certain frequency, f_{0}, the signal generators are tuned to a pair of frequencies, $f_{a_{1}}$ and $f_{b_{1}}$, which fits Eq. 2 or 3. Then the generator output voltages, E_{a} and E_{b}, are adjusted to produce a specified receiver output indication. E_{a} and E_{b} are maintained equal for the measurement. The measurement may be repeated

Fig. 1. Test setup for measuring receiver intermodulation characteristics.
for various frequencies f_{a} and f_{b}, with the specified receiver output indication as a fixed parameter. The set of points obtained defines a curve which indicates the intermodulation characteristics of the receiver as a function of the separation between the interfering signal frequencies and the receiver-tuned frequency.
It is necessary in making these measurements to insure that the signal generators themselves are not contributing to the intermodulation. Most commercial generators, when their outputs are connected drectly in parallel, have large enough internally generated intermodulation products to cause erroneous test results. For this reason it is advisable to provide rf isolation between the two generators.
In the frequency range below vhf, a bridge network may be used as an isolation device. For vhf and uhf, a tuned transmission line device, such as a hybrid ring, would be used. Either the bridge or the hybrid ring can provide as much as 40 to 60 db of isolation with a 6 - to $10-\mathrm{db}$ insertion loss. The hybrid ring has a disadvantage, however, that it is a narrow-band device and can be used only over a limited frequency range.

Typical Curves

Fig. 2 shows second- and third-order intermodulation curves that are representative of those obtained by the procedure described. The output parameter for these curves is a $6-\mathrm{db}$ audio $(\mathrm{S}+\mathrm{N}) / \mathrm{N}$ ratio, but the curves would be identical in shape even if some other output parameter had been chosen. To obtain these data, one signal generator was unmodulated, and the other was modulated 30 per cent at 400 cps .
A large number of hf and vhf receivers, both am and fm , of various types have been tested, and it has been found that all have smooth intermodulation curves of the characteristic shapes illustrated in Fig. 2. The absolute voltage levels, of course, vary from set to set, and the slopes of the curves of two different receiver types may be somewhat different.
Fig. 3 represents a typical plot of the intermodulation characteristics of two different receivers tuned to the same frequency. It is seen that receiver " A " is more susceptible to intermodulation at small values of Δf than receiver " B." However, the "close-in" slope of the curve for receiver " A " is steeper, and receiver " A " is less susceptible for large Δf than is receiver " B." It would l.gically be concluded that receiver " A " is the letter of the two with respect to intermodulation, cther things being equal.
In the practical use of curves of this type to predict intermodulation characteristics for a part cular receiver or to compare receivers in this res ject, a consideration of the close-in slopes and a symptotic levels is generally sufficient. These are

Fig. 2. Receiver intermodulation for $6 \mathrm{db}(S+N) / N$ ratio for an am receiver tuned to $f_{0}=10.000 \mathrm{mc}$.
indicated in Fig. 3 by dashed lines. It is necessary to measure only three points on each curve to adequately define its slope and asymptote. For example, the slopes and asymptotes of the secondand third-order curves of Fig. 2 could have been defined by points measured at $\Delta f= \pm 500 \mathrm{kc}$, and $\pm 4000 \mathrm{kc}$.
It has also been found that the intermodulation characteristics of a particular receiver vary little over a wide range of tuned frequencies. Thus, if the characteristics of a set as measured at a tuned frequency of, say, 10 mc , these data may be applied to estimate the characteristics from perhaps 5 to 20 mc with good accuracy.
The single set of curves obtained for equal interfering signal levels can also be used to estimate the effect of unequal signal levels. A second-order
intermodulation product is produced almost entirely by the second-order or square-law nonlinearity of the vacuum tube, or tubes, in which it is generated. (Higher even orders of nonlinearity also make contributions, but these are usually negligible.) Similarly, third-order intermodulation is contributed mainly by the third-order nonlinearity, although negligible contributions are made by higher odd-order nonlinearities. Therefore, to excellent approximations,

$$
\begin{align*}
& E_{2} \propto E_{E} E_{b} \text { (second order), and } \tag{4}\\
& E_{3} \propto E_{\sigma} E_{b} \text { (third order), } \tag{5}
\end{align*}
$$

where E_{2} and E_{3} are the second- and third-order intermodulation product voltages, respectively, and E_{a} and E_{b} are the voltages of the signals f_{a} and f_{b}.
The equations given above are borne out very

Fig. 3. Comparison between intermodulation characteristics of two different receivers.

UNIQUE

POTENTIOMETER permits MANY METHODS
OF MOUNTING l^{*}

For Their Numerous Applications

The Handley Wee Pot ${ }^{\circledR}$, because of its mounting flexibility, unusual configuration and long leads, can be mounted in many ways...laid down, vertical, or even "suspencled" above the board ${ }^{\circ}$. Furthermore, exacting engineers like Wee Pot's extreme accuracy, low impedance, and frecdom from back-lash. Under 900 KC , inductive reactance is not measurable. The Wee Pot can be sealed to meet MIL-E-5272A.

well experimentally, except in exceptional cases where one of the interfering signals is strong enough to cause desensitization of the receiver, or otherwise change the operating point of the stage, or stages, in which the intermodulation is generated.
It is a simple matter to use an extrapolation technique based on these equations. The nomographs of Fig. 4 are a graphical representation of the equations and are a convenient aid in applying them. Power scales as well as voltage scales
are included on the nomographs for convenient reference and use. The two sets of scales are directly compatible if the impedance level is 50 ohms.

Practical Examples

The following numerical example is an illustra tion of one possible use of the nomographs. Sup pose that it is desired to receive a signal at 11.42 mc whose estimated mean signal strength i $100 \mu \mathrm{v}$. Assume that Fig. 2 represents the maxi
 as well as voltage scales are included to further decrease calculation time.
mum tolerable amount of intermodulation interference to a desired signal of $100 \mu \mathrm{v}$ level, at a receiver tuned frequency 10.000 mc . (This set of data is sufficiently accurate since the tuned frequency of interest is close to 10 mc .) Now suppose that a strong nearby transmitter operating at 23.140 mc supplies a $200,000 \mu \mathrm{v}$ signal into the receiving antenna.
The problem is to determine (1) the frequencies of signals in the range below 30 mc which, when combined with the strong local signal, would produce second- and third-order intermodulation products at 11.420 mc ; and (2) the level of each of these signals that would produce the maximum tolerable amount of intermodulation interference.
To solve the problem, first consider secondorder intermodulation. Substituting $f_{o}=11.420$ mc and $f_{b}=23.140 \mathrm{mc}$ into Eq. $2, f_{a}=11.720 \mathrm{mc}$. The next step is to use the graph to find the equalsignal level that produces the specified amount of intermodulation. For $f_{a}=11.720 \mathrm{mc}, \Delta f=f_{a}-f_{0}$ $=300 \mathrm{kc}$. The curve shows the level for this value of Δf to be $1400 \mu \mathrm{v}$. Now, referring to the first nomograph of Fig. 4, line up with the points $E_{b}=$ $200,000 \mu \mathrm{v}$ and $E_{a}=E_{b}=1400 \mu \mathrm{v}$, and find the third point to be $E_{a}=10 \mu \mathrm{v}$.
Proceeding through the same steps for thirdorder intermodulation, it is found that (1) $f_{s}=$ 17.280 mc , (2) $\Delta f=f_{a}-f_{o}=5860 \mathrm{kc}$, (3) $E_{a}=$ $E_{b}=50,000 \mu \mathrm{v}$, and (4) $E_{a}=25,000 \mu \mathrm{v}$.
Summarizing the results: (1) when mixed with the local signal, a signal of $10 \mu \mathrm{v}$ at 11.720 mc produces the maximum tolerable level of secondorder intermodulation at f_{0}; (2) a signal at 17.280 mc of $25,000 \mu \mathrm{v}$ amplitude produces the maximum tolerable level of third-order intermodulation.
The preceding example not only serves the purpose of illustrating a technique; it also illustrates that intermodulation of a serious nature may be caused by a weak signal, even weaker than the signal of desired reception, in the presence of a strong companion signal. It is therefore apparent that intermodulation should be considered in any comprehensive study of receiver information. ■ -

Acknowledgoments

The methods presented are the result of the contributions of many people. Specific thanks are due to Mr. H. H. Jenkins and Mr. R. N. Bailey. Most of the work presented here was done on Department of the Army Contracts DA-36-039-SC-74855 and DA-36-039-SC-78243.

Reforonces

1. Final Report Project A-312, "Investigation and Study of Communications Interference Reduction Techniques," R E. Meek, H. L. McKinley, et al, Air Force Contract No. AF-30-(602)-1638, (ASTIA No. AD-148844), 31 January 1958.
2. Technical Report No. 1, "Study Program for Investigetion to Air in Reduction and Prevention of UHF Interference," F. P. Holder and H. W. Mauldin, Jr., Air Force Cuntract No. AF-30-(602)-673, 1 March 1955.

... A new subminiature reference tube which is ABOVE and BEYOND

all present day standards for stability under shock and thermal extremes

For both military and commercial applications which demand a rugged miniature voltage reference tube, the GD85WR-S cannot be matched.This tube has been designed specifically to serve under extreme conditions where standard types fail. It comes to you from BAIRD-ATOMIC, INC., suppliers of world-famous DEKATRON and DIGITRON cold cathode counting tubes.

TECH TALK
TEMPERATURE RANGE
$-60^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
SHOCK RATING

SHOCK RATING	
Continuously	5 G
Short Durations	20 G
Impac\&	750 G
STRIKING VOLTAGE	

STRIKING VOLTAGE
(Total Darkness) 125 v max.

STABILIZED VOLTAGE $85 v \pm 2 v$

CURRENT RANGE

$500 \mu \mathrm{~A}$ to 5.0 mA
INCREMENTAL
RESISTANCE
$<1000 \$ 8$ max.

For more complete data, write today to:

Benirel-Atomic, Inc.

33 University Road
Cambridge 38, Massachusetts

Prediction Of Transmitter Intermodulation From Simple Measurements

Abstract

The radiated intermodulation spectrum from a transmitter, due to another nearby transmitter, can be determined before an installation is made. By using data from a few simple measurements to predict interference levels, expensive relocation and reassignment of transmitters can be avoided.

R. N. Bailey and C. E. Blakely

Georgia Institute of Technology
Engineering Experiment Station
Atlanta, Ga.

THE RADIATED intermodulation spectrum from a transmitter, due to another transmitter operated in close proximity, is often a severe interference source. Intermodulation products generated in a transmitter are a function of circuit parameters such as tube characteristics, output passband, tube bias, B-plus voltage, and interfering signal frequency and level.
Accurate prediction of intermodulation product amplitude on a theoretical basis would be extremely difficult since there are many variables involved, most of which will vary with transmitter type. However, if intermodulation levels for a particular transmitter type are known for a few frequency spacings (spacing between the desired signal and the interfering signal) for each odd product at two different interfering signal levels, constants may be computed or curves constructed from which the levels of intermodulation products may be determined for any interfering signal level. Even-order-products are not considered since, in general, they are considerably removed from the transmitter passband and negligibly small in amplitude.

Intermodulation-Product Generation

Mixing and intermodulation may occur in any nonlinear device. Power output stages in a transmitter are usually nonlinear devices thereby becoming efficient generators of intermodulation products. Because of the variation of parameters in this stage from transmitter type to transmitter type, it is difficult to utilize theoretical considerations alone for IPL (intermodulation-product level) prediction. However, experimental measurements have shown that it is feasible to utilize a small amount of experimental information to pre-
dict the intermodulation-product frequency and IPL with reasonable accuracy.

Types of Intermodulation Products

Intermodulation products of two types may be generated within a transmitter output stage. The first type, which may be called primary-mix intermodulation, is generated by the mixing of fundamentals and harmonics of the DS (desired signal) and the IS (interfering signal) which already exist. The second type is produced by the mixing of fundamentals and harmonics generated within the DS transmitter, or by the mixing of harmonics of the DS transmitter and harmonics of the IS transmitter both of which are generated in the output stage of the DS transmitter.
Either or both of these types may be identified by

$$
\begin{equation*}
f_{I}=f_{d}+\frac{(N+1)}{2}\left(f_{d}-f_{d}\right) \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
F_{I}=f_{d}+\frac{(N-1)}{2}\left(f_{i}-f_{d}\right) \tag{2}
\end{equation*}
$$

where f_{I} is the intermodulation product frequency, f_{a} is the desired or carried frequency, f_{d} is the IS frequency and N is the product order. These equations will yield two products for each order, one of which is greater in frequency than the DS and one which is less in frequency than the desired signal DS.

Intermodulation Measurement

Serious difficulties may be experienced in transmitter intermodulation measurements if the re-
ceiver used has unsatisfactory intermodulation and desensitization characteristics. This difficulty is less serious if a receiver with a small bandwidth and a large dynamic range is used. Even a receiver of this type may have undesirable characteristics; however, the difficulty may be overcome by determining the signal level at which serious desensitization and/or intermodulation occur in the receiver. An attenuator is then used at the receiver input to prevent exceeding the signal level thus determined. It is then simply a matter of adding the attenuation used to the measured level of the intermodulation product in order to obtain the true intermodulation-product level.
In order to use the high value of attenuation required, it is necessary to couple a high-level signal into the DS transmitter which is sufficient to produce high-amplitude intermodulation products.
A block diagram of a test arrangement which is convenient to use for these measurements is shown in Fig. 1. As previously discussed, the equipment used in the setup determines the value of coupling used; the IPL generated must be high enough so that the dynamic range of the tes receiver will permit measurements with large at tenuation in the receiver input line. Tests performed on equipment used in this setup showed that essentially no errors were introduced in intermodulation measurements when the IS level coupled into the DS transmitter was 40 db or less below the desired signal. Greater attenuation, however, resulted in too little attenuation in the receiver signal lead; this caused some error due to receiver desensitization and/or intermodulation within the receiver.

LOWER YOUR PRODUCT COST, INCREASE YOUR PRODUCT RELIABILITY
 Substitute a
 RAYTHEON VOLTAGE REGULATOR FOR COMPLICATED REGULATION CIRCUITRY

... A wide variety of designs with a wide range of capabilities providing an economical and reliable source of constant output voltage. Both $\mathrm{PF} \pm 3 \%$ plate-filament units and standard $\pm 1 / 2 \%$ models are available.
For special requirements, contact the Raytheon field applications engineer nearest you or write to the address below.

Fig. I. Block diagram of test setup for measuring transmitter intermodulation.

Prediction of IPL

Experimental results have shown that amplitudes of odd-order intermodulation products bear a linear relationship with the is level when plotted on a log-log scale. However, they do not bear the same relationship for each transmitter type, or for different signal spacings. This is understandable since the IPL will depend on circuit parameters and the output passband.
The average curve of third-order IPL $\left(P_{I}\right)$ versus interfering signal level (Pi) for different transmitter types will have the same slope. That is, the third-order product on the low side (where $f_{l}<f_{d}$ and $f_{i}>f_{d}$) has essentially the same slope for all transmitter types tested. The third-order product curves on the high side (where $f_{l}>f_{d}$ and $f_{d}>f_{d}$) have essentially the same slope for all transmitter types tested; however, the slope of the low third-order product curve is different from the slope of the high third-order product curve.
Unfortunately the fifth, seventh, etc. products are not so well behaved. However, in many cases the third-order product is the only one of importance since the level of higher order products is usually 60 db or more below the desired signal. The amplitude of odd-order intermodulation products may be described by

$$
\begin{equation*}
P_{I}=C_{I}+k P_{i,} \tag{3}
\end{equation*}
$$

where P_{I} is the intermodulation-product level in $\mathrm{dl} \mathrm{m}, C_{1}$ is the intermodulation constant in db , ard k is the above mentioned slope. This constant k for third-order product on the carrier side is $u s$ ally equal to 1 , and for the third-order prod$u c=$ on the $I S$ side is usually equal to 2 . The value of k for higher order products varies appreciably. (continued on following page)
$\pm 3 \%{ }^{\text {"PF" }}$ VOLTAGE REGULATING PLATE-FILAMENT TRANSFORMERS

Model	CatalogNo.	Inpur Voltares	Avarage DC Input Volts to Filter	Filament Windings			Dimensions in Inches			Ship. We. Lbs.
				8.3 Volts	5.0 Volts	Style	H	1	w	
Plate 2 Filament	PF-50	100/130	275 V. DC @ 50 MA	2.5 Amps. CT	2.0 Amps.	PF	$4{ }^{1}$ '10	3\%	3x.	5
	PF-110	100/130	$385 \mathrm{~V}, \mathrm{DC}$ @ 110 MA	3.0 Amps CT	2.0 Amps.	PF	$4{ }^{1} x_{0}$	31/\%	31\%0	8
	PF. 250	100/130	$380 \mathrm{~V}, \mathrm{DC}$ @ 250 MA	$\begin{aligned} & \text { \#1 } 4.0 \mathrm{Amps} . \\ & \# 28.0 \mathrm{Amps} . \end{aligned}$	3.0 Amps. nregulated		7	41/2	5	19

$\pm 1 / 2 \%$ STANDARD VOLTAGE REGULATORS

Model	$\begin{aligned} & \text { Catalog } \\ & \text { No. } \end{aligned}$	OutputCapacity Volt-Amps.	Voltages		Style	Dimensions in Inches			Approz. Ship. We. in Lbs.
			Input	Output		L	w	H	
Standard'	VR-6110	15	95-130	115	F	61/4	$2 x_{0}$	3	4
	VR-6111	30	95-130	115	E	71/2	3\%	41/8	5
	VR-6112	60	95-130	115	E	$71 / 2$	3\%	4K。	61/2
	VR-6113	120	95-130	115	E	71/2	33/2	51\%	101/2
	VR.6114	250	95-130	115	E	12\%	5	7\%	27
	VR-6115	500	95-130	115	E	12\%	5	91/	45
	VR-6116	1000	95-130	115	H	13\%	14 4	9\%	96
	VR-6117	2000	95-130	115	H	361/4	14\%	10\%	243
Isolated Secondary	VR-6931	60	95-130	115	E	71/2	3\%	$4 x_{6}$	$81 / 2$
	VR-6827	120	95-130	115	E	71/2	3\%	5'\%	23
Harmonically Filtered Marmonic Content Less than 3\%)	VHF-6114	250	95-130	115	H	14\%	13\%.	9\%	56
	VHF-6115	500	95-130	115	H	14160	13\%	9\%/	85
	VHF-6116	1000	95-130	115	H	291/6	14\%	101\%	220
230-Volt Output'	VR-6221	30	190-260	230	E	71/2	3\%	41/0	5
	VR-6222	60	190-260	230	E	71/2	33/	$4 \%_{0}$	61/2
	VR-6223	120	190-260	230	E	71/2	31/2	5 x_{6}	101/2
	VR-6224	250	190-260	230	E	12\%	5	7\%	27
	VR-6225	500	190-260	230	E	12\%	5	91/	45
	VR-6226	1000	190-260	230	H	13\%6	14\%	9\%	96
	VR-6227	2000	190-260	230	H	361/4	14\%	10\%	243
Filament	VR-6101	30	95-130	6.0/7.5	E	71/2	3\%	41/0	5
	VR-61F0	15	95-130	6.3	F	5\%	2\%	$4 K_{6}$	61/2
	VR-6100	15	100-130	6.3	D	3 $\%_{6}$	2\%	4'1/0	51/2
	VR-6710	25	95-130	6.0	w	7\%	31\%	3\%	4

Specials can be designed to meet variety of electrical and mechanical specifications. Write Raytheon Company, Apment, Manchester, New Hampshire stating your requirements.

Raytheon also manufactures a com plete line of power supplies, ultrasonic impact grinders and precision resist ance welders.
RAYTHEON COMPANY
87 Bouth Bedford Bt., Manchester, M. M.

STYLE PF
\square
style D

style h

See us at the IRE Show-Booths 2604-2614

Fig. 2. (leff) Intermodulation product level vs interfering signal level (third order low).

Fig. 3. (below) Intermodulation product level vs interfering signal level (third order high).

Fig. 4. (left) Intermodulation product level vs interfering signal level (fifth order).

Table 1. Typical values of transmitter intermodulation constants.

Transmifter	$\frac{P_{d}}{(\mathrm{dbm})}$	$\frac{\mathbf{P}_{i}}{(\mathbf{d b m})}$	Spacing	Third Order Low		Third Order High		Fifth Order Low		Fifth Order High	
				$\frac{c_{1}}{(d b)}$	k	$\frac{C_{i}}{(d b)}$	k	$\frac{C_{1}}{(d b)}$	k	$\frac{C_{1}}{(d b)}$	k
10 mc											
A_{2}	59.5	26.5	500 kc	-7	1.0	-49.3	1.5	-68.8	2.07	-	-
A_{2}	59.5	19.5	500 kc	-7	1.0	-49.3	1.5	-688	2.07	\neg	-
A_{1}	59.5	29.0	1000 kc	-6.5	1.0	-73.1	2.16				
A1	59.5	19.5	1000 kc	-6.5	1.0	-73.1	2.16				
B_{1}	56.6	34.5	100 kc	-15.2	1.03	-70.0	2.13				
B_{1}	57.9	18.0	100 kc	-15.2	1.03	-70.0	2.13				
B_{1}	59.0	39.3	500 kc	-31.1	0.965	-90.4	2.08				
B_{1}	57.8	22.5	500 kc	-31.1	0.965	-90.4	2.08				
B_{1}	56.8	39.5	1000 kc	-43.5	1.0	--	-				
B_{1}	57.8	22.7	1000 kc	-43.5	1.0	---	---				
161 mc											
Cl_{1}	43.7	23.9	2.25 mc	- 18.2	0.955	-59.0	1.77				
C1 C_{2}	43.7 43.5	12.9 25.9	2.25 mc 2.25 mc	-18.2 -22.5	0.955 1.22	-59.0 -83.9	1.77 2.1				
C C_{2}	43.5 43.5	25.9	2.25 mc 2.25 mc	-22.5 -22.5	1.22 1.22	-83.9 -83.9	2.1 2.1				
C_{2}	43.5	14.6	2.25 mc	-22.5	1.22	-83.9	2.1				

[^3]Since C_{I} and k vary for each transmitter type and for each signal spacing, useful prediction of IPL requires the evaluation of these constants for each transmitter at each signal spacing likely to be encountered in their operation. Evaluation of k requires the measurement of the IPL for at least two known interfering signal levels for each signal spacing. The value of k is then determined by using the following equation

$$
\begin{equation*}
k=\frac{\Delta P_{I}}{\Delta P_{i}}=\frac{\left(P_{I}\right)_{1}-\left(P_{I}\right)_{2}}{\left(P_{i}\right)_{1}-\left(P_{i}\right)_{2}} . \tag{4}
\end{equation*}
$$

Using k thus calculated, C_{J} may be determined by using the relationship

$$
C_{I}=\left(P_{I}\right)_{1}-k\left(P_{i}\right)_{1}
$$

These constants may then be used to determine the IPL with any IS level for the particular signal spacing associated with them.

Calculated values of constants associated with several different transmitter types for various
si nnal spacings are shown in Table I. Graphs of the data, which indicate typical trends, are shown ir. Figs. 2, 3 and 4.
The third-order product on the carrier side, that is, the third-order product nearest the carrier, is always the highest in level regardless of whether the IS is higher or lower in frequency than the DS.

Typical Problem

The following example will illustrate the prediction method for a typical transmitter.
Data obtained from tests on transmitter C_{I} will be used in these calculations, where

$$
\begin{array}{ll}
\left(P_{i}\right)_{1}=23.9, & \left(P_{i}\right)_{2}=12.9 \\
\left(P_{I}\right)_{1}=4.6, & \left(P_{I}\right)_{2}=-5.9 \\
f_{i}=163.25 \mathrm{mc} & \text { and } \quad \\
f_{d}=161 \mathrm{mc}
\end{array}
$$

Then
$f_{I}=161-(3-1)(161-163.25)=165.5 \mathrm{mc}$ (high) and
$f_{I}=161+(3-2)(161-163.25)=158.75 \mathrm{mc}$ (low) using Eqs. 1 and 2. These are the third-order product frequencies high and low. The intermodulation product levels used in this example are third-order low (third order on the DS side).
Eq. 4 gives

$$
k=\frac{4.6+5.9}{23.9-12.9}=\frac{10.5}{11}=0.394 .
$$

Eq. 5 gives

$$
C_{I}=4.6-0.99 .5(23.9)=-18.2
$$

Now assume an IS of 1 -dbm level at $163.25-\mathrm{mc}$ frequency, and it is desired to calculate the in-termodulation-product level. Using Eq. 3

$$
P_{I}=-18.2+0.995(1)=-17.2 \mathrm{dbm} .
$$

Reference to Fig. 2 will show that the value is a good approximation of the intermodulation-product level. - ■

Acknowledgements

The information contained in this paper was obtained with Contract DA-36-039-SC-74855, between the U. S. Army Signal Engineering Laboratories, Fort Monmouth, N. J. and the Georgia Institute of Technology, Engineering Experiment Station, Atlanta, Ga., during the period 1 July 1957 to 30 June 1959.
I wish to thank W. R. Free and H. L. McKinley for the help they gave me in the preparation of this paper.

Roforences

1. Firestone, W.L., "SSB Performance as a Function f Carrier Strength," Proc. IRE, Vol. 44, p. 1839, Dec. 1956.
2. Motorola, Inc., "Nontactical Radio Equipment Sysem Study, Final Engineering Repurt," Air Force Contract AF-30(602)1251, pp 130-139, 1 Nov. 1957.

A most important development in the instrumentation recorder/reproducer field will be unveiled by Mincom at the IRE Show in New York. It's an all-new system, the Mincom Model CM-100. Be there to see it. Wrapped up in one compact rack, CM-100 is a highly versatile all-purpose workhorse, capable of handling practically every instrumentation job (For example: 500 kc at 60 ips , 24 minutes playing time). Built to Mincom's high reliability standards, it's the year's biggest news in magnetic tape recorder/reproducers. See it at Booth 3923.

MINCOM division Minnesota Mining and Manufacturing company 2049 SOUTH BARRINGTON AVENUE • LOS ANGELES 25, CALIFORNIA

How to Design a Line-Type Modulator

Part III-Associated Circuitry

The preceding articles of this series (ED, Feb. 17 and March 2, 1960), determined the major components of a line-type modulator, given only the microwave power required, pulse width and pulse repetition rate. Choice of the clipper diode and the trigger source have been left for this final article.

Igor Limansky*

Electronic Research and Development Section The Martin Co.
Baltimore, Md.

THE BASIC modulator is depicted in Fig. la, and its equivalent circuit in Fig. 1b. The presence of an arcing load, such as a magnetron, can be represented by the closing of switch S_{2}. When this takes place, a severe mismatch occurs between the load and the pulse-forming network (PFN). This mismatch results in the application of a large amount of inverse voltage to the thyratron and PFN (dotted line in Fig. 1c).
Because the process is cumulative ${ }^{1}$, if no means exists to remove this inverse voltage, the final network voltage may be as high as seven times the power supply voltage. Voltage breakdown of the PFN, charging choke, pulse transformer and hydrogen thyratron can be the consequences of an unprotected line-type modulator. This is obviously a situation that should be avoided by the inclusion of a circuit designed to discharge the inverse voltage left across the PFN after a

[^4]short-circuit in the load. The clipper- or shuntdiode circuit performs this function.
Only vacuum diodes are considered here, although other methods have been proposed ${ }^{2}$. The analysis of M. H. Zinn^{3} is used as a basis in finding a suitable diode. We shall continue the example begun in Part I, ED Feb. 17, 1960, p 42, for illustrative purposes.

Four factors are pointed out in Mr. Zinn's report as important in the choice of a diode for clipper service:

1-Peak inverse voltage
2-Peak current (under shorted load conditions)
3-Plate dissipation
4-Rms cathode current

Diode Peak Inverse Voltage

Inspection of Fig. 1 shows that the peak inverse voltage which the diode must withstand will simply be the peak forward voltage across the thyratron. The current through the diode will
depend in part upon the diode resistance R_{t}, in part upon the series resistance R_{s}, and in part upon the inverse voltage $e_{p y 1}$, which the diode sees as forward voltage. The peak inverse voltage in turn, will depend upon the degree of mismatch between the PFN and the load. In the event that the load arcs during operation, the PFN must dissipate all its energy in the equivalent internal impedance R_{m}, of the modulator switch tube, and the stray circuit resistance. The relation (7),

$$
e_{p z}=e_{p v} \frac{Z_{L}-Z_{N}}{Z_{L}+Z_{N}}
$$

given in Part I therefore becomes:

$$
\begin{equation*}
e_{p z 1}=e_{p y} \frac{R_{m}-Z_{N}}{R_{m}+Z_{N}} \tag{1}
\end{equation*}
$$

since Z_{L} is zero, and is replaced by R_{m}.

Diode Peak Current

The value of peak current through the clipper

Fig. 1. Basic modulator circuit and its waveforms.

Fig. 2. Use this chart to find the limiting value of mismatch ratio (k) knowing the number of discharge pulses (n).

Fig. 3. Current-voltage characteristics of type 589 clipper diode.
diode $i_{d 1} \dagger$, for the first applied pulse can be expressed by the relation:

$$
\begin{equation*}
i_{d 1}=\frac{e_{p x 1}}{R_{s}+R_{t}+Z_{L}+Z_{N}} \tag{2}
\end{equation*}
$$

where R_{t} must be determined for the particular tube used. The value of $i_{d 1}$ must be calculated for the worst, or arcing, condition.
The first step consists of finding a limiting value of clipper diode mismatch factor k, where

$$
\begin{equation*}
k=\frac{\left(R_{s}+R_{t}\right)+Z_{L}-Z_{N}}{\left(R_{t}+R_{t}\right)+Z_{L}+Z_{N}} \tag{3}
\end{equation*}
$$

This will determine the maximum value of $\left(R_{s}+\right.$ R_{t}) for the clipper diode circuit, and an approximate value of clipper diode peak current $i_{d 1}$ necessary for a choice of tube.
A limiting value of k may be found by assuming that the network is to be discharged through the clipper diode circuit, to a value of $1 / 3 e$ of $e_{p x 1}$, in a time corresponding to $1 / 20$ of the pulse repetition period. Since this discharge occurs in discrete pulse steps of duration t_{p}, the number
†The subscript "d" refers to "diode". Zinn's notation is ib1
of steps required to discharge the PFN is

$$
\begin{align*}
& n t_{p} \leqq \frac{1}{20} \frac{1}{p r r} \text {, or } \tag{4}\\
& n \leqq \frac{1}{20 d u}
\end{align*}
$$

In the example, since $d u=0.00175$

$$
n \leqq \frac{1}{20(0.0017 i)}=29
$$

From Fig. 2, the value of k, for n equal to 29 is found to be 0.93, and since:

$$
\begin{equation*}
\left(R_{\bullet}+R_{\imath}\right)_{\max }=\frac{1+k}{1-k} Z_{N}-Z_{L} \tag{5}
\end{equation*}
$$

for this case:

$$
\left(R_{t}+R_{\imath}\right)_{\max }=\frac{1+0.93}{1-0.93} 5 \overline{5}-0=1.5 \mathrm{k}
$$

Further, if the switch tube impedance R_{m}, is taken as one ohm, from Eq. 1,

$$
\epsilon_{p x 1}=2.8 \frac{1.0-55}{1.0+55}=2.7 \mathrm{kv}
$$

Under these conditions, the peak current that the clipper diode passes is therefore:

$$
i_{d 1}=\frac{2,700}{1,500+0+55}=1.7 \mathrm{amp}
$$

from Eq. 2.
A diode that is capable of passing at least twice this amount of peak current, and withstanding the peak forward voltage $e_{p y}$ (which will appear as inverse voltage across the diode), may be chosen. The current rating should be twice that based upon the inverse voltage $e_{p x 1}$. This is because the so-called "inductive spike" is thought to be due to excessive inductance in the first section of the PFN^{4}, and is a significant contributor to hydrogen thyratron plate dissipation.

Selecting a Diode Type

From these approximate ratings of the diode required, the 589 diode might be chosen. Its peak current-peak voltage characteristics are shown in Fig. 3. By limiting the current through the clipper diode to 3 amp under the worst condition ($\mathrm{Z}_{\mathrm{L}}=$ 0), a factor of safety of 5 amp will be available to take care of the "inductive spike." This follows because the 589 can safely pass a peak cur-

Fig. 4. Use this nomograph to determine average diode current $\left(I_{d}{ }^{\prime}\right)$, knowing $k, d u^{\prime}$ and $I_{d 1}$.

Fig. 5. Use this nomograph to determine plate dissipation.

> 是 ratio $\frac{\mathrm{t}_{\mathrm{d}_{\mathrm{RM}}}}{\mathrm{t}_{\mathrm{d}}{ }^{\prime}}$ $\frac{I_{d_{R M S}}}{I_{d}^{\prime}}=\frac{1}{\sqrt{d u^{\prime}} \sqrt{\left(1-k^{3}\right)}} \quad \frac{1-k^{3 / 2}}{1-k^{3 n / 2}}$

(CURRENT RATIO)
Fig. 6. Use this nomograph to determine rms diode current.
rent of 8 amp . Choosing $i_{d 1}$ to be 3 amp , from Fig. 3, the value of $e_{d 1}$ will be 850 v . The diode resistance R_{t}, will be:

$$
\begin{equation*}
R_{\ell}=\frac{e_{d 1}}{i_{d 1}} \tag{6}
\end{equation*}
$$

so that

$$
R_{\imath}=\frac{850}{3}=280 \mathrm{ohms}
$$

The load line for the diode, from Fig. 3 will be:

$$
\begin{equation*}
R=\frac{\bar{e}_{p z 1}-e_{d 1}}{i_{d 1}}=R_{s}+Z_{L}+Z_{N} \tag{7}
\end{equation*}
$$

which in our case becomes:

$$
R=\frac{2,700-850}{3}=620 \mathrm{ohms}
$$

Since arcing conditions are implied from Eq. 7: $R_{\Delta}=R-Z_{L}-Z_{N}=620-0-55=505$ ohms

The designer may wish to adjust R_{s} slightly, to conform to commercially-available values. This
will require redrawing the load line R in Fig. 3, picking off new values of $i_{d 1}, e_{d 1}$, and recalculating R_{t}. This step will be omitted for simplicity's sake, and 565 ohms will be used for R_{s}.

Plate Dissipation, RMS Current

The next step consists of recomputing the value of clipper diode mismatch factor, using Eq. 3, based upon the circuit constants determined above. The remainder of the diode operating conditions may then be found: I_{d}^{\prime}, using Fig. 4; the plate dissipation P_{p}, using Fig. 5; and the ratio of $I_{d r m s}$ to I_{d}^{\prime}, using Fig. 6.

In our example, we have:

$$
\begin{array}{ll}
R_{t}=565 \text { ohms } & Z_{L}=0(\text { arcing condition }) \\
R_{t}=280 \text { ohms } & Z_{N}=55 \text { ohms }
\end{array}
$$

so that,

$$
k=\frac{565+280+0-55}{565+280+0+55}=0.88
$$

Fig. 6 follows the general rules for using nomographs. Figs. 4 and 5 are three-variable nomographs requiring two lines. One line drawn from
the outermost scales will determine a point on the reference axis. The second line drawn through this point to a value upon one of the innermost scales will intersect the other innermost scale at the value sought.
In Fig. 4, a line is drawn from $k=0.88$ to $d u^{\prime}$ $=0.00175^{\circ}$. A second line is drawn from the intersection of the first line with the reference axis, to $i d_{1}=3.0 \mathrm{amp}$. The value of $I_{d}{ }_{d}$ is therefore 29 maft . In Fig. 5, the value of $e_{d 1} \times i_{d 1}$ must be computed, and is 2550 w . As before, $d u^{\prime}=$ 0.00175 and $k=0.88$. The reader may verify that the plate dissipation of the clipper diode P_{p}, is now 16 w. In Fig. 6, a single line drawn from k $=0.88$ to $d u^{\prime}=0.00175$ will suffice: it will intersect the $I_{d r m s} / I_{d}^{\prime}$ axis at 8.0 . The rms clipper diode current $I_{\text {drm }}$, is therefore 230 ma .

[^5]Comparison of the above data with the manuracturer's ratings in Table 1, shows that the 589 liode is operating well within its ratings if it is liquid cooled. If a value of k equal to 0.93 is used, corresponding to the limiting case, where (\boldsymbol{R}_{0} $\left.+R_{t}\right)=1.5 k$, the reader may verify that $I_{d r m s}$ $=165 \mathrm{ma}$.

Higher Powered Circuits

The clipper diode protective circuit has been determined with deceptive ease for our modulator example. The reader should be forewarned that clipper diode circuits for the higher-powered modulators result in unusual demands upon clipper diode performance.
For example, a modulator requiring an $e_{p y}$ of 20 kv , and operating at a duty cycle of 0.0005 will have a limiting k of 0.98 , and an $\left(R_{a}+R_{t}\right)$ max of 2.5 K . Under arcing conditions, with \mathbf{Z}_{N} equal to 25 ohms, $e_{p x 1}$ approximates 20 kv so that the peak current the diode must pass is at least 79 amp , neglecting the factor of safety for the "inductive spike" contributions. Since this modulator is in the medium-power range, and the higher powered modulators require clipper diode currents of 200 amp, one can see the reason for employing gas tubes as clipper diodes.
If the arcing characteristics of the load are known, a lower value of $d u^{\prime}$ may be specified, thereby easing the requirements for plate dissipation and rms current for the tube chosen. If this is done, however, it would be wise to protect the clipper diode itself, by the use of a thermal relay that would be placed in series with the diode circuit, and would remove high voltage from the modulator upon excessive arcing.

Trigger Generator

Although the major components and associated circuitry have been determined, it is important that the trigger generator requirements receive careful consideration. No attempt will be made to specify the design of the trigger generator in detail, since this will depend upon the particular opcrating conditions of the modulator switch tube.
The MIL-E-1C specifications for the 3C45 hydrogen thyratron read as follows with respect to the trigger source:
"Note 3: Driver pulse, measured at tube socket with thyratron grid disconnected: $e_{g \mu}=175 \mathrm{v}(\mathrm{min})$, time of rise $=0.5 \mu \mathrm{sec}$ (max), grid pulse duration $=2.0 \mu \mathrm{sec}$ (min), Impedance of Drive Circuits $=1500$ ohms (max)."
The rise time of the trigger pulse is arbitrarily deIned as the time between the 26 per cent and $i 0.7$ per cent points on the leading edge of the pulse, when the trigger generator is unloaded. The pulse width is taken at the 70.7 per cent level of the trigger pulse, when the trigger generator

TABLE III-1

	Calculated Value	Manufacturer's Data Type 589 Diode	
Tiquid Cooled	Radiation Cooled		
Inverse Voltage	2.7 kv	10 kv	10 kv
Peak Current	3.0 a	8.0 a	8.0 a
Rms Current	230 ma	300 ma	150 ma

is loaded by its characteristic impedance. The drive circuit impedance may be measured by placing a variable resistor having good frequency characteristics across the ouput of the trigger generator, and varying it until the peak pulse voltage, as measured across the resistance, is half the opencircuit peak pulse voltage. The resistance value of the variable resistor will then be equal to the output impedance of the drive circuit.

The values given in the MIL-E-1C specifications are the limiting values permissible. There are great advantages in providing a trigger source well-within these values. For example, a high rate-of-rise trigger pulse will do much towards decreasing the time jitter and anode delay time of the switch tube, as will a low drive circuit-impedance. Two precautions must be noted, however. First, the trigger pulse width must not be too great, otherwise the thyratron will not de-ionize. Second, excessive grid dissipation must be avoided for the same reason.

It may be assumed that the application of the modulator dictates good stability. For the 3C45, a peak trigger voltage $e_{g y}$, of 250 v , having an 0.1 $\mu \mathrm{sec}$ rise time, and a loaded pulse width of 2.5 $\mu \mathrm{sec}$, out of a driver having an output impedance of 500 ohms will suffice. - .

References

1. G. N. Glasoe, J. V. Lebacqz, Pulse Generators, M.I.T. Rad. Lab. Series, Vol. V. McGraw-Hill Book Co., 1948, pp 423-425.
2. G. Taylor, Use of Hydrogen Thyratrons As Clippers, Technical Minutes, Third Hydrogen Thyratron Symposium, May 27-28, 1953, pp 68-81.
A. J. Moses, Research Study and Development of Clipper Tube, Gas-Filled, Report to Signal Corps Supply Agency by Chatham Electronics, Livingston, New Jersey, Phase I, Feb. 15, 1955 to Sept. 30, 1956.
3. M. H. Zinn, Analysis of Clipper Diode Conditions, Evans Signal Lab Memorandum Report, SIGEL-PST6P, File 413.44 VT, dtd March 16, 1954.
4. S. Goldberg, Research Study on Hydrogen Thyratrons, Vol. II, Edgerton, Germeshausen and Grier, Inc., pp. III-13.
1 am most grateful for the help, criticism and encouragement of Mr. Mortimer H. Zinn of the Evans Signal Laboratories, Fort Monmouth, N. J.

space

Design Miniature Ovens

With Close Temperature Control

Frank J. Cheli
Bulova Watch Co.
Woodside, N. Y.

Abstract

In designing small ovens, most engineers depend on a hit-and-miss procedure. According to Frank Cheli, this most often results in a "direct miss." Close temperature control requires careful design.

DESIGNING a temperature controlled oven involves construction of a prototype that meets physical specifications, testing, modifying, and retesting until performance is satisfactory.

Application of the methods suggested here will facilitate the design of lower cost, longer lived, and more closely controlled ovens. Although the ovens described are used for quartz crystals, they may also be used for other applications, such as maintaining transistors at a constant temperature when high stability is required.

Factors Affecting Oven Accuracy

Designing a miniature oven for one degree control is no great problem under static ambient and load conditions, but the problem becomes much more difficult when the ambient range is spread over 135 deg C , as in military applications. The design problem is further complicated by the small mass and size required in such units. The small mass provides little heat storage, consequently little smoothing of small change in heat balance.
Compared with larger heated systems, small ovens respond more readily, and with larger variations, to such factors as imbalance between heat input and heat demand, non-uniform heat distribution, localized heat losses, and speed of thermostat response.

Because of this thermal hypersensitivity, details of design and construction, selection and placement of components, the types of materials used, and even the method of testing the oven have a critical effect on control accuracy.

A well designed oven must have adequate heat input, uniform heat distribution, rapid controller response, and minimum heat transfer between the system and its surroundings. To accomplish these objectives the designer must take into account the size and placement of the heat source, the mass, shape and materials, type and placement of the thermostat, and type, quantity and placement of insulation and thermal buffers.

Designing the Heat Source

The oven heater is usually made of Nichrome wire with a triple layer of silicone-glass insulation. It is wound in a single layer, if possible, to prevent abrasion of the insulation due to contraction and expansion.

The wire is wrapped around the oven shell, or around the crystal holder, in such fashion as to cover as much of the surface as possible. This is to provide uniform heat distribution. Further, the heater is wrapped directly onto the metal surface to assure rapid heat transfer into the oven, and to minimize wasted heat.

Since the coil develops heat along its entire length, it is extremely important that the "tail" leads from the heater be in contact with the heat dissipating mass. If the leads are connected to the terminals across an air gap they may overheat and burn out.
The heat source must do two jobs. First, it must bring the oven up to control temperature within a specified time interval after a cold start. Second, it must supply heat for maintaining the oven at a specified temperature after initial warm-up.
The minimum wattage is that required to control the oven at the lowest ambient temperature specified. Determining this wattage requires some cut-and-try, since it is affected by the individual oven design, but the usual range is ten to twenty watts. The heater must be designed 10 to 20% larger than the bare minimum so that the heater will not be on continuously at low temperatures.
The heater should not be too large, since temperature control becomes more difficult as the heater wattage increases with respect to the thermal mass of the oven. During cooling, after current is cut off, the heater continues to add heat to the system. If the heater is too large for the mass of the system, repeated temperature overshoots will occur.
This effect is particularly troublesome if the

Fig. 1. Two concentric metal rings conduct heat from the coils on the outside of the cylinder. Heat is distributed uniformly among the 15 radially-arranged crystals. The oven is closed by the cap at right and the entire unit housed in the can at left
ambient temperature is almost as high as the control temperature, because the excess heat cannot be dissipated rapidly. Minimizing heater capacity further improves control by decreasing the current (and thus the amount of internal heating) in the thermostat. Internal heating of the thermostat impairs its sensitivity by adding to the amount of heat it "sees." Excessive heater wattages also shorten the life of the thermostat contacts.
If the mass of the oven is high, considerably more heat is required for warm-up than for maintaining the control temperature after warm-up. The temperature control circuit must provide maximum heat for rapid warm-up, then reduce heat for normal operation.
A convenient method is to use two normallyclosed thermostats controlling a tapped heater coil. One thermostat, set at the control temperature, is connected in series with the full heater and supplies heat for normal operation. The secand thermostat, set about ten degrees below the control temperature, is in series with a shorter length of the heater coil, thus providing the increased wattage required for warm-up.
In an oven requiring 20 watts for control, and is watts to achieve a three minute warmup, the control thermostat is in series with the entire length of the soil, and the warm-up thermostat

BENDIX CAPACITORS COVER A FULL TEMPERATURE SPECTRUM

ALL FEATURE THESE IMPORTANT ADVANTAGES

Environmental resistance No voltage derating

 Wide voltage rangeSolid impregnants

High I. R.
Wound mica papers

Radiation resistant Exceptional stability

Under $125^{\circ} \mathrm{C}$.-Specials

- Size and weight reductions at high voltages - Drift - 25% capacitance change typical from $-55^{\circ} \mathrm{C}$. to $+125^{\circ} \mathrm{C}$. - High I. R. -1500 megohm X microfarads typical at $125^{\circ} \mathrm{C}$. - Solid impregnants-no liquid leakage.
$125^{\circ} \mathrm{C}$. to $200^{\circ} \mathrm{C}$. - Available soon - . 001 to 6.0 mfd ., 200 V to 3 KV , specials to 10 KV . - Molded and metal housed; tubular and rectangu-
lar - Size and weight reductionover plastic film and stacked mica types, particularly at high voltages - Drift-1\% capacitance change typical from $-55^{\circ} \mathrm{C}$. to $+200^{\circ} \mathrm{C}$ - High I. R. -50 megohm X microfarads typical at $200^{\circ} \mathrm{C}$. - Proved in 4 years' usage.
$200^{\circ} \mathrm{C}$. to $315^{\circ} \mathrm{C}$. - In production
-. 05 to 4.0 uf, 600 V and up. Drift-
3% capacitance change typical from
$-55^{\circ} \mathrm{C}$. to $+315^{\circ} \mathrm{C}$. • High I. R. 10 megohm X microfarads typical at $315^{\circ} \mathrm{C}$. - Nothing smaller at $315^{\circ} \mathrm{C}$.
$315^{\circ} \mathbf{C}$. to $\mathbf{4 0 0 ^ { \circ }} \mathbf{C}$. - In development - . 001 to 6.0 uf, 150 V and 600 V - Drift-5\% capacitance change typical from $-55^{\circ} \mathrm{C}$. to $+426^{\circ} \mathrm{C}$. - High I. R. -1 megohm X microfarad typical at $400^{\circ} \mathrm{C}$. • Prototype availability - Only inorganic materials used.
taps the coil at a point $3 / 7$ of its length.
When the wattage differential between control and warm-up is small, special heater wire having a large positive temperature coefficient may be used. The resistance increase with rising temperature automatically reduces heater output as the oven approaches control temperature, permitting the circuit to be controlled by one thermostat set at the control temperature.

Distributing the Heat Uniformly

Since the oven is enclosed, very little air circulation can occur. Every design technique must be used to achieve uniform heat distribution and minimize thermal lag. Winding the heater around the largest possible amount of oven surface is essential to uniform heat dispersion. A cylindrical oven is preferable because it has no corners to form thermal deadspots. Aluminum, copper, silver, and their alloys have high thermal conductivity and low specific heat. Their use permits minimizing thermal lags and temperature gradients.

Conducting devices can improve heat distribution and minimize gradients among components in the oven. In the oven shown in Fig. 1, which contains 15 crystals in a radial arrangement, the conducting device is a pair of concentric beryl-lium-copper rings. The crystal cartridges are between the two rings, and in intimate contact with them.

The rings provide a thermal conducting path between crystals, reducing temperature variations from crystal to crystal. Arranging the cartridges in an evenly spaced circle also helps distribute the heat uniformly among them.

Increasing the mass within an oven provides "thermal inertia," making the oven less sensitive to transient effects, and buffering the internal temperature against rapid change. If the mass is made too large however, the system's recovery from falling temperature is slowed, larger heaters are required and, of course, the weight increase may be undesirable.

In the oven shown in Fig. 2, thermal inertia is provided by the half pound brass chassis on

Fig. 2. Brass chassis provides thermal inertia to control crystal temperature closely.

Fig. 3. These tiny Fenwal Thermoswitches can control to within $1 / 2 \operatorname{deg} C$.
which 11 crystals are mounted. This unusually massive chassis serves as a heat reservoir, buffering against abrupt temperature changes.

Controlling the Temperature

An oven thermostat must have rapid response, minimum size, and low mass to minimize its own thermal inertia. Additionally, it must have high sensitivity to small temperature changes. The thermostat must operate reliably under the wide range of physical conditions to which the oven is subjected and should be hermetically sealed to prevent contact contamination and sticking.
A typical oven control, shown in Fig. 3, is the Thermoswitch ${ }^{\circ}$. This $1 / 4$ ounce, hermetically sealed unit requiring less than 0.14 cubic inch of mounting space, can control within 0.5 deg C provided good design procedures are followed.
One of these thermostats installed in a production oven, and tested under field conditions, has operated for 1.5 million cycles and is still maintaining the temperature within specified tolerances.
For close control the thermostat must be located where it can respond to temperature change as soon as it occurs. The most desirable location is between the heater and the crystal, and as close as possible to both (Fig. 4). Proximity of the thermostat to the heater increases the cycling frequency, improving control by adding heat in short bursts which minimize overshoot.
If the electrical load is kept small, frequent cycling does not appreciably reduce contact life. Proximity of the thermostat to the crystal permits close sensing of the crystal temperature. When this is impractical the control may be placed adjacent to the heat sink, where heat loss to the surroundings is most rapid (Fig. 5), enabling it to follow cooling tendencies before the oven temperature drops excessively.

Regardless of location, the thermostat must be in intimate contact with some metal part of the oven. Close control is possible only if the thermostat can respond to the temperature of a mass in

[^6]the oven, rather than to the air. or insulation having poor heat transfer properties. To assure good permanent thermal contact, the thermostat should be secured by tabs formed from the metal part, or soldered in place.

The problems of sparking and radio interference can be reduced by wiring a capacitor in series with a resistor across the contacts. Reduction of sparking also extends contact life.

Preventing Heat Loss

The final step in the design of a well controlled oven is the measure to conserve heat. The object is to deliver all the wattage produced by the heater to the oven, and this implies as little loss as possible to the surroundings. Conservation of heat minimizes heater capacity, reducing the magnitude of temperature cycling in the oven.
The devices for preventing heat loss are dead air gaps and bright reflecting surfaces. In ovens with an inner and outer shell, the air space between shells provides a good thermal barrier. Bright plating on the surfaces of the outer shell reflects escaping heat back into the oven, and reflects away external ambient heat at elevated temperatures. All openings must be closed with silicone rubber gaskets, plastic spacers, or fiber glass insulation.
The oven should be checked to determine the best amount and placement of insulation. Insulating materials must not be used indiscriminately. This involves some cut-and-try. For example, insulation absorbs heat, and thus can reduce effciency.
Over-insulation in relation to heater wattage

Fig. 4. Packing crystal, heater, and thermostat as close logether as possible yields optimum control. In this assembly, each crystal is enclosed in its own separate heater with a thermostat mounted directly above and in intimate contact with the heater.

Fig. 5. If the control cannot be placed close to the crystal and heater, it should be mounted on a large mass in the oven. The mirror shows the control mounted on the base of the oven where it will respond quickly to cooling tendencies.
can cause the oven to overshoot. Burying the thermostat under insulation produces a heat pocket, raising the thermostat to a higher temperature than actually exists within the oven cavity. It is necessary to cut a hole in insulation in the vicinity of the control to enable it to respond rapidly to the oven temperature.

Testing Oven Performance

Because of many factors that can affect temperature, even between closely-spaced points in an oven, special procedures are required to measure the actual temperature of the crystals or other components when the oven is operating. Checking the oven wall with a thermocouple probe and extrapolating to obtain crystal temperature gives inexact results due to lead losses, variations in probe placement, and other factors. Other measurement procedures are complex and time consuming.
A convenient temperature test uses a thermistor sensing probe which duplicates the shape and mass of the actual component, and replaces it in the oven during test. For example, in crystal ovens a dummy crystal cartridge containing the thermistor is wired to the existing terminals, and measures the temperature right at the crystal. The probe signal is transmitted through the existing connectors to an external temperature indicator, where it is read to 0.1 deg C . Additional probes can be installed to indicate the temperature at various locations simultaneously.

Use of the thermistor plug-in probes reduces oven checking time materially, and gives extremely accurate results. Employment of these techniques has resulted in production ovens with closer tolerances, and lower rejection rates. ■ ■

Proved reliability for computer filter circuits

For nearly five years, a group of eight 2000 mfd . 30 volt Mallory computer grade capacitors taken from a standard production lot have been winning a "run-to-destruction" test that hasn't been able to destroy them.

Not a single failure has occurred in more than 40,000 hours' operation at $65^{\circ} \mathrm{C}$. Capacity, equivalent series resistance and DC leakage values,
as indicated on the test chart above, have remained virtually unchanged.
Keep this amazing record of reliability in mind when you select computer filter capacitors. Mallory makes them in ratings from $130,000 \mathrm{mfd}$., 3 volts to 1000 mfd ., 400 volts . . . in standardized cases that facilitate bank mounting. Write for a copy of Bulletin 4-34, and for a consultation by one of our specialists.

See Mallory Capacitor Company for a complete line of aluminum electrolytics, tantalum electro-
lytics and motor capacitors.

Mallory Capacitor Co., Indianapolis 6, Ind. - division of

This unit is especially designed to produce a high magnetic field inside a high compression molding dye for the manufacture of magnetic ceramics. The output is 60 volts, 1000 amperes and the ripple is less than 5%. Sequence timers and reversing switches, located internally,
make the output positive or negative to produce magnetizing and
de-magnetizing fields as required. The output is varied over a wide range by a saturable core reactor. The intensities of the magnetizing and the de-magnetizing fields are controlled independently by manual adjustments.
The DC power supply illustrated, is only one of many special units manufactured by NWL, such as: Air and iron core reactors, large power, electronic and pulse transformers, chokes, etc. Each NWL power supply is thoroughly tested and must meet all customer requirements before shipment. We shall be pleased to quote you up to 300 KV and up to 500 KVA , depending on your individual requirements.

NOTHELFER WINDING Laboratories, IMC., P. O. Box 455, Dept. ED-3, Trenton, N. J. Speciallats in Custom-Building CIRCLE 97 ON READER-SERVICE CARD

DESIGN FORUM

Liquid Cooling and Simpler Circuits Shrink Cost of Microwave Oven

S^{T}TARTING with the magnetron and redesigning outward, Raytheon engineers lopped $\$ 480$ off the $\$ 2975$ price tag on their Radarange ${ }^{\circ}$ Microwave Oven. In the face of rising costs of labor and materials, this was quite an achievement.
At Raytheon's Radarange Dept. in Wal tham, Mass., Brone M. Walunas and Louis H . Schall were responsible for the redesign of the oven. To start, they replaced the permanent-magnet type QK390 magnetron with a QK-707 using an electromagnet.
By routing the anode current through the electromagnet, they were able to pro-

Previously used QK-390 magnetron (upper half of photo), and new QK-707 magnetron shown assembled within its electromagnet and filter assembly. The QK-707 rube and its water pipes are field replaceable.

Magnetron field and anode current circuit showing how the electromagnet is used to help regulate the plate current. The selenium rectifier supply at the left powers the electromagnet field coil and a relay in a field detection system.
self-rectifier pulsed at a 60 -cycle rate. This eliminated the high-voltage rectifier components required with earlier systems using dc pulsed at 120 cps .
A further change: they cooled the mag. netron with liquid instead of air. The new magnetron has a water jacket and adapting pipes which replace the air-cooling fins formerly used. The heat-exchange system, using a 30 -per-cent solution of ethylene glycol and water, cools the high

Self-contained cooling system for the QK-707 magnetron and the highvoltage plate transformer.

ELECTRONIC DESIGN • March 16, 1960

than the cable itself!

NEW Sealectro
 CON HEX SUB-MINIATURE

R.F. CONNECTORS

A connector so superior in concept and performance most major manu facturers are specifying it.
Mechanically, the ConheX provides a connection stronger than the cable itself. Captivated contacts assure proper engagement of mating parts. Completely field repairable for true practicability.
Extremely stable and reliable under operational conditions. ConheX offers more than any existing connectors of corresponding types, yet they are completely interchangeable.
Available in 50, 75 and 93 ohm sizes in a complete range of types. Write for complete details on these vastly superior if subminiature connectors...

teflon terminals
 British Branch: Seclaciro Corborotion Hershom Foctory Essate, Lyon Road, Surrey, England.

VISIT SEALECTRO BOOTH 2922 AT I.R.E. SHOW CIRCLE 98 ON READER-SERVICE CARD
voltage plate transformer as well as the magnetron.

Comprising a pump, radiator, fan, and expansion chamber, the liquid cooling system eliminates the noise due to high velocity air blowers and increases the cooling efficiency. Another advantage of the liquid system is that rf filter boxes, attached to the coil housing rather than to the magnetron, are resusable from magnetron to magnetron. ■ -

RF POWER STANDARDS LABORATORY

Micrō) (1)dch

equipment is used to establish a reference standard of RF power to an accuracy of better than 1% of absolute.
THE GAIN CALORIMETRIC WATTMETER establishes RF power reference of an accuracy of 1% of value read, and is used to calibrate other wattmeters. Five power scales, $0-3,3-10,10-30$, 30-100, and 100-300 watts, are incorporated in the wattmeters for use in the 0-3000 mes range.
TIIN and 712N FEED-THROUGH WATTMETERS, after comparison with the 64IN, can be used continuously as secondary standards and over the same frequency range as covered by the primary standard. The MODEL 711 N is a multirange instrument covering power levels from 0 to 300 watts in three ranges, $0-30,30-75$, and $75-300$ watts. MODEL 712 N covers power levels of 0 to 10 watts in three switch positions, $0-2.5,2.5-5$, and 5-10 watts full scale.
636N and 603N RF LOAD RESISTORS absorb incident power during measurements. MODEL 636 N is rated at 600 watts, and MODEL 603 N is rated at 20 watts. Both models perform satisfactorily over the entire frequency range to 3000 mcs . These loads, in conjunction with the MODELS 711 N and 712 N Feed-through Wattmeters, form excellent absorption type Wattmeters.
152 N COAXIAL TUNER is used to decrease to 1.000 the residual VSWR in a load. The tuner is rated at 100 watts, and its frequency range is $500-4000 \mathrm{mcs}$.

Comb structure of $50-\mathrm{mc}, 125-\mathrm{w}, 10-\mathrm{amp}$ power transistor provides long emitter length for high-current flow. Emitter is close to base at all points. Wiggly line in photo is not the emitter; it is the spacing between the interleaving teeth of the base and emitter.

Comb Structure Makes

High-Frequency, High-Power Transistors

TEN-AMP currents can be switched through the 0.2 -ohm saturation resistance of a new transistor in less than 500 musec. Thanks to an unusual, comb-like emitter structure, this triple-diffused, npn, mesa transistor has an alpha cutoff of 50 mc and can dissipate 125 w .
Designed for high-speed, high-power switching, the new transistor should find wide application in power conversion, high-frequency power generation and amplification.

First in a new line of triple-diffused, high-frequency power transistors, the types PT900 and PT901 are manufactured by Pacific Semiconductors, Inc., 10451 W. Jefferson Blvd., Culver City, Calif. Hermetically sealed in a welded steel case, the transistor structure has a threaded copper stud for heat transfer to an external heat sink. At a 25 C case temperature, maximum collector-base voltage ($V_{\text {cво }}$) rating for the PT900 is 140 v ; for the PT901, 80 v . Collectoremitter voltage ($V_{C E R}$) rating at $\mathbf{R}=10$,
for the PT900 is 100 v ; for the PT901, 50 v .
Other maximum ratings: emitter-base voltage $\left(V_{E B O}\right)$ is 4 v , collector current 15 amp peak, junction temperature 150 C, thermal resistance 1 deg C per watt and total dissipation 125 w .

Emitter Comb Permits High Currents

Since at high frequencies a transistor only functions near the edge of the emitter, a long emitter edge is needed to get high currents. Design solution of Mason Clark, PSI's head of development, was to construct a narrow emitter stripe wiggling back and forth. This gave the emitter a long edge and brought the base lead closer to the emitter at all points. In a transistor with a large-area emitter, the base is necessarily far from the emitter center.
The photos show the comb design. The emitter comb is diffused into the silicon; to distribute current over the comb, the emitter is metalized.

Innards of a developmental $100-\mathrm{amp}, 50-\mathrm{mc}$ transistor, showing comb structure and heavy duty contacts. This type is not yet available.

A diffusion process was used instead of alloying, because with diffusion a high degree of uniformity over large areas ($0.25-\mathrm{in}$. diam. silicon disk) is possible. With alloying, uniformity is difficult to obtain. The mesa structure has good highfrequency characteristics; and with diffusion techniques both collector and emitter resistivity can be controlled in production, instead of just the base layer resistivity. Mason Clark adds that the claims that alloy junction transistors inherently have higher current gain, better carrier lifetime and higher emitter efficiency than diffused junction units are "erroneous."

Dislocations Were Problem

Early in the two-and-a-half year old research the principal problem was getting materials suitable for the transistors. Good silicon-with a small number of dislocations (resistivity and lifetime were not a problem)-was not available in the sizes necessary. Now, materials are "quite good," Clark says.
They have to be. "A 100 -amp transistor, for example," says Clark, "uses enough material to make 400 sinall transistors. A deformity in the silicon might spoil one or two of the small transistors, but you'd still have 398 good units. The same deformity might ruin the entire 100-amp transistor."
It's not quite that bad, Clark hastens to admit. With the large units such high

Comb structure design. N-type emitter is diffused into p-type base, metalized for current flow. Transistor has four-layer construction.
currents are being passed that the need for microampere reverse leakage is not so critical as with smaller units.

100 Amps in Future?

PSI's $10-\mathrm{amp}$ transistors are the first benefit from a research program sponsored by the Air Force under a contract monitored by the Electronic Technology Lab of Wright Air Development Division. Goal of the research was to produce $50-\mathrm{mc}, 10-\mathrm{amp}, 20-\mathrm{amp}, 50-\mathrm{amp}$ and $100-$ amp units. The latter three are still under development.
While capacitances are necessarily large-proportional to the area of the emitter-with the comb structure, input resistance is very low. RC, therefore, would be about the same in a 100 -amp unit as in the $10-\mathrm{amp}$ unit.

Developmental 50 -amp units are constructed so they can be water cooled: 50 amp at 50 v gives $2500-\mathrm{w}$ dissipation. Hundred-amp units must be force-air cooled.

PT900 and PT901 transistors are available in evaluation quantities for circuit design work. Cost is about $\$ 150$ in limited quantities.

For further information about these $50-\mathrm{mc}$, triple-diffused, npn, mesa, power transistors, turn to the Reader-Service Card and circle 100.

See the transistors at the IRE Show, Booth 2742-2744.

τ HIRTEEN - moispensable © HARACTERISTICS

 FOR Precision senvo pots
PRECISION SERVO

 POTENTIOMETERShave all 13 FEATURES
Your Assurance of Superior System Performance

A few of the many applications of TIC Precision Servo Potentiometers are as input-output transducers in servo systems for airborne navigation and fight control, fire control, fuel control, shipboard gun directors, missile aiming and flight control, analog computing, air traffic control and telemetering.

TIC Precision Scrvo Potentiometers are available in 21 types with diameters from $1 / 2^{\prime \prime}$ to $3^{\prime \prime}$, giving design engineers a wide range from which to select. Included are single and multi-turn types with
either wirewound or infinite resolution metallic film resistance elements, as well as types designed
for ganging without a shaft. And TIC Precision Servo Potentiometers are engineered to withstand the severe environmental conditions imposed by military
equipment operation.

TECHNOLOGY INSTRUMENT CORP. 555 MAIN STREET, ACTON, MASS.
SUBSIDIARIES: ACTON LABORATORIES, INC. ACTON, MASS. - ALTOMAC CORP.. CANTON, MASS
 TECHNOLOGY INSTRUMENT CORP. OF ILINOIS. FRANGLIN PARK, IIL.
TECHNOLOGY INSTRUMENT CORP. OF CALIFORNIA MEWBURY PARK, CALIF.

CIRCLE 111 ON READER-SERVICE CARD

Eyelef does double duty as fastones for wind shield, boaring for spark as foastonen for wind
woes both jobs only a fraction of cond

Beforo you say "hello". eyetets are woirking
lor you on sur most popular mathod of com. ror you on eul most popular mothod of com.
munication. Try them on a new applicationperthaps thay'll prove as indisponsable as your
telephone.

Low initial cost per thousand, low installed cost with highly engineered high speed United Eyeleting machines, and you have an unbeatable combination you can put to work saving money. They will join dissimilar materials, can be clinched tightly to fasten, or lightly to function as a pivot.

They can be used as a bearing, or as a terminal. With ceramics, plastics, and glass special machine device helps minimize fracturing. You can get them from stock in a wide range of sizes, colors, and metals. A host of special diameters, lengths, shapes can also be made to solve your individual problem.

See our catalog in Sweets' Design File or write us today to investigate the possibilities of utilizing lowest cost United Eyelets for your product.
 ouint ussembly.

JUST pluvit in - United Standerdizedo yoyloter hold wires by compression on multiceconter
computal port Tight hold
liminites computa part.
time and bulk.

Free Eyelet Slide Selector helps determine which eyelet you need with given grip and hole diameter.

UNITED SHOE MACHINERY CORPORATION Boston 7, Massachusetis

Nuvistor Tube Becomes

THE NUVISTOR, a thimble-sized electron tube, is now in commercial production. The tube can be used in many diverse applications ranging from data processing systems to medical diagnostic equipment. Because it has the ability to operate at any altitude, it will have important applications in miniaturized airborne apparatus and space ve. hicles.
Made by the Radio Corp. of America, Electron Tube Div., Harrison, N. J., the triode is priced at \$1.96.
The first member of a new family of electron tubes embodying the nuvistor design concept is a general-purpose, medium-mu triode designated RCA-7586. Engineers at RCA have constructed several experimental units to test the merits of the nuvistor. Typical equipment which has been designed using nuvistors includes a television camera, a decade counter, a very-high-frequency communications receiver for aircraft, police and amateur service, and a wide variety of oscillators and amplifiers.
The nuvistor triode takes up 1/16th the volume and consumes less than one-half the power of its larger, present-day counterpart, RCA claims. Special construction techniques eliminate the need for spot welding, mica spacers and a glass envelope. Made of ceramic materials, steel, molybdenum and tungsten, the tube can withstand a high degree of shock and vibration.
Douglas A. Smith, vice president and general manager of the tube division, detailed the following features of the nuvistor triode:

- Low voltage operation
- Low heater drain
- A transconductance of 11,500 micromhos at a plate voltage and current of 75 v and 10.5 ma . - Uniformity of characteristics from tube to tube. - High-input impedance

ELECTRONIC DESIGN • March 16, 1960

Fig. 1. The first nuvistor tube beng produced is the RCA-7586 industrial triode. It is a general purpose medium-mu triode of the heater-cathode type which provides high-gain with low-noise as an amplifier and excellent performance as an oscillator over a wide range of frequencies.

Commercially Available

- High perveance
- Ability to operate at all altitudes at full ratings. - Small size and light weight. The metal shell is only $8 / 10 \mathrm{in}$. long, including peripheral lugs for indexing less than $1 / 2 \mathrm{in}$. in diameter; $1 / 15 \mathrm{oz}$. in weight.
For more information on this tube turn to the Reader's Service card and circle number 102.
See the nutistor at Booth 1602-1608, IRE Show.

Fig. 2. A "shish-kebab" containing approximately 100 nuvistors is lowered into an exhaust and sealing machine.

TUNING FORK CONTROLLED PRECISION FREQUENCY PACKAGES

FROM 1．0 TO 4，000 CPS．

Overall accuracies from $\pm .05 \%$ to $\pm .01 \%$ over $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ range，and to $\pm .001 \%$ from zero ${ }^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ ． without use of ovens．
Silicon and germanium transistorized．Sinewave， squarewave and pulse outputs．18，20，24，and 28 volt DC inputs．
Conservatively designed reliable units，potted in sili－ cone rubber and hermetically sealed，for operation under MIL environmental conditions．

PHONE EDgewood 3－1700，or TWX WBRY 5103，or write：

PHILAMON LABORATORIES INC．

90 HOPPER STREET，WESTBURY，LONG ISLAND，N．Y．

Fast Readout Has

 Self－Contained MemoryR APID READOUT of any combination of characters is available in a new display de－ vice，together with storage for the coded infor－ mation which generated the display．

Manufactured by Hazeltine Corp．of Little Neck，N．Y．，Randid（for Rapid Alpha－Numeric Digital Indicating Device）displays letters，num－ bers，and symbols in response to binary－coded input signals．The display is formed through stroboscopic illumination of a continuously ro－ tating belt or drum．

Characters to be displayed are photograph－ ically reproduced on photosensitized mylar tape which forns the belt or drum．They appear trans－ parent on an opaque background．The code tracks，which are similarly produced on the belt， are scanned by incandescent lamps and photo－ transistors．A code signal identifies the location of each character on the belt．

Belt version of Randid. The neon lamps can be seen in the foreground. Code-scanning phototransistors and lamps are at the rear. In this model, two lines of characters share the same code tracks.

A particular character is illuminated at a particular position when Randid receives a binary signal corresponding to that of the selected character and display position. When the in-coming signal and the signal on the belt agree, a highintensity neon lamp fires and stroboscopically illuminates the selected character when it reaches the correct position.
Belt speed, and thus the strobe rate of each character, are fast enough to present a flickerless display. Typical rates of 30 to 60 strobes per second result from uncritical motor speeds which can be from 1800 to 3600 rpm .
Transistorized circuitry, which can accept 4- or 6 -bit binary code, and which provides storage, code comparison, and strobe drive, is housed in a separate unit which can be located remote from the display unit. The circuitry also provides selective address and erasure. It also allows Randid to accept dc or binary coded decimal information and to transfer the information to other units at a later time.
A completely new set of characters can be displayed by merely changing the belt-an operation which takes but a few minutes. Thus, input code, character size and style, number of characters per line, and number of lines per display can be changed.
Some of the applications of Randid include: aircraft panel display, digital data transmission, monitoring, card or tape reading and verifying, visual decoding, information retrieval display and computer or test equipment readout.
Price and delivery depend on specific customer requirements.
For more information on this readout device, Iurn to the Reader-Service Card and circle 101. - circie 115 on reader-service card ELECTRONIC DESIGN • March 16, 1960

THIS IS A RHEOSTAT YOU CAN STAKE YOUR REPUTATION ON

From 25 to 300 watts these VITROHM ring rheostats are engineered for longest life, maximum reliability

To be sure about smooth, trouble-free control in the 25 - to 300 - watt rangejust specify a vitrohm rheostat.
You get smooth control: Close-laid turns (A) of special high-stability, low-temperature-coefficient wire or ribbon to insure smooth gradual resistance change from zero to maximum.
You get reliability: Vitrohm ring rheostats are engineered for permanence from highest-grade ceramic base and core (B), durably bonded, tinned-alloy terminals (C), to final craze-proof, shock resistant, long-lasting vitrohm bonding (D).

You get positive action: Self-lubricating twin-shoe contacts-exclusive with W/L-on balanced beryillium copper contact arm (E) eliminate backlash, contribute to smooth operation, minimize wear on resistance wire (A), assure positive contact to collector ring (F).
You get many more features than we can detail here. Check them all in W/L Bulletin 60RR (and, above 300 watts, check "plate rheostats" in Bulletin 60A). Either bulletin, yours for the asking. Ward Leonard Electric Co., 77 South St., Mount Vernon, N. Y. (In Canada: Ward Leonard of Canada, Ltd., Toronto.) e.e Write for list of sfocking disfribufors CIRCLE 116 ON READER-SERVICE CARD

ELECTRIC COMPANY MOUNT VERNON, NEW YORK

LIVE BETTER...Electrically

Rembe-E Eninemed Comanh Since isye

-these construction
 - features assure exceptional reliability:

Positive sealing. Advance's use of induction heating cuts rejects from faulty soldering to a negligible figure. Soldering is accomplished at high speed, hence damage to the relay due to heat transfer is eliminated.
RADIFLO testing for leakage is used to detect leaks as small as $10^{-8} \mathrm{cc} / \mathrm{sec}$. All relays that pass this test will function after long shelf life.
RIQAP program approval. Under RIQAP, the Signal Corps constantly checks Advance's quality control and inspection, to insure military standards of reliability for all Advance rumet ers, both military and ind.-

DIRECT ELECTRONIC printing at high speed on non-sensitized, dielectric material can be achieved with a new tube. Similar to cathode ray tubes, the device (called Printapix) permits "simple, inexpensive" image development, according to the manufacturer, Litton Industries.
Two models of the tube have $2.75-\mathrm{in}$. printing-head widths, but tubes with up to $12-\mathrm{in}$. printing-head widths can be produced on order.
Made by Litton Industries' Electron Tube Div., 960 Industrial Road, San

Carlos, Calif., the tubes are now being used in facsimile, oscillography, address labeling and television-type image reproduction equipment. Other applications will soon include: high speed computer readout, controlled information storage and erase for military tactical display maps and stock control uses, and simultaneous recording at any number of dispersed stations.

Type L-4013 tube provides a printing or writing head $0.15-\mathrm{in}$. high to accommodate writing of complete characters or symbols across the entire head widths.

Fig. 1. Model L-4016, which has a linear mosaic head, is on the right. Model L-4013, which his a rectangular mosaic array printing head, is on the left.

Fig. 2. The general working characteristics of the Printapix tube are outlined.

This two-dimensional head may also be used for sequential, scan line (TV type) operation. Use of this tube minimizes system requirements for setup and operation. Type L-4016 has a unidimensional conductive element array for sequential, scan-line operation. Both tubes are immediately available and will be displayed at the IRE show.
The tubes have a metallic-element, mosaic target or printing head in place of the phosphor screen usually found in cathode ray tubes. The metallic elements are $0.001-\mathrm{in}$. in diameter on approximately $0.004-\mathrm{in}$. centers, providing an element density of 62,500 conductors per sq in . With either tube, deflection of the electron beam along the printing head widths accomplishes one dimension of motion. The dielectric material is positioned immediately adjacent to the writing head; movement of this material past the tube face provides the orthogonal displacement.
Electrons in a high-intensity, highdefinition beam in the tube produce a charge pattern on a dielectric surface (such as paper or plastic). The charge image, either line or continuous tone, is rendered instantaneously visible by adherence of a pigmented powder or floc. Writing rates of $0.1 \mu \mathrm{sec}$ per element are achieved.

Image Development

Image development is an instantaneous and dry operation. One system uses a developing powder with two components, a toner and a carrier. Agitation of the combination produces a tribo-electric charging. The toner is a finely pigmented plastic material that becomes positively charged, and is thus attracted to the negative charge image on the dielectric material. (A typical carrier material is powdered iron). The developing powder is released as a cloud or fog in close proximity to the charged dielectric surface. Pigmented plastic is attracted to and retained on the charged areas by the coulomb force. The resultant image can subsequently be erased for re-use of the base material and powder, or be permanently fixed by a rapid heat cycle, pressure or other means.

For more information on this tube, turn to the Reader Service card and circle number 103.

See it at Booth 1610-1618, IRE Show.

from 50 to

double diffused silicon rectifiers

See us first at

New From Columbus-Rectifier Combinations for High KV Applications

COLUMEUS ELECTRONICS CORPORATION

1010 Saw Mill River Rd., Yonkers, N. Y., Tel: YOnkers 8-1221 • TW X: Yonkers, NY-1369

$$
E=\frac{m c}{2}
$$

Its Amazing Relationship To the Relativity Law

MORE than one reader has pointed out that there is a remarkable similarity between our new physical law $\mathrm{E}=\mathrm{mc} / 2^{*}$, and Einstein's famous equation. We don't wish to appear presumptuous, but there is a relativity effect embodied in our new machine, the FR-600. Unfortunately this information has somehow leaked out and now there's the devil to pay. The marketing people got wind of it and blamed us for revealing the clue in our last paper on the Ips Corollary. It seems they think this information will play hob with their sales curve. We have committed ourselves, however, so there's nothing to do but make a clean breast of it.
As we pointed out, the FR-600, in many cases, can do the work of two machines. (Our engineering colleagues will remember that this is because the FR-600 can record 125 kc data at 30 ips , thus recording for 48 minutes on one 14 -inch reel. This eliminates the need for a second stand-by machine or a dual transport in most data runs.) As you might expect, the marketing people were worried that this might cut sales in half, since one machine could do the work of two. That wasn't the half of it, however. Now it seems that the FR-600 lets all of our other analog recorders do the same thing. So, whether we like it or not, all our AR-200's, Model 800's, FR-100's and 1100's can record the same bandwidths at half the usual speeds - and record twice as long to boot. (The new engineer says this is because bandwidth is determined by the reproduce head and not the record head.)

So if you have an FR-600 to reproduce your data on you can record it at half the usual speed on all our other machines and get twice the recording time. There's no way we could stop you if we had to. As a result the marketing people are all up in arms. This will cut sales on all of our other machines in half, they say, since one machine can do the work of two. As far as we're concerned there's nothing to be done about it. The secret's out. We can only hope the profession won't abuse the privilege. A few communications from you in the field would certainly help the marketing people forget this whole ugly business.
(Regarding the answer to the trial problem in our first paper: If one of our readers has solved it would he please send us the answer in a plain envelope marked 'personal.')
*We still have a few extra copies of the papers on $\mathrm{E}=\mathrm{mc} / 2$ and the Ips Corollary.

AMPEX

[^7]
Multi-Headed Transistors Help Miniaturize Circuits

The multi-headed transistor is a combination of any type or types of transistors now in use.

MULTI-HEADED transistors, designed to further reduce the size of transistorized circuits, are being made by The Electronic Transistor Corp. The transistors are a combination of any type or types of transistors now in use.
Combinations in a single package may include pnp, npn, audio frequency, amplifier, computer, and many other types reports the manufacturer (9226 Hudson Blvd., North Bergen, N.J.).
No interference is created by combining more than one transistor in a package,

Wires, Cables Take More Stress With Improved Insulation

WIRES and cables using an improved Teflon insulation can stand more stresses. The insulation is improved by adding mineral fibers to the Teflon and orientating the fibers parellel to the wire surface. While the quantity of fibers added is not great enough to significantly
alter the good dielectric properties of Teflon, their combined effect presents a fairly large surface area to any abraiding influence. Together, they also support concentrated loads and resist penetration of sharp edges.

The methods of insulation improvement

t is claimed; there is no contact between ny of the transistors. Prices are 25 per ent less than the combined prices of the ndividual units.
The following transistor types are imnediately available in combinations of two in a JEDEC 30 package: 2N428, ${ }^{2}$ N404, 2N43, 2N302, 2N482, 2N483, - N484, 2N1372, 2N1374. All individual transistors used in the multi-headed types conform to the electrical specifications registered with EIA and are designated by EIA number.
The multi-headed units are hermetically sealed and welded, and they are designed to meet all applicable Mil specifcations.
For more information on these units, turn to the Reader-Service card and circle number 106.
and subsequent advantages were reported by W. L. Gore \& Associates, Inc., (487 Paper Mill Road, Newark, Del.). Fiber particles average about 1 micron in diameter and from 500 to 1000 microns in length. More than 90 per cent of the fiber orientation is parallel to wire surface, the company claims.

Among the material's adventages, designated as Type AR compound, is its cutthrough resistance-three times as great as that of standard Teflon. Its mechanical properties remain satisfactory for many hours at temperatures of 325 to 400 C. In addition, if the Teflon burns away in extreme environments, the mat of fibers continues to prevent conductor shorting.
Type AR compound is being used with the Type CR insulation (also made by Gore) to form a primary insulation with high resistance to corona stress and a jacket that is resistant to abrasion and cut-through.

A corona-stress life of 70 to 80 times greater than that of the best Teflon hookup wire now available is claimed for the type CR insulation by Gore. Moreover, Type CR insulation over a nickel-clad copper conductor is good from a few degrees Kelvin to more than 300 C. These materials are available in a wide variety of cable and wire combinations.
For more information on these insulations, which will be on display at the IRE Show, turn to the Reader-Service (ard and circle number 105.
Jiooth 4121.
 CIRCLE 120 ON READER-SERVICE CARD

CIRCLE 121 ON READER-SERVICE CARD

ATHREE-DIMENSIONAL, printedcircuit packaging method that permits quick servicing by substitution and throw-away is now available to design engineers. The method can be used for small and large circuit programming in small or large quantities.

All components in this three-dimensional circuitry are encapsulated in replaceable AmpPlugs that are friction fitted into two parallel "walls" of printed circuit boards. Designed by Amp Inc. (Harrisburg, Pa.), the packaging method
is called the Amp-Meca Program (Main tainable Electronic Component Assem. blies).
Four main advantages for this packag. ing method are claimed by the company. They are:
Maintainability. Each Amp-Cell, which can contain one or more component assemblies, is easily removed and replaced. Since no bonding agents are needed, highly skilled maintenance personnel are not required.
Design Flexibility. Cells can be made

All components in this three-dimensional circuitry are encapsulated in replaceable AmpPlugs which are friction-fitted into two parallel "walls". of printed-circuit boards.

ELECTRONIC DESIGN • March 16, 1960

The packaging method permits instant servicing by substitution and throw-away.
using the 0.1 and $0.2-\mathrm{in}$. grid system. The units discussed here are made with contact ribs in an 0.1-in. grid pattern. Thus, for every 0.1 in. increase in the length of a given cell, two additional contacts may be obtained (one on each side of the cell). Cell volume can be increased without adding contacts by widening or deepening the dimensions of the "walls" and the cells.
Circuit Production. Economical prototype circuit production is accomplished through semi-automated "memory type" equipment using punched cards. This is achieved without the need of drafting, art work, photographic process, etching, plating or stamping. Since the component cell is a mold in itself for encapsulating the components, separate molding fixtures in the assembly process are eliminated.
Reliability. The units are practically indestructible, since the cells have no protruding contacts. Also, the entire assembly is protected against vibration, corrosion and physical damage because the components are encapsulated in the cells -and the cells, in turn, are wholly contained in the circuit boards. The best conductivity is assured through the frictionfit wiping action between contact surfaces when the cells are inserted into the boards.
The basic AmpPlug module can be made by machining, compression, injection, or transfer molding. Thus, it can be made of any type of insulating material anienable to one or more of the above pracesses.
The Amp-Meca Program will be on display at the IRE Show. For more info mation on it, turn to the Reader-Servic card and circle number 104. B oth 2527-31.

Torque tester with Fafnir Ball Bearings takes instrument bearing "cardiograms"!

Fafnir automatic torque tester checks instrument ball bearings for cleanliness, geometry, surface finish, other conditions affecting performance. Recorder chart provides visual inspection, analysis.

Dirt, handling damage, faulty geometry these and other ball bearing hazards can wreak havoc in the performance of an instrument or precision mechanism. The automatic torque tester above is designed to detect such conditions before bearings are installed. thus saving costly tear-downs and reassembly. It is widely used by instrument and ball bearing manufacturers.
Two Fafnir super-precision ball bearings support the rotor in this highly sensitive mechanism. These ball bearings must be
as near-perfect as men and machines can make them, to provide the extremely low tolerances for radial and lateral eccentricities, sensitivity, and reliability for which the torque tester is designed.
An exacting assignment for Fafnir precision. But it's typical of the instrument applications in which Fafnir ball bearings have proven themselves. If your product design calls for instrument or miniature ball bearings, let Fafnir help you. Write The Fafnir Bearing Co., New Britain, Conn.

Fafnir Super-Precision Fafnir Super-Precision Ball Bearings support
torque tester rotor, provide sensitive, high precision performance.

You're Invited To Visit ELECTRONIC DESIGN's Booth

ELECTRONIC DESIGN's editors will be waiting to talk to you about design problems you've recently solved, new products you'll be introducing, articles you'd like to write-anything that will help engineers do their job better. So visit us. You're always welcome at Booth 4404-06.

Improved Products and New Ones Await Inspection at IRE Show

L. N. Tolopko
 Associate Editor

THIS YEAR'S IRE Show will be the stage for the debut of many new products and many improved versions of standard products. Responses to an Electronic Design questionnaire indicates that manufacturers will be tempting design engineers with products that have more reliability, more compactness, more special features. Brief descriptions of some of these products follow.

Test Equipment

Meters. In this category are many new, automatic, and improved units. Expanded scale voltmeters that give true rms readings of ac even when their frequencies vary or when they are distorted will be shown by the Weston Instruments Div. of Daystrom, Inc. The instrument has a transducer that provides the necessary means for converting the rms value of the input to the squared value of average dc current input.

Automatic range selection is the outstanding feature of an ac vtvm made by Allied Radio Corp. Instructions for the unit read: "Just touch probes to circuit under measurement, and a motor-driven selector switch automatically turns to the proper range and turns on a pilot light on the panel to show scale multiplier."

Automation is also the key feature of several other new products. A new microwave wattmeter has a bolometer bridge that automatically adjusts the dc bias power dissipated in the external bolometer; it's made by Daystrom Inc. HewlettPackard's display scanner has a pen-speed stabilizer that automatically controls the pen writing speed. It thus provides uniform, detailed plots over every part of the waveform and reduces scanning time. Hewlett-Packard will also show a meter than can automatically provide a continu-

Last January ELECTRONIC DESIGN queried manufacturers who planned to exhibit at this year's IRE Show.
We asked them what was "special" about the new products
they would display. The answers are summarized
here. For more details, see this issue's New Products
Department, p 132; it contains technical data
on close to 300 products, and most of these can
be seen at the Show.
ous noise figure presentation on most radar receivers.

Other automatic instruments include a digital deviation ohmmeter being shown by Electro Instruments, Inc. The device automatically measures resistance and presents results in percentage of deviation from a nominal value.
As for improved products, Southwestern Industrial Electronics Co. will offer a wide-range electronic voltmeter that measures ac and dc voltages from 1 mv to 100 v full scale in 14 ranges. Improvements in the unit: residual noise is now less than 20 mv on the 1 mv ac scale, and dc millivolt drift has been reduced to less than $50 \mu \mathrm{v}$ after warmup. A rotating-coil gaussmeter capable of measuring dc magnetic fields to an accuracy of 0.1% will be exhibited by Rawson Electrical Instrument Co. Their previous units had 1% accuracy. And Systron Corp. will show an all-electronic digital voltmeter that provides auto-polarity and auto-ranging-something not available on their previous models.

Another meter that incorporates improvements is the frequency measuring unit made by Beckman Instruments, Inc. It digitally shows any frequency from 10 cps to 110 mc with an accuracy of 0.00004%. To cover this range with the same accuracy in the past, two of their instruments working in combination were necessary.
A "first" will be offered by Metronix, Inc. It will show a meter that is "believed to be the first combination ac and dc electronic voltmeter ever offered for half relay-rack mounting." It has 10 standard voltage ranges in both ac and dc up to 300 v . Another unusual claim is being made by Electronic Applications, Inc. It will exhibit a very low-range ohmmeter that will read directly the internal resistance of storage and primary bat-
teries with and without loads. The company claims that there is no equivalent equipment on the market. As for future developments in this type of product, they say: "Somebody will try to copy it."
Testers. Several new semiconductor test units will be on display at the Show. Hickock Electrical Instrument Co. will have a transistor beta tester that tests transistors according to manufacturers' specifications. Says the company, "Beta measurements not made at the current and voltages established by the transistor manufacturers are meaningless." An automatic transistor test unit, made by Optimized Devices, Inc., is claimed to "cut manpower costs ten to one and increase test reliability."

Another automatic tester will handle diodes, capacitors and resistors at an average rate of 3500 pieces per hour. Made by Universal Instrument Corp., the machine will physically orient each axial-lead component in the direction of its polarity. A diode tester capable of generating and displaying the millimicrosecond recovery characteristics of ultra-fast switching diodes on conventional oscilloscopes is being shown by Lumatron Electronics, Inc. The unit has a test fixture for rapid, manual insertion of ccaxial lead diodes.

New equipment to test instruments will also be on exhibit. Daystrom, Inc. will show an instrument calibration unit that has 0.05% accuracy, and panel instruments featuring expanded scales. A new tester to check the operation and accuracy of voltmeters, ammeters and ohmmeters will be brought to the Show by Mid-Eastern Electronics.

Components

Semiconductors. This category will include many
${ }_{13}$ W products. Sylvania is bringing microwave nixer diodes with the "lowest available noise figure." They will provide a receiver system with a "realistic" 7.5 db overall noise figure at the Ku land. A total of 331 new semiconductor devices in five product categories (Zener diodes, mesa transistors, rectifiers, and alloy and power transistors) will be introduced by the Semiconductor Div. of Motorola. The company is also announcing its new quality assurance program called "Meg-ALife." Three industrial alloy transistors are the first units made under this program. Each production lot of these transistors undergoes complete electrical, mechanical, environmental and life tests identical to those required for military approved units.
A new line of diffused silicon mesa transistors will be shown by Industro Transistor Corp. The units are designed for medium power, small-signal amplifier and switching applications.
Tubes. Look for new and improved units in this category. A $5-\mathrm{kw} \mathrm{cw}$ power klystron that is claimed to have highest power available today in a single tube at X-band will be shown by Varian Associates. Varian will also show, among other things, a two-resonator oscillator klystron that is "even more compact than previous models." The "most sensational" product Alfred Electronics will show is a general frequency microwave oscillator. The power supply of this unit has a reset in the rear to insert a generator head for the frequency spectrum desired. The "plug-in" generator will include primarily a backward wave oscillator tube and solenoid with a calibrated dial chart for insertion into a front panel holder.

Other additions to the tube category include General Electric's new L-band, electronically tunable oscillator. Huggins Laboratories is showing an electrostatically focused 1-w traveling wave tube in which, they report, substantial savings in weight and size have been effected. Sperry's Tube Division is heralding a new line of medium-power, traveling wave tubes that cover the complete range of \mathbf{P} to X bands. Small signal gain for the tubes ranges from 35 to 55 db , minimum-higher, it is reported, than provided by any other known family of tubes.
Potentiometers. Ace Electronics Associates, Inc., makes this claim about a unit they are showing: "The first $1 / 2-\mathrm{in}$. precision conductive plastic potentiometer in the industry. ${ }^{*}$ Resistance range, for the units, is 250 ohms to 150 K .
Another unit with reported special features is a wirewound, bushing-type mounting potentiometer being shown by Waters Manufacturing, Inc. The unit requires "up to 25% less space behind the panel than potentiometers having identical pecifications."
New potentiometers will also be shown by sev(ral other companies. The Helipot Div. of Beck-

(1)

Pressure to DC Voltage

 WithOnly One Moving Part

ANY RANGE FROM 0-. 1 psi to $0-3500$ psi - FULL SCALE OUTPUT 0-5 VOLTS DC • AVAILABLE NOW

A stiff metal diaphragm is the only moving part in the new Ultradyne DCS-4, a complete DC/DC pressure transducer package. Because of its simplified design, this system withstands the most severe vibration and shock. It is especially suited for aircraft, nuclear, missile and other rugged applications.
The unit operates from standard unregulated 28 -volt DC power supplies. Its full scale output of $0-5$ volts DC can be fed to voltage controlled oscillators, DC computers or other DC-input system. DC output remains constant ($\pm 1 \%$) computers or other DC -input system. DC output remains
despite input changes within the standard 25 to 30 volt range.
espite input changes within the standard 25 to 30 volt range.
The DCS-4 offers all the advantages of a variable-reluctance transducer withThe DCS-4 offers all the advantages of a variable-reluctance transducer with-
out the disadvantages of AC transmission. Advanced solid state circuitry elimjnates amplifiers and their drift problems. The DCS-4 uses a regulated transis-
torized multivibrator working into a completely passive circuit.
The new Ultradyne DCS-4 is available now in any range from $0-.1$ psi to $0-3500$ psi in gage, absolute or differential pressure types.
Send for complete specifications and application data.

INCORPORATED
P.O. BOX 3308

ALBUQUERQUE, NEW MEXICO

- presure ranges - 0..1 pai to 0-8500 pai - power supply - standard unregulated
- frequency reaponse - designed to pasa intelligence freque
(at least 2100 cpa)
- output voltage - 0-5 volt DC, full scale - output regulation - constant within - output with input ranging from 25 to 30 volts DC
- size $-2^{\prime \prime} \times 21^{\circ}{ }^{\circ} \times 11_{0}$
- weight- 9 ounces (lese fittinga)

ULTRADYNE INCORPORATED
P.O. Box 3308 , Albuquerque, New Mexico. Dept. ED3 Gentlemen:
I want to know more about the new Ultradyne DCS-4 DC/DC presure. to-voltage aystem. Please send me complete apecifications and application data.
NAMR....:
COMPANY
ADDREPs.

all the news at the IRE show

．．．and at no charge．You＇ll find your copy of Electronic Daily either direct in major hotels，or at Hayden＇s booth \＃4404 at the Coliseum． Use the Daily to select the booths and products you want to be sure to see ．．．plan your time to best advantage．The Daily is printed overnight for distribution early each morning during the convention． It＇s written by engineers for engineers；contains all the new products to be exhibited and their booth locations，meetings，events，papers by subject，plus the significance of all the latest news，announcements，and behind－the－scene trends at the show．This year，don＇t miss Electronic Daily，it＇s free to all registered exhibitors and attendees．
man Instruments，Inc．，for example，will bring with them three new trimmer potentiometels． Dale Products will show a 25 －turn，T－Pot unit wi h completely welded construction of all fixed cor－ nections and sealed construction for maximu n protection against severe environmental conci－ tions．And Chicago Aerial Industries，Inc．，w．ll have in their booth a new，extended line of ill metal，precision potentiometers that are singlo． turn units．They have all metal construction，wilh glass－to－metal terminals．

As for improved units，DeJur－Amsco Corp．is showing a ball－bearing，precision potentiometer with a one－piece molded housing and complete phenolic envelope inside．It has＂improved linear－ ity and lower starting and running torque．＂
Relays．Response to ED＇s questionnaire shows that many new units will be offered．Guardian Electric Mfg．Co．will have a new series of minia－ ture de relays with 6pdt contact combinations rated at 5 amp ．They＇ll also demonstrate a new impulse relay designed to＂insure long life， trouble free operation well in excess of 1 million steps．＂Side mounted relays designed for printed circuit boards will be displayed by Electronic Components．The relays have an overall height not exceeding 0.4 in．Lastly，a 2－pole subminia－ ture，crystal case relay is one of the new units being shown by the Union Switch \＆Signal Divi－ sion of Westinghouse．One feature of the relays that is claimed to be unique，is the armature sus－ pension system that is designed to meet a high level of vibration．
Connectors．Improvement seems to be the key here．New features have been added to the Multi－ Terminal connector series made by North Electric Co．These improvements include a handy locking bolt for securing the plug to the receptacle，and an easily removable cover with a captive screw for rapid wiring or checking．Printed circuit board connectors made by Winchester Electronics，Inc． have been improved；they now conform to MIL－ C－21097．
As for new units，two new printed circuit con－ nectors will be shown by Continental Connector Corp．One is a right angle plug and socket series with 28 contacts；the other is a 28 －contact test point connected with right angle pins for dip soldering to the board．Elco Corporation＇s new series of Varicon connectors will be shown；the microminature rack and panel units are made of hermaphroditic design．
Materials．Efforts continue here to produce mate－ rial that will withstand higher temperatures．Two new high temperature laminates will be shown by Synthane Corp．They can be used at temperatures up to 500 F ．One is an asbestos mat plastic，and the other is a glass fabric plastic．A fire retardant epoxy casting resin that may be cured at room temperatures will be brought by Emerson \＆

Juming, Inc. It is designed to be stable over a emperature range of -100 to +350 F. Furane Ilastics, Inc. will have insulating resins that have better dielectric properties at elevated temperaures. And Kanthal Corp. will show resistance wires that can operate continuously at temperatures up to 250 C and to 300 C for short periods of time. The wires are covered with a dual-layer insulation. The base layer consists of a thin inorganic ceramic coating; the overlay is made of Teflon.

Sub Assemblies

Recorders. A miniature airborne tape recording system, possibly the "smallest 28 -channel recording device ever designed for space, air and industrial use," will be shown by the Leach Corp. It has a diameter of 6.25 in . and a length of 6.5 in .; weight is less than 10 lb . Also of interest is an eight channel direct writing rectilinear recording system being shown by Cohu Electronics, Inc. It has a 40 millimeter amplitude and a frequency response to 100 cps , features unavailable in products they've made before.
Power Supplies. Look for new units in this category. Power Sources, Inc., for example, will bring two new lines of transistor-regulated power supplies (one for low voltage and the other for high voltage applications). The units are claimed to be "half the size and weight of comparable tube-type supplies"; they are backed by a $5-y r$ warranty which includes all components. A series of power supplies with line regulation of 0.005%, ripple less than $500 \mu \mathrm{v}$, and overshoot less than 1% (unavailable in similar products made by the company before) will be brought to the Show by Mid-Eastern, Inc. Quan-Tech Laboratories is introducing a constant current supply. Unique with this instrument, they say, is that the output voltage can be read on the meter by a simple flip of a front panel switch. They will also bring with them a new series of transistorized, low voltage power supplies; big feature is a regulation of 0.01% from no load to full load.
Generators. Lots of new generators will be at the show. Rutherford Electronics Co. will have a new pulse generator with repetition rates continuously variable from 1 cps to 10 mc with a rise and fall time of less than $8 \mathrm{~m} \mu \mathrm{sec}$. A four-channel millimicrosecond current pulse generator that operates to frequencies above 3 mc will be shown by Electro-Pulse, Inc. A crystal frequency synthesizer that is capable of producing over 64,000 discrete frequencies with a stability of better than 1×10^{-8} per day will be put on display by Manson Laboratories. A transistorized, battery powered signal generator with a continuously variable frequency range from 2 cps to 200 kc and a 1 v rms output and less than 1% distortion will be presented by Southwestern Industrial Electronics Co. - ©

DIRECT READOUT FEATURE eliminates need for using expensive oscilloscopes and fast pulsers. All three time parameters are displayed on panel and given as voltages, require no difficult interpretation. Even operators with little technical ability find it easy to read measurements. Another advantage: Responses are very fast, require less than 100 milliseconds readout time for high speed punched card recording.

See our display at the MARCH IRE SHOW Booth 3025

A new transistor RISE, STORAGE
 AND FALL TIME METER for
 fast, millimicrosecond-accurate measurements you read directly

Here is a great new advance in metering-an instrument which makes possible quick, simple measurements to millimicrosecond accuracy. Three independent channels of time measurement are provided. Each has individual adjustable voltage discriminators, permitting measurements of any three times of interest over the delay, rise storage or fall of the switching transient characteristic. E.H Model 140 is designed primarily for fast measurement of rise, storage and fall time parameters of transistors in saturated mode operation. It is also useful for transient response measurement of diodes, cables, pulse transformers, delay lines. amplifiers and similar high speed devices. Like all $\mathrm{E} \cdot \mathrm{H}$ instruments, the 140 is conservatively designed for trouble-free performance. Top quality components are used throughout.
For more information on the 140, write or wire E-H today.
Here is a great new advance in metering - an

SPECIFICATIONS: TIME DIFFEREEMCE CCAMNEIS (THRO) RAMEES 10 millimicrossconds full scale
 lour raneses
READOUT:
volt full scale at BNC con READOUT: 1 vole full scall at BNC con-
nector and panel meter for each channel READOUT TIME: Less than 100 millissecons
Accivech: $+7 \% \pm 5$ millimicrosecond
(utimacte accuracy: $\pm 2 \% \pm 1$ musec)
 POWER SUPLY (for transistor collecten
VOLTAGE, 3 to 20 volts, continuousiy Voltaget in to 20 volts, coninuousi)

cuRRENT: up to 1 ampere avaliable MERCURY PULSER (Base drive) ISE AND FALL TIME: less than | 2 millimicroseconds |
| :--- |
| REPETITION RATE: 60 cps | AMPITTUDE: 3 to 20 volis, continuously Pariable

PREAPLIFIERS
Separat
lesteampifiers are avaliable for

 Model 141 -D1 (for Oiodos) The Model 140 comes eguipped with nny one presmplifier - additilional prea
fiers are pricod at $\$ 500.00$ oach

NEW PRODUCTS

Printed Circuit Connector Has

Bifurcated, Undulating Spring

A bifurcated, undulating spring design assures multipoint contact of this Edge-On printed-circuit connector. Use of crimp-type, snap-in Hyfen tips with insulation grips eliminates the need for insulating sleeves. The tips accommodate combinations of wire sizes as well as single wires. A closed-entry face on the board protects the spring and self-aligns warped, printed-circuit boards. Provisions are made for one or two tips for each board position on each side. Current capacity for each contact is 22 amp ; working voltage is 280 v dc or 200 v ac at sea level. Continuous operating temperature is 350 F max.
Burndy Corp., Dept. ED, Norwalk, Conn.
Price: Varies with customer specifications and requirements.
Booth 1329-1331.

Price and Availability

PRICE AND AVAILABILITY data are now being added, whenever possible, to the New Product descriptions that appear in ELECTRONIC DESIGN. These data will help you to:
-Evaluate the products more intelligently. -Decide which products to buy now and which to wait for.
-Schedule your orders wisely.
-Get an insight into prices and savings for similar products.
Most manufacturers have been very cooperative in providing us with Price and Availability data. Since some of the data arrived after our deadlines, it was impossible to add them to all of the products. The data represent the latest information at the time of publication.

Covering all new products that might generally be specified by an electronics engineer engaged in the design of original equipment.

K-Band Magnetron Provides $0.02 \mu \mathrm{Hec} 586$ Pulses Af 25-Kw Peak Power Output
Pulses of $0.02 \mu \mathrm{sec}$ and a peak power output of more than 25 kw are provided by the type 7093 magnetron. Designed for use as a pulsed oscillator at a fixed frequency in the K-band between 34,512 and $35,208 \mathrm{mc}$, the unit weighs 4.2 lb . It is suited for use in high-definition, short-range radar systems of up to 5 mi and will allow a system resolution of 4.5 yd in range. At pulse duration of $0.02 \mu \mathrm{sec}$, the rate-of-rise of the voltage pulse is 600 kv per $\mu \mathrm{sec}$, with a duty factor of 0.0001 , a peak anode voltage of 13.5 to 15 kv , and a peak anode current of 12.5 amp .
Amperex Electronic Corp., Dept. ED, 230 Duffy Ave., Hicksville, L.I., N.Y.
Availability: Immediately available in sample and pre-production quantities.
Booth 1610-1618; 1709-1717.

Cathode Ray Tube Has Built-In

Shield Over Neck

Type VC118P1, 2-in., flat-face cathode-ray tube has a built-in magnetic and mounting shield over the neck. Both the focusing and deflecting are accomplished electrostatically. Heater voltage and current are 6.3 v and $0.6 \mathrm{amp}, \pm 10 \%$; anode voltage is 3000 v dc max. Over-all length of the tube is $7-5 / 8 \mathrm{in}$., $\pm 3 / 16 \mathrm{in}$., and greatest bulb diam(ter is $2-1 / 16 \mathrm{in}$. Using a Pl phosphor, the tube can be mounted in any position.
Waterman Products Co., Inc., Dept. ED, Philaelphia, Pa.
looth 3105-3106.

Meet the newest addition to the growing family of JFD precision electronic components.
Designed with compactness, ruggedness and reliability in mind, new JFD lumped constant Delay Lines upgrade your prototype or production project.
Compare the advantages of the standard JFD lumped constant delay lines:

- High delay-to-rise time ratio with minimum signal attenuation.
- Tolerance of $\pm 5 \%$ max. on delay and characteristic impedance.
- Temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
- Delay time thermal stability of 50 parts per million per degree centigrade.
- Up to 25 Mc bandwidth.
- Virtually linear phase shift.
- Hermetically sealed metal cases for maximum resistance to shock, vibration and humidity.
- Meet all applicable MIL specs.

Whether your application calls for standard or custom-built lumped constant or distri buted constant delay lines, our engineering staff will be glad to review your needs and

Typical Standard Delay Line Charactoristics

submit recommendations. Closer tolerance de-
lays and impedances are available, in forms, sizes and terminal designs to match your needs. Write for Bulletin No. 213A.

NEW PRODUCTS at the ire show

Toroidal Inductors

For use in severe environments

Types ATE 11, 0 , and 4 toroidal inductors are designed to withstand high acceleration, shock and vibration. The units are slotted for screwdriver adjustment, are fully encapsulated, and meet MIL-E-15305 A, MIL-T specs 27 , grade 4, class R. Type ATE-11, having a maximum inductance of 5 h , measures $3 / 4 \mathrm{in}$. in diameter and $13 / 16 \mathrm{in}$. in height. It weighs about 0.75 oz . Type ATE 0 has a maximum inductance of 0.5 h , weighs 1.5 oz , and measures $1-1 / 16 \mathrm{in}$. in diameter and 1 in . in height. Type ATE 4 has a maximum inductance of 15 h , weighs 3.5 oz , and measures $1-5 / 16 \mathrm{in}$. in diameter and $1-3 / 16 \mathrm{in}$. in height. All units have a useful range of 500 to $100,000 \mathrm{cps}$.
Burnell \& Co., Dept. ED, 10 Pelham Parkway, Pelham, N.Y.
Booth 2909-2910.

DC Drive Choppers

Both spdt and dpdt types

These dc drive choppers are available in either spdt or dpdt types. The units have a low noise figure and a chopping rate of 94 cps . Suitable for use in portable equipment, the choppers can have noise level specifications of 1 mv into 100,000 ohms. In non-portable applications, the use of the dc drive permits ac drive wiring to be removed from the critical circuitry. Required power is 12 to 24 v dc.
Stevens-Arnold, Inc., Dept. ED, 7 Elkins St., S. Boston 27, Mass.

Booth 2934.
ELECTRONIC DESIGN • March 16, 1960

The following Fairchild transistors are available from stock for same day shipment in quantities up to

pieces per type．
Standard NPN：2N696， 2N697．High Voltage NPN 2N699．High Beta NP

2N1420．Low Stor
NPN：2N1252，2N1
Standard PNP： $2 N$ 31
2N1132．Mesa：$\$ 706$.

ELECTRONICS
GO HERRICKSROAD，MINEOLA，L．I．N．Y．
TWX G－CY－NY－5BOU PIONEER E－6520 TWX G－CY－NY－580L

DIFFUSED SILICON DIODES FROM FAIRCHILD

THE FIRST－An ultra－fast computer diode： Four millimicrosecond maximum reverse recovery time of this new FD 100 overcomes the diode－ caused speed limitations in computer circuits．Ca－ pacitance is only $2 \mu \mu \mathrm{f}$ at zero volts bias．
＋THE REASON－A need and the technology to serve it：Fairchild＇s diffused silicon transistors have achieved heretofore unattainable performance． Application of these transistors has in turn created the need for silicon diodes of similarly outstanding performance．

TENTATIVE SPECIFICATHONS－FAIRCHILO FD 100 $25^{\circ} \mathrm{C}$ Except As Noted				
Symbal	Charactoristic	Min．	Mas．	Conditions
$\begin{aligned} & \mathrm{BV} \\ & \mathrm{I}_{\mathrm{R}} \\ & \mathrm{~V}_{\mathrm{F}} \\ & \mathrm{c} \\ & \mathrm{t}_{\mathrm{rr}} \end{aligned}$	Breakdown Voltage 40 volts			（1） $\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
	Reverse Current		． 100	（⿺） $\mathrm{V}_{\mathrm{R}}=30 \mathrm{v}, 25^{\circ} \mathrm{C}$
	Forward Voltage Drop		1 V	＠If $=10 \mathrm{~mA}$
	Capacitance		$2 \mu \mu \mathrm{f}$	（e1） $\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$
	Reverse Recovery Time To Ir $=1 \mathrm{ma}$		$4 \mathrm{~m} \mathrm{\mu s}$	（e） $\mathrm{If}_{\mathrm{f}}=\mathrm{l}_{\mathrm{r}}=10 \mathrm{ma}$
	Maximum Power Dissipation		mm．	
	Temp．Range Operating $-65^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$ Storage $-65^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$			

For full specifications，write Dept．B． 3

See us at Booth \＃2701－3－5－7 on the second floor at I．R．E．

THE FOLLOW UP－A broad line of high re－ liability diodes：This Fairchild FD 100 diode is being followed by others providing industry－leading standards in reliability and uniformity－backed by a continuing accumulation of statistical data on a large scale．
4300 REDWOOD HIGHWAY • SAN RAFAEL，CALIFORNIA • GLENWOOD 6－1130－TWX SRF 26 New York Area：Pioneer 1－4770．Syracuse：GRanite 2－3391．Phliadelphia Areat TUrner 6－6623 Washington，D．C．National 8－7770．Chicage：BRowning 9－5680．Les Angelesi OLeander 5－6058

NEW PRODUCTS

AT THE
IRE SHOW

Microwave Hybrid

Coupling is $3 \pm 0.5 \mathrm{db}$

These octave band, hybrid couplers provide $3 \pm 0.5 \mathrm{db}$. Isolation is 20 db min , vswr is $1.25: 1$ max, insertion loss is 0.1 db max, and power is 100 w avg or 5 kw peak Model 749 operates over the frequency range of 125 to 250 mc and is 11-3/4 in. long. Model 750 operates from 250 to 500 mc and measures $5-3 / 4 \mathrm{in}$. in length. Model 751, operating from 500 to 1000 mc , is 3-1/2 in. long. Model 752 operates from 1000 to 2000 mc and is $1-1 / 8$ in. long and model 753 operates from 2000 to 4000 mc and is $1-5 / 8$ in. long. Type N connectors are standard.
Sage Laboratories, Inc., Dept. ED, 3 Huron Drive, Natick, Mass. Price \& Availability: Price is $\$ 255$ ea. Delivery time is up to 45 days. Booth 1910.

Environmental
 Chamber

Simulates high altitudes and extreme heat

This environmental chamber is able to produce 1200 F of radiant heat under altitude conditions of $500,000 \mathrm{ft}$ or $1 \times 10^{-6} \mathrm{~mm} \mathrm{Hg}$ absolute. A vapor trap insures efficient operation of the vacuum pump and an automatic, hot-gas defrost takes care of frost on the coils. Exterior dimensiohs, including machinery and instrumentation, are about $4 \times 8 \times 7$ ft . Inside work space is a cylinder measuring 30 in . in diameter and 30 in . in depth. The chamber has applications in the testing of components and assemblies for space programs.

Tenney Engineering, Inc., Dept. ED, Union, N.J.
Availability: The unit can be delivered 8 to 10 weeks after receipt of order.
Booth 3226-3228.

TRANSISTOR KILLER: THE VOLTAGE SPIKE...

TAMEI BY NELV PERKIN MTR DC POWER SLPPLIES

The voltage spike in the top photo could destroy the transistors in your circuit in microseconds. This one happens to be a "turn-on" transient - one of several treacherous, instantaneous overshoots encountered in the everyday use of dc supplies. For complete protection against line and load transients, use new Perkin MTR power
supplies. Combining the best two solid-state regulation principles, they use magnetic amplifiers for high efficiency and transistors for instantaneous regulation and low ripple. Made without tubes or moving parts, they give vou long, trouble-free service. They're ideal for continuous-duty and unattended operation. Perkin MTR units sustain shorts and overloads indefinitely without suffering internal damage or shooting spikes into the load. After shorts, they resume normal operation automatically. And their protection is constant... even if an internal transistor fails, your Perkin MTR power supply continues to regulate smoothly and safely!

Actual photograplas
of power supply
 virtionl, 0. 2 sece per eat limizontal.

NEW SOLID STATE REGULATION PRINCIPLE:

 magnetic amplifiers for efficiency and reliability, transistors for fast response Rugged magnetic amplifiers provide steady-state regulation of line and load. Fast-acting transistors suppress ripple and transients. Because the transistors function only during instantaneous line and load changes, their actual use is held to a minimum. MTR units thus have far better dynamic regulation than magnetic amplifier-regulated power supplies and much higher reliability than fully transistorized supplies.| PERKIN / MTR REGULATED LOW-VOLTAGE DC POWER SUPPLIES | | | | | | | | | prompt delivery |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | D.C. Output | | Static Regulation | | Dynamic Regulation | | A.C. Input60 CPS | | Ripple |
| No. | Volts | Amps | Line | Load | Linet | Load \dagger f | Volts | Phase | RMS |
| MTR060-1 A | 0-60 | 1 | $\pm 10 \mathrm{MV}$ | $\pm 25 \mathrm{MV}$ | $\pm 10 \mathrm{MV}$ | $\pm .2 \mathrm{~V}$ | 95-135 | 1 | 2MV |
| MTR060-5 A | 0-60 | 5 | $\pm 10 \mathrm{MV}$ | $\pm 25 \mathrm{MV}$ | $\pm 10 \mathrm{MV}$ | $\pm .3 \mathrm{~V}$ | 95-135 | 1 | 2MV |
| MTR036-5 | 0-36 | 5 | $\pm 10 \mathrm{MV}$ | $\pm 10 \mathrm{MV}$ | $\pm 10 \mathrm{MV}$ | $\pm .2 \mathrm{~V}$ | 105-125 | 1 | 1MV |
| MTR036-15 | 0-36 | 15 | $\pm 10 \mathrm{MV}$ | $\pm 10 \mathrm{MV}$ | $\pm 10 \mathrm{MV}$ | $\pm .2 \mathrm{~V}$ | 105-125 | 1 | 1MV |
| MTR636-15 | 6-36 | 15 | $\pm 25 \mathrm{MV}$ | $\pm 50 \mathrm{MV}$ | $\pm 25 \mathrm{MV}$ | $\pm .75 \mathrm{~V}$ | 105-125 | 1 | 5MV |
| MTR636-30 | 6-36 | 30 | $\pm 25 \mathrm{MV}$ | $\pm 75 \mathrm{MV}$ | $\pm 25 \mathrm{MV}$ | $\pm .85 \mathrm{~V}$ | 105-125 | 1 | 5MV |
| MTR615-5 | 6-15 | 5 | $\pm 10 \mathrm{MV}$ | $\pm 50 \mathrm{MV}$ | $\pm 0.1 \%$ | $\pm .2 \mathrm{~V}$ | 105-125 | 1 | 3MV |
| MTR28-2 | 24-32 | 2 | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm .2 \mathrm{~V}$ | 105-125 | 1 | 5MV |
| MTR28-3 | 24-32 | 3 | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm .3 \mathrm{~V}$ | 105-125 | 1 | 5MV |
| MTR28-5 | 24-32 | 5 | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm .3 \mathrm{~V}$ | 105-125 | 1 | 5MV |
| MTR28-10 | 24-32 | 10 | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm .4 \mathrm{~V}$ | 105-125 | 1 | 2MV |
| MTR28-30 | 24-32 | 30 | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm .5 \mathrm{~V}$ | 105-125 | 1 | 5MV |
| MTR28-100 | 24-32 | 100 | $\pm 0.1 \%$ | $\pm 0.1 \%$ | $\pm 0.5 \%$ | $\pm 2.0 \mathrm{~V}$ | $\begin{aligned} & 208 / 230 / \\ & 460 \pm 10 \% \end{aligned}$ | 3 | 20MV |

-For 10 V step change on 115 V nominal input units; 10% step change on Model MTR 28-100
+HFor changes no load to full load or full load to no load. On fractional load changes, specifications are improved.
All models have Automatic Current Limiting protective loads and shorts can be sustained indefinitely without damage arcuitry which eliminates fusing. Voltage and current are to the power supply. All units available standard 19" rack or automatically reduced to a safe level on overloads of 125% cabinet mount. Dynamic impedance down to 25 milliohms. rated output and above, including dead short circuits. Over
WRITE FOR COMPLETE PERKIN CATALOG on tubeless power
supplies and new technical article on dc power sources for transistorized
circuits.

PERKIN

ENGINEERING CORPORATION

345 Kansas Street, El Segundo, California • ORegon 8.7215
Jew England Area Office: 46 Amesbury St. \bullet Lawrence, Mass. \bullet MUrdock 3-3252

ALES REPRESENTATIVES

Dayton, O.-CHapel 4-5551
Denver, Colo.-SUnset 1-7375 Detroit, Mich.-HOward 8-2461 Indianapolis, Ind. - STate 7-0009
Kansas City, Mo. - HEdrick 2-2528 Los Angeles, Calif.-HOllywood 9-729

Minneapolis, Minn.-MIdway 6-2621 New York City, N.Y.-DIgby 4-2997 Orrindo, 1 It Phoenix, Ariz- WHitney 6-2111 St. Louis, Mo. - PArkview 1-6403

San Diego, Callf.-ATwater 3-208 San Francisco, Calif,-EMerion 9-335 Seattle, Wash.-PArkway 3-9000 Washington, D.C. - JUniper 5-7550 Agincourt, Canada. AXminster 3-7011

Microminiature

Slotted for screw-driven adjustment, type ATE 34 microminiature, variable toroidal inductors have a maximum inductance of 500 mh with a Q-factor greater than 55 at 25 kc . The frequency range is 3 to 30 kc . The units measure $27 / 64$ in. in diameter and $21 / 32 \mathrm{in}$. in height. They weigh 0.1 oz . The terminal spacing is in modules of 0.3 in . Completely encapsulated, the units meet MIL-E-15305 A and MIL-T specs 27, grade 4, class R. Designed for use in printed circuitry, they have applications in phase networks, variable transformers, oscillators, discriminators, and variable tuned circuits.

Burnell \& Co., Dept. ED, 10 Pelham Parkway, Pelham, N.Y.
Booth 2909-2910.

Semiconductor

Purities are 99.9\% to 99.999\%

Having purities of 99.9% to 99.999%, these semiconductor elements are available in the form of spheres, washers, dots, rings, or specially shaped tabs. Materials include: indium, aluminum, gallium, lead, tin, gold, silver, arsenic and composites of several materials.

Anchor Alloys, Inc., Dept. ED, 968 Meeker Ave., Brooklyn 22, N.Y. Booth 4042.

Is your company announcing a new product?

Tell ELECTRONIC DESIGN about it at Booth 4404-4406.
< CIRCLE 130 ON READER-SERVICE CARD

\tan Tilcap \dagger CAPACITOR STABILITY ASSURED BY 250-HOUR PERFORMANGE LOAD TEST

...expanded TI line of type SCM

 solid tantalum capacitors meets MIL specs Another assurance to you of Texas Instruments capacitor reliability -250-hour performance load test on a sample basis of all lots of the Type SCM series.
Your margin of design safety is greater with tan-TI-cap capacitors. Type SCM capacitors are 100% tested for capacity, dc leakage and dissipation factor, and are aged under load at elevated tempera-
\dagger trademark of Texas Instruments Incorporated
ture. SCM units in all 203 standard ratings (6.35 volts, 1-330 $\mu \mathrm{fd}$.) meet and exceed the electrical and mechanical requirements of MIL-C-55057 (Sig. C) and/or MIL-C-21720A (NAVY) specifications for solid tantalum capacitors.
Contact your nearest authorized TI distributor or TI sales office today for your immediate and future delivery requirements.

*

All lots of Type SCM ram TI cap capacitors are tested for performance stability at rated temperature and voltage pror to release for ship. ment. Performed on a lot-sample basis, the test is run for 250 hours or until performance stability is established by successive time interval measurements of the principal parameters of each test capacitor.

Write to your nearest TI sales office on your company setter. head for Bulletin DL-C 1173 tions on the complete SCM series.

INSTRUMENTS
I NCORPORATED EEMICONDUCTOR-COMPONENTS DIVISION 13500 N. CÉNTRAL EXPRESSWA
POST OFFICE BOX 312 DALLAB. TEXAS

NEW PRODUCTS

AT THE

IRE SHOW

AC Voltmeters

Gives true rms readings
Models 1761 and 2531 ac volt meters provide true rms reading even when frequencies vary or are distorted. Both have an accuracy of $\pm 0.5 \%$ of center-scale at 60 cps. They are temperature-compensated from -55 to +70 C . Each unit consists of a 0 to 1 ma indicator and a transducer designed around solidstate circuitry. The transducer, which measures about 3.65 in . in length and 2.55 in . in diameter, can easily be detached from the indicator and remotely located. Over-all depth of the instrument and the transducer is 5.65 in . The transducer converts the rms value of the input to a squared function of the average dc inpur. When designed as a suppressed zero ac voltmeter with a range of 105 to 125 v , the transducer suppresses the output until the rms value is 105 v .
Weston Instruments, Daystrom, Inc., Dept. ED, 614 Frelinghuysen Ave., Newark 12, N.J.
Booth 1708-1710-1809.

Environmental

Chamber

For salt spray tests

Designed for determining the salt fog corrosion resistance of materials and components, model SS-2-5 Lucite environmental chamber meets the requirements of specs such as MIL-E-5272A, QQ-M-151A, and MIL-STD-202A. The chamber is equipped with temperature controls and indicators. Working dimensions are $20 \times 20 \times 20 \mathrm{in}$. Larger sizes can be furnished.

Associated Testing Laboratories, Inc., Dept. ED, 112 Clinton Road, Caldwell, N.J.
Price \& Availability: Price is $\$ 1705$ fob Caldwell. Delivery is from stock to four weeks.
Booth 3830-3832.
< CIRCLE 131 ON READER-SERVICE CARD

Vacuum Tube Voltmeter

Frequency range is 3 to 600 kc
Model 125A frequency-selective voltmeter covers the range of 3 to 600 kc . It has both narrow and wide selectivity settings plus a flat voltmeter position. Having a tunable mode of -90 to +32 dbm and a flat mode of -30 to +32 dbm , the instrument is suitable for carrier measurements, wave analysis, and general laboratory use.
Sierra Electronic Corp., Dept. ED, 3885 Bohannon Drive, Menlo Park, Calif.
Booth 3031-3032.

Epoxy Resin

Cures at room temperature
Type 202 medium viscosity epoxy resin is capable of curing at room temperatures with hardener type 202/9816. This material can be used as a casting resin, an electrical insulating resin for encapsulating, potting, or impregnating, and as a laminating resin for fiber glass products.

Furane Plastics, Inc., Dept. ED, 4516 Brazil St., Los Angeles, Calif. Price \& Availability: Price is $\$ 1.95$ per $l b$ for orders of less than 8 lb . Delivery is 48 hr after receipt of order.
Booth 4050.

Metal Cabinets

696

Have durable construction

These metal consoles, cabinets, and electronic housings are made using the Stress skin method which makes traditional joining methods unnecessary and provides greater durability. This method also helps eliminate accumulation of dust particles. Units are light weight.

Falstrom Co., Dept. ED, 304 Falstrom Court, Passaic, N.J.
Booth 4315-4317.

Do you have an "Idea for Design"?
 Some to ELECTRONIC DESIGN Booth 4404-4406.

CIRCLE 132 ON READER-SERVICE CARD $>$

NEW PRODUCTS

at the ire show
Miniature Pentodes 686
Voltage range is 300 v to 10 kv

Designed for use in high-voltage regulator circuits and as high-voltage amplifiers, types 7234,6842 , and 7683 cover a voltage range of 300 v to 10 kv and have transconductances as high as $5000 \mu \mathrm{mhos}$. The units are suitable for critical applications.
The Victoreen Instrument Co., Dept. ED, 5806 Hough Ave., Cleveland 3, Ohio.
Booth 2234.

Standardized
 Circuit Tester

Include a variety of instruments
These standardized, pocket-sized, circuit testers include: volt-ohmmeters, volt-ohm-milliammeters, insulation testers, and foot-candle meters. These instruments handle any current to 20 amp and any voltage from 30 mv to 750 v . Each unit is fitted with five-way binding posts for connections by wire, plug, pin, or jack.

Weston Instruments, Daystrom, Inc., Dept. ED, 614 Frelinghuysen Ave., Newark 12, N.J.
Booth 1708-1710-1809.
Planning to write an article? Stop by ELECTRONIC DESIGN Booth 4404-4406.

you limit compromise byu PROOF: over a wide spectrum offi

LOCKKHEED

WIDE-BAND TAPE RECORDER.

For Lockheed, California Division, 28 General Electric 7077's serve as pre-amplifiers in a 14 -channel $500-\mathrm{kc}$ 60 "-per-second tape recorder that stores wide-band information from an air defense exercise five times as rapidly as before. Extreme requirements of frequency, timing accuracy, and reproducibility are met by the 7077's low noise, high impedance, and high G_{m}. Also, the tube's small size matches the miniaturization needs of the Lockheed tape-recorder equipment.
(4) MOTOROLA

GROUND-SURVEYING RADAR.

Motorola's Western Military Electronics Center in Phoenix uses four General Electric ceramic 7077's for high-speed RF switching and pulse attenuation in a $440-\mathrm{mc}$ distance measuring circuit where timing to one billionth of a second is needed for pulse delay measurement. Minimum plate-to-cathode capacitance, high gain, low noise, and a configuration that makes the tube ideal for grounded-grid service, were reasons back of Motorola's choice of the G-E 7077.

ninvolves trade-offs... but

ylusing ceramic tubes.

7 meets designers' targets

ffrequency and function.

Ralph M. Parsons Company uses seven General Electric ceramic 7077's in tuned stages as high-gain, low-noise RF amplifiers in its PARAMI system for determining air-intercept missile accuracy. A $324-\mathrm{mc}$ circuit, the Parsons PARAMI system has a gain-bandwidth product approaching the limit of the state of the art.

Many receivers-one antenna, with Temco Electronics' broadband distributed amplifier. Arranged in six fivestage units, 30 G-E 7077's are used as RF amplifiers, operating over a 750 mc bandwidth, between 250 and $1000-\mathrm{mc}$. Fills the frequency gap between TWT's and existing distributed amplifiers.

Phone your nearest General Electric Recolving Tube Department Office:
New York: Wisconsin $7-4065,6,7,8 \quad$ Chicago: SPring $7-1600 \quad$ Los Angeles: GRanite 9-7785

> Progress Is Our Most Imporrant Product GENERAL (6) ELECTRIC

ECL82
 6BM8

triode

 pentodeComblned triode and output pentode with separate cathodes intended for use as a combined a.f. amplifier and output tube or frame oscillator and output tube. characteristica Pentode section

116 Vanderhoof Avenue, Toronto 17, Ontario Hudson 5-8621.
ELECTRONIC TUBES BRITAINS FIRST CHOICE FOR FIRST EQUIPMENTS mullard overseas lto. mullard house, torrington place. london. england CIRCLE 134 ON READER-SERVICE CARD

Transducers
For underwater applications

The Dual-D underwater transducer provides orthogonal beams for supersonic sensing of seabottom depth simultaneously with forward obstacle detection. One transducer element, operating at 200 kc , provides a sensing beam for depth of water measurements. Another, operating at 300 kc , provides a horizontal forward beam of about 8 deg, angular spread. Both elements are encapsulated in a common epoxy housing. The elements are mounted to eliminate interference. The housing and mounting stud are nonmetallic.
Advanced Acoustics Corp., Dept. ED, 67 E. Centre St., Nutley, N.J.
Booth 2818-2820.

Cathode Ray Tube

Accelerating voltage is 500 v

Type K1951 3-in. cathode ray tube, designed for oscilloscopes and other instruments, has an accelerator voltage of 500 v , a post accelerator voltage of 1500 v , and a focusing voltage of 25 to 125 v . The tube has a flat face and is electro statically focused and deflected. Deflection voltages are less than 15 v in either direction. Lin width is 0.03 in . max. The tube has a linear-post accelerator for maximum deflection uniformity and minimum pattern distortion.
Allen B. DuMont Labs., Inc., Electron Tube Sales Dept., Dept. ED, 750 Bloomfield Ave., Clifton, N.J.
Booth 3901-3905.
Thinking about an editorial career?
Visit ELECTRONIC DESIGN at Booth 4404-4406.
'SI AUTHORIZED DISTRIBUTORS

Contact one of these PSI Distributors for fast delivery at factory prices!

ACK SEMICONDUCTORS, INC. Birmingham, Alabama ACK RADIO SUPPLY OF GEORGIA, INC. Atlanta, Georgia
allied radio corporation Chicago 80, Illinois
ALMO RADIO CORPORATION
bamer mectamics. CRAMER ELECTRONICS, INC. DENVER ELECTRONIC SUPPLY CO Denver 4. Colorado
ELECTRO SONIC SUPPLY CO., LTD Toronto 5. Ontario. Cana ELECTRONIC SUPPLY
Melbourne, Florida
ELECTRONIC SUPPLY CORP. Pasadena, California
ELECTRONIC WHOLESALERS, INC. Washington 1, D.C.
ELMAR ELECTRONICS, INC. Oakland, California
FERGUSON ELECTRONIC SUPPLY CO. Detroit 38, Michigan
GENESEE RADIO \& PARTS CO., INC. Buffalo 16, New York
GRAHAM ELECTRONIC SUPPLY, INC. Indianapolis 25 , Indiana kierulff electronics, inc. Los Angeles, California Lew bonn company Minneapolis, Minn.
OIL CAPITOL ELECTRONICS Tulsa 16 Oklahoma
PEERLESS RADIO DISTRIBUTORS, INC. Jamaica 33, New York PIONEER ELECTRONIC SUPPLY CO. Cleveland 15, Ohi
RADIO SPECIALTIES COMPANY, INC. Alamogordo, New Mexico radio specialties corp Phoenix, Arizona
RADIO SPECIALTIES, INC. ROCHESTER RADIO SUPPLY CO.. INC Rochester 5, N. Y
SEATTLE RADIO SUPPLY, INC. Seattle, Washington SREPCO, INC.
standard radio parts, inc. Tucson, Arizona
STANDARD SUPPLY COMPANY Salt Lake City 10, Utah
Sterling radio product, inc. Houston 1. Texas
SYRACUSE RADIO SUPPLY CO. Syracuse, New York
TERMINAL ELECTRONICS INC. New York 11, N.Y.
WHOLESALE ELECTRONIC SUPPLY Dallas, Texas
WhOLESALE RADIO PARTS COMPANY Baltimore, Maryland

from PSI...Very High Voltage Cartridge Rectifiers NO VOLTAGE DERATING TEMPERATURE RANGE $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$!

EXTREMELY RUGGED • NON-METALLIC "COLD" CASE • WIRE-IN LEADS • EASY-TO-MOUNT • USE IN PRINTED CIRCUITS

No need to "over specify" for voltage derating considerations! These PSI 1N1730 and 1N2382 silicon rectifier series provide the lowest voltage drop, the highest current ratings and best reverse leakage characteristics of any available types.
The component diode strings are welded and packaged in non-metallic cases. The units are compact, light weight and easy to mount. With no heat sink requirements they are particularly suited to printed circuit board applications.
Electrical Specifications

maximum ratings					electrical characteristics		
$\begin{gathered} \text { EIA } \\ \text { NUMPE } \\ \text { NUPER } \end{gathered}$	Ponk Voltage (v)	Maximun Voltage (v)	Maximum Average Rect. Current* (mA)		Max. DC Fwd Voltege Drop (a) $25^{\circ} \mathrm{C}$		
			(6) $25^{\circ} \mathrm{C}$	(1) $100^{\circ} \mathrm{C}$		(a $25^{\circ} \mathrm{C}$	(1) $100^{\circ} \mathrm{C}$
1 11730	1000	700	200	100	5	10	100
111731	1500	1050	200	100	5	10	100
111732	2000	1400	200	100	9	10	100
1 11733	3000	2100	150	75	12	10	100
1 11734	5000	3500	100	50	18	10	100
1 12382	4000	2800	150	75	18	10	100
1 12383	6000	4200	100	50	27	10	100
1 112384	8000	5600	70	35	27	10	100
1 12385	10000	7000	70	35	\%	10	100
* Resistive or inductive load. OTHER SPECIFICATIONS: Continuous DC voltage same as PIV. Maximum surge current (8 msec) at $100^{\circ} \mathrm{C}: 2.5$ amperes. Operating temperature range: $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$.							

Nine types...1,000 to 10,000 VOLTS!

FAST DELIVERY...

IN PRODUCTION QUANTITIES!

Phone, wire or write for detailed specifications, curves, prices and delivery schedules.
Also ask about the extensive line of PSI Standard and Special Encapsulations . . . Ring Modulators, Bridge Rectifiers, Matched Pairs and Quads.

IRE BOOTHS 2742-2744

> A complete, flexible product line of reliable, precision subminiature potentiometers from DAYSTROM

More than 32 basic models... many exclusite and unicyue features over 2.52 cariations for military and industrial use.

Serios 319 (2 gang) FULL sizE-PATENTS PENDING

SQUARETRIM POTENTIOMETERS

"the world's smallest trimmers"
for high resolution, minimum space requirements in airborne, missile, and ground instruments and systems applications where stability is a vital requirement. These tiny SQUARETRIM models have an exclusive square shape for optimum packaging that allows stacking as many as twenty units into one cubic inch. Other features: more accurate trimming - almost one-third more turns per sweep than conventional models... greater stability through an exclusive worm gear adjusting device and the unique circular design of the mandrel.

SINGLE-TURN POTENTIOMETERS

highest quality potentiometers, designed for exceptional linearity and maximum reliability and accuracy in applications where space is at a premium.
These series are small, compact, highly precise potentiometers. Typical examples: Series 304 utilize precision winding techniques that give linearity from 0.3\% to 3%; a design that provides at least a 500,000 cycle service life. High temperature Series $314\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+250^{\circ} \mathrm{C}\right)$ meets or exceeds latest environmental military specifications. Series 319 can be ganged without the use of bulky clamp rings ... with each wiper positioned independently to meet any phasing need.

MULTI-TURN HIGH PRECISION POTENTIOMETERS

for rigorous temperature, altitude and vibration requirements in aircraft and missile applications.
Smallest package of its type, the Series 341 meets the most exacting perform ance requirements and is built to withstand severe vibrations or shock, eliminate backlash and reduce phase shift to negligibility. Standard models are ten-turn; models also available in 3 and 5 turns.

MULTIPOT® POTENTIOMETERS

for low-cost requirements in general test equipment and computer applications. All the MULTIPOT potentiometers provide a high degree of reliability and accuracy without the penalty of premium price. Precision winding techniques ensure exceptional resolution and desirable performance characteristics in a small, efficient package.

For complete specifications write for Data File ED-880-1.
IRE Show: Booth 1704-1706
half size-U.s. PATENT 2,900,614

Designed to function in control systems where the energizing signal is too slight to operate conventional relays, this switching galvanometer has a sensitivity as low as 1μ a full scale. It energizes a $50-\mathrm{w}$ relay and can directly control a magnetic switch. The instrument is suitable for applications requiring close control of temperature. The movement of the indicator pointer is controlled by mag. nets in the permanent contact, making possible slow contact closing.
The Hickok Electrical Instrument Co., Dept. ED, 10617 Dupont Ave., Cleveland 8, Ohio. Booth 3616-3618.

Pulse Generator

Repetition rates are 1 cps to 10 mc

Model B-5A pulse generator has continuously variable pulse repetition rates from 1 cps to 10 mc in seven ranges. Rise and fall time is less than 8 musec. The unit has an electronic pulse delay that can be set to zero or is continuously variable from 0.03 to $500 \mu \mathrm{sec}$ in five ranges. The pulse width is continuously variable from 0.02 to 12.5 $\mu \mathrm{sec}$ in four ranges.
Rutherford Electronics Co., Dept. ED, 8944 Lindblade St., Culver City, Calif.
Booth 3834.
Do you have a handy nomograph?
Bring it to ELECTRONIC DESIGN, Booth 4404-4406.

ELECTRONIC DESIGN • March 16, 1960

R:cording System

Model BSA-850 direct-writing, rectilinear recording system has 8 channels. The recording elements consist of seven of the firm's OS-600 oscillograph units and one OS-610 oscillograph unit; signals of 0 to 100 cps are recorded on true rec tangular coordinates. The transistorized driver amplifiers may be used differentially or singleended. Interchangeable plug-in preamplifiers include dc, ac carrier and chopper. Chart speeds can be selected from 0.5 cm per hr to 200 mm per hr. The unit measures $23.5 \times 22 \times 62$ and weighs 350 lb without preamplifiers.
Cohu Electronics, Inc., Massa Div., Dept. ED 5 Fottler Road, Hingham, Mass.
Price d Acailability: Price is from $\$ 4750$ to $\$ 5050$ The unit can be delivered in 30 days. Booth 3609-3611.

Microwave Amplifier Tube
For airborne use

Type VA-824B microwave amplifier tube is made for use in airborne systems. Mid-band saturated output is 5 w ; power gains are up to 10 dl . The basic operating range is 9.78 to 9.82 kn c. Convection cooling is employed. The tube can be used in continuous or pulse-modulated an plification or for synchrodyne or serrodyne frequency shifting. It weighs 9 oz and measures 1-1/2 x $2-1 / 4 \times 3-3 / 8 \mathrm{in}$.
Varian Assoc., Dept. ED, 611 Hansen Way, Pi lo Alto, Calif. B oth 2710-2720.

TYPICAL LOAD AND VOLT. TYPICAL VOLTAGE CORAGE CORRECTION-output RECTION-Output sefting, setting, 115 r -load change, 115 r -load, 8.5 amps, unity 0 to 8.5 a, unity power factor power factor-input valtage -input change, 115 to 95 v . change, 115 to 135 v .

CIRCLE 138 ON READER-SERVICE CARD

New Static Voltage Control

AT IRE BOOTH 2924

New General Electric Sta-Vo.Trol regulator gives you maintenance-free, automatic, static voltage control using unique rate feedback and industryproven zener diode sensing.
Static components eliminate tubes, brushes, and other moving parts.
Sta-Vo-Trol regulators assure you reliable, constant voltage-regardless of line or load fluctuation-giving optimum performance of critical military and commercial electronic equipment.

Sta-Vo-Trol REGULATOR SPECIFICATIONS:

- Rating: 1 Kva output, 0 to 8.5 amperes, single phase, 60 cycles $\pm 5 \%$
- Input range: 95 to 135 volts
- Output range: 115 volts normal, 110 to 120 adjustable
- Accuracy: $\pm 0.25 \%$ bandwidtht
- Response time: 6 to 12 cycles \ddagger
- Load power factor range: 0.5 lagging to unity
- Wave-form distortion: 3\%
$\dagger \pm 0.25 \%$ bondwidth for ony line and lood
 I 6 to 12 eycles for 63% corroction after ordi. nory line ond/or lood chon
cycles for complote correction.

NET PRICE-\$475
 (type SLR-1000)

World-wide General Electric application and service facilities are available to you. For more information about the benefits of specifying G-E Sta-Vo-Trol voltage regulators for your application, write to Section 425-25, General Electric Co., Schenectady, N. Y.

- Tradomark of Genoral Eloctric Company for static voltage regulators.

Progress is Our Most Imporient Puduct
GENERAL ELECTRIC

COSTOM MOLDTNG OF EPOZY SUBoCOMPONENTS

...terminal boards, connectors, pin blocks, shift registers, headers, with or without inserts!

Epoxy Products. originator of the famous ali-epoxy E.Pak encapsulation system, now offers its wide experience and equipment for the custom-molding of specialized epoxy sub-components. These sub-components can be molded with a wide variety of inserts (produced in our own precision metal working facilities) to fit your par-
ticular requirements. Every unit is delivered in finished form, tested and ready for reliable use with your component.

Let us design to meet your special requirements, in all materials including fire resistant and colored epoxy compounds. Write today for further information.

Here are 4 versions of custom-molded, all-epoxy sub-components

In addition to conventional "straight through" leads, headers can be designed where the leads take a bend through the body of the header.

Dissimilar leads may be welded together so that the bond between them can be molded into the header for additional strength.

Headers have been made with shoul. der ridge that is molded to fit into and support the case. A threaded brass insert may also be molded into the header to fit the female end of the component.

Recording System

For rectilinear reproduction

Model BSA-250 two-channel, portable recording system is for the rectilinear reproduction of electrical and physical phenomena. Speeds are: 0.5 , $2,5,20,50$, and 200 mm per sec. Interchangeable plug-in preamplifiers are employed. Built-in, equalized driver-amplifiers are used. The power required is 105 to 125 v at $60 \mathrm{cps}, 60 \mathrm{w}$. The unit weighs 45 lb .
Cohu Electronics Inc., Massa Div., Dept. ED, 5 Fottler Road, Hingham, Mass.
Price \& Availability: Price is $\$ 1050$. Delivery is in three weeks.
Booth 3609-3611.

Laboratory Oscilloscope

Sweep range is 2 sec to $0.1 \mu \mathrm{sec}$ per cm

This 5-in. de laboratory oscilloscope has a sweep range of 2 sec to $0.1 \mu \mathrm{sec}$ per cm . Response is to 10 mc and sweep-timing accuracy is adjustable to 1%. The unit has plug-in interchangeable vertical amplifiers. The timing markers are crys-tal-controlled. Operation is from 110 to 120 v ac, dimensions are $16 \times 12-3 / 8 \times 19-1 / 2 \mathrm{in}$., and weight is 50 lb .
Allied Radio Corp., Dept. ED, 100 N. Weston Ave., Chicago 80, Ill.
Price \& Availability: Supplied in kit form, the unit is priced at $\$ 285$ and is available from stock. Booth 3915-3917.
for immediate delivery of GENERAL INSTRUMENT semiconductors
at factorely prieres call your authorized stocking distributor

CALPORMA
Electronic Sapply Cow.
Mowark Electric Campeay
Necifice Wholceale Ca
Socifik Franclisco
Sol Prancisce
Son Delco
Sol
Dene
Son Diago Wright, Ine.
Shinks
Son Dicoo
Valley Electreaic Supply Co .
CONNEETICUT
CONNE EncuT
Sun Rotio E Electroules Con Iow
Sramford

The Eend
FORIDA
Electronle Supply Miemi, Oriondo, 3t. Pofteriture ILINOIS
Morgulp Company
 INDIANA
Brown Electronica, lace
Fort Woymernice Smply, lise.
Indianopolla
IOWA
Deece, Ime
MARYLAND
Radio Electric Service Co.
MASSAChustus
The Greono-Sinew Con lue.
Nowton
Nowton-S
Delburn Elloctronta, lace
Mow Yoplk Cliy

- MIO

OHIO
Beckeye Electronice Distribution
The Mytronic C

OKLAHOMA
Oll Copitrel Electracia
Tulsa
PENHETVANMA

- EA Plotiluation Ca

Philladolphite
TEXAS
sceptors, Radio a Supply Co.
WASHINGTON
Suttile Red
Seattle
WISconsin
Redio Perts Con Ime.

Distribufor DNbton INERAL INETRUMENT HERAL INETRUMENT
CORPORATION 240 Wytho Avonue
Brooklyn 11, N. Y.

GENERALINSTRUMENTCORPORATION

> Alervanamus a a a sulicon power diode/rectifiers

designed to meet USAF MIL-E-11143 Specs

These fine silicon diode / rectifiers meet and exceed the USAF specs . . . and retain their outstanding characteristics and reliability at temperatures of $150^{\circ} \mathrm{C}$. and more! Complete technical information on these and other General Instrument semiconductors is available upon request.

JEDEC TYPE NO.	maximum ratings			ELECTRICAL CHARACTERISTICS			
	PEAK INV. VOLT. AGE (V)	MAX. AVG. RECTIFIED CURRENT (mA)*		MINIMUM SATURATION VOLTAGE @ $100^{\circ} \mathrm{C}$. (VOLTS)	maximum REVERSE CURRENT @ PIV (UA)		MAXIMUM VOLTAGE DROP @ 400 ma DC @ $25^{\circ} \mathrm{C}$. VOLTS DC
		$@_{C .}^{25^{\circ}}$	$\begin{aligned} & \text { © } 150^{\circ} \\ & \text { C. } \end{aligned}$		$\begin{array}{\|c} @ \\ \hline \\ c^{\circ} \end{array}$	$\begin{aligned} & \text { @ } 100^{\circ} \\ & \text { C. } \end{aligned}$	
1N645	225	400	150	275	0.2	15	1.0
1N646	300	400	150	360	0.2	15	1.0
1N647	400	400	150	480	0.2	20	1.0
1 N648	500	400	160	600	0.2	20	1.0
1N649	600	400	150	720	0.2	25	1.0

\square Semiconductor Division
GENERAL INSTRUMENT CORPORATION
65 Gouverneur Street. Newark 4. N J
Midwest off.ce 52.49 Wesi Div....iny Ave , hine:nas

Three voltage ranges: 0-200, 125-325, 325-525 VDC
1.5 AMPERE MODELS NEED ONLY 83 $14^{\circ \prime \prime}$ OF PANEL HEIGHTI (meterec)
 MOEEL C-15B1M: $125-325$ VDC, 0.1500 MA. 605.00 Moest C-1582Mz 325 -525 VOC, 0.1500 MA . 680.00 MOOEL C-15S1: $125-325$ VOC. 0.1500 MA .575 .00
MODEL C-1582: $325-525$ VOC, 0.1500 MA .650 .00

800 MA MODELS NEED ONLY $7^{\prime \prime}$ OF PANEL HEIGHTI

(metered)

MoDEA C-880M: 0.200 VOC, 0.800 MA .370 .00

(unmetered)

100 MA MODELS NEED ONLY 5 $1 / 4^{\circ \prime}$ OF PANEL HEIGHTI

(metered)

moner C-400Mz $0-200$ VDC, $0-400$ MA. 289.50 MODEL C-480: 0-200 VDC, 0-400 MA. . 259.50
 MODEL C-H22M: $325-525$ VOC, 0.400 MA .269 .50

200 MA MODELS NEED ONLY 5\%" OF PANEL HEIGHTI

(meterad)

Monet C-200M: 0.200 VOC. 0.200 MA .214 .50 MOOEL C-280: 0 -200 VOC, $0-200 \mathrm{MA} .184 .50$ noekl C-281M: $125-325$ VOC, 0 -200 MA. 189.50 MODEL C-201: $125-325$ VOC, 0 -200 MA. . 159.50

For all power supply needs through 1.5 amperes:

LAMBDA COM-PAK POWER SUPPLIES

Less spacel Improved performance! Long, trouble-free service! Transient free output!

Fills the need for compact, regulated DC power supplies. Economy of panel space, functional simplicity, new quick-service features.
Wiring, tubes and other components readily accessible. You can reach them easily, service them fast.
$400 \mathrm{MA}, 800 \mathrm{MA}$, and 1.5 ampere models include new, high-efficiency, long-life, hermetically-sealed semi-conductor rectifiers. All Com-Pak models are constructed with hermetically-sealed magnetic components and capacitors for long trouble-free service.

Condensed Dafa

Lune regulation Better than 0.15% or 0.3 Volt, whichever is greater.
LOAD REGULATION Better than 0.25% or 0.5 Volt, whichever is greater.
INTERNAL IMPEDANCE

> C- 200 Series Less than 6 ohms.
> C- 400 Series Less than 3 ohms.
> C- 800 Series . . . Less than 1.5 ohms.
> C-1500 Series Less than 0.75 ohms.

RIPPLE AND NOISE. Less than 3 millivolts rms.
POLARITY Either positive or negative may be grounded.
AMBIENT TEMPERATURE. . . . Continuous duty at full load
AC OUTPUT
(unregulated) up to $50^{\circ} \mathrm{C}(122 \mathrm{~F})$ ambient
.... 6.5 VAC (at 115 VAC Input).

C- 200 Series
C- 400 Series 15 AMP
C- 800 Series 20 AMP
C- 800 Series 20 AMP
-

OVERLOAD PROTECTION 105-125 VAC, 50-400 CPS AC and DC fuses; built-in blown-fuse indicators.

SEND FOR COMPLETE 32-PAGE CATALOG

Contains full information and specifications on Lambda's full line of transistor-regulated and tube-regulated power supplies.

ALL LAMBDA POWER SUPPLIES ARE GUARANTEED FOR FIVE YEARS.

LAMBDA ELECTRONICS CORP.

NEW PRODUCTS
at the ire show
Transistor Test Set
51;
For $\mathrm{G}_{0} /$ No-Go testing

Model 1500 transistor test set, for Go/No-Go operation, can handle 500 transistors per hr , performing ten tests on each. It is accurate to 1\%. Specimens can be either silicon or germanium, npn or pnp. Diodes can also be tested. Power rating is 0 to 100 v at 0 to 0.1 amp . Sequencing can be automatic or manual.

Optimized Devices, Inc., Dept. ED. 864 Franklin Ave., Thornwood. N.Y.

Price \& Availability: Acuilability is two to three months. Pricc ranges from $\$ 7000$ to $\$ 10,000$.
Booth 3016.

Shift Register

Uses magnetic elements
This shift register, using magnetic elements, pernits a nondestructive output, both dynamic and static, plus any serial-parallel, input-output combination. Temperature range of the unit is -40 to +75 C without compensatory equipment. Each minor aperture offers an output level up to 100 mv at several volts. Only copper and toroidal ferrite cores are used.
Amp, Inc., Dept. ED, Harrisburg, Pa.
Booth 2527-2531.
< CIRCLE 142 ON READSR-SERVICE CARD

Zable Covering

For break-outs, branch-outs, and splices
The Protechtor covers offer proection for break-outs, branch-outs, and splices. They can be supplied with two or more legs and in conventional T, Y, and fork-designs. They come in a full range of sizes.
Zippertubing Co., Dept. ED, 752 S. San Pedro St., Los Angeles 14, Calif.
Availability: The product is now in production.
Booth 4044.

Microwave Diodes

Have low-noise figure

These Ku-band silicon microwave diodes, for radar and missile systems, are furnished as a matched pair. Available in both forward and reverse polarities, they virtually eliminate local oscillator noise and provide a receiver system with an over-all noise figure of 7.5 db at $16,000 \mathrm{mc}$. Types 1N78D and IN78DR isolate the antenna and local oscillator terminals. Maximum operating temperature is 150 C . The devices have hermetic seals for environmental protection.
Sylvania Electric Products Inc., Dept. ED, 730 Third Ave., New York 17, N.Y.
Booth 2322-2332, 2415-2425. Booth 1914.

Silicon Rectifiers

Are rated at 750 ma
Types 1N2611 through 1N2615 silicon, diffused-junction rectifiers are rated at 750 ma . Available in sizes from 200 to 600 v , they have high-surge handling capacity and very low back current. The units are suitable for use in communication (quipment, computers, magnetic amplifiers and other applications :vhich require reliable operation to 175 C.
Motorola Inc., Semiconductor 'roducts Div., Dept. ED, 5005 E. McDowell Road, Phoenix, Ariz. 3ooth 1114-1115.

 .

at

12 new N-P-N diffused-junction mesa transistors featuring low saturation resistance -high-temperature performance - high current beta - high power-handling capability
Out of RCA's broad experience in diffused silicon mesa techniques comes a comprehensive new line of medium, intermediate and high power silicon transistors, featuring low saturation resistance characteristics and high collector-current and voltage ratings.
For additional design flexibility these new RCA silicon transistors provide a choice of voltage ratings, beta and saturation resistance ranges.
The broad adaptability of these new RCA silicon types opens the way to a wide variety of high-temperature applications in industrial and military equipment. They are particularly useful in power switching circuits such as dc-to-dc converters, inverters, choppers, solenoid drivers and relay controls; oscillator. regulator, and pulse-amplifier circuits, and as class A and class B push-pull amplifiers for servo and other audio-frequency applications.

RCA Silicon Power Transistors were developed in coop-
eration with U. S. Army Signal Corps, on an Industrial Preparedness Measure for military devices.
All 12 new RCA Silicon Power Transistors are available in production quantities. Contact your RCA Field Representative today for complete sales information. For additional technical data, write RCA Commercial Engineering, Section C-18-NN-2, Somerville, N. J.

RADIO CORPORATION OF AMERICA
 SEMICONDUCTOR AND MATERIALS DIVISION
 SOMERVILLE, N. d.

ANOTHER WAY RCA SERVES YOU THROUGH ELECTRONICS
East: 744 Broad St. Newark, M. J., HUmboldt 5-3900 - Mertheast: 64 "A" St., Needham Heights 94 , Mass, Hillerest 47200 - East Contral: 714 New Center Bldg.. Detroil 2, mich.
 7905 Empire freeway, Dallas 7, Texas, Fleetwood 28663 - Gov't: 224 M . Willainson Street, Dayton, Ohio, BAlowin 6-2366; 1625 "K" Street, M.W. Washinglon, DC. District 7.1260

NEW PRODUCTS

AT THE IRE SHOW
Power Klystron

Gain is 50 db

Tunable over 1000 mc , type VA823 cw power klystron has a gain of 50 db and a low noise figure. A series of these units can be used to cover the range of 8 to 10 kmc . Power output is 5 kw . Other specifications include: integral cavity construction, liquid cooling, and automatic focusing. The unit measures $3.5 \times 6 \times 14 \mathrm{in}$.
Varian Assoc., Dept. ED, 611 Hansen Way, Palo Alto, Calif.
Availability: Delivery time is 90 to
120 days.
Booth 2710-2720.

Tube and Transistor

 Socket641
Has Teflon insulating body
This subminiature tube and transistor socket has an all Teflon insulating body. Compression mounting and spring tension are employed. The contact material is brass, silverplated and gold-flashed. Over-all length is $7 / 16 \mathrm{in}$., body length is 0.268 in . and contact diameter is 0.018 in.

Garlock Electronic Products, The Garlock Packing Co., Dept. ED, Camden 1, N.J.
Booth 2814-2816.

SPECIFICATIONS

Contact Arrangement: Normally form \mathbf{A}, form B, in comblnation form C
Overall length: 3-1/4in. max.
Outside diameter: 0.215 in . max.
Contact material: Gold
Contact rating: 15 volt-amperes max
max.; 250 volts max.
Contact resistance: $25-40$ milliohms.
Life expectancy: At 14 volt-amperes (1/ ampere 28 volte dc) 20,000,000 operations At 7 volt-amperios ($1 / 4$ ampere, 28 volts dc). 100,000,000 operations.
Minimum breakdown voltage: (60 cps) 500 volts rms.
Insulation resistance: 500 k megohms min.
Low level load test: 8 microamps, 800 ohms, 250 millivolts,

Milliseconds (Including bounce)
Oats to Just
Operate
Operate
Switches Operate Excess NI over P.U

Switch capsule of the new Clareed Sealed Contact Reed Relay consists of a pair of magnetically operated contacts, hermetically sealed in a glass capsule, in an atmosphere of inert gas.

No bouncess N I
0.25

0.25	1	0.8	0.25
0.30	1.5	0.9	0.25

0.35	2.2	1.5	0.25

0.42	3.2	2.2	0.25

0.52	3.5	2.5	0.25

0.25
0.50
0.50
0.50
0.3 ms max.
0.5 ms max. 0.5 ms max.

CLAREED a New Concept in Relay Design

The new clareed Sealed Contact Reed Relay effectively eliminates contact contamination. With its contacts hermetically sealed in con-taminant-free inert gas, this new design assures millions of perfect operations. Hundreds of millions are possible when operated at up to $1 / 2$ rated contact load.
clareed relays are ideal components for transistor drive applications and for use in computers and data processing equipment. Their low inductance and the low inductance change in the operating coil at each operation limits the transients produced. Submit your packaging problem for recommendations.

- PACKAGED TO MEET your REQUIREMENTS

Ten CLAREED switches, mounted In line on a printed circuit board with five magnetic coils. This assembly can then be enclosed in the flat, rectangular container or it may becoated with "Skin-Pack," a tough vinyl plastic, and mounted directly Into your equipment.

Important features of clareed relays are their simplicity and flexibility. They may be mounted to meet the require-

SEE IT at the IRE SHOW
New York Coliseum March 21-24
BOOTH NOS. 2218 \& 2220 ments of almost any application and environmental condition, even on your own printed circuit board - to comply with your mechanical design configurations.
Clareed relays are as flexible as your application requires. Consultation with your nearby clare sales engineer is invited. Additional information may be obtained from C. P. Clare \& Co., 3101 Pratt Blvd., Chicago 45, Illinois. In Canada: C. P. Clare Canada Limited, Box 134, Downsview, Ontario. Cable Address: clarelay. Ser.i for Bulletin CPC 5.

Toroidal Cores

Made of silicon-steel tapes
These toroidal cores are made of $0.001,0.002$, and $0.004-\mathrm{in}$. oriented silicon-steel tapes. They are annealed for high squareness ratio. The saturation flux density is in the range of 16,500 to 17,500 gauss. Typical bias, or H_{1}, is 0.5 oersteds; typical gain, or delta H , is 0.1 oersteds.
G-L Electronics Co., Inc., Dept. ED, 2921 Admiral Wilson Blvd., Camden 5, N.J.
Price \& Availability: Price is from $\$ 1$ to $\$ 10$ ea, for quantities of 1 to 1000. Proluction quantities can be delivered in two wecks.
Booth 2015.

Power Supplies

Outputs are 6 to 36 rdc

Models PS4305, PS4315, and PS4330 power supplies, having current ranges of 0 to 5,0 to 15 , and 0 to 30 amp , respectively, have outputs of 6 to 36 v dc. Ripple and noise level at the output are less than 1 mv . Regulation is provided to maintain the output voltage within 0.025% for line and load changes of 10% from zero to full load. The output voltage is selected by front panel controls. Designed for critical industrial applications as well as military use, the units are compact.

Power Sources, Inc., Dept. ED, Burlington, Mass.
Booth 1914.

Potentiometers

Precision type

Included in this line of precision potentiometers are the following types: model 7216 , a $7 / 8-\mathrm{in}$. in diameter, 10 -tum unit; model 70, a $1 / 2 \mathrm{in}$. sq trimmer; model 71, a $1 / 2-\mathrm{in}$. sq pin type for use in printed circuitry; and single and multi-turn potentiometers.

Beckman Instruments, Helipot Div., Dept. ED, 2500 Fullerton Rd., Fullerton, Calif.
Booth 1201-1203.

Now!

check out 64
waveguide ranges in 15 minutes

The Turbo Variable-Step Microwave Delay Line is the first portable, reliable, and accurate means of testing responses of X-band delay line. Permits fast, accurate changing of 10 to 1500 feet of waveguide through the use of high isolation waveguide switches.
Formerly, two or more days were consumed in testing 64 different ranges using straight runs of waveguide . . . readings varied as amplifiers and other systems components drifted during a day-long check-out.

The new Turbo test stand eliminates coupling and uncoupling of joints, prevents contamination, saves time. Waveguide loops can be brought to the breadboards. This variable delay system can also be built into standard relay racks with a maximum of 2500 feet of X-band delay line.

Turbo will furnish delay lines of any length or configuration to customers' specifications. Quotations furnished promptly on waveguide components and systems. Write for bulletin.

TIDRO variable-step MICROWAVE DELAY LINE
 TURBO MACHINE COMPANY, LANSDALE, PA.

Gearless Drill-Head

For printed circuits

This gearless drill-head is designed for drilling printed circuits. The hole pattern to be drilled can be easily changed. Phenolic laminate is used for the guide and drive plates. The hole pattern is drilled simultaneously in three phenolic plates; the plates can be removed and stored for future use. Holes as close as 0.125 in . between spindles can be drilled. A rectangular pattern up to 14 x 17 in . is the capacity range.

Zagar, Inc., Dept. ED, 24000 Lakeland Blvd., Cleveland 23, Ohio
Availability: Made on order, the unit can be supplied in three to four months.
Booth 4241.

Hi-Pot and Insulation Tester

Range is to 3500 rdc and 2500 rdc

Model AI-5E hi-pot and insulation tester has a dc range of 0 to 3500 v and an ac range of 0 to 2500 v at 60 cps . The insulation resistance range at 500 v dc is 3.5 to $50,000 \mathrm{meg}$. Applications of the instrument include cable checking, incoming inspection tests and checking and grading of long production runs. The circuit automatically removes the test voltage when the predetermined leakage current level is exceeded. The rackmounted unit weighs 22 lb and measures $7 \times 19 \mathrm{x}$ 7 in . A portable unit can also be furnished.

Arizona Instrument Corp., Dept. ED, 3839 N. 39th Ave., Phoenix, Ariz.

Price: $\$ 553$ fob Phoenix.
Booth 1230-1232.
Have you sent us your subscription renewal form?

so herricks road. mineola. L. I.. n.r.
gIONEER B.e520. TWX G.CY-NY-S80U CIRCLE 145 ON READER-SERVICE CARD
LECTRONIC DESIGN - March

> BOURNS TRIMPOT ${ }^{\circ}$ WITH BUULT-IN TEMPERATURE STABILITY

Stable settings under extreme temperature conditions is
an outstanding feature of the Trimpot® ${ }^{\circledR}$ potentiometer. This thermal stability is built-in through all phases of design and production-

Exclusive manufacturers of Trimpot(0), Trimit® and E-Z-Trim@. Pioneers in transducers for position, pressure and acceleration. CIRCLE 146 ON READER-SERVICE CARD

Automatic Analyzer

Model D-940 analyzer covers the frequency range of 10 cps to 19 kc in four bands. Any one or a series of these can be selected for automatic scanning. The unit performs amplitude-frequency analyses of steady signals and amplitude-fre-quency-time analyses of nonsteady signals. Analysis of all types of complex waveforms is possible. Results can be plotted on the firm's recorder as X-Y or X-time data. Operation of the unit is automatic.
Muirhead Instruments, Inc., Dept. ED, 441 Lexington Ave., New York 17, N.Y.
Price: $\$ 11,250$ fob New York.
Booth 3230.

Power Supply

For reflex klystron tubes

Model V-7405 power supply, designed for operating reflex klystron tubes in laboratory and test applications, has a regulated beam voltage of 150 to 850 v . A coarse beam voltage-control provides for selection of the necessary operating range in $100-\mathrm{v}$ steps, and a fine-control adjusts the voltage within the selected operating range. The reflector supply voltage is 20 to 800 v . The regulation and filter circuits of the reflector supply reduce the ripple to less than $20 \mu \mathrm{v} \mathrm{rms}$. The reflector supply may be internally modulated with square-wave, saw-tooth, or sine-wave modulation.
Varian Assoc., Dept. ED, 611 Hansen Way, Palo Alto, Calif.
Availability: The unit can be delivered in 90 days. Booth 2714-2720.

SILICONE NEWS from Dow Corning

NEW: "Solid-State" Fluid

Now: Potted Protection Plus Visual \& Instrument Checking

The newest development in potting and encapsulating materials is Dow Corning Dielectric Gel. Supplied as a crystal clear fluid plus catalyst, it pours easily into assemblies and sub-assemblies, fills every void, sets up to a firm, pliable,transparent gel. The gelled mass exerts virtually no stress on components; has excellent adhesion; will not displace if vibrated or inverted. Potted components and connections are visible, probes can be inserted through it for instrument checking. When probes are removed, the gel heals itself, leaving no voids.
Here's how Dielectric Gel aids miniaturization: When designing the high voltage power supply for their new Photoscan airborne reconnaissance system, CBS Laboratories Division of Columbia Broadcasting System Inc., had to meet stringent reliability requirements despite elevated temperatures, high vibration levels, severe size and weight limitations. Their new design and miniaturization techniques were made possible by Dielectric Gel.
Requiring only 0.09 cubic feet complete, with components spaced less than $1 / 4^{\prime \prime}$ apart without danger of arcing, the new power supply provides output voltages that can be regulated from 1,000 to 25,000 volts. Current capacity at 25 kv is well over 100 microamperes. This power supply is an integral part of Photoscan, a universal visual intelligence-gathering, processing and transmitting system which can readily be installed in virtually any missile or air-borne vehicle. The units are small, light in weight, simple to install and service.
 ing of potted electronic circuitry an simplifies production problems.

Your nearest Dow Corning office is the number one source for information and technical service on silicones.

CIRCLE 800 ON READER-SERVICE CARD
first in
silicones

Light Silicone-Glass Parts Resist Heat

Where space is small, silicone-glass laminates make ideal parts. Reasons: they resist heat and humidity; are easy to fabricate into miniature components; resist creep and delamination. Silicone-glass laminates are light weight, strong, have good dimensional stability, withstand operating temperatures to 250 C , have low loss factor; permit adjacent soldering and have high resistance to moisture, ozone, arcing and corona.

In the geophysical well-logging instrument shown, Schlumberger Well Surveying Corporation specified terminal boards of silicone-glass laminate. The silicone laminate proved more reliable under operating conditions and easier to fabricate than other materials.

CIRCLE BOI ON READER-SERVICE CARD

Silantic Assures Reliability OP Miniature Tube

Here's a good example of how miniaturization is aided by Silastic ${ }^{\oplus}$, the Dow Corning silicone rubber.
A single tube from the line of Beam Switching Tubes developed by the Electronic Tube Division of Burroughs Corporation can replace as many as 90 transistors, diodes and resistors in electronic distributing, switching, and counting circuits. But proper operation and continued reliability depend upon the relationship of crossed mag. netic and electrical fields . . . determined by the relative position of the glass envelope and the magnet which surrounds it. This positioning is very critical.
A cushion of Silastic assures proper alignment, bonds the glass envelope and magnet, provides greater shock resistance than any other material tested ... contributes to the ease with which the tube meets military shock, vibration and other environmental requirements. Easily applied by simple injection techniques, Silastic is also used between magnet and tube shield.

CIRCLE 802 ON READER-SERVICE CARD

Analyzer-Oscillator

Frequency range is 200 cps to 650 kc

Model D-888-A analyzer-oscillator, having a frequency range of 200 cps to 650 kc , can be used as a frequency analyzer or as an oscillator. Made for laboratory use, the instrument has an accuracy of 2%. A three-stage amplifier, using amplified, negative feedback, provides for frequency selection. When the instrument operates as an analyzer, the selectivity corresponds to a Q-factor of 70 or more and an octave discrimination of 40 db . An input of 1 mv gives an output of 10 v into 1000 ohms. As an oscillator, the instrument has the output connected back to the input stage. The output is variable and has a maximum value of 2.5 v into 600 ohms. The unit comes in a portable bench mounting cabinet with over-all dimensions of $17.5 \times 10.5 \times 13 \mathrm{in}$.

Muirhead Instruments, Inc., Dept. ED, 441 Lexington Ave., New York 17, N.Y.
Price: $\$ 1220$ fob New York.
Booth 3230.

Magnetic Latching Relay

Is rated at 10 amp

Type BR-9 magnetic latching relay is rated at 10 amp . Able to operate on 100 mw , this dpdt relay weighs about 1 oz and has a life expectancy of 100,000 cycles at 125 C . It stands 50 g shock for 11 msec and 30 g vibration from 10 to 2000 cps. Maximum coil dissipation is 3 w . The requirements of MIL-R-5757C and 25018 are met.

Babcock Relays, Inc., Dept. ED, 1640 Monrovia Ave., Costa Mesa, Calif.
Booth M-15.

MIDLAND. MICHIGAN

branches: athanta soston encaso cleveciano

Epoxy magnet wire is ideal for encapsulated systems.

Epoxy magnet wire has high resistance to heat shock and overloads.

Epoxy magnet wire has high dielectric strength.

Epoxy magnet wire is unaffected by transformer oils.

EPOXY MAGNET WIRE

Not since Anaconda first offered Formvar many years ago has a magnet wire gained such rapid acceptance-and solved so many serious application problems - as has Anaconda Epoxy.

The biggest reason-the unusual compatibility of Epoxy with virtually every insulation system in use today. No deterioration of the Epoxy film is experienced due to chemical reaction with insulating varnishes tested to date, for example . . . no problems from film deterioration in encapsulated systems.
But Epoxy offers much more than compatibility. High heat resistance (Class B; $130^{\circ} \mathrm{C}$) . . unusual resistance to
heat shock . . . high dielectric strength, even under conditions of extreme humidity . . . excellent flexibility and winding properties . . . outstanding adherence of insulation. Epoxy magnet wire is now available in a complete range of sizes-rounds, squares, and rectangulars.
Epoxy magnet wire is an Anaconda development-now in its fourth year of production, preceded by seven years of research in the Anaconda magnet wire laboratories. Why not obtain samples and data for your next exacting requirement. Ask your Anaconda man . . . or write for Epoxy Catalog No. C-101 and samples to: Anaconda Wire \& Cable Company, 25 Broadway, New York 4, New York.

SEE THE MAN FROM

ANACONDA

FOR EPOXY MAGNET WIRE

NEW PRODUCTS

at the ire show
Silicon Rectifiers
Are rated at 6 and 12 amp

These silicon diffused-junction rectifiers are offered in two series: types 1N1341 through 1N1347 are rated at 6 amp , and types 1N1199 through 1N1205 are rated at 12 amp . Both series have piv ranges of 50 to 500 v . All units have low forwardvoltage drop, low leakage, and high uniformity of characteristics. Each diode is nickel-plated. A flattenedpierced end on the anode lead permits fast, easy wiring.

International Rectifier Corp., Dept. ED, 1521 E. Grand Ave., ElSegundo, Calif.
Price \& Availability: The 6-amp units are priced at $\$ 3.95$ to $\$ 16.95$ ea in quantities of 1 to 99; the 12 amp units are priced at $\$ 4$ to $\$ 17.60$ in quantities of 1 to 99. Delivery is from stock.
Booth 2901-2903.

Wire and Cable 532 Tubing

Made of irradiated polyethylene
This irradiated polyethylene Zippertubing is for jacketing wires and cables which are subjected to gamma and beta rays. The tubing has a life expectancy of 5 yr when used in the presence of nuclear reactors. It also withstands both high and low temperature extremes and offers protection against chemicals.
Zippertubing Co., Dept. ED, 75?
S. San Pedro St., Los Angeles, Calif. Availability: The product is available from stock.
Booth 4044.
\& CIRCLE 148 ON READER-SERVICE CARD

Meter Calibrator

Accuracy is 0.5%

This meter calibrator, for checking ohmmeters, dc microammeters, dc milliammeters, dc ammeters, and ac and de voltmeters, has a fullscale accuracy of 0.5%. Ranges are between 0 to 2.5 and 0 to 500 v ac and dc, between 0 to 100μ a and 0 to 1 amp , and from 1 ohm to 1000 meg. The calibrator is suitable for production uses and can be used in military applications. The unit is completely solid state. It measures $10.5 \times 19 \times 15$ in.
Mid-Eastern Electronics, Inc., Dept. ED, 32 Commerce St., Springfield, N.J.
Price: $\$ 995$ ea.
Booth 3009.

Insulation Cutter 536

Handles tubing from $3 / 8$ to 1-1/4-in. long
This insulation cutter handles tubing from $3 / 8$ to $1-1 / 4 \mathrm{in}$. long. Operating automatically with two machine heads, it cuts the tubing from reels and simultaneously places it on one or both leads of such components as resistors, and capacitors. Line voltage required for the machine is 110 v at 60 cps .
Design Tool Corp Electro Machinery Div., Dept. ED, 772 Bergen St., Brooklyn 38, N.Y.
Price \& Availability: The unit is made on order, can be delivered in 8 weeks, and is priced at $\$ 2500$. Booth 4122.

Electrical Tester

For axial-lead components
This orienting and testing machine electrically tests diodes, capacitors and resistors at an average rate of 3500 pieces per hr. It mechanically rejects substandard parts and orients each component in the direction of its polarity.
Universal Instruments Corp., Dept. ED, 139 E. Frederick St., Binghamton, N.Y.
Price \& Availability: Price is $\$ 4650$. Delivery time is 30 days.
Booth 4019.
CIRCLE 149 ON READER-SERVICE CARD >

How to

 stop worrying about COSTLY SILICON SCRAP

Want to overcome the nagging problem of costly silicon scrap?
It's easy. Just specify Merck Single Crystal Silicon.
At one fell swoop you get rid of silicon rejects due to poor size control. Merck Single Crystal Silicon is of uniform diameter all the way down . . . good to the last millimeter. You won't get stuck with unusable butt-ends.
But that's not all. Float zone-refined Merck Single Crystal Silicon is uncompensated. Resistivities stay uniform day in, day out; month in, month out . . . whether you

MERCK SILICON

use p-type or n-type Merck Silicon. Your rejects due to unsatisfactory resistivities fall to zero.
Merck has the Single Crystal Silicon to meet your needs. Write, wire or phone today for specifications.

Visit our booth \#4513 I.R.E. Convention

BASE BORON CONTENT BELOW ONE ATOM OF BORON PER SIX BILLION SILICON ATOMS

NEW PRODUCTS at the ire show
Pulse Generator
665
Four-channel type

Model 3010A four-channel musec current pulse generator operates at frequencies to 3 mc and higher. Rise time is $0.04 \mu \mathrm{sec}$ at 1 amp . The unit provides four variable-width and amplitude pulses, two positive and two negative. It has applications in testing magnetic and other currentdriven devices.
Electro-Pulse, Inc., Dept. ED, 11861 Teale St., Culver City, Calif.
Price \& Availability: Price is \$4760. Delivery time is eight weeks.
Booth 3810-3812.

Microwave Mixer

Range is 8.5 to 9.6 kmc

Type V-8302 hybrid microwave mixer, designed for the range of 8.5 to 9.6 kmc , is for general X band receiver use and is suitable for missile and airborne applications. The noise figure at 9.2 kmc is 9 db typical, including 3 db if noise. The signal input vswr is less than 2 v . The if output impedance is about 200 ohms shunted by about 10 $\mu \mu \mathrm{f}$. The unit measures $3 / 4 \times 1-5 / 8 \times 1-5 / 8 \mathrm{in}$.

Varian Associates, Dept. ED, 611 Hansen Way, Palo Alto, Calif.
Availability: Delivery time is 30 clays. Booth 2714-2720.

with advanced PNPN semiconductors available NOW - from SSP/

. . . already finding wide use in

- Shift registers
- Squib firing
- Relay drivers
- Replacing relays
- Replacing mag-amps
- Indicator lamp drivers
- Electronic circuit breakers
- Voltage sensing
- Current sensing
- Static switchin
- Pulse generato
- Time delay

Trigistor Flip-Flop

Shift Register Stage

Binary Counter

-SSPI

ajor advances in circuit simplicity, component reduction, and reliability are possible through the use of proven PNPN Semiconductors .-- from SSPI.
. . . New PNPN logic possibilities with SSPI Trigistors --- full on-off control with pulsed input at a single terminal --- operation down to 1 ma allows significant current conservation.
. . . SSPI Miniature SCR's and Controlled Switches allow precise firing control (.52 $\pm .08$ volt) with high gain --- 20μ a will control $10-1250 \mathrm{ma}$ D.C. and peak pulses up to 30 amperes with efficiencies to 99%.
. . . Miniature packaging --- all leads isolated from case --- MIL-S-19500 environmental capabilities -.- Operation $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$.
. . . Investigate these devices in terms of your design.

Write for Applications Bulletin D420-02

Specialty Transformers

These specialty transformers range from miniature to standard sizes. The unit shown has a special encapsulation which provides uniform dimensional stability and permits other characteristics to exceed Mil specs.

Microdot Inc., Dept. ED, 220 Pasadena Ave., South Pasadena, Calit.
Booth 2101-2103.

Diversity Combiners

For of receivers

Types DCA-500 and DCA-1000 diversity combiners are designed for use with rf receivers. The DCA-500 handles the output of two receivers and the DCA-1000 handles the output of four receivers. These output signals are mixed into a single output in the combiner. Signal-to-noise ratio is kept low. Response time is 2 msec . Distortion is less than 1%. Required input is 120 v at 50 to $400 \mathrm{cps}, 150 \mathrm{w}$. The unit weighs 45 lb and measures $19 \times 7 \times 15$ in.
Nems-Clark Co., Dept. ED, 919 Jesup Blair Drive, Silver Springs, Md.
Price \& Availability: DCA-500, \$2700; DCA$1000, \$ 3500$. Delivery is from stock.
Booth 3826-3828.

Don't forget to mail your renewal form to continue receiving ELECTRONIC DESIGN

If You Will Remember ONE New Name -
 If You Will Remember

P.A D. *

You Can Forget

FIVE Old Transistor Problems
ing to manufacture transistors with
an average cut-off above 20 Mc . In an average cut-off above 20 Mc . In
this process the collector and emitter elements are fused (or alloyed) to the base. For this to be success-
fully accomplished the base must be relatively thick and the thickness very accurately controlled in order that during the fusion process the collector and emitter elements do not flow through the base and
short the transistor. This relatively thick base increases the short the transistor. This relatively thick base increases the
transit time, precluding any usable response above 20 Mc . in the diffusion process the base is formed on the collector by gaseous diffusion in a high temperature oven. Very thin bases can be manufactured by this method with low transit time and very high cut-off frequencies. In this process the problem lies in attaching the emitter junction and base lead. and diffusion take place Alloy Diffusion Process, alstor is built up on a piece of P-type germanium. Two small pellets are placed on the germanium. Pellet 8 , the base pellet, contains only an N-type impurity. Pellet E, the emitter pellet, contains a P-type and an N-type impurity the germanium dissolves into the metal pellets until saturation is reached, and the pellet impurities diffuse into the
solid germanium.
However, the
P -type impurity in pellet E has such a low diffusion constant, that for practical purposes it does not pets E and 8 has a much greater diffusion constant and readily penetrates into the solid germanium to form a diffused N-type layer underneath the pellets.
When the assembly is cooled down, a layer of germanium recrystallizes from the pellets as in the normal alloy technique. The recrystallized layer of pellet E E Contains many
atoms of the P-type impurity and is, therefore, a P-type germanium layer. The germanium layer recrystallized from pellet 8 is, of course, the N-type because there are no other
impurities in the pellet. connections are made the germanium and the metal pellets and a "mesa-like" P-N-P transistor is obtained. The original P-type germanium is the collector, pellet B the This pronet E the emitter.
sistors with a base layer possible to mass produce tranfor very short transit time and high cut-off frequencies. The yield is also very high which enables AMPEREX to supply these transistors at low prices.

maximum ratings $-V_{c e}$
P_{c} at $T_{\text {amb }} \leq 25^{\circ} \mathrm{C}$
TYPICAL CHARACTERISTICS Gain-zandwidth Product Gain-Bandwidth Product Power Gain Power Gain
Gat 0.45 G at $10.4 \mathrm{Mc}\left(I_{E}=1 \mathrm{~mA}\right)$
G at $100 \mathrm{Mc}\left(\mathrm{IE}_{\mathrm{E}}=1 \mathrm{~mA}\right)$ Conversion Gain GC_{C} at 26 Mc Noise figure NF at 0.45 Mc NF at 10.7 Mc
NF at 100 Mc

| 2N1515 | 2N1516 | 2N1517 |
| :--- | :--- | :--- | :--- |

20 V	20 V	20 V
10 mA	10 mA	10 mA
83 mw	83 mw	83 mw
70 Mc	70 Mc	70 Mc
-	180 Mc	180 Mc
${ }^{35}$	35 db 2480	-
	-	12 db
-	18 db	-
($\begin{aligned} & 3 \mathrm{db} \\ & 5 \\ & 50\end{aligned}$	3 db 4 do	

,
4 How It Was Accomplished!

This VHF transistor breakthrough Alloy made possibie by a new Post anctur mothes, a mant the best features of the currently used alloy and diffusion processes without their drawbacks. The limitation of the alloy process is encountered when attempi ese transistors at low prices.

at 100 Mc

Amperex

High Gain VHF Transistors manufactured by the

Post Alloy Diffusion Technique

are unrivalled for:

1. RELIABILITY
2. OPERATING STABILITY
3. UNIFORMITY
4. PRICE
5. AVAILABILITY

At last, you can realistically use high frequency transistors for RF and IF amplifiers in production FM receivers; as mixers, oscillators and RF and IF amplifiers in mobile radio equipment. car radios and short wave receivers; and as broadband amplifiers in instrumentation and industrial applications. Implemented and fully proven hy Amperex. a unique manufacturing technique originating with Philips of the Netherlands now enables Amperex to provide you with production VHF Post Alloy Diffused Transistors \% of unparalleled laboratory quality at truly reasonable prices.
The new Amperex "Post-Alloy-Diffusion" P-N-P Transistors combine the best qualities of both the alloy and the diffusion approaches to transistor construction. As a result of the special "self-jigging" techniques, a maximum degree of uniformity is achieved. Thus the necessity for "selection" is completely eliminated.
The 2 N 1516 is designed for use as a mixer oscillator in short wave receivers, as an IF amplifier in FM receivers, and as a broadband linear amplifier for instrumentation and industrial applications. The 2N1516 features a high cut-off frequency of 70 Mc and a low collector-to-base capacitance of $1.8 \mu \mu \mathrm{f}$.
The 2N1515 is designed for high gain IF amplifier service in medium and short wave receivers.
The 2N1517 is designed for use as a local oscillator and preamplifier in FM receivers and has a power gain of 12 db at 100 Mc .

This is of cousse, only the heginning of the Amperex PADT storv. A vailaatrility is furzher assured by a new Amperex PADT plant in Slatersville,
Rhode I Shat. A ranee of new PADT transistors. now in the final stages of Rhode Istand. A raned of new PADT transistors. How in the final stages of
development will provide IIIF performance at HF prices and give every

ask Amperex
the industry's rellable source of quallity
transistors and dlodes for Industrial and entertainment applications.

Amperex Electronic Corp., 230 Duffy Avenue, Hicksville, Long Island, New York In Canada: Rogers Electronic Tubes \& Commonents, 116 Vanderhoof Avenue, Toronto 17. Ontario

NEW PRODUCTS

at the ire show

Oscilloscope

Generates from 5 to 50,000 sweeps per sec

Model S-16-B digital data display unit, which can also be used as a general purpose oscilloscope, generates horizontal sweeps at rates from 5 to 50,000 sweeps per sec. The unit provides $6 \times 10 \mathrm{~cm}$ raster presentation on a $5-\mathrm{in}$. flat face cathode ray tube screen. Step voltages with amplitudes of 600 mv to 30 v and rise times up to $0.07 \mu \mathrm{sec}$ produce the full scale vertical raster. Positive going pulses of $2 \mathbf{v}$ or greater intensify the trace; negative going slopes of 2 v extinguish the trace. The unit measures $11.25 \times 7 \times$ 13.5 in . and weighs 19 lb .

Waterman Products Co., Inc., Dept. ED, 2445 Emerald St., Philadelphia 25, Pa.
Booth 3105-3106

Diodes

Two types available
One type is a glass-package, 1/4-w, silicon Zener diode offered in sizes from 6.8 to 200 v and in tolerances of $20 \%, 10 \%$, and 5%. Also offered is a $1 / 2-w$, temperaturecompensated, glass-package Zener reference diode. It provides a reference source of 9 v over the temperature range of -55 to +150 C with temperature coefficients of $0.01,0.005,0.002,0.001$, and 0.005% per $\operatorname{deg} \mathbf{C}$.

Motorola Inc., Semiconductor Products Div., Dept. ED, 5005 E. McDowell Road, Phoenix, Ariz.
Booth 1114-1115.
< CIRCLE 151 ON READER-SERVICE CARD

fut ting Machine 653

For traveling wave-fubes
Models 252 and 253 power supes are designed to operate any v or medium-noise figure travelwave tubes. The input ranges m 50 to 450 cps which permits eration at remote locations, with cellaneous power sources or in borne applications. Extra solenoid dheater power are provided. The ater supply is dc. Either am or ase modulation is available pugh a BNC front panel connec-

Hfred Electronics, Dept. ED, Commercial St., Palo Alto, lif
ict \& Availability: Model 253 is

EXCEEDS PROPOSED MIL SPECS IN THESE CRITICAL AREAS

super-1.antumbap tor special applicationin- tuandard 1. minumeap tor secinerat use: Brarl meel all propored Wll seco the super (aceds them). hate the s.ance longe life. minn.ature vec. and "Buill-min Reliatinl-

 kulletm \い1 11:4

TYPICAL APPLICATIONS	CHNRACTERISTICS	SUPER-TANTUMCAP	MIL-C2Ea5S (USAF) PROPOSED
Couplinge Energy storing, Pulse -neray	Leakage current	. $015 \mu \mathrm{~L} / \mathrm{V} / \mu \mathrm{f}$. 05 Ma/V/ μ
Pulse networks. Bypassing. Filtering	Dissipation factor	. 03	. 06

BUILT-IN RELIABILITY Micamold's manufacturing concept wherein rigid controls during production insure the quality and stability proved hy "after the fact" testing Results are much more conclusive!

लeo

MICAMOLD ELECTRONICS MANUFACTURING CORPORATION
SUBSIDIARY OF GENERAL INSTRUMENT CORPORATION
65 Gouverneur Street. Newark 4. N J. HUmboldt 5-2100

Digital Display

Measures $1 \times 1 \mathrm{in}$.

Type LD-11 incandescent digital readout dis. plays zero through 9 on an area measuring 1×1 in. A lenticular optic technique is used, eliminating the need for projection lenses. Numerals are high density white on black or black on white. Long-life bulbs operate on $2.5,6,12$, and 28 v . Of modular construction, the unit is designed for direct panel-mounting.

Burroughs Corp., Electron Tube Div., Dept. ED, P.O. Box 1226, Plainfield, N.J.
Price \& Availability: Complete with 2.5-v bulb, the unit is priced at $\$ 24$ ea in quantities up to 99 . It is immediately available from stock.
Booth 1211-1213-1215.

Voltmeter

Measures from 1 mv to 10 v

Model 411A voltmeter measures from 1 mv to 10 v and has a sensitivity of 10 mv full scale. Frequency range is 5 kc to 1 kmc . Accuracy is $\pm 3 \%$ full scale from 10 kc to $50 \mathrm{mc}, \pm 6 \%$ from 50 mc to 150 kmc , and $\pm 1 \mathrm{db}$ from 5 kc to 1 kmc . The instrument has a large, linear meter scale.
Hewlett-Packard Co., Dept. ED, 275 Page Mill Road, Palo Alto, Calif.
Booth 3302-3304-3306, 3401-3403-3405.

Don't miss an issue
 of ELECTRONIC DESIGN; return your renewal card today.

ELECTRONIC DESIGN • March 16, 1960

Factory Prices in Quantities of 1-99 Write for specification sheets

MILGRAY ELECTRONICS, INC.
(36 LIBERTY STREET, NEW YORK CITY 6. REctor 2.4400
TWX-NY1-4013 - FAX.FQF ENTERPRISE AND ZENITH NUMBERS IN LEADING INDUSTRIAL AREAS CIRCLE 154 ON READER-SERVICE CARD ELECTRONIC DESIGN • March 16, 1960

NOW NPN SILICON MESA 2N702 seras ano 2N560

your new source for silicon mesa transistors
P.O. Box 443, Danbury, Conn. - Ploneer 3-7624 - TWX DANB 452-U

announcing the availability on the American market of plugs - sockets terminals

 HIRSCHMANNHirschmann precision made components, a standard of excellence in Europe for more than 30 years, are now available to meet your design, production and replacement needs from the Rye Sound Corp., its 20 sales offices and its national distributor organization. Hirschmann products are standard equipment on such well-known European brands as Norelco, Grundig, Nordmende, Blaupunkt. Lowe, Telefunken, Siemens, Braun, Uher and many others.
Hirschmann plugs, sockets and terminals offer two distinct advantages-American designed equipment for American consumption can use these products, and American designed equipment for European consumption can also use these products because they are designed to satisfy both American and European standards.
The Hirschmann line consists of miniature type plugs connectors, and couplings for transistor and other small size applications, as well as standard sizes. The line in cludes multiple connectors from 2 to 36 poles, round types, flat types, wire mounts, panel mounts, wall mounts, etc. Depending upon the type of plug, they generally feature atrain relief, axial and transverse wire connection. flexible sleeves, cord grips, unbreakable construction and shockproofing.
Included also are spring-loaded and insulated test prods, plus flexible and rigid types, alligator clips, banana plugs, continental type electrical plugs, universal multi-function panel terminals, spade terminals. A complete 52 -page catalog with detailed specifications dimensions and applications is available by writing to S. M. Scher

Exclusive U. S. sales agent RYE SOUND CORP., 145 Elm Street, Mamaroneck, N. Y. West Coast warehoused 1113 El Centro, Hollywood 38, Callif. Other preciation Rye Soznd products include: enrphoneo, boodotio, minilature microphones, oub-minititure components

CIRCLE 156 ON READER-SERVICE CARD
 connectors mall, multi-pole connectors

small shielded, multi-pole connectors

NEW PRODUCTS at the ire show

Display Scanner

Model 166C, used with type 160B oscilloscope, provides outputs to duplicate crt traces with an X-Y recorder. It provides uniform, detailed plots over the entire waveform.

Hewlett-Packard Co., Dept. ED, 275 page Mill Road, Palo Alto, Calif.
Booth 3302-3304-3306, 3401-3403-3405.

Wirewound Resistors

Bobbin types WW and HW have resistances of 0.1 ohms to 6 meg. Made to surpass MIL-R-93B, the units have tolerances of 0.02% to 1%.
Dale Products. Inc., Dept. ED, Columbus, Nebr Booth 2627-2629.

IF and RF Amplifiers

These units cover a band from 40 to 80 mc , have a $30-\mathrm{db}$ gain, and a matched input with a vswr of less than 1.5 v . Power supplies are included.
LEL, Inc., Dept. ED. 380 Oak St., Copiague, N.Y. Price \& Availability: Price is $\$ 1795$ ea. Delivery time is 30 days.
Booth 2102.

Waveguide Switches

This complete line of manual and electrically-operated four-post rotary switches includes a variety of waveguide sizes.
FXR, Inc., Dept. ED, 26-12 Borough Place, Woodside 77, N.Y
Booth 3713-3717.

AC Voltage Standard

Output is from mv to 1000 v over the range of 50 to 4000 cps. Accuracy is better than 0.1% and harmonic distortion is less than 0.07%.

Gertsch Products, Inc., Dept. ED, 3211 S. La Cienega Blvd., Los Angeles 16, Calif.
Price \& Availability: The product will be available by October, 1960. Price has not been determined. Booth 3701-3703.

Lumped Constant Delay Networks

Offering a wide range of specifications, these precision units, which were formerly custom designed only, are now standard cataloged items.
Polyphase Instrument Co., Dept. ED, E. Fourth St., Bridgeport, Pa.
Booth 2839.

Fastening Devices

These miniature locknuts, clinch nuts, and lock collars are for shafts as small as $1 / 16-\mathrm{in}$. in diam.
Standard Pressed Steel Co., Dept. ED, Jenkintown. Pa.
Booth 4127.

491

681

423

540

transistorized readout

A REVOLUTIONARY CIRCUIT DESIGN MAKES THE NIXIE® INDICATOR TUBES DIRECTLY COMPATIBLE WITH TRANSISTOR CIRCUITS

New "junction protection" technique permits the use of medium voltage NPN transistors to operate the Nixie indicator tubes.

The result is the lowest power, allelectronic visual readout.
"Trixie" readouts are immediately available from stock.

See us af IRE—Booths \#1211-1213-1215 CIRCLE 157 ON READER-SERVICE CARD
iand-Pass Filter
512
Tuning range is 145 to 175 mc

Model L-150-1S7 band-pass filter has a tunable range of 150 to 175 mc. The unit is temperature-compensated by means of an invar drive. The unloaded Q-factor is 7200, impedance is 52 ohms, and the insertion loss may be varied in steps from 0.5 to 3 db . The temperature range is 10 to 150 F . The unit measures $37 \times 8 \times 8 \mathrm{in}$. and weighs 8.5 lb . It is manufactured in Canada.
Sinclair Radio Laboratories, Inc., Dept. ED, 412 Chamber of Commerce Bldg., Buffalo, N.Y. Price \& Availability: Price is $\$ 230$; Delivery is in two weeks or less. Booth 1630.

1-Mc Limit Bridge

521

For $\mathrm{G}_{0} / \mathrm{No}$-Go Testing

Designed for testing capacitors on a Go/No-Go basis, model AB-5-1 limit bridge has a range of 0 to 1000 ! $\mu \mathrm{uf}$ in two ranges. Accuracy up to $50 \mu \mu \mathrm{f}$ is $\pm 0.2 \mu \mu \mathrm{f}$; accuracy between 50 and $1000 \mu \mu \mathrm{f}$ is $\pm 1 \%$. Speed of response is less than 0.1 sec. This unit meets government and commercial specifications. It is housed in an enclosure measuring $\therefore 3.5 \times 13.5 \times 19 \mathrm{in}$. and can be sup, llied for rack mounting.
Industrial Instruments Automation Corp., Dept. ED, 89 Commerce load, Cedar Grove, Essex County, J.J.

3ooth 3513.

not one life failure

In November of 1957, the first Ultra Long Life NIXIE indicator Tube was developed and put on life test. in 1958, the first 100 production tubes joined this life test which subjected the tubes to the most severe conditions; i.e., constant "lighting" of one of its 10 numbers. To date, not one life failure has been experienced. This rigid test has been in progress in excess of 10,000 hours which is the equivalent of more than 50,000 hours of normal usage.
In applications from milling machines to computers to digital voltmeters, to counters, tens of thousands of Ultra Long Life Nixie Indicator Tubes have been operating over one year without a single life replacement.

- Lowest Cost - Check - Lightest Weight low quantity prices
- No replacement or Servicing Problems
- Lowest Power

Most Readable for Number Size

- Smallest Volume Any Number Size
- Maximum Temperature Shock and Vibration Specs
- All Electronic
- Longest Life

Write foday for eight page brochure featuring Burroughs Nixie Indicafor Tubes

The emphasis DAGE places on engineering services is unique even in the electronics field.
DAGE engineers and representatives are specialists in engineering to specifications. "On call" at all times, they will work with you at your plant or in the field to help solve problems involving connector design and application.

DAGE offers facilities

 for the design, production and testing of coaxial and triaxial connectors and precision hermetic seals. The new DAGE Facilities Brochure gives full detailsDAGE write or phone ELECTRIC CO., INC. Beech Grove, Indiane

NEW PRODUCTS at the IRE SHow

Video Signal Generator
Range is 20 kc to 20 mc

Model V-333A video signal generator provides point-to-point test signals continuously from 20 kc to 20 mc . A rotary switch selects one of these three bands: 20 to $200 \mathrm{kc}, 0.2$ to 2 mc , and 2 to 20 mc . Response is flat for the full-range and is continuously monitored. Accuracy of the lower bands is $\pm 3 \%$ or less; accuracy from 2 to 20 mc is $\pm 40 \mathrm{kc}$ or $\pm 1 \%$. This generator system includes a radar trigger pulse adapter.
Foto-Video Laboratories, Inc., Dept. ED, 36 Commerce Road, Cedar Grove, N.J.
Booth 3013.

Wirewound Resistors

Have ratings of 2 to 50 w

Types NS and MS wirewound resistors are available as silicone-coated units with ratings of $2,3,5,7$, and 10 w and as metal clad units with ratings of 10,25 , and 50 w . They are non-inductively wound, miniature units. A heat and mois-ture-resistant coating is used.

Sage Electronics Corp., Dept. ED, Box 3926, Brighton Sta., Rochester 10, N.Y.
Availability: Units are made to customer specifications and can be delivered in 14 to 28 days after ordering.
Booth 2236.

Have you sent us your subscription renewal form?

Amazing, New, High Inductance

The R.F. Choke that's so small you can pack 200,000 to a cubic foot
Tiny, new, WEE-DUCTOR covers a full range of inductances from $0.10 \mu \mathrm{H}$ to $56,000 \mu \mathrm{H}$ yet it measures only $0.157{ }^{\prime \prime} \times 0.375^{\prime \prime}$.
Unique ferrite sleeve and core construction provides 560,000 to 1 inductance range in a tiny package . . . and yet when assembled side-by-side, exhibit less than 2% coupling.
Essex WEE-DUCTORS are available immediately from stock. WEE-DUCTORS are the latest addition to Essex's broad line of Standard R.F. Choke Coils.
Essex Electronics Standard Line of R.F. Chokes

ESSEX PART MO.	WEE. DUCTOR	RFC- S	RFC- M	RFC- L
$\mathrm{L} \mu \mathrm{H}$	$.1-56,000$	$.1-100$	$1.0-1,000$	$1.0-10,000$
Max. Res. n	$.035-499$	$.02-6.0$	$.04-21$	$.03-80$
I Max. ma	$3000-26$	$4000-220$	$2700-125$	$4000-80$
Dia.	.157	.188	.250	.310
Length	.375	.440	.600	.900

WRITE TODAY Free Descriptive Literature Available

ESSEX EREGTROMDGS NदIRONTCS. SEVE:

550 Springfield Ave., Berkeley Heights, N. J CRestview 3-9300
CIRCLE 160 ON READER-SERVICE CARD ELECTRONIC DESIGN • March 16, 1960

irectional Table

Model 90A is a voltage-to-angular position plat, rm for subjecting directional gyros to angular posions about a vertical axis. Operation of the table lisplaces it 180 deg in either direction.
Micro Gee Products, Inc., Dept. ED, 6319 W. lauson Ave., Culver City, Calif.
P'rice \& Availability: Price is $\$ 2800$; delivery time ix 30 days.
Booth 3846.

Line-Type Modulators

682
Standardization of basic circuitry permits adaptation to precise requirements. Ample protection of equipment is incorporated; operator safety is provided for. Protective oscillator tube circuitry can be included.
FXR, Inc., Dept. ED, 26-12 Borough Place, Woodside 77, N.Y.
Booth 3713-3717.

Noise Figure Meter

636
Model 344A makes automatic measurements on operating radar sets. The unit's high senstivity permits decoupling the noise source up to 20 db from the main transmitter line to minimize system degradation.
Hewlett-Packard Co., Dept. ED, 275 Page Mill load, Palo Alto, Calif.
Booth 3302-3304-3306, 3401-3403-3405.

Socket Screw

Type pHd socket screw provides good holding power by using a strong head which does not cause indentation in soft materials. Improvement over previous models in fatigue life is by means of a new thread form.
Standard Pressed Steel Co., Dept. ED, Jenkintown, Pa .
Booth 4127.

Teflon Coaxial Cables

Made to meet MIL-C-17, these miniature cables are designated types RG-187/U, RG-188/U, RG195/U, and RG-196/U.

Inso Electronic Products, Inc., Wire and Cable Div., Dept. ED, Union, N.J.

Booth 4054.

Miniafure Soldering Irons

543
Model 115-10W heats to 672 F in 70 sec and model 115-15W heats to 717 F in 50 sec . Both use B/32 and $5 / 32-\mathrm{in}$. tips and are made for immediate plug-in.
Oryx Co., Dept. ED, 13804 Ventura Blvd., SherT an Oaks, Calif.
I rice \& Availability: Price is $\$ 6.95$. They are avail© Ie through distributors.
\} ooth 4111.

Low Cost Transistorized

NJE answers the engineers' quest for a low cost transistorized power supply that is fully capable of remote sensing and remote programming-a power supply impervious to overloads or short circuits.
These compact, flexible NJE power supplies are designed in a new "half rack" modular
concept suitable for laboratory bench use or in rack installations* as a component part of your equipment. They are also capable of series or parallel operation. Component derating and construction conform to the highest commercial practices.

Cheche these specs!	modEL TR-18-2	moDEL TR 36-1
Voltage Range	0.18 VDC	0.36 VDC
Current Range	0.2 amps	0.1 mp
Load Regulation (0.100%)	$\pm 0.05 \%$ or $\pm 2 \mathrm{mv}$	$\pm 0.05 \%$ or $\pm 2 \mathrm{mv}$
Line Regulation $(\pm 10 \%)$	$\pm 0.1 \%$ or $\pm 3 \mathrm{mv}$	$\pm 0.1 \%$ or $\pm 3 \mathrm{mv}$
RMS Ripple	1 millivolt	1 millivolt
Internal Impedance (DC-20KC)	0.1 ohm max.	0.2 ohm max.

WRITE TODAY FOR COMPLETE TECHMICAL DATA

Models in stock subject to prior sale - $\$ 250$ each net; quantity discounts available .*Suitable front panels for rack mountings are available on order (single supply panel, Model RP1 $\$ 15$ each net; dual supply panel, Model RP2 $\$ 15$ each net)
NJE
CORPORATION 20 Boright Avenue . Kenilworth, New Jersey BR. 2.6000 - TWX Cranford, NJ 51 - FAX.FFP

NEW PRODUCTS

Relay

Originally designed for antenna switching in the 200 mc range, this unit can be used as a general purpose relay. It comes with silver contacts rated at 5 amp , or palladium contacts rated at 3 amp . Contact arrangements are: single-pole, normally opened, normally closed, or double-throw; and double pole, normally closed. Operating temperature range is from -30 to +100 C. Relay contacts are designed not to open under vibration of 0.015 in. total excursion.
F. A. Scherma Manufacturing Co., Inc., Dept. ED, 424 Broome St., New York 13, N.Y.
Price \& Availability: Available from stock. Prices range from $\$ 1.45$ to $\$ 2.85$.

PAM-PDM Multicoders
414
For airborne and missile use

For airborne and missile use, the SL series of solid state low level multicoders provides up to 88 channels. Available are both single and multiple speed models capable of providing standard IRIG signals PAM, PDM, and record in 30 to 90 channel formats. Speeds are 112.5 to 900 samples per sec. Separate outputs are provided. Accuracy is 0.5% for signals of $10-\mathrm{mv}$ amplitude, full scale. The 88 -channel model shown measures $4 \times 4 \times 7$ in. and weighs about 6 lb . It requires less than 5 w from a $28-\mathrm{v}$ dc source. No vacuum tubes or germanium devices are used.
General Devices, Inc., Dept. ED, Box 253, Princeton, N.J.

CIRCLE 163 ON READER-SERVICE CARD $>$ ELECTRONIC DESIGN • March 16, 1960

Micropot Potentiometers
Turns-Counting Microdials
Sub-Fractional Horsepower Motors
Frequency and Time Standards

C inverter Amplifier

for use with ac electro-mechanical transducers sile ground support, and general industrial uses Output impedance is 1000 ohms, output voltage is $\pm 10 \mathrm{v}$ dc max, and system gain is 100 nominal. The full-scale meter sensitivity range is ± 10 to $\pm 0.05 \mathrm{v}$. The unit consists of a regulated power supply, oscillator, amplifier, gain control, demodulator, and output meter. It is fully transistorized and operates on 115 v ac 60 cps .
Pacific Electro-Kinetics, Dept. ED, 329 S. Vermont Ave., Glendora, Calif.
Price \& Availability: Price is $\$ 620$ per unit. Delivery is from stock to 30 days.

Waveguide Adapter
464
Covers the 8000 to $\mathbf{1 0 , 0 0 0 ~ m c ~ r a n g e ~}$

Nodel 105 waveguide adapter covers the 8000 ol $10,000 \mathrm{mc}$ range; it bends 30 deg and twists 45 leg. It compresses $1 / 8 \mathrm{in}$. and expands $1 / 8 \mathrm{in}$. for ach 3 in . of length, and is available in lengths of $-12,8$, and 12 in. For all units, the maximum swr is 1.08 to 1 or better throughout the band. The 8 and 12 in . units will permit increased twist nd bend while maintaining the same electrical ha acteristics.
I ouglas Microwave Co., Inc., Dept. ED, 252 hird St., Mount Vernon, N.Y
rrice \& Availability: Available from stock. Prices ar at $\$ 85$, depending on size.
ci cie 163 on reader-service card
E TRONIC DESIGN • March 16, 1960

| TYPE | SIZE | RESISTANCE
 (ohms) | WATTAGE | TC |
| :--- | :--- | :--- | :--- | :--- | :--- |

When ounces and inches are important, specify high-reliability Corning MIL resistors

Fuse a tin oxide coating to a piece of special glass. Spiral a helix in it. Attach leads. You have a unique resistor.

Why unique? Because the coating is an integral part of the glass base. It cannot come off or change its position unless the unit itself is destroyed.
Because our tin oxide film cannot suffer change through oxidation, its physical and electrical characteristics remain constant in use.
The end result is a simple, rugged, extremely reliable line of resistors with exceptional low-noise and stable-temperature characteristics.
If you need resistors high in reliability, small in size, and light in weight. you should know more about this Corning design. The coupon will bring you complete technical data.

Address: Corning Glass Works, 540 High St., Bradford, Pa. For orders of 1000 or less, contact your distributor serviced by Erie Distributor Division.

REMINGTON RAND USES AUTRONEX*ACID GOLD PROCESS TO PLATE UNIVAC PRINTED CIRCUITS

Remington Rand, Division of Sperry Rand Corporation, Utica, New York, uses the AUTRONEX ACID GOLD PROCESS to plate printed circuit boards for their world-famous UNIVAC Solid-State Computer Systems and Equipment. Installation of the patented Systems and Equipment. Installation of the patented for this work, "... totally eliminated resist failures and for this work, " \ldots totally eliminated resist failures and
rejects in the electroplating phase," according to a rejects in the electroplating phase," according to a
report from Remington Rand's Supervisor of Chemical Engineering.
This report goes on to say that "AUTRONEX ACID GOLD in printed circuit production offers definite advantages and promotes the highest quality produc tion." Here are some of these advantages proved in Remington Rand's own laboratories:

1. Harder and more wear-resistant surfaces.
2. Elimination of one step in plating cycle - no cyanide gold strike required.
3. Promotes higher bond strength of circuit to dielectric base material by minimizing danger of damaging the adhesive layer.
4. Solder flow through plated holes is definitely better, thereby improving over-all quality.
5. AUTRONEX ACID GOLD has totally eliminated circuit lifting and rejects on boards plated after etching. Formulations used previously attacked the adhesive and undermined the circuit paths.

The conclusion of the report we have been quoting needs no further comment: "We would like to commend the manner in which your company has serviced us in regards to materials, equipment and valuable advice. In many instances your promptness in making equipment and materials delivery has been instrumental in meeting vital production target dates."
The patented AUTRONEX ACID GOLD PLATING PROCESS has production-proved its unique advantages for over two years in the plants of leading manufacturers the world over. AUTRONEX can help you make a better, more reliable product-probably at far less cost than with any gold plating formulation you may be presently using. Evaluate AUTRONEX ACID GOLD ELECTROPLATE in your own plant, on your own product. We'd be happy to plate sample parts for you at no obligation. Write... wire... or 'phone. We'll make all the arrangements.
-Trademark for Sel-Rex patented Acid Gold Plating Process

PRECIOUS METALS DIVISION
SEL-REX CORPORATION NUTLEY 10, NEW JERSEY

The world's fastest and most advanced electronic data processing system for business and scientific use, the UNIVAC Larce Solid.
State computer, by the Remington Rand Division, Sperry Rand

Corporation. The new system, which operates up to 200 times faster than any computer in existence, can perform 250,000 addi-
tions and subtractions of 12 -digit decinal numbers per second. tions and subtractions of 12 -digit decinal numbers per second.

NEW PRODUCTS at the ire show

AC Voltage Dividers

Accuracies are 1 to 10 ppm

Series RB-500 ac voltage dividers have accuracies of 1 to 10 ppm , depending on the model They are available in a wide range of types for laboratory, production, and field service applications. Portable, bench, and rack models can be supplied in general purpose, deviation, sine cosine, binary, and automatic-stepping types. All models have an adjustable ratio transformer. They have in-line readout and provide a range of ratios of +1.111111 : 1 to -0.111111 : .
North Atlantic Industries, Inc., Instrumentation Div., Dept. ED, Terminal Drive, Plainview, L.I. N.Y.

Booth 3012.

Power Supply

Occupies 16 sq. in. bench space

Model 101 power supply, designed for low power transistor applications, occupies 16 sq in . of bench space. The supply voltage range is 4 to v dc, the trip current range is 12 to 500 ma , ang the turn-off time is $250 \mu \mathrm{sec}$. A $1.5-\mathrm{v}$ battery used.
Sinclair Radio Laboratories, Ince, Dept. ED 412 Chamber of Commerce Bldg., Buffalo, N.Y. Price \& Availability: Price is \$3.5 fol) Buffala Delivery is in two weeks or less.
Booth 1630.
Don't forget to mail your renewal for to continue receiving ELECTRONIC DESIGN
circle 166 on reader service caro

Type MV 7033 crystal can relay has a sensitivity of 250 mw . Designed to meet MS 24250-6, it operates over the temperature range of -65 to +125 C , under vibration of 20 g to 2000 cps , and under shock to 50 g . The nominal operating voltage is 26.5 v dc and the coil resistance is 600 ohms. Contact arrangement is dpdt with a rating of 2 anp at 115 v ac. It is hermetically sealed and is constructed with side-angle brackets and solderhook terminals.
Elgin National Watch Co., Dept. ED, 2435 N. Naomi St., Burbank, Calif.

Price \& Availability: Units are available from stock at a price that is normal for crystal can relays.
Booth 2232.

Digital Frequency Meter
459

Measures 10 cps to 110 mc

Now WANOFACTURER OF COMMERCRAL VIDEO TRANEFORNERE

In just two years the Electronic Components Division of ESC has become the nation's leading supplier of quality custom-built and stock Video Transformers.
ESC Video Transformers are designed and manufactured to meet the requirements of simultaneous transmission of both low and high frequencies commonly encountered in television, computers, scatter transmis. sion, atomic instrumentations, etc.

Additional applications include interstage coupling, phase inversion, isolation and pulse applications requiring extremely wide range in pulse width of good wave form. - Bandwidths from audio to above 10 mc .-available cased and uncased, in stock designs or to your rigid specifications.

Write today for complete technical data.
5
 EST:

and atill AMERNEA"S LAREEST PRODUGER OF CUSTOM=BUIT AND STOCK DELAY MNEE

ESC was the first company devoted exclusively to the design and manufacture of custom-built and stock Delay Lines...for military and industrial applications. Whatever the requirement, ESC can
design and build precisely the Delay Line you need-easily, efficiently and exactly as specified. Write today for complete technical data.

See You At The IRE Show - Booth \#2915
exceptional employment opportunities for engineers experienced in computer components...excellent profit-sharing plan.

534 Bergen Boulevard, Palisades Park, New Jersey
Distributed constant delay lines - Lumped-constant delay lines - Variable delay networks - Continuously variable delay lines - Pushbutton decade delay lines - Shift registers - Pulse translormers - Medium and low-power transformers - Fillers of all types. Pulse-forming networks - Miniature plug in encapsulated circuit assemblies CIRCLE 167 ON READER-SERVICE CARD

NEWEST way to write performance...

 תervo/riter:
SELF-BALANCING POTENTIOMETRIC RECORDER

OFFERS YOU MORE HIGH PERFORMANCE FEATURES THAN ANY OTHER RECORDER...at any price!

The old cliché, "You can pay more but you can't buy better" was never more applicable than in the new "servo/riter" recorder. Texas Instruments has developed a self-balancing potentiometric recorder that incorporates premium engineering refinements, sensitivity, reliability and quality construction as standard equipment.
High-Sensitivity - Standard electrical span of 2.5 millivolt d-c with off-balance input resistance of 4 megohms gives a power sensitivity of better than 10^{-17} watts.
Fast Pen Speed - Span step response is less than 0.5 second.

High Interference Rejection - Good filtering provides high orders of rejection to common-mode d-c and all types of 60 cps interference. Guard shields permit making full-accuracy measurements at hundreds of volts above ground.
Long-Term Reliability - Tube life is prolonged by
heat-dissipating shields. Amplifier gain is stabilized by partial negative feedback. Non-lash, non-wearing, toothed belt drive gives long consistent performance. Superior Operating Conveniences - Recorder function is easily changed by plug-in input units. Presently standard are $2.5,5$, or 10 millivolt d-c electrical spans
special applications and ranges are easily accommodated. "Micrometer" control for zero adjustment and main amplifier gain control are readily accessible as are all other adjustments, connections, and controls. The popular 10 -speed chart gears and the highcapacity, easy-prime ink handling system proved on the "recti/riter" recorder are standard equipment on the "servo/riter" recorder.
There are four "servo/riter" recorder models to choose from . . . Single Channel, Narrow Grid; Single Channel, Wide Grid; Dual Channel, Narrow Grids; and Dual Channel (overlapping pens), Wide Grid. Write for technical literature and TI engineering assistance in your specific end or OEM use.

The new "servo/riter" recorder is a companion to the proved "recti/riter" recorder.
""servo/riter" is a trademark of Texas Instruments

NEW PRODUCTS
at the ire show
Jacks
For communication equipment

The long-frame Twin-Jax are designed for communication equipment. Two styles are offered: MT388, having a shorting feature that is broken when a two-conductor plug is inserted into either sleeve, and MT-389, with three interconnected conductor jacks. Type MT388 is also known as military type JJ-088. Both models have double width frames with two mounting ears on 1-3 $8-\mathrm{in}$. centers. Bushings are on $5 / 8$-in. centers.

Switcheraft, Inc., Dept. ED, 5555 N. Elston Ave., Chicago 30, Ill. Booth 2827.

Power Resistor

Is rated at 5 w up to 100 C
Type RH-5 subminiature power resistor is rated at 5 w up to 100 C when mounted on a panel measuring $5 \times 7 \times 0.026 \mathrm{in}$. The unit has a freeair rating of 5 w at 25 C . Resistance range is 10 ohms to 20 K with tolerances of $0.05 \%, 0.1 \%, 0.25 \%, 0.5 \%, 1 \%$, and 3%. The operating temperature range is from -55 to +275 C and the temperature coefficient is 0.00002 per deg C. The unit is sealed in silicone and enclosed in an aluminum radiator-finned housing for mounting to a chassis or heat sink. Welded construction is used from terminal to terminal. Impervious to salt spray and moisture, the unit meets MIL-R-18546B.

Dale Products, Inc., Dept. ED, Columbus, Nebr.
Booth 2627-2629.
< CIRCLE 168 ON READER-SERVICE CARD

Zonstant Voltage Relay

Operates from -65 to +85 C
The SV series constant-voltage relay, designed to operate over the emperature range of -65 to +85 C, maintains its pull-in voltage to within $\pm 5 \%$ of nominal. Voltage range is 25 to 200 v dc. The contact rating is 4 amp at 115 v ac or 32 v (lc. The unit stands vibration of 20 g to 2000 cps and shock of 50 g for 11 msec.
Hi-G. Inc., Dept. ED, Bradley Field, Windsor Locks, Conn.
Price \& Availability: The unit is made on order and can be delivered in 30 days.
Booth 2227.

Trimmer

Potentiometers

Rating is 1 w to 90 C
The 1200 series of trimmer potentiometers offers a rating of 1 w at up to 90 C . These 25 -turn units have complete welded construction of all fixed connectors and are sealed for maximum protection against environmental conditions. Temperature range is -65 to +165 C . resistance range is 10 ohms to 50 K , and standard tolerance is 5\%. Dimensions are $1.25 \times 0.28 \times 0.31 \mathrm{in}$. Three terminal configurations are offered.
Dale Products, Inc., Dept. ED, Columbus, Nebr.
Booth 2627-2629.

Sweep Generator

Is flat to $\pm 0.05 \mathrm{db}$
Model 707-1 rf sweep generator provides an output flatness of ± 0.05 db over the highest single octave, 50 to 100 mc . Variable sweep rates are from 60 per sec to one every two minutes. The unit is adaptable for use with an X-Y plotter.
Jerrold Electronics Corp., Industrial Electronics Corp., Dept. ED, 15th \& Lehigh, Philadelphia 32, Pa. Price \& Availability: Available from stock for 30-day delivery, the unit is priced at $\$ 795$.
Booth 3056.
 GENERAL PTLPPOSE

for detailed data, circle reader-service card no. 811

SPECIFY THE LEADING LINE...
Choose from the industry's widest line of axial lead and stud mounted silicon diodes. All units available "off-the-shelf" at your nearest Authorized Industrial Distributor or from Industrial Representatives throughout the world.
international rectifier corporation: el segundo, califonnia - phone oregon s.e281• cable rectuea

C. P. CLARE'S MERCURY-WETTED CONTACT RELAYS PERFECTLY SEALED WITH GLASS-TO-METAL SEALING ALLOY

C. P. Clare \& Company, Chicago, Illinois, produces a complete line of mercury-wetted contact relays characterized by long life, high speed of operation and no contact bounce. To supply relays that have a conservative life expectancy of more than a billion operations requires absolute perfection in all phases of manufacturing. C. P. Clare uses Bishop's \#52 alloy tubing for the critical tubular stems of these relays. Mercury and hydrogen at 150 psig are introduced through this connecting stem - which is then sealed off by welding and forging. Can glass-to-metal sealing alloys solve any of your problems'? Bishop makes a complete line use the coupon for details. (Circle 816 on inquiry card)

TUBING TAKES 5,400 PSI IN HONEYWELL'S MISSILE CHARGING SYSTEM

Super pressure stainless steel tubing connects many components of the cubicles illustrated. Minneapolis-Honeywell's Missile Equipment Division, Pottstown, Penna. builds these control cubicles that make up the gas charging system for the Bomarc missile. Bishop supplies Honeywell with two sizes of 304 seamless super pressure tubing for this application. During charging of the missile, tubing handles pressures up to 5,400 psi. If you use small diameter tubing -super pressure, commercial quality or other-consider Bishop. Use the coupon for a copy of Bishop's Tubular Products Bulletin.

FOR HELPFUL DATA USE THIS HANDY COUPON

Seligeg alleg Data

- Tunten Pravect Bulletin No. 12
\square Smadal Tutien Oata
- Pluymm Prodects Catalog No. 4
- Class-To Metal Check information you'd like and mail to
J. BISHOP \& CO.,

55 King St., Malvern, Penna.
Nome
Position
Company
Address
City

Tubular Products Division
55 King street, malvern, penna. NIagara 4-3100

THIS IS THE BISHOP LINE: Products of all the Platinum Metals... Small diameter Stainless Steel, nickel and special alloy tubing

NEW PRODUCTS at the ire show

L-Band Oscillator

Electronically tunable

Type Z-5405 L-Band oscillator is electronically tunable over the range of 1000 to 2300 mc with a minimum power output of 1 w . The average efficiency over this range is about 20% and power variation is less than 1.5:1. A microwave power source with a dc input-lead and an rf output-connector, the unit weighs 3 lb and does not require air or water cooling. Applications are in radar counter-measure, telemetry, fusing, and other communications systems.

General Electric Co., Dept. ED. Schenectady 5, N.Y.

Booth 2904-2932.

Ball-Bearing Potentiometer

Has 2-in. diam

Type BC - 200 ball-bearing precision potentiometer is a single-turn unit measuring 2 in . in diameter. It has good linearity and low-starting and running torque. Ganging can be accomplished readily with a special drive pin and tension pickup combination. Precise 360 -deg external phasing permits independent rotation of each ganged potentiometer for accurate individual or related adjustment. The unit has a one-piece molded housing and a phenolic envelope.

Dejur-Amsco Corp., Electronics Div., Dept. ED, 45-01 Northern Blvd., Long Island City 1, N.Y. Availability: Units can be delivered in 14 days. Booth 2307-2309.

ELECTRONIC DESIGN • March 16, 1960

WW: D:INE:RY OF EIMENCO

 capacitors In Quantitiles up to 500 Per Item contact these authorized ELMENCO INDUSTRIAL DISTRIBUTORS

CIRCLE 171 ON READER-SERVICE CARD
Ll CTRONIC DESIGN • March 16, 1960

It could happen...

 with Cl-Inenco CAPACITORS!
NEW Malar-Paper Dipted CAPACITORSMPD

INSURE FAILURE-PROOF PERFORMANGE!
Only 1 Failure in $7,168,000$ Unit-Hours for 0.1 MFD Gapacifors
Setting a new standard of reliability!
*Life tests have proved that El-Menco Mylar-Paper Dipped Capacitors - tested at $100^{\circ} \mathrm{C}$ with rated voltage applied have yielded a failure rate of only 1 per 716,800 unit-hours for 1 MFD. Since the number of unit-hours of these capacitors is inversely proportional to the capacitance, 0.1 MFD El-Menco MylarPaper Dipped Capacitors will yield ONLY 1 FAILURE IN 7,168,000 UNIT-HOURS. SUPERIOR FEATURES:

- Five case sizes in working voltages and ranges:

200 wVDC -	.018 10 .5 MFD
400 wVDC -	.008210 .33 MFD
600 wVDC -	.001810 .25 MFD
1000 wVDC -	.001 to .1 MMF
1600 wVDC -	.001 to . 05 MFD

SPECIFICATIONS

- tolerances: $\pm 10 \%$ and $\pm 20 \%$. Closer folerances available on request.
- INSULATION: Durez phenolic resin impregnated.
- LEADS: No. 20 B \& S (.032") anneoled coppor. weld crimped leads for printed circuil application.
- dielectric strength: 2 or $21 / 2$ fimes rated voltage, depending upon working voltage.
- insulation resistance at $25^{\circ} \mathrm{C}$:

For . 05 MFD or loss, 100,000 megohms min imum. Greater than .05 MFD, 5000 megohm-microfarads.

- insulation resistance at $100^{\circ} \mathrm{C}$: For .OSMFD or less, 1400 megohms minimum Grooter than $.05 \mathrm{MFD}, 70 \mathrm{megoh} \mathrm{m}$-microfarads.
- power factor at $25^{\circ} \mathrm{C}$.
1.0% maximum of 1 KC.

Write for Technical Brochure Giving Complete Information on the
El-Menco Tubular Dur-Paper Line.
El-Menco Tubular Dur-Paper Line.
THESE CAPACITORS WILL EXCEED ALL THE ELEC.
TRICAL REQUIREMENTB OF E.I.A. SPECIFICATION
RSSIGA AND MILTARY SPECIFICATIONB UMIL-C-OIA
AND MIL-C-2SA.
FOR FAILURE-PROOF PERFORMANCE: COUNT ON
ELLMENCO MYLAR-PAPER DIPPED CAPACIIOR8 ON
FROM MISEILE GUIDANCE GYSTEMS TO DATA PROC:
ESSING EQUIPMENT!

Blillenco

anemi

THE ELECTRO MOTIVE MFG. CO., INC.

WILLIMANTIC CONNECTICUT

Manufacturess of El.Menco Capacifors

- molded micce dipped mice - mice trimmer - dipped paper - subular poper - coramic - silvered mice Alms - ceramie dises Exelusive Supplier TO Jobbers and Distributors in the U.S. and Canada Arco Electronies, Inc., 64 White St., Now York 13, N. Y.
CIRCLE 172 ON READER-SERVICE CARO

Hermaphroditic Connector
Rack and panel type

Series 8105 micro-miniature hermaphroditic connector is a rack and panel type with highcontact density. Both mating insulators are alike except for their contact numbering. The mating contact area extends 50% above the insulator surface and 50% below it, inside the insulator contact holes. The connector shown has four rows of 8 contacts; spacing between contacts is 0.1 in . and between rows, 0.125 in .
Elco Corp., Dept. ED, M St. Below Erie Ave., Philadelphia 24, Pa.
Booth 1515.

Mixer-Preamplifier Assembly

Range is 10.5 to 12.4 kmc

Operating over the range of 10.5 to 12.4 kmc , Model MMX-3 matched mixer-preamplifier assembly is gain-stabilized and has a $20-\mathrm{mc}$ if bandpass centered at 60 mc . The over-all gain is $25 \mathrm{db} \min$ and the noise figure is 9 db max. Output impedance is 50 ohms. The unit is suitable for gain and noise figure measurements on masers and parametric up-converters in addition to use as a standard sub-assembly for radar or missile receiving systems.
LEL, Inc., Dept. ED, 380 Oak St., Copiague, N.Y.

Price \& Availability: Price is $\$ 995$ ea when one unit is ordered and $\$ 695$ ea for quantities up to 50. It is available from stock for a three to fourweek clelivery.
Booth 2102.

			$\substack{\begin{subarray}{c}{\text { mixs } \\ \text { volts }} }} \\ {\hline} \end{subarray}$	max ampe		$\begin{aligned} & \text { Tranian } \\ & \text { Type } \end{aligned}$	$\underset{\substack{\text { Jomaces }}}{ }$
				$\begin{aligned} & \hline \text { rsurrent } \\ & \text { vant } \end{aligned}$	${ }_{4}$		
0.35		2800	1950	3.25	19.5	280SM	1 N 1113
0.35	1	200	160	3.5	21	2005m	1 11112
0.375		2000	1400	3.75	225	200SM	1 11111
0.4		1600	1120	4	24	160SM	1 11110
0.125		1200	мо	1.85	25.5	120SM	1N110s
6.5		800	550	4.5	27	USM	1 N 1108
0.5		100	π	5	30	10 M	1 N 1081
		200	148	5	30	20 M	1N1082
		300	210	5	30	30M	111083
		400	280	5	38	40M	111084
		400	220	5	30	M. 500	INIOES
		500	350	5	30	50 M	-
		600	128	5	30	S0M	-
		200	148	1.5	75	F-2	1N242
		400	280	75	75	F. 4	1N2433
		500	420	1.5	75	F. 6	1N218
0.75		100	7	15	75	10 H	-
		200	140	7.5	15	2 OH	IN245
	\equiv	300	210	1.5	75	30H	1N215
		400	200	15	万	10 H	1N2487
		500	350	75	15	50H	1N2483
		800	42.	75	历	EOH	1M2609

 include 84 high
efficiency types

Rated at from 0.325 to 250 amps ,

 in complete variety of case designs and terminals
Proved performance, low cost,

 prompt shipment from stockSarkes Tarzian's "Designers' Line" silicon rectifiers offer the small size, high efficiency, mounting versatility, and wide range of ratings that can help solve many of your power conversion circuitry problems. Tarzian's realistic prices make these high quality components practical for almost all commercial and military applications.
The 84 types of Tarzian "Designers' Line" rectifiers feature extremely lowjunction current density to provide maximum reliability and operating life.

Their $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range makes Tarzian silicon rectifiers ideal for circuits where ambient temperatures are high and small size is desired. Ratings range from 0.325 to 250 amperes.

Tarzian types are available for immediate delivery in production quantities from factory or warehouse stocks. Complete power conversion engiñeering service on your rectifier requirements is available at no charge or obligation.

For further information contact your nearest Tarzian sales representative or write to Section 4394B, Semiconductor Division, Sarkes Tarzian, Inc., Bloomington, Indiana.
SARKES TARZIAN, INC. SEMICONDUCTOR DIVISION
BLOOMINGTON, INDIANA
In Cenade: 700 Weston Rd., Toronto 9, Ontario
Export: Ad Aurlema, Inc., Now York City

Ohmmeter
Range extends as low as $10 \mu \mathrm{hms}$

The EMT model 325 ohmmeter has a range extending down to $10 \mu \mathrm{ohms}$ and an upper limit of 3000 milliohms. It reads directly the internal resistance of storage and primary batteries with and without load; it can also be used to measure switch contacts, breakers, and very low resistance busses. The range of the instrument is divided into nine sub-ranges. The test frequency is 50 to 60 cps . Connection of the test sample is performed by clips. The instrument is manufactured in Germany.
Electronic Applications, Inc., Dept. ED, 194 Richmond Hill Ave., Stamford, Conn.
Price \& Availability: Price is $\$ 399$. Delivery is in 60 days.
Booth 3929.

High Impedance Comparator
Frequency range is 400 cps to 10 kc

Model B-921 high impedance comparator has an adjustable voltage ratio of $0.333: 1$ to $3: 1$ and a frequency range of 400 cps to 10 kc . A threeterminal bridge, the instrument has an R-trim of -200 to +800 ohms. Accuracy is 0.001%. A bat-tery-operated preamplifier is incorporated in the unit; a source and a selective amplifier-detector are also necessary for operation.
Wayne Kerr Corp., Dept. ED, 1633 Race St., Philadelphia 3, Pa.
Price d Availability: Price is $\$ 1350$ fob Philadelphia. Delivery is in four to six weeks.
Booth 3827-3829.

"A N D

HAVING WRIT,

Who stands still, falls behind. Fairchild Semiconductor Corporation is devoting considerable effort to building the lead it has achieved in advanced silicon semiconductor devices. We are not unique in our technological abilities; we do have a head start. It is an opportunity and a challenge based in Time.
Other manufacturers will duplicate our currently unique transistors. By then, our projects now in Research \& Development will have become the advanced products of their own time and the challenge continues. Success is followed by greater successes
...or obsolescence.

MOVESON*"

Our facilities and working atmosphere have attracted engineers and scientists of the highest caliber. Their work, combined with creatively oriented management policies and the abilities of the entire staff, has resulted in a whole series of product innovations.
We are still moving on in transistors, and have now branched into diodes of similarly advanced technologies. Current programs include integrated solid-state circuitry and investigations of semiconductor films and III-V compounds. If yours is a relevant background, and if you would like to move ahead with us, we would very much like to hear from you.

545 WHISMAN RD. / MOUNTAIN VIEW, CALIF. i' YORKSHIRE 8-816

NEW PRODUCTS

AT THE IRE SHOW

Jacks

Made of nylon

38

These banana jacks are made tough, low-loss nylon. Having a wid temperature and humidity rang they are made for mounting in $5 / 1$ in. holes in panels up to 5/16 thick. The contacts are cadmin plated brass.

Herman H. Smith, Inc., Dep ED, 2326 Nostrand Ave., Brookly 10, N.Y.
Price \& Availability: They available from stock at the price
$\$ 20$ per $1(0)$.
Booth 2325.

Laminates

Can be used at 500 F
Made for electronic application these laminates are specially d signed for high temperature us Type ARF-HT asbestos mat pla tic, having a flexural strength $35,(000 \mathrm{psi}$ lengthwise and 25.00 psi crosswise, retains 40% of orig nal flexural strength after a 100 hr exposure to 500 F . Type G3-HT glass fabric plastic, having a fle ural strength of $60,000 \mathrm{psi}$ length wise and $50,0(0) \mathrm{K}) \mathrm{psi}$ crosswise, als retains 40% of flexural strength aft 1000 hr at $5(0) \mathrm{F}$. Standard shee are $36 \times 36 \mathrm{in}$. and $36 \times 72 \mathrm{in}$. Typ AlRF-HT is 0.0 .31 to 2 in . thick ant type G.3-HT is 0.01 to 2 in . thick.
Synthane Corp., Dept. El Oaks, Pa.
Booth 4521-4523.
< CIRCLE 900 ON CAREER FORM, P. 317

Lop er-Pin Connectors 370
Are zinc die cast
Th, se zinc, die-cast taper-pin urs are suitable for a variety d tape recorders. Various designs dude: double receptacles which ow connections to be made from her end, parts cast with predemined breaking points to enable b with any combination wiring heme, and parts cast with rivet Gries Reproducer Corp., Dept. D, 125 Beechwood Ave., New chelle, N.Y. oth 4110.
tating-Coil ussmeter

Accuracy is 0.1%

This rotating-coil gaussmeter asures de magnetic fields to an uracy of 0.1%. It reads 0 to 10 ,gausses with a resolution of ± 1 poss. Instead of measuring the tage generated by the rotating , the instrument compares this inst the output of a reference ac perator mounted on the same tor shaft.
Pawson Elecetrical Instrument Co., , Dept. ED, Cambridge, Mass. oth 3313.

Preamplifier

Bandwidth is $\mathbf{2 0} \mathrm{mc}$
esigned for use in missile, space, tclemetry applications, model if transistorized preamplifier has andwidth of 20 mc centered at me. It can be used with microe receiver mixers having an if cre impedance of 300 ohms and 41 . The noise figure is better +25 db .
EI, Inc., Dept. ED, 380 Oak St., ia ne, N.Y.
e Availability: Available for eck delivery, the unit is (i) at $\$ 270$ ca. Quantity disht: are available.

Precision Is The Standard At Coors

Tube Envelopes
Coors makes high strength ceramic envelopes to extremely close dimensional tolerances and in a wide range of sizes for use in modern electron tubes. Certain of the Coors ceramic compositions were developed specifically to meet the rigorous operating conditions and reliability requirements to which high power, high frequency tubes are subjected.

Illustrated here is one of the miniature ceramic envelopes in regular production. Coors regularly produces many other sizes up to $10^{\prime \prime}$ O.D. Larger sizes can be manufactured.

Coors ceramics have outstanding electrical and physical characteristics. These properties are not affected by high outgassing or high operating temperatures.

At the IRE Show!

Coors Beryllium Oxide Ceramic
Coors is now in regular production of beryllium oxide ceramic. This new ceramic material has outstanding refractory and nuclear properties. It has better resistance to thermal shock than most other ceramic materials and conducts heat better than any other ceramic material. A good electrical insulator at elevated temperatures, these components are meeting the many advanced needs of the clectronic industry. See this Coors ceramic material at the IRE Show or write for new data. Booth 4005-6

Micro-Module Wafers

The hottest news in extreme miniaturization of electronic equipment is the micro-module-an amazingly small combination of sub-miniature electronic circuit components. The fundamental unit of a micromodule is the high alumina ceramic base plate-a tiny ceramic wafer, approximately $0.300^{\prime \prime}$ square $\times 0.010^{\prime \prime}$ thick. Upon this is deposited or metalized a component of a circuit-a resistor, capacitor, transistor, diode, etc. The micro-module is a combination of several of these elements in a small space to serve a specific circuit function-amplifier, oscillator, etc.

Coors is manufacturing these precision wafers in large quantity production runs for several manufacturers working on the same project. Coors holds all dimensions of the tiny ceramic wafer to extremely close tolerances so that the micro-elements produced from them are entirely interchangeable from manufacturer to manufacturer .

Standard Terminal Insulators

Coors furnishes standard terminal insulatorsavailable from stock-in various ratings and, also, can manufacture custom made insulators to meet your specific requirements. In the range of standard sizes, metal parts are bonded to the ceramic by Coors High Temperature Metalizing Techniques, thus producing strong hermetic ceramic-to-metal seals. The result is standard terminal insulators available for a wide range of requirements-insulators that have superior electrical and mechanical characteristics. Production is on a large quantity basis - you do not pay a premium for high quality, precision terminals.

Pulse Modulators
Pulse width range is \mathbf{I} to $\mathbf{I} 5 \mu \mathrm{sec}$

Model 330 12-mw pulse modulator provides a continuously adjustable pulse width range of 1 to $15 \mu \mathrm{sec}$ at repetition rates of 100 to 1000 pps . Pulse energy to the primary of the pulse transformer is 20 kw peak at 600 amp . Maximum average power delivered is 24 kw . The equipment includes monitoring circuits for observing both output pulse and current, as well as meters for all pertinent ac and dc voltages and currents. A lowcapacity filament supply is used for the tube under test. Line power needed is 208 v , three phase.
Manson Laboratories, Inc., Dept. ED, P.O. Box 1214, Stamford, Conn
Price \& Availability: Price is quoted on request; delivery is in 90 to 100 days.
Booth 3923.

Connector
390

The MTC series of multi-terminal connectors offers $40,60,80$, and 100 -pin sizes. They are designed for mounting such components as transistors, diodes, and condensers. Features include: easy locking bolt for securing the plug to the receptacle, easily removable cover, zinc-chromate finish on all hardware, and solder or taper tab terminals.
North Electric Co., Electronetics Div., Dept. ED, 553 S. Market St., Galion, Ohio.
Price \& Availability: Price is $\$ 7$ to $\$ 8$. Units will be available from stock in April, 1960. Delivery is in 30 days.
Booth 2125.
Don't forget to mail your renewal form to continue receiving ELECTRONIC DESIGN

ENGINEERED

 COMPONENTS for the Electronic Industry
WHERE RELIABILITY IS CRITICAL

1. Chemelec* Stand-Off and Foe tor Insulators are easy to install, res stan to heat and breakage, and-abc ve -reliable under severest concitio .. ideal for critical electronic circt such as missile guidance, fire cont tracking, radar systems. Teflcn ${ }^{\circ \prime}$ due to its excellent dielectric, me he cal and thermal properties-is used the insulator body. And, Cheme Compression-Mounted Stand-Otf a Feed Thru Insulators are designed easy installation. You simply pr them into pre-drilled holes; they come self-fastening, requiring no ad tional hardware or adjustment. Av able in compression-mounted, met base, miniature and sub-miniat types . . . standard R.M.A. colors wide range of sizes and terminal desi 2. Chemelec Sub-miniafure Tube Transistor Sockets have body insul ing material of Teflon; contact ma rial of brass, silver-plated and 8 flashed. Capacitance pin to pin MMF-pin to $\frac{1}{16}$ " Chassis .7M1 Chassis retention 50 lbs min . in panel. Contact retention 4 oz . per
2. Chemelec Connectors are Te insulated for outstanding high quency service. Once installed, t require no further adjustment hardware. . $040, .050, .064$ pin female also in 080 size.
3. Plastic Stock Shapes and Intricate P inserts, thin sections, threaded p to precision tolerances are availa Excellent facilities and experience compression and injection moldi extruding, machining of Tefl Nylon, Delrin**, Kel-F \dagger or ot industrial plastics.
Garlock facilities and personnel are your disposal for design and deve ment of new electronic products.

G A R L
 ELECTRONIC PRODUCTS

VISIT US AT THE IRE SHOW - BOOTHS NO. 2814 and 2816

Garlock mainfains complefe electn chemical, and physical laborato staffed by top-flight research development engineers.

Find ouf more about what Gat offers. Contact the Garlock Electri Products representative near you. him, or write for Catalog ADGarlock Electronic Products, Garlock Packing Company, Cam 1, New Jersey.
*Registered Trademark **DuPont Trademart -Registered Trademark
tTrademark, Minnesola Mining \& Mont Trademark

[^8]NEW PRODUCTS at the ire show
Power Supplies
Have outputs of 0 to 18 v up to 0 to 100 v

Operating from an input of 100 to 135 v ac, 60 cps , single phase, the ST series of power supplies has a line regulation of 0.005% of maximum rated voltages. The Units have the following load regulation: for 0 to $18 \mathrm{v}, 0.05 \%$; for 0 to 36 v , 0.03%; for 0 to $60 \mathrm{v}, 0.02 \%$; and for 0 to 100 v , 0.01%. The output is continuously variable down to 100 mv . Ripple is less than 500 mv rms and overshoot is less than 1\%. Recovery time is 50 $\mu \mathrm{sec}$. Units are made for rack mounting.

Mid-Eastern Electronics, Inc., Dept. ED, 32 Commerce St., Springfield, N.J.
Availability: From stock to three weeks. Booth 3009.

AC Voltage Standard 496

Output is 1 to 501 vac rms

Model 601A voltage standard has an output of 1 to 501 v ac rms , adjustable in $10-\mathrm{v}$ steps. Power output capability is 5 amp up to 5 v and 25 w above 5 v . Frequencies of 60, 400, and 1000 cps can be selected by front panel control. Voltage accuracy is 0.1% or $\pm 5 \mathrm{mv}$ and short term voltage stability is 0.01%. Frequency stability is 1% and harmonic distortion is less than 0.3%. The output impedance with a constant resistive load is about 0.01 ohms, which is essentially the resistance of the output terminals. The unit measures 19×12.25 x 18 in .

Kin Tel, Div. of Cohu Electronics, Inc., Dept. ED, 5725 Kearny Villa Road, Box 623, San Diego 12, Calif.
Booth 3613-3615-3617.

When it comes to SEMICONDUCTOR':

For the most complete line of semiconductors...

- Westinghouse has perfected the widest selection of rectifiers, transistors, and special semiconductor devices available in the industry. In Silicon power rectifiers, Westinghouse is the acknowledged leader in the field.

For the most dependable semiconductor devices...

- Every Westinghouse semiconductor device has been carefully designed, manufactured, and thoroughly tested to assure long life, high reliability, and excellent stability

For true voltage ratings in silicon power transistors...

> - Only Westinghouse 2N1015 and 2N1016 silicon power transistors offer true voltage ratings, guaranteed by 100% power testing-means they may be operated continuously at the V_{CE} listed provided the power dissipation of the transistor is not exceeded. Other conventional power transistors derate the $\mathrm{V}_{\text {CE }}$ voltage under comparable conditions.

For new and unusual ideas in semiconductors...

- Westinghouse is constantly pioneering in exciting new semiconductor devices. Among the latest: a new 50 ampere "TRINISTOR" controlled rectifier; new thermoelectric cooling devices; an extremely rapid and sensitive infrared detector

For quality, reliability, performance, and availability...

See Westinghouse Semiconductors at the IRE Show
March 21 to 24
Booth 1408

Come to Westinghouse! For mor information call your Westinghouse representative or write directly to Westinghouse Electric Corp., Semiconductor Department, Youngwood, P_{2}
-Westinghouse Trademark

The types listed are just a small sampling of the complete line which can be supplied in volume quantities for prompt deliveries.

Pulse Generator

Range is 20 cps to 2 mc

Model B-7 pulse generator has a frequency range of 20 cps to 2 mc . Delay is from 0 to 10,000 $\mu \mathrm{sec}$, pulse width is 0.05 to $10,000 \mu \mathrm{sec}$, and amplitude is 50 v into 50 ohms. Rise and fall time is better than $15 \mathrm{~m} \mu \mathrm{sec}$. The normal duty factor of 30% can be increased with a reduction in amplitude so that the instrument does not fan out. Attenuation is 50 db in $10-\mathrm{db}$ steps or $20-\mathrm{db}$ continuous, positive or negative pulses. A minimum external triggering of $\pm 10 \mathrm{v}$ is required. The synchronous output is $0.05 \mu \mathrm{sec}$ wide and has an amplitude of 10 v ; time lag is $0.2 \mu \mathrm{sec}$. The unit measures $19 \times 8-3 / 4 \times 12 \mathrm{in}$.
Rutherford Electronics Co., Dept. ED, 8944 Lindblade St., Culver City, Calif.
Price \& Availability: Price is $\$ 720$; the unit is available from stock and can be delivered in 21 days.
Booth 3834.

Silver Cadmium Battery
Weighs 1.4402.

Model 8YSOl silver cadmium battery weighs only 1.44 oz and has a volume of 1.36 cu . in. A $9-\mathrm{v}$ battery, it is made up of 8 cells having a 0.1 amp-hr nominal capacity and supplies power for continuous operation for 12 to 15 hr before recharging if necessary.
Yardney Electric Corp., Dept. ED, 40-50 Leonard St., New York, N.Y.
Availability: The unit is made on order.
Booth 2127.

194 styles in stock for immediate delivery

For that precision engineered look-specify Raytheon knobs

You'll see Raytheon control knobs on the finest precision instrument panels everywhere. There are nine types in six sizes - tactile shapes, color and color caps - plus hundreds of modifications on special order. All standard knobs are available in either high-gloss mirror or non-reflective matte finish. All conform to MS91528A; tactile shapes to Navy drawing

RE10F651A.
... SEND TODAY FOR FACT. FILLED FOLDER on Raytheon control knobs, electrical components and panel hardware. Address Raytheon Company, Department 6836E, Newton, Massachusetts.

RAYTHEON COMPANY
induatrial Componente Division ind Chapel streot, Nowton, Mass.

NEW PRODUCTS
AT THE IRE SHOW
Frequency Decades
Measure up to 300 mc

The Schomandl type FAPR frequency decades provide for drift and other parameter measurements of frequencies up to 300 mc . They have decade intervals down to 1 cycle. Accuracy is 2×10^{-12} at one-cycle intervals. Applications include: development of circuit elements, type and series testing of quartz crystals, temperature compensation of oscillating circuits, and continuous monitoring of transmitter frequencies.
Electronic Applications, Inc., Dept. ED. 194 Richmond Hill Ave., Stamford, Conn.
Price \& Availability: Price is $\$ 6099$; delivery is in 75 days.
Booth 3929.

AC Power Supply

Provides 250 v

Model 250 power supply delivers 250 v ac at $400 \mathrm{cps} \pm 0.25 \%$ or at a variable frequency from 350 to 450 cps. An input jack is provided for output frequencies from 50 to 4000 cps. Output voltage is continuously variable from 0 to 120 v . Output distortion is less than 1% and regulation from no-load to full-load is better than 1%. The use of silicon diodes in the plate-supply circuit reduces the heat dissipated. Panel size is 19 x $8-3 / 4 \times 13-1 / 2 \mathrm{in}$.

Industrial Test Equipment Co., Dept. ED, 55 E. 11th St., New York, N.Y.

Booth 3513.

Laboratory Receiver 473

Incorporates high gain amplifier
Model LR 1297 laboratory receiver combines a high-gain if amplifier, a precision attenuator, a power supply, and an indicator. I is suitable for noise figure measurements, nuclear resonance work, antenna pattern recording, and other design applications. Used with the firm's mixer-preamplifier assembly the unit will provide a microwave receiver operating from bands I through \mathbf{K}.
LEL, Inc., Dept. ED. 380 Oak St., Copiague, N.Y.
Price \& Availability: Price is $\$ 2200$. Delivery is in 30 to 60 days. Booth 2102.

Coil Winding Machine 476

Handles wires from 0.025 to

 0.065 in. in diamModel ME-301 coil winding machine handles wires ranging in size from 0.025 to 0.065 in . in diam or from No. 22 to 14 AWG. This high speed device is claimed to perform perfect thread layer winding.

Associated American Winding Machinery, Inc., Dept. ED, 750 St. Ann's Ave., New York 56, N.Y. Price \& Availability: Unit is available from stock. Price is $\$ 57.5$ ea. Booth 4228-4230.

Component Kits

For development work

The Ferroxkits are made for developmental work requiring ferrite magnetic cores, voltage dependent resistors, negative temperature coefficient or light dependent resistors, and memory cores, planes, or stacks. The kits are composed of standard, off-the-shelf parts and contain complete technical data

Ferroxcube Corp. of America, Dept. ED, Saugerties, N.Y.
Price \& Availability: Price ranges from $\$ 10$ to $\$ 395$. Kits are available for immediate delivery.
Booth 2530.

Tung-Sol transistors handle four major jobs in Beckman/Berkeley peak accuracy frequency counte

The Beckman/Berkeley Model 5310 quency counting. The tasks of conversion EPUT Meter makes frequency measure- and current amplification for digital readments from 10 cps to 200 kc with an out are assigned to Tung-Sol's 2 N 383 accuracy of up to 1 part in 10^{6} In miliary aplications, such as missite miliout, where operating time is brief but success "a must", the EPUT Meter "gets in and gets out" quickly with fire-away data. Where long-term service with minimum downtime is a critical requirement, as in industrial monitoring processes, the equipment is also ideally suited
Naturally, this exacting combination of highest accuracy and greatest dependability demands the most reliable component performance. And that's precisely why Beckman/Berkeley chose Tung-So transistors to assume four of the unit's primary operations. Tung-Sol's 2 N414 high speed computer logic germanium ransistors handle time division and fre
medium power germanium transistors.

Why don't you get the benefit of Tung-Sol's component know-how too? Whether it's tubes or semiconductors and there's a premium Tung-Sol unit for virtually every military and industrial need - you'll be designing only the best components into your circuit. You'll be getting quality units that have made the name of Tung-Sol synonymous with the finest componentry. Tung-Sol Electric Inc., Newark 4, N. J. TWX:NK 193.
For prompt and competent technical consultation on Tung-Sol components call the Tung-Sol Atlanta, Ga. Columbus, Ohio: Culver City, Calif., Dallas, Texas: Denver, Colo.: Detroit, Mich.; Irvington. N J.: Melrose Park, Ill.: Newark, N. J.: Philadelphia, Pa.: Seattle, Wash. Canada: Montreal, P. Q

NEW PRODUCTS at the ire show

Voltmeter

Measures 1 mv to 1000 vac and dc

Type R-2 voltmeter measures ac and dc voltages from 1 mv to 1000 v full scale in 14 ranges and mid-scale resistances from 10 ohms to 10 meg in 7 decade ranges. Accuracy is better than 1% on dc; ac accuracy is better than 2% from 20 cps to 100 kc and 5% from 10 cps to 1 mc . Residual noise is less than 20 mv on the $1-\mathrm{mv}$ ac scale. The dc mv drift is less than $50 \mu \mathrm{v}$ after warm-up.
Southwestern Industrial Electronics Co., Dept. ED, 10201 Westheimer Road, P.O. Box 13058, Houston 19, Tex.
Price \& Availability: Unit is available from stock at the price of $\$ 550$.
Booth 3307-3309.

Bridge

For capacitor checking to $100,000 \mu \mathrm{f}$

The Model EMT 543 bridge allows for electrolytic capacitor checking up to $100,000 \mu$. Accuracy is $\pm 1 \%$ to $1000 \mu \mathrm{f}$ and $\pm 2 \%$ above 1000μ f. The unit has five ranges. The measuring voltage is 0.3 v ac or less. Capacity and loss angle are read directly. The measurement is normally made at 50 or 60 cps . The unit is manufactured in Germany.

Electronic Applications, Inc., Dept. ED, 194 Richmond Hill Ave., Stamford, Conn.
Price \& Availability: Price is $\$ 789$. Delivery can be made in 60 days.
Booth 3929.

FAIRCHILD
SENSING
DEVICES
PROVEN
IN
FLIGHT

THIS ASTRONAUT WILL BREATHE THANKS TO FAIRCHILD PRESSURE TRANSDUCERS

At the heart of the Capsule Pressurization System, built by Garrett Corporation's AiResearch Division for the McDonnell Aircraft Corporation - as part of NASA'S Project Mercury Space Vehicle - is a miniature ($1.75^{\prime \prime}$ Diameter) FAIRCHILD TPH-175 PRESSURE TRANSDUCER. It monitors the pressure of oxygen remaining in the storage tank under the most severe environmental conditions.
A dual output transducer: One output goes to the astronaut's control panel, reassures him that plenty of oxygen is still available. The second output goes to the telemetering system for relay to ground control stations.
Another example of how Fairchild draws on the engineering skills that make them the foremost manufacturer of high-performance precision sensing devices.
Fairchild components ... built and tested beyond the specs for Reliability in Performance. Write Depi. 38:D.

SUB-MINIATURE RATE gYROS $15 / 16^{\prime \prime}$ dia. by $2^{\prime \prime}$ long. Has uni$15 / 16^{n}$ dia. by $2^{n \prime}$ long. Has uni-
form constant damping within $\pm 15 \%$ from -40° to $0+200^{\circ} \mathrm{F}$. Takes 150 g's of shock, at low maximum rates.
aCCELEROMETERS Economical, pendulous accelero. meter with torsion bar suspension and reliable pot pick-off. Accuracy values as low as $\pm 1 / 2 \%$. Acceleration range from $\pm 1 / 4$ to $\pm 50 \mathrm{G}$ from 4.40 cps .

PRECISION POTENTIOMETERS The linear motion single turn type
shown is one shown is one of many high
reliability types available. Also multi-turns types and special designs. Also Functional accuracy over life is suaranteed.

NEW PRODUCTS at the ire show
Airborne Tape Recorder
Has 28 channels

GUDELACE
 is engineered
 for
 problem-free lacing

Model 1-119 airborne tape recorder, having 28 channels, is cylindrical in form with a diameter of 6.25 in . and a length of 6.5 in . The unit weighs 10 lb . It is for data recording on recoverable missiles, satellites, and rocket sleds, but also has applications on conventional aircraft. Tape speed is 30 in . per sec. Frequency response is dc to 5000 cps and system accuracy is about 5%. Power requirement is 3 amp dc at 28 v .

Leach Corp., Special Products Div., Dept. ED, 516 E. Compton Blvd., Compton, Calif. Booth 4052.

DC Power Supply
Provides 130 to 325 v

Operating from an input of 105 to 125 ± 10 v ac, model PS4232 power supply delivers 130 to 325 v dc. For general purpose use, the unit has a load current of 0 to 1.5 amp , regulation of 0.2 v or less, and stabilization of less than ± 0.2 for a line change of $\pm 10 \mathrm{v}$ with a constant load. Ripple and noise are less than 2 mv mms . Output impedance is less than 0.2 ohms from dc to 100 kc . Maximum ambient temperature is 50 C . The unit weighs 50 lb , measures $5.25 \times 17 \times 12 \mathrm{in}$., and has movable side brackets which permit rack mounting.
Power Sources, Inc., Dept. ED, Burlington, Mass.
Price \& Availability: Sample quantities are currently available; units will be available from stock by April 15, 1960. Price is \$645, not including meters.
Booth 1914.

352

It's no accident that Gudelace is the best lacing tape you can buy. Excellence is engineered into Gudelace. A sturdy nylon mesh is meticulously combined with the optimum amount of special microcrystalline wax. Careful selection of raw materials and superior methods of combining them give Gudelace outstanding strength, toughness, and stability. Gudelace is the original flat lacing tape which distributes stress evenly over a wide area. It is engineered to stay flat; it will not stretch out of shape when pulled. Gudelace's nonskid surface prevents slipping, eliminating the too-tight pull that causes strangulation and cold flow. Durability and dependability make Gudelace your most economic buywith no cut insulation, fingers, or feelings. Write for Data Book with specifications on Gudelace and Gudebrod's complete line of braided lacing tapes and dial cords-Temp-Lace, Stur-D-Lace, and Gude-Glass.

Visit Gudebrod Booth 4025 at the IRE Show.

GUDEBROD
 BROS. SILK CO., INC.

225 West Electronic Division
225 West 34 th Street, New York I, N.Y.
Executive Offices
12 South 12th Street, Philadelphia 7, Pa.

Fabricator

Punches sheet metal parts and printed circuit boards
For punching sheet metal parts and printed circuit boards, the Super 30 fabricator can be used for short run punching and production runs. The machine uses an electric head which eliminates the need for pressurized air. It can punch holes from 0.5 in . in diam in 0.25 in . mild steel to 3.5 in . in diam in 16 gage steel. It can also make corner and edge notching, straight line nibbling, and contour shearing.

Wales Strippit, Inc., Dept. ED, Akron, N.Y.
Price \& Availability: Prices range from $\$ 9000$ to $\$ 10,000$; the unit will he available from stock after April 30, 1960.
Booth 4010.

Transistorized Mixer-Preamplifier

 471Range is 8.5 to 9.6 kmc
Model MMX-4 transistorized mixer-preamplifier assembly covers the range of 8.5 to 9.6 kmc . The unit has a $15-\mathrm{mc}$ bandwidth centered at $60-\mathrm{mc}$ output frequency, a 20 -db over-all gain, and an over-all noise figure of 10 db . Used with the firm's if amplifiers, the unit permits the production of solid state microwave receivers.
L.EL, Inc., Dept. ED, 380 Oak St., Copiague, N.Y.
Price \& Availability: Sample quantities are available for 30-day delivery. Price is $\$ 995$ ea.
Booth 2102.

Epoxy Casting Resin

May be cured at room temperature
This fire-retardant epoxy casting resin, called Stycast 1231, may be cured at room temperature and is stable from -100 to +350 F . It has a low-thermal-coefficient of expansion. The material has good adhesion to metals, plastics, and ceramics.
Emerson \& Cuming, Inc., Dept. ED, Canton, Mass.
Booth 1111.
CIRCLE 182 ON READER-SERVICE CARD $>$

Large, small,
regular or irregular...
designers depend on

PROTOTYPE OR PRODUCTION PARTS

Figure on KAUPP
for Precision
Components of -

- MU METAL
- BRASS
- INCONEL
- ALUMINUM
- copper
- CARBON STEEL
- STAINLESS STEEL
- NICKEL
- MAGNESIUM
- TITANIUM
- SILVER
- SPECIAL ALLOYS machines, plus experienced metal-working engineers, assure metal components of the highest accuracy. KAUPP craftsmen can work to closest tolerances and are thoroughly familiar with the problems involved in fabricating today's modern metals for the most critical applications. Highest inspection standards insure rigid adherence to specifications on instrument cases, covers, weldments and sub-assemblies for commercial and military electronics.

Precision formed by hydroforming, deep drawing or spinning

- HAYNES STELLITE

Requast e copy of the
KAUPP Facilitios Bro.
KAUPP Facilltios Bro chure or recommendetions on your spec
metal components.

C. B.
 KAUPP

\& SONS
NEWARK WAY MAPLEWOOD, N. J. Tol. SOuth Orange 3.2490

COMPACT, RELIABLE, VERSATILE . . . this is P\&B's miniature MH relay

The MH is not a new relay.
As a matter of fact, we've been building and selling this series for seven or eight years. Its reliability and exceptional longevity have been proved in business machines, airborne computers and a host of other products.
Engineers like its fast action, its small size, its light weight. They like the wide selection of contact forms . . . up to 18 springs (9 per stack, DC) as well as the fact MH relays can be furnished to switch loads ranging from dry circuit to over 5 amps at 115 volts, 60 cycle resistive.
A multiple choice of terminations add to the MH's versatility. This relay, for example, can be adapted for printed circuits, furnished with taper tabs or a long list of other terminals. Get all the facts by calling your nearest $P_{\&} B$ sales engineer today.
mh enginering data

GENERAL:
Broakdown Vollage: 500 voltr
 on speciol order.)
Shock: 309 on special ordor.
 Cpsi; 0.065° max. ox currions fiom Woight: $21 / 2$ oz3. max. (open rolay)

 contacts:
Arangements: Up to
per slock.

Material: $1 / 1 /$ silver slandard: Palla-
dium or gold alloy also ovailable. Load: Dry circuirs to 5 amps (ii) COILS:
Resislance: 22,000 ohms max.
Power: 100 mw per movable min.
to 4 watts of $25^{\circ} \mathrm{C}$ max. 1200 mw min. to meet max. shock/vibration
spec)
Dury: DC.
Dury: DC: Continuous. AC, Inter-
miftent (Two pole relay max.) mitent (wo pole reloy max.)
opon. Soalod units supplied with
full wove rectifier inside con. full wave rectifier inside con. Voltages: $D C$: Up io 110 volts.
$A C$: $U p$ to 230 volts 80 cycles.

P\&B STANDARD RELAYS ARE AVAILABLE AT YOUR LOCAL ELECTRONIC PARTS DISTRIBUTOR

POTTER E BRUMFIELD
DIVISION OF AMERICAN MACHINE \& FOUNDRY COMPANY, PRINCETON, INDIANA IN CANADA: POTTER \& BRUMFIELD CANADA LTD., GUELPH, ONTARIO

Printed Circuit
 Resistors

Come in sizes of 2, 5, 7, and 10 w
The PRS series of wirewound orinted circuit resistors come in sizes of $2,5,7$, and 10 w . Measuring from $1 / 4 \times 5 / 8 \mathrm{in}$. to $3 / 8 \times 1-25 / 32$ in., these vertically mounted units have two parallel leads at one end to facilitate soldering. The temperature coefficient is 0.00002 per deg C. The resistance range is 10 ohms to 175 K with tolerances of 0.05%, $0.1 \%, 0.25 \%, 0.5 \%, 1 \%$ and 3%. The units meet MIL-R-26C
Dale Products, Inc., Dept. ED, Columbus, Nebr.
Booth 2627-2629.

Slide Switches

Are rated at 0.5 amp at 125 vdc
These slide switches are rated at 0.5 amp at 125 v dc and 3 amp at 125 v ac. Both spdt and dpdt types are offered; some have spring return design. Designated types SLS-1 through SLS-6, they are designed for long service and show no loss in efficiency after 6000 cycles. Contacts are silver plated.
Industrial Electronic Hardware Corp., Dept. ED, 109 Prince St., New York 12, N.Y.
Price \& Availability: Units are made on order and can be delivered in two to three weeks. Prices are furnished on request.
Booth 2837.

Single-Turn Potentiometers

 474
Life is $1,000,000$ cycles

Series 500 single-turn potentiometers, able to operate to 105 C , have a life of $1,000,000$ cycles. The units are of all metal construction and have glass-to-metal terminals. Applicitions are in computers, servo loop systems, and standard industrial applications where high, operating t mperatures are not needed.
Kintronic Division of Chicago arial Industries, Inc., Dept. ED, I anklin Park, Ill.
I soth M-23.

CIRCLE 184 ON READER-SERVICE CARD \rightarrow

In stock! For immediate delivery! And produced by National!... a complete line of standard plastic control knobs made in conformance with MS-91528. There are four basic types: round, pointer, spinner (each with or without skirts) and dial skirted round
available in three different shaft sizes. Finishes are gloss, matte, or to your color specifications . . . in all Mil-Spec sizes.

Buntow browne/jew York
 IRE Show - Booths 1401-1407

Knobs: Made of plastic, type III, class H2, per Specification L-P-349. Set Screws: Cadmium plated, class 3, type II, per Specification QQ-P-416. Inserts: Brass, composition 4, hard, per Specification QQ-B-613.

For price quotations and complete information write:

[^9]
NEW PRODUCTS

at the IRE SHOW

Environmental
 Chamber

Temperature range is -90 to +300 F

Type RAC 19 environmental chamber has a temperature range of +300 to -90 F , with -100 F attainable. Offering 2.3 cu ft of test space and measuring $16 \times 16 \times 16$ in. inside, the chamber requires a floor space of $24 \times 26 \mathrm{in}$. The unit is caster mounted and is portable. It operates on $2: 20 \mathrm{v}$, single phase, 60 cps .
Conrad, Inc., Dept. ED, Holland, Mich.
Price d Availability: Price is \$1760, not including accessory items. Units are available from stock.
Booth 3848.

Antenna Systems

For 2 and 6-kmc bands

Type P4-59 cross-polarized parabolic antenna is for 2 and 6 -kmc band use. It has a vswr of less than $1.1 \cdot v$ at both inputs. Accessories are made for use with this antenna.
Andrew Corp., Dept. ED, 363 E. 75th St., Chicago 19, Ill.
Booth 1502-1504.

Microwave Antenna

Uses simplified reflector design
For use from 400 to 2700 mc , the Hubloc antenna uses a simplified reflector design. The reflector backup frame consists of tubular, bar, or

Here is Francis Alterman, Manager of General Mills Digital Computer Laboratory, ohecking one of our newest oomputers which he helped design. General Mills computers, both analog and digital, are being used in missile
guidance, bombing and navigation systems, automatio surveying and in industrial control. In future space travel, computers will help control navigational systems of space vehicles and will process data gathered in outer space.

General Mills engineers work today

General Mills has been producing computers for nearly 20 years. Exciting new concepts in high speed magnetic tape units, ultra-high precision analog to digital converters and optical keyboards are examples of continuous developments in our over-all computer program. We work to improve reliability, increase speed, cut cost.
Our research activities cover broad areas in physics, chemistry, mechanics, electronics
and mathematics. Some of the studies representative of these activities are: ions in vacuum, deuterium sputtering, dust erosion, magnetic materials, stress measurements, surface friction and phenomena, trajectory data and infrared surveillance.
In our engineering department, current projects include: specialized inflatable vehicles and structures, airborne early warning systems, micro wave radar test equipment

to help you explore space \qquad

STOP AT GENERAL MILLS EXHIBIT BOOTHS 3937, 3939 IRE SHOW
New Concepts in Computers
New York Coliseum
March 21-24, 1960
strap type structural elements and connecting hubs. The hubs have a number of formed keyways; the structural member ends are embossed with a corresponding pattern which provides a press fit in the hub keyways. The reflector measures 28 ft in diam, has a focal length of $10-1 / 2 \mathrm{ft}$, and weighs 1575 lb . Rib sections are completely fabricated; only peripheral and diagonal members are installed at the site. various wind and ice loading conditions can be accommodated.

Andrew Corp., Dept. ED, 363 E. 75th St., Chicago 19, Ill.
Price \& Availability: The product is built to customer specifications and price is furnished on request. It can be delivered in 90 to 120 days.
Booth 1502-1504.

Transistor Transformers

Meet Mil-T-27A
These miniature, molded, transistor transformers are designed to meet MIL-T-27A and have a life of $10,000 \mathrm{hr}$. They measure 0.5 in . in diameter and are $0.5-\mathrm{in}$ high. Weight is 4 g . Primary impedances are 400 to 100,000 ohms and secondary impedances are 11 to 2500 ohms. Construction for operation at 130 C is available on special order.

Microtran Co., Inc., Dept. ED, 145 E. Mineola Ave., Valley Stream, N.Y.

Price \& Availability: Units are available for 24-hr delivery. Price is about $\$ 5$ ea for small quantity orders.

$$
\text { Booth } 2315 .
$$

Vibration Pickup
Compact in design
Model TD-6 vibration pickup, having a wide frequency range, is about half the size of the previous model. The threshold velocity of this unit is essentially zero.
Southwestern Industrial Elec tronics Co., Dept. ED, 10201 Westheimer Rd., P.O. Box 13058, Houston 18, Tex.
Booth 3307-3309.

Tenney push-button environments

.. . any size, any shape, anytime!

No matter what environmental test chamber you need, this much is certain: Tenney either has it in stock or can adapt one of its proven prototypes. From chambers that could house a family of four, down to refrigerator size (and everything in between), you're sure to find the modern, push button unit you need.

Altitude, temperature, humidity, explosion, sand, dust, fog - just about every punch nature can
throw-can be simulated, either alone or in combination. And you get accurate simulation, complete control and precise measurements every time.
For a complete catalog, describing the entire line, write today to Tenney - the world's largest, most experienced creator of environmental test equipment.
Ask about Tenney's research and development, engineering consultation and design services.

1090 SPRINGFIELD ROAD, UNION, N. J. - PLANTS: UNION, N. J. AND BALTIMORE, MD. oldest and largest manufacturer of envirommemtal eoulpment
 CIRCLE 186 ON READER-SERVICE CARD

NEW PRODUCTS at the ire show

Switching Transistors
Medium power type

Types 2N696 and 2N697 diffused-silicon mesa transistors are for medium-power, small-signal amplifier and switching applications. Collector-toemitter voltage is 40 v and collector power dissipation at 25 C is 2 w . Type 2 N 696 has a dc gain of 20 to 60 and type 2N697, 40 to 120 . For both units, the small-signal current gain is typically 5 . Collector saturation resistance is 3.5 to $\mathbf{1 0}$ ohms. Requirements of MIL-S-19500B are met.

Industro Transistor Corp, Dept. ED, 35-10 36th Ave., Long Island City 6, N.Y.
Price \& Availability: Price is $\$ 22.70$ ea for 1 to 99 units; $\$ 15.15$ for 100 to 999 units. They are available from stock.
Booth 1628.

Wideband Mixer-Preamplifier
Range is 8.5 to 9.6 kmc

Model MMX-5 matched microwave-mixer assembly covers the range of 8.5 to 9.6 kmc and provides an if output-bandwidth of 100 mc . The if center frequency is 250 mc , gain is 15 db , and over-all noise figure is 10 db . The microwave receiver's front end is capable of handling the short pulses required for high resolution radar systems. LEL, Inc., Dept. ED, 380 Oak St., Copiague, N.Y.

Price \& Availability: Price is $\$ 925$ ea when one unit is ordered. Discounts are furnished for quantities. Delivery is in 30 days.
Booth 2102.
CIRCLE 187 ON READER-SERVICE CARD \geqslant ELECTRONIC DESIGN • March 16, 1960

superb new NULL DETECTOR

The new Keithley 151, incorporating a unique photo-conductive modulator of Keithley design, is useful wherever a suspension galvanometer can be used, and where a galvanometer is not sufficiently sensitive, fast or rugged. Currents as low as 2×10^{-13} ampere can be detected.

Ranges: 11 linear ranges in 1x and $3 x$ steps, from $100 \mu \mathrm{v}$ to 10 v f.s.; 5 non-linear ranges, 0.001 to $10 \mathrm{vf.s}$, each covering three decades.
Accuracy: Linear ranges, $\pm 3 \%$ of f.s.; non-linear, $\pm 10 \%$ of input.

Input Resistance: 10 megohms on all ranges. Max. power sensitivity over 10^{-17} watt.
Response Speed: On $100 \mu \mathrm{v}$ range, $2.5-\mathrm{sec}$. $1-\mathrm{sec}$. on all others.

Noise: Below 2\% f.s. all ranges.
Zero Drift: Less than $10 \mu \mathrm{v}$ per day.
Output: 10 volts at 1 ma f.s.
Price: 151 Cabinet Model . $\$ 395.00$ 151R Rack Model . $\$ 385.00$

For full details write:

Ko

KEITHIIEY INSTRUMENTS

2415 EUCLID AVENUE CLEVELAND G. OHIO CIRCLE 188 ON READER-SERVICE CARD

Subminiature Switch

Rating is 10 amp at 30 vdc

Type 16 subminiature switch is rated at 10 amp at 30 v dc, inductive. Mechanical life is over $20,000,000$ cycles and electrical life is over 940, 000 cycles at $5 \mathrm{amp}, 115 \mathrm{v}$ ac and 140 cycles at $10 \mathrm{amp}, 30 \mathrm{v}$ dc. The unit has double break contacts and can operate from -100 to +300 F . It meets MIL-S-6743 as well as some of the requirements of MIL-E-5272. Solder, screw, or quickdisconnect type terminals are offered; they may extend from the bottom, the side, or the ends of the case.

Illinois Tool Works., Licon Div., Dept. ED, 6606 W. Dakin St., Chicago 34, Ill.
Price \& Availability: Standard units are available from stock; others can be supplied in six to eight weeks. Price is quoted on request. Booth 1506.

Miniature Plug-In Relay

This class 33 plug-in mounted relay is furnished with a transparent styrene cover, which permits operating visibility, insulates the relay from electrical interference, and offers protection from dust or iron filings. The relay can be furnished for dc operation with contact combinations up to 3 pdt. The enclosure is available with 8 - or 12 -pin octal style plugs. Over-all dimensions, including plug, are $2-11 / 12 \times 1-3 / 8 \times 1-3 / 8 \mathrm{in}$.

Magnecraft Electric Co., Dept. ED, 3350D W. Grand Ave., Chicago 51, Ill.
Price \& Availability: Price is $\$ 3.50$ to $\$ 9.50$ ea, depending on quantity and specifications. Delivery is in two to four weeks.
Booth 2525.

LOOK INTO CEC CONNECTORS

... see why they're
guaranteed to give you highest reliability
The only thing you can't see for yourself is CEC's design and manufacturing experience in multi-contact rectangular connectors with snap-in contacts. That experience is well represented in the following features:

- Portal-hood speeds final assembly, permits full inspection of interior.
- Firmly attached cable clamp secures all wires to each other and to the connector.
- Jackscrews lock plug and receptacle together to withstand 50 g shock and cycling from 54 to $2,000 \mathrm{cps}$.
- Sturdy hood holds the insulator block... houses and protects the mated connector.
- Insulator block has deeply recessed contact openings and an unusually long insulation creepage path.

Yes, we can deliver. The 50 -contact unit shown here is among many CEC types with $26,34,42$, 50,75 and 104 contacts.

For complete information, write for Bulletin CEC 4004-X21. Ask about CEC connector designs to your exact requirements.

CONSOLIDATED ELECTRODYNAMICS / pasadena. california

NEW PRODUCTS at the ire show

Timing System
Has 60-cps generator

This transistorized timing-system provides a time accuracy of 0.1 sec per week. The system incorporates a generator which provides $60-\mathrm{cps}$ power, a power amplifier which boosts the 60 cps to 15 w for chart drives and other motors, and a clock and photocell-gated programmer providing $10-\mathrm{sec}, 1-\mathrm{min}, 30-\mathrm{min}$, and $1-\mathrm{hr}$ timing pulses. A stroboscope has a scale displaying WWV signals so that system time can be compared and corrected. The system is powered by $24-\mathrm{v}$ batteries. It operates over the temperature range of -10 to +50 C and with relative humidity of 0% to 95%. It weighs 25 lb .

The Geotechnical Corp., Dept. ED, P.O. Box 28277, Dallas 28, Tex. Booth 3240 .

Rheostat Potentiometers

These rheostat potentiometers come in sizes of $25,50,75,100$, and 150 w with variations of shafts, tolerances, and off positions. The units are designed to meet MIL-R-22. Large cores allow for longer life and prevent burnouts. Other characteristics are: no backlash in shaft, precise winding, insulated shaft, high temperature enamel, and rugged construction.
Tru-Ohm Products, Div. of Model Engineering \& Manufacturing, Inc., Dept. ED, 2800 N. Milwaukee Ave., Chicago 18, Ill.
Booth 2305.

See these new Raytheon Product

INDUSTRIAL COMPONENTS DIVISION
COMMERCIAL APPARATUS \& SYSTEMS DIVISION

Now Kilo-line recording storage tubes provide 1000 TV lines at 50\% modulation. These high resolution, low-noise tubes for frequency and scan version utilize a
 specially designed tetrode electron gun for a resolution of $1,000 \mathrm{TV}$ lines at 50% modulation and provide better control over beam cut-off than conventional triode guns. Applications include: (1) scan conversion for bright display radar and moving target indicators, (2) slowdown video for still picture telephone transmission, (3) stop-motion video. CIRCLE 832

New pointer knobs vir tually eliminate parallax. Two new sloping pointer style control knobs have been added to Raytheon's widely used commercial and military knob line. The new pointer series complies fully with military specifications and is available in black or

grey, with or without dial skirts; in mirror or nonreflective matte finish. Colors are available on special order. Raytheon's complete line of knobs includes 206 styles -9 standard types in 6 sizes, plus tactile shapes, color and color caps.

CIRCLE 833

New Voltage-regulating PF transformer holds voltages to within $\pm 3 \%$. The new Raytheon voltage regulating PF transformer mainlains plate and filament voltages to within $\pm 3 \%$ of rated output with line voltage variation of from 100 to 130 olts. PF transformers are now available in three standard models with ratings up 380 VDC at 250 MA. They eliminate need for VR tubes and special circuitry.

CIRCIE 834

Sorensen Series Q line of power supplies for 6, 12 or 28 VDC regulated. The Sorensen Series \mathbf{Q} power supply line is comprised of 15 different models with outputs 6, 12 or 28 VDC, adjustable approximately $\pm 25 \%$. Voltages are regulated within

$\pm 0.05 \%$ for load and line combined. Power capacities range up to 200 watts. The complete line of Sorensen power supplies covers requirements from 600,000 volts down to 3 volts. Sorensen also offers a line of frequency changers and line voltage regulators.

CIRCLE 835

Visit us at the New York Coliseum, Booths 2604-2614

Developments at the IRE Show

MICROWAVE AND POWER TUBE DIVISION

Four new ruggedized backward wave oscillators cover 1-12.4 kmc. Four compatible Raytheon BWO's now provide continuous frequency coverage from 1 to 12.4 kmc . They utilize interdigital delay-line structures for greater ruggedness and heat dissipating characteristics, are smaller and lighter than their predecessors and have improved finegrain tuning variations with minimizeci fine-grain power output variations. Forced air cooling is not required under normal operating conditions.

CIRCLE 860

New ferrite circulators for masers, parametric amplifiers and radio astronomy. A standard line of extremely compact, low-frequency. three-port ferrite circulators is now available from Raytheon. Now, a total of twenty-eight units are avail-

able - for UHF as well as S. and L-band applications. The new UHF unit extends the frequency range down to 400 mc. These circulators are supplied with fixed permanent magnet fields (as illustrated) or with tuned magnetic fields for full performance over a broader band.

CIRCLE 861

MACHLETT LABORATORIES

UHF planar triode has 60\% more cathode current capacity. This unique, Machlett developed UHF planar triode with ceramic envelope has 1.6 times the cathode current rating of the more conventional tubes in current use. The new ML7211 has applications in communications, navigation, telemetering, radar and missile equipment of the most advanced design.

CIRCLE 862

RAYTHEON COMPANY Waltham, Massachusetts

Improved camera tube for general closed-circuit TV applications. Machlett's novel vidicon camera tube features photoconductor guard and self-aligning beam eliminating the need for permanent magnets or coils. This tube will be exhibited at the IRE along with Machlett's watercooled triode rated at 20 -megawatts peak power, a scan conversion tube for conversion of radar information to TV display, and a highpower vapor cooled tube for general purpose modulator, amplifier and oscillator services.

CIRCLE 863

Crystal Frequency Synthesizer

393
Output range is 2 to 34 mc

Model N317 crystal frequency synthesizer has an output range of 2 to 34 mc , covered in four bands. Stability is better than 1×10^{-8} per day. Spurious signals, except harmonics of the output, are suppressed to -80 db . Minimum tuning increment is 125 cps ; rapid tuning in $10-\mathrm{kc}$ steps is also permitted. Power output at any setting is 100 mw min into a 50 -ohm load. Input is 200 w , $117 \mathrm{v}, 60 \mathrm{cps}$. Applications include: transmitter exciters, frequency standards, signal generators, frequency meters, and sideband receivers. Both bench and rack models are offered.
Manson Laboratories, Inc., Dept. ED, P.O. Box 1214, Stamford, Conn.
Price \& Availability: Price is $\$ 9500$; delivery time is 120 days.
Booth 3923.

Subminiature Crystal Case Relay 364

Is dpdt type

This dpdt subminiature crystal case relay meets severe industrial and military specifications and exceeds the requirements of MIL-R-25018, MIL R-5757C, and MS24250. It can be used in control systems, computers, airborne and guided missile equipment, and similar applications. Bifurcated contact structure is used to improve reliability and efficiency in dry circuit applications. The relay is designed for continuous operation from -65 to +125 C and has a life expectancy of 100,000 operations. It is slightly more than 1 in . long and weighs about 0.5 oz .

Union Switch \& Signal, Div. of Westinghouse Air Brake Co., Dept. ED, Swissvale, Pa.
Price \& Availability: Information on request. Booth 2122-2124.

View of a portion of a SAGE Display Console Nearly a mile of wire and cable is used in each of these consoles. Tensolite supplies wire and cable to meet the specified requirements.

Interior view of Hawk guided missile Battery Control Center Cable Entry Enclosure devel oped by Raytheon Company, shows Tensolite built cables of several sizes and types. Raytheon Missile System Division is prime contractor for the Army's Hawk system.

Tensolties CABLE CAPABILITIES did the rest!

With solid core and air dielectric coaxial cable, and hook-up wire of several AWG sizes-all insulated with Teflon ${ }^{\text {® }}$ these complex cables are typical of the work Tensolite is doing in the exacting cable and cable assembly fields.
Our design engineers were given the problems by the equipment manufacturers. Jointly, their engineers and ours developed specs, and Tensolite took it from there. Tensolite translated these requirements, utilizing components manufactured in our own plants, into highly reliable cable.

Many leading aircraft and electronic manufacturers are taking advantage of Tensolite's cable design and production facilities. We'd like to work with you on your high temperature cable problems. Contact your local Tensolite representative or write to:

Terralite

INSULATED WIRE CO., INC.
A subsidiary of Carlisle Corporation
West Main Street, Tarrytown, N.Y.
Pacific Division: 1516 N. Gardner St., Los Angeles, Callif.

NEW PRODUCTS at the ire show

DC Limit Bridge
Range extends to 11,111 meg

Model AB-4-4 dc limit-bridge has a usable range extending to $11,111 \mathrm{meg}$. Decade stens are: $1 \mathrm{meg}, 100 \mathrm{~K}, 10 \mathrm{~K}, 1 \mathrm{~K}, 100$ ohms, 10 ohms, 1 ohm, and 0.1 ohms. A built-in 8 -dial resistance decade is used for setting the value of the resistance to be tested. Accuracy is from $\pm 0.1 \%$ to $\pm 0.3 \%$. The bridge voltage is variable from 1.5 to 24 v . The unit is suitable for testing precision wirewound, metal, or carbon film resistors, as well as composition resistance elements. It performs GO/NO-GO testing.

Industrial Instruments Automation Corp., Dept. ED, 89 Commerce Rd., Cedar Grove, Essex County, N.J.
Booth 3227-3229.
Power Oscillator
Has outputs of 100 and 1000 v

Model DK-115-14 precision power oscillator is a 15 -w unit with outputs of 100 and 1000 v . Regulation on both outputs is better than 0.1%. The temperature-sensitive bridge elements are encapsulated in a constant temperature oven to provide voltage stability. Frequency range of the unit is 200 cps to 10 kc . For relay rack mounting, the unit has dimensions of $5.25 \times 8 \times 19 \mathrm{in}$. Other voltage arrangements can be provided.
International Electronic Research Corp., Elin Div., Dept. ED, 145 W. Magnolia Blvd., Burbank, Calif.
Price \& Availability: Price is $\$ 795$. Delivery time is four weeks.
Booth 3018.

anel Meters

For standard voltage and current ratings

For all standard ac and dc voltage ratings as well as current ratings, the Big Look panel meters have a $3.93-\mathrm{in}$. scale length. Scales are custom made to meet customer requirements. Mounting conforms to ASA C39.1. They are $4.5-\mathrm{in}$. units.

General Electric Co., Dept. ED, Schenectady 5, N.Y.

Price \& Availability: The product will be available from stock by May 1, 1960. Price has not been determined.
Booth 2904-2932

Vane Axial Blower
Delivers 200 cfm

Model E2543-200 vane axial blower operating at $10,500 \mathrm{rpm}$ delivers 200 cfm at $3 / 4-\mathrm{in}$. water gage. It is for use where maximum air and medium static pressure are important. Having class F insulation, the unit stands ambient temperatures to 85 C and has a life in excess of 5000 hr . It also meets MIL-E-5400B. Weighing 3.5 lb , the unit utilizes a motor with a $2-5 / 16 \mathrm{in}$. diam and has over-all dimensions of 4 in . in diameter and 41/2 in. in length.

Air-Marine Motors, Inc., Dept. ED, 369 Bayview Ave., Amityville, L.I., N.Y.
Booth 2601.

Don't forget to mail your renewal form to continue receiving ELECTRONIC DESIGN

PROPERTIES OF "MYLAR"
"Mylar" offers a unique combination of properties that may help you improve performance and lower costs of your product. Here are two of the many important properties for evaluation.

HIGH DIELECTRIC STRENGTH: AverHIGH DIELECTRIC STRENGTH: Aver-
age of 4,000 volts per mil $\dagger . .$. average power factor of 0.003 at 60 cycles.

SUPERIOR CHEMICAL RESISTANCEI
Unaffected by oils, grease, most acids and alkalis, moisture and solvents.

Western Electric reports...

Du Pont MYLAR ${ }^{\text {º }}$ cuts capacitor costs

PROBLEM: Western Electric was searching for a dielectric material which, when used in film-foil construction, would lower manufacturing costs.
sOLUTion: Du Pont "Mylar"* polyester film. According to Western Electric, the moisture resistance of "Mylar" minimized the need for costly encapsulation; high dielectric and physical strength in thin gauges helped reduce over-all size;
capacitance stability under normal voltage stress maintains long life.
RESULTS: Capacitors insulated with "Mylar" provide excellent performance for selected types of equipment produced by Western Electric. These new capacitors achieve high reliability and long life. Materials savings have been realized through reductions in size and use of less costly encapsulation.

HOW CAN "MYLAR" HELP YOU? Whether your product uses miniaturized capacitors or heavy-duty cables, it will pay you to investigate the performance benefits of "Mylar". . . and products made with "Mylar". Component makers find this tough, thin polyester film will often cost less on an area basis than present insulating materials. For more detailed information, send in the coupon.

See Du Pont specialized fllms for the efectronics industry-Booth 4329A, 4329B, I. R. E. Show.

> "umYLar" is Du Pont's registered trademark for its brand of polyester film.
\dagger Per ASTM D-149.
E. I. du Pont de Nemours \& Co. (Inc.)

Film Dept., Room ED-3, Nemours Bldg., Wilmington 98, Del.
Please send booklet listing properties, applications and types of "Mylar" polyester film available.
better things for better uving. . .through chemistay

DU PONT

MYLAR

NEW PRODUCTS at the ire show

Traveling Wave Tube
Frequency range is $\mathbf{1}$ to $\mathbf{2} \mathbf{~ k m c}$

Type STL-222 traveling wave tube has a frequency range of 1 to 2 kmc . Signal gain is 48 db min and saturated power output is 2 w nominal. Metal and ceramic construction is used to permit applications in a wide range of environmental conditions. Periodic permanent magnet focusing, requiring no power supply, is used. Beam voltage is 1000 v , beam current is 35 ma , grid bias is 35 v , grid current is 5 ma , and grid cut-off signal is -20 v max. The input-output isolation is 75 db min . It is suited for airborne applications. Other units are available, covering the complete range of P to X bands.
Sperry Electronic Tube Div., Sperry Rand Corp., Dept. ED, Gainesville, Fla.
Price \& Availability: Delivery is in 60 days; Price is quoted on request.
Booth 2432-2438.

Printed Circuit Connectors

Have 28 contacts

Series 200-70-15, 14, and 13 right-angle plug and socket printed circuit connector has 28 contacts. It can be supplied with or without threaded mounting-holes for dip soldering. The body material is glass-reinforced with diallyl phthalate as per MIL-M-19833. A polarizing key can be placed in any socket contact from 2 to 27 after the matingpin contact has been removed.
Continental Connector Corp., Dept. ED, 34-63 56th St., Woodside 77, N.Y.
Price \& Availability: Delivery is in 45 to 60 days; price varies with specifications.
Booth 2307-2309.

Quality meters on the panel indicate quality throughout-and HOYT Panel Meters are quality in appearance and function... the complete Line of matching $A C$ and DC Meters for original equipment and replacement applico. tions. Get accuracy, readability, and reliability; plus economy. Specify HOM Electrical Instruments-compatible com. ponents for production, research, and test requirements.

Model 647
Black Bakelite
Moving coil, rectifier, and repulsion types available promptly in a wide assortment of sizes, ranges, cases, shapes, and colors; some with parallax. free mirror scales -all with standard mounting dimensions. custom designed io the most exacting specifications.

Send for latest fully illustrated broch with descriptions, engineering d and moderate prices.

VISIT OUR DISPLAY
ELECTRICAL
INSTRUMENTS
BURTON-ROGERS COMPANY
Sales Division-Dept. ED
42 Carleton Street, Combridge 42, Mass B CIRCLE 194 ON READER-SERVICE CARD DESIGN • March 16, 196

Time Delay Relay
Delay times are 50 msec to 3 min

Series 1100 time delay relay has standard delay times of 50 msec to 3 min during operate or release cycle. Accuracies of 10% or better can be obtained under the following operating conditions: vibration, 20 g at up to 2000 cps ; temperature, -65 to +125 C ; and shock, 50 g . Contact ratings to 10 amp are offered. Units are supplied for either ac or dc source voltages. Relays with longer delays or with delay during operate or release time can also be furnished.
Hi-G, Inc., Dept. ED, Bradley Field, Windsor Locks, Conn.
Price d Availability: Units are made on order and can be delivered in 30 to 60 days. Price is quoted on request.
Booth 2227.

Amplifier
454
Range is 30 to 300 mc

Model UH-2(A)S amplifier, designed to have a minimum noise-figure, operates in the range of 30 to 300 mc . The unit uses coplanar triodes in a cascade circuit. Broadband response is 5% to 10% of center frequency. Gain is up to 25 db , input impedance is 50 ohms, and output impedance is 50 ohms. The unit measures $6.75 \times 3.5 \times 3.5 \mathrm{in}$. and weighs $2-7 / 8 \mathrm{lb}$.
Applied Research Inc., Dept. ED, Port Washinton, N.Y.

Bcoth 1110.
1960 El :CTRONIC DESIGN • March 16, 1960

$1_{106} 6$ How do you take the temperature of an electronic system?

Use ONE Compact, Accurate, Lightweight, Completely Transistorized Oster-

 Developed Temperature Indicating System. Replaces 6 Indicating Systems.

The device illustrated senses and displays the highest of 4 temperature sensor signals on the Convair B-58 supersonic bomber. It also reads out the temperature of the plane's 2 refrigeration systems. However, the unit can monitor temperature of any military or commercial electronic system. Special versions can be furnished to monitor any analog voltage signal.

Entire unit (component parts illustrated) has an accuracy of $11 / 2 \%$, weighs only 3.85 lbs. max., requires only $23 / 8^{\prime \prime}$ panel space, and does the work of 6 indicating systems. Component parts consist of 4 sensors, a computer package with 6 channels, and a hermetically sealed indicator package.
The unit is typical of Oster designed equipment.

Computer Package

For help with your instrumentation and display problems, talk to the
specialists at the Avionic Division.
Burtion Browne Aovertising

- DC to 35 mc -useful to 60 mc
- Accurately repeatable measurementseven by untrained personnel
- Direct reading digital ReadOut of measurements
- Analog to digital converter-external recorders of all types

NEW PRODUCTS at the ire show

1-Kc Limit Bridge

Model AB-3-5 1-kc limit bridge has an accuracy of $\pm 0.3 \%$. For testing capacity, resistance, and impedance, ranges are $100 \mu \mu \mathrm{f}$ to $15 \mu \mathrm{f}, 10$ ohms to 5 meg , and 10 ohms to 5 meg . Such components as resistors and capacitors, can be tested at a rate of 1500 pieces per hr. The instrument performs GO/NO-GO tests. Decade type units or individual units can be supplied.
Industrial Instruments Automation Corp., Dept. ED, 89 Commerce Rd., Cedar Grove, Essex County, N.J.
Booth 3227-3229.

Spectrum Analyzer
Range is 7 cps to 23 kc

Model SS- 20 spectrum analyzer gives a highresolution Fourier analysis in the range of 7 cps to 23 kc . The unit is for use with vibration systems, tape recorder testing, and magnetic tape analysis. Characteristics include: a continuously variable sweep width of 50 cps to 6 kc with automatic optimum resolution, $500-\mu \mathrm{v}$ full scale sensitivity, $60-\mathrm{db}$ dynamic range, and a linear and log amplitude scale.
Probescope Co., Inc., Dept. ED, 8 Sagamore Hill Drive, Port Washington, N.Y.
Booth 3116-3118.

Don't forget to mail your renewal form to continue receiving ELECTRONIC DESIGN.

AUTHORIZED INDUSTRIAL DISTRIBUTORS

ALBANY

E. E. Taylor Inc

ALtimore
BATILE CREEK
lectronic Supply Corp.
BiRMINGHAM Electric
BUFFALO
BOSTON-CAMBRIDCE
Electricol Supply Corp.
chicaco
Lukto Soles CorD.
Nework
Electric C Co.
CLEVELAND
Pioneer Electronic Supply
Enclas
DAYTON
Screpco inc
DENVER
FORT WAYME
Hort Wayne Electronics Supply, itc.
HOUSTON
indianapolis ment Co. Inc
Graham Electronics Supply Inc.
KANSAS CITY
LOS ANCELES
MIAMI Products Soles
MIAMI Electronic Eavipment Co., I
MINNEAPOLIS - ST. PAUL
NEW YORK. NEW JEREY Esstern Radio Corp.
Electonics Center Inc
-hiladelphia - CAMDEN
PHILADELPHIA - CAMDEN
Philo., Electronics. Inc.
POUGHKEEPSIE
Hiagains 8 She Electronic
Distributors
ROME
Rome Electron
SAN DIECO
Rodio Parts
SAN DIECO
Rodio Parts
Co
SAN FRANCISCO
SCRANTON

SEATTLE
SOUTH Rodio Supply Co.
SOUTH BEND
SPRINGFIELD
st. LOUIS
Interstote Supply Corp.
tulsa
WASHINCTON, D.C. - ARLINCTON WATEREURY

GOOD-ALL ELECTRIC MFG. CO. Distributors' Div. 26 Rimenhouse PI. Ardmore, Po.

CIRCLE 197 ON READER-SERVICE CARD ELECTRONIC DESIGN • March 16, 1960

Soric Inverter

For missile and aircraft use

Model 4314 regulated, 400 -cps, sine-wave, static inverter is for missile and aircraft use. It drives hysteresis motors, gyros, and other single-phase loads. Operating from a $28-v$ de source, it develops 18 va. Frequency regulation is $\pm 1 \%$, voltage regulation of 26 v is $\pm 2 \%$, maximum harmonic content is 5%, and over-all efficiency is 70%. Silicon transistor circuitry is used. Environmental specifications include altitudes to $100,000 \mathrm{ft}$, temperatures from -54 to +100 C , and a vibration level of 10 g from 55 to 2000 cps . The complete package weighs less than 2 lb .
Varo Manufacturing Co., Inc., Dept. ED, 2201 Walnut St., Garland, Tex.
Booth 1731 .

Electronic Counter

Frequency range is 1 cps to 120 kc

Model 521E electronic counter, having a count capacity of 99,999 , has a frequency range of 1 cps to 120 kc . The crystal time base assures an accuracy of $0.01 \% \pm 1$ count. Display time can be adjusted from the gate time selected to about 15 sec, or it can be held until reset. Besides measuring frequency and random events per unit of time, the instrument can be used to measure weight, pressure, temperature, acceleration, and other qu antities.

Hewlett-Packard Co., Dept. ED, 275 Page Mill Road, Palo Alto, Calif.
Pice \& Availability: Price is $\$ 875$. The unit can b_{c} delivered in one week.
B oth 3302-3306, 3401-3405.

E ECTRONIC DESIGN • March 16, 1960

These space-saving designs are conservatively rated and capable of being produced to compiy with HIGH RELIABILITY SPEC:FICATiONS comparable to MIL-C-14157 and MIL-C-26244 (USAF)

$$
\text { Full rated to } 125^{\circ} \mathrm{C}
$$ Types 626C-627C (Extended foil) Types 628G-629C (Inserted tab) Temperature Range-Full, rating at $85^{\circ} \mathrm{C}$ - $10.0 \mid$

$125^{\circ} \mathrm{C}$ with 50% derating.
 rated voltage.
Capacity Tolerance-All tolerances to $\pm 1 \%$. Insulation Resistanee- 40.000 meg ${ }^{2}{ }^{x}$ mfd. at
25 C but need not exceed $70.000{ }^{\text {megohms. }}$ Case Stryles- Available in all case style variations

Type 616C (Extended foil)
Type 617C (Extended foil)
Temperature, Rango-Full rating to $125^{\circ} \mathrm{C}$ - 10
$150^{\circ} \mathrm{C}$
with 50% derating.
$150^{\circ} \mathrm{C}$ with 50% derating.
Life Test- 500 hours at $125^{\circ} \mathrm{C}$ and 125% of
Cepesity Tolecen
Capaciyy roleranco-All tolerances to $\pm 1 \%$.
Insulation Resistance -50.000 mego \times mid. at
$25^{\circ} \mathrm{C}$ but need not exceed 100.800° megohms.
Case Style-A Available in all case style variations

Write for literature on these new types.

51 GOOD-AML ELECTFIE MFG. co.

SEE LIST OF
SEE LIST OF
AUTHORIZED DISTRIBUTORS
ON FACING PAGE
save costs, save labor, save design time with SORENSEN "SOLDER-IN'S"

Miniature transistorized, component-type power-packs - DC-to-DC Converters (Series QC)•DC-to-AC Inverters (Series QI) • Highly-regulated D.C Supplies (Series QM)

MORE THAN 180 MODELS!

- If you have $117 \mathrm{vac}, 60$ or 400 cps , available, and need $3-36 \mathrm{vdc}$ regulated to $\pm 0.05 \% \ldots$ If you have available standard 6 ., 12., or 28 volt $\mathrm{d} \cdot \mathrm{c}$ sources and... If you need $115 \mathrm{vac}, 60 \mathrm{cps}$, at up to 200 watts, or... If you need $115 \mathrm{vac}, 400 \mathrm{cps}$, at up to 240 watts, or ... If you need $d \cdot c$ voltage in the range 30 to $1000 \mathrm{vdc} .$.

Then you should get complete data on Sorensen miniature transistorized dc-to-ac inverters (Series QI), dc-to-dc converters (Series QC) and highly-regulated supplies (Series QM). They're completely tubeless; no moving parts. They can replace vibrator-type supplies, rotary inverters or dynamotors-with greatly reduced weight, size, complexity, and cost.
Write for bulletins on
these compact, low-cost power sources, or see your Sorensen representative Sorensen \& Company, Rich

CONTROLLED ards Avenue, South Norwalk, Connecticut.
... the widest line lets you make the wisest choice

NEW PRODUCTS

Metallized Inductors

Range is 2 to $0.05 \mu \mathrm{~h}$

These compact, metallized inductors offer an inductance of 2 to $0.05 \mu \mathrm{~h}$, in steps of $0.5 \mu \mathrm{~h}$. Length of the units is from $1-19 / 32$ to $9 / 16 \mathrm{in}$., depending on inductance. They have a low temperature coefficient of inductance and frequency. Both fixed and variable types are available. Pistons are brass, invar, powdered iron, or ferrite.

JFD Electronics Corp., Dept. ED, 6101 Sixteenth Ave., Brooklyn 4, N.Y.
Availability: Units are available for 7-day deliveny.
Booth 1622.

VTVM

 627Full scale sensitivity is 3 mv
This ac vtum has a sensitivity of 3 mv full scale and provides 11 ranges which extend to 300 v . Response range is 20 cps to 2.5 mc and accuracy is within 3% over the frequency range. The proper range is automatically selected when the probes touch the circuit. The instrument is for operation on 105 to 125 v ac, measures $10-1 / 4 \times 6-5 / 8 \times$ $10-1 / 4 \mathrm{in}$., and weighs $13-1 / 2 \mathrm{lb}$.
Allied Radio Corp., Dept. ED, 100 N. Western Ave., Chicago 80, Ill.
Price \& Availability: Available from stock, the unit is priced at $\$ 99.50$.
Booth 3915-3917.
Traveling Wave Tube
Gain is 30 db min

Type HA 58 traveling wave tube operating in the frequency range of 500 to 1000 mc , has a signal gain of $30 \mathrm{db} \min$ and a saturation gain of 28 db min . Electrostatically focused, this tube is rated at 1 w. No magnetic structure or solenoid

HERMETIC SEALS

Glass-Tite's story is simple and successful. They make a custom seal to your most minute specifi-catass-to-metal seals - either way glass-to-metal seals - either way hey make only one quality is too tough, no reasonable delivery date is impossible.
Spe is impossible.
Specify Glass-Tite in Kovar and compression seals, diodes and recthe enclosures ford the semi-conapplications.
Write Dept. 727 for literature and send details of your design requirements.
I.R.E. BOOTH 1109

CIRCLE 200 ON READER-SERVICE CARD ELECTRONIC DESIGN • March 16, 1960
r permanent magnet is needed. Dimensions are 1.25 in . in diam and 18 in . in length. Operating temperature range, vibration, and shock performance meet Mil specs.
Huggins Laboratories, Dept. ED, 999 E. Arques Ave., Sunnyvale, Calif.
Booth 2971-2918.

Signal Generator

388
Range is $\mathbf{l} \mathrm{cps}$ to 1 mc

Model N-2 signal generator has a frequency range of 1 cps to 1 mc . Its distortion is 0.2%. The built-in meter and attenuator permit the output amplitude to be set at any value, eliminating the necessity for a voltmeter to monitor the output. This unit replaces model M-2.
Southwestern Industrial Electronics Co., Dept. ED, 10201 Westheimer Road, P.O. Box 13058, Houston 19, Tex.
Booth 3307-3309.

Blower Unit

Model MSA 11000 blower unit provides 350 cfm at 5.8 SP at a density of 0.075 . It can be furnished in speeds of 5400,7500 , and 11.500 rpm at $115,200,208$, and 440 v . The unit weighs 5-3/4 lb , and meets military requirements for environmental conditions.
Torrington Manufacturing Co., Dept. ED, Torrington, Conn.
Price \& Availability: The unit is made on order. Booth 1919.

ELECTRONIC DESIGN • March 16, 1960

Firm price and delivery on low noise parametric amplifiers

Firm price and delivery schedules are available for negative resistance, cavity type amplifiers in the L. S. C, and Lower X-Bands. You can choose from either development models for evaluation in your system, or custom designed, fully qualified units in production quantities. The table at right shows typical amplifier characteristics now being obtained in development models.
With noise figures as low as 2 db , these amplifiers are ideally suited to radar acquisition and tracking systems, tropo-scatter communications, telemetering. satellite tracking, and microwave relay links.
They recover from overload in milliseconds-are resistant to deterioration and failure from high power. Phase jitter and gain stability characteristics are excellent, and with the associated ferrite circulator, the amplifier is fail-safe in case of pump or diode failure. Small in size and weight, the amplifier can easily be retrofitted to many existing systems. Hughes Microwave Products can provide complete retrofit kits, including ferrite circulator, amplifier, pump circuitry, and pump klystron, custom fitted to your system configuration.

	1 Band	s Band	C Band	X Band
Pump	50 mw at S or C Band	$\begin{aligned} & 100 \mathrm{mw}^{10 t} \\ & \times \text { at } \end{aligned}$	100 mw at X or K_{U} Band	$\begin{aligned} & 150 \mathrm{mw} \text { at } \\ & \mathrm{K}_{U} \mathrm{Ban} \end{aligned}$
Gain	151020 db	15 to $\mathrm{z}_{\text {db }}$	151025 db	151020 db
Bandwidit	21010 mc	Up 1025 mc	U0 1025 mc	2108 mc
Noise Figure	2104 db	2104 db	2104 db	6 db
Remarks	Non. degenerate	Nondegenerate	Non. degenerate	Quast. degenerate
For information dates, or for t write Microwav ProgramDevelo	price and a er lechnical Products. Adv ent, Hughes A	very data. ceo alil alif.		

NEW PRODUCTS at the lige show

Voltmeter

Measures 1 mv to 1000 rac and 1 to 1000 v de

Model R-3 transistorized voltmeter measures from 1 mv to 1000 v ac full scale in 14 ranges over a range of 10 cps to 200 kc ; it measures positive and negative dc voltages from 1 to 1000 v full scale in 7 ranges, electrometer input from 0 to 1 v dc, and center-scale resistances from 10 ohms to 10 meg in 7 steps. Over-all accuracy is better than 3% on all voltage readings. Self-contained batteries and transistor circuitry are used.
Southwestern Industrial Electronics Co., Dept. ED, 10201 Westheimer Road, P.O. Box 13058, Houston 19, Tex.
Price d Availability: Unit is available from stock at a price of \$335.
Booth 3307-3309.

Power Supplies

Regulation is $\pm 0.01 \%$

Power supplies in the 120 series have $\pm 0.01 \%$ or $\pm 3 \mathrm{mv}$ regulation from no load to full load or from 105 to 125 v . Ripple is less than $500 \mu \mathrm{v}$ rms. Four units, models 121 through 124, provide from 0.1 to 50 v dc at 0 to 5 amp . Current levels can be preset to protect external equipment. Provision for remote error sensing is through a terminal strip at the rear of each chassis. Each unit is supplied in a rack mounting version and can be adapted for bench use.

Quan-Tech Laboratories, Dept. ED, 60 Parsippany Blvd., Boonton, N.J.
Price do Availability: Units are or soon will be available from stock. Price ranges from $\$ 475$ to $\$ 645$.
Booth 3034.

Sola SInusoldal type
Constant Voltage Transformers
for unlversal app/ication,
now moderately priced

Housed unit with mounting plate typical of structures amployed in 60 va to 1 kva ratings.

Price reductions extend scope

An important advance in the field of voltage regulation is the development of a new line of Sola Standard Constant Voltage Transformers with sinusoidal output. New design enables us to price them about the same as previous models not having sine-wave output. Now you can have the advantages of $\pm 1 \%$ static-magnetic voltage regulation in new applications requiring harmonic-free input where previously the cost was a deterrent.
These new units provide output voltage regulation of $\pm 1 \%$ for line voltage variations as great as $\pm 15 \%$. They regulate automatically and continuously. Fast response time averages 1.5 cycles or less. Output has less than 3% total rms har-
monic content, and formulae based on sinusoidal wave shape may be used in designing related load circuitry.

Design and production innovations make these new units substantially smaller and lighter than previous models. They are relatively compact compared to other equipment for comparable ac voltage regulation. They are easy to select and order -the buyer merely selects the stock unit whose output capacity equals or exceeds the desired equipment input. Sola Standard Sinusoidal CV Transformers are available in nine stock output ratings from 60 va to 7500 va . Custom designs to meet specialized requirements are available in production quantities.

Write for full information

With electrical control systems and components continuing to increase in number and complexity, and imposing more rigid reliability requirements, these new Sola Constant Voltage Transformers provide many advantages and virtually unlimited application. They are the result of over four years of development, design, and production engineering in the Sola laboratories and plant.
These developments mean superior voltage regulation, giving you a bonus in equipment reliability and performance at no increase in cost.
For full information, please write for technical literature on Sola Constant Voltage Transformers. We will mail it promptly, or if you wish, we will have a representative call on you.

Sola Normal-Harmonic type Constant Voltage Transformers now specifically designed and priced for component use

End-bell unit with separate capacifor typica of structures engineered for component use.

of Sola voltage regulation

Re-design of Sola "Normal-Harmonic" type static-magnetic voltage regulators has resulted in a significant reduction in their size and weight. Prices on many of these units have been reduced. Now it's possible for you to improve equipment performance by using them in many new fields at less cost than ever before. Redesign has in no way sacrificed the performance of these units-they provide all the outstanding benefits which have made them the standard of the industry for more than fifteen years.
Sola Normal-Harmonic type voltage regulators provide $\pm 1 \%$ output voltage
with line voltage variations as great as $\pm 15 \%$. This group has an average of 14% total rms harmonic content in its output voltages and is suited to equipment not extremely sensitive to voltage wave shape.

Sola Normal-Harmonic type voltage regulators are available in nineteen stock ratings from 15 va to 10 kva , including those mechanical designs specially engineered for use as built-in components. With many of the most popular ratings now reduced in price, these Sola Constant Voltage Transformers provide one of the most economical means of close voltage regulation in a broad range of applications.

A DIVISION OF
C $\mathbf{B} \mathbf{P}$ 88

BASIC PRODUCTS CORPORATION

OLA ELECTRIC CO., 4633 West igih sireet, Chicago EO, IIIInols
Sales Offices in all principal cities
CANADA, Sola Electric (Canada) Ltd., 24 Canmotor Ave., Toronto 18. Ontario CIRCLE 202 ON READER-SERVICE CARD

Battery Chargers

Models range from 6 to 120 v

This line of battery chargers features models ranging in output from 6 to 120 v at 0 to 125 amp. These fully-automatic units have silicon rectifiers and silicon diodes; they use no moving parts. The close-end voltage regulation of $\pm 1 \%$ is maintained to accommodate line changes of $\pm 10 \%$. Each unit includes a moving coil type dc voltmeter and ammeter.
Christie Electric Corp., Dept. ED, 3401 W. 67th St., Los Angeles 43, Calif.
Booth 2911.

Subcarrier Discriminator

504
Needs no input attenuator

This subcarrier discriminator is for use in fm-fm RDB/IRIG telemetry, for ground checkout of airborne systems, and for long distance transmission of multi-channel analog data. No input attenuator is required. The input range is $3 v$ to 5 mv rms . Input impedance is over 1 meg , shunted by $20 \mu \mu f$; output impedance is 0 ± 10 ohms. Standard linearities are $\pm 0.25 \%$ and $\pm 0.5 \%$. The power output from the operational amplifier is to $\pm 100 \mathrm{v}$ at 30 ma into 3300 ohms. The unit measures $5.25 \times 19 \times 16.375 \mathrm{in}$.
The Geotechnical Corp., Dept. ED, P.O. Box 28277, Dallas 28. Tex.
Booth 2340.

Don't miss an issue
of ELECTRONIC DESIGN;
return your
renewal card today.

Wide-Range Self-Contained

 Precision Inductance Bridge

MODEL G3A
PRICE \$1500

- Inductance Range: . 002 Microhenry to 1.1 Henry.
- Series Resistance Range: . 002 Ohm to 110 K Ohm.
- Built-in 1 to 100 KC Oscillator - Detector.
- No False or Sliding Nulls.

DC Millivoltmeter

ALSO MANUFACTURERS OF THESE FINE INSTRUMENTS

Capacitance Bridge

UHF Grid Dip Meter

Boonton ELECTRONICS Corp.
Morris Plains, New Jersey • Phone: JEfferson 9-4210
SEE US AT THE SHOW, BOOTH \#3114 clicie 203 on readen-senvice card

NEW PRODUCTS at the ire show

Delay Line

Total delay is $6.5 \mu \mathrm{sec} \pm 0.5 \%$

Type L748C delay line has a total delay of 6.5 μ sec $\pm 0.5 \%$ and a rise time of 0.135μ sec. A lumped parameter network, it is equipped with 32 equally spaced taps. Impedance is 470 ohms, insertion loss is 0.7 db , and temperature coefficient of delay is 25 ppm per deg C. Dimensions of the unit are $6 \times 3 \times 2-7 / 8 \mathrm{in}$. and weight is 3 lb .
Columbia Technical Corp., Dept. ED, 61-02 31st Ave., Woodside 77, N.Y.
Booth 1112.

Plastic Potentiometers
Resistance is 250 ohms to 150 k

These $1 / 2$-in. plastic potentiometers have a resistance range of 250 ohms to 150 K . The power rating is up to 3 w at 65 C , life expectancy is $10,000,000$ cycles, and resolution is essentially infinite. Standard independent linearity is $\pm 0.5 \%$; linearity can be lower on special orders. Units meet Mil specs.
Ace Electronics Associates, Inc., Dept. ED, Somerville, Mass. Booth 1813-1815.

Test Point Connectors
Have 28 contacts

The 672-8 series of 28 -contact test point connectors has right angle pins for dip soldering to

460
BINARY COUNTERS

TRANSISTORIZED

ACTUAL SIZE

\%/8" DIA. × $21 / \mathrm{g}^{\prime \prime}$ SEATED
If you use binary counters
. . You should select from Walkirt's big assortment of proved reliability, encapsulated counters. We make NPN and PNP types, Germanium or Silicon, in many physical configurations. We'd like you to compare our circuit performance and our price list with any other counter. For example, compare these brief specifications of the type PM7253 "ECONOMY LINE" binary pictured.

- max. FREQuency............Over 800 KC
- RISE TIME.............Less Than $0.25 \mu \mathrm{~S}$
- LOAD.... \qquad Will Directly Drive 2 Triggered Circuits Per Output - has "SEt" and "reset" terminals

sales offices in phincipal cities

ELECTRONIC DESIGN • March 16, 1960

Impalidilymalaility Sudility
are the key words for
 Iime Iater H14.
designed and produced by

See us at the show, Booth \#1223

THERMMAL

 COUTRNIS. IIIC. and O.K. ELECTRONICS41 RIVER ROAD NORTH ARLINGTON, N. J. circle 205 on reader-service card
a printed circuit board. Closed-entry contacts accept a $0.08-\mathrm{in}$. test probe. Three stainless steel, threaded mounting-holes are integrally molded into the body. Contacts are phosphor bronze, gold plate over silver plate. Molding material is glass filled diallyl phthalate as per MIL-M-19833.
Continental Connector Corp., Dept. ED, 34-63 56th St., Woodside 77, N.Y.
Price \& Availability: Price varies with quantity and specifications. Delivery is in 45 to 60 days. Booth 2307-2309.

Phase-Angle Meter

For measuring in the vicinity of 90 deg

Designed for measuring phase angles in the vicinity of 90 deg , model OPS-100 phase-angle meter consists of an 8-w power oscillator and a variable phase-shifter having a range of 90 ± 10 deg. The resolution and incremental accuracy is 0.05 deg . The absolute accuracy is better than 0.1 deg at 90 deg and better than 0.25 deg throughout the range.

Industrial Test Equipment Co., Dept. ED, 55 E. 11th St., New York 3, N.Y.

Booth 3513.

Amplifier

Range is 300 to 1000 mc

Model UH-2(A) amplifier, constructed to have a tunable center frequency, has an operating range of 300 to 1000 mc . The range of tuning is as much as $\pm 10 \%$ of the center frequency. Broadband response is about 10 mc and the noise figure is from 5 db at 400 mc to 8.5 db at 1000 mc . The unit is furnished with a power supply which operates from 117 v ac, $60 \mathrm{cps}, 25 \mathrm{w}$.

Applied Research, Inc., Dept. ED, Port Washington, N.Y.
Availability: The unit is made on order and can be delivered in 30 days.
Booth 1110.

Now... trom Sonotone4 Big
Improvements in the quality stereo cartridge

Sonotone 10T unitized stereo at lowest price ever
New 10T cartridge sells at record low price of \$6.45.* And it covers the complete high fidelity range. 10T's unitized construction makes it easiest to install, easiest to replace. Low price means more sales-more profits.

SPECIFICATIONS

8TA \quad IOT

	ata	107
Frequency Response	Smooth 20 to 20,000 cycles. Flat to 15,000 with gradual polloff beyond.	Flat from 20 to 15,000 cycles $\pm 2.5 \mathrm{db}$.
Channel Isolation	25 decibels.	18 decibels
	${ }_{3.5}^{3.0}$ grams in cm profesesional	${ }_{5.7}^{1.5 \times 10.0} \mathrm{crams} \mathrm{cm} / \mathrm{dyne}$
Tracking Pressure	3.5 grams in professional arms 4.6 grams in chansers	5.7 grams
Output Voltage	0.3 volt:	0.5 volt
Cartridge Weight	7.5 grams	2.8 grams
Recommended Load	1.5 megohms	1.5 megohms
Stylus	Dual jewel tips, sapphire or diamond.	Dual jewel tips, sapphire or diamond.

Sonotone makes only 6 basic ceramic cartridge models... yet has sold over 9 million units... used in over 662 different phonograph models. For finest performance, replace worn needles with genuine Sonotone needles.

Sonotone of mimene num ive

Leading makers of fineceramic cartridges, speakers, tape heads, microphones.electronic tubes. In Canada, contact Atlas Radio Corp., Ltd., Toronto CIRCLE 206 ON READER-SERVICE CARO

NEW PRODUCTS at the ire show

Sweep Oscillators
Output is 2.5 v into 500 ohms

Operating from an input of 12 to 24 v , these transistorized, non-mechanical sweep oscillators have an output of 2.5 v into 500 ohms. An automatic leveling circuit keeps the output constant to within $\pm 10 \%$. Model TO-1 has a range of 950 to 3000 kc and model TO-2, 570 to 1600 kc . Control current requirements are about 0 to 35 ma across 450 ohms, 2 h , for full range. The unit will accept sweep frequencies from 0 to 1000 cps .
VARI-L Co., Inc., Dept. ED, 207 Greenwich Ave., Stamford, Conn.
Availability: The unils are furnished from stock. Booth 2209.

Microwave Power Levelers
495
Ranges are 50 to 75 db

The 500 series of microwave, power levelers control output variations from a traveling-wave amplifier or backward-wave oscillator by a feedback process. Voltage gain is 80 db max; gain is adjustable over five overlapping ranges from 47 to 80 db . Ranges are $50,60,65,70$, and 75 db . Vernier control allows flexibility of adjustment. The dc amplifier bandwidth is flat within ± 0.5 db from dc to 20 kc and -6 db at 100 kc . The units require 115 v ac at 60 cps and can be supplied for rack mounting or in cabinet models.
Menlo Park Engineering, Dept. ED, 711 Hamilton Ave., Menlo Park, Calif.
Booth 3836.

Have you sent us your subscription renewal form?

.042" wall.

recognized leadership in the design and manufacture of slip ring assemblies.

The country's leading producers of electrical and electronic equipment look to Makepeace for the design and manufacfure of slip ring assemblies.
Slip ring design for particular applications depends upon the various electrical and mechanical factors invoived. Thus, Makepeace has developed many special alloys and combination of alloys to meet a wide range of requirements. Our engineers and metallurgists are thoroughly qualified in this specialized field and will be pleased to make recommendations on your particular problem.
Complete facilities are available for the manufacture of slip ring assemblies ranging in diameter from 1"to $48^{\prime \prime}$ and larger-for General Purpose, Radio Frequency and Video Ring Circuits, High Speed Instrumentation, High Voltage Ring Circuits and Power Pulse Slip Rings. A slip ring data file is available-write for your copy.
d. E. MAKEPEACE DIVISION - PINE \& DUNHAM STREET ATtLEBORO, MASS.
CIRCLE 867 ON READER-SERVICE CARD

fine wire, thin foils, ribbon and

 tubing in noble metals andtheir alloys, for all applications.
The unique combination of properties of the noble metals continually recommend them for industrial applications. Our modern melting, wire drawing, rolling and heat treating equipment coupled with long experience in the field is at your service for production of standard and special items. WIRES: Bare drawn wire of ductile materials down to .004" -High temperature thermocouple wires-High temperature furnace windings - Potentiometer and Resistance wires Platinum clad tungsten wire.
FOILS: In platinum, palladium and gold down to $.0001^{\prime \prime}$ In iridium and rhodium as thin as .001".
TUBING: Seamless in platinum, palladium, gold and their alloys. Sizes from $.018^{\prime \prime}$ with $.004^{\prime \prime}$ wall up to $11 / 2^{\prime \prime}$ with

For complete information write for our leaflets, "Fine Wire, Foils, Ribbons" and "Noble Metal Thermocouple Wire".
BAKER PLATINUM DIVISION • 113 ASTOR STREET NEWARK, N. J.
CIRCLE 868 ON READER-SERVICE CARD

With tolerances of $20 \%, 10 \%$, and 5%

Types $1 / 4 \mathrm{M} 6.8 \mathrm{Z}$ through $1 / 4 \mathrm{M} 200 \mathrm{Z} 1 / 4$-w silicon Zener diodes come in sizes of 6.8 through 200 v , in tolerances of $20 \%, 10 \%$, and 5%. They are also offered in series or parallel matched sets with tolerances as close as 1%. Diffused-junction devices, they are especially suitable for computer use and have many applications in oscillators, dccoupled amplifiers, switching circuits, multivibrators, level-shifters, clamps, subtractors, and references.
Motorola Inc., Semiconductor Products Div., Dept. ED, 5005 E. McDowell Rd., Phoenix, Ariz.

Data Accumulator and

 Recording SystemRates are to 15,000 pps

Model 180 data accumulator and recording system accepts bi-directional input pulses at rates up to 15,000 per sec from measurements devices generating sequential pulses as a function of the parameter being measured. Each channel has a maximum storage of $\pm 999,999$ counts. A control unit supplies output programming and related readout control signals for the system. Nixie tube readout is used. The power requirement is 115 v ac.
Telecomputing Corp., Data Instrument Div., Dept. ED, 12838 Saticoy St., North Hollywood, Calif.

NEW PRODUCTS

Commutators

Provide up to 43 channels

Types 4000 C and 4000D Dataplexers provide information capacities of up to 43 channels at a 20 frames per sec rate. The units comply with IRIG standards for PAM and PDM airborne telemetry. The PDM channels are linear within $\pm 0.1 \%$ with pulse rise and decay times of $10 \mu \mathrm{sec}$. The PAM output duty cycle is adjustable between 40% and 100% with pulse rise and decay times of less than $5 \mu \mathrm{sec}$. Units operate in environments of -65 to $+100 \mathrm{C}, 100 \%$ relative humidity, 100 g shock, 100 g acceleration, and 30 g rms random vibration. Power requirement is 2.5 w .
Tele-Dynamics Inc., Dept. ED, 5000 Parkside Ave., Philadelphia 31, Pa.

Proximity Switch
402
For use in severe environments

This proximity switch is designed for use as a limit, interlock, counter, or indicator sensor under unfavorable environments such as those caused by oil, grit, and extreme vibration, consists of a sensor and a separate amplifier with a plug-in relay. These components may be located up to 150 ft apart without the use of shielded wire. The sensitivity range is from $1 / 8$ to $1 / 2 \mathrm{in}$. A centralized sensing pole increases the latitude of directional approach of the work-piece to the sensing face. It can be energized from $115 \mathrm{v}, 60 \mathrm{cps}$ power.

Micro Switch, Dept. ED, Freeport, Ill.

PROBLEMHOW TO DRIVE COSTS DOWN? HERCITE* transistor mouvis

Saveas muchau25\%

Horcite, the latest in the line of new developments at Hercon, can save you up to 25% because of the newly developed and fully tosted materials used in the materiols used in the
manufacturing of Hercite bases. Engineering tests are conclusive proof of the excellent characteristics and quality arailable with the use of these bases which have high strength of compression combined with the oxide bond of matched seals.
*Hercite (pronounced Her-kite) is a new material combination which makes it possible to produce superior quality transisfor mounts at a great cost savings. Proof-test these mounts in your plant at no cost or obligation. Free samples on requost. For this or any other glass-to-metal Seal Problem-
GET THE COMPLETE
STORY BY WRITING TO:

HERCON ELECTRONICS CORPORATION

formerly
HERMETIC CONNECTOR CORP
481 Washington Street, Newark 2, N. J.
CIRCLE 209 ON READER-SERVICE CARD ELECTRONIC DESIGN • March 16, 1960

Over 100 varieties are furnished as standard. This includes a full range of types, sizes, body materials and plating combinations. Specials can be supplied to any specification. The Whitso line is complete to the fullest extent of every industrial, military and commercial requirement.
Standoff terminals include fork, single and double turret, post, standard, miniature and sub-miniature body types-male, female or rivet mountings - molded or metal base. Feed through terminals are furnished standard or to specification.
Whitso terminals are molded from melamine thermosetting materials to provide mine thermosetting materials

Body Matorials: Standard as follows-melamine, electrical grade (Mil-P-14, Type MME); melamine impact grade (Mil-P-14, Type MMI); and phenolic, electrical grade (Mil-P-14, Type MFE).

Plating Combinations: Twelve terminal and mounting combinations, depending on electrical conditions, furnished as standard.
Specials: Body materials and plating com. binations, also dimensions, can be supplied to any custom specifications.

PROMPT DELIVERY IN ECONOMICAL QUANTITY RUNS
Get facts on the most complete, most dependay? and custom molded parta. Request catalog.

9326 Byren Stroel, Schillor Perk, Illinois IChicogo Suburbl
CIRCLE 210 ON READER-SENVICE CARD

Snap-Acting Switch

Provides dpdt control

With two basic type A, snap-acting switch mechanisms in a single housing actuated by the same operating button, this switch, type DA , provides dpdt control of electrical circuits in automatic devices. The switch is listed at $15 \mathrm{amp}, 125$ to 250 vac . Horsepower ratings are: $1 / 2 \mathrm{hp}$ at 125 v $\mathrm{ac}, 1 \mathrm{hp}$ at 250 v ac or $3 / 4 \mathrm{hp}$ at 125 v ac, and $\mathrm{l}-1 / 2 \mathrm{hp}$ at 250 v ac. The molded phenolic body measures $1-1 / 8 \times 1-13 / 16 \times 41 / 64 \mathrm{in}$.; mounting is by two screws on 1 -in. centers.
The W. L. Maxson Corp., Unimax Switch Div., Dept. ED, Ives Road, Wallingford, Conn. Price \& Availability: Available from stock. Price is $\$ 2.40$ when ordered in quantities of 1 to 99 . Quantity discounts available.

Trimming Potentiometer
378
Has a 3.5 w power rating

Available with insulated leads or printed circuit plug-in pins, this trimming potentiometer has a power rating of 3.5 w at room temperature and 0.35 w at 175 C . Resistance values range from 50 to 100,000 ohms. This component withstands 30 g vibration at 30 to 2000 cps , and 100 g shock in any axis. It has a stability of 30 ppm nominal to 190 C reaching a zero power and total weight is 5 g .
Aero Electronics Corp., Dept. ED, 1745 W. 134th St., Gardena, Calif.
Price \& Availability: Delivery is from 2 to 3 weeks. Prices range from $\$ 9.50$ to $\$ 12.15$. Quantity discounts.

before the bird takes off

During preflight checkout, ground power supplies must be meticulously monitored to avoid limping undervoltage, crippling overvoltage.

How?

beckman Expanded Scale Voltmeterswith accuracy to a fraction...readability to hundredths! That's vital volt-splitting at the moment of "Go-No Go," when operation depends upon precise power input with no room for guesswork. (And no trifling with "average" readings: BECKMAN AC meters give honest, direct

splitting

Helipot offers you hundreds of models ...either AC or DC. . . in divers shapes, sizes and voltage ranges. (Not to mention voltage monitoring packages. which may include our expanded scale frequency meters and linear scale ammeters, too.) All have uncommon accuracy in common, plus resolution ten times that of conventional meters!

Incredible?
Make us prove it by asking for Data File C124

Beckman $/$ Helipot ${ }^{\circ}$
Helipot Division of
Beckman Instruments, Inc.
Fullerton, California
Engineer:ing representatives in 29 cities

potentiometors e dials • delay lines , expanded scale meters • servomotors - breadboard parts CIRCLE 211 ON READER-SERVICE CARD

NEW PRODUCTS

Vibration Equipment 486
Monitors and amplifies signals
Model 2702 Dyna-Monitor is a laboratory system that monitors and amplifies vibration, shock, pressure, and force signals. It provides vtvm readout or direct reading in g's or other parameters; a $10-\mathrm{mv}$ input gives full-scale meter reading and 10-v output. A frequency response of $\pm 5 \%$ with 20 - ft of driven cable, is: 3 cps to 10 kc with $1000-\mu \mu \mathrm{f}$ source capacitance or greater; 5 cps to 10 kc with 500 - to $1000-\mu \mu \mathrm{f}$ source capacitance; and 10 cps to 4 kc with 200 - to $500-\mu \mu \mathrm{f}$ source capacitance.
Endevco Corp., Dept. ED, 161 E. California Blvd., Pasadena, Calif. Price \& Availability: Delivery is approximately 10 days. One channel is priced at \$950, two channels at $\$ 1350$, and three channels at $\$ 1750$.

Wire and Strip

489
Are coated with aluminum oxide
This flexible, aluminum-oxidecoated wire and strip can withstand temperatures up to 1100 F , and in certain forms, are good at temperatures as high as 1900 F . The insulating thickness can be controlled from 0.00008 to 0.001 in . Heat properties for aluminum-oxide insulation are: melting point, 3600 F ; linear coefficient, 5×10^{8}.

Permaluster, Inc., Dept. ED, 2012 W. Burbank Blvd., Burbank, Calif. Price \& Availability: Available from stock and made on order. Price is $\$ 50$ per lb or 1000 ft , depending on gage and size. Quantity discounts available.

Solderless Terminals 484

Come in all tongue types
These Avikrimp style solderless terminals come in all tongue types: ring, hook, spade, flanged spade, and rectangular. They are reinforced by a seamless tin-plated brass sleeve attached over the regular terminal barrel. In addition, they have a per-

NEWI LOW COST all-electronic, totally-transistorized DIGITAL MULTIMETERS

NOW IN A SINGLE 51/4" OR 83/4" $\times 19^{\prime \prime}$ PANEL Digital Multimeters for measuring any combination of AC/DC volts, AC/DC ratios, and resistance, with pre-amps for higher sensitivities, and optional electrical outputs and print control capabilities!

This new line of all-electronic, solid state instruments meets the growing requirement for precision, multi-purpose measuring instruments. Any combination of AC and DC voltages, AC and DC ratios, resistances... every electrical parameter which is of interest to the instrumentation designer... can now be measured quickly, accurately, with a single instrument.

Unmatched specifications! These Multimeters are the first to have a combination of high input impedance, 4 digit accuracy, automatic ranging, automatic polarity and high speed in a single instrument!
All electronic, solid state circuitry! Exclusive use of transistors and diodes provides a light, compact instrument possessing exceptionally high reliability and accuracy. The experience of more than 6,000 digital instruments has gone into their design.
Unique reference supply gives unequalled stability! For these new instruments, EI has developed a preregulated, twin Zener diode bridge with the Zener diodes in a temperature-stabilized oven. Temperature stability and drift characteristics of this reference
are better than $.005 \%$ and unequalled in the industry. Easily integrated into semi- or completely automatic systems! These new instruments refiect EI's active participation in the building of small and medium size digital systems. All necessary control logic is available at rear panel connectors for external control. Every instrument is ideally suited for automatic input signal conditioning or scanning operation Models with electrical outputs will operate directly in multi-point scanning and print-out data logging systems without any additional circuitry or auxiliary equipment.
Electrical outputs optional! Where "hard copy" of test results is not required, the addition of electrical outputs and print control capabilities is a costly, unnecessary luxury. EI provides these new instruments, in every measuring configuration, either with or without these features.
Sensitivity control eliminates effect of noisy readings ! A front panel sensitivity control is provided on each of the instruments to overcome unusual noise con ditions and give, as a by-product, a qualitative meas urement of the noise present.

FLIP-TOP BOX CONSTRUCTION
FOR EASY MAINTENANCE.

Electro Instruments, Inc.
pick the instrument that exactly meets ir needs and order by model number!

Volis/astio/ac voilishesthat \qquad
oc vorisisicis hation

variations of these basic models including AC ratiometers, millineters, microvoltmeters and specialized measuring instruments ted to individual systems requirements are available in the same cal configurations.

Faster conversion times, higher input impedance, greater accuracies, plus all of the other specifications you wanted in a digital multimeter! DC VOLTAGE SPECIFICATIONS: Apply to all instruments incorporating the pre-amplifier

Range: $\pm .00001$ to 0.09999 ;
1.000 to 9.999 ; 1.000 to 9.999;
10.00 to $99.99 ;$
100.0 to 999.9

Accuracy: $0.02 \% \pm 1$ disit for 10 $.09999 \mathrm{y} ; 0.01 \% \pm 1$ digit
input Impedance: 1000 megohms up to 9.999
Averase Reading time: 50 milliseconds
Operating Ambien
Temperatur
Maximum Source
Impedance: 5 K ohms on 10 microvolt Automatic Features: Ranmine polerity

DC VOLTAGE SPECIFICATIONS: Apply to all instruments except those incorporating the pre-amplifier

Range: $\pm .0001$ to $\pm .9999 ;$
± 1000 華 99.99 :
Accuracy: $0.01 \% \pm 1$ digit
Input Impedance: 1000 megohms to $\pm 9.999 \mathrm{v}$:
Average Reading Time: 50 milliseconds
Max. Balance Time: 200 milliseconds
Operating Ambien
Temperature: $0.50^{\circ} \mathrm{C}$
Automatic Features: Ranging, polarity
DC RATIO SPECIFICATIONS: Apply to all instrument measuring DC ratios

Range: . 0000 to $.9999^{\circ}$
Accuracy: ± 1 digit
Input impedance: 1000 megohms
Average Reading Time: 50 milliseconds
Roference Voltage: 10 volts $+10 \%$ (nominal)
Reference Input
Impedance: 1000 megohms Operating Ambient $\quad 0.50^{\circ} \mathrm{C}$ With properly chosen reference supply, ratios of
up to 100 times unity may be measured.
aC voltage specifications: Apply to all instruments measuring AC voltages

Range: | .0000 to 9999 VAC; |
| :--- |
| 1.000 to 9.999 VAC; |
| | 1000 to 9.9 .99 VAC :

1000 to 999.9 VAC
Accuracy: 0.1% and two digits
Frequency
Requal 30 cps to $10,000 \mathrm{cps}$
input Impedance: 1 mesohm shunted by 30 mmfd up to 9.999 VAC. 10 megohms shunted by 30
mmfd up to 999.9 VAC Average Reading Time: $\begin{gathered}2 \text { secs. low freq.: } 1 / 2 \text { sec. } \\ \text { freq. (} 400 \mathrm{cps} \text { and } u p \text {) }\end{gathered}$

Operating Amblent
Tomporaturo: $0-50^{\circ} \mathrm{C}$
Automatic Features: Ranging
RESISTANCE SPECIFICATIONS: Apply to all instruments measuring resistances

Ranse: 000.1 ohms to 999.9 ohms: 1000. ohms to 9999. ohms;
10.00 K ohms to 99.99 K ohms: 100.00 Kohms to
Accuracy: $0.01 \%+1$ dirit to $99.99 K$
ohms: $0.03 \%+1$ digit to $999.9 \mathrm{Kohms} \pm$
Average Balance Time: 200 milliseconds
Operating Ambiont
Tome $0.50^{\circ} \mathrm{C}$
Automatic Features: Ransing (decimal point
ELECTRICAL OUTPUT SPECIFICATIONS: Apply to all instruments incorporating electrical outputs - Both 2.4-2.1 Binary Coded Decimal and 10 Line
manently attached nylon insulating sleeve which extends beyond the metal support sleeve.
ETC Inc., Dept. ED, 990 E. 67th St., Cleveland 3, Ohio.
Price \& Availability: Available from stock. Can be delivered in 2 weeks. Prices are from $\$ 27.25$ per thousand and up, depending on size and quantity.

Laminates

Are copper clad

Called grade $320-\mathrm{R}$, with rolled copper foil, and grade 320-E, with electrolytically deposited copper foil, these materials are made with a paper-base phenolic laminate. Base stock is translucent and can be cold punched in thicknesses to $1 / 16$ in . The copper foil is available on one or both sides and is 99.5% pure. Rolled copper thickness options are $0.0014,0.0028$, or 0.0042 in . Electrolytically deposited foil thicknesses are 0.0014 or 0.0028 in .
Taylor Fibre Co., Dept. ED, Norristown, Pa .
Price \& Availability: Can be delivered 10 to 14 days after order received.

Chassis Slides

Have up to 200 lb capacity

These chassis slides come in eleven stock lengths from 10 to 30 in., in 2 -in. increments. The Mark 10 series consists of units $1-3 / 4 \mathrm{in}$. in height, and a rated capacity of 100 lb ; the Mark 20 series slides are 2-1/2-in. high, and have a $200-\mathrm{lb}$ capacity. Models in both series may be flush mounted against the enclosure skin or air flow panel. There is no protruding hardware in operation. The available models include: shelf type, front rail type, standard, 1 position tilt up, or all position.
Markline Electronic Products Inc., Dept. ED, 7227 Whitsett Ave., N. Hollywood, Calif.
Price \& Availability: Can be delivered 5 days after receipt of order. Prices range from $\$ 11.50$ per pair to $\$ 50$ per pair, depending on size and model.
CIRCLE 212 ON READER-SERVICE CARD

Gertsch
 Complex Ratio Bridge

-measures both in-phase and quadrature voltage ratios - with high accuracy

This instrument cancels quadrature effects, giving a sharp, true null.

In eliminating quadrature voltage, this Gertsch bridge achieves an in-phase ratio accuracy as good as 0.001%. Quadrature voltage ratios are read as rectangular coordinates, tangent of phase-shift angle, or magnitude of phase-shift angle in degrees directly.

Write for complete data in Bulletin CRB.

CIRCLE 213 ON READER-SERVICE CARD

NEW PRODUCTS

Cable Tester

Test voltages are 500, 1000, and 1500 v dc

Able to test up to 96 conductors for both hi-pot and continuity, this portable multi-conductor cable tester has hi-pot test voltages of 500,1000 , and 1500 v dc and insulation resistance settings of 1 $2,3,4$, and 5 meg . Consisting of two separable halves, the instrument can be used for testing inplace cables when both ends of the cable are accessible. A 96 -light indicator panel gives instantaneous indication of continuity. The instrument also indicates crossed wires. Operation is from a 115-v 60-cps line.
Leemath, Inc., Dept. ED, Oak Drive, Syosset, N.Y.

Metalized Ceramic Components 380
Come in tube, rod, and custom shapes

This line of metalized components includes both steatite and alumina ceramics in tubes, plate rods, and custom shapes. Conductive coatings of silver and platinum with electroplated coatings of copper, nickel, silver, and tin are applied to the components. Applications for the components include: metalized ceramic housings for hermetically sealed resistors, capacitors, transformers, diodes and rectifiers; metalized solder seal terminals, micromodule wafers, and printed circuits.
Duramic Products, Inc., Dept. ED, 426 Commercial Ave., Palisades Park, N.J.
Price \& Availability: Made on order only. Delivered 30 days after order received.

ECONOMICAL

YARDNEY SILCAD ${ }^{\text {© }}$ BATTERIES

You'll use and reuse your YARDNE SILCAD over 2,000 to 3,000 partial cles... 300 to 500 complete discharge Here is true year-in, year-out econom

This, among other factors, explain, why the long-life, maintentance-fre YARDNEY SILCAD is being used mor and more in military and commercia fields - as a compact, lightweight ant rugged power source in portable TV ant radio and tape recorders . . . in radio controlled models ... in electric cars an trucks . . . in photographic equipmen such as lighting, photoflash and camer drives

(2)
 YARDNE ELECTRIC CORP.

Pioneers in Compact Power" ${ }^{\circ}$ $40-50$ LEOMARD STREET. NEW YORK 13. NEW YOR
(C) Patents granted and pending.
C. $\mathbf{1 9 6 0}$ by Yardney Electric Corp

Son You it the IRE Show-Booth \#2127
ELECTRONIC DESIGN • March 16, 196

Panel Mounting Electronic Voltmeters ("PMEVS")

These miniaturized instruments provide sophisticated monitoring performance in sophisticated monitoring performance in space of a meter, they build reliability and versatility into systems and equip ment. Always connected and ready for ment. Always connected and ready for than cumbersome test lead devices.
Basic models can be easily adapted to special requirements, so there's no need to waste valuable engineering time and energy in building your own electroni voltmeters.
Styles include commercial, militarized
ingle and multiple range Prompt delivery.

For Quick Transistor Testing Metronix Model 545-B presents directly on the meter the Beta parameter, the input impedance and the collector cut-off current of ger manium and silicon Iransistors. For both production lines and laboratories. Test it ourself on special 10 day memo billing.

Jack Panel

412
Made of aluminum

Series 2800 light-weight jack panel is made of anodized aluminum. It mounts 24 jacks per row, and 48 jacks per strip, on $5 / 8-\mathrm{in}$. centers. A narrow designated strip for each row, with a stop for each insert, is included. Both commercial and military types can be furnished.
Switcheraft, Inc., Dept. ED, 5555 N. Elston Ave., Chicago 30, Ill.

Delay Line

413
Input-output impedance is 1 K

Model RM-1080 magnetostrictive delay line permits range markers to be generated for calibration purposes in the video section of radar. The first video pulse output is at $3.05 \mu \mathrm{sec}$ and is followed by $6.1-\mu \mathrm{sec}$ echos. The first marker output level is 25 mv . Pulse decay is 1 db and the inputoutput impedance is 1 K . The unit weighs 0.25 oz , has a diameter of 0.25 in . and is 1.5 in . long. Control Electronics Co., Inc., Dept. ED, 10 Stepar Place, Huntington Sta., L.I., N.Y.

Hipot Tester

596
Provides from 0 to 10 kv , ac and de
This unit is made up of a 0 to 10 kv ac and dc sensitive hipot tester, a testing sequence control panel, and a testing compartment. The electronic fault relay is adjustable in six steps from 5 to $5000 \mu \mathrm{mp}$. Dual scale panel meters show voltage and leakage current on each component being tested. Both a straight ground return and a guarded high voltage return are available. Input is standard $115 \mathrm{v}, 60 \mathrm{cps}$.
Peschel Electronics, Inc., Dept. ED, RFD 1, Patterson, N.Y.
Price \& Availability: Made on order only. Delivery is 45 days after order received. Price is $\$ 2000$ per unit.

critical to many of the most complex military and industrial control systems are Diehl Servomotors and electromechanical components.

DIEHL AC Servomotors are made in output ratings ranging from 1 to 750 watts . . . in 60 cycle frequencies for land and shipboard operation . . . 400 cycle frequencies for airborne service. DC Servomotors produced by Diehl are available in ratings up to $21 / 2 \mathrm{HP} \ldots$ and in combination with DC Tachometers.

Diehl produces an extensive line of high precision equipment: servomotors, resolvers, potentiometers, generators, servo amplifiers. In sum, the range of instrument servo components for automatic control. Major development work is in progress.
Whatever your critical need - development assistance or actual electromechanical hardware - you'll find that they'll best be filled at Diehl.
For complete details on this important source of service and supply, write for the Diehl facilities brochure.

Vists es of IRE Show Booths 1819-23
DIEHL MANUFACTURING COMPANY
a sumgiolagy or the simaer manufactuming company

Somerville, New Jersey

 CIRCLE 217 ON READER-SERVICE CARD

NEW PRODUCTS

Interval Timer

Comes in three types

Model 142 recycling interval timer comes in three types: bench type, rack panel mounted, and drop-in chassis type. The unit operates within the ranges of 50 msec to 1 sec , or 1 to 90 sec . It has independently adjustable on and off time intervals. The repeatability of the timing intervals is within 3%. Power requirements are $115 \mathrm{v}, 60$ cps; three terminals are provided for use in connecting the recycling load to the spdt relay contacts.

Fellow Engineering Co., Dept. ED, 1168 Meadowbrook Road, Altadena, Calif.
Price \& Availability: Delivery is from 2 to 4 weeks from receipt of order. Prices range from $\$ 69.50$ to $\$ 84.50$, fob Altadena, Calif.

Lamp Holder

For neon and incandescent bulbs

Model 856 lamp holder, for both neon and incandescent bulbs, mounts in a $7 / 16-\mathrm{in}$. hole. A two-terminal type holder, it can be used in missile test stands, aircraft, computers, as well as laboratory, production, and quality control equipment. A lens which permits optimum light dispersion is used. The mounting space is 0.58 in .
The Sloan Co., Dept. ED, 4029 Burbank Blvd., Burbank, Calif.

Have you sent us your subscription renewal form?

NEW CWSTOMEDSOLDER PREFORMS IMPROVE AUTOMATIC SOLDERING

New customed preforms consist of an accurately predetermined amount of a specific alloy. The proper melting temperature and correct volume of solder are assured. Labor costs are lowered. Production inWrite for 8 page Guide to Preform Soldering.
Write for B pase Guide
21-01 43rd Ave., Long Island City 1, N. Y.
CIRCLE 219 ON READER-SERVICE CARD

FOR SMALL PARTS AND ASSEMBLIES
Simplifies, improves and speeds up component production. Provides local heat to otherwise inaccessible spots. Safe and simple. Max. power input 775 watts, 100 watts standby 115 volts, 60 cycles. $153 / 1{ }^{\prime \prime} \times 211 / 2^{\prime \prime} \times 15$ 150 Ibs. Bulletin on request. Marion Regula ment Division, Minneapolis. U.S.A. In Conado or Co., Manchester, N.H., U.S.A. Toll Conada,
Honeywell Controls Limiled, Toronto 17 Ontorio

Honeywell

CIRCLE 221 ON READER-SERVICE CARD *
ELECTRONIC DESIGN • March 16, 1960

Chart Recorder
Has 5 full-scale voltage ranges

Model 80 chart recorder has 5 full-scale, calibrated voltage ranges of 10 and 100 mv , and 1 , 10 , and 100 v , and 5 full-scale calibrated current ranges of 1,10 , and 100μ a and 1 and 10 ma . Its attenuator allows continuously variable fullscale deflections between calibrated ranges. The instrument can be operated as a zero left, zero center, or zero right recorder, and provides 4 times, full-chart width expansion on all ranges. It can be used grounded or floating up to 200 v from ground.
Yellow Springs Instrument Co., Inc., Dept. ED, Yellow Springs, Ohio.
Price: Model 80 is priced at $\$ 295$.

Voltmeter

For measurement down to 10 mv ac or dc

Model SPD-35 voltmeter measures both ac and lle voltages down to 10 mw . It has 10 standard coltage ranges in ac and dc, up to 300 v. For ac measurement, it has an input impedance of 5 meg houted by $25 \mu \mu$. Frequency range is 25 cps to (5) kc. The ac accuracy is $\pm 3 \%$ full scale up to ${ }^{(0)} \mathrm{kc}$ and $\pm 5 \%$ up to 250 kc . The dc circuit is tabilized by two feedback loops, one of which ncludes a chopper. The de accuracy is $\pm 3 \%$ on all anges. Made for built-in half relay-rack mountng in systems and consoles, it permits continuous ponitoring of critical parameters. Arc length of fe meter is $5-1 / 8 \mathrm{in}$.
Metronix, Inc., Dept. ED, Chesterland, Ohio. Price \& Availability: Price is \$430; delivery is in \% to four weeks.

This compact new gyro pro vides accurate heading information even under the severe conditions of environment frequently en countered in high performance aircraft Inder axis nstallations. Inner axis eveling loop, consisting of a liquid bubble type vertical sensor and A.C. tor quer, continuously maintains the spin axis in a horizontal plane.

TYPICAL

CHARACTERISTICS $=$ A2216
Environmental Capabilities
Vibration:
$5 \mathrm{E}, 20-100$
58, $20-1000 \mathrm{cps} ; 10 \mathrm{~g}, 1000-2000 \mathrm{cps}$ emperature Range (operative):
(non-operative):
$-65^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
zimuth Pickoff
Azimuth Pickoff
Excitation:
$26 \mathrm{~V}, 400$
Output (sinusoidal)

Motor
Excitation:
Speed: 400 cps , three phase Speed: 23,500 RPM
Power: Starting: 35
: Starting: 35 watts
Performance Characteristics Drift: $4^{\circ} / \mathrm{hr}$. max
Between 2° and $4^{\circ} / \mathrm{min}$.
Azimuth Torquing Rate:
$360^{\circ} /$ min. (intermittent)
$40^{\circ} / \mathrm{min}$. (Continuous)
Physical Features
Dimenslons: 4" dia. $\times 5 x_{6}^{\prime \prime}$ long
Weight: 5.5 lbs. (approx.)
Write for complete data.

Synchronnus Motor
Ferrites

Engineprs: Kearfott offers challenging opportunities in advanced component and system development.

CIRCLE 222 ON READER-SERVICE CARD

BASIC
BUILDING
BLOCKS
FROM KEARFOTT
fREE GYRO
A highly reliable, two degree-of-freedom instru ment utilizing AC synchros at each gimbal axis. De signed to operate under the most severe missile conditions, this gyro has AC torquers mounted at each gimbal axis to permit command positioning or slaving of spin axis to desired torquer capable of produc ing a precession prode 360° /minute with 12.5 watts/phase power input. TYPICAL
CHARACTERISTICS = 02316 Environmental Capabilities Temperature Range.
(operative): $-54^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ (omperative):- $54^{\circ} \mathrm{C}$ © $10+71^{\circ} \mathrm{C}$
(non-nperative): -65 C to $+85^{\circ} \mathrm{C}$ (non-nperative): -65 C
Altifude: Unlimited
Vitration: $10 \mathrm{~g}, 10-2000 \mathrm{cps}$

Pickoffs

Excitation: $26 \mathrm{~V}, 400 \mathrm{cps}$, single phase
Output (sinusoidal):
$11.8 \mathrm{BV} \pm 5 \% \mathrm{max}$
$11.8 V$
Error from $\mathbf{5 \%}$ E. max.: 10 min. max.
Motor
Excitation:
$115 \mathrm{~V}, 400 \mathrm{cps}$, three phase
Speed: $23,500 \mathrm{RPM}$
Momentum:
$2.25 \times 100 \mathrm{~cm} \mathrm{~cm}^{2} / \mathrm{sec}$
Caging and Preset Provision
(Electrically energized torquer type)
Excitation: 115 V max. /phase Torquer Constant:
Performance Characteristics
Free Drift
$0.5^{\circ} / \mathrm{minu}$
Runup Time: each axis
1 minute max
Torquing Rate:
$360^{\circ} / \mathrm{min}$. (intermittent)
$40^{\circ} / \mathrm{min}$ (continuos)
Physical Features
Dimensions: 4" dia. $\times 5 K_{0}$ " long
Weight: 5.5 lbs. (approx.)
Write for complete data.

KEARFOTT divimion

 c单
GENERAL PRECIBION inc.

LITTLE FALLS, NEW JIEABEY

South Contral Office: 6211 Dention Drive, Dollos, Toxos
West Coast Ofice 253 N Vinedo Avenve, Posadeno, Colif.

News and Technical Data on Plezoelectric and Magnetic Components

TRANSFILTERS ${ }^{\circ}$ AID SELECTIVITY IN HEATHKIT' "MOHICAN"

Heathkit's new "Mohican" portable communications receiver uses Clevite "Transfilters" to improve i.f. selectivity. The radio covers 550 KC to 30 mc quite a range for an all-transistor unit.
Two "Transfilter" interstage couplers (TO-01A) pass 455 KC and couple the 1 st and 2 nd and 2 nd and 3 rd i.f. stages. Two emitter bypass "Transfilters" (TF-01A) are used instead of conventional capacitors. The TO-TF combinations help give the "Mohican" excellent selectivity among remote stations broadcasting over the wide band covered.

"Mohican" Printed Circuit Chassis

Clevite "Transfilters" have pared up to 50 cents in parts cost fiom transistor receivers. They are small, rugged units with real performance advantages over conventional LC components. Clevite's factory or field sales engineers can fill you in on specifications and circuit application data. The TF-01A and TO01 A are standard items, and sell for 30 and 35 cents in 10,000 lots. Samples are one dollar. You can buy a "Mohican" Kit from Heath Co. for $\$ 99.95$ or from its distributors at a slightly higher price.

Transducer Element is Critical in Ultrasonics

In ultrasonics or sonar nothing helps like starting with the right transducer element. Should it be crystal or ceramic? Do you require a high ac drive element (like "PZT-4") or a highly sensitive pickup device (such as ADP)? Do you want a disc or tube? Will special electrodes simplify your device?
Start asking yourself these questions
while your transducer design is on paper. Then ask Clevite to supply you some experimental transducer elements and engineering data. Our engineers may not have all the answers, but some that they have you can't get anywhere else. Send today for the bible of the ultrasonic industry-"Piezotronic Technical Data" and our new bulletin "Modern Ceramic Shapes".

NEW PRODUCTS at the ire show

Frequency Doubler Sets

Models 938A and 940A cover 18 to 26.5 kmc and 26.5 to 40 kmc , respectively. They can be driven by types 626A and 628A signal generators or electronic sweep oscillators.

Hewlett-Packard Co., Dept. ED, 275 Page Mill Road, Palo Alto, Calif.
Booth 3302-3304-3306, 3401-3403-3405.

Attenuators

680
These fixed coaxial units have ranges of 1 to 12.4 kmc at 3,6 , and 10 db and 2 to 12.4 kmc at 20 db .

FXR, Inc., Dept. ED, 26-12 Borough Place, Woodside 77, N.Y.
Booth 3713-3717.

Recording and Plotting System

671
Designed for aircraft, missile and industrial applications, model $96-451 \mathrm{CV}$ has digital readout. The polarity and magnitude of the strain is presented digitally at the same time the analog value is plotted.
B \& F Instruments, Inc., Dept. ED, 3644 N. Lawrence St, Philadelphia 40, Pa.
Booth 3123.

Vacuum Oven

This vacuum baking-oven is a self-contained, package unit for outgassing and sealing semiconductor components. A high vacuum is provided. Heat, in a non-oxidizing environment, is provided for fusing and sealing.
F. J. Stokes Corp., Dept. ED, 5500 Tabor Rd. Philadelphia 20, Pa.
Booth 4126.

Booster Amplifiers

667
These compact, chassis-mounted boosters accept up to seven independent parallel inputs. The input resistor package is independent of the amplifier and connects to it by a mating plug. Overall feedback gain is more than 60 DB.

Reeves Instrument Corp., Dept. ED, Garden City, N.Y.

Booth 1305-1307.

Universal Slotted Section

VISIT BOOTH 2622, IRE, MARCH 21-24, N. Y.C.
Clevite Products Include $\left\{\begin{array}{l}\text { Magnetic Heads - Ceramic Filters - "Transfilters" } \\ \text { Piezoelectric Tranducer Element }\end{array}\right.$
Piezoelectric Tranducer Elements • Accelerometers

CLEVITE ELECTRONIC COMPONENTS
 3405 Perkins Avenue - Cleveland 14, Ohio

East Orange, N. J. . Chicago, III. - Inglewood, Callf.

CLEVITE

This single-body unit accommodates, interchangeably, slotted transmission lines covering the H and Y-bands. It can be adapted for dial indicator readings and uses a standard probe.

FXR. Inc., Dept. ED, 26-12 Borough Place, Woodside 77, N.Y.
Booth 3713-3717.
Have you sent us your subscription

CIRCLE 223 ON READER-SERVICE CARD renewal form?

iei tantalum foil electrolytic capacitors

\qquad for HIGH RELIABILITY Solid metal hermetic
seal on negative end
of polar units reduces

Only one external butt weld on polar units minimizes possibility of
lead wire breakage. (No weld on the lead wire breakage. (No weld on the negative end.) Leads on capacitors 3 lb . stress in any direction for 30 min . Welds withstand at least four "round trip" bends.

Internal Features. All electrical connections welded, for low resistanen, low power factors. Capacitor section fits snugly into metal case, resulting in good vibration resistance Plugged end of case is double:-ealed with compressed bushing and tough resin.

Toi also supplies a full line of aluminum roil miniature and sub-miniature electrolytic tapacitors. Write for bulletins 41858 and 81558. International Electronic Industries, Inc., Box 9036-E, Noshville, Tennessee.

Traveling Wave Tube 544
Bandwidth is 800 mc

Model VA-128 traveling-wave, medium-power, pulse-amplifier tube has a bandwidth of 800 mc . Peak power output is 5 kw as the driver stage for advanced coherent and frequency agile radar systems. It offers rigid control of driver tube characteristics from 2.7 to 3.5 kmc .
Varian Assoc., Dept. ED, 611 Hansen Way, Palo Alto, Calif.
Availability: Delivery time is 90 to 120 days. Booth 2714-2720.

Vhf Admittance Bridge

549

Accuracy is 2\%

Model 978 vhf admittance bridge has an accuracy of 2% from 30 to 300 mc . Capacitance is ± 40 $\mu \mu \mathrm{f}$ and conductance is 0 to 50 millimhos. A miniature thermistor element employed in a servo feedback system is used as a conductance standard. Two-terminal measurements can be made on rf components, semiconductors, transmission lines, and other devices. The test voltage is rarely more than 50 mv .
Marconi Instruments, Inc., Dept. ED, 111 Cedar Lane, Englewood, N.J.
Booth 3301-3303-3305.

Receiver

For fm , am and cw signals

Type 1908 receiver is designed for fm , am and cw signals. The if is 21.4 mc with bandwidths of 300 kc and 20 kc . The automatic gain control for am is 40 db for a $7-\mathrm{db}$ change of output. The fm output stability varies less than 2 db above $1 \mu \mathrm{v}$. The following outputs are provided: spectrum display output, 600 ohms unbalanced for external use; and 600 ohms phone output. The unit weighs about 25 lb and measures $19 \times 3.5 \times 15 \mathrm{in}$.
Nems-Clark Co., Dept. ED, 919 Jesup Blair Drive, Silver Spring, Md.
Price: $\$ 2250$.
Booth 3826-3828.

When you need the ultimate in accuracy, the utmost in reliability, the maximum in performance, the minimum in maintenance - specify DIGISYN Shaft Position Encoders. They provide a direct, single-step method of digitizing the angular position of a shaft, meet military specifications, and function in environmental extremes.

For full information on the new, ultro-precise RD-17 or other DIGISYN It encoders and accossories, write foday, or call (Boston) COploy 7-8425.

WAYNE-GEORGE
CORPORATION (ADCON DIVISION)
588 COMMONWEALTH AVENUE BOSTON 15, MASS.
"ges us at I.R.E. BOOTh \# 3232"
CIRCLE 226 ON READER-SERVICE CARD

DECISION MAKER

for simplified monitoring,

controlling, high-precision switching

Normal/abnormal high/low go/no-go: these are
important decisions being made by A.P.I. Very High Sensitivity Measuring Relays.

Direct from sensory elements or circuits, the A.P.I. measuring relay makes a decisive "yes or no" decision on the basis of very close-tolerance voltage or current changes. In typical, critical applications, this measuring relay is saying "yes or no" on a change of ± 1 microamp; or in a 400 - to 500 -volt circuit, on a variation of only a few percent.

Moreover, the relay is capable of actuating on very tiny currents: for example, total inputs as small as 0.2 microampere or 0.1 DC millivolt. It does so without signal amplification, amplifier costs or the signal distortion problems that often go along,

Performance stability is inherent; reliability is exceptional due to the A.P.I. locking-coil design. On "make", contact is firm with substantial contact pressure; contact resistance is low. On "break", separation is clean and quick without contact teasing.
$10,000,000$ perfect operations is not all-time record; it's a reasonable expectation of service life.

Widely used for precision switching in computer, control and alarm circuits, VHS measuring relays are practically unlimited in scope of application.

For more information, send for Bulletin 104-D.

ASSEMBLY PRODUCTS, INC.
Chesterland 17, Ohio

NEW PRODUCTS at the ire show

Swept Oscillator

This unit operates from 8.2 to 12.4 kmc . It has automatic gain control. The sweep frequency is linear with respect to time
FXR, Inc., Dept. ED, 26-12 Borough Place, Wood side 77, N.Y.
Booth 3713-3717.

Waveguide Components

For measurements in the communications band WR75, these waveguide components are for precise work between 10 and 15 kmc .
Hewlett-Packard Co., Dept. ED, 275 Page Mill Road, Palo Alto, Calif.
Booth 3302-3304-3306, 3401-3403-3405.

Direct-Reading Frequency Meters

679
Three terminals allow this instrument to operate as an absorption or transmission type meter. It has the same specifications as the firm's series 410 meters.

FXR, Inc., Dept. ED, 26-12 Borough Place, Woodside 77, N.Y.
Booth 3713-3717.

Control Meter

674
This switching device, having no physical contacts, sends out continuous signals after the pointer reaches a set point or until the pointer returns to the set point.
International Instruents, Inc., Dept. ED, P.O. Box 2954, New Haven, Conn.
Booth 2813.

Power Meter

This temperature-compensated unit is fully transistorized. It is more stable than uncompensated units, even at $10 \mu \mathrm{w}$.

FXR, Inc., Dept. ED, 26-12 Borough Place, Woodside 77, N.Y.
Booth 3713-3717.

Projection Video Monitor

For military and commercial requirements, model PVM remotely-controlled, high resolution projection unit can project both closed circuit and on-the-air TV pictures to a size of $9 \times 12 \mathrm{ft}$.
Blonder-Tongue Laboratories, Inc., Dept. ED, 9 Alling St., Newark 2, N.J.
Booth 3225.

Coaxial Frequency Meter

This direct-reading instrument operates over the range of 4 to 11 kmc
FXR, Inc., Dept. ED, 26-12 Borough Place,
Woodside 77, N.Y.
Booth 3712-3717.

Tough-as-tortoise-shell Armag armor is an exclusive Dynacor development. It is a thin, non-metallic laminated jacket for bobbin cores that replaces the defects of nylon materials and polyester tape with very definite advantuges -and, you pay no premium for Armag extra protection.
Tough Armag is suitable for use with normal encapsulation techniques on both ceramic and stainless steel bobbins. It withstands $180^{\circ} \mathrm{C}$ without deteriora-tion-is completely compatible with poured potted compoundshas no abrasive effect on copper wire during winding-fabricates casily to close-tolerance dimen-sions-inner layer is compressible to assure tight fit on bobbin-does not shrink, age or discolor.
Write for Engineering Bulletins DN 1500 , DN 1000 A , DN 1003 for complete performance and specification data covering the wide range of Dynacor low cost Standard, Special and Custom Bobbin Cores-all available with Armag non-metallic armor

DYNACOR
DYNACOR, INC
a subsidiary of sprague electric 1012 WESTMORE AVE., ROCKVILLE, MARYLAND CIRCLE 228 ON READER-SERVICE CARD

DC Power Supply

Adjustable from 0 to 15 v

.that possesses the mathematical logic of giant computers, yet is easy to operate and program...requires no site preparation or technical personnel...performs engineering, scientific and business computations automatically and with electronic speed, Iterates, compares, branches and handles sequences of complex operations. If you use as few as 4 desk calculators for the same job, the new Clary DE-60 can save you thousands of dollars every year!
To find out more about this versatile computer, simply mail in this coupon. No obligation, of course.

Clary Corporation Computer Division Dept. ED-1 San Gabriel, Calif. Please send me complete information on your new electronic computer, the DE-60.

Name
Company
Address
City
Franchises available to qualified principals.
Circle 229 on reader-service card

How to design better analog computing circuits with Vernistat* a. c. potentiometers

Model 850, transistorized power supply is adjustable from 0 to 15 v at any input current from 0 to 1 amp . An octal plug is used for all input and output connectors, including remote programming and remote sensing. Regulation on the unit is better than 3 mv ; ripple is less than $500 \mu \mathrm{v}$ for any combination of line or load. The unit measures $6-1 / 2 \times 3-7 / 16 \times 6 \mathrm{in}$.; $3-1 / 2 \mathrm{in}$. rack mounting panels are available.

Harrison Laboratories, Inc., Dept. ED, 45 Industrial Road, Berkeley Heights, N.J. Price: $\$ 197$.

Analog computers typically use such components as potentiometers, resolvers, and linear synchros to relate shaft position to voltage. In most applications, to tion to voltage. In most applications, to
reduce the effect of loading error, high reduce the effect of loading error, high
impedance circuits, and phase shift, a substantial amount of additional equip. ment, such as isolation amplifiers and auxiliary power supplies, is required. Size, weight, heat dissipation, and pos sibility of failure are thus greater than if loading error, phase shift and high if loading error, phase shift. and high output impedance problems did not exist

Typical of a class of equations which are incorporated into much analog computer circuitry is the relation
$\mathbf{E}_{\ldots n}=\left[K+\mathbf{A}\left(\boldsymbol{\theta}_{1}\right)\right] \mathbf{B}\left(\boldsymbol{\theta}_{21}\right)+\mathbf{C}\left(\boldsymbol{\theta}_{3}\right)$

Plated Circuit Cards
434
Have standard grid pattern and hole spacing

These plated circuit cards, called the Carte Blanche series, use standard grid pattern and hole spacing. They have circuit contact extensions and a land pattern compatible with standard 0.1-in. grid design. They can also be supplied with terminals. The universal card contains 22 fingers to fit standard plug-in, right-angle, or swage-type connectors with $0.156-\mathrm{in}$. spacing, and may be sheared or sawed to any size.

Litton Industries, U. S. Engineering Co. Div., Dept. ED, 13536 Saticoy St., Van Nuys, Calif.
Price \& Availability: Prices vary with design and quantity. For small quantity orders, prices begin at $\$ 7.75$ ea. Delivery is from stock.

Don't forget to mail your renewal form to continue receiving

ELECTRONIC DESIGN

ONE WAY TO SOLVE this relation is shown in this diagrain of a conventional resistance potentiometer computing circuit. Such circuits, however, suffer from excessive phase shift. particularly at high frequencies.

Due to high potentiometer output im pedances, the circuit requires an isolation amplifier in the multiplying channel. while summing resistors and a feedback amplifier are required in the addition section. Both of these amplifiers, as additional components, add a factor of unreliability and use more power, increasing the problem of heat dissipation.
A MORE EFFICIENT WAY TO SOLVE this equation is with Vernistat a.c. Potentio. meters. The Vernistat is an ideal com ponent for analog computer systems. It combination of a tapped autotransformer and an interpolating potentiometer uniquely provide characteristics unobtainable with other types of shaft posi-tion-voltage devices. The Vernistat prnvides precise voltage division, high input impedance, low output impedance, and the best features of the
precision autotransformer and the multiturn potentiometer
low phase shift. These characteristics directly relate to the design of improved computer circuits.

FOR EXAMPLE, in the computer circuit shown here, multiplication may be performed without the aid of an isolation amplifier, because of the Vernistat's high ratio of input to out put impedance. Addition is accomplished by utilizing voltages of opposite phase in the two computing channels obtained by a tapped input transformer. By eliminating the amplifiers of the preceding circuit, a reduction of size, weight, heat rise, and power requirements is obtained. With fewer components required, there is an over-all increase in reliability.
IN SOLVING DESIGN PROBLEMS like these, Vernistat a.c. Potentiometers offer such major advantages as: low output impedance (as low as 40 ohms) with high input impedance (as high as 200. 000 ohms) - high resolution (to 0.002%) -low phase shift (as low as 0.2 min utes) - and high terminal linearity (to 0.01%). Vernistats meet the require$0.01 \%)$. Mernistats meet the require-
ments of MIL E 005272-B. and operate ments of Mit E 005272-B.
at $125^{\circ} \mathrm{C}$ without derating.

WRITE TODAY for full description and specifications on Vernistat a.c. Potentiometers, Adjustable Function Generators, and Variable Ratio Transformers.

AT THE IRE SHOW, VISIT US IN BOOTH 2828
*vernistat ${ }^{\circledR}$ - a design concept that unites in one compact device

```
vernistat
```

Perkin-Elmer Coponation.
CIRCLE 230 ON READER-SERVICE CARD
16, 1960

TESTS PROVE IT . . . tests conducted independently by some of the nation's most critical users of component holders.*
the TESTS:

- vibration at 500 cps with 90 g peak acceleration, and at 2,000 cps with 65 g peak acceleration, for one minute
- 1,750 impact shocks at 200 g , at right angles to and also along the axis of the holder
- 100 complete cycles of component insertion and withdrawal
- all tests repeated after 15 minutes exposure to $500^{\circ} \mathrm{F}$.
the RESULTS:
- no visible shifting of the component in the holder
- no resonant frequencies developing under vibration
- dynamic holding power unchanged by heat
- dynamic holding power unchanged by use
- force needed to dislodge component increased during tests
the REASONS:
- severe vibration and shock cause the material of the holder to flex slightly, producing a closer "set" of the holder surfaces to the actual contours of the held component
atlee component holders start out with a tighter-than-usual grip, because of proper contours, construction and materials. As environmental stresses increase, this holding power automatically increases to meet the greater demand . . . because the holders actually mold themselves to the components. Here is an equipment designer's dream come true: the greater the stress, the greater the security.
DESIGN FOR RELIABILITY WITH atlee - a complete line of superior heat-dissipating holders and shields of all types, plus the experience and skill to help you solve unusual problems of holding and cooling electronic components.
- Names on request

atlee corporation
(Formerly Allas E-E Corporation)
47 PROSPECT STREET, WOBURN, MASSACHUSETTS

NEW PRODUCTS

Has a 7 amp-hr capacity

Designed for missile APU systems, model P58A silver-zinc primary battery has a capacity of 7 amp-hr, and produces 14 amp at 28 v . Maximum current for the 20 -cell unit is 50 amp . Discharge time is 30 min at 14 amp . Operating temperature range is from 50 to 150 F ; special models have wider ranges. The battery withstands 50 g shock, 20 g acceleration, and 10 g vibration, along all three axes.

Cook Batteries, Dept. ED, 3850 Olive St., Denver 7, Colo.

Circuit Tester

Type A64 semi-automatic continuity, hi-pot, and resistance tester checks 64 or 128 contacts at a time. Using the same displays, it can be modified to incorporate any multiple of 16 . The use of relays is avoided in the device. It can be used by untrained personnel. Dimensions of the standard model are 13-7/8 $\times 7-3 / 8 \times 9-1 / 4 \mathrm{in}$.

Intercontinental Dynamics Corp., Dept. ED, 170 Coolidge Ave., Englewood, N.J.

High-Vacuum

 Electronic Pumps

 Electronic Pumps}
Handles 40 liters per sec

Series 240 general purpose electronic pump handles 40 liters per sec and produces a vacuum below $1 \times 10^{-9} \mathrm{~mm} \mathrm{Hg}$ when combined with a power supply. Operating on a cold-cathode discharge within a magnetic field, the pump has no

591

GAN you

MEASURE JUNCTION

 THERMAL IMPEDANCE REPRODUCIBLY
TEST
 CONTROLLED RECTIFIERS
 DYNAMICALLY

GENERATE ONE 5000 AMP. SINUSOIDAL PULSE

EVALUATE A 500 AMP. RECTIFIER AT 1500 VOLts

 ...We Can!

BRING YOUR DIODES AND heat sinks to BOOTH \#3006

AiResearch Minifan* is an extremely high performance 400 -cycle AC motor-driven fan used for cooling airborne or ground electronic and electrical equipment. Model shown has a flow capacity of 53.5 cfm at a pressure rise of $3.44 \mathrm{H}_{2} \mathrm{O}$, and requires only 69 watts.
Minifan operates up to $125^{\circ} \mathrm{C}$. ambient. Its size and weigit make it ideal for spot cooling, cold plates or as a cooling package component. The fan can also be repaired, greatly increasing its service life.

Range of Specifications

- Volume flow: 21.5 to 53.5 cfm
- Pressure rise: . 6 to $3.44 \mathbf{H}_{2} \mathrm{O}$

Speed: 10,500 to $22,500 \mathrm{rpm}$

- Single, two or three phase power
- Power: 16 to 69 waits
- Standard or high slip motors
- Weight : . 36 to .48 lb .

A world leader in the design and manufacture of heat exchangers, fans and controls, AiResearch can assume complete cooling system responsibility. Your inquiries are invited.
-miniten is an AlRosoarch tradomark.
THE GARRETT CORPORATION AiResearch Manufacturing Division Los Angeles 45, California

CIRCLE 233 ON READER-SERVICE CARD
ELECTRONIC DESIGN • March 16, 1960

BREAKTHROUGH IN THE SCIENCE OF PRESSURE CONTROL

 digital-servo reliability crystal-determined accuracy
 WIANCKO'S Q3700 SERIES
 dIGITAL PRESSURE GENERATOR

This system, employing unique digital-servo concepts, provides instant selection of a pneumatic pressure accurate to $\pm \mathbf{0 . 0 5}$ PERCENT.
Pressure in a reservoir is measured and converted to a precision frequency. This frequency is compared with a selected reference frequency. If the frequency from the pressure sensor is high with respect to the reference frequency, the comparator produces a difference frequency in the form of pulses. These pulses then drive momentary exhaust valves until the pressure drops to the pre-selected value. When the frequency is low, error signals are produced which operate momentary pressurizing valves. The Q3700 is the best answer yet to pressure control and calibration problems.

- Programming precision pressure/time functions

Ideal for:

- Automatic end-fo-end calibration of data and telemefering systems
- Rapid calibration of pressure devices
- Ground checkout of instrument and control systoms

For complete information please request Product Bullotin 111
WIANEKO
ENGINEERING COMPANY
Precision with lanting reliability
255 North Halstead Avenue - Pasedena, Callfornle

CIRCLE 234 ON READER-SERVICE CARD
an
electronic engineer becomes an editor...

George Rostky tells "Why I Became an

Editor of ELECTRONIC DESIGN'

Abstract

George Rostky, BEE, momber of IRE and AIEE, spent 5 years as an electronic engineer before jwining Hayden Publishing Company, Inc. Now Associute Editor of Electronic Design, Mr. Rostky tells why he switched from engineer, to engi-

 neer-editor.an an editor you have the opportunity to gain a first hand, comprehensioc view of the entire industry; avoiding narrow, specialized activities.
elas an editor you can achieve the satisfaction that comes with creating clear. precise, understandable material . . . of witnessing the news at it breaks of meeting the challenge of each new article.
'an an edicer you can avoid 'sitting on a job for a month', or depth probing, in favor of fast-moving, timely projects.
"an an editor you can enjoy meettng and getting along with people, spread your interest over many engineering problems, talk the language of engineers, attend conferences, and visit many electronic plents.

ELECTRONIC DESIGN OFFERS YOU A CAREER IN EDITORIAL WORK

For further details and description of editorial positions onen, write to Edward E. Grazda, Editor, ELECTRONIC DESIGN, 830 Third Ave., New York 22, N. Y. Or begin "t once, by sending us the Resume Form in the Career Opportunities Section of this issue and circling the Reader Scrvice Number listed below. Each application will receive careful attention.

CIRCIE 929 ON CAREER INQUIRY FORM, P. 317

NEW PRODUCTS

Double-Turret Terminal
Made of Teflon

Type 2610 Teflon double-turret terminal is de signed to press fit into a $0.136-\mathrm{in}$. hole in panels from $1 / 32$ to $1 / 8 \mathrm{in}$. thick. Two over-all lengths are offered: one, having the greatest spacing between the top and middle turrets, is 0.325 in long; the other, with turrets spaced equidis tantly, is 0.365 in . long. The finish is $0.003-\mathrm{in}$. silver plate plus water dip lacquer or $0.003-\mathrm{in}$. tin-lead solder plate. Units are especially suited for use in conditions of extreme humidity and low capacity to ground.

Cambridge Thermionic Corp., Dept. ED, 445 Concord Ave., Cambridge 38, Mass.

Computer Power Supply

404
Has five outputs

This computer power supply has five outputs: $\pm 15 \mathrm{v}$ at $10 \mathrm{amp}, \pm 6 \mathrm{v}$ at 5 amp , and 48 v at 1 amp. Line and load regulation is 0.2% and ripple is less than 3 mv . All outputs are cut off when the current at any output exceeds a predetermined value. A transistorized unit, the supply measures $7.25 \times 17 \times 13 \mathrm{in}$.

Invar Electronics Corp., Dept. ED, 323 W. Washington Blvd., Pasadena, Calif.

Gold Preforms

589
For the manufacture of semiconductors
These miniature gold preforms are for use in the manufacture of semiconductor devices such as diodes and transistors. They can be used as a high temperature solder for attaching the wafer to the base tab or for making electrical contact hetween leads and studs. The gold approaches

UNIFORM TUBING

ALUMINUM

1100, 3003, High Purity, 2024, 5052, 6061, 6951 and the New High Strength Alloy UT-58.

COPPER

OFHC Copper, Phosphor Copper, 70-30 Brass, Yellow Brass, Red Brass, 18% Nickel Silver, A" Phosphor Bronze, \#25 Beryllium Copper, 30% Cupro Nickel.

NICKEL

" A " Nickel, Monel and Inconel.

STAINLESS STEEL
304, 310, 316, 321, 347, 410.

GLASS-TO-METAL SEALING
\# 52 Nickel-Iron and "Rodar"

PRECIOUS METALS

Gold and Silve Alloys.

SIZES: O.D. from 005" to .625". Wall Thicknesses down to .001". Tolerances commercial or precision down to $\pm .00025^{\prime \prime}$, on smaller sizes.

See Our Exhibit

 Booth 4047I.R.E. Show

UNIFORM TUBES,
INC. collegeville 2, pa huxley 9-7276 twx-CGVI 1044

The life of any electronic component is a hard one, and added to the work, the heat was just too much! I was down for the count when a McLean blower saved my life. Now my work is a breeze!

Mclean Ring fans \& BLOWERS Sturdy units for a variety of uses.

Extend the life of sensitive tubes, transistors and other components with McLean packaged cooling units. Prevent system failure maintain calibration and accuracy. Find out how in McLean's 1960 catalog . . . 44 pages of helpful information on cooling electronic equipment. McLean's rack-mounted fans and blowers are smart, compact, easy-to-install and have a multitude of mounting jossibilities. Over 100 models in yarious panel heights and CFM's. Mil.Spec.equipment for packaged cooling also available.

WRITE TODAY
44 Page Packaged
Cooling Catolog

T1. 1 ENGINEERING LABORATORIES
World Loader in Pockogod Cooling
Princeton, N. J. - WAlnut 4-4440 TWX Princeton, Now Jorsoy 636
see us af the I.R.E. Show-booth 1624 CIRCLE 237 on reader-service card
99.999\% purity. Shapes such as discs, cups, small washers with large holes, spheres, and small cubes are offered. Except for the spheres, all are stamped from foil. The gold is alloyed with antimony, germanium, silicon, gallium, and other elements. Alpha Metals, Inc., Dept. ED, 56 Water St., Jersey City 4, N.J.
Price \& Availability: The products are made to customer specifications and can be delivered in about 14 days. Price is furnished on request.

Modules for Digital Systems
408
Size is $3-1 / 16 \times 3-3 / 8 \mathrm{in}$.

For the assembly of digital systems, these transistorized modules measure $3-1 / 6 \times 3-3 / 8 \mathrm{in}$. and weigh about 1.5 oz each. Flip-flops, shift registers, multivibrators, one-shots, dc logic, and other types are ivailable. Uses are in digital systems, automation, timing and control, data processing, test equipment, instrumentation, and digital servos.
Control Equipment Corp., Dept. ED, 19 Kearney Rcl., Needham Heights 94, Mass.

Power Dividers
411
For airborne applications

Made for airborne applications, these power dividers feature an impedance of 50 ohms and a vswr of less than 1.3:1. For two-way or three-way power division, the following bands are available: L, C, S, and X. Different connector and flange types can be supplied. The units weigh from 2.5 to 4 oz .
Transco Products, Inc., Dept. ED, 12210 Nebraska Ave., W. Los Angeles 25, Calif.

Heart of the Control System

"DIAMOND H" Relays

Look into the heart of the control system for a missile, a computer, a nuclear submarine, or a great many other critical applications. You might be surprised how often you'll find "Diamond H" relays.
Unless, of course, you're one of the increasing number of engineers who've already selected "Diamond \mathbf{H} " relays for a spot where they just have to work despite all sorts of adverse conditions.
Hart makes relays of three basic types: miniature, hermetically sealed, aircraft-missile relays (Series R/S); high speed, sensitive, polarized relays (Series P), and general purpose AC, DC relays (Series W).
Technical literature outlining the wide range of characteristics available with each type relay is yours for the asking. You'll find "Diamond \mathbf{H} " engineers uncommonly adept at working out a variation of the basic designs to meet your set of specific requirements.
Tell us your needs . . . by phone, wire or letter.

T A TR MANUFACTURING THE TrICIC COMPANY

210 Bartholomew Ave., Hartford 1, Conn. CIRCIE 238 ON READER-SERVICE CARD

Since 1942 the Bird Electronic Corporation has met the challenge of a constantly growing electronic industry. Today, enlarged engineering facilities demonstrate our intention to maintain leadership in our field. A wide range of coaxial line instruments and accessories are being designed to meet a variety of specifications; and new applications are continuously being sought.
In addition to experience and established leadership, Bird has the physical facilities to produce and dependably deliver coaxial line instruments and accessories meeting your highly exacting requirements.

CIRCLE 239 ON READER-SERVICE CARD

NEW PRODUCTS

Coaxial Attenuators
Operate from dc to 4000 mc

The AD series of coaxial microwave attenuators operates from dc to 4000 mc and has an input power rating of 15 w . The units consist of two or more tee section pads cascaded to distribute the power dissipation. Cooling fins are provided to minimize temperature rise. Maximum vswr is 1.20. All attenuators are constructed to meet the environmental requirements of MIL-E-5272B.
Microlab, Dept. ED, 570 W. Mount Pleasant Ave., Livingston, N.J.
Price \& Availability: Available for immediate delivery from stock. Prices range from $\$ 45$ to $\$ 65$ depending on the attenuation and connectors.

Switching Transistor

 631
Average turn-on time is $4 \mathrm{~m} \mu \mathrm{sec}$

Type 2N1468 silicon npn transistor has an average turn-on time of $4 \mathrm{~m} \mu \mathrm{sec}$ while switching 40 w peak power with an average power dissipation of 250 mw . For operation to 125 C , it has applications in computers, sampling oscilloscopes, klystron pulsing, and other advanced equipment. Parameters include emitter cut-off current varying from 0.01 ma avg to 1 ma max. Avalanche and collector-to-emitter voltage vary from 40 v min to 70 v avg. The unit employs a JEDEC TO-5 case and a JEDEC E3-44 base.
Raytheon Co., Semiconductor Div., Dept. ED, 215 First Ave., Needham Heights, Mass.

Molybdenum Sheet Metal

594
For use in semiconductor products
This molybdenum sheet metal, available in both nickel-clad and copper-clad types, is particularly suitable for use in semiconductor products, such as silicon power rectifiers. For these rectifiers, discs punched from the sheet provide high electrical conductivity and a temperature coefficient of expansion approaching that of silicon.

BABCOCK RELAYS

 1640 Monrovia Ave., Costa Mesa. Calif.
IRE SHOW BOOTH M-16
CIRCLE 240 ON READER-SERVICE CARD
CIRCLE 240 ON READER-SERVICE CARD

YOKE DISTORTON

your problem?

Uniform magnetic fields
Produced in Celco

Precision

Deflection

Yokes

Minimize

SPOT

DISTORTION

Exclusive Celco core materials make it possible to achieve faster recover/ times, minimum hysteresis, high linearities and maximum sensitivities.
Contact Celco Engineering Department for a fast solution to all your yoke problems.
Celco produces a complete line of standard or special commercial and military ard or special commercial
precision deflection yokes.

Celco Constantine Engincering Saboratories Co.

Main Plant: ManWaf, M. J. DAvis 7.1123 - Pacificic Division - Cucamonga, Calif. - Yukon 2-2688 - Central Divisison, Lanestoror, Pa. ULysseses 3.350 Southern Divislon, Mismi, Fla; - wison 5-264

The product also has many uses in electronic tube applications. It is available in thicknesses of 0.01 to 0.08 in . and in widths to 4 in . Standard thickness of the cladding is 0.0005 to 0.001 in . It is suitable for both military and industrial applications.

General Electric Co., Lamp Metals and Components Dept., Dept. ED, Cleveland 12, Ohio. Price \& Availability: The product is currently available on order only. Price is quoted on request.

Instrument Knobs

592

More than 50 variations available

These aluminum instrument knobs are precision engraved to customer requirements. Six basic sizes with over 50 variations are offered. They have shaft sizes from $1 / 8$ to $1 / 4 \mathrm{in}$. and are supplied with two Allen type setscrews. Mil specs are met.

Vemaline Products Co., Dept. ED, P.O. Box 222, Hawthorne, N.J.
Price d Availability: Price is $\$ 0.65$ per unit. $\$ 0.60$ when ordered in quantities of 51 to 250 , and $\$ 0.35$ for 251 to 500 . Delivery time is 10 days.

Power Supply

466
Gives 300 to 500 v de output

Designed for chassis or sub-chassis use, model RS-505 power supply provides an output of 300 to 500 v dc at 0 to 50 ma continuous duty. Input is 105 to 125 v ac, 55 to 400 cps ; line and load regulation are 0.02%. Ripple and noise is less than 7 mv peak-to-peak, and recovery time is less than $25 \mu \mathrm{sec}$. The unit measures $5 \times 4-1 / 8 \times 6-1 / 2 \mathrm{in}$.

Trans Electronics, Inc., Dept. ED, 7349 Canoga Ave., Canoga Park, Calif.
Price \& Availability: Chassis units purchased from stock at $\$ 94$; $\$ 118$ for unit rack mounted without meters; $\$ 151.25$ per unit rack mounted with meters.

Have you sent us your subscription renewal form?

GROW WITH ARESEARCH IN ELECTRONICS

- AiResearch Central Air Data Computer for North American's A3J, Navy's first weupon system, protides information dealing with liombing, navigution, engine inlet control, radar, automatic flight control and cockpit instrumentation.
Expansion in electronics and electromechanical activity is creating excellent openings at all levels for qualified engineers. Diversified programs include Central Air Data systems on the North American A3J, McDonnell F-4H and the Lockheed F-104 as well as other commercial and military aircraft and missile projects.

Openings in the following areas:

- FLIGHT SYStems research General problems in motivation and navigation in air and space; required background in astronomy, physics, engineering.
- DATA SYSTEMS RESEARCH Experience with physical measuring devices using electromagnetic, atomic, thermionic and mechanical approaches.
- COMTROLS AMALYSIS Work in preliminary design stage involves servomechanisms analysis and analog computer techniques.
- FIGHT DATA COMPONENTS Analysis proposal, design and development work in the following specialties: circuit analysis, servo theory, transducers, transistors, airborne instrument and analog development of high and low temperature problems.
- ELECTROMAGNETIC DEVELOPMENT Work with magnetic amplifiers requires knowledge of electromagnetic theory, materials and design methods.
- InSTRUMENT DESIGN Electromechanical design of force-balance instruments, pressure measuring devices, precision gear trains and servo-driven positioning devices. Experience in electrical and electromagnetic transducers desirable.
- AIRBORNE IWSTRUMEMTATION AMALYSIS AMD DESIGN Work involves solving problems in accuracy, response and environmental effects.

Send resume to:

Mr. R. K. Richardson

THE camRETT
AiResearch Manufacturing Division
-ses ©o. sepulveda mlvo., los angelirs AE, califonnia
CIRCLE 927 ON CAREER INQUIRY FORM, P. 317
the

fastest

oscilloscope

fastest rise time of all sampling oscilloscopes	- $0.4 \mathrm{~m} \mu \mathrm{~s}$ rise time
fastest sweep speeds	- $0.05 \mathrm{~m} \mu \mathrm{~s} / \mathrm{cm}$
fastest rep rates	- to 300 mc w. model 603 trigger unit
and	
highest sensitivity	- up to $2.5 \mathrm{mv} / \mathrm{cm}$ ($30: 1$ SNR at full scale deflection)
easiest to use	- no critical adjustments
most versatile	- complete line of options and accessori

AT There are more Lumatron Mil-
ATW@RKR $\begin{aligned} & \text { limicrosecond Sampling Oscillo- } \\ & \text { scopes in use than any other type }\end{aligned}$ of at Rayhheon, NRL, Bureau of Standardy, Texas Instruments, Transitron, Hughes, General Tran sistor and many others.

LUMATRON - FIRST IN MILLIMICROSECOND INSTRUMENTS See the complete line of instruments for all fast rise time applications AT IRE - BOOTH 3059 or write for complete information and new Millimicrosecond Engineering Data Chart EI)-3.

Lumatron
electronics
I .umatron Electronics, Inc., 116 County Courthouse Rd., New Hyde Park, L. I., N. Y.

NEW PRODUCTS

Delay Line for Computers
Rise time is 7\% of time delay

Developed to meet the needs of computer applications, type 7C delay line features a rise time of 7% of time delay. The frequency response is over a $10-\mathrm{mc}$ bandwidth with attenuation less than 1.2 db per $\mu \mathrm{sec}$ delay at low frequencies. Temperature range is -35 to +125 C and temperature coefficient is 0.005% per deg C. The vswr is 500 v peak. For units having a delay of 1μ sec or less, the size is $0.5 \times 0.5 \times 3.75 \mathrm{in}$. There are more than 36 types available with time delays of 0.1 to 1.5μ sec and impedance from 150 to 1000 ohms.

AD-YU Electronics Laboratory, Inc., Dept. ED, 249-259 Terhune Ave., Passaic, N.J.

Precision Dials

Used for turns counting
Model RBC, which has two set screws, and model RBD, designed for applications where black-matte finish and white-filled numerals are preferred, have been added to the RB series of turns-counting dials. Mechanically, both models are identical. Working parts consist of two coaxial dials; the inner is calibrated in hundredths of a turn, the outer in full turns. The number of completed turns is visible in a window directly opposite the index. Capacity of the dials is 15 full turns.
Beckman Instruments, Inc., Helipot Div., Dept. ED, 2500 Fullerton Road, Fullerton, Calif.

Drift Field Transistors

For am battery receivers

These drift field transistors are for front-end applications in am battery receivers. Type 2N1425 if amplifier type provides a useful power gain of 30.4 db in a common-emitter circuit without a neutralizing network. In circuits where maximum power gain is needed with neutralization, it provides 34 db . Type 2 N 1426 converter type provides a useful conversion power gain of 37.6 db in a common-emitter circuit with a de collector-toemitter voltage of -11 v and an emitter current of 0.65 ma .

Radio Corp. of America, Semiconductor \& Materials Div., Dept. ED, Somerville, N.J.

637
Now
you can try the famous 960
Transistor and Crystal Diode Tester in your own plantwithout obligationand convince yourself that you won't find a unit comparable to this PRECISION instrument for your electronic maintenance requirements

The Model 960 is a comprenensive tes: set designed for practical, reliable
checking of transistors and crystal
cied diodes. Specialized circuitry and oper ating parameters have been engineeren
in cooperation with leading semi-con in coineration with eading semi-con
ductor manufaeturers. Self-containeed
$A C$ power suply AC power supply compietely eliminatee
the necessity for batteries. ONLY 899.95

-One of 25 PRECISION Instruments
listed in the new 1960 Catalog of in: listed in the new 1960 Catalog of in.
dustrial Electronic Test Equipment and Panel Meters. Write today, for yo

PRECISION APPARATUS COMPANY, Dept. ED. 3 0.31 84th Street, Glendale 27, L. I., N. Y.
[] We would like to evaluate the Model 960 in
\square Send us the New Catalos of Industrial Elec.
tronic Test Equipment and Panel Meters.
Name of Company
Street Address
City________Stane
Signed.
 ritie.

Our Local Electronic Parts Distributor Is
(please print)
CIRCLE 244 ON READER-SERVICE CARD ELECTRONIC DESIGN • March 16, 193

for tubes such as:

4×1504
4×1500 4×2508 40x250B 7034 7035 4×250F

Designed for use with high-power Designed for use with high-power transmitting tubes, these sockets are molded of low dielectric, loss-factor Kel-F plastic. Sockets are available screen grid by-pass capacitors. control grid contact "guide" is machined for greater alignment ac-curacy-all contacts are low-resistance, silver-plated beryllium copper. Tube pin contacts are heat treated to provide positive contact pressure as well as extended li.e-annealed soldering tabs may be easily bent or formed. High qualicy, heat resistant, steatite chimney also a vail able to direct air fow through tube cooling fins.
For details and complete specifications write for free catalog listed below:

CIRCLE 245 ON READER-SERVICE CARD
ELECTRONIC DESIGN • March 16, 1960

High-Gain Twin Triode

Has frame-grid construction

Type ECC88/6DJ8 high-gain twin triode with true frame-grid construction offers high reliability in such applications as industrial controls, instrumentation, and communications. Characteristics, for each section, are: plate voltage, 90 v ; grid voitage, -1.3 v ; plate current, 15 ma ; transconductance, 12,500 umhos; amplification factor, 33; and equivalent noise resistance, 300 ohms. Having a 9 -pin design, the triode is particularly suited for cascode amplifier service.
CBS Electronics, Dept. ED, 100 Endicott St. Danvers, Mass.
Price \& Availability: Units are available from stock at a price of $\$ 1.20$ ea in quantities of 50 or more.

Miniature Delay Lines

Delay to rise time ratio is $4: 1$
The miniature delay lines offered in Kit 123 have a delay to rise time ratio of $4: 1$. Five lumped constant delay lines are available with delays of $0.1,0.25,0.5,1$ and $1.1 \mu \mathrm{sec}$. Designed for transistor and printed circuit applications, the units have attenuations ranging from 1% to 3%. Low insertion loss is obtained by the use of miniature toroidal inductors. The units are molded in hermetically sealed brass tubes measuring 0.4×1.5 in. and having a fused tin plate finish.
Valor Instruments, Inc., Dept. ED, 13214 Crenshaw Blvd., Gardena, Calif.
Price \& Availability: Available from stock, units are priced at $\$ 97.50$ ea.

Germanium PNP Transistors

Designed for specific uses

These germanium pnp transistors are specifcally designed for application in industrial and military hf communications, instrumentation, control, navigation, and mobile equipment. Types are designated: $2 \mathrm{~N} 274,2 \mathrm{~N} 384,2 \mathrm{~N} 1023,2 \mathrm{~N} 1066$, $2 \mathrm{~N} 1224,2 \mathrm{~N} 1225,2 \mathrm{~N} 1226,2 \mathrm{~N} 1395,2 \mathrm{~N} 1396$, and 2N1397. Characteristics include: maximum junction temperature rating, 100 C ; maximum tran-sistor-dissipation rating in free air at $25 \mathrm{C}, 120$ mw , transistor-dissipation rating with heat sink, 240 mw , and maximum collector-to-base rating, -40 v , except for the 2 N 1226 which is rated at -60 v . The units operate to 50 mc and above in rf amplifier service, and 125 mc and above in oscillator service.
Radio Corp. of America, Dept. ED, 30 Rockefeller Plaza, New York 20, N.Y.

Hermes Solid State BINARY TO DECIMAL CONVERTER

for converting any 4 bit code to decimal illuminated display

Peformus better

Cost less

Binary to Derimal
Converter, Model 260
shown approx. $1 / 2$ size

NO FALSE READOUTS

Relays and fubes eliminated
MAXIMUM RELIABILITY
100\% solid state circuirry
LONG USEFUL LIFE
No preventive mointenance required
OPERATIONAL FLEXIBLIITY
Variety of four bit codes can be converted

LATCHING CIRCUITS

Provide memory for binary information
Write for Technical Bulletin 260
Hermes

ELECTRONICS
co.
is camarioge parnway, camániogr 42, massaciusets

CIRCLE 246 ON READER-SERVICE CARD 23

What's a big railroad

know about the

little relays in a missile ?

For 75 years, we've been building tough, reliable railroad signal equipment. Our signal relays are built to stand the rock-and-roll of high-speed trains.

We have relays that have been sitting out in the boon-docks in sub-zero and desert-hot temperatures for more than thirty years--getting only the standard two-year check up. Even after three decades. they're still making and breaking a circuit three times every second of every day.

With this experience, it was natural for us to start building miniature relays for the newborn missile age. We figured the missile people wanted a reliable relay. We also figured that the wee parts would make us bug-eyed. But our designers created a 6 PDT miniature relay with just three major assemblies . . . instead of a fistful of small parts.

It's a clean-looking relay. It has a minimum number of movable parts. But, a balanced rotarytype armature is its top feature. It rotates on an axis which passes through the center of gravity of the relay. This enables the relay to effectively resist applied linear acceleration forces from shock and vibration.

Our people build a reliable miniature relay. They know it, and they're proud of it. We're sure you will agree. Contact us for information.

See us at Booth \#2122-24 at IRE Show-Mar. 21-24

"Foneers in Qush-CButton Science"

Logic Modules
499
For 100-kc operation

This line of encapsulated logic modules is designed for $100-\mathrm{kc}$ operation. Applications include portable, mobile, and airborne equipment as well as missile systems. They operate over the temperature range of 0 to 55 C ; units having a wider temperature range can also be furnished.
C \& K Components, Inc., Dept. ED, 101-103 Morse St., Newton 58, Mass.
Booth 1627.

Molding Press

 669For production of miniature components
Model 725 automatic transfer, plastics molding press is suited for the production of miniature and subminiature components, punches and dies for precision parts, TV-tube aluminizing equipment, impregnation systems for capacitors and filters, silicon rectifiers, and other devices.
F. J. Stokes Corp., Dept. ED, 5500 Tabor Road, Philadelphia 20, Pa. Booth 4126.

Speed Sensor 517

For use with rotating equipment

Model 9353B transistorized, overspeed sensor protects rotating equipment against destructive acceleration and damaging rotational speeds. When the input speed signal reaches $12.8 \mathrm{kc} \pm 1 \%$, an internal relay is tripped and 28 v dc is applied
through the relay contacts. The trip point frequency is specified by the customer. In addition to overspeed prevention, the output of the unit may be used for other control functions such as limit cycle control, offon control, and sequencing. The device is suitable for use in aircraft and ground support equipment.
Varo Manufacturing Co., Inc., Dept. ED, 2201 Walnut St., Garland, Tex.
Booth 1731.

TV Camera

Has 600 -line resolution

Model TTVC camera provides a 600 -line resolution. It has crystalcontrolled rf-modulated channels, a maximum output of 50 mv , and a video output of 1.4 v , peak-to-peak. Weight is 14.5 lb .
Blonder - Tongue Laboratories, Inc., Dept. ED, 9 Alling St., Newark 2, N.J.
Booth 3225.
Oscillator Klystron
Is liquid-cooled

Type VA-64G two-resonator oscillator klystron, having a frequency of 13.3 kmc , is liquid-cooled. It delivers a minimum of 15 w cw into a matched load. Suitable for fixedfrequency, doppler-radar navigation applications, the tube measures $3.275 \times 1.4 \times 2$ in. and weighs about 5 oz .
Varian Assoc., Dept. ED, 611 Hansen Way, Palo Alto, Calif.
Availability: Delivery time is 90 to 120 days.
Booth 2710-2720.

ilicon Transistor

High speed, general purpose

1 ype 2 N 717 npn silicon transisfor is a high-speed, general-purpose init having saturated switching fimes of less than $1 \mu \mathrm{sec}$ at 0.5 amp . The typical gain-bandwidth prodact is $\mathbf{1 0 0} \mathbf{~ m c}$. In low-level amplifier ase, the unit provides a $15-\mathrm{db}$ neutralized gain at 30 mc . Current gain s essentially flat over a two-decade tange of current. The JEDEC TO-18 package permits $1.5-\mathrm{w}$ dissipation at oom temperature. Environmental equirements of MIL-S-19500B are net.
Fairchild Semiconductor Corp., Dept. ED, 545 Whisman Road, Iountain View, Calif.
dvailability: Units are available ron distributors.
ooth 2701-2707.

Strain Gage Power Supplies

Temperature coefficient is 0.005\% per deg \mathbf{F}

Model 10-150 strain-gage, floatg power supplies have a temperaure coefficient of better than 0.005% er deg \mathbf{F}. The units are designed - furnish bridge excitation to reistant strain gages and transducers multichannel data-acquisition ystems. The shielded-line transormer and high impedance-toround permits the transmission of gnals through single-ended amplilers with little or no cross-talk brough $20,000 \mathrm{cps}$. The units can er rack-mounted in a panel measring $10 \times 3.5 \mathrm{in}$.
B \& F Instruments, Inc., Dept. D, 3644 N. Lawrence St., Philaelphia 40, Pa.
Footh 3123.

ate Table

Uses a synchronous motor Niodel 82A rate table consists of turn-platform driven by a synrenous motor. The table can be nutely operated by applying or
removing the rated voltage. A clutch-brake disengages the motor and engages the brake. Platform travel is controlled by limit switches. The table has a platform 6 in . in diameter and can handle a $2-\mathrm{lb}$ load.

Micro Gee Products, Inc., Dept. ED, 6319 W. Slauson Ave., Culver City, Calif.
Price \& Availability: Price is $\$ 2100$. The unit can be delivered in 30 days.
Booth 3846.

Traveling Wave 630 Tube Amplifier

Frequency range is $\mathbf{4}$ to $\mathbf{8} \mathbf{~ k m c}$

Model 5-542 traveling wave tube amplifier is for operation with the Raytheon traveling wave tube QK542. Frequency range is 4 to 8 kmc , output is 1 w min into a 50 -ohm load, and response is 10 cps to 10 mc . Small-signal gain is 30 db min and gain at maximum power output is 25 db . Spurious modulation in at least 35 db below the output signal level. Input voltage is 105 to 125 v , 60 cps , at about 960 va. Dimensions are $10.5 \times 19 \times 16$ in.
Alfred Electronics, Dept. ED, 897 Commercial St., Palo Alto, Calif. Price \& Availability: Price is $\$ 3190$ and delivery is from stock.
Booth 1633.

Silver-Zinc Battery
 516
 Delivers 80 w-hr per lb

Model 61700 silver-zinc battery, designed for missile applications, is capable of delivering $80-\mathrm{w}$-hr per lb . The unit is made up of 19 cells of $200 \mathrm{amp}-\mathrm{hr}$ nominal capacity and is housed in a pressurized stainlesssteel case. It weighs 140 lb and measures $11-3 / 16 \times 147 / 8 \times 11-1 / 2$ in. In typical application, it offers five cycles supplying 65 amp at a 6-1/2-hr discharge rate with three pulses of 90 amp for 1 min each. Operating temperature range is 20 to 80 F .

Yardney Electric Corp., Dept. ED, 40-50 Leonard St., New York, N.Y.

Booth 2127.

What can you do with a remarkable instrument like this?

We knew we had an outstanding instrument in our product line when this readout device was introduced several years ago. It proved to be ahead of its time during those early days, but now this remarkable precision instrument for displaying data is gaining acceptance in many industries. It's about as big as a candy bar, and it will display, store, or transfer up to 64 different numbers, letters, or symbols without using complicated conversion equipment and "black boxes."

This is an entirely new species of readout device so we had to give it a new name. the Readall* readout instrument.
We developed the Readall instrument for data display in flight control equipment. We knew the Readall instrument was fine but didn't know just how valuable it was. But one of our engineers did. He designed a complete new pipeline control system based on the new instrument. The application was a breakthrough in data handling, and the control system is a big success.
Naturally, we put the Readall instrument
on the market so systems engineers could use it to improve their control systems. We announced the Readall instrument as ". . an electro-mechanical, D.C. operated. readout device for displaying characters in accordance with a pre-determined binary code . . a compact, self-contained device . . . which can be applied to the output of digital computers, teletype receiving equipment, telemetering systems, or wherever data must be displayed."
Other systems have been developed with separate units for data display, decoding storing, and electrical readout. These separate units cost more and occupy more room. Market response confirms the need for one, small, inexpensive unit that does all three jobs. The Readall instrument serves the purpose.
We'd like to discuss possible applications for the Readall instrument with you. If you want information as to possible applications you have in mind for this remarkable instrument, please fill in the coupon.

Trademark
"Proneers in Push-CButton Science"
UNION SWITCH \& SIGNAL
DIVISION OF WESTINGHOUSE AIR BRAKE COMPANY PITTSBURGH 18, PENNSYLVANIA
Union Switch \& Signal
ATT: ADV. DEPT. Pittzburgh 18, Pennaylvenia
Here is a possible application we have in mind for the Readall instrument:
\square Send more information about the Readall instrument
Name_ Title
Company
Address
city \qquad

Soe us at Booth 铝122-24 at IRE Show-Mar. 21-24
CIRCLE 249 ON READER-SERVICE CARD

Cut your material and direct labor costs with this small, inexpensive, mass-produced relay for use in printed circuitry where the relay is selfsupporting. Designed for simple plug-in instalsuppor
The Style 1005 Relay is a single-pole, double throw relay, light in weight yet capable of withstanding severe operating conditions and rough handling

TYPICAL APPLICATIONS

Remote TV Tuning, Control circuits for recording instruments, Radiosonde, Auto headlight dimming, etc.

GENERAL CHARACTERISTICS
STANDARD OPERATING

VOLTAGES

MAXIMUM COII
RESISTANCE
sensitivity

3 to 32 VDC
0.05 watt at standard contact rating; 0.3 watt at maximum contact rating CONTACT COMBINATION SPDT CONTACT RATING Standard 1 amp.; optional ratings, with special construction, to 3 amps. Ratings apply 26.5 VDC or 115 VAC

MECHANICAL LIFE
EXPECTANCY..... 10,000,000 operations DIELECTRIC STRENGTH 500 VRMS minimum

Also available with solder lugs in open or hermetically sealed styles. STYLE 1001

For Details, call or write
PRICE ELECTRIC CORPORATION
304 E. Church Street
FREDERICK, MARYLAND
MOnument 3.5141
TWX: Frederick, Md. 565-U

Digital Modules
For military use

The MIL-T series of dynamic, l-mc digital modules conform to MIL-E-4159, MIL-E-5400, and MIL-E-16400. All unit delay lines and pulse transformers are encapsulated. Boards and fingers are doubleetched. Each module is held directly within a stainless steel frame, which bolts directly to the standard 19-in. block. The units are logically and functionally equivalent to the T-PAC series, but differ in physical format.

Computer Control Co., Inc., Dept. ED, 983 Concord St., Framingham, Mass.
Booth 3308-3310.

Vibration Equipment 518

Calibrates velocity-type pick-ups
This system calibrates velocitytype pick-ups and accelerometers used in measuring vibration. It accommodates high acceleration levels over a wide-frequency span.

MB Electronics, Dept. ED, 781 Whalley Ave., New Haven 8, Conn. Booth 3107-3108.

Power Supplies

Outputs are 30 to 330 v dc

These high-voltage, transistorregulated, power supplies are available in four models. Model PS4221 has an output of 30 to 210 v and a current range of 0 to 0.8 amp . Model PS4231 provides 120 to 330 v at 0 to) 0.8 amp . Model PS4232 provides

120 to 330 v at 0 to 1.5 amp and Model PS4222 provides 30 to 210 v at 0 to 0.5 amp . All models have an output regulation of within 0.1° against 10% change in line and load from zero to full load. Ripple and noise level for models PS4231 and PS4239 is 3 mv rms and for models PS4221 and 4292, 2 mv rms . The output impedance is less than 0.4 ohms from dc to 100 kc for the 0.8 -amp units and 0.2 ohms for the l.5-amp models. Short circuit protection is provided.

Power Sources, Inc., Dept. ED, Burlington, Mass.
Booth 1914.

Compacting Press

Processes 34 to 50 pieces per min
Model F-4 compacting press, for use in the production of hermetic seals, tantalum capacitor anodes, barium titanate shapes, ferrite cores, and other electronic components, processes 34 to 50 pieces per min. It can make parts with diameters up to $1-14 \mathrm{in}$. and depths to $1-1 / 4$ in. The press is a 4 -ton single-punch unit.
F. J. Stokes Corp., Dept. ED, 5500 Tabor Road, Philadelphia 20, Pa. Booth 4126

Shaft-Driven Ratio Transformers

371

Range is 30 to 1000 cps

These heavy-duty shaft-driven ratio transformers are recommended for use in the frequency range of 30 to 1000 cps . Input voltage can be as high as 1000 v above 400 cps ; a frequency of 2.5 cps is possible. Models RT-14 and RT-14A have a resolution in 0.001% steps; models RT-15 and RT-15R have continuous resolution. Terminal linearity is 0.001% for all models.

Gertsch Products, Inc., Dept. ED, 3211 S. La Cienega Blvd., Los Angeles 16, Calif.
Price \& Availability: The product will be available by October, 1960. Price has not yet been determined. Booth 3701-3703.

Digital Deviation Ohmmeter

Balance time is 1 sec
Model DVMI-300 digital deviafin: ohmmeter measures the resistinec around a selected nominal alue and presents the information In digital form as a percentage. The instrument uses three digits and has iii average balance time of 1 sec . t reads $\pm 5 \%$ of the total resistance 0 an absolute accuracy of $\mathbf{0 . 0 1 \%}$. It s suited for automatic measurement of temperature coefficients. Contact losures are available for Go/No-Go testing and tolerance sorting operations.
Electro Instruments, Inc., Dept. ED, 3540 Aero Court, San Diego 11, Calif.
Booth 3811.

Ball Bearing Chassis 648 slides

Precision made

Series 140 and 150 ball-bearing, hassis slides are precision made and designed for use in the ground nstrumentation of missile programs. The slide mechanisms are made of xtruded 7075 T6, a hard aluminum Alloy. Other parts are made of stainless steel. Slide widths are $5 / 16$ to $1 \cdot 2 \mathrm{in}$. Load ratings are up to 200 lh per pair. Positive locking of the lide assembly in fully extended poition is provided. Shock-block mounting is available for use in environments of heavy shock and vibration. All slides incorporate a pushbutton levering device.
Jonathan Manufacturing Co., Dept. ED, 720 E. Walnut St., Fullerton, Calif.
Booth 4514.

Transistors

Come in three types
These transistors are offered in hee different types. Type XN102 medium-power, mesa transistor is aled at $0.5 \mathrm{w}, 160 \mathrm{mc}$. Type XN102 ge manium, diffused-junction pnp levice is for hf amplifier applica-
tions where medium-power outputs are needed. Type 2 N 705 germanium pnp, diffused-junction device is for very high-speed switching applications and will attain speeds of less than 10 musec. This unit can be used in a wide variety of computer pulse and switching circuits, both saturating and non-saturating
Motorolat Inc., Semiconductor Products Div., Dept. ED, 5005 E. McDowell Road, Phoenix, Ariz.
Booth 1114-1115.

Resistance Wire

For use to 300 C
Able to stand 300 C for short periods of time, this electrical resistance wire can be used continuously at 250 C . The insulation material is Ceron ST; an overlay of Teflon is also used. Sizes as fine as 0.001 in . in diameter are available.

Kanthal Corp., Dept. ED, Amelia Place, Stamford, Conn.
Booth 4002.

Amplifier Klystron

Power gains are 25 to 35 db

Type VA-832 amplifier klystron has a three-cavity construction that provides power gains of 25 to 35 db . It operates in the range of 9.7 to 9.9 kmc , cw or pulse, delivering a minimum of 6 w cw or up to 1 kw of peak-pulsed output power. Focusing is electrostatic. The tube weighs 1 lb and measures $2-1 / 2 \times 3-1 / 2 \times$ $1-5 / 8$ in. It can be used in high altitudes without pressurization.

Varian Assoc., Dept. ED, 611 Hansen Way, Palo Alto, Calif. Availability: The tube is in limited production. Booth 2710-2720.

4)) $)$ A DIGEST OF NEW DEVELOPMENTS

published by rome cable div. of alcoar rome, n. y. pioneers in instrumentation cable engineering

OPERATION SIMPLIFICATION. A high priority request from the Pentagon points to the big need for simplification in missile control and guidance systems. Fewer components and mechanical parts are what the Defense men are looking for in the hope of cutting down the numerous failures and malfunctions in missile performance. Along the same line, an Army Colonel has called for "deprovement" as a technique for design in military equipment. What he's looking for is stuff that's "smaller and worser" rather than "bigger and better." It's a wide open invitation and everyone is welcome to suggest possible solutions!

ELECTRIC CAR REVIVAL. Fuel cells that generate electricity when hydrogen and oxygen gases are fed into special carbon electrodes may spark a revival of the electric car. Resembling in some respects a big battery, the fuel cell might offer these advantages: silent operation; no smog-producing exhaust; economy because of the high (65% to 80%) efficiency. Some 20 companies are reported working on fuel cells for everything from satellites to outboard motors.

BIG VOICE FOR THE NAVY. By the end of this year the Navy hopes to have the world's most powerful radio station in operation at Cutler, Maine. The antenna system will have two arrays, each having a center tower 980 ft . high; an inner ring of six towers 875 ft . tall; and an outer ring of six towers 800 ft . high. Some 2200 miles of copper will be used in the ground system under the antenna arrays. With transmission output up to two megawatts, radio contact will be possible even with subs lying deep in the Arctic Ocean.
gUIDE TO TESTING. A detailed breakdown of what the Department of Defense demands in the way of environmental testing for electronic component parts is still available. Components fall into one of eight distinct groups and evaluation is done in terms of 12 test areas. Write to the Office of Technical Services, Dept. of Commerce, Washington 25, D.C. and ask for "Environmental Requirements Guide for Electronic Component Parts."

DUGOUT DATA. So far it's been man against man when rival baseball team managers try to outsmart each other. But soon baseball strategy will be decided by a computer. At least that is what's going on at the University of California, where a big computer is being "given its innings." The machine weighs the desirability of thirteen possible plays against the composite batting averages of the typical big league team.

CABLEMAN'S CORNER. The subject of cable testing is an important one. This is the phase of production that determines whether or not the cable you are purchasing is in accordance with your standards and requirements. In the field of electronics and automation, cables are required to suit various stringent electrical, mechanical, and/or chemical environments. Many years of study and testing have gone into the design of test equipment to be used for these critical tests. It is not enough to know that a cable has been tested in a manner that is "essentially" the same as the required standard. Slight varia tions in equipment design or methods of tests can mean the difference between conformance and non-conformance. Make sure the test data you receive gives a true picture of the performance of your cable. When you need cable, call on a cable specialist. Phone Rome 3000 , or write to Rome Cable Division of Alcoa, Dept. 1130, Rome, N. Y.

These news items represent a digest of information found in many of the publications and periodicals of the electronics industry or related industrie. They appear in brior here tor easy and concentrated reading. Further information on each can
be found in the orikinal sources material. Sourcos will be forwarded on requeat. CIRCLE 253 ON READER-SERVICE CARD

The finished package weighs The finished package weighs
only 20 los. measures $5{ }^{\prime \prime} \times 8^{\prime \prime}$
 Point Mugu code, modulating a 1 kc carrier plus a dc time code Three sine wave and four pulse outputs are also provided, all
with only 96 T -Series circuits and 77 watts of input power.

FROM SYETEM SPECS TO BREADEOARD TO FINISHED PRODUCT IN 75 DAYS!

EECO Breadboard Kit.

That's the record set by the manufacturer of this complex airborne Time Code Generator - thanks to the compatibility of proven EECO T-Series Circuit Modules and the flexibility of the EECO Breadboard Kit.
Designed and developed for testing the fire control of manned supersonic airoraft under actual flight conditions at altitudes up to 80,000 feet, this Time Code Generator employs T-Series circuits throughout. Required accuracy of 1 part in 10^{5} was easily obtained.
HIGH DENSITY, LIGHT WEIGHT
The total package contains 96 T.Series Circuits, 14 filamenttype EECO Minisig Indicators, and power converters (the beginning of our line of compact 12 -volt EECO Power beginning of our line of compact 12-volt exco Power olume of $1 / 2$ cubic foot. In spite of this terrific packing density, the equipment still retains extreme ease of accessibility and weighs only 20 lbs . No cooling is required.
T-SERIES V8. VACUUM TUBE CIRCUITS
The use of T-Series transistorized Germanium circuits throughout resulted in great savings as against equivalent equipment designed around vacuum tube circuits. Here are some startling comparisons:

T-SERIES		VACUUM TUBE
SIZE WEIGHT	800 cu in. 20 lbs (including Dower converters)	$8,000 \mathrm{cu}$. in. 160 lbs . (plus fan and power supply)
POWER	77 watts	

GAVE TIME AND MONEY

SAVE TIME AND MONEY You, too, can develop the most complex equipment in record time with these proven EECO circuits and systems development aids. They'll save you time and money in four major areas:
1 DESIGN - You can devote full time to system design problems or unusual circuit requirements, knowing that routine circuit detail has been compatibly pre-engineered and packaged for you.
2 BREADBOARD - The unique EECO Breadboard Kit and plastic circuit cards enable you to set up, change, or take down experimental arrangements quickly - without waste of time or materials. Unit contains all necessary permanent wiring to accommodate any regular T-Series circuit. All other circuit inter-connections are made by patch cords or plugs, with prepunched circuit cards to guide you.
3 PRODUCTION - Your production problem is reduced to one of mounting sockets on panels or chassis and providing simple socket-to-socket wiring. Plug in the appropriate circuits and the system is complete.
4 CHECKOUT-The extreme reliability of T-Series circuits eliminates the need for circuit "debugging." Checkout time is reduced to a bare minimum.
Why not let proven eECO T-Series circuits and systems development aids help you solve your equipment design problems?
If you have not already requested your copy of our new Catalog No. 859, write us today on your company
letterhead.
ENGINEERED ELECTRONICS COMPANY
(a enbsidiery of Electronic Engineoring Company of California) 506 East First Street - Santa Ana, California Look for us at the IRE National Convention, New York, March 21-24 CIRCLE 255 ON READER-SERVICE CARD

NEW PRODUCTS at the ire show

Bushings

For capacitors and transformers
These hermetic, high voltage, porcelain-to-metal sealed bushings are for use in high reliability capacitors, and electronic and distribution transformers. The bonding process makes possible direct bonding of parts made of stainless-steel, coldrolled steel, or nickel-iron alloy to unglazed porcelain.
Ceramaseal, Inc., Dept. ED, New Lebanon Center, N.Y.
Price \& Availability: Units are made on order and have a delivery time of 8 to 10 weeks. Price varies from $\$ 1$ to $\$ 7$ ea.
Booth 1724.

Input Conditioning 651 Module

For strain gages and transducers
Model 1-200AM miniature plugin strain gage and transducer input conditioning module combines the
basic features of the firm's model 12-202A bridge-balance and ca ibrating unit. Up to 24 of the cha.nels can be housed in a rack adapter measuring $19 \times 7 \mathrm{in}$.
B \& F Instruments, Inc., Dept ED, 3644 N. Lawrence St., Phil delphia 40, Pa.
Booth 3123.
Transistorized Chopper

Meets Mil specs

This transistorized chopper is designed to meet MIL-5272C and MIL-E-5400. Type 2422 has a maximum drive voltage of 10 v , a maximum signal input of $\pm 5 \mathrm{v}$, and op erates over the temperature range of +130 to -55 C . Type 2441 has a maximum drive voltage of 22 v , a maximum signal input of $\pm 10 \mathrm{v}$, and a temperature range of +80 to -40 C . Type 2451 has a maximum drive voltage of 36 v , a maximum signal input of $\pm 15 \mathrm{v}$, and a
with compact, transistorized series
(Standord Models Stoctod For Quick Dolivery)

This series brings together a combination of ultra slable glass seoled crystals, matched-design sili con ransistor-oscillator circuitry, and transistorized proponional conll oven peon, inco. The resul of this odvanced engineering is trequency sto bility of 1 part in 100,000,000 per day, under normal conditions.

For information, write stating your requirements.
THE JAMES KNIGHTS COMPANY SANDWICH. ILLINOIS

CIRCLE 256 ON READER-SERVICE CARD
temperature range of +80 to -40 c. For all units, the null balance at 25 C is 200 mv .
Victory Engineering Corp., Dept. ED, P.O. Box 373, Union, N.J. Price \& Availability: Units will be available in May 1960. Price is quoted on request.
Booth 1423.

HF Microwave Diodes 534

Have low-loss figure

These low-noise, hf microwave diodes may be used as up-converters, amplifiers, limiters, barmonic generators and switches. They are particularly suitable for use as lownoise parametric amplifiers.
Sylvania Electric Products Inc., Dept. ED, 730 Third Ave., New York 17, N.Y.
Booth 2322-2332, 2415-2425.

Silicon Transistor 654

Collector-to-base rating is 120 v
Type 2N698 diffused silicon transistor has a collector-to-base rating
: 120 v which allows wider voltage swings in amplifier and oscillator circuits as well as more protection in inductive switching circuits.
Fairchild Semiconductor Corp. Dept ED, 515 Whisman Road, Mountain View, Calif.
Availability: The unit is available through distributors.
Booth 2701-270̄̈.

Frequency-Time
 628
 Standard

Consists of four instruments
This system, providing an easily operated primary frequency and time standard, consists of four in struments. Model 1l3AR frequency divider and clock makes time comparisons between model 103AR oscillator and standard transmitted time signals.
Hewlett-Packard Co., Dept. ED, 275 Page Mill Road, Palo Alto, Calif.
Booth 3302-3304-3306, 3401-34033405.

NEW... ...small...
 compact... Iight... STRANDED-WIRE FLAT CABLE
 for the ultimate in FLEXIBILITY

CICOIL Super-Fiex multi-conductor cable is ideal for use whera extrenies of temperature movement and vibration preclude the use of other materials in missile packages, computers, gyro and radar systems. they provide of eve, the most complex hatronic circuitry Superflex cables trended cenducters precisely spaced are made of specially processed silicone rubber base compound
specles are made in lenths up to 9 feet, and widit Cables are made in lengths up to 9 feet, and width determined by the size and number of conductors. cable termination can be supplied bare or with commerci molded by CICOIL to meet your requirements.
Write for new brochure and complete technical data.

CORPORATION
13833 SATICOY ST. VAN NUYS CALIFORNIA

[^10]EIECTRONIC DESIGN • March 16, 1960
a complete compact system for shaft rotation digitizing...

TELEPAK

TELEPAK is a reliable, compact system for shaft rotation digitizing in a variety of scientific and mechanical applications. The TELEPAK System consists of two basic elements:

A pulse generator which divides 360° angular rotation into as many as 2000 discrete, evenly spaced electrical pulses. Pulse formation is com pletely passive - no switches, light beams or magnetic impulse generators Rotating element (illustrated above), is a simple, low inertia disc, mounted in precision ball bearings. Generated pulses are inductively coupled to the output and amplitude is independent of rotational velocity from zero to maximum rpm.

An electronic counter/accumulator in miniaturized solid-state form provides excitation for the angle pulse generator, receives the generator pulse out-put, and continuously accumulates displacement position in decima digital form. Directional sensing and bi-directional counting enables the system to folldty both clockwise and counterclockwise motion.

The digital position convefsion is displayed visually by in-line (Nixie) readouts and is also storeo in a load driving memory for electrical readout.

- Write for Bulletin No. DI. 09 for complete Technical Data.

See TELEPAK at the IRE SHOW in New York. Booth No. 2128.

DATA INSTRUMENTS

Division of Telecomputing Corporation 12838 Saticoy Street, North Hollywood, Calif. •TRiangle 7.8181 DATA INSTRUMENTS: '"Pioneers in Data Instrumentation CIRCLE 258 ON READER-SERVICE CARD

NEW ALUMINUM-CASE HIPERMAG CORE DEFIES ABUSE, PROTECTS PERFORMANCE

All-new Westinghouse aluminum-case Hipermag cores bring you three exclusive advantages:

- Minimum height, maximum seal, excellent winding contour are provided by the new overlap flange closing of case.
- Ample insulation of wire wound directly on the case is assured by its hard, tough, black anodized coating.
- Full protection against continuous vibration, shock and temperature cycling is made possible by a new silicone damping medium developed by Westinghouse Research Laboratories. Moreover, protection of core magnetic characteristics is effective at all operating temperature ranges. Aluminum-case Hipermag cores are tested in accordance with EIA standards and are available in EIA standard sizes. Special tests and sizes can be secured. These cores, as well as polyclad hermetically sealed Hipermag cores, are available in Hipernik \mathbb{V}^{\vee} (50% oriented nickel-iron) and 4-79 Permalloy (square loop) in a variety of thicknesses.

For complete information, call your Westinghouse representative or write Specialty Transformer Department, Westinghouse Electric Corporation, P.O. Box 231, Greenville, Pennsylvania. rou can of SURE...r ris Westinghouse Watch "westinghouse lucille ball-desi arnaz shows" cbs tv alternate fridays CIRCLE 260 ON READER-SERVICE CARD

NEW PRODUCTS

Welding Equipment

Capable of 500 welds per minute, this Weldex spike welder may be used for critical welding of small parts where too much heat would damage the enclosure or delicate electronic components. The unit produces $100,000 \mathrm{amp}$ pulses of about 1 msec duration.
Metal Craft Co., Weldex Div., Dept. ED, 3300 Doris, Detroit, Mich.
Availability: Can be delivered in 14 days.

Adapter Panel

625
This adapter panel is designed for mounting the firm's 2-channel Mark II recorder in a standard 19 in. rack. The instrument may be removed from the adapter panel at any time and returned to its standard portable case.
Clevite Corp., Brush Instruments Div., Dept. EI),
37th and Perkins, Cleveland 14, Ohio.
Price: Price of the panel is $\$ 100$, fob Cleveland.

Current Transformers

623
These Donut current transformers are used to extend the range of ammeters and to provide operating current for relays. The series 700 units are available in ratios from 10:5 to $5000: 5$, with burden rating of 2.5 to 12.5 kv .

Associated Research, Inc., Dept. ED, 3777 W. Belmont Ave., Chicago 18, Ill.

Price \& Availability: Some models available from stock; other models delivered in 21 days. When ordered in quantities of 1 to 10 , price is between $\$ 9$ and $\$ 17$.

Connector Test Adapter

626
This hand-tool is used for making voltage, signal, continuity and performance tests on black boxes, components, harnesses, systems, aircraft, and missiles using AN-MS miniature, subminiature, and similar type connectors. The tool has heavy silver or gold contact plating, a bendable shaft, and fourway lead connection.
Air-O-Tronics Engineering Co., Dept. ED, Box 31, Lancaster, Calif.
Price \& Availability: Available from stock. Large quantities delivered 10 days after receipt of order. Price is between $\$ 0.90$ and $\$ 1.15$ each for quantities l to 9.

Glass-To-Copper Seals

530
The use of Copseal preforms in copper-to-glass seals permits a true oxide bond. Specific electrical resistance at 100 C is about $\log _{10} 11.1$ ohms per cm , and increases as temperature is decreased. The coefficient of expansion is 155×10^{-7}
Mansol Ceramics Co., Dept. ED, 140 Little St., Belleville, N.J.

No Muss! No Fuss! with GenRes
PRECISION RESISTOR NETWORKS.

If it can be made GenRes will make it! Custom-engineered, mass-produced Gen-Custom-engineered, mass-produced Gen-
Res Resistor Networks can be supplied in any shape or form in strict contormance with your most stringent requirements.

avallable features -

- ACCURACIES 10.005%
* 400-cycle or higher frequencies.
- Extremely 10 w quadrature voltages to as - Sizes to to customer mpecifications. TYPICAL APPLCATIONS -
GenRes Precision Resistor Networks a:a com. Ponents in such criticical applications is sum.
ming Circults.
Voltage
Dividers and ming Circulits Voltage Dividers and Binary
Networks SENO US YouR Specificirious. GENERAL RESISTANCE INC. PianRobs
430 Southern Blvd. • N. Y. 55 • CY 2-1500

Tight Tolerance Applications call for GenRes PRECISION RESISTORS

GenRes application-engineered, ultra-high reliability Precision Wirewound Resistors are
lested accurate to 01% over ested accurate to $.01 \%$ over a temperature
range from -55° io $125^{\circ} \mathrm{C}$! Oriering axial luge promed circuit and radial lead, hermetically sealed standard, ceramic and temperature
compensating types io meet any requirement. compensating types 10 meet any requirement,
rugsed GenRes WW Resistors have lemperat ture cooficients as low as $1 \mathrm{ppm} / /^{\circ} \mathrm{C}$. For such
critical critical applications as Analos Computers,
Telemeterling Equipment, Power Supplies or Telemetering Equipment, Power Supplies or
Precision Instruments see GENERAL RESIST-
ANCE first.
ALSO AVALLABLE: Temperature-sensitive GenRes resistors having temperature coefficlents of from 0 to $.6 \% /{ }^{\circ} \mathrm{C}$. and high temperature

BOOTH 3028 I.R.E. CONVEWTION GENERAL RESISTANCE wc
430 Southern Blvd • N Y 55, N. Y. - CY 2.1500 CIRCLE 261 ON READER-SERVICE CARD

E.M.I. MULTIPLIER PHOTOTUBES

For scintillation counters, spectro

 photometry. flying spot scanning. The range of phototubes made by E.M.I. Is one o. the argest. in theworld. It includes end-window types of 1^{-}to 15° diameter. with S 10 , S11. S13 and S20 cathodes, with 10 to 14 dynodes of venetian bilind type or of boxand grid or focused construction. Other tubes produced by E.M.I. inC.R.T.s, vidicons, orthicons, storage tubes and many other special
purpose electron tubes.

See our Beoth \# 1520 at
l.R.E. Nat'l Convention

HOFFMAN ELECTRON TUBE CORP.
go4 new bridge avenue westbury - L.i. n.y.
TEL: EDGEWOOD 3-n.ann

CIRCLE 262 ON READER-SERVICE CARD
ELECTRONIC DESIGN • March 16, 1960

New Marconi Capacity Bridge enables difficult measurements such as temperature co-efficients, circuit strays and tube interelectrode capacities to be easily made. Capacitors already wired into circuits can be checked without removal by the three terminal "in situ" method.
Model 1342 uses the transformer ratio arm technique which permits measurement of small capacities at the end of long screened leads to be measured without loss of accuracy.

Brief Specification

	Range:	0.002 to 1,111 $\mu \mu \mathrm{F}$	B00THS
I.R.E.	Accuracy:	$\pm 0.2 \%$	
SHOW	Resistance range:	1 to $1000 \mathrm{M} \Omega$	3301-3-5
	Frequency: Decimal poin	1 Kc automatically	

 INSTRUMENTS

WHAT DOES
 GOOD DESIGN MEAN IN A RACK CABINET

The function of a metal rack cabinet is 10 accommodate most effectively the
should be stably anchored well protected and readily accessible for maintenance and reparr

Falstrom Standardized rach catine

FALSTROM COMPANY

See us of the I.R.E. Show Booth 4313-4317 March 21-24 CIRCLE 264 ON READER-SERVICE CARD - 264 ON READER-SERVICE CARD

This is the time of our annual subscription renewal.

CIRCLE 265 ON READER-SERVICE CARD

AUGAT'S REVOLUTIONARY ELASTACLAMP*

The answer to more effective cooling of subminiature tubes!

Heat-dissipating subminiature tube shield with elastic thermal conductor

NEW PRODUCTS

Handle for Electronic Cabinets

The handle is completely recessed in a cup 9/16in. deep and 2-3/4-in. in diameter for spot-welding or riveting; it is made of stainless steel. Over-all depth of assembly from front of panel is $1-1 / 8 \mathrm{in}$.

Western Devices, Inc., Dept. ED, 600 W. Florence Ave., Inglewood 1, Calif.

Silicone Rubber

Room temperature vulcanizing silicone rubber, for potting and encapsulation, is improved through the use of RTV-992, 993, and 994 paste curing agents. The agents are easy to handle and are used in larger quantities than liquids, making for quicker and more accurate measurement.
General Electric Co., Silicone Products Dept., Dept. ED, Waterford, N.Y.

Teflon Terminal

Type ST-250L4, dual-turret type, stands high associated wiring and component pull. Designed for a chassis 0.11 in . thick, it requires a mounting hole $0.158 \pm 0.002 \mathrm{in}$. in diam. Height above the chassis is 0.406 in .
Sealectro Corp., Dept. ED, 610 Fayette Ave.. Mamaroneck, N.Y.

Rectifier Power Supplies

A complete line of semiconductor rectifier power supplies for the production and testing of tantalum and other electrolytic capacitors uses silicon or selenium elements, and vernier controlled automatic programming for adjustment of automatic formation process cycles. The units also include motor operated transformers, servo controlled and operated; filtered output; and positive-acting, dc overload protection.
Meaker Co., Sel-Rex Rectifier Div., Dept. ED, Nutley 10, N.J.
Availability: Made on order only.

Stroboscopes

TapeStrobes are devices that determine tape-speed accuracy for speeds ranging from 1-7/8 to 60 ips. Model A measures $7-1 / 2,15$, and 30 ips speeds; model B measures $3-3 / 4,7-1 / 2$, and 15 ips speeds. With a step-down adapter, model A measures 3-3/4 ips, and model B measures 1-7/8 ips.
Scott Instrument Labs, Inc., Dept. ED, 17 E. 48th St., New York 17, N.Y.
Price \& Availability: $60-\mathrm{cps}$ units immediately available. Two-week delivery for $50-\mathrm{cps}$ unit and model W adapter. Other speeds made to specific requirements. Prices: Models A \& B 60-cps units, $\$ 22.50$ each; models A \& B 50-cps units, $\$ 24.50$ each; model W adapter, $\$ 2.00$ each. Quantity discounts available.

Don't forget to mail your renewal form

 to continue receiving ELECTRONIC DESIGN.526

528

VALOR

transistorized

regulated

Power Supplies - highly reliable - moderately priced

Using advanced circuitry, Valor provides instruments of high efficiency. Fewer components are required...components are substantially derated, and assembly time is cut - hence you get more power supply per dollar.
Fast reponse: overshoot and under. shoot are controlled in peak amplitude (to 50 mv) and in time duration (to $50 \mu \mathrm{sec}$), to protect transistors being powered.
High regulation: 0.1\% line and load. Units have low ripple and low output impedance ... are compact in size.
Output range: $11 / 2 \mathrm{~V}$ to 50 V . fixed or variable... $1 / 2 \mathrm{amp}$ to 5 amps . Available in rack and cabinet models, from $\$ 175$.
IMMEDIATE DELIVERIES.

13216 Crenshaw Blvd., Gardena, Calif.
Transistorized Power Supplies and Pulse Generators • Voltage Regulators • Transistor Checkers - Delay Lines - Pulse Transformers.

ADVANEED IDEAS
 IN MEASUREMENT See them at the IRE show BOOTHS 3927-29

WAYNE RERR

Absolute standard of Low Capacitanci Available only from Wayne Kerr. A 3 -Termina
 accurate to to 0.01%. Obsole
methods of measurement.
Transformer Ratio Arm Bridges:

WAYNE RERR
Procision Low Impodance Comparator Type B-821 A 3-Terminal bridget to compare impedances
in the order of 1000 ohms against a known A he order or toco ohms a.gainst a known standern
totween
to 1.2:1.

WAYNE KERR
Procizion High Impodance Comparator Type e-921 A 3-Terminal bridge to compare impedances tandard. Accurate 50 ons against a known djustabie between $0.333: 1$ and $3: 1$.

Other Wayne Ker Meesuring
Equipment You' Want to see
Audio to VHF Bridges; Oscillators; Attenua ors; Microwave Equipment; Vibration and

Send for catalog $W-K-02$
-
Don't forget-Booths 3927-20 you don't see us at the IRE show, or can't
attend, we'll be at the WESCON show, too. It you can't wait, phone us in
Phila., LOcust 8.68201

WAYNE KERR

 CORPORATION1633 Race St., Philadelphia 3, Pa.
Representatives in major U.S. cities and Canado
CIRCLE 268 ON READER-SERVICE CARD

Word Indicator Ligh

The Roto-Tellite word-indicator lights can now be operated on 115 v ac. Any 115 v rms can be used Only solid state components are used in this unit They rebulb from the front without using any tools, mount flush, and are in conformance with MIL-E 5272B.

Master Specialties Co., Dept. ED, 956 E. 108th St., Los Angeles 59, Calif. Availability: Can be delivered 30 days after order is received.

Magnetic Shield

607
This NeticCo-Netic shield is nonshock sensitive, nonretentive, and does not require periodic anneal ing. Interfering magnetic fields are eliminated by the shield permitting potted tubes to be located close to other black box gear.
Perfection Mica Co., Magnetic Shield Div., Dept ED, 1322 N. Elston Ave., Chicago 22, Ill.
Price \& Availability: Delivery \&s 6 to 8 weeks. Price varies with quantity from $\$ 85$ to $\$ 120$.

Plug-in Enclosed Relays

610
Four types are: GMP, 1 to 3 poles, ac or dc, 5 -amp contacts; GMSP, 1 to 3 poles, ac or dc, 8-amp contacts; PGP, 1 to 3 poles, dc, with coil resistance to $10,000 \mathrm{ohms}$, sensitivity of 130 mw per pole; and PVP, 1 pole, with coil resistance to 10,000 ohms and sensitivity of 70 mw . All types have polystyrene enclosures and a 9 or 11-pin base.
Hillburn Electronics Products Co., Dept. 9D, 55 Nassau Ave., Brooklyn 22, N.Y.
Price \& Availability: Some units are supplied from stock; others require from four to six weeks for delivery. Price varies with models and is furnished on request.

Bar Knobs

609
Have sloping pointers to eliminate parallax. Two styles of series 70 bar knobs are offered in black or gray, with or without dial skirts, and in either mirror or nonreflective matte finish. Colors are available on special order
Raytheon Co., Commercial Apparatus \& Systems Div., Dept. ED, Waltham 54, Mass.

Price \& Availability: Immediately available in black. Allow 8 to 10 weeks for special color orders. Prices are between $\$ 0.75$ and $\$ 1.02$ when ordered in quantities of 1 to 99 . Quantity discounts on orders of 100 or more.

Microwave On-Off Switch

438
Model V-FSW 1 is a low-power switch with high isolation when off, low loss when on. Switching time is 1 to $2 \mu \mathrm{sec}$.
T. R. G. Inc., Microwave Component and Antenna Dept., Dept. ED, 9 Union Square, Somerville 43, Mass.
Price \& Availability: Price is $\$ 1500$ ea. The unit is made on order and can be delivered in 60 to 90 days.

CAPITOL SWITCHES are adapted to many variations of switching requirements ments. They are manually operated units featuring selective control of one or more groups of circuit combinations.

CAPITOL SWITCHES are a finely finished product, of fering maximum reliability. with smooth mechanical action. Al parts are non-cor-
rosive. Paladium contacts are rated at 3 AMP
CAPITOL SWITCHES
INCLUDE:
Illuminated single and multiple position switches, interlocking push button selease switches and telephone lever switches.
TYPICAL
APPLICATIONS
Test equipment control panels, intercommunication systems, computer systems,
TV and Radio Control sysTV and Radio Control systems, missile control systems.

WRITE FOR COMPLETE SWITCH CATALOG NO. 102
the CAPITOL machine co. 8WITCH DIVISION

36 BALMFORTH AVE., DANBURY, CONN.
Visil booth 2736, I.R.E. Show
CIRCLE 269 ON READER-SERVICE CARD

CIRCLE 270 ON READER-SERVICE CARD
16, 1960

expansien
 IS A CONSTANTAT RHEEM

Scientists \& Engineers-Physicists, Metallurgists, Physical Chemists, Electronic Engineers, Process
Engineers, Application Engineers, District Sales Managers, Sales Engineers, Jr. Sales Engineers
A growth curve that sparks the imagination of any progressive individual. Right now, the scope and diversity of activities at Rheem Semiconductor Corporation are assuming impressive proportions. Some of the country's best scientists and engineers are in charge of our spacious new facilities where the research, developmen and manufacture of semiconductor devices are constantly being expanded. Everything at Rheem points to a future filled with material success and professional satisfaction. It may be possible for you to share this future. We suggest that you inquire, now, into the specific openings available.

We look forward to seeing you at the IRE Convention in New York, March 21 thru 24th. We will be at the Barbizon-Plaza Hotel, 106 Central Park South, New York City, and our telephone number will be PLaza 7-9572. If you do not plan to attend. your resume will receive our most serious and confidential consideration.

RHEEM SEMICONDUCTOR CORPORATION

 327 Moffett Boulevard, Mountain View, CaliforniaCIRCLE 928 ON CAREER INQUIRY FORM, P. 317

ervo Indicator
Provides direct readings

Model SBI 201/111 miniature servo indicator provides direct readings proportional to the ratio of two dc signals It can indicate the ratio of any two variables or of a single variable and its excitation source. In typical applications, excitation voltage is 5 to 50 v and maximum-to-minimum signal ratios are $4: 1$ or up to $10: 1$ on special order. Accuracy is $\pm 0.5 \%$ and resolution is $\pm 0.25 \%$ of full scale. At 28 v full-scale, response time is 0.25 sec and sensitivity is 10 mv . Originally designed for missile check-out applications, the unit measures 3 in . in diameter and 7 in . in length.

North Atlantic Industries, Inc., Instrumentation Div., Dept. ED, Terminal Drive, Plainview, L.I., N.Y.

Booth 3012.

Signal Generators

Frequency range is 8.5 to 9.6 kmc

These signal generators are for use in the frequency range of 8.5 to 9.6 kmc . Variable frequency, cw microwave sources, they are frequency stabilized to a tunable reference cavity. Model 300 , designed for low-power applications, has an output of 10 mw avg and a short-term frequency stability of 1 part in 10^{s}. It weighs 20 lb . Model 500 has a power output of 500 mw , a short-term stability of 1 part in 10^{8}, and a long-term stability of 1 part in 10^{6}. The units are suitable for laboratory research, inspection, and testing. Other units can be furnished for K, C, and S-band operation. Strand Labs, Inc., Dept. ED, 294 Centre St., Newton Centre 58, Mass.
suailability: From stock.
3ooth 3007.
\& CIRCLE 273 ON READER-SERVICE CARD
ELECTRONIC DESIGN • March 16, 1960

APPLICATIONS

The Model 2102 is used to analyze fundamentals and harmonics in vibrating systems and to analyze intermodulation products in sub-audio, audio, and carrier systems. It speeds analysis of hum, noise and distortion in recorders, amplifiers and filter networks.

CONVENIENT OPERATION

The fundamental frequency component is tuned with the large calibrated dial, and the amplitude of the fundamental is adjusted to a 0 db , or reference level. Tuning the dial to the frequency of each component of interest gives the relative amplitude of that component

Basically a frequency selective vacuum tube voltmeter, Donner's Model 2102 Wave Analyzer accurately measures the amplitude and frequency of each component of a complex input wave form, whether or not the components are harmonically related.
on the panel meter. The mirror-scale panel meter reads the relative amplitude directly in percentage of the fundamental, or in db below the reference level.
BRIEF SPECIFICATIONS
FREQUENCY RANGE 30 cps to 50 kc
FREQUENCY CALIBRATION ± 3 percent plus 10 cps
VOLTAGE RANGE Full scale doflection from 160μ to
VOLTAGEACCURACY ± 5 percon
INPUT IMPEDANCE 200,000 ohm

SELECTIVITY | 3 db |
| :---: |
| CDS |

DOMESTIC PRICE ${ }^{\text {cps }}$ \$645 f.o.b. factory
Wrke for complote fechnical specilicatione. Addrose Dapt. 19-3
Donner
BCIENTIFIC
COMPANY
CONCORD, CALIFORNIA

A new high standard of connector quality and performance for Missiles, Aircraft, Computer and other Electronic Systems.

ESEON

connectors meet all MIL-5015 and MIL-C-8384 (USAF) specifications and are available in all standard sizes and contact arrangements.

ESEON

has the production capacity to assure fast delivery on both standard and special applications.

ESEON

is an outstanding specialist in hermetic as well as standard connectors.

ESECON

is unusually well prepared to create custom connectors maintaining complete research and development facilities for maintaining complete research and develo

ESEON

is able to ensure exacting quality control because all components are produced and assembled under one roof.
Look to ESCON for the solution of your connector design and delivery problems. Write for specifications literature.
BEE U8 AT BOOTH 1109 THE I.R.E. BHOW.
ESCON A Subatary or
23 BRANCH AVENUE - PROVIDENCE, R. I. CIRCLE 275 ON READER-SERVICE CARD

NEW PRODUCTS at the ire show

Servo Table
Voltage-to-angular position platform

Model 18A servo table is a voltage-to-angular position platform in two axes for subjecting vertical gyros to angular positions and rate. Operation of the table around one axis tilts the load up to 90 deg in either direction. The load may be oriented remotely through 90 deg around a vertical axis allowing the second axis of the gyro to be subjected to the same tests. The table has a platform 6 in . in diameter and can handle a $4-\mathrm{lb}$ load. It can be remotely controlled. The unit is suitable for missile and aircraft checkout.
Micro Gee Products, Inc., Dept. ED, 6319 W. Slauson Ave., Culver City, Calif.
Price \& Availability: The unit can be delivered in 30 days and is priced at $\$ 3300$.
Booth 3846.

Rack Adaptor
For subdividing circuitry into modular units

This picture frame rack adaptor makes it possible to subdivide circuitry into modular plug-in units within a single, rack-mounted assembly. Combinations of 2,4 , and 8 -in., or one 17 -in. chassis can be used. The adaptor mounts in any standard relay rack. Of rugged steel construction, it provides rigid support. Two heights and depths are available.
Alden Products Co., Dept. ED, 117 N. Main St., Brockton 64, Mass.
Booth 1508-1510.

North Atlantic Series RB500 Ratio Boxes

Modal RB-501 Rack mount

Measure A.C. Ratios From - 0.011111 To $+1.11111 \ldots$ with accuracy to 1 ppm

With any of North Atlantic's RB500 Ratio Boxes you can now measure voltage ratios about zero and unity-without disrupting test set-ups.

And-a complete range of models from low cost high-precision types to ultra-accurate ratio standards - in portable, bench, rack mount, binary and automatic stepping designs-lets you match the model to the job.
For example, characteristics cov ered by the RB500 Series include

Frequency: 25 cps to 10 kc . Accuracy: 10 ppm to 1.0 ppm Input voltage: $0.35 f$ to 1.0 '
 Input impedance: 60 k to
 1 megohm
 Effective series impedance:
 9 ohms to 0.5 ohms
 Long life, heavy duty switches

Name your ratio measurement and its probable there's a North Atlantic Ratio Box to meet them - precisely. Write for complete data in Bulletin 11F

Also from North Atlantic ...a complete line of complex voltage ratio phase angle voltmeters

今
 NORTEI ATIANTIC industries, inc.
 cas Maln Street, Westbury, N. Y. to muoed 41122
 See us at I.R.E.-Booth 3833

 CIRCLE 276 ON READER-SERVICE CARD

22" and $251 / 2^{\prime \prime}$ DEEP FOR STANDARD 19" RACK PANELS
Designed for MULTIPLE INSTALLATIONS and for use with PREM-O-RAK CONSOLE SYSTEMS.

RIGIDLY CONSTRUCTED - Frame made of 14 gauge steel. Panel Mounting of 14 gauge steel - Panel Mounting
Angles $3 / 16^{\prime \prime}$ thick . End Panels and Anors made of 16 gauge steel.

PREMIER
 METAL PRODUCTS CO.
 337 MANIDA ST., NEW YORK 59, N. Y.

WESTERN SALES OFFICE:
1485 Boyshore BIVd. San Francisco Coil Were Bivd., San Francisco, CaI. EXPORT DEPARTMENT: EMEC Grace Street, Plainview, N. Y IN CANADA: PREMIER METAI HOUSINGS, LId.

CIRCLE 277 ON READER-SERVICE CARD ELECTRONIC DESIGN • March

Drive Module

This transistor drive module is designed for the Nixie indicator tube. The transistor driver and the indicator tube, called Trixie, have a readout comprising 10 medium-voltage npn transistors in a common emitter configuration. Each transistor drives one of the indicator tube's cathodes. The modules can be triggered by 3 v at $300!\mathrm{a}$. Temperature range is -30 to +55 C .
Burroughs Corp., Electron Tube Div., Dept. ED, P.O. Box 1266, Plainfield, N.J
Price \& Availability: Price ranges from $\$ 20$ to $\$ 30$, without the indicator tube, depending on quantity. Delivery is from stock. Booth 1211-1213-1215.

Silicon Switching Diode
558
Total dissipation is 200 mw

Model FD100 diffused silicon switching diode has the following characteristics at 25 C : capacitance of $2 \mu \mu \mathrm{f}$ at 0 v dc , reverse recovery time of 4 musec , forward voltage of 1 v max at 10 ma dc , breakdown voltage of -40 v dc min , and total dissipation of 200 mw The diode is housed in a miniature glass, axial-lead package. It is intended for use in computer circuitry.

Fairchild Semiconductor Corp., Dept. ED, 545 Whisman Road, Mountain View, Calif.
Price d Availability: Units are available from stock. Production quantities have a delivery time of 30 days. Price is $\$ 6.50$ ea for orders of 1 to 99 units and $\$ 5$ for 100 or more units.
Booth 2701-2707.

-Radio Frequency Interference
Basic Teckstrip, which combines a resilient RFI gasket and a rigid, easy-to-install aluminum mounting strip, can be made in special cross-sections to solve difficult shielding problems. These special shapes make possible savings in fabricating costs and greatly simplify gasket installation.
Now, only from Tecknit comes a complete RFI gasket engineering service to aid you in the solution of the "impossible" problems. Staffed by outstanding authorities in the field, Tecknit Design Service stands
 ready to develop cost reducing special Teckstrip for you.

Write foday for a Problem Outline
Sheet and a copy of the new
Teckstrip Bulletin RF-9

Technical Wire Products, Inc
48 Brown Avenue, Springfield, N. J.
Gentlemen:
Send me complete information on Standard and Special-Shape Teckstrips.
Technical Wire Products, Inc.
48 Brown Avenue, Springfield, N. J. Phone: DRexel 6-3010. TWX: MLBN, 40

Company
Address
ciry
Zone State
Zone Sten
IRE Show
eo our oxhlbit in Booth \#4129 af IRE S
CIRCLE 278 ON READER-SERVICE CAPO

size 5 motor generator-JUST OUT!

. Here it is . . . the smallest-and lightest-motor generator combination in the industry today. And you can get it with the new Size 5 Gear Train, too. Weighing a mere 1.1 oz., the Size 5 develops a minimum stall torque of 0.11 oz . in. and has a free speed of $10,000 \mathrm{rpm}$. Units
are available for 400 cycle operation with 26 or 33 control phase winding. The control phase is split for operation directly with transistor amplifiers.
Write for complete specifications. And be sure to get all the details on our new synchro line. Daystror
Transicoil Division, Worcester, Montgomery County, Pa. Phone: JUno 4-2421.
In Canada: Daystrom, Ltd., 840 Calendonia Rd., Toronto 18, Ont. Foreign: Daystrom International Division, 100 Empire Street, Newark 12, N.J.

DAYSTROM

TRANSICOIL DIVISION
"Visit us at the I.R.E. Show-bOOTh 180s" CIRCLE 279 ON READER-SERVICE CARD

SERVICES FOR DESIGNERS

Built-in Damping Cuts

Vibration of Structural Members.

Structural members and assemblies can now be designed and produced to solve specific problems of extreme shock and vibration. This is accomplished by building high damping characteristics right into the structural fabrications. The amplification of resonant vibration is reduced by using this built-in design technique.

Called Rigidamp, these structural members are said to have a usual resonant response ranging from only 5 to 10 times the excitation vibration throughout the frequency range met in modern dynamic environments. They have an extremely flat vibration response up to 2000 cps and this frequency can be exceeded in most cases. This is in sharp contrast to the high vibration amplification of conventional structures

Damping Achieved by Laminated or

 Cellular ConstructionThe materials attain their high damping action by either special laminated or cellular construction. The laminated process is used with sheets and thin rectangular section beams. Laminates are made of conventional materials, either metal or plastic, and separated by a viscoelastic damping medium (Fig. 1).
In flexing under impressed vibrations, the laminations slide relative to each other. This sliding is impeded by the specially formulated viscoelastic material, and most of the energy of resonance is absorbed in straining the viscoelastic layer in shear.
Other structural shapes such as I-beams, channels, and angles are of cellular construction (Fig. 2). Longitudinal cells are formed throughout the length of the member. Each cell contains an insert separated from the cell walls by the viscoelastic damping material.
For equipment and systems already designed, where vibration is causing problems, strip dampers of cell-insert construction are used (Fig 3). These "fixes" reduce the resonant response of conventionally fabricated equipment, and are ideal for damping longitudinal structures.

Fig. 1. Viscoelastic damped laminated sheet. Laminates are of conventional materials, either metal or plastic.

Fig. 2. Rigidamp structural members. Viscoelastic medium between cell and insert absorbs dynamic energy when beams flex under impressed vibration.

According to the company, Rigidamp construction is the first practical development of the theory in which:

- All portions of the structural fabrication act as load carrying members.
- Materials and structures can be designed in all frequencies normally encountered in modern dynamic environments.

Rigidamp Struciures Have Electronic Applications
Possible applications of Rigidamp structures are electronic circuit boards, electronic chassis, shelves, dust covers, text fixtures, relays, and other parts. Mounting shelves for electronic equipment in a high performance Navy aircraft have been built by the company. Manufactured in production quantities these pioneer assemblies have proved in service to be capahle of satisfactory operation in dynamic environments where conventional design techniques were unable to meet specifications, the company claims.
However, high damping gains are compensated by losses in other areas. A viscoelastic damped member or structure has less load carrying capacity than conventional members of the same mate(continued on page 248)

fig. 3. Strip dampers on beams on left offer means of fixing" the resonant response of conventionally deigned structures.

Specifications	Low Voltage			High Voltage			
	Model PS4305	Model PS4315	Model PS4330	Model PS4221	Model PS4231	Model PS4222	Model PS4232
Voltage Range (VDC)	6-36	6-36	6-36	30-210	120-330	30-210	120-330
Current Range (Amps)	0.5	0.15	0.30	0.8	0.8	0-1.5	0-1.5
Regulation Against 10% Line change 0 to full load	$\begin{aligned} & .025 \% \\ & .025 \% \end{aligned}$	$\begin{aligned} & .025 \% \\ & .025 \% \end{aligned}$	$\begin{aligned} & .025 \% \\ & .025 \% \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & 0.1 \% \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & 0.1 \% \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & 0.1 \% \end{aligned}$	$\begin{aligned} & 0.1 \% \\ & 0.1 \% \end{aligned}$
Impedance (Ohms) DC to 100KC	. 1	. 02	. 02	. 4	. 4	. 2	. 2
Ripple (RMS) in Millivolts	1	1	1	2	3	2	3
Panel Height	51/4*	51/4"	$83 / 4{ }^{\prime \prime}$	51/4"	51/4"	51/4 ${ }^{\text {a }}$	51/4"

Write for complete specifications

Transistor-regulated Power Supplies for critical Commercial and Military applications

Now, first time ever . . . Power Sources, Inc., presents units backed by a full 5 -year (all components-included) warranty! New low prices on LOW voltage power supplies featuring outputs of $6-36$ volts, current ranges from $5-30 \mathrm{amps}$. high voltage power supplies at the lowest prices ever for precision transistor-regulated supplies in this power and voltage range ($30-330$ volts, to 1.5 amps). Half the size, half the weight of comparable tube-type supplies. both lines fully short-circuit protected, $15^{\prime \prime}$ deep to fit standard $19^{\prime \prime}$ racks, and guaranteed to meet published specs. Note: all units available with meters at slight extra cost.

NEW LINES!

Specty power sources sy

POWER SOURCES, INC.

BURLINGTON, MASSACHUSETTS
CIRCLE 281 ON READER-SERVICE CARD

a new symbol of magnetic progress
Two established leaders - Indiana Steel Products and General Ceramics - Combine to Serve You Better

LOUD-SPEAKER Indox V ceramic
 pet provent maigs high
nenergy level reduces speaker length and weight.

This trademark is the calling card of a new leader in science-age materials - Indiana General Corporation. It is born of a union between materials - Indiana Genera Corporation. It is born of a union between permanent magnets...the General Ceramics Company in ferrites and memory systems. Together, as Indiana General Corporation, they serve you better by placing at your disposal the brains and resources of two scientifically oriented concerns. Research and development have been the backbone of both of the original companies; both have records of significant achievement in their particular fields.
Indiana General can help you "design-engineer" your products with the latest magnetic innovations. If you have a design problem, the Indiana General sales engineer in your area will be most happy to Indiana General sales engineer in your area will be most happy to advise you. And, behind him, our experienced scientists and design engineers are available for consul

MEMORY SYSTEM
New microstack unit for coincident current memory systems saves 90 ? of space required by conventional reliable.

MAGNETRON
Powerful Hyflux Alnico V magnets improve performance in many types of micro-
wave equipment.

AUTOMATIC

 DIRECTION FINDER Ferramic "E"mag. netic core materio al helped engineers create a new concept in aircraftantenna design.

This is Indiana General Corporation

INDIANA STEEL PRODUCTS DIVISION Valparaiso. Indiana - Metallic and Ceramic Permanent Magnets
general ceramics division Keasbey, New deisey - Ferrites, Memory Products. Technical Ceramics and Chemical Stoneware
ADVANCED VACUUM PRODUCTS (Subsidiary) Stamford, Connecticut - Alumina Ceramic-to-metal Hermetic Terminals
STEARNS MAGNETIC PRODUCTS DIVISION Milwaukee, Wisconsin - Magnetic Materials Handling and Separation Equipment
THE INDIANA STEEL PRODUCTS COMPANY OF CANADA LIMITED Kitchener, Ontario - Permanent Magnets and Stainless Steel Castings

If your product involves magnets or ferrites, Indiana General can help you make it better.
Visit us at the IRE Radio Engineering Show, booths: 1310-12-14-16

SERVICES FOR DESIGNERS

rial and cross section. Also, structural damping imposes a slight increase in weight. But because many designs are based on dynamic stress level, Rigidamp designs may not require increases in weight or cross section.
Special techniques and application knowledge are required in order to achieve optimum results. For these reasons, the company does not plan to market the damped structural members as materials, but will provide design and fabrication services to solve specific problems.
Barry Controls, Inc., Dept. ED, 700 Pleasant St., Watertown 72, Mass.

Printed Circuits

Members of trade associations, professional societies, and other interested organizations can now obtain speakers to discuss the design, applications, and utilization of printed circuits. W. J. McGinley, President of the Institute of Printed Circuits, has announced that such speakers are available from a new speakers bureau developed by the IPC. Members of the IPC are available as speakers in most major cities.
Institute of Printed Circuits, Dept. ED, 27 E. Monroe, Chicago 3, Ill.

Wire and Cable Design

284
Times Wire \& Cable Co., Inc., announces an expansion of wire and cable engineering services that embraces all mechanical and electrical phases of the design and manufacture of electronic con ductors. The company is now equipped and manned to handle design problems from dc to X band, and through voltage and current handling encompassing virtually all requirements of the electronics industry.
Times Wire \& Cable Co., Dept. ED, 358 Hall Ave., Wallingford, Conn.

Computing Service

Establishment of the Douglas Computing Service to sell excess computing machine time outside the company has been announced by the Douglas Aircraft Co. The available computing equipment includes: IBM 709, 704, 701, and 650 computers as well as IBM 722 tape-to-card, IBM 720 card-to-printer, IBM 717 card-to-printer, IBM 714 card-to-tape, the Univac file computer, and the Univac tape printer. A scale of hourly rates has been established for each type of machine.

Douglas Computing Service, Douglas Aircraft Co., Inc., Dept. ED. General Offices, Santa Monica, Calif.

CIRCLE 286 ON READER-SERVICE CARD
 complisbed in a day, a week or a month. It is a constant ieam process bringing together skills of meaical science, abilities of therapists, understanding and guidance of other professional specialists and capable lay workers.
Moreover, it is a team that needs you. Since 1921 the Easter Scal program has been one of expansion in facilities and in numbers served because thousands of generous Americans recognized that through this all-inclusive teamwork, the handicapped all-inclusive teamwork, the ha
have found a fuller, richer life.

Become a team member by sending your check TODAY:

National Society
for Crippled Children and Adults 2023 W . Ogden Ave., Chicago 12. III.

Computing Coefficient of Coupling

Donald Moffat
Motorola, Inc.
Western Military Electronics Center
Phoenix, Arizona

Coefficient of coupling of an rf transformer can be calculated from Q-meter measurements. As a convenience for the designer, the method is reviewed here by Mr. Moffat, and nomograms are provided for solving the equations. To use the Mutual Inductance method, an additional nomogram is given.
(text begins on page 250)

Nomogram 1. Coefficient of coupling, given two resonant capacitances.

ENGINEERING DATA

Computing Coefficient of Coupling (cont.)

THERE ARE two ways to calculate the coefficient of coupling of an rf transformer from Q-meter measurements, and both start the same way. Leave one winding (call it the secondary) open and find a frequency f_{1} to resonate the primary with external capacity C_{1}. Then short the secondary.

First Method

To use the first method, leave the frequency unchanged and find a new capacity C_{2} to resonate the primary. Coefficient of coupling is given by

$$
k=\sqrt{1-C_{1} / C_{2}} .
$$

To solve this equation on Nomogram 1 simply join C_{1} and C_{2} with a straight line and read k where the line crosses the center scale. The range of values of the capacitors can be extended by multiplying both C scales by the same number.

Second Method

In the second method the capacity, C_{1}, is left unchanged and the primary is reresonated with a new frequency, f_{2}. Coefficient of coupling is given by.

$$
k=\sqrt{1-f_{1}^{2} / f_{2}^{2}}
$$

On Nomogram 2, a straight line be-
> chopper meets reliability standards of Army "Hawk"
photo courtegy of raytheon company waltham. mass

Every part that goes into a modern-day missile system must pass a rigid battery of tests and a thorough statistical screening to insure highest possible reliability in action.
That's why we're pleased to announce that Bristol Syncroverter choppers play an important role in guidance of the U.S. Army hawk missile, produced by Raytheon Company, Waltham, Mass., prime contractor for the complete HAWK weapons system.
Billions of operations. Bristol Syncroverter* choppers are ideal for applications requiring the utmost in statistical reliability. The Bristol life-test lab has now had miniature Syncroverter choppers running for years without failure - both with and without contact load. Just one sample: five choppers with 400 -cycle drive and $12 \mathrm{v}, 1 \mathrm{ma}$, resistive contact load have completed 26,000 hours (2.96 years) continuous operat:on-over 37 billion operations!

An extremely wide variety of standard models is available-including external coil low-noise types. For complete data, write: Aeronautical Components Division, The Bristol Company, 151 Bristol Road, Waterbury 20, Conn.
 t.m. neg. u. s. pat. orf.

ENGINEERING DATA

Computing Coefficient of Coupling (cont.)

tween f_{1} and f_{2} crosses the center scale at the correct value of k.
Although measurements for both methods are usually done on a Q-meter, it is sometimes more convenient to use a grid dip meter for the second method. Because there will be dips for both windings, the grid dip meter should be used with care, so as to identify each dip with its corresponding winding.

An example:
With the secondary open, a transformer is resonated with 45 unf. The secondary is then short-circuited and, at the same frequency, the primary resonates with $60 \mu \mu \mathrm{f}$. On Nomogram 1 draw a straight line from $C_{1}=45 \mu \mu \mathrm{f}$ to $C_{2}=$
$60 \mu \mu \mathrm{f}$ and read $k=0.5$ where the line crosses the center scale.

Because of approximations in the equations, reliability of the results is questionable for coefficients of coupling less than 0.2.

Mutual Induction Method

An entirely different method uses the inductances of both windings and the mutual inductance

$$
k=M / \sqrt{L_{1} L_{2}} .
$$

On Nomogram 3 draw a straight line from L_{1} to L_{2}. From the point where this line crosses the turning scale, draw a line to M and extend the line back to the k scale. - =

SCALE

$\mathrm{L}_{2}^{1 \mathrm{un}}$

> I E
$\stackrel{3}{3}$

Recording Heads

Specifications and mounting arrangements of approximately 60 different designs of standard recording heads appear in this four-page bulletin. Digital heads, analog heads, and special heads are dealt with. Applied Magnetics Corp., Box 368, Building 304, Santa Barbara Airport, Goleta, Calif.

Power Supplies

Airborne transistorized power supplies, models TPC-18A and 19A, are described and illustrated in this two-page data sheet. The units are designed for replacement of D-10A dynamotors as the power supply for aircraft communications and navigation receivers. Applications, schematic drawings, and specifications are included. Southwestern Industrial Electronics Co., A Div. of Dresser Industries, Inc., 10201 Westheimer Road, Box 22187, Houston 27, Tex.

Etching Printed Circuits

293
Booklet No. Q-24, entitled "Industrial Uses of Kodak Photo Resist," contains complete instructions for the use of the firm's etching materials in printed circuit applications. The products are used where extreme definition with copper plates or copper laminates is required. Graphic Reproduction Sales Div., Eastman Kodak Co., Rochester 4, N.Y.

Radar and Communications

294
An airborne manual and panoramic receiver, missile electronic program generator, air to ground transceiver, and a mobile communications center are some of the systems illustrated in this 19-page brochure. Radar systems featuring size and weight reduction, transistorized Xband radar and transponder beacons are included. Military communications projects are illustrated by photographs and line drawings. Designers for Industry, Inc., 4241 Fulton Parkway, Cleveland 9, Ohio.

Transistors

295
Electrical and mechanical data, and performance design characteristics for a series of pnp silicon alloy transistor are covered in three bulletins, two pages each. The transistors, types 2 N 1440 , 2 N 1441 , and 2 N 1442 , meet the requirements of JEDEC 30 and MIL-T-19500 A. Design characteristics include 200 C junction temperature, device dissipation of 400 mw at 25 C and 170 mw at 125 C . The components are designed for low level amplification, small signal and medium power applications. National Semiconductor Corp., Danbury, Conn.

Servo Analyzers

Block diagrams, performance details, and a list of applications for the 200 series of servo analyzers are included in this four-page brochure. Details are given relative to direct readout and automatic plotting capabilities which provide frequency in cps, phase angle in degrees, and amplitude ratio in db . Metrolog Corp., 169 N. Halstead St., Pasadena, Calif.

Metals and Alloys

Lists of metals and alloys for the semiconductor field, and high-purity metals for special solder applications appear in this six-page catalog. Phase diagrams and charts of the elements are also included. The materials come in microform spheres, dots, washers, ribbon, or wire made to individual requirements. Anchor Alloys, Inc., 968 Meeker Ave., Brooklyn 22, N.Y.

Pulse Generator

298
Complete specifications, in addition to a photograph, of model 4120B pulse generator appear in this one-page data sheet. The unit is a source of medium power, has modular circuitry, and has a repetition rate that may be internally or externally controlled, or operated single shot. Electro-Pulse, Inc., 11861 Teale St., Culver City, Calif.

Molded Plastics

A value analysis approach to the design and purchase of plastic parts and components is presented in this eightpage illustrated brochure. Standard stock knobs that are made by the firm are also described. Write on company letterhead to Chicago Molded Products Corp., Dept. ED, 1020 N. Kolmar Ave., Chicago 51, Ill.

RF Chokes and Coils

299
Electrical parameters for the complete line of Variable Inductors are given in this two-page data sheet. The coils are available in a range of inductances from $0.1 \mu \mathrm{~h}$ to $4700 \mu \mathrm{~h}$ in 29 overlapping ranges. They are designed for printed circuit board mounting. Nytronics, Inc., Essex Electronics Div., 550 Springfield Ave., Berkeley Heights, N.J.

Wire and Cable Charts

300
Four color-coded data charts contain composite information on wires, cables, and power cords. A specification sheet, diameter and wall thickness sheet, weight sheet, and price sheet are included. All are $8-1 / 2 \times 11 \mathrm{in}$. with universal binder punch. Hatfield Wire \& Cable Div. of Continental Copper \& Steel Industries, Inc., Hillside 5, N.J.

Speed Recorder

Industrial applications, principles of operation, and general specifications of type HF multi-range strip chart speed recorder are given in this four-page booklet, No. GET-2741-3A. A schematic of the instrument and a description of available accessories are included. General Electric Co., Schenectady 5, N. Y.

Anodizing Aluminum

This booklet, entitled "Questions and Answers About Anodizing," gives information on the cost of anodizing aluminum, the forming of anodized parts, the amount of heat anodic films can withstand, and the effect of anodizing upon the dimension of a part. Write on comnany letterhead to Reynolds Metals Co., Dept. ED, Richmond 18, Va.

Timing and Computer Systems 302

Three data sheets describe the ZA26211 airborne time code generator, an all transistorized unit with an accuracy of one part in 10^{5}; the ZA-23833 search and control system; and the ZA-25159 computer format converter for converting radar data into magnetic tape or NRZ format. Electronic Engineering Co. of Calif., Technical Literature Section, 1601 E. Chestnut Ave., Santa Ana, Calif.

Pioneers in Electricity

"Ten Founding Fathers of the Electrical Science," the 48-page illustrated monograph on electricity's pioneers by Dr. Bern Dibner, fellow of the AIEE, is now being offered in a reprinted version. The men whose biographical sketches appear in this book are Dr. William Gilbert, Otto von Guericke, Benjamin Franklin, Alessandro Volta, Andre Marie Ampère, Georg Simon Ohm, Karl Friedrich Gauss, Michael Faraday, Joseph Henry, and James Clerik Maxwell. Copies are available at $\$ 1.00$ each from the Burndy Library, Dept. ED, Norwalk, Conn.

Laminated Plastics

303
Two copper-clad, flame retardant laminated plastics are described in bulletin No. 3.1.25.1, two pages. Fireban 321-R is a rolled copper foil material; Fireban 321-E has the copper foil electrolytically deposited. Taylor Fibre Co., Norristown, Pa.

HF Driver and Network

304
Bulletin No. SB1018, two pages, describes and illustrates the LE30 driver and LX3 dividing network. The units in conjunction reproduce the entire upper half of the audio spectrum. James B. Lansing Sound, Inc., 3249 Casitas Ave., Los Angeles 39, Calif.

Paper Tape Accessories

305
Models PR-1 auxiliary photoelectric paper tape reader, PR-2 multi-code highspeed tape reader, and PTP-1 auxiliary paper tape punch are described in this two-page data sheet. Bendix Aviation Corp., Computer Div., 5630 Arbor Vitae St., Los Angeles 45, Calif.

provides accuracys of $\pm 1 / 2 \%$ in
EXPANDED SCALE METER RELAYS

Just as

API plus Voltron produces the most accurate and reliable Meter Relay available. It can monitor and control any electrical variable that is measurable . . . offers many new advantages.

- 4 to 10 times greater accuracy and reliability
- $10,000,000$ make-break cycles, with 100% perfect contact
- Low current and voltage inputs required
- Eliminates problem of load isolation in measuring circuits

Get complete data from either firm . . .
ASSEMBLY PRODUCTS, INC. Chesterland, Ohio
VOLTRON PRODUCTS, INC. 1020 S. Arroyo Pkwy., Pasadena, Cal CIRCLE 306 ON READER-SERVICE CARD

beryllium copper electrical contacts

INSTRUMENT SPECIALTIES CO • INC
270 Bergen Blvd., Little Falls, N. J. Tolophone: CLifford 6.3500
 I.R.E. SHOW

NEW LITERATURE

Epoxy Resins

dis cusses Scotchcast brand resins as an insulation system. A section on "Techniques and Tips on the Use of Epoxy Resins" tells how to store and prepare resins; explains handling, application and curing techniques; discusses molds and mold releases, and suggests methods of component design and preparation. Minnesota Mining \& Manufacturing Co., Dept. WO-10, 900 Bush Ave., St. Paul 6, Minn.

Semiconductor Directory

309
Expanded to 36 pages, this semiconductor directory provides a comprehensive listing of the latest in diodes, tunnel diodes, rectifiers, germanium transistors, and silicon transistors, with selected schematics for industrial circuit applications. All major manufacturers and types are numerically listed complete with specifications, applications, and prices. The directory is suitable for loose-leaf insertion. Lafayette Radio Corp., 165-08 Liberty Ave., Jamaica 33, N.Y.

Miniature Batteries

This illustrated eight-page bulletin describes the Silvercel battery system in general, and lists specific data for the 20xPA50 automatically activated primary battery, and two types of rechargeable batteries. Data listed in bulletin N_{1} Z-101 includes electrical, physical, e!tvironmental, and typical application chatacteristics, as well as discharge curve; Yardney Electric Corp., 40-50 Leonard St., New York 13, N.Y.

Mercury Thermostats

311
Three types of mercury thermostats are described in this 18 -page catalog: the well-type for sensing case temperature, the duct-type for gas or fluid temperature sensing, and the surface-type for area contact sensing. Specifications include temperature settings, contact ratings, operating voltage, and dielectric strength. The catalog also contains outline drawings and mounting instructions. Vapor Heating Corp., Vap-Air Div., 6420 W. Howard St. Chicago 48, Ill.

HOPKINS
 polystyrene film capacitors

-for critical circuits requiring high stability and close tolerances

In these Hopkins capacitors, you get a typical long.term stability to .1 \% per year, and a temperature coefficient of 120 PPM per degree C. Tolerances are available down to $\pm 1 \%$, with guaranteed accuracy.
High insulation resistance $-1,000,000$ megohms is typical. Dielectric absorption is very low-only $.05 \%$. Units are manufactured under close quality control to insure utmost reliability.
Available as film-wrapped types, and in all case styles in hermetically sealed brass tubes, bathtubs, and decades. Rated .001 to 1.0 mfds ., 100 to 600 VDC. Higher values to customer specifications. Send for catalog C-104A.

Hopkins
 Faphering company

12900 Foothill Blivd.. San Fernando. Calit Tel EMpire 18691 circle 312 on reader-Service card

Otentiometer

313
A conductive plastic potentiometer alled the Acemho is described in this t,ulletin containing full electrical and mechanical specifications. The unit is available in both standard servo and bushing configurations. Ace Electronics Assoc., linc., 99 Dover St., Somerville 44, Mass.

Servo Sysfems

314
This special report, eight pages, illustrates how the Servolab packaged assembly of electronic and electromechanical components permits students to build and test their own servo systems. Formula derivation and practical application are demonstrated. Photographs and diagrams show how a number of servo systems can be demonstrated quickly in a few steps. Servo Corp. of America, 111 New S. Road, Hicksville, Long Island, N.Y.

Audio Bandpass Filters

315
Data sheet No. 701, one page, lists six models of audio bandpass filters designed for alternate band separation use. A table gives typical characteristics of each model at 1.5 db bandwidth and 35 db frequen-
cies as well as shape factor and dimensions. Control Electronics Co., Inc., 10 Stepar Place, Huntington Sta., Long Island, N.Y.

Selenium Rectifiers

316
Bulletin No. 287A, four pages, describes the firm's line of selenium rectifiers. Included are a description of the stack coding system, a computation table for stack dimensions, and cell rating tables for both convection and forced air cooling. Typical performance characteristic curves are also shown. Radio Receptor Co., Inc., Selenium Div., 240 Wythe Ave., Brooklyn, N.Y.

Fused Quartz Products

317
Products made of pure fused quartz and silica are illustrated and described in this 30 -page catalog. Introductory pages give electrical and mechanical data, and dielectric properties of Vitreosil. The rest of the catalog is divided into two classifications, Laboratory Ware and Industrial Ware. Thermal American Fused Quartz Co., 18-20B N. Salem St., Dover, N. J.

MD pres-SURE-blocks-DESIGNED for QUICK Assembly and EASY Changes

ANY NUMBER OF CIRCUITS - pre. assembled lengths of 20 snap fit circuits ($1-1 / 8^{\prime \prime} \mathrm{w}^{\mathrm{w}}$. $\times 63 / 64^{\prime \prime} \mathrm{h}$.). No single pieces to handie, pull of or add circuit section completes block.

HAND ASSEMBLED without hardware; only 2 parts to handle; use mounting screws only every 12 circuits. Channel mounting also available; integral or separable marking strips.
LARGER CAPACITY IN LESS SPACE-\#22 thru \#8; conservative 750 volt A.I.E.E. rating Choice of contacts ($7 / 16$ " o.c.) for stripped or terminal-ended wires (can be combined in single block).
LENGTHEN IN SERVICE without removing mounting screws or losing contact space.

STOCKED BY LEADING ELECTRICAL DISTRIBUTORS Buchanall
ELECTRICAL PRODUCTS CORPORATION HILLSIDE, NEW JERSEY CIRCLE 318 ON READER-SERVICE CARD

extruded vinyl tubing

\#ere . . . try it! This is Markel high temperature tubing, extruded of non-migratory polymeric-plasticized resins-a product from the Line of Excellence-Markel-made to meet these tough specifications for insulating (or mechanical and chemical) tubing:

- non-fammable; U/L-approved for applications up to $105^{\circ} \mathrm{C}$ - dielectric strength, more than $700 \mathrm{v} / \mathrm{mil}$ - fensile strength, 2700 psi - low fomperature hexibility, to $-30^{\circ} \mathrm{C}$ - oil resistance, flexible indefinitely when immersed e erystal-elear in all sizes, \# 24 to $11 / 2^{\prime \prime}$ - colors, up to 10 standard in many sizes.
Try it; you'll stay with it. What do you need-Markel sample file? -prices? -test lengths? Call, write, or wire; you'll get action.

NORRISTOWN, PENNSYLVANIA Circle 319 on reader-service card

Ultra-stable, fine line characteristics - the kind you need and can depend on, are in ELIN's latest 3 -phase 50 VA Power Source! Voltage and current sensing on each leg provide super-regulated output. Delta and Wye connections are at rear panel. Input Voltage, 105-125V, single phase. Input Power 225W. Output Voltage $\pm 0.1 \%$. Output Frequency $\pm 0.1 \%$. Output ReguIation 0.1% Line to Line. Output Distortion 0.2%. Load Power Factor up to 0.3 inductive. Write for ELIN Technical Data - today!
precision power oscillators/voltage calibrators/multi-phase power supplies $\overline{\text { en }} \mathrm{d}$ i $v i$ i i o n International Electronic Research Corporation 145 West Magnolia Boulevard, Burbank, California

NEW LITERATURE

Coaxial Cables

Coaxial cables of semi-air-space design, and for use at 300 and 500 C , arc described in this 28 -page technical report. The report, which was presented at the Eighth Annual Symposium of the Communication Wire and Cable Section of the United States Signal Engineering Labs, contains complete specifications of the cables, and explains fully the steps followed in their development. Performance curves illustrate temperature and frequency characteristics, and dielectric power factors and strengths. Phelps Dodge Copper Products Corp., 300 Park Ave., New York 22, N.Y.

Transformers

322
Catalogs S-105 and CT9-59 carry detailed listings of stock transformers for military, communications, radio, TV, and power circuit applications. Included are specifications for many units for transistor applications. Chicago Standard Transformer Corp., 3501 W. Addison St., Chicago 18, Ill .

Fusion Sealed Capacitors

Fusion sealed glass capacitors tlat ineet all requirements of MIL-C-11272A, MIL-STD-202, and MIL-STD-202A, i re described in this four-page booklet. Chiracteristics include voltage rating, tempeiature coefficient, tolerance, and insulation and moisture resistances. The bookiet also contains performance curves and tables. To obtain reference file No. CE. 1.01, write on company letterhead to Corning Glass Works, Electronic Components Div., Dept. ED, Bradford, Pa.

Plastics Table of Properties

323
Properties for nine thermoplastic materials are given on this table. Properties shown include: tensile, impact flexural and compressive strength; resistance to sunlight, water, weak and strong acids and alkalies; dielectric short-time strengths and constants; power factors; machining qualities, harness, flexibility and thermal properties. Cadillac Plastic \& Chemical Co., 15111 Second Ave., Detroit 3, Mich

with microovoado Dust Hoods

> Dust can be disastrous! Particularly during assembly, potting, inspecion, storage of semiconductors, ervomechanisms, relays and the lik products even clean rooms an't adequately protect.
> Optically transparent MICROVOID enclosures provide almost 9 cubic feet of dust-free research and production space. A "screen" moving air-filtered to 0.5 micron
diameters-positively prevents dust from entering work area.
Moderately.priced standard Microvoid Dust Hoods available for prompt delivery. Special types accommodate scopes or large instruments. Amber "Plexiglas" types shield against ultra-violet radiation. GET COMPLETE FACTS by writing today or call OSborne 5-5200.

AIR-SHIELDS, INC.

Industrial division

[^11]CIRCLE 324 ON READER-SERVICE CARD
ELECTRONIC DESIGN • March 16, 1960

X \leqslant Recorder

Bulletin No. 794-1, two pages, gives c mplete data on model HR-94 XY recorder. The unit offers direct differential transformer or ac transducer input. The daia sheet contains a functional block diagram. Houston Instrument Corp., Box 22234, Houston 27, Tex.

Theodolites

A series of theodolites used to obtain azimuth accuracy of inertially guided ballistic missiles is described in this eightpage brochure. Specifications for four models include nominal range, azimuth rotation, azimuth monitoring range, and linear sway tolerance. Operational characteristics and accessories are also described. Perkin-Elmer Corp., ElectroOptical Div., Norwalk, Conn.

Relay Magnetic Amplifier
 327

Bulletin No. 70 has 10 schematic diagrams and graphs describing the design and application techniques of singleended magnetic preamplifiers. Some of the topics covered are: ac doubler cir-
cuits, dc double bridge circuits, snap action or bi-stable characteristics, and magnetic amplifier thermistor systems. The six-page bulletin also describes models $701,706,711$, and 761 relay magnetic amplifiers. Acromag, Inc., 22519 Telegraph Road, Southfield. Mich.

Soldering Iron

328
A low-tension, miniature soldering iron for use on printed circuit boards, transistors and diodes, under a loupe or magnifying glass, and on subminiature assemblies, is described in this data sheet. Accessories for the Ersa-Minitype are also described. Caig Laboratories, 46 Stanwood Road, New Hyde Park, Long Island, N.Y.

Self Locking Nut

329
Bulletins No. 3002 and 3003 list sizes and dimensions for the Tru-Lok self locking aluminum nut. The bulletins contain temperature, strength-to-weight, and reusability data. Waltham Precision Instrument Co., 221 Crescent St., Waltham 54 . Mass.

Accuracy: Within 6 min. of are when driven by either motor. Incremental shaff rolation: 2 degrees.

This is one of the many applications for the Stepper Motor - a device for translating electrical pulses into accurate, bi-directional, incremental shaft displacements.
The Synchro Positioner uses two Stepping Motors, an Autosyn differential, and a built-in pulse generator. One motor positions the Autosyn Shaft in coarse increments in either direction, while the other motor, using a different gear ratio, positions the same shaft in vernier increments in either direction. As the reset command signal is of steady-state type, the built-in pulse generator permits use of the driving motors for the reset function.

STEPPER MOTORS corporation

Subsidiary of California Eastern Aviation, Inc.
7443 West Wilson Avenue - Chicago 31, Illinois - WEST COAST . . . 11879 W. FLORENCE AVE. . . . CUIVER CITY, CALIF. CIRCLE 331 ON READER-SERVICE CARD

for precision sip puese the leading specialist first

Vetrareliability for
 GYROS INERTIAL GUIDANCE INSTRUMENTS RADAR SWITCHING

NEW LITERATURE

Aluminum Foil Capacitors

333Specifications and performance characteristics of miniature and subminiature aluminum foil capacitors are described in this eight-page bulletin, No. 81558. Operating factors include dc leakage current, dissipation factor, capacitance and tolerance, operating temperature range, dc working voltage rating, and surge voltage. Standard rating and selection charts for aluminum encased and ceramic encased capacitors are given in the bulletin. International Electronic Industries, Inc., Box R 23, Nashville, Tenn.

Insulating Material

This two-page data sheet discusses electrical, chemical, and physical properties of Rexolite 2200, a reinforced thermosetting plastic insulating material designed for use at ultra high and microwave frequencies in both wet and dry locations. The sheet includes curves for dissipation factor, dielectric constant, and attenuation. Rex Corp., West Acton, Mass.

Plastic Sheets, Tubes, and Rods 335
Applications, special and detailed char acteristics, and available sizes of over 50 grades of laminated plastic sheets, tu les, and rods are given in this 16-page cita\log, No. 2B Gen. Included are pheno ics, silicones, melamines, and epoxies with filler bases of paper, nylon, cotton, ashestos, and glass fabric. Also shown are prop. erties of copper clad laminates for printed circuits. General Electric Co., Laminated Products Dept., Coshocton, Ohio.

Headsets

336
Moving-coil dynamic headsets are de scribed and illustrated in this two-page data sheet. Wiring changes in the three circuit jack permit use of the headsets for series, parallel, monaural, binaural or stereo listening. The bulletin include data on ear cushions and microphones Permadyne Div. of Melody Master Man. ufacturing Co., 2149-51 W. Roscoe St. Chicago 18, Ill.

what's in a name?

Your name MR. JOMN R Richaros gives you identity. A tool
has a "name" A part has a "name"
A switch has a "name" Everything in your plant has a name, from R. Whalen who works for you to the ELEVATOR Engrave all these "names" permanently
with unskilled labor by

CIRCLE 337 ON READER-SERVICE CARD
ELECTRONIC DESIGN • March 16, 196

ELECTRO-TEC CORPP

ENGINEERING - RESEARCH - PRODUCTION: Electro-Tec's experienced engineers have elusive electrocontributions to the state of employs pure precious metals, deposition technique est in contact integrity, performguaranteeing liability.
Three planis assure the reliabilly of multiple source of supply.
Write for information on miniature components to complete giant assemblies designed environmental specifications.

NEW MARK II RELAY
 The First Wedge Action Relay

Insures ULTRA-reliability under most
mental and PEDGE ACTION supersedes and surpasses "wiping action." $65^{\circ} \mathrm{C} .10200^{\circ} \mathrm{C}$.

- Conlact bounce: NONE.

Operating vibrations 5 10 $2,000 \mathrm{cps}, 30 \mathrm{G}$'s.
Operaling shockt 100 G

- Conlact raling: dry circuil 102 amps.
- Extremaly low contact resistance.

PAT. NO. 2,866,046
Visit Booth 1929 at the IRE Show

Write for illustrated literature.

Copacitors

338
Series TS tantalum slug capacitors are de cribed in bulletin No. 159. The electrolytic capacitors meet the physical and performance requirements of MIL-C396 B , and are available in insulated and uninsulated styles. Ohmite Manufacturing Co., 3693 Howard St., Skokie, Ill.

Insulation Blankets

339
This four-page bulletin, No. 6019, contains results of thermal tests conducted by the firm. The thermal conductivity of various metals, insulating materials, and other miscellaneous materials, are listed. Electrofilm Technical Service, 7116 Laurel Canyon Blvd., N. Hollywood, Calif.

Potenfiomefers

340
Series 7230 ten-turn potentiometers for servo-mounting are covered in this fourpage data sheet, No. 60150. They are rated at 2 w and 65 C , derating to 0 at 125 C . Included are complete preliminary specifications, environmental characteris-
tics, coil data, dimensional drawings, and photographs. Beckman Instruments Inc., Helipot Technical Information Service, 2500 Fullerton Road, Fullerton, Calif.

Radiation Monitoring

341
Automatic monitoring of gamma and beta radiation using model DZ14 radiation supervisor is discussed in this booklet. The unit may be used to monitor background in low level counting rooms, in working areas of "hot" laboratories, and in radiography installations. BJ Electronics, Borg-Warner Corp., 3300 Newport Blvd., Santa Ana, Calif.

Power Supplies

342
The PI series of miniaturized all solid state power supplies is covered in this two-page data sheet. In addition to specifications, voltage, current, and dimensions are given for seven models in the series. Load and line regulation data also appears in the bulletin, No. PS2013. Deltron Inc., 2905 N. Leithgow St., Philadelphia $33, \mathrm{~Pa}$.

Specialists in the Unusual-Since 1901
IECTRONIC DESIGN • March 16, 1960
A complete analog computer that increases system design productivity more than five Aold at a net price less than the yearly salary of a design engineer. The Esiac rapidly solves generalized system equations expressed in the following forms

$$
\begin{aligned}
& F= \pm K \mathbf{s}_{0}\left(s-s_{1}\right)^{n_{1}}\left(s-s_{2}\right)^{n_{2}}\left(s-s_{3}\right)^{n_{3}} \ldots \\
& F= \pm \mathbf{s}_{11}\left(1-\frac{\mathbf{s}}{\mathbf{s}_{1}}\right)^{n_{1}}\left(1-\frac{\mathbf{s}}{\mathbf{s}_{2}}\right)^{n_{2}}\left(1-\frac{\mathbf{s}}{\mathbf{s}_{3}}\right)^{n_{3}} \ldots
\end{aligned}
$$

Telephone collect to discuss your system design problems with an Esiac engineer. Write for descriptive engineering bulletins, Esioc solutions to system design problems, or an Esioc demonstration in your plant.

SEND FOR DESCRIPTIVE LITERATURE
See it demonstrated MARCH IRE SHOW Booth 3010-3011
Electro Solontifio Industrios
7524 S.W. MACADAM • PORTLAND 19, OREGON cherry 6-3331
formerly ELECTRO-MEASUREMENTS, INC.
ESI has outstanding opportunities for design and applications engineers. Call or write Mr. Davis.

- Solves differential equations by ROOT LOCUS plots.
- Provides BODE phase and gain plots from system poles and zeros.
- Synthesizes compensation nefworks
- Evaluates residues.
- Factors polynomials.
- Analyzes sampled data systems.
- Solves non-linear problems involv ing hysteresis or safuration by the describing function technique.
- Designs process control systems
Derives process transfer functions from power densify spectra.
Uses rapid, logical pole-zero programming
- Provides permanent, plotted graphs for all stages of dynamic system design.

or an Esioc demonstration in your plant CIRCLE 345 ON READER-SERVICE CARD

NEW LITERATURE

Electroforming

"Current Uses for Electroforming-a Manual for Designers, Engineers, and Manufacturers" is an illustrated technical handbook that incorporates the latest technical information on electroforming, the process of building a structural part by electro-deposition. Included in the 32 page manual are chapters on what the electroforming process is, where it is used, "do's and don"ts" for designers, and charts and tables of engineering data. Allied Record Manufacturing Co., Allied Research \& Engineering Div., 6916 Santa Monica Blvd., Los Angeles 38, Calif.

Potentiometer

Specifications of the model 215 potentiometer appear in this two-page data sheet. The component comes in three terminal configurations: stranded teflon insulated leads, solder lugs, and printed circuit pins. Standard resistances, specifcations, and dimensions are given in the bulletin. Bourns, Inc., Trimpot Div., Box 2112, Riverside, Calif.

Variable Resistors

Type 2 W wirewound variable resis on are described in four-page bulletin V_{0} A-3b. Dimensional drawings, electr cal and mechanical specifications, L and T pad controls and performance specifca tions, and a table of standards for flated and slotted shafts are included. CTS o Asheville, Inc., Skyland, N.C

Silicon Zener Diodes

Bulletin No. SR-260 presents a listing of silicon Zener diodes in standiard RETMA decade listings. Included is the complete tabulation of $5 \%, 10 \%$, and 20 standard tolerance types currently avail able. The bulletin, six pages, contains dimension drawings, derating of powe dissipation vs ambient temperature graphs, and typical reverse voltage characteristics graph. Zener diode substitution boxes and voltage reference packs are illustrated. International Rectifier Corp., Product Information Dept., 1521 E. Grand Ave., El Segundo, Calif.

your copy!
Just write us on your company let.
terhead; your frea copy will be sent as soon as availble. Please ac dress
Dept. Tequ

A veritable handbook on antennas and systems everyone in communications, commercial or military, will find informative and helpful. Complete information on everything from antennas and towers to rotation and indication systems.

ANTENNAS
SINCE
1921

CIRCLE 350 ON READER-SERVICE CARD

Pl stics

711
This 16－page booklet outlines proper－

Rectifier Analyzer

712
Model 141A rectifier analyzer，a $20-\mathrm{amp}$ test set with forward current and reverse voltage independently adjustable，is de－ scribed and illustrated in data sheet No． 106，two pages．Specifications and per－ formance curves are included．Wallson Assoc．，Inc．，912－914 Westfield Ave．， Elizabeth，N．J．

PDM Telemefry

713
This 12－page，two－color illustrated bro－ chure，No．935，describes a commutator， transistorized pulse－width modulator，and crystal－stabilized transmitter designed for airbome PDM telemetry systems．The brochure includes detailed electrical，en－
vironmental，and physical characteristics in addition to outline drawings．Tele－ Dynamics Inc．， 5000 Parkside Ave．，Phila－ delphia 31，Pa．

Coating Machine

714
Model HD－2，an automatic spray coater，is described and illustrated in this two－page data sheet．The machine ap－ plies a continuous coating of resinuous compositions，such as epoxy compounds， to electrical and electronic components having coaxial leads．Conforming Matrix Corp．， 476 Toledo Factories Bldg．，To－ ledo 2，Ohio．

Molded and Laminated Plastics 715

Insurok molded and laminated plastic sheets，rods，tubes，and fabricated parts are covered in this eight－page catalog，No． 20．000．13．Tables list physical，electrical， and mechanical properties，in addition to bonding strength，suggested uses，and general characteristics．Photographs illus－ trate the materials as used for printed circuitry and electronic components．The Richardson Co．， 2731 Lake St．，Melrose Park，Ill．

NEW！ENGRAVED Deep－Kut ${ }^{\circ}$ PIN \＆PEG STAMPS

 are better thanordinary rubber
3 ways ＊ENGRAVED Doop－Kut is Acid－Proof
＊Emgraved Deop－Kut Stanping gives Razor－Sharp impressions every time
＊Engravid Deop－Kup hos cushion－like resilience
Engraved Deep－Kuf sfamp faces are adapiable fo any marking device． They can be used to stamp on every sufface，melal，wood， fabric，paper，plasfic，efc．

KRENGEL MANUFACTURING CO.,
227 Fulton St., New York 7 .
227 Fulton St., New York 7, N. Y.
Please check the following NAME
FREE ENGRAVED Daeo Kul
FREE ENGRAVED Deae Kul \square COMPANY
Somple \& Price List
Please have salesmon call \square STREET
Ploase hove sal
lor oppointment
-IRCLEーーーーーーーーーー
VISIT OUR BOOTH
NUMBER 4227
at the
I.R.E. SHOW
New York Coliseum

Welcome．．．
to Booth 2733－2735， 1960 Radio Engineering Show，New York Coliseum， March 21－24．A complete lion of sensitive relays．

SIGMA

SIGMA INSTRUMENTS，INC．
91 Pearl St．，So．Braintree 85，Mass．
CIRCLE 717 ON READER－SERVICE CARD

Dynamotor Power Source Supplies Low Voltage, High Current

SEVERAL amperes of well-filtered dc power with a continuously variable output voltage can be obtained from a dc conversion generator, or dynamotor. Such an energy source is very useful when working with power transistor circuitry or servo amplifiers.

An examination of one of these dynamotors, Fig. 1, reveals that the field is excited in shunt with the low-voltage armature winding. Thus, when power is applied in the normal fashion to
the machine, the field is automatically excited. The high-voltage armature winding provides the output.
By reversing the direction of power flow, it is possible to obtain an output from the low-voltage winding. Excitation is obtained from a highvoltage supply, as shown in Fig. 2. Because the field structure is common to both armature windings, the ratio of voltages developed is determined entirely by the ratio of active conductors in these

Fig. 1. In normal dynamotor operation, a low-voltage, high-current input is converted to a high-voltage, low-current output.

Fig. 2. Operated in reverse, the $d y$ namotor supplies a low-voltage high-current load from a standar high-voltage power supply.

fig. 3. The regulation curves for a reverse operated dynamotor, connected as in Fig. 2.
windings. It is virtually independent of the field current. However, the field current determines the notor torque and speed. In general, high field current is associated with low armature speed ind vice versa. Residual magnetism in the steel poles insures that the motor is self-starting.
Used as shown in Fig. 2, the dynamotors do not have their full rated power handling capacity. This is because additional power must be supplied to account for the inefficiency of the machine. Despite the reduced rating, sufficient output can till be obtained to make the reverse method of pperation useful.
Fig. 3 shows the results of such operation. The notor used was manufactured by Eicore. It was rated at $14 \mathrm{v}, 6.4 \mathrm{amp}$ input, $330 \mathrm{v}, 150 \mathrm{ma}$ output. With the rated high-voltage current of 150 na, only about 3 amp could be drained from the ow-voltage end, illustrating the unit's reduced power handling capability.
Because of internal resistance in the machine, he output voltage falls off practically linearly rith increased load. In each case, the output voltge level was set by adjusting the output varies vith load, it was found to be satisfactorily constant or the current range needed. If more stringent pecifications were imposed on the regulation, a uitable feedback circuit couid be designed to rgulate the output.
There are several advantages in using a dynanotor to obtain the low-voltage energy. First, he output voltage can be easily varied by adisting the level of the dc voltage applied to the iglı-voltage commutator. Second, because the ac omponent appearing in the output is mostly high Fequency ripple, filtering is not difficult. The riple can be reduced to a low level with a simple ash filter. Also, because only commonly availble items are used, this low-voltage source is relavely inexpensive and easily built.
Juck Bacon. Ohio State University, Columbus, Ohio.

FRICTION ELIMINATED TO ACHIEVE The ClCtimendes Pey Pyameneuce

FOR SPRING RESTRAINED
ACCELEROMETERS

The LA-600 with its magnetic damping is used for higher natural frequency applications. The LA-700 with its compensated fluid damping is designed for lower natural frequency applications. Write for Bulletins LA-600 and LA-700 to Minneapolis-Honeywell, Boston Division, 40 Life Street, Boston 35, Mass.

Honeywell

H Military Products Group
CIRCLE 719 ON READER-SERVICE CARD
CIRCLE 719 ON READER-SERVICE CARD

CIRCLE 720 ON READER-SERVICE CARD

IDEAS FOR DESIGN

Eliminating VR Tube Oscillations

In a plate supply filter it is sometimes necessary to use a VR tube regulator shunted by a large capacitor. The capacitor is required because pulses of energy may be desired, as in a thyratron circuit, which cannot be supplied through the VR tube dropping resistor, R_{1}. However, since a VR tube and shunt capacitor form a relaxation oscillator, it is often assumed these cannot be used in parallel.
The relaxation oscillations occur because the VR tube, especially at low currents, has a small equivalent series resistance. The oscillations are

eliminated by inserting a resistor R_{2} in series with the VR tube sufficient to off-set the negative resistance component. In practice, this resistance, which actually may improve the regulation, is usually about 100 ohms. It is preferable, however, to use about twice the minimum resistance required and to raise the VR current by lowering the series dropping resistor.
Lawrence G. Cowles, Electronic Design Engineer, The Superior Oil Co., Bellaire, Tex.

Low-Level Signal Gate Circuit Relies On Diode Conduction Potential

A null bucking configuration and diode clamping circuit provide a gate which will not pass lowlevel signals or noise, but which will pass higherlevel signals virtually undisturbed. Since this method does not use vacuum tubes, or additional batteries, it is especially useful for transistor applications.
The circuit operation is illustrated in Fig. 1. The signal is impressed on the transformer primary. The secondary windings are bucking each

Fig. 1. Signals, or noise, below the diode conduction potential will not be passed to the load because of the bucking, action of the transformer secondary windings.

The new line of Bendix Backward-Wave Oscillator Tubes generates microwave energy at extremely high frequencies never before available.

These new tubes provide a wide range of usable fre quencies apps of multi channel telephone and tele vision systems, high defini tion short-range radar, highli directive communications, microwave spectroscopy and other fields where low power. voltage-tuned millimete wave-length radio frequenc energy is required.
For more detailed information on these tubes, write to: ELECTRON TUBE PROD UCTS, RED BANK DIVISION TION EATONTOWN N J
mechanical data
Output
flange . . . Special adapier to RG-98i Maximum Diameter (RG-97/U lol TE.......7s Maximum Diametor
Lenghth
Meunting Position. Meunting Position.
Weight. Weight.
-Without magnet (tube only). Magnee
are available.

10 Avallable types

Type TE-75 with riequency
range of 40 Kmc to 50 km ype TE 67 with frequenc
range of 49 Kmc to 59 Km Type TE. 66 with frequency
range of 61 Kmc to 71 lm. Type TE-71 with frequency
range of 65 Kmc to 75 Kmed
visit us at tel VISIT US AT TEE N.Y. 2228

ELECTRON TUBE PRODUCTS

Wont Coost Soles \& Sorvicet 117 E, Providencia An Wurbank, Colifes Export Salos 8 Providemcia An
Sorvice:
Bend
 CIRCLE 721 ON READER-SERVICE CARD

Epoxy cast units resulting from C-A-C design engineering: SATURABLE REACTORS
Pulse transformers;
DC to DC converters
400 cycle power transformers. Can be subminiaturized within performance limits. Terminal arrangements to meet requirements. Mil. Specs. Fast Delivery.
Send us your specifications for quotations and/or engineering advice.

Fig. 2. Low-level gating can be obtained with resistive coupling and a battery to vary the clamping potential.
other and the diode acts to set a clamping action across the winding 2. Resistor R develops the clamping voltage across the diode and limits the current flow through it. Low-level signals, or noise, below the diode conducting voltage cause no clamping action. The signal potentials generated in coils 2 and 3 cancel so that no potential difference appears at the load. As the signal level is increased above the level of the diode forward voltage drop, diode current flows through resistor R on the positive segment of the signal. This causes an unbalance in signal between transformer coils 2 and 3 and a half wave rectified signal appears at the load, proportional to the signal amplitude. A sine-wave load signal can be obtained by placing a second diode in parallel, but reversed, across the diode shown. The clamping potential can be varied by selection of the type of diode, by adding diodes in series or, if an exact value is required, by the addition of a potentiometer and battery in series with the diode.

Fig. 2 illustrates a biasing circuit using resistive coupling. Two clamping diodes and potentials as described will allow a satisfactory sine-wave output, although the cross-over section of the sinewave will be missing.

Metallic diodes are recommended in this circuit but vacuum-tube diodes will function if the Edison current through resistor R is balanced out. For optimum performance, resistor R should have the same impedance as the secondary winding. However the resistance value is not critical. Electrostatic shielding between windings is desirable.

The complete details of these circuits can be obtained by referring to patent number 2,867,735 issued January 6, 1959.

Edwin N. Kaufman, Litton Industries, Beverly Hills, Calif.

[^12]
NEW Wearome CONTROL METER

Operates WITHOUT Contacts at the Switching Points! Offerng You thene Srroorant Claburtagu:-

- ONLY MINIATURIZED CONTROL METER . . . now available without contacts.
- MORE RELIABLE SWITCHING . . . with elimination of contact resistance, arcing and corrosion. Signal does not depend on pointer contact.
- FULL-SCALE USE . . . of indicating meter always available, regardless of control point settings.
- MORE ACCURATE READINGS ... with indicating circuit completely isolated from the switching circuit.
- SIMPLEST SYSTEM . . . with no need for pull-in or locking coils and no re-set mechanism.
- EXTERNAL ZERO ADJUSTER

- Automatic Process Control
- Missile Check-out
- Nuclear Instrumentation
- Machine Tool Control

Switching is accomplished by a metal shield attached to the pointer passing between 2 mutually coupled coils of a self-contained, tranpassing between 2 mutualiy coupled coils of a self-contained, tran-
sistorized oscillator-detector-amplifier. Positions of the 2 control sistorized oscillator-detector-amplifier. Positions of the 2 control
points are manually set by means of external arms. Provides the points are manually set by means of external arms. Provides the
same scale length as conventional $41 / 2^{\prime \prime}$ meters. Accuracy held to $\pm 2 \%$ of full-scale for dc and $\pm 5 \%$ for ac.

WUE FOR ENGINEERING DATA SHEETS ON ELECTRONIC CON TROL METER AND: Side Indicators; $11 / 2^{\prime \prime}$ Ruggedized Meters; $1^{\prime \prime}$ and $11 / 2^{\prime \prime}$ Panel Meters; $11 / 2^{\prime \prime}$ VU, and Db Meters; Sub-Miniature Rotary and Lever Switches: Miniature Multitesters.

MINIATURIZATION HEADQUARTERS

international instruments

P.O. BOX 2954, NEW HAVEN 15, CONN. - Cable: "INTERINST"

	1 Crystal-Locked Klystron Approach	2 Dual Mode Reference Cavity Approach	3 Crystal Multiplier Approach
LFE MODELS	Series 820-XLK CrystalLocked Klystron Source	Series 814 Ultra-Stable Microwave Oscillator	Model 5010 S-Band Exciter
FREQUENCY RANGE	S-band to K-band fixed frequency	27 tunable models covering $2.5 \mathrm{mc}-27 \mathrm{Kmc}$	S-band fixed frequency
POWER	Approx. full klystron power	Up to 500 mw @ X-band or 1.5 w @ C-band	125 mw
SHORT-TERM STABILTY	1 part in 10^{8}	5 parts in 10^{8}	1.2 cps (incidental FM)
LONG-TERM STABILITY	1 part in 106 (24-hour period) Generally independent of environmental conditions	1 part in 10^{6}	Less than 100 kc drift over 25.hr. period

Write for complete specifications.
LABORATORY FOR ELECTRONICS, INC. BOSTON, MASS.
Pnslrumenl Dicision 714 beacon street
WESTERN REGIONAL OFFICE, 211 South Beverly Drive, Beverly Mills, California, CRestview 5-5327
CIRCLE 724 ON READER-SERVICE CARD
3 different "state-of-the-art" approaches for achieving microwave frequency stability are utilized in the LFE Oscillators described below. Each of these instruments exemplifies LFE's leadership in this specialized field - each will be demonstrated at the 1960 IRE Show, Booths 3819-21.

IDEAS FOR DESIGN

Miller Effect Extends Relay Close Time

Use was made of the Miller effect to provide in extended time delay in a relay circuit.

A relay had to be closed, without any delay, sy a positive pulse. The relay was to remain clos d for an extended time. For long close times, very large values for resistance and capacitance were required when conventional RC timing circuits were considered.

In the circuit shown, the tube is held cut-off by the bias voltage $-E_{c}$. A positive input pulse charges capacitor C_{1}; the tube conducts and closes the relay. The relay remains closed until the capacitor C discharges through R. However, the Miller effect has increased the cflective capacity by a factor of $1+A$, where A is the amplifier gain. This serves to extend the relay close tinte, and allows the use of comparatively smaller RC values.
Richard Steinberg, Member of the Technical Staff, Hughes Aircraft Co., Culver City, Calif.

Miller effect is used to increase RC time constant and extend relay close time.

Logic Signal Intensifies Scope Display

During check-out of a digital computing system it became necessary to intensify the oscilloscope display at a particular logical time in order to pinpoint the location of certain data.
The circuit shown, when connected to the scope's Z axis input, used computer derived logi cal signals to intensify the scope display. The in tensifying signal I requires a negative pulse 3-v amplitude or greater, referenced to ground. is applied to the input diode of the inverter ampli fier C_{1}. Previously cut-off, Q_{1} suddenly saturates causing inverter stage Q_{2} to cut-off. The collecto

CIRCLE 725 ON READER-SERVICE CARD
ELECTRONIC DESIGN • March 16, 1960

Logical pulse is applied at the input of the intensifying circuit which drives the Z axis input.
(output voltage of Q_{2}, previously at zero, drops to -22 v causing the scope display intensity to increase greatly. When the input signal returns to ground, the collector voltage of stage Q_{2} returns to zero and the scope intensity returns to normal. D. R. Shalita, Electronic Engineer, Litton Industries, Culver City, Calif.

Suppressor Grid Voltage Varied for Constant Amplitude Pulses

By feeding back a proportionate signal to the suppressor grid of a pentode, a pulse amplifier was designed whose output remained relatively constant as the input signal varied.
The signal of pulses is applied at the grid of the Class A operated pentode circuit shown in the accompanying figure. The tube can be a 6A56 or a type having a similar value of suppressor grid-toplate transconductance. At the plate, the positive side of the amplified signal is clamped to ground by $C R_{1}$. It is then peak-de'iected to produce a negative voltage at the junction of R and C_{2}. This voltage is then tapped and fed to the suppressor grid. Since the suppressor grid voltage will vary directly with the plate signal, the gain of the tube will vary inversely with the control grid amplitude. This will tend to keep the output pulseamplitude constant as the input-amplitude is varied.
Arthur M. Goldschmid', Electronic Engineer, Moorestown, N. J.

Silicon Crystals

KNAPIC specializes in Silicon and Germanium Crystals for Semiconductor, Solar Cell and Infrared uses

Major manufacturers of semiconductor devices have found that Knapic Electro-Physics, Inc. can provide production quantities of highest quality silicon and germanium monocrystals far quicker, more economically, and to much tighter specifications than they can produce themselves.
The reason? Knapic Electro-Physics are specialists with accelerated experience in growing new materials to specification. Why not let us grow your crystals too?

Check These Advantages

Extremely low dislocation densities.
\square right horizontal and vertical resistivity Polerances.
Diameters from $1 / \iota^{\prime \prime}$ to $2^{\prime \prime}$. Wt. to 250 grams per crystal. Individual crystal lengths to 10 \square Low Oxygen content 1×10^{17} per cc., 1×10^{16} for special Knapic small diameter material. \square Doping subject fo customer specification, usually boron for P Pype, phosphorous for N type. Lifetimes: 1 to 15 ohm cm. - over 50 microseconds; 15 to 100 ohim cm.-over 100 micro. seconds: 100 to 1000 ohm cm -- over 300 microseconds. Special Knapic small diamete? material over 1000 microseconds.

Distocation donsity, Knapic sllicon monocrystals srawn by a modifiod Czochrolski technique: Crystal
 less than 10 por $89 . \mathrm{cm}$. ; K^{-10} $11 \%-$-loss then 100 per ra. cm . $11 / 0^{-1}$ to 2° less then 1000 por ra. emm

Specification Sheets Available
... Also manufacturer of large diameter silicon and germanium lonses and out domes for infrared nee CIRCIE 726 ON READER-SERVICE CARD

Rate Generator or Angle Reader

Gurley Photoelectric Pulse Generator is a shaft-driven device delivering electrical pulses at output terminals ..Pulse frequency is directly proportional to shaft rpm Two basic uses: as a rate generator (output frequency may be read in terms of shaft rpm) or as an angle-measuring device ("total angle" is determined by "totalizing" individual pulses). Write for brochure.
W. \& L. E. Gurley

525 Fulton Street, Troy, New York

CIRCLE 727 ON READER-SERVICE CARD

```
OCTAVE RF AMPLIFIERS
```

for Low Noise,
BROADBAND RECEIVING SYSTEMS

Useful in Radar systems requiring ex tremely wide bandwidths such as countermeasures, surveillance, high resolution and measures, surveillance, high resolution and
special communications equipment. Standard special communications equipment. Standard
units available in octave bands from 40 to units available in octave bands from 40 to
600 mc . Broad band units are available to 1000 mc on request.
Typical Specifications:
Gain
Ripple
Ripple …..

Source, Load Impedances Rack mounted with self contained power supply.

Send for comprehensive Microurave,
$E E$
IF, RF Amplifier Catalos

See us at the IRE Show-Booth 2102
CIRCLE 728 ON READER-SERVICE CARD

IDEAS FOR DESIGN

Mounting Stud Cast From Encapsulating Material

By casting a mounting stud as part of the encapsulating material, miniature transformers can be easily attached to printed-circuit boards. The material used must be sufficiently strong so that the stud, thread-casted, can be secured directly to the printed board with a nut and a lock washer.
The photo shows a transformer with its mount ing stud, which has been cast in a split mold of Teflon. An epoxy resin was used as the encapsulating material. The transformer cavity in the Teflon was cylindrical, slightly larger in diameter than the stud. The stud cavity was drilled and tapped in the bottom of the larger cavity. The greater diameter of the transformer material enabled it to act as a collar when the transformer was mounted.

It was found that this mounting method could withstand considerable shock and vibration. Important, also, was the ease with which the mounting stud could be fabricated.
R. J. Allen, Advanced Design Engineer, The Martin Co., Baltimore, Md.

Miniature transformer is cast in a split Teflon-core with threaded mounting stud as part of encapsulating material.

Photostats Yield Clear Scope-Trace Copies

Here is an accurate, inexpensive method for reproducing Polaroid oscilloscope photos in the limited quantities usually needed for engineering reports.

1. Photos are trimmed.
2. Photos are mounted on a sheet of $81 / 2 \times 11$ black paper in the desired layout.
3. Titles, numbers, etc., are lettered on the paper with white ink, or
4. Alternatively, titles are typed on strips of white paper and pasted in place.
5. Photostats of the paste-up are made in the desired quantity. The paste-up is then filed with the master copy of the report.
This process yields beautiful, black scope traces

ELECTRONIC ENGINEERS EVERYWHERE!

- Heed a colleague who never did, and ask for your FREE MUELLER CATALOG of ELECTRIC CLIPS AND INSULATORS. Do it today, while you're still young! You'll make better connec tions in the future, with this handy illustrated index of electric clips for every type of quick test connection.
We've been making newer and better clips since 1908 and recently designed the world's only truly miniaturized test clip. It's called the "Mini-gator", and is so inexpensive we'll send you a free sample along with the catalog.

THE "MINI-GATOR"

WRITE FACTORY-FREE "MINI-GATOR" AND CATALOG Mueller ह́lectricte
1580H EAST 3IBP STREET - CLEVELAND 14, OHIO CIRCLE 729 ON READER-SERVICE CARD

that operates dependably at settings as low as $-40^{\circ} \mathrm{F}$. and as high as $+300^{\circ} \mathrm{F}$
G-V's C8 Series of hermetically sealed electrical thermostats
specially designed to meet the difficult operating conditions
of electronic and arcraft appications. Operating points, regard
less of settings, are not changed oy exposure to temperatures ranging from $-100^{\circ} \mathrm{F}$. to $+300^{\circ} \mathrm{F}$. Shocks up to 150 g for 3 milirseconds, vibration of 25 g up to 1000 cps , and viration of
10 g up to 2000 cps do not damage these thermostats nor log up to 200 cps
change their setting.

Write for complete technical and application dala

G-V G-V controls inc. luvingston, new jersey

on white paper. They are easy to read and certainly make for a neat, good looking report.
George D. Curtis, Project Engineer, Chance Vought Aircraft, San Diego, Calif.

Rubber-Core Terminals Hold Wires Securely

Clamp-on, screw-on or other metal-to-metal terminals for fast, temporary connections can cause trouble when the wires to be clamped are of difficult diameter. Often the larger wire springs open the holding device. Used on breadboards, such clips or screw terminals may be susceptible to vibration or shock.
With a new terminal consisting of a gold plated eyelet and rubber core, wires of different diameters are gripped firmly. To insert a component lead, the rubber core is stretched upward, leaving space to slip the wire against the side of the eyelet. Releasing the core presses the wire firmly against the gold-plated surface. Vibration and shock immunity are exceptionally good.

Fig. 1. By stretching the rubber core, different diameter wires are inserted and gripped firmly in this interesting terminal design.

Fig. 2. The terminal cells are shown supporting different wires on a breadboard layout. Wires are easily ins arted with no soldering or screw-furning required.
E. L. Van Deusen, Plastic Associates, Laguna Bi ach, Calif.

MORE CAPACITANCE, LESS WEIGHT - Combined volume of 40 TES Capacitors equols that of large paper copacitor which for outweighs them. But combined capacitance of TES capae
itors is 24,000 microfarads to only 4 for paper capacito itors is 24,000 microfarads to only 4 for paper eapacitor.

FOR FULL DETAILS on TES plug-in or other types of tantalum capacitors, write Tansitor Electronics, Inc., Dept. 11, West Road, Bennington, Vermont.

NEW TANSITOR TANTALUM CAPACITORS PROVIDE MORE CAPACITANCE, LESS WEIGHT

Both leads of these new TANSITOR TES-type capacitors emerge from one end. So, only one seal is required, with consequent savings in length.
Welded leads are completely encapsulated too. Hence, soldering can be done close to the end of the capacitor without damaging the welds. Space savings up to 50% are thus possible.
Applications? Printed and transistorized circuits for miniaturized military or commercial electronic equipment are typical. characteristics
Operate at surge temperatures up to 125 C with some voltage derating.

- Polar or non-polar - Neutral electrolyte - Plain or etched foil - Low leakage current - Long shelf life

ELECRONICS - TAT O -

Whou Ralady Come Fut $-\square$ bantlum Goposilore -
Electronics Centor, Inc.
Poerless TANSITOR DISTRIBUTORS Radio Distributors In Now York $11, \mathrm{~N} . \mathrm{Y}^{2}$ TANSITOR DISTRIBUTORS $92-93$ merrick Road

CIRCLE 731 ON READER-SERVICE CARD

furane's EPOXY SOLVENTLESS VARNISHES

. for Impregnating

Motors, Transformers and Wire-Wound Devices

Resistant to acids, JP fuels and Skydrol, Furane's Epoxy Solventless Varnishes are out. standing dielectric materials that penetrate and insulate. Dimensionally stable, 100% solid Varnishes 3.A and 3-B aid in eliminating fire hazards and allow motors to operate at lower temperatures, with resultant greater efficiency, economy and long life.

For concise technical information on these and other Furane Epoxies, call or For concise technical information on these and other Furane Epoxies, call or
write for Electrical and Physical Properties Chart. On special problems, request our Application Questionnaire for an exact solution.

GUTEME DIEETIES, INCORPORATED

DEPT. EO 4516 BRAZIL STREET • LOS ANGELES 39, CALIF. •CHapman 5-1151
Visit our I. R. E. Shour booth - \#4050
CIRCLE 732 ON READER-SERVICE CARD
Low initial viscosity, ability to gel readily at $150^{\circ} \cdot 200^{\circ} \mathrm{F}$, and pot life of approxiMately 30 days make Furane's Solventless varnishes easy and economical to Mil Specs, they have outstanding resistance to both thermal and mechanical shock.

For engineering assistance call or write to-
E-T-A PRODUCTS COMPANY of AMERICA 6284 N. Clisoro Ave.

- Phone: Klldare 5-1554

Chicago 46, III
In CANADA: E-T-A Products of Canada Lid
265 Creig St. West - Phones UNiverdty I-5998 - Montreal 1, Que
CIRCLE 733 ON READER-SERVICE CARD

CIRCLE 734 ON READER-SERVICE CARD

IDEAS FOR DESIGN

Thyratron Delays Digital Clock Pulse

A digital data recording system made use of motor generated clock pulses to advance a stepping switch. While data was actually being recorded, any clock pulse which might appear was not to be passed on to the switch. The circuit shown allows the stepping switch to advance one step per clock motor revolution, but delays its advance until a recording interval is completed.

When the clock motor cam closes switch S, the charged capacitor C discharges and fires the cutoff thyratron. Firing the thyratron energizes the relay. When data is not being recorded, B+ is fed through the closed recording-inhibit contacts (activated by other circuitry), but the closed relay contacts, to the stepping switch magnet. The energized stepping switch opens the self-interrupt contacts, extinguishing the thyratron and resetting the relay. Thus, for every clock pulse, the stepping switch is moved one position.

While data is being recorded, the recording inhibit contacts are opened. If a clock pulse then appears, the thyratron continues to conduct until the recording cycle is completed. When the re-cording-inhibit contacts close, the stepping switch will advance one step. In effect, the clock pulse has been delayed for the remaining interval of the recording cycle.

The circuit is reliable enough to maintain the clock to the last whole digit of time, provided the recording interval is less than the clock motor period.
Joseph Piskor, Research Engineer, United Aircraft Research, Hartford, Conn.

Sponge Provides Flexible Short

An inexpensive metal sponge was used to provide a conductive, flexible contact between two brass plates. With the sponge in place, one plate supports the other and is able to move relative to it. Also, an intimate electrical short is constantly maintained between the plates.
The sponge, normally used for household cleaning, is usually purchasable in the shape of a round pad. However, it can be cut to any size and it can be compressed as much as is necessary. Under

Malco is your BEST SOURCE FOR

SOLDERING LUGS
TERMINALS
PRINTED CIRCUIT HARDWARE

HERE'S WHY:

- Specialized high production techniques afford lowest possible unit cost.
- Precision tooling, rigid quality control assure tolerances to critical specifications
- Ample stocks of over 1000 different parts permit prompt delivery.
- Malco specializes in a complete line of small stampings for RadioTV, electrical/electronic and automotive industries.
- Our line includes terminals and printed circuit hardware in loose or in chain form for automatic insertion.
Lel Malco show you how you can save on production time and costs. Contact us foday.

'IIlafec manufacturing company

4027 W. LAKE ST. - CHICAGO 44, IL CIRCLE T3S ON READER-SERVICE CARD

Lepel induction
heating equipment represents the most advanced thought in the field of electronics... the most prac-
tical and efficient source of heat developed for numerous industrial applications. You are invited to send samples of work with specifications. Our engineers will process and return the completed job with full data and recommendations without cost or obligations.

TYPICAL INDUCTION

HEATING APPLICATIONS

Punch Heads Selectively Tempered
Diagram shows orrangement for selectively tempering heads of olloy
steel lunches. The use of combina sieel punches. The use of o combina-
tion lype solenoid ond pancoke in-
 RC $55 / 56$ to RC $41 / / 44$, improving resistance er bit bitle frocture ot the
heod of the punch. In this case heod of the punch. In his case os
heating cycle of 55 seconds provides uniform tempering. A multiple position fixture, processing 4 pieces at one time, speeds up production. mouction coin

Laboratory analyses frequently re quire heating of non-conducting to $3,500^{\circ} \mathrm{F}$. in vacuum or special atmosphere. This can be occomplished by induction heating with the aid of a metal susceptor. Diagram shows the fusion of mica samples in an alu-
mina crucible, using molybdenum susceptor. A ceramic tube surrounding the susceptor isolates the work for fusion in a vacuum. The molybdenum
susceptor is heated by induction, susceptor is heoted by induction,
which in turn, heats the crucible by radiation.

WRITE FOR NEW LEPEL CATALOG E.ctronic Tube Generators from 1 Kw to 100 Kw
Spark Gap Converters from 2 Kw to 30 Kw . Tepel high frequency lasoratories, INc. fi5th ST. 2 37th AVE., WOODSIDE 77, Y. Y.

A mefal household cleaning sponge provides an intimate, flexible short between two metal plates.
sufficient pressure no measurable electrical resistance could be observed.
Alfred W. Zinn, Engineer, Farrand Optical Co., Inc., Bronx, N.Y.

LF Multivibrator Uses
 Unijunction Transistors

A source of repeating contact closures in the range of $1 / 10$ pulse per second to 10 pulses per second was required for life testing of arc suppressors for relays and stepper switches. It was desirable to vary the on-to-off ratio, and to manually actuate a single shot.
An electro-mechanical multivibrator was built, using RC timing and unijunction transistors to operate the relay. A magnetic latching relay was the bi-stable element.
In operation, the relay applies 28 v to the unijunction transistor and the RC charging circuit. When voltage builds up, as determined by the capacitor selected and the setting of the 100 K potentiometer, the unijunction transistor fires, transferring the relay to its other state. The same action takes place in the second unijunction circuit, causing transfer back to the original state.
For single shot operation, one unijunction circuit is replaced by a push-button, used to discharge a capacitor into the proper relay coil. This switches the relay and initiates the timing action of the remaining unijunction circuit.

Ernest F. Wilson, Senior Electrical Engineer, Edgerton, Germeshausen \& Grier, Inc., Boston, Mass.

CIRCLE 737 ON READER-SERVICE CARD

For Economy AND Quality....

(pad Transistor regulated

 POWER SUPPLIES

4 to 32 Volts DC

INPUT: 105.125 V.AC $50 / 60$ CPS.
single phase

AMPS	MODEL
1	TR10
5	TR20
10	TR30
15	TR40

IMMEDIATE

 DELIVERYSEND FOR
BULIETIN
BULETEN
NO. 105

A now series of compact, budget-priced, laboratory power supplies, foaturing uncompromising quality of materials and workmonship. Feutures:

- Regulation $\pm 1 / 2 \%$ line llasd. - Short Circuit Protection.
- Zener Diode Reference.
- Ripple less than $5 \mathrm{M} . \mathrm{V}$.

- Controls include power switch. fuses, pilot light, voltage contr
knod and output binding posts. 2\% Accuracy Panol Meters.
- Both output ferminals above
ground and isolated from A.C. ground
line.
- Panel type carrying handies.
- Continuous duty ratings. - High efficiency.

OPAD ELECTRIC COMPANY
43-16 WALKER STREET . NEW YORK 13, N. Y.

CIRCLE 738 ON READER-SERVICE CARD

ECTRONIC DESIGN • March 16, 1960

*ALLOYIST-Our own almost-Websterial word, meaning: a single reliable source for strip, rod, wire and flat wire to serve your every need.
*ALLOYIST-A single, reliable source for nickel, nickel silver, cupro nickel, stainless steel, phosphor bronze, Monel** and Inconel**.
*ALLOYIST-A supplier of metals whose manufacturing processes are often exclusive, and always the most advanced, to insure total product superiority
Put the Alloyist on your Design Staff, Purchasing Staff and Production Staff. We know of only one fully qualified Alloyist . . . RiversideAlloy Metal. Write today for complete information. Riverside-Alloy Metal Division, H. K. Porter Company, Inc., Riverside, N.J.
**Trademark of the International Nickel Co., Inc.

H.K.PORTER COMPANY,INC.

ORTER SEAVEE INOUSTAT: with Rubber and Friction Products -THERMOID DIVISION; Electrical Equipment -DELTASTAR ELECTRIC DIVISION. NATIONAL EEECTRIC LUVISION PEERLESS EEECTRIC OIVISION, SPecially AIIOYS-RIVERSIOE-ALLOY METAL DIVISION: Refractories--REFRACTORIES DIVISION; Electric Furnace STee CONNORS STEEL
IVISION, VULCAN-KIDD STEEL DIVISION Fabricated Products-DISSTON DIVISION FORGE AND FITTINGS DIVIDION, LESCHEN WIRE ROPE DIVISION, MOULDINGS DIVIISON, H. K. PORTER COMPANY de MEXICO. S. A.: and in Canada, Relractories. "H. Disslon" 'Tools, "Federal" Wires and Cables, "Nepcoduct" Systems-

PATENTS

Low Noise Preamplifier

Patent No. 2,919,313. W. R. Johnson. (Assigned to Minnesota Mining \& Manufacturing Co.)
A magnetic tape, suitable for television recording, is equalized by a preamplifier comprising integrating and high pass networks, combined for wide-band frequency response. The low frequencies are amplified by a low-noise pnp fused junction transistor, driving an essentially capacitive load. Vacuum tube microphonic noise and heater hum are eliminated and the low input impedance reduces the thermal noise. High-frequency gain is obtained by a low-noise vacuum tube cascode amplifier.

The essential features of the invention are the dual pickup coils 5 and 7, choke 11 which isolates transistor 15 from the high input frequencies, integrating capacitor 31, and grid resistor 43. The signals on coil 7 are combined to drive the highfrequency cascode amplifier circuit. Am-
plification in the transistor network is kept relatively constant up to 25 kc . At higher frequencies, choke 11 and capacitor 31 isolate the network from the output. The cascode amplifier drives the load resistor 51 of about 2000 ohms. Hence, at high frequencies the gain falls off rather slowly.

Method of Activating Thermionic Emitter

 Patent No. 2,913,629. John E. White (Assigned to General Electric Co.)The electrolytic method of activating an oxide-coated cathode is improved by periodically applying an accelerating field for temperature limited emission. Oxygen, formed during the pulse period, diffuses rapidly to the surface and completely evaporates, leaving a free, alkaline-coated cathode. By this means, the activation time is reduced to one-thirtieth of that previously required. A very uniform elec tron emitting surface is produced. Sched ules are tabulated for the activation of tube types 6SN7, 6AU6 and 12AU7.

Timed Pulse Delay Circuis

Patent No. 2,910,583. James W. Toner. (Assigned to IBM Corp.).
Pulse delay is effectively obtained by generating an output of fixed duration in response to the mere existence of an applied voltage. The output is initiated independent of both the leading and trailing edges of the input waveform.
Briefly, positive going input 10 charges capacitor 14 which is then discharged by a clock pulse 18 connected through diode 15. After differentiation the negative going trigger 23 passing through diode 22 and inverter V_{1} causes capacitor 3.5 to charge. Subsequently, source 18 discharges this capacitor resulting in pulse 34 whose duration equals the interval between clock pulses.

Don't miss an issue of ELECTRONIC DESIGN; return your renewal card today.

Small, low cost,
General Purpose Relays

AVAILABLE FOR
PROMPT DELIVERY FROM STOCK

These new Struthers-Dunn 214 Frame Relays handle any general purpose application within their rating-and do it at materially lower cost, in less space, with less weight.
Maximum contact reliability is a prime feature of their design. Grade G5 melamine bonded fibre glass insulation insures exceptional firm contact support with adequate protection against temperature and humidity changes. A wide hinge maintains accurate contact alignment and increases operating life.

CONTACT TYPES: SPDT, DPDT and 3PDT CONTACT RATING: 5 amps . at 115 V AC
COILS: to 115 V AC and DC
SD Data Bulletin 2214 on request

Makers of the world's largest selection of relay types

Sales Enginerine ofices in: Atlanta - Boston - Buffalo - Cricago - CInclnnati
 CIRCLE 740 ON READER-SERVICE CARD

Stepping Motors

HIGH RELIABILITY POSITIVE LOCK BI-DIRECTIONAL ROTATION

Curtiss-Wright Stepping Motors convert digital pulses into mechanical motion or work. Available in two models. Features include: Complete static and dynamic balance . Withstand high shock and vibration • Long life, light weight • High starting torque . Withstand environmental temperatures of $+165^{\circ} \mathrm{F}$.

Write for complete Components Catalog 260 to help you select CurtissWright electronic components for use where dependability is essential.

new curtiss-wright dual time delay relays
Our new series of Dual Relays include these outstanding features: Instantaneous resetting contacts, chatter-free operation, designed for use in critical shock and vibration environments.

COMPONENTS DEPARTMENT • ELECTRONICS DIVISION
CURTISS WRIGHT
CORPORATION • EAST PATERSON, N.J.
time delay relays - delay lines - rotary solenoids - digital MOTORS - TIMING DEVICES - DUAL RELAYS • SOLID STATE COMPONENTS

CIRCLE 741 ON READER-SERVICE CARD

PATENTS

Device For The Separation of Gas lons

Patent No. 2,919,348. Aron Bierman.
A simple electrostatic system separates gas ions of different mass due to their relative zig-zag motion in and out of a potential well.
Diagrammatically, the ions from source 11 are accelerated toward concave plate 1^{\prime} at a specified angle to the tube axis.

The repelling forces developed by grids 7^{\prime} and 7 make their path cyclical and the particles ultimately are collected at plate 14. However, the high frequency source 10 may be adjusted to resonate with the motion of a particle of a selected mas number. The amplitude of the motion then regularly increases, until the energy is sufficient to overcome the barrier of grid 7^{\prime} and the particle strikes plate 1^{\prime}. preferably at a window.

Ghost images caused by ions whose mass have a whole number ratio to the mass of the ions under consideration are reduced. The energy built up by the undesired ions is insufficient to permit them to reach either plate 1 or 1^{\prime} and their path is eventually interrupted by plate 14.

Pulsed Magnetron Instability Detector
Patent No. 2,895,107. Gerald I. Klein. (Assigned to United States of America)

The number of times a magnetron is unstable, or has its output fall below a fixed level, is counted by an anticoinci-

- Presents effectively continuous impedance information over a frequency band
- Entirely self-contained except for the use of an external oscillator.
- Models available to cover $2.5-250 \mathrm{mc}, 30-400 \mathrm{mc}$ and $180-1100 \mathrm{mc}$.

Write for complete information on AMCl Automatic Impedance Plotter

CIRCLE 742 ON READER-SERVICE CARD
ence circuit. The apparatus used is the andard JAN test setup for determining onformance with magnetron specifica(ions.
Essentially, diodes 272 and 274 of netork 42 compares the outputs from two multivibrators. Multivibrator 22 is driven (iirectly by a pulser and multivibrator 38 is triggered by the detected magnetron
output set by pedestal network 36. In a stable magnetron, cancellation of the pulses in network 42 is complete and zero output appears at junction J_{3}. With instability, the cancellation is incomplete, especially when the magnetron fails to fire in the specified mode, and triode 302 couples a signal to the counter at the output junction J_{3}.

Radio Interference Filters

Standard has proven it knows the noise filter problem-and how to cope with it! Modern production facilities and skilled engineering assure you economically produced filters to your exacting specifications. Prompt, scheduled delivery also!
Let filter specialists solve your filter supply problems. Send your specifications and quantity requirements for a quote.
STANDARD ELECTRONICS COMPANY
1611 W. 63rd St. - Chicago 21, III. - Prospect 8-4222

Illontrose

division
AVIATION CORPORATION

SYNCHROS

MLL-S-20708
 MIL-S.2335

Your complete source for all military type synchros with "off the shelf" delivery

SIZE 15 CTAb, cX4b, CDX4b, TR4c, TXAb, TDX4b, CT6b, cX6b, CDX6b, TR6a
SIZE 18 cT4b, cx4b, CDX4b, TR4b, TDX4b, CT6b, cx6b, cDX6b, TX6a, TRX6a
SIZE 23 CTR4b, TX4, TX4a, TX4b, TDX4,

SIZE 31 TR4d, TX4a, TX4d, TDX4b, TDR4b. TR6b, TX6b, TDX6b, TDR6b
SIZE 37 TR4a, TX4b, TDX4a, TDR4a, TR6b, TX6b, TDX6a, TDR6a
TYPE 1 10, 1F, $1 \mathrm{HCT}, 1 \mathrm{HOG}, 1 \mathrm{Hg}$
TYPE 3 3D, 3F, зHCT, зHDG, зHG
TYPE 5 50, 5F, 5HCT, 5HDG, 5HG, 5N
TYPE 6 6HDG, 6 HG

WRITE FOR FREE
Rapid Roference Guide lo Military Synchros. \longrightarrow

Write on company lettorhead for Synchro Engincering Catalog.

Wert Coast Sales and Sorvice Offce-117 East Providonclo Avanuo, Burbank, Coliformia Canadion Soles Offace - Aviation Electric Limitod, 200 Lourention Blvd., Montroal, Quobec, Conada Export Soles and Service -Bendix Intornational, 205 East 42nd St. Now York 17, Now Yort

Montrose Division
SOUTH MONTROSE, PA.

MOTOR DIVISION
National Pneumatic Co., Inc., Boston 19, Mass. circle 745 ON reader-service card

PATENTS

Electron Discharge Devices
Putent No. 2,917,658. R. W. Hunter. (Assigned to International Telephone and Telegraph Corp.)
The electron beam generated by an Iatron flood gun is allowed to diverge slightly so that the planar target is uniformly illuminated. Proper design limits the beam within the diverging lens to reduce spherical aberration.
The operation of the tube is as follows: Whiting gun 4 writes the charge pattern on target screen 6 according to the control signal. A low voltage Pierce gun 3 floods the target with electrons which pass to

phosphor 2 to generate the display as modulated by the target screen. To collimate all electrons at right angles to the target surface, the voltage of aquadag ring 11 is depressed below the voltages applied to rings 10 and 12 . Electrons slow down and the beam diverges in plane 13 so that the lens increases the apparent beam angle. In plane 14, the beam again converges to focus uniformly on the target screen.

Charged Particle Beam Focusing System

Patent No. 2,902,622. Michiaki Ito (Assigned to International Standard Electric Corp.)

Periodic electrostatic focusing of a long electron beam is obtained by applying ac, preferably polyphase, to the focusing structure. Regulated dc sources are thereby eliminated in this quasi-static system, since the electrical focusing alternations at 60 cycles are effectively stationary with respect to the high velocity electrons.

The beam generated by cathode 11

Complete
 line

designed by

Electronic

 Specialists
for

ELECTRONICS

Who knows better about lacing cord than the leader who has been designing than the leader who has been designing and manufacturing electronic
round cords and flat-braided tapes

- nylon dacron and teflon-fiberglass
- nylon, dacron and teflon-fiberglass
finishes: micro-crystalline wax,
rubber-like resin, teflon resin, synthetic rubber
- meets industrial specifications
meets industrial
each spool individually packaged in boxes

ALPHA WIRE CORPORATION - 200 Varick Street, New York 14, N. Y. In the 13 Western states, call on our new Pacific Divisions ${ }_{\text {Los }}^{1871}$ Angeles Orange Drive IRE Booth 4103 - IRE Booth 4103 CIRCLE 746 ON READER-SERVICE CARD

ELECTRONIC DESIGN • March 16, 1960

一哂 $\underbrace{}_{13}$
passes through coils 2,3 , and 4, distributed along the path leading to collector plate 15. The focusing current delivered to the coils is generated in the 3-phase windings 8 , connected to a suitable ac generator.

Manufacture of Sintered Cathodes Putent No. 2,913,812. H. Huber, J. Freyag and J. Reynaud. (Assigned to Compagnie Generale de Telegraphie)
A dispenser cathode is formed by comressing the emissive material, 2 , coating t with a layer of high refractory metal, 4,
and then sintering and machining it to the desired surface contour of the porous outer layer. The unique feature of the process is that, after sintering in an argon atmosphere, the layer of porous tungsten above the barium tungstate emissive material, 2 , is cut through along plane $5-5$. Grinding and polishing can then produce a surface layer no more than 20 microns thick

VISIT COMINCO воотн 4511 IRE SHOW NEW YORK MARCH 21-24

TADANACBRAND
High Purity

TADANAC Brand High Purity Lead is 99.9999% pure and is available in ingots, rods, powder, sheets and shot. It is also available as disc and spherical pellets and washers, suitable as solder preforms or for direct alloying with germanium in the production of alloy-junction transistors or diodes.
Other high purity TADANAC Brand metals or compounds include Special Research Grade antimony, indium and tin; High Purity Grade bismuth, cadmium, indium, silver, tin, zinc and indium anti-
monide. Send for our brochure-TADANAC Brand High Purity Metals.

-COMNNCO

THE COMSOLIOATEO MIMIMG AMD SmELTIME COMPAMY OF CAMADA LIMITED 215 St. LAMES ST. W., MONTREN I. OUEBEC, CAMMOA 215 St.
0162

SPRAGUE RELIABILITY in these two dependable wirewound resistors

Sprague's new improved construction gives greater reliability and higher wattage ratings to famous Blue Jacket miniature axial lead resistors.

They are ideal for use in minia. fure electronic equipment with either conventional wiring or printed wiring boards. printed wiring boards.
Get complete data on these dependable minified resistors, write for Engineering Bulletin 7410.

TAB-TYPE BLUE JACKETS: For industrial applications, select wattage ratings from 5 to 218 watts in Sprague's famous Tab. Type Blue Jacket close-folerance, power-type wirewound resistors. Ideal for use in radio transmitters, electronic and industrial equip. ment, etc. For complete dafa, send for Engineering Bulle. tin 7400A.
.

SPRAGUE ELECTRIC COMPANY

347 marshall street - north adams, mass.
SPRAGUE COMPONENTS:
RESISTORS - CAPACITORS - MAGNETIC COMPO. nents - transistors - interference filters PUISE NETWORKS - HIGH TEMPERATURE MAGNET WIRE - Printeo circuits

SPRAGUE
THE MARK OF RELIABILITY

PATENTS

Electric Circuit for Generating

 Substantially Linear Voltage Changes Patent No. 2,916,705. W. L. Stephenson. (Assigned to North American Philips Co.)A simple transistor configuration provides monostable operation and generates a linear output waveform.
As illustrated, pnp transistors T_{8} and T_{2} are initially fully conducting. A positive pulse applied to paint 13 causes T_{2} to

conduct harder and the positive pulse coupled to T_{1} causes T_{8} to cut off. Capacitor 7 discharges linearly and the negative feedback through T_{1} raises the potential of point 10 so that T_{3} is no longer cut off. Regenerative dc coupling between T_{3} and T_{2} resets these transistors to full conduction.

Information Stores

Patent No. 2,919,377. J. M. N. Hanlet (Assigned to Societe d'Electronique et d'Automatisme)
Information is stored by the controlled intensity modulation of a low velocity crt beam which scans an electroluminescent material deposited upon a photoconductor.
In the writing position, the voltage between control grid 4 and electrode 11 is set to about 3 v . The electron beam is deflected by plates 20 and 21 and a charge is deposited on film 8 according to video input 23. At every storage point, light is emitted which decreases the conductivity of layer 9. Instantaneous voltage changes across load 14 are coupled to output 24.

The information may be read by scan-
ming the stored surface repeatedly with a $1.5-\mathrm{v}$, low velocity beam. All points previously illuminated by the electron beam will be reinforced in brightness, further decreasing the photoconductivity to produce useful output.
Erasure occurs when the stored surface is set at the voltage of the scanning electron beam.

Servo Arm For Phonograph Pickups Patent No. 2,915,315. J. Rabinow
Phonograph reproduction is improved by supporting the pickup on a plate moved by a separate motor. The motor is controlled by the instantaneous position
of the pickup arm. The technique makes the pickup move tangent to the record groove.
In operation, the pickup arm 3 follows the track cut in record 12. Since the arm swings clockwise, switch contacts 30 and 31 periodically join and motor 23 is energized. This motor moves plate 7 through flexible shaft 21 , producing straight line motion of stylus tip 1. The main bending forces are borne by the motor-driven plat-form,-rather than by the pickup arm. Thus, the angle the arm is bent becomes very small.

Pick your TERMINALS with KULKA TERMINAL BLOCKS!
What do you prefer for your connections-screw stud, nut, turret, threaded-turret, taper-pin, feedthru, or other terminal style? No longer must you thru, or other terminal style? No
Select the terminal style or styles, together with type and size of terminal block. The Kulka Ter with type and size of terminal block. The Kulka Ter-
minal Program will combine the two factors in a terminal block custom-fitted to your wiring and assembly needs. It's simple, expeditious, economical! LITERATURE...Ask for the Kulka Terminal Style Catalog, listing many terminal designs and combinations. Let us quote on your requirements.

KULKA ELECTRIC CORP.

633-643 So. Fulton Avenue
Mount Vernon, N. Y.

12 CHANNEL
 direct ink or electric

 RECTILINEARRECORDING SYSTEM

MORE DATA

PER DOLLAR

This new Recording System, Model BSA-1200, combines all the advantages of rectilinear recording with the economy of ink writing in $1 / 3$ less space than any comparable system. At an average chart speed of $50 \mathrm{~mm} / \mathrm{sec}$., for example, you save $\$ 10,000$ every 200 hours in chart costs alone when compared to other rectilinear recording systems. In addition, this system is designed to accept a wide choice of different interchangeable plug-in preamplifiers for each of the 12 recording channels.
additional features

- High Speed Rectilinear Recording with Ink. Unique pen design provides splatterproof writing to 200 eycles.
- Wide Frequency Range reproduces signals from DC to 200 cps on rectangular coordinate chart paper
- Interchangeable Plug-in Preamplifiers - Low, Medium, High Gain DC, AC. Chopper, Carrier, and Servo
- Automatic one second timer and manmal EVENT MARKER
- 18 Speeds - Push-button Controls (Remote control optional)
- Individual Power Supplies and Transistorized Driver Amplifiers for ach channel. Prevents cross-falk between channels
- Pen Motor Overload protection
- Inferchangeable pens for either Ink or Electric Writing
- Mierometer Pen Mofor Adjusfments for accurate pen alignment
- Plug-In provisions for remofe or centralized contral of all functions
- Modular Design throughout for ease of servicing

Write for complete information on High Speod Recording Systems

OTHER MASSA PRODUCTS transducers
KULKA
Sonar, Ultrasonic
ACCELEROMETERS
MICROPHONES
HYDROPHONES
AMPLIFIERS
COMPLETE LINE OF MULTI-CHANNEL AND

IRE SHOW
 Sooth Mos.
 3609 to

3611

CIRCLE 752 ON READER-SERVICE CARD

The NEW Series BH100

OF STANDARD INSTRUMENTS!

- Resolution: 1 part in 10,000
- LABORATORY PRECISION for the operating plant.
- COMPATIBLE with any transducer-AC or DC.
- For strain gage, linear differential transformer, thermocouple, thermistor, resistance thermometer, pulse or variable frequency circuits or systems.
- Parabolic or logarithmic functions are linearized for direct digital reading.
- Every scale unit is a calibrated value.

Produced by the makers of the Jetcal ${ }^{8}$ jet engine Analyzer... in worldwide military and airline use!

Full information is avallable for the asking! B \& H INSTRUMENT CO., INC.
3479 West Vickerv Blvd., Forl Worth 7, Texes
Sales-Enginoering Offices:
atlanta, ga., compton, cal., dayton, ohio, valley stream, l.I., n.y., wichita, kan. TORONTO. ONT. (George Relk lid.), MITCHAM, SURREY, ENGIAND (Bryons Aeroquipment (td.) CIRCLE 753 ON READER-SERVICE CARD

Fundamentals of Electronics
E. Norman Lurch, John Wiley \& Sons, Inc., 440 Fourth Ave., New York 16, N.Y., $631 \mathrm{pp}, \$ 8.25$.

Planned to meet the need of the technician who is to work in the electronics field, this book provides a firm background in electronics fundamentals. It is intended as an introduction to the field as a whole and prepares the reader for the more specialized aspects of electronics: communications, industrial electronics, television, microwaves, and computing systems.

In following the text material, only a working knowledge of dc fundamentals, algebra and right-angle trigonometry is required. Also, if not prerequisite, the student should be studying ac circuits concurrently with the first six chapters
which deal with electronic devices. The level of the text enables the student to make gain calculations, compute power outputs, perform graphical solutions, determine the modulation applied to a carrier wave, and solve other similar problems. However, he will not be prepared to handle the design calculations and original derivations that are expected of the electronic engineer.

The development of the text assumes that the vacuum tube and the transistor are of equal importance. In the application chapters, for example, the chapters on rectifiers and nonsinusoidal oscillators, these elements are treated simultaneously. Other chapter headings include: The Vac-uum-Tube Amplifier, The Transistor Amplifier, Transformers and TransformerCoupled Amplifiers, High Frequency

CIRCLE 754 ON READER-SERVICE CARD ELECTRONIC DESIGN • March 16, 1960
mplifiers, Feedback Oscillators, Modution, Detection, and Push-Pull and llase Inversion. The text is amply illusrated and much of the discussion is done with equivalent circuits and, where helptul, graphs are used to explain circuit peration. The end of each chapter consists of review questions, problems, and a unggested reference list for further study.

Electrical Engineering Fundamentals

J. P. Neal, McGraw-Hill Book Co., 330 W. 42nd St., New York 36, N.Y., 402 pp, 8.50 .

A thorough introduction to the fundamentals of electrical engineering theory is presented in this new undergraduate text. It is assumed that the reader has had college physics courses in mechanics, electricity, and magnetism and mathematics courses in analytic geometry, algebra and calculus.
Engineering interpretations of the physical characteristics and laws of electromagnetic systems and their equivalent mathematical models are presented in terms of the rationalized mks system of measures, using scalars and vectors, as appropriate. A careful review of the essen-
tials of elementary vector mathematics is also included.
The introduction to elementary classical electromagnetic field theory leads us to an understanding of the laws of Faraday, Ampère, and Gauss, as expressed in Maxwell's equations in integral form. Practical examples and problems demonstrate the applications of these laws to simple symmetrical physical systems. However, the more sophisticated point concepts, such as divergence, curl, Poisson's equation, and Maxwell's equations in point form, are not discussed in this book.
The discussion of elementary network theory introduces Kirchoff's network equations as derived from Maxwell's field equations. The network equations are applied to magnetic networks and dc electric networks. The branch, circuit, and node methods for solving dc networks are presented.
The relations between elementary field theory and elementary network theory are frequently illustrated by applying field theory to the derivation of the parameters of equivalent electric and magnetic network elements for simple physical devices.

SMTCMEFAR "Multi-Switch"
 ECTRONIC DESIGN • March 16, 1960

AIRPAX

EXHIBITING $\mathbb{I N}$ BOOTHS 2306-08 AT THE IRE SHOW

TRANSISTOR CHOPPER

PREAC AMPLIFIERS
CHOPPER TYPE 2300 Miniature transistor Preac magnetic ampli- Low noise type for null chopper with self-con- fiers are high sensitivity seeking servos, instrutained drive transformer DC units having an ex- mentation, instrument five thousand CPS. 60 and 400 CPS sources. and control systems.

FERRAC MOLDED AMPLIFIER
Fast response, wide dynamic range and high gain characterize this ugged Ferrac molded magnetic amplifier. Weight only 7.5 ounces.
 Nine channel FM Telemetry Moni tor. Deviation from center frequency of each telemeiry sub-channel is
displayed and measured.

INSTANTANEOUS ACTING miniature MAGNETIC CIRCUIT BREAKERS Miniature hermetically sealed magnetic circuit breakers with inverse time delay provide positive protection in critical circuits. Trip lovel is independent of temperature.

Airpax engineers resolve the most advanced technological problems met with in the fast-moving electronics and electro-mechanical fields. Subminiaturization, abnormal temperatures, super. reliability, space utilization and similar subjects are constantly under investigation in the quest for designs to meet the demands of tomorrow.

CIRCLE 756 ON READER-SERVICE CARD

Copperbrite 48 is economical, safe and efficient . . .

- Has indefinite bath life
- Contains no etching acids
- Provides superior solderability and plating adhesion
- Odorless, vaporless, easy to use

Request liferafure and fest sample

LONDON CHEMICAL CO., INC.
is3i M. Jlet AVENUE • MELROSE PARK, ILLINOIS member of institute of printed circuits CIRCLE 757 ON READER-SERVICE CARD

Split-

Second
Starters
with
Super
Finishes
Advanced retainer design and
rigid monufacturing control for MPB bearings eliminate torque
pulses due to hang-up;
micro-finished bolls and
raceways assure low torque
with minimum variations and
maximum reliability. Write
MPB Inc., 903 Precision
Park, Keene, N. H., for cololog
MPE helps you perform miracles in miniofurization

NPB

MINIATURE PRECIEION BEARINGE INC. CIRCLE 758 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

J. George Adashko

Final-Stage Design of a Vertical

Sweep Generator

A. A. Zakharov

THE OPERATION of the output stage of a vertical sweep generator is analyzed for both inductive and transformer loads. A simple method for designing the circuits is described which results in good output current linearity.

Inductive Load Design

The output stage of a vertical sweep generator with a choke load is shown in Fig. la. The equivalent diagram of the plate circuit of this stage is given in Fig. 1b, with

$$
\begin{equation*}
C_{b}=\frac{C_{c} C_{b}}{C_{c}+C_{b}} \tag{1}
\end{equation*}
$$

It is assumed that the entire ac component of the tube current flows through capacitors C_{6} and C_{3}.

Fig. 1. a) Output circuit of a vertical sweep generator with choke load. b) Equivalent output stage circuit.

The output current waveform applied to the deflecting coils is shown in Fig. 2. It is expressed by Eq. 2:

$$
\begin{equation*}
i_{c}=I_{c}\left(\frac{t}{T}-0.5\right) \text { for } 0 \leq t \leq T \tag{2}
\end{equation*}
$$

repeating periodically for $t>T$. The return time is assumed to be zero. The distributed capacitances of the deflecting coils and of the choke are neglected.
The voltage drop across the inductance and resistance of the deflecting coil and across capacitance C_{o} is
$e_{a c}=e_{L}+e_{R}+e_{c}=\frac{-I_{e}}{2 C_{0} T} t^{2}-I_{\epsilon}\left(\frac{R_{g}}{T}-\frac{1}{2 C_{o}}\right) t$

$$
\begin{equation*}
+L_{c} I_{c} \delta(i)+0.5 R_{c} I_{c}-\frac{L_{e} I_{e}}{T}-\frac{I_{e} T}{12 C_{e}} \tag{3}
\end{equation*}
$$

where $8(t)$ is the δ _ function corresponding to $t=n T$.
The same voltage, due to the current flowing through it, is impressed across the choke. It is convenient to consider the choke current as consisting of four components:

$$
\begin{equation*}
i_{c h}=i_{c h 1}+i_{c \wedge 2}+i_{c \wedge 3}+i_{c h 4} \tag{4}
\end{equation*}
$$

With

$$
\begin{align*}
f_{1}\left(i_{e h 1}\right) & =-\frac{I_{e}}{2 C_{0} T} t^{2} \\
f_{2}\left(i_{e h 2}\right) & =-I_{e}\left(\frac{R_{e}}{T}-\frac{1}{2 C_{e}}\right) t \tag{5}\\
f_{3}\left(i_{e h 3}\right) & =L_{e} I_{e} \delta(t) \\
f_{4}\left(i_{e h 4}\right) & =I_{e}\left(0.5 R_{e}-\frac{L_{e}}{T}-\frac{T}{12 C_{e}}\right)
\end{align*}
$$

ELECTRONIC DESIGN • March 16, 1960

Fig. 2. Output current waveform of the sweep generator. The return time is assumed to be zero.

The current $i_{c n 1}$ is obtained from:

$$
\begin{equation*}
L_{c h} d i_{c h 1}-I t i_{c h} i_{c h 1}=-\frac{I_{c}}{2 C_{0} T} t^{2} \tag{6}
\end{equation*}
$$

The function on the right side of the equation is periodic, with a period T. This differential equation is solved by operational calculus methods.

$$
\begin{equation*}
i_{c h 1}(p)=\frac{I_{c}}{2 C_{o} T}\left[\frac{t^{2}(p)}{p L_{c h}+R_{c h}}\right] \tag{7}
\end{equation*}
$$

where:
$t^{2}(p)=\frac{1}{1-e^{-p t}} \int_{0}^{T} t^{2} e^{-p t} d t=\frac{T^{2} e^{-p t}}{p\left(1-e^{-p t}\right)}$
$-\frac{2 T e^{-p t}}{p^{2}\left(1-e^{-p t}\right)}+\frac{2}{p^{2}}$
(8)

The inverse transform of $i_{\text {ch1 }}$ is found by integrating over the contour L, which includes the imaginary axis of the complex plane p, Fig. 3.
$i_{c h 1}(t)=\frac{1}{2 \pi i} \int_{L} i_{c h 1}(p) e^{p t} d p$

$$
=\frac{I_{c}}{2 C_{0} T}\left[-\frac{T^{2}}{2 \pi i_{-L}} \int_{\llcorner } \frac{e^{p(t-T)} d p}{p\left(1-e^{-p T}\right)\left(p L_{c h}+R_{c h}\right)}\right.
$$

$$
-\frac{2 T}{2 \pi i} \int_{L} \frac{e^{p(t-T)} d p}{p^{2}\left(1-e^{-p t}\right)\left(p L_{c h}+R_{c h}\right)}
$$

$$
+\frac{2}{2 \pi i} \int_{L} \frac{e^{p t} d p}{p^{z}\left(p L_{c h}+R_{c h}\right)}
$$

$$
\begin{equation*}
\left.=\frac{I_{e}}{2 C_{e} T}\left(-T^{2} \int_{1}-2 T \int_{2}+2 \int_{3}\right)\right] \tag{9}
\end{equation*}
$$

The first integral can be represented as a difierence of two integrals, one along the contour L_{1}, which includes the entire left half plane and the imaginary axis, and the second along the contour

Selecting a duplexer for high-power applications involves consideration of peak power, average power, transmit loss, receive loss, expected life, and versatility of operation.
All Microwave Associates high power gas duplexers utilize special window structures for optimum switching efficiency without sacrifice in low-level loss characteristics. These windows insure reliable, long-life performance. Both our gas and ferrite duplexers may be operated over very broad bandwidths at the common microwave frequencies.
Exceptionally complete ultra-high-power design and test equipment is utilized by our Research and Production Departments. Each duplexer is fully tested at maximum rated power before shipment.
We have extensive experience in designing and manufacturing high-power duplexer devices and are interested in working on newest ultra-high-power applications. We are now developing ultra-high-power duplexers for more efficient switching at UHF, L, C, and S bands.
Our Applications Engineers would like to discuss the future of high power duplexing with you.

$\begin{gathered} \text { Frequency } \\ \text { Band } \end{gathered}$	Duplexer Type	Peak Power	Average Power	$\begin{aligned} & \text { Transmit } \\ & \text { Loss (max.) } \end{aligned}$	${ }^{\bullet}$ Receive Loss (max.)	Bandwidth	All Microwave Associates duplexers incorporate low-loss, long-life, receiver protectors which guarantee crystal protection over wide temperature ranges and under extreme environmental conditions.
	Gas	5 Mw	300 Kw	0.1 db	0.4 db	Tunable	
UHF	Gas	25 Mw	75 Kw	0.1 db	0.4 db	10\% Nominal	
1	Gas	25 Mw	50 Kw	0.1 db	0.5 db		
S	Gas	6 Mw	30 Kw	0.1 db	0.7 db		
	Ferrite	3 Mw	5 Kw	0.5 db	0.9 db		
c	Gas	5 Mw	5 Kw	0.1 db	0.7 db		
	Ferrite	5 Mw	7.5 Kw	0.3 db	0.8 db		
\mathbf{x}	Gas	500 Kw	500 W	0.2 db	1.0 db		
	Ferrite	1 Mw	1 Kw	0.3 db	0.9 db		
Ku	Gas	150 Kw	150 W	0.2 db	1.0 db		
	Ferrite	150 Kw	150 W	0.3 db	0.9 db		
Ka	Ferrite	75 Kw	75 W	0.3 db	1.1 db	4\% Nominal	

-The duploxer receiver loss includes the loss due to recoiver protector TR lubes.
Visif us af IRE Booth 2301-2303

At each frequency band of the microwave spectrum, Microwave

Associates has devices for efficient
switching of high power.

MICROWAVE ASSOCIATES, INC.
burlington, massachusetts
Western Union FAX-TWX: Burlington, Mass., 942 - BRowning 2.3000 CIRCLE 759 ON READER-SERVICE CARD

New tool for the Reliability Engineer the AIL Type 90 is designed to test low frequency (audio, video and computer) circuits by the "extreme values" or "worst case" technique. Circuits may be tested for all combinations of anticipated low and high values for as many as 16 parameters. Up to 6000 tests per minute may be conducted.
Digital read out permits determination of circuit combinations which produce unacceptable performance. The total number of parameters available combined with the total number of parameters successfully tested to their extremes, provide a measure of the reliability factor of the circuit under test.

6000 tests a minute
AIL Type 90 Circuit Design Reliability Tester $\$ 3600.00$

Write for full details

AIRBORNE INSTRUMENTS LABORATORY

DEER PARK, LONG ISLAND, NEW YORK A DIVISION OF CUTLER-HAMMER INC.

RUSSIAN TRANSLATIONS

Fig. 3. The choke current can be found by performing two integra-tions-one along path L_{1}, whiche includes the entire left half plane and the imaginary axis, and the other along path L_{2}, which includes only the left half plane.
L_{2}, which includes only the left half plane, Fig. 3.

$$
\begin{align*}
\int_{1} & =\frac{1}{2 \pi i} \int_{L_{1}} \frac{e^{p(t-T)} d p}{p\left(1-e^{-p T}\right)\left(p L_{c h}+R_{c h}\right)} \\
& -\frac{1}{2 \pi i} \int_{L_{2}} \frac{e^{p(t-T)} d p}{p\left(1-e^{-p T}\right)\left(p L_{c h}+R_{c h}\right)} \tag{10}
\end{align*}
$$

Since:
$\frac{1}{1-e^{-p T}}=1+e^{-p T}+e^{-2 p T}+e^{-3 p T}+\ldots$
the integral along L_{1} can be broken into a series of integrals, the numerator of which is exponential in $p(t-k T)$. To satisfy the Jordan lemma it is necessary that $\operatorname{Re}[p(t-k T)]<0$, that is, that the real part of p be positive. This requires that the contour L_{1} be closed in the right half plane, where the integrand has no singularity; the integral over L_{1} therefore vanishes. The second integral in Eq. 10 is equal to the residue at the pole, $p=-R_{c n} /$ $I_{c h}$, and therefore

$$
\begin{equation*}
\int_{1}=\frac{-e^{-p t}}{R_{c h}\left(1-\epsilon^{-p T}\right)} \tag{12}
\end{equation*}
$$

where:

$$
\alpha=\frac{R_{c h}}{L_{c h}}
$$

The integral \int_{2} can also be found by piecewise integration, with the integral over L_{1} again vanishing for the same reason as above, and the integral over L_{2}, being equal to the residue at the pole, $p=-R_{c h} / L_{c h}$.

$$
\begin{equation*}
\int_{2}=\frac{L_{e h}}{R_{c h}{ }^{2}\left(1-e^{a T}\right)} \tag{13}
\end{equation*}
$$

The integral \int_{3} equals the residue at the thirdorder pole, $p=0$

$$
\begin{equation*}
\int_{3}=\frac{1}{2 R_{c h}}\left(\frac{2}{\alpha^{2}}-\frac{2 t}{\alpha}+t^{2}\right) \tag{14}
\end{equation*}
$$

Thus, the choke current $i_{c h 1}$ is equal to
ELECTRONIC DESIGN • March 16, 1960
${ }_{c h 1}=\frac{I_{c}}{R_{c h} C_{0} T}\left[\frac{T\left(\frac{T}{2}-\frac{1}{\alpha}\right)}{1-e^{-\alpha T}} e^{-\alpha t}+\frac{1}{\alpha^{2}}-\frac{t}{\alpha}+\frac{t^{2}}{2}\right]$

Expressions for $i_{c h 2}, i_{c h 3}$ and $i_{c h 4}$ are obtained in nalogous manner, and the values of these curints are
$\mathrm{i}_{\mathrm{A} 2}=\frac{I_{c} T}{R_{c h}}\left(\frac{R_{c}}{T}-\frac{1}{2 C_{\mathrm{o}}}\right)\left[\frac{t}{T}+\frac{e^{-\alpha t}}{1-e^{-\alpha T}}-\frac{1}{\alpha T}\right]$, (16)

$$
i_{c h 3}=-\frac{I_{c} L_{c}}{L_{c h}} \frac{e^{-\alpha t}}{1-e^{-\alpha T}}
$$

$$
\begin{equation*}
i_{c h 4}=\frac{I_{c}}{R_{c h}}\left[\frac{L_{e}}{T}-0.5 R_{c}+\frac{T}{12 C_{o}}\right] \tag{18}
\end{equation*}
$$

The total ac component of the plate current of the tube is

$$
\begin{gathered}
i_{a c}=i_{c}+i_{c h 1}+i_{c h 2}+i_{c h 3}+i_{c h 4} \\
=I_{c}\left[A e^{-\alpha T}\left(\frac{t}{r}\right)+B\left(\frac{t}{T}\right)^{2}+C \frac{t}{T}+D\right],
\end{gathered}
$$

where:

$$
\begin{align*}
& A=\frac{1}{1-e^{-\alpha T}}\left(\frac{R_{c}}{R_{c h}}-\frac{1}{\alpha R_{c h} C_{o}}-\frac{L_{c}}{L_{c h}}\right) \tag{20}\\
& B=\frac{T}{2 R_{c h} C_{o}} \tag{21}\\
& C=1+\frac{1}{R_{c h}}\left(R_{c}-\frac{1}{\alpha C_{o}}-\frac{T}{2 C_{o}}\right) \tag{22}\\
& D=\frac{1}{R_{c h}}\left[\frac{L_{c}}{T}+\frac{T}{12 C_{o}}\right. \\
&\left.+\left(0.5+\frac{1}{\alpha T}\right)\left(\frac{1}{\alpha C_{o}}-R_{c}\right)\right] \tag{23}
\end{align*}
$$

Calculating the Rise Time Excitation
Expressions 3 and 19 make it possible to draw a load line on the tube plate characteristics. With the aid of this load line the required wave form of the excitation voltage during the rise time can be determined. It is necessary to select the values of the dc components of the plate current and plate voltage of the tube, that is, the position of thie operating point. This choice is made by a trial and error method in which maximum deflecting current linearity is sought.
In the first trial, it is advisable to select the - int corresponding approximately to transformercupled operation as the dc operating point. Note i) at the voltage drop across the choke and the

The NEW $\frac{1}{2} \mathbb{C} \backslash \mathbb{C}$ FILM POT IS THE ANSWER

LINEARITY 0.2\% • INFINITE RESOLUTION • LONG LIFE

SPECIFICATIONS:
MODEL \qquad

RESISTANCE RANGE	500Ω TO 150 K
BEST LINEARITY OR CONFORMITY	0.2%
WATTAGE	1
GUARANTEED LIFE, REVS.	TO 30×10^{6}

92 Madison Avenve, Hempstead, L. I., N. Y.

This subminiature film pot has much greater accuracy than comparable wire-wound types and features the reliability inherent in film pots. Now you can meet tight space requirements without sacrificing accuracy. Send us your specifications.
territories open for oualified sales representatives
FIRST IN FILM POTS

dc to 1 megacycle!

NEW from Krohn-Hite: this unique combination of power and bandwidth! The Model DCA-10 direct-coupled amplifier allows you to increase power of all sources from dc to one megacycle, without the bother of changing amplifiers or bandswitching!

The DCA-10's low distortion (0.1%) makes it the perfect complement for low-distortion, quality oscillators - for unexcelled performance over the entire frequency range.

Output - to 300 volts peak to peak, to 600 milliamperes peak to peak. Frequency response is flat within one db , from de to 1 mc . Stability is excellent for both output dc level and gain.

The Model DCA-10 direct-coupled amplifier provides high, distor-tion-free power over the entire range from sub-sonic into radiofrequencies. Twenty watts of push-pull power can be obtained from two DCA-10's cascaded. If this high-quality, flexible amplifier can fill a need for you, write for full information.

Other Krohn-Hite amplifiers include the direct-coupled 50 watt DCA-50, and the ultra-low distortion (0.005%) 50 watt UF-101A. Also, Krohn-Hite Oscillators, Filters and Power Supplies.

KROHN-HITE CORPORATION
580 Massachusetts Avenue • Cambridge 39, Mass.
Pioneering in Quality Electronic Instruments

RUSSIAN TRANSLATIONS

Fig. 4. The dc operating point on the plate characteristics is assumed to be the origin of coordinates for the ac load line.
cathode resistance must be taken into account. From the point $e_{a}=E_{b}-\left|E_{g}\right|\left(E_{b}\right.$ is the power supply voltage, E_{g} the grid bias), recommended for transformer-coupled operation, a dc load line is drawn at an angle $\alpha=\cot ^{-1} R_{c h}$ to the abscissa. A dc operating point corresponding to $-E_{g}$, Fig. 4 , is marked on this line. In the case of fixed bias, a dc load line is drawn through the point $e_{a}=E_{b}$.
The dc operating point is assumed to be the origin of coordinates for the ac components of the plate voltage and current. Using this coordinate system, an ac load line is drawn, from which the required wave form of the excitation voltage is obtained. However, since the required wave form can be determined only approximately, there is no need for drawing the entire line.
At best, the actual excitation voltage, usually obtained by charging a capacitor through a resistance, will coincide with the required sweep voltage in only three points. Therefore, the entire calculation is performed only for these three points, selected beforehand, which are chosen to correspond to $t=0, t=0.5 T$, and $t=T$. For these values of t, the ac components of the plate voltage and current, $e_{a 0}$ and $i_{a c}$, are calculated and note is made of the corresponding points on the family of the plate characteristics, Fig. 4.

From the positions of these points on the plate characteristics, the necessary instantaneous values of the excitation voltage, $e_{\rho 0}, e_{\rho 0.5}$ and $e_{\rho T}$, can be determined.

The excitation voltage swing during the rise time is

$$
e_{g m}=\left|e_{\theta} T-e_{g 0}\right|
$$

The nonlinearity of the excitation voltage is characterized by the quantity

$$
\Delta e_{\theta}=\left|e_{\theta 0.5}-e_{\rho 0}\right|-\left|e_{\theta} T-e_{00.5}\right|
$$

(25)

SWITCH TO

TEEH LDU
for
Precision Electrical Resistance Instruments

STEPPING SWITCHES
for automation, felemetering, remote control

- Rugged
- Dependable
- Hermetically sealed if desired

ROTARY SWITCHES
for all electronic equipment

- Meets or exceeds government specs.
- Printed circuit and special designs
- Quick deliveries
- Long life
- All sizes

CAM SWITCHES

for counting and control

- Decade switch
- Control
switch
- Decimal to binary converter

SEE US AT BOOTH 2120 I.R.E. SHOW CIRCLE 763 ON READER-SERVICE CARD ELECTRONIC DESIGN • March 16, 1960 jettron.

..FROM DESIGN

 TO PRODUCTIONJettron is fully-equipped to design and manufacture your precision electronic components including connectors, sockets and cable assemblies. Call or write Jettron for quotations on "specials" for all commercial and military applications.

JETTRON PRODUCTS • INC

Designed by Jettron Designed by Jettron for wue with the Gen. for use with the Gen. eral Electric GL-6442 and similar llintheuse and similar tighthouse tubes. features very tubes. Features very tow sapactunce yron lothode cator anode to cathode ground.
 Input Connector Type co. 7700
 | For the Western Elec. |
| :---: |
| tric $6280 / 4168$ planar | tric $6280 / 2168$ planar type spring finde. Has pingers makin spring fingers making contact with the RF cathode. specially de- sinnod berillum copsignt ontacts.

56 Route 10, Hanover New Jersey Telephones: TUcker 7.0571-0572 ales Engineers in Principal Cities Circle 764 on reader-service card

Fig. 5. Output circuit of a vertical sweep generator with transformercoupled load.

To obtain the required excitation voltage swing during the rise time, and after the maximum circuit charging voltage has been specified, the charging circuit time constant must be determined. The next step is to determine Δe_{g} of the resultant excitation voltage and to compare it with the specified value of Δe_{g}. It is desirable that these quantities differ by not more than $5-10$ per cent. If the discrepancy is too great, it is necessary to change the position of the computed points (that is, of the load line) by changing the grid bias. All the computation points are shifted by equal displacements along a line inclined to the abscissa at a fixed angle. In the case of a fixed bias, this angle is
$\alpha=\cot ^{-1} R_{c h}$
(26)

In the case of cathode bias, this angle is

$$
\begin{equation*}
\alpha^{\prime}=\cot ^{-1} R_{c h} \frac{\mu-1-\frac{R_{i}}{R_{c h}}}{\mu+1+\frac{R_{c h}}{R_{i}}} \tag{27}
\end{equation*}
$$

The foregoing analysis and method of calculation apply only to the rise time of the sweep. The high pulse voltage that develops on the plate during the return sweep means that a negative pulse of definite amplitude must be applied to the grid of the tube. This pulse, as is known, is obtained by means of a peaking resistance, whose value can be calculated from:

$$
R_{\text {poak }}=\frac{L_{\varepsilon}}{C_{a}\left(R_{c}+R_{i}+\frac{R_{c} R_{i}}{R_{c h}}\right)}
$$

where C_{a} is the capacitance of the charging capacitor, and R_{t} is the internal resistance of the output tube.

Transformer Load Design

The design of a transformer-coupled output stage is similar to that given above, however the expressions for $e_{a c}$ and $i_{a c}$, and also for several other quantities, are different.

Fig. 5 shows the output stage with a transformer coupled load, while Fig. 6 shows the corresponding equivalent plate circuits. In these diagrams L_{p} and R_{p} are the inductance and resistance of the primary winding, L_{s} and R_{s} are the same

This versatile, easy-to-handle, adjustable triangle is made of vellow-tinted opticalgrade acrylic plastic. A clean-cut oval track fitted with metal knurled knob assures ease of operation and lasting tight fit.

New combination protractor-triangle speeds up drafting

Architects, Engineers, Builders, Field Surveyors, Mathematicians-anyone problems indirectly to determine a wanted measurement graphically or mathematically-will find the Trig. Matk Adjustable Triangle a handy tool. It eliminates much of the graphic work necessary in estimating results or in checking for correct answers.

Versatility with accuracy

Basically the new Post Trig-Matk Adjustable Triangle is a mathematician's tool-accurate to three decimal places. It combines the functions of a pro-
tractor and a triangle into a simple tractor and a triangle into a simple unit, with two fundamental trigonometric relationships of a right triangle. within 0.1% in problems dealing with any of the six trigonometric ratios of any of the six
the sides of a right triangle.
The adjustable protractor has three sets of graduations. One set is graduated in half degrees, labeled Degrees, and permits the use of the Trig-Matk as a protractor setting for determining any angle from 0 to 90 degrees.
The second set of graduations, labeled Slope, shows directly the Secant trigonometric ratio of the angle indicated on the degree scale. The third scale,
labeled Rise, indicates directly the Tanlabeled Rise, indicates directly the Tangent trigonometric ratio shown on the degree scale.

Examples

This new tool has a host of drafting and engineering applications. Highway designers find the Trig-Matk very usefays at ground level or below. By

Sensitized papers \& cloths - tracing \& drawing mediums - drawing instruments a slide rule enginering equipment \& drafting supplies - Fielo equipment \& drafting furniture CIRCLE 765 ON READER-SERVICE CARD

An indicated angle of 10 degrees on the TrigMatk (1589) shows directly that the Rise is 8.4 to the base of 10 .
setting the Slope scale to the degree desired, road-curve grades are automaticaly determed. The protractor highway ingrese and egress lanes lanes.
Structural Engineers will find the Trig-Matk Adjustable Triangle a simple tool, eliminidg the use oth addition to the time saved many of the errors usually associated with the older method are avoided. The TrigMatk design eliminates the need of frequent reference to handbooks for information on various bevels.

Two Bases

The Trig-Matk No. 1589-12 has a $12^{\prime \prime}$ base scale for handy calculation in 10 has a feet and inches. Number 158
Keep posted on all the latest trends in drafting. Consult your local PoST dealer, or write to Frederick Post Co., 3644 North Avondale Ave., Chicago 18, Ill.

photo $1 / 2$ actual size
 NEW

 HIGH-SPEED, MINIATURE STEPPING SWITCH

For: Automatic switching, circuit selection, and timing-control

Featuring: • 80 steps per second on impulse drive 30 contacts per bank - maximum 12 banks - only 17 oz . in weight - unique sequence switching

Write today for complete technical data on the unique Miniature Uniselector - ALSO on the Two-Way and One-Way Stepping Switches.

11 University Rd., Cambridge 38. Mass. U.S. AGENTS FOR GENERAL ELECTRIC COMPANY, LTO. OF ENGLAND CIRCLE 766 ON READER-SERVICE CARD

CIRCLE 767 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

Fig. 6. Equivalent plate circuits for the transformer-coupled output stage.
for the secondary winding, L_{d} and R_{d} are the same for the deflecting system, and k is the coupling coefficient for the transformer windings. The analysis is based on the equivalent circuit of Fig. 6 b , in which:

$$
\begin{equation*}
L_{1}=\frac{L_{p}}{L_{n}} L_{d}+(1-k) L_{p} \tag{28}
\end{equation*}
$$

and:

$$
\begin{equation*}
R_{1}=\frac{L_{p}}{L_{t}}\left(R_{t}+R_{n}\right) \tag{29}
\end{equation*}
$$

The current in the deflecting plates during the rise time of the sweep is:

$$
i_{d}=I_{d}\left(\frac{\llcorner }{T}-0.5\right)
$$

The current in the $L_{1} R_{1}$ branch is:

$$
i_{r}^{\prime}=I_{c}^{\prime}\left(\frac{t}{T}-0.5\right)
$$

where:

$$
I_{c}^{\prime}=I_{c} \sqrt{\frac{L_{n}}{L_{p}}}=I_{c} \frac{\omega_{s}}{\omega_{p}}
$$

The voltage across the $L_{1} R_{1}$ branch is:
$e_{1}=-R_{1} I_{d}{ }^{\prime} \frac{t}{T}+L_{1} I_{d}{ }^{\prime} \delta(t)+\left(\frac{R_{1}}{2}-\frac{L_{1}}{T}\right) I_{d}{ }^{\prime}$

$$
\begin{equation*}
e_{1}=-\kappa L_{p} \frac{d i_{p}}{d t} \tag{30}
\end{equation*}
$$

where:
$i_{\text {poes }}=-\frac{1}{\kappa L_{p}} \int e_{1} d_{t}+\epsilon^{\prime}=I_{d}\left[\frac{R_{1} T}{2 \kappa L_{p}}\left(\frac{t}{T}\right)^{2}\right.$

Here Is The Answer To Every COIL FORM REQUIREMENT

High dielectric kraft, fish paper, cellulose acetate, DuPont Nylon, Resinite and combination tubes for any electrical/electronic application.

Ask about our special mandril and fabricating sorvicos Request Arbor List and Bulletin today. Send specifications for free samples.
PRECISION PAPER TUBE CO. 2055 west charleston street - chicago 47. Il. Plant No. 2: 1 Flower Stroef, Hertford, Conn. gesentatives throughout uniteo states and camada CIRCLE 768 ON READER-SERVICE CARD

Inductance, Resistance and Capacitance Decades in extracompact and rugged design for accurate and dependable performance. Quality components used throughout to provide the same precise quality standards, electrically and mechanically, as finest lab-style equipment.
Units housed in heavy-duty, seamless steel cases with Units housed in heavy-duty, seamless steel cases
durable gray finish. All one size- $51 / 0^{\prime \prime} \mathrm{L} \times 3^{1 / \mathrm{g}^{\prime \prime} \mathrm{W}} \mathrm{x}$
 value multiplier on left.
Available from all Aerovox Parts Distributors, write for descriptive literature.

AEROVOX CORPORATION DISTRIBUTOR DIVISION
 New Bedford, Massachusetts

CIRCIE 769 ON READER-SERVICE CARD ELECTRONIC DESIGN • March 16, 1960

see WHITE METAL for your complex MAGNESIUM alloy EXTRUSIONS

WHITE METAL . . and WHITE METAL alone . . . has The engineering experience and integrated magnesium aciilies to turn many "impossible" designs into reliable. Versatile WHITELIGHT magnesium
unlimited choice: any length, any shape, any alloy, any
finish. all Call on our Soles Engineers for help in solving your com-
plex shape problems. No. obligation, of course. WRITE,
WIRE OR PHONE TODAY!
sond for fact-Allod brochure on properflos, uses, ofe. of WHITELIGHT MAGNESIUM

-V HITE METAL ROLLING \& STAMPING CORP. 114 Moultrie St., Brooklyn 22, N. Y. - Phone EV 9-413

CIRCLE 770 ON READER-SERVICE CARD

Lampholders and Indicator Light Assemblies are the ideal units for space saving . . .

The advent of the much smaller "Tinylite" style lamps opens
up many new possibilities for miniaturizing all kinds of devicea up many new possibilities for miniaturizing all kinds of devices dial lighting, instrument indicators, scale lighting on transistor
radios.
OYys and novelties tre
ne few examples.
 Lampholders only $1 / 5$ as large as standard unims (with lamp
installed); and "Tinylite" Type No. 121 Midget Indicator Lishe installed): and "Tinylite" Type No. 121 Midget Indicator Ligh Assemblies, the smaliest available indicator ights with replace
able lamp and completely insulaced from housing, supplied able lamp and completely insulated from housing, supplied and complete with lamp. rnvestigate the many, possibilities with these skilfully engi-
neered subminiature units, which can save you both space and neered.

* SEND FOR DATA SHEETS, QUICK REFERENCE catalog of the big DRAKE LINE

DRARR

MANUFACTURING COMPANY

4024 n. olcott avenue - chicago 31, hlunois
MINIATURE LIGHTING SPECIALISTS

LECTRONIC DESIGN • March 16, 1960

$$
\begin{equation*}
\left.-\frac{T}{\kappa L_{p}}\left(\frac{R_{1}}{2}-\frac{L_{1}}{T}\right) \frac{\iota}{T}+\frac{T}{2 \kappa L_{\nu}}\left(\frac{R_{1}}{6}+\frac{L_{1}}{T}\right)\right] \tag{31}
\end{equation*}
$$

The plate current of the tube is:
$i_{n c}=i_{d}+i_{p a r}=I_{d}\left[B\left(\frac{t}{l}\right)^{2}+C \frac{t}{T}-D\right],(32)$ where:

$$
\begin{gather*}
B=\frac{R_{1} T}{2 \kappa L_{1 \prime}} \\
C=1-\frac{T}{\kappa L_{p}}\left(\frac{R_{1}}{2}-\frac{L_{1}}{\eta}\right) \tag{33}\\
I)=\frac{1}{2}\left[1-\frac{T}{\kappa L_{p}}\left(\frac{R_{1}}{6}-\frac{L_{1}}{T}\right)\right]
\end{gather*}
$$

This current produces a voltage drop across R_{p} and $L_{p}(1-k)$:

$$
\begin{align*}
e_{2}= & -L_{p}(1-\kappa) \frac{d i_{n}}{d t}-R_{p} i_{a c}=\frac{I_{d} R_{1} R_{p} T}{2 \kappa L_{p}}\left(\frac{1}{T}\right)^{2} \\
- & I_{d}\left\{\frac{R_{1}(1-\kappa)}{\kappa}+R_{p}\left[1-\frac{T}{\kappa L_{p}}\left(\frac{R_{1}}{2}-\frac{L_{1}}{T}\right)\right]\right\} \\
& \frac{t}{T}-\frac{I_{d} L_{p}(1-\kappa)}{T}\left[1-\frac{T}{\kappa L_{p}}\left(\frac{R_{1}}{2}-\frac{L_{1}}{T}\right)\right] \\
& +I_{d} \frac{R_{p}}{2}\left[1-\frac{T}{\kappa L_{p}}\left(\frac{R_{1}}{6}-\frac{L_{1}}{T}\right)\right] . \tag{34}
\end{align*}
$$

The voltage across the tube plate during rise time is
$e_{a c}=e_{1}+e_{2}=I_{d}\left[K\left(\frac{t}{T}\right)^{2}+M \frac{t}{T}+N\right]$
where:

$$
\begin{align*}
& \kappa=-\frac{R_{1} R_{p} T}{2 \kappa L_{p}} \\
& M=-\left\{\frac{(1-\kappa) R_{1}}{\kappa}+\right. \\
& N= \frac{R_{1}}{2}-\frac{L_{1}}{T}-\frac{L_{p}(1-\kappa)}{T} \tag{36}\\
& {\left.\left[1-\frac{T}{\kappa L_{p}}\left(\frac{R_{1}}{2}-\frac{L_{1}}{T}\right)+R_{1}\right]\right\} } \\
& {\left[\frac{T}{\kappa L_{p}}\left(\frac{R_{1}}{2}-\frac{L_{1}}{T}\right)\right] } \\
&\left.+1-\frac{T}{\kappa L_{p}}\left(\frac{R_{1}}{6}-\frac{L_{1}}{T}\right)\right]
\end{align*}
$$

Expressions 32 and 35 make it possible to draw the load line and compute the excitation voltage

New Coincidence Indicator For Transistor Monitor Circuitry

The KP-150 is a subminiature glow-discharge indicator tube for transistor monitor service, which eliminates over a dozen other circuit components for coincidence applications; acts as an "and" gate; indicates. Its output may be used as a control, e.g., to close a relay. The KP-150 operates (glows) only when two coincident, low voltage signals are applied to its dual grids. This tube is specifically designed for transistor monitor service, and requires very low signal voltage and currents, thus preventing loading of the test circuit. The KP-150, operated, with AC on the anode, is grid-controlled, that is, will conduct (glow) when a grid signal is present, and is off when the signal is removed. For "memory" applications, the KP-150 may be used with DC anode supply. In this case, the operation is that of a conventional thyratron. The tube remains on (glows) until the anode current is interrupted, thus providing an electrical memory. A bright, "ball-of-nire Atval size discharge provides exceptional visual indication which fills the tip of the tube, indicating in areas of high ambient light without special masking. No special mounting orientation is needed, as the tubes may be viewed from any angle. The KP-150 is in production and in stock. A single control type, the KP-145A is also available. For further details, data sheets, etc., contact

KIP ELECTRONICS CORPORATION
Dept. 611, Box 562, Stamford, Connecticut CIRCLE 772 ON READER-SERVICE CARD

New Cold Cathode Thyratrons
 Stable, Rugged, Subminiature

The KP-96 is a high gain, grid controlled cold cathode tube for time delay, trigger counter and energy transfer circuits. Now design features include small size (T-2) subminiature envelope, only $0.3^{\prime \prime}$ in diameter, rugged construction and stable anode holdoff and grid-firing voltages. Within the anode supply voltage range of $100-300 \mathrm{v}$, the firing of the tube is controlled by application of voltage to the grid (95v). The transfer current is far lower than previously available, equalling less than 1.0 microampere. The KP-96 offers a higher ratio of anode hold-off voltage to grid-firing voltage than available before, smaller size, rugged structure, operation in both light and total darkness, high efficiency energy transfer. Since it requires no filament power supply, the KP-96 stands by at full sensitivity consuming no power. Radioactivity is included for operation in total darkness. Another model, type KP-96A, is available without radioactivity for use under ambient light conditions. For details on this and other special purpose electron tubes, write

KIP ELECTRONICS CORPORATION

Dept. 610, STAMFORD, CONNECTICUT
circle 773 ON READER-SERVICE CARD

NOW!

MAGNESIUM BOXES AND COVERS in standard sizes
NO TOOLING COST!
Now, for the first time you can order standard deep drawn magnesium boxes and covers, in sizes ranging atock tooling! Thousands of sizes to choose from all with no tooling cost! Fast delivery, in most cases from stock.
Your inquiry is invited on custom magnesium deep drawn parts. Low cost "Zero-Method" tooling makes even short runs practical and economical. Contact your Zero Representative or send print for quotation

WRITE FOR NEW MAGNESIUM BOX CATALOG
ZERO MANUFACTURING CO.
1121 Chestnut Street, Burbank, California Telephone VIctoria 9-5521 - TWX BRK-9862
Factories in Burbank, California and Palmer
representatives in 26 key cities nationwide
CIRCLE 774 ON READER-SERVICE CARD

CIRCLE 775 ON READER-SERVICE CARD

RUSSIAN TRANSLATIONS

by the three-point method. The following expressions are also used:

$$
\begin{gather*}
\alpha=\cot ^{-1} R_{p} \tag{37}\\
\alpha^{\prime}=\cot ^{-1} R_{p} \frac{\mu-1-\frac{R_{i}}{R_{p}}}{\mu+1+\frac{R_{p}}{R_{i}}} \tag{38}\\
\tau=\frac{-T}{\ln \left(1-\frac{e_{a m}}{E_{0}}\right)}, \tag{39}\\
\Delta e_{v}=E_{0}\left(1-e^{-\frac{T}{2 r}}\right)^{2}+\frac{I_{d}^{\prime} C T}{4 C_{c}} \tag{40}
\end{gather*}
$$

where C is determined from

$$
\left.\begin{array}{c}
C=1-\frac{T}{d L_{p}}\left(\frac{R_{i}}{2}-\frac{L_{1}}{T}\right) \\
R_{p e a k}=\frac{\frac{L_{p}}{L_{s}} L_{d}+2(1-d) L_{p}}{C_{a}\left(R_{d}+R_{i}+\frac{R_{d} R_{i}}{R_{p}}\right)} \tag{41}
\end{array}\right\}
$$

The symbols in these expressions are the same as above.

This article abstracted from Design of Final Stage of a Vertical Sweep Generator by A. A. Zakharov in Radiotekhnika, No. 11, November 1959, Vol. 14, pp. 43-51.

Pulse-Input Rise Time in Pulse

 Transformer DesignL. Z. Gololitsyn

WHEN PULSE transformers are used in pulse generator circuits, the duration of the output-pulse front depends on the parameters of the pulse transformer, the resistances of the pulse generator and the load, and on the rise time of the input-pulse front.

The rise time used in the design of pulse transformers is determined from the equivalent circuit of the pulse transformer, Fig. 1. Usually it is assumed that a unit step voltage is applied to the circuit.

The equation for the front of the output pulse

Fig. 1. Pulse transformer equivalent circuit.
contains one variable parameter σ, and is given by the following function of time:
$U_{L}(\theta)=\frac{U_{0} R_{L}}{R_{0}+R_{L}}$
$\left[1-e^{-\sigma 2 \pi \theta}\left(\frac{\sigma}{\nu} \sin 2 \pi \nu \theta+\cos 2 \pi \nu \theta\right)\right]$, (1)
where

$$
\begin{aligned}
& \sigma=\frac{a}{\sqrt{b}}, \quad \theta=\frac{\sqrt{b}}{2 \pi} t, \quad \nu=\sqrt{1-\sigma^{2}}, \\
& a=\frac{1}{2}\left(\frac{1}{R_{L} C}+\frac{R_{o}}{L}\right), \quad b=\frac{1}{L C}\left(1+\frac{R_{o}}{R_{L}}\right) .
\end{aligned}
$$

Here U_{L} is the load voltage, U_{g}, the generator voltage, R_{L}, the load resistance, R_{σ}, the generator resistance, C, the distributed winding capacitance, and L, the leakage inductance.
By plotting $U_{L} / U_{g}\left(1+R_{g} / R_{L}\right)$ vs. Θ for various values of σ, it is possible to select the optimum circle 776 on reader-service card \geqslant ELECTRONIC DESIGN • March 16, 1960
lue of σ, satisfying both qualifications of rise ne and specified "overshoot" of the input pulse. Usually σ is chosen to range from 0.7 to 1.2. For vecific R_{g} and R_{L}, the length of the front (at $b=$ (onst) diminishes if $\sigma>0.7$. However, the oversloot of the pulse will exceed $0.05 U_{m}$, which as a rule is not a recommended load condition. With $\sigma>1$, there is no overshoot at the peak of the pulse, but the front of the pulse is excessively stretched out.
If a pulse of finite rise time is applied to the transformer input, the transient depends not only on σ, but also on the rate of rise of the inputpulse front. In this case, a value of σ in the range from 0.7 to 1.2 may lead to an undesirable stretching where

$$
\delta_{0}=\frac{2 \pi}{\sqrt{b}} \delta
$$

In this case, the formula for the front of the output pulse contains the variable parameters σ and δ_{0}, and is also a function of the time Θ.
The form of the output voltage for different values of σ and δ_{0}, is shown in Fig. 2. It is seen from these curves that the longer the wave front of the input pulse (decreasing δ_{0}), the larger the value of σ that can be used as the design parameter for the pulse transformer. This makes it possible to reduce the length of the output pulse and o stay within the permissible overshoot.
These curves are given for frequently encountered values of σ and δ_{0}, and can be used in practical calculations of the front duration and the voltage overshoot of the output pulse.
For pulses with coefficients of δ_{0} that differ from those given in the curves, approximate interpolation can be used, of the output pulse frurit. This is particularly evident if the pulses are genrated by two-terminal networks, in which the pulse front duration is approximately 0.1 or 0.2 of the pulse duration.
Consequently, the transient response of the quivalent circuit must be determined, not for a

FREQUENCY STANDARIDS

PRECISION FORR UNIT

TYPE 50
Size $1^{\prime \prime}$ dia. x s $\% /{ }^{\prime \prime} H$. . * Wght., $\&$ oz. Frequencies: 240 to 1000 cycles Accuracies:-
Type 50 ($\pm .02 \%$ at -65° to $85^{\circ} \mathrm{C}$) Type R50 $\left(\pm .002 \%\right.$ at 15° to $\left.35^{\circ} \mathrm{C}\right)$ Double triode and 5 pigtail parts required
*31/8" high
400-1000 cy. Input, Tube heater voltage and B voltage Output, approx. 5V into 200,000 ohms

FREQUENCY STANDARD
TYPE 50L
Size $\mathcal{S}^{33 / 4 "} \times 41 / 2^{\prime \prime} \times 51 / 2^{\prime \prime}$ High
Weight, 2 lbs.
Frequencies: $50,60,75$ or 100 cycles Accuracies:-
Type $50 \mathrm{~L}\left(\pm .02 \%\right.$ at -65° to $85^{\circ} \mathrm{C}$)
Type R50L ($\pm .002 \%$ at 15° to $35^{\circ} \mathrm{C}$) Output, 3V into 200,000 ohms
Input, 150 to $300 \mathrm{~V}, \mathrm{~B}(6 \mathrm{~V}$ at .6 amps .)

FREQUENCY STANDARD

TYPE 2005
Size, $8^{\prime \prime \prime} x 8^{\prime \prime} x y^{714 \prime \prime}$ High Weight, 14 lbs.
Frequencies: 50 to 400 cycles (Specify)
Accuracy: $\pm .001 \%$ from 20° to $30^{\circ} \mathrm{C}$
PRECISION FORK UNIT
TYPE 2003
 Frequencies: 200 to 4000 cycles Accuracies:-
Type $2003\left(\pm .02 \%\right.$ at -65° to $85^{\circ} \mathrm{C}$) Type R2003 ($\pm .002 \%$ at 15° to $35^{\circ} \mathrm{C}$) Type W2003 ($\pm .005 \%$ at -65° to $85^{\circ} \mathrm{C}$) Double triode and 5 pigtail parts required Input and output same as Type 50, above

Wut, 10 Wats at 115 Vols
Input, 115V. (50 to 400 cycles)

FREQUENCY STANDARD

TYPE 2001-2
Size $33 / 4 " x 4^{11 / 2 " x} x 6^{\prime \prime} H$., Wght. 26 oz.
Frequencies: 200 to 3000 cycles
Accuracy: $\pm .001 \%$ at 20° to $30^{\circ} \mathrm{C}$ Output: 5 V . at 250,000 ohms
Input: Heater voltage, 6.3-12-28
B voltage, 100 to 300 V ., at 5 to 10 ma .

ACCESSORY UNITS

for TYPE 2001-2
L -For low frequencies multi-vibrator type, 40-200 cy.
D-For low frequencies counter type, $40-200 \mathrm{cy}$.
H -For high freqs, up to 20 KC . M-Power Amplifier, 2 W output. P-Power supply.

FREQUENCY
 STANDARD

TYPE 2IIIC
Size, with cover
$10 \times 17^{\prime \prime} x 9^{\prime \prime}$
Panel model
$10^{\prime \prime} \times 19^{\prime \prime} \times 8^{3 / 4} \mathrm{H}$.

Weight, 25 lbs.
Frequencies: 50 to 1000 cycles
Accuracy: ($\pm .002 \%$ at 15° to $35^{\circ} \mathrm{C}$)
Output: $115 \mathrm{~V}, 75 \mathrm{~W}$. Input: $115 \mathrm{~V}, 50$ to 75 cycles.

This organization makes frequency standards within a range of 30 to 30,000 cycles. They are used extensively by aviation, industry, govern. ment departments, armed forces-where maxi. mum accuracy and durability are required.

WHEN REQUESTING INFORMATION PLEASE SPECIFY TYPE NUMBER

American Time Products, Inc.

 Watch (-7) MasterTiming systems
CIRCLE 777 ON READER-SERVICE CARD

580 Fifth Aven New York 36, N. Y.

CURVE TRACER, MODEL MW-1 (Shown with tube adapter)
Baird-Atomic's Curve Tracer, Model MW-1, is the finest of its type. It is designed to display families of characteristic curves for PNP and NPN transistors in either common base or common emitter conflgurations. Both input and or output current or voltage may be selected as components of the curves displayed. Its operational range includes the highest maximums (30A colfector current continuous duty -50A intermittent and 450 watts maximum) and the lowest impedances (minimum observed .001 ohms to 10 megohms)
presently available. Maximum input drive current is 5 amperes and the MW-1 features automatic overload protection. These features make B/A's Now Curve Tracer the most versatile on the market.
(for Beta hie and $I c_{0}$)

MODEL J SEMICONDUCTOR 4 MINORITY CARRIER LIFETIME TEST SET

For more complete technical data on BA's line of transistor \& semiconductor test equipment, write to:

Bairel-Atomic, Inc.

33 University Road
Cambridge 38, Massachusetts

unit step input, but for an input pulse with finite rise time. With accuracy sufficient for prac tical calculations, the front of the input pulse τ can be represented by an exponential function $U=U_{m}\left(1-e^{-s t}\right)$.
If the front duration is estimated between the levels $(0-0.9) U_{m}$, then $\delta=2.3 / \tau_{f r}$; for $(0.1$ $0.9) U_{m} \delta=2.2 / \tau_{r r}$, while for $(0.05-0.95) U_{m} \delta=$ $2.94 / \tau_{f r}$. When a voltage varying in accordance with this relation is applied to the equivalent cir cuit, the wave form of the output can be deter mined from the formula:
$U_{L}(\Theta)=\frac{U_{\theta} R_{L}}{R_{L}+R_{0}}\left\{1-\frac{e^{-\sigma 2 \pi \theta}}{\delta_{0}^{2}-4 \pi \sigma \delta_{0}+4 \pi^{2}}\right.$
$\left[\left(\frac{\sigma}{\nu} \sin 2 \pi \nu \theta+\cos 2 \pi \nu \theta\right)\left(\delta_{0}{ }^{2}-4 \pi \sigma \delta_{2}\right)\right.$ $\left.\left.+\frac{2 \pi \delta_{0}}{\nu} \sin 2 \pi \nu \theta+4 \pi^{2} e^{-\theta\left(\varepsilon_{0}-2 \pi \theta\right)}\right]\right\}$,
or else it is possible to plot the dependence of the duration of the output-pulse front $\Theta_{f r}$ (in relative units) on δ_{0} for various values of σ. Such a plot shown in Fig. 3 for $\sigma=0.7$.

fig. 2. (Above and opp. page) Pulse transformer output voltage for various values of σ and δ_{0}.

It is difficult to recommend a design procedure that determines uniquely the optimum value of σ as a function of the rate of rise of the front of the input pulse. To do this would require substantial modification and complication of the methods nsed for pulse transformer design. This is because the requirements that are made on the front of the output pulse are not unique, but must be reconciled with requirements concerning the voltge droop on the flat part of the pulse, losses, transformer size, etc. In the present article, therefore, the determination of the front duration and of the voltage overshoot are limited to a verificafion based on the usual graphical calculation of the value of σ. This calculation takes into account the finite rise time of the input-pulse front, and thooses σ so that it satisfies the requirements imposed on the output-pulse front.
A computation of the transformer output voltIge waveform, taking into account the finite rise imo of the input pulse front, gave good agreement with experimental observation.
This article is abstracted from Effect of Rise Fime of the Input-Pulse Front in Pulse Transorriers by L. Z. Gololitsyn in Radiotekhnika, Pol. 14, No. 11, 1959, pp. 52-55.

LONG-FIELD RELIABILITY AT LOW, LOW COST PYRAMID SUBMINIATURE ELECTROLYTICS

Pyramid's type MLE is an exciting new metal tubular construction in subminiature electrolytics that, for the first time, assures over ten years of service when operated within stated electrical specifications. Pyramid's type ML construction is for dependable operation in less critical circuits.

Temperature ranges:
 Type ML: $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Type MLE: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Design and applications engineers will welcome the reliability in these new subminiature electrolytics. Low dissipation factor and low leakage add to the unusual stability of these highly dependable units.
See for yourself the specifications that make these capacitors the best low cost subminiature electrolytics available for critical low current circuitry. Write today for Pyramid Bulletins EL 5 and EL 6.
\triangle pramid
ELECTRIC COMPANY
Technical Bulletin Department
Union City, New Jersey Factories: Darlington, S. C. - Gastonia, N. C. In Canada: WM. Cohen, ltd., 7000 Park Ave., Montreal Export: MORHAN EXPORTING CO., 485 Broadway, New York 13

Microwave Drying of Dielectric Materials

DIELECTRIC strips and foils, such as printed or impregnated paper or fabric, can be efficiently dried by microwave frequencies. To avoid exceeding the dielectric strength of the material, the strip is drawn through a meandering waveguide arrangement, shown in Fig. 1. The material moves so that its driest portion passes over the input section of the guide and its wettest portion enters at the load end, where the field is weakest. Because of the variation of dielectric constant with drying, the power absorption, at a frequency of 2.4 kmc , for example, per section of waveguide, is approximately constant.
The slot in the waveguide for the dominant
mode (H_{10} mode) is cut at the midpoint of the larger dimension of the rectangular guide, exactly as in a "slotted" section. When the moisture content of the material is large enough to absorb all the microwave power, the waveguide arrangement can be terminated in a short-circuit. Effciency as a function of moisture content is shown in Fig. 2 for the eight section arrangement of Fig 1. Moisture content as a function of number o waveguide sections is shown in Fig. 3, with fabric speed as a parameter.
Abstracted from an article by W. Schmidt, Elektronische Rundschau, Vol. 13, No. 10, October 1959, pp 359-361.

Fig. 1. The dielectri material is drawn through a meandering waveguide system, absorbing varying amounts of microwave power.
(PAPER, ARTIFICIAL MATERIAL OR FABRIC)

Fig. 2. Efficiency, η, as a function of moisfure content, H, for a cotton strip 500 mm $\times 0.5 \mathrm{~mm}$.

Fig. 3. Moisture content H, as a function of number of sections n, with pull-through speed as a parameter. The width of the material was 500 mm ; microwave power input, 2.5 kw .

Testing Linear Low-Pass Networks

E. Brenner

Fig. Ia. Step-response (solid line) and square-wave response of an ideal low-pass filter.

Fig. lb. Response to impulse and to impulse train (dotted) of an ideal low-pass filter.

SQUARE WAVES or periodic pulses are commonly used laboratory signals for examining network behavior. To determine the response of the network to a single pulse or step, the repetition rate of the periodic signal must be low enough so that the observable effect of the preceding pulse is negligible. Using an "ideal" lowpass filter as a model (constant gain and constant time delay in the passband, infinite attenuation above the cut-off frequency), the response to a symmetrical square wave compared to the step response is shown in Fig. 1a. The response to a periodic impulse train compared to the single impulse response is shown in Fig. lb. Using analytical results for the ideal filter, numerical criteria relating certain error parameters to the repetition frequency can be established. Also, it can be shown, both analytically and experimentally, that these criteria are applicable to physically realizable filter networks with negligible error.
To compare square wave with step response, the quarter cycle of the waveform, which includes the rise of the leading edge, is observed, Fig. la. The difference between the envelope, along which the step response approaches steady state, and the steady state value is denoted by x. The difference between step and square wave response is measured by the corresponding maximum fractional envelope difference, k. If $k \leq x$ then the repetition frequency f is related to the cut-off frequency f_{0} by the approximate relationship $f \approx \pi k_{\text {max }} f_{0}$
The rise-time with periodic square waves, \boldsymbol{T}_{R}, is related to the rise time with a step input, $T_{R o}$, by the approximate formula

$$
T_{R}=T_{R o} \frac{f_{o}}{f_{g}+f}
$$

When narrow pulses are used to test the net-
LECTRONIC DESIGN • March 16, 1960
work, the result of the impulse calculation is applicable. In this case, x is defined as the fraction of peak pulse output to which the envelope has decayed with an impulse input, and k is the difference between x and the envelope decay with a periodic input. The observation time is half the repetition period. Denoting by n the ratio of repetition frequency to cut-off frequency, the maximum error, k, is shown as a function of $2 \pi f_{o} t_{\text {, }}$ with n as a parameter in Fig. 2. For $k \leq x$ the repetition frequency is related to cut-off frequency f_{g} by the approximate formula $f \approx 2 k_{\text {max }} f_{\rho}$
Abstracted from an article by R. Elsner and K. H. Steiner, Nachrichtentechnische Zeitschrift, Vol. 12, No. 12, December 1959, pp 618-624.

Fig. 2. Maximum envelope differential between the response to a single impulse and to periodic impulses of an ideal low-pass filter.
 House of Knobs. Hundreds of otyles, sizes and types, including deluxe Gold Inlay Knobs, are stocked . . . quickly ahipped to you in any quantity. Best of all, your costs aro always moderate . . . there's no charge for touling or molde.

FAST SERVICE

Gee-lor is geored for im. Gee-Lor is georied. Gel the mediar
facts today.

KNOBS FOR

Telovision - Home Radios Phonographs - Clock Radios Auto Radios - Instruments . . . many others.

G-C ELECTRONICS CO.
 Diviloton of Toxtion Ime.

Wat Plant: Les Angeles 18, Californio
WRITE roday for your big, free illustrated Gee-Lar Catalog. No obligationl
CIRCLE 782 ON READER-SERVICE CARD

NEW Beattie "Minute Man" Oscillotron"

Whatever your requirements in oscilloscope photography, the versatile new Beattie "Minute Man" Oscillotron can do the job superbly well. An entirely new concept in simplified design, it is a light, compact, precision instrument built for rigorous duty.
Equipped with large Polaroid ${ }^{\text { }}$ Land back for 60 sec. prints or slide transparencies. Object to image ratio - 1 to 0.9 . Records up to 9 traces on a single frame.
75 mm f/2.8 Wollensak lens in Alphax \#2 shutter. Precise, split-second focusing. Modular design permits instant conversion for a wide range of instrumentation photography. A truly fine camera at a remarkably low price. Write for complete information.

AXIMUM VERSATILITY WITH THESE ACCISSORIES:			hood is one of many accessories.
- Binocular viewing hood - Data card 10 record in frame	- 75 mm f/1.9 lens (standard or flat-field)	- 35 mm camera - 35 mm pulse or	BASIC CAMERA AS SHOWN IN TOP PHOTO
- Data chamber with watch. platen, and counter	- Positive electric remore shutter control	continuous motion magazines	olaroid" (e) by Polaroid Co

${ }^{\bullet}$ Trade Mark

Swing out. lift off camera for easy accessibility. Direct-view hood is one of many accessories.

s250
BASIC CAMERA AS SHOWN continuous motion magazines

Spectrum Analyzer

Photos Measure AF

Distortions

AUDIO-FREQUENCY distortion measure ments can be made accurately and rapidly with an automatically scanning audio-frequenc analyzer.

The crt photographs shown were taken on Panoramic Sonic Spectrum Analyzer, model LP-1a They illustrate the display methods this type of analyzer uses when making certain audio fre quency measurements.

Digested from The Panoramic Analyzer, Vol. 1 No. 5, Techniques of Swept Audio Measurements Panoramic Radio Products, Inc., Mount Vernon N.Y.

Fig. Ia. A power amplifier was driven almost to its clipping level at 1 kc . Visible are the 2 nd harmonic at 2 kc at -40 db , or 1 per cent distortion, and the 3rd and 5th harmonics at -31 db , or 3 per cent distortion. Several higher order odd harmonics are also visible at very low amplitude levels.

Intermodulation
Distortion (IM)

Fig. 2a. A signal consisting of a low (100 cps) and high 7 kc) audio frequency signal in a 4:1 amplitude ratio (12 db) was fed into the power amplifier. The output is pictured on the analyzer's 20-ke logarithmic sweop.

ARE YOU USING DOW'S EXTENSIVE FABRICATION FACILITIES?

Capacity and outstanding capabilities now avallable for both magneslum and aluminum fabrication, finishing and assembly.

"WRAPPER," or shell of housing is roll-formed of magnesium sheet.

aUTOMATIC ARC WELDER, using fungston-iner gas process, joins end to wrapper.

400-TON PRESS draws end pieces of magnesium transmitter housing for missile ground suppor electronic system. Heated dies make possible one-slep draws.

The electronic transmitter housing shown in various stages of production on this page is a good example of the type of work carried on at Dow's Bay City fabrication plant. It is a large and complex assembly which is produced in quantity, involves many operations, and must conform to ex tremely high standards.
Large or small jobs. The Bay City plant is a large, well equipped produc tion facility set up to handle large or small jobs, and plenty of both. Its activities encompass every phase of fabrication-deep drawing, bending spinning, stamping, piorcing, machin ing, arc and spot welding, assembling, chemical treating and painting. The facilities are government certified.
Engineering and quality control. Dow engineers working closely with the customer are frequently able to suggest design modifications which cut costs and/or meet application requirements better. A quality control team using modern methods and equipment assures that high standards of crafts manship are rigidly maintained.
Many "firsts." The Bay City fabrication plant has pioneered many devel opments in the production of magnesium parts and products. They were first to hot draw the lightest structural metal, and first to spot weld and automatically weld it. They have also been a leader in the production use of chemical treatments and finishes for magnesium.
Whatever your requirements, if they involve magnesium or aluminum fabricated parts or assemblies, it will pay you to make Dow your supplier

Dow Sale For more information confact your Dow Sale Office or write today for an illustrated brochure discussing Dow fobrication services. THE DOW METAL PRODUCTS COMPANY, Midland, Michigan Merchandising Department 10101C3-16

ASSEMBLY involves aftachment of doors, hard ware, components using riveiting, bolting.

DOW THE DOW METAL PRODUCTS COMPANY

Low Noise

VHF and UHF

Amplifiers and Preamplifiers

 SERIES 1000For application as receiver preamplifiers or wide band i. f. amplifiers . . . in scatter communications systems, laboratory, or nuclear research. Eight standard models cover VHF and UHF to 900 mc . High gain, low noise. Special pass bands available.

Advanced techniques permit modification of standard units at minimum cost.

Write for complete details:
COMMUNITY ENGINEERING CORPORATION P. O. BOX 824
state college, pa.
CIRCLE 786 ON READER-SERVICE CARD

 ä BEST BUYS IN ELECTRONICS SEE YOU AT IRE BOOTH 3505

DIGEST

Fig. 2b. Using the same tes frequencies as in Fig. 2a, the analyzer was set for a 200 cps linear-sweep to bring the 7 -kc carrier to full scale deflection. Sidebands now appear at -31 db or 2.8 per cent of the carrier level. Since the ratio of sideband to carrier amplitude is half the modulation percentage, the $1 M$ distortion is 5.6 per cent.

Fig. 2c. Two equal amplitude signals-one at 3 kc , the other at 4 kc -were passed through a power amplifier. The difference tone near 1 kc is clearly visible some 34 db below the two-tone level. Also visible are third order distortions near 2 kc and 5 kc , as well as test frequency harmonics and various harmonic cross-products.

Loudspeaker Response Tracing

Fig. 3a. A composite of four screen photos show the 20-20,000-cps response of a speaker system. The analyzer was set at a 5 -kc linear-sweep width, at center frequencies of 2.5 kc , $7.5 \mathrm{kc}, 12.5 \mathrm{kc}$ and 17.5 kc . A Panoramic Triangular Wave Generator produced a sweep duration of 10 sec for each 5000 cycle segment. Ambient noise is seen to roughen the trace.

Fig. 3b. Loudspeaker frequency response can also be measured with a white noise test signal. In order to average out the random amplitude variations of the noise signal, the photograph exposure covered about 15 sweeps. It is seen that the single line displays obtained in the sweep frequency lest are much easier to read and interpret than a noise spectrum analysis.

Fig. 3c. The IM distortion of a speaker for two equal amplitude test tones is plotted here versus the test-tone frequency. The test tones were set for a 90 -cps frequency difference and were swept synchronously through the audio spectrum. By discretely varying the difference frequency, the distortion properties of the speaker over its bandwidth can be investigated.

My name is Paul M. Platzman,

I pioneered the ultrasonic industry. Two well known ultrasonic companies were founded by me. Now, I have created a new organization, Ultrasonic Industries, Inc., based on a revolutionary approach to mass producing and selling ultrasonic equipment. No middleman's profit in this factory - direct-to-you deal.
Tremendous savings are passed on to you the customer bringing form/erly high-priced ultrasonic cleaners within the range of everybody's budget. My products stand out because of their distinctive appearance, unbelievably low money-back-guaranteed prices-free five year senv ice contract, and consistent trouble free performance under the most gruelling conditions. This is possible because my DiSONtegrator generators and transducers incorporate the latest advances in ultrasonic technology.

DI 5 - TEGRATOR ${ }_{\text {SYSTEMFORTY }}{ }^{\text {® }}$ ULTRASONIC CLEANER

The lowest priced ultrasonic cleaner ever sold! Buy ONE or 100 and Save!

The Disontegrator System Forty ULTRASONIC CLEANER is attractively styled, ruggedly-built, and work-tested to give a lifetime of trouble-free service.

The DisONtegrator Features:
Simplified one knob control for easy operation. High Frequency sound Simplified one knob control for easy operation. High Frequency
waves disintegrate harmful soils and contaminants in seconds.
Saves time and labor, boosts production rate, improves product. You can replace hazardous chemicals with safe solvents and even water.

The DisONtegrator works FAST
In SECONDS you can disintegrate soils on: radioactive lab apparatus; glassware; medical instruments; test tubes, syringes, hypodermic needles; dental instruments, drills, burrs, false teeth, bridges; fossils and fossil foraminifera; electronic components, semi-conductors, crystals, switches, precision potentiometers; optical parts, lenses, plastic contact lenses, eyeglasses; timing mechanisms; small gear trains;

In seconds you can remove:

rust, oxides, shop dirt, dust, lint, preservatives, finger prints, machining chips, extrusion lubricants, paraffin, wax, paint, varnish, lacquer, plastic residue, resists, silicones, greases cooked food residue, blood, plaster of paris, lapping compounds, carbon, radioactive particles, polishing compounds, shale, diatomite, volcanic tuffs, clay and sand, graphite, starches, cutting oils, heat treat scale, color stains, foundry sand, abrasives, quenching oil, salts, pitch, asphalt, tar, inks, adhesives, jewelers rouge, tripoli, resin flux, acid fllux, many others.

The DisONtegrator is VERSATILE
In addition to super speed, surgical precision cleaning it can be used to: brighten, quench, degrease, impregnate, decontaminate, pickle, etch, dip coat, emulsify, degas liquids, anodize, dye, mix, accelerate reactions.

Ultrasonic cleaners are widely used in production lines, maintenance departments and laboratories. You should have at least one DiSONtegrator if your field is Electronic, Optical, Glass, Clinical, Biological, Textile, Oil, Food, Paper, Dental, Plastic, Drug, Rubber, Wood, Chemical, Isotope, Geological, Ágronomical, Metallurgical, Anthropological, Paleontological, Petrochemical, Ceramics. Dairy, Brewery, Beverage, Confectionery, Laboratories, Photographic, Paint, Bottling, Cosmetic, Pharmaceutical, Metal Working, Metal Finishing, Die-Casting, Foundry, Plating, Metal Treating, Automotive, Aircraft, Horological, Jewelry, Medical, Marine, Mining, Utilities, Power Plants, Instrumentation.

I INTRODUCTORY OFFER

Money Refunded (less shipping charges) if not completely satisfied.

5-DAY TRIAL

We will pay all shipping charges to any point within the continental limits of the United States (not including Alaska and Hawaii), if you enclose check with order.

ultrasonic industries
141 ALBERTSON AVENUE . ALBERTSON. L. I.. N. Y. Y.
Ploneer 1-4333

UNPRECEDENTED FREE 5 YEAR SERYICE CONTRACT
The DisONtegrator - System Forty is available from stock for immediate delivery in unlimited quantities.

SPECIFICATIONS

FOR THE FIRST TIME - you have a choice of 6 beautiful decorator colors to harmonize with your office or laboratory decor: Ivory, Wheat yellow, Turquoise, Desert sand, Pale green and Soft gray. Please specify color when ordering.

ORDER NOW

T0: Ultrasonic Industries, Inc., Depr. 5-ED-4
141 Albertson Avenue, Albertson, L. I., N. Y.
Gentlemen: Please ship__DisONtegrator® System Forty Unit(s) © \$99.95ea.: I Ivory Q Wheat yellow Turquoise
Pale green Soft gray
\square Desert sand \square Pale green \square Soft gray
to: \qquad

I understand that my money will be refunded if not completely satisfied after 5 day trial.

B check enclosed (freizht prepaid) प C.O.D.

From CHASSIS-TRAK - New Feather-Light Detent Slide!

Model C -300 Detent locks in three service positions - 90° up, horizontal, 90° down

Chassis-Trak continues to set the pace in slide design with the new Model C300 Detent. Never before has a tilt-lock slide come in such a small package, yet despite its space-saving size - $11 / 4$ high, Ko" wide - the Model C-300 Detent will support chassis loads up to 50 lbs . Not the least of the new slide's attractive features is its low price lowest of any detent slide on the market.
Made of hard, cold-rolled steel, each slide is cadmium plated and then coated with Poxylube 75, a bonded film for-
mulation of molybdenum disulfide, which provides permanent dry lubrication. Solid bearings on all surfaces afford high resistance to shock and vibration.

Model C-300 Detent Slides are available in seven lengths - 12 to 24 in . and are designed for mounting electronic equipment in any standard rack or cabinet. Like all Chassis-Trak Slides, they are easy to install and smooth and trouble-free in operation.
Be sure to see this new slide demonstrated at the IRE Show - Chassis-

For further information contact:
525 SOUTH WEBSTER, INDIANAPOLIS 19, INDIANA CIRCLE TB9 ON READER-SERIIE CARD

Trak Booth 4001. You'll be impressed with its performance.

IRE SHOW, BOOTH 4001

DIGEST

Fig. 3d. Speaker "Doppler distortion" is demonstrated when a speaker is driven with iwo, very unequal amplitude tones. Here, a $1000-\mathrm{cps}$ tone was mixed with a very large amplitude 45 -cps signal. The analyzer was centered at 1000 cps with a $200-\mathrm{cps}$ sweep width and shows ± 45 and $\pm 90 \mathrm{cps}$ sidebands of 1 kc . The fact that the $1090-\mathrm{cps}$ sideband is greater in amplitude than the 910 cps sideband indicates the presence of combined amplitude and frequency modulation in the output signal.

Tape Recorder and
Phono-Cartridge Testing

Fig. 4a. Evaluation of a phono-cartridge was made here with a single frequency, 1.5-kc test recording. Visible are the fundamental and harmonic distortion components However the inherent distortion of the record is not distinguished from that of the pickup.

Fig. 4b. An analysis of a phono-frequency test record was made in this display. The sweep rate of the analyzer was set at 1 cps through its frequency band. A hummy test set up can obscure the display as is apparent for frequencies below about 200 cps .

Fig. 4c. Tre frequency responses of a professional quality tape recorder was displayed using a sweep frequency recording. When the recording reaches its upper frequency limit, there is a "flyback" period and the frequency returns to its lower frequency limit. To re-establish the sweep frequency calibration, a synchronizing pulse is superimposed on the high frequency end of the recording. This pulse is visible at the extreme right of the display.
 reasons why you should buy Hughes high voltage silicon cartridge rectifiers To meet your requirements for IN1730-34, IN2382-85, IN596-98 and IN1406-13 rectifiers... Hughes offers you a universal series with the following advantages over competitive devices:

These standard Hughes units are available in voltage ratings from 600 to 10,000 volts. In addition, Hughes offers you many custom assemblies designed to meet your special equirements.

ORDER TODAYI TO obtain delivery of Hughes Carridge Rectifiers just call or write the Hugh
Semiconductor Sales Office or Distributor nearest you. Or, for a complete Cartridge Rectifier data sheet
(Number: D.S. 82) please write Hughes, Semiconductor Division. Marketing Department, Newport Beach
California.
for export write: Hughes International, Culver City, Callf.

CIRCLE 791 ON READER-SERVICE CARD

Splendid opportunities for maximum professional growth and recognition await you at the Instrumentagrowth and recognition await you at ine instrumenta-
tion Center of Texas Instruments in Houston, the South's largest city.

- MECHANICAL DESIGN ENGINEERS-BS or MS in ME to design small electro-mechanical mechanisms.
- electrical design engineers - BS in EE or Physics to design and construct: a. Supervisory tronic design; b. Transistor Test Equipment heavy experience on circuit design preferably with transistors: c. Digital Computers with experience in detailed logic design.
- sales engineers-BS in EE, ME or Physics with sales experience in electro-mechanical instruments.
With TI receive liberal company-paid benefits, including profit sharing work in a completely modern suburban plant near Houston's most attractive modern suburban plant near Houston's most attractive
residential areas ... enjoy pleasant Gulf Coast living and recreations the year-around.

Please direct your resumé to
D. G. Turner, Department ED

TEXAS Instruments
INCORPORATED

Designing With Phototransistors

PHOTOTRANSISTORS can be used in a wide variety of circuits where light is to activate electronic equipment. Four quantities are usually of interest to the designer working with these light sensitive devices. These are the phototransistor's:

1. Light sensitivity
2. Chopped light frequency response
3. Photo-spectral response
4. Noise response.

Light Sensitivity

The light sensitivity of a phototransistor is specified in microamperes per ft-c and can be measured with the circuit shown in Fig. 1. The light source is a $40-\mathrm{w}$, inside-frosted, incandescent lamp (GE type 40W A19), operated at a rated 120 v . This lamp emits 475 lumens and is equivalent to 33.4 cp . The chopped light sensitivity is given by:

$$
S=\frac{2 V_{C}}{F_{C} R_{L}}
$$

where S is the sensitivity in microamperes per ft -c, R_{L} is the collector load resistance, F_{σ} is in $\mathrm{ft}-\mathrm{c}, V_{C}$ is the meter reading in millivolts. Note that $2 V_{c}$ converts the rms value of the square wave

Fig. 1. Circuit for measuring chopped light sensitivity of a phototransistor.
to peak to peak voltage.
Junction sensitivity is measured in the same fashion except that the base is bypassed to ground and the emitter bypass capacitor is omitted.

For convenience, an incandescent lamp was used in measuring the "apparent" sensitivity of the phototransistor. It should be noted that the emission spectrum of this light source is not uniform over the acceptance band of germanium.

Chopped Light Frequency Response

When used in circuitry similar to that in which current sensitivity is measured (open base and shorted output), the response will be three db down at $F_{a e}$ or $F_{a b} / h_{f e}$. The condition described here is one closely approximated by a phototransistor followed by a transistor amplifier, with low impedance input. Flat response can be expected to about 15 kc with fall-off beyond 20 kc at the rate of six db per octave.

Phofo-Spectral Response

The response of a photo-conductor to light excitation to a first order approximation is a function of the following considerations:

1) n_{c}, the number of conductive pairs which is proportional to n, the number of photons with energy greater than the threshold energy (that is, the energy gap between the valence and the conduction bands).
2) $n=\frac{I}{h \gamma}$, where I is the light energy, h is Planck's constant, $\gamma=$ frequency (cps)

$$
n_{e} \approx \frac{I}{\mathrm{~h} \gamma}=\frac{I}{k} \lambda, \text { where } \lambda \text { is wavelength. }
$$

To describe the functional dependence of n_{0} on wavelength and light intensity, we must either

ELECTRONIC DESIGN • March 16, 1960
normalize the intensity or the number of photons while varying the wavelength. These responses are also functions of the absorption and admissive characteristics of the transparent enclosures.

Noise Considerations

It is convenient to think of phototransistor noise in terms of equivalent illumination, for example, the amount of masking light signal. This signal may be calculated from the noise figure of the transistor and referred back to the base as equivalent illumination. The rms noise voltage reference is $0.05 \mu \mathrm{v}$ for a 100 -cycle bandwidth and an assumed input resistance, R, of 1500 ohms. The noise voltage:

$$
e_{n}=\sqrt{4 K 7 B K}
$$

where K is Boltzman's constant, B is the bandwidth in cycles/sec, T is the temperature in degrees Kelvin, R is the input resistance.

A transistor exhibiting a noise figure of 12 db (taken at 1000 cycles with a 100 -cycle bandwidth) would have a noise voltage $e_{n}=0.2 \mu \mathrm{v}$ referred to its base. This is equivalent to a base current of e_{n} / R or $1.33 \times 10^{-4} \mu$.
The amount of light required to produce an equal base current would then be determined by dividing this current by the junction light sensitivity.
i_{b} (Noise base current) in μa (rms)
Junction sensitivity in $\mu a / F_{c}$ (rms)
A typical value of junction sensitivity is 0.12 μ_{a} / F_{C}. In rms terms this is:

$$
\frac{0.12}{2 \sqrt{2}} \mu a / F_{c}=0.043 \mu a / F_{c}
$$

The equivalent noise illumination $I_{c q}$ is:

$$
I_{c q}=\frac{1.33 \times 10^{-4} \mu a}{0.043 \mu a / F_{c}}=3 \times 10^{-3} \mathrm{ft}-\mathrm{c}
$$

Similarly this same transistor operating with a one cycle bandwidth would have an equivalent noise illumination of $3 \times 10^{-4} \mathrm{ft}-\mathrm{c}$.

Circuit Applications

Phototransistors have sometimes been called "light tetrodes" because carriers may be injected into the base by (1) signal voltage applied to the base lead as with any other transistor, or (2) by light energy falling on the base. The two conditions may exist together or separately.
In order that the phototransistor be utilized in its most sensitive configuration the base should be open-circuited or as close to this condition as possible. Fig. 2 shows the effect of an external base resistance, such as a bias network, on the short circuit light sensitivity.
It must be noted that the open base condition

A GOOD RUN FOR YOUR MONEY-

New "Scotch" brand Heavy Duty Tapes offer exceptional life, low rub-off, good resolution

Have problems of tape-life, rub-off and resolution? To cure your headaches in applications that subject magnetic tape to high speeds, pressures, temperatures and low humidity, "Sсоtch" brand now prescribes two new tapes-Heavy Duty Tapes 198 and 199. They offer plus-performance in a wide variety of temperature and humidity conditions.
Take the matter of wear, for instance. Field tests show that "Scotch" brand Heavy Duty Tapes wear five times longer than standard tapes-yet they maintain good resolution and freedom from dropouts over this long haul. Two factors are decisive in this performance-resistance to rub-off and resistance to high temperatures.
Ordinary tapes age fast if the temperature climbs or the relative humidity drops sharply. The binder softens, allowing the oxides to rub off on those costly and sensitive heads.. Further, as an electrostatic charge builds with each pass, stray contaminants are attracted to the tape-and the tape starts to cling to the equipment. In each case-your dropout count mounts.
Not so with "Scotch" brand Heavy Duty Tapes. They boast an extra tough binder system similar to that used in "Scotch" brand Video Tape, which after two years is still the only video tape in commercial use. The heavy duty binder system anchors the oxides firmly to the polyester base in a way that resists very high temperatures-minimizing rub-off. Moreover, Heavy Duty Tapes have a conductivity nearly 1000 times greater than conventional tapes, allowing static charge to drain off. Result? Clean, smooth runs with good resolution-a good run for your money.
Performance of this kind is easy to promisemuch harder to deliver. And only experienced "Scotch" brand technology has such a record of delivering the right tape for every application in data acquisition, reduction or control programm.ng.
Check all the tapes in the "Scotch" brand line. High Resolution Tapes 158 and 159 pack more bits per inch, offer extra play time. High Output Tape 128 gives top output in low frequencies, even in temperature extremes.Sandwich Tapes 188 and 189 drastically cut head-wear, eliminate oxide rub-off, and wear 10 times longer than ordinary tapes. Standard Tapes 108 and 109 remain the standard of instrumentation.
Your 3M Representative is close at hand in all major cities-a convenient source of supply and information. For details consult him or write Magnetic Products Div., 3M Co., St. Paul 6, Minn.
© 1980 3м Company
"Scorch" is a registered trademark of 3 M Company. St. Paul 6, Minnesota. Export: 99 Park Avenue, New York, N.Y. In Canada: London, Ontario.

SCOTCM BRAND MAGNETIC TAPE

FOR INSTRUMENTATION
Minmesota Minine ano Manuractunine compant

CIRCLE 792 ON READER-SERVICE CARD

FALCON MISSILE

Playing follow-the-leader at 50 millisecond intervals, three Super Falcon missiles rocket ahead of their diamond-shaped supersonic shock waves. Homing in on radar, these deadly air-to-air missiles locate, track, and destroy their prey, with the same killer instinct of the birds they're named after.
Hughes Aircraft, the developer and manufacturer of these missiles and the Armament Control System that triggers them, specified Hitemp magnet and Teflon* wire for their missile, and Teflon wire for its control system.
Hitemp Wires, Inc., the leading specialist in high temperature insulated wires and cables, proudly answers roll call with those developers and manufacturers enlisted in defending our American birthright-Freedom.

HITEMP WIRES, INC.

1200 SHAMES DRIVE, WESTBURY, NEW YORR
-Registered trademark for Du Pont Anorocarbon reaina CIRCLE 793 ON READER-SERVICE CARD

DIGEST

Fig. 2. Light sensitivity as a function of base circuit impedance. The base circuit impedance has been normalized with respect to base input impedance.

Fig. 3. Phototransistor chopped light transducer suitable for translating varying light into equivalent electrical signals.
is temperature-unstable and the same care must be taken in the biasing of the stage as with other types of transistor amplifiers. Proper operation is a compromise, therefore, between sensitivity and stability. Circuit applications may be divided into two groups. The first group translates varying light, or pulses of light, into equivalent electrical signals. The second group activates switches according to the presence or absence of light. An example of the first group of circuits is shown in Fig. 3. The accompanying table lists practical circuit parameters for amplifier loads of:
a) High input impedance
b) Moderate input impedance
c) Low input impedance.

Fig. 4 is an example of a circuit which when it is activated by light turns a normally on relay off.

Parameters for

Load	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$
a)	$250 \mathrm{~K} / 1 \%$	$250 \mathrm{~K} / 1 \%$	$170 \mathrm{~K} /$
b)	$[25 \mathrm{~K}$	25 K	25 K
c)	24 K	12 K	8.2 K

*Frequency Range - 400-1000 cps
ELECTRONIC DESIGN • March 16, 1960

Fig. 4. Phototransistor circuit designed to furn a normally activated relay off.

Fig. 5. Phototransistor circuit designed to turn a normally off relay on.

Fig. 6. Phototransistor circuit designed to operate in the presence of high ambient light from a $1000-\mathrm{eps}$ chopped light source.

Fig. 5 turns a normally off relay on.
Where operation in the presence of high ambient light is required, the circuit of Fig. 6 is useful, especially in the single frequency case.

High resistance in the emitter circuit degenerates response to unvarying ambient light. The tuned circuit in the base degenerates response at frequencies other than that to which it is tuned. The capacitor would be omitted for operation over a wide frequency band.

Low collector circuit resistance will reduce the possibility of the transistor going into saturation although care must be taken that dissipation will be within safe limits.

Digested from PNP Phototransistors, Brochure G-190, published by General Transistor Corp., Jamaica, N.Y.
; for
the Circuit of Fig. 3

$\mathbf{R}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{2}}{ }^{*}$	$\mathbf{E}_{\mathbf{a}}$	$\mathbf{E}_{\mathbf{1}}$
$\mathrm{K} / 1 \%$	$.02 \mu \mathrm{t}$	$50 \mu \mathrm{f}$	OV	+150 V
36 K	$5.0 \mu \mathrm{t}$	$50 \mu \mathrm{f}$	-25 V	0 V
2 E	$5.0 \mu \mathrm{t}$	$50 \mu \mathrm{f}$	-12 V	0 V

360° of versatility

The precious metal ring shown above is the heart of a Gamewell style SG-270 Precision Rotary Switch. Cut into as many angular segments as required, it provides the precise basis for a highly versatile switching component.
Custom-designed, the SG-270 Switch is ideal for circuit sampling, sequencing, programming, digital generators, etc. Connections to the segments are made through terminals adjacent to the segments on the periphery of the housing. Precious metal rings and brushes provide smooth, trouble-free action with either Make-Before-Break (MBB) or Break-Before-Make (BBM) contacts. Multiple gangs can be assembled to provide multi-pole switches. Cased in special plastic, the SG-270 Switch is inherently fungus resistant . . . stable at high temperatures .. . sizes $5 / 8^{\prime \prime}-11^{\prime \prime}-1^{\prime 5} 8^{\prime \prime}-2^{\prime \prime}-3^{\prime \prime}-5^{\prime \prime}$ diameter in various mounting styles. It can be used with confidence over a wide range of environmental requirements.
Investigate their outstanding operating characteristics for use in your products. Write, stating requirements, to The Gamewell Company, 1399A Chestnut St., Upper Falls 64, Massachusetts.

PRECISION POTENTIOMETERS
"INTEGRALS OF
HIGH PERFORMANCE"

Need a Miniałure Printed Circuit Switch?

- Gold flash and other special contact material for low vollage applications - Positive overtrovel stop
- Special terminals for easy printed
circuil insertion
- Small size $\left(1 / 4^{\prime \prime} \times 1 / 2^{\prime \prime} \times 1^{\prime \prime}\right)$
- Over 50 actuator variations including
cam followers
- Roted: 10 amps/ 125 V o.e $5 \mathrm{amps} / 250 \mathrm{~V}$ o-c call or write
HERRY EEECTRICAL PRODUCTS CORP. 1646 Deerfield Rd., Highland Park, III. Phone: Idlewood 2-8182

CIRCLE 795 ON READER-SERVICE CARD

[^13]
REPORT BRIEFS

Antenna System for Very Low Radio Frequencies

The theoretical antenna problem was solved using a normal mode expansion of the current distribution. A matrix method was developed to compute the current distribution of a thin, linear antenna loaded with lumped-circuit elements. A digital computer was used to solve the matrix equations. Results were obtained for a full-wave linear antenna symmetrically loaded with real impedances Z_{o} one half wavelength apart. Current distributions, feedpoint impedances, radiation patterms, etc., are presented as functions of Z_{0}. Results of the idealized problem are applied to the power-line antenna. The matrix method can also be extended to the general linear antenna with any type of loading or feeding. System components and performance of the Dinkey Creek power-line antenna are described. The problem of interference with nearby audio-frequency communication systems is examined. A New Transmitting Antenna System for Very Low Radio Frequencies, Willard Van Tuyl Rusch, California Institute of Technology, Pasadena, Calif., June 26, 1959, 167 pp, Microfilm \$7.80, Photocopy $\$ 25.80$. Order PB 142988 from Library of Congress, Washington 25, D. C.

Ulira-High Temperature Resistors

This report covers the development of a suitable design for a one watt resistor capable of operation at temperatures from -65 deg C to +500 deg C in nuclear radiation environments for extended periods of time. The work was devoted to refining the electrical properties and design of the resistor. It was demonstrated that high alumina ceramics were necessary to minimize large non-uniform resistance changes occurring over uniform temperature increments to +500 deg C. A number of terminal material compositions were examined for applicability in ultra-high temperature operation. Investigation of various metal oxide films revealed that a 7.5 per cent $\mathrm{Sb}_{2} \mathrm{O}_{4}: 92.5$ percent SnO_{2} composition possessed a near zero temperature coeffcient of resistance over broad temperature range and the most desirable electrical characteristics. A suitable insulating coating, composed of flame deposited aluminum oxide, was utilized in this application without undesirable effects on resistor properties. Radiation tests were made on a variety of modified tin oxide resistors at +500 deg C for 1500 hours under high intensity nuclear radiation. Resistors, Fixed, Ultra-High Temperature, Radiation Resistant, David R. Sivertsen, P. R. Mallory and Co., Inc., Indianapolis, Ind., July, 1959, 47 pp, \$1.25. Order PB 161081 from OTS, Washington 25, D.C.

- 2° absolute accuracy
- Readings not affected by noise and harmonics
- Frequency range 15 CPS - 30KC
- Accuracy to .01 degree with simple circuit techniques
- High sensitivity on input \& reference channels
- Can measure in-phase \& quadrature voltage component

CIRCLE 798 ON READER-SERVICE CARD

Microelectronics

Two techniques have been developed for contructing microelectronic transistorized modules. The first uses etched wiring boards and standard subminiature components. The second technique gives a greater than ten to one volume reduction over the first by incorporating an uncased transistor directly into a printed circuit ceramic plate. The degree of reduction is such that optical aids must be used in constructing and inspecting the circuitry. A new term, microelectronics, has been selected to embrace the latter technique as well as related efforts in system design, power supplies, etc. Microelectronics: An Introduction And A Status Report, T. A. Prugh, Diamond Ordnance Fuze Laboratories, Washington, D.C., Nov. 1, 1957, 11 pp, Microfilm \$2.40, Photocopy \$3.30. Order PB 143566 from Library of Congress, Washington 25, D.C.

Narrow-Band Amplifiers

A method for the design of multi-stage, narrowband amplifiers employing general active two-port devices as amplifying elements is presented. The stability of the amplifier is controlled by means of its input and output conductance levels, rather than by neutralization. The main characteristic of this paper is a theoretical exposition of the functional dependence of the transducer gain of a multi-stage, narrow-band, iterative amplifier upon its interstage network, and upon the input and output terminations. A complete analysis of the transducer gain of the amplifier is included. MultiStage, Narrow-Band Amplifiers Employing NonUnilateral Electron Devices, M. Lim, Stanford Electronics Laboratories, Stanford University, Palo Alto, Calif., Feb. 11, 1958, 121 pp, Microfilm \$6.30, Photocopy $\$ 19.80$. Order PB 138708 from Library of Congress, Washington 25, D.C.

Miniaturized Trimmer Capacitors

The objective of this study was to develop a highly stable, miniaturized line of trimmer capacitors to replace the variet $!$ of existing types. These capacitors were to exhibit good temperature and mechanical stability, and a high order of ruggedness and reliability under the environmental conditions encountered by military communications equipment. This report is a condensation of the three previous reports. It contains the results of the samples tested, the results of the dielectric material survey, and the recommended designs for the ten capacitors as requested in the contractual requirements. High Stability Miniaturized Trimmer Capacitors, C. W. Everhart and B. L. Borman, P. R. Mallory and Co., Indianapolis, Ind., Oct. 15, 1955-Oct. 15, 1956, 76 pp , Microfilm \$4.50, Photocopy \$12.30. Order PB 143301 from Library of Congress, Washington 25, D.C.

BENDIX-PACIFIC
in Southern California needs ENGINEERS with DOCTORS'- MASTERS'- BACHELORS' DEGREES
for electrical, mechanical and systems work in fields of
Instrumentation-Telemetry Anti-Submarine Detection Systems/Operations Research Missile and Aircraft Fluid Controls.

Pleose send resume to W. C. WALKER, ENGINEERING EMPLOYMENT MANAGER

Other High-Level Electronic
Enginecring Positions Available
north mollywood. california

CIRCLE 926 ON CAREER INQUIRY FORM, P. 317
newton digital shaft pulser

REMOTE POSITIONINE OF SHAFTS EL commors, switches, Indicators, etc., for more effoctive, versatily equipmont

The NEWTON DIGITAL SHAFT PULSER is a bdirectional stepping motor with high output torque of approximately one inch pound at 6 outpur. It operates at a maximum of 40 steps per second; is equipped with a precision detent.
The motor can be easily mounted in any position and is versatile in output increments. It includes $36^{\circ}, 6^{\circ}$ $5^{\circ}, 4^{\circ}, 3^{\circ}, 2^{\circ}, 1^{\circ}, 2 / 3^{\circ}, 1 / 2^{\circ}$, and $1 / 3^{\circ}$ outpui per step. Special output steps can be ordered.
Approximately a 10 millisecond pulse at 15 watts will produce the rated torque. The 13 -ounce NEWTON PULSER is available in a wide range of operating voltages and is designed to meet strict military specifications.

Write today for complete details

MANCHESTER, CONNECTICUT Anorher achievement in operational digital by NEWTON

CIRCLE 841 ON READER-SERVICE CARD

new CMC

UNIVERSAL Counter Timer

CMC's new Model 2268 Universal Counter Timer has a func-
tional panal layout that is human engineared to eliminate costly tional pannl layout that is humon enginerered to eliminate costly "cockpit" trouble. Inside, modulor construction is ussd through-
out to simplify maintenance and reduce weight. Cirruitwise, out to simplify maintenance and reduce weight. Circuitwise,
tubes hove been eliminated lowering
femperature and increasing reliobility. Direct reading. the 2268 meosures frequency from 0 to 1.2 mc ,
time interval from 1 microsecond to 1 milliom soconds ond
period from onicrosecond to 1 million seconds. Aceurocy is
 ronge. Oscilloscope marker sionols simplify stort and stop trigger
leval odiustment for TiM of complex wove forms. Unit will drive
the CMC fost digitol printer and most other types of printors
 Model $2268 \mathrm{~B}-\$ 1175.00$, 220 kc Model 225 C - $\$ 900.00$. For A -page
 nearby CMC representative or write directly to Computap Mesp-
uromone Compeny, 12970 Eredioy Ave., Sylmef, Celifornie,
Dept. 19-3.

LIGHT WEIGHT one ounce max. SMALL SIZE one cubic inch max. MINIATURE PRESSURE TRANSDUCER from collin

High vibration performance $\pm 35 \mathrm{G}$ to $5,000 \mathrm{cps}$ Pressure ranges Absolute, differential and gage pressures $0-3$ to $0-400$ ps Differential pressures ± 3 to ± 200 psi Standard Nominal Potentiometer Resistances 400 to 10,000 ohms Electrical Connection Pigmy receptacle or soldering terminals Mounting
Flange or bulkhead
 $1^{\prime \prime}$ dia. x $1^{\prime \prime}$ long

Writo for
complete
Information

CIRCIE 843 ON READER-SERVICE CARD

REPORT BRIEFS

Parametric Amplification

The performance of varactor amplifiers may be enhanced for some purposes by using diodes with special nonlinear characteristics. By approximating a step in the impurity density distribution, a junction diode with an abrupt change in slope in its capacitance reverse bias characteristic may be fabricated. This change in slope enables a parametric amplifier employing such diodes to exhibit great sensitivity at that operating point while maintaining stability. Design criteria for such a diode are reviewed; design theory is presented. Fabrication techniques and problems are discussed. The results of preliminary measurements on an experimental unit are presented. Study of Parametric Amplification, G. C. Gerhard, Ohio State University Research Foundation, Columbus, June 19.5.9, 20 pp.. Microfilm \$2.40, Photocopy \$3.30. Order PB 143192 from Library of Congress, Washington $25, D . C$.

Processing Taped Data

This report describes Telemag, a system which is used to process test data which may have been recorded on magnetic tape in the test vehicle, telemetered to a ground station or the Telemag and recorded, or telemetered and fed directly to Telemag. The report also presents a brief review of some telemetry and magnetic tape data recording techniques. The last two chapters deal respectively with the actions to be taken to best utilize Telemag and plans for expanding its facilities and functions. Telemag-A System For Processing Test Data Recorded On Magnetic Tape, James L. Blilie, Air Proving Ground Center, Elgin AFB, Fla., June 1959, 77 pp, Microfilm \$4.50, Photocopy $\$ 12.30$. Order PB 143290 from Library of Congress, Washington 25, D.C.

Fourier Coefficients

Programmed computation of periodic Fourier coefficients in connection with the tabulation of $C_{n}(m)$ yields any desired number of Fourier coefficients. This new method is thus superior to other computational methods and schemes that a priori limit the number of obtainable coefficients. Fourier coefficients of specially selected orders can be obtained in a few steps, without the necessity of computing the entire sequence of coefficients. The method can be programmed for desk calculating machines as well as for computers. A Method For Numerical Evaluation Of The Coefficients of Fourier Series, Kurt H. Haase, Air Force Cambridge Research Center, Bedford, Mass., June 1959, 38 pp, Microfilm \$3.00, Photocopy $\$ 6.30$. Order PB 143492 from Library of Congress, Washington 25, D.C.

NEW FROM NARDA

Model
10001
$\$ 4700$. High Power

MICROWAVE MODULATOR

accepts over 40 magnetrons!
Here's the first of a series of new products from Narda's recently-established High Power Electronics Division! A high power Microwave Modulator that permits installation inside the unit of any of more than 40 magnetrons! Complete, compact and self-contained, it accepts magnetrons covering 3.200 mc to $35,000 \mathrm{mc}$, with peak outputs from 6 KW to 120 KW . Model 10001 features a completely interlocked circuit, with all high voltage leads and connections internal, for maximum safety: solid state high voltage bridge rectifiers for longer life and reduced heat output (prolonging life of other components, too); and built-in meters and viewing connectors for all principal parameters.
Other features are shown below. For complete specs and a list of at least 40 magnetrons suitable for use with the 10001, write Narda's High Power Electronics Division (HPED) at Dept. ED-7.

SPECIFICATIONS

High voltage supply: Continuously variable from 0 to 4 KV at 100 ma ; Pulse power: 18 KV at 20 amps max.; Magnetron filament supply: Cont. variable from 0 to 13 volts at 3 A; Rep. rate generator range: Cont. variable from 180 to 3000 pps; Pulse width: 1 microsecond at 70% points, rise time 0.15 microseconds, max. slope 5% (other pulse widths available); Size: $38^{\prime \prime} \mathrm{h} .22^{\prime \prime} \mathrm{w}, 18^{\prime \prime} \mathrm{d}$. Weight: 150 lbs

Complete 1959 catalog available on request.

aurey the narda mimpanse

HIGH POWER ELECTRONICS DIVISION
118-160 HERRICKS ROAD. MINEOLA, L. L. N. Y. - PIoNEER 6.4650

CIRCLE 845 ON READER-SERVICE CARD
ELECTRONIC DESIGN • March 16, 1960

The wivisirs Flattest coax couplerl

Only 0.2 db variation over full octave!

What more is there to say?
The new series of Narda Coaxial Couplers is absolutely the flattest on the market; the specs are here; the prices are here. And you know Narda's reputation for quality! If you need a really flat coupler, contact your
Narda representative, or write to us directly.

Coupling Characteristics Frequency Response $\quad \pm 0.2 \mathrm{db}$

Deviation of Mean Value from Nominal $\quad \pm 0.3 \mathrm{db}$

Calibration Accuracy $\pm 0.1 \mathrm{db}$
Calibration points at 5 frequencies
Connectors: Series N female;
others on special order.

armo

Microwave Transistors

Wafer-type depletion layer devices have been fabricated in order to investigate injection into the depletion layer. A theoretical analysis of both high- and low-frequency operation has been initiated to determine the feasibility of a depletion layer transistor as a high-frequency device. Results indicate that the fabrication problems will be the principal barrier to the development of a feasible device. The results of a study concerning the fabrication and evaluation of bar-type, wafer-channel, and surface-barrier analog devices indicate that the surface-barrier device has the most favorable and reproducible characteristics, and is the easiest to fabricate. A theoretical analysis has also been initiated to determine the feasibility of the analog transistor for high-frequency application. Early results indicate that the field-effect unipolar device is extremely flexible. Research and Experimental Work On Microwave Transistors, R. L. Goldman, Philco Corp., Philadelphia, Pa., Apr. 15-July 15, 1958, 30 pp, Microfilm $\$ 2.70$, Photocopy $\$ 4.80$. Order PB 139065 from Library of Congress, Washington $25, D . C$.

TRADIC Computer Research

This report summarizes the program for the development of solid-state technology for airborne weapons-control computers. Among the major items covered are: encoding and decoding techniques; two forms of non-destructive program storage; a wide temperature range magnetic core memory system; silicon direct coupled transistor logic; organization of a computer as an aid in trouble location; and programming techniques for the protection of stored constants and error correction in the weapons-control computer. TRADIC Computer Research (Second Stage), J. A. Githens and M. J. Gilmartin, Bell Telephone Laboratories, Inc., New York, N.Y., Dec. 1, 1958, 398 pp, Microfilm \$11.10, Photocopy $\$ 60.60$. Order PB 143648 from Library of Congress, Washington 25, D.C.

Semiconductor Device Cooling

In addition to an analysis of proper semiconductor cooling techniques, a study has been made of methods of improving fabrication techniques for transistors. The findings, if followed, may enhance the electrical reliability and life-time of semiconductor devices. Also, patent disclosures have been made on a liquid-filled transistor, a Peltier-cooled transistor, and a Peltier-cooled Zener diode. Study of Methods of Cooling Semiconductor Devices, James P. Welsh, Cornell Aeronautical Laboratory, Inc., Buffalo, N.Y., Dec. 1958Feb. 1959, 13 pp., Microfilm \$2.40, Photocopy \$3.30. Order PB 142943 from Library of Congress, Washington 25, D.C.

Series E Bonds

 turn ${ }^{\$ 1875}$ into ${ }^{\text {² }} 2500$
fourteen months quicker than ever before

YOUR MONEY GROWS 331/3\% IN JUST 7 YEARS AND 9 MONTHS

WITH NEW SERIES E BONDS

Here are three new reasons why today's Savings Bonds are the best ones in history:

1. Every Bond bought since June 1, 1959, earns $33 / 4 \%$ interest when held the full term. Series E Bonds now mature in 7 years, 9 months-fourteen months faster than ever before.
2. Your older Bonds novo earn more-an extra $1 / 2 \%$ from June 1 on, until maturity.
3. All Series E Bonds, old and new, carry an automatic extension privilege now. This means they'll automatically keep earning liberal interest for 10 years beyond maturity.
You get these new advantages, plus complete safety, guaranteed return, and protection against loss or theft when you save with Bonds. And there's no easier way to save. You can buy Bonds automatically through the Payroll Savings Plan at work, or from any bank. Plan to start saving with U.S. Savings Bonds-they're the best ever.

YOU SAVE MORE THAN MONEY with U.S. Savings Bonds

The U.S. Government does not pay for this advertising. The Treasury Department thanks The Advertising Council and this magazine for their patriotic donation.

STANDARDE AND SPECS

Sherman H. Hubelbank

Activity in Capacitor

Standardization is Summarized
There has been a great deal of activity in the field of capacitor standardization recently. MIL-C-11Q15, General Spec for General Purpose Fixed Ceramic-Dielectric Capacitors was revised as issue B. This issue superseded MIL-C-11015A, MIL-C-19321(Ships) and MIL-C-19683(Ships). These capacitors are primarily for use in applications where appreciable variations in capacitance with respect to temperature, voltage, frequency, and life can be tolerated. Also recently issued was MIL-C-21720A(Navy) covering polarized, tantalum, solid electrolytic, and fixed capacitors. These capacitors are intended for use in low-voltage applications where stability, size, and shelf life are important factors. Polarized tantalum electrolytic fixed capacitors primarily designed for filter, bypass and coupler use with a high degree of reliability are covered by RS-228 (October 1959) released by the Electronic Industries Association, 11 W. 42 St., New York 36, N.Y.; price \$1.65.
The general spec covering fixed mica-dielectric capacitors was revised by amendment 1, MIL-C 5B (8 October 1959). In addition, 13-detail spec requirements were revised. MIL - C- 20 was revised as issue C. This is a spec covering temperature compensating fixed ceramic dielectric capacitors. Four new disk styles of capacitors were added by this revision.

Plastic Jacket

The use of flexible polyamide (nylon) molding plastic for jacketing is established by this spec This material is specified for use in applications requiring high strength and flexibility. MIL-M 22096, Molding Plastic, Polyamide (Nylon), Flexible.

Test Procedure For

Magnetic Amplifiers Proposed

AIEE has released a proposed test procedure for magnetic amplifiers. Covered in this publica tion are general considerations, voltage amplification, current amplification, power amplification, response, and figure of merit. Copies of AIEE No. 433 (November 1959) are available from the American Institute of Electrical Engineers, 33 W 39 St., New York 18, N.Y.

New Navy Spec Covers

Variable, Rectlinear Resistor

The Navy has roleased a now spece covering a lype of variable, rectilinear, miniature resistor whose contact bears uniformly over the surface of the entire resistive element. The contact is positioned by means of a multi-turn, lead-screw actuator. These resistors have a resistance tolerance of $\pm 5 \%$ and $\pm 10 \%$. The wattage ratings are based on full-load operation of the resistors at 70 C , and are applicable only when the maximum resistance is engaged in the circuit. When only a portion of the resistance is engaged, the wattage rating is reduced in approximately the same proportion as the resistance. MIL-R-2209(NAVY), Resistors, Variable, Rectilinear (Miniature).

Spec Covering Resistor
 Color Codes Is Revised

The latest revision to MIL-STD-221A has deleted the color coding for composition-type radiallead resistors. The $\pm 20 \%$ tolerance has been deleted from the color code. Standard MIL-STD-174 is referenced for standard colors instead of MIL-STD-104. The requirements in the conflict of colors paragraph has been relaxed by allowing either the resistor body or the band colors to be differentiated by shade or gloss. MIL-STD-221A (1 December 1959), Color Code for Resistors.

Liquid Soldering Flux

This spec covers a non-corrosive rosin-base flux for application as a liquid external to the solid solder. The flux is for primary use in the preparation of solder joints for electric and electronic circuits. The spec does not cover soldering processes, nor materials used in the soldering of mechanical joints that do not also serve within electric and electronic circuits. MIL-F-14256A, Flux, Soldering, Liquid (Rosin Base).

Inferchangeable Parts: Some

Necessary Definitions Established
Varying definitions ind interpretations relative to interchangeability, substitutability, and replaceability, have adversely affected design, procurement, support, maintenance, and production of equipments according to MIL-STD-447. This standard establishes necessary definitions toward achieving the highest practicable degree of uniformity. An interchangeable item is one that possesses functional and physical characteristics equivalent in performance and durability and capable of exchange without alteration. A substitute item is one that can be replaced only under certain conditions. A replacement part is one that requires alterations. MIL-STD-447, Definitions of Interchangeable, substitute, and Replacement llems.

Timing is our forte. .

Electronic timing devices and controle that represent the statcof-thouart in performance and reliability... precision performance that's builtin by engineering know-how; unquestioned reliability that's guaranteed by a comprehensive Quality Assurance Program including functional and environmental testing of each production unit. And we believe you'll appreciate the Tempo brand of customer service . . . from prompt, thorough handling of your special requirements to consistent, on-schedule deliveries and field service follow-thru. TEMPO INSTRUMENT INCORPORATED HICKSVILLE, N.Y.

SOLID STATE TIMING MODULES. Subminiature "building block" components, with accessible control points; may be used to develop a wide range of timing and programming functions. Fixed or adjustable time periods from .00005 to 300 seconds.
ELECTRONIC TIME DELAY RELAYS. No moving parts ex. cept relay contacts, 2PDT- 2 amp or 3PDT- 10 amp ratings; fixed or adjustable time delays from .02 to 300 seconds; ac. curacy to 3% or better; vibration-proof to $2,000 \mathrm{cps}$ at 20 g 's. FLASHERS. Typical operation: Flashing rate of 40 cycles per minute, with a one-to-one ratio of on time to of time. INTERVALOMETERS. Typical operation: 300 seconds after application of 28 vdc , output relay energizes; 3 seconds laver, rolay de-energizes. Cycle repeats itself until supply voltage is removed.
repeat cycle timers. Provide multi-channel control signals, each with a timing pulso of predetermined magnitude. Sequencing of output pulses is synchronized.
PULSE TRAIN GENERATORS. For control of various loads in a singlo aystem. Provides output signals and pulses of specified characteristics.
SEQUENCE TIMERS. Typical operation: Provides sixty-four sequential pulees each of 100 millisoconds duration, starting immedisely upon application of 28 vdc. Automatically stops after leat puleo.
PROGRAMMERS. Designed to suit particular system requirement. Typical unit may provido a completo timing and con. trol progrem covering more than 5000 seconds from start.

IRE Show - Tempo Application Engineers will be at booth M8 - IRE Show. CIRCLE 847 ON READER-SERVICE CARD

NOT NEW, but...

proved by millions in use over several years! IERC TR type Heat-dissipating Electron Tube Shields are still the only effective heat-dissipating tube shield designed for retrofitting equipment having JAN bases.

Present TR's are unchanged from the original version introduced - and over the years, nothing has equalled their cooling and retention qualities. The greatly extended tube life and reliability provided by IERC TR's is acknowledged by the entire industry.

IERC's TR's have been right for the job - right from the start. For immediate, increased tube life and reliability retrotit now with IERC TR Shields.

International Electronic Research Corporation 145 West Magnolia Boulevard, Burbank, California

Exclusive-Or Function Redefined

Dear Sir:
I disagree with the logical definition of an N-input Exclusive-Or function expressed by Mr. Breault and Mr. Morris on pages 174 and 175 of the November 25th issue and also the one expressed by Mr. Maki in "Ideas for Design" of the July 22nd issue. I believe that the output of an Exclusive-Or gate should be true when one and only one input is true.

The common Or-gate is sometimes called In-clusive-Or because it provides an output not only when A or B or C, etc., is true, but also when any combination of inputs is true. Thus it "includes" the redundant functions $\mathrm{AB}+\mathrm{BC}+\mathrm{AC}+\mathrm{ABC}$, etc. In contrast, the counter-adjective "Exclusive" would logically imply the special case when only A or B or C, etc., is true; thus it "excludes" the redundant functions. Only when applied in this manner can the words "inclusive" and "exclusive" have a completely descriptive meaning to a logic designer who may not already be familiar with some arbitrarily chosen set of definitions.

The function for a 3 -input Exclusive-Or gate should therefore take the form $\mathrm{A} \cdot \overline{\mathrm{B}} \cdot \overline{\mathrm{C}}+\overline{\mathrm{A}} \cdot \mathrm{B} \cdot \overline{\mathrm{C}}$ $+\overline{\mathrm{A}} \cdot \overline{\mathrm{B}} \cdot \mathrm{C}$, which when expanded to maxterms is $(\overline{\mathbf{A}}+\overline{\mathbf{B}}+\mathbf{C})(\overline{\mathbf{A}}+\mathbf{B}+\overline{\mathbf{C}})(\mathbf{A}+\overline{\mathrm{B}}+\overline{\mathbf{C}})(\mathbf{A}+$ $\mathbf{B}+\mathbf{C})(\mathbf{A}+\mathbf{B}+\mathbf{C})$. From the first expression it is easy to see that the function can be true when one, and only one, input is true.

I agree that the circuit of Breault and Morris is very useful for parity checking and as a full adder sum-output, but it should be labeled as something other than Exclusive-Or.
W. H. Ferwalt

Engineer
Engineered Electronics Co. Santa Ana, Calif.

Current Source Coupling Circuit Modifies Published Design

Deirr Sir:

The article by George H. Hall on an "Intercoupling Circuit for Precision Amplifiers" in Eiectronic Design, November 25, 1959, was quite interesting. In his list of alternate coupling methods, Mr. Hall mentions "voltage regulator tube" coupling. A similar coupling method utilizes a

THE KEY TO A TRULY CLEAN VACUUM without fluids or other contaminants, is an UlteVac electronic pump. Can operate system. requires no traps, baffles or system, requires no raps, ba fes, or Hg and below: power failure does not harm Hg and below: power fallure does notharm system since it is sealed after mitevac
starts. Serves as its own vacuum gauge. Operates in any position: no hot filaments no cooling water.

Series 327 • 270 I/sec.

ULTEK CORPORATION, only manufacturer devoted exclusively to ion pump technology, orfers stock pumps 1 to 1000 liters/second capacity, plus sorption pumps, foreline traps, and SeaiVac fittings which provide invites comparison of product, service, and invites comparison of product. service, and pumps and accessories. Literature on re-quest-specify application.

Contact ULTEK, or its oxclusive
epresentative, Kinney Mfa Div. of
epresentative, Kinney Mfge Div. of
The New York Air Brake Co. Sales
offices in major U.S. cities.

EOOTHS 4309-4311 AT I.R.E.

920-D Cümmercial SL • Palo Alto. Calif. • DA 1-411

CIRCLE 849 ON READER-SERVICE CARD ELECTRONIC DESIGN • March 16, 1960

circle aso on reader-service card

Current source coupling circuit needs no battery and does not suffer instability from tube aging.
voltage reference diode ("Zener" diode) in place of a voltage regulator tube and does not suffer from the noise problems mentioned by Mr. Hall.
Mr. Hall's circuit exhibits several features which could act as major drawbacks in some applications. One is the need for a battery. Another is the instability of the circuit with respect to tube aging. As the coupling tube ages, that is, as its cathode emission falls, the tube current will change and the coupled voltage will drift. A circuit without these difficulties is shown in the accompanying diagram.
In this circuit the coupling tube is placed in series with a voltage translating resistor R_{a} and a large cathode resistor \boldsymbol{R}_{k}. Because of the large cathode resistor, the current through the tube, and therefore the voltage across R_{s} are held substantially constant regardless of changes in the characteristics of the tube. Voltage variations at one end of R_{8} are transmitted virtually undiminished to the other end, but with the desired dc translation. The circuit may be thought of incrementally as a voltage divider with a series resistance R_{d} and a very large shunt resistance equal to $R_{k}(1+\mu)$. For dc conditions the shunt resistance equals $R_{k}+R_{p}$.
Alternately, the tube and cathode resistor may be thought of as a current source of approximately $e_{c} R_{k}$, drawing a constant current through R_{s}. The grid voltage for the coupling tube is derived from the supply voltages rather than from a battery. Depending on the voltages involved, a negative supply may or may not be needed. The coupling capacitor is used to equalize the transmission at high frequencies. Transmission efficiencies of 99 per cent are easily realizable.
H. T. McAleer

Engineer
General Radio Co.
West Concord, Mass.

EG\&G's NEW, COMPLETE LINE OF MINIATURIZED CERAMIC-METAL HYDROGEN THYRATRONS...
Offer the design engineer . . .

	$\begin{gathered} \text { Model } \\ 7322 / 1802 \end{gathered}$	$\begin{gathered} \text { Model } \\ 7620 / \mathrm{HY}-1 \end{gathered}$	$\begin{gathered} \text { Model } \\ 7621 / H Y-2 \end{gathered}$
- compact modular circuitry (length) \qquad (dia.) \qquad	$\begin{aligned} & 5-3 / 4^{n} \\ & 3-3 / 8^{n} \\ & \hline \end{aligned}$	$\begin{aligned} & 4-5 / 8^{\prime \prime} \\ & 2.5 / 16^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 1-3 / 4^{\prime \prime \prime} \\ & 1-1 / 5^{\prime \prime} \end{aligned}$
- light weight (lbs.)	2.07	0.82	0.13
- max. peak anode voltage	25,000	20,000	8,000
- max. peak anode current (amps)	1,500	500	90
- max. average current (amps)	1.5	0.5	0.1
- wide temperature capability	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ambient; $400^{\circ} \mathrm{C}$ envelope max.		
- long life ...	unique hydrogen reservoir in all models.		
- rugged dependability	all models pass vigorous shock and vibration tests.		
- fast warm-up	10 min .	5 min.	30 sec.
- high plate dissipation factor	$20 \times 10^{\circ}$	$10 \times 10^{\circ}$	$1 \times 10^{\circ}$

See our exhibit • IRE SHOW, Booth 3914B . New York Coliseum
for complete specifications, prices and information
on applications excooding the above ratinge, write or call:
1: |if (i) EDGERTON, GERMESHAUSEN \& GRIER, INC.
 CIRCLE 851 ON READER-SERVICE CARD

ELECTRONIC DESIGN • March 16, 1960

DESIGNING YOUR FUTURE

Anyone for Thermo-Tronics?

Arthur F. Dickerson

Product Planning Manager Receiving Tube Dept. General Electric Co.

Owensboro, Ky.

The rise of microminiaturization and the growth of electronic systems have kindled an urgent demand for engineers with fresh ideas not only on dissipating heat but on putting it to constructive use.

T IS doubtful that the following advertisement would surprise anyone if it appeared in the leading electronics trade journals:

HELP WANTED: BSE-T (Bachelor of Sci-
ence in Electronic-Thermodynamics) Pref-
crably with experience in microminiaturiza-
tion. Sillary open.
It is also doubtful that the ad would produce any replies. Although experience with microminiaturization is abundant in the industry, most of it has been obtained the hard way without benefit of formal education in either electronics and thermodynamics. Certainly the academic degree of BSE-T is unfortunately nonexistent. This is not so much a criticism of the state of the electronics art as an observation that a three-credit course in thermodynamics of internal combustion engines (the conventional college dose in thermodynamics) is considerably less than adequate preparation for today's demands on the electronic

As electronic units shrink, heat problems for the design engineers expand-especially in systems. Typical of components that create the problems are ones like this printedcircuit transistor (small dot on board upper left), developed by an Army researcher to cut the size of electronic "brains" in military equipment. The transistor it replaces is at right.

TIMM's (Thermionic Integrated Micro Modules) differ from conventional packaging concepts in that they confine heat rather than expel it, and put it to work operating vacuum devices. Designed by General Electric, the units comprise the equivalent of conventional transistors, capacitors and resistors.

equipment designer.
In some ways the belated recognition of the thermodynamic factor in electronics is surprising. The relationship between electron control and heat generation is direct, as every electronics designer discovers at some point in his career, whether he deals with transistors, tubes, magamps or cryotrons. The very act of current control implies the application of energy (through a system of less than 100 per cent efficiency), with the consequent dissipation of power and generation of heat. Even if heat were not generated in the control process, it still would be generated when the controlled electron got where it was going, as well as in the process that got it started in the first place.

If the heat problem seems applicable only to electron tubes, consider the possibilities of a transistor with no power dissipation in the emitter, or a parametric amplifier with a lossless pump circuit, or a cryotron with no heat transfer to the refrigerant. Anyway you view it, heatless electronics is no more probable than perpetual motion, since both depend on a 100 per cent efficient system.

Basic Propositions

Heat in the electronic sense is a matter of degree, and the pertinent question is not "Do we have it?" but "How much?" Invariably the answer is "too much," and the question shifts to "What do we do about it?" At the very least the answer calls for examination of some basic propositions:

1. Heat energy is a systems problem.
2. Heat energy and temperature are two different things.
3. Heat is not all "bad."
4. In microminiaturization the thermal and electronic designs are inseparable.
Let us examine these propositions in detail one at a time.

A Systems Problem

First, heat energ' is a systems problem. This is an attempt to state that the problems, evaluations and comparisons of heat energy in modem electronic equipment must be dealt with as a systems consideration and evaluated on the basis of the effect on system performance and capability. Let us take a simplified case of equipment A and B, functionally similar but with these differences:

	A	B
Power Consumption	75 w	35 w
Useful Output	5 w	5 w
	70 w	30 w
Meat Energy Released	250 C	100 C
Nominal Rise Abere Ambient	+100 C	50 C

It is obvious that equipment B is more efficient when viewed alone, out of context to the system.

Sure, we're proud of what they're saying in consumer circles...

BUT, MR. ENGINEER, DID YOU KNOW...

... that people are talking up Magnavox in the military and industrial fields as well? That we not only make the world's finest stereophonic high fidelity, radio phonographs and television instruments, but do vital work for some of the principal names in government and industry both here and abroad? We are, in fact, currently engaged in advanced electronic activity covering the broad areas of communications, airborne radar, missiles, antisubmarine warfare systems and data processing equipment. And the growing demand for our services in every one of these fields has made it necessary to put in a call for more creative talent. If you're an engineer with a yen for challenge . . . if you like to work with interesting, capable people . . . and if you very definitely DON'T intend getting lost in the crowd . . . look into Magnavox. There's a promising future ahead.

Phone Dick Eary (collect, of course) a Eastbrook 9781 in Fort Wayne or write

```
him today for complete information.
him today for complete information.
```


THE MAONAYOX_CO. DEPT.

FORT WAYNE, URBANA, ILLINOIS, LOS ANGELES, CALIFORNIA

- Government and Industrial Division - PORT WAYNE, IND. CIRCLE 901 ON CAREER INOUIRY FORM

Send resume to: Mr. A. M. Johnston, Dept. 264

> Westinghouse CIMORE $\begin{array}{lll}- & \square \\ \text { P. O. Box } 746\end{array}$

> Baltimore 3, Maryland
> ARR ARM - ELECTRONICS ORDNANCE

DESIGNING YOUR FUTURE

The pertinent question here is which design i ; more efficient on a system basis. The answer de pends entirely on ambient temperature. Equip ment A will have to be cooled for ambients abov 150 C. As a very rough approximation, at an am bient of 100 C the heat to be removed from I is equal to the total power dissipation. If we as sume an electrical refrigeration efficiency of 20 per cent, this becomes $30 / 0.2=150 \mathrm{w}$.
Under this condition, equipment B would consume a total of 185 w on a system basis, while equipment A consumed 75 w . Consequently for an ambient temperature of 100 C and electrical refrigeration, equipment \boldsymbol{A} is more than twice as efficient as B, although exactly the reverse is true at an ambient of 50 C .
We can construct a generalized comparison curve (see graph) that illustrates this comparison

Equipment B, although more efficient at low temperatures, is less efficient at high temperatures when considered on a system basis.
as a function of ambient temperature. Similar comparison can be made for other system factors, such as weight or volume. In many instances the optimum design for weight will not coincide with the optimum for efficiency or size.

Two Different Things

Second, consider the proposition that heat energy and temperature are two different things. This statement borders on the self-evident; nevertheless it is often overlooked. An illustration is afforded by considering the heat energy above absolute zero in a cubic foot of the North Atlantic Ocean at -2 C, compared with the same volume for colliding gas clouds of Cygnus A, which are estimated to reach a temperature above 1,000,000

Advancement Your Goal?
 Use CONFIDENTIAL
 Action Form

ELECTRONIC DESIGN's Confidential Caree Inquiry Service helps engineers "sell" themselves to employers-as confidentially and discreetly as they would do in person. The service is fast. It is the first of its kind in the electronics field and is receiving high praise from personnel managers.
To present your job qualifications immediately to companies, simply fill in the attached resume.
Study the employment opportunity ads in this section. Then circle the numbers at the bottom of the form that correspond to the numbers of the ads that interest you.
ELECTRONIC DESIGN will act as your secretary, type neat duplicates of your applicafion and send them to all companies you select-the same day the resume is received.
The standardized form permits personnel managers to inspect your qualifications rapidly. If they are interested, they will get in touch with you.
Painstaking procedures have been set up to ensure that your application receives complete, confidential protection. Safeguards include:

- All forms are delivered unopened to one reliable specialist at ELECTRONIC DESIGN.
- Your form is processed only by this specialist.
- The "circle number" portion of the form is detached before the application is sent to an employer, so that no company will know how many numbers you have circled.
n All original applications are placed in conidential files at ELECTRONIC DESIGN, and after a reasonable lapse of time, they are destroyed.
If you are seeking a new job, act now!

feectromic oesisn CAREER IMQUIRY SERVICE

After completing. mail career form to ELECTRONIC DESIGN. 830 Third Avenue, New York N. Y. Our Reader Service Department will forward copies to the companies you select below

(Please print with a soft pencil or type.)
\qquad
\qquad
Home Address __ City __ Zone __ State \qquad
Date of Birth \qquad Place of Birth \qquad Citizenship

Position Desired

Recent Special Training

Company	City and State Dates	Title	Engineering Specialty
	\bigcirc		

Outstanding Engineering and Administrative Experience

Professional Societies \qquad
Published Articles \qquad
Minimum Salary Requirements (Optional) \qquad
Use section below instead of Reader Service Card. Do not write personal data below this line. This section will be detached before processing.

Circle Career Inquiry numbers of companies that interest you

| 900 | 901 | 902 | 903 | 904 | 905 | 906 | 907 | 908 | 909 | 910 | 911 | 912 | 913 | 914 | 915 | 916 | 917 | 918 | 919 | 920 | 921 | 922 | 923 | 924 |
| :--- |

Your Creative Ideas

Will Reach Tangible Form at Sanders

This company owes its surprising growth (from a handful of brilliant men 8 years ago to a 1200 -man organization today) to the originality of its conceptions in diverse electronic fields. (Examples of Sanders' firsts include PANAR• radar, TRI-PLATE• microwave products, FLEXPRINT® fexible printed circuits.)

If you have the capacity to father genuine technical innovations, you will find engineer-management receptive at Sanders Associates. You will be encouraged to demonstrate the practicality of a promising idea, and assisted in doing it. And you can rely on receiving professional and financial recognition for creative contributions.

Right now opportunities are available at Sanders on a variety of commercial and defense projects, including a very sophisticated seeker system for the U.S. Navy's Eagle Missile, which it is believed will provide superior performance in the face of increasingly effective countermeasure techniques.

To learn more about opportunities for you at Sanders - and the advantages of our location in the progressive New England community of Nashus New Hempshire (less than an hour from downtown Boston), send a resume to Lloyd Ware, Stafi Engineer, Dept. 920.

ECM ENGINEES

Desiring to advance the state-of-the art through new systems concepts and to translate these concepts into production.

MICROWAYE ENGINEERS

For stimulating systems study, antenna design and research leading to marketable TRI-PLATE (r) microwave products.

SYSTEMS 2 CIRCUITS ENGINEERS
For analysis and design of weapons systems and compoweapons systems and compo-
nent parts such as receivers, nent parts such as receivers,
transmitters, test equipment, transmitters, test equipment,
da ta processing equipment data processing equipment
and transistorized special cirand tr
cuits.

analrical
 ENGINEERS

Data systems, weapons and countermessures.

INSTRUMENTATION ENGINEERS

For gyro development, systems development, servo development and product engineering.

DESIGNING YOUR FUTURE

deg. The Atlantic wins hands down, with a margin of at least 10^{16} over the hot but rarified regions of Cygnus.
Now to put this comparison into terms of an electronic system, we need only observe that "a watt is a watt, is a watt," regardless of the temperature at which it is dissipated. A $1.4-\mathrm{v}, 50-\mathrm{ma}$ filament in a vacuum tube consumes 70 mw and operates close to 800 C . In a closed thermal system, such as a satellite or closely packed electronic equipment, the filament represents the same heat energy contribution as 1 ma passing through a 70,000 -ohm resistor operating at 50 C or a $70-\mathrm{mw}$ anode dissipation in the tube. To maintain a long-term temperature balance, we must get rid of 70 mw in each case independent of the wide difference in temperature. A drop in the battery cables of 0.1 v at 1 amp would put a greater load on the cooling system than the 800 C filament.

Not Always 'Bad'
Third, let us examine the statement that heat is not always "bad." At least one microminiaturization approach, the General Electric TIMM circuits, is based on the novel idea of constructively using the heat energy released by electronic circuit operation, as opposed to the often costly alternative of getting rid of the heat.

TIMM circuits employ a complete range of electronic components capable of operation at temperatures above 600 C . The equipment is then surrounded with a suitable thermal insulation to retain the heat energy and to raise the internal temperature to the point where usable amounts of thermionic emission can be obtained from prepared surfaces inside the circuit modules. Once started, and with suitable insulation, these circuit modules continue operation self-heated by the dissipation of their circuitry.

This method actually benefits from microminiaturization, as it increases power density and allows more efficient maintenance of the internal temperature. The conservation of heat greatly improves system efficiency.

Inseparable Designs

The fourth statement, that in microminiaturization the thermal and electronic designs are inseparable, is actually a summary conclusion from the preceding statements. The essential advantage of microminiaturization is in the size reduction of large electronic systems. To achieve the true advantage, the whole system must be considered in the design. As we saw in the first example, this becomes a thermodynamic electronic design problem in which the two factors are mutually utilized

No one is immune

 to our \# 1 health problem
Mental illness

 hospitalizes MORE people than polio, heart, tuberculosis, cancer-all other diseases combined. Outside the hospital 1 in 10 need psychiatric help. Next-let's Conquer Mental Illness! !> Give at the Sign of the Ringing Bell

5ANDER5 R55DCIRTES. INE. NASHUA. NEW HAMPSHIRE

senior applications engineers

experienced in

SEMICONDUCTOR RED for staf level assignments

GROUP HEAD

Senior applications engineer with experience in semiconductors, transistors, diodes, rectifiers, circuit applications and sales engineering. Must be oriented for a responsible managerial

STAFF ENGINEERS

Applications engineers with at least five years' experience for senior staff level assignment in semiconductor circuit research and development. Our research project is directed toward development of new uses for existing devices, and creation of circuitry using new devices which will become the building blocks of tomorrow's systems.

These positions were created as a result of the sustained growth of advanced research and development activity at the Semiconductor Division of Hughes Aircraft Company. The recently completed facilities of the Semiconductor Division are located in Newport Beach, California-just south of Los Angeles.
If you meet the ,requirements for the above pusitions, or if you are a senior engineer or physicist with experience in the field of semiconductors, w invite your confidential inquiry

Please contact:
Mr. C. L. M. Blocher Scientific Staff Representative nUches semiconducton eivision 300 Superior Avenue Neluport Beach 3. Califormia

HUGHES

to the optimum to achieve a systems result.
The microminiaturization of large systems inevitably differentiates temperature and heat energy. Although circuit dissipation varies widely, a figure of 1 to 5 mw per component is typical for semiconductor circuitry. With a packing factor of 20,000 components per cubic foot-typical of present printed-board circuitry-this represents a power density of only 20 to 100 w per cubic foot. However, at envisioned packing factors of 1,000 , 000 components per cubic foot, this figure rises to 1,000 to $5,000 \mathrm{w}$ per cubic foot.
This power density is not frightening for small isolated modules of circuitry, where the edges of the module are exposed directly to a tolerable external environment. However, in large systems, where three-dimensional stacking of modules is necessary, the temperature rise is cumulated at each successive layer. Consequently the innermost module will operate at a much higher temperature than the outermost, although the heat energy released in each may be the same. Thus the design becomes both thermodynamic and electronic as microminiaturization graduates to the large system level, and the designer faces the question of dumping or using the heat dissipated in operation.

It is at this point today that engineering managers feel like crying out:

HELP WANTED: BSE-T, preferably with
experience in microminiaturization. SAL-
ARY OPEN
Possible basic courses in this field, as they may appear in college catalogues in the near future are:

Elcmentary Thermodynamics-Concepts of heat, energy cycles, entropy, enthalpy, and elementary gas thermal properties.
Introduction to Heat Flow-Concepts of heat transmission in passive thermal systems by conduction, convection and radiation with emphasis on simple system analyses.

Advanced Heat Transmission-The analysis and design of complex thermal systems (passive) in volving gas, liquid and solid transmission media with simultaneous conduction, convection and radiation effects.
Refrigeration Coolants and Fluid DynamicsA design course in the application of active thermal systems, including peltier junction cooling, refrigerant cycle, fluid boil-off cooling, and coolant circulation (both gas \& fluid).

Thermo-Tronic Systems Synthesis-The analysis and design of systems involving the thermal considerations of the above courses combined with electrical and electronic design courses, or thermotronic system design.

Anyone for thermo-tronics? ■ ■

ENQINEERS:

FACTS WाTHOUT FRILLS.

About Job Potentials at Light Military

Available to You Now!

Prepared for the engineer who likes to get right: down to basics in evaluating a position, LMED's Fact Sheets bring you clearly pre sented up-to-date unvarnished information about all the aspects of company policies projects and plans related to your professional future here.

WHETHER OR NOT YOU CON TEMPLATE AN IMMEDIATE CHANGE, these "Engineering Fact Sheets" are a valuable thing to have. Use them as a yardstick to assess your present - or a possible future - association

Next to your choice of profession, and your choice of a wife-selecting a position with long-range career implications can be the most important decision in your life...

It's A Good Thing To Have Reliable Tools On Hand, To Help Make That Choice a Sound One
PARTIAL
CONTENTS
rgallization
Size of Staff
Resources
Facilities List
Technical Scope (list of projects)
ternal mmunications
and Support
Benefits (detailed)
Salary Scale
Specific Responsibilities of D\&D Engineer Promotion Plan Graduate Program In-Plant Courses Contacts with Other GE. Components

A feeling of accomplishment, comfortable salary, security, fine home, prestige in the community. Yes, these are the marks of a successful Motorola engineer in Chicagoland. But, what exactly makes a career at Motorola so rewarding-beyond the ordinary realm of material benefits?
Foremost is opportunity. For here a man is encouraged to use all of his creative talents to their fullest. He works on projects that spark vision, that inspire imagination. He works with men who recognize and respect his abilities . . a a calibre of men that he cannot help but admire.
Yes, a career at Motorola is deeply rewarding. You owe it to yourself to discover exactly how much. Simply clip the coupon below.

- Radar transmitters and receivers
- Radar circuit design
- Radar circuit design
- Military communications equipment desig
- Pulse circuit design

If strip design

- Device using kylstiom, fraveling wave lube

Dispackward wave oscillato
2. way radio communications

- VHF \& UHF receiver
- Transmitter design and developmen
- Power supply
- Systems engineering

Antenna design

- Selective signaling
- Transistor applications

Crystal engineering
Sales engineering

- Design of VHF \& UHF FM communications Microwave field engineers
- Transistor switching circuit design
- Logic circuit design
T.V. circuit design engineering
- Home radio desien
- New product design
- Auto radio design
- Mechanical ensineering

Semi-conducior device development
Semi-conductor application work

Also Splendid Opportunities in: Phoenix, Arizona and Riverside, California

Send Complete Resumé to:

MR. L. B. WRENN
Engineering Personnel Mgr.
Dept. B
4501 Augusta Blvd
Chicago 51, Illinois

MOTOROLA ${ }_{\text {inc. }}$

CAREER OPPORTUNITIES BROCHURES

Sperry Gyroscope Co.

Prepared especially for engineers, Sperry's career brochure is a well-balanced profile of the company's many activities. Illustrations and text cover the types of work done by the various departments under the headings of Research, Development and Production.

Emphasis is placed on the individual's role in the company, and several paragraphs explain what the firm expects from its engineers and scientists. Advantages to the employe are also well covered.
J. W. Dwyer, Employment Manager, Sperry Gyroscope Co., Great Neck, N.Y.

CIRCLE 870 on reader-SERVICE card

Consolidated Controls Corp.

A new booklet describing company facilities and capabilities has just been issued.
The booklet outlines management and engineering policies and production and quality-control techniques used at the firm's Bethel, Conn., and Inglewood, Calif., plants. The company develops and manufactures components and systems for measurement and control of the pressure, temperature, speed, flow, position and level of liquids under conditions encountered in supersonic flight and power reactors.
Charles M. Colt, Consolidated Controls Corp., Dept. ED, Bethel, Conn. CIRCLE 871 ON READER-SERVICE CARD

LEEDS \&

NORTHRUP CO

- wants to talk with you about the following technical openings. APPLICATION ENGINEER A degree in engineering and 2 to 5 years' experience in measurement and control of steel, glass, cement, chemical or petroleum processes is required

SALES ENGINEERS
An EE degree with 1 to 3 years industrial selling experience of instrumentation or electrical
equipment is required.

PRODUCT ENGINEERS

 A degree in electrical engineering with 2 to 8 years experience in instrumentation engineering of industrial processes or dataTECHNICAL WRITER
Electrical engineering graduate with recent experience in writ ing of technical instruction man-

ASSOCIATE SCIENTIST MS or PhD in chemistry or chem engr or BS and equivalent training and experience in instrumen ical chemistry. Good background in fundamentals and mathematics necessary.

ASSOCIATE SCIENTIST BS in nuclear engineering, phys5 years' experience in nuclear instrumentation desired. Experi ence in solid state electronics re
quired.

ASSOCIATE SCIENTIST MS degree with both chemical en gineering and automatic contro or petroleum processes with auto matic control system design Computer experience also desir able.

PRODUCT ENGINEER
BS in EE with experience on electromechanical devices and elec-
tronic instruments. Facility with tronic instruments. Facility with
feedback amplifiers desirable.

ASSOCIATE SCIENTIST SSOCIATE SCIENTIST BS or MS in EE, knowledge of semiconductor and vacuum tube circuitry as applied to instrumentation required. Knowledge of magnetic amplifier circuitry de
sirable.

MARKET DEVELOPMENT Field Engineer BS in engineer ing ${ }_{6}$ preferably metallurgical. ${ }^{2}$ metal working industrience in perience with heat-treating Ex naces desirabl heat-treating fur

DESIGN ENGINEER

A degree in mechanical engineering with 3 to 4 years' experience in mechanisms application of small manufacturing processes is required.

SEND COMPLETE RESUME TO:
WAYNE L. BESSELMAN
Coordinator of Technical Employment
LEEDS \&
NORTHRUP CO
4850 Stenton Ave.
Phila. 44, Pa.

professional opportunities at Honeywell Aero

FLIGHT CONTROL SYSTEMS: Analytical, systems, and component engineers to work in areas such as advanced flight reference and guidance systems. advanced flight reference and guidance systems. problems, systems engineering through design, testing and proof of electrical and mechanical equip-ment-including flight test and production test.
GROUND SUPPORT: Electrical Engineers to deaign equipment for testing complex electronic systems, equipment for testing complex electronic system, solid state circuitry, and logic circuit design as applied to automatic checkout systems.
EVALUATION: Graduate engineers with electronic background desiring opportunity in development, qualification and reliability specialized equipment which can duplicate environmental conditions encountered by advanced projects. Assignment in this work leads directly to a career in design, research or advanced system development.
ADVANCED GYRO DESIGN: Engineers with two and up to twenty years' experience in precision gyro and accelerometer development, servo techdevelopment, advanced instrumentation and magnetic component design.
PRODUCTION: Electrical engineers to assume responsibility for placing complex devices such as platforms, floated gyros, accelerometers, vertical and rate gyros, calibrators and computers into proproduction know-how and techniques into original design. Responsible for estimating, processing, and tooling dvring the pre-production phase; directing assembly, calibration, and inspection efforts during initial production phases.
INSTRUMENTATION: Development and deaign in the critical areas of test instrumentation for Aero products. Two years' experience in test instrumentation desired.

To investigate any of the above professional pportunities at the Aeronautical Division, nlease write in confidence to Bruce Wood, Dept. 471.
Honeywell H
AERONAUTICAL DIVISION 1433 Stinson Bivd. N.E., Minneapolls 13, Minnesota

To explore professional opportunities in other Honeywell operations coast to coast, send your application in confidence to H.K. Eckstrom, Honeywell, Minneapolis 8, Minnesota.

THE SYSTEM ENGINEER

The major function of the System Engineer is to assist his client in making sound system decisions and to develop plans and specifications which he can verify and support. He is a source of ideas about the kinds of systems which are appropriate and feasible. He understands the problems of designing and building the system components. He is qualified to examine new concepts and alternate designs and can relate the utility of proposals to cost and time. He can evaluate designs proposed by other agencies and contractors. He helps his client decide what to build and how best to build it. He translates these decisions into plans which can he carried out by other contracting agencies. He devises system tests and evaluates the operational capability of the subsystems and the integrated system.
MITRE, formed under the sponsorship of Massachusetts Institute of Technology, is an engineering and development organization with major system responsibilities in air defense and air traffic control.

Engineers and scientists with a good theoretical background and an interest or experience in system work will find challenging opportunities in the following areas:

- COMMUNICATIONS - DIGITAL COMPUTERS
- RADARS
- human engineerinc
- COUNTERMEASURES - AIR TRAFFIC CONTROL

Positions on MITRE's Technical Staff are available in suburban Boston, Massachusetts, Montgomery, Alabama and Fort Walton Beach, Florida.

NEW YORK INTERVIEWS DURING IRE CONVENTION MARCH 21-22-23-24

Senior members of the Technical Staff will be available for interviews at the MITRE suite in the Waldorf Astoria Hotel.

If you prefer to arrange an appointment in advance you are invited to CALL COLLECT
Frank Balanis, Lexington, Massachusetts • VOlunteer 2-8950

To arrange an immediate confidential interview, please send resume to Dana N. Burdette, Personnel Director, Dept. 15-AX

MITRE
244 Wood Street - Lexington 73, Massachusetts
A brochure more fully describing MIJRE and its activities is available on request.

AEROJET-GENERAL offers an outstanding opportunity for
 DEPARTMENT HEADINSTRUMENTATION SOLID ROCKET MOTOR TESTING

One of the free world's largest rocket motor manufacturers is seeking an individual to manage its solid rocket motor test Instrumentation Department. The person filling this position will have a comprehensive electronic engineering background (M.S. or Ph.D. degree in E.E. or physics preferred) with 6 to 10 years of directly related experience in applied instrumentation.

This individual will be responsible for the technical and administrative direction of several hundred engineers and rechnicians engaged in the design, development, operation, and maintenance of multi-channel analog and digital data acquisition and processing systems, capable of measuring solid rocket motor performance parameters to one-quarter of one percent of the data point. In addition, he will be required to represent the Department at technical meetings with customers, associate contractors, suppliers, management, and project engineering personnel.

This is a middle-management position reporting directly to the Assistant Manager of Testing, Sacramento Plants. The salary, relocation allowances, and other benefits are commensurate with the position.
please submit a detailed resume outlining education, experience, and professional activities to:

E. P. James, Supervisor
 Engineering Placement

aEROJET-GENERAL CORPORATION
Post Office Box 1947S
Sacramento, California circle oll on carter inouiry form

YOUR CAREER

ENGINEER-IMPROVEMENT COURSES AND SEMINARS

Below are courses and seminars intended to provide the engineer with a better knowledge of various specialties. Our grouping includes several different types of meetings: National Courses-those held on conseçutive days and intended to draw attendees from all geographical areas; One-Day Seminars-one-day intensive seminars which move from city to city; and Regional Lectures -regional symposia or lecture series which generally run one night a week for several weeks.

Regional Lectures

Managing the Development Engineering Function, AMA, Chicago, New York, San Francisco
In this seminar, the development engineering functions will be analyzed and their relationship to search and development will be discussed. The seminar is of interest to all personnel of both corporate departments and divisions. Discussion will cover these major subjects: steps from idea to product; the engineering role; basic training requirements; operations research and engineering; and organization for performance. The seminar will be held in: Chicago Mar. 21-23; New York Apr. 20-22; and San Francisco Apr. 25-27. For further information on this seminar and the following write to: American Management Association, Inc., 1515 Broadway, New York 36, N.Y.

Creating and Evaluating Research Projects, AMA San Francisco, Chicago
Research directors, executives directly associated with research projects, and supervisory personnel responsible for the execution of projects in the research laboratory will find this seminar of interest. The program will be devoted to consideration of the fundamentals involved in creating a well organized research project. The seminar will be held in: San Francisco Apr. 25-27; and Chicago May 16-18.

PAPER DEADLINES

Convention Program Chairmen have issued the following deadlines to authors wishing to have their papers considered for presentation. Authors are invited to submit either $100-150$ word abstracts, a 400-500 word summary or a completed paper for the National Electronics Conference scheduled for Oct. 10-12 to be held at the Sherman Hotel, Chicago, Ill. Send to: Prof. Thomas F. Jones, Jr., Program Chairman, NEC, School of Electrical Engineering, Purdue University, Lafayette, Ind.

ELECTRONICS JOBS \$6,000 to \$75,000 Go Begging

It's trua! Codillec, the notion's largest Executive and Professional placement service, has many more electronic positions available then we can fill.

We represent every "Blue Book" Electronics firm in America, over 350 in all. Because of this, Cadillac is able to offer Electronics Engineers a choice of positions unequalled by any other firm.

PREE MONTHLY BULLETIN

Because you are an Electronics Engineer, our monthly Electronics Opportunities Bulletin ond our Completely Confidential Plocement Service are available to you FREE OF CHARGE.
"For your free Bulletin, each month listing America's BEST Electronics jobs, send your name and home oddress to:"

Eugene B. Shea
Cadillac
Associates, Inc. 29 E. Madison Bldg., Depf. E2 Chicege 2, III.

CIRCLE 912 ON CAREER INQUIRY FORM

Mr. Engineer. . .
 Refain your Identity af

BECKMAN'S SYSTEMS DIVISION

In Orange County, Callfornia
Here's your chance to be a blg fish in a small pond not that our Systoms Division is loo small . . Ilis lust that wa're not so arge and in a mass of humanify and a wolter of paper work bur Our businoss is the design, devolopmont, and manufacture of proprietary elecrenic dara processing and darartanisiton sysfem. grams varied enginearing design prolects and other activifies with both milifary and commercial significance.
Thora's ample albow room for the non-organization man in any one of the following professional areas:

Logic Design - Systoms Design - Analog Design - Systoms
sneineerina Eloctronle Design e Mreme Evaluetion end
Modularization - Field Engincering • Applications Engineoring
If you'd like to receive more information about us, we suggest you write to our Mr. J. W. Carlion onclosing a briof description of your background.
BECKMAN INSTRUMENTS, INC. systems Division
325 North Muller, Anaheim 6, California
25 miles south of Les Angelos, near the Pacific Coast BECKMAN INSTRUMENTS, INC.
 Mxestivo OMcess Pullorton, Calr
Executive Offcess Pullerton, Celif.
Divisionsi Berkeloy - Mollpot - International - Sciontinc E Process Instruments - Spinee - Systems.
Subsidiarles: Shockloy Translestar Corp. © Ieckman G.m.b.M., Gormany
Deckman (16)
CIRCLE 913 ON CAREER INQUIRY FORM
CIRCLE 914 ON CAREER INOUIRY FORM
ELECTRONIC DESIGN • March 16, 1960

PAGES
MISSING
ARE NOT
AVAILABLE

[^0]:
 \qquad

[^1]: actual size

[^2]:

[^3]: Average k for 3rd Order Low $=1.02$

[^4]: ${ }^{\circ}$ Now with Air Arm Division, Westinghouse Corp., Baltimore, Md.

[^5]: ${ }^{0}$ This represents the worst condition, continuous arcing of the load (i.e. $d u^{\prime}=d u$). Ordinarily, $d u^{\prime}$ is based upon the arcing characteristics of the load, and is much smaller than the operating duty cycle, $d u$.
 $\ddagger I^{\prime}$ is used to compute the value of $I_{\text {drm. }}$, and should not be confused with the Average Current I_{d}. The latter may be computed with the formula: $I_{4}=\left(e_{p, t}\right)\left(d u^{\prime}\right) / 2 Z_{N}$, but is not of primary importance in the choice of the clipper diode.

[^6]: ${ }^{\bullet}$ Fenwal Inc., Ashland, Mass.

[^7]: AMPEX DATA PRODUCTS CO., 934 CHARTER ST., REDWOOD CITY, CALIF.

[^8]: (3)

 Garlock electronic components are skillfully engineered for high temperature, high voltage, high frequency service.

 ## Constant Current

 ## Supply

 Output is 0 to 20 v at 0.5 to 500 ma

 Model 151 constant current supply delivers a variable output of 0 to 20 v at 0.5 to 500 ma . Applications are: semiconductor testing, diode aging, transistor beta tests, potentiometer and current sensitive relay testing, electrolytic work, and in strain gage systems. Regulation is 0.25% for load and 0.25% for a 105 - to $125-\mathrm{v}$ ac line. Input is 105 to 125 at 50 to $60 \mathrm{cps}, 15 \mathrm{w}$. The unit measures $8.25 \times 5 \times 7.75 \mathrm{in}$. and weighs 7.75 lb .

 Quan-Tech Laboratories, Dept. ED, Boonton, N.J.
 Price \& Availability: Price is $\$ 275$ fol Boonton. Unit is available from stock.
 Booth 3034.

 Glass Inductor Kit
 478

 ## Range is 0.05 to $2 \mu \mathrm{~h}$

 This glass-inductor kit has tuning cores which provide for a range of inductances of 0.05 to $2 \mu \mathrm{~h}$. Ten inductors, made by fusing metallic spirals into the surface of a low-loss glass coil form, are included. The inductors have a high stability, operate from -55 to +125 C , and have Q-factors from 120 to 200. Maximum de current capacity is over 1 amp . Tolerance is $\pm 10 \%$. The kit also includes four tuning cores.

 Corning Glass Works, Dept. ED, Bradford, Pa.
 Price \& Availability: Price is $\$ 24.95$. Available in March, the kit will be sold by the Erie Resistor Corp.
 Booth 2334, 2336, 2427 and 2429.

 - CIRCLE 175 ON READER-SERVICE CARD

[^9]: A wholly owned subsidiary of National Co., Inc.
 Export: Ad Auriema, Inc., 85 Broad St., N.Y., i.s. In Canado: Conodián Marconi Co., Toronto i7 Specificolions subiect to change without notice.

[^10]: CIRCLE 257 ON READER-SERVICE CARD

[^11]: - Trademarh

[^12]: COMMUNIGATION ACCESSORIES COMPANV LEE'S SUMMIT, MISSOURI

 Don't miss an issue
 of ELECTRONIC DESIGN; return your renewal card today.

[^13]: MOXNESS
 Logical Source for Precision Silicone and Fluorocarbon Products

 PRECIBION MOLDINO Rubber and Plastics Simple or complex, Moxness has complete, modem mase.production facilitieas, melluding die making, to sive
 tast delivery on the muber and plastic Components you specily
 PRECISION BONDINO Sppecialisis in rubber-vometal bondint to meet exacting specifications and production requirements. Inserts may be fumishod by the customer or pro-
 duced in our plant.

 PRECIBION EXTRUDINO
 Special equipment and an exclusive process developed by Moxness are two reasons why you will pay less for quality extrusions when you order
 from Moxness.

 PRECISION MOX-TAPE® NEW Guide Line Triangular MOX. TAPE providea homogeneous voidfree insulation for motors (class \mathbf{H} and B) with single wrap. Cuts taping time 50 to 60%.

 Write for the Moxness Story
 MOXNESS MOXNESS PRODUCT8, INC. 1919 Indlane St. - Recine, Wisconsin
 Subs. Nat'। Rivet ona Mfg. Co.
 CIRCLE 796 ON READER-SERVICE CARD

